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Abstract
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Doctor of Philosophy

Influence of the substrate rheology on cell crawling

by Haythem CHELLY

The mechanical scaffold of most eukaryotic cells is constituted of a cross-linked
biopolymer meshwork that forms a skeleton connected to the substrate by dynamic
bonds. Using energy derived from their metabolism, cells have the ability to move
on various surfaces by self-organizing molecular motors (i.e. active cross-linkers)
to produce traction forces and restructure their skeleton through a chemical tread-
milling process. Such crawling motion can largely be affected by the physical na-
ture of the substrate. Part of this interaction is due to the chemical affinity between
the proteins insuring the cell adhesion and the substrate coating proteins. In the
presence of traction forces applied by the cell skeleton, the ensuing bonding and
debonding process leads to a complex effective friction law between the cell and its
substrate over the long timescale relevant for cell motility. However, the substrate
mechanical deformation also plays an important role as it feedbacks on the traction
forces and thus restructures the cell skeleton flow. To illustrate some principles of
this mechanical reciprocity, we investigate three prototypical situations where the
effective friction law is considered in its simplest linear form but the substrate is
allowed to deform. First, we analyze the case of a cell moving on a linear elastic sub-
strate and show that even in the context of a linear friction, the global velocity of the
cell depends on the substrate stiffness in a non-linear biphasic fashion. Second we
consider a cell moving on a viscous substrate and characterize the renormalization
of the effective linear friction by the substrate viscosity. Finally, we show that the
limit of a vanishing friction coefficient leads to a generic cell motion that is indepen-
dent of the substrate rheology and has a variational structure. The dynamics of the
cell in this context can thus be viewed as minimizing a certain quasi-potential. With
such tool, we characterize the metastability of cell substrate-independant cell crawl-
ing and show that cells can alterante their gait in the presence of a small biological
noise.
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Résumé
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Doctorat

Influence de la rhéologie du substrat sur la motilité cellulaire

par Haythem CHELLY

La structure mécanique de la plupart des cellules eucaryotes est constitué d’un mail-
lage de biopolymères réticulés qui forme un squelette relié au substrat par des li-
aisons dynamiques. En utilisant l’énergie dérivée de leur métabolisme, les cellules
ont la capacité de se déplacer sur diverses surfaces en auto-organisant des moteurs
moléculaires (c’est-à-dire des réticulateurs actifs) pour produire des forces de trac-
tion et restructurer leur squelette par un processus chimique de ”treadmilling”. Ce
mouvement de reptation peut être largement affecté par la nature physique du sub-
strat. Une partie de cette interaction est due à l’affinité chimique entre les protéines
assurant l’adhésion des cellules et les protéines de revêtement du substrat. En présen–
ce de forces de traction appliquées par le squelette cellulaire, le processus d’attache–
ment et de détachement qui s’ensuit conduit à une loi de friction effective com-
plexe entre la cellule et son substrat sur une échelle de temps longue pertinente
pour la motilité cellulaire. Cependant, la déformation mécanique du substrat joue
également un rôle important car elle rétroagit sur les forces de traction et restructure
ainsi le flux du cytosquelette. Pour illustrer certains principes de cette réciprocité
mécanique, nous étudions trois situations prototypiques où la loi de friction effec-
tive est considérée dans sa forme linéaire la plus simple mais où le substrat peut
se déformer. Premièrement, nous analysons le cas d’une cellule se déplaçant sur
un substrat élasti–que linéaire et nous montrons que même dans le contexte d’une
friction linéaire, la vitesse globale de la cellule dépend de la rigidité du substrat
d’une manière biphasique non linéaire. Ensuite, nous considérons une cellule se
déplaçant sur un substrat visqueux et caractérisons la renormalisation de la friction
linéaire effective par la viscosité du substrat. Enfin, nous montrons que la limite
d’un coefficient de friction nul conduit à un mouvement cellulaire générique qui est
indépendant de la rhéologie du substrat et possède une structure variationnelle. La
dynamique de la cellule dans ce contexte peut donc être vue comme la minimisa-
tion d’un quasi-potentiel. Avec un tel outil, nous caractérisons la métastabilité de la
réptation cellulaire indépendante du substrat et montrons que les cellules peuvent
modifier leur démarche en présence d’un petit bruit biologique.
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Pierre, et que je sois le premier doctorant que tu encadres, tu t’es investi pleinement
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ma première propriétaire a voulu m’extorquer de l’argent, ni une ni deux, qu’on se
retrouvait dans ta voiture et que tu lui mettais un coup de pression. Tu as passé beau-
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Jocelyn, de m’avoir encadré et d’avoir été si patient avec moi, je me rends compte de
la chance que j’ai eu de vous avoir en tant qu’encadrants.
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1

Chapter 1

Introduction

1.1 Context, background importance of the topic

Cell migration is essential in a wide range of physiological and pathological pro-
cesses, as morphogenesis, wound healing, tumor metastasis and immune response.
Therefore understanding cell motility is critical to develop adequate treatments to
cure cancer metastasis, to design new matrices for regenerative tissue engineering
and to engineer microcrawlers to achieve localized drug delivery.

1.1.1 The cytoskeleton

The cell can be roughly considered as constituted by a membrane containing, the
cytoplasm, a nucleus and a cytoskeleton. The cytoskeleton represents the cell ma-
chinery responsible of its mechanical behavior, and is constituted of a meshwork of
filamentous proteins that regulates the cell shape, morphology, stiffness, mechanical
stability and drives its motility. Three different types of biopolymers compose the
cytoskeleton filamentous network, namely actin filaments, intermediate filaments and
microtubules (see Fig. 1.1).

The actin cytoskeleton is of primary importance in the cell motility and is the
only one considered in this work. The polymerization of actin monomers, called
G-actin, induces the formation of the two-stranded helical polymers constituting the
actin filaments or F-actin. The polymerization of G-actin is an active process, as
many other phenomena occurring within the cell, meaning that energy is needed in
order for the process to take place at the rates observed in living cells. This energy
is produced within the cell by the hydrolysis of adenosine triphosphate (ATP). The
actin filament is polarized as it exhibits a plus and minus end, respectively the barbed
and pointed end, where the plus end growth is faster than the one of the minus end
(Molecular biology of the cell. 2008). This growth discrepancy between the two ends
gives rise to a treadmilling phenomenon at steady-state, where the polymerization
rate at the plus end compensates the depolymerization rate at the minus end. Thus
the treadmilling motion constitutes a depolymerization/polymerization-driven mo-
tion at constant filament length. Filaments themselves can organize into a highly
cross-linked planar protrusion located at the cell leading edge, called lamellipodium,
as well as in dorsal- ventral stress fibers, which are basically thick cables of F-actin that
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FIGURE 1.1: Schematic representation of a cell and its constituants
(Seetharaman and Etienne-Manneville, 2020).

FIGURE 1.2: Arcs dynamics in a crawling cell (Burnette et al., 2014)

exerts traction force on the substrate through anchoring points or in actin arcs that
linked dorsal stress fibers together (see Fig. 1.2).

Other essential components of the cytoskeleton are myosin II molecular motors,
which are categorized as such, because they convert the chemical energy obtained
from ATP hydrolysis into a power-stroke mechanical work. A motor is made of a
head and a tail and can assembles with other motors by the tail to form a bipolar fila-
ment with heads at both ends of the assembly. The motors are either freely diffusing
in the cytoplasm or cross-linking two actin filaments. When attached, the heads of a
bipolar filament experience a conformational change creating a power stroke which
induces parallel sliding of the cross-linked actin filaments (see Fig. 1.3). The molec-
ular motors are the cause of cell contractility, which is a keystone of the cell motility
along with the previously mentioned polymerization.
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FIGURE 1.3: Myosin active actin-crosslinking (Juanes-Garcı́a,
Llorente-González, and Vicente-Manzanares, 2018)

1.1.2 Influence of the ECM mechanical properties on cell functions

Abundant evidence shows that the extracellular matrix (ECM) can no longer be con-
sidered only as a rigid structure simply supporting cell migration. Instead it is now
clear that the mechanical properties of the ECM significantly influence a range of cell
functions. Therefore cell dynamics cannot in general be considered independently
of the substrate when studying its migration for example. A few examples of such
complex interplay between the cell and the matrix are listed below.

During the process of embryogenesis, stem cells evolving on soft matrices differ-
entiate into a neurogenic lineage (neuron-like), on rigid matrices they differentiate
into an osteogenic lineage (bone-like), while at intermediate elasticity they differ-
entiate into a myogenic lineage (muscle-like) (Engler et al., 2006). Another general
effect is the preferred cell migration from zones of lower substrate rigidity to zones
of higher substrate rigidity following a process called durotaxis (Lo et al., 2000). Fur-
thermore, Peyton and Putnam, 2005 showed that cells exhibit maximal velocity at an
intermediate matrix stiffness. Later on, Reinhart-King, Dembo, and Hammer, 2008
discovered a mechanical communication process between two or more cells through
a two dimensional compliant substrate. They found that cells react to substrate de-
formations induced by the traction forces exerted by neighboring cells and trans-
mitted via the substrate. Therefore the more compliant the substrate is, the wider
the communication range is. These results were later on also confirmed in a three
dimensional extracellular environment (Ma et al., 2013). Finally, Solon et al., 2007
linked the cell’s internal stiffness to the one of the substrate, as on soft matrices the
cell rigidity matched the substrate one while it reached a plateau above a substrate
rigidity threshold (∼ 20 kPa).

These examples constitute strong evidence that the mechanical properties of the
ECM has an impact on a wide variety of cell functions and also suggest that the
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cell is able to sense its mechanical environment (mechanosensing) and adapt its re-
sponse accordingly. This dynamic bidirectional interaction between the cell and the
ECM, consisting of sensing the mechanical cues, then transmitting them (mechan-
otransduction) to the cell to finally adapt its behaviour according to these physical
cues, is termed as mechanoreciprocity or mechanical reciprocity (Roskelley and Bissell,
1995; Dado and Levenberg, 2009; Schultz et al., 2011; Van Helvert, Storm, and Friedl,
2018).

A disruption in the mechanical reciprocity pathway, whether in the mechanosen-
sors, the mechanotransducers or the actuators (the module or component actively
governing the mechanical response of the cell, such as the cytoskeleton, the adhe-
sions...), can provide pathological conditions to the triggering or expansion of dis-
eases, such as cancers and cardiovascular diseases among others. An abnormal re-
sponse to physical cues can also be the cause of developmental disorders, such as
Hutchinson-Gilford progeria syndrome, characterized by a dramatically fast ageing
(Dufort, Paszek, and Weaver, 2011). Cancers are often associated with fibrosis, an
excessive formation of extracellular matrix, and is proven to be an important factor
in its initiation, growth and metastasis (Haak, Tan, and Tschumperlin, 2018). During
wound healing or inflammation, myofibroblasts restore the mechanical integrity of
the tissue and in the physiological conditions they should revert to their initial phe-
notype (fibroblasts) or eventually die, by detaching themselves from the substrate
(anoikis), as soon as the homeostasis is reached. However, when they fail to correctly
interpret or respond to the mechanical cues of the ECM, myofibroblasts do not revert
to fibroblasts, instead they further differentiate into a much more active phenotype
than myofibroblasts, referred to cancer-associated fibroblasts (Chandler et al., 2019),
which will contribute to excessive stiffening of the ECM by producing even more
ECM proteins. This is one reason why tumors are stiffer than healthy tissues. The
feedback loops associated with physiological and pathological behaviour of fibrob-
lasts in case of disruption of the tissue mechanical integrity are represented Fig. 1.4
(Humphrey, Dufresne, and Schwartz, 2014). Because cancer mimics the chronic in-
flammation it is referred to as a ”wound that does not heal” (Dvorak, 1986; Schäfer
and Werner, 2008).

As discussed above, because of the mechanical reciprocity, increased ECM stiff-
ness is a catalyst of various diseases. Based on this observation a new and promising
field of the medicine has emerged, the mechanomedicine. It aims at providing a ther-
apeutic treatment, by either targeting the ECM mechanical properties or by altering
the mechanoreciprocity pathway (Lampi and Reinhart-King, 2018).

1.1.3 Focal adhesion: main actor of the mechanoreciprocity

As mentioned above, the mechanical reciprocity first relies on the mechanosensing.
If the cell is unable to feel its mechanical environment, obviously it can not adapt to
it. The main sensing machinery of the cell lies at the contact between the cell and its
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FIGURE 1.4: Tensional homeostasis disruption (Humphrey,
Dufresne, and Schwartz, 2014)

substrate and is mediated by so-called focal adhesions (FAs) linking the cell cytoskel-
eton and its actin meshwork to the substrate. A comprehensive review of focal adhe-
sions can be found in Geiger, Spatz, and Bershadsky, 2009. FAs are constituted by a
myriad of proteins interacting with each other in order to integrate mechanical cues,
such as ECM rigidity and external forces. Within this protein assembly, some act as
mechanosensors as they undergo conformational changes in response to mechanical
stimuli. Among them, the most studied ones are integrin, talin and p130Cas. Their
combination forms a module, which mechanically links the actin cytoskeleton to the
ECM (see Fig. 1.5). Integrins are transmembrane proteins, that can either be in an
inactive or active state and must be activated in order to be able to bind to substrate-
coating proteins, such as fibronectin. The integrin is activated when ”brushed” by
the flow of actin. Once bound to the ECM, another mechanosensitive protein, talin,
binds to the inner part of integrin. This assembly constitutes a so-called nascent
adhesion or focal complex and is highly unstable. Above a load threshold, talin ex-
periences force-dependent unfolding, unraveling a binding site for vinculin, which
in turn promotes the clustering of integrins and the binding of actin filaments at its
tail. In parallel, the p130Cas also experiences force-dependent stretching which will
indirectly trigger a sequence of events transducing the mechanical signal into a bio-
chemical one, such as the activation of RhoGTPase, which will induce cytoskeleton
contractility and polymerization.

Force-dependent conformational changes of mechanosensing proteins, trigger
the clustering of integrins as well as the production of RhoGTPase proteins, which
in turn increase the contractile activity and polymerization of the cytoskeleton, yield-
ing an increased mechanical load in the adhesion, thus ultimately reinforcing the fo-
cal adhesion and the production of cytoskeleton-regulating proteins by re-entering
the loop (see Fig. 1.6). This loop is essential to the adhesion maturation process and
indirectly to other cell functions using adhesion, such as migration, differentiation...
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FIGURE 1.5: Constitution of a focal adhesion (Dufort, Paszek, and
Weaver, 2011).

FIGURE 1.6: Schematic representation of the mechanical reciprocity
with a positive feedback loop between (Geiger, Spatz, and Bershad-

sky, 2009).

This positive feedback loop and more generally the focal adhesion constitutes an
important block of the mechanoreciprocity at a molecular level, as it involves the
mechanosensing via the sensory module composed by integrin, talin, vinculin and
p130Cas (among others), mechanostransduction via the production of cytoskeleton
regulating proteins (such as RhoGTPase) and finally the cell response via the rear-
rangement of the cytoskeleton.

It has been experimentally observed that cells develop more stable and mature
adhesions on stiff substrates than on soft ones (Discher, Janmey, and Wang, 2005)
(see Fig. 1.7), and eventually fail to attach on too soft substrates.
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FIGURE 1.7: Cell on a soft substrate (left) and on a stiff substrate
(right) (Discher, Janmey, and Wang, 2005).

This phenomenon is a direct consequence of the FA-related mechanoreciproc-
ity and can be explained with the motor-clutch model (see Fig. 1.8). At the front
of the cell, actin monomers (G-actin) polymerize into actin filament (F-actin), due to
the presence of Arp2/3 proteins in the vicinity of the cell membrane, resulting in a
forward motion of the membrane. As the actin polymerization rate is very high at
the tip of the cell and the tension of the membrane opposes its extension, a retrograde
flow of actin from the front towards the center of the cell is generated. Meanwhile de-
polymerization of the actin filament into actin monomers occurs in the bulk, where
molecular motors (myosin II) pull actin filaments backwards and therefore also con-
tribute to the retrograde flow.

FIGURE 1.8: Motor-clutch model on stiff and soft extracellular matrix

If the anchorage of focal adhesions in the ECM is fixed, e.g. in a stiff matrix, the
retrograde flow thus generates a large loading rate of the focal adhesions. This can
trigger the positive feedback loop of mechanoreciprocity discussed above. However
on a soft substrate, there will be a greater matrix deformation under the traction
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forces exerted by the cell. Thus, the loading rate of the FA is small and can there-
fore be insufficient to trigger the positive feedback loop which would result in the
maturation of the adhesion, instead adhesions stay in a nascent state and eventually
spontaneously vanish (Pelham and Wang, 1997).

1.1.4 Cell migration

Depending on the cell phenotype different locomotion modes can be adopted.
The cell crawling motion is achieved by the combination of different phenomena

and is classically represented by a four-step cycle (see Fig. 1.9), according to Aber-
crombie, 1980. First a protrusion extends at the leading edge of the cell. This pro-
trusion, called lamellipodium, is the result of the polymerization of actin (G-Actin)
into actin filament bundles (F-actin) in the vicinity of the cell membrane, pushing the
membrane forward. As explained above, both the reaction force of the membrane
and the action of molecular motors combine to generate a retrograde flow of actin
from the lamellipodium towards the center of the cell. Next, the lamellipodium ad-
heres to the substrate the cell is evolving on, first through small short-lasting nascent
adhesions, which after a maturation process may evolve to form stable focal adhe-
sions. After that, the cell contracts through the action of molecular motors (myosin
II), which can bind to two actin filament and pull them together. Due to the contrac-
tile forces, the FAs at the rear of the cell detaches inducing an overall motion of the
cell forward.

It has been experimentally observed that cells exhibit a maximal speed on sub-
strates of intermediate stiffness (Peyton and Putnam, 2005). This can be explained
by the previously described reinforcement of the FAs due to the bidirectional inter-
action between the cytoskeleton and substrate. Indeed, because the cell develops
more stable and mature adhesion on stiff substrates, this tends to resist to the cell
motion, while on very soft substrates, adhesions are too weak for the cell to be able
to transmit traction forces to the substrate effectively, which explains the biphasic
behaviour of the cell speed with respect to the substrate stiffness.

From another perspective Palecek et al., 1997 experimentally extracted a biphasic
relationship between cell speed and adhesion density. At too low adhesion density
the cell is unable to form stable adhesion, while at too high adhesion density the cell
is able to enter the FA reinforcement loop and eventually results in stable adhesions
resisting the cell motion.

The present section has highlighted the importance of considering the cell and
the ECM together, because of the mechanical crosstalk occurring between them and
the large influence this mechanoreciprocity has on many fundamental cell functions,
such as adhesion and migration. While a broad range of the literature does not ad-
dress the cell-ECM mechanoreciprocity, by considering cell migration on rigid sub-
strates, in the next section, we establish a non-exhaustive list of the physical model-
ing attempts to simulate or understand cell migration on compliant substrates.
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FIGURE 1.9: Cell motility steps

1.2 Models of single cell migration on a compliant substrate

Modeling cell migration on a compliant substrate requires to model the cell, the
substrate and the interaction between them. We roughly distinguish two categories,
namely microscopic and macroscopic descriptions.

1.2.1 Microscopic description

The microscopic description or agent-based modeling focuses on modeling the dif-
ferent agents and their interactions at the molecular scale, based on the available
informations on the agents. Starting from the molecular scale, two bottom-up ap-
proaches can be implemented in order to build large-scale theories, one is based on
analytical statistical tools, such as the mean-field theory, the other is based on com-
putational stochastic simulations, such as Monte-Carlo simulations.

Minimal agent-based models of sliding friction have been explored by Srini-
vasan and Walcott, 2009; Li, Bhimalapuram, and Dinner, 2010; Sabass and Schwarz,
2010; Sens, 2013 to investigate the interaction between a moving actin filament and
stochastic bonds, based on the molecular-clutch model and inspired by the Lacker-
Peskin model (Lacker and Peskin, 1986). The actin filament is considered as rigid,
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integrin proteins (clutches) are modeled by hookean springs that undergo stochas-
tic engagement and disengagement to the substrate. The mechanosensitivity is im-
plemented, by assuming a force sensitive detachment rate obeying Bell’s law (Bell,
1978).

Using a computational stochastic model, Chan and Odde, 2008 investigated the
influence of the compliance of the substrate on the filament dynamics. In this model,
the actin filament is pulled by molecular motors generating a retrograde flow. The
filament slides at a constant velocity in the case where no clutch is engaged, else the
velocity decreases as the force applied by the motor increases until the motor stall
force is reached, thus following a Hill-like relationship. The forces are transmitted to
the substrate through the engaged bonds. The substrate is assumed to be elastic and
for sake of simplicity is modeled as a single spring of stiffness, i.e. only an overall
displacement of the substrate is assumed.

