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Influence of the substrate rheology on cell crawling by Haythem CHELLY

The mechanical scaffold of most eukaryotic cells is constituted of a cross-linked biopolymer meshwork that forms a skeleton connected to the substrate by dynamic bonds. Using energy derived from their metabolism, cells have the ability to move on various surfaces by self-organizing molecular motors (i.e. active cross-linkers) to produce traction forces and restructure their skeleton through a chemical treadmilling process. Such crawling motion can largely be affected by the physical nature of the substrate. Part of this interaction is due to the chemical affinity between the proteins insuring the cell adhesion and the substrate coating proteins. In the presence of traction forces applied by the cell skeleton, the ensuing bonding and debonding process leads to a complex effective friction law between the cell and its substrate over the long timescale relevant for cell motility. However, the substrate mechanical deformation also plays an important role as it feedbacks on the traction forces and thus restructures the cell skeleton flow. To illustrate some principles of this mechanical reciprocity, we investigate three prototypical situations where the effective friction law is considered in its simplest linear form but the substrate is allowed to deform. First, we analyze the case of a cell moving on a linear elastic substrate and show that even in the context of a linear friction, the global velocity of the cell depends on the substrate stiffness in a non-linear biphasic fashion. Second we consider a cell moving on a viscous substrate and characterize the renormalization of the effective linear friction by the substrate viscosity. Finally, we show that the limit of a vanishing friction coefficient leads to a generic cell motion that is independent of the substrate rheology and has a variational structure. The dynamics of the cell in this context can thus be viewed as minimizing a certain quasi-potential. With such tool, we characterize the metastability of cell substrate-independant cell crawling and show that cells can alterante their gait in the presence of a small biological noise.
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Résumé

Laboratoire Interdisciplinaire de Physique Doctorat Influence de la rhéologie du substrat sur la motilité cellulaire par Haythem CHELLY La structure mécanique de la plupart des cellules eucaryotes est constitué d'un maillage de biopolymères réticulés qui forme un squelette relié au substrat par des liaisons dynamiques. En utilisant l'énergie dérivée de leur métabolisme, les cellules ont la capacité de se déplacer sur diverses surfaces en auto-organisant des moteurs moléculaires (c'est-à-dire des réticulateurs actifs) pour produire des forces de traction et restructurer leur squelette par un processus chimique de "treadmilling". Ce mouvement de reptation peut être largement affecté par la nature physique du substrat. Une partie de cette interaction est due à l'affinité chimique entre les protéines assurant l'adhésion des cellules et les protéines de revêtement du substrat. En présence de forces de traction appliquées par le squelette cellulaire, le processus d'attachement et de détachement qui s'ensuit conduit à une loi de friction effective complexe entre la cellule et son substrat sur une échelle de temps longue pertinente pour la motilité cellulaire. Cependant, la déformation mécanique du substrat joue également un r ôle important car elle rétroagit sur les forces de traction et restructure ainsi le flux du cytosquelette. Pour illustrer certains principes de cette réciprocité mécanique, nous étudions trois situations prototypiques o ù la loi de friction effective est considérée dans sa forme linéaire la plus simple mais o ù le substrat peut se déformer. Premièrement, nous analysons le cas d'une cellule se déplac ¸ant sur un substrat élasti-que linéaire et nous montrons que même dans le contexte d'une friction linéaire, la vitesse globale de la cellule dépend de la rigidité du substrat d'une manière biphasique non linéaire. Ensuite, nous considérons une cellule se déplac ¸ant sur un substrat visqueux et caractérisons la renormalisation de la friction linéaire effective par la viscosité du substrat. Enfin, nous montrons que la limite d'un coefficient de friction nul conduit à un mouvement cellulaire générique qui est indépendant de la rhéologie du substrat et possède une structure variationnelle. La dynamique de la cellule dans ce contexte peut donc être vue comme la minimisation d'un quasi-potentiel. Avec un tel outil, nous caractérisons la métastabilité de la réptation cellulaire indépendante du substrat et montrons que les cellules peuvent modifier leur démarche en présence d'un petit bruit biologique. 

Context, background importance of the topic

Cell migration is essential in a wide range of physiological and pathological processes, as morphogenesis, wound healing, tumor metastasis and immune response.

Therefore understanding cell motility is critical to develop adequate treatments to cure cancer metastasis, to design new matrices for regenerative tissue engineering and to engineer microcrawlers to achieve localized drug delivery.

The cytoskeleton

The cell can be roughly considered as constituted by a membrane containing, the cytoplasm, a nucleus and a cytoskeleton. The cytoskeleton represents the cell machinery responsible of its mechanical behavior, and is constituted of a meshwork of filamentous proteins that regulates the cell shape, morphology, stiffness, mechanical stability and drives its motility. Three different types of biopolymers compose the cytoskeleton filamentous network, namely actin filaments, intermediate filaments and microtubules (see Fig. 1.1).

The actin cytoskeleton is of primary importance in the cell motility and is the only one considered in this work. The polymerization of actin monomers, called G-actin, induces the formation of the two-stranded helical polymers constituting the actin filaments or F-actin. The polymerization of G-actin is an active process, as many other phenomena occurring within the cell, meaning that energy is needed in order for the process to take place at the rates observed in living cells. This energy is produced within the cell by the hydrolysis of adenosine triphosphate (ATP). The actin filament is polarized as it exhibits a plus and minus end, respectively the barbed and pointed end, where the plus end growth is faster than the one of the minus end (Molecular biology of the cell. 2008). This growth discrepancy between the two ends gives rise to a treadmilling phenomenon at steady-state, where the polymerization rate at the plus end compensates the depolymerization rate at the minus end. Thus the treadmilling motion constitutes a depolymerization/polymerization-driven motion at constant filament length. Filaments themselves can organize into a highly cross-linked planar protrusion located at the cell leading edge, called lamellipodium, as well as in dorsal-ventral stress fibers, which are basically thick cables of F-actin that FIGURE 1.1: Schematic representation of a cell and its constituants [START_REF] Seetharaman | Cytoskeletal crosstalk in cell migration[END_REF]. FIGURE 1.2: Arcs dynamics in a crawling cell [START_REF] Burnette | A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells[END_REF] exerts traction force on the substrate through anchoring points or in actin arcs that linked dorsal stress fibers together (see Fig. 1.2).

Other essential components of the cytoskeleton are myosin II molecular motors, which are categorized as such, because they convert the chemical energy obtained from ATP hydrolysis into a power-stroke mechanical work. A motor is made of a head and a tail and can assembles with other motors by the tail to form a bipolar filament with heads at both ends of the assembly. The motors are either freely diffusing in the cytoplasm or cross-linking two actin filaments. When attached, the heads of a bipolar filament experience a conformational change creating a power stroke which induces parallel sliding of the cross-linked actin filaments (see Fig. 1.3). The molecular motors are the cause of cell contractility, which is a keystone of the cell motility along with the previously mentioned polymerization. 

Influence of the ECM mechanical properties on cell functions

Abundant evidence shows that the extracellular matrix (ECM) can no longer be considered only as a rigid structure simply supporting cell migration. Instead it is now clear that the mechanical properties of the ECM significantly influence a range of cell functions. Therefore cell dynamics cannot in general be considered independently of the substrate when studying its migration for example. A few examples of such complex interplay between the cell and the matrix are listed below.

During the process of embryogenesis, stem cells evolving on soft matrices differentiate into a neurogenic lineage (neuron-like), on rigid matrices they differentiate into an osteogenic lineage (bone-like), while at intermediate elasticity they differentiate into a myogenic lineage (muscle-like) [START_REF] Engler | Matrix elasticity directs stem cell lineage specification[END_REF]. Another general effect is the preferred cell migration from zones of lower substrate rigidity to zones of higher substrate rigidity following a process called durotaxis [START_REF] Lo | Cell Movement Is Guided by the Rigidity of the Substrate[END_REF]. Furthermore, [START_REF] Peyton | Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion[END_REF] showed that cells exhibit maximal velocity at an intermediate matrix stiffness. Later on, Reinhart-King, [START_REF] Reinhart-King | Cell-Cell Mechanical Communication through Compliant Substrates[END_REF] discovered a mechanical communication process between two or more cells through a two dimensional compliant substrate. They found that cells react to substrate deformations induced by the traction forces exerted by neighboring cells and transmitted via the substrate. Therefore the more compliant the substrate is, the wider the communication range is. These results were later on also confirmed in a three dimensional extracellular environment [START_REF] Ma | Fibers in the Extracellular Matrix Enable Long-Range Stress Transmission between Cells[END_REF]. Finally, [START_REF] Solon | Fibroblast Adaptation and Stiffness Matching to Soft Elastic Substrates[END_REF] linked the cell's internal stiffness to the one of the substrate, as on soft matrices the cell rigidity matched the substrate one while it reached a plateau above a substrate rigidity threshold (∼ 20 kPa).

These examples constitute strong evidence that the mechanical properties of the ECM has an impact on a wide variety of cell functions and also suggest that the cell is able to sense its mechanical environment (mechanosensing) and adapt its response accordingly. This dynamic bidirectional interaction between the cell and the ECM, consisting of sensing the mechanical cues, then transmitting them (mechanotransduction) to the cell to finally adapt its behaviour according to these physical cues, is termed as mechanoreciprocity or mechanical reciprocity [START_REF] Roskelley | Dynamic reciprocity revisited: a continuous, bidirectional flow of information between cells and the extracellular matrix regulates mammary epithelial cell function[END_REF][START_REF] Dado | Cell-scaffold mechanical interplay within engineered tissue[END_REF][START_REF] Schultz | Dynamic reciprocity in the wound microenvironment[END_REF][START_REF] Van Helvert | Mechanoreciprocity in cell migration[END_REF].

A disruption in the mechanical reciprocity pathway, whether in the mechanosensors, the mechanotransducers or the actuators (the module or component actively governing the mechanical response of the cell, such as the cytoskeleton, the adhesions...), can provide pathological conditions to the triggering or expansion of diseases, such as cancers and cardiovascular diseases among others. An abnormal response to physical cues can also be the cause of developmental disorders, such as Hutchinson-Gilford progeria syndrome, characterized by a dramatically fast ageing [START_REF] Dufort | Balancing forces: architectural control of mechanotransduction[END_REF]. Cancers are often associated with fibrosis, an excessive formation of extracellular matrix, and is proven to be an important factor in its initiation, growth and metastasis [START_REF] Haak | Matrix biomechanics and dynamics in pulmonary fibrosis[END_REF]. During wound healing or inflammation, myofibroblasts restore the mechanical integrity of the tissue and in the physiological conditions they should revert to their initial phenotype (fibroblasts) or eventually die, by detaching themselves from the substrate (anoikis), as soon as the homeostasis is reached. However, when they fail to correctly interpret or respond to the mechanical cues of the ECM, myofibroblasts do not revert to fibroblasts, instead they further differentiate into a much more active phenotype than myofibroblasts, referred to cancer-associated fibroblasts [START_REF] Chandler | Pathologic fibrosis: disease mechanisms and novel therapeutics[END_REF], which will contribute to excessive stiffening of the ECM by producing even more ECM proteins. This is one reason why tumors are stiffer than healthy tissues. The feedback loops associated with physiological and pathological behaviour of fibroblasts in case of disruption of the tissue mechanical integrity are represented Fig. 1.4 (Humphrey, Dufresne, and Schwartz, 2014). Because cancer mimics the chronic inflammation it is referred to as a "wound that does not heal" [START_REF] Dvorak | Tumors: wounds that do not heal[END_REF][START_REF] Schäfer | Cancer as an overhealing wound: an old hypothesis revisited[END_REF].

As discussed above, because of the mechanical reciprocity, increased ECM stiffness is a catalyst of various diseases. Based on this observation a new and promising field of the medicine has emerged, the mechanomedicine. It aims at providing a therapeutic treatment, by either targeting the ECM mechanical properties or by altering the mechanoreciprocity pathway [START_REF] Lampi | Targeting extracellular matrix stiffness to attenuate disease: From molecular mechanisms to clinical trials[END_REF].

Focal adhesion: main actor of the mechanoreciprocity

As mentioned above, the mechanical reciprocity first relies on the mechanosensing.

If the cell is unable to feel its mechanical environment, obviously it can not adapt to it. The main sensing machinery of the cell lies at the contact between the cell and its FIGURE 1.4: Tensional homeostasis disruption [START_REF] Humphrey | Mechanotransduction and extracellular matrix homeostasis[END_REF] substrate and is mediated by so-called focal adhesions (FAs) linking the cell cytoskeleton and its actin meshwork to the substrate. A comprehensive review of focal adhesions can be found in [START_REF] Geiger | Environmental sensing through focal adhesions[END_REF] FAs are constituted by a myriad of proteins interacting with each other in order to integrate mechanical cues, such as ECM rigidity and external forces. Within this protein assembly, some act as mechanosensors as they undergo conformational changes in response to mechanical stimuli. Among them, the most studied ones are integrin, talin and p130Cas. Their combination forms a module, which mechanically links the actin cytoskeleton to the ECM (see Fig. 1.5). Integrins are transmembrane proteins, that can either be in an inactive or active state and must be activated in order to be able to bind to substratecoating proteins, such as fibronectin. The integrin is activated when "brushed" by the flow of actin. Once bound to the ECM, another mechanosensitive protein, talin, binds to the inner part of integrin. This assembly constitutes a so-called nascent adhesion or focal complex and is highly unstable. Above a load threshold, talin experiences force-dependent unfolding, unraveling a binding site for vinculin, which in turn promotes the clustering of integrins and the binding of actin filaments at its tail. In parallel, the p130Cas also experiences force-dependent stretching which will indirectly trigger a sequence of events transducing the mechanical signal into a biochemical one, such as the activation of RhoGTPase, which will induce cytoskeleton contractility and polymerization.

Force-dependent conformational changes of mechanosensing proteins, trigger the clustering of integrins as well as the production of RhoGTPase proteins, which in turn increase the contractile activity and polymerization of the cytoskeleton, yielding an increased mechanical load in the adhesion, thus ultimately reinforcing the focal adhesion and the production of cytoskeleton-regulating proteins by re-entering the loop (see Fig. 1.6). This loop is essential to the adhesion maturation process and indirectly to other cell functions using adhesion, such as migration, differentiation... It has been experimentally observed that cells develop more stable and mature adhesions on stiff substrates than on soft ones [START_REF] Discher | Tissue Cells Feel and Respond to the Stiffness of Their Substrate[END_REF] (see Fig. 1.7), and eventually fail to attach on too soft substrates. on a soft substrate, there will be a greater matrix deformation under the traction forces exerted by the cell. Thus, the loading rate of the FA is small and can therefore be insufficient to trigger the positive feedback loop which would result in the maturation of the adhesion, instead adhesions stay in a nascent state and eventually spontaneously vanish [START_REF] Pelham | Cell locomotion and focal adhesions are regulated by substrate flexibility[END_REF].

Cell migration

Depending on the cell phenotype different locomotion modes can be adopted.

The cell crawling motion is achieved by the combination of different phenomena and is classically represented by a four-step cycle (see Fig. 1.9), according to Abercrombie, 1980. First a protrusion extends at the leading edge of the cell. This protrusion, called lamellipodium, is the result of the polymerization of actin (G-Actin) into actin filament bundles (F-actin) in the vicinity of the cell membrane, pushing the membrane forward. As explained above, both the reaction force of the membrane and the action of molecular motors combine to generate a retrograde flow of actin from the lamellipodium towards the center of the cell. Next, the lamellipodium adheres to the substrate the cell is evolving on, first through small short-lasting nascent adhesions, which after a maturation process may evolve to form stable focal adhesions. After that, the cell contracts through the action of molecular motors (myosin II), which can bind to two actin filament and pull them together. Due to the contractile forces, the FAs at the rear of the cell detaches inducing an overall motion of the cell forward.

It has been experimentally observed that cells exhibit a maximal speed on substrates of intermediate stiffness [START_REF] Peyton | Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion[END_REF]. This can be explained by the previously described reinforcement of the FAs due to the bidirectional interaction between the cytoskeleton and substrate. Indeed, because the cell develops more stable and mature adhesion on stiff substrates, this tends to resist to the cell motion, while on very soft substrates, adhesions are too weak for the cell to be able to transmit traction forces to the substrate effectively, which explains the biphasic behaviour of the cell speed with respect to the substrate stiffness. 

Models of single cell migration on a compliant substrate

Modeling cell migration on a compliant substrate requires to model the cell, the substrate and the interaction between them. We roughly distinguish two categories, namely microscopic and macroscopic descriptions.

Microscopic description

The microscopic description or agent-based modeling focuses on modeling the different agents and their interactions at the molecular scale, based on the available informations on the agents. Starting from the molecular scale, two bottom-up approaches can be implemented in order to build large-scale theories, one is based on analytical statistical tools, such as the mean-field theory, the other is based on computational stochastic simulations, such as Monte-Carlo simulations.

Minimal agent-based models of sliding friction have been explored by [START_REF] Srinivasan | Binding site models of friction due to the formation and rupture of bonds: state-function formalism, force-velocity relations, response to slip velocity transients, and slip stability[END_REF][START_REF] Li | Model for how retrograde actin flow regulates adhesion traction stresses[END_REF][START_REF] Sabass | Modeling cytoskeletal flow over adhesion sites: competition between stochastic bond dynamics and intracellular relaxation[END_REF][START_REF] Sens | Rigidity sensing by stochastic sliding friction[END_REF] to investigate the interaction between a moving actin filament and stochastic bonds, based on the molecular-clutch model and inspired by the Lacker-Peskin model [START_REF] Lacker | A mathematical method for the unique determination of cross-bridge properties from steady-state mechanical and energetic experiments on macroscopic muscle[END_REF]. The actin filament is considered as rigid, integrin proteins (clutches) are modeled by hookean springs that undergo stochastic engagement and disengagement to the substrate. The mechanosensitivity is implemented, by assuming a force sensitive detachment rate obeying Bell's law [START_REF] Bell | Models for the specific adhesion of cells to cells[END_REF].

Using a computational stochastic model, [START_REF] Chan | Traction Dynamics of Filopodia on Compliant Substrates[END_REF] investigated the influence of the compliance of the substrate on the filament dynamics. In this model, the actin filament is pulled by molecular motors generating a retrograde flow. The filament slides at a constant velocity in the case where no clutch is engaged, else the velocity decreases as the force applied by the motor increases until the motor stall force is reached, thus following a Hill-like relationship. The forces are transmitted to the substrate through the engaged bonds. The substrate is assumed to be elastic and for sake of simplicity is modeled as a single spring of stiffness, i.e. only an overall displacement of the substrate is assumed.

The clutch model can predict a biphasic relationship between the applied traction force and the substrate stiffness (see Appendix D), thus the maximal force transmission is reached at an optimal substrate rigidity. It is explained by the fact that, above the optimal stiffness, the forces in the clutches increase very fast, yielding to detachment rates greater than attachment rates, therefore only a small amount of clutches are engaged and for a small amount of time. In this regime the actin velocity is high while the transmitted forces are low, these features characterize the frictional slippage regime. On the other hand, when the stiffness lies below the optimal stiffness, the forces in the clutches increase so slowly, that the bonds break before reaching high loads. From these observations Elosegui-Artola, Trepat, and Roca-Cusachs, 2018 deduced that the loading rate was the main regulator of the cell mechanosensitivity. Besides, the clutch model was also able to predict stick-slip motion at moderate loading rates when a critical force is reached the bonds fail in a catastrophic manner until no bond is left attached, next the clutch re-engage and the loop is repeated. While this basic model allows a better understanding of the mechanosensing process and replicates cell migration modes observed experimentally, the extrapolation of the results to the whole cell level is not straightforward. To overcome this limitation [START_REF] Bangasser | Shifting the optimal stiffness for cell migration[END_REF] implemented a minimal cell model constituted of three clutch modules. The results of this model were consistent with those of a single motor clutch as an optimal rigidity for traction forces transmission emerged from the simulations.

