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INTRODUCTION 
Chapter 1: Lipid droplets 

1.1 General aspects of LDs 

Organisms need to store energy in order to survive in the fluctuating conditions of their 

environment. Energy can be stored in energy-rich molecules or electrochemical gradients 

across membranes.  The two main molecules to store energy in animals are glycogen and 

triacylglycerols (TAG). Glycogen is a polymer of glucose that is stored in the cytosol. Glycogen 

is hydrated, and its storage retains a lot of water needing a lot of space. On the other hand, 

TAG are very hydrophobic and separate from water, needing less space. Moreover, TAG are 

highly reduced molecules available for oxidation and therefore energy-dense. TAG and other 

neutral lipids are stored in lipid droplets (LDs; also named lipid particles, lipid bodies, fat 

bodies or oil bodies). LDs are present in many organisms: bacteria, archaea and eukaryotes 

(Murphy 2011). LDs were first described in 1890 by Richard Altmann in frog liver cells (Altmann 

1890). For a long time, they were considered inert energy deposits inside the cell, until the 

1990s when some of their regulation was discovered (Greenberg et al. 1991; Walther and 

Farese 2012). 

1.2 LD structure and lipid composition 

1.2.1 LD structure 

LDs have a spherical structure, which is optimal for a minimal exposure of the surface to the 

aqueous cytosol environment and the number of hydrophobic molecules that an LD stores. In 

the center of the sphere, there are the neutral lipids like TAG and sterol esters (STE) that are 

very hydrophobic, lacking charged and polar groups. On their surface, LDs have a monolayer 

of amphipathic lipids as shown by the thin layer observed in cryo-electron microscopy images 

(Tauchi-Sato et al. 2002). Therefore, the LD structure is a hydrophobic core surrounded by a 

monolayer of amphipathic molecules (Fig. 1-1). The most abundant amphipathic molecules 

are phospholipids (PLs), but diacylglycerol (DAG) and cholesterol are also present. Proteins are 
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also embedded in that monolayer. In this subchapter, I will discuss the lipid composition of 

LDs.  
 

 
Fig 1-1. LD structure. A. Schematic representation of the structure of an LD. Figure modified 
from (Olzmann and Carvalho 2018). B. LDs imaged by transmission electron microscopy. 
Figure taken from (Grippa et al. 2015). Scale bar: 200 nm. C stands for cytoplasm and N for 
nucleus. C. LDs imaged by light microscopy. The hydrophobic core was labelled with a 
hydrophobic dye, shown in green, and the surface was labelled by immunofluorescence the LD 
surface protein GPAT4, shown in red. Scale bar: 1 m. Figure taken from (Wilfling et al. 2015).  

1.2.2 Majority of neutral lipids: TAG and STE 

TAG are molecules composed of glycerol with three fatty acids linked by ester bonds. Fatty 

acid length and unsaturation level can vary, resulting in different species of TAG. They are 

synthesized in mammals by acyl-CoA:diacylglycerol acyltransferase enzymes (DGAT) DGAT1 

and DGAT2, using as substrates DAG and acyl CoA (Cases et al. 2001). Although DGAT1 and 

DGAT2 have the same catalytic activity, they have distinct protein sequences and differ in their 

cellular, biochemical and physiological functions. The endoplasmic reticulum (ER) protein 

DGAT1 esterifies into TAG the excess of fatty acids present in the ER. Otherwise, free fatty 

acids would accumulate, causing lipotoxicity. In contrast, DGAT2 localizes to LDs and the ER 

and is related to de novo lipogenesis (Kuerschner et al. 2008; Wurie et al. 2012). In yeast, the 

DGAT enzyme Dga1p also catalyzes the acylation step from DAG to TAG. Furthermore, Lro1p 

can also catalyze TAG formation using DAG and the acyl chain from a PL, mainly 
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phosphatidylcholine (PC) or phosphatidylethanolamine (PE). Finally, a little amount of TAG in 

yeast cells can be generated by the catalytic activity of Are1p and Are2p (Sorger and Daum 

2002; Czabany et al. 2007).  

   

STE are composed of a sterol molecule bound to a fatty acid by an ester bond. STE can differ 

in their sterol molecule depending on the organism. STE also varies depending on the length 

and unsaturation level of the fatty acid. Intracellular STE are synthesized by the acyl-

CoA:Cholesterol acyltransferase (ACAT) enzymes, ACAT1 and ACAT2 in mammals (Goldstein 

et al. 1974; Luo et al. 2019). ACATs are ER transmembrane proteins.  Both enzymes have 

sequence homology in their c-terminus part, and both are allosterically activated by excess 

cholesterol. In humans, ACAT1 has ubiquitous expression, whereas ACAT2 is expressed in 

enterocytes and hepatocytes (Wang et al. 2017; Luo et al. 2019). In S. cerevisiae, there are 

two enzymes with homologous sequences to ACAT enzymes, Are1p and Are2p. They localize 

to the ER (Zweytick et al. 2000). 

Depending on the organism and cell type, the relative concentrations of the two main neutral 

lipids can vary. LDs in adipocytes contain mainly TAG. In contrast, testicular Leydig cells 

contain LDs with comparable quantities of TAG and STE. Adrenal cortex LDs also contain more 

STE than other cell types (Wang et al. 2015b; Yu et al. 2018). Cholesterol is used in these 

tissues as a substrate for steroid hormones biosynthesis, such as testosterone (Wang et al. 

2015b). Moreover, LD composition can change depending on environmental factors, such as 

the carbon source (Athenstaedt et al. 2006) or temperature. For instance, in S. cerevisiae, the 

quantity of TAG increases when cells are grown at low temperatures, whereas ergosterol 

quantity does not vary much. Likewise, TAG quantity increases in the stationary phase when 

nutrients get depleted (Klose et al. 2012).  

1.2.3 Other neutral lipids 

Besides TAG and STE, other neutral lipids can be found in LDs in smaller quantities. This 

depends on the cell type and metabolism. Examples of minor neutral lipids are acylceramides, 

retinol esters, squalene, neutral ether lipids, wax oils, vitamin E and long-chain polyprenols.  

Ether lipids are a group of glycerolipids in which one of the lipids is bound to glycerol by an 

ether bond instead of an ester bond. They have signaling functions and structural roles. A 
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study using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy 

quantified the ether lipids present in LDs to represent 10-20% of all neutral lipids in Chinese 

hamster ovary cells. The same study found that other cell types like white adipose tissue do 

not contain any detectable ether lipids, according to thin-layer chromatography (Bartz et al. 

2007). The enzyme fatty acyl-CoA reductase 1 produces fatty alcohols necessary for the 

formation of ether lipids. This peroxisomal protein has been shown to localize also to LDs 

(Exner et al. 2019). 

Acylceramides are produced at the ER-LD interface by the enzyme DGAT2, which forms a 

complex with the ceramide synthase and the fatty acyl-CoA synthase ACSL5. They can be 

found in the hepatic cells of mice fed a high-fat diet. The lack of DGAT2 results in a higher level 

of ceramides and ceramide-mediated apoptosis (Senkal et al. 2017). In S. cerevisiae, Dga1p 

(DGAT2 ortholog) and Lro1p are able to produce acylceramides (Voynova et al. 2012). Retinyl 

esters are formed by lecithin:retinol acyltransferase using retinol and PC as substrates 

(Golczak et al. 2012). Retinyl esters are precursors of vitamin A and accumulate in LDs, for 

instance in hepatic stellate cells. The amphipathic helix (AH) in the N-terminal part of 

lecithin:retinol acyltransferase interacts with retinol esters (Molenaar et al. 2019). The 

isoprenoid squalene is an intermediate molecule of sterol biosynthesis and can also be stored 

in LDs (Spanova et al. 2010). Another kind of neutral lipids are wax esters. They are produced 

by wax ester synthase using acyl-CoA and acyl-CoA-derived fatty alcohol as substrates 

(Lardizabal et al. 2000). Wax esters can be found in plant LDs (Parker and Murphy 1981). 

Polyprenols are isoprenoid lipids. Long-chain polyprenols can be stored in LDs. During spore 

wall formation in yeast, polyprenols are stored in LDs (Hoffman et al. 2017). 

1.2.4 Distribution of neutral lipids inside an LD  

How these various neutral lipids are organized within the LD core have different possibilities. 

The first option will be to have an amorphous LD core and all the neutral lipids mixed. 

Moreover, some studies have suggested that phase transitions occur within the neutral lipid 

core of LDs. Studies on yeast that used differential scanning calorimetry and small x-ray 

scattering suggested that TAG and squalene formed the fluid inner core of LDs whereas STE 

was in layers surrounding that core (Fig. 1-2 A) (Czabany et al. 2008). A study on HeLa cells 

with cryo-electron microscopy found LDs to be amorphous under normal conditions. 
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However, under certain conditions that lead to TAG consumption (e.g. mitotic arrest, 

starvation) ordered layers of a few nm, likely formed by STE, could be observed (Fig. 1-2 B) 

(Mahamid et al. 2019). These studies show that phase transitions can occur under 

physiological conditions in LDs, affecting the distribution and availability of neutral lipids.  

        
Fig 1-2 Phase transition inside an LD core. A. Diagram of a yeast LD proposing the 
separation of neutral lipids into phases (Czabany et al. 2008). B. Organized layers were 
observed in LDs from HeLa cells by cryo-electron microscopy (Mahamid et al. 2019). 

Separation could also occur between TAG species depending on their acyl chain length and 

unsaturation level. Broadband coherent anti-Stokes Raman spectroscopy is a technique 

sensitive to vibrational signatures of molecules. When applied to differentiated 3T3-L1 

adipocytes, it showed that saturated TAGs were located in the outer parts of LDs and that they 

were relatively more abundant on big LDs (Paul et al. 2019). 

Besides separation of neutral lipids within one LD, different LDs within the same cells could 

also contain different neutral lipids. A study using bodipy-based fluorescent probes found 

populations of TAG and STE-rich LDs within the same cell in several different cell types (mice 

adrenocortical cells, mice liver cells, and Chinese hamster ovary cells among others) (Hsieh et 

al. 2012). However, a study on hepatic cells using Raman scattering microscopy did not find 

different populations of LDs containing different neutral lipids (Fu et al. 2014). Therefore, it is 

not clear if different LDs with distinct neutral lipid composition co-exist within cells. More 

studies combining several techniques will be necessary to resolve this question.  
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1.2.5 PLs 

PLs protect the neutral lipid core from the hydrophilic cytosolic environment, stabilizing the 

LD. PLs represent a minor quantity of molecules in the LDs. For instance, PLs only represent 1-

2% in weight of LDs in Chinese hamster ovary cells (Bartz et al. 2007). The fraction of PLs in 

LDs varies depending on their size. Assuming a density of 0.95 g/ml and a molecular weight of 

885 g/mol for triolein, and that the LD would be covered by a monolayer of PC of 2.5 nm in 

thickness, Penno and coauthors arrive to the following equation: ்ீ௉஼ = 0.215 𝑛𝑚ିଷ ·  𝑎 ·(௥ିଶ.ହ)య௥మ   (Penno et al. 2013). 𝑎 is the surface area per PC molecule. One PL molecule was 

measured to occupy 0.78 nm2 in the PL monolayer on LDs when the PLs are well-packed 

(Chorlay and Thiam 2020). Applying this equation, one LD of 300 nm in diameter would have 

4.2 mol% of PLs, whereas one LD of 100 m would have 0.01 mol% of PLs. The difference in 

PL fractions between LDs of different sizes shows that if an LD is expanding or shrinking its PL 

content will need to be adjusted. This could happen either by local synthesis or consumption 

of PLs, by lipid transfer through membrane contact sites, via direct contact between the ER 

bilayer and the LD monolayer, or by LD fusion or fission. Vesicular transport pathways are 

excluded from contributing to the remodelling process of the LD monolayer due to biophysical 

constraints. Here I will explain in more detail the synthesis pathways of PL that are relevant 

for LDs. Some of the other mechanisms will be discussed later.  

The first way of synthesizing PLs is the Lands cycle, which uses lyso-phospholipids (lyso-PLs). 

Lyso-PLs are generated from PLs by phospholipase A2 (PLA2), which removes the sn-2 fatty 

acid (Fig. 1-3). The half time of the release of lyso-phosphatidylcholine (lyso-PC) from a 

membrane is around 20ms (Massey et al. 1997). Therefore, lyso-PC can escape from 

membranes spontaneously and with no additional enzymatic activity. LD-localized lyso-PL 

acyltransferases, such as LPCAT, can re-acylate the PL (Moessinger et al. 2011). This re-

acylation would explain the different fatty acid composition of the PLs in the LD monolayer 

compared to the ER membrane (Tauchi-Sato et al. 2002). 
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Fig 1-3. PLs synthesis pathways and LDs. Left panel: Lands cycle operating between the ER 
and LDs. Adapted from (Penno et al. 2013). Right panel: Kennedy pathway for synthesis of 
PC. Adapted from (Payne et al. 2014). See text for details. 

The other pathway to synthesize PLs that is important for LDs is the Kennedy pathway, which 

synthesizes PC (Fig. 1-3). The rate-limiting step is catalyzed by the enzyme 

CTP:phosphocholine cytidyltransferase (CCT1 or PCYT1A), which generates cytidine-

diphosphocholine. CDP-choline:diacylglycerol phosphocholine transferase (CPT) catalyzes the 

next step to obtain PC from cytidine-diphosphocoline and DAG (Payne et al. 2014). CCT1 was 

observed on LDs when it was transiently expressed in drosophila cells (Krahmer et al. 2011). 

However, another study using immunostaining of mice tissues did not find LD localization of 

endogenous CCT1 (Haider et al. 2018). Moreover, the subsequent PC-synthesis step occurs on 

the ER (Moessinger et al. 2011). Therefore, even if the formation of cytidine-diphosphocholine 

occurs on LDs, intracellular transport of PC needs to take place to carry PC from the ER to LDs.  

Lipidomics analysis of the PLs present in purified LDs suggested increased quantities of PC, PE, 

and their respective lyso-PLs, and lower levels of phosphatidylserine (PS), sphingomyelin and 

phosphatidic acid in LDs compared with total membranes (Bartz et al. 2007). 
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1.3 LD proteome  

1.3.1 Identification of LD proteins 

Proteins present on LDs mediate their metabolism and other functions. LD proteome can be 

identified by purifying LDs using density gradients (Brasaemle and Wolins 2016), followed by 

techniques to analyze all associated proteins, such as mass spectrometry. Of note, one issue 

of this technique is the contamination by proteins from other cellular compartments in the 

buoyant fraction after centrifugation (Brasaemle et al. 2004). In order to avoid contaminations 

and identify bona fide LD proteins, the Olzmann group added a step of proximity labelling of 

LD-bound proteins to the previous protocol and apply it in human liver and bone cancer-

derived cells (Bersuker et al. 2017).  Proteins related to the metabolism of TAG, STE, PLs and 

sugars, membrane-organization, vesicular trafficking, cytoskeleton, protein processing, 

autophagy and transcription have been identified on LDs (Bersuker et al. 2017).  

1.3.2 Protein motifs that target LDs 

The hydrophobic core of LDs is devoid of proteins because this is an energetically unfavourable 

environment for hydrophilic protein domains. Therefore, LD proteins are located on the LD 

surface (Thiam et al. 2013b; Pataki et al. 2018). Proteins can interact with the LD surface via 

the following motifs (Fig. 1-4):  

 Amphipathic helices (AHs).  These are secondary helical structures, in which the amino 

acids (aa) are segregated in two distinct faces: one hydrophobic and one polar. 

Proteins containing AHs target LDs from the cytoplasm. Perilipins (Plins), acyl-CoA 

synthetase 3, CCT1 or cell death-inducing DFF45-like effector (CIDE) A, and other 

proteins use this motif to target LDs (Bersuker and Olzmann 2017; Giménez-Andrés et 

al. 2018). AHs are explained in detail in Chapter 3.  

 

 Hydrophobic hairpin loops: these aa segments are embedded in the PL monolayer and 

are flanked by regions exposed to the cytosol. In the middle of the hydrophobic region, 

there is in some cases a proline required for LD localization (Abell et al. 1997). Proteins 

with this motif are inserted in the ER either co-translationally by the signal recognition 

particle and Sec61 or post-translationally by Pex19 and Pex3. These proteins 
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translocate from the ER to LDs during LD biogenesis or later via ER-LD bridges (Kory et 

al. 2016; Bersuker and Olzmann 2017). Some proteins that use this motif are DGAT2 

(Stone et al. 2006), GPAT4 (Wilfling et al. 2013) and plant oleosins (Abell et al. 1997). 

 
 Lipid modifications. Lipid conjugations as palmitoylation, prenylation or 

myristoylation, can mediate targeting to membranes, as well as to LDs. Palmitoylation 

is reversible, therefore the interaction of these proteins can be regulated (Bersuker 

and Olzmann 2017).   

 

 Peripheral association via another protein. These are proteins that localize to LDs by 

interacting with proteins already present in LDs. Hormone-sensitive lipase (HSL) 

interacts with phosphorylated N-terminus of Perilipin 1 (Plin1) (Egan et al. 1992). This 

is also the case for histones H2A and H2B in Drosophila embryos, where they interact 

with the LD protein Jabba (Li et al. 2012).  

 
Fig. 1-4. Motifs for protein localization to LDs. Proteins localizing to LDs can use these four 
motifs: hydrophobic hairpins, AHs, lipid modifications or peripheral association via another 
protein. Adapted from (Bersuker and Olzmann 2017). 

An intriguing case is the enzyme implicated in ether lipid formation fatty acyl-CoA reductase 

(FAR1). It localizes to peroxisomes and ER using one transmembrane domain and one AH. 
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However, it also localizes to LDs, where it has been suggested that the transmembrane 

domain acquires another structure compatible with LDs, like an AH or a hydrophobic hairpin 

(Exner et al. 2019).  

1.3.3 Removal and degradation of LD proteins 

Removal of proteins from LDs can occur by degrading them with several pathways. Proteins 

can be degraded by the ubiquitination-proteasome system (Xu et al. 2006). In the case of 

proteins with hydrophobic embedded domains, the ER-associated protein degradation (ERAD) 

machinery is necessary. ERAD substrates are ubiquitylated, extracted from the membrane and 

degraded by the cytosolic proteasome (Ruggiano et al. 2016; Olzmann and Carvalho 2018). 

The last system is chaperone-mediated autophagy, where specific proteins are identified by 

HSC70 and introduced in the lysosome for their degradation by LAMP2A (Kaushik and Cuervo 

2015).  

LDs have limited space on their surface, especially when they are small or shrinking because 

of energy consumption. Limited surface availability leads to molecular crowding effects, and 

some proteins with less affinity for LDs will fall off during shrinking. For instance, CCT1 

heterologously expressed is displaced during LD shrinkage, whereas GPAT4 remains on them 

(Kory et al. 2015). 

1.4 LD dynamics 

LDs are very dynamic organelles that adapt to different metabolic conditions.  

1.4.1 LD biogenesis 

De novo formation of LDs occurs in the ER (Jacquier et al. 2011; Choudhary et al. 2015). Neutral 

lipids can be synthesized either in the ER or in LDs, but predominantly in the ER. The main 

model of LD biogenesis can be divided into four steps (Fig. 1-5) (Walther et al. 2017): 

 Step 1: Neutral lipid synthesis within the ER (see Chapter 1.2). 
 

 Step 2: Formation of an oil lens between the ER PLs leaflets. Newly formed neutral 

lipids accumulate in the ER bilayer forming an oil lens between the two leaflets (Thiam 

and Forêt 2016; Walther et al. 2017). The protein FIT2 could participate in the 
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nucleation by interacting with TAG (Gross et al. 2011). This process was proposed to 

occur in microdomains of the tubular ER. There, Acyl-CoA synthetase 3 (ACSL3) localize 

early and it is required for efficient LD nucleation and lipid storage (Kassan et al. 2013). 
 

 Step 3: Budding and nascent LD formation. When there is a certain quantity of neutral 

lipids within the ER bilayer, the lens becomes unstable. This lens buds from the ER 

when there is an asymmetry between the surface tension of the two PL leaflets 

(Chorlay and Thiam 2018). This asymmetry can be due to an excess of PLs or more 

proteins embedded in one leaflet (Chorlay et al. 2019). Moreover, some lipids promote 

LD budding, such as triolein, lyso-PC and phosphatidylinositol (PI) (M’barek et al. 2017). 

LD budding is orchestrated by seipin, an ER protein that determines the sites of LD 

formation (Wang et al. 2018). Even though its structure has been resolved (Sui et al. 

2018), many open questions remain about how seipin and its partner proteins 

promote LD budding. FIT2 could also promote LD budding (Choudhary et al. 2015). 
 

 Step 4: LD growth and expansion. Some budded LDs continue to acquire more neutral 

lipids. Many proteins localize to the LD surface during this step. For instance, DGAT2 

relocates from the ER to the LD surface, promoting LD growth (Wilfling et al. 2013). 

Which LDs are selected in the subpopulation that keeps growing is influenced by the 

small GTPase ARF1 and the COPI coatomer protein complex (Wilfling et al. 2014). 

 
Fig. 1-5. Steps of the de novo LD formation and budding from the ER. (Walther et al. 2017). 

See text for details. 
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1.4.2 LD fusion and fission 

LDs can fuse (Guo et al. 2008; Sun et al. 2013). LD fusion could occur by coalescence of 

unstable LDs or be mediated by proteins at LD-LD contact sites (Fig. 1-6) (Gluchowski et al. 

2017). Coalescence of very unstable LDs in vivo would have very fast dynamics, and it so far 

has not been directly observed in cells.  

Fusion by diffusion in LD-LD contact sites is regulated by the CIDE family of proteins. A member 

of the family, CIDEA, greatly enhances LD size when ectopically expressed in preadipocytes 

and favours cellular lipid accumulation (Puri et al. 2008). Neutral lipids are transferred from 

the smaller LD to the larger one (Gao et al. 2017b).  

 
Fig. 1-6. Fusion of LDs. A. Coalescence of LDs due to their instability. B. LD-LD contact site 
where a CIDE protein is mediating LD fusion via lipid diffusion (Gluchowski et al. 2017).  

LDs can also produce small LDs by budding. This occurs with the help of ARF1 and the coat 

protein complex I (COPI). ARF1 and COPI bud vesicles from bilayers for intracellular trafficking. 

This complex also buds small LDs (around 60 nm) from a bigger LD in vivo and in vitro. This 

results in a lower phospholipid density on the LD, which recruits some key enzymes (Soni et 

al. 2009; Thiam et al. 2013a; Wilfling et al. 2014). The destiny of the small budded LDs has not 

been addressed yet.  

1.4.3 LD consumption 
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Neutral lipids stored on LDs are broken down to obtain energy and membrane compounds.  

 1.4.3.1 Lipolysis 

Cytoplasmic lipases release free fatty acids from TAG in LDs. Three main lipases are present in 

the cytoplasm: adipose triglyceride lipase (ATGL, or PNPLA2), HSL and monoacylglycerol lipase 

(Zechner et al. 2017). ATGL catalyzes the 1st step of lipolysis by hydrolyzing fatty acids in sn-2 

or sn-1 position of TAG (Fig. 1-7 A). It has a narrow substrate specificity, having a 10-fold higher 

affinity for TAG than for DAG (Zimmermann et al. 2004). It requires interaction with ABHD5, 

also named CGI-58, for its full activation and it is inhibited when it is in contact with G0S2 or 

hypoxia-inducible lipid droplet associated protein (Das et al. 2018; Kulminskaya and Oberer 

2019). ATGL is found in most tissues, having its highest expression in white and brown adipose 

tissue. Its deletion in mice produces a moderate obese phenotype and its overexpression 

results in a lean phenotype (Ruggles et al. 2013). In yeasts, the lipases Tgl3p, Tgl4p and Tgl5p 

are homologous to ATGL and catalyze the same reaction step (Czabany et al. 2007).  

           

             
Fig. 1-7. Two pathways for LD consumption. A. Lipolysis pathway. See text for details.  
Adapted from (Zechner et al. 2012). B. A lipophagy step where an autophagosome with LDs 
inside due to the recognition cargo p62 and is fused with lysosomes containing the enzyme 
lysosomal acid lipase (LAL) resulting in an autolysosome. Adapted from (Zechner et al. 2017).  

HSL mediates the second step of lipolysis, releasing one fatty acid and monoacylglycerol. HSL 

has a broad substrate specificity, being able to hydrolyze TAG, DAG, monoacylglycerol, STE 

and retinyl esters (Holm et al. 2000). HSL is expressed mainly in adipose tissue, but also in 

skeletal muscle, pancreas and macrophages.  Phosphorylation by protein kinase A (PKA) 

promotes HSL localization to LDs and improves its catalytical activity. Knocking out HSL in mice 

ABHD5 
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results in increased DAG accumulation in adipose tissue (Ruggles et al. 2013). The last step of 

neutral lipolysis is catalyzed by monoacylglycerol lipase. It cleaves the last fatty acid from 

monoacylglycerol. The enzyme is cytoplasmic and does not act on LDs (Zechner et al. 2017).   

 1.4.3.2 Sterol esters hydrolysis.  

STE are hydrolyzed to free fatty acid and a sterol by the neutral cholesteryl ester hydrolase 

that localizes to the ER (Ruggles et al. 2013). They can also be hydrolyzed by HSL (Fredrikson 

et al. 1981). In yeasts, they are degraded by Yeh2p on the plasma membrane and by Yeh1p 

and Tgl1p on LDs (Köffel et al. 2005). 

 1.4.3.3 Lipophagy 

Breakdown of TAG and STE does not occur only on LDs. During autophagy, cytoplasmic 

components are sequestered into a de novo formed double-membrane structure called 

autophagosome that then deliver their cargo to lysosomes for their degradation. When 

autophagosomes sequester LDs selectively, the process is called lipophagy (Fig. 1-7 B) (Schulze 

et al. 2017). Lipid degradation is carried out by the lysosomal acid lipase that has broad 

specificity and acts at an optimal pH of 4.5 – 5 (Zechner et al. 2017). It was suggested that 

catabolism of big LDs was carried by lipolysis whereas degradation of small LDs was fulfilled 

by lipophagy (Schott et al. 2019). Therefore, the proposed model would be that TAG on big 

LDs would be degraded by lipolysis until they have a small size and can be consumed by 

lipophagy.  

1.5 LD size 

LD size depends on the balance between neutral lipid synthesis and degradation, and by the 

fusion and fission processes. LD size varies depending on the organism, environmental 

conditions and cell type. Size of mature LDs ranges over three orders of magnitude in their 

diameter: from hundreds of nm to more than 100 m (Suzuki et al. 2011). This means that the 

difference in volume between the smallest and the biggest mature LD is 1x109 times.  

White adipocytes often contain only one LD that occupies the majority of their cell volume, 

reaching even more than 100m in diameter. Their shape is more polyhedral than spherical 

due to its definition by the cell periphery and contacts with other cells (Chen and Farese 2002). 
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The family of proteins CIDE mediates in the transfer of neutral lipids between LDs for obtaining 

a large unilocular LD in human adipocytes (Gong et al. 2011). 

LDs in human non-adipose cells are completely spherical and their size is usually ≤ 1 m and 

rarely exceeds 10 m (Suzuki et al. 2011). For instance, in HeLa cells, the size of LDs is typically 

1 m, and in oleic acid treatment is around 1.75 m (Smirnova et al. 2006). In yeast 

Saccharomyces cerevisiae in stationary phase the LD size can be around 450 nm (Czabany et 

al. 2008). 

Neutral lipids and PLs influence LD size. The lack of PLs like PC in the LD monolayer results in 

LDs with large size because they tend to fuse to reduce the surface to volume ratio and 

stabilize themselves (Guo et al. 2008; Krahmer et al. 2011). During LD budding, some PLs 

reduce more the surface tension in the ER leaflets than others, resulting in more numerous 

and smaller LDs. Lyso-PC, PI, saturated PLs and poly-unsaturated fatty acids have this effect in 

a biochemical reconstituted system (M’barek et al. 2017). In mammary glands, it was 

suggested that cells grown with oleic acid in the media contained larger LDs than cells grown 

with palmitic acid (Cohen et al. 2015).  

Proteins regulate LDs and influence their size. Two examples are seipin and the yeast protein 

Pet10p (or Pln1p). Seipin deletion results in many nascent LDs and one large LD that 

accumulates the big majority of neutral lipids within the cell (Wang et al. 2016). Pet10p 

deletion in yeast leads to larger LDs when cells are grown in oleic acid media (Gao et al. 2017a) 
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Chapter 2: Biophysics of lipid droplets 

2.1 Emulsions and surface tension  

Emulsions are heterogeneous systems in which two immiscible liquids are in contact being 

one dispersed in the other. From a physical point of view, LDs can be considered like the 

dispersed phase of a direct emulsion or oil-in-water emulsion. The continuous phase is the 

aqueous cytosol of cells (Thiam et al. 2013b). One way of characterizing emulsions is by the 

size of their droplets. This can be measured using dynamic light scattering (DLS). DLS measures 

the hydrodynamic diameter and size distribution of the particles in a suspension based on 

their diffusion coefficient obtained from the light scattering intensity fluctuations during time 

(Stetefeld et al. 2016). DLS measures the size of the whole population giving a distribution of 

sizes and its measuring range goes from 0.1 nm to 10 m.  

 Molecules of water interact through hydrogen bonds. In contrast, neutral lipids do not 

provide or accept hydrogen bonds. The lack of cohesive interactions between the two 

components of the emulsion generates surface tension. Surface tension (γ), or interfacial 

tension, is the force per unit area that is required to increase the surface area of a liquid due 

to intermolecular forces. The units of surface tension are millinewtons per meter (mN/m) 

(Thiam et al. 2013b). High surface tension results in an unstable emulsion that will tend to fuse 

to reduce the volume to surface ratio and the surface tension. There are several techniques 

to measure surface tension. One of them consists in measuring the pressure required to 

flatten a meniscus into a plane surface in a capillary tube (Nevin et al. 1951). With this method, 

surface tension at 25 °C  between water and the TAG triolein (3 oleic acids, 18:1n-9) was 

measured to be 14.61 mN/m, 13.16 mN/m between water and trilinolein (3 linoleic acids, 

18:2n-6), and 20.16 mN/m between water and tripelargonin or trinonanoin (3 nonanoic acids, 

9:0) (Benerito et al. 1954). These results suggest that depending on the chemical composition 

of the neutral lipid, the surface tension changes. Of note, these values should be taken 

cautiously and only for comparison between the different TAGs, because the surface tension 

of triolein was measured afterwards to be around 32 - 35 mN/m (Daubert and Danner 1989, 

Mitsche et al. 2010).  
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Another method for measuring surface tension is using the oil-drop tensiometer. The droplet 

is subjected to different pressures (P) and the droplet radius (R) is measured. The surface 

tension can be obtained using the Young-Laplace equation: γ ቀ ଵோଵ + ଵோଶቁ = Δ𝑃 ≡ Δ𝑃0 − Δρgz  

(Stauffer 1965).   

2.2 Surfactants 

Surfactants are amphipathic molecules that are situated at the interphase and reduce the 

surface tension, producing a more stable emulsion (Thiam et al. 2013b). Surface pressure is 

used to describe surfactants. Surface pressure ( is defined as the difference between the 

energies required to maintain various lipid/water interfaces and correlates with the density 

of amphipathic molecules at lipid surfaces (Meyers et al. 2015). When the surface tension of 

a droplet is reduced and it is more stable, the surface pressure increases. PLs act as surfactants 

thanks to their hydrophilic head, charged in some cases, and their two hydrophobic acyl 

chains. The effect of PLs on oil droplets is studied with oil droplet tensiometry. For instance, 

the surface tension of triolein alone went from 32 mN /m to 20 mN/m after 4h in the presence 

of egg PC. Therefore, surface pressure was 12 mN/m (Mitsche et al. 2010). 

Another technique to measure surface tension on neutral LDs with PLs is the aspiration by 

micropipette of micron size droplets.  Droplets in the range of 1 m – 35 m are formed by 

vortexing neutral lipids, buffer and PLs for 1h. Afterwards, droplets are introduced in a 

micromanipulation device, where the micropipette will completely aspire the droplet 

(Delacotte et al. 2014). Surface tension is calculated with the diameter sizes of the droplet and 

the pipette, and by the pressure need to aspirate the droplet (Yeung et al. 2000). Moreover, 

PL density can be obtained from this method if a fraction of fluorescent PLs are added. 

Therefore, both surface tension and surfactant density can be obtained by using a fluorescent 

microscope (Delacotte et al. 2014).  

Another technique to explore further the physical properties of monolayers of PLs in neutral 

LDs are molecular dynamic (MD) simulations. These computer simulations analyze the 

physical movement of atoms and molecules, and therefore can be used to study the 

properties of certain systems. An MD study found that at similar concentration of 

phospholipids (66 Å per lipid) in a bilayer and a monolayer on TAG gave the same surface 
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tension, ~ 0 mN/m (Bacle et al. 2017). But if that concentration diminished by 10%, the surface 

tension of the LD monolayer increased to 12.5 mN/m. Moreover, the formation of packing 

defects, or hydrophobic cavities because there are no PLs covering them, increased 

nonlinearly for surface tensions higher than 10 mN/m, likely due to interdigitation of acyl 

chains from TAGs and PLs (Bacle et al. 2017). Another study agreed with the previous one 

showing that when TAGs are added to a bilayer, the surface area per one PL molecule 

increased due to the mixing of TAG and PLs acyl chains (Prévost et al. 2018). MD simulations 

can give insights into many membrane processes. However, their results should be compared 

with experimental data. PL area was measured in in vitro assays determining that the area per 

PC molecule in the monolayer is around 78 Å, whereas in a bilayer it varies between 69 and 

74 Å (Chorlay and Thiam 2020). 

Other surfactants present in LDs are lyso-PLs and fatty acids. DAG can also decrease surface 

tension at low concentrations and in the presence of PLs to avoid membrane deformation 

(Mirheydari et al. 2017). Sterols such as cholesterol have also a small amphipathic character, 

with a bulky hydrophobic part and a small hydroxyl group. The potential contribution of 

cholesterol to lower the surface tension has not been measured yet. Fatty acids, lyso-PLs, DAG 

and sterols are the products of reactions occurring on the LD surface. Therefore, their impact 

on surface tension if they accumulate is relevant for LD homeostasis. 

2.3 Proteins acting as surfactants 

Some proteins also have an amphipathic character with regions enriched in hydrophobic aa 

and other polar aa. Proteins embedded in the interface of neutral lipids and water can reduce 

the surface tension, acting as surfactants (McClements and Gumus 2016). Many proteins can 

interact with the oil surface non-specifically. These proteins normally lose their native 

structure, achieving another conformation with lower energy for their interaction with oil. 

This is the case for many proteins used to make emulsions in pharmaceutical or alimentary 

industry. Some examples are beta-lactoglobulin, albumin and whey protein isolate (Tabibiazar 

et al. 2015; Ali et al. 2016). 
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2.3.1 Apolipoproteins as proteins interacting with neutral lipids 

Lipoproteins are particles formed by specific proteins and lipids, mainly TAG, STE, cholesterol 

and PLs. They are present in the blood, where they transport these lipids around the organism. 

There are different types of lipoproteins, depending on their lipid and protein composition, 

that fulfil distinct functions. Their size ranges between 10nm and 1000nm (Pan and Segrest 

2016). Their neutral hydrophobic core makes them similar to LDs in structure and in 

biophysical properties (Small et al. 2008). 

                   
Fig. 2-1. ApoB has two modes of interaction with lipoproteins. At low surface pressure, 
ApoB AHs are interacting with the lipids in the lipoprotein. When the surface pressure rises, 
ApoB AHs desorb from the lipid surface. ApoB therefore acts as a buffer for surface pressure 
(Wang et al. 2006). 

Apolipoprotein B (ApoB) is present in chylomicrons, very low-density lipoproteins (VLDL) and 

low-density lipoproteins. Chylomicrons transport TAGs from enterocytes to peripheral tissues 

in the fed state and have a truncated version of ApoB. VLDLs have full length ApoB and are 

formed in the liver from where they are released in the fasting state (Sirwi and Hussain 2018). 

ApoB reduces surface tension of triolein/water interfaces measured by the oil drop 

tensiometer. Furthermore, drop compression and expansion lead to determine that the 

maximal surface pressure resisted by ApoB without partially detaching from the interface was 

13 mN/m (Wang et al. 2006). Another study from the same group aimed to study the 

structural motifs of ApoB involved in this interaction. The N-terminal part of ApoB contains an 

alpha helical region, formed by 17 predicted AHs, and two amphipathic beta-strands. When 

the alpha helical domain is adsorbed at the oil-water interface, it forms a viscoelastic surface. 
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ApoB helices could be ejected or remodelled depending on the surface tension. However, the 

two amphipathic beta-strands form an elastic film and are irreversibly anchored to the lipid 

surface (Mitsche et al. 2014). Therefore, the amphipathic beta-strands are always interacting 

with the oil surface whereas the interaction of ApoB AHs depends on the surface pressure 

(Fig. 2-1).  ApoB is a very good example of a protein that can interact very stably or transiently 

with neutral lipids.  

Apoliphorin-III (ApoLp-III) is an exchangeable apolipoprotein present in insects that contains 

a helix bundle formed by five alpha helices. The surface pressure when the ApoLP-III is added 

to triolein is 20 mN/m. A monolayer of PC in triolein has a surface pressure of 7.5 mN/m. When 

ApoLP-III and PC were added together the surface pressure was similar to protein alone. 

However, when PE or DAG were present in combination with PC, surface pressure was higher 

than with only protein (Mirheydari et al. 2017). This study suggests that the combination of 

certain proteins and some lipids increases the surface tension, while the combination with 

other lipids does not have any effect.  

Apolipoprotein A I (ApoA-I) is an exchangeable apolipoprotein. Two ApoA-I chains form a ring 

around the lipid core in high-density lipoprotein particles. The two chains stabilize via lateral 

interactions between their charged residues. ApoA has been studied in neutral lipid-PLs-

Protein-water interface. The C-terminal part of ApoA-I has a desorption pressure of 25.8 

mN/m. Of note, when ApoA-I detaches from the lipid surface, it removes PLs, reducing the 

surface pressure by having fewer proteins and less PLs (Mitsche and Small 2011).  

2.4 LD surface tension and stability 

LDs contain many surfactants on their surface: various kinds of PLs, different proteins, fatty 

acids, DAG. The surface tension of purified LDs has been measured. By microaspiration 

technique, the surface tension of purified LDs was ~3 – 4 mN/m for mammalian LDs, and 

around 2 mN/m for Drosophila cells (M’barek et al. 2017).  When the concentrations of 

surfactants in the neutral lipid surface is low, the emulsion will be thermodynamically unstable 

because there is too much hydrophobic surface exposed to the aqueous environment. When 

this happens, there are several ways of decreasing instability. The first one is LD fusion or 

coalescence. Another way is by Ostwald ripening, where molecules from smaller droplets are 
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transferred to larger droplets through the continuous phase. If LDs have a continuous 

monolayer with the ER bilayer, neutral lipids could travel from one LD to another inside the 

ER bilayer, where they are soluble. Ostwald ripening was demonstrated in biochemical 

reconstitutions using membrane-embedded droplets (Thiam et al. 2013b; Salo et al. 2019). In 

vivo, proteins can regulate the ripening process, for instance, the seipin complex counteracts 

the ripening process (Salo et al. 2019). 
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Chapter 3: Amphipathic helices 

Amphipathic helices (AHs) are protein sequences that fold into helical structures with their aa 

segregated in two well differentiated faces: one hydrophobic and one polar.  They are present 

in many proteins and were first identified in apolipoproteins (Segrest et al. 1974). By adopting 

a parallel orientation to the membrane plane, AHs can interact with membranes inserting 

their hydrophobic residues between fatty acyl-chains while polar residues face lipid polar 

heads (Fig. 3-1) (Jao et al. 2008; Giménez-Andrés et al. 2018).  

 

    
Fig. 3-1. Interaction of an AH with membranes. A. Frontal view of alpha-synuclein AH 
(green) interacting with a curved membrane. B. Lateral view of the positioning of alpha-
synuclein in a membrane. The helical axis is positioned just below the level of the phosphate 
groups of PLs. Adapted from (Jao et al. 2008).  

3.1 Helicity of aa and types of helices 

Some aa are more prone to form a helix than others. For instance: alanine, leucine, arginine 

and lysine have high helix propensity while glycine, proline and aspartic acid have less helix 

propensity (Pace and Scholtz 1998). Proline is a helix breaker due to its limited lateral angle 

positions and its inability to form hydrogen bonds that stabilize the internal structure of a helix 

(Rey et al. 2010). Aa helicity has been largely studied in helices of globular proteins, where 

many crystallized protein structures are available. For transmembrane helices or AHs that 

interact with membranes, this information is much more limited. Many AHs are unfolded 

when they are not interacting with membranes (Bigay et al. 2005; Giménez-Andrés et al. 

2018). There are four different thermodynamic states for AHs depending on their folding and 

partitioning to the interface (Fig. 3-2). The interaction of hydrophobic residues with the lipid 

surface promotes the helix formation (Strandberg et al. 2018).   
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Fig. 3-2. Thermodynamic states of an AH. A. Unfolded protein in an aqueous environment, 
B. Unfolded protein on the interface, C. Partially folded protein in the cytosol, D. fully folded 
on the membrane interface. The most abundant states are A and D. Figure from (Fernández-
Vidal et al. 2007).  

AHs that interact with membranes have been shown to form alpha helices (most common 

form), or 3-11 helices. Alpha helices have 3.6 aa per turn or 18 aa for 5 turns. 3-11 helices have 

3.67 aa per turn or 11 aa for 3 turns. Some examples of AHs adopting an alpha helix are the 

amphipathic lipid packing sensor (ALPS) motif (Drin et al. 2007) and Opi1p (Hofbauer et al. 

2018). 3-11 helices are used to interact with membranes by synucleins (Jao et al. 2008) and 

are predicted to be present in Plins. 

