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Abstract

Four essays on Climate Finance

by Alessandro RAVINA

This PhD dissertation explores the repercussions of low-carbon transition risk and
climate (physical) risk upon the two most widely traded asset classes: stocks and
bonds. Findings show that there are patterns in average stock and bond returns
related to carbon pricing and global warming. The results are economically and
statistically significant and the methodologies specified are immediately usable by
financial practitioners. A carbon stress test and a climate stress test are also put
forward in order to give insights to policymakers on the impact of plausible but more
severe carbon pricing and global warming upon stock and bond returns. Legislators
can leverage results to calibrate a policy response, like carbon pricing, which is in
line with their low-carbon transition objectives and with the cost of non-action, i.e.
the cost of not addressing global warming.
Keywords: Low-carbon transition risk, climate risk, asset pricing model, stock re-
turns, bond returns, carbon stress test, climate stress test

Cette thèse explore les répercussions du risque de transition bas carbone et du risque
climatique (physique) sur les deux classes d’actifs les plus négociées: les actions et
les obligations. Les résultats montrent qu’il y a des tendances dans les rendements
moyens des actions et des obligations liées à un prix du carbone et au réchauffement
climatique. Les résultats sont économiquement et statistiquement significatifs et les
méthodologies spécifiées sont immédiatement utilisables par les asset managers. Un
stress test carbone et un stress test climat sont également proposés afin de donner
aux décideurs un aperçu de l’impact d’un plausible mais plus sévère prix du car-
bone et réchauffement climatique sur les rendements des actions et des obligations.
Les législateurs peuvent tirer parti des résultats pour calibrer une réponse, comme
un prix du carbone, qui est en ligne avec leurs objectifs de transition bas-carbone
et avec le coût de la non-action, c’est-à-dire le coût de la non-prise en compte du
réchauffement climatique.
Mots-clés: Risque de transition bas carbone, risque climatique, model d’évaluation
d’actifs, rendement des actions, rendement des obligations, stress-test carbone, stress-
test climat
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Introduction française

Réchauffement global: genèse, répercussions et mitigation

Le réchauffement global est défini comme l’augmentation, sur une période de trente

ans, des températures moyennes atmosphériques et océaniques. Il est attribué à

deux causes différentes: la variabilité climatique naturelle — processus naturels in-

ternes — et l’activité humaine qui modifie la composition de l’atmosphère (Inter-

governmental Panel on Climate Change, 2014; United Nations, 1992).

Le point de rupture de la contribution humaine au réchauffement global est nor-

malement identifié avec la révolution industrielle étant donné que le développent

économique est strictement corrélé à la consommation d’énergie (Energy Informa-

tion Administration, 2017; Stern, 2007): la combustion de combustibles fossiles a

augmenté la concentration de dioxyde de carbone atmosphérique (CO2), le facteur

de forçage plus important, de 280 parties par million (ppm) à l’époque préindus-

trielle jusqu’à 400 ppm (Wagner & Weitzman, 2016).

Le réchauffement climatique d’origine humaine a atteint approximativement jusqu’à

1◦C de plus par rapport à l’époque préindustrielle en 2017, en augmentant de 0.2◦

chaque décennie (Intergovernmental Panel on Climate Change, 2018). Cependant, il

est improbable que les émissions passées, à elles seules, augmentent la température

globale moyenne jusqu’à l’objectif fixé à la COP 21 de Paris: 1.5◦ C au-dessus des

niveaux préindustriels (United Nations, 2015). Comme le Intergovernmental Panel

on Climate Change (2018) l’a indiqué:

“Si toutes les émissions anthropiques étaient réduites à zéro immédiatement, tout

réchauffement au-dessus d’1◦ C déjà vécu serait probablement inférieur à 0.5◦C sur

les prochaines deux ou trois décennies (confiance élevée) et probablement inférieur

à 0.5◦C sur les prochains cent ans (confiance moyenne), grâce aux effets opposés de

processus climatiques différents. Un réchauffement climatique supérieur à 1.5◦ C
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FIGURE 1: Global warming relative to 1850-1900 (IPCC, 2018)

n’est donc pas inévitable: son éventualité dépend des taux futurs de réduction des

émissions”.

Les “1.5◦C pathways” impliquent la limitation des émissions cumulées de gaz à

effet de serre à longue durée de vie: les six gaz à effet de serre couverts par le pro-

tocole de Kyoto — dioxyde de carbone (CO2), méthane (CH4), protoxyde d’azote

(N2O), hydrofluorocarbures (HFC), perfluorocarbures (PFC), hexafluorure de soufre

(SF6) — et trifluorure d’azote (NF3). Dans les modèles qui visent à ne pas dépasser

l’objectif de 1,5◦C, les émissions anthropiques mondiales diminuent d’environ 45%

par rapport aux niveaux de 2010 d’ici 2030, pour atteindre zéro vers 2050. Les éval-

uations suggèrent un budget carbone restant d’environ 420 GtCO2 pour avoir deux

chances sur trois de limiter le réchauffement à 1,5◦C, et d’environ 580 GtCO2 pour

une chance sur deux (IPCC, 2018).

Le réchauffement climatique affecte les organismes et les écosystèmes ainsi que

les systèmes humains et le bien-être. Le réchauffement induit des augmentations

des températures terrestres, de la fréquence des vagues de chaleur, des tempéra-

tures des océans, de la fréquence des vagues de chaleur marines, de la fréquence et

de l’intensité des fortes précipitations à l’échelle mondiale et de la fréquence et de

l’ampleur des sécheresses. Le réchauffement de la planète augmente le risque de

perdre des espèces locales et le risque d’extinction avec un certain nombre d’espèces

qui devraient perdre plus de la moitié de leur habitat avec un réchauffement de 1,5◦.
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FIGURE 2: Total annual anthropogenic GHG emissions by group of
gases 1970-2010 (IPCC, 2014)

En outre, un monde plus chaud augmente les risques liés aux facteurs liés à la biodi-

versité tels que les incendies de forêt, les événements météorologiques extrêmes et

la propagation de parasites et de maladies. La santé humaine est susceptible d’être

affectée avec des risques plus élevés de morbidité et de mortalité liés à la chaleur et

à l’ozone, de certaines maladies à transmission vectorielle (paludisme et dengue) et

de dénutritions (IPCC, 2018). Le réchauffement climatique va sérieusement affecter

la croissance économique (Dell, Jones & Olken, 2014; Pycroft, Abrell & Ciscar, 2016),

avec des réductions des rendements du maïs, du riz, du blé et d’autres céréales et

une perte de 7 à 10% de pâturage, la productivité (Graff Zivin & Neidell, 2014; Hal-

legatte, Fay, Bangalore, Kane & Bonzanigo, 2015) et les valeurs financières.

Limiter le réchauffement à 1,5◦C au-dessus des niveaux préindustriels néces-

site un changement systémique en termes de mitigation des gaz à effet de serre

et d’adaptation aux niveaux climatiques actuels. La réduction des gaz à effet de

serre, à savoir la mitigation, entraîne la décarbonisation de l’approvisionnement én-

ergétique mais aussi la baisse de la consommation d’énergie, la démotorisation et

la décarbonisation des transports, l’efficacité énergétique, l’utilisation de technolo-

gies de stockage d’énergie et de technologies à usage général. D’autre part, les op-

tions pour réduire la vulnérabilité et l’exposition au changement climatique, à savoir
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FIGURE 3: Direct and indirect GHG emissions in 2010 (IPCC, 2014)

l’adaptation, comprennent “les infrastructures vertes, services écosystémiques ur-

bains, l’agriculture urbaine et périurbaine, et l’adaptation des bâtiments et de l’utilisation

des terres” (IPCC , 2018).

La mitigation et l’adaptation au changement climatique conformément à l’objectif

de 1,5◦ nécessitent une augmentation des flux d’investissements dans les infras-

tructures et les produits à faibles émissions. Deux outils d’intervention vont dans

ce sens: les instruments fondés sur le marché et la “command and control regula-

tion”. Les instruments basés sur le marché impliquent un prix du carbone, qui peut

être atteint grâce à une taxe sur le carbone ou à un prix des droit d’émissions. La

“command and control regulation” vise à induire des changements technologiques

et complète généralement la tarification du carbone dans des domaines spécifiques.

L’économie de l’environnement suggère souvent que les instruments fondés sur le

marché, tels que l’EU-ETS, permettent de réduire les émissions de manière plus

rentable et plus flexible que la “command and control regulation”, car cette dernière

tend à prescrire le même niveau d’activité à tous les entreprises concernées par la ré-

glementation (Demirel et Kesidou, 2011; Engel, Pagiola & Wunder, 2008). La théorie
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FIGURE 4: Estimated annualized world mitigation investment
needed to limit global warming to 2◦C or 1.5◦C (2015-2035 in tril-
lions of US Dollars at market exchange rates) from different sources.

(IPCC, 2018)

économique indique clairement que, pour un niveau donné de réduction des émis-

sions, si le coût marginal de réduction des émissions pour l’entreprise est supérieur

au prix du carbone de marché, alors le choix efficace pour l’entreprise est de ne pas

réduire mais d’acheter des allocations dans un système “cap and trade”. À l’inverse,

pour un niveau donné de réduction des émissions, lorsque l’entreprise polluante

fait face à un coût marginal de réduction inférieur au prix du carbone de marché, le

choix efficace pour l’entreprise est de réduire les émissions et de vendre ses permis

dans un système “cap and trade” (Winebrake, Farrell, & Bernstein, 1995).

Les outils d’intervention ci-dessus ainsi que les instruments financiers ah hoc (par

exemple les obligations vertes) et la réduction des régimes de subvention des com-

bustibles fossiles socialement inefficaces contribuent à réduire la demande de pro-

duits et services à forte intensité de carbone et détourner les préférences du marché

des technologies basées sur les combustibles fossiles. L’objectif ultime est de pro-

mouvoir une réorientation des flux financiers vers des actifs à long terme à faibles

émissions. Le financement de la transition écologique devient alors la principale

question de recherche de ce qu’on a appelé Finance Climatique.
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Besoins financiers de la transition bas carbone et question de

recherche du PhD

La figure 4 montre les coûts de l’action pour lutter contre le réchauffement clima-

tique et rester en dessous du seuil de 1,5◦. Les investissements annuels nécessaires

ont été évalués à environ 2,38 billions USD (valeur moyenne) jusqu’en 2035 unique-

ment pour le secteur énergétique. Qui fournit actuellement ce financement? Buch-

ner et al. (2013) rapportent qu’en 2012, le financement des mesures de mitigation

des gouvernements et des institutions financières publiques était d’environ 255 mil-

liards de dollars américains. D’un autre côté, les institutions financières commer-

ciales, telles que les banques, les fonds de pension, les compagnies d’assurance-vie

et d’autres fonds, tout en gérant plus de 71 billions de dollars américains d’actifs,

n’ont contribué aux investissements liés au changement climatique qu’avec 22 mil-

liards de dollars américains. À des fins de comparaison, les sociétés énergétiques ont

fourni 102 milliards de dollars américains et les sociétés non énergétiques ont fourni

66 milliards. Même les ménages ont contribué plus que les institutions financières

avec 33 milliards de dollars américains.

L’image ci-dessus constitue la motivation de cette thèse de doctorat. La princi-

pale question de recherche peut être posée comme suit: “Compte tenu des nécessités

financières de la transition écologique ou énergétique, comment accroître la contri-

bution des institutions financières à la lutte contre le changement climatique?” Les

quatre chapitres qui composent cette thèse de doctorat partent de l’hypothèse que

la participation des institutions financières commerciales à la transition bas-carbone

est financièrement rationnelle. Au-delà de toute considération éthique concernant

l’obtention de la transition écologique que l’auteur approuve sûrement, la prise de

participation dans la transition écologique est financièrement rentable. Cette hy-

pothèse devient un argument lorsqu’elle est prouvée empiriquement. Au fil des

quatre chapitres que je présente ici, l’objectif est de fournir un fondement scien-

tifique à l’hypothèse de la rentabilité financière de la participation à la transition

écologique/énergétique.

En 2019, la valeur du marché obligataire mondiale était d’environ 105,9 billions
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de dollars, tandis que la capitalisation boursière mondiale était d’environ 95,0 bil-

lions de dollars (SIFMA, 2020). En comparaison, la valeur marchande brute des

contrats à terme et des options négociés en bourse était de 9,1 billions de dollars

et la valeur marchande brute des dérivés de gré à gré était de 12,1 billions de dol-

lars en 2019 (BRI, 2019). Ces valeurs justifient le choix des instruments financiers

analysés dans les quatre chapitres présentés dans cette thèse: actions et obligations.

Les dérivés sont laissés pour des recherches supplémentaires.

Risques liés au changement climatique: risque climatique et

risque de transition bas carbone

Le réchauffement climatique se connecte à la sphère financière en augmentant le

nombre de risques sur le marché. Les académiques ont divisé ce que nous pou-

vons appeler les risques liés au changement climatique en deux catégories. La pre-

mière catégorie a été nommée “risque climatique” (Carney, 2015) et fait référence

au lien entre le réchauffement climatique et les systèmes naturels et humains. Les

phénomènes climatiques extrêmes comme les températures extrêmes, les niveaux

extrêmes de la mer et les précipitations extrêmes (Intergovernmental Panel on Cli-

mate Change, 2014), sont susceptibles d’affecter gravement la croissance économique

et la valeur des actifs financiers. La deuxième catégorie de risques liés au change-

ment climatique a été appelée “risque de transition bas carbone” ou “risque car-

bone” . Le risque de transition bas-carbone fait référence au coût de l’ajustement

vers une économie bas-carbone. Ainsi, il inclut tous les facteurs de risque liés à la

décarbonation de l’économie: a) les instruments fondés sur le marché comme une

taxe carbone ou un prix des droit d’émissions; b) les changements technologiques

induits par le “command and control regulation”, par exemple les “stranded assets”

ou les actifs qui ont souffert de dépréciations, dévaluations ou conversion en passifs

imprévus ou prématurés (Caldecott et al., 2016); et c) le risque de marché, c’est-à-

dire la demande du marché pour des produits à faible teneur en carbone (Zhou et

al., 2016). Les quatre chapitres de cette thèse abordent à la fois le “risque climatique”

et le “risque de transition bas carbone” et explorent leurs répercussions sur les deux

classes d’actifs les plus négociées: les actions et les obligations.
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Dans un article publié en 2016, Cook et al. affirment qu’il existe un large consen-

sus scientifique sur les effets des émissions anthropiques sur le climat: le consensus

des climatologues sur le réchauffement climatique anthropique est de l’ordre de 90%

à 100%. La question et l’importance du consensus ne concernent pas seulement le

réchauffement climatique, mais vont plus loin. Un modèle est une représentation

synthétisée de la réalité, qu’elle soit physique ou chimique ou économique ou finan-

cière, etc. Le langage utilisé dans une telle représentation est mathématique. Cepen-

dant, les modèles s’opposent souvent avec les partisans d’une représentation qui

se battent avec les partisans de représentations concurrentes. En d’autres termes,

formaliser un ensemble d’énoncés ou d’assertions, c’est-à-dire passer du langage

verbal quotidien à un langage formalisé comme les mathématiques, n’augmente pas

le consensus. Compte tenu de ces considérations, l’urgence du réchauffement cli-

matique et la nécessité de trouver un accord le plus large possible ont conduit au

choix d’employer un modèle largement utilisé à la fois par la communauté scien-

tifique et, en particulier, par les praticiens de la finance. Le modèle factoriel de

Fama et French (1993, 2015) peut être apprécié à la fois par les mathématiciens ap-

pliqués et les gérants de portefeuille qui ont à faire avec un ensemble de pratiques

et de conventions établies et s’appuient davantage sur les analyses quotidiennes de

Bloomberg que sur des systèmes complexes d’équations aux dérivées partielles. Le

prix Nobel remporté par Eugène Fama en 2013 pour “empirical analysis of asset

prices” renforce ce choix.

Les modèles à facteurs classiques ont été modifiés avec deux facteurs supplé-

mentaires. Un facteur, GMC (green minus carbon), mesure le green premium ou

la prime pour ne pas être affecté par un prix du carbone. Cette analyse, qui vise à

quantifier l’effet du risque de transition bas carbone, devait être réalisée dans un lieu

où le prix du carbone existe. C’est pour cette raison que l’Europe et son Emission

Trading System (ETS) a été préférés aux autres pays du monde. Le facteur GMC a

été calculé pour les actions européennes (chapitre 1) et les obligations européennes

(chapitre 2) avec des données Bloomberg. Mes résultats dans la période 2008-2018

indiquent un rendement hebdomadaire moyen en pourcentage pour GMC de 0,17

pour les actions et un rendement en pourcentage hebdomadaire moyen pour GMC

de 0,02 pour les obligations. Un autre facteur, nommé LME (light minus extreme),
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mesure la prime pour être moins impacté par le réchauffement climatique, et vise à

quantifier l’effet du risque climatique. Cette analyse a été réalisée à l’échelle mondi-

ale: le facteur LME a été calculé à la fois pour des actions mondiales (chapitre 3) et

des obligations mondiales (chapitre 4) avec des données Reuters. Mes résultats dans

la période 2008-2017 donnent un rendement en pourcentage hebdomadaire moyen

pour LME de 0,08 pour les actions et un rendement en pourcentage hebdomadaire

moyen pour LME de 0,01 pour les obligations.

Les modèles factoriels ont fait l’objet de critiques. Harvey et al. (2016) souti-

ennent qu’une statistique t supérieure à 2,0 n’est pas suffisante pour accepter un

nouveau facteur et proposent un obstacle plus élevé de 3,0. Suivant cette règle, la

plupart des facteurs découverts seraient faux. Leurs arguments sont les suivants:

a) Le taux de découverte d’un vrai facteur a probablement diminué, b) la quantité

de données est limitée et c) le coût de “data mining” a considérablement diminué.

Cependant, ils admettent qu’un facteur développé à partir des “first principles” de-

vrait avoir un seuil de statistique t plus bas qu’un facteur découvert à partir d’un

exercice empirique. Feng et al. (2020) proposent un modèle pour évaluer la con-

tribution de tout nouveau facteur. Lorsqu’on applique le modèle à un ensemble de

facteurs récemment découverts, la plupart d’entre eux se révèlent redondants par

rapport aux facteurs existants et seuls quelques-uns ont un pouvoir explicatif statis-

tique. L’argument principal est le suivant: un nouveau facteur doit contribuer à

la “cross-section” par rapport à l’univers entier des facteurs existants. Le modèle

proposé par Feng et al. (2020) vise à devenir un concurrent direct du modèle plus

établi de Gibbons, Ross et Shanken (1989) qui est actuellement utilisé par la littéra-

ture sur l’évaluation des actifs pour juger de la performance du modèle. Le modèle

de Gibbons, Ross et Shanken (1989) valide l’utilisation du facteur GMC dans tous les

cas. En ce qui concerne le facteur LME, son inclusion n’empire jamais la description

des rendements moyens des actions ou des obligations; néanmoins, il est intéres-

sant pour les praticiens de la finance et les législateurs d’avoir un aperçu de l’effet

du réchauffement climatique sur les rendements des actions et des obligations. Par

conséquent, dans l’esprit de Fama et French (2015) j’orthogonalise et garde LME

exactement comme ils l’ont orthogonalisé et gardé HML dans le modèle à cinq fac-

teurs.
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Positionnement par rapport à la littérature existante

Si les investisseurs sont réticents à prendre des risques et tentent de minimiser le

risque avec les méthodes proposées par la “modern portfolio theory”, alors les marchés

financiers seront affectés par la minimisation du risque. Le modèle d’évaluation des

actifs (MEDAF) incorpore l’un des principes clés de la théorie moderne du porte-

feuille, la diversification, et se concentre sur la partie du risque d’un actif qui ne peut

être éliminé par la diversification: le risque systématique. Le bêta mesure la sensibil-

ité d’un titre ou d’un portefeuille aux mouvements du marché et fournit une mesure

du risque systématique. Suite au MEDAF, de nouveaux types de risques systéma-

tiques, par exemple ceux proposés par Fama et French (1993), ont été inclus dans les

modèles qui tentent d’expliquer le “cross-section” des rendements boursiers.

Le MEDAF (et les modèles ultérieurs) est construit autour de deux des dogmes

de la finance de marché. Le premier stipule que les investisseurs détenant des actifs

plus risqués devraient percevoir un rendement attendu plus élevé comme une com-

pensation pour prendre plus de risques: “les cours des actions doivent s’ajuster pour

offrir des rendements plus élevés là où plus de risque est perçu pour garantir que

toutes les valeurs sont détenues par quelqu’un” ( Malkiel, 1982). Dans le cadre du

MEDAF, le risque qui est rémunéré par les marchés n’est pas le risque total mais le

risque systématique. Le deuxième dogme concerne les marchés efficients sur le plan

informationnel: les théoriciens du marché efficients affirment qu’à “tout moment les

prix reflètent pleinement toutes les informations disponibles” (Fama, 1970).

Les quatre chapitres présentés dans cette thèse de doctorat fournissent des preuves

empiriques contre le premier dogme. Ce n’est pas la première fois que cela se pro-

duit. Les tests du MEDAF ont montré que “les actions à faible risque gagnent des

rendements plus élevés et les actions à haut risque gagnent des rendements in-

férieurs à ce que la théorie prédit ... La divergence entre la théorie et l’évidence

est encore plus frappante à court terme. Pendant de courtes périodes, il peut ar-

river que le risque et le rendement soient liés négativement” (Malkiel, 1982). Des

études plus récentes (Frazzini et Pedersen, 2013), publiées dans le Journal of Finan-

cial Economics, confirment également ces résultats pour plusieurs classes d’actifs et

pas seulement pour les actions.



11

L’évidence empiriques montre que le dogme risque élevé = rendement élevé

oscille. Il n’est donc pas surprenant que les facteurs de risque systématiques mis

en avant dans cette thèse — politique bas carbone (prix du carbone EU-ETS) et

réchauffement climatique (événements climatiques extrêmes) — présentent une re-

lation risque-rendement qui est cohérente avec les études empiriques mentionnées

ci-dessus. Nous devons donc considérer une hypothèse auxiliaire qui est cohérente

avec l’observation selon laquelle, parfois, un risque élevé s’accompagne d’un ren-

dement élevé, mais l’équivalence risque élevé = rendement élevé est loin d’être

une loi de la nature. En d’autres termes, cette hypothèse auxiliaire doit être co-

hérente avec l’énoncé “les rendements des entreprises à petite capitalisation sont en

moyenne plus élevés que ceux des entreprises à grande capitalisation”, mais aussi

avec l’énoncé “les rendements des entreprises vertes (exonérées de l’EU-ETS) sont

en moyenne plus élevés que ceux des entreprises carbone (assujettis à l’EU-ETS)”

et l’énoncé “les rendements des entreprises peu impactées par les évènements cli-

matiques extrêmes sont en moyenne plus élevés que les rendements des entreprises

plus impactées par les évènements climatiques extrêmes”.

Je pense que les anticipations concernant les rendements futurs peuvent jouer ce

rôle. Une entreprise à petite capitalisation a plus de marge de croissance qu’une en-

treprise à grande capitalisation et les anticipations des rendements d’une entreprise

à petite capitalisation sont en moyenne plus élevées que les anticipations des rende-

ments d’une entreprise à grande capitalisation. En outre, une entreprise verte (une

entreprise qui, dans mon cadre, n’est pas ciblée par la Commission européenne)

a plus de marge de croissance qu’une entreprise carbone (une entreprise ciblée) à

une époque de changement climatique et de régulation climatique. Là encore, une

entreprise peu impactée par les évènements climatiques extrêmes, c’est-à-dire une

entreprise qui opère dans des pays peu impactées par les évènements climatiques

extrêmes (les effets du réchauffement climatique ne sont pas également répartis), a

plus de marge de croissance qu’une entreprise plus impactée par les évènements

climatiques extrêmes, c’est-à-dire une entreprise qui opère dans des pays plus im-

pactées par les évènements climatiques extrêmes, à une époque de réchauffement

climatique progressif.

Les résultats des quatre chapitres sont cohérents avec l’hypothèse selon laquelle
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les rendements sont entièrement déterminés par les anticipations des investisseurs.

Mes résultats pour la mesure du risque de transition bas-carbone pour les stocks

peuvent être liés, quoique avec quelques différences, avec ceux de Garvey, Iyer et

Nash (2018) et d’In, Park et Monk (2019). Ces études suggèrent que les portefeuilles

avec une position longue sur des actions à faible intensité d’émission et avec une

position courte sur des actions à forte intensité d’émission génèrent un “abnormal

return” positif. En revanche, Bolton et Kacperczyk (2020a) constatent qu’il existe

une prime carbone, et non une prime verte, qui est liée au niveau total des émissions

des entreprises et à l’évolution annuelle des émissions des entreprises, mais pas à

l’intensité des émissions. Les résultats de Bolton et Kacperczyk (2020a) pour les

rendements boursiers américains sont contredits par un article rédigé par les mêmes

auteurs: Bolton et Kacperczyk (2020b). De Angelis et al. (2020) rapportent que le

“green investing” encourage les entreprises à réduire leurs émissions de gaz à effet

serre en augmentant leur coût du capital: le doublement des actifs sous gestion par

des investisseurs ayant des préférences environnementales induit une baisse de 5%

de l’intensité carbone des entreprises. Ilhan et al. (2020) constatent que le coût de la

protection par le biais des options contre le “downside risk” est plus élevé pour les

entreprises à forte intensité carbone. Hsu, Li et Tsou (2020) constatent également que

les entreprises produisant plus d’émissions sont associées à des rendements plus

élevés ; cependant, ils prennent en compte toutes les émissions toxiques, définies

comme la somme des émissions de tous les types de produits chimiques des usines

des entreprises. En un mot, les preuves sont mitigées.

Ma mesure du risque de transition bas-carbone diffère de la littérature ci-dessus

car elle n’aborde pas la relation entre les rendements et les niveaux d’émission ou

l’intensité des émissions. Le raisonnement qui sous-tend GMC est le suivant: si

l’on considère uniquement la part des investissements traditionnels, c’est-à-dire les

investissements qui ne sont pas déterminés par les préférences environnementales

(les investissements ESG représentent environ un tiers des actifs sous gestion et le

E n’est que d’environ 9 per cent du total des actifs sous gestion), alors le niveau

des émissions totales (ou l’intensité des émissions ou la variation annuelle des émis-

sions) n’est pas un critère d’évaluation du rendement financier si personne (i.e. un
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gouvernement) ne demande de payer ces émissions. En d’autres termes, une en-

treprise avec un niveau d’émissions égal à Y mais à qui on ne demande pas de payer

pour Y, c’est-à-dire qu’elle ne participe pas à l’EU-ETS (dans mon cadre elle s’agit

donc d’une entreprise verte), apportera (ceteris paribus) une prime par rapport à

une entreprise dont le niveau d’émissions est également égal à Y mais qui est ap-

pelée à payer pour Y, c’est-à-dire qu’elle participe à l’EU-ETS (dans mon cadre c’est

donc une entreprise carbone). Cela est particulièrement vrai lorsque la liste des par-

ticipants est révisée sur la base de phases (phases EU-ETS).

Je ne nie pas que les clients et les investisseurs (gestionnaires d’actifs) ont des

préférences éthiques, comme tout le monde. Néanmoins, les préférences éthiques

sur les marchés financiers ont une limite de temps: un client peut demander à son

gestionnaire d’actifs d’investir dans des entreprises vertes, mais après une période

de mauvais résultats, le client écartera ses préférences éthiques et demandera au

gestionnaire d’actifs d’allouer son épargne dans une manière plus traditionnelle.

D’autre part, le gestionnaire d’actifs a intérêt à se désengager des actions et des obli-

gations vertes en cas de sous-performance, car le gestionnaire d’actifs ne percevra

aucune commission de performance. En un mot, les préférences éthiques doivent

être accompagnées d’un rendement financier. C’est pourquoi je mets l’accent sur les

rendements plutôt que sur les préférences éthiques, ce que je ne nie pas. Les con-

clusions du deuxième chapitre suivent la même logique, mais l’objet de l’analyse est

les obligations et non les actions. La littérature avec laquelle je peux comparer mes

résultats est très rare. Delis et al. (2019) constatent qu’après 2015, les banques ont

augmenté les “loan spreads” aux entreprises de combustibles fossiles exposées au

risque de politique climatique, augmentant ainsi leur coût de la dette. Si ces résul-

tats semblent contredire les miens, il faut noter que les spreads de crédit n’ont pas

augmentés avant 2015 et que les prêts ne sont pas cotés.

Il n’y a pas de littérature disponible avec laquelle je puisse comparer les ré-

sultats des chapitres trois et quatre. Cependant, les résultats sont cohérents avec

l’hypothèse selon laquelle les rendements sont entièrement déterminés par les an-

ticipations des investisseurs. Étant donné que les effets du réchauffement clima-

tique ne sont pas également répartis dans le monde, il est plausible que les investis-

seurs vendent des actions d’entreprises qui opèrent dans des pays (ou parties de
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pays) qui sont plus exposés aux phénomènes climatiques extrêmes ou qui opèrent

dans des pays (ou des parties de pays) qui sont attendus être plus exposés aux

phénomènes climatiques extrêmes. En retour, cela affecte les “capital gains" et les

rendements. Ainsi, un portefeuille avec une position longue sur des entreprises

qui sont en moyenne moins impactées par les événements climatiques extrêmes,

et une position courte sur des entreprises qui sont en moyenne plus impactées par

les événements climatiques extrêmes, génère des retours positifs. Les données satel-

litaires peuvent être considérées comme une alternative au calcul que j’ai effectué

des pertes liées au réchauffement climatique agrégées au niveau des pays. Néan-

moins, ce dernier fournit une approximation de premier niveau qui, dans un monde

extrêmement interconnecté et globalisé, peut s’avérer efficace. Par exemple, une en-

treprise cotée au NYSE avec son siège social et la plupart de ses usines dans l’État de

New York peut ne pas être directement touchée par une tempête en Louisiane, mais

l’événement météorologique extrême peut avoir un impact sur la même entreprise

via sa chaîne d’approvisionnement ou via les dynamiques de demande. Dans cette

optique, les résultats pour LME représentent une approximation et il y a sûrement

de la place pour une amélioration même si les résultats sont économiquement et

statistiquement significatifs.

Carbon stress-test et climate stress-test

Une autre innovation méthodologique de la thèse de doctorat amène à la fois sur le

développement d’un test de stress carbone et d’un test de stress climatique. Le “car-

bon stress test” a été conçu pour montrer l’impact d’un prix du carbone plausible

mais plus sévère sur les valeurs financières, tandis que le “climate stess test” a été

conçu pour montrer l’impact de phénomènes climatiques plausibles mais plus ex-

trêmes sur les rendements des actions et des obligations. Dans l’analyse des risques

financiers, un stress-test est caractérisé par quatre caractéristiques essentielles (Borio,

Drehmann, & Tsatsaronis, 2014): un ensemble d’expositions au risque, un scénario

qui définit les chocs exogènes qui stressent les expositions, un modèle qui met en

relation les chocs avec leur répercussions et une mesure de ces répercussions. La

littérature récente a proposé les stress-tests comme cadre d’évaluation des risques
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liés au changement climatique: la Bank of England Prudential Regulation Author-

ity (2015) suggère une intégration des facteurs de risque du changement climatique

dans les techniques de stress-tests standard, Zenghelis et Stern (2016) encouragent

les entreprises financières et les entreprises de combustibles fossiles à entreprendre

des tests de résistance pour évaluer leur “viabilité future par rapport aux différents

prix et réglementations du carbone” (p. 9), Schoenmaker et van Tilburg (2016) ap-

pellent à, comme prochaine étape, le développement de “tests de résistance pour

avoir une meilleure image de l’exposition du secteur financier”(p. 7), et la Banque

mondiale a également pris cette direction (Fay et al., 2015). Au-delà de ce support

académique, en France, la récente loi n◦ 2015-992 (article 173) relative à la transition

énergétique pour la croissance verte, promulguée juste avant la COP 21 à Paris, fait

référence aux “climate change risk stress tests”.

Le reste de l’introduction présente les quatre chapitres de la thèse.

Chapitre 1. L’impact des politiques bas carbone sur le rende-

ment des actions

L’objectif de ce chapitre est d’étudier l’impact d’une politique bas carbone sur la

valeur des actifs financiers, en particulier les rendements actionnaires. Plus pré-

cisément, nous cherchons à comprendre et à expliquer l’impact d’une politique eu-

ropéenne particulière, la directive 2003/87/CE sur laquelle repose l’EU-ETS, sur les

rendements des actions européennes.

La directive 2003/87 / CE est à l’origine du système d’échange de quotas d’émission

de l’Union européenne (EU-ETS). L’EU-ETS est un instrument fondé sur le marché,

lancé en tant que projet pilote en 2005, dont l’objectif est de réduire les émissions

de gaz à effet de serre (GES) dans tous les pays de l’Union européenne (UE) ainsi

qu’en Islande, au Lichtenstein et en Norvège. Le projet pilote de trois ans (2005-

2007), phase I, a été suivi d’une phase II de quatre ans (2008-2012) et d’une phase

III de sept ans (2013-2020). En 2020, à l’issue de la phase III, les émissions cou-

vertes par l’EU-ETS, environ 45% des GES de l’UE, sont attendues autour de 21%
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de moins qu’au début du projet pilote (2005). Depuis le début de la phase III, l’EU-

ETS couvre plus de 11000 installations comprenant la production d’électricité et de

chaleur, les raffineries de pétrole, l’aviation commerciale et la production d’acier,

de fer, d’aluminium, de métaux, de ciment, de chaux, de verre, de céramique, de

pâte, papier, carton, acides et produits chimiques organiques en vrac (Commission

européenne, 2015).

L’EU-ETS est un système de plafonnement et d’échange: la Commission eu-

ropéenne a plafonné les émissions de GES à l’échelle de l’UE, qui a été progres-

sivement réduite. Lorsqu’une entreprise appartient à l’un des secteurs participants,

elle est tenue de couvrir ses émissions avec des quotas d’émission (EUA) qui sont

livrés sur le marché primaire, c’est-à-dire qu’ils sont soit mis aux enchères, soit dis-

tribués gratuitement. Par la suite, sur le marché secondaire, le commerce des EUA

permet aux entreprises qui finissent par manquer de quotas d’acheter des unités

supplémentaires.

Ce chapitre utilise un modèle d’asset pricing multifactoriel afin d’étudier l’impact

de la politique bas carbone — la directive 2003/87 / CE à l’origine de l’EU-ETS —

sur les rendements actionnaires des entreprises européennes. Afin d’accomplir cette

tâche, un facteur environnemental, GMC (green minus carbon), est ajouté aux fac-

teurs actionnaires classiques introduits par Fama et French (1993, 2015): SMB (small

minus big), HML (high minus low ), RMW (robust minus weak), CMA (conserva-

tive minus agressive). Ce chapitre apporte plusieurs contributions. Tout d’abord,

c’est la première fois qu’un facteur, GMC, destiné à simuler le facteur de risque lié

à la politique bas carbone, la directive 2003/87/CE dans ce cas, est construit. Le

facteur GMC est obtenu à partir d’un échantillon de 182 entreprises de 19 pays eu-

ropéens opérant dans 35 secteurs: de janvier 2008 à décembre 2018, les rendements

pondérés de 91 entreprises réglementées par la directive 2003/87/CE sont soustrait

aux rendements pondérés de 91 entreprises exemptées par la directive 2003/87/CE

sur laquelle repose l’EU-ETS. Deuxièmement, nous montrons que l’ajout du facteur

GMC améliore les performances du modèle à 5 facteurs en Europe sur la période

2008-2018: nous montrons que, tout comme il existe des tendances dans les rende-

ments moyens liés à la taille, à la rentabilité et à l’investissement, il existe également
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une tendance liée à la participation à l’EU-ETS. Troisièmement, les résultats mon-

trent qu’il y a une prime verte élevée plutôt qu’une prime carbone comme certaines

parties de la littérature ont affirmé, et que cette prime verte est très statistiquement

significative, c’est-à-dire que les actions vertes surperforment les action carbone sur

les 11 ans. De plus, nous suivons la récente vague des stress-tests carbone en pro-

posant un stress-test capable d’indiquer quel est l’impact d’un prix carbone hypothé-

tique sur les rendements des actions: nos résultats montrent les effets d’un plausible

mais plus sévère prix moyen de l’EU-ETS sur les entreprises carbone et sur les en-

treprises vertes pour chaque tranche de capitalisation boursière.

