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Abstract

Modeling and control of port-Hamiltonian systems are extensively studied in the

continuous-time literature as powerful tools for network modeling and control of com-

plex physical systems. Since controllers are unavoidably implemented through digital

devices, accurate sampled-data models and control strategies are highly recommended

to prevent a negative impact on the closed-loop performances under digital control.

This thesis contributes to the description of new port-Hamiltonian structures both in

a purely discrete-time and sampled-data framework. Then, on these bases, stabilizing

and energy-based digital feedback strategies are developed. Regarding modeling, the

proposed state-space forms make use of the concepts of Difference/Differential Rep-

resentation (DDR) of discrete-time dynamics and the discrete gradient function. The

proposed models exhibit a Dirac structure that properly defines the storing, resistive

and external elements of the concerned port-Hamiltonian system. For stabilization

purposes, the u-average passivity property has been essential for properly discussing

passivity-based-control (PBC) strategies such as damping output feedback and In-

terconnection and Damping Assignment (IDA-PBC) both in discrete time and under

sampling. Three case studies from different physical domains aim to illustrate the

computational aspects related to the modeling and control design and further we

validate their performances by means of simulations.

Keywords : port-Hamiltonian Systems, sampled-data systems, passivity-based con-

trol.
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Abstract

I sistemi port-Hamiltoniani sono stati ampiamente studiati nella letteratura a tempo

continuo come strutture essenziali per la modellazione di sistemi fisici complessi e

sistemi di reti. Dal momento che le leggi di controllo sono inevitabilmente imple-

mentate per mezzo di dispositivi digitali, è essenziale avere appropriati modelli e

strategie di controllo a dati campionati al fine di prevenire un impatto negativo della

discretizzazione sulle prestazioni dell’azione di controllo. Questa tesi è incentrata

sulla descrizione di nuove strutture port-Hamiltoniane sia in un contesto tempo dis-

creto puro che in un contesto a dati campionati. A partire da queste forme, sono

state sviluppate strategie di stabilizzazione basate sulla gestione dell’energia sia nel

tempo discreto che sotto campionamento. Per quanto riguarda la modellazione, la

rappresentazione nello spazio di stato proposta si basa sul concetto di Rappresen-

tazione Differenziale e alle Differenze (DDR) della dinamica discreta e sulla nozione

di Gradiente discreto. I modelli proposti ammettono una struttura di Dirac associ-

ata e definiscono opportunamente i diversi elementi di conservazione, resistenza ed

esterni che costituiscono il sistema port-Hamiltoniano. Per quanto riguarda la sta-

bilizzazione, la nozione di passività u-media è essenziale per descrivere in maniera

opportuna le strategie di controllo basate sulla passività (PBC) come il controllo

calcolato sull’uscita passiva del sistema e l’assegnazione dell’interconnessione e dello

smorzamento (IDA-PBC), sia nel contesto tempo continuo che sotto campionamento.

Sono stati considerati tre casi di studio, basati su diversi modelli fisici, al fine di il-

lustrare gli aspetti computazionali relativi alla modellistica e al controllo dei sistemi

port-Hamiltoniani introdotti.

Parole chiave : sistemi port-Hamiltoniani, sistemi a dati campionati, controllo

basato sulla passività.
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Résumé

Les systèmes Hamiltoniens ont été largement étudiés dans la littérature en temps

continu comme des éléments essentiels pour la modélisation de systèmes physiques

complexes et en réseaux. Les schémas de commande étant nécessairement implantés

au moyen de dispositifs numériques, il est primordial de disposer de modèles et de

stratégies de commande échantillonnés afin de s’affranchir d’un impact négatif de

la discrétisation sur les performances de contrôle. Cette thèse s’intéresse à la de-

scription de nouvelles structures Hamiltoniennes à la fois en temps discret pur et

dans le contexte échantillonné. A partir de ces formes, des stratégies de stabili-

sation basées sur la gestion de l’énergie sont développées en temps discret et sous

échantillonnage. Concernant la modélisation, la représentation par espace d’état

proposée fait référence au concept de representation Différentielle et aux Différences

(DDR) de dynamiques discrètes et à la notion de fonction gradient en temps dis-

cret. Les modèles proposés admettent une représentation sous forme de structure

de Dirac définissant ainsi précisément les différents éléments de stockage, resistance

et interaction avec l’extérieur qui constituent le système Hamiltonien. Concernant

la stabilisation, la notion de passivité en u-moyenne est essentielle pour décrire des

stratégies de commande par bouclage exploitant cette passivité au service d’approches

de type amortissement (PBC) ou affectation de structures cibles (IDA-PBC), ceci en

temps discret et sous échantillonnage. Trois examples classiques issus des domaines

physiques sont développés afin d’illustrer les aspects de calcul liés à la modélisation

et à la commande et valider les nouvelles stratégies proposées en illustrant leurs per-

formances par des simulations.

Mots clés : systèmes Hamiltoniens à ports, systèmes échantillonnés, commande

basée sur la passivité.
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Sommario della tesi

I
sistemi port-Hamiltoniani sono stati ampiamente studiati nella letteratura a

tempo continuo come strutture essenziali per la modellazione di sistemi comp-

lessi. Dal momento che le leggi di controllo sono inevitabilmente implementate

attraverso dispositivi digitali, è essenziale definire appropriati modelli e strategie di

controllo a dati campionati al fine di prevenire un effetto negativo della discretiz-

zazione sulle prestazioni dell’azione di controllo. A tal fine, la tesi mira alla definizione

di nuove strutture port-Hamiltoniane e alla loro stabilizzazione sia in un contesto

tempo discreto che a dati campionati. Riassumiamo qui i principali risultati raggiunti

nella tesi distinguendo i contributi a tempo discreto da quelli a dati campionati.

Per quanto riguarda lo studio a tempo discreto:

1. Abbiamo dato una nuova definizione di struttura port-Hamiltoniana a tempo

discreto sfruttando i concetti di Rappresentazione Differenziale e alle Differenze

(DDR) e di Gradiente Discreto. Questa nuova rappresentazione è originale

in quanto divide in maniera naturale il contributo dell’evoluzione libera del

sistema port-Hamiltoniano dalla parte controllata dando vita ad una nuova

uscita passiva, in termini di gradiente discreto, ottenuta sfruttando la nozione di

passività u-media. Attraverso queste proprietà, per la prima volta in letteratura

abbiamo proposto una equazione di bilancio energetico a tempo discreto avente

una parte dissipativa non dipendente dalla variabile di controllo, fornendo cos̀ı

un vantaggio alla progettazione dei controllori basati sulla passività. Infatti,

attraverso tale uscita abbiamo proposto un controllore di smorzamento per

stabilizzare il punto di equilibrio del sistema.

2. Abbiamo validato la struttura port-Hamiltoniana proposta costruendo una as-

sociata struttura di Dirac che definisce i diversi elementi di conservazione, re-

sistenza ed esterni che costituiscono il sistema port-Hamiltoniano discreto. A

differenza dalle rappresentazioni in letteratura, l’originalità della struttura di
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Dirac introdotta è che essa è definita su uno spazio aumentato dovuto dalla

forma DDR. Essenzialmente abbiamo definito in maniera opportuna la coppia

di flussi e sforzi associati alla componente di storage che non dipendono dal con-

trollo, introducendo una nuova coppia di flussi e sforzi che modellano l’effetto

del controllo nella struttura. Questa rappresentazione è originale e permette di

definire in maniera strutturale il contributo del controllo sulla rappresentazione

discreta.

3. Abbiamo dimostrato che l’interconnessione dei due sistemi port-Hamiltoniani

definiti a tempo discreto è ancora un sistema port-Hamiltoniano. Il risultato è

garantito in quanto la composizione di strutture di Dirac recupera l’interconnes-

sione attraverso le uscite dei sistemi passivi u-medi. Al fine di raggiunge tale

obiettivo, abbiamo mostrato preventivamente che i sistemi passivi u-medi in-

terconnessi attraverso le loro uscite u-medie garantiscono una preservazione di

potenza.

4. Infine abbiamo discusso la stabilizzazione del sistema port-Hamiltoniano ad

un desiderato punto di equilibrio definendo una appropriato controllore IDA-

PBC tempo discreto. La soluzione proposta nel contesto non lineare fornisce

una condizione sufficiente al soddisfacimento del problema, inquanto il calcolo

delle soluzioni si basa su un’equazione algebrica non lineare da risolvere. Una

completa caratterizzazione della soluzione è stata proposta nel contesto lineare,

fornendo una condizione necessaria e sufficiente definita dal soddisfacimento di

una equazione matriciale lineare.

Per quanto riguarda il caso sotto campionamento, lo studio è stato affrontato

definendo operatori formali che sfruttano le manipolazioni combinatorie dei flussi

associati alle soluzioni delle equazioni differenziali. Di conseguenza, tutti i punti

1-4 sono stati rivisitati nel contesto a dati campionati e le soluzioni proposte sono

state presentate fornendo i primi termini delle loro espansioni in serie. Infatti, il

beneficio di questo approccio è quello di dare soluzioni algoritmicamente calcolabili

e costruttive in un senso approssimativo. Tuttavia, concentriamoci sui principali

risultati raggiunti.

La principale difficoltà nel contesto a dati campionati è quella di recuperare una

appropriata struttura port-Hamiltoniana. Questo problema è stato risolto sia nel

contesto non lineare che lineare. La soluzione proposta dice che, mentre sotto campi-

onamento la funzione Hamiltoniana rimane la stessa, la procedura di campionamento
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richiede una trasformazione delle matrici di interconnessione e smorzamento nella

struttura port-Hamiltoniana. Queste nuove matrici sono parametrizzate dal periodo

di campionamento e per costruzione definite intorno alle matrici del modello tempo

continuo. Il risultato è originale e fornisce una rappresentazione esatta del modello

port-Hamiltoniano sotto campionamento garantendo approssimazioni della struttura

ad ogni ordine di approssimazione.

Per quanto riguarda la stabilizzazione ad un desiderato punto di equilibrio è pos-

sibile in questo contesto sfruttando la soluzione continua IDA-PBC per progettare,

almeno in un senso approssimato, i primi termini del controllore digitale. Il control-

lore digitale mira a riprodurre il comportamento del controllore ideale continuo su una

desiderata funzione Hamiltoniana. Tale controllore assegna, in senso approssimato,

una struttura port-Hamiltoniana del secondo ordine.

Tre differenti casi di studio sono stati affrontati nella tesi (elettrico, meccanico

ed elettro-meccanico) al fine di validare la modellazione e il controllo dei sistemi

port-Hamiltoniani proposti. L’interesse della metodologia proposta sta nel fatto che

il modello a dati campionati proposto trova applicazione in tutti i domini in cui i

sistemi port-Hamiltoniani vengono solitamente utilizzati, ma dove una stabilizzazione

digitale è necessaria. Inoltre, grazie alle proprietà energetiche del modello proposto a

tempo discreto, la loro modellazione originale può essere una punto di partenza per

migliorare problemi di ottimizzazione (e.g. riduzione del rumore nelle immagini) e

per modellare dinamiche discrete (e.g. sistemi economici).
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Résumé étendu de la thèse

L
es systèmes Hamiltoniens à ports ont été largement étudiés dans la littérature

temps continu comme des structures essentielles pour la modélisation de

systèmes complexes. Étant donné que les lois de commande sont inévitable-

ment mises en œuvre par des dispositifs numériques, il est essentiel de définir des

modèles appropriés et des stratégies de commande en temps discret ou à données

échantillonnées afin de s’affranchir un effet négatif de l’implantation numérique sur

les performances. À cette fin, la thèse propose de nouvelles structures Hamiltoniennes

à ports en temps discret et sous échantillonnage ainsi que des stratégies de commande

associées. Les principaux résultats présentés dans la thèse sont résumés ci-dessous en

distinguant les contributions de temps discret de celles à données échantillonnées.

Concernant le temps discret.

1. Nous avons donné une nouvelle définition d’une structure Hamiltonienne à

ports pour des dynamiques linéaire et non linéaire temps discret en adoptant

la représentation différentielle et de différences (DDR) de telles dynamiques

et la notion de fonction gradient discret. Cette représentation permet de dis-

tinguer naturellement la dynamique en évolution libre de la partie commandée.

Ceci permet de définir très naturellement une sortie passive, soit à partir de la

notion de passivité en u-moyenne soit directement en termes en termes de la

fonction gradient discret. A partir de cette représentation, nous avons proposé

une équation bilan des échanges énergétiques en distinguant la partie dissipa-

tive indépendante de la variable de contrôle, et la partie conservative. Sur ces

bases, il devient possible de définir des stratégies de commande reposant sur le

bilan énergétique pour la stabilisation par amortissement.

2. La nouvelle structure Hamiltonienne à ports proposée a été validée par la

définition, nouvelle dans la littérature également, d’une structure de Dirac as-

sociée. Nous avons essentiellement défini les paires de flux et efforts associées
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aux différents éléments de stockage, dissipation et d’interaction avec l’extérieur,

qui constituent le système discret port-Hamiltonien le définissant au moyen d’un

graphe de liaison.

3. Nous avons ensuite montré la propriété fondamentale d’interconnexion. L’inter-

connexion de deux systèmes Hamiltoniens à ports est un système Hamiltoni-

ennes à ports dont l’hamiltonien est la somme des hamiltoniens. Le résultat

repose sur le fait que la composition de deux structures de Dirac est une struc-

ture de Dirac et que l’interconnexion qui préserve la puissance de deux systèmes

passifs en u-moyenne est encore un système en u-moyenne.

4. Enfin, nous avons étudié la stabilisation du système Hamiltonien à ports à un

point d’équilibre souhaité en construisant une stratégie de commande à partir

du bilan énergétique rappelant la commande IDA-PBC (Interconnection and

Damping Assigment). La solution proposée dans le contexte non linéaire décrit

une condition suffisante. Le calcul d’une solution fait appel à la résolution d’une

équation algébrique non linéaire. Une caractérisation nécessaire et suffisante est

exprimée en termes d’une égalité matricielle pour des dynamiques linéaires avec

Hamiltonien quadratique.

Concernant les systèmes échantillonnés.

Les contributions 1 à 4 ont été revisitées pour les systèmes discrets issus de

l’échantillonnage de dynamiques continues. Dans ce cas, les modèles sont décrits

en termes d’opérateurs non linéaires formels et de manipulations combinatoires sur

les flots associés aux solutions d’équations différentielles ordinaires. Les solutions pro-

posées ont l’avantage d’être représentées en termes de séries asymptotiques paramétrées

par la période d’échantillonnage. Le grand intérêt en pratique est de disposer d’un

algorithme constructif pour le calcul des solutions au sens d’approximations d’ordre

croissant par rapport à la période d’échantillonnage. Les solutions nominales retrou-

vant la solution continue.

La principale difficulté dans le contexte des données échantillonnées est de récupérer

une structure Hamiltoniennes à ports appropriée. Ce problème a été résolu à la fois

dans le contexte non linéaire et linéaire. La solution proposée indique que, lors

de l’échantillonnage, la fonction hamiltonienne peut être maintenue. Par contre, la

procédure d’échantillonnage nécessite une transformation des matrices d’interconnexion

et d’amortissement. Ces nouvelles matrices sont paramétrées par la période d’échantil-

lonnage et décrites en termes de séries asymptotiques autour des matrices décrivant
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le modèle continu. En ce qui concerne la stabilisation à un point d’équilibre souhaité,

il est possible dans ce contexte échantillonné d’exploiter la solution continue IDA-

PBC pour concevoir une stratégie de commande qui vise à reproduire, aux instants

d’échantillonnage, le comportement du bouclage continu idéal. La solution proposée

peu en pratique être approchée à tout ordre d’approximation autour de la solution

continue et en puissances de la période d’échantillonnage.

Concernant les exemples traités. Trois exemples simulés représentant des cas

d’étude classiques pour ce type de modélisation Hamiltonienne sont étudiés dans

la thèse (électrique, mécanique et électro-mécanique). Ils valident la modélisation

et le contrôle des systèmes Hamiltoniens à ports proposés. On constante un gain

important sur l’ampleur admissible avec les performances souhaitées de la période

d’échantillonnage.

Concernant les perspectives. L’intérêt de la méthodologie proposée réside dans le

fait que les modèles à données échantillonnées proposés trouvent une application

dans tous les domaines où les systèmes Hamiltoniens à ports sont utilisés, mais

numériquement actionnés. De plus, les propriétés structurelles et énergétiques du

modèle temps discret proposé peuvent être exploitées dans le contexte de la com-

mande optimale, de la commande des systèmes complexes interconnectés et en réseaux

ainsi que dans des domaines moins traditionnels (réduction du bruit en traitement

d’images, modélisation de systèmes économiques, . . . ).
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Introduction

T
he thesis discusses modeling and control of port-Hamiltonian systems in the

discrete-time framework and then, more specifically, for dynamics issued

from sampling. The cases of linear and nonlinear dynamics defined on finite-

dimensional state-space representations are studied essentially for the single-input

case. Typical examples and case studies are presented to illustrate the results with

simulations. We begin with a brief survey on port-Hamiltonian systems and their

origins and impact on the actual technological advances and needs to proceed then

with the objectives and contributions of the thesis. At the end of this introduction,

an outline of the content of the subsequent chapters is described along with the

concerned published works.

Some historical notes on Hamiltonian systems

Hamiltonian dynamics made their appearance in the scientific literature when the

irish mathematician Sir William Rowan Hamilton published two milestones on a

general method in dynamics, Hamilton (1834, 1835). They are basically a straight

adaptation to dynamics of methods that Hamilton developed for the most in his

researches on optical systems. Indeed, Hamilton investigated the evolution of a con-

servative system - one that satisfies the conservation of energy - and found that it is

determined by a characteristic function, he named the principal function, analogous

to the one introduced for optical systems, Hankins (1980). This principal function -

defined for describing the mechanics of a system - is determined by the evolution of

the dynamical system from an initial to a final configuration and of the energy associ-

ated with the motion. Nowadays, this function is conveniently known as Hamiltonian

function. A classical interpretation of the Hamiltonian function comes from appli-

cations in mechanics where it represents the total energy of the system, which is

1
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respectively the sum of kinetic and potential energy.

Since the 60s, the control community has directed its efforts towards the anal-

ysis and control of nonlinear systems, focusing on dynamics continuously evolving

over time. The concept of “energy” has lent useful tools for the expansion of this

research line. It is in fact possible to study many systems from their energy sources

and losses, such as mechanical, electrical, thermal, and many others. Among these,

we can classify dissipative and Hamiltonian systems. Dissipative systems can be gen-

erally defined as systems that have the property of dissipating energy rather than

producing it; any increase of stored energy happening to it is always due to external

sources. Hamiltonian systems are systems that, in absence of dissipating elements,

have the property of preserving the amount of stored energy at any time instant of

their evolution. Indeed, Hamiltonian systems are conservative systems which stand

in contrast to dissipative systems. Hamiltonian systems have no friction or other re-

sistive components to dissipate energy, and thus, their dynamics does not shrink over

time. These systems have in common to present highly desirable properties which

may simplify system analysis and control design. More insight into this aspect can

be found in the milestones van der Schaft (2000); Wiggins (2003); Brogliato et al.

(2007); van der Schaft et al. (2014) and references therein.

Hamiltonian-based and port-based network modeling has been an upward trend

in systems and control theory since the nineties. Pioneered by the work Breed-

veld (1984), port-based modeling aims to describe a complex system such as the

interconnection of several subsystems of different physical nature (electrical, mechan-

ical, hydraulic, etc...), through variables whose product describes the power of each

subsystem (voltages and currents, velocities and forces, flows and pressures, etc...).

Port-based modeling aims to describe the energy exchange between parts composing

a system, (such as between mass-spring, inductor-capacitor, etc). Seeing ports as

interfaces among independent subsystems, the formulation defines an input-output

structure among these subsystems. Further, in the pioneering work Maschke et al.

(1992); Maschke and van der Schaft (1992), combining port-based and Hamiltonian

modeling, emphasis has been put on dynamical systems able to interact with the en-

vironment via inputs and outputs ports, and susceptible to control interaction. This

has given birth to a new class of systems properly called port-Hamiltonian systems.

As seen in Maschke and van der Schaft (1992), arising from the bond graph for-

malism, port-Hamiltonian systems can be defined by a Dirac structure introduced in
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Courant (1990) as the generalization of symplectic and Poisson geometric structures.

The Dirac structure formalizes the power-conserving interconnection among subsys-

tems and is mainly defined by an energy function (the Hamiltonian function) and

suitable additional resistive algebraic relation which provides energy dissipation. In-

deed, the main extension of port-Hamiltonian systems theory with respect to classical

Hamiltonian theory is the inclusion of energy-dissipating elements into the description

of the dynamics. The essence of port-Hamiltonian systems modeling is thus regarded

as the linkage and exchange of energy between energy-storing, energy-dissipating,

and energy-routing components characterizing the port-Hamiltonian system as high-

lighted in Figure 1.

DH R
fS

eS

eEfE

fR

eR

Figure 1: Dirac structure

Essentially, the storing H and the dissipating R are interconnected to an en-

ergy routing device D, which provides a power balance in the structure. In the

Dirac structure, the linkage is made through ports, which are vectors of flows and

efforts: energy-storing port (fS, eS), energy-dissipating port (fR, eR), and external

port (fE, eE). The inner product between the flows and efforts denotes the power

flowing through the links. Notably, in the mechanical context, Dirac structures are

of great interest as they can directly incorporate algebraic constraints that arise in

Lagrangian systems, Leok and Ohsawa (2011); van der Schaft and Maschke (2020),

and might be extended to thermodynamic processes as recently discussed in the work

of van der Schaft and Maschke (2018).

In this present thesis, we focus on an important special case of port-Hamiltonian

systems so-called input-state-output port-Hamiltonian systems, where there are no

algebraic constraints on the state-space variables, and the flow and effort variables

of control and interaction ports are split into conjugated input–output pairs. In-

put–state–output port-Hamiltonian systems are generally given as the graph of the
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skew-symmetric mapfSfR
fE

 =

−J(x) −gR(x) −g(x)

g>R(x) 0 0

g>(x) 0 0


eSeR
eE


leading to a port-Hamiltonian system,

ẋ = (J(x)−R(x))∇H(x) + g(x)u

y = g>(x)∇H(x)

with state vector x ∈ X ⊂ Rn, output vector y ∈ Rm, input vector u ∈ Rm, Hamilto-

nian function H(·) : X → R and power conjugates variables ẋ = −fS, ∇H(x) = eS,

eR = −r(x)fR with matrix r(x) = r>(x) � 0, y = fE, u = eE. The matrices

J(x) = J>(x), R(x) = gR(x)r(x)g>R(x) = R>(x) � 0 are the interconnection and dis-

sipation matrices, respectively, gR represents the input matrix corresponding to the

resistive port, and the vector field g(x)u models the interaction with the environment.

For a broad and thorough overview of port-Hamiltonian formalism see van der

Schaft et al. (2014); van der Schaft (2000); Duindam et al. (2009).

The main advantage of invoking port-Hamiltonian system theory is that due to

its particular structure, a port-Hamiltonian system determines whether or not the

system is affected by a dissipation term, so providing dissipation or, alternatively,

conservation of energy. In this sense, the port-Hamiltonian theory broadens the range

of applicability to more class of systems, unlike the classic Hamiltonian, and provides

a natural framework for passivity-based control (PBC). Fundamental references on

passive systems can be found in the works of Ortega et al. (2001, 2002a,b, 2008);

Duindam et al. (2009). Input-state-output port-Hamiltonian systems are a very spe-

cial class of passive systems as their conservative or dissipative, dynamics guarantee

that the associated energy evolution equals, or lower than, the power injected from

the external source.

The notions of passivity, and dissipativity, are emerged in the analysis of physical

systems with the aim to formalize the energy behavior associated with the dissi-

pation of the system provided by the dissipating components. From the very first

works on those topics by Willems (1972a), the concept of passivity has been proved

to be fundamental for the analysis and control of nonlinear systems at large due to

the intrinsic connection of energy dissipation to Lyapunov-stability theory Hill and
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Moylan (1976). Nowadays, the PBC paradigm is the underlying leitmotiv of many

energy-based control strategies which have been developed to feedback stabilize sys-

tems exploiting the energy function. Basically, these energy-based controllers aim to

shape the energy function to achieve stabilization to a desired equilibrium by assign-

ing the transient behavior via energy transfer between the interconnected parts of the

dynamical system. In this framework, a different and admissible storage function is

chosen to properly design the controller ensuring passivity. Since the early ’80s PBC

design has become an upward trend thanks to the pioneering works Takegaki and Ari-

moto (1981); Spong et al. (2020); Slotine and Li (1987); Ortega and Spong (1989);

Byrnes et al. (1991) that pave the way to a substantial amount of research and ap-

plication problems such as in Kokotovic (1992); Kokotovic et al. (1992); Krstić et al.

(1994); Loria et al. (1998); Battilotti et al. (1997); Lorıa et al. (2001); Astolfi et al.

(2001); Di Gennaro (2003); Astolfi and Ortega (2003); Stramigioli (2015); Chopra

and Spong (2006); Ortega et al. (2001, 2002b,a).

The control of port-Hamiltonian systems through energy management and struc-

ture assignment for the interconnected system has been widely investigated in the

past decade and applied to many different fields. The results are highly interesting

as they suggest that the concepts of energy and energy exchange between different

components of the system, act as a common denominator in the modeling and con-

trol of complex networked dynamical systems of different natures so that they can be

modeled and controlled with the same tools. The literature is widely developed and

in addition to the authors’ work already referred we also recommend van der Schaft

et al. (2014); Brogliato et al. (2007); Duindam et al. (2009) and the references therein

for a broad and thorough overview on the port-Hamiltonian formalism.

Context of the manuscript

Technological advances have led to fast growth and usage of digital computation

and computer-aided design. Digital computation, as its name suggests, refers to

computation using digital representations dealing with a discrete or finite set of data.

Systems and control engineering is one of the many areas that took benefits of digital

computation, particularly, technology for simulation and control. Discrete-time and

digital control systems analysis and design is a branch of control theory rooted in the

early ’50s under the pioneering work by John R. Ragazzini, wherein Ragazzini and
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Franklin (1958) can be found the bases for the analysis and design of the emerging

technologies of computer controllers.

The first steps towards the investigations on discrete-time systems in the nonlinear

context have been moved parallel to the study on the nonlinear control in continuous

time since the early ’80s in some basic works concerning the analysis Sontag (1979);

Jakubczyk (1980a,b); Fliess and Normand-Cyrot (1981) and Normand-Cyrot (1983);

followed from the first results in the design Sontag and Sussmann (1982); Monaco and

Normand-Cyrot (1982, 1983, 1984); Jakubczyk and Normand-Cyrot (1984); Grizzle

(1985); Grizzle and Kokotovic (1988). Afterwards, a continuous growth of interest

in the discrete-time context enabled the settlement of a body of analysis and design

methods with contributions of several scientists in the last 30 years; among them

Castillo et al. (1993); Barbot et al. (1996); Castillo et al. (1997); Barbot et al. (1999);

Di Gennaro et al. (1999); Goodwin et al. (2001); Grüne and Nesic (2003); Nešić and

Grüne (2005); Yuz and Goodwin (2005); Kotta (2006).

Since the early 2000s, a few works have been devoted to the issues that are taken

up in this manuscript with the aim of extending the analysis and control methods of

Hamiltonian systems to the discrete-time and sampled-data contexts such as Strami-

gioli et al. (2002, 2005); Laila and Astolfi (2004, 2006a); Laila et al. (2006); Monaco

et al. (2008, 2010); Tiefensee et al. (2010); Monaco and Normand-Cyrot (2011).

Two major aspects noted before, which are at the bases of Hamiltonian design

approaches, were not well understood and employed in the discrete-time and sampled-

data contexts: passivity and the Hamiltonian structure itself. These aspects,

which will be clarified in the sequel, represent the starting point of this dissertation.

With this in mind let us first specify what we mean with discrete-time and sampled-

data systems.

Discrete-time systems can be represented in state-space form by a first-order dif-

ference equation described by a map as

x(k + 1) = F (x(k), u(k))

y(k) = h(x(k))

with state vector x ∈ X ⊂ Rn, control vector u ∈ U ⊂ Rm, output vector y ∈ Y ⊂ Rq

and iteration variable k ∈ Z named time instant. Such a model is generally used to



CONTENTS 7

Figure 2: Sampled-data framework

represent discrete phenomena from different contexts, such as evolution at discrete-

time instants, algorithms, or to represent at periodic instant of times, sampled state

and output evolutions fed by piecewise constant inputs over time intervals of ampli-

tude equal to the sampling period (sampled-data systems).

In this thesis, we refer to sampled-data systems issued from an uniform sampling

of continuous-time signals as illustrated in Figure 2. The continuous-time system

is interfaced with the digital environment through analog to digital (Sampler) and

digital to analog (ZOH) converter devices. The Sampler aims at producing sampled

signals x(k) and y(k), respectively, of the continuous-time state x(t) and output

y(t) at the sampling instants t = kδ with k ∈ N, so that kδ = 0, δ, 2δ, 3δ, . . . ,

over sampling periods of fixed step-size δ. Accordingly, the control input u(kδ) is a

discrete sequence of signals that is injected into the sampled-data framework in order

to control the continuous-time system. The control input u(kδ) is converted through

a Zero-Order-Holder (ZOH) device to a piecewise constant signal u(k) = u(t) with

t ∈ [kδ, (k + 1)δ[. According to such a sampling procedure, a Sampled-Data (SD)

system admits a state-space representation in the map form

CT :

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))
−→ SD :

x((k + 1)δ) = x(kδ) + F δ(x(kδ), u(kδ))

y(kδ) = h(x(kδ))

so recovering, for each fixed step-size δ, a discrete-time model described by a map

that is by construction parameterized by the sampling period. This sampled-data SD

system reproduces by construction both the state x(t) and output y(t) time evolutions
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Example 1

Consider the one-dimensional discrete-time system described by the first-order difference

equations

x(k + 1) = ax(k) + bu(k)

y(k) = cx(k).

Informally, the discrete-time system is said passive if the following inequality is satisfied for

all x(k) and u(k)

S(x(k + 1))− S(x(k)) ≤ u>(k)y(k)

for a suitable positive semi-definite function S(x), the storage function. Pick S(x) = 1
2x

2(k)

as a suitable storage function, then when substituting y(k) = cx(k) the inequality above

reads

1

2
(a2 − 1)x2(k) + (ab− c)x(k)u(k) +

1

2
b2u2(k) ≤ 0. (1)

Clearly, the inequality (1) cannot be satisfied for all x(k) and u(k) due to the effect of the

term b2u2(k) which is always positive for any b 6= 0.

of the Continuous-Time (CT) system at any sampling instants t = kδ, k ≥ 0, when

properly initialized at the same state condition x(0).

As pointed out in previous works passivity and port-Hamiltonian structure, admit

a clear counterpart neither in discrete time nor under sampling. Concerning passiv-

ity, as discussed in Monaco and Normand-Cyrot (1997b); Stramigioli et al. (2005);

Navarro-López (2005); Monaco et al. (2008); Monaco and Normand-Cyrot (2011), a

common pathology arising in the discrete-time setting is that the system cannot be

passive (adopting the more standard definition) if the associated output y(k) is solely

defined as a function of the measured state x(k) and not affected by the control u(k).

Example 1 illustrates this pathology that occurs already in the linear context. The

same issue arises when handling sampled-data systems since the SD model usually

violates the standard passivity condition with respect to an output y(t) assumed pas-

sive for the continuous-time system; this means that passivity under sampling is not

preserved.

The other aspect is the port-Hamiltonian structure in the digital context, Strami-

gioli et al. (2005); Talasila et al. (2006); Laila and Astolfi (2006a, 2007); Monaco

et al. (2009); Tiefensee et al. (2010). Unlike the continuous-time port-Hamiltonian
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definition, in discrete time there are no universal representations of these forms. The

modeling in the literature usually arises from some sampling procedure applied to

the smooth continuous-time model, or directly modeling the dynamics at a discrete

level, and this may lead to confusion.

On the other hand, in a sampled-data thinking, even when the sampled-data

system is perfectly able to describe the continuous-time evolution at all the sam-

pling instants, the sampled-data equivalent model does not naturally show a port-

Hamiltonian-like structure, which is an essential structural property of the system to

properly design energy-based controller in a digital context. To understand the lack

of a Hamiltonian structure under sampling see Example 2.

Example 2

Consider the simplest Hamilton’s canonical dynamics over R2(
ẋ1

ẋ2

)
=

(
0 1

−1 0

)(
∂H
∂x1

∂H
∂x2

)

with quadratic Hamiltonian H(x) = 1
2x

2
1 + 1

2x
2
2. As well known, this dynamics is described

by a skew-symmetric matrix and a infinitesimal variation of the Hamiltonian function with

respect to x and is conservative, meaning that

Ḣ(x) =
∂H

∂x
ẋ =

∂H

∂x1
ẋ1 +

∂H

∂x2
ẋ2 = 0.

Commonly in the literature it is customary to consider sampled data models which aim to

preserve some Hamiltonian structure to be defined in discrete time, see McLachlan et al.

(1999); Yalçin et al. (2015); Aoues et al. (2017); Hairer et al. (2006). However, by computing

the sampled-data equivalent model, one easily gets

(
x1((k + 1)δ)

x2((k + 1)δ)

)
= e

δ

 0 1

−1 0

(
x1(kδ)

x2(kδ)

)
=

(
cos δ sin δ

− sin δ cos δ

)(
x1(kδ)

x2(kδ)

)

which preserves the conservation of energy (as a consequence of the exact state matching),

namely

H(x((k + 1)))−H(x(kδ)) =

∫ (k+1)δ

kδ

Ḣ(x(τ)) dτ = 0,

but the sampled-data model does not exhibit, at least in first attempt, some Hamiltonian-like

structure in discrete time.

This thesis work aims to give steps towards filling the gap in the literature related

to the aforementioned aspects. It will be shown that the concept of u-average passiv-
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ity introduced in Monaco and Normand-Cyrot (2011) can be profitably employed to

overcome the problem of a direct input-output link. It thus can be a powerful tool for

relying passivity to port-Hamiltonian structures in both discrete-time and sampled-

data contexts. Moreover, making use of the Difference and Differential Representation

(DDR) introduced in Monaco and Normand-Cyrot (1995), a novel state-space repre-

sentation of port-Hamiltonian systems is proposed that appears suitably shaped to

stress straight connections between continuous-time, discrete-time and sampled-data

modeling.

Literature overview

Due to the lack of a universal definition of port-Hamiltonian system in the digital

context, many different representations have been introduced in the literature with

their advantages in the attempt to preserving energetic properties as well as the inter-

connected structures of standard continuous-time port-Hamiltonian models. These

studies are often based on suitable approximations.

Discrete spaces. A general approach for defining port-Hamiltonian modeling

through a discrete-time setting comes in describing systems on discrete manifold

(structure discretization), which are spaces that locally look like discretization grids

over the set of floating-point numbers. In Talasila et al. (2006, 2004); Šešlija et al.

(2012) the authors showed that the change of energy over a sampling interval is only

approximated by a product of a new introduced discrete operator along with the

increment between the current and the successive state.

Sampled-data approach. In a sampled-data perspective a first attempt of

providing sampled-data port-Hamiltonian system is given in Stramigioli et al. (2002,

2005) in which the authors showed how to sample a continuous-time port-Hamiltonian

flow for preserving a properly defined passivity property. In Laila and Astolfi (2006a)

an approximate sampled-data port-Hamiltonian model which guarantees Hamilto-

nian conservation of energy is proposed through midpoint discretization method. In

Castaños et al. (2015) a sampled-data version of an implicit port-Hamiltonian sys-

tem is given adopting a flow-splitting numerical integration method. The generated

discrete-time model preserves up to an approximation error the storage function and

the output of the continuous-time system. The splitting method, along with the ap-

proximation of the partial derivative of the Hamiltonian function, is considered also
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in Celledoni and Høiseth (2017) to design discrete port-Hamiltonian flows preserv-

ing energy balance and stability. Recently, a different definition has been given in

Kotyczka and Lefèvre (2019); Kotyczka et al. (2018); Kotyczka and Maschke (2017)

providing an higher-order approximation of the continuous-time energy balance and

symplectic integration by collocation methods, such as Gauss-Legendre.

Discrete-gradient method. Major contributions of the literature make use of

the discrete gradient function to model discrete-time port-Hamiltonian systems. In

fact, the discrete gradient function arose in geometric numerical integration to ex-

press the variation of a function between two points, see Gonzalez (1996). In the

sampled-data context, the discrete gradient function is used to reproduce the quali-

tative behaviour of the solution to the sampling of differential equation. Its definition

is firstly introduced in Gonzalez (1996) to guarantee first-order conservation of en-

ergy of the Hamiltonian dynamics at discrete level. This conservation of energy is

based on a geometric integration scheme and extends the concept of symplecticity,

so that the conserved density of the flow, which is usually implicitly defined, is pre-

served at the sampling instants, McLachlan et al. (1999); Hairer et al. (2006); Quispel

and McLaren (2008). In McLachlan (1995) composition methods are exploited to in-

crease the integration order. A second-order improvement of the implicit scheme

which provides preservation of the coadjoint orbits and energy is proposed in Engø

and Faltinsen (2001). In Laila and Astolfi (2007); Gören-Sümer and Yalçιn (2008);

Yalçin et al. (2015); Aoues et al. (2017) a symplectic first-order model is given by

replacing the partial derivative of the Hamiltonian function with the discrete gradient

function and enhancing the same interconnection and dissipation matrices associated

with the continuous-time flow. Among all the port-Hamiltonian structures discussed,

these port-Hamiltonian models based on the discrete gradient function are the most

comparable with the proposed form in this manuscript in terms of state-space repre-

sentation.

Structure-preserving approximations for distributed parameters. Sev-

eral results have been proposed also for distributed parameter port-Hamiltonian sys-

tems to properly sampled the continuous-time partial differential equation preserving

the associated port-Hamiltonian structure. One of the earliest result on on structure

preservation of port-Hamiltonian system is found in Golo et al. (2004) exploiting the

approximation of the differential forms through Whitney forms. This method lay the

foundation for further development given in Baaiu et al. (2006); Eberard et al. (2007);
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Wu et al. (2015); Bassi et al. (2007). A different structure-preserving discretization is

given in Kotyczka (2016); Trenchant et al. (2017, 2018); Serhani et al. (2018) provid-

ing a structure based on finite differences and finite volumes. A more recent method

is given in Cardoso-Ribeiro et al. (2018); Serhani et al. (2019a,b) introducing a new

discretization method named Partitioned Finite Element, and in Moulla et al. (2011);

Harkort and Deutscher (2012); Vu et al. (2017) using pseudo-spectral discretization

methods exploiting Galerkin projection and Bessel function.

About the control design Alongside the discretized modeling, the usage of a

discrete gradient-based design is fruitful in defining associated energy-based stabi-

lization method to apply to the sampled-data port-Hamiltonian system. Thus, the

digital stabilization is tackled through a proper direct digital design based on the dis-

cretized model. The direct discrete-time IDA-PBC design have been firstly proposed

in Laila and Astolfi (2005, 2006b) and further extended in Sümer and Yalçın (2011).

Those stabilization design massively improve the emulation control, that is obtained

by the holding between the sampling instants of the continuous-time controller. In

Aoues et al. (2013, 2015b,a) and Aoues et al. (2017) the direct digital design of the

IDA-PBC and negative output feedback design is respectively provided. The result

clearly improves the former direct digital implementations but still, for sufficiently

high sampling period, the energy balance equation still leads to a numerical drift.

This is due to the fact that the sampled-data system over which the design was made

is approximated to the first-order and loses some information on the exact solution

of the continuous time system.

This, even though a partial overview of the literature, gives various advice and

highlights the main difficulties.

In particular:

� the discrete gradient turns out to be an adequate tool for modeling

port-Hamiltonian dynamics both in the discrete-time context and in the

sampled-data context, allowing to express the system in terms of some

rate of change of the Hamiltonian function;

� the discrete gradient introduces an implicitly defined first-order differ-

ence equation characterizing the system dynamics. Therefore, in the case

of controlled dynamics, it is necessary to decouple the free evolution from

the controlled one;
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� the dynamics considered in the sampled-data framework are usually ap-

proximated even when an exact and analytic solution exists.

Goals and contributions

Several aspects are at the basis of the present study. Two of them are introductory

to the thesis work.

Because dissipativity concepts and port-Hamiltonian structures are intricately

nested, a first intuition is to exploit in this Hamiltonian context the notion of pas-

sivity introduced in Monaco and Normand-Cyrot (2011) to overcome the necessity of

a direct input-output link (or the relative degree zero obstacle). This means to set

the question of defining port-Hamiltonian structures in a differential algebraic frame-

work making use of the Differential/Difference representation proposed in Monaco

and Normand-Cyrot (1995) to model nonlinear discrete-time dynamics as two cou-

pled equations. This structure was discussed in several works, such as Monaco and

Normand-Cyrot (1998, 2005); Monaco et al. (2007), and shown to be suitable at first

to understand and characterize analysis properties like controllability, observability,

invariance, so providing key instrumental tools to go further more classical studies.

A second aspect relies upon the notion of gradient function associate with the

Hamiltonian function that is instrumental to pass from energy balance to power

balance equations through time derivatives and is fundamental to define the state-

space representation of Hamiltonian dynamics in continuous time. As manipulations

over time derivatives are substituted with algebraic manipulations over first-order

difference equations in the attempt to characterize dynamics over time in discrete

time, the second intuition lays in the use of the discrete gradient function in place

of the gradient. This is less surprising, as the use of the discrete gradient function

given in Gonzalez (1996) is typical in dynamic programming or optimizing problems

and is perfectly suited to model the variational balance equations in discrete time.

In fact, port-Hamiltonian structures are defined in McLachlan et al. (1999); Yalçin

et al. (2015); Aoues et al. (2017) in terms of the discrete gradient of the Hamiltonian

so resulting in well-shaped energy balance equalities in discrete time.

The contributions of this thesis are based on the combined use of these notions.
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We distinguish the contributions relying upon the discrete-time context from those

obtained for sampled-data dynamics.

Discrete-time context

1. A novel representation of discrete-time port-Hamiltonian dynamics is

proposed making use of the discrete gradient function and adopting the

DDR representation, Definition 4.1.1 and Theorem 4.1.1. This form

is totally new as it splits the dynamics into the free evolution and the

controlled one recovering the one in McLachlan et al. (1999); Yalçin et al.

(2015); Aoues et al. (2017) in the control-free case only.

2. An output that qualifies to be a power conjugate output (its product

with the control variable is a unity of power) is defined exploiting the

notion of average passivity. The energy balance equation or dissipativ-

ity inequality follows, verifying the properties of average passivity and

negative output damping feedback proposed in Monaco and Normand-

Cyrot (2011) and presently specified to port-Hamiltonian dynamics in

Theorem 4.1.1 and Theorem 5.1.1.

3. To further validate the proposed port-Hamiltonian form and set a bridge

with discrete Dirac oriented modeling, the Dirac structure associated

with the proposed port-Hamiltonian structure is described in Theorem

4.2.1 as well as the Dirac structure associated with the closed-loop system

under negative average output feedback Theorem 5.1.2. This is very

interesting as the Dirac structure enables us to describe the associated

port-Hamiltonian structure that is defined in closed loop in an extended

state space splitting the free flow variable from the controlled one again.

4. Finally regarding the analysis, it is shown that the power-conserving in-

terconnection of two port-Hamiltonian systems is again a port-Hamiltonian

system with Hamiltonian function the sum of the two respective Hamilto-

nian, Theorem 4.2.1. This result is very interesting as it makes reference

to the power-preserving interconnection introduced in Definition 2.4.1

and as the usual feedback interconnection defined with respect to the re-

spective average output of average passive systems, Theorem 2.4.1. This

again is a totally new result that exploits the possibility to rewrite the
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proposed port-Hamiltonian form through a Dirac structure and verifying

that the composition of Dirac structure recovers the feedback intercon-

nection of average passive systems.

5. The broad question of control through energy management is a very

intricate problem in discrete time in spite of the well-shaped proposed

structure because of several difficulties. The structure is implicitly due

to the discrete gradient function, it is generally nonlinear in the control

variable and the output is control-dependent. All these aspects make the

computation of control solutions a difficult problem that relies on non-

linear algebraic equation to solve. Among energy-based control goals

is the favorite interconnection and damping assignment passivity based

control (IDA-PBC) that opens the road of the second generation of pas-

sivity based control. Sufficient conditions are however given in Theorem

5.2.1 that can be solved for particular classes of systems or in an approx-

imate meaning.

6. All the five aforementioned aspects apply to the linear time-invariant case

so providing original solutions with respect to the literature. Regarding

point 5, a complete IDA-PBC solution is described and computed in

Theorem 6.3.1, as it is always the case in the linear case, involving ma-

nipulations over matrices rather than nonlinear functions.

Sampled-data context

Generally speaking, there are two ways for addressing the sampled-data context, ei-

ther to sample (according to the approach we described) the state dynamics, fix the

sampling time and treat the system as a discrete-time one or to restrict sampling

to the control design goal (input-output matching, energy decreasing), disregarding

the exact sampling of the state evolutions. In this second approach, the solution

may simplify even though exist, so providing appealing results, but the properties of

the sampled-data state-space structure are surely lost. Both approaches are pursued

making use of the description of the state or output solutions to the sampling prob-

lem as series expansions in powers of the sampling period. This is performed along

the lines developed in Monaco and Normand-Cyrot (1990) according to a formal cal-

culus approach and combinatorial manipulations over the flows associated with the
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solutions of nonlinear differential equations. As documented in several works Monaco

and Normand-Cyrot (2001, 2007); Monaco et al. (2010), these descriptions get the

benefits to be algorithmically computable and the constructive solutions in an ap-

proximate sense also, when referring to homogeneous truncations with respect to the

successive powers in the sampling period. Accordingly, all points 1 to 6 are revisited

for sampled dynamics and the solutions proposed, described by the first terms of the

expansions. However, we focus on the main difficulties or contributions that have

been reached.

1. Pursuing the first approach, the main difficulty is to recover a port-

Hamiltonian structure under sampling, in particular, due to its implicit

structure. It is solved both in the nonlinear and in the linear case. The

solution says that while the Hamiltonian function can be the same, the

sampling procedure implies a transformation of the interconnection and

damping matrices in the sampled structure. These matrices come out

to be described around the continuous-time by their series expansions

in powers of the sampling period as discussed in Theorem 7.4.1 for the

nonlinear case and Theorem 9.2.1 for the linear case. This first aspect is

totally original in the literature and allows us to revisit all the 6 points

so proposing new solutions.

2. Pursuing the second approach it is possible in this sampled-data frame-

work to go further by exploiting the continuous-time IDA-PBC solu-

tion to design, at least in an approximate sense, the first terms of the

IDA-PBC controller which assign the second-order approximation of the

desired sampled-data port-Hamiltonian system, Theorem 8.2.1.

Case studies

Three classical physical case studies in this context have been pursued to validate

all the results in the modeling and control sampled-data port-Hamiltonian systems

making reference to different application fields such as electrical, mechanical, and

electro-mechanical systems.

1. First, we consider the standard continuous-time RLC system. Based

on its linear dynamics we compute its associated exact sampled-data
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port-Hamiltonian representation. This sampled-data structure has been

exploited further for digital stabilization purpose. First, we stabilize

the system at its zero equilibrium point through the injection of the

digital negative output feedback computed over the sampled-data port-

Hamiltonian model. Then, we consider the problem of stabilizing the

system at the desired equilibrium point through the design of digital

IDA-PBC feedback.

2. Secondly, we consider the gravity pendulum system, which is a nonlinear

port-Hamiltonian system affected by a separable Hamiltonian function.

We compute an approximate port-Hamiltonian system of higher-order

with respect to the model proposed by McLachlan et al. (1999); Yalçin

et al. (2015); Aoues et al. (2017). Again the model has been exploited to

stabilize the origin of the system under digital negative output feedback.

Finally, an approximate sampled-data IDA-PBC control has been com-

puted to stabilize the continuous-time system at the desired equilibrium

point.

3. Finally, the same results have been applied to a magnetic levitation ball

system which is a nonlinear system affected by a non-separable Hamil-

tonian function. In particular, we show and discuss how to compute

an approximate sampled-data model and how to stabilize the system

by computing an approximate digital IDA-PBC feedback based on the

continuous-time solution.

Manuscript organization

The contribution of the thesis is distributed in 4 parts that make up the core of the

manuscript. Below we report the detailed list of chapters discussing their content.

Part I

The Chapter 1 is devoted to recalling the main continuous-time concepts that will

be treated within the manuscript. Thus, we begin with the definition of continuous-

time system and stability, to then introduce the formal notion of dissipativity and
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passivity along with their properties. After the definiton of the port-Hamiltonian

system the chapter ends with the definition of passivity-based control (PBC) and

interconnection and damping assignment (IDA-PBC).

In Chapter 2 we enter the world of discrete-time systems providing the basic math-

ematical background for the forthcoming chapters. After the definitions of discrete-

time system, difference and differential representation of a discrete-time system, and

stability concepts we recast the notion of passivity and dissipativity and finally we

recall the main notion of u-average passivity. Then a first result is presented, related

to the interconnection of u-average passive systems. This result is given in Moreschini

et al. (2019b):

A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”In-

terconnection through u-average passivity in discrete time,” 2019 IEEE

58th Conference on Decision and Control (CDC), Nice, France, 2019,

pp. 4234-4239, doi: 10.1109/CDC40024.2019.9029357.

The Chapter 3 concerns the sampled-data framework. Firstly, we recall the defi-

nitions of sampled-data system, and difference and differential representation and

passivity and u-average passivity notions under sampling. Then, we discuss the feed-

back passivation problem under sampled-data design as presented in Mattioni et al.

(2021):

M. Mattioni, A. Moreschini, S. Monaco and D. Normand-Cyrot, On feed-

back passivation under sampling. 2020. Submitted to 2021 American Control

Conference (ACC). (Accepted)

Part II

In Chapter 4 we introduce a novel formal definition of discrete-time port-Hamiltonian

systems. We show that the port-Hamiltonian system arises with a particular passive

output defined by a discrete gradient function but coinciding with the u-average

output map related to the u-average passivity property. The discrete-time structure is

validated presenting the relation between the proposed port-Hamiltonian system with

its associated Dirac structure. The contents of this chapter are given in Moreschini

et al. (2019a); Moreschini et al. (2021):
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A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”Discrete

port-controlled Hamiltonian dynamics and average passivation,” 2019 IEEE

58th Conference on Decision and Control (CDC), Nice, France, 2019, pp.

1430-1435, doi: 10.1109/CDC40024.2019.9029809.

A. Moreschini, S. Monaco and D. Normand-Cyrot, ”Dirac structures of discrete-

time port-Hamiltonian systems,” Submitted to IEEE Transactions on Auto-

matic Control (TAC). (Under review)

In Chapter 5 we specify in the discrete-time port-Hamiltonian framework the

notion of negative output damping feedback for general nonlinear discrete-time port-

Hamiltonian systems. Then we discuss the achieved Dirac structure under nega-

tive output feedback. Further, we address the problem of IDA-PBC stabilization

in discrete-time. The problem is first set in the general nonlinear case so providing

sufficient conditions, then the problem is specialized for a special class of discrete

gradient associated with the Hamiltonian function. The results of this chapter are

partially published in Moreschini et al. (2021):

A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”Stabiliza-

tion of Discrete Port-Hamiltonian Dynamics via Interconnection and Damp-

ing Assignment,” in IEEE Control Systems Letters, vol. 5, no. 1, pp. 103-

108, Jan. 2021, doi: 10.1109/LCSYS.2020.3000705.

In Chapter 6 we revisit all the results presented in the previous chapters con-

cerning discrete-time port-Hamiltonian systems in the linear time invariant case. In

particular, we specialize the structure of LTI discrete-time port-Hamiltonian system

associated with quadratic Hamiltonian functions. Then, the associated negative out-

put feedback is characterized. Finally, necessary and sufficient conditions for solving

the discrete-time IDA-PBC problem for LTI port-Hamiltonian systems are presented,

as given in Moreschini et al. (2021).

Part III

The Chapter 7 concerns the modeling of gradient and port-Hamiltonian systems un-

der sampling. In particular, we provide exact sampled-data equivalent models to
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gradient and port-Hamiltonian Hamiltonian structures preserving the continuous-

time energetic properties at all sampling instants. Then, the proposed sampled-data

representations for uncontrolled dynamics are generalized to input-state-output struc-

tures to exactly reveal the energy balance equation in terms of a suitable output map

that qualifies as a power-conjugate output. The content of this chapter is partially

submitted in Monaco et al. (2021):

S. Monaco, D. Normand-Cyrot, M. Mattioni and A. Moreschini, ”Nonlinear

Hamiltonian systems under sampling”, Submitted to IEEE Transactions on

Automatic Control (TAC). (Under review)

In Chapter 8 we specify the stabilization of sampled-data port-Hamiltonian system in

terms of negative output feedback and IDA-PBC under sampling. First, we recall the

negative output feedback design for sampled-data system and the result is revisited

in the present context. Then, the problem of IDA-PBC under sampling is addressed

making reference to the Input-Hamiltonian-Matching design discussed in Part I.

The Chapter 9 restates all the results achieved under sampling in the linear context.

In this respect, we describe the exact linear gradient and port-Hamiltonian structures

under sampling. Then, the negative output feedback is properly designed and, finally,

the IDA-PBC problem introduced in Part II is properly reshaped providing an exact

solution to the matching equation. The modeling of gradient and port-Hamiltonian

dynamics in the linear case is published in Moreschini et al. (2019):

A. Moreschini, S. Monaco and D. Normand-Cyrot, Gradient and Hamil-

tonian dynamics under sampling, IFAC-PapersOnLine, Volume 52, Is-

sue 16, 2019, Pages 472-477, ISSN 2405-8963, https://doi.org/10.1016/

j.ifacol.2019.12.006.