3.2 AH properties  

Several parameters can be used to characterize AHs. AH hydrophobicity is calculated as the 

average of the hydrophobic residues of a helix. aa hydrophobicity is measured from its 

partitioning into polar-apolar phases, like octanol/water (Fauchère and Pliska 1983). However, 

taking into account only hydrophobicity could lead to misidentification of some structures 

such as hydrophobic hairpins. The hydrophobic moment combines the hydrophobicity of each 

residue with its position in the helix by vector summing their hydrophobicities. The 

hydrophobic moment influences the binding to lipid surfaces more than only hydrophobicity 

(Fernández-Vidal et al. 2007). AHs that localize to polar-hydrophobic interfaces like 

membranes can be distinguished from other helices because of their relatively small 

hydrophobicity but a large hydrophobic moment (Eisenberg et al. 1982).  Net charge also 

influences AH behaviour, for example, by mediating in the interaction with negatively charge 
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PLs in the membrane (Pranke et al. 2011). The structure of the backbone surrounding the 

helices can influence their targeting (Doucet et al. 2015).  

3.3 Identification of AHs 

AHs can be identified using several techniques. The bioinformatic tool HeliQuest can plot the 

aa sequence as an AH and calculate its hydrophobic moment (Gautier et al. 2008). A useful 

experimental technique is circular dichroism (CD) spectroscopy. Left-handed and right-handed 

circularly polarized light is absorbed differentially by the purified protein depending on their 

secondary structure. CD gives global structural information, where the helical content is given 

by minima peaks at 222 nm and at 208 nm (Greenfield 2006). It does not distinguish AH from 

other helices by itself. However, AH can be strongly suggested by this method if a protein is 

unfolded in solution and folded in the presence of liposomes (Drin et al. 2007). Moreover, CD 

spectra of mutants with reduced amphipathic character can be performed.  

Liposomes are useful models for testing protein-membrane interactions, such as the 

interaction between AHs and bilayers. Apart from using liposomes in CD, they can be 

incubated with a purified protein to test its interaction with membranes. If the protein is 

conjugated with a fluorescent probe like nitrobenzoxadiazole (NBD), which changes its 

fluorescence depending on the environment, the interaction can be followed with a 

fluorimeter (Drin et al. 2007, Pranke et al. 2011). Otherwise, the mixture of protein and 

liposomes can be analyzed by a sucrose gradient in a flotation assay to separate the bound 

protein from the unbound (Bigay et al. 2005). Of note, these two methods do not confirm 

whether the structure that interacts with membranes is a helix.  

Deeper structural analysis of the helices can be performed with NMR (Herbert et al. 2012) and 

electron paramagnetic resonance (EPR) (Jao et al. 2008). NMR is usually performed on 

detergent micelles, which can break the helix due to their small size, whereas EPR can be done 

in liposomes (Jao et al. 2008). However, EPR is time-consuming as it requires that many of 

protein aa be mutated to cysteine one at a time to spin-label them. Structure of the 11-mer 

repeats of alpha-synuclein was characterized by EPR and shown to form a 3-11 helix, where 

each of its aa occupies 1.5 Å along the helical axis (Jao et al. 2008).  
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Another technique to identify AHs is to determine the exposure of different aa positions by 

mutating them to cysteine and adding methoxy polyethylene glycol maleimide to react with 

them.  AHs signature with this method will be a periodic pattern of alternating exposed and 

buried residues (Pataki et al. 2018). Finally, cryo-electron microscopy can also reveal AHs, as 

in the case of the ER protein seipin (Sui et al. 2018).  

3.4 AHs functions 

AHs can localize selectively to one kind of membrane within the cell. For instance, the ALPS 

motif, a common type of AH (Fig. 3-3 A), interacts with curved membranes of the early 

secretory pathway (Drin et al. 2007).  

 

      
 

Fig. 3-3. Examples of AHs. Diagrams show lateral views of some AHs. A. ALPS motif of 
GMAP 210. B. N-terminal AH of ARF1. C. AH of Opi1p. Adapted from (Giménez-Andrés et 
al. 2018, Annex I). 

AHs are also implicated in the intracellular trafficking of vesicles. ARF1 is a small G protein that 

is myristoylated and contains a small AH of 14 aa (Giménez-Andrés et al. 2018). Its AH is very 

hydrophobic and has a very little charge (Fig. 3-3 B). When the AH is buried in the protein, it 

interacts transiently with membrane surfaces due to the myristoylation. However, when the 

AH is exposed due to an exchange of GDP for GTP, it interacts stably with many different 



26 
 

membranes (Antonny et al. 1997). Its cellular localization is controlled by other proteins that 

regulate the exchange of GDP for GTP or its GTPase activity.  

Opi1p is a yeast protein that interacts with the ER using two motifs, an AH and two 

phenylalanines in an acidic track, which interacts with the ER protein Scs2p (Loewen et al. 

2004, Hofbauer et al. 2018). Its AH is small and contains many positive charges, one per turn 

(Fig. 3-3 C). These positive residues interact stereospecifically with the phosphatidic acid 

present in the ER, regulating Opi1p ER localization (Hofbauer et al. 2018). When there is no 

phosphatidic acid, Opi1p translocates to the nucleus and repress some genes involved in 

membrane biogenesis (Loewen et al. 2004).  

3.5 Targeting of AHs to LDs 

Many proteins use AHs to target LDs (Giménez-Andrés et al. 2018). CCT1 is an enzyme in the 

biosynthetic pathway of PC. It contains an AH that interacts with membranes and targets LDs 

when it is expressed heterogeneously in cells (Prévost et al. 2018). Its AH has big hydrophobic 

residues, like phenylalanines and tryptophans. Charged residues are also abundant. Plins are 

a family of non-enzymatic proteins that localize to LDs. Plins are explained more in-depth in 

chapter 4. A comparison of the characteristics of LD-localized AHs shows that different AHs 

can target LDs. This question is addressed in Chapter 6. 
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Chapter 4: Perilipins 

Perilipins (Plins) are a family of proteins that target and regulate LDs in a non-enzymatic 

manner. The name ‘perilipin’ means ‘surrounding lipid’ in Greek (Kimmel et al. 2010). Plins 

were initially identified by their affinity for LDs and the presence of a ‘PAT’ domain. Five Plins 

have been identified in mammals (Bickel et al. 2009). 

Perilipin 1 (Plin1) was first described in the early 1990s by a study looking for phosphorylation 

substrates of PKA and was found to localize to LDs (Greenberg et al. 1991). Perilipin 2 (Plin2), 

also called adipophilin or adipose differentiation-related protein (ADRP) was the next member 

described on LDs (Brasaemle et al. 1997). Perilipin 3 (Plin3), also named Tail-interacting 

protein of 47 kDa (TIP47), was initially misidentified as a cargo selection for mannose 

phosphate receptors. Afterwards, it was also described on LDs (Wolins et al. 2000; Bulankina 

et al. 2009). Perilipin 4 (Plin4), or S3-12, was identified during a screening of secreted and cell 

surface proteins in 3T3-L1 adipocytes (Scherer et al. 1998). It associates with small LDs in 

cultured 3T3-L1 (Wolins et al. 2003). Plin5, also named OXPAT, MLDP or Lsdp5, targets LDs 

and regulates LD-mitochondria contact sites (Wolins et al. 2006b; Wang et al. 2011b).  

4.1 Plins protein structure 

Plins are composed of three main regions: PAT region, 11-mer region and the C-terminal 

region. The PAT (perilipin, ADRP and TIP47) domain is defined by about 100 aa at the N-

terminal end of Plin1 and was identified by homology in other members of the family (Lu et 

al. 2001). There is no structure proposed for this domain. The PAT domain is not responsible 

for Plin LD targeting (McManaman et al. 2003). The PAT domain of Plin2 (1 – 89 aa) prevents 

localization of Plin3 to LDs occupied by Plin2 (Orlicky et al. 2008). Plin4 is the only Plin member 

that does not have a clear PAT sequence.  

Plins have a region composed of repeated sequences of 11 aa (11-mer) after the PAT 

sequence. This region targets LDs in Plin2 and Plin3 (Targett-Adams et al. 2003; Bulankina et 

al. 2009). It is predicted to form a 3-11 helix (Bussell and Eliezer 2003).  11-mer repeats of 

Plin1 has been confirmed to form an AH that localizes to LDs (Rowe et al. 2016). Plin4 belongs 

to the Plin family because the sequence homology of these repeats with other members. Of 
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note, the 11-mer repeat sequence of Plin4 is exceptional in terms of its length and 

repetitiveness at the level of three 11-mer repeats. Human Plin4 has about 950 aa of predicted 

AH, 10 times longer than the other Plins (Fig. 4-1).  

 
Fig. 4-1. Diagram of sequences of mammalian perilipins. 11-mer repeats are marked in 
orange, predicted C-terminal part in blue and PAT domain in purple. Plin5 also contains a 
mitochondrial interaction motif. Adapted from (Čopič et al. 2018). 

The C-terminal domain can also target LDs in Plin1, Plin2 and Plin3 (Nakamura and Fujimoto 

2003; Ajjaji et al. 2019). The C-terminal domain of Plin3 was purified and crystallized in its 

soluble form. It has an alpha/beta domain and a four-helix bundle containing a hydrophobic 

cleft. The four-helix bundle is composed of AHs that might disrupt their protein-protein 

interaction and interact with the lipid surface (Hickenbottom et al. 2004). The same structure 

was proposed for Plin1 and Plin2 by homology. This c-terminal domain was suggested to 

provide different stabilization of Plins in LDs (Ajjaji et al. 2019). 

4.2 Plins tissue expression 

Plin expression in different tissues is regulated by the transcription factors peroxisome 

proliferator-activated receptors (PPARs) (Rodriguez and Kersten 2017). Plin1 has 4 splicing 

variants. Plin1 A (full length) is specifically expressed in adipocytes (Fig. 4-2), whereas variant 

with a shorter c-terminal part is expressed in steroidogenic cells (Kimmel and Sztalryd 2016). 

Plin2 has a more ubiquitous expression. Plin3 is widely expressed among tissues (Fig. 4-2). 

Plin4 is expressed mainly in adipocytes, but also in heart and skeletal muscle (Wolins et al. 

2003). Perilipin 5 (Plin5) is expressed in highly oxidative tissues that use fatty acids for energy, 

such as heart, muscle, liver and brown adipose tissue (Fig. 4-2). 
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Fig. 4-2.  Expression of Plins in different tissues checked by Western-Blot. Adapted from 
(Wolins et al. 2006b).  

4.3 Distribution and dynamics of Plins on LDs 

Plins have been classified depending on their observed intracellular localization: constitutive 

if they were exclusively localized to LDs (Plin1 and Plin2); or exchangeable if they were also 

observed in the cytosol or at the PM (Plin3, Plin4 or Plin5) (Bickel et al. 2009). However, this 

classification depends on whether proteins are degraded when they are not on LDs. When 

Plin1 is not in contact with LDs, it is degraded by lysosomal protein degradation machinery (Xu 

et al. 2006). Likewise, when Plin2 is not on LDs, it cannot be found in the cytosol due to 

proteasomal degradation (Gross et al. 2006).   

Immunostaining and light microscopy showed that Plin1 did not cover the totality of the giant 

LD surface in 3T3-L1 adipocytes. It was unevenly dispersed on the LD surface, which included 

some patches devoid of Plin1 (Blanchette-Mackie et al. 1995). Super-resolution microscopy 

showed micrometre-sized Plin1 patches on LD surface of adipocytes (Fig. 4-3) (Hansen et al. 

2017).  

Plin1-LD interaction resists alkaline carbonate solution incubation (Garcia et al. 2002). These 

results suggest the strong interaction of Plin1 with LDs. Plin3 and Plin2 have faster dynamics 

than Plin1 on LDs as measured by fluorescence recovery after photobleaching (Ajjaji et al. 

2019).  
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Fig. 4-3. Plins target to different LD pools in 3T3-L1 differentiated adipocytes. Left panel 
shows a super-resolution image of Plin1 on LD surface in primary adipocytes. Scale bar: 10 
m. Image from (Hansen et al. 2017). Middle panel shows an image of immunofluorescence of 
Plin 3 (red), Plin2 (green) and Plin1 (blue), revealing their distribution in a cultured 3T3-L1 
adipocyte (Wolins et al. 2006a). Right panel shows Plin4 (red) and Plin1 (green) distribution. 
Scale bar: 10m. Image from (Wolins et al. 2003).  

Immunofluorescence showed that Plin3 and Plin4 are localized on the small LDs in cultured 

3T3-L1 adipocytes. Plin2 is bound to intermediate LDs, whereas Plin1 is present on the surface 

of big LDs (Fig. 4-3) (Wolins et al. 2003, 2006a). Different association of Plins with LDs is also 

found in hepatocytes undergoing abnormal lipid accumulation (Straub et al. 2008).  

4.4 Regulation of lipolysis by Plins 

Even though Plins do not have enzymatic functions, they play a key role in the regulation of 

lipolysis. Plin1 is a well characterized inhibitor or promotor of lipolysis in adipocytes depending 

on its phosphorylation state. Under basal conditions, Plin1 is not phosphorylated and is found 

on the surface of LDs, whereas the lipases HSL and ATGL are cytosolic (Fig. 4-4). Moreover, 

the C-terminal domain of Plin1 interacts with the ATGL activator ABHD5, sequestering it 

(Sztalryd and Brasaemle 2017).  

Under lipolytic stimulation conditions, cyclic adenosine monophosphate levels increase 

activating cAMP-dependent PKA. PKA phosphorylates Plin1, ABHD5, ATGL and HSL. ABHD5 is 

liberated from Plin1 and interacts with phosphorylated ATGL that localizes to LDs. 

Phosphorylated HSL interacts with phosphorylated Plin1 and it is recruited to LD surface (Fig. 

4-4) (Sztalryd et al. 2003; Sztalryd and Brasaemle 2017). 
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Fig. 4-4.  Plin1 regulates lipolysis under non-induced lipolytic conditions (basal) and 
stimulated conditions (Sztalryd and Brasaemle 2017). 

Plin5 also regulates lipolysis in oxidative tissues. Under basal conditions, Plin5 on LDs interacts 

via its N-terminal part with HSL, sequestering it. Plin5 also interacts via its C-terminal part with 

either ABHD5 or ATGL, preventing their interaction (Wang et al. 2011a). PKA also 

phosphorylates Plin5, which increases lipolysis by unknown mechanisms. Phosphorylation 

may disrupt the interaction of Plin5 with ATGL and ABHD5, allowing them to interact and 

hydrolyze TAG (Sztalryd and Brasaemle 2017). 

Plin2 attenuates basal lipolysis only moderately, it is not phosphorylated by PKA and does not 

interact with lipases (Sztalryd et al. 2003; Sztalryd and Brasaemle 2017). Overexpression of 

Plin2 reduces the access of ATGL to LDs, resulting in an attenuation of lipolysis (Listenberger 

et al. 2007). 

4.5 Plins outside mammals 

Plin orthologues have been found in non-mammalian species (Miura et al. 2002; Granneman 

et al. 2017). Pet10p is a protein from the unicellular eukaryote Saccharomyces cerevisiae that 

has sequence homology to the PAT domain in Plins. Pet10p is very abundant on the surface of 

LDs (Gao et al. 2017a). The mechanism of Pet10p targeting to LDs is not clear; its sequence 

does not contain a repetitive region nor a good candidate AH, in contrast to mammalian Plins. 
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The multicellular eukaryote Drosophila melanogaster has also been shown to express two 

Plin-related proteins: lipid storage droplet 1 (Lsd1 or Plin1) and lipid storage droplet 2 (Lsd2 

or Plin2). These two proteins localize to LDs in mice and drosophila cells (Miura et al. 2002). 

Drosophila can survive without these two proteins, but their fat storage homeostasis is 

impaired (Beller et al. 2010).  

Other animals closer to humans, like teleost fish, also have orthologous of Plins. Plin1, Plin2 

and Plin5 orthologues were found as well as Perilipin 6. Perilipin 6 is expressed in their skin 

where it localizes to the surface of droplets containing hydrophobic carotenoids. Its deletion 

impairs accumulation of carotenoids (Granneman et al. 2017).  

4.7 Yeast as a tool to study LDs and Plins 

The yeast Saccharomyces cerevisiae, hereafter termed simply yeast, is a model organism for 

biological studies of eukaryotes. Yeasts have rapid growth, they are easy for replica plating 

and mutant isolation, they have a well-defined genetic system, and a versatile DNA 

transformation system (Sherman 2002). These characteristics have made it possible to 

develop many tools and apply several techniques that gain a lot of information about yeast 

processes and general biology. There are available yeast collections in which one gene at a 

time has been deleted or fused with a reporter gene (Giaever and Nislow 2014), and the sub-

cellular localization of many of its proteins are known (Huh et al. 2003). Thanks to all these 

tools and resources, yeast lipid metabolism has been very well described (Klug and Daum 

2014).  

Yeasts accumulate LDs when cells enter the stationary phase or deal with environmental 

stresses (Wang 2015a). TAG synthesis can depend greatly on the environment, for instance, 

on growth temperature or the carbon source (Klose et al. 2012). The most abundant TAG 

species in yeasts are the only formed by palmitoleic acid or either palmitic and palmitoleic 

acids, or palmitoleic and oleic acids (Ejsing et al. 2009). Increased amount of LDs can be 

obtained if yeasts are grown in a media containing oleic acid. LD size also increases if the yeast 

strain is pet10 (Gao et al. 2017a). Moreover, yeast grown in oleic acid contain more TAG, less 

STE, and more unsaturation in their lipid species. Interestingly, there are changes in the LD 

proteome depending if yeasts are grown in oleic acid or in glucose (Grillitsch et al. 2011).   
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There are available yeast strains that contain only either TAG or STE. The TAG strain (dga1 

lro1 contains mainly STE as neutral lipids and has a reduced number of LDs (Sorger and 

Daum 2002). The STE strain (are1are2) contain only TAG and its LD number is not affected 

(Sandager et al. 2002). The deletion of the four proteins involved in neutral lipid synthesis 

(LDs or dga1 lro1 are1are2strain) results in a strain named quadrupole mutant that 

is viable and has no growth defects despite lacking neutral lipids and LDs (Sandager et al. 

2002). An inducible LDs strain was made by regulating the expression of Dga1p and Are2p 

upon galactose addition in the lro1 and are1 background (Becuwe et al. 2018).  

Full length Plin1, Plin2 and Plin3 have being expressed in budding yeast. They target yeast LDs, 

confirming that the LD targeting mechanism is highly conserved (Jacquier et al. 2013, Rowe et 

al. 2016). The 11-mer repeats regions of Plin1, Plin2 and Plin3 were confirmed to target LDs 

by expressing WT and mutated N-terminal parts of Plins in yeast and checking their 

localization with light microscopy (Rowe et al. 2016).  
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Chapter 5: Lipid droplets and diseases 

Excessive or insufficient lipid storage is associated with many pathological conditions. These 

include obesity, fatty liver disease, insulin resistance, atherosclerosis, infectious diseases, 

cancer development and neurodegenerative diseases (Fig. 5-1) (Yu and Li 2017). In this 

chapter, I am going to focus mainly on the lack or excess of lipid accumulation in adipocytes, 

and the role of LDs in cancer development.  

 
Fig. 5-1. Diseases related with LDs. LDs are related with obesity, fatty liver disease, 
neurodegenerative diseases, atherosclerosis, cancer development and infectious diseases. For 
instance, during obesity, an excess of neutral lipids are stored on adipocytes, leading to hypoxia, 
inflammation and insulin resistance. The excess of neutral lipids are accumulated also in other 
tissues, as in the liver. Figure from (Yu and Li 2017).  

5.1 Lipodystrophies and obesity 

Excessive fat accumulation leads to obesity, which is increasingly prevalent in today’s society. 

It is associated with many pathologies, such as insulin resistance and cardiovascular disease 

(Rydén and Arner 2017). Both genetic and environmental factors, such as diet and lifestyle, 

contribute to the development of obesity (Krahmer et al. 2013). The excess of fat 
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accumulation in adipose tissue can be achieved either by increasing the adipocyte mass, 

hypertrophy; or their number, hyperplasia (Rutkowski et al. 2015). Hypertrophic adipocytes 

have impaired cellular function, resulting in inflammation and impaired hormonal response 

(Fig. 5-2) (Stenkula and Erlanson-Albertsson 2018). Adipocyte size has been proposed as a 

potential biomarker for cardiometabolic alterations and diseases (Laforest et al. 2015). When 

the storage capacity of adipose tissue is near its saturation, there is an overflow of excess 

lipids into the plasma and ectopic LD accumulation in muscle, liver or heart (Gross and Silver 

2014).  

 
Fig. 5-2. Histological differences between healthy and unhealthy adipose tissue. Mice 
subcutaneous adipose tissue in a healthy state (left) or in an unhealthy state due to high-fat diet 
resulting in adipocyte hypertrophy (right). In healthy adipose tissue, there is a sparse 
extracellular matrix. In unhealthy adipose tissue, there is a denser and more fibrous extracellular 
matrix due to hypoxia and inflammation (Rutkowski et al. 2015).  

Lipodystrophies are conditions where there is a loss of body fat. Reduced triglyceride storage 

results in adipocyte lipotoxicity, mitochondrial dysfunction and increased oxidative stress 

(Vigouroux et al. 2011). Lipodystrophies are commonly associated with insulin resistance, 

hepatic steatosis and hypertension. They can be due to mutations in genes encoding proteins 

related with LDs biology. Some examples are seipin gene (BSCL2), Plin1 and CIDEC (Krahmer 

et al. 2013).  
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5.2 Cancer 

Low vascularization of tumor tissues causes adverse conditions such as oxidative stress and 

nutrient shortage. To survive, cancer cells have to adapt by reprogramming their metabolism 

(Schulze and Harris 2012). Lipid metabolic pathways are highly affected by this 

reprogramming. For instance, cancer cells display increased uptake and production of lipids 

and obtain more energy from fatty acid oxidation (Cheng et al. 2018). In hepatocellular 

carcinoma, which represents the second most frequent cause of cancer-related death 

worldwide, researchers have identified large differences in the metabolism of fatty acids 

(Nakagawa et al. 2018). LDs protect cells against lipotoxicity by controlling the levels of free 

fatty acids, cholesterol and ceramides (Chitraju et al. 2019). Many types of cancer cells, 

including breast, liver, lung and pancreatic, display an increase in their LD content, suggesting 

that increased production or stability of LDs is advantageous for the propagation of neoplastic 

cells. High LD content is in fact considered a hallmark of aggressive carcinomas (Koizume and 

Miyagi 2016).  Therefore, LDs present a promising yet largely unexplored target for cancer 

treatment (Liu et al. 2017). Moreover, LDs perform various functions during cells stress, such 

as maintenance of redox homeostasis and production of lipid mediators (Henne et al. 2018), 

and can thus make cancer cells more resistant to treatment (Cotte et al. 2018). Importantly, 

altered expression of several Plins is associated with various types of cancer, including 

hepatocellular carcinoma and lung adenocarcinoma (Zhang et al. 2018). 
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RESULTS
Chapter 6: Plin4 contains a large AH that targets LDs in yeast 
and interacts with neutral lipids in vitro.  

The results shown in this chapter are my contribution to the paper titled “A giant amphipathic 

helix from a perilipin that is adapted for coating lipid droplets” published in the journal Nature 

Communications in 2018 (Čopič et al. 2018). The whole publication is on the Annex II of this 

manuscript.  

LDs store energy and membrane compounds in the form of neutral lipids and a monolayer of 

PLs and proteins. Depending on the density of the PLs in the monolayer, the surface tension 

of the LD can change (Thiam et al. 2013b). LDs have proteins on their surfaces that mediate 

and regulate their functions (Kory et al. 2016; Bersuker and Olzmann 2017). Some proteins 

use AHs to target LDs. What are the features of these AHs to target LDs is not known. Likewise, 

which are the properties of LD surface to be selectively targeted is poorly understood.  

Plins are a family of proteins containing AHs that target LDs. Plin4, a member of the Plin family, 

contains the largest predicted AH. It is made of repeats of 33 aa called 33-mer (Scherer et al. 

1998; Bussell and Eliezer 2003). Plin4 has been found endogenously on LDs in 3T3-L1 

adipocytes (Wolins et al. 2003, 2005, 2006a). However, its physiological role is not clear (Chen 

et al. 2013). In this paper, we addressed how AHs can target LDs selectively using the AH of 

Plin4 as a model. Moreover, we wondered what the function of this long AH in Plin4 is.  

6.1 Plin4 AH length influences LD targeting 

The 33-mer repeat region of Plin4 is exceptional in terms of its length, with 33-mer repeated 

29 times in humans, about 960 aa in total (Fig. 6-1 A). This region is 10 times longer in Plin4 

than in the other members of the mammalian Plin family. This region could fold into a 3-11 

helix, resulting in an AH (Fig. 6-1 B). This AH has little hydrophobic character because of the 

lack of big aromatic residues and the presence of some polar aa, as threonines, in the 

hydrophobic face. The alignment of each of the 29 33-mer of Plin4 and the Weblogo shows 
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that the repeats are very well conserved (Fig. 6-1 C). Therefore, the chemistry of the putative 

AH will be constant along it.  

 

   

Fig. 6-1. Plin4 contains a long region of 33-mer repeats that localizes to LDs. A. Schematic 
representation of human Plin4. Fractions of the AH cloned are marked under it. 33-mer repeats 
are marked in orange. The homology region with the 4-helix bundle crystalized in Plin3 is 
marked in blue. B. Helical wheel plot of one 33-mer repeat from Plin4, plotted as a 3–11 helix. 
C. Weblogo generated from an alignment of each of the 29 33-mer repeats from human Plin4 
sequence. D. Localization of Plin4 4-mer and Plin4 12-mer GFP fusions in yeast. LDs are 
marked with Erg6-RFP. Scale bar: 5 µm. E. Targeting of Plin4 AH to LDs improves increasing 
the AH length in HeLa cells (results obtained by Cesar La Torre Garay, Institut Jacques 
Monod). Figure adapted from (Čopič et al. 2018). 

The 33mer region may mediate the localization of Plin4 to LDs. To address this possibility, I 

expressed different fragments of Plin4 (Fig. 6-1 A) fused to green fluorescent protein (GFP) in 

yeast. A fragment of four 33-mer, 132 aa in total called hereafter Plin4 4-mer, is cytosolic in 

yeast. A longer fragment of twelve 33-mer, 396 aa called hereafter Plin4 12-mer, localizes to 

LDs (Fig. 6-1 D). In HeLa cells, some Plin4 constructs target LDs. The targeting increases with 
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the length of the construct (Fig. 6-1 E, results obtained by Cesar La Torre Garay, Institut 

Jacques Monod). Longer Plin4 constructs interact better owing to a more extensive interaction 

surface. Furthermore, the same sequence is targeted to LDs in such evolutionarily distant 

organisms as yeast and humans. This suggest that targeting of Plin4 to LDs is direct and non-

protein mediated, as shown previously for other Plins (Jacquier et al. 2013; Rowe et al. 2016).  

In addition, Plin4 12-mer also localizes at the periphery of yeast cells. This is in accordance 

with the net positive charge of this amphipathic sequence (Fig. 6-1 B) which could be 

interacting electrostatically with the negatively charged plasma membrane (Yeung et al. 

2008). Plin4 was firstly identified in a screening of secreted and surface proteins during 

adipocyte differentiation (Scherer et al. 1998).  

          

Fig. 6-2. Hydrophobicity and net charge influence the targeting of Plin4 AH. A. 
Hydrophobicity can compensate short length in Plin4 targeting LDs. Left part: helical wheel of 
the more hydrophobic mutant (2T-V). The two threonines mutated to valines are signaled in 
green. Right part: localization of 2T-V mutant in yeasts. B. Positive charge is not fundamental 
for targeting LDs. Left part: helical wheel of the net negative charge mutant because the change 
of two lysines to glutamines (2K-Q). Right panel: localization in yeast of 2K-Q mutant. LDs 
were marked with Erg6-RFP. Figure adapted from (Čopič et al. 2018).  
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The putative AH of Plin4 has low hydrophobicity (Fig. 6-1 B). In order to see how 

hydrophobicity affects Plin4 AH targeting, we designed a mutant in which two threonines 

present in the apolar face were mutated to valines (2T-V) per 33-mer repeat. Four 33-mer 

repeats of the 2T-V mutant localized to LDs in yeast (Fig. 6-2 A). Thus, increased 

hydrophobicity in the apolar face can compensate for a shorter length of Plin4 AH. In HeLa 

cells, increased hydrophobicity improved localization to LDs as well. However, its targeting 

was unspecific as it was also localizing to other membranes, like the ER (Annex II, results 

obtained by Cesar La Torre Garay and Sandra Antoine-Bally, Institut Jacques Monod). This 

suggests that low hydrophobicity is tuned in the long AH of Plin4 in order to detect specifically 

LDs.  

Charge of AHs can determine to which membranes they bind. For instance, alpha synuclein, 

which also has a poorly hydrophobic face, requires its positive residues to bind to negatively 

charged vesicles (Pranke et al. 2011). To test the effect of net positive charge in Plin4 AH on 

LD binding, we mutated two lysines to glutamines (2K-Q) per 33-mer, resulting in an AH with 

negative net charge of -1. This mutation is gentle and should not perturb the helicity of Plin4 

AH (Pace and Scholtz 1998). 2K-Q mutation joint to 2T-V localizes to LDs in yeast (Fig. 6-2 B). 

Hence, positive charge is not essential for LD targeting: a negatively charged AH can also 

localize to the LD surface. This excludes the large contribution from electrostatic interactions 

in the binding of AHs to LDs. In contrast, the 2K-Q mutation largely prevented localization of 

the AH to the negatively charged plasma membrane, where electrostatic interactions are 

important for protein targeting 

6.2 Plin4 AH can be efficiently purified and fluorescently labelled 

To better characterize the interaction of Plin4 with LDs, we decided to purify two Plin4 AH 

constructs, Plin4 4-mer and Plin4 12-mer, and perform in vitro or biochemical reconstitution 

assays, where the conditions can be highly controlled. Plin4 4-mer and Plin4 12-mer synthetic 

genes were cloned in a bacterial expression plasmid without any tag for their purification 

(Čopič et al. 2018) (Karine Eudes, Institut Jacques Monod). We adapted the protocols for 

purifying these Plin4 fragments from the protocol of alpha-synuclein AH purification (Der-

Sarkissian et al. 2003) with the help of Bruno Antonny (IPMC, Sophia Antipolis). Plin4 

purification protocol includes two main steps: boiling to precipitate most of proteins but Plin4  
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Fig. 6-3. Plin4 12-mer is efficiently purified. Plin4 12-mer purification, analyze by 
polyacrylamide gel electrophoresis (PAGE). Fractions 3 and 4 show Plin4 12-mer purified with 
high purity and efficiency. M: marker, T: total fraction, P: precipitated fraction after 
centrifugation, S: supernatant after centrifugation, D: fraction after boiling and dialysis steps, 
FT: flow-through. Gel stained with Sypro Orange. 

                         
Fig. 6-4. Plin4 4-mer efficient purification and quantification. Fractions labelled as 4-mer 
and 20 show the Plin4 4-mer purified with high purity. Fractions labelled as 4-mer are the 
fractions with higher concentration of Plin4 4-mer (14, 15, 16, 17, 18 and 19) pooled and the 
number under it shows its dilution. BSA samples make a standard curve to quantify 4-mer 
dilutions and fraction 20. Fractions are run in a tris-tricine acrylamide bis-acrylamide gel. M: 
marker, T: total fraction, P: precipitated fraction after centrifugation, S: supernatant after 
centrifugation, D: fraction after boiling and dialysis steps, FT: flow-through. Gel stained with 
Sypro Orange.   
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and a cation exchange chromatography. Using this protocol, I obtained efficient purifications 

of Plin4 12-mer and Plin4 4-mer (Fig. 6-3, Fig. 6-4). Plin4 AH is devoid of aromatic residues, 

which are commonly used for protein quantification due to their absorbance of UV light at 

280 nm or their interaction with Coomassie blue in Bradford assay. Therefore, I needed other 

techniques to measure Plin4 AH concentration reliably. In order to quantify the concentration 

of the purified protein, I used bovine serum albumin (BSA) standards of known concentration 

with the purified proteins in protein electrophoresis (Fig. 6-4). I stained the gels with Sypro 

Orange, which interacts with the sodium dodecyl sulfate (SDS) bound to the protein to make 

it migrate in the gel. As one molecule of SDS interacts with around two aa, the quantification 

does not depend on the presence or absence of certain aa. However, this method relies on 

the image quantification of the stained gel. I measured protein concentration additionally 

quantifying the concentration of cysteines using the method of Ellman (Ellman 1959).   

 

Fig. 6-5. Plin4 12-mer labelling with Alexa. A. Structures of Alexa maleimides 488 and 568 
fluorescent probes. B. Diagram of unstructured Plin4 12-mer labelled with Alexa 488 in its 4 
cysteine (Čopič et al. 2018). C. Fluorescence emission in the protein electrophoresis gen run 
after protein incubation with Alexa 488. Fractions 3 to 8 show Plin4 12-mer labelled with Alexa 
488. Fractions from 7 to 15 shows free unreacted Alexa 488.   
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To be able to visualize the protein with light microscopy, I labelled some protein fractions with 

fluorophores using endogenous cysteines in Plin4. Plin4 4-mer and Plin4 12-mer were labelled 

in their endogenous cysteines with Alexa maleimide probes (Invitrogen), either A488 (green) 

or A568 (red) (Fig. 6-5 A, B). The labelling protocol was efficient and very little free Alexa dye 

is present in the labelled protein samples (Fig. 6-5 C).  

6.3 Plin4 AH folds into a helix in contact with lipids 

Plin4 33-mer repeat region could form an AH, as suggested by the aa sequence. Furthermore, 

the 11-mer repeat region present in Plin1 has been shown to form a helix in the presence of   

N,N-dimethyldodecylamine N-oxide (Rowe et al. 2016). To test whether Plin4 33-mer repeat 

region can from a helix, we performed CD spectroscopy with purified Plin4 12-mer (396 aa 

fragment) of Plin4 20-mer. Results showed that the proteins were unstructured in solution.  

 

Fig. 6-6. Plin4 constructs have helical conformation. A. CD spectra of different lengths of 
Plin4 AH either in the buffer, where the protein is unstructured; or in 50% trifluoroethanol 
(TFE), where it has helical conformation. B. CD spectra of Plin4 20-mer showing helical 
conformation with increasing amounts of diphytanoyl PS liposomes. On the upper left there is 
the CD signal depending on the number of liposomes present. Experiment performed with 
Bruno Antonny in his lab at Université Côte d’Azur, CNRS, IPMC. Figure adapted from (Čopič 
et al. 2018). 
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However, in the presence of the organic compound trifluoroethanol that promotes secondary 

structure, they displayed a highly helical conformation as shown by the spectral peaks at 208 

and 222 nm (Fig. 6-6 A). The protein also has helical conformation in the presence of 

diphytanoyl PS liposomes, which expose many packing defects or hydrophobic cavities being 

permissive for AH binding (Fig. 6-6 B). Hence, these results suggest that Plin4 AH is 

unstructured in the cytosol and folds into a helix when it interacts with the lipid surface of 

LDs. Other, much shorter, AHs have been demonstrated to fold in contact with bilayers (Drin 

and Antonny 2010). 

6.4 Plin4 AH is able to interact directly with neutral lipids, forming oil particles 

Hydrophobic cavities from the membrane that are exposed to the cytosol are named lipid 

packing defects. They have been described as an important factor for some AHs to interact 

with lipid surfaces (Bigay et al. 2005; Drin et al. 2007). At the extreme end, an LD completely 

devoid of a PL monolayer and consisting only of neutral lipids, will have its acyl chain exposed 

over the whole surface. Thus, it could be pictured as a lipid surface with infinite lipid packing 

defects. We, therefore, asked if Plin4 AH was capable of interacting with neutral lipids in the 

absence of any PLs. To test this, I mixed a drop of the TAG triolein with purified Plin4 12-mer 

at increasing protein concentrations. The protein concentration was up to a protein-to-lipid 

molar ratio 1:2000. After vigorous vortexing, the suspensions became turbid, suggesting that 

the oil was emulsified into smaller droplets that dispersed the light (Fig. 6-7 A). The suspension 

observed by negative staining in electron microscopy showed numerous spherical droplets 

with a diameter ranging concentrated between 50 to 250 nm (Fig. 6-7 B, assay done by Sophia 

Pagnotta, electron microscopy facility Université Côte d’Azur, CNRS, IPMC). DLS 

measurements confirmed the presence of particles between 100 and 1000 nm. This range did 

not vary depending on the length of Plin4 AH (Fig. 6-7 C, D).  

The vortexing step was used to disrupt the oil droplets so Plin4 AH can bind to the oil surface. 

The vortexing step could have the undesired effect of denaturalizing the protein or affecting 

its properties to interact with lipid surfaces. In order to test this possibility, Marco Manni 

(Université Côte d’Azur, CNRS, IPMC) checked the binding to diphytanoyl PS liposomes with 

or without prior vortexing of the protein. The protein interacted with liposomes to the same  
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Fig. 6-7. Plin4 interacts directly with neutral lipids in vitro, forming oil droplets. A. Images 
of tubes in which a drop of triolein (10 µl) was vigorously mixed with a solution (190 µl) of 
increasing concentration of Plin4 12-mer. B. Representative image of the Plin4-oil emulsion by 
negative staining electron microscopy. Scale bar: 0.5 µm. Image taken by Sophia Pagnotta, 
electron microscopy facility Université Côte d’Azur, CNRS, IPMC. C. Size distribution 
obtained by DLS measurement of an aliquot withdrawn from the middle of the oil emulsion 
obtained with 0.5 mg/ml Plin4 12-mer. D. Comparison of size distribution between different 
lengths of Plin4 AH, Plin4 4-mer, Plin4 12-mer and Plin4 20-mer. Three independent 
experiments are shown. Dots represent maxima peak and vertical bars represent polydispersity. 
E, F. Vortexing does not affect Plin4 interaction with lipids. E. Fluorescence emission of Plin4 
12-mer labelled with NBD in vortex and not vortexed conditions in contact with Diphytanoyl 
liposomes and only buffer. Done by Marco Manni, Université Côte d’Azur, CNRS, IPMC. F. 
Comparison of the maximum of fluorescence with or without vortex. Done by Marco Manni, 
Université Côte d’Azur, CNRS, IPMC. Figure adapted from (Čopič et al. 2018). 
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extent in both cases (Fig. 6-7 E, F). These results show that Plin4 is able to interact with neutral 

lipids forming small particles.   

The emulsion could also be observed by light microscopy using a mixture between 

fluorescently labelled and non labelled Plin4 12-mer and oil labelled with Bodipy. Whereas 

most particles were below the resolution of the microscope, I could visualize larger oil 

droplets, which showed uniform staining with fluorescent protein (Fig. 6-8). This confirms that 

these oil particles have oil in the centre and Plin4 12-mer surrounding it.  

                                          

Fig. 6-8. Light microscopy images confirm that oil is in the core and Plin4 12-mer is 
directly surrounding it in the emulsion droplets. Images of unlabeled Plin4 12-mer 
(0.3 mg/ml) mixed with Plin4 12-mer-Alexa568 at a ratio 20:1 (magenta), and vortexed with 
oil stained with Bodipy (green). Left panel shows a confocal image of the fluorescent signal of 
Plin4. Right panels show zoom-ins of droplets. Scale bars: 5 µm. Figure adapted from (Čopič 
et al. 2018).  

Many protein emulsifiers interact with neutral lipids essentially by denaturing themselves 

(Small et al. 2009; McClements and Gumus 2016). In contrast, apolipoproteins have been 

shown to interact with neutral lipids via AHs or β-sheets (Pan and Segrest 2016). Given the 

uniform fluorescent signal of Plin4 12-mer that we observed around oil droplets (Fig. 6-7 B, 

Fig. 6-8), we hypothesize that Plin4 AH also folds into a secondary structure in contact with 

oil, likely a helix, as it does with diphytanoyl liposomes (Fig. 6-6). Due to high light scattering 

of the emulsion, testing this directly by CD spectroscopy was challenging. Instead, I tested if 

Plin4 displayed any resistance to proteolysis upon triolein binding, which can be an indication 

of folding (Bigay et al. 2005). We observed that Plin4 12-mer forming the oil emulsion was 

more resistant to trypsin than Plin4 in solution, suggesting an increase in secondary structure 
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when Plin4 is in contact with neutral lipids. Moreover, I could always observe a band of Plin4 

12-mer, even after 30 min with 10 times the concentration of trypsin (Fig. 6-9 A). In order to 

know how much of the protein is stably interacting with neutral lipids, I did a sucrose gradient 

with the emulsion. The protein associated with neutral lipids is on the top after centrifugation 

(Fig. 6-9 B). This quantification reveals that the majority of the protein (≥90%) is not bound to 

oil (Fig. 6-9 C). This result agrees with the trypsinization experiment, where the majority of the 

protein was cleaved by trypsin.  

           

Fig. 6-9. Plin4 AH interacting with oil has secondary structure. A Plin4 in forming the oil 
emulsion is protected from degradation by trypsin. Plin4 12-mer (1 mg/ml) was incubated in 
buffer only or vortexed with triolein as in Fig. 6-7 A, then digested with 13 µg/ml (×1) or 
130 µg/ml (×10) trypsin for the amount of time indicated. Samples were analyzed by SDS-
PAGE with Sypro Orange staining. Five times less sample was loaded in the 0 min controls than 
in the other lanes. White arrowheads indicate the migration of molecular weight standards. 
Asterisks indicate the trypsin band. B, C. Plin4 12-mer (1 mg/ml) before (solution) or after 
(emulsion) the reaction depicted in Fig. 6-7 A was mixed with sucrose and loaded on the 
bottom of a sucrose gradient. After centrifugation, four fractions were collected from the 
bottom and equal volumes were analyzed by SDS-PAGE with Sypro Orange staining. Adapted 
from (Čopič et al. 2018). 

One aa in a folded 3-11 helix will occupy 0.15 nm longitudinally of the backbone, based on the 

structure of alpha-synuclein (Jao et al. 2008). Assuming that Plin4 12-mer adopts a perfectly 

helical conformation in contact with oil and that its width would be 1 nm, one Plin4 12-mer 

molecule (396 aa) would cover the area of ~60 nm2. If all the triolein vortexed (10 × 10-6 L) was 
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consumed into oil droplets of 200 nm in diameter (and volume of 3.3x107 nm3) this would give 

the result of a total of  3×1011 oil droplets. All of them together will have a total surface area 

of 1.5 × 1017 nm2. Considering that 10% of Plin4 molecules ((0.5 mg/ml / 38000 Da) x 0.1 = 1 

nmol) used in the experiment are coating the oil, this gives a total Plin4 helical area of 

3.6 × 1016 nm2, in the same range as the estimated oil surface area. This calculation suggests 

that Plin4 12-mer is covering the whole surface of the oil droplets, as shown in the model (Fig. 