Trois “policy implications” peuvent être tirées de ces contributions. Les deux

premières implications intéressent les praticiens financiers et la troisième intéresse

les législateurs. Premièrement, la présence d’une prime verte sur le marché action-

naire européen dans les années 2008-2018 est une piste de gestion d’actifs utile pour

les praticiens financiers. En d’autres termes, les investissements verts ne peuvent

plus être appréhendés uniquement sous l’angle d’une prise de position éthique: de

nos jours, comme le montre la prime verte, investir dans des entreprises vertes est

un exercice rentable. Deuxièmement, en termes de modèles d’asset pricing, la ver-

sion augmentée du modèle Fama et French (2015) pour les actions est préférable à

l’original, au moins en Europe depuis 2008. Troisièmement, le stress test carbone

proposé, en montrant l’impact moyen sur les rendements actionnaires de différents

scénarios de carbon pricing, fournit des informations utiles aux législateurs en ter-

mes de financement de la transition bas-carbone, i.e. augmenter les entrées de capi-

taux vers les entreprises vertes et les sorties de capitaux des entreprises carbone. Le

scénario à faible choc, par exemple, donnerait un élan supplémentaire à la transition

bas-carbone, sans nuire excessivement aux entreprises carbone.

Chapitre 2. Sur les rendements obligataires à une époque de

changement climatique

L’impact d’un instrument particulier fondé sur le marché, le système d’échange de

quotas d’émission de l’Union européenne (EU-ETS), sur les valeurs financières a

déjà été abordé dans la littérature; néanmoins, les efforts portent principalement sur
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les actions, laissant le champ des obligations en dehors du tableau. L’objectif de

ce chapitre est d’évaluer l’impact de la directive 2003/87/CE, sur laquelle repose

l’EU-ETS, sur les rendements des obligations européennes.

Afin de détecter l’impact d’une politique bas carbone — la directive 2003/87/CE

qui a initié l’EU-ETS — sur les rendements obligataires des entreprises européennes,

le modèle Fama et French (1993), pour la première fois, est utilisé. Aux deux fac-

teurs du marché obligataire proposés par Fama et French (1993), TERM et DEF, un

facteur de participation EU-ETS est ajouté: GMC. Ajouter aux facteurs classiques

un facteur environnemental a déjà été fait dans des recherches menées sur le marché

des actions (Görgen et al., 2017; Oestreich et Tsiakas, 2015; Ravina et Kaffel, 2019).

Cependant, certaines différences dans la construction du facteur environnemental

subsistent. En ce sens, la construction factorielle plus proche de celle présentée ici se

trouve dans Ravina et Kaffel (2019). La logique derrière le facteur GMC est la suiv-

ante: si nous voulons mesurer l’impact de la directive 2003/87/CE avec un facteur,

une possibilité est de prendre toutes les entreprises réglementées par la directive,

d’effectuer une comptabilité carbone pour chaque entreprise, de construire deux

portefeuilles, i.e. un portefeuille haut carbone et un portefeuille bas carbone, puis

prendre les différences des rendements pondérés. Malheureusement, cette opéra-

tion ne nous permettrait pas de découvrir la véritable prime verte (ou carbone) car

les entreprises qui participent à l’EU-ETS sont toutes des entreprises très émettri-

ces en carbone. Cela signifie que, lorsque nous construisons les deux portefeuilles,

le portefeuille bas carbone contiendrait un ensemble d’entreprises qui ne sont que

légèrement moins polluantes que les entreprises de l’autre portefeuille. Le facteur

environnemental qui en résulterait serait biaisé, c’est-à-dire négligeable en termes de

grandeur. Afin de faire face au fait que l’EU-ETS ne couvre que les secteurs haut car-

bone, une alternative consiste à construire le facteur environnemental au moyen de

deux portefeuilles, un portefeuille composé d’entreprises assujetti à l’EU-ETS (que

j’appelle portefeuille “carbone”) et un portefeuille composé d’entreprises exonérées

de l’EU-ETS (que j’appelle portefeuille “vert”). Dans ce contexte, alors que le fac-

teur TERM porte sur le risque commun des rendements obligataires liés aux vari-

ations inattendues des taux d’intérêt et le facteur DEF porte sur le risque commun

des rendements obligataires liés aux changements des conditions économiques qui
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modifient la probabilité de défaut des entreprises, GMC (Green minus Carbon) vise

à simuler le facteur de risque commune des rendements obligataires lié à la poli-

tique bas carbone, la directive 2003/87/CE dans ce cas. La nouvelle composante, le

facteur GMC, est obtenue en soustrayant les rendements pondérés hebdomadaires

du portefeuille d’obligations carbone des rendements pondérés hebdomadaires du

portefeuille d’obligations vertes depuis le début de la phase II (2008) de l’EU-ETS.

Le portefeuille d’obligations carbone est composé de 25 entreprises réglementées

par la directive 2003/87/CE et le portefeuille d’obligations vertes est composé de 25

entreprises exemptées par la directive 2003/87/CE sur laquelle repose l’EU-ETS.

Ce chapitre apporte les contributions suivantes. Premièrement, c’est la première

fois qu’un modèle factoriel est utilisé pour évaluer la sensibilité des rendements obli-

gataires aux politiques bas carbone. La sensibilité des rendements des portefeuilles

obligataires au facteur GMC s’est avérée positive dans le cas des portefeuilles verts

et négative dans le cas des portefeuilles carbone. Plus important encore, les pentes

de GMC sont statistiquement très significatives. Deuxièmement, la valeur moyenne

de GMC elle-même est positive: trouver un GMC positif signifie qu’en Europe, sur

la période 2008-2018, il n’y a pas de prime carbone comme l’affirme certaines pub-

lications, mais plutôt une prime verte. Une telle prime verte confirme que l’EU-

ETS a un effet positif sur le financement de la transition bas-carbone: le début de

la phase II de l’EU-ETS — la date de début de l’étude — coïncide avec des sor-

ties de capitaux des entreprises réglementées par la directive et des entrées de cap-

itaux vers les entreprises exemptées de l’EU-ETS. Troisièmement, il est prouvé que

l’ajout d’un facteur environnemental améliore la performance du modèle à deux

facteurs Fama et French pour les obligations, du moins en Europe à partir de 2008.

Quatrièmement, depuis que la littérature a récemment proposé des stress tests, une

technique développée pour tester la stabilité d’une entité, comme cadre d’évaluation

des risques de changement climatique (Bank of England Prudential Regulation Au-

thority, 2015; Fay et al., 2015; Schoenmaker et van Tilburg, 2016; Zenghelis et Stern,

2016), je suis la récente vague et je propose un stress test carbone capable d’indiquer

l’impact d’un prix moyen hypothétique de l’EU-ETS sur les rendements obligataires.

Les résultats montrent les effets d’un plausible mais plus sévère prix moyen de l’EU-

ETS sur les entreprises carbone et les entreprises vertes.
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Chapitre 3. Evénements climatiques extrêmes et valeurs finan-

cières: évidence empirique du marché des actions

Ce chapitre aborde l’impact des événements climatiques extrêmes sur les valeurs

financières. Plus précisément, nous nous intéressons à la manière dont les change-

ments dans les phénomènes climatiques extrêmes (températures extrêmes, niveaux

de la mer extrêmes et précipitations extrêmes) sont liés aux changements de valeur

des actions. Cette question de recherche a, à notre connaissance, à peine été abordée.

Nous répondons à la question de recherche de l’impact des événements clima-

tiques extrêmes sur les rendements actionnaires grâce à une extension climatique du

modèle à cinq facteurs Fama et French (2015) pour les actions. C’est la première fois

qu’un modèle factoriel est utilisé pour évaluer les implications des changements cli-

matiques sur les rendements actionnaires. Le facteur climatique que nous mettons

en avant, LME (light minus extreme), répond à la nécessité de capturer le facteur

de risque des rendements actionnaires lié au réchauffement climatique associé à des

phénomènes climatiques extrêmes comme les températures extrêmes, les niveaux

extrêmes de la mer et les précipitations extrêmes (Intergovernmental Panel on Cli-

mate Change, 2014). Le facteur climatique est construit à travers deux portefeuilles:

le portefeuille à impact climatique extrême (ECI) et le portefeuille à impact clima-

tique léger (LCI). La procédure de constitution des deux portefeuilles s’appuie sur

une analyse des événements climatiques extrêmes mondiaux sur la période 2008-

2017. Les rendements hebdomadaires pondérés du portefeuille ECI sont ensuite

soustraits des rendements hebdomadaires pondérés du portefeuille LCI. Les ren-

dements à expliquer dans notre cadre sont des rendements excédentaires pondérés

pour six portefeuilles triés en fonction de l’exposition au climat et de la taille (cap-

italisation boursière) prélevés sur un échantillon de 227 entreprises appartenant à

l’indice STOXX 1800 pour lesquelles des données sur la localisation géographique

des actifs fixes était disponible.

En fin de compte, nous constatons que les pentes du nouveau facteur de risque

proposé augmentent progressivement du portefeuille à impact climatique extrême
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au portefeuille à impact climatique léger. De plus, ces résultats sont statistique-

ment très significatifs. Globalement, nous constatons qu’il y a un effet climatique sur

les rendements excédentaires moyens des actions, ce qui confirme notre hypothèse

selon laquelle un facteur de risque systématique, le réchauffement climatique en

l’occurrence, manquait au cadre classique. Cependant, les résultats montrent que

le facteur climatique (LME), tout comme le facteur de valeur (HML), sont absorbés

par les quatre autres facteurs des rendements actionnaire : RM − RF (rendement

excédentaire du marché), SMB (small minus big, le facteur de taille ), RMW (robust

minus weak, le facteur de rentabilité) et CMA (conservative minus agressive, le fac-

teur d’investissement). Ceci est également observé après le calcul de la statistique

GRS, qui montre que l’ajout de LME et HML aux quatre autres facteurs n’améliore

jamais l’efficacité du modèle. Le constat que HML devient redondant dans un mod-

èle à cinq facteurs a déjà été fait par Fama et French, et nous pouvons le confirmer.

En cohérence avec leur analyse, nous proposons finalement un modèle à six facteurs

qui exploite deux facteurs orthogonaux: LMEO (orthogonal LME) et HMLO (or-

thogonal HML). La version orthogonale du modèle CE-FF produit des pentes sur

les quatre facteurs non redondants qui sont les mêmes que dans la version à qua-

tre facteurs du modèle, c’est-à-dire un modèle qui n’emploie que comme variables

explicatives RM − RF, SMB, RMW et CMA, tout en affichant les expositions des

rendements excédentaires aux facteurs HML et LME.

Chapitre 4. Phénomènes climatiques extrêmes et rendements

obligataires

Ce chapitre traite du risque climatique et met en évidence l’impact des événements

climatiques extrêmes sur les rendements des obligations. En particulier, nous nous

intéressons à la manière dont les changements dans les phénomènes climatiques

extrêmes (températures extrêmes, niveaux de la mer extrêmes et précipitations ex-

trêmes) sont liés aux changements de valeur des obligations. Cette question de

recherche a, à notre connaissance, à peine été abordée.
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Nous répondons à la question de recherche de l’impact des événements clima-

tiques extrêmes sur les rendements obligataires au moyen d’une extension clima-

tique du modèle à deux facteurs Fama et French pour les obligations (1993). C’est

la première fois qu’un modèle factoriel est utilisé pour évaluer les implications du

risque climatique sur les rendements obligataires. Le raisonnement se déroule comme

suit: augmenter le modèle à deux facteurs de Fama et French (1993) avec un facteur

climatique revient à affirmer qu’il manque un risque systématique dans le cadre.

Il y a au moins un autre facteur commun qui affecte les rendements obligataires:

le réchauffement climatique. Le facteur climatique, LME (light minus extreme),

répond à la nécessité de capturer le facteur de risque des rendements obligataires

liés au réchauffement climatique représenté ici par des phénomènes climatiques

extrêmes comme les températures extrêmes, les niveaux extrêmes de la mer et les

précipitations extrêmes (Intergovernmental Panel on Climate Change, 2014). Le

facteur climatique est obtenu en construisant deux portefeuilles: le portefeuille à

impact climatique extrême et le portefeuille à impact climatique léger. La procé-

dure de constitution des deux portefeuilles s’appuie sur une analyse des événe-

ments climatiques extrêmes mondiaux sur la période 2008-2017. Les rendements

hebdomadaires pondérés des entreprises qui sont plus touchées par le changement

climatique sont ensuite soustraits des rendements hebdomadaires pondéré des en-

treprises légèrement touchées par le changement climatique. Les rendements à ex-

pliquer dans notre cadre sont des rendements excédentaires pondérés pour 27 porte-

feuilles d’obligations triés en fonction de la notation et de l’échéance, de la notation

et du YTM et de l’échéance et du YTM à partir d’un échantillon test de 329 obliga-

tions. Globalement, on constate qu’il y a un effet climatique dans les rendements

moyens excédentaires des obligations, ce qui confirme notre hypothèse selon laque-

lle un facteur de risque systématique, le réchauffement climatique dans ce cas, était

absent du cadre classique.

Les principales contributions de ce chapitre sont le facteur climatique (LME) et

le stress test climatique pour les obligations. Les pentes du nouveau facteur cli-

matique se révèlent statistiquement significatives, ce qui implique que le secteur

financier (universitaires, praticiens financiers) a maintenant des preuves de l’impact
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des événements climatiques extrêmes sur les rendements obligataires. Concrète-

ment, ils sont désormais en mesure de quantifier les implications financières du

réchauffement climatique. De plus, le stress test climatique prend ces résultats et

les place dans un contexte d’incertitude quant aux trajectoires futures du réchauf-

fement climatique. Ces contributions ont des “policy implications” tant pour les

législateurs que pour les praticiens financiers. Un gestionnaire d’actifs peut utiliser

les méthodes présentées dans cet article pour évaluer l’impact des phénomènes cli-

matiques sur les obligations et ainsi reconsidérer son allocation d’actifs et ses futures

stratégies de portefeuille. En parallèle, il est intéressant pour les décideurs politiques

d’avoir un aperçu de l’impact sur les rendements obligataires de phénomènes clima-

tiques extrêmes plausibles mais plus graves, ce que nous avons réalisé avec le stress

test climatique. Les législateurs peuvent tirer parti des résultats des stress test pour

calibrer une réponse (par exemple, un prix du carbone) en lien avec le coût de la

non-action, c’est-à-dire au coût de la non-prise en compte du réchauffement clima-

tique.





25

Introduction

Global warming: genesis, repercussions and mitigation

Global warming is defined as the increase over a 30-year period of the global av-

erage of combined surface air and sea surface temperatures. It is attributed to two

different causes: natural climate variability — natural internal processes or exter-

nal forcings — and human activity that alters the composition of the atmosphere

(Intergovernmental Panel on Climate Change, 2014; United Nations, 1992).

The breaking point of human contribution to climate change is usually identi-

fied with the industrial revolution since economic development is strictly correlated

to energy consumption (Energy Information Administration, 2017; Stern, 2007): the

burning of fossil fuels has increased the concentration of atmospheric carbon diox-

ide (CO2), the most prominent forcing factor, from 280 parts per million (ppm) in

preindustrial times to approximately 400 ppm (Wagner & Weitzman, 2016).

Human induced global warming reached approximately 1◦C above pre-industrial

levels in 2017, increasing at 0.2◦ C per decade (Intergovernmental Panel on Climate

Change, 2018). However, it is very unlikely that past emissions alone raise the global

mean temperature to what is now considered the threshold objective since the COP

21 held in Paris in 2015: 1.5◦ C above pre-industrial levels (United Nations, 2015).

As the Intergovernmental Panel on Climate Change (IPCC, 2018) states it:

“If all anthropogenic emissions (including aerosol-related) were reduced to zero im-

mediately, any further warming beyond the 1◦C already experienced would likely

be less than 0.5◦C over the next two to three decades (high confidence), and likely

less than 0.5◦C on a century time scale (medium confidence), due to the opposing

effects of different climate processes and drivers. A warming greater than 1.5◦C is

therefore not geophysically unavoidable: whether it will occur depends on future

rates of emission reductions”.
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FIGURE 5: Global warming relative to 1850-1900 (IPCC, 2018)

1.5◦C pathways involve limiting cumulative emissions of long-lived greenhouse

gases: the six greenhouse gases covered by the Kyoto Protocol — carbon dioxide

(CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocarbons (HFCs), perflu-

orocarbons (PFCs), sulphur hexafluoride (SF6) — and nitrogen trifluoride (NF3).

In model pathways that aim at no overshoot of the 1.5◦C objective, global anthro-

pogenic emissions decline by about 45% from 2010 levels by 2030, reaching net zero

in around 2050. Assessments suggest a remaining carbon budget of about 420 GtCO2

for a two-thirds chance of limiting warming to 1.5◦C, and of about 580 GtCO2 for an

even chance (IPCC, 2018).

Global warming affects organisms and ecosystems along with human systems

and well-being. It induces raises in land temperatures, in the frequency of heat-

waves, in ocean temperatures, in the frequency of marine heatwaves, in the fre-

quency and intensity of heavy precipitations at a global scale and in the frequency

and magnitude of droughts. A warmer globe increases the risk of losing local species

and the risk of extinction with a number of species projected to lose over half of their

climatically determined geographic range at 1.5◦ warming. Also, a warmer world

increases the risks related to biodiversity-related factors like forest fires, extreme

weather events, and the spread of invasive species, pests and diseases. Human

health is likely to be affected with higher risks for heat-related morbidity and mor-

tality, for ozone-related mortality, for some vector-borne diseases such as malaria

and dengue fever and for denutritions (IPCC, 2018). Global warming will seriously
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FIGURE 6: Total annual anthropogenic GHG emissions by group of
gases 1970-2010 (IPCC, 2014)

affect economic growth (Dell, Jones, & Olken, 2014; Pycroft, Abrell, & Ciscar, 2016),

with reductions in yields of maize, rice, wheat and other cereal crops and a loss of

7-10% of rangeland livestock, productivity (Graff Zivin & Neidell, 2014; Hallegatte,

Fay, Bangalore, Kane, & Bonzanigo, 2015), and financial values.

Limiting warming to 1.5◦C above pre-industrial levels requires a systemic change

in terms of both mitigation of greenhouse gases and adaptation to current climate

levels. Reducing greenhouse gases, namely mitigation, brings upon the decarboniza-

tion of the energy supply but also the lowering of energy use, the demotorization

and decarbonization of transport, energy efficiency, use of smart grids, energy stor-

age technologies and general-purpose technologies. On the other hand, options to

reduce vulnerability and exposure to climate change, namely adaptation, include

“green infrastructure, resilient water and urban ecosystem services, urban and peri-

urban agriculture, and adapting buildings and land use through regulation and

planning” (IPCC, 2018).

Mitigation and adaptation of climate change in accordance with the 1.5◦ objective

requires increased flows of investments in low-emission infrastructure and products.

Two policy instruments move in this direction: market-based instruments and com-

mand and control regulation. Market based instruments bring upon carbon pricing,
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FIGURE 7: Direct and indirect GHG emissions in 2010 (IPCC, 2014)

which can be achieved through a carbon tax or an emission allowance price. Com-

mand and control regulation aims at inducing technological shifts or performance

standards and usually complements carbon pricing in specific areas. Environmen-

tal economics often suggests that market-based instruments, such as the EU-ETS,

permit to cut emissions in a more cost efficient and flexible way than command

and control regulation, as the latter tends to prescribe the same level of activity to

all firms affected by the regulation (Demirel and Kesidou, 2011; Engel, Pagiola, &

Wunder, 2008). Economic theory clearly indicates that, for any given level of emis-

sion abatement, if the firm’s marginal cost of abatement is higher than the market’s

carbon price, then the efficient choice for the firm is to not abate but purchase al-

lowances in a cap and trade scheme. Conversely, for any given level of emission

abatement, when the polluting firm faces a marginal abatement cost lower than the

market’s carbon price, the efficient choice for the firm is to reduce emissions and sell

their permits under a cap and trade scheme (Winebrake, Farrell, & Bernstein, 1995).

Policy instruments along with ah hoc financial instruments (e.g. green bonds)

and the reduction of socially inefficient fossil fuel subsidy regimes help to reduce
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FIGURE 8: Estimated annualized world mitigation investment
needed to limit global warming to 2◦C or 1.5◦C (2015-2035 in tril-
lions of US Dollars at market exchange rates) from different sources.

(IPCC, 2018)

the demand for carbon-intensive products and services and shift market preferences

away from fossil fuel-based technology. The ultimate aim is to promote a redirection

of financial flows from potentially stranded assets to long-term low-emission assets.

The financing of the ecological transition becomes, then, the main research question

of what has been called climate finance.

Financial needs of the low-carbon transition and PhD research

question

Figure 4 shows the costs of action to address global warming and stay below the 1.5◦

threshold. Required yearly investments have been evaluated at around 2.38 trillion

USD (mean value) up to 2035 just for the energy sector. Who is currently provid-

ing this funding? Buchner et al. (2013) report that, in 2012, funding to mitigation

measures of governments and public financial institutions was around 255 billion

US dollars. On the other hand, Commercial financial institutions, such as banks,

pension funds, life insurance companies, and other funds, while managing over 71

trillion US dollars in assets, contributed to climate change investments only with 22

billion US dollars. For comparison purposes, energy corporations provided 102 bil-

lion US dollars and non-energy corporations provided 66 billions. Even households

contributed more than financial institutions with 33 billion US dollars.
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The above picture constitutes the motivation for this PhD thesis. The main re-

search question can be stated as follows: “Given the financial necessities of the eco-

logical or energetic transition, how can the contribution of the financial institutions

to the fight against climate change be increased?” The four chapters that form this

PhD thesis start from the hypothesis that the participation of commercial financial

institutions to the low-carbon transition is financially rational. Besides any ethical

consideration regarding the obtainment of the ecological transition that the author

surely endorses, taking a stake in the ecological transition is financially profitable.

This hypothesis becomes an argument when it is empirically proven. Throughout

the four chapters I present here, the objective is to provide scientific ground to the

hypothesis of the financial profitability of taking part to the ecological/energetic

transition.

In 2019 the global bond markets outstanding value was about 105.9 trillion dol-

lars while the global equity market capitalisation about 95.0 trillion dollars (SIFMA,

2020). In comparison, the gross market value of exchange traded futures and options

was 9.1 trillion dollars and the gross market value of OTC derivatives was 12.1 tril-

lion dollars in 2019 (BIS, 2019). These values provide an argument for the choice of

the financial instruments under analysis in the four chapters presented in this PhD

thesis: stocks and bonds. Derivatives are left for further research.

Climate change risks: climate risk and low-carbon transition

risk

Global warming connects to the financial sphere by increasing the number of risks

on the market. Academics have partitioned what we can call climate change risks in

two categories. The first category has been labeled “climate risk” (Carney, 2015) and

refers to the link between global warming and natural and human systems. Extreme

climate phenomena like temperature extremes, high sea level extremes, and precip-

itation extremes (Intergovernmental Panel on Climate Change, 2014), are likely to

seriously affect economic growth and the value of financial assets. The second cate-

gory of climate change risks has been labeled “low-carbon transition risk” or “carbon
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risk”. Low-carbon transition risk refers to the cost of the adjustment towards a low-

carbon economy. Hence, it includes all drivers of risk linked to the decarbonisation

of the economy: a) market-based instruments like a carbon tax or an emission al-

lowance price; b) command and control induced technological shifts, e.g. stranded

assets or assets that have suffered from unanticipated or premature write-downs,

devaluations, or conversion to liabilities (Caldecott et al., 2016); and c) market risk,

i.e. market demands for low carbon products (Zhou et al., 2016). The four chapters

of this PhD thesis bring upon both “climate risk” and “transition risk” and explore

their repercussions on the two most widely traded asset classes: stocks and bonds.

In a paper published in 2016, Cook et al. affirm that there is a wide scientific con-

sensus on the effects of anthropogenic emissions on the climate: publishing climate

scientists’ consensus on anthropogenic global warming is in the 90%-100% range.

The question and the importance of consensus does not only concern global warm-

ing but is more far-reaching. A model is a synthesized representation of reality,

whether physical or chemical or economic or financial, etc. The language used in

such representation is mathematical. However, models often oppose each other with

partisans of one representation that battle with partisans of competing representa-

tions. In other words, formalizing a set of statements or assertions, i.e. passing from

verbal day-to-day language to a formalized language like mathematics, does not in-

crease consensus. Given these considerations, the urgency of global warming and

the necessity to find an accord as wide as possible drove the choice to employ a

model broadly used by both the scientific community and, especially, financial prac-

titioners. The factor model of Fama and French (1993, 2015) can be appreciated by

both applied mathematicians and the portfolio managers who dwell in a set of estab-

lished practices and conventions and rely more on daily data feedbacks and analysis

from Bloomberg than complex systems of partial differential equations. The Nobel

prize won by Eugene Fama in 2013 for “empirical analysis of asset prices” reinforces

this choice.

The classical factor models have been amended with two additional factors. A

factor, GMC (green minus carbon), measures the green premium or the premium for

not being affected by carbon pricing. This analysis, which is intended to quantify the

effect of low-carbon transition risk, needed to be carried out in a place where carbon
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pricing exists. This is why Europe and its Exchange Trading System (ETS) has been

preferred over other world locations. The GMC factor has been calculated for both

European stocks (chapter 1) and European bonds (chapter 2) with Bloomberg data.

My findings in the 2008-2018 timeframe indicate an average GMC weekly percent re-

turn of 0.17 for stocks and an average GMC weekly percent return of 0.02 for bonds.

Another factor, which has been named LME (light minus extreme), measures the

premium for being impacted by global warming to a lesser extent, and is intended

to quantify the effect of climate risk. This analysis has been carried out at a global

scale: the LME factor has been calculated for both global stocks (chapter 3) and

global bonds (chapter 4) with Reuters data. My findings in the 2008-2017 timeframe

bring upon an average LME weekly percent return of 0.08 for stocks and an average

LME weekly percent return of 0.01 for bonds.

Factor models have been subject to criticism. Harvey et al. (2016) argue that a t-

statistic greater than 2.0 is not enough to accept a newly proposed factor and propose

a higher hurdle of 3.0. Following this rule, most of the factors discovered would be

false. Their arguments are the following: a) The rate of discovering a true factor has

likely decreased, b) there is a limited amount of data and c) the cost of data mining

has dramatically decreased. However, they admit that a factor developed from first

principles should have a lower threshold t-statistic than a factor discovered from

empirical exercise. Feng et al. (2020) propose a model to evaluate the contribution to

asset pricing of any new factor. When applying the model to a set of recently discov-

ered factors, most of them are shown to be redundant relative to the existing factors

and only a few have statistical explanatory power. The main argument is the follow-

ing: a new factor must contribute to the cross section relative to the entire universe

of existing factors. The model put forward by Feng et al. (2020) aims at becoming a

direct competitor of the more established Gibbons, Ross, and Shanken (1989) model

that is currently used by the asset pricing literature to judge model performance.

The Gibbons, Ross, and Shanken (1989) model validates the use of the GMC factor

in all cases. Regarding the LME factor, its inclusion never worsens the description

of average stock or bond returns; nevertheless, it is of interest for financial practi-

tioners and legislators to have insights into the effect of global warming upon stock

and bond returns. Therefore, in the spirit of Fama and French (2015) I orthogonalize
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and keep LME just as they orthogonalized and kept HML in the five factor model.

Positioning in relation to existing Literature

If investors are risk adverse and try to minimise risk with the methods put forward

by modern portfolio theory, then the financial markets will be affected by risk min-

imisation. The Capital Asset Pricing Model (CAPM) incorporates one of the key

tenets of modern portfolio theory, diversification, and focuses on the part of a se-

curity risk which cannot be eliminated by diversification: systematic risk. The beta

measures the sensitivity of a security or portfolio to market movements and pro-

vides a measure of systematic risk. Following the CAPM, new types of systematic

risks, e.g. Fama and French’s (1993), have been included in the models that try to

explain the cross-section of stock returns.

The CAPM (and later models) is built around two of the dogmas of market fi-

nance. The first one states that investors holding riskier assets should perceive a

higher expected return as a compensation for taking more risk: “stock prices must

adjust to offer higher returns where more risk is perceived to ensure that all secu-

rities are held by someone” (Malkiel, 1982). In the CAPM setting the risk which is

remunerated by the markets is not the total risk but the systematic risk. The second

dogma is informationally efficient markets: efficient market theorists claim that at

“any time prices fully reflect all available information” (Fama, 1970).

The four chapters presented in this PhD thesis provide empirical evidence against

the first dogma. This is not the first time this happens. Tests of the CAPM have

showed that “low-risk stocks earn higher returns and high-risk stocks earn lower re-

turns than the theory predicts...The divergence of theory from evidence is even more

striking in the short run. For some short periods, it may happen that risk and return

are negatively related” (Malkiel, 1982). More recent studies (Frazzini and Pedersen,

2013), published on the Journal of Financial Economics, also confirm these findings

for several asset classes and not just stocks.

Empirical evidence shows that the dogma high risk = high return wavers. It

should be no surprise, then, that the systematic risk factors put forward in this PhD
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thesis — low-carbon policy (EU-ETS carbon price) and global warming (extreme cli-

mate events) — display a risk-return relationship which is consistent with the above

mentioned empirical studies. We need, then, to consider an auxiliary hypothesis

which coheres with the observation that, at times, high risk comes with an high re-

turn but the equivalence high risk = high return is far from being a law of nature.

In other words, this auxiliary hypothesis must cohere with the statement “small cap

firms returns are on average higher that big cap firms returns” but also with the

statement “green (EU-ETS exempt) firms returns are on average higher than carbon

(EU-ETS liable) firms returns” and the statement “light climatic impact firms returns

are on average higher than extreme climatic impact firms returns”.

I believe expectations of future returns can play this role. A small cap firm has

more room for growth than a big cap firm and expectations of the returns of a small

cap firm are on average higher than the expectations of the returns of a big cap firm.

Also, a green firm (a firm which, in my framework, is not targeted by the European

Commission) has more room for growth than a carbon firm (a targeted firm) in a time

of climate change and climate regulation. Again, a light climatic impact firm, i.e. a

firm which operates in light climatic impact countries (global warming effects are

not equally distributed), has more room for growth that an extreme climatic impact

firm, i.e. a firm which operates in extreme climatic impact countries, in a time of

progressive global warming.

Findings of the four chapters are consistent with the hypothesis that returns are

completely determined by investors’ expectations. My results for the measurement

of low-carbon transition risk for stocks can be related, albeit with some differences,

with the ones of Garvey, Iyer, and Nash (2018) and of In, Park and Monk (2019).

These studies suggest that portfolios with a long position in stocks with low emis-

sion intensity and with a short position in stocks with a high emission intensity

generate a positive abnormal return. In contrast, Bolton and Kacperczyk (2020a)

find that there is a carbon premium, and not a green premium, which is related to

the total level of firms’ emissions and year by year change in firms’ emissions but

not to emission intensity. The results of Bolton and Kacperczyk (2020a) for US stock

returns are contradicted by a paper written by the same authors: Bolton and Kacper-

czyk (2020b). De Angelis et al. (2020) report that green investing encourages firms to
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reduce their GHG emissions by raising their cost of capital: the doubling of the assets

under management by investors with environmental preferences induces a drop of

5% of firms’ carbon intensity. Ilhan et al. (2020) find that the cost of option protection

against downside risk is larger for carbon intensive firms. Hsu, Li and Tsou (2020)

also find that firms producing more emissions are associated with higher returns;

however, they account for all toxic emissions, defined as the sum of emissions of all

type of chemicals across firms’ plants. In a nutshell, evidence is mixed.

My measurement of low-carbon transition risk differs from the above literature

since it does not address the relationship between returns and emission levels or

emission intensity. The reasoning behind GMC is the following: if we just consider

the share of traditional investments, i.e. investments that are not determined by en-

vironmental preferences (ESG investments account for about a third of assets under

management and the E is just about 9 per cent of total assets under management),

then the level of total emissions (or emission intensity or the year by year change

in emissions) is not an assessment criterion with respect to financial return if no-

body (i.e. a government) is asking to pay for such emissions. In other words, a firm

with a level of emissions equal to Y but which is not asked to pay for Y, i.e. in my

framework it does not participate in the EU-ETS (it is therefore a green firm), will

carry (ceteris paribus) a premium with respect to a firm with a level of emissions

also equal to Y but which is asked to pay for Y, i.e. it does participate in the EU-ETS

(it is therefore a carbon firm). This holds especially when the list of participants is

revised on a phase (EU-ETS phase) basis.

I do not deny that clients and investors (asset managers) have ethical preferences,

just like everybody else. Nevertheless, ethical preferences in financial markets have

a time limit: a client may ask his asset manager to invest in green firms but after

a period of bad results the client will dismiss his ethical preferences and ask the

asset manager to allocate his savings in a more traditional way. On the other hand,

the asset manager has an interest in divesting from green stocks and bonds if they

underperform because the asset manager won’t receive any performance fee. In a

nutshell, ethical preferences need to be accompanied by financial return. This is

why I put emphasis on returns rather than ethical preferences, which I do not deny.

Findings of chapter two follow the same logic but the object of analysis is bonds and
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not stocks. Literature with which I can compare is very scant. Delis et al. (2019) find

that after 2015 banks increased loan spreads to fossil fuel firms that are exposed to

climate policy risk, thus increasing their cost of debt. While these results seem to

contradict mine, it should be noted that loan spreads have not increased before 2015

and loans are not quoted.

There is no available literature with which I can compare results of chapter three

and four. However, findings are consistent with the hypothesis that returns are com-

pletely determined by investors’ expectations. Given that global warming effects are

not equally distributed around the globe, it is plausible that investors sell stocks of

firms that operate in countries (or parts of countries) that are more exposed to ex-

treme climate phenomena or operate in countries (or parts of countries) which are

expected to be more exposed to extreme climate phenomena. In turn, this affects

capital gains and returns. Hence, a portfolio with a long position in light climatic

impact firms, i.e. firms that on average are less impacted by extreme climate events,

and a short position in extreme climatic impact firms, i.e. firms that on average are

more impacted by extreme climate events, generates positive returns. Satellite data

can be considered an alternative to the calculation I have performed of the aggre-

gated climate related losses at country level. Nevertheless, the latter provides a first

level approximation that in an extremely interconnected and globalised world can

prove to be efficient. For example, a firm listed on the NYSE with headquarters

and most of its plants in the state of New York may not be affected by a storm in

Louisiana directly but the extreme weather event can impact the very same firm via

its supply chain or via demand dynamics. In this light, LME results represent an

approximation and there is surely room for improvement even though the results

are economically and statistically significant.

Climate and Carbon Stress-tests

Another methodological innovation of the PhD thesis brings upon the development

of both a carbon stress test and a climate stress test. The carbon stress test has been

designed to show the impact of plausible but more severe carbon pricing upon fi-

nancial values while the climate stress test has been constructed to show the impact
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of plausible but more extreme climate phenomena upon stock and bond returns.

In financial risk analysis a stress test is characterized by four essential features (Bo-

rio, Drehmann, & Tsatsaronis, 2014): a set of risk exposures subjected to stress, a

scenario that defines the exogenous shocks that stress the exposures, a model that

maps the shocks onto an outcome and a measure of such an outcome. Recent litera-

ture has proposed stress testing as an evaluation framework for climate change risks:

the Bank of England Prudential Regulation Authority (2015) suggests an integration

of climate change risk factors in standard stress-testing techniques, Zenghelis and

Stern (2016) encourage financial corporations and fossil fuel companies to under-

take stress tests to evaluate their “future viability against different carbon prices and

regulations” (p. 9), Schoenmaker and van Tilburg (2016) call for, as a next step, the

developing of “carbon stress tests to get a better picture of the exposure of the finan-

cial sector” (p. 7), and the World Bank has also taken this direction (Fay et al., 2015).

Besides these scientific endorsements, in France the recent law n◦ 2015-992 (article

173) relative to the energy transition for green growth, promulgated just before the

COP 21 in Paris, makes reference to climate change stress tests.

The rest of the introduction introduces the four chapters.