Part IV

This part focuses upon three different case studies with the aim to underline the

computational aspects and the effectiveness of the methodologies and the results

presented in the main part of the manuscript.

In Chapter 10 we consider a linear-time invariant RLC system and an exact

sampled-data port-Hamiltonian system is computed. Further, we discuss and illus-
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trate the digital stabilization problem through negative output feedback and direct

discrete IDA-PBC by means of illustrative simulations.

In Chapter 11 the same modeling and stabilization results are performed for

the nonlinear gravity pendulum which comes with a separable Hamiltonian function.

First, we perform approximate port-Hamiltonian models under sampling and then we

address the stabilization problem through negative output feedback and IDA-PBC

under sampled-data design.

Finally, to complete the discussion in Chapter 12 we focus upon a magnetic levita-

tion ball system which is a nonlinear system affected by a non-separable Hamiltonian

function. We perform approximate port-Hamiltonian models under sampling and we

discuss the achieved approximate structure. Accordingly, to stabilize the system, we

exploit the IDA-PBC feedback to achieve stabilization at the desired equilibrium of

the closed-loop magnetic levitation ball system under digital feedback.

The manuscript ends with concluding remarks, open perspectives and open works

on these discrete-time and sampled-data frameworks.
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I
n this chapter, some recalls and preliminary results are presented for continuous-

time systems by emphasizing physical properties such as port-Hamiltonian mod-

eling and passivity that are then exploited throughout the manuscript together

with basic notions regarding control design such as general passivity-based control

and Interconnection and Damping Assignment (IDA-PBC). The notions used here-

inafter are recalled from Khalil (2002); Wiggins (2003); Isidori (2013); Sepulchre et al.

(2012); van der Schaft (2000); van der Schaft et al. (2014).
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1.1 Continuous-time models

Throughout this thesis, nonlinear continuous-time systems are described in state

space form by a set of ordinary differential equations

ẋ = f(x, u) (1.1a)

y = h(x). (1.1b)

The state x = (x1, . . . , xn) is assumed to belong to a subset X of Rn, the input

u = (u1, . . . , um) is assumed to belong to a subset U of Rm, and the output y =

(y1, . . . , yp) is assumed to belong to a subset Y of Rp. The function f : X × U → X
and h : X × U → X are assumed smooth. It is assumed also that (1.1a) is forward

complete, meaning that its solution exists for all t ≥ 0, x0 = x(0) ∈ X and u ∈ U .

A continuous-time system of the form (1.1) is referred as time-invariant as mappings

f, h are not explicitly depending on t.

The state x? ∈ X is said to be an equilibrium point of the system (1.1a) if

f(x?, 0) = 0. This class of systems includes the following sub-classes of systems:

� Input-affine system:

ẋ = f(x) + g(x)u (1.2a)

y = h(x) (1.2b)

� Linear system (LTI):

ẋ = Ax+Bu (1.3a)

y = Cx (1.3b)

with matrices (A,B,C) of appropriate dimensions.

Once determined the equilibrium point x? of the autonomous system (1.1a), with

input u = 0, it is natural to verify if its solution is stable.

Definition 1.1.1 (Stability). The state x = x? is said stable equilibrium of the

system (1.1a) if for all ε > 0, there exists a δε > 0 such that

||x0 − x?|| < δε =⇒ ||x(t)− x?|| < ε, for all t ≥ 0.
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This stability condition requires that all the trajectories of (1.1a) are contained

within an arbitrarily small enough ball centered at the equilibrium point x? of radius

ε, when released from a ball of radius δε sufficiently small.

Definition 1.1.2 (Unstability). The state x = x? is said unstable if is not stable.

Definition 1.1.3 (Asymptotic Stability). The state x = x? is said asymptotically

stable equilibrium of the system (1.1a) if it is stable and if there exists a Br(x) =

{x ∈ Rn : ||x|| < r} such that

lim
t→∞
||x(t)− x?|| = 0 ∀x0 ∈ Br(x).

The state x? is said to be a global asymptotic stable equilibrium of the system (1.1a)

if Br(x) is Rn.

Asymptotic stability claims that the equilibrium state x? besides being stable in

the sense of Definition 1.1.1 guarantees that nearby solutions to x? actually converge

to x? as t→∞. The aforementioned stability definitions are also known as stability

in the sense of Lyapunov, and if the asymptotic stability condition is not satisfied,

the stability in the sense of Lyapunov refers to a marginally stable equilibrium point.

Once introduced the notion of stability of an equilibrium point it is important to

find a way to determine it. In this respect, in 1892, Lyapunov introduced a certain

function with specific properties to establish stability of an equilibrium point studying

the evolution of the trajectories of the vector field f(x, 0) associated with (1.1a),

without explicitly computing the solution of (1.1a). In particular, he considered a

continuously differentiable function V : X → R to provide that if the evolution of

the trajectories of the vector field f(x, 0), verifying f(0, 0) = 0, converges to 0 then

function V will decrease along the solution of f(x, 0). The function V (x) is referred

as Lyapunov function.

Definition 1.1.4. A function f : Rn → Rn is called radially unbounded, if ||x|| → ∞
implies f(x)→∞.

The Lyapunov stability theorem is given below and is recalled from Wiggins

(2003).
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Theorem 1.1.1. Let x = x? be an equilibrium point for the continuous-time dynamics

(1.1a) and let X ⊂ Rn such that x? ∈ X . Let V : X → R be a continuous function

such that V (x?) = 0 and V (x) > 0, ∀x ∈ X − {0}. Hence,

� If V̇ (x(t)) ≤ 0, for all x(t) ∈ X − {0} then x? is a stable equilibrium for

the system;

� If V̇ (x(t)) < 0, for all x(t) ∈ X − {0} then x? is an asymptotic stable

equilibrium for the system;

� If D coincides with Rn, V is radially unbounded and V̇ (x(t)) < 0, for all

x(t) ∈ Rn − {0} then x? is a global asymptotically stable equilibrium for

the system.

The asymptotic stability notion is a very important property of a system and much

more fundamental for control purpose, and the Lyapunov Theorem is often difficult

to apply as it usually happens that the variation in time of V is only negative definite.

Therefore, to conclude asymptotic stability let recall the following important notions.

Definition 1.1.5 (Invariant set). A set X is said to be an invariant set with respect

to (1.1a) if

x(0) ∈ X =⇒ x(t) ∈ X , ∀t ∈ R.

X is said to be a positively invariant set if

x(0) ∈ X =⇒ x(t) ∈ X , ∀t ≥ 0.

Theorem 1.1.2 (LaSalle’s theorem). Let Ω ⊂ X be a compact set that is positively

invariant with respect to (1.1a). Let V : X → R be a continuously differentiable

function such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ (x) = 0.

Let M be the largest invariant set in E. Then every solution starting in Ω approaches

M as t→∞.

Theorem 1.1.3 (Barbashin-Krasovskii theorem). Let x = 0 be an equilibrium point

for (1.1a). Let V : X → R be a continuously differentiable positive definite function

on a domain X containing the origin x = 0, such that V̇ ≤ 0 in X . Let S = {x ∈
X | V̇ (x) = 0} and suppose that no solution can stay identically in S, other than the

trivial solution x(t) ≡ 0. Then, the origin is asymptotically stable.
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Theorem 1.1.4. Let x = 0 be an equilibrium point for (1.1a). Let V : X → R be

a continuously differentiable, radially unbounded, positive definite function such that

V̇ ≤ 0 for all x ∈ Rn. Let S = {x ∈ Rn | V̇ (x) = 0} and suppose that no solution

can stay identically in S, other than the trivial solution x(t) ≡ 0. Then, the origin is

globally asymptotically stable.

Remark 1.1.1. The equilibrium point x? = 0 of the linear system (1.3) with u = 0, is

globally asymptotically stable with respect to the Lyapunov function S(x) = 1
2
x>Px

and positive definite P ∈ SymR(n, n), verifying

PA+ A>P < 0. (1.4)

Then, all eigenvalues of the matrix A have negative real part.

1.2 Dissipativity and passivity

In the early 1970’s, the concept of passive systems have been introduced for electrical

circuit theory in Popov (1973) and further energetic properties has been formalized

introducing the notions of storage function and supply rate, see Willems (1972b,c).

These notions provide information on the energy behavior of the system with respect

to its environment. Particularly, Willems managed the passivity concept as a funda-

mental input-output property which may be defined in terms of energy dissipation

and transformation, and provided an energy balance of the system which generates a

family of output related to external input mapping. In the context of this manuscript,

since the system (1.1) must be modeled in such a way it exchanges power with its

environment, the input space U ⊂ Rm and output space Y ⊂ Rm are assumed having

same dimension, i.e. dimU = dimY and the dynamical system (1.1) is considered,

as in Figure 1.1, in the following input-affine representation

ẋ = f(x) + g(x)u (1.5a)

y = h(x) (1.5b)

with smooth mappings f : Rn → Rn, g : Rn → Rm, h : Rn → Rm, and without

feedthrough term.
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Σ
u y

Figure 1.1: System (1.5) in an input-output representation with no feedthrough term.

In the following needed definitions are recalled from Sepulchre et al. (2012). The

interested reader might find further insight in Willems (1972b,c); van der Schaft

(2000); Vidyasagar (2002); Brogliato et al. (2007); Astolfi et al. (2007); Aliyu (2011).

Definition 1.2.1 (Dissipativity). Assume that associated with the system (1.5) is

a function ω : U × Y → R, called supplied rate, which is locally integrable for every

u ∈ U , that is, it satisfies∫ t1

t0

|ω(u(t), y(t))| dt <∞, for all t0 ≤ t1.

Let X be a connected subset of Rn containing the equilibrium point x?. The system

(1.1) is said dissipative in X with supply rate ω(u, y) if there exists a C1 nonnegative

function S : X → R≥0, S(x?) = 0, such that

S(x(T ))− S(x(0)) ≤
∫ T

0

ω(u(t), y(t)) dt (1.6)

for all u ∈ U and T ≥ 0 such that x(t) ∈ X for all t ∈ [0, T ]. The function S(x) is

then called a storage function.

Definition 1.2.2 (Passivity). The system (1.5) is said passive if it is dissipative with

supply rate

ω(u(t), y(t)) = u>y.

If the storage function S(x) is differentiable with S(x) ≥ 0, a passive system is

equivalently defined as satisfying the differential dissipation inequality

Ṡ(x) ≤ u>y, (1.7)

along all solutions x(t) with respect to the input function u(t). From the passivity

condition a physical interpretation of S(x) can be deduced. Indeed, in many physical

systems the storage function is nothing else that a generalization of the energy of the
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system as the supply rate ω(u, y) is a generalization of the power supplied by the

system. Thus, the physical interpretation of the dissipation inequality (1.7) states

that the rate of increase of the internal energy is never greater than the power provided

by the input power. Moreover, a passive system is dissipative if the energy variation

of a system with zero input decreases over time, i.e. Ṡ(x) ≤ 0.

A particular interpretation of this condition is when the stored energy is exactly

equal to the supplied one.

Definition 1.2.3. The system (1.1) is said lossless with supply rate ω(u, y) if there

exists a differentiable storage function S(x), such that for all x ∈ X and u ∈ U

Ṡ(x) = ω(u, y). (1.8)

Moreover, it is said conservative if it is lossless and for zero input u = 0 the supply

rate verifies ω(0, y) = 0.

The aforementioned definition states that a lossless system with supply rate

ω(u, y) = u>y, stores the same amount of energy than it is supplied with. More-

over, a passive system is conservative if the energy variation of a system with zero

input remains constant over time, i.e. Ṡ(x) = 0.

The necessary and sufficient conditions for providing passivity of a system of the

form (1.5) are given by Kalman, Yakubovich and Popov and known in the literature

as KYP properties. The next theorem is given by Hill and Moylan (1976).

Theorem 1.2.1. A system (1.5) is passive if and only if there exists a C1 nonnegative

function S : X → R≥0 which verifies the KYP properties

LfS(x) ≤ 0 (1.9a)

LgS(x) = h>(x) (1.9b)

for all x ∈ X .
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Remark 1.2.1. A linear system of the form (1.3) with D = 0, is passive with respect

to a quadratic storage function S(x) = 1
2
x>Px and positive definite P ∈ SymR(n, n),

and verifies KYP properties

PA+ A>P < 0 (1.10a)

B>P = C. (1.10b)

Alternatively, if the system (1.3) is lossless, then verifies

PA+ A>P = 0 (1.11a)

B>P = C. (1.11b)

1.2.1 Interconnections of passive systems

A useful feature of passive systems theory is the parallel interconnection and the

negative feedback interconnection of passive systems is still passive. These results

have inspired and motivated a huge number of control techniques typically exploited

in control engineering Willems (2007); van der Schaft (2000). Indeed, these intercon-

nection properties lead to nowadays well consolidated methodologies making reference

to the so-called Passivity-Based Control (PBC) embedding, among many, Intercon-

nection and Damping Assignment (IDA-PBC) and Control by Interconnection (CbI),

where the role and the properties of the interconnection are extensively exploited for

the design in several control problems Ortega et al. (2001, 2008, 2002b). Moreover,

a variety of problems involving complex systems can be recast in the framework of

energy-dissipation by modelling the complexity as a suitable power preserving inter-

connection; as an example, multi-agent and networked systems can be seen as an

interconnection between passive subsystems Giordano et al. (2013); Reyes-Báez et al.

(2018); Yao et al. (2009); Hatanaka et al. (2015).

The parallel interconnection and the negative feedback interconnection of passive

systems are illustrated in Figure 1.2. To begin with, consider the interconnections

depicted in where Σ1 and Σ2 are time-invariant dynamical system represented as

ẋi = fi(xi, ui) (1.12)

yi = hi(xi). (1.13)
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(a) Feedback interconnection
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(b) Parallel interconnection

Figure 1.2: Interconnection of passive systems

Whether as a result of negative feedback interconnection (Figure 1.2a) or parallel

interconnection (Figure 1.2b), the closed-loop state model takes the form

ẋ = f(x, r) (1.14)

y = h(x) (1.15)

where r is the new external input source and the state x = (x1, x2). In this respect,

the feedback interconnection is represented by an interconnecting law given by the

following conditions

u1 = r − h2(x2) (1.16a)

u2 = r + h2(x1) (1.16b)

which results from the interconnection given in (Figure 1.2a), while the parallel in-

terconnections is simply given by the condition

r = u1 = u2 (1.17)

resulting from the interconnection illustrated in (Figure 1.2b).
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Theorem 1.2.2. Assume Σ1 and Σ2 are two passive system. Then the resulting

feedback and parallel interconnection yield a passive system.

The result can be deduced by requiring the storage function S of the whole inter-

connected system as the sum of the individual storage functions, i.e.

S(x1, x2) = S1(x1) + S2(x2).

1.2.2 Stability of passive systems

The concept of passivity and dissipativity are closely related to the Lyapunov stability

theory in case the storage function S(x) serves as a Lyapunov function. Indeed, if the

passivity of the system is assured, then stability and stabilization problems can be

handled, Sepulchre et al. (2012). The passivity property implies more than stability.

It associates the input and output to the storage function and characterizes useful

input-output properties.

The following notions are very useful in the problem of zero-state stabilization of

the system. The problem of zero-state stabilization of controlled system was inten-

sively studied in literature, see e.g. Byrnes et al. (1991). However the following are

recalled from Sepulchre et al. (2012).

Definition 1.2.4 (Zero-state detectability). Consider the system (1.1) with equilib-

rium point x? and K∗ ⊂ Rn be the largest invariant set contained in K := {x ∈
Rn | h(x, 0) = 0}. The system (1.1) is said zero-state detectable (ZSD) if x? is an

asymptotically stable equilibrium conditionally to K∗; that is for each initial condition

x0 ∈ K∗ and ε > 0 there exists δ(ε) such that

||x0 − x?|| < δ(ε) =⇒ ||x(t, x0)− x∗|| < ε ∀t > 0

and additionally there exists δ̄ > 0 such that

||x0 − x?|| < δ̄ =⇒ lim
t→∞

x(t, x0) = x?.
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Definition 1.2.5 (Zero-state observability). The system (1.1) with zero input u = 0

is zero-state observable (ZSO) if x = x? is asymptotically stable conditionally to the

largest positively invariant set Z = {0}.

Theorem 1.2.3. Let a system (1.1) with an equilibrium in x? be passive with a

storage function S(x). Then the following properties hold:

� If S(x) is positive definite, then the equilibrium x = x? of (1.1) with

u = 0 is Lyapunov stable;

� If (1.1) is ZSD, then the equilibrium x = x? of (1.1) with u = 0 is

Lyapunov stable;

� In addition, if S(x) is positive definite and radially unbounded, i.e. S(x)→
∞ as x → ∞, then the equilibrium x = x? in the above conditions is

globally stable.

1.2.3 Passivity-based control

We recalled the notion of passivity and seen its role in feedback interconnections. The

ideas of passivity-based control that we are going to recall here is a straightforward

application of the passivity condition given above.

Theorem 1.2.4 (Damping feedback). If the system (1.5) is zero-state detectable

and passive with radially unbounded positive definite storage function S : X → R≥0,

S(x?) = 0, then x? can be globally stabilized by

u = −φ(y)

where φ is any locally Lipschitz function such that φ(0) = 0 and y>φ(y) > 0 for all

y 6= 0.

In many cases the storage function is nothing else than the energy of the system,

and the passive system has a stable equilibrium point. The Passivity-based control

given above is needed to stabilize the equilibrium point of the system by means of an
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injection of damping so that energy will dissipate whenever x(t) is not identically x?.

In this framework the damping is feedback injected by φ(y). Moreover, sometimes

the injection is obtained by assigning a gain κ > 0, so that the PBC will inject to

the closed loop system the so called negative output feedback

u = −κy.

In our studies, we will usually deduce stability from the positive definiteness of

the storage function and then invoke ZSD property to establish asymptotic stability

under negative output feedback.

Example 1.2.1. The system

ẋ1 = x2

ẋ2 = −x1 + u

y = x2

is ZSD and passive with positive semidefinite storage function S(x1, x2) = 1
2
x2

1 + 1
2
x2

2

since

Ṡ = x1ẋ1 + x2ẋ2 = yu,

marginally stable for u = 0. Selecting the negative output feedback u = −κy with

κ > 0, the origin of the closed-loop system is asymptotically stable since it verifies

Ṡ = −κx2
2 < 0.

We have seen that passive systems are stable (for zero input u = 0) and easy

to control (such as negative output feedback). Thus the perspective of rendering a

system passive via feedback is often useful in control design. For example, we may first

passivate a system and then stabilize the passivated system with a passivity-based-

controller. Beyond negative output feedback, the feedback passivation paradigm is

the underlying leit motiv of several nonlinear control strategies such as backstepping

or feedforwarding. See Ortega et al. (2001); Astolfi et al. (2007); Sepulchre et al.

(2012) for a thorough understanding.

The definition of feedback passivation is formally given in the definition below.
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Definition 1.2.6 (Feedback passivation). The system (1.5) is said feedback passive

if there exist smooth functions γ : Rn → R, hd : Rn → R and Sd : Rn → R≥0 such

that the feedback law

u = γ(x) + v (1.18)

makes the closed-loop system

ẋ = fd(x) + g(x)v (1.19a)

y = hd(x) (1.19b)

passive with fd(x) := f(x) + g(x)γ(x) and storage function Sd(·); namely, the dissi-

pation inequality below holds for all t ≥ 0 and x0 ∈ Rn

Sd(x(t))− Sd(x0) ≤
∫ t

0

y(s)v(s)ds. (1.20)

Theorem 1.2.5 (Stabilization through feedback passivation). If the system (1.5)

is feedback passive under feedback law (1.18) and the achieved closed-loop system

(1.19) is ZSD and passive with radially unbounded positive definite storage function

Sd : Rn → R≥0 and Sd(x?) = 0, then x? can be globally asymptotically stabilized by

the negative output feedback

v = −κhd(x), κ > 0.

1.3 Port-Hamiltonian systems

An important class of passive systems governed by the Hamiltonian function is the

port-Hamiltonian, van der Schaft (2000). Port-Hamiltonian systems emerge from

network modeling of complex physical systems possibly containing components from

different physical domains. They are defined by a Dirac structure, expressing the

power-conserving property of the interconnection, an energy function, the Hamil-

tonian, together with a resistive relation (see van der Schaft et al. (2014) and the

references therein). Dirac structures, arising from the bond graph formalism and

the Poisson formalization of symplectic forms Courant (1990), have been proposed
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to represent power-preserving interconnections (see Maschke et al. (1992); van der

Schaft and Maschke (2013)). In particular, in Maschke and van der Schaft (1993) it

has been shown how port-Hamiltonian systems naturally lead to a generalized Hamil-

tonian formulation of the dynamics where the Hamiltonian function is given by the

total energy of the energy-storing elements in the system, while the internal structure

of the system is properly specified by the power-conserving interconnection between

energy-storing elements of each subsystem.

1.3.1 Port-Hamiltonian dynamics

In what follows we recall the definition of input-state-output port-Hamiltonian system

from van der Schaft (2000). In the rest of the manuscript, input-state-output port-

Hamiltonian system will be simply called port-Hamiltonian.

Definition 1.3.1 (Port-Hamiltonian system). A continuous-time port-Hamiltonian

system with state x ∈ X ⊂ Rn, input u ∈ U ⊂ Rm and output y ∈ Y ⊂ Rm, and

Hamiltonian function H(·) : X → R which is a continuously differentiable real-valued

function, is given as

ẋ = (J(x)−R(x))∇H(x) + g(x)u (1.21a)

y = g>(x)∇H(x) (1.21b)

where J(·) ∈ SkewR(n, n), and positive semidefinite R(·) ∈ SymR(n, n).

Port-Hamiltonian systems naturally arise from the energy interpretation of the

system and they are defined in terms of a Hamiltonian function H(x), representing

the total amount of energy contained in the system (stored energy), together with

two geometric structures J(x) and R(x) corresponding to power-conserving intercon-

nection and energy dissipation, respectively. Finally, u and y are conjugated variables

whose product has units of power. In the case of port-Hamiltonian systems endowed

with a lower bounded Hamiltonian function, the passivity property can be directly

inferred from the special geometric structure of the system, exploiting the Hamilto-

nian function as a storage function, and providing a suitable output for which the

passivity property holds true with respect to the Hamiltonian function. In particular,

by the geometric structure of J(x) and R(x), it follows that:
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� considering H(x) as a storage function (H : X → R≥0), the port-

Hamiltonian system (1.21) is passive and verifies the dissipation inequal-

ity

Ḣ = −∇>H(x)R(x)∇H(x) + y>u ≤ u>y, (1.22)

and integrating with respect to time for t > t0, one gets the energy

balance equality

H(x(t)) = H(x(t0))−
∫ t

t0

∇>H(x(τ))R(x(τ))∇H(x(τ)) dτ

+

∫ t

t0

u>(τ)y(τ) dτ,

where ∇>H(x)R(x)∇H(x) describes the internal dissipation and the

inner product u>y describes the externally supplied power;

� if x? is a (local) strict minimum of the Hamiltonian function H(x),

namely

x? = arg minH(x),

according to Lyapunov stability and La Salle’s invariance principle any

equilibrium x? of the port-Hamiltonian system which coincides with a

local minimum of H(x) are asymptotically stable equilibra of the system

if the set {x?} coincides with the largest invariant set contained in

Ω? := {x ∈ Rn | ∇>H(x)R(x)∇H(x) = 0};

� in the case of zero dissipation R(x) = 0, the system is lossless

Ḣ = u>y, (1.23)

and for zero input u = 0 the equality above implies conservation of

energy along the dynamics (1.21).

Remark 1.3.1. In the linear case with quadratic Hamiltonian function H(x) =
1
2
x>Px and positive definite P ∈ SymR(n, n) is represented by the couple of equations

ẋ = (J −R)Px+Bu (1.24a)

y = B>Px (1.24b)
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with (J,R,B, P ) having constant entries. The dissipation inequality along H(x)

provides

Ḣ(x) = −x>PRPx+ x>PBu ≤ u>y. (1.25)

1.3.2 Recalls on Dirac structures

Finite-dimensional Dirac structures are defined over finite-dimensional vector space

of flows F and over a field K, where the flow vector f is an element of the vector

space of flows F . Accordingly, the effort vector is denoted by e that is an element of

the vector space of efforts E . The vector space of efforts is given by the dual space

of F , that is E = F∗. The space of port variables is given by the space of flow and

effort variable F ×E . The duality product between dual spaces F and E , denoted by

〈· | ·〉 : E × F → K, (1.26)

is non-degenerate, i.e.

〈e | f〉 = 0,∀e ∈ E =⇒ f = 0

〈e | f〉 = 0,∀f ∈ F =⇒ e = 0,

and linear in each coordinate, i.e.

〈αea + βeb | f〉 = α〈ea | f〉+ β〈eb | f〉

〈e | αfa + βfb〉 = α〈e | fa〉+ β〈e | fb〉,

with fa, fb, f ∈ F , ea, eb, e ∈ E , and α, β ∈ K. The standard definition of a Dirac

structure is recalled below, van der Schaft (2000); Duindam et al. (2009).

Definition 1.3.2 (Dirac structure). Consider on the space of the port variables F×E
the canonical bilinear form

〈〈·, ·〉〉 : (F × E)× (F × E)→ K, (1.27)

defined by 〈〈(fa, ea), (fb, eb)〉〉 := 〈ea, fb〉+ 〈eb, fa〉 with (fa, ea), (fb, eb) ∈ F ×E . Then

a Dirac structure is a subspace D ⊂ F × E such that D = D⊥⊥, with ⊥⊥ denoting the

orthogonal complement with respect to the bilinear form 〈〈·, ·〉〉.
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Note that the bilinear form 〈〈(f, e), (f, e)〉〉 is indefinite as it can be positive or

negative, and is non-degenerate, in the sense that 〈〈(fa, ea), (fb, eb)〉〉 = 0 for all (fa, ea)

implies (fa, ea) = 0, or viceversa. Furthermore, the duality product (1.26) and the

bilinear form (1.27) are related by

〈e | f〉 =
1

2
〈〈(f, e), (f, e)〉〉 ∈ F × E .

For a finite-dimensional real linear space F the definition of Dirac structure is equiv-

alent to dimD = dimF and

〈e | f〉 = e>f = 0, (f, e) ∈ D.

The aforementioned property has a physical interpretation as it corresponds to the

power-conservation law. Specifically, it expresses the phenomena that the power

entering (or leaving) a Dirac structure is always zero.

Remark 1.3.2. It is worth mentioning that if Φ : E → F is a skew-symmetric linear

mapping, that is Φ = Φ∗ where Φ∗ : E → E∗ = F is the adjoint mapping, then

Φgraph := {(f, e) ∈ F × E | f = Φe}

is a Dirac structure.

In the case of a linear state space X and a constant Dirac structure D, is defined

as

D ⊂ FS × ES ×FR × EE ×FP × EP

where (fS, es) ∈ FS × ES are the flows and efforts of the energy-storing elements,

(fR, eR) ∈ FR × ER the flows and efforts of the energy-dissipating elements, and

finally (fP , eP ) ∈ FP ×EP are the flows and efforts of the external ports. The vectors

of flow variables and effort variables of the energy-storing elements are given as

fS = −ẋ

eS =
∂H

∂x
(x)

while (fR, eR) are related by a energy-dissipating (resistive) relation, which can be

any subset R ⊂ FR × ER, satisfying the property

e>RfR ≤ 0 ∀ (fR, eR) ∈ R. (1.28)

This leads to the following definition.
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Definition 1.3.3. A port-Hamiltonian system is defined by a Dirac structure D, a

Hamiltonian function H : X → R and an energy-dissipating relation R ⊂ FR × ER
satisfying (1.28). The dynamics is given by the requirement that for all t ∈ R(

−ẋ(t),
∂H

∂x
(x(t)), fR(t).eR(t), fP (t), eP (t)

)
∈ D(x(t))

(fR(t), eR(t)) ∈ R

Exploiting Remark 1.3.2 the port-Hamiltonian system is given as the graph of the

skew-symmetric mapfSfR
fP

 =

−J(x) −gR(x) −g(x)

g>R(x) 0 0

g>(x) 0 0


eSeR
eP

 ,

with resistive relation eR = −r(x)fR, matrix r(x) = r>(x) � 0, and the input matrix

gR(x) corresponding to the resistive port, which provide energy balance

f>S eS + f>R eR + f>P eP = 0.

1.4 Interconnection and damping assignment

Port-Hamiltonian systems can be profitably used for solving set-point stabilization

based on the feedback passivation problem. The energy management is the essence

of the second generation of PBC, see Ortega et al. (2001), since the Hamiltonian

function, which serves as storage function, is generally defined as the sum of the ki-

netic and potential energy functions associated with the system. This Hamiltonian

function comes with desirable features, one above all is that the energy function has a

minimum at the desired operating point to ensure stability. One of the most praised

energy-based control is, undoubtedly, the so-called Interconnection and Damping As-

signment (IDA-PBC), introduced in Ortega et al. (2002b). Stabilization of a desired

equilibrium by IDA-PBC involves assigning for the closed-loop system a new port-

Hamiltonian structure with the assigned energy function having a minimum at the

desired equilibrium point, for stability reasons.
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Problem 1 (IDA-PBC). The objective of the IDA-PBC strategy consists of finding

an input feedback u = u(x) such that a desired equilibrium point x? of the closed-loop

system is (asymptotically) stable and that the closed-loop system is given by

ẋ = (Jd(x)−Rd(x))∇Hd(x) + g(x)u (1.29a)

y = g>(x)∇Hd(x) (1.29b)

where Jd(x) ∈ SkewR(n, n) and positive semidefinite Rd(x) ∈ SymR(n, n) are, respec-

tively, the desired interconnection and dissipation matrices and Hd : Rn → R≥0 is the

desired Hamiltonian function. The desired Hd(x) must verify Hd(x?) = 0, with x? a

strict (local) minimizer of Hd(x). Moreover, the achieved closed-loop system (1.29)

yields the energy balance equality for all t > t0,

Hd(x(t))−Hd(x(t0)) = −
∫ t

t0

∇>Hd(x(τ))Rd(x(τ))∇Hd(x(τ)) dτ +

∫ t

t0

u>(τ)y(τ) dτ.

A static feedback can be computed solving in u the PDE called matching equation

of form

(J(x)−R(x))∇H(x) + g(x)u = (Jd(x)−Rd(x))∇Hd(x).

The following proposition is recalled.

Proposition 1.4.1 (Ortega et al. (2002b)). Consider the system

ẋ = (J(x)−R(x))∇H(x) + g(x)u (1.30a)

y = g>(x)∇H(x) (1.30b)

and a desired equilibrium x? to be stabilized. Assume that we can find functions u(x)

and Ha(x), and matrices Ja(x) and Ra(x) satisfying the matching equation of form

(J(x)−R(x))∇H(x) + g(x)u = (Ja(x) + J(x)−Ra(x)−R(x))(∇Ha(x) +∇H(x))

and such that the following conditions occur.

� Equilibrium assignment: at x? the gradient of Ha(x) verifies

∇Ha(x?) +∇H(x?) = 0.

� Minimum condition: the Hessian of Ha(x) at x? satisfies

∇2Ha(x?) +∇2H(x?) > 0.
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Then, x? will be a (locally) stable equilibrium of the closed-loop system (1.29). It will

be (locally) asymptotically stable if, in addition, the largest invariant set under the

closed-loop dynamics contained in

{x ∈ Rn | ∇>Hd(x)Rd(x)∇Hd(x) = 0}

equals {x?}.

Namely, the matching equation reduces in solving the matching condition

g⊥(x) ((J(x)−R(x))∇H(x)− (Jd(x)−Rd(x))∇Hd(x)) = 0

where g⊥(x) denotes left annihilator of the mapping g, i.e. g⊥(x)g(x) = 0 for all

x ∈ Rn. Its solution, that is generically necessary for the solvability of the matchign

equation, hinges upon suitable construction of Jd(x), Rd(x), and Hd(x), namely defin-

ing

Jd(x) := J(x) + Ja(x) Rd(x) := R(x) +Ra(x) Hd(x) := H(x) +Ha(x)

where Ha(x) is chosen such that Hd(x) has a minimum in x?, namely Ha(x) must

verify at x? the relation Ha(x?) = −H(x?), solving the matching condition

g⊥(x) ((J(x)−R(x))∇Ha(x) + (Ja(x)−Ra(x))(∇H(x) +∇Ha(x))) = 0. (1.31)

If the matching condition is satisfied, then the state-feedback u that (asymptot-

ically) stabilizes the equilibrium point x? of the closed-loop system (1.29) is given

by

u = g†(x) ((J(x)−R(x))∇Ha(x) + (Ja(x)−Ra(x))(∇H(x) +∇Ha(x))) (1.32)

with g†(x) = (g>(x)g(x))−1g>(x).

Remark 1.4.1. The matching condition which must be solved is parameterized by

three ingredients Ja(x), Ra(x), and g⊥(x) with Ja(x) and Ra(x) defining the degrees

of freedom in satisfying the PDE. If the problem is solvable with respect to unchanged

J(x) and R(x), i.e. Ja(x) = 0 and Ra(x) = 0, the matching equation is called the

energy shaping matching equation, and characterizes the possible Ha(x) which is used

to shape H(x) to Hd(x), see van der Schaft (2000); Ortega et al. (2001, 2002a).



1.4. INTERCONNECTION AND DAMPING ASSIGNMENT 45

However, not all the desired equilibrium points can be assigned to the closed-loop

system. The assignable equilibrium point x? to the port-Hamiltonian system (1.21),

see Castaños et al. (2009), is contained in the set

E := {x ∈ Rn | g⊥(x)(J(x)−R(x))∇H(x) = 0},

there is a uniquely defined constant control given by,

u? = −g†(x?)(J(x?)−R(x?))∇H(x?).

For the ease of presentation let consider the following example which will be better

analyzed in Part IV concerning the case studies.

Example 1.4.1. Assume the LC port-Hamiltonian system of the form

ẋ = J∇H(x) +Bu =

(
0 1

−1 0

)
∇H(x) +

(
0

1

)
u (1.33)

and associated Hamiltonian function given by

H(x) =
1

2C
x2

1 +
1

2L
x2

2. (1.34)

with inductor L > 0 and capacitor C > 0. The control objective is to asymptotically

stabilize the closed-loop system at the desired equilibrium point x? = (x?1, 0), by

assigning the desired Hamiltonian function

Hd(x) =
1

2C
(x1 − x?1)2 +

1

2L
x2

2.

To achieve the control objective the matching condition

B⊥((J −Rd)∇Hd(x)− J∇H(x)) = 0

must be satisfied. However, selecting the dissipation matrix as

Rd =

(
0 0

0 rd

)
the matching condition is satisfied and thus there exists an IDA-PBC feedback of the

form

u = (B>B)−1B>((J −Rd)∇Hd(x)− J∇H(x))

=
1

C
x?1 −

rd
L
x2 (1.35)

which assigns the desired closed-loop system

ẋ = (J −Rd)∇Hd(x) =

(
0 1

−1 −rd

)
∇Hd(x).
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1.5 Concluding remarks

The underlying notions of passivity, port-Hamiltonian modeling, passivity-based con-

trol and IDA-PBC have been recalled. A deeper understanding of these concepts can

be found in Ortega et al. (2001); van der Schaft (2000); Brogliato et al. (2007); As-

tolfi et al. (2007); Sepulchre et al. (2012); van der Schaft et al. (2014). We conclude

this chapter by mentioning the crucial properties that need particular attention and

understanding in discrete time first and then under sampled-data design:

1. definition of passivity for discrete time systems;

2. interconnection of passive systems;

3. definition of port-Hamiltonian dynamics with an associated passive out-

put;

4. the use of passivity in energy-based control in discrete time and under

sampling.
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T
his chapter moves towards passivity properties in a discrete time setting.

First, we discuss generalities on discrete-time systems and in particular we

recall the definition of Difference/Differential representation (DDR), intro-

duced in Monaco and Normand-Cyrot (1995), and the definition of discrete gradient

function, introduced in Gonzalez (1996). Then, we restate the definition of passivity

in discrete time and, in this respect, notions and properties of u-average passivity are

recalled from Monaco and Normand-Cyrot (2011). Further, we establish a connection

between the u-average output, arising from the u-average passivity definition, with

a discrete gradient of the associated storage function. Finally, since in the frame-

work of discrete-time u-average passive systems, a complete understanding of the

properties under elementary interconnections is still unclear, the properties of the in-

terconnection preserving u-average passivity under interconnection are proposed and

new results in this direction will be presented and further discussed by means of an

academic example.

2.1 Generalities on discrete-time systems

General nonlinear discrete-time systems are described in the state-space representa-

tion by a set of difference equation equations

x(k + 1) = F (x(k), u(k)) (2.1a)

y(k) = h(x(k), u(k)). (2.1b)

The state x = (x1, . . . , xn) is assumed to belong to a subset X of Rn, the input u =

(u1, . . . , um) is assumed to belong to a subset U of Rm, and the output y = (y1, . . . , yp)

is assumed to belong to a subset Y of Rp. F : X×U → Rn, h : X×U → Rn are smooth

mappings. The state x, input u, and output y are functions of time k with k ∈ N
and determined by their initial condition x(0) and u(0). For a deeper understanding

on discrete-time systems see Normand-Cyrot (1983); Greenspan (1973); Monaco and

Normand-Cyrot (1986); Kotta (2006); Sontag (2013). The point x? ∈ X is the

equilibrium point of the autonomous system (2.1a), that is F (x(k), 0). This general

class of systems include the following sub-classes of discrete-time systems:
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� Input-affine system:

x(k + 1) = F (x(k)) + g(x(k))u(k) (2.2a)

y(k) = h(x(k)) + j(x(k))u(k) (2.2b)

� Linear system (LTI):

x(k + 1) = Ax(k) +Bu(k) (2.3a)

y(k) = Cx(k) +Du(k) (2.3b)

with matrices (A,B,C,D) of appropriate dimensions.

As a counterpart of the Lyapunov stability in continuous-time, below we recall

the result for discrete-time systems.

Theorem 2.1.1 (Discrete Lyapunov Stability). Let xk = x? be an equilibrium point

for the discrete-time system (2.1) and let D ⊂ Rn such that x? ∈ D. Let V : D → R
be continuous function such that V (x?) = 0 and V (x(k)) > 0, ∀x ∈ D− {0}. Hence,

� If V (x(k + 1)) ≤ V (x(k)), ∀x ∈ D − {0} then x? is a stable equilibrium

for the system;

� If V (x(k+ 1)) < V (x(k)), ∀x ∈ D−{0} then x? is an asymptotic stable

equilibrium for the system;

� If D coincides with Rn, V is radially unbounded and V (x(k + 1)) <

V (x(k)), ∀x ∈ Rn−{0} then x? is a global asymptotically stable equilib-

rium for the system.

The LaSalle’s theorem, or LaSalle Invariance Principle see Mei and Bullo (2017),

is formally extended in discrete-time saying that, differently from the continuous-

time, in discrete-time the function V : D → R is such that V (x(k + 1)) ≤ V (x(k))

in Ω, and as k →∞ every solution starting in Ω approaches the largest invariant set

M in

E := {x ∈ D | V (x(k + 1)) = V (x(k))}.
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Theorem 2.1.2. Let x = 0 be an equilibrium point for (2.1a). Let V : D → R be

a continuous positive definite function on a domain D containing the origin x = 0,

such that V (x(k + 1)) ≤ V (x(k)) in D. Let E = {x ∈ D | V (x(k + 1)) = V (x(k))}
and suppose that no solution can stay identically in E, other than the trivial solution

x(k) ≡ 0. In addition, if V (x) is also radially unbounded, then the origin is globally

asymptotically stable.

2.1.1 Discrete gradient function

The notion of discrete gradient function has been introduced by Gonzalez (1996)

with the aim of defining numerical methods suitable for the energy conservation of

Hamiltonian systems. The discrete gradient function, or simply discrete gradient, is

a function which satisfies two fundamental conditions: the first condition regards the

variation of the energy function one-step ahead; the second condition concerns the

continuity argument with respect to the continuous-time gradient. Whereas those

conditions guarantee a resulting function which yields some geometric property in-

heriting conservation (or dissipation) of the energy, their solution is not generally

unique.

Hereafter, the definition of discrete gradient function adopted in this manuscript

is given below considering a discrete gradient computed component-wise through its

integral form.

Definition 2.1.1 (Discrete gradient). Given a differentiable real-valued function S :

Rn → R, its discrete gradient function is ∇̄S : Rn × Rn → Rn,

∇̄S(v, w) = col(∇̄S(v1, w1), · · ·, ∇̄S(vn, wn)),

with

∇̄S(vi, wi) =
1

wi − vi

∫ wi

vi

∂S(v1, ..., vi−1, ξ, wi+1, ..., wn)

∂ξ
dξ,

which satisfies for all v, w ∈ Rn,

(w − v)>∇̄S(v, w) = S(w)− S(v)

∇̄S(v, v) = ∇S(v).
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Roughly speaking, a discrete gradient function on a vector space Rn with inner

product v>w is a function satisfying the variation between an initial value S(v) and

a final value S(w). For the sake of compactness the discrete gradient function of S(·)
between v and w will be denoted ∇̄S(v, w) := ∇̄S|wv .

A systematic study of discrete-gradient methods is discussed in McLachlan et al.

(1999); Hairer et al. (2006). The following Lemma gives constructive forms of the

discrete gradient.

Lemma 2.1.1. For a given smooth function S(·) : Rn → R, by the mean value

theorem, one can express the difference S(w)− S(v) as such

S(w)− S(v) = (w − v)>
∫ 1

0

∇S|v+s(w−v)ds,

which yields the constructive form of the discrete gradient

∇̄S|wv =

∫ 1

0

∇S|v+s(w−v)ds

with v + s(w − v) = col(v1 + s(w1 − v1), · · · , vn + s(wn − vn)), for s ∈ [0, 1].

Remark 2.1.1. If the function S(v) is a separable function, meaning that for v ∈ Rn

and v = col(v1, . . . , vn),

S(v) =
n∑
i=1

Si(vi),

then its discrete gradient function in the integral form from v to w reduces to

∇̄S|wv =
n∑
i=1

∇̄iS|wivi

with for any i = (1, · · · , n)

∇̄Si|wivi =
1

wi − vi

∫ wi

vi

dSi(ξ)

dξ
dξ =

∫ 1

0

∇Si|vi+s(wi−vi)ds.

Remark 2.1.2. Given S(v) = 1
2
v>Pv, where P is a matrix with constant entries,

then its associated discrete gradient from v to w is given by

∇̄S|wv =
1

2
∇S(w + v) =

1

2
P (w + v), (2.4)

that is directly deduced from the difference S(w) − S(v) = 1
2
w>Pw − 1

2
v>Pv =

1
2
(w − v)>P (v + w).
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2.1.2 Discrete Jacobian

Along with the discrete gradient function an instrumental object involved into the

sampled-data representation of port-Hamiltonian dynamics that we will present in

Part III is the discrete Jacobian function. Its definition is given below.

Definition 2.1.2 (Discrete Jacobian). Given a vector-valued function f : Rn → Rn

its discrete Jacobian is a matrix-valued function J̄[f ]|·· : Rn×Rn → MatR(n, n), which

satisfies for all v, w ∈ Rn

J̄[f ]|wv (w − v) = f(w)− f(v). (2.5)

The discrete Jacobian J̄[f ]|wv of a function f = col(f1, . . . , fn) : Rn → Rn with

fi : Rn → R is the n× n matrix-valued function which yields

f(w)− f(v) =


(w − v)>∇̄f1|wv

...

(w − v)>∇̄fn|wv

 = J̄[f ]|wv (w − v)

with gradient ∇̄fi|wv = col(∇̄1fi|wv · · · ∇̄nfi|wv ).

The following Lemma gives constructive forms of the discrete Jacobian.

Lemma 2.1.2. For a given differentiable function f : Rn → Rn, the difference

f(w)− f(v) can be expressed as such

f(w)− f(v) =

∫ 1

0

∇f |v+s(w−v)ds(w − v)

so getting for the discrete Jacobian of f , the integral expression

J̄[f ]|wv =

∫ 1

0

∇f |v+s(w−v)ds.

Generally, as for the discrete gradient function, the discrete Jacobian function

computed according to the Lemma above requires for all v ∈ Rn,

J̄[f ]|vv = ∇f(v).
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2.1.3 Difference and differential representation

The general nonlinear discrete-time dynamics

x(k + 1) = F (x(k), u(k))

is nonlinear in the control variable u(k) and this usually requires a formal algebraic

characterization of the map F (·, u(k)) with respect to the control variable. How-

ever, to cope this aspect an alternative representation has been proposed in Monaco

and Normand-Cyrot (1995, 1998); Monaco et al. (2007). The following definition is

recalled from Monaco and Normand-Cyrot (1998).

Definition 2.1.3 (Difference and Differential representation). Given smooth func-

tions F0 : X → X and G : X × U → X , and assume F0 invertible. A discrete-time

dynamics (2.1a) in its Difference and Differential representation (DDR) is defined by

the couple of equations of the form

x+ = F0(x) (2.6a)

dx+(u)

du
= G(x+(u), u) with x+(0) = x+ (2.6b)

with x := x(k) ∈ X , x+(0) = x+ ∈ X and u := u(k) ∈ U ⊆ R for all k ∈ N.

F0(·) is a smooth map characterizing the free evolution of the dynamics (2.1a)

and G(·, u) is a smooth map defining the forced component as x+(u) represents a

curve in X parameterized by u. Hence, x+(u(k)) := x(k + 1) represents the one-step

ahead controlled evolution as x+(0) = x+ := F (x(k), 0) defines the one-step ahead

free evolution with jumps under the drift F0(·) at any instant k ∈ N.

As a matter of fact, a nonlinear difference equation of the map form (2.1a) can

be recovered by integrating (2.6b) between 0 and u(k) for the initial condition x+(0)

computed from (2.37a) setting x+ = x+(0) := F0(x(k)). One obtains (2.1a) in its

integral form

x(k + 1) : = F (x(k), u(k))

= x+(u(k)) = x+(0) +

∫ u(k)

0

G(x+(v), v) dv
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with F (x(k), u(k)) given in (2.1a) and such that F (·, 0) = F0(·). For the sake of

notation, for systems in their difference and differential representation, the time ar-

guments will be dropped out and the integral form is referred as

x+(u) = x+(0) +

∫ u

0

G(x+(v), v) dv. (2.7)

Remark 2.1.3. Under invertibility assumption on F (x, 0), the discrete-time evo-

lution affected by the control has a unique analytic controlled map G(·, u) which

satisfies the differential condition, for u sufficiently small,

G(x, u) :=
∂F

∂u
(x, u)

∣∣∣∣
x=F−1(x,u)

, (2.8)

that can be assumed in its expansions in powers of u around u = 0, namely

G(·, u) = G1(·) +
∑
i≥1

ui

i!
Gi+1(·), (2.9)

with Gi(·) vector fields defined from X to X characterizing the series for all i > 0. The

existence of ū ∈ U such that F (x, ū) is invertible suffices to prove that any dynamics

in the form of a map admits a DDR, so providing a perfect equivalence between the

standard representation and the DDR form, see Monaco and Normand-Cyrot (1995)

for details.

Remark 2.1.4. The invertibility assumption upon the drift term F (x, 0) can be

weakened by requiring submersivity of F (x, u) , see Monaco and Normand-Cyrot

(1998); Monaco et al. (2007) for further detail.

A nice property arising from the DDR form is that it allows to split the evolu-

tions of any smooth mapping evolving in R along the discrete time dynamics x+(u)

as the contribution of the free and forced components. Accordingly, the following

proposition is given and recalled from Monaco and Normand-Cyrot (1998).

Proposition 2.1.1. Given any smooth mapping λ : X → R associated with the

discrete-time dynamics in DDR (2.6), then along the integral form

x+(u) = x+(0) +

∫ u

0

G(x+(v), v) dv (2.10)
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the mapping λ(·) verifies

λ(x+(u)) = λ(x+(0)) +

∫ u

0

LG(.,v)λ(x+(v))dv. (2.11)

2.2 Passivity in discrete time

In the following notions of passivity and dissipativity are recalled in discrete time.

For further detail see, Byrnes and Lin (1994); Lin and Byrnes (1995); Monaco and

Normand-Cyrot (1999); Navarro-López et al. (2002); Laila and NešIć (2003); Monaco

and Normand-Cyrot (2011).

Definition 2.2.1 (Dissipativity). Assume that associated with the system (2.1) is a

function ω : U × Y → R, called supplied rate, which is locally absolutely summable

for every u ∈ U , that is, it satisfies

k1∑
k=k0

|ω(u(k), y(k))| <∞, for all k0 ≤ k1.

Let X be a connected subset of Rn containing the equilibrium point x?. The sys-

tem (1.1) is said dissipative in X with supply rate ω(u, y) if there exists a smooth

nonnegative function S : X → R≥0, S(x?) = 0 (the storage function), such that

S(x(T ))− S(x(0)) ≤
T∑
k=0

ω(u(k), y(k)) (2.12)

for all u ∈ U and T ≥ 0 such that x(k) ∈ X for all 0 ≤ k ≤ T with k ∈ N.

Definition 2.2.2 (Passivity). The system (2.1) is said passive if it is dissipative with

supply rate

ω(u(k), y(k)) = u>(k)y(k).

Again, one computes from the summation version (2.12) its infinitesimal dissipa-

tion inequality, between two time steps,

S(x(k + 1))− S(x(k)) ≤ u>(k)y(k), (2.13)

along all solutions x(k) with respect to the input function u(k).
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Definition 2.2.3 (Lossless). The system (2.1) is said lossless with supply rate

ω(u(k), y(k)) if there exists a storage function S(x), such that for all x ∈ X and

u ∈ U

S(x(k + 1))− S(x(k)) = u>(k)y(k). (2.14)

Moreover, it is said conservative if it is lossless and for zero input u = 0 the supply

rate verifies ω(0, y(k)) = 0.

Remark 2.2.1. Due to (2.13) (respectively (2.14)) a passive system (respectively

lossless) with a positive definite storage function S(x) is Lyapunov stable in the

sense of Theorem 2.1.1, meaning that the storage function S(x) is nonincreasing also

along trajectories for which the output is y(k) ≡ 0.

The passivity condition discussed above seems to be a direct discrete-time coun-

terpart of the continuous-time case, but it is interesting to note that unlike the

continuous-time condition in the discrete-time case the condition requires that the

output not only is a function of the state but that it is also dependent on the control

variable u. This is treated in the general linear case below.

Example 2.2.1. Consider the linear discrete-time system

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k)

with A having eigenvalues into the unit circle, and assume a storage function S(x) =
1
2
x>Px with P � 0. Then, from the passivity condition (2.13) the following inequality

must be satisfied

S(x(k + 1))−S(x(k)) =
1

2
(x(k + 1))>P (x(k + 1))− 1

2
x>(k)Px(k) ≤ u>(k)y(k).

=
1

2
x>(k)

(
A>PA−P

)
x(k) + u>(k)B>PAx(k) +

1

2
u>(k)B>PBu(k) ≤ u>(k)Cx(k)

It is easy to note that the inequality above, due to the eigenvalues of A reduces to

u>(k)
(
B>PA− C

)
x(k) +

1

2
u>(k)B>PBu(k) ≤ 0
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saying that the passivity condition is not satisfied for all x(k) and u(k) due to the

positive quadratic term
1

2
u>(k)B>PBu(k) ≥ 0.

We will see in the forthcoming section that a different definition of passivity in

discrete-time may prevent this issue arising form the output y(k) = Cx(k).

2.2.1 The u-average passivity

The concept of average passivity has been introduced in Monaco and Normand-Cyrot

(2011) to weaken the necessity of a throughput, that is unavoidable to well pose the

concept in discrete time.

To begin with it is necessary to define the so-called u-average output associated

with a discrete time system.

Definition 2.2.4 (u-average output). Given the system

x+ = F0(x) (2.16a)

∂x+(u)

∂u
= G(x+(u), u) with x+(0) = x+ (2.16b)

y = h(x) (2.16c)

with output map h(x) : X → Y then for any (x, u) ∈ X × U the mapping hav(x, u)

denotes the u-average output defined as

hav(x, u) :=
1

u

∫ u

0

h(x+(v))dv (2.17)

with hav(x, 0) := h(x+(0), 0) and x+(0) = F0(x) := F (x, 0).

At this point, it is possible to introduce the concept of u-average passivity.

Definition 2.2.5 (u-average passivity). The system (2.16) is u-average passive if

there exists a smooth nonnegative function S : X → R≥0 such that for all (x, u) ∈
X × U

S(x+(u))− S(x) ≤
∫ u

0

h(x+(v), v)dv = uhav(x, u). (2.18)
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Definition 2.2.6 (u-average lossless). The system (2.16) is u-average lossless if there

exists a smooth nonnegative function S : X → R≥0 such that for all (x, u) ∈ X × U

S(x+(u))− S(x) =

∫ u

0

h(x+(v))dv = uhav(x, u). (2.19)

Remark 2.2.2. In this respect, it is worth mentioning that u-average passivity (re-

spectively, u-average lossless) of the discrete-time system (2.16) with respect to the

given output function h(x) coincides with the passivity given in (2.13) (respectively,

lossless) with respect to the u-average output mapping hav(x, u) (that properly de-

pends on u by construction).

Remark 2.2.3. A necessary condition to achieve u-average passivity with respect to

the output function h(x) is that LG(.,0)h(x+(0)) 6= 0, (identically, relative degree 0 of

the output map hav(x, u)).

We have seen in continuous time that a system to be passive has to meet KYP

properties, as given in Theorem 1.2.1, which are necessary and sufficient conditions.