The results show a biphasic (i.e. bell-shaped) relationship between the cell traction force and the actin velocity: at sufficiently small actin velocity, the loading in the bonds increases slowly, which leads to a linear increase of the traction force with the actin velocity. For higher actin velocity, the loading rate in the bonds is high, therefore they break very rapidly and the traction force decreases with the actin velocity.

Using this microscopic approach, Sens, 2020 formulated a simple cell model consisting of two stochastic adhesion modules linked by a spring. This local non-linear dependence of the traction force on the actin velocity has been used to explain the well-established experimental observation that the global cell velocity depends on the fibronectin ligand density in a biphasic way [START_REF] Dimilla | Mathematical model for the effects of adhesion and mechanics on cell migration speed[END_REF][START_REF] Palecek | Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness[END_REF].

These models give a biphasic behavior dictated by a nonlinear behavior of adhesion molecules.

Macroscopic description

The macroscopic description is a phenomenological approach aiming to capture the relevant dynamical behaviors from effective continuum theories.

As described in the previous section, the adhesion is an essential process of cell crawling. Several macroscopic models of adhesion have been proposed in the literature. An approach investigated by [START_REF] Stéphanou | A computational model of cell migration coupling the growth of focal adhesions with oscillatory cell protrusions[END_REF] consists in modeling the mechanosensitive process of adhesion formation and maturation by introducing three different steps of adhesion, namely adhesion spot, focal complex and focal adhesion, each one being characterized by its lifetime and resistance to traction. While the mechanics of the cytoskeleton is modeled using the continuum twophase flow model [START_REF] Alt | Cytoplasm dynamics and cell motion: two-phase flow models[END_REF], the adhesion are modeled as discrete entities. Transport models of adhesions were also developed in order to take into account the adhesions maturation process due to integrins activation and aggregation, where integrins are transported in one of the four following states: free, actin-bound, substrate-bound and actin-substrate-bound [START_REF] Palecek | Kinetic model for integrin-mediated adhesion release during cell migration[END_REF][START_REF]Modellierung von Adhäsions-und Cytoskelett-Dynamik in Lamellipodien migratorischer Zellen[END_REF][START_REF] Kuusela | Continuum model of cell adhesion and migration[END_REF]. One of the approach is based on the aforementioned observation that agent-based models of sliding friction between an actin filament and stochastics bonds resulted in a biphasic relationship between the cell traction force and the cytoskeleton retrograde flow velocity. Similarly, starting from the general trend that stationary cells generate large traction forces while showing a slow actin flow and on the contrary motile cells generate small traction forces with a fast retrograde flow, [START_REF] Barnhart | Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes[END_REF] deduced that the frictional slippage is weaker at the rear of a motile cell than in stationary cells, and thus introduced a nonlinear actin flow-dependent friction coefficient to ensure a decreased cell-substrate coupling above a critical actin flow velocity. Nevertheless, the experimental observation [START_REF] Schwarz | United we stand-integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction[END_REF]) that, below a velocity threshold, the transmitted traction force evolves linearly with the actin velocity, has led to disregard this complexity and consider the simple viscous friction law T x = ξv, where T x represents the uniaxial traction force exerted by the cell on the substrate, v is the cytoskeleton retrograde flow velocity and ξ represents an effective viscous friction coefficient. Indeed this representation of adhesion has been extensively used in plenty of models [START_REF] Cham | Nonequilibrium physics: From complex fluids to biological systems III. Living systems[END_REF][START_REF] Rubinstein | Actin-Myosin Viscoelastic Flow in the Keratocyte Lamellipod[END_REF] and is also the one retained in the present model. Note, that by nature the force balance is bidirectional (action-reaction law) and thus encompass the focal adhesion-induced mechanoreciprocity. Models considering the cell as a effective solid medium are suited to describe static rather than motile conditions. Falling in this category, [START_REF] Deshpande | A biochemo-mechanical model for cell contractility[END_REF]Deshpande, McMeeking, and Evans, 2007 developed a two dimensional model with a constitutive law with an active and passive contributions.

The active stress is constructed using homogeneization techniques and is related to the dynamics of the contractile actomyosin stress fibers. Using this model the authors were able to understand more deeply the physics of adherent cells.

However, based on the observation that the cytoskeleton undergoes highly dynamic changes in the cell migration process, it has been characterized by a viscoelastic fluid-like behaviour at sufficiently large time-scales relevant for migration.

Two main active drivings have been implemented in these models to reproduce cell migration of rigid substrates; distributed contraction of the molecular motors and turnover of the actin meshwork. Under the simplifying consideration that the cytoplasm is made of the cytoskeleton and a solvent, [START_REF] Dembo | Cell motion, contractile networks, and the physics of interpenetrating reactive flow[END_REF] developed a model of interpenetrating two-phase flow model. The two phases are assumed to be Newtonian incompressible fluids. The contractility of the cytoskeleton phase is ensured by introducing an actin density-dependent negative pressure [START_REF] Alt | Cytoplasm dynamics and cell motion: two-phase flow models[END_REF][START_REF] Kuusela | Continuum model of cell adhesion and migration[END_REF]. Instead of considering the solvent, Rubinstein et al., 2009 described the main components of the cytoskeleton by advectionreaction-diffusion equations on their densities. It is based on the observation that the molecular motors are advected by the polymerization and contractility-driven retrograde flow of the actin filaments. In this representation the F-actin turnover is modeled by an advection-reaction equation. The polymerization occuring at the leading edge is taken into account with a Stefan-like boundary condition. Two concentrations of molecular motors are considered, those that cross-link two fibers of the cytoskeleton, therefore advected by the skeleton retrograde flow and those freely diffusing in the cytoplasm. Assuming moreover a first-order kinetic attachment and detachment rates, the dynamics of the population of attached motors is governed by an advection-reaction equation, wheras the dynamics of the population of detached motors is governed by a diffusion-reaction equation. As for the previously introduced two-phase flow model, the active stress due to the molecular motors contractility is isotropic, acting as a negative pressure. However unlike the previous model the magnitude of this active stress is assumed to be proportional to the density of attached motors. More complex active gel models that also account for the cytoskeleton fibers orientation [START_REF] Cham | Nonequilibrium physics: From complex fluids to biological systems III. Living systems[END_REF][START_REF] Tjhung | Spontaneous symmetry breaking in active droplets provides a generic route to motility[END_REF][START_REF] Giomi | Spontaneous division and motility in active nematic droplets[END_REF][START_REF] Camley | Crawling and turning in a minimal reaction-diffusion cell motility model: Coupling cell shape and biochemistry[END_REF] have been introduced to understand various instabilities that lead to cell motion and some complex cell motion dynamics.

From another perspective which does not explicitly solve force balance within the cell, Ziebert, Swaminathan, and Aranson, 2012 modeled the cytoskeleton by an averaged orientation field of the actin filament network in a phase-field framework, which is adapted from the advected-field approach [START_REF] Biben | Tumbling of vesicles under shear flow within an advected-field approach[END_REF][START_REF] Biben | Phase-field approach to three-dimensional vesicle dynamics[END_REF] developed to model vesicle dynamics where the membrane is advected via hydrodynamics forces. In the phase-field approach, an auxiliary field, known as the phase-field or phase function, is introduced and is used to discriminate between the interior and the exterior of the cell. In the context of cell crawling, the cell membrane is advected by the internal forces generated by the cytoskeleton.

Several methods have been explored to introduce the influence of the rheology of the substrate on existing models of cell motility. Within the phase-field framework, [START_REF] Ziebert | Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells[END_REF][START_REF] Ziebert | Modeling crawling cell movement on soft engineered substrates[END_REF] introduced reactiondiffusion adhesion dynamics involving a substrate displacement-dependent detachment to ensure the gripping (resp. slipping) below (resp. above) a substrate displacement critical value. While Ziebert and Aranson, 2013 used a single global spring to model the elastic substrate in the fashion of [START_REF] Chan | Traction Dynamics of Filopodia on Compliant Substrates[END_REF]Odde, 2008, L öber, Ziebert, and[START_REF] Ziebert | Modeling crawling cell movement on soft engineered substrates[END_REF] improved this previous model by locally resolving the viscoelastic incompressible substrate displacement. In these models a local traction force exerted by a cell generates a non-local displacement of the substrate under the cell and therefore induces a local reorganization of the cell cytoskeleton which ultimately impacts its motility dynamics in a non trivial way. [START_REF] Lelidis | Interaction of focal adhesions mediated by the substrate elasticity[END_REF] modeled the cell as a one-dimensional continuum active gel medium interacting with an elastic substrate through discrete focal adhesions. They considered a semi-infinite substrate and deduced the displacement of the substrate due to the cell traction force within a plane strain framework. Another approach is simply an extension of the previously mentioned linear viscous friction model to the case of a deformable substrate by considering the difference between the actin velocity v and the substrate velocity v s in the friction law, such that T = ξ(vv s ). [START_REF] Wong | Finite element analysis of the effects of focal adhesion mechanical properties and substrate stiffness on cell migration[END_REF] implemented this friction law with a space-dependent friction coefficient to model the interaction between a hyperelastic cell and a finite-size hyperelastic substrate. [START_REF] Hassan | Mechanical Model for Durotactic Cell Migration[END_REF] also used this law combined with a phasefield model for the cell, where a migration directional bias was introduced in order to promote cell migration in the direction of increasing substrate rigidity. More recently, Zhang et al., 2020 used a similar approach with an actin polymerization bias towards substrate tensile regions (resulting from external forces or cell traction forces) to promote cell migration in these directions. Using a Cellular Potts Model, in which the phenomenological description of a cell is achieved by minimizing a functional in a subset of lattice sites representing the cell, Oers et al., 2014 inspired by the implementation of chemosensitive functions in [START_REF] Savill | Modelling Morphogenesis: From Single Cells to Crawling Slugs[END_REF]troduced an ECM mechanossensitive function in the form of Hamiltonian to capture durotaxis. This model was then extended to the migration on viscoelastic substrate by [START_REF] Goychuk | Morphology and Motility of Cells on Soft Substrates[END_REF].

A simple approach to model cell migration on a compliant substrate

The mechanoreciprocity is the sum of two contributions a bare mechanical and a chemo-mechanical one. When evolving on a compliant substrate the pure mechanical contribution plays an important role. Indeed the cell exerts traction forces on the substrate inducing non-local deformations of the matrix, which will in turn result in the reorganization of the cytoskeleton. In order to take into account the bare mechanoreciprocity within crawling models on a compliant substrate, the stress within the cell and the substrate must be explicitly solved. In [START_REF] Ziebert | Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells[END_REF], the non-local deformation of the substrate is not taken into account. While the non-locality is addressed in L öber, [START_REF] Ziebert | Modeling crawling cell movement on soft engineered substrates[END_REF], the stress within the cell is not explicitly solved for. [START_REF] Lelidis | Interaction of focal adhesions mediated by the substrate elasticity[END_REF] operate at an imposed cell velocity and in the limit where the substrate is much stiffer than the cell. In their model, [START_REF] Zhang | A minimal mechanosensing model predicts keratocyte evolution on flexible substrates[END_REF] do not solve the force balance within the cell, and assume instead an a priori actin retrograde flow velocity and an actin polymerization bias towards substrate tensile regions (resulting from external forces or cell traction forces) to promote cell migration in these directions.

In the present work, we want to investigate what phenomena can be captured from a minimalistic cell migration model without introducing any a priori bias, in other words we want to extract the cell response to bare mechanical contribution of cell-ECM interaction, i.e. when considering the mechanical reciprocity from a pure mechanical standpoint, without integrating the mechanical effects resulting from FAs biochemical signaling.

In order to address to this issue, we generalize the minimalistic one dimensional mechanical model of [START_REF] Recho | Mechanics of motility initiation and motility arrest in crawling cells[END_REF], designed to model cell migration on a rigid substrate, to the case of the migration on a compliant substrate.

The cell is modeled as a thin layer (height h) of active gel slab of length L(t) = l + (t)l -(t), where l ± (t) denotes the cell ends at time t, and is confined to move on a one-dimensional straight track of width δ oriented along the x-direction.

The orthonormal frame of reference (e x , e y , e z ) is chosen such that the substrate is semi-infinite in the e z direction and material points are labeled by the spatial coordinate r = (x, y, z). The contact interface between the cell and the substrate at time t is defined by the two-dimensional domain

Ω C (t) = [l -(t), l + (t)] × [-δ/2, δ/2].
Considering that the cell is very thin compared to its length (h L), we assume that the cell only exerts forces tangentially to the substrate

T(r, t) = T x (x, t) e x + T y (x, t) e y , (1.1) 
where r ∈ Ω C (t). Since we shall project all equations in the x-direction, it will not be needed to specify T y . Because the track is assumed to be thin (δ L), T x,y are assumed to only depend on the x-coordinate.

Elastic incompressible

or Viscous incompressible substrate FIGURE 1.10: Scheme of the model of a cell crawling on a semiinfinite incompressible visco-elastic substrate. The thin adhesion track (in red) of width δ L allows a one dimensional motion of the cell along the x-axis. The cell (in green), extending from l -to l + exerts traction forces T x on the substrate, inducing a displacement u s x of the substrate at the surface.

We consider two concentrations of molecular motors, those that cross-link two fibers of the cytoskeleton (concentration c), therefore advected by the skeleton retrograde flow (velocity v) and those that are free to diffuse (coefficent D m ) in the cytoplasm (concentration m) [START_REF] Rubinstein | Actin-Myosin Viscoelastic Flow in the Keratocyte Lamellipod[END_REF]. There is an attachment (rate k a ) and detachment (rate k d ) dynamics between these two populations that lead to the following coupled system:

∂ t c + ∂ x (cv) = k a m -k d c ∂ t m -D m ∂ xx m = k d c -k a m. (1.2)
While we assume that the rate of detachment k d is fixed, the rate of attachment k a = k 0 a g(c) decreases with the concentration c because of steric hindrance. The function g(c) is therefore positive and decreasing to zero as c becomes large. Assuming that the system remains close to its chemical equilibrium because the rates are large compared to the transport and diffusion (k a , k d v/L, D/L 2 ), we have that [START_REF] Putelat | Mechanical stress as a regulator of cell motility[END_REF])

m ≈ k d k 0 a c g(c)
.

Plugging this approximation in (1.2) and assuming that k d /k 0 a is a small parameter while D = D m k d /k 0 a remains finite, the motor concentration follows the non-linear drift-diffusion equation

∂ t c + ∂ x (cv -D∂ x ( f (c/c 0 )c)) = 0, (1.3)
where f (c/c 0 ) = 1/g(c) and the definition of c 0 is given below.

Because the cell membrane is not permeable to motors, zero-flux boundary conditions are associated with (1.3) (1.4) such that the average concentration of motors is a constant set by the initial concentration:

∂ x c(l ± (t), t) = 0,
c 0 = 1 L l + l - c(x, t)dx.
(1.5)

Following [START_REF] Kruse | Contractility and retrograde flow in lamellipodium motion[END_REF], the cell cytoskeleton is assumed to be a one-dimensional layer of active gel. Moreover, the actin meshwork is assumed to be infinitely compressible. Therefore the constitutive law describing the cell active behaviour reads

σ = η∂ x v + χc, (1.6)
where σ(x, t) is the axial stress within the cytoskeleton, η represents its viscosity and χ the contractility per molecular motor.

In order to understand the influence of the substrate rigidity on cell motility from a purely mechanical standpoint, we need a relation linking the flow of the cell cytoskeleton to the substrate deformation. Using the same approach as [START_REF] Wong | Finite element analysis of the effects of focal adhesion mechanical properties and substrate stiffness on cell migration[END_REF][START_REF] Hassan | Mechanical Model for Durotactic Cell Migration[END_REF][START_REF] Zhang | A minimal mechanosensing model predicts keratocyte evolution on flexible substrates[END_REF], we model the adhesion with a viscous friction law involving the relative velocity between the cytoskeleton and the substrate:

T x = ξ(v -v s x ), (1.7) 
where v s x corresponds to the projection of the substrate velocity on the x-axis. Additionally assuming a thin film approximation h L, since inertia can be neglected, the force balance within the cytoskeleton is given by [START_REF] Roux | Prediction of traction forces of motile cells[END_REF], (1.7) becomes .8) Such relation takes into account the cell's internal activity via the actin retrograde flow, while the influence of the compliance of the substrate is encompassed in the substrate velocity. Taking v s x = 0 in (1.8), we recover the friction law in the case of a rigid substrate.

h∂ x σ = ξ(v -v s x ). ( 1 
For simplification, we will only consider a cell crawling motion at constant length in this work, thus (1.8) is associated with stress boundary conditions at the cell moving edges such that

σ| l -= σ| l + = σ b , (1.9)
where σ b is an unknown residual stress representing the constraint fixing the cell length and imposing that the two cell fronts move with the same velocity V(t) = l-= l+ . This boundary condition typically emerges as a limit when an effective spring that connects the two fronts has a stiffness tending to infinity while L(t) tends to the rest length of the spring. The unknown residual stress σ b results from this double limit. See [START_REF] Putelat | Mechanical stress as a regulator of cell motility[END_REF] for more details.

Finally, the protrusion and retraction of the moving fronts are given by the Stefan boundary conditions l± (1.10) where v + and v -are the given polymerization and depolymerization velocities at the leading edge (l + ) and trailing edge (l -). See Recho and Truskinovsky, 2013 for details. More realistic albeit more complex models of actin protrusion and retraction of the cell fronts can be found in [START_REF] Ambrosi | Mechanics and polarity in cell motility[END_REF][START_REF] Giverso | Mechanical perspective on chemotaxis[END_REF] In this work, we investigate the effect of bare mechanoreciprocity through three prototypical situations where the effective friction law is considered in its simplest linear form but the substrate is allowed to deform. In chap. 2 we analyze the case of a cell moving on a linear elastic substrate, while in chap. 3 we consider a cell moving on a viscous substrate. Finally, in chap. 4, we study the cell motion in the limit of a vanishing friction coefficient. While in chap. 2, we consider a polymerization/depolymerization driven retrograde flow and assume that the motors concentration is homogeneous, in chap. 3 and chap. 4, v ± are neglected and the inhomogeneity of the motors concentration is the driving force of the retrograde flow.