The clutch model can predict a biphasic relationship between the applied trac-
tion force and the substrate stiffness (see Appendix D), thus the maximal force trans-
mission is reached at an optimal substrate rigidity. It is explained by the fact that,
above the optimal stiffness, the forces in the clutches increase very fast, yielding to
detachment rates greater than attachment rates, therefore only a small amount of
clutches are engaged and for a small amount of time. In this regime the actin ve-
locity is high while the transmitted forces are low, these features characterize the
frictional slippage regime. On the other hand, when the stiffness lies below the op-
timal stiffness, the forces in the clutches increase so slowly, that the bonds break
before reaching high loads. From these observations Elosegui-Artola, Trepat, and
Roca-Cusachs, 2018 deduced that the loading rate was the main regulator of the cell
mechanosensitivity. Besides, the clutch model was also able to predict stick-slip mo-
tion at moderate loading rates when a critical force is reached the bonds fail in a
catastrophic manner until no bond is left attached, next the clutch re-engage and
the loop is repeated. While this basic model allows a better understanding of the
mechanosensing process and replicates cell migration modes observed experimen-
tally, the extrapolation of the results to the whole cell level is not straightforward. To
overcome this limitation Bangasser et al., 2017 implemented a minimal cell model
constituted of three clutch modules. The results of this model were consistent with
those of a single motor clutch as an optimal rigidity for traction forces transmission
emerged from the simulations.

The results show a biphasic (i.e. bell-shaped) relationship between the cell trac-
tion force and the actin velocity: at sufficiently small actin velocity, the loading in the
bonds increases slowly, which leads to a linear increase of the traction force with the
actin velocity. For higher actin velocity, the loading rate in the bonds is high, there-
fore they break very rapidly and the traction force decreases with the actin velocity.
Using this microscopic approach, Sens, 2020 formulated a simple cell model con-
sisting of two stochastic adhesion modules linked by a spring. This local non-linear
dependence of the traction force on the actin velocity has been used to explain the
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well-established experimental observation that the global cell velocity depends on
the fibronectin ligand density in a biphasic way (DiMilla, Barbee, and Lauffenburger,
1991; Palecek et al., 1997).

These models give a biphasic behavior dictated by a nonlinear behavior of adhe-
sion molecules.

1.2.2 Macroscopic description

The macroscopic description is a phenomenological approach aiming to capture the
relevant dynamical behaviors from effective continuum theories.

As described in the previous section, the adhesion is an essential process of cell
crawling. Several macroscopic models of adhesion have been proposed in the lit-
erature. An approach investigated by Stéphanou et al., 2008 consists in model-
ing the mechanosensitive process of adhesion formation and maturation by intro-
ducing three different steps of adhesion, namely adhesion spot, focal complex and
focal adhesion, each one being characterized by its lifetime and resistance to trac-
tion. While the mechanics of the cytoskeleton is modeled using the continuum two-
phase flow model (Alt and Dembo, 1999), the adhesion are modeled as discrete en-
tities. Transport models of adhesions were also developed in order to take into ac-
count the adhesions maturation process due to integrins activation and aggregation,
where integrins are transported in one of the four following states: free, actin-bound,
substrate-bound and actin-substrate-bound (Palecek, Horwitz, and Lauffenburger,
1999; Möhl, 2005; Kuusela and Alt, 2009). One of the approach is based on the afore-
mentioned observation that agent-based models of sliding friction between an actin
filament and stochastics bonds resulted in a biphasic relationship between the cell
traction force and the cytoskeleton retrograde flow velocity. Similarly, starting from
the general trend that stationary cells generate large traction forces while showing a
slow actin flow and on the contrary motile cells generate small traction forces with
a fast retrograde flow, Barnhart et al., 2015 deduced that the frictional slippage is
weaker at the rear of a motile cell than in stationary cells, and thus introduced a non-
linear actin flow-dependent friction coefficient to ensure a decreased cell-substrate
coupling above a critical actin flow velocity. Nevertheless, the experimental obser-
vation (Schwarz and Gardel, 2012) that, below a velocity threshold, the transmitted
traction force evolves linearly with the actin velocity, has led to disregard this com-
plexity and consider the simple viscous friction law Tx = ξv, where Tx represents
the uniaxial traction force exerted by the cell on the substrate, v is the cytoskeleton
retrograde flow velocity and ξ represents an effective viscous friction coefficient. In-
deed this representation of adhesion has been extensively used in plenty of models
(Jülicher et al., 2007; Rubinstein et al., 2009) and is also the one retained in the present
model. Note, that by nature the force balance is bidirectional (action-reaction law)
and thus encompass the focal adhesion-induced mechanoreciprocity.
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Models considering the cell as a effective solid medium are suited to describe
static rather than motile conditions. Falling in this category, Deshpande, McMeek-
ing, and Evans, 2006; Deshpande, McMeeking, and Evans, 2007 developed a two
dimensional model with a constitutive law with an active and passive contributions.
The active stress is constructed using homogeneization techniques and is related to
the dynamics of the contractile actomyosin stress fibers. Using this model the au-
thors were able to understand more deeply the physics of adherent cells.

However, based on the observation that the cytoskeleton undergoes highly dy-
namic changes in the cell migration process, it has been characterized by a vis-
coelastic fluid-like behaviour at sufficiently large time-scales relevant for migration.
Two main active drivings have been implemented in these models to reproduce cell
migration of rigid substrates; distributed contraction of the molecular motors and
turnover of the actin meshwork. Under the simplifying consideration that the cyto-
plasm is made of the cytoskeleton and a solvent, Dembo and Harlow, 1986 devel-
oped a model of interpenetrating two-phase flow model. The two phases are as-
sumed to be Newtonian incompressible fluids. The contractility of the cytoskeleton
phase is ensured by introducing an actin density-dependent negative pressure (Alt
and Dembo, 1999; Kuusela and Alt, 2009). Instead of considering the solvent, Rubin-
stein et al., 2009 described the main components of the cytoskeleton by advection-
reaction-diffusion equations on their densities. It is based on the observation that
the molecular motors are advected by the polymerization and contractility-driven
retrograde flow of the actin filaments. In this representation the F-actin turnover
is modeled by an advection-reaction equation. The polymerization occuring at the
leading edge is taken into account with a Stefan-like boundary condition. Two con-
centrations of molecular motors are considered, those that cross-link two fibers of
the cytoskeleton, therefore advected by the skeleton retrograde flow and those freely
diffusing in the cytoplasm. Assuming moreover a first-order kinetic attachment and
detachment rates, the dynamics of the population of attached motors is governed
by an advection-reaction equation, wheras the dynamics of the population of de-
tached motors is governed by a diffusion-reaction equation. As for the previously
introduced two-phase flow model, the active stress due to the molecular motors
contractility is isotropic, acting as a negative pressure. However unlike the previ-
ous model the magnitude of this active stress is assumed to be proportional to the
density of attached motors. More complex active gel models that also account for
the cytoskeleton fibers orientation (Jülicher et al., 2007; Tjhung, Marenduzzo, and
Cates, 2012; Giomi and DeSimone, 2014; Camley et al., 2017) have been introduced
to understand various instabilities that lead to cell motion and some complex cell
motion dynamics.

From another perspective which does not explicitly solve force balance within
the cell, Ziebert, Swaminathan, and Aranson, 2012 modeled the cytoskeleton by an
averaged orientation field of the actin filament network in a phase-field framework,
which is adapted from the advected-field approach (Biben and Misbah, 2003; Biben,
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Kassner, and Misbah, 2005) developed to model vesicle dynamics where the mem-
brane is advected via hydrodynamics forces. In the phase-field approach, an aux-
iliary field, known as the phase-field or phase function, is introduced and is used
to discriminate between the interior and the exterior of the cell. In the context of
cell crawling, the cell membrane is advected by the internal forces generated by the
cytoskeleton.

Several methods have been explored to introduce the influence of the rheology of
the substrate on existing models of cell motility. Within the phase-field framework,
Ziebert and Aranson, 2013; Löber, Ziebert, and Aranson, 2014 introduced reaction-
diffusion adhesion dynamics involving a substrate displacement-dependent detach-
ment to ensure the gripping (resp. slipping) below (resp. above) a substrate dis-
placement critical value. While Ziebert and Aranson, 2013 used a single global
spring to model the elastic substrate in the fashion of Chan and Odde, 2008, Löber,
Ziebert, and Aranson, 2014 improved this previous model by locally resolving the
viscoelastic incompressible substrate displacement. In these models a local traction
force exerted by a cell generates a non-local displacement of the substrate under
the cell and therefore induces a local reorganization of the cell cytoskeleton which
ultimately impacts its motility dynamics in a non trivial way. Lelidis and Joanny,
2013 modeled the cell as a one-dimensional continuum active gel medium interact-
ing with an elastic substrate through discrete focal adhesions. They considered a
semi-infinite substrate and deduced the displacement of the substrate due to the cell
traction force within a plane strain framework. Another approach is simply an ex-
tension of the previously mentioned linear viscous friction model to the case of a
deformable substrate by considering the difference between the actin velocity v and
the substrate velocity vs in the friction law, such that T = ξ(v − vs). Wong and
Tang, 2011 implemented this friction law with a space-dependent friction coefficient
to model the interaction between a hyperelastic cell and a finite-size hyperelastic
substrate. Hassan, Biel, and Kim, 2019 also used this law combined with a phase-
field model for the cell, where a migration directional bias was introduced in or-
der to promote cell migration in the direction of increasing substrate rigidity. More
recently, Zhang et al., 2020 used a similar approach with an actin polymerization
bias towards substrate tensile regions (resulting from external forces or cell traction
forces) to promote cell migration in these directions. Using a Cellular Potts Model,
in which the phenomenological description of a cell is achieved by minimizing a
functional in a subset of lattice sites representing the cell, Oers et al., 2014 inspired
by the implementation of chemosensitive functions in Savill and Hogeweg, 1997, in-
troduced an ECM mechanossensitive function in the form of Hamiltonian to capture
durotaxis. This model was then extended to the migration on viscoelastic substrate
by Goychuk et al., 2018.
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1.3 A simple approach to model cell migration on a compli-
ant substrate

The mechanoreciprocity is the sum of two contributions a bare mechanical and a
chemo-mechanical one. When evolving on a compliant substrate the pure mechan-
ical contribution plays an important role. Indeed the cell exerts traction forces on
the substrate inducing non-local deformations of the matrix, which will in turn re-
sult in the reorganization of the cytoskeleton. In order to take into account the
bare mechanoreciprocity within crawling models on a compliant substrate, the stress
within the cell and the substrate must be explicitly solved. In Ziebert and Aranson,
2013, the non-local deformation of the substrate is not taken into account. While the
non-locality is addressed in Löber, Ziebert, and Aranson, 2014, the stress within the
cell is not explicitly solved for. Lelidis and Joanny, 2013 operate at an imposed cell
velocity and in the limit where the substrate is much stiffer than the cell. In their
model, Zhang et al., 2020 do not solve the force balance within the cell, and assume
instead an a priori actin retrograde flow velocity and an actin polymerization bias to-
wards substrate tensile regions (resulting from external forces or cell traction forces)
to promote cell migration in these directions.

In the present work, we want to investigate what phenomena can be captured
from a minimalistic cell migration model without introducing any a priori bias, in
other words we want to extract the cell response to bare mechanical contribution of
cell-ECM interaction, i.e. when considering the mechanical reciprocity from a pure
mechanical standpoint, without integrating the mechanical effects resulting from
FAs biochemical signaling.

In order to address to this issue, we generalize the minimalistic one dimensional
mechanical model of Recho, Putelat, and Truskinovsky, 2015, designed to model cell
migration on a rigid substrate, to the case of the migration on a compliant substrate.
The cell is modeled as a thin layer (height h) of active gel slab of length L(t) =

l+(t)− l−(t), where l±(t) denotes the cell ends at time t, and is confined to move on
a one-dimensional straight track of width δ oriented along the x−direction.

The orthonormal frame of reference (ex, ey, ez) is chosen such that the substrate
is semi-infinite in the ez direction and material points are labeled by the spatial coor-
dinate r = (x, y, z). The contact interface between the cell and the substrate at time
t is defined by the two-dimensional domain ΩC(t) = [l−(t), l+(t)] × [−δ/2, δ/2].
Considering that the cell is very thin compared to its length (h� L), we assume that
the cell only exerts forces tangentially to the substrate

T(r, t) = Tx(x, t) ex + Ty(x, t) ey, (1.1)

where r ∈ ΩC(t). Since we shall project all equations in the x-direction, it will not
be needed to specify Ty. Because the track is assumed to be thin (δ � L), Tx,y are
assumed to only depend on the x-coordinate.



1.3. A simple approach to model cell migration on a compliant substrate 15

Elastic incompressible

or Viscous incompressible substrate
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track (in red) of width δ � L allows a one dimensional motion of
the cell along the x−axis. The cell (in green), extending from l− to l+
exerts traction forces Tx on the substrate, inducing a displacement us
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of the substrate at the surface.

We consider two concentrations of molecular motors, those that cross-link two
fibers of the cytoskeleton (concentration c), therefore advected by the skeleton ret-
rograde flow (velocity v) and those that are free to diffuse (coefficent Dm) in the
cytoplasm (concentration m) (Rubinstein et al., 2009). There is an attachment (rate
ka) and detachment (rate kd) dynamics between these two populations that lead to
the following coupled system:{

∂tc + ∂x(cv) = kam− kdc
∂tm− Dm∂xxm = kdc− kam.

(1.2)

While we assume that the rate of detachment kd is fixed, the rate of attachment
ka = k0

ag(c) decreases with the concentration c because of steric hindrance. The
function g(c) is therefore positive and decreasing to zero as c becomes large.

Assuming that the system remains close to its chemical equilibrium because the
rates are large compared to the transport and diffusion (ka, kd � v/L, D/L2), we
have that (Putelat, Recho, and Truskinovsky, 2018)

m ≈ kd

k0
a

c
g(c)

.

Plugging this approximation in (1.2) and assuming that kd/k0
a is a small parameter

while D = Dmkd/k0
a remains finite, the motor concentration follows the non-linear

drift-diffusion equation

∂tc + ∂x(cv− D∂x( f (c/c0)c)) = 0, (1.3)

where f (c/c0) = 1/g(c) and the definition of c0 is given below.
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Because the cell membrane is not permeable to motors, zero-flux boundary con-
ditions are associated with (1.3)

∂xc(l±(t), t) = 0, (1.4)

such that the average concentration of motors is a constant set by the initial concen-
tration:

c0 =
1
L

∫ l+

l−
c(x, t)dx. (1.5)

Following Kruse et al., 2006, the cell cytoskeleton is assumed to be a one-dimensional
layer of active gel. Moreover, the actin meshwork is assumed to be infinitely com-
pressible. Therefore the constitutive law describing the cell active behaviour reads

σ = η∂xv + χc, (1.6)

where σ(x, t) is the axial stress within the cytoskeleton, η represents its viscosity and
χ the contractility per molecular motor.

In order to understand the influence of the substrate rigidity on cell motility from
a purely mechanical standpoint, we need a relation linking the flow of the cell cyto-
skeleton to the substrate deformation. Using the same approach as Wong and Tang,
2011; Hassan, Biel, and Kim, 2019; Zhang et al., 2020, we model the adhesion with a
viscous friction law involving the relative velocity between the cytoskeleton and the
substrate:

Tx = ξ(v− vs
x), (1.7)

where vs
x corresponds to the projection of the substrate velocity on the x−axis. Ad-

ditionally assuming a thin film approximation h� L, since inertia can be neglected,
the force balance within the cytoskeleton is given by (Roux et al., 2016), (1.7) becomes

h∂xσ = ξ(v− vs
x). (1.8)

Such relation takes into account the cell’s internal activity via the actin retrograde
flow, while the influence of the compliance of the substrate is encompassed in the
substrate velocity. Taking vs

x = 0 in (1.8), we recover the friction law in the case of a
rigid substrate.

For simplification, we will only consider a cell crawling motion at constant length
in this work, thus (1.8) is associated with stress boundary conditions at the cell mov-
ing edges such that

σ|l− = σ|l+ = σb, (1.9)

where σb is an unknown residual stress representing the constraint fixing the cell
length and imposing that the two cell fronts move with the same velocity V(t) =

l̇− = l̇+. This boundary condition typically emerges as a limit when an effective
spring that connects the two fronts has a stiffness tending to infinity while L(t) tends
to the rest length of the spring. The unknown residual stress σb results from this
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double limit. See Putelat, Recho, and Truskinovsky, 2018 for more details.
Finally, the protrusion and retraction of the moving fronts are given by the Stefan

boundary conditions
l̇± = v|l− + v− = v|l+ + v+, (1.10)

where v+ and v− are the given polymerization and depolymerization velocities at
the leading edge (l+) and trailing edge (l−). See Recho and Truskinovsky, 2013 for
details. More realistic albeit more complex models of actin protrusion and retrac-
tion of the cell fronts can be found in Ambrosi and Zanzottera, 2016; Giverso and
Preziosi, 2018.

In this work, we investigate the effect of bare mechanoreciprocity through three
prototypical situations where the effective friction law is considered in its simplest
linear form but the substrate is allowed to deform. In chap. 2 we analyze the case
of a cell moving on a linear elastic substrate, while in chap. 3 we consider a cell
moving on a viscous substrate. Finally, in chap. 4, we study the cell motion in the
limit of a vanishing friction coefficient. While in chap. 2, we consider a polymeriza-
tion/depolymerization driven retrograde flow and assume that the motors concen-
tration is homogeneous, in chap. 3 and chap. 4, v± are neglected and the inhomo-
geneity of the motors concentration is the driving force of the retrograde flow.
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Chapter 2

The influence of substrate elasticity
on cell polymerization-driven
crawling

2.1 Introduction

In the present chapter (submitted for publication to Int. J. Nonlinear Mech., July 2021),
by extending one of the simplest model of the cytoskeleton actin turnover driven
cell crawling (Kruse et al., 2006; Jülicher et al., 2007) to the case of a deformable
elastic substrate, we show that taking into account the substrate displacement is suf-
ficient to explain a biphasic relation relating the cell velocity to the substrate stiffness
(Stroka and Aranda-Espinoza, 2009; Peyton and Putnam, 2005). Therefore it is not
necessary to invoke a non-linear dependence of the traction force on the actin ve-
locity as in Barnhart et al., 2015 who introduced a non-linear actin flow-dependent
friction coefficient to ensure a decreased cell-substrate coupling above a critical actin
flow velocity or indeed a direct dependence of the active force production machin-
ery on the substrate stiffness (Dokukina and Gracheva, 2010; Sarvestani, 2011) to
reach this conclusion.

In order to understand the influence of the substrate rigidity on cell motility from
a purely mechanical standpoint, we need a relation linking the flow of the cell cyto-
skeleton to the substrate deformation. For simplicity we assume a semi-infinite elas-
tic substrate, implying that the thickness of the extra-cellular matrix (ECM) substrate
is large compared to the cell size as opposed to the situation studied in (Nicolas and
Safran, 2004) where the ECM and adhesion plane form a thin film. The two opposed
limits (thick or thin ECM) have been further studied in (Nicolas and Safran, 2006) in
the context of the focal adhesion size regulation. In this semi-infinite case, the non-
local response of the compliant substrate to a local traction force within the small
deformation framework, is given by the Cerruti-Boussinesq solution in the three di-
mensional case. However if the geometry of the contact is invariant in one direction,
a plane strain assumption can apply, leading to a Flamant problem (Johnson, 1987).
Both strategies have been employed to characterize the contact between the cell and
the substrate. The plane strain assumption has been made by Qian, Wang, and Gao,
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2008 in order to simulate the detachment process of a focal adhesion and estimate its
lifetime, and by Lelidis and Joanny, 2013 to investigate the effect of substrate rigidity
on cell motility with uniformly distributed discrete focal adhesions. The plane strain
assumption represents a valid only if the substrate deformation orthogonal to the
principal loading direction is negligible. Besides, the substrate displacement found
within this framework is not bounded at infinity, thus an arbitrary length needs to be
introduced, above which the displacement vanishes. These issues do not arise when
considering the three dimensional problem. Traction Force Microscopy (TFM), the
method to evaluate the cell traction forces from a measured substrate displacement
field, requires the resolution of an inverse problem based on the Boussinesq-Cerruti
solution (Dembo et al., 1996; Ambrosi, 2006; Michel et al., 2013; Sabass et al., 2008).
In this chapter we propose an approach to obtain a simple relationship between the
actin velocity and the substrate displacement under the simplifying hypotheses of
a one-dimensional cell crawling on a semi-infinite incompressible elastic substrate.
This model corresponds to the situation where the cell is constrained to move on a
thin adhesion track.