In this discrete-time context, KYP properties have not been established for general

discrete-time system of the form (2.1), and only partial results have been proposed

in the literature. In particular, some conditions are performed requiring quadraticity

in the control variable u, see Byrnes and Lin (1993); Lin and Byrnes (1995); Monaco

and Normand-Cyrot (1999, 1997a, 2011); Navarro-López and Fossas-Colet (2004).

The following proposition defines an alternative output map for which u-average

passivity (respectively, passivity) is achieved. The result is recalled from Monaco and

Normand-Cyrot (2011) and its proof is given as it is instrumental to developments

presented throughout the manuscript.

Proposition 2.2.1. If the system (2.16) is u-average passive with respect to the

output map (2.16c) and a smooth nonnegative function S : X → R≥0, then it is also

u-average passive with respect to the output map

Y (x, u) = LG(.,u)S(x) (2.20)

and respectively passive with respect to the u-average output map

Yav(x, u) =
1

u

∫ u

0

LG(.,v)S(x+(v))dv. (2.21)
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Proof. By the assumption of u-average passivity of the system (2.16), it verifies

the inequality

S(x+(u))− S(x) ≤
∫ u

0

h(x+(v))dv.

for all (x, u) ∈ X × U , meaning that also for u = 0 the equality above is satisfied,

which yields S(x+(0)) − S(x) ≤ 0. Thus, exploiting the integral expression (2.11),

one gets that

S(x+(u))− S(x) = S(x+(0))− S(x) + S(x+(u))− S(x+(0))

≤
∫ u

0

LG(.,v)S(x+(v))dv ≤
∫ u

0

h(x+(v))dv.

Finally, from the inequality above one achieves

S(x+(u))− S(x) ≤
∫ u

0

LG(.,v)S(x+(v))dv

=

∫ u

0

Y (x+(v), u)dv = uYav(x, u)

so concluding the proof.

The following lemma provides an equivalent representation of the u-average output

in terms of the discrete gradient function, which will be essential for properly defining

port-Hamiltonian systems in discrete time given in Part II.

Lemma 2.2.1. The u-average output map

Yav(x, u) =
1

u

∫ u

0

LG(.,v)S(x+(v))dv (2.22)

associated with the system (2.16) rewrites in terms of discrete gradient as follows

Yav(x, u) = g>(x, u)∇̄S|x
+(u)

x+ (2.23)

with

g(x, u) :=
1

u

∫ u

0

G(x+(v), v)dv.
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Proof. The proof is simply performed exploiting the definition of the discrete

gradient function in Definition 2.1.1. Since the u-average output (2.22) arises from

the variation

S(x+(u))− S(x+) =

∫ u

0

LG(.,v)S(x+(v))dv = uYav(x, u),

then by definition of discrete gradient and by the integral form (2.7) of the system

(2.16) one gets that

S(x+(u))− S(x+) = (x+(u)− x+)>∇̄S|x
+(u)

x+

=

(∫ u

0

G(x+(v), v)dv

)>
∇̄S|x

+(u)

x+

= u

(
1

u

∫ u

0

G(x+(v), v)dv

)>
∇̄S|x

+(u)

x+

= ug>(x, u)∇̄S|x
+(u)

x+ = uYav(x, u)

thus the result.

To complete the notions related to the u-average passivity concept, the definition

of u-average passivity from some nominal control value ū is recalled. It has been

introduced in Mattioni et al. (2019) to deal with incremental-like passivity properties

in discrete time. From the u-average passivity inequality one can pick a nominal

value ū for which the inequality rewrites as

S(x+(u))− S(x) = S(x+(u))− S(x+(ū)) + S(x+(ū))− S(x)

= S(x+(ū))− S(x) +

∫ u

ū

LG(.,v)S(x+(v))dv ≤
∫ u

ū

h(x+(v), v)dv.

The inequality above leads to the u-average passivity from ū property which is for-

mally given below.

Definition 2.2.7 (u-average passivity from ū). The system (2.16) is u-average passive

from ū, with ū ∈ U ⊆ R if there exists a storage function S(·) : X → R≥0 such that,

for all (x, u) ∈ X × U ,

S(x+(u))− S(x) ≤ (u− ū)hav(ū)(x, u) (2.24)

with u-average output from ū of the form

hav(ū)(x, u) =
1

u− ū

∫ u

ū

h(x+(v), v)dv.
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2.2.2 Passivity-based control

The u-average passivity notion is profitably used to achieve asymptotic stabilization

of the origin of a u-average passive system by injecting its u-average output. The

following result recall the negative u-average output feedback proposed in Monaco

and Normand-Cyrot (2011).

Theorem 2.2.1. Let the discrete-time system

x+ = F0(x) (2.25a)

∂x+(u)

∂u
= G(x+(u), u) with x+(0) = x+ (2.25b)

y = h(x) (2.25c)

be u-average passive with storage function S(·) : X → R≥0 with S(0) = 0 and ZSD,

then any feedback u = γ(x) solving the algebraic equation

u+ κhav(x, u) = 0 (2.26)

with positive gain κ > 0 achieves asymptotic stabilization of the origin.

2.2.3 Constructive approximate solutions

A solution to the algebraic equation (2.26) is generally difficult to characterize as

it is nonlinear in the control variable u. However, an approximate solution can be

computed by truncating the u-average output

hav(x, u) = h(·)|F0(x) +
u

2
LG(·,0)h(·)|F0(x) +O(u2) (2.27)

which can be substituted in (2.26) to get the algebraic equation Γ(x, u) = 0 with

Γ(x, u) = u+ κ(h(·)|F0(x) +
u

2
LG(·,0)h(·)|F0(x)) +O(u2).

Accordingly one gets the corollary below.

Corollary 2.2.1. Let the system (2.25) be u-average passive with storage function

S(·) : X → R≥0 with S(0) = 0 and ZSD. Then the feedback

u = −z(x)h(F0(x)) (2.28)
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with suitably chosen

z(x) =
κ

1 + κ
2
LG(·,0)h(·)

∣∣∣∣
F0(x)

, κ > 0, (2.29)

and κ
2
LG(·,0)h(·)|F0(x) 6= −1, achieves local asymptotic stabilization of the origin.

2.3 Linear-time invariant case

In this section the discussion performed for the general nonlinear discrete-time sys-

tems is specialized in the linear time invariant case.

Given a linear-time invariant system defined on X

x(k + 1) = Ax(k) +Bu(k) (2.30a)

y(k) = Cx(k) (2.30b)

with matrices (A,B,C) of appropriate dimensions and u := u(k) ∈ U ⊆ R, it follows

that in DDR form the dynamics (2.30a) is expressed by the couple of difference and

differential equations

x+ = Ax (2.31a)

∂x+(u)

∂u
= B (2.31b)

y = h(x) = Cx. (2.31c)

Integrating the differential equation (2.31b) from 0 to u(k) with initial conditions

x+ = x+(0) given in (2.31a) one recovers the dynamics (2.30a), namely

x(k + 1) : = x+(u(k)) = Ax(k) +

∫ u(k)

0

B dv = Ax(k) +Bu(k).

The u-average passivity property in the LTI case arises with a special structure

of the u-average output associated with the system. Notably, the LTI system (2.31)

is u-average passive with respect to the output map (2.31c) and storage function

S(·) : X → R≥0 with S(0) = 0 if for all (x, u) ∈ X × U the inequality is satisfied

S(x+(u))− S(x) ≤ uhav(x, u)
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with u-average output mapping hav(x, u) of the form

hav(x, u) =
1

u

∫ u

0

Cx+(v) dv = CAx+
1

2
CBu.

In this linear case, Proposition 2.2.1 is specified below with respect to the quadratic

storage function S(x) = 1
2
x>Px with symmetric matrix P = P> � 0.

Proposition 2.3.1. If the LTI system (2.31) is u-average passive with respect to the

output map (2.31c) and a quadratic storage function S(x) = 1
2
x>Px with symmetric

matrix P = P> � 0, then it will be also u-average passive with respect to the output

map

Y (x) = B>Px (2.32)

and respectively passive with respect to the u-average output map

Yav(x, u) = B>PAx+
1

2
B>PBu. (2.33)

Remark 2.3.1. Due to Lemma 2.2.1, the u-average output (2.33) is rewritten in

terms of the discrete gradient function. Namely, in this linear case it takes the form

Yav(x, u) = B>∇̄S|x
+(u)

x+

=
1

2
B>P (x+(u) + x+)

= B>PAx+
1

2
B>PBu.

As seen for general nonlinear discrete-time systems, the u-average passivity notion

can be profitably used for providing asymptotic stabilization. In this respect one may

notice that, due to the special structure of the u-average output related to the LTI

system, the implicit equality (2.26) specializes as

u+ κ(CAx+
1

2
CBu) = 0, (2.34)

so reducing a first-order algebraic equation. Thus, the following theorem specializes

the result in Theorem 2.2.1 to the LTI case showing that the stabilization properties

hold globally.
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Theorem 2.3.1. Let the discrete-time system

x+ = Ax (2.35a)

∂x+(u)

∂u
= B with x+(0) = x+ (2.35b)

y = h(x) = Cx (2.35c)

be ZSD and u-average passive with storage function S(x) = 1
2
x>Px with P = P> � 0,

then the feedback

u = − κCA

1 + κ
2
CB

x (2.36)

with positive gain κ > 0 and κ
2
CB 6= −1 achieves global asymptotic stabilization of

the origin.

2.4 Interconnection of u-average passive systems

In this section we discuss the interconnection of u-average passive systems in dis-

crete time. We have seen that in continuous-time the passivity property is preserved

under parallel and feedback interconnection. In this respect, it is desirable to pre-

serve basic passivity property under power-preserving interconnection. How to define

power preserving interconnection in discrete time? Is the u-average passivity property

preserved under interconnection? In this section we give answers to these questions.

According to the discrete-time model given in the difference and differential rep-

resentation (2.6), let two discrete-time systems Σi(hi), for i = 1, 2, of the form

x+
i = F0(x) (2.37a)

∂x+
i (ui)

∂ui
= Gi(x

+
i (ui), ui) with x+

i (0) = x+
i (2.37b)

yi = hi(xi) (2.37c)

with associated output maps hi(·) : Rn → R be passive with respect to the u-average

outputs

hiav(xi, ui) =
1

ui

∫ ui

0

hi(x
+
i (w))dw
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and storage functions Si : Rn → R≥0, and respectively u-average passive with respect

to the output maps hi(xi) in (2.37c). For the sake of compactness, we denote x =

col(x1, x2).

In what follows, given two discrete-time dynamics of the form (2.37), we inves-

tigate the average passivity properties arising when an output-to-input connection

is established through an interconnecting pattern between the inputs and the asso-

ciated outputs. Precisely, we investigate connections in terms of a power-preserving

interconnection ensuring no loss of energy throughout the interconnection process

(lossless interconnection). The following definition is proposed.

Definition 2.4.1: u-average power-preserving interconnection

The interconnection between Σ1(h1) and Σ2(h2) given in (2.37) for i = 1, 2 is

said power preserving if the pair (u1, u2) satisfies∫ u1

0

h1(x+
1 (w)) dw +

∫ u2

0

h2(x+
2 (w)) dw = 0. (2.38)

The integral form (2.38) can be rewritten in terms of u-average outputs, namely

u1h1av(x1, u1) + u2h2av(x2, u2) = 0, (2.39)

so emphasizing that the power-preserving interconnection involves precisely the u-

average outputs of the two systems. Then, among these power preserving intercon-

nections, the simplest solution to (2.39) is obtained by setting(
u1

u2

)
=

(
0 −1

1 0

)(
h1av(x1, u1)

h2av(x2, u2)

)
. (2.40)

An immediate comment is that such connection is implicitly defined so setting

the problem of its solution. Again, the existence of a solution is guaranteed by the

Implicit Function Theorem. This is specified later in Section 2.4.3.
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2.4.1 The parallel interconnection

Let us study the average passivity properties of the simple parallel interconnection

of (2.37) for i = 1, 2 when setting

u = u1 = u2 (2.41a)

h(x) = h1(x1) + h2(x2). (2.41b)

Proposition 2.4.1 (u-average parallel interconnection). Consider the parallel inter-

connection of two u-average passive systems of the form (2.37), then the resulting

system

x+
1 (u) =F1(x1, u) (2.42a)

x+
2 (u) =F2(x2, u) (2.42b)

with output h(x) := h1(x1)+h2(x2) is u-average passive with storage function S(x) =

S1(x1) + S2(x2).

Proof. Because each subsystem Σi(hi) in (2.37) (i = 1, 2) u-average passive,

one gets the forward difference inequality

S(x+(u))− S(x) ≤
∫ u1

0

h1(x+
1 (w))dw +

∫ u2

0

h2(x+
2 (w))dw.

Due to the interconnection u = u1 = u2 one gets

S(x+(u))− S(x) ≤
∫ u

0

(
h1(x+

1 (w)) + h2(x+
2 (w))

)
dw

=

∫ u

0

h(x+(v))dv = uhav(x, u)

and thus the result.

The above result shows that, when considering the parallel interconnection of

u-average passive systems (2.37), passivity in the u-average sense is preserved with

respect to the natural output induced by the sum of the single ones. It is worth to

note that the resulting u-average output, in this case, is also equal to the sum of the

averaged outputs associated with (2.37) when setting u = ui for i = 1, 2.
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2.4.2 Feedback interconnection

Let us now consider a suitable feedback interconnection of (2.37) enhancing u-average

passivity of the resulting system. To this end, let us consider the input

u = ū+ v. (2.43)

with u = col(u1, u2) composed by two terms: v = col(v1, v2) is the external in-

puts; ū = col(u1, u2) is the power-preserving feedback computed as the solution to

the power-preserving interconnection (2.38) (equivalently, (2.39)) in Definition 2.4.1.

Namely ū = col(u1, u2) verifies

ū1h1av(x1, ū1) + ū2h2av(x2, ū2) = 0,

The following theorem can be thus proved.

Theorem 2.4.1: u-average feedback interconnection

Let, for i = 1, 2, the systems Σi(hi) be u-average passive with storage functions

Si : Rn → R≥0. Consider the input (2.43) with ū = u(x) being the power-

preserving interconnection (2.38). Then, the interconnected system

x+
1 (ū1(x) + v1) =F1(x1, ū1(x) + v1) (2.44a)

x+
2 (ū2(x) + v2) =F2(x2, ū2(x) + v2) (2.44b)

with output y = (h1(x1), h2(x2))> is v-average passive from ū with storage func-

tion Sc(x) := S1(x1) + S2(x2). Namely, the dissipation inequality

Sc(x
+(u))− Sc(x) ≤ v>h(ū)(x, ū+ v) (2.45)

holds with v-average output

hav(ū)(x, ū+ v) =

(
1
v1

∫ v1

0
h1(x+

1 (ū1 + `))d`
1
v2

∫ v2

0
h2(x+

2 (ū2 + `))d`

)
. (2.46)
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Proof. Under ū, that is the internal state power-preserving interconnection so-

lution to (2.39), one has∫ ū1

0

h1(x+
1 (w))dw +

∫ ū2

0

h2(x+
2 (w))dw = 0.

Accordingly, by computing the forward difference Sc(x
+(u)) − Sc(x) and exploiting

u-average passivity of (2.37) and because of the power-preserving condition (2.38),

one gets

Sc(x
+(u))− Sc(x) = Sc(x

+(u))− Sc(x+(ū)) + Sc(x
+(ū))− Sc(x)

≤
∫ u1

0

h1(x+
1 (w))dw +

∫ u2

0

h2(x+
2 (w))dw

=

∫ ū1

0

h1(x+
1 (w))dw +

∫ ū2

0

h2(x+
2 (w))dw +

∫ u1

ū1

h1(x+
1 (w))dw

+

∫ u2

ū2

h2(x+
2 (w))dw =

∫ u1

ū1

h1(x+
1 (w))dw +

∫ u2

ū2

h2(x+
2 (w))dw

verifying the dissipativity inequality

Sc(x
+(u))− S(x) ≤(u− ū)>havc,ū(x, u) (2.47)

with

hav(ū)(x, u) =

(
1

u1−ū1

∫ u1

ū1
h1(x+

1 (w))dw
1

u2−ū2

∫ u2

ū2
h2(x+

2 (w))dw

)
. (2.48)

Thus, u-average passivity of (2.44) from (2.38) holds. Thus, by plugging the input

(2.43) into the dissipation inequality (2.47) one gets

Sc(x
+(u))− Sc(x) ≤

∫ u1

ū1

h1(x+
1 (w))dw +

∫ u2

ū2

h2(x+
2 (w))dw

=

∫ v1

0

h1(x+
1 (ū1 + `))d`+

∫ v2

0

h2(x+
2 (ū2 + `))d`

= v>hav(ū)(x, ū+ v)

so getting the result (2.53) with v-average output (2.46).

Theorem 2.4.1 provides that the feedback interconnection between two u-average

passive systems yields a passive system with respect to the v-average output from

ū in (2.46), i.e. hav(ū)(x, ū + v), and respectively it provides u-average passivity
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h1av(x1, ū1)
h2av(x2, ū2)

Σ1

Σ2

u1

u2

-

+

+v1

+ v2h2

h1

Figure 2.1: Power-preserving feedback interconnection between Σ1(h1) and Σ2(h2)

via average outputs with external v.

from ū with respect to the natural output h(x) := col(h1(x1), h2(x2)). In particular,

as it is clear from (2.53), under an external source v and for a fixed ū in (2.38),

the average outputs are defined starting from the same outputs of the single systems

(2.37) but averaged over the new interconnected dynamics (2.44) deduced from (2.43).

Thus, starting from average passivity of the single systems (2.37) with outputs hi(xi),

the interconnected system is u-average passive under the power preserving stated

feedback ū = ū(x) solving (2.38).

Remark 2.4.1. The input (2.43) is composed as the sum of two terms: the exogenous

signal v and an interconnecting feedback ū = ū(x) defining the pattern as the solution

to (2.38). This latter term is a power preserving state feedback computed over the

averaged outputs hiav(xi, ui) when setting the exogenous signal in (2.43) vi = 0 (that

is u = ū). Such an interconnection u = ū + v is not realized through the direct

input/averaged-output ports hat should be obtained when computing the feedback

u = u(x, v) solution to(
u1

u2

)
=

(
0 −1

1 0

)(
hiav(x1, u1)

h2av(x2, u2)

)
+ v. (2.49)
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2.4.3 Computational aspects

The power preserving interconnecting feedback (2.38) is defined as the implicit solu-

tion of a nonlinear equality induced by the averaged outputs. Although exact com-

putations are tough to be carried out in general, an approximate solution to (2.38)

does exist (at least locally) as specified in the following proposition. To this end,

assume, without loss of generality that for i = 1, 2, (2.37) possesses an equilibrium

at the origin. For the sake of facility, let us assume the interconnecting pattern be

defined by (2.40). Thus, the following result holds true.

Proposition 2.4.2. Consider, for i = 1, 2, the discrete-time systems Σi(hi) in (2.37)

with equilibrium at x = 0 and being u-average passive. Consider the interconnection

(2.40). Then, for all x in a neighborhood of the origin, the power-preserving feedback(
ū1

ū2

)
=

(
0 −1

1 0

)(
h1av(x1, ū1)

h2av(x2, ū2)

)
(2.50)

locally admits a solution ūa = ūa(x) verifying ū(0) = 0. Thus, the interconnected

system (2.44) is locally passive when setting u = ūa(x) + v with

ūa(x) = Ψ−1(x)

(
−h2(F2(x2, 0))

h1(F1(x1, 0))

)
.

and

Ψ(x) :=

(
1 LG2(·,0)h2(F2(x2, 0))

−LG1(·,0)h1(F1(x1, 0)) 1

)

Proof. First, consider the expansion of the average outputs associated with

hi(xi) as given, for i = 1, 2, as

hiav(xi, ui) = hi(Fi(xi, 0)) + uiLGihi(Fi(xi, 0)) +O(u2
i ),

where O(u2
i ) contains all the remaining terms of a higher order of the control variable

ui. By substituting such an expansion in the implicit equality (2.50) one gets

ū1 = −h2(F2(x2, 0)) + ū2LG2h2(F2(x2, 0)) +O(u2
2)

ū2 = h1(F1(x1, 0)) + ū1LG1h1(F1(x1, 0)) +O(u2
1)
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Form the equations above one sets the operator

Γ(x, u) =

(
ū1 + h2(F2(x2, 0)) + ū2LG2h2(F2(x2, 0)) +O(u2

2)

ū2 − h1(F1(x1, 0)) + ū1LG1h1(F1(x1, 0)) +O(u2
1)

)

By invoking the implicit function theorem, for all x in the neighborhood of the origin,∣∣∣∂Γ(x, u)

∂u

∣∣∣
u=0

=
∣∣∣Ψ(x)

∣∣∣ 6= 0

with

Ψ(x) :=

(
1 LG2(·,0)h2(F2(x2, 0))

−LG1(·,0)h1(F1(x1, 0)) 1

)

proves that for any (x, u) in a neighborhood of (0, 0) there exists a solution. Accord-

ingly, when the implicit equality is solved truncating it in u2, one gets local passivity

from Theorem 2.4.1 when u = ūa(x) + v with the approximate solution

ūa(x) = Ψ−1(x)

(
−h2(F2(x2, 0))

h1(F1(x1, 0))

)
.

2.4.4 Interconnection of average passive LTI systems

The feedback interconnection provided in the previous section can be specified in the

linear case. In this case, all the solutions can be explicitly computed. The following

theorem holds.

Theorem 2.4.1. Let, for i = 1, 2, the LTI systems

x+
i (ui) = Aixi +Biui (2.51a)

yi = Cixi (2.51b)

be u-average passive with quadratic storage function Si(x) = 1
2
x>i Pixi and Pi > 0.

Consider the input (2.43) with ū = Kx and

K =

(
K1 K2

K3 K4

)
=

(
1 1

2
C2B2

−1
2
C1B1 1

)−1(
0 −C2A2

C1A1 0

)
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the unique solution to the power-preserving interconnection (2.38). Then, the inter-

connected system

x+
1 (ū1 + v1) = (A1 +B1K1)x1 +B1K2x2 +B1v1 (2.52a)

x+
2 (ū2 + v2) = B2K3x1 + (A2 +B2K4)x2 +B2v2 (2.52b)

y1 = C1x1, y2 = C2x2 (2.52c)

is v-average passive from ū with storage function Sc(x) := S1(x1) + S2(x2). Namely,

the dissipation inequality

Sc(x
+(u))− Sc(x) ≤ v>hav(ū)(x, ū+ v) (2.53)

holds with v-average output (2.46) which takes the form

hav(ū)(x, ū+ v) =

(
C1(A1 +B1K1)x1 + C1B1K2x2 + 1

2
C1B1v1

C2B2K3x1 + C2(A2 +B2K4)x2 + 1
2
C2B2v2

)
.

Proof. In the linear case the power-preserving interconnection (2.40) is specified

as (
u1

u2

)
=

(
0 −C2A2

C1A1 0

)(
x1

x2

)
+

(
0 −1

2
C2B2

1
2
C1B1 0

)(
u1

u2

)
which is satisfied by ū = Kx with

K =

(
K1 K2

K3 K4

)
=

(
1 1

2
C2B2

−1
2
C1B1 1

)−1(
0 −C2A2

C1A1 0

)
,

where the invertibility of the matrix is guaranteed by the u-average passivity of the

LTI systems. Then, injecting u = ū + v into both the system Σ(h1) and Σ(h2) one

achieves the interconnected system (2.52), where v-average passivity is deduced by

Theorem 2.4.1. Finally, setting Sc(x) = 1
2
x>1 P1x1 + 1

2
x>1 P1x1, the v-average output

hav(ū)(x, ū+ v) along the dynamics x+(ū+ v) in (2.52) specializes as

hav(ū)(x, ū+ v) =

(
1
v1

∫ v1

0
C1x

+
1 (ū1 + `)d`

1
v2

∫ v2

0
C2x

+
2 (ū2 + `)d`

)

=

(
1
v1

∫ v1

0
C1((A1 +B1K1)x1 +B1K2x2 +B1`)d`

1
v2

∫ v2

0
C2(B2K3x1 + (A2 +B2K4)x2 +B2`)d`

)

=

(
C1(A1 +B1K1)x1 + C1B1K2x2 + 1

2
C1B1v1

C2B2K3x1 + C2(A2 +B2K4)x2 + 1
2
C2B2v2

)
.
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2.5 Example: interconnection of passive oscilla-

tors

This section illustrates computational aspects by means of an academic example

concerning the interconnection of a couple of input-affine nonlinear passive oscillators.

Due to the input-affinine structure a global solution exists and is exactly computable.

Consider a couple of nonlinear discrete-time passive oscillators Σ1(h1) and Σ2(h2)

described by the equations of the form, for i = 1, 2,

x1i(k + 1) =
ax2i(k)

1 + x2
1i(k)

(2.54a)

x2i(k + 1) =
ax1i(k)

1 + x2
2i(k)

+ ui(k) (2.54b)

yi(k) = x2i(k), (2.54c)

with coefficient a2 ≤ 1 and state xi = col(x1i, x2i). Systems modeled by equations of

the form (2.54) are average passive with respect to the associated output mapping

(2.54c), and associated storage function

Si(xi) =
1

2
x>i xi (2.55)

with average output respectively depending on the control input ui that is given by

the expression

hiav(xi, ui) =
ax1i(k)

1 + x2
2i(k)

+
1

2
ui(k). (2.56)

2.5.1 Interconnection structure design

Consider the feedback interconnecting between Σ1(h1) and Σ2(h2) under the proposed

u-average interconnection (2.43), that is

u = ū+ v,

with u = col(u1, u2), ū = col(ū1, ū2), and v = col(v1, v2). As previously discussed,

ū = ūi(x) denotes the preliminary power-preserving state-feedback given in Definition
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2.4.1 as v defines the virtual input, that is the new input channel of the overall

interconnected system.

According to Theorem 2.4.1, the power-preserving interconnection of average pas-

sive systems is achieved by computing the preliminary feedback ū(x) solution to

(2.38), which yields

ū(x) =

(
ū1

ū2

)
=

(
−1

2
ax11(k)

1+x2
21(k)
− 1

2
ax12(k)

1+x2
22(k)

1
2
ax11(k)

1+x2
21(k)
− 1

2
ax12(k)

1+x2
22(k)

)
. (2.57)

The interconnected system through the proposed u-average interconnecting law

u =

(
ū1 + v1

ū2 + v2

)
=

(
−1

2
ax11(k)

1+x2
21(k)
− 1

2
ax12(k)

1+x2
22(k)

+ v1

1
2
ax11(k)

1+x2
21(k)
− 1

2
ax12(k)

1+x2
22(k)

+ v2

)
, (2.58)

is thus given by the equations

x11(k + 1) =
ax21(k)

1 + x2
11(k)

(2.59a)

x21(k + 1) =
1

2

ax11(k)

1 + x2
21(k)

− 1

2

ax12(k)

1 + x2
22(k)

+ v1(k) (2.59b)

x12(k + 1) =
ax22(k)

1 + x2
12(k)

(2.59c)

x22(k + 1) =
1

2

ax11(k)

1 + x2
21(k)

+
1

2

ax12(k)

1 + x2
22(k)

+ v2(k) (2.59d)

y1 = x21(k) (2.59e)

y2 = x22(k) (2.59f)

that is, according to the proposed feedback interconnection (2.43), average passive

with respect to the output y = col(y1, y2) and total storage function given by S(x) =

S1(x1) + S2(x2), that is

S(x1, x2) =
1

2
x>1 x1 +

1

2
x>2 x2, (2.60)

and passive with respect to the average output mapping of the form

hav(ū)(x, ū+ v) =

(
ax11(k)

1+x2
21(k)

+ ū1(k) + 1
2
v1(k)

ax12(k)

1+x2
22(k)

+ ū2(k) + 1
2
v2(k)

)
,
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which reads

hav(ū)(x, ū+ v) =
1

2

(
ax11(k)

1+x2
21(k)
− ax12(k)

1+x2
22(k)

+ v1(k)
ax11(k)

1+x2
21(k)

+ ax12(k)

1+x2
22(k)

+ v2(k)

)
. (2.61)

Accordingly, under zero-state detectability property on hav(ū)(x, ū + v), one can

asymptotically stabilize the system at the origin by injecting the damping feedback

v = −κhav(ū)(x, ū + v) for damping improvement κ > 0. The damping feedback is

the solution to the implicit equation

(
v1

v2

)
= −κ

2

(
ax11(k)

1+x2
21(k)
− ax12(k)

1+x2
22(k)

+ v1

ax11(k)

1+x2
21(k)

+ ax12(k)

1+x2
22(k)

+ v2

)
,

which in its explicit form yields

v =

(
v1

v2

)
= − κ

2 + κ

(
ax11(k)

1+x2
21(k)
− ax12(k)

1+x2
22(k)

ax11(k)

1+x2
21(k)

+ ax12(k)

1+x2
22(k)

)
. (2.62)

2.5.2 Analysis and simulation results

Consider Σ1(h1) and Σ2(h2) given by the equations (2.54) with associated average

output given by the mapping (2.56). Set the parameter of the systems as a = 1

and initial conditions of Σ1(h1) and Σ2(h2) respectively set as x1(0) = col(0.5, 3),

x2(0) = col(−0.5,−3).

The simulations are considered in three different scenarios:

� The first scenario illustrates the case of Σ1(h1) and Σ2(h2) without their

feedback interconnection, namely in the case of u1 = 0 and u2 = 0.

In this respect, Figure 2.2a depicts the evolution of the states associated

with Σ1(h1) and Σ2(h2). Their evolutions are not converging to the

equilibrium point, that is x? = 0, as their evolution oscillates along the

iterations k > 0. Therefore the equilibrium of the system is stable, but
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not asymptotically stable. For the same reason, as illustrated in Figure

2.2b, both the outputs of Σ1(h1) and Σ2(h2), represented by the equation

(2.54c), oscillate along k-iterations and both the storage functions S1(x1)

and S2(x2) have the same dynamics (they overlap like shown in Figure

2.2b due to the initial conditions), showing passivity of both the involved

dynamics Σ1(h1) and Σ2(h2) since both the storage functions S1(x1) and

S2(x2) decrease at the first k-step and remain constant along the other

k-iterations.

� The second scenario illustrates the interconnection of Σ1(h1) and Σ2(h2)

under the power-preserving interconnection (2.57), namely in the case of

v1 = 0 and v2 = 0.

To this end, Figure 2.3a depicts the evolution of the states associated

with Σ1(h1) and Σ2(h2) under power-preserving interconnection which

involves the associated average passive output of both Σ1(h1) and Σ2(h2),

namely the state trajectories of the augmented system (2.59). The aug-

mented system under preliminary feedback ū(x) provides a different os-

cillatory behavior as Σ1(h1) affects the dynamics of Σ2(h2) and vice versa.

As in the previous case, through power preserving interconnection their

evolution is not converging to the equilibrium point as their behavior

oscillates along the iterations k > 0.

The power-preserving effect is reported by the bottom-right Figure 2.2b,

where the total storage function of the interconnected system is depicted.

One may notice that the storage function preserves the energy as it is

composed by the sum of S1(x1) and S2(x2) and accordingly there is no

energy loss after the first k-step.

The bottom-left Figure 2.3b shows the evolution of the preliminary feed-

back yielding the power-preserving interconnection. Finally, the top left

and right Figure 2.3b depict the oscillatory behavior of output functions

(2.59e)-(2.59f) and average output functions (2.56), respectively.
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Figure 2.2: u-average interconnection of Σ1(h1) and Σ2(h2).
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preliminary feedback ū1 (blue), ū2 (red), and total storage function S (blue).

Figure 2.3: u-average interconnection of the system Σ1(h1) and Σ2(h2) with prelimi-

nary feedback u = ū(x) given in (2.57).
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new average output of the interconnected system hav
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Figure 2.4: u-average interconnection of the system Σ1(h1) and Σ2(h2) with addition

damping injection of v given in (2.62).
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� The third scenario illustrates the effect of the additional injection of the

damping feedback v, computed in (2.62) with a damping improvement

κ = 1, after the u-average interconnection (2.58) of Σ1(h1) and Σ2(h2)

under the preliminary feedback (2.57).

Differently from the other scenarios, Figure 2.4a shows the effect of the

damping injection (2.62) into the u-average interconnected system (2.59).

The state trajectories approach the zero sate equilibrium of the inter-

connected system providing asymptotic stability.

The bottom-left Figure 2.4b depicts the evolution of the new average

output function (2.61), as the top left and right Figure 2.4b depict,

respectively, the behavior of output functions (2.59e)-(2.59f) and average

output functions (2.56). Their evolution converges to the zero value after

k-iterations.

The passivity effect of the interconnected system (2.59) is reflected into

the bottom-right Figure 2.4b where the total storage function (2.60) is

reported. The total storage function shows to be a decreasing function

and approached the zero value, that is its lower bound.

2.6 Concluding remarks

At the beginning of this chapter, the notions of DDR, discrete gradient function, and

u-average passivity and passivity-based control in discrete time have been recalled.

The interested reader can find additional details in Monaco and Normand-Cyrot

(1997a, 1998, 2011). Afterwards, in Lemma 2.2.1, we established a connection be-

tween the u-average output arising from the definition of u-average passivity and the

discrete gradient function of the storage function associated with the discrete-time

system. We have discussed the interconnection between u-average passive systems

and, in doing so, a proper definition of power-preserving interconnection has been

set in Definition 2.4.1 which clearly involves u-average outputs of the systems. The

results presented for the feedback interconnection of u-average passive systems in

Theorem 2.4.1 yield v-average passivity property from ū with respect to the natural

output of the systems and, respectively, passivity with respect to the v-average out-

put from ū. Computational aspects have been addressed to provide the existence of a
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solution by invoking the implicit function theorem. Finally, we have characterized the

solution to LTI u-average passive systems and an illustrative example showing the ef-

fectiveness of the result. The content of the Section 2.4 related to the interconnection

of u-average passive systems is in:

A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”Interconnection

through u-average passivity in discrete time,” 2019 IEEE 58th Conference

on Decision and Control (CDC), Nice, France, 2019, pp. 4234-4239, doi:

10.1109/CDC40024.2019. 9029357.
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T
he sampled-data framework we deal within this manuscript is formally in-

troduced in this chapter and the underlying properties of the original con-

tinuous time system can be reformulated over the sampled-data equivalent

model. The preliminaries we are giving are based on previous works of Monaco and

Normand-Cyrot (1998, 2005); Monaco et al. (2008). Firstly, we recall the definition of

sampled-data equivalent representation and we recall the DDR structure associated

83



84 CHAPTER 3. GENERALITIES ON SAMPLED-DATA SYSTEMS

with the sampled-data equivalent model. Then, the passivity and u-average passivity

properties are recalled. Lastly, we discuss the problem of feedback passivation under

sampled-data design providing an original solution and computational aspects are

performed by means of an academic example.

3.1 The sampled-data representation

In what follows, we discuss sampled-data equivalent models of sampled-data systems

based on the relation among uniform sampling periods of the states and outputs.

Consider a continuous-time dynamics assumed input affine of the form

ẋ(t) = f(x(t)) + g(x(t))u(t) (3.1a)

y(t) = h(t). (3.1b)

Assume that the control signal is piecewise constant over time-intervals of fixed length

δ > 0, namely for k ≥ 0

u(t) = u(kδ) ∀ t ∈ [kδ, (k + 1)δ[

and that the measures of the states and output are available only at the sampling

instants kδ, namely for k ≥ 0

x(t) = x(kδ) ∀ t ∈ [kδ, (k + 1)δ[

y(t) = y(kδ) ∀ t ∈ [kδ, (k + 1)δ[

Under these assumptions, the evolution of a continuous-time system (3.1a) af-

fected by the piecewise control u(kδ) is described by the equations

ẋ(t) = f(x(t)) + g(x(t))u(kδ) (3.2a)

y(t) = h(kδ) (3.2b)

where u(t) = u(kδ) and y(t) = y(kδ) for all t ∈ [kδ, (k + 1)δ[. The sampled-data

system is computed by integrating the continuous dynamics (3.2a) at the sampling

instants t = kδ, over t ∈ [kδ, (k + 1)δ[, so obtaining the sampled-data system
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x((k + 1)δ) : = x(kδ) + F δ(x(kδ), u(kδ))

= x(kδ) +

∫ (k+1)δ

kδ

f(x(τ)) + g(x(τ))u(kδ)dτ (3.3a)

y(t) = h(kδ), (3.3b)

with map F δ(·, ·) : Rn × R→ Rn parametrized by δ which admits the formal Taylor

series expansion in power of δ,

F δ(x(kδ), u(kδ)) = δẋ(t)|kδ +
δ2

2
ẍ(t)|kδ + · · ·

=
∑
i≥1

δi

i!
(Lf + u(kδ)Lg)Id|x(kδ)

= eδLf+u(kδ)LgId|x(kδ) − x(kδ). (3.4)

The sampled-data model (3.3), with sampling period of fixed length δ ∈]0, T ∗[

and T ∗ > 0 denoting the upper bound of the convergence interval of the exponential

expansion (3.4), defines the so-called sampled-data equivalent model of (3.2a) which

is formally defined below.

Definition 3.1.1 (SD equivalent model). Given a continuous-time system of the

form (3.2), for any t = kδ with δ ∈]0, T ∗[, T ∗ > 0, and k ∈ N, then its Sampled-Data

(SD) equivalent model is given by the equations

x+(u) = x+ F δ(x, u) (3.5a)

y = h(x), (3.5b)

with x+(u) = xk+1 := x((k + 1)δ), x = xk := x(kδ), u = uk := u(kδ), and

F δ(x, u) = eδ(Lf+uLg)Id|x − x.

For any piecewise constant input u in Definition 3.1.1 and sampling period δ small

enough the discrete model (3.5) gives an exact sampled-data representation, meaning

that when both the sampled-data and the continuous-time models are initialized at

the same value the sampled-data model provides input-state matching. The expres-

sion of the system (3.5) is exactly computable if the formal series in δ of the mapping
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F δ(·, ·) admits a closed form or alternatively is finitely discretizable in the sense of

the definition below.

Definition 3.1.2 (Finite discretizability). The system (3.2) is said finitely discretiz-

able if it admits a sampled-data equivalent model (3.5) in a finite series expansion in

powers of δ, namely for q ≥ 1

F δ(x, u) =

q∑
i≥1

δi

i!
(Lf + uLg)

iId|x.

In spite of the exact form given by F δ(·, ·), obtaining a closed-form might be tough

as its existence directly depends on the integrability of (3.2a). Therefore, it is usual

in the sampled-data context to consider an approximate map F δ[p](·, ·), corresponding

to the truncation of the series expansion at a fixed order p ∈ N of the sampling period

δ. The approximate map F δ[p](·, ·) is defined as a finite series in power of δ and verifies

F δ(x, u) = F δ[p](x, u) +O(δp+1).

Accordingly, the formal definition of approximate model follows.

Definition 3.1.3 (Approximate SD model). Given a continuous-time system of the

form (3.2), for any t = kδ with δ ∈]0, T ∗[, T ∗ > 0, and k ∈ N, then for p ∈ N its

pth-approximate SD model is given by the equations

x+(u) = x+ F δ[p](x, u) (3.6a)

y = h(x), (3.6b)

with pth-approximate map

F δ[p](x, u) =

p∑
i≥1

δi

i!
(Lf + uLg)

iId|x.

From the approximate SD model one gets that as long as the sampling period δ

is sufficiently small for k ≥ 0 one gets that the approximate map verifies

||F δ(x, u)− F δ[p](x, u)|| ≤ O(δp+1),
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meaning that the trajectories of the approximate model (3.6) evolves in a neighbor-

hood of the trajectories of the SD equivalent (3.5). In addition, for zero input u = 0

the properties of the equilibrium of the autonomous system yield practically upon

the approximate dynamics, see Nešić et al. (1999).

Remark 3.1.1. Unsurprisingly, the 1th-approximate SD model to (3.2) coincides

with the Forward Euler discrete model and yields

x+(u) = x+ F δ[1](x, u) = x+ δ(f(x) + g(x)u).

The Forward Euler discrete model usually requires a very small sampling period δ

to keep its trajectories in a neighborhood of the SD equivalent model. Notably in

the nonlinear case, the Forward Euler discrete suffers the nonlinearity induced by the

continuous-time model.

Remark 3.1.2. The pth-approximate SD model to the system (3.2) for truncation

order p ≥ 2 does not hold an affine structure with respect to the control variable.

Indeed the second order approximate model, say p = 2, yields a quadratic term in u,

namely

F δ[2](x, u) = δ(f(x) + g(x)u) +
δ2

2

(
Lff(x) + uLfg(x) + uLgf(x) + u2Lgg(x)

)
.

3.2 Difference and differential representation

Even if difference equations of the form are considered far away from differential

equations, the involvement of a DDR form (in Definition 2.1.3) in this sampled-data

context defines a sampled-data model represented as coupled differential/difference

equations, see Monaco and Normand-Cyrot (1998, 2005). To this end, the sampled-

data dynamics (3.5) admits an equivalent state-space representation defined by

x+ = x+ F δ
0 (x), x+ = x+(0) (3.7a)

∂x+(u)

∂u
= Gδ(x+(u), u) (3.7b)
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a differential equation (3.7a) which describes the variation with respect to the control

variable u, while the difference equation (3.7a) describes the free evolution with the

maps

F δ
0 (x) = F δ(x, 0) = eδLf Id|x − x (3.8a)

Gδ(x+(u), u) =

∫ δ

0

e−s adf+ugg(x)ds (3.8b)

where Gδ(x+(u), u) is complete and verifies

∂F δ(x, u)

∂u
= Gδ(x+(u), u).

As seen in the discrete time, both (3.5) and (3.7) are perfectly equivalent. By inte-

grating (3.7b) over [0, u[ with initial condition (3.7a) one gets the integral form

x+(u) = x+ F δ(x, u) = x+ F δ
0 (x) +

∫ u

0

Gδ(x+(v), v)dv. (3.9)

Also in this context, a powerful benefit of exploiting the DDR form, as seen in

Proposition 2.1.1, is that it allows to split the evolutions of a given smooth mapping

λ : Rn → R along the sampled trajectories of (3.5) as the contribution of the free

and controlled components, namely

λ(x+(u)) = λ(x+(0)) +

∫ u

0

LGδ(.,v)λ(x+(v))dv. (3.10)

Remark 3.2.1. The representation (3.7) in the sampled-data context always exists

and is uniquely defined due to the invertibility of the drift term (3.8a). In particular,

for a sampling period δ sufficiently small ensuring series convergence, (3.5) is drift

invertible meaning that for x+ F δ
0 (x) = eδLf Id|x, one gets (Id + F δ

0 )−1|x = e−δLf Id|x.
Thus, the map x+ F δ(x, u) is invertible for u in the neighborhood of 0. See Monaco

and Normand-Cyrot (1998); Monaco et al. (2007) for further details.

Remark 3.2.2. It is worth mentioning that a sampled-data DDR form does not

require additional condition on the existence of the mapGδ(., v) since it is computed in

(3.8b) as an exponential series of the Lie bracket between vector fields characterizing

the continuous-time dynamics.
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3.3 Passivity property

Passivity concepts discussed in Section 2.2 for discrete time dynamics can be reinter-

preted in this present sampled-data context. Assuming the continuous-time system

(3.2) passive, meaning that

Ṡ(x) ≤ uy

for the storage function S : X → R≥0 and output map y = LgS(x) required by

the KYP properties in Theorem 1.2.1, we obtain for the piecewise constant control

variable u(t) = uk and by integrating the above dissipation inequality over [kδ, (k +

1)δ[ the following passivity condition between two time instants

S(x+(u))− S(x) ≤ u

∫ δ

0

LgS(x(s))ds. (3.11)

with x(s) = eδ(Lf+uLg)Id|x(k). It is clear from the passivity condition above that

passivity of the original system, in the sense of Definition 1.2.2, with respect to

the output map y is not preserved under sampling with respect to the same output.

Though, the above inequality suggests that its sampled-data dynamics (3.5) is passive

with respect to a new output map suitably computed.

Remark 3.3.1. The approach of Costa-Castelló and Fossas (2006); Stramigioli et al.

(2005) to avoid this problem is to consider the δ-average output

yδ =
1

δ

∫ (k+1)δ

kδ

y(s)ds =
1

δ

∫ δ

0

LgS(x(s))ds,

in place of the original output y(kδ). The δ-average output is directly deduced from

(3.11) by averaging with respect to δ the continuous-time dynamics (3.1a) over the

sampling period and along the trajectories of (3.2a). Although this output map seems

natural for sampled-data systems, its representation does not meet a counterpart in

the pure discrete-time context. Therefore, this notion of δ-average output is not taken

into account within this work.

3.3.1 The u-average passivity

The notion of u-average passivity previously discussed has proven to serve as an

original and alternative definition of passivity which introduces an appropriate u-

average output for which passivity is guaranteed also under sampled-data design.
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Assuming passivity of the continuous-time system (3.2) and exploiting the sampled-

data DDR form (3.7) associated to the sampled-data equivalent model (3.5), one

notices that from the integral expression one has the following inequality

S(x+(0))− S(x) =

∫ δ

0

LfS(x(s))ds ≤ 0

which holds true by the KYP condition LfS(x) ≤ 0. Therefore, one can rewrite the

passivity condition (3.11) as a dissipation inequality of the form

S(x+(u))− S(x) = S(x+(0))− S(x) + S(x+(u))− S(x+(0))

≤
∫ u

0

LGδ(.,v)S(x+(v))dv.

This leads to the theorem below where the result is recalled from Monaco et al.

(2010).

Theorem 3.3.1. Let the continuous-time system

ẋ = f(x) + g(x)u (3.12)

y = h(x) (3.13)

be passive with storage function S : Rn → R≥0. Then, the sampled-data equivalent

system

x+ = x+ F δ
0 (x), x+ = x+(0) (3.14a)

∂x+(u)

∂u
= Gδ(x+(u), u) (3.14b)

Y δ(x, u) = LGδ(.,u)S(x), (3.14c)

is u-average passive; namely, the sampled-data equivalent DDR system (3.14) is pas-

sive with respect to the u-average output

Y δ
av(x, u) =

1

δu

∫ u

0

LGδ(.,v)S(x+(v))dv (3.15)

and verifies the dissipation inequality

S(x+(u))− S(x) ≤ uY δ
av(x, u).
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The theorem above provides preservation of the passivity under sampling through

the u-average output function Y δ
av(x, u), and respectively u-average passivity with

respect to the output map Y δ(x, u). However, for sake of completeness we recall that

the u-average passivity property is a tool holding for discrete-time and sampled-data

designs, and does not meet a counterpart in continuous time.

Remark 3.3.2. The u-average output map Y δ
av(x, u) which ensures passivity under

sampled-data design, can be expressed as a series expansion in powers of δ around

the continuous-time passive output map h(x) = LgS(x) as such

Y δ
av(x, u) =

∑
i≥0

δi

(i+ 1)!
Y δ

avi
(x, u) (3.16)

with the first terms

Y δ
avi0

(x) = h(x) = LgS(x)

Y δ
avi1

(x, u) = (Lf + uLg) LgS(x) + LgLfS(x)

Y δ
avi2

(x, u) = (Lf + uLg)
2 LgS(x) + LfLgLfS(x) + uL2

gLfS(x).

The following lemma gives an equivalent representation of the sampled-data u-

average output in terms of the discrete gradient function.

Lemma 3.3.1. The u-average output map associated with the sampled-data system

(3.14) rewrites in terms of discrete gradient as follows

Y δ
av(x, u) = gδ>(x, u)∇̄S|x

+(u)

x+ (3.17)

with map

gδ(·, u) =
1

δu

(
eδ(Lf+uLg)Id − eδLf Id

)
(3.18)

verifying also

gδ(x, u) =
1

δu

(
eδ(Lf+uLg)Id|x − eδLf Id|x

)
=

1

δu

∫ u

0

Gδ(x+(v), v)dv. (3.19)
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Proof. Due to the definition of discrete gradient between x+ and x+(u) and by

definition of u-average output one gets by construction the equivalence

Y δ
av(x, u) =

1

δu

∫ u

0

Y δ(x+(v), v)dv

=
1

δu

(
S(x+(u))− S(x+)

)
=

1

δu

(
x+(u)− x+)

)> ∇̄S|x+(u)

x+

=
1

δu

(
eδ(Lf+uLg)Id|x − eδLf Id|x

)> ∇̄S|x+(u)

x+ = gδ>(x, u)∇̄S|x
+(u)

x+ .

Finally, the mapping gδ(·, u) yields the equivalence condition (3.19) which is obtained

from (3.9) with map Gδ(x, u) in (3.8b).

3.3.2 Passivity-based control

We have seen that the u-average passivity notion is profitably used to achieve asymp-

totic stabilization of the origin for the discrete-time model provided ZSD property.

In the present framework, due to the structure of the sampled-data equivalent model

(3.14) its ZSD property arises from the assumption on the ZSD of the continuous-time

system (3.12); namely if the origin of the continuous-time system is asymptotically

stable conditionally to the largest invariant set contained in {x ∈ Rn | LgS(x) = 0},
then the sampled-data equivalent model (3.14) is asymptotically stable conditionally

to the largest invariant set contained in {x ∈ Rn | Y δ(x, 0) = 0}.

Accordingly, one can state the following theorem which specializes the Theorem

2.2.1 in the sampled-data framework, as given in Monaco et al. (2010).

Theorem 3.3.2. Let the continuous-time system (3.12) be passive with positive defi-

nite storage function with storage function S : Rn → R≥0 and ZSD. Then, the digital

feedback u = γδ(x) solution to

γδ(x) + κY δ
av(x, γ

δ(x)) = 0 (3.20)

with damping κ > 0, makes the origin of the sampled-data system (3.14) asymptoti-

cally stable.
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3.4 Linear-time invariant case

Despite the fact that a solution to the ODE (3.12) is difficult to calculate for general

nonlinear systems, in the LTI case the SD equivalent model to (3.12) can be expressed

in its closed form. Indeed, assuming a linear-time invariant in continuous time, of

the form

ẋ = Ax+Bu (3.21a)

y = Cx (3.21b)

with A ∈ MatR(n, n), B ∈ MatR(n, 1), and C ∈ MatR(1, n), its equivalent sampled-

data model is expressed by the difference equation

x+(u) = Aδx+ δBδu (3.22a)

y = Cx (3.22b)

with

Aδ = eδA = I +
∑
i≥1

δi

i!
Ai

Bδ =
1

δ

∫ δ

0

eτABdτ =
1

δ
B +

∑
i≥1

δi−1

i!
Ai−1B,

where Ai is the repeated matrix product of A with itself.

Remark 3.4.1. Unlike the exponential of a vector field, which in general is not

exactly computable producing an infinite exponential series, the exponential of a

matrix as for the matrix Aδ can be calculated in closed form since it is always a

convergent series and therefore is well defined. See Bhatia (2013); Hall (2015) for a

thorough overview on matrix exponentials.

The sampled-data equivalent model (3.22) yields an equivalent state-space DDR

form under sampling which is defined by the pair of difference and differential equa-

tions

x+ = Aδ, x+ = x+(0) (3.23a)

∂x+(u)

∂u
= δBδ (3.23b)

y = Cx (3.23c)
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which restores the LTI system in the form of a map, by integrating (3.23b) over [0, u[

with initial condition (3.23a) so that one gets the integral form

x+(u) = x+(0) + δ

∫ u

0

Bδdv = Aδx+ δBδu (3.24a)

y = Cx. (3.24b)

The passivity properties related to LTI sampled-data system can be reformulated.

Without loss of generalities, due to the necessary and sufficient conditions provided

by the KYP properties in Chapter 1, we assume that the LTI continuous-time system

(3.21) which is passive comes with an output of the form

y(t) = B>Px(t)

with positive definite P ∈ SymR(n, n) defining the quadratic storage function S(x) =
1
2
x>Px. Thus, we specialize the Theorem 3.4.1 in this linear case.

Theorem 3.4.1. Let the continuous-time system

ẋ = Ax+Bu (3.25a)

y = B>Px (3.25b)

be passive with quadratic storage function S(x) = 1
2
x>Px and positive definite P ∈

SymR(n, n). Then, the LTI sampled-data equivalent system

x+(u) = Aδx+ δBδu (3.26a)

Y δ(x, u) = Bδ>Px, (3.26b)

is u-average passive; namely, the sampled-data equivalent dynamics (3.26a) is passive

with respect to the u-average output

Y δ
av(x, u) = Bδ>PAδx+

δ

2
Bδ>PBδu. (3.27)

Remark 3.4.2. The u-average output map (3.27) associated to the sampled-data

system (3.26) rewrites in terms of discrete gradient as follows

Y δ
av(x, u) = Bδ>(x, u)∇̄S|x

+(u)

x+

=
1

2
Bδ>P (x+(u) + x+)

= Bδ>PAδx+
δ

2
Bδ>PBδu.
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We have already discussed for the nonlinear case that the u-average output can

be exploited to provide asymptotic stabilization under ZSD property. In this linear

context, clearly, if the origin of the continuous-time system is globally asymptotically

stable conditionally to the largest invariant set contained in {x ∈ Rn | B>Px = 0},
then the LTI sampled-data equivalent model (3.26) is globally asymptotically stable

conditionally to the largest invariant set contained in {x ∈ Rn | Bδ>Px = 0}. In

addition, the passivity-based-control u = γδ(x) which asymptotically stabilizes the

origin of the closed-loop system, yields as the solution to

γδ(x) + κBδ>PAδx+ κ
δ

2
Bδ>PBδγδ(x) = 0, (3.28)

which admits a proper and unique solution. Thus, below we specialize the Theorem

2.3.1 for LTI sampled-data systems.

