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Résumé

Étant donné un arbre d’évolution des espèces (ou phylogénie) et les séquences de
référence qui ont permis de la construire, le placement phylogénétique tente de déter-
miner la branche d’origine d’une séquence requête dans la phylogénie. L’application
principale du placement phylogénétique est l’identification d’espèces, une question
essentielle de bioinformatique utilisée en écologie, en agronomie et en médecine. Les
méthodes algorithmiques dites « sans alignement » proposent une nouvelle approche
capable d’éviter d’aligner la séquence requête avec les séquences de référence, une
étape qui limite fortement le passage à l’échelle du placement phylogénétique à l’ère
des technologies de séquençage à haut-débit (SHD).

RAPPAS, qui appartient aux méthodes sans alignement, introduit le concept de
𝑘-mer informé phylogénétiquement, ou phylo-𝑘-mer pour faire court. Pour un en-
tier 𝑘, il s’agit d’une séquence de longueur 𝑘 (ou 𝑘-mer) associée à des probabilités
d’observation sur les branches de la phylogénie. Pour un 𝑘-mer issue d’une séquence
requête, cela permet d’estimer la probabilité qu’il provienne de chaque branche de la
phylogénie. RAPPAS pré-traite la phylogénie et les séquences associées pour calculer
les phylo-𝑘-mers et les stocker dans un index. Une fois calculé, cet index permet de
placer d’énorme quantité de séquences requêtes ; cependant sa construction demeure
coûteuse en temps de calcul et en mémoire.

Cette thèse étudie le calcul et l’indexation efficaces des phylo-𝑘-mers. Le chapitre
1 introduit la thématique après un survol historique des notions de biologie et de
bioinformatique nécessaires à sa compréhension. Il discute de l’importance de l’iden-
tification d’espèces par séquençage et bionformatique, ainsi que du défi causé par le
SHD. Enfin, il présente un état de l’art bioinformatique du placement phylogénétique.

Le chapitre 2 décrit et analyse l’algorithme existant de l’étape centrale du calcul
des phylo-𝑘-mers : le calcul des phylo-𝑘-mers pour une fenêtre de longueur 𝑘 de
l’alignement de référence. En outre, il propose un nouvel algorithme utilisant une
stratégie de « diviser pour régner ». Cette approche surpasse l’algorithme existant
tant en théorie qu’en pratique.

Cependant le volume mémoire occupé par l’index de phylo-𝑘-mers et leur nombre
peuvent dans certains cas s’avérer gênants. Le chapitre 3 propose de sélectionner les
phylo-𝑘-mers les plus informatifs en se basant sur l’information mutuelle. L’algorithme
de filtrage proposé permet de réduire considérablement l’espace nécessaire en impac-
tant la précision du placement de façon négligeable. Enfin, il examine la connexion
entre RAPPAS et les méthodes d’apprentissage automatique de classification de textes
basées sur une approche dite « bayésienne naïve ».
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Le chapitre 4 décrit deux nouveaux programmes permettant le calcul et l’utilisa-
tion des phylo-𝑘-mers : XPAS pour le calcul efficace d’index de phylo-𝑘-mers et son
stockage sur disque, et RAPPAS2 qui réimplante l’algorithme de placement phylogé-
nétique original de RAPPAS. Les résultats expérimentaux démontrent que ces deux
programmes, qui combinés remplacent le RAPPAS original, réduisent grandement
l’espace mémoire utilisée et améliorent fortement les temps de calcul. Leur effica-
cité provient de l’implantation en C++ moderne, de leur optimisation, et en fait de
programmes d’ores et déjà utilisables.

Finalement, le chapitre de conclusion aborde des pistes de recherche pour l’utili-
sation des phylo-𝑘-mers, les défis à venir, et les perspectives du placement phylogé-
nétique.
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Abstract

Phylogenetic placement determines possible phylogenetic origins of unknown query
DNA or protein sequences, given a fixed reference phylogeny. Its main application is
species identification, an essential bioinformatics problem with environmental ecology
applications, microbial diversity studies, and medicine. Alignment-free methods for
phylogenetic placement are a novel group of methods designed to eliminate the need to
align query sequences within reference sequences — a current limit to the applicability
of phylogenetic placement methods in the next-generation sequencing (NGS) era.

One of such methods is RAPPAS. It introduced the concept of phylogenetically
aware 𝑘-mers (phylo-𝑘-mers): 𝑘-mers paired with relevant probabilistic information
about the reference phylogeny. This information determines how probable it is to
observe any 𝑘-mer in hypothetical sequences arising from different parts of the ref-
erence tree. RAPPAS preprocesses the reference phylogenetic tree and alignment,
computing phylo-𝑘-mers. This allows fast phylogenetic placement of vast amounts
of query sequences; however, the computation of phylo-𝑘-mers is expensive in both
running time and memory.

This thesis studies the problem of effective indexing of reference phylogenies with
phylo-𝑘-mers. Chapter 1 gently introduces the reader to the problem. Starting with
a historical overview of biology and bioinformatics of the last decades, it discusses
the importance of sequence identification in modern bioinformatics, overwhelmed
with amounts of sequencing data produced by NGS technologies. Then, it overviews
existing methods of phylogenetic placement and discusses their limitations.

Chapter 2 describes and analyzes the existing solution for the central algorithmic
problem of phylo-𝑘-mer computation: computing phylo-𝑘-mers for one node in a 𝑘-
sized window of the reference alignment. In addition, it describes a novel algorithm
for this problem based on the divide-and-conquer approach. This algorithm improves
the existing solution both theoretically and in practice.

Chapter 3 proposes a novel method of filtering phylo-𝑘-mers based on Mutual In-
formation. This method allows reducing memory consumption of phylogenetic place-
ment significantly with a negligible decrease in placement accuracy. It also describes
how RAPPAS is connected to well-studied methods of text classification with Naive
Bayes.

Finally, Chapter 4 presents two new phylo-𝑘-mer-related tools: XPAS for effi-
cient computation of phylo-𝑘-mers and RAPPAS2, an effective reimplementation of
RAPPAS. Experimental results provided show that XPAS and RAPPAS2 outperform
RAPPAS both in running speed and memory consumption. Both tools are written
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in modern C++, optimized for efficiency, and are ready to use.
The final chapter discusses possible directions of future work on phylo-𝑘-mer-

related methods, the challenges that are yet to be overcome, and a discussion on the
future of phylogenetic placement.
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Chapter 1

Introduction

1.1 Background

1.1.1 Evolution and DNA

It has not escaped our notice that
the specific pairing we have
postulated immediately suggests a
possible copying mechanism for the
genetic material.
— J. Watson, F. Crick [220]

From the very beginning of life on Earth, all living organisms are subject to natural
selection [46]. It is dictated by the environment in which they find themselves: the
most adapted organisms have a greater chance of surviving and reproducing. As
they reproduce, they pass on their properties to their offspring in a process called
inheritance. Thus, the constantly changing environment favors the reproduction of
those organisms that carry characteristics conducive to survival. The endless selection
of such properties and the adaptation of living organisms to the changing environment
is called evolution [49]. The great diversity of all possible organisms, from bacteria,
archaea, and viruses to fungi, plants, and animals, although exceptional in scale and
complexity, is based on this fundamental principle.

The inheritance of the properties of living organisms is possible thanks to molec-
ular mechanisms of storing information. The prevalent carrier of hereditary infor-
mation is DNA, a molecule of deoxyribonucleic acid. This molecule consists of two
strands connected by hydrogen bonds, with each strand consisting of two parts: the
sugar-phosphate backbone and the nucleic bases — namely adenine, cytosine, gua-
nine, thymine — attached to the backbone. Figure 1-1a illustrates the structure of
DNA. In most cases, nucleic bases in both strands are arranged in pairs: adenine
in one chain is paired with thymine in the other, and cytosine with guanine (see
Figure 1-1b). Such pairs are called base pairs.

In a single cell, DNA can reach millions of base pairs in length and describes the
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Figure 1-1 – The structure of DNA.

“recipes” for constructing other biological sequences, namely proteins. It is proteins
that are the functional molecules responsible for various sorts of functions in living
organisms [136]. Those sections of DNA used by organisms to encode proteins are
called genes, but they often represent only a tiny fraction of the DNA sequence. One
organism’s entire hereditary information is called its genome, and the discipline that
studies genomes is called genomics. The importance of the discovery of the hereditary
properties of DNA ([9] which was inspired by [79] and confirmed later by [87]), and the
structure of the DNA molecule ([220] followed by [221]) can hardly be overestimated:
these outstanding achievements determined the further development of biology.

1.1.2 Genomics and early sequencing technologies

The detailed study of the genes of living organisms was made possible by the invention
of sequencing technology. Sequencing is the process of retrieving the sequence of
base pairs of any DNA strand. The first sequencing method was invented by Allan
Maxam and Walter Gilbert [147, 148] in 1977, and another one was suggested by
Frederick Sanger [182, 183] in the same year. Sanger sequencing, also called the
chain-termination method, proved more successful and had a huge influence over the
next 30 years in biology. Initially requiring manual work, this method was eventually
automated [197], which led to the emergence of laboratories equipped with a large
number of DNA sequencing machines, operated by a large number of personnel in
parallel [190]. It allowed sequencing genes and eventually whole genomes to study
their structure, function, and evolution. Thus, DNA sequencing gave rise to genomics:
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Figure 1-2 – The taxonomic ranks used in modern taxonomy, from general to specific:
domain, kingdom, phylum, class, order, family, genus, species. Source and license:
[171], which is derived from [27].

the first bacterial genome was published in 1995 [70], followed by the first eukaryotic
genome [77], the genome of the nematode Caenorhabditis elegans [58], the genome of
Drosophila melanogaster [3], and the efforts of many scientists completed the largest
collaborative genomic project at the time, the Human Genome Project, in 2003 [121,
213, 187, 160]. This is by no means a complete list of the genomes published back
then; many others followed, and today sequencing a genome of a living or extinct
creature is commonplace.

Sequencing technology led to new disciplines, new scientific questions, and a re-
thinking of existing ones. To understand the importance of those changes, let us take
a step back and take a historical look at the questions raised in biology before.

1.1.3 Taxonomy and phylogenetics

One of the oldest and most essential biological tasks had been and remained the task
of classifying organisms and describing their relationships. In the 18th century, Carl
Linnaeus proposed the binomial nomenclature [31], naming species of living things
based on two Latin words: the generic name, identifying the genus to which the
species belongs, and the specific name, which distinguishes the species within the
genus1. His works greatly advanced the field of taxonomy dealing with classifying
groups of biological organisms based on shared characteristics. He introduced the
standard of class, order, genus, and species, a system for ranking living organisms
[215, 217, 216]. Such a system, albeit somewhat modified, is still in use today (see
Figure 1-2 for an illustration of the modern taxonomic hierarchy of living organisms).

Initially, taxonomy grouped organisms based mostly on similarities and dissimi-

1According to this nomenclature, those able to read and understand this text most probably refer
to Homo sapiens.
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larities of their phenotypical traits. This, however, did not reflect on the evolutionary
relationships of those organisms; thus, taxonomic trees did not always correctly rep-
resent the ancestral relationships of underlying organisms.

Another major part of biological systematics addressed this problem, that is, the
field of phylogenetics. While also classifying living creatures, phylogenetics specifically
addresses the inference of the evolutionary history among or within groups of organ-
isms. The basic model of phylogenetics is the phylogenetic tree, a tree-like diagram
representing our understanding of the evolution of the organisms under study. The
idea of describing evolutionary relationships with the help of such trees appeared in
the 19th century and referred back to Darwin, who popularized the so-called “evolu-
tionary tree”. Some early historical examples of such trees were published in works
of Darwin and Haeckel (see Figure 1-3).

In modern phylogenetics, trees are usually less artsy than those suggested by
Haeckel (Figure 1-3b). One example of a modern phylogenetic tree of life is presented
in Figure 1-4. In a phylogenetic tree, the tips, or the leaves of the tree represent
existing organisms or groups of organisms of different taxonomic levels. The nodes
in the tree represent evolutionary events of the past that lead to division of the com-
mon ancestor of the node’s subtree into different lineages. Phylogenetic trees can be
unrooted if the common ancestor of the whole tree can not be identified; otherwise,
the root represents such an ancestor. Edges of the tree are called branches, and the
branch length between two nodes is meant to be proportional to the evolutionary
distance between the organisms represented by the nodes connected by this branch.
Those evolutionary distances and the topology of the tree can be inferred from ob-
servable traits of organisms represented in the tree. In the early days of phylogenetics,
phenotypic traits were used as sources of phylogenetic information, but as early as
the 1960s, the idea of using molecular sequences appeared [238].

Even before the invention of DNA sequencing, there was increasing evidence that
molecular sequences contained reliable phylogenetic signals and should be used to
infer phylogenies. Much attention was paid to the idea of using proteins as sources
of phylogenetic information [69, 68, 238]; however, protein sequences were scarce. A
fundamental breakthrough happened in 1977, although many contemporaries did not
notice it. Woese and Fox argued that we should reconstruct phylogenetic relationships
in terms of comparable property, common between various organisms yet related to
evolutionary history. They suggested comparing microorganisms by short genes cod-
ing for ribosomal RNA, 16S rRNA gene for prokaryotes, and 18S rRNA for eukaryotes
[226]. Such a comparison immediately suggested the existence of a new kingdom of
prokaryotic organisms, archaebacteria (now known as one of three domains of life,
Archaea, along with Bacteria and Eukarya). Those findings were yet to be confirmed
later [228, 227]. The suggested genes, however, became the standard of phylogenetic
markers for decades and are still used nowadays: those genes are highly conserved
within living organisms of the same genus and species, but they differ enough between
organisms of other genera and species [230].
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(a) The first diagram of an evolu-
tionary tree made by Charles Darwin
in 1837. Handwriting: “I think case
must be that one generation should
have as many living as now. To do
this and to have as many species in
same genus (as is) requires extinc-
tion. Thus between A + B the im-
mense gap of relation. [between] C
+ B the finest gradation. [between]
B+D rather greater distinction. . . ”
Source and license: [45]. Transcrip-
tion: [16].

(b) Reproduction of the “genealogical oak” suggested by
Haeckel in 1866 [83]. Represents three kingdoms: Plantae
(plants), Protista (microorganisms) and Animalia (ani-
mals). Source and license: [84].

Figure 1-3 – Early examples of phylogenetic trees.
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Figure 1-4 – A modern phylogenetic tree of life constructed using sequencing data.
Source and license: [92], which was derived from [91].
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1.1.4 Diversity of microorganisms

Sequencing technologies and new phylogenetic data brought reinforced suspicions
that our understanding of the microcosm was far from complete. In the study of
microbes, a common approach was cultivation: microorganisms were extracted from
the environment and grown in the laboratory for further research (e.g., sequencing
their DNA sequences). Unfortunately, cultivation suffers from a major problem. As
early as 1932, the Russian microbiologist Razumov described that the number of
bacteria visible under a microscope is much greater than the number cultured under
laboratory conditions [167, 135]. It has been confirmed by many researches later: the
number of microorganisms that cannot be cultured in the laboratory is estimated to
be > 99% of their total number [7, 175]. Staley and Konopka coined the term “The
Great Plate Count Anomaly” for this effect [201], and resolving this “anomaly” became
an essential issue in microbiology. Thus emerged the idea of studying microorganisms
in situ, i.e., extracting their DNA directly from the environment in which they live
[28, 93]. Studying such environmental DNA (or eDNA) is now one of the primary
ways to study diversity of microorganisms [230]. Examples of eDNA sources include,
but are not limited to, feces, mucus, gametes, shed skin, hair, water, soil, air, and
others [205, 24, 204, 211, 72, 99, 208].

Thus, microbiology entered the 21st century with the understanding that mi-
croorganisms are the primary source of diversity of life, the vast majority of which
are unknown [94] and cannot be studied outside their habitat. Amann et al. described
this situation as nothing short of a “failure of microbiologists to describe natural di-
versity” [7]. Against the background of the new successes of eukaryotic genomics
of that time, the task of determining the genomes of all microorganisms remained
untractable without much hope of solving it any time soon [93].

1.1.5 The high-throughput sequencing revolution

The first signs of an approaching breakthrough in sequencing technology emerged in
2005 with the invention of sequencing-by-synthesis (pyrosequencing) technology by
454 Life Sciences (later acquired by Roche) [143] and Multiplex Polony Sequencing
[196]. However, although sequencing throughput achieved an approximately 100-fold
increase over Sanger sequencing, it took time for the scientific community to bring
these technologies into widespread use [190]. The DNA reads produced by the 454
machines were much shorter (at first 50-150bp [143], later this number reached 400bp,
versus about 750bp for Sanger sequencing), and there was a need to handle the large
volume of data generated using the new technology. Nevertheless, new technolo-
gies kept emerging in the sequencing market — Solexa (became part of Illumina)
[18, 19], SOLiD [212], semiconductor chip based sequencing (Life Technologies, Ion
Torrent) [178] — technologies called Next Generation Sequencing (NGS) as opposed
to Sanger sequencing (sometimes called first-generation sequencing). These technolo-
gies produce short reads (no more than a few hundred base pairs) of high quality,
e.g., with a low percentage of incorrectly sequenced base pairs. Some time later,
long-read sequencing technologies such as single-molecule real-time sequencing (Pa-
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Figure 1-5 – The cost of sequencing per raw megabase of DNA against the hypothetical
cost reflecting the Moore’s Law ([172] based on [224]). The cost includes labor,
administration, management, utilities, reagents, and consumables expenses, as well
as amortized costs of sequencing instruments, informatics activities directly related
to sequence production, and other indirect costs. For details, see [224].

cific Biosciences) [57, 35] and nanopore sequencing [50] also appeared; they produce
much longer sequences at the cost of higher error rates. Today, the DNA sequencing
market is dominated by Illumina, which successively replaced Sanger sequencing and
won the race against the competitors [193].

Sequencing technologies led to a significant reduction in sequencing costs and a
substantial increase in the amount of data obtained. For example, sequencing the
first human genome as a haploid reference took nearly ten years, while now, an
entire diploid human genome sequence can be accomplished in just a few days [150].
Figure 1-5 demonstrates the drop in sequencing costs over the past decades against
Moore’s Law (which states the number of transistors in integrated circuits doubles
about every two years). Thus, a new era in bioinformatics has dawned: a time when
the importance of data interpretation and the very possibility to process available data
is critical. At the same time, the cost and time of obtaining data may be considered
negligible [17].