Chapter 1. The impact of low-carbon policy on stock returns

The objective of this chapter is to study the impact of low-carbon policy upon the

value of financial assets, particularly stock returns. Specifically, we seek to under-

stand and explain the impact of one particular European policy, the 2003/87/CE

directive upon which the EU-ETS is based, upon European stock returns.

The 2003/87/CE directive is at the origin of the European Union Emission Trad-

ing System (EU-ETS). The EU-ETS is a market based instrument, launched as a pilot

project in 2005, whose objective is to reduce greenhouse gases (GHG) emissions in

all European Union (EU) countries as well as Iceland, Lichtenstein and Norway. The

three-year (2005-2007) pilot project, phase I, has been followed by a four-year (2008-

2012) phase II and a seven-year (2013-2020) phase III. In 2020, at the end of phase

III, emissions covered by the EU-ETS, around 45% of the EU’s GHG, are expected
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to be 21% lower than at the start of the pilot project (2005). From the beginning of

phase III, the EU-ETS covers more than 11,000 installations consisting of power and

heat generation, oil refineries, commercial aviation, and production of steel, iron,

aluminium, metals, cement, lime, glass, ceramics, pulp, paper, cardboard, acids and

bulk organic chemicals (European Commission, 2015).

The EU-ETS is a cap and trade system: the European Commission has put a cap

on EU-wide GHG emissions which has been progressively reduced. When a firm

belongs to one of the participating sectors, it is required to cover its emissions with

emission allowances (EUAs) which are delivered on the primary market, i.e they

are either auctioned or distributed free of charge. Subsequently, in the secondary-

market, EUAs trading enables firms that eventually run short of allowances to pur-

chase additional units.

This chapter uses a multi-factor asset pricing model in order to study the im-

pact of low-carbon policy — the 2003/87/CE directive which originated EU-ETS —

upon the stock returns of European firms. In order to accomplish this task an envi-

ronmental factor, GMC (green minus carbon), is added to the classical stock market

factors introduced by Fama and French (1993, 2015): SMB (small minus big), HML

(high minus low), WMR (weak minus robust), CMA (conservative minus aggres-

sive). This chapter makes several contributions. Firstly, it is the first time that a

factor, GMC, meant to mimic the risk factor in returns related to low-carbon policy,

the 2003/87/CE directive in this case, is constructed. The GMC factor is obtained

by means of a sample of 182 firms from 19 European countries operating in 35 sec-

tors: from January 2008 to December 2018 the value-weight returns of 91 firms reg-

ulated by the 2003/87/CE directive are subtracted from the value-weight returns of

91 firms exempted by the 2003/87/CE directive upon which the EU-ETS is based.

Secondly, we provide evidence that the addition of the GMC factor improves the

performance of the 5 factor model in Europe in the 2008-2018 time span: we show

that, just as there are patterns in average returns related to size, profitability and

investment, there is also a pattern related to EU-ETS compliance. Thirdly, results

show that there is a high green premium rather than a carbon premium as it was

asserted by parts of the literature, and that this green premium is highly statistically

significant, i.e. green stocks outperform on average carbon stocks over the 11-year
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span. Additionally, we follow the recent carbon stress test trend by putting forward

a stress test able to indicate what is the impact of a hypothetical EU-ETS price upon

stock returns: our results show the effects of a plausible but more severe average

EU-ETS price on both carbon firms and green firms for each market cap tranche.

Three policy implications can be derived from these contributions. The first two

implications are of interest to financial practitioners and the third is of interest to

legislators. Firstly, the presence of a green premium in the European stock market in

the years 2008-2018 is a useful asset management insight for financial practitioners.

In other words, green investments can no longer be understood solely from the point

of view of taking an ethical stand: nowadays, as the green premium shows, invest-

ing in green firms is a profitable exercise. Secondly, in terms of asset pricing models,

the augmented version of the Fama and French (2015) model for stocks is preferable

to the original one, at least in Europe since 2008. Thirdly, the low-carbon transition

risk stress test put forward, by showing the average impact on stock returns of var-

ious scenarios of carbon pricing, provides useful insights to legislators in terms of

the financing of low-carbon transition, i.e. increasing capital inflows towards green

firms and capital outflows from carbon firms. The low-shock scenario, for example,

would provide an additional boost to the low-carbon transition, without harming

excessively carbon firms.

Chapter 2. On bond returns in a time of climate change

The impact of a particular market-based instrument, the European Union Emis-

sion Trading System (EU-ETS), upon financial values has already been addressed

by the literature; nevertheless, efforts pertain primarily to stocks, leaving the bonds

field out of the picture. The objective of this chapter is to assess the impact of the

2003/87/CE directive, upon which the EU-ETS is based, on European bond returns.

In order to detect the impact of low-carbon policy — the 2003/87/CE directive

which initiated EU-ETS — upon the bond returns of European firms, a Fama and

French (1993) framework, for the first time, is employed. Along with the two bond
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market factors proposed by Fama and French (1993), TERM and DEF, an EU-ETS

participation factor is added: GMC. Supplementing classical factors with an envi-

ronmental factor has already been done in research carried out on the stock market

(Görgen et al., 2017; Oestreich and Tsiakas, 2015; Ravina and Kaffel, 2019). How-

ever, some differences in the construction of the environmental factor remain. In

this sense, the factor construction closer to the one presented here is found in Ravina

and Kaffel (2019). The rationale behind the GMC factor is the following: if we want

to measure the impact of the 2003/87/CE directive with a factor, one possibility is

to take all firms regulated by the policy, perform carbon accounting for each firm,

construct two portfolios, i.e. a high-carbon portfolio and a low-carbon portfolio,

and then take the differences of the value-weight returns. Unfortunately, this op-

eration wouldn’t permit us to uncover the real green (or carbon) premium because

the firms that take part in the EU-ETS are all high-carbon firms. This means that,

when we build the two portfolios, the low-carbon portfolio would contain a set of

firms which are only slightly less polluting than firms in the other portfolio. The

resulting environmental factor would be biased, i.e. negligible in terms of magni-

tude. In order to cope with the fact that the EU-ETS covers only high-carbon sectors,

an alternative is to construct the environmental factor by means of two portfolios,

a portfolio composed of EU-ETS liable firms (which I call “carbon" portfolio) and a

portfolio composed of EU-ETS exempt firms (which I call “green" portfolio). In this

context, while TERM proxies for the common risk in bond returns related to unex-

pected changes in interest rates and DEF mimics the risk factor in returns related to

shifts in economic conditions that change the likelihood of default, GMC (Green mi-

nus Carbon) is meant to mimic the risk factor in returns related to low-carbon policy,

the 2003/87/CE directive in this case. The new component, the GMC factor, is ob-

tained by subtracting the weekly value-weight carbon bond portfolio returns from

the weekly value-weight green bond portfolio returns from the beginning of Phase

II (2008) of EU-ETS. The carbon bond portfolio is composed of 25 firms regulated

by the 2003/87/CE directive and the green bond portfolio is composed of 25 firms

exempted by the 2003/87/CE directive upon which the EU-ETS is based.

This chapter makes the following contributions. Firstly, it is the first time that

a factor model is employed to assess the sensitivity of bond returns to low-carbon
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policy. The sensitivity of bond portfolio returns to the GMC factor has been found to

be positive in the case of green portfolios and negative in the case of carbon portfo-

lios. Most importantly, slopes on GMC are highly statistically significant. Secondly,

the average value of GMC itself is positive: finding a positive GMC means that in

Europe, in the 2008-2018 time-span, there is no carbon premium as some of the lit-

erature asserts, but rather a green premium. Such a green premium confirms that

the EU-ETS has a positive effect in the financing of the low-carbon transition: the

beginning of phase II of EU-ETS — the start date of the study— coincides with both

capital outflows from EU-ETS liable firms and capital inflows to EU-ETS exempt

firms. Thirdly, evidence is found that the addition of an environmental factor im-

proves the performance of the Fama and French two factor model for bonds, at least

in Europe from 2008 onwards. Fourthly, since the literature has recently proposed

stress testing, a technique developed for testing the stability of an entity, as an eval-

uation framework for climate change risks (Bank of England Prudential Regulation

Authority, 2015; Fay et al., 2015; Schoenmaker and van Tilburg, 2016; Zenghelis and

Stern, 2016), I follow the recent carbon stress test trend and put forward a stress test

that is able to indicate the impact of a hypothetical EU-ETS average price upon bond

returns. The results show the effects of a plausible, but more severe, average EU-ETS

price on both carbon firms and green firms.

Chapter 3. Extreme climate events and financial values: em-

pirical evidence from the stock market

This chapter brings upon the impact of extreme climate events upon financial values.

Specifically, we are interested in the way changes in extreme climate phenomena

(temperatures extremes, high sea levels extremes, and precipitation extremes) are

related to changes in the value of stocks. This research question has, to the best of

our knowledge, scarcely being addressed.

We answer the research question of the impact of extreme climate events upon

stock returns by means of a climatic extension of the Fama and French (2015) five-

factor model for stocks. This is the first time a factor model is employed for assessing
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the implications of climate changes upon stock returns. The climatic factor we put

forward, LME (light minus extreme), responds to the need of capturing the risk

factor in stock returns related to global warming which is associated with extreme

climate phenomena like temperature extremes, high sea levels extremes, and precip-

itation extremes (Intergovernmental Panel on Climate Change, 2014). The climatic

factor is built by means of two portfolios: the extreme climatic impact (ECI) port-

folio and the light climatic impact (LCI) portfolio. The procedure to form the two

portfolios leverages an analysis of global extreme climate events in the 2008-2017

timeframe. Weekly value-weighted returns of the ECI portfolio are then subtracted

from the weekly value-weighted returns of the LCI portfolio. The returns to be ex-

plained in our setting are value-weighted excess returns for six portfolios sorted on

climate exposure and size (market capitalization) taken from a sample of 227 firms

belonging to the STOXX 1800 index for which data on geographical fixed asset loca-

tion was available.

In the end, we find that the slopes on the newly proposed risk factor in stock

returns gradually increase from the extreme climate impact portfolio to the light cli-

mate impact portfolio. Furthermore, these results are statistically highly significant.

Overall, we find that there is a climate effect in average excess stock returns, which

confirms our hypothesis that a systematic risk factor, global warming in this case,

was missing from the classical framework. However, results show that the climate

factor (LME), just like the value factor (HML), are absorbed by the remaining four

factors in stock returns: RM − RF (market’s excess return), SMB (small minus big,

the size factor), RMW (robust minus weak, the profitability factor) and CMA (con-

servative minus aggressive, the investment factor). This is also observed after com-

puting the GRS statistic, which show that adding LME and HML to the other four

factors never improves the effectiveness of the model. The observation that HML be-

comes redundant in a five-factor model has already been made by Fama and French,

and we can confirm it. Coherently with their analysis, we ultimately propose a six-

factor model which leverages two orthogonal factors: LMEO (orthogonal LME) and

HMLO (orthogonal HML). The orthogonal version of the CE-FF model produces

slopes on the four non-redundant factors that are the same as in the four factor ver-

sion of the model, i.e. a model that employs only as explanatory variables RM − RF
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, SMB, RMW, and CMA, while, at the same time, showing the exposures of the left-

hand side portfolios to the value (HML) and the climate (LME) factor.

Chapter 4. Extreme climate phenomena and bond returns

This chapter addresses climate risk and brings upon the impact of extreme climate

events upon bond returns. Particularly, we are interested in the way changes in

extreme climate phenomena (temperatures extremes, high sea levels extremes, and

precipitation extremes) are related to changes in the value of bonds. This research

question has, to the best of our knowledge, scarcely being addressed.

We answer the research question of the impact of extreme climate events upon

bond returns by means of a climatic extension of the Fama and French two-factor

model for bonds (1993). This is the first time a factor model is employed for as-

sessing the implications of climate risk upon bond returns. The reasoning proceeds

as follows: augmenting the Fama and French two-factor model (1993) with a cli-

matic factor amounts to assert that a systematic risk is missing from the framework.

There is, at least, another common factor that affects bond returns: global warming.

The climatic factor, LME (light minus extreme), responds to the need of capturing

the risk factor in bond returns related to global warming which is represented here

by extreme climate phenomena like temperature extremes, high sea levels extremes,

and precipitation extremes (Intergovernmental Panel on Climate Change, 2014). The

climatic factor is obtained by building two portfolios: the extreme climatic impact

portfolio and the light climatic impact portfolio. The procedure to form the two

portfolios leverages an analysis of global extreme climate events in the 2008-2017

timeframe. Weekly value weight returns of firms which are extremely impacted by

climate change are then subtracted from the weekly value weight returns of firms

lightly impacted by climate change. The returns to be explained in our setting are

value-weighted excess returns for 27 bond portfolios sorted on rating and duration,

rating and yield to maturity and duration and yield to maturity formed from a test

sample of 329 bonds. Overall, we find that there is a climate effect in average excess
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bond returns, which confirms our hypothesis that a systematic risk factor, global

warming in this case, was missing from the classical framework.

The main contributions of this chapter are the climatic factor and the bonds cli-

mate stress test. The slopes on the novel climatic factor are found to be statistically

significant which implies that the financial sector (academics, financial practition-

ers) has now evidence of the impact of extreme climate events upon bond returns.

In practical terms, they are now able to quantify the financial implications of global

warming. Additionally, the climate stress test takes these findings and puts them in

a context of uncertainty regarding future pathways of global warming. These con-

tributions carry policy implications for both legislators and financial practitioners.

An asset manager can use the methods presented in this paper to assess the im-

pact of climate phenomena upon bonds and thus reconsidering his asset allocation

and his future portfolio strategies. In parallel, it is of interest to policy makers to

have insights into the impact on bond returns of plausible but more severe extreme

climate phenomena, which is something we achieved with the climate stress test.

Legislators can leverage stress test results to calibrate a policy response (e.g. carbon

pricing) which is in line with the cost of non-action, i.e. the cost of not addressing

global warming.
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Chapter 1

The impact of low-carbon policy on

stock returns

1.1 Introduction

Climate change risks can be partitioned in two components: the risk associated with

the impacts of global warming on natural and human systems and the risk origi-

nating from anthropogenic climate change mitigation. Literature designates the first

component with the label “climate risk” (Carney, 2015): changes in extreme climate

phenomena — e.g. temperature extremes, high sea levels extremes, precipitation ex-

tremes (Intergovernmental Panel on Climate Change, 2014) —, are likely to cause se-

rious damages to agriculture, coastal zones, human health, and affect growth (Dell,

Jones, & Olken, 2014; Pycroft, Abrell, & Ciscar, 2016), productivity (Graff Zivin &

Neidell, 2014; Hallegatte, Fay, Bangalore, Kane, & Bonzanigo, 2015), the value of fi-

nancial assets and insurance claims. Addressing climate change implies greenhouse

gases (GHG) mitigation: the process of adjustment towards a lower carbon econ-

omy carries a cost that the literature refers to as “transition risk” or “carbon risk”

(Caldecott & McDaniels, 2014).

Low-carbon transition risk is a multi-faceted concept. It includes all drivers of

risk linked to the decarbonisation of the economy: pollution reducing market-based

instruments (a carbon price: a carbon tax, an auction price, or a secondary market

price); command and control induced technological shifts aimed at a reduction of

CO2 emissions, e.g. stranded assets or assets that have suffered from unanticipated

or premature write-downs, devaluations, or conversion to liabilities (Caldecott et
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al., 2016); and market risk, i.e. market demands for low carbon products (Zhou

et al., 2016). Market based instruments and command and control regulation find

their genesis in low-carbon policy. The objective of this paper is to study the im-

pact of low-carbon policy upon the value of financial assets, particularly stock re-

turns. Specifically, we seek to understand and explain the impact of one particular

European policy, the 2003/87/CE directive upon which the EU-ETS is based, upon

European stock returns.

This research question has been partly addressed by the literature with contra-

dictory results. In the context of the electricity sector Bernardini, Di Giampaolo,

Faiella, and Poli (2019) propose a multi-factor model to investigate the effect of car-

bon risk on the stock returns of 13 European electric utilities finding a low-carbon

premium. Zhu, Tang, Peng, and Yu (2018) use a multi-factor market model specifica-

tion and a panel quantile regression in order to understand the effects of the EU-ETS

carbon price on the stock returns of European carbon intensive industries from 2005

to 2017, finding a significant negative impact on the stock market during phases I

and III whereas in phase II the impacts are positive. Zhang, Fang, and Wang (2018)

assess the influence of carbon prices of different Chinese pilots on the stock value

of thermal enterprises finding that carbon prices have a significant negative impact.

Oestreich and Tsiakas (2015) investigate the effect of the EU-ETS carbon price on

German and UK stock returns finding a carbon premium until march 2009: carbon

intensive firms, having a higher exposure to carbon risk, exhibit higher expected re-

turns. Zhang and Gregory-Allen (2018) follow the same methodology proposed by

Oestreich and Tsiakas but apply it to the Shenzhen Pilot Emissions Trading Scheme

without finding a carbon premium. Görgen, Jacob, Nerlinger, Riordan, Rohleder

and Wilkens (2017) examine carbon risk, intended as a complex of political, tech-

nological and regulatory risks, and quantify it via a “Brown-Minus-Green" factor

finding that brown firms performed worse than green firms on average during the

2010-2016 sample period. Koch and Bassen (2013) utilize an asset pricing model in

order to assess the impact of carbon price risk on firms’ cost of capital for a sample

of 20 European utility stocks from 2005 to 2010; by means of a discounted cash flow

framework employed to simulate carbon-adjusted equity values for three selected
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utilities from 2009 to 2020, they find that high-emitting utilities bear carbon risk pre-

miums. Tian, Akimov, Roca, and Wong (2015) study the impact of EU-ETS on the

stock returns of electricity companies during phases I and II with OLS, panel data

and time-series analysis: stock returns of carbon-intensive companies are negatively

affected while the opposite is true for less carbon-intensive producers. Moreno and

Pereira da Silva (2016) investigate whether ETS price changes and stock returns of

Spanish sectors that participate to the EU-ETS are correlated by employing a multi-

factor market model specification and panel data econometric approach and find a

statistically significant positive impact of EU-ETS on stock market returns for Phase

II and a negative impact for phase III. Brouwers, Schoubben, Van Hulle, and Van

Uytbergen (2016) put forward an event study methodology in order to study the im-

pact of European verified emissions publications on the market value of companies

participating to the EU-ETS. They find a significant negative relationship between

allocation shortfalls and firm value for firms that are more carbon-intensive than

sector peers or are less likely to pass through carbon-related costs in their product

prices. Nguyen Anh Pham, Ramiah, and Moosa (2019) investigate the impact of

environmental regulation on the French stock market by means of an event study

methodology: their results show negative returns for chemicals, oil and gas indus-

tries whereas other polluters produce positive abnormal returns.

The paper closest to ours is surely Oestreich and Tsiakas’ (2015). Nevertheless,

there are some substantial differences in terms of: 1) geographical reach, i.e. the

data sample is confined to 65 German firms and 83 UK firms whereas we provide

a database of 182 firms across 19 European countries, 2) portfolio balance, i.e. the

environmental factor in Oestreich and Tsiakas (2015) is built with 24 carbon firms

and 41 green firms for Germany and 16 carbon firms and 67 green firms for the UK,

whereas our sample includes 91 green stocks and 91 carbon stocks, 3) time-span, i.e.

2003-2012 in Oestreich and Tsiakas (2015) compared to our 2008-2018 sample and

4) model, i.e. Oestreich and Tsiakas (2015) use as a basis Fama and French’s (1993)

three factor model and Carhart’s (1997) four factor model, whereas we use Fama

and French’s (2015) five-factor model which has been proven more performing by

its authors.
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Recently, the literature has proposed stress testing, a technique finalized at test-

ing the stability of an entity, as an evaluation framework for climate change risks. In

financial risk analysis a stress test is characterized by four essential features (Borio,

Drehmann, & Tsatsaronis, 2014): a set of risk exposures subjected to stress, a scenario

that defines the exogenous shocks that stress the exposures, a model that maps the

shocks onto an outcome and a measure of such outcome. In this context, the Bank of

England Prudential Regulation Authority (2015) suggests an integration of climate

change risk factors in standard stress-testing techniques, Zenghelis and Stern (2016)

encourage financial corporations and fossil fuel companies to undertake stress tests

to evaluate their “future viability against different carbon prices and regulations”

(p. 9), Schoenmaker and van Tilburg (2016) call for, as next step, the developing of

“carbon stress tests to get a better picture of the exposure of the financial sector” (p.

7), and the World Bank has also taken this direction (Fay et al., 2015). Besides these

scientific endorsements, in France the recent law n◦ 2015-992 (article 173) relative to

the energy transition for green growth, promulgated just before the COP 21 in Paris,

makes reference to climate change stress tests.

On the carbon risk side, these endorsements have been followed up by research

on carbon stress test design. Battiston, Mandel, Monasterolo, Schütze, and Visentin

(2017) study how climate policy risk may propagate through the financial system by

putting forward a second round effect measurement methodology. The Industrial

and Commercial Bank of China (2016) evaluates the impact of upcoming environ-

mental protection policies — tightening of emission limits and raise of pollutant

discharge fees — for two industries, thermal power and cement, in order to fig-

ure out the changes of the firms’ financial indicators and assess their resulting new

credit ratings and probabilities of default by using the bank’s rating models. Cam-

bridge Centre for Sustainable Finance (2016) assesses the impacts on oil, gas and

utility firms’ profitability of scenarios on environmental regulation and carbon pric-

ing. Both the Industrial and Commercial Bank of China and the Cambridge Centre

for Sustainable Finance models are proprietary.

This paper uses a multi-factor asset pricing model in order to study the impact

of low-carbon policy —the 2003/87/CE directive which originated EU-ETS— upon
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the stock returns of European firms. In order to accomplish this task an environ-

mental factor, GMC (green minus carbon), is added to the classical stock market

factors introduced by Fama and French (1993, 2015): SMB (small minus big), HML

(high minus low), WMR (weak minus robust), CMA (conservative minus aggres-

sive). This paper makes several contributions. Firstly, it is the first time that a fac-

tor, GMC, meant to measure the premium which results from not paying a carbon

price is constructed. The GMC factor is obtained by means of a sample of 182 firms

from 19 European countries operating in 35 sectors: from January 2008 to December

2018 the value-weight returns of 91 firms regulated by the 2003/87/CE directive are

subtracted from the value-weight returns of 91 firms exempted by the 2003/87/CE

directive upon which the EU-ETS is based. Secondly, we provide evidence that the

addition of the GMC factor improves the performance of the 5 factor model in Eu-

rope in the 2008-2018 time span: we show that, just as there are patterns in average

returns related to size, profitability and investment, there is also a pattern related to

EU-ETS compliance. Thirdly, results show that there is a high green premium rather

than a carbon premium as it was asserted by parts of the literature, and that this

green premium is highly statistically significant, i.e. green stocks outperform on av-

erage carbon stocks over the 11-year span. Additionally, we follow the recent carbon

stress test trend by putting forward a stress test able to indicate what is the impact

of a hypothetical EU-ETS price upon stock returns: our results show the effects of

a plausible but more severe average EU-ETS price on both carbon firms and green

firms for each market cap tranche.

The paper is structured in the following way: section 1.2 presents the model;

section 1.3 introduces the data; section 1.4 provides the empirical results; section 1.5

explores a PCA-based specification of the model and the consequent results; section

1.6 puts forward the carbon stress test; section 1.7 concludes.

1.2 The model

In order to estimate the impact of the 2003/87/CE directive, which originated EU-

ETS, on European firms, we add a factor to Fama and French’s (2015) “classical" five
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factors. This supplementary factor, GMC (green minus carbon), is obtained by sub-

tracting the monthly value-weight carbon portfolio returns from the monthly value-

weight green portfolio returns. Before carrying out the analysis in these terms, the

implicit question“is there enough evidence to add a sixth factor?" must be answered.

This evidence derives from a comparison of the original 5 factor model with the 5+1

model we put forward. Fama and French’s (2015) original five factor model is based

on the following time-series regression:

Ri,t − RF,t =αi + βi(RM,t − RF,t) + siSMBt + hi HMLt

+ riRMWt + ciCMAt + ei,t

(1.1)

In the equation, Ri,t is the value weight return for security or portfolio i for pe-

riod t; RF,t is the risk free rate; RM,t is the value weight return of the market portfolio;

SMBt is the size factor, i.e. the return on a diversified portfolio of small stocks minus

the return on a diversified portfolio of big stocks; HMLt is the value factor, i.e. the

return on a diversified portfolio of high B/M stocks minus the return on a diversi-

fied portfolio of low B/M stocks; RMWt is the profitability factor, i.e. the difference

between the returns on diversified portfolios of stocks with robust and weak prof-

itability; CMAt is the investment factor, i.e. the difference between the returns on

diversified portfolios of the stocks of low and high investment firms; and ei,t is a

zero-mean residual. If the coefficients of the time-series regression —βi, si, hi, ri, ci —

completely capture variation in expected returns, then the intercept, αi, is indistin-

guishable from zero.

The environmental factor we put forward, GMC (green minus carbon), is a port-

folio meant to mimic the risk factor in returns related to low-carbon policy and

it’s calculated as the difference between the returns of the value-weight portfolio

of green stocks and the returns of the value-weight portfolio of carbon stocks. Given

our research question, we consider firms to be “carbon" if a) they belong to the sec-

tors that take part to the EU-ETS since the beginning of phase II (2008), b) at least

one installation of the firm is listed in the EU-ETS transaction log, and c) the firm

is listed on a European stock exchange of the countries participating to the EU-ETS,
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i.e. the EU countries plus Iceland, Liechtenstein and Norway. We consider firms

to be “green" if a) they belong to the sectors which do not take part to the EU-ETS

since the beginning of phase II, b) no firm installations are inventoried on the EU-

ETS transaction log, and c) the firm is listed on a European stock exchange of the

countries participating to the EU-ETS . Participant sectors are the following: power

stations and other combustion plants > 20MW, oil refineries, coke ovens, iron and

steel plants, cement clinker, glass, lime, bricks, ceramics, pulp, paper and board (Eu-

ropean Commission, 2015).

Table 1.1 displays the averages of monthly percent returns for the environmental

factor, GMC, for each year from 2008 to 2018. We can see that at the very beginning

of phase II of EU-ETS (2008), GMC is positive (+2.71%). It is slightly negative in 2009

and then picks up in 2010 (+1.66%), 2011 (+1.45%), 2012 (+0.69%), and 2013 (+0.86%,

beginning of phase III), it lowers to almost zero in 2014 (+0.02%) and then picks up

again in 2015 (+1.37%). It then drops in 2016 (-1.24%), which singularly is the year

after the COP 21 meeting (which took place in Paris in December 2015) and starts to

increase slowly from 2017 onwards. There is a clear path in the magnitude of GMC,

starting from the beginning of phase II in 2008 and which is only stopped in 2016 by,

we suppose, a market negatively perceived COP 21 outcome. Over the 11-year span

the average monthly percent return for the GMC factor is 0.73%.

TABLE 1.1: Average monthly GMC percent return from 2008 to 2018

Years returns

2008 2.71
2009 -0.17
2010 1.66
2011 1.45
2012 0.69
2013 0.86
2014 0.02
2015 1.37
2016 -1.24
2017 0.52
2018 0.24

Average 0.73

Table 1.1 provides an argument to test a 5+1 version of Fama and French’s (2015)

five factor model and see if the augmented model outperforms — in Europe in the

2008-2018 time span — the classical one. The 5+1 model specification, which we call
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EE-FF (environmentally-extended Fama and French) model is the following:

Ri,t − RF,t =αi + βi(RM,t − RF,t) + siSMBt + hi HMLt

+ riRMWt + ciCMAt + giGMCt + ei,t

(1.2)

1.3 The data

The EE-FF model (1.2) aims at capturing patterns in average returns related to size,

value, profitability, investment and EU-ETS compliance. The explanatory variables

include the returns on a market portfolio of European stocks, RM, and mimicking

portfolios for the size, SMB, value, HML, profitability, RMW, investment, CMA,

and EU-ETS compliance, GMC, factors in returns. The returns to be explained are

the value weight returns for subsets of the portfolio of 182 European stocks upon

which the GMC factor is based. Such subsets are formed by breaking up the 182

firms into 8 portfolios based on market capitalization and EU-ETS compliance: the 8

stock portfolios are formed from annual (2008-2018) sorts of stocks into 4 size groups

(4 quartiles) and two EU-ETS groups — liable firms, which we call carbon, and ex-

empt firms, which we call green —. Liable firms participate to the EU-ETS in the

2008-2018 time frame while exempt firms do not participate. The risk free rate, RF,

is the 1-month Euribor rate.

1.3.1 Explanatory returns

The 5 classical factors —RM, SMB, HML, RMW, CMA— are taken directly from Fama

and French’s database of factors for the European market. For a complete descrip-

tion of the construction of the factors we refer the reader to Fama and French (2015):

here it suffices to mention that the 5 classical factors (2x3) are constructed using 6

value-weight portfolios formed on size and book-to-market, 6 value-weight portfo-

lios formed on size and operating profitability, and 6 value-weight portfolios formed

on size and investment. All the portfolios are shuffled on a yearly basis. SMB (small

minus big) is the average return on the nine small stock portfolios minus the average

return on the nine big stock portfolios, HML (high minus low) is the average return

on the two value portfolios minus the average return on the two growth portfolios,
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RMW (robust minus weak) is the average return on the two robust operating prof-

itability portfolios minus the average return on the two weak operating profitability

portfolios, CMA (conservative minus aggressive) is the average return on the two

conservative investment portfolios minus the average return on the two aggressive

investment portfolios, while RM is the return on Europe’s value-weight market port-

folio.

The environmental factor, GMC (green minus carbon), is constructed using a

portfolio of 182 European stocks, out of which 91 participate to the EU-ETS since

the beginning of phase II (2008) and 91 do not participate to the EU-ETS since the

beginning of phase II. A firm participates to the EU-ETS since the beginning of phase

II if it belongs to one of the following sectors: power stations and other combustion

plants > 20MW, oil refineries, coke ovens, iron and steel plants, cement clinker,

glass, lime, bricks, ceramics, pulp, paper and board (European Commission, 2015).

The EU-ETS liable group of firms (“carbon" firms) is formed on the following three

criteria: a) belonging to the sectors that take part to the EU-ETS since the beginning

of phase II (2008), b) having at least one installation listed in the EU-ETS transaction

log, and c) listing on a European stock exchange of the countries participating to the

EU-ETS, i.e. the EU countries plus Iceland, Liechtenstein and Norway. We consider

firms to be “green", i.e. EU-ETS exempt, if the following three criteria are met: a)

belonging to the sectors which do not take part to the EU-ETS since the beginning of

phase II, b) no firm installations are inventoried on the EU-ETS transaction log, and

c) the firm is listed on a European stock exchange of the countries participating to

the EU-ETS.

Two portfolios, comprising in one case stocks of carbon firms and, in the other,

stocks of green firms, have been formed from January 2008 to December 2018. The

portfolios do not need to be shuffled on a yearly basis since the 182 European firms

that are under examination constantly participate (or not) to the EU-ETS in the 2008-

2018 time frame. Monthly value-weight stock returns have been calculated for the

two portfolios for the 11-year time frame for a total of 24,024 observations. Lastly,

GMC is obtained by subtracting the monthly value-weight carbon portfolio return

from the monthly value-weight green portfolio return.
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1.3.2 Explained returns

In the EE-FF model (1.2), the returns to be explained, Ri, are the value weight returns

for subsets of the portfolio of 182 European stocks upon which the GMC factor is

based. Descriptive statistics for the 182 European stock portfolio are provided in

Table 1.2.

TABLE 1.2: Descriptive statistics for the 182 European stocks: country
and sector (ICB) breakdown for Carbon and Green firms

Panel A: Country breakdown

Green firms Carbon firms

EU country Firms EU country Firms

Austria 4 Austria 6
Belgium 4 Belgium 3

Czech Republic 2 Czech Republic 2
Denmark 1 Denmark 2
Finland 6 Finland 6
France 11 France 7

Germany 9 Germany 7
Hungary 1 Hungary 1
Ireland 1 Ireland 1

Italy 6 Italy 13
Lithuania 3 Lithuania 2

Netherlands 3 Netherlands 1
Poland 8 Poland 10

Portugal 1 Portugal 3
Romania 2 Romania 2
Slovenia 1 Slovenia 1

Spain 7 Spain 10
Sweden 6 Sweden 5

UK 15 UK 9

Total 91 Total 91

Panel B: ICB Sector breakdown

Green firms Carbon firms

Sector Firms Sector Firms

Asset managers 2 Alternative Electricity 4
Banks 10 Alternative fuels 2

Broadcasting & Entertainment 4 Building materials and fixtures 13
Broadline retailers 4 Containers and packaging 4

Business support services 9 Conventional electricity 18
Computer hardware 2 Exploration and production 3
Computer services 3 Forestry 1

Distillers & Vintners 1 Gas distribution 3
Durable Household products 1 Integrated Oil & Gas 14

Electronic equipment 3 Iron & Steel 9
Fixed-line telecommunications 4 Multiutilities 7

Full-line insurance 7 Paper 11
Gambling 3 Pipelines 2

Industrial machinery 2
Media agencies 7

Publishing 2
Real-estate holding & development 6

Recreational services 5
Software 8

Specialty finance 3
Telecommunications equipment 4

Toys 1

Total 91 Total 91
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Such subsets are formed from annual (2008-2018) sorts of stocks into 4 size groups

(4 quartiles) and 2 EU-ETS compliance groups: EU-ETS liability and EU-ETS exemp-

tion. Table 1.3 shows the average monthly value-weight excess returns for the 8

portfolios obtained from annual sorts of the 182 European stocks into 4 size groups

(4 quartiles) and two EU-ETS compliance groups. Once again, we call the portfo-

lio “carbon" if it includes firms that do participate to the EU-ETS, and we call the

portfolio “green" if it includes firms which do not take part to the EU-ETS. Here,

average return typically falls from small stocks to big stocks, i.e. there is a clear size

effect pattern. Even though the size effect isn’t evident from the second to the third

quartile, it clearly shows from the first to the fourth quartile. This holds both in the

case of carbon stocks and in the case of green stocks. What matters to us, rather that

the size effect, which has been proven elsewhere, is the EU-ETS effect. The latter

shows up even more clearly than the size effect: the green portfolio systematically

outperforms its carbon counterpart at each size level.

TABLE 1.3: Averages of monthly percent excess returns for 8 value-
weight portfolios formed from sorts on size and EU-ETS compliance.

January 2008-December 2018.

Size Green Carbon

Small 0.03 -0.14
Medium/low 0.46 -0.73
Medium/high 0.20 -0.54

Big -0.18 -0.55

1.4 Results

The classical Fama and French’s (1.1) five factor model and the EE-FF model (1.2)

have been run for each dependent variable for a total of 16 time-series regressions.

There is direct evidence that the addition of a sixth factor improves the effectiveness

of the classical five factor model, at least in Europe in the 2008-2018 time span. Over-

all, the slopes and the R2 values obtained with the EE-FF model are direct evidence

of the impact of the EU-ETS (low-carbon policy) upon European stock returns.

Table 1.4 displays the results of the 8 regressions, one for each response variable,

that have been run with five explicatory variables — RM, SMB, HML, RMW, CMA

— and of the 8 regressions which have been run with six explicatory variables —
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RM, SMB, HML, RMW, CMA, GMC— . The response variables are the monthly

value weight excess returns of the eight portfolios formed from annual sorts of the

182 European stocks into 4 size groups (4 quartiles) and two EU-ETS groups (liable

and exempt).

TABLE 1.4: Results of the regressions carried out with the five factor
model (FF) and the EE-FF for 8 value-weight portfolios formed on

size and EU-ETS participation. January 2008-December 2018.

