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Titre : Interaction de Coulomb et cohérence quantique dans des interféromètres 
électroniques 

 
Résumé :  
Le transport électronique dans les circuits de petites dimensions et plongés à basse température sont 
gouvernés par les lois de la mécanique quantique, pour lesquelles la nature ondulatoire des électrons 
ne peut être ignorée. Les effets qui en résultent sont bien expliqués lorsque le transport électronique 
est exprimé en termes de canaux de conductions élémentaires, analogues aux modes optiques dans 
un guide d’onde. Les canaux de Hall quantiques sont une implémentation directe de ce type de canaux 
électroniques et constituent par conséquent une plateforme de choix pour l’étude du transport 
électrique à un niveau fondamental. Notamment, ils peuvent être utilisés pour fabriquer des 
interféromètres électroniques, et en particulier, l’analogue de l’interféromètre de Mach-Zehnder, qui 
entre autres réalisations, illustre une route prometteuse vers la réplication d’expériences d’optique 
quantique avec des électrons. Une différence cruciale avec l’optique gît cependant dans l’interaction 
coulombienne, omniprésente dans les circuits électroniques et qui à la fois limite la cohérence 
quantique des électrons, et fait émerger des phénomènes corrélés exotiques. 
Dans cette thèse, des canaux de Hall ont été agencés dans une géométrie de Mach-Zehnder afin 
d’observer les effets de l’interaction coulombienne sur la cohérence quantique. Les résultats obtenus 
se scindent en deux volets. Premièrement, il est démontré l’efficacité d’une stratégie basée sur la 
suppression du couplage entre canaux médié par l’interaction de Coulomb, dans le but d’augmenter 
la longueur de cohérence quantique. Il en résulte une longueur de cohérence augmentée de plus d’un 
ordre de grandeur, atteignant la longueur macroscopique de 0.25mm, une longueur visible à l’œil nu, 
à basse température (10mK). Dans une seconde expérience, un îlot métallique est introduit sur l’un 
des deux chemins d’un interféromètre électronique de Mach-Zehnder. Un électron est retenu au cœur 
d’un tel îlot bien plus longtemps que son temps quantique, ce qui empêche normalement toute 
propagation cohérente d’électrons le traversant. Cependant, lorsqu’un seul canal électronique est 
connecté à un tel îlot et que la capacitance de celui-ci est suffisamment petite pour geler toute 
fluctuation de sa charge globale, une transmission parfaite de l’état quantique des électrons à travers 
l’îlot est prédite. Cette prédiction contre-intuitive fut expérimentalement démontrée au cours de cette 
thèse. Alors que le premier résultat illustre comment l’interaction coulombienne peut être nuisible à 
la cohérence quantique des électrons, le second montre au contraire comment cette interaction de 
Coulomb peut être exploitée pour préserver la cohérence quantique. 
 

 
Mots clefs : 
Physique de l’état condensé, physique mésoscopique, transport quantique, interférences 
quantiques, effet Aharonov-Bohm, cohérence quantique, interaction de Coulomb, effet Hall 
quantique, optique quantique électronique 

 
 

 

 
 

 
 

 
 

 
 

 
 



 
    

 

 

 

Title : Coulomb interaction and electronic quantum coherence in solid-state 
interferometers 

 

Abstract :  
Electronic transport in low temperature and low scale solid-state devices is governed by the laws of 
quantum mechanics. In this regime, the wavelike nature of electrons is prominent. The resulting effects 
are well explained when electronic transport is expressed in terms of elementary conductive channels. 
These are analogous to optical modes in a waveguide. Quantum Hall edge channels are a direct 
implementation of such electronic channels and consequently are a platform of choice to study 
electrical transport at the fundamental level. Notably, they can be used to implement electronic 
interferometers and in particular, the analogue of a Mach-Zehnder interferometer. Among other 
realizations, such devices draw a promising route toward reproducing quantum optics experiments 
with electrons. A crucial difference with optics is that Coulomb interaction is ubiquitous in electronic 
circuits, which both limits the electron quantum coherence and gives rise to exotic correlated 
phenomena. 
In this thesis, quantum Hall edge channels were arranged in a Mach-Zehnder geometry to study the 
effect of Coulomb interaction on the electronic quantum coherence. The obtained results are two-
fold. First, a strategy based on the suppression of the Coulomb mediated coupling between co-
propagating edge channels to highly increase the coherence length was demonstrated. The resulting 
observed coherence length was enhanced by over one order of magnitude, reaching a macroscopic 
length of 0.25 mm, a distance distinguishable with the naked eye, at low temperature (10 mK). In a 
second experiment, a small metallic island was introduced on one of the two paths of an electronic 
Mach-Zehnder interferometer. An electron remains within such an island much longer than its 
quantum lifetime, which normally prohibits any quantum coherent propagation of electrons across it. 
However, it was strikingly predicted that a perfect transmission of the electron quantum state across 
the island can be achieved when two conditions are fulfilled. First, a single channel has to be connected 
to this island, and second, the latter’s capacitance needs to be small enough to freeze any fluctuation 
of its global charge. This regime was experimentally achieved for the first time in this thesis, 
demonstrating the validity of the aforementioned prediction.  
While the first result illustrates how Coulomb interaction can be detrimental to quantum coherence, 
the second one, on the contrary, shows that it can be harnessed to preserve quantum coherence. 
 

Keywords : 
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Aharonov-Bohm effect, quantum coherence, Coulomb interaction, quantum Hall effect, 
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Introduction

Electrons are particles that behave according to the laws of quantum mechanics. As
such, they also have a wavelike nature, which can give rise to interference phenomena.
However, observing this quantum behaviour requires that the coherence of particles —
including their wave character — is preserved along their path. In practice, electrons
interact with their surroundings, potentially leading to decoherence — and consequently
the loss of their wavelike character. That is especially true in solid-state circuits, where
interactions can couple electrons to external degrees of freedom on numerous occasions.
In particular, Coulomb interaction is unavoidable between the numerous electrons in
solid-state systems, and due to its long-range attribute is generally the number one
culprit for decoherence effects. For instance, in normal metals, at low temperature,
it is well established that electron-electron interaction is the dominant decoherence
mechanism. However, in such materials, the observed interferences are due to many
different electron paths. Since about two decades, it is possible to fabricate electronic
circuits with electrons guided along only a few, and even down to one, well-controlled
paths. These make it possible to study and control the transport of electrons at the most
fundamental level of a single transport channel. The two experimental works presented
in this manuscript make use of such circuits, and reveal that Coulomb interaction can
have two antagonistic effects on electron quantum coherence: it can either lead to its
suppression or, more surprisingly, to its protection.

Before jumping to the obtained experimental results, this introductory chapter first
skims through the concept of interferences. Then, it gives some examples of the man-
ifestations of the wave-like nature of electrons, shortly presents the field of ‘electron
quantum optics’ and highlights two Coulomb effects that are tightly related to each
of both works further detailed in this manuscript. Finally, the concept of coherence is
introduced more formally.
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Interferences and the Aharonov-Bohm effect

a b

Figure 1: a Schematic of an initial wavefunction |ψA)〉 that splits in two at some point of
space and time, these two parts are further recombined after each acquiring a path-dependent
phase. b The Aharonov-Bohm, geometric phase acquired along a closed path P depends on
the magnetic flux AB⊥ threading the area A perpendicular to the magnetic field B⊥.

To illustrate what interferences are, we take the simplest example possible. Suppose
that to go from point A to B, an electron can follow two distinct and independent paths
u or d as sketched in figure 1 a. The probability amplitude associated to each path is
of the form

au,d = Au,de
iφu,d (1)

and the probability for an electron to transfer from point A to point B is given by

PA→B =
∑
i,j

a∗i aj = |Au|2 + |Ad|2 + 2Re{A∗uAdei(φu−φd)} (2)

where the first two terms together represent the classical probability of transmission
for the electron from A to B and the third term is the quantum interference term.
The probability of finding the electron at point B therefore oscillates sinusoidally as a
function of the phase difference between the two paths. This remains true as long as
coherence is preserved.

A simple way to modify the phase difference between both paths is to take advantage of
the Aharonov-Bohm effect. First outlined by W. Ehrenberg and R. Siday [1], and then
explained more explicitly by Y. Aharonov and D. Bohm [2], this effect implies that the
wavefunction of particles with a charge q will acquire a phase φ along a closed path P
according to

φ = q

~

∮
P

(−V dt+ A · dx) (3)

where V and A are the scalar and vector potentials respectively (from which are defined
the electric and magnetic field). In practice, only the magnetic part of this effect is used
(the second term in equation 3). It can be re-expressed in terms of the area enclosed in
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INTRODUCTION

the closed path A and the component of the magnetic field perpendicular to this area
B⊥ as illustrated in figure 1 b

φ = q

~
A×B⊥

Manifestations of electron coherence

a b
0 -0.25 ΔG (e2/h)

1 µm 143 Å

Figure 2: Electronic quantum ripples. a Scanning Tunneling Microscopy (STM) image of
an atomic corral formed from 48 iron atoms on top of a copper (111) surface. The ripples
observed are due to the distribution of electronic states within the corral (taken from [3]).
b Scanning Gate Microscopy (SGM) image of the branched flow through a QPC. The small
observable ripples are due to interferences of several electron paths (taken from [4]).

The wave-like nature of electrons was ascertained by a collection of experiments. Each
of these observations involved at least two electron paths, so that the coherence was
preserved at least at the scale of these paths. The first to demonstrate the wavelike
nature of electrons was the 1927 Davisson & Germer experiment [5,6], where they ob-
served that the diffraction pattern of electrons on a Nickel crystal resembled that of
X-rays, in agreement with de Broglie’s prediction that particles should also show a
wave-like behaviour [7]. A similar demonstration of the electron’s wave character is the
Feynman-Young double slit experiment [8], which was reproduced several times, using
either a bi-prism [9–11], or more recently, a true double slit [12,13]. In solid-state, it
was observed in the famous atomic corral formed from iron atoms at the surface of cop-
per [3], and where the electronic surface states formed the beautiful symmetric pattern
shown in figure 2 a. It was also possible to see similar ripples in the transmission of a
quantum point contact [4], where the branched flow of electrical current is governed by
the impurities on the way, which also cause interferences as can be seen in figure 2 b.
There are other markers of the electron wave-like nature in solid-state systems, al-
though less visually appealing. These can show in transport measurements such as
the Altshuler-Aronov-Spivak effect, weak-localization magnetoresistance or universal
conductance fluctuations. They can also show up in the system’s magnetization as
for persistent currents in metals or the Landau diamagnetism. These evidences are
described in further details in section 1.2.
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Electron quantum optics
More recently, circuits with an essentially total control over the electrons’ trajectory,
becoming more and more common, have enabled refined experiments exploiting their
quantum coherence. These experiments fall within the field of ‘electron quantum optics’,
that is briefly reviewed here (a more complete review is accomplished in sections 2.2,
3.2). This analogy between optics and electronics makes sense first and foremost because
there is a set of essential components such as sources, beam splitters, and waveguides
that have their electronic counterparts. Specifically, this manuscript focuses on elec-
tronic waveguides that can be achieved by plunging a two-dimensional electron gas in
a large perpendicular magnetic field, to reach the Quantum Hall (QH) regime. An-
other possibility is to use channels defined by lateral confinement without the need of a
magnetic field (as e.g. [14]). QH edge channels are very convenient as they provide elec-
tron waveguides topologically protected from backscattering. A series of experiments
in electron quantum optics consisted in making electronic versions of Fabry-Perot [15–
19] and Mach-Zehnder [20,21] interferometers, and in reproducing emblematic quantum
optics experiments such as Hanburry-Brown-Twiss [22] or Hong-Ou-Mandel [23,24] in-
terferometry. Nonetheless, this field extends beyond a mere reproduction of quantum
optics experiments with electrons, as the Coulomb interaction, inexistent for photons,
is ubiquitous in solid-state systems and gives rise to rich emerging phenomena.

Ubiquity of Coulomb interaction
This section is divided in two parts which might appear to be focusing on overly specific
effects at such an early point of the manuscript. However, each of these two parts is
strongly tied to the two experimental works constituting the core of this manuscript,
and that are summarized in the next section. Here I try to give only the essential
physical points, and consequently ask the reader to bear with me as the purpose of
emphasizing these particular effects will become clear soon after.

Inter-channel coupling in the QH regime
Many electron quantum optics experiments make use of QH edge channels as electronic
waveguides. As far as it is known, electrons propagating within these behave according
to the Tomonaga-Luttinger liquid model. The latter describes the elementary excita-
tions of such a liquid as collective excitations (as opposed to the Fermi liquid model in
higher dimensions, for which elementary excitations are dressed free and independent
quasi-particles). Remarkably, when there are several QH edge channels next to each
other, they are capacitively, strongly coupled together due to Coulomb interaction and
their small spatial separation [25–28], and cannot be considered independent. In the
simplest case of only two channels, the resulting elementary excitations are therefore
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INTRODUCTION

distributed over both of them, giving rise to an essentially charged mode and an essen-
tially neutral one (see figure 3). It is then possible to picture a charge density wave
injected in one of the two channels at one point of space. That will oscillate between
both channels (although with no net dc current transmitted from one channel to an-
other), similarly to the electric field’s intensity in an optical coupler. In these kinds of
circuits, based on QH edge channels, inter-channel coupling plays a major role on the
transport properties, and signs show in several experiments, under a variety of forms,
of which we list a few below. In Mach-Zehnder interferometers, this shows in the lobe
pattern as a function of the bias voltage [29–33]. In Hong-Ou-Mandel experiments, the
Pauli dip does not fully develop when two channels are coupled to each other [23], in
contrast with the same experiment but when no edge channels are involved [24]. In ex-
periments where non-equilibrium distributions are injected in one of the two channels,
it is observed that energy can relax in the adjacent one [26,34,35].

Noticeably, several experiments where a non-equilibrium electron distribution or a
quasiparticle was injected in one channel reported a missing amount of energy within
the channels even for small propagation lengths [25,28,35–38]. This suggests that re-
laxation towards other external degrees of freedom plays a significant role in electron
quantum optics [36–38].

Figure 3: Schematics of an initial electronic excitation that gets decomposed in a charge and
a neutral mode due to a coupling mechanism, taken from [39].

Electron correlations mediated by an island’s large charging
energy
The decomposition in charged and neutral modes as pictured in figure 3 is not restricted
solely to the capacitive inter-channel coupling described above. Effectively, a different
inter-channel coupling mechanism, mediated by a metallic island possessing a large
charging energy results in a similar mode decomposition. A major difference with the
aforementioned capacitive coupling mechanism is that the different channels are here
electrically connected together through this metallic island. One of the only illustrations
of this mechanism to date is the thermal Coulomb blockade of a ballistic channel [40]. In
this experiment, it was observed that when N electronic channels connect the heated
island to the cold reservoirs, the thermal conductivity remarkably amounts to only
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Gth = (N − 1)Gth
Q (where Gth

Q = π2k2
BT/3h is the quantum of thermal conductance),

consisting in a reduction of the naively expected thermal conductivity by exactly one
channel. The physical explanation lies in that the N available electronic modes can be
decomposed in N − 1 neutral modes and 1 charged mode. The latter cannot escape
the island as it would involve a fluctuation of the island’s global charge, which requires
a too large energy (EC � kBT ), and consequently only N − 1 modes are available for
thermal conductivity. A natural question that arises then is: what happens in the case
where a single channel is connected ? Shall the heat transport be entirely suppressed
even though the hot island is connected to cold reservoirs with one electronic channel ?
This single-channel regime was not accessible to the experimental realization of [40] for
practical reasons. However, it is explored in chapter 4 in a different, yet tightly related
way.

Experimental investigations of this PhD thesis
In this PhD thesis, we explore the effect of both these Coulomb-mediated coupling
mechanisms on the electron quantum coherence in two distinct experimental works. In
a first experiment, inter-channel coupling was essentially suppressed to enable a larger
coherence length. In a second experiment, we demonstrate a coherent transmission
of electrons across a small metallic island, that is rendered possible by the Coulomb
interaction. This section is dedicated to giving the key points of both experiments, and
to situate the obtained result in a broader context.

Macroscopic electron coherence length in a solid-state cir-
cuit

a b

Figure 4: Schematics of gating strategies for confining the inner channel in small loops with
a discrete energy spectrum. The top gates are represented in light red, the outer channels
are in green and the inner ones in blue. a Strategy used in [41] where the loop mediates a
long-distance coupling between counter-propagating outer channels. b Strategy used in this
work [42] where the inner channel loop mediates no coupling towards any other propagating
channel.

The goal of this experiment was to highly suppress inter-channel coupling in order to
achieve a large coherence length in a QH edge channels based circuit. To this aim,
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the adopted strategy consisted in confining the inner channel into small loops, with
therefore a discrete energy spectrum of spacing ∆ � kBT . This strategy was already
adopted in an earlier experiment [41]; however, in this case, the loops introduced a
long-distance coupling between counter-propagating channels as illustrated in figure 4
a. This consequently did not enable a large improvement of the coherence length. In
this work, we implemented the same strategy but taking care not to introduce any
coupling towards other propagating channels as illustrated in figure 4 b.

This work demonstrated a macroscopic coherence length of Lφ ≈ 250 µm for electrons
in QH edge channels circuits, the confinement strategy enabling an increase of Lφ by
over an order of magnitude. This shows that the inter-channel coupling is the primary
source of decoherence in such circuits, and that the remaining coupling to the top gate
does not provide for a decoherence mechanism as powerful as a co-propagating channel.
On the other hand, the measured interferences were very noisy and unstable, which we
can ascertain to be due to phase noise thanks to current noise measurements in the
MHz range. A natural extension of this work would be to use this method in single
electron interference experiments.

Coherent transmission of electrons across a metallic island

D2

S

D1

Figure 5: Schematics of a Mach-Zehnder interferometer with a small, floating metallic island
interrupting one of the two paths.

This work aimed at demonstrating the puzzling coherent probe (as opposed to Büttiker’s
dephasing probe [43–45]) regime of a metallic island as predicted by [46,47] (and also,
in a very similar prediction by [48]). These papers predict that electrons should be
coherently transferred across a metallic island that has an electron dwell time much
larger than the electron coherence time (τdwell ≫ τφ), provided that two conditions are
fulfilled:

• the island’s charging energy must be much larger than the electrons’ energy (EC �
kBT, eV )

• only a single channel is connected to the island

It was found that these predictions are indeed correct, and this work experimentally
demonstrates them by interrupting one of the two paths of a Mach-Zehnder interferom-
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eter with a metallic island, as illustrated on the schematic of figure 5. Remarkably, as
soon as a second channel is connected to the island, the fully incoherent probe regime
is reached again. Another observation worthy of attention is that upon changing by
one elementary electron charge the global charge of the metallic island (which can be
changed continuously thanks to the ballistic coupling to the connected channel) a 2π
phase shift in the interference pattern was observed, as expected by the theory [46,49].

The physical mechanism for this phenomenon is that, for decoherence to occur, an elec-
tronic excitation needs to couple to at least one degree of freedom of the island. This is
usually provided by the island’s continuous density of states that supplies an essentially
infinite phase space for the electronic excitation to relax, mediated by electron-electron
interactions. However, at low enough temperature, the large charging energy of the
island does not allow for any fluctuations of its charge, and thus also prevents coupling
of an incoming electronic excitation to the island’s many internal degrees of freedom.

To put this result into perspective, it is interesting to underline the similarities that it
bears with the proposal [50], which consists in a single topologically protected chan-
nel connected to a superconducting island with a large charging energy, such that a
non-local correlation is established between the two distant points connecting the is-
land by emerging Majorana bound states. This nonlocal correlation is the underlying
mechanism for an electron teleportation. Does our result also demonstrate an electron
teleportation ? From the prediction [47], it is clear that at finite temperature, the
transfer is not fully coherent, thereby ruling out a pure teleportation, however, at zero
temperature, the coherence should actually be entirely preserved, indicating a perfect
transfer of the electron state from a first point to another distant one. This suggests
that our observation at low temperature is approaching the regime of a pure electron
teleportation that can only be reached at zero temperature.

This result therefore completes the model of the dephasing probe initially pictured by
Büttiker as any floating contact, as this result makes it clear that the charging energy
and the number of connected channels cannot be overlooked to predict whether it will
effectively break the electron coherence. It also comes as a good illustration that the
charging energy of an island hosting a continuous density of states is a crucial element
for electron coherence as underlined in the proposal of L. Fu [50]. Finally, this result
completes the heat Coulomb blockade experiment [40] described above, as it consists in
connecting a single channel to a metallic island with a large charging energy. The island
is not heated here, so that no thermal transport is at stake. However, the quantum co-
herent transmission of electrons across the island indicates that there is no information
exchange between the electrons of the channel and the many electrons of the metallic
island. As a consequence, and similarly to what was observed in the thermal Coulomb
blockade experiment where heat exchange was diminished between the electrons within
the channels and those within the island, here, information exchange is essentially sup-
pressed. This illustrates the deep physical link between heat and information, usually
explored in Maxwell demon’s experiments.
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Electronic coherence in relation to the environ-
ment
Similarly to the two preceding sections, this one is again divided in two parts.

The coherence of a particle can be described as their ability to interfere (note that it
is question of first-order coherence here, for a more general definition, see [51] that is
applicable to fields, but can be extended to particles: [52]). Interference of electrons
were briefly introduced in the first few paragraphs of this introduction. From this
standpoint, it is possible to take two different approaches to express how the quantum
information is carried from point A to point B, as exposed in [53,54].

Coherence enclosed in the wavefunction
Equation 1 described the probability amplitude of an electron path with a simple
generic phase. However, in general, an electronic wavefunction can evolve according
to a Hamiltonian H(t) that characterizes the interaction of the particle described by
the wavefunction |ψ(t)〉 with its environment such that:

|ψ(t)〉 = exp
(
− i
~

∫ t

0
H(t′)dt′

)
|ψ(0)〉 (4)

This expression can very well lead to a simple static phase factor in the wavefunction,
just as in equation 1. Nevertheless, a quantum uncertainty can arise in the state of
the environment due to its interaction with the particle. It translates to an uncertainty
in the Hamiltonian that must then be averaged over its multiple possible states and
the acquired phase then becomes a statistical variable that is averaged over multiple
values. The resulting phase can be decomposed in a static average part φ, and a
statistical part δϕ described by a distribution function P (δϕ) such that the oscillating
factor in equation 1 can be re-written as:

exp
(
− i
~

∫ t

0
〈H(t′)〉 dt′

)
|ψ(0)〉 = eiφ

∫
dδϕP (δϕ)eiδϕ|ψ(0)〉 (5)

The interference term of equation 2 then becomes:

2Re{A∗uAdeiφ〈eiδϕ〉} (6)

in which the average value 〈eiδϕ〉 ≤ 1, acts as a reducing factor to the amplitude of the
interferences from A to B and represents a measure of decoherence originating from the
uncertainty induced in the environment’s state. The closer it is to zero, the smaller is
the interference contrast, the more classical the electron behaviour is, and the quantum
coherence gets lost.

One of the consequences of decoherence is therefore to change the quantum phase in a
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statistical variable, which, in turn, reduces the interferences contrast. Measuring this
effect can be difficult as several other factors can lead to a reduction of this contrast as
exemplified by our measurements of chapter 3.

Coherence enclosed in the environment
Above, coherence was presented from the point of view of a wavefunction that acquires
a time-dependent phase, which can get blurred by a fluctuating environment. It is
however possible to equivalently express the loss of coherence as a footprint that the
propagating wavefunction leaves on its environment. Instead of expressing the paths’
probability amplitudes as in equation 1, it is possible to express them as:

au,d = Au,de
iφu,d ⊗ χu,d(η)

where η is the environment’s set of coordinates. This time, the interference term is
given by:

2Re
{
A∗uAde

iφ
∫
dηχ∗u(η)χd(η)

}
This formulation is perfectly equivalent to the previous one [53], implying that

〈eiδϕ〉 =
∫
dηχ∗u(η)χd(η)

Interestingly, in this expression, the integral on the environment variables is a scalar
product between the two environment states. Initially, the scalar product of these two
states has to be 1 because they describe the same environment and are consequently
identical. When the wavefunctions each travel along their path, they might interact with
the environment, changing its state each in a different way. In the extreme case where
the scalar product becomes zero, then both environment states are orthogonal, meaning
that it is possible to completely identify which path was taken by the electron simply
from the imprint it left on the environment. Because quantum mechanical interferences
rely on the path’s uncertainty, when the uncertainty is lifted, no interferences can occur.
As a consequence, this second interpretation formally expresses that when coherence
is lost, the environment must have been modified in the process. So-called which-path
experiments are precisely based on this principle and further discussed in section 4.1.
Remarkably, the second experiment presented in this manuscript, the focus of chapter
4, looks at first sight like a which-path experiment, but yields surprising results.

In the former two paragraphs, coherence was presented in general terms, and that
coherence loss could be seen as resulting either from a blurr of the electron phase or a
modification to the environment.
Depending on the context, one or the other point of view is more adapted.
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Outline of this manuscript
The structure of this introductory chapter reflects rather well the organization of this
manuscript, it is therefore summarized here and the chapters that echo the correspond-
ing part are emphasized.

First, the concept of interference was succinctly covered, along with the Aharonov-Bohm
effect, absolute cornerstones of this whole PhD thesis. A few hallmark manifestations
of electron coherence were then presented, in both free-space and solid-state. Several
other signs of it are further detailed in chapter 1. The field of electron quantum optics
was also briefly introduced, particularly in the context of quantum Hall edge chan-
nels based circuits, which is precisely the topic chapter 2 concentrates on. We then
highlighted that this field does not consist in a pale copy of original quantum optics
experiments but rather is a playground with rich physical effects, emerging from the
ubiquitous Coulomb interaction, the second unifying theme of this PhD thesis. The
two experimental works constituting the core of the present manuscript, and detailed
in chapters 3 and 4, were then summarized and consist in good illustrations of the effects
of such emerging phenomena on the electron quantum coherence. Finally, quantum co-
herence was introduced in more formal terms, and from two different yet equivalent
perspectives, each of which will be adopted in the following, where they are the most
appropriate.
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1
Quantum Coherence in

Solid-State Circuits

In vacuum, it comes as no surprise that electrons can interfere. In the solid-state,
however, it is far less obvious. Effectively, electrons travelling through a solid state
circuit encounter many occasions to interact with other degrees of freedom. Each such
scattering event is an opportunity for the electrons to entangle with their environment,
thus blurring their quantum phase. According to the formal description of coherence
given in the introduction, this means that electrons can lose their coherence in such
processes. In particular, the many electrons in a conductive material can scatter each
other. The electrons are also affected by the vibrations of the ionic structure, giving rise
to electron-phonon scattering. One may wonder then, if it is possible to have electrons
retaining their coherence on relatively large scales in the solid state. This chapter
provides an outlook on several experiments investigating electron coherence in solid-
state circuits. It also illustrates how the presence of random scattering can give rise to
specific interference effects (such as the Altshuler-Aronov-Spivak effect for example).

The first section of this chapter deals with the limiting mechanisms for the electronic
coherence. As the electron quantum phase can be controlled with the Aharonov-Bohm
effect, coherence effects are better illustrated when the magnetic flux is a well-controlled
quantity. This is achievable in conducting samples with a hole of a known area relatively
large compared to the metal’s section width (like a conductive cylinder or ring). The
second section is precisely devoted to the presentation of coherence effects that survive
in presence of static disorder or even emerge thanks to it. These effects are also present
in simply connex geometries (with no hole in the conducting material), where they
manifest in distinctly different ways that constitute the topic of the third section. The
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CHAPTER 1. QUANTUM COHERENCE IN SOLID-STATE CIRCUITS

fourth section finally shows the several ways that these manifestations are used to
measure the actual coherence length of electrons in the device.

1.1 Limiting mechanisms of Lφ
One may think that an electron loses its coherence as soon as it gets scattered, limiting
the coherence length to the electron mean free path. That is incorrect, however, and
while some scattering events indeed do destroy the coherence, the elastic scattering on
static potentials (crystallographic defect, impurity. . . ) does not. The coherence length
therefore does not simply reduce to the mean free path. To illustrate this, let us recast
the phase acquired by the electron as originating from a potential V originating from
the environment:

φ = − q
~

∫
V (t)dt

If an electron causes no quantum uncertainty in the environment’s state, its acquired
phase is a static, well-defined quantity. On the other hand, if a quantum uncertainty
in the environment’s state is generated, an uncertainty is also induced in the electron’s
wavefunction phase, causing decoherence. When energy is exchanged with the environ-
ment, this necessarily happens upon coupling with its degrees of freedom, resulting in
an uncertainty in the wavefunction’s phase. As a consequence, it is natural to distin-
guish two categories in the scattering mechanisms: the scattering events during which
the state of the electron environment is changed and those that do not affect it. Some
examples of scattering events that do affect the environment are e-e, e-ph, e-TLS (Two
Level Systems) interactions, which therefore tend to cause decoherence of the electrons.
These are inelastic events, during which energy is exchanged with the environment, so
that they undeniably affect its state. On the other hand, elastic scattering events can
be associated to static, well-defined potentials, which affect the electrons’ phase in a
deterministic way. The phase, thus shifted by a fixed amount, remains well-defined
and the coherence is preserved. An example of such non-dephasing mechanisms is the
interaction of an electron with a lattice defect such as a dislocation, a grain boundary,
an interstitial atom, an atomic vacancy or impurity, that induces a static variation of
the potential without any energy exchange. It would be incorrect nonetheless to assume
that only inelastic events can be responsible for decoherence. Effectively, quasi-elastic
mechanisms, that do not involve energy exchange between the electron and the envi-
ronment, can also be responsible for causing an uncertainty in the environment’s state.
Quasi-elastic scattering can flip an electron in a degenerate orthogonal state, thereby
causing decoherence without affecting its energy. Two such examples are spin-flip events
(provided no external magnetic field is applied) and inter-valley scattering (in graphene
for example, where the valley degree of freedom introduces another degeneracy).

Each type of scattering is characterized by the average time elapsing between the oc-
curence of two such events. It is possible to define the coherence time τφ in terms of
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1.2. Aharonov-Bohm manifestations of electron quantum coherence in the solid-state

independent dephasing events times as such:

1
τφ

= 1
τe-e

+ 1
τe-ph

+ 1
τTLS

+ 1
τs-f

+ 1
τv-f

where τe-e and τe-ph are the electron-electron and electron-phonon scattering times re-
spectively, τTLS is the two-level system scattering time, τs-f and τv-f are the spin-flip and
valley-flip times respectively. Note that the above expression’s validity is conditionned
to the fact that all these dephasing mechanisms are independent from each other. From
there, it is possible to define the coherence length as:

• Lφ =
√
Dτφ if in a diffusive medium, with D the diffusion coefficient

• Lφ = vF τφ in the ballistic regime, with vF the electronic velocity at the Fermi
energy.

As a conclusive remark, it is stressed that the elastic scattering time τel may be much
smaller than the coherence time τφ, enabling diffusive coherent transport.

1.2 Aharonov-Bohm manifestations of electron quan-
tum coherence in the solid-state
In solid-state circuits, electron quantum coherence can be investigated even in media
where many elastic scattering events occur, such as normal metals. These were his-
torically the first playground for electron quantum coherence studies. In such diffusive
metals, electrons can propagate along many different paths. The transport properties
are obtained by summing on the probability amplitudes of each possible path. For paths
smaller than Lφ, coherent effects will show. Inevitably, some of the possible paths take
the form of loops along which coherence is retained, making the transport properties
sensitive to an external magnetic field through the Aharonov-Bohm effect. That is
exactly what is exposed in this section, where the presented effects specifically take
advantage of a controlled doubly-connected geometry (with a hole in the conductor),
such that the Aharonov-Bohm flux is well-defined.

1.2.1 h/2e oscillations of the conductance: the Altshuler-Aronov-
Spivak effect
The first kind of experiment that unambiguously revealed the wavelike behaviour of
electrons to also show in the solid-state was performed by Sharvin and Sharvin in 1981
[55]. It consisted of a cylindrical metallic wire along which the electrical conductance
was measured as a function of a magnetic field applied along the cylinder’s rotation
axis (see figure 1.1 a). In such a wire, among the multitude of possible trajectories,
some of them contain loops that wind around the cylinder. Electrons therefore have the
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a b
loop i

Figure 1.1: Schematics of a AAS paths in a cylinder b AAS loop of length Lloop . Lφ
projected in a plane perpendicular to the magnetic field B, offering two possible directions for
an electron: clockwise and counter-clockwise. The resulting probability amplitudes contain
an Aharonov-Bohm phase factor φi proportional to the loop area Aloop.

possibility to go around these loops in both directions: clockwise and anti-clockwise,
each constituting the time-reversed trajectory of the other. Interferences therefore oc-
cur between electrons taking opposite directions. In the Sharvin experiment [55], the
cylinder’s dimensions respected two conditions:

• the cylinder’s diameter d was at most comparable to the coherence length: d . Lφ,
in order for loops to form around it and along which the electron coherence is
retained.

• the width of the metal w was significantly smaller than the cylinder’s diameter
w � d in order for the Aharonov-Bohm flux to be well-defined, close to the flux
threading the hollow cylinder’s body.

Remarkably, the authors observed periodic oscillations in the cylinder’s conductance
with a periodicity ∆B = h/e2A�. The periodicity is related to twice the cylinder’s
cross-section area A�, hence the name ‘h/2e oscillations’.

To get a better grasp of this effect, it is instructive to calculate the expression of the
total probability for an electron located at some point of space to return to this initial
location, as illustrated in figure 1.1 b. It is noted R (for reflection probability), and is
given by the squared modulus of the sum of each possible path’s probability amplitude
Ai:

R =
∣∣∣∣∣∑
i

Ai

∣∣∣∣∣
2

In particular, we highlight that each loop i can be taken clockwise or anti-clockwise by
an electron, such that

Ai = A	,ie
i(ϕi+φi) + A�,ie

i(ϕi−φi)

where the Ap,i are the probability amplitudes for the electron to be scattered along path
i in the clockwise or anti-clockwise direction as indicated by �, 	, and constituting the
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time-reversed path of each other. ϕi and φi are respectively the static potential and
the pure Aharonov-Bohm phases acquired by the electron along path i, yielding

R =
∑
i

(
|A	,i|2 + |A�,i|2 + 2Re(A	,iA�,i)cos(2φi)

)
+
∑
i 6=j

 ∑
{p,q}={	,�}

A∗p,iAq,je
i(ϕj+φj−ϕi−φi)


(1.1)

From this expression, it is possible to see that the second sum vanishes due to the aver-
aging of the different static phases and Aharonov-Bohm ones due to the inevitably many
different possible loop paths along a cylinder that is much longer than the coherence
length L� Lφ. Remarkably, an interfering term survives even for long cylinders, with a
periodicity proportional to twice the cylinder’s cross-sectional area ∆B⊥ = 1/A�×h/2e,
resulting from the interference multiple pairs of time-reversed symmetric paths, each
encircling the area A�. In what is left, the first two terms together represent the clas-
sical probability for the electron to be reflected to its initial location. This reasoning
holds for a single channel and the sum on all the available channels has to be taken to
obtain the conductance via the Landauer formula. Upon this summation, all interfer-
ence terms contribute in phase with each other as they do not depend on the random
static phases, explaining the effect’s robustness to ensemble averaging often mentioned
in the literature.

This AAS effect was first observed by Sharvin & Sharvin [55] as predicted by the AAS
theory [59]. The experiment was then reproduced several times by independent groups,
with very good quantitative agreement with theory as for example [60], see also [61,
pp. 381–383] for a review. The effect of spin-orbit interaction can also be clearly
seen from such transport experiments in metallic cylinders. It is effectively expected
that in absence (presence) of strong spin-orbit interaction, the conductance should
always boast a maximum (minimum) at zero magnetic field. Such opposite behaviour
was confirmed by magnetoresistance measurements in lithium metallic cylinders (with
negligible spin-orbit interaction) [57,62], in comparison with the magnesium cylinders
(with strong spin-orbit) used in the original Sharvin & Sharvin paper [55] or cadmium
as demonstrated later [62] (see figure 1.2 a). Regardless of the spin-orbit interaction in
the material, AAS oscillations are suppressed with only a modest value of the magnetic
field (up to only ≈ 20mT in [63] and B ≈ 8mT in [64]), which is in good agreement with
the theory [65, sec. 7]. This sensitivity to an external magnetic field can be intuitively
understood as a gradual breaking of the time-reversal symmetry between the interfering
paths at the root cause of h/2e oscillations. AAS oscillations were also observed almost
twenty years later in carbon nanotubes [58], which constitute a very natural object of
study for such an effect (see figure 1.2 b). In this case, a maximum of the conductance
is observed at zero magnetic field, as expected in absence of spin-orbit interaction like
in graphene. Additionally, a rather large magnetic field ∼ 8T is required to observe just
one h/2e oscillation, due to the very small diameter of the carbon nanotube ≈ 8 nm.

21



CHAPTER 1. QUANTUM COHERENCE IN SOLID-STATE CIRCUITS

0 2 4 6 

0.0 

0.1 

0.2 

0.3 

-12 -8 -4 0 4 8 12 
-12 

-10 

-8 

-6 

-4 

-2 

0 

Δ
R

 (
Ω

)

Δ
R

 (
kΩ

)

B (T)B (mT)

Figure 1.2: Sketch taken from [56]. AAS oscillations of the magnetoresistance in a Mg
cylinders with strong spin-orbit interaction (blue, data from [55]) and Li cylinders with weak
spin-orbit interaction (green, data from [57]) b carbon nanotube (data from [58])
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1.2.2 h/e oscillations of the conductance
Despite the excellent agreement of various experiments with the AAS theory, a naive
expectation is that h/e oscillations should also be observed in the cylinders experiments.
Effectively, in such cylinders, one would expect some different processes than those
implied in the AAS effect, and which are only encircling the cylinder’s area once. To
be more specific, among all the possible trajectories in the cylinders, some of them
will separate at one point, one winds around the cylinder clockwise while the other
winds around it counter-clockwise, before joining again, following two distinct paths
as illustrated in figure 1.1 b. It was predicted that in the case of a ring comporting a
single channel (only a single path on each side of the ring is available to the electrons),
h/e oscillations should indeed be observed [66,67]. However, this single-channel case is
purely theoretical and in real systems as those measured in the mentioned experiments,
many channels, i.e. many possible paths for the electrons, contribute to the conductance.
The following paragraph explains why they were not observed, in the spirit of [68, sec.
V].