NGS allowed answering new scientific questions. For example, it enabled metage-
nomics : sequencing all possible DNA from an environmental sample, including many
different organisms (thus implementing the approach of sequencing random parts of
DNA, also known as shotgun sequencing [152]). In contrast to the approach based on
marker genes (e.g., 16S, 18S rRNA) discussed earlier, called metabarcoding, metage-
nomic experiments are not limited to sequencing a single gene and produce full-
genome resolution DNA reads. The clinical applications of metagenomics include, but
are not limited to, the detection of potential pathogens in a sample for diagnostics
[36], detection of antibiotic related genes in human gut bacteria [53], investigation of
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outbreaks [137], identification of SARS-CoV-2 infection [164], and prediction of novel
emerging coronaviruses [33].

Nevertheless, there is still a need for targeted metagenomics, i.e., metabarcoding.
First, metagenomics requires much higher sequencing power to acquire comparable
sequencing depth. For example, it may not be possible to capture rare but ecologically
important microbial species in large-scale metagenomic experiments [138], which is
possible for metabarcoding [195, 104]. Second, metabarcoding is indispensable for
biodiversity studies in agriculture and ecology [177, 134]: studying soil and water
microbial communities is still challenging due to the lack of genetic and phylogenetic
data on underlying organisms. Thus, it makes accurate identification of metagenomic
reads challenging since reference genomes of interest may not be known.

In light of the above, the identification of short eDNA sequences is an essential
task of bioinformatics. In this work, I address this problem in the context of metabar-
coding. The overview of existing methods addressing this problem will be given in
Section 1.2.

1.2 Approaches to eDNA sequence identification

1.2.1 Sequence clustering-based

The study of microbial communities is burdened not only by the lack of genomic data
but also by the lack of phylogenetic knowledge. Although much progress has been
made in the last decade in determining the phylogeny of microorganisms of different
environments [52, 165, 169, 234], it is often insufficient for accurate sequence iden-
tification at the genus and species level. In such a case, the sequences are used to
cluster into operational taxonomic units (OTU), representing organisms of different
taxonomic groups. OTUs thus are a “proxy” taxonomical concept used instead of
classic taxonomic ranks (such as species, genus, etc.) due to the lack of exact phy-
logeny of the underlying organisms. Despite this obvious simplification, this approach
is widely used in medical and ecological microbiology to analyze the biodiversity of
microbial communities [78].

To form OTU clusters from a collection of query sequences, they are clustered
by sequence similarity (standard thresholds of similarity are 95% and 97%). Popular
sequence clustering software are CD-HIT [127, 126, 89, 73], DNACLUST [75], USE-
ARCH [56] and VSEARCH [170], and Swarm [141, 142]. A consensus sequence is
taken to represent every OTU. Thus, query sequences are identified with consensus
sequences; those can then be used to infer the phylogeny. This is called de novo OTU
picking, and this approach is used when the reference phylogeny is not available.
Otherwise, if the reference phylogeny is given (based on a set of known reference se-
quences), query sequences can be clustered against reference sequences. The reference
phylogeny remains unchanged, which is known as closed-reference OTU picking. It
is substantially faster than de novo OTU picking but requires the phylogeny to be
sufficiently relevant: query sequences not reaching the required similarity threshold
can not be identified and are discarded. In addition, it produces less accurate re-

21



BA C D

Q1
Q2

B

A

C

D
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query sequences Q1, Q2 to a known
phylogeny based on reference se-
quences A, B, C, D. Colored circles
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(b) An example of phylogenetically suboptimal cluster-
ing based on sequence similarity. Given different evo-
lution rates between branches of the tree, query Q1 is
evolutionary closer to A, but is clustered together with
𝐵 based on higher sequence similarity.

Figure 1-6 – Sequence identification based on similarity and clustering.

sults than de novo OTU picking [223]. Figure 1-6a illustrates closed reference-based
identification. Finally, open-reference OTU picking is the combination of the two
approaches, where closed-reference OTU picking is performed at the beginning, and
unclustered sequences are clustered de novo.

The popular pipelines implementing those approaches are QIIME [32, 25] and
Mothur [186, 185]. OTU picking-based assignment is scalable for millions of query
sequences, especially for its closed-reference version. However, it lacks phylogenetic
resolution for individual sequences: similarity-based sequencing clustering may pro-
duce suboptimal results from the evolutionary point of view. Consider Figure 1-6b:
the lack of phylogenetic knowledge of underlying organisms may lead to query se-
quences being clustered together in ways misrepresenting the underlying evolution.

1.2.2 Sequence alignment-based

A similar method is based on alignment. In the process of evolution, DNA sequences
mutate: insertions, deletions, and substitutions of base pairs occur. Sequence align-
ment is a fundamental task of bioinformatics aiming at comparing two or more DNA
sequences to determine the degree of their difference in terms of mutations. An
alignment algorithm introduces gaps in input sequences, maximizing the number of
matching sites of those sequences assuming a substitution model. Such a process can
be done for two (pairwise alignment) or more (multiple alignment) sequences at once.

Many algorithmic approaches have been developed for this task (e.g., [161, 198]);
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a popular application is searching for query sequences in sequence databases. Tools
like BLAST [6, 103] and VSEARCH [170] are used for this purpose. For the task of
sequence identification, the closest sequence found in the database can be considered
as the answer. This approach, however, also suffers from the problems we have
discussed in Section 1.2.1. First, the lack of reference sequences in databases, which
is the case for microbes, leads to the inability to identify queries of novel species.
Second, such identification may be phylogenetically irrelevant. The following sections
introduce phylogenetically aware methods allowing to overcome these problems.

1.2.3 Phylogenetic inference

Phylogenetic inference involves constructing a phylogenetic tree for a set of sequences.
Tree inference is usually cast as an optimization problem under a certain model, with
optimization criteria expressing the fit of the tree with the sequence data. These
optimization problems have often been shown to be computationally hard. For all
types of phylogenetic trees, as the number of taxa grows, the number of possible tree
topologies grows super-exponentially [62, 64]. Many different approaches have been
suggested. Distance-based methods aim at optimizing a criterion based on pairwise
distances between sequences, such as least squares and minimum evolution [199].
Parsimony-based approaches seek to minimize a (discrete) measure of the number of
evolutionary events implied by the tree [184, 61]. Maximum likelihood and Bayesian
methods are based on probabilistic criteria [63, 90, 173]. Those interested in this
challenging problem may be interested in [64] and [119].

Having a set of query sequences and a set of reference sequences, one can compute
multiple alignment of all-against-all, assume or estimate an evolutionary model, and
infer a phylogenetic tree de novo. In addition to sequence identification, this approach
also allows to reconstruct evolutionary relationships between query sequences. How-
ever, not only phylogenetic inference but also multiple alignment is a hard problem
[219, 59]. Unfortunately, it makes it impossible to scale it to the current amounts of
query sequences produced by NGS technologies. Even inferring a tree of ten thousand
query sequences is challenging, while current microbiome studies deal with millions of
sequences. In addition, tree inference methods require longer sequences as the num-
ber of taxa increases [159], while the length of metabarcoding reads is limited. Thus,
metabarcoding sequences may not contain enough phylogenetic signal to reconstruct
the comprehensive phylogeny correctly [20].

1.2.4 Phylogenetic placement

Phylogenetic placement is a group of phylogenetically aware methods aiming at over-
coming the problems of full phylogenetic inference discussed above. The input of phy-
logenetic placement is a reference tree, a set of reference sequences (called together
the reference dataset), and a set of query sequences. The reference tree represents
the evolution leading up to the reference sequences (in a one-to-one correspondence
with the tree’s leaves), and the reference sequences are often pre-aligned in a mul-
tiple sequence alignment given as input. The general concept of placement is that
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query sequences are processed one by one independently and are placed into the fixed
reference phylogeny. For every query, placement evaluates how likely each branch is
as the phylogenetic origin of the query. The output of phylogenetic placement is the
assignment, or placement of every query sequence: the list of branches with the high-
est probabilities for those branches to be the phylogenetic origin of the query. This
informs about the possible positional uncertainty of query sequences in the reference
tree, providing an informative per-query picture of the possible query’s evolution
[146]. When placing a query sequence on a branch, some methods also estimate the
exact branching point within that branch, and the length of the new pendant branch.

Started as an attempt to overcome the scalability problems of phylogenetic infer-
ence, it evolved in a group of different methods. It scales better than phylogenetic
inference of reference and query sequences de novo: phylogenetic placement can be
easily parallelized since queries are placed independently. Moreover, there is evidence
that phylogenetic placement of short sequences can be as good or even more accurate
than de novo inference [100]. However, phylogenetic placement does not reconstruct
evolutionary relationships between query sequences, only between every query and
the set of reference sequences.

The work I present in this thesis started in the context of phylogenetic placement
but has proven to have other applications in evolutionary bioinformatics. Phyloge-
netic placement of unknown query sequences to a known reference phylogeny will
remain one of the central problems throughout this work. Section 1.3 gives a review
of existing approaches in phylogenetic placement.

1.3 State-of-the-art of phylogenetic placement

Phylogenetic placement methods can be divided into two groups: alignment-based
and alignment-free. Alignment-based methods require aligning query sequences with
reference sequences. Alignment-free methods do not require it (but they still may
require reference sequences to be aligned), and “alignment-free” should be understood
in this sense.

1.3.1 Alignment-based methods

The initial requirement for any alignment-based method is to align queries with re-
spect to the reference alignment. This can be done using NAST [51], MAFFT [106],
HMMER [66, 55], or other alignment software. Phylogenetically aware alignment
algorithms can also be used: PaPaRa showed to improve placement accuracy when
used together with phylogenetic placement compared to phylogeny-agnostic tools [21].
Alignment is not considered a part of the placement algorithm but a prerequisite; nev-
ertheless, this step can take considerable time if thousands or hundreds of thousands
of queries are placed. This requirement makes alignment-based methods poorly scal-
able with today’s amounts of sequences produced by NGS technologies, which are
often in the hundreds of thousands and millions.
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Figure 1-7 – Phylogenetic placement with EPA. For a query sequence 𝑞, a branch is
split into two branches (shown in red), and a new branch is introduced (shown as
dashed), leading to the leaf representing the query. Lengths of the red branches will
be reoptimized, and the resulting tree evaluated to give the score for this placement.

Evolutionary Placement Algorithm (EPA)

One of the first phylogenetic placement approaches is the Evolutionary Placement
Algorithm (EPA), implemented as a part of RAxML [20, 202, 203]. It belongs to
the group of maximum likelihood approaches, which are used for inferring phylogenies.
Thus, it assumes that the input phylogeny is inferred using maximum likelihood under
a particular evolutionary model.

The algorithm iterates over query sequences and places them; I will describe how
to place one query sequence. Let 𝑇 denote the reference tree consisting of 𝑛 taxa, and
𝑞 denote the query sequence. For every branch 𝑏 of 𝑇 , the query 𝑞 is placed to the
branch 𝑏 by creating a new node that splits 𝑏 into two branches of smaller size. Also,
a new branch is added from the newly inserted node to a new leaf representing the
query. Thus, a new tree of 𝑛 + 1 taxa is created (see Figure 1-7 for an illustration).
Now we need to optimize the tree’s branch lengths by maximising the tree’s likelihood,
given the multiple alignment and the evolutionary model used to infer the tree. We
need to have the query aligned with the reference sequences at this stage, which
makes this approach alignment-based. A naive algorithm would optimize the lengths
of all branches; however, it is computationally expensive. Instead, only the lengths
of the branches adjacent to the inserted node are optimized. This heuristic provides
a good trade-off between speed and accuracy [20]. Then, the likelihood of this tree is
calculated, and the calculated value would be the score of placing 𝑞 to branch 𝑏.

EPA showed consistently better placement accuracy than the BLAST-based
method (discussed in Section 1.2.2) while providing comparable placement speed.
Methods of evaluating placement accuracy will be discussed later in Section 1.4.
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pplacer

Around the same time pplacer, another program for phylogenetic placement based
on maximum likelihood, was published [146]. Its principle is similar to EPA, but it
uses a different heuristic to speed up the naive algorithm, called the baseball heuristic.
The algorithm consists of two stages: The first stage selects the candidate branches
expected to lead to placements with high likelihood (preplacement). The query 𝑞
is placed on the center of a branch 𝑏 in the same way as in Figure 1-7. Then,
the likelihood of the resulting extended tree is computed. When the likelihoods for
all branches are computed, the branches are sorted by likelihood value. A certain
number of best branches (depending on the parameters of the algorithm) are chosen
as candidates. In the second stage, for each candidate branch, the lengths of all
branches of the tree are optimized (thorough placement), and the final likelihood of
the placement is computed.

pplacer’s running time is linear in the number of query sequences, reference
sequences (and therefore, the reference tree size), and sequence length. However, its
memory consumption can be relatively high due to various optimizations designed to
faster placement running time [146]. Accuracy-wise it shows comparable or better
results than EPA depending on the dataset and algorithm’s parameters.

EPA-ng: massively parallel EPA

EPA-ng [15] is the successor of EPA, which improves the previous version in every
aspect. It implements four different strategies of placement: exhaustive thorough
placement (called above the naive algorithm), the algorithm of EPA, the baseball
heuristic (reproduces the results of pplacer), and a new heuristic modifying the
preplacement stage. For this new heuristic, the number of selected branches is dy-
namic and depends on placement uncertainty among candidate branches. Besides
that, it implements the strategy of masking, i.e., filtering alignment sites that consist
entirely of gaps either in the reference or in the query sequence and ignores leading
and trailing gaps in the query.

EPA-ng is excellently optimized. If run in the sequential mode, it is up to 30
times faster than pplacer and EPA. In addition to that, it runs in parallel in both
shared (via OpenMP) and distributed memory (via MPI). Authors present results
showing that the parallel efficiency of EPA-ng scales well up to 2048 cores (on 128
machines). This massive parallelization allowed them to place one billion short queries
to a reference phylogeny of several thousand taxa in just seven hours. This is an
impressive result for a likelihood-based method. Unfortunately, the authors did not
report how long it took to align this number of queries within the reference alignment.

In light of the above, I see no reason to prefer pplacer or EPA to this pro-
gram. Given that EPA-ng can be used in EPA/pplacer compatibility mode, it
will likely replace them soon. However, the maximum likelihood approach can hardly
be significantly optimized beyond this. The authors acknowledge that the alignment
of queries within the reference alignment remains a significant bottleneck in place-
ment analysis [15]. Another scalability issue of EPA-ng (as well as other maximum
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likelihood-based tools) is memory consumption. It is challenging to use it to place on
large phylogenies: for example, it might take dozens of gigabytes of RAM if used for
trees of several thousand taxa [12].

LSHPlace

LSHPlace [29] implements an interesting approach based on locality-sensitive hash-
ing. First, it determines slowly evolving (i.e., conservative) sites of the reference
alignment. Then, it finds ancestral sequences for every node of the tree using max-
imum likelihood. Ancestral sequences are hypothetical sequences that most likely
existed in ancestral organisms corresponding to nodes of the tree. Ancestral sequence
reconstruction is directly relevant to my work and will be discussed in Section 1.5.2.
Finally, it splits the alignment into overlapping regions, and for conservative regions
of the alignment, it hashes the most probable ancestral sequences into collections of
hash maps using locality-sensitive hashing.

For placing a query sequence 𝑞, it searches the query in many hashmaps using
locality-sensitive search. For every hash map hit, the node corresponding to the
ancestral sequence found is considered the local search algorithm’s starting point.
During this algorithm, neighbor branches are evaluated as possible phylogenetic ori-
gins of 𝑞. The evaluation of one branch involves estimating evolutionary distances
between the ancestral sequences associated with the nodes adjacent to the branch
and the query sequence.

This software is up to two orders of magnitude faster compared to pplacer.
However, it is much less accurate. In addition to that, it is still alignment-based
(despite that the alignment does not seem to be used during the placement stage):
LSHPlace uses queries’ positions in the alignment to make sure that multiple hash
tables cover every region of the alignment where queries appear. I suspect that this
requirement could have been bypassed applying methods based on 𝑘-mers (i.e., short
sequences of fixed size 𝑘); however, LSHPlace does not seem to be used in practice.
Unfortunately, neither the source code nor binaries are available online.

PhyClass

PhyClass [65] is a distance-based method that relies on minimum evolution, a well-
known optimization criterion for phylogenetic inference [108]. This method uses a
matrix of 𝑛 × 𝑛 pairwise distances precomputed between the 𝑛 reference sequences.
Moreover, for each query, PhyClass estimates the 𝑛+1 distances between the query
and the reference sequences. The authors assume that all distances are computed in
an alignment-based way. The placement phase relies on the following idea: to evaluate
the goodness-of-fit of placing a query on a given branch, the criterion to minimize is
the total branch length of the reference tree extended by the placement of the query.
This criterion can be computed efficiently using standard least-squares formulas.

Despite showing accuracy comparable to that of maximum likelihood methods, the
PhyClass prototype described in the original paper is substantially slower (probably
due to the inefficient implementation). Whether it is possible to achieve comparable
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placement accuracy using alignment-free sequence distances remains unclear. Unfor-
tunately, neither the source code nor binaries are available online; I could not find
any studies which applied this software.

APPLES

APPLES (Accurate Phylogenetic Placement using LEast Squares) is a recently pub-
lished placement method [12, 11] aiming at enabling placement on ultra-large phy-
logenies. This is a distance-based method, and it requires the branch lengths of the
tree to be optimized using a distance-based method (see Section 1.2.3). If another
method was used to infer the tree, the topology could be kept, but the branch lengths
have to be reoptimized using distance-based methods.

APPLES can be alignment-based or alignment-free. The default usage assumes
the reference alignment as a requirement as input, from which pairwise distances be-
tween sequences are computed. In either case, the distance matrix should be provided
by the user. Given the (sequence) distance matrix, APPLES optimizes placements
by minimizing square root differences between the tree distance of two nodes and
their sequence distance.

This approach allows APPLES to accurately place queries on large phylogenies
(one and two hundred thousand of taxa), which is unachievable with maximum likeli-
hood methods. Nevertheless, it is inferior to other methods in terms of placement ac-
curacy. Recently, a preprint presenting the new version of this program was published
[11]. It implements a divide-and-conquer approach to limit the distance computation
and phylogenetic placement to the parts of the tree most relevant to the query. This
improves APPLES in terms of placement accuracy, speed, and memory consumption:
the author shows that the running time grows sublinearly with the number of taxa.

Thus, APPLES successfully overcomes the tree size scalability problem. However,
the authors did not devote enough attention to the scalability in terms of the number
of query sequences: in the alignment-free mode, it is the user’s responsibility to
calculate the distances accurately enough. The authors acknowledged that the reliable
ways to calculate these distances without aligning queries and references are yet to
be figured out [12]. Some progress in this direction has been made by Blanke and
Morgenstern [22], which will be discussed later.