= v| l -+ v -= v| l + + v + ,
Chapter 2

The influence of substrate elasticity on cell polymerization-driven crawling

Introduction

In the present chapter (submitted for publication to Int. J. Nonlinear Mech., July 2021), by extending one of the simplest model of the cytoskeleton actin turnover driven cell crawling [START_REF] Kruse | Contractility and retrograde flow in lamellipodium motion[END_REF][START_REF] Cham | Nonequilibrium physics: From complex fluids to biological systems III. Living systems[END_REF] to the case of a deformable elastic substrate, we show that taking into account the substrate displacement is sufficient to explain a biphasic relation relating the cell velocity to the substrate stiffness [START_REF] Stroka | Neutrophils display biphasic relationship between migration and substrate stiffness[END_REF][START_REF] Peyton | Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion[END_REF]. Therefore it is not necessary to invoke a non-linear dependence of the traction force on the actin velocity as in [START_REF] Barnhart | Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes[END_REF] who introduced a non-linear actin flow-dependent friction coefficient to ensure a decreased cell-substrate coupling above a critical actin flow velocity or indeed a direct dependence of the active force production machinery on the substrate stiffness [START_REF] Dokukina | A Model of Fibroblast Motility on Substrates with Different Rigidities[END_REF][START_REF] Sarvestani | A model for cell motility on soft bio-adhesive substrates[END_REF] to reach this conclusion.

In order to understand the influence of the substrate rigidity on cell motility from a purely mechanical standpoint, we need a relation linking the flow of the cell cytoskeleton to the substrate deformation. For simplicity we assume a semi-infinite elastic substrate, implying that the thickness of the extra-cellular matrix (ECM) substrate is large compared to the cell size as opposed to the situation studied in [START_REF] Nicolas | Elastic deformations of grafted layers with surface stress[END_REF] where the ECM and adhesion plane form a thin film. The two opposed limits (thick or thin ECM) have been further studied in [START_REF] Nicolas | Limitation of cell adhesion by the elasticity of the extracellular matrix[END_REF] in the context of the focal adhesion size regulation. In this semi-infinite case, the nonlocal response of the compliant substrate to a local traction force within the small deformation framework, is given by the Cerruti-Boussinesq solution in the three dimensional case. However if the geometry of the contact is invariant in one direction, a plane strain assumption can apply, leading to a Flamant problem [START_REF] Johnson | Contact mechanics[END_REF].

Both strategies have been employed to characterize the contact between the cell and the substrate. The plane strain assumption has been made by Qian, Wang, and Gao, Chapter 2. The influence of substrate elasticity on cell polymerization-driven crawling 2008 in order to simulate the detachment process of a focal adhesion and estimate its lifetime, and by [START_REF] Lelidis | Interaction of focal adhesions mediated by the substrate elasticity[END_REF] to investigate the effect of substrate rigidity on cell motility with uniformly distributed discrete focal adhesions. The plane strain assumption represents a valid only if the substrate deformation orthogonal to the principal loading direction is negligible. Besides, the substrate displacement found within this framework is not bounded at infinity, thus an arbitrary length needs to be introduced, above which the displacement vanishes. These issues do not arise when considering the three dimensional problem. Traction Force Microscopy (TFM), the method to evaluate the cell traction forces from a measured substrate displacement field, requires the resolution of an inverse problem based on the Boussinesq-Cerruti solution [START_REF] Dembo | Imaging the traction stresses exerted by locomoting cells with the elastic substratum method[END_REF][START_REF] Ambrosi | Cellular traction as an inverse problem[END_REF][START_REF] Michel | Mathematical framework for traction force microscopy[END_REF][START_REF] Sabass | High resolution traction force microscopy based on experimental and computational advances[END_REF].

In this chapter we propose an approach to obtain a simple relationship between the actin velocity and the substrate displacement under the simplifying hypotheses of a one-dimensional cell crawling on a semi-infinite incompressible elastic substrate.

This model corresponds to the situation where the cell is constrained to move on a thin adhesion track.

The chapter is organized as follows. In sec. 2.2, we build the mathematical model corresponding to our geometric assumptions by constructing the kernel governing the response of the semi-infinite elastic substrate to the cell traction force field. We operate under the hypotheses that the friction with the substrate is linear, and that the substrate is a linear elastic medium. Next, in sec. 2.3, we couple this model of the contact with one of the simplest models of actin-based cell motility to obtain a coupled system relating the actin flow field, global cell velocity and substrate displacement. We then study traveling waves (TW) solutions of this problem in sec. 2.4

and give explicit solutions for some special cases of the actin turnover dynamics as well as asymptotic solutions when the substrate is infinitely hard (cell tractions negligible compared to the substrate stiffness) or soft (cell tractions large compared to the substrate stiffness). Then in sec. 2.5, we obtain numerically a biphasic behavior of the steady state velocity as a function of either the substrate rigidity or the cell-substrate friction coefficient. In sec. 2.6, we propose an experimental setup to validate this theory, using T24 bladder cancer cells migrating on substrates of different rigidities (5 kPa, 8 kPa and 28 kPa), confined along thin fibronectin-coated tracks. The actin cytoskeleton flow velocity and the substrate displacement are measured and projected along the cell major axis. Although we were not able to obtain sufficiently motile cells to interrogate our theoretical model in detail, we could estimate the friction coefficient for static cells on substrates of different rigidities. The experimental setup does contain some limitations to address in the future, including the lack of accuracy of the actin acquisition and the need to build thinner cell tracks to improve the applicability of the 1D hypothesis but the values obtained for the friction coefficient are already consistent with the literature describing cell crawling on a rigid substrate.

Model of the contact between the cell and the substrate

We consider a cell moving on a semi-infinite elastic substrate and restrict our analysis to small deformation of the substrate, neglecting both physical and geometrical non-linearities of the elastic problem. In particular, we shall not differentiate the Eulerian and Lagrangian frames in our approach. Taking advantage of the fact that the track is thin compared to the cell length, we suppose that the traction force in (1.1) only depends on the coordinate along the track. Defining the Boussinesq-Green kernel for a semi-infinite incompressible elastic medium of Young modulus E s [START_REF] Landau | Course of Theoretical Physics[END_REF])

G(x, y, z) = 3 4(x 2 + y 2 + z 2 ) 3/2 πE s    2x 2 + y 2 + z 2 xy xz xy x 2 + 2y 2 + z 2 yz xz yz x 2 + y 2 + 2z 2    ,
we can express the displacement of the substrate u due to cell traction forces

u(r, t) = Ω C G(r -r )T(r , t)dr , (2.1)
From now on, we consider the simple case of a cell confined to move on a onedimensional straight track of width δ oriented along the x-direction (See Fig. 1.10).

The cell length L(t) is defined by

L(t) = l + (t) -l -(t), where l ± (t) denotes the cell ends, therefore Ω C (t) = [l -(t), l + (t)] × [-δ/2, δ/2]. The cell geometric center is thus O(t) = (l + (t) + l -(t))/2.
Plugging (1.1) into (2.1) we obtain the following integral expression of the displacement in the substrate:

u(x, y, z, t) = l + (t) l -(t) δ/2 -δ/2 3 4((x -x ) 2 + (y -y ) 2 + z 2 ) 3/2 πE s (2.2)    (x -x )(T y (x , t)(y -y )) + T x (x , t) 2(x -x ) 2 + (y -y ) 2 + z 2 (y -y )(T x (x , t)(x -x )) + T y (x , t) (x -x ) 2 + 2(y -y ) 2 + z 2 (T x (x , t)(x -x ) + T y (x , t)(y -y ))z    dx dy .
(2.3)

Averaging the displacement over the y-direction leads to the following simplification

ū(x, z, t) = l + (t) l -(t) δ/2 -δ/2 δ/2 -δ/2 3 4δ((x -x ) 2 + (y -y ) 2 + z 2 ) 3/2 πE s (2.4)    T x (x , t) 2(x -x ) 2 + (y -y ) 2 + z 2 T y (x , t) (x -x ) 2 + 2(y -y ) 2 + z 2 T x (x , t)(x -x )z    dx dy dy. (2.5)
Chapter 2. The influence of substrate elasticity on cell polymerization-driven crawling Next, by taking the value of the displacement at z = 0, we find

u s (x, t) = l + (t) l -(t) δ/2 -δ/2 δ/2 -δ/2 3 4δ((x -x ) 2 + (y -y ) 2 ) 3/2 πE s (2.6)    T x (x , t) 2(x -x ) 2 + (y -y ) 2 T y (x , t) (x -x ) 2 + 2(y -y ) 2 0    dx dy dy, (2.7)
which shows that the surface remains flat during the motion. Projecting u s (x, t) in the x-direction and performing the integrals in y, we finally obtain

u s x (x, t) = l + (t) l -(t) φ x -x δ T x (x , t)dx , (2.8)
where

φ(x) = 3log 1+ √ 1+x 2 |x| 2πE s = 3arcsch (|x|) 2πE s .
(2.9)

and arcsch denotes the inverse hyperbolic cosecant.

In a real experimental context, the substrate is not semi-infinite but has a finite thickness. To justify the use of such approximation we set a homogeneous loading where T x (x, t) = T 0 and x ∈ [-L/2, L/2] and compare the ensuing averaging displacement at the surface and in the bulk. Thus with

ūx (z) = 3T 0 4πδLE s L/2 -L/2 L/2 -L/2 δ/2 -δ/2 δ/2 -δ/2 2(x -x ) 2 + (y -y ) 2 + z 2 ((x -x ) 2 + (y -y ) 2 + z 2 ) 3/2 dx dxdy dy,
we wish to find z such that ūx (z) ūx (0). Assuming that both L δ and |z| δ, we find that at leading order,

ūx (0) = 3δT 0 πE s tanh 2L δ and (z being negative) ūx (z) = - 3LδT 0 4πE s z .
In order to have ūx (z)/ ūx (0) 1, we typically need to impose that |z| L.

Note that, in (2.8), when x 1, φ simplifies to the so-called plane strain kernel φ 0 (x) = -3 log(|x|/2)/(2πE s ) [START_REF] Timoshenko | Theory of elasticity[END_REF] while it leads to the plane stress kernel φ ∞ (x) = 3/(2|x|πE s ) in the opposite limit where x 1 [START_REF] Johnson | Contact mechanics[END_REF]. See Fig. 2.1. Although φ 0 is singular at x = 0, its integral exists in the Cauchy principal value sense. In contrast, φ ∞ is singular and not integrable at x = 0, which would lead to an infinite displacement at x = 0. However, while φ ∞ tends to zero at infinity, φ 0 is unbounded at x = ∞, which led [START_REF] Timoshenko | Theory of elasticity[END_REF] to introduce an arbitrary cut-off length x ∞ at which the displacement vanishes (u s x (x ∞ ) = 0) to regularize such situation. Remarkably, the kernel φ we obtain from the Boussinesq-Cerruti solution within the thin track framework, encompasses the advantages of both φ 0 and φ ∞ , namely the integrability at x = 0 and the vanishing substrate displacement at x = ∞, because φ behaves like φ 0 near the singularity x = 0 and like φ ∞ far from the origin.

ϕ ϕ 0 ϕ ∞ -2 -1 0 1 2 0 1 2 x FIGURE 2.1:
The non-local interaction kernel φ and the kernels φ 0 and φ ∞ which represent the two limiting behaviors of plane strain and plane stress, respectively. Parameter E s = 1.

In order to eliminate the time-dependence of the integral boundaries, we re-map the problem using the change of variables x = 2(x -O(t))/L(t) and t = t, which leads to the partial derivative relations:

∂ x (.) = 2 L ∂ x (.) and ∂ t (.) def = D(.) D t = ∂¯t(.) - 2 L Ȯ + L 2 x ∂ x (.),
where the superimposed dot denotes the time derivatives. Introducing the cell aspect ratio (t) = 2δ/L(t) yields

u s x ( x, t) = L(t) 2 1 -1 φ x -x (t) T x ( x , t)d x , (2.10) and injecting (1.7) into (2.10) knowing that v s = ∂ t u s x (x, t) gives u s x (x, t) + ξ L(t) 2 1 -1 φ x -x (t) Du s x (x , t) Dt dx = ξ L(t) 2 1 -1 φ x -x (t) v(x , t)dx , (2.11)
where for simplicity of the notations and from now on, we shall use the same symbol to denote the re-scaled variables, i.e. x := x and t := t.

Assuming the actin retrograde flow velocity v is known, (2.11) is a singular integro-differential equation. In the case of an infinite domain of integration, explicitly solving this type of equation is generally performed by switching to the Fourier domain. In our case where the domain of integration is a finite interval, the functional basis that diagonalizes the symmetric operator φ is not explicit as in the case of the plane strain kernel φ 0 [START_REF] Boyd | Chebyshev and Fourier spectral methods[END_REF][START_REF] Canuto | Spectral methods in fluid dynamics[END_REF], making the expression of u s x as a function of v non-transparent. Note that while the integration of x is performed over the finite segment [-1, 1], x takes value on the whole real line such that crawling the boundary conditions associated to the convective time derivative D/Dt are the canonical ones (u s

x and all its derivatives tend to zero).

Coupling with a simple model of protrusion based motility

Assuming a uniform distribution of the molecular motors c 0 , from (1.6) we can write the simplified cell constitutive behavior as

σ = 2η L ∂ x v + χc 0 , (2.12)
where, x ∈ [-1, 1] is the rescaled variable introduced above. Knowing that v s x = Du s x (x, t)/Dt, the spatial rescaled expression of the force balance (1.8) 

reads 2h L ∂ x σ = ξ v - Du s x (x, t) Dt .
(2.13)

Rescaling (1.9) and combining it with (1.6), the boundary condition on stress imposes that

∂ x v| -1 = ∂ x v| 1 ,
while the rescaled Stefan boundary conditions from (1.10)

l± = v| ±1 + v ± .
(2.14)

We introduce the quantities ∆V = v +v -representing the mismatch between polymerization and depolymerization and V m = (v + + v -)/2 representing the average turnover. A first mechanism at the origin of the motility in the model described above is the accretion of actin at the leading edge exactly compensated by the removal of actin at the trailing edge. This leads to a propulsion at velocity V m which is independent of both the substrate and the cell constitutive behavior. Added to this mechanism, the mismatch between polymerization and depolymerization with a preserved length L of the cell implies a certain flow in the cell, exerting traction forces on the substrate proportional to ∆V. This second contribution depends on the substrate stiffness as well as on the friction coefficient with the substrate in a non-trivial manner that we seek to characterize.

We non-dimensionalize the time by η/(χc 0 ), the distance by L/2 and the stress by χc 0 . Combining (2.11) with (2.12) and (2.13), and denoting u = u s

x and ṽ = vv 0 , where

v 0 (x) = -∆V sinh(α -1 x) 2 sinh(α -1 ) (2.15)
is a Dirichlet lift function that accounts for the asymmetry in the protrusion/retraction kinetics at the boundaries, we obtain the non-dimensional problem

   ṽ(x, t) = 1 α 1 -1 G x-x α , α Du(x ,t) Dt dx u(x, t) = γ 1 -1 Φ x-x ∂ x x [v(x , t) + v 0 (x )]dx . (2.16)
In (2.16), the three non-dimensional parameters

= 2δ L , α = 4ηh ξ L 2 and γ = 3hχc 0 πLE s .
respectively represent the track aspect ratio, the ratio of the hydrodynamic length and the cell length and the substrate compliance compared to the cell contractile stress. For simplicity, we keep the same notations for the non-dimensional (de)polymerization velocities v ± and their dimensional counterparts. The non-dimensional symmetric kernels representing the non-local behavior of the active viscous cytoskeleton and the elastic substrate respectively read:

G (x, α) = cosh(α -1 + x) 2 sinh(α -1 ) -H(x) sinh(x) and Φ(x) = arcsch (|x|) ,
where H is the Heaviside function. Thus, G corresponds to the resolvent of the elliptic problem [START_REF] Recho | Mechanics of motility initiation and motility arrest in crawling cells[END_REF] -α 2 ∂ xx ṽ + ṽ = Du Dt with periodic boundary conditions on ṽ:

∂ x ṽ| -1 = ∂ x ṽ| 1 and ṽ| -1 = ṽ| 1 .
(2.17) Importantly, while ṽ(x, t) is only defined for values of x ∈ [-1, 1] (i.e. within the cell), u(x, t) is defined on the whole real line (-∞ < x < ∞). Note also that as L = 0 and u is rescaled by L/2, the convective derivative in (2.16) takes the simple form

Du/Dt = ∂ t u -V∂ x u
.

After ṽ and u are obtained from (2.16), the dynamics of the moving fronts can be found from (2.14) which leads to

V(t) = V m + ṽ| -1 + ṽ| 1 2 (2.18)
We provide in and these values should therefore be taken with care. The interest of the type of reduced model that we present rather lie in capturing some physical effects with a minimal baggage than describing cell crawling at a quantitative level.

= 2η(v + -v -)/(χc 0 L) 1 turnover average V m = η(v + + v -)/(χc 0 L) 1

Traveling wave solutions

We now seek for traveling wave solutions of (2.16)-(2.18) where V is a constant and ∂ t u = 0, implying that Du/Dt = -V∂ x u. In such a case, (2.16) can be combined into the following single integral equation:

α 2 f (x) -γV 1 -1 f (x ) x -x dx - 1 -1 R(x, x ) f (x )dx = - ∆V 2 x + V -V m (2.19) where f (x) = ∂ xx ( ṽ(x) + v 0 (x)) = ( ṽ(x) + v 0 (x) + V∂ x u)/α 2 represents the sub- strate traction force and R(x, x ) = γV (x -x )/ 2 1 + (x -x ) 2 / 2 + 1 + (x -x ) 2 / 2 =R 1 (x,x ) + H(x -x )(x -x ) + x + 1 2 x =R 2 (x,x )
is a kernel that does not contain any singularity. The R 1 part is reminiscent of the elastic interaction with the substrate (regular part) and the R 2 contribution represents a second order antiderivative with appropriate boundary conditions accounted for by the righthandside of (2.19). The unknown crawling velocity V in (2.19) is fixed by the global force balance constraint:

1 -1 f (x)dx = 0. (2.20)
Solutions for specific choices of the turnover dynamics A simple solution of (2.19) can be found when v + = -v -when the two fronts are symmetrically polarized in opposite directions leading to V m = 0. In this case, we can set V = 0 and obtain

f (x) = f 0 (x) = -∆V sinh(α -1 x)/(2α 2 sinh(α -1
)). This corresponds to ṽ = 0 (i.e. v(x) = v 0 (x)) and

u(x) = γu 0 (x) = γ 1 -1 Φ x -x ∂ x x v 0 (x )dx .
We show in Fig. 2.2 the typical trend of such substrate displacement that is induced by a traction force distribution with an even symmetry with respect to the layer center. The substrate displacement reaches its (anti-symmetric) maxima close to the cell boundaries and sharply decays to zero outside of the cell as no traction forces are imposed in this region. Another simple case is when v + = v -, leading to f = 0. Thus ṽ = 0, u = 0 and V = V m . This corresponds to the trivial situation where the actin protrusion and retraction are happening at the same rate at each cell edge, corresponding to a pure treadmilling movement without any internal flow of the filamentous actin. As a result, there are no traction forces and no substrate deformation. This specific situation is rather unrealistic for most cell types as traction forces are known to be applied on the substrate during motion.

α=1 α=0.5 α=0.25 -2 -1 0 1 2 -2 0 2 x u/γ
More generally, we are interested in the dependence of V on γ for an arbitrary choice of V m and ∆V. For this, we start by analytically analyzing the asymptotic behavior of V when γ 1.

Solutions in the limit of underformable substrate When γ = 0 (i.e. the substrate is undeformable), the solution of (2.19) is again f (x) = f 0 (x) corresponding to ṽ = 0, u = 0 and V = V m . This is the classical case investigated by J ülicher et al., 2007 in the case of an infinitely stiff substrate and generalized by Recho and Truskinovsky, 2013 Chapter 2. The influence of substrate elasticity on cell polymerization-driven crawling in the presence of external loading. We can further expand the solution of (2.16)-

(2.18) at first order when γ 1 ṽ(x) γv 1 (x) and V V m + γV 1 .