It is possible to consider electrons that take either a path i or a path j in separate upper
(u) or down (d) arm in the ring as illustrated in figure 1.3 b (but the two paths could
also take the same arm). The number of electronic channels M hosted by the ring is
∝ w× t, the cross-section area of the ring’s wires. The outgoing electronic wave in the
channel p is given by

ψp =
M∑
i

Au,ie
i(ϕi+φu) +

M∑
j

Ad,je
i(ϕj+φd)

where ϕi,j are static, random phases associated with the detailed paths and φu,d are the
pure Aharonov-Bohm phases (that is considered equal for all paths in each arm, this
neglects the ring’s width w, which is appropriate when w � d, the ring’s diameter).
The total transmission for a single channel is therefore:

T =|ψp|2

=
∑
i

|Au,i|2 +
∑
j

|Ad,j|2

+ 2
∑
i 6=i′

Re{A∗u,iAu,i′} cos(ϕi′ − ϕi) + 2
∑
j 6=j′

Re{A∗d,jAd,j} cos(ϕj′ − ϕj)

+ 2
∑
i,j

Re{A∗u,iAd,j} cos(ϕi − ϕj + φu − φd)

For a single Aharonov-Bohm ring, with a well-defined area (i.e. its diameter is large
compared to the wire’s width: d � w), the purely Aharonov-Bohm phase is given by
φ = φu−φd = AB/(~/e), with A the ring’s area. The transmission probability above is
the sum of three terms: a classical probability (cl.) coming from 2M incoherent terms,
a probability coming from the 2M2 fluctuating terms (fl.) in each arm with incoherent
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contributions such that they contribute in
√

2M2 to the transmission probability and an
Aharonov-Bohm component (AB) that also contain 2M2 incoherent terms contributing
to
√

2M2. The transmission probability can then be re-expressed in a simpler form:

T = a(cl.) + 2a(fl.) cos(ϕ) + a(AB) cos(φ+ ϕ)

where ϕ are random phases originating from the static, flux-independent components
of the phase. Due to the arguments above, the three amplitudes a(cl.), a(fl.) and a(AB)
are considered of equal magnitude a.
The conductance is then given by the Landauer Formula, by summing the transmission
probabilities of all M channels:

G =2e2

h

M∑
p,q

Tpq

=2e2

h

[∑
p,q

apq +
∑
p,q

apq cos(ϕpq) +
∑
p,q

apq cos(φ+ ϕpq)
] (1.2)

Once again, it is possible to use the fact that ϕpq is uncorrelated from one channel
to another, so that the M2 randomly oscillating terms contribute to the transmission
probability to an amount of

√
M2. Moreover, in the case where transport is as equiprob-

able along each channel (which is a realistic assumption in diffusive metals), we have
apq ∝ 1/M , such that

G ∝ 2e2

h
[M + cos(ϕ) + cos(θ + φ)]

where the first term is the average conductance (∝ M as expected), the second term
causes the universal conductance fluctuations that we come back to in section 1.3.2, and
the third term is the Aharonov-Bohm term that is of interest here. This last term is
the only one to be magnetic-field sensitive. In a two-terminal conductor, time-reversal
symmetry imposes G(B) = G(−B) (and thus that G(φ) = G(−φ)), consequently, θ is
either 0 or π, and is randomly either one of the other, the randomness coming from
the random character of the static phases. From this, it is possible to understand why
h/e oscillations are not seen in long cylinders where the AAS effect is observable. It is
effectively possible to picture the long cylinder as a collection of multiple, uncorrelated
sections of thickness Lφ, in each of which θ takes random 0 or π value. The h/e
oscillating conductance of all the contributing independent rings thereby averages to
zero. This shows that this type of interferences is not robust to ensemble averaging.

Such h/e oscillations were observed in what is sometimes referred to as “1-D” rings in
the literature – they are 1-D in the sense that w, t � Lφ, LT – unambiguously for the
first time in 1985 by Webb and colleagues [69]. This was further confirmed by several
other observations in other metals such as silver [63,70] and tin [71,72], as well as in
III-V semiconductors 2DEG [73]. In such experiments, it is also sometimes possible to
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Figure 1.3: a Schematic of an AB ring b Schematic of two specific paths i, j respectively
exploring the upper (u) and down (d) arm of an Aharonov-Bohm ring. The area enclosed in
between the two paths drawn Aij is approximately equal to the ring’s area Aring

see oscillations of the conductance periodic in h/2e at high magnetic fields, but of much
weaker amplitude. Those are distinct from AAS oscillations however, and are rather
due to harmonics of the same effect: pairs of different paths that separate at one point,
circle the ring one full turn (instead of just half a turn for h/e), and then recombine
and interfere. Effectively, contrary to the AAS oscillations, these do not rely on the
indistinguishability of time-reversed paths, and can therefore survive to arbitrarily large
magnetic fields.

1.2.3 Persistent Currents in Metallic Rings
It is possible to observe non-dissipative currents in metallic (non-superconducting!)
rings when immersed in a magnetic field. This can seem puzzling as in metals, transport
is normally dissipative, apparently preventing the circulation of any net current without
a voltage bias. However, non-vanishing currents can indeed persist indefinitely even in
a dissipative medium. This effect is only possible thanks to the electron quantum
coherence [74]. The idea is that in a ring with a perimeter length smaller than the
coherence length, the electrons’ wavefunctions will be periodic. The current associated
to each energy band n is then given by:

I(Φ) =
∑
n

∂εn
∂Φ

where the εn are the eigenenergies of each band and Φ is the magnetic flux threading
the ring [75–78]. As the band structure εn(φ) is constituted of non-flat bands with
their derivatives that are mostly of alternating signs, currents are generated in both
directions that consequently cancel. That is at the exception of the last few bands
which are the only responsible for this effect, explaining its tiny amplitude. It is also
predicted that disorder (elastic collisions) should only reduce the amplitude of the effect
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but not prevent it entirely. This persistent current results in a magnetization of the
ring, which can be measured. More precisely, it is the change in the magnetization upon
a change in the externally applied magnetic field that is measured in experiments. The
first measurement of this effect was performed in 1990 [79], and a periodicity of h/2e was
observed. The most accurate and unambiguous measurements of those magnetizations
were performed rather recently, in 2009, both on rings arrays at high magnetic fields [80]
as well as on several individual rings at low magnetic fields [81]. Both measurements
boasted an h/e periodicity.

1.3 QuantumCorrections to the Conductance in diffu-
sive conductors
The three effects presented above illustrate the physics of interferences in solid-state
circuits, by showing how the combination of quantum interferences and random paths
can give rise to these specific effects. So far, however, these effects were discussed in
terms of a well-defined Aharonov-Bohm flux due to the doubly connected geometry
of the systems. In a singly connected disordered metal (with no hole), like a simple
wire, no precise Aharonov-Bohm flux is identifiable. A reasonable question that arises
therefore is: do these quantum effects still show? The answer is yes, and they show in
three distinct effects: in the magnetoresistance of the device, the Universal Conductance
Fluctuations (UCF) and in Landau diamagnetism, the first two of which are presented
in this section.

1.3.1 Weak-localization Magnetoresistance of Mesoscopic Wires
and Films: a Signature of the AAS Effect
In simple metallic wires or films, it is also possible to have trajectories containing loops
with a starting and ending point placed at the same location, just as for the AAS
effect. In this case however, there is no well-defined preferential magnetic flux due to
the system’s geometry. As a consequence, no periodicity will stand out in its transport
properties. All electron trajectories forming loops of length lloop such that lloop . Lφ
can still interfere, and do affect the transport [82].

Due to the dependence of the AAS effect on interferences of time-reversed symmetric
paths, an external magnetic field, which tends to destroy this symmetry, gives rise to
a non-trivial dependence of the conductance (see eq.1 in [83]). At this point, it is in-
teresting to look back at the data plotted in figure 1.2. It is very clear that superposed
to the oscillations is a slowly drifting background. It is this part of the conductance
dependence that we get interested in now. These are due to paths smaller than Lφ
that loop around on themselves within the metal’s thickness, but do not wind around
the cylinder’s perimeter. As a consequence, these loops are condemned to enclose a
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much smaller magnetic flux than those that do wind around the cylinder, explaining
the magnetic field’s effect resulting in a slowly drifting background compared to the
rapid h/2e oscillations. Looking in more details, it appears that in the Mg cylindrical
wire, the differential magnetoresistance (dR/dB) is positive with increasing B while in
the Li wire, it is negative. This is due to the spin-orbit interaction, essentially absent
in Li while strong in Mg, and such consideration illustrates the two opposite, yet linked
effects: anti-weak and simple weak localization. In a nutshell, in absence of spin-orbit,
both interfering trajectories will acquire the same relative phase, resulting in construc-
tive interferences every time. On the contrary, in presence of spin-orbit interaction, the
spin of the clockwise propagating electrons will get shifted of always the exact opposite
angle than the anti-clockwise propagating electrons. This always result in destructive
interferences, which can be seen as anti-trapping whence the terminology anti-weak
localization (see [84, p. ch.7.4] for the detailed calculation).
When the magnetic field is turned on, the (anti-)weak localization effect is gradually
killed. As a result, a negative (positive) magnetoresistance is observed in absence (pres-
ence) of spin-orbit interaction (see e.g. [82] for more details). In wires and films, this
translates into a dependence of the resistance/conductance on B that is well captured
by the AAS theory [85,86] (for complementary theoretical sources, see [87, pp. 203–
206] for a discussion in terms of Feynman paths amplitudes, [87, pp. 222–241] for the
derivation in terms of Green’s function, and for a very different approach [Montambaux,
pp.84-86] discussing the same matter in terms of Hikami boxes). Weak-localization is a
thoroughly investigated effect and the induced magnetoresistance has even become the
object of quantum simulation [88].

1.3.2 Universal Conductance Fluctuations: a reminiscence of h/e
oscillations
When measuring the conductance of a disordered metal such that its dimensions do not
exceed the coherence length, it is possible to observe fluctuations in the conductance
upon varying an external parameter. It can be a magnetic field [89] or a nearby gate
voltage [90] (the latter only works in semiconductors, as in metals, the large screening
prevents a gate to have any effect). Remarkably, those aperiodic fluctuations are re-
producible within a single sample. Regardless of the material, the amount of disorder
in that material, or the sample’s dimensions L (as long as l � L� Lφ, where l is the
mean free path), those conductance fluctuations will always remain of the order of the
conductance quantum e2/h. To a certain extent, the amplitude of those fluctuations are
also independent of the sample’s dimensionality [91], as in all three possible cases: 3D
(Lx,y,z � Lφ), 2D (Lx,y � Lφ, Lz . Lφ) or 1D (Lx � Lφ, Ly,z . Lφ), the conductance
fluctuations remain of the order of e2/h. For all these reasons, those fluctuations are
called universal. Universal Conductance Fluctuations (UCF) were observed in 1D [90],
2D [90,92] and in 3D [93], upon changing an external parameter such as the voltage
of a nearby gate [90] or a magnetic field [89,94]. They were observed in metals [[95];
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[69]; ], in Si MOSFET [89,90,92,94] and more recently in graphene [96–99] as well as
in some topological insulators as e.g. [100]. It is worth noting that in graphene, the
valley degree of freedom (absent in normal metals) can drastically affect the UCF by
enhancing them or suppressing them entirely (see [101, sec. II.C.3])

Just as in the case of h/e oscillations in 1-D rings, UCF are due to interferences between
different pairs of paths that cross each other twice [102,103]. The effect of varying a
nearby gate as in [90] is to modify the electrochemical potential µ of the propagating
electrons. On the other hand, the effect of varying a magnetic field B, as in [89,94], is to
change the relative phase of the different interfering paths. UCF therefore constitute a
fingerprint of the particular microscopic arrangement of the material’s impurities, and to
which electronic interferences are sensitive. In this regard, this effect is analogous to the
speckle effect in optics, a seemingly random interference pattern due to the scattering
of coherent light through a diffusive medium [[102]; Montambaux, pp.94-100]. Such
fluctuations were responsible for the ambiguity of the first attempt at measuring h/e
conductance oscillations in ref. [95] because the ratio of the hole’s area to the area of the
metallic wire perpendicular to the magnetic field was around unity. As a consequence,
h/e oscillations were buried in a background of noise which was ironically due to the
exact same physical effect the experimentalists wanted to put in evidence.

To conclude this section it is simply mentionned that the analogue of persistent currents
in simply connected geometries translates into Landau diamagnetism [104, chap. 4,105,
chap. IV]

1.4 Measurement of the Electron Coherence Length
Because all the effects described above originate from quantum interferences, each can
be used to quantify the coherence length Lφ. However, in practice, some are more
precise and quatitative than others. In what follows, it is briefly covered how.

1.4.1 WL magnetoresistance, a quantitative probe
The weak-localization theory [106,107] predicts different behaviors of the magnetoresis-
tance depending on the device dimensionality, as well as the transport regime (diffusive
or ballistic). Below are listed a two examples for different regimes of the simplest
geometry:

• in quasi-1D metallic wires, where the transverse dimensions of the wire: thickness
t and width w are smaller or comparable to Lφ , the magnetoresistance is predicted
to have the form of eq.1 in [83] for quasi-1D wires in the diffusive regime.

• For quasi-1D wires in the semi-ballistic regime, see eq.10 in [85], which also ex-
plores the cross-over between both diffusive and semi-ballistic regimes.
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The equations are not printed here as we are not interested in the details. We simply
point that in all these formulas, the magnetoresistance is based on just a few parameters
which are:

• the wire’s width w, which is the transverse dimension of the wire that is perpen-
dicular to the applied magnetic field, and is a known parameter in an experiment

• the spin-orbit length, which characterises the strength of the spin-orbit coupling
and is characteristic of the material that can be determined by fitting the local-
ization theory

• the coherence length Lφ which is precisely the parameter of interest, also deter-
mined by fitting with the theory

The main feature in (anti-)WL magnetoresistance measurements is a peak (dip), whose
relative amplitude and width are related to the coherence length Lφ (see fig.2 in ch.6
of [108] for the exact shape in quasi-1D wires).

Studying such systems gained interest again in the late 1990s after a it was suggested
in [109,110] that the observed saturation of the coherence length at low temperatures
was caused by zero-point fluctuations of phase coherent electrons. This controversy is
very well summarized in [106]. It was further shown that such an assumption was not
necessary to account for this saturation and even that the saturation could actually be
explained by the presence of of magnetic impurities in such minute concentration that
it could not be detected by other means [83].

1.4.2 Universal Conductance Fluctuations
On the other hand, it is difficult to be quantitative on Lφ with UCF, as there is no model
as universal as that for WL and containing as few parameters, that enables to determine
a well-defined value for Lφ from the UCF amplitude. There are consequently only a few
examples where UCF measurements were used as quantitative probes (e.g. [97,111]),
but were also always completed with WL ones, and most of times only served as a
consistency check. It is however used as an indicative tool with its dependence upon
varying temperature as in [111] or bias voltage, as in [112,113]. UCF measurements are
therefore a must-do in any new materials, as they attest that the observed transport
phenomena in the material are not spurious. Notable examples are in graphene [97,99],
and some topological insulators such as Bi2Te2Se [100] and Bi2Te2S [114].

1.4.3 Multiple-path Interferometers
Another possibility is to rely on the amplitude of the h/e conductance oscillations
in rings to evaluate Lφ. Once again, this technique is not as quantitative as WL
measurements and is often performed along with WL measurements as for example in
[71]. On the other hand, interferometers, although showing no particular advantage over
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WL to quantify the coherence length, enable to explore what can affect the quantum
coherence in which-path experiments thanks to their well-controlled geometry.

An example of such experiment is [115] (and another similar one [86] in copper) where
a metal ring was doped with Manganese and Chrome. These are magnetic species with
Kondo temperatures much lower than the experimentally explored range to ensure
no screening of the spin impurities takes place. All these magnetic impurities act
as a sensing environment by potentially exchanging their spin state with conduction
electrons. By turning up the magnetic field, the magnetic impurities’ spin gradually
align with the field and get harder to flip (energy cost is ∝ B), and interferences are
recovered. The same experiment is performed on simply connex geometry in the same
paper and by measuring UCF, it is shown that they are recovered at high magnetic
field.

It is also possible to apply this technique in other types of two-path interferometers such
as the series of experiments realized at the Weizmann institute which are solid-state
implementations of the double-slit experiment [116,117]. Another, even more controlled
experiment, consists in placing a quantum dot along one of the paths of a solid-state
two-slit interferometer as in [118,119]. The quantum dot is itself capacitively coupled
to a QPC, of which the sensitivity is tunable as a function of the voltage bias applied
across it. The observed interference contrast diminished as the sensitivity of the QPC
was tuned, elegantly demonstrating how sensing the quantum state by the environment
can cause decoherence.

The difficulty for these as well as for metallic rings resides in the fact that there are
several different channels interfering with each other. The final measured quantity is
therefore always an average of the transport in several channels. The ideal situation
would be to have a single channel for electrons to circulate and interfere within this
single channel. This is precisely what the quantum Hall regime enables to do and is
the subject of the next chapter.
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2
The Quantum Hall Edge Channels

and Electron Quantum Optics

So far, interferences were presented with numerous quantum channels interfering to-
gether. For example, the cross-section of an Aharonov-Bohm ring hosts many electronic
modes. An ideal configuration for the quantum manipulation of electrons would be to
have a system where single electronic modes can be controllably combined. This never-
theless requires to confine electrons to one-dimensional channels. However, in doing so,
the influence of Coulomb interaction is dramatically increased. Effectively, in two- and
three-dimensional conductors, their behaviour at low energy (� EF , the Fermi energy)
is usually well described in terms of free quasi-particles excitations with a renormalized
mass, according to the Fermi liquid theory [120]. In one dimension, the free quasi-
particle approach breaks down. An intuitive way to understand this is to picture that
if one were to put electrons in a pipe thin enough so that they cannot go around each
other, then due to Coulomb interaction, pushing just one electron will move all the
others, resulting in a collective excitation. In effect, in one-dimensional conductors,
electrons’ behaviour is described by the Tomonaga-Luttinger (TL) liquid theory, which
tracks the collective electrons’ motion rather than the single-particle dynamics [121].
How could this be compatible with the coherent transport of electrons ? It turns out
that for spinless and chiral conductors such as quantum Hall edge channels, the TL
theory predicts the intra-channel interactions to only renormalize the electron velocity
(eq. 1.44 in [121]), and therefore to have no undesirable decoherence side-effects. In this
type of conductors, the electron decoherence at low temperature involves the coupling
to other states, such as adjacent electronic channels (as will be discussed in chapter
3). Therefore, QH edge channels seem to constitute an ideal platform for exploiting
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electron quantum coherence.

In what follows, it is explained how one-dimensionnal electronic systems, can be exper-
imentally obtained. First, it is presented how one-dimensional confinement of electron
can be achieved, restricting to the specific case of the QH regime. Then, the field of
electron quantum optics is presented through a set of experiments, most of which take
advantage of the one-dimensional QH channels for electron quantum manipulations.
Finally, we introduce how these can be used to realize true two-path interferometers.

2.1 1-D Electronic Channels
This part shortly describes how 1D electronic channels can be obtained with 2DEG
driven in the quantum Hall regime (for extensive review of this effect, I highly recom-
mend reading R. Rodriguez’s PhD thesis [122, chap. 2] as well as D. Tong lecture notes
[123], other helpful resources are [124–127] and [128, chap. 3]).

Figure 2.1: Sketch, to scale, of the SC structure used in the first study of this thesis. The
bottom of the conduction band calculation was determined by solving the Poisson equation,
assuming a homogeneous donors density in the Si doped layer, courtesy of Ulf Gennser. The
zoomed-in part highlights that a potential well is created at the AlGaAs/GaAs interface and
that only the fundamental level lies below the fermi energy.

The first step in confining electrons in one dimension is to confine them to two dimen-
sions. State of the art two-dimensionnal electron gas are obtained by band engineering
in epitaxied Si-doped AlGaAs heterostructures as illustrated in figure 2.1. They are
epitaxied on a GaAs substrate from very pure materials and with a control of the
thickness down to the atomic layer. Such purity and epitaxial growth guarantee an
extreme scarcity of grain boundaries and lattice defects in the crystal, thereby prevent-
ing many elastic collisions for conduction electrons. The transport of electrons in such
2DEG is therefore ballistic typically up to several tens of microns at low temperature,
which means they experience no scattering on shorter length scales. To get to the
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one-dimensional confinement, two routes are possible. The first one consists in using
a lateral confinement, however in this case, backscattering progressively increases to-
wards an insulating regime as the temperature is reduced, except for perfectly ballistic
systems, according to the TL theory. Another possibility is to take advantage of the
topological protection of the quantum Hall edge channels against backscattering. In
the following is described how to reach such a regime.

Immersing a high-mobility AlGaAs 2DEG with low carrier densities in a perpendicular
magnetic field leads to a splitting of the electrons energy levels in highly degenerate
Landau levels

En,σ± = ~ωc(n+ 1/2)± gµBB/2 (2.1)

where σ+(σ−) stands for spin (anti-)aligned with the magnetic field, ωc = eB/m∗ is the
cyclotron frequency, m∗ ≈ 0.067me the electron effective mass, g ≈ −0.4 the Landé
factor, and µB the Bohr magneton. The first term in equation 2.1 is the Landau
splitting, ∼ 75 times larger than the second term, which is the Zeeman splitting, due
to the small electron effective mass in those systems. To obtain a well-defined Landau
level population, the thermal energy needs to be much smaller than the level separation:
kBT � ~ωc (e.g. the temperature needs be T � 100K at B = 5T, while Zeeman-split
levels require a smaller temperature: T � 1.3K at B = 5T). In the bulk, the energy
levels lying below (above) the Fermi energy are fully populated (completely empty).
Near the edges, the confining potential progressively increases towards the work function
(∼ 4.7 eV≈ kB×54 kK [129,130], which is virtually infinite on the energy scales relevant
to the transport regime we are interested in). The Landau levels therefore bend up and
those populated in the bulk necessarily cross the Fermi energy near the edges (this would
not be possible for large samples without any disordered-induced localized states in the
bulk). The only propagative low energy states are therefore localized along the edges,
at these crossing points. In practice, these edge states constitute small conducting
channels, one for each populated Landau level, where electrons are only going one way,
and are called edge channels. The backscattering within a single Laundauer-Büttiker
channel is therefore only possible through the bulk by variable range hopping, which is
essentially entirely suppressed whenever a conductance plateau is observed [131–133].

2.2 Electron quantum optics

2.2.1 The eletronics-optics analogy
Three of the characteristics of the quantum Hall regime permit to draw an analogy
with the optical light. As a consequence, the QH regime provides a path for an electron
implementation of quantum optics experiments. First, the quantum Hall channels are
topologically protected against backscattering, similarly to how photons propagate in
a transparent medium. Second, adjustable edges allow for guiding electrons along

33



CHAPTER 2. THE QUANTUM HALL EDGE CHANNELS AND ELECTRON QUANTUM OPTICS

controllable paths, similarly to photons in optical fibers. This can be achieved either
by etching the 2DEG to the desired geometry or by field-effect. Third, it is possible to
control the number of propagating modes, simply by tuning the magnetic field, while
for photons, this would be controlled by the waveguide’s dimensions.

This analogy with optics can be pushed further in that some electronic components
can be identified to usual optical components, enabling the achievement of so-called
electron quantum optics experiments. As further detailed below, it is possible to make
coherent sources of (single) electrons, the electronic equivalent of beam-splitters, and
photo-detectors.
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Figure 2.2: Sketches of the different steps to process ohmic contacts and Quantum Point
Contacts (QPC). a 2DEG immersed in a perpendicular magnetic field, quantum Hall channel
forms along the edges. Ohmic contacts are made as such: b An eutectic mix of Au & Ge is
deposited on top of the structure, Ni is added for good adhesion to the surface. c The metal
diffuses into the semiconductors thanks to a thermal annealing, so that the quantum Hall
channels can be contacted electrically with wires through these contacts. d Al is deposited
on top of the structure, constituting electrostatic gates. e,f,g Applying a negative voltage
to these gates repels the electrons of the 2DEG located underneath, and enables to vary the
transmission of the quantum Hall channels across them.

Electronic Beam-Splitters
The electronic equivalent of optical beam-splitters are quantum point contacts (QPC).
They consit of metallic gates deposited on top of the semiconductor structure such that
they are electrically disconnected from the 2DEG. By field effect, it is possible to repel
electrons located below them, the two gates constituting the QPC are specially designed
such that they end with sharp tips pointing at each other, enabling to gradually narrow
the separation between counter-propagating edges channels.
When both electrostatically defined edges are close enough to each other, tunneling can
occur between the forward and backward moving electrons, inducing backscattering.
The amount of backscattering can be precisely controlled by the voltage applied to the
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split gates, giving complete control on the transmission probability accross the QPC.
In essence, a QPC is a fully tunable beam-splitter for electrons. A typical transmission
curve is plotted in figure figure 2.2 h.

DC Sources and Detectors
The DC sources and detectors consist of ohmic contacts, that is, metallic electrodes
that are electrically connected to the 2DEG. The coherence of the source is ensured by
the low temperature of the device. The temporal width of an electronic wavepacket is
∼ ~/2kBT , which makes it a ~vF/2kBT ∼ 20µm wide at 10mK (taking a standard
drift velocity for electrons in QH channels of vF ≈ 5.104m.s−1 [134,135]).

Single Electron Sources
Single electron sources were implemented in essentially three different forms. The first
type is constituted of a gate-defined quantum dot [136,137]. Playing with the voltage
applied to the gates allows to capture and then emit a single electron at a well-defined
energy or time. The second type of sources is also constituted of a quantum dot but
this time, the electron emission is triggered by a surface acoustic wave along which
the electrons subsequently travels with [14]. The third type of single electron sources
simply consists in an ohmic contact, just as the ones described for the DC source. It
is then required to apply a particular voltage excitation (of lorentzian shape in the
time domain, with a particular width), such that the wavepacket contains exactly one
elementary charge [24].

Single Electron Detectors
It is possible to detect electrons one by one by simply using a QPC, nearby the region to
be monitored as in [138]. Any charge located in the QPC surroundings acts as a gate, as
a consequence, an excess charge entering or leaving the nearby region provokes a change
in the QPC’s transmission, that can be monitored. For maximum sensitivity, the QPC
is tuned at its sharpest transconductance value (the goal is to maximize ∂Gqpc/∂Vqpc).
This kind of detection is however generally limited to low frequencies [139]. To increase
the detection rate, it is possible to connect the sample with an impedance-matched RF
circuit, enabling detection in the 100MHz range as in [140].
These schemes remain however too slow to detect flying electrons (going at ∼ 5 ·
104 m.s−1 in devices that are typically tens of microns long). This is why some proposals
were made to be able to perform this kind of flying single electron measurements such
as [141], in which electrons are made to propagate alternatively below two large metallic
gates, resulting in a non-destructive ac detection signal. See also [142, sec. 5.2], for a
review of other possible methods.
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2.2.2 A few milestone experiments
Using the aforementioned tools, it was possible to the mesoscopic community to realize
equivalents of a few quantum optics experiments, in what follows, several striking ones
are presented.

Hong-Ou-Mandel Experiment
Time resolved single electron sources, rendered possible to collision two indistinguish-
able single particles at a QPC, analogous to the photons collisions performed on an
optical beam-splitter [143]. The rate of coincidence of two particles impinging on the
two output detectors is measured as a function of their arrival time difference at the
beam-splitter. When both particles arrive at the beam-splitter with a large delay, they
do not see each other and act as single particles. In the measured low-frequency elec-
tronic noise, this translates into simple shot-noise. However, when they both arrive at
the same time on the QPC, it is their two-body wavefunction that drives the outcome.
This two-body wavefunction Ψ(r1, r2) (with ri the single particles’ set of coordinates)
depends on the particles’ nature and more precisely on their exchange statistics, which
is defined by the phase acquired θ upon the two particles exchange, and reads:

Ψ(r1, r2) = eiθΨ(r2, r1) (2.2)

For bosons θ = 2π and for fermions θ = π, such that the probability of finding two
particles at the same position r, given by |Ψ(r, r)|2, is unity for bosons (θ = 2π) and
it vanishes for fermions (θ = π). The fermions’ anti-bunching behaviour leads to a
suppression of the partition noise whenever two indistinguishable fermions arrive at
the same time at the QPC, as observed in [23,24] (although in [23], the Pauli dip did
not go to zero due to hole-type excitations and Coulomb mediated interaction with the
environment).
Interestingly, it was also possible to observe an intermediate behaviour between the
bosons’ bunching and the fermions’ antibunching in a similar collision experiment, with
anyons possessing an intermediate exchange statistics θ = 1/3 [144] (note however a
major difference: the single-particle sources were voltage biased QPCs, giving no control
on the single-particle delays, the exchange statistics could however be probed with the
cross-correlation noise).

Mach-Zehnder and Fabry-Perot Interferometers
The above experiments put forward the particle-nature of the electronic excitations, it
is also possible to probe their wavelike nature, thanks to interferometers, just like in
optics. The first true two-paths electronic interferometer to be implemented was the
Mach-Zehnder interferometer of the Weizmann Institute in 2003 [20], the principle of
which is detailed in section 2.3. As far as now, this kind of interferometer remains the
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only kind of true two-paths interferometers for electrons in conductors as it involves
only a single channel. Any other type rely on interferences of several paths implying
different electronic channels. It is also possible to make Fabry-Perot interferometers
using the same principle (see section 2.3 for details).

Hanburry-Brown-Twiss Experiment
The principle of the Hanburry-Brown-Twiss (HBT) interferometry is that correlations
between indistinguishable particles can develop along their way to the detectors, even
if they are emitted by two spatially incoherent sources. It is possible to realize a similar
interferometry experiment with electrons, which relies on coupling two Mach-Zehnder
interferometers via one of their paths [22]. This enables to entangle an electron in the
first MZI to an electron in the second one. The double MZI geometry involves four
detectors, two of which are put to ground, and the two others are each an output of
a different MZI. Electron correlations can be measured through the electronic cross-
correlation signal between these two detectors. Remarkably, although no single particle
can travel a path enclosing both MZI areas, the observed cross-correlation noise shows
an Aharonov-Bohm periodicity consistent with this total, double MZI area, demon-
strating the correlated nature of the indistinguishable electrons that entangled within
the double MZI.

2.3 Electronic Interferometers
In electronics, one major manifestation of quantum mechanics is the wavelike nature
of electrons. Interferometry is a simple and elegant way to reveal it. Quantum Hall
channels can be used to realize interferometers that are analogous to optical ones, here
the focus is specifically on the Mach-Zehnder and Fabry-Perot interferometers.

2.3.1 Electronic Mach-Zehnder Interferometer
With the tools described above, it is possible to make interferometers that are similar
to their optical counterparts, such as Mach-Zehnder interferometers as illustrated in
figure 2.3 b. A first QPC is used to separate an incoming beam of electrons into two
beams that each follow a distinct path. Those two are further recombined on a second
QPC before ending on two detectors. The observed intensity of the signal transmitted
from source S to detector D1 (be it for the electromagnetic field module or the electrical
current) will be a sinusoidal curve:

I = Ī[1 + Vcos(φ)] (2.3)

where Ī is the average current, φ is the phase difference acquired along both paths
and V is the interferences visibility defined from the maximum and minimum intensity
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S
a b

S D2 D1D2

D1
Figure 2.3: Schematics of Mach-Zehnder interferometers: a In an optical system, a source (S)
emits a beam of classical light or photons that is separated in two at a first beam-splitter.
These are further recombined on a second beam-splitter before hitting two detectors (D1,D2).
The path difference (d) drives the phase difference, which determines the observed interference
pattern. b In a solid state electronic circuit, a source (S) emits a beam of electrons (in a
quantum Hall channel) that is separated in two at a QPC (pair green triangles facing each
other) and further recombined on a second QPC before ending on two detectors (D1,D2).
The phase setting the interferences is driven by the magnetic flux A× B threading the area
A enclosed between both paths, with B the magnetic field perpendicular to the plane of the
area A. Two knobs are therefore available to modulate the magnetic flux: the perpendicular
magnetic field B as well as the area A thanks to an electrostatic gate voltage Vpl that can
repel away one of the propagating channels by field-effect.

measured as:
V = (Imax − Imin)/(Imax + Imin) (2.4)

In the ideal case, without decoherence and with beam-splitters tuned to half transmis-
sion, the contrast is perfect, which translates in a visibility that is unity. For an optical
MZI, the phase difference is due to the paths length difference d, while for the electronic
MZI, it is an Aharonov-Bohm phase that is picked up and which is given by:

φ = e

~
AB (2.5)

where A is the area comprised in between both of the interferometer’s arms while B
is the perpendicular component of the external magnetic field applied to the interfer-
ometer. Note that in equation 2.5, only the pure Aharonov-Bohm phase is taken into
account and the geometric phase due to a possible path length difference bewteen both
arms is neglected. To vary the magnetic flux, one can vary either the magnetic field B
or the area A enclosed between the interfering paths. In practice, the two knobs that
are accessible to modulate the interferences’ Aharonov-Bohm phase: the magnetic field,
and the voltage of a gate coupled to one of the interferometer’s paths (which can vary
the area as shown in figure 2.3 b by the small bump along the lower path). In general,
the dependence of these two parameters can be written as:

dφ

2π = ∂

∂B

(
AB
h/e

)
dB + ∂

∂Vpl

(
AB
h/e

)
dVpl (2.6)
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In the simple case, where only the magnetic field is changed, the area of a simple MZI
interferometer is not affected by it and a 2π phase shift corresponds to

∆B = h/e

A

and is therefore inversely proportional to the interferometer’s area.

Mach-Zehnder interferometers present the advantage of having one of the two detecting
contacts playing the role of a charge sink, thereby preventing any charging effects.
These are a major concern in Fabry-Perot type interferometers as argued below.

2.3.2 Electronic Fabry-Perot Interferometer

D1
+

a b

+

→

→

+
S

Similarly to Mach-Zehnder interferometers, Fabry-Perot Interferometers (FPI) can be
built in the quantum Hall regime [16,17]. They also rely on the presence of two QPCs in
series. This time however, interferences between multiple paths can occur as illustrated
in figure ??. In the limit where the QPCs are tuned to reflect only a small fraction of
the current (R2, R1 � 1, with Ri the reflection probability of each QPC), the current
through a FPI is given by:

IFPI ≈ ĪFPI

(
1 + 2

√
R2R1 cosφ

)
where φ is the phase acquired for a single loop in the cavity.

Contrary to Mach-Zehnder interferometers, the interfering paths in Fabry-Perot cavities
encircle an area containing no charge sink (a role played by contact D2 on figure 2.3
b). Consequently, Coulomb repulsion effects within the cavity can become significant,
and modifying the magnetic field or a side gate voltage not only affects the Aharonov-
Bohm pattern but also the total charge enclosed inside the cavity Qcav. In the case of
a cavity with only the outer channel connected to the outside through the QPCs, the
total charge Qcav can be decomposed in the addition of three terms:

Qcav = Qions +Qin +Qout

with Qions the fixed charge of the donor ions, Qin = eNin is the electrons charge localized
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in the cavity bulk (with therefore an integer number Nin of elementary charges) and
Qout is the charge carried by the outer, interfering channel, which is not restricted to
an integer number of electrons. In the integer QH regime, the charge contained in
each channel (in particular in the outer one) is given by Qout/e = BA/(h/e). In the
Coulomb-dominated regime, Qcav is primarily determined such that it minimizes the
charging energy of the cavity Q2

cav/2C, with C the capacitance of the cavity towards its
surroundings, i.e Qcav = 0. In the particular case of changing the magnetic field, being
in the Coulomb-dominated regime implies

∂Qcav

∂B
= 0

The magnetic field does not affect the background ionic charge and therefore
∂Qions/∂B = 0, leaving only

∂Qin

∂B
= −∂Qout

∂B
∂Nin

∂B
= − ∂

∂B

(
AB
h/e

)

= − 1
2π

∂φ

∂B

(2.7)

where φ is the phase of the oscillating conductance, that can therefore only change in
steps of 2π, in the Coulomb-dominated regime, resulting in an interference pattern inde-
pendent of B. What physically happens is that the term ∂AB/∂B = B∂A/∂B+A has
to vanish, so that the area enclosed by the outer channel needs to shrink progressively
as B is sweeped. When the area has contracted of ∆A such that B∆A/(h/e) = 1, Nin
jumps by one e and the area abruptly relaxes, resulting in a phase jump of 2π, invisible
in conductance measurements.

Here, the situation considered was only in the very particular case of a Coulomb-
dominated QH FPI constituted by the outer channel, upon varying only the magnetic
field. A general model for QH FPIs can be found in [145], where variations of a gate
voltage, the number of free propagating channels, and regimes where the charging
energy of the cavity does not dominate, are also considered. Explorations in several
regimes were accomplished, [18,146–148] resulting in oscillatory patterns with distinct
signatures, in good agreement with theory [145].

This kind of charging effects can be suppressed by adopting a few stategies: one of
them is to place a charge sink in the middle of the interferometer under the form of
a micron-scale ohmic contact [146]. Another strategy is to screen Coulomb charging
energy by placing a nearby top-gate as in [18,146]. The latter strategy can be taken a
step further in very small cavities, that require screening planes to be disposed very close
to the transport plane, as was accomplished with a triple quantum well in an AlGaAs
heterostructure [149] and for which a pure Aharonov-Bohm interference pattern was
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observed. Finally, let us point to very recent results in two independent groups that
reported the successful realization of Fabry-Perot interferometers in graphene [150,151].
Those do not suffer from any charging effects, thanks to the hole channels that run under
their gates and are capacitively very well-coupled to the interfering channels due to their
very small spatial separation, acting as efficient Coulomb screens. Such 2D material
platform might therefore be ideal to study anyons in the future.

2.4 Coulomb induced correlations in electron quan-
tum optics
So far in this chapter, a parallel was established between electrons in solid-state circuits
and photons, a few examples of experiments common to both fields were also given. One
should however note a caveat of such an analogy: contrary to interactionless photons,
electron-electron interactions play a major role in one-dimensional electronic conduc-
tors. While this interaction can be detrimental to the electron coherence, it can also
give rise to exotic physical effects that have no equivalent in optics. Below, a few ex-
amples highlight that the interests of electron quantum optics goes beyond the mere
reproduction of optical experiments.

2.4.1 Measurement of the Anyonic Statistics by Interferometry
The most striking case of such emerging phenomena is probably the fractional quantum
Hall effect that arises in 2DEG with low carrier densities and high mobilities due to
Coulomb interaction as electrons pair with several flux quanta. These emerging quasi-
particles can have anyonic statistics, which can be probed by interferometry as described
below. One of the appeal of interferometry is to directly measure the exchange statistics
of anyonic quasiparticles [152, sec. 7]. Although attempts were made in MZI [153,154],
they remained unfruitful, maybe because of edge reconstruction [155,156] occuring and
destroying the fragile anyonic quasi-particles. It appears that anyonic quasi-particles
cannot propagate on long distances in the fractional quantum Hall regime (this is the
reason why source QPCs were placed in close proximity to the collision QPC in [144]).