Portfolio FF EE-FF Portfolio FF EE-FF

α t(α) α t(α) α t(α) α t(α)

Green/Small 0.01 0.1 -0.01 -0.17 Carbon/Small 0.01 0.40 0.01 1.22
Green/M-l 0.01 2.12 0.01 1.21 Carbon/M-l -0.01 -1.12 0.01 0.57
Green/M-h 0.01 2.15 0.01 1.41 Carbon/M-h -0.01 -1.02 0.01 1.02
Green/Big 0.01 0.15 -0.01 -0.41 Carbon/Big -0.01 -1.51 0.01 0.06

β t(β) β t(β) β t(β) β t(β)

Green/Small 0.49 8.90 0.50 8.93 Carbon/Small 0.42 5.29 0.40 5.12
Green/M-l 0.66 11.28 0.68 11.73 Carbon/M-l 0.51 5.80 0.46 5.87
Green/M-h 0.69 13.06 0.70 13.34 Carbon/M-h 0.79 11.47 0.74 12.57
Green/Big 0.64 10.64 0.65 10.84 Carbon/Big 0.65 11.98 0.62 12.53

s t(s) s t(s) s t(s) s t(s)

Green/Small 0.58 3.90 0.59 3.95 Carbon/Small 0.16 0.75 0.11 0.53
Green/M-l 0.38 2.39 0.42 2.67 Carbon/M-l 0.84 3.55 0.73 3.41
Green/M-h 0.13 0.91 0.15 1.10 Carbon/M-h 0.45 2.43 0.35 2.20
Green/Big -0.10 -0.62 -0.07 -0.46 Carbon/Big -0.22 -1.47 -0.28 -2.05

h t(h) h t(h) h t(h) h t(h)

Green/Small 0.03 0.16 0.08 0.37 Carbon/Small -0.20 -0.68 -0.42 -1.37
Green/M-l -0.38 -1.72 -0.22 -0.99 Carbon/M-l 0.58 1.77 0.12 0.41
Green/M-h -0.31 -1.56 -0.20 -0.98 Carbon/M-h 0.09 0.36 -0.32 -1.40
Green/Big 0.08 0.34 0.19 0.80 Carbon/Big 0.51 2.49 0.24 1.25

r t(r) r t(r) r t(r) r t(r)

Green/Small 0.20 0.70 0.23 0.79 Carbon/Small -0.45 -1.09 -0.58 -1.42
Green/M-l -0.05 -0.17 0.04 0.14 Carbon/M-l -0.15 -0.33 -0.42 -1.02
Green/M-h -0.36 -1.32 -0.30 -1.08 Carbon/M-h 0.18 0.52 -0.06 -0.19
Green/Big 0.15 0.47 0.21 0.68 Carbon/Big 0.55 1.96 0.39 1.52

c t(c) c t(c) c t(c) c t(c)

Green/Small -0.08 -0.35 -0.10 -0.42 Carbon/Small -0.30 -0.90 -0.22 -0.66
Green/M-l -0.30 -1.20 -0.36 -1.48 Carbon/M-l -0.73 -2.00 -0.55 -1.67
Green/M-h -0.49 -2.19 -0.53 -2.40 Carbon/M-h -0.67 -2.35 -0.51 -2.05
Green/Big -0.42 -1.68 -0.47 -1.86 Carbon/Big -0.42 -1.85 -0.32 -1.51

g t(g) g t(g) g t(g) g t(g)

Green/Small 0.09 0.79 Carbon/Small -0.44 -2.60
Green/M-l 0.33 2.61 Carbon/M-l -0.93 -5.44
Green/M-h 0.22 2.00 Carbon/M-h -0.85 -6.61
Green/Big 0.23 1.73 Carbon/Big -0.54 -5.02
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The adjusted R2 values for the original Fama and French (FF) model fall in be-

tween the 0.31-0.72 range, meaning that the FF model fares quite well in the repre-

sentation of the variance of the outcome variables, at least in Europe in the 2008-2018

time frame. The 0.31 R2 value comes from the small cap/carbon portfolio regres-

sion, while the second lowest R2 value is 0.51 (medium-low cap/carbon), which is

followed by an R2 value of 0.54 (small cap/green). All other R2 values are above

0.64.

We can report that all intercepts of the 8 time-series regressions carried out with

the FF model are almost indistinguishable from zero — the lowest being -0.01 and

the highest being 0.01 — and 2 intercepts out of 8 are statistically significant at the

0.05 level. Fama and French (2015) suggest two interpretations of the zero-intercept

hypothesis: the mean-variance-efficient tangency portfolio combining the explana-

tory returns and interpreting the factor model as the regression equation of Mer-

ton’s (1973) model in which unspecified state variables lead to risk premiums that

are not captured by the market factor. If the coefficients of the time-series regression

—βi, si, hi, ri, ci — completely capture variation in expected returns, then the inter-

cept, αi, is indistinguishable from zero. Under the assumption of the zero-intercept

hypothesis, the range of values obtained for the intercepts provide evidence of the

accuracy of the FF model to represent the financial reality under analysis.

Table 1.4 also shows coefficients and t-statistics for the five factors. While the

market factor is always highly statistically significant, the size factor is significant at

the 0.05 level in 4 out of 8 cases (small cap/green, medium-low cap/green, medium-

low cap/carbon, medium-high cap/carbon). The value factor is statistically signif-

icant at the 0.05 level in one case out of eight (big cap/carbon) and the investment

factor —CMA— in three out of eight cases (medium-high cap/green, medium-low

cap/carbon, medium-high cap/carbon).

The EE-FF model finds adjusted R2 values in the 0.34-0.76 range. The regressions

carried out with the EE-FF model find adjusted R2 values which are larger is 6 cases

out of 8 than the regressions carried out with the classical FF model. The only R2

values which do not improve in the passage from a five factor model to a six factor

model come from the small cap/green regression and the big cap/green regression.

In these two cases the adjusted R2 values are exactly the same for the FF model and
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the EE-FF model.

We find highly statistically significant coefficients for the GMC factor in 6 regres-

sions out of 8, the only exception being the small cap/green portfolio (t-statistic=0.79)

and the big cap/green portfolio (t-statistic= 1.73). As expected, coefficients are posi-

tive when the dependent variable is a green (i.e. does not participate to the EU-ETS)

portfolio and negative when the dependent variable is a carbon (i.e. does partici-

pate to the EU-ETS) portfolio. GMC’s positive coefficients range from 0.09 (small

cap/green) to 0.33 (medium-low cap/green), whereas GMC’s negative coefficients

range from -0.44 (small cap/carbon) to -0.93 (medium-low cap/carbon).

Again, the GMC coefficient for the small cap/green portfolio (0.79) and the big

cap/green portfolio (t-statistic= 1.73) are the only two coefficients which are not sta-

tistically significant at the 0.05 level. Additionally, the magnitude of the coefficients

of the green portfolios are evidently lower than their carbon counterparts, i.e. firms

are more penalized for their participation to the EU-ETS rather than rewarded for

their exemption from the EU-ETS. We suspect this is due to the fact that there are

some sectors which are considered as carbon-intensive by the market but which are

not yet included in the EU-ETS participant list. Armed with statistical evidence, we

conclude it is legitimate to consider the addition of the GMC factor to the classical

Fama and French’s five factors in Europe, at least from 2008.

1.5 Redundant factors

The previous section has shown that the inclusion of a sixth factor —GMC— im-

proves the effectiveness of Fama and French’s five factor model in Europe from 2008

onwards. Nevertheless, such addition may hinder the explication power of the clas-

sical five factors, i.e. the portion of variance in returns explained by a “classical"

factor may be partially absorbed by the GMC factor we are putting forward. As

such addition may lead to a factor redundancy, we perform a principal component

analysis (PCA) on the 5+1 factors in order to figure out how many factors to include

in the regression of the returns to be explained, Ri − RF.

Table 1.5 shows the correlations matrix between the 6 factors. Noticeable corre-

lations are shown between RM, or MkT, and HML (0.49), between RMW and HML
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(-0.83) and between RMW and RM (-0.41).

TABLE 1.5: Correlation Matrix for the market, size, value, profitabil-
ity, investment and EU-ETS factor

MkT SMB HML RMW CMA GMC

MkT 1.00 -0.02 0.49 -0.41 -0.27 -0.31
SMB -0.02 1.00 -0.05 -0.08 -0.21 -0.06
HML 0.49 -0.05 1.00 -0.83 0.33 -0.35
RMW -0.41 -0.08 -0.83 1.00 -0.31 0.24
CMA -0.27 -0.21 0.33 -0.31 1.00 0.06
GMC -0.31 -0.06 -0.35 0.24 0.06 1.00

Table 1.6 displays the eigenvalues and the proportion of variances retained by

the principal components. If we were to follow Kaiser’s rule we would have to

retain only two components and thus discard 4 factors out of 6. Given the high

correlation between RMW and HML and the relative low contribution of SMB to

the two main principal components (figure 1.1), these would be natural candidates

to the discarded. Unfortunately, figure 1.1 shows that the contribution of CMA is

superior to that of GMC. Ultimately, if we were to follow Kaiser’s rule we would

just settle for the market factor, RM (MkT), and the investment factor, CMA. As this

choice is not coherent with our research objective, we decide not to follow Kaiser’s

rule and settle for three components which account for 80% of the total variance: RM

(MkT), CMA and GMC. The reduced version of the EE-FF model, then, becomes:

Ri,t − RF,t = αi + βi(RM,t − RF,t) + ciCMAt + giGMCt + ei,t (1.3)

TABLE 1.6: Eigenvalues, variance and cumulative variance for the 6
components

Eigenvalues Percent variance Cum. percent variance

Dimension 1 2.42 40.41 40.41
Dimension 2 1.41 23.57 63.98
Dimension 3 0.97 16.20 80.19
Dimension 4 0.75 12.58 92.77
Dimension 5 0.29 4.88 97.66
Dimension 6 0.14 2.23 100.00

Table 1.7 displays the results of the 8 regressions, one for each response variable,

that have been run with three explicatory variables — RM, CMA, GMC —. The re-

sponse variables are the monthly value weight excess returns of the eight portfolios
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FIGURE 1.1: Contributions of MkT, SMB, HML, RMW, CMA and
GMC variables to the two first dimensions

formed from annual sorts of the 182 European stocks into 4 size groups (4 quartiles)

and two EU-ETS groups (liable and exempt).

A comparison of table 1.4 — the EE-FF with 6 factors— and table 1.7 — EE-FF

with 3 factors — shows that reducing the number of factors improves t-values for

the intercepts in five cases out of eight. On the other hand reducing the number of

factors increases the statistical significance of the market coefficient for eight port-

folios out of eight and of the investment coefficient for six portfolios out of eight.

With regard to the GMC coefficient, moving on from 6 to 3 factors only improves the

statistical significance of the coefficient in 4 cases out of 8. The adjusted R2 values of

the EE-FF with 3 factors (table 1.7) only improve over the adjusted R2 values of the

EE-FF with 6 factors (table 1.4) in one case out of eight: the big cap/green portfolio.

The adjusted R2 values for the other portfolios are exactly identical or slightly infe-

rior. Overall, we find that the reduced version of the EE-FF model (3 factors), while
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TABLE 1.7: Results of the regressions for 8 value-weight portfolios
formed on size and EU-ETS participation carried out with the 3 factor

EE-FF model. January 2008-December 2018.

Size Green Carbon Green Carbon

α t(α)

Small 0.01 0.01 0.64 0.85
Medium/low 0.01 0.01 1.70 0.67
Medium/high 0.01 0.01 1.28 1.31
Big -0.01 0.01 -0.24 0.37

β t(β)

Small 0.46 0.38 10.04 6.17
Medium/low 0.61 0.52 13.01 7.85
Medium/high 0.69 0.67 16.59 14.01
Big 0.67 0.63 14.12 15.73

c t(c)

Small -0.33 -0.30 -1.73 -1.18
Medium/low -0.70 -0.44 -3.58 -1.61
Medium/high -0.59 -0.86 -3.41 -4.31
Big -0.39 -0.23 -2.01 -1.37

g t(g)

Small 0.05 -0.40 0.44 -2.49
Medium/low 0.35 -1.05 2.86 -6.02
Medium/high 0.23 -0.81 2.17 -6.48
Big 0.21 -0.55 1.68 -5.18

leading to some moderate statistical improvements over the EE-FF model with 6 fac-

tors, partially loses economic and financial significance by dropping the size, value

and profit factor.

1.6 The carbon stress test

The financial stress test literature, following Koliai (2016), can be split in four main

categories (table 1.8): general presentation of the instrument in the early 2000s, port-

folio stress test development, systemic stress test emergence in the wake of the 2007-

2009 crisis and diagnosis of the realized exercises.

The literature, while portraying stress testing as quintessential to financial risk

management (Bensoussan, Guegan, & Tapiero, 2014), describes the technique through

dichotomies: top-down and bottom-up approaches, first and second round effects,

sensitivity and scenario analysis, historical and hypothetical scenarios, direct and re-

verse stress tests. In the top-down approaches the empirical relationship between a
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TABLE 1.8: Categorisation of stress test literature (Koliai, 2016).

Topic Selected authors

Conceptual aspects Berkowitz (2000); Blaschke et al. (2001); Čihàk (2007)

Portfolio stress tests Kupiec (1998); Breuer and Krenn (1999); Bee (2001);Kim and Finger (2001);
Aragonés et al. (2001); Breuer et al. (2002); Alexander and Sheedy (2008);
McNeil and Smith (2012); Breuer and Csiszàr (2013)

Systemic stress tests Boss (2008); Alessandri et al. (2009); Aikman et al. (2009);
van den End (2010, 2012); Engle et al. (2014); Acharya et al. (2014)

Diagnostics Haldane (2009); Borio and Drehmann (2009); Hirtle et al. (2009);
IMF (2012); Greenlaw et al. (2012); Borio et al. (2012)

The table shows the categorisation of the stress-test literature performed by Koliai (2016) into 4 topics:
conceptual aspects, portfolio stress test, systemic stress test and diagnostics.

banking variable and an exogenous stressor is assumed at the portfolio level of low

granularity, while in the bottom-up approach the empirical relationship is estimated

at the highest possible level of granularity of a banking variable.The division refers

to the US definitions whereas in Europe top-down refers to stress tests carried out

by regulators and bottom-up by banks First-round effects come from the immedi-

ate impact of the shock on the financial system, while second-round effects include

“possible domino effects from the institutions that are directly affected by the shock

to other intermediaries and, possibly, to market infrastructures and the entire finan-

cial system” (Quagliariello, 2009, p.33). Sensitivity testing aims at determining how

changes to a single risk factor will impact the institution or the portfolio while sce-

nario analysis studies the effect of a simultaneous move in a group of risk factors.

Scenarios have been subjects to requirements by the Basel Committee on Banking

Supervision (2009) which demands them to be plausible but severe: historical sce-

narios rely on a significant market event experienced in the past, whereas a hypo-

thetical scenario is a significant market event that has not yet happened (Committee

on the Global Financial System, 2005). Direct stress tests set scenarios and derive

losses, while “starting from a big loss and working backward to identify how such a

loss would occur is commonly referred to among risk management professionals as

reverse stress testing” (Breuer, Jandačka, Mencía, & Summer, 2012, p. 332).

The carbon stress test we put forward is based on the GMC factor obtained with

the EE-FF model (6 factors). The GMC is a proxy that mimics the risk factor in

returns related to the payment of a carbon price and its coefficient —in the EE-FF

model — is interpreted as the average effect on stock returns of a one unit increase
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in GMC holding all other predictors fixed. It follows that, if GMC increases, the risk

factor related to participating to the EU-ETS raises accordingly. Conversely, if GMC

decreases, the risk factor related to participating to the EU-ETS diminishes. It is

evident that a carbon risk factor increase goes with a higher EU-ETS price, whereas

a carbon risk factor decrease goes with a lower EU-ETS price. In order to understand

the impact of a hypothetical, but plausible and severe, EU-ETS price upon the stock

returns under examination, we stress the average GMC portfolio value by 20% (low

shock), 50% (medium shock), and 100% (high shock) and we look at the effect on

each of the 8 value-weight portfolios formed from annual sorts of the 182 European

stocks into 4 size groups (4 quartiles) and two EU-ETS compliance groups (liable, or

carbon, and exempt, or green).

TABLE 1.9: 11-year (2008-2018) average monthly percent excess re-
turns explained by the GMC factor for stressed values of GMC.

Portfolio Average excess returns

Low shock Medium shock High shock

Green/Small 0.08 0.10 0.13
Green/M-l 0.29 0.37 0.49
Green/M-h 0.19 0.24 0.32
Green/Big 0.20 0.25 0.34
Carbon/Small −0.39 −0.49 −0.65
Carbon/M-l −0.82 −1.03 −1.37
Carbon/M-h −0.75 −0.94 −1.25
Carbon/Big −0.48 −0.60 −0.80

Table 1.9 shows the results of the carbon stress test for each of the 8 value-weight

portfolios for the three shock scenarios: the second, third and fourth column provide

the averages of monthly percent excess returns explained by the GMC factor for

stressed values of GMC. Results of the carbon stress test show the magnitude of the

increase (decrease) of average excess stock returns for green firms (carbon firms) in

case of an average ETS price appreciation of 20% (low shock), 50% (medium shock),

and 100% (high shock) for each market cap tranche.

1.7 Conclusions

Changes in extreme climate phenomena such as temperature extremes, high sea lev-

els extremes or precipitation extremes are likely to seriously affect several facets of
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natural and human systems. There is scientific evidence that human activity, by al-

tering the composition of the atmosphere, contributes to global warming. Address-

ing climate change implies greenhouse gases (GHG) mitigation, and, while this can

be sometimes autonomous, it is mostly carried out with policy, i.e. low-carbon pol-

icy. This leads to the research question of the effect of low-carbon policy upon finan-

cial values. In the context of EU-ETS, this question has found contradictory results:

some studies find the impact of this low-carbon policy on financial values beneficial,

some others find it detrimental.

The objective of this paper is to study the impact of low-carbon policy upon the

value of financial assets, particularly stock returns. Specifically, we seek to under-

stand and explain the impact of one particular European policy, the 2003/87/CE

directive upon which the EU-ETS is based, upon European stock returns. To an-

swer this question, we selected 182 European firms that fall in two categories: firms

that do participate to the EU-ETS (carbon firms) and firms that do not participate

to the EU-ETS (green firms) since the beginning of phase II (2008). With 11 years of

data (2008-2018) we use a multi-factor model inspired by Fama and French (2015)

whose key new component is an EU-ETS compliance factor, GMC (green minus

carbon). The GMC portfolio is obtained by subtracting the monthly value-weight

carbon portfolio returns from the monthly value-weight green portfolio returns.

Following our analysis, results show that, just as there are patterns in average

returns related to size, profitability and investment, which have been proven else-

where, there is also a pattern related to EU-ETS compliance. Such pattern exists, in

Europe, since the implementation of EU-ETS: there is a high green premium, rather

than a carbon premium like parts of the literature asserted previously, and this green

premium is highly statistically significant, i.e. green stocks outperform on average

carbon stocks over the 11-year span. Furthermore, we follow the recent carbon stress

test trend by putting forward a stress test able to indicate what is the impact of a hy-

pothetical EU-ETS price upon stock returns: our results show the effects of a plausi-

ble but more severe average EU-ETS price on both carbon firms and green firms for

each market cap tranche.

These results are also the basis for the policy implications for legislators and
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financial practitioners. Our findings show that the 2003/87/CE directive has a posi-

tive effect in the financing of the low-carbon transition: the beginning of phase II of

EU-ETS — the start date of our study — coincides with both capital outflows from

high-carbon firms and capital inflows to low-carbon firms. The carbon stress test we

put forward shows by how much an increase of the EU-ETS price would accelerate

such process. The low-shock scenario, for example, would provide an additional

boost to the low-carbon transition without harming excessively high-carbon firms.

From a financial practitioner perspective, our findings show that, in Europe, in the

2008-2018 time span, low-carbon firms have outperformed high-carbon firms and

that this outperformance is statistically significant. In other words, low-carbon in-

vestments cannot be considered anymore just an ethical stand: nowadays, as the

green premium shows, investing in low-carbon firms is a profitable exercise.
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Chapter 2

On bond returns in a time of

climate change

2.1 Introduction

Climate change is attributed to two different causes: natural climate variability —

natural internal processes or external forcings — and human activity that alters the

composition of the atmosphere (Intergovernmental Panel on Climate Change, 2014;

United Nations, 1992). The consensus of actively publishing climate scientists on

anthropogenic global warming is in the 90%-100% range (Cook et al., 2016). The

breaking point of human contribution to climate change is usually identified with

the industrial revolution since economic development is strictly correlated to energy

consumption (Energy Information Administration, 2017; Stern, 2007): the burning

of fossil fuels has increased the concentration of atmospheric carbon dioxide (CO2),

the most prominent forcing factor, from 280 parts per million (ppm) in preindustrial

times to approximately 400 ppm (Wagner & Weitzman, 2016).

The literature has established a dichotomy of climate change risks. The first cat-

egory has been labeled “climate risk” (Carney, 2015): changes in extreme climate

phenomena — e.g. temperature extremes, high sea levels extremes, precipitation ex-

tremes (Intergovernmental Panel on Climate Change, 2014) —, are likely to cause

serious damages to agriculture, coastal zones, human health, and affect growth

(Dell, Jones, & Olken, 2014; Pycroft, Abrell, & Ciscar, 2016), productivity (Graff

Zivin & Neidell, 2014; Hallegatte, Fay, Bangalore, Kane, & Bonzanigo, 2015), the



68

value of financial assets and insurance claims. The second category, labeled “transi-

tion risk” or “carbon risk”, makes reference to the cost of the adjustment towards a

low-carbon economy (Caldecott & McDaniels, 2014). Low-carbon transition risk is a

multi-faceted concept that includes all drivers of risk linked to the decarbonisation

of the economy: a) pollution reducing market-based instruments (a carbon price: a

carbon tax, an auction price, or a secondary market price), b) command and control

induced technological shifts aimed at a reduction of CO2 emissions, e.g. stranded

assets or assets that have suffered from unanticipated or premature write-downs,

devaluations, or conversion to liabilities (Caldecott et al., 2016), and c) market risk,

i.e. market demands for low carbon products (Zhou et al., 2016).

The impact of a particular market-based instrument, the European Union Emis-

sion Trading System (EU-ETS), upon financial values has already been addressed

by the literature; nevertheless, efforts pertain primarily to stocks, leaving the bonds

field out of the picture. The objective of this paper is to assess the impact of the

2003/87/CE directive, upon which the EU-ETS is based, on European bond returns.

Literature on the interconnection between carbon pricing and bond values is

scant. Mansanet-Bataller and Pardo (2008) look at the effect of including European

Union Allowances (EUAs) in diversified portfolios made up of stocks, bonds, and

commodities (Brent and Natural Gas) finding that including phase I and phase II

EUAs actually improves the investment opportunity set for market practitioners that

have initially invested in traditional assets like stocks and bonds. Koch (2014) stud-

ies price linkages between EUAs and market fundamentals and how they vary over

time. The correlation between EUAs and a set of assets like oil, gas, coal, electric-

ity, but also stocks and bonds, is analysed in order to explain the variations of price

linkages; results show that carbon and financial markets are not segmented: high

expected market volatility shifts carbon-stock correlation significantly upwards and

carbon-bond correlation significantly downwards. Chevallier (2009) examines the

relationship between carbon future returns and changes in macroeconomic condi-

tions, finding that macroeconomic variables such as equity dividend yields, the junk

bond premium, the U.S. Treasury bill yields, and the excess return on a globally di-

versified portfolio of commodities are only loosely related to carbon futures returns.

While this scarce body of work aims at finding the determinants of a carbon price,
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the study of the inverse causal relationship has, to my best knowledge, never been

undertaken.

In order to detect the impact of low-carbon policy — the 2003/87/CE directive

which initiated EU-ETS — upon the bond returns of European firms, a Fama and

French (1993) framework, for the first time, is employed. Along with the two bond

market factors proposed by Fama and French (1993), TERM and DEF, an EU-ETS

participation factor is added: GMC. Supplementing classical factors with an envi-

ronmental factor has already been done in research carried out on the stock market

(Görgen et al., 2017; Oestreich and Tsiakas, 2015; Ravina and Kaffel, 2019). How-

ever, some differences in the construction of the environmental factor remain. In

this sense, the factor construction closer to the one presented here is found in Ravina

and Kaffel (2019). The rationale behind the GMC factor is the following: if we want

to measure the impact of the 2003/87/CE directive with a factor, one possibility is

to take all firms regulated by the policy, perform carbon accounting for each firm,

construct two portfolios, i.e. a high-carbon portfolio and a low-carbon portfolio,

and then take the differences of the value-weight returns. Unfortunately, this op-

eration wouldn’t permit us to uncover the real green (or carbon) premium because

the firms that take part in the EU-ETS are all high-carbon firms. This means that,

when we build the two portfolios, the low-carbon portfolio would contain a set of

firms which are only slightly less polluting than firms in the other portfolio. The

resulting environmental factor would be biased, i.e. negligible in terms of magni-

tude. In order to cope with the fact that the EU-ETS covers only high-carbon sectors,

an alternative is to construct the environmental factor by means of two portfolios,

a portfolio composed of EU-ETS liable firms (which I call “carbon" portfolio) and a

portfolio composed of EU-ETS exempt firms (which I call “green" portfolio). In this

context, while TERM proxies for the common risk in bond returns related to unex-

pected changes in interest rates and DEF mimics the risk factor in returns related to

shifts in economic conditions that change the likelihood of default, GMC (Green mi-

nus Carbon) is meant to mimic the risk factor in returns related to low-carbon policy,

the 2003/87/CE directive in this case. The new component, the GMC factor, is ob-

tained by subtracting the weekly value-weight carbon bond portfolio returns from

the weekly value-weight green bond portfolio returns from the beginning of Phase
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II (2008) of EU-ETS. The carbon bond portfolio is composed of 25 firms regulated

by the 2003/87/CE directive and the green bond portfolio is composed of 25 firms

exempted by the 2003/87/CE directive upon which the EU-ETS is based.

This paper makes the following contributions. Firstly, it is the first time that a

factor model is employed to assess the sensitivity of bond returns to low-carbon pol-

icy. The sensitivity of bond portfolio returns to the GMC factor has been found to

be positive in the case of green portfolios and negative in the case of carbon portfo-

lios. Most importantly, slopes on GMC are highly statistically significant. Secondly,

the average value of GMC itself is positive: finding a positive GMC means that in

Europe, in the 2008-2018 time-span, there is no carbon premium as some of the lit-

erature asserts, but rather a green premium. Such a green premium confirms that

the EU-ETS has a positive effect in the financing of the low-carbon transition: the

beginning of phase II of EU-ETS — the start date of the study — coincides with both

capital outflows from EU-ETS liable firms and capital inflows to EU-ETS exempt

firms. Thirdly, evidence is found that the addition of an environmental factor im-

proves the performance of the Fama and French two factor model for bonds, at least

in Europe from 2008 onwards. Fourthly, since the literature has recently proposed

stress testing, a technique developed for testing the stability of an entity, as an eval-

uation framework for climate change risks (Bank of England Prudential Regulation

Authority, 2015; Fay et al., 2015; Schoenmaker and van Tilburg, 2016; Zenghelis and

Stern, 2016), I follow the recent carbon stress test trend and put forward a stress test

that is able to indicate the impact of a hypothetical EU-ETS average price upon bond

returns. The results show the effects of a plausible, but more severe, average EU-ETS

price on both carbon firms and green firms.

The paper is structured in the following way: Section 2.2 presents the EU-ETS;

Section 2.3 introduces the model; Section 2.4 puts forward the data; Section 2.5 pro-

vides the empirical results; Section 2.6 presents the diagnostics; Section 2.7 exhibits

the carbon stress test; Section 2.8 concludes.
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2.2 The 2003/87/CE directive

The 2003/87/CE directive is at the origin of the European Union Emission Trading

System (EU-ETS). The EU-ETS is a market based instrument, launched as a pilot

project in 2005, whose objective is to reduce greenhouse gases (GHG) emissions in

all European Union (EU) countries as well as Iceland, Lichtenstein and Norway. The

three-year (2005-2007) pilot project, phase I, has been followed by a four-year (2008-

2012) phase II and a seven-year (2013-2020) phase III. In 2020, at the end of phase

III, emissions covered by the EU-ETS, around 45% of the EU’s GHG, are expected

to be 21% lower than at the start of the pilot project (2005). From the beginning of

phase III, the EU-ETS covers more than 11,000 installations consisting of power and

heat generation, oil refineries, commercial aviation, and production of steel, iron,

aluminium, metals, cement, lime, glass, ceramics, pulp, paper, cardboard, acids and

bulk organic chemicals (European Commission, 2015).

The EU-ETS is a cap and trade system: the European Commission has put a cap

on EU-wide GHG emissions which has been progressively reduced. When a firm

belongs to one of the participating sectors, it is required to cover its emissions with

emission allowances (EUAs) which are delivered on the primary market, i.e they

are either auctioned or distributed free of charge. Subsequently, in the secondary-

market, EUAs trading enables firms that eventually run short of allowances to pur-

chase additional units. Environmental economics often suggests that market-based

instruments, such as the EU-ETS, permit to cut emissions in a more cost efficient and

flexible way than command and control regulation, as the latter tends to prescribe

the same level of activity to all firms affected by the regulation (Demirel and Kesi-

dou, 2011; Engel, Pagiola, & Wunder, 2008). Economic theory clearly indicates that,

for any given level of emission abatement, if the firm’s marginal cost of abatement

is higher than the market’s carbon price, then the efficient choice for the firm is to

not abate but purchase allowances in a cap and trade scheme. Conversely, for any

given level of emission abatement, when the polluting firm faces a marginal abate-

ment cost lower than the market’s carbon price, the efficient choice for the firm is to

reduce emissions and sell their permits under a cap and trade scheme (Winebrake,

Farrell, & Bernstein, 1995).
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One of the identified issues with the EU-ETS has historically been low EUAs

prices, which have generally been attributed to an imbalance of supply and demand.

While the European commission has tried to address the surplus of EUAs with auc-

tion backload in phase III and with the market stability reserve (MSR), which began

operations in 2019, research has delivered empirical results on the economic impli-

cations of EU-ETS. Some early studies found that the EU-ETS has a negative impact

on productivity and profits of firms, while the effect on labour and investment are

insignificant (Commins, Lyons, Schiffbauer, & Tol, 2011), while some others found

that the EU-ETS effect on firm performance, in terms of profitability, is negligible

(Jaraite-Kažukauske and Di Maria, 2016; Zhang and Wei, 2010). Another branch

of research found that the EU-ETS positively affected firms’ material costs and rev-

enue, at least in the power sector (Chan, Li, & Zhang, 2013) and positively affected

turnover, markup, investment intensity and labour productivity (Marin, Marino, &

Pellegrin, 2017).

The impact of the EU-ETS upon financial values has also been addressed by the

literature. Also in this case, results are contradictory. In the stock market, results can

be divided in two categories. A first group of papers finds that the implementation of

a carbon price leads to a positive effect on the financing of the low-carbon transition,

i.e. capital inflows to low-carbon firms and capital outflows from high-carbon firms

(Brouwers, Schoubben, Van Hulle, & Van Uytbergen, 2016; Jong, Couwenberg &

Woerdman, 2014; Tian, Akimov, Roca, & Wong, 2015). A second body of work has

found that such effect is not straight-froward and it actually depends on the EU-ETS

phase (Moreno and Pereira da Silva, 2016; Oestreich and Tsiakas, 2015; Zhu, Tang,

Peng, & Yu, 2018). Performing a similar exercise for bonds, which to the best of my

knowledge has never been carried out, is the scope of this paper.

2.3 The model

To explain variation in bond returns, it is critical to distinguish systematic risks from

specific risks. Systematic risks have a general impact on the returns of most se-

curities, while specific risks influence securities individually and have a negligible

effect on diversified portfolios (Litterman and Scheinkman, 1991). Theoretically, a
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two-factor model for bond returns can be justified by an Intertemporal Capital Asset

Pricing Model (ICAPM) setting: TERM and DEF are candidate hedging portfolios

which proxy for underlying term and default risks in the economy. In such a setting,

the factor loadings — the betas — with respect to these two factors can be consid-

ered appropriate measures of systematic risk (Gebhardt, Hvidkjaer, & Swaminathan,

2005). The Fama and French (1993) two factor model for bonds is based on the fol-

lowing time-series regression:

Ri,t − RF,t = αi + miTERMt + diDEFt + ei,t (2.1)

In this equation, Ri,t is the value-weight return for bond or bond portfolio i for

period t and RF,t is the risk-free rate. TERMt proxies for the risk factor related to

unexpected changes in interest rates. It is calculated as the difference between the

returns on a value-weight long-term government bond portfolio and the one-month

Treasury bill rate measured at the end of the previous month. In this framework,

the T-bill rate is the proxy for the general level of expected returns on bonds, which

means that TERM indicates what is the difference, due to changes in interest rates,

between long-term bond returns and expected returns on bonds. DEFt is the risk

factor in bond returns meant to proxy shifts in economic conditions that change

the likelihood of default of a firm. It is calculated as the difference between the

returns on a market portfolio of long-term corporate bonds and the returns on a

portfolio of long-term government bonds. DEF provides the premium for taking

a supplementary (default) risk and investing in a corporate bond rather than in a

government one. ei,t is a zero-mean residual. If the coefficients of the time-series

regression — mi, di — completely capture variation in bonds expected returns, then

the intercept, αi, is indistinguishable from zero.

An environmental extension of equation (2.1) amounts to affirm that a system-

atic risk is missing from the framework: there is at least another common factor that

affects bond returns. This systematic risk, entailed by low-carbon policy, plays a role

in the explanation of bonds excess returns. Is it legitimate to think of low-carbon

policy as a source of systematic risk? A risk is systematic when it cannot be com-

pletely eliminated, but only reduced. As an example, the risk arising from a shift in
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interest rates can be reduced with duration hedging or default risk can be reduced

by constructing high-rating portfolios. The IPCC Special Report (2018) states that,

in order not to exceed a global warming of 1.5◦C above pre-industrial levels, global

net anthropogenic CO2 emissions should decline by about 45% from 2010 levels by

2030, reaching carbon neutrality — net zero global CO2 emissions — by 2050. Car-

bon neutrality is a global objective that requires a global instrument: low-carbon

policy. In other words, low-carbon policy is a systematic risk source because it is the

answer to the global warming phenomenon. However, as for every systematic risk,

low-carbon policy risk cannot be eliminated but only reduced: it can be reduced by

investing in low-carbon emissions firms.

In order to measure the impact of the 2003/87/CE directive, i.e low-carbon pol-

icy, with a factor, one possibility is to take all firms regulated by the policy, perform

carbon accounting for each firm, construct two portfolios, i.e. a high-carbon portfo-

lio and a low-carbon portfolio, and then take the differences of the value-weight re-

turns. However, this practice turns out to be problematic in a EU-ETS context: from

its inception to the present, the EU-ETS has covered only a fraction of European firms

and these happen to be all high-carbon firms, implying that if we were to construct

the environmental factor by partitioning current EU-ETS firms into a high-carbon

portfolio and a low-carbon portfolio, such a factor would be biased, i.e. negligible

in terms of magnitude. In order to cope with the fact that the EU-ETS covers only

high-carbon sectors, an alternative is to construct the environmental factor by means

of two portfolios, a portfolio composed of EU-ETS liable firms (which I call “carbon"

portfolio) and a portfolio composed of EU-ETS exempt firms (which I call “green"

portfolio). I call this systematic risk factor GMC: green minus carbon. The GMC

factor is obtained by subtracting the weekly value-weight EU-ETS liable bond port-

folio returns (25 firms) from the weekly value-weight EU-ETS exempt bond portfolio

returns (25 firms) from the beginning of Phase II (2008) of EU-ETS until 2018.

Is there a EU-ETS participation effect in average bond returns? Table 2.1 shows

the summary statistics for the two classical term-structure bond factors and the GMC

factor (Panel A), correlations between the three factors (Panel B) and the average

weekly value-weight excess returns for four bond portfolios formed from sorts on

EU-ETS participation and rating (Panel C). Panel C displays a rating effect: average
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return falls from low-grade bonds to high-grade bonds. This holds both in the case of

carbon bonds and in the case of green bonds. Furthermore, Panel C clearly displays

the EU-ETS participation effect: the green portfolio systematically outperforms its

carbon counterpart at each rating level.

TABLE 2.1: Summary statistics for weekly dependent and explana-
tory percent returns; July 2008 to June 2018, 521 weeks.