6-10).  

                                                              

Fig. 6-10.  Model of a Plin4 12-mer-covered oil droplet. Drawn to scale. Adapted from (Čopič 
et al. 2018). 

These results in vitro show that Plin4 AH can interact and stabilize a hydrophobic core of 

neutral lipids in vitro. We hypothesized that this could also happen in cells. In order to test 

this possibility, Sandra Antoine-Bally cultured drosophila S2 cells with or without transfection 

of Plin4 12-mer. The cells were cultured with oleic acid and the expression of the enzyme 

CCT1, which produces PC, was knocked down. In S2 cells without Plin4 12-mer, LDs were 

oversized. However, the cells expressing Plin4 12-mer had normal size LDs (Čopič et al. 2018) 

(done by Sandra Antoine-Bally, Annex II). This result suggests that what I showed in vitro also 

happens in vivo. The function of Plin4 could be to interact with neutral lipids in vivo stabilizing 

LDs and avoiding their fusion when there is an excess of neutral lipids or depletion of PLs.  

6.5 Conclusions 

These results show that the 33-mer repeat region of Plin4 forms an AH that localizes to LDs in 

yeasts. Increased Plin4 AH length and hydrophobicity improve AH binding to LDs. Moreover, 

Plin4 AH fragments can be efficiently purified and labelled to perform highly controlled in vitro 

assays. Plin4 AH is unstructured in solution and folds into a helix when it is in contact with a 

membrane permissive for AH binding. Purified fragments of Plin4 AH are able to directly coat 
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neutral lipids making small oil droplets in the absence of any other emulsifier, even PL. Plin4 

AH would completely cover those oil particles with a secondary structure.  
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Chapter 7: Dynamics of perilipin 4 at the surface of lipid 
droplets suggests a coat function 

In LDs, neutral lipids are covered by a monolayer of PLs and embedded proteins. Many 

proteins use an AH to target LDs. The interaction between AHs and LDs is still poorly 

characterized. Binding of AHs to LDs could also affect LD stability and function.  

Plins are a family of abundant LD proteins that use AHs to target LDs. Some Plin members, in 

particular Plin1, have well described functions regulating LD metabolism. Plin4 has by far the 

longest AH among Plins and proteins in general. This AH is made of 33-mer repeats, making 

the AH to have a constant repetitive distribution of residues. The function of Plin4 is not well 

understood. Plins are often referred as LD coats because of their high abundance on LDs.  

In the previous chapter we used the Plin4 AH as a model to study how AHs target LDs.  We 

showed how AH features like length, hydrophobicity and charge affect LD targeting. Plin4 AH 

seems optimized for LD binding because of its length, particular aa composition and low 

hydrophobicity that reduces its interaction with other membranes. We also showed that Plin4 

AH is able to interact with neutral lipids directly in vitro. In cells with PL depletion, expression 

of Plin4 AH reduced LD size, suggesting that it can replace the PL monolayer.  

This chapter addresses how Plin4 AH, and the AHs of other Plins, interact with LDs. We focus 

on the dynamics and stability of these interactions. In this way, we can understand also their 

function on LDs. The manuscript presented in this chapter is titled “Dynamics of perilipin 4 at 

the surface of lipid droplets suggests a coat function” (Gimenez-Andres, M; Emeršič, T; 

Antoine-Bally, S; Antonny, B; Derganc, J and Čopič, A., submitted). 

In order to characterize the interaction of Plin AHs with LDs, I developed assays to evaluate 

the protein dynamics on oil droplets and the stability of the oil droplets formed in vitro using 

purified and fluorescently-labeled proteins. These protocols include: evaluation of the protein 

exchange on the surface of oil droplets and observation of the fluorescent protein recovery 

on the surface of oil droplets after photobleaching. I used DLS to follow the size of protein-oil 

droplets over time. To gain information about the adsorption of the protein interacting with 

neutral lipids, we collaborated with Tadej Emeršič and Jure Derganc (Institute of Biophysics, 
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University of Ljubljana) to develop a microfluidics device that can follow protein dynamics in 

real time by fluorescence microscopy. The combination of these approaches showed that 

Plin4 AH makes extremely stable protein-oil emulsions. Moreover, Plin4 AHs are remarkably 

immobile when they are bound to the neutral lipid particles at a high concentration. 

To test whether the stable interaction and slow dynamics of Plin4 AH with neutral lipids is 

shared with other members of Plin family, I compared it with other Plin AHs. I identified the 

Plin AH sequences detecting the 11mer repeats with HHrepID and plotting them into helical 

wheels with Heliquest. AHs of other Plins are longer than most other AHs (close to 100 aa), 

but 10 times shorter than Plin4 AH. Only Plin5 has a somewhat shorter predicted AH (about 

55 aa), and I left it out of further analysis. I evaluated the LD targeting and dynamics of Plin1 

AH, Plin2 AH and Plin3 AH using budding yeast as a model system. Yeast allowed me to test 

these AHs in a naïve LD model. I used different strains and growth conditions that displayed 

different permissibility for LD binding. The AHs of Plin2 and Plin3 had similar affinities for LDs 

as a Plin4 AH fragment of comparable length, whereas Plin1 AH showed a bit higher affinity 

for LDs. Plin1 AH increased LD targeting was consistent with this AH being slightly more 

hydrophobic, a property that we showed to improve LD binding (Chapter 6)(Čopič et al. 2018). 

However, when they were compared with a longer fragment of Plin4 AH, Plin4 AH targeted 

better LDs than the other Plin AHs. Plin1 AH and Plin3 AH were much more dynamic on LD 

surface of yeasts than Plin4 AH.  

In order to test these results in vitro, I developed a protocol to purify the AH of Plin3. Plin3 AH 

was also able to solubilize neutral lipids. However, the particles formed by it were less stable 

and Plin3 AH was quickly replaced by Plin4 AH on the particle surface, even when a short Plin4 

AH fragment was used. These results confirm that Plin4 AH binds more strongly and stably to 

neutral lipids than the other Plin AHs, even at comparable length of AH. This result suggests 

that differences between Plin4 AH and Plin AHs are not only due to Plin4 AH being longer.  

We hypothesized that specific features of Plin4 AH sequence were responsible for the 

different stabilities on neutral lipids of Plin4 AH and other Plin AHs.  For instance, Plin4 AH 

sequence shows a strong preference for certain polar residues, lysines over arginines and 

aspartic acids over glutamic acids, and an asymmetrical distribution of the positive charges 

concentrated on one side of the polar face of the AH. Results obtained by Sandra Antoine-
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Bally with different Plin4 AH mutants in HeLa cells supported the hypothesis that selection of 

some polar residues and their specific position in the helix are important for LD targeting by 

Plin4 AH. My analysis of Plin4 AH mutants with redistributed positive charge between the two 

sides of the AH polar face in yeast and in vitro confirmed the hypothesis. Therefore, we 

propose that polar residues and their particular distribution in Plin4 AH enable strong binding 

to the LD surface.  

The polar residues and their distribution in the Plin4 AH could lead to a special higher-order 

organization on the LD surface. Lateral interactions between Plin4 molecules could stabilize 

them on the LD surface. Polar and charged residues can mediate the lateral interactions. This 

would result in a very stable protein layer surrounding the neutral lipids. Lateral interactions 

have been shown to occur between the two chains of ApoA-I helices when they are interacting 

with neutral lipids to make high density lipoproteins (Bibow et al. 2017; Melchior et al. 2017). 

The main difference between Plin4 AH and other Plin AHs interacting with LDs would be that 

once these AHs are folded and on the LD surface, Plin4 AH can interact also with other Plin4 

molecules contributing to their stabilization and forming a very immobile protein layer.  

The Plin4 AH protein layer could act as a stable coat, protecting LDs from instability by 

preventing the exposure of the neutral lipid core to the aqueous cytosol. This function will 

prevent LD fusion and would explain why when Plin4 AH was expressed in drosophila S2 cells 

in a depleted PL condition or in yeast with oversized LDs, no large LDs could be observed. 

Moreover, this work shows that Plin4 AH and other Plin AHs interact in a distinct manner with 

LDs. We propose that AHs of other Plins (Plin1 – 3) interact with LDs as monomers, whereas 

Plin4 AHs polymerize on the LD surface. This model would explain why Plin4 AH can form such 

stable oil particles.  

 

 

 

 

 



53 
 

Dynamics of perilipin 4 at the surface of lipid droplets suggests a coat function 

 

Manuel Giménez-Andrés1,2, Tadej Emeršič3, Sandra Antoine-Bally1, Bruno Antonny4, Jure 

Derganc3,5, Alenka Čopič1,6 

 

1. Institut Jacques Monod, CNRS, UMR 7592, Université de Paris, France 

2. Université Paris-Saclay, 91405, Orsay, France 

3. Institute of Biophysics, Faculty of Medicine, University of Ljubljana 

4. Université Côte d’Azur, CNRS, IPMC, 06560 Valbonne, France 

5. Chair of Microprocess Engineering and Technology – COMPETE, University of 

Ljubljana 

6. Corresponding author: alenka.copic@ijm.fr 

 

 
Abstract 

Numerous proteins target lipid droplets (LDs) through amphipathic helices (AHs). It is 

generally assumed that AHs insert bulky hydrophobic residues in packing defects at the LD 

surface. However, this model does not explain the targeting of perilipins, the most abundant 

and specific amphipathic proteins of LDs. The gigantic Plin4 contains a highly repetitive AH 

that lacks bulky hydrophobic residues, and its LD targeting depends strongly on its length. We 

show that Plin4 forms a remarkably immobile protein layer at the surface of cellular or 

artificial LDs, making them stable over days. This Plin4 AH feature is not shared with the AHs 

of other perilipins, which display much faster dynamics on lipid surfaces. Plin4 AH stability on 

LDs is exquisitely sensitive to the nature and distribution of its polar residues. These results 

suggest that Plin4 forms stable arrangements of adjacent AHs via polar interactions, thereby 

behaving as an LD coat. 
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Introduction 

Lipid droplets (LDs) are cellular organelles specialized for storage of lipids and maintenance of 

cellular lipid homeostasis. They are composed of a neutral lipid core that is covered by a 

monolayer of PLs and other amphiphilic lipids, and by proteins (Thiam et al., 2013b; Olzmann 

and Carvalho, 2019). LDs vary in size over four orders of magnitude, depending on 

organism/cell type and fasting state of a cell; in mature adipocytes, the majority of the cell 

can be occupied by a single LD measuring >100 µm in diameter (Lundquist et al., 2020; 

Stenkula and Erlanson-Albertsson, 2018). Secreted lipoprotein particles are similar to LDs in 

terms of their over-all composition but are much smaller, ranging from 10 to 1000 nm in 

diameter (Ohsaki et al., 2014).  

Different types of proteins have been found to associate with LDs (Brasaemle et al., 2004; 

Bersuker et al., 2018; Kory et al., 2015; Pataki et al., 2018; Mejhert et al., 2020). They can be 

either stably embedded in the LD monolayer, coming by diffusion from the endoplasmic 

reticulum (ER), from which LDs emerge, or they associate with LDs peripherally from the 

cytosol (Ohsaki et al., 2014; Bersuker and Olzmann, 2017). Many of them are enzymes 

involved in lipid synthesis or hydrolysis, for example triglyceride synthases, acyltransferases, 

lipases and their inhibitors or activators (Wilfling et al., 2013; Zechner et al., 2017).  Proteins 

can also regulate LDs in a non-enzymatic manner. A prominent example is the perilipins: in 

mammals, this is a family of five proteins that share related structural features and are 

abundant on LDs (Sztalryd and Brasaemle, 2017). They vary in their tissue distribution: Plin2 

and Plin3 are widely expressed,  whereas Plin1 and Plin4 are most highly expressed in 

adipocytes, and Plin5 is enriched in oxidative tissues (Wolins et al., 2006; Brasaemle et al., 

2004; Wolins et al., 2003). Plin4 and Plin5 are also enriched in muscle tissues. Less closely 

related abundant LD proteins have been identified in many other species (Gao et al., 2017; 

Granneman et al., 2017; Miura et al., 2002). Whereas perilipins contain no known enzymatic 

motifs, a number of them, in particular Plin1, have been shown to regulate the recruitment of 

lipases to the LD surface (Sztalryd and Brasaemle, 2017). 

Many LD-localized proteins use amphipathic helices (AHs) to directly interact with the LD lipid 

surface (Bersuker and Olzmann, 2017; Giménez-Andrés et al., 2018). All mammalian perilipins 

contain a predicted AH region in their N-terminal part, which has been shown to be important 
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for their LD localization (McManaman et al., 2003; Nakamura and Fujimoto, 2003; Bulankina 

et al., 2009; Rowe et al., 2016; Copic et al., 2018). This region is composed of 11-aa repeats 

that would fold into a 3-11 helix, which is slightly more extended than the classical -helix 

(Bussell and Eliezer, 2003; Jao et al., 2008).  Other regions, including a C-terminal region that 

can fold into a 4-helix bundle (Hickenbottom et al., 2004), can also contribute to LD targeting 

to varying extents (Targett-Adams et al., 2003; Subramanian et al., 2004; Nakamura et al., 

2004; Ajjaji et al., 2019). Interestingly, both the 11-aa repeat region and the 4-helix bundle 

bear structural similarities with apolipoproteins, which are required for formation of 

lipoprotein particles (Saito et al., 2003; Melchior et al., 2017). 

The 11-aa repeat AH region is by far the longest in Plin4, containing close to 1000 aa in the 

human protein, with repeats that are highly homologous at the 33-aa level (Copic et al., 2018; 

Scherer et al., 1998). The aa composition of Plin4 AH reveals a striking bias towards small 

hydrophobic residues, in particular V, T and A, whereas large residues such as W and F are 

almost entirely absent (Figure 1A). Whereas the 11-aa repeat regions of other perilipins are 

about 10-times shorter than that of Plin4 and the repeats are far less conserved, they are 

similar in terms of their over-all aa composition. We have demonstrated that the Plin4 AH 

region is unfolded in solution, but adopts a highly helical structure in contact with a lipid 

surface. The low hydrophobicity of this AH promotes specific targeting to LDs, which are 

permissive for the binding of many amphipathic proteins (Copic et al., 2018; Prévost et al., 

2018). This is likely due to the physical properties of the LD surface, where the spreading of 

the PL monolayer leads to exposure of the hydrophobic core with which the hydrophobic face 

of an AH can interact more strongly (Bacle et al., 2017; Chorlay et al., 2019).  Due to its extreme 

length, Plin4 in particular can cover a large LD surface and could act as a substitute for PL 

(Čopič et al., 2018). A recent study has identified expansion of Plin4 33-aa repeats in a family 

with a rare autosomal dominant progressive myopathy, underscoring the importance of 

studying this protein (Ruggieri et al., 2020). 

Due to their high abundance on LDs, perilipins are often referred to as LD coat proteins 

(Sztalryd and Brasaemle, 2017). Protein coats have been well characterized on transport 

vesicles, for example COPI, COPII and clathrin coat. In all these cases, the coat forms in a tightly 

controlled manner by sequential recruitment of coat subunits on the membrane surface 

(Schekman and Orci, 1996; Taylor et al., 2011). Importantly, coat subunits laterally interact to 
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form a highly polymerized structure covering the surface of a vesicle (Faini et al., 2013). Coat 

polymerization is in fact the main force that generates these membrane vesicles (Saleem et 

al., 2015). Perilipins have not been shown to be directly involved in LD budding from the ER; 

LD formation may be principally driven by lipids, with proteins playing a more regulatory role 

(Ben M'barek et al., 2017; Chorlay et al., 2019; Santinho et al., 2020). On the other hand, COPI 

coat components have also been observed to bind to and influence LDs and to regulate 

recruitment of other LD proteins (Guo et al., 2008; Thiam et al., 2013a; Wilfling et al., 2014; 

Soni et al., 2009). 

Here, we ask whether perilipins possess qualities traditionally associated with protein coats. 

We focus on the 11-aa repeat AH regions of mammalian perilipins, which directly associate 

with the lipid surface of LDs. We analyze the stability of perilipin AHs on the lipid surface and 

their ability to form an immobile structure using various cellular and biochemical approaches, 

as well as a novel microfluidics set-up to follow the interaction of AHs with oil over time. We 

show that one perilipin, Plin4, is capable of making highly stable protein-lipid structures by 

forming an immobile coat on the surface of pure oil using its uniquely long AH. These protein-

oil droplets remain stable over the course of many days. In contrast, we show that the 

interaction of the AHs from other perilipins with LDs or with oil is highly dynamic. Extensive 

mutagenesis shows that the AH of Plin4 can form an immobile coat due to its organized 

structure that could enable interhelical interactions on the lipid surface. 

 
Results 

Purified Plin4 AH forms very stable protein-oil emulsions 

We have previously shown that the AH of Plin4 is optimized for LD binding both by its length 

and particular aa composition (Copic et al., 2018). The AH sequence of human Plin4 is 

composed of ~29 highly homologous 33-aa repeats (Figure 1A). The efficiency of LD targeting 

correlated with AH length: at least four 33-aa repeats of the wild-type Plin4 AH were needed 

to detect some LD localization in HeLa cells (Figure 1B). Furthermore, the strong bias towards 

small residues is decisive for LD targeting: mutations that increased hydrophobicity (T > V) 

made Plin4 promiscuous for other organelles besides LDs; mutations that decreased 

hydrophobicity (T > S) rendered Plin4 cytosolic (Figure 1B).  
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The amphipathic region of Plin4 is capable of emulsifying triolein upon vigorous mechanical 

mixing (vortex) in aqueous buffer in the absence of any other surfactant, such as 

phospholipids. A similar result was obtained with a shorter Plin4 AH construct containing 4 

33-aa repeats (Plin4 4mer) or a longer construct comprising 12 33-aa repeats (Plin4 12mer) 

(Figure 1C) (Copic et al., 2018). Electron microscopy and dynamic light scattering (DLS) 

revealed that emulsions of triolein and Plin4 12mer contained spherical oil particles with a 

large range of sizes; typically with a diameter of 50 to 500 nm (mean ≈ 200 nm), although 

some larger particles (diameter > 1 µm) could also be observed (Copic et al., 2018). We 

focused on these latter particles, whose size made them suitable for imaging by fluorescence 

light microscopy. For this, we performed triolein emulsification in the presence Plin4 12mer 

labeled with the fluorescent dye Alexa488 (Plin4 12mer-A488), mixed with unlabeled Plin4 

12mer. The spherical particles displayed a homogenous fluorescent surface, which allowed us 

to perform dynamics measurements by fluorescence recovery after photobleaching (FRAP) 

(Figure 1D).  

In the first FRAP protocol, we bleached an entire Plin4-oil particle. In this case, fluorescence 

recovery should occur by exchange between free Plin4 12mer-A488 in solution and bleached 

Plin4 12mer-A488 molecules bound to the lipoparticle surface. As shown in Figure 1D, we 

could detect no recovery within the time range of the measurement (3 min). In the second 

FRAP protocol, we bleached a limited area of the lipoparticles surface to follow fluorescence 

recovery of Plin4 12mer molecules by lateral diffusion. Again, the surface of the Plin4 12mer-

coated particles showed no detectable recovery within 5 minutes after bleaching (Figure 1D). 

These experiments suggest that Plin4 12mer forms a very stable and immobile coat at the 

surface of triolein.  

To gain further insight into the stability of the Plin4 12mer/triolein particles, we visualized the 

fluorescent emulsions over 7 days after the vortexing step. As shown in Figure 1E, the 

emulsions at t = 15 min, 75 min, 4 days and 7 days appeared very similar, showing numerous 

submicrometer particles and a few larger (> 1 µm) particles. Importantly, most if not all 

particles remained isolated during this long observation time, showing no obvious clustering 

or aggregation.  
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For comparison, we used a mutated form of Plin4 4mer (4T>S), in which several threonines in 

the hydrophobic face of the amphipathic region had been replaced by the more polar residue 

serine (Figure 1A). Plin4(4T>S) was purified from bacteria following the same procedure as for 

Plin4 4mer or Plin4 12mer. This mutant was inefficient at emulsifying olein (Figure 1C), in 

agreement with its inability to target LDs in HeLa cells (Figure 1B) (Copic et al., 2018). However, 

we could observe a few large triolein droplets formed by fluorescently-labeled Plin4(4T>S). 

The lipoparticles covered by Plin4(4T>S) clustered over time, suggesting that their coat was 

much less protective than what we observed with Plin4 12mer-oil droplets (Figure 1E).   

Analysis by DLS revealed an even more remarkable stability of Plin4 12mer-oil particles over 

time, as we could not detect any change in particle size distribution even 28 days after 

emulsification by vortexing (Figure 1F). This puts Plin4 AH on par with natural emulsifiers used 

for technological purposes in food or pharmaceutical industry (McClements and Gumus, 

2016). In contrast, the particles formed by Plin4(4T>S) were too heterogenous for analysis by 

DLS even at the first time-point (3h) after emulsion formation. 

Following Plin4-oil interaction in real time using microfluidics 

Large energies are required to disperse oil in order to form oil-protein emulsions in vitro; in 

our case, we provided this energy through vigorous vortexing. In order to further study the 

interaction of Plin4 AH with neutral lipids, we required a method where we could present the 

AH to the oil surface in a gentle manner and follow in real time the assembly of protein on the 

oil surface. We therefore developed a microfluidics system, in which we used a glass chip with 

two channels joined by a T-junction. We introduced the water-based buffer into the main 

channel and pure triolein into the side channel and stabilized the buffer-triolein interface 50-

100 μm below the T-junction by closing the valve in the side-channel (Figure 2A). In this 

configuration, the buffer-triolein interface is not disturbed by the flow in the main channel, 

whereas the solutes from the main channel are free to diffuse to the oil surface. In terms of 

diffusion and hydrodynamic characteristics, this system is similar to microfluidic cavities 

(Osterman et al., 2016; Vrhovec et al., 2011). 

We introduced Alexa-488-labeled Plin4 12mer into the main channel, and we followed the 

change in fluorescent signal inside the side channel and on the triolein interface over time 

using a confocal microscope (Figure 2B and Supplementary movies). As the protein solution in 
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the main channel reached the T-junction we could observe its diffusion into the side channel. 

After several seconds, we detected an increase in fluorescence on the oil interface, which 

stabilized in about 3 min at a level about 3-fold higher than the fluorescence of the solution, 

indicating an enrichment of Plin4 AH on the oil surface (Figure 2C). We then replaced the 

protein solution in the main channel with buffer to promote protein dissociation. However, 

the fluorescence on the interface remained constant, indicating a stable interaction between 

Plin4 12mer and oil. No enrichment of fluorescence on the oil interface was observed when 

we introduced buffer containing Alexa488 conjugated to free cysteine instead of Plin4 12mer 

(lower row in Figure 2B, C). These experiments confirm that Plin4 AH forms a very stable 

protein layer at the interface between oil and water. 

We further compared the interaction Plin4 12mer with oil to that of the less hydrophobic 

Plin4(4T>S) mutant using the microfluidics system. The mutant assembled on the oil surface 

with no measurable difference in the kinetics of assembly or in the factor of enrichment 

compared to Plin4 12mer. However, the difference between Plin4 12mer and Plin4(4T>S) 

became obvious when the two proteins were used as unlabeled proteins in a 50:1 molar 

excess over labeled Plin4 12mer. We observed strong fluorescent signal on the oil interface in 

the presence of the Plin4(4T>S) mutant, but not in the presence of Plin4 12mer, indicating 

that the wild-type protein out-competed with Plin4(4T>S) for oil coating (Figure 2—figure 

supplement 1).   

Comparison between the AH of Plin4 and other perilipins 

So far, we focused on the interaction between the AH of Plin4 and LDs as it represents a most 

striking example of an LD-binding AH. We wanted to specifically compare the characteristics 

and LD-binding properties of Plin4 AH with the AH regions of the other human perilipins (Plin1, 

Plin2, Plin3), which have been shown to contribute to LD targeting (McManaman et al., 2003; 

Nakamura and Fujimoto, 2003; Bulankina et al., 2009; Rowe et al., 2016). The number of 11-

aa repeats that we could identify in each protein ranged from 5 for Plin5 to about 8 for 

Plin1/2/3, compared to the 87 repeats in Plin4. In addition, the repeats are more highly 

conserved in Plin4, and Plin4 AH is also striking for the absence of any deletions or insertions 

between the repeats (Copic et al., 2018) (Figure 3A). Comparison of the aa composition of the 

11-mer regions showed that they were similar in character in Plin2/3/4, with low 
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hydrophobicity due to a lack of large hydrophobic residues (Figure 3B). Plin1 AH is somewhat 

more hydrophobic and contains some aromatic residues. A more divergent character of this 

AH is consistent with the evolutionary divergence of Plin1 from the other perilipins 

(Granneman et al., 2017). The AH of Plin5 is shorter than in other perilipins and we did not 

consider it in further analysis. 

We first expressed Plin AHs as GFP fusions in budding yeast and assessed their ability to target 

LDs. Budding yeast was used previously for expression of mammalian perilipins; full-length 

Plin1, Plin2 and Plin3, as well as their N-terminal halves, which include a region termed ‘PAT 

domain’ in addition to 11-aa repeats,  targeted LDs in this system (Jacquier et al., 2013; Rowe 

et al., 2016; Copic et al., 2018). We expressed the AHs of Plin1, Plin2, and Plin3, and fragments 

of different lengths from the AH region of Plin4, containing 4, 6, or 12 33-aa repeats (132, 198 

and 396 aa, respectively). In the case of Plin3, we could not observe any expression of just the 

AH region (aa 113-205) fused to GFP, therefore we added some additional upstream sequence 

(aa87-205) (Bulankina et al., 2009). We expressed these constructs under three different 

growth conditions that promote LD accumulation (Gao et al., 2017) : (i) wild-type cells grown 

to stationary phase; (ii) stationary phase cells lacking the most abundant yeast LD protein, 

Pet10p/Plin1p (pet10); (iii) pet10 cells grown in oleic-acid rich medium, which promoted 

the formation of large LDs (pet10 + OA). In wild-type cells, Plin1 AH, but not Plin2 AH, Plin3 

AH or Plin4 4mer, could be observed on LDs (Figure 3C). In contrast to Plin4 4mer, Plin4 6mer 

and Plin4 12mer localized to LDs, in line with our finding that increasing the AH length 

improves LD targeting (Copic et al., 2018). In agreement with the work of Gao et al., deletion 

of Pet10p/Plin1p improved LD targeting of our mammalian constructs, presumably because 

more LD surface was available (Kory et al., 2015). Targeting to LDs was further increased by 

the addition of oleic acid to stationary phase cells, which induced large LDs (Figure 3C). In 

addition, we observed some protein at the PM, in particular in the case of longer Plin4 AHs, 

consistent with observations from human cells and tissues (Scherer et al., 1998; Ruggieri et 

al., 2020). Based on these results, we conclude that the 11-aa repeat regions of Plin1, Plin2, 

Plin3, and Plin4 are all sufficient for targeting LDs. Comparison of different growth conditions 

(Figure 3D) allowed us to establish a ranking of LD affinities for perilipin AHs: extrapolating to 

its full length, Plin4 AH has the highest affinity for LDs, followed by Plin1 AH, and finally by 

Plin2 AH and Plin3 AH. However, correcting for length differences reveals that per unit of AH 
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length, Plin1 AH has a higher affinity for LDs than those of Plin2, Plin3 or Plin4. This is 

consistent with the higher hydrophobicity of Plin1 AH compared to other perilipin AHs; higher 

hydrophobicity has been shown to promote LD binding (Copic et al., 2018; Prévost et al., 

2018).  

Strikingly, we noticed a difference in the size of the large LDs that formed in pet10 cells 

grown in oleic acid-rich medium, depending on the AH expressed (Figure 3C,E): LDs were 

significantly larger (2.5-fold difference in projected area, which would correspond to 1.5-fold 

difference in diameter and a 4-fold difference in volume) when covered with Plin1, Plin2 or 

Plin3 AH, compared to LDs covered with Plin4 12mer (Figure 3C,E). LDs with Plin4 6mer were 

also somewhat bigger than those covered with Plin4 12mer. LDs with Plin4 4mer were more 

variable in size and appearance, preventing the use of the same quantification protocol.  

We conclude that AHs from all four perilipins (Plin1 to Plin4) can by themselves target LDs and 

that their affinity for LDs correlates with their length and hydrophobicity. However, the AH of 

Plin4 could reduce the size of LDs more strongly than the AHs of other perilipins. 

 

Stability of binding of perilipin AHs to LDs in model cellular systems 

We used FRAP to assess the stability of AH binding to LDs in cells using the yeast model system. 

Plin1 AH-GFP could readily exchange between LD surface and the cytosol in cells grown for 

24h in oleic acid medium, as reflected by a recovery half-life on the order of a few seconds 

(Figure 4A). The exchange of Plin3 AH-GFP was about two times faster than Plin1 AH-GFP, 

consistent with a lower amount of binding to LDs at steady state that we observed for this 

construct and with results obtained in mammalian cells with N-terminal halves of Plin1 and 

Plin3 (Ajjaji et al., 2019). In striking contrast, Plin4 12mer-GFP displayed almost no recovery 

on LDs over a period of more than 5 min (Figure 4A).  We obtained similar measurements in 

cells grown for a shorter time, to early stationary phase, in standard growth medium (Figure 

4B). However, these LDs were much smaller and more mobile, leading to a large variability in 

the fluorescence measurement. We also performed FRAP of Plin4 AH-GFP constructs bound 

to the PM in cells in exponential phase, to ensure that the poor recovery times that we 

observed on LDs were not due to protein aggregation in aged cells. The results that we 

obtained for Plin4 12mer-GFP on the PM were qualitatively similar to the results that we 
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obtained on LDs, showing slow and incomplete recovery of fluorescent signal after 

photobleaching. The recovery was faster and more complete for shorter Plin4 AH constructs 

(8mer and 6mer), confirming that the length of the Plin4 AH contributes to its stable binding 

to lipid surfaces (PM or LD) in the yeast model system (Figure 4C). However, even for the 

shortest Plin4 AH construct for which we could consistently observe targeting to yeast 

membranes, the recovery after photobleaching was still an order of magnitude slower than 

for Plin1 AH or Plin3 AH, suggesting that length of Plin4 AH is not the only parameter 

determining its stable binding to LDs. 

Next, we moved to LDs in Drosophila Schneider 2 (S2) cells, which have been used to decipher 

several general mechanisms of LD formation (Guo et al., 2008; Krahmer et al., 2011). We 

previously demonstrated that expression of Plin4 12mer in S2 cells rescued the increase in 

size of LDs following the depletion of phosphatidylcholine (PC) (Copic et al., 2018). In these 

cells, the FRAP recovery curves of Plin4 12mer-GFP on LDs were variable, with a half-time 

covering a full range between 1 s to >100 s (Figure 4 – figure supplement 1). However, this 

variability was highly cell-dependent: within the same cell, the FRAP curves as assessed from 

different LDs were similar, suggesting that a cell-to-cell dependent variable was at play. PC 

depletion upon CCT knocked-down had a small effect, but this was not the main driver of 

cell-to-cell variability. The level of protein expression was also not very predictive of recovery 

rate. In contrast, we observed a strong correlation between the rate of FRAP recovery and the 

intensity of the Plin4 fluorescent signal on LDs. This observation suggests that Plin4 AH density 

at the LD surface influences its dynamics, a feature reminiscent of protein coat. At low 

membrane coverage level, coat subunits diffuse and exchange quickly; at high membrane 

coverage level, their polymerization by side-side interaction prevents lateral mobility and fast 

turnover (Saleem et al., 2015; Sorre et al., 2012).    

Comparison of proteolipid droplets formed with Plin4 AH or Plin3 AH 

To study in more detail the difference between Plin4 and other perilipin AHs binding to LDs, 

we used our in vitro assays to compare the behavior of purified Plin4 AH fragments with that 

of Plin3 AH.  We chose Plin3 AH because it displayed a similar steady-state distribution in yeast 

as the slightly longer Plin4 4mer, however, it showed a rapid exchange between LDs and the 

cytosol and it did not decrease LD size in oleic acid media. Mixing purified Plin3 AH with oil 
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resulted in a highly turbid suspension, similar to the suspensions obtained with Plin4 4mer or 

Plin4 12mer (Figure 5A and Figure 5 – figure supplement 1). By DLS, Plin4 4mer-oil droplets 

behaved like Plin4 12mer oil droplets (see Figure 1G) (Copic et al., 2018), displaying a particle 

size profile with a single peak that did not change over the course of 14 days after droplet 

formation (Figure 5B, left panel). In contrast, the droplets produced by Plin3 AH were more 

heterogenous in size already 3h after droplet formation. Thereafter, we observed a spreading 

of the peaks until the samples became too complex for DLS analysis (14 days after formation 

in the experiment shown in Figure 5B, right panel). Note that such complexity is generally due 

to the presence of particles of variable sizes, suggesting that Plin3 AH-oil particles were 

undergoing fusion over time due to less stable coating by Plin3 AH.  

Centrifugation of AH-oil suspensions on sucrose gradients revealed a smaller fraction of total 

Plin3 AH protein associated with the oil fraction (top of the gradients) than was the case for 

Plin4 4mer or Plin4 12mer, even though we used the same protein to oil mass ratio in all cases 

(Figure 5C, D). This could be either because less Plin3 AH was bound to the oil droplets or 

because Plin3 AH bound to oil less strongly and dissociated during centrifugation. To 

distinguish between these possibilities, we performed competition experiments in which we 

first formed protein-oil droplets by mixing oil with a high concentration of unlabeled purified 

AH constructs (Plin4 12mer, Plin4 4mer or Plin3 AH). Then, we gently added to these 

suspensions Alexa488-labeled Plin4 12mer at an excess mass ratio of 20:1 compared to 

unlabeled protein, and we monitored the fluorescence of the suspensions over time using 

confocal microscopy (Figure 5E).  When we combined unlabeled and labeled Plin4 12mer, we 

observed no incorporation of fluorescent Plin4 12mer into the preformed Plin4 12mer-oil 

particles over a period of 24 h, unless we vortexed the suspension (Figure 5E,F; top panel). 

This result is consistent with the lack of Plin4 12mer dissociation from oil, as determined by 

FRAP or by the microfluidics assay (Figure 1D and Figure 2B). In contrast, we observed some 

incorporation of fluorescent Plin4 12mer into Plin4 4mer-oil particles after 3 or 24 hours of 

incubation, suggesting that Plin4 4mer was bound to oil somewhat less stably than the 3-times 

longer Plin4 12mer (Figure 5E, F; middle panel). Strikingly, when we pre-formed AH-oil 

particles using Plin3 AH, Plin4 12mer readily incorporated into these particles, reaching close 

to maximal particle fluorescence already 10 min after Plin4 12mer addition (Figure 5E, F; 

bottom panel). We also observed clustering of Plin3 AH-formed oil particles, especially after 
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24 hours of incubation. Together, these experiments suggest that like Plin4 AH, Plin3 AH can 

function as an emulsifier to form protein-oil particles. However, Plin3 binding to oil is much 

less stable and the Plin3-oil particles cluster or fuse over time. The stability of Plin4-oil particles 

is promoted by the length of the Plin4 AH. However, Plin4 4mer, which is less than 1.5-times 

longer than Plin3 AH (in contrast to Plin4 12mer, which is 4.5-times longer), also produced 

much more stable oil droplets. We conclude that the difference in the stability of Plin4-oil and 

Plin3-oil droplets is not only due to the length of Plin4 AH, but also to differences in the 

sequences of the two AHs.  

The nature and distribution of aa in the polar face of Plin4 AH is critical for LD targeting 

We asked how the aa sequence of the Plin4 AH enabled this helix to form an immobile coat 

on lipid surfaces. The Plin4 AH sequence displays a remarkable repetitiveness (Figure 3A). We 

noticed that some polar residues, (e.g. N and Q), were extremely conserved among all repeats 

of Plin4 AH (Figure 6A). In addition, the Plin4 AH sequence shows a remarkable preference for 

lysine over arginine (22-fold) and for aspartic over glutamic acid (18-fold), which is less 

pronounced (K/R) or absent (D/E) in other perilipin AHs (Figure 3B). These considerations 

prompted us to construct mutants of Plin4 4mer in which we introduced in every 33-mer 

repeat modest mutations (e.g. N>Q, D>E, or K>R) that should not modify the folding and 

overall physical chemistry of the helix, including its charge and hydrophobic moment. 

We first focused on the two conserved amide residues: an asparagine present in 25 out of 29 

repeats of human Plin4, and a glutamine seven residues apart, conserved in all repeats (Figure 

6A). The N[x]6Q sequence was replaced by N[x]6N (NN), Q[x]6Q (QQ) or Q[x]6N (QN) in the 

context of the Pin4 4mer construct. Strikingly, these three mutations almost eliminated the 

targeting of Plin4 4mer to LDs in HeLa cells (Figure 6C).  Next, we considered the charged 

residues. Replacing all 8 aspartates with glutamates within the Plin4 4mer (2D>E) led to a small 

decrease in AH targeting to LDs in HeLa cells, whereas replacing the 12 lysine residues with 

arginine (3K>R) almost abolished AH targeting to LDs (Figure 6B, C). These substitutions did 

not affect the overall charge of the AH, only slightly changed its hydrophobicity and would 

even increase its helical propensity in the case of K>R substitution (Pace and Scholtz, 1998). 

Their effect on Plin4 AH targeting therefore suggested that a precise interaction between 

charged and/or polar residues could be important for LD binding. 
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We also noted an unusual distribution of charged residues throughout the Plin4 AH sequence, 

with positive ones always lying on one side of the helix close to the apolar/polar interface 

(Figure 6D). To test whether charged residues in Plin4 AH could mediate interhelical 

interaction to stabilize the helices bound to the LD surface, we prepared a mutant of Plin4 

12mer, in which we reorganized the distribution of charges in the polar face of all 33-mer 

repeats without changing their overall composition (Figure 6D). This more symmetric Plin4 

12mer AH mutant, termed charge-swap (csw), was similar to a 4-mer mutant that we tested 

previously and which did not localize to LDs when expressed in HeLa cells (Copic et al., 2018). 

We observed some localization of the longer csw 12mer-GFP mutant to LDs in HeLa cells, 

which was significantly reduced compared to Plin4 12mer-GFP (Figure 6E). When we 

compared the localization of these two constructs in the yeast model, we observed a 

difference in their distribution between LDs and the PM, with csw 12mer showing a lower 

ratio of LD-to-PM signal compared to Plin4 12mer (Figure 6F). This preference for the PM is 

consistent with the distribution of positive charges in csw 12mer, which is more optimal for 

mediating electrostatic interactions with the negative surface of the PM, compared to Plin4 

12mer. Remarkably, when we performed FRAP of Plin4 12mer-GFP and csw 12mer-GFP bound 

to the PM in exponentially-growing cells, we observed a faster recovery of the csw construct 

compared to WT (Figure 6G). The observation that even though the csw mutant partitioned 

more strongly to the PM, its binding to the PM was more dynamic than in the case of Plin4 

12mer, was suggestive of two separate kinetic steps: initial binding of individual helices 

followed by their assembly into a more stable lattice. We could not perform a similar 

comparison of binding to LDs due to their mobility. However, we noted a small shift towards 

bigger LDs in LDs surrounded by csw 12mer, compared to Plin4 12mer (Figure 6 – figure 

supplement 1). Together, these results suggest that reorganization of charged residues in the 

Plin4 AH decreased the stability of helices bound to the LD surface.  

We purified csw 12mer following the same purification procedure as for Plin4 AHs, and we 

tested the interaction of this mutant with oil. Like Plin4 AH, csw 12mer could produce oil 

droplets in our vortexing assay (Figure 7A). However, when we added Alexa488-labeled Plin4 

12mer to preformed csw-12mer-oil droplets, we observed a significant incorporation of Alexa-

488 fluorescent signal into the droplets (Figure 7B, C), in contrast to the lack of exchange 

observed between non-fluorescent and fluorescent Plin4 12mer (Figure 5E, F). We conclude 
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that the particular amino-acid distribution in the polar face of the Plin4 AH enables the 

formation of a highly stable structure on a neutral lipid surface (Figure 7D).  

Discussion 

Perilipins are among the most abundant proteins in the LD proteomes (Brasaemle et al., 2004; 

Sztalryd and Brasaemle, 2017). Whereas their importance for LD metabolism has been known 

for a long time, notably for the recruitment of lipases and their inhibitors, this does not explain 

their abundance on the LD surface. The role of Plin4, by far the largest of perilipins, has been 

particularly puzzling. Plin4 is a mammalian-specific protein and is highly expressed in 

adipocytes (Wolins et al., 2003). Its deletion in a mouse model has so far not revealed any 

strong phenotypes (Chen et al., 2013). However, the striking features of Plin4 AH in terms of 

its length, repetitiveness and particular aa composition, suggest a strong selection for a 

specific function of Plin4 in mammalian metabolism. The present work shows that the 

interaction of Plin4 AH with LDs in vitro and in cellular model systems is remarkably stable. 

The slow lateral diffusion and the very slow dissociation of Plin4 AH molecules at the LD 

surface as assessed by FRAP, by microfluidics, or by exchange assays, are reminiscent of the 

behavior of vesicular coat components that polymerize on a membrane surface via lateral 

interactions (Saleem et al., 2015; Sorre et al., 2012). 

We previously showed that the extreme length and the low hydrophobicity of Plin4 AH 

contributed to the specificity of its LD targeting (Copic et al., 2018). Large residues such as F 

(n = 2) or W (n = 0) are rare or absent in the Plin4 AH sequence (aa 81-1037), whereas three 

small hydrophobic residues, V (n = 144), T(n = 204) and A (n = 103), are extremely abundant 

(Figure 3B). Mutations that slightly increased hydrophobicity (T > V) made Plin4 promiscuous 

for other organelles besides LDs, whereas mutations that slightly decreased hydrophobicity (T 

> S) made Plin4 cytosolic. We now show that the Plin4(4T>S) mutant is also unable to emulsify 

oil in vitro although it binds to an exposed oil surface in microfluidics experiments. Thus, the 

hydrophobicity of Plin4 AH appears just at the threshold of promoting LD binding. Our 

experiments in the yeast model (Figure 3C-E) show that this is also the case for other perilipin 

AHs, consistent with their overall similar chemistries. A slight exception is the AH of Plin1, 

which contains some aromatic residues and partitions to LDs better than other AHs (Rowe et 

al., 2016; Ajjaji et al., 2019). Overall, the hydrophobicity of perilipins appears at best modest 
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and generally extremely low. As such, these proteins challenge a recent model for AH-LD 

interaction in which the main driving force is the intercalation of bulky hydrophobic residues 

within lipid packing defects at the LD surface (Prévost et al., 2018). This model derives from 

binding experiments and cellular observations performed with AHs that are much smaller than 

those of perilipins and bind not only to LDs but also other organelles (e.g. ALPS motif, CCT, 

ARF1). As such, this model does not account for the particular chemistry of Plin AHs, which 

are the most abundant and specific AHs of LDs. 