Another approach is to use FPI that allow for significantly smaller path lengths than
MZI. Several attempts at measuring the anyonic statistics were made with a Fabry-Perot
interferometer [157–162], and while some elements point to an effectively measured
anyonic statistic, charging effects render these measurements ambiguous [18,145,163].
The Manfra screening strategy [149] suppresses the Coulomb charging energy of the
cavity, enabling the authors to unambiguously measure the braiding of anyonic quasi-
particles in the fractional quantum Hall regime at ν = 1/3 [164]. In this regime,
electronic excitations of the fractional quantum Hall state are of anyonic nature with
an exchange phase (equation 2.2) of θ = πν = π/3. Although first order interferences
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in a FPI involve single anyons going around the cavity, by doing so, the interfering
quasi-particle encircles all Nqp quasi-particles localized in the bulk of the cavity. This
process can be shown to be equivalent to two two-particle position exchange, called a
braiding operation [152,165], and the resulting picked-up phase by the interfering anyon
is: φ = 2πν[AB/(h/e)−Nqp] [152, sec. 7] (where A is the interferometer’s area). Upon
changing the magnetic field or a nearby plunger gate voltage, the number of bulk quasi-
particles (which is a well-defined integer number due to their localization) can jump by
one, provoking a 2π/3 jump in the interferometric pattern and which is precisely the
measured signature in [164]. Let’s stress that the aforementioned experiment results
from an absolute tour de force in the heterostructure growth, as well as in the device
fabrication, involving techniques unavailable to any other research group at the moment.

2.4.2 Perspectives for electronic flying qubits
QH edge channels provide a mean to perform quantum operations based on single elec-
trons [142,166], indeed, they are analogous to optical waveguides and allow for an effi-
cient coupling thanks to the Coulomb interaction. It is effectively possible for example,
to imagine a quantum CNOT gate based on two coupled Mach-Zehnder interferometer
[166]: the principle of a classical CNOT gate being to control the output of a bit with
the state of a second one. A quantum CNOT gate is exactly the same, but with qubits,
that can therefore be in a superposition of both states. In a MZI, the electron can be
in a superposition of being present in one path and being present in the other. As a
consequence, two MZI coupled together along one of their paths such that when both
electrons are in the coupled path, they pick up a π phase shift, represents a quantum
CNOT gate.

2.4.3 Luttinger spin-charge separation
As already discussed for anyons, the dimensionality of a physical system can drastically
affect its behaviour. Similarly, electrons confined to one dimension act very differently
compared to higher dimensions. As a matter of fact, electrons in quantum Hall edge
channels implement a chiral Tomonaga-Luttinger liquid [121]. Several experiments were
performed to reveal some of the characteristics of such systems, such as the so-called
spin-charge separation that we adress in more details in section 3.2. Note that the
Tomonaga-Luttinger liquid model also applies to systems different from quantum Hall
edge channels such as laterally confined 2DEG (see e.g. [167]). Note also that the spin-
charge separation is only valid for particular systems and although this terminology
conveys the idea that no single particle excitations can exist in 1D systems (as these
would carry both charge and spin), we stress here that the spin degree of freedom plays
no other role in this effect than providing distinct energy degenerate states. In the
following, we prefer to talk about the separation between a charge mode and a neutral
mode.
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3
Macroscopic electron quantum
coherence in a solid state circuit

This chapter describes the experimental demonstration of a macroscopic electron co-
herence length in a solid-state circuit which, more specifically, was demonstrated using
quantum Hall edge channels. It is said to be macroscopic in the sense that such a length
(250 µm) is visible to the naked eye, by comparison, a hair is typically 50 − 100 µm
wide. In addition, this experiment sheds light on the difficulty to access the real, in-
trinsic coherence length through simple conductance measurements, and how current
noise measurements in the MHz range can be used to draw stronger conclusions.

First, the reasons that motivated this work are briefly presented, then an overview of
the knowledge of the behaviour of electrons in quantum Hall edge channels is given.
From this standpoint, we adopt a strategy to minimize decoherence in a QH edge states
based circuit, and experimentally demonstrate its efficiency with a MZI.

3.1 Motivations
The first motivation for this work is fundamental and falls within the broad context of
understanding and pushing further the bounds where quantum physics manifests [168].
More specifically, we address the question of how much distance can an electron cover
in a solid-state circuit while keeping its quantum character.
In principle, there is no fundamental limit to that distance. In practice however, the
electron coherence length is limited to typically below a few tens of microns regardless
of the material. It is interesting in itself to identify and understand the mechanisms
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that ultimately limit the quantum behaviour.

A second main motivation for unlocking the quantum coherence of electron is the po-
tential technological avenue it would open, in particular, in using electronic flying q-bits
for quantum computing applications [39,142]. The larger the distance an electron can
travel keeping its quantum integrity, the greater the number of operations that can be
performed on it, enabling more advanced calculations.

Finally, the choice of QH channels as a test-bed for this kind of measurements is to take
advantage of both, the flexibility they offer as electron physical guides, and the absence
of backscattering.

3.2 Electron-electron interactions in QH channels
In the QH regime, electronic transport occurs along the edges of the sample in spatially
separated, one-dimensional channels, and is protected from backscattering thanks to the
chirality. As such, it can be thought to be well-described by the Tomonaga-Luttinger
Liquid (TLL) model where interactions between counter-propagating channels (the g1
and g2 types described in [121, sec. 1.3]) can be dropped as they are typically sepa-
rated by a large insulating bulk, and only those between electrons going in the same
direction (the g4 types) are kept. The Hamiltonian H of co-propagating QH channels
can therefore be described in terms of the local density fluctuation operator ρα(x) in
each channel α (see [121, sec. 2.1] or [169, sec. 3.1.2] for a formal definition of ρ(x)):

HQH = π~
∑
α

[
v

(α)
d

∫
ρ2
α(x)dx+ vαα

∫
ρ2
α(x)dx

]
+ π~

∑
α<β

∫
uαβρα(x)ρβ(x)dx (3.1)

where the sum runs over the α co-propagating physical channels. In this expression,
the first term is the interactionless part of the Hamiltonian, with v(α)

d the interactionless
particles’ drift velocity in channel α. The second term is the intra-channel interactions
part, the effect of which is only to renormalize the electron drift velocity to a new one
in each channel: vα = v

(α)
d +vαα. The last term describes the inter-channel interactions,

these render the hamiltonian non-diagonal with respect to the elementary excitations
in each separate channel. Note that the two interaction terms of equation 3.1 bear
three differences with eq. 2.94 in [121]: the first one is that it only considers one type
of movers (either leftgoers or rightgoers) as we specified above. The second is that the
sum on spins was replaced by a sum that runs on an arbitrary number of channels, while
the TLL model considers only two (one for each spin). The third is that it allows for
different intra- and inter-channel coupling constants from channel to channel, because
we know that QH channels correspond to non-degenerate states, while the TLL model
considers electrons that are spin-degenerate.

Most of the electron quantum optics experiments were performed at filling factor of
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two, in this case, the hamiltonian of equation 3.1 reads

H2ch. = π~
∫ (

voρ
2
o(x) + viρ

2
i (x) + uρo(x)ρi(x)

)
dx

where ρo,i and vo,i are respectively the density fluctuation operator and renormalized
electron drift speed of the outer (o) and inner (i) channel, and u is the coupling constant
between both channels with units of a velocity. This hamiltonian is diagonalized like
so:

H2ch. = π~vc
∫
ρ2
c(x)dx+ π~vn

∫
ρ2
n(x)dx

by new density fluctuation operators ρc,n which are linked to the physical channels’
fluctuation operators ρo,i in the following way:

(
ρc
ρn

)
=
(

cosθ sinθ
sinθ −cosθ

)(
ρo
ρi

)
with

vc = (vo + vi)/2 +
√

(vo − vi)2/4 + u2

vn = (vo + vi)/2−
√

(vo − vi)2/4 + u2

where θ ∈ [0, π/2] is a parameter that fully characterizes the asymmetry between both
channels, defined as:

tan(2θ) = 2u
vo − vi

(3.2)

The value θ = π/4 corresponds to the special case where the physical channels are
degenerate: vo = vi (which never occurs for QH channels). In this particular case, ρc
is the charge mode, carrying all the charge and ρn is the neutral mode (also commonly
referred to as the spin mode as it carries all the spin) which constitute the ideal TLL
charge and spin modes. For θ = 0, π/2, both channels are independent from each other
and the notions of charged and neutral modes do not make sense anymore. In between
these two extreme cases of fully degenerate and fully independent channels, there exist
a continuous variety of pairs of natural modes that closely resemble the ideal TLL
charged/neutral modes when θ is close to π/4. Note that in the QH regime, vo > vi,
but even in this case, where channels are non-degenerate (vo 6= vi), the modes can
become very close to the ideal TLL ones provided the interchannel coupling u is strong
(as can be seen from equation 3.2). Physically, the coupling strength u is related to
the inter-channel capacitance: the larger it is, the larger will be the coupling (see [170,
chap. 4], [25,26,28,171,172] and [122, chap. 3.3] and references therein for details).

In the following, experiments in the integer QH regime at filling factor ν = 2 that
showed inter-channel coupling between two quantum Hall channels to be strong, and
consequently that the natural excitations are a (mostly) charged mode and a (mostly)
neutral mode, are briefly presented. Then, we turn to a few other experiments that
demonstrate the consequences of such a strong coupling on several observables. Fi-
nally, different strategies aiming at circumventing these effects are presented and their
limitations are discussed.
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3.2.1 Experimental demonstrations of the strong inter-channel
coupling at ν = 2

Frequency Dependent Characterization of Charge Separation
The first experiment of this kind was performed by Bocquillon and colleagues [25]. The
setup consists of a simple QPC that is tuned to reflect either both channels or a single
one. On one side of the QPC, a quantum capacitor driven with a sinusoidal excitation
voltage at a frequencies ranging from 0.7 to 9GHz excites charge density waves solely
in the outer channel. These then propagate on 3.2 µm in close proximity to a co-
propagating channel before reaching the QPC where the outer channel is filtered out.
The collected current is that solely due to what is present in the inner channel, where
nothing was injected directly. As a consequence, this frequency dependent current is
entirely due to the coupling with the inner channel. The authors are capable to extract
an inter-channel coupling parameter of θ ≈ π/4, thereby attesting of the strong coupling
between both channels (note that the authors’ definition of θ in their paper is different
from our’s by a factor 2).

Noise measurement of charge fractionalized wave-packets
In the experiment [26], the coupling parameter is extracted from shot-noise measure-
ments. Shot-noise is injected on one channel through a first biased QPC set to half
transmission. This channel is left to co-propagate for 8 µm near an adjacent one, which
originates from grounded contact. In this process, due to inter-channel interactions,
the individual charges that cross the first QPC fractionalize and distribute over the two
channels in such a way that there is no net dc current on the second channel. However,
this effectively heats up the second channel. This heating is detected by varying the
transmission of a second QPC and monitoring the resulting shot-noise on the second
channel. The indirectly generated shot-noise is found to be following a [τ(1−τ)]γ depen-
dence with γ a parameter that can be linked to the coupling θ, which is then found to
be θ ≈ π/7, markedly below the π/4 value required to observe the pure charge-neutral
mode separation.

Revival of a quasi-particle peak
In a different experiment [28], a quantum dot was positioned so as to inject electrons
in the outer channel at a well-defined energy above the Fermi sea. These then excite
the natural plasmonic modes of the two coupled channels and the energy distribution is
measured further downstream by performing spectroscopy through a second quantum
dot. In general, what is observed is that as the injected energy peak is increased, the
measured peak becomes smaller, then it eventually vanishes and revives at even higher
energies.
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This corresponds to the naive picture of a fast charge mode catching up with a slow
neutral mode, that eventually leads to a first extinction of the quasiparticle peak in the
outer channel when the condition

Ein ∼
hvcvn

(vc − vn)L

(
≈ hvn

L
if vc � vn

)
(3.3)

is fulfilled (with Ein the input quasiparticle energy, and L the co-propagation length).
The authors could also extract a parameter θ for each of their sample, ranging from
0.11π to 0.17π.

Time-resolved Spin Pulses
Probably the most emblematic experiment of this series, is the time-resolved detection
of the spin-charge separation in QH channels of Hashisaka and colleagues [172]. In this
experiment, a short current pulse is generated in one channel which then co-propagates
with a second channel initially at equilibrium, for 260 µm. The coupling between both
channels decomposes the initial single channel charge pulse in a fast charged pulse with
essentially no spin polarization, and a slow, mostly neutral one which is spin polarized.
The propagation speed of both pulse types being different, the time-resolved current
measured at a detector QPC clearly shows two peaks when the initial excitation was
injected on the measured channel and a peak followed by a dip when the initial excita-
tion was injected on the channel adjacent to the measured one. In both measurements,
the times of arrival of the first two peaks are synchronized and almost symmetrical.
The second peak and the trough are also synchronized and almost anti-symmetric.
This experiment convincingly demonstrates that an initial electronic excitation located
in one channel decomposes in a fast charged mode and a slower neutral mode in two
co-propagating quantum Hall channels. The extracted coupling parameter from this
experiment is θ ≈ π/5.

Although there is a marked disparity among the coupling parameter θ extracted from
the different experiments, each of these values attest of a significant coupling between
both channels. In the following section, some visible consequences of such a coupling
are briefly reviewed.

3.2.2 Consequences of the strong inter-channel coupling

Energy Relaxation
In [35], Le Sueur and colleagues introduce a double-step fermi function in the outer chan-
nel thanks to a first voltage biased QPC tuned to an intermediate transmission prob-
ability τ . This channel hosting a non-equilibrium particle distribution co-propagates
next to the inner QH channel on a distance that can be tuned to four different values:
0.8 µm, 2.2 µm, 10 µm and 30 µm. After these different propagation lengths, a quantum
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dot is used to perform the spectroscopy of the energy distribution of the outer channel.
When this distance is small (0.8, 2.2 µm), a clear signature of the injected double-step
distribution function is observed. On the other hand, when the propagation length is
longer (10 µm or 30 µm), this signature vanishes, attesting of the relaxation of the ini-
tial double-step distribution to an energy distribution resembling a hot thermal Fermi
function. In a more recent experiment [37], Itoh and colleagues showed that the result-
ing distribution function was a metastable, non-equilibrium one, with on a moderately
large propagation length (15 µm).

HOM experiment’s imperfect Pauli dip
In the HOM experiment described in section 2.2.2, [23], it was found that the Pauli
dip was imperfect (in contrast with the experiment performed with levitons, but not
in the QH regime [24]). This imperfect dip is compatible with decoherence caused
by inter-channel coupling as argued in [173–175]. In [173], the current noise HOM
dip is studied by performing collision with both the inner and outer channels, while
always injecting a charge pulse only in the outer channel. The simple fact that a HOM
dip can be seen on the inner channel while no charge pulse was originally injected
along it convincingly demonstrates the inter-channel coupling mechanism. In [174], the
experiment is repeated at filling factor of ν = 3 where it is found that the dip on the
outer channel is even more suppressed than at ν = 2, compatible with the idea that
inter-channel interactions will be even larger with more channels.

Interference dephasing
Injecting shot noise on a channel adjacent to one of the interfering channels of an
electronic MZI, it was found that dephasing could be introduced [22,176,177], suggesting
that the inter-channel coupling is indeed a predominant source of dephasing. Note that
the observed dephasing is probably a mixture of phase averaging and pure decoherence.
These MZI experiments are further described and discussed in section 4.1.

Multiple side Lobes in the interference visibility of MZI
Inter-channel interactions also show when a dc voltage is applied to the interfering
channel of a MZI [32,33] when the co-propagating (non-interfering) channel is kept
to ground on both sides of the MZI. Effectively, in these experiments, the visibility
vanishes at several values of Vdc. This a priori peculiar lobe pattern can be qualitatively
understood in terms of the fast charged mode catching up with the slower neutral mode
over the length L of the MZI. The first QPC of the interferometer partitions electrons
at an energy eVdc (where Vdc is the bias voltage of the source contact), such that when
eVdc ∼ hvcvn/(vc−vn)L, the charge density wave that was initially in the outer channel
gets transferred entirely to the inner channel, preventing any recombination of the
splitted initial density wave at the second QPC.
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3.2.3 Control of the inter-channel coupling
In regard of the previous experiments, the inter-channel coupling is responsible of several
marked effects, and it consequently appears to be the dominant mechanism for electron
decoherence. As a consequence, it would be desirable to control it. An overview of the
several strategies already adopted is given in what follows.

a b c

Cg2

Cg1

C12

d e

Figure 3.1: Schematics of the different strategies adopted to tune inter-channel coupling, the
outer channel is drawn in green, the inner channel in blue and the top gates are in red. a
The channels are pushed away from the side gate, resulting in smaller capacitances Cg1,g2
that tend to screen the interchannel coupling C12, used in [172]. b A large top gate tunes the
density of the 2DEG below to reach an effective filling factor of ν = 1, such that the inner
channel is repelled far away from the inner one, used in [28] c Loop strategy employed in [35]
which resulted in an essentially supressed energy relaxation. The inner channel is confined
into a small loop behind a gate while the outer channel is free to flow. d Strategy used in
the MZI of [41]. The inner channel is confined into small loops but is capacitively coupled to
both counter-propagating channels. e Strategy used in this work [42]: the inner channel is
confined into small loops and coupled to a single outer channel.

Changing the filling factor for ν = 1
The most obvious solution to get rid of inter-channel coupling would be to keep just one
channel as it is clearly expected from equation 3.1 that the intra-channel interactions
only renormalize the drift velocity and should therefore not affect the electron coherence.
However, this was observed to yield lower quantum interference visibility V than for
2 co-propagating channels. For example, in MZIs the visibility of interferometers at
ν = 1 is significantly smaller than at ν = 2 (e.g. in [32] V(ν = 1) ≈ 23% while
V(ν = 2) ≈ 45%). The real reasons for this are not clearly identified, but there are
several hypothesis. First, the bulk being ferromagnetic at ν = 1, it is possible that the
channel interacts with spin textures (such as skyrmions) within the bulk, this cannot
occur at ν = 2 as the bulk is not ferromagnetic. Another possibility is interactions with
other bulk degrees of freedom such as trapped charges, which is less likely at ν = 2 than
at ν = 1 due to the much greater Landau cyclotron gap compared to the Zeeman gap.
Also edge reconstruction, when one channel divides into a combination of downstream
and upstream channels, is another possible reason for a poorer visibility.

Screening interactions with a metallic gate
In their time-resolved experiment, Hashisaka and colleagues vary the voltage of a side
gate located just near their two co-propagating channels [172]. In applying a voltage
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more and more negative, the channels are pushed further and further away from the
gate (see figure 3.1 a). In doing so, the capacitance of both channels towards this
gate is gradually diminished, consequently increasing the relative inter-channel capaci-
tance, and thereby their relative coupling strength. This increased relative inter-channel
coupling then shows in the velocity of the charged mode that can be increased by a
factor of ∼ 2.5 while the neutral mode’s velocity remains roughly constant. This shows
the importance of screening: by placing a metallic gate in close proximity to the co-
propagating channels, one can significantly diminish their relative coupling.

Pushing one channel away from the other
In [28], a large top gate can be used to locally tune the underlying 2DEG at an effective
filling factor of ν = 1, thereby pushing the co-propagating channel far away from it
as illustrated in figure 3.1 b. The observed quasiparticle peak is much larger under
these conditions compared to when both channels are left to co-propagate next to each
other as in the ν = 2 configuration. The much smaller energy relaxation indicates that
the inter-channel coupling is reduced. Moreover, when both channels are separated,
the peak’s vanishing and revival previously mentioned is not observed anymore. This
attests that inter-channel interactions are responsible for this vanishing and revival,
consistent with the picture of a fast charge mode catching up with a neutral mode
in such a way that the electronic excitation is essentially suppressed at some energies
defined by equation 3.3.

Constraining one channel into small loops
It is possible to minimize the long range inter-channel interactions by closing the tra-
jectory of the inner channel into a loop small enough that it forms a quantum dot. Its
energy level spacing is given by ∆ = hvd/L with L the loop length and vd the drift veloc-
ity (vd ≈ 104−5.105 m.s−1 in GaAs). By engineering the dot so that ∆� kBT, eV , it is
possible to prevent any excitations to be generated within it, thereby effectively freezing
inter-channel interactions. This was implemented in [34] (see figure 3.1 c), where the
energy relaxation was found to be drastically reduced when the co-propagating channel
was made to loop around on itself in a quantum dot, even for a propagation length as
large as 8 µm (corresponding to ∆ ≈ 52 µeV& eV � kBT ).

That inspired the work [41], in which this strategy was implemented in a MZI to
minimize interactions between the interfering (outer) channel and the inner one by
segmenting it into multiple small loops (see figure 3.1 d). However, in this case, only a
disappointing factor of two was gained on the visibility by using this strategy compared
to the standard case where the inner channel was let free. It is suspected that the formed
loops can mediate a coupling between the two counter-propagating outer channels as
can be seen in figure 3.1 d.
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3.2.4 Other possible decoherence mechanisms
Below, we list other potential mechanisms for decoherence in QH edge channels:

• long range intra-channel interactions [178–182],
• long range interactions between distant channels [36,183],
• edge reconstruction that predicts the existence of new modes, that could act in a

similar way as those described above [155,156],
• bulk degrees of freedom that are not well identified.
• interactions with optical phonons [38], although that was only demonstrated for

very large electron energy (∼ 10− 100meV),

In this section, several experiments were presented, the first few of which clearly demon-
strate the significant inter-channel coupling occuring between two QH channels at filling
factor of ν = 2. Then, another set of experiments was presented to show the multiple
manners in which this strong coupling can manifest. Even though these are not nec-
essarily directly linked to decoherence, it is obvious that if energy relaxation occurs,
for example, then it won’t allow for coherence to be preserved. On the other hand,
a controlling strategy successfully achieving a reduction or even a suppression of the
inter-channel energy relaxation does not necessarily protect against decoherence and to
be sure, one needs to check and it is precisely the purpose of the study we present in
the remaining of this chapter.

3.3 Principle of the experiment
As presented above, inter-channel coupling is responsible for many peculiar behaviour
of the electrons in QH channels. It is thus possible to learn from these past experi-
ments, in particular the MZI one that tried to isolate the inner channel in small loops
[41] and adopt a strategy that would remedy to the possible coupling between the
counter-propagating channels by completely isolating the inner channel loops as illus-
trated in figure 3.1 e. To test whether this strategy is efficient to significantly minimize
decoherence, it is possible to use a MZI as explained below.

3.3.1 The electronicMach-Zehnder interferometer as a coherence
length measurement tool
Several strategies can be used to determine the coherence length of electrons in a solid-
state circuit, and more specifically along QH channels. The most direct way however
remains the two-paths interferometer [21], and more precisely the Mach-Zehnder inter-
ferometer as is illustrated in figure 2.3 b (for exotic alternatives to infer the coherence
length, see e.g. the proposal [184] or, the experiment [185]). Indeed, we recall that
the current across such an interferometer is given by equation 2.3 where the visibility
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(equation 2.4) is unity only if there is no dephasing. However, in practice the visibility
never reaches this ideal value, thus giving information about the coherent propagation
of electrons. A large visibility therefore indicates that the electrons conserved their
coherence.

Coherent transport across mesoscopic devices can be described by the scattering theory.
In this framework, the expression for the current across a MZI reads (see appendix
section C for full derivation)

IMZI = Iin

(
R2R1 + T2T1 + 2

√
R2R1T2T1cos(φd − φu)

)
(3.4)

where Ri, Ti are respectively the reflection and transmission probabilities at QPC i (with
Ti + Ri = 1). From equation equation 3.4, it is possible to see that at T1 = T2 = 0.5
(R1 = R2 = 0.5), the scattering theory predicts oscillations with perfect contrast
(V = 1): the current IMZI should oscillate between 0 and the injected current at the
source Iin. This prediction does not account for the inevitable decoherence mechanisms
that will take place in a real device however, and needs to be refined. Within the
scattering formalism, decoherence can be introduced by inserting a dephasing probe
on one of the two paths as was done by Marquardt and colleagues [186]. However,
the authors point out that such an approach gives no information on the microscopic
dephasing mechanisms, and that what the dephasing probe physically mimics is hard
to picture. A more fundamental approach, still by Marquardt, consists in introducing a
coupling between the electrons going through the MZI and a quantum bath [187,188],
this nevertheless requires assuming the nature of the quantum bath.

The usual experimentalists’ approach is to introduce an exponential reduction prefactor
in front of the oscillatory term: e−2L/Lφ [21], where L is the length of one arm of the
device, and Lφ the coherence length. This prefactor ensures that the visibility is capped
to 1 in the case of an infinite coherence length and the exponential decay assumes a
Poisson process of dephasing events along the propagation paths, which is the simplest
assumption possible. With this new element, it is possible to rewrite eq equation 3.4 as

IMZI = Iin

(
R2R1 + T2T1 + 2e−2L/Lφ

√
R2R1T2T1cos(φd − φu)

)
(3.5)

which, by analogy with formula equation 2.3 enables us to establish a link between the
visibility and the coherence length:

V = 2 1
R2R1 + T2T1

e−2L/Lφ
√
R2R1T2T1 (3.6)

Before moving on, we raise a point on what the experimental visibility Vexp actually
measures. The interference contrast can effectively be diminished via two possible
mechanisms:
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• intrinsic decoherence, when the electrons are affected by their environment
and lose their quantum coherence,

• phase averaging over the measurement integration time, during which many
one-electron interferences can take place.

It is not simple to tell apart one mechanism from the other, as a consequence through-
out this manuscript, the term dephasing is used to qualify the combination of both
decoherence and phase averaging.

3.4 Devices specificities

20 μm

4 μm

S D

a

b c

Figure 3.2: a False colored SEM picture of the 24µm long device. QPC 0 and 3 (white)
are always tuned to fully transmit either the outer or both channels. The two QPC used as
beam-splitters for interferences are QPC 1 and 2 (green), the gates QPCL

1,2 are connected via
air-bridges that span the mesa. The central ohmic contact (ligth yellow), sole element in this
picture to be in electrical contact with the 2DEG, is linked to ground via another air-bridge
(visible in the center top). b Simplified schematic of the MZI, with the trajectories of the
outer channel (black) and inner channel (grey), when the device is tuned to form loops with
the inner channel. QPC3 is not shown here as it was left fully open for the whole study. c
Optical image of the 100µm long device, the comb-shaped gates can be distinguished faintly
(appearing white and very thin), the elongated horizontal golden piece of metal is the central
ohmic contact, linked to ground via the air bridge.

Two devices were used for this study. An SEM scan of the first device and an optical
image of the second are shown in figure 3.2 a & c, respectively. Both electronic MZI
were measured in the integer QH regime at filling factor of two, at a magnetic field
of 4.3T (see figure A.1 in appendix for the plateau). They were both nanofabricated
simultaneously, from the same 2DEG with a mobility µe ≈ 106 cm2V−1s−1 and density
2.5× 1011 cm−2, on the same chip, just separated by a few mm from one another. The
first device has an arm-length of 24µm and the second of 100µm. Special care was taken
such that both arms of each device have equal length (at least in the lithographic design)
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in order to minimize the energy dependence of the interferences. It was checked that
the outer channel was well-coupled to the central ohmic contact (see section A.2). The
originality of these electronic MZI resides in the comb-shaped metallic gates deposited
along the paths of both interfering channels. To be in the regime where the inner channel
is confined in small loops as depicted in figure 3.2 b, it is necessary to characterize the
transmission across the comb gates as a function of the applied voltage. These curves
are shown for the comb-shaped gates in figure 3.3 a,b as well as the QPCR

0 and QPCL
3

gates in figure 3.3 c,d.
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Figure 3.3: Conductance across the metallic gates of the 24 µm long device (dark blue) and
the 100 µm long device (light blue). a,b Conductance across the comb-shaped gates. c,d
Conductance across the QPC 0 & 3, in c the left gate of QPC 0 was set to a voltage V L

qpc0 ≈ 0V.
The difference between the full and faded curves is that only V R

qpc1 was set to −0.85V, and
+0.35V, respectively, illustrating that significant cross-talk occurs between gates located next
to each other. In d, the right QPC 3 gate was set to a voltage V R

qpc3 ≈ +0.35V.

Plateaus in the conductance can be observed as a function of the gate voltage at e2/h

and 2e2/h. The first plateau occurs when these gates let only a single channel through,
and this spans a large set of electrostatic voltages. It can be puzzling for the reader to
see that the plateau at e2/h occurs at positive values of gate voltage. That is because
the gates were polarized at +0.35V during the cooldown while the 2DEG is kept to
the ground. This is a common practice to avoid putting too negative voltages on the
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3.5. MZI interferences

gates, it is also thought to help empty charge traps that could trigger more noise in the
measurements. Therefore, applying a gate voltage smaller than this +0.35V reference
value effectively reduces the electronic density in the 2DEG below. Now, let’s turn to
the QPCs, the electrostatic voltages of each side provide two levers for each QPC. The
transmission map as a function of both gate voltages is plotted in figure 3.4. Regions
where a relatively smooth transition from zero to full transmission are seeked, as sharp
features often indicate energy-dependent resonances that are sensitive to spurious noise
in the sample, thereby potentially affecting the QPC transmission in an uncontrolled
manner. For practical matters, we usually then fix one gate voltage and sweep the
other to reach the desired transmission. The curves of figure 3.4 e and f respectively
present the transmission of QPC 2 and 1 for both devices when varying the voltage
of the right QPC gate, for a fixed voltage of the left gate. The dashed lines indicate
data taken when a DC bias was applied to the incoming channel, illustrating that the
transmission varies as a function of energy but only by a few percents. This ascertains
that the chosen working points are free of spurious changes in transmission. What
can be observed from all the curves of figures 3.3, 3.4 is that they are fairly similar in
both samples, with the transitions between plateaux occuring at very close values of
gate voltage. This reproducibility is reassuring as the lithographic parameters were the
same for both samples.

3.5 MZI interferences

Conductance oscillations in the standard MZI configuration (no loops)
The goal of this study is to find out whether confining the inner channel into small loops
is effective at strongly enhancing the electronic quantum coherence. As a reference
experiment, we start by measuring MZI interferences for which the inner channel is
left co-propagating next to the outer one. Both MZI QPCs (1&2) are tuned to half
transmission, in order to maximize the visibility. A sketch of the devices tuned in this
configuration is depicted in figure 3.5 b. The observed interferences, plotted in terms
of the outer channel transmission across the whole MZI in figure 3.5 d (in dark red),
have a visibility of around 6% in the 24 µm long device, which corresponds to a 17 µm
coherence length. This is at the level of previously measured values in similar systems,
at comparable temperatures (e.g. [21]). In the larger device (light red curve in figure 3.5
e), no interferences can be observed as expected from the fact that it is 5-6 times larger
than the coherence length measured on the smaller device. A striking feature of this
measurement is that it slightly varies around the 40% transmission mark, lower than the
expected flat 50% signal. This is due to inter-channel tunneling. When co-propagating
over such large distances, the probability for electrons to tunnel from one channel to the
adjacent one becomes significant even though such events require a spin-flip [189,190].
The amount of tunneling is characterized in section A.3. On the other hand, when the
device is tuned so that comb-shaped gates only transmit the outer channel and force
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Figure 3.4: Transmission curves of the quantum point contacts in both MZI devices. a,b,d,f
2D maps of the QPC transmission in the 24 µm device (a,b) as well as in the 100 µm device
(c,d) as a function of both gate voltages. For practical purposes, it is easier to fix one of
the gate voltages and vary the second one, as displayed on e,f. The full lines are cuts of
the conductance 2D plot by fixing the left gate voltage each time at a value indicated by the
colored lines in a-d. Dark blue lines are for the small (24 µm) device, while light blue are for
the long (100 µm) device. Dashed lines indicate transmission curves taken when applying a
finite dc voltage to the injected electrons (47 µV and 35 µV respectively in the small and large
device). The transmission is therefore energy dependent, but this dependence is reasonably
small
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Figure 3.5: a-c Schematics of the different MZI configurations. Frames’ colors correspond to
the colors of the curves measured in the corresponding configuration. d,e Aharanov-Bohm
interferences in the 24 µm and 100 µm device respectively, when both QPCs are tuned to half
transmission τQPC1,2 ≈ 1/2. f Fourier transform power spectrum of the interference signals
for the 24 µm device with a co-propagating inner channel (dark red), inner channel forced into
loops (dark blue) and the 100 µm device with the inner channel forced into loops (light blue).
For the latter, the analysis was restricted to regions of high visibility, spanning 6 expected
MZI periods.

the inner channel into loops, tunneling events are suppressed. Data acquired in this
regime with the first (second) MZI QPC set to fully-(half-)transmit the outer channel
(schematic of figure 3.5 a), in order to avoid any interferences, is displayed in green in
figure 3.5 d,e. The noise level of this signal also indicates our measurement uncertainty
∼ 1%.

Conductance oscillations with closed inner channel loops
The device tuned so that comb-shaped gates only transmit the outer channel, and both
MZI QPCs are set to half-transmission. Representative data of the observed signal upon
varying the plunger gate voltage Vpl is shown for both devices in figure 3.5. The data
for the smaller L = 24 µm device shows oscillations of a large visibility, up to 82% (dark
blue curve), with a period about three times smaller than that observed when both
channels are co-propagating. This change in the periodicity has already been observed
in a similar context [18] and can be explained by the difference in the screening of Vpl by
the inner channel. When the plunger gate voltage is gradually made more negative, the
capacitively coupled edge channels are pushed away. As the electronic density decreases
locally, an excess of negative charges needs to be evacuated. When both channels are
co-propagating, both channels are affected similarly by the plunger gate voltage and
the excess charge is expulsed towards the ohmic contacts. The corresponding decrease
of the local density in the inner channel itself therefore partially screens the effect of
the plunger gate. In the case where the inner channel is confined in small loops, the
excess charge cannot be evacuated but must be redistributed along the loop. The
inner channel’s screening effect is thereby much reduced, and the effect of Vpl on the
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interfering outer channel is consequently enhanced.

Instability of the oscillations
A striking feature of our data with closed loops is the noisy character of the oscillations
as well as the fact that few of the observed ones reach the 82% visibility mark, while
many are much smaller. Such behaviour can be accounted by what we will call phase
noise. This corresponds to fluctuations on the MZI phase that take place on time
scales shorter or comparable than the measurement time (∼ 100ms) but longer than
the propagation time of electrons along the MZI (. 1 ns). It could result from some
moving charges along the two paths. Such moving charges would act as local gates,
varying the effective area enclosed in between the two paths. Such an effect can be
accounted for by adding a fluctuating phase term δϕ(t) in equation 3.4:

IMZI(t) = Ī(1 + Vcos(φ+ δϕ(t)) (3.7)

The actually measured current will however be averaged on our measurement time
window ∆t ≈ 100ms corresponding to the integration time for each data point:

Imeas
MZI = 〈IMZI〉 =

∫ ∆t

0
IMZI(t)dt (3.8)

If the phase noise is gaussian, it results in a reduction factor in front of the interference
term (see [53] although it was discussed there in terms of pure decoherence):

〈IMZI〉 = Ī[1 + Ve−〈δϕ2〉/2cos(φ)] (3.9)

where 〈δϕ2〉 is the variance of the phase fluctuations. From equation 3.9, it seems
a priori impossible to distinguish pure decoherence (here included in V) from phase
averaging by a simple conductance measurement scheme. The intrinsic, decoherence
limited, V only constitutes an upper bound to the experimental visibility Vexp that can
only be approached when 〈δϕ2〉 is reduced (� 1). As we will see in the following, the
presence of such phase noise can be directly evidenced by current noise measurements.
First, we concentrate on conductance measurements.

Phase noise has already been observed in electronic MZI interferometers, as in [33]
where clear Aharonov-Bohm interferences could not be observed in the conductance.
The distribution of conductance data points were nonetheless mainly distributed around
a maximum and a minimum conductance values. This is expected for a phase noise
with a relatively small amplitude (〈δϕ2〉 � (2π)2) as the MZI conductance exhibits
only a small phase dependence around its maximum and minimum values. Such an
analysis can be performed in both configurations: with and without the loops as shown
on figure 3.6 a,b. As can be seen, the distribution of conductance points is effectively
peaked around extrema values in the conductance in the no-loops, L = 24 µm case (a).
However, in the loop-case (figure 3.6 b), the distribution tends to be more peaked around
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3.5. MZI interferences

the center, despite some clear oscillations visible in the left panel. This behaviour can
still be explained by phase noise. If 〈δϕ2〉 ∼ (2π)2, the phase averaged current then
approaches the mean current Ī. From the left panel of figure 3.6 b, it is also possible to
deduce that for some gate voltage values or some time, 〈δϕ2〉 is smaller, corresponding
to the regions of high visibility oscillations.
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Figure 3.6: a,b,c Left panel: renormalised conductance traces as a function of plunger gate
voltages in a the 24 µm device with two copropagating channels b&c respectively the 24 &
100 µm device with the inner channel confined into loops. Right panel: histograms of the
corresponding conductance data points displayed on the left. The histogram of a boasts max-
ima at the extrema of conductance as in [33]. On the contrary, histograms b & c are peaked
around the mean conductance value, which can be explained by phase averaging. d Left panel:
a simulated conductance trace according to the model IMZI = 1/2ϕ

∫ φ+ϕ
φ−ϕ dx1/2(1 + 0.4sin(x))

where ϕ is a pseudo-random number following a normal distribution with a variance of 2π/1.1.
This variance was chosen such that the histogram shown in the right panel approximately re-
produces the distribution of our measured conductance data shown in c. Note that the
discretization was chosen to be the same than that of the measured data in c (45 points per
period) and that the span is also the same as in b&c (19 periods).

The noisy character of the conductance is even more pronounced in the 100 µm long
device as displayed on figure 3.6 c, and the associated histogram is even more peaked.
To convince ourselves that such a histogram can be reproduced simply with phase
averaging, a simulated conductance trace is generated and plotted in figure 3.6 d, using
equation 3.8 that we re-write: IMZI = 1/2ϕ

∫ φ+ϕ
φ−ϕ dx1/2(1 + 0.4sin(x)) with ϕ a pseudo-

random number following a normal distribution with a variance of 2π/1.1 specially
chosen to approximately reproduce the histogram of the measured data in figure 3.6
c. In this model, a uniform distribution of phase, independent of Vpl and uncorrelated
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in time, was assumed, which is clearly inadequate to fully reproduce the data. This
model, shows that the histogram representation can vary drastically depending on 〈δϕ〉.
The comparison with the data also suggests that δϕ is either time and/or gate voltage
dependent.

While we have just seen that phase noise can explain the irregular behaviour of our
conductance data, let us stress that intrinsic decoherence would not create such fea-
tures. Effectively, phase noise locally/temporarily limits the observed visibility, while
decoherence imposes a hard upper limit to the visibility that cannot be overcome.
Taking advantage of the irregular phase noise δϕ, the intrinsic, decoherence-limited vis-
ibility is more closely approached by the maximum measured experimental visibility:
V(max)
exp ≈ 82(45)% for the L = 24(100) µm long device. These values correspond to a

coherence length of Lφ ≈ 240(250) µm, using equation 3.6. The deduced Lφ ≈ 250 µm
is possibly under-estimated, but the concording values deduced from two devices of
different lengths suggests that the intrinsic value of Lφ is closely approached.

3.6 Visibility dependence as ∼
√
τqpc(1− τqpc)

To further establish the presence of true Aharonov-Bohm interferences in our devices,
as well as the claimed Lφ ≈ 250 µm, we present additional conductance measurements.