1.3.2 Alignment-free methods

RAPPAS

RAPPAS (Rapid Alignment-free Phylogenetic Placement via Ancestral Sequences)
implements an alignment-free approach based on phylo-𝑘-mers [130]. Both the notion
of phylo-𝑘-mers and the RAPPAS approach are fundamental to this work. They will
be described in detail later in Sections 1.5 and 1.6.

RAPPAS does not require queries to be aligned within the reference alignment,
making it scalable for analyzing massive amounts of metabarcoding sequences. The
idea is to split the processing of the input data into two stages. During the first stage,
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1 1 0 1 0 0 1
𝑆1 . . . G A T T G A C C A C . . .
𝑆2 . . . C G A T C G A T C G . . .

1 1 0 1 0 0 1
Figure 1-8 – An example of a spaced-word match between two sequences with re-
spect to the pattern 1101001. Ones represent match positions (those positions are
mandatory to match), zeros represent don’t care positions (allowed to mismatch).

the reference alignment and the reference tree are preprocessed to calculate phylo-
𝑘-mers. Notably, the preprocessing does not rely on any information about query
sequences contrary to LSHPlace. Therefore, preprocessing time does not depend
on the number of queries, and it needs to be done only once for a given reference
dataset. The result of preprocessing is a data structure called phylo-𝑘-mer database,
which allows placing queries blazingly fast. Phylo-𝑘-mer databases can be reused
many times to place different sets of query sequences.

Accuracy-wise it shows comparable results with maximum likelihood methods
and places query sequences faster than EPA-ng (run in the sequential mode) [130].
Moreover, there is evidence that for some types of data it may outperform maximum
likelihood-based approaches in placement accuracy [130, 22]. However, the first ver-
sion published showed consistently worse accuracy for two types of data compared to
the maximum likelihood methods. First, it is datasets containing many gaps in the
reference alignment. Second, it showed worse performance for a dataset based on a
long alignment (about 10k base pairs in length) compared to datasets based on short
ones (one or two thousand of base pairs). Besides that, there are other issues related
to the usage of RAPPAS that will be discussed later in Section 1.7.

App-SpaM

App-SpaM (Alignment-free Phylogenetic Placement algorithm based on SPAced word
Matches) is yet another recently published software for alignment-free phylogenetic
placement [22]. This is a distance-based method that requires neither query sequences
nor reference sequences to be aligned together. The method is based on filtered
spaced-word matches (FSWM, [124]), and consists of three stages. First, it finds
spaced-word matches between every query and every reference sequence. Spaced-word
matches are substring matches for which character mismatches are allowed at certain
positions according to a binary pattern (see Figure 1-8 for an example). Second, for
every query, it estimates phylogenetic distances between the query and the reference
sequences. Spaced-word matches that correspond to high sequence comparison scores
given a substitution model (i.e., filtered spaced-word matches) are used to calculate
those distances. Finally, it finds queries’ placements in the reference tree using either
phylogenetic distances or information about spaced-word matches; one of five different
strategies can be used.

Compared to RAPPAS, the competing alignment-free method, App-SpaM shows
better performance in terms of placement speed, but lower in placement accuracy. It
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targets small trees based on short phylogenetic markers and can place short reads
to unassembled reference sequences of long genomes. Besides that, phylogenetic
distances calculated by App-SpaM can be used as input for APPLES — called
SpaM+APPLES — making it an alignment-free pipeline for placing on large phy-
logenies. However, few experiments have been done to evaluate this approach; those
presented by [22] showed that this pipeline is less accurate than standalone App-
SpaM (if the most accurate strategy is used).

1.3.3 Wrappers using other phylogenetic placement methods

SEPP

SEPP (SATé-Enabled Phylogenetic Placement) is a wrapper method that utilizes
other placement software, pplacer, to perform phylogenetic placement [155]. Its
algorithm is as follows: First, it splits the set of reference tree taxa into disjoint
subsets, insertion-taxon-subsets. Second, every subset is split into smaller subsets —
alignment-subsets — aligned independently using HMMER [66]. Third, it searches
for the alignment-subset best matching 𝑞; the query is aligned within this subset.
Finally, it uses the alignment to place 𝑞 to the corresponding insertion-taxon-subset
tree and inserts the placement to the original tree.

Thus, SEPP limits the maximum tree size used for placement (insertion-taxon-
subset size) and the maximum number of sequences to align (alignment-subset size).
In some instances, it significantly reduces RAM usage (compared to HMMER and
pplacer run on the whole dataset) and even improves placement accuracy.

pplacerDC and pplacerXR

pplacerDC is a wrapper method that runs pplacer for subtrees of the reference
tree [112]. Given a query, it splits the reference tree in a divide-and-conquer approach
until it obtains a collection of subtrees 𝑇1, 𝑇2, . . . , 𝑇𝑖 on disjoint subsets of no more
than a certain number leaves (authors suggest 500). Then, for every subtree, it runs
pplacer to place the query to every subtree in parallel. Every subtree is modified by
inserting the query as reported by placements, and subtrees’ likelihoods are evaluated
with RAxML. The placement of the tree obtaining the highest likelihood is reported
as the final result. pplacerDC allows placing on large phylogenies (up to 100k
taxa) without significant loss in placement accuracy compared to pplacer. For
large phylogenies, it improves the results of APPLES while being slower.

pplacerXR [222] is also a wrapper over pplacer (in addition, authors created
a wrapper over EPA-ng implementing the same algorithm), and it operates as fol-
lows. Given the query 𝑞, pplacerXR finds the closest reference sequence to 𝑞 using
alignment-based Hamming distances. Then, it runs a breadth-first search from the
corresponding to this sequence leaf 𝑙 until it finds a certain number (authors suggest
2000) of leaves, closest to 𝑙 in terms of total branch length. Finally, the subtree
containing those leaves is given to pplacer to place the query. The best placement
reported is the answer for the reference tree. pplacerXR showed better accuracy
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than APPLES on huge trees, but is significantly slower. However, authors reported
accuracy results only for full-length queries, the accuracy for short sequences (com-
parable to modern NGS read sizes) was not measured.

Both pplacerDC and pplacerXR seem to be more of a proof-of-concept than
ready-to-use tools since they are poorly optimized. In addition, I foresee all wrapper
methods discussed to be inappropriate for placing queries that are evolutionarily
distant from the reference sequences. For such queries, correct placements will be
branches close to the root, which may not be present in the subtrees processed by
these algorithms.

1.3.4 Related tools

There are several other programs and libraries relevant to phylogenetic placement,
and I will mention them here for the sake of completeness. HmmUFOtu is a pipeline
for phylogenetically aware taxonomic assignment of 16S to OTUs [237]. HmmU-
FOtu applies phylogenetic placement at one stage of the processing of 16S amplicon
sequences. The placement algorithm is similar to those of pplacer and EPA, but it
is a part of the pipeline and can not be easily used as a standalone tool.

Genesis, gappa [42], and guppy are tools allowing for post-processing, analyz-
ing, visualizing, and manipulating phylogenetic placement results. Such results are
usually stored in .jplace files; .jplace is the standard JSON-like format for phylogenetic
placement outputs [145].

PhyloSift allows phylogenetic analysis of genomes and metagenomes and uti-
lizes phylogenetic placement [44]. PhyloMagnet allows screening large metage-
nomic and metatranscriptomic datasets to find genes of interest with phylogenetic
placement [191]. SCRAPP applies phylogenetic placement to quantify the diversity
of environmental samples [14, 105, 158].

A recently published pipeline for evaluating phylogenetic placement is PEWO
[129] (Placement Evaluation WOrkflows). It allows running different phylogenetic
placement tools to evaluate and compare their placement accuracy, running time,
and memory consumption. I had a chance to participate in the development of
this pipeline; some details about this work will be discussed in Sections 1.4, 3.7.1.
I encourage all researchers related to the development of phylogenetic placement
methods to use PEWO — the field needs a standardized framework for comparing
different placement methods.

1.3.5 Summary

This concludes the overview of the state-of-the-art of phylogenetic placement. As far
as I am aware, this is a complete list of existing methods for phylogenetic placement;
the list of related tools may be incomplete.

Three main characteristics can be used to evaluate phylogenetic placement tools:
placement accuracy, the scalability in terms of the number of queries, and the scala-
bility in terms of the number of taxa of the reference tree. Placement accuracy can
be measured in different ways and will be discussed later. Overall, the most accurate
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approaches are maximum likelihood-based (EPA, pplacer, EPA-ng), but they are
problematic to scale with respect to the number of queries or the number of taxa.
Wrapper methods can deal with the latter, but they have limitations discussed before.
APPLES solves the tree size problem, but it is less accurate than competitors.

I believe that the problem of scalability in the number of queries is more impor-
tant: the amount of data produced by NGS technologies is already challenging, and
metagenomic research is limited methodologically, not technically. This problem will
become even more relevant in the future with the further development of sequenc-
ing technologies. Meanwhile, the tree size scalability is only relevant for ultra-large
accurate phylogenies that are not yet common.

Two phylogenetic placement tools — RAPPAS and App-SpaM — target the
query number scalability problem by applying alignment-free approaches. RAPPAS
is more accurate, while App-SpaM is faster. Table 1.1 summarizes the overview of
phylogenetic placement tools. The “accuracy” column is a subjective measure based
on literature, experimental results, and my experience using these tools; since there
are different accuracy measures and different kinds of data, the results of accuracy
comparisons are controversial. Thus, the reader should be aware that this evaluation
may be debatable. The “scalability” columns are more objective and easier to justify.
Additional information about these tools and placement-related tools and libraries
can be found in Appendix (Tables A.1, A.2).

Table 1.1 – A comparison of existing standalone phylogenetic placement software.
Abbreviations: not available (NA), maximum-likelihod (ML), alignment (Aln.), an-
cestral reconstruction (AR). Two last columns indicate the main scalability issue (e.g.,
the requirement to align the queries against the references or RAM consumption).

Software Year Ref Method Accuracy Scalability
# of queries

Scalability
# of taxa

PPlacer 2010 [146] Aln+ML best (overall) Aln-based RAM
EPA 2011 [20] Aln+ML best (overall) Aln-based RAM
LSHPlace 2013 [29] Aln+AR poor potentially1 ?
Phyclass 2015 [65] Aln+Dist. good potentially2 ?
EPA-ng 2018 [15] Aln+ML best (overall) Aln-based RAM
RAPPAS 2019 [130] AR best (short 𝑞)3 yes RAM
APPLES 2021 [11] Aln+Dist. OK potentially2 yes
App-SpaM 2021 [22] Distances good yes ?

1 Methodological improvements are required.
2 Using alignment-free methods to calculate distances, e.g., App-SpaM.
3 Only for short queries placed on phylogenies of short phylogenetic markers.

1.4 Evaluating phylogenetic placement

In this work, we will need to evaluate the accuracy of the phylogenetic placement
made by different methods. There are two ways to estimate accuracy: absolute
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measures and relative measures. Absolute placement accuracy is needed when we
need to understand how accurately a method places the query. Relative accuracy is
needed when we need to compare two different methods placing the same query. In
this section, I will briefly introduce the most used measures.

1.4.1 Absolute placement accuracy

Absolute accuracy can be measured in node distance (ND, also known as topological
error), which is calculated as follows. First, consider a reference tree, a query, and
a branch 𝑦, which is the placement of the query on the tree. Then, suppose that we
know the true placement, i.e., the branch 𝑦′, which is the phylogenetic origin of the
query. Then, node distance is measured as the number of tree nodes on the path from
𝑦 to 𝑦′.

This method has certain disadvantages. The obvious one is that we need to know
the true placements to measure accuracy; we will discuss workarounds to this in
Section 1.4.3. Another disadvantage is that it does not account for branch lengths, so
it may be poorly adapted to trees of organisms that evolve at different rates. However,
it is the most popular way to measure accuracy of phylogenetic placement methods
(used in [146, 20, 29, 130, 22]).

An alternative could be the total length of the branches between the placement
node and the true placement node on 𝑦′; I use node distance in my work as it is the
standard measure of accuracy.

1.4.2 Relative placement accuracy

The relative accuracy of placement can be measured using the Kantorovich-Rubinstein
metric (KR-metric). The result of phylogenetic placement can be thought of as a dis-
tribution on the reference tree. Placement software reports likelihoods of placement
for different branches, and normalizing those gives us the “placement distribution”
(also known as Likelihood Weight Ratio). Thus, placements made by two different
methods can be compared as two distributions on the tree, e.g., with the KR-metric2.
In short, this is a measure of the “work” needed to transform one placement distribu-
tion into the other one.

The KR-metric allows us to determine how different the two placements are, but
it does not determine which one is better. For this reason, I used another measure of
relative accuracy in my work, differences in likelihood-based accuracy. I implemented a
module for measuring it in PEWO [129] for this study. The measure will be described
in Section 3.7.1.

1.4.3 Pruning-based accuracy evaluation

Pruning-based evaluation can be used to measure absolute placement accuracy if no
true placements of queries are known. The method is as follows.

2Readers familiar with weighted UniFrac should probably experience a sense of recognition right
now. The rest will find [60, 139] an informative read.
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1. Given a reference tree 𝑇 , split it into two subtrees, 𝑇𝑞 and 𝑇𝑟, by cutting it
along a branch 𝑦′.

2. Reoptimize branch lengths of 𝑇𝑟.

3. Use reference sequences corresponding to the leaves of 𝑇𝑞 to generate a set of
queries 𝑄.

4. Place those queries to 𝑇𝑟.

5. The node of 𝑦′ that belongs to 𝑇𝑟 points to the true placements for queries from
𝑇𝑞. Use it to calculate the measure of interest.

If 𝑇𝑞 has only one leaf, it is known as the leave-one-out method, otherwise, it is
called leave-many-out. This approach has been applied in several phylogenetic place-
ment studies [146, 15, 130, 12, 11, 22]. PEWO evaluates the accuracy of phylogenetic
placement tools by repeating this procedure many times for random branches of the
tree. We call one 𝑇𝑞 a pruning ; mean accuracy per pruning is the main accuracy
measure used in this work.

The disadvantage of this approach is that it is computationally expensive. For
alignment-based methods, it requires aligning generated queries within sequences cor-
responding to the leaves of 𝑇𝑟.

1.5 Phylo-𝑘-mers
Here we come to the central subject of this thesis, namely, phylo-𝑘-mers. Understand-
ing the notion of phylo-𝑘-mers is essential for further reading; without understanding
it, nothing discussed after would make any sense. I will first give an intuition of what
are phylo-𝑘-mers. A detailed description of how to obtain them will follow after (this
description is exactly how RAPPAS computes phylo-𝑘-mers). Finally, I will describe
how RAPPAS uses phylo-𝑘-mers for phylogenetic placement.

1.5.1 Intuition

Phylo-𝑘-mers are phylogenetically informed 𝑘-mers. Thus, phylo-𝑘-mers can only be
defined in the presence of a fixed reference tree. We also require a reference sequence
alignment for reasons that will become clear later. Phylo-𝑘-mers can be understood
as 𝑘-mers accompanied by probabilistic information about the reference phylogeny
and the reference alignment.

A phylo-𝑘-mer consists of a 𝑘-mer 𝑤 and a score 𝑆𝑦(𝑤) of this 𝑘-mer for a particular
branch 𝑦 of the reference tree. Thus, we can define a phylo-𝑘-mer as a triple(︀

𝑤, 𝑦, 𝑆𝑦(𝑤)
)︀
. (1.1)

The score 𝑆𝑦(𝑤) approximates the probability that the 𝑘-mer 𝑤 is present in a
sequence that diverged from the reference tree somewhere along branch 𝑦. In practice,
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observing the 𝑘-mer within a sequence provides evidence about the phylogenetic origin
of that sequence; the score quantifies how likely 𝑦 is to be the phylogenetic origin of
that 𝑘-mer.

1.5.2 Computation of phylo-𝑘-mers

The input data for the computation of phylo-𝑘-mers are a reference alignment 𝐴0, an
evolutionary substitution model, a rooted reference phylogenetic tree 𝑇0, the length
of 𝑘-mers 𝑘, and a score threshold value 𝜀. The reference alignment consists of aligned
sequences over the alphabet Σ of size 𝜎 (e.g., Σ = {𝐴,𝐶,𝐺, 𝑇} for DNA). The leaves
of 𝑇0 have to be in one-to-one correspondence with the sequences of 𝐴0, The lengths
of branches have to be previously fitted based on 𝐴0 and the substitution model.
Computation of phylo-𝑘-mers requires the following steps: alignment filtering, ghost
node injection, ancestral sequence reconstruction for ghost nodes, and finally the
actual computation of phylo-𝑘-mer scores. The following paragraphs describe each
step of this process in more detail.

Reference alignment filtering

First, we remove those columns of 𝐴0 that contain more than a certain percentage
of gaps “–” (in RAPPAS, the default percentage is 0.99). The rationale for this step
is that ancestral reconstruction techniques — used by one of the later steps — do
not account for gaps. Furthermore, columns with high percentage of gaps have been
observed to be deleterious for computation of phylo-𝑘-mers. We call the result of this
step the reduced reference alignment, and refer to it as 𝐴.

Ghost node injection

Subsequently, we extend the reference phylogenetic tree by introducing new nodes
and branches. For every branch in 𝑇0 we inject a certain number of ghost nodes
associated with this branch. Here we shortly describe the way it is suggested by
RAPPAS, although one can vary the number of ghost nodes per branch, as well as
the way they are introduced to the tree.

For every branch 𝑦 in 𝑇0, two ghost nodes 𝑢𝑦 and 𝑣𝑦 are introduced: a node 𝑢𝑦 at
the midpoint of 𝑦 and a new leaf 𝑣𝑦. A new branch (𝑢𝑦, 𝑣𝑦) is also added to the tree.
The length of this new branch is set to the average length among all paths from 𝑢𝑦

to the leaves of 𝑇0 that descend from 𝑢𝑦. The modified tree 𝑇 thus obtained is called
an extended tree.

From now on, we are interested in the set of 𝐺𝑦 of ghost nodes (𝐺𝑦 = {𝑢𝑦, 𝑣𝑦} in
this case), associated to the branch 𝑦. Variations of the ghost node injection described
above could imply adding more ghost nodes, placed over the new branch (𝑢𝑦, 𝑣𝑦) in
different ways. For those variations, we assume that 𝐺𝑦 consists of more than two
elements.

35



C T T T T C

C T G T T G

C T G T T C

C T T T C A

C T T T A T

C T T T G C

C T T T T T

C T T T

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. A T

1
A
C
G
T

m

0

0

1

0

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.1

0

0

0

2
.

.

.

.

j

.4

.1

.4

.1 .

.

.