Theorem 3.4.2. Let the LTI continuous-time system (3.25) be passive with quadratic

storage function S(x) = 1
2
x>Px and positive definite P ∈ SymR(n, n) and ZSD. Then,

the feedback u = γδ(x) given by

γδ(x) = − κBδ>PAδx

1 + κ δ
2
Bδ>PBδ

(3.29)

with damping κ > 0, makes the origin of the sampled-data system (3.26a) globally

asymptotically stable.

3.5 Feedback passivation under sampling

We have discussed in Chapter 1 the benefit of defining feedback passivation design in

continuous time, that is to find a control law which aims to passivate the continuous-

time system and then stabilize it through passivity-based-controller. Feedback passi-

vation is instrumental in celebrated nonlinear control strategies such as backstepping

or feedforwarding regarding cascade dynamics Sepulchre et al. (2012) or Interconnec-

tion and Damping Assignment (IDA-PBC) for Hamiltonian dynamics, Ortega et al.

(2002b).

In this section we investigate what happens under sampled-data design. We show

that feedback passivation under sampling can be preserved under digital control by
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means of a new output map, for which the sampled-data system is passive, which de-

pends on the sampling period. In particular, we show that whenever the continuous-

time dynamics is feedback passive, then passivation under sampling can be always

pursued.

Consider the input-affine continuous-time dynamics of the form

ẋ = f(x) + g(x)u (3.30)

with x ∈ Rn, u ∈ R and a desired equilibrium

x? ∈ {x ∈ Rn s.t. g⊥(x)f(x) = 0}

which might be assigned to the closed-loop system under the following assumption.

Assumption 1. The dynamics (3.30) is feedback passive; i.e., there exist smooth

functions γ : Rn → R, hd : Rn → R and Hd : Rn → R≥0 such that the feedback law

u = γ(x) + v (3.31)

makes the closed-loop system

ẋ = fd(x) + g(x)v (3.32a)

y = hd(x) (3.32b)

passive with

fd(x) : = f(x) + g(x)γ(x)

hd(x) : = LgHd(x)

and storage function Hd(·), namely the dissipation inequality below holds for all t ≥ 0

and x0 ∈ Rn

Hd(x(t))−Hd(x0) ≤
∫ t

0

y(s)v(s)ds. (3.33)

Remark 3.5.1. Let us recall that feedback passivation is basically used to stabilize

under feedback the closed-loop system to a desired equilibrium x? verifying for a fixed

function Hd : Rn → R Hd(x?) = 0. In addition when ZSD is guaranteed with respect
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to the new output map hd(x), the desired equilibrium can be stabilized through

damping injection setting v = −κhd(x) with κ > 0. As a matter of fact, one verifies

Ḣd(x) = LfdHd(x)︸ ︷︷ ︸
≤0

+v LgHd(x)︸ ︷︷ ︸
=hd(x)

≤ −κ‖hd(x)‖2 (3.34)

and thus asymptotic stability of x? for (3.32).

3.5.1 Problem statement: feedback passivation under sam-

pling

Given a continuous-time dynamics (3.30) assumed feedback passive (Assumption 1),

than the control objective is to compute a digital feedback ū = γδ(x) with

u = ū+ v (3.35)

making the closed-loop sampled-data equivalent model

x+(ū+ v) = x+ F δ(x, γδ(x) + v) (3.36)

passive for all k ≥ 0; i.e. under u = ū+v the closed-loop system verifies the dissipation

inequality

Hd(x
+(ū+ v))−Hd(x) ≤ vhδd(x, v),

with a suitably defined passifying output map

y = hδd(x, v).

In this respect, in what follows we do show that Assumption 1 guarantees feedback

passivity of the dynamics (3.30) under digital feedback with the same storage function

Hd(·) as in continuous time. In particular, the solution we propose is constructive

and based on the notion of Input-Hd-Matching (IHdM).

The idea of matching at the sampling instants a target continuous-time the dy-

namics by means of a piecewise constant feedback is given by Monaco and Normand-

Cyrot (2006). In particular, setting the closed-loop continuous-time system as a

target dynamics the control design stands in reproducing the target behaviour of
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the closed-loop under sampled-data feedback. A solution to this problem is however

unfeasible in general under a singe-rate control, and an involvement of a multi-rate

control is needed. Afterwords, it has been proposed in ?Tanasa et al. (2015) the idea

of matching exclusively a target input-output behavior at the sampling instants; i.e,

in Lyapunov-based stabilization it is proposed to match through a piecewise constant

feedback the Lyapunov function behaviour under ideal continuous-time feedback at all

the sampling instants kδ for k ≥ 0. This technique is referred to as Input-Lyapunov

Matching (ILM) under digital control. On the basis of this idea, the notion of Input-

Hd-Matching (IHdM) extends ILM to suitable storage function Hd(x) : Rn → R≥0

verifying Hd(x?) = 0.

.

3.5.2 Digital passivation and stabilization

Before stating the main result, the following Proposition is recalled from Tanasa et al.

(2015) aimed at reproducing, at all sampling instant t = kδ for k ≥ 0, the evolution

of the storage function Hd(·) along the closed-loop dynamics (3.32) for v = 0.

Proposition 3.5.1. Let the continuous-time system (3.30) verifies Assumption 1

with storage function Hd : Rn → R≥0 and LgHd(x) 6= 0 for all x 6= x?. Then, there

exists T ? > 0 such that for all δ ∈ [0, T ?[ and t = kδ, k ≥ 0, the IHdM equality

Hd(x
+(u))−Hd(x) =

∫ (k+1)δ

kδ

LfdHd(x(s))ds (3.37)

with x(s) = esLfdId|xk admits unique solution u = γδ(x) as a series expansion in

powers of δ around γ(·); namely,

γδ(x) =
∑
i>0

δi

(i+ 1)!
γi(x). (3.38)

Remark 3.5.2. The left and right hand sides of (3.37) define, respectively, the

increment between two successive sampling instants of Hd(x) over the sampled-data

dynamics (3.36) and the continuous-time one (3.32) when both initialized, at each

step k ≥ 0, as x(kδ) = xk. Roughly speaking, the feedback γδ(·) ensures at all

sampling instants matching of the energy dissipation along the closed-loop system

(3.32).



3.5. FEEDBACK PASSIVATION UNDER SAMPLING 99

The IHdM feedback is implicitly defined by the nonlinear IHdM equality (3.37) so

that seeking for exact solutions might be tough. However, as it is always the case in

the sampled-data context a unique solution admitting the series expansion of series

(8.15) can be computed through an iterative procedure solving, at each step, a linear

equation in the unknown γi(x). For the first terms, one gets

γ1(x) = Lfdγ(x)

γ2(x) = L2
fd
γ(x) +

LadfgHd(x)

2LgHd(x)
Lfdγ(x)

(3.39)

so that as δ → 0, γδ(x)→ γ(x) and recovers the continuous-time solution.

We are ready to state the theorem concerning the feedback passivation under

sampling.

Theorem 3.5.1: Feedback passivation under sampling

Let the continuous-time dynamics

ẋ = f(x) + g(x)u (3.40)

verify Assumption 1 with storage function Hd : Rn → R≥0 such that LgHd(x) 6= 0

for all x 6= x?. Then, the dynamics (3.40) is feedback passive under digital

feedback; namely, the control (3.35), that is

u = ū+ v

with ū = γδ(x) solution to the IHdM equality (3.37) makes the closed-loop

sampled-data equivalent model

x+(ū+ v) = x+ F δ(x, γδ(x) + v) (3.41)

passive with storage function Hd(·) and output map Y δ
dav

(ū)(x, v) being the v-

average output from ū of the form

Y δ
dav

(ū)(x, v) = gδ>d (x, v)∇̄Hd

∣∣x+(ū+v)

x+(ū)
(3.42)

with map

gδd(x, v) =
1

δv

(
F δ(x, γδ(x) + v)− F δ(x, γδ(x))

)
,
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verifying

vY δ
dav

(ū)(x, v) =

∫ v

0

Y (x+(ū+ w), (ū+ w))dw.

In addition, if Hd(x?) = 0 and the continuous-time system with output y =

hd(x) is ZSD, then the damping feedback v = vδdi(x) defined as the unique solution

to the implicit damping equality

v + κY δ
dav

(ū)(x, v) = 0, κ > 0 (3.43)

makes x? asymptotically stable in closed loop.

Proof. First, let us prove that (3.36) with output (3.42) is made passive by the

IHdM control (3.35). By Assumption 1 LfdHd(x) ≤ 0 and the feedback γδ(·) solution

to (3.37) ensures Hd(x+F δ(x, γδ(x)))−Hd(x) ≤ 0. As a consequence, exploiting

the discrete gradient and the definition of u-average passivity from ū, one gets the

dissipation inequality

Hd(x
+(u))−Hd(x) = Hd(x

+(ū+ v))−Hd(x
+(ū)) +Hd(x

+(ū))−Hd(x)

≤ Hd(x
+(ū+ v))−Hd(x

+(ū))

≤ Hd(x+F δ(x, γδ(x)+v))−Hd(x+F δ(x, γδ(x)))

= vgδ>d (x, v)∇̄Hd

∣∣x+(ū+v)

x+(ū)

= vY δ
dav

(ū)(x, v)

and equivalently that

Hd(x
+(u))−Hd(x) = Hd(x

+(ū))−Hd(x) +Hd(x
+(u))−Hd(x

+(ū))

≤ 1

u− ū

∫ u

ū

Y (x+(w), w)dw

=
1

v

∫ v

0

Y (x+(ū+ w), (ū+ w))dw = vYdav(ū)(x, v),

thus the result. The existence of a solution to the damping equality (3.43) is guar-

anteed by the implicit function theorem (because LgHd(x) 6= 0 for all x 6= x?). Ac-

cordingly, substituting v = vδ(x) into the dissipation inequality above and exploiting

(3.43) one gets

Hd(x
+(u))−Hd(x) ≤ −‖Y δ

dav
(ū)(x, v)‖2
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so that asymptotic stability of x? follows from ZSD in continuous time along the lines

of Monaco and Normand-Cyrot (2011).

Remark 3.5.3. The sampled-data output (3.42) providing passivity for the closed-

loop sampled-data system admits a power expansion in powers of δ; rewriting

gδd(x, v) =
∑
i≥0

δi

(i+ 1)!
gid(x, v)

with g0
d(x) = g(x) and g1

d(x, v) = (Lfd + vLg)Lgx+ LgLfx+ γ(x)L2
gx, one gets for the

first terms

Y δ
dav

(ū)(x, v) = hd(x) +
δ

2

(
(Lfd + vLg)hd(x) +∇>Hd(x)(LgLf + γ(x)L2

g)
)
x+O(δ2).

The stabilizing controller, setting v = vδ(x) solution to (3.43), gets the form series

expansion in powers of δ

vδ(x) = v0(x) +
∑
i>0

δi

(i+ 1)!
vi(x) (3.44)

with, for the first terms

v0(x) =− κhd(x)

v1(x) =− κ(Lfd + v0(x)Lg)v
0(x)

− κ∇>Hd(x)(LgLf + γ(x)L2
g)x.

As a consequence, the stabilizing controller uδ(x) = γδ(x) + vδ(x) consists of

two components: the passifying feedback, based on IHdM, plus output damping for

asymptotic stabilization. It can be shown that such a control ensures one-step con-

sistency of the closed-loop system Nešić et al. (1999). However, as commented so

far, exact forms for the stabilizing controller might not be computed so that only

approximate solutions are implemented in practice. Accordingly, we define the pth

order approximate solution of the final feedback as truncations of the corresponding

series expansions at any finite order p in δ; i.e., setting the so-called correcting terms

ui(x) = γi(x) + vi(x)

uδ[p](x)=γ(x)−κhd(x)+

p∑
i=1

δi

(i+ 1)!
ui(x). (3.45)
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Remark 3.5.4. Consistency under the exact solution allows to deduce that those

controllers ensure practical asymptotic stability of the closed-loop system, as shown

in Tanasa et al. (2015); namely, convergence to a ball containing the origin of radius in

O(δp+1). In particular, setting p = 0 in (3.45), one recovers the standard emulation-

based solution as the continuous-time feedback directly implemented through ZOH

devices. Along the lines of Tanasa et al. (2015), it can be shown that increasing

the approximation order of the controller (i.e., p > 0) significantly improves the

stabilizing performances in closed loop for the dissipation matching by reducing the

residual error in (3.37) in O(δp+2).

3.5.3 Illustrative example: Backstepping as feedback passi-

vation

In this section we illustrate how feedback passivation under sampling is instrumental

in the continuous-time backstepping design, see Kokotovic (1992), by means of a two

dimensional cascade system.

Consider the continuous-time two dimensional system of the form

ẋ1 = x2
1 − x3

1 + x2 (3.46a)

ẋ2 = u, (3.46b)

As discussed in Khalil (2014), to backstep the dynamics (3.46) set the change of

coordinates z2 = x2 + x1 + x2
1 for which (3.46) is transformed into

ẋ1 = −x1 − x3
1 + z2 (3.47a)

ż2 = u− (1 + 2x1)(x1 + x3
1 − z2). (3.47b)

Continuous-time design

As presented in Khalil (2014), the control

u = γ(x1, z2) + v

applied to the transformed dynamics (3.47), with backstepping feedback

γ(x1, z2) = −x1 + (1 + 2x1)(x1 + x3
1 − z2)− z2, (3.48)
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yields a closed-loop system of the form

ẋ1 = −x1 − x3
1 + z2 (3.49a)

ż2 = −x1 − z2 + v, (3.49b)

that is feedback passive with respect to the storage function H(x1, z2) = 1
2
x1 + 1

2
z2

and passive output

y = h(x1, z2) = z2, (3.50)

namely the storage function along (3.49) satisfies

Ḣ(x1, z2) = −d(x1, z2) + vy (3.51)

with d(x1, z2) = x2
1 + x4

1 + z2
2 .

Sampled-data design

According to Theorem 3.5.1, one can compute the digital feedback for which the

feedback passivation under sampling is ensured; i.e., one computes a digital feedback

uk = γδ(x1k, z2k) + vk (3.52)

with the digital feedback γδ(xk) given in (8.15) specified for the first two terms as

follows

γδ(x1k, z2k) = γ(x1k, z2k) +
δ

2
γ1(x1k, z2k) +O(δ2) (3.53)

with

γ1(x1k, z2k) = (z2k−x3
1k−x1k)(8x

3
1k+3x2

1k+4x1k−2z2k) + 2(x1k + 1)(x1k + z2k).

The control (3.52) yields a closed-loop sampled-data dynamics of the form

x1k+1 = x1k − δ(x3
1k + x1k − z2k) +

δ2

2
vk (3.54a)

− δ2

2
(−3x5

1k − 4x3
1k + 3z2kx

2
1k + 2z2k) +O(δ3)

z2k+1 = z2k − δ(x1k + z2k) +
δ2

2
x1k(x

2
1k + 2) (3.54b)

+ δvk +
δ2

2
vk(2x1k + 1) +O(δ3).
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According to Theorem 3.5.1, the closed-loop sampled-data system (3.54) is feed-

back passive with respect to the same storage function of the continuous-time design,

i.e. H(x1k, z2k) = 1
2
x1k + 1

2
z2k, but with modified output map of the form (3.42) and

specified as follows

Y δ
dav

(ū)(x1k,z2k, vk) = z2k +
δ

2
(vk − x1k − z2k + 2x1kz2k) +O(δ2).

Clearly, the above modified output, which is affected by the feedthrough term vk,

differs from the one in (3.50) at the sampling instants. However, the above modified

output map Y δ
d (ū)(x1k, z2k, vk) is obtained from the truncation in O(δ2) of the inner

product between the input map

gδd(x1k, z2k) =

(
0

1

)
+
δ

2

(
1

2x1k + 1

)
+O(δ2)

and the discrete gradient given by

∇̄H|x
+(ū+v)

x+(ū) =
1

2
(eδ(f+(γδ+vk)g)Id|xk + eδ(f+γδg)Id|xk),

which yields for the first terms the following expression,

∇̄H|x
+(ū+v)

x+(ū) =

(
x1k

z2k

)
+δ

(
z2k − x1k − x3

1k
vk
2
− x1k − z2k

)

+
δ2

2

(
vk
2
− 2z2k + 4x3

1k + 3x5
1k − 3x2

1kz2k

vk
2

+ 2x1k + x3
1k + vx1k

)
+O(δ3).

Finally, the digital control (3.52), that provides feedback passivation under sam-

pling, yields the following discrete EB equation of the form

Hd(x1k+1, z2k+1)−Hd(x1k, z2k) = −δd(x1k, z1k) + δvY δ
dav

(ū)(x1k,z2k, vk)

with supply rate given by

vY δ
dav

(ū)(x1k, z2k, vk) = z2kvk +
δ

2
(v2
k − x1kvk − z2kvk) + δx1kz2kvk +O(δ2)

and dissipation term described by

d(x1k, z1k) = x4
1k + x2

1k + z2
2k + δ(2x6

1k + 3x4
1k − 2x3

1kz2k + x2
1k + z2

2k) +O(δ2).
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3.6 Concluding remarks

At first, we have recalled the notion of sampled-data equivalent model and DDR forms

under sampling. Then the notion of passivity, u-average passivity, and passivity based

control have been restated in the sampled-data framework. Further, it has been shown

that feedback passivation can be preserved under sampled-data control with respect

to the same target storage function as in continuous time and suitably modified

output mapping, which takes the form of a v-average output from ū. The result is

appealing for systems that may not be passive in open-loop. The proposed method

has been illustrated on the celebrated backstepping stabilization design Kokotovic

(1992), by means of an academic example, providing computational aspects of the

proposed sampled-data feedback in terms of feedback passivation under sampling.

The result given in Section 3.5 is partially contained in:

M. Mattioni, A. Moreschini, S. Monaco and D. Normand-Cyrot, ”On feedback

passivation under sampling”, 2021 American Control Conference (ACC).



106 CHAPTER 3. GENERALITIES ON SAMPLED-DATA SYSTEMS



Part II

PORT-HAMILTONIAN

SYSTEMS IN DISCRETE TIME

107





Chapter 4
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I
n this chapter, a novel definition of port-Hamiltonian systems is introduced in

a pure discrete-time setting. Firstly, we give a proper definition of discrete-

time port-Hamiltonian system exploiting the notions of DDR and discrete gra-

dient function. Then, we compare the proposed model with a comparable discrete-

time port-Hamiltonian system proposed in the literature. Accordingly, we asso-

ciate a proper Dirac structure to the proposed discrete-time port-Hamiltonian sys-

tem. Finally, the notion of power-preserving interconnection between u-average pas-
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sive system is used to show that the power-preserving interconnection of two port-

Hamiltonian systems is again a port-Hamiltonian system. The chapter ends with an

example concerning the computation of flow and efforts associated with a mechanical

isolation system.

4.1 Port-Hamiltonian systems in discrete time

In this section, inspired from the fact that several applications require models that

describe physical phenomena in a pure discrete-time domain instead of discrete-time

models obtained by the sampling of a smooth system, a novel class of discrete port-

Hamiltonian systems is proposed referring to the DDR form (2.6) along with the

discrete gradient function.

4.1.1 A new definition

To begin with, consider the case of autonomous dynamics.

Definition 4.1.1. Given a differentiable real valued Hamiltonian function H(·) :

Rn → R≥0, a discrete-time autonomous port-Hamiltonian dynamics over Rn can be

described by the implicit state space representation

x+ = x+ (J(x)−R(x))∇̄H|x+

x (4.1)

with x ∈ Rn, n-dimensional matrices J(x) = −J>(x) and R(x) = R>(x) � 0 catch-

ing, respectively, the (power-preserving) interconnection and dissipative structure of

the dynamics.

The autonomous port-Hamiltonian representation recovers the models of the lit-

erature introduced in McLachlan et al. (1999). This model has been further exploited

in a sampled-data context in Yalçin et al. (2015); Aoues et al. (2017) extending also

the structure to controlled dynamics.

Discrete-time port-Hamiltonian dynamics of the form (4.1) verify by construction

energy properties as described in the proposition below.
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Proposition 4.1.1. Consider the Hamiltonian dynamics (4.1), then, the following

properties hold

P1. the dynamics (4.1) is dissipative with respect to H(x), that is

H(x+)−H(x) = −∇̄H>|x+

x R(x)∇̄H|x+

x ≤ 0, ∀x ∈ Rn; (4.2)

P2. the dynamics (4.1) is conservative with respect to H(x) for zero dissipa-

tion term R(·) = 0, that is

H(x+)−H(x) = 0, ∀x ∈ Rn; (4.3)

P3. any critical point x? of H(x) is an equilibrium of (4.1);

P4. if H(x?) ≤ H(x) for all x in the neighborhood of x?, then the equilibrium

point x? is stable and H(x) serves (at least locally) as a Lyapunov func-

tion for the stable equilibrium of (4.1). If {x?} is the largest invariant

set for which

∇̄H>|x+

x R(x)∇̄H|x+

x = 0,

then x? is asymptotically stable.

Proof. By computing the forward difference of H(·) along (4.1) one gets

H(x+)−H(x) = (x+ − x)>∇̄H|x+

x

= ((J(x)−R(x))∇̄H|x+

x )>∇̄H|x+

x

= −∇̄H>|x+

x R(x)∇̄H|x+

x ≤ 0,

so that P1 and P2 immediately follow. Any critical point x? of H(x) verifies that

∇̄H|x?x? = ∇H(x?) = 0, so that along (4.1) yields xk+1 = xk = x?, thus P3 is verified.

To prove P4 on might infer by stability theory, if the critical point x? is a mini-

mum of the Hamiltonian H(x) then the dynamics is stable in the sense of Lyapunov

and the condition H(x?) ≤ H(x) holds true for all x. Additionally, by Barbashin-

Krasovskii theorem, x? is an asymptotically stable equilibrium as the dissipation is

strictly negative outside the set {x?}, that is

H(x+)−H(x) = −∇̄H>|x+

x R(x)∇̄H|x+

x < 0, ∀x ∈ Rn \ {x?}.
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Let us now extend the Definition 4.1.1 to controlled dynamics so defining an input-

state-output port-Hamiltonian system in discrete time (or simply port-Hamiltonian

system).

Definition 4.1.1: Discrete-time port-Hamiltonian system

Given a differentiable real-valued function H(·) : Rn → R≥0, a discrete-time

port-Hamiltonian system over Rn, with u ∈ R, is described in DDR form as

x+ = x+ (J(x)−R(x))∇̄H|x+

x (4.4a)

∂x+(u)

∂u
= G(x+(u), u) with x+(0) = x+ (4.4b)

Y (·, u) = LG(·,u)H(·) (4.4c)

or equivalently in the map form as

x+(u) = x+ (J(x)−R(x))∇̄H|x+

x + g(x, u)u (4.5a)

Yav(x, u) = g>(x, u)∇̄H|x
+(u)

x+ (4.5b)

with matrices J(x) = −J>(x) and R(x) = R>(x) � 0 and map

g(x, u)u :=

∫ u

0

G(x+(v), v)dv.

Some general comments on the proposed structure:

� The controlled port-Hamiltonian dynamics

x+(u) = x+ (J(x)−R(x))∇̄H|x+

x + g(x, u)u,

is computed by blending the autonomous implicit port-Hamiltonian dy-

namics, that is the difference equation (4.4a) which yields a leap at the

instant (k), along with the differential equation (4.20b) which models

the effect of the control variable u.

� The control map G(·, u) is assumed to exist and thus, as usual for DDR

forms, a discrete-time port-Hamiltonian dynamics in the form of a map

(5.1a) can be deduced through integration of (4.20b) between 0 and u

with initial condition x+(0) = x+.
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� Discrete port-Hamiltonian dynamics of the form (4.4) arises with energy

properties in terms of u-average passivity in straight relation with the

definition of discrete gradient function. Exploiting the integral form for

the Hamiltonian function (2.11), that is

H(x+(u)) = H(x+(0)) +

∫ u

0

LG(.,v)H(x+(v))dv,

for computing the forward difference of the Hamiltonian function H(x)

along the dynamics (4.4), one directly gets the u-average energy balance

equality between two time steps as

H(x+(u))−H(x)︸ ︷︷ ︸
stored energy

= −∇̄H>|x+

x R(x)∇̄H|x+

x︸ ︷︷ ︸
dissipated energy

+

∫ u

0

Y (x+(v), v)dv︸ ︷︷ ︸
supplied energy

, (4.6)

and equivalently energy balance between two time steps as

H(x+(u))−H(x)︸ ︷︷ ︸
stored energy

= −∇̄H>|x+

x R(x)∇̄H|x+

x︸ ︷︷ ︸
dissipated energy

+ug>(x, u)∇̄H
∣∣x+(u)

x+︸ ︷︷ ︸
supplied energy

,

(4.7)

holding for all (x, u) ∈ Rn ×R, which is in the entire time horizon [0, k]

H(xk)−H(x0)︸ ︷︷ ︸
total stored energy

= −
k−1∑
i=0

∇̄>H|x
+
i
xi
R(xi)∇̄H|x

+
i
xi︸ ︷︷ ︸

total dissipated energy

+
k−1∑
i=0

uig
>(xi, ui)∇̄H

∣∣x+
i (ui)

x+
i︸ ︷︷ ︸

total supplied energy

,

where the dissipated energy, that is defined by a dissipation matrix and

a discrete gradient characterizing the autonomous dynamics, is not de-

pending on the variable u, and the supplied energy contains all the effect

of the control variable u with a discrete gradient computed between the

autonomous dynamics x+ and the controlled system x+(u).

On this basis the following theorem can be proved.



114 CHAPTER 4. MODELING OF DT PORT-HAMILTONIAN SYSTEMS

Theorem 4.1.1

Given a discrete-time port-Hamiltonian system (4.4) with Hamiltonian H(·) :

Rn → R≥0, then the following holds:

(i) the dynamics (4.4) with output (4.4c) is u-average passive with dissi-

pation rate

d(x) := ∇̄H>|x+

x R(x)∇̄H|x+

x ≥ 0,

and u-average energy balance equality between two time steps as

H(x+(u))−H(x) = −d(x) +

∫ u

0

Y (x+(v), v)dv, (4.8)

(ii) the dynamics (4.4) is u-average lossless for zero dissipation R(·) = 0;

(iii) the average output to (4.4c) for which dynamics (4.4) is passive is

given by (4.5b) and achieve the energy balance equality between

two time steps as

H(x+(u))−H(x) = −d(x) + ug>(x, u)∇̄H
∣∣x+(u)

x+ ; (4.9)

(iv) the u-average output (4.5b) associated with (4.4c) recovers the discrete

gradient of the Hamiltonian H(·) between x+ and x+(u); i.e.

Yav(x, u) =
H(x+(u))−H(x+(0))

u
= g>(x, u)∇̄H|x

+(u)

x+ .

Proof. (i) and (ii) follow from the energy dissipation inequality,

H(x+(u))−H(x) = H(x+)−H(x) +H(x+(u))−H(x+)

= −∇̄H>|x+

x R(x)∇̄H|x+

x +H(x+(u))−H(x+)

≤ H(x+(u))−H(x+)

=

∫ u

0

Y (x+(v), v)dv = uYav(x, u)

holding with a strict equality for zero dissipationR(·) = 0 (due to Proposition (4.1.1)).

From Proposition 4.1.1, one has that H(x+)−H(x) = −∇̄H>|x+

x R(x)∇̄H|x+

x = −d(x)

whereas, by definition of discrete gradient function (Definition 2.1.1) one gets that

H(x+(u))−H(x+) = (x+(u)− x+)>∇̄H|x
+(u)

x+
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with x+(u)− x+ = g(x, u)u, then (iii) and (iv) are proved simply computing

H(x+(u))−H(x+) = ug>(x, u)∇̄H|x
+(u)

x+ = uYav(x, u),

with by definition of u-average passivity providing the average output as in Lemma

2.2.1 which yields

Yav(x, u) =
1

u

∫ u

0

Y (x+(v), v)dv = g>(x, u)∇̄H
∣∣x+(u)

x+ .

Theorem 4.1.1 expresses that the energy is non-increasing (conservative) or de-

creasing (dissipative) up to an isolated minimum of H(x) and the change of internal

energy is governed by both the energy-storage and energy-dissipation. Moreover,

it is shown that, as usual in continuous time, port-Hamiltonian systems arise with

straightforward energy interpretation and direct passivity property. However, those

features naturally involve, in discrete time, u-average passivity arguments. Moreover,

in this scenario, the u-average output (4.5b) comes in terms of the discrete gradient

evaluated along the controlled evolution in a way that is strictly reminiscent of the

continuous-time counterpart.

4.1.2 A port-Hamiltonian representation proposed in the lit-

erature

The introduced discrete port-Hamiltonian system (4.5), based on the DDR form of

a discrete-time system, comes with a very particular structure which differs from the

representation given in Aoues et al. (2017) arising with a structure of the form

x+(u) = x+ (J(x)−R(x))∇̄H|x+(u)
x + g(x, u)u (4.10a)

y`(x, u) = g>(x, u)∇̄H|x+(u)
x . (4.10b)

This port-Hamiltonian structure essentially differs from the proposed structure in

(4.5) in many aspects:

� the port-Hamiltonian dynamics (4.10a) arises with a discrete gradient

∇̄H|x
+(u)
x which is affected by the control variable u, while the proposed

model (4.5) arises with a discrete gradient of the form ∇̄H|x+

x which is

used to characterize the autonomous dynamics;
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� the passive output (4.10b) associated with the port-Hamiltonian dynam-

ics (4.10a), again arises with a discrete gradient ∇̄H|x
+(u)
x , while the pro-

posed passive output arises with a discrete gradient of the form ∇̄H|x
+(u)

x+

which encodes the rate of change produced by the control variable u;

� unlike the proposed model which clearly splits the effect of the input

source into the energy balance equation with respect to the autonomous

behavior (say the energy balance (4.8)), the system (4.10) yields an as-

sociated energy balance

H(x+(u))−H(x)︸ ︷︷ ︸
stored energy

= −∇̄H>|x+(u)
x R(x)∇̄H|x+(u)

x︸ ︷︷ ︸
dissipation + partial supplied

+ uy`(x, u)︸ ︷︷ ︸
partial supplied energy

(4.11)

where by construction the dissipated energy includes internal dissipation

(due to control-free dynamics) and an input-dependent component (due

to discrete gradient ∇̄H|x
+(u)
x ).

It results that the energy balance equality (4.11) which comes from (4.10) does

not decouple in the total energy the contribution given by the external source from

the internal dissipated energy. Then, this may be a problem in characterizing the

contribution of the input source into the energy balance equality and thus in designing

energy-based control strategies in discrete-time which are computed over the energy-

balance equality.

4.1.3 The case of quadratic Hamiltonians

It is worth to emphasize that the discrete port-Hamiltonian system (4.1) yields an

implicit dynamics with respect to the coordinate x+. An explicit representation is

in general tough to determine as such form directly depends on the nonlinearity of

the Hamiltonian function except for some polynomial cases. An important class is

associated with a quadratic Hamiltonian function, that is

H(x) =
1

2
x>Px (4.12)

with symmetric and positive definite matrix P , that is P = P> � 0.



4.1. PORT-HAMILTONIAN SYSTEMS IN DISCRETE TIME 117

The following proposition holds and his proof is based on the definition of discrete

gradient.

Proposition 4.1.2. Given a quadratic Hamiltonian function H(·) : Rn → R≥0 of the

form (4.12), then the associated discrete-time port-Hamiltonian system is described

in DDR form as

x+ = x+
1

2
(J(x)−R(x))P (x+ x+) (4.13a)

∂x+(u)

∂u
= G(x+(u), u) with x+(0) = x+ (4.13b)

Y (x, u) = G>(x, u)Px (4.13c)

or equivalently in the map form as

x+(u) = x+
1

2
(J(x)−R(x))P (x+ + x) + g(x, u)u (4.14a)

Yav(x, u) = g>(x, u)Px+ +
u

2
g>(x, u)Pg(x, u) (4.14b)

with matrices J(x) = −J>(x) and R(x) = R>(x) � 0 and vector field

g(x, u)u :=

∫ u

0

G(x+(v), v)dv.

Accordingly, if (I − 1
2
(J(·)−R(·))P ) is invertible for each entry, then there exists an

explicit form for the free dynamics (4.13a) that is

x+ = F0(x) = (I − 1

2
(J(x)−R(x))P )−1(I +

1

2
(J(x)−R(x))P )x, (4.15)

so that the controlled dynamics (4.14a) yields

x+(u) = (I − 1

2
(J(x)−R(x))P )−1(I +

1

2
(J(x)−R(x))P )x+ ug(x, u). (4.16)

Proof. The port-Hamiltonian dynamics (4.13a) (and thus (4.14a)) are obtained

by substituting the discrete gradient between x and x+ of the quadratic Hamiltonian

H(x) = 1
2
x>Px, that is

∇̄H|x+

x =
1

2
P (x+ x+).
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Accordingly, the conjugate output (4.14b) is simply achieved by manipulating the

discrete gradient between x+ and x+(u), so that

Yav(x, u) = g>(x, u)∇̄H|x
+(u)

x+

=
1

2
g>(x, u)P (x+ + x+(u))

=
1

2
g>(x, u)P (2x+ + ug(x, u))

= g>(x, u)Px+ +
u

2
g>(x, u)Pg(x, u).

Finally, the explicit dynamics is simply obtained by expressing x+ due to the partic-

ular form of the discrete gradient associated with the quadratic Hamiltonian func-

tion.

Remark 4.1.1. Computing the difference of the Hamiltonian function one step ahead

one gets the relation

H(x+(u))−H(x) = −d(x) + ug>(x, u)PF0(x) +
u2

2
g>(x, u)Pg(x, u),

with quadratic dissipation term

d(x) =
1

4
(F0(x) + x)>P>R(x)P (F0(x) + x) ≥ 0

for all x ∈ Rn, and vector field F0(x) given in (4.15).

4.2 Dirac structures of port-Hamiltonian systems

in discrete time

The concept of Dirac structure is essential for validating the implicit discrete-time

port-Hamiltonian representation here introduced and set the bridge with discrete

Dirac structure oriented modeling. We show hereinafter how to properly define Dirac

structures associated with the definition of port-Hamiltonian systems we proposed.
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4.2.1 Discrete-time Dirac structures

Given a differentiable real-valued function H(·) : X → R, the port variables of the

Dirac structure associated with the energy storing elements are denoted by (fS, eS),

two vectors of equal dimension with their product e>S fS denoting the total power

flowing into the Dirac from the energy-storing element. More in detail:

� the vector of flow variables is given by the first order difference

x(k + 1)− x(k)

that is the rate of change of x;

� the vector of effort variables of the energy-storing element is given by

the discrete gradient ∇̄H|·x(k) which is an element of its dual space of X ;

� the interconnection of energy-storing elements to storage ports of the

Dirac structure is accomplished by

fS(k) = −(x(k + 1)− x(k)),

eS(k) = ∇̄H|x(k+1)
x(k) .

Hence, the energy balance for the energy-storing multi-port can be written as

H(x(k + 1))−H(x(k)) = ∇̄>H|x(k+1)
x(k) (x(k + 1)− x(k))

= −eS(k)>fS(k),

where ∇̄>H|x(k+1)
x(k) (x(k+ 1)−x(k)) is the power flowing into the energy storing while

eS(k)>fS(k) is the power flowing into the Dirac structure.

The second multiport corresponds to internal energy dissipation with port vari-

ables denoted as (fR, eR) determined by a static relation R ∈ FR×ER = 0 such that

e>RfR ≤ 0, that is the power flowing into the Dirac structure. Thus, the condition

eS(k)>fS(k) + eR(k)>fR(k) = 0 (4.17)

leads by substitution to

H(x(k + 1))−H(x(k)) = −eS(k)>fS(k) (4.18)

= eR(k)>fR(k) ≤ 0.
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Flows Efforts

fS(k) = −(x+ − x(k)) eS(k) = ∇̄H|x+

x(k)

fR(k) = g>R(x(k))∇̄H|x+

x(k) eR(k) = −r(x(k))fR(k)

fC(k) = −(x+(u(k))− x+) eC(k) = ∇̄H|x
+(u(k))

x+

fI(k) = Yav(x(k), u(k)) eI(k) = u(k)

Table 4.1

The external ports (fP , eP ) model the interaction of the system with its environ-

ment. Thus (4.17) extends to

eS(k)>fS(k) + eR(k)>fR(k) + eP (k)>fP (k) = 0

and the variation (4.18) to

H(x(k + 1))−H(x(k)) = −eS(k)>fS(k) (4.19)

= eR(k)>fR(k) + eP (k)>fP (k) ≤ eP (k)>fP (k)

expressing that the increase of the internally stored energy is less or equal to the

externally supplied power. The external port (fP , eP ) can be split into control port

(fC , eC) and external interaction (fI , eI) so getting the energy balance

H(x(k + 1))−H(x(k)) = eR(k)>fR(k) + eC(k)>fC(k) + eI(k)>fI(k).

In conclusion one sets the following definition.

Definition 4.2.1. Let a state space X and an Hamiltonian function H(·) : X → R
defining energy storage. A port-Hamiltonian system on X is defined by a Dirac

structure

D ⊂ X × X ? ×FR × ER ×FP × EP

with energy storing port (fS, eS) ∈ X × X ? and a resistive structure (fR, eR) ∈
FR × ER. Its dynamics is specified by(

−(x(k+1)− x(k)), ∇̄>H|x(k+1)
x(k) , fR(k), eR(k), fP (k), eP (k)

)
∈ D(k)

(fR(k), eR(k)) ∈ R(k).
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4.2.2 Port-Hamiltonian systems as Dirac structures

The following theorem specifies the Dirac structure associated with the discrete-time

port-Hamiltonian structure described in Definition 4.1.1.

Theorem 4.2.1: Port-Hamiltonian systems as Dirac structures

The port-Hamiltonian system defined in Definition 4.1.1, that is in DDR form

as

x+ = x+ (J(x)−R(x))∇̄H|x+

x (4.20a)

∂x+(u)

∂u
= G(x+(u), u) with x+(0) = x+ (4.20b)

Y (·, u) = LG(·,u)H(·) (4.20c)

or equivalently in the map form as

x+(u) = x+ (J(x)−R(x))∇̄H|x+

x + g(x, u)u (4.21a)

Yav(x, u) = g>(x, u)∇̄H|x
+(u)

x+ (4.21b)

is a port-Hamiltonian system with power conjugate input-output pair (u, Yav(x, u))

and Dirac structure

D ⊂ X × X ? ×FR × ER ×FC × EC ×FI × EI

with flow and effort variables in Table 4.1 satisfying the energy balance

eS(k)>fS(k) + eR(k)>fR(k) + eP (k)>fP (k) = 0

with eP (k)>fP (k) = eC(k)>fC(k) + eI(k)>fI(k). The Dirac structure is given by

the skew-symmetric graph map specified below, omitting the k-dependency:
fS

fR

fC

fI

 =


−J(x) −gR(x) 0 0

g>R(x) 0 0 0

0 0 0 −g(x, eI)

0 0 g>(x, eI) 0



eS

eR

eC

eI

 ,

with dissipation given by R(x) = gR(x)r(x)g>R(x) with matrix r(x) = r>(x) � 0,

and the input matrix gR(x) corresponding to the resistive port.



122 CHAPTER 4. MODELING OF DT PORT-HAMILTONIAN SYSTEMS

Proof. The proof works out by comparing the energy balance written in the

Dirac setting:

eS(k)>fS(k) + eR(k)>fR(k) + eP (k)>fP (k) = 0

with H(x+(u(k)) −H(x(k)) decomposed according to the properties of the discrete

gradient as

H(x+(u(k))−H(x(k)) = H(x+(u(k)))−H(x+) +H(x+)−H(x(k))

= −eC(k)>fC(k)− eS(k)>fS(k)

with

−eS(k)>fS(k) = ∇̄>H|x+

x(k)(x
+ − x(k))

−eC(k)>fC(k) = ∇̄>H|x
+(u(k))

x+ (x+(u(k))− x+).

By definition of the output y(x, u), one gets

eI(k)>fI(k) = ∇̄>H|x
+(u(k))

x+ (x+(u(k))− x+)

:=

∫ u(k)

0

LG(·,v)H(x+(v))dv := u(k)Yav(x(k), u(k))

with fI = g(x, u)>∇̄H|x
+(u)

x+ , eI = u, which concludes e>CfC + e>I fI = 0. Regarding

the resistive part one verifies

−e>S fS =∇̄>H|x+

x (x+−x) = ∇̄>H|x+

x (J(x)−R(x))∇̄H|x+

x

= −∇̄>H|x+

x R(x)∇̄H|x+

x = −∇̄>H|x+

x gR(x)r(x)g>R(x)∇̄H|x+

x = e>RfR

which finally concludes e>S fS + e>RfR = 0 and

eS(k)>fS(k) + eR(k)>fR(k) + eP (k)>fP (k) = 0.

Remark 4.2.1. Theorem 4.2.1 proves that the average output defines properly a

power conjugate variable because the product with u(k) is a unity of power,

u(k)Yav(x(k),u(k)) =

∫ u(k)

0

LG(·,v)H(x+(v))dv=eI(k)>fI(k).

The following lemma holds true and provides u-average passivity of the structure.
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DH R

H

fS

eS

eIfI

eCfC

fR

eR

Figure 4.1: Dirac structure having energy-storing port (fS, eS) ∈ FS × ES, energy-

incoming port (fC , eC) ∈ FC ×EC , energy-outgoing port (fI , eI) ∈ FI ×EI , and inner

energy-dissipated port (fR, eR) ∈ FR × ER.

Lemma 4.2.1. Given a port-Hamiltonian system (4.5) with Hamiltonian function

H : Rn → R≥0, then the following holds true

H(x+(u))−H(x) = e>RfR − e>CfC ≤ e>I fI . (4.22)

4.2.3 Power-preserving interconnection

This section discusses the preservation of the discrete port-Hamiltonian structure

after the interconnection process between discrete port-Hamiltonian systems. Partic-

ular attention is given to the ways in which new composed systems can be formed from

given families of systems by means of interconnections. Exploiting the fact that the

composition of Dirac structures, say the power-conserving interconnection of Dirac

structures, again defines a Dirac structure, we conclude that the so defined feed-

back interconnection of port-Hamiltonian systems again exhibits a port-Hamiltonian

structure in discrete time.

Let first recall the composition of Dirac structure.

Definition 4.2.2 (van der Schaft (2000)). Given two Dirac structures (D1,D2) de-

fined respectively on F1×FC and FC ×F2 where FC is the space of shared flow and
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Flows Efforts

fCvi = −(x+(ūi + vi)− x+(ūi)) eCvi = ∇̄Hi|x
+(ūi+vi)

x+(ūi)

fIi = Yiav(ūi)(xi, vi) eIi = vi

Table 4.2

effort. Their composition is defined on F1 ×F2 under the interconnection constraint

fC1 = −fC2

eC1 = eC2

or equivalently

e>C1
fC1 + e>C2

fC2 = 0 (4.23)

on the shared flows and efforts (fC1 , eC1) and (fC2 , eC2).

The definition above describes the composition of Dirac structure. An important

result concerns the fact that the composition of two Dirac structures recovers the

power-preserving interconnection presented in Definition 2.4.1.

Lemma 4.2.2. The composition of Dirac structures satisfying the equality (4.23)

equals the power-preserving interconnection described in Definition 2.4.1, namely

e>C1
fC1 + e>C2

fC2 ≡
∫ ū1

0

Y1(x+
1 (s), s)ds+

∫ ū2

0

Y2(x+
2 (s), s)ds ≡ 0.

The Lemma above expresses the concept of energy conservation of two dynamics

Σ1 and Σ2 under interconnection; that is, the power supplied by Σ2 to Σ1 is com-

pensated by the one supplied by Σ1 to Σ2. This rewrites by definition of conjugate

output the external power balance equation

ū1Y1av(x1, ū1) + ū2Y2av(x2, ū2) = 0,

where the i-th conjugate output is the u-average output with respect to the map

Yi(x
+
i (ui), ui).

The following result holds.
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Theorem 4.2.1. Given two port-Hamiltonian systems (Σd1, Σd2) of the form (4.21),

their feedback interconnection

(ū1, ū2) = (−Y2av(x2, ū2), Y1av(x1, ū1)),

is a port-Hamiltonian system defined on X1 × X2 with Hamiltonian H(·) = H1(·) +

H2(·); i.e.

x+
1 (ū1) = x1+(J1(x1)−R1(x1))∇̄H1|x

+
1
x1
−g1(x1, ū1)g>2 (x2, ū2)∇̄H2|

x+
2 (ū2)

x+
2

x+
2 (ū2) = x2+(J2(x2)−R2(x2))∇̄H2|x

+
2
x2

+g2(x2, ū2)g>1 (x1, ū1)∇̄H1|
x+

1 (ū1)

x+
1

.

The associated Dirac structure is defined by the skew-symmetric extended graph fSfR
fCū

 =

−J −gR 0

g>R 0 0

0 0 Q


 eSeR
eCū


with flows fS = (fS1 , fS2), fR = (fR1 , fR2), fCū = (fCū1

, fCū2
), efforts eS = (eS1 , eS2),

eR = (eR1 , eR2), eCū = (eCū1
, eCū2

) and

J(x) :=

[
J1(x1) 0

0 J2(x2)

]
, gR(x) :=

[
gR1(x1) 0

0 gR2(x2)

]
,

Q(x, ū) :=

[
0 g1(x1, ū1)g>2 (x2, ū2)

−g2(x2, ū2)g>1 (x1, ū1) 0

]
,

with dissipation given by Ri(xi) = gRi(xi)ri(xi)g
>
Ri(xi) matrix ri(xi) = r>i (xi) � 0,

and the input matrix gRi(x) corresponding to the resistive port.

Proof. First, we note that according to the Definition 2.4.1 and Definition 4.2.2,

the feedback interconnection of two port-Hamiltonian system according to

ū1 = −Y2av(x2, ū2)

ū2 = Y1av(x1, ū1)

is power preserving and recovers the composition of the associated Dirac. On one

hand, the algebraic constraint ū1Y1av(x1, ū1) + ū2Y2av(x2, ū2) rewrites in the Dirac

structures as e>I1fI1 +e>I2fI2 = 0. On the other hand, the port in the external supplied
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part which refers to the power-conserving feedback interconnection is properly the

pair (eI1 , fI1) in the Dirac structure D1 and (eC2ū2
, fC2ū2

) in the Dirac structure D2.

Because a Dirac composition (power preserving) is characterized by the constraints

e>I1fI1 = e>C2ū2
fC2ū2

e>I2fI2 = −e>C1ū1
fC1ū1

and by definition

e>I1fI1 + e>C1ū1
fC1ū1

= 0

e>I2fI2 + e>C2ū2
fC2ū2

= 0,

one gets the equality

e>C1ū1
fC1ū1

+ e>C2ū2
fC2ū2

= 0 (4.24)

which is nothing else than a power-preserving feedback interconnection between the

two associated port-Hamiltonian systems. Accordingly, a solution is given by fC1ū1
=

−eC2ū2
and eC1ū1

= fC2ū2
. Moreover any system Σd1 and Σd2 contains under feedback

additional terms of the form g1g
>
2 ∇̄H2|

x+
2 (ū2)

x+
2

and g2g
>
1 ∇̄H1|

x+
1 (ū1)

x+
1

respectively which

compose a skew-symmetric matrix due to the flows fCū1
, fCū2

satisfying the skew-

symmetric graph

fCū = Q(x, ū)eCū .

It results that even if the internal interconnection matrix is modified, the power-

balance equality remains unchanged.

Accordingly, the following extended result holds.

Theorem 4.2.2: Power-preserving interconnection

The interconnection between two port-Hamiltonian systems (Σd1,Σd2) under

u1 = ū1 + v1

u2 = ū2 + v2
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with power-preserving feedback

ū1 = −Y2av(x2, ū2)

ū2 = Y1av(x1, ū1),

is again a port-Hamiltonian system with Hamiltonian H(x1, x2) = H1(x1) +

H2(x2); i.e.

x+
1 (u1) = x1 + (J1(x1)−R1(x1))∇̄H1|x

+
1
x1
− g1(x1)g>2 (x2)∇̄H2|

x+
2 (ū2)

x+
2

+ v1g̃1(x1, ū1, v1)

x+
2 (u1) = x2 + (J2(x2)−R2(x2))∇̄H2|x

+
2
x2

+ g2(x2)g>1 (x1)∇̄H1|
x+

1 (ū1)

x+
1

+ v2g̃2(x1, ū2, v2)

Y1av(ū1)(x1, v1) = g̃>1 (x1, ū1, v1)∇̄H1|
x+

1 (ū1+v1)

x+
1 (ū1)

Y2av(ū2)(x2, v2) = g̃2(x1, ū2, v2)∇̄H2|
x+

2 (ū2+v2)

x+
2 (ū2)

with (ūi + vi)gi(xi, ūi + vi) = ūigi(xi, ūi) + vig̃i(xi, ūi, vi). The associated Dirac

structure is defined by the skew-symmetric graph composed by
fS

fR

fCū

fCv̄

fI

 =


−J −gR 0 0 0

g>R 0 0 0 0

0 0 Q 0 0

0 0 0 0 −g

0 0 0 g> 0




eS

eR

eCū

eCv̄

eI


with flows fS = (fS1 , fS2), fR = (fR1 , fR2), fCū = (fCū1

, fCū2
), fCv̄ = (fCv̄1 , fCv̄2 ),

fI = (fI1 , fI2), efforts eS = (eS1 , eS2), eR = (eR1 , eR2), eCū = (eCū1
, eCū2

), eCv̄ =

(eCv̄1 , eCv̄2 ), eI = (eI1 , eI2) with the additional part

g(x, ū, v) :=

[
g1(x1, ū1+v1) 0

0 g2(x2, ū2+v2)

]

The power conjugate output vector is again composed by each vi-average from

ūi output associated with LḠi(·,ui)Hi; i.e.

Yav(ūi)(xi, vi) =
1

vi

∫ vi

0

LḠi(·,ūi+w)
Hi(x

+(ūi + w))dw.

Proof. Setting ui = ūi + vi, the proof is based on the fact that the composition

of two Dirac structures satisfies the constraint (4.23), each one described according
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to the energy balance

e>S̄ifS̄i + e>RifRi + e>PifPi = 0

with decomposition of the stored and resistive port according to the preliminary

feedback ūi as

e>S̄ifS̄i = e>SifSi + e>Ciūi
fCiūi

and external interconnection

e>PifPi = e>C̄vi
fCvi + e>IifIi .

The energy balance of each Dirac structure associated with the interconnected struc-

ture is thus given by the sum

e>SifSi + e>RifRi + e>Ciūi
fCiūi + e>C̄vi

fCvi + e>IifIi = 0

with by skew-symmetric graph e>C1ū1
fC1ū1

+ e>C2ū2
fC2ū2

= 0, so concluding for the sum

e>S1
fS1 + e>S2

fS2 = −e>R1
fR1 − e>R2

fR2

= ∇̄>H1|x
+
1
x1
R1(x1)∇̄H1|x

+
1
x1

+ ∇̄>H2|x
+
2
x2
R2(x2)∇̄H2|x

+
2
x2
,

and

e>I1v1fI1v1 + e>I2v2fI2v2 = −e>C̄v1fCv1 − e
>
C̄v2
fCv2 = v1Y1av(ū1)(x1, v1) + v2Y2av(ū2)(x2, v2)

with power

viYIav(ūi)(xi, vi) = vig̃i(x, ūi, vi)∇̄Hi|
x+

1 (ū1+v1)

x+
i (ū1)

=

∫ vi

0

LGi(·,ūi+w)
(x+

i (ūi + w))dw.

The result establishes that any feedback interconnection of discrete port-Hamiltonian

systems turns again in a discrete port-Hamiltonian system in the sense of (4.5). This

provides a novel direction in controlling complex physical systems in a pure discrete

domain taking into account different discrete gradients evaluated along intermediate

values provided by the effort variables.
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4.2.4 An illustrative example: the mechanical isolation sys-

tem

The objective of this example is to illustrate the involved computations for construct-

ing discrete port-Hamiltonian systems in a pure discrete-time setting. Although the

resulting system is not a discretization of the continuous-time, the proposed method

recasts the continuous-time energetic behavior by defining flows and efforts at a dis-

crete level.

Consider a mechanical isolation system presented in Tang and Brennan (2013),

which consists of a mass m > 0 and spring with stiffness k > 0, affected by a nonlinear

damping force Fd = `(q)q̇ moving as a harmonic oscillator. The damper causes energy

dissipation through the nonlinear function

`(q) =
bq2

a2 + q2
,

where a ≥ 0 denotes the length of the damper, b ≥ 0 the damper coefficient, and q

the position of the center of mass of m. Accordingly, the model involves a quadratic

potential energy so that total energy function is given by

H(q, p) =
k

2
q2 +

1

2m
p2,

with p = mq̇, where q̇ is the velocity of the mass, one computes the associated discrete

gradient function

∇̄H|x+

x =

(
∇̄H|q+

q

∇̄H|p+

p

)
=

(
k
2
(q+ + q)

1
2m

(p+ + p)

)
.

A passive isolation system, in general contains mass, spring, and damping ele-

ments and moves as a harmonic oscillator. The mass and spring stiffness dictate a

natural frequency of the system. Damping causes energy dissipation and has a sec-

ondary effect on natural frequency.

According to the Dirac structure we derive the discrete relation between the phys-

ical components in terms of flows and efforts, that isfk = q − q+

ek = k
2
(q+ + q)

,

fm = p− p+

em = 1
2m

(p+ + p)
.
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Thus coupling them through a power-preserving interconnection, namely e>k fk +

e>mfm = 0, one gets em = −fk, ek = fm which characterizes the exchange of en-

ergy among the components, one deduces the following implicit representation of a

discrete mass-spring dynamics,

q+ = q +
1

2m
(p+ + p)

p+ = p− k

2
(q+ + q).