A first important test is to confirm that the observed oscillations in IMZI effectively
result from MZI quantum interferences and not from some spurious source like, for
example, noisy QPCs. For this purpose, the dependence of the amplitude of the MZI
quantum interferences is measured versus the transmission probability of one of the
two beam-splitters. The expected dependence can be obtained from the expression of
the visibility of equation 3.6, in which the transmission probabilities of each QPC are
substituted: Ti ≡ τi as well as Ri = 1−Ti ≡ 1− τi. Fixing the transmission of the right
QPC at τQPC2 = 0.5, the average current becomes ĪMZI = Iin/2 and by one gets for the
visibility:

V = 2e−2L/Lφ
√
τQPC1(1− τQPC1) (3.10)

To check that the visibility indeed behaves according to equation 3.10 (as has been
checked on different MZIs [20,33,191]), we acquired conductance data as a function of
the plunger gate voltage (as shown in figures 3.5, 3.6) for several values of τqpc1, while
fixing τqpc1 = 0.5. Each scan was cut into intervals corresponding to the length of a
period in plunger gate voltage 2.26mV extracted from the Fourier transform (figure 3.5
f). A local visibility was extracted from the maximum and minimum values of the
conductance within each of these intervals. To ensure that no maximum visibility was
missed, an overlap of half a period was taken from interval to interval. Each extracted
local visibility corresponds to one data point of figure 3.7. As can be seen from directly
looking at our conductance data, the local visibilities range from very small values to
much larger ones. Assuming a phase noise on the MZI interferences, the saturation
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3.7. MZI Current noise as a function of voltage bias.

0,0 0,2 0,4 0,6 0,8 1,0
0,0

0,2

0,4

0,6

0,8

1,0

Figure 3.7: Each individual dark (light) blue symbol, measured in the L = 24(100) µm device,
is a local visibility (see text) of Aharonov-Bohm interferences as a function of the transmission
of QPC1 when QPC2 is kept constant at half transmission. Full black lines are obtained from
equation 3.10 by inserting each device length for L = 24, 100 µm and the same coherence
length Lφ = 250 µm.

values of the visibility should follow the trend of equation 3.10. The full black lines
are direct plots of equation 3.10 with L = 24, 100 µm and Lφ = 250 µm. This attests
that our observed conductance fluctuations are indeed due to electronic interferences.
Moreover, the fact that the observed

√
τqpc(1− τqpc) trend can be quantitatively linked

to a single value of Lφ = 250 µm on both devices of very different sizes, suggests that
the maximum values of the visibility closely approach the intrinsic, decoherence-limited
visibility V (note that otherwise, the intrinsic Lφ would be larger than 250 µm).

3.7 MZI Current noise as a function of voltage bias.
In section 3.5, it was shown that conductance data can partially differentiate intrinsic
decoherence from phase averaging. In the following, we show that the presence of phase
noise in our MZI devices can be directly established, by measuring the current noise
across the MZI, in the MHz range (over a 180 kHz bandwidth centered on 855 kHz to
be precise).

Incoherent MZI
Let’s first see what one would expect for the noise if the MZI was perfectly incoherent.
Following Marquardt & Bruder [186], a first naive expectation for the voltage dependent
part of the noise S(Vdc) would be to consider the incoherent transmission on the MZI
and treat it as a unique scatterer (see [186,192, sec. II.D]):

S(Vdc) = eVdc

RK

τ inc.
MZI(1− τ inc.

MZI)coth
(
eVdc

2kBT

)
(3.11)
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where τ inc.
MZI = τ1τ2 + (1− τ1)(1− τ2) is the MZI transmission probability in the purely

incoherent case (i.e. when the oscillating term vanishes). Note that this corresponds
to eq. 64 a in [186]. In the same work, Marquardt derives another formula, where
decoherence is mimicked by a classical environment (i.e. without quantum uncertainty)
rapidly fluctuating on time scales smaller than the temporal width of the wavepackets
(min(h/kBT, h/eV ) ≈ 5 ns at 10mK & 0V):

S(Vdc) = eVdc

RK

(τqpc2 − (1− τqpc2))2

4 coth
(
eVdc

2kBT

)
(3.12)

which is independent of the transmission of the first QPC. Note also that [186] provides
yet another expression, not exposed here as the authors themselves qualify it as artificial
and which differs from the two above only by the Fano factor. The key point here is
that, in any case, at large voltage bias (Vdc � kBT ), the noise S(Vdc) is linear in Vdc,
and the difference always lie in the Fano factor.

Coherent MZI without phase noise
In the case of a perfectly coherent MZI, without phase noise, it is possible to consider
the whole MZI as an elastic, coherent scatterer, such that the noise it creates is given
by

S(Vdc) = eVdc

RK

τMZI(1− τMZI)coth
(
eVdc

2kBT

)
with here (in contrast to equation 3.11), τMZI = τ1τ2 + (1 − τ1)(1 − τ2) +√
τ1τ2(1− τ1)(1− τ2) cosφ, with φ the pure Aharonov-Bohm phase. In this case,

the noise is also linear in Vdc.

Phase noise in a coherent MZI
Now what happens with the phase noise contribution to the current noise across a
coherent MZI ? It is possible to plug equation 3.7 in the expression for current noise:

S(ω) = F{〈IMZI(t)IMZI(t+ τ)〉 − Ī2
MZI}

with F{...} denoting the Fourier transform, and perform an expansion around δϕ ≈ 0,
after some algebra (detailed in section A.4), one obtains:

S(ω) ≈ Ī2V2〈δϕ2(ω)〉sin2φ (3.13)

which is valid for δϕ � 1. Note however, that all higher order terms are also propor-
tional to V2Ī2

MZI(= V2V 2
dc/R̄

2
MZI) (as shown in section A.4). It is possible to get rid of

the dependence in the pure Aharonov-Bohm phase φ by averaging over a whole period.
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3.7. MZI Current noise as a function of voltage bias.

Then, one gets a noise that is proportional to V 2
dc:

〈SMZI〉φ ∝ V 2
dcV2〈δϕ2〉 (3.14)

which is the expression for the average phase noise in a coherent MZI.

Measured MZI current noise
In practice, the averaging on the Aharonov-Bohm phase φ is accomplished by acquiring
data for several gate voltages on a few periods. Such a measurement was performed
and is shown on figure 3.8.
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Figure 3.8: Measurement of MHz excess current noise with respect to the noise at zero bias,
as a function of the dc voltage Vdc applied to the source contact, plotted as open dark blue
circles (full light blue triangles) for the L ≈ 24(100) µm device . The gray dotted (dashed)
line indicates a ∝ |Vdc|2(|Vdc) trend, full black lines are obtained from equation 3.16. Inset:
gaussian dependence used for Lφ(|Vdc|) given by equation 3.15, that is used to obtain the full
black lines of the main panel.

On figure 3.8, it is possible to identify three qualitatively different regimes. In the limit
of small voltages, a V 2

dc dependence can be observed (as indicated by the dotted line)
for both interferometers, as expected from equation 3.14 assuming V remains constant
in this limit. This V 2

dc dependence further establishes the picture of a coherent MZI
subject to phase noise. At large dc voltages, a linear dependence in Vdc is recovered
(dashed line) as expected for a fully incoherent MZI (equation 3.11). Such a transition
to an incoherent MZI is driven by a reduction of Lφ, which is generally expected as
the phase space for the scattering of electrons increases with the applied bias Vdc. In
an attempt to obtain the characteristic voltage scale Vφ for the reduction of Lφ, we
tried different expressions for Lφ(Vdc). We find that a naive extension Lφ(Vdc) ∼ 1/Vdc
of the Lφ(T ) ∝ 1/T observed in the presence of two co-propagating channels [21] is
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much too progressive to reproduce the noise data (not shown). It turns out that a
phenomenological gaussian decay of the coherence length:

Lφ(Vdc) = e−(Vdc/Vφ)2 × 250 µm (3.15)

with Vφ = 26 µV (plotted in inset of figure 3.8) provides a good fit to our data. Effec-
tively, to obtain the full black lines of figure 3.8, the expression of equation 3.15 was
plugged in the addition the following:

Sexc = f2
V 2

dc
R2
K

V2
0e
− 4L
Lφ + f1

eVdc

RK

(3.16)

where V0 is the visibility at zero bias and we leave two free parameters: f1 and f2. f1 is a
Fano factor that multiplies the term of the incoherent MZI noise (equation 3.11) and f2
a factor which appears in front of the coherent MZI phase noise term (equation 3.14]).
These two parameters f1, f2 were adjusted by hand and are given in table 3.1. The
corresponding full lines in figure 3.8 closely reproduce our data.

Let us first point out that the same expression for Lφ(Vdc) (equation 3.15) was used
for both MZI sizes. This further confirms that Lφ ≈ 250 µm is close to the intrinsic,
decoherence-limited coherence length and also that the characteristic voltage scale Vφ =
26 µV is device independent. Second, we note that the value of the cutoff dc voltage on
the visibility Vφ corresponds to the loops energy spacing: Vφ = 26 µV≈ ∆/e = hvd/Le

(using the loop perimeter L ≈ 8 µm and a drift velocity of 5.104 m.s−1). This suggests
that the observed increase of dephasing at large Vdc results from the activation of the
loops’ internal degrees of freedom.

Let us now comment on the values of the obtained parameters f1, f2 for each device.
First, we look at the linear Vdc dependence, for which the found Fano factor f1 for
each interferometer is far less than what one would expect from equation 3.11: τ inc

MZI(1−
τ inc

MZI) ' 0.25 (with τ inc
MZI = R1R2+T1T2 = 0.5). This significant reduction is in qualitative

agreement with equation 3.12 that predicts, for a decoherence by a rapidly fluctuating
field, a fully suppressed noise at our working point: τqpc2 ≈ 0.5. Concerning the second,
quadratic f2 parameter, it is expected to be ∝ 〈δϕ2〉. Microscopically, phase noise must
be due to fluctuations of some sort, like some moving charges in the vicinity of the paths
or fluctuations in the magnetic flux threading the interferometer. A probable phase
fluctuation mechanism is moving charges along the paths, (possibly charges entering and
leaving the inner-channel loops formed by the long comb-shaped gates). The number
of independent fluctuators should then scale as L, and therefore one would expect
f2 ∝ 〈δϕ2〉 ∝ L. From the values in table 3.1, we can see that f 100µm

2 /f 24µm
2 = 6.5,

which does not deviate too much from the geometrical ratio of 4.
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3.7. MZI Current noise as a function of voltage bias.

Table 3.1: Parameters used in equation 3.16 to obtain the full lines of figure 3.8

MZI arm length (µm) f1 f2

24 0.12 4 · 10−9

100 0.08 26 · 10−9

A few words on the different time scales
As a summary, we recall the different time scales involved in these measurements. First,
experimental time scales are: (i) the lock-in integration time is set to τLI = 100ms, (ii)
the current noise is sensitive to events on the scale of τS ≈ 1/855kHz≈ 1 µs. Second, the
microscopic time scales are: (iii) the time of flight of electrons through the interferometer
τtof = L/vd ≈ 0.5−2 ns, (iv) the time in between two events causing the erratic behavior
of the interference pattern τδϕ and which is a priori unknown.

Our conductance measurements indicate that at some times and/or certain MZI set-
tings, τδϕ � τLI so that noisy events are fast enough (and 〈δϕ2〉 large enough) to fully
blur the measured interferences with our lock-in amplifiers. In other cases, these events
are slow or small enough such that we can observe large visibility interferences. Our
MHz measurements at small Vdc clearly show that phase fluctuations do occur at least
on the µs scale: τδϕ ∼ τS. The only effect of these events at τδϕ � τtof are to blur the
measured visibility of conductance oscillations, but do not impact the intrinsic coher-
ence. Note that similar fluctuations could also occur on time scales comparable to the
traversal time of the electron in the MZI which then destroys their quantum character.

3.7.1 Reconstructed interference visibility vs dc bias voltage from
phase noise
In order to compare the robustness of the visibility against bias voltage with the loops
confinement strategy, the differential visibility – the visibility of dI/dV oscillations
– is reconstructed from the noise measurement averaged over several periods. This
reconstructed visibility is shown in figure 3.10 b. The step by step process to arrive
to such a result is explained in what follows. First, the data of figure 3.8 is recast in
figure 3.9 a, in linear scales, where the quadratic (linear) dependence of the noise, at
small (large) bias voltage, is easily identifiable. The individual (non-averaged over φ)
data points are also displayed in small, semi-transparent points to show the extent of
the dependence of phase noise on the Aharonov-Bohm phase. Second, the dc visibility
(of conductance oscillations in I/V ) is obtained by isolating V in equation 3.16. Instead
of using the f1, f2 parameters listed above, we fit these more closely to the data, and
check that there is no major discrepancy. To do so, the linear component of the noise,
that is the focus of figure 3.9 b and plotted in full dark (light) blue lines is subtracted
from the averaged noise of the 24 µm (100 µm) MZI, as this component of the noise
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Figure 3.9: Measured excess current noise in the 24 µm (dark blue open circles) and 100 µm
(ligth blue full triangles) device as a function of the applied bias voltage Vdc. Dotted lines
are only a guide for the eye. a Individual small semi-transparent data point represent the
measured current noise for a given plunger gate voltage Vpl. Open circles and full triangles are
the average at a given Vdc. b Focus on the linear component of the average noise. c Average
current noise with the linear component subtracted, full red lines are quadratic fits used to
reconstruct the dc visibility.

is purely due to partition noise and not to the phase noise in a coherent MZI (the
thermal rounding is here neglected). This yields the pure phase noise Sφ, plotted in
figure 3.9 c, and on which a quadratic fit is performed on a restricted range of Vdc where
the quadratic (and is essentially equal to f2 of equation 3.16). It is then possible to
isolate the visibility in equation 3.14 V ∝

√
〈SMZI〉φ〈δϕ2〉. To obtain the data points

of figure 3.10 a, it is assumed that 〈ϕ2〉 remains constant over the whole explored Vdc
range, and the proportionality factor is then adjusted by hand so that the calculated
dc visibility at small Vdc approximately matches the measured differential visibility at
zero bias voltage. Finally, the differential visibility is obtained from the dc one by the
expression:

Vdiff =
∣∣∣∣∣V + Vdc

∂V
∂Vdc

∣∣∣∣∣ (3.17)

which is derived in section A.5. The resulting differential visibility is displayed in
figure 3.10 b. The differential visibility for the 24 µm MZI with two co-propagating
channels (and keeping QPC 0 open to a single channel only), measured by conductance
measurements is also displayed in light green. In comparison with the visiblity in the
MZI without the loops, it is striking how the interferences are more robust to a dc bias
when the inner channel is forced into loops.

3.8 Conclusion
To put this result into perspective, it is interesting to compare it with state of the art
works in the same area. Figure 3.11 shows graphs with a non-exhaustive set of repre-
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Figure 3.10: Using the same symbol code as before: dark blue open circles (light blue full
triangles) are used in the L = 24(100) µm device. Extracted a dc visibility extracted from
the measured phase noise of the MZI (see text) and b differential visibility obtained from
equation 3.17 and data in a, are in blue. Light green data points correspond to the differ-
ential visibility obtained from standard conductance measurements with two co-propagating
channels in the L = 24 µm device.

sentative coherence lengths observed in various systems and materials. For example,
it includes an AlGaAs based MZI (the Ji article [20] previously held the record of the
largest coherence length among all subsequent QH realizations except for this work), as
well as the more recent implementation of a MZI in graphene in the Yacoby group [193]
(blue hexagon on figure 3.11). A proper comparison of the different coherence lengths
should only be done at the same temperature, as regardless of the system, the coher-
ence length tends to increase with a lowered temperature. The full line on figure 3.11
a displays a T−1 trend, passing through our result. This trend is known to adequately
describe the dependence of the coherence length on temperature in QH channels [21],
as well as in other ballistic systems [194]. However, this trend should only be taken as
indicative as it is not universal. For example, Aharonov-Bohm diffusive metallic rings
follow a T−1/2 trend, and diffusive metallic wires a T−1/3 one [195]. Among all the listed
results, four points lie above the black line, suggesting a larger coherence length could
be achieved in these systems if they were cooled down to 10,mK, as our devices were.
Nonetheless, three of these points were obtained in samples much smaller than the
claimed coherence length as shown in figure 3.11 b (where the vertical scale is identical
to panel a for an easy matching of each data point). This is illustrated in figure 3.11 b
by the full line dividing the graph in two, the lower, green part is a safe zone where the
measured coherence length is smaller than three times the device length. In this light,
a single other study reports a coherence length that surpasses all other works, including
ours, by at least an order of magnitude, and was possibly limited by the sample size.
However, such a large coherence length, obtained in a plateau to plateau transition in
the QH regime, where electrons are essentially localized, was indirectly derived in the
framework of Anderson Localization [196].
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Figure 3.11: Comparison of electron coherence length Lφ reached in our work (stars) compared
to other works in various materials such as graphene (empty hexagons), and using different
measurement techniques (see table A.1 for exact values and references). Colors correspond to:
quantum Hall channels MZI (dark blue), diffusive metallic and AlGaAs Aharonov-Bohm rings
(light blue), diffusive metallic wires (dark red) and wires in small exotic materials (light red).
The dark grey triangle corresponds to Anderson Localization measurements in AlGaAs 2DEG
(see text for details). The coherence lengths are presented as a function of a temperature,
where the black line ∝ 1/T , serves as a guide for the eye, and b device length where the
line delimitates a safe zone in green where the claimed coherence length is smaller than three
times the device length.

The present work is the first to directly demonstrate a macroscopic electron coher-
ence length in a solid-state circuit. By engineering the environment of the interfering
quantum Hall channel, inter-channel electron-electron interactions are drastically su-
pressed, thereby increasing the coherence length by a factor of 15. It also confirms that
electron-electron interactions between adjacent channels is by far the main decoherence
mechanism in such circuits. However, this kind of engineering came with a drawback in
our study: a large phase noise was generated when forming inner channel loops. This
complicates the exploitation of the large obtained Lφ, especially at low-frequencies.
Such limitation may be overcome using smaller loops of even larger level-spacing, sup-
pressing possible tunnel events. Another approach, not fully explored, would be to
use wide gates, allowing to repel the inner channel away from the outer one. Such a
strategy has recently proved efficient at minimizing energy relaxation [28]. Finally, a
natural follow-up to this work would be to use this type of engineering for single elec-
tron interference experiments, as the observed phase noise in our dc experiment might
not affect the short, ∼ 50 ps wide, electron pulses commonly used in such experiments
[24,167,197].
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4
Electron quantum state transfer

accross a metallic island

As discussed in the introduction of this manuscript, whenever a propagating electron
induces a change in its environment, it (at least partially) lifts the uncertainty on
the path taken, thereby washing out the quantum coherence. Such modification to
the environment has to be mediated by an interaction of some nature. This is the
reason why interactions in general are intuitively associated to decoherence. Moreover,
in solid-state circuits, Coulomb interaction is inescapable, and is consequently widely
perceived as the nemesis of coherent transport of electrons. A good example of how
Coulomb interaction limits the electronic coherence is actually the whole experiment
described in the previous chapter, where its effect was effectively reduced in order for
the coherence length to be increased. In this chapter, we report on an experiment that
challenges this intuitive view and in which Coulomb interaction strikingly acts as the
main ingredient enabling for the electron coherence to be preserved.

4.1 Which-path experiments in electronic MZI
Taking a step back, and in order to illustrate that Coulomb interaction usually drives
decoherence in solid-state circuits, we introduce which-path experiments. These typ-
ically consist in voluntarily introducing an element in the environment that lifts the
uncertainty on the electrons’ path. Below, a few examples that were explored in elec-
tronic Mach-Zehnder interferometer devices are discussed. This detour is justified by
the fact that the experiment reported on in this chapter a priori looks like a which-path
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one, as will be clear from the sample presentation.

4.1.1 Dephasing with a coupled Mach-Zehnder

Figure 4.1: Two MZI with one of their path capacitively coupled together realized at ν = 2
[198]. a Schematic of the circuit: electrons couple within the blue region where the two MZI
arms are close to each other. b SEM scan of the device. The outer QH channels are drawn
in red.

It is possible to couple a path of a Mach-Zehnder interferometer together with one path
of a second MZI, taking advantage of Coulomb interaction as illustrated in figure 4.1.
As a consequence, the states of the electrons in the two separate interferometers are
entangled and due to the system’s symmetry, each MZI can be seen as part of other’s
environment. In each MZI, electrons can either be in the interacting path or in the non-
interacting one. When present in the interacting path, electrons act as a small gate on
the other MZI, adding a phase shift γ to its interference pattern. The entanglement
between both MZI results in an interference term, for each MZI, that is the average
of two interference patterns phase-shifted by γ. As a consequence, when γ 6= 0, each
MZI gains information about the other, thereby reducing the visibility of each of the
measured interferences pattern. The phase shift γ can be tuned by increasing the dc
current in one of the two interferometers, as doing so increases the number of electrons
crossing the interferometer per unit time, and therefore increasing its local gate effect
on the other interferometer. Although increasing the current could be interpreted as
simple phase averaging, the authors argue that the amount of dephasing can be tuned
by post-selecting the information measured by the MZI serving as a detector, simply by
tuning its phase via the magnetic flux or, equivalently, a plunger gate voltage. When
doing so, the visibility of the probed MZI is alternatively almost fully suppressed, and
recovered to its almost environment-free value. This is interpreted by the authors as
the knowledge of the which-path detector, that can be tuned so as to cause decoherence
(when which-path knowledge is maximum) or not (when no which path knowledge is
gained) of the electrons propagating in the other interferometer.
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4.1.2 Shot-noise induced dephasing

D1S0

S2S2

S1D0
Vdc

Figure 4.2: Schematic of a MZI dephased by shot-noise in a channel adjacent to one of the
two paths. QPCN is biased with voltage Vdc

By introducing electronic noise on the channel co-propagating with one of the interfering
channels, it is possible to blur the phase of the interfering electrons through the capac-
itive coupling between both channels [176,177,199]. The idea is to generate shot-noise
thanks to a biased QPC (QPCN on figure 4.2) set to a partial transmission probability
for the inner channel. As a consequence, through the inter-channel capacitive coupling
described in the previous chapter, the noise can also be generated on the interfering
channel, on time scales that induce decoherence. It can also be thought of differently:
the interfering electrons can affect the noise in the adjacent channel, meaning that it
is possible to determine which path the electrons take in the interferometer, this infor-
mation destroys the quantum superposition on which interferences rely. The noise in
the co-propagating channel therefore acts as a which-path sensor, which is controllably
tunable through the voltage bias at QPCN that drives the available phase space.

In these experiments however, phase averaging also occurs. That is hard to distinguish
from true decoherence: the noisy channel can be thought of as acting as a gate on
the interfering channel, when noise is increased (with the dc voltage). As a conse-
quence, the interferometer area is slightly varied many times on the time scale of the
conductance measurements, with typical integration times of ∼ 0.1 − 1 s, and phase
averaging occurs, resulting in a reduction of the observed visibility. The agreement
of the visibility reduction with a model assuming a gaussian phase distribution (that
assumes independent phase randomizing events) in [177] supports the idea that many
uncorrelated electrons are involved in the process. A discrepancy with such a model
was however measured in [176,199] at high bias voltage, which the authors argue is a
signature of true decoherence by the tunneling electrons in the noisy channel.

All in all, these results illustrate how a which-path experiment can be implemented, but
also that it can be hard to distinguish true decoherence from simple phase averaging.
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4.1.3 The dephasing probe

Figure 4.3: Schematic of a metallic ‘voltage’ or ‘dephasing’ probe connected to a single elec-
tronic channel.

The dephasing probe is a theoretical tool, introduced by Büttiker to take into account
dephasing processes within the non-interacting scattering formalism [43–45]. In these
works, Büttiker describes the probe as having a floating electrochemical potential, de-
termined by that of the leads to which it is connected. Additionally, it plays the role of
an inelastic scatterer in the sense that it breaks down the quantum coherence, as ab-
sorbed electrons are distinguishable from re-emitted ones. This approach is successful
to describe the crossover from purely quantum coherent transport given by the Lan-
dauer formula to the purely classical result where series resistors are added [44,45].
For realistic purposes, Büttiker argues that this abstract object of a dephasing probe
can actually be simply realized by an electron reservoir, a piece of metal, disconnected
from the ground. This dephasing relies on the fact that the dwell time of electrons
within the metal τdwell is much larger than their coherence time τφ in this medium. It
was subsequently demonstrated, using a MZI, that such an object indeed does blur the
quantum phase of electrons in good agreement with the scattering theory [200].

4.2 The coherent probe
In the above description of a dephasing probe, Coulomb interactions are completely
neglected, although they can become of paramount importance. Effectively, any such
piece of metal necessarily possesses a capacitance towards its surrounding. This capac-
itance C defines the energy necessary to add an elementary charge to it EC = e2/2C,
the charging energy. Whenever kBT � EC , the global charge of the piece of metal
is frozen. In the very particular case of a single channel connected to the metal sub-
ject to the conditions ∆ � kBT � EC , it was predicted that inelastic scattering with
the metallic island’s many degrees of freedom is effectively suppressed1 and that the
coherence is preserved between electrons arriving into the island and indistinguishable
electrons simultaneously exiting [46–48].

All three papers [46–48] rely on the idea that in one dimension, low-energy electronic
1Note that inelastic scattering still occurs for the electrons contained within the metal, and that

this effective suppression only concerns the impinging electrons from the outside.
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4.2. The coherent probe

excitations (low-energy here means � EF , the Fermi energy), naturally expressed as
single-particle fermionic fields, can be re-expressed in terms of collective bosonic fields
(see [121,201] for references textbooks and [202,203] for more pedagogical presenta-
tions). This presents the advantage that some problems that are intractable expressed
in terms of fermionic fields, become much easier when recast as bosonic ones. That
is especially true when electron-electron interactions are at play, because the interac-
tion hamiltonian then contains terms that are quartic in fermion fields, which become
quadratic in bosonic fields, and therefore exactly solvable. Treating quantum Hall edge
channels this way is a successful strategy to account for the effects of Coulomb inter-
actions in such systems (see [204] for several examples). In particular, this approach
enables to keep track of the quantum phase in presence of interactions in the T-junction
geometry of [46], but also in the ohmic contact of [47] or strong interaction region of
[48] embedded in a MZI.

D1S0

S2S2

Figure 4.4: Schematic of a MZI interferometer with the lower arm coupled to a metallic island.

In what follows, we introduce the very basis of the formalism and try to convey the
physical ideas that can be drawn from it in the particular context of a MZI coupled to a
metallic island as illustrated in figure 4.4. As stated above, the main idea relies on the
fact that fermion fields ψ̂u,d(x) (which verify the canonical anti-commutation relations
{ψ̂†i (x), ψ̂j(y)} = δi,jδ(x− y)) can be re-expressed in terms of the boson fields φ̂u,d(x) in
the following way:

ψ̂u,d(x) = 1√
a
eiφ̂u,d(x)

with a a renormalization constant, such that the bosonic operator can be physically
interpreted as the electron’s quantum phase. Another physical meaning can be tied to
these bosonic fields: it is possible to express the fluctuation electronic density operator
(defined as the departure from the mean density) in the following way:

ρ̂i(x) = ψ̂†i (x)ψ̂i(x)− 〈ψ̂†i (x)ψ̂i(x)〉 = 1
2π∂xφ̂i(x) (4.1)

where the index i denotes the channel.

With these two ingredients, it is possible to grasp what happens at the level of the
metallic island when the condition kBT � EC is fulfilled. Effectively, the latter con-
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dition states that any charge fluctuations of the island is frozen. This implies that,
whenever an incoming charge pulse δρ̂in = ρ̂in−〈ρ̂in〉 penetrates the island, another one
δρ̂out has to be expelled such that it contains the exact same amount of charge.
When a single channel is connected to the island, the outgoing charge pulse is necessar-
ily exactly equivalent to the incoming one, which means that ρ̂in = ρ̂out, and through
equation 4.1 that ∂xφ̂in(x) = ∂xφ̂out(x). As a consequence, the incoming bosonic field is
equal to the outgoing one and, by extension, the quantum phase is preserved between
the electrons constituting the incoming and outgoing charge pulses. On the other hand,
when more than one channel are connected to the island, it is possible for the incoming
charge pulse to re-arrange among all the available channels, the outgoing charge pulse
is different from the incoming one and the information on the phase is lost. Note a
complementary insightful physical discussion in [205, sec. 2].

4.3 Sample characterization

4.3.1 MZI configurations

1 μm

Vqpc2R

Vqpc2L

VcombL

Vqpc1L

Vqpc1R Vpl2

VcombR

Vdc + Vac

Vpl

Vsw2

Vsw1

Figure 4.5: SEM scan of the sample. The two QPCs (in green) are the MZI’s beam-splitters.
The central ohmic contact on the left (light gold) is connected to ground via an air bridge.
Sources and drains are not visible in this picture but materialized by the white dots.

Idrisov et al. [47] propose to test their prediction in a Mach-Zehnder geometry which
is exactly what we have done. In figure 4.5 an SEM scan of the sample is printed, it
consists in a Mach-Zehnder interferometer defined by the two QPCs (colored in green)
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4.3. Sample characterization

and a central ohmic contact (in light gold) that is connected to ground via an air-bridge.
On the right side, another small ohmic contact is present, it is electrically connected
to the outside world only via the 2DEG and will be used as the ‘probe’. By looking
closely, one can see a shallow trench in the middle of this ohmic contact. That is where
the heterostructure was etched before the metal deposition to garantee no electrons can
pass from one side to the other of the island through the 2DEG, thereby bypassing
the metal. The two dents on each side of the island are there to increase the length
of the metal/2DEG interface so as to make the interface as transparent as possible. A
large magnetic field (B ≈ 5T) is applied perpendicular to the sample so as to reach
the quantum Hall regime at filling factor ν = 2 (and close to the lower B-field plateau
edge). Just like in the previous study, two top gates in the shape of combs (light
blue) were deposited along both interferometer’s arms but those are not used in what
follows. There are two plunger gates, the first one in dark red is well coupled to the
island and badly coupled to the interferometer’s paths, while the second one in orange
is badly coupled to the island and well coupled to the right MZI path. Two top gates
(dark blue) permit to controllably open or block the flow of electrons towards and away
from a metallic island on each of its two sides. These enable to tune the device in three
different configurations as illustrated in figure 4.6. The first configuration (figure 4.6 a,d)
consists in coupling the channel defining the right path of the interferometer, as well as a
second channel on the other side of the island. In this case, theory predicts the electron
coherence should not be preserved. The second configuration (figure 4.6 b,e) consists in
a simple MZ interferometer: the blue barring gate is closed on the interferometer’s side
and will serve as a control experiment. The third configuration (figure 4.6 c,f) consists
in plugging only the right interfering channel of the interferometer to the island, it is for
this configuration that theory counter-intuitively predicts a preservation of the phase
coherence.

Note that the first configuration does not realize the ideal dephasing probe as part of
the current is lost to the island’s other side, while in the ideal case, all the current is
recovered, like in [200]. However, it is simply not possible to connect two channels to
a probe without losing some signal in the standard electronic MZI geometry where a
central grounded contact is required.

4.3.2 Metallic island
The island’s charging energy being a crucial parameter, it can be characterized by tuning
the device in a Single Electron Transistor (SET) regime such that it is connected to the
outer world by very weak tunnel junctions as illustrated on figure 4.7 a. Upon varying
both the energy of incident electrons through Vdc and the plunger gate voltage Vpl, we
obtain the Coulomb diamonds of figure 4.7 b. The height of the Coulomb diamonds
(e/C ≈ 50 ± 3 µV) enable to deduce the island’s charging energy: EC = e2/2C ≈
kB × 285± 15mK, where C is the island’s total capacitance towards its surroundings.
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Figure 4.6: a-c Schematics of the three possible configurations of the sample and d-f corre-
sponding trajectories of the outer quantum Hall channel drawn on the sample’s false colored
SEM scan. a,d Two channels are coupled to the island, the metallic island should act as a
dephasing probe.
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Figure 4.7: a Sample tuned in a SET configuration: both blue switch gates are tuned in the
tunnel regime (very low transmission), the outer channel is sketched in light green, the inner
channel is not drawn but fully reflected at every interface b Coulomb diamonds obtained
for the metallic island when the device is tuned as a SET. The total island’s capacitance,
and consequently its charging energy, is deduced from the diamonds Vdc extension (eC ≈
50± 3 µm).
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It is also possible to estimate the island’s level spacing: ∆ = 1/ρFΘ, with Θ the
island’s volume and ρF the electronic density of states per unit volume and energy
(in gold ρF ≈ 1.14 · 1047 J−1.m−3). Here, Θ ≈ 3 µm3, such that the level spacing is
∆ ≈ kB × 0.2 µK≪ kBT .

4.3.3 Small Ohmic Contacts Interface Characterization
For this experiment, it is crucial that the ohmic contacts are well connected to the quan-
tum Hall channels. While the source and drain contacts are large and have essentially
perfect interfaces with the 2DEG, it is not necessarily the case of the two micron-scale
ohmic contacts in our MZI,.

Central ohmic contact
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Figure 4.8: Measurements over time of the transmission coefficients at the metal/2DEG in-
terface for the outer channel (τΩ−out) as well as for the inner one (τΩ−in) a Schematic of the
gate configuration and the channels trajectories. QPC1 is fully open. Only the halves of the
injected current relevant to the calculation of the transmission coefficients are indicated in red
and blue (see text). The other half of the current emerging from contact S0 (S1) is injected in
the outer (inner) channel, colored in black (grey) and end up on contact D1. b Measurement
of τΩ−in,out. The measurements take place between contacts S1 and D0 for the outer channel
(in light blue on the schematic) and S0 and D0 for the inner one (dark red).

One of them is the central contact connected to the ground via the air bridge, which
needs to be small due to the small size of the interferometer. The other one is the
metallic island, that needs to remain small so as to boast a large charging energy. In
itself, realizing micron-scale ohmic contacts in good electrical contact with the 2DEG
is a challenging task, this is why it is necessary to ensure that these interfaces are
of good quality. It is possible to retrieve the transmission coefficient of the quantum
Hall channels at the 2DEG/metal interface. To do so, the interface is treated as an
elastic scatterer, and the device is tuned in different configurations to find the different
transmission coefficients.
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By tuning the device in the configuration sketched in figure 4.8 a, it is possible to
characterize the interface of the central ohmic contact for both the outer and the inner
channels independently and simultaneously thanks to our homodyne detection scheme.
The quantities τΩ−out,in plotted in figure 4.8 b are the transmission probabilities between
the outer/inner channel and the inside of the metallic island. The values of τΩ−out,in
are obtained by measuring at contacts D0,1 the part of the current I0,1

meas, that remains
of the injected current I0,1

inj at contacts S0,1. As I0,1
inj is equally distributed between the

inner and outer channel, we get

τΩ−out = 1− ID0←S1
meas
IS1→inj /2 and τΩ−in = 1− ID0←S0

meas
IS0→inj /2

It can be observed that the inner channel is very little coupled to the grounded central
contact, with just a 1% transmission probability. While unexpected, this very poor
coupling of the inner channel to the central contact is however not a big concern as
only the outer channel is intended to be used for interferometry. The outer channel,
while being much better coupled to it isn’t perfect and boasts a 96% transmission
probability. This value is however high enough to prevent charging effect within the
interferometer and greatly suppress any second order interference.

Metallic Island
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Figure 4.9: a Schematic of the gate configuration and channels trajectories: QPCL is set to
half transmission such that it lets only half of the current injected in the outer channel go
through, which makes IS0→inj /4. b Measurement over time of the transmission coefficients at
the metal/2DEG interface for the outer channel (τΩ−1).

The coupling of the outer channel with the floating island can be estimated in a similar
fashion. From complementary measurements (shown in section B.1), the transmission
probability inside the ohmic contact was seen to slightly depend on the nearby gate
voltages. Therefore, the device is tuned in a configuration as close as possible to the
MZI configuration by setting the first QPC to half transmission on the outer channel,
which only lets through a current IS0→inj /4. In this case however, there are two interfaces
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in series and it is impossible to infer separately τΩ−1 and τΩ−2 (see figure 4.9 a). The
series transmission probability is

τ seriesΩ =
(

1
τΩ−1

+ 1
τΩ−2

)−1

= ID2←S0
meas
IS0→inj /4 = 1− ID1←S0

meas
IS0→inj /4

Note that in the case τΩ−1 = τΩ−2 = 1, τ seriesΩ = 1/2 as expected from the equi-repartition
of current in both connected channels following from the Kirchoff law applied to the
island, considered as a circuit node. Some elements (such as the current redistribution
when changing each of the switch gates voltages and the absence of residual charge
quantization oscillations, detailed in section B.1), indicate that the interface of the
island opposite to the MZI is near perfect. This is the reason why we assume: τΩ−2 ' 1,
which makes τΩ−1 ' τ seriesΩ /(1− τ seriesΩ ). Experimentally, τΩ−1 is therefore given by:

τΩ−1 '
ID2←S0
meas
ID1←S0
meas

We can then plot the traces of figure 4.9 b and conclude that the metal/2DEG interface
of the floating island on the side of the MZI reflects ~3% of the impinging electrons.
Additional elements shown and discussed in section B.1 indicate that the coupling of
the inner channel is very bad on the MZI side of the island while it is very good on the
outer side.

For both ohmic contacts, a slight variation of the transmission is observed as a function
of the surrounding gates voltages (not shown here). This effect remains however small
and is further discussed in section B.1.

Because both transparencies of the metal/2DEG interfaces are not perfect, it is possible
that some measurement artifacts arise. However, their relatively low deviation from the
ideal case should not affect much the interference patterns.

4.4 Experimental results

4.4.1 Magnetic field oscillations
Now, the device is tuned as a Mach-Zehnder interferometer for the outer channel: both
QPCs are tuned to half transmission (the inner channel is fully reflected) and both
paths are open (the comb gates are set to 0V). First, the device is tuned in a Mach-
Zehnder such that one of its path is interrupted by the island, and the island is also
connected to a second channel as depicted in the schematic of figure 4.10 a. The average
signal measured at the output detector of the MZI is of around τMZI ≈ 3/8, indicated
on figure 4.10 as the dashed black line. This is expected from both QPCs tuned to 1/2
transmission probability and from the current equi-redistribution at the the floating
island, between both channels connected. The light blue signal oscillates around the
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Figure 4.10: Mach-Zehnder oscillations as a function of the perpendicular magnetic field are
presented in the right panel when the device is tuned in the configuration sketched in the left
panel: a when two channels are connected to the island, b in the simple MZI case, c when
only a single channel is connected to the island.

3/8 value with a maximum visibility of ≈ 20%, suggesting residual coherent transport
across the interferometer although theory predicts that none should subsist. These can
be explained by the residual reflection on the island contact: electrons that do not
penetrate the metal keep their quantum state intact and can interfere. The value of
20% visibility for these oscillations is compatible with a 3% reflection at the ohmic
contact interface as characterized above (the residual oscillations’ visibility is expected
to scale as the square root of the reflection probability [200], see section B.4 for the exact
expected expression in this case). The fact that no interferences should subsist when
electrons are well-coupled to the island can be intuitively understood with a ‘which-
path’ interpretation. In effect, the interferences rely on the uncertainty on which of the
two paths an electron took. As some signal leaks out of the interferometer along one
the the paths as is the case here, it is possible to determine which path an electron
took, thereby destroying the interferences. Note a difference with a true which-path
experiment where no signal should be lost, just like in [199,200,206].