The chapter is organized as follows. In sec. 2.2, we build the mathematical model
corresponding to our geometric assumptions by constructing the kernel governing
the response of the semi-infinite elastic substrate to the cell traction force field. We
operate under the hypotheses that the friction with the substrate is linear, and that
the substrate is a linear elastic medium. Next, in sec. 2.3, we couple this model of
the contact with one of the simplest models of actin-based cell motility to obtain a
coupled system relating the actin flow field, global cell velocity and substrate dis-
placement. We then study traveling waves (TW) solutions of this problem in sec. 2.4
and give explicit solutions for some special cases of the actin turnover dynamics as
well as asymptotic solutions when the substrate is infinitely hard (cell tractions neg-
ligible compared to the substrate stiffness) or soft (cell tractions large compared to
the substrate stiffness). Then in sec. 2.5, we obtain numerically a biphasic behav-
ior of the steady state velocity as a function of either the substrate rigidity or the
cell–substrate friction coefficient. In sec. 2.6, we propose an experimental setup to
validate this theory, using T24 bladder cancer cells migrating on substrates of dif-
ferent rigidities (5 kPa, 8 kPa and 28 kPa), confined along thin fibronectin–coated
tracks. The actin cytoskeleton flow velocity and the substrate displacement are mea-
sured and projected along the cell major axis. Although we were not able to obtain
sufficiently motile cells to interrogate our theoretical model in detail, we could esti-
mate the friction coefficient for static cells on substrates of different rigidities. The
experimental setup does contain some limitations to address in the future, including
the lack of accuracy of the actin acquisition and the need to build thinner cell tracks
to improve the applicability of the 1D hypothesis but the values obtained for the
friction coefficient are already consistent with the literature describing cell crawling
on a rigid substrate.
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2.2 Model of the contact between the cell and the substrate

We consider a cell moving on a semi-infinite elastic substrate and restrict our analy-
sis to small deformation of the substrate, neglecting both physical and geometrical
non-linearities of the elastic problem. In particular, we shall not differentiate the Eu-
lerian and Lagrangian frames in our approach. Taking advantage of the fact that the
track is thin compared to the cell length, we suppose that the traction force in (1.1)
only depends on the coordinate along the track. Defining the Boussinesq-Green ker-
nel for a semi-infinite incompressible elastic medium of Young modulus Es (Landau
and Lifshitz, 1959)

G(x, y, z) =
3

4(x2 + y2 + z2)3/2πEs

 2x2 + y2 + z2 xy xz
xy x2 + 2y2 + z2 yz
xz yz x2 + y2 + 2z2

 ,

we can express the displacement of the substrate u due to cell traction forces

u(r, t) =
∫

ΩC

G(r− r′)T(r′, t)dr′, (2.1)

From now on, we consider the simple case of a cell confined to move on a one-
dimensional straight track of width δ oriented along the x−direction (See Fig. 1.10).
The cell length L(t) is defined by L(t) = l+(t)− l−(t), where l±(t) denotes the cell
ends, therefore ΩC(t) = [l−(t), l+(t)]× [−δ/2, δ/2]. The cell geometric center is thus
O(t) = (l+(t) + l−(t))/2.

Plugging (1.1) into (2.1) we obtain the following integral expression of the dis-
placement in the substrate:

u(x, y, z, t) =
∫ l+(t)

l−(t)

∫ δ/2

−δ/2

3
4((x− x′)2 + (y− y′)2 + z2)3/2πEs

(2.2) (x− x′)(Ty(x′, t)(y− y′)) + Tx(x′, t)
(
2(x− x′)2 + (y− y′)2 + z2)

(y− y′)(Tx(x′, t)(x− x′)) + Ty(x′, t)
(
(x− x′)2 + 2(y− y′)2 + z2)

(Tx(x′, t)(x− x′) + Ty(x′, t)(y− y′))z

dx′dy′.

(2.3)

Averaging the displacement over the y-direction leads to the following simplification

ū(x, z, t) =
∫ l+(t)

l−(t)

∫ δ/2

−δ/2

∫ δ/2

−δ/2

3
4δ((x− x′)2 + (y− y′)2 + z2)3/2πEs

(2.4) Tx(x′, t)
(
2(x− x′)2 + (y− y′)2 + z2)

Ty(x′, t)
(
(x− x′)2 + 2(y− y′)2 + z2)
Tx(x′, t)(x− x′)z

dx′dy′dy. (2.5)
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Next, by taking the value of the displacement at z = 0, we find

us(x, t) =
∫ l+(t)

l−(t)

∫ δ/2

−δ/2

∫ δ/2

−δ/2

3
4δ((x− x′)2 + (y− y′)2)3/2πEs

(2.6) Tx(x′, t)
(
2(x− x′)2 + (y− y′)2)

Ty(x′, t)
(
(x− x′)2 + 2(y− y′)2)

0

dx′dy′dy, (2.7)

which shows that the surface remains flat during the motion. Projecting us(x, t) in
the x-direction and performing the integrals in y, we finally obtain

us
x(x, t) =

∫ l+(t)

l−(t)
φ

(
x′ − x

δ

)
Tx(x′, t)dx′, (2.8)

where

φ(x) =
3log

(
1+
√

1+x2

|x|

)
2πEs

=
3arcsch (|x|)

2πEs
. (2.9)

and arcsch denotes the inverse hyperbolic cosecant.
In a real experimental context, the substrate is not semi-infinite but has a finite

thickness. To justify the use of such approximation we set a homogeneous load-
ing where Tx(x, t) = T0 and x ∈ [−L/2, L/2] and compare the ensuing averaging
displacement at the surface and in the bulk. Thus with

¯̄ux(z) =
3T0

4πδLEs

∫ L/2

−L/2

∫ L/2

−L/2

∫ δ/2

−δ/2

∫ δ/2

−δ/2

(
2(x− x′)2 + (y− y′)2 + z2)

((x− x′)2 + (y− y′)2 + z2)3/2 dx′dxdy′dy,

we wish to find z such that ¯̄ux(z) � ¯̄ux(0). Assuming that both L � δ and |z| � δ,
we find that at leading order,

¯̄ux(0) =
3δT0

πEs
tanh

(
2L
δ

)
and (z being negative)

¯̄ux(z) = −
3LδT0

4πEsz
.

In order to have ¯̄ux(z)/ ¯̄ux(0)� 1, we typically need to impose that |z| � L.
Note that, in (2.8), when x � 1, φ simplifies to the so-called plane strain kernel

φ0(x) = −3 log(|x|/2)/(2πEs) (Timoshenko and Goodier, 1970) while it leads to
the plane stress kernel φ∞(x) = 3/(2|x|πEs) in the opposite limit where x � 1
(Johnson, 1987). See Fig. 2.1. Although φ0 is singular at x = 0, its integral exists in the
Cauchy principal value sense. In contrast, φ∞ is singular and not integrable at x = 0,
which would lead to an infinite displacement at x = 0. However, while φ∞ tends
to zero at infinity, φ0 is unbounded at x = ∞, which led Timoshenko and Goodier,
1970 to introduce an arbitrary cut-off length x∞ at which the displacement vanishes
(us

x(x∞) = 0) to regularize such situation. Remarkably, the kernel φ we obtain from
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the Boussinesq-Cerruti solution within the thin track framework, encompasses the
advantages of both φ0 and φ∞, namely the integrability at x = 0 and the vanishing
substrate displacement at x = ∞, because φ behaves like φ0 near the singularity
x = 0 and like φ∞ far from the origin.

ϕ

ϕ0

ϕ∞

-2 -1 0 1 2
0

1

2

x

FIGURE 2.1: The non-local interaction kernel φ and the kernels φ0
and φ∞ which represent the two limiting behaviors of plane strain

and plane stress, respectively. Parameter Es = 1.

In order to eliminate the time-dependence of the integral boundaries, we re-map
the problem using the change of variables x̄ = 2(x −O(t))/L(t) and t̄ = t, which
leads to the partial derivative relations:

∂x(.) =
2
L

∂x̄(.) and ∂t(.)
def
=

D(.)
Dt̄

= ∂t̄(.)−
2
L

(
Ȯ +

L̇
2

x̄
)

∂x̄(.),

where the superimposed dot denotes the time derivatives. Introducing the cell as-
pect ratio ε(t) = 2δ/L(t) yields

us
x(x̄, t) =

L(t)
2

∫ 1

−1
φ

(
x̄′ − x̄
ε(t)

)
Tx(x̄′, t)dx̄′, (2.10)

and injecting (1.7) into (2.10) knowing that vs = ∂tus
x(x, t) gives

us
x(x, t) +

ξL(t)
2

∫ 1

−1
φ

(
x′ − x
ε(t)

)
Dus

x(x′, t)
Dt

dx′ =
ξL(t)

2

∫ 1

−1
φ

(
x′ − x
ε(t)

)
v(x′, t)dx′,

(2.11)
where for simplicity of the notations and from now on, we shall use the same symbol
to denote the re-scaled variables, i.e. x̄ := x and t̄ := t.

Assuming the actin retrograde flow velocity v is known, (2.11) is a singular
integro-differential equation. In the case of an infinite domain of integration, explic-
itly solving this type of equation is generally performed by switching to the Fourier
domain. In our case where the domain of integration is a finite interval, the func-
tional basis that diagonalizes the symmetric operator φ is not explicit as in the case
of the plane strain kernel φ0 (Boyd, 2001; Canuto et al., 2012), making the expression
of us

x as a function of v non-transparent. Note that while the integration of x′ is per-
formed over the finite segment [−1, 1], x takes value on the whole real line such that
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the boundary conditions associated to the convective time derivative D/Dt are the
canonical ones (us

x and all its derivatives tend to zero).

2.3 Coupling with a simple model of protrusion based motil-
ity

Assuming a uniform distribution of the molecular motors c0, from (1.6) we can write
the simplified cell constitutive behavior as

σ =
2η

L
∂xv + χc0, (2.12)

where, x ∈ [−1, 1] is the rescaled variable introduced above.
Knowing that vs

x = Dus
x(x, t)/Dt, the spatial rescaled expression of the force

balance (1.8) reads
2h
L

∂xσ = ξ

(
v− Dus

x(x, t)
Dt

)
. (2.13)

Rescaling (1.9) and combining it with (1.6), the boundary condition on stress
imposes that

∂xv|−1 = ∂xv|1,

while the rescaled Stefan boundary conditions from (1.10)

l̇± = v|±1 + v±. (2.14)

We introduce the quantities ∆V = v+− v− representing the mismatch between poly-
merization and depolymerization and Vm = (v+ + v−)/2 representing the average
turnover. A first mechanism at the origin of the motility in the model described
above is the accretion of actin at the leading edge exactly compensated by the re-
moval of actin at the trailing edge. This leads to a propulsion at velocity Vm which
is independent of both the substrate and the cell constitutive behavior. Added to
this mechanism, the mismatch between polymerization and depolymerization with
a preserved length L of the cell implies a certain flow in the cell, exerting traction
forces on the substrate proportional to ∆V. This second contribution depends on
the substrate stiffness as well as on the friction coefficient with the substrate in a
non-trivial manner that we seek to characterize.

We non-dimensionalize the time by η/(χc0), the distance by L/2 and the stress
by χc0. Combining (2.11) with (2.12) and (2.13), and denoting u = us

x and ṽ = v− v0,
where

v0(x) = −∆V
sinh(α−1x)
2 sinh(α−1)

(2.15)



2.3. Coupling with a simple model of protrusion based motility 25

is a Dirichlet lift function that accounts for the asymmetry in the protrusion/retraction
kinetics at the boundaries, we obtain the non-dimensional problem ṽ(x, t) = 1

α

∫ 1
−1 G

(
x−x′

α , α
)

Du(x′,t)
Dt dx′

u(x, t) = γ
∫ 1
−1 Φ

(
x−x′

ε

)
∂x′x′ [v(x′, t) + v0(x′)]dx′.

(2.16)

In (2.16), the three non-dimensional parameters

ε =
2δ

L
, α =

√
4ηh
ξL2 and γ =

3hχc0

πLEs
.

respectively represent the track aspect ratio, the ratio of the hydrodynamic length
and the cell length and the substrate compliance compared to the cell contractile
stress. For simplicity, we keep the same notations for the non-dimensional (de)polymerization
velocities v± and their dimensional counterparts. The non-dimensional symmetric
kernels representing the non-local behavior of the active viscous cytoskeleton and
the elastic substrate respectively read:

G (x, α) =
cosh(α−1 + x)

2 sinh(α−1)
−H(x) sinh(x) and Φ(x) = arcsch (|x|) ,

where H is the Heaviside function. Thus, G corresponds to the resolvent of the
elliptic problem (Recho, Putelat, and Truskinovsky, 2015)

−α2∂xxṽ + ṽ =
Du
Dt

with periodic boundary conditions on ṽ:

∂xṽ|−1 = ∂xṽ|1 and ṽ|−1 = ṽ|1. (2.17)

Importantly, while ṽ(x, t) is only defined for values of x ∈ [−1, 1] (i.e. within the
cell), u(x, t) is defined on the whole real line (−∞ < x < ∞). Note also that as L̇ = 0
and u is rescaled by L/2, the convective derivative in (2.16) takes the simple form

Du/Dt = ∂tu−V∂xu

.
After ṽ and u are obtained from (2.16), the dynamics of the moving fronts can be

found from (2.14) which leads to

V(t) = Vm +
ṽ|−1 + ṽ|1

2
(2.18)

We provide in Table 2.1 some rough estimates of the various rheological coeffi-
cients entering the model. One should however bear in mind that these coefficients
can vary over several orders of magnitude depending on the biological conditions
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name symbol typical value
cytoskeleton viscosity η 100 kPa s (Jülicher et al., 2007; Rubinstein et al., 2009)
contractility χc0 1 kPa (Jülicher et al., 2007; Rubinstein et al., 2009)
friction coefficient ξ 10 Pa s µm−1 (Kruse et al., 2006; Barnhart et al., 2011)
lamelipod height h 1 µm (Kruse et al., 2006)
cell length L 50 µm
(de)polymerization velocities v± 0.2 µm s−1 (Larripa and Mogilner, 2006; Kruse et al., 2006)
substrate stiffness Es 10 kPa
track width δ 5 µm
characteristic length L/2 25 µm
characteristic time η/(χc0) 100 s
characteristic velocity χc0L/(2η) 0.25 µm s−1

characteristic stress χc0 1 kPa
track slenderness ε = 2δ/L 0.2
hydrodynamic coefficient α =

√
4ηh/(ξL2) 0.1

substrate softness γ = 3hχc0/(πLEs) 0.02
turnover asymmetry ∆V = 2η(v+ − v−)/(χc0L) 1
turnover average Vm = η(v+ + v−)/(χc0L) 1

TABLE 2.1: Rough estimates of the material coefficients, characteristic
scales and dimensionless parameters definitions. Some parameters

are subjected to several orders of magnitude variations.

and these values should therefore be taken with care. The interest of the type of
reduced model that we present rather lie in capturing some physical effects with a
minimal baggage than describing cell crawling at a quantitative level.

2.4 Traveling wave solutions

We now seek for traveling wave solutions of (2.16)-(2.18) where V is a constant and
∂tu = 0, implying that Du/Dt = −V∂xu. In such a case, (2.16) can be combined into
the following single integral equation:

α2 f (x)− γV
∫ 1

−1

f (x′)
x′ − x

dx′ −
∫ 1

−1
R(x, x′) f (x′)dx′ = −∆V

2
x + V −Vm (2.19)

where f (x) = ∂xx(ṽ(x) + v0(x)) = (ṽ(x) + v0(x) + V∂xu)/α2 represents the sub-
strate traction force and

R(x, x′) = γV
(x− x′)/ε2

1 + (x− x′)2/ε2 +
√

1 + (x− x′)2/ε2︸ ︷︷ ︸
=R1(x,x′)

+ H(x− x′)(x− x′) +
x + 1

2
x′︸ ︷︷ ︸

=R2(x,x′)

is a kernel that does not contain any singularity. The R1 part is reminiscent of the
elastic interaction with the substrate (regular part) and the R2 contribution repre-
sents a second order antiderivative with appropriate boundary conditions accounted
for by the righthandside of (2.19). The unknown crawling velocity V in (2.19) is fixed
by the global force balance constraint:

∫ 1

−1
f (x)dx = 0. (2.20)
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Solutions for specific choices of the turnover dynamics A simple solution of (2.19)
can be found when v+ = −v− when the two fronts are symmetrically polarized in
opposite directions leading to Vm = 0. In this case, we can set V = 0 and obtain
f (x) = f0(x) = −∆V sinh(α−1x)/(2α2 sinh(α−1)). This corresponds to ṽ = 0 (i.e.
v(x) = v0(x)) and

u(x) = γu0(x) = γ
∫ 1

−1
Φ
(

x− x′

ε

)
∂x′x′v0(x′)dx′.

We show in Fig.2.2 the typical trend of such substrate displacement that is induced
by a traction force distribution with an even symmetry with respect to the layer cen-
ter. The substrate displacement reaches its (anti-symmetric) maxima close to the cell

α=1

α=0.5

α=0.25

-2 -1 0 1 2

-2

0

2

x

u/
γ

FIGURE 2.2: Displacement u0 of the substrate induced by the actin
velocity field v = v0 corresponding to a static configuration. The
dashed lines indicate the normalized cell fronts. Parameters are ε =

0.2 and ∆V = 1.

boundaries and sharply decays to zero outside of the cell as no traction forces are
imposed in this region. Another simple case is when v+ = v−, leading to f = 0.
Thus ṽ = 0, u = 0 and V = Vm. This corresponds to the trivial situation where
the actin protrusion and retraction are happening at the same rate at each cell edge,
corresponding to a pure treadmilling movement without any internal flow of the
filamentous actin. As a result, there are no traction forces and no substrate deforma-
tion. This specific situation is rather unrealistic for most cell types as traction forces
are known to be applied on the substrate during motion.

More generally, we are interested in the dependence of V on γ for an arbitrary
choice of Vm and ∆V. For this, we start by analytically analyzing the asymptotic
behavior of V when γ� 1.

Solutions in the limit of underformable substrate When γ = 0 (i.e. the substrate
is undeformable), the solution of (2.19) is again f (x) = f0(x) corresponding to ṽ = 0,
u = 0 and V = Vm. This is the classical case investigated by Jülicher et al., 2007 in the
case of an infinitely stiff substrate and generalized by Recho and Truskinovsky, 2013
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in the presence of external loading. We can further expand the solution of (2.16)-
(2.18) at first order when γ� 1

ṽ(x) ' γv1(x) and V ' Vm + γV1.

Note that the domain of accuracy of such approximation outside of the limit γ � 1
should however be investigated numerically. The validity of such approximation
clearly also relies on the fact that V1 remains finite, such that γV1 is indeed small
compared to Vm.

From (2.16), we obtain,

v1(x) = −Vm

α

∫ 1

−1
G
(

x− x′

α
, α

)
∂x′u0(x′)dx′

and thus,

V1 = −Vm

α

∫ 1

−1
G
(

1− x′

α
, α

)
∂x′u0(x′)dx′,

which after some standard manipulations takes the form:

V1

Vm
= −∆Vcsch2 (1/α)

4α4

∫ 2

0
arcsch

( x
ε

) (
α sinh

( x
α

)
+ (x− 2) cosh

( x
α

))
dx.

(2.21)
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FIGURE 2.3: (a) Normalized value of the increase of velocity due to
a small deformability of the substrate as a function of the slippage
coefficient of the cell with respect to the substrate. (b) Asymptotic
regimes for large and small α as obtained by formulas (2.22). Param-

eter ∆V = 1.

We illustrate the behavior of V1 as a function of the parameter α in Fig. 2.3 (a).
As V1 is always positive for a positive value of ∆V, the influence of a small substrate
deformability is to increase the cell velocity compared to its value Vm on an unde-
formable substrate since the flow induced by ∆V in this case promotes motion in the
positive direction. A more subtle effect is that the influence of the friction coefficient
on the additional speed due to the substrate small deformability is not monotonic.
In some parameter ranges, a more adhesive substrate can lead to an increased ve-
locity since traction forces stemming from the actin flow are more effective for the
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propulsion. But the opposite effect is also true in other cases since an increase of ad-
hesion can also effectively increase the friction force opposing to the motion. While
this effect is lost in the limit of an undeformable substrate, we demonstrate that it
can readily be observed for a slightly deformable substrate (γ � 1). We further il-
lustrate this property by analytically computing the dependence of V1 in (2.21) when
α is either small or large to find

V1

Vm
∼

α→0

∆Vε

4α
√

ε2 + 4
and

V1

Vm
∼

α→∞

∆Vε
(

2 log
(√

ε2+4+2
ε

)
+ ε−

√
ε2 + 4

)
4α2 . (2.22)

These asymptotic expressions, both decreasing with α, are plotted on Fig. 2.3 (b).
The cross-over regime between them corresponds to a situation where the veloc-
ity increases with α, in a parameter range when the corresponding hydrodynamic
length is comparable to the cell length (α ∼ 1). Note that when V1 blows up close to
α = 0, the first order expansion breaks down as the product γV1 is not necessarily
small any more. Thus, this behavior does not correspond to a physically meaningful
regime. This type of non-linear dependence between the cell velocity and the sub-
strate adhesiveness was also found in a continuum model representing an actin gel
with turnover and linear friction with the substrate by Callan-Jones and Voituriez,
2013. However, the origin of the effect is completely different as the authors con-
sider an infinitely stiff substrate with an internal active stress that depends on the
actin density in a non-linear fashion.