Furthermore, to include the nonlinear resistive term b(q) acting upon the Dirac struc-

ture so as the velocity of the mass is damped, define the resistive ports satisfying the

power resistive relation

f>r er = −∇̄>H|p+

p `(q)∇̄H|p
+

p

so that the flow fm of the mass becomes fm + fr = ek so yielding

q+ = q +
1

2m
(p+ + p) (4.25)

p+ = p− k

2
(q+ + q)− `(q)

2m
(p+ + p). (4.26)

Again, to further control the velocity of the mass, one consider the addition ex-

ternal port eU = u and its conjugate external flow

fI(k) = ∇̄H|p
+(u)

p+ =
1

2m
(p+(u) + p+)

which provides the input-state-output port-Hamiltonian representation,

q+(u) = q +
1

2m
(p+ + p) (4.27)

p+(u) = p− k

2
(q+ + q)− `(q)

2m
(p+ + p) + u (4.28)

Yav =
1

2m
(p+(u) + p+). (4.29)

The different behavior of the model computed over the discrete-time Dirac struc-

ture can be seen in Figure 4.2, respectively providing dissipation of energy for b 6= 0

and conservation of energy with b = 0. Note also that, the nonlinear damping in case

of a = 0 yields the classical linear damping affecting the system.

Furthermore, when considering the interconnection of two mechanical systems of

the form (4.27), the resulting power-preserving interconnection through ū reads an



4.3. CONCLUDING REMARKS 131

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.2: Phase portrait of (4.25) by varying the parameters a and b, with m =

k = 1 and x(0) = (1.8, 0).

interconnected system

q+
1 (ū1) = q1 +

1

2m1

(p+
1 + p1)

q+
2 (ū2) = q2 +

1

2m2

(p+
2 + p2)

p+
1 (ū1) = p1 −

k1

2
(q+

1 + q1)− `1(q1)

2m1

(p+
1 + p1)− 1

2m2

(p+
2 (ū2) + p+

2 )

p+
2 (ū2) = p2 −

k2

2
(q+

2 + q2)− `2(q2)

2m2

(p+
2 + p2) +

1

2m1

(p+
1 (ū1) + p+

1 ),

which is a discrete port-Hamiltonian system with total energy

Hc(q, p) = H1(q1, p1) +H2(q2, p2)

verifying Hc(q
+(ū), p+(ū))−Hc(q, p) ≤ 0 and clearly conservative Hc(q

+(ū), p+(ū))−
Hc(q, p) = 0 when resistive elements are set as b1 = b2 = 0.

4.3 Concluding remarks

In this section, inspired by the fact that several applications require models that

describe physical phenomena in a pure discrete-time domain instead of discrete-time
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models obtained by the sampling of a smooth system, a novel class of discrete port-

Hamiltonian systems have been proposed referring to DDR form along with the dis-

crete gradient function. We have seen that the proposed model, with respect to

the literature model, comes with a straightforward energy interpretation and direct

passivity property. However, those features naturally involve u-average passivity ar-

guments. Accordingly, we have defined the Dirac structure associated with the intro-

duced port-Hamiltonian system and we have identified its associated graph. Finally,

by invoking the notion of power-preserving interconnection of u-average passive sys-

tems we have seen that the power-preserving interconnection of two port-Hamiltonian

systems is again a port-Hamiltonian system, and the solution is achieved fact that

the power-preserving interconnection of two systems recovers the composition of the

respective Dirac structures. An illustrative example concerning a mechanical isola-

tion system showed how to compute respectively flows and efforts associated with

the system in a discrete-time setting. The results presented within this chapter are

partially given in:

A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”Discrete

port-controlled Hamiltonian dynamics and average passivation,” 2019 IEEE

58th Conference on Decision and Control (CDC), Nice, France, 2019, pp.

1430-1435, doi: 10.1109/CDC40024.2019.9029809.

A. Moreschini, S. Monaco and D. Normand-Cyrot, ”Dirac structures of discrete-

time port-Hamiltonian systems,” Submitted to IEEE Transactions on Auto-

matic Control (TAC). (Under review)
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T
his chapter deals with the stabilization problem of port-Hamiltonian systems

in discrete time introduced in the previous chapter. For, we discuss the neg-

ative output feedback design associated with this particular structure of the

dynamics. Accordingly, we give a particular characterization of the stabilizing feed-

back in the case of input-affine port-Hamiltonian systems arising with a quadratic

Hamiltonian function. Finally, we set the IDA-PBC problem in this discrete-time

setting giving sufficient condition to solve the problem. Again, the result is spe-

cialized in the case of input-affine dynamics assuming a particular structure of the

Hamiltonian function.
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5.1 Negative output feedback

This section is devoted to present how u-average passivity and stability properties can

be used to design passivity based controllers stabilizing the discrete port-Hamiltonian

systems introduced in the previous section. Due to the nice passivity and u-average

passivity properties of the discrete-time port-Hamiltonian system, it is considerably

desirable to provide stabilization by its gain output-feedback. However, in this frame-

work, the system comes with a passive output containing the feedthrough term,

therefore the conjugate output of the system can not be directly injected into the

closed-loop system but an implicit equality must be solved. Then the following

theorem specializes the result given in Monaco and Normand-Cyrot (2011) in this

discrete-time port-Hamiltonian framework.

This is set in the sequel.

Theorem 5.1.1: Negative output feedback in discrete time

Let the discrete port-Hamiltonian system

x+(u) = x+ (J(x)−R(x))∇̄H|x+

x + g(x, u)u (5.1a)

Yav(x, u) = g>(x, u)∇̄H|x
+(u)

x+ (5.1b)

be ZSD with H(·) : Rn → R≥0, having a minimum in x?. Then, the feedback

u = γ(x) solution to the implicit damping equality

γ(x) + κg>(x, γ(x))∇̄H
∣∣x+(γ(x))

x+ = 0 (5.2)

achieves asymptotic stabilization of the closed-loop equilibrium x? with gain

κ > 0.

Proof. It is directly deduced by the u-average dissipation inequality

H(x+(u))−H(x) ≤ uYav(x, u)

so that the solution u = γ(x) to the implicit damping equality (5.2) ensures in closed-

loop the negativity of difference H(x+(γ(x)))−H(x), namely one gets

H(x+(γ(x)))−H(x) ≤ −κ
(
g>(x, γ(x))∇̄H

∣∣x+(γ(x))

x+

)2

≤ 0,
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for positive values of κ. As for Theorem 2.2.1, the points for which the above equality

is zero coincides with those points belong to the set K := {x ∈ Rn | Y (x+(0), 0) = 0},
so that, from ZSD condition, one concludes that x? is asymptotically stable.

Remark 5.1.1. The feedback solution to (5.2) can be equivalently seen as a negative

u-average output feedback

Yav(x, u) = g>(x, u)∇̄H
∣∣x+(u)

x+ =
1

u

∫ u

0

Y (x+(v), v)dv

with respect to the output map

Y (·, u) = G>(·, u)∇H(·) = LG(·,u)H(·).

5.1.1 The Dirac structure under negative output feedback

Interestingly enough is the preservation of port-Hamiltonian structure under negative

output feedback (5.2). We study the effect over the Dirac structure of the negative

average output feedback ū(x), defined as the solution with κ > 0 to the algebraic

equality

ū+ κYav(x, ū) = 0 (5.3)

that yields

ū2 + κ

∫ ū

0

LG(·,v)H(x+(v))dv = 0.

We show that a Dirac structure and thus a port-Hamiltonian system is preserved

in closed loop. The following result holds.

Theorem 5.1.2: Dirac structure under negative output feedback

Under the feedback u = ū+ v with negative average output feedback ū(x) satis-

fying (5.3) and external input v, the system in (5.1a) that is

x+(u) = x+ (J(x)−R(x))∇̄H|x+

x + g(x, u)u

is transformed into a PH system with Dirac structure described by the skew-
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symmetric graph

fS

fR

fCū

fRū

fCv

fI


=



−J(x) −gR(x) 0 0 0 0

g>R(x) 0 0 0 0 0

0 0 0 S(x, ū) 0 0

0 0 −S>(x, ū) 0 0 0

0 0 0 0 0 −g̃(x, ū, v)

0 0 0 0 g̃>(x, ū, v) 0





eS

eR

eCū

eRū

eCv

eI


(5.4)

with dissipation given by R(x) = gR(x)r(x)g>R(x), r(x) = r>(x) ≥ 0, input

matrix gR(x) corresponding to the resistive port., S(x, ū) = κg(x, ū)g>(x, ū),

g̃ = g̃(·, ū, v), satisfying (ū + v)g(·, ū + v) = ūg(·, ū) + vg̃(·, ū, v) with v = eI .

Passivity holds with respect to the output map

Yav(ū)(x, v) =
1

v

∫ v

0

LG(·,v)H(x+(ū+ v))dv (5.5)

that again can be rewritten in terms of the discrete gradient of the function H(·)
between x+(ū) and x+(ū+ v); i.e.

vYav(ū)(x, v) = g̃>(x, ū, v)∇̄H|x
+(ū+v)

x+(ū)

satisfying vYav(ū)(x, v) = e>I fI .

Proof. The proof works out showing first that a Dirac structure oh the port-

Hamiltonian system is preserved under the feedback ū with flow and effort variables

in Table 5.1 when setting v = 0 so getting the skew symmetric graph
fS

fR

fCū

fRū

 =


−J(x) −gR(x) 0 0

g>R(x) 0 0 0

0 0 0 S(x, ū)

0 0 −S>(x, ū) 0



eS

eR

eCū

eRū


with S(x, ū) = κg(x, ū)g>(x, ū). Indeed, the feedback ū generates the constructive

resistive component given by

fRū = −κ(g(x, ū)g>(x, ū))>∇̄H|x
+(ū)

x+

eRū = ∇̄H|x
+(ū)

x+ .
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Flows Efforts

fS(k)=−(x+ − x(k)) eS(k) = ∇̄H|x+

x(k)

fR(k) = g>R(x(k))∇̄H|x+

x(k) eR(k) = −r(x(k))fR(k)

fCū(k)=−(x+(ū(k))− x+) eCū(k)=∇̄H|x
+(ū)

x+

fRū(k)=−κg(x, ū)g>(x, ū)∇̄H|x
+(ū)

x+ eRū(k)=∇̄H|x
+(ū)

x+

fCv(k)=−(x+(ū+v)− x+(ū)) eCv(k)=∇̄H|x
+(ū+v)

x+(ū)

fI(k)=Yav(ū)(x(k), v(k)) eI(k)=v(k)

Table 5.1

Applying now the feedback u = ū + v, one gets again a Dirac structure with skew

symmetric graph (5.4) satisfying

e>S fS + e>RfR + e>CūfCū + e>RūfRū + e>CvfCv + e>I fI = 0.

More in detail, the stored energy is split into two parts, e>S fS + e>CūfCū, the resistive

part into e>RfR + e>RūfRū so getting under the feedback ū the energy balance equality

e>S fS + e>CūfCū = −e>RfR − e>RūfRū.

Finally, the external port is split into the external control and external interaction

satisfying e>CvfCv + e>I fI = 0.

Remark 5.1.2. We note that the closed-loop port-Hamiltonian system can be defined

on the augmented space Xe = X × X by splitting the dynamics into its free and

controlled evolution again setting xe = (xf , xc). According to a variational approach,

one gets in closed loop with u = ū, (x+(ū)−x) = (x+
f −xf ) + (x+

c −xc) when setting

as initial condition for each time instant k, xf = x, x+
c = x+(ū), xc = x+

f = x+(0).

Accordingly, the dynamics over Xe adopts the state-space representation of the form

(4.1), that is

x+
e − xe = (Je(xe)−Re(xe))∇H|x

+
e
xe

with augmented skew symmetric and resistive matrices

Je(xe) =

(
J(xf ) 0

0 0

)
, Re(xe) =

(
R(xf ) 0

0 κg(xf , ū)g>(xf , ū)

)
and augmented discrete gradient function

∇H|x+
e
xe = (∇̄H|x

+
f
xf , ∇̄H|x

+
c
xc )> ∈ Xe
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satisfying by construction the energy variation

(x+(ū)− x)>∇̄H|x+(ū)
x = (x+

f − xf )
>∇̄H|x

+
f
xf + (x+

c − xc)>∇̄H|x
+
c
xc .

5.1.2 Some constructive aspects

We have seen that the stabilizing negative output feedback u = γ(x) is computed as

the implicit solution to the equality (5.2), that is

γ(x) + κg>(x, γ(x))∇̄H
∣∣x+(γ(x))

x+ = 0

with damping improvement κ > 0, and an exact solution might be tough to be com-

puted in general. The following corollary given in Monaco and Normand-Cyrot (2011)

specializes in this case providing the existence of a local solution for the discrete-time

port-Hamiltonian system (5.1).

Corollary 5.1.1. Let the discrete port-Hamiltonian system (5.1) be ZSD with Hamil-

tonian function H(·) : Rn → R≥0, having a minimum in x?. Then, the feedback

u = −z(x) (LG1H(·))
∣∣
F (x,0)

(5.6)

with

z(x) =
κ

1 + κ
2
L2
G1
H(·) + κ

2
LG2H(·)

∣∣∣∣
F (x,0)

, κ > 0 (5.7)

achieves local asymptotic stabilization of the closed-loop equilibrium x?.

Proof. First, consider the series expansion around u of the mapping Y (·, u) up

to an error in O(u2) that is

Y (·, u) = G>(·, u)∇H(·) = G>1 (·)∇H(·) + uG>2 (·)∇H(·) +O(u2)

with G1(·), G2(·) vector fields characterizing the series expansion of G(·) and O(u2)

which contains all the remaining terms of a higher order of the control variable u.

The average output associated with it is given by the expression

Yav(x, u) = LG1H(·)|F (x,0) +
u

2
LG2H(·)|F (x,0) +

u

2
L2
G1
H(·)|F (x,0) +O(u2).
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Finally, by substituting such an expansion into the equality (5.2) one gets

u
(

1 +
κ

2
LG2H(·)|F (x,0) +

κ

2
L2
G1
H(·)|F (x,0)

)
+ κLG1H(·)|F (x,0) = 0,

which yields in turn (5.6). Its existence is guaranteed by nonsingularity condition

1+(κ
2
L2
G1
H+ κ

2
LG2H)|F (x,0) 6= 0 at x? which is verified with κ > 0 in the neighborhood

of x? since ∇H(x?) = 0.

5.1.3 The input-affine dynamics case with quadratic Hamil-

tonian

A remarkable case of port-Hamiltonian systems for which the feedback solution to

the implicit equality (5.2) can be computed is the one associated with a quadratic

Hamiltonian function H(x) = 1
2
x>Px with P = P> � 0 together with an input map

g(x) := g(x, 0) affine in the control variable, namely

g(x, u) :=
1

u

∫ u

0

G(x+(v), v)dv = g(x, 0).

Hence, exploiting the property (2.4) the dynamics (5.1a) takes the form

x+(u) = F (x, u) = x+
1

2
(J(x)−R(x))P (x+ + x) + g(x)u (5.8)

and, from the fact that x+(u) + x+ = 2F (x, 0) + g(x)u, the associated conjugate

output (5.1b) rewrites as

Yav(x, u) = g>(x)PF (x, 0) +
1

2
g>(x)Pg(x)u. (5.9)

Corollary 5.1.2. Given an input-affine discrete port-Hamiltonian dynamics with

H(x) = 1
2
x>Px with P = P> � 0 of the form

x+(u) = F (x, u) = x+
1

2
(J(x)−R(x))P (x+ + x) + g(x)u (5.10a)

Yav(x, u) = g>(x)PF (x, 0) +
1

2
g>(x)Pg(x)u. (5.10b)

assumed ZSD, then u = γ(x) with

γ(x) = − κg>(x)P

1 + κ
2
g>(x)Pg(x)

F (x, 0), (5.11)

globally asymptotically stabilize through κ > 0 the closed-loop equilibrium x? = 0.
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Proof. It is a matter of computation to provide that the passivity-based con-

trol given by u = −κYav(x, u) for (5.10b) recovers (5.11). Its existence is guaranteed

as the non-singularity condition κ
2
g>(x)Pg(x) 6= −1 is always verified by construc-

tion. Then, due to ZSD, u = γ(x) achieves asymptotic stability of x = 0 and it

achieves globally as the assumed H(x) is postitive semidefinite, radially unbounded,

and H(0) = 0 satisfying γ(x)Yav(x, γ(x)) < 0 for all x 6= 0.

On the optimality of the negative output feedback

From the special structure of the negative output feedback (5.11) one might define

inverse optimality in which the a priori designed feedback (5.11) is shown to be

optimal for a posteriori determined cost functional of the form

J =
∑
n≥k

l(xn) + ||un||2. (5.12)

A more general result in this discrete-time framework can be found in Monaco

and Normand-Cyrot (2015). The following result provide inverse optimal control for

the associated port-Hamiltonian dynamics and the output damping feedback (5.11).

Theorem 5.1.1. Given a discrete port-Hamiltonian dynamics (5.10a) assumed ZSD

with output (5.10b) and a passivity-based control u? = 1
2
γ(x) where

γ(x) = − g>(x)P

1 + 1
2
g>(x)Pg(x)

F (x, 0). (5.13)

Then u? which achieves global asymptotic stability of x = 0 is inverse optimal as it

minimizes

J =
∑
n≥k

l(xn) + ||un||2 (5.14)

with, for all x 6= 0,

l(x) = H(x)−H(x+) +
(g>(x)PF (x, 0))2

4 + 2g>(x)Pg(x)
> 0. (5.15)
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Proof. The necessary condition for the optimality of u? is given by the equation

∂

∂u

(
l(x) + ||u||2 +H(x+(u))−H(x)

)∣∣
u?
= 0,

which is satisfied by the choice of u? = 1
2
γ(x). Moreover, the global asymptotic

stability is inherited by the feedback γ(x) itself. From the necessity condition one

deduces l(x) = H(x)−H(x+(u?))− ||u?||2 which reads

l(x) = H(x)−H(x+(u?))− ||u?||2

= H(x)−H(x+) +H(x+)−H(x+(u?))− ||u?||2

= H(x)−H(x+)− u?Yav(x, u?)− ||u?||2

= H(x)−H(x+) +
1

4

(
(g>(x)Px+)2

1 + 1
2
g>(x)Pg(x)

)
so that the function (5.15) is deduced. Finally, the positivity (5.15) is guaranteed

since g>(x)Pg(x) ≥ 0 implies 1 + 1
2
g>(x)Pg(x) > 0 and

H(x)−H(F (x, 0)) =
1

4
(F (x, 0) + x)>PR(x)P (F (x, 0) + x) ≥ 0

for all x as R(x) � 0 by assumption.

5.2 Interconnection and damping assignment

In this section the problem of asymptotic stabilization towards a target equilibrium is

tackled in terms of feedback passivation with respect to a new Hamiltonian function

which must be assigned to the closed-loop system. The control objective stands in

the assignment of a given equilibrium to the controlled system while preserving the

port-Hamiltonian structure. More precisely, the problem consists of stabilizing the

discrete port-Hamiltonian system at a desired equilibrium point, say x?, by possibly

assigning through feedback a new Hamiltonian function Hd(x) with a minimum in

x?, namely

x? = arg min{Hd(x)}.

It is however clear that not all x? ∈ Rn can be assigned to the closed-loop system.

Then, to begin with let the class of admissible equilibria be characterized.
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Definition 5.2.1. The point x? ∈ Rn is said admissible equilibrium for the system

(4.5) if it is contained in the set

E := {x ∈ Rn | g⊥(x, u)(J(x)−R(x))∇H(x) = 0, for some u ∈ R},

with g⊥(x, u) denoting the left-hand side annihilator of g(x, u), namely g⊥(x, u)g(x, u) =

0, for all (x, u) ∈ Rn × R.

The following discrete-time IDA-PBC problem can be formulated.

Problem 2 (DT IDA-PBC). Given discrete port-Hamiltonian systems of the form

x+(u) = x+ (J(x)−R(x))∇̄H|x+

x + g(x, u)u (5.16a)

Yav(x, u) = g>(x, u)∇̄H|x
+(u)

x+ (5.16b)

and x? ∈ E , find ū(x) : Rn → R such that for u = ū(x) + v the system takes the

port-Hamiltonian form

x+(ū(x) + v) = x+ (Jd(x)−Rd(x))∇̄Hd|x
+(ū(x))
x + gd(x, v)v (5.17)

with new Hamiltonian function Hd : Rn → R≥0 such that

x? = arg min{Hd(x)},

Jd(x) = −J>d (x), Rd(x) = R>d (x) � 0 and gd(x, v) satisfying by construction

vgd(x, v) = ū(x)(g(x, ū(x) + v)− g(x, ū(x))) + vg(x, ū(x) + v). (5.18)

Accordingly, the closed-loop (5.17) verifies the new energy balance equality

Hd(xk)−Hd(x0) =
k−1∑
i=0

viYdavi(ū)−
k−1∑
i=0

wdi , ∀k ∈ N,

with dissipation wd ≥ 0 and new passive output

Ydav(ū)(x, v) = g>d (x, v)∇̄Hd|x
+(ū(x)+v)

x+(ū(x)) . (5.19)
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Remark 5.2.1. For sake of completeness, one may note that the new passive output

(8.10) is properly the v-average output from ū when setting u = ū+v from Definition

2.2.7.

A first characterization of the solution to the DT IDA-PBC problem is given below

when the interconnection and damping matrices are assumed preserved, namely when

Jd(x) = J(x), Rd(x) = R(x).

For the ease of notation, in the following ū(x) is denoted by ū.

Proposition 5.2.1 (Energy shaping). Given the discrete port-Hamiltonian system

(5.16) and x? ∈ E, the DT IDA-PBC problem is solvable for Jd(x) = J(x) and

Rd(x) = R(x), if there exists a desired Hamiltonian function Hd(·) : Rn → R≥0

verifying

(i) ∇H(x?) = −∇Ha(x?)

(ii) H(x?)−H(x) < Ha(x)−Ha(x?) ∀x ∈ B/{x?},

with Ha(x) = Hd(x) −H(x) and B an open neighborhood of x? and a feedback ū(x)

solution to the matching equation

(J(x)−R(x))(∇̄Ha|x
+(ū)
x + ∇̄H|x+(ū)

x − ∇̄H|x+

x ) = g(x, ū)ū. (5.20)

Moreover, the equilibrium x? ∈ E is stable for the closed-loop port-Hamiltonian dy-

namics

x+(ū) = x+ (J(x)−R(x))∇̄Hd|x
+(ū)
x (5.21)

with Lyapunov function Hd(x). x? is asymptotically stable if the largest invariant set

contained in {x ∈ Rn | ||∇̄Hd|x
+(ū)
x ||2R = 0} is {x?}.

Proof. According to ∇H(x?) = −∇Ha(x?), Hd(x) has a critical point at x?,

say ∇Hd(x?) = 0, while the condition (ii) provides that x? is a minimum. The

feedback ū(x) solution to (5.20) achieves the target dynamics (5.21) by construction.

Moreover, by specifying (5.20) at x = x? one gets from the condition (i),

−(J(x?)−R(x?))∇H(x?) = g(x?, ū(x?))ū(x?)

which is solvable only for x? ∈ E . Finally, by qualifying Hd(x) as a Lyapunov function

for (5.21), (asymptotic) stability of x? follow from the property P4 in Proposition

4.1.1.
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Any solution ū to the matching equation (5.20) is only related to the choice of a

function ∇̄Ha|x
+(ū)
x , and this fact leads to limiting the solutions exclusively to possible

choices of Ha(·) and admissible closed-loop flow x+(ū). However, it is important to

stress that a solution ū to the matching equation (5.20) is tough to be computed for

the general nonlinear case due to the nonlinearity in ū provided by g(x, ū), ∇̄H|x
+(ū)
x ,

and ∇̄Ha|x
+(ū)
x .

In this formulation the solution ū is an energy shaping control which modifies the

Hamiltonian of the system (4.5) so achieving a closed-loop system which possesses a

desired equilibrium x? coinciding with the minimum of the desired energy function

Hd(x). The closed-loop system possesses the same dissipation term R(x), ensuring

stability (asymptotic stability if the system is ZSD) of the desired equilibrium x?.

The modification of the interconnection and damping matrices, to respectively

Jd(·) and R(·), provide a broad set of suitable solutions assignable to the closed-loop

system.

Theorem 5.2.1: IDA-PBC in discrete time

Consider the discrete port-Hamiltonian system (5.16), that is

x+(u) = x+ (J(x)−R(x))∇̄H|x+

x + g(x, u)u (5.22a)

Yav(x, u) = g>(x, u)∇̄H|x
+(u)

x+ (5.22b)

and x? ∈ E , the DT IDA-PBC problem is solvable if there exists a desired

Hamiltonian functionHd(x) : Rn → R satisfying (i), (ii) of Proposition 5.2.1 with

Ha(x) = Hd(x)−H(x), matrices Ja(x), Ra(x) and a feedback, ū = ū(x) : Rn → R
verifying the matching equation

(J(x)−R(x) + Ja(x)−Ra(x))(∇̄H|x+(ū)
x − ∇̄H|x+

x + ∇̄Ha|x
+(ū)
x )

= g(x, ū)ū− (Ja(x)−Ra(x))∇̄H|x+

x (5.23)

with matrices

Jd(x) : = J(x) + Ja(x) = −J>d (x)

Rd(x) : = R(x) +Ra(x) = R>d (x) � 0.



5.2. INTERCONNECTION AND DAMPING ASSIGNMENT 145

Moreover, x? is a stable equilibrium of the closed-loop system (5.17) with new

Lyapunov function Hd(x); it is asymptotically stable if {x?} is the largest invari-

ant set contained in

{x ∈ Rn | ||∇̄Hd|x
+(ū)
x ||2Rd = 0}.

Proof. The matching equation (5.23) is deduced by equating the desired closed-

loop dynamics (5.17) with the right-hand side of (5.22) under feedback u = ū(x)

provided that x? ∈ E . Straightforwardly, the control u = ū + v makes (5.22) a

port-Hamiltonian dynamics of the form (5.17). Due to properties (i) and (ii) in

Proposition 5.2.1 along with the property P4 in Proposition 4.1.1, the stability of

x? ∈ E is ensured.

Remark 5.2.2. A necessary condition for the solvability of the matching equation

(5.23) is that there exists ū(x) satisfying, for all x ∈ Rn, the matching condition

g⊥(x, ū)
[
(Jd(x)−Rd(x))(∇̄H|x+(ū)

x −∇̄H|x+

x + ∇̄Ha|x
+(ū)
x )

+ (Ja(x)−Ra(x))∇̄H|x+

x

]
= 0. (5.24)

5.2.1 Constructive aspects: an approximate IDA-PBC de-

sign

Albeit Theorem 5.2.1 characterizes all the possible solutions to the DT IDA-PBC

problem, a general solution ū(x) to the matching equation (5.23) is difficult to be

characterized due to the implicit structure involved into the equation. However, due

to the mean value theorem, one rewrites the discrete gradient in O(‖x+(u)− x+‖2),

namely

∇̄H|x+(u)
x = ∇̄H|x+

x +
1

2
∇2H(x)(x+(u)− x+) +O(‖x+(u)− x+‖2)

where O(‖x+(u)−x+‖2) contains all the remaining terms of a higher order of x+(u)−
x+, with x+(u) − x+ = g(x, u)u and g(x, u) = g(x, 0) + O(|u|). Accordingly, an

approximate solution can be inferred as states the proposition below.
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Proposition 5.2.2. Given the discrete port-Hamiltonian system (5.16) and x? ∈ E,

if there exist Hd(x) : Rn → R satisfying (i), (ii) of Proposition 5.2.1 with Ha(x) =

Hd(x)−H(x), matrices Ja(x), Ra(x) which solve in O(|ū|2) the matching equation

(J(x)−R(x) + Ja(x)−Ra(x))∇̄Ha|x
+

x +(Ja(x)−Ra(x))∇̄H|x+

x

= Nd(x)ū+O(|ū|2) (5.25)

with Nd(x) =
(
I − 1

2
(Jd(x)−Rd(x))∇2Hd(x)

)
g(x, 0), then the solution ū takes the

form

ū = N †d(x)
(
(Ja(x)−Ra(x))∇̄H|x+

x + (Jd(x)−Rd(x))∇̄Ha|x
+

x

)
(5.26)

which locally stabilizes the desired equilibrium x? with matrices

Jd(x) : = J(x) + Ja(x) = −J>d (x)

Rd(x) : = R(x) +Ra(x) = R>d (x) � 0.

Proof. The result is obtained by rewriting the matching equation (5.23) in terms

of the approximate discrete gradient of Ha(x) and H(x), namely

(Jd(x)−Rd(x))(∇̄Hd|x
+

x −∇̄H|x
+

x +
1

2
∇2Hd(x)(x+(ū)− x+))

= g(x, ū)ū− (Ja(x)−Ra(x))∇̄H|x+

x +O(‖x+(ū)− x+‖2),

which gives the approximate matching equation (5.25) and consequently the approx-

imate control (5.26).

Remark 5.2.3. The approximate matching equation (5.25) suggests that when the

higher order terms in ū are zeroed, namely O(|ū|2) = 0, a solution to the matching

equation is not approximate but it turns into an exact solution. This particular case

is studied below.
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5.2.2 IDA-PBC for input-affine systems

Due to the approximate solution given in Proposition 5.2.2 one can investigate a

particular case in which the solution is not only locally defined and, consequently

stability, is not only locally valid. Indeed, a special exact solution can be inferred if

the problem satisfies the following assumption:

A1. The controlled port-Hamiltonian dynamics has an input-affine structure,

that is

x+(u) = x+ (J(x)−R(x))∇̄H|x+

x + g(x)u, (5.27)

where the input mapping g(x) is independent from the control variable

u;

A2. The desired Hamiltonian function Hd(x) comes with a discrete gradient

from x to x+(u) affine in u, namely

∇̄Hd|x
+(u)
x := ∇̄Hd|x

+

x + s(x)u (5.28)

for some function s : Rn → Rn.

Under these assumptions, the matching equation simplifies as

(Jd(x)−Rd(x))∇̄Ha|x
+

x +(Ja(x)−Ra(x))∇̄H|x+

x (5.29)

= (g(x)− (Jd(x)−Rd(x))s(x)) ū

which is liner with respect to the control variable ū.

In this respect, the following proposition is presented.

Proposition 5.2.3. Consider an input-affine system of the form (5.27) and x? ∈ E
the desired equilibrium to be assigned. If there exists a desired Hamiltonian function

Hd(x) : Rn → R satisfying (5.28) and conditions (i), (ii) of Proposition 5.2.1 with

Hd(x) = H(x)+Ha(x), matrices Ja(x), Ra(x) which solves for all x ∈ Rn the matching

condition

N⊥d (x)
(

(J(x)−R(x) + Ja(x)−Ra(x))∇̄Ha|x
+

x + (Ja(x)−Ra(x))∇̄H|x+

x

)
= 0

(5.30)
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with Nd(x) = (g(x)− (Jd(x)−Rd(x))s(x)), then ū is a discrete IDA-PBC of the form

ū = N †d(x)
(
(Jd(x)−Rd(x))∇̄Hd|x

+

x − (J(x)−R(x))∇̄H|x+

x

)
. (5.31)

Proof. The proof follows the lines of Proposition 5.2.2. Thus, from the condi-

tion (5.25) and property (5.28) one rewrites the matching equation (5.29) for which

Nd(x) = (g(x)− (Jd(x)−Rd(x))s(x)) can be set and due to the necessary condition

(5.24) one deduces the matching condition (5.30). Selecting Ja, Ra and satisfying the

matching condition than the control ū of the form (5.31) follows.

Remark 5.2.4. Due to Proposition 5.2.1, the control given in (5.31) assigns the

desired equilibrium x? through the Hamiltonian Hd(x) to the closed-loop system

verifying (5.28). Moreover, the assigned x? is stable, or in addition, asymptotically

stable if the largest invariant set contained in {x ∈ Rn | ||∇̄Hd|x
+(ū)
x ||2Rd = 0} is {x?}.

Remark 5.2.5. A particular desired Hamiltonian function which satisfies the condi-

tion (5.30) is for instance the quadratic Hamiltonian function given by

Hd(x) =
1

2
(x− x?)>Pd(x− x?)

computed from x to x+(u). The associated discrete gradient yields the following

expression

∇̄Hd|x
+(u)
x =

1

2
Pd(x

+(u) + x− 2x?),

which is by construction

∇̄Hd|x
+(u)
x = ∇̄Hd|x

+

x + s(x)u =
1

2
Pd(x

+ + x− 2x?) + s(x)u,

with s(x) = 1
2
Pdg(x) because of the affinity in the control variable of (5.27).
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5.3 Concluding remarks

We have seen how port-Hamiltonian systems in discrete time can be properly stabi-

lized by means of proper passivity-based control. First, we specialize in this port-

Hamiltonian framework the passivity-based control computed upon the u-average

output of the system. As usual in discrete time, the control is given by the solution

to an implicit damping equality. Then, we showed how the Dirac structure of the port-

Hamiltonian system is modified under the passivity-based feedback, to conclude that

the closed-loop system is again in a port-Hamiltonian structure. In the input-affine

case, we give a proper structure to the solution of the implicit damping equality, and

in this case, we showed that the stabilizing control achieves inverse optimal properties

with respect to a particular suitably defined cost functional. Finally, the IDA-PBC

problem is set in the nonlinear case and sufficient conditions have been presented in

Theorem 5.2.1. Despite the fact that a general solution is tough to determine in the

nonlinear case, the problem is specialized to input-affine port-Hamiltonian systems,

assumption A1, together with a desired Hamiltonian function satisfying the assump-

tion A2. The particular solution is given in Proposition 5.2.3 providing a solution

to the IDA-PBC problem in discrete time. The results concerning this chapter are

included in the following published works:

A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”Discrete

port-controlled Hamiltonian dynamics and average passivation,” 2019 IEEE

58th Conference on Decision and Control (CDC), Nice, France, 2019, pp.

1430-1435, doi: 10.1109/CDC40024.2019.9029809.

A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”Stabiliza-

tion of Discrete Port-Hamiltonian Dynamics via Interconnection and Damp-

ing Assignment,” in IEEE Control Systems Letters, vol. 5, no. 1, pp. 103-

108, Jan. 2021, doi: 10.1109/LCSYS.2020.3000705.

A. Moreschini, S. Monaco and D. Normand-Cyrot, ”Dirac structures of discrete-

time port-Hamiltonian systems,” Submitted to IEEE Transactions on Auto-

matic Control (TAC). (Under review)
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Chapter 6

LTI port-Hamiltonian systems in

discrete time
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I
n this chapter we focus on the linear time-invariant (LTI) port-Hamiltonian sys-

tems and we show how both modeling and stabilization properties specialize. In

particular, it is interesting to emphasize that all the local properties arising in

the nonlinear port-Hamiltonian systems have global validity in the linear case. More

importantly, the solutions can be exactly computed and regarding the IDA PBC

problem a closed-form solution is performed for LTI port-Hamiltonian dynamics and

necessary and sufficient conditions for solving the problem are given.

6.1 Port-Hamiltonian systems in discrete time

Differently from the nonlinear representation all the matrices characterizing the sys-

tem have constant entries and the Hamiltonian function has a quadratic form, that

is

H(x) =
1

2
x>Px (6.1)

151
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with symmetric and positive definite matrix P , that is P = P> � 0. The follow-

ing definition is achieved exploiting the discrete gradient function of the quadratic

Hamiltonian function.

Definition 6.1.1: LTI port-Hamiltonian system in discrete time

A LTI port-Hamiltonian system in discrete time is described in DDR form, over

Rn with u ∈ R, as follows

x+ = x+
1

2
(J −R)P (x+ + x) (6.2a)

∂x+(u)

∂u
= B with x+(0) = x+ (6.2b)

Y (x) = B>Px (6.2c)

or equivalently in the map form as

x+(u) = x+
1

2
(J −R)P (x+ + x) +Bu (6.3a)

Yav(x, u) = B>Px+ +
u

2
B>PB. (6.3b)

with matrices J = −J> ∈ Rn×n, R = R> � 0 ∈ Rn×n, and B ∈ Rn×1.

Remark 6.1.1. The LTI port-Hamiltonian system comes with an energy balance

equation between two time steps as

H(x+(u))−H(x)︸ ︷︷ ︸
stored energy

= −∇̄H>|x+

x R∇̄H|x+

x︸ ︷︷ ︸
dissipated energy

+uB>∇̄H
∣∣x+(u)

x+︸ ︷︷ ︸
supplied energy

, (6.4)

which satisfies the following relation

H(x+(u))−H(x) = −d(x) + uB>Px+ +
u2

2
B>PB,

with dissipation term

d(x) =
1

4
(x+ + x)>P>RP (x+ + x) > 0

for all x 6= 0.

The LTI port-Hamiltonian system given above can be rewritten in the explicit

and the stability of the dynamics is deduced.
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Proposition 6.1.1. Consider the LTI port-Hamiltonian system (6.2). Then, if (I −
1
2
(J − R)P ) is invertible, then there exists an explicit LTI port-Hamiltonian system

with

x+ = Ax =

(
I − 1

2
(J −R)P

)−1(
I +

1

2
(J −R)P

)
x, (6.5)

so that the controlled dynamics (6.3a) yields

x+(u) = Ax+Bu (6.6a)

Yav(x, u) = B>PAx+
u

2
B>PB. (6.6b)

Moreover, the origin x = 0 is a globally asymptotically stable equilibrium for (6.5).

Proof. The explicit representation follows by Proposition 6.1.1. Moreover, By

Barbashin-Krasovskii theorem, x = 0 is the minimum of H(x) and is an asymptoti-

cally stable equilibrium as

H(x+)−H(x) = −1

4
x>(A+ I)>P>RP (A+ I)x < 0,

for any x 6= 0 and A given in (6.5). Moreover, since H(x) is radially unbounded, then

the asymptotic stability of x = 0 is globally guaranteed.

6.2 Negative output feedback

In this LTI framework the negative output feedback given in Theorem 5.1.1 can be

specialized. In particular, the problem achieves a unique solution to the implicit

damping equality and provides global asymptotic stability of the origin.

Theorem 6.2.1: LTI negative output feedback in discrete time

Given a LTI port-Hamiltonian system of the form (6.6) assumed ZSD. Then the

implicit damping equality

γ(x) + κYav(x, u) = 0 (6.7)
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admits a unique solution u = γ(x) with

γ(x) = − κB>PA

1 + κ
2
B>PB

x (6.8)

with κ > 0, which globally asymptotically stabilize the equilibrium x = 0.

The optimality result can be specialized to the port-Hamiltonian system (6.6),

that are the linear version of the discrete port-Hamiltonian dynamics associated with

the conjugate output (6.3b) with feedthrough term.

Corollary 6.2.1. The feedback

u? =
1

2
γ(x),

with feedback γ(x) in (6.8) and κ = 1 is inverse optimal as it minimizes

J =
∑
n≥k

l(xn) + ||un||2 (6.9)

with, for all x 6= 0,

l(x) = H(x)−H(x+) +
(B>PAx)2

4 + 2B>PB
> 0. (6.10)

6.3 IDA-PBC in discrete time

We have seen that for general nonlinear port-Hamiltonian system an IDA-PBC feed-

back is difficult to be characterized. However, a closed-form solution is provided for

LTI port-Hamiltonian dynamics where necessary and sufficient conditions for solving

the DT IDA-PBC problem are presented. In particular, one computes a stabilizing

feedback ū of the form

ū = Kx+K?x?,

with suitable matrices K and K? which assign the desired equilibrium x? and the

quadratic desired Hamiltonian function Hd(x) to the closed-loop system expressed in

its closed-form.

For this purpose, assume a LTI discrete port-Hamiltonian dynamics of the form

(6.2a) with quadratic Hamiltonian H(x) = 1
2
x>Px and P = P> � 0. As in (6.3a)
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the explicit state-space representation is computed by solving (6.2a) in x+(0) = x+

with u = 0 so getting the controlled dynamics

x+(u) = Ax+Bu (6.11)

where x+(0) = x+ = Ax with state matrix

A =
(
I − 1

2
(J −R)P

)−1(
I +

1

2
(J −R)P

)
.

The set E , defining all the admissible equilibria for the closed-loop LTI discrete

port-Hamiltonian dynamics (6.2a), is specified as such

E := ker
{
B⊥(J −R)P

}
,

with B⊥ denoting the left-hand side annihilator of B, namely B⊥B = 0.

In this framework the DT-IDA-PBC problem reduces in finding the feedback

u = ū+ v

which makes the equilibrium x? ∈ E stable for the closed-loop port-Hamiltonian

system associated with the desired Hamiltonian

Hd(x) =
1

2
(x− x?)>Pd(x− x?).

More in detail, the state feedback u = ū+v achieves the target LTI port-Hamiltonian

structure

x+(ū+ v) = x+ (Jd −Rd)∇̄Hd|x
+(ū)
x +Bv

= x+
1

2
(Jd −Rd)Pd(x

+(ū) + x− 2x?) +Bv

with matrices Jd ∈ SkewR(n, n), Rd ∈ SymR(n, n), and Pd ∈ SymR(n, n) with Rd � 0,

and Pd � 0. Equivalently, the implicit port-Hamiltonian dynamics can be explicitly

expressed in closed-form as such

x+(ū+ v) = Adx+ Ad,?x? +Bv (6.12)

with x+(ū) = Adx+ Ad,?x? defining the new controlled free dynamics and matrices

Ad =
(
I − 1

2
(Jd −Rd)Pd

)−1(
I +

1

2
(Jd −Rd)Pd

)
Ad,? =−

(
I − 1

2
(Jd −Rd)Pd

)−1
(Jd −Rd)Pd.
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The following Theorem is deduced from Proposition 5.2.1 and provides a necessary

and sufficient condition for solving the DT IDA-PBC problem in the linear case with

matching equation given by

(J −R)
P

2
(x+ + x) +Bū = (Jd −Rd)

Pd
2

(x+(ū) + x− 2x?) (6.13)

or, equivalently in closed form, by

Ax+Bū = Adx+ Ad,?x?.

Theorem 6.3.1: LTI IDA-PBC in discrete time

Given the LTI port-Hamiltonian dynamics

x+(u) = x+ (J −R)∇̄H|x+

x +Bu (6.14)

and a desired equilibrium x? ∈ E to be assigned. Then, the DT IDA-PBC

problem is solvable if and only if there exist Ja, Ra and Pa solutions to the

matching condition

B⊥(Ja −Ra)P +B⊥(Ja + J −Ra −R)Pa = 0 (6.15)

such that Jd = (J+Ja) = −J>d , Rd = (R+Ra) = R>d � 0, and Pd = (P+Pa) � 0.

In addition, the feedback assigning the port-Hamiltonian dynamics

x+(ū+ v) = x+ (Jd −Rd)∇̄Hd|x
+(ū)
x +Bv (6.16)

(or, equivalently, (6.12)) is given by

ū =
1

2
B†
[
(Jd −Rd)Pd(x

+(ū) + x− 2x?)− (J −R)P (x+ + x)
]
. (6.17)

Moreover if one provides that (I− 1
2
(J−R)P ) and (I− 1

2
(Jd−Rd)Pd) are invertible

then one gets the a closed form, by

ū = B†(Ad − A)x+B†Ad,?x?. (6.18)
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with

Ad =
(
I − 1

2
(Jd −Rd)Pd

)−1(
I +

1

2
(Jd −Rd)Pd

)
(6.19a)

Ad,? =−
(
I − 1

2
(Jd −Rd)Pd

)−1
(Jd −Rd)Pd. (6.19b)

Proof. One must prove that the algebraic condition (6.15) is necessary and

sufficient for solving the matching equation (6.13). For necessity, by virtue of Remark

5.2.2, if the problem is solvable (meaning that (6.13) holds true), then the matching

condition (5.24), specified in the linear case as

B⊥
[
(Jd −Rd)

Pd
2

(x+(ū) + x− 2x?)− (J −R)
P

2
(x+ + x)

]
= 0, (6.20)

holds. By manipulating the equality above on gets

B⊥
[
(Jd −Rd)

Pd
2
− (J −R)

P

2

]
(x+ + x) = −B⊥(Jd −Rd)

Pd
2

(x+(ū)− x+ − 2x?)

whereby the right-hand-side vanishes, because

B⊥(Jd −Rd)
Pd
2

(x+(ū)− x+ − 2x?)

= B⊥
[
(x+(ū)− x)− (x+ − x)

]
= B⊥[x+(ū)− x+] = B⊥Bū = 0,

so leading to the necessary condition

B⊥ [(Jd −Rd)Pd − (J −R)P ] (x+ + x) = 0

which must hold for all x ∈ Rn, that coincides with (6.15) by definition of Jd = J+Ja,

Rd = R +Ra and Pd = P + Pa. Then, necessity is proved.

The sufficiency works out by showing that, if (6.15) holds, the feedback (6.17) (or,

equivalently, (6.18)) solves the problem. To this end, plugging the feedback (6.17)

into (6.13) one gets the equivalence

BB†
[
(Jd −Rd)

Pd
2

(x+(ū) + x− 2x?)− (J −R)
P

2
(x+ + x)

]
= (Jd −Rd)

Pd
2

(x+(ū) + x− 2x?)− (J −R)
P

2
(x+ + x).
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Since BB† = I − (B⊥)>[(B⊥(B⊥)>]−1B⊥, the equality above reduces to

−(B⊥)>[(B⊥(B⊥)>]−1B⊥
[
(Jd −Rd)

Pd
2

(x+(ū) + x− 2x?)

− (J −R)
P

2
(x+ + x)

]
= 0

which holds true as (Ja, Ra, Pa) satisfy (6.15) and (6.20). As a consequence, the

feedback solution to (6.17) assigns the target dynamics (6.16) to (6.2a). As far as

the closed form is concerned, plugging u = ū+ v into (6.11), with ū as in (6.18), one

recovers (6.12).

Remark 6.3.1. Differently from the general nonlinear case, the matching condition

(6.13) takes the form of a linear matrix equality (6.15).

6.4 Concluding remarks

In this section, we have seen how modeling and control design specializes in the case of

LTI port-Hamiltonian systems. Firstly, we introduced the definition of LTI discrete-

time port-Hamiltonian system showing also its explicit representation. Then, we

showed the structure of the negative output feedback computed upon the u-average

output of the port-Hamiltonian system which achieves global asymptotic stability.

Finally, the IDA-PBC problem is restated in the LTI setting, and a necessary and

sufficient condition for solving the problem is given along with the explicit structure

of the IDA-PBC feedback. Those results are partially included in:

A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”Discrete

port-controlled Hamiltonian dynamics and average passivation,” 2019 IEEE

58th Conference on Decision and Control (CDC), Nice, France, 2019, pp.

1430-1435, doi: 10.1109/CDC40024.2019.9029809.

A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”Stabiliza-

tion of Discrete Port-Hamiltonian Dynamics via Interconnection and Damp-

ing Assignment,” in IEEE Control Systems Letters, vol. 5, no. 1, pp. 103-

108, Jan. 2021, doi: 10.1109/LCSYS.2020.3000705.
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T
his chapter concerns the modeling of gradient and port-Hamiltonian dynam-

ics under sampling. It is well known that gradient and Hamiltonian dynam-

ics have straight relations with fundamental properties of physical systems

such as conservation and/or variational principles. Those dynamics are widely inves-

tigated in continuous time and are at the basis of ad hoc design approaches. In a

sampled-data point of view, the following question naturally arises,

Does an exact sampled-data equivalent to a gradient and Hamiltonian

dynamics exhibit a discrete gradient or Hamiltonian representation?

161
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To answer the question, a precise characterization of gradient and Hamiltonian

dynamics under sampling is in this chapter. In particular, the contribution of this

chapter is to provide exact sampled-data equivalent models to gradient and Hamilto-

nian structures preserving the continuous-time trajectories and energetic properties

at all sampling instants. We show that the problem is solvable making reference to

the same Hamiltonian as in continuous time but with suitably modified interconnec-

tion and damping matrices, parameterized by the sampling period. To achieve the

structure under sampling we give first some instrumental results to characterize the

sampled-data equivalent dynamics in term of the discrete gradient function. Finally,

the proposed sampled-data representations for uncontrolled dynamics are general-

ized to input-state-output representations and further compared with an alternative

sampled-data structure given in the related literature.

7.1 Formal instrumental results

In the present section we present basic formal results that are fundamental to describe

the sampled-data structure of port-Hamiltonian dynamics.

In this respect, the first lemma describes the sampled-data autonomous dynamics

described by the map F δ(x) in terms of the vector field f(x) of the continuous-time

system, exploiting the exponential form

F δ(x) = eδLfx− x.

The characterization of the sampled-data map in terms of the continuous-time vector

field is essential for highlighting the continuous-time gradient into port-Hamiltonian

dynamics.

Lemma 7.1.1. Let f : Rn → Rn be a smooth vector-valued function, then for all

δ ∈]0, T ∗[, the associated sampled-data equivalent dynamics

F δ(x) = eδLfx− x,

satisfies the equality

x+ − x = F δ(x) = δM(δ, f, x)f(x) (7.1)
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with M(δ, f, x) ∈ MatR(n, n), locally non singular, given by

M(δ, f, x) =
1

δ

∫ δ

0

J[esLfx]ds (7.2)

where ”J[·]” indicates the Jacobian with respect to x of the function into the brackets.

Proof. The proof follows from the definition of eδLfx, which might be written

as

eδLfx− x = δf(x) +
δ2

2!
Lf (f)(x) +

δ3

3!
L2
f (f)(x) + . . .

=

(
δJ[x] +

δ2

2!
J[f ] +

δ3

3!
J[Lf (f)] + . . .

)
f(x)

= J

[
δx+

δ2

2!
f(x) +

δ3

3!
Lf (f)(x) + . . .

]
f(x)

= J

[∫ δ

0

esfxds

]
f(x)

=

∫ δ

0

J[esLfxds]f(x)

= δM(δ, f, x)f(x)

withM(δ, f, x) as in (7.2). The non singularity ofM(δ, f, x) follows by construction

for δ small enough.

The second instrumental Lemma generalizes Lemma 7.1.1 to the behaviour of any

function H(·) along the sampled-data dynamics.

Lemma 7.1.2. Let f : Rn → Rn be a smooth vector-valued function and H(·) : Rn →
R a smooth real-valued function, then for all δ ∈]0, T ∗[ the associated sampled-data

equivalent dynamics satisfies the variational equality below

H(x+)−H(x) = δ∇>H(δ, f, x)f(x) = δLfH(δ, f, x), (7.3)

which recovers the usual Lie derivative along f of a new function H(δ, f, x) given by

H(δ, f, x) =
1

δ

∫ δ

0

H(x(s))ds =
(eδLf − I

δLf
H
)

(x) = H(x) +
∑
i≥1

δi

(i+ 1)!
LifH(x)

which depends on the f -dynamics and is parameterized by the sampling period δ.
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Proof. The proof follows from the property of the exponential function H(x+) =

H(eδLf (x)) = eδLfH(x) so that the variational equality

eδLfH(x)−H(x) = δLfH(x) +
δ2

2!
L2
fH(x) +

δ3

3!
L3
fH(x) + . . .

= (δ∇>H(x) +
δ2

2!
∇>(LfH)(x) +

δ3

3!
∇>(L2

fH)(x) + . . . )f(x)

= ∇>
(∫ δ

0

esLfH(x)ds
)
f(x)

= δ∇>H(δ, f, x)f(x)

which yields

H(δ, f, x) =
1

δ

(∫ δ

0

esLfH(x)ds
)

=
1

δ

(∫ δ

0

H(x(s))ds
)
.

The third Lemma is a direct consequence of the aforestated Lemma 7.1.1 and

Lemma 7.1.2.

Lemma 7.1.3. Given a smooth vector field f : Rn → Rn and for any fixed δ ∈]0, T ∗[

the associated sampled-data equivalent dynamics with

eδLfx− x = F δ(x),

then the discrete gradient of H(·) along the flow F δ(x) satisfies

∇̄>H|x+

x =
1

δ
∇>

(∫ δ

0

H(x(s))ds

)
M−1(δ, f, x). (7.4)

To conclude this series of lemmas which are instrumental to properly character-

ize port-Hamiltonian systems under sampling, the next lemma rewrites the discrete

gradient function in terms of the gradient itself.

Lemma 7.1.4. Given a smooth vector field f : Rn → Rn and for any fixed δ ∈]0, T ∗[

the associated sampled-data equivalent dynamics with

eδLfx− x = F δ(x),
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then the discrete gradient of H(·) along the flow F δ(x) satisfies

∇̄H|x+

x = ∇H(x) + δQ(δ,H, f, x)f(x) (7.5)

with Q(δ,H, f, x) ∈ MatR(n, n) given by

Q(δ,H, f, x) =
(∫ 1

0

sJ̄[∇H]|x+sF δ(x)
x ds

)
M(δ, f, x). (7.6)

Proof. The proof follows from the definition of discrete gradient which can be

expressed in the integral form

∇̄H|x+

x = ∇̄H|x+F δ(x)
x =

∫ 1

0

∇H(x+ sF δ(x))ds.

By manipulating the above integral expression and invoking the property of Lemma

7.1.1, namely F δ(x) = δM(δ, f, x)f(x) one gets

∇̄H|x+

x = ∇H(x) +

∫ 1

0

sJ̄[∇H]|x+sF δ(x)
x (eδLfx− x)ds

= ∇H(x) +

∫ 1

0

sJ̄[∇H]|x+sF δ(x)
x F δ(x)ds

= ∇H(x) +

∫ 1

0

sJ̄[∇H]|x+sF δ(x)
x dsM(δ, f, x)f(x)

which concludes the expression (7.5).

7.2 Constructive aspects

In this section we provide constructive expressions of the objects intruduced in the

previous section.