Surprising as it may seem, the polar face of Plin4 AH makes a very large contribution to LD 

targeting. The consistency in the distribution of charged residues along the length of the Plin4 

AH, combined with a strong preference for K over R and D over E suggested that polar and 

charged residues play an important role in Plin4 AH. All conserved mutations that we tested, 

including N>Q, Q>N, K>R and D>E, decreased Plin4 AH LD targeting, with the first three 

mutations causing an almost complete dissociation. Furthermore, merely changing the 

distribution of these residues in the polar face also led to a reduction in LD targeting and in 

stability of binding to triolein droplets in vitro. We thus propose that binding of Plin4 AH is 

controlled by the numerous electrostatic/hydrogen interactions that its polar side chains can 

engage in along its gigantic length. These features speak in favor of a ‘coat’ model: numerous 

Plin4 molecules held together by side-side interactions would form a network at the LD 

surface. A prediction of this model is that Plin4 should be immobilized at the LD surface and, 

thereby, should exhibit very limited dynamics. This was confirmed by our experiments, which 

revealed a drastic difference in the behavior Plin4 AH compared to other perilipin AHs in cells 

and in vitro. 

The coat model of Plin4 is reminiscent of the interactions that apolipoproteins engage in to 

form secreted lipoprotein particles (Phillips, 2013). In particular, ApoA1, for which most 

structural information is available, forms a ring around the lipid core in low density lipoprotein 

particles, stabilizing itself via interactions between specific charged residues in two adjacent 

molecules (Bibow et al., 2017; Pourmousa et al., 2018; Melchior et al., 2017). 26 

intermolecular salt-bridges connect two antiparallel rings of ApoA1, which is about 200 aa 

long. The abundance of positively (3) and negatively (2) charged residues in each 33-aa repeat 

of Plin4 is compatible with the formation of a similar large network of intra or intermolecular 

interactions in the Plin4 coat. Interestingly, this model does not impose a strict geometry on 
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the protein network organization. The large number of glycine residues in Plin4 AH (5 G per 

33-aa repeat) could enable the formation of various turns, resulting in a spaghetti-like layer 

rather than a geometrically well-defined assembly.    

 

The observation that perilipins decorate different LDs in the same cell type supports our 

model of a higher-order perilipin organization on the LD surface (Hsieh et al., 2012; Wolins et 

al., 2005). The network of electrostatic interactions between perilipin AHs should be strongly 

dependent on their exact sequences, making the formation of hybrid coats between different 

perilipins less likely than homogenous perilipin coats. However, what drives the sequential 

coating of LDs by different perilipins remains quite mysterious. In addition to their repetitive 

AH regions, other segments of Plin1, Plin2 and Plin3 have been implicated in binding to LDs, 

in particular the C-terminal 4-helix bundle (Subramanian et al., 2004; Mirheydari et al., 2016; 

Ajjaji et al., 2019), but this has not been the case for Plin4 (Copic et al., 2018). In contrast to 

the behavior of their AHs, the association of full-length Plin1 and Plin2 with LDs can be very 

stable (Targett-Adams et al., 2003; Soni et al., 2009; Pataki et al., 2018; Ajjaji et al., 2019), and 

the COPI machinery has been implicated in the recruitment of Plin2 to LDs by an unknown 

mechanism (Nakamura et al., 2004; Soni et al., 2009). 

Whereas vesicular coats uniformly cover the surface of a vesicle, following their assembly that 

enabled vesicle budding, this is unlikely to be the case for perilipin coats. Non-uniform 

distribution of Plin1 on LD surface has been observed in cultured adipocytes (Blanchette-

Mackie et al., 1995; Hansen et al., 2017); these can be explained by the coating model, where 

patches of polymerized perilipin coat might coexist with other LD regions decorated by other 

proteins. More generally, the molecular arrangements of Plin4 molecules or other perilipins 

on LDs is a considerable challenge for the future. In the case of apolipoproteins, a consensual 

model for their organization is just starting to emerge despite decades of intense 

investigations on these proteins.  

Materials and Methods 

Sequence analysis 

The 11-aa repeats of perilipins were identified using HHrepID tool from the MPI Bioinformatics 
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Toolkit server (Biegert and Söding, 2008; Zimmermann et al., 2018). The amphipathic 

character of these sequences was analysed using HeliQuest (Gautier et al., 2008). Helical 

wheels were plotted as complete 3–11 helices; the presentation of helices was chosen such 

as to maximize their hydrophobic moment, as calculated by Heliquest, and inclusion of 

identified 11-aa repeats, excluding helix-breaking proline (Pace and Scholtz, 1998) from the 

middle of the helices. The amino acid conservation of the 33-aa repeats of Plin4 was 

represented using Weblogo (Crooks et al., 2004). 

Plasmid DNA construction 

All plasmids used in this study are listed in Supplementary table 1. DNAs encoding AHs of 

human Plin1, Plin2 and Plin3 were PCR-amplified from the corresponding cDNAs that had been 

cloned into pGREG576 plasmids (gift from R. Schneiter, U. of Fribourg) (Jacquier et al., 2013). 

DNA for Plin4 6mer and Plin4 8mer was amplified from plasmid pCLG26, and DNA for Plin4 

4mer mutant 4T>S was amplified from plasmids pSB49 (Copic et al., 2018). Plin4 4mer mutants 

(2D>E, 3K>3, NN, QN and QQ), and Plin4 12mer mutant csw 12mer were constructed using 

synthetic double-stranded DNA fragments (Supplementary table 2). All 4mer mutants were 

exact 4× repeats of a 33-aa sequence, based on the parental sequence of human Plin4 

fragment aa246-278.  The protein sequence for csw 12mer was designed by manually 

adjusting 33-aa helical wheels of the parental Plin4 12mer sequence using HeliQuest to 

increase the symmetry of charged residue distribution in the polar side of the helix while 

minimizing changes in the hydrophobic moment. DNA sequences were optimized for synthesis 

using the algorithm on the Eurofins website (https://www.eurofinsgenomics.eu). 

Supplementary table 2 also lists all protein sequences used in this study. For expression of 

proteins in E. coli, PCR-amplified DNA fragments were inserted into pET21b (Novagen) without 

adding a tag using NheI and XhoI restriction sites, which were introduced by PCR. For 

expression of Plin3 AH, an additional sequence ‘MASC’ was introduced upstream of the AH. 

For expression of GFP fusion proteins in S. cerevisiae, PCR-amplified DNA fragments were 

inserted into pRS416-derived (URA3 and AmpR markers) CEN plasmid pRHT140 containing 

ADH1 promoter and GFP for C-terminal tagging (gift from S. Leon, IJM). For expression of 

mCherry fusion proteins, GFP-encoding fragment in this vector was replaced with mCherry 

using KpnI and BamHI restriction sites to generate plasmid pMGA4. All AH DNA fragments 

were cloned into these plasmids using NheI and BamHI restriction sites that were introduced 
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by PCR. The sequence of the multiple cloning site introduces a linker peptide in the resulting 

fusion protein between the AH and GFP, ‘PLDPPGLQEF’, and linker peptide ‘VKDPDIKLID’ 

between the AH and mCherry. Plasmids for expression of mCherry fusion proteins in HeLa 

cells were constructed by subcloning synthetic genes for Plin4 mutants into pmCherry-N1 

(Invitrogen) using BamHI and XhoI restriction sites. All plasmids were verified by sequencing. 

Protein purification 

All proteins were purified from E. coli without a tag. Plin4 12mer and Plin4 4mer were purified 

as previously described (Copic et al., 2018). Plin3 AH (aa103 to 205), Plin4 4T>S and csw 12mer 

were purified following a similar protocol, with some modifications in the case of Plin 3 AH, as 

outlined below.  E. coli cells BL21DE3 transformed with expression plasmids were grown to 

O.D. ≈ 0.6 at 37°C from a liquid preculture and induced with 1 mM IPTG for 1 h at 37 °C. Cells 

from 0.25 l cultures were collected by centrifugation and frozen. The bacterial pellets were 

thawed in lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM DTT, supplemented with 

0.1 mM PMSF, and Complete protease inhibitor cocktail (Roche)). Cells were broken by 

sonication. The lysate was centrifuged at 100,000 × g for 30 min at 4°C in a 70.1Ti Rotor (40,000 

rpm; Beckman). The supernatant in centrifuge tubes was immersed in boiling water (95°C) for 

30 min. The resulting cloudy suspension was centrifuged at 100,000 × g for 15 min at 4°C to 

remove precipitated material. The supernatant was dialyzed against 20 mM Tris-HCl pH 7.5, 

10 mM NaCl, 1 mM DTT (2 x 30 min using 1 l of buffer) at 4 °C using Spectra/Por membranes 

with a cut-off of 6000 Da (Spectrum labs) and then centrifuged again at 100,000 × g for 30 min 

at 4 °C. Plin4 4T>S and csw 12mer were then further purified in a single step by cation 

exchange chromatography on a 20 ml Hiprep S HP column (GE Healthcare), as described for 

Plin4 AHs (Copic et al., 2018). In contrast to Plin4 AH, Plin3 AH has a net negative charge at 

neutral pH (pI = 4.65). Therefore, Plin3 AH was purified by anion exchange chromatography 

on a 20 ml Hiprep Q HP column (GE Healthcare). It was eluted with a salt gradient from 10 

mM to 400mM NaCl (3 column volumes) in 20 mM Tris-HCl pH 7.5, 1 mM DTT at a flow rate 

of 2 ml/min using an Akta purifier system (GE Healthcare), eluting at approximately 100 mM 

NaCl. After analysis of the chromatography fractions by protein electrophoresis, the protein 

pools were divided in small aliquots and stored at –80°C. 
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Protein electrophoresis and determination of protein concentration 

Standard Glycine SDS-PAGE was used for the analysis of Plin4 12mer and csw 12mer (Mw ~ 40 

kDa) using homemade 13% acrylamide bis-acrylamide gels. Tricine SDS-PAGE (Schägger and 

Jagow, 1987) was used for proteins with lower molecular weight, i.e. Plin4 4mer, Plin4 4T>S, 

or Plin3 AH (9 – 15 kDa). For that we either used TruPAGE commercial gels (Sigma) and 

homemade Tris-MOPS buffer (60 mM Trizma, 30 mM 4-Morpholinepropanesulfonic acid 

(MOPS), 0.1% w/v SDS), or, for better resolution, homemade 16.5% acrylamide-

polyacrylamide (29:1) gels run with tricine buffer (100 mM Tris-HCl pH 8 – 8.5, 0.1 M Tricine, 

0.1% SDS) in the cathode and 200 mM Tris HCl pH 8.9 in the anode chamber. Gels were rinsed 

in 7.5% acetic acid, stained with Sypro Orange (Life Technologies) and visualized with a MP 

imaging system (Bio-Rad) using the Alexa 488 settings. Because all perilipin AH purified 

constructs lack aromatic residues, preventing protein quantification by UV spectroscopy or by 

Coomassie Blue, protein concentration was routinely determined by densitometry of Sypro-

Orange stained gels against a calibration curve with protein standards (Sigma) using ImageJ. 

Quantification by gel electrophoresis was verified by Ellman´s reaction method as previously 

described (Copic et al., 2018).  

Protein labelling with fluorescent probes 

Purified AHs were covalently labeled via cysteines using Alexa C5 maleimide probes (either 

488 or 568; Thermofisher). Plin4 12mer, Plin4 4mer and Plin4 4T>S and csw 12mer were 

labeled on endogenous cysteines present in their AHs; they all contain 4 cysteines in total. 

Plin3 AH is devoid of cysteines, therefore a single cysteine was introduced at its N-terminus. 

To remove DTT, 1 ml of protein solution at concentration 0.7 mg/ml (18 μM of Plin4 12mer 

and csw 12mer, 50 μM of Plin4 4mer and Plin4 4T>S) was exchanged into labelling buffer (20 

mM Tris-HCl pH 7.5, 100 mM NaCl) using size exclusion NAP10 columns (GE Healthcare). 

Protein-containing fractions were identified by protein electrophoresis and pooled. Protein 

solutions were incubated for 5 minutes at 4 °C with Alexa C5 maleimide probes at an 

equimolar ratio to their total number of cysteines (1 ml reaction volume). The reactions were 

stopped by the addition of DTT to 10 mM final concentration and loaded on NAP10 columns 

to separate the labeled protein from the excess of fluorescent probe. Fractions were analyzed 

by protein electrophoresis. Fluorescence in the gel was directly visualized on ChemiDoc MP 
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imaging system (Bio-Rad) either with Alexa 488 or Sypro Ruby (for Alexa 568) settings. 

Fractions with labeled protein were pooled, aliquoted and stored at -80°C. The same protocol 

was used for labelling of free cysteine, but without NAP10 purification steps. 

We used FRAP assays on protein-oil emulsions (see below) with different ratios of labeled to 

unlabeled proteins to verify that the fluorescent label did not change the behavior of the 

protein. This was not the case for labeled Plin3 AH, thus we only used this protein in unlabeled 

form in our biochemical assays. 

Preparation of protein-oil emulsions 

Proteins were diluted to 0.5 mg/ml in freshly degassed HKM buffer (50 mM Hepes-KOH pH 

7.2, 120 mM K-acetate, 1 mM MgCl2) supplemented after degassing with 1 mM DTT. 190 μl of 

each solution were pipetted into a 600 μl glass tube, and a 10 μl drop of triolein (>99% purify, 

T7140 Sigma) was added to the top. In some cases, emulsions were prepared to have a final 

volume of 100 μl and the drop of triolein was 5 μl. They were vortexed manually at a fixed 

angle of ~30° for three cycles of 30 s on 30 s off at 25 °C under argon atmosphere. Images of 

resulting emulsions were taken with a compact camera. For analysis by fluorescent 

microscopy, emulsions were prepared using a mixture of fluorescent and unlabeled protein at 

a mass ratio 1:20. 

Dynamic Light Scattering (DLS) 

Measurements of the mean hydrodynamic radius of the Plin4-oil droplets by dynamic light 

scattering were performed on a sample taken from the middle of the tube, avoiding any 

unreacted oil that remained at the top of the emulsion, at least 3 h after vortexing to prevent 

the interference of gas bubbles with the measurement. Subsequent samples at later time 

points were removed in the same manner without any additional mixing. Emulsion samples 

were diluted 100-fold in freshly degassed HKM buffer with 1mM DTT. Measurements were 

performed on a Zetasizer Nano ZS machine (Malvern) at 25°C, and data were processed using 

the CONTIN method. 

 

Observation of protein-oil interaction using microfluidics 

Microfluidic experiments were performed in a glass microfluidic chip with a T-junction 
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geometry purchased from Dolomite (part # 3000086 and 3000024). All channels had a 

rounded cross-section with a 100 μm height and a 110 μm width. Prior to the measurements, 

the channel walls were wetted with 100 μl of freshly degassed HKM buffer supplemented with 

1 mM DTT. The flows were driven and precisely controlled using a piezoelectric pressure 

control system (OB1 MK3, Elveflow), with typically applied pressures below 300 mbar. After 

wetting, the main and side inlet channels were filled with buffer and triolein (Sigma), 

respectively. Injection of oil in the side inlet channel was gently stopped with a manual valve 

(MV201, LabSmith) before the oil reached the junction (when the meniscus was 

approximately 400 μm from the junction). In this way, the flow in the main inlet channel could 

be stopped without significantly affecting the meniscus of oil, and the inlet vial with buffer 

could be exchanged by a vial with fluorescent protein solution (0.1 mg/ml in HKM buffer, 

mixed at a ratio 10 : 1 for unlabeled vs Alexa488-labeled protein). The sample volume in the 

vial was approximately 400 μl. The flow in the main inlet channel was then resumed and the 

diffusion of the protein from the main inlet channel into the side channel and its adsorption 

onto oil meniscus was monitored by time-lapse confocal microscopy for up to 30 min at a rate 

of 1 frame every 3 seconds (ECLIPSE TE2000-E, Plan Fluor 40x objective, EZC1 software, Nikon). 

Finally, the flow in the main inlet channel was stopped again, the inlet vial exchanged by a vial 

with buffer, and the main inlet channel was rinsed while monitoring the diffusion of the 

protein from the side channel. For competition experiments between Plin4 12mer and 4T>S 

mutant, proteins were mixed at a mass ratio 50:1 for unlabeled to labeled protein, Plin4 

12mer: Plin4 12mer-Alex488 or 4T>S: Plin4 12mer-Alex488, with a total protein concentration 

of 0.1 mg/ml. All experiments were conducted at room temperature. Between experiments, 

glass chips were regenerated by copious washing with 3% SDS at 50°C, followed by distilled 

water, 3% TFD4 at 50°C, distilled water and finally dried by air. Image analysis was performed 

with ImageJ/Fiji (Schindelin et al., 2012) and Matlab. 

Separation of Plin4-oil emulsion on sucrose gradients 

Emulsions were prepared as specified in a final volume of 300 μl including 15 μl of triolein and 

0.5 mg/ml of protein. Next, 240 μl of 60% w/v solution of sucrose in HKM buffer with 1 mM 

DTT was mixed with 240 μl of emulsion, avoiding any oil. 450 μl of this suspension was loaded 

on the bottom of a centrifuge tube and overlaid with a step sucrose gradient consisting of 300 

μl 20%, 300 μl 10% and 100 µl 0% sucrose in HKM buffer with 1mM DTT. The samples were 
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centrifuged at 50,000 rpm (214,000 × g) in a Beckman swing-out rotor (TLS 55) for 80 min at 

8°C. Four fractions were carefully collected from the bottom with a Hamilton syringe, having 

the following volumes: 450 μl, 300 μl, 300 μl, and 100 μl, respectively. Equal volumes of all 

fractions were analyzed by protein electrophoresis.  

Yeast growth and media 

Yeast strains used were: BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 (Euroscarf), BY4742 

ERG6-mRFP::KanMX6 (Jackson lab collection), BY4742 pet10::KANMX4 (Euroscarf), and 

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 PET10-GFP::HisMX (Huh et al., 2003). Yeast 

were transformed by standard lithium acetate/polyethylene glycol procedure. Yeast cells 

expressing different AH constructs were grown in synthetic complete medium lacking uracil 

(SC-Ura, 6.7 g/l yeast nitrogen base, amino acid supplement without uracil, 2% glucose). To 

induce LDs, yeast cells either grown in SC-Ura for 24h at 30°C (stationary phase) or for 24h in 

SC-Ura, followed by 24h incubation in oleic acid (OA) medium (0.67% yeast nitrogen base 

without amino acids, 0.1 % yeast extract, 0.1 % (v/v) oleate, 0.25 % (v/v) Tween 40, amino acid 

supplement lacking uracil). For imaging of LDs in early stationary phase, yeast cells were 

inoculated from a preculture and grown at 30°C in SC-Ura to a final OD600=1-2. 

Cell culture and transfection  

HeLa cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

4.5 g/l glucose (Life technologies), 10% fetal bovine serum (FBS, Life technology) and 1% 

Penicillin/Streptomycin antibiotics (Life technologies). For protein expression, subconfluent 

cells were transfected with Lipofectamine 2000 (Invitrogen) in Optimem medium (Life 

technologies) for 6 h, followed by 16 h in standard growth medium before the cells were fixed 

and prepared for imaging. 

Drosophila S2 cells (ThermoFisher) were cultured in Schneider’s Drosophila medium 

(Invitrogen) supplemented with 10% FBS and 1% Penicillin/Streptomycin at 25°C. For 

generating stably-transfected cells, cells were incubated with plasmid DNA and TransIT-Insect 

Reagent (Mirus), followed by selection with 2 μg/ml puromycin (Life technologies) for 2 

weeks. Protein expression from the metal-inducible promoter was induced for 48 h with the 

addition of 100 μM Cu-sulfate to the medium. LDs were induced with 1 mM oleic acid (Sigma) 
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in complex with fatty-acid free BSA (Sigma) for 24 h. RNAi depletion against CCT1 was 

performed as described (Copic et al., 2018). 

Fluorescent microscopy  

For imaging of purified protein-oil emulsions, emulsions prepared with fluorescent protein 

were gently mixed in the glass tube before 1.5 l of emulsion was withdrawn with a long 200 

l tip and placed on untreated glass slides (Thermo Scientific). A coverslip was carefully placed 

on top without applying any pressure.   

Yeast cells were harvested by centrifugation, washed, placed on a glass slide and covered with 

a coverslip. For some experiments, LDs were stained with 1 μg/ml Bodipy 493/503 (Life 

Technologies) or with Autodot blue dye (Clinisciences) diluted 1000-fol for 30 min at room 

temp, after which the cells were washed twice and imaged. Drosophila S2 cells were imaged 

on glass slides in the same way as yeast cells. 

Transfected HeLa cells were fixed with 3.2% paraformaldehyde (Sigma) in PBS for 30 min at 

room temp. After washing three times with PBS, cells were stained with Bodipy 493/503 at 1 

μg/ml for 30 min at room temperature and washed three times with PBS. Cells were mounted 

on coverslips with Prolong (Life technologies).  

Images of emulsions, yeast and S2 cells were acquired at room temperature with an Axio 

Observer Z1 (Zeiss) microscope, equipped with an oil immersion plan-Apochromat 100x/1.4 

objective, an sCMOS PRIME 95 (Photometrics) camera, and a spinning-disk confocal system 

CSU-X1 (Yokogawa) driven by MetaMorph software (Molecular Devices). GFP-tagged or 

Alex488-labeled proteins and mCherry-tagged or Alex568-labeled proteins were visualized 

with a GFP Filter 535AF45 and an RFP Filter 590DF35, respectively. When imaging emulsions, 

images were acquired in 10 to 15 z-sections of 0.2 μm were taken. For imaging HeLa cells and 

quantification of LD-to-PM signal ratio in yeast, we used an LSM 780 confocal microscope 

(Zeiss) with a x63/1.4 oil objective and a PMT GaAsP camera, driven by ZEN software. Images 

were processed with ImageJ and prepared for figures with Canvas Draw (canvas X). 
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Fluorescence recovery after photobleaching (FRAP) 

FRAP assays in vitro were performed on freshly-prepared fluorescent emulsions with Alex488-

labeled proteins on glass slides using the CSU-X1 spinning disc microscope and 100x objective, 

bleaching laser with a wavelength of 473 nm and iLas software controlled by Metamorph. 

Several circular areas of 25 x 25 pixels were bleached in each field (828 x 960 pixels), either on 

oil particles or in surrounding solution. The following FRAP time-course was used: 6 images 

pre-bleach, then bleach followed by 10 s of 1 image/s, 60 s of 1 image/10 s, and finally 600 s 

of 1 image/30 s (or until the loss of focus). Fluorescence of the bleached area at each time 

point was normalized to the average fluorescence before bleaching. Data was processed using 

Excel. 

For FRAP assays in yeast cells, a circular area of 15 x 15 pixels in a cell expressing a GFP-fusion 

protein was bleached, either on the LDs or on the plasma membrane. 5 images were taken 

before bleaching, followed by a post-bleach time-course:  15 s of 1 image/s, 60 s of 1 image/5 

s, and ~200 s of 1 image/20 s. Background fluorescence outside the cell was subtracted from 

the bleached area and the signal was normalized to the whole cell signal for each time-point. 

Data was processed with Excel and plotted using SigmaPlot (Systat Software). 

FRAP assays in Drosophila S2 cells expressing Plin4 12mer-GFP were performed as for yeast, 

except that 3 circular areas of 15 x 15 pixels containing isolated LDs were selected per cell. 

The following FRAP time-course was used: 5 images pre-bleach, then bleach, followed by 30 s 

of 1 image/s, 60 s of 1 image/5 s, and finally ~200 s of 1 image/20 s. Data was analyzed in Excel 

and plotted using SigmaPlot. To obtain the half-time of recovery, average curves from the 3 

FRAP measurements from the same cell were fitted with an exponential-rise equation. 

Protein exchange assay on protein-oil emulsions 

Emulsions were prepared as described using unlabeled protein at 0.5 mg/ml and checked by 

microscopy using CSU-X1 spinning disc microscope (time 0). Then, fluorescent Plin4 12mer-

Alexa488 was gently added to the suspension to a final concentration of 0.025 mg/ml (20 : 1, 

unlabeled protein : labeled Plin4 12mer). Samples from the emulsions were withdrawn at 

indicated time-points without mixing and imaged on glass slides. The re-vortex sample was 

prepared after 2h of incubation by withdrawing 20 l of the emulsion and vortexing it in a 
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fresh 600 l glass tube in the same manner as for initial emulsion preparation. Samples were 

imaged in 10 z-sections of 0.5 μm in randomly-selected fields of 76 m x 101 m. The z-section 

containing the highest number of small droplets was selected for analysis. 

Image analysis 

Images were analyzed using ImageJ/Fiji (Schindelin et al., 2012). To quantify the number of 

droplets in protein-oil emulsions, the number of particles in a randomly-selected area in a 

single z-section was counted using ‘find maxima’ in the fluorescent channel with noise 

tolerance set to 100. Larger clusters were counted manually. For quantification in the 

exchange assay, the noise tolerance was set to 150. To quantify the number of yeast cells with 

protein signal on LDs, cells were counted manually after applying the same 

brightness/contrast settings to all images. To quantify the ratio of LD to PM protein signal 

(mCherry fusions), Pet10p-GFP LD marker was used to select the regions of interest (ROIs) 

corresponding to LDs and the total mCherry fluorescence in the ROIs was recorded. For the 

quantification of PM fluorescence, images were converted to binary to select the whole yeast 

perimeter. Them, a band of 5 pixels was applied to include all of PM signal. After background 

subtraction, the total LD signal per cell was divided by the total PM signal. 

LD size in yeast cells grown in oleic-acid medium was measured using the fluorescent protein. 

Isolated LDs were fitted manually with a perfect circle and the size of each circular area was 

recorder. Data were analyzed in Excel and plotted with KaleidaGraph (Synergy software). 

To determine the fraction of LDs in HeLa cells that were positive for transfected fluorescent 

protein, a single z-section that contained the most LDs in a cell was first selected. All LDs in 

the selected cell section were identified in the green (Bodipy dye) channel using the ‘Analyze 

particle’ plug-in. LDs positive for fluorescent protein were then identified by determining a 

threshold value for the red fluorescent signal (mCherry-protein fusion), 1.4x above average 

cellular fluorescence, and counting all LDs with fluorescence above this threshold. This 

number was divided by the total LD number to calculate the fraction of LDs in one cell section 

positive for protein. Data was processed in Microsoft Excel and plotted using SigmaPlot. 
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Figure 1: Plin4 AH forms very stable oil particles. A: Helical wheel representations of Plin4 and Plin4 4T>S AHs.

B. Summary of LD localization of Plin4 AH and mutants (Copic et al., 2018). C. A 10 µl drop of triolein was added

to 190 l of HK buffer containing the indicated proteins (Plin4 12mer, Plin4 4mer or 4T>S, all at 0.5 mg/ml). After

vigorous vortexing, the samples were photographed. D. Dynamics of Plin4 12mer interaction with oil as assessed

by FRAP (Fluorescence recovery after photobleaching) assays. An emulsion of triolein with unlabeled Plin4 12mer

(0.5 mg/ml) and Alexa488-labeled Plin4 (0.025 mg/ml) 12mer was prepared as in C and visualized by fluorescence

microscopy. FRAP was performed on large droplets, which were entirely bleached (top row), or in the bulk as a

control (middle row). The lower row shows a FRAP experiment performed on a limited region of the surface of the

droplet. E. Light microscopy images of Plin4 12mer and 4T>S emulsions at different time points after preparation by

vortexing, showing the stability of the particles in the emulsions over several days. F. Size distribution as assessed

by dynamic light scattering (DLS) of the particles present in a Plin4 12mer/triolein emulsion from 3 hours to 28 days

after the vortexing reaction. Scale bars: 5 µm.
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Figure 2

Figure 2. Real-time monitoring of protein–oil interaction in a microfluidic system

shows irreversible adsorption of Plin4 12mer-A488 on triolein. A. Scheme of the

microfluidics experimental set-up. B. Top row: confocal images of the triolein-buffer

interface as formed in the microfluidic system after adsorption of Alexa488-labeled Plin4

12mer on the triolein surface and after rinsing with buffer. Bottom row: control

experiment with the free fluorophore Alexa488. The intensity profile along the channel

center is shown below each confocal image. The protein adsorbs irreversibly at the oil

surface, whereas Alexa488 conjugated to free cysteine (A488) does not. See also

supplementary movies 1-4. C. Time course of the signal of Alexa488-labeled Plin4

12mer or of free Alexa-488 in the side channel as quantified from the experiment shown

in B.
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Figure 3. Comparison of the LD binding properties of the AH of Plin1, 2, 3 and 4 in yeast. A. 

Helical wheel representation of the AHs of Plin1 (aa 110-189 aa), Plin2 (aa 101-191 aa), Plin3 

(aa 114-204) and Plin4 (aa 246-377, corresponding to the Plin4 4mer construct). In the case of 

Plin1, Plin2 and Plin3, the predicted AH regions are interspersed by short aa linkers, which are 

also indicated. Diagrams above the helical wheels show the full-length proteins, with AH 

regions shown in orange and the 4-helix bundle in dark grey. B. AA composition of the AH of 

Plin1, 2, 3 and 4 (in %) in comparison with the average aa composition of vertebrate proteins 

(av. vert). The blue and red backgrounds indicate lower or higher % as compared to vertebrate 

values, respectively.  C. Localization of GFP fusions with the AH region of Plin1, Plin2, Plin3 or 

Plin4 in S. cerevisiae cells. The experiment was performed with wild-type yeast cells (upper 

row) or with pet10D cells (medium row) grown for 24h to stationary phase, or with pet10D 

cells grown to stationary phase and then transferred for 24h to oleic acid (OA) medium (lower 

row). D. Bar plots of the percentage of yeast cells showing intracellular puncta for the different 

proteins expressed. 60 cells per each condition were counted in one of at least two 

representative experiments. E. Quantification of the size distribution of fluorescent LDs 

(labeled with GFP-fusion proteins) in pet10D + OA cells. The plots show representative 

measurements from two independent experiments, where the following number of LDs was 

counted: Plin1 AH, 136; Plin2 AH, 143; Plin3 AH, 133; Plin4 6mer, 148; Plin4 12mer, 159. Pixel 

size: 0.091 µm x 0.091 µm. 
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Figure 4

Figure 4. Dynamics of Plin 1, Plin 3, and Plin 4 AHs on LDs or at the plasma membrane

in yeast as assessed by FRAP measurement. The AH region of Plin 1, Plin 3 or Plin4 was

expressed as a GFP fusion in S. cerevisiae cells. FRAP was performed on LDs or the PM

covered with the indicated Plin construct. The graphs show the mean ± SD of the

fluorescence recovery curves from n FRAP measurements on different LDs or different

regions of the PM. A. Plin1 AH-GFP (n=29), Plin3 AH-GFP (n=36) or Plin4 12mer-GFP

(n=24) on LDs in pet10Δ + OA (growth for 48h, large LDs). B. Plin1 AH-GFP (n=11) or Plin4

12mer-GFP (n=5) on LDs in the yeast strain pet10Δ in early stationary cells (small LDs). C.

Plin4 6mer-GFP (green; n=12), Plin4 8mer-GFP (red; n=7), Plin4 12mer-GFP (blue; n=7) at

the PM in exponentially-growing wild-type cells.

89



Buffer 12mer 4mer 4T>S
Plin3
AH

Plin4A

40

40

15

15

10

kDa1 2 3 4

Bottom Top
C

10

8

6

4

2

0

D

B

E F

Plin4 12mer

Plin4 4mer

Plin3 AH

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

0

10

20

Diameter (nm)

0

10

20

Bad quality

for analysis

104103102101
0

10

20

104103102101

COMPLETE

Diameter (nm)

Plin4 4mer Plin3 AH

*

Figure 5

90

Alenka




Figure 5. Plin3 AH interacts much less strongly with oil than Plin4 AH. A. Turbidity assays with 

0.5 mg/ml protein solutions of Plin4 12 mer, Plin4 4mer, Plin4 4mer mutant [4T>S], or Plin3 

AH after vigorous vortexing with triolein (15 µl for 285 µl of protein solution). B. Size 

distribution of the droplets in triolein emulsions formed with Plin4 4mer or Plin3 AH at various 

times after vortexing was determined by DLS. Particle size is shown by volume weighted 

distributions. Each curve represents one measurement. C. Protein/oil emulsions or protein 

solutions of the indicated variants of Plin4 or Plin3 AH were mixed with sucrose and loaded 

on the bottom of a sucrose step gradient. After centrifugation, four fractions were collected 

from the bottom and equal volumes were analysed by protein gels with Sypro Orange staining. 

D. Quantification of the experiment shown in C showing the mean ± SD of protein at the top 

fraction of the sucrose gradient. The number of repeats for each experiment is indicated 

above the bar graphs.  E. Protein exchange assay in LD emulsions. Top panel: a Plin4 12mer 

(0.5 mg/ml) / triolein emulsion was prepared by vortexing. Thereafter, 0.025 mg/ml Alexa-

488-labeled Plin4-12 mer was gently added. The emulsion was imaged at the indicated time 

points by light microscopy in bright field (BF) to see all particles and by fluorescence to detect 

the coverage of the particles by Alexa-488-labeled Plin4 12 mer. Finally, the suspension was 

vortexed again to promote maximum incorporation of Alexa488-labeled Plin4 12mer in the 

emulsion. The middle and lower rows show similar experiments performed with Plin4 4mer 

and Plin3 AH emulsions, respectively. Scale bars: 5 µm. F. Quantification of the experiments 

shown in E. The number of fluorescent particles (mean ± SD) was determined from four 

separate fields (73 x 100 µm) in the same experiment. The graphs are representative of at 

least two independent experiments. Time on the x-axis is plotted using logarithmic scale. 

Asterisks indicates clustering of particles, which resulted a in low total number of fluorescent 

puncta, as seen in the image. 
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Figure 6.The nature and the distribution of charged residues in the polar face of Plin4 AH contribute is

key for specific and stable coating of LDs in cells. A. Weblogo plot of the AH region of human Plin4 as

determined by aligning its 29 33-mer repeats. The vertical arrows indicate the mutated aa: the NQ pair (grey),

which was mutated into NN, QQ or QN; the three K (blue), which were mutated into R, and the two D (red),

which were mutated into E. B. Co-localization of GFP-fusion of Plin4 4mer wild-type and 3K>R (in white) with

LDs (purple) in HeLa cells. C. Quantification of the percentage of LDs stained with the indicated protein per cell.

These “SuperPlots” (Lord et al., 2020) show all data fom 3 to 4 independent experiments, each with a different

color; each light dot represents one cell, whereas each triangle shows the mean from one experiment. The

black bars show the mean ± SE of the 3 or 4 independent experiments. D. Helical wheels of Plin4 WT and csw

mutant. Mutations were introduced to redistribute positive and negative residues in a symmetrical manner while

keeping the number and nature of these residues constant. E. Localization of Plin4 12mer wild-type or csw

mutant in HeLa cells. The insets show extended views with the protein in purple and LDs in green (stained with

Bodipy). The ‘super’ plots on the right were built as in C and show the mean ± SE of the percentage of LDs

positive for the indicated protein per HeLa cell as determined from 3 independent experiments. F. Light

microscopy images of mCherry fusions of Plin4 12mer wild-type or csw mutant in yeast. Top: mCherry

fluorescence (mCh); bottom co-localization of mCherry (purple) with LDs stained with bodipy (green). The

relative fluorescence signal of mCherry fusions of Plin4 12mer wild-type or csw mutant on LDs and at the PM in

PET10-GFP yeast strain was used to build the SuperPlots shown on the right. Data are from three independent

experiments, with n ≥ 25 for each condition in each assay. G. Fluorescence recovery curves of GFP fusions of

Plin4 12mer wild-type or and csw mutant at the PM of late exponential phase yeast cells.
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Figure 7. The distribution of charged residues in the polar face of Plin4 AH is key

for stable coating of triolein in vitro. A. 15 µl triolein was added to 285 µl of HK buffer

containing Plin4 12mer wild-type or the csw mutant (0.5 mg/ml each). After vigorous

vortexing, the samples were photographed. B. A triolein emulsion was prepared with

Plin4 12mer or csw 12mer mutant (0.5 mg/ml protein). At the indicated time, fluorescent

Plin4 12mer-Alexa488 (0.025 mg/ml) was gently added. The emulsions were imaged by

light microscopy in the bright field mode (BF) to see all particles and by fluorescence to

detect the incorporation of Plin4 12mer-Alexa488 into the proteolipid particles. At the end

of the experiment, the suspension was vortexed again to promote maximum

incorporation of Plin4 12mer-Alexa488 in the emulsion. C. Quantification of the

experiment shown in B. D. Model of how positive and negative charges could self-

stabilize different Plin4 AHs at the surface of triolein.
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Chapter 8: Additional results 

8.1 Plin4 AH does not show a preference for STE in the yeast model.  

TAG and STE quantities in LDs vary depending on cell type and environmental factors. Yeast 

grown at low temperatures like 15 °C have more TAG than the ones grown at 30 – 37 °C. 

Moreover, when the concentration of yeast is higher in the culture and there are fewer 

nutrients, yeasts also contain more TAG (Klose et al. 2012). In multicellular organisms, the 

level of TAG and STE can vary depending on the cell type. Testicular Leydig cells and 

adrenocortical cells have more content than other cell types of STE because of their 

production of sterol hormones (Wang et al. 2015b; Yu et al. 2018). It has also been suggested 

using Bodipy based fluorophore probes that TAG-rich and STE-rich LD pools coexist in some 

cell types as adrenocortical cells (Hsieh et al. 2012). However, this is not clear using Raman 

based spectroscopy (Fu et al. 2014). 

Plin4 AH is able to interact with neutral lipids and coat them as we have demonstrated (Čopič 

et al. 2018) (Chapter 6, 7). It was proposed that Plin4 preferentially localizes to LDs containing 

STE in adrenocortical cells (Hsieh et al. 2012). I aimed to study if Plin4 AH interacts with a 

higher affinity with one kind of neutral lipid than the other. If this was the case, it would 

suggest that the composition of the neutral lipid core could influence whether LDs are coated 

and stabilized by Plin4.  

8.1.1 Plin4 AH targets LDs in both STE and TAG strains   

Lipid metabolism in yeast has been thoroughly studied (Czabany et al. 2007; Klug and Daum 

2014), which provided available mutants of yeast lipid metabolism, such as yeast devoid of 

TAG, devoid of STE or both of them (Zweytick et al. 2000; Sorger and Daum 2002; Sorger et al. 

2004). These strains can be used to study Plin4 AH targeting depending on the kind of neutral 

lipid.  

First, I checked the LD content in these strains in stationary phase using the neutral lipid 

marker Bodipy 493/503. Bodipy signal was brighter and more abundant in WT and STE 

(are1are2) cells compared to TAG (dga1lro1) cells (Fig. 8-1 A). This result suggests 

that TAG cells have a lower LD content, which is supported by bright-field images showing 
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fewer LDs. However, some of the difference could also be due to Bodipy having a lower affinity 

for STE than for TAG. 

        

        
Fig. 8-1. LD targeting of AHs in STE and TAG yeast strains. A. Representative light 
microscopy images of WT, STE and TAG yeast strains stained with Bodipy reveal a lower 
content of neutral lipids in TAG than in STE cells. All fluorescence images are adjusted to 
the same intensity levels (300 – 1300). B. Plin4 12mer-mCherry targets LDs in WT, STE and 
TAG yeast. LDs are marked with the LD marker Pet10-GFP or with Bodipy. C. Plin AHs 
expressed as GFP fusions in yeast reveal a differential targeting capacity to LDs in TAG yeast. 
Scale bars: 5 m.  
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Plin4 12mer fused to mCherry expressed in these yeast strains could target LDs under 

conditions STE and TAG condition (Fig. 8-1 B). I also analyzed the targeting of AHs from 

Plin1, Plin2, Plin3 and Plin4 fused to GFP in these strains (Fig. 8-1 C).  All the AHs were able to 

target LDs in the STE strain, even the constructs with cytosolic localization in WT yeast, 

although the signal on LDs was often weak. However, only AHs with high affinity for LDs, Plin1 

AH and Plin4 12mer, showed any localization to LDs in the TAG strain. These results suggest 

that neutral lipid composition can affect AH targeting to LDs. In general, AHs seem to prefer 

LDs enriched in TAG (Chorlay and Thiam 2020). There are also fewer LDs in yeast with only STE 

and no TAG. Moreover, the presence of STE mixture with TAG also reduces LD targeting, as 

can be observed by the comparison between WT condition and STE in Plin2 AH and Plin3 AH. 

STE ordered layers can form due to phase transition (Czabany et al. 2008; Mahamid et al. 

2019) and might be affecting LD targeting by some AHs.   

8.1.2 Plin4 AH expression does not affect to yeast viability and growth  

Heterologous expression of Plin4 AH in yeast could affect cell viability and growth. By 

sequestering Plin4 AH from the cytosol, LDs could have a protective role when this large 

heterologous protein is expressed. In order to test this, I prepared serial dilutions of Plin 

12mer expressing strains (WT or neutral lipid synthesis mutants) and tested their growth at  

 

Fig. 8-2. Growth assays in yeast show non-detrimental effect neither in neutral lipid 
pathways mutations or in Plin4 12mer expression. Images of yeast colonies inoculated at 
different dilutions and grown at different temperatures in synthetic media plates.   
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different temperatures. There was no difference in growth between strains expressing Plin4 

12mer or not under any condition tested (Fig. 8-2). This shows that Plin4 12mer expression 

does not affect yeast viability, even when there is only one of the neutral lipids or none. 