Panel A: Explanatory returns
Name Mean Std dev. t(mean) ACF(1) ACF(2) ACF(12)
CB 0.14 0.61 5.12 0.00 0.10 -0.04
GP 0.15 0.73 4.57 0.03 0.08 -0.04
CP 0.13 0.53 5.38 -0.04 0.11 -0.04
LTG 0.09 0.55 3.83 -0.08 0.08 0.05
RF 0.01 0.02 8.68 0.98 0.96 0.72

DEF 0.04 0.52 1.87 0.13 0.14 -0.05
TERM 0.08 0.54 3.55 -0.09 0.07 0.05
GMC 0.02 0.35 1.38 0.04 -0.01 -0.05
Panel B: Correlations between factors

DEF TERM GMC
DEF 1 -0.31 0.20
TERM -0.31 1 0.38
GMC 0.20 0.38 1
Panel C: Dependent variables
Name Mean Std dev. t(mean) ACF(1) ACF(2) ACF(12)
Green/HG 0.12 0.69 4.11 0.05 0.09 -0.04
Green/LG 0.15 0.87 3.93 0.05 0.10 -0.03
Carbon/HG 0.11 0.54 4.56 -0.06 0.04 -0.01
Carbon/LG 0.13 0.78 3.71 0.04 0.12 -0.09

CB is the value-weight corporate bond portfolio weekly percent return (50 bonds). GP is the value-
weight green bond portfolio weekly percent return (25 bonds). CP is the value-weight carbon bond
portfolio weekly percent return (25 bonds). LTG is the value-weight European long-term government
bond portfolio weekly percent return (7 bonds). RF is the 1-week Euribor rate. DEF is CB − LTG.
TERM is LTG − RF. GMC is GP − CP. The four bond portfolios used as dependent variables in
the excess return regressions are formed from sorts of the 50 European corporate bonds on EU-ETS
participation and rating. The Green/HG portfolio is composed of EU-ETS exempt (green) firms which
have a rating higher than or equal to A3 (by Moody’s). The Green/LG portfolio is composed of EU-ETS
exempt (green) firms which have a rating lower than A3. The Carbon/HG portfolio is composed of
EU-ETS liable (carbon) firms which have a rating higher than or equal to A3. The Carbon/LG portfolio
is composed of EU-ETS liable (carbon) firms which have a rating lower than A3.

Table 2.1 provides an argument for testing an augmented version of the Fama

and French (1993) two factor model for bonds. The environmental extension of equa-

tion (2.1) is, then, based on the addition of an EU-ETS participation factor, GMC. The

augmented specification of the model, which I call environmentally-extended Fama
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and French model (EE-FF) is the following:

Ri,t − RF,t = αi + miTERMt + diDEFt + giGMCt + ei,t (2.2)

2.4 The data

The environmental extension of the Fama and French (1993) two factor model for

bonds (EE-FF) aims at capturing patterns in average bond returns related to shifts in

interest rates, changes of probability of default and EU-ETS participation. Both the

outcome and the explanatory variables are formed by means of a portfolio compo-

sition based on a sample of 50 European corporate bonds and 7 European govern-

ment bonds. The returns to be explained are weekly value-weight excess returns on

four bond portfolios formed on sorts on EU-ETS participation (liable or exempt) and

rating (provided by Moody’s). The explanatory variables include the mimicking

portfolios for the unexpected changes in interest rates, TERM, shifts in economic

conditions that change the likelihood of default, DEF, and EU-ETS participation,

GMC, factors in returns. All data is from Bloomberg.

2.4.1 Explanatory returns

As Fama and French (1993) pointed out and demonstrated, variation of bond returns

are due mainly to two factors. Shifts in interest rates affect both new bond emissions,

by means of the coupon, and old emissions, by means of the inverse relationship be-

tween bond prices and interest rates. The factor that mimics this mechanism, TERM,

is constructed in the EE-FF model (2.2) by taking the difference between the weekly

value-weight returns on a long-term government bond portfolio (LTG) and the one-

week Euribor rate (RF) measured at the end of the previous week. In other words,

TERM tells us what is the premium for holding a bond that is affected by inter-

est rate risk. The long-term government bond portfolio is formed by 7 European

long-term government bonds: issuing countries are Belgium, Italy, the Netherlands,

Spain, France, UK and Germany. The value-weight returns of the long-term gov-

ernment bond portfolio have been calculated for each week from July 2008 to June



77

2018 after adjusting for different coupon frequencies (semi-annual coupon payment

frequencies have been converted to annual).

The second main factor involved in the variation of bond returns is mimicked

by DEF. Shifts in economic conditions can change the likelihood of default of a

debt-issuing entity: measuring this phenomenon involves taking the difference be-

tween the returns of a value-weight long-term corporate bond portfolio (CB) and

the returns of a value-weight long-term government bond portfolio (LTG). In the

end, DEF provides the premium for investing in a portfolio of long-term corpo-

rate bonds that is more likely to be affected by changes in economic conditions than

a portfolio of long-term government bonds. The portfolio of long-term corporate

bonds is formed by 50 European long-term corporate bonds whereas the long-term

government bond portfolio is formed by 7 European long-term government bonds

(the same government bond portfolio used in the construction of the TERM factor).

GMC proxies for the risk factor in bond returns related to EU-ETS participation.

GMC is constructed using a portfolio of 50 European corporate bonds (the same

corporate bond portfolio used in the construction of the DEF factor), out of which

25 participate in the EU-ETS since the beginning of phase II (2008) and 25 do not

participate in the EU-ETS since the beginning of phase II. A firm participates in the

EU-ETS since the beginning of phase II if it belongs to one of the following sectors:

power and heat generation, oil refineries, and production of coke, steel, iron, cement,

glass, lime, bricks, ceramics, pulp, paper and board (European Commission, 2015).

The two portfolios — the “green" portfolio (GP) and the “carbon" portfolio (CP) —

have been formed from July 2008 to June 2018. These portfolios do not need to be

shuffled on a yearly basis since the 50 European firms that are under examination

constantly participate (or not) in the EU-ETS in the 2008-2018 time frame. Weekly

value-weight bond returns have been calculated for the two portfolios for the 10-

year time frame for a total of 521 weekly observations. Lastly, GMC is obtained

by subtracting the weekly value-weight carbon portfolio returns from the weekly

value-weight green portfolio returns.

Panel A of table 2.1 displays descriptive statistics for the portfolios used as build-

ing blocks for the factors (CB, GP, CP, LTG), the risk-free rate (RF), along with the

three derived risk factors in returns: TERM, DEF and GMC. Correlations between
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factors are shown in Panel B. The mean value obtained for the EU-ETS participa-

tion factor, 0.02, indicates that the EU-ETS effect is lower than the interest rate effect

and the default effect: TERM and DEF have means of, respectively, 0.08 and 0.04.

Nevertheless, the magnitude of the GMC factor cannot be ignored. Furthermore, a

positive average GMC value points to the presence of a green premium in Europe

from 2008 onwards; such a green premium confirms that the EU-ETS has a positive

effect — intended as capital inflows to green firms and capital outflows from carbon

firms — in the financing of the low-carbon transition. In Fama and French (1993)

t-statistics for TERM and DEF are only 0.38 and 0.21. Table 2.1 displays t-statistics

for TERM of 3.55 and for DEF of 1.87. The t-statistic for GMC is also above 1, at

1.38. These elements, along with the scarce correlation between TERM, DEF and

GMC pave the way for a test of the three factors as independent variables in the

environmentally extended version of the Fama and French (1993) model for bonds.

2.4.2 Explained returns

In the augmented model (2.2), the bond returns to be explained, Ri,t − RF,t, are the

average excess returns of portfolios displayed in Panel C of table 2.1. The 4 portfolios

are formed from sorts of the 50 European long-term corporate bonds on EU-ETS

participation (EU-ETS liability and EU-ETS exemption) and rating (high rating and

low rating). Table 2.2 provides descriptive statistics for the 50 European corporate

bond sample.

The 25 liable (“carbon") firms have been selected by applying the following two

criteria: a) belonging to the sectors that take part in the EU-ETS since the beginning

of phase II (2008), and b) listing of at least one installation in the EU-ETS transaction

log. Moreover, bonds issued by firms that fulfil these two criteria need to be compa-

rable: they need to have similar issue dates, similar maturities, and a similar interest

payment structure, e.g. the sample cannot contain both fixed-interest rate bonds and

callable bonds. These criteria reduced reasonably the number of available bonds for

the empirical exercise: around 30 bonds were found. As some of these bonds were

missing pricing information, the final amount of bonds available was 25. The num-

ber of carbon firms (25) determined the number of exempted (“green") firms in the
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TABLE 2.2: Descriptive statistics for the 50 European corporate bonds;
Country and Sector (ICB) breakdown for Carbon and Green firms

Panel A: Country breakdown
EU country Green Firms EU country Carbon Firms

Finland 2 Czech Republic 1
France 5 Finland 3

Germany 5 France 4
Italy 4 Germany 4

Netherlands 2 Italy 4
Spain 2 Netherlands 1
UK 5 Portugal 1

Spain 3
UK 4

Total 25 Total 25
Panel B: ICB Sector breakdown

Sector Green Firms Sector Carbon Firms
Banks 5 Alternative Electricity 1

Broadline retailers 1 Building materials and fixtures 2
Diversified industrials 1 Conventional electricity 6

Fixed-line telecommunications 3 Gas distribution 2
Food retailers & wholesalers 3 General mining 1

Life insurance 2 Integrated Oil & Gas 5
Media agencies 2 Multiutilities 5

Mobile telecommunications 2 Paper 3
Mortgage Finance 1

Non-equity investment services 1
Publishing 2

Telecommunications equipment 1
Water 1

Total 25 Total 25

Green Firms are EU-ETS exempt firms. Carbon firms are EU-ETS liable firms.

sample: I selected with a random procedure from the Bloomberg database 25 bonds

issued by firms that fulfil the following two criteria: a) non belonging to the sectors

that take part in the EU-ETS since the beginning of phase II (2008), b) no listing of

firm installations in the EU-ETS transaction log. Moreover, bonds need to have, once

again, similar issue dates, maturity dates and coupon payment structure. The two

rating groups are formed by grouping Moody’s rating codes into two categories: the

high grade category includes Moody’s Aaa, Aa1, Aa2, Aa3, A1, A2 and A3 codes

while the low-grade category includes Moody’s Baa1, Baa2, Baa3, Ba1, Ba2, Ba3, B1

and B2 codes.

The 50 securities are all “bullets" (non-callable), fixed interest rates bonds with

similar issue dates (Q3 2008) and time to maturity (Q2 2018). This set of features,

particularly hard to find in a single bond, explain the size of the data set. In order to

overcome this relative difficulty, weekly returns have been preferred over monthly
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returns. The reason for the choice of the lower bound (2008) is that phase I of EU-

ETS (2005-2007) has been a 3-year pilot phase of “learning by doing" to prepare for

phase II, when the EU-ETS started to function effectively in order for the EU to meet

its Kyoto targets. Furthermore, in Phase I (2005-2007) almost all allowances were

given to businesses for free and the cap was largely based on estimates, as there

was no reliable emission data available (European Commission, 2015). This resulted

in a total amount of allowances issued superior to exceeded emissions that led, in

2007, to the fall of the price of allowances to zero. The upper bound of the time

period (2018) is given by the need to compare bonds with similar maturities. As

bond maturities are standardised, one of the typical time-to-maturity tranches is 10

years, a 2008 issue date implies a 2018 maturity date.

2.5 Results

The Fama and French (FF) two factor model (2.1) and the environmental extension

(EE-FF) of the two factor model (2.2) have been run for each of the four dependent

variables — four EU-ETS/Ratings portfolios — for a total of eight time-series regres-

sions. The slopes and the R2 values are direct evidence that TERM, DEF and GMC

proxy for risk factors in bond returns.

2.5.1 Common variation in returns

The results of the four FF regressions and of the four EE-FF regressions are displayed

in Table 2.3. If used as explanatory variables in the time-series regressions, TERM,

DEF, and GMC capture common variation in bond returns. The four bond portfo-

lios produce slopes on TERM in between 17 standard errors from zero (Carbon/LG)

and 55 standard errors from zero (Green/HG) when the FF model is run and in be-

tween 27 standard errors from zero (Carbon/LG) and 60 standard errors from zero

(Green/HG) when the EE-FF model is employed. Slopes on TERM are economi-

cally significant as well: they are in the 0.81 (Carbon/LG) - 1.38 (Green/LG) range

when the FF model is run and in the 0.90 (Green/HG) - 1.20 (Green/LG) range when

the EE-FF model is run. Within the two EU-ETS participation subgroups, slopes of
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TABLE 2.3: Regressions for 4 value-weight portfolios formed from
sorts on EU-ETS participation and Rating; July 2008 - June 2018, 521

weeks.

Green/HG Green/LG CarbonHG CarbonLG
Panel A: FF model

α -0.01 -0.01 0.01 0.01
t(α) -1.32 -1.48 0.36 0.54
m 1.08 1.38 0.82 0.81

t(m) 55.76 50.58 42.65 17.70
d 1.07 1.28 0.77 1.07

t(d) 48.80 41.27 34.93 20.46
R2 0.89 0.86 0.82 0.52

Panel B: EE-FF model
α -0.01 -0.01 -0.01 -0.01

t(α) -0.36 -0.85 -0.40 -0.41
m 0.90 1.20 0.94 1.15

t(m) 60.59 45.16 49.06 27.54
d 0.93 1.13 0.86 1.35

t(d) 58.04 39.63 41.94 30.01
GMC 0.48 0.47 -0.32 -0.93

t(GMC) 24.85 13.50 -12.78 -17.03
R2 0.95 0.90 0.86 0.69

At the end of December of each year, bonds are allocated to two EU-ETS participation groups: EU-ETS
exempt (Green firms) and EU-ETS liable (Carbon firms). Bonds are then allocated to two rating groups:
High-grade (HG) if the bond is rated A3 or higher (notation provided by Moody’s) and Low-grade
(LG) if the bond is rated lower than A3. The intersections of the two sorts produce 4 EU-ETS/Rating
portfolios. The dependent variables in the regressions are the weekly excess returns on the 4 EU-
ETS/Rating portfolios. The independent variables in the regressions are the interest rate factor, TERM,
the default factor, DEF and the EU-ETS participation factor, GMC. Panel A shows the intercepts,
coefficients, t-values, and the adjusted R2 value for the regressions of the 4 dependent variables on
TERM and DEF (FF model). Panel B shows the intercepts, coefficients, t-values, and the adjusted R2

value for the regressions of the 4 dependent variables on TERM, DEF, and GMC (EE-FF model).

low-grade portfolios are always higher than (or equal) the slopes of high-grade port-

folios. The nature of the TERM factor and interest rate expectations explain why

the sensitivity of bonds expected returns to the TERM factor drops from low-grade

bond portfolios to high-grade bond portfolios, which is a phenomenon found also in

Fama and French (1993) or in Lin, Wang, & Wu (2011). TERM, calculated as the dif-

ference between the weekly long-term government bond return and the one-week

Euribor rate measured at the end of the previous week, represents the premium for

investing in a bond which is exposed to interest rate fluctuations. Even though du-

ration is on average lower for low-grade bonds than for high-grade bonds when the

time to maturity is similar, the higher sensitivity of low-grade bonds to TERM is

explained by the ex-ante interest rates: when interest rates are expected to rise, low

duration bonds become more attractive than high-duration bonds which are more
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affected by interest rate risk.

The slopes on DEF are in between 20 standard errors from 0 (Carbon/LG) and

48 standard errors from 0 (Green/HG) when the FF model is run, while they are

in between 30 standard errors from 0 (Carbon/LG) and 58 standard errors from 0

(Green/HG) when the EE-FF model is run. The DEF slopes are in the 0.77 (Car-

bon/HG) - 1.28 (Green/LG) range when the FF model is run and in the 0.86 (Car-

bon/HG) - 1.35 (Carbon/LG) range when the EE-FF model is employed. Again,

within the two EU-ETS participation subgroups, slopes of low-grade portfolios are

always bigger than slopes of high-grade portfolios, which is consistent with previ-

ous literature (Acharya, Amihud, & Bharath, 2013; Gebhardt, Hvidkjaer, & Swami-

nathan, 2005). DEF is the risk factor in bond returns meant to proxy for shifts in

economic conditions that change the likelihood of default of a firm. In other terms,

it provides the premium for taking a supplementary (default) risk and investing in

a corporate bond rather than in a government bond. Declining coefficients from

low-grade bonds to high-grade bonds follow this risk-return logic.

GMC slopes are all at least 12 standard errors from zero (Carbon/HG). The sec-

ond less statistically significant GMC slope is 13 standard errors from zero (Green/LG).

All other slopes are more than 17 standard errors from 0. In terms of economic sig-

nificance, one would expect slopes on GMC to be positive, i.e. GMC positively

contributes to bonds excess average returns, when the dependent variable is EU-

ETS exempt, and negative, i.e. GMC negatively contributes to bonds excess average

returns, when the dependent variable is EU-ETS liable. Indeed, this is the case and

slopes on GMC are positive when the dependent variables are green portfolios and

negative when the dependent variables are carbon portfolios: green portfolios have

slopes in between 0.47 (Green/LG) and 0.48 (Green/HG) and carbon portfolios have

slopes in between -0.32 (Carbon/HG) and -0.93 (Carbon/LG). Slopes on GMC are

exactly the same when the dependent variable is a green portfolio, which is consis-

tent with the basic intuition that if a firm is EU-ETS exempt then the EU-ETS par-

ticipation effect is the same for both high-grade firms and low-grade firms. On the

other hand, if a firm is EU-ETS liable, slopes on GMC vary: low-grade firms have

stronger negative exposure to GMC to reflect the fact that a firm with weaker fun-

damentals, i.e. a low-grade firm, is expected to cope less well with a more stringent
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low-carbon policy than a firm with stronger fundamentals, i.e. a high-grade firm. It

is not surprising, then, to find a higher spread in GMC slopes between the Green/LG

portfolio and the Carbon/LG portfolio than between the Green/HG portfolio and

the Carbon/HG portfolio.

2.5.2 Sub-period analysis

Phase III of EU-ETS (2013-2020) has been described as a considerable step forward

with respect to phase II (2008-2012) in terms of environmental goals. For example,

a single EU-wide cap on emissions has replaced the previous system of national

caps and auctioning has replaced free allocation as the default method for allocating

allowances. We can check if the market agrees with the view that Phase III has been

more stringent than Phase II by breaking down the time-period of analysis into two

sub-periods and verifying if the sensitivity of the left hand-side portfolios to the

EU-ETS participation factor varies between the two phases. Table 2.4 displays the

results of the regression of the four dependent variables on two (FF model) and three

factors (EE-FF model) for the two sub-periods. The phase III sub-period ends, in this

exercise, in Q2 2018 with the end of the dataset.

Table 2.4 clearly confirms the results of table 2.3. On the other hand, there is no

evidence that phase III of EU-ETS has been perceived as more stringent than phase

II by the market: statistical significance is almost unchanged between carbon portfo-

lios, while decreasing for the Green/HG portfolio and increasing for the Green/LG

portfolio. Nevertheless, all coefficients on GMC are at least 8 standard errors from

zero. Also, in terms of economic significance, the differences between the two phases

are minimal. The spread between the EU-ETS exempt firms and the EU-ETS liable

firms has not increased between phase II and phase III but it is actually slightly

smaller (1.12 in phase II and 0.95 in phase III).

2.5.3 Model performance

As Fama and French (2015) suggest — based on Merton (1973) — the essential indi-

cators of the effectiveness of an asset-pricing model are indistinguishable from zero
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TABLE 2.4: Regressions for 4 value-weight portfolios formed from
sorts on Rating and EU-ETS participation for Phase II of EU-ETS
(2008-2012) and Phase III of EU-ETS (2013-2018); July 2008 - June 2018,

521 weeks.

Panel A: FF model
Phase II Phase III

Green/HGGreen/LGCarbon/HGCarbon/LGGreen/HGGreen/LGCarbon/HGCarbon/LG

α -0.01 -0.01 0.01 0.01 -0.01 -0.01 -0.01 0.01
t(α) -0.03 -1.33 0.74 0.11 -3.07 -0.70 -0.75 3.78
m 1.07 1.38 0.82 0.84 1.11 1.27 0.86 0.73

t(m) 38.85 33.81 31.33 12.04 27.24 31.93 17.22 16.09
d 1.08 1.26 0.76 1.15 1.06 1.35 0.80 0.70

t(d) 32.52 25.89 24.32 13.75 35.73 46.92 22.02 21.14
R2 0.89 0.86 0.83 0.51 0.88 0.92 0.74 0.72

Panel B: EE-FF model
Phase II Phase III

Green/HGGreen/LGCarbon/HGCarbon/LGGreen/HGGreen/LGCarbon/HGCarbon/LG

α 0.01 -0.01 0.01 -0.01 -0.01 0.01 -0.01 0.01
t(α) 0.90 -1.09 0.41 -0.43 -1.92 2.26 -2.26 2.71
m 0.90 1.22 0.93 1.19 0.95 1.04 1.04 0.94

t(m) 45.75 29.91 36.27 18.70 25.72 39.74 21.65 24.30
d 0.94 1.14 0.84 1.41 0.87 1.09 1.01 0.95

t(d) 43.30 25.25 29.61 19.94 28.75 50.70 25.83 29.99
GMC 0.50 0.46 -0.31 -0.98 0.40 0.56 -0.43 -0.51

t(GMC) 19.11 8.28 -9.01 -11.48 11.20 21.96 -9.21 -13.53
R2 0.95 0.88 0.87 0.68 0.92 0.97 0.80 0.83

At the end of December of each year, bonds are allocated to two EU-ETS participation groups: EU-
ETS exempt (Green firms) and EU-ETS liable (Carbon firms). Bonds are then allocated to two rating
groups: High-grade (HG) if the bond is rated A3 or higher (notation provided by Moody’s) and Low-
grade (LG) if the bond is rated lower than A3. The intersections of the two sorts produce four EU-
ETS/Rating portfolios. The dependent variables in the regressions of Panel A and Panel B are the
weekly excess returns on the 4 EU-ETS/Rating portfolios for Phase II of EU-ETS (2008-2012) and for
Phase III of EU-ETS (2013-2018). The independent variables in the regressions are the interest rate
factor, TERM, the default factor, DEF and the EU-ETS participation factor, GMC. Panel A shows
the intercepts, coefficients, t-values, and the adjusted R2 value for the regressions of the 4 dependent
variables on TERM and DEF (FF model). Panel B shows the intercepts, coefficients, t-values, and the
adjusted R2 value for the regressions of the 4 dependent variables on TERM, DEF, and GMC (EE-FF
model).

intercepts: if the coefficients of the time-series regressions completely capture vari-

ation in expected returns, then the intercept, αi, is indistinguishable from zero. The

intercepts found (Table 2.3 and 2.4) with the two-factor model (FF) and its environ-

mental extension (EE-FF) are all almost indistinguishable from zero, the lowest being

-0.01 and the highest being 0.01, which is of central importance for a well-specified

asset pricing model. To test the zero intercept hypothesis for combinations of port-

folios and factors, I compute the Gibbons, Ross, and Shanken (1989) GRS statistic for

both the FF model and the EE-FF model in the whole sample period and for the two
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sub-periods identified as phase II and phase III (Table 2.5). This operation permits

us to assess how well the two factor (FF) model and the three factor (EE-FF) model

explain average excess bond returns and answer the question of the improvement

provided by adding the GMC factor to the two classical bond factors.

TABLE 2.5: GRS statistics for tests of the FF model and the EE-FF
model; July 2008 - June 2018, 521 weeks.

Panel A: FF model
Phase II (2008-2012) Phase III (2013-2018) Phase II & Phase III (2008-2018)

GRS 0.66 4.32 3.31
p-value 0.623 0.002 0.011
Panel B: EE-FF model

Phase II (2008-2012) Phase III (2013-2018) Phase II & Phase III (2008-2018)
GRS 0.53 2.72 2.82

p-value 0.711 0.030 0.026

The table tests the ability of the two-factor model (FF model) and the three factor model (EE-FF model)
to explain weekly excess returns on the 4 EU-ETS/Rating portfolios. Panel A shows the GRS statistic
testing whether the expected values of all 4 intercept estimates are zero when the FF model is employed
in Phase II of EU-ETS (2008-2012), in Phase III of EU-ETS (2013-2018) and in Phase II and Phase III
(2008-2018). Panel B shows the GRS statistic testing whether the expected values of all 4 intercept
estimates are zero when the EE-FF model is employed in Phase II of EU-ETS (2008-2012), in Phase III
of EU-ETS (2013-2018) and in Phase II and Phase III (2008-2018).

Interestingly, in Phase II, the GRS statistic is 0.66 for the FF model and 0.53 for

the EE-FF model with p-values of only, respectively, 0.62 and 0.71. This suggests

that the null of zero intercepts cannot be rejected for the 4 left-hand side portfolios

when the FF model and the EE-FF model are employed. On the contrary, in Phase III

the GRS test rejects the hypothesis that the FF model and the EE-FF model explain

the average returns on bonds. However, the GRS statistic of the FF model (4.32) is

higher that the GRS statistic of the EE-FF model (2.72). If we take the whole sample

period (2008-2018), the GRS test rejects the hypothesis that the FF model and the EE-

FF model produce regression intercepts for the 4 bond portfolios that are all equal to

zero — the GRS statistic is 3.31 for the FF model and 2.82 for the EE-FF model — but,

again, the EE-FF model produces a lower GRS statistic than the FF model. Armed

with statistical evidence, I conclude that it is legitimate to consider the addition of

the GMC factor to the classical Fama and French bond factors in Europe, at least

from 2008.
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2.6 Diagnostics

The GRS statistics (Table 2.5) tell us that, in terms of model comparison, the EE-FF

model is preferable to the FF model in Phase II, in Phase III and in the full time

period 2008-2018. The robustness check for the inference that the EE-FF model ex-

plains the cross-section of expected bond returns is based upon two tests. Firstly,

correlation among risk factors (Table 2.1) may lead to a concern about the unique

information that the newly proposed EU-ETS participation factor carries. To investi-

gate this issue, I first regress the GMC factor upon the remaining two factors, TERM

and DEF:

GMCt = λ0 + λ1TERMt + λ2DEFt + eGMC
t (2.3)

Once I generate the residuals from (2.3), I add them to the intercept and label

the result as orthogonal GMC (GMCO). Performing this operation permits us to

filter out the common information and retain only the unique information contained

in GMC. Then, I repeat the 4 time-series regression of the EE-FF model (2.2) for

the whole sample period substituting GMCO for GMC; in this way, GMCO — a

zero-investment portfolio uncorrelated with DEF and TERM — captures common

variation in bond returns left by DEF and TERM. Results are reported in Table 2.6.

In the regressions, GMCO keeps its significance, both in economic and statisti-

cal terms. The slopes on GMCO in the EE-FF model (Table 2.6) are identical to the

slopes on GMC in the EE-FF model (Table 2.3) by construction. Slopes for TERM

and DEF shift up for green portfolios and shift down for carbon portfolios. How-

ever, the spreads in the TERM and DEF slopes for green portfolios (0.29 and 0.21)

are almost identical to those of Table 2.3 (0.30 and 0.20), whereas the spreads for

carbon portfolios (0.02 and 0.29) are lower than those in Table 2.3 (0.21 and 0.49).

In terms of statistical significance, the EE-FF model that uses GMCO as explanatory

variable produces coefficients for both TERM and DEF which are more statistically

significant than those produced by the EE-FF model that uses GMC as explanatory

variable. This is the case for six regressions out of eight, the only exception being

regressions of Carbon/LG portfolios.
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TABLE 2.6: Regressions for four value-weight portfolios formed from
sorts on Rating and EU-ETS participation; July 2008 - June 2018, 521

weeks.

Green/HG Green/LG Carbon/HG Carbon/LG

α -0.01 -0.01 -0.01 -0.01
t(α) -0.36 -0.86 -0.40 -0.41
m 1.08 1.37 0.83 0.81

t(m) 82.52 58.77 48.89 22.09
d 1.07 1.28 0.77 1.06

t(d) 72.24 47.96 40.04 25.53
GMCO 0.48 0.47 -0.32 -0.93

t(GMCO) 24.85 13.50 -12.79 -17.03
R2 0.94 0.90 0.86 0.69

At the end of December of each year, bonds are allocated to two EU-ETS participation groups: EU-ETS
exempt (Green firms) and EU-ETS liable (Carbon firms). Bonds are then allocated to two rating groups:
High-grade (HG) if the bond is rated A3 or higher (notation provided by Moody’s) and Low-grade
(LG) if the bond is rated lower than A3. The intersections of the two sorts produce 4 EU-ETS/Rating
portfolios. The dependent variables in the regressions are the weekly excess returns on the 4 EU-
ETS/Rating portfolios. The independent variables in the regressions are the interest rate factor, TERM,
the default factor, DEF and the orthogonal EU-ETS participation factor, GMCO. GMCO is the sum of
the intercept and the residuals from the regression of GMC on TERM and DEF. The table shows
the intercepts, coefficients, t-values, and the adjusted R2 values for the regressions of the 4 dependent
variables on TERM, DEF and GMCO.

The second robustness test, in the spirit of Fama and French (1993), brings upon

the residuals generated from the EE-FF model (2.2) to check that the regressions

capture the variation through time in the cross section of expected returns. There is

evidence that the default spread, the term spread and short-term interest rates pre-

dict bond returns: if the three factors of the EE-FF model actually capture the cross

section of expected returns, the predictability of bond returns should be embodied

in the explanatory returns and residuals should be unpredictable. This hypothesis

is tested with the following regression:

ei,t+1 = β0 + β1DFSt + β2TSt + β3RFt + ηi,t+1 (2.4)

In the equation, ei,t+1 are the time series residuals for the four bond portfolios

from the EE-FF model (2.2). DFSt (default spread) is the difference at the end of

week t between the yield on a corporate bond portfolio and the long-term govern-

ment bond yield. TSt (term spread) is the difference at the end of week t between the

long term government bond yield and the 1-week Euribor rate (RFt). Results clearly
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indicate that there is no evidence that the residuals from the EE-FF time series re-

gressions are predictable. R2 values in the four regressions are, at most, 0.01. Out of

the twelve slopes, none are statistically significant at the 0.05 level.

2.7 Stress testing bond returns

Recently, the literature has proposed stress testing, a technique developed for test-

ing the stability of an entity, as an evaluation framework for climate change risks.

In financial risk analysis a stress test is characterized by four essential features (Bo-

rio, Drehmann, & Tsatsaronis, 2014): a set of risk exposures subjected to stress, a

scenario that defines the exogenous shocks that stress the exposures, a model that

maps the shocks onto an outcome and a measure of such an outcome. In this context,

the Bank of England Prudential Regulation Authority (2015) suggests an integration

of climate change risk factors in standard stress-testing techniques, Zenghelis and

Stern (2016) encourage financial corporations and fossil fuel companies to under-

take stress tests to evaluate their “future viability against different carbon prices and

regulations” (p. 9), Schoenmaker and van Tilburg (2016) call for, as a next step, the

developing of “carbon stress tests to get a better picture of the exposure of the finan-

cial sector” (p. 7), and the World Bank has also taken this direction (Fay et al., 2015).

Besides these scientific endorsements, in France the recent law n◦ 2015-992 (article

173) relative to the energy transition for green growth, promulgated just before the

COP 21 in Paris, makes reference to climate change stress tests. The financial stress

test literature, following Koliai (2016), can be split in four main categories (table 2.8):

general presentation of the instrument in the early 2000s, portfolio stress test de-

velopment, systemic stress test emergence in the wake of the 2007-2009 crisis and

diagnosis of the realised exercises.

The literature, while portraying stress testing as quintessential to financial risk

management (Bensoussan, Guegan, & Tapiero, 2014), describes the technique through

dichotomies: top-down and bottom-up approaches, first and second round effects,

sensitivity and scenario analysis, historical and hypothetical scenarios, direct and

reverse stress tests. In the top-down approaches, the empirical relationship between
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TABLE 2.7: Categorisation of stress test literature (Koliai, 2016).

Topic Selected authors

Conceptual aspects Berkowitz (2000); Blaschke et al. (2001); Čihàk (2007)

Portfolio stress tests Kupiec (1998); Breuer and Krenn (1999); Bee (2001);Kim and Finger (2001);
Aragonés et al. (2001); Breuer et al. (2002); Alexander and Sheedy (2008);
McNeil and Smith (2012); Breuer and Csiszàr (2013)

Systemic stress tests Boss (2008); Alessandri et al. (2009); Aikman et al. (2009);
van den End (2010, 2012); Engle et al. (2014); Acharya et al. (2014)

Diagnostics Haldane (2009); Borio and Drehmann (2009); Hirtle et al. (2009);
IMF (2012); Greenlaw et al. (2012); Borio et al. (2012)

The table shows the categorisation of the stress-test literature performed by Koliai (2016) into 4 topics:
conceptual aspects, portfolio stress test, systemic stress test and diagnostics.

a banking variable and an exogenous stressor is assumed at the portfolio level of

low granularity, while in the bottom-up approach the empirical relationship is esti-

mated at the highest possible level of granularity of a banking variable. First-round

effects come from the immediate impact of the shock on the financial system, while

second-round effects include “possible domino effects from the institutions that are

directly affected by the shock to other intermediaries and, possibly, to market in-

frastructures and the entire financial system” (Quagliariello, 2009, p.33). Sensitivity

testing aims at determining how changes to a single risk factor will impact the in-

stitution or the portfolio while scenario analysis studies the effect of a simultaneous

move in a group of risk factors. Scenarios have been subject to requirements by the

Basel Committee on Banking Supervision (2009) which demands them to be plau-

sible but severe: historical scenarios rely on a significant market event experienced

in the past, whereas a hypothetical scenario is a significant market event that has

not yet happened (Committee on the Global Financial System, 2005). Direct stress

tests set scenarios and derive losses, while “starting from a big loss and working

backward to identify how such a loss would occur is commonly referred to among

risk management professionals as reverse stress testing” (Breuer, Jandačka, Mencía,

& Summer, 2012, p. 332).

The aim of the carbon stress test is to show the impact of a plausible but more

severe average EU-ETS price on European bond returns. How can we get an insight

into the effect of more aggressive carbon pricing on bond returns? The carbon stress

test put forward leverages the GMC factor as it plays an intermediary role between
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carbon pricing and excess bond returns. GMC is meant to mimic the risk factor in re-

turns related to low-carbon policy, the 2003/87/CE directive in this case. It follows

that the GMC factor and the EU-ETS carbon price should be, in theory, positively

correlated: when the EU-ETS carbon price increases, GMC should rise accordingly.

Conversely, if the EU-ETS carbon price decreases, GMC should decline as well. The

equation for the carbon stress test is, then, based on the sensitivity of the GMC factor

to the EU-ETS carbon price, which can easily be obtained by multiplying the correla-

tion coefficient between the EU-ETS price and the GMC factor (0.48) with the ratio of

the standard deviation of the GMC factor and the standard deviation of the EU-ETS

carbon price:

z = ρgmc,ets

(
σGMC
σETS

)
(2.5)

In equation (2.5), z is the sensitivity of the GMC factor to the EU-ETS carbon

price (ETS) in the 2008-2018 time-span. ρgmc,ets is the Pearson correlation coefficient

between the EU-ETS price and the GMC factor, σGMC is the standard deviation of

the GMC factor, σETS is the standard deviation of the EU-ETS carbon price. Evi-

dently, z is also the slope of the regression of GMC on ETS. Assuming that such

regression is a well-specified model for GMC, i.e. intercept is zero, then by simple

substitution Equation (2.2) becomes:

Ri,t − RF,t = αi + miTERMt + diDEFt + ρgmc,ets

(
σGMC
σETS

)
giETSt + ei,t (2.6)

Holding all other variables constant and focusing only on the relation between

the left-hand side portfolios and the EU-ETS carbon price, the carbon stress test is

based on the following equation:

∆(Ri,t − RF,t) = ρgmc,ets

(
σGMC
σETS

)
gi∆ETSt (2.7)

In this equation, ∆(Ri,t − RF,t) is the average hypothetical variation in excess

bond returns, gi is the sensitivity of portfolio or bond i to EU-ETS participation,

and ∆ETSt is the average hypothetical EU-ETS carbon price variation. In order to
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understand the impact of a plausible but more severe EU-ETS average price on the

bond returns under examination, the average EU-ETS carbon price (9.46 euros in

the July 2008 - June 2018 time span) is stressed by 20% (low shock), 50% (medium

shock), and 100% (high shock). The carbon stress test is performed at two levels:

bond portfolio level and individual security level. In the first case, the bond returns

under examination are the excess returns on the four value-weight bond portfolios

formed from sorts on EU-ETS participation and rating. In the second case, the bond

returns under examination are the excess returns of the individual bonds of the 50

corporate bond sample.