Solutions in the limit of highly deformable substrate We now consider the oppo-
site limit where γ � 1 and the substrate is highly deformable. In this case, we seek
a solution of (2.19) where f � 1 while f̃ = γ f remains finite. Thus, (2.19) reduces to

−V
(∫ 1

−1

f̃ (x′)
x′ − x

dx′ +
∫ 1

−1
R1(x, x′) f̃ (x′)dx′

)
= −∆V

2
x + V −Vm (2.23)

Observe first that this implies that results will be independent of α in this limit.
Indeed, any finite value of the friction coefficient has the same role in the trans-
mission of traction forces because the substrate is already highly deformable. This
integral equation with a singular Cauchy kernel is numerically solved following the
approach of Karpenko, 1966. The asymptotic value of V is displayed on Fig. 2.4
as a function of the track aspect ratio ε. We also show in inset of Fig. 2.4 the spa-
tial dependence of the traction force and the substrate displacement in this limit for
several values of ε. As expected from the combination of the two limiting relations
∂xx(ṽ + v0) ' 0 and −α2∂xxṽ + ṽ = −V∂xu (see (2.16)) with associated boundary
conditions (2.17), we numerically recover that the substrate displacement on [−1, 1]
assumes the quadratic form u(x) = ∆V/(4V)x2 + (Vm/V− 1)x +Cst where Cst is a
constant that remains to be set. For large track aspect ratios (which also correspond
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FIGURE 2.4: Crawling velocity in the limit γ � 1 as a function
of ε. (see (2.23)). The dashed line represents the asymptotic value
V = Vm + ∆V/4. In inset, we show the traction forces exerted on the
substrate rescaled by γ and the substrate displacement for some val-
ues of ε. The traction forces display a square root singularity at the

trailing edge x = −1. Parameters are ∆V = 1 and Vm = 1.5.

to a plane strain situation), (2.23) can be further simplified to

−V
∫ 1

−1

f̃ (x′)
x′ − x

dx′ = −∆V
2

x + V −Vm, (2.24)

which solution can be expressed as (see Karpenko, 1966)

f̃ (x) =
(

f̃0P(1/2,−1/2)
0 (x) + f̃1P(1/2,−1/2)

1 (x)
)√1− x

1 + x
.

In the above expression, P(1/2,−1/2)
0,1 are the first two Jacobi polynomials (of order

zero and order one) with parameters 1/2 and −1/2 and their coefficients are given
by

f̃0 = V −Vm − ∆V/4 and f̃1 = −∆V
2

.

Given the integral condition (2.20) f̃0 has to vanish, leading to the asymptotic veloc-
ity when both γ and ε are large V = Vm + ∆V/4.

Having clarified the two limits γ � 1 and γ � 1, which are associated to two
different values of the crawling velocity and traction forces profiles, we turn to quan-
tifying the dependence of the crawling on the substrate softness γ and the slip coef-
ficient with the substrate α.

2.5 Biphasic relation of the cell velocity

Using again the approach developed in Karpenko, 1966, we compute numerically
the solution of (2.19) for the realistic parameters reported in Table 2.1. The unknown
velocity in (2.19) is found by dichotomy starting from the value V = Vm. We show
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on Fig. 2.5 and Fig. 2.6 the resulting dependence of the cell velocity driven by the
internal flow as a function of the substrate softness and the slippage coefficient with
the substrate. On the left panels of these figures, we also display the typical traction

FIGURE 2.5: Dependence of the crawling velocity of the substrate
softness. (a) V − Vm as a function of γ displays a biphasic depen-
dence in a realistic range of γ (see Table 2.1). For larger γ, the velocity
increases again to reach its asymptotic value given in Fig. 2.4. The
dashed line represents the slope of the curve for small γ given by
(2.21). Traction forces exerted on the substrate (b) and substrate dis-
placement (c) for several values of γ. Parameters are ε = 0.2, α = 0.1,

∆V = 1 and Vm = 1.5.

force distributions exerted on the substrate and the displacement field at the con-
tact surface as a function of the spatial coordinate. The central symmetry of these
distributions is broken, which leads to a non zero flow-driven crawling velocity.
The traction forces self-adjust with the substrate displacement and lead to biphasic
behaviors of the crawling velocity as a function of both the substrate rigidity and
adhesion, as experimentally observed in Palecek et al. (1997) and Peyton and Put-
nam (2005). The crawling velocity cannot be directly related to the magnitude of
the traction force or the mechanical work performed on the substrate as the odd
component of f does not contribute to motility. However, we do observe that the
V(γ) curve is associated with a biphasic behavior of the work of the traction forces
W =

∫ 1
−1 f (x)u(x)dx while their magnitude I =

∫ 1
−1 | f (x)|dx keeps decreasing as γ

increases. This is consistent with Fig. 2.5 where we observe that the magnitude of
traction forces decreases while the one of the substrate displacement increases when
γ varies between 0.01 and 0.02, which corresponds to the biphasic region for V. We
quantity this effect on Fig. 2.7, where we show the variation of I and W as a func-
tion of γ. A plausible explanation of the present biphasic regime of the velocity in γ

is therefore that while the traction forces decrease with the substrate stiffness, their
work is maximal at a certain value of γ leading to an optimal propulsion at least at
a local level close to this value.

But this explanation does not hold for the global biphasic behavior in α shown in
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FIGURE 2.6: Dependence of the crawling velocity on the slip coeffi-
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FIGURE 2.7: Evolution of the traction force magnitude I =∫ 1
−1 | f (x)|dx and traction force work W =

∫ 1
−1 f (x)u(x)dx as a func-

tion of γ at a fixed α. Parameters are ε = 0.2, α = 0.1, ∆V = 1 and
Vm = 1.5.

Fig. 2.6 where both the magnitude of the traction forces and their mechanical work
on the substrate keep decreasing as α increases. In this case, the importance of the
substrate stiffness is to regularize the behavior of the velocity when α is small. In-
deed, in the limit where the substrate is very stiff, the velocity expansion blows up
when α � 1 as we show in Fig. 2.3, indicating that the expansion is no longer valid
in this regime. A finite γ is sufficient to restore a finite value of the speed when
α → 0 (see Fig. 2.6) and regularizes the problem. Physically, α � 1 corresponds to
a large friction coefficient where outside of sharp boundary layers, v = vs such that
the cytoskeleton velocity is transmitted to the substrate. It is therefore expected that
the substrate deformability is playing an important role in fixing the velocity in this
regime. The other limit where α � 1 corresponds to a vanishing friction coefficient
between the cell and the substrate and the two problems therefore uncouple. We can
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thus expect that V = Vm in this regime as the substrate deformation stops contribut-
ing to the crawling motion. In between these two regimes, Fig. 2.6 shows that there
exists a friction coefficient which maximizes the crawling velocity as traction forces
are transmitted to the substrate contributing to the propulsion while the coupling
with the substrate is minimally braking the motion.

Contrary to the biphasic regime with respect to the substrate stiffness, the bipha-
sic regime with respect to the substrate friction coefficient is not due to the pre-
cise constitutive behavior of the substrate. To demonstrate this, we consider in Ap-
pendix A an exponential kernel replacing Φ(x) by Φexp(x) ∼ exp(−|x|). Such non-
singular kernel mimics the non-local feedback of the substrate on the cell motion but
is of a shorter range compared to Φ(x) as it implies that the characteristic lengthscale
of the displacement decay in response to a point force is ∼ ε while it is ∼ 1 for the
elastic kernel. In this case, while we recover a generic biphasic regime for the V(α)

curve, the V(γ) curve is monotonically increasing.

2.6 Experimental platform

We then aimed at constructing an in-house experimental platform to investigate in
details the influence of the substrate rigidity on the cell motion and check the range
of validity of our simple one-dimensional theoretical model. To do so, it is neces-
sary to produce a substrate with a suitable pattern and appropriate stiffness. To
answer this request, patterning methods and cell-compatible hydrogels have been
developed that are able to create protein micropatterns on substrates with varied
stiffness (Grevesse, Versaevel, and Gabriele, 2014; Grevesse et al., 2013). Hydroxy-
PAAm(polyacrylamide) are good candidates and can be functionnalized with fi-
bronectin. After cell seeding on such hydrogels, it is possible to acquire microscopic
images of the cells and track fluorescent beads embedded within the substrate in
order to study the relationship between cell migration and substrate deformation.
Added to this, we used T24 epithelial bladder cancer cells which have been trans-
fected with actin–GFP (Peschetola et al., 2013), so that the actin velocity can be mea-
sured. We can therefore image at the same time the substrate beads and the actin
meshwork as shown in Fig.2.8 to estimate the substrate displacement and the actin
velocity. The necessary steps to follow are detailed in B. In order validate our 1D-
model, we project the actin velocity and the substrate displacement on the major axis
of the cell, where the origin of the axis corresponds to the cell center (see Fig. 2.9).
For a reason that is not yet clear to us, our cells were poorly motile and we therefore
restricted our analysis to an acquisition sequence of 15 time frames with a 5 s time
lag between them where the cell remains almost static. In this situation, we mea-
sured an incremental displacement of the substrate of the order of the measurement
uncertainties, corresponding to the resolution of the measurement where ∂tus

x � v.
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FIGURE 2.8: Fluorescent cell (actin in cyan) migrating on a fibronectin
track (red) w ∼ 13 µm on a gel with embedded beads (dark blue).
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FIGURE 2.9: (a) Actin displacement between two successive acquired
time frames (t2 and t1 are separated by 5 s) and (b) its projection along
the track direction. (c) Beads displacements between a given time
frame (t1) and a reference configuration where the cell is absent (after
detachment) (t0). The projection along the track axis is shown on (d).

Therefore (2.11) becomes a simple integral equation relating us
x and v:

us
x(x) =

ξL
2

∫ 1

−1
φ

(
x′ − x

ε

)
v(x′)dx′, (2.25)

Due to the resolution of the measurements, a linear approximation of the actin ret-
rograde flow velocity is appropriate, as pushing the approximation to higher order
would essentially capture noise. Thus we write v(x) ' v1x, where the coefficient v1

can be physically interpreted as the slope of (2.15) at the origin. In order to reduce
the effect of fluctuations, a linear regression is performed at every time frame and
then averaged over the total number of frames:

v(x) =
1
N

N

∑
n=1

vn
1 x,
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FIGURE 2.10: Estimation of the friction coefficient ξ from the exper-
imental data for three different substrate rigidities (5 kPa, 8 kPa, 28
kPa). Over one sequence (15 frames with a 5s timestep), the measured
actin velocity is represented using 40 blue boxplots and the measured
substrate displacement under the cell using 40 red boxplot. Each box-
plot is computed considering all the data points in 1/40 of the cell.
The blue line represents the linear regression of the measured actin
velocity over the sequence. The red line is the predicted substrate
displacement obtained using our model (2.26), where the value of ξ
is extracted by performing a least square minimization between the
predicted (red line) and measured (red boxplots) substrate displace-

ments.

where N is the total number of time frames in a sequence (N = 15) and vn
1 x is

the linear regression of the actin velocity for frame n. From (2.25), the substrate
displacement for x ∈ [−1, 1] for the linearized expression of v reads,

us
x(x) =

3Lξ

4πEs
v1xMε

0(x). (2.26)

where,

Mε
0(x) =ε arcsinh

(
1− x

ε

)
+ ε arcsinh

(
1 + x

ε

)
+(1− x) log

(
ε +

√
(1− x)2 + ε2

1− x

)
+ (1 + x) log

(
ε +

√
(1 + x)2 + ε2

1 + x

)
.

The complete method leading to the derivation of the expression ofMε
0 is devel-

oped in detail in the next chapter 3.2.
We then estimate ξ by minimizing the distance between the predicted substrate

displacement (2.26) for the measured actin retrograde flow velocity and the substrate
displacement from the experimental data. The results for three different substrate
rigidities (Es = 5 kPa, 8 kPa and 28 kPa) are shown in Fig. 2.10. In these plots the
actin velocity and substrate displacement experimental data are represented using
boxplots. We observe strong fluctuations of the actin velocity for the 5 kPa and
28 kPa rigidities, while the data points are much more concentrated in the 8 kPa
case. This is due to the fact, that in the cases of 5 kPa and 28 kPa, the cells where
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not elongated enough (not 1D), thus at the same abscissae, we could measure two
opposite velocities in some cases. The actin retrograde flow was also difficult to track
because of the diffuse fluorescence.

While the friction coefficient seems to exhibit a slight dependency to the sub-
strate rigidity, ranging from 6.64× 109 Pa.s.m−1 to 6.10× 1010 Pa.s.m−1, more data
are needed to extract a clear tendency, as only one cell sequence was retained for
each substrate rigidity. Because ∂tus

x � v, the viscous friction law (1.7) reduces to
Tx(x, t) = ξv(x, t), which corresponds to the friction law on a rigid substrate. This
gives us a comparison point to evaluate the relevance of our model. Indeed, while
obviously the substrate displacement between soft and rigid substrates cannot be
compared (being zero in the latter), the friction law is identical in this specific case.
Therefore to validate our model the friction coefficient for a compliant substrate has
to be of the same order as the one for a rigid substrate, which we note ξr. Extended
work has already been done to characterize cell crawling on rigid substrates by mean
of a viscous friction law (Jülicher et al., 2007; Rubinstein et al., 2009) and ξr has been
evaluated to be of the order of 109 − 1010 Pa.s.m−1. With our model we successfully
recover a friction coefficient of the same order of magnitude as the one obtained on
a rigid substrate.

With this validated experimental setting, we plan to investigate in details situa-
tions where the cell is strongly motile in the future.

2.7 Conclusion

Starting from a linear elastic semi-infinite substrate and a viscous friction law lin-
early relating the cell traction forces and the relative velocity between the actin and
the substrate, we modeled the mechanical interaction between a crawling cell and
a compliant substrate for cells confined to move on thin micropatterned fibronectin
tracks. This model of the cell contact was then coupled with one of the simplest
model of cell propulsion based on actin turnover. In such a model, the polymeriza-
tion at the cell front and its depolymerization at the cell back leads to two motility
mechanisms. The addition and removal of actin monomers induces a certain tread-
milling velocity that is independent of external conditions but also a retrograde flow
of actin from the cell front to its back exists and is dependent on the mechanical
coupling with the substrate. Because of such non-local coupling, we find that the
dependence of the cell velocity on either the substrate stiffness at a given friction
coefficient or the friction coefficient at a given substrate stiffness are not monotonic.
This offers an interesting paradigm to complement other theories directly invoking
a local non-linear dependence of the friction force on the actin flow to explain this
global non-monotonicity. Experimentally, through the simultaneous monitoring of
the substrate displacement and the actin retrograde flow velocity for static cells, we
were able to extract the effective friction coefficient that enters in our model for dif-
ferent substrate rigidities by performing model-based data-fitting. We observed a



2.7. Conclusion 37

small variation of the friction coefficient with the substrate rigidity, but the values
globally lie in the same magnitude range. We find values of the friction coefficient
of the same order as the ones previously reported for cells crawling on a rigid sub-
strate suggesting that it is legitimate to consider this parameter as fixed regardless
of the substrate rigidity. In the case of the 5 kPa and 28 kPa subtrate rigidities, the
cells were not elongated enough to consider them as one dimensional and the actin
acquisition resolution was poor. To address these issues it would be necessary to be
able to pattern thinner fibronectin tracks.

We expect our experimental method to be of greater interest for cell types and
substrate rigidities where the actin retrograde flow and the rate of deformation of
the substrate are comparable and the cells are more motile than in the present work.
Another perspective is to couple the present model of non-local cell-to-substrate con-
tact to the paradigmatic case of contraction-driven cell motility (Recho, Putelat, and
Truskinovsky, 2015) where we expect complex intermittent gaits to appear from the
coupling of the Keller-Segel instability to the non-locality induced by the substrate
elasticity.
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Chapter 3

The influence of substrate viscosity
on cell contraction-driven crawling

3.1 Model formulation

In the present chapter, we consider a cell moving on a viscous substrate. As the
model formulation has a lot in common with the elastic substrate’s one of chap. 2
sec. 2.2, we adapt the elastic model to the viscous case by considering the substrate
velocity vs instead of the substrate displacement us. The velocity of the incompress-
ible substrate vs due to the cell traction forces is derived from the Stokeslet solution
and, following the methodology of the sec. 2.2, we obtain

vs
x(x, t) =

∫ l+(t)

l−(t)
φ

(
x′ − x

δ

)
Tx(x′, t)dx′,

where now φ reads φ(x) =
1

4πηs
log

(
1 +
√

1 + x2

|x|

)
.

(3.1)

Compared to the previous expression (2.8), the shear viscosity of the substrate ηs has
replaced 2Es/3.

For sake of simplicity, we do not consider the steric hindrance of the molecular
motors in this chapter, thus we take f (c/c0) = 1 in the transport equation (1.3)

∂tc + ∂x(cv− D∂xc) = 0. (3.2)

Whereas we considered a polymerization-driven cell crawling in the previous
chapter, here the investigated cell motion is contractility-driven, therefore v± = 0 in
the Stefan boundary condition (1.10):

V(t) = l̇− = l̇+ = v|x=l− = v|x=l+ . (3.3)

Re-scaling the spatial variable x using the mapping function ψ defined as

ψ : [l−(t), l+(t)] −→ [−1/2, 1/2]

x 7−→ 1
l+(t)− l−(t)

(
x− l+(t) + l−(t)

2

)
,
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and introducing the cell aspect ratio ε = δ/L, the problem reads
vs

x(x, t) = h
∫ 1/2
−1/2 φ

(
x′−x

ε

)
∂x′σ(x′, t)dx′

h
L ∂xσ = ξ(v− vs

x)

σ = η
L ∂xv + χc

∂tc + 1
L ∂x

[
c(v−V)− D

L ∂xc
]
= 0.

(3.4)

with the boundary conditions,

σ|−1/2 = σ|1/2, V = v|−1/2 = v|1/2 and ∂xc|±1/2 = 0. (3.5)

For sake of clarity we use the same symbol to denote the non-dimensional spatial
quantity. The unknowns of problem (3.4)-(3.5) are the velocity fields vs

x(x, t) and
v(x, t), the stress field σ(x, t), the motor concentration field c(x, t) and the velocity
of the moving fronts V(t).

Note that in this chapter we chose a different spatial rescaling on [−1/2, 1/2]
whereas in the previous chapter the rescaled interval was [−1, 1], because it is more
convenient to work on an interval of length unity. The choice made in the previous
chapter was motivated by the fact that we initially wanted to explore Chebyshev
expansions to derive some analytical solutions, but this work was not brought to
completion.

3.2 The local approximation of the substrate velocity

In order to get around the difficulty of solving a singular integro-differential equa-
tion on a segment of finite length without periodic boundary conditions, we propose
in the present section, a method based on Taylor expansions to formulate a local ap-
proximation of this model.

To deduce a local approximation of our model, we perform a Taylor expansion
of the traction forces for x′ near x. To this end we first introduce the variable u
which is defined by the difference between x′ and x and is here assumed to be small.
Therefore making the change of variables u = x′ − x in (3.1) and performing the
previously introduced spatial scaling gives

vs
x(x, t) = L

∫ 1/2−x

−1/2−x
φ
(u

ε

)
Tx(x + u, t)du. (3.6)

A priori the traction forces function is not continuous on the real line, because
the substrate is free of load outside the contact area with the cell Ωc, thus it exhibits
discontinuities at the cell fronts x = ±1/2 and is therefore not analytic on the real
line. However we assume Tx is analytic in the open interval ]− 1/2, 1/2[, ensuring
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FIGURE 3.1: Representation of the three firstMε
i for ε = 0.1. Domi-

nation ofMε
0 over the other moments in the loaded region.

the convergence of the Taylor series to Tx. Thus we can write

Tx(x + u, t) =
∞

∑
i=0

ui

i!
∂ i

xTx(x, t).

Injecting this expression into (3.6) leads to

vs
x(x, t) =

L
4πηs

∞

∑
i=0

∂ i
xTx(x, t)Mε

i (x)
i!

, (3.7)

where

Mε
i (x) = 4πηs

∫ 1/2−x

−1/2−x
uiφ

(u
ε

)
du

=
1

(1 + i)2

(
(1/2− x)i+1

(
2F1

(
1
2

,
1 + i

2
,

3 + i
2

,− (1/2− x)2

ε2

)
+(1 + i) log

(
ε +

√
(1/2− x)2 + ε2

1/2− x

))

− (−1/2− x)i+1
(

2F1

(
1
2

,
1 + i

2
,

3 + i
2

,− (1/2 + x)2

ε2

)
+(1 + i) log

(
ε +

√
(1/2 + x)2 + ε2

1/2 + x

)))
.

In the above expression, 2F1 denotes the hypergeometric function defined as

2F1(a, b; c; z) = ∑∞
n=0

(a)n(b)n
(c)n

zn

n! for |z| < 1, where the notation (q)n stands for
(q)n = (q + n− 1)!/(q− 1)!.

As it appears in Fig 3.1,Mε
0 dominates the moments of higher orders when ε is

small, thus the zeroth-order moment dictates the behavior of the substrate velocity in
the loaded domain. It is therefore relevant to introduce the approximated substrate
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velocity v̂s
x defined as

v̂s
x(x, t) =

L
4πηs

Tx(x)Mε
0(x), (3.8)

where

Mε
0(x) =ε arcsinh

(
1
2 − x

ε

)
+ ε arcsinh

(
1
2 + x

ε

)

+

(
1
2
− x
)

log

ε +
√
( 1

2 − x)2 + ε2

1
2 − x

+

(
1
2
+ x
)

log

ε +
√
( 1

2 + x)2 + ε2

1
2 + x

 .