8.1.3 Testing the interaction of Plin4 AH with different neutral lipids in vitro 

In order to complement the results obtained in yeast, we wanted to test the interaction of 

Plin4 AH with different neutral lipids: triolein (3 oleic acids, 18:1 Δ9), a mixture of triolein and 

the cholesteryl oleate (3:1, triolein:cholesteryl oleate), Trilinoleate (3 linoleic acids, 18:2 Δ9, 

12) and trinonaoate or tripelargonin (3 nonanoic acids, 9:0) (all purchased from Sigma). We 

could not use pure cholesteryl oleate because it is not liquid at the temperature at which these 

reactions are done, 25 °C. Vortexing of buffer with these neutral lipids resulted in high 

turbidity in them but in triolein (Fig. 8-3). This indicated that some contaminant molecules 

were present in these oils acting as surfactants and solubilizing these neutral lipids, as we 

confirmed by lipidomics analysis using mass spectrometry (Mass spectrometry platform, 

IPMC, CNRS). In order to extract information from this assay, these oils should have been purer 

in order to exclusively test the capacity of Plin4 12mer to stabilize and coat these neutral lipids.  

                              
Fig. 8-3. Protein-oil emulsions varying the neutral lipid. 10 l of the indicated neutral lipid 
were vortexed with 190 l of either Buffer, 0.5 mg/ml Plin4 or 0.5 mg/ml BSA.  

8.1.4 Conclusion   

In yeast, Plin4 12mer and Plin1 AH do not show neutral lipid preference. Expression of Plin4 

12mer is not detrimental for yeasts even in the absence of LDs.  
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8.2 Plin4 AH aa sequence is conserved in mammals, whereas the number of repeats varies 

We have shown previously that increased length improved targeting of Plin4 AH to LDs. 

Moreover, the polar face plays a crucial role (Chapter 6, 7) (Čopič et al. 2018). Interestingly, 

an increase number of Plin4 33mer repeats, 40 instead of 29, originates a rare autosomal 

dominant progressive myopathy in humans because of protein aggregation (Ruggieri et al. 

2020). 

In these results we aimed to know how many Plin4 33mer repeats do other mammals have 

in other to observe if their number is conserved. Moreover, we also wondered if Plin4 

repeats aa sequence is conserved among mammals.  

8.2.1 Plin4 AH conservation among mammals 

To address these questions, I checked the aa sequence of the AH from Plin4 orthologues from 

different mammalian species. Plin4 aa sequences from 16 species belonging to 15 families 

covering the whole mammalian tree (Bininda-Emonds et al. 2007) were obtained from 

Uniprot. I identified the number of 33mer repeats using HHrepID (Biegert and Söding 2008; 

Zimmermann et al. 2018). Results are shown in Table 8-1. The number of Plin4 33mer repeats 

varies from species to species. The AH regions varied in length from 736 aa and 22 repeats in 

Tupaia chinensis to 1919 aa and 58 repeats in the bat Myotis davidii. Most species had 

between 27 and 31 repeats. In all cases, the 33mer repeat region, and therefore the predicted 

AH, occupied the majority of the Plin4 sequence. In many of the species (8), there were no 

insertion or deletions between the repeats.   

In order to analyze the conservation of the aa sequence of the 33mer repeats, repeats from 

each species were aligned and the alignments were plotted with Weblogo. All sequences had 

very good conservation within their repeats; conservation was lowest in platypus, which is the 

most distant mammal (Fig. 8-4). The best conservation was in Plin4 from the bat Myotis 

brandtii, with little variations among its 47 repeats. In chapter 7, we showed that charged aa 

(lysines and aspartic acid) and polar aa (glutamine) were important for LD targeting and 

coating of Plin4. These aa were very well conserved among the analyzed species, which 

highlights their importance for Plin4 function. Glycines, alanines, threonines and some 

hydrophobic residues were also highly conserved. Conservation of repeats was also good 

between species.  
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Table 8-1: Plin4 AH length analysis in different species of the mammalian family.  

Species 
Length of 

Plin4 AH Start 

(aa)1 

End 

(aa)1 

Helix 

perturbations2 

Total Plin4 

length (aa) 
Scientific name 

Uniprot 

entry code 
aa 

# 

repeats 

Ornithorhynchus 

anatinus 
F7FVK1 932 28 14 946 90 + aa in 590 1227 

Monodelphis 

domestica 
F7DNE7 1096 33 20 1116 - 1339 

Loxodonta 

africana 
G3UDZ0 1051 32 106 1157 - 1415 

Myotis brandtii S7MI15 1544 47 115 1659 - 1957 

Myotis davidii L5MGD7 1919 58 107 2026 - 2319 

Felis catus M3W5M0 971 29 82 1053 1 + in 632 1336 

Canis lupus 

familiaris 
J9JHP1 1169 35 104 1273 - 1588 

Ailuropoda 

melanoleuca 
G1L582 949 29 80 1029 

2 + in 560 
1343 

1 + in 939 

Sus scrofa F1S7K4 978 30 107 1085 
7 Δ in 1080         

(at the end) 
1425 

Bos taurus F1MNM7 883 27 78 961 1 Δ in 230 1260 

Tupaia chinensis L8Y4I8 736 22 21 757 2 Δ in 194 1210 

Callithrix 

jacchus 
F7GWD9 926 28 20 946 - 1200 

Homo sapiens Q96Q06 952 29 80 1032 - 1357 

Macaca mulatta F7FM35 899 27 20 919 - 1206 

Ictidomys 

tridecemlineatus 
I3MUC2 819 25 107 926 

12 Δ in 310 
1291 

4 + in 734 

Mus musculus O88492 1022 31 105 1127 
11 Δ in 1075         

(1 turn) 
1403 

Notes: 1 Start and end of the AH in the aa sequence of Plin4.  
2 Insertions (+) or deletions (Δ) of aa between individual 33mer repeats. The 
position and number of inserted or deleted aa are indicated.   
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Fig. 8-4. Analysis of Plin4 33mer repeats in different mammals. Weblogos obtained from 
the alignments of the repeats of the same species are shown. The evolutionary tree on the left 
shows the evolutionary distance between the analyzed mammalian families (Bininda-Emonds 
et al. 2007). Major clades are coloured as follows: yellow for Xenarthra, blue for Afrotheria, 
green for Laurasiatheria, and red for Euarchontoglires.  
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One of those variations is having either an asparagine or a glycine in position 21 of the 

repeats that appears in the major lineage Laurasiatheria (Fig. 8-4, green lines of the 

evolutionary tree). Asparagine in position 21 also contributed to Plin4 AH localization to LDs 

in HeLa cells (Chapter 7, data obtained by Sandra Antoine-Bally, Institut Jacques Monod).  

8.2.2 Myotis brandtii Plin4 sequence 

The bat M. brandtii has a proline in the position 17 of its repeats whereas the rest of analyzed 

sequences have a threonine. Prolines are normally excluded from helices because they 

promote helix kinks due to incapability to make hydrogen bonds (Rey et al. 2010). The Uniprot 

sequence obtained for this species was not curated and an error during sequencing cannot be 

excluded. Apart from the presence of proline and absence of asparagine, we were interested 

in this sequence because it is the most repetitive of all sequences that we analyzed, and also 

very long. Therefore, we decided to express AHs derived from the M. brandtii sequence in 

yeast to observe their localization. Three sequences derived from bats were expressed in 

yeast, 12 repeats of the M. brandtii wild-type sequence (M24bT 12mer) and 6 and 12 repeats 

with proline changed to threonine (M25bT 6mer and M25bT 12mer, respectively) (Fig. 8-5 A, 

B). In contrast to Plin4 12mer, none of these constructs were able to target LDs in WT yeast. 

However, under more permissive conditions, M25bT 6mer and M25bT 12mer could localize 

to LDs. On the other hand, M24bP was not able to target LDs under any condition. These 

results show how prolines can affect AH targeting to LDs, likely by interfering with AH folding. 

Moreover, M25bT 12mer also displayed a lower affinity for LDs compared to human Plin4 

12mer. Agreeing with results in chapter 7, this could be due to the lack of asparagine in its 

polar face. It is likely that the low affinity of Myotis brandtii Plin4 for LDs is overcome by its 

large length.  

8.2.3 Conclusion 

The number of 33mer repeats in Plin4 orthologues varies from species to species, ranging 

from 22 to 58 repeats. Plin4 AH sequences are conserved among mammals with very few 

changes. M. brandtii and M. davidii have very long and repetitive Plin4 AHs. 1 proline every 

33 aa is enough to prevent Plin4 AH binding to LDs.  
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Fig. 8-5. Expression of Plin4 12mer bat sequence in yeast. A. Weblogos showing the 
comparison between human Plin4 repeats (hPlin4), the sequence from Myotis brandtii 
(P4M24bP) and sequence from Myotis brandtii without the proline (P4M25bT). B. Helical 
wheels of sequences expressed in yeast. C. Localization of these constructs fused to mCherry 
in yeasts with different permissibility for LD targeting (see Chapter 7).  Scale bars: 5 m. Yeast 
imaging done with M2 student Jaka Snoj (Institut Jacques Monod).  
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8.3 Plin4 AH does not have an observable effect on newly formed LDs in yeast 

Plin3, Plin4 and Plin5 have been proposed to target nascent LDs (Wolins et al. 2003, 2005, 

2006a). Some authors have also proposed that Plin AHs could promote LD formation (Robenek 

et al. 2006; Jacquier et al. 2013). We aimed to address this question using Plin4 AH and the 

yeast model.  

To test if Plin4 has an effect on the formation of LDs in yeast, we needed to use yeast in 

exponential phase, where LDs are scarce and small. The drug 2-Deoxyglucose (2-DG) inhibits 

glycolysis in cells and causes ER stress (Defenouillère et al. 2019). S. Léon (Institut Jacques 

Monod) also observed an increase in LD content after addition of 0.2% of 2-DG to yeast media. 

We confirmed this using Bodipy to mark LDs (Fig. 8-6 A). 2-DG led to an increase in LD content 

in yeast, with the largest effect observed after three hours of incubation. Plin4 12mer could 

target LDs in yeast in exponential phase incubated with 2-DG (Fig. 8-6 B). Hence, this is a useful 

system for inducing LD formation and analyzing if Plin4 AH has any effect.  

In order to analyze whether Plin4 AH had an effect on LD formation, we mixed yeast in 

exponential phase expressing either Plin4 12mer or empty GFP plasmid in a microfluidics 

chamber. This allowed us to follow the 2-DG induction of LDs over time simultaneously in the 

two strains, one of which was labelled with a blue dye. I did not observe any effect of Plin4 

12mer expression on the LD content during the three hours time course (Fig. 8-6 C).  

Another possibility for inducing LDs was to use the strain with lro1 and are1 mutations and 

DGA1 and ARE2 controlled by an inducible galactose promoter (Becuwe et al. 2018). This 

strain has inducible LDs because the expression of two enzymes, one for TAG and one for STE, 

are regulated by galactose and the other two enzymes for neutral lipids synthesis are deleted. 

Using this strain, we expressed Plin4 12mer-mCherry or the empty mCherry plasmid and 

compare the LD content. There are no big differences between the two conditions (Fig. 8-6 

D). These results suggest that there is no observable effect of Plin4 12mer in new-formed LDs 

or in LD accumulation in yeast.  
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Fig. 8-6. Plin4 AH does not affect newly formed LDs in yeast. A. Induction of LDs in yeasts 
in exponential phase after 0 h, 1.5 h, 3 h and 6 h of 0.2% 2-Deoxyglucose (2-DG). Scale bars: 
5 m. B. Plin4 12-mer targets LDs in yeast in exponential phase after a 3h incubation with 0.2% 
2-DG. C. ERG6-RFP yeast transformed either with Plin4 12-mer-GFP or the empty GFP vector 
followed by light imaging during LD induction. * marks yeast expressing the empty GFP 
vector. Scale bars: 5 m. D. LD content in the iLD strain incubated for 2 h with galactose 
expressing either Plin4 12-mer-mCherry or the empty mCherry plasmid. Assay performed by 
Alenka Čopič. 
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CONCLUSION 
Chapter 9: Conclusion and perspectives 

How proteins interact with specific intracellular locations where they perform their function 

is an important question in cellular biology. In the case of the interaction of LDs and proteins, 

this is not elucidated. AHs are protein motifs that interact with lipid surfaces, including LDs 

(Giménez-Andrés et al. 2018). Plins are abundant LD proteins. Some Plins have well 

established functions regulating lipid metabolism in LDs (Sztalryd and Brasaemle 2017). Plin4 

is the less studied member of this family.  It contains a remarkably long AH, composed of highly 

homologous 33mer repeats. 

First, we used the Plin4 AH as a model to study how AHs interact with LDs. We obtained the 

following results:  

 Longer length of Plin4 AH targets better LDs. 

 Higher hydrophobicity also improves LD binding. However, it also results in Plin4 

interacting more strongly with other membranes. 

 Modification of the charge to make it more positive or negative reduces LD targeting, 

but it can be compensated with more hydrophobicity.  

 Plin4 AH is able to interact with neutral lipids directly in vitro, forming oil particles 

surrounded by Plin4 AH. These experiments suggest that Plin4 AH can replace PL 

monolayer on LDs. Supporting this model, in cells with PL depletion, which leads to 

large LDs, expression of Plin4 AH reduced LD size. 

In order to assess the interaction of Plin4 AH with neutral lipids, I developed assays to 

evaluate the protein dynamics on oil droplets and the stability of the oil droplets formed 

in vitro using purified and fluorescently-labeled proteins. I observed the protein dynamics 

by observing the fluorescence recovery on the surface of oil droplets after photobleaching 

of fluorescent protein. Protein dynamics in real time during adsorption and desorption 

were evaluated with the microfluidics system developed in collaboration with Tadej 

Emeršič and Jure Derganc. To observe the stability of the oil particles formed, I used DLS 
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to follow the size of protein-oil droplets over time and evaluated of the aggregation of big 

particles with light microscopy. These techniques can be used in the future to characterize 

the interaction of other AHs with LDs.  

My results are the following: 

 The droplets formed by Plin4 AH and neutral lipids are very stable.  

 Plin4 is remarkably immobile on the surface of these droplets. 

Next, I compared Plin4 AH with the AHs of other Plins. I started by expressing Plin1, Plin2 and 

Plin3 in strains of budding yeast with different LD binding permissibility. I also purified Plin3 

AH and tested its interaction with oil in vitro. I developed a fluorescent assay to observe the 

exchange of AHs on the surface of oil droplets. The results of these experiments are:  

 Plin4 AH targets LDs the best because of its length. However, a shorter Plin4 AH 

fragment, similar in length to other Plin AHs, targets LDs to the same extent as Plin2 

and Plin3 AH, consistent with their similar overall composition. All these AHs have a 

low hydrophobicity. Plin1 AH targets better LDs, in agreement with its increased 

hydrophobicity.   

 In contrast, Plin1 AH and Plin3 AH are much more dynamic on the LD surface in yeast 

than Plin4 AH.  

 Purified Plin3 AH can solubilize oil. However, the droplets formed by Plin3 AH are less 

stable than the ones formed with a Plin4 AH fragment of comparable length.  

 Plin3 AH, but not a Plin4 AH fragment of a similar length, can be quickly replaced on 

the surface of oil droplets by a longer Plin4 AH fragment.  

These results suggest that the differences between the behavior of Plin4 AH and other Plin 

AHs on LDs do not come only from differences in their length. We hypothesized that the aa 

sequence of Plin4 AH is important for its stability on the LD surface. The positions of polar and 

charged residues (lysine, glutamic acid, glutamine and asparagine) are highly conserved within 

Plin4 repeats. These residues would not be expected to directly interact with the LD surface.  

 Conservative mutagenesis of polar and charged residues had a strong effect on Plin4 

AH LD targeting.  
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 A Plin4 AH mutant with a redistribution of positive residues in its polar face had a 

reduced targeting to LDs, but still targeted the plasma membrane in yeast. When 

purified, this mutant was efficiently replaced on the oil droplet surface by wild type 

Plin4 AH of the same length.  

I compared Plin4 AH sequences from different mammals. Within each orthologue sequence, 

Plin4 33mer repeats are highly conserved, including the positions of polar residues. However, 

the number of repeats varies between species. Specific residues in the polar face of Plin4 AH 

may promote self-stabilization through lateral interactions between folded Plin4 AH chains 

(Fig. 9-1). 

                  

Fig. 9-1. Interaction of Plin4 AHs with LD surface. A. Plin4 AHs are unfolded in solution 
and folds upon the interaction with LD surface. This process is likely to happen also for other 
Plin AHs.  B. Model of Plin4 AHs molecules interacting with between themselves on the LD 
surface.  

Our model for the interaction of Plin AH with LDs is the following: Plin4 is unfolded in solution 

and acquires highly helical conformation upon interaction with a lipid surface (Fig. 9-1 A) 

(Chapter 6) (Čopič et al. 2018). This likely applies to other Plin AHs. In contrast to other Plin 

AHs, we propose that once Plin4 AH is folded on the LD surface, it laterally interacts with 

adjacent AHs via electrostatic interactions, forming an immobile protein layer on the LD 

surface (Fig. 9-1 B) (Chapter 7). These ordered interhelical interactions would explain the high 

stability of Plin4-covered lipid particles. 

Similar interactions have been observed between AHs of ApoA-I, which wraps around small 

lipid particles forming high density lipoparticles (Bibow et al. 2017; Melchior et al. 2017). To 
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demonstrate the presence of these interactions in Plin4 coated oil droplets, techniques as 

protein cross-linking (Cornell 1989) or Förster resonance energy transfer assays could be used. 

Moreover, the structure of the protein on a lipid surface could be analyzed using cryo-electron 

microscopy (Sui et al. 2018).  

Protein concentration would affect the formation of these interactions: a higher 

concentration of Plin4 molecules would result in a bigger possibility that these molecules 

interact between themselves. Therefore, increased Plin4 concentration would also mean a 

more stable interaction with LDs. This hypothesis could be checked in cells expressing Plin4 at 

different levels by following Plin4 dynamics on LDs. Moreover, it could also be tested in vitro 

by measuring the surface tension of oil with different concentrations of purified Plin4 AH using 

the oil droplet tensiometer (Small et al. 2009; Mitsche and Small 2013). 

The C-terminal parts of Plin1, Plin2 and Plin3 may contribute to their targeting to LDs. The C-

terminal domain of Plin1 reduced its dynamics on the LD surface in comparison with Plin2 and 

Plin3 (Ajjaji et al. 2019). In contrast, the C-terminal part of Plin4 did not localize to LDs in HeLa 

cells (Čopič et al. 2018), therefore the localization and dynamics of Plin4 may depend more 

strongly on its AH. This shows differences in the ways that Plins interact with LDs.  

It would be interesting to study whether the protein layer formed by Plin4 AH can desorb from 

the surface of LDs during LD shrinkage. This aspect could be addressed by measuring the 

surface pressure during oil surface compression and expansion with an oil droplet 

tensiometer. The compression of the oil droplet surface will lead to a higher surface pressure 

if all the molecules of Plin4 AH remain stably bound to oil (Wang et al. 2006).  

Plin4 AH has the capacity to coat LDs in cells preventing formation of LDs with increased size 

(Chapter 6) (Čopič et al. 2018). This observation and my results from in vitro experiments 

suggest that the function of Plin4 could be to substitute the PL monolayer and stabilize LDs 

under some conditions leading to PL depletion. LD coating by Plin4 would prevent LD fusion, 

maintaining a normal LD size. The 950 aa of Plin4 AH, when completely folded, would be able 

to substitute around 200 PLs of the LD monolayer when fully packed. In order to test this 

model in cells, Plin4 should be studied in the cell types where it is highly expressed, mainly 

white adipocytes during differentiation but also muscle cells. As Plin4 concentration could 
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affect the lateral interactions of Plin4 AH and its function, its endogenous concentration 

should be measured.  

Recently, Plin4 AHs mutations have been linked with a rare autosomal dominant progressive 

myopathy. Individuals from a single family were found to have 40 repeats of the 33mer region 

of Plin4 instead of 29. Plin4 with this extended AH aggreged in skeletal muscle cells, where 

Plin4 is highly expressed (Ruggieri et al. 2020). The 16 mammalian species that we checked 

have very long Plin4 AHs. A longer Plin4 AH results in better targeting to LDs and a larger area 

of coating. However, higher length can also be dangerous due to aggregation, as this study 

suggests. We can study Plin4 aggregation in vitro by incubating at room temperature different 

lengths of the already purified constructs of Plin4 AH. Whether Plin4 AH has aggregated after 

a certain time could be examined with transmission electron microscopy. If Plin4 AH 

aggregates, further characterization would be possible by protease degradation or x-ray 

diffraction (Bousset et al. 2013).  

It was suggested that Plin4 has a preference for STE-rich LDs, whereas an isoform of Plin1 has 

a preference for TAG-rich LDs in adrenocortical cells (Hsieh et al. 2012). In yeasts, we have 

shown that Plin4 AH is able to target both TAG-rich and STE-rich LDs. Further studies should 

address the selectivity of Plin AHs for different LDs and the role of their AH in this selectivity. 

For instance, AH selectivity could be checked in vitro using the droplet embedded vesicle 

system and light microscopy (Chorlay and Thiam 2020), or combining the techniques of Raman 

based spectroscopy and Bodipy based fluorophore probes.  

A Plin4 knock-out mouse showed little phenotype. It had some reduction in storage of TAG in 

heart muscle and downregulation of Plin5 expression (Chen et al. 2013). However, the 

variability in number and composition of Plin4 33mer repeats in mammals, along with their 

high conservation within the same species, suggest an important role of Plin4 in mammalian 

evolution. We have shown that Plin4 binds directly to neutral lipids and stabilized them. Plin4 

coats and reduces the size of LDs in cells lacking PLs. To understand physiological function of 

Plin4, it should be studied in cultured adipocytes. 

 
 

 



110 
 

MATERIALS AND METHODS 
Chapter 10: Materials and methods 

Yeast growth and media 

Strains of the budding yeast Saccharomyces cerevisiae used in this work are listed in Table 9-

1. Yeast media used were:  

 Yeast extract, peptone, dextrose (YPD): 10 g/L yeast extract, 20 g/L peptone, 20 g/L 

glucose 

 Synthetic complete medium lacking uracil (SC-Ura): 6.7 g/l yeast nitrogen base, aa 

supplement without uracil, 2% glucose. 

 Oleic acid (OA) medium: 0.67% yeast nitrogen base without aa, 0.1 % yeast extract, 0.1 

% (v/v) oleate, 0.25 % (v/v) Tween 40, aa supplement lacking uracil 

 Raffinose medium: 6.7 g/l yeast nitrogen base, aa supplement without uracil, 2% 

raffinose 

Yeast strains were grown in YPD and transformed by standard lithium acetate/polyethylene 

glycol procedure. Yeast cells expressing different AH constructs were grown in SC-Ura. LDs 

were induced by the following techniques:  

 Yeast cells were grown to stationary phase in SC-Ura for 24 at 30°C 

 24 h in SC-Ura, followed by 24h incubation in OA medium 

 0.2 % 2-Deoxy glucose was added to a yeast liquid culture around 0.5 OD in SC-Ura and 

incubated for 3 h at 30 °C.  

 iLD induction: yeasts were precultured in SC-URA then diluted overnight to 0.02 ODs 

in raffinose medium overnight until cultures reached 0.4-0.5 OD. Then, 2% galactose 

was added to the medium.  

Yeast growth assays:  

Wild-type, STE, TAG or LDs yeasts transformed either with pMGA4 (mCherry) or 

pMGA16 (Plin4 12mer-mCherry) were grown overnight in SC-URA to stationary phase. 10-

fold serial dilutions were plated on SD-Ura agar plates.  
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Bacteria growth and media 

Two strains of bacteria were used: XL-1 Blue used to amplify constructed plasmids and BL21 

DE3 used for protein expression. Bacteria were grown overnight at 37 °C. For standard plasmid 

construction protocols the media used to grow bacteria was LB (10 g/L tryptone, 5 g/L yeast 

extract, 10 g/L NaCl) and for protein purification 2X-YT (16 g/L tryptone, 10 g/L of yeast extract, 

5 g/L NaCl). Plasmid selection was done adding 100 g/ml ampicillin to the media.  

Sequence analysis 

Sequences of human Plin4, Plin4 from other mammals and of human Plin1, Plin2, Plin3 and 

Plin5 were obtained from Uniprot. The 33mer repeats of Plin4 in various species and 11mer 

repeats of human Plins were identified using HHrepID tool from the MPI Bioinformatics Toolkit 

server (Biegert and Söding 2008; Zimmermann et al. 2018). With the identified region of 

repeats, repeats within species were aligned with themselves using T-coffee (Tommaso et al. 

2011) and their conservation was represented using Weblogo (Crooks et al. 2004). The 

amphipathic character of these sequences was analyzed using HeliQuest (Gautier et al. 2008). 

Helical wheels were plotted as complete 3–11 helices; the presentation of helices was chosen 

such as to maximize their hydrophobic moment, as calculated by Heliquest, and inclusion of 

identified 11-aa repeats, excluding helix-breaking proline (Pace and Scholtz 1998) from the 

middle of the helices.  

Plasmid DNA construction 

All plasmids used in this study are listed in Table 9-2. DNAs encoding AHs of human Plin1, Plin2 

and Plin3 were PCR-amplified from the corresponding cDNAs that had been cloned into 

pGREG576 plasmids (gift from R. Schneiter, U. of Fribourg) (Jacquier et al. 2013). DNA for Plin4 

6mer and Plin4 8mer was amplified from plasmid pCLG26, and DNA for Plin4 4mer mutant 4T-

S was amplified from plasmids pSB49 (Čopič et al., 2018). Plin4 4mer mutants (2D>E, 3K>3, 

NN, QN and QQ), and Plin4 12mer mutant csw 12mer were constructed using synthetic 

double-stranded DNA fragments. All 4mer mutants were exact 4× repeats of a 33-aa 

sequence, based on the parental sequence of human Plin4 fragment aa246-278.  The protein 

sequence for csw 12mer was designed by manually adjusting 33-aa helical wheels of the 

parental Plin4 12mer sequence using HeliQuest to increase the symmetry of charged residue 
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distribution in the polar side of the helix while minimizing changes in the hydrophobic 

moment. DNA sequences were optimized for synthesis using the algorithm on the Eurofins 

website (https://www.eurofinsgenomics.eu). Table 4 lists all protein sequences used in this 

study. 

For expression of proteins in E. coli, PCR-amplified DNA fragments were inserted into pET21b 

(Novagen) without adding a tag using NheI and XhoI restriction sites, which were introduced 

by PCR. For expression of Plin3 AH, an additional sequence ‘MASC’ was introduced upstream 

of the AH. 

For expression of GFP fusion proteins in S. cerevisiae, PCR-amplified DNA fragments were 

inserted into pRS416-derived (URA3 and AmpR markers) CEN plasmid pRHT140 containing 

ADH1 promoter and GFP for C-terminal tagging (gift from S. Leon, IJM). For expression of 

mCherry fusion proteins, GFP-encoding fragment in this vector was replaced with mCherry 

using KpnI and BamHI restriction sites to generate plasmid pMGA4. All AH DNA fragments 

were cloned into these plasmids using NheI and BamHI restriction sites that were introduced 

by PCR. The sequence of the multiple cloning site introduces a linker peptide in the resulting 

fusion protein between the AH and GFP, ‘PLDPPGLQEF’, and linker peptide ‘VKDPDIKLID’ 

between the AH and mCherry. 

Protein purification 

All proteins were purified from E. coli without a tag. Plin4 12mer, Plin4 4mer, Plin4 4T-S and 

csw 12mer were purified following the same protocol. This protocol consists of a boiling step 

and cationic exchange chromatography (Čopič et al., 2018). In contrast, Plin3 AH has a net 

negative charge at neutral pH (pI = 4.65). Therefore, Plin3 AH purification protocol consists of 

a boiling step followed by anion exchange chromatography. E. coli cells BL21DE3 transformed 

with expression plasmids were grown in 2X-YT to OD ≈ 0.6 at 37°C from a liquid preculture 

and induced with 1 mM IPTG at 37 °C for 1h in the case of Plin3 AH, and for 3h in the case of 

the rest of constructs. Cells from 0.25 L cultures were collected by centrifugation and frozen. 

The bacterial pellets were thawed in lysis buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM 

DTT, supplemented with 0.1 mM PMSF, and complete protease inhibitor cocktail (Roche). 

Cells were broken by sonication. The lysate was centrifuged at 100,000 × g for 30 min at 4°C 
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in a 70.1Ti Rotor (40,000 rpm; Beckman). The supernatant in centrifuge tubes was immersed 

in boiling water (95°C) for 30 min. The resulting cloudy suspension was centrifuged at 100,000 

× g for 15 min at 4°C to remove precipitated material. The supernatant was dialyzed against 

20 mM Tris-HCl pH 7.5, 10 mM NaCl, 1 mM DTT (2 x 30 min using 1 L of buffer) at 4 °C using 

Spectra/Por membranes with a cut-off of 6000 Da (Spectrum labs) and then centrifuged again 

at 100,000 × g for 30 min at 4 °C. Plin4 12mer, Plin4 4mer, Plin4 4T-S and csw 12mer were 

then further purified in a single step by cation exchange chromatography on a 20 ml Hiprep S 

HP column (GE Healthcare). Plin3 AH was purified by anion exchange chromatography on a 20 

ml Hiprep Q HP column (GE Healthcare). Constructs were eluted with a salt gradient from 10 

mM to 400mM NaCl (3 column volumes) in 20 mM Tris-HCl pH 7.5, 1 mM DTT at a flow rate 

of 2 ml/min using an Akta purifier system (GE Healthcare), eluting at approximately 100 mM 

NaCl. After analysis of the chromatography fractions by protein electrophoresis, the protein 

pools were divided into small aliquots and stored at –80°C. 

Protein electrophoresis and determination of protein concentration 

Standard Glycine SDS-PAGE was used for the analysis of Plin4 12mer and csw 12mer (Mw ~ 40 

kDa) using homemade 13% acrylamide bis-acrylamide gels. Tricine SDS-PAGE (Schägger and 

Jagow, 1987) was used for proteins with lower molecular weight, i.e. Plin4 4mer, Plin4 4T-S, 

or Plin3 AH (9 – 15 kDa). For that we either used TruPAGE commercial gels (Sigma) and 

homemade Tris-MOPS buffer (60 mM Trizma, 30 mM 4-Morpholinepropanesulfonic acid 

(MOPS), 0.1% w/v SDS) or, for better resolution, homemade 16.5% acrylamide-polyacrylamide 

(29:1) gels run with tricine buffer (100 mM Tris-HCl pH 8 – 8.5, 0.1 M Tricine, 0.1% SDS) in the 

cathode and 200 mM Tris HCl pH 8.9 in the anode chamber. Gels were rinsed in 7.5% acetic 

acid, stained with Sypro Orange (Life Technologies) and visualized with a MP imaging system 

(Bio-Rad) using the Alexa 488 settings. Because the AHs purified lack aromatic residues, 

preventing protein quantification by UV spectroscopy or by Coomassie Blue, protein 

concentration was routinely determined by densitometry of Sypro-Orange stained gels 

against a calibration curve with protein standards (Sigma) using ImageJ. Quantification by gel 

electrophoresis was verified by Ellman´s reaction method, which quantifies the cysteines 

concentration with Edman reagent (Sigma), after dialysis to remove DTT and with a standard 

curve of free cysteines. Relying on numerous cysteines in each construct (4 in Plin4 4mer, Plin4 
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12mer, 4T-S and csw 12mer, and 1 cysteine introduced by cloning in Plin3 AH) protein 

concentration can be obtained. This procedure was performed after protein dialysis to 

eliminate DTT.  

Protein labelling with fluorescent probes 

Purified AHs were covalently labeled via cysteines using Alexa C5 maleimide probes (either 

488 or 568; Thermofisher). Plin4 12mer, Plin4 4mer and Plin4 4T-S and csw 12mer were 

labeled on endogenous cysteines present in their AHs; they all contain 4 cysteines in total. 

Plin3 AH is devoid of cysteines, therefore a single cysteine was introduced at its N-terminus. 

To remove DTT, 1 ml of protein solution at concentration 0.7 mg/ml (18 μM of Plin4 12mer 

and csw 12mer, 50 μM of Plin4 4mer and Plin4 4T-S) was exchanged into labelling buffer (20 

mM Tris-HCl pH 7.5, 100 mM NaCl) using size exclusion NAP10 columns (GE Healthcare). 

Protein-containing fractions were identified by protein electrophoresis and pooled. Protein 

solutions were incubated for 5 minutes at 4 °C with Alexa C5 maleimide probes at an 

equimolar ratio to their total number of cysteines (1 ml reaction volume). The reactions were 

stopped by the addition of DTT to 10 mM final concentration and loaded on NAP10 columns 

to separate the labeled protein from the excess of fluorescent probe. Fractions were analyzed 

by protein electrophoresis. Fluorescence in the gel was directly visualized on ChemiDoc MP 

imaging system (Bio-Rad) either with Alexa 488 or Sypro Ruby (for Alexa 568) settings. 

Fractions with labeled protein were pooled, aliquoted and stored at -80°C. The same protocol 

was used for labelling of free cysteine, but without NAP10 purification steps. 

We used FRAP assays on protein-oil emulsions (see below) with different ratios of labeled to 

unlabeled proteins to verify that the fluorescent label did not change the behavior of the 

protein. This was not the case for labeled Plin3 AH, thus we only used this protein in unlabeled 

form in our biochemical assays. 

Preparation of protein-oil emulsions 

Proteins were diluted to 0.5 mg/ml in freshly degassed HKM buffer (50 mM Hepes-KOH pH 

7.2, 120 mM K-acetate, 1 mM MgCl2) supplemented after degassing with 1 mM DTT. 190 μl of 

each solution were pipetted into a 600 μl glass tube, and a 10 μl drop of triolein (>99% purify, 

T7140 Sigma) was added to the top. In some cases, emulsions were prepared to have a final 
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volume of 100 μl and the drop of triolein was 5 μl. They were vortexed manually at a fixed 

angle of ~30° for three cycles of 30 s on 30 s off at 25 °C under argon atmosphere. Images of 

resulting emulsions were taken with a compact camera. For analysis by fluorescent 

microscopy, emulsions were prepared using a mixture of fluorescent and unlabeled protein at 

a mass ratio 1:20. 

For the tests with varying the neutral lipids instead of triolein the neutral lipids used were: 

Cholesteryl oleate (C9253, Sigma), Glyceryl trilinoleate (T9517, Sigma), Glyceryl trinoneate 

(92909, Sigma). Cholesteryl oleate was solubilized with triolein (1:3, cholesteryl oleate: 

triolein) at 50 °C.  

Dynamic Light Scattering (DLS) 

Measurements of the mean hydrodynamic radius of the Plin4-oil droplets by DLS were 

performed on a sample taken from the middle of the tube after the vortexing reaction, 

avoiding any unreacted oil that remained at the top of the emulsion, at least 3 h after 

vortexing to prevent the interference of gas bubbles with the measurement. Subsequent 

samples at later time points were removed in the same manner without any additional mixing. 

Emulsion samples were diluted 100-fold in freshly degassed HKM buffer with 1mM DTT. 

Measurements were performed on a Zetasizer Nano ZS machine (Malvern) at 25°C, and data 

were processed using the CONTIN method. 

Circular dichroism (CD) 

The experiments were done on a Jasco J-815 spectrometer at room temperature with a quartz 

cell of 0.05 cm path length. Each spectrum is the average of several scans recorded from 195 

to 260 nm with a bandwidth of 1 nm, a step size of 0.5 nm and a scan speed of 50 nm/min. 

Control spectra of buffer with or without liposomes were subtracted from the protein spectra. 

The buffer used was Tris 10 mM, pH 7.5, KCl 150 mM. 

Trypsin protection assays  

Plin4-oil emulsion was prepared using Plin4-12mer (1mg/ml) and triolein as described above. 

At time zero, 100 μl of this emulsion or of Plin4-12mer starting solution were mixed with 13 
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or 130 μg ml-1 trypsin (Sigma) solution. At the indicated times, 30 μl of samples were 

withdrawn and added 3 μl of 100 mM PMSF (Sigma) to stop the reactions, then stored on ice. 

Reactions were analyzed by SDS-PAGE and Sypro Orange staining. 

Separation of Plin4-oil emulsion on sucrose gradients 

Oil droplets in suspension are separated from the rest of the in vitro reaction by centrifugation 

because of their lower density. This also separates the protein interacting with the oil droplets 

from the unreacted protein in the solution, allowing their quantification. The protocol is as 

follows: Emulsions were prepared as specified in a final volume of 300 μl including 15 μl of 

triolein and 0.5 mg/ml of protein. Next, 240 μl of 60% w/v solution of sucrose in HKM buffer 

with 1 mM DTT was mixed with 240 μl of emulsion, avoiding any oil. 450 μl of this suspension 

was loaded on the bottom of a centrifuge tube and overlaid with a step sucrose gradient 

consisting of 300 μl 20%, 300 μl 10% and 100 µl 0% sucrose in HKM buffer with 1mM DTT. The 

samples were centrifuged at 50,000 rpm (214,000 × g) in a Beckman swing-out rotor (TLS 55) 

for 80 min at 8°C. Four fractions were carefully collected from the bottom with a Hamilton 

syringe, having the following volumes: 450 μl, 300 μl, 300 μl, and 100 μl, respectively. Equal 

volumes of all fractions were analyzed by protein electrophoresis.  

Fluorescent microscopy  

For imaging of purified protein-oil emulsions, emulsions prepared with fluorescent protein 

were gently mixed in the glass tube before 1.5 l of emulsion was withdrawn with a long 200 

l tip and placed on untreated glass slides (Thermo Scientific). A coverslip was carefully placed 

on top without applying any pressure.   

Yeast cells were harvested by centrifugation, washed, placed on a glass slide and covered with 

a coverslip. For some experiments, LDs were stained with 1 μg/ml Bodipy 493/503 (Life 

Technologies) or with Autodot blue dye (Clinisciences) diluted 1000 folds for 30 min at room 

temp, after which the cells were washed twice and imaged.  

Images of emulsions and yeast were acquired at room temperature with an Axio Observer Z1 

(Zeiss) microscope, equipped with an oil immersion plan-Apochromat 100x/1.4 objective, an 

sCMOS PRIME 95 (Photometrics) camera, and a spinning-disk confocal system CSU-X1 
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(Yokogawa) driven by MetaMorph software (Molecular Devices). GFP-tagged or Alex488-

labeled proteins and mCherry-tagged or Alex568-labeled proteins were visualized with a GFP 

Filter 535AF45 and an RFP Filter 590DF35, respectively. When imaging emulsions, images 

were acquired in 10 to 15 z-sections of 0.2 μm were taken. For quantification of LD-to-PM 

signal ratio in yeast, we used an LSM 780 confocal microscope (Zeiss) with a x63/1.4 oil 

objective and a PMT GaAsP camera, driven by ZEN software. Images were processed with 

ImageJ and prepared for figures with Canvas Draw (canvas X). 

Fluorescence recovery after photobleaching (FRAP) 

FRAP assays in vitro were performed on freshly-prepared fluorescent emulsions with Alex488-

labeled proteins on glass slides using the CSU-X1 spinning disc microscope and 100x objective, 

bleaching laser with a wavelength of 473 nm and iLas software controlled by Metamorph. 

Several circular areas of 25 x 25 pixels were bleached in each field (828 x 960 pixels), either on 

oil particles or in surrounding solution. The following FRAP time-course was used: 6 images 

pre-bleach, then bleach followed by 10 s of 1 image/s, 60 s of 1 image/10 s, and finally 600 s 

of 1 image/30 s (or until the loss of focus). Fluorescence of the bleached area at each time 

point was normalized to the average fluorescence before bleaching. Data was processed using 

Excel. 

For FRAP assays in yeast cells, a circular area of 15 x 15 pixels in a cell expressing a GFP-fusion 

protein was bleached, either on the LDs or on the plasma membrane. 5 images were taken 

before bleaching, followed by a post-bleach time-course:  15 s of 1 image/s, 60 s of 1 image/5 

s, and ~200 s of 1 image/20 s. Background fluorescence outside the cell was subtracted from 

the bleached area and the signal was normalized to the whole cell signal for each time-point. 

Data was processed with Excel and plotted using SigmaPlot (Systat Software). 

Protein exchange assay on protein-oil emulsions 

Emulsions were prepared as described using unlabeled protein at 0.5 mg/ml and checked by 

microscopy using CSU-X1 spinning disc microscope (time 0). Then, fluorescent Plin4 12mer-

Alexa488 was gently added to the suspension to a final concentration of 0.025 mg/ml (20 : 1, 

unlabeled protein : labeled Plin4 12mer). Samples from the emulsions were withdrawn at 

indicated time-points without mixing and imaged on glass slides. The re-vortex sample was 
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prepared after 2h of incubation by withdrawing 20 l of the emulsion and vortexing it in a 

fresh 600 l glass tube in the same manner as for initial emulsion preparation. Samples were 

imaged in 10 z-sections of 0.5 μm in randomly-selected fields of 76 m x 101 m. The z-section 

containing the highest number of small droplets was selected for analysis. 

Yeast imaging in microfluidics chamber with 2-deoxy glucose (2-DG) 

Yeast were imaged in the Axio Observer Z1 microscopy using the microfluidic perfusion 

platform (ONIX) driven by the interface software ONIX-FG-SW (Millipore). ERG6-RFP yeast 

strain transformed with pRHT140 (expressing GFP) and stained with CMAC 1x for 10 min at 

room temperature and the same strain transformed with or pKE33 (expressing Plin4 12mer-

GFP) were mixed at 1:1 ratio. The yeast mixture was injected into a YO4C microfluidics 

chamber with applying 3 psi for 8” twice. Cells were maintained in a uniform focal plane. 

Normal growth conditions were maintained by flowing cells with SD-URA + 0.2% 2-DG at 3 psi. 

Cells were imaged every 10 min over a total time of 180 min. Cells were imaged in 5 z-sections 

separated by 0.5 µm, afterwards manually selecting for the best focal plane, in order to correct 

for any focal drift during the experiment.  