.
…

Figure 1-9 – Illustration of ghost node injection and ancestral reconstruction for DNA
sequences. A ghost branch and two ghost nodes (yellow) are added to the reference
(black) tree. For every ghost node, a probabilistic profile of ancestral sequences
of the node is computed (represented by the matrix in gray for one of the ghost
nodes). Column 𝑗 of the matrix gives probabilities of observing different nucleotides
at position 𝑗 in such sequences.

Ancestral sequence reconstruction

During this step, we aim to model probabilities of observing different states (i.e.,
nucleotides for DNA) at the ghost nodes of the extended reference tree. Given an
evolutionary model describing the process of nucleotide/amino acid substitutions, we
estimate probabilities 𝑝𝑢𝑗 (𝑎):

𝑝𝑢𝑗 (𝑎) = P[observing state 𝑎 ∈ Σ at site 𝑗 of the sequence at node 𝑢 | 𝐴] (1.2)

The probabilities from 1.2 depend on the alignment, the tree, and the evolu-
tionary substitution model assumed. They can be estimated by applying standard
ancestral reconstruction techniques. Implementations of those techniques are pro-
vided by PhyML [80], PAML [232], and RAxML-ng [115]. The result of this step
is a 𝜎 ×𝑚 matrix 𝑃 𝑢 for every ghost node 𝑢, where 𝑚 is the length of 𝐴, and values
of 𝑃 𝑢 are 𝑃 𝑢

𝑖,𝑗 = 𝑝𝑢𝑗 (𝑎𝑖), 𝑎𝑖 ∈ Σ. Figure 1-9 illustrates the ghost node injection and
ancestral reconstruction steps.

Score computation

For both ancestral reconstruction and computation of phylo-𝑘-mer scores, we as-
sume independent evolution at different sites of the alignment, which is standard in
phylogenetics. Having estimated probabilities of different states at every site of the
alignment for every ghost node, we can calculate scores of phylo-𝑘-mers as follows.
Let 𝑤 = 𝑤1𝑤2 . . . 𝑤𝑘 be a 𝑘-mer over Σ. Then the score 𝑃 𝑢

𝑗 (𝑤) of 𝑤 at position 𝑗 for
the ghost node 𝑢 can be simply found by taking the product of scores of corresponding
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𝑘-mer states at consecutive sites, starting from 𝑗:

𝑃 𝑢
𝑗 (𝑤) = 𝑝𝑢𝑗 (𝑤1) · 𝑝𝑢𝑗+1(𝑤2) · . . . · 𝑝𝑢𝑗+𝑘−1(𝑤𝑘) (1.3)

𝑃 𝑢
𝑗 (𝑤) is the probability of observing the 𝑘-mer 𝑤 at position 𝑗 for the ghost node

𝑢 (should not be confused with 𝑝𝑢𝑗 (𝑎), which is the probability of observing the state
𝑎 at position 𝑗 for the same ghost node). Those are used to compute the phylo-𝑘-mer
score 𝑆𝑢(𝑤) of 𝑤 that does not depend on the position, but estimates the probability
of observing 𝑤 at any position for 𝑢. RAPPAS suggests taking the maximum score
over all positions for a 𝑘-mer and a predetermined threshold value 𝜀:

𝑆𝑢(𝑤) = max
{︁

𝑚−𝑘+1
max
𝑗=1

𝑃 𝑢
𝑗 (𝑤), 𝜀

}︁
(1.4)

The threshold value plays an essential role in Formula 1.4. First, the naive ap-
proach involves calculating all phylo-𝑘-mers for all ghost nodes of the tree. The
number of obtained phylo-𝑘-mers grows exponentially with 𝑘. By introducing the
threshold value, we eliminate the need to store many of them: we just need to store
the phylo-𝑘-mers with scores higher than 𝜀, assuming the score of 𝜀 for the rest. This
allows decreasing the final number of phylo-𝑘-mers significantly. Second, the thresh-
old guarantees that no 𝑘-mer is excluded from consideration, even those for which
the score is zero.

The threshold value is assumed to be very small (in RAPPAS, the value for DNA
is (𝜔/4)𝑘, where 𝜔 is a parameter of the method with the default value of 1.5). By
changing this parameter, we can control how many phylo-𝑘-mers with low scores we
want to estimate precisely and how much memory we will need to store the result.

Having calculated scores of 𝑤 for all ghost nodes 𝑢 ∈ 𝐺𝑦 associated to the branch
𝑦, we can finally compute the score of 𝑤 for this branch. This is just the maximum
score across the ghost nodes associated to the branch:

𝑆𝑦(𝑤) = max
𝑢∈𝐺𝑦

𝑆𝑢(𝑤) (1.5)

Phylo-𝑘-mer scores 𝑆𝑦(𝑤) should be calculated for every branch 𝑦 in 𝑇0 and every
𝑘-mer 𝑤 ∈ Σ𝑘. Since score values can reach extremely small numbers, log-values of
𝑆𝑦(𝑤) can be used instead. Calculated log-score values are then stored in an associa-
tive array for later use. The keys in the associative array are binary representations
of 𝑘-mers (will be discussed later in Section 2.1.3), and the values are lists of pairs
{(𝑦𝑖1 , log𝑆𝑦𝑖1

(𝑤)), (𝑦𝑖2 , log𝑆𝑦𝑖2
(𝑤)), . . .}. Thus, in practice, we do not store phylo-𝑘-

mers as triplets to minimize memory consumption. The phylo-𝑘-mers with score less
or equal to the threshold score are also not stored. Note that the latter means that
lists associated with different 𝑘-mers may vary in length (and some 𝑘-mers may not
be present in the associative array at all).

RAPPAS uses hash maps to store phylo-𝑘-mers. The hash map containing phylo-
𝑘-mers for every branch of the reference tree is called a phylo-𝑘-mer database 3. Once

3My software-engineering-self finds this term rather unfortunate. Collections of phylo-𝑘-mers
have nothing to do with neither relational nor non-relational databases. Calling it a phylo-𝑘-mer

37



constructed, a database of phylo-𝑘-mers is saved on disk for later use.

1.6 RAPPAS: alignment-free phylogenetic placement
using phylo-𝑘-mers

RAPPAS preprocesses the reference dataset as described above, which we call the
database computation stage or reference dataset preprocessing. This takes place before
any queries are even observed. Afterward, the stage of query placement can take place
many times, reusing the same phylo-𝑘-mer database. This stage is as follows. Its input
is a phylo-𝑘-mer database and a set of query sequences 𝑄. Every query sequence 𝑞 ∈ 𝑄
is placed independently; for a query sequence 𝑞, each branch 𝑦 receives the placement
score: ∑︁

𝑗

log𝑆𝑦(𝑤𝑗) (1.6)

Here 𝑤1, 𝑤2 . . . 𝑤|𝑞|−𝑘+1 is the list of 𝑘-mers composing the query. To retrieve values
𝑆𝑦(𝑤𝑗), RAPPAS loads the database into memory and stores all phylo-𝑘-mers in an
associative array. Then, every 𝑘-mer 𝑤 of the query is searched in the associative
array. If 𝑘-mer 𝑤 is found, the list of pairs {(𝑦, log𝑆𝑦(𝑤))} is retrieved. For the
branches that are not present in the list, the logarithm of 𝜀 is assumed. If the 𝑘-mer is
not found, the logarithm of 𝜀 is also assumed for all branches. This process is repeated
for every 𝑘-mer in the query sequence, and every branch accumulates retrieved log-
score values. Finally, the branches are ranked by their total accumulated log-score in
Equation 1.6, which is the result of the phylogenetic placement. The highest-scoring
branches are interpreted as the most likely placements for query 𝑞.

The associative array used to store phylo-𝑘-mers provides a constant-time lookup.
Then, the placement algorithm takes 𝒪(|𝑞| · ℓ̄(𝑞)), where ℓ̄(𝑞) is the average length of
the list associated to a 𝑘-mer in 𝑞. The placement algorithm and its complexity are
discussed in detail in the supplementary materials of [130].

1.7 Motivation and thesis structure

The reference dataset preprocessing technique allows RAPPAS to index the phy-
logeny with phylo-𝑘-mers. Since the content of phylo-𝑘-mer databases does not de-
pend on queries, it solves the scalability problem of phylogenetic placement in terms of
the number of query sequences. However, the preprocessing itself may be challenging
since it can take considerable time and memory to preprocess the reference dataset.
For example, phylo-𝑘-mer databases can reach gigabytes in size even for small and
medium-sized trees (under 2000 taxa for the default value of 𝑘 = 10) based on short
phylogenetic markers such as the 16S rRNA gene. This limits the application of the
method for both larger trees and trees based on longer reference sequences.

index would be much better; however, I use the established terminology.
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Thus arises the question of how to effectively index phylogenies with phylo-𝑘-mers,
which is the central question of the thesis. First, I address this question from the algo-
rithmic point of view in Chapter 2 (how to compute phylo-𝑘-mers as fast as possible?),
aiming at reducing the computation time of the phylo-𝑘-mer database creation. Sec-
ond, I address the question from the information-theoretic point of view in Chapter 3
(which phylo-𝑘-mers are informative and which are not? Can we exclude some phylo-
𝑘-mers from consideration?), aiming at reducing sizes of phylo-𝑘-mer databases, which
reduces RAM consumption during phylogenetic placement. Third, in Chapter 4, I
present XPAS and RAPPAS2, which are effective reimplementations of RAPPAS.
They outperform RAPPAS in both running time and memory consumption. Finally,
Chapter 5 summarizes the results of all chapters and discusses future work directions
on methods for phylo-𝑘-mers.

1.8 Notation

1.8.1 Notation for strings

Let Σ be an ordered finite alphabet of cardinality 𝜎: 𝑎1 < 𝑎2 < · · · < 𝑎𝜎, 𝑎𝑖 ∈ Σ.
I consider strings (or sequences) over alphabet Σ. Let 𝑘 be a positive integer. Let
Σ𝑘 denote the set of all possible strings of length 𝑘 over Σ. Given a string 𝑠 of 𝑘
characters, the length of 𝑠 is denoted by |𝑠| = 𝑘. For any integer 1 ≤ 𝑖 ≤ 𝑘, 𝑠𝑖 denotes
𝑖𝑡ℎ character of 𝑠, and 𝑠 is written down as 𝑠1𝑠2 . . . 𝑠𝑘.

Given the alphabet Σ, the set of possible strings over Σ is denoted by Σ*. Given
a set of strings 𝑋, 𝑋* denotes the Kleene closure over 𝑋.

1.8.2 Notation for matrices

I use two notations for matrix elements that are used interchangeably. I consider
matrices whose elements are indexed by integers in a standard way: rows are indexed
with 1 ≤ 𝑖 ≤ 𝜎, and columns are indexed as the positions of a multiple alignment,
1 ≤ 𝑗 ≤ 𝑚. Besides that, rows are indexed by symbols of the alphabet Σ according
to the order of Σ. A column stores the probability of occurrences of each possible
symbol (a state in phylogenetic terms) at that position. Hence, we term such matrices
probability matrices since the sum of the values of a column sum to one.

For a 𝜎×𝑚 probability matrix 𝑃 , 𝑝𝑗(𝑎) denotes the element on line indexed by 𝑎,
𝑎 ∈ Σ, and column 𝑗 of 𝑃 , 1 ≤ 𝑗 ≤ 𝑚. Equally, the same element is denoted by 𝑃𝑖,𝑗,
where 𝑖 is the rank of 𝑎 in the order Σ. For two integers 𝑖, 𝑗 such that 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑚,
𝑃 [𝑖 : 𝑗] denotes the matrix 𝑃 restricted to columns from 𝑖 to 𝑗 included.
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Chapter 2

Algorithms for computing
phylo-𝑘-mers

This chapter discusses the central algorithmic problem of RAPPAS’ reference dataset
preprocessing: phylo-𝑘-mer computation. We aim at answering two questions: How
to compute phylo-𝑘-mers effectively? What are different algorithms of phylo-𝑘-mer
computation, and how performant are they? Before addressing the problem in its
classic formulation — that is, compute those phylo-𝑘-mer scores that surpass a given
threshold — I first study a simpler problem of calculating all phylo-𝑘-mer scores.
Thus, we will discuss two statements of the problem of phylo-𝑘-mer computation and
algorithms for solving both. Besides existing solutions, I describe novel ones and give
an experimental comparison of their performance.

Given phylo-𝑘-mer scores of a 𝑘-mer for different ghost nodes, phylo-𝑘-mer scores
for branches are easily obtained as described in the previous chapter. Therefore,
here we focus on the problem of calculating phylo-𝑘-mers for one ghost node 𝑢 given
a matrix 𝑃 𝑢, that is, calculating 𝑆𝑢(𝑤) not 𝑆𝑦(𝑤). I do not address the question
of how exactly to calculate the 𝑃 𝑢 matrix. This question is beyond the scope of
this chapter; instead, I only discuss how to compute phylo-𝑘-mer scores when 𝑃 𝑢 is
given. Computing phylo-𝑘-mer scores of all 𝑘-mers for all ghost nodes is the most
computationally heavy part of the algorithm described in Section 1.5.2. In the worst-
case it implies calculating scores for all possible 𝑘-mers 𝑤 ∈ Σ𝑘.

For this chapter only, I use a simplified notation for brevity: 𝑃 𝑢 becomes 𝑃 , and
𝑝𝑢𝑗 (𝑎), 𝑃 𝑢

𝑖,𝑗, 𝑃 𝑢
𝑗 (𝑤), 𝑆𝑢(𝑤) become 𝑝𝑗(𝑎), 𝑃𝑖,𝑗, 𝑃𝑗(𝑤), 𝑆(𝑤), respectively. It implies

that algorithms described here are applied for all ghost nodes 𝑢 of the extended tree.

2.1 Computational model

2.1.1 Word-RAM assumptions

Later in this chapter, I will give an analysis of algorithms’ performance. All algorithms
of this chapter are analyzed under the assumptions of the word-RAM model [85]. This
model assumes operating on words of size 𝑏 and performing arithmetic and bitwise
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operations in constant time. We also assume that any 𝑘-mer can be represented with
a constant number of machine words, which yields 𝑏 = Θ(log 𝜎𝑘), where 𝜎 is the size
of the alphabet. Those are standard assumptions made in the analysis of algorithms;
however, I deliberately draw the reader’s attention to those assumptions. They allow
us to effectively operate on 𝑘-mers represented as unsigned integer numbers, leading
to improved theoretical bounds of algorithms described below.

2.1.2 Assumptions about the alphabet

Although the algorithms described in this chapter can be applied to compute phylo-𝑘-
mers over an arbitrary alphabet, in practice, phylo-𝑘-mers are applied only to analyze
DNA or protein sequences. Quite obviously, the alphabet does not change within one
phylo-𝑘-mer-based application (e.g., the phylogenetic placement of DNA sequences).
Therefore, I assume that 𝜎 is constant.

2.1.3 Representation of 𝑘-mers

Using word-RAM assumptions allows us to gain certain benefits from representing
strings as integer numbers. It is standard practice in bioinformatics, but I describe it
here for the sake of completeness.

Definition 2.1.1 (Alphabet symbol codes). Let Σ be a totally ordered set of size 𝜎,
𝑎1 < 𝑎2 < · · · < 𝑎𝜎, 𝑎𝑖 ∈ Σ. Then 𝑜𝑟𝑑 : Σ→ [0, 1, . . . , 𝜎 − 1] defines codes of symbols
of Σ as follows:

ord(𝑎𝑖) = 𝑖− 1

We will be interested in both ord(𝑎𝑖) values and their binary representations of
fixed length. Let 𝑐 be the smallest number of bits allowing representation of all
symbols in Σ, that is 2𝑐−1 < 𝜎 ≤ 2𝑐. Then we use 𝑐-long binary representations of
symbol codes.

Example 2.1.1. For the alphabet Σ = {𝐴,𝐶,𝐺, 𝑇}, we can encode every symbol of
Σ with two bits as in Table 2.1.

index 1-mer code
0 A 00
1 C 01
2 G 10
3 T 11

Table 2.1 – 1-mer codes for DNA.

To express 𝑘-mers over Σ in codes, we concatenate binary representations of all
𝑘-mer symbols. The advantage of this encoding is that one can calculate 𝑘-mer codes
from codes of 𝑘-mer symbols straightforwardly.
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Definition 2.1.2 (𝑘-mer codes). For a totally ordered set Σ and a symbol code
function 𝑜𝑟𝑑, defined as in Def. 2.1.1, we can extend the definition of 𝑜𝑟𝑑 to every
𝑘-mer 𝑤 ∈ Σ𝑘:

ord(𝑤) :=
𝑘∑︁

𝑖=1

2𝑐(𝑘−𝑖) · ord(𝑤𝑖) (2.1)

Example 2.1.2. For the same alphabet and the same ordering function as in Exam-
ple 2.1.1, Table 2.2 gives codes of all 2-mers.

index 2-mer code
0 AA 0000
1 AC 0001
2 AG 0010
3 AT 0011
4 CA 0100
5 CC 0101
6 CG 0110
7 CT 0111

index 2-mer code
8 GA 1000
9 GC 1001
10 GG 1010
11 GT 1011
12 TA 1100
13 TC 1101
14 TG 1110
15 TT 1111

Table 2.2 – 2-mer codes for DNA.

Now that we have established this correspondence, 𝑘-mers and their codes are
interchangeable. Moreover, string concatenation can also be expressed in terms of
codes: for two strings 𝑝 and 𝑠 of sizes 𝑙 and 𝑟 the code of 𝑝 · 𝑠 is calculated in the
following manner:

ord(𝑝 · 𝑠) := ord(𝑝) · 2𝑐𝑟 + ord(𝑠) (2.2)

The following sections introduce algorithms for computing phylo-𝑘-mers. I will
use assumptions of the word-RAM model, paired with this representation of 𝑘-mers,
in the analyses of those algorithms.

2.2 Exhaustive Phylo-𝑘-mer Computation
This section focuses on exhaustive, or exact phylo-𝑘-mer computation: given a proba-
bility matrix 𝑃 for a ghost node, how to calculate scores for all possible phylo-𝑘-mers
of this node? We should clarify at once that it is impractical to calculate all phylo-
𝑘-mer scores. There are two reasons for this. First, the running time of an algorithm
solving this problem is Ω(𝜎𝑘). Second, most of this time is spent calculating scores of
𝑘-mers that are highly improbable; that is, most of them are very unlikely to be used
in phylo-𝑘-mer-based applications. Instead, in practice, we are interested in solving a
similar problem, the problem of threshold-based phylo-𝑘-mer computation (TPKC),
covered in later sections. However, we study the exhaustive formulation first: it is
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Figure 2-1 – An example of input matrix 𝑃 for the DNA alphabet {𝐴,𝐶,𝐺, 𝑇}, and
𝑘 = 4. In the highlighted window of size 𝑘, the arrows traverse elements corresponding
to the 𝑘-mers 𝐴𝐴𝐶𝐶 and 𝑇𝐺𝑇𝑇 . The product of the traversed elements gives the
scores of corresponding 𝑘-mers for position 𝑗.

simpler but still has much in common with TPKC. Solving it will help us address the
real problem of interest later on.