TABLE 2.8: Carbon stress-test for four value-weight portfolios formed
from sorts on EU-ETS participation and Rating and 50 individual cor-

porate bonds; July 2008 - June 2018, 521 weeks.

Panel A: Regressions for four EU-ETS/Rating value-weight portfolios
Green/HGGreen/LGCarbon/HGCarbon/LG

Low shock 0.02 0.02 -0.01 -0.03
Medium shock 0.04 0.04 -0.03 -0.08

High shock 0.08 0.08 -0.05 -0.16
Panel B: Individual regressions for green firms

Mean Std Min Q1 Q2 Q3 Max
Low shock 0.02 0.02 -0.01 0.00 0.01 0.03 0.06

Medium shock 0.04 0.05 -0.03 0.01 0.03 0.07 0.15
High shock 0.09 0.09 -0.06 0.02 0.07 0.15 0.30

Panel C: Individual regressions for carbon firms
Mean Std Min Q1 Q2 Q3 Max

Low shock -0.02 0.03 -0.09 -0.02 -0.01 -0.01 0.01
Medium shock -0.04 0.07 -0.23 -0.04 -0.01 -0.01 0.02

High shock -0.08 0.14 -0.46 -0.08 -0.03 -0.02 0.04

At the end of December of each year, bonds are allocated to two EU-ETS participation groups: EU-
ETS exempt (Green firms) and EU-ETS liable (Carbon firms). Bonds are then allocated to two rating
groups: High-grade (HG) if the bond is rated A3 or higher (notation provided by Moody’s) and Low-
grade (LG) if the bond is rated lower than A3. The intersections of the two sorts produce four EU-
ETS/Rating portfolios. Panel A shows the results of the Carbon stress-test for the four EU-ETS/Rating
bond portfolios. Panel B shows summary statistics of the Carbon stress-test carried out individually for
25 EU-ETS exempt (Green) firms. Panel C shows summary statistics of the Carbon stress-test carried
out individually for 25 EU-ETS liable (Carbon) firms. In each stress-test, the average EU-ETS carbon
price is stressed by 20% (low shock), 50% (medium shock), and 100% (high shock).

Table 2.8 (Panel A) shows the results of the carbon stress test for each of the

four value-weight portfolios under the three shock scenarios: the second, third and

fourth rows provide the average variation of weekly percent excess returns under

the three EU-ETS carbon price scenarios. The signs of the values in Panel A reflect

the signs of the slopes found for GMC in Table 2.3: gi is positive, i.e. GMC positively

contributes to bonds average excess returns, when the portfolio is EU-ETS exempt
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and gi is negative, i.e. GMC negatively contributes to bonds average excess returns,

when the dependent variable is EU-ETS liable. The average variation of weekly

excess returns for the two Green portfolios are identical as the slopes on GMC found

with the EE-FF model (2.2) are similar: 0.48 (Green/HG) and 0.47 (Green/LG). On

the other hand, the average variation of weekly excess returns for the two Carbon

portfolios reflects the fact that GMC slopes found with the EE-FF model (2.2) are

-0.32 (Carbon/HG) and -0.93 (Carbon/LG).

Panel B and Panel C display the results of the carbon stress test carried out at

individual bond level. In this case, individual GMC slopes have been calculated for

each bond; I can report that in the Green category (25 firms) all slopes on GMC found

by running the EE-FF model (2.2) for each security are positive and statistically sig-

nificant at the 0.05 level besides three cases (which are negative but not statistically

significant at the 0.05 level). Furthermore, all slopes on GMC found by running the

EE-FF model (2.2) individually for the 25 carbon firms are negative and statistically

significant at the 0.05 level with the exception of two cases (which are positive but

not statistically significant at the 0.05 level).

2.8 Conclusions

This paper answers the research question of the impact of the 2003/87/CE directive

which initiated EU-ETS, i.e. low-carbon policy, upon European bond returns by

putting forward a risk factor in bond returns related to EU-ETS participation: GMC.

The sensitivity of bond portfolio returns to the GMC factor has been found to be

positive in the case of Green portfolios and negative in the case of Carbon portfolios.

Most importantly, slopes on GMC are statistically highly significant. Ultimately,

the average value of GMC itself is positive: finding a positive GMC means that

in Europe, in the 2008-2018 time-span, there is no carbon premium as some of the

literature asserts, but rather a green premium.

The test of the GMC factor has been carried out in a Fama and French (1993)

framework, where bond returns are explained by means of two risk-factors in re-

turns: TERM and DEF. It has been found that augmenting the Fama and French

(1993) model for bonds with the GMC factor improves the effectiveness of the model,
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at least with regard to Europe between 2008 and 2018. The description of average

bond returns is improved when the GMC factor is added: the EE-FF model produces

lower GRS statistics than the original FF model. This holds true in the 2008-2018

time-span and in the 2008-2012 (Phase II) and 2013-2018 (Phase III) sub-periods.

The last contribution of this paper is inspired by the recent climate change risk

stress test trend. The literature has recently proposed stress testing, a technique de-

veloped for testing the stability of an entity, as an evaluation framework for climate

change risks (Bank of England Prudential Regulation Authority, 2015; Fay et al.,

2015; Schoenmaker and van Tilburg, 2016; Zenghelis and Stern, 2016). The carbon

stress test put forward, which leverages the GMC factor, is able to indicate the im-

pact of an EU-ETS average price increase upon bond returns: results show the effects

of a plausible but more severe EU-ETS average price on bond portfolios formed on

EU-ETS participation and rating and on individual bonds.

Three policy implications can be derived from these contributions. The first two

implications are of interest to financial practitioners and the third is of interest to

legislators. Firstly, the presence of a green premium in the European bond market

in the years 2008-2018 is a useful asset management insight for financial practition-

ers. In other words, low-carbon investments can no longer be understood solely

from the point of view of taking an ethical stand: nowadays, as the green premium

shows, investing in low-carbon firms is a profitable exercise. Secondly, in terms of

asset pricing models, the augmented version of the Fama and French (1993) model

for bonds is preferable to the original one, at least in Europe since 2008. Thirdly, the

low-carbon transition risk stress test put forward, by showing the average impact

on bond returns of various scenarios of carbon pricing, provides useful insights to

legislators in terms of the financing of low-carbon transition, i.e. increasing capital

inflows towards green firms and capital outflows from carbon firms. The low-shock

scenario, for example, would provide an additional boost to the low-carbon transi-

tion, without harming excessively high-carbon firms.
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Chapter 3

Extreme climate events and

financial values: empirical

evidence from the stock market

3.1 Introduction

The literature has partitioned climate change risks in two categories. The first cat-

egory has been labeled “climate risk" (Carney, 2015) and refers to the link between

global warming and natural and human systems. Extreme climate phenomena like

temperature extremes, high sea level extremes, and precipitation extremes (Intergov-

ernmental Panel on Climate Change, 2014), are likely to seriously affect economic

growth (Dell, Jones, & Olken, 2014; Pycroft, Abrell, & Ciscar, 2016), productivity

(Graff Zivin & Neidell, 2014; Hallegatte, Fay, Bangalore, Kane, & Bonzanigo, 2015),

and financial values.

The second category of climate change risks has been labeled “low-carbon tran-

sition risk" or “carbon risk". Low-carbon transition risk refers to the cost of the ad-

justment towards a low-carbon economy. Hence, it includes all drivers of risk linked

to the decarbonisation of the economy: a) market-based instruments like a carbon

tax or an emission allowance price; b) command and control induced technological

shifts, e.g. stranded assets or assets that have suffered from unanticipated or prema-

ture write-downs, devaluations, or conversion to liabilities (Caldecott et al., 2016);

and c) market risk, i.e. market demands for low carbon products (Zhou et al., 2016).
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This paper brings upon the impact of extreme climate events upon financial val-

ues. Specifically, we are interested in the way changes in extreme climate phenom-

ena (temperatures extremes, high sea levels extremes, and precipitation extremes)

are related to changes in the value of stocks. This research question has, to the best

of our knowledge, scarcely being addressed.

Literature on the relation between extreme climate events and stock returns is

scarce. Anttila-Hughes (2016) finds that new record temperature announcements

are associated with negative excess returns for energy firms while ice shelf collapses

are associated with positive returns. Balvers, Du & Zhao (2016) find that a significant

risk premium exists on a temperature tracking portfolio and its impact on the cost of

equity capital has been increasing over time; furthermore, loadings at industry level

on the tracking portfolio are generally negative. Bourdeau-Brien and Kryzanowski

(2016) find that major natural disasters induce abnormal stock returns and return

volatilities and volatility more than doubles following large natural hazards. Hong,

Li and Xu (2017) investigate whether the prices of food stocks efficiently discount

drought risk finding that high drought exposure is related to poor profit growth and

poor stock returns for food companies.

We answer the research question of the impact of extreme climate events upon

stock returns by means of a climatic extension of the Fama and French (2015) five-

factor model for stocks. This is the first time a factor model is employed for assessing

the implications of climate changes upon stock returns. The reasoning proceeds as

follows: augmenting the Fama and French (2015) five-factor model with a sixth fac-

tor amounts to asserting that a systematic risk is missing from the framework. There

is, at least, another common factor that affects stock returns: global warming. The

climatic factor we put forward, LME (light minus extreme), responds to the need of

capturing the risk factor in stock returns related to global warming which is asso-

ciated with extreme climate phenomena like temperature extremes, high sea levels

extremes, and precipitation extremes (Intergovernmental Panel on Climate Change,

2014). The climatic factor is built by building two portfolios: the extreme climatic

impact (ECI) portfolio and the light climatic impact (LCI) portfolio. The procedure

to form the two portfolios leverages an analysis of global extreme climate events in

the 2008-2017 timeframe. Weekly value-weighted returns of the ECI portfolio are
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then subtracted from the weekly value-weighted returns of the LCI portfolio. The

returns to be explained in our setting are value-weighted excess returns for six port-

folios sorted on climate exposure and size (market capitalisation) taken from a sam-

ple of 227 firms belonging to the STOXX 1800 index for which data on geographical

fixed asset location was available.

In the end, we find that the slopes on the newly proposed risk factor in stock

returns gradually increase from the extreme climate impact portfolio to the light cli-

mate impact portfolio. Furthermore, these results are statistically highly significant.

Overall, we find that there is a climate effect in average excess stock returns, which

confirms our hypothesis that a systematic risk factor, global warming in this case,

was missing from the classical framework. However, results show that the climate

factor (LME), just like the value factor (HML) are absorbed by the remaining four

factors in stock returns: RM − RF (market’s excess return), SMB (small minus big,

the size factor), RMW (robust minus weak, the profitability factor) and CMA (con-

servative minus aggressive, the investment factor). This is also observed after com-

puting the GRS statistics, which show that adding LME and HML to the other four

factors never improves the effectiveness of the model. The observation that HML be-

comes redundant in a five-factor model has already been made by Fama and French,

and we can confirm it. Coherently with their analysis, we ultimately propose a six-

factor model which leverages two orthogonal factors: LMEO (orthogonal LME) and

HMLO (orthogonal HML).

The rest of the paper proceeds as follows: section 3.2 presents the climatic factor,

section 3.3 exposes the model, section 3.4 puts forward the data, section 3.5 intro-

duces the results, section 3.6 presents the climate stress test and section 3.7 con-

cludes.

3.2 The climatic factor

The climatic factor we put forward is meant to mimic the risk factor in returns related

to global warming. First of all, the sample shall be representative of global stocks,

which is why we used as a starting base the STOXX 1800 index. In order to construct

the climatic factor, we first need to develop a method to classify a firm according to
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the degree of impact global warming has on its productive capacities. The method

we propose leverages one fundamental evidence: extreme climate events such as

temperature extremes, high sea levels extremes, and precipitation extremes impact

physical assets. That is, firms’ physical assets are damaged by exposure to extreme

climate events and we need to establish a method to link such exposure with fixed

assets losses. Therefore, the first information needed to construct the climatic factor

(LME) is a detailed outline of the geographical allocation of firms’ fixed assets. Start-

ing from the 1800 firms of the STOXX 1800 index, and keeping as a rule that at least

80% of the firms’ fixed assets should be associated with a geographical location, we

identified 227 global stocks. These 227 global stocks became our sample.

The second step of the construction of the LME factor is identifying firms as ex-

tremely climate impacted or lightly climate impacted. This is done by leveraging

a second fundamental information: country-level climate related GDP losses. We

use the Global Climate Risk index developed by Germanwatch to gather data on the

GDP losses of countries attributable to extreme climate phenomena such as tropical

storms, winter storms, severe weather, hail, tornados, local storms (meteorological

events); b) storm surges, river floods, flash floods, landslide mass movement (hy-

drological events); and c) freezing, wildfires, droughts (climatological events). GDP

losses are collected from 2008 to 2017. The lower and upper bound is determined,

once again, by the availability of data for countries in the Global Climate Risk index.

In the end, our sample includes 227 firms for which we have a picture of the

geographical distribution of fixed assets and operating in countries for which we

have climate-related GDP losses from 2008 to 2017. The next step involves creating

a link between climate related GDP loss and climate related firm loss, intended as a

loss of fixed assets. We do this by building on two assumptions. The first assumption

states that the expected climate related fixed assets loss in a given country y1 at time

t can be treated as the expected climate related fixed assets loss of firms operating

in country y1. For example, if we make the hypothesis that in country y1 only three

firms (x1, x2, x3) operate, then the mathematical form of the expression is:

E(Alossy1,t) = E(Alossx1,y1,t) = E(Alossx2,y1,t) = E(Alossx3,y1,t) (3.1)
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Firms (x1, x2, x3) operating in country y1 are exposed to the same climatic events

that country y1 is exposed to. The actual climate related fixed assets loss in a given

country y1 is the sum of the actual fixed assets losses of the individual firms that

operate in that country. Also, the expected climate related fixed assets loss in a given

country y1 is the weighted average of the actual fixed assets losses of the individual

firms that operate in country y1. Unfortunately, actual climate related fixed assets

losses at firm level are not known. Equation (3.1) amounts to say that the expected

climate related fixed assets losses of the firms operating in country y1 can be approx-

imated by the expected climate related fixed assets losses of country y1. Evidently,

this holds for a high enough number of firms.

The second assumption states that the expected climate related GDP loss —

E(GDPlossy1,t) — of country y1 at time t is a proxy for the expected climate re-

lated fixed assets loss of country y1 at time t. In other terms, E(GDPlossy1,t) =

E(Alossy1,t). This amounts to say that a loss of assets induces a GDP loss of the same

magnitude. In other words, if we take an open economy, this is equal to affirm that a

drop in the productive assets of country y1 can be regarded as a drop in investments

of country y1 since investments are always expenditures on capital, i.e. assets. This

drop of investments induces, ceteris paribus, a GDP drop of the same dimension. By

substitution, it follows that:

E(GDPlossy1,t) = E(Alossx1,y1,t) = E(Alossx2,y1,t) = E(Alossx3,y1,t) (3.2)

Therefore, if a firm x1 is active in a set of countries y with y = 1, 2, ..., Y and

the expected climate related GDP losses at time t in these countries are equal to

E(GDPlossy,t), then the total expected loss in terms of fixed assets for firm x1 is

given by:

E(Alossx1,t) =
Y

∑
y=1

E(GDPlossy,t)Assetsx1,y,t (3.3)

with Assetsx1,y,t being the value of fixed assets of firm x1 in country y at time t.

We use equation (3.3) to calculate total expected climate related fixed assets losses

for each of the 227 firms of our sample. In order to have comparable figures we
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calculate asset-weighted climate losses for each firm in year t by dividing the left-

hand side and the right-hand side of equation (3.3) by the value of the firm’s total

assets, i.e. ∑Y
y=1 Assetsx1,y,t. Once this is done, we take the 30th and the 70th percentile

as breakpoints and construct three climate-impact portfolios: light climate impact,

moderate climate impact and extreme climate impact. We also assign stocks to two

size groups, small and big, using the market cap median as the breakpoint. Weekly

value-weighted returns for the six (3x2) portfolios defined by the intersections of the

groups are calculated. In the end, we obtain the LME (light minus extreme) factor,

which proxies for the risk factor in stock returns related to extreme climate events

with the following equation:

LME = (LS + LB)/2 − (ES + EB)/2 (3.4)

In this equation, LS is the value-weighted return of the Light/Small portfolio,

LB is the value-weighted return of the Light/Big portfolio, ES is the value-weighted

return of the Extreme/Small portfolio and EB is the value-weighted return of the

Extreme/Big portfolio.

3.3 The model

In order to estimate the impact of the extreme climate phenomena identified in sec-

tion two upon stock returns, we expand the original Fama and French (2015) five

factor model with the climatic factor LME. Fama and French’s (2015) original five

factor model is based on the following time-series regression:

Ri,t − RF,t =αi + βi(RM,t − RF,t) + siSMBt + hi HMLt

+ riRMWt + ciCMAt + ei,t

(3.5)

In the equation, Ri,t is the value-weighted return for security or portfolio i for

period t; RF,t is the risk free rate; RM,t is the value-weighted return of the market

portfolio; SMBt is the size factor, i.e. the return on a diversified portfolio of small

stocks minus the return on a diversified portfolio of big stocks; HMLt is the value
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factor, i.e. the return on a diversified portfolio of high B/M stocks minus the return

on a diversified portfolio of low B/M stocks; RMWt is the profitability factor, i.e.

the difference between the returns on diversified portfolios of stocks with robust

and weak profitability; CMAt is the investment factor, i.e. the difference between

the returns on diversified portfolios of the stocks of low and high investment firms;

and ei,t is a zero-mean residual. If the coefficients of the time-series regression —

βi, si, hi, ri, ci— completely capture variation in expected returns, then the intercept,

αi, is indistinguishable from zero.

Equation (3.5) is augmented with the climate factor, LME, which is a system-

atic factor meant to mimic the risk factor in stock returns related to extreme climate

events. The climatic extension (CE-FF) of the Fama and French (2015) model for

stocks is, then, the following:

Ri,t − RF,t =αi + βi(RM,t − RF,t) + siSMBt + hi HMLt

+ riRMWt + ciCMAt + liLMEt + ei,t

(3.6)

The sensitivity of stocks excess returns, Ri,t − RF,t, to extreme climate events is

represented by coefficient li. We find LME to be positive; this implies that we expect

the li coefficient to be decreasing from light climate impacted (LCI) firms to extreme

climate impacted (ECI) firms. We run equation (3.6) for six left-hand side portfolios

formed from sorts on climate exposure and size (market capitalisation). Summary

statistics for the left-hand side portfolios, the original Fama and French five factors,

the LME factor, and correlations are shown in table 3.1.

In Table 3.1, all data on classical factors (RM − RF, SMB, HML, RMW, CMA) are

from the Kenneth French database. The most striking information delivered by table

3.1 is the relative low magnitude of classical factors such as SMB and HML in the

January 2008-December 2017 timespan in developed markets. While the statistics

displayed make reference to weekly returns, we repeated the exercise with daily

returns and the results are the same, if not worse. It seems that, in the developed

markets, the only factors having an economic incidence on stock returns are RM −

RF, RMW, CMA and LME. Among factors, RM − RF and LME have the strongest
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TABLE 3.1: Summary statistics for weekly dependent and explana-
tory percent returns; January 2008 to December 2017, 522 weeks.

Panel A: Explanatory returns
Name Mean Std dev. t(mean) ACF(1) ACF(2) ACF(12)

LCI 0.22 3.14 1.60 -0.07 0.03 -0.08
ECI 0.12 3.03 0.89 -0.06 0.06 -0.06

RM − RF 0.09 2.56 0.84 -0.02 0.08 -0.08
SMB 0.01 0.77 0.39 -0.18 0.07 -0.09
HML 0.01 0.86 0.24 0.05 0.02 -0.04
RMW 0.07 0.56 3.01 0.03 0.02 -0.02
CMA 0.03 0.64 1.14 0.08 0.08 0.02
LME 0.08 2.09 0.91 -0.11 -0.01 -0.04

Panel B: Correlations between factors
RM − RF SMB HML RMW CMA LME

RM − RF 1 -0.38 0.34 -0.38 -0.48 0.05
SMB -0.38 1 -0.19 0.05 0.07 0.03
HML 0.34 -0.19 1 -0.58 0.23 -0.07
RMW -0.38 0.05 -0.58 1 -0.03 0.09
CMA -0.48 0.07 0.23 -0.03 1 -0.23
LME 0.05 0.03 -0.07 0.09 -0.23 1

Panel C: Dependent variables
Name Mean Std dev. t(mean) ACF(1) ACF(2) ACF(12)
L/S 0.31 3.59 1.97 -0.11 0.03 -0.05
L/B 0.11 3.34 0.75 -0.03 -0.02 -0.07
M/S 0.24 3.81 1.43 -0.04 0.01 -0.11
M/B 0.13 4.16 0.73 -0.06 0.01 -0.03
E/S 0.20 3.09 1.48 -0.07 0.09 -0.08
E/B 0.02 3.40 0.11 -0.03 0.03 -0.03

In panel A, LCI is the value-weighted light climate impact portfolio weekly percent return. ECI is the value-

weighted extreme climate impact portfolio weekly percent return. LME is LCI-ECI. RM − RF is the value-weighted

market portfolio weekly percent return, SMB is the size factor weekly percent return, HML is the value factor

weekly percent return, RMW is the profitability factor weekly percent return, CMA is the investment factor weekly

percent return. The six stock portfolios (panel C) used as dependent variables in the time-series regressions are

formed from sorts of the 227 global stocks retained for the empirical exercise on climate exposure and size (market

capitalisation). At the end of December of each year t, stocks are allocated to two size groups (Small and Big) using

the sample market cap median as breakpoint. Stocks in each size group are then allocated independently to three

climate impact groups (Light, Moderate and Extreme) by running equation (3) for each stock and using the 30th and

70th percentiles as breakpoints.

magnitude with average values of 0.09 and 0.08, respectively. Overall, Table 3.1

provides an argument to test an augmented version of the Fama and French (2015)

five factor model: an expanded model which is able to capture the climate effect on

excess stock returns.

3.4 The data

The climatic extension (Eq. 3.6) of the Fama and French (2015) model aims at captur-

ing patterns in average returns related to size, value, profitability, investment and

extreme climate events. The explanatory variables include the returns on a market

portfolio of global stocks, RM − RF, and mimicking portfolios for the size, SMB,
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value, HML, profitability, RMW, investment, CMA, and climate impact, LME, fac-

tors in returns. The returns to be explained are the value-weighted returns for sub-

sets of the portfolio of 227 global stocks which have been retained for the empiri-

cal exercise. Such subsets are formed by breaking up the 227 firms into 6 portfo-

lios based on market capitalisation and climate exposure: the 6 stock portfolios are

formed from annual (2008-2017) sorts of stocks into 2 size groups (median) and three

climate exposure groups: light, moderate and extreme. The risk-free rate, RF, is the

1-week T-bill rate.

3.4.1 Explanatory returns

The five classical factors (RM − RF, SMB, HML, RMW, CMA) are taken directly

from Kenneth French’s database of factors for the developed markets. For a com-

plete description of the construction of the factors we refer the reader to Fama and

French (2015): here it suffices to mention that the five classical factors (2x3) are con-

structed using six value-weighted portfolios formed on size and book-to-market, six

value-weighted portfolios formed on size and operating profitability, and six value-

weighted portfolios formed on size and investment. All the portfolios are shuffled

on a yearly basis. SMB (small minus big) is the average return on the nine small

stock portfolios minus the average return on the nine big stock portfolios, HML

(high minus low) is the average return on the two value portfolios minus the aver-

age return on the two growth portfolios, RMW (robust minus weak) is the average

return on the two robust operating profitability portfolios minus the average return

on the two weak operating profitability portfolios, CMA (conservative minus ag-

gressive) is the average return on the two conservative investment portfolios minus

the average return on the two aggressive investment portfolios, while RM − RF is

the return on the developed markets’ value-weighted market portfolio.

The LME (light minus extreme) factor, which proxies for the risk factor in stock

returns related to extreme climate events, is formed by means of a sample of 227

global stocks. These stocks have been selected starting from a bigger sample of firms,

the constituents of the STOXX 1800 index, on the basis of available information on

the geographical location of firms fixed assets. We use equation (3.3) to calculate

total expected climate related fixed assets losses for each of the 227 firms of our
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sample. In order to have comparable figures we calculate asset-weighted climate

losses for each firm in year t by dividing the left-hand side and the right-hand side

of equation (3.3) by the value of the firm’s total assets, i.e. ∑Y
y=1 Assetsx1,y,t. Once

this is done, we take the 30th and the 70th percentile as breakpoints and construct

three climate-impact portfolios: light climate impact, moderate climate impact and

extreme climate impact. We also assign stocks to two size groups, small and big,

using the market cap median as the breakpoint. Weekly value weight returns for the

six portfolios defined by the intersections of the groups are calculated. In the end,

we obtain the LME (light minus extreme) factor, which proxies for the risk factor in

stock returns related to extreme climate events by applying equation (3.4).

3.4.2 Explained returns

In the climatic extension of the Fama and French model (CE-FF, eq. 3.6), the returns

to be explained, Ri, are the value-weighted returns for subsets (six portfolios) of the

sample of 227 global stocks which have been selected from the STOXX 1800 index.

Descriptive statistics for the sample of 227 firms are shown in Table 3.2. The proce-

dure for the formation of the six portfolios is the same procedure followed to build

the portfolios used in the construction of the LME factor. Once again, the selec-

tion of the 227 stocks is based on data availability on geographical location of firms’

fixed-assets. Eq. (3.3) has been run for each of the 227 stocks; this operation per-

mitted us to list the 227 firms from the least impacted to the most impacted. Then,

we took the 30th and the 70th percentile of this list as breakpoints and constructed

three climate-impact portfolios: light climate impact (LCI), moderate climate impact

(MCI) and extreme climate impact (ECI). At the same time, using the market cap me-

dian, we split the 227 in two groups: small and big. The intersection of the groups

produced six portfolios: light/small (L/S), light/big (L/B), moderate/small (M/S),

moderate/big (M/B), extreme/small (E/S) and extreme/big (E/B). Weekly value-

weighted returns have been calculated for each portfolio. Successively, the risk-free

rate, the 1-week T-bill rate has been subtracted in order to have excess returns.

Average weekly percent value-weighted returns for the six portfolios are shown

in Table 3.1. Here, the size effect clearly shows within each climate exposure group:

average return typically falls from small stocks to big stocks. At the same time there
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is also an evident climate effect. The three small cap portfolios show declining av-

erage returns from the L/S portfolio to the E/S portfolio. This holds true also in

the case of big cap portfolios: average return falls from the L/B portfolio to the E/B

portfolio.

TABLE 3.2: Descriptive statistics for the 227 Global stocks: Incorpora-
tion country and Industry (ICB) breakdown.

Incorporation Country ICB Industry
Country Firms Sector Firms

Argentina 1 Basic materials 22
Australia 7 Consumer discretionary 30
Bermuda 1 Consumer staples 11
Canada 11 Energy 19
China 1 Financial 14

Denmark 2 Health care 20
Finland 3 Industrials 45

Germany 6 Real estate 9
Hong Kong 9 Technology 40

Ireland 4 Telecommunications 12
Israel 1 Utilities 5
Italy 2

Japan 5
The Netherlands 2

Norway 4
Singapore 6
Sweden 7

Switzerland 10
Thailand 1

United Kingdom 15
United States 129

Total 227 Total 227

3.5 Results

The climatic extension of the Fama and French five factor model (CE-FF) has been

run for each of the six dependent variables: six portfolios sorted on climate exposure

and size. The slopes and the R2 values are direct evidence that RM −RF, SMB, HML,

RMW, CMA and LME proxy for risk factors in stock returns.

3.5.1 Common variation in stock returns

The results of the six regressions carried out with the CE-FF model (Eq. 3.6) are

displayed in Table 3.3. When used as explanatory variables in the time-series re-

gressions, the factors capture common variation in stock returns. Extreme climate

phenomena, at least in our setting, deteriorate physical assets proportionally to the

degree of the impact itself. A loss of assets negatively affects profits which in turn
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TABLE 3.3: Regressions for 6 value-weighted portfolios formed from
sorts on climate exposure and size; January 2008 - December 2017,

522 weeks.

Light Mod. Extr. Light Mod. Extr.
α t(α)

Small 0.20 0.24 0.18 2.28 2.78 2.60
Big 0.05 0.12 0.06 0.72 1.12 0.90

β t(β)

Small 0.90 1.07 0.98 18.26 21.85 25.72
Big 1.07 1.15 0.99 27.30 18.95 24.58

s t(s)
Small -0.35 -0.42 -0.14 -2.79 -3.43 -1.48

Big -0.10 -0.50 -0.30 -1.02 -3.27 -2.94
h t(h)

Small 0.34 0.21 -0.18 2.45 1.51 -1.72
Big -0.63 0.31 -0.12 -5.82 1.81 -1.04

r t(r)
Small 0.20 -0.15 -0.03 0.99 -0.77 -0.17

Big -0.79 0.12 -0.57 -4.96 0.50 -3.48
c t(c)

Small -0.48 -0.92 -0.18 -2.71 -5.20 -1.33
Big -0.07 -0.65 -0.37 -0.52 -2.99 -2.52

l t(l)
Small 0.62 -0.18 -0.45 14.55 -4.37 -13.58

Big 0.38 -0.26 -0.54 11.31 -5.08 -15.70
R2 s(e)

Small 0.70 0.74 0.76 1.97 1.95 1.52
Big 0.78 0.66 0.78 1.55 2.41 1.60

At the end of December of each year, stocks are allocated to three climate impact groups: light climate impact

(LCI), moderate climate impact (MCI) and extreme climate impact (ECI). Stocks are then allocated to two size

groups: Small (S) and Big (B). The intersection of the two sorts produce six Climate impact/Size portfolios. The

dependent variables in the regressions are the weekly excess returns on the six Climate impact/Size portfolios. The

independent variables in the regressions are the value-weighted market portfolio weekly percent return, RM − RF ,

the size factor weekly percent return, SMB, the value factor weekly percent return, HML, the profitability factor

weekly percent return, RMW, the investment factor weekly percent return, CMA, and the climate impact factor

weekly percent return, LME. The table shows the intercepts, coefficients, t-values, and the adjusted R2 value for

the regressions of the six dependent variables on RM − RF , SMB, HML, RMW, CMA, and LME.

reduces expected stock prices and returns. However, dividend paying firms should

be more affected than non-dividend paying firms since a loss of assets does not only

reduce expected stock prices but also the dividends that the stock pays. As an exam-

ple, one would expect that, within the extreme climate impact (4th column of Table

3.3) category, the returns of the big cap portfolio should be more negatively affected

than returns of the small cap portfolio. On the other hand, controlling for size, one

would expect returns of the light climate impact portfolio to be higher than the re-

turns of the extreme climate impact portfolio. Results obtained for the coefficients

match our expectations.

Keeping in mind that all factors are positive (Table 3.1) and, therefore, a higher

coefficient implies ceteris paribus a higher average return, slopes on SMB of small cap
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portfolios are higher than those of big cap portfolios. Also, SMB slopes of light cli-

mate impact (LCI) portfolios are bigger than those of extreme climate impact (ECI)

portfolios. Results for SMB are consistent with our expectations: average returns

typically fall from small stocks to big stocks, i.e. the size effect, with only one ex-

ception which is not statistically significant (L/B portfolio). Also, average returns

fall from LCI portfolios to ECI portfolios, i.e. the climate effect, with also one not-

statistically significant exception (L/B portfolio).

Small cap stocks have a high BE/ME ratio, while big cap stocks have a low

BE/ME ratio. It follows that we can expect high HML slopes for small cap portfo-

lios and low HML slopes for big cap portfolios. Indeed, this is what we obtain: co-

efficients on HML decline from small portfolios to big portfolios in the LCI column.

Slopes in the MCI and ECI columns are close to each other but are not statistically

significant. On the other hand, slopes on HML decline from the LCI portfolio to the

ECI portfolio in the small cap row but do not in the big cap row. Overall, results

for HML slopes lead us to suspect that, as Fama and French (2015) reported for US

stocks, the average HML return is absorbed by other factors. We investigate this

issue in the next section, but we can anticipate here that it is actually the case.

The interpretation of slopes on RMW and CMA are somehow less evident since

the six left-hand side portfolios are built on sorts on size and climate exposure. Both

RMW and CMA are related to firms fundamentals. Theoretically, firms which show

a higher profit growth than peers are expected to have higher returns regardless

of whether a dividend is actually paid. Small cap firms may not commonly offer

dividends but reinvest profits to fund growth; conversely, big cap firms do more

commonly offer dividends and these are expected to be larger when profits are more

important. In both cases, high profit growth firms are expected to have higher re-

turns both in the case of a dividend paying firm and a non-dividend paying firm. On

the other hand, firms which invest aggressively are expected to pay less dividends

today to fund tomorrow’s growth: firms which invest today are expected to have

lower returns (today) with respect to a firm that decides not to retain its profits, i.e.

that distributes his profits to shareholders. In such a context, we would expect the

small cap portfolios, which have higher profit growth, to display higher coefficients

on RMW than big cap portfolios and we would expect small cap portfolios, which
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invest more today in order to finance their growth, to display lower coefficients on

CMA than big cap portfolios. We find this to be the case for both slopes on RMW

and slopes on CMA. Furthermore, from a climate impact perspective, the intuition

that LCI portfolios should outperform ECI portfolios is confirmed where results are

statistically significant: slopes on RMW and CMA decline from the LCI portfolio to

the ECI portfolio.

Results obtained for the LME coefficient are surprising, both in terms of magni-

tude and in terms of statistical significance. The intuition that slopes on LME should

decline from LCI portfolios to ECI portfolios is confirmed. This holds true for both

small cap stocks and for big cap stocks. Also, within each climate impact category,

coefficients decline from small cap stocks to big cap stocks, i.e. the size effect. All

six coefficients are statistically highly significant. The economic and statistical im-

portance of LME slopes are comparable to that of RM − RF slopes: the six left-hand

side stock portfolios produce slopes on the market factor, RM − RF, that are statisti-

cally highly significant: slopes are all at least 18 standard errors from zero (Light/S).

Coherently with the literature, the slopes on the market factor are both the most

economically significant and most statistically significant.

3.5.2 Model performance

As Fama and French (2015) suggest — based on Merton (1973) — the essential in-

dicators of the effectiveness of an asset-pricing model are indistinguishable from

zero intercepts: if the coefficients of the time-series regressions completely capture

variation in expected returns, then the intercept, αi, is indistinguishable from zero.

The intercepts found (Table 3.3) with the CE-FF model are all almost indistinguish-

able from zero, the lowest being 0.05 and the highest being 0.24, which is of central

importance for a well-specified asset pricing model. To test the zero intercept hy-

pothesis for combinations of portfolios and factors, we compute the Gibbons, Ross,

and Shanken (1989) GRS statistic. This operation permits us to assess how well the

CE-FF model explains average excess stock returns and answers the question of the

improvement provided by adding the LME factor to the five classical stock factors.

Table 3.4 displays the GRS statistics for the four factor model (2nd column) which

employs only RM − RF, SMB, RMW, CMA as explanatory variables, for the five
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TABLE 3.4: GRS statistics for tests of the four, five and six factor model
to explain weekly excess returns; January 2008 - December 2017, 522

weeks.

RM − RF, SMB, RMW, CMA +HML +HML+LME
GRS 2.52 2.48 4.56

p-value 0.021 0.023 0.001

The tables tests the ability of the four factor model (RM − RF, SMB, RMW, CMA), the five factor model
(RM − RF, SMB, RMW, CMA, HML) and the six factor model (RM − RF, SMB, RMW, CMA, HML,
LME) to explain weekly excess returns on the six Climate impact/Size portfolios. The table shows the
GRS statistic testing whether the expected values of all six intercept estimates are zero.

factor model (3rd column), which adds the HML factor, and for the six factor model

(CE-FF model, 4th column), which adds both HML and LME. Overall, the GRS test

rejects the hypothesis that the four, five and six factor models produce regression

intercepts for the six stock portfolios that are all equal to zero. Fama and French

(2015) suggest that adding HML to the set of explicatory factors worsens, or at best

doesn’t improve, the description of average returns. We confirm their finding: the

GRS statistic is almost identical in the passage from a four factor to a five factor model.