The second configuration consists in simply closing the gate separating the interferom-
eter’s right path from the island, resulting in a simple MZI as depicted in figure 4.10 b.
In this case, oscillations of visibility of up to 90% can be observed, which serves as a
reference. Turning towards the third configuration, where a single channel is connected
to the metallic island, it is possible to see in figure 4.10 c that the visibility of the
resulting oscillations is, at our resolution, as large as in the simple MZI case, show-
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ing that the coherence of the electrons along the right path is preserved even though
they are coupled to the metallic island. This means that the latter does not act as a
dephasing probe, contrary to the situation in [200]. Consequently, this configuration
does not constitute a which-path experiment, in spite of its appearance. This implies
that no matter how close one would monitor the state of the metallic island, it is not
possible to tell which path the electron took and the charge state of the island remains
unaffected by electrons crossing the MZI. This is due to the island’s very large charging
energy that freezes the island’s global charge. Taking a closer look at figure 4.10 b &
c, it is clear that the periodicities do not match. The power spectral density of the
Fourier transform of all three signals is drawn in figure 4.11 a. Noticeably, the peaks
of the simple MZI (light green) as well as the MZI connected to the island (dark blue)
oscillations are at clearly different values. The evolution of flux enclosed between both
MZI paths being given by equation 2.6 that we re-write here:

dφ

2π = ∂

∂B

(
AB
h/e

)
dB + ∂

∂Vpl

(
AB
h/e

)
dVpl

here by varying only the magnetic field, only the first term of the right hand side of
this expression is relevant and a full oscillation period is obtained when

h

e
= ∂(A ·B)

∂B
∆B

where ∆B is the magnetic field periodicity. In a MZI, the area does not vary as a
function of the magnetic field, leaving only

h

e
= A∆B

which implies that the periodicity as a function of magnetic field is inversely propor-
tional to the area enclosed between the two interferometer’s arms. In the simple MZI
case (light green), this peak corresponds to a flux periodicity of 241 ± 3 µT×AMZI ≈
0.98h/e, with the interferometer’s lithographically defined area of AMZI = 16.8 µm2.
This is in agreement, within 2%, with the expected unit flux quantum per period, that
is represented in figure 4.11 b as a vertical dashed light green line. When the island is
connected (dark blue), the flux periodicity is 305 ± 4 µT×AMZI-island ≈ 1.35h/e, when
assuming a naive area of AMZI-island = 18.4 µm2 that is depicted on figure 4.11 c. This is
a large, 35% deviation to a single flux quantum per period, materialized by the vertical
dashed dark blue line on figure 4.11 a. Note that in this case, the area that should be
considered is not clear as the well-defined QH edge path is interrupted by the metallic
island that couples the incoming and outgoing channels through its surface plasmons,
that cannot be associated to a well-defined electron path. Nonetheless, any electrical
current path necessarily encloses an area that is at least larger than that of the sim-
ple MZI (figure 4.11 b). Here, the measured magnetic field periodicity is substantially
larger, by 27%, than that of the simple MZI, corresponding to a smaller area. This
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puzzling result is incompatible with a simple Aharonov-Bohm phase, suggesting that
another effect is happening. On the bright side, this unexpected periodicity further
confirms that electrons along the right path of the interferometer are indeed well cou-
pled to the island and that the observed large visibility does not come from a mere
reflection at the metal interface, at which frequency we see no peak at all.
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Figure 4.11: a Fourier transform of the data of figure 4.10 using the same color code to
identify each configuration. b Simple MZI area. c Area with a single channel connected to
the island in a naive approach. d-f Three areas of possible Fabry-Perot interferences whose
first order component explain the secondary peak of the light blue FFT (when two channels
are connected to the island).

Turning to the case where two channels are connected to the island, first, the area of
its primary FFT-power peak is about two orders of magnitude smaller than that of
the two others. This is compatible with the observed smaller contrast of the residual
oscillations (. 20%) as the FFT power is proportional to the squared amplitude of
oscillations. Second, its FFT is peaked around the same frequency as the simple MZI
case. One would expect it to be peaked around the dark blue dashed line as the
reflected electrons at the metal/2DEG interface should enclose the whole dark blue
area of figure 4.11 c. The sligthly lower frequency, matching that of the standard
MZI, suggests that the electrons are reflected at the level of the switch gate, or that
something else is happening as is further discussed in section B.2. As reflected electrons
apparently contribute to oscillations with the simple MZI periodicity, then one would
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also expect to see a small peak in the Fourier transform of the dark blue signal, when
the island is coupled to the MZI. The reason it cannot be seen is that, with a 90%
visibility, the inevitable phase noise in this MZI is responsible for noise at all other
frequencies, thereby drowning this secondary peak in a higher noise background. This
is clear when looking at the FFTs in log-scale where the light blue one is not rescaled:
its dominant peak then lies below the noise level of the dark blue one (see figure ?? in
section B.2.3).

Finally, the secondary, lower frequency peak of the two-channel case (light blue), is
compatible with a first order Fabry-Perot interferences present due to the small reflec-
tions at the ohmic contacts interfaces. The possible frequencies from the areas depicted
in figure 4.11 d-f are identified with the vertical light blue dashed lines in figure 4.11 a.

4.4.2 Controlling the transmitted electron phase with the island’s
charge
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Figure 4.12: a Transmission across the MZI τMZI as a function of both the plunger gate
voltage Vpl and perpendicular magnetic field B. The negative slope of the constant phase
lines indicate an Aharonov-Bohm regime. b Coulomb diamonds of the metallic island when
it is tuned in a SET regime (just like in figure 4.7) with its Vpl axis offset to match that of
the plot in a. The matching periodicity with Vpl between the Coulomb diamonds and the
MZI interferences indicate a 2π phase shift for a change of one elementary charge within the
island.
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We turn now to investigate the influence of the charge state of the island on the inter-
ference pattern in the configuration where the MZI is coupled to the island. Effectively,
theory predicts that a modification of the island’s charge by one elementary charge e
should result in a 2π phase shift in the interference pattern [49]. Modifying the charge
on the island can be achieved by changing the voltage applied to the gate labeled ‘pl’ on
figure 4.5, which is close to the island and is therefore strongly coupled to it capacitively.
Continuously changing the voltage of this gate enables to modify the macroscopic charge
of the island, which is changed continuously because of its (almost) ballistic coupling
to the quantum Hall outer channel.
On figure 4.12 a is displayed the interference pattern obtained upon changing both the
magnetic field and the voltage of the plunger gate best coupled to the island. Such a
measurement is standard in interferometers [18,20,193]. However, usually the plunger
gate is placed in close proximity to one of the two interfering paths, while here it is
mainly coupled to the island. The smooth oscillations as a function of Vpl show that
the charge on the island is indeed changed continuously, and the negative slope of the
constant phase lines indicate that the interferometer operates in the Aharonov-Bohm
regime [145,146], as expected for a MZI as opposed to the Coulomb dominated regime
that often take place in Fabry-Perot interferometers.

A natural question that arises is: to what corresponds the periodicity in Vpl ? figure 4.12
b shows Coulomb diamond of the metallic island when the device is tuned to be a single
electron transistor as illustrated in figure 4.12 c. In this configuration, the two QPCs
are tuned to transmit a full channel and no interferences take place, the two blue gates
on each side of the island are tuned to be tunnel barriers, with very low transmission
probabilities. The abscissa axis of figure 4.12 b is shifted by 17.4mV in order for it to
match that of figure 4.12 a. Remarkably, the periodicity in Vpl in the interference pattern
of figure 4.12 a matches perfectly with the Vpl periodicity in the Coulomb diamonds.
This demonstrates that a continuous modification of exactly one elementary charge in
the island’s total charge results in a 2π phase shift in the interference pattern. This is
predicted by theory and is consistent with the Friedel sum rule [49]. The equivalent role
between the magnetic field and the plunger gate voltage demonstrated by figure 4.12
a, together with the fact that the periodicity in gate voltage is equivalent to changing
the charge on the island by exactly e further supports the good coupling between the
island and the interfering channel even in the MZI regime.

In order to ascertain that Vpl’s influence is overwhelmingly on the island’s charge, it
is possible to look at the effect of this plunger gate also when in the simple MZI
configuration. Its effect is illustrated on figure 4.13 a, boasting a periodicity of 270mV,
while the data in the case when the island is coupled is on figure 4.13 b, where the
periodicity is the aforementionned 1.7mV, the same as that of Coulomb diamonds. The
factor ~160 between the two demonstrates that the coupling of the quantum Hall edge
channel to this plunger gate is poor and much enhanced when the island is connected
to it. This further shows that the interfering electrons are indeed well-coupled to the
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Figure 4.13: MZI interferences of a the MZI in the simple regime b the MZI with a single
channel connected to the island. c Fourier transform of both signals in a,b

metallic island when the blue gate leading to it is open. Note a secondary periodicity
of about 14mV and much smaller amplitude (which consequently would not show on
figure 4.13 c, which is the same in both cases suggesting that the plunger gate addresses
another object, although it is not clear what this could be.

4.5 Conclusion
This experimental work therefore demonstrates a coherent transmission of the quantum
state of electrons through a metallic island with a characteristic dwell time orders of
magnitude larger than the typical coherence time in the island. This puzzling effect is
only possible thanks to Coulomb interaction, that, through the island’s large charging
energy, prevents impinging electrons from coupling to the many degrees of freedom
within the metal. The parallel with the proposal of L. Fu [50] (with an experimental
attempt in [207]) is tantalizing considering that the charging energy also plays a crucial
role in this electron teleportation scheme. A major difference with our experiment
is that in this proposal, the mechanism for non-local quantum correlations involves
Majorana bound-states.

This work is also strongly tied to the Coulomb blockade of heat observed in [40,208],
in which a part of the electronic heat transport between a heated metallic island and
cold reservoirs was blocked due to the island’s large charging energy. Effectively, in this
case, the correlations between all N physical channels, induced by the metallic island
connecting them all, causes a decomposition in a single charged mode and N−1 neutral
modes. The heat, in their experimental conditions, can only be carried by electrons, and
therefore consists in current fluctuations. The charged ones are consequently blocked
due to the charging energy, that prevents fluctuations of the island’s charge. In this
study, the single channel regime could not be attained for practical reasons, but the
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experiment described above closes this gap as it shows no quantum information can
flow between the island and the connected single channel. This implies that no heat
can be exchanged either between these two, as Maxwell’s demon can testify.
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A
Supplementary information for

the macroscopic coherence
length

A.1 Plateau ν = 2
The B-field extent of the ν = 2 plateau is displayed in figure A.1, using two different
ohmic contacts located on the same side (dark blue) and on the opposite side of a top
gate (green). The green data illustrates how a top gate, even grounded can slightly
affect the plateau’s extent. For the study described in chapter 3, the data was acquired
at a magnetic field of B = 4.3T, rather in the middle of the plateau.

A.2 Central ohmic contact characterization
The transmission probability of the inner channel towards the central grounded ohmic
contact τΩ-out can be obained by tuning the devices in the configuration depicted in
figure A.2 a and then using:

1− τΩ-out = ID1←S0
meas
IS0→inj /2 − 1

The transmission probability τΩ-out ≈ (99.4(100)±0.05)% is (near) perfect, which shows
that the central ohmic contact acts as a very good charge sink.
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A.2. Central ohmic contact characterization
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Figure A.1: Magnetic field extent of the plateau ν = 2 for the 2DEG used in this experiment.
Data were measured in a Van der Pauw geometry as illustrated in the inset schematic, on a
device different from the MZI, with a geometry very similar to the depicted schematic and
with a grounded top gate (light grey).
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Figure A.2: Characterization of transmission probability for the outer channel at the central,
grounded ohmic contact, obtained from the current originating from S0 and measured at
D1, for the L = 24 µm (dark blue) and the L = 100 µm (light blue) devices. a Schematic
of the device configuration for the determination of τΩ-out. The channel in red highlights
the trajectory of interest. b The data shows that ≈ 0.006 of the outer channel is reflected
at the metal/2DEG interface in the L = 24 µm long device, while nothing is reflected in
the L = 100 µm long device to our experimental accuracy (relative error of 5 × 10−4 when
averaging).
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APPENDIX A. SUPPLEMENTARY INFORMATION FOR THE MACROSCOPIC COHERENCE LENGTH

Although it is not at all crucial to this experiment, it is also possible to obtain τΩ-in by
configuring the devices as depicted in figure A.3 a with:

1− τΩ-in = ID1←S0
meas
IS0→inj /2 − 1

yielding the data of figure A.3 b. The inner channel is therefore perfectly transmitted
in the L = 100 µm device while τΩ-in ≈ 0.68± 0.1 in the L = 24 µm device, illustrating
how small ohmic contacts can be hard to contact well electrically with QH channels.
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Figure A.3: Characterization of transmission probability for the inner channel at the central,
grounded ohmic contact, obtained from the current originating from S0 and measured at D1,
for the L = 24 µm (dark blue) and the L = 100 µm (light blue) devices. a Schematic of
the device configuration for the determination of τΩ-in. The channel in red highlights the
trajectory of interest. b The data shows that τΩ-in ≈ 0.32 ± 0.1 of the outer channel is
reflected at the metal/2DEG interface in the L = 24 µm long device, while nothing is reflected
in the L = 100 µm long device to our experimental accuracy (relative error of 5× 10−4 when
averaging).

A.3 Inter-Channel Tunneling
The interchannel tunneling can be observed by injecting a current in one channel, and
none in the co-propagating one. After both channels are left to co-propagate for some
length, they are separated again and either the remaining current in the original channel
or the current in the co-propagating channel is measured. This kind of measurement
was performed as illustrated in the top panels of figure A.4 a,b,c. In figure A.4 a&b, it
is the tunneling along the upper path of the MZI that is measured, using both possible
techniques. In the scheme of figure A.4 a, current is injected in the outer channel,
which then co-propagates with the inner channel from QPC0 onwards, until they reach
QPC2. At that point, the outer channel is directed towards the central grounded ohmic
contact while the inner channel is directed towards the drain D, where the amount of
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A.3. Inter-Channel Tunneling
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Figure A.4: Upper panel: Schematics of the device configuration for the measurements
displayed in the lower panel. The outer (inner) channel is colored in black (grey). Lower
panel: Measurements of inter-channel co-tunneling along the a, b upper (c lower) path of
the MZIs. The curves are the normalised currents between source (S) and drain (D) measured
as a function of time, for both the 24µm (dark blue) and 100µm (light blue) devices. Two
methods are possible for the upper path: a the direct measurement of the amount of current
that tunneled towards the inner channel and b the measurement of the amount of current
that remained in the outer channel. Both methods are consistent and indicate a tunneling
of . 1%(30%) for the 24µm (100µm) device. c Along the lower path, it is only possible to
proceed in one way: measuring the remaining signal in the outer channel. Tunneling on this
path is slightly more important: . 3.5%(50%)
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current coming from S (identified via homodyne detection), is measured. The tunneling
probability along the co-propagating length L ≈ 24(100) µm is then given by

τtunnel = ID←S
meas

IS→inj /2

In the scheme of figure A.4 b, current is injected in the outer channel, which then
co-propagates with the inner channel from QPC0 onwards, until they reach QPC3. At
that point, only the outer channel is directed towards D while the inner one is re-
directed towards a ground. The tunneling probability along the co-propagating length
L ≈ 24(100) µm is then given by

τtunnel = 1− ID←S
meas

IS→inj /2
(A.1)

Both measurements of figure A.4 a&b are consistent with a τtunnel . 1(30)%for a
propagating length of L = 24(100) µm.

In figure A.4 c, the tunneling along the lower path is characterized and τtunnel is again
given by equation A.1. In this case, τtunnel . 3.5(50)% for a propagating length of
L = 24(100) µm. Note that τtunnel cannot be superior to 50% as in this case, it means
that both channels are at equilibrium and any tunneling from one channel to the other
would be compensated by processes that go the other way around. Surprisingly, the
tunneling along the lower path is substantially larger than that along the upper path.
This kind of values for τtunnel is consistent with what has been measured in the past on
comparable lengths [189,190].

In figure 3.5 e, the irregular τMZI signal in light red that is centered around ≈ 0.4 can
be explained by such tunneling. The light red curve of figure 3.5 e was obtained by
leaving both co-propagating channel in the upper path to impinge on the detector D,
such that it is not affected by tunneling along the upper path. On the contrary, along
the lower path, the electrons tunneling from the outer to the inner channel will end
in the central grounded contact. The τMZI ≈ 0.4 (of the light red curve of figure 3.5
e) therefore suggests a τtunnel ≈ 0.4 along the lower path, a value compatible with the
τtunnel ∈ [0.3, 0.5] obtained from the data displayed in figure A.4 c.

A.4 Current noise power spectral density in a coherent
MZI with phase noise
The current noise measured is the symmetrised power spectral density S(ω) + S(−ω)
that respectively correspond to absorption and emission of current noise as it is not
possible to distinguish one from the other at low frequency (as in our setup with
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ω ≈ 1MHz). The power spectral density S(ω) is itself obtained through the Wiener-
Kintchine theorem as the fourier transform of the current correlation function C(τ)
defined in general as

C(τ) = 〈∆I(t)∆I(t+ τ)〉
= 〈I(t)I(t+ τ)〉 − Ī2

In particular, the current going through a coherent MZI with phase noise is given by

IMZI(t) = Ī[1 + Vcos(φ+ δϕ(t))]

and the auto-correlation function at the detector is

CMZI(τ) = 〈IMZI(t)IMZI(t+ τ)〉 − Ī2

= Ī2 〈[1 + Vcos(φ+ δϕ(t)][1 + Vcos(φ+ δϕ(t+ τ))]〉
(A.2)

We take an expansion of the cos terms around δϕ = 0:

cos(φ+ δϕ) ≈ cosφ− δϕsinφ− δϕ2

2 cosφ

Plugging this in equation A.2 will yield terms that can be collected in the powers of
δϕ. By construction, 〈δϕ〉 = 0, we then obtain:

CMZI(τ) ≈Ī2
{

(1 + Vcosφ)2 + V2〈δϕ(t)δϕ(t+ τ)〉sin2φ

+ V2
[
O
(
〈δϕ(t)δϕ2(t+ τ)〉

)
+O

(
〈δϕ2(t)δϕ(t+ τ)〉

)]}
− Ī2

≈Ī2
{

(1 + Vcosφ)2 + V2〈δϕ2〉sin2φ+ V2O
(
〈δϕ3〉

)}
− Ī2

where it was assumed in the last step that δϕ does not vary much over time. The power
spectral density is then the Fourier transform of this result:

S(ω) =
∫ ∞
−∞
CMZI(τ)e−iωτdτ

≈ Ī2V2
{
〈δϕ2(ω)〉sin2φ+O

(
〈δϕ3(ω)〉

)} (A.3)

Taking the average in φ, over several Aharonov-Bohm periods, we obtain:

〈S(ω)〉φ ≈ Ī2V2
{
〈δϕ2(ω)〉

2 +O
(
〈δϕ3(ω)〉

)}
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A.5 Link between direct and differential visibility
Starting with the direct current through a MZI defined as:

IMZI = Ī(1 + Vcosφ)

the differential conductance, that is the usual measured quantity in MZIs will conse-
quently be given by:

dIMZI

dVdc
= dĪ

dVdc
(1 + Vcosφ) + Ī

d

dVdc
(1 + Vcosφ)

In general, we consider a dc visibility V that depends on the voltage bias Vdc (but the
dependence φ(Vdc) is ignored as the upper and lower paths are symmetric), so that

dIMZI

dVdc
= dĪ

dVdc
+
(
V dĪ

dVdc
+ Ī

dV
dVdc

)
cosφ

Since here Ī = Vdc(dĪ/dVdc) (assuming the beam-splitters’ transmissions do not depend
on Vdc), then:

dIMZI

dVdc
= dĪ

dVdc

[
1 +

(
V + Vdc

dV
dVdc

)
cosφ

]
from which we identify the term multiplying the oscillating part of the differential
conductance to be the differential visibility:

Vdiff =
∣∣∣∣∣V + Vdc

dV
dVdc

∣∣∣∣∣ (A.4)

where the absolute value comes from the fact that the visibility is by definition posi-
tive. Interestingly, it is straightforward to see from equation A.4 that a monotonously
decreasing V(Vdc) will always yield one side lobe in the differential visibility Vdiff. Mul-
tiple side lobes (more than one) in the differential visibility are due to inter-channel
interactions and will be linked to at least one side lobe in the dc visibility V .

A.6 Overview of Coherence Lengths Measurements
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Table A.1: List of representative coherence lengths measured with different techniques in
various materials, that are displayed on the graphs of figure 3.11. ‘Int.’ stands for Interfer-
ometry, ‘WL’ for Weak Localization, ‘AL’ for Anderson Localization and ‘UCF’ for Universal
Conductance Fluctuations.

Technique Material Geometry Article
Lφ

(µm)
T

(mK)
L

(µm)

Int. AlGaAs MZI us [42] 250 10 24
Int. AlGaAs MZI us [42] 250 10 100
Int. AlGaAs MZI Roulleau2008 [21] 26 20 5.6
Int. AlGaAs MZI Ji 2003 [20] 52 20 12
Int. AlGaAs MZI Huynh 2012 [41] 27 20 10
Int. AlGaAs MZI Neder 2007 [32] 86 20 8
Int. Graphene MZI Wei 2017 [193] 119 20 1.2
Int. AlGaAs AB ring Yamamoto 2012 [209] 86 70 6.5
WL & Int. Sb AB ring Miliken 1987 [71] 2 20 1.64
WL & Int. Al AB ring Chandrasekhar 1985

[64]
2.00 1700 3.6

WL & Int. Ag AB ring Chandrasekhar 1985
[64]

0.9 1700 1.57

WL AlGaAs Wire Niimi 2010 [85] 20 30 150
WL doped Si Wire Ghosh 2000 [93] 0.07 2000 225
WL Ag Wire Gougam 2000 [210] 11 40 136
WL Cu Wire Gougam 2000 [210] 3.7 30 271
WL & UCF Graphene Monolayer Morozov 2006 [97] 1 4000 6
WL & UCF Bi2Te2Se Micro-flake Li 2012 [100] 0.12 2000 3
WL & UCF Bi2Te2S Micro-flake Trivedi 2016 [114] 0.2 2000 8
AL AlGaAs Wire Li 2009 [196] 2000 10 2000
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B
Complementary measurements
for the island embedded in the

MZI

B.1 Further measurements of the ohmic contacts in-
terfaces

B.1.1 Dependence on the nearby gates voltages
figure B.1 presents the transmission coefficient of both channels characterized in dif-
ferent gate configurations schematized in the corresponding upper pannel. From fig-
ure B.1 a, it is possible to see that the outer channel is rather well coupled to the cen-
tral ohmic contact (τΩ−out ≈ 0.96) while the inner channel is almost entirely reflected
(τΩ−in ≈ 0.01). The light blue curve of figure B.1 a was acquired in the configuration
illustrated in the corresponding schematic and simultaneously to the dark red curve.
The dark blue curve was acquired with the device tuned slightly differently: QPC1 was
set to transmit only one channel (instead of two), the corresponding lower transmission
coefficient measured however suggests that it is dependent on the voltage of the nearby
gates, in a small but measurable way.
For the data of figure B.1 b, QPC0 & QPC1 only let the outer channel through and
QPC2 is fully closed so that any signal measured on contact D0 can be attributed to a
reflection on the central contact. In this case, both blue traces were taken in the same
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Figure B.1: Measurements over time of the transmission coefficients at the metal/2DEG
interface of the grounded central ohmic contact, for both the outer channel (τΩ−out) and the
inner one (τΩ−in) in different gates configurations. a The measurements take place between
contacts S1 and D0 for the outer channel (in light blue on the schematic) and S0 and D0 for
the inner one (dark red). b Measurement of τΩ−out.

configuration some time apart, attesting the reproducibility. The value measured is
however slightly below that of configuration a) of figure B.1 confirming that the voltage
applied to the top gates located near the ohmic contact can affect its interface trans-
parency. That is even more confirmed by the green trace in figure B.1 b was taken with
the right comb-shaped gate tuned to let only a single channel through.
A final test is the symmetric version of the last one, presented in figure B.1 c. Once
again, both blue traces were taken at different times and both boast telegraphic noise,
pointing towards a few impurities that are periodically excited and enhance or reduce
the transmission towards the central contact. These telegraphic features are suppressed
when the comb-shaped gate is set to transmit a single channel (green curve), further
attesting the importance of the gate configuration on the metal/2DEG interface trans-
parency. Interestingly, these kind of two-level system excitations give an order of mag-
nitude for the potential problems arising in the device: these amount to only ~2% of
the transmission of one channel.

Similarly, it is possible to characterize the metal/2DEG interface of the floating metal-
lic island, those are displayed in figure B.2. In this case, even though there are two
interfaces between the metal and the electron gas, one on each side of the island (τΩ−1
for the transmission of the outer channel towards the metallic island on the MZI side,
and τΩ−2 for the side opposite to the MZI), it is not possible to characterize them inde-
pendently as they are in series with each other. In the data displayed in figure B.2, it
is assumed that the transmission towards the side of the island that is opposite to the
interferometer is perfect: τΩ−2 = 1. This assumption is supported by data of figure B.4
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Figure B.2: Measurement of the floating island’s interface transmission probability τΩ−1 over
time (assuming τΩ−2 = 1) and in different top gates configurations as illustrated by the
schematics in the upper part. Displayed transmission probabilities result from the current
measured at contact D2 (a consistency check, not shown, is performed by measuring the
current at contact D1). a QPC 1 and 2 are set to transmit two channels and the transmission
towards the ohmic contact is close to 1. b QPC 1 and 2 are set to transmit a single channel
c QPC1 is set to transmit half a channel and QPC2, two channels. For the light red signal,
the upper ‘Loop’ gate was also varied linearly over the 1200 s between −0.45V and −0.47V
(to check for an eventual artifact from the upper path: none can be detected).
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(see also the associated discussion). Once again, it is possible to see that the trans-
mission probability towards the metal depends in a small but significant way on the
voltages applied to the nearby gates (see figure B.2 a-c). In an attempt to characterize
it in a configuration as close to the one used in the interferometry, both MZI QPCs are
tuned to half transmission as illustrated in the schematic of figure B.2 c and the upper
path is closed, using the comb-shaped gate, to ensure no interferences can occur. The
resulting measured transmission probability is τΩ−1 ≈ 97%.

B.1.2 Sweeping the switch gates voltages
First, let us recall how current redistribution should occur at the floating island. The
current redistribution occuring at any contact can be derived simply from current con-
servation (Kirchoff’s nodes law). In the general case of a contact connected to N leads,
each hosting M channels, the current from lead α to lead β reads:

IDβ←Sα = ISα→inj

∑M
i τα,i
M

∑M
i τβ,i∑N

γ

∑M
i τγ,i

where τα,i is the probability for the current coming from channel i in lead α to enter
inside the contact, which is assumed to be symmetric (note that an asymmetric trans-
mission probability is not standard), implying that it is also the probability for the
current coming from the contact to be transmitted to channel i in lead α.

Switch gate on the MZI side (sw1)

Vsw1 (V)
-0.4 -0.3 -0.2 -0.1 0.0

1.5

2.0

-0.4 -0.3 -0.2 -0.1 0.0

0.0

0.5

a b

Vsw1 (V)

Figure B.3: a Normalized current measured at D1 while sweeping Vsw1 such that the outer
switch goes from fully closed (−0.45V) to fully open (0V) while the inner switch is fully open
(Vsw2 = 0V. b normalized current measured at D2, data taken simultaneously with data in
a. Both of the MZI QPCs are set to full transmission for these measurements.

figure B.3 shows the normalized current measured at drain D2 while sweeping the inner
switch gate voltage Vsw1 while the outer switch voltage is kept at Vsw2 = 0. The
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step-like behaviour is expected and characteristic of the quantum Hall edge channels.
The observed plateau at τD1←S0 ≈ 2 occurs at the most negative voltages when both
quantum Hall channels are reflected at the level of inner switch gate. The blue plateau
at τD1←S0 ≈ 1.33 is expected from the addition of the current of a fully reflected
inner channel and that of a very well transmitted outer channel into the island, that
redistributed equally between all three channels connected to the island. Two are on the
opposite side to the MZI and end on detector D2, hence the red plateau at τD2←S0 ≈ 0.66
and the other one is the outer channel on the MZI side of the island end up on detector
D1 accounting for the remaining third. This indicates a very good coupling of the
island with all these three channels. At Vsw1 ≈ −0.15V , the plateau τD1←S0 ≈ 1.33
drops slightly, then slowly downwards with more and more positive voltage, indicating
that the inner channel starts to be transmitted, however it never reaches a plateau.
A perfect transmission of the inner channel should result in an equal redistribution
of the total current between all four channels connected, which would translate to
τD1←S0 = τD2←S0 = 1. The observed value indicates that the inner channel is only very
poorly coupled to the island (but it is slightly, otherwise there would be no dip (bump) in
the blue (red) curve of figure B.3), maybe due to a malfuctionning switch gate (although
quite improbable, c.f. end of this section) or more probably, that the inner channel is
badly coupled to it. Note that this is not an unusual situation: from experience, in a
GaAs 2DEG driven in the quantum Hall regime, when the metal/2DEG interface of
an ohmic contact isn’t perfect, the outer channel is always better transmitted than the
inner one.

Switch gate on the opposite side of the MZI (sw2)
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Figure B.4: Normalized current measured at D1 while sweeping Vsw2 such that the outer
switch goes from fully closed (−0.45V) to fully open (0V) while the inner switch is fully open
(Vsw1 = 0V). Both of the MZI QPCs are set to full transmission for these measurements.

figure B.4 shows the normalized current measured at drain D1 while sweeping the outer
switch gate voltage Vsw2 while the inner switch voltage is kept at Vsw1 = 0. The
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B.1. Further measurements of the ohmic contacts interfaces

observed plateau in the normalized conductance at gD2←S0 ≈ 2 occurs at the most
negative voltages when both quantum Hall channels are reflected at the level of the
outer switch gate. No information can be gained from this plateau: it is impossible
what proportion of the current is reflected at the island’s interface or at the gate. The
fact that there is a plateau lying at gD1←S0 ≈ 1.5 is fully consistent with what we said
above. It can effectively result from the current of an almost entirely reflected inner
channel on the inner side of the MZI plus that of an outer channel very-well coupled to
the island, which is then equally redistributed in the outer channel of the opposite side
of the MZI (red plateau at gD2←S0 ≈ 0.5) and the outer channel on the MZI side.

As a final remark, one can note that the transition from one plateau to another occur
around the same gate voltage for both switches (which share an identical lithographic
design): the first transition occurs at Vsw1,2 ≈ −0.35V and second one at Vsw1,2 ≈
−0.15V. This indicates that there is indeed no major problem with the inner gate and
that rather, the reflection occurs at the island’s interface.

B.1.3 No measurable residual charge quantization in the island

Vpl (mV)
-15 -10 -5 0 5 10 15

0.00

0.01

0.02

Figure B.5: Transmission through the island upon varying the plunger gate voltage Vpl with
the inner switch gate set at a very low transmission probability (Vsw1 ≈ −0.3665V), while the
outer switch gate is fully transmitting only the outer channel (Vsw2 ≈ −0.25V).

Would the outer channel be imperfectly connected to the island, residual charge quan-
tization oscillations should subsist with a periodicity equal to that of the Coulomb
diamond, (i.e ∆Vpl ≈ 1.7mV) [211]. Such oscillations are clearly absent of figure B.5
that boasts a broad peak instead, and that we cannot relate in any way to charge quan-
tization (and it is unclear where this peak comes from). Note that such a measurement
is very sensitive and that even a minute deviation from ballistic coupling results in an
appreciable signal (e.g. assuming a τsw1 < 5%, which is clearly the case, a 1% reflection
of the outer channel on the opposite side to the MZI would yield oscillations of over
30%, see [211, fig. 3]). This, in line with the previous section, further attests that
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the outer channel is essentially perfectly coupled to the island and that our analysis of
section 4.3.3 to deduce τΩ−1 is valid.

B.2 About the observed anomalous periodicities of A-
B oscillations

B.2.1 Periodicity of the reflected electrons at the metallic island
interface
We consider here the situation with two channels connected to the island, and give a
reasonable argument for why the periodicity of the interference pattern is different from
what is a priori expected.

Let’s precisely start with what is expected. The measured phase of the interference
pattern due to the reflected electrons at the island’s interface is naively expected to be

φ = B(AMZI +Adot)
~/e

= φMZI + φdot

with AMZI the simple MZI area (in green in figure 4.11 b), and Adot the area of the
small region comprised between the metallic island and the switch gate located closest
to the MZI (sw1) (corresponding to the difference in the blue area of figure 4.11 c and
the green one of figure 4.11 b). We observe nonetheless that it is as if Adot is not
contributing.

Figure B.6: Schematic, not to scale, of the Coulomb dominated area between the switch gate
(in dark blue) and the island (yellow disk) that we consider to play no role in this model
and is therefore faded. It is here totally disconnected from the inner channel which carries
a Qin localized charge. The reflected part of the outer channel (black dotted line) is also
considered entirely disconnected from the island and to carry a charge Qout. The part of the
outer channel that is well-connected to the island, which does not play a role in the model
(see text), is depicted in light blue.
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As discussed in section 2.3.2, the charging energy of a region can be large enough to
prevent any charge modification in the considered region. It is possible to think that this
kind of effect takes place in the small region comprised in between the metallic island
and the switch gate located on the MZI side (sw1), for the reflected electrons. For this,
the fraction of electrons in the outer channel reflected at the metallic island interface, is
assumed to be completely disconnected from the island as illustrated in figure B.6. The
second assumption is that the inner channel is also completely disconnected from the
island, which is a good approximation as attested by the characterization measurements
discussed in section B.1. Its charge, confined to this very small region, is therefore
defined by an integer number Ndot of e. The third assumption is the most speculative
as we have no numbers to put in: it consists in considering the charging energy of
this small region as dominating and forcing this small region to be in the Coulomb-
dominated regime. The very small dot size, constituted of two QH channels, cannot
have a large capacitance with its surroundings, making this last assumption realistic.

Under these assumptions, it is possible to directly use equation 2.7 applied to this small
dot region:

∂Ndot

∂B
= − 1

2π
∂φdot
∂B

As a consequence, the magnetic field phase acquired in this region cancels ∂φdot/∂B = 0.

B.2.2 Periodicity of the MZI interrupted by the metallic island
It is tempting to perform a reasoning similar to the above to try to explain the puzzling
increase in the magnetic field periodicity when a single channel is connected to the
island.

In this configuration, it is safe to consider the whole region comprised in between
both switch gates to be in the Coulomb dominated regime considering the island’s
large charging energy. However, this regime can only account for a cancellation of the
Aharonov-Bohm phase due to the Coulomb-blockaded area. In our case, this should
lead to, in the extreme case, an effective area Aeff that matches that of the simple MZI
AMZI, and not a smaller one, as observed. It therefore seems that something else is at
play, and that the geometric coincidence pointed above is not linked to the observed
periodicity.

We note a simple geometric observation: if one were to attribute the observed periodicity
in this configuration to an effective area ∆B = (h/e)/Aeff, then it corresponds to
Aeff ≈ 13.5±0.2 µm2. This corresponds to a reduction of the simple MZI nominal area of
AMZI−Aeff ≈ 16.8− 13.5 ≈ 3.3 µm2. This difference corresponds, within uncertainties,
to the area of the 2DEG comprised between the two switch gates 2Adot ≈ 3.1 µm2

(extracted from the lithographic design). This might be a mere coincidence, as it is
hard to find a physical explanation for such a correspondance, but I thought worth to
mention it in case it gives someone else an idea on a possible microscopic mechanism
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that would involve geometrical arguments.

B.2.3 FFT power spectral density in log scale
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B.3 Plunger gates oscillations
It is possible to use the other knobs at hand to try get a better picture of this device.

B.3.1 Gate coupled only to one path
By varying VcombL, we obtain the data printed in figure B.7 a-c, as this gate is only
coupled to the left path and separated from the island by a set of other gates, it is well
screened and its capacitance towards the island should be very small. In effect, upon
varying its voltage, it is clear from figure B.7 d that there is a single periodicity, as one
would expect, regardless of the configuration the MZ is set in.

B.3.2 Gate coupled to both a path and the island
It is also possible to use Vpl-2 as a modulation knob for the interference pattern, the
acquired data is visible on figure B.8 a-c, using the usual color code for all three config-
urations. Interestingly, the periodicity when a single channel is connected to the island
(dark blue) is smaller than in the simple MZI case (light green). This can be understood
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Figure B.7: MZI interferences as a function of VcombL following the same color code as in the
main text.
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Figure B.8: MZI interferences as a function of Vpl2 following the same color code as in the
main text.
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APPENDIX B. COMPLEMENTARY MEASUREMENTS FOR THE ISLAND EMBEDDED IN THE MZI

as the fact that not only Vpl-2 acts on the area enclosed between both paths, but it also
modifies the charge state of the island alltogether, resulting in a smaller periodicity. The
main peak observed for the 2-channel case, because of its slightly higher frequency, is
compatible with a path slightly more coupled to this gate than the simple MZI path but
also well decoupled from the island as it remains far from the much higher frequency of
the 1-channel case. Together these two elements go in the sense of a reflection occuring
at the metal/2DEG interface and that the observed anomalous periodicity in magnetic
field comes from a cancellation of the small area enclosed between the island and the
top barring gate.

B.4 Visibility dependence as a function of the inner
switch gate transmission
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Figure B.9: Visibility of the measured interference visibility V normalized to the maximum
visibility V0 = V(τisland = 0) ≈ 89% as a function of the transmission probability of the
interfering channel to the island τisland when a second channel is ballistically connected to it.
The full black line is obtained directly from equation C.5 evaluated in τR = τL = 1/2. The
full (open) symbols are obtained by extracting the value of τisland from two different methods
(see text).

When the outer switch gate (sw2) is open to couple one channel to the island, and that
the inner switch gate (sw1) is gradually opened with transmission probability τisland,
the MZI becomes incoherent following equation C.5. It is hard to precisely know the
transmission probability of the switch gate (sw1) as a function of the voltage applied
to it Vsw1, due to large and rapid fluctuations of τisland(Vsw1). Consequently, τisland is
extracted using two different methods. The first one, corresponding to full symbols
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B.5. MZI with an applied voltage bias

on figure B.9, uses the average signal measured across the MZI. This signal is however
sensitive to the reflection on the central ohmic contact as well as the transmission of the
first QPC that is assumed to be at exactly half transmission probability. The second
method is based on the characterized τisland(Vsw1) when τqpc1,2 = 1. It is assumed that
the capacitive crosstalk of the QPCs on sw1 can be corrected by a fixed quantity on
Vsw1, which is determined for each QPC by matching the recognizable patterns of the
τisland(Vsw1) characterization curve when τqpc1,2 = 1 to the one when the device is set
alternatively to τqpc1(2) = 1(1/2) and τqpc1(2) = 1/2(1). On figure B.9, the result of both
methods is displayed, such that for each value of visibility, there is one empty square
and one full square. The difference between their abscissa indicates the uncertainty on
τisland.