Note that the domain of accuracy of such approximation outside of the limit γ 1 should however be investigated numerically. The validity of such approximation clearly also relies on the fact that V 1 remains finite, such that γV 1 is indeed small compared to V m .

From (2.16), we obtain,

v 1 (x) = - V m α 1 -1 G x -x α , α ∂ x u 0 (x )dx
and thus,

V 1 = - V m α 1 -1 G 1 -x α , α ∂ x u 0 (x )dx ,
which after some standard manipulations takes the form:

V 1 V m = - ∆Vcsch 2 (1/α) 4α 4 2 0 arcsch x α sinh x α + (x -2) cosh x α dx.
(2.21) We illustrate the behavior of V 1 as a function of the parameter α in Fig. 2.3 (a).
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As V 1 is always positive for a positive value of ∆V, the influence of a small substrate deformability is to increase the cell velocity compared to its value V m on an undeformable substrate since the flow induced by ∆V in this case promotes motion in the positive direction. A more subtle effect is that the influence of the friction coefficient on the additional speed due to the substrate small deformability is not monotonic.

In some parameter ranges, a more adhesive substrate can lead to an increased velocity since traction forces stemming from the actin flow are more effective for the propulsion. But the opposite effect is also true in other cases since an increase of adhesion can also effectively increase the friction force opposing to the motion. While this effect is lost in the limit of an undeformable substrate, we demonstrate that it can readily be observed for a slightly deformable substrate (γ 1). We further illustrate this property by analytically computing the dependence of V 1 in (2.21) when α is either small or large to find

V 1 V m ∼ α→0 ∆V 4α √ 2 + 4 and V 1 V m ∼ α→∞ ∆V 2 log √ 2 +4+2 + - √ 2 + 4 4α 2 . (2.22)
These asymptotic expressions, both decreasing with α, are plotted on Fig. 2.3 (b).

The cross-over regime between them corresponds to a situation where the velocity increases with α, in a parameter range when the corresponding hydrodynamic length is comparable to the cell length (α ∼ 1). Note that when V 1 blows up close to α = 0, the first order expansion breaks down as the product γV 1 is not necessarily small any more. Thus, this behavior does not correspond to a physically meaningful regime. This type of non-linear dependence between the cell velocity and the substrate adhesiveness was also found in a continuum model representing an actin gel with turnover and linear friction with the substrate by Callan-Jones and Voituriez, 2013. However, the origin of the effect is completely different as the authors consider an infinitely stiff substrate with an internal active stress that depends on the actin density in a non-linear fashion.

Solutions in the limit of highly deformable substrate

We now consider the opposite limit where γ 1 and the substrate is highly deformable. In this case, we seek a solution of (2.19) where f 1 while f = γ f remains finite. Thus, (2.19) reduces to

-V 1 -1 f (x ) x -x dx + 1 -1 R 1 (x, x ) f (x )dx = - ∆V 2 x + V -V m (2.23)
Observe first that this implies that results will be independent of α in this limit.

Indeed, any finite value of the friction coefficient has the same role in the transmission of traction forces because the substrate is already highly deformable. This integral equation with a singular Cauchy kernel is numerically solved following the approach of [START_REF] Karpenko | Approximate solution of a singular integral equation by means of jacobi polynomials[END_REF]. The asymptotic value of V is displayed on Fig. 2.4 as a function of the track aspect ratio . We also show in inset of Fig. 2.4 the spatial dependence of the traction force and the substrate displacement in this limit for several values of . As expected from the combination of the two limiting relations

∂ xx ( ṽ + v 0 ) 0 and -α 2 ∂ xx ṽ + ṽ = -V∂ x u (see (2.16
)) with associated boundary conditions (2.17), we numerically recover that the substrate displacement on [-1, 1] assumes the quadratic form u(x) = ∆V/(4V)x 2 + (V m /V -1)x + Cst where Cst is a constant that remains to be set. For large track aspect ratios (which also correspond to a plane strain situation), (2.23) can be further simplified to

-V 1 -1 f (x ) x -x dx = - ∆V 2 x + V -V m , (2.24) 
which solution can be expressed as (see [START_REF] Karpenko | Approximate solution of a singular integral equation by means of jacobi polynomials[END_REF] f (x) = f0 P

(1/2,-1/2) 0 (x) + f1 P (1/2,-1/2) 1 (x) 1 -x 1 + x .
In the above expression, P

(1/2,-1/2) 0,1 are the first two Jacobi polynomials (of order zero and order one) with parameters 1/2 and -1/2 and their coefficients are given by f0 = V -V m -∆V/4 and f1 = -∆V 2 .

Given the integral condition (2.20) f0 has to vanish, leading to the asymptotic velocity when both γ and are large V = V m + ∆V/4.

Having clarified the two limits γ 1 and γ 1, which are associated to two different values of the crawling velocity and traction forces profiles, we turn to quantifying the dependence of the crawling on the substrate softness γ and the slip coefficient with the substrate α.

Biphasic relation of the cell velocity

Using again the approach developed in Karpenko, 1966, we compute numerically the solution of (2.19) for the realistic parameters reported in Table 2.1. The unknown velocity in (2.19) is found by dichotomy starting from the value V = V m . We show on Fig. 2.5 and Fig. 2.6 the resulting dependence of the cell velocity driven by the internal flow as a function of the substrate softness and the slippage coefficient with the substrate. On the left panels of these figures, we also display the typical traction force distributions exerted on the substrate and the displacement field at the contact surface as a function of the spatial coordinate. The central symmetry of these distributions is broken, which leads to a non zero flow-driven crawling velocity.

The traction forces self-adjust with the substrate displacement and lead to biphasic behaviors of the crawling velocity as a function of both the substrate rigidity and adhesion, as experimentally observed in [START_REF] Palecek | Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness[END_REF] and [START_REF] Peyton | Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion[END_REF]. The crawling velocity cannot be directly related to the magnitude of the traction force or the mechanical work performed on the substrate as the odd component of f does not contribute to motility. However, we do observe that the V(γ) curve is associated with a biphasic behavior of the work of the traction forces

W = 1 -1 f (x)u(x)dx while their magnitude I = 1 -1 | f (x)
|dx keeps decreasing as γ increases. This is consistent with Fig. 2.5 where we observe that the magnitude of traction forces decreases while the one of the substrate displacement increases when γ varies between 0.01 and 0.02, which corresponds to the biphasic region for V. We quantity this effect on Fig. 2.7, where we show the variation of I and W as a function of γ. A plausible explanation of the present biphasic regime of the velocity in γ is therefore that while the traction forces decrease with the substrate stiffness, their work is maximal at a certain value of γ leading to an optimal propulsion at least at a local level close to this value. But this explanation does not hold for the global biphasic behavior in α shown in on the substrate keep decreasing as α increases. In this case, the importance of the substrate stiffness is to regularize the behavior of the velocity when α is small. Indeed, in the limit where the substrate is very stiff, the velocity expansion blows up when α 1 as we show in Fig. 2.3, indicating that the expansion is no longer valid in this regime. A finite γ is sufficient to restore a finite value of the speed when α → 0 (see Fig. 2.6) and regularizes the problem. Physically, α 1 corresponds to a large friction coefficient where outside of sharp boundary layers, v = v s such that the cytoskeleton velocity is transmitted to the substrate. It is therefore expected that the substrate deformability is playing an important role in fixing the velocity in this regime. The other limit where α 1 corresponds to a vanishing friction coefficient between the cell and the substrate and the two problems therefore uncouple. We can thus expect that V = V m in this regime as the substrate deformation stops contributing to the crawling motion. In between these two regimes, Fig. 2.6 shows that there exists a friction coefficient which maximizes the crawling velocity as traction forces are transmitted to the substrate contributing to the propulsion while the coupling with the substrate is minimally braking the motion.

Contrary to the biphasic regime with respect to the substrate stiffness, the biphasic regime with respect to the substrate friction coefficient is not due to the precise constitutive behavior of the substrate. To demonstrate this, we consider in Appendix A an exponential kernel replacing Φ(x) by Φ exp (x) ∼ exp(-|x|). Such nonsingular kernel mimics the non-local feedback of the substrate on the cell motion but is of a shorter range compared to Φ(x) as it implies that the characteristic lengthscale of the displacement decay in response to a point force is ∼ while it is ∼ 1 for the elastic kernel. In this case, while we recover a generic biphasic regime for the V(α)

curve, the V(γ) curve is monotonically increasing.

Experimental platform

We then aimed at constructing an in-house experimental platform to investigate in details the influence of the substrate rigidity on the cell motion and check the range of validity of our simple one-dimensional theoretical model. To do so, it is necessary to produce a substrate with a suitable pattern and appropriate stiffness. To answer this request, patterning methods and cell-compatible hydrogels have been developed that are able to create protein micropatterns on substrates with varied stiffness [START_REF] Grevesse | Preparation of hydroxy-PAAm hydrogels for decoupling the effects of mechanotransduction cues[END_REF][START_REF] Grevesse | A simple route to functionalize polyacrylamide hydrogels for the independent tuning of mechanotransduction cues[END_REF]. Hydroxy-PAAm(polyacrylamide) are good candidates and can be functionnalized with fibronectin. After cell seeding on such hydrogels, it is possible to acquire microscopic images of the cells and track fluorescent beads embedded within the substrate in order to study the relationship between cell migration and substrate deformation.

Added to this, we used T24 epithelial bladder cancer cells which have been transfected with actin-GFP [START_REF] Peschetola | Time-dependent traction force microscopy for cancer cells as a measure of invasiveness[END_REF], so that the actin velocity can be measured. We can therefore image at the same time the substrate beads and the actin meshwork as shown in Fig. 2.8 to estimate the substrate displacement and the actin velocity. The necessary steps to follow are detailed in B. In order validate our 1Dmodel, we project the actin velocity and the substrate displacement on the major axis of the cell, where the origin of the axis corresponds to the cell center (see Fig. 2.9).

For a reason that is not yet clear to us, our cells were poorly motile and we therefore restricted our analysis to an acquisition sequence of 15 time frames with a 5 s time lag between them where the cell remains almost static. In this situation, we measured an incremental displacement of the substrate of the order of the measurement uncertainties, corresponding to the resolution of the measurement where ∂ t u s x v. Therefore (2.11) becomes a simple integral equation relating u s x and v:

u s x (x) = ξ L 2 1 -1 φ x -x v(x )dx , (2.25)
Due to the resolution of the measurements, a linear approximation of the actin retrograde flow velocity is appropriate, as pushing the approximation to higher order would essentially capture noise. Thus we write v(x) v 1 x, where the coefficient v 1 can be physically interpreted as the slope of (2.15) at the origin. In order to reduce the effect of fluctuations, a linear regression is performed at every time frame and then averaged over the total number of frames: where N is the total number of time frames in a sequence (N = 15) and v n 1 x is the linear regression of the actin velocity for frame n. From (2.25), the substrate displacement for x ∈ [-1, 1] for the linearized expression of v reads,

v(x) = 1 N N ∑ n=1 v n 1 x,
u s x (x) = 3Lξ 4πE s v 1 xM 0 (x). (2.26)
where,

M 0 (x) = arcsinh 1 -x + arcsinh 1 + x +(1 -x) log + (1 -x) 2 + 2 1 -x + (1 + x) log + (1 + x) 2 + 2 1 + x .
The complete method leading to the derivation of the expression of M 0 is devel- oped in detail in the next chapter 3.2.

We then estimate ξ by minimizing the distance between the predicted substrate displacement (2.26) for the measured actin retrograde flow velocity and the substrate displacement from the experimental data. The results for three different substrate rigidities (E s = 5 kPa, 8 kPa and 28 kPa) are shown in Fig. 2.10. In these plots the actin velocity and substrate displacement experimental data are represented using boxplots. We observe strong fluctuations of the actin velocity for the 5 kPa and 28 kPa rigidities, while the data points are much more concentrated in the 8 kPa case. This is due to the fact, that in the cases of 5 kPa and 28 kPa, the cells where crawling not elongated enough (not 1D), thus at the same abscissae, we could measure two opposite velocities in some cases. The actin retrograde flow was also difficult to track because of the diffuse fluorescence.

While the friction coefficient seems to exhibit a slight dependency to the substrate rigidity, ranging from 6.64 × 10 9 Pa.s.m -1 to 6.10 × 10 10 Pa.s.m -1 , more data are needed to extract a clear tendency, as only one cell sequence was retained for each substrate rigidity. Because ∂ t u s x v, the viscous friction law (1.7) reduces to T x (x, t) = ξv(x, t), which corresponds to the friction law on a rigid substrate. This gives us a comparison point to evaluate the relevance of our model. Indeed, while obviously the substrate displacement between soft and rigid substrates cannot be compared (being zero in the latter), the friction law is identical in this specific case.

Therefore to validate our model the friction coefficient for a compliant substrate has to be of the same order as the one for a rigid substrate, which we note ξ r . Extended work has already been done to characterize cell crawling on rigid substrates by mean of a viscous friction law [START_REF] Cham | Nonequilibrium physics: From complex fluids to biological systems III. Living systems[END_REF][START_REF] Rubinstein | Actin-Myosin Viscoelastic Flow in the Keratocyte Lamellipod[END_REF] and ξ r has been evaluated to be of the order of 10 9 -10 10 Pa.s.m -1 . With our model we successfully recover a friction coefficient of the same order of magnitude as the one obtained on a rigid substrate.

With this validated experimental setting, we plan to investigate in details situations where the cell is strongly motile in the future.

Conclusion

Starting from a linear elastic semi-infinite substrate and a viscous friction law linearly relating the cell traction forces and the relative velocity between the actin and the substrate, we modeled the mechanical interaction between a crawling cell and a compliant substrate for cells confined to move on thin micropatterned fibronectin tracks. This model of the cell contact was then coupled with one of the simplest model of cell propulsion based on actin turnover. In such a model, the polymerization at the cell front and its depolymerization at the cell back leads to two motility mechanisms. The addition and removal of actin monomers induces a certain treadmilling velocity that is independent of external conditions but also a retrograde flow of actin from the cell front to its back exists and is dependent on the mechanical coupling with the substrate. Because of such non-local coupling, we find that the dependence of the cell velocity on either the substrate stiffness at a given friction coefficient or the friction coefficient at a given substrate stiffness are not monotonic.

This offers an interesting paradigm to complement other theories directly invoking a local non-linear dependence of the friction force on the actin flow to explain this global non-monotonicity. Experimentally, through the simultaneous monitoring of the substrate displacement and the actin retrograde flow velocity for static cells, we were able to extract the effective friction coefficient that enters in our model for different substrate rigidities by performing model-based data-fitting. We observed a small variation of the friction coefficient with the substrate rigidity, but the values globally lie in the same magnitude range. We find values of the friction coefficient of the same order as the ones previously reported for cells crawling on a rigid substrate suggesting that it is legitimate to consider this parameter as fixed regardless of the substrate rigidity. In the case of the 5 kPa and 28 kPa subtrate rigidities, the cells were not elongated enough to consider them as one dimensional and the actin acquisition resolution was poor. To address these issues it would be necessary to be able to pattern thinner fibronectin tracks.

We expect our experimental method to be of greater interest for cell types and substrate rigidities where the actin retrograde flow and the rate of deformation of the substrate are comparable and the cells are more motile than in the present work.

Another perspective is to couple the present model of non-local cell-to-substrate contact to the paradigmatic case of contraction-driven cell motility [START_REF] Recho | Mechanics of motility initiation and motility arrest in crawling cells[END_REF] where we expect complex intermittent gaits to appear from the coupling of the Keller-Segel instability to the non-locality induced by the substrate elasticity.

Chapter 3

The influence of substrate viscosity on cell contraction-driven crawling

Model formulation

In the present chapter, we consider a cell moving on a viscous substrate. As the model formulation has a lot in common with the elastic substrate's one of chap. 2 sec. 2.2, we adapt the elastic model to the viscous case by considering the substrate velocity v s instead of the substrate displacement u s . The velocity of the incompressible substrate v s due to the cell traction forces is derived from the Stokeslet solution and, following the methodology of the sec. 2.2, we obtain

v s x (x, t) = l + (t) l -(t) φ x -x δ T x (x , t)dx , where now φ reads φ(x) = 1 4πη s log 1 + √ 1 + x 2 |x| . (3.1)
Compared to the previous expression (2.8), the shear viscosity of the substrate η s has replaced 2E s /3.

For sake of simplicity, we do not consider the steric hindrance of the molecular motors in this chapter, thus we take f (c/c 0 ) = 1 in the transport equation ( 1.3)

∂ t c + ∂ x (cv -D∂ x c) = 0. (3.2)
Whereas we considered a polymerization-driven cell crawling in the previous chapter, here the investigated cell motion is contractility-driven, therefore v ± = 0 in the Stefan boundary condition (1.10):

V(t) = l-= l+ = v| x=l -= v| x=l + . (3.3)
Re-scaling the spatial variable x using the mapping function ψ defined as

ψ : [l -(t), l + (t)] -→ [-1/2, 1/2] x -→ 1 l + (t) -l -(t) x - l + (t) + l -(t) 2 ,
and introducing the cell aspect ratio = δ/L, the problem reads

           v s x (x, t) = h 1/2 -1/2 φ x -x ∂ x σ(x , t)dx h L ∂ x σ = ξ(v -v s x ) σ = η L ∂ x v + χc ∂ t c + 1 L ∂ x c(v -V) -D L ∂ x c = 0.
(3.4) with the boundary conditions,

σ| -1/2 = σ| 1/2 , V = v| -1/2 = v| 1/2 and ∂ x c| ±1/2 = 0. (3.5)
For sake of clarity we use the same symbol to denote the non-dimensional spatial quantity. The unknowns of problem (3.4)-(3.5) are the velocity fields v s x (x, t) and v(x, t), the stress field σ(x, t), the motor concentration field c(x, t) and the velocity of the moving fronts V(t).

Note that in this chapter we chose a different spatial rescaling on [-1/2, 1/2] whereas in the previous chapter the rescaled interval was [-1, 1], because it is more convenient to work on an interval of length unity. The choice made in the previous chapter was motivated by the fact that we initially wanted to explore Chebyshev expansions to derive some analytical solutions, but this work was not brought to completion.

The local approximation of the substrate velocity

In order to get around the difficulty of solving a singular integro-differential equation on a segment of finite length without periodic boundary conditions, we propose in the present section, a method based on Taylor expansions to formulate a local approximation of this model.