Problem 1 (Exhaustive Phylo-𝑘-mer Computation (EPKC)).
Input: An integer 𝑘 > 1; a 𝜎 ×𝑚 probability matrix 𝑃 .
Output: An array 𝑄 containing the scores of 𝑘-mers. For every 𝑘-mer 𝑤 ∈ Σ𝑘,

𝑄[𝑜𝑟𝑑(𝑤)] stores 𝑆(𝑤) with

𝑆(𝑤) :=
𝑚−𝑘+1
max
𝑗=1

𝑃𝑗(𝑤)

where 𝑃𝑗(𝑤) is the score of 𝑤 at position 𝑗:

𝑃𝑗(𝑤) :=
𝑘∏︁

𝑙=1

𝑝𝑗+𝑙−1(𝑤𝑙)

Note that the definitions of 𝑆(𝑤) and 𝑃𝑗(𝑤) above coincide with those given in
Chapter 1 — see Equations 1.3 and 1.4 — for the threshold 𝜀 = 0.

2.2.1 Naive algorithm

A straightforward solution to Problem 1 is the following. Let us consider a single
window 𝑊 of 𝑘 consecutive columns in 𝑃 , starting from position 𝑗. For this window,
all values 𝑃𝑗(𝑤) can be calculated in 𝒪(𝑘 · 𝜎𝑘): for every 𝑤 ∈ Σ𝑘, we take a product
of 𝑘 values. Figure 2-1 gives an illustration of this process for one window. To
obtain 𝑆(𝑤), one has to perform this process for all windows 𝑊 of 𝑃 , preserving the
maximum score of every 𝑘-mer among different windows.

There are 𝑚 − 𝑘 + 1 windows, which yields time complexity of 𝒪(𝑚𝑘 · 𝜎𝑘). The
memory complexity of the algorithm is 𝒪(𝜎𝑘), which is given by the size of the output.
Note that here we rely on the assumptions of the word-RAM model, described in the
previous section: we assume that one value of 𝑆(𝑤) takes 𝒪(1) memory to store.
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Since the memory complexity is theoretically optimal, we are interested in improving
time complexity; thus, all improvements over the naive algorithm lie in improving
time complexity.

2.2.2 Window-wise and 𝑘-mer-wise approaches

Notice that I suggested approaching the problem, iterating window-by-window of
size 𝑘. Another naive algorithm could iterate 𝑘-mer-by-𝑘-mer, calculating scores
of one 𝑘-mer among all positions before going for the next 𝑘-mer. We call those
approaches window-wise and 𝑘-mer-wise, respectively; notice that both yield the same
theoretical complexities. A few other algorithms described below utilize the window-
wise approach as well. However, they differ in computing 𝑃𝑗(𝑤) values for a fixed
window. For those algorithms, Algorithm 1 describes the nature of the process in
general.

Algorithm 1: Window-wise EPKC
Input : Alphabet Σ, 𝑘, a posterior probability matrix 𝑃
Output: Array 𝑆 of phylo-𝑘-mer scores

1 Function WindowWiseEPKC 𝑃, 𝑘,Σ
2 𝑆 ← array of size 𝜎𝑘

3 foreach window W of size 𝑘 of 𝑃 do
4 𝑆𝑊 ← compute phylo-𝑘-mers for the window 𝑊
5 for i ← 0..|𝑆𝑊 | − 1 do
6 𝑆[𝑖]← max(𝑆[𝑖], 𝑆𝑊 [𝑖])

7 return 𝑆

2.2.3 Common Prefix Algorithm

We can improve the naive algorithm as follows. Let us again consider one window 𝑊 of
𝑘 consecutive columns of 𝑃 in the same manner as above. For a fixed window, we can
save on calculating scores of phylo-𝑘-mers with common prefixes. Having calculated
the score of a prefix 𝑤1𝑤2 . . . 𝑤𝑗, we reuse its score to calculate the scores of all 𝑘-mers
that start with 𝑤1𝑤2 . . . 𝑤𝑗. We calculate scores for 𝑘-mers in lexicographic order. See
Algorithm 2 for a detailed listing.

Under assumptions of the word-RAM model, line 7 takes 𝒪(1) time. Let ℎ = 𝑘−𝑗
be the number of columns of 𝑊 that left to process, and 𝑇 (ℎ) be the running time of
CommonPrefix called with 𝑗 = 𝑘−ℎ. Then line 12 takes 𝑇 (ℎ−1) time, and overall
time complexity of CommonPrefix can be expressed by the following recurrence:

𝑇 (ℎ) =

{︃
Θ(1) if ℎ = 0

𝜎 · 𝑇 (ℎ− 1) if ℎ ≥ 1
(2.3)

Theorem 2.2.1. The recurrence 2.3 implies 𝑇 (ℎ) = Θ(𝜎ℎ).
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Algorithm 2: Common Prefix Algorithm (CP) for EPKC
Input : An integer 𝑘 > 0 and a 𝜎 × 𝑘 probability matrix 𝑊
Output: A 𝜎𝑘 long array 𝑆 containing the scores of all phylo-𝑘-mers

1 Function ComputePhyloKmers(𝑊 ):
2 𝑆 ← 0-based array of size 𝜎𝑘

3 return CommonPrefix(𝑊,𝑆, 0, 0, 0, 1)

4 Function CommonPrefix(𝑊 , 𝑆, 𝑖, 𝑗, 𝑐𝑜𝑑𝑒, 𝑠𝑐𝑜𝑟𝑒):
5 if 𝑖, 𝑗 > 0 then
6 𝑠𝑐𝑜𝑟𝑒← 𝑠𝑐𝑜𝑟𝑒 ·𝑊𝑖,𝑗

7 𝑐𝑜𝑑𝑒← 2⌈log2 𝜎⌉ · 𝑐𝑜𝑑𝑒 + 𝑖− 1

8 if 𝑗 = 𝑘 then
9 𝑆[𝑐𝑜𝑑𝑒]← 𝑠𝑐𝑜𝑟𝑒

10 else
11 for 𝑖′ ← 1 . . . 𝜎 do
12 𝑆 ← CommonPrefix(𝑊,𝑆, 𝑖′, 𝑗 + 1, 𝑐𝑜𝑑𝑒, 𝑠𝑐𝑜𝑟𝑒)

13 return 𝑆

Proof.
Base case: 𝑇 (0) = Θ(1) = 𝜎0.
Induction step: Let 𝑇 (ℎ− 1) = Θ(𝜎ℎ−1). Then 𝑇 (ℎ) = 𝜎 · 𝑇 (ℎ− 1) = Θ(𝜎ℎ).

Thus, CommonPrefix achieves asymptotically optimal running time, yielding
Θ(𝜎𝑘) time to process a window of 𝑘 consecutive columns. As for memory consump-
tion, it takes Θ(𝑘) for the call stack and Θ(𝜎𝑘) to store the output. The latter yields
the memory complexity of Θ(𝜎𝑘).

2.2.4 Divide-and-Conquer

While CommonPrefix is optimal, we are interested in algorithms demonstrating
better running time in practice. Here I describe another algorithm for computing
phylo-𝑘-mers in a window of size 𝑘 that outperforms CommonPrefix. This algo-
rithm applies the classic divide-and-conquer idea to calculate scores for prefixes and
suffixes of phylo-𝑘-mers. It aims to split each window into two windows of equal or
almost equal size 𝑙 and 𝑟. For 𝑙-mers and 𝑟-mers — prefixes and suffixes — scores are
calculated recursively in corresponding subwindows. To calculate scores of 𝑘-mers,
we iterate over all possible prefix-suffix combinations and multiply their scores (see
Algorithm 3).
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Algorithm 3: Divide-and-Conquer (DC) for EPKC
Input : A 𝜎 × 𝑘 probability matrix 𝑊
Output: A 𝜎𝑘 long array 𝑆 containing the scores of all phylo-𝑘-mers

1 Function ComputePhyloKmers(𝑊 ):
2 return DivideAndConquer(𝑊 )

3 Function DivideAndConquer(𝑊 ):
4 ℎ← number of columns in 𝑊
5 if ℎ = 1 then
6 return 𝑊

7 else
8 𝑙← ⌊ℎ/2⌋; 𝑟 ← ⌈ℎ/2⌉
9 𝐿← DivideAndConquer(𝑊 [1 : 𝑙])

10 𝑅← DivideAndConquer(𝑊 [𝑟 : ℎ])
11 𝑆 ← array of size 𝜎ℎ of zeros
12 for 𝑖← 0 . . . 𝜎𝑙 − 1 do
13 for 𝑗 ← 0 . . . 𝜎𝑟 − 1 do
14 𝑐𝑜𝑑𝑒← 𝑖 · 2⌈log2 𝜎⌉𝑟 + 𝑗;
15 𝑆[𝑐𝑜𝑑𝑒]← 𝐿[𝑖] ·𝑅[𝑗];

16 return 𝑆

Complexity analysis

Let 𝑇 (ℎ) represent the running time of DivideAndConquer for the window of size
𝑘. Here I break down the running time complexity of this procedure line by line.

For the case ℎ = 1 we return the single column of the window as the answer
(lines 5—6), which takes Θ(𝜎) = Θ(1) time. For the other case: line 8 takes constant
time by the word-RAM assumptions. Recursive calls on lines 9—10 take 2 · 𝑇 (ℎ/2),
and line 11 takes Θ(𝜎ℎ) time.

Let us have precomputed powers of two up to 2𝑘. Then lines 14—15 take constant
time under assumptions of word-RAM; this gives us Θ(𝜎𝑙 · 𝜎𝑟) = Θ(𝜎ℎ) for the block
12—15. Therefore, the overall time complexity of DivideAndConquer is given by
the following recurrence:

𝑇 (ℎ) =

{︃
Θ(1) if ℎ = 1

2 · 𝑇 (ℎ/2) + 𝜎ℎ otherwise
(2.4)

Theorem 2.2.2. The recurrence 2.4 implies 𝑇 (ℎ) = Θ(𝜎ℎ).

Proof. Let us use the master theorem [38] to solve the recurrence: 𝑎 = 2, 𝑏 = 2, 𝑓(ℎ) =
𝜎ℎ. It corresponds to the case of the theorem, i.e., the work needed to recombine the
results of the recursive calls dominates the work needed for subproblems.
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ℎlog𝑏 𝑎+𝜖 = ℎ2 for 𝜖 = 1

≤ 2ℎ for ℎ ≥ 4

≤ 𝜎ℎ for 𝜎 ≥ 2

= 𝑓(ℎ)

Therefore, 𝑓(ℎ) = Ω(ℎlog𝑏 𝑎+𝜖). Let us now show that the regularity condition is
satisfied: 𝑎𝑓(ℎ/𝑏) ≤ 𝑐𝑓(ℎ) for 𝑐 < 1 and some ℎ > ℎ0.

𝑎𝑓(ℎ/𝑏) = 2 · 𝜎ℎ/2

≤ 𝜎1+ℎ/2 for 𝜎 ≥ 2

≤ 𝜎ℎ−1 for ℎ > ℎ0 = 3

= 1/𝜎 · 𝜎ℎ

= 𝑐𝑓(ℎ) for 𝑐 = 1/𝜎, 𝑐 < 1

𝑇 (ℎ) = Θ(𝜎ℎ) follows immediately.

Thus, the algorithm’s running time is Θ(𝜎𝑘), making this algorithm an optimal
solution for EPKC. It takes Θ(𝜎ℎ/2) in memory to store prefixes and suffixes (lines 9—
10), apart from Θ(𝜎ℎ) taken by the result. This gives us the same recurrence for the
memory consumption, which yields the memory complexity of Θ(𝜎𝑘).

2.3 Threshold-based Phylo-𝑘-mer Computation
This brings us to the central question of this chapter: given a probability matrix
𝑃 for a ghost node, how to compute phylo-𝑘-mers, whose scores are greater than a
particular threshold value? Of course, we could first solve EPKC and then choose
from the answer phylo-𝑘-mers with suitable scores. This is indeed suboptimal since we
are interested in computing only the phylo-𝑘-mers whose scores surpass the threshold.
This sections overviews algorithms for solving this problem.

2.3.1 Problem statement

In this problem reformulation, we approximate low-score phylo-𝑘-mers with a single
score threshold value 𝜀. The motivation for such an approximation is as follows.
The number of 𝑘-mers grows exponentially with the number 𝑘; in practice, however,
many of these 𝑘-mers have scores close to zero. By approximating their scores by
𝜀, we avoid storing their actual scores, almost without losing precision. That allows
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us to store substantially fewer phylo-𝑘-mers, partly overcoming the combinatorial
explosion problem in the number of phylo-𝑘-mers.

To formalize this, let 𝒵𝜀 be the set of 𝑘-mers whose scores are higher than the
threshold value 𝜀, i.e.,

𝒵𝜀 = {𝑤 ∈ Σ𝑘 : 𝑆(𝑤) > 𝜀} (2.5)

Let us store only the phylo-𝑘-mers of 𝒵𝜀, and assume the score of 𝜀 for the rest.
A formal definition of the problem is given by Problem 2.

Problem 2 (Threshold-based Phylo-k-mer Computation (TPKC)).
Input: 𝑘, 𝑃 as in EPKC (Problem 1); a threshold value 𝜀 ∈ [0, 1)
Output: Associative array 𝐴 storing the pairs {(𝑤, 𝑆(𝑤)) | 𝑤 ∈ 𝒵𝜀}, where 𝑆(𝑤)

is defined as in Problem 1.

Notice that the size of the output of the problem is only Θ(|𝒵𝜀|), not Θ(𝜎𝑘) as
for the previous one. We can decrease 𝜀 to include more 𝑘-mers in the answer —
which makes phylo-𝑘-mer-based applications more accurate — or increase it to save
on memory. From now on, we assume that |𝒵𝜀| ≪ 𝜎𝑘.

Window-wise algorithms

Let us now look at just one window 𝑊 that starts at position 𝑗 of the alignment.
Then we can define 𝒵𝑊

𝜀 as follows:

𝒵𝑊
𝜀 = {𝑤 ∈ Σ𝑘 : 𝑃𝑗(𝑤) > 𝜀} (2.6)

That is, 𝒵𝑊
𝜀 includes 𝑘-mers that achieve score greater than 𝜀 in the window 𝑊 .

Those sets for all windows straightforwardly combine into 𝒵𝜀:

𝒵𝜀 =
⋃︁

𝑊∈ all
windows

𝒵𝑊
𝜀 (2.7)

For phylo-𝑘-mers of one window we can also assume the choice of 𝜀 for which
|𝒵𝑊

𝜀 | ≪ 𝜎𝑘.

2.3.2 Branch-and-bound

Here I describe the first algorithm for solving Problem 2, as it has been introduced
for the first time in [130]. It has not been described in detail yet; little attention
has been paid to its theoretical properties as well. This algorithm is based on the
CommonPrefix algorithm described above.

Low-score prefixes

We can modify CommonPrefix to solve Problem 2 with one simple observation.
That is, if the score of a prefix is lower than 𝜀, no 𝑘-mer that starts with this prefix
can be in 𝒵𝑊

𝜀 .
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Theorem 2.3.1. Let 𝑝 = 𝑤1 . . . 𝑤𝑗 be a string over Σ𝑗, 𝑗 < 𝑘, and 𝑊 be a 𝑘-sized
window of 𝑃 . If 𝑃𝑊 (𝑝) ≤ 𝜀, then ∀𝑤 ∈ Σ𝑘 such that 𝑝 is a prefix of 𝑤, it is true that
𝑤 ̸∈ 𝒵𝑊

𝜀 .

Proof. All elements of 𝑃 are less than 1: ∀𝑖, 𝑗 𝑃𝑖,𝑗 ≤ 1. Then for any 𝑘-mer 𝑤 that
starts with 𝑝 it is true that 𝑃𝑊 (𝑤) ≤ 𝑃𝑊 (𝑝) ≤ 𝜀. The statement follows immediately.

Thus, we can give up calculating scores for all 𝑘-mers that start with a prefix
whose score is lower than 𝜀.

Sorting matrix columns

There is another possible improvement to this algorithm. Suppose that the elements
of each column in the input matrix have been previously sorted in descending order.
That is, we consider a probability matrix ̃︀𝑃 with ̃︀𝑃1,𝑗 ≥ ̃︀𝑃2,𝑗 ≥ . . . ≥ ̃︀𝑃𝜎,𝑗 for every 𝑗.

Let us now start calculating prefix scores in the same manner as in Common-
Prefix, but over ̃︁𝑊 not 𝑊 . If a prefix 𝑤 is such that 𝑃𝑊 (𝑤) ≤ 𝜀, then all prefixes
𝑤′ obtained from 𝑤 by replacing its last symbol with a lower-probability symbol will
also be such that 𝑃𝑊 (𝑤′) ≤ 𝜀. As soon as we reach a prefix 𝑤 with 𝑃𝑊 (𝑤) ≤ 𝜀,
we can abort computation not just for 𝑤, but also for potentially other prefixes that
would follow 𝑤 in ̃︀𝑃 . Figure 2-2 illustrates this idea.

Putting it all together

Since the probability matrix ̃︁𝑊 is permuted, we can not rely on it to calculate 𝑘-mer
codes. Let us store the sorting permutation for each column of the window 𝑊 in a
𝜎 × 𝑘 matrix 𝑅. That is, 𝑅*𝑗 is a 0-based permutation of elements of 𝑗-th column
of 𝑊 that would sort this column in descending order. The codes of phylo-𝑘-mers
computed now can be obtained with values of 𝑅𝑖𝑗; see Algorithm 4 for the full listing.

Notice that this algorithm looks very similar to CommonPrefix. The first dif-
ference is that on line 7, 𝑅𝑖𝑗 is used to calculate the correct prefix code. The second
and the most important one is lines 12—13 that stop recursion for prefixes with low
scores. The latter is what has given the name of this algorithm: it allows to cut
branches of computation for sets of 𝑘-mers sharing the same low-score prefix.