From now on, we will refer to this approximation as the zeroth-order approxi-
mation, as it is based on the zeroth-order Taylor expansion of the traction force. Our
approximation replaces the non-local dependence of vs

x on the axial traction force by
the explicit spatial dependenceMε

0.
As Tx = h∂xσ/L, we can re-express the zeroth-approximation (3.8) as

v̂s
x(x, t) =

h
4πηs

∂xσMε
0(x). (3.9)

3.3 Numerical verification of the approximation

We investigate the reliability of the zeroth-order approximation of the substrate ve-
locity previously obtained by computing the remainder between the exact and ap-
proximated substrate velocity. In order to perform this analysis the exact solution
(3.6) needs to be known.

To do so, let us consider Tx to be a polynomial of degree n for x ∈]− 1/2, 1/2[
such that Tx(x, t) = ∑n

k=0 Tk(t)xk. As the cell only exerts traction forces on Ωc, Tx is
extended to zero outside. Plugging the polynomial expression of the traction force
into (3.6), we get

vs
x(x, t) = L

n

∑
k=0

Tk(t)
∫ 1/2−x

−1/2−x
(x + u)kφ

(u
ε

)
du. (3.10)

Using the binomial formula in the previous expression and the normalization
yields

vs
x(x, t) =

L
4πηs

n

∑
k=0

k

∑
i=0

Tk(t)

(
k
i

)
xk−iMε

i (x). (3.11)

One major feature achieved by this formulation is that it is valid on the real line,
while the domain of validity of the local formulation (3.7) is restricted to
]− 1/2, 1/2[. However both formulations are equivalent on ]− 1/2, 1/2[.
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FIGURE 3.2: Exact solution of vs
x for ε = 10−2. The traction force is chosen

to be of the polynomial form T(x, t) = −x (blue), T(x, t) = −x3 (red) and
T(x, t) = −x5 (green), in order to satisfy the constraint

∫ 1
−1 Tx(x, t)dx = 0,

imposed by the global force balance.

Indeed, if i > k then by convention

(
k
i

)
= 0 and (3.11) can be re-written

vs
x(x, t) =

L
4πηs

n

∑
i=0

n

∑
k=0

Tk(t)

(
k
i

)
xk−iMε

i (x). (3.12)

Because ∂i
xTx(x, t) = ∑n

k=0
k!

(k−i)! Tk(t)xk−i, we finally obtain

vs
x(x, t) =

L
4πηs

n

∑
i=0

∂i
xTx(x, t)Mε

i (x)
i!

. (3.13)

So if Tx is a polynomial the domain of validity of (3.7) can be extended from ] −
1/2, 1/2[ to the whole space.

Now that we found an exact expression of the substrate velocity as a finite sum
for any polynomial traction force, a comparison between the exact and zeroth-order
expression can be performed.

To this end we choose Tx to be an odd function of the polynomial form, in order
to satisfy the constraint imposed by the global force balance

∫ 1
−1 Tx(x, t)dx = 0,

Tx(x, t) = −x2n+1.

The exact substrate velocity obtained using (3.11) is shown on Fig. 3.2 for Tx(x, t) =
−x, −x3 and −x5. The substrate velocity abruptly drops outside the loading region
showing that the boundary layers in Mε

0 are a direct consequence of the free-load
boundary conditions.
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FIGURE 3.3: Comparison between exact (dashed line) and approxi-
mated zeroth-order (solid line) solutions of vs

x with ε = 10−3. The
traction force is chosen to be of the polynomial form T(x, t) = −x
(blue), T(x, t) = −x3 (red) and T(x, t) = −x5 (green), in order to sat-
isfy the constraint

∫ 1
−1 Tx(x, t)dx = 0, imposed by the force balance.

A graphical comparison between the exact and approximated substrate velocity
is represented in Fig. 3.3 for the same parameters as Fig. 3.2 except that ε = 10−3.
The zeroth-order approximation (3.8) reproduces well the general behavior of vs

x.
However, while the approximation is sufficiently accurate in the bulk (especially as
n increases), it overestimates the effect of traction at the vicinity of the cell edges.

In order to estimate the accuracy of our approximation, the exact and approxi-
mated substrate velocities are compared by computing the L2-norm of the remain-
der, i.e. the relative error between the exact expression and the zeroth-order approx-
imation, defined by

Rε =
‖vs

x − v̂s
x‖2

‖vs
x‖2

.

As the framework of our theory is based on a thin track assumption (δ � L), we
investigate the behavior of this error for decreasing value of the cell aspect ratio ε.
This error is plotted in Fig. 3.4. At a fixed polynomial degree of Tx the relative error
decreases towards zero with decreasing ε. This confirms the previously stated dom-
ination ofMε

0 over the moments of higher orders at small values of ε and therefore
shows the good accuracy of the zeroth-order approximation for ε small.

3.4 The space-dependent effective friction coefficient

Using the zeroth order approximation, we can re-write (1.8) such that

(h/L)∂xσ(x, t) = ξeff(x, t)vx(x, t), (3.14)

where
ξeff(x, t) = ξ (1− vs

x(x, t)/v(x, t)) . (3.15)
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FIGURE 3.4: Relative L2-error convergence analysis.

ξeff is a space-dependent effective friction coefficient encompassing the substrate de-
formation.

Injecting (1.8) into (3.9) yields

v̂s
x(x, t) =

Lξ

4πηs
(v(x, t)− vs

x(x, t))Mε
0(x). (3.16)

Equating vs
x and v̂s

x(x, t), we obtain

v̂s
x(x, t) =

v(x, t)

1 + 4πηs
L(t)ξMε

0(x)

. (3.17)

Thus an approximate friction coefficient can be derived by injecting the previous
expression in (3.15) and reads

ξ f (x), with f (x) =
1/(ξL)

1/(ξL) +Mε
0(x)/(4πηs)

. (3.18)

Using the dimensionless parameters

Z = ξL/η,

the ratio of elastic and viscous length scales,

S = η/ηs,

the ratio of cell and substrate viscosities, the expression of the effective coefficient
is

Z f (x), with f (x) =
1/Z

1/Z + SMε
0(x)/(4π)

. (3.19)

It has been experimentally shown, that focal adhesions (FAs), connecting the
actin cytoskeleton to the substrate, are forming at the front and the rear of a cell,
therefore several mathematical models for cell motility introduced an a priori space
dependent drag coefficient based on experimental data (Mogilner and Verzi, 2003),
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rigid limit

inviscid limit

FIGURE 3.5: Spatial evolution of the scaled effective drag coefficient
Z f for different values of scaled substrate viscosity S . In the invis-
cid limit (S → 0), there is no coupling between cell and substrate as

Z f → 0.
In the rigid limit (Z f → ∞), the coupling between cell and substrate

is constant over the contact surface as Z f → Z f .

which represents the spatial distribution of focal adhesions. In our approach, no
previous knowledge of the distribution of focal adhesions is needed, as a space-
dependent effective drag coefficient spontaneously arises by formulating the local
approximation of problem (3.4).

The shape of this effective drag coefficient illustrated Fig. 3.5 is in qualitative
agreement with the experiments as it exhibits higher values at the cell edges.

We recover the same behavior of the effective friction coefficient as Novak et al.,
2004, who modeled the interaction between cell and substrate by incorporating the
transport equations of integrin in order to simulate the process of adhesion matura-
tion (see Fig 3.6a), and as Lelidis and Joanny, 2013, who used discrete focal adhesions
on a viscoelastic substrate (see Fig 3.6b).

In the inviscid limit (S → ∞), there is no coupling between cell and substrate
as Z f → 0. In the rigid limit (S → 0), the coupling between cell and substrate is
constant over the contact surface as Z f → Z .

3.5 Motility initiation by substrate rigidification

The original problem (3.4) involved a singular integro-differential equation. By ap-
plying the zeroth-order approximation through the introduction of the previously
obtained effective friction coefficient, it is now reduced to the following system of
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(A) (B)

FIGURE 3.6: (A) Integrin distribution under the cell (Novak et al.,
2004) (B) Effective friction coefficient obtained by Lelidis and Joanny,
2013 using a discrete approach of the contact between the cell and a

viscoelastic substrate.

PDEs (3.20) with a space-dependent coefficient
h
L ∂xσ = ξ f v

σ = η
L ∂xv + χc

∂tc + 1
L ∂x

[
c(v−V)− D

L ∂xc
]
= 0

(3.20)

with the boundary conditions

σ|−1/2 = σ|1/2, ∂xσ|−1/2 = ∂xσ|1/2 and ∂xc|±1/2 = 0,

and the initial condition
c(x, 0) = c0.

Re-scaling the length by L, the time by L2/D, the stress by ηD/L2, the viscos-
ity of the substrate by η and the concentration by c0, we obtain the following non-
dimensional coupled problem −HZ ∂x

(
∂xσ

f

)
+ σ = Pc

∂tc + ∂x

[
c(HZ

∂xσ
f −V)− ∂xc

]
= 0,

(3.21)

with the boundary conditions

σ|−1/2 = σ|1/2, ∂xσ|−1/2 = ∂xσ|1/2 and ∂xc|±1/2 = 0,

and the initial condition
c(x, 0) = 1.
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Here the dimensionless cell velocity reads

V =
H
Z

∂xσ|±1/2

f (±1/2)
.

We introduced two supplementary dimensionless parameters:

P = χc0L2/(ηD),

the dimensionless measure of motor contractility and

H = h/L,

the normalized cell height.

3.6 Numerical implementation

We choose to use a centered finite difference scheme on a regular grid in order to spa-
tially discretize (3.21)1, while the advection-diffusion equation (3.21)2 is discretized
using a finite volume approach (see fig. 3.7). (3.21)1 imposes, that the quantities σ

and c should be evaluated at the same nodes. The cell is discretized in n elemen-
tary volumes, where σ and c are evaluated at the center of each volume and at the
interfaces, the velocity and fluxes.

Starting from an initial distribution of motors c0, we compute the stresses inside
the cell and deduce the actin retrograde flow velocity as well as the cell speed. The
time is incremented using a Courant-Friedrichs-Lewy condition and the new motors
distribution is computed from the stress. The process is iterated until steady-state is
reached.

In order, to implement the boundary condition ∂xσ|−1/2 = ∂xσ|1/2, two ghost
nodes for σ were added outside the cell ends.

Using a centered finite difference method, the discretization of (3.21)1 and its
associated periodic boundary conditions reads,

H
Z

(
− 1

fi∆x2 −
f ′i

2∆x f 2
i

)
σk

i−1 +
(

1 + 2H
Z fi∆x2

)
σk

i +
H
Z

(
− 1

fi∆x2 +
f ′i

2∆x f 2
i

)
σk

i+1 = Pck
i

σ0 = σn

σ1 = σn+1

,

(3.22)
where (.)k

i represents the discretized value of a dummy quantity at the node i and
time k.



3.6. Numerical implementation 49

(zero flux) (zero flux)

Node/Volume center Ghost node Finite Volume

FIGURE 3.7: Representation of the scattered regular grid used for the
discretization of (3.21). The cell, ranging from x = −1/2 to x = 1/2,
is discretized in n elementary volumes. The internal stress σ is com-
puted using a finite difference method and c using a finite volume
method and are evaluated at the same nodes. The cytoskeleton ret-
rograde flow speed v is deduced from σ also using a centered finite
difference method, and thus is evaluated at the volumes interfaces.
The discretization of the boundary conditions is achieved using peri-
odic boundary conditions on σ (blue), while the zero flux condition at
both cell ends remains a condition on the flux when discretized (red).

In the matrix form (3.22) reads,

1 0 0 0 0 −1 0
0 1 0 0 0 0 −1
α1 β1 γ1 0 0 0 0
0 α2 β2 γ2 0 0 0

0
. . . . . . . . . 0 0

0 0 0 αn−1 βn−1 γn−1 0
0 0 0 0 αn βn γn





σk
0

σk
1

σk
2

σk
3
...

σk
n

σk
n+1


= P



0
0
ck

1

ck
2
...

ck
n−1

ck
n


(3.23)

where αi =
H
Z

(
− 1

fi∆x2 −
f ′i

2∆x f 2
i

)
, βi = 1 + 2H

Z fi∆x2 and γi =
H
Z

(
− 1

fi∆x2 +
f ′i

2∆x f 2
i

)
.

The periodic boundary conditions on σ are implemented into the two first lines of
the right-hand-side (RHS) matrix. Because the cell is migrating at a constant length,
the RHS matrix does not depend on time, therefore it needs to be calculated and
inversed only once at the start of the simulation.

The actin retrograde flow velocity v at the volume interfaces is deduced from σ,

vk
i =

H
Z∆x

σk
i+1 − σk

i

fi
.

One important remark has to be made here that f ′ is not defined at the cell ends,
as f ′(x = ±1/2)→ ∞. However, because of our discretization strategy, this value is
not needed. Indeed f ′i is calculated at the nodes or elementary volumes centers and
not at the interfaces. The cell ends coincide with interfaces where only the velocity
is computed, which requires the value of f not f ′.

Using the finite volume method, the discretization of the advection-diffusion
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equation of the molecular motors (3.21)2 together with the zero-flux boundary con-
ditions at the cell ends and the initial condition on the motors distribution reads
(Euler-explicit time discretization)

ck+1
i = ck

i +
∆t
∆x (φ

k
i − φk

i+1)

φk
1 = 0

φk
n+1 = 0

c0
i = c0,

(3.24)

where φk
i and φk

i+1 denote the sum of the advective and diffusive fluxes at time k and
at the left resp. the right interface of the i−th elementary volume. The expression of
φk

i is given by,

φk
i =

ck
i + ck

i−1

2
(vk

i −V)−
ck

i − ck
i−1

2
|vk

i −V| −
ck

i − ck
i−1

∆x
(3.25)

As we chose an explicit time discretization, the largest admissible timestep ∆t
ensuring the stability of the scheme is evaluated using the Courant-Friedrichs-Lewy
condition and reads

∆t =
∆x

max
(
|vi −V|+ 2

∆x

) . (3.26)

The steady-state is considered reached when the residual of the motors concen-
tration becomes lower than an arbitrary threshold value.

3.7 Results

When considering the present minimalist problem of a crawling cell evolving on a
viscous substrate, the motility is governed by a competition between cell’s intrin-
sic and extrinsic phenomena which are represented through the three main non-
dimensional parameters P , S , and Z . S and Z characterize the substrate viscosity
and the cell adhesion and P the cell contractility. In order to understand the influ-
ence of these parameters on cell motility, a set of numerical simulations was per-
formed on the (S , Z , P) domain (see Fig. 3.8). We used the dichotomy method in
order to draw the frontier between the static and the motile domain. This method
consists in choosing two points in the three-dimensional domain (S , Z , P). These
two initial points (A, B) are taken sufficiently far away from each others, such that
one lies in the static domain (A), while the other lies in the motile domain (B). Next
we compute the steady-state cell velocity at both points (VA, VB) using the previ-
ously introduced algorithm (see sec. 3.6, and obtain |VA| ' 0 and |VB| 6= 0. At this
point, the segment [A, B] is dichotomized in [A, C] and [C, B] where C is the middle
point of [A, B]. Then the steady-state velocity at C (VC) is computed, if |VC| ' 0 then
A and C both lie in the static domain, else B and C both lie in the motile domain.
We retain the segment with two extremities in different domains such that C is on
one end, e.g. if A is static and C is motile, we keep the segment [A, C]. We iterate
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mobile

static

FIGURE 3.8: Three dimensional representation of the bifurcation fron-
tier between the static and motile cell state in the (S , Z , P) domain.

the dichotomy process until the length of the segment is arbitrary small. The middle
point of this final segment would be on the frontier between the static and motile
domain, and is represented by a blue dot in Fig. 3.8.

Fig. 3.8 is a phase diagram delimiting the surface between the motile and static
domain, below the surface the cell is static while above it the cell is moving. The
plane P0 = π2 corresponds to the critical contractility in the vanishing friction limit
evaluated in the next chapter 4. Below the plane P = P0, the cell remains static
independently of (Z , S), in particular, in the frictionless limit (Z → 0) and the
inviscid limit (S → ∞). By definition, P = χc0L2/(ηD), thus P < P0 is equivalent
to χc0 < P0ηD/L2, meaning that the contractility of the motors cannot generate a
sufficiently significative advective flow able to counteract the diffusive flow, which
tends to uniformize the motors distribution.

Within the framework of our approximation, we introduced an effective friction
coefficient Z f , therefore the vanishing friction limit corresponds to Z f → 0 ⇐⇒
1/Z + SMε

0(x)/4π � 1.
This limit is reached in particular, for 1/Z � 1 with finite S or for S � 1

with finite Z . Therefore the inviscid limit is equivalent to the no-friction one, which
explains that the same critical contractility is obtained at Z → 0 and at S → ∞,
represented by the two black lines on Fig. 3.8.

Following Recho, Putelat, and Truskinovsky, 2019, the critical contractility Pc

with respect to the friction Z for a rigid substrate (S → 0), is given by

Pc =
√
Z/Hλc

(√
Z/H

)
,



52Chapter 3. The influence of substrate viscosity on cell contraction-driven crawling

Where λc is obtained by numerically solving the following equation,

2 tanh

(√
Z/H
2

√
1− λc√

Z/H

)
= λc

√
1− λc√

Z/H
.

The bifurcation line Pc corresponding to the rigid substrate limit (S → 0), is repre-
sented by a red line on the bifurcation diagram (see Fig. 3.8). We observe that the
simulation is in good agreement with the theory in both, the rigid substrate limit and
the no-friction limit investigated in the next chapter, which confirms our numerical
simulations.
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FIGURE 3.9: Two-dimensional representation of the phase diagram in
the plane (Z ,S) at P = 18.0.

At P > P0, the motility is governed by the couple of parameters (Z ,S), as at
P and H fixed, (3.21) is completely controlled by Z f (Z ,S). For a better visibility,
the bifurcation line at P = 18.0 in the plane (Z ,S) is represented in Fig. 3.9. The
static domain corresponds to values of (Z ,S) yielding sufficiently high values of the
effective drag coefficient Z f (Z ,S , ε, x), as a decreasing S and/or an increasing Z
induce an increase in the effective friction coefficient. In the mobile domain, the cell
contractility is not only able to overcome the effect of diffusion, but also the resisting
effect of the (Z ,S)-induced effective friction. It is obvious, that the less friction
opposes to the cell motion the easier it is able to move. However this also brings
a rather counter-intuitive statement, that the cell could better move on an inviscid
substrate and or with no friction. This limit is investigated in more details in the
next chapter.

In order to gain a better understanding of the influence of both Z , and S on the
cell motility, we study the evolution of the cell speed at steady-state for varying S
and at fixed Z (see Fig. 3.10a). At Z = 5.0, regardless of the value of S the cell is
mobile, while at Z = 7.0, the cell passes from static to mobile at a critical value of
the substrate viscosity. As shown on Fig. 3.10a, when exclusively evolving in the
mobile domain, the cell speed exhibits a monotonous behaviour with respect to S .
The profiles reach two plateaus at both the rigid and the inviscid limits. On these
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FIGURE 3.10: (Left) Evolution of the steady-state cell velocity with the
substrate viscosity. The cell is moving slower on soft substrates than
on rigid ones. AtZ = 5.0, the cell remains in the mobile domain. Two
plateaus form at both the rigid (S → 0) and the inviscid (S → ∞)
limits, suggesting a domain of cell sensitivity to the substrate viscos-
ity in between. At Z = 7.0, the cell crosses the frontier between the
static and mobile state at a critical value of the substrate viscosity. For
Z = 0.1, we observe a shift in the monotony, due to a numerical arte-
fact. (Right) Highlight of the chosen simulation points in the rigid

(blue), mechanosensitive (red) and inviscid domain (green).

two plateaus, the cell motility remains unaffected by a variation of the substrate
viscosity. This simple mechanical model allows to extract a viscosity range for the
cell mechanosensitivity.

For small values of Z , we observe a monotony shift as the cell speed decreases
with S (see Fig. 3.10a). This is most probably the result of a numerical artefact rather
than the consequence of an actual physical phenomena. Indeed, we previously men-
tioned the equivalence between the frictionless limit and the inviscid one. More rig-
orously, at the inviscid limit we have Z f ∼ 4π/(SMε

0(x)), as v remains bounded
the force balance combined with the constitutive law gives,

H(∂xxv + P∂xc) =
4π

SMε
0

v→ 0. (3.27)

After integration it becomes,
∂xv + Pc = α, (3.28)

where α is an integration constant and is evaluated by integrating the previous equa-
tion over the length of the cell, therefore

∫ 1/2

−1/2
∂xv︸ ︷︷ ︸

=0

+P
∫ 1/2

−1/2
c︸ ︷︷ ︸

=1

= P = α.