To deduce a local approximation of our model, we perform a Taylor expansion of the traction forces for x near x. To this end we first introduce the variable u which is defined by the difference between x and x and is here assumed to be small. Therefore making the change of variables u = xx in (3.1) and performing the previously introduced spatial scaling gives

v s x (x, t) = L 1/2-x -1/2-x φ u T x (x + u, t)du. (3.6)
A priori the traction forces function is not continuous on the real line, because the substrate is free of load outside the contact area with the cell Ω c , thus it exhibits discontinuities at the cell fronts x = ±1/2 and is therefore not analytic on the real line. However we assume T x is analytic in the open interval ] -1/2, 1/2[, ensuring the convergence of the Taylor series to T x . Thus we can write

T x (x + u, t) = ∞ ∑ i=0 u i i! ∂ i x T x (x, t).
Injecting this expression into (3.6) leads to

v s x (x, t) = L 4πη s ∞ ∑ i=0 ∂ i x T x (x, t)M i (x) i! , ( 3.7) 
where

M i (x) = 4πη s 1/2-x -1/2-x u i φ u du = 1 (1 + i) 2 (1/2 -x) i+1 2 F 1 1 2 , 1 + i 2 , 3 + i 2 , - (1/2 -x) 2 2 +(1 + i) log + (1/2 -x) 2 + 2 1/2 -x -(-1/2 -x) i+1 2 F 1 1 2 , 1 + i 2 , 3 + i 2 , - (1/2 + x) 2 2 +(1 + i) log + (1/2 + x) 2 + 2 1/2 + x .
In the above expression, 2 F 1 denotes the hypergeometric function defined as

2 F 1 (a, b; c; z) = ∑ ∞ n=0 (a) n (b) n (c) n z n
n! for |z| < 1, where the notation (q) n stands for (q) n = (q + n -1)!/(q -1)!.

As it appears in Fig 3 .1, M 0 dominates the moments of higher orders when is small, thus the zeroth-order moment dictates the behavior of the substrate velocity in the loaded domain. It is therefore relevant to introduce the approximated substrate velocity vs

x defined as vs

x (x, t) = L 4πη s T x (x)M 0 (x), (3.8) 
where

M 0 (x) = arcsinh 1 2 -x + arcsinh 1 2 + x + 1 2 -x log   + ( 1 2 -x) 2 + 2 1 2 -x   + 1 2 + x log   + ( 1 2 + x) 2 + 2 1 2 + x   .
From now on, we will refer to this approximation as the zeroth-order approximation, as it is based on the zeroth-order Taylor expansion of the traction force. Our approximation replaces the non-local dependence of v s x on the axial traction force by the explicit spatial dependence M 0 .

As T x = h∂ x σ/L, we can re-express the zeroth-approximation (3.8) as

vs x (x, t) = h 4πη s ∂ x σM 0 (x).
(3.9)

Numerical verification of the approximation

We investigate the reliability of the zeroth-order approximation of the substrate velocity previously obtained by computing the remainder between the exact and approximated substrate velocity. In order to perform this analysis the exact solution (3.6) needs to be known.

To do so, let us consider T x to be a polynomial of degree n for x ∈] -1/2, 1/2[ such that T x (x, t) = ∑ n k=0 T k (t)x k . As the cell only exerts traction forces on Ω c , T x is extended to zero outside. Plugging the polynomial expression of the traction force into (3.6), we get

v s x (x, t) = L n ∑ k=0 T k (t) 1/2-x -1/2-x (x + u) k φ u du. (3.10)
Using the binomial formula in the previous expression and the normalization yields 

v s x (x, t) = L 4πη s n ∑ k=0 k ∑ i=0 T k (t) k i x k-i M i (x). ( 3 
v s x T x (x, t) = x 1 T x (x, t) = x 3 T x (x, t) = x 5 FIGURE 3.2: Exact solution of v s
x for = 10 -2 . The traction force is chosen to be of the polynomial form T(x, t) = -x (blue), T(x, t) = -x 3 (red) and T(x, t) = -x 5 (green), in order to satisfy the constraint 1 -1 T x (x, t)dx = 0, imposed by the global force balance. Indeed, if i > k then by convention k i = 0 and (3.11) can be re-written

v s x (x, t) = L 4πη s n ∑ i=0 n ∑ k=0 T k (t) k i x k-i M i (x).
(3.12)

Because ∂ i x T x (x, t) = ∑ n k=0 k! (k-i)! T k (t)x k-i , we finally obtain v s x (x, t) = L 4πη s n ∑ i=0 ∂ i x T x (x, t)M i (x) i! . (3.13)
So if T x is a polynomial the domain of validity of (3.7) can be extended from ] -1/2, 1/2[ to the whole space. Now that we found an exact expression of the substrate velocity as a finite sum for any polynomial traction force, a comparison between the exact and zeroth-order expression can be performed.

To this end we choose T x to be an odd function of the polynomial form, in order to satisfy the constraint imposed by the global force balance

1 -1 T x (x, t)dx = 0, T x (x, t) = -x 2n+1 .
The exact substrate velocity obtained using (3.11) is shown on Fig. 3.2 for T x (x, t) = -x, -x 3 and -x 5 . The substrate velocity abruptly drops outside the loading region showing that the boundary layers in M 0 are a direct consequence of the free-load boundary conditions. x with = 10 -3 . The traction force is chosen to be of the polynomial form T(x, t) = -x (blue), T(x, t) = -x 3 (red) and T(x, t) = -x 5 (green), in order to satisfy the constraint 1 -1 T x (x, t)dx = 0, imposed by the force balance.

A graphical comparison between the exact and approximated substrate velocity is represented in Fig. 3.3 for the same parameters as Fig. 3.2 except that = 10 -3 . The zeroth-order approximation (3.8) reproduces well the general behavior of v s

x . However, while the approximation is sufficiently accurate in the bulk (especially as n increases), it overestimates the effect of traction at the vicinity of the cell edges.

In order to estimate the accuracy of our approximation, the exact and approximated substrate velocities are compared by computing the L 2 -norm of the remainder, i.e. the relative error between the exact expression and the zeroth-order approximation, defined by

R = v s x -vs x 2 v s x 2 .
As the framework of our theory is based on a thin track assumption (δ L), we investigate the behavior of this error for decreasing value of the cell aspect ratio .

This error is plotted in Fig. 3.4. At a fixed polynomial degree of T x the relative error decreases towards zero with decreasing . This confirms the previously stated domination of M 0 over the moments of higher orders at small values of and therefore shows the good accuracy of the zeroth-order approximation for small.

The space-dependent effective friction coefficient

Using the zeroth order approximation, we can re-write (1.8) such that

(h/L)∂ x σ(x, t) = ξ eff (x, t)v x (x, t), (3.14)
where 

ξ eff (x, t) = ξ (1 -v s x (x, t)/v(x, t)) . ( 3 
L 2 error T(x, t) = x 1 T(x, t) = x 3 T(x, t) = x 5 FIGURE 3.4: Relative L2-error convergence analysis.
ξ eff is a space-dependent effective friction coefficient encompassing the substrate deformation.

Injecting (1.8) into (3.9) yields

vs x (x, t) = Lξ 4πη s (v(x, t) -v s x (x, t))M 0 (x). (3.16)
Equating v s x and vs x (x, t), we obtain

vs x (x, t) = v(x, t) 1 + 4πη s L(t)ξM 0 (x)
.

(3.17)

Thus an approximate friction coefficient can be derived by injecting the previous expression in (3.15) and reads

ξ f (x), with f (x) = 1/(ξ L) 1/(ξ L) + M 0 (x)/(4πη s ) . (3.18)
Using the dimensionless parameters

Z = ξ L/η,
the ratio of elastic and viscous length scales, S = η/η s , the ratio of cell and substrate viscosities, the expression of the effective coefficient

is Z f (x), with f (x) = 1/Z 1/Z + SM 0 (x)/(4π) . (3.19)
It has been experimentally shown, that focal adhesions (FAs), connecting the actin cytoskeleton to the substrate, are forming at the front and the rear of a cell, therefore several mathematical models for cell motility introduced an a priori space dependent drag coefficient based on experimental data [START_REF] Mogilner | A Simple 1-D Physical Model for the Crawling Nematode Sperm Cell[END_REF], rigid limit inviscid limit FIGURE 3.5: Spatial evolution of the scaled effective drag coefficient Z f for different values of scaled substrate viscosity S. In the inviscid limit (S → 0), there is no coupling between cell and substrate as Z f → 0. In the rigid limit (Z f → ∞), the coupling between cell and substrate is constant over the contact surface as Z f → Z f . which represents the spatial distribution of focal adhesions. In our approach, no previous knowledge of the distribution of focal adhesions is needed, as a spacedependent effective drag coefficient spontaneously arises by formulating the local approximation of problem (3.4).

The shape of this effective drag coefficient illustrated Fig. 3.5 is in qualitative agreement with the experiments as it exhibits higher values at the cell edges.

We recover the same behavior of the effective friction coefficient as Novak et al., 2004, who modeled In the inviscid limit (S → ∞), there is no coupling between cell and substrate as Z f → 0. In the rigid limit (S → 0), the coupling between cell and substrate is constant over the contact surface as Z f → Z.

Motility initiation by substrate rigidification

The original problem (3.4) involved a singular integro-differential equation. By applying the zeroth-order approximation through the introduction of the previously obtained effective friction coefficient, it is now reduced to the following system of PDEs (3.20) with a space-dependent coefficient

     h L ∂ x σ = ξ f v σ = η L ∂ x v + χc ∂ t c + 1 L ∂ x c(v -V) -D L ∂ x c = 0 (3.20)
with the boundary conditions

σ| -1/2 = σ| 1/2 , ∂ x σ| -1/2 = ∂ x σ| 1/2 and ∂ x c| ±1/2 = 0,
and the initial condition c(x, 0) = c 0 .

Re-scaling the length by L, the time by L 2 /D, the stress by ηD/L 2 , the viscosity of the substrate by η and the concentration by c 0 , we obtain the following non-

dimensional coupled problem    -H Z ∂ x ∂ x σ f + σ = P c ∂ t c + ∂ x c( H Z ∂ x σ f -V) -∂ x c = 0, (3.21)
with the boundary conditions

σ| -1/2 = σ| 1/2 , ∂ x σ| -1/2 = ∂ x σ| 1/2 and ∂ x c| ±1/2 = 0,
and the initial condition c(x, 0) = 1.

Here the dimensionless cell velocity reads

V = H Z ∂ x σ| ±1/2 f (±1/2) .
We introduced two supplementary dimensionless parameters:

P = χc 0 L 2 /(ηD),
the dimensionless measure of motor contractility and

H = h/L,
the normalized cell height.

Numerical implementation

We choose to use a centered finite difference scheme on a regular grid in order to spatially discretize (3.21) 1 , while the advection-diffusion equation (3.21) 2 is discretized using a finite volume approach (see fig. Starting from an initial distribution of motors c 0 , we compute the stresses inside the cell and deduce the actin retrograde flow velocity as well as the cell speed. The time is incremented using a Courant-Friedrichs-Lewy condition and the new motors distribution is computed from the stress. The process is iterated until steady-state is reached.

In order, to implement the boundary condition ∂ x σ| -1/2 = ∂ x σ| 1/2 , two ghost nodes for σ were added outside the cell ends.

Using a centered finite difference method, the discretization of (3.21) 1 and its associated periodic boundary conditions reads, The cell, ranging from x = -1/2 to x = 1/2, is discretized in n elementary volumes. The internal stress σ is computed using a finite difference method and c using a finite volume method and are evaluated at the same nodes. The cytoskeleton retrograde flow speed v is deduced from σ also using a centered finite difference method, and thus is evaluated at the volumes interfaces.

       H Z -1 f i ∆x 2 - f i 2∆x f 2 i σ k i-1 + 1 + 2H Z f i ∆x 2 σ k i + H Z -1 f i ∆x 2 + f i 2∆x f 2 i σ k i+1 = P c k i σ 0 = σ n σ 1 = σ n+1 , ( 3 
The discretization of the boundary conditions is achieved using periodic boundary conditions on σ (blue), while the zero flux condition at both cell ends remains a condition on the flux when discretized (red).

In the matrix form (3.22) reads,

              1 0 0 0 0 -1 0 0 1 0 0 0 0 -1 α 1 β 1 γ 1 0 0 0 0 0 α 2 β 2 γ 2 0 0 0 0 . . . . . . . . . 0 0 0 0 0 α n-1 β n-1 γ n-1 0 0 0 0 0 α n β n γ n                             σ k 0 σ k 1 σ k 2 σ k 3 . . . σ k n σ k n+1               = P               0 0 c k 1 c k 2 . . . c k n-1 c k n               (3.23)
where

α i = H Z -1 f i ∆x 2 - f i 2∆x f 2 i , β i = 1 + 2H Z f i ∆x 2 and γ i = H Z -1 f i ∆x 2 + f i 2∆x f 2 i .
The periodic boundary conditions on σ are implemented into the two first lines of the right-hand-side (RHS) matrix. Because the cell is migrating at a constant length, the RHS matrix does not depend on time, therefore it needs to be calculated and inversed only once at the start of the simulation.

The actin retrograde flow velocity v at the volume interfaces is deduced from σ,

v k i = H Z ∆x σ k i+1 -σ k i f i .
One important remark has to be made here that f is not defined at the cell ends, as f (x = ±1/2) → ∞. However, because of our discretization strategy, this value is not needed. Indeed f i is calculated at the nodes or elementary volumes centers and not at the interfaces. The cell ends coincide with interfaces where only the velocity is computed, which requires the value of f not f .

Using the finite volume method, the discretization of the advection-diffusion equation of the molecular motors (3.21) 2 together with the zero-flux boundary conditions at the cell ends and the initial condition on the motors distribution reads (Euler-explicit time discretization) (3.24) where φ k i and φ k i+1 denote the sum of the advective and diffusive fluxes at time k and at the left resp. the right interface of the i-th elementary volume. The expression of

           c k+1 i = c k i + ∆t ∆x (φ k i -φ k i+1 ) φ k 1 = 0 φ k n+1 = 0 c 0 i = c 0 ,
φ k
i is given by,

φ k i = c k i + c k i-1 2 (v k i -V) - c k i -c k i-1 2 |v k i -V| - c k i -c k i-1 ∆x (3.25)
As we chose an explicit time discretization, the largest admissible timestep ∆t ensuring the stability of the scheme is evaluated using the Courant-Friedrichs-Lewy condition and reads ∆t = ∆x

max |v i -V| + 2 ∆x . (3.26)
The steady-state is considered reached when the residual of the motors concentration becomes lower than an arbitrary threshold value.

Results

When considering the present minimalist problem of a crawling cell evolving on a viscous substrate, the motility is governed by a competition between cell's intrinsic and extrinsic phenomena which are represented through the three main nondimensional parameters P , S, and Z. S and Z characterize the substrate viscosity and the cell adhesion and P the cell contractility. In order to understand the influence of these parameters on cell motility, a set of numerical simulations was performed on the (S, Z, P ) domain (see Fig. 3.8). We used the dichotomy method in order to draw the frontier between the static and the motile domain. This method consists in choosing two points in the three-dimensional domain (S, Z, P ). These two initial points (A, B) are taken sufficiently far away from each others, such that one lies in the static domain (A), while the other lies in the motile domain (B). Next we compute the steady-state cell velocity at both points (V A , V B ) using the previously introduced algorithm (see sec. the dichotomy process until the length of the segment is arbitrary small. The middle point of this final segment would be on the frontier between the static and motile domain, and is represented by a blue dot in Fig. 3.8.

Fig. 3.8 is a phase diagram delimiting the surface between the motile and static domain, below the surface the cell is static while above it the cell is moving. The plane P 0 = π 2 corresponds to the critical contractility in the vanishing friction limit evaluated in the next chapter 4. Below the plane P = P 0 , the cell remains static independently of (Z, S), in particular, in the frictionless limit (Z → 0) and the inviscid limit (S → ∞). By definition, P = χc 0 L 2 /(ηD), thus P < P 0 is equivalent to χc 0 < P 0 ηD/L 2 , meaning that the contractility of the motors cannot generate a sufficiently significative advective flow able to counteract the diffusive flow, which tends to uniformize the motors distribution.

Within the framework of our approximation, we introduced an effective friction coefficient Z f , therefore the vanishing friction limit corresponds to

Z f → 0 ⇐⇒ 1/Z + SM 0 (x)/4π 1.
This limit is reached in particular, for 1/Z 1 with finite S or for S 1 with finite Z. Therefore the inviscid limit is equivalent to the no-friction one, which explains that the same critical contractility is obtained at Z → 0 and at S → ∞, represented by the two black lines on Fig. 3.8.

Following [START_REF] Recho | Active gel segment behaving as an active particle[END_REF], the critical contractility P c with respect to the friction Z for a rigid substrate (S → 0), is given by

P c = √ Z /Hλ c √ Z /H ,
Where λ c is obtained by numerically solving the following equation,

2 tanh √ Z /H 2 1 - λ c √ Z /H = λ c 1 - λ c √ Z /H .
The bifurcation line P c corresponding to the rigid substrate limit (S → 0), is represented by a red line on the bifurcation diagram (see Fig. 3.8). We observe that the simulation is in good agreement with the theory in both, the rigid substrate limit and the no-friction limit investigated in the next chapter, which confirms our numerical simulations. At P > P 0 , the motility is governed by the couple of parameters (Z, S), as at P and H fixed, (3.21) is completely controlled by Z f (Z, S). For a better visibility, the bifurcation line at P = 18.0 in the plane (Z, S) is represented in Fig. 3.9. The static domain corresponds to values of (Z, S) yielding sufficiently high values of the effective drag coefficient Z f (Z, S, , x), as a decreasing S and/or an increasing Z induce an increase in the effective friction coefficient. In the mobile domain, the cell contractility is not only able to overcome the effect of diffusion, but also the resisting effect of the (Z, S)-induced effective friction. It is obvious, that the less friction opposes to the cell motion the easier it is able to move. However this also brings a rather counter-intuitive statement, that the cell could better move on an inviscid substrate and or with no friction. This limit is investigated in more details in the next chapter.

In order to gain a better understanding of the influence of both Z, and S on the cell motility, we study the evolution of the cell speed at steady-state for varying S and at fixed Z (see Fig. 3.10a). At Z = 5.0, regardless of the value of S the cell is mobile, while at Z = 7.0, the cell passes from static to mobile at a critical value of the substrate viscosity. As shown on Fig. 3.10a, when exclusively evolving in the mobile domain, the cell speed exhibits a monotonous behaviour with respect to S. The profiles reach two plateaus at both the rigid and the inviscid limits. On these The cell is moving slower on soft substrates than on rigid ones. At Z = 5.0, the cell remains in the mobile domain. Two plateaus form at both the rigid (S → 0) and the inviscid (S → ∞) limits, suggesting a domain of cell sensitivity to the substrate viscosity in between. At Z = 7.0, the cell crosses the frontier between the static and mobile state at a critical value of the substrate viscosity. For Z = 0.1, we observe a shift in the monotony, due to a numerical artefact. (Right) Highlight of the chosen simulation points in the rigid (blue), mechanosensitive (red) and inviscid domain (green).

two plateaus, the cell motility remains unaffected by a variation of the substrate viscosity. This simple mechanical model allows to extract a viscosity range for the cell mechanosensitivity.