Image analysis 

Images were analyzed using ImageJ/Fiji (Schindelin et al., 2012). To quantify the number of 

droplets in protein-oil emulsions, the number of particles in a randomly-selected area in a 

single z-section was counted using ‘find maxima’ in the fluorescent channel with noise 

tolerance set to 100. Larger clusters were counted manually. For quantification in the 

exchange assay, the noise tolerance was set to 150. To quantify the number of yeast cells with 

protein signal on LDs, cells were counted manually after applying the same 

brightness/contrast settings to all images. To quantify the ratio of LD to PM protein signal 

(mCherry fusions), Pet10-GFP LD marker was used to select the regions of interest (ROIs) 

corresponding to LDs and the total mCherry fluorescence in the ROIs was recorded. For the 

quantification of PM fluorescence, images were converted to binary to select the whole yeast 

perimeter. Them, a band of 5 pixels was applied to include all of PM signal. After background 

subtraction, the total LD signal per cell was divided by the total PM signal. LD size in yeast cells 

grown in oleic-acid medium was measured using the fluorescent protein. Isolated LDs were 
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fitted manually with a perfect circle and the size of each circular area was recorder. Data were 

analyzed in Excel and plotted with KaleidaGraph (Synergy software). 

Table 9-1. Yeast strains used in this study.  

Name Genotype Reference 

BY4742 BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Euroscarf 

ERG6-RFP BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 ERG6::mRFP Jackson lab 

collection 

PET10-GFP BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 

PET10::GFP::HisMX 

(Huh et al. 

2003) 

pet10 BY4742 his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 pet10::KANMX4 Euroscarf 

STE MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 are1Δ::KANMX 

are2Δ::KANMX 

Klaus 

Natter 

TAG MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 dga1Δ::KANMX 

lro1Δ::KANMX 

Klaus 

Natter 

LDs MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 dga1Δ::KANMX 

lro1Δ::KANMX are1Δ::KANMX are2Δ::KANMX 

Klaus 

Natter 

iLD. MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 GalP::DGA1 GalP::ARE2 

lro1Δ::HPH are2Δ::NAT 

(Becuwe et 

al. 2018) 
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Table 9-2. Plasmids used in this study. 

Name Insert Region (aa) (1) Vector Host Source 

pCLG03 Plin4 4mer hPlin4 (aa246-377) pET21b E. coli Čopič 
2018 

pKE23 Plin4 12mer hPlin4 (aa510-905) pET21b E. coli Čopič 
2018 

pMGA9 4T-S (4mer) 4x[246-278 M5t] pET21b E. coli This 
study 

pMGA19 Plin3 AH 
hPlin3(aa113 – 
205) pET21b E. coli 

This 
study 

pMGA1 Csw 12mer 
Charge swap of 
hPlin4(aa510-905) pET21b E. coli 

This 
study 

pGFP-
Plin1 Human Plin1 Full cDNA pGREG576 

(ADH1pr, GFP) 
Yeast Jacquier 

2013 
pGFP-
Plin2 Human Plin2 Full cDNA pGREG576 

(ADH1pr, GFP) 
Yeast Jacquier 

2013 
pGFP-
Plin3 Human Plin3 Full cDNA pGREG576 

(ADH1pr, GFP) 
Yeast Jacquier 

2013 

pRHT140 ADHpr-mcs-GFP   
pRS416 (CEN-
URA3) Yeast S. Leon 

pMGA4 ADHpr-mcs-mCherry (swap of GFP 
for mCherry in pRHT140) 

pRS416 (CEN-
URA3) Yeast This 

study 

pMGA10 Plin1 AH-GFP hPlin1 (aa108-194) pRHT140 Yeast 
This 
study 

pMGA5 Plin2 AH-GFP hPlin2 (aa100-192) pRHT140 Yeast 
This 
study 

pMGA7 Plin3 AH-GFP hPlin3 (aa113-205) pRHT140 Yeast 
This 
study 

pMGA28 
Plin3(87-
205)-GFP hPlin3 (aa87-205) pRHT140 Yeast 

This 
study 

pKE31 
Plin4 4mer-
GFP hPlin4 (aa246-377) pRHT140 Yeast 

Čopič 
2018 

pKE33 
Plin4 12mer-
GFP hPlin4 (aa510-905) pRHT140 Yeast 

Čopič 
2018 

pMGA16 Plin4 12mer-
mCherry hPlin4 (aa510-905) pMGA4 Yeast 

This 
study 

pMGA30  
Plin4 6mer-
GFP hPlin4 (aa246-433)  pRHT140 Yeast 

This 
study 

pMGA22 
Plin4 8mer-
GFP hPlin4 (aa246-509) pRHT140 Yeast 

This 
study 

pMGA34 P4M24bP bPlin4 (aa558-953) pMGA4 Yeast 
This 
study 

pMGA35 
P4M25bT 
6mer 

1P>T bPlin4 
(aa558-755) pMGA4 Yeast 

This 
study 

pMGA36 P4M25bT 
8mer 

1P>T bPlin4 
(aa558-821) pMGA4 Yeast 

This 
study 

pMGA37 P4M25bT 
12mer 

1P>T bPlin4 
(aa558-953) pMGA4 Yeast 

This 
study 

(1) Position of aa in human Plins (hPlin) or bat Plin4 (bPlin4) sequences. 
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Table 9-3. Protein sequences expressed in this study. 
Name Construct protein sequence  

PLin4-4mer Plin4[246-
377] 

MSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAM 
NVAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTTKTVLTGTKN 
TVCSGVTGAVNLAKEAIQGGLDT 

PLin4-6mer Plin4[246-
443] 

MSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAM 
NVAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTTKTVLTGTKN 
TVCSGVTGAVNLAKEAIQGGLDTTKSMVMGTKDTMSTGLTGAANVAKGAMQTGL 
NTTQNIATGTKDTVCSGVTGAMNLARGTIQTGVDT 

Plin4-8mer Plin4[246-
509] 

MSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAM 
NVAKGTIQTGVDTSKTVLTGTKDTVCSGVTGAMNVAKGTIQTGVDTTKTVLTGTK 
NTVCSGVTGAVNLAKEAIQGGLDTTKSMVMGTKDTMSTGLTGAANVAKGAMQ 
TGLNTTQNIATGTKDTVCSGVTGAMNLARGTIQTGVDTTKIVLTGTKDTVCSGVT 
GAANVAKGAVQGGLDTTKSVLTGTKDAVSTGLTGAVNVAKGTVQTGVDTKD 

Plin4-
12mer 

Plin4[510-
905] 

MTKTVLTGTKDTVCSGVTSAVNVAKGAVQGGLDTTKSVVIGTKDTMSTGLTGAA 
NVAKGAVQTGVDTAKTVLTGTKDTVTTGLVGAVNVAKGTVQTGMDTTKTVLTG 
TKDTIYSGVTSAVNVAKGAVQTGLKTTQNIATGTKNTFGSGVTSAVNVAKGAAQT 
GVDTAKTVLTGTKDTVTTGLMGAVNVAKGTVQTSVDTTKTVLTGTKDTVCSGVT 
GAANVAKGAIQGGLDTTKSVLTGTKDAVSTGLTGAVKLAKGTVQTGMDTTKTVL 
TGTKDAVCSGVTGAANVAKGAVQMGVDTAKTVLTGTKDTVCSGVTGAANVAK 
GAVQTGLKTTQNIATGTKNTLGSGVTGAAKVAKGAVQGGLDTTKSVLTGTKDAV 
STGLTGAVNLAKGTVQTGVDTKD 

Plin4-4T-S 4xM5t 
SKTVLTGSKDSVCSGVTGAMNVAKGSIQTGVDSSKTVLTGSKDSVCSGVTGAMN 
VAKGSIQTGVDSSKTVLTGSKDSVCSGVTGAMNVAKGSIQTGVDSSKTVLTGSKD 
SVCSGVTGAMNVAKGSIQTGVDS 

csw-12mer 
(charge 
swap) 

P4-M14kd 

TKDKLTGTVTTVCNVVTSAGSVAKDLVQGGAGTTKSVVIGTTDKMSTGLTGAVN 
AAKGAVQTGTDVAKTVLTGTTDKVTTGLVGAVNVAKGTVQTGTDMTKTVLTGT 
TDKIYSGVTSAVNVAKGAVQTGTKLTGNIATQTKNTFSSGVTGAVNVATGAAQK 
GVDTAKTVLTGTTDKVTTGLMGAVNVAKGTVQTSTDVTKDKLTGTVTTVCNAV 
TGAGSVAKDLIQGGAGTTKSVLTGTADKVSTGLTGALKVAKGTVQTGTDMTKT 
VLTGTADKVCSGVTGAVNAAKGAVQMGTDVAKTVLTGTTDKVCSGVTGAVN 
AAKGAVQTGTKLTQNIATGTTNKLGSGVTGAVKAAKGAVQGGTDLTKSVLTGT 
ADKVSTGLTGALNVAKGTVQTGTDV 

Plin1 AH hPlin1  
aa109-194 

MPPEKIASELKDTISTRLRSARNSISVPIASTSDKVLGAALAGCELAWGVARDTAE 
FAANTRAGRLASGGADLALGSIEKVVEYLLPP 

Plin2 AH hPlin2  
aa100-192 

PSTQIVANAKGAVTGAKDAVTTTVTGAKDSVASTITGVMDKTKGAVTGSVEKTK 
SVVSGSINTVLGSRMMQLVSSGVENALTKSELLVEQYLP 

Plin3 AH (1) hPlin3  
aa113-205 

mascPTEKVLADTKELVSSKVSGAQEMVSSAKDTVATQLSEAVDATRGAVQSGV 
DKTKSVVTGGVQSVMGSRLGQMVLSGVDTVLGKSEEWADNHLP 

Plin3(87-
205) 

hPlin3  
aa87-205 

PQIASASEYAHRGLDKLEENLPILQQPTEKVLADTKELVSSKVSGAQEMVSSAKD 
TVATQLSEAVDATRGAVQSGVDKTKSVVTGGVQSVMGSRLGQMVLSGVDTVL 
GKSEEWADNHLP 

P4M24bP 
M. brandtii 
Plin4 aa558-
953 

SKTILTGTKDTVSTGLPGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLPGAVGV 
AKSAVQTGMDTSKTILTGTKDTVSTGLPGAVGVAKSAVQTGMDTSKTILTGTKD 
TVSTGLPGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLPGAVGVAKSAVQTG 
MDTSKTILTGTKDTVSTGLPGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLPGA 
VGVAKSAVQTGMDTSKTILTGTKDTVSTGLPGAVGVAKSAVQTGMDTSKTILTG 
TKDTVSTGLPGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLPGAVGVAKSAVQ 
TGMDTSKTILTGTKDTVSTGLPGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLP 
GAVGVAKSAVQTGMDT  
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P4M25bT 
12mer 

P>T M. 
brandtii Plin4 
aa558-953 

SKTILTGTKDTVSTGLTGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLTGAVGVA 
KSAVQTGMDTSKTILTGTKDTVSTGLTGAVGVAKSAVQTGMDTSKTILTGTKDTV 
STGLTGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLTGAVGVAKSAVQTGMDT 
SKTILTGTKDTVSTGLTGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLTGAVGVA 
KSAVQTGMDTSKTILTGTKDTVSTGLTGAVGVAKSAVQTGMDTSKTILTGTKDTV 
STGLTGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLTGAVGVAKSAVQTGMDT 
SKTILTGTKDTVSTGLTGAVGVAKSAVQTGMDTSKTILTGTKDTVSTGLTGAVGVA 
KSAVQTGMDT 
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Abstract: Amphipathic helices (AHs), a secondary feature found in many proteins, are defined by

their structure and by the segregation of hydrophobic and polar residues between two faces of the

helix. This segregation allows AHs to adsorb at polar–apolar interfaces such as the lipid surfaces

of cellular organelles. Using various examples, we discuss here how variations within this general

scheme impart membrane-interacting AHs with different interfacial properties. Among the key

parameters are: (i) the size of hydrophobic residues and their density per helical turn; (ii) the nature,

the charge, and the distribution of polar residues; and (iii) the length of the AH. Depending on how

these parameters are tuned, AHs can deform lipid bilayers, sense membrane curvature, recognize

specific lipids, coat lipid droplets, or protect membranes from stress. Via these diverse mechanisms,

AHs play important roles in many cellular processes.

Keywords: amphipathic helix; membrane deformation; membrane curvature sensor; ALPS motif;

phosphatidic acid; lipid packing defect; perilipin; LEA protein; membrane targeting; desiccation

1. Introduction

Amphipathic helices (AHs) are protein sequences that fold into a helical structure upon contact

with a polar/non-polar interface. They can be found in many stably folded proteins. However, in this

review we will focus solely on AHs that fold in contact with the surface of a bilayer-bound organelle

or a lipid droplet inside the cell [1,2]. In such sequences, hydrophobic amino-acids (aa) are regularly

distributed every N + 3 and/or N + 4 positions with polar residues in between, thereby allowing

the helix to present two faces with opposite chemical features: a hydrophobic face and a polar face.

Owing to this segregation, the helix lays down parallel to the membrane interface and anchors the

protein in a reversible manner.

Since the development of pioneering studies on amphipathic helical regions in apolipoproteins

and secreted antimicrobial peptides [2–4], the field of AHs has flourished, with the discovery that

many eukaryotic, viral, or bacterial proteins contain AHs which contribute to intracellular membrane

targeting, sometimes in combination with other modes of protein–membrane interaction [2,5].

Furthermore, studies have revealed that many AHs act not only as membrane anchors but also fulfill

other functions owing to their extended contact with membrane interfaces. These include sensing

membrane curvature and the level of lipid unsaturation [6], remodeling membranes into tubular or

spherical intermediates [7,8], or acting as a shield to protect membranes or lipid droplets [9,10].

In this review, we use a few examples of membrane-adsorbing AHs to illustrate how variations

in length and amino-acid sequence (Figure 1) provide AHs with different interfacial properties and,

thereby, different cellular functions (Figure 2). This is because the repertoire of hydrophobic and polar
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residues is vast enough to allow the synthesis of helices that, apart from their amphipathic character,

differ considerably in their possible interfacial interactions. To facilitate their comparison, the AHs are

represented with a normalized scheme that aims to highlight their distinguishing features (Figure 1).

However, it should be noted that neither the structure of these AHs nor their position at the lipid

interface is known in most cases. Thus, these drawings should be taken as working models, not as

definitive pictures.

 

Figure 1. The chemical diversity of amphipathic helices (AHs). The diagrams highlight the most

prominent chemical features of the AHs discussed in the text. (a) The AH of Pex11 has a highly

basic polar face and a prominent hydrophobic face (amino-acids (aa) 66–83 of Penicillium chrysogenum

Pex11). (b) The AH of the small G protein ARF1 contains two bulky hydrophobic residues per helical

turn (aa 2–14, human protein). (c) The amphipathic lipid packing sensor (ALPS) motif of the golgin

GMAP-210 contains one bulky hydrophobic residue per helical turn and is rich in Ser, Thr, and Gly

in its polar face (aa 1–38, human protein). (d) The AH of Opi1 contains basic residues in its polar

face, which have been proposed to bind preferentially to the negatively charged phosphatidic acid

(PA) (aa 111–128, Saccharomyces cerevisiae protein). (e) The four AHs of heat-shock protein-12 (Hsp12)

contain both positively and negatively charged residues. The positively charged residues form two

wings at the polar/non-polar interface, whereas the negatively charged residues are concentrated in

the center of the polar face. The longest helix, helix 4 (aa 74–97 in the S. cerevisiae protein), is shown.

(f) Perilipin 4 (PLIN4) contains a giant and highly repetitive AH of about 1000 aa. The drawing

schematizes the chemistry of a single human 33-mer repeat. Large hydrophobic residues are absent

from this AH. Instead, the hydrophobic face is rich in Ala, Val, and Thr residues. The polar face contains

both positively and negatively charged residues, with the positive charge concentrated on one side of

the AH.
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Figure 2. Functional diversity of AHs. This figure illustrates the cellular roles of the AHs shown

in Figure 1. (a) Membrane deformation induced by the AH of the peroxisomal membrane protein

Pex11. (b) Guanosine diphosphate/guanosine triphosphate (GDP/GTP) exchange in ARF1 controls

the exposure of its AH and thereby the translocation of this small G protein to lipid membranes.

(c) The ALPS motif of the golgin GMAP-210 captures small vesicles on the basis of their high curvature.

(d) The yeast transcriptional repressor Opi1 is retained at the endoplasmic reticulum (ER) membrane

through its dual interaction with PA and the ER receptor Scs2 (member of the VAP protein family),

via an AH and a FFAT motif, respectively. When the amount of PA decreases, Opi1 is released

from the ER and is translocated to the nucleus where it represses genes involved in lipid synthesis.

(e) The adsorption of the large AH region of the heat shock protein Hsp12 has a protective effect on the

plasma membrane by adjusting its physical properties. (f) The giant AH of PLIN4 coats lipid droplets

under conditions of insufficient phospholipids by directly substituting the phospholipid monolayer.
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2. Predictions and Experimental Approaches to Study Amphipathic Helices

The analysis of AHs is facilitated by bioinformatics tools such as Heliquest [11] which project any

amino-acid sequence onto a helical wheel and calculate various parameters such as AH hydrophobicity,

charge, and hydrophobic moment (an index of the amphipathic character of the putative helix).

Note that some AHs slightly depart from the archetypal α-helical structure, which contains 3.6 aa per

turn. These so-called 3–11 helices contain 3.67 aa/turn (giving an integer number of 11 aa for three

turns) and are generally associated with extended sequences made of repetitions of 11, 22, or 33 aa

present in apolipoproteins [4], synucleins [12], and perilipins, respectively [10].

Even though the bioinformatics approach is helpful in order to identify, characterize,

and mutagenize some putative AHs, it does not provide proof of AH formation. Furthermore,

the AH structure requires an appropriate but poorly defined amino-acid sequence interacting with

a hydrophobic interface. Many membrane-interacting AH sequences have a low probability of

α-helical formation and are in fact intrinsically unstructured in solution owing to an abundance of Gly,

which increases conformational freedom. Only when facing an appropriate interface do they adsorb

and fold into a helix [1,2].

The structures of membrane-binding AHs are generally less well-established than those of helices

in stably-folded protein domains because of the difficulty in crystallizing proteins in an interfacial

environment. However, a combination of site-directed mutagenesis and spectroscopic and biochemical

methods can give reasonable clues about the relevance of a predicted AH (for a typical example,

see [13]). Among these methods are: (i) liposome–protein binding assays, in which the fraction of

bound protein is recovered by flotation or sedimentation; (ii) circular dichroism (CD) spectroscopy to

assess the ability of the sequence of interest to fold into a helical structure; and (iii) various fluorescence

methods to probe the environment of selected intrinsic residues (e.g., tryptophan) or extrinsic probes

such as 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD). Binding assays at the level of single liposomes

represent a more sophisticated type of analysis [14].

Deeper structural analysis of AHs is sometimes performed but requires more advanced

approaches. Various nuclear magnetic resonance (NMR) methods allow for the visualization of

the structure and aa environment of AHs in membrane mimetic systems such as bicelles, which are

discoidal lipid bilayer patches [15], or, more classically, in detergent (e.g., sodium dodecyl sulfate—SDS)

micelles [16]. However, the small size of micelles can lead to helix breakage (discussed in [17]).

X-ray diffraction in the presence of model bilayer membranes gives information about the time

averaged density of AH atoms across the bilayer normal [18]. In the case of the apolipoprotein A-I,

this method indicates that the axis of the helix is positioned at the level of the glycerol atoms, almost

exactly between the polar and non-polar region of the bilayer, whereas large hydrophobic residues

insert as far as the middle of the lipid acyl chains. Finally, in site-directed spin labeling, selected aa

along the sequence are mutated into Cys, which are then labelled with spin probes to give information

about the position of aa relative to the membrane surface by electron paramagnetic resonance

spectroscopy [9,17]. A most spectacular example is the structural characterization of α-synuclein, in

which aa from positions 25 to 90 was sequentially labeled, leading to a high-resolution reconstruction of

a continuous helix that extends parallel to a phospholipid membrane with a 3–11 helical periodicity [17].

These various biophysical methods give details about the depth of insertion of the AH into

the membrane, which can be decisive for understanding its impact on membrane organization

(e.g., curvature) [16–18]. However, one difficulty in structural studies is finding a model membrane

system that is simple enough to be compatible with physical measurements, and yet similar enough

to an authentic membrane. Due to their small size and highly charged surface, SDS micelles can

lead to artefactual protein conformations (as discussed in [17]). As illustrated by the few examples

discussed below, much information stems from experiments on liposomes of defined size and lipid

composition; however, inappropriate liposome composition or concentration can likewise produce

experimental artefacts.
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Molecular dynamics simulations can give some plausible mechanisms for how the AH sequence

adsorbs and folds at an interface. In the few examples that have been studied so far, a few hydrophobic

residues start inserting into the membrane in a random manner, followed by a gradual increase in AH

folding and by the coalescence of the cavities hosting the hydrophobic residues [19–21]. Therefore,

the final footprint of the helix in the membrane is much larger than the lipid packing defects initially

present at the interface. However, AH folding at membrane interfaces is a slow process at the scale of

molecular dynamics and has been poorly characterized so far.

3. Pex11 and Membrane Deformation

Pex11 is a conserved peroxisomal protein whose expression level modulates the number of

peroxisomes in a cell [22]. It induces tubulation of peroxisomal membranes, which is followed by

a fission step performed by the dynamin-related GTPase Dnm1 [23]. Pex11 contains an AH in its

N-terminal part, followed by two predicted transmembrane helices (Figures 1a and 2a). The AH

has a well-developed hydrophobic face and a polar face rich in positively charged aa (Figure 1a).

In vitro, it binds significantly better to liposomes containing negatively charged lipids that mimic the

peroxisomal membrane as compared to neutral phosphatidylcholine (PC) liposomes [24]. Mutational

analysis indicates that both hydrophobic and electrostatic interactions contribute to this binding.

Amphipathic helices peptides from diverse yeast species as well as from the human Pex11 orthologue

induce strong tubulation of negatively charged liposomes [24]. Similarly, tubulation of peroxisomes

in the yeast Hansenula polymorpha lacking Dnm1 depends on Pex11 AH [24], and there is a similar

requirement for Pex11β in human cells [25]. However, in addition to the amphipathic character of

Pex11 AH, oligomerization may also contribute to its tubulation activity [25–27].

There are many proteins that shape membranes by a mechanism similar to that described for

Pex11. In general, their AH is relatively short, has a strong hydrophobic moment, and acts in concert

with other structural elements that position the helix close to the membrane surface. The large GTPase

atlastin, which mediates endoplasmic reticulum (ER) membrane fusion, contains two transmembrane

segments flanked by the GTPase domain and by an AH on the N-terminal and C-terminal ends,

respectively. The AH hydrophobic face is rich in aromatic aa, whereas the polar face contains three

basic and three acidic residues, with a resulting high hydrophobic moment [28]. This AH participates

in ER membrane fusion by destabilizing the lipid bilayer. Although the mechanism is still uncertain,

it was proposed that the AH insertion causes the displacement of the negatively charged phospholipid

heads, leading to exposure of their hydrocarbon chains and bilayer destabilization. Facilitation of

fusion also occurs when the AH is separated from the rest of atlastin, but in that case a 50-fold

higher AH concentration is required, highlighting the advantage of having the AH within the same

protein chain [28].

A recent publication demonstrates that a similar mechanism is involved in mitochondrial fusion,

specifically the fusion of outer mitochondrial membranes that is mediated by mitofusins, large GTPases

similar to atlastin [29]. Like in the case of atlastin, mitofusin-mediated mitochondrial fusion requires

a conserved AH adjacent to the transmembrane domains that dock mitofusin in the mitochondrial

membrane. This AH is similar in character to that of atlastin, although it contains even higher amounts

of charged residues and no aromatic residues. Notably, it lacks any Gly residues and accordingly

is quite helical even in the absence of membranes. The authors propose that, like in atlastin, this

AH acts to destabilize the mitochondrial bilayer. Interestingly, a chimeric mitofusin containing the

transmembrane domains of atlastin is targeted to the ER instead of the mitochondria and can at least

partially restore the ER morphology in yeast lacking the atlastin orthologue [30]. This group identified

another AH on the other side of the mitofusin transmembrane domains, but the role of this segment is

less clear. Given the rather different lipid compositions of ER and mitochondrial membranes, it will

be interesting to see to what extent the functions of these two large GTPases, and in particular their

AHs, overlap.
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Endocytosis is one of the best characterized mechanisms of membrane deformation in vivo and

in vitro. Central to membrane deformation in endocytosis are BAR domain-containing proteins,

which through their banana shape and positively concave face interact electrostatically with the lipid

bilayer and deform it. Some of these BAR domains are flanked by AHs. Amphipathic helices are also

present in other endocytic proteins such as epsin. The relative contribution of BAR domains and AHs

in membrane binding, deformation, and fission is a matter of debate [7,8,31,32]. More recently, protein

crowding has been evoked as another mechanism of membrane deformation [33,34]. In the crowding

regime, an AH may act as a membrane anchor but is not required for destabilizing the bilayer;

for example, Stachowiak et al. demonstrated that an epsin mutant whose AH was replaced by

a His-tag was also sufficient to deform liposomes [33]. Careful work will be needed to determine how

these different effects combine in the complex cellular environment.

4. ARF1—A Small Amphipathic Helix Regulated by a GDP/GTP Switch

The small G protein ARF1 is involved in intracellular vesicle trafficking [35]. It is myristoylated

on its N-terminal Gly, followed by a small AH of 14 a.a. The hydrophobic face of the AH is

highly developed, with one pair of strong hydrophobic residues per turn (Leu–Phe or Ile–Phe)

(Figure 1b). When ARF1 is in the guanosine diphosphate (GDP) state, the AH is folded, with the

hydrophobic residues pointing towards the protein core. Upon activation by a nucleotide exchange

factor, which promotes the replacement of GDP by guanosine triphosphate (GTP), the AH can no

longer interact with the protein core and instead extends on membrane surface [15]. Thus, GDP/GTP

exchange controls ARF1 interaction with lipid membranes (Figure 2b). The interaction of ARF1–GTP

with model membranes is very strong, with a spontaneous dissociation rate in the order of minutes.

When hydrophobic residues of the AH are mutated to Ala, the membrane interaction of ARF1–GTP is

reduced [34]. Importantly, ARF1–GTP can bind to most interfaces including lipid bilayers of different

curvature and lipid composition (saturated/unsaturated, charged/neutral) as well as to lipid droplets

covered by phospholipids, but not to liquid-ordered domains [36–39]. In the cell, ARF1 localization is

therefore controlled by the distribution of exchange factors, among which many reside at the Golgi [35].

The coupling between GDP/GTP switch and AH exposure allows ARF1 to control the membrane

recruitment of numerous effectors [35]. In some cases, this process is followed by membrane

deformation. Thus, ARF1 and cognate proteins such as SAR1 drive the recruitment of protein coats,

which polymerize into a spherical shell to promote vesicle formation. The high surface density

of the AHs of ARF1/SAR1 under coat formation contributes, in combination with other factors

(i.e., coat structure and protein crowding), to membrane shaping [40–46].

5. The Amphipathic Lipid Packing Sensor Motif: Amphipathic Helices with Sparse Hydrophobic
Residues to Sense Membrane Curvature

Amphipathic lipid packing sensors (ALPS) are AHs characterized by a polar face made of

small polar residues, notably Ser, Thr, and Gly (Figure 1c). Furthermore, due to a lack of charged

residues in the polar face, electrostatic interactions do not participate in the interaction of ALPS

motifs with membranes. Instead, membrane adsorption is driven by the hydrophobic effect.

Amphipathic lipid packing sensor motifs are very sensitive to both lipid unsaturation and membrane

curvature, and therefore bind poorly to most membranes, except those containing a high amount

of monounsaturated lipids (e.g., C16:0–C18:1–PC) and a high curvature (radius < 50 nm) [47,48]

(Figure 2c). Several mutagenesis studies indicate that the atypical amino-acid composition of

ALPS motifs is critical for their dual sensitivity. Thus, mutating an ALPS motif with two Lys

close to the polar/non-polar interface causes a loss in the specificity for curved membranes due

to electrostatic interactions [6].

A more recent study suggests that another key factor for membrane curvature sensing lies in

the sparse distribution of the large hydrophobic residues in the AH [49]. In contrast to the AH

of ARF1, which contains two hydrophobic residues per turn, the ALPS motif of the Golgi tether
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GMAP-210 (Golgi-microtubule-associated protein 210) contains one hydrophobic residues per turn

(Figure 1b,c). Condensing the ALPS motif of GMAP-210 to pair up its hydrophobic residues makes the

resulting AH more promiscuous: in vitro, it binds to liposomes regardless of their curvature; in the

cell, it can no longer specifically recognize small vesicles over flat organelle surfaces, in particular lipid

droplets [49]. The AH of GMAP-210 is therefore optimized for trapping small neutral vesicles that

transport proteins between the ER and the Golgi apparatus. This selectivity can be demonstrated by

introducing synthetic vesicles into living cells: these vesicles accumulate around the Golgi as a function

of their physico-chemical properties in a GMAP-210-dependant manner, or can be even targeted to the

mitochondria using a mitochondrially-targeted GMAP-210 construct [49].

6. Specific Recognition of Lipids by Amphipathic Helices: Opi1 and Other Examples

By being embedded at the interface between the polar and non-polar regions of membranes,

AHs necessarily contact many lipids. The question then arises as to whether AH insertion is solely

driven by bulk membrane properties (notably lipid packing defects and electrostatics) or whether

specific interactions with defined lipid species also contribute to AH binding.

The binding of the yeast transcriptional repressor Opi1 to the ER membrane depends on

phosphatidic acid (PA) and on the interaction of Opi1 with the ER protein Scs2, member of the

VAP protein family [50,51] (Figures 1d and 2d). In the absence of PA, Opi1 translocates to the nucleus

where it represses several genes involved in membrane lipid biogenesis [50,52]. Opi1 senses PA with

an AH that has a positively charged polar face rich in Lys [53] (Figure 1d). Depending on its membrane

environment, PA displays one or two negative charges [54]. To determine if the binding of Opi1 AH to

membranes is driven by electrostatics or by stereospecific interactions, its membrane affinity was tested

on liposomes containing increasing concentrations of PA or phosphatidylserine (PS), for example 20%

PA or 40% PS to maintain a similar net charge. Interestingly, Opi1 AH interacted more strongly with

the PA-containing liposomes, suggesting a stereospecific interaction with PA [53] (Figure 1d).

Using molecular dynamic simulations, Hofbauer et al. identified two motifs that contributed

to the preference of the Opi1 AH for PA versus other negatively charged lipids [53]: one composed

of three Lys and the second of Lys-Arg-Lys. Each motif forms a three-finger grip that is able to

accommodate the small polar head of PA but not the larger polar head of PS. When all Lys are mutated

to Arg, the AH can no longer distinguish between PA and PS.

The AH of the yeast protein Spo20 is also sensitive to PA levels. It has a polar face very rich in

basic residues, including three His, displaying a chemistry that is strikingly different from that of Opi1

AH [55]. Whereas Spo20 AH was suggested to specifically recognize PA in membranes, careful in vivo

and in vitro analysis revealed that this AH is primarily sensitive to lipid charge, independent of

the exact nature of the anionic lipids present [56]. Indeed, once the differences in charge of PA and

other negative lipids are corrected, the affinity of Spo20 AH for PA, PS, or phosphatydilinositol 4

phosphate-containing liposomes is remarkably similar [56]. Therefore, the use of Spo20 as a reporter

for the quantity of PA in membranes should be taken with caution (for further reading on PA sensing,

see [57]). In the future, an artificial helix with several (Lys)3 and Lys–Arg–Lys motifs, inspired by the

Opi1 AH, could be developed to a get a more specific fluorescent reporter for PA in cellular membranes.

Cholesterol represents a very different kind of membrane lipid, but one whose concentration

in cellular membranes highly varies and is carefully regulated. It can specifically interact with

membrane proteins to regulate their function by filling a selective cholesterol-binding pocket [58],

but it is less clear whether an AH could specifically contact a cholesterol molecule embedded in

a bilayer. Chua et al. recently proposed an intriguing hypothesis for squalene monooxygenase (SM),

an enzyme in the biosynthetic pathway of cholesterol located at the ER [59]. In the presence of excess

cholesterol, SM is degraded. A small AH of 12 aa is present in the SM sequence, containing several

large hydrophobic residues and a poorly developed polar face. A combination of mutagenesis data,

molecular dynamics simulations, and CD measurements suggests a feedback model, whereby the AH

is embedded in the ER membrane at low cholesterol but becomes displaced and unfolds in the cytosol
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when cholesterol concentration increases. The authors propose that the AH displacement is caused by

the membrane becoming thicker and more condensed due to cholesterol increase, with cholesterol

therefore indirectly but specifically regulating AH binding. Together with an upstream disordered

region, the unfolded AH then signals through the ubiquitination-proteasome system, inducing SM

degradation [59]. However, the mechanism by which the AH of SM senses cholesterol levels awaits

further investigation.

In plants, the 140K replication protein of the turnip yellow mosaic virus precisely targets the

outer chloroplast membrane during viral replication. The 140K replication protein contains two short

AHs, separated by a short loop. Both AHs have a high hydrophobic moment due to a well-developed

hydrophobic face containing two aromatic residues, and a polar face that is positively charged. The two

AHs have been shown to specifically target the outer chloroplast membrane in vivo [60]. This targeting

can occur even when one or the other AH is mutated, suggesting that the two AHs may be at least

partially redundant for targeting. Because the outer membrane of the chloroplast contains unique

lipids, notably sulfolipids and mono- and di-galactosyldiacylglycerol, further investigations are now

needed to assess whether specific interactions may exist between these AHs and these unique lipids,

or whether the lipids impart particular bulk properties on the outer chloroplast membrane.

7. Amphipathic Helices that Respond to Environmental Changes: Small Heat-Shock
Protein Hsp12

Whereas membranes of warm-blooded animals generally do not experience large fluctuations

in physical environmental conditions, membranes of microorganisms and plants have to be able to

adapt to changes in temperature and humidity. This can happen through changes in membrane lipid

composition or accumulation of dissacharides, notably trehalose. Recent work suggests that binding

of peripheral proteins may be another important way of changing membrane physical properties by

which a variety of cells cope with a varying environment. An interesting example is the small heat

shock protein Hsp12 in yeast, which rescues cell growth under various stress conditions by stabilizing

the plasma membrane [9]. Like many other heat shock proteins, Hsp12 is present in cells at a low copy

number under standard growth conditions but can be induced more than 100-fold by harsh conditions.

However, Hsp12 does not appear to interact with other proteins, and is in fact disordered in solution.

Instead, it can bind directly to the plasma membrane via four independently-folding non-interacting

AHs that represent the majority of its 109 aa sequence, and its binding was shown to increase the

stability of model membranes [9,16] (Figures 1e and 2e).

Expression of intrinsically disordered proteins, many of which have been demonstrated to fold

into AHs in contact with membranes, is in fact emerging as a widespread mechanism of coping with

fluctuations in physical environmental conditions. Late embryogenesis abundant (LEA) proteins

represent a large group with members identified in plants and also in some invertebrate animals [61].

Among these, members of the dehydrin family are particularly interesting: these are modular proteins

with a very particular amino-acid composition that protect plants against drought and cold. Several of

them have been shown to contain a series of short but strong AHs that fold on synthetic membranes,

for example dehydrin K2 from Vitis riparia (frost grape) [62]. This protein can protect liposomes

against fusion during freeze-thaw cycles and can lower membrane phase transition temperature.

Another member of the family, Lti30, is found in Arabidopsis. The presence of short lipid-induced

AHs in Lti30 has been confirmed by NMR, and this protein also reduced lipid phase transition of

model membranes [63,64]. Also in Arabidopsis, cold-regulated (COR) proteins target and stabilize

mitochondrial or chloroplast membranes, possibly via poorly-hydrophobic AH sequences [65,66].

Striking examples from the animal kingdom are LEA proteins from the brine shrimp Artemia franciscana,

which contain long predicted AHs of more than 100 aa and protect liposomes against desiccation,

especially in combination with trehalose [67]. Finally, a number of disordered proteins have been

identified in the unicellular tardigrades, which can survive several years of desiccation but produce no

or very little trehalose [68].
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Much work is still needed to understand how these fascinating proteins modulate membrane

properties, leading to possibly very important technological applications.

8. Amphipathic Helices Acting as Coats: The (Curious) Case of Perilipin 4

Perilipins are a family of proteins that reversibly associate with lipid droplets and mediate

in the regulation of these intracellular organelles [69]. Lipid droplets are unusual in that they

contain a hydrophobic core of neutral lipids and a monolayer of phospholipids and proteins [70].

All mammalian perilipins contain a predicted AH region that contributes to their lipid droplet

localization [71–73]. This region is by far the longest in perilipin-4: the human sequence suggests

a continuous AH of more than 950 aa, which, when folded, would measure about 140 nm. Indeed,

a purified peptide of 660 aa is unfolded in solution but adopts a highly helical conformation in the

presence of a lipid surface [10]. The AH belongs to the family of helices 3–11 and is composed of 33 aa

repeats that are remarkable in their degree of conservation and in their lack of large hydrophobic

residues (Figure 1f). The low hydrophobicity combined with the high length of this AH is essential

for its specificity for lipid droplets in cells. Accordingly, the AH interacts very weakly with bilayer

liposomes, but can directly bind to neutral lipids and act as a replacement for the phospholipid

monolayer both in vitro and in cells [10] (Figure 2f). Thus, perilipin-4 AH appears optimized for

coating lipid droplets and could be important for their stabilization, for example during adipocyte

differentiation. A striking feature of this AH is also the distribution of charged residues in the polar

face of the AH; their asymmetric organization is not optimal for interacting with a charged lipid

surface, but they may instead be mediating lateral inter-helical interactions that would stabilize the

protein coat [10] (Figure 1f).

Although perilipins have often been described as lipid droplet coats, it is currently not known

whether other members of the family can act in a manner similar to perilipin-4. Interestingly, perilipins

share some structural homology with the apolipoproteins [74], whose AHs also interact with neutral

lipids to form small lipoprotein particles [75,76]. Conversely, what makes the oil–water interface

adapt to some AHs is not well understood, although molecular dynamics simulations indicate a large

increase in lipid packing defects under conditions of low phospholipid density [77].

9. Conclusions

Except for their amphipathic character, the various AHs that are presented here are very different

in their composition (length, amino-acid sequence) and in their surface-binding properties (Figures 1

and 2). Two most contrasting examples are the ARF1 AH and the PLIN4 AH, which differ in all

parameters: their length (12 vs. 950 aa), their hydrophobic residues (Leu, Phe vs. Ala, Val, Thr),

and their polar residues (uncharged vs. charged) (compare Figure 1b,f). These differences translate

into strikingly different binding properties: ARF–GTP binds to most lipid membranes, whereas Plin4

is specific for the lipid droplet surface [10,36,37]. Similarly, the ALPS motif and the AH of α-synuclein

display contrasting chemistries and have been shown to recognize different transport vesicles [78].

In most cases, however, we still miss an atomic description of the interaction between an AH and its

preferred lipid surface.

However, factors other than the AH–lipid surface interaction can also play a decisive role in

regulating AH targeting or function. The presence of transmembrane regions in Pex11 and atlastin or

mitofusin necessarily impose their subcellular localization, making the AH a domain important for

membrane shaping, but not for targeting. In α-synuclein, the highly acidic region downstream of the

AH region exacerbates the sensitivity of the AH to physical membrane parameters [79]. Furthermore,

the properties of α-synuclein in vivo are also linked to its interactions with other proteins and to its

tendency to self-aggregate into fibrils, a process that is exacerbated by pathological mutations [80].

A different type of example is CTP:phosphocholine cytidylyltransferase (CCTα), which contains one of

the most studied AHs so far, but whose exact place of function in the cell has been highly debated [81].

A recent study indicates that, in vivo, this protein resides almost exclusively in the nucleus, suggesting
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that the inner membrane of the nuclear envelope is the only membrane that CCTα actually senses

under most physiological contexts [82]. Lastly, a full understanding of not only giant AHs such as

PLIN4, but also apolipoproteins and Hsp12, which necessarily cover very large surfaces, requires

a better evaluation of their overall conformation (straight vs. kinked), of their potential intra- and

intermolecular interactions, and of their ability to cope with the very crowded environment on the

surface of cellular organelles.
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10. Čopič, A.; Antoine-Bally, S.; Giménez-Andrés, M.; La Torre Garay, C.; Antonny, B.; Manni, M.M.; Pagnotta, S.;

Guihot, J.; Jackson, C.L. A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets.

Nat. Commun. 2018, 9, 1332. [CrossRef] [PubMed]

11. Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific

α-helical properties. Bioinformatics 2008, 24, 2101–2102. [CrossRef] [PubMed]

12. Burré, J.; Sharma, M.; Südhof, T.C. α-Synuclein assembles into higher-order multimers upon membrane

binding to promote SNARE complex formation. Proc. Natl. Acad. Sci. USA 2014, 111, E4274–E4283.

[CrossRef] [PubMed]

151



Biomolecules 2018, 8, 45 11 of 14

13. Mesmin, B.; Drin, G.; Levi, S.; Rawet, M.; Cassel, D.; Bigay, J.; Antonny, B. Two lipid-packing sensor motifs

contribute to the sensitivity of ArfGAP1 to membrane curvature. Biochemistry 2007, 46, 1779–1790. [CrossRef]

[PubMed]

14. Jensen, M.B.; Bhatia, V.K.; Jao, C.C.; Rasmussen, J.E.; Pedersen, S.L.; Jensen, K.J.; Langen, R.; Stamou, D.

Membrane curvature sensing by amphipathic helices: A single liposome study using α-synuclein and

annexin B12. J. Biol. Chem. 2011, 286, 42603–42614. [CrossRef] [PubMed]

15. Liu, Y.; Kahn, R.A.; Prestegard, J.H. Dynamic structure of membrane-anchored Arf·GTP. Nat. Struct. Mol. Biol.

2010, 17, 876–881. [CrossRef] [PubMed]

16. Herbert, A.P.; Riesen, M.; Bloxam, L.; Kosmidou, E.; Wareing, B.M.; Johnson, J.R.; Phelan, M.M.;

Pennington, S.R.; Lian, L.Y.; Morgan, A. NMR structure of Hsp12, a protein induced by and required

for dietary restriction-induced lifespan extension in yeast. PLoS ONE 2012, 7, e41975. [CrossRef] [PubMed]

17. Jao, C.C.; Hegde, B.G.; Chen, J.; Haworth, I.S.; Langen, R. Structure of membrane-bound α-synuclein from

site-directed spin labeling and computational refinement. Proc. Natl. Acad. Sci. USA 2008, 105, 19666–19671.