We finally get,
∂xv = P(1− c). (3.29)
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This is exactly the equation obtained in the next chapter for the frictionless limit,
which shows the equivalence between both limits. Therefore the cell speed in the
inviscid limit should exactly match the one in the frictionless limit. However, we
observe a discrepancy between the cell velocities at both limits, which results in the
shift of monotony below a certain Z , corresponding to the entrance in the domain
of vanishing friction. The fact that f ′ blows up at the cell ends causes this numer-
ical artefact, although it is not exactly evaluated at the cell ends, because of our
discretization strategy, therefore another numerical method has to be developed in
order to address this issue.
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FIGURE 3.11: Representation of the concentration of motors c, the in-
ternal stress σ, the cytoskeleton velocity v and the traction force T in
the rigid (blue), mechanosensitive (red) and inviscid domain (green).
(Top-Left) Representation of the motors distribution inside the cell.
The motors concentrate at the back of the cell. As the substrate gets
more viscous, the distribution becomes less peaked. (Top-Right) Rep-
resentation of the stress inside the cell. In the mechanosensitive do-
main, σ exhibits higher peaks. At the inviscid limit, there is almost
no fluctuations of the internal stress, such that σ(x) = P . (Bottom-
Left) Representation of the traction force exerted by the cell on the
substrate. The traction is maximal at the cell ends. At S � 1, the
traction force vanishes as the cell can not grip. This figure suggests
a non-monotonous behaviour of the traction force at the edges with
S . (Bottom-Right) Representation of the actin retrograde flow veloc-
ity inside the cell. The magnitude of the retrograde flow is greater at
small S , as the S-induced friction is lower, thus the cell speed, corre-

sponding to v at the edges follows the same tendency.
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FIGURE 3.12: Representation of the effective friction coefficient in the
rigid (blue), mechanosensitive (red) and inviscid domain (green). The

inviscid limit is equivalent to the frictionless one.

We plot the local quantities, c, σ, v and the traction force T = H∂xσ at the three
dots (blue, red, green) in Fig. 3.10a, in order to get a representation of these pro-
files in the rigid, the mechanosensitive and the inviscid domain, respectively (see
Fig. 3.11). Starting from an initial uniform distribution, the motors concentrate at
the back of the cell. As a result, when the steady-state is reached, the cell is com-
pletely polarized: at the back (x = 1/2), the motors concentrate, inducing a retro-
grade flow of actin and an overall motion of the cell in the opposite way. The cyto-
skeleton retrograde flow speed decreases with S and the distribution of motors is
less peaked. The relation between motors concentration and retrograde flow obeys
a positive feedback loop, as a local increase of motor density induces a local increase
of the retrograde flow velocity, which contributes to the advection of more motors
towards this peak. As a decrease of S induces an increase of the effective drag coef-
ficient Z f (see Fig. 3.12), the actin retrograde flow slows down with S . The traction
forces are maximal at the edges. Because the cell has more grip on a viscous sub-
strate, ultimately the cell pulls more, while on an inviscid one the cell is unable to
anchor and therefore the traction force almost vanishes. However, although traction
forces are small, the effective friction coefficient is also small in the inviscid limit
(see Fig. 3.12). So however small the tractions T may be in that case, there is al-
most no resistance to motion, which explains this counter-intuitive behaviour of a
cell moving faster on an ”almost” inviscid substrate. Interestingly, the traction at
the edges, which we note T±, does not seem to be monotonous with S as we have
|T±(S = 104)| < |T±(S = 10−4)| < |T±(S = 9.24)|.

This tendency is confirmed by plotting the traction force at the edges with respect
to S (see Fig. 3.13), as a biphasic relationship between them is obtained. This is an
interesting result, because it means that there is an optimal viscosity at which the
transmission of forces from the cell to the substrate is maximal. When considering
the motion of a sliding actin filament on an elastic substrate interacting one with
another via stochastic bonds, Sens, 2013 obtained a similar behaviour.
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FIGURE 3.13: Evolution of the traction force at the edges of the cell T±
with the substrate viscosity. There is an optimal substrate viscosity at
which the traction force reaches a maximum. (The dashed lines are

just guides for the eye.)

3.8 Reduced friction coefficient

As previously stated, the governing equations of cell migration (3.21) are completely
controlled by Z f , P and H. In order to explore the effect of the boundary layers
in the effective friction coefficient, we approximate Z f by its mean value 〈Z f 〉 =∫ 1/2
−1/2Z f (x)dx in problem (3.21), which becomes − H

〈Z f 〉∂xxσ + σ = Pc

∂tc + ∂x

[
c( H〈Z f 〉∂xσ−V)− ∂xc

]
= 0.

(3.30)

Formulating the problem of the cell crawling on a viscous substrate with (3.30),
reveals it is actually equivalent to the problem of the cell crawling on a rigid sub-
strate with the space-independent reduced friction coefficient.
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FIGURE 3.14: (a) Representation of the isolines 〈Z f 〉 = κ (solid lines)
in the plane (S , Z). (b) Isoline 〈Z f 〉 = 4 in the bifurcation plane
(Z , S) at P = 18. This isoline lies in the mobile domain. The targets

on this line represent the three chosen simulation points.
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Assuming this approximation is accurate, for all (Z , S) such that 〈Z f 〉 = κ,
where κ is a constant, we should obtain the same results when solving the system
(3.21). The isolines 〈Z f 〉 = κ are represented Fig. 3.14a in the plane (S , Z). In order
to investigate this theory we run three simulations on the isoline 〈Z f 〉 = 4 located
in the mobile domain represented by the three dots in Fig. 3.14b.

FIGURE 3.15: Representation of the local quantities c, v and σ at the
selected points of the isoline 〈Z f 〉 = 4. There is a good match of the

quantities on the isoline.

The results of these simulations are compared in Fig. 3.15. Encouragingly, the
spatial quantities seem to match with each other quite well. Yet another positive
result is represented Fig. 3.16a, where we apposed the profile V(S) obtained in the
previous section with the one obtained for 〈Z f 〉(S). This result gives an explanation
on the shape of V(S) as it exactly follows the shape of 〈Z f 〉(S). It also confirms the
assumption of the motility properties being characterized by 〈Z f 〉 for fixed values
of Z , P , H and ε. Moreover the bifurcation line previously obtained by the simula-
tion is fitted quite accurately by the isoline 〈Z f 〉 = Z∗(P = 18), where Z∗(P = 18)
corresponds to the critical value of Z on a rigid substrate at P = 18 (see Fig. 3.16b).
These results enforce the validity of the assumption, thus the three-dimensional bi-
furcation diagram previously obtained (Fig. 3.8), can be well reconstructed from only
the bifurcation line of the rigid limit (see Fig. 3.17).

3.9 Conclusion

Starting from a singular integro-differential formulation of the problem of cell crawl-
ing on a viscous substrate, a linearization introduced a space-dependent effective
friction coefficient encompassing the non-local response of the substrate to the cell
traction forces, thus reducing the problem to a set of PDEs with a non-constant coef-
ficient. This naturally arising space-dependent friction coefficient exhibits boundary
layers at the cell edges showing a higher coupling between the cell and the substrate
at the boundaries. It increases with the substrate viscosity and with the friction. In
comparison with the elastic substrate case, the cell velocity is a decreasing function
of the substrate viscosity at a given friction. Indeed, in the inviscid limit while the
traction force vanishes, the propulsion is ensured by the molecular motor-driven
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FIGURE 3.16: (a) Apposition of the profile V(S) (blue circles) with
〈Z f 〉(S) (red dashed line). This result explains the behaviour of
V(S) as it exactly follows the shape of 〈Z f 〉(S). (b) The simu-
lated bifurcation line (blue circles) is accurately fitted by the isoline

〈Z f 〉 = Z∗(P = 18).

FIGURE 3.17: Reconstruction of the three dimensional phase diagram
from the bifurcation line at the rigid limit and the iso-〈Z f 〉 lines.

internal flow, which is greater in this limit as the substrate viscosity-induced fric-
tion vanishes and therefore explains the higher only contractility dependent velocity.
While the cell velocity is monotonic, the magnitude of the traction force is biphasic,
which could induce an affinity to an optimal substrate viscosity as has been simi-
larly experimentally observed on a viscoelastic substrate, however further work is
needed to confirm this tendency.

We showed that the spatial distribution of the effective friction coefficient was
not dictating the cell motility, rather its mean value was. Therefore we were able to
further reduce our problem to a set of PDEs with constant coefficient, allowing us
to reconstruct any desired quantity at a specific friction and substrate viscosity from
the equivalent rigid limit. From this simplified model, the investigation of the cell
sensitivity to an external viscosity gradient becomes easier and our approximation
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may be of interest for future work in this direction.
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Chapter 4

Substrate independent crawling

4.1 Introduction

In three-dimensional biological matrices, cell migration usually does not rely on
the formation of focal adhesions (Paluch, Aspalter, and Sixt, 2016) and, using the
cell confinement, uses the non-specific friction between the cell and its environe-
ment (Bergert et al., 2015) to exert traction forces that break the problem symmetry
and lead to motion. Depending on the force production mechanism of the trac-
tion forces, several physical models have been put forward to shed light on this
instability (Ziebert, Swaminathan, and Aranson, 2012; Tjhung, Marenduzzo, and
Cates, 2012; Recho, Putelat, and Truskinovsky, 2013; Callan-Jones and Voituriez,
2013; Camley et al., 2013; Blanch-Mercader and Casademunt, 2013; Giomi and DeS-
imone, 2014). Still, in such models, a substrate interaction is present in the form of
a friction coefficient that can be modulated depending on the affinity of the cell and
its environment.

Recently, several two or three dimensional models have been put forward to
show that the limit of a vanishing friction coefficient where the traction force of the
cell locally vanishes, can still lead to cell motion (Loisy, Eggers, and Liverpool, 2019;
Farutin et al., 2019; Le Goff, Liebchen, and Marenduzzo, 2020). In such limit, motility
becomes an intrinsic property of the cell that is independent of the environment
biophysical details making it an interesting paradigmatic situation from the physical
point of view. One can also speculate on the biological role of such mechanism
as it would render cell motion robust with respect to a change of the environment
chemistry and rheology.

Assuming that cell propulsion in a confined environment such as a track or a
channel (Maiuri et al., 2012; Doyle et al., 2013) is mainly driven by its molecular
motors (Paluch, Aspalter, and Sixt, 2016), we study one of the most simple one-
dimensional model of this substrate independent type of cell motility. We show
that, despite its active nature, our model has a variational structure with an effective
quasi-potential that is minimized during the cell dynamic and that the minima of
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the quasi-potential correspond to the model metastable steady states. These min-
ima represent a static symmetric configuration or a motile asymmetric configura-
tion of the cell and their appearance and relative level are controlled by two non-
dimensional parameters driving the motors self-organization: a global contractility
coefficient and a parameter representing the steric hindrance between the motors.

Next, by introducing a small stochastic perturbation in the active stress, we show
that the metastability of the deterministic system leads to intermittent cell dynamic
which can be either dominated by static phases or by motile phases depending on
which state is the global or local minimum of the quasi-potential. This result may
have importance to physically understand the intermittency of individual cell dy-
namics (Maiuri et al., 2015; Hennig et al., 2020) but could also be of use to rationalize
the fact that in a population of similar cells, a proportion is motile while others are
static (Kwon et al., 2019).

4.2 Substrate independent regime

In this chapter, we study the case of vanishing friction between the cell and the sub-
strate. Similarly to the previous chapter, we assume here a contractility-driven cell
motion, therefore v± = 0 and the moving cell boundaries verify (3.3). The substrate
is assumed to be visco-elastic so that certain functional L relates its velocity with the
traction forces exerted by the cell, vs = L[∂xσ]. Clearly, if the tractions vanish, the
substrate velocity is also zero: L[0] = 0. The vanishing friction limit reads ξ → 0 in
(1.8). As the cytoskeleton and substrate velocities remain bounded, we locally have
∂xσ = 0, leading to vs = 0. However, the boundary conditions (1.9) imposing the
same stress at the two fronts lead to the global constraint,

∫ l+

l−
(v− vs)dx =

∫ l+

l−
vdx = 0.

This limit of a small friction coefficient leads to a generic cell crawling dynamic that
is independent of the cell/substrate mechanical behavior.

Combining the constitutive relation (1.6) with the no-flux boundary conditions
(3.3), we obtain that the homogeneous stress in the cytoskeleton is σ = χc0. As a
result, χ(c0 − c) = η∂xv which leads by integration to,

v(x, t)−V(t) =
∫ l+

l−
H(x− z)(c0 − c(z, t))dz,

where H denotes the Heaviside step function.
Defining the non-dimensional traveling coordinate y = [x− (l− + l+)/2]/L and

rescaling the concentration by c0, the space by L and the time by L2/D, we obtain
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the following non-dimensional coupled problem:{
P(1− c) = ∂yw

∂tc + ∂y(cw− ∂y( f (c)c)) = 0,
(4.1)

with no-flux boundary conditions on c, ∂yc(±1/2, t) = 0 and w, w(±1/2, t) = 0. In
(4.1), there is only one single non-dimensional (active) parameter that sets the system
dynamic P = χc0L2/(ηD). As w = v−V represents the flow of cytoskeleton in the
cell frame of reference, the cell velocity is given by the condition,

V(t) = −
∫ 1/2

−1/2
w(y, t)dy. (4.2)

Note that (4.1) can be written as a single non-linear and non-local drift-diffusion
equation by solving for w in (4.1)1,

w(y, t) = P
∫ 1/2

−1/2
H(y− z)(1− c(z, t))dz (4.3)

such that (4.1)2, becomes

∂tc + ∂y

(
cP

∫ 1/2

−1/2
H(y− z)(1− c(z, t))dz

)
= ∂yy( f (c)c). (4.4)

In this non-dimensional formulation of the problem, the total mass conservation
constraint (1.5) becomes ∫ 1/2

−1/2
c(y, t)dy = 1. (4.5)

Note that combining (4.2) and (4.3) and using condition (4.5), we obtain the follow-
ing formula directly relating the velocity and the first moment of the distribution of
motors

V(t) = −P
∫ 1/2

−1/2
zc(z, t)dz (4.6)

showing that the cell motion is supported by the global asymmetry of c.
When P = 0, (4.4) represents a purely passive system where the motors only

diffuse and the solution of (4.4) is a homogeneous motor distribution c ≡ 1 associ-
ated with V = 0 (and w ≡ 0). However, when P becomes larger than the critical
value Pc = π2( f (1) + f ′(1)), where ′ denotes the derivative, multiple steady states
become possible (See Appendix. C.1) and the question of their local and global sta-
bility properties arises. We shall address this question in the following section by
exhibiting a Lyapunov functional that is minimized during the dynamics of (4.1).
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4.3 Variational structure

We define the Lyapunov functional Frank, 2005; Chavanis, 2015, F = E −PS where
the “energetic” and “entropic” terms are

E [w] = −1
2

∫ 1/2

−1/2
w2dy and S [c] = −

∫ 1/2

−1/2
s(c)dy.

In the above formula the entropy per unit volume s(c) is defined in the following
way:

s′′(c) = f ′(c) +
f (c)

c
,

where we impose that s(0) = 0 and s(∞) = ∞. As f is a positive and increasing
function, these conditions imply the existence of a minimum smin ≤ 0 such that
s ≥ smin. When f (c) = 1, we recover the Boltzmannian entropy s(c) = c log(c)− c
while for our choice

f (c) = 1 + rc2, (4.7)

where r is a non-dimensional parameter controlling the strength of the steric hin-
drance, we obtain,

s(c) = rc3/2 + c log(c)− c.

For the homogeneous solution, only the entropic term contributes to F = F0 =

P(r/2− 1).
Using (4.1), the inequality

∂tF = −P
∫ 1/2

−1/2

(cw− ∂y( f (c)c))2

c
dy ≤ 0,

shows that F necessarily decays during the dynamics and that ∂tF = 0 implies
that ∂tc = 0. As using (4.3) we can check that |w| ≤ P , we also obtain that F ≥
−(P2/2−Psmin) is bounded from below insuring via Lyapunov theory Frank, 2005
that system (4.1) converges to an equilibrium state.

The effective energy can be expressed as a functional of c only by using (4.3),

E [c] = P
2

2

∫ 1/2

−1/2

∫ 1/2

−1/2
max(y, z)(1− c(y, t))(1− c(z, t))dydz

such that F is also a functional of c only. Using this expression, we compute the
gradient of F with respect to c

δF
δc

(y, t) = −P2
∫ 1/2

−1/2
max(y, z)(1− c(z, t))dz + Ps′(c(y, t)).

Thus (4.4) is equivalent to

∂tc = ∂y

(
c
P ∂y

(
δF [c]

δc

))
,
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FIGURE 4.1: Three first bifurcations from the homegeneous state for
r = 0. (a) and (b) are bifurcation diagrams for the quasi-potential and
the cell velocity. They have a pitchfork supercritical structure. Black
dots localize the bifurcation points. (c) and (d) show the profiles of c
and w for some special points labeled with the corresponding colored
circles on (a) and (b). Full lines correspond to locally stable branches

or solutions while dashed lines are locally unstable

showing that the dynamics of c is driven by its relaxation to the minimum of the
quasi-potentialF . The globally stable steady state is therefore the ceq(y) distribution
that minimizes F under the constraints ∂yceq(±1/2) = 0 and

∫ 1/2
−1/2 ceq(y)dy = 1.

The local minima of F are locally stable steady states while maxima and saddle
points are unstable steady states Frank, 2005; Chavanis, 2015.

4.4 Metastable steady-states

We begin by characterizing the critical points of F which correspond to the possible
steady states of system (4.1). To do so, we implement a continuation method start-
ing from the homogeneous solution at P = 0 using the software AUTO (Doedel,
Keller, and Kernevez, 1991) and follow into the non-linear regime the bifurcations
branching from this state as P increases. The critical values at which these non-
trivial solution emerge are given by P = P k

0 = (1 + 3r)k2π2, where k ≥ 1 is an
integer (see Appendix. C.1). The first of these values is Pc = P1

0 . We show the first
three branches obtained this way on Fig. 4.1. As solution measures, we show the
values of F − F0 and V. For each solution bifurcating at an odd bifurcation point
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(i.e. k is odd), there is a symmetric solution with respect to the center of the segment
associated with the opposite velocity (see Recho, Putelat, and Truskinovsky, 2015).
The value of the quasi-potential for these two symmetric solutions is the same. We
only show the solution leading to a positive velocity on Fig. 4.1. Each solution bi-
furcating at an even bifurcation point (i.e. k is even) has an even symmetry with
respect to zero and is thus associated with a zero velocity (see (4.6)). As we show on
Fig. 4.1, when the bifurcation order increases, the number of patterns in the motor
concentration increases. We check in Appendix. C.2 that, except the first bifurcation,
all the bifurcating solutions are locally unstable. Added to this, the homogeneous
solution cease to be locally stable past the first bifurcation point.

However, the stability status of the first bifurcation branch is interesting. We can
analytically show using a normal form expansion (See Appendix. C.1) that the bi-
furcation is pitchfork supercritical if r < rc = (7 +

√
57)/12 or subcritical if r > rc.

In the supercritical case, a local stability of the bifurcating branch is found, leading
to a simple situation where the cell converges to either a motile or static (homoge-
neous) state depending whether P ≥ Pc or P ≤ Pc. The subcritical case is more
complex. As we illustrate on Fig. 4.2, there is a turning point located at P = Pt ≤ Pc

along the bifurcating branch leading to a fold. We can then again numerically check
that solutions before the fold are numerically unstable while solutions after the fold
are linearly stable again, although they look qualitatively similar with motors self
organizing at the trailing edge of the cell, see Fig. 4.2. Thus, there is a choice of pa-
rameters (r > rc and P ∈ [Pt,Pc]) for which the static and motile configurations can
be both locally stable, the globally stable solution being the one corresponding to the
minimum of the quasi-potential. We show on Fig. 4.3 the resulting phase diagram
where the motile and static phase are shown as well as the third metastable phase
where the two configurations can coexist. In this phase, a “Maxwell line” separates
the region of parameters space where the motile state is the global minimum of F
and those where it is the static (homogeneous) state.

This property entails interesting consequences when the contractility is no longer
deterministic but is subjected to small stochastic fluctuations as the cell can switch
between the two configurations leading to stop-and-go dynamics.

4.5 Stochastic contractility

To simply illustrate the effect of metastability on the cell dynamic, we consider a
source of noise in the model by changing (1.6) into

σ = η∂xv + χc + σs,

where σs(x, t) is a small (|σs| � χc0) stochastic spatio-temporal noise. As an example
of Σs, we take

∂tΣs −Θ∂xxΣs = Ẇ
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FIGURE 4.2: Structure of the first bifurcation from the homogeneous
state for r = 3. (a) and (b) are bifurcation diagrams for the quasi-
potential and the cell velocity showing the subcritical nature of the
bifurcation. The black dot localizes the first bifurcation point and the
red dot the turning point. The thin dotted vertical lines represent the
domain where both the static and motile configurations are locally
stable. (c) and (d) show the profiles of c and w for some special points
labeled with the corresponding colored circles on (a) and (b). Full
lines correspond to locally stable branches or solutions while dashed

lines are locally unstable.
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FIGURE 4.3: Phase diagram in the parameter space (P , r) character-
izing the steady state of system (4.1). The black line is the locus of
the first bifurcation point and the red line the one of the turning point
along the first bifurcating branch (when it exists). The black dashed
line represents a “Maxwell line”. Above this line, the homogeneous
solution is the global minimum of the Lyapunov functional F while

below this line, it is the non-trivial polarized solution.

where Θ is a diffusion coefficient and Ẇ(x, t) is a spatio-temporal white noise. Thus
Σs represents small variations of the mechanical stress in the cell skeleton due to
some existing random disorder.