Worst-case performance

Despite that the output size of Algorithm 4 is Θ(|𝒵𝑊
𝜀 |), this algorithm has a worst-

case performance of 𝒪(𝜎𝑘) in time. We can show this with the following example.
Consider a binary alphabet (𝜎 = 2) and suppose that all probabilities in 𝑊 equal
1/2. Thus, for any 𝑘-mer 𝑤 its score 𝑃𝑊 (𝑤) = (1/2)𝑘. For 𝜀 = ((1/2)𝑘−1 +(1/2)𝑘)/2,
all possible (𝑘 − 1)-mers will be calculated with the score of (1/2)𝑘−1 > 𝜀. However,
no 𝑘-mer will be added to 𝑆: because (1/2)𝑘 < 𝜀, the final set of phylo-𝑘-mers |𝒵𝑊

𝜀 |
is empty. Thus, the time complexity of Algorithm 4 is 𝑇 (𝑘) = 𝒪(𝜎𝑘−1) = 𝒪(𝜎𝑘) if
the alphabet Σ is fixed.
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Figure 2-2 – An example of Branch-and-bound computation: if 𝑃𝑊 (𝐴𝑇𝑇 ) ≤ 𝜀, scores
of 𝑘-mers starting 𝐴𝑇𝑇* are not computed due to low prefix score. Scores of 𝑘-mers
starting with 𝐴𝑇𝐶*, 𝐴𝑇𝐺* are also not computed since scores of 𝐴𝑇𝐶, 𝐴𝑇𝐺 are
lower than the score of 𝐴𝑇𝑇 .

Algorithm 4: Branch-and-bound (BB) for TPKC

Input : An integer 𝑘 > 0, a 𝜎 × 𝑘 probability matrix ̃︁𝑊 with sorted
columns, a 𝜎 × 𝑘 matrix 𝑅 of indices, a threshold 𝜀

Output: An associative array 𝑆 storing phylo-𝑘-mer scores
1 Function ComputePhyloKmers(̃︁𝑊 , 𝑅):
2 𝑆 ← empty associative array
3 return BranchAndBound(̃︁𝑊,𝑅, 𝑆, 0, 0, 0, 1)

4 Function BranchAndBound(̃︁𝑊,𝑅, 𝑆, 𝑖, 𝑗, 𝑐𝑜𝑑𝑒, 𝑠𝑐𝑜𝑟𝑒):
5 if 𝑖, 𝑗 > 0 then
6 𝑠𝑐𝑜𝑟𝑒← 𝑠𝑐𝑜𝑟𝑒 ·̃︁𝑊𝑖,𝑗

7 𝑐𝑜𝑑𝑒← 2⌈log2 𝜎⌉ · 𝑐𝑜𝑑𝑒 + 𝑅𝑖𝑗 − 1

8 if 𝑗 = 𝑘 then
9 𝑆[𝑐𝑜𝑑𝑒]← 𝑠𝑐𝑜𝑟𝑒

10 else
11 for 𝑖′ ← 1 . . . 𝜎 do
12 if 𝑠𝑐𝑜𝑟𝑒 ·̃︁𝑊𝑖′,𝑗+1 ≤ 𝜀 then
13 break

14 𝑆 ← BranchAndBound(̃︁𝑊,𝑅, 𝑆, 𝑖′, 𝑗 + 1, 𝑐𝑜𝑑𝑒, 𝑠𝑐𝑜𝑟𝑒)

15 return 𝑆
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As for memory complexity, it takes 𝒪(𝑘) for the call stack and Θ(|𝒵𝑊
𝜀 |) to store

the result, which yields 𝒪(𝑘 + |𝒵𝑊
𝜀 |).

2.3.3 Divide-and-conquer for threshold-based computation

Here I present a novel algorithm for solving the problem of threshold-based phylo-𝑘-
mer computation. This algorithm is a modification of Algorithm 3 (DivideAndConquer).
It is also based on the divide-and-conquer idea, splitting the window in two parts,
calculating scores of prefixes and suffixes recursively, and combining prefix-suffix com-
bination to compute full 𝑘-mers. However, a few additional steps are added to avoid
computation of scores that are less than 𝜀.

First, once the scores of prefixes and suffixes are computed, we sort suffixes by
decreasing score. Second, we change the way prefixes are combined with suffixes: for
each prefix 𝑙 of 𝐿, we iterate over suffixes in the score descending order until prefix
score is less or equal to 𝜀/(score of 𝑙). See Algorithm 5 for the complete listing.

Algorithm 5: Divide-and-conquer (DC-𝜀) for TPKC
Input : A 𝜎 × 𝑘 probability matrix 𝑊 , and a threshold 𝜀
Output: An associative array 𝑆 storing phylo-𝑘-mer scores

1 Function ComputePhyloKmers(𝑊 ):
2 return DivideAndConquerThr(𝑊 )

3 Function DivideAndConquerThr(𝑊 ):
4 𝑆 ← empty associative array
5 ℎ← the number of columns in 𝑊
6 if ℎ = 1 then
7 for 𝑖← 1 . . . 𝜎 do
8 if 𝑊𝑖,1 > 𝜀 then
9 𝑆[𝑖− 1]← 𝑊𝑖,1

10 return 𝑆

11 else
12 𝐿← DivideAndConquerThr(𝑊 [1 : ⌊ℎ/2⌋])
13 𝑅← DivideAndConquerThr(𝑊 [⌈ℎ/2⌉ : ℎ])
14 𝑅′ ← array of pairs ((ℎ/2)-mer, score) of 𝑅
15 Sort 𝑅′ by score
16 foreach 𝑙 ∈ 𝐿 do
17 𝑗 ← the last 𝑖 : 𝑅′[𝑖] > 𝜀/𝐿[𝑙]
18 𝑅𝑙 ← 𝑅′[1 : 𝑗]
19 foreach 𝑟 ∈ 𝑅𝑙 do
20 𝑐𝑜𝑑𝑒← 𝑙 · 2𝑐⌈ℎ/2⌉ + 𝑟
21 𝑆[𝑐𝑜𝑑𝑒]← 𝐿[𝑙] ·𝑅[𝑟]

22 return 𝑆
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Complexity analysis

Because we do not iterate over the entire list of suffixes for every prefix, this algorithm
achieves running time complexity better than 𝒪(𝜎𝑘). Let again 𝑇 (𝑘) be the running
time of DivideAndConquerThr for the window of size 𝑘. I will analyze the running
time complexity of this algorithm step by step.

In the analysis of this algorithm, the size of 𝒵𝑊
𝜀 will play an important role.

Remember that this is a set of ℎ-mers that have score higher than 𝜀, where ℎ is the
number of columns in 𝑊 . DivideAndConquerThr is recursive by its nature, and
each level of recursion has its own subproblem size ℎ and its own set 𝒵𝑊

𝜀 .
For the case ℎ = 1 (lines 6—10) we return only ℎ-mer-score pairs if corresponding

scores surpass the threshold; again as in DivideAndConquer, it takes Θ(1) time
if Σ is fixed. Let us now take a closer look at the case of ℎ > 1. Lines 12—13 take
2 · 𝑇 (ℎ/2) time, lines 14—15 take Θ(|𝑅| log |𝑅|) time. The outer loop performs |𝐿|
iterations, each of which is split in two parts: line 17 taking Θ(log |𝑅|) and the rest
taking Θ(|𝑅𝑙|) time.

Thus, the outer loop starting on line 16 takes Θ(
∑︀

𝑙∈𝐿(log |𝑅|+|𝑅𝑙|)) = Θ(|𝐿| log |𝑅|+
|𝒵𝑊

𝜀 |). This gives us the total time of Algorithm 5:

𝑇 (ℎ) =

{︃
Θ(1) if ℎ = 1

2 · 𝑇 (ℎ/2) + (|𝐿|+ |𝑅|) · log |𝑅|+ |𝒵𝑊
𝜀 | otherwise

(2.8)

To find a closed-form bound for 𝑇 (ℎ), let us consider the following recurrence first:

𝑇 ′(ℎ) =

{︃
Θ(1) if ℎ = 1

2 · 𝑇 ′(ℎ/2) + 2 · 𝜎ℎ/2 log 𝜎ℎ/2 + |𝒵𝑊
𝜀 | otherwise

(2.9)

Theorem 2.3.2. The recurrence 𝑇 ′(ℎ) = 2 · 𝑇 ′(ℎ/2) + 2 · 𝜎ℎ/2 log 𝜎ℎ/2 + |𝒵𝑊
𝜀 | =

2 · 𝑇 ′(ℎ/2) + ℎ · 𝜎ℎ/2 + |𝒵𝑊
𝜀 | implies 𝑇 ′(ℎ) = Θ(ℎ · 𝜎ℎ/2 + |𝒵𝑊

𝜀 |).

Proof. Applying the master theorem, we get 𝑎 = 2, 𝑏 = 2, 𝑓(ℎ) = ℎ · 𝜎ℎ/2 + |𝒵𝑊
𝜀 |.

ℎlog𝑏 𝑎+𝜖 = ℎ2 for 𝜖 = 1

≤ ℎ · 𝜎ℎ/2 holds for ℎ ≥ 4, 𝜎 ≥ 2

≤ ℎ · 𝜎ℎ/2 + |𝒵𝑊
𝜀 |

= 𝑓(ℎ)

Therefore, 𝑓(ℎ) = Ω(ℎlog𝑏 𝑎+𝜖). Now we need to show that the regularity condition
is met: 𝑎𝑓(ℎ/𝑏) ≤ 𝑐𝑓(ℎ) for some 𝑐 < 1 and some ℎ > ℎ0. To do this, we should first
clarify what is 𝑓(ℎ/𝑏): 𝑓(ℎ/𝑏) = ℎ/𝑏 · 𝜎ℎ/2𝑏 + |𝒵𝑊/𝑏

𝜀 |. Here |𝒵𝑊/𝑏
𝜀 | is the number of

phylo-(ℎ/𝑏)-mers whose scores surpass 𝜀 in the subwindow of size ℎ/𝑏. Notice that
|𝒵𝑊/𝑏

𝜀 | ≤ 𝜎ℎ/𝑏.
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CP DC BB DC-𝜀

Time Θ(𝜎𝑘) Θ(𝜎𝑘) 𝒪(𝜎𝑘) 𝒪(𝑘 · 𝜎𝑘/2 + |𝒵𝑊
𝜀 |)

Memory Θ(𝜎𝑘) Θ(𝜎𝑘) 𝒪(𝑘 + |𝒵𝑊
𝜀 |) 𝒪(𝜎𝑘/2 + |𝒵𝑊

𝜀 |)
Table 2.3 – Time and memory complexities of Algorithms 2 to 5 for one window of
𝑃 .

𝑎 · 𝑓(ℎ/𝑏) = 2 · (ℎ/2 · 𝜎ℎ/4 + |𝒵𝑊/2
𝜀 |) applying |𝑍𝑊/2

𝜀 | ≤ 𝜎ℎ/2

≤ ℎ · 𝜎ℎ/4 + 2 · 𝜎ℎ/2

≤ ℎ · 𝜎ℎ/2−1 for ℎ ≥ 8, 𝜎 ≥ 2

≤ ℎ · 𝜎ℎ/2−1 + 1/𝜎 · |𝒵𝑊
𝜀 |

= 1/𝜎 · (ℎ · 𝜎ℎ/2 + |𝒵𝑊
𝜀 |)

= 𝑐 · 𝑓(ℎ) for 𝑐 = 1/𝜎

Therefore, 𝑎𝑓(ℎ/𝑏) ≤ 𝑐𝑓(ℎ) for 𝑐 = 1/𝜎 and ℎ ≥ 8. The latter completes the
proof, implying 𝑇 ′(ℎ) = Θ(ℎ · 𝜎ℎ/2 + |𝒵𝑊

𝜀 |).

Theorem 2.3.3. The recurrence 2.8 implies 𝑇 (ℎ) = 𝒪(ℎ · 𝜎ℎ/2 + |𝒵𝑊
𝜀 |).

Proof.
Since |𝐿| ≤ 𝜎ℎ/2 and |𝑅| ≤ 𝜎ℎ/2, we can conclude that 𝑇 (ℎ) = 𝒪(𝑇 ′(ℎ)). The

statement follows immediately after Theorem 2.3.2.

As for memory complexity, it takes 𝒪(𝜎ℎ/2) memory to store 𝐿 and 𝑅, Θ(log ℎ) for
the call stack, and 𝒪(|𝒵𝑊

𝜀 |) to store the result. Thus, the overall memory complexity
is 𝒪(𝜎ℎ/2 + |𝒵𝑊

𝜀 |). The time and memory complexities of all considered algorithms
are summarized in Table 2.3.

2.3.4 Chained Windows Technique

Original problems are defined on a matrix of size 𝜎 × 𝑚, and in practice 𝑚 >> 𝑘.
Algorithms described above solve them for each window separately. However, DC
and DC-𝜀 can be naturally improved by exploiting the following observation: suffixes
of one window are prefixes of another window. More precisely, the set of phylo-𝑛-
mers 𝑅 constructed for a window 𝑊𝑗 = 𝑃 [𝑗 : 𝑗 + 𝑘 − 1] can be used as the set
𝐿 for the window 𝑊𝑗+𝑘/2 = 𝑃 [𝑗 + 𝑘/2 : 𝑗 + 𝑘/2 + 𝑘 − 1]. Thus, calculation of
prefixes can be omitted. To enable this optimization, we can iterate over windows
of 𝑃 straightforwardly while keeping sets of suffixes 𝑅 in memory for the last 𝑘/2

windows. This will take 𝒪(𝑘 · |𝒵𝑊/2
𝜀 |) in memory apart from memory taken by the

result. If 𝑘 is even, we can improve it to 𝒪(|𝒵𝑊/2
𝜀 |) by iterating over windows with

the step of 𝑘/2, applying the technique I call chained windows (see Figure 2-3).
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Figure 2-3 – Chaining window technique. The right subwindow 𝑊𝑅
𝑗 of window 𝑊𝑗 is

the left subwindow of 𝑊𝑗+𝑘/2. We reuse suffix scores calculated in 𝑊𝑗 as prefix scores
in 𝑊𝑗+𝑘/2.

This technique does not change the algorithmic complexity of the algorithm; nev-
ertheless, as we will see later, it improves the algorithm’s running time in practice.

2.4 Experimental results

This section describes the experimental evaluation of the algorithms for computing
threshold-based phylo-𝑘-mers, i.e. solving TPKC. Although the exhaustive version
of the problem is indeed interesting, calculating all phylo-𝑘-mers is impractical. In
this regard, comparing different algorithms to solve EPKC is beyond the scope of our
consideration.

2.4.1 Experimental setup

Implementation

All the algorithms compared were developed during the development of XPAS, a
phylo-𝑘-mer database building application. The algorithms are implemented in C++.
Phylo-𝑘-mer computation is only one step of the process of constructing a phylo-𝑘-mer
database, and I do not go into detail about implementing the whole pipeline. A more
detailed description of the implementation details is given in Chapter 1 (section 1.5)
and Chapter 4.
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Experiment design

For every dataset, two ghost nodes per branch were introduced for all branches of the
reference tree. For every ghost node, phylo-𝑘-mers that surpass the threshold value of
𝜀 = (𝜔/𝜎)𝑘 were computed. For every dataset, experiments include computing phylo-
𝑘-mers of different lengths 𝑘; thereby a different value of 𝜀 is set for each experiment.
Notice that for a fixed dataset, values of parameters 𝑘 and 𝜔 determine the sizes of
𝒵𝜀 for every ghost node — that is, for the same dataset and the same ghost node
𝑢, the sets of phylo-𝑘-mers computed 𝒵𝜀 are different for different values of 𝑘 and
𝜎. Total time required to compute phylo-𝑘-mers for every ghost node was measured
with a steady monotonic timer (std::chrono::steady_clock).

Since different datasets have different number of reference sequences, and there-
fore different number of ghost nodes introduced, one should not compare time mea-
surements between two different datasets; only a comparison of the performance of
different algorithms for the same dataset is valid. The same is true for different pa-
rameter values: one can only compare relative performance of algorithms for a fixed
set of parameters of the same dataset. No results retrieved with different parameter
values should be compared.

Hardware and data

Experiments were run on a single core of a computer equipped with Intel(R) Xeon(R)
W-2133 CPU @ 3.60GHz / 8.25 MB Cache / 62 GB RAM. Three datasets of DNA
sequences — D218 (bacterial 16S rRNA from [20]), D500 (chloroplast rbcL gene se-
quences from [20]), neotrop (eukaryotic 18S rRNA sequences from [15]) — and one
dataset of amino acid sequences — D140 (whole-genome sequences of Papillomaviri-
dae from [20]) — were used. All these datasets were used previously for comparing
accuracy of phylogenetic placement tools.

2.4.2 Running time

Total time measured to compute phylo-𝑘-mers for different datasets and parameter
values is given by Figures 2-4 and 2-5. Computation time is measured in seconds and
depicted in a log-scale. BranchAndBound (referred to as BB in the legend) shows
relatively comparable results with DivideAndConquerThr (referred to as DC-𝜀
if no chained windows technique was applied and as DCCW-𝜀 otherwise). Despite a
poorer theoretical bound on running time in the worst case scenario, BranchAnd-
Bound demonstrates the same level of growth with 𝑘 for DNA experiments (both
neotrop and D218, 𝜔 = 1.0, 2.0) as DivideAndConquerThr. Although BB is
faster for the protein dataset and 𝜔 = 10 up to 𝑘 = 10, the running times of DC-𝜀
and DCCW-𝜀 increase more slowly with 𝑘, suggesting that they may perform better
than BB for larger values of 𝑘.

From the data presented, I can suggest that BranchAndBound is faster than
DivideAndConquerThr in cases of small numbers of phylo-𝑘-mers (low values of 𝑘
and/or high values of 𝜔). DivideAndConquerThr is preferable for both increasing
the 𝑘-mer length and the number of calculated phylo-𝑘-mers (decreasing 𝜔).
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Figure 2-4 – Total running time of phylo-𝑘-mer computation for three DNA datasets
(alphabet size 𝜎 = 4) and the threshold value of 𝜀 = (𝜔/𝜎)𝑘. Different columns
show running times for 𝜔 = 1, 1.5, and 2, which corresponds to solving TPKC with
different thresholds.
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Figure 2-5 – Total running time of phylo-𝑘-mer computation for the protein dataset
(alphabet size 𝜎 = 20) and the threshold value of 𝜀 = (𝜔/𝜎)𝑘.

2.5 Conclusion
In this chapter, I described the problem of computing phylo-𝑘-mers for one ghost
node. This is the central algorithmic problem of RAPPAS, as the running time
for reference dataset preprocessing consists mainly of solving this problem. First, I
considered the problem of exhausting phylo-𝑘-mer computation. Even though this
problem is easier, it provides us insights for solving the real problem of interest,
threshold-based phylo-𝑘-mer computation.

It was not described before how RAPPAS solves this problem. I described this
algorithm, BranchAndBound, and showed that it is suboptimal in the worst case.
Besides that, I suggested a new algorithm based on the divide-and-conquer principle.
Theoretical analysis shows it to be better than BranchAndBound in the worst-case;
however, it is not clear what happens with the latter on average. Both algorithms
are implemented as a part of XPAS, a reimplementation of RAPPAS, which will be
covered in Chapter 4.