[CrossRef] [PubMed]

18. Hristova, K.; Wimley, W.C.; Mishra, V.K.; Anantharamiah, G.M.; Segrest, J.P.; White, S.H. An amphipathic

α-helix at a membrane interface: A structural study using a novel X-ray diffraction method. J. Mol. Biol.

1999, 290, 99–117. [CrossRef] [PubMed]

19. Vanni, S.; Vamparys, L.; Gautier, R.; Drin, G.; Etchebest, C.; Fuchs, P.F.J.; Antonny, B. Amphipathic lipid

packing sensor motifs: Probing bilayer defects with hydrophobic residues. Biophys. J. 2013, 104, 575–584.

[CrossRef] [PubMed]

20. Cui, H.; Lyman, E.; Voth, G.A. Mechanism of membrane curvature sensing by amphipathic helix containing

proteins. Biophys. J. 2011, 100, 1271–1279. [CrossRef] [PubMed]

21. Prévost, C.; Sharp, M.E.; Kory, N.; Lin, Q.; Voth, G.A.; Farese, R.V., Jr.; Walther, T.C. Mechanism and

determinants of amphipathic helix-containing protein targeting to lipid droplets. Dev. Cell 2018, 44, 73–86.

[CrossRef] [PubMed]

22. Fagarasanu, A.; Fagarasanu, M.; Rachubinski, R.A. Maintaining peroxisome populations: A story of division

and inheritance. Annu. Rev. Cell Dev. Biol. 2007, 23, 321–344. [CrossRef] [PubMed]

23. Smith, J.J.; Aitchison, J.D. Peroxisomes take shape. Nat. Rev. Mol. Cell Biol. 2013, 14, 803–817. [CrossRef]

[PubMed]
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ARTICLE

A giant amphipathic helix from a perilipin that is
adapted for coating lipid droplets
Alenka Čopič 1, Sandra Antoine-Bally1, Manuel Giménez-Andrés 1,2, César La Torre Garay1,

Bruno Antonny 3, Marco M. Manni 3, Sophie Pagnotta3, Jeanne Guihot1 & Catherine L. Jackson 1

How proteins are targeted to lipid droplets (LDs) and distinguish the LD surface from the

surfaces of other organelles is poorly understood, but many contain predicted amphipathic

helices (AHs) that are involved in targeting. We have focused on human perilipin 4 (Plin4),

which contains an AH that is exceptional in terms of length and repetitiveness. Using model

cellular systems, we show that AH length, hydrophobicity, and charge are important for AH

targeting to LDs and that these properties can compensate for one another, albeit at a loss of

targeting specificity. Using synthetic lipids, we show that purified Plin4 AH binds poorly to

lipid bilayers but strongly interacts with pure triglycerides, acting as a coat and forming small

oil droplets. Because Plin4 overexpression alleviates LD instability under conditions where

their coverage by phospholipids is limiting, we propose that the Plin4 AH replaces the LD lipid

monolayer, for example during LD growth.
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L
ipid droplets are ubiquitous cellular organelles that serve as
the primary depot for energy and lipid storage in eukaryotic
cells. As such, they play an important role in the

maintenance of cellular homeostasis and their malfunction is
associated with numerous diseases, from obesity and diabetes to
cancer and neurodegenerative diseases1–3. How proteins that
mediate LD function (for example enzymes and regulators of
lipid metabolism) are selectively targeted to the surface of this
organelle is poorly understood4.

LDs are composed of a neutral lipid core, consisting primarily
of triglycerides and sterol esters, which is covered by a monolayer
of phospholipids and other amphiphilic lipids, and by proteins4,5.
Unlike the two leaflets of a bilayer, which are physically coupled,
this monolayer can be stretched infinitely, resulting in an
increasing surface tension. LDs with high surface tension are
unstable and tend to fuse; LD fusion appears to be one
mechanism by which cells can cope with an imbalance in
synthesis of neutral lipids and phospholipids6–8. LD size appears
regulated and is highly variable between different cells, ranging
from 100 nm to 100 μm, with mature adipocytes often containing
only one large LD4,9. On the other side of the size spectrum are
the small lipoprotein particles, which, like LDs, are adapted for
harboring neutral lipids, but are secreted from cells or form
extracellularly10.

Numerous LD proteins contain regions that are predicted to
form amphipathic helices (AHs), and it has been shown in many
cases that these regions are important for LD targeting6,11–13.
AHs are also involved in targeting of proteins to other cellular
organelles. They have been shown to specifically recognize dif-
ferent features of lipid bilayers, such as surface charge, packing of
acyl chains, and membrane curvature14–17. Lipid packing and
membrane curvature promote AH recruitment through creation
of lipid packing defects, which have been analyzed extensively in
bilayer membranes18–20. It is not clear which parameters are
important for AH binding to the LD surface21. A recent in silico
analysis suggests that whereas an LD phospholipid monolayer at
zero surface tension does not behave very differently from a
bilayer, lipid packing defects increase non-linearly with increasing
surface tension of the monolayer22. This result could explain why
under some experimental conditions, AHs have been observed to
bind to LDs rather non-discriminately23–25. Finally, recruitment
of proteins to the LD surface also appears sensitive to protein
crowding26,27.

We aim to understand to what extent AHs can be selective for
the LD surface and what parameters are important for this
selectivity. The AHs that have been shown to localize to LDs
appear highly diverse, precluding any speculation about AH
localization based on sequence comparisons6,11,13,23,25,28. We
have instead focused on one particular AH present in the
mammalian LD protein perilipin 4 (Plin4). Plin4 is related in its
sequence to the other mammalian perilipins (Plin1–5), which all
localize to LDs and interact with lipid enzymes and other reg-
ulators of LD metabolism29. The carboxy-terminal portions of
perilipins are predicted to fold into a four-helix bundle, which has
been crystalized in Plin330, whereas in their amino terminal/
central region they all contain an 11-mer repeat sequence31.
These 11-mer repeat regions have been shown to mediate LD
localization of Plin1–3 and can form an AH11,13. Interestingly,
these features are also present in apolipoproteins, which form
small lipoprotein particles, but it is not clear whether the two
protein families are evolutionarily related30–32. Plin4 is the least
explored of all perilipins; it is highly expressed in adipocytes,
where it may associate preferentially with small LDs, but it is
absent from most other tissues and its physiological role is not
clear33–36. However, the 11-mer repeat sequence of Plin4 is
exceptional in terms of its length and repetitiveness (Fig. 1).

We now show that the Plin4 11-mer repeat region localizes to
LDs in different cellular models and can directly interact with
neutral lipids in vitro. The properties of this giant AH have
allowed us to manipulate it in a modular manner to dissect the
parameters that control its localization in cells. We show that the
length, hydrophobicity, and charge of the AH all contribute to its
LD localization and that these properties can to some extent
compensate for one another. Finally, we show that overexpression
of the Plin4 AH can rescue an LD size defect associated with
cellular depletion of phosphatidylcholine (PC)6,7, suggesting that
the ability of this AH to interact with neutral lipids may be
important for its in vivo function.

Results
Plin4 contains a giant AH that localizes to LDs. The length of
the predicted AH in Plin4 surpasses that of other known AHs
involved in organelle targeting by an order of magnitude (Fig. 1a
and Table 1). The defining feature of this region is the presence of
11-mer repeats; if folded, these repeats could adopt a slightly
extended version of an α-helix termed a 3–11 helix (Fig. 1b). This
type of helix has been well characterized in apolipoproteins and in
α-synuclein, where the folding is dependent on contact with
lipids31,37,38. Furthermore, the repeats in Plin4 are extremely well
conserved at the level of 33-mer (3×11-mer): 29 tandem 33-mer
repeats can be identified in the human Plin4 sequence, entirely
without deletions or insertions between them (Fig. 1c, d). These
striking properties make Plin4 an ideal model to study the
parameters that govern AH targeting to LDs.

In contrast to its exceptional length and monotonous
composition, the Plin4 AH is weak in its amphipathic character
when compared to other well-studied AHs (Table 1 and
Supplementary Fig. 1). For our analysis of Plin4 AH targeting
in cells, we chose the most conserved central portion of the
predicted AH sequence, where the small differences between the
33-mer repeats can be considered negligible (Fig. 1 and
Supplementary Fig. 1b). We expressed different fragments of
the protein as fluorescent protein fusions in HeLa cells, which do
not express endogenous Plin4 (Fig. 1d, e)39. Whereas a peptide
comprising 66 amino acids of the Plin4 AH, i.e., two 33-mers, was
completely cytosolic, increasing the length to 4×33-mer repeats
(132 aa) or 8×33-mers resulted in a fraction of LDs that were
positive for Plin4. Further extending the length of the AH to
20×33-mer repeats (660 aa) led to its localization to all LDs
(Fig. 1e, f). The size and number of LDs in cells was not
significantly affected by the expression of these constructs
(Supplementary Fig. 2a). In all cases, an appreciable amount of
cytosolic signal could also be observed, independent of the
amount of LDs in cells (cells were either grown in standard
medium or supplemented with oleic acid to induce LD
accumulation, Supplementary Fig. 2b). In contrast to the AH
region, the C-terminus of Plin4 containing the predicted 4-helix
bundle was completely cytosolic (Supplementary Fig. 2c). The
experiments presented so far were performed on fixed cells, and
we found that fixation itself augmented Plin4 AH targeting to
LDs, presumably by stabilizing the protein on LDs. However, a
similar trend of improved LD targeting with increasing length of
constructs could be observed in live cells (Supplementary Fig. 2d).

We confirmed the LD surface targeting of the Plin4 AH by
expressing it in budding yeast, which contain proteins that are
distantly related to human perilipins27,40. Similar to HeLa cells, a
robust LD signal could be observed with Plin4-12mer, whereas
Plin4-4mer remained largely cytosolic (Fig. 1g). The fact that the
same sequence is targeted to LDs in such evolutionarily distant
organisms speaks to the universal nature of AH–LD interactions,
as previously shown13,40. In addition, the Plin4-12mer was also
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detected at the periphery of yeast cells. This is in accordance with
the net positive charge of this amphipathic sequence (Fig. 1b),
which could be interacting electrostatically with the negatively
charged plasma membrane41,42. A fluorescent signal could also
sometimes be observed at the periphery of HeLa cells, but due to
cell shape and a large pool of cytoplasmic protein, this signal was
difficult to quantify. Endogenous Plin4 has been detected at the
cell periphery in adipocytes, in addition to its localization to
LDs33,35,43. Furthermore, the Plin4 AH is related in its chemistry
to the AH of α-synuclein, a protein enriched in presynaptic
termini and on negatively charged vesicles44 (Supplementary
Fig. 1). Interestingly, α-synuclein has also been observed on LDs
when expressed heterologously44,45, and the closely-related
γ-synuclein localizes to LDs in adipocytes, where it affects lipid
metabolism46. An α-synuclein AH construct containing
85 amino acids localizes to LDs slightly better than Plin-4mer
(Supplementary Fig. 2e, f), consistent with the higher hydro-
phobic moment of the α-synuclein AH (Table 1).

Overall, our analysis indicates a correlation between the
targeting of the Plin4 AH to LDs and its length: longer constructs
interact better owing to a more extensive interaction surface. A
relatively long Plin4 sequence (>66 aa) is required for targeting to
LDs, indicating that the elementary 33-mer repeat of Plin4 is a
selective but intrinsically weak determinant for LD targeting. In
this respect, we note that the Plin4 33-mer repeat displays the
smallest hydrophobicity and hydrophobic moment among all
AHs known to interact with lipid surfaces (Table 1)47.

The Plin4 AH is intrinsically unfolded in solution. Membrane-
interacting AHs are often unfolded in solution, adopting a helical
structure only upon contact with membranes, as exemplified by
the AH of α-synuclein38. Alternatively, the AH may be folded
into a different structure in the soluble form of its parent protein,
as is for example the case for CTP:Phosphocholine Cytidylyl-
transferase α (CCTα) and Arf116,37,48,49. To study the biochem-
ical properties of the different Plin4 AH fragments, we expressed
and purified them from Escherichia coli, following the procedure
that was used for purification of α-synuclein50. The Plin4 4mer,
12mer, and 20mer in bacterial lysates were resistant to
boiling, and they could subsequently be purified from the
remaining contaminants by anion-exchange chromatography

(Supplementary Fig. 3a, b). All constructs eluted from the column
at the same salt concentration, as expected considering their
similar sequences.

We used size exclusion chromatography to characterize the
hydrodynamic properties of the three Plin4 constructs.
They migrated on the column at the same elution volume as
well-folded protein standards with a twofold higher MW
(Fig. 2a, b). Because such an increase in apparent MW (i.e.,
Stokes radius) is observed for many proteins upon denatura-
tion51, this result suggests that all Plin4 constructs are
intrinsically unfolded. The lack of secondary structure was
confirmed by circular dichroism (CD) spectroscopy (Fig. 2c).
However, Plin4 fragments adopted a highly helical conformation
when incubated in 50% trifluoroethanol solution. These experi-
ments indicate that Plin4 contains a giant repetitive region that is
intrinsically unfolded but has the potential to fold into a helix
much longer than any other previously described AH (Table 1).

Plin4 AH targeting to LDs is controlled by hydrophobicity. The
amino acid composition of the Plin4 AH region is very particular:
the segment containing close to 1000 aa is almost devoid of
aromatic residues (accounting for only 0.6% of all residues in the
human Plin4 AH sequence, about 20 times less than is the ver-
tebrate average), whereas some amino acids, in particular threo-
nine, glycine, and valine, are highly enriched (Supplementary
Table 1)52. These features contribute to the low hydrophobicity
and low-hydrophobic moment of the predicted AH (Table 1).

Given the importance of Plin4 AH length for LD targeting, we
surmise that its binding to LDs is mediated by multiple weak
interactions over an extended binding surface. To probe the
nature of these interactions, we devised a mutagenesis strategy
whereby subtle mutations were repeated along the helix. As the
starting point, we used the Plin4-4mer, whose length is just above
the threshold for LD binding and thus the targeting of this helix
may be sensitive to even small perturbations. All mutants were
expressed in HeLa cells as mCherry fusions in the same manner
as the wild-type form. The LD targeting phenotypes of the
different constructs did not depend on their expression levels.

We mutated threonine residues in the non-polar face of the
helix into the structurally similar but more hydrophobic valine
(Fig. 3a and Supplementary Table 2). A single threonine to valine

Table 1 Comparison of properties of different AHs

AH Positiona Lengthb Hydr. momc Fract of residuesd Lipid-binding properties Ref

Hdr LH Ch

Hel 13-5 n.a.e 18 0.69 0.72 0.06 0.28 Tubulates liposomes 73

GMAP210 1–38 (1979) 38 0.48 0.37 0.05 0.05 Golgi vesicles/abundant packing

defects

14, 25

Nup133 247–267 (1156) 21 0.44 0.38 0.05 0.10 Nuclear pore membrane 67

CIDEA 163–180 (219) 18 0.53 0.5 0.11 0.17 LDsf 28

CCTα 236–294 (368) 59 0.48* 0.32 0.10 0.49 Nuclear envelope/ER and LDs/

liposomes

6, 16, 64

Apolipoprotein-AI 74–267 (267) 186 (7 P)g 0.39* 0.40 0.065 0.35 Lipoprotein particles 48

α-Synuclein 1–89 (144) 89 0.30* 0.47 0.02 0.24 Synaptic vesicles/neg. charged small

liposomes

44

Plin3 114–204 (434) 90 0.35* 0.37 0.01 0.23 LDs and cytosol 11

Plin4 70–1037 (1357) 968 (0.257)* 0.35 0.002 0.15 This study

a Numbers give the first and last amino acid in the protein sequence, with the total length of each protein given in brackets
b Length is based on structural data, when available, and visual inspection using Heliquest71. Prolines are considered as helix breakers
c Hydrophobic moment is calculated using Heliquest74. The AHs that contain 11-mer repeats are plotted as 3–11 helices. For longer AHs (*), the mean of hydrophobic moments of consecutive helices is

given (see Supplementary Fig. 1 for details)
d Fraction of different amino acids in the AH sequence: Hdr, all hydrophobic (A, I, L, M, V, F, W, Y); LH, large hydrophobic (aromatic) (F, W, Y); Ch, charged=acidic (D, E) and basic (K, R)
e This is an artificial AH
f This AH has only been tested as a fusion with other parts of the protein, therefore its specificity for LDs is not known
g The helix is broken by seven prolines, which induce a kink; ten separate helices in the structure (Supplementary Fig. 1)
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substitution in each of the 33-mers (1T→V mutant) resulted in a
marked improvement in LD localization, as now all LDs in
transfected cells became positive for mutated Plin4 AH. The same
was true for 2T→V and 3T→V mutations, and even for the only
slightly more hydrophobic 3T→A construct (Fig. 3b, c). The T→V
mutants could also be observed on LDs in live cells (Supplemen-
tary Fig. 4a). In contrast, a less hydrophobic 4T→S mutant with
the same number of hydroxylated residues was completely
cytosolic under all experimental conditions (Fig. 3b, c).

Concomitant with an increase in their affinity for LDs, the
hydrophobic mutants became more promiscuous for binding to
other cellular membranes. First, unlike the wild-type Plin4-4mer,
more hydrophobic mutants did not stain the nucleus, suggesting
that the non-LD localized Plin4 pool has shifted from soluble to
membrane-bound (Fig. 3b, d). Note that the Plin4-4mer fused to
mCherry is small enough to freely diffuse from the cytosol to the
nucleus. Second, a strong reticular signal was observed in cells
that highly expressed the 3T→V mutant, whereas in low-
expressing cells the signal was much brighter on LDs than in
the cytoplasm, suggesting that this AH saturates the LDs before
invading other membranes (Fig. 3e). Note that the degree of AH
localization to LDs was independent of protein expression levels.
Finally, the 3T→V mutant colocalized well with the endoplasmic

reticulum (ER) marker Sec61b, in contrast to the wild-type Plin4-
4mer (Supplementary Fig. 4b). We conclude that the low
hydrophobicity of the Plin4 AH permits a reversible interaction
with LDs over a long interaction surface while minimizing the
AH binding to other cellular membranes.

Charge of the Plin4 AH affects its targeting. We next analyzed
the polar face of the predicted Plin4 AH, which is equally striking
in composition. Almost systematically, each 33-mer repeat con-
tains three positively and two negatively charged amino acids. We
reversed the net charge of the AH from +1 to −1 by mutating 2
lysines per 33-mer to glutamine, again aiming to minimize other
changes to helical properties (Fig. 4a and Supplementary Table 2).
Despite being more hydrophobic, the 2K→Q–mCherry fusion
became cytosolic and absent from all LDs (Fig. 4b, c). However,
its targeting to LDs could be rescued by a further increase in
hydrophobicity via the addition of the previously tested 2T→V
substitution, showing that the helix is still functional. These
results suggest that, whereas net positive charge of the AH is
advantageous for LD targeting, it is not essential: a negatively
charged AH can also localize to the LD surface, excluding a large
contribution from electrostatic interactions and consistent with
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lipidomic analysis of LDs53. When we expressed the 2K→Q,
2T→V mutant in budding yeast, it could likewise be observed on
LDs (Fig. 4d). In contrast, the 2K→Q mutation largely prevented
localization of the AH to the negatively charged plasma mem-
brane, where electrostatic interactions are important for protein
targeting.

We then constructed an inverse type of mutant, 2D→N, in
which we mutated all acidic residues to glutamine (Fig. 4a). As
this mutant is more positively charged, it should bind better to
negatively charged surfaces14–16. Strikingly, we observed a
decrease in LD localization, which could be rescued by the
2T→V substitutions (Fig. 4b, c), suggesting that acidic residues
also contribute to LD-Plin4 association.

If electrostatic interactions between the Plin4 AH and the lipid
surface of LDs are not essential, why are charged residues so
conserved throughout the AH sequence? We have noted that
charge is always distributed asymmetrically in the polar face of
the Plin4 helix, with lysines clustering on one side. This
organization is unusual and is not optimal for interaction
between lysines and a lipid surface14,54. We reorganized the
charged residues in the Plin4 AH to make them more
symmetrically distributed while maintaining the same amino
acid composition and minimizing the change in hydrophobic
moment (Fig. 4b). The resulting ‘charge-swap’ mutant could not
be detected on LDs when expressed in HeLa cells. As with the
previous charge mutants, the LD-targeting of the charge-swap
AH could be rescued by the 2T→V substitution (Fig. 4d). Based
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on these observations, we hypothesize that charged residues in
Plin4 could be mediating inter-helical interactions to stabilize the
AHs on the LD surface, making recruitment of this AH
cooperative. Cooperative binding is consistent with our observa-
tion that even for helices that are recruited relatively poorly to

LDs, the maximum intensity of fluorescent signal on LDs is
similar to that of the more hydrophobic AHs of the same length
(Fig. 3b, d).

Overall, the mutational analysis of the polar face of the Plin4
AH indicates that the targeting of Plin4 to LDs strongly departs
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from the mechanism by which many AHs interact with bilayers.
In general, positively charged residues electrostatically interact
with negatively charged phospholipids. In Plin4, instead, both
positively and negatively charged residues contribute to LD
targeting and this contribution requires these residues to be
properly distributed.

Purified Plin4 AH interacts poorly with bilayer membranes.
We used purified Plin4 AH constructs to dissect how they interact
with artificial lipid surfaces. Proteins were labeled with NBD or
Alexa fluorescent probes via cysteine residues that are present in
the Plin4 AH sequence (Fig. 5a, Supplementary Fig. 3c). NBD
fluorescence increases in a non-polar environment, allowing
quantitative measurement of membrane association.

We performed binding experiments with liposomes of defined
size and composition, and varied two parameters that influence
the recruitment of many AHs to bilayers: membrane electrostatics
and lipid packing (Fig. 5b–e)14,17,18. For electrostatics, we replaced
PC with phosphatidylserine (PS). For lipid packing, we modulated
the amount of lipid packing defects (i.e., exposure of non-polar
hydrocarbons) in three different ways. First, we increased lipid
unsaturation by replacing saturated-monounsaturated (C16:0-
C18:1) phospholipids with their dioleyl equivalents (18:1-C18:1).
Second, we increased membrane curvature by decreasing the pore
size of the filters used for liposome extrusion. Third, we included
the unusual methyl-branched diphytanoyl phospholipids. These
lipids, which are not present in eukaryotic cells, have been recently
shown to strongly promote α-synuclein adsorption to liposomes
by inducing a more drastic increase in lipid packing defects than
curvature or lipid mono-unsaturation55. In all cases, NBD-labeled
proteins were incubated with liposomes at a low protein-to-lipid
ratio to minimize crowding effects. For comparison, we used α-
synuclein, whose association with bilayers has been studied
extensively17,38,44.

For most liposomes tested, the NBD fluorescence of wild-type
Plin4-4mer remained close to that observed in solution suggesting
very weak membrane adsorption. These included liposomes with
a high content of dioleoyl lipids, negatively charged liposomes,
and small liposomes (Fig. 5b–e, black symbols). Furthermore,
Plin4 AH was not recruited to liposomes containing an increasing
concentration of dioleoyl-glycerol (DOG) (Fig. 5f). DOG was
shown to promote Plin3 localization to the ER or to ER-
associated LDs56,57. The only exception was liposomes containing
diphytanoyl phospholipids, for which we observed a dramatic
increase in the fluorescence of NBD-Plin4-4mer (Fig. 5b).
Flotation experiments indicated total binding of all NBD
constructs to 100% diphytanoyl-PS liposomes, thus we used
these liposomes to calibrate the fluorescence signal and determine
the percentage of protein recruitment under all conditions. In
contrast to wild-type Plin4-4mer, the 2T→V mutant displayed a
marked increase in fluorescence in the presence of liposomes, and
its fluorescence was further augmented by increasing charge or
amount of membrane packing defects (Fig. 5b–e, green symbols).
α-synuclein, behaved as was previously shown17: it interacted

with charged and highly curved liposomes, but displayed no
binding to neutral liposomes regardless of their degree of
unsaturation (Fig. 5b–e, blue symbols).

All Plin4-AH wild-type constructs interacted with diphytanoyl
liposomes and their binding affinity increased with AH length,
similar to the effect on LD targeting in cells (Figs. 5g and 1).
Finally, we used diphytanoyl liposomes to test whether the Plin4
repetitive sequence can fold into a helix in contact with a lipid
surface. The addition of such liposomes to the Plin4 peptide
induced a large CD peak at 220 nm, indicative of very high α-
helical content (≈70%, Fig. 5h). The result shown was achieved
with the Plin4-20mer peptide that contains 660 amino acids,
which is far longer than other α-helices with a similarly
characteristic CD signature.

In conclusion, purified Plin4 AH interacts poorly with most
bilayers, but small and repetitive modifications in its amino acid
composition can dramatically improve membrane binding in a
non-selective manner, as demonstrated by the slightly more
hydrophobic 2T→V mutant. In contrast, α-synuclein displays
selectivity for bilayers combining curvature and electrostatics
(Fig. 5c–e)17. The amino acid composition of Plin4 AH therefore
seems tuned to exclude most lipid bilayers, which fits well with
the low staining of membrane-bound organelles in vivo. How-
ever, this lack of avidity for lipid bilayers does not explain why
Plin4 selectively adsorbs to lipid droplets.

Plin4 can bind directly to neutral lipids. Given our observations
that Plin4 AH selectively binds to LDs in cells and to diphytanoyl
liposomes in vitro, we considered possible similarities between
these structures. Due to the presence of methyl side chains,
diphytanoyl phospholipids form a very poorly packed bilayer with
a high degree of exposure of acyl chain carbons (i.e., lipid packing
defects)55. An in silico analysis demonstrates a sharp increase in
lipid packing defects on the phospholipid monolayer of a model
LD under conditions of increased surface tension (i.e., an increase
in neutral core to surface phospholipid ratio)22. Furthermore,
increased surface tension promotes α-synuclein binding to
inverted LDs in vitro23. At the extreme end, an LD completely
devoid of a phospholipid monolayer (consisting of only neutral
lipids) can be imagined as a lipid surface with infinite packing
defects (acyl chain carbons exposed over the whole surface). We
therefore asked if the Plin4-AH is capable of interacting
with neutral lipids in the absence of any phospholipids.

We mixed a drop of a triglyceride, triolein, with purified Plin4-
12mer at increasing protein concentrations, up to a protein-to-
lipid molar ratio 1:2000, although there is some uncertainty in
protein concentration (Methods). After vigorous vortexing, the
suspensions became turbid, suggesting that the oil was emulsified
into smaller droplets (Fig. 6a). Vortexing did not affect the
properties of the Plin4 AH (Supplementary Fig. 5a, b). Electron
microscopy of the Plin4-triolein emulsion revealed numerous
spherical droplets with a diameter of 50 to 250 nm (Fig. 6b,
Supplementary Fig. 5c). Dynamic light scattering measurements
confirmed the presence of particles in the same size range (Fig. 6c,

Fig. 4 Influence of AH charge on the selective targeting of Plin4 to LDs. a Helical wheels depicting the mutations that were introduced into Plin4 33mer. In

this series, charged residues in the polar face were mutated, and the hydrophobic face was either kept intact or modified with the previously characterized

2T→V mutation (Fig. 3). Charge-swap mutant is abbreviated as ‘csw’. The plot shows the hydrophobicity and hydrophobic moment of each mutant as

calculated using Heliquest71. b Representative images of the mutants expressed as mCherry fusions in HeLa cells LDs were stained with Bodipy. All

mutants were prepared as identical 4-mer repeats. Scale bar: 10 µm. c Quantification of HeLa images, showing % of LDs per cell positive for the indicated

Plin4 construct. 30–40 cells per experiment were quantified for each construct and the error bars depict the range of means between two independent

experiments. Two sets of mutants were analyzed at different times in the project and are therefore presented on separate plots. d Representative images of

the mutants expressed as GFP fusions in budding yeast. LDs were marked with Erg6-RFP. For consistency, the colors of the yeast images are inverted. Scale

bar: 5 µm
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d). Particle size did not change with the length of the Plin4 AH
(Supplementary Fig. 5d). We also prepared a Plin4-oil emulsion
using fluorescently labeled Plin4 and visualized it using a
spinning disc microscope. Whereas most particles were below
the resolution of the microscope, we could visualize larger oil
droplets, which were uniformly coated with fluorescent protein
(Fig. 6e).

Many protein emulsifiers interact with neutral lipids by
essentially denaturing58,59. In contrast, apolipoproteins have been
shown to interact with neutral lipids via AHs or β-sheets10. Given

the uniform fluorescent signal of Plin4 that we observe around oil
droplets, we hypothesize that Plin4 also folds into a secondary
structure in contact with oil, possibly an α-helix. Due to high light
scattering of the emulsion, we could not test this directly by CD
spectroscopy. Instead, we tested if Plin4 displayed any resistance
to proteolysis upon triolein binding, which can be an indication
of folding60. We observed that Plin4 in oil emulsion was more
resistant to trypsin than Plin4 in solution (Fig. 6f), suggesting an
increase in secondary structure. We note that in the Plin4
emulsion, the majority of the protein (≥90%) was not bound to
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oil, as estimated by flotation of the emulsion through a sucrose
gradient (Fig. 6g, h). Therefore, our trypsin assay under-estimates
the increase in protease-resistance of Plin4 on oil.

Assuming that Plin4 adopts a perfectly helical conformation in
contact with oil, one Plin4-12mer molecule would cover the area
of ~60 nm238,61. Further assuming that all triolein in the emulsion
experiment (10 μl) was consumed into oil droplets of 200 nm in
diameter, this would give us 3×1011 oil droplets with a total
surface area of 1.5 × 1017 nm2 (this is an approximation, as we
can also see larger drops of oil in the fluorescent-labeled
emulsion). If we consider that 10% of Plin4 molecules used in
the experiment (=1 nmol) are coating the oil, this gives a total
Plin4 helical area of 3.6 × 1016 nm2, in the same range as the
estimated oil surface area (Fig. 6i; see Supplementary Note 1 for
details).

Plin4 AH expression can rescue the PC depletion phenotype.
The ability of Plin4-AH to directly coat pure triolein suggests that
Plin4 could have a protective effect on LDs in cells, notably under
conditions where phospholipids are limiting. To test this
hypothesis, we turned to Drosophila Schneider 2 (S2) cells, which
have been used extensively to study factors that influence LD
homeostasis6,7,62, and where LD production can be strongly
induced by exogenous addition of fatty acids (Fig. 7a). We
expressed Plin4-12mer in S2 cells as a GFP fusion from an
inducible promoter. In the absence of oleic acid, where LDs were
largely absent, only soluble signal of Plin4-12mer-GFP was
observed in these cells. Upon oleic acid treatment, we observed
strong localization of Plin4-AH on LDs (Fig. 7a). Full-length
Plin4-12mer is efficiently expressed in S2 cells under all growth
conditions (Fig. 7b).

CTP:Phosphocholine Cytidylyltransferase 1 (CCT1), a homolog
of human CCTα, catalyzes the rate limiting reaction in the synthesis
of PC and has been shown to be particularly important for
maintaining stable LDs in S2 cells. When CCT1 is depleted,
insufficient PC production leads to a large increase in the size of
LDs, decreasing their net surface to volume ratio6, (Fig. 7c,
Supplementary Fig. 6a). We hypothesized that due to the ability
of the Plin4 AH to directly coat neutral lipids, its expression under
these conditions should decrease the size of LDs. Indeed, the CCT1
depleted cells that were expressing Plin4-12mer-GFP had signifi-
cantly smaller LDs than non-expressing cells in the same population
(Fig. 7c, d). Plin4 expression also led to a small but reproducible
decrease in the size of LDs in control cells (Fig. 7c, d; Supplementary
Fig. 6b, c). Based on these observations, we conclude that in a
cellular context, Plin4-AH can replace the PL monolayer of LDs
insufficiently covered with PLs and stabilize them.

Discussion
We have analyzed the mode of binding of a highly unusual AH,
present in the human protein Plin4, to LDs. This AH is

exceptional in terms of its length and the repetitiveness of its
primary sequence. We demonstrate that the Plin4 AH is exqui-
sitely tuned for binding to LDs and not to bilayer membranes and
that this interaction is promoted by depletion of PC from cells, in
agreement with the strong interaction of this helix with neutral
lipids in vitro. Altogether, these observations suggest that Plin4
acts as a reversible coat that contacts directly the LD core, sub-
stituting for phospholipids. By varying the properties of this
exceptional AH one at a time, we demonstrate that different AH
parameters contribute to specificity and strength of LD binding:
length, hydrophobicity, charge and charge distribution. Whereas
these properties can to some extent substitute for one another,
this may be at the expense of LD selectivity.

Lipid-interacting AHs generally adopt their helical structure
when in contact with a lipid surface, whereas in their soluble form
they are either unfolded or folded within the soluble conforma-
tion of the host protein16,44,47. We have demonstrated that the
Plin4 AH is unfolded in solution and that it folds into a super
long helix in the presence of diphytanoyl liposomes. We show
that there is a clear correlation between the Plin4 AH length and
its targeting to LDs and to synthetic liposomes (Fig. 1 and Fig. 5).
This fits with the “Velcro model”, which postulates that the
combined effect of low-affinity interactions, repeated over an
extended binding surface, leads to the stabilization of the bound
AH15. Although this model is very intuitive, the previous
experimental evidence was less direct or based on small changes
in length10,17,25,63.

A diverse array of AHs has been implicated in LD targeting,
and many of them can also bind to lipid bilayers (Table 1). Both
α-synuclein, a synaptic vesicle protein, and the nucleo-ER loca-
lized enzyme CCTα can be observed on LDs6,45,64. Furthermore,
the small GTPase Arf1 and the GTP exchange factor GBF1 utilize
AHs to target Golgi membranes and also LDs12,23,62,65. Interac-
tions of these proteins with LDs are physiologically relevant, as
they have reported roles in LD function, with the exception of α-
synuclein (but its close homolog γ-synuclein has a function in
adipocyte metabolism46).

Comparing the AHs that localize to LDs suggests that the LD
surface can accommodate a wide range of different AH chemis-
tries. Caution is warranted, as adjacent peptide sequences can
influence binding preferences of an AH66,67. In contrast, the
length and the homogenous nature of the Plin4 AH have allowed
us to evaluate the influence of different AH parameters on LD
targeting in a context-independent manner. LD targeting is per-
mitted by the weakest AH character, exemplified by the wild-type
Plin4 AH sequence (Table 1). This suggest that the LD surface is
very permissive for AH binding, in accordance with in silico
analysis demonstrating that this surface is abundant in lipid
packing defects, which promote AH adsorption22. Because
packing defects increase with decreasing density of surface
phospholipids, conditions that decrease monolayer density may

Fig. 6 Plin4 interacts directly with neutral lipids in vitro forming oil droplets. a Images of tubes in which a drop of triolein (10 µl) was vigorously mixed with

a solution (190 µl) of increasing concentration of Plin4-12mer. b Representative image of the Plin4-oil emulsion by negative staining electron microscopy.

Scale bar: 0.5 µm. c, d Dynamic light scattering measurement of the size distribution of an aliquot withdrawn from the middle of the oil emulsion obtained

with 0.5 mgml−1 Plin4-12mer, and comparison between three independent experiments, with dots representing peak maxima and vertical bars

representing polydispersity. e Plin4-oil emulsion was visualized by confocal fluorescence microscopy. Unlabeled Plin4-12mer (0.3 mgml−1) was mixed

Plin4-12mer-Alexa568 at a ratio 20:1 (magenta), and oil was stained with Bodipy (green). Left panel shows Plin4 and right panels show zoom-ins of

merged images. Scale bars: 5 µm. f Plin4 in the oil emulsion is protected from degradation by trypsin. Plin4-12mer (1 mgml−1) was incubated in buffer only

or vortexed with triolein as in a, then digested with 13 µg ml−1 (×1) or 130 µgml−1 (×10) trypsin for the amount of time indicated. Samples were analyzed by

SDS-PAGE with Sypro Orange staining. Five times less sample was loaded in the 0min controls than in the other lanes. White arrowheads indicate the

migration of molecular weight standards. Asterisks indicate the trypsin band. g, h Plin4-12mer (1 mgml−1) before (solution) or after (emulsion) the

reaction depicted in (a) was mixed with sucrose and loaded on the bottom of a sucrose gradient. After centrifugation, four fractions were collected from

the bottom and equal volumes were analyzed by SDS-PAGE with Sypro Orange staining. See Supplementary Fig. 7 for uncropped gels in f–h. i Model of a

Plin4-12mer-covered oil droplet, drawn to scale. Calculation (see main text) suggests complete coverage of the oil surface by Plin4 AH
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further promote AH binding, as has been observed23,24. The
“sticky” nature of the LD surface is also in agreement with
findings that LDs can act as sinks for various non-LD proteins to
prevent their accumulation in the cytosol3. The fact that AHs can
easily target LDs suggests that mechanisms that prevent their
localization to LDs play a significant role, for example competi-
tion between proteins for a limited LD surface26.

We show that the Plin4 AH can directly coat neutral lipids to
make small oil droplets in the absence of any other emulsifier.
Perilipins are often described as LD coat proteins, however, this

activity remains poorly characterized21,27,68. Various proteins can
function as emulsifiers and are in fact widely used for various
applications58. Many soluble globular proteins bind irreversibly to
oils, essentially undergoing denaturation. In contrast, apolipo-
protein B, which directly interacts with neutral lipids in low
density lipoprotein particles, forms a series of AHs that reversibly
bind to lipids in vitro59.

With its exceptional length, we estimate that one full-length
human Plin4 AH of 950 amino acids can replace around 250
phospholipids in a packed monolayer, and could form a surface
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that is similarly smooth. The sequence of Plin4 AH, with its high
repetitiveness, low hydrophobicity and particular charge organi-
zation, may be exquisitely adapted to forming a homogeneous
coat whose recruitment to LDs is highly reversible. It is inter-
esting to note a parallel with the structure of synthetic peptoid
nanosheets that assemble on an oil–water interface and are sta-
bilized by side-side electrostatic interactions69. Further studies
will be needed to understand the structural organization of the
Plin4 coat.

If Plin4 AH can directly interact with neutral lipids in vitro,
what is the situation in cells? Branched diphytanoyl phospholi-
pids also promote binding of Plin4 AH to liposomes, suggesting
that the presence of polar lipids does not preclude binding.
Instead, the Plin4 AH seems to bind to any surface with a very
high density of packing defects, for example an LD with increased
surface tension. Although Plin4 is highly expressed in adipocytes,
and its unusual structure suggests a specialized function, little is
known about the physiological role of this protein29. Our data
suggest that Plin4 may be optimized for coating and thereby
stabilizing LDs under conditions of limiting phospholipids.
Interestingly, Plin4 has been observed to preferentially localize to
small LDs in differentiating adipocytes33,34, suggesting a function
in regulating LD surface to volume ratio. In addition, it has been
shown to display a preference for LDs with a particular neutral
lipid composition43. Further studies are needed to analyze the
properties and dynamic behavior of this protein coat in vitro and
in cells. The AH of Plin4 is about 10 times longer than the longest
predicted AH region in other human perilipins, in which the
repeats are less conserved and sometimes broken up by deletions
or insertions. However, compared to AHs found in other pro-
teins, these AH regions are all still very long, and it will be
interesting to explore to what extent our findings on Plin4 AH
apply to perilipins in general.

Finally, we note that a study published while this paper was
under review also concludes that the LD surface can interact with
AHs of widely different chemistries70. However, the authors
suggest that one requirement for LD binding is the presence of
large hydrophobic residues in the AH, which is at odds with our
results based on Plin4. Because our study indicates that increasing
the size of hydrophobic residues promotes a general increase in
the binding of AHs to both LDs and bilayer membranes, such a
mechanism probably applies to proteins like Arf that have a short
AH and act on both LDs and on bilayer-bound organelles62,65.
For proteins like perilipins, AH length and electrostatic interac-
tions compensate for the lack of large hydrophobic residues and
lead to a more selective mode of LD binding.

Methods
Sequence analysis. Sequences of AHs were identified and plotted using Heli-
quest71. Heliquest was also used to calculate their hydrophobicity and hydrophobic
moment. For longer AHs containing more than 3 helical turns, hydrophobic
moment was calculated as the average of values for individual helices, as shown in
figures, normalizing for the length of AHs. The amino acid conservation of the 33
amino acid repeats of Plin4 was analyzed using Weblogo72.

Plasmid DNA construction. All human Plin4 expression plasmids used in this
study (Supplementary Table 3) were constructed using synthetic double-stranded
DNA fragments. Due to the highly repetitive nature of the Plin4 AH region, DNA
sequences were optimized for synthesis using the algorithm on the Eurofins website
(https://www.eurofinsgenomics.eu). Plin4-4mer, Plin4-8mer, and Plin4-
12mer–mCherry fusion plasmids for expression in HeLa cells were generated by
cloning synthetic genes (Supplementary Table 4) into the pmCherry-N1 expression
plasmid (Clontech) using XhoI and BamHI restriction sites. Note that we define a
1mer unit as 33 amino acids of the Plin4 AH sequence. Plin4-2mer was generated
by PCR-amplification of the first 67 codons of Plin4-4mer and XhoI-BamHI into
pmCherry-N1. Plin4-20mer was generated by assembling synthetic genes for Plin4-
8mer and Plin4-12mer into pmCherry-N1 using GeneArt Assembly kit (Life
Technologies), without introducing any additional nucleotides between the DNA
sequences encoding the two Plin4 fragments. The C-terminal region of Plin4,

encoding amino acids 1060-1356 of mouse Plin4, was PCR-amplified from vector
pKTD-16A (gift from Knut Dalen, University of Oslo) and cloned XhoI-BamHI
into vectors pmCherry-N1 and pEGFP-N1. Plin4 mutants were generated using
synthetic genes whose sequences were optimized for DNA synthesis. All 4mer
mutants were exact 4× repeats of a 33 amino acid sequence, based on the parental
sequence of human Plin4 fragment aa246-278 (Supplementary Table 4). All mutant
synthetic genes were cloned BamH1-XhoI into pmCherry-N1.