For small values of Z, we observe a monotony shift as the cell speed decreases with S (see Fig. 3.10a). This is most probably the result of a numerical artefact rather than the consequence of an actual physical phenomena. Indeed, we previously mentioned the equivalence between the frictionless limit and the inviscid one. More rigorously, at the inviscid limit we have Z f ∼ 4π/(S M 0 (x)), as v remains bounded the force balance combined with the constitutive law gives,

H(∂ xx v + P ∂ x c) = 4π SM 0 v → 0. (3.27)
After integration it becomes,

∂ x v + P c = α, (3.28)
where α is an integration constant and is evaluated by integrating the previous equation over the length of the cell, therefore

1/2 -1/2 ∂ x v =0 +P 1/2 -1/2 c =1 = P = α.
We finally get,

∂ x v = P (1 -c). (3.29)
This is exactly the equation obtained in the next chapter for the frictionless limit, which shows the equivalence between both limits. Therefore the cell speed in the inviscid limit should exactly match the one in the frictionless limit. However, we observe a discrepancy between the cell velocities at both limits, which results in the shift of monotony below a certain Z, corresponding to the entrance in the domain of vanishing friction. The fact that f blows up at the cell ends causes this numerical artefact, although it is not exactly evaluated at the cell ends, because of our discretization strategy, therefore another numerical method has to be developed in order to address this issue. The motors concentrate at the back of the cell. As the substrate gets more viscous, the distribution becomes less peaked. (Top-Right) Representation of the stress inside the cell. In the mechanosensitive domain, σ exhibits higher peaks. At the inviscid limit, there is almost no fluctuations of the internal stress, such that σ(x) = P. (Bottom-Left) Representation of the traction force exerted by the cell on the substrate. The traction is maximal at the cell ends. At S 1, the traction force vanishes as the cell can not grip. This figure suggests a non-monotonous behaviour of the traction force at the edges with S. (Bottom-Right) Representation of the actin retrograde flow velocity inside the cell. The magnitude of the retrograde flow is greater at small S, as the S-induced friction is lower, thus the cell speed, corresponding to v at the edges follows the same tendency. .12: Representation of the effective friction coefficient in the rigid (blue), mechanosensitive (red) and inviscid domain (green). The inviscid limit is equivalent to the frictionless one.

We plot the local quantities, c, σ, v and the traction force T = H∂ x σ at the three dots (blue, red, green) in Fig. 3.10a, in order to get a representation of these profiles in the rigid, the mechanosensitive and the inviscid domain, respectively (see Fig. 3.11). Starting from an initial uniform distribution, the motors concentrate at the back of the cell. As a result, when the steady-state is reached, the cell is completely polarized: at the back (x = 1/2), the motors concentrate, inducing a retrograde flow of actin and an overall motion of the cell in the opposite way. The cytoskeleton retrograde flow speed decreases with S and the distribution of motors is less peaked. The relation between motors concentration and retrograde flow obeys a positive feedback loop, as a local increase of motor density induces a local increase of the retrograde flow velocity, which contributes to the advection of more motors towards this peak. As a decrease of S induces an increase of the effective drag coefficient Z f (see Fig. 3.12), the actin retrograde flow slows down with S. The traction forces are maximal at the edges. Because the cell has more grip on a viscous substrate, ultimately the cell pulls more, while on an inviscid one the cell is unable to anchor and therefore the traction force almost vanishes. However, although traction forces are small, the effective friction coefficient is also small in the inviscid limit (see Fig. 3.12). So however small the tractions T may be in that case, there is almost no resistance to motion, which explains this counter-intuitive behaviour of a cell moving faster on an "almost" inviscid substrate. Interestingly, the traction at the edges, which we note T ± , does not seem to be monotonous with S as we have

|T ± (S = 10 4 )| < |T ± (S = 10 -4 )| < |T ± (S = 9.24)|.
This tendency is confirmed by plotting the traction force at the edges with respect to S (see Fig. 3.13), as a biphasic relationship between them is obtained. This is an interesting result, because it means that there is an optimal viscosity at which the transmission of forces from the cell to the substrate is maximal. When considering the motion of a sliding actin filament on an elastic substrate interacting one with another via stochastic bonds, Sens, 2013 obtained a similar behaviour. with the substrate viscosity. There is an optimal substrate viscosity at which the traction force reaches a maximum. (The dashed lines are just guides for the eye.)

Reduced friction coefficient

As previously stated, the governing equations of cell migration (3.21) are completely controlled by Z f , P and H. In order to explore the effect of the boundary layers in the effective friction coefficient, we approximate Z f by its mean value Z f =

1/2 -1/2 Z f (x)dx in problem (3.21), which becomes    -H Z f ∂ xx σ + σ = P c ∂ t c + ∂ x c( H Z f ∂ x σ -V) -∂ x c = 0.
(3.30)

Formulating the problem of the cell crawling on a viscous substrate with (3.30), reveals it is actually equivalent to the problem of the cell crawling on a rigid substrate with the space-independent reduced friction coefficient. Assuming this approximation is accurate, for all (Z, S) such that Z f = κ, where κ is a constant, we should obtain the same results when solving the system (3.21). The isolines Z f = κ are represented Fig. 3.14a in the plane (S, Z ). In order to investigate this theory we run three simulations on the isoline Z f = 4 located in the mobile domain represented by the three dots in Fig. 3.14b. The results of these simulations are compared in Fig. 3.15. Encouragingly, the spatial quantities seem to match with each other quite well. Yet another positive result is represented Fig. 3.16a, where we apposed the profile V(S ) obtained in the previous section with the one obtained for Z f (S). This result gives an explanation on the shape of V(S ) as it exactly follows the shape of Z f (S). It also confirms the assumption of the motility properties being characterized by Z f for fixed values of Z, P, H and . Moreover the bifurcation line previously obtained by the simulation is fitted quite accurately by the isoline Z f = Z * (P = 18), where Z * (P = 18) corresponds to the critical value of Z on a rigid substrate at P = 18 (see Fig. 3.16b). These results enforce the validity of the assumption, thus the three-dimensional bifurcation diagram previously obtained (Fig. 3.8), can be well reconstructed from only the bifurcation line of the rigid limit (see Fig. 3.17).

Conclusion

Starting from a singular integro-differential formulation of the problem of cell crawling on a viscous substrate, a linearization introduced a space-dependent effective friction coefficient encompassing the non-local response of the substrate to the cell traction forces, thus reducing the problem to a set of PDEs with a non-constant coefficient. This naturally arising space-dependent friction coefficient exhibits boundary layers at the cell edges showing a higher coupling between the cell and the substrate at the boundaries. It increases with the substrate viscosity and with the friction. In comparison with the elastic substrate case, the cell velocity is a decreasing function of the substrate viscosity at a given friction. Indeed, in the inviscid limit while the traction force vanishes, the propulsion is ensured by the molecular motor-driven FIGURE 3.17: Reconstruction of the three dimensional phase diagram from the bifurcation line at the rigid limit and the iso-Z f lines.

internal flow, which is greater in this limit as the substrate viscosity-induced friction vanishes and therefore explains the higher only contractility dependent velocity.

While the cell velocity is monotonic, the magnitude of the traction force is biphasic, which could induce an affinity to an optimal substrate viscosity as has been similarly experimentally observed on a viscoelastic substrate, however further work is needed to confirm this tendency.

We showed that the spatial distribution of the effective friction coefficient was not dictating the cell motility, rather its mean value was. Therefore we were able to further reduce our problem to a set of PDEs with constant coefficient, allowing us to reconstruct any desired quantity at a specific friction and substrate viscosity from the equivalent rigid limit. From this simplified model, the investigation of the cell sensitivity to an external viscosity gradient becomes easier and our approximation Chapter 4

Substrate independent crawling

Introduction

In three-dimensional biological matrices, cell migration usually does not rely on the formation of focal adhesions [START_REF] Paluch | Focal adhesion-independent cell migration[END_REF] and, using the cell confinement, uses the non-specific friction between the cell and its environement [START_REF] Bergert | Force transmission during adhesion-independent migration[END_REF] to exert traction forces that break the problem symmetry and lead to motion. Depending on the force production mechanism of the traction forces, several physical models have been put forward to shed light on this instability [START_REF] Ziebert | Model for selfpolarization and motility of keratocyte fragments[END_REF][START_REF] Tjhung | Spontaneous symmetry breaking in active droplets provides a generic route to motility[END_REF][START_REF] Recho | Contraction-driven cell motility[END_REF][START_REF] Callan-Jones | Active gel model of amoeboid cell motility[END_REF][START_REF] Camley | Periodic migration in a physical model of cells on micropatterns[END_REF][START_REF] Blanch-Mercader | Spontaneous motility of actin lamellar fragments[END_REF][START_REF] Giomi | Spontaneous division and motility in active nematic droplets[END_REF]. Still, in such models, a substrate interaction is present in the form of a friction coefficient that can be modulated depending on the affinity of the cell and its environment.

Recently, several two or three dimensional models have been put forward to

show that the limit of a vanishing friction coefficient where the traction force of the cell locally vanishes, can still lead to cell motion [START_REF] Loisy | Tractionless selfpropulsion of active drops[END_REF][START_REF] Farutin | Crawling in a fluid[END_REF][START_REF] Goff | Actomyosin contraction induces in-bulk motility of cells and droplets[END_REF]. In such limit, motility becomes an intrinsic property of the cell that is independent of the environment biophysical details making it an interesting paradigmatic situation from the physical point of view. One can also speculate on the biological role of such mechanism as it would render cell motion robust with respect to a change of the environment chemistry and rheology.

Assuming that cell propulsion in a confined environment such as a track or a channel [START_REF] Maiuri | The first world cell race[END_REF][START_REF] Doyle | Dimensions in cell migration[END_REF] is mainly driven by its molecular motors [START_REF] Paluch | Focal adhesion-independent cell migration[END_REF], we study one of the most simple onedimensional model of this substrate independent type of cell motility. We show that, despite its active nature, our model has a variational structure with an effective quasi-potential that is minimized during the cell dynamic and that the minima of the quasi-potential correspond to the model metastable steady states. These minima represent a static symmetric configuration or a motile asymmetric configuration of the cell and their appearance and relative level are controlled by two nondimensional parameters driving the motors self-organization: a global contractility coefficient and a parameter representing the steric hindrance between the motors.

Next, by introducing a small stochastic perturbation in the active stress, we show that the metastability of the deterministic system leads to intermittent cell dynamic which can be either dominated by static phases or by motile phases depending on which state is the global or local minimum of the quasi-potential. This result may have importance to physically understand the intermittency of individual cell dynamics [START_REF] Maiuri | Actin flows mediate a universal coupling between cell speed and cell persistence[END_REF][START_REF] Hennig | Stick-slip dynamics of cell adhesion triggers spontaneous symmetry breaking and directional migration of mesenchymal cells on one-dimensional lines[END_REF] but could also be of use to rationalize the fact that in a population of similar cells, a proportion is motile while others are static [START_REF] Kwon | Stochastic and heterogeneous cancer cell migration: experiment and theory[END_REF].

Substrate independent regime

In this chapter, we study the case of vanishing friction between the cell and the substrate. Similarly to the previous chapter, we assume here a contractility-driven cell motion, therefore v ± = 0 and the moving cell boundaries verify (3.3). The substrate is assumed to be visco-elastic so that certain functional L relates its velocity with the traction forces exerted by the cell,

v s = L[∂ x σ].
Clearly, if the tractions vanish, the substrate velocity is also zero: L[0] = 0. The vanishing friction limit reads ξ → 0 in (1.8). As the cytoskeleton and substrate velocities remain bounded, we locally have ∂ x σ = 0, leading to v s = 0. However, the boundary conditions (1.9) imposing the same stress at the two fronts lead to the global constraint,

l + l - (v -v s )dx = l + l - vdx = 0.
This limit of a small friction coefficient leads to a generic cell crawling dynamic that is independent of the cell/substrate mechanical behavior.

Combining the constitutive relation (1.6) with the no-flux boundary conditions (3.3), we obtain that the homogeneous stress in the cytoskeleton is σ = χc 0 . As a result, χ(c 0c) = η∂ x v which leads by integration to,

v(x, t) -V(t) = l + l - H(x -z)(c 0 -c(z, t))dz,
where H denotes the Heaviside step function.

Defining the non-dimensional traveling coordinate y = [x -(l -+ l + )/2]/L and rescaling the concentration by c 0 , the space by L and the time by L 2 /D, we obtain the following non-dimensional coupled problem:

P (1 -c) = ∂ y w ∂ t c + ∂ y (cw -∂ y ( f (c)c)) = 0, (4.1)
with no-flux boundary conditions on c, ∂ y c(±1/2, t) = 0 and w, w(±1/2, t) = 0. In (4.1), there is only one single non-dimensional (active) parameter that sets the system dynamic P = χc 0 L 2 /(ηD). As w = v -V represents the flow of cytoskeleton in the cell frame of reference, the cell velocity is given by the condition, showing that the cell motion is supported by the global asymmetry of c.

V(t) = - 1/2 -1
∂ t c + ∂ y cP 1/2 -1/2 H(y -z)(1 -c(z, t))dz = ∂ yy ( f (c)c).
When P = 0, (4.4) represents a purely passive system where the motors only diffuse and the solution of (4.4) is a homogeneous motor distribution c ≡ 1 associated with V = 0 (and w ≡ 0). However, when P becomes larger than the critical value P c = π 2 ( f (1) + f (1)), where denotes the derivative, multiple steady states become possible (See Appendix. C.1) and the question of their local and global stability properties arises. We shall address this question in the following section by exhibiting a Lyapunov functional that is minimized during the dynamics of (4.1).

Variational structure

We define the Lyapunov functional [START_REF] Frank | Nonlinear Fokker-Planck equations: fundamentals and applications[END_REF][START_REF] Chavanis | Generalized stochastic Fokker-Planck equations[END_REF], F = E -P S where the "energetic" and "entropic" terms are

E [w] = - 1 2 1/2 -1/2
w 2 dy and S[c] = -

1/2 -1/2
s(c)dy.

In the above formula the entropy per unit volume s(c) is defined in the following way:

s (c) = f (c) + f (c) c ,
where we impose that s(0) = 0 and s(∞) = ∞. As f is a positive and increasing function, these conditions imply the existence of a minimum s min ≤ 0 such that s ≥ s min . When f (c) = 1, we recover the Boltzmannian entropy s(c) = c log(c)c while for our choice

f (c) = 1 + rc 2 , (4.7)
where r is a non-dimensional parameter controlling the strength of the steric hindrance, we obtain,

s(c) = rc 3 /2 + c log(c) -c.
For the homogeneous solution, only the entropic term contributes to F = F 0 = P (r/2 -1). Using (4.1), the inequality

∂ t F = -P 1/2 -1/2 (cw -∂ y ( f (c)c)) 2 c dy ≤ 0,
shows that F necessarily decays during the dynamics and that ∂ t F = 0 implies that ∂ t c = 0. As using (4.3) we can check that |w| ≤ P, we also obtain that F ≥ -(P 2 /2 -P s min ) is bounded from below insuring via Lyapunov theory Frank, 2005 that system (4.1) converges to an equilibrium state.

The effective energy can be expressed as a functional of c only by using (4.3),

E [c] = P 2 2 1/2 -1/2 1/2 -1/2 max(y, z)(1 -c(y, t))(1 -c(z, t))dydz
such that F is also a functional of c only. Using this expression, we compute the gradient of F with respect to c δF δc (y, t) = -P 2 1/2 -1/2 max(y, z)(1c(z, t))dz + P s (c(y, t)).

Thus (4.4) is equivalent to showing that the dynamics of c is driven by its relaxation to the minimum of the quasi-potential F . The globally stable steady state is therefore the c eq (y) distribution that minimizes F under the constraints ∂ y c eq (±1/2) = 0 and 1/2 -1/2 c eq (y)dy = 1. The local minima of F are locally stable steady states while maxima and saddle points are unstable steady states [START_REF] Frank | Nonlinear Fokker-Planck equations: fundamentals and applications[END_REF][START_REF] Chavanis | Generalized stochastic Fokker-Planck equations[END_REF] 

∂ t c = ∂ y c P ∂ y δF [c] δc ,

Metastable steady-states

We begin by characterizing the critical points of F which correspond to the possible steady states of system (4.1). To do so, we implement a continuation method starting from the homogeneous solution at P = 0 using the software AUTO [START_REF] Doedel | Numerical analysis and control of bifurcation problems[END_REF] and follow into the non-linear regime the bifurcations branching from this state as P increases. The critical values at which these nontrivial solution emerge are given by P = P k 0 = (1 + 3r)k 2 π 2 , where k ≥ 1 is an integer (see Appendix. C.1). The first of these values is P c = P 1 0 . We show the first three branches obtained this way on Fig. 4.1. As solution measures, we show the values of F -F 0 and V. For each solution bifurcating at an odd bifurcation point (i.e. k is odd), there is a symmetric solution with respect to the center of the segment associated with the opposite velocity (see [START_REF] Recho | Mechanics of motility initiation and motility arrest in crawling cells[END_REF].

The value of the quasi-potential for these two symmetric solutions is the same. We only show the solution leading to a positive velocity on Fig. 4.1. Each solution bifurcating at an even bifurcation point (i.e. k is even) has an even symmetry with respect to zero and is thus associated with a zero velocity (see (4.6)). As we show on Fig. 4.1, when the bifurcation order increases, the number of patterns in the motor concentration increases. We check in Appendix. C.2 that, except the first bifurcation, all the bifurcating solutions are locally unstable. Added to this, the homogeneous solution cease to be locally stable past the first bifurcation point.

However, the stability status of the first bifurcation branch is interesting. We can analytically show using a normal form expansion (See Appendix. C.1) that the bifurcation is pitchfork supercritical if r < r c = (7 + √ 57)/12 or subcritical if r > r c . In the supercritical case, a local stability of the bifurcating branch is found, leading to a simple situation where the cell converges to either a motile or static (homogeneous) state depending whether P ≥ P c or P ≤ P c . The subcritical case is more complex. As we illustrate on Fig. 4.2, there is a turning point located at P = P t ≤ P c along the bifurcating branch leading to a fold. We can then again numerically check that solutions before the fold are numerically unstable while solutions after the fold are linearly stable again, although they look qualitatively similar with motors self organizing at the trailing edge of the cell, see Fig. 4.2. Thus, there is a choice of parameters (r > r c and P ∈ [P t , P c ]) for which the static and motile configurations can be both locally stable, the globally stable solution being the one corresponding to the minimum of the quasi-potential. We show on Fig. 4.3 the resulting phase diagram where the motile and static phase are shown as well as the third metastable phase where the two configurations can coexist. In this phase, a "Maxwell line" separates the region of parameters space where the motile state is the global minimum of F and those where it is the static (homogeneous) state. This property entails interesting consequences when the contractility is no longer deterministic but is subjected to small stochastic fluctuations as the cell can switch between the two configurations leading to stop-and-go dynamics.

Stochastic contractility

To simply illustrate the effect of metastability on the cell dynamic, we consider a source of noise in the model by changing (1.6) 

into σ = η∂ x v + χc + σ s ,
where σ s (x, t) is a small (|σ s | χc 0 ) stochastic spatio-temporal noise. As an example of Σ s , we take where Θ is a diffusion coefficient and Ẇ(x, t) is a spatio-temporal white noise. Thus Σ s represents small variations of the mechanical stress in the cell skeleton due to some existing random disorder.

∂ t Σ s -Θ∂ xx Σ s = Ẇ
The non-dimensional model (4.1) thus becomes

     P (1 -c -δσ s ) = ∂ y w ∂ t c + ∂ y (cw -∂ y ( f (c)c)) = 0 ∂ t σ s -θ∂ yy σ s = e ω, (4.8) 
where the new non-dimensional variables are θ = Θ/D that quantifies the spatiotemporal correlation of the noise, e 1 that represents the small noise magnitude in the system. ω is a normalized white noise such that, denoting . the ensemble average, ω(y, t) = 0 and ω(y, t) ω(y , t ) = δ(yy )δ(tt ).