Furthermore, adding LME to the set of explanatory variables poses the same prob-

lem, with the GRS statistic going up to 4.56. The reason for this is the following: both

HML and LME average returns are captured by the exposures of HML and LME to

the remaining four factors.

TABLE 3.5: Regressions for each of the six factors on the remaining
five factors; January 2008 - December 2017, 522 weeks.

RM − RF SMB HML RMW CMA LME
α 0.29 0.06 0.02 0.08 0.06 0.11

t(α) 3.80 2.03 0.60 4.29 2.94 1.19

RM − RF is the value-weighted return on the market portfolio minus the risk-free rate; SMB is the size factor; HML

is the value factor, RMW is the profitability factor, CMA is the investment factor, LME is the climate impact factor.

α is the intercept of the regression of each factor on the remaining five factors.

Table 3.5 displays regressions of each of the six factors on the other five. In the

regressions to explain RM − RF, SMB, RMW, and CMA, the intercepts have all t-

statistics that are at least 2 standard errors from zero. The only intercepts which are

not statistically significant at the 0.05 level are those for HML and LME. Ultimately,

evidence suggests that adding HML and LME does not improve the effectiveness of

the four factor model.
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3.5.3 Orthogonal version of the CE-FF

Even though HML and LME are redundant for describing average stock returns, it

is of interest for financial practitioners to have insights into value and climate pre-

miums. Therefore, we do not drop HML and LME from the model put forward but

rather orthogonalise them. The orthogonal version of the CE-FF model produces

slopes on the four non-redundant factors that are the same as in the four factor ver-

sion of the model, i.e. a model that employs only as explanatory variables RM − RF,

SMB, RMW, and CMA, while, at the same time, showing the exposures of the left-

hand side portfolios to the value (HML) and the climate (LME) factor. The orthogo-

nal version of the CE-FF model (OCE-FF model) is:

Ri,t − RF,t =αi + βi(RM,t − RF,t) + siSMBt + hi HMLOt

+ riRMWt + ciCMAt + liLMEOt + ei,t

(3.7)

In the equation, HMLO (orthogonal HML) and LMEO (orthogonal LME) are

the sum of the intercept and residual from the regression of HML and LME on the

remaining five factors.

Table 3.6 displays the results of the OCE-FF model. The economic and statistical

significance of slopes on LMEO is unchanged with respect to LME (Table 3.3), while

slopes on HMLO range now from -0.56 (L/B) to 0.46 (L/S). We still see declining

coefficients from small portfolios to big portfolios in the LCI column while they are

close to each other in the MCI column and the ECI column. Furthermore, HMLO

slopes decline from the LCI portfolio to the ECI portfolio in the small cap row but

still do not in the big cap row. Overall, the statistical significance of slopes on HMLO

has increased with regards to the statistical significance of slopes on HML. Slopes

on HMLO are in between about one and five standard errors from zero with four

slopes out of six which are more than two standard errors from zero. This was the

case for only two slopes out of six when HML was used as explanatory variable.

Slopes on SMB, RMW and CMA confirm the results of Table 3.3 in terms of

economic significance, while the biggest differences are statistical: the orthogonal

version of the CE-FF model (Eq. 3.7) finds coefficients on SMB which are more than
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TABLE 3.6: Regressions for 6 value-weighted portfolios formed from
sorts on climate exposure and size; January 2008 - December 2017,

522 weeks.

Light Mod. Extr. Light Mod. Extr.
α t(α)

Small 0.28 0.23 0.12 3.14 2.60 1.82
Big 0.08 0.09 0.01 1.16 0.91 0.02

β t(β)

Small 0.92 1.10 0.97 19.62 23.45 26.67
Big 0.99 1.19 0.99 26.58 20.52 25.73

s t(s)
Small -0.31 -0.46 -0.17 -2.54 -3.75 -1.79

Big -0.01 -0.55 -0.34 -0.06 -3.65 -3.40
h t(h)

Small 0.46 0.17 -0.27 3.35 1.24 -2.56
Big -0.56 0.25 -0.22 -5.14 1.51 -2.01

r t(r)
Small 0.13 -0.34 -0.02 0.76 -1.97 -0.15

Big -0.25 -0.16 -0.63 -1.79 -0.73 -4.42
c t(c)

Small -0.80 -0.67 0.07 -4.98 -4.23 0.60
Big -0.69 -0.29 0.01 -5.40 -1.49 0.01

l t(l)
Small 0.63 -0.18 -0.45 14.73 -4.29 -13.71

Big 0.37 -0.26 -0.55 10.97 -4.97 -15.79
R2 s(e)

Small 0.70 0.74 0.76 1.97 1.95 1.52
Big 0.78 0.66 0.78 1.55 2.41 1.60

At the end of December of each year, stocks are allocated to three climate impact categories: light climate im-

pact (LCI), moderate climate impact (MCI) and extreme climate impact (ECI). Stocks are then allocated to two size

groups: Small (S) and Big (B). The intersection of the two sorts produce six Climate impact/Size portfolios. The

dependent variables in the regressions are the weekly excess returns on the six Climate impact/Size portfolios. The

independent variables in the regressions are the value-weighted market portfolio weekly percent excess return,

RM − RF , the size factor weekly percent return, SMB, the orthogonal value factor weekly percent return, HMLO,

the profitability factor weekly percent return, RMW, the investment factor weekly percent return, CMA, and the

orthogonal climate impact factor weekly percent return, LMEO. HMLO (orthogonal HML) and LMEO (orthogo-

nal LME) are the sum of the intercept and residual from the regression of HML and LME on the remaining five

factors. The table shows the intercepts, coefficients, t-values, and the adjusted R2 value for the regressions of the

six dependent variables on RM − RF , SMB, HMLO, RMW, CMA, and LMEO.

two standard errors from zero in five cases out of six, rather than four cases out of

six when equation (3.6) is run. Two slopes on RMW are more than two standard

errors from zero (M/S and E/B) when the OCE-FF model is run, which marks no

improvement with respect to the CE-FF model. Only three coefficients for CMA are

more than two standard errors from zero with the OCE-FF model compared to four

out of six when the CE-FF is employed.

Ultimately, the orthogonal version of the CE-FF model performs well. Unex-

plained average returns are close to zero and, individually, four intercepts out of six

are not statistically significant (compared to three out of six when the CE-FF model
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is run). Intercepts which are not statistically different from zero show that the time-

series regressions completely capture variation in expected returns.

3.6 The climate stress test

Stress-testing is a technique developed for testing the stability of an entity. In fi-

nancial risk analysis, a stress test is characterised by four essential features (Borio,

Drehmann, & Tsatsaronis, 2014): a set of risk exposures subjected to stress, a scenario

that defines the exogenous shocks that stress the exposures, a model that maps the

shocks onto an outcome and a measure of such an outcome. The financial stress

test literature, following Koliai (2016), can be split in four main categories (table 3.7):

general presentation of the instrument in the early 2000s, portfolio stress test de-

velopment, systemic stress test emergence in the wake of the 2007-2009 crisis and

diagnosis of the realised exercises.

TABLE 3.7: Categorisation of stress test literature (Koliai, 2016).

Topic Selected authors

Conceptual aspects Berkowitz (2000); Blaschke et al. (2001); Čihàk (2007)

Portfolio stress tests Kupiec (1998); Breuer and Krenn (1999); Bee (2001);Kim and Finger (2001);
Aragonés et al. (2001); Breuer et al. (2002); Alexander and Sheedy (2008);
McNeil and Smith (2012); Breuer and Csiszàr (2013)

Systemic stress tests Boss (2008); Alessandri et al. (2009); Aikman et al. (2009);
van den End (2010, 2012); Engle et al. (2014); Acharya et al. (2014)

Diagnostics Haldane (2009); Borio and Drehmann (2009); Hirtle et al. (2009);
IMF (2012); Greenlaw et al. (2012); Borio et al. (2012)

The table shows the categorisation of the stress-test literature performed by Koliai (2016) into 4 topics:
conceptual aspects, portfolio stress test, systemic stress test and diagnostics.

Stress-testing has been recently proposed by the literature (Bank of England Pru-

dential Regulation Authority, 2015; Schoenmaker and van Tilburg, 2016; Zenghelis

and Stern, 2016) as an evaluation framework for climate change risks. The World

Bank (Fay et al., 2015) and some national legislations have also taken this direction.

In France, for example, the recent law n◦ 2015-992 (article 173) relative to the energy

transition for green growth, which has been promulgated just before the COP 21 in

Paris, makes reference to climate change stress tests.

Stress-test scenarios have been subject to requirements by the Basel Committee



113

on Banking Supervision (2009) which demands them to be plausible but severe: his-

torical scenarios rely on a significant market event experienced in the past, whereas a

hypothetical scenario is a significant market event that has not yet happened (Com-

mittee on the Global Financial System, 2005). The aim of the climate stress test is to

show the impact of hypothetically plausible but more severe extreme climate phe-

nomena on stock returns. The climate stress test put forward leverages the LME

factor which proxies for the risk factor in stock returns related to extreme climate

events. A worsening of adverse climate phenomena, which corresponds to a further

deterioration of fixed assets in our framework, is related to the LME factor: higher

temperatures, sea levels or heavier rainfalls lead to a larger LME factor since returns

of firms which suffer extreme climate impacts are supposed to sink further. Holding

all other variables of the orthogonal CE-FF model constant and focusing only on the

relation between the left-hand side portfolios and the LME factor, the climate stress

test is based on the following equation:

∆(Ri,t − RF,t) = li∆LMEt (3.8)

In this equation, ∆(Ri,t − RF,t) is the average hypothetical variation in excess

stock returns, li is the sensitivity of portfolio or stock i to extreme climate events,

and ∆LMEt is the average hypothetical climate variation proxied by the LME factor.

In order to understand the impact of a plausible but more severe climate state on the

stock returns under examination, the average LME factor is stressed by 20% (low

shock), 50% (medium shock), and 100% (high shock).

TABLE 3.8: Climate stress-test for six value-weighted portfolios
formed from sorts on climate exposure and size; January 2008 - De-

cember 2017, 522 weeks.

Low shock Medium shock High shock
Light Mod. Extr. Light Mod. Extr. Light Mod. Extr.

Small 0.06 -0.02 -0.04 0.08 -0.02 -0.06 0.10 -0.03 -0.07
Big 0.04 -0.03 -0.05 0.05 -0.03 -0.07 0.06 -0.04 -0.09

At the end of December of each year, stocks are allocated to three climate impact categories: light
climate impact (LCI), moderate climate impact (MCI) and extreme climate impact (ECI). Stocks are
then allocated to two size groups: Small (S) and Big (B). The intersection of the two sorts produce
six Climate impact/Size portfolios. The table shows the average variation of weekly percent excess
returns for the six Climate impact/Size stock portfolios. In each stress-test, the average LME factor is
stressed by 20% (low shock), 50% (medium shock), and 100% (high shock).
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Table 3.8 shows the results of the climate stress test for each of the six value-

weighted portfolios under the three shock scenarios: the third and fourth rows pro-

vide the average variation of weekly percent excess returns under the three climate

impact scenarios. We quantify the impact of extreme climate phenomena at firm

level by transposing country level climate related GDP losses into firms fixed assets

losses by means of equation (3.3). A loss of fixed assets reduces the firms production

capacities and thus the possibility to generate profits, which affects both dividends

and expected returns. Consequently, controlling for climate impact, big cap firms

experience lower returns than small cap firms and, controlling for size, LCI firms

experience higher returns than MCI or ECI firms. The climate stress test exacer-

bates these empirical results by stressing climate impacts by 20% (low shock), 50%

(medium shock), and 100% (high shock).

Weekly percent excess returns of the LCI portfolio tend to increase in presence

of a climate shock. This is not the case for the MCI portfolio and the ECI portfolio.

In other words, firms in the LCI portfolio manage to profit from a worsening of cli-

mate conditions. This is probably due to the fact that they manage to capture market

shares from firms which are more severely damaged by a worsening of climate con-

ditions. Statistical evidence leads us to assert that firms in the LCI portfolio are those

responsible for driving the growth of about 74% in the STOXX 1800 index observed

in between 2008 and 2017. On the other hand, MCI and ECI firms experience neg-

ative variations of weekly percent returns under the three climate shock scenarios

with return losses which are proportional to the climate impact estimated. A wors-

ening of extreme climate phenomena manages to exacerbate the underperformance

of MCI and ECI firms with respect to LCI firms.

3.7 Conclusions

This paper answers the research question of the effect of extreme climate events

upon stock returns. The question is answered by means of a model that permits

the transposition of country level climate related GDP losses into firms fixed assets

losses. Once we have run the model for each of the 227 stocks for which we have a

geographical partition of fixed assets (out of the initial 1800 stocks, the initial sample
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being the STOXX 1800 index), we are able to sort firms into three portfolios: light

climate impact (LCI), moderate climate impact (MCI), and extreme climate impact

(ECI). Once this operation has been performed, the new factor LME (light minus

extreme) has been created and introduced in the original Fama and French (2015)

five-factor framework. The sensitivity of the left-hand portfolios to the LME factor

is significant both in economic and statistical terms.

We have found that augmenting the original Fama and French (2015) five factor

model with the LME factor (CE-FF model) does not improve the effectiveness of the

model, measured by the GRS statistic. Furthermore, like the original authors, we

have also found that augmenting a four-factor model, i.e. a model which employs

only RM − RF, SMB, RMW, CMA as explanatory variables, with the value factor,

HML, doesn’t improve the effectiveness of the model. In the end, the best perform-

ing factor model for stocks, according to the GRS statistic, is a four-factor model.

Nevertheless, it is of interest for financial practitioners to have insights into value

and climate premiums. Therefore, we do not drop HML and LME from the model

put forward but rather orthogonalize them. The orthogonal version of the CE-FF

model produces slopes on the four non-redundant factors that are the same as in

the four factor version of the model, i.e. a model that employs only as explanatory

variables RM − RF, SMB, RMW, and CMA, while, at the same time, showing the

exposures of the left-hand side portfolios to the value (HML) and the climate (LME)

factor.

The last contribution of the paper is inspired by the recent climate change risk

stress test trend. The literature has recently proposed stress testing, a technique de-

veloped for testing the stability of an entity, as an evaluation framework for climate

change risks (Bank of England Prudential Regulation Authority, 2015; Fay et al.,

2015; Schoenmaker and van Tilburg, 2016; Zenghelis and Stern, 2016). The climate

stress test put forward, which leverages the LME factor, is able to show the impact

of plausible but more severe extreme climate phenomena on stock returns.

A couple of policy implications can be deduced from these findings. Firstly, the

quantification of the impact of extreme climate events upon stock returns, which to

the best of our knowledge occurs for the first time in these terms, is an undoubted

help to financial practitioners. An asset manager can use the methods presented in
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this paper to assess the impact of climate phenomena upon stocks and thus recon-

sidering his asset allocation and his future portfolio strategies. On the other hand,

legislators can leverage the climate stress test to gain insights on the financial losses

induced by a continuous global warming and calibrate a policy response, like car-

bon pricing for example, which is in line with the cost of non-action, i.e. the cost of

not addressing global warming.
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Chapter 4

Extreme climate phenomena and

bond returns

4.1 Introduction

Time-value of money, risk-return trade-off, diversification are all key tenets of con-

temporary financial theory. Today, climate change has imposed itself as a supple-

mentary source of risk.

The literature has partitioned climate change risks in two categories. The first

category has been labeled “climate risk" (Carney, 2015) and makes reference to the

link between global warming and natural and human systems. Extreme climate

phenomena like temperature extremes, high sea levels extremes, and precipitation

extremes (Intergovernmental Panel on Climate Change, 2014), are likely to seriously

affect economic growth (Dell, Jones, & Olken, 2014; Pycroft, Abrell, & Ciscar, 2016),

productivity (Graff Zivin & Neidell, 2014; Hallegatte, Fay, Bangalore, Kane, & Bon-

zanigo, 2015), and financial values.

The second category of climate change risks has been labeled “low-carbon tran-

sition risk" or “carbon risk". Low-carbon transition risk makes reference to the cost

of the adjustment towards a low-carbon economy. Hence, it includes all drivers of

risk linked to the decarbonisation of the economy: a) market-based instruments like

a carbon tax or an emission allowance price; b) command and control induced tech-

nological shifts, e.g. stranded assets or assets that have suffered from unanticipated

or premature write-downs, devaluations, or conversion to liabilities (Caldecott et al.,

2016); and c) market risk, i.e. market demands for low carbon products (Zhou et al.,
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2016).

This article addresses the first category of risk (climate risk) and brings upon the

impact of extreme climate events upon bond returns. Particularly, we are interested

in the way changes in extreme climate phenomena (temperatures extremes, high

sea levels extremes, and precipitation extremes) are related to changes in the value

of bonds. This research question has, to the best of our knowledge, scarcely being

addressed.

Literature on the relation between extreme climate events and stock returns is

scarce. Anttila-Hughes (2016) finds that new record temperature announcements

are associated with negative excess returns for energy firms while ice shelf collapses

are associated with positive returns. Balvers, Du & Zhao (2016) have found that a

significant risk premium exists on a temperature tracking portfolio and its impact

on the cost of equity capital has been increasing over time; furthermore, loadings

at industry level on the tracking portfolio are generally negative. Bourdeau-Brien

and Kryzanowski (2016) find that major natural disasters induce abnormal stock re-

turns and return volatilities and volatility more than doubles following large natural

hazards. Hong, Li and Xu (2019) investigate whether the prices of food stocks effi-

ciently discount drought risk finding that high drought exposure is related to poor

profit growth and poor stock returns for food companies.

Literature on the interconnection between extreme climate events and bond re-

turns is even rarer. Huynh & Xia (2020) show that investors’ demand for corporate

bonds with high potential to hedge against climate change risk can have an im-

pact on the cross section of corporate bond returns. Goldsmith-Pinkham, Gustafson,

Lewis & Schwert (2019) examine how exposure to sea level rise risk is priced in the

municipal bond market. Painter (2020) finds that counties more likely to be affected

by climate change pay more in underwriting fees and initial yields to issue long-term

municipal bonds compared to counties unlikely to be affected by climate change.

We answer the research question of the impact of extreme climate events upon

bond returns by means of a climatic extension of the Fama and French two-factor

model for bonds (1993). This is the first time a factor model is employed for as-

sessing the implications of climate risk upon bond returns. The reasoning proceeds
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as follows: augmenting the Fama and French two-factor model (1993) with a cli-

matic factor amounts to assert that a systematic risk is missing from the framework.

There is, at least, another common factor that affects bond returns: global warming.

The climatic factor, LME (light minus extreme), responds to the need of capturing

the risk factor in bond returns related to global warming which is represented here

by extreme climate phenomena like temperature extremes, high sea levels extremes,

and precipitation extremes (Intergovernmental Panel on Climate Change, 2014). The

climatic factor is obtained by building two portfolios: the extreme climatic impact

portfolio and the light climatic impact portfolio. The procedure to form the two

portfolios leverages an analysis of global extreme climate events in the 2008-2017

timeframe. Weekly value weight returns of firms which are extremely impacted by

climate change are then subtracted from the weekly value weight returns of firms

lightly impacted by climate change. The returns to be explained in our setting are

value-weighted excess returns for 27 bond portfolios sorted on rating and duration,

rating and yield to maturity and duration and yield to maturity formed from a test

sample of 329 bonds. Overall, we find that there is a climate effect in average excess

bond returns, which confirms our hypothesis that a systematic risk factor, global

warming in this case, was missing from the classical framework.

Another methodological innovation of the article brings upon the development

of a climate stress test designed to show the impact of plausible but more extreme

climate phenomena upon financial values. In financial risk analysis a stress test is

characterised by four essential features (Borio, Drehmann, & Tsatsaronis, 2014): a set

of risk exposures subjected to stress, a scenario that defines the exogenous shocks

that stress the exposures, a model that maps the shocks onto an outcome and a mea-

sure of such an outcome. Recent literature has proposed stress testing as an evalua-

tion framework for climate change risks: the Bank of England Prudential Regulation

Authority (2015) suggests an integration of climate change risk factors in standard

stress-testing techniques, Zenghelis and Stern (2016) encourage financial corpora-

tions and fossil fuel companies to undertake stress tests to evaluate their “future

viability against different carbon prices and regulations" (p. 9), Schoenmaker and

van Tilburg (2016) call for, as a next step, the developing of “carbon stress tests to

get a better picture of the exposure of the financial sector" (p. 7), and the World Bank
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has also taken this direction (Fay et al., 2015). Besides these scientific endorsements,

in France the recent law n◦ 2015-992 (article 173) relative to the energy transition

for green growth, promulgated just before the COP 21 in Paris, makes reference to

climate change stress tests.

The main contributions of the paper are the climatic factor and the bonds cli-

mate stress test. If the novel climatic factor is found to be statistically significant,

the financial sector (academics, financial practitioners) will have evidence of the im-

pact of extreme climate events upon bond returns and will be able to quantify the

financial implications of global warming. Additionally, the climate stress test takes

these findings and puts them in a context of uncertainty regarding future pathways

of global warming. These contributions carry policy implications for both legisla-

tors and financial practitioners. Legislators will have a tool (the climate stress test)

that will permit them to assess the impact of a progressive global warming upon the

value of investments whereas financial practitioners will have a tool (the climatic

factor) which will permit them to calibrate asset allocation more profitably in a time

of climate change.

In a nutshell, the article explores the interconnections between climate change

and bond values and contributes to the novel research field which has been named

climate finance. The rest of the paper proceeds as follows: section 4.2 presents the

climatic factor, section 4.3 exposes the model, section 4.4 puts forward the data, sec-

tion 4.5 introduces the results, section 4.6 presents the climate stress test and section

4.7 concludes.

4.2 The climatic factor

The climatic factor (LME, light minus extreme) we propose is intended to mimic the

risk factor in bond returns related to global warming. The LME factor is built by

means of two portfolios: the light climate impact portfolio (LMI) and the extreme

climate impact portfolio (ECI). The LMI portfolio includes bonds issued by firms

which are lightly impacted by global warming whereas the ECI portfolio includes

bonds issued by firms which are more heavily impacted by global warming. Weekly

value-weight returns are calculated for each portfolio and then subtracted from each
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other. The LME factor is built by means of a training sample of 50 bonds which are

not included in the test sample of 329 bonds.

Firms (or bonds) in the training set are selected according to data availability on

the geographical allocation of firms’ fixed assets. These data are necessary to feed a

novel model whose objective is to classify a firm according to the degree of impact

global warming has on its productive capacities. The model we propose leverages a

fundamental evidence: extreme climate events such as temperature extremes, high

sea levels extremes, and precipitation extremes impact physical assets. That is, firms’

physical assets are damaged by exposure to extreme climate events. The model we

put forward responds to the need to establish a way to link climate exposure with

fixed assets losses. Therefore, the first information needed to construct the climatic

factor (LME) is a detailed outline of the geographical allocation of firms’ fixed assets.

Starting from a full database of global bonds quoted between 2008 and 2017, and

keeping as a rule that at least 80% of the firms’ fixed assets should be associated

with a geographical location, we identified 50 global bonds. These 50 global bonds

became our training sample.

The second step of the construction of the LME factor is identifying the 50 firms

(bonds) as extremely climate impacted or lightly climate impacted. This is done by

leveraging a second fundamental information: country-level climate related GDP

losses. We use the Global Climate Risk index developed by Germanwatch to gather

data on the GDP losses of countries attributable to extreme climate phenomena

such as tropical storms, winter storms, severe weather, hail, tornados, local storms

(meteorological events); b) storm surges, river floods, flash floods, landslide mass

movement (hydrological events); and c) freezing, wildfires, droughts (climatologi-

cal events). GDP losses are collected from 2008 to 2017. The lower and upper bound

is determined, once again, by the availability of data for countries in the Global Cli-

mate Risk index. In the end, our sample includes 50 firms (bonds) for which we have

a picture of the geographical distribution of fixed assets and operating in countries

for which we have climate-related GDP losses from 2008 to 2017.

The next step involves creating a link between climate related GDP loss and cli-

mate related firm loss, intended as a loss of fixed assets. We do this by building

on two assumptions. The first assumption states that the expected climate related
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fixed assets loss in a given country y1 at time t can be treated as the expected cli-

mate related fixed assets loss of firms operating in country y1. For example, if we

make the hypothesis that in country y1 only three firms (x1, x2, x3) operate, then the

mathematical form of the expression is:

E(Alossy1,t) = E(Alossx1,y1,t) = E(Alossx2,y1,t) = E(Alossx3,y1,t) (4.1)

Firms (x1, x2, x3) operating in country y1 are exposed to the same climatic events

that country y1 is exposed to. The actual climate related fixed assets loss in a given

country y1 is the sum of the actual fixed assets losses of the individual firms that

operate in that country. Also, the expected climate related fixed assets loss in a given

country y1 is the weighted average of the actual fixed assets losses of the individual

firms that operate in country y1. Unfortunately, actual climate related fixed assets

losses at firm level are not known. Equation (4.1) amounts to say that the expected

climate related fixed assets losses of the firms operating in country y1 can be approx-

imated by the expected climate related fixed assets losses of country y1. Evidently,

this holds for a high enough number of firms.

The second assumption states that the expected climate related GDP loss —

E(GDPlossy1,t) — of country y1 at time t is a proxy for the expected climate re-

lated fixed assets loss of country y1 at time t. In other terms, E(GDPlossy1,t) =

E(Alossy1,t). This amounts to say that a loss of assets induces a GDP loss of the same

magnitude. In other words, if we take an open economy, this is equal to affirm that a

drop in the productive assets of country y1 can be regarded as a drop in investments

of country y1 since investments are always expenditures on capital, i.e. assets. This

drop of investments induces, ceteris paribus, a GDP drop of the same dimension. By

substitution, it follows that:

E(GDPlossy1,t) = E(Alossx1,y1,t) = E(Alossx2,y1,t) = E(Alossx3,y1,t) (4.2)

Therefore, if a firm x1 is active in a set of countries y with y = 1, 2, ..., Y and

the expected climate related GDP losses at time t in these countries are equal to

E(GDPlossy,t), then the total expected loss in terms of fixed assets for firm x1 is

given by:



123

E(Alossx1,t) =
Y

∑
y=1

E(GDPlossy,t)Assetsx1,y,t (4.3)

with Assetsx1,y,t being the value of fixed assets of firm x1 in country y at time t.

We use equation (4.3) to calculate total expected climate related fixed assets losses

for each of the 50 bond issuing firms of our sample. In order to have comparable

figures we calculate asset-weighted climate losses for each firm in year t by dividing

the left-hand side and the right-hand side of equation (4.3) by the value of the firm’s

total assets, i.e. ∑Y
y=1 Assetsx1,y,t. Once this is done, we take the 50th percentile as

breakpoint and construct two climate-impact portfolios: light climate impact and

extreme climate impact. Weekly value-weighted returns for the two portfolios are

calculated and the returns of the ECI portfolio are then subtracted from the returns

of the LCI portfolio.

4.3 The model

We estimate the impact of extreme climate phenomena (temperature extremes, high

sea levels extremes, and precipitation extremes) by expanding the Fama and French

(1993) two-factor model with the climatic factor, LME. Fama and French’s (1993)

original two-factor model is based on the following time-series regression:

Ri,t − RF,t = αi + miTERMt + diDEFt + ei,t (4.4)

In equation (4.4), Ri,t is the value-weighted return for bond or bond portfolio i

for period t; TERMt is the maturity factor, i.e. the difference between the returns of a

long-term government bond and the risk-free rate; DEFt is the default factor, i.e. the

difference between the return on a market portfolio of long-term corporate bonds

and the long-term government bond return; and ei,t is a zero-mean residual. If the

coefficients of the time-series regression — mi, di— completely capture variation in

expected returns, then the intercept, αi, is indistinguishable from zero.

Augmenting the Fama and French two-factor model (1993) with a climatic factor

amounts to assert that a systematic risk is missing from the framework. There is, at
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least, another common factor that affects bond returns: global warming. The climatic

factor, LME (light minus extreme), responds to the need of capturing the risk factor

in bond returns related to global warming which is represented here by extreme cli-

mate phenomena like temperature extremes, high sea levels extremes, and precip-

itation extremes (Intergovernmental Panel on Climate Change, 2014). The climatic

extension of the Fama and French (1993) model for bonds is, then, the following:

Ri,t − RF,t = αi + miTERMt + diDEFt + liLMEt + ei,t (4.5)

The sensitivity of bonds excess returns, Ri,t − RF,t, to extreme climate events is

represented by coefficient li. We have run equation (4.5) for our test sample of 329 in-

ternational bonds: 27 left-hand side portfolios formed from sorts on rating, duration

and yield to maturity (YTM). Summary statistics for the left-hand side portfolios, the

original Fama and French two factors, the LME factor, and correlations are shown

in table 4.1.

Table 4.1 shows that the most prominent factor in terms of magnitude in the

2008-2017 timespan is TERM. The other classical factor, DEF, and LME have both a

mean over the 2008-2017 timespan of 0.01. Overall, Table 4.1 provides an argument

to test an augmented version of the Fama and French (1993) two-factor model: an

expanded model which is able to capture the climate effect on excess bond returns.

4.4 The data

Our test of equation (4.5) relies on two distinct set of data. Our training set consists of

50 global bonds out of which 25 have been included in the light climate impact (LCI)

portfolio and 25 have been included in the extreme climate impact (ECI) portfolio

by means of equation (4.3). The 50 global bonds are used in the estimation of the

LME factor. The two classical factors, TERM and DEF have been estimated by

means of two Exchange traded funds (ETF): one for long-term government bonds

(IShares IEF fund) and one for long-term corporate bonds (IShares USIG fund). Our

test set consists of 329 global bonds (which do not include the bonds of the training
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TABLE 4.1: Summary statistics for weekly dependent and explana-
tory percent returns; January 2008 to December 2017, 522 weeks.

Panel A: Explanatory returns
Name Mean Std. t(mean) ACF(1) ACF(2) ACF(12)

LCI 0.04 1.04 0.82 -0.12 0.11 0.05
ECI 0.03 1.14 0.62 -0.13 0.10 0.08

TERM 0.08 0.93 1.84 -0.09 0.08 0.04
DEF 0.01 0.98 0.14 -0.10 0.07 -0.05
LME 0.01 0.43 0.25 -0.13 0.03 0.01

Panel B: Correlations between factors
TERM DEF LME

TERM 1 -0.37 -0.16
DEF -0.37 1 0.24
LME -0.16 0.24 1

Panel C: Dependent variables
Name Mean Std. t(mean) Name Mean Std. t(mean) Name Mean Std. t(mean)

HG/HD 0.02 1.10 0.41 HG/HY 0.08 1.23 1.53 HY/HD 0.06 1.28 1.07
HG/MD 0.01 0.98 0.29 HG/MY 0.02 1.09 0.43 HY/MD 0.04 0.97 0.95
HG/LD -0.01 0.84 -0.26 HG/LY -0.01 0.87 -0.35 HY/LD 0.05 0.85 1.24
MG/HD 0.02 1.05 0.43 MG/HY 0.05 1.10 1.03 MY/HD 0.02 1.13 0.37
MG/MD 0.02 0.97 0.37 MG/MY 0.01 0.99 0.31 MY/MD 0.01 1.01 0.15
MG/LD -0.01 0.83 -0.11 MG/LY -0.02 0.82 -0.58 MY/LD 0.01 0.89 0.04
LG/HD 0.01 1.09 0.14 LG/HY 0.04 0.87 1.15 LY/HD 0.01 1.00 0.27
LG/MD 0.02 0.94 0.37 LG/MY -0.02 0.95 -0.49 LY/MD -0.01 0.89 -0.27
LG/LD 0.02 0.83 0.43 LG/LY -0.14 1.65 -1.93 LY/LD -0.03 0.81 -0.77

In panel A, LCI is the value-weighted light climate impact portfolio weekly percent return. ECI is the value-

weighted extreme climate impact portfolio weekly percent return. LME is LCI-ECI. TERM is the maturity factor

weekly percent return, DEF is the default factor weekly percent return. The twenty-seven bond portfolios (panel

C) used as dependent variables in the time-series regressions are formed from sorts of 329 global bonds retained

for the empirical exercise on rating, duration and yield to maturity. At the end of December of each year t, bonds

are allocated to three rating groups (High grade, HG, Medium grade, MG, and Low grade, LG), three duration

groups (High duration, HD, Medium duration, MD and Low duration, LD), and three yield to maturity groups

(High yield, HY, Medium yield, MY, and Low yield, LY) using the 30th and 70th percentiles as breakpoints.

set) quoted between 2008 and 2017 and for which ratings, duration and yield was

available. The risk-free rate, RF, is the 1-week T-bill rate. All data is from Reuters.

4.4.1 Explanatory returns

The climatic extension (Eq. 4.5) of the Fama and French (1993) model aims at captur-

ing patterns in average bond returns related to maturity, default and extreme climate

events. The explanatory variables include the mimicking portfolios for the unex-

pected changes in interest rates, TERM, shifts in economic conditions that change

the likelihood of default, DEF, and extreme climate events, LME, factors in returns.

As Fama and French (1993) pointed out and demonstrated, variation of bond

returns are due mainly to two factors. Shifts in interest rates affect both new bond

emissions, by means of the coupon, and old emissions, by means of the inverse
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relationship between bond prices and interest rates. We construct the factor that

mimics this mechanism, TERM, by taking the difference between the weekly value-

weight returns on a long-term government bond ETF (IShares IEF fund) and the

one-week T-bill rate measured at the end of the previous week. In other words,

TERM tells us what is the premium for holding a bond that is affected by interest

rate risk. The value-weight returns of the TERM factor have been calculated for each

week from January 2008 to December 2017.

The second main factor involved in the variation of bond returns is mimicked

by DEF. Shifts in economic conditions can change the likelihood of default of a

debt-issuing entity: measuring this phenomenon involves taking the difference be-

tween the returns of a value-weight long-term corporate bond ETF (IShares USIG

fund) and the returns of a value-weight long-term government bond ETF (IShares

IEF fund). In the end, DEF provides the premium for investing in a portfolio of

long-term corporate bonds that is more likely to be affected by changes in economic

conditions than a portfolio of long-term government bonds.

The LME (light minus extreme) factor, which proxies for the risk factor in bond

returns related to extreme climate events, is formed by means of a sample of 50

global bonds, issued by 50 different firms. The training sample has been selected

starting from a bigger sample of bonds, the complete list of fixed interest rate bonds

with a quotation from January 2008 to December 2017 found on Reuters, on the ba-

sis of available information on the geographical location of the issuing firms’ fixed

assets. We use equation (4.3) to calculate total expected climate related fixed assets

losses for each of the 50 issuing firms of our sample. In order to have comparable

figures we calculate asset-weighted climate losses for each firm in year t by divid-

ing the left-hand side and the right-hand side of equation (4.3) by the value of the

firm’s total assets, i.e. ∑Y
y=1 Assetsx1,y,t. Once this is done, we take the median as

breakpoint and construct two climate-impact portfolios: light climate impact (LCI)

and extreme climate impact (ECI). Weekly value weight returns for the two portfo-

lios are then calculated. In the end, we obtain the LME (light minus extreme) factor,

which proxies for the risk factor in bond returns related to extreme climate events,

by subtracting the weekly value-weight returns of the ECI portfolio from the weekly

value-weight returns of the LCI portfolio.
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4.4.2 Explained returns

In the augmented model (equation 4.5), the bond returns to be explained, Ri,t − RF,t,

are the average excess returns of portfolios displayed in Panel C of table 4.1. The 27

portfolios are formed from sorts of 329 global long-term corporate bonds on rating

(high rating, medium rating and low rating), duration (high duration, medium du-

ration and low duration) and yield to maturity (high yield, medium yield and low

yield).