B.5 MZI with an applied voltage bias

B.5.1 Visibility evolution as function of voltage bias

-60 -40 -20 0 20 40 60 
0 

2 

4 

V
is

ib
ili

ty

Vdc (μV)

S
 (

10
-2

8 V
2 /H

z)

Vdc (μV)

a b

-60 -40 -20 0 20 40 60 
0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

Figure B.10: a Median visibility as a function of dc bias applied to the interfering channel b
Mean excess noise measured simultaneously

It is predicted that in the 1-channel case, the MZI visibility should depend on a new
energy scale: the island’s charging energy. This can be explored with the voltage bias
applied to the interferometer. In figure B.10, the median visibility extracted for both
the 1- and 0-channel cases is displayed. It is unfortunately not possible to directly
plot the ratio of the two as the lobe energy scale is slightly different from one another
as visible particularly at the second node on figure B.10 a, probably due to a slight
difference in the paths lengths between both cases. Qualitatively however, it is possible
to see that the visibility does indeed die out faster when 1 channel is connected to
the island than in the simple MZI case, seem to indicate that the island’s charging
energy Ec ≈ 26µeV does indeed introduce a cutoff in the observed amplitude of the
interferences. This smaller robustness of the visibility to the applied bias voltage can
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APPENDIX B. COMPLEMENTARY MEASUREMENTS FOR THE ISLAND EMBEDDED IN THE MZI

also be seen in the amplitude of the measured excess noise averaged over many periods
and shown in figure B.10 b. There, the component of the excess noise that is non-linear
in Vdc is due to phase noise, as discussed in sections 3.5, 3.7. Here, a side-lobe is visible
in the noise.

B.5.2 Phase noise in a MZI (connected to a metallic island)
We provide here one more argument to uphold this idea by the data displayed on
figure B.11 a,c. This data was acquired at a bias voltage of Vdc ≈ 18µV, at which
point the visibility is still quite substantial ~35%. By simultaneously measuring the
MHz noise and the conductance, it is possible to notice that the measured noise boasts
peaks each time the derivative of the conductance reaches a maximum, consistent with
the first term of equation A.3, the one proportionnal to 〈δϕ2(ω)〉, which is valid when
〈δϕ2(ω)〉 � (2π)2 as it is obviously the case here because the visibility measured with
the lock-in amplifier is still of decent amplitude. The Fourier transform of the Noise
(figure B.11 d) effectively boasts a main peak at exactly twice the frequency of the one
in the conductance (figure B.11 b). This means that this device has MHz noise which
tends to lower the measured visibility at the lock-in amplifier frequencies (~200Hz).
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Figure B.11: Data acquired at Vdc ≈ 18 µV. a Aharonov-Bohm interferences in the differential
conductance as a function of the left comb gate (used as a plunger here) and b its FFT. c
Current noise peaks appearing when the derivative of the differential conductance is maximum
as indicated for a few peaks by the vertical dashed lines for clarity, this appears in its FFT
shown in d where the main peak is at twice the frequency of the conductance’s.
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C
Scattering treatment of the MZI

C.1 Conductance formula in the simple MZI case

S0

S2

D1
aS0

aS2

bdL bdR

buL buR

bS2
bD1

Sprop.SqpcL. SqpcR.

Figure C.1: Schematic of the simple electronic MZI.

It is possible to derive the expression for the conductance accross the MZI using the
Landauer-Buttiker formalism. The notations are recapitulated on the schematic of
figure C.1, where the ai, bi are the annihilation operators for electrons in the channel.
The ai operators are emerging from a contact while the bi ones are the resulting from
a scattering process. It is then possible to express the scattering process at the two
QPCs, identified by the dark blue zones on figure C.1, as well as the effect of the phase
picked up along the propagation path (light blue zone) with the following scattering
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matrices: (
buL
bdL

)
= SqpcL

(
aS0
aS2

)
=
√RqpcL

√
TqpcL√

TqpcL −
√
RqpcL

(aS0
aS2

)

(
buR
bdR

)
= Sprop.

(
buL
bdL

)
=
(
eiφu 0
0 eiφd

)(
buL
bdL

)

(
bS2
bD1

)
= SqpcR

(
bdR
buR

)
=
√RqpcR

√
TqpcR√

TqpcR −
√
RqpcR

(bdR
buR

)

It is then possible to obtain an expression for bD1 in terms of the ai:

bD1 =
(√

τRτLe
iφd −

√
(1− τR)(1− τL)eiφu

)
aS0 +

(√
(1− τR)τLe

iφu −
√
τR(1− τL)eiφd

)
aS2

The conductance from the source contact S0 to drain D1 reads:

GD1←S0 =e
2

h
b†D1bD1

=e
2

h
a†S0aS0

(
τRτL + (1− τR)(1− τL) + 2

√
τRτL(1− τR)(1− τL)cos(φd − φu)

)
(C.1)

The visibility is simply the ratio between the mean conductance and the amplitude of
oscillations:

V =
2
√
τRτL(1− τR)(1− τL)

τRτL + (1− τR)(1− τL) (C.2)

C.2 Conductance formula for the MZI with a voltage
probe
In this section, the case of an ideal voltage probe connected to one arm of the MZI
through a QPC is calculated. This corresponds exactly to the experimental situation
of [200].
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C.2. Conductance formula for the MZI with a voltage probe
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Figure C.2: Schematic of the MZI with a dephasing probe.

(
buL
bdL

)
=
√RqpcL

√
TqpcL√

TqpcL −
√
RqpcL

(aS0
aS2

)

(
bdR
bΩ

)
=
(√

RΩe
iφd

√
TΩ√

TΩ −
√
RΩ

)(
bdL
aΩ

)

buR = eiφubuL

(
bS2
bD1

)
=
√RqpcR

√
TqpcR√

TqpcR −
√
RqpcR

(bdR
buR

)

With this, we can find an expression for bD1 that only depends on source operators (ai):

bD1 =
(√

τRτL(1− τΩ)eiφd −
√

(1− τR)(1− τL)eiφu
)
aS0

+
(√

(1− τR)τLe
iφu −

√
τR(1− τL)(1− τΩ)eiφd

)
aS2

+√τRτΩaΩ
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Current conservation at the probe imposes , and From the matrices above, it is possible
to deduce obtain an expression for b†ΩbΩ:

b†ΩbΩ = (τLτΩ)a†S0aS0 + [(1− τL)τΩ]a†S2aS2 + (1− τΩ)a†ΩaΩ (C.3)

Plugging in this equation the condition of current conservation at the probe: a†ΩaΩ =
b†ΩbΩ, we find:

a†ΩaΩ = τLa
†
S0aS0 + (1− τL)a†S2aS2

It is then possible to evaluate the conductance from contact S0 to contact D1. Therefore
the a†S2aS2 term is dropped and we find:

GD1←S0 =e
2

h
b†D1bD1

=a†S0aS0

(
τRτL(1− τΩ) + (1− τR)(1− τL) + 2

√
τRτL(1− τΩ)(1− τR)(1− τL)cos(φd − φu)

)

+ a†ΩaΩ(τRτΩ)

=a†S0aS0

(
τRτL + (1− τR)(1− τL) + 2

√
τRτL(1− τΩ)(1− τR)(1− τL)cos(φd − φu)

)

which is the same expression as equation C.1 up to an additional factor of
√

1− τΩ in
front of the oscillating term. Note that the mean conductance term is identical to the
simple MZI one as expected because all current penetrating the probe exits it towards
the MZI, such that only the coherence is affected by the presence of the probe along
one arm. The visibility reads:

V =
2
√
τRτL(1− τΩ)(1− τR)(1− τL)
τRτL + (1− τR)(1− τL)

and is again identical to equation C.2 up to the
√

1− τΩ factor at the numerator.

C.3 Conductance formula for the MZI with a metallic
island connected to two channels
In this section, we treat the case of an ideal metallic island (with perfect contacts to the
channels) connected to one arm of the MZI through a QPC figure C.3. The nice thing
is that all the scattering matrices used above are identical here. The only difference lies
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C.3. Conductance formula for the MZI with a metallic island connected to two channels
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Figure C.3: Schematic of the MZI with a metallic island coupled to one path through a QPC.

in the current conservation at the island, which this time reads:

b†ΩbΩ + a†S3aS3 = a†ΩaΩ + a†oΩaoΩ (C.4)

Morevoer, in this case, an additionnal condition has to be added: the current is equally
redistributed in both channels leaving the island which simply follows from the fact
that each channel has the same resistance, and it can be expressed as:

a†ΩaΩ = a†oΩaoΩ

Plugging the latter equirepartition condition in the current conservation one (equa-
tion C.4) and using equation C.3, it is possible to find an expression for the current
emerging from the island on the MZI side:

a†ΩaΩ = τLτΩ

1 + τΩ
a†S0aS0 + (1− τL)τΩ

1 + τΩ
a†S2aS2 + 1

1 + τΩ
a†S3aS3
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Once again, the conductance from S0 to D1 does not depend on the a†S2aS2 or a†S3aS3
terms so that we can drop them:

GD1←S0 =e
2

h
b†D1bD1

=e
2

h

[
a†S0aS0 (τRτL(1− τΩ) + (1− τR)(1− τL)

+2
√
τRτL(1− τΩ)(1− τR)(1− τL)cos(φd − φu)

)

+a†ΩaΩ(τRτΩ)
]

=e
2

h

[
a†S0aS0 (τRτL(1− τΩ) + (1− τR)(1− τL)

+2
√
τRτL(1− τΩ)(1− τR)(1− τL)cos(φd − φu)

)

+a†S0aS0

(
τRτLτ

2
Ω

1 + τΩ

)]

=e
2

h
a†S0aS0

(
τRτL

( 1
1 + τΩ

)
+ (1− τR)(1− τL)

+2
√
τRτL(1− τΩ)(1− τR)(1− τL)cos(φd − φu)

)

In this case, the oscillating term is multiplied by the same
√

1− τΩ term as for the
MZI with a probe on one arm but there is also a reduction factor in the direct, non-
oscillating, average term, that concerns only the trajectory along the arm interrupted
by the island. The visibility in this case is:

V =
2
√
τRτL(1− τΩ)(1− τR)(1− τL)

τRτL/(1 + τΩ) + (1− τR)(1− τL) (C.5)

C.4 Scattering treatment of Clerk’s metallic dot
It is instructive to derive the prediction for the metallic dot considered in [46] within
the scattering formalism and illustrated in figure C.4. Note that this calculation is
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C.4. Scattering treatment of Clerk’s metallic dot

a1 a2

b2b1 a3
b3

Figure C.4: Metallic dot coupled to two leads in a T-junction geometry as considered in [46,49]

detailed in [49, chap. 5] although a couple of misprints are here corrected, and a few
more details are given to reach the author’s result. The scattering at the T-junction
illustrated in figure C.4 can be expressed as follows:(

b1
b2

)
= Sleads

(
a1
a2

)
+
(
t′d
td

)
a3

a3 = Sdotb3

b3 =
(
td t′d

)(a1
a2

)

where td, t′d, r′d are the scattering amplitudes of the leads-dot contact, Sleads is the 2× 2
scattering matrix directly connecting lead 1 to lead 2 and Sdot = eiφ is the 1 × 1
scattering matrix of the dot that is here assumed to be fully coherent and therefore
only gives a static (energy dependent) phase factor. From the last two equations above,
it is possible to find an expression for a3:

a3 = Sdot

1− Sdotr′d

(
td t′d

)(a1
a2

)

and then (
b1
b2

)
=
{
Sleads +

(
t′d
td

)
Sdot

1− Sdotr′d

(
td t′d

)}(a1
a2

)

=
{
Sleads + t′

Sdot

1− Sdotr′d
t

}(
a1
a2

)
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where the term in curly brackets is the 2 × 2 scattering matrix ST of the total T-
junction, that connects lead 1 to lead 2, when taking into account the effect of the dot.
It corresponds to the scattering matrix of eq. 5.1 of [49] (note the sign misprints in eq.
5.1 of [49], the correct expression was provided by the same author in e.g. [212]).

The unitarity of the above scattering matrix is ensured by the 3× 3 scattering matrix
of the T-junction contact, which can be written as a function of the matrices above:

Scontact =
(
Sleads t′

t r′d

)
(C.6)

The elements of Scontact are given by the polar decomposition (see e.g. [213]) Scontact =
U †SU , with:

S =


√

1− τ 0
√
τ

0 1 0√
τ 0 −

√
1− τ



U =


e

1
2 i(δ+φ) cos(Ω) e−

1
2 i(φ−δ) sin(Ω) 0

−e 1
2 i(φ−δ) sin(Ω) e−

1
2 i(δ+φ) cos(Ω) 0

0 0 1


where τ = |td|2 = |t′d|2 is the transmission probability between the leads and dot (and
1 − τ = |r′d|2), δ is the phase acquired by a direct scattering from lead to lead (and
is therefore included in Sleads), Ω is a parameter characterizing the asymmetry of the
dot’s coupling to the leads.

Computing Scontact and identifying the terms with equation C.6 enables to obtain the
T-junction scattering matrix ST, and in particular, the terms that couple both leads:

ST12 = ST21 = −
e−iδ sin(Ω) cos(Ω)

(√
1− τei(2δ+φ) + e2iδ −

√
1− τ − eiφ

)
1 +
√

1− τeiφ

In turn, this gives the conductance from lead 1 to lead 2 through the Landauer formula:

G21 = e2

h
|S12|2

= e2

h
sin2(2Ω)eiφ

(√
1− τ sin

(
δ + φ

2

)
+ sin

(
δ − φ

2

))2(√
1− τ + eiφ

) (
1 +
√

1− τeiφ
)

which, after some algebra, is equivalent to eq. 5.7 in [49]:

G21 = gmax sin2(δ + φ(τ))
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where φ(τ) is defined as

e2iφ(τ) = 1 +
√

1− τe−i2φ

1 +
√

1− τei2φ

Interestingly, when G21 is expanded in
√

1− τ (eq. 5.10 in [49]), and averaged over the
dot’s phase, the expression for the conductance across the T-junction simplifies to

G21 = 1
2gmax

(
1−
√

1− τ cos(2δ)
)

which is the same term as that obtained in the MZI arm interrupted by the probe in
section C.2.
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D
Experimental Setup and

Measurement Procedures

D.1 Conductance Measurement Setup
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Figure D.1: Schematic of the measurement setup. The lock-in amplifier ‘LI’ is synchronized
with the ac voltage source (dotted line). The ‘BILT’ controller pilots the gate voltages Vg.

Conductance measurements presented in this manuscript are achieved using a lock-in
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D.2. On-chip current to voltage converter

technique. An ac voltage source is driven at a frequency in the 100-200Hz range. The
exact frequencies are chosen before starting the measurement campaign, by hooking the
injection to ground and measuring the voltage noise spectrum with a spectrum analyser.
This enables to identify the zones of least vibration-induced noise on the measurement
lines.

The ac signal is then attenuated by a factor of ∼ 100 via a voltage divider (the 50Ω
resistance hooked to ground in parallel with the 5kΩ resistance right after the ac source).
It is possible to superpose a dc bias to the ac signal via the dc voltage source (Vdc),
which is divided by ∼ 10. These dividers enable to reduce parasitic signals, e.g. @
50Hz, and to combine ac & dc outside the Faraday cage.

Further, a polarization resistance is placed inside the Faraday cage. The purpose of
this resistance is to have essentially all the voltage drop across it, in order for the
circuit to be current polarized. Effectively, due to the thermal gradient along the lines
going down in the refrigerator, a thermo-voltage builds-up. Current polarization also
enables to avoid any spurious thermovoltage offset that could occur if we were to use
voltage polarization. The other series resistances behind the polarization one, due to
the lines going down in the fridge (∼ 300 Ω), the filter (∼ 10 kΩ) placed in the puck,
roughly 30 cm away from the sample holder, and the sample itself (from ∼ 100 Ω under
no magnetic field to ∼ e2/h in the quantum Hall regime), are negligible in front of
the Rpol ≈ 100MΩ. As a consequence, the current input into the on-chip circuit is
very well controlled and amounts to I(t) ≈ (Vdc/100 + Vac(t)/10)/Rpol with a relative
systematic error of only 0.3% which can be calibrated at a given filling factor and taken
into account to correct it.

The low-pass filters right before the sample serve the purpose of getting rid of electric
noise potentially picked up on the lines. The multiple shielding layers of the fridge
block most of the electromagnetic radiations. However, noise can also originate from
triboelectricity: vibrations of the fridge can cause the wires of the coaxial lines to rub
against the insulating layer, causing some triboelectric voltage. These vibrations can
come from multiple origins: due to the pulse tube or the turbo pump plugged to the
fridge, or from outside of the building and propagating through the ground and up the
fridge’s feet. On top of that, inflated air cushions supporting the fridge’s frame serve
as mechanical filters which attenuate vibrations. It is possible to try to identify noise
sources using a seismometer, plugged to a spectrum analyser, and most importantly, to
try to minimize the spectral noise density at the noisiest frequencies.

D.2 On-chip current to voltage converter
The voltage sources in series with the polarization resistance constitute an equivalent
current source at the ohmic contacts to which they are attached (denoted Si, for source
i on figure D.2). The injected current ISi→inj then propagates through the sample accord-
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RK/νSi Mj Gj
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G2
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G1
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Figure D.2: On-chip current to voltage converter schematics. a Schematic of typical contacts
configurations and their link to injection and measurement lines. b Equivalent circuit of the
schematic depicted in a: all current injected at source Si is collected at grounded contact Gj ,
monitoring the voltage drop across the RK/ν resistance linking Mj and Gj directly gives the
whole injected current in Si. c As long as the measurement contact is always followed by an
RK/ν resistance towards the ground, the voltage drop across this very robust resistance is
always yielding an accurate measurement of the impinging current, regardless of the device
gates configuration. Here, the device is a simple top gate, but it could be any complicated
combination of several gates, as it always boils down to the transmission probabilities of each
channel τn.
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ing to the transmissions determined by the gates voltages configurations (on figure D.2
b, it is a single top gate). In uninterrupted quantum Hall channels, all the voltage
drop occur at the ohmic contacts, never within the channels, as beautifully attested
by the experiment [214]. Moreover, the measurement contacts are kept floating, con-
sequently, all the current that reaches them can only flow towards the ground via the
ν quantum Hall channels thanks to the quantum Hall effect chirality (and also via the
input impedance of the pre-amplifier that is however very large Zin ≈ 100MΩ � RK ,
so that it can safely be neglected). Monitoring the voltage drop across this very stable
resistance RK/ν enables to directly know the current flowing from the source contacts
to the drains. Note that this method assumes a negligible resistance of the ohmic con-
tact/2DEG interface, with respect to the pre-amplifier input resistance, which can be
directly tested. The amount of current flowing from one source to a drain then gives
access to the the transmission coefficient of the device as illustrated in figure D.2 d.

D.3 Determination of the different measurement
gains
In general, in our devices, we have several source Si and measurement Mi contacts. Due
to the slight differences between each of the fridge measurement lines’ resistance as well
as their amplifiers, the measured voltage at the end of each amplification chain might
vary slightly from one line to the other. The effective measured voltage at contact Mi

is:
V Mi
eff = V Mi × Gi

where V Mi is the actual voltage drop across the RK/ν resistance and Gi is the gain of
the amplification chain of measurement i. While calibrating the whole amplification
chain could be done for each line, it is a long and tedious task that is not necessary for
us to deduce the transmission of the device. Effectively, all that is needed is:

• how much current is injected, which does not vary in time for a given excitation
voltage and can be calibrated,

• how does this current gets redistributed among all our measurement contacts,
which depends on the device configuration (i.e the different gates’ voltage).

The injected current from each source can be calibrated when the device is set to 0
transmission for example (as if the gate on figure D.2 c was fully closed), as a conse-
quence we would have for the injected current:

V Si→
inj

RK

= V Mi
eff /Gi
RK

∣∣∣∣∣
τ=0

and then, for any gate configuration, one has to recover the full injected current, such
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that in terms of the measured quantities, one obtains the following system of equations:

V Mi
eff
RK

∣∣∣∣∣
τ=0

=
∑
j

Gi
Gj
V Mj
eff
RK

so that it is possible to extract the ratio of gains Gi/Gj (note that it is not possible with
this technique to get the exact gains individually, but the ratios are enough to fully
deduce the transmission coefficients).
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E
Sample fabrication

E.1 Air-bridge fabrication review
Building a MZI interferometer necessitates metal bridges to cross the burried 2DEG
without affecting its density. Several techniques are known to build air bridges, all
imply exposing the bridge’s pillars and span locations with different electron doses.
The differences lie in the resist(s) layer(s) and their exposure there are three different
families:

• the tri-layer technique consisting in coating the sample with low sensitivity PMMA
/ high-sensitivity MMA / medium-sensitivity PMMA layers. The location of the
bridge’s span and pillars are then exposed to a base dose with the e-beam, which
purpose is to develop only the top two layers. The location of the bridge’s pillars
is then exposed again to roughly twice the base dose in order to expose the low-
sensitivity PMMA bottom layer. Exact doses, acceleration voltage and resist
thicknesses can be found in [215,216] and [217] which most probably reveals the
secretly kept receipes of the Weizmann Institute as his sample was fabricated
there.

• the bi-layer technique uses low-sensitivity PMMA / high-sensitivity MMA or
PMMA layers. The span location is exposed to a low dose, while the pillars’
are exposed to a larger one. More details are given in [218,219].

• the mono-layer technique uses just a single PMMA or AR-U4000 resist with dif-
ferent exposures for the span and pilars as in [220,221].

In all three cases, resist development is then performed and metal is evaporated and
the excess is finally lifted-off.
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APPENDIX E. SAMPLE FABRICATION

For this work, the bi-layer technique was chosen, several dose tests were performed in
order to determine the optimal dose. A complete overview of the fabrication receipe is
given in appendix section E.2

E.2 Sample Fabrication Receipe

Marks
• deoxydazation HCl (37%, 1 vol) / H2O (10 vol) for 10" then rincing H20.
• N2 drying then 2’ on hot plate at 95°C
• PMMA 40g/L 4000rpm (4000rpm/s) for 60" then baked 17’ on tin hot plate at

170°C
• reflectometry measurement indicates 336nm
• e-beam patterning, base dose 1000µC/cm2

• development 30" MIBK and 10" IPA.
• metal deposition Ti/Au6 (200/2000 A)
• liftoff trichlo on hot plate at 95°C and acetone rincing

Mesa
• Drying on hot plate at 80°C during 30’.
• Man enduction 4000rpm (4000rpm/s) for 60",
• N2 drying, then bake on hot plate 1’ at 95°C.
• reflectometry measurement indicates 665nm
• e-beam patterning with base dose of 450uC/cm2
• development: 20" MIF 826 and 20" H2O (x2)
• thickness 226nm.
• IBE: (clean for 10’) then Etch 250V 40° for 4’
• remaining resist thickness on mask 198nm
• man removal: 7’ in NaoH 25g/l, then 4’ in acetone

Ohmic contacts
• PMMA A6 5000rpm for 60" (acc 3000rpm/s)
• N2 drying then 3’ hot plate baked at 170°C
• thickness 385nm.
• e-beam patterning base dose 800µC/cm2

• development 30" MIBK and 15" IPA and N2 drying.
• deoxydation 30" in HCl (3.7% in H2O), and H2O rincing.
• metal deposition Ni/Au6/Ge/Ni/Au6 (100/100/600/200/1100 A) (with etch be-

fore)
• liftoff: trichlo on hot plate at 95°C and acetone rincing
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• annealing 1’ at 400°C

Gates
• PMMA A4 4000rpm for 60" (acc 3000rpm/s)
• N2 drying then 1’ hot plate baked at 85°C
• thickness 200nm.
• long bake 1h at 170°C
• e-beam patterning base dose 1000µC/cm2

• development 45" MIBK and 20" IPA and N2 drying.
• metal deposition: Al 30nm (at 2nm/s)
• liftoff trichlo at 95°C

Air bridges and metal contacts
• PMMA A4 4000rpm for 60" (acc 4000rpm/s)
• N2 drying then 15’ hot plate baked at 170°C
• thickness 210nm.
• MMA 8.5 EL 12 4000rpm for 60" (acc 4000rpm/s)
• thickness 820nm.
• N2 drying then 105’ hot plate baked at 170°C
• e-beam patterning base dose 515µC/cm2

• development 30" MIBK and 15" IPA and N2 drying.
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The quantum coherence of electronic quasiparticles underpins many of the emerging transport properties
of conductors at small scales. Novel electronic implementations of quantum optics devices are now
available with perspectives such as “flying-qubit” manipulations. However, electronic quantum interfer-
ences in conductors remained up to now limited to propagation paths shorter than 30 μm independent of the
material. Here we demonstrate strong electronic quantum interferences after a propagation along two
0.1-mm-long pathways in a circuit. Interferences of visibility as high as 80% and 40% are observed on
electronic analogues of the Mach-Zehnder interferometer of, respectively, 24-μm and 0.1-mm arm length,
consistently corresponding to a 0.25-mm electronic phase coherence length. While such devices perform
best in the integer quantum Hall regime at filling factor 2, the electronic interferences are restricted by the
Coulomb interaction between copropagating edge channels. We overcome this limitation by closing the
inner channel in micron-scale loops of frozen internal degrees of freedom combined with a loop-closing
strategy providing an essential isolation from the environment.

DOI: 10.1103/PhysRevX.9.021030 Subject Areas: Condensed Matter Physics,
Mesoscopics, Quantum Physics

I. INTRODUCTION

Ballistic electrons allow for advanced quantum manip-
ulations at the single-electron level in circuits, in the spirit
of the manipulation of photons in quantum optics [1–3].
Perspectives notably include a different paradigm for
quantum-information processing with a nonlocal architec-
ture based on “flying-qubits” encoded, for example, by the
presence or absence of an electron within a propagating
wave packet [1,2,4–7]. Electronic edge states topologically
protected against disorder constitute promising solid-state
platforms. In particular, the emblematic chiral edge chan-
nels propagating along a two-dimensional (2D) conductor
in the quantum Hall regime are generally considered
ideal 1D conductors. Their analogy with light beams, their
in situ tunability by field effect, and the availability of
single-electron emitters were exploited to implement the
electronic analogues of optical devices, such as the inter-
ferometers of types Fabry-Perot [8], Mach-Zehnder [9],
Hanbury-Brown and Twiss [10], and Hong-Ou-Mandel
[11]. In contrast to photons, the Coulomb interaction

between charged electrons provides a natural correlation
mechanism to realize, e.g., CNOT gates [1,2,4,5]. However,
the same Coulomb interaction generally entangles the
propagating electrons efficiently with numerous degrees
of freedom, including the surrounding electrons, which
gives rise to quantum decoherence [12] (see Ref. [13] for a
notable exception).
In practice, the maximum electron phase coherence

length Lϕ was previously found to reach remarkably similar
values at the lowest accessible temperatures in very diverse
systems, from diffusive metal (Lϕ ≃ 20 μm reported in
Ref. [14] at 40 mK) to near ballistic two-dimensional
electron gas (Lϕ ≃ 20 μm reported in Ref. [15] at 30 mK)
and graphene (Lϕ ≃ 3–5 μm estimated in Ref. [16] at
260 mK). Along the ballistic quantum Hall edge channels
of specific interest for electron quantum optics, Lϕ ≃
24 μm was demonstrated at 20 mK [17] at the most
advantageous magnetic field tuning corresponding to fill-
ing factor ν ¼ 2 in a Ga(Al)As 2D electron gas. We also
point out two promising findings: An important temper-
ature robustness of small conductance oscillations mea-
sured across a 6-μm-long Ga(Al)As device, from which a
large value of Lϕ ∼ 86 μm was indirectly inferred [18] and
conductance oscillations of very high visibility along a
graphene p-n junction [19]. Here, we establish a macro-
scopic electron phase coherence length of 0.25 mm
achieved along quantum Hall channels by nanocircuit
engineering.
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At low temperatures, short-range electron-electron inter-
actions within the same chiral edge channel of the integer
quantum Hall regime are predicted to increase the elec-
trons’ propagation velocity but not to limit their coherence
[20,21]. The dominant dephasing mechanism is generally
attributed to the interaction between electrons located in
adjacent edge channels [20,22] (except at ν ¼ 1 and
fractional filling factors where the stronger decoherence
[23,24] is not clearly understood). This picture is estab-
lished by complementary signatures including energy
transfers [25,26], charge fractionalization [27–29], and
Hong-Ou-Mandel characterizations [30]. However, addi-
tional dissipative mechanisms yet unidentified were also
evidenced experimentally, even in the most canonical
ν ¼ 2 case [25–27]. In this work, we demonstrate a circuit
design strategy that very efficiently suppresses the essential
decoherence mechanisms.

II. NANOENGINEERING THE PHASE
COHERENCE LENGTH

The electronic version of the Mach-Zehnder interferom-
eter [MZI, schematically depicted in Fig. 1(a)] essentially
consists in a quantum Hall edge channel following two
separate paths, and in two quantum point contacts (QPCs)
used as tunable beam splitters [9]. The quantum Hall
regime is realized in a Ga(Al)As 2D electron gas immersed
in a perpendicular magnetic field of 4.3 T corresponding to
a filling factor ν ¼ 2, with two copropagating edge chan-
nels. The interfering MZI paths involve only the outer edge
channel [thick black lines in Fig. 1(a)]. The two beam-
splitter QPCs are formed by field effect using split gates
[colored orange in Fig. 1(a) with suspended bridges to
contact the top parts]. The quantum phase difference
between the two paths is proportional to the enclosed
magnetic flux. It is here controlled by fine-tuning the lower
edge path with the voltage Vpl applied to a lateral plunger
gate [colored green in Figs. 1(a) and 1(b)]. The quantum
interferences are evidenced by sweeping Vpl from the
resulting oscillations of the transmitted current impinging
on the metallic electrode labeled D in Fig. 1(a). Their
energy dependence with respect to the bias voltage Vdc
applied to the source electrode is obtained from a con-
comitant noise in the transmitted current. The second MZI
output is connected to the central metallic electrode
(elongated yellow disk in Fig. 1), which is electrically
grounded through a suspended bridge. In contrast to
previous MZI implementations, our devices include two
long surface gates [light gray in Figs. 1(a) and 1(b)] with a
particular comb shape with both shafts and teeth placed
over the 2D electron gas. This shape is essential for the
presently demonstrated strong increase of the electron
coherence. As illustrated in Fig. 1(a), these gates can be
biased to form inner channel loops along the interfering
outer edge channel paths. In order to unambiguously
demonstrate and accurately measure very large phase

coherence lengths, we fabricate two MZIs with extraordi-
narily long symmetric arms of length L ≃ 24 μm [Fig. 1(b)]
and 0.1 mm [Fig. 1(c)]. For a straightforward comparison at
different L, the two devices are made concurrently (a few
millimeters away on the same chip) with identical designs
except for the length of the elongated central area and are
simultaneously cooled down to 10 mK.
How can Lϕ be increased? It was initially shown that

most of the electrons’ energy relaxation can be frozen
within the outer edge channel at ν ¼ 2 (along an 8-μm path)
by closing into a loop the inner channel [31]. This freezing
was explained by the electronic levels’ quantization within
the loop, which effectively quenches the phase space for
inelastic collisions with the inner loop’s electrons (for a
level spacing larger than the available energy) [31,32]. As
inelastic collisions also result in decoherence, a similar
approach was subsequently tested on Lϕ using an electronic
MZI [33]. However, the increase in Lϕ by forming inner
channel loops was limited to a factor of 2 [33], relatively

(c)

(b)

 
 

(a)

 

QPCL QPCR

FIG. 1. Nanocircuit engineering of electronic coherence.
(a) Sample schematic. Two chiral edge channels (black and gray
lines with arrows) propagate along a 2D electron gas (blue) set in
the integer quantum Hall regime at filling factor ν ¼ 2. The outer
channel (black) follows two separate paths between tunable beam
splitters implemented by quantum point contacts (orange),
thereby forming a Mach-Zehnder interferometer. The inner edge
channel (gray) can be closed into well-separated loops with
specific comb-shaped gates (light gray) voltage biased to reflect
only this channel. Sweeping the voltage on a lateral plunger gate
(green) results in MZI oscillations of the current transmitted from
source (S) to detector (D). (b) Colored scanning electron micro-
graph of the sample with MZI arms of symmetric length
L ≃ 24 μm. (c) Optical image of the L ≃ 0.1 mm MZI. The
inner edge channel loops have nominally identical perimeters of
9 μm, except one of 5 μm for the lower left loop of each sample.
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modest compared to the freezing of energy relaxation. Our
conjecture is that the weaker impact on Lϕ reflects a
fundamental design limitation in the MZI implementation
of Ref. [33], where an otherwise negligible coupling
between two different outer edge channels could be
mediated by the rigid displacements of the inner loops.
These rigid displacements provide an additional mecha-
nism for both decoherence and energy relaxation: Even if
the inner loops’ electronic degrees of freedom are not
excited, the loops’ presence can strongly enhance the
capacitive coupling between different propagative edge
channels adjacent to separate portions of the same loops.
The present MZI implementation suppresses this mecha-
nism while preserving a 2D bulk at ν ¼ 2 through a gate
design allowing for a much larger separation of the inner
loops from additional quantum Hall channels (see Fig. 4 for
an illustration, and Sec. II in the Appendix for further
discussion).

III. QUANTUM OSCILLATIONS
VERSUS LOOP FORMATION

We present in Fig. 2 illustrative MZI oscillations versus
plunger gate voltage Vpl (a positive bias of þ0.35 V is
applied during cooldown). The displayed τMZI corresponds
to the transmission probability across the MZI from source
S to detector D. It is given by the fraction measured at the
electrode D of the current injected into the outer edge
channel at the electrode S. The two L ≃ 24 μm and 0.1 mm
MZIs are each tuned in three different configurations
[Figs. 2(a)–2(c)]. The green lines in Figs. 2(d) and 2(e)
are data obtained with both devices set in the configuration

shown in Fig. 2(a). Their flatness demonstrates directly in
the presence of inner channel loops the absence of τMZI
oscillations when all the transmitted current goes through a
single MZI arm (the lower arm; in this specific case
τMZI ¼ τRQPC since τLQPC ¼ 1). The red and blue lines in
Figs. 2(d) and 2(e) are obtained with both QPC beam
splitters set to half transmission probability for the outer
edge channel (τLQPC ≃ τRQPC ≃ 0.5, the inner edge channel
being always fully reflected at the QPCs) in the configu-
rations illustrated in Figs. 2(b) and 2(c). In the conventional
MZI configuration [no loops, Fig. 2(b)], small oscillations
of period 6.4 mV are observed only on the L ≃ 24 μm
device [dark red lines in Figs. 2(d) and 2(f)]. Their visibility
V ≡ ðτmax

MZI − τmin
MZIÞ=ðτmax

MZI þ τmin
MZIÞ ≈ 6% corresponds to a

typical phase coherence length value of Lϕ ≃ 17 μm
(despite a relatively low temperature T ≃ 10 mK) obtained
from the standard relationship for a symmetric MZI:

V ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τRQPCð1 − τRQPCÞτLQPCð1 − τLQPCÞ
q

exp
�
−2L
Lϕ

�

; ð1Þ

which assumes a perfect absorption of the outer edge
channel by the central metallic contact connected to
electrical ground (separately checked; see the
Appendix). In contrast, for the L ≃ 0.1 mm device, no
oscillations can be detected without inner channel loops as
expected from Eq. (1) (V ≈ 10−5 calculated with L ¼
0.1 mm and Lϕ ¼ 17 μm). Instead, we observe a slowly
evolving τMZI, which is markedly below 0.5. This low
mean value reflects the tunneling of electrons from outer
to inner edge channels, which becomes significant over

(b)
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FIG. 2. Quantum oscillations. (a)–(c) Schematics of the different configurations. (d),(e) Continuous lines show versus plunger gate
voltage Vpl, the measured fraction τMZI of current transmitted from S to D along the outer channel of the L ≃ 24 μm (d) and 0.1 mm
(e) MZI [same color as the box enclosing the corresponding schematic in panels (a), (b), or (c); darker shade for the shorter device].
Horizontal dashed lines display the predicted τMZI extrema for the same Lϕ ¼ 0.25 mm in both MZIs. (f) Continuous lines show the
power spectral density of τMZIðVplÞ determined along large Vpl sweeps (extending between 50 and 80 mV) measured several times
[same color code as in panels (d),(e)]. For the challenging case of L ≃ 0.1 mm in configuration (c) (light blue line), the Fourier analysis
is restricted to plunger gate-voltage windows exhibiting oscillations larger than 66% of their maximum amplitude.

MACROSCOPIC ELECTRON QUANTUM COHERENCE IN … PHYS. REV. X 9, 021030 (2019)

021030-3



such a long propagation distance. As a result, a larger
(smaller) fraction of the current injected into the outer
edge channel is absorbed by the grounded central Ohmic
contact (detected at D). Specific measurements of the
tunneling between copropagating channels are discussed
in the Appendix (Sec. V).
With inner channel loops formed [Fig. 2(c)], high-

amplitude oscillations of maximum visibility V ≈ 80%
and 40% are observed for the L ≃ 24 μm and 0.1 mm
MZIs, respectively. Their sinusoidal shape is, however,
perturbed by jumps as well as amplitude modulations,
which are attributed to fluctuators such as moving charges
in the MZI vicinity. A sudden variation in surrounding
charges will indeed appear as a phase jump. In contrast,
relatively rapid fluctuations with respect to the experimen-
tal integration time (approximately 1 s) but slow with
respect to the electron quantum coherence time will
artificially reduce the amplitude of MZI oscillations, below
their intrinsic value limited by Lϕ according to Eq. (1). As
illustrated with the emblematic single-electron transistor,
individual charge fluctuators are usually influenced by
surrounding gate voltages. Accordingly, we observe mod-
ulations of the phase jump density and of the amplitude of
oscillations with gate voltages. Note that two sources of
moving charges are specific to the present MZI imple-
mentation with inner channel loops: (i) the voltage bias
applied to the very long surface gates used to form the loops
and (ii) jumps in the number of electrons within each of the
many inner channel loops (from the possible tunneling of
electrons between outer channel and inner loops). We now
further establish by a train of evidence that the large

oscillations observed with inner channel loops result from
the quantum interferences between the two MZI paths and
that their maximum visibility accurately reflects Lϕ.