Apart from this, I suggested an interesting optimization of the DivideAndeCon-
querThr applied for consecutive windows of the alignment, the chained windows
technique. While it does not improve the algorithm’s complexity, it improves its run-
ning time for small values of 𝑘 and 𝜀. The underlying idea may be interesting for
algorithm researchers and may be helpful in other algorithmic problems.

Finally, I held experiments for DNA and protein datasets, measuring the total
running time of phylo-𝑘-mer computation with different sets of input parameters.
Experiments show contradictory results depending on the dataset and input param-
eters: BranchAndBound showed better performance for low values of 𝑘, as ex-
pected; DivideAndConquerThr outperforms it for higher values of 𝑘. For the
default parameter values of XPAS, 𝑘 = 10 and 𝜔 = 1.5, the new algorithm showed
better performance for all DNA datasets.
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Chapter 3

Informative phylo-𝑘-mers

In the previous chapter, we reformulated the exhaustive phylo-𝑘-mer computation
problem as a threshold-based problem. That allows to compute and store significantly
fewer phylo-𝑘-mers, possibly with a little loss of accuracy of phylo-𝑘-mer based appli-
cations. However, phylo-𝑘-mer databases can still reach gigabytes in size, which limits
their application. In this chapter, I suggest another approach to trade-off accuracy for
smaller phylo-𝑘-mer database size in the context of phylogenetic placement. In addi-
tion to approximating phylo-𝑘-mer scores with the threshold values, we can exclude
some phylo-𝑘-mers from the database. To do this, we need to answer the following
questions: Are all phylo-𝑘-mers necessarily informative for phylogenetic placement?
If not, which phylo-𝑘-mers are informative and which are not? To what extent are
they informative? How is it possible to find the most informative phylo-𝑘-mers?

Those questions arise from the following intuition. Consider two 𝑘-mers that are
very close in terms of edit distance. We can assume that they are more likely to
have closer scores than a pair of highly distant 𝑘-mers. In other words, vectors of
scores for two 𝑘-mers can be correlated, and phylo-𝑘-mers as features (in the machine
learning sense of this word) for phylogenetic placement can be redundant. From this
we can foresee that some phylo-𝑘-mers can be safely excluded from consideration with
little effect on the accuracy of phylogenetic placement. This is not only an intuition:
experiments confirm the validity of those assumptions. Later in this chapter, I will
show that even if we randomly exclude gradually increasing numbers of phylo-𝑘-mers
from the database, the placement accuracy decays very slowly. Of course, I propose
better methods of finding informative phylo-𝑘-mers than just random selection. This
chapter is devoted to the presentation and discussion of such methods.

We will start approaching the problems of this chapter by reformulating phy-
logenetic placement as a classification problem. First, I discuss how the method of
RAPPAS is related to text classification, namely, Naive Bayes text classification. Af-
terward, I look into existing feature selection methods and discuss how these methods
can be applied for finding informative phylo-𝑘-mers. Finally, I give an experimental
evaluation of such applications: we will see that the methods I suggest allow ex-
cluding a significant part of phylo-𝑘-mers with a negligible effect on the accuracy of
phylogenetic placement.
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3.1 Phylogenetic placement as classification

Classification is a classic machine learning task that arises in many areas of science and
engineering. It consists of assigning data points to one of a set of pre-defined classes
based on the set of attributes or features of the data points [113, 153]. Classification
is performed by a classifier that can be defined as an algorithm computing a mapping
function 𝑦 from input variables 𝑋 to a discrete class variable 𝑌 :

Definition 3.1.1 (Classifier). A classifier is an algorithm that computes a function
𝑦 : 𝑋 → 𝑌 , where the elements of 𝑋 are called instances or queries, and 𝑌 is a finite
set, whose elements are called classes.

Let us consider phylogenetic placement as a classification problem. Again, con-
sider a reference phylogenetic tree 𝑇0 and a set 𝐴0 of reference (possibly aligned)
sequences over alphabet Σ in one-to-one correspondence with leaves of 𝑇0. For a large
collection of query sequences 𝑄 over Σ, phylogenetic placement aims at inserting every
query sequence 𝑞 ∈ 𝑄 into 𝑇0. Phylogenetic placement outputs an assignment of 𝑞 to
a branch of 𝑇0 or multiple assignments if the placement is uncertain. For simplicity,
let us assume that the result of phylogenetic placement for every query 𝑞 is just a
single branch of the tree representing the best placement for this query according to
the algorithm. Then, a phylogenetic placement algorithm is a classifier that assigns
query sequences to branches of the reference phylogeny, i.e., 𝑋 = Σ* and 𝑌 = 𝐸(𝑇0),
where 𝐸(𝑇0) denotes the set of branches of the reference tree.

Problem 3 (Phylogenetic placement as classification).
Input: A set of possibly aligned reference sequences; a reference tree 𝑇0 whose

leaves correspond to the reference sequences and whose branches define the set of
classes 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑁 } ; a set 𝑄 of query sequences.

Output: 𝑦(𝑞) ∈ 𝑌 , the predicted class of 𝑞 for every 𝑞 ∈ 𝑄.

In this chapter, I only consider phylogenetic placement as performed by RAPPAS.
The formulation above will allow us to find correspondence between the RAPPAS
approach and the well-studied problem of text classification. However, there is an
essential difference between phylogenetic placement classification and the common
understanding of classification in machine learning. The latter is a supervised learn-
ing method: the classifier is constructed on the basis of a training set, i.e. the set of
classified examples {(𝑥, 𝑦) : 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 }. Classification algorithms use the train-
ing set to reconstruct the intrinsic relationship between 𝑋 and 𝑌 , and the learning
methods are domain-agnostic (for example, Support Vector Machines can be applied
to image classification, text classification, and many other classification tasks). Con-
trary to that, modern phylogenetic placement methods do not perform any supervised
learning. There is no training set in the traditional sense: no examples of query se-
quences placed to the reference phylogeny are given to the classifier. Instead, it gets
only the reference phylogeny and the set of reference (possibly aligned) sequences
as input. To place unknown sequences to the reference tree, the classifier exploits
domain knowledge of phylogenetics to reconstruct the relationship between 𝑋 and 𝑌 .
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For example, RAPPAS infers the classifier from the reference data as described in
Sections 1.5 and 1.6.

Having this difference in mind, let us look at the similarities between RAPPAS
and text classification methods. Understanding those similarities will allow us to
answer the questions of the chapter.

3.2 Text Classification with Naive Bayes
The task of classifying texts has become very important in recent decades due to the
development of the Internet and the spread of computers in general. The task is to
label texts of arbitrary length with pre-determined classes. A considerable amount of
literature has been published on this topic, and describing existing methods is beyond
the scope of this thesis. An interested reader may find [4], [192] and [114] useful as
detailed overviews of those methods. Here, I briefly introduce only one method for
text classification, that is, Naive Bayes text classification. While being one of the
simplest classification methods, Naive Bayes shows superb classification performance
despite its rather unrealistic assumptions, showing excellent performance for text
classification [235, 149, 180, 168, 209].

Being a supervised learning method, Naive Bayes (NB) Classification involves two
stages: learning on a training set and classification itself. Let 𝑉 be a vocabulary, a
set of words of the language of choice. A sequence of elements of 𝑉 of arbitrary length
is called a document. Classification of documents can be formalized in the following
manner.

Problem 4 (Supervised Learning for Text Classification).
Input: A set of document classes 𝑌 = { 𝑦1, 𝑦2, . . . , 𝑦𝑁 }; a training set of classified

documents { (𝑥1, 𝑦𝑗1), (𝑥2, 𝑦𝑗2), . . . , (𝑥𝑀 , 𝑦𝑗𝑀 ) }, 𝑥𝑖 ∈ 𝑉 *.
Output: a classifier 𝑉 * → 𝑌 .

The vocabulary 𝑉 can be the set of all words encountered in training documents
or an arbitrary superset of such a set. The classifier ranks available classes according
to the amount of evidence that a query document 𝑞 ∈ 𝑉 * belongs to each class;
alternatively, it selects the highest-rank class as a single answer [192]. Probabilistic
classifiers implement this idea by estimating conditional probabilities P(𝑦 | 𝑞) for
any class 𝑦 ∈ 𝑌 and label 𝑞 with the class that obtained the maximal probability:

𝑦(𝑞) = arg max
𝑦∈𝑌

P(𝑦 | 𝑞) (3.1)

According to Bayes’ theorem, the posterior probability P(𝑦 | 𝑞) can be expressed
as:

P(𝑦 | 𝑞) =
P(𝑞 | 𝑦)P(𝑦)

P(𝑞)
∝ P(𝑞 | 𝑦)P(𝑦) (3.2)

Values of P(𝑞) from Equation 3.2 do not play a role in classification since they
are class-independent. P(𝑦) can be estimated from training data. However, values
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of P(𝑞 | 𝑦) are not straightforward to estimate. Here, the basic assumption of Naive
Bayes comes into play: we represent the query document as a vector of features
(e.g., document word counts) and assume that they are statistically independent,
given the class 𝑦. This assumption is clearly violated for texts in natural languages;
nevertheless, it does not make the method unreliable in practice. The assumption of
independence allows us to express P(𝑞 | 𝑦) as the product of the posterior probability
of each feature given 𝑦. Next, we will look into the two most popular methods of
representing a text document as a vector of features and show how to derive P(𝑞 | 𝑦)
in practice.

3.2.1 Bernoulli model

Under this model, 𝑞 is represented as a vector of binary values (i.e., zeros or ones)
indicating whether a word occurs in the document or not:

𝑞 = (𝑏𝑤1 , 𝑏𝑤2 , . . . , 𝑏𝑤|𝑉 |) (3.3)

𝑏𝑤 = 1{∃𝑗 : 𝑊𝑗 = 𝑤} (3.4)

Here 𝑊𝑗 is the random variable denoting the 𝑗th word of the input document. The
Bernoulli model assumes that the document is a result of |𝑉 | independent Bernoulli
trials, one for every word of the vocabulary 𝑉 . The method is to estimate the param-
eters of those Bernoulli distributions for every class. To formalize this, let us denote
by

𝑆𝐵
𝑦 (𝑤) := P[∃𝑖 : 𝑊𝑖 = 𝑤 | 𝑦] (3.5)

the probability of the word 𝑤 to be present in the document of class 𝑦. Note that
for any word 𝑤 the probability 𝑆𝐵

𝑦 (𝑤) ∈ [0, 1]. The assumption of independence of
the features given the class 𝑦 allows us to express the probability of the document
given its class as follows:

P(𝑞 | 𝑦) =
∏︁
𝑤∈𝑉

𝑆𝐵
𝑦 (𝑤)𝑏𝑤⏟  ⏞  
present
words

(1− 𝑆𝐵
𝑦 (𝑤))(1−𝑏𝑤)⏟  ⏞  
absent
words

=
∏︁

𝑤:𝑏𝑤=1

𝑆𝐵
𝑦 (𝑤)

∏︁
𝑤:𝑏𝑤=0

(1− 𝑆𝐵
𝑦 (𝑤)) (3.6)

Thus, the calculation of P(𝑞 | 𝑦) is reduced to the calculation of 𝑆𝐵
𝑦 (𝑤). Those

can be estimated from the training set straightforwardly as the frequency of the word
𝑤 in documents of class 𝑦; different regularizations such as Laplace smoothing can be
applied to avoid estimated probabilities be zero [149].

3.2.2 Multinomial model

The Multinomial model captures not only the presence of the word in the document
but also the word frequency in the document. Under this model, we represent the
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document 𝑞 as a vector of word occurrences:

𝑞 = (𝑛𝑤1 , 𝑛𝑤2 , . . . , 𝑛𝑤|𝑉 |) (3.7)

𝑛𝑤 = the number of times 𝑤 occurs in 𝑞. (3.8)

In this representation, 𝑛𝑤 can be greater than 1, unlike the values of 𝑏𝑤 in the
Bernoulli model. The model assumes that 𝑞 is a sequence of independent word events
drawn with replacement from a class-dependent multinomial distribution over all
vocabulary words. Such distributions are defined by values of

𝑆𝑀
𝑦 (𝑤) := P[𝑊𝑗 = 𝑤 | 𝑦]. (3.9)

Here 𝑆𝑀
𝑦 (𝑤) is the probability to sample 𝑤 for the class 𝑦 in one sampling event.

This implies not only 𝑆𝑦(𝑤) ∈ [0, 1] as for the previous model, but as well the fact
that 𝑆𝑀

𝑦 (𝑤) of all words for the same class sum to one:∑︁
𝑤∈𝑉

𝑆𝑀
𝑦 (𝑤) = 1. (3.10)

Finally, the probability of the document 𝑞 given its class 𝑦 is:

P(𝑞 | 𝑦) =
(
∑︀

𝑤∈𝑉 𝑛𝑤)!∏︁
𝑤∈𝑉

𝑛𝑤!

∏︁
𝑤∈𝑉

(︁
𝑆𝑀
𝑦 (𝑤)

)︁𝑛𝑤

. (3.11)

Note that (
∑︀

𝑤∈𝑉 𝑛𝑤)!∏︀
𝑤∈𝑉 𝑛𝑤!

does not depend on the class and contributes equally to each
𝑦, which gives us:

P(𝑞 | 𝑦) ∝
∏︁
𝑤∈𝑉

(︁
𝑆𝑀
𝑦 (𝑤)

)︁𝑛𝑤

=
∏︁

𝑤:𝑛𝑤>0

(︁
𝑆𝑀
𝑦 (𝑤)

)︁𝑛𝑤

(3.12)

Again, 𝑆𝑀
𝑦 (𝑤) can be estimated from training data. See [149] for a detailed

discussion about both models and their performance for text classification.

3.3 RAPPAS as a Naive Bayesian Classifier

In Section 3.1, we have seen that phylogenetic placement can be treated as a classi-
fication task. For the rest of this chapter, I will consider the method of RAPPAS
(described in detail in Section 1.5 and 1.6) from this point of view. While not be-
ing straightforwardly the same, RAPPAS classification has a lot in common with
the Naive Bayes text classification described above. To make it easier to relate the
method of RAPPAS to those for text classification, let us break it down in the same
way as we did for Naive Bayes classification methods.
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3.3.1 Query representation

A query document 𝑞 — i.e., a DNA sequence or a protein sequence — is represented
by the multiset of all substrings of 𝑞 of size 𝑘. Note that if we ignore all 𝑘-mers with
zero counts, this representation is the same as the one used in the Multinomial Naive
Bayes text classifier. Let us consider an example for clarity.
Example 3.3.1.

Query: AACTGACT, 𝑘 = 3.
Representation: { AAC: 1, ACT: 2, CTG: 1, TGA: 1, GAC: 1 }.
Let the vocabulary 𝑉 be the set of all possible 𝑘-mers over the alphabet Σ. Then,

we can define the representation of 𝑞 in the same terms as in Equation 3.7 and 3.8:

𝑞 = (𝑛𝑤1 , 𝑛𝑤2 , . . . , 𝑛𝑤
𝜎𝑘

) (3.13)

𝑛𝑤 = the number of times 𝑤 occurs in 𝑞. (3.14)

However, we can assume that RAPPAS uses values of 𝑘 that guarantee that no
𝑘-mer is found more than once in a query sequence, i.e., 𝑛𝑤 ∈ [0, 1]. It can be justified
as follows: 𝑘-mers must be long enough that the presence or absence of a 𝑘-mer is
informative about its phylogenetic origin. If a 𝑘-mer occurs at multiple positions in
the query, then that 𝑘-mer does not point at a unique placement in the phylogeny,
and the value of 𝑘 is too small relative to the query size. Thus, in practice, queries
are almost always represented in the same way as in the Bernoulli model.

3.3.2 Model parameters

While the query representation in RAPPAS matches the one used in the Multinomial
model, the meaning of parameters 𝑆𝑦(𝑤) of word distributions is different. As will be
explained more thoroughly in Section 5.1.2, RAPPAS aims at estimating conditional
probabilities

P (𝑞 contains 𝑤 | |𝑞| = 𝑚; 𝑞 originates from 𝑦) (3.15)

for every word 𝑤 given the class 𝑦, where 𝑚 is the length of the reduced reference
alignment (see Section 1.5.2). The estimations of those probabilities are the phylo-
𝑘-mer scores 𝑆𝑦(𝑤) discussed in Chapter 1. Efficient algorithms for computing these
values are discussed in Chapter 2. Here I summarize the whole computation of 𝑆𝑦(𝑤)
in one formula for the sake of completeness (please refer to previous sections for
detail):

𝑆𝑦(𝑤) = max
𝑢∈𝐺𝑦

max
{︁

𝑚−𝑘+1
max
𝑗=1

𝑘∏︁
𝑙=1

𝑝𝑗+𝑙−1(𝑤𝑙), 𝜀
}︁

(3.16)

Here 𝑘 is the length of 𝑘-mers used; 𝐺𝑦 is the set of ghost nodes injected for 𝑦;
𝜀 is the score threshold value, and 𝑝𝑗(𝑎) are elements of 𝑃 𝑢 matrix calculated in the
process of ancestral reconstruction for the ghost node 𝑢 (see Section 1.5.2).
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If we assume that the query sequences are results of independent multinomial
sample events, it is not straightforward to understand whether this formula gives
accurate estimates of the parameters of the underlying model or not1. I assume
the latter: one may speculate that Equation 3.16 does not produce Bayes-optimal
estimates of required parameters. However, it has proven to be a good solution for
estimating phylo-𝑘-mer scores that are accurate enough for phylogenetic placement
[130]. Whether there are better ways to estimate phylo-𝑘-mer scores lies out of the
scope of this chapter; I take this formula as-is since it is the only one that has been
implemented in RAPPAS so far. Refer to Section 5.1.2 for a discussion about an
alternative formula for 𝑆𝑦(𝑤).

As in both the Bernoulli and Multinomial models, every value 𝑆𝑦(𝑤) belongs to
the range [0, 1]. However, unlike the Multinomial model, RAPPAS does not require
the scores to sum to one, and in general

(︀∑︀
𝑤 𝑆𝑦(𝑤)

)︀
∈ [0, 𝜎𝑘].