The non-dimensional model (4.1) thus becomes
P(1− c− δσs) = ∂yw

∂tc + ∂y(cw− ∂y( f (c)c)) = 0
∂tσs − θ∂yyσs = eω̇,

(4.8)

where the new non-dimensional variables are θ = Θ/D that quantifies the spatio-
temporal correlation of the noise, e � 1 that represents the small noise magnitude
in the system. ω̇ is a normalized white noise such that, denoting 〈.〉 the ensemble
average,

〈ω̇(y, t)〉 = 0 and 〈ω̇(y, t)ω̇(y′, t′)〉 = δ(y− y′)δ(t− t′).

The stochastic stress σs = Σs/(χc0) is shifted by

δσs(y, t) = σs(y, t)−
∫ 1/2

−1/2
σs(y′, t)dy′

such it has a zero spatial average.
Next, we choose r = 3 and numerically simulate (4.8) for four values of P = 96,

96.7, 97.5 and 100. The two central values correspond to a metastable regime, see
Fig. 4.2, where either the static state or the motile state is the global minimum of
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FIGURE 4.4: Effect of stochastic fluctuations on the cell metastable
dynamic defined by system (4.8). (a) Probability densities of the dis-
tribution of velocity of a moving cell in four typical cases: in red the
static configuration is the only steady state of the deterministic cell
dynamic, in green both static and motile states are locally stable but
the static state is the global minimum of the quasi-potential, in blue
the motile state becomes the global minimum and in black only the
motile state is locally stable. (b) shows samples of the velocity dy-
namic in the four cases. Parameter r = 3 and parameters defining the
noise are Θ = 0.01 and e = 0.001. The simulations to obtain the prob-
ability densities start from the homogeneous distribution and are run
over a non-dimensional time of 1000. The transient state is removed
and the distributions are symmetrized with respect to V = 0 to mini-

mize the computation cost.
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the quasi-potential while the other state is a local minimum. We show on Fig. 4.4,
the typical dynamic as well as the probability densities of the cell velocities for all
four cases. When the static state is the only existing (and stable) steady state of the
deterministic system, the velocity is peaked around V = 0. Then, as we reach the
metastable regime, the distribution has three peaks corresponding to a static state
and the two symmetric motile configurations. The size of the peaks of the probabil-
ity density of V depends on which state is the global minimum of F and the sys-
tem may feature predominantly fluctuations around the static state with rare motile
excursions or, on the contrary, a motile dynamic rarely alternating the sign of the
velocity and spending a small duration around the static state. As P increases such
that the system leaves the metastable domain, the unstable static state disappears
from the velocity distribution.

It is also interesting to interpret these results at the cell population level as metasta-
bility can explain why, in a cell population with the same parameters defining their
molecular motors dynamics, most of the cells may be almost static with only a cer-
tain proportion moving at a large velocity or, on the contrary, most cells can be motile
and a few of them static depending which state is the global attractor of the deter-
ministic system.

4.6 Conclusions

We have exhibited one of the simplest model of cell crawling that is independent
of its interaction with the substrate as, while they exert vanishingly small traction
forces, the molecular motors still produce an internal flow of cytoskeleton that can
propel the cell boundary. Such flow has to be coupled with a physical process that
insures the recycling of the cytoskeleton building blocks and which is not solved for
in this minimalist model. This can be achieved by considering a backflow (Loisy,
Eggers, and Liverpool, 2019) or a chemical turnover reaction that depolymerizes the
cytoskeleton at the back and polymerizes it at the front (Putelat, Recho, and Truski-
novsky, 2018). This substrate independent crawling mode has a variational structure
with a quasi-potential that allows to characterize the local and global stability of its
steady states. In particular, we find that there exists a region in the non-dimensional
parameter space where a static and mobile configuration can co-exist in a metastable
fashion. In the presence of an additional small stochastic stress, this leads to the pos-
sibility of an intermittent cell dynamics where the static or motile phases of motion
dominate depending on which state is the global minimum of the quasi-potential.
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Conclusion

It is now widely acknowledged that the extracellular matrix cannot be simply con-
sidered as a fixed scaffold supporting the cell during its migration, because a bidi-
rectional interaction occurs between the cell and the substrate at the focal adhesions
(a process called mechanoreciprocity). This interaction impacts the cell motility,
among other essential functions. The mechanoreciprocity consists in three steps,
mechanosensing, mechanotransduction and cell response. However, because of the
intrinsic bidirectional feature of the force balance, a part of the mechanoreciprocity
pathway is achieved by a bare mechanical process, i.e. only through force transmis-
sion while ignoring the complexity of the chemo-mechanical coupling occurring at
the microstructure level.

In order to extract the cell migration behaviour when considering a simple me-
chanical mechanoreciprocity, we extended the protrusion-driven and contraction
driven models of cell migration on a rigid substrates of Jülicher et al., 2007 and
Recho, Putelat, and Truskinovsky, 2015 to the case of migration on a compliant sub-
strate. This amounts to introducing the cell-substrate relative velocity in the linear
friction law and building the kernel governing the non-local response of the sub-
strate to cell traction forces.

First we investigated a cell crawling motion driven by the protrusion and retrac-
tion velocity of the actin meshwork at the leading and trailing edge in the paradig-
matic situation of a semi-infinite incompressible and elastic substrate. Interestingly,
just by considering this non-local coupling, the model was able to capture a non-
monotonic relationship between the cell velocity and the substrate stiffness and also
between the cell velocity and the friction coefficient, both phenomena being ob-
served experimentally. Next we considered a viscous substrate instead, on which
the cell propels through the self-organization of its molecular motors. The non-local
response of the substrate due to its viscosity is shown to be qualitatively captured by
an effective space-dependent coefficient in this case. Compared to the elastic case,
the cell exhibited a monotonous decreasing speed with the substrate viscosity, how-
ever the traction forces showed a biphasic behaviour with the viscosity. Interestingly,
at a vanishing friction and/or viscosity coefficient, cell motility still occurs although
the traction forces vanish. This rather counter-intuitive phenomenon has been inves-
tigated in depth in the last chapter, by introducing a simple substrate-independent
variational model of cell migration. In particular we were able to analytically con-
firm the critical contractility obtained in chap. 3. The model exhibits a metastable
state, in which a small stochastic variation of the stress can induce a cell state switch
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between static to motile or motile to static.
By integrating the cell-substrate mechanoreciprocity without its chemo-mechanical

contribution, our model was able to extract interesting non-linear behaviours ex-
perimentally observed and were able to discriminate pure mechanical effects from
biochemical-related ones. In the future, it would be interesting to investigate crawl-
ing on non-homogeneous substrate with our model, as capturing durotaxis with our
minimalistic would be an interesting result, meaning it would not require the intro-
duction of any a priori bias.
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Appendix A

Interaction kernel with the
substrate with exponential decay

We formulate the new problem where we replace the expression of Φ in (2.16) by
Φexp(x) = Ae−|x| where we set the constant

A(ε) =
e

1
ε

(
ε log

(√
ε2+1+1

ε

)
+ sinh−1(ε)

)
(

e
1
ε − 1

)
ε

,

such that
∫ 1
−1 Φ(x/ε)dx =

∫ 1
−1 Φexp(x/ε)dx. With such exponential kernel, system

(2.16) can be written in differential form:{
−α2∂xxvx + vx = −V∂xu
−ε2∂xxu + u = 2εAγ∂xxvx

with boundary conditions

{
∂xvx|−1 = ∂xvx|1 and vx|1 − vx|−1 = −∆V
ε∂xu|−1 − u|−1 = 0 and ε∂xu|1 + u|−1 = 0

(A.1)
and the unknown velocity is still fixed by the condition

V = Vm +
vx|−1 + vx|1

2
.

System (A.1) is a fourth order boundary value problem with a free parameter V that
is set by the previous condition. Solving this problem using a continuation method,
we construct the V(γ) and V(α) curves that we superimpose with their analogue for
the elastic kernel Φ on Fig. A.1. We observe that while the global biphasic structure
in α is still present, the local one in γ disappears.



74 Appendix A. Interaction kernel with the substrate with exponential decay

0 2 4 6 8 10
,

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
V
!

V
m

(e
x
p

k
er

n
el
)

-2

0

2

4

6

8

10

12

V
!

V
m

(e
la

st
ic

k
er

n
el
)

#10-3. = 0:02

0 2 4 6 8 10
.

0

0.05

0.1

0.15

0.2

0.25

V
!

V
m

(e
x
p

k
er

n
el
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

V
!

V
m

(e
la

st
ic

k
er

n
el
)

, = 0:1

0 0.05
.

0

0.05

0.1

0.15

0.2

0

0.01

0.02

0.03

0.04

(b)(a)

FIGURE A.1: Dependence of the crawling velocity on (a) the sub-
strate softness γ and (b) the substrate slip coefficient α for both the
exponential and elastic interaction kernel with the substrate. Param-

eters are ε = 0.2, ∆V = 1 and Vm = 1.5.
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Appendix B

Experimental and post processing
methods

I SYNTHESIS OF HYDROXY-PAAM HYDROGELS

FIGURE B.1: AcrylAmide (AAm, in black), N,N
′

methylene–bis–
AcrylAmide (bis-AAm, in blue) and N-Hydroxy–EthylAcrylamide
(HEA, in red) were mixed together to form hydroxy-PAAm Grevesse

et al., 2013.

In order to prepare hydroxy-PAAm gels to be coated with fibronectin for cell ad-
herence, it is necessary to use acrylamide (AAm) mixed with N-hydroxyethylacrylamide
(HEA) monomers. The latter contains HO groups that can form a hydrophilic net-
work (see Fig. B.1). Then using bis–acrylamide as a crosslinker and TEMED/APS
for catalysis, rapid polymerization of acrylamid monomers is obtained Grevesse,
Versaevel, and Gabriele, 2014; Abidine et al., 2018.

Here, we used the protocol explained in Abidine et al., 2018. We prepared so-
lutions by mixing acrylamide (30% weight per weight [w/w]), N-hydroxyethyl-
acrylamide (5.85% w/w), and N,N-methylene-bisacrylamide (2% w/w) in different
amounts (Sigma-Aldrich, St. Louis, MO). Three concentrations of bis–acrylamide
were used (0.1, 0.3, and 0.6 %), with the acrylamide (3.2%) and N-hydroxyethyl-
acrylamide (1.25%) contents remaining fixed in the final HEPES solution (50 mM).
Gels were 70 µm thick with an area 1.5 cm × 1.5 cm, and were prepared on a glass
slide (pre–treated with 3–Aminopropyl–triethoxysilane, APTMS) glued at the bot-
tom of a Petri dish.
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The gel rigidity should be chosen as a compromise between the stiffness in phys-
iological conditions and the sufficiently large displacements to be measured in soft
gels (on the order of a few µm). Values of elastic modulus (E) between 5kPa and 30
kPa were found to be adequate Peschetola et al., 2013. The elastic Young moduli of
the three hydrogels were measured using an Atomic Force Microscope (JPK AFM,
NanoWizard II, Berlin) in contact mode, equipped with MLCT cantilevers (pyrami-
dal tips, stiffness 0.01 N/m, Bruker). Five different locations were selected and 5x5
elasticity maps were performed at each location. The values were obtained using
the classical relationship F = 3

4
E

1−ν2 tanθ δ2, where F is the applied force, ν ∼ 0.5 is
the Poisson ratio, θ the half–pyramid angle, and δ is the indentation. The resulting
elastic moduli were found to be 5± 1 kPa, 8± 1.5 kPa and 28± 3 kPa. This is shown
in Fig. B.2 with hydrogel elastic moduli increasing with cross-linker concentration
as previously measured Abidine, 2015.

FIGURE B.2: The stiffness of hydroxy-PAAm hydrogels is increasing
with the amount of bis-AAm cross-linker Abidine, 2015.

I FIBRONECTIN MICROPATTERNING OF HYDROXY-PAAM GELS

Fibronectin (FN) mediates a wide variety of cellular interactions with the ECM
and plays an essential role in cell adhesion, migration, growth, and differentiation
Pankov and Yamada, 2002. Incubation of fibronectin straight microtracks with a
very narrow width (less than 15 µm) and far from each other (more than 40 µm) on
micro-fabricated hydroxy-PAAm hydrogels can be used to simulate 1D migration
of cells on soft substrates. Here we used a fibronectin micropatterning process by
designing the required PDMS1 stamp Grevesse et al., 2013 as shown in Fig. B.3.

For the preparation of patterns on PDMS, we first made a silicon master using op-
tical lithography with a negative photoresist. Optical lithography is a photographic

1Polydimethylsiloxane
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FIGURE B.3: Process of fibronectin micropatterning on hydrogel
Grevesse et al., 2013.

method by which a light-sensitive polymer, named a photoresist, is exposed and de-
veloped to form 3D features on the silicon substrate. A negative photoresist is one
whose UV exposed parts become cross-linked and other parts remain soluble and
can be washed away during development. One of the commonly used epoxy–based
negative photoresists is SU-8 GM1070, a chemically amplified resist system with
excellent sensitivity. The final micropattern presents regions with photoresist and
other parts are uncovered. This coated micropattern is needed to shape the PDMS.
The common steps for a regular photolithography process are as follows: substrate
preparation, photoresist spin coating, prebaking, exposure, post-exposure baking,
development, and post-baking Mack, 2016. In order to have the silicon master with
about 15 µm in height, we followed the SU8-Photoepoxy GM 1070 datasheet. The
essential principle behind this photoresist operation is the change in the solubility
of the photoresist in the developer, upon exposure to light. Here we used UV laser
exposure with 10 µm laser beamwidth in order to change the solubility of the pho-
toresist and as a result we obtain designed photoresist micro-patterns on top of the
silicon wafer (Fig. B.4). Then PDMS is poured onto the substrate, baked at 60◦C for
2h, and is finally peeled off.

Laser

PDMSPhotoresist

Silicon wafer

FIGURE B.4: Process of the PDMS stamp fabrication

According to Fig. B.4, by giving a designed pattern to the laser machine, it is pos-
sible to make our micro–pattern directly on the photoresist. There are two essential
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parameters, the percentage of exposure energy and the time of exposure. The time
of exposure comes from the velocity of the moving laser beam. By testing different
exposure energy percentages and velocities, we found that 100 % and 25 mm/s give
the best results for 15 µm height of photoresist layer on the substrate.

In order to check the final shape of designed PDMS stamps with different pat-
terns (Fig. B.5a), we cut very thin cross-section layers of PDMS and imaged them
under an optical microscope (Fig. B.5b–e). Then we measured the width (w) and
height (h) of the lines, as well as the distance between two lines (D) using FijiTM soft-
ware. According to Fig. B.5f, the results show that h ' 15 µm and D ' 45 µm are
almost similar for all PDMS with different w. Also, Fig. B.5g shows that the smallest
w that we could obtain was w ' 8 µm. Although for 1D migration it would be better
to have stamps with smaller w, the width of laser beam that was accessible (10 µm)
gave this limitation for us.

PDMS
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FIGURE B.5: a) Schematic of a cross-section of PDMS stamp with w
(width of lines), h (height of lines), and D (distance between two lines)
b, c, d, e) Images of PDMS cross-sections with different w f) Distribu-
tion of measured values h ' 15 µm and D ' 45 µm. g) Values of w: 8,

11, 12, and 14 µm for images b, c, d, and e respectively.

I CELL CULTURE AND SEEDING

First, cells were cultured at 37◦C and 5% CO2 atmosphere. Following growth,
they were detached using trypsin-EDTA, resuspended in complete culture medium
(RPMI + 10 % FBS + 1 % penicillin–streptomycin) and finally deposited on the gel.
A small drop (50 µL) containing ∼ 2,000 cells was set onto the micropatterned gel
surface (1.5 cm × 1.5 cm) bound to the bottom of a Petri dish, and left to adhere for
15 min. Then 2 mL of culture medium were added into the Petri dish. It was then
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possible to observe them individually under the microscope using the green channel
(FITC) of the fluorescence microscope.

I LIVE CELL MICROSCOPY

We used an Olympus IX83 inverted microscope equipped with a Hamamatsu
Camera (Orca G) to capture fluorescent images in green (FITC), blue (DAPI), and
red (TRITC). Thus, it is possible to capture fluorescence of the actin cytoskeleton
using the green channel (FITC), and the beads fluorescence within the substrate via
the blue channel (DAPI) of the microscope. TRITC was only used in a few cases to
check the track width, using rhodamin fibronectin (Cytoskeleton, Inc.).

The microscope is equipped with the possibility to program the image acquisi-
tion mode (CellSensTM). The loop we chose allowed to quickly capture two images
(green and blue). It is important to select the appropriate image frequency, since we
need to capture fast actin polymerization but we should not expose the cells to too
much light (phototoxicity). Our loop was a series of 15 pairs of images (FITC then
DAPI) taken every 5 seconds, then a 15–minute pause was held before starting a new
series of images. Thus actin fibers and beads could be followed over short periods
of time during cell migration for about 30 minutes.

At the end of the experiment, we added trypsin to the Petri dish to detach the
cells from the substrate. After waiting for 15 min, the last beads image was captured
to obtain the initial beads position when the gel is in a rest state. Finally, series of
FITC and DAPI images could be treated using image processing in MatlabTM and
FijiTM software for tracking beads and PIV analyses of actin motion.

I IMAGE PROCESSING

Image acquisition

In this work, a code formerly written (Mireux, 2019; Jahangiri, 2020) was improved.
The initial code is divided into four main parts. It reads 16-bit images taken from
the microscope and converts them into a data sheet. Next, it finds the cell, produces
masks at different times and calculates cell contours. Then, it finds the beads and
follows their movement in time. Finally, it selects the beads under the cell and calcu-
lates the total displacements of beads (DAPI) between the rest state and the present
configuration of the gel.

Due to the addition of trypsin to detach cells and also possible shifts of the cam-
era (thermal changes), it was necessary to rewrite the code in order to process im-
ages. Here, the DAPI images (15 DAPI images taken every 5 seconds + DAPI image
taken after adding trypsin to the Petri dish) as blue color and FITC images (15 FITC
images taken every 5 seconds + blank image corresponding to the absence of cell
on the substrate) as green color were merged. Then we used the StackReg plugin
Thévenaz, 2009 in the Fiji software to shift all images in order to correct for any cam-
era shift. The idea of this plugin is to align or match a stack of images. When the
plugin has finished, the current slice works as a global anchor.
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Then by separating the blue component from the green one, we could track beads
in time using the DAPI images (saved as blue color images) and achieve PIV (Particle
Image Velocity) measurements on FITC images (saved as green color images).

Tracking Beads

By using a previously written Matlab code (Mireux, 2019), we could find bead po-
sitions at each time (for example DAPI images at t0 and t1 in Fig. B.6). The particle
tracker is a routine adapted for Matlab of a previous program Crocker and Weeks,
2011. This function reads the first DAPI image and processes it interactively to figure
out what settings are needed in order to identify all the beads. It then repeats this
process on all the images. Finally, it links the beads coordinates to form trajectories.

By replacing the last image (obtained after adding trypsin, Fig. B.6a at time t0)
from the end of the treated DAPI stack to the first and running the tracking function
in Matlab, we obtain a list of trajectories including the beads identities numbered
from 1 to the total number of beads as well as their positions (x,y) at each time t (for
example at time t1, Fig. B.6b ). Using this data, it is possible to find displacements
for each bead between two times (Fig. B.6c).

Actin and PIV

We found Particle Image Velocimetry (PIV) to be a suitable technique to estimate the
actin velocity. In general, PIV is an optical technique of flow visualization used to ob-
tain instantaneous velocity measurements and related properties in fluids. Basically,
a pair of images is divided into smaller areas named interrogation windows. The
cross-correlation between these image sub-regions measures the optical flow (incre-
mental displacement or velocity of the objects) between the two images. To improve
resolution, higher PIV resolution can be achieved by progressively decreasing the
interrogation window size Tseng, 2014. The PIV analysis was conducted using the
MATLAB tool ”PIVlab” Thielicke and Stamhuis, 2014, typical outputs from the anal-
ysis are shown Fig. B.7.

The post-processing protocol is summarized in Fig. B.8.
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FIGURE B.6: DAPI images. a) time t0 (after adding trypsin), b) time
t1; c) Beads displacement between t0 and t1
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a) PIV for actin (t 1-> t 2)
b) Cell image at t 1

c) Cell image at t 2

FIGURE B.7: Actin displacements between t1 and t2 = t1 + 5s (a); Cell
shape at t1 (b) and t2 (c)
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DAPI Images Enhancement
Improve the beads visibility and reduce noise 

by optimizing the threshold

FITC Images Enhancement
Improve the actin visibility and reduce noise 

by optimizing the threshold

Relaxed Configuration Concatenation
Add the relaxed configuration of the substrate
(after trypsin deposit) to the DAPI images stack 

Registration of DAPI & FITC Stack 
Merge both channels into one to align

the stack of image slices using StackReg.