The stochastic stress σ s = Σ s /(χc 0 ) is shifted by δσ s (y, t) = σ s (y, t) - the quasi-potential while the other state is a local minimum. We show on Fig. 4.4, the typical dynamic as well as the probability densities of the cell velocities for all four cases. When the static state is the only existing (and stable) steady state of the deterministic system, the velocity is peaked around V = 0. Then, as we reach the metastable regime, the distribution has three peaks corresponding to a static state and the two symmetric motile configurations. The size of the peaks of the probability density of V depends on which state is the global minimum of F and the system may feature predominantly fluctuations around the static state with rare motile excursions or, on the contrary, a motile dynamic rarely alternating the sign of the velocity and spending a small duration around the static state. As P increases such that the system leaves the metastable domain, the unstable static state disappears from the velocity distribution.

It is also interesting to interpret these results at the cell population level as metastability can explain why, in a cell population with the same parameters defining their molecular motors dynamics, most of the cells may be almost static with only a certain proportion moving at a large velocity or, on the contrary, most cells can be motile and a few of them static depending which state is the global attractor of the deterministic system.

Conclusions

We have exhibited one of the simplest model of cell crawling that is independent of its interaction with the substrate as, while they exert vanishingly small traction forces, the molecular motors still produce an internal flow of cytoskeleton that can propel the cell boundary. Such flow has to be coupled with a physical process that insures the recycling of the cytoskeleton building blocks and which is not solved for in this minimalist model. This can be achieved by considering a backflow [START_REF] Loisy | Tractionless selfpropulsion of active drops[END_REF] or a chemical turnover reaction that depolymerizes the cytoskeleton at the back and polymerizes it at the front [START_REF] Putelat | Mechanical stress as a regulator of cell motility[END_REF]. This substrate independent crawling mode has a variational structure with a quasi-potential that allows to characterize the local and global stability of its steady states. In particular, we find that there exists a region in the non-dimensional parameter space where a static and mobile configuration can co-exist in a metastable fashion. In the presence of an additional small stochastic stress, this leads to the possibility of an intermittent cell dynamics where the static or motile phases of motion dominate depending on which state is the global minimum of the quasi-potential.

Conclusion

It is now widely acknowledged that the extracellular matrix cannot be simply considered as a fixed scaffold supporting the cell during its migration, because a bidirectional interaction occurs between the cell and the substrate at the focal adhesions (a process called mechanoreciprocity). This interaction impacts the cell motility, among other essential functions. The mechanoreciprocity consists in three steps, mechanosensing, mechanotransduction and cell response. However, because of the intrinsic bidirectional feature of the force balance, a part of the mechanoreciprocity pathway is achieved by a bare mechanical process, i.e. only through force transmission while ignoring the complexity of the chemo-mechanical coupling occurring at the microstructure level.

In order to extract the cell migration behaviour when considering a simple mechanical mechanoreciprocity, we extended the protrusion-driven and contraction driven models of cell migration on a rigid substrates [START_REF] Cham | Nonequilibrium physics: From complex fluids to biological systems III. Living systems[END_REF]Recho, Putelat, and[START_REF] Recho | Mechanics of motility initiation and motility arrest in crawling cells[END_REF] to the case of migration on a compliant substrate. This amounts to introducing the cell-substrate relative velocity in the linear friction law and building the kernel governing the non-local response of the substrate to cell traction forces.

First we investigated a cell crawling motion driven by the protrusion and retraction velocity of the actin meshwork at the leading and trailing edge in the paradigmatic situation of a semi-infinite incompressible and elastic substrate. Interestingly, just by considering this non-local coupling, the model was able to capture a nonmonotonic relationship between the cell velocity and the substrate stiffness and also between the cell velocity and the friction coefficient, both phenomena being observed experimentally. Next we considered a viscous substrate instead, on which the cell propels through the self-organization of its molecular motors. The non-local response of the substrate due to its viscosity is shown to be qualitatively captured by an effective space-dependent coefficient in this case. Compared to the elastic case, the cell exhibited a monotonous decreasing speed with the substrate viscosity, however the traction forces showed a biphasic behaviour with the viscosity. Interestingly, at a vanishing friction and/or viscosity coefficient, cell motility still occurs although the traction forces vanish. This rather counter-intuitive phenomenon has been investigated in depth in the last chapter, by introducing a simple substrate-independent variational model of cell migration. In particular we were able to analytically confirm the critical contractility obtained in chap. 3. The model exhibits a metastable state, in which a small stochastic variation of the stress can induce a cell state switch CELL CULTURE AND SEEDING First, cells were cultured at 37 • C and 5% CO 2 atmosphere. Following growth, they were detached using trypsin-EDTA, resuspended in complete culture medium (RPMI + 10 % FBS + 1 % penicillin-streptomycin) and finally deposited on the gel.

A small drop (50 µL) containing ∼ 2,000 cells was set onto the micropatterned gel surface (1.5 cm × 1.5 cm) bound to the bottom of a Petri dish, and left to adhere for 15 min. Then 2 mL of culture medium were added into the Petri dish. It was then

Appendix D

Stochastic sliding friction

In the present appendix, we investigate the friction of an actin filament sliding at a constant imposed speed v 0 on a compliant substrate from a microscopic perspective using an agent-based model, in order to understand the influence of the substrate stiffness on the local relationship between the actin-induced traction force and the actin retrograde flow velocity. The present approach is based on the stochastic clutch-model [START_REF] Chan | Traction Dynamics of Filopodia on Compliant Substrates[END_REF][START_REF] Sens | Rigidity sensing by stochastic sliding friction[END_REF] described in the general introduction (see chap. 1). In the model developed by [START_REF] Chan | Traction Dynamics of Filopodia on Compliant Substrates[END_REF], the friction relationship we are actually trying to deduce is a priori assumed and follows Hill's law [START_REF] Hill | The heat of shortening and the dynamic constants of muscle[END_REF] and the stiffness of the substrate is approximated by a single spring.

In contrast, Sens, 2013 used an analytical mean-field theory to take into account the displacement of the substrate and deduced non-monotonous actin force-velocity relationship. Whereas in this mean-field theory the attached linkers are assumed to be uniformly distributed, we wanted to computationally investigate the effect of their spatial distribution on the sliding friction. We also proposed an improvement to the method used in classical motor-clutch simulations.

D.1 The model and algorithm workflow

The actin filament is equiped with N uniformly distributed linkers, which can be either attached to the substrate or detached. The configuration of the linker i at time t is given by C i (t) where it is equal to unity if attached, to zero otherwise.

At the start of the simulation, all linkers are assumed to be attached to the substrate, thus the initial condition is given by ∀i ∈ [1, N], C i (0) = 1.

The problem can be formulated as finding the next reaction to occur (binding or unbinding) between the N possible reactions and the time at which it occurs.

At a reaction site, a bond can switch from attached to detached with a rate k -and from detached to attached with a rate k + . The attachment rate k + is assumed to be constant while the detachment rate is force sensitive and follows Bell's law [START_REF] Bell | Models for the specific adhesion of cells to cells[END_REF]. Therefore supposing the i-th linker being attached, the detachment rate at time t reads k - i (t) = k 0 exp ( f i (t)/ f * ) ,

where k 0 represents the unloaded unbinding rate, f i (t) is the force in bond i and f * is the characteristic bond breaking force.

Step 1: The first reaction method The first reaction method introduced by Gillespie, 1976, is an algorithm allowing to predict the next reaction to occur (either bond binding: B or unbinding: U) and the time at which it occurs. First an expression of the probability density p(t, B/U) that a reaction occurs in a defined timespan at a specific bonding site is deduced from the attachment and detachment rates. Next a random value of the next event time t is obtained according to p(t, B/U) using the inversion method. This method consists in computing the cumulative distribution function CDF based on p(t, B/U) and defined as CDF(t) = t t 0 p(t , B/U)dt , representing the probability of an event to occur between two times t 0 and t. Then a random number r is generated from the uniform distribution in the unit interval and the random time of the next event is deduced by inverting CDF t = CDF -1 (r).

This process is repeated for each of the N binding sites and the first reaction to occur is the one having the shortest generated time.

At the reaction site i, the probability at time t 0 that the next event will occur in the differential time interval [t, t + dt] is given by p i (t, B/U)dt = P 0 i (t) • p i (B/U)dt (D.1)

where P 0 i (t) is the probability at time t 0 that no event will occur in the time interval [t 0 , t] at the reaction site i, and p i (B/U)dt is the probability at reaction site i that the event will occur in the next differential time interval [t, t + dt] defined as

p i (B/U) = C i (t 0 )k - i (t) + [1 -C i (t 0 )]k + . (D.2)
Considering once again a Markov chain, the probability at time t 0 that the i-th bond will remain in the same state until t + dt, P 0 i (t + dt), is defined by the product of the probability that its configuration will not change between t 0 and t, P 0 i (t) and the probability that no change will happen between t and t + dt given by 1p i (B/U)dt The probability at the i-th binding site of an event to occur between times t 0 and t i is given by the cumlative distribution function CDF i (t i ) = t i t 0 p i (t, B/U)dt, plugging (D.2) into (D.6) we obtain CDF i (t i ) = -exp -

P 0 i (t + dt) = P 0 i (t
t i t 0 C i (t 0 )k - i (t) + (1 -C i (t 0 ))k + dt , (D.7)
A classical implicit assumption when computationally modeling sliding friction with the help of a Gillespie algorithm, is that the forces within the bonds remain constant between two configuration changes, i.e. during one timestep. However this assumption oversimplifies the problem, because the filament is sliding between two events, therefore the bonds continue to extend and thus the bonds loading rates do not vanish. In the general case, the loading rate within a bond remains constant between two reactions, because the filament is sliding at constant speed, therefore the force within a bond i at time t is given exactly by

f i (t) = f i (t 0 ) + ∂ t f i (t 0 )(t -t 0 ), (D.8)
where f i is the force in the i-th bond and ∂ t f i is the corresponding loading rate.

Plugging this expression of the force into the expression of the mechanosensitive unbinding rate and combining with (D.2), (D.7) becomes

CDF i (t i ) = -exp ( C i (t 0 )k 0 f * ḟi (t 0 ) exp f i (t 0 ) f * exp ḟi (t 0 )(t -t 0 ) f * -1 +[1 -C i (t 0 )]k + (t -t 0 )) (D.9)
Then we deduce the time of the next occurring event at the i-th linker using

t i = CDF -1 (r i ), (D.10)
where r i is a random number generated from the uniform distribution, and we finally obtain

The time of the next reaction at the site i

   t i = t 0 + f * ∂ t f i ln 1 -∂ t f i f * k 0 ln(r i ) exp -f i (t 0 ) f * , if C i (t 0 ) = 1 t i = t 0 + 1 k + ln 1 r i , if C i (t 0 ) = 0. (D.11)
The first reaction occurs at the site k such that the first reaction time t k = min i t i . At the end of this step the time is updated to t 0 := t 0 + t k .

Step 2: The force balance The event type and location obtained from the Gillespie step allows to update the forces in the bonds by performing a force balance.

Assuming a semi-infinite elastic and incompressible substrate, within the small deformation framework the displacement of the substrate at the location of the i-th bond is given by the Boussinesq-Cerruti solution and is the sum of a local contribution due to the force exerted by the i-th bond and a non-local contribution due to the forces of all other bonds

u s i (t 0 ) = N a ∑ j=1 j =i 3 f j (t 0 ) 2πE s |x i -x j | , Non-local contribution + 3 f i (t 0 ) 2πE s a
Local contribution (D.12)

where N a is the number of attached linkers, x k corresponds to the attached position of the k-th bond on the substrate in the undeformed configuration, E s represents the Young modulus of the substrate and a is a cutoff length of the order of the integrin head diameter. Furthermore assuming that the bonds are hookean springs characterized by a stiffness k b and a zero rest length. The filament slides at a constant velocity v 0 , therefore the force in the i-th bond reads D.13) where t b i represents the time at which the i-th linker attached. Thus we deduce another expression of the substrate displacement, The loading rates in the bonds are computed by solving the system (D.16).

f i (t 0 ) = k b [v 0 (t 0 -t b i ) -u s i (t 0 )], ( 
u s i (t 0 ) = v 0 (t 0 -t b i ) - f i (t 0 ) k b . (D.
Using a trapezoidal integration formula, the time-averaged sum of the exerted forces by the bonds on the substrate over one time step is given by

F = 1 t -t 0 t t 0 N ∑ i=1 f i (t )dt = N ∑ i=1 f i (t 0 ) + ∂ t f i (t 0 ) t -t 0 2 .
(D.17)

The computed forces and loading rates become an input for the Gillespie algorithm in order to update the time-dependent unloading rate. The process is iterated until an arbitrary number of simulations.

D.2 The dimensionless problem

Introducing the scaled quantities t = tk 0 , k 

+ = k + /k 0 , f = f / f * , ∂ t f = ∂ t f /( f * k 0 ),
v 0 (t 0 -t b i ) = N a ∑ j=1 j =i 1 k s + 1 k s + 1 k b f i (t 0 ). (D.24)
The forces in the bonds are computed by solving the system (D.15).

By differentiating (D.24) with respect to time, we get

∂ t f = v 0 / N a k s + 1 k b (D.25)
We observe that, in this simplified representation the loading rate is identical in each and every bond, because all the bonds are linked at both ends to the same moving rigid surfaces. and the simplified model (red) on a soft and on a stiff substrate. In both cases, the two models deliver similar results, meaning that the non-locality does not play a significant role in this specific case. Therefore the approximation made by [START_REF] Chan | Traction Dynamics of Filopodia on Compliant Substrates[END_REF] to model deformation of the substrate by a single spring is quite accurate when modeling stochastic sliding friction.

D.5 Conclusion

In this part we investigated the friction of an actin filament sliding at constant speed on a compliant substrate using a method based on the stochastic clutch-model [START_REF] Chan | Traction Dynamics of Filopodia on Compliant Substrates[END_REF][START_REF] Sens | Rigidity sensing by stochastic sliding friction[END_REF], in order to understand the influence of the substrate stiffness on the local relationship between the actin-induced traction force and the actin retrograde flow velocity. We developed a computational model, that takes into account the local deformations of the substrate and proposed an improvement to the stochastic algorithm by considering time-dependent unloading rates. The results were in good agreement with Sens, 2013, as we obtained the expected force-velocity biphasic relationship. We showed that the domain of validity of the viscous friction law (1.7) depends on the stiffness of the substrate, being wider for softer substrate.

We also showed the equivalence of this model with a simplified model, which integrates the compliance of the substrate with a single spring, suggesting that the non-local effects are not meaningful when considering the sliding friction of a passive rigid filament at the scale of focal adhesion.

It would be interesting to compare this model with the classical model (timeindependent unloading rates) in order to confirm (or not) its relevance.
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 1 FIGURE 1.3: Myosin active actin-crosslinking (Juanes-García, Llorente-González, and Vicente-Manzanares, 2018)
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 1 FIGURE 1.5: Constitution of a focal adhesion (Dufort, Paszek, and Weaver, 2011).
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 16 FIGURE 1.6: Schematic representation of the mechanical reciprocity with a positive feedback loop between[START_REF] Geiger | Environmental sensing through focal adhesions[END_REF]).
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 1 FIGURE 1.7: Cell on a soft substrate (left) and on a stiff substrate (right) (Discher, Janmey, and Wang, 2005).
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 18 FIGURE 1.8: Motor-clutch model on stiff and soft extracellular matrix
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  FIGURE 1.9: Cell motility steps
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 22 FIGURE 2.2: Displacement u 0 of the substrate induced by the actin velocity field v = v 0 corresponding to a static configuration. The dashed lines indicate the normalized cell fronts. Parameters are = 0.2 and ∆V = 1.

  FIGURE 2.3: (a) Normalized value of the increase of velocity due to a small deformability of the substrate as a function of the slippage coefficient of the cell with respect to the substrate. (b) Asymptotic regimes for large and small α as obtained by formulas (2.22). Parameter ∆V = 1.
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 2124 FIGURE 2.4: Crawling velocity in the limit γ 1 as a function of . (see (2.23)). The dashed line represents the asymptotic value V = V m + ∆V/4. In inset, we show the traction forces exerted on the substrate rescaled by γ and the substrate displacement for some values of . The traction forces display a square root singularity at the trailing edge x = -1. Parameters are ∆V = 1 and V m = 1.5.
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 25 FIGURE 2.5: Dependence of the crawling velocity of the substrate softness. (a) V -V m as a function of γ displays a biphasic dependence in a realistic range of γ (see Table2.1). For larger γ, the velocity increases again to reach its asymptotic value given in Fig.2.4. The dashed line represents the slope of the curve for small γ given by (2.21). Traction forces exerted on the substrate (b) and substrate displacement (c) for several values of γ. Parameters are = 0.2, α = 0.1, ∆V = 1 and V m = 1.5.
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 1111 FIGURE 2.6: Dependence of the crawling velocity on the slip coefficient with the substrate. (a) shows the biphasic regime as a function of α. Traction forces (b) and substrate displacements (c) are given for some specific values of α. Parameters are = 0.2, γ = 0.02, ∆V = 1 and V m = 1.5.
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 2 Fig. 2.6 where both the magnitude of the traction forces and their mechanical work
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 28 FIGURE 2.8: Fluorescent cell (actin in cyan) migrating on a fibronectin track (red) w ∼ 13 µm on a gel with embedded beads (dark blue).

  FIGURE 2.10: Estimation of the friction coefficient ξ from the experimental data for three different substrate rigidities (5 kPa, 8 kPa, 28 kPa). Over one sequence (15 frames with a 5s timestep), the measured actin velocity is represented using 40 blue boxplots and the measured substrate displacement under the cell using 40 red boxplot. Each boxplot is computed considering all the data points in 1/40 of the cell. The blue line represents the linear regression of the measured actin velocity over the sequence. The red line is the predicted substrate displacement obtained using our model (2.26), where the value of ξ is extracted by performing a least square minimization between the predicted (red line) and measured (red boxplots) substrate displacements.
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 31 FIGURE 3.1: Representation of the three first M i for = 0.1. Domination of M 0 over the other moments in the loaded region.

  the interaction between cell and substrate by incorporating the transport equations of integrin in order to simulate the process of adhesion maturation (see Fig 3.6a), and as Lelidis and Joanny, 2013, who used discrete focal adhesions on a viscoelastic substrate (see Fig 3.6b).

  FIGURE 3.6: (A) Integrin distribution under the cell (Novak et al., 2004) (B) Effective friction coefficient obtained by Lelidis and Joanny, 2013 using a discrete approach of the contact between the cell and a viscoelastic substrate.

  3.7). (3.21) 1 imposes, that the quantities σ and c should be evaluated at the same nodes. The cell is discretized in n elementary volumes, where σ and c are evaluated at the center of each volume and at the interfaces, the velocity and fluxes.

  .22) where (.) k i represents the discretized value of a dummy quantity at the node i and time k.

  FIGURE 3.7: Representation of the scattered regular grid used for the discretization of (3.21). The cell, ranging from x = -1/2 to x = 1/2, is discretized in n elementary volumes. The internal stress σ is computed using a finite difference method and c using a finite volume method and are evaluated at the same nodes. The cytoskeleton retrograde flow speed v is deduced from σ also using a centered finite difference method, and thus is evaluated at the volumes interfaces. The discretization of the boundary conditions is achieved using periodic boundary conditions on σ (blue), while the zero flux condition at both cell ends remains a condition on the flux when discretized (red).

  FIGURE 3.8: Three dimensional representation of the bifurcation frontier between the static and motile cell state in the (S, Z, P ) domain.

  FIGURE 3.9: Two-dimensional representation of the phase diagram in the plane (Z, S) at P = 18.0.