Remark 7.2.1. Easy computations provide the following expression of the discrete

jacobian of the gradient function ∇H, that is

J̄[∇H]|x+sF δ(x)
x =

∫ 1

0

∇2H(x+ τsF δ(x))dτ

= ∇2H(x) +
s

2

(
∂

∂x
⊗∇2H(x)

)(
F δ(x)⊗ I

)
+
s2

3!

(
F δ>(x)⊗ I

)( ∂2

∂x2
⊗∇2H(x)

)(
F δ(x)⊗ I

)
+O(s3),
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so that one deduces the first terms of its integral form

∫ 1

0

sJ̄[∇H]|x+sF δ(x)
x ds =

1

2
∇2H(x) +

δ

3!

(
∂

∂x
⊗∇2H(x)

)((
f(x) +

δ

2
Lff(x)

)
⊗ I
)

+
δ2

4!

(
f>(x)⊗ I

)( ∂2

∂x2
⊗∇2H(x)

)
(f(x)⊗ I) +O(δ3).

Remark 7.2.2. One can express the discrete gradient in x along the displacement

x + F δ(x) for the first terms, so obtaining an easy computable expression in terms

of the usual gradient, Hessian matrix, and Kroneker product. More precisely the

discrete gradient yields for the first terms

∇̄H|x+F δ(x)
x = ∇H(x) +

δ

2
∇2H(x)f(x) +

δ2

4
∇2H(x)J[f ]f(x)

+
δ2

3!
Lf ⊗ Lf∇H(x) +O(δ3)

where ∇2H(x) is the Hessian of H(x) and

Lf ⊗ Lf∇H(x) =


Lf ⊗ Lf∇1H(x)

...

Lf ⊗ Lf∇nH(x)


with, for all p = 1, . . . , n,

Lf ⊗ Lf∇pH(x) =
n∑
j=1

n∑
i=1

∂3H

∂xi∂xj∂xp
fi(x)fj(x).

Remark 7.2.3. The function M(δ, f, x) might be represented in terms of a formal

operator defined by setting

eδLf − I
δLf

= I +
∑
i≥1

δi

(i+ 1)!
Lif ,

which yields the following expression

M(δ, f, x) = J

[
eδLf − I
δLf

(x)

]
. (7.7)
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Accordingly, one might provide a computable expression of M(δ, f, x) defined as a

series expansion in power of δ

M(δ, f, x) = I +
∑
i≥1

δi

(i+ 1)!
Mi(x),

with

Mi(x) = J[Li−1
f f(x)].

For the first terms on gets

M1(x) = J[f(x)]

M2(x) = J[J[f(x)]f(x)].

Remark 7.2.4. Exploiting the computable expression of M(δ, f, x) one defines the

matrix Q(δ,H, f, x) as a series expansion in power of δ

Q(δ,H, f, x) =
∑
i≥0

δi

(i+ 1)!
Qi(x),

so that for the first terms one gets

Q0(x) =
1

2
∇2H(x)

Q1(x) =
1

3

(
∂

∂x
⊗∇2H(x)

)
(f(x)⊗ I) +∇2H(x)J[f(x)]

Q2(x) =
1

4

(
f>(x)⊗ I

)( ∂2

∂x2
⊗∇2H(x)

)
(f(x)⊗ I) +

1

2

(
∂

∂x
⊗∇2H(x)

)
(Lff(x)⊗ I)

+

(
∂

∂x
⊗∇2H(x)

)
(f(x)⊗ I) J[f(x)] + 3∇2H(x)J[J[f(x)]f(x)].

7.3 Gradient dynamics under sampling

Let first consider the problem of representing the class of dynamics called gradient

dynamics under sampling. In continuous time the dynamics is characterized by the

gradient vector field

f(x) = −∇H(x)

with respect to the storage function H(x) associated with its dynamics. In this

respect, let first formally define the gradient dynamics.
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Definition 7.3.1. Gradient dynamics are differential equations of the form

ẋ(t) = f(x(t)) = −∇H(x(t)) (7.8)

with storage function H(·) : Rn → R≥0.

The reason that gradient dynamics are grouped with the study of Lyapunov func-

tions is that for gradient dynamics there is a natural Lyapunov candidate, that is

H(·). Moreover, such dynamics satisfies by construction the forward difference in-

equality over the map H(·), for δ ∈]0, T ∗[ small enough, since

H(x+)−H(x) =

∫ (k+1)δ

kδ

Ḣ(x(τ))dτ = −
∫ (k+1)δ

kδ

‖∇H(x(τ))‖2dτ ≤ 0. (7.9)

Except at equilibria the function H(x) is strictly decreasing on orbits. Moreover, the

direction ∇H(x) is the direction of most rapid increase of H(x), while the direction

−∇H(x) defines the direction of most rapid decrease of H(x).

The challenging problem now relies on the possibility to turn the sampled-data

equivalent dynamics to the gradient dynamics (7.8) into discrete-time dynamics suit-

ably equipped with the discrete gradient of H(x), say ∇̄H|x+

x .

The following theorem achieves the result.

Theorem 7.3.1: Gradient dynamics under sampling

Given the continuous-time gradient dynamics (7.8), then for any fixed δ ∈]0, T ∗[,

its sampled-data equivalent dynamics admits the discrete-time representation

x+ = x− δI(δ,−∇H, x)∇̄H|x+

x (7.10)

with non singular matrix

I(δ,−∇H, x) =M(δ,−∇H, x)(I − δQ(δ,H,−∇H, x))−1 ∈ MatR(n, n). (7.11)
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Additionally, the Hamiltonian function satisfies the variational equality

H(x+)−H(x) =−
∫ δ

0

∇>H(x(s))∇H(x(s))ds

= −δ∇̄>H|x+

x I(δ,−∇H, x)∇̄H|x+

x ≤ 0. (7.12)

Proof. According to the Lemma 7.1.1, one can rewrite the dynamics F δ(x),

fixing f = −∇H(x), as follows

F δ(x) = −δM(δ,−∇H, x)∇H(x).

Since (I−δQ(δ, f, x)) is non singular by construction, one can manipulated the above

equation so getting

F δ(x) = −M(δ,−∇H, x)(I − δQ(δ,−∇H, x))−1(I − δQ(δ,−∇H, x))∇H(x).

Finally, according to Lemma 7.1.4 one defines the discrete gradient as

∇̄H|x+

x = ∇H(x) + δQ(δ,H,−∇H, x)∇H(x),

thus one deduces

F δ(x) = −δI(δ,−∇H, x)∇̄H|x+

x

with I(δ,H,−∇H, x) given in (7.11). The non singularity of I(δ,H, f, x) follows from

the non singularity ofM(δ, f, x) and (I − δQ(δ, f, x)). Moreover, the equality (7.12)

is direct consequence of the variational equality H(x+)−H(x) expressed in terms of

the discrete gradient and the provided discrete gradient dynamics (7.10) which yields

H(x+)−H(x) = ∇̄>H|x+

x (x+ − x)

= ∇̄>H|x+

x F δ(x)

= −δ∇̄>H|x+

x I(δ,−∇H, x)∇̄H|x+

x ≤ 0.

The variational equality H(x+) − H(x) can be equivalently expressed through the

integration of the Hamiltonian function along the continuous-time dynamics

H(x+)−H(x) =

∫ δ

0

Ḣ(x(s))ds
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that yields

H(x+)−H(x) = −
∫ δ

0

∇>H(x(s))∇H(x(s))ds = −δ∇̄>H|x+

x I(δ,−∇H, x)∇̄H|x+

x ,

both the expressions are equal since the sampled-data dynamics matches at the sam-

pling times the continuous-time one by definition.

The results of Theorem 7.3.1 ensure the existence of a discrete gradient-like dy-

namics based on the sampled-data equivalent model of the continuous-time dynamics

with respect to the same real-valued function H(·). Differently, the discrete repre-

sentation introduces a new matrix I(δ,H,−∇H, x) which depends on the function

H(·) itself and on the sampling period δ.

Remark 7.3.1. From the energy variation (7.12) one deduces that the symmetric

part of I(δ,−∇H, x) is positive semidefinite, namely

1

2
I(δ,−∇H, x) +

1

2
I(δ,−∇H, x) � 0.

Remark 7.3.2. Easy computation can be performed exploiting the computable ex-

pression of M(δ, f, x) and Q(δ,H, f, x), and the fact that the inverse matrix (I −
δQ(δ,H, f, x))−1 can be formally defined as

(I − δQ(δ,H, f, x))−1 = I +
∑
p≥1

δp (Q(δ,H, f, x))p .

Then the matrix I(δ,H,−∇H, x) can be described by its series expansion in

powers of δ by

I(δ,−∇H, x) =
∑
i≥0

δi

(i+ 1)!
Ii,

which gives the expressions for first terms
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I0 =M0 = I

I1 =M1 + 2M0Q0 = 0n×n

I2 =M2 + 3M0Q1 + 6M0Q0Q0 + 3M1Q0 = −1

2
∇2H(x)∇2H(x)

= −1

2

n∑
i=1



(
∂2H(x)
∂x1∂xi

)2
∂2H(x)
∂x1∂xi

∂2H(x)
∂x2∂xi

· · · ∂2H(x)
∂x1∂xi

∂2H(x)
∂xn∂xi

∂2H(x)
∂x1∂xi

∂2H(x)
∂x2∂xi

(
∂2H(x)
∂x2∂xi

)2

· · · ∂2H(x)
∂x2∂xi

∂2H(x)
∂xn∂xi

...
...

. . .
...

∂2H(x)
∂x1∂xi

∂2H(x)
∂xn∂xi

∂2H(x)
∂x2∂xi

∂2H(x)
∂xn∂xi

· · ·
(
∂2H(x)
∂xn∂xi

)2

 .

Thus, for the first terms the sampled-data gradient dynamics yields the form,

x+ = x− δ(I0 +
δ2

6
I2)∇̄H|x+

x +O(δ4)

= x− δ∇̄H|x+

x +
δ3

12
∇2H(x)∇2H(x)∇̄H|x+

x +O(δ4)

so recovering in first approximation in δ the discrete gradient dynamics.

Remark 7.3.3. In case of separable Hamiltonian function

H(x) =
n∑
i=0

li(xi)

for any continuously differential function li(·) : R→ R the matrix I2 is diagonal and

is specified as

I2 = −1

2



(
∂2l1(x1)

∂x2
1

)2

0 · · · 0

0
(
∂2l2(x2)

∂x2
2

)2

· · · 0

0
...

. . . 0

0 · · · 0
(
∂2ln(xn)
∂x2
n

)2

 .

Remark 7.3.4. The expression of the discrete gradient given in Lemma 7.1.4 can be

specified in the case of gradient dynamics of the form (7.8), which gives for the first

terms
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∇̄H|x+F δ(x)
x =

(
I − δQ(δ,H,−∇H, x)

)
∇H(x)

= ∇H(x)− δQ0∇H(x)− δ2

2
Q1∇H(x) +O(δ3)

= ∇H(x)− δ

2
∇2H(x)∇H(x) +

δ2

2
∇2H(x)∇2H(x)∇H(x)

+
δ2

6

(
∂

∂x
⊗∇2H(x)

)
(∇H(x)⊗ I)∇H(x) +O(δ3).

7.4 Port-Hamiltonian dynamics under sampling

In the previous section we discussed the case of gradient dynamics under sampling.

How do these methods extend to port-Hamiltonian dynamics? To answer the question

let a continuous-time port-Hamiltonian dynamics given by

ẋ = f(x) = (J(x)−R(x))∇H (7.13)

with matrices J(x) = −J>(x) and R(x) = R>(x) � 0 catching, respectively, the

(power-preserving) interconnection and dissipative structure of the dynamics, and

the Hamiltonian function H(·) : Rn → R≥0. See Chapter 1 for details.

Also for dynamics of the form (7.13) the instrumental lemmas presented in Section

7.1 can be exploited to define sampled-data representations which preserves their

characteristic structure.

The theorem below characterizes the port-Hamiltonian dynamics under sampling.

Theorem 7.4.1: Port-Hamiltonian dynamics under sampling

Given a port-Hamiltonian dynamics (7.13), then for any δ ∈]0, T ∗[, its sampled

equivalent dynamics admits the discrete port-Hamiltonian structure

x+ = x+ δSδJ−R(δ, f, x)∇̄H|x+

x (7.14)

where

SδJ−R(δ, f, x) =M(δ, f, x)(J(x)−R(x)) (I + δQ(δ,H, f, x)(J(x)−R(x)))−1 ,
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that satisfies the energy balance equality

H(x+)−H(x) = δ∇̄H|x+>
x SδJ−R(δ, f, x)∇̄H|x+

x

= −
∫ δ

0

∇>H(x(s))R(x)∇H(x(s))ds ≤ 0. (7.15)

Proof. According to Lemma 7.1.1, the flow F δ(x) modifies as

F δ(x) = δM(δ, f, x)(J(x)−R(x))∇H(x)

and, from Lemma 7.1.4, the discrete gradient function rewrites

∇̄H|x+F δ(x)
x = ∇H(x) + δQ(δ,H, f, x)f(x)

= (I + δQ(δ,H, f, x)(J(x)−R(x)))∇H(x).

Finally by equating F δ(x) = (J −R)(δ, f, x)∇̄H|x+F δ(x)
x , one gets the following rela-

tion

M(δ, f, x)(J(x)−R(x)) = SδJ−R(δ, f, x) (I + δQ(δ,H, f, x)(J(x)−R(x)))

which is satisfied for SδJ−R(δ, f, x) stated above in the Theorem. Moreover by defini-

tion of discrete gradient the energy balance equality (7.15) holds true, since

H(x+)−H(x) = (x+ − x)>∇̄H|x+

x = δ∇̄H|x+>
x SδJ−R(δ, f, x)∇̄H|x+

x

and by the property of the exponential function H(x+) = H(eδLf (x)) = eδLfH(x)

one also gets

H(x+)−H(x) = eδLfH(x)−H(x)

=

∫ δ

0

∇>H(x(s))(J(x(s))−R(x(s)))∇H(x(s))ds

= −
∫ δ

0

∇>H(x(s))R(x(s))∇H(x(s))ds ≤ 0.

then (7.15) follows.

Theorem 7.4.1 shows that the continuous-time dynamics (7.13) preserves its port-

Hamiltonian structure at a discrete-time level with respect to the same energy func-

tion H(·) and modified interconnection and dissipative structure, say SδJ−R(δ, f, x),
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which depends on the sampling period δ. Moreover, its behavior along the function

H(·) is, by construction, the same as the continuous-time one, at the sampling in-

stants.

The construction of the matrix SδJ−R(δ, f, x) aims to guarantee that the sampled-data

dynamics exhibits a discrete-port Hamiltonian structure given in Definition 4.1.1 (in

case of zero input) through suitably computed δ-dependent matrices.

Remark 7.4.1. The port-Hamiltonian structure introduced in Theorem 7.4.1 are

slight generalization of the result presented for the gradient dynamics and given in

Theorem 7.3.1. Indeed, this implies that, when setting the matrices J(x)−R(x) = −I
one gets under sampling SδJ−R(δ, f, x) = −I(δ, f, x).

Remark 7.4.2. Approximations of the sampled-data matrix SδJ−R(δ, f, x) can be

iteratively computed exploiting the computable expression of the inverse matrix

(I + δQ(δ,H, f, x)(J(x)−R(x)))−1

which can be formally defined as

(I + δQ(δ,H, f, x)(J(x)−R(x)))−1 = I +
∑
p≥1

(−1)pδp (Q(δ,H, f, x)(J(x)−R(x)))p .

Expressing the sampled-data mapping in its series expansion in powers of δ as follows

SδJ−R(δ, f, x) =
∑
i≥0

δi

(i+ 1)!
(SδJ−R)

i
, (7.16)

with matrix

(SδJ−R)
i

=
i−1∑
j=0

(Mi −
(i+ 1)!

(j + 1)!(i− j)!
(SδJ−R)

j
Qi−1−j)(SδJ−R)

0
(7.17)

which yields for the first terms

(SδJ−R)
0

= (J(x)−R(x)) (7.18a)

(SδJ−R)
1

= (M1 − 2(J(x)−R(x))Q0) (J(x)−R(x)) (7.18b)

(SδJ−R)
2

=
(
M2 − 3M1(J(x)−R(x))Q0 − 3(J(x)−R(x))Q1 (7.18c)

+ 6(J(x)−R(x))Q0(J(x)−R(x))Q0

)
(J(x)−R(x)), (7.18d)

with Mi and Qi respectively reported in Remark 7.2.3 and Remark 7.2.4.
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Remark 7.4.3. To recover a port-Hamiltonian representation in terms of skew-

symmetric and symmetric matrix one can split the matrix SδJ−R(δ, f, x) in a skew-

symmetric and symmetric part, so that

SδJ−R(δ, f, x) = J (δ, f, x)−R(δ, f, x) (7.19)

with matrices

J (δ, f, x) =
1

2
[SδJ−R(δ, f, x)− Sδ>J−R(δ, f, x)] ∈ SkewR(n, n)

R(δ, f, x) = −1

2
[SδJ−R(δ, f, x) + Sδ>J−R(δ, f, x)] ∈ SymR(n, n)

and computing their series expansion in δ

J (δ, f, x) =
∑
i≥0

δi

(i+ 1)!
Ji (7.20)

R(δ, f, x) =
∑
i≥0

δi

(i+ 1)!
Ri (7.21)

one computes the first terms for the skew-symmetric matrix as

J0 = J(x)

J1 =
1

2

(
M1(J(x)−R(x)) + (J(x) +R(x))M>

1

)
+ 2 (J(x)Q0R(x) +R(x)Q0J(x))

J2 =
1

2

(
M2J(x) + J(x)M>

2 + 3(J(x)Q0J(x)M>
1 −M1J(x)Q0J(x))

+ 3(M1R(x)Q0J(x) + J(x)Q0R(x)M>
1 ) + 3J(x)(Q>1 −Q1)J(x)

+ 12J(x)Q0J(x)Q0J(x) + 6(J(x)Q0J(x)Q0R(x)−R(x)Q0J(x)Q0J(x))

+ 6(R(x)Q0R(x)Q0J(x) + J(x)Q0R(x)Q0R(x)) +R(x)M>
2 −M2R(x)

+ 3(M1J(x)Q0R(x) +R(x)Q0J(x)M>
1 ) + 3(R(x)Q0R(x)M>

1 −M1R(x)Q0R(x))

+ 3(J(x)Q1R(x) +R(x)Q>1 J(x)) + 6(J(x)Q0R(x)Q0R(x) +R(x)Q0R(x)Q0J(x))

+ 6(R(x)Q0J(x)Q0J(x)− J(x)Q0J(x)Q0R(x)) + 12R(x)Q0J(x)Q0R(x)

+ 3(R(x)Q1J(x) + J(x)Q>1 R(x)) + 3R(x)(Q>1 −Q1)R(x)
)
,
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and the first terms for the symmetric matrix

R0 = R(x)

R1 =
1

2

(
(J(x) +R(x))M>

1 −M1(J(x)−R(x))
)

+ 2 (J(x)Q0J(x) +R(x)Q0R(x))

R2 =
1

2

(
J(x)M>

2 −M2J(x) + 3(J(x)Q0J(x)M>
1 +M1J(x)Q0J(x))

− 3(M1R(x)Q0J(x)− J(x)Q0R(x)M>
1 ) + 3J(x)(Q1 +Q>1 )J(x)

+ 12J(x)Q0R(x)Q0J(x) + 6(J(x)Q0J(x)Q0R(x) +R(x)Q0J(x)Q0J(x))

− 6(R(x)Q0R(x)Q0J(x)− J(x)Q0R(x)Q0R(x)) +R(x)M>
2 +M2R(x)

− 3(M1J(x)Q0R(x)−R(x)Q0J(x)M>
1 ) + 3(R(x)Q0R(x)M>

1 +M1R(x)Q0R(x))

− 3(J(x)Q1R(x)−R(x)Q>1 J(x))− 6(J(x)Q0R(x)Q0R(x)−R(x)Q0R(x)Q0J(x))

+ 6(R(x)Q0J(x)Q0J(x) + J(x)Q0J(x)Q0R(x)) + 12R(x)Q0R(x)Q0R(x)

− 3(R(x)Q1J(x)− J(x)Q>1 R(x)) + 3R(x)(Q>1 +Q1)R(x)
)
,

with Mi and Qi respectively reported in Remark 7.2.3 and Remark 7.2.4. Thus, for

the first terms the sampled-data port-Hamiltonian dynamics yields the form,

x+ = x− δ(J0 −R0)∇̄H|x+

x −
δ2

2
(J1 −R1)∇̄H|x+

x −
δ3

6
(J2 −R2)∇̄H|x+

x +O(δ4).

Remark 7.4.4. In the case in which J(x) and R(x) are assumed having constant

entries, say J(x) = J and R(x) = R, the constructive matrices characterizing the

series expansion in δ in (7.20) and (7.21) gets the following structure for the first

terms

J0 = J

J1 = 0n×n

J2 =
1

2

(
(J∇2H(x)J +R∇2H(x)R)∇2H(x)J

+ (J∇2H(x)R +R∇2H(x)J)∇2H(x)R
)
,

and

R0 = R

R1 = 0n×n

R2 =
1

2

(
(J∇2H(x)J +R∇2H(x)R)∇2H(x)R

+ (J∇2H(x)R +R∇2H(x)J)∇2H(x)J
)
.
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Thus, for the first terms the sampled-data port-Hamiltonian dynamics yields the

form,

x+ = x− δ(J0 −R0)∇̄H|x+

x −
δ3

6
(J2 −R2)∇̄H|x+

x +O(δ4)

Remark 7.4.5. The energy-balance equality (7.15) when decoupling the SδJ−R(δ, f, x)

as in (7.19), i.e. SδJ−R(δ, f, x) = J (δ, f, x)−R(δ, f, x), clearly rewrites as

H(x+)−H(x) = −δ∇̄H|x+>
x R(δ, f, x)∇̄H|x+

x ≤ 0.

Then by construction the matrix R(δ, f, x) which verifies the inequality above is

positive semidefinite. However, its positive semidefiniteness does not suffice to ensure

that each matrix Ri, composing the series expansion in δ of R(δ, f, x) as in (7.21), is

positive semidefinite.

Remark 7.4.6. The discrete gradient function Lemma 7.1.4 can be specified, in the

case of port-Hamiltonian dynamics, as a series expansion in power of δ as follows

∇̄H|x+F δ(x)
x =

(
I + δQ(δ,H, f, x)

)
(J(x)−R(x))∇H(x)

=∇H(x)+δQ0(J(x)−R(x))∇H(x)+
δ2

2
Q1(J(x)−R(x))∇H(x)+O(δ3)

=∇H(x) +
δ

2
∇2H(x)(J(x)−R(x))∇H(x)

+ (
δ2

3!

(
∂

∂x
⊗∇2H(x)

)
((J(x)−R(x))∇H(x)⊗I) (J(x)−R(x))∇H(x)

+
δ2

2
∇2H(x)J [(J(x)−R(x))∇H(x)] (J(x)−R(x))∇H(x))+O(δ3).

7.4.1 Conservative dynamics

Conservative dynamics are dynamics related to frictionless systems, as already deeply

discussed in Chapter 4. For sake of completeness, the present section contains a review

of the Theorem 7.4.1 in case of zero dissipation of the continuous-time dynamics, say

R(x) = 0.
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Corollary 7.4.1. Given a conservative port-Hamiltonian dynamics (7.13) with R(x) =

0 (f(x) = J(x)∇H(x)), then for any δ ∈]0, T ∗[, its sampled equivalent dynamics ad-

mits the discrete conservative port-Hamiltonian structure

x+ = x+ δSδJ(δ, f, x)∇̄H|x+

x (7.22)

with mapping

SδJ(δ, f, x) =M(δ, f, x)J(x)
(
I + δQ(δ,H, f, x)J(x)

)−1

verifying by construction the variational equality

H(x+)−H(x) = δ∇̄>H|x+

x SδJ(δ, f, x)∇̄H|x+

x = 0.

Proof. The structure on the sampled-data matrix SδJ(δ, f, x) is exactly the struc-

ture given in Theorem 7.4.1 when setting R(x) = 0. Thus its sampled equivalent

representation satisfies the lossless condition along the function H(x), i.e.

H(x+)−H(x)= δ∇̄>H|x+

x SδJ(δ, f, x)∇̄H|x+

x

= eδLfH(x)−H(x)

=

∫ δ

0

∇>H(x(s))J(x(s))∇H(x(s))ds

= δLfH(x) +
δ2

2!
L2
fH(x) +

δ3

3!
L3
fH(x) + · · ·

= δ∇>H(x)J(x)∇H(x)+
∑
i≥2

δi

i!
Li−1
f

(
∇>H(x)J(x)∇H(x)

)
+ · · · = 0.

The above result shows that the sampled-data equivalent dynamics to a conser-

vative port-Hamiltonian system admits a sampled-data representation that preserves

the property of conservation of energy which states that the total energy of the un-

forced system remains constant along the time. In particular, every state trajectory

remains at all the sampling instants kδ on the level surface of H(x) defined by its

initial condition x(0) (H(x(kδ)) = H(x(0))).
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Remark 7.4.7. An interesting class of conservative dynamics are the ones associated

with canonical Hamiltonian vector fields, of the form

(
q̇

ṗ

)
=

(
0n×n I

−I 0n×n

)(
∇qH(q, p)

∇qH(q, p)

)
(7.23)

with I ∈ MatR(n, n) and state vector (q, p) ∈ R2n, so that J ∈ SymR(2n, 2n) with

by construction R = 0. This class of systems clearly admits an equivalent sampled-

data representation of the form (7.22). According to Remark 7.4.2 the sampled-data

interconnection matrix SδJ(δ, f, x) can be iteratively computed in series expansion in

power of δ as in (7.20), with the first terms taking the form

J0 =

(
0n×n I

−I 0n×n

)
, J1 =

(
0n×n 0n×n

0n×n 0n×n

)
, J2 =

(
0n×n φ(H)

−φ(H) 0n×n

)

with

φ(H) := (∇>p∇qH(q, p))2 −∇>q ∇qH(q, p)∇>p∇pH(q, p).

7.4.2 Dissipative dynamics

In the present section a special class of dissipative dynamics under sampling is pre-

sented. Differently from the conservative dynamics, dissipative dynamics are those

whose energy dissipates along the time. In this context, dissipative dynamics are

assumed of the form (7.13) but with zero interconnection matrix, say J(x) = 0. This

dynamics is a straight generalization of the gradient dynamics already discussed.

The following corollary specializes the result in Theorem 7.4.1 in case of dissipative

dynamics.

Corollary 7.4.2. Given a dissipative port-Hamiltonian dynamics (7.13) with J(x) =

0 (f(x) = −R(x)∇H(x)), then for any δ ∈]0, T ∗[, its sampled equivalent dynamics

admits the discrete conservative port-Hamiltonian structure

x+ = x− δSδR(δ, f, x)∇̄H|x+

x (7.24)
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with mapping

SδR(δ, f, x) =M(δ, f, x)R(x)
(
δQ(δ,H, f, x)R(x)− I

)−1

verifying by construction the dissipation inequality

H(x+)−H(x) = −δ∇̄>H|x+

x SδR(δ, f, x)∇̄H|x+

x ≤ 0.

Proof. The matrix SδR(δ, f, x) is exactly the structure given in Theorem 7.4.1

when setting J(x) = 0. Thus, by construction, its sampled equivalent representation

satisfies the dissipation inequality, for any δ,

H(x+)−H(x)= −δ∇̄>H|x+

x SδR(δ, f, x)∇̄H|x+

x

= eδLfH(x)−H(x)

= −
∫ δ

0

∇>H(x(s))R(x(s))∇H(x(s))ds ≤ 0.

For sake of completeness, it is worth underlining that the sampled-data matrix

SδJ−R(δ, f, x), given in Theorem 7.4.1, is by construction different than SδJ(δ, f, x) −
SδR(δ, f, x), respectively arising form the conservative and dissipative case, namely

SδJ−R(δ, (J −R)∇H, x) 6= SδJ(δ, J∇H, x)− SδR(δ,−R∇H, x).

More in detail, the skew-symmetric and symmetric part of the matrix SδJ−R(δ, (J −
R)∇H, x) does not recover, respectively, SδJ(δ, J∇H, x) and SδR(δ,−R∇H, x), so that

1

2

(
SδJ−R(δ, (J −R)∇H, x)− Sδ>J−R(δ, (J −R)∇H, x)

)
6= SδJ(δ, J∇H, x)

1

2

(
SδJ−R(δ, (J −R)∇H, x) + Sδ>J−R(δ, (J −R)∇H, x)

)
6= SδR(δ,−R∇H, x).

7.5 Input-state-output port-Hamiltonian systems

In this section a generalization of port-Hamiltonian dynamics under sampling affected

by external inputs are discussed. In the physical world, those dynamics are affected
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by external actions u, which in practice represent for instance force, torque, angular

velocity, pressure, etc.

As in Chapter 4, where a discrete-time port-Hamiltonian structure affected by the

external input u has been discussed for the pure discrete-time case making reference

to differential/difference representation and u-average passivity concept, the sampled-

data port-Hamiltonian system can be described by the dynamics (7.14), an additional

controlled part and suitably defined output map. However, differently, those discrete-

time models derive from the sampling process through zero-order-holders (ZOH) of

their associated continuous-time dynamics, with the input u(t) assumed as a piecewise

constant function over time interval of length δ ∈]0, T ∗[ with t ∈ [kδ, (k+1)δ[, T ∗ > 0.

In this respect, continuous-time port-Hamiltonian systems affected by an exter-

nal input u, are composed by the dynamics (7.13), with an additional input-affine

controlled part and a power conjugate output map of the form

ẋ = f(x) + g(x)u = (J(x)−R(x))∇H(x) + g(x)u (7.25a)

y = h(x) = g>(x)∇H(x) (7.25b)

where g(·) is a smooth vector field over Rn. Intuitively, by the structure itself, the

port-Hamiltonian system of the form (7.25) satisfies

(i) the energy balance equation (EB) along the Hamiltonian H(x), i.e.

H(x(t))−H(x(0)) = −
∫ t

0

∇>H(x(s)R(x(s))∇H(x(s))ds

+

∫ t

0

u(s)g>(x(s))∇H(x(s))ds; (7.26)

(ii) passivity with respect to y and storage function H(x), namely

Ḣ(x) ≤ ug>(x)∇H(x). (7.27)

The following Theorem describes the sampled-data equivalent model to (7.25),

specifying its power balance equality and expressing the sampled-data power con-

jugate output with respect to which passivity is guaranteed under sampling at the

sampling instants thorough piecewise constant u(t).
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Theorem 7.5.1

Consider a continuous-time port-Hamiltonian system (7.25) and assume u(t) =

u(kδ),∀t ∈ [kδ, (k+ 1)δ[ with δ ∈]0, T ∗[. Then for any δ, the sampled equivalent

model to (7.25) admits the discrete-time port-Hamiltonian structure

x+(u) = x+ δSδJ−R(δ, f, x)∇̄H|x+

x + δugδ(x, u) (7.28a)

Y δ
av(x, u) = gδ>(x, u)∇̄H|x

+(u)

x+ (7.28b)

with SδJ−R(δ, f, x) given in (7.14) and sampled input mapping

gδ(·, u) =
1

δu

(
eδ(Lf+uLg)Id − eδLf Id

)
. (7.29)

Moreover, the sampled-data system (7.28) is passive with respect to the out-

put (7.28b) with storage function H(x) and satisfies the energy balance equality

H(xk)−H(x0) = δ
k−1∑
i=0

∇̄>H|x
+
i
xi
SδJ−R(δ, f, x)∇̄H|x

+
i
xi

+ δ
k−1∑
i=0

uiY
δ

av(xi, ui) (7.30)

Proof. By definition of the sampled equivalent model in the form of a map,

the sampled controlled dynamics is exactly described at the sampling instants by

xk+1 := x+(u) = x + F δ(x, u) = eδ(Lf+uLg)x. Since the drift term is represented by

the dynamics x+(0) = x + F δ(x, 0) = eδLfx, and given the representation provided

by Theorem 7.14, one concludes that the equivalent sampled-data dynamics (7.28a)

holds true with the constructive sampled-data input mapping (7.29). Computing the

forward difference of H(x) end exploiting the property of the discrete gradient, one

gets

H(x+(u))−H(x) = H(x+)−H(x) +H(x+(u))−H(x+)

= δ∇̄>H|x+

x SδJ−R(δ, f, x)∇̄H|x+

x + δugδ>(x, u)∇̄H|x
+(u)

x+ ,

where passivity property is inferred selecting the output map (7.28b) and, conse-

quently, the energy balance equation along the time horizon as in (7.30).
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Remark 7.5.1. The sampled-equivalent port-Hamiltonian dynamics (7.28a) admits

an equivalent sampled-data Differential/Difference representation

x+ = x+ δSδJ−R(δ, f, x)∇̄H|x+

x , x+ = x+(0) (7.31a)

∂x+(u)

∂u
= Gδ(x+(u), u) (7.31b)

Y δ(·, u) = LGδ(·,u)H(·) (7.31c)

with

Gδ(x, u) =

∫ δ

0

e−s adf+ugg(x)ds (7.32)

which verifies, due to Lemma 3.4.2,

δugδ(x, u) =
(
eδ(Lf+uLg)Id − eδLf Id

)
=

∫ u

0

Gδ(x+(v), v)dv.

Note that, by construction, the dynamics (7.28a) and (7.31) are exactly equivalent.

The following corollary is deduced by the definition of u-average passivity.

Corollary 7.5.1. Consider a continuous-time port-Hamiltonian system (7.25) and

assume u(t) = u(kδ),∀t ∈ [kδ, (k + 1)δ[ with δ ∈]0, T ∗[. Then for any δ, the discrete

port-Hamiltonian system (7.31) is u-average passive with storage function H(x) and

output map (7.31c) and equivalently passive with respect to the u-average output map

(7.28b).

Remark 7.5.2. As commented in Chapter 3, the output map Y δ
av(x, u) in (7.28b)

which ensures passivity under sampling of the port-Hamiltonian system, can be ex-

pressed as a series expansion in powers of δ around the continuous-time output map

as such

Y δ
av(x, u) =

∑
i≥0

δi

(i+ 1)!
Y δ

avi
(x, u) (7.33)

with the first terms

Y δ
av0

(x, u) = h(x) = LgH(x)

Y δ
av1

(x, u) = (Lf + uLg) LgH(x) + LgLfH(x)

Y δ
av2

(x, u) = (Lf + uLg)
2 LgH(x) + LfLgLfH(x) + uL2

gLfH(x).
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7.6 Comparison with the literature model

An alternative and comparable representation of port-Hamiltonian structure under

sampling based on the discrete gradient function has been proposed in Aoues et al.

(2017) and extensively studied and discussed in Aoues (2014). Given a continuous-

time port-Hamiltonian system

ẋ = (J(x)−R(x))∇H(x) + g(x)u (7.34a)

y = g>(x)∇H(x) (7.34b)

the proposed model is obtained by substituting the gradient of H(x) with the discrete

gradient into the Euler approximate dynamics, so setting

x+(u) = x+ δ(J(x)−R(x))∇̄H|x+(u)
x + δg(x)u (7.35a)

y` = g>(x)∇̄H|x+(u)
x . (7.35b)

Again, this approximate port-Hamiltonian structure essentially differs from the

sampled-data equivalent port-Hamiltonian structure in (7.28), that is

x+(u) = F δ(x, u) = x+ δSδJ−R(δ, f, x)∇̄H|x+

x + δugδ(x, u)

Y δ
av(x, u) = hδ(x, u) = gδ>(x, u)∇̄H|x

+(u)

x+

in several aspects:

� the literature model (7.35) arises with a discrete gradient ∇̄H|x
+(u)
x which

is affected by the control variable u, while our proposed model arises with

a discrete gradient of the form ∇̄H|x+

x ;

� this reflects in an energy balance equation

H(x+(u))−H(x)︸ ︷︷ ︸
stored energy

= −δ ∇̄H>|x+(u)
x R(x)∇̄H|x+(u)

x︸ ︷︷ ︸
dissipation + partial supplied

+δ ug>(x, u)∇̄H|x+(u)
x︸ ︷︷ ︸

partial supplied energy

(7.36)

which does not decouple the contribution given by the external source

from the internal dissipative energy;
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� the literature output y` in (7.35b) associated with the port-Hamiltonian

dynamics (7.35), again arises with a discrete gradient ∇̄H|x
+(u)
x , while

the proposed passive output Y δ
av(x, u) arises with a discrete gradient of

the form ∇̄H|x
+(u)

x+ that properly encodes the effect of u over H(x);

� in case of zero input, meaning that u = 0, the first order approximation

of the matrix SδJ−R(δ, f, x) recovers the literature representation, since

SδJ−R(δ, f, x) = J(x)−R(x) +O(δ2).

7.7 Concluding remarks

In this chapter, new results for describing sampled-data equivalent models of continuous-

time gradient and port-Hamiltonian dynamics have been provided. In particular, it

has been shown that it is always possible to recover a suitably defined discrete-time

equivalent model exhibiting a discrete-time Hamiltonian structure with respect to

the same Hamiltonian function as in continuous time. In addition, the proposed ap-

proach is constructive and allows the computation of approximate models. Finally,

the deduced sampled-data equivalent model preserves, beyond the structure, the same

energetic properties as the continuous-time one at all sampling instants differently

from the literature model given in Aoues et al. (2017). The results presented herein

this chapter are given in

S. Monaco, D. Normand-Cyrot, M. Mattioni and A. Moreschini, ”Nonlinear

Hamiltonian systems under sampling”, Submitted to IEEE Transactions on

Automatic Control (TAC). (Under review)
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Chapter 8

Control of sampled-data

port-Hamiltonian systems
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T
he contents of this chapter rely on the negative output feedback stabilization

and to the IDA-PBC under sampling. In particular, first, we specialize

the negative output feedback design for port-Hamiltonian systems under

sampling and then, approximate solutions are performed. Then we tackle the IDA-

PBC problem in terms of feedback passivation under sampled-data design discussed

in Chapter 3.

8.1 Negative output feedback

In many physical applications, especially in mechanical systems, damping plays an

essential role since it extracts energy from the system. We have already seen that the

conjugate output of the introduced discrete-time port-Hamiltonian system achieves

asymptotic stabilization of the equilibrium point when a negative output feedback

controller is designed for the discrete-time system. Therefore, the same result may be

recast under sampling when considering the discrete-time port-Hamiltonian system

187
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issued from sampling as an equivalent port-Hamiltonian system of the continuous-

time one.

The following theorem specifies the result in Theorem 5.1.1 for the discrete-

time port-Hamiltonian system issued form the sampling of a continuous-time port-

Hamiltonian one.

Theorem 8.1.1: Negative output feedback under sampling

Consider a continuous-time port-Hamiltonian system

ẋ = f(x) + g(x)u = (J(x)−R(x))∇H(x) + g(x)u (8.1a)

y = h(x) = g>(x)∇H(x) (8.1b)

be ZSD with Hamiltonian function H(·) : Rn → R, having a minimum in x?,

and assume u(t) = u(kδ), for all t ∈ [kδ, (k + 1)δ[ with δ ∈]0, T ∗[. Let for any δ

the sampled equivalent model be

x+(u) = x+ δSδJ−R(δ, f, x)∇̄H|x+

x + δugδ(x, u) (8.2a)

Y δ
av(x, u) = gδ>(x, u)∇̄H|x

+(u)

x+ . (8.2b)

Then, the feedback u = γδ(x) solution to the implicit damping equality

γδ(x) + κgδ>(x, u)∇̄H|x
+(u)

x+ = 0 (8.3)

with gain κ > 0, achieves asymptotic stability of the closed-loop equilibrium x?.

Proof. The proof follows the lines of Theorem 5.1.1. Regarding ZSD, by con-

struction, Y δ
av(x, 0) = g>(x)∇H(x) + O(δ) so concluding ZSD detectability of the

sampled-data model for almost all δ.

Remark 8.1.1. The digital PBC feedback solution to (8.3) is implicitly defined

by the damping equality so that an exact solution might not be always computed

in general. However, one can compute approximate solution to (8.3) by expressing

γδ(x) as a series expansion in powers of δ, that is

γδ(x) =
∑
i≥0

δi

(i+ 1)!
γδi (8.4)
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and in particular for the first term the solution to (8.3), when setting for the sake

of simplicity κ = 1, yields

γδ0 = −h(x) = −LgH(x)

γδ1 = −ḣ(x)− LgLfH(x)

γδ2 = −ḧ(x) +
1

2
ḣ(x)L2

gH(x)− LgLfLfH(x)− LfLgLfH(x)− h(x)LgLfH(x).

It is interesting to note that assuming quadratic Hamiltonian function H(x) =
1
2
x>Px with P = P> � 0 together with the sampled-data input map gδ(x) :=

gδ(x, 0) affine in the control variable, then the negative output feedback solution to

the implicit damping equality (8.3) follows. Hence the following theorem holds and

its proof follows the lines of Theorem 5.2.1.

Corollary 8.1.1. Assume the input-affine sampled-data port-Hamiltonian system

with H(x) = 1
2
x>Px with P = P> � 0 in (8.2) of the form

x+(u) = x+
δ

2
SδJ−R(δ, f, x)P (x+ + x) + δugδ(x) (8.5a)

Y δ
av(x, u) = gδ>(x)Px+ +

1

2
gδ>(x)Pgδ(x)u. (8.5b)

then u = γδ(x) with

γδ(x) = − κgδ>(x)P

1 + κ
2
gδ>(x)Pgδ(x)

x+, (8.6)

globally asymptotically stabilize with κ > 0 the closed-loop equilibrium x? = 0.

8.2 IDA-PBC: Input-Hamiltonian matching

In this section we tackle the problem of asymptotic stabilization under sampling

towards a desired equilibrium in terms of feedback passivation under sampling with

respect to a new Hamiltonian function which must be assigned to the closed-loop

system. The discrete-time IDA-PBC has been introduced in Chapter 5 and sufficient

conditions for solving the problem in assigning a desired target port-Hamiltonian

structure have been given. Let us restate the DT IDA-PBC Problem 2 under a

sampled-data point of view.



190 CHAPTER 8. CONTROL OF SD PORT-HAMILTONIAN SYSTEMS

Problem 3 (SD IDA-PBC). Given the sampled-data equivalent port-Hamiltonian

system in (8.2), that is for any δ ∈]0, T ∗[

x+(u) = x+ δSδJ−R(δ, f, x)∇̄H|x+

x + δugδ(x, u) (8.7a)

Y δ
av(x, u) = gδ>(x, u)∇̄H|x

+(u)

x+ (8.7b)

find ūδ(x) : Rn → R, such that setting for u = ūδ(x) + v, the system is transformed

into the port-Hamiltonian form

x+(ūδ(x) + v) = x+ δSδJd−Rd(δ, fd, x)∇̄Hd|x
+(ūδ(x))
x + δgd(x, v)v (8.8)

with new Hamiltonian function Hd : Rn → R≥0 such that x? = arg min{Hd(x)},

SδJd−Rd(δ, fd, x) =M(δ, fd, x)(Jd(x)−Rd(x)) (I + δQ(δ,Hd, fd, x)(Jd(x)−Rd(x)))−1

with fd = (Jd(x)−Rd(x))∇Hd(x), Jd(x) = −J>d (x), Rd(x) = R>d (x) � 0, and gd(x, v)

satisfying by construction

vgd(x, v) = ūδ(x)(g(x, ūδ(x) + v)− g(x, ūδ(x))) + vg(x, ūδ(x) + v). (8.9)

Accordingly, the closed-loop verifies the new energy balance equality

Hd(xk)−Hd(x0) =
k−1∑
i=0

viydi −
k−1∑
i=0

wdi , ∀k ∈ N,

with dissipation wd ≥ 0 and new passive output

Y δ
dav

(ūδ)(x, v) = g>d (x, v)∇̄Hd|x
+(ūδ(x)+v)

x+(ūδ(x))
. (8.10)

As discussed in Chapter 5, the matching equation arising from the SD IDA-PBC

Problem in the general nonlinear context takes the form

SδJ−R(δ, f, x)∇̄H|x+

x + ugδ(x, u) = SδJd−Rd(δ, fd, x)∇̄Hd|x
+(u)
x . (8.11)

However, as in discrete time a general solution is tough to determine due to the

implicit dependence of the control variable u into the nonlinear equation to solve,

and the complexity is mainly due to the function gδ(x, u) and ∇̄Hd|x
+(u)
x which are

generally nonlinear in u.
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In this sampled-data context we can provide a partial solution exploiting the

input-Hamiltonian matching (IHdM) design discussed in Section 3.5. For port-Hamiltonian

systems, the result in Theorem 3.5.1 applies, so describing the sampled-data feedback

γδ(·) as the solution to the IHdM equality

Hd(x
+(γδ(x)))−Hd(x) =

∫ (k+1)δ

kδ

LfdHd(x(s))ds

with fd = (Jd(x) − Rd(x))∇Hd(x). The sampled-data feedback assigns x? and Hd

as new equilibrium and storage function respectively with Hd : Rn → R≥0 and

x? = arg min{Hd(x)}.

The involvement of the input-Hamiltonian matching is essential in this context

since it avoids providing a solution to the matching equation (8.11) so reformulating

the problem on the matching of the Hamiltonian function and not on the matching

on the sampled-data structure of the system.

The proposition below specifies the Proposition 3.5.1 in case of continuous-time

port-Hamiltonian dynamics and IDA-PBC design.

Proposition 8.2.1. Given the continuous-time port-Hamiltonian dynamics

ẋ = f(x) + g(x)u = f(x) = (J(x)−R(x))∇H(x) + g(x)u, (8.12)

let u = γ(x) + v be a continuous-time IDA-PBC feedback assigning the dynamics

ẋ = fd(x) + g(x)v = (Jd(x)−Rd(x))∇Hd(x) + g(x)v (8.13a)

y = hd(x) = LgHd(x). (8.13b)

with Hd : Rn → R≥0 and x? = arg min{Hd(x)}. Then, there exists T ? > 0 such that

for all δ ∈ [0, T ?[ and t = kδ, k ≥ 0, the IHdM equality

Hd(x
+(u))−Hd(x) =

∫ (k+1)δ

kδ

LfdHd(x(s))ds (8.14)

with x(s) = esLfdId|xk admits unique solution u = γδ(x) as a series expansion in

powers of δ around γ(·); namely,

γδ(x) = γ(x) +
∑
i>0

δi

(i+ 1)!
γi(x), (8.15)

which assigns x? to the closed-loop system.
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It is important to note that the objective to stabilize under digital feedback to the

target equilibrium x? is achieved. However, we cannot speak properly about sampled-

data IDA-PBC design because the closed-loop system does not a priori exibits the

target port-Hamiltonian form (8.8).

The port-Hamiltonian structure of the sampled-data system is recovered up to

an error in O(δ3) though the 1-order approximate solution. This fact is formalized

below.

Theorem 8.2.1: IDA-PBC under sampling through IHdM

Given the continuous-time port-Hamiltonian dynamics

ẋ = f(x) + g(x)u = f(x) = (J(x)−R(x))∇H(x) + g(x)u, (8.16)

let u = γ(x)+v be a continuous-time IDA-PBC feedback assigning the dynamics

ẋ = fd(x) + g(x)v = (Jd(x)−Rd(x))∇Hd(x) + g(x)v (8.17a)

y = hd(x) = LgHd(x). (8.17b)

Setting u = γδ(x), with γδ(x) the corresponding digital solution to the IHdM

equality

Hd(x
+(γδ(x)))−Hd(x) =

∫ (k+1)δ

kδ

LfdHd(x(s))ds,

then its 1-order approximate feedback of (8.15),

γδ[1](x) = γ(x) +
δ

2
γ1(x), (8.18)

with γ1(x) = γ̇(x), assigns the port-Hamiltonian structure (8.8) up to O(δ3).

Proof. The proof is constructive and is obtained by showing that the feedback

(8.18) solves up to O(δ3) the SD matching equation (8.11). According to the series
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constructive terms in series of δ of the form

SδJ−R(δ, f, x) : = S(x) +
∑
i≥1

δi

(i+ 1)!
Si(x),

SδJd−Rd(δ, fd, x) : = Sd(x) +
∑
i≥1

δi

(i+ 1)!
Sd1(x),

∇̄H|x+

x : = ∇H(x) +
∑
i≥1

δi

(i+ 1)!
[H]i(x).

one computes the first-order terms for SδJ−R(δ, f, x), SδJd−Rd(δ, fd, x), ∇̄H|x+

x , ∇̄Hd|x
+(u)
x ,

that are (with S(x) = J(x)−R(x) and Sd(x) = Jd(x)−Rd(x))

S1(x) =
(∂f
∂x
− S(x)∇2H(x)

)
S(x)

[H]1(x) = ∇2H(x)S(x)∇H(x)

Sd1(x) =
(∂fd
∂x
− Sd(x)∇2Hd(x)

)
Sd(x)

[Hd]1(x) = ∇2Hd(x)Sd(x)∇Hd(x).

Therefore, by approximating the matching equality in O(δ3) through the con-

structive terms given above, and substituting γδ = γ0 + δ
2
γ1, one ends up with one

equation for each order of δ, namely

δ0 : g(x)γ0 = Sd(x)∇Hd(x)− S(x)∇H(x);

δ1 : g(x)γ1 =
(
Sd1(x) + Sd(x)∇2Hd(x)Sd(x)− (

∂f

∂x
+ γ0

∂g

∂x
)Sd(x)

)
∇Hd(x).

The first equation is exactly the solution to the continuous-time IDA-PBC γ0(x) =

γ(x), which is solved for γ(x) at the sampling instants t = kδ, the second equation is

solved for γ1(x) = ∂γ0

∂x
(f + gγ) = ∂γ

∂x
Sd(x)∇Hd(x) = γ̇(x). Thus, one concludes that

the preservation of the discrete port-Hamiltonian structure up to O(δ3) is deduced.

Remark 8.2.1. In the case in which Sd(x) = Jd(x) − Rd(x) is assumed having

constant entries, say Sd(x) = Sd = Jd −Rd, the port-Hamiltonian structure (8.8) up

to O(δ3) yields the form

x+(u) = x+ F
δ[2]
d (x)

= x+ δSd∇̄Hd|
x+F

δ[2]
d (x)

x
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with the approximate discrete gradient

∇̄Hd|
x+F

δ[2]
d (x)

x = ∇Hd(x) +
δ

2
∇2Hd(x)Sd∇Hd(x) +O(δ2).

Remark 8.2.2. From the result above, it turns out that a port-Hamiltonian structure

is assigned through digital IHdM feedback with an error in O(δ3). More precisely, the

1st-order approximate feedback

γδ[1](x) = γ(x) +
δ

2
Lfdγ(x)

ensures (local) passivation through digital IDA-PBC in O(δ3). Such a choice, natu-

rally recovers the continuous-time counterpart as δ → 0.

8.3 Concluding remarks

Within this chapter, we discussed the stabilization problem of port-Hamiltonian sys-

tems under sampling. Notably, we provided negative output feedback computed as

the solution of an implicit damping equality. We discussed that the solution is not al-

ways computable in general, though one might compute approximate solutions. Then,

we discussed the IDA-PBC problem for the general nonlinear port-Hamiltonian sys-

tem under sampling. As in the pure discrete-time case, the nonlinear sampled-data

design solution is tough to determine and a closed-form for the sampled-data feed-

back is not achievable. Therefore, we partially solved the problem exploiting IHdM,

introduced in Chapter 3, to show that stabilization to the target equilibrium can be

performed through matching the desired Hamiltonian behavior. The sampled-data

port-Hamiltonian structure is recovered with an error in O(δ3). The negative output

feedback design and the IDA-PBC through IHdM are respectively given in:

S. Monaco, D. Normand-Cyrot, M. Mattioni and A. Moreschini, ”Nonlinear

Hamiltonian systems under sampling”, Submitted to IEEE Transactions on

Automatic Control (TAC). (Under review)

M. Mattioni, A. Moreschini, S. Monaco and D. Normand-Cyrot, On feed-

back passivation under sampling. 2020. Submitted to 2021 American Control

Conference (ACC). (Accepted)
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T
he aim of this chapter is to revisit and specialize the results previously pre-

sented in the nonlinear case in the linear context. We give the definition of

gradient and Hamiltonian system under sampling based on the exact solu-

tion. Then, we give the expression of the negative output feedback designed for the

LTI port-Hamiltonian system under sampling. Finally, due to the special structure

of the LTI port-Hamiltonian systems under sampling, we revisit the result of Chapter

6, providing an IDA PBC feedback under sampling in closed-form.

9.1 Gradient dynamics

A special class of gradient dynamics given in Theorem 7.3.1, that is

x+ = x− δI(δ,−∇H, x)∇̄H|x+

x ,

195
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with matrix

I(δ,−∇H, x) =M(δ,−∇H, x)(I − δQ(δ,H,−∇H, x))−1 ∈ MatR(n, n),

is the one described by the quadratic Hamiltonian function

H(x) =
1

2
x>Px

with symmetric and positive definite matrix P , that is P = P> � 0.

The results in Theorem 7.3.1 can be directly specified in this linear case.

Theorem 9.1.1: LTI gradient dynamics under sampling

Given the continuous-time gradient dynamics of the form

ẋ = −∇H(x) = −Px

with function H(x) = 1
2
x>Px and P = P> � 0, then for any δ ∈]0, T ∗[, its

sampled-data equivalent dynamics admits the discrete gradient form

x+ = x− δI(δ,−P )∇̄H|x+

x (9.1)

= x− δ

2
I(δ,−P )P (x+ + x)

with symmetric matrix

I(δ,−P ) =
2

δ
(I − e−δP )(I + e−δP )−1P−1. (9.2)

Additionally, (9.1) it can be expressed in the explicit form as

x+ = Aδx = e−δPx = (I +
δ

2
I(δ,−P )P )−1(I − δ

2
I(δ,−P )P )x, (9.3)

providing that the Hamiltonian function satisfies the variational equality

H(x+)−H(x) = −δ
4
x>(Aδ + I)>PI(δ,−P )P (Aδ + I)x ≤ 0. (9.4)

The theorem provides linear discrete-time representation of gradient dynamics en-

suring both preservation of the energetic properties and matching of the continuous-

time state trajectories. The matching of the continuous-time properties are ensured
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since the matrix Aδ in (9.3) is nothing else that the exact exponential representa-

tion e−δP which is explicitly computable. However, it is worth mentioning that the

achieved sampled-data structure (9.2) comes with a sampled-data matrix I(δ,−P )

which depends on the sampling period δ and recovers the identity matrix only in first

approximation in δ.