For expression of Plin4 constructs in Saccharomyces cerevisiae, the pRS416-
derived CEN plasmid pRHT140 (gift from Sebastien Leon, IJM, Paris) containing
ADH1promotor and GFP expression tag for C-terminal tagging, was mutated by
site-directed mutagenesis to introduce an Nhe1 restriction site and correct the
reading frame, generating pKE28. DNA sequences encoding various Plin4
fragments were then subcloned by restriction and ligation from pmCherry-N1
plasmids using HindIII and NheI restriction sites. For expression of Plin4
constructs in E. coli without any tag, various Plin4 fragments were PCR-amplified
to introduce NheI and XhoI restriction sites and ligated into pET21b (Novagen),
resulting in the elimination of the T7 and His tags from the vector. The only
exception was plasmid pKE25 for expression of Plin4-20mer, which was generated
by restriction and ligation of the Plin4-20mer DNA fragment from the pmCherry
plasmid pCLG70 using NheI and BamHI restriction sites. For this purpose, pET21b
was mutagenized by site-directed mutagenesis to include 3 stop codons after the
BamHI restriction site in the vector, resulting in pET21b-3stop. For expression of
Plin4-12mer in Drosophila S2 cells, Puro-pMTWG vector was generated by
digestion of pAWG destination vector (the Drosophila GatewayTM Vector
Collection) by EcoRV and BglII enzymes to excise the actin promoter. Puromycin
resistance gene and metallothionein promoter were obtained by PCR from pMT-
Puro vector (Riken, ref. RDB08532), and subsequently inserted by In-Fusion
reaction (Clontech) into the destination vector. Primers used are
TCATTTTTCCAGATCTCGGTACCCGATCCAGACATGATAAG (Fw);
TAGACAGGCCTCGATATCCCTTTAGTTGCACTGAGATGATTC (Rv). DNA
for Plin4-12mer was PCR-amplified and cloned into this vector using the Gateway
LR reaction technology (Life Technologies).

Yeast growth and media. Yeast strains used were BY4742 MATα his3Δ1 leu2Δ0
lys2Δ0 ura3Δ0, or into BY4742 ERG6::mRFP::KanMX6. Yeast cells were grown in
yeast extract/peptone/glucose (YPD) rich medium, or in synthetic complete (SC)
medium containing 2% glucose. Yeast was transformed by standard lithium acet-
ate/polyethylene glycol procedure. For observation of LDs, liquid cell cultures were
inoculated from a single colony and grown for 24 h at 30 °C in SC-Ura with 2%
glucose to maintain plasmid selection.

Cell culture and transfection. HeLa cells were grown in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 4.5 g l−1 glucose (Life technologies),
10% fetal bovine serum (FBS, Life technology) and 1% Penicillin/Streptomycin
antibiotics (Life technologies). For protein expression, subconfluent cells were
transfected with Lipofectamine 2000 (Invitrogen) in Optimem medium (Life
technologies) for 6 h, followed by 16 h in standard growth medium or standard
growth medium containing 250 µM oleic acid (Sigma) in complex with fatty-acid
free BSA (Sigma).

Drosophila S2 cells (ThermoFisher) were cultured in Schneider’s Drosophila
medium (Invitrogen) supplemented with 10% FBS and 1% Penicillin/Streptomycin
at 25 °C. For generating stably-transfected cells, cells were incubated with plasmid
DNA and TransIT-Insect Reagent (Mirus), followed by selection with 2 µg ml−1

puromycin (Life technologies) for 2 weeks. Protein expression from the metal-
inducible promoter was induced for 48 h with the addition of 100 µM Cu-sulfate to
the medium. Lipid droplets were induced with 1 mM oleic acid-BSA complex for
24 h.

RNAi depletion. RNAi depletion against CCT1 in stably-transfected S2 cells was
performed as described6, using the same primer sequences to generate 580 bp
dsRNA (Fwd, ACATCTATGCTCCTCTCAAGG C; Rev, CTCTGCA-
GACTCTGGTAACTGC). For RNAi control experiment, we used dsRNA against
luciferase (Fwd, AAATCATTCCGGATACTGCG; Rev, CTCTCTGAT-
TAACGCCCAGC). The dsRNA fragments were generated with T7 RiboMAX™
Express RNAi System (Promega) using two separate PCR reactions with a single T7
promoter (sequence TAATACGACTCACTATAGG appended to 5’ ends of pri-
mers). 2 × 106 cells were incubated with 30 µg of dsRNA for 30 min in serum-free
medium, followed by the addition of complete medium. Cells were incubated for
3 days. Protein expression was induced with Cu-sulfate for the last 2 days, and LDs
were induced with 1 mM oleic acid during the final day of the experiment. To
verify the depletion of CCT1, total RNA was prepared using the NucleoSpin RNA
kit (Macherey-Nagel), and quantiTect Reverse Transcription kit (Qiagen) was used
to synthesize complementary DNA. Quantitative real-time PCR was performed in
triplicates using Light Cycler 480 SYBER Green I Master Kit (Roche) with primers
for CCT1 (Fwd, GGAAGCGGACCTACGAGATA; Rev, GTGCCCTGATCCT-
GAACTT), and for GAPDH as control (Fwd, ATGAAGGTGGTCTCCAACGC;
Rev, TCATCAGACCCTCGACGA).
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Western blot analysis. Total cell lysates from S2 cells were obtained by incubating
harvested cells in ice-cold lysis buffer (300 mM NaCl, 100 mM Tris-HCl pH 8, 2%
NP-40, 1% deoxycholate, 0.2% SDS, 10 mM EDTA, ‘Complete mix’ protease
inhibitors from Roche), followed by centrifugation and denaturation in Laemmli
buffer at 95 °C for 5 min. Proteins were separated on 13% SDS-PAGE gel and
transferred to a nitrocellulose membrane (GE Healthcare). Rabbit polyclonal αGFP
antibody (Invitrogen, A11122, 1:2000 dilution) was used for detection of Plin4-
12mer-GFP, followed by HRP-conjugated secondary antibody. Mouse monoclonal
α-tubulin (Sigma T9026, 1:4000 dilution) was used for loading control. ECL
Western Blotting kit (GE Healthcare) was used for detection, and images were
obtained using Fujifilm LAS3000.

Fluorescent microscopy. Transfected HeLa cells were fixed with 3.2% paraf-
ormaldehyde (Sigma) in PBS for 30 min at room temperature. After washing three
times with PBS, cells were stained with Bodipy 493/503 (Life Technologies) at 1 µg
ml−1 for 30 min at room temperature and washed three times with PBS. Cells were
mounted on coverslips with Prolong (Life technologies). Images were acquired with
a TCS SP5 confocal microscope (Leica) using a ×63/1.4 oil immersion objective
driven by LAS AF Lite software. Alternatively, images were acquired with an
LSM780 confocal microscope (Zeiss) using a ×63/1.4 oil immersion objective and a
PMT GaAsP camera, driven by ZEN software. Mid-focal plane images were
selected and they were processed with ImageJ and with Canvas Draw software.
Figures were compiled in Canvas Draw.

Yeast cells were grown to post-diauxic shift (24 h) in selective media and
imaged directly on glass slides. Images were acquired at room temperature with a
DMI8 (Leica) microscope, equipped with an oil immersion plan apochromat 100
objective NA 1.4, an sCMOS Orca-Flash 4 V2+ camera (Hamamatsu), and a
spinning-disk confocal system CSU-W1 (Yokogawa - Andor) driven by
MetaMorph software. 5 z-sections separated by 0.5 µm were acquired. For
quantification of plasma membrane and LD signal in yeast, images were acquired
with LSM780 confocal microscope as described above. To visualize LDs and stably-
transfected proteins in Drosophila S2 cells, cells were stained with Autodot
autophagy visualization dye (Clinisciences) for 1 h and washed two times with PBS,
after which they were resuspended in fresh growth medium and imaged directly on
untreated glass slides using the CSU-W1 spinning-disk set-up described above. For
3D-reconstitutions of S2 cells, between 16 and 25 z-sections separated by 0.2 µm
were acquired for each image.

Image analysis. Images of HeLa and yeast cells were analyzed using ImageJ. To
determine the fraction of LDs in HeLa cells that were positive for transfected
fluorescent protein, a single z-section that contained the most LDs in a cell was first
selected. All LDs in the selected cell section were identified in the green (Bodipy
dye) channel using the ‘Analyze particle’ plug-in. The total area of LD fluorescent
signal in the cell was also measured, and the average size of LDs was determined by
dividing these two values. LDs positive for fluorescent protein were then identified
by determining a threshold value for the red fluorescent signal (mCherry-protein
fusion), ×1.4 above average cellular fluorescence, and counting all LDs with
fluorescence above this threshold. This number was divided by the total LD
number to calculate the fraction of LDs in one cell section positive for protein. To
determine the maximum intensity of fluorescent protein signal on LDs, five
brightest LDs per cell were selected manually and the maximum fluorescent signal
was determined from a line-based profile using the ‘Find peaks’ plug-in. The
average of these five maxima was taken as the maximum LD fluorescence intensity.
Similarly, the maximum cytoplasmic fluorescence was determined from the five
maxima of line-based profiles going from the nucleus to the cell exterior, with lines
drawn manually and not crossing any LDs. The average protein fluorescence in the
nuclear area was determined by placing three squares in the nucleus of each cell
and calculating their average fluorescence. Data was processed in Microsoft Excel.

To determine the diameter of LDs in Drosophila S2 cells, 3D-representations of
S2 cells were generated from z-stacks and LDs were identified using spot detection
with Imaris image analysis software (Bitplane, Oxford). Diameters of all spheres
representing single LDs were recorded. LDs that were very close together and could
not be identified by the software as individual spheres were manually eliminated.
Therefore, the total number of LDs identified in each cell is lower than the actual
number. LDs in all isolated cells transfected and non-transfected in a selected
image were quantified. Data were processed in Excel and in KaleidaGraph.

Protein purification. Purification and labeling of full-length α-synuclein were as
previously described17. The protocol for purifying the various Plin4 constructs was
adapted from that used for α-synuclein50, and included two steps: boiling to pre-
cipitate most proteins except Plin4, which is heat resistant, followed by ion
exchange chromatography. In contrast to α-synuclein, Plin4-AH has a net positive
charge at neutral pH (pI= 9.56 for the amphipathic region [95–985]). Therefore,
Plin4 fragments were purified by cation chromatography. E. coli cells BL21DE3
transformed with expression plasmids were grown to O.D. ≈0.6 and induced with
1 mM IPTG for 3–4 h at 37 °C. Cells from 0.25 to 0.5 l cultures were collected by
centrifugation and frozen. The bacterial pellet was thawed in 25 mM Tris, pH 7.5,
120 mM NaCl, supplemented with 1 mM DTT, 0.1 mM PMSF, and other protease
inhibitors (Roche complete cocktail, phosphoramidon, pepstatin, bestatin). Cells
were broken by three passages in a french press or by sonication. The lysate was

centrifuged at 100,000 × g for 30 min at 4 °C in a TI45 rotor (Beckman). The
supernatant in centrifuge tubes was immersed in boiling water for 30 min. The
resulting cloudy suspension was centrifuged at 100,000 × g for 15 min at 4 °C to
remove precipitated material. The supernatant was dialyzed against 25 mM Tris,
pH 7.5, 10 mM NaCl, 1 mM DTT for 2 h in a cold room using Spectra/Por
membranes with a cut off of 6000 Da (Spectrum labs) and then centrifuged again at
100,000 × g for 20 min at 4 °C. For chromatography, the final supernatant was
loaded onto a Source S column (7.5 ml; GE Healthcare) and submitted to a salt
gradient from 1mM to 400mM NaCl (8 column volumes) at a flow rate of 4 ml
min−1 using an Akta purifier system (GE Healthcare). All Plin4 constructs (4mer,
12mer, 20mer, 4mer 2T→V mutants), eluted at approximately 100 mM NaCl.
Alternatively, the purification was performed using a 1 ml hand-driven column
(HiTrap, GE Healthcare) using a step salt gradient. After SDS-PAGE analysis of the
chromatography fractions, the protein pool was divided in small aliquots, flash
frozen in liquid nitrogen and stored at –80 °C. Of note, the lack of aromatic
residues in Plin4-AH prevents the determination of its concentration by UV
spectroscopy or by Coomassie Blue-based assays (e.g. Bradford). As a first esti-
mation, we loaded the various Plin4 aliquots on SDS-PAGE along with BSA
standards and stained the gel with Sypro Orange (Life Technologies), which
interacts with SDS. This procedure gave a typical Plin4 concentration in the range
of 1–2 mgml−1, except in the case of the 2T→V mutant, where the purification
yield was lower (concentration ≈0.3 mgml−1). We also used a more accurate
protocol of determining the protein concentration through cysteine quantification
with the Edman reagent (Sigma), relying on numerous cysteines in Plin4-4mer,
12mer and 20mer constructs (4, 4, and 10, respectively). This procedure was
performed after protein dialysis to eliminate DTT and gave a 2.5 higher con-
centration of protein for the wild-type constructs (in the range of 3.5 mg ml−1).

Analytical gel filtration. Plin4-4mer, 12mer and 20mer were analyzed by gel fil-
tration on a Superose-12 column (10×300mm, GE Healthcare). Proteins were injected
at a starting concentration and volume of 3.5mgml−1 and 100 µl. Elution was per-
formed at room temperature in 25mM Tris, pH 7.7, 125mM NaCl, 0.5mM DTT at a
flow rate of 0.5mlmin−1. Absorbance was continuously measured at 215 nm. Frac-
tions were collected and analyzed by SDS-PAGE using Sypro Orange staining. To
calibrate the column, the following standards were used: cytochrome C (MW: 12.4
kDa, Stoke’s radius: 17 Å), Anhydrase Carbonic (29 kDa, 20 Å), Bovine Serum Albu-
min (67 kDa, 35 Å), ß amylase (200 kDa, 54 Å) and Ferritin (443 kDa, 61 Å).

Circular dichroism. The experiments were done on a Jasco J-815 spectrometer at
room temperature with a quartz cell of 0.05 cm path length. Each spectrum is the
average of several scans recorded from 200 to 260 nm with a bandwidth of 1 nm, a
step size of 0.5 nm and a scan speed of 50 nmmin–1. Control spectra of buffer with
or without liposomes were subtracted from the protein spectra. The buffer used
was Tris 10 mM, pH 7.5, KCl 150 mM.

Protein labeling with fluorescent probes. Purified Plin4 constructs were labeled
with fluorescent probes via endogenous cysteines. For NBD (nitrobenzoxadiazole)
labeling, 1 ml of Plin4-4mer, 12mer, 20mer, or 2T→V 4mer mutant was dialyzed on
a NAP10 column in Hepes 50 mM K-Acetate 120 mM, pH 7.4 (HK buffer) to
remove DTT. The protein fraction was then incubated for 5 min at room tem-
perature with 8–20 mol excess of NBD-iodoacetamide (Life Technologies), corre-
sponding to a 2 mol excess over cysteines. After the addition of 2–5 mM DTT to
stop the reaction, the mixture was loaded again onto a NAP10 column to separate
the labeled protein from the excess of probe. The fractions were analyzed by SDS-
PAGE and UV-visible chromatography. For labeling with Alexa C5 maleimide
probes (Life Technologies), we used a similar protocol except that the probe was
incubated with the protein at 1:1 ratio for 5 min at 4 °C before the addition of DTT
to stop the reaction.

NBD fluorescence assay for liposome binding. Dry films containing the desired
amount of phospholipids and cholesterol were prepared from stock solutions of
lipids in chloroform (Avanti Polar Lipids) using a rotary evaporator. The film was
resuspended in 50 mM Hepes, pH 7.2, 120 mM K-acetate at a concentration of 2
mM phospholipids. After five cycle of freezing in liquid nitrogen and thawing in a
water bath at 30 °C, the resulting multi-lamellar liposome suspension was extruded
through polycarbonate filters. Filters with a pore size of 100 nm were used for all
experiments except when studying the effect of membrane curvature. In this case,
the liposome suspension was sequentially extruded through 200, 100, 50, and 30
nm pore size filters, or sonicated with a titanium probe to get the smallest lipo-
somes. The size distribution of the liposomes was determined by dynamic light
scattering using a Dynapro apparatus.

Fluorescence emission spectra upon excitation at 505 nm were recorded in a
Jasco RF-8300 apparatus. The sample (600 µl) was prepared in a cylindrical quartz
cuvette containing liposomes (150 µM lipids) in HK buffer supplemented with 1
mM MgCl2 and 1 mM DTT. The solution was stirred with a magnetic bar and the
temperature of the cuvette holder was set at 37 °C. After acquiring a blank
spectrum, the protein was added and a second spectrum was determined and
corrected for the blank. The Plin4 4mer, 12mer, and 20mer constructs were used at
120, 40, and 24 nM, respectively, in order to have the same concentration of amino
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acids (≈15 µM) and thus the same amino acid/phospholipid ratio (≈1:10) in all
experiments. The fraction of liposome bound protein was defined as (F−Fsol)/
(Fmax−Fsol), where F is the actual fluorescence level at 540 nm, and Fsol and Fmax

are the fluorescence levels of the NBD-labeled construct in buffer and in the
presence of diphytanoyl-PS liposomes, respectively. Flotation experiments in the
presence of diphytanoyl-PS liposomes indicated that all Plin4 constructs as well as
α-synuclein were completely bound to these liposomes.

Preparation and analysis of protein-oil emulsions. Dilutions of purified Plin4-
12mer (up to 1 mgml−1, or 25 µM) were prepared in HK buffer supplemented with
1 mM MgCl2 and 1 mM DTT. 190 µl of each solution was pipetted into a 600 µl
glass tube, and a 10 µl drop of triolein (Sigma) was added to the top. They were
vortexed for three cycles of 30 s on 30 s off at 25 °C under argon atmosphere.
Images of resulting emulsions were taken with a phone camera. Measurements of
the mean hydrodynamic radius of the Plin4-oil droplets by dynamic light scattering
were performed on a sample taken from the middle of the tube, avoiding any un-
reacted oil that remained at the top of the emulsion, at least 3 h after vortexing to
prevent the interference of gas bubbles with the measurement. Measurements were
performed on a Zetasizer nano ZS machine (Malvern) at 25 °C, and data were
processed using the CONTIN method.

For analysis by electron microscopy, samples of emulsion were deposited on
glow discharge carbon-coated grids and negatively stained with 1% uranyl acetate.
They were observed with a JEOL 1400 transmission electron microscope using a
Morada Olympus CCD camera.

For analysis by fluorescent microscopy, emulsions were prepared as described,
except that Plin4-12mer was mixed with Alexa-568-labeled Plin4-12mer at a ratio
20:1, and then mixed with triolein containing 2 µg ml−1 Bodipy 493/503.
Fluorescent oil droplets were visualized directly on untreated glass coverslips with
the spinning-disk confocal system. 10 to 15 z-sections of 0.2 μm were acquired in
order to visualize both small and large droplets.

Separation of Plin4-oil emulsion on sucrose gradients. The Plin4-oil emulsion
was prepared as above using 1 mgml−1 Plin4-12mer. Next, 60% w/v solution of
sucrose in HK buffer supplemented with 1 mM MgCl2 and 1 mM DTT was added
to the emulsion, to obtain a final sucrose concentration of 30%. 450 µl of the
resulting suspension was loaded on the bottom of a centrifuge tube and overlaid
with a step sucrose gradient consisting of 300 µl 20% w/v sucrose, 300 µl 10% w/v
sucrose, and finally with 100 µl of buffer alone. The samples were centrifuged at
50000 rpm (214,000 × g) in a Beckman swing-out rotor (TLS 55) for 80 min at 8 °C.
Four fractions were carefully collected from the bottom with a Hamilton syringe,
having the following volumes: 450 µl, 300 µl, 320 µl, and 80 µl, respectively. Equal
volumes of all fractions were analyzed by SDS-PAGE and proteins were stained
with Sypro Orange (Life Technologies). The gels were imaged with a FUJI LAS-
3000 fluorescence imaging system.

Trypsin protection assays. Plin4-oil emulsion was prepared using Plin4-12mer
(1 mgml−1) and triolein as described above. At time zero, 100 µl of this emulsion
or of Plin4-12mer starting solution were mixed with 13 or 130 µg ml−1 trypsin
(Sigma) solution. At the indicated times, 30 µl of samples were withdrawn and
added 3 µl of 100 mM PMSF (Sigma) to stop the reactions, then stored on ice.
Reactions were analyzed by SDS-PAGE and Sypro Orange staining.

Data availability. All plasmids, DNA sequences and bacterial or yeast strains used
in this study are available upon request (see Supplementary Tables 3 and 4). All
relevant data are available from the authors.
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Résumé en français 

Gouttelettes lipidiques 

Les organismes ont besoin de stocker de l'énergie afin de survivre dans les conditions 

fluctuantes de leur environnement. L'énergie peut être stockée dans des molécules 

riches en énergie. Les triacylglycérides (TAG) sont des molécules très réduites 

disponibles pour l'oxydation. Les TAG sont une sorte de lipides neutres. Les lipides 

neutres sont des lipides qui n’ont pas de groupes chargés et polaires. Pour cette raison, 

ces molécules son très hydrophobes et sont immiscibles dans l’eau. Les TAG et d'autres 

lipides neutres, comme les esters de stérol (STE), sont stockés dans des gouttelettes 

lipidiques (LDs). Les LDs sont des organites intracellulaires. Ses principales fonctions sont 

de stocker et de fournir de l'énergie et des composés membranaires en fonction de l'état 

métabolique de la cellule. Les LDs ont une structure sphérique. Au centre de la sphère, 

on trouve les lipides neutres comme les TAG et les STE. À leur surface, les LD possèdent 

une monocouche de phospholipides et de protéines associées.  

D'un point de vue physique, les LD peuvent être considérées comme la phase dispersée 

d'une émulsion huile dans l'eau. La phase continue est le cytosol des cellules. L'absence 

d'interactions cohésives entre les deux composants de l'émulsion génère une tension 

de surface. Les agents de surface, ou surfactants, sont des molécules amphipathiques 

qui se situent à l'interphase et réduisent la tension de surface, produisant une émulsion 

plus stable. Les LD contiennent de nombreux tensioactifs à leur surface : divers types de 

phospholipides, protéines, des acides gras ou du diacylglycérol. Lorsque les 

concentrations de tensioactifs dans la surface lipidique neutre sont faibles, l'émulsion 

sera thermodynamiquement instable car il y a beaucoup de surface hydrophobe 

exposée à l'environnement aqueux du cytoplasme. Lorsque cela se produit, les LD sont 

fusionnés pour devenir plus stables. 

Ciblage des protéines aux les gouttelettes de lipides 

Les protéines présentes sur les LDs servent de médiateurs à leur métabolisme et à leurs 

fonctions. Les protéines peuvent interagir avec la surface des LD par les motifs suivants:  
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 Hélices amphipathiques (AHs) : s'agit des structures protéiques secondaires 

d’hélice ou les acides aminés (aa) sont séparés en deux faces distinctes : une 

hydrophobe et une polaire. Les protéines contenant des AHs ciblent des LD 

depuis le cytoplasme (Annexé I, Giménez-Andrés et al. 2018). 

 Épingles à cheveux hydrophobes : des aa hydrophobes sont insérés dans la 

monocouche des phospholipides et sont flanqués des régions polaires exposées 

au cytosol. Ces protéines se transloquent depuis le réticulum endoplasmique 

vers les LDs.  

 Modifications des lipides. Les conjugaisons lipidiques telles que la palmitylation, 

la prénylation ou la myristoylation peuvent servir de médiateurs pour le ciblage 

des membranes, ainsi que pour cibler des LDs.  

 Association périphérique via une autre protéine. Ce sont des protéines qui se 

localisent aux LD en interagissant avec les protéines déjà présentes dans les LD.  

Périlipines 

Les périlipines (Plins) sont une famille de protéines qui ciblent et régulent des LD de 

manière non enzymatique. Certaines d'entre elles jouent un rôle clé dans la régulation 

de la lipolyse. Plin1 est bien caractérisé comme inhibiteur ou promoteur de la lipolyse 

en fonction de son état de phosphorylation dans les adipocytes. Cinq Plins ont été 

identifiées chez les mammifères.  

Les Plins sont composées de trois régions principales : la région PAT, la région 11-mer et 

la région C-terminale (Fig. 11-1). La région de 11-mer cible des LD de la périlipine 1 

(Plin1), la périlipine 2 (Plin2) et la périlipine 3 (Plin3). Il est prévu que cette région devrait 

former une hélice 3-11, trois tours chaque onze aa. Par leur séquence d’aa, l’hélice serait 

un AH. Il convient de remarquer que la séquence 11-mer de la périlipine 4 (Plin4) est 

exceptionnelle en termes de longueur et de répétitivité au niveau de trois répétitions 

de 11-mers, qui font une 33-mer. La Plin4 humain a environ 950 aa d'AH prédit, soit 10 

fois plus que les autres Plins.  
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Fig. 11-1. Résumé des séquences de Plins. Les répétitions 11-mer sont marquées en 
orange, la partie C-terminale en bleu, le domaine PAT en violet et en rouge les aa pour 
l’interaction avec les mitochondries. 

La Plin 1 est exprimé dans les adipocytes, alors que Plin2 et Plin3 ont une expression plus 

omniprésente. Plin4 s'exprime principalement dans les adipocytes, mais aussi dans les 

cellules squelettiques du cœur et muscle. La périlipine 5 est exprimée dans les tissus 

hautement oxydatifs. Une expérience d’immunofluorescence montre que la Plin3 et la 

Plin4 sont localisés sur les petites LD des adipocytes 3T3-L1 en culture. La Plin2 est lié 

aux LD intermédiaires, tandis que la Plin1 est présent à la surface des grosses LD.  

Les LDs et les maladies 

Le stockage excessif ou insuffisant des lipides est associé à de nombreux états 

pathologiques. Parmi celles-ci, on peut citer l'obésité, les maladies hépatiques grasses, 

l'insulinorésistance, l'athérosclérose, les maladies infectieuses, le développement du 

cancer et les maladies neurodégénératives. L'excès d'accumulation de graisse dans le 

tissu adipeux peut être obtenu soit par l'augmentation de la masse des adipocytes, 

l'hypertrophie ; soit par leur nombre, l'hyperplasie. Les adipocytes hypertrophiques ont 

une fonction cellulaire altérée, ce qui entraîne une inflammation et une réponse 

hormonale altérée. La taille des adipocytes a été proposée comme un biomarqueur 

potentiel pour les altérations et les maladies cardiométaboliques.  

Une faible vascularisation des tissus tumoraux entraîne des conditions défavorables 

telles que le stress oxydatif et le manque de nutriments. Pour survivre, les cellules 

cancéreuses doivent s'adapter en reprogrammant leur métabolisme. Les voies 

métaboliques des lipides sont fortement affectées par cette reprogrammation. Par 
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exemple, les cellules cancéreuses présentent une augmentation de l'absorption et de la 

production des lipides et obtiennent plus d'énergie de l'oxydation des acides gras.  

Objectifs du doctorat 

La manière dont les protéines interagissent avec des emplacements intracellulaires 

spécifiques où elles exercent leur fonction est une question importante en biologie 

cellulaire. Dans le cas de l'interaction entre les LD et les protéines, cette question reste 

méconnue.  

L'objectif de mon doctorat est de comprendre comment l’AH de Plin4 et les AHs d'autres 

Plins interagissent avec les LDs. Pour y parvenir, j'ai utilisé des systèmes 

biochimiquement reconstitués avec des protéines purifiées et des lipides neutres, et la 

levure bourgeonnante Saccharomyces cerevisiae comme cellule modèle.  

Résultats 

Tout d'abord, nous avons utilisé l'AH de Plin4 comme modèle pour étudier comment les 

AHs interagissent avec les LDs. Nous avons obtenu les résultats suivants (Chapitre 6, 

Annexé II) :  

 Une plus grande longueur de l’AH de Plin4 permet de mieux cibler des LDs. 

 Une hydrophobicité plus élevée améliore également la liaison des LDs. 

Cependant, il en résulte également que Plin4 interagit plus fortement avec 

d'autres membranes, le rendant moins spécifique pour les LDs.  

 La modification de la charge pour la rendre plus positive ou négative réduit le 

ciblage des LDs, mais elle peut être compensée par une plus grande 

hydrophobicité.  

 L’AH de Plin4 est capable d'interagir avec des lipides neutres directement in 

vitro, en formant des particules d'huile entourées de L’AH de Plin4 (Fig. 11-2). 

Ces expériences suggèrent que l’AH de Plin4 peut remplacer la monocouche des 

phospholipides sur les LDs. Dans cellules appauvri en phospholipides les LDs ont 

une taille plus grande. L'expression de l’AH de Plin4 réduit la taille des LDs dans 

ces cellules, en soutenant le modèle.  
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Fig. 11-2. Plin4 interagit directement avec les lipides neutres in vitro, formant des 
gouttelettes d'huile. A. Images des tubes dans lesquels une goutte de trioléine (10 µl) a 
été vigoureusement mélangée avec une solution de concentration croissante de Plin4 12-
mer (190 µl). B. Image représentative de l'émulsion d'huile de Plin4 par microscopie 
électronique à coloration négative. Barre d'échelle : 0,5 µm. Réalisé par Sophia Pagnotta, 
service de microscopie électronique Université Côte d'Azur, CNRS, IPMC. C. 
Distribution de taille obtenue par la technique de diffusion dynamique de la lumière d'une 
aliquote prélevée au milieu de l'émulsion d'huile obtenue avec 0,5 mg/ml Plin4 12-mer. 
D. Comparaison de la distribution des gouttelettes entre des Plin4 avec différentes 
longueurs de les AHs : Plin4 4-mer, Plin4 12-mer et Plin4 20-mer. Trois expériences 
indépendantes sont présentées. Les points représentent les pics des maxima et les barres 
verticales représentent la polydispersité. 

Afin d'évaluer l'interaction de l’AH de Plin4 avec les lipides neutres, j'ai développé des 

essais pour évaluer la dynamique des protéines sur les gouttelettes d'huile et la stabilité 

des gouttelettes d'huile formées in vitro en utilisant des protéines purifiées et marquées 

par fluorescence. J'ai observé la dynamique des protéines en observant la récupération 

de la fluorescence à la surface des gouttelettes d'huile après le photoblanchiment de la 

protéine fluorescente. La dynamique des protéines en temps réel pendant l'adsorption 

et la désorption a été évaluée avec le système de micro fluidique développé en 

collaboration avec Tadej Emeršič et Jure Derganc. Pour observer la stabilité des 

particules d'huile formées, j'ai utilisé la technique de diffusion dynamique de la lumière 

pour suivre la taille des gouttelettes d'huile-protéine dans le temps et évalué 
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l'agrégation des grosses particules avec la microscopie optique. Ces techniques pourront 

être utilisées à l'avenir pour caractériser l'interaction d'autres AH avec les LDs.  

Mes résultats sont les suivants (Chapitre 7) : 

 Les gouttelettes formées par l’AH de Plin4 et les lipides neutres sont très stables.  

 Plin4 est remarquablement immobile à la surface de ces gouttelettes. 

Ensuite, j'ai comparé l’AH de Plin4 avec les AH d'autres Plins. J'ai commencé par 

exprimer la Plin1, la Plin2 et la Plin3 dans des souches de levure bourgeonnante ayant 

des permissibilités différentes pour l’interaction avec des LDs. J'ai également purifié l’AH 

de la Plin3 et j’ai testé son interaction avec l'huile in vitro. J'ai développé un test 

fluorescent pour observer l'échange des AHs à la surface des gouttelettes d’huile. Les 

résultats de ces expériences sont les suivants (Chapitre 7) :  

 L’AH de Plin4 cible mieux les LDs que les outres Plins en raison de sa longueur. 

Cependant, un fragment plus court de l’AH de Plin4, de longueur similaire aux 

autres AHs des Plins, cible des LDs dans la même mesure que Plin2 et Plin3 AH, 

ce qui correspond à leur composition globale similaire. Tous ces AHs ont une 

faible hydrophobicité. L’AH de la Plin1 cible les LDs mieux, en accord avec son 

hydrophobicité augmenté. 

 En revanche, l’AH de la Plin1 et l’AH de la Plin3 sont beaucoup plus dynamiques 

à la surface des LD dans la levure que l’AH de Plin4.  

 L’AH de la Plin3 purifié peut solubiliser l'huile. Cependant, les gouttelettes 

formées par elle sont moins stables que celles formées avec un fragment de l’AH 

de Plin4 de longueur comparable.  

 L’AH de la Plin3, mais pas un fragment de l’AH de Plin4 de longueur similaire 

(Plin4 4mer), peut être rapidement remplacé à la surface des gouttelettes d'huile 

par un fragment de l’AH de Plin4 plus long (Plin4 12mer) (Fig. 11-3). 
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Fig. 11-3. Test d'échange protéique dans les émulsions des Plin4 et Plin3. A. Images 
des émulsions par microscopie optique en champ clair (BF) et fluorescence aux moments 
indiqués avant et après l’addition de Plin4 12mer marqué par fluorescence. Re-vortex est 
la condition avec une incorporation maximale de Plin4 12mer marqué. Barres d'échelle : 
5 µm. B. Quantification des expériences indiquées en A. Le nombre de particules 
fluorescentes (moyenne ± écart type) a été déterminé à partir de quatre champs séparés 
dans la même expérience. Les graphiques sont représentatifs d'au moins deux 
expériences indépendantes. Les astérisques indiquent un regroupement de particules.  

Ces résultats suggèrent que les différences entre le comportement de l’AH de Plin4 et 

d'autres AHs des Plins sur les LDs ne proviennent pas seulement des différences de 

longueur. Nous avons émis l'hypothèse que la séquence aa de l’AH de Plin4 est 

importante pour sa stabilité à la surface des LDs. Les positions des résidus polaires et 

chargés (lysine, acide glutamique, glutamine et asparagine) sont fortement conservées 

dans les répétitions de l’AH de Plin4. Ces résidus ne devraient pas interagir directement 

avec la surface des LDs. Les résultats de ces expériences sont les suivants (Chapitre 7) :  

 La mutagenèse des résidus polaires et chargés a un fort effet sur le ciblage des 

LDs de l’AH de Plin4.  

 Un mutant de l’AH de Plin4 avec une redistribution des résidus positifs dans sa 

face polaire a eu un ciblage réduit aux LDs, mais a toujours ciblé la membrane 
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plasmique dans la levure. Une fois purifié, ce mutant a été efficacement 

remplacé à la surface des gouttelettes d'huile par le type sauvage l’AH de Plin4 

de même longueur.  

J'ai comparé les séquences de l’AH de Plin4 de différents mammifères. Dans chaque 

séquence orthologue, les répétitions de Plin4 33-mer sont très bien conservées, y 

compris les positions des résidus polaires. Cependant, le nombre de répétitions varie 

selon les espèces. Des résidus spécifiques dans la face polaire de l’AH de Plin4 peuvent 

favoriser l'auto stabilisation par des interactions latérales entre les chaînes de l’AH de 

Plin4 repliées (Fig. 11-4). 

                

Fig. 11-4. Interaction de l’AH de Plin4 avec la surface des LDs. A. L’AH de Plin4 est 
dépliés en solution et se plie lors de l'interaction avec la surface des LDs. Ce processus 
est susceptible de se produire également pour d'autres AHs des Plins.  B. Modèle des 
molécules de l’AH de Plin4 interagissant entre elles sur la surface des LDs.  

Notre modèle pour l'interaction des AHs des Plins avec les LDs est le suivant : Plin4 est 

déplié en solution et acquiert une conformation fortement hélicoïdale lors de 

l'interaction avec une surface lipidique (Fig. 11-4 A) (Chapitre 6) (Čopič et al. 2018). Cela 

s'applique probablement à d'autres AH des Plins. Contrairement aux autres AHs des 

Plins, nous proposons qu'une fois que l’AH de Plin4 est repliée sur la surface des LDs, 

elle interagit latéralement avec les AHs adjacents par des interactions électrostatiques, 

formant une manteau protéique immobile sur la surface de la LD (Fig. 11-4 B) (Chapitre 

7). Ces interactions entre les hélices expliqueraient la grande stabilité des particules 

lipidiques recouvertes par Plin4. Des interactions similaires ont été observées entre les 
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AH de l'apolipoprotéine A-I, qui s'enroule autour de petites particules lipidiques formant 

des lipoparticles de haute densité. 

 Une souris knock-out du Plin4 a montré un phénotype faible. Il y avait une certaine 

réduction du stockage de TAG dans le muscle cardiaque et une baisse de l'expression de 

la périlipine 5. Cependant, la variabilité du nombre et de la composition des répétitions 

de Plin4 33mer chez les mammifères, ainsi que leur forte conservation au sein d'une 

même espèce, suggèrent un rôle important de Plin4 dans l'évolution des mammifères. 

Nous avons montré que Plin4 se lie directement aux lipides neutres et les stabilise. Plin4 

enrobe et réduit la taille des LDs dans les cellules dépourvues des phospholipides. Pour 

comprendre la fonction physiologique de Plin4, il faut l'étudier dans des adipocytes en 

culture. 
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  Titre : Interaction des hélices amphipathiques des périlipines avec des gouttelettes lipidiques 
  Mots clés : Hélice amphipathique, gouttelettes lipidiques, stockage des lipides, interaction protéines – lipides 
  périlipine, interface huile-eau 
Résumé : Les gouttelettes lipidiques (LDs) sont des réservoirs d'énergie et des compartiments membranaires. Elles sont 
composées d'un noyau des lipides neutres et d'une monocouche de phospholipides associées à des protéines. Les hélices 
amphipathiques (AHs), sont des structures protéiques secondaires qui interagissent avec les membranes des organelles. 
La manière dont les AHs interagissent avec la surface des LDs reste largement méconnue. Les périlipines sont une famille 
de protéines abondantes dans les LDs. Elles utilisent les AHs pour cibler les LDs. Certains de leurs membres ont des 
fonctions bien définies comme régulateurs du métabolisme lipidique, en particulier dans les adipocytes, où ils sont 
fortement exprimés. La périlipine 4 (Plin4) humaine contient une longue AH de près de 1000 acides aminés, composée de 
répétitions de 33 acides aminés. Son AH est 10 fois plus longue que les AHs des autres périlipines. Dans ce travail, j'ai 
utilisé des systèmes biochimiquement reconstitués avec des protéines purifiées et des lipides neutres, et la levure 
bourgeonnante Saccharomyces cerevisiae comme cellule modèle pour étudier comment les AHs de Plin4 et d'autres 
périlipines interagissent avec les LDs. L'AH de Plin4 est dépliée en solution et se replie en une hélice au contact d'une 
surface lipidique. Nous avons observé qu'avec sa faible hydrophobicité et sa grande longueur, cette AH est adaptée pour 
interagir avec les LDs sur une grande surface. Elle peut remplacer la fonction des phospholipides à la surface des LDs. 
Lorsque l'AH de Plin4 purifiée est mélangée avec de l'huile, elle forme des gouttelettes d'huile extrêmement stables. En 
utilisant la microscopie à fluorescence et des expériences de photoblanchiment, j'ai montré que l’AH de Plin4 formait une 
couche très immobile sur ces gouttelettes, à la fois in vitro et dans les cellules de levure. Ce n'était pas le cas pour les AHs 
d'autres périlipines, qui se liaient aux LDs de manière dynamique et étaient rapidement échangées avec l’AH de Plin4 à la 
surface des gouttelettes d'huile, même lorsque leurs longueurs étaient similaires. Les AHs des périlipines ont également 
une composition en acides aminés similaire.  Compte tenu de ces résultats, je fais donc l'hypothèse qu'une distribution 
précise des résidus polaires et chargés dans le côté polaire de l’AH de Plin4 est importante pour sa stabilité sur les LDs. 
L’AH de Plin4 pourrait être stabilisée à la surface des LDs par des interactions électrostatiques entre molécules adjacentes, 
agissant comme un manteau pour LDs. Cette propriété est probablement importante pour la fonction de Plin4 dans le 
tissu adipeux. Il est intéressant de noter que mon analyse des séquences de Plin4 AH de différents mammifères montre 
une variabilité de leur longueur, mais une conservation élevée entre les répétitions dans chaque espèce, en faveur de 
l’hypothèse selon laquelle l'organisation précise de l’AH de Plin4 est importante pour sa fonction. 

 

 

  Title : Interaction of perilipin amphipathic helices with lipid droplets 
Key words :  Amphipathic helix,  lipid droplet,  lipid storage,  protein-lipid interaction,  perilipin,  oil-water interface 

Abstract : Lipid droplets (LDs) are reservoirs of energy and membrane compounds. They are composed of a core of 
neutral lipids and a monolayer of phospholipids with associated proteins. Amphipathic helices (AHs), are secondary protein 
structures that interact with organelle membranes. How AHs interact with the surface of LDs is poorly understood. Perilipins 
are a family of abundant LD proteins that use AHs for targeting LDs. Some of their members have well known functions as 
regulators of lipid metabolism, especially in adipocytes, where they are highly expressed. Human perilipin 4 (Plin4) contains 
a very long AH of almost 1000 amino acids, which is very repetitive, composed of repeats of 33 amino acids. Its AH is 10 
times longer than the AHs of other perilipins. In this work, I used biochemically reconstituted systems with purified proteins 
and neutral lipids, and the budding yeast Saccharomyces cerevisiae as a model cell to study how the AHs of Plin4 and of 
other perilipins interact with LDs. Plin4 AH is unfolded in solution and folds into a helix in contact with a lipid surface. We 
show that with its low hydrophobicity and high length, this AH is adapted for interacting with LDs over a large surface. It 
can replace phospholipids on the LD surface. When purified Plin4 AH is mixed with oil, it forms extremely stable oil droplets. 
Using fluorescent microscopy and photobleaching experiments, I showed that Plin4 AH formed a highly immobile coat on 
these droplets. Similarly, Plin4 AH was highly immobile when bound to LDs in yeast. This was not the case for the AHs of 
other perilipins, which bound to LDs in a dynamic manner and were rapidly exchanged with Plin4 AH on the surface of oil 
droplets, even when their lengths were similar. These AHs also share a similar amino acid composition. We hypothesize 
that precise distribution of polar and charged residues in the polar side of Plin4 AH is important for its stability on LDs. We 
propose that Plin4 AH is stabilized on the surface of LDs through electrostatic interactions between adjacent molecules, 
acting like an LD coat. This property is likely important for the function of Plin4 in adipocyte tissue. Interestingly, my analysis 
of Plin4 AH sequences from different mammals shows a variability in their length, but a high conservation between the 
repeats in each species, supporting the conclusion that the precise organization of Plin4 AH is important for its function. 
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