  FIGURE 3.10: (Left) Evolution of the steady-state cell velocity with the substrate viscosity. The cell is moving slower on soft substrates than on rigid ones. At Z = 5.0, the cell remains in the mobile domain. Two plateaus form at both the rigid (S → 0) and the inviscid (S → ∞) limits, suggesting a domain of cell sensitivity to the substrate viscosity in between. At Z = 7.0, the cell crosses the frontier between the static and mobile state at a critical value of the substrate viscosity. For Z = 0.1, we observe a shift in the monotony, due to a numerical artefact. (Right) Highlight of the chosen simulation points in the rigid (blue), mechanosensitive (red) and inviscid domain (green).

1 FIGURE 3

 13 FIGURE 3.11: Representation of the concentration of motors c, the internal stress σ, the cytoskeleton velocity v and the traction force T in the rigid (blue), mechanosensitive (red) and inviscid domain (green). (Top-Left) Representation of the motors distribution inside the cell.The motors concentrate at the back of the cell. As the substrate gets more viscous, the distribution becomes less peaked. (Top-Right) Representation of the stress inside the cell. In the mechanosensitive domain, σ exhibits higher peaks. At the inviscid limit, there is almost no fluctuations of the internal stress, such that σ(x) = P. (Bottom-Left) Representation of the traction force exerted by the cell on the substrate. The traction is maximal at the cell ends. At S 1, the traction force vanishes as the cell can not grip. This figure suggests a non-monotonous behaviour of the traction force at the edges with S. (Bottom-Right) Representation of the actin retrograde flow velocity inside the cell. The magnitude of the retrograde flow is greater at small S, as the S-induced friction is lower, thus the cell speed, corresponding to v at the edges follows the same tendency.

  FIGURE 3.12: Representation of the effective friction coefficient in the rigid (blue), mechanosensitive (red) and inviscid domain (green). The inviscid limit is equivalent to the frictionless one.

FIGURE 3

 3 FIGURE 3.13: Evolution of the traction force at the edges of the cell T ± with the substrate viscosity. There is an optimal substrate viscosity at which the traction force reaches a maximum. (The dashed lines are just guides for the eye.)

  FIGURE 3.14: (a) Representation of the isolines Z f = κ (solid lines) in the plane (S, Z ). (b) Isoline Z f = 4 in the bifurcation plane (Z, S) at P = 18. This isoline lies in the mobile domain. The targets on this line represent the three chosen simulation points.
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 3 FIGURE 3.15: Representation of the local quantities c, v and σ at the selected points of the isoline Z f = 4. There is a good match of the quantities on the isoline.

  FIGURE 3.16: (a) Apposition of the profile V(S ) (blue circles) with Z f (S) (red dashed line). This result explains the behaviour of V(S ) as it exactly follows the shape of Z f (S). (b) The simulated bifurcation line (blue circles) is accurately fitted by the isoline Z f = Z * (P = 18).

  (4.2) and (4.3) and using condition (4.5), we obtain the following formula directly relating the velocity and the first moment of the distribution of motors

FIGURE 4 . 1 :

 41 FIGURE 4.1: Three first bifurcations from the homegeneous state for r = 0. (a) and (b) are bifurcation diagrams for the quasi-potential and the cell velocity. They have a pitchfork supercritical structure. Black dots localize the bifurcation points. (c) and (d) show the profiles of c and w for some special points labeled with the corresponding colored circles on (a) and (b). Full lines correspond to locally stable branches or solutions while dashed lines are locally unstable

FIGURE 4 . 2 :

 42 FIGURE 4.2: Structure of the first bifurcation from the homogeneous state for r = 3. (a) and (b) are bifurcation diagrams for the quasipotential and the cell velocity showing the subcritical nature of the bifurcation. The black dot localizes the first bifurcation point and the red dot the turning point. The thin dotted vertical lines represent the domain where both the static and motile configurations are locally stable. (c) and (d) show the profiles of c and w for some special points labeled with the corresponding colored circles on (a) and (b). Full lines correspond to locally stable branches or solutions while dashed lines are locally unstable.

FIGURE 4 . 3 :

 43 FIGURE 4.3: Phase diagram in the parameter space (P, r) characterizing the steady state of system (4.1). The black line is the locus of the first bifurcation point and the red line the one of the turning point along the first bifurcating branch (when it exists). The black dashed line represents a "Maxwell line". Above this line, the homogeneous solution is the global minimum of the Lyapunov functional F while below this line, it is the non-trivial polarized solution.

FIGURE 4 . 4 :

 44 FIGURE 4.4: Effect of stochastic fluctuations on the cell metastable dynamic defined by system (4.8). (a) Probability densities of the distribution of velocity of a moving cell in four typical cases: in red the static configuration is the only steady state of the deterministic cell dynamic, in green both static and motile states are locally stable but the static state is the global minimum of the quasi-potential, in blue the motile state becomes the global minimum and in black only the motile state is locally stable. (b) shows samples of the velocity dynamic in the four cases. Parameter r = 3 and parameters defining the noise are Θ = 0.01 and e = 0.001. The simulations to obtain the probability densities start from the homogeneous distribution and are run over a non-dimensional time of 1000. The transient state is removed and the distributions are symmetrized with respect to V = 0 to minimize the computation cost.
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 1 FIGURE A.1: Dependence of the crawling velocity on (a) the substrate softness γ and (b) the substrate slip coefficient α for both the exponential and elastic interaction kernel with the substrate. Parameters are = 0.2, ∆V = 1 and V m = 1.5.
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 111 FIGURE D.2: Evolution of the mean traction force with the substrate rigidity.

  FIGURE D.3: Force-velocity relationship comparison between the previous (blue) and the simplified model (red)

  

  

  

  

Table 2

 2 

	Chapter 2. The influence of substrate elasticity on cell polymerization-driven
			crawling
	name	symbol	typical value
	cytoskeleton viscosity	η	100 kPa s (J ülicher et al., 2007; Rubinstein et al., 2009)
	contractility	χc 0	1 kPa (J ülicher et al., 2007; Rubinstein et al., 2009)
	friction coefficient	ξ	10 Pa s µm -1 (Kruse et al., 2006; Barnhart et al., 2011)
	lamelipod height	h	1 µm (Kruse et al., 2006)
	cell length	L	50 µm
	(de)polymerization velocities v ±	0.2 µm s -1 (Larripa and Mogilner, 2006; Kruse et al., 2006)
	substrate stiffness	E s	10 kPa
	track width	δ	5 µm
	characteristic length	L/2	25 µm
	characteristic time	η/(χc 0 )	100 s
	characteristic velocity	χc 0 L/(2η)	0.25 µm s -1
	characteristic stress	χc 0	1 kPa
	track slenderness	= 2δ/L	0.2
	hydrodynamic coefficient	α = 4ηh/(ξ L 2 )	0.1
	substrate softness	γ = 3hχc 0 /(πLE s )	0.02
	turnover asymmetry	∆V	

.1 some rough estimates of the various rheological coefficients entering the model. One should however bear in mind that these coefficients can vary over several orders of magnitude depending on the biological conditions

TABLE 2 .

 2 1: Rough estimates of the material coefficients, characteristic scales and dimensionless parameters definitions. Some parameters are subjected to several orders of magnitude variations.

  96, 96.7, 97.5 and 100. The two central values correspond to a metastable regime, see Fig. 4.2, where either the static state or the motile state is the global minimum of

	1/2	
	-1/2	σ s (y , t)dy
	such it has a zero spatial average.	

Next, we choose r = 3 and numerically simulate (4.8) for four values of P =

  The forces in the bonds are computed by solving the system (D.15).By differentiating (D.15) with respect to time, we obtain a similar system of N a

	equations in ∂ t f								
	v 0 =	N a ∑ j=1	3∂ t f j (t 0 ) 2πE s |x i -x j |	+	3 2πE s a	+	1 k b	∂ t f i (t 0 ).	(D.16)
		j =i							
										14)
	Equating (D.12) and (D.14) gives				
	v 0 (t 0 -t b i ) =	N a ∑ j=1	3 f j (t 0 ) 2πE s |x i -x j |	+	3 2πE s a	+	1 k b	f i (t 0 ).	(D.15)
				j =i					

may be of interest for future work in this direction.

Remerciements

Appendix A

Interaction kernel with the substrate with exponential decay

We formulate the new problem where we replace the expression of Φ in (2.16) by Φ exp (x) = Ae -|x| where we set the constant

With such exponential kernel, system (2.16) can be written in differential form:

with boundary conditions

and the unknown velocity is still fixed by the condition

System (A.1) is a fourth order boundary value problem with a free parameter V that is set by the previous condition. Solving this problem using a continuation method, we construct the V(γ) and V(α) curves that we superimpose with their analogue for the elastic kernel Φ on In order to prepare hydroxy-PAAm gels to be coated with fibronectin for cell adherence, it is necessary to use acrylamide (AAm) mixed with N-hydroxyethylacrylamide (HEA) monomers. The latter contains HO groups that can form a hydrophilic network (see Fig. B.1). Then using bis-acrylamide as a crosslinker and TEMED/APS for catalysis, rapid polymerization of acrylamid monomers is obtained [START_REF] Grevesse | Preparation of hydroxy-PAAm hydrogels for decoupling the effects of mechanotransduction cues[END_REF][START_REF] Abidine | Mechanosensitivity of cancer cells in contact with soft substrates using AFM[END_REF].

Here, we used the protocol explained in [START_REF] Abidine | Mechanosensitivity of cancer cells in contact with soft substrates using AFM[END_REF] We prepared solutions by mixing acrylamide (30% weight per weight [w/w]), N-hydroxyethylacrylamide (5.85% w/w), and N,N-methylene-bisacrylamide (2% w/w) in different amounts (Sigma-Aldrich, St. Louis, MO). Three concentrations of bis-acrylamide were used (0.1, 0.3, and 0.6 %), with the acrylamide (3.2%) and N-hydroxyethylacrylamide (1.25%) contents remaining fixed in the final HEPES solution (50 mM).

Gels were 70 µm thick with an area 1.5 cm × 1.5 cm, and were prepared on a glass slide (pre-treated with 3-Aminopropyl-triethoxysilane, APTMS) glued at the bottom of a Petri dish.

The gel rigidity should be chosen as a compromise between the stiffness in physiological conditions and the sufficiently large displacements to be measured in soft gels (on the order of a few µm). Values of elastic modulus (E) between 5kPa and 30 kPa were found to be adequate [START_REF] Peschetola | Time-dependent traction force microscopy for cancer cells as a measure of invasiveness[END_REF]. The elastic Young moduli of the three hydrogels were measured using an Atomic Force Microscope (JPK AFM, NanoWizard II, Berlin) in contact mode, equipped with MLCT cantilevers (pyramidal tips, stiffness 0.01 N/m, Bruker). Five different locations were selected and 5x5 elasticity maps were performed at each location. The values were obtained using the classical relationship

where F is the applied force, ν ∼ 0.5 is the Poisson ratio, θ the half-pyramid angle, and δ is the indentation. The resulting elastic moduli were found to be 5 ± 1 kPa, 8 ± 1.5 kPa and 28 ± 3 kPa. This is shown in For the preparation of patterns on PDMS, we first made a silicon master using optical lithography with a negative photoresist. Optical lithography is a photographic possible to observe them individually under the microscope using the green channel (FITC) of the fluorescence microscope.

LIVE CELL MICROSCOPY

We used an Olympus IX83 inverted microscope equipped with a Hamamatsu Camera (Orca G) to capture fluorescent images in green (FITC), blue (DAPI), and red (TRITC). Thus, it is possible to capture fluorescence of the actin cytoskeleton using the green channel (FITC), and the beads fluorescence within the substrate via the blue channel (DAPI) of the microscope. TRITC was only used in a few cases to check the track width, using rhodamin fibronectin (Cytoskeleton, Inc.).

The microscope is equipped with the possibility to program the image acquisition mode (CellSens TM ). The loop we chose allowed to quickly capture two images (green and blue). It is important to select the appropriate image frequency, since we need to capture fast actin polymerization but we should not expose the cells to too much light (phototoxicity). Our loop was a series of 15 pairs of images (FITC then DAPI) taken every 5 seconds, then a 15-minute pause was held before starting a new series of images. Thus actin fibers and beads could be followed over short periods of time during cell migration for about 30 minutes.

At the end of the experiment, we added trypsin to the Petri dish to detach the cells from the substrate. After waiting for 15 min, the last beads image was captured to obtain the initial beads position when the gel is in a rest state. Finally, series of FITC and DAPI images could be treated using image processing in Matlab TM and Fiji TM software for tracking beads and PIV analyses of actin motion.

IMAGE PROCESSING

Image acquisition

In this work, a code formerly written [START_REF] Mireux | Migration cellulaire Expérimentale: force de traction et flux d'actine[END_REF][START_REF] Jahangiri | 1D migration of cancer cells on soft substrates: experiments and theory[END_REF] was improved.

The initial code is divided into four main parts. It reads 16-bit images taken from the microscope and converts them into a data sheet. Next, it finds the cell, produces masks at different times and calculates cell contours. Then, it finds the beads and follows their movement in time. Finally, it selects the beads under the cell and calculates the total displacements of beads (DAPI) between the rest state and the present configuration of the gel.

Due to the addition of trypsin to detach cells and also possible shifts of the camera (thermal changes), it was necessary to rewrite the code in order to process images. Here, the DAPI images (15 DAPI images taken every 5 seconds + DAPI image taken after adding trypsin to the Petri dish) as blue color and FITC images (15 FITC images taken every 5 seconds + blank image corresponding to the absence of cell on the substrate) as green color were merged. Then we used the StackReg plugin [START_REF] Thévenaz | StackReg[END_REF] in the Fiji software to shift all images in order to correct for any camera shift. The idea of this plugin is to align or match a stack of images. When the plugin has finished, the current slice works as a global anchor.

Then by separating the blue component from the green one, we could track beads in time using the DAPI images (saved as blue color images) and achieve PIV (Particle Image Velocity) measurements on FITC images (saved as green color images).

Tracking Beads

By using a previously written Matlab code [START_REF] Mireux | Migration cellulaire Expérimentale: force de traction et flux d'actine[END_REF], we could find bead positions at each time (for example DAPI images at t 0 and t 1 in Fig. 

Actin and PIV

We found Particle Image Velocimetry (PIV) to be a suitable technique to estimate the actin velocity. In general, PIV is an optical technique of flow visualization used to obtain instantaneous velocity measurements and related properties in fluids. Basically, a pair of images is divided into smaller areas named interrogation windows. The cross-correlation between these image sub-regions measures the optical flow (incremental displacement or velocity of the objects) between the two images. To improve resolution, higher PIV resolution can be achieved by progressively decreasing the interrogation window size Tseng, 2014. The PIV analysis was conducted using the MATLAB tool "PIVlab" Thielicke and Stamhuis, 2014, typical 

Registration of DAPI & FITC Stack

Merge both channels into one to align the stack of image slices using StackReg.

Cell Contouring

Perform cell contouring, generate masks of the cell, compute the major (cell length) and minor axis (cell width).

Beads Tracking

Identify beads, evaluate their positions at each timestep and deduce their trajectories.

Quantification of Actin Velocity

Compute the actin velocity between two consecutives frames using PIV.

Projection of Actin Velocity Projection of the actin retrograde flow velocity

field along the major axis of the cell.

Projection of Substrate Displacement

Projection of the substrate displacement along the major axis of the cell.

Model Parameter Extraction

Evaluate the friction coefficient using a least-square method.

Actin Velocity Data-Fitting Fit the actin velocity using a linear regression.

DAPI Acquisition FITC Acquisition

Actin Velocity Average Average the linear approximation of the actin velocity over all selected frames.

DAPI After Trypsin Acquisition

Substrate Displacement Zeroth-Order Approximation FIGURE B.8: Post-processing method to extract the friction coefficient ξ from the experimental data.

Appendix C

Technical results

C.1 Normal forms of the solutions bifurcating from the homogeneous solution

The steady states of (4.1), for which ∂ t c = 0 correspond to the solutions of the equation

with Neumann boundary conditions at y = ±1/2. Eq. (C.1) has the homogeneous solution c ≡ 1. From this solution, non-trivial solutions bifurcate at specific values of P. These bifurcation points and the behavior of the bifurcating solutions can be investigated by plugging a Taylor expansion of c and P in Eq. (C.1), c(y, t) = 1 + c 1 (y) + 2 c 2 (y) + 3 c 3 (y) + ... (C.2)

where the L 2 norm of the c i is fixed to one and is a small parameter.

At first order we find that the operator

with Neumann boundary conditions becomes degenerate at the values of P 0 indexed by the integer k ≥ 1:

The smallest value of P 0 corresponding to k = 1 is denoted P c . At each P k 0 , a solution bifurcates along the two symmetric eigenvectors

Appendix C. Technical results

At the second order in , we obtain using the Fredholm alternative that P k 1 = 0 and

Finally, the value of P k 2 fixing the local nature of the bifurcation is classically given by the third order expansion:

Taking the simple form f (c) = 1 + rc 2 where r is a non-dimensional parameter fixing the strength of the steric hindrance, we obtain

which is positive for r < r c = (7 + √ 57)/12 indicating a super-critical pitchfork bifurcation while it becomes negative when r > r c indicating a sub-critical pitchfork bifurcation.

C.2 Local stability

The local (or linear) stability of a certain steady state c eq (y) is given by the second variation of F at this point. Based on the expressions of E and S, we obtain the following quadratic form:

s (c eq (y))h(y) 2 dy.

If δ 2 F is strongly positive for all test functions h that satisfy the Neumann boundary conditions at ±1/2 and the constraint The local stability of the homogeneous solution c eq (y) ≡ 1 can be resolved analytically since the solution of (C.4) is explicit in this case and we obtain:

where k ≥ 1 is a positive integer. It therefore exists at least one negative eigenvalue as soon as P > P c indicating the loss of local stability of the homogeneous solution past the first bifurcation point.

For the non-homogeneous branches, it is not straightforward to solve (C.4) and we investigate the local stability properties numerically by using the test function

in (C.3). We thus have to test the positivity of the eigenvalues of the symmetric matrix δF = δE -P δS with

y)dy

and where δ ij is the Kronecker symbol and i, j are integers in 1..Q.

where L and K are two dimensionless numbers defined as

the ratio between the bond failure length and the cut-off length a and

represents the ratio between the bond rigidity and substrate rigidity.

D.3 Results

In fig. D.1, we show the evolution of the time-averaged traction force with the sliding velocity for a stiff K = 0.5 and a soft substrate K = 100, where each dot represents a simulation. On both rigidities the relationship between the force and the velocity is biphasic. This result is in qualitative agreement with Sens, 2013. On a soft substrate the shift in monotony occurs much later than on a stiff substrate, indeed it is located at v 0 3000 for K = 100 and at v 0 50 for K = 0.5. Throughout this work, we assumed a viscous friction law (1.7) to model the cell-substrate interaction, which is valid at sufficiently low speed, as illustrated here. Interestingly this domain of validity is extended as the substrate becomes softer, meaning that for very soft substrate the assumption of linear friction law could be always valid. At v 0 = 20, the force is monotonically increasing with the substrate rigidity, however at v 0 = 100, the relationship becomes biphasic, meaning that the force transmission is maximal at an optimal substrate rigidity. These results are also in qualitative agreement with [START_REF] Sens | Rigidity sensing by stochastic sliding friction[END_REF]