Cell Contouring 
Perform cell contouring, generate masks of 

the cell, compute the major (cell length) 
and minor axis (cell width). 

Beads Tracking 
Identify beads, evaluate their positions at each

timestep and deduce their trajectories.

Quantification of Actin Velocity 
Compute the actin velocity between two

consecutives frames using PIV.

Projection of Actin Velocity 
Projection of the actin retrograde flow velocity 

field along the major axis of the cell.

Projection of Substrate Displacement 
Projection of the substrate displacement

along the major axis of the cell.

Model Parameter Extraction
Evaluate the friction coefficient using 

a least-square method.

Actin Velocity Data-Fitting
Fit the actin velocity using a linear regression.

DAPI Acquisition FITC Acquisition

Actin Velocity Average
Average the linear approximation of the actin 

velocity over all selected frames.

DAPI After Trypsin 
Acquisition

Substrate Displacement
Zeroth-Order Approximation

FIGURE B.8: Post-processing method to extract the friction coefficient
ξ from the experimental data.
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Appendix C

Technical results

C.1 Normal forms of the solutions bifurcating from the ho-
mogeneous solution

The steady states of (4.1), for which ∂tc = 0 correspond to the solutions of the equa-
tion

∂y

(
∂y( f (c)c)

c

)
+ P(c− 1) = 0 (C.1)

with Neumann boundary conditions at y = ±1/2. Eq. (C.1) has the homogeneous
solution c ≡ 1. From this solution, non-trivial solutions bifurcate at specific values
of P . These bifurcation points and the behavior of the bifurcating solutions can be
investigated by plugging a Taylor expansion of c and P in Eq. (C.1),

c(y, t) = 1 + εc1(y) + ε2c2(y) + ε3c3(y) + ... (C.2)

P = P0 + εP1 + ε2P2 + ε3P3 + ...

where the L2 norm of the ci is fixed to one and ε is a small parameter.
At first order we find that the operator

( f (1) + f ′(1))∂yyc1 + P0c1 = 0,

with Neumann boundary conditions becomes degenerate at the values of P0 in-
dexed by the integer k ≥ 1:

P k
0 = ( f (1) + f ′(1))k2π2.

The smallest value ofP0 corresponding to k = 1 is denotedPc. At eachP k
0 , a solution

bifurcates along the two symmetric eigenvectors

ck
1(y) = ±

√
2 cos(πk(y + 1/2)).
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At the second order in ε, we obtain using the Fredholm alternative that P k
1 = 0

and

ck
2(y) =

[
ck

1(y)
√

22 f (1) f ′(1) + 7 f ′(1)2 + 4 ( f (1)− f ′(1)) f ′′(1) + 7 f (1)2 − 2 f ′′(1)2

+
√

2ck
1(2y)

(
f (1)− f ′′(1)− f ′(1)

)]
/
[
3
(

f ′(1) + f (1)
)]

Finally, the value of P k
2 fixing the local nature of the bifurcation is classically

given by the third order expansion:

P k
2 =

[
π2k2

(
−4 f ′′(1)2 − 10 f ′(1)2 + f (1)

(
3 f (3)(1) + 11 f ′′(1) + 8 f ′(1)

)
+ f ′(1)

(
3 f (3)(1)− 5 f ′′(1)

)
+ 2 f (1)2

)]
/
[
12
(

f ′(1) + f (1)
)]

Taking the simple form f (c) = 1 + rc2 where r is a non-dimensional parameter
fixing the strength of the steric hindrance, we obtain

P k
2 =

π2k2 (−18r2 + 21r + 1
)

18r + 6
,

which is positive for r < rc = (7 +
√

57)/12 indicating a super-critical pitchfork
bifurcation while it becomes negative when r > rc indicating a sub-critical pitchfork
bifurcation.

C.2 Local stability

The local (or linear) stability of a certain steady state ceq(y) is given by the second
variation of F at this point. Based on the expressions of E and S , we obtain the
following quadratic form:

δ2F [h] =P
2

2

∫ 1/2

−1/2

∫ 1/2

−1/2
max(y, z)h(z)h(y)dydz (C.3)

+
P
2

∫ 1/2

−1/2
s′′(ceq(y))h(y)2dy.

If δ2F is strongly positive for all test functions h that satisfy the Neumann boundary
conditions at ±1/2 and the constraint∫ 1/2

−1/2
h(y)dy = 0,

the steady state ceq is linearly stable. It is unstable otherwise. Such condition is
equivalent to checking the positivity of the eigenvalues of the polar form associated
to δ2F . This leads to the eigenproblem

P2
∫ 1/2

−1/2
max(y, z)h(z)dz + Ps′′(ceq(y))h(y)dy = µh(y),



C.2. Local stability 87

where µ is the eigenvalue and h the eigenvector. Differentiating twice this relation,
we obtain the boundary value problem

P2h(y) = ∂yy
(
(µ−Ps′′(ceq(y)))h(y)

)
with ∂yh(±1/2) = 0.

(C.4)

Each eigenvector being defined up to a constant, we additionally impose the nor-
malization ∫ 1/2

−1/2
h(y)2dy = 1.

The local stability of the homogeneous solution ceq(y) ≡ 1 can be resolved ana-
lytically since the solution of (C.4) is explicit in this case and we obtain:

µ =
−P2

k2π2 + P( f (1) + f ′(1)),

where k ≥ 1 is a positive integer. It therefore exists at least one negative eigenvalue
as soon as P > Pc indicating the loss of local stability of the homogeneous solution
past the first bifurcation point.

For the non-homogeneous branches, it is not straightforward to solve (C.4) and
we investigate the local stability properties numerically by using the test function
combining the first Q modes

h(y) =
Q

∑
k=1

hkck
1(y)

in (C.3). We thus have to test the positivity of the eigenvalues of the symmetric
matrix δF = δE−PδS with

δEi,j =
P2

2

∫ 1/2

−1/2

∫ 1/2

−1/2
max(y, z)ci

1(y)c
j
1(z)dydz = −

P2δij

2i2π2

and

δSi,j = −
1
2

∫ 1/2

−1/2
s′′(ceq(y))ci

1(y)c
j
1(y)dy

and where δij is the Kronecker symbol and i, j are integers in 1..Q.
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Appendix D

Stochastic sliding friction

In the present appendix, we investigate the friction of an actin filament sliding at
a constant imposed speed v0 on a compliant substrate from a microscopic perspec-
tive using an agent-based model, in order to understand the influence of the sub-
strate stiffness on the local relationship between the actin-induced traction force and
the actin retrograde flow velocity. The present approach is based on the stochastic
clutch-model (Chan and Odde, 2008; Sens, 2013) described in the general introduc-
tion (see chap. 1). In the model developed by Chan and Odde, 2008, the friction
relationship we are actually trying to deduce is a priori assumed and follows Hill’s
law (Hill, 1938) and the stiffness of the substrate is approximated by a single spring.
In contrast, Sens, 2013 used an analytical mean-field theory to take into account the
displacement of the substrate and deduced non-monotonous actin force-velocity re-
lationship. Whereas in this mean-field theory the attached linkers are assumed to be
uniformly distributed, we wanted to computationally investigate the effect of their
spatial distribution on the sliding friction. We also proposed an improvement to the
method used in classical motor-clutch simulations.

D.1 The model and algorithm workflow

The actin filament is equiped with N uniformly distributed linkers, which can be
either attached to the substrate or detached. The configuration of the linker i at time
t is given by Ci(t) where it is equal to unity if attached, to zero otherwise.

At the start of the simulation, all linkers are assumed to be attached to the sub-
strate, thus the initial condition is given by

∀i ∈ [1, N], Ci(0) = 1.

The problem can be formulated as finding the next reaction to occur (binding
or unbinding) between the N possible reactions and the time at which it occurs.
At a reaction site, a bond can switch from attached to detached with a rate k− and
from detached to attached with a rate k+. The attachment rate k+ is assumed to be
constant while the detachment rate is force sensitive and follows Bell’s law (Bell,
1978). Therefore supposing the i-th linker being attached, the detachment rate at
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time t reads
k−i (t) = k0exp ( fi(t)/ f ∗) ,

where k0 represents the unloaded unbinding rate, fi(t) is the force in bond i and
f ∗ is the characteristic bond breaking force.

Step 1: The first reaction method The first reaction method introduced by Gille-
spie, 1976, is an algorithm allowing to predict the next reaction to occur (either bond
binding: B or unbinding: U) and the time at which it occurs. First an expression of
the probability density p(t, B/U) that a reaction occurs in a defined timespan at a
specific bonding site is deduced from the attachment and detachment rates. Next
a random value of the next event time t is obtained according to p(t, B/U) using
the inversion method. This method consists in computing the cumulative distribution
function CDF based on p(t, B/U) and defined as

CDF(t) =
∫ t

t0

p(t′, B/U)dt′,

representing the probability of an event to occur between two times t0 and t. Then
a random number r is generated from the uniform distribution in the unit interval
and the random time of the next event is deduced by inverting CDF

t = CDF−1(r).

This process is repeated for each of the N binding sites and the first reaction to occur
is the one having the shortest generated time.

At the reaction site i, the probability at time t0 that the next event will occur in
the differential time interval [t, t + dt] is given by

pi(t, B/U)dt = P0
i (t) · pi(B/U)dt (D.1)

where P0
i (t) is the probability at time t0 that no event will occur in the time interval

[t0, t] at the reaction site i, and pi(B/U)dt is the probability at reaction site i that the
event will occur in the next differential time interval [t, t + dt] defined as

pi(B/U) = Ci(t0)k−i (t) + [1− Ci(t0)]k+. (D.2)

Considering once again a Markov chain, the probability at time t0 that the i−th
bond will remain in the same state until t + dt, P0

i (t + dt), is defined by the prod-
uct of the probability that its configuration will not change between t0 and t, P0

i (t)
and the probability that no change will happen between t and t + dt given by 1−
pi(B/U)dt

P0
i (t + dt) = P0

i (t)[1− pi(B/U)dt], (D.3)
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which in the limit dt→ 0 becomes

dP0
i (t)
dt

= −pi(B/U)P0
i (t), (D.4)

whose solution is
P0

i (t) = exp
(
−
∫ t

t0

pi(B/U)dt′
)

. (D.5)

Plugging this expression into (D.1) gives

pi(t, B/U) = pi(B/U)exp
(
−
∫ t

t0

pi(B/U)dt′
)
= − d

dt

[
exp

(
−
∫ t

t0

pi(B/U)dt′
)]

.

(D.6)
The probability at the i−th binding site of an event to occur between times t0

and ti is given by the cumlative distribution function CDFi(ti) =
∫ ti

t0
pi(t, B/U)dt,

plugging (D.2) into (D.6) we obtain

CDFi(ti) = −exp
(
−
∫ ti

t0

[
Ci(t0)k−i (t) + (1− Ci(t0))k+

]
dt
)

, (D.7)

A classical implicit assumption when computationally modeling sliding friction
with the help of a Gillespie algorithm, is that the forces within the bonds remain
constant between two configuration changes, i.e. during one timestep. However
this assumption oversimplifies the problem, because the filament is sliding between
two events, therefore the bonds continue to extend and thus the bonds loading rates
do not vanish. In the general case, the loading rate within a bond remains constant
between two reactions, because the filament is sliding at constant speed, therefore
the force within a bond i at time t is given exactly by

fi(t) = fi(t0) + ∂t fi(t0)(t− t0), (D.8)

where fi is the force in the i−th bond and ∂t fi is the corresponding loading rate.
Plugging this expression of the force into the expression of the mechanosensitive

unbinding rate and combining with (D.2), (D.7) becomes

CDFi(ti) = −exp (Ci(t0)k0 f ∗

ḟi(t0)
exp

(
fi(t0)

f ∗

) [
exp

(
ḟi(t0)(t− t0)

f ∗

)
− 1
]

+[1− Ci(t0)]k+(t− t0)) (D.9)

Then we deduce the time of the next occurring event at the i−th linker using

ti = CDF−1(ri), (D.10)

where ri is a random number generated from the uniform distribution, and we fi-
nally obtain
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The time of the next reaction at the site i ti = t0 +
f ∗

∂t fi
ln
[
1− ∂t fi

f ∗k0 ln(ri) exp
(
− fi(t0)

f ∗

)]
, if Ci(t0) = 1

ti = t0 +
1

k+ ln
(

1
ri

)
, if Ci(t0) = 0.

(D.11)

The first reaction occurs at the site k such that the first reaction time tk = mini ti.
At the end of this step the time is updated to t0 := t0 + tk.

Step 2: The force balance The event type and location obtained from the Gillespie
step allows to update the forces in the bonds by performing a force balance.

Assuming a semi-infinite elastic and incompressible substrate, within the small
deformation framework the displacement of the substrate at the location of the i−th
bond is given by the Boussinesq-Cerruti solution and is the sum of a local contribu-
tion due to the force exerted by the i−th bond and a non-local contribution due to
the forces of all other bonds

us
i (t0) =

Na

∑
j=1
j 6=i

3 f j(t0)

2πEs|xi − xj|
,

︸ ︷︷ ︸
Non-local contribution

+
3 fi(t0)

2πEsa︸ ︷︷ ︸
Local contribution

(D.12)

where Na is the number of attached linkers, xk corresponds to the attached position
of the k−th bond on the substrate in the undeformed configuration, Es represents the
Young modulus of the substrate and a is a cutoff length of the order of the integrin
head diameter. Furthermore assuming that the bonds are hookean springs charac-
terized by a stiffness kb and a zero rest length. The filament slides at a constant
velocity v0, therefore the force in the i−th bond reads

fi(t0) = kb[v0(t0 − tb
i )− us

i (t0)], (D.13)

where tb
i represents the time at which the i−th linker attached. Thus we deduce

another expression of the substrate displacement,

us
i (t0) = v0(t0 − tb

i )−
fi(t0)

kb
. (D.14)

Equating (D.12) and (D.14) gives

v0(t0 − tb
i ) =

Na

∑
j=1
j 6=i

3 f j(t0)

2πEs|xi − xj|
+

(
3

2πEsa
+

1
kb

)
fi(t0). (D.15)

The forces in the bonds are computed by solving the system (D.15).
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By differentiating (D.15) with respect to time, we obtain a similar system of Na

equations in ∂t f

v0 =
Na

∑
j=1
j 6=i

3∂t f j(t0)

2πEs|xi − xj|
+

(
3

2πEsa
+

1
kb

)
∂t fi(t0). (D.16)

The loading rates in the bonds are computed by solving the system (D.16).
Using a trapezoidal integration formula, the time-averaged sum of the exerted

forces by the bonds on the substrate over one time step is given by

〈F〉 = 1
t− t0

∫ t

t0

N

∑
i=1

fi(t′)dt′ =
N

∑
i=1

[
fi(t0) + ∂t fi(t0)

(
t− t0

2

)]
. (D.17)

The computed forces and loading rates become an input for the Gillespie algo-
rithm in order to update the time-dependent unloading rate. The process is iterated
until an arbitrary number of simulations.

D.2 The dimensionless problem

Introducing the scaled quantities t̄ = tk0, ¯k+ = k+/k0, f̄ = f / f ∗, ∂t f = ∂t f /( f ∗k0),
we re-write (D.11) t̄i = t̄0 +

1
∂t f i

ln
[
1− ∂t f i ln(ri) exp(− f̄i(t̄0))

]
, if Ci(t̄0) = 1

t̄i = t̄0 +
1

k̄+
ln
(

1
ri

)
, if Ci(t̄0) = 0.

(D.18)

Re-scaling (D.15) gives

v̄0(t̄0 − t̄b
i ) = L

K Na

∑
j=1
j 6=i

f̄ j(t0)

|x̄i − x̄j|
+ (1 +K) f̄i(t0)

 , (D.19)

while (D.16) becomes

v̄0 = L

K Na

∑
j=1
j 6=i

∂t f j(t̄0)

|x̄i − x̄j|
+ (1 +K)∂t f i(t̄0)

 , (D.20)

and the normalized time-averaged traction force

〈F̄〉 = 1
N

N

∑
i=1

[
f̄i(t̄0) + ∂t fi(t̄0)

(
t̄− t̄0

2

)]
, (D.21)
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where L and K are two dimensionless numbers defined as

L = f ∗/(kba),

the ratio between the bond failure length and the cut-off length a and

K = 3kb/(2πEsa),

represents the ratio between the bond rigidity and substrate rigidity.

D.3 Results

In fig. D.1, we show the evolution of the time-averaged traction force with the sliding
velocity for a stiff K = 0.5 and a soft substrate K = 100, where each dot represents a
simulation. On both rigidities the relationship between the force and the velocity is
biphasic. This result is in qualitative agreement with Sens, 2013. On a soft substrate
the shift in monotony occurs much later than on a stiff substrate, indeed it is located
at v0 ' 3000 for K = 100 and at v0 ' 50 for K = 0.5. Throughout this work, we
assumed a viscous friction law (1.7) to model the cell-substrate interaction, which is
valid at sufficiently low speed, as illustrated here. Interestingly this domain of valid-
ity is extended as the substrate becomes softer, meaning that for very soft substrate
the assumption of linear friction law could be always valid.
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FIGURE D.1: Biphasic evolution of the mean traction force with the
sliding speed (left) on a stiff (K = 0.5) and (right) on a soft substrate

(K = 100).

In fig. D.1, we show the evolution of the time-averaged traction force with the
substrate rigidity at two different filament sliding velocities v0 = 20 and v0 = 100.
At v0 = 20, the force is monotonically increasing with the substrate rigidity, how-
ever at v0 = 100, the relationship becomes biphasic, meaning that the force transmis-
sion is maximal at an optimal substrate rigidity. These results are also in qualitative
agreement with Sens, 2013.



D.4. Simplified model 95

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.175

0.200

0.225

0.250

0.275

0.300

0.325
F

N = 50, v0 = 20.0, = 5.0

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.30

0.31

0.32

0.33

0.34

0.35

0.36

F

N = 50, v0 = 100, = 5.0

FIGURE D.2: Evolution of the mean traction force with the substrate
rigidity.

D.4 Simplified model

In this section, we want to discard the non-local effects due to the compliance of
the substrate by using a simple one-spring (of stiffness ks) representation of the sub-
strate rigidity, in the fashion of Chan and Odde, 2008. We re-write the previous
model to match this representation, where only the overall substrate displacement
is taken into account due to the single spring model. Therefore the force balance at
the interface gives

us(t0) = (1/ks)
Na

∑
i=1

fi(t0). (D.22)

Moreover (D.14) becomes

us(t0) = v0(t0 − tb
i )−

fi(t0)

kb
. (D.23)

Following the same methods as in sec. D.1 we obtain

v0(t0 − tb
i ) =

Na

∑
j=1
j 6=i

1
ks

+

(
1
ks

+
1
kb

)
fi(t0). (D.24)

The forces in the bonds are computed by solving the system (D.15).
By differentiating (D.24) with respect to time, we get

∂t f = v0/
(

Na

ks
+

1
kb

)
(D.25)

We observe that, in this simplified representation the loading rate is identical in each
and every bond, because all the bonds are linked at both ends to the same moving
rigid surfaces.



96 Appendix D. Stochastic sliding friction

Using the same previous scaling parameters, the dimensionless problem reads

v̄0(t̄0 − t̄b
i ) = L

K Na

∑
j=1
j 6=i

f̄ j(t0)

|x̄i − x̄j|
+ (1 +K) f̄i(t0)

 , (D.26)

while (D.25) becomes
∂t f = v̄0/ (L(1 + NaK)) , (D.27)

where K = kb/ks. The stochastics part remains unchanged.
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FIGURE D.3: Force-velocity relationship comparison between the
previous (blue) and the simplified model (red)

In fig. D.3 we compare the force-velocity relationship between the previous (blue)
and the simplified model (red) on a soft and on a stiff substrate. In both cases, the
two models deliver similar results, meaning that the non-locality does not play a
significant role in this specific case. Therefore the approximation made by Chan and
Odde, 2008 to model deformation of the substrate by a single spring is quite accurate
when modeling stochastic sliding friction.

D.5 Conclusion

In this part we investigated the friction of an actin filament sliding at constant speed
on a compliant substrate using a method based on the stochastic clutch-model (Chan
and Odde, 2008; Sens, 2013), in order to understand the influence of the substrate
stiffness on the local relationship between the actin-induced traction force and the
actin retrograde flow velocity. We developed a computational model, that takes into
account the local deformations of the substrate and proposed an improvement to
the stochastic algorithm by considering time-dependent unloading rates. The results
were in good agreement with Sens, 2013, as we obtained the expected force-velocity
biphasic relationship. We showed that the domain of validity of the viscous friction
law (1.7) depends on the stiffness of the substrate, being wider for softer substrate.
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We also showed the equivalence of this model with a simplified model, which
integrates the compliance of the substrate with a single spring, suggesting that the
non-local effects are not meaningful when considering the sliding friction of a pas-
sive rigid filament at the scale of focal adhesion.

It would be interesting to compare this model with the classical model (time-
independent unloading rates) in order to confirm (or not) its relevance.
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