The 329 global bonds, our test sample which does not include the 50 bonds used

in the computation of the LME factor, have been selected by taking all bonds quoted

in between January 2008 and December 2017 for which information on rating, du-

ration and yield to maturity (YTM) was available. The bonds in the test sample,

just like those in the training sample, are all fixed interest rate bonds. The three rat-

ing groups are formed by grouping S&P rating codes into three categories: the high

grade (HG) category includes S&P codes from AAA to A, the medium grade (MG)

category includes S&P codes from A- to BBB+, while the low-grade (LG) category

includes S&P codes from BBB to CCC+. The three duration groups (high duration,

HD, medium duration, MD, low duration, LD) have been formed by taking the the

30th and the 70th percentile of the list of bonds sorted out from highest duration to

lowest duration. The three yield to maturity groups (high yield, HY, medium yield,

MY, low yield, LY) have been formed by taking the the 30th and the 70th percentile of

the list of bonds sorted out by highest yield to maturity to lowest yield to maturity.

The intersection of the 9 groups produced 27 portfolios (Table 4.1, panel C) which

have been named after the initials of their group of origin. Weekly value-weighted

returns have been calculated for each portfolio. Successively, the risk-free rate, the

1-week T-bill rate has been subtracted in order to have excess returns.

4.5 Results

The climatic extension of the Fama and French two-factor model for bonds (equation

4.5) has been run for each of the 27 dependent variables. The slopes, the t-values,

and the R2 values are direct evidence that TERM, DEF and LME proxy for risk
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factors in bond returns and, when used as explanatory variables in the time-series

regressions, capture common variation in bond returns.

Extreme climate phenomena, at least in our setting, deteriorate physical assets

proportionally to the degree of the impact itself. A loss of assets negatively affects

profits and ratings which in turn reduces bond prices and returns. Results obtained

for the LME coefficient match our expectations: the slopes on LME are constantly

negative for the 27 portfolios of the test sample besides in one case, the LG/LY port-

folio, which is characterised by an extremely low excess average return (Table 4.1,

Panel C) and is poorly diversified with only seven bonds per year on average in the

portfolio.

4.5.1 9 Rating/Duration Portfolios

The results of the nine regressions carried out with equation (4.5) on the nine Rat-

ing/Duration portfolios are displayed in Table 4.2. Intercepts of the nine portfolios

confirm the effectiveness of the model with all slopes being close to zero and with

four t-values out of nine above the 0.05 level. R2 values are all in the 0.43 (LG/LD)-

0.77 (HG/MD) range.

All factors are positive (Table 4.1) and, therefore, a higher coefficient implies ce-

teris paribus a higher bond average return. Slopes on TERM, the mimicking portfolio

for the unexpected changes in interest rates all are positive and highly statistically

significant. Controlling for duration, the slopes all fall from the HG group to the

LG group. These results are consistent with our expectations: the higher the coupon

rate, the lower the interest rate risk and the lower the premium for changes in in-

terest rate levels. Coherently, we observe slopes on TERM of LG bonds to be lower

than slopes on TERM of HG bonds. On the other hand, controlling for rating, slopes

on TERM fall from HD portfolios to LD portfolios since the higher the duration, the

greater the interest rate risk and the premium for carrying such risk.

Slopes on DEF, the mimicking portfolio for shifts in economic conditions that

change the likelihood of default, are all positive and highly statistically significant,

even though not as high as those on TERM. Controlling for duration, slopes fall

from the LG portfolio to the HG portfolio even though this decline is smoother in

the HD row. This pattern is consistent with the fallen angel phenomenon which is
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exposed more clearly in the Rating/YTM sorts. Conversely, controlling for rating,

HD bonds take longer to repay investors (higher maturity) and are therefore exposed

more to the risk of shifts in economic conditions: HD bonds carry a greater risk

premium. This is what we observe with slopes on DEF that tend to fall from the HD

portfolio to the LD portfolio.

The climatic factor, LME, proxies for the risk factor in bond returns related to

global warming. Extreme climate phenomena deteriorate physical assets lowering

profits and ratings of issuing firms which affects negatively bond prices. Conse-

quently, given the global dimension of climate change, all firms in the test sample

are affected by climate risk and we expect all slopes on LME to be negative. This is

in fact the case. Out of the nine slopes on LME seven are statistically significant at

the 0.05 level. Controlling for duration, we would expect climate risk to be higher

where issuing firms have weaker fundamentals (LG firms). Therefore, we would

expect that the premium for global warming risk is higher for the LG portfolios than

the HG portfolios: a low-graded firm (or a firm which issues low-graded bonds)

is expected to experience harder times than a counterpart with solid fundamentals

(and with a high rating). If we do not consider the LD row, because two LME coeffi-

cients out of three are not statistically significant at the 0.05 level, we find confirming

evidence (especially in the HD row) for this hypothesis. When we control for rating,

given that LD bonds have, ceteris paribus, a lower grade than HD bonds, we would

expect the LD portfolio to carry the greater climate risk which implies a greater risk

premium with respect to HD bonds. Once again, our hypothesis is confirmed: the

risk premium is higher (closer to zero in this case) for the LD portfolio.

4.5.2 9 Rating/YTM Portfolios

The results of the nine regressions carried out with equation (4.5) on the nine Rat-

ing/YTM portfolios are displayed in Table 4.3. Intercepts of the nine portfolios con-

firm the effectiveness of the model with all slopes being close to zero and with three

t-values out of nine above the 0.05 level. R2 values are all in the 0.15 (LG/LY)-0.80

(HG/LY) range.

The picture of Table 4.3 looks close to the one of Table 4.2. When bonds are

sorted by rating and yield to maturity, slopes on TERM are all positive and highly
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TABLE 4.2: Regressions for 9 value-weighted portfolios formed from
sorts on rating and duration; January 2008 - December 2017, 522

weeks.

LG MG HG LG MG HG
α t(α)

LD -0.03 -0.06 -0.07 -1.18 -2.84 -3.86
MD -0.04 -0.05 -0.06 -1.25 -2.27 -2.85
HD -0.06 -0.05 -0.06 -1.81 -1.96 -2.21

m t(m)

LD 0.62 0.75 0.81 19.54 30.21 37.90
MD 0.71 0.91 0.95 21.04 34.15 40.20
HD 0.89 0.96 1.03 23.73 31.21 34.75

d t(d)
LD 0.24 0.11 0.12 7.98 4.56 5.71
MD 0.11 0.17 0.12 3.30 6.72 5.31
HD 0.17 0.16 0.19 4.76 5.51 6.46

l t(l)
LD -0.15 -0.03 -0.08 -2.23 -0.49 -1.78
MD -0.30 -0.21 -0.19 -4.25 -3.87 -3.96
HD -0.20 -0.13 -0.23 -2.57 -2.05 -3.69

R2 s(e)
LD 0.43 0.65 0.75 0.62 0.49 0.42
MD 0.49 0.71 0.77 0.67 0.52 0.47
HD 0.54 0.67 0.71 0.74 0.60 0.58

At the end of December of each year, bonds are allocated to three rating groups (High grade, HG, Medium grade,

MG, and Low grade, LG) and to three duration groups (High duration, HD,Medium duration, MD and Low du-

ration, LD) using the 30th and 70th percentiles as breakpoints. The intersection of the two sorts produce nine Rat-

ing/Duration portfolios. The dependent variables in the regressions are the weekly excess returns on the nine

Rating/Duration portfolios portfolios. The independent variables in the regressions are the maturity factor TERM

weekly percent returns, the default factor DEF weekly percent return and the climatic factor LME weekly percent

return. The table shows the intercepts, coefficients, t-values, and the adjusted R2 value for the regressions of the

nine dependent variables on TERM, DEF and LME.

statistically significant. If we control for yield to maturity, we would expect the

premium for interest rate risk to fall from HG bonds to LG bonds since the higher

the coupon, the lower the duration and the interest rate risk. This is exactly what

we observe: the coefficient on TERM falls from the HG bond portfolio to the LG

bond portfolio for each YTM tranche. On the other hand, controlling for rating,

interest rate risk decreases from the HY portfolio to the LY portfolio. We explain this

phenomenon with the maturity of the portfolios under analysis: the HY portfolio

has an higher maturity, and therefore a greater interest rate risk, of the LY portfolio.

Slopes on DEF in Table 4.3 are all positive and statistically significant besides

one, the LY/LG portfolio, which is negative. We do not consider this portfolio to be

representative, since it is by far the most poorly diversified with only seven bonds

per year on average in the portfolio. Controlling for yield to maturity, the factor
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mimicking shits in economic conditions that change the likelihood of default out-

puts declining coefficients from the HG portfolio to the LG portfolio. This picture

is consistent with the fallen angel phenomenon: the period under analysis is char-

acterised by an intensive downgrading and fallen angels, or a corporate bond that

has initially an investment grade rating (HG) but is downgraded to high-yield, ex-

perience steeper price declines. These depreciations occur in many cases before the

downgrading takes place. Conversely, if we control for rating, slopes on DEF de-

cline from the HY portfolio to the LY portfolio, which is consistent with the fact that

HY portfolios have longer maturities and are more affected by negative variations

of the macroeconomic conditions.

Coefficients on LME are all negative as expected, besides in one case (the poorly

diversified LY/LG portfolio). The slopes are all statistically significant in seven cases

out of nine, with the two exceptions being the LY/LG and LY/MG portfolios. Con-

trolling for yield to maturity, we expect, just like for the previous sort, that climate

risk is higher where issuing firms have weaker fundamentals (LG firms). Coherently

with our expectation, slopes on LME fall from the LG portfolio to the HG portfolio.

On the other hand, when we control for rating, we would expect LY bonds to carry

a greater climate change risk than HY bonds. This is because climate risk induces a

depreciation of issued bonds: such depreciation is necessary in order to raise YTM to

the level of bonds which discount climate risk, which is the case of more recent bonds

giving the progressive rising of climate awareness throughout the years. In such a

context, bonds with lower YTM depreciate more and, therefore, carry a greater risk

premium.

4.5.3 9 YTM/Duration Portfolios

When we sort the test sample by yield to maturity and duration (Table 4.4), the three

factor model for bonds obtains intercepts which are close to zero, expecially for HY

portfolios, with three t-values above the 0.05 level (LD/HY, MD/HY, HD/HY). R2

values are all in the 0.40 (LD/HY) - 0.77 (MD/LY) range.

When we look at the effect of interest rate risk on the sorts of Table 4.4, we notice

that, controlling for duration, slopes on TERM fall from the HY portfolio to the LY

portfolio: the bonds that carry the more interest rate risk and therefore pays the
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TABLE 4.3: Regressions for 9 value-weighted portfolios formed from
sorts on rating and yield to maturity; January 2008 - December 2017,

522 weeks.

LG MG HG LG MG HG
α t(α)

LY -0.16 -0.07 -0.07 -2.53 -3.92 -4.49
MY -0.08 -0.05 -0.05 -2.98 -2.42 -2.24
HY -0.01 -0.02 0.01 -0.25 -0.72 0.09

m t(m)

LY 0.58 0.76 0.85 7.56 32.86 42.81
MY 0.81 0.93 1.03 26.04 34.40 36.01
HY 0.67 0.96 1.05 20.68 27.18 25.93

d t(d)
LY -0.23 0.09 0.07 -3.03 3.86 3.44
MY 0.12 0.16 0.17 3.99 6.01 6.20
HY 0.23 0.23 0.41 7.24 6.71 10.50

l t(l)
LY 0.14 -0.06 -0.09 0.90 -1.35 -2.28
MY -0.22 -0.16 -0.27 -3.38 -2.86 -4.65
HY -0.21 -0.22 -0.33 -3.12 -3.04 -3.87

R2 s(e)
LY 0.15 0.70 0.80 1.52 0.45 0.39
MY 0.59 0.71 0.73 0.61 0.53 0.56
HY 0.46 0.60 0.57 0.64 0.69 0.79

At the end of December of each year, bonds are allocated to three rating groups (High grade, HG, Medium grade,

MG, and Low grade, LG) and to three yield to maturity groups (High yield, HY,Medium yield, MY and Low yield,

LY) using the 30th and 70th percentiles as breakpoints. The intersection of the two sorts produce nine Rating/Yield

to maturity portfolios. The dependent variables in the regressions are the weekly excess returns on the nine Rat-

ing/Yield to maturity portfolios portfolios. The independent variables in the regressions are the maturity factor

TERM weekly percent returns, the default factor DEF weekly percent return and the climatic factor LME weekly

percent return. The table shows the intercepts, coefficients, t-values, and the adjusted R2 value for the regressions

of the nine dependent variables on TERM, DEF and LME.

highest premium are the one with the highest maturity and the lowest grade. On

the other hand, controlling for yield to maturity, interest rate risk falls from the HD

portfolio to the LD portfolio. All nine slopes are highly statistically significant with

the lowest t-value being 18.37 (LD/HY).

All nine slopes on DEF are positive and statistically significant at the 0.05 level.

Controlling for duration, slopes on DEF decline from the HY portfolio to the LY

portfolio, which is consistent with the fact that low-grade bonds (HY bonds) carry a

greater default risk premium. Conversely, controlling for YTM, slopes on DEF fall

from the HD portfolio to the LD portfolio. HD bonds take longer to repay investors

(higher maturity) and are therefore exposed more to the risk of shifts in economic

conditions: HD bonds carry a greater risk premium.

The slopes on LME are consistent with was previously found with different sorts

of the test sample. The slopes are all negative and five out of nine are statistically
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significant at the 0.05 level. When we control for duration, following the line of

reasoning exposed above for sorts on yield to maturity and rating (table 4.3), we

expect LY bonds to carry a greater climate risk than HY bonds: bonds with lower

YTM depreciate more and, therefore, carry a greater risk premium. Indeed, this is

what we observe, with coefficients falling from the LY portfolio to the HY portfolio.

Controlling for YTM, slopes fall from the LD portfolio to the HD portfolio. The

reason for this is that LD bonds have, ceteris paribus, a lower rating than HD bonds

and, once again, bonds issued by firms with weaker fundamentals carry a greater

climate risk.

TABLE 4.4: Regressions for 9 value-weighted portfolios formed from
sorts on yield to maturity and duration; January 2008 - December

2017, 522 weeks.

LY MY HY LY MY HY
α t(α)

LD -0.08 -0.06 -0.01 -4.97 -2.62 -0.03
MD -0.07 -0.06 -0.02 -3.97 -2.64 -0.71
HD -0.05 -0.06 -0.01 -2.23 -2.16 -0.42

m t(m)

LD 0.78 0.82 0.61 38.87 30.60 18.37
MD 0.86 0.93 0.81 39.30 34.44 25.02
HD 0.90 1.05 1.02 31.40 32.96 22.40

d t(d)
LD 0.06 0.17 0.26 3.20 6.78 8.15
MD 0.07 0.11 0.21 3.40 4.36 6.79
HD 0.08 0.19 0.41 2.85 6.06 9.27

l t(l)
LD -0.05 -0.10 -0.16 -1.17 -1.80 -2.27
MD -0.07 -0.27 -0.30 -1.55 -4.82 -4.56
HD -0.07 -0.23 -0.26 -1.21 -3.56 -2.75

R2 s(e)
LD 0.76 0.65 0.40 0.39 0.52 0.65
MD 0.77 0.72 0.56 0.43 0.53 0.63
HD 0.68 0.70 0.50 0.56 0.62 0.90

At the end of December of each year, bonds are allocated to three yield to maturity groups (High yield, HY, Medium

yield, MY, and Low yield, LY) and to three duration groups (High duration, HD, Medium duration, MD and Low

duration, LD) using the 30th and 70th percentiles as breakpoints. The intersection of the two sorts produce nine

Yield to maturity/duration portfolios. The dependent variables in the regressions are the weekly excess returns

on the nine Yield to maturity/Duration portfolios portfolios. The independent variables in the regressions are the

maturity factor TERM weekly percent returns, the default factor DEF weekly percent return and the climatic factor

LME weekly percent return. The table shows the intercepts, coefficients, t-values, and the adjusted R2 value for the

regressions of the nine dependent variables on TERM, DEF and LME.
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4.5.4 Model performance

In this section we investigate whether the newly proposed three-factor model for

bonds performs better than the classical two-factor model for bonds (1993). To ac-

complish this objective we leverage on what Fama and French (2015), based on Mer-

ton (1973), suggest to be the essential indicators of the effectiveness of a well spec-

ified asset-pricing model: indistinguishable from zero intercepts. If the coefficients

of the time-series regressions completely capture variation in expected returns, then

the intercept, αi, is indistinguishable from zero.

The intercepts found for different sorts of the test sample with the three factor

model for bonds are all almost indistinguishable from zero, which is of central im-

portance for a well-specified asset pricing model. In the sorts of the test sample

on rating and duration, intercepts range from -0.07 and -0.03, with four out of nine

intercepts found to be statistically equal to zero. In the sorts on rating and yield to

maturity, intercepts range from -0.16 and 0.01, with three intercepts out of nine statis-

tically equal to zero. Lastly, in the sorts on duration and yield to maturity, the lowest

intercept found has been -0.08 and the highest -0.01. In this case, three intercepts out

of nine have been found to be statistically equal to zero.

To test the zero intercept hypothesis for combinations of portfolios and factors,

we compute the Gibbons, Ross, and Shanken (1989) GRS statistic. This operation

permits us to assess how well the three factor model for bonds explains average ex-

cess bond returns and answers the question of the improvement provided by adding

the LME factor to the two classical bond factors.

TABLE 4.5: GRS statistics for tests of the two and three factor model
to explain weekly excess bond returns; January 2008 - December 2017,

522 weeks.

Rating/Duration Rating/YTM Duration/YTM
TERM, DEF +LME TERM, DEF +LME TERM, DEF +LME

GRS 2.43 2.43 5.69 5.72 5.66 5.71
p-value 0.010 0.010 0.001 0.001 0.001 0.001

The tables tests the ability of the two factor model (TERM, DEF), and the three factor model (TERM,
DEF, LME) to explain weekly excess bond returns on the nine rating Rating/Duration portfolios, the
nine Rating/Yield to maturity portfolios and the nine Duration/Yield to maturity portfolio. The table
shows the GRS statistic testing whether the expected values of all nine intercept estimates for each sort
are zero.

Table 4.5 displays the GRS statistics for the two factor model for bonds, i.e. a
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model employing only TERM and DEF as explanatory factors, and the three factor

model for bonds, i.e. a model employing TERM, DEF and LME as explanatory

factors. Overall, the GRS test rejects the hypothesis that the two and the three factor

models produce regression intercepts for the 27 bond portfolios (9 portfolios sorted

on Rating and Duration, 9 portfolios sorted on Rating and YTM and 9 portfolios

sorted on Duration and YTM) that are all equal to zero. We find that adding the LME

factor never improves the description of average bond returns. However, adding

the LME factor to the regression also never worsens the description of average bond

returns.

4.6 A climate stress test for bonds

Stress-testing is a technique originated in engineering whose purpose is to test the

stability of an entity. Such technique was later absorbed by financial risk analysis.

From an historical perspective, following Koliai (2016), literature on financial stress

testing can be split in four main categories: general presentation of the instrument

in the early 2000s, portfolio stress test development, systemic stress test emergence

in the wake of the 2007-2009 crisis and diagnosis of the realised exercises.

TABLE 4.6: Categorisation of stress test literature (Koliai, 2016).

Topic Selected authors

Conceptual aspects Berkowitz (2000); Blaschke et al. (2001); Čihàk (2007)

Portfolio stress tests Kupiec (1998); Breuer and Krenn (1999); Bee (2001);Kim and Finger (2001);
Aragonés et al. (2001); Breuer et al. (2002); Alexander and Sheedy (2008);
McNeil and Smith (2012); Breuer and Csiszàr (2013)

Systemic stress tests Boss (2008); Alessandri et al. (2009); Aikman et al. (2009);
van den End (2010, 2012); Engle et al. (2014); Acharya et al. (2014)

Diagnostics Haldane (2009); Borio and Drehmann (2009); Hirtle et al. (2009);
IMF (2012); Greenlaw et al. (2012); Borio et al. (2012)

The table shows the categorisation of the stress-test literature performed by Koliai (2016) into 4 topics:
conceptual aspects, portfolio stress test, systemic stress test and diagnostics.

Today, stress-testing is proposed by the literature (Bank of England Prudential

Regulation Authority, 2015; Schoenmaker and van Tilburg, 2016; Zenghelis and

Stern, 2016) as an evaluation framework for climate change risks. Additionally, the

World Bank (Fay et al., 2015) and some national legislations have also taken this di-

rection. In France, for example, the recent law n◦ 2015-992 (article 173) relative to
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the energy transition for green growth, which has been promulgated just before the

COP 21 in Paris, makes reference to climate change stress tests.

Accoring to Borio, Drehmann, & Tsatsaronis, (2014), when applied to financial

risk analysis a stress test has four main features: a set of risk exposures subjected

to stress, a scenario that defines the exogenous shocks that stress the exposures, a

model that maps the shocks onto an outcome and a measure of such an outcome.

The crucial component of a financial stress test is the scenario which is why stress-

test scenarios have been subject to requirements by the Basel Committee on Banking

Supervision (2009) which demands them to be plausible but severe. In our frame-

work, scenarios are constructed by leveraging on the climatic factor. The LME factor

proxies for the risk factor in bond returns related to extreme climate events. A wors-

ening of adverse climate phenomena, which corresponds to a further deterioration

of fixed assets in our framework, is related to the LME factor: higher temperatures,

sea levels or heavier rainfalls lead to a larger LME factor since returns of firms which

suffer extreme climate impacts are supposed to sink further.

The ultimate aim of a climate stress test is to show the impact of hypothetically

plausible but more severe extreme climate phenomena on bond returns. Holding all

other variables of the three factor model for bonds constant and focusing only on the

relation between the left-hand side portfolios and the LME factor, the climate stress

test is based on the following equation:

∆(Ri,t − RF,t) = li∆LMEt (4.6)

In equation (4.6), ∆(Ri,t − RF,t) is the average hypothetical variation in excess

bond returns, li is the sensitivity of portfolio or stock i to extreme climate events,

and ∆LMEt is the average hypothetical climate variation proxied by the LME factor.

In order to understand the impact of a plausible but more severe climate state on

the bond returns under examination, we put forward three alternative scenarios in

which the average LME factor is stressed by 20% (low shock), 50% (medium shock),

and 100% (high shock).

Table 4.7 shows the results of the climate stress test for each of the twenty-seven

value-weighted portfolios under the three shock scenarios. We quantify the impact
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TABLE 4.7: Climate stress-test for twenty-seven value-weighted port-
folios formed from sorts on rating and duration, rating and YTM and

duration and YTM; January 2008 - December 2017, 522 weeks.

Panel A: Portfolios formed on Rating and Duration
Low shock Medium shock High shock

LG MG HG LG MG HG LG MG HG
LD -0.009 -0.002 -0.005 -0.011 -0.002 -0.006 -0.014 -0.003 -0.008
MD -0.017 -0.012 -0.011 -0.021 -0.015 -0.014 -0.028 -0.020 -0.018
HD -0.011 -0.007 -0.013 -0.014 -0.009 -0.016 -0.019 -0.012 -0.022
Panel B: Portfolios formed on Rating and YTM

Low shock Medium shock High shock
LG MG HG LG MG HG LG MG HG

LY 0.008 -0.003 -0.005 0.010 -0.004 -0.006 0.013 -0.006 -0.009
MY -0.013 -0.009 -0.015 -0.016 -0.011 -0.019 -0.021 -0.015 -0.026
HY -0.012 -0.013 -0.019 -0.015 -0.016 -0.023 -0.020 -0.021 -0.031
Panel C: Portfolios formed on YTM and Duration

Low shock Medium shock High shock
LY MY HY LY MY HY LY MY HY

LD -0.003 -0.006 -0.009 -0.004 -0.007 -0.011 -0.005 -0.009 -0.015
MD -0.004 -0.015 -0.017 -0.005 -0.019 -0.021 -0.007 -0.026 -0.028
HD -0.004 -0.013 -0.015 -0.005 -0.016 -0.018 -0.007 -0.022 -0.025

At the end of December of each year, bonds are allocated to three rating groups (High grade, HG,
Medium grade, MG, and Low grade, LG), three yield to maturity groups (High yield, HY, Medium
yield, MY, and Low yield, LY) and to three duration groups (High duration, HD, Medium dura-
tion, MD and Low duration, LD) using the 30th and 70th percentiles as breakpoints. The intersec-
tion of the three sorts produce nine Rating/Duration portfolios, nine Rating/YTM portfolios and nine
YTM/Duration portfolios. The table shows the average variation of weekly permille excess returns for
the twenty-seven bond portfolios. In each stress-test, the average LME factor is stressed by 20% (low
shock), 50% (medium shock), and 100% (high shock).

of extreme climate phenomena at firm level by transposing country level climate

related GDP losses into firms fixed assets losses by means of equation (4.3). A loss

of fixed assets reduces the firms production capacities and thus the possibility to

generate profits, which affects issued bonds ratings and prices. Consequently, given

the global dimension of climate change, all firms in the test sample are affected by

climate risk and all slopes on LME should be negative. As shown in the previous

section and displayed on Table 4.2, Table 4.3 and Table 4.4, this is the case for all

portfolios besides the poorly diversified LG/LY portfolio.

The climate stress test shows the effects of a plausible but more severe climate

state on the bond returns under examination by stressing climate impacts (the LME

average, Table 4.1) by 20% (low shock), 50% (medium shock), and 100% (high shock).

By construction bond climate losses tend to increase with the magnitude of the shock

and the interpretation of climate losses mimics the interpretation of the results of the

slopes of the LME factor given in the previous section.
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4.7 Conclusions

We have addressed, in this paper, the question of the impact of extreme climate

phenomena, identified with temperature extremes, high sea levels extremes, and

precipitation extremes (Intergovernmental Panel on Climate Change, 2014) on bond

returns. We have answered the research question by putting forward a climatic ex-

tension of the Fama and French (1993) two-factor model for bonds. The climatic

extension is represented by a factor, LME, which mimics the risk factor in bond re-

turns related to climate change. The LME factor is the result of a model that permits

the transposition of country level climate related GDP losses into firms fixed assets

losses. The climatic factor is computed by means of 50 bonds issued by firms for

which we have a geographical partition of fixed assets.

The newly proposed three factor model has been run for a test set of twenty-

seven portfolios which include a total of 329 bonds. This test set does not include

the 50 bonds used for the production of the LME factor. The 329 bonds have been

split in twenty-seven portfolios by means of three sorts on rating, duration and YTM.

Running the three factor model for bonds produces slopes which are significant both

in economic and statistical terms.

When we used the classical two-factor model as a benchmark, we found that

effectiveness is neither lost or gained: adding the climatic factor to the set of ex-

planatory variables does not improve or worsens the effectiveness of the two factor

model as measured by the GRS statistic. Nevertheless, it is of interest for financial

practitioners and legislators to have insights into the effect of global warming upon

bond returns. For example, an asset manager can use the methods presented in this

paper to assess the impact of climate phenomena upon bonds and thus reconsider-

ing his asset allocation and his future portfolio strategies. In parallel, it is of interest

to policy makers to have insights into the impact on bond returns of plausible but

more severe extreme climate phenomena, which is something we achieved with the

climate stress test. Legislators can leverage stress test results to calibrate a policy

response (e.g. carbon pricing) which is in line with the cost of non-action, i.e. the

cost of not addressing global warming.
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Conclusions

Global warming is defined as the increase over a 30-year period of the global av-

erage of combined surface air and sea surface temperatures. It is attributed to two

different causes: natural climate variability — natural internal processes or exter-

nal forcings — and human activity that alters the composition of the atmosphere.

The breaking point of human contribution to climate change is usually identified

with the industrial revolution since economic development is strictly correlated to

energy consumption: the burning of fossil fuels has increased the concentration of

atmospheric carbon dioxide (CO2), the most prominent forcing factor, from 280 parts

per million (ppm) in preindustrial times to approximately 400 ppm. Human induced

global warming reached approximately 1◦C above pre-industrial levels in 2017, in-

creasing at 0.2◦ C per decade. However, it is very unlikely that past emissions alone

raise the global mean temperature to what is now considered the threshold objective

since the COP 21 held in Paris in 2015: 1.5◦ C above pre-industrial levels. A warming

greater than 1.5◦C is therefore not geophysically unavoidable: whether it will occur

depends on future rates of emission reductions

Required yearly investments to address global warming and stay below the 1.5◦

threshold have been evaluated at around 2.38 trillion US dollars up to 2035 just for

the energy sector. However, the yearly contribution of financial institutions such as

banks, pension funds, life insurance companies, and other funds, while managing

over 71 trillion US dollars in assets, to climate change investments has been evalu-

ated at only 22 billion US dollars. Even households contributed more than financial

institutions with 33 billion US dollars.

The main research question of this PhD thesis can be stated as follows: “Given

the financial necessities of the ecological or energetic transition, how can the contri-

bution of the financial institutions to the fight against climate change be increased?”
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The four chapters that form this PhD thesis start from the hypothesis that the par-

ticipation of commercial financial institutions to the low-carbon transition is finan-

cially rational. Besides any ethical consideration regarding the obtainment of the

ecological transition that the author surely endorses, taking a stake in the ecological

transition is financially profitable. This hypothesis becomes an argument when it is

empirically proven. Throughout the four chapters presented here, the objective is

to provide scientific ground to the hypothesis of the financial profitability of taking

part to the ecological/energetic transition.

Global warming connects to the financial sphere by increasing the number of

risks on the market. Academics have partitioned what we can call climate change

risks in two categories. The first category has been labeled “climate risk” and refers

to the link between global warming and natural and human systems. Extreme cli-

mate phenomena like temperature extremes, high sea level extremes, and precipi-

tation extremes, are likely to seriously affect economic growth and the value of fi-

nancial assets. The second category of climate change risks has been labeled “low-

carbon transition risk” or “carbon risk”. Low-carbon transition risk refers to the cost

of the adjustment towards a low-carbon economy. Hence, it includes all drivers of

risk linked to the decarbonisation of the economy: a) market-based instruments like

a carbon tax or an emission allowance price; b) command and control induced tech-

nological shifts, e.g. stranded assets or assets that have suffered from unanticipated

or premature write-downs, devaluations, or conversion to liabilities; and c) market

risk, i.e. market demands for low carbon products. The four chapters of this PhD

thesis bring upon both “climate risk” and “transition risk” and explore their reper-

cussions on the two most widely traded asset classes: stocks and bonds. Results

show that there are patterns in average stock and bond returns related to carbon

pricing and extreme climate phenomena. These results are also the basis for policy

implications for legislators and financial practitioners.

Findings show that the 2003/87/CE directive has a positive effect in the financ-

ing of the low-carbon transition: the beginning of phase II of EU-ETS —the start

date of the study— coincides with both capital outflows from carbon firms and cap-

ital inflows to green firms. This holds true for both stocks and bonds. The carbon

stress test put forward shows by how much an increase of the EU-ETS price would
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accelerate such process. The low-shock scenario, for example, would provide an

additional boost to the low-carbon transition without harming excessively carbon

firms. From a financial practitioner perspective, findings show that, in Europe, in

the 2008-2018 time span, green firms have outperformed carbon firms and that this

outperformance is statistically significant. In other words, low-carbon investments

cannot be considered anymore just an ethical stand: nowadays, as the green pre-

mium shows, investing in green firms is a profitable exercise.

Results also show that extreme climate phenomena, intended as temperatures

extremes, high sea levels extremes, and precipitation extremes, do have an impact

on returns of stocks and bonds at a global scale. In other words, firms which suffer

asset erosion as a result of global warming display lower average returns than firms

that do not or suffer asset erosion to a lesser extent. The quantification of the impact

of extreme climate events upon stock and bond returns is an undoubted help to both

legislators and financial practitioners. An asset manager can use the methods pre-

sented in chapter 3 and chapter 4 to assess the impact of extreme climate phenomena

upon stocks and bonds and thus reconsider his asset allocation and his future port-

folio strategies. On the other hand, legislators can leverage the climate stress test to

gain insights on the financial losses induced by a progressive global warming and

calibrate a policy response, like carbon pricing for example, which is in line with the

cost of non-action, i.e. the cost of not addressing global warming.
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Appendix A

The stock market factors tested in chapter one and chapter three have been down-

loaded from the K. French data library available at http://mba.tuck.dartmouth.edu.

All returns include dividends and capital gains. Information on factor construction

for the market factor, MKT, the size factor, SMB, the value factor, HML, the prof-

itability factor, RMW, and the investment factor, CMA, are available on the above

mentioned website.

The newly proposed factor that mimics the risk factor in stock returns related to

low-carbon policy, GMC, is constructed using two value-weight portfolios formed

on EU-ETS participation (i.e. carbon price payment). The green portfolio contains

91 stocks of firms that do not participate in the EU-ETS since the beginning of Phase

II of EU-ETS — selected with a random procedure out of the universe of stocks of

firms that do not participate in the EU-ETS since the beginning of Phase II of EU-ETS

— and the carbon portfolio contains 91 stocks of firms that participate in the EU-ETS

since the beginning of Phase II of EU-ETS. All returns include dividends and capital

gains. The timeframe is Q1 2008 - Q4 2018. All data are from Bloomberg.

GMC (green minus carbon) is the average return on the green portfolio minus the

average return on the carbon portfolio.

The newly proposed factor that mimics the risk factor in stock returns related

to global warming, LME, is constructed using two value-weight portfolios formed

on climate related fixed assets losses. The light climatic impact portfolio contains

75 global stocks which suffered limited climate related fixed assets losses and the

extreme climatic impact portfolio contains 75 global stocks which suffered more rel-

evant climate related fixed assets losses. The procedure used to attribute climate

related fixed assets losses to stocks is specified in section 3.2. All returns include

dividends and capital gains. The timeframe is Q1 2008 - Q4 2017. All data are from

Reuters.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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LME (light minus extreme) is the average return on the light climatic impact portfo-

lio minus the average return on the extreme climatic impact portfolio.
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Appendix B

The bond market factors tested in chapter two — TERM and DEF — that mimic,

respectively, the risk factors in bond returns related to unexpected changes in interest

rates and shifts in economic conditions that change the likelihood of default of a

firm have been constructed using a database of 50 European corporate fixed-interest

rate bonds, seven european long-term government bonds and the Euribor rate. All

returns include accrued interest and capital gains. The timeframe is Q3 2008 - Q2

2018. All data are from Bloomberg.

TERM is the average return of the government bond portfolio minus the Euribor

rate.

DEF is the average return of the corporate bond portfolio minus the average return

of the government bond portfolio.

The newly proposed factor that mimics the risk factor in bond returns related to

low-carbon policy, GMC, is constructed using two value-weight portfolios formed

on EU-ETS participation (i.e. carbon price payment). The green portfolio contains

25 bonds of firms that do not participate in the EU-ETS since the beginning of Phase

II of EU-ETS — selected with a random procedure out of the universe of bonds of

firms that do not participate in the EU-ETS since the beginning of Phase II of EU-ETS

— and the carbon portfolio contains 25 bonds of firms that participate in the EU-ETS

since the beginning of Phase II of EU-ETS. All returns include accrued interest and

capital gains. The timeframe is Q3 2008 - Q2 2018. All data are from Bloomberg.

GMC (green minus carbon) is the average return on the green portfolio minus the

average return on the carbon portfolio.

The bond market factors tested in chapter four — TERM and DEF — that mimic,

respectively, the risk factors in bond returns related to unexpected changes in interest

rates and shifts in economic conditions that change the likelihood of default of a
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firm have been constructed using two Exchange traded funds (ETF): one for long-

term government bonds (IShares IEF fund) and one for long-term corporate bonds

(IShares USIG fund). All returns include accrued interest and capital gains. The

timeframe is Q1 2008 - Q4 2017. All data is from Reuters.

TERM is the average return of the IShares IEF fund minus the T-bill rate.

DEF is the average return of the IShares USIG fund minus the average return of the

IShares IEF fund.

The newly proposed factor that mimics the risk factor in bond returns related

to global warming, LME, is constructed using two value-weight portfolios formed

on climate related fixed assets losses. The light climatic impact portfolio contains

25 global bonds which suffered limited climate related fixed assets losses and the

extreme climatic impact portfolio contains 25 global bonds which suffered more rel-

evant climate related fixed assets losses. The procedure to attribute climate related

fixed assets losses to bonds is specified in section 4.2. All returns include accrued

interest and capital gains. The timeframe is Q1 2008 - Q4 2017. All data are from

Reuters.

LME (light minus extreme) is the average return on the light climatic impact portfo-

lio minus the average return on the extreme climatic impact portfolio.
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