The structure of the matrix I(δ,−P ) describing the discrete gradient dynamics is

a direct consequence of the formal definition given in (7.11). Therefore, when setting

in this linear case the matrices given in Lemma 7.1.1 and Lemma 7.1.4 one gets

M(δ,−P ) =
1

δ
(I − e−δP )P−1,

Q(δ,−P ) =
1

2δ
(I − e−δP ).

In addition, the variational equality H(x+) − H(x) for quadratic H(·) can be

equivalently expressed in term of integral

H(x+)−H(x) = −
∫ δ

0

x>(s)P 2x(s)ds = −δ
4

(x+ + x)>PI(δ,−P )P (x+ + x),

so that the sampled-data evolution matches at the sampling instants the continuous-

time trajectory for any length of δ.

Remark 9.1.1. The matrix (9.2) can be formally defined through the series

I(δ,−P ) = −2

δ
(e−δP − I)

(
I +

∑
p≥1

(−1)pe−pδP

)
P−1. (9.5)

Accordingly, one gets by construction the description of I(δ,−P ) as the series ex-

pansion in δ below

I(δ,−P ) =
∑
p≥0

∑
j0≥0,j1,...,jp≥1

(−1)p(−δP )
∑p
i=0 ji

2p(j0 + 1)!j1!...jp!
, (9.6)

which recover for the first terms

I(δ,−P ) = I − δ2

3!2
P 2 +

δ4

5!
P 4 +O(δ6).

The series expansion above shows that the coefficients of the odd powers in P

((δP )2i+1, i ≥ 0) are equal to zero in the expansion (9.6), so showing that I(δ,−P )

is symmetric definite.
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Remark 9.1.2. The sampled-data equivalent dynamics in discrete gradient form

(9.1) can be expressed as an explicit dynamics (9.3) and due to the series expansion

(9.6), the closed form can be characterized for the first terms as follow

x+ =

(
I +

δ

2
P − δ3

3!4
P 3 +

δ5

5!2
P 5 +O(δ6)

)−1(
I − δ

2
P +

δ3

3!4
P 3 − δ5

5!2
P 5 +O(δ6)

)
x.

It is important to note that in this linear case, the dynamics (9.1) exhibits discrete

gradient form with respect to a new Hamiltonian function parametrized by the sam-

pling period δ. This representation is given below and the proof is straightforward.

Proposition 9.1.1. When H(x) is a quadratic function, H(x) = 1
2
x>Px with positive

P , the sampled-data dynamics equivalent to ẋ = −∇H(x) = −Px provides a discrete-

time gradient form

x+ − x = −δ∇̄Hδ|x+

x = −δ
2
P δ(x+ x+) (9.7)

with a δ-dependent Hamiltonian function Hδ(x) = 1
2
x>P δx with

P δ = I(δ,−P )P. (9.8)

with P δ = I(δ,−P )P in its series expansion

P δ =
∑
p≥0

∑
j0≥0,j1,...,jp≥1

(−1)p(−δP )
∑p
i=0 ji

2p(j0 + 1)!j1!...jp!
P = P − δ2

3!2
P 3 +

δ4

5!
P 5 +O(δ6),

which is a symmetric matrix by construction.

The result presented above defines an alternative representation of the gradient

dynamics. Its structure makes reference to a modified real-valued function Hδ(x)

which is parameterized by the sampling period δ.

9.2 Port-Hamiltonian systems

The sampled-data structure of port-Hamiltonian dynamics is specialized, in this

present section, to linear port-Hamiltonian dynamics. These particular dynamics

are described in continuous-time by a quadratic Hamiltonian function along with

interconnection and dissipation matrices having constant entries.

In this respect, the result in Theorem 7.3.1 can be directly specified in this case.
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Theorem 9.2.1: LTI port-Hamiltonian dynamics under sampling

Given the continuous-time linear port-Hamiltonian dynamics of the form

ẋ = (J −R)∇H(x) = (J −R)Px

with function H(x) = 1
2
x>Px and P = P> � 0, then for any δ ∈]0, T ∗[, its

sampled-data equivalent dynamics admits the discrete-time port-Hamiltonian

structure

x+ = x+ δSδJ−R∇̄H|x
+

x (9.9)

with x+ = eδ(J−R)Px and

SδJ−R =
2

δ
(eδ(J−R)P − I)(eδ(J−R)P + I)−1P−1. (9.10)

Additionally, since (I− δ
2
SδJ−RP ) is invertible for almost all δ, the port-Hamiltonian

structure (9.9) can be expressed in the explicit form as

x+ = Aδx = (I − δ

2
SδJ−RP )−1(I +

δ

2
SδJ−RP )x, (9.11)

providing the Hamiltonian function satisfies the variational equality

H(x+)−H(x) =
δ

4
x>(Aδ + I)>PSδJ−RP (Aδ + I)x ≤ 0. (9.12)

The theorem provides linear discrete-time representation of port-Hamiltonian dy-

namics which preserves their structure under sampling process. The structure ensures

both preservation of the energetic properties and matching of the continuous-time

state trajectories. As for the LTI sampled-data gradient dynamics, the matching of

the Hamiltonian and the continuous-time trajectories are ensured since the matrix

Aδ in (9.11) is nothing else that the exact exponential representation eδ(J−R)P which

is explicitly computable and ensures a closed form. In addition the deduced sample-

data matrix SδJ−R depends on the sampling period δ and recovers the matrix J − R
only in first approximation in δ.

Remark 9.2.1. The structure of SδJ−R describing the discrete LTI port-Hamiltonian

dynamics is a direct consequence of Theorem 7.4.1, when specifying the matrices
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M(δ, f) and Q(δ, f) in Lemma 7.1.1 and Lemma 7.1.4 as

M(δ, f) =
1

δ
(e−δP − I)P−1(J −R)−1,

Q(δ, f) =
1

2δ
P (eδ(J−R)P − I)P−1(J −R)−1.

In addition, the variational equality H(x+)−H(x) for quadraticH(·) can be expressed

in terms of integral form

H(x+)−H(x) = −
∫ δ

0

x>(s)PRPx(s)ds =
δ

4
(x+ + x)>PSδJ−RP (x+ + x) ≤ 0,

(9.13)

with x(s) = eδ(J−R)Px, so that the sampled-data evolution matches at the sampling

instants the continuous-time Hamiltonian behavior for any length of δ.

Remark 9.2.2. The sampled-data matrix SδJ−R in (9.10) can be split as skew-

symmetric and symmetric matrices respectively given by

J δ =
1

2

[
SδJ−R − Sδ>J−R

]
∈ SkewR(n, n)

Rδ = −1

2

[
SδJ−R + Sδ>J−R

]
∈ SymR(n, n).

By virtue of the inequality (9.13) and exploiting the above decomposition one gets

H(x+)−H(x) =
δ

4
(x+ + x)>PSδJ−RP (x+ + x)

= −δ
4

(x+ + x)>PRδP (x+ + x) ≤ 0, (9.14)

so showing that Rδ � 0 due to the quadratic structure of the expression in (9.14).

Remark 9.2.3. The expression of SδJ−R in (9.10) can be rewritten as

SδJ−R =
∑
p≥0

∑
j0≥0,j1,...,jp≥1

(−1)p(δ(J −R)P )
∑p
i=0 ji

2p(j0 + 1)!j1!...jp!
(J −R),

so computing the first terms as

SδJ−R =
(
I − δ2

3!2
((J −R)P )2 +

δ4

5!
((J −R)P )4

)
(J −R) +O(δ6).
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Accordingly, setting J δ and Rδ as a series expansion in power of δ,

J δ =
∑
i≥0

δi

(i+ 1)!
Ji (9.15)

Rδ =
∑
i≥0

δi

(i+ 1)!
Ri (9.16)

one computes

J0 = J

J1 = 0n×n

J2 =
1

2

(
(JPJ +RPR)PJ + (JPR +RPJ)PR

)
,

and

R0 = R

R1 = 0n×n

R2 =
1

2

(
(JPJ +RPR)PR + (JPR +RPJ)PJ

)
.

Remark 9.2.4. It is worth to stress that the discrete-time linear port-Hamiltonian

dynamics can be expressed explicitly as (9.11), and in its series expansion in power

of δ takes the following structure

x+ =

(
I− δ

2
(J−R)P− δ3

3!2
(J2−R2)P+O(δ4)

)−1(
I+

δ

2
(J−R)P+

δ3

3!2
(J2−R2)P+O(δ4)

)
x.

The following Theorem introduces the sampled-data equivalent model to (7.25),

specifying its power balance equality and expressing the sampled-data power con-

jugate output with respect to which passivity is guaranteed under sampling at the

sampling instants thorough piecewise constant u(t).

Theorem 9.2.2

Consider a continuous-time port-Hamiltonian system

ẋ(t) := f(x) +Bu = (J −R)Px+Bu (9.17a)

y = h(x) = B>Px. (9.17b)
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with J = −J>, R = R> � 0, and P = P> � 0, and assume u(t) = u(kδ),∀t ∈
[kδ, (k + 1)δ[ with δ ∈]0, T ∗[. Then for any δ, the sampled equivalent model to

(9.17) admits the discrete-time port-Hamiltonian structure

x+(u) = x+ δSδJ−R∇̄H|x
+

x + δBδu (9.18)

Y δ
av(x, u) = Bδ>∇̄H|x

+(u)

x+ (9.19)

with x+ = eδ(J−R)Px and Bδ = 1
δ

∫ δ
0
eτ(J−R)PBdτ . Moreover, the sampled-data

system (9.18) is passive with respect to the output (9.19) with storage function

H(x) = 1
2
x>Px and satisfies the energy balance equality

H(xk)−H(x0) = δ
k−1∑
i=0

∇̄>H|x
+
i
xi
SδJ−R∇̄H|x

+
i
xi

+ δ
k−1∑
i=0

uiY
δ

av(xi, ui). (9.20)

Remark 9.2.5. The sampled-data linear port-Hamiltonian system with Hamiltonian

function H(x) = 1
2
x>Px and P = P> � 0 is, by construction, passive with respect

to the conjugate output map (9.19) and average passive with respect to the map

Y δ(x) = Bδ>Px. This is due to the fact that the conjugate output is the average

output of Y δ(x, u), i.e.

Y δ
av(x, u) =

1

u

∫ u

0

Y δ(x+(v))dv

=
1

u

∫ u

0

Bδ>Px+(v)dv = Bδ>Px+ +
u

2
Bδ>PBδ.

Remark 9.2.6. The output map (9.19) for the linear case can be expressed as a

series expansion in powers of δ as in (7.33), that is

Y δ
av(x, u) =

∑
i≥0

δi

(i+ 1)!
Y δ

avi
(x, u) (9.21)

so obtaining for the first terms

Y δ
av0

(x) = h(x) = B>Px

Y δ
av1

(x, u) = B>P [J − 2R]Px+ uB>PB

Y δ
av2

(x, u) = B>P [7JPJ − 5JPR +RPJ +RPR]Px+ u
3

2
B>(J −R)P 2B.
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9.3 Negative output feedback

The same result applies to the LTI port-Hamiltonian system, but in that case provides

a global result. Indeed the implicit damping equality yields a unique solution as seen

for the discrete-time negative output feedback.

The following Theorem applies the result in Theorem 2.3.1 to the presented LTI

sampled-data port-Hamiltonian system.

Theorem 9.3.1: LTI negative output feedback under sampling

Consider a continuous-time LTI port-Hamiltonian system

ẋ = (J −R)∇H(x) +Bu (9.22a)

y = B>∇H(x) (9.22b)

with quadratic Hamiltonian function H(x) = 1
2
x>Px with P � 0 and assume

u(t) = u(kδ),∀t ∈ [kδ, (k + 1)δ[ with δ ∈]0, T ∗[. Let for any δ, the sampled

equivalent model to (9.22), that is

x+(u) = x+ δSδJ−R∇̄H|x
+

x + δBδu (9.23a)

Y δ
av(x, u) = Bδ>∇̄H|x

+(u)

x+ (9.23b)

be ZSD with x+ = eδ(J−R)Px and Bδ = 1
δ

∫ δ
0
eτ(J−R)PBdτ . Then, the feedback

u = − κBδ>Px+

1 + κ
2
Bδ>PBδ

(9.24)

with positive gain κ > 0 achieves global asymptotic stabilization of the origin.

9.4 IDA-PBC: Direct discrete design

In Chapter 8 we tackled the IDA-PBC problem exploiting the input-Hamiltonian

matching design, since in the general nonlinear case a solution to the matching equa-

tion is difficult to compute. However, since in this linear case the matching equation

reduces to a linear matrix equation the IDA-PBC problem can be solved through a

direct digital design which assigns the desired sampled-data closed loop structure. In
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this respect, mimicking the result in discrete time, the control objective reduces to

provide a state feedback

u = ū+ v

which achieves the target LTI sampled-data port-Hamiltonian structure

x+(ū+ v) = x+ δ(J δ
d −Rδ

d)∇̄Hd|x
+(ū)
x + δBδv

= x+
δ

2
(J δ

d −Rδ
d)Pd(x

+(ū) + x− 2x?) + δBδv (9.25)

with respect to the desired Hamiltonian function

Hd(x) =
1

2
(x− x?)>Pd(x− x?)

with positive definite Pd ∈ SymR(n, n), and freely chosen matrices J δ
d ∈ SkewR(n, n)

and positive semi-definite Rδ
d ∈ SymR(n, n), solutions to the matching equation

1

2
SδJ−RP (x+ + x) + uBδ =

1

2
(J δ

d −Rδ
d)Pd(x

+(ū) + x− 2x?). (9.26)

Remark 9.4.1. Note that, the freely choosen matrices J δ
d and Rδ

d are not the

sampled-data equivalent matrices of the continuous-time system with Jd and Rd.

The following Theorem is deduced from Proposition 5.2.1 and provides a necessary

and sufficient condition for solving the SD IDA-PBC problem through direct discrete

design.

Theorem 9.4.1: LTI IDA-PBC under sampling: a direct discrete design

Consider the sampled equivalent port-Hamiltonian structure to (9.17) of the form

x+(u) = x+ δSδJ−R∇̄H|x
+

x + δBδu. (9.27)

Then, the SD IDA-PBC problem is solvable if and only if there exist J δ
a , Rδ

d and

Pa solutions to the matching condition

Bδ⊥(J δ
a −Rδ

a)P +Bδ⊥(J δ
a + J δ −Rδ

a −Rδ)Pa = 0 (9.28)
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with

J δ =
1

2

[
SδJ−R − Sδ>J−R

]
∈ SkewR(n, n)

Rδ = −1

2

[
SδJ−R + Sδ>J−R

]
∈ SymR(n, n)

J δ
d =

[
J δ + J δ

a

]
∈ SkewR(n, n)

Rδ
d =

[
Rδ +Rδ

a

]
� 0 ∈ SymR(n, n)

Pd = [P + Pa] � 0 ∈ SymR(n, n).

In addition, the feedback assigning the port-Hamiltonian dynamics

x+(ū+ v) = x+ δ(J δ
d −Rδ

d)∇̄Hd|x
+(ū)
x + δBδv (9.29)

is given by

ū =
1

2
Bδ† [(J δ

d −Rδ
d)Pd(x

+(ū) + x− 2x?)− SδJ−RP (x+ + x)
]
. (9.30)

Equivalently, the implicit port-Hamiltonian dynamics (9.25) can be explicitly

expressed in closed form as such

x+(ū+ v) = Aδdx+ Aδd,?x? + δBδv (9.31)

and feedback ū as

ū = Bδ†(Aδd − Aδ)x+Bδ†Aδd,?x?, (9.32)

with

Aδd =
(
I − δ

2
(J δ

d −Rδ
d)Pd

)−1(
I +

δ

2
(J δ

d −Rδ
d)Pd

)
(9.33a)

Aδd,? =−
(
I − δ

2
(J δ

d −Rδ
d)Pd

)−1
(J δ

d −Rδ
d)Pd. (9.33b)

9.5 Concluding remarks

This chapter specializes in the results previously presented for nonlinear gradient and

port-Hamiltonian systems under sampling to the LTI case. In this respect, we recalled

the definition of gradient and port-Hamiltonian systems under sampling based on
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the sampled-data equivalent modeling. It is shown that discrete gradient or port-

Hamiltonian representations can be recovered under exact sampling with respect to

the same energy function and modified interconnection and dissipation matrices. The

proposed method holds both the objectives of satisfying under sampling the energetic

properties which characterize Hamiltonian dynamics and that of matching the state

evolutions at the sampling instants. Finally, the stabilization problem of LTI port-

Hamiltonian system is concerned. First, we apply the result in Theorem 2.3.1 to LTI

systems in port-Hamiltonian representation, then we reshape the IDA-PBC solution

presented in Chapter 5, since in this linear case the matching equation to be satisfied

reduces to a linear matrix equation and the IDA-PBC problem can be solved with

feedback control in closed form. The results presented within this chapter are reported

in the following published article:

A. Moreschini, S. Monaco and D. Normand-Cyrot, Gradient and Hamil-

tonian dynamics under sampling, IFAC-PapersOnLine, Volume 52, Is-

sue 16, 2019, Pages 472-477, ISSN 2405-8963, https://doi.org/10.1016

/j.ifacol.2019.12.006.

A. Moreschini, M. Mattioni, S. Monaco and D. Normand-Cyrot, ”Stabiliza-

tion of Discrete Port-Hamiltonian Dynamics via Interconnection and Damp-

ing Assignment,” in IEEE Control Systems Letters, vol. 5, no. 1, pp. 103-

108, Jan. 2021, doi: 10.1109/LCSYS.2020.3000705.
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Chapter 10

The RLC circuit

Contents
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10.4 Discrete IDA-PBC design . . . . . . . . . . . . . . . . . . . . . . 225

T
he most studied circuit in the literature is undoubtedly the RLC circuit. This

LTI model helps to understand some of the behaviors of an electrical control

system and, in the present context, how the preservation of a Hamiltonian

structure under sampling has an high impact in both the design of a faithful sampled-

data model and its control. For this example three aspects are illustrated:

1. Exact sampled-data port-Hamiltonian models are computed by exploit-

ing the forms discussed in Section 9.2;

2. Based on the proposed model stabilization at the origin is achieved via

exact digital negative output feedback as discussed in Section 9.3;

3. Stabilization at a desired equilibrium point is illustrated via direct dis-

crete IDA-PBC design based on the results presented in Section 9.4.

209
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Figure 10.1: RLC circuit

10.1 Continuous-time modeling

The RLC circuit in Figure 10.1 is characterized by a voltage source vin that produces

volts, a resistor r, an inductor L, and a capacitor C, and a current i, as in Table

10.1. According to Kirchhoff’s Law the circuit is modeled as a continuous-time port-

Hamiltonian system

ẋ =

(
0 1

−1 −r

)
∇H(x) +

(
0

1

)
u (10.1a)

y =
x2

L
(10.1b)

setting x1 = CvC , x2 = LiL, vin = u, and Hamiltonian function H(x), catching the

energy stored in the capacitor C and in the inductor L, i.e.

H(x) =
1

2C
x2

1 +
1

2L
x2

2. (10.2)

The continuous-time RLC dynamics represents a damped harmonic oscillator that

is dissipative for zero input u = 0, meaning that the energy evolution satisfies the

Parameter Description Units

i current A (amperes)

vin voltage source V (volt)

r Resistor Ω (ohm)

L Inductor H (henry)

C Capacitor F (farad)

Table 10.1: RLC parameters
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dissipation inequality

Ḣ = ∇>H(x)ẋ = − r

L2
x2

2 ≤ 0,

behaving as a monotonically decreasing function. Invoking Lyapunov stability theory,

the dissipation inequality above clearly provides asymptotic stability of the origin for

r > 0, and marginal stability for zero resistance r = 0.

10.2 Sampled-data modeling

In this section we describe the sampled-data equivalent port-Hamiltonian dynamics

applying the results presented in Theorem 9.2.1.

To compute the unforced sampled-data dynamics associated to the RLC system,

let us first focus on the uncontrolled continuous-time dynamics(
ẋ1

ẋ2

)
=

(
0 1

−1 −r

)
∇H(x). (10.3)

Hereinafter, without loss of generality and for notational simplicity, we fix both the

inductance L and the capacitor C as 1. Because the Hamiltonian function (10.2) is

quadratic and according to Definition 2.1.1, the discrete gradient is computable as

∇̄H|x+

x =

∫ 1

0

∇H|x+s(x+−x)ds =
1

2
P (x+ + x) =

1

2
P

(
x+

1 + x1

x+
2 + x2

)
, (10.4)

with in this case P = I characterizing the Hamiltonian function, where x := x(kδ) is

the state and x+ := x((k + 1)δ) is the one-step ahead of the uncontrolled evolution

when u = 0.

Since the RLC circuit is a LTI dynamics, we can compute an exact sampled-data

equivalent port-Hamiltonian representation as Theorem 9.2.1 taking the form

x+ = x+ δSδJ−R∇̄H|x
+

x (10.5)

=

(
x1

x2

)
+
δ

2

(
−R?1 J?

−J? −R?2

)(
x+

1 + x1

x+
2 + x2

)
with sampled-data matrix SδJ−R characterizing the dynamics given by

SδJ−R =
2

δ
(eδ(J−R) − I)(eδ(J−R) + I)−1

=

(
−R?1 J?

−J? −R?2

)
.
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Let us conduct the computations for resistance r ≥ 1
2
. Therefore, denoting by

α = − r
2

and ω = 1
2

√
4− r2, one computes the exponential matrix

eδ(J−R) = eαδ

(
cos(ωδ)− α

ω
sin(ωδ) 1

ω
sin(ωδ)

− 1
ω

sin(ωδ) cos(ωδ) + α
ω

sin(ωδ)

)
and from the expression

SδJ−R =
2

δ
(eδ(J−R) − I)(eδ(J−R) + I)−1

=

− [e2αδ−1−2eαδ sin(ωδ))]
δ(e2αδ+1+2eαδ cos(ωδ))

4
ω
eαδ sin(ωδ)

δ(e2αδ+1+2eαδ cos(ωδ))

−
4
ω
eαδ sin(ωδ)

δ(e2αδ+1+2eαδ cos(ωδ))
− [e2αδ−1−2α

ω
eαδ sin(ωδ)(α

ω
eαδ sin(ωδ)−1)]

δ(e2αδ+1+2eαδ cos(ωδ))


one obtains the exact sampled model (10.5) with the following coefficients

R?1 =
[e2αδ − 1− 2eαδ sin(ωδ))]

δ(e2αδ + 1 + 2eαδ cos(ωδ))

R?2 =
[e2αδ − 1− 2α

ω
eαδ sin(ωδ)(α

ω
eαδ sin(ωδ)− 1)]

δ(e2αδ + 1 + 2eαδ cos(ωδ))

J? =
4
ω
eαδ sin(ωδ)

δ(e2αδ + 1 + 2eαδ cos(ωδ))
.

Due to its structure, the sampled-data dynamics is dissipative for any δ > 0,

ensures a monotonically decreasing dissipation rate parameterized by δ

H(x+)−H(x) = −δ
4
R?1(x+

1 + x1)2 − δ

4
R?2(x+

2 + x2)2 ≤ 0.

As already discussed in Theorem 9.2.1, the exact sampled-data port-Hamiltonian

dynamics of the form (10.5) is implicitly defined through x+. However, due to the

quadratic structure of the Hamiltonian function (10.2), the exact sampled-data port-

Hamiltonian model in (10.5) can be also explicitly expressed as(
x+

1

x+
2

)
=

(
1 + δ

2
R?1 − δ

2
J?

δ
2
J? 1 + δ

2
R?2

)−1(
1− δ

2
R?1

δ
2
J?

− δ
2
J? 1− δ

2
R?2

)(
x1

x2

)
, (10.6)

so recovering the structure in (9.11) with state matrix

Aδ = eδ(J−R) =

(
1 + δ

2
R?1 − δ

2
J?

δ
2
J? 1 + δ

2
R?2

)−1(
1− δ

2
R?1

δ
2
J?

− δ
2
J? 1− δ

2
R?2

)
. (10.7)
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Accordingly, for zero dissipation (i.e. r = 0), the exact sampled-data Hamiltonian

system (10.5) yields the following implicit sampled-data dynamics

x+ = x+ δSδJ∇̄H|x
+

x (10.8)

=

(
x1

x2

)
+
δ

2

(
0 2 sin δ

δ(cos δ+1)

− 2 sin δ
δ(cos δ+1)

0

)(
x+

1 + x1

x+
2 + x2

)

where SδJ is the sampled-data interconnection matrix parameterized by δ which pre-

serves conservation of energy along the Hamiltonian function (10.2), namely

H(x+)−H(x) = δ∇>H|x+

x SδJ∇̄H|x
+

x = 0.

As discussed in Section 7.6, the model given in Yalçin et al. (2015); Aoues et al.

(2017) can be compared with the proposed exact model (10.5). In fact, it reduces to

the zero-order approximation of the exact sampled-data matrix SδJ−R, namely it is

described by the implicit port-Hamiltonian model below

x+ = x+ δS0∇̄H|x
+

x +O(δ2) (10.9)

where S0 = (J −R) verifies the following condition with respect to SδJ−R

SδJ−R = S0 +O(δ).

The so defined Euler-like model, yields a first-order dissipation rate of the form

H(x+)−H(x) = −δ
4
r(x+

2 + x2)2 +O(δ2),

which exhibits a decreasing behaviour (respectively, conservation of energy) in O(δ2)

only; it does not ensure the same dissipative behaviour (at all sampling instants) as

the continuous-time dynamics as illustrated below.

Simulations

Through several simulations, the exact model (10.5) and the first-order model of the

literature Yalçin et al. (2015); Aoues et al. (2017) are compared in Figure 10.2 and
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(b) Hamiltonian function

Figure 10.2: Sampled-data damped RLC model
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Figure 10.3: Sampled-data damped RLC model: Mean Squared Errors

Figure 10.3 illustrating for a sampling period of length δ = 1.5: the time evolution

of the state trajectories (a); the Hamiltonian function (b); the Mean Squared Error

in Figure 10.3 for both the state x and the Hamiltonian H in the dissipative case,

setting the resistance r = 0.5.

In Figure 10.2(a), the proposed model provides an exact matching of the continuous-

time state trajectories at the sampling instants while the dynamics (10.9) is far from

the continuous-time onr even though stability is preserved at any sampling instant

δ. This improvement in the matching of the state is due to the higher order terms

in δ contained into the exact sampled-data matrix SδJ−R. Those higher order terms

improve the matching of the Hamiltonian function too as verified in Figure 10.2(b).

Unlike the exact model, the Euler-like sampled-data model given in (10.9) approaches

the energy behaviour of the continuous-time systems and it produces s a mismatch

in both the state and Hamiltonian evolutions, as illustrated in Figure 10.3.

These comments made for the sampled-data model in the dissipative case, extend

to the conservative case for zero resistance r = 0, as shown in Figure 10.4. No-

tably, the proposed sampled-data model, even in the conservative case, provides an

exact matching of the continuous-time trajectories at the sampling instants. The ap-
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(b) Mean Squared Error of the Sampled-data RLC model

Figure 10.4: Sampled-data undamped RLC model
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proximate model (10.9) provides a slower swinging than the continuous-time one, so

introducing a mismatch between the sampled-data trajectories and the continuous-

time ones at the sampling instants kδ. This is reflected into Figure 10.4(b) where the

error growth is clear for the approximate model (10.9).

Approximate solutions

Even though in the RLC circuit the discrete gradient is exactly computable, as the

sampled-data dynamics might be transformed from an implicit representation (10.5)

to an explicit one (10.6), it is interesting to analyze on such an example the effects

of approximations on the state and Hamiltonian evolutions. Considering approxima-

tions of SδJ−R and ∇̄H|x+

x as in Remark 7.4.2, one sets

SδJ−R =
∑
i≥0

δi

(i+ 1)!
(SJ−R)i, ∇̄H|x+

x =
∑
i≥0

δi

(i+ 1)!
∇̄iH(x)

with by definition S [p]
J−R and ∇̄[p]H(x) the truncations at finite order p ≥ 0

S [p]
J−R =

p∑
i=0

δi

(i+ 1)!
(SJ−R)i (10.10a)

∇̄[p]H(x) =

p∑
i=0

δi

(i+ 1)!
∇̄iH(x). (10.10b)

The effects of approximations of order p2, p1 > 0 on the sampled-data dynamics

x+ = x+ δS
[p1]
J−R(x)∇̄[p2]H(x)

are illustrated. For the first part and up to p1 = 2, one considers the sampled-data

matrix SδJ−R approximated in O(δ3)

S [0]
J−R =

(
0 1

−1 −r

)

S [2]
J−R(x) = S [0]

J−R +
δ2

12

(
−r 1− r2

r2 − 1 r3 − r

)
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and for the second part up to p2 = 2, one considers the discrete gradient ∇̄H|x+

x with

∇̄[0]H(x) =

(
x1

x2

)

∇̄[1]H(x) = ∇̄[0]H(x) +
δ

2

(
x2

−(x1 + rx2)

)

∇̄[2]H(x) = ∇̄[1]H(x) +
δ2

4

(
−x1 − rx2

x2(r2 − 1) + rx1

)
.

Simulations

To motivate the choice of the approximation, consider different combinations (p1 =

{0, 2} and p2 = {0, 1, 2}) for the matrix product S [p1]
J−R∇̄[p2]H(x). This clearly gives

a non-homogeneous sampled model in δ. Those different approximations are re-

ported in Figure 10.6 and Figure 10.5 assuming dissipation r = 0.3 and sampling

period δ = 0.9. Figures 10.7(a), (b), (c) hint an order of approximation of both

the sampled-data matrix S [p1]
J−R and discrete gradient ∇̄[p2]H(x) with p2 > p1. In-

terestingly, the approximate sampled-data matrix S [2]
J−R associated with the exact

discrete gradient (10.4) provides highly comparable performances in both the state

trajectories and Hamiltonian with the exact discrete model described by the exact

sampled-data matrix SδJ−R.

These results (which can be compared with the exact gradient because it is ex-

plicitly computable) validate the necessity of modifying the interconnection and dis-

sipation matrices to get better results than keeping the same interconnection matrix

as the continuous-time one.

10.3 Digital damping feedback

Consider the controlled RLC circuit with control input u and internal dissipation

r = 0 yielding a conservative sampled-data equivalent model with exact sampled-

data matrix given in (10.8).

As already seen for zero dissipation, neither the continuous-time RLC system nor

the sampled-data model are asymptotically stable. For digitally asymptotically sta-

bilize the origin, one implements the digital damping feedback discussed in Theorem
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Figure 10.5: Comparison between different approximations of Sampled-data models:

Hamiltonian function

9.3.1. To this end, we add the input and output ports of the system as in Theorem

9.2.2, that yields a sampled-data equivalent port-Hamiltonian system of the form

x+(u) = x+ δSδJ−R∇̄H|x
+

x + δBδu (10.11)

Y δ
av(x, u) = Bδ>∇̄H|x

+(u)

x+ (10.12)

with x+(u) = x((k+1)δ), x = x(kδ), u = u(kδ), and exact input and output mapping

of the form

Bδ =

(
bδ1

bδ2

)
=

1

δ

(
1− cos δ

sin δ

)
(10.13)

Y δ
av(x, u) = Bδ>∇̄H|x

+(u)

x+ = Bδ>x+ +
1

2
Bδ>Bδu

=
1

δ
(cos δ − 1)x1 +

1

δ
x2 sin δ +

1

δ2
(1− cos δ)u, (10.14)

where x+ is the control-free dynamics given in (10.8) and admitting an explicit so-

lution x+ = Aδx given in (10.7). Then the passivity-based feedback is computed as

the solution to the damping feedback equation

u+ κY δ
av(x, u) = u+

κ

2
Bδ>(x+(u) + x+) = 0,
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Figure 10.6: Comparison between different approximations of Sampled-data models
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which specifies, in this case, as

u+
κ

δ
(cos δ − 1)x1 +

κ

δ
x2 sin δ +

κ

δ2
(1− cos δ)u = 0. (10.15)

Accordingly, the solution to (10.15) is given by

u =− κx1 cos(δ)− x1 + x2 sin(δ)

δ + κ
δ
(1− cos(δ))

.

The feedback above makes the origin of the sampled-data RLC system (10.1)

asymptotically stable in closed loop as shown in Figure 10.7, where the control effect

of the proposed control has been compared with the discrete gradient-based passive

control given in Aoues et al. (2017). We recall that the control provided in Aoues

et al. (2017) is computed as the solution to the implicit equation

u = −κB>∇̄H|x+(u)
x = −κ

2
B>(x+(u) + x). (10.16)

Simulations

The sampling period and damping gain are set as δ = 1.6 and κ = 0.5. Although the

control (10.16) provides satisfactory performances, the proposed feedback in (10.15)

guarantees a high fidelity in in following the trajectories and the Hamiltonian of

the continuous-time system controlled by the continuous-time passive feedback in

van der Schaft (2000) (damping injection feeding back the continuous-time passive

output (10.1b)), i.e.

u(t) = −κB>∇H(x(t)) = −κx2(t).

The better performances ensured by the proposed digital control law are due to

the exact modeling of the sampled-data system which involves the u-average output

described in terms of the discrete gradient ∇̄H|x
+(u)

x+ between x+ and x+(u) while in

(10.16), the discrete gradient ∇̄H|x
+(u)
x is between x and x+(u).

Dirac structure

Because the RLC model admits an exact sampled-data model that is for any fixed

δ, a discrete-time equivalent model, one can describe its associated Dirac structure

representation according to Theorem 4.2.1.
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Figure 10.7: Digital damping control upon the sampled-data RLC model
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Setting the flows fS = (fS1, fS2), fR = (fR1, fR2), fC = (fC1, fC2), and efforts

eS =(eS1, eS2), eR=(eR1, eR2), eC =(eC1, eC2) as

fS1 = −(x+
1 −x1)

fR1 =
√
R?1

1
2
(x+

1 +x1)

fC1 = −(x+
1 (u)−x+

1 )

eS1 = 1
2
(x+

1 +x1)

eR1 = −
√
R?1

1
2
(x+

1 +x1)

eC1 = 1
2
(x+

1 (u)+x+
1 )



fS2 = −(x+
2 −x2)

fR2 =
√
R?2

1
2
(x+

2 +x2)

fC2 = −(x+
2 (u)−x+

2 )

eS2 = 1
2
(x+

2 +x2)

eR2 = −
√
R?2

1
2
(x+

2 +x2)

eC2 = 1
2
(x+

2 (u)+x+
2 )

with (fI , eI) = (Y δ
av(x, u), u), with sampled-data output Y δ

av(x, u) in (10.14), one

defines a Dirac structure

(fS, fR, fC , fI , eS, eR, eC , eI) ∈ D

(fR, eR) ∈ R

that yields the system in the skew symmetric graph form

fS1

fS2

fR1

fR2

fC1

fC2

fI


=



0 −J? −
√
R?1 0 0 0 0

J? 0 0 −
√
R?2 0 0 0

√
R?1 0 0 0 0 0 0

0
√
R?2 0 0 0 0 0

0 0 0 0 0 0 −bδ1
0 0 0 0 0 0 −bδ2
0 0 0 0 bδ1 bδ2 0





eS1

eS2

eR1

eR2

eC1

eC2

eI


, (10.17)

with (bδ1, b
δ
2) in (10.13), satisfying the energy balance equality

e>S1fS1 + e>S2fS2 + e>r1fR1 + e>R2fR2 + e>C1fC1 + e>C2fC2 + e>I fI = 0.

Moreover, as in Theorem 5.1.2, under negative output feedback (10.15) setting

the flows fCū = (fCū1, fCū2), fRū = (fRū1, fRū2), and efforts eCū = (eCū1, eCū2), eRū =

(eRū1, eRū2), as 

fCū1 = −(x+
1 (ū)−x+

1 )

fRū1 = −κ
2
bδ1b

δ
1(x+

1 (ū)+x+
1 )− κ

2
bδ1b

δ
2(x+

2 (ū)+x+
2 )

eCū1 = 1
2
(x+

1 (ū)+x+
1 )

eRū1 = 1
2
(x+

1 (ū)+x+
1 )
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fCū2 = −(x+
2 (ū)−x+

2 )

fRū2 = −κ
2
bδ1b

δ
2(x+

1 (ū)+x+
1 )− κ

2
bδ2b

δ
2(x+

2 (ū)+x+
2 )

eCū2 = 1
2
(x+

2 (ū)+x+
2 )

eRū2 = 1
2
(x+

2 (ū)+x+
2 )

The Dirac structure (10.17) is transformed under feedback into another Dirac

structure



fS1

fS2

fR1

fR2

fCū1

fCū2

fRū1

fRū2


=



0 −J? −
√
R?1 0 0 0 0 0

J? 0 0 −
√
R?2 0 0 0 0

√
R?1 0 0 0 0 0 0 0

0
√
R?2 0 0 0 0 0 0

0 0 0 0 0 0 κbδ1b
δ
1 κbδ1b

δ
2

0 0 0 0 0 0 κbδ1b
δ
2 κbδ2b

δ
2

0 0 0 0 −κbδ1bδ1 −κbδ1bδ2 0 0

0 0 0 0 −κbδ1bδ1 −κbδ2bδ2 0 0





eS1

eS2

eR1

eR2

eCū1

eCū2

eRū1

eRū2


,

(10.18)

satisfying the closed loop energy balance equality

e>S1fS1 + e>S2fS2 + e>r1fR1 + e>R2fR2 + e>Cū1fCū1 + e>Cū2fCū2 + e>Rū1fRū1 + e>Rū2fRū2 = 0.

It follows that the closed-loop sampled-data RLC system under negative output feed-

back (10.15) is again a sampled-data port-Hamiltonian system defined over the Dirac

structure

(fS, fR, fCū , fRū , eS, eR, eCū , eRū) ∈ D

(fR, fRū , eR, eRū) ∈ R,

associated with the graph form (10.18). Finally, as in Remark 5.1.2 the Dirac when

setting xe = (xf , xc), with xf = x, x+
c = x+(ū), xc = x+

f = x+(0) the dynamics over

Xe adopts the augmented state-space representation of the form (4.1), that is

x+
e − xe = (Je(xe)−Re(xe))∇H|x

+
e
xe

with augmented skew symmetric and resistive matrices

Je(xe) =


0 J? 0 0

−J? 0 0 0

0 0 0 0

0 0 0 0

 , Re(xe) =


R?1 0 0 0

0 R?2 0 0

0 0 κbδ1b
δ
1 κbδ1b

δ
2

0 0 κbδ1b
δ
2 κbδ2b

δ
2


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and augmented discrete gradient function

∇H|x+
e
xe = (∇̄H|x

+
f
xf , ∇̄H|x

+
c
xc )> = (∇̄H|x

+
1
x1
, ∇̄H|x

+
2
x2
, ∇̄H|x

+
1 (u)

x+
1

, ∇̄H|x
+
2 (u)

x+
2

)>.

10.4 Discrete IDA-PBC design

As discussed in Section 9.4, a digital passivity-based feedback which stabilizes the

system at a desired equilibrium point (different from the initial one) assigning a

suitable Hamiltonian function Hd(·), can be designed. In this regards, the RLC

circuit can be stabilized at the desired equilibrium point

x? =

(
q̄

0

)

with desired Hamiltonian function

Hd(x) =
1

2
(x− x?)>Pd(x− x?) (10.19)

with positive definite matrix Pd. The stabilization problem is addressed through

discrete-time IDA-PBC as in Theorem 6.3.1, once properly selected the matrices

Jδa , R
δ
a, Pa so that the following matching condition is satisfied

Bδ⊥[(J δ
a −Rδ

a)P − (SδJ + J δ
a −Rδ

a)Pa] = 0

with left-hand side annihilator Bδ⊥ of the sampled-data input vector Bδ, that is

Bδ⊥ = α
(

sin(δ) cos(δ)− 1.
)

Assuming the sampled-data target interconnection matrix unchanged (J δ
a = 0),

and the target equilibrium x? = col(q̄, 0), then it can be assigned to (10.11) by setting

the matrices

Pa =

(
0 0

0 Ñ

)
,

Rδ
a =

(
1− cos(δ) sin(δ)

sin(δ) 1 + cos(δ)− Ñ
Ñ+1

)



226 CHAPTER 10. THE RLC CIRCUIT

where Ñ ∈ R is freely chosen so to guarantee Pd � 0. As seen in Theorem 6.3.1, the

sampled-data IDA-PBC control is the solution to the implicit equation

ū =
1

2
Bδ† [(SδJ −Rδ

a)Pd(x
+(ū) + x− 2x?)− SδJP (x+ + x)

]
. (10.20)

Equivalently, setting the state matrix

Aδ =

(
cos(δ) sin(δ)

− sin(δ) cos(δ)

)
the IDA-PBC control can be explicitly described as

ū = Bδ>[(Aδd − Aδ)x+ Aδd,?x?] (10.21)

so getting the explicit sampled-data closed-loop system

x+(ū) = x+ Aδdx+ Aδd,?x?

with assigned dynamical matrices

Aδd = (I − 1

2
(SδJ −Rδ

a)Pd)
−1(I +

1

2
(SδJ −Rδ

a)Pd)

=

 (Ñ+4) cos2(δ)+(3Ñ+9) cos(δ)+3

3Ñ cos2(δ)+(Ñ+7) cos(δ)+9
− (2+2Ñ) sin(2δ)

3Ñ cos2(δ)+(Ñ+7) cos(δ)+9

− 4 sin(δ)(cos(δ)+2)

3Ñ cos2(δ)+(Ñ+7) cos(δ)+9

(1−Ñ) cos(δ)+3−(3Ñ+4) cos2(δ)

3Ñ cos2(δ)+(Ñ+7) cos(δ)+9

 ,

Aδd,? = −(I − 1

2
(SδJ −Rδ

a)Pd)
−1(SδJ −Rδ

a)Pd

=

 (2Ñ−4) cos2(δ)−(2Ñ+2) cos(δ)+6

3Ñ cos2(δ)+(Ñ+7) cos(δ)+9

(4+4Ñ) sin(δ) cos(δ)

3Ñ cos2(δ)+(Ñ+7) cos(δ)+9
4 sin(δ)(cos(δ)+2)

3Ñ cos2(δ)+(Ñ+7) cos(δ)+9

(6Ñ+4) cos2(δ)+(2Ñ+6) cos(δ)+6

3Ñ cos2(δ)+(Ñ+7) cos(δ)+9

 .

Accordingly, the piece-wise feedback control in (10.20) is explicitly given, for

t ∈ [kδ, (k + 1)δ[, k ∈ N, by the expression

u =
2(1− cos(δ))

3Ñ cos2(δ) + (Ñ + 7) cos(δ) + 9

[
(4Ñ q̄ − 4x1 − 10q̄) cos2(δ)− 5x2 sin(2δ)

+ (4Ñx1 − 2Ñ q̄ − 4q̄) cos(δ) + 14q̄ + 4x1 + 2Ñx2 sin3(δ)

− (2Ñx2 + 6x2) sin(δ)− 3Ñx2 sin(2δ)− (2Ñ q̄ + 4Ñx1) cos3(δ)

]
.
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The proposed solution is based on a direct discrete-digital design and differs from

the digital solution given in Aoues et al. (2015a, 2013); Sümer and Yalçın (2011) as our

digital controller requires constructive matrices Rδ
a and Pa induced by the annihilator

Bδ⊥. The model proposed in Aoues et al. (2015a, 2013); Sümer and Yalçın (2011)

strictly relies upon an emulated-like design which assigns the discrete-time model

with the same Rd and Jd of the continuous-time design, namely u is the solution of

the following equality

(J(x)−R(x))∇̄H|x+(u)
x +Bu = (Jd(x)−Rd(x))∇̄Hd|x

+(u)
x . (10.22)

The benefits of the proposed direct digital design with respect to the literature is

illustrated by means of simulations.

Simulations

The comparison between the proposed control (10.21) and the one given in the liter-

ature as solution to (10.22) is given 10.8 and 10.9. Setting q̄ = 2, Ñ = 0, and initial

condition x0 = col(20, 10), Figure 10.8 shows that both the proposed control and the

literature control, for δ = 1, stabilize the closed-loop RLC system at the desired equi-

librium point but with different performances. The literature control is much closer

to the continuous-time trajectories even though the proposed model shows, in Figure

10.8(b), a faster decreasing of the Hamiltonian function. However, the improvement

of the proposed controller is much evident in Figure 10.9 where a sampling period

of length δ = 2.5 has been considered. For a grater sampling period the literature

controller induces an instability of the closed-loop system since the design is based

on an approximate sampled-data model, while the proposed model still guarantees

asymptotic stability of the desired equilibrium point with again much nicer energy

properties.
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Figure 10.8: Digital IDA-PBC control for the RLC model with δ = 1
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Figure 10.9: Digital IDA-PBC control for the RLC model δ = 2.5
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I
n this case study we consider the sampled-data design and the digital stabilization

of the gravity pendulum system. A sketch of its mechanical representation is

given in Figure 11.1. This case study represents one of the most studied mechan-

ical systems and is used here to illustrate how a nonlinear port-Hamiltonian system

associated with a quadratic and separable Hamiltonian function can be modeled and

controlled under sampling. The example is interesting because, even though the

discrete gradient can be exactly computed, the nonlinearity of the dynamics makes

difficult the computation of an exact sampled-data port-Hamiltonian model so that

approximations are performed. More in detail, three aspects are illustrated:

1. approximate sampled-data port-Hamiltonian models are computed trun-

cation the series expansion describing the exact solutions as detailed in

Section 7.4;

2. stabilization at the origin is achieved via digital negative output feedback

based on the average output discussed in Section 8.1;

3. stabilization at a desired equilibrium point is illustrated via sampled-

data IDA-PBC based on input-Hamiltonian-matching (IHdM) discussed

231
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in Section 8.2.

`ϑ

m · g

Figure 11.1: Simple Gravity Pendulum

11.1 Continuous-time modeling

The gravity pendulum system consists of a mass hanging from a string attached at

a pivot so that it can swing freely. Ideally, when the mass is displaced sideways

from one of its equilibrium points (one stable, and one unstable), it is affected by

the gravity force which accelerates the mass with an oscillatory motion towards its

stable equilibrium point. In this case study the gravity pendulum is a massless string

` to which a bob of mass m is attached. The position of the mass is described by

the angle θ of the string makes with the vertical axis. The pendulum is affected by

a downward gravitational force mg, where g denotes the acceleration due to gravity.

The Hamiltonian function catching respectively the kinetic and the potential en-

ergy of the gravity pendulum, is described by the function

Parameter Description Units

ϑ Pendulum angle rad

m Bob mass kg

l String length m

g gravity constant m·s−2

Table 11.1: Gravity pendulum parameters
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H(ϑ, ϑ̇) =
m`2

2
ϑ̇2 +mg`(1− cos(ϑ)). (11.1)

Due to the Newton’s second law, the dynamics of the pendulum is described by

the equation of motion in its tangential direction

ml2ϑ̈+ rϑ̇+mg` sin(ϑ) = u,

where u is the torque injected into the dynamics, m`2 describes the moment of inertia

associated with the pendulum, and r = b`2 defines the damping force acting onto the

system with coefficient of friction b. Notably, the damping force is used to represent

friction at the pivot and/or air resistance.

Setting the generalized coordinates, position and momentum, as x1 = ϑ and

x2 = m`2ϑ̇, the continuous-time dynamics of the gravity pendulum can be represented

as a two dimensional port-Hamiltonian system of the form(
ẋ1

ẋ2

)
=

(
0 1

−1 −r

)
∇H(x1, x2) +

(
0

1

)
u (11.2a)

y =
1

ml2
x2 (11.2b)

It is clear from the model that the system (11.2a) has equilibrium points coinciding

respectively with (x1?, x2?) = (0, 0) and (x1?, x2?) = (π, 0). However, applying the

Lyapunov Theorem one notices that only (0, 0) is a stable equilibrium point for the

system in free evolution when r > 0. More in general, the gravity pendulum is

intuitively stable in its downward position and unstable in its upward position, for

all r ≥ 0.

11.2 Sampled-data modeling

We are interested in the design of the sampled-data port-Hamiltonian representation

of the gravity pendulum described by the equations (11.2a) when the control input

is set as u = 0. For notational simplicity, in the model below the mass and the string
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are assumed such that m`2 = 1 and mg` = 1, so that the Hamiltonian function (11.1)

reduces as

H(x1, x2) =
1

2
x2

2 + (1− cos(x1)). (11.3)

The sampled-data model is based on Theorem 7.4.1. To begin with, let define the

sampled equivalent dynamics as a sampled-data port-Hamiltonian dynamics of the

form

x+ = x+ δSδJ−R(f, x)∇̄H|x+

x , (11.4a)

describing the sampled version of (11.2a) in the uncontrolled case, where x := x(kδ)

is the state and x+ := x((k+ 1)δ) is the one-step ahead of the uncontrolled evolution

when u = 0. For the gravity pendulum system, the discrete gradient ∇̄H|x+

x and the

discrete Jacobian J̄ [∇H]|x+

x can be exactly computed as

∇̄H|x+

x =

− cos(x+
1 )−cos(x1)

x+
1 −x1

x+
2 +x2

2

 , (11.5a)

J̄ [∇H]|x+

x =

(
sin(x+

1 )−sin(x1)

x+
1 −x1

0

0 1

)
. (11.5b)

The sampled-data matrix SδJ−R(f, x) characterizing the port-Hamiltonian dynam-

ics, and describing both the sampled-data interconnection and dissipation part, is

given in Theorem 7.4.1 as

SδJ−R(f, x) =M(δ, f, x)(J(x)−R(x)) (I + δQ(δ,H, f, x)(J(x)−R(x)))−1 ,

with matrices M(δ, f, x) and Q(δ,H, f, x) respectively given in Lemma 7.1.1 and

Lemma 7.1.4. Closed forms of the matrix SδJ−R(f, x) cannot be computed in practice,

however it can be characterized exploiting the corresponding series expansion in power

of δ given in (7.16) as

SδJ−R(f, x) =
∑
i≥0

δi

(i+ 1)!
(SJ−R)i(x).
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Accordingly, from the expression above and following the expression (7.18) one com-

putes the first terms as

(SJ−R)0 =

(
0 1

−1 −r

)
, (11.6a)

(SJ−R)1 =

(
0 0

0 0

)
, (11.6b)

(SJ−R)2(x) =
1

2

(
−r cos(x1)− r2

r2 − cos(x1) r3 − r cos(x1)

)
, (11.6c)

which yield the approximate sampled-data port-Hamiltonian dynamics in Theorem

7.4.1 of the form

x+ = x+ δ(SJ−R)0∇̄H|x
+

x +
δ3

3!
(SJ−R)2(x)∇̄H|x+

x +O(δ4) (11.7)

that is given precisely by,(
x+

1

x+
2

)
=

(
x1

x2

)
+

(
− δ3

3!2
r δ + δ3

3!2
(cos(x1)− r2)

−δ + δ3

3!2
(cos(x1)− r2) δ3

3!2
r3 − δr − δ3

3!
r cos(x1)

) cos(x+
1 )−cos(x1)

x1−x+
1

x+
2 +x2

2

+O(δ4).

The approximate sampled-data model above is dissipative with respect to the

Hamiltonian function (11.3) through the dissipative part, R(δ, x) = 1
2
(SδJ−R(f, x) +

Sδ>J−R(f, x)), namely

R(δ, x) =

(
δ2

3!2
r 0

0 r − δ2

3!2
r3 + δ2

3!
r cos(x1)

)
+O(δ3).

Therefore, computing the energy variation of the Hamiltonian function along the

approximate port-Hamiltonian dynamics (11.7), one gets

H(x+)−H(x) =− δ∇̄>H|x+

x R(δ, x)∇̄H|x+

x

= −δ
4
r(x+

2 + x2)2 − δ3

3!2
r

(cos(x+
1 )− cos(x1))2

(x1 − x+
1 )2

− δ3

3!4
r(cos(x1)− 1

2
r2)(x+

2 + x2)2 +O(δ4) ≤ 0.
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Alternatively, in the conservative case, namely when the pendulum is not affected

by any internal friction force and the damping term is zeroed (r = 0), the sampled-

data dissipation matrix is null, that is R(δ, f, x) = 0 as in Chapter 7. Accordingly,

the sampled-data port-Hamiltonian dynamics is characterized by the skew-symmetric

matrix SδJ(f, x) only which can be computed through its series expansion in power

of δ given in (7.16) as

SδJ(f, x) =
∑
i≥0

δi

(i+ 1)!
(SJ)i(x)

with for the first terms

(SJ)0 =

(
0 1

−1 0

)

(SJ)1 =

(
0 0

0 0

)

(SJ)2(x) =

(
0 1

2
cos(x1)

−1
2

cos(x1) 0

)
,

providing a conservative approximate sampled-data port-Hamiltonian dynamics with

respect to the Hamiltonian function (11.3). The energy variation verifies conservation

of energy H(x+)−H(x) = 0 at all the sampling instants t = kδ.

As already mentioned exact solutions cannot be computed. Thus approxima-

tions of the sampled-data model are defined by truncating the corresponding series

expansion of SδJ−R(f, x), as

S [p]
J−R(x) =

p∑
i=0

δi

(i+ 1)!
(SJ−R)i(x) (11.8)

at the desired order p ≥ 0.