IV. OSCILLATION CHARACTERIZATION

First, a well-defined plunger gate-voltage period of
2.2 mV is observed for the smaller L ≃ 24 μm MZI, as
directly evidenced from the power spectral density [dark
blue lines in Figs. 2(d) and 2(f)]. A compatible but broader
oscillation periodicity can also be perceived for the
L ≃ 0.1 mm MZI but only if the FFT analysis is restricted
to plunger gate-voltage windows where the oscillation
amplitude is relatively large [light blue line in Fig. 2(f)].
The period for L ≃ 24 μm with loops is shorter than
without, as expected from the stronger influence of the
plunger gate voltage. This reduction is a consequence of the
quenched screening from isolated inner channel loops
hosting a discrete number of electrons as compared to a
copropagative inner channel. It also implies that any nearby
moving charges will have a stronger impact on the MZI
quantum phase.
Second, as shown in Fig. 3(a), the maximum oscillation

visibility (highest symbols) follows the hallmark MZI

signature
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τLQPCð1 − τLQPCÞ
q

(continuous lines) when vary-

ing the outer edge channel transmission probability across
the left QPC beam splitter τLQPC. For this purpose, we
measure τMZIðVplÞ over many periods on both devices and
for various settings of τLQPC at fixed τRQPC ≃ 0.5 (see the
Appendix). Each symbol in Fig. 3(a) (full and open
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FIG. 3. Beam-splitter and bias-voltage tunings. Open (full) symbols are data points obtained on the L ≃ 24ð100Þ μm MZI. (a) The
local quantum oscillations’ visibility in the presence of inner channel loops [Fig. 2(c)] separately extracted period per period along
large Vpl sweeps is displayed as symbols versus the transmission probability τLQPC of the outer channel across the left QPC (at fixed
τRQPC ≃ 0.5). Continuous lines are Eq. (1)’s predictions for Lϕ ¼ 0.25 mm with L ¼ 24 μm or 0.1 mm. (b) The excess power spectral
density of temporal fluctuations in the transmitted MZI current with respect to zero dc bias and averaged in Vpl is shown versus source
(S) dc voltage Vdc. The gray straight lines represent a quadratic (dashed) and linear (dash-dotted) increase. The black continuous lines in
the main panel display the noise contribution from phase fluctuations calculated with LϕðVdcÞ ¼ ð0.25 mmÞ × exp½−ðVdc=26 μVÞ2�
(shown in the inset).
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corresponding to the L ≃ 24 μm and 0.1 mm MZIs,
respectively) displays the “locally” extracted visibility of
the oscillations obtained by analyzing a restricted plunger
gate-voltage window of one period (2.2 mV). The close
agreement between the highest data points and MZI
expectations confirms that the observed oscillations result
from the two-path quantum interferences.
Third, we find a quantitative data or theory agreement

with the same Lϕ ≈ 0.25 mm for both devices, despite a
factor of 4 in their size. The continuous lines in Fig. 3(a)
are calculated using Eq. (1) with Lϕ ¼ 0.25 mm, the
corresponding MZI length L ¼ 24 μm or 0.1 mm, and
τRQPC ¼ 0.5. This agreement provides strong evidence that
the measured maximum “local” visibility closely captures
the intrinsic MZI visibility determined solely by Lϕ (note
that Lϕ will otherwise be underestimated).
Fourth, as shown in Fig. 3(b), out-of-equilibrium mea-

surements of the transmitted current noise around
0.86 MHz further confirm the presence of MZI interfer-
ences accompanied by phase fluctuations and allow prob-
ing the energy dependence of Lϕ. The displayed data points
represent measurements of the excess power spectral
density of the current impinging on the electrode D versus
the dc bias voltage Vdc applied to the source electrode S.
MZI phase variations, such as those produced by nearby
charge fluctuators, are expected to manifest as a quadratic
increase of the noise power at low Vdc (see the Appendix
and Ref. [34]), as we experimentally observe. At larger
bias, the generally expected reduction of Lϕ also progres-
sively diminishes the influence of the quantum phase and,
consequently, the current noise induced by phase fluctua-
tions. Experimentally, such a collapse is observed and can
be accounted for using the same LϕðVdcÞ for both devices:
The two black continuous lines (main panel) are calcu-
lations based on Eq. (1) (see the Appendix, Eq. (A2)]
using the empirically determined Lϕ ¼ ð0.25 mmÞ ×
exp½−ðVdc=26 μVÞ2� (shown in the inset). Ultimately, a
linear noise increase is recovered as expected for the shot-
noise contribution [34] (see the Appendix).

V. DISCUSSION

The large phase coherence length presently achieved
provides information for the design of novel quantum Hall
devices. It sets an upper bound to possibly relevant
decoherence mechanisms along the quantum Hall edges
in addition to the dominant interchannel coupling and
narrows down the mechanisms for a frequently observed
but still mysterious additional dissipation [25–27,35].
We establish that nearby metallic gates are completely

compatible with large phase coherence lengths, despite the
presence of many diffusive electrons. Note their beneficial
screening of the long-range part of Coulomb interaction (to
approximately 3.5 μm, the loop-gates’ period, whether the
loops are formed or not), which could otherwise provide an
effective decoherence mechanism [36–39] as well as an

unwanted coupling to spurious low-energy modes and
distant channels [35,40,41]. In practice, a strong capacitive
shortcut (100 nF) is included at the low-temperature end of
the electrical lines controlling the gates of our samples in
order to further suppress both extrinsic and thermal noise
sources.
We also find that the additional neutral modes predicted

for a realistic smooth confinement potential at the edge
[42–44] can essentially be ignored. Either these neutral
modes are missing in the outer channel along our etched-
defined edges or they are very weakly coupled to the usual
charge mode of the same channel. This finding is consistent
with thermal conductance measurements across narrow
constrictions perfectly transmitting one or several quantum
Hall channels at integer bulk filling factors, where the extra
heat transfer that would be expected from additional edge
modes is not observed [45–47].
Finally, we mention that the two-dimensional quantum

Hall bulk does not provide here a substantial path to
quantum decoherence, at least when broken into small
areas of a few micron squares (within the inner channel
loops) and with the long-range part of Coulomb interaction
screened by metallic gates. This finding contrasts with the
observations of an unexpected heat flow away from the
edge at lower filling factors [48–50] and of a long-distance
capacitive coupling across the two-dimensional bulk
[40,41].

VI. CONCLUSION

We demonstrate that the electron quantum coherence in
solid-state circuits can be extended to the macroscopic
scale by strongly suppressing through circuit nanoengin-
eering the dominant decoherence mechanism. The present
implementation on quantum Hall edge channels is particu-
larly well suited for the coherent control and long-distance
entanglement of propagative electrons. Future optimiza-
tions include the understanding and suppression of the slow
electron phase fluctuations here often, although not sys-
tematically, observed. Our work gives access to electron
quantum optics devices of a higher complexity level, in line
with the direction taken by this field of research [1–3,18].
More generally, increasing the electron phase coherence is
essential to progress toward functional quantum devices
involving multiple quantum manipulations, such as infor-
mation processing with electronic flying qubits.
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wrote the manuscript with input from A. Aa., A. An., E. S.,
H. D. and U. G.; H. D. and E. S. contributed equally to
this work.

APPENDIX: EXPERIMENTAL METHODS

1. Samples

Both samples are made of the same Ga(Al)As
heterojunction hosting a two-dimensional electron gas of
mobility 106 cm2 V−1 s−1 and density 2.51011 cm−2

located 105 nm underneath the surface. They are nano-
fabricated by e-beam lithography, dry etching, and metallic
deposition. The central metallic electrode (nickel [30 nm],
gold [120 nm], and germanium [60 nm]) forms an Ohmic
contact with the 2DEG obtained by thermal annealing (at
440 °C for 50 s) and is set to electrical ground through a
suspended bridge. The two arms of each MZI are designed
to be as symmetric as possible, such that the thermal
smearing of the visibility induced by an asymmetry remains
negligible by a large margin as previously observed
[17,33]. The elongated shape of the central area is chosen
to limit the overall magnetic flux enclosed between the two
arms and, hence, the effect of environmental magnetic
noise (e.g., from the pulse tube vibrations) on the particu-
larly sensitive MZI phase in these very large devices. Note
that a positive bias voltage ofþ0.35 V is applied to all used
gates during cooldown. This is a widespread procedure in
Ga(Al)As devices to reduce the charge noise induced by
biasing the gates, although it is probably not essential here
due to the relatively low bias voltages used to form inner
channel loops.

2. Loop gate design

Figure 4 recapitulates the different kinds of inner channel
loops in the energy-relaxation experiment [31] [one inner
loop enclosed only by the outer channel; see Fig. 4(a)] in
the first MZI implementation [33] [inner loops enclosed by
a metallic gate, the MZI outer channel, and another
counterpropagating outer channel; see Fig. 4(b)] and in
the present MZI implementation [inner loops enclosed by a
metallic gate and the MZI outer channel; see Fig. 4(c)].
Now focusing on the present implementation, the gates’

width of 200 nm reflects a compromise between the
separation with additional quantum Hall channels on the
other side of the gates, which should be sufficiently large to
result in a negligible coupling, and the wish to limit the
ν ¼ 1 area underneath the gates, as very weak interferences
are often observed if the whole 2D bulk is set to ν ¼ 1
(either by tuning B without gates or using a broad top gate
fully covering the 2D bulk; see, e.g., Ref. [24]). The
distance between the inner channel loops and the propa-
gative (inner) quantum Hall channel on the other side of the
gates (opposite the MZI outer channel) should therefore be
larger than 200 nm. This is more than 1 order of magnitude
larger than the narrow incompressible strip normally
separating adjacent edge channels (typically 10 nm
[51]). The loops’ perimeter should also be chosen small
enough such that the separation between the quantized
electronic levels is larger than the available energy of
approximately kBT. Assuming a typical drift velocity
between 104 and 105 m=s along the sample edges, we
find that the 9-μm loop perimeter corresponds to a level
spacing within 4.6 and 46 μeV, always larger than the
thermal energy (3kBT ≃ 2.6 μeV at 10 mK) and compa-
rable to the characteristic 26-μV dc bias voltage over which
LϕðVdcÞ is found to decrease [Fig. 3(b)]. Finally, the gates
are designed elongated to minimize their overlap with the
outer MZI edge channel, as at these locations their
capacitive coupling is maximal and the lateral edge con-
finement is modified. Note also that one should be
particularly careful about the electrical noise introduced
by the measurement lines connected to the very long gates
used to form the inner channel loops. These gates are
indeed much more strongly coupled to the MZI phase than
typical lateral plunger gates due to their very long size and
because the inner loop efficiently mediates the capacitive
coupling between the metallic gate and the MZI outer edge
channel.

3. Experimental setup

The two simultaneously cooled devices are thermally
anchored to the mixing chamber of a cryo-free dilution
refrigerator. Electrical lines connected to the samples
include multiple filters and thermalization stages. Note
the important RC filter (200 kΩ, 100 nF) implemented at
base temperature on the lines connected to the gates,
including the long gates used to form the inner channel
loops. Spurious high-frequency radiation is screened by
two shields at base temperature. The fraction of transmitted
current τMZI is measured with lock-ins at a frequency below
200 Hz and using an effective integration time close to 1 s
per point (corresponding to equivalent noise bandwidth of
0.8 Hz). The power spectral density of temporal current
fluctuations is measured over a much larger bandwidth of
180 kHz around 0.86 MHz, using a homemade cryogenic
amplifier and a tank circuit based on a superconducting
coil. The temperature of electrons in the devices is extracted

(a) (b) (c)

FIG. 4. Loop design. Inner loop design in previous energy-
relaxation experiment [31] (a), previous MZI experiment [33], (b)
and in the present implementation (c). The outer (inner) edge
channel is represented by a black (gray) line. A schematic of the
gates used to reflect the inner edge channel is displayed in red.
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from the quantum shot noise across a quantum point
contact (the right beam splitter QPC of the L ≃ 24 μm
MZI set to τRQPC ≃ 0.5). See Ref. [52] for further details on
the same experimental setup.

4. Central Ohmic contacts characterization

The quality of the grounded central Ohmic contact is
characterized by the ratio of reflected to impinging current.
Ideally, there should be no reflected current. In practice, if
the impinging current is carried only by the outer edge
channel (used for the interferometer), the reflected current
is found to be negligible for both devices (below 1%). If the
impinging current is carried by both the inner and outer
edge channels, we find a reflected current in the range of
11%–21% corresponding to a 22%–42% reflection of the
inner edge channel from the central Ohmic contact of the
L ≃ 24 μm paths’ MZI, whereas for the L ≃ 0.1 mm MZI,
the reflected current remains essentially negligible (below
1%). Note that a good Ohmic contact with the outer channel
is assumed in Eq. (1) (an imperfect contact will further limit
the amplitude of MZI oscillations).

5. Tunneling between inner and outer channels

Tunneling of electrons between adjacent copropagating
channels is usually negligible at filling factor ν ¼ 2.
However, the propagation distances in the present devices
can be considerable. Following standard procedures [53],
we determine the electron interchannel tunneling along the
MZI arms between the two QPC beam splitters when the
inner edge channel is not formed into small loops. Note that
the tunneling of electrons in the presence of small inner
channel loops is expected to be much smaller because of
the electronic level quantization within the loops and
because of the Coulomb blockade of tunneling into (nearly)
isolated islands (although this tunneling cannot be mea-
sured because there is no dc current toward closed loops).
The tunneling between copropagative inner and outer edge
channels is obtained by applying a small bias selectively on
one of the two channels and by measuring at the end of the
path the current in the other channel. We find that the
tunneling remains small for the L ≃ 24 μm MZI [between
2.5% and 5% (approximately 0%) of the injected current is
detected on the second channel after propagating along the
lower (upper) MZI arm]. The tunneling is more important
for the L ≃ 0.1 mmMZI [between 30% and 48% (between
10% and 26%) of the injected current is detected on the
second channel after propagating along the lower (upper)
MZI path].

6. Cross-talk characterization

Changing a gate voltage also slightly influences the other
nearby gates. We take into account this small capacitive
cross-talk correction on the beam-splitter quantum point

contacts (of at most 6% attained for the lateral plunger gate
effect on the nearby left QPC).

7. Formation of inner channel loops

The comb-shaped gates of homogeneous width (200 nm)
are polarized with a positive voltage of þ0.35 V during the
cooldown from room temperature. A broad gate-voltage
window is found to fully reflect the inner quantum Hall
channel while completely letting through the outer channel
(with a minimal common window from 0 to 0.13 V that
applies simultaneously to each arm of both devices). Such a
behavior is usually observed on similar 2DEGs, thanks to
the large energy separation between the two lowest Landau
levels at filling factor ν ¼ 2. Note that the results corre-
sponding to closed inner channel loops that we present in
the manuscript are not specific to a precise gate-voltage
setting (chosen within the minimal common window) but
representative of the general behavior observed when the
inner edge channel loops are completely closed while the
outer edge channel is fully propagative.

8. Visibility of conductance oscillations
versus QPC transmission

Here we provide more details on the procedure followed
to extract the oscillations visibility data displayed in
Fig. 3(a). We perform relatively large plunger gate-voltage
sweeps of 50 mV corresponding to approximately 21
periods (with a step of 50 μV corresponding to 1=46 of
a period) and repeat several times the same sweep (twice
for the L ≃ 24 μm MZI, 14 times for the more challenging
L ≃ 0.1 mm MZI). Each sweep is then decomposed into
one-period intervals with half a period of overlap between
consecutive intervals, and a local visibility of the
oscillations in τMZI is extracted from V ≡ ðτmax

MZI − τmin
MZIÞ=

ðτmax
MZI þ τmin

MZIÞ in each of these intervals. The symbols in
Fig. 3(a) display the many different values of V obtained by
this procedure.

9. Temporal noise spectral density

Here we provide more details on the noise data and
calculations displayed in Fig. 3(b). The data points re-
present the excess power spectral density of the current
detected on electrode D [see Fig. 1(a)], i.e., the total noise
from which is subtracted the equilibrium noise offset at
Vdc ¼ 0 (that includes the contribution of the amplification
chain). To make sure that the noise dependence in the MZI
quantum phase is fully averaged out, the displayed data
represent the average of many noise measurements equally
distributed in a range of the plunger gate voltage corre-
sponding to several periods (240 [40] values of Vpl
distributed over approximately five [2] periods for the
L ≃ 24½100� μm MZI). The displayed calculations (con-
tinuous lines) include only the contribution of “slow”
fluctuations in the MZI quantum phase δϕðtÞ detected
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within a 180-kHz window around 0.86 MHz and not
the quantum shot-noise contribution that we further
discuss below. From the relationship τMZIðtÞ ¼
0.5f1þ V sin ½hϕi þ δϕðtÞ�g, it is straightforward to
obtain that the resulting noise in the transmitted current
is given by [34]

hI2δϕi∝
V2
dce

4

h2
V2; ðA1Þ

with h the Planck constant and e the elementary electron
charge. At low Vdc bias (as long as the oscillation visibility
V is not significantly reduced), one thus expects a quadratic
increase. Using the relationship between visibility and
phase coherence length given Eq. (1), this expression
becomes

hI2δϕi ∝
V2
dce

4

h2
exp

�
−4L
Lϕ

�

: ðA2Þ

The calculations displayed as black continuous lines
are obtained from Eq. (A2) using for both devices
the same empirical expression LϕðVdcÞ ¼ 0.25 mm ×
exp½−ðVdc=26 μVÞ2� (displayed in the inset) the corre-
sponding MZI length L ¼ 24 μm or 0.1 mm and where the
unknown prefactor (depending on the number and coupling
strength of the phase noise sources) is considered here as a
free parameter for each device. The smaller quantum shot-
noise contribution [not included in Eq. (A2)] is linear in Vdc
and does not rely on the presence of MZI quantum
interferences. As expected, if the vanishing current noise
results from a quantum decoherence by “fast” phase
fluctuations [34] (compared to the electron quantum
coherence), the amplitude of the linear noise is found
strongly suppressed compared to the naive expectation
hI2i ¼ 2eðVdce2=hÞhτMZIið1 − hτMZIiÞ by a factor of 4 (6)
for the MZI of arm length L ≃ 24ð100Þ μm.

10. Comparison of voltage-bias robustness with and
without inner channel loops

In the absence of inner channel loops, the negligible MZI
phase noise does not allow us to probe LϕðVdcÞ through the
power spectral density of the transmitted current’s temporal
fluctuations. However, on the L ≃ 24 μm MZI where
quantum oscillations are visible without loops, it is possible
to determine, versus dc voltage bias, their visibility Vdiff in
the transmitted differential current dIMZI=dVdc. The “diff”
subscript is introduced here to clearly distinguish between,
on the one hand, this usually measured Vdiff and, on the
other hand, the visibility V of oscillations in the total
transmitted current IMZI that is probed through noise
measurements [Fig. 3(b)]. These two quantities are simply
connected by the relation [54]

Vdiff ¼ jV þ Vdc∂V=∂Vdcj: ðA3Þ

Measurements of VdiffðVdcÞ on the L ≃ 24 μmMZI without
loops are shown in Fig. 5 as open red circles. We find that
Vdiff displays a single side lobe with a first minimum at
jVdcj ≃ 5 μV and becomes negligible below our experi-
mental resolution at jVdcj≳ 15 μV. The data can be
reproduced by the simple single side-lobe expression
derived in Ref. [54] assuming a Gaussian phase averaging
(continuous line in Fig. 5):

VGaussian
diff ¼ V0

�
�
�
�
1 −

V2
dc

V2
0

�
�
�
�
exp

�

−
V2
dc

2V2
0

�

; ðA4Þ

with V0 ¼ 0.06 the zero bias visibility and V0 ¼ 5 μV the
characteristic voltage scale also corresponding to the
position of the intermediate minimum. In order to compare
the robustness of MZI interferences with and without inner
channel loops, we convert the noise data in Fig. 3(b) into
the corresponding Vdiff . The resulting Vdiff is displayed in
Fig. 5 as open dark blue circles and full light blue triangles
for, respectively, the L ≃ 24 and 100 μm MZI with loops.
This conversion first involves the determination of V from
Eq. (A1) (using the measured noise spectral density from
which the linear shot-noise contribution observed at large
Vdc is subtracted). The unknown proportionality coefficient
in Eq. (A1) is fixed by adjusting the visibility at low bias
with its direct Vdc ≈ 0 measurement displayed in Fig. 3(a).
The resulting V is then injected into Eq. (A3) to obtain Vdiff .

V
is

ib
ili

ty
 (

%
)

Vdc (µV)
-75 -50 -25 0 25 50 75

×10

24 µm no loops

24 µm with loops 
(from noise)

100 µm with loops 
(from noise)

0

20

40

60

80

100

FIG. 5. Out-of-equilibrium visibility in the differential current
Vdiff . The red circles represent measurements of the visibility of
the oscillations in the differential transmitted current across the
L ≃ 24 μm MZI without inner channel loops as a function of the
applied dc bias voltage. The continuous red line is calculated
from Eq. (A4) (see text). The dark blue circles (light blue full
triangles) connected by dashed lines represent the differential
visibility on the L ≃ 24ð100Þ μmMZI with formed inner channel
loops, which is extracted from the noise measurements displayed
in Fig. 3(b) (see text).
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Comparing the two datasets at the same L ≃ 24 μm (open
circles), we find that the robustness of the MZI visibility
with Vdc is approximately 4 times larger in the presence of
loops (dark blue) than without them (red).
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MESOSCOPIC PHYSICS

Transmitting the quantum state of electrons across a
metallic island with Coulomb interaction
H. Duprez1*, E. Sivre1*, A. Anthore1,2, A. Aassime1, A. Cavanna1, U. Gennser1, F. Pierre1†

The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also
provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such
a form of electron teleportation across a metallic island. This effect originates from the low-temperature
freezing of the island’s charge Q which, in the presence of a single connected electronic channel,
enforces a one-to-one correspondence between incoming and outgoing electrons. Such faithful quantum
state imprinting is established between well-separated injection and emission locations and evidenced
through two-path interferences in the integer quantum Hall regime. The additional quantum phase of
2pQ/e, where e is the electron charge, may allow for decoherence-free entanglement of propagating
electrons, and notably of flying qubits.

A
disordered environment, with a large
number of interacting degrees of free-
dom, is generally considered unfavorable
for quantum technologies. Such an en-
vironment is exemplified by a metallic

islandwith a large energy density of states and
a small number of connected electronic chan-
nels, through which there is no quantum co-
herent propagation of individual electrons.
Indeed, the time that an individual electron
spends inside the island (1) is typically much
longer than the interval between inelastic
collisions destroying its quantum coherence
(2, 3). In contrast to this conventional wisdom,
we show experimentally that the Coulomb
interaction in such an island can, under the
right circumstances, lead to a near perfect
transmission of the quantum state of elec-
trons across it, mediated by the collective
surface plasmon modes of the island (4, 5).
In the quantum Hall regime implementa-
tion, where injection and emission points
are physically separated by chirality, this con-
stitutes a formof teleportation of the electrons’
state. This phenomenon is different from the
standard “quantum teleportation” protocol
(6) and similar to the “electron teleportation”
proposed in (7).
The voltage probemodel of ametallic island

(8) is widely used to mimic the electrons’ quan-
tumdecoherence and energy relaxation toward
equilibrium [see, e.g., (9)]. However, independ-
ent absorption and emission of electrons result
in fluctuations of the total island chargeQ, with
a characteristic charging energyEC ¼ e2=2C (C
is the geometrical capacitance of the island
and e is the elementary electron charge). At
low temperaturesT ≪ EC=kB (wherekB is the
Boltzmann constant), this energy is not avail-

able, and the macroscopic quantum charge
state Q is effectively frozen (5, 10) [although
not quantized in units of e as long as one
channel is perfectly connected (11–13)]. Conse-
quently, correlations develop between absorbed
and emitted electrons. Such correlations are
strongest if only one transport channel is con-
nected to the island, in which case theory
predicts that the electrons entering it and
those concomitantly exiting it are in identi-
cal quantum states (4, 5) [see also (14) for a
related prediction in the presence of strong
nonlocal interactions along quantum Hall
edges]. Effectively, the electronic states within
the connected quantum channel are decoupled
from themany quasiparticles within the island,
even though the incoming (outgoing) physical
electron particles penetrate into (originate

from) the island. Another consequence is that
heat evacuation from the island’s internal
states along the channel is fully suppressed
(10). By contrast, in the presence of two or
more open channels, the coherence is lost
(5), and heat evacuation is restored, in agree-
ment with the recently observed systematic
heat Coulomb blockade of one ballistic chan-
nel (15). The comparable “electron telepo-
rtation” proposed in (7) also relies on the
“all-important” Coulomb charging energy
of a small island, which has to prevail over
temperature and voltage bias. In this pro-
posal (7), the island is superconducting,
without subgap states except for Majorana
bound states at the injection and emission
locations. Such a teleportation process was
recently invoked as one possible mechanism
for the observed coherent single-electron
transport across a hybrid superconductor-
semiconductor island in the Coulomb blockade
regime (16). We additionally point out some
similarities with quasiparticle correlations in-
duced by Andreev reflections that take place at
the interface between a normal metal and a
superconductor (2). These correlations can be
created nonlocally, through the so-called crossed
Andreev reflection involving an electron and a
hole separated by atmost the superconducting
coherence length.
We demonstrate the high-fidelity replica-

tion of the quantum state of electrons across
a metallic island through quantum interfer-
ences. For this purpose, an injected current is
first split along two separate paths that are
subsequently recombined, thereby realizing an
electronicMach-Zehnder interferometer (MZI).
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Fig. 1. Device e-beam
micrograph. Areas with a
Ga(Al)As 2DEG underneath
the surface appear darker.
The applied perpendicular
magnetic field B ’ 5 T
corresponds to the integer
quantum Hall regime at
a filling factor of 2. Capaci-
tively coupled gates colored
green and blue control,
respectively, the MZI beam
splitters for the outer quan-
tum Hall edge channel
(lines with arrow, here
corresponding to the sche-
matic in Fig. 2B) and the
connection to the floating
metallic island (sand yellow,
in right half) in good ohmic
contact with the buried 2D electron gas. One of the two MZI outputs is the central small ohmic contact (light
brown, in left half) connected to ground through a suspended bridge. The second one, larger and located farther
away, is schematically represented by the top white circle. The MZI phase difference is controlled through B
or the plunger gate voltage Vpl. The red dashed line visually represents the nonlocal quantum state transfer across
the island, between electrons’ injection (starting point) and emission (arrow).
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In contrast with usual MZI implementations
(17–21), one of the paths can controllably be
diverted toward a small floatingmetallic island
(Fig. 1). In that case, any two-path quantum
interferences involve both the initial electrons
(direct left path) and the reemitted ones (in-
terrupted right path, assuming a perfect con-
tact with the island). Therefore high-visibility
interferences directly ascertain a high fidelity
of the electron state replication. The Coulomb
interaction was previously invoked to account
for various observations in electron interfer-
ometers, such as themultiple side lobes versus
voltage bias in (22) or the phase rigidity versus
magnetic field in (23).
A colorized e-beam micrograph of the mea-

sured device is shown in Fig. 1. The sample
was nanofabricated from a high-mobility
Ga(Al)As two-dimensional electron gas (2DEG)
and immersed in a perpendicular magnetic
fieldB ≃ 5 T corresponding to the integer quan-
tum Hall filling factor n ¼ 2, where the elec-
tron quantum coherence length is the largest
(18, 19, 21). In this regime, two quantum Hall
channels copropagate along the edges (the
electron gas was etched away in the brighter
areas), and the MZI is formed using only the
outer edge channel. The followed paths are
represented by thick lines with arrows for
the configuration where one MZI arm goes
through the floating metallic island (corre-
sponding schematic shown in Fig. 2B). The
two MZI beam splitters, each tuned to half
transmission, are realized with quantum
point contacts formed by field effect using
split gates (colored green; the inner quantum
Hall channel, not shown, is fully reflected).
One of the two MZI outputs is the small
central metallic electrode (light brown, in
left half of Fig. 1), which is grounded through a
suspended bridge. The quantum interferences
are characterized by the oscillations of the
current transmitted to the second MZI output
formed by a much larger electrode 60 mm
away (represented in Fig. 1 by the top white
circle), while sweeping either the magnetic
field B or the voltage Vpl applied to a lateral
plunger gate (purple). The floating metallic
island (sand yellow, in right half of Fig. 1)
consists of 2 mm3 of a gold-germanium-nickel
alloy diffused into theGa(Al)As heterojunction
by thermal annealing. The typical metallic den-
sity of states of suchmetals isnF ≈ 1047 J�1 m�3

(1.14 × 1047 for gold, the main constituent),
corresponding to a very small average elec-
tronic level spacing in the island of d ≈ 30peV.
The dwell (wandering) time of individual
electrons within this island is given by the
expressiontD ¼ h

Nd≈
130
N ms, whereh is the Planck

constant and N is the number of connected
edge channels (1). As pointed out in the intro-
duction, this ismuch longer than the quantum
coherence time of electrons in similar metals,
which is atmost in the 20-ns range (3, 24). The

gates barring the broad way on each side of
the floating island (blue) are normally tuned
to either fully reflect or fully transmit the outer
edge channel, in order to implement the MZI
configurations schematically represented in
Fig. 2, A to C. The second (inner) quantum
Hall edge channel is always completely ref-
lected at the barring gate (fig. S1) and can
therefore be ignored (5). The island charging
energy EC ≃ kB � 0:3K was obtained from
standard Coulomb diamondmeasurements [in
a specifically tuned tunnel regime; see Fig. 3B
and (25)]. At the experimental electronic tem-
peratureT ≃ 10 mK [measured on-chip from
shot noise (26)], the criterion kBT ≪ EC for
fully developed Coulomb-induced correlations
is therefore well verified. The previous experi-
ments were performed in the opposite “high-
temperature” regime kBT ≫ EC of negligible
Coulomb correlations, in which case, unsur-
prisingly, a complete quantum decoherence
(27) and energy relaxation (28) of electrons
were observed with a single connected chan-
nel. Finally, the transparency of the contact
between the floating island and the outer
quantum Hall edge channel plays an essential
role: If the transparency is poor, many elec-
trons would simply be reflected at the inter-
face. Here, ≳97% of the incoming current
penetrates into the floating island (25), which
is also reflected by the marked changes of
behavior detailed later.

In Fig. 2D, we show typical MZI oscillations
versus B of tMZI , the fraction of outer edge
channel current transmitted across the device.
The measurements were performed in the
three configurations depicted in Fig. 2, A to C.
The red continuous line in Fig. 2D corre-
sponds to a standard electronic MZI, with the
floatingmetallic island bypassed (schematic in
Fig. 2A). In that case, the oscillations are of
high visibility V ≡ ðtmax

MZI � tmin
MZIÞ=ðtmax

MZI þ tmin
MZIÞ≈

90% and, as expected for the Aharonov-Bohm
phase, the magnetic field period of 241 T 3 mT
(red symbols inFig. 2E showconsecutive extrema
positions) closely corresponds to one flux quan-
tum (241 mT� S ≃ 0:98h=e using the nomi-
nal area S ≃ 16:8 mm2). A small asymmetry in
the tMZI data (the average is slightly above 0:5)
results from a small reflection of the outer
edge channel on the grounded central ohmic
contact [of ≈5%; see (25)]. The black con-
tinuous line in Fig. 2D was measured with
the right MZI arm deviated to go through the
floating ohmic island (edge channel paths dis-
played in Fig. 1, and schematic in Fig. 2B). We
observe first that the visibility of quantum
interference remains of the same high ampli-
tude, which corresponds to a perfect fidelity
(at experimental accuracy) of the replicated
quantum states imprinted on the electrons
reemitted from the island, in agreement with
low-temperature predictions (4, 5). Second, the
magnetic field period of 305 T 4 mT is found
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Fig. 2. Quantum
oscillations versus
magnetic field. (A to
C) Schematics of imple-
mented MZI configura-
tions. (D) Fraction tMZI
of the outer edge
channel current
transmitted across
the MZI as a function
of B. Continuous lines
are measurements
performed in the
configuration framed
by a box of the same
color in (A), (B), and
(C). The horizontal black
dashed lines represent
the tMZI extrema for the
standard and floating
island MZI configurations
[schematics in (A) and
(B), respectively],
corresponding to a high
quantum oscillations
visibility of V e 90%. With a second channel connected to the floating island (configuration shown Fig. 2C), the
quantum oscillations are strongly reduced to a visibility V e 20%, consistent with the separately characterized
small residual reflection of e3% [see text and (25)], and the average tMZI is diminished as part of the current is
transmitted across the island toward a remote electrical ground. (E) Symbols display the magnetic field position
of consecutive extrema (both peaks and dips increment the index number).
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to be larger than in the standard MZI configu-
ration of Fig. 2A (see black symbols in Fig. 2E).
This increase is opposite to the reduction that
would be expected from the Aharonov-Bohm
period with the larger surface enclosed by the
outer channel path and the inner boundary
of the floating metallic island [see (25) for a
graphical representation; S ≃ 18:4 mm2 would
correspond to an Aharonov-Bohm period of
225 mT ≃ h=eS]. Such opposite evolution and
relatively important discrepancy (36%) es-
tablish that the MZI phase does not reduce
to the usual Aharonov-Bohm phase acquired
by a single electron propagating along two
different edge paths. Even a naïve applica-
tion of the surface modulation that cancels
the magnetic field dependence in Fabry-Pérot
interferometers dominated by Coulomb in-
teraction (29, 30) would only compensate
for the period reduction by the added area
enclosed between the metallic island and
the barring gate. Instead, the larger period
corroborates the transfer of the electrons’
state across the island. Indeed, in the pres-
ence of an electron path amputated from a
section (the 2DEG/metal interface), the closed
surface involved in the Aharonov-Bohm phase
is no longer well-defined. Whether one can
still speak of an Aharonov-Bohm phase with a
smaller effective surface, or whether another
period reduction mechanism is at play when

going through the floating island, is not estab-
lished. This question calls for further investi-
gations, both theoretical and experimental,
with devices implementing different injection-
emission distances.
The blue continuous line in Fig. 2Dwasmea-

sured with one MZI arm going through the
floating island and in the presence of a second
electronic channel connected to it (configura-
tion schematically displayed in Fig. 2C). We
find strongly suppressed conductance oscilla-
tions corresponding to a full decoherence of
the electrons going through the island. The
residual visibilityV ≲ 0:2 is consistentwith the
separately obtained proportion 1� tisland ≲ 3%
of reflected electrons, not penetrating into the
island (25). Indeed, the MZI contribution of
the reflected electrons readsVð1� tisland ≪ 1Þ ≃
4V0
3

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tisland

p
≲ 0:21, withV0 ≈ 90%theMZI

visibility in the standard configuration (25, 27).
The magnetic field period of 246 T 4 mT for
these smaller oscillations [see blue symbols
in Fig. 2E; a standard fast Fourier transform
analysis of these residual oscillations yields
the less resolved value 237 T 16 mT (25)] is 9%
longer than the 225 mT nominally expected,
and is close to the period observed in the
standard MZI configuration shown in Fig.
2A. It is plausible that the reflected elec-
trons are those propagating the furthest away
from the edge and from the semiconductor-

metal interface, effectively corresponding to
a smaller surface compatible with the ob-
served longer period. Other possibilities in-
clude that the residual electrons’ reflection
takes place at the level of the barring gate
(colored blue, left of island in Fig. 1) or, even-
tually, a Coulomb-induced compensation in
the spirit of Coulomb dominated Fabry-Pérot
interferometers (29, 30). Also, the average
htMZIi ≃ 0:39 is shifted below 0.5. This is
simply because part of the injected current is
evacuated toward a remote electrical ground
through the second (right) channel connected
to the floating island (the value htMZIi ¼ 0:375
is expected from current conservation for a
floating island and a central ohmic contact
both perfectly connected).
We now investigate the relation between

the island’s charge and the electron phase shift
associated with the quantum state transfer.
For this purpose, Fig. 3 focuses on the in-
fluence on tMZI of the voltageVpl applied to a
plunger gate (colored purple in Fig. 1), which
is relatively far from the MZI outer quantum
Hall channel but close to the island. The equiv-
alent role on the MZI phase ofVpl andB is first
directly established, in Fig. 3A, with the device
set in the floating island MZI configuration
[schematic in Fig. 2B, see also, e.g., (31, 32) for
the influence of an electrostatic field on quan-
tum interferences through different mecha-
nisms]. Figure 3B displays Coulomb diamond
measurements of the conductance across the
island as a function of the same plunger gate
voltage Vpl . For this purpose, the island is
hereweakly connected through tunnel barriers,
thereby implementing a single-electron tran-
sistor of quantized charge Q in units of e (Q is
not quantized for the strongly coupled floating
island in the MZI configurations). The left
MZI arm was disconnected during this mea-
surement, as schematically illustrated in fig.
S2 (25). Notably, the MZI gate voltage period
in Fig. 3A precisely matches the Coulomb
diamonds’ period in Fig. 3B, as can be seen
by directly comparing the two panels plotted
using the same Vpl scale. In the floating MZI
limit of strongly connected channels,Q ¼
eVpl=D, withD ≃ 1:7 mV being the Coulomb
diamond period (11–13). A quantum phase
shift of 2pQ=e therefore applies to the trans-
ferred electrons, as specifically predicted the-
oretically (4, 5) and in agreement with Friedel’s
sum rule. Figure 3C shows a comparison of
tMZI oscillations in the standard MZI config-
uration (red line) and with one arm going
through themetallic island (black line); both
havemaximum visibilityV ≃ 90%as also seen
versus magnetic field in Fig. 2D. However,
theVpl period is increased by a large factor of
160, from 1:7 to 270 mV, when the island is
disconnected; this reflects the weak cou-
pling of the plunger gate voltage to the MZI
outer edge channel [see fig. S3 (25) for an
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Fig. 3. Quantum phase
versus island charge.
(A) Color plot of
tMZIðB; VplÞ in the floating
island MZI configuration
(schematic in Fig. 2B),
with the larger values
shown brighter, which
establishes the
equivalent role of B
and Vpl. (B) Coulomb
diamond characterization
of the floating island
(larger differential con-
ductance tSET shown
brighter; in this con-
figuration, the island is
weakly coupled on both
sides and Vdc is the
applied dc bias voltage).
A comparison with (A),
plotted using the same
Vpl scale, reveals that
the addition of a charge
of e on the island
precisely corresponds, in the floating island MZI configuration, to an electron quantum phase of 2p
(one quantum oscillation period). (C) The top and bottom panels display measurements of tMZIðVplÞ
with the device set in the floating island MZI configuration (black line) and in the standard MZI
configuration (red line, schematic in Fig. 2A). The MZI oscillations’ period in Vpl is shorter by a factor
of 1=160 when the island is connected. An additional modulation of fixed period (≈15 mV) appears
in both configurations.
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extended Vpl range]. This provides further
evidence that the edge electrons contributing
to the quantum oscillations in the floating
island configuration are indeed incorporated
into the metal. An additional, smaller sig-
nal of fixed period 15 mV is visible in both
configurations (in the form of direct oscilla-
tions or of an amplitude modulation), which
might originate from the progressive charging
of a nearby defect.
This experimental work demonstrates that

the Coulomb interaction has two facets. It can
both destroy and preserve quantum effects.
Although a metallic island is often pictured as
a floating reservoir of uncorrelated electrons
(8, 33), we establish that a high-fidelity elec-
tron quantum state transfer can take place
across it, enforced by the Coulomb charging
energy. This provides a means to overcome
limitations imposed by the decoherence of
individual electrons. Moreover, the observed
universal 2p electron phase shift for one elem-
entary charge e on the island can allow for a
strong entanglement of single-electron states,
both between themselves or with other quan-
tum degrees of freedom, with a negligible
loss of coherence. Such controllable, strong-
coupling mechanism constitutes a key ele-
ment in the context of quantum Hall edges
envisioned as platforms for the manipulation
and transfer of quantum information via pro-
pagating electrons (21, 34–39). In particular, it
is very well suited to implementing quantum
gates for these “flying qubits,” such as the
CNOT proposal involving a conditional phase
shift of p described in (38).
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ARTICLE

Electronic heat flow and thermal shot noise in
quantum circuits
E. Sivre 1,3, H. Duprez 1,3, A. Anthore1,2, A. Aassime1, F.D. Parmentier 1, A. Cavanna1, A. Ouerghi1,

U. Gennser1 & F. Pierre 1*

When assembling individual quantum components into a mesoscopic circuit, the interplay

between Coulomb interaction and charge granularity breaks down the classical laws of

electrical impedance composition. Here we explore experimentally the thermal con-

sequences, and observe an additional quantum mechanism of electronic heat transport. The

investigated, broadly tunable test-bed circuit is composed of a micron-scale metallic node

connected to one electronic channel and a resistance. Heating up the node with Joule dis-

sipation, we separately determine, from complementary noise measurements, both its

temperature and the thermal shot noise induced by the temperature difference across the

channel. The thermal shot noise predictions are thereby directly validated, and the electronic

heat flow is revealed. The latter exhibits a contribution from the channel involving the

electrons’ partitioning together with the Coulomb interaction. Expanding heat current pre-

dictions to include the thermal shot noise, we find a quantitative agreement with

experiments.
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Heating generally drives the crossover from quantum to
classical behaviors; nevertheless, heat itself is ruled by
quantum mechanics. In recent years, experimental

explorations of quantum thermal phenomena have been emer-
ging at a rising pace1–3. In particular, the quantum of thermal
conductance, a universal basic building block of heat quantum
transport, is now firmly established for bosons1,4, fermions5,6, and
quasiparticles that may be anyons7, as well as up to macroscopic8

and room temperature9,10 scales. However, despite the strong
influence of Coulomb interaction on electricity in small quantum
circuits11–14, its impact on the quantum transport of heat remains
barely explored experimentally15–17. In a first step for perfectly
ballistic circuits, where there is no back-scattering along any of
the connected electronic channels, a recent observation16 was
made of the predicted18 heat Coulomb blockade taking place
without any concomitant reduction of the electrical conductance.
In this limit and at low temperatures, the Coulomb interaction
manifests itself as the systematic suppression of a single channel
for the evacuation of heat from a small circuit node16,18. Here we
address elementary quantum circuits including one generic
electronic channel of arbitrary electron transmission probability.
An unexpected increase in the flow of heat is observed and
quantitatively accounted for by an additional quantum heat
transport mechanism, involving the association of shot noise and
Coulomb interaction.