Remark 11.2.1. When truncating SδJ−R(f, x) in O(δ3), i.e. p = 2 in (11.8), we get

that the energy variation is negative semidefinite if the sampling period δ verifies

δ ∈

[
0,

√
12

r2 + 2

]
.

Accordingly, the corresponding truncated model in O(δ4) ensures dissipation of en-

ergy for any damping force r > 0.
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When p = 0, keeping the interconnection sampled-data matrix equal to the

continuous-time one, one recovers the literature model in Aoues et al. (2017) and

Yalçin et al. (2015) which comes with the following sampled-data approximate rep-

resentation,

x+ = x+ δ(J −R)∇̄H|x+

x

=

(
x1

x2

)
+ δ

(
0 1

−1 −r

) cos(x+
1 )−cos(x1)

x1−x+
1

x+
2 +x2

2

 (11.9)

that is deduced from the approximate Euler model when replacing the gradient

∇H(x) with the discrete gradient ∇̄H|x+

x .

Clearly, the approximate model (11.9) neglects additional terms of the series ex-

pansion defining the sampled-data matrix (SJ−R)i. Those additional terms computed

up to a desired order by using the methodology presented above improve the perfor-

mances of the sampled-data model.

As a consequence of the approximation, even though the approximate model (11.9)

is dissipative and verifies the energy variation (11.3), that is

H(x+)−H(x) = −δ
4
r(x+

2 + x2)2 ≤ 0,

it does not match the continuous-time evolution of H(·).

Simulations

The implication and effectiveness of the proposed sampled-data model of the gravity

pendulum system are reported in Figure 11.3, Figure 11.4 and Figure 11.2 where

the approximate model at order p = 2 is compared with the one proposed in the

literature, say p = 0.

Figure 11.3 and Figure 11.4 illustrate respectively the Mean Squared Error and

the time evolution of the state trajectories and the Hamiltonian function of both the

state x and Hamiltonian H in the damping case, with r = 0.37, and sampling period

of length δ = π
4
. Clearly, the proposed model in (11.7) provides a better matching

of the continuous-time trajectories and a better Hamiltonian evolution with respect

to the literature model. Interestingly enough is the conservative case given in Figure

11.2 where the time evolutions of the state trajectories and the Mean Squared Error

for the state x are reported. One notices that the proposed model yields a better
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Figure 11.2: Sampled-data undamped gravity pendulum
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Figure 11.3: Sampled-data damped gravity pendulum: Mean Squared Error

approximation of the continuous-time system, showing preservation of the trajectories

with a much small mismatch of the continuous-time trajectories than the literature

model as reported in Figure 11.2. Note that, the proposed model achieves better

performances than those of the literature with only one additional term into the

approximate sampled-data dynamics.

Remark 11.2.2. In the simulations where the computation of an exact gradient is

involved, to provide an exact solution to the implicit sampled-data port-Hamiltonian

systems, both the implicit sampled-data models have been solved numerically through

the numerical equation solver function vpasolve powered by MATLAB® and Symbolic

Math Toolbox™. In particular, for both the proposed and literature models, we ask

for any x to find x+ as solution to (11.7) and (11.9) respectively.

Approximate solutions through approximate discrete gradient

In this part we provide approximate solutions of both the sampled-data matrix

SδJ−R(f, x) and the discrete gradient function ∇̄H|x+

x . In particular, in what fol-

lows we illustrate the relevancy of an approximation of SδJ−R(f, x) and ∇̄H|x+

x when
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Figure 11.4: Sampled-data damped gravity pendulum
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Figure 11.5: Comparison between different approximations of Sampled-data models:

Hamiltonian function

computation of exact solutions are though or not feasible. Denoting by S [p]
J−R(x) and

∇̄[p]H(x) as in (10.10), the truncation of the corresponding series expansions at any

finite order, the sampled-data approximate dynamics are given by

x+ = x+ δS [p1]
J−R(x)∇̄[p2]H(x)

for p2, p1 > 0.

As already mentioned, the approximate sampled-data matrices for the gravity

pendulum system are given by

S [0]
J−R =

(
0 1

−1 −r

)

S [2]
J−R(x) = S [0]

J−R +
δ2

12

(
−r (cos(x1)− r2)

r2 − cos(x1) r3 − r cos(x1)

)
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and approximate discrete gradient

∇̄[0]H =

(
sin(x1)

x2

)

∇̄[1]H = ∇̄[0]H +
δ

2

(
cos(x1)x2

−(sin(x1) + rx2)

)

∇̄[2]H = ∇̄[1]H − δ2

4

(
2
3

sin(x1)x2
2 + cos(x1)(sin(x1) + rx2)

cos(x1)x2 − r sin(x1)− r2x2

)
.

Assuming different combinations for the approximate sampled-data model with

S
[p1]
J−R(x)∇̄[p2]H(x) for p1 = {0, 2} and p2 = {0, 1, 2}, simulation are reported in Figure

11.5 and Figure 11.6 for dissipation r = 0.37 and sampling period δ = π
4
.

11.3 Damping feedback design

Let us focus the attention on the digital stabilization of the undamped gravity pen-

dulum system. To achieve that purpose, consider the controlled gravity pendulum

with input torque u and zero internal dissipation r = 0, yielding a conservative

sampled-data equivalent model with the free-control part given by the approximate

sampled-data model (11.7). In this case, the control action yields in practice a digital

control which injects a piece-wise constant torque into the continuous-time gravity

pendulum system, to provide asymptotic stability of the origin in case of zero internal

dissipation.

According to the sampled-data port-Hamiltonian system, affected by a nonzero

control action, presented in Theorem 7.28, the sampled-data equivalent model of the

gravity pendulum system takes the form

x+(u) = x+ δ((SJ−R)0 +
δ2

2
(SJ−R)2(x))∇̄H|x+

x + δugδ(x, u) (11.10a)

Y δ
av(x, u) = (gδ(x, u))>∇̄H|x

+(u)

x+ (11.10b)

with S0(x),S3(x) and ∇̄H|x+

x respectively given in (11.6a) and (11.5a), controlled

part

δgδ(x, u) =

(
gδ1(x)

gδ2(x)

)
= δ

(
0

1

)
+
δ2

2

(
1

0

)
− δ3

6

(
0

cosx1

)
+O(δ4)
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Figure 11.6: Comparison between different approximations of Sampled-data models
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and exact discrete gradient between free dynamics x+ and x+(u), that is

∇̄H|x
+(u)

x+ =

 cos(x+
1 )−cos(x+

1 (u))

x+
1 (u)−x+

1
x+

2 (u)

2
+

x+
2

2

 ,

which yields as a series expansion in power of δ

∇̄H|x
+(u)

x+ =

(
− 1
ugδ1(x,u)

(cos(x+
1 ) cos(ugδ1(x, u))− sin(x+

1 ) sin(ugδ1(x, u))− cos(x+
1 ))

x+
2 + 1

2
gδ2(x, u)u

)

=

(
sinx1

x2

)
+ δ

(
x2 cosx1

1
2
u− sinx1

)
+
δ2

2

(
−x2

2 sinx1 − cosx1(sinx1 + 1
2
u)

−x2 cosx1

)
+O(δ3).

Accordingly, the digital passivity-based feedback, in Theorem 8.1.1, which makes

the origin asymptotically stable in closed loop, is given by the solution of the implicit

damping equation

u =− κY δ
av(x, u) = −κ(gδ(x, u))>∇̄H|x

+(u)

x+ (11.11)

=− κ(x2 +
δ

2
sinx1 −

δ2

6
x2 cosx1 + δ(

1

2
u− sinx1)) +O(δ3).

Thus, setting the control as

u =
∑
i≥0

δi

(i+ 1)!
ui,

the implicit damping equality rewrites as

u0 +
δ

2
u1 +

δ2

6
u2 = −κ(x2 +

δ

2
sinx1 +

δ

2
u0 − δ2

6
x2 cosx1 +

δ2

4
u1 − δ sinx1) +O(δ3),

where one gets for the first terms

u0 = −κx2

u1 = κ(κx2 + sinx1)

u2 = κ
(
x2 cos(x1)− 3

2
κ(κx2 + sinx1)

)
.
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Finally, the digital damping feedback, solution to (11.11), yields the following

approximate control

u = u0 +
δ

2
u1 +

δ2

3!
u2 +O(δ3) (11.12)

= −κx2 +
δ

2
κ(κx2 + sinx1) +

δ2

6
κ
(
x2 cos(x1)− 3

2
κ(κx2 + sinx1)

)
+O(δ3)

which makes the origin asymptotically stable in closed loop.

Simulations

The improvement achieved under digital damping performed over the proposed sampled-

data port-Hamiltonian representation with respect to the usual feedback given in the

literature Sümer and Yalçın (2011); Aoues et al. (2017) provided by the solution of

u` = −κB>∇̄H|x+(ul)
x

and approximately given by

u` = −κx2 +
δ

2
κ(κx2 + sin(x1)) +

δ2

4
κ
(
x2 cosx1 − κ(κx2 + sinx1)

)
+O(δ3),

are reported in Figure 11.7 with a sampling period of δ = π
2

and in Figure 11.8 with

δ = 2
3
π, both with damping gain κ = 1.

The proposed feedback clearly achieves stabilization of the closed-loop system

with better performances with respect to the approximate control u` of the literature.

These improved performances are mainly due to the u-average output described in

terms of the discrete gradient ∇̄H|x
+(u)

x+ between x+ and x+(u).

Approximations of the implicit damping equation (11.11), can be alternatively

computed numerically exploiting the exact discrete gradient and the approximate

sampled-data dynamics (11.10) obtained by truncating SδJ−R(f, x) and gδ(x, u) at a

desired order in δ. In particular, as suggested in the literature Sümer and Yalçın

(2011); Aoues et al. (2017) one gets the approximate equation

u = −κg>(x)∇̄H|x
+(u)

x+ = −κ
(
x+

2 (u)

2
+
x+

2

2

)
(11.13)

which is obtained setting gδ(x, u) = col(0 1) and based on the deduced u-average

output. The proposed control is discussed in Figure 11.9, with damping improvement
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κ = 1 and sampling period of length δ = 2.75 and compared with the damping output

feedback proposed in the literature Aoues et al. (2017) of the form

u = −κg>(x)∇̄H|x+(u)
x = −κ

(
x+

2 (u)

2
+
x2

2

)
(11.14)

based on the standard literature passivating output. Both the equations (11.13) and

(11.14) can be numerically solved through the numerical equation solver function

vpasolve powered by MATLAB® and Symbolic Math Toolbox™.

Accordingly, the digital feedback laws deduced as the numerical solutions to

(11.13) and (11.14) are compared by means of simulations to highlight the bene-

fits of the proposed sampled-data port-Hamiltonian structure with respect to the one

usually employed in the literature, even when solutions are not computed as series

expansions in power of δ. In particular, the proposed feedback computed with the

discrete gradient ∇̄H|x
+(u)

x+ in (11.13) stabilizes the closed-loop system and provides

satisfactory energy evolution as shown in Figure 11.9(b), while the literature control

(11.14) is not stabilizing the closed-loop system at the origin for a large sampling

period of δ = 2.75. This failure in the stabilization purpose is mainly due to the dif-

ferent discrete gradients involved in to the different sampled-data port-Hamiltonian

forms employed for the design leading to the definition of two different passivating

outputs.
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Figure 11.7: Approximate digital damping control upon the sampled-data pendulum

model with δ = π
2
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Figure 11.8: Approximate digital damping control upon the sampled-data pendulum

model with δ = 2
3
π.
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Figure 11.9: Digital damping control with exact discrete gradient upon the sampled-

data pendulum model
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11.4 Energy-based digital stabilization

In this section the digital stabilization problem of the gravity pendulum is addressed

exploiting the result in Theorem 8.2.1. The control purpose relies on the possibility of

stabilizing the continuous-time gravity pendulum model (11.2a) at the desired equi-

librium point, meaning at forcing the pendulum to keep a desired angular position ϑ.

From the control perspective, the natural procedure to stabilize the gravity pendulum

is by assigning a desired energy function, consisting of the kinetic and the potential

functions, having a minimum at the desired equilibrium point. The most important

step in the choice of the energy function is due to the selection of the potential energy

function that should be assigned.

Continuous-time design

Consider the usual continuous-time gravity pendulum (11.2a) actuated by the torque

u and assume that a desired equilibrium point

x? = col(x1?, 0)

is assigned to the closed-loop system. From the discussion given in Section 8.2,

the continuous-time dynamics (11.2a) is feedback passive thorough the IDA-PBC

feedback

u = γ(x) + v,

with

γ(x) = sin(x1)− sin(x1 − x1?), (11.15)

making the closed-loop system(
ẋ1

ẋ2

)
=

(
0 1

−1 −r

)
∇Hd +

(
0

1

)
v,

with output y = x2 passive with respect to the desired energy function

Hd(x) =
1

2
x2

2 + (1− cos(x1 − x1?)) (11.16)

having a minimum in x?. Thus, in the original coordinates, the new energy function

Hd(q, p) of the desired closed-loop system provides a shaped potential energy which
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is characterized by the function (1 − cos(ϑ − ϑ?)) where ϑ? is the desired angular

position of the pendulum. Furthermore, the Hamiltonian function Hd(x) along the

closed-loop dynamics verifies the inequality

Ḣd(x) = −rx2
2 + vy ≤ vy.

Sampled-data design

As discussed in Section 3.5.2, the sampled equivalent model of the gravity pendulum

(11.7) might be approximated in O(δ3) by approximating the discrete gradient as

follows

∇̄H|x+

x =

(
sin(x1)

x2

)
+
δ

2

(
cos(x1)x2

− sin(x1)− rx2

)
+O(δ2)

which yields the following sampled-data dynamics in O(δ3) given in the difference

and differential representation

x+ =

(
x1

x2

)
+ δ

(
x2

− sin(x1)− rx2

)
+
δ2

2

(
− sin(x1)− rx2

r(sin(x1) + rx2)− x2 cos(x1)

)
+O(δ3)

∂x+(u)

∂u
= δ

(
0

1

)
+
δ2

2

(
1

−r

)
+O(δ3)

which is equivalent to the approximate sampled-data dynamics in the form of a map

x+(u) =

(
x1

x2

)
+ δ

(
x2

− sin(x1)− rx2

)
+
δ2

2

(
− sin(x1)− rx2

r(sin(x1) + rx2)− x2 cos(x1)

)

+ δ

(
0

1

)
u+

δ2

2

(
1

−r

)
u+O(δ3) (11.17)

On the basis of Theorem 8.2.1, to digitally stabilize the continuous-time pendulum

one computes the approximate digital control

u = γδ[1](x) + v, (11.18)
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with γδ[1](x) in (3.45) specified as

γδ[1](x) = γ(x) +
δ

2
γ1(x) (11.19)

and γ1(x) = γ̇(x) taking the form

γ1(x) = (cos(x1)− cos(x1 − x1?))x2.

The physical interpretation of the approximate solution suggests that the digital

control is a piecewise constant torque applied upon the pivot of the gravity pendulum,

of the form

u = (sin(ϑ)− sin(ϑ− ϑ?))−
δ

2
(cos(ϑ)− cos(ϑ− ϑ?))ϑ̇,

for all t ∈ [kδ, (k+1)δ[. Accordingly, the approximate sampled-data dynamics (11.17),

with v = 0, achieves the second-order approximation of the port-Hamiltonian dynam-

ics

x+(γδ[1](x)) = x+ δ(SδJ−R)0∇̄Hd|
x+F δd (x)
xk (11.20)

along with the approximate vector field

F
δ[2]
d (x) =δ

(
x2

− sin(x1 − x1?)− rx2

)
+
δ2

2

(
− sin(x1 − x1?)− rx2

r sin(x1 − x1?) + x2(r2 − cos(x1 − x1?))

)
,

and approximated desired discrete gradient function

∇̄Hd|
x+F

δ[2]
d (x)

x =

(
sin(x1 − x1?)

x2

)
+
δ

2

(
cos(x1 − x1?)x2

− sin(x1 − x1?)− rx2

)
+O(δ2).

For completeness, the sampled-data dynamics, at the sampling instants kδ, is

passive with storage function (11.16) and passifying output given by the expression

Y δ
dav

(ū)(x, v) = x2 +
δ

2
(v − 2rx2) +O(δ2).

Also in this case, the approximate passive output of the system is given physically in

the original coordinates as

Y δ
dav

(ū)(ϑ, ϑ̇, v(kδ)) = (1− δr)ϑ̇((kδ)) +
δ

2
v((kδ))

for all t ∈ [kδ, (k + 1)δ[.



11.4. ENERGY-BASED DIGITAL STABILIZATION 253

Roughly speaking, the approximate passive output in O(δ2) is obtained by the

measures of ϑ̇(t) at the instant t = kδ and weighed by the proportional term δ(1−δr),
plus the piecewise additional torque δ2

2
v(t). Accordingly, the closed-loop system under

(11.18) verifies the dissipation inequality

H(x+(u))−H(x) ≤ x2v +
δ

2
(v2 − 2rx2v) +O(δ2).

In addition, from Theorem 8.1.1 one computes the implicit damping equality

v = −κx2 −
δ

2
(κv − 2κrx2) +O(δ2), κ > 0

for all t ∈ [kδ, (k + 1)δ[ which ensures convergence to a ball containing x? of radius

in O(δ2). Then setting

v =
∑
i≥0

δi

(i+ 1)!
vi,

one obtains rewrites the implicit damping equality above as

v0 +
δ

2
v1 = −κx2 −

δ

2
(κv0 − 2κrx2) +O(δ2), κ > 0

so providing for the firsts terms

v0 = −κx2

v1 = κ(κ+ 2r)x2.

Simulations

Setting the desired equilibrium point x? = col(π
2
, 0), initial condition x0 = col(0, 0),

and dissipation term r = 0.37, some illustrative simulations are considered in Figure

11.11, Figure 11.14, and Figure 11.12.

Figure 11.10, Figure 11.11, Figure 11.13, and Figure 11.14 compare the effect of

the continuous-time feedback (11.15), the 0-order approximated feedback (that is the

emulated feedback of (11.15)), namely

uδ[0] = γδ[0] + vδ[0]
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Figure 11.10: Energy-based stabilization for δ = 1 and κ = 0: Mean Squared Error

and the 1st-order approximate control in (11.19)

uδ[1] = γδ[1] + vδ[1]

with vδ[1] = v0 + δ
2
v1, applied to the pendulum system, respectively with damping in-

jection κ = 0 and κ = 0.1. The purpose is to show their performance over the desired

Hamiltonian function (11.16) and the closed-loop trajectories for a sampling interval

of δ = 1s. The Figure 11.11(b) highlights that the 1-order approximated feedback

significantly approaches both the continuous-time trajectories and the Hamiltonian

Hd(t), in Figure 11.11(c), while the emulated feedback suffers the step-size of δ, so

that it is not able to match neither the desired Hamiltonian nor to stabilize the de-

sired equilibrium. This effect is better shown in Figure 11.11(a) where the Mean

Squared Error with respect to both the state x and the desired Hamiltonian Hd is

illustrated. The same consideration hold for a small damping improvement κ = 0.1

as depicted in Figure 11.14. Finally, Figure 11.12 compares the Root Mean Squared

Error (RMSE) in the Hamiltonian matching under approximate solutions uδ[0] and

uδ[1] for δ ∈ [0.05 : 0.05 : 1.5], respectively with v = 0, where the improvement of the

proposed feedback is clear even for small values of δ.
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Figure 11.11: Energy-based stabilization for δ = 1 and κ = 0.
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Figure 11.12: Matching error for δ ∈ [0.05, 1.5].
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Figure 11.13: Energy-based stabilization for δ = 1 and κ = 0.15: Mean Squared

Error
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Figure 11.14: Energy-based stabilization for δ = 1 and κ = 0.15.
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Chapter 12

The Magnetic Levitation Ball
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T
he Magnetic levitation system is an ubiquitous electro-mechanical system

consisting of an metal ball in a vertical magnetic field created by a single

electromagnet as in, as in Ortega et al. (2001); van der Schaft et al. (2014).

The vertical position of the ball, in the mechanical system, can be controlled by setting

the right value of the current through the electromagnet, and the current, in the

electrical system, can be controlled by adjusting the voltage across the electromagnet

terminals. The physical importance of this system as a case study is justified as,

unlike the previous example, the magnetic levitation ball possesses a non-separable

Hamiltonian function, and thus the computation of a sampled-data representation

becomes much more challenging. In this case study we focus in particular on:

1. approximate sampled-data port-Hamiltonian models computed by trun-

cating the exact series expansions as detailed in Section 7.4;

2. stabilization at a desired equilibrium point via sampled-data IDA-PBC

based on IHdM discussed as detailed in Section 8.2.

259
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Figure 12.1: Magnetic Levitation Ball

12.1 Continuous-time modeling

The sketch of the magnetic levitation ball system is reported in Fig 12.1. The dy-

namical model consists of an ball in a vertical magnetic field created by a single

electromagnet, as in Rodriguez et al. (2000), which comes form the Kirchoff’s voltage

law and Newton’s second law as

Φ̇ + ri = u

mÿ = F −mg

with m the mass of the iron ball, r the coil resistance, i the current in the coil, F the

force created by the electromagnet, u the external voltage acting on the closed-loop

system, and y the ball position describing the difference between center of the ball

and nominal position. Considering the standard assumption on the unsaturated flux

Φ = L(y)i where L(y) denotes the value of the inductance, the force created by the

electromagnet is given by

F =
1

2

∂L

∂y
(y)i2.

Setting the state variable as x = [Φ, y,mẏ], that is x1 the flux, x2 the difference

between the position of the center of the ball and its nominal position (with the x2-axis

oriented downward) and x3 the vertical momentum, the Hamiltonian representation
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of the magnetic levitation system is characterized by a non-separable Hamiltonian

function,

H(x) = mgx2 +
x2

3

2m
+

x2
1

2L(x2)
.

For small values of x2, a suitable approximation of the inductance (for −∞ < x2 < 1)

is given by

L(x2) =
k

(1− x2)
,

k is a positive constant depending on the number of coil turns. Accordingly, the

associated continuous-time dynamics, describing an iron ball in a vertical magnetic

field created by a single electromagnet, takes the form

ẋ =

−r 0 0

0 0 1

0 −1 0

∇H(x) +

1

0

0

u (12.1a)

y =
1

k
(1− x2)x1 (12.1b)

where y denotes now the passive output of the system providing for the associated

Hamiltonian function

Ḣ(x) = −r
(

1

k
(1− x2)x1

)2

+
u

k
(1− x2)x1 ≤ uy.

12.2 Sampled-data modeling

For computing the sampled-data port-Hamiltonian model (7.14) based on the Mag-

netic Levitation Ball system (12.1a) let us focus on the free dynamics that is given

Parameter Description Units

y ball vertical position rad

m Ball mass kg

l String length m

g gravity constant m·s−2

i current in the coil A (amperes)

u voltage source V (volt)

r Coil resistance Ω (ohm)

Table 12.1: Magnetic levitation ball parameters
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by

ẋ =

−r 0 0

0 0 1

0 −1 0

∇H(x). (12.2)

For the continuous-time dynamics given above, the sampled-data representations

goes through the computations of both the discrete gradient and the discrete Jacobian

function taking here the form

∇̄H|x+

x =


1

L(x2)
(x+

1 + x1)− 1
6k

(x+
2 − x2)(x1 + 3x+

1 )

mg + 1
6k

((x+
1 )2 + x+

1 x1 + x2
1)

1
2m

(x+
3 + x3)



J̄ [∇H]|x+

x =


1
k
− 1

k
(x+

2 + x2) − 1
k
(x+

1 + x1) 0

− 1
k
(x+

1 + x1) 0 0

0 0 1
m

 .

As previously discussed, the sampled-data matrix SδJ−R(f, x) characterizing the

port-Hamiltonian dynamics, and describing both the sampled-data interconnection

and dissipation part, is given in Theorem 7.4.1 as

SδJ−R(f, x) =M(δ, f, x)(J(x)−R(x)) (I + δQ(δ,H, f, x)(J(x)−R(x)))−1 ,

with matrices M(δ, f, x) and Q(δ,H, f, x) respectively given in Lemma 7.1.1 and

Lemma 7.1.4. However, since in this nonlinear case a closed form of the matrix

SδJ−R(f, x) cannot be pursued, it must be characterized exploiting the corresponding

series expansion in power of δ given in (7.16) as

SδJ−R(f, x) =
∑
i≥0

δi

(i+ 1)!
(SJ−R)i(x).

Accordingly, the approximate sampled-data model of the state-space representation

in Theorem 7.4.1 can be computed considering the first terms of the sampled-data

matrix

SδJ−R(f, x) = (SJ−R)0 +
δ2

3!
(SJ−R)2(x) + (SJ−R)3(x) +O(δ4)

so achieving the following sampled-data port-Hamiltonian system

x+ = x+ δ(SJ−R)0∇̄H|x
+

x +
δ3

3!
(SJ−R)2(x)∇̄H|x+

x +
δ4

4!
(SJ−R)3(x)∇̄H|x+

x
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where x := x(kδ) is the state and x+ := x((k + 1)δ) is the one-step ahead of the

uncontrolled evolution when u = 0, and sampled-data matrices given by

(SJ−R)0 =

−r 0 0

0 0 1

0 −1 0

 ,

(SJ−R)2 =
rx1

2


− r2

x1L(x2)2
1
km

r
kL(x2)

1
km

0 0

− r
kL(x2)

0 − 1
k2x1

 ,

(SJ−R)3 =r2x1


x2

1−2gkm

2k2mx1
− rx3

kmx1L(x2)
0 − 2r

kL(x2)2 − x3

k2m

− 1
kmL(x2)

0 0
r

kL(x2)2 + 2x3

k2m
0 x1

k2L(x2)

 .

From the first of the series expansion of the sampled-data matrix SδJ−R(f, x) given

above, two interesting facts come to light:

� in case of zero dissipation, meaning with no resistance r = 0 into the

electrical circuit, both the additional matrices, say (SδJ−R)2 and (SδJ−R)3,

are zeroed and thus the approximate matrix SδJ(f, x) in O(δ4) verifies

SδJ(f, x) =

0 0 0

0 0 1

0 −1 0

+O(δ4),

showing its skew-symmetry and getting energy conservation with the

same interconnection matrix J as in continuous-time up to O(δ4), that

is

H(x+)−H(x) = δ
(
∇̄H|x+

x

)>
SδJ(f, x)∇̄H|x+

x = 0;

� for positive values of the resistance r > 0 the symmetric part of (SJ−R)2(x)

and (SJ−R)3(x) is not positive definite in general. However, since the

model (12.2) does hold for small values of x2, because the approximation

of the inductance L(x) into H(x), the approximate model still provides

dissipation for δ small enough with a dissipation rate computed with the

additional correcting term (SJ−R)2(x),
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H(x+)−H(x) = δ
(
∇̄H|x+

x

)>(
(SJ−R)0 +

δ2

3!
(SJ−R)2(x)

)
∇̄H|x+

x +O(δ4)

= −δr
(

1

L(x2)
(x+

1 + x1)− 1

6k
(x+

2 − x2)(x1 + 3x+
1 )

)2

− δ3

12

rx2
1

k2L(x2)

(
1

2m
(x+

3 + x3)

)2

− δ3

12

r3

L(x2)2

(
1

L(x2)
(x+

1 + x1)− 1

6k
(x+

2 − x2)(x1 + 3x+
1 )

)2

+
δ3rx1

6km

(
1

L(x2)
(x+

1 + x1)

)(
mg +

1

6k
((x+

1 )2 + x+
1 x1 + x2

1)

)
− δ3rx1

6km

(
1

6k
(x+

2 − x2)(x1 + 3x+
1 )

)(
mg +

1

6k
((x+

1 )2 + x+
1 x1 + x2

1)

)
+O(δ4).

Because exact solutions cannot be computed in practice, approximations of the

matrix SδJ−R(f, x) are defined as the truncation of the corresponding series expansions

as in Section 8.2. More in detail, approximations of the sampled-data model are

defined by truncating the corresponding series expansion of SδJ−R(f, x), as

S [p]
J−R =

p∑
i=0

δi

(i+ 1)!
(SJ−R)i(x) (12.3)

at the desired order p ≥ 0. As in the Gravity pendulum system, when setting

the approximation order p = 0 one recovers the approximate sampled-data model

proposed in the literature by Sümer and Yalçın (2011); Aoues et al. (2017). More in

general for higher order of p one gets

S [0]
J−R =

−r 0 0

0 0 1

0 −1 0

 (12.4a)

S [2]
J−R(x) = S [0]

J−R +
δ2rx1

12


− r2

x1L(x2)2
1
km

r
kL(x2)

1
km

0 0

− r
kL(x2)

0 − 1
k2x1

 (12.4b)

S [3]
J−R(x) = S [2]

J−R(x) +
δ3r2x1

24


x2

1−2gkm

2k2mx1
− rx3

kmx1L(x2
0 − 2r

kL(x2)2 − x3

k2m

− 1
kmL(x2)

0 0
r

kL(x2)2 + 2x3

k2m
0 x1

k2L(x2)

 . (12.4c)
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(a) Phase-portrait

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Hamiltonian function

Figure 12.2: Sampled-data model of the Magnetic Levitation Ball system
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Figure 12.3: Mean Squared Error in the state x and Hamiltonian H with respect to

the continuous-time of the Magnetic Levitation Ball system

Simulations

The comparison between approximate model deduced for p = {0, 3}, that are S [0]
J−R∇̄H|x

+

x

and S [3]
J−R(x)∇̄H|x+

x given in (12.4) has been illustrated in Figure 12.2 and Figure 12.3.

The simulations are performed by setting m = 8.44 · 10−2, k = 6.4042 · e−5, r = 2.52,

g = 9.81, initial condition x(0) = col(
√

2kmg, 0.3, 0), and a sampling period of length

δ = 4.5 · 10−2. It is clear that in this case, unlike the previous example the im-

provement provided by a better approximation, due to S [3]
J−R(x)∇̄H|x+

x , is not much

higher than the first-order approximate model S [0]
J−R(x)∇̄H|x+

x , even though for in

the Phase-portrait in Figure 12.2 a better matching of continuous-time trajectories

is achieved. This is better seen in Figure 12.3 where the Mean Squared Error with

respect to the state x and the Hamiltonian function H of the continuous-time system

is reported.

Approximate solutions through approximate discrete gradient

As for the gravity pendulum system, we provide approximate solutions of both the

sampled-data matrix SδJ−R(f, x) and the discrete gradient function ∇̄H|x+

x . In par-
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ticular, in what follows we illustrates the relevancy of approximations of SδJ−R(f, x)

and ∇̄H|x+

x when computation of exact solutions are though or not feasible. In

other words, in lieu of exploiting exact computation of the discrete gradient function

might be interesting to analyze the effect of the non-homogeneous approximation of

the sampled-data dynamics considering different approximation in δ of the sampled-

data matrix SδJ(f, x) and the discrete gradient function ∇̄H|x+

x . Again, denote with

S [p]
J−R(x) and ∇̄[p]H(x) the truncation of the corresponding series expansions at any

finite order, then the sampled-data approximate dynamics is given by the expression

x+ = x+ δS [p1]
J−R(x)∇̄[p2]H(x)

for p2, p1 > 0. The approximate sampled-data matrices for the magnetic levitation

ball are given in (12.4) whereas for the approximate discrete gradients one gets

∇̄[0]H =

−
x1

k
(x2 − 1)

mg − x2
1

2k
x3

m



∇̄[1]H = ∇̄[0]H +
δ

2

−
rx1(x2

2−2x2+1)

k2 − x1x3

km

− rx2
1

k2 (x2 − 1)
1
m

(
x2

1

2k
−mg)



∇̄[2]H = ∇̄[1]H +
δ2x1

4k2


14rx3−14rx3x2−3x2

1

6m
+

18r2x2
2−6r2x3

2−18r2x2+6r2+6gk2

6k

− rx1(5mrx2
2−10mrx2+5mr+3kx3)

3km
rx1

m
(x2 − 1)



∇̄[3]H = ∇̄[2]H − δ3r

2k3


x1(6gk2−6gk2x2+2r2x4

2−8r2x3
2+12r2x2

2−8r2x2+2r2)

12k

− rx2
1(2gmk2−10x3krx2+10x3kr−kx2

1−6mr2x3
2)

12km

− (2r2x2
1x

2
2−4r2x2

1x2+2r2x2
1)m

6rm2



− δ3r

2k3


x1(10rx2

2x3−20rx2x3+10rx3+5x2
1x2−5x2

1)

12m
+

4kx1x2
3

12m2

− rx2
1(18mr2x2

2−18mr2x2+6mr2)

12km

−krx2
1x3

6rm2



Different products S [p1]
J−R(x)∇̄[p2]H(x) for p1 = {0, 2, 3} and p2 = {0, 1, 2, 3}, as in

the previous case studies, produce different approximate sampled-data models with

non-homogeneous discretization in δ yielding interesting behaviours at the sampling
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instants t = kδ. Approximate sampled-data models of the Magnetic levitation Balls

system have been reported in Figure 12.4 and Figure 12.5 with sampling period of

δ = 3.2 · 10−2. Simulations empathize the suitable choice of the order approximation

with respect to the discrete gradient and or the sampled-data matrices. Much clearer

in 12.5, trivially better are the approximations of the discrete gradient and of the

sampled-data matrix the better is the fidelity of the energetic evolution in H(x), but

at the same time, a better approximation of the discrete gradient has much more

effect on the evolution of the system than a better approximation of the sampled-

date; that is, a choice of p2 ≥ p1 is preferable.
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(b) State evolution x2

Figure 12.4: Comparison between different approximate Magnetic Levitation Ball

under sampling
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(b) Hamiltonian function H

Figure 12.5: Comparison between different approximate Magnetic Levitation Ball

under sampling
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12.3 Energy-based digital stabilization

After the modeling of the sampled-data representation of the Magnetic levitation

Ball system, we address the problem of digitally stabilizing the system at a desired

equilibrium point. In particular, the control objective is mainly to place the metal ball

at a desired vertical position through a piece-wise control function injected into the

continuous-time system. Precisely, due to the result in Theorem 8.2.1, let us choose

a desired constant position x?2 for the ball; the aim is to stabilize the continuous-time

port-Hamiltonian dynamics (12.2) to the desired equilibrium

x? = col(
√

2kmg, x?2, 0)

via a digital IDA-PBC strategy.

Continuous-time design

The continuous-time IDA-PBC design in Ortega et al. (2001), suggests to assign the

following desired energy function

Hd(x) =
1

6kα
x3

1 +
1

2m
x2

3 +mg

(
x2 +

β

2
φ̃2 − φ̃

)

to the closed-loop system, with φ̃ = 1
α

(x1 − x?1) + (x2 − x?2) and α, β > 0, with the

corresponding IDA-PBC feedback

γ(x) =
r

k
(1− x2)x1 −

α

m
x3 −

r

α
(

1

2k
x2

1 −mg)

− β

ra
((x1 − x?1) + α(x2 − x?2)). (12.5)
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Sampled-data design

The digital controller proposed in Theorem 8.2.1 is an approximate controller in O(δ2)

given for the Magnetic Levitation ball system by

γδ[1](x) = γ(x) +
δ

2
γ̇(x) (12.6)

=
r

k
(1− x2)x1 −

α

m
x3 −

r

α
(

1

2k
x2

1 −mg)− β

ra
((x1 − x?1) + α(x2 − x?2))

+
δ

2
(
r

k
(1− x2)− r

αk
− β

ra
)(
r

k
(1− x2)x1 −

α

m
x3 −

r

α
(

1

2k
x2

1 −mg)

− β

ra
((x1 − x?1) + α(x2 − x?2))− r ∂H

∂x1

)− δ

2
(
r

k
x1 +

βα

ra
)
∂H

∂x3

+
δ

2

α

m

∂H

∂x2

.

Simulations

Taking advantage of the digital control purpose discussed in Section 8.2, we compare

the performances of the first-order approximate control (12.6) with the emulated

control

γδ[0](x) =
r

k
(1− x2)x1 −

α

m
x3 −

r

α
(

1

2k
x2

1 −mg)

− β

ra
((x1 − x?1) + α(x2 − x?2)). (12.7)

The results of the closed-loop systems under the continuous-time uc = γ(x), the

emulated uδ[0] = γδ[0](x) and the improved uδ[1] = γδ[1](x) are given in Figure 12.7

and Figure 12.8. Simulations are performed setting the desired vertical position

x?2 = 1, the improved damping ra = 1, α = 0.5, β = 0.1, m = 8.44 · 10−2, k =

6.4042 · e−5, r = 2.52, g = 9.81, and initial condition x0 = col(x?1, 0, 0) as in Ortega

et al. (2001). In particular, Figure 12.7(a) highlights that both the digital controllers

stabilizes the system at the desired vertical position but the improved uδ[1] better

matches the state trajectories obtained through uc for a sampling period of length

δ = 2·10−2. However, the emulated control suffers at t = 12 and consequently violates

the passivity condition on the desired Hamiltonian function Hd(x). In Figure 12.7,

a sampling period of length δ = 6 · 10−2 as been set, showing the improved effect

on the stability and the desired Hamiltonian function matching with respect to the

emulated control which loose its stabilization effect on the closed-loop system, since
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Figure 12.6: Root Mean Squared Errors

it produces instability of the closed-loop system and an unbounded growth of the

desired Hamiltonian function.

The matching errors with respect to the desired Hamiltonian function Hd(x) and

the state trajectories x for different sampling period δ related to the emulated control

uδ[0] and the improved uδ[1] have been reported in Figure 12.6. The Figure shows

that the Root Mean Squared Error for both the Hd(x) and x are clearly smaller

for the improved uδ[1] than the emulated uδ[0], even for small value of δ, namely

δ ∈ [1.8 · 10−3, 5.5 · 10−2].

Summarizing, even though higher order approximations of the dynamics do not

improve the discretization performances of the uncontrolled system, they become

fundamental in control design as notable performances are guaranteed even when

including only one correcting term into the digital feedback.
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Figure 12.7: Sampled-data model of the Magnetic Levitation Ball system
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Figure 12.8: Sampled-data model of the Magnetic Levitation Ball system
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Conclusions

T
he manuscript dealt with the modeling and control of discrete-time port-

Hamiltonian systems and their characterization under sampling with the

purpose of setting control methods that exploit the energy property of the

system. With this in mind, the first problem which has been faced is the defi-

nition of port-Hamiltonian representations in discrete time catching the energetic

structure and properties of the dynamics. To handle this issue, in Part II a novel

port-Hamiltonian structure have been introduced making use of two main discrete-

time concepts: Difference/Differential representation (DDR) and discrete gradient

function. The definition introduced in Definition 4.1.1 provides a port-Hamiltonian

system that splits into the free and controlled part the dynamics as

x+ = x+ (J(x)−R(x))∇̄H|x+

x

∂x+(u)

∂u
= G(x+(u), u) with x+(0) = x+

Y (·, u) = LG(·,u)H(·)

or equivalently achieves a structure in the form of a map as

x+(u) = x+ (J(x)−R(x))∇̄H|x+

x + g(x, u)u

Yav(x, u) = g>(x, u)∇̄H|x
+(u)

x+ .

From the structure of the system itself, it results that the conjugate passive output

in the discrete-time context naturally arises with a u-average mapping Yav(x, u), so

recovering the concept of u-average passivity and defining an energy balance equation

which clearly decouples the internal dissipated energy from the supplied one.

Similarly to the continuous-time case, a Dirac structure underlines the proposed

port-Hamiltonian system. Unlike the continuous-time case, it results in Theorem

277
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4.2.1 that the storing elements belonging to the discrete Dirac structure are de-

coupled in two parts: one related to the controlled dynamics, one related to the

controlled-free dynamics. In addition, it has been proved in Theorem 2.4.1 that the

feedback interconnection between two u-average passive systems, through the power-

preserving interconnection of u-average passive outputs, results again in a passive

system. This result directly applies to discrete-time port-Hamiltonian systems, in

Theorem 4.2.2, proving that the power-preserving interconnection between discrete-

time port-Hamiltonian systems preserves the port-Hamiltonian structure.

The introduced port-Hamiltonian system has been suitably exploited for defining

energy-based controllers. As usual in a discrete time context, the major difficulty

stands in the implicit dependence of the dynamics from the control variable; an

aspect that makes difficult the design of any control feedback in discrete time. First

in Theorem 5.1.1 the negative output feedback computed upon the output Yav(x, u)

has been given as the solution to an implicit damping equality. Then in Theorem

5.1.2 we showed how the Dirac structure of the port-Hamiltonian system is modified

under the negative output feedback, to conclude that the closed-loop system provides

a port-Hamiltonian structure. Finally, in Theorem 5.2.1, the IDA-PBC stabilization

problem has been investigated in the nonlinear case and sufficient conditions are

given.

All the results have been specified in detail with reference to LTI dynamics in

Chapter 6. In particular, we give the structure of the negative output feedback which

achieves global asymptotic stabilization. Then, a necessary and sufficient condition

for solving the LTI IDA-PBC problem is given along with the explicit structure of

the IDA-PBC feedback.

How these results apply in the sampled-data framework? A common issue arising

when a continuous-time port-Hamiltonian system is represented by a sampled-data

model, for each fixed sampling period of length δ, is the loss of two fundamental prop-

erties: passivity and port-Hamiltonian structure. Therefore in Part III we tackled the

problem of modeling and control port-Hamiltonian system under sampling. Namely,

a novel port-Hamiltonian structure under sampling is given in Theorem 7.4.1 and

with an interconnection and dissipation structure depending on the sampling period

δ. The proposed structure, which is based on both the discrete gradient function and

the exact solution of the associated continuous-time port-Hamiltonian system, takes
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the sampled-data representation

x+(u) = x+ δSδJ−R(δ, f, x)∇̄H|x+

x + δugδ(x, u)

Y δ
av(x, u) = gδ>(x, u)∇̄H|x

+(u)

x+

The proposed model matches at the sampling instants both the trajectories and

energy evolution of the continuous-time port-Hamiltonian model, so that there is

no loss of information under the discretization process both in the state and en-

ergy. Moreover, the introduced sampled-data interconnection and dissipation struc-

ture SδJ−R(δ, f, x) is a matrix parameterized by δ which recovers the continuous-time

matrices, say J(x) and R(x), in first-order approximation. The u-average output

arises from the energy balance equation, presented in Theorem 7.5.1, as a conjugate

variable of the supplied energy

H(xk)−H(x0) = δ
k−1∑
i=0

∇̄>H|x
+
i
xi
SδJ−R(δ, f, x)∇̄H|x

+
i
xi

+ δ
k−1∑
i=0

uiY
δ

av(xi, ui)

which encodes all the effect of the external power without affecting the internal dis-

sipated energy. An interesting point is that the u-average output, which comes in

terms of the discrete gradient evaluated between free and controlled evolution of

the sampled-data port-Hamiltonian system, is strictly reminiscent of the continuous-

time counterpart. The so defined output recovers the standard passive output of the

continuous-time port-Hamiltonian system when the sampling period δ approaches

zero.

Similarly to the pure discrete-time case, the introduced sampled-data structure

has been exploited to discuss energy-based stabilization design under sampling. First,

we provide negative output feedback computed as the solution of an implicit damping

equality for which approximate solutions can be performed, then we discussed the

IDA-PBC problem for the general nonlinear port-Hamiltonian system under sam-

pling. Since in the general nonlinear context a solution to the matching equality is

tough to solve with an exact sampled-data control, we solved the problem exploiting

in terms of feedback passivation and exploiting the IHdM stabilization proposed in

Theorem 3.5.1. In particular, we showed that a sampled-data IDA-PBC controller

can be designed under sampling by matching the desired Hamiltonian function under

ideal IDA-PBC feedback at all the sampling instants. This procedure avoids solving

a sampled-data matching condition as the existence of the sampled-data IDA-PBC

feedback is guaranteed by the solution of the continuous-time matching condition.
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Also in this case modeling and control of sampled-data port-Hamiltonian systems

have been detailed in the LTI case in Chapter 9. In particular, it is shown how

port-Hamiltonian representations can be recovered under exact sampling along the

exact solution. Then, the stabilization problem of LTI port-Hamiltonian system is

concerned. First, we characterize the negative output feedback as the unique solution

of the implicit damping inequality, then we give IDA-PBC feedback computed as a

direct discrete design. The result reshapes the IDA-PBC solution presented in discrete

time since in the LTI case, differently from the nonlinear case, the problem involves

a matching equation taking the form of a linear matrix equality.

To validate the proposed methods, in Part IV, we discuss three different case

studies in order to highlight computational aspects and to compare the result with

the concerned literature.

First, we consider a linear-time invariant RLC system to compute an exact sampled-

data port-Hamiltonian system showing preservation of the energetic property and

the port-Hamiltonian structure at all the sampling instants. Further, we discuss

and illustrate the digital stabilization problem. First, we stabilize the system at its

zero equilibrium point through the injection of the digital negative output feedback

computed over the sampled-data port-Hamiltonian model, then we assign a desired

equilibrium point to the closed-loop system by designing a direct digital IDA-PBC

feedback.

Then, we considered two nonlinear dynamics such as the gravity pendulum system

and the magnetic levitation ball. In particular, we have seen that the sampled-data

model can be performed in both the conservative and dissipative case providing a

better marching of the continuous-time trajectories and energy evolution when com-

pared with the literature model. Accordingly, for the gravity pendulum, the digital

negative output feedback has been computed considering both the approximation of

the discrete gradient and the exact discrete gradient by using computational soft-

ware. Finally, the digital IDA-PBC stabilization through IHdM has been designed

for both the nonlinear models showing the constructive aspect and the effectiveness

of the proposed methods.

Up to our knowledge the approach we propose represents a breakthrough with

respect to the literature in the sense that it provides quite complete answers to basic

questions:
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1. The pure discrete-time modeling is validated by its associated Dirac

structure.

2. The described conjugate output validates the notion of power-preserving

interconnection and guarantees preservation of the port-Hamiltonian

structure under feedback interconnection.

3. Hamiltonian modeling is preserved under sampling so describing novel

sampled-data port-Hamiltonian forms exactly matching the continuous

ones.

4. As a consequence, energy-based control design exploiting both the Hamil-

tonian form and average passivity can be developed addressing for the

first time in discrete time or under sampling the goals of stabilization

through energy management and suitable interconnection.

The main difficulties stand in the computation of the solutions in discrete time

as solving nonlinear implicit algebraic equations is unavoidable. However, under

sampling, these solutions always admit expansions in powers of the sampling period

around the continuous-time one so making relevant their approximations. Simulated

classical physical case studies illustrate these conclusions.

Perspectives

Several issues remain unsolved in the thesis work and thus a few of these open ques-

tions are mentioned below.

IDA-PBC: As already mentioned, the most interesting problem relies upon the

assignment of the desired energy and desired structure to the closed-loop system.

However, even though the proposed port-Hamiltonian system is suitable shaped for

providing energy and structure assignment, the solution to this problem hinges on

the solution ū to the discrete-time nonlinear matching equation

(J(x)−R(x) + Ja(x)−Ra(x))(∇̄H|x+(ū)
x −∇̄H|x+

x + ∇̄Ha|x
+(ū)
x )

= g(x, ū)ū− (Ja(x)−Ra(x))∇̄H|x+

x .

A general solution is tough to determine due to the implicit dependence of ū into

the nonlinear equation to solve, whose complexity clearly depends on the structures
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of g(x, ū), ∇̄H|x
+(ū)
x , and ∇̄Ha|x

+(ū)
x . The problem is even more interesting under

sampled-data design where the matching equation takes the form

SδJ−R(δ, f, x)∇̄H|x+

x + ugδ(x, u) = SδJd−Rd(δ, fd, x)∇̄Hd|x
+(u)
x

so involving matrices that depend on the sampling period. Thus, a suitable charac-

terization of this matching equation when does not admit a closed solution ū is still

an open problem and might be intriguing and useful for digital stabilization purposes

of physical systems.

Multi-input: Throughout the manuscript, we focused upon the single-input case

and we missed the analysis upon the effect of these representations in the multi-input

case, and in particular, we missed a deep understanding of energy-based stabilization

through multiple input source. However, even though the results should follow the

lines of the proposed methodologies, a complete understanding deserves an ad hoc

characterization.

Dirac structure under sampling: Although we have seen how port-Hamiltonian

systems in discrete time arise with an associated Dirac structure, a sampled-data

Dirac structures based on the proposed sampled-data port-Hamiltonian system is

missing. In particular, when a sampled-data port-Hamiltonian system is approxi-

mated at a certain order of the sampling period δ, how the associated Dirac structure

changes? This question is still open and deserves a deep understanding.

Time-delay power-preserving interconnection: The analysis of power pre-

serving interconnection introduced in Chapter 2 should be extended to time-delay

feedback structures. When a delay affects the interconnection process both passivity

and u-average passivity condition are lost and thus the power-preserving property. A

first step in facing this issue has been investigated in Mattioni et al. (2020) referring

to delayed state measurements, where we redefine a new output reduced dynam-

ics which allows constructing a suitable output ensuring u-average passivity for the

time-delay system.

Finally, the discrete-time and sampled-data modeling of port-Hamiltonian sys-

tems here addressed pave the way to a wide range of new theoretical and practical

challenges in both modeling and control. A few of these attractive perspectives in

modeling and control are separately mentioned below.
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� The proposed sampled-data model finds application in all physical do-

mains in which the continuous-time port-Hamiltonian systems involved

in this study is applied. In addition, the pure discrete-time model pro-

posed can be used in several contexts such as Data-Driven Control Sys-

tems, see Hou and Wang (2013), and unconstrained optimization prob-

lem, see Grimm et al. (2017).

� An attractive extension concerns distributed-parameter systems; which

are models defined by considering not only the time but also space as

independent parameters on which the physical quantities are defined,

van der Schaft et al. (2014); van der Schaft and Maschke (2002).

� Since the proposed sampled-data port-Hamiltonian structure presents

strong analogies with the port-Hamiltonian system in continuous time,

it is interesting to consider hybrid interconnections of port Hamiltonian

systems; namely, the interconnection between a continuous-time port-

Hamiltonian system and sampled-data modeling, as it occurs in human-

teleoperator systems, see Stramigioli et al. (2005).

� As studied in continuous-time the problem of reducing the state di-

mension of port-Hamiltonian structure is a challenging perspective. see

Polyuga and Van der Schaft (2010); Ionescu and Astolfi (2013). It should

be interesting to perform such a reduction analysis in the discrete time

domain concerning the proposed port-Hamiltonian structure.
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Titre : Modélisation et commande des systèmes Hamiltoniens à ports en temps discret et sous 

échantillonnage 

Mots clés : systèmes Hamiltoniens à ports, systèmes échantillonnés,  commande basée sur la passivité 

Résumé : Les systèmes Hamiltoniens ont été 

largement étudiés dans la littérature en temps 

continu comme des  éléments essentiels pour la 

modélisation de systèmes physiques complexes et en 

réseaux. Les schémas de commande étant 

nécessairement implantés au moyen de dispositifs 

numériques, il est primordial de disposer de modèles 

et de stratégies de commande échantillonnés afin de 

s’affranchir d’un impact négatif de la discrétisation 

sur les performances de contrôle. Cette thèse 

s’intéresse  à la description de nouvelles structures 

Hamiltoniennes à la fois en temps discret pur et dans 

le contexte échantillonné. A partir de ces formes,  des 

stratégies de  stabilisation basées sur la gestion de 

l’énergie sont développées en temps discret et sous 

échantillonnage. Concernant la modélisation, la 

représentation par espace d’état proposée fait 

référence au concept de representation 

 

Différentielle et aux Différences (DDR) de 

dynamiques discrètes et à la notion de fonction 

gradient en temps discret. Les modèles proposés 

admettent une représentation sous forme de 

structure de Dirac définissant ainsi précisément les 

différents éléments de stockage,  resistance et 

interaction avec l’extérieur qui constituent le 

système Hamiltonien. Concernant la stabilisation, la 

notion de passivité en u-moyenne est essentielle 

pour décrire des stratégies de commande par 

bouclage exploitant cette passivité au service 

d’approches de type amortissement (PBC) ou 

affectation de structures cibles (IDA-PBC), ceci en 

temps discret et sous échantillonnage. Trois 

examples classiques issus des domaines physiques 

sont développés afin d’illustrer les aspects de calcul 

liés à la modélisation et à la commande et valider 

les nouvelles stratégies proposées en illustrant 

leurs performances par des simulations. 
 

 

Title : Modeling and control of discrete-time and sampled-data port-Hamiltonian systems 

Keywords : port-Hamiltonian systems, sampled-data systems, passivity-based control 

Abstract : Modeling and control of port-Hamiltonian 

systems are extensively studied in the continuous-

time literature as powerful tools for network 

modeling and control of complex physical systems. 

Since controllers are unavoidably implemented 

through digital devices, accurate sampled-data 

models and control strategies are highly 

recommended to prevent a negative impact on the 

closed-loop performances under digital control. This 

thesis contributes to the description of new port-

Hamiltonian structures both in a purely discrete-time 

and sampled-data framework. Then, on these bases, 

stabilizing and energy-based digital feedback 

strategies are developed. Regarding modeling, the 

proposed state-space forms make use of the 

concepts of Difference and Differential 

Representation (DDR) of discrete-time dynamics 

and the discrete gradient function. The proposed 

models exhibit a Dirac structure that properly 

defines the storing, resistive and external elements 

of the concerned port-Hamiltonian system. For 

stabilization purposes, the u-average passivity 

property has been essential for properly discussing 

passivity-based-control (PBC) strategies such as 

damping output feedback and Interconnection and 

Damping Assignment (IDA-PBC) both in discrete 

time and under sampling. Three case studies from 

different physical domains aim to illustrate the 

computational aspects related to the modeling and 

control design and further we validate their 

performances by means of simulations.  
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