We obtain the heat current–temperature characteristics by
controllably injecting a dc power into a small floating circuit node
connecting a quantum channel to a linear resistance, and by
monitoring in situ the resulting increase in the electrons’ tem-
perature. A complication is that the partition of electrons in the
generic channel breaks the Johnson–Nyquist proportionality
between excess noise and node temperature increase19,20,
which was previously used for the thermometry of ballistic cir-
cuits5–7,16,17. We overcome this difficulty with an experimental
procedure involving complementary measurements of both the
auto- and cross-correlations of electrical fluctuations. This pro-
vides us, separately, with the local electronic temperature in the
metallic node, as well as with the thermal shot noise. The latter is
found in good agreement with predictions derived within
the scattering approach19,21, in which Coulomb effects have
been encapsulated in the temperature-dependent conductance
(reduced by the dynamical Coulomb blockade11). The node
temperature increase, both in terms of injected power and elec-
tron transmission probability across the channel, exposes an
additional heat current contribution involving thermal shot noise.

Results
Test-bed for electronic channels in dissipative environments.
An e-beam micrograph of the device is shown in Fig. 1a together
with a schematic representation of the measurement setup. The
small floating circuit node that is heated is materialized by the
central micron-scale metallic island (in brighter gray), of sepa-
rately characterized self-capacitance C ’ 3:1 fF. It is in essentially
perfect electrical contact with a standard Ga(Al)As two-
dimensional (2D) electron gas underneath the surface. The 2D
gas is immersed in a perpendicular magnetic field corresponding
to the integer quantum Hall regime at filling factor two. In this
regime, the current flows along two adjacent quantum Hall edge
channels depicted by lines with arrows indicating the propagation
direction. Three quantum point contacts (QPCs) are formed in
the 2D electron gas by applying negative voltages on surface split
gates coupled capacitively. A single (spin-polarized) short elec-
tronic channel of tunable transmission probability τ 2 ½0; 1� is
implemented at the left QPC. The top and right QPCs are tuned
to a different, ballistic regime: they are set to fully transmit,

respectively, N1 and N2 channels forming together an adjustable
linear resistance22,23 R ¼ RK=N , with RK ¼ h=e2 the electrical
resistance quantum (h the Planck constant and e the electron
charge) and N ¼ N1 þ N2. Further away, the quantum Hall
channels are connected to large electrodes at base temperature
T ’ 8mK, represented in Fig. 1a by gray rectangles.

Electronic heat flow determination. The electrons within the
central island are heated to TΩ by dissipating a known Joule
power PJ ’ ðN1V

2
1 þ N2V

2
2Þ=2RK, with V1 (V2) the voltage

applied to the top (right) large electrode (Methods). The island’s
dc voltage is pinned to hVΩi ¼ 0, by imposing N1V1 ¼ �N2V2,
such that the generic channel experiences a pure temperature bias
TΩ � T without dc voltage. As illustrated in Fig. 1b, energy
conservation in the stationary regime implies PJ ¼ JelQ þ JphQ , with
JelQ being the heat flow across the connected electronic channels

and JphQ the heat transferred from the electrons within the island
to the phonons. In practice, electron–phonon heat transfers are
negligible only for TΩ ≲ 20mK16. However, as JphQ only depends
on temperatures (TΩ, T), and not on the connected electronic
channels (τ, N), it can be calibrated by tuning the circuit to the
ballistic regime (τ 2 f0; 1g). Using the previously established heat
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Fig. 1 Experimental approach. a Device e-beam micrograph with
measurement setup schematic. A single generic channel of arbitrary
electron transmission probability τ, as well as N1 and N2 ballistic (perfectly
transmitted) channels, are separately connected to a small metallic island.
b Schematic heat balance representation between injected Joule power (PJ)
and outgoing heat currents, from electrons to phonons (JphQ ) and through
the connected electronic channels (JelQ). c Excess auto- and cross-
correlation measurements versus V1 ¼ �V2, in the illustrative configuration
N ¼ 2 (N1 ¼ N2 ¼ 1), τ � 0:5. d Extracted excess noise sources per
ballistic channel (Sexcball) and across the generic single-channel quantum point
contact of transmission τ (Sexcqpc), from the data in c.
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Coulomb blockade predictions for ballistic channels16,18, we
find that all the data with τ 2 f0; 1g, N 2 f2; 3; 4g and
T 2 f8; 16g mK can be accurately reproduced using the same
JphQ ’ 2:7 ´ 10�8 T5:7

Ω � T5:7
� �

W (Methods). At intermediate
transmission probability (0 < τ < 1), the unknown electronic
heat flow is then obtained by subtracting the above JphQ from the

injected Joule power (JelQ ¼ PJ � JphQ ).

Local temperature increase measurement. The island’s electro-
nic temperature TΩ is determined from the low-frequency (MHz)
current fluctuations measured on the top (1) and right (2) large
electrodes (Methods). The excess auto- and cross-correlation
spectral density, from which the zero-bias offset is removed, are
plotted in Fig. 1c versus V1 for the illustrative configuration N1 ¼
N2 ¼ 1 at τ � 0:5. In a nutshell, combining these data gives us
access separately to the current noise sources originating from the
QPC hosting a single generic channel (Sqpc) and from the ballistic
channels (Sball per channel), both shown in Fig. 1d. This is pos-
sible because these two noise sources contribute with the same
sign to the experimental autocorrelation signal, while with an
opposite sign to the cross-correlation (Methods). The tempera-
ture TΩ is then obtained using solely the ballistic noise source
Sball, directly resulting from the thermal fluctuations of the elec-
tronic states’ population in the baths. This robust connection
manifests itself as a straightforward, and previously used5–7,16,17,
generalization of the fluctuation-dissipation relation for the
thermal noise Sball ¼ 4kB�T=RK, where �T ¼ ðTΩ þ TÞ=2 is the
average temperature19,24. In practice, the excess noise data (with
respect to V1;2 ¼ 0) gives us access to the temperature increase
TΩ � T , while T is separately measured (Methods).

Shot noise induced by a temperature difference. Generic
channels driven out-of-equilibrium are generally expected to
exhibit, in addition to the average thermal noise, a shot noise
induced by the electron partitioning into a transmitted electron
and a reflected electron19,21. In particular, the current noise
spectral density at low frequencies (ω � kBT=_), for a single
channel of transmission probability τ, reads19:

Sthyqpc ¼
4kB�Tτ
RK

þ 2τð1� τÞ
RK

Z
dE f TΩ

ðEÞ � f TðEÞ
h i2

; ð1Þ

with f T;TΩ
ðEÞ the Fermi distributions in the connected baths at

different temperatures and/or voltages. The average thermal noise
and the shot noise are, respectively, the first and second term on
the right-hand side of Eq. (1). Whereas the shot noise induced by
either a voltage difference or a frequency irradiation is experi-
mentally well established (see references in ref. 19 and also ref. 25),
the thermal shot noise resulting from the partition of electrons in
the sole presence of a temperature difference was observed only
recently20. Although convincing, this observation did not allow for
a one-to-one comparison of the individual data points with the
theory, because the possibly multiple electronic channels were
incompletely characterized by the measurement of their parallel
conductance. In contrast, in the present work with a single generic
channel, the QPC conductance Gqpc ¼ τe2=h completely deter-
mines the transmission probability τ. In Fig. 2a, following ref. 20,
we focus on the thermal shot noise ΔSqpc obtained by removing
the average Johnson–Nyquist noise (ΔSqpc ¼ Sqpc � 4kB�Tτ=RK).
The ΔSqpc data at N1 ¼ N2 ¼ 1 (symbols) are plotted versus TΩ

for several gate voltage tunings of the single-channel QPC. The
predictions (continuous lines), calculated without any adjustable
parameter using Eq. (1), closely match the data (for control
experiments, see Supplementary Fig. 1 at other fN1;N2g and

Supplementary Fig. 2 at a larger base temperature T ’ 16mK).
Note that the simultaneously measured Gqpc ¼ τe2=h depends on
the temperatures T and TΩ, because of the quantum back-action
of the series RC circuit13 also referred to as the dynamical Cou-
lomb blockade11. Remarkably, we find that the effect of Coulomb
interaction is accurately encapsulated, at experimental resolution,
into the renormalized τ injected in Eq. (1). Figure 2b directly
reveals the partition origin of the shot noise induced by a tem-
perature difference. The data points represent this experimental
shot noise renormalized by the predicted, τ-independent tem-

perature function FðTΩ;TÞ ¼ ð2=RKÞ
R
dE f TΩ

ðEÞ � f TðEÞ
h i2

.

The good agreement observed between ΔSqpc=F and τð1� τÞ
attests of the underlying partition mechanism.

Electronic heat flow from a small quantum circuit node. We
now address the electronic flow of heat across the QPC and
ballistic channels. In conductors, the thermal conductance GQ is
frequently found to be directly proportional to the electrical
conductance Gel, through the so-called Wiedemann–Franz (WF)
law GQ ¼ LGel with L ¼ π2k2B=3e

2 the Lorenz number. While
this relation holds between the quantum of thermal and electrical
conductances, it generally breaks down in quantum circuits
assembled from several interconnected channels. In particular, it
was shown that the thermal conductance from a small, heated
circuit node connected by ballistic channels is reduced from the
WF expectation by precisely one quantum of thermal con-
ductance at low temperatures16,18, whatever the total number of
channels. With such a fixed reduction, the increment by L=RK of
the thermal conductance when adding an extra ballistic channel
(starting from at least one) nevertheless follows the WF relation.
Is this also the case if the electrical conductance is increased
continuously, by sweeping the transmission probability across an
electronic channel from τ ¼ 0 to 1? The answer is no, as we will
now show.

Figure 3a exhibits as symbols, versus TΩ, the experimental
electronic heat flow JelQ normalized by the quantum limit per
channel J limQ ¼ π2k2BðT2

Ω � T2Þ=6h, for different circuit settings
spanning the full range of τ at both N ¼ 2 and N ¼ 3 (see
Supplementary Fig. 3b for N ¼ 4, and Supplementary Fig. 4 for a
control experiment at T ’ 16mK). The three thick black
continuous lines display the full, temperature-dependent heat
Coulomb blockade prediction for two (bottom), three (middle),
and four (top) ballistic channels18 (Methods). Note the small,
predicted deviations developing with temperature from the
complete heat Coulomb blockade of a single channel
(JelQ=J

lim
Q ¼ N � 1) that only applies in the limit of low

temperatures TΩ;T � _=kBRC. Open and full circles (full
diamonds) are data points obtained for N ¼ 2 (N ¼ 3) ballistic
channels, with different settings of the generic channel encoded
by different colors. The dashed lines represent linear interpola-
tions between ballistic predictions at N and N þ 1 weighted,
respectively, by 1� τ and τ measured for the compared data
(same color). For example, the brown dashed line in the top part
of Fig. 3a (closest to JelQ=J

lim
Q � 2:5) is given by τðTΩÞ times the

prediction for three ballistic channels (thick black line near
JelQ=J

lim
Q � 2; Methods) plus 1� τðTΩÞ times the prediction for

four ballistic channels (thick black line near JelQ=J
lim
Q � 3), with

τðTΩÞ the renormalized conductance simultaneously measured
during the acquisition of the top brown data points of
corresponding TΩ (in practice a linear interpolation is performed
between discrete measurements of τðTΩÞ). The difference
between dashed lines and data points is particularly significant

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13566-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5638 | https://doi.org/10.1038/s41467-019-13566-8 |www.nature.com/naturecommunications 3



at intermediate τ. This shows that the thermal conductance
increase does not reduce to a linear, WF-like, function of the
electrical conductance. In contrast, quantitative predictions based
on the Langevin approach in ref. 18 but including the partition
noise from the generic channel (colored continuous lines,
Methods) lie close to the data, without any adjustable parameter.
At low temperatures TΩ;T � _=kBRC, the difference between
theory (thy) predictions J thyQ and the WF extension (linear in τ) of
heat Coulomb blockade predictions for ballistic channels
ðN þ τ � 1Þ ´ J limQ , reads:

J thyQ � ðN þ τ � 1Þ ´ J limQ ’ τð1� τÞ
N þ τ

´ J limQ : ð2Þ

Note that J thyQ ¼ 0 for N ¼ 0 at low temperatures, whatever the
value of τ (see refs. 26–28 for the electrons’ state preservation
concomitant to the absence of heat transfers). The τð1� τÞ
numerator attests of the role of electron partition in this
additional heat transport mechanism. We also point out that
this heat current contribution vanishes at higher temperatures,
when Coulomb effects become negligible (Methods). This shows
straightforwardly the essential role of Coulomb interaction, which
combines with electron partition into a different form of
quantum heat transport. Figure 3b provides direct experimental
evidences for an underlying partition mechanism (see also
Supplementary Fig. 3a, c), by subtracting from the renormalized
electronic heat flow at N ¼ 2 (symbols in Fig. 3a) the
corresponding WF (linear) interpolation (dashed lines in Fig. 3a).
Focusing here on the temperature range TΩ 2 ½17; 65� mK where
measurements are most accurate (see error bars in Fig. 3a), a
convincing agreement is found with τð1� τÞ=ð2þ τÞ plotted as a
continuous line versus τ.

Discussion
We have experimentally investigated the heat flow and thermally
induced shot noise in an elementary quantum circuit composed
of one small metallic node (island) connected by several ballistic
channels and by one generic electronic channel of arbitrary
electron transmission probability. Applying a temperature bias,

without dc voltage across the generic channel, we measured the
thermal shot noise20 and determined the overall electronic heat
flow from the island. The former is found in direct quantitative
agreement with thermal shot noise predictions computed using
the known transmission probability19. The latter displays an
additional heat flow contribution. The underlying mechanism
involves in particular the Coulomb charging energy of the island,
which effectively freezes its total charge at low temperatures and
thereby induces correlations between the heat carrying electrical
current fluctuations propagating along the connected channels18

(Methods). In a fully ballistic circuit (without thermal shot noise),
these correlations amount to the recently observed systematic
blockade of a single channel for the flow of heat, independently of
the total number of channels16,18. Here, with a generic channel, a
thermal shot noise is impinging on the island and fractionalized
among all the outgoing channels by the frozen island charge
imposed by Coulomb interaction29. This combination of Cou-
lomb interaction and thermal shot noise underpins the presently
observed additional heat transport mechanism (Methods).

Advancing our understanding of the mechanisms of quantum
heat transport and establishing the thermal shot noise contribu-
tion is essential for exploiting heat and noise to unveil exotic
physics17,30,31, and is bound to play a role in the thermal and
signal to noise management of future quantum devices. The
present work also demonstrates measurement strategies widening
the range of experimental systems eligible for thermal explora-
tions: by exploiting complementary auto- and cross-correlation
measurements of the electrical fluctuations, we have shown that
the different sources of noise can be accessed separately. We
expect that such advanced combinations of fluctuation mea-
surements will play an increasing role in the thermal and noise
investigations of quantum circuits.

Methods
Sample. The Al(Ga)As 2DEG has an electron density of 2:5 ´ 1011 cm�2, a mobility
of 106 cm2 V�1 s�1 and is located 105 nm below the surface. The central island is
formed from a metallic layering of nickel (30 nm), gold (120 nm), and germanium
(60 nm), which is thermally annealed at 440 °C for 50 s to make an electrical
contact with the 2DEG. The two quantum Hall edge channels at filling factor ν ¼ 2
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higher (lower) experimental uncertainty.
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are found in near perfect contact with the island, with a reflection probability below
6 ´ 10�3 (see Methods in ref. 14 for a detailed description of the characterization
procedure). The short �1 μm distance between metallic island and QPC combined
with the low temperatures (TΩ ≲ 80 mK) ascertains that the interaction between
co-propagating channels can be safely ignored (see e.g. ref. 32), as in previous works
with the same sample14,23,33–35. The self-capacitance of the island C ’ 3:1 fF
(corresponding to a charging energy EC ¼ e2=2C � kB ´ 0:3K) is obtained from
standard Coulomb diamond measurements (with all channels connected to the
device tuned in the tunnel regime).

Noise measurement setup. The time-dependent current fluctuations δI1ðtÞ and
δI2ðtÞ impinging, respectively, on electrodes 1 and 2 are first amplified with a
cryogenic amplifier located on the 4K stage of a dilution refrigerator, and with a
room temperature amplifier. They are then digitized at 10 Mbit/s and sent to a
computer. The Fourier auto- and cross-correlations analysis are performed over a
180 kHz bandwidth centered on 0:855MHz (the resonant frequency of the LC
oscillators shown in Fig. 1a). The amplification gains Gamp

1;2 are separately calibrated
from the same standard shot-noise vs voltage bias measurements used to determine
the base temperature T (see corresponding section). We find that Gamp

1;2 are stable
along each run, but slightly different from cooldown to cooldown. Averaging 862
(2840) shot noise vs voltage bias sweeps, the statistical uncertainty on Gamp

1;2 is below
0:09% (0:04%) for the first (second) experimental run shown here. The cross-
correlation gain Gamp

X is also impacted by the matching between the two resonators.
For a perfect match, Gamp

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gamp
1 Gamp

2

p
. In general, a correction factor c12 needs

to be introduced Gamp
X ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gamp
1 Gamp

2

p
´ c12. This factor c12 is experimentally

characterized at τ ¼ 0 (N1;2 ≠ 0) from the robust relation ΔS11 ¼ ΔS22 ¼ �ΔS12,
which directly results from the negligible charge accumulation on the island at the
measurement frequencies. In practice, we find an essentially perfect resonators’
match (c12 � 1:000 and 0.993 for the first and second cooldown, respectively).

Dissipated Joule power. The bulk of the Joule power dissipated within
the electronic fluid in the metallic island is given by the expression
PJ ’ ðN1V

2
1 þ N2V

2
2Þ=2RK. We also include the small additional contributions Pac

J

due to the extra power dissipated from the small ac voltages Vac
1;2;3 ’ 0:23 μVrms

applied (at different low frequencies) to the three source electrodes (to simulta-
neously measure with lock-in the conductances across each of the three QPCs), as
well as a separately characterized small triboelectric voltage from the pulse tube
vibrations specifically developing on the source electrode 1 (feeding the top QPC)
V tribo

1 ’ 0:4 μVrms:

P ac
J ¼ 1

2RKðN þ τÞ ´ ½fðV
ac
1 Þ2 þ ðV tribo

1 Þ2gN1ðN2 þ τÞ

þ ðVac
2 Þ2N2ðN1 þ τÞ þ ðVac

3 Þ2τN�:
ð3Þ

In practice, Pac
J 2 ½2; 6� aW is below 1% of PJ at TΩ ≳ 20mK. It corresponds

to a temperature increase in the island of �0:3mK at zero dc bias (see section
Base electron temperature). Note that we avoid possible mismatch from the
thermoelectric voltage developing along the measurement lines by applying a
current dc bias. It is converted onchip into a voltage exploiting the well-defined
quantum Hall resistance RK=ν connecting current biased electrodes and cold
electrical grounds.

Base electron temperature. The base electronic temperature T is extracted from
standard shot-noise measurements, applying a dc bias voltage directly to a QPC set
to a transmission probability of one half, with the floating island bypassed using
side gates (see Methods in ref. 34 for further details).

Due to the small Pac
J (see section Dissipated Joule power), the temperature of

the floating island is slightly higher than T even in the absence of a dc voltage. This
small temperature increase is obtained by measuring the cross-correlations at zero
dc bias V1 ¼ V2 ¼ 0 (carefully calibrating instrumental offsets just before and after
each measurement sequence), from the relation:

TΩðV1;2 ¼ 0Þ � T ’ � RK

2kB

N þ τ

N1N2
S12ðV1;2 ¼ 0Þ; ð4Þ

which straightforwardly relies on the generalized fluctuation-dissipation relation.
Although there are deviations from the generalized fluctuation-dissipation relation
in the presence of a generic channel, as studied in this work, this approximation is
excellent for small TΩðV1;2 ¼ 0Þ � T � T such as in the present case. We find
TΩðV1;2 ¼ 0Þ � T � 0:3mK (always below 0:6mK), consistent with expectations
based on the value of Pac

J given by Eq. (3). This small temperature difference is
included in the experimental determination of TΩ .

Excess electron temperature and shot noise. This section details how are
obtained the excess electron temperature, ΔTΩ ¼ TΩ � TΩðV1;2 ¼ 0Þ, and the
resulting excess noise generated across the generic QPC,
Sexcqpc ¼ hδI2qpci � hδI2qpciðV1;2 ¼ 0Þ. A schematic representation of the circuit is
shown in Fig. 4 with arrows indicating the chirality also corresponding to the con-
vention used for positive currents. The large electrodes labeled En (n 2 f1; 2g)
include each a measurement electrode Mn and a voltage biased source electrode Sn.
The floating central metallic node is labeled Ω.

First, let us separately consider a current fluctuation δIqpc generated across the
generic QPC (see Fig. 4), and determine the resulting current fluctuations δIqpcM1;M2

impinging on the measurement electrodes M1;2. As the corresponding charge
accumulated in the island relaxes very fast compared to the measurement
frequencies (1=RKC � 10 GHz � 1MHz), the current δIqpc injected in the island
is compensated by the outgoing current from the resulting voltage fluctuation δVΩ
of the floating island. This reads δIqpc ¼ ðN þ τÞδVΩ=RK (for a treatment of
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Fig. 3 Electronic heat flow. a Experimental JelQ=J
lim
Q (with JlimQ ¼ π2k2B

ðT2
Ω � T2Þ=6h) are plotted as symbols versus TΩ with N ¼ 2 (circles) and

N ¼ 3 (diamonds), for a broad range of QPC tunings (colors). Error
bars represent the standard statistical error. Black continuous lines are
predictions at τ ¼ 0 for N ¼ 2 (bottom), 3 (middle), and 4 (top). Dashed
lines are interpolations between ballistic predictions, linear in the measured
τ. Continuous lines are theoretical predictions. b Symbols represent the
difference ΔJelQ between experimental JelQ (N ¼ 2, TΩ 2 ½17;65� mK in panel
a) and the corresponding interpolation between ballistic predictions,
normalized by JlimQ . The continuous line displays versus τ the low-
temperature prediction τð1� τÞ=ðNþ τÞ for N ¼ 2.
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charge relaxation at arbitrary frequencies see section Heat Coulomb blockade
predictions). Then, δIqpcM1ð2Þ ¼ N1ð2ÞδVΩ=RK ¼ δIqpcN1ð2Þ=ðN þ τÞ. Consequently,
the QPC noise’s contribution to the autocorrelation signal is

Sqpc11ð22Þ ¼ SqpcN
2
1ð2Þ=ðN þ τÞ2; ð5Þ

and its contribution to the cross-correlation signal is

Sqpc12 ¼ SqpcN1N2=ðN þ τÞ2: ð6Þ

Second, we separately consider a current fluctuation δIΩ!j emitted from the
island, by the thermal fluctuations of electronic states’ population at TΩ , into a
ballistic channel j. From the fast charge relaxation of the island pointed out in the
previous paragraph, one obtains δVΩ=RK ¼ �δIΩ!

j =ðN þ τÞ. On the one hand,
the current fluctuation measured on the electrode M1 if the channel j propagates
toward the electrode M2 (j 2 M2) is then δIΩ!2

M1 ¼ �N1=ðN þ τÞδIΩ!
j2M2. The

corresponding autocorrelation signal on M1, resulting from the thermal current
fluctuations emitted toward M2 (summing all j 2 M2) therefore reads:

SΩ!2
11 ¼ N2

1

ðN þ τÞ2
XN2

j¼1

hðδIΩ!j Þ2i ¼ N2 ´
N2

1

ðN þ τÞ2 hðδI
Ω!Þ2i; ð7Þ

where the unimportant channel index j is omitted in hðδIΩ!Þ2i � hðδIΩ!j Þ2i
(independent of j). On the other hand, the current fluctuation measured on the
electrode M1 if the channel j is also connected to the electrode M1 (j 2 M1)
includes both the direct term δIΩ!j2M1 and the smaller δVΩ contribution:

δIΩ!1
M1 ¼ 1� N1=ðN þ τÞ½ �δIΩ!j2M1. As a result

S Ω!1
11 ¼ 1� N1

N þ τ

� �2XN1

j¼1

hðδIΩ!j Þ2i

¼ N1 ´ 1� N1

N þ τ

� �2

hðδIΩ!Þ2i;
ð8Þ

and

SΩ!1
12 ¼ �N1 ´ 1� N1

N þ τ

� �
N2

N þ τ
hðδIΩ!Þ2i: ð9Þ

Summing up the independent contributions from the QPC (δIqpc) and from all

ballistic channels (emitted δIΩ!j and absorbed δIEn!j ), one straightforwardly

obtains for the autocorrelation signal:

S 11ð22Þ ¼ N1ð2Þ 1� N1ð2Þ
N þ τ

� �2

þ N1N2

N þ τð Þ2
" #

hðδIΩ!Þ2i

þ
N2

1ð2Þ
N þ τð Þ2 Sqpc þ

N2
1ð2ÞN

N þ τð Þ2 hðδI
E!Þ2i þ Soffset1ð2Þ;

ð10Þ

with Soffset1ð2Þ a noise offset mostly corresponding to the amplification chain, and
also including the thermal noise along the 2� N1ð2Þ reflected channels and along
the 2 quantum Hall channels propagating from measurement (M) to source (S)
contacts (for the experimental bulk filling factor ν ¼ 2; see Fig. 4). Similarly, one
gets for the cross-correlation signal:

S12 ¼
N1N2

N þ τð Þ2 ½�ðN þ 2τÞhðδIΩ!Þ2i þ Sqpc þ NhðδIE!Þ2i�: ð11Þ

Focusing on the excess signal with respect to V1;2 ¼ 0, one obtains from
Eqs. (10) and (11):

Sexcball ¼
Sexc11

2N1
þ Sexc22

2N2
� Sexc12 N
2N1N2

; ð12Þ

with Sexcball ¼ hðδIΩ!Þ2i � hðδIΩ!Þ2iðV1;2 ¼ 0Þ the excess noise generated across
one ballistic channel. From the Johnson–Nyquist-type relation well established in

the ballistic case5–7,16–18 hðδIΩ!Þ2i ¼ 2kBTΩ=RK, the excess island’s temperature
reads:

ΔTΩ ¼ RK

2kB

Sexc11

2N1
þ Sexc22

2N2
� Sexc12 N
2N1N2

� �
: ð13Þ

Solving Eqs. (10) and (11) also provides Sexcqpc:

Sexcqpc ¼ ðN þ 2τÞ Sexc11

2N1
þ Sexc22

2N2

� �
þ Sexc12

ðN þ τÞ2 þ τ2

2N1N2
: ð14Þ

Heat Coulomb blockade predictions. In this section we derive the predictions
shown as continuous lines in Fig. 3 and Supplementary Figs. 3 and 4, for the
electronic flow of heat JelQ in the presence of a generic quantum channel. We follow
the Langevin approach developed for ballistic systems in ref. 18, and expand it to
the case where the current is partially reflected with a probability 1� τ on a QPC
inserted along one of the channels (the other channels remaining ballistic, see
schematic in Fig. 4). The three main differences with ref. 18 are: (i) the symmetry
between channels is broken, (ii) a partition noise emerges at the generic QPC, (iii)
the transmission probability τ depends on the temperatures due to dynamical
Coulomb blockade.

The heat flow J!Qj propagating in one direction (!) along one electronic
channel ( j) is obtained from the time-dependent electrical current fluctuations
ΔI!j propagating in the same direction at the considered location18:

J!Qj ¼
_

2e2

Z 1

�1
dω hðΔI!j Þ2i � hðΔI!j Þ2i

vacuum

� �
; ð15Þ

with hivacuum referring to the vacuum fluctuations at zero temperature.
If ΔI!j directly originates from the large, voltage biased electrodes (S1;2;3 in

E1;2;3), then it only includes the emitted thermal current fluctuation δIEn!
j (see

Fig. 4). These thermal fluctuations are assumed uncorrelated (hδIEn!j δIEm!
k i ¼ 0

for j≠ k even at m ¼ n) and of variance given by the usual thermal noise expression
at the base temperature T18:

hðδIEn!
j Þ2iðωÞ ¼ _ω=RK

�1þ exp _ω=kBT½ � : ð16Þ

Note the factor two difference with the standard low-frequency expression
2kBT=RK, in which the contribution at positive and negative frequencies are added.
Injecting Eq. (16) into Eq. (15), one obtains the usual expression
J!Qj ¼ ðπkBTÞ2=6h.

In contrast to the voltage biased electrodes, the floating metallic node’s
electrochemical potential exhibits fluctuations δVΩ (related to charge fluctuations
as, e.g., in the voltage probe and dephasing probe models, see ref. 19 and references
therein). These result in the emission of identical current fluctuations δVΩ=RK in
all outgoing channels18,19. Such current fluctuations add up with the thermal
emission δIΩ!j of electrons from the central node: ΔIΩ!j ¼ δIΩ!

j þ δVΩ=RK, with

hδIΩ!
j δIΩ!k i ¼ 0 for j≠ k and a variance hðδIΩ!j Þ2i given by the same Eq. (16) but

with the island temperature TΩ instead of T . The integrand in Eq. (15) therefore
includes such correlations as hδIΩ!j δVΩi. These can be obtained from the
connection to the island’s charge fluctuations δQ ¼ CδVΩ (δQ ¼ Q� hQi with Q
the overall charge of the island, and C its self-capacitance), which obey the charge

E3

T TΩ δVΩ

S2

T

E2

T

V2

M2
T

δ/qpc

      

N1 = 2

N2 = 1

τ

Δ/Ω→
q

Δ/→ Ω=q

Δ/Ω→
j

(1–τ)Δ/Ω→
q

δ/M2→
j

δ/E2
→

j

δ/E3
→

q

δ/E2
→

j+τδ/E3→ +δ/sn
q q Δ/Ω→

j

δ/j
Ω→ +δVΩ/Rk

=

E1

T

Ω

Fig. 4 Noise schematic. Graphical representation of the different current
and voltage fluctuations discussed in the text.
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conservation relation:

iωδQ ¼
XNþ1

j¼1

ðΔI!Ω
j � ΔIΩ!j Þ

¼ ΔI!Ω
q � δIΩ!

q � δQ=RKC

þ
XN
j¼1

ðδIE!j � δIΩ!j Þ � NδQ=RKC;

ð17Þ

where we separated in the second equality the generic channel labeled with the
index q (first line) from the N ballistic channels (second line). In channel q, the
incoming current fluctuations toward the island ΔI!Ω

q include three contributions:

ΔI!Ω
q ¼ τδIE3!

q þ ð1� τÞ δIΩ!q þ δQ=RKC
� �

þ δIsnq ; ð18Þ
with the third term corresponding in the Langevin description to an uncorrelated
noise source induced by the electrons’ partition at the QPC. At equilibrium
(T ¼ TΩ), the Johnson–Nyquist relation at low frequencies imposes 2hðδIsnq Þ2i ¼
τð1� τÞ ´ 4kBT=RK (the factor two is because positive and negative frequencies are
included for this comparison). In the non-equilibrium regime (T ≠TΩ), the
information needed on δIsnq for the heat current will be directly obtained from
energy flow conservation at the input and output of the QPC (see below). Note that
we neglect in Eq. (18) the small time delay associated with the round loop path
island-QPC-island (a delay of about 20 ps using a typical velocity of 105 m/s), and
that the transmission probability τ is taken as a frequency independent value (that
depends on T and TΩ due to dynamical Coulomb blockade, see e.g. ref. 23).
Combining Eqs. (17) and (18) allows us to write δQ as a function of uncorrelated
noise sources:

ðiωþ τΩ=RKCÞδQ ¼ τðδIE3!
q � δIΩ!

q Þ

þ δIsnq þ
XN
j¼1

ðδIE!j � δIΩ!j Þ; ð19Þ

where we introduced τΩ defined as the sum of the transmission probabilities of the
channels connected to the island:

τΩ ¼ N þ τ: ð20Þ
This straightforwardly makes it possible to formulate the integrands hðΔI!Ω

q Þ2i and
hðΔIΩ!q Þ2i as functions of uncorrelated noise sources (independently of δVΩ). As
an illustration, we obtain for the latter:

hðΔIΩ!q Þ2i ¼ hðδIsnq Þ2i þ τΩ � τð1� τÞð ÞhðδIE!Þ2i
τ2Ω þ ðωRKCÞ2

þ 1þ τΩ � τð1� τÞ � 2ττΩ
τ2Ω þ ðωRKCÞ2

 !
hðδIΩ!Þ2i;

ð21Þ

where the arbitrary index j is omitted. The only missing ingredient is δIsnq . As
pointed out above, the required information can be obtained most robustly from
global heat conservation at the QPC: JE3!

Qq þ JΩ!Qq ¼ J!E3
Qq þ J!Ω

Qq , with JE3!Qq the

flow of heat from the large electrode E3 toward the QPC, JΩ!
Qq the flow of heat from

the island toward the QPC, J!E3
Qq the flow of heat from the QPC toward E3, and

J!Ω
Qq the flow of heat from the QPC toward the island. Using Eq. (15), this equality
reads: Z 1

�1
dω hðδIsnq Þ2i ´ 1þ τΩ � τð1� τÞ � 2ττΩ

τ2Ω þ ðωRKCÞ2
" #

¼
Z 1

�1
dω τð1� τÞ 1þ τΩ � τð1� τÞ � 2ττΩ

τ2Ω þ ðωRKCÞ2
" #

´ hðδIE3!
q Þ2i þ hðδIΩ!

q Þ2i
n o

:

ð22Þ

Summing up the contributions of all channels and performing the integration in
Eq. (15), we obtain for the net heat flow from the metallic island:

J thyQ ¼
XNþ1

j¼1

JΩ!Qj � J!Ω
Qj

� �

¼ τΩ
π2k2B
6h

ðT2
Ω � T2Þ � τΩ

hðτΩ � τð1� τÞÞ
ð2πRKCÞ2

´ = hτΩ=RKC
2πkBTΩ

� �
� = hτΩ=RKC

2πkBT

� �	 

;

ð23Þ

with the function = given by

=ðxÞ ¼ 1
2

ln
x
2π

� �
� π

x
� ψ

x
2π

� �h i
; ð24Þ

with ψðzÞ the digamma function. Equation (23) was used to calculate the

predictions shown as continuous lines in Fig. 3a, Supplementary Fig. 3b and
Supplementary Fig. 4.

At τ ¼ 0 or 1, Eq. (23) reduces to the expression derived for a ballistic system18

(see Methods in ref. 16 for a similar formulation). At high temperatures, Eq. (23)
reduces to the non-interacting result matching the widespread Wiedemann–Franz
law (without additional contribution from the partition noise):

J thyQ T;TΩ � _τΩ
kBRKC

� �
’ τΩ

π2k2B
6h

ðT2
Ω � T2Þ

’ τΩJ
lim
Q :

ð25Þ

At low temperatures, Eq. (23) simplifies into:

J thyQ T;TΩ � _τΩ
kBRKC

� �
’ τΩ � 1þ τð1� τÞ

τΩ

� �
π2k2B
6h

ðT2
Ω � T2Þ

’ τΩ � 1þ τð1� τÞ
τΩ

� �
J limQ :

: ð26Þ

In this case, in addition to the systematic blockade of one ballistic channel (�1)
with respect to the non-interacting case (τΩ), we find an additional contribution to
the flow of heat whose partition character is signaled by the characteristic τð1� τÞ
dependence.

Electron–phonon heat transfers. The Fig. 5 displays the amount of heat trans-
ferred from electrons in the metallic island to cold phonons at base temperature
T ’ 8mK. It is obtained by subtracting from the injected Joule power PJ the
known electronic heat flow JelQ when the circuit is tuned in the ballistic regime (for

the subtracted expression of JelQ , see Eq. (23) with τ 2 f0; 1g or refs. 16,18). The data
from all ballistic configurations (N 2 f2; 3; 4g, τ 2 f0; 1g) collapse on the same

curve, fitted by JphQ ¼ ΣðTα
Ω � TαÞ with Σ ¼ 2:752 ´ 10�8 WK�α and α ¼ 5:709.

We checked that this power law also precisely accounts for JphQ at the larger tem-
perature T ’ 16mK (data not shown).

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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