3.3.3 Classification

As both the Bernoulli and the Multinomial Naive Bayes, RAPPAS makes the naive
Bayesian assumption about the statistical independence of features given the class:

P(𝑞 is composed of 𝑤1, 𝑤2, . . . , 𝑤𝑚−𝑘+1

⃒⃒
|𝑞| = 𝑚; 𝑦) ∝ P

(︀
𝑤1 in 𝑞

⃒⃒
|𝑞| = 𝑚; 𝑦

)︀
×

P
(︀
𝑤2 in 𝑞

⃒⃒
|𝑞| = 𝑚; 𝑦

)︀
×

× . . .×
P
(︀
𝑤𝑚−𝑘+1 in 𝑞

⃒⃒
|𝑞| = 𝑚; 𝑦

)︀
Note that the probabilities on the right-hand side of the equation above are just

short forms of the probability in Equation 3.15. Because RAPPAS uses 𝑆𝑦(𝑤) as an
estimate of P

(︀
𝑤 in 𝑞

⃒⃒
|𝑞| = 𝑚; 𝑦

)︀
, the equation above is computed by RAPPAS as:∏︁
𝑤:𝑛𝑤>0

𝑆𝑦(𝑤)𝑛𝑤 . (3.17)

Seeking the class 𝑦 that maximizes (3.17) is equivalent to computing

𝑦(𝑞) = arg max
𝑦∈𝐸(𝑇0)

∏︁
𝑤:𝑛𝑤>0

𝑆𝑦(𝑤)𝑛𝑤 = arg max
𝑦∈𝐸(𝑇0)

∑︁
𝑤:𝑛𝑤>0

𝑛𝑤 log𝑆𝑦(𝑤) (3.18)

(equivalent to Equation 1.6 on page 38). Note that, with the exception of 𝑆𝑦(𝑤)
replacing 𝑆𝑀

𝑦 (𝑤), the criterion above coincides with the formula for P(𝑞 | 𝑦) of the
Multinomial model (Equation 3.12).

In conclusion, RAPPAS uses the same query representation as a Multinomial NB

1To be honest, just one look at this formula immediately made me question the validity of
RAPPAS’ approach. Only substantial empirical evidence of RAPPAS placement accuracy made
me believe that this formula estimates the underlying probabilities accurately enough.
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classifier, and its formula for classification is also related to that of a Multinomial
NB classifier. However, the meaning of the model parameters 𝑆𝑦(𝑤) is different and
corresponds to the meaning of the Bernoulli model parameters. Moreover, there
is a way to show a strong link between RAPPAS and the Bernoulli Naive Bayes
classification, which will follow in the next section.

3.4 Connecting RAPPAS and Bernoulli Naive Bayes

3.4.1 Bernoulli-based phylogenetic placement

To understand how RAPPAS is connected to the Bernoulli model, let us introduce a
Bernoulli-based phylogenetic placement classifier. How would it be possible to adapt
the text classification approach to phylogenetic placement? Let us now look at all
three parts of the model: query representation, estimating model parameters, and
the classification itself. The first is given by Equations 3.3 and 3.4 on page 62, which
I will quote here again for convenience:

𝑞 = (𝑏𝑤1 , 𝑏𝑤2 , . . . , 𝑏𝑤𝜎𝑘
) (3.19)

𝑏𝑤 = 1{∃𝑖 : 𝑊𝑖 = 𝑤}. (3.20)

It matches the query representation of RAPPAS under the assumption that 𝑘
is large enough to guarantee that 𝑛𝑤 ∈ [0, 1] for all 𝑤, which yields 𝑏𝑤 = 𝑛𝑤. The
classification is given by Equations 3.1, 3.2 and 3.6, which are equivalent to:

𝑦(𝑞) = arg max
𝑦∈𝑌

P(𝑞 | 𝑦)P(𝑦) (3.21)

P(𝑞 | 𝑦) =
∏︁

𝑤:𝑏𝑤=1

𝑆𝐵
𝑦 (𝑤)

∏︁
𝑤:𝑏𝑤=0

(1− 𝑆𝐵
𝑦 (𝑤)). (3.22)

We can assume the uniform prior P(𝑦) over branches of the tree, meaning that
P(𝑦) = 1/𝑁 for all classes 𝑦, which yields:

𝑦(𝑞) = arg max
𝑦∈𝑌

(︁ ∏︁
𝑤:𝑏𝑤=1

𝑆𝐵
𝑦 (𝑤)

∏︁
𝑤:𝑏𝑤=0

(1− 𝑆𝐵
𝑦 (𝑤))

)︁
(3.23)

The most challenging question is how to estimate the model’s parameters, i.e.,
how to calculate values of 𝑆𝐵

𝑦 (𝑤). There could be two ways of doing this. The first
is to obtain many classified query sequences for each class, similar to how it is done
in text classification; this approach is mainly theoretical since we do not have such
data in the framework of phylogenetic placement. The second way is to estimate the
parameters from the reference phylogeny, as RAPPAS does by calculating 𝑆𝑦(𝑤).
However, we can not simply take 𝑆𝑦(𝑤) as parameters instead of 𝑆𝐵

𝑦 (𝑤): 𝑆𝑦(𝑤) is
an approximation of the probability of observing a 𝑘-mer 𝑤 in a query 𝑞 of the size
of the alignment, given that 𝑞 originates from the branch 𝑦 (Equation 3.15). On the
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other hand, 𝑆𝐵
𝑦 (𝑤) should approximate the probability of observing a 𝑘-mer 𝑤 in a

query 𝑞 of any size, given that 𝑞 originates from 𝑦. In other words, we can assume
that 𝑆𝐵

𝑦 (𝑤) = 𝑆𝑦(𝑤) only if placed queries are as long as the reference alignment,
which often is not the case. However, even for shorter queries, we can derive 𝑆𝐵

𝑦 (𝑤)
from 𝑆𝑦(𝑤) knowing the query size. Let us assume that 𝑞 is generated by randomly
sampling 𝑘-mers without replacement out of another sequence 𝑞′ with |𝑞′| = 𝑚. Then,
we can introduce a query length correction parameter denoted by 𝑓 :

𝑓 =
|𝑞| − 𝑘 + 1

𝑚− 𝑘 + 1
(3.24)

𝑆𝐵
𝑦 (𝑤) = P (𝑞 contains 𝑤 | |𝑞| ≤ 𝑚; 𝑞 originates from 𝑦)

= 𝑓 ·P (𝑞′ contains 𝑤 | |𝑞′| = 𝑚; 𝑞′ originates from 𝑦)

≈ 𝑓 · 𝑆𝑦(𝑤).

(3.25)

Estimating the parameters in this way allows us to rewrite Equation 3.23 as fol-
lows:

𝑦(𝑞) = arg max
𝑦∈𝑌

(︁ ∏︁
𝑤:𝑏𝑤=1

𝑓𝑆𝑦(𝑤)
∏︁

𝑤:𝑏𝑤=0

(1− 𝑓𝑆𝑦(𝑤))
)︁

(3.26)

which completes the definition of the Bernoulli-based phylogenetic placement.

3.4.2 Query length correction for RAPPAS

The careful reader may have noticed that the parameter 𝑓 did not appear in the
formula of RAPPAS classification (Equation 3.18). However, the same reasoning
about the query length can be applied if we place queries of shorter size than 𝑚 by
RAPPAS. I believe that RAPPAS should use 𝑓𝑆𝑦(𝑤) as parameters of classification
instead of 𝑆𝑦(𝑤). However, this is not happening, and the reason for this is very
simple. Since the parameter 𝑓 is class-independent, the query length correction does
not contribute to the classification:∏︁

𝑤:𝑛𝑤>0

(︁
𝑓𝑆𝑦(𝑤)

)︁𝑛𝑤

∝
∏︁

𝑤:𝑛𝑤>0

(︁
𝑆𝑦(𝑤)

)︁𝑛𝑤

. (3.27)

However, as we will see later in this chapter, 𝑓 does play a role in the process of
finding informative 𝑘-mers. But before we get to that, I will describe a formal link
between RAPPAS and the Bernoulli-based phylogenetic placement.

3.4.3 The link between RAPPAS and Bernoulli phylogenetic
placement

Let us now look at a slightly modified Bernoulli placement classifier in which the
parameter 𝑓 can take any value in the range [0, 1] regardless of the query length. I
will call it 𝑓 -weighted Bernoulli placement. For the value 𝑓 = (|𝑞|−𝑘+1)/(𝑚−𝑘+1) it
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corresponds to the Bernoulli-based phylogenetic placement as introduced above. I will
now show that, interestingly, when 𝑓 → 0, this classifier is equivalent to RAPPAS.

Let us denote by 𝑦𝐵𝑓 (𝑞) the prediction of the 𝑓 -weighted Bernoulli classifier (Equa-
tion 3.26 with an arbitrary value of 𝑓) for a particular query 𝑞, and by 𝑦𝑅(𝑞) the
prediction of RAPPAS (Equation 3.18) for the same query.

Theorem 3.4.1 (The connection theorem). If 𝑛𝑤 = 𝑏𝑤 for any 𝑘-mer 𝑤 in a query 𝑞,
then ∃𝑓0 > 0 such that ∀𝑓 : 0 < 𝑓 < 𝑓0, 𝑦𝐵𝑓 (𝑞) = 𝑦𝑅(𝑞), that is, 𝑓 -weighted Bernoulli
is equivalent to RAPPAS for 𝑓 sufficiently small.

Proof. By Equation 3.27, the prediction of RAPPAS does not change if we change
the scoring of classes from ∏︁

𝑤:𝑛𝑤>0

(︁
𝑆𝑦(𝑤)

)︁𝑛𝑤

to ∏︁
𝑤:𝑛𝑤>0

(︁
𝑓𝑆𝑦(𝑤)

)︁𝑛𝑤

and since 𝑛𝑤 = 𝑏𝑤, then∏︁
𝑤:𝑛𝑤>0

(︁
𝑓𝑆𝑦(𝑤)

)︁𝑛𝑤

=
∏︁

𝑤:𝑏𝑤=1

𝑓𝑆𝑦(𝑤).

Let us consider a class 𝑦 and the ratio of scores given to this class for the query 𝑞
by the two classifiers:

lim
𝑓→0

∏︀
𝑤:𝑏𝑤=1 𝑓𝑆𝑦(𝑤)

∏︀
𝑤:𝑏𝑤=0(1− 𝑓𝑆𝑦(𝑤))∏︀

𝑤:𝑛𝑤>0

(︁
𝑓𝑆𝑦(𝑤)

)︁𝑛𝑤
=

lim
𝑓→0

(︃∏︀
𝑤:𝑏𝑤=1 𝑓𝑆𝑦(𝑤)∏︀
𝑤:𝑏𝑤=1 𝑓𝑆𝑦(𝑤)

∏︁
𝑤:𝑏𝑤=0

(1− 𝑓𝑆𝑦(𝑤))

)︃
=

lim
𝑓→0

∏︁
𝑤:𝑏𝑤=0

(1− 𝑓𝑆𝑦(𝑤)) = 1.

The statement follows if we apply the reasoning above to all classes 𝑦 ∈ 𝐸(𝑇0).

Thus, we can see that RAPPAS is a Naive Bayes classifier and is equivalent to
a specific version of Bernoulli Naive Bayes classification under certain conditions. I
describe this connection for the first time here, and this connection will help us find
informative phylo-𝑘-mers. The reader may have guessed that the task of finding
informative phylo-𝑘-mers is virtually feature selection. The connection between the
classifiers described in the sections above suggests that feature selection methods
applied for Naive Bayes text classification can be applied to RAPPAS. The following
section will introduce these methods and explain their place in the rich world of
feature selection.

68



3.5 Feature selection

3.5.1 Dealing with high-dimensional feature spaces

Many supervised and semi-supervised learning tasks have to deal with massive sets
of features where the number of features is in the tens of thousands or more. It may
seem easier for algorithms to learn from data if they confront more detail about every
data point (i.e., learn in a space of higher dimension), but at a certain size of the
feature space, algorithms start to suffer from the curse of dimensionality [133]. This
phenomenon happens if the number of features is too large relative to the number of
training data points: in those high-dimensional spaces, data points tend to become
equidistant, and learning algorithms tend to overfit the training set. Apart from
that, learning from datasets that are rich in features may be challenging for other
reasons. Irrelevant and redundant features can mislead learning algorithms, making it
harder to spot important relationships in the training data [123, 122, 111, 166]. Thus,
eliminating irrelevant and redundant features can improve classification performance
[110, 37, 8]. A good set of features contains only features that are highly correlated to
the class and independent from each other [86]. Ideally, the feature space size should
correspond to the intrinsic dimensionality of the training data, which, however, may
be difficult to guess in advance.

There are multiple ways of dealing with excessive dimensionality. The first way
involves examining the existing features and their interdependencies and building
fewer new features from them. Such features must preserve necessary information to
predict the class variable; of course, there must be a way to translate unclassified data
samples into the new feature space. Those are methods of dimensionality reduction
and feature extraction, which include Principal Component Analysis and its extensions
[163, 229, 2, 188], Linear Discriminant Analysis and its extensions [67, 154, 233, 54],
techniques of multidimensional scaling (MDS, e.g., Principle Coordinate Analysis,
metric and nonmetric MDS [116, 117, 118, 40, 26]), and others, such as Independent
Component Analysis [98].

Another way of tackling this problem is thoughtful and accurate manual feature
engineering. Mainly being an ad hoc practice, it requires a deep understanding of the
data and the meaning of every feature. Features can be transformed and eliminated
by experienced data scientists based on their domain knowledge. While it can be
beneficial for our goals, the scalability of manual feature engineering is limited: pro-
cessing every new dataset requires manual interventions. Those who are interested
in feature engineering should be referred to [236]. In this work, I only consider fully
automated methods since in phylo-𝑘-mer based applications, the number of features
easily achieves hundreds of thousands, and manual feature engineering seems to be
very challenging in this case.

Finally, the feature space can be reduced via feature selection, a family of autom-
atized methods for picking important and meaningful features. It is also referred to
as semantics-preserving dimensionality reduction [101] since it does not change the
meaning of the features, leaving them easy to interpret. There are two key aspects of
this process: feature evaluation and search strategies. Feature evaluation determines
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what features are selected; it will be covered below. The selected subset of features
can be evaluated to determine the quality of this subset according to different criteria.
Search strategies answer how to progress with selecting the next subset of features
from the previous one. It is not always possible to evaluate all possible subsets of
features since an exhaustive evaluation takes exponential time; instead, we can apply
different heuristic algorithms to visit the feature subset space such as genetic algo-
rithms [88, 10, 207, 231, 162], simulated annealing [109, 128, 151, 1], greedy algorithms
(such as forward and backward elimination) and others [81, 225, 144]. Feature selec-
tion has been intensively studied for at least two decades: classic overviews of those
methods are [81, 156, 23, 48]; [133] gives a comprehensive overview of feature selec-
tion, including methods for text classification and its applications in bioinformatics.
A broad overview of feature selection methods in bioinformatics can also be found in
[179], while [218] is another excellent survey on applications of feature selection meth-
ods. The most common classification of feature selection methods splits them into
three categories: wrappers, filters, and embedded methods. In this work, I use this
classification, which will be covered in the next section. Other classifications also ex-
ist: [218] categorizes feature selection methods into exhaustive, heuristic, and hybrid
methods. [125] classifies feature selection methods based on the principles applied to
data processing: similarity-based, information theory-based, sparse learning-based,
and statistical-based methods. The method for selecting informative phylo-𝑘-mers
described in this work belongs to the category of information theory-based methods.

In this work, I only consider feature selection methods and not feature extraction
or manual engineering. They are straightforward yet powerful, and, in addition, they
do not modify the feature space, only eliminating specific features. It is not the case
for other methods. The next section will introduce the most popular classification of
feature selection methods.

3.5.2 Approaches to feature selection

Wrappers and embedded methods

Wrappers use predictive models as a black-box to evaluate predictive power of a subset
of features [81, 34, 110]. Using wrappers require three stages. At the beginning,
a candidate feature subset is generated. Then, the predictive performance of the
candidate subset is estimated using cross-validation on the training set. Finally,
another candidate feature subset is generated from the current one according to a
search strategy. Many search strategies have been suggested in literature: forward
selection, backward elimination, best-first, branch-and-bound and others [81, 110].
Different stopping criteria are used depending on the search strategy. Thus, wrappers
are black-box models: they do not rely on the information about features but only
on the predictive performance of every subset evaluated during each iteration of the
feature subset space search. It makes them universal, model-agnostic and simple;
they generally provide better results then filters but are computationally expensive,
especially applied to large feature spaces [181, 47, 206, 81, 107].

Embedded methods aim at reducing the computational cost of wrappers by per-
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forming feature selection during the learning of the model [34, 81, 120]. Embedded
feature selection usually exploits the information about the predictive model, e.g.,
neural networks weights [194], feature weights in SVM [82], and decision tree split-
ting criteria in [132]. While being more efficient than wrappers, they are still generally
slower than filter approaches [214].

Filters

Filters are another feature selection method family that does not utilize the learning
algorithm to perform the selection. Instead, the features are evaluated in various
ways and filtered out according to the evaluation. While they are often perceived
to be model-agnostic [81], it is argued that filters, like wrappers, need to take into
account the classification algorithm to be effective [210]. Filters are generally faster
than wrappers because they do not require any learning; wrappers are considered to
perform better because they can fit the feature subset to the learning algorithm (see
[47] for a discussion on this topic).

In this work, I consider simple filtering of phylo-𝑘-mers based on Maximal Mutual
Information a.k.a. Information Gain. This approach has been successfully applied in
many areas of machine learning, and it will be described later in this chapter. Many
other filtering methods have been suggested, including more advanced ones; this
work is the first attempt to apply feature selection to phylo-𝑘-mers, and application
of more advanced techniques goes beyond the scope of this work. For a survey on
other methods of information theory-based feature selection, I refer the reader to [30]
and its references.

3.5.3 Feature selection using Mutual Information

Early mentions of applying mutual information to select features for text classifica-
tion are [102, 149, 41]. The method selects features that achieve highest values of
individual mutual information between the feature and the document class variable.
This section introduces definitions that are necessary to describe this method.

Definition 3.5.1. The entropy 𝐻(𝑋) of a discrete random variable 𝑋 with possible
outcomes 𝒳 is defined by:

𝐻(𝑋) = −
∑︁
𝑥∈𝒳

𝑝(𝑥) log 𝑝(𝑥) (3.28)

where 𝑝(𝑥) denotes the probability mass function of 𝑋.

Definition 3.5.2. Consider two random variables 𝑋 and 𝑌 with a joint probability
mass function 𝑝(𝑥, 𝑦) and marginal probability mass functions 𝑝(𝑥) and 𝑝(𝑦). Let 𝒳
and 𝒴 denote the sets of their possible outcomes. The conditional entropy 𝐻(𝑌 | 𝑋)
is defined as

𝐻(𝑌 | 𝑋) = −
∑︁
𝑥∈𝒳

𝑝(𝑥)
∑︁
𝑦∈𝒴

𝑝(𝑦 | 𝑥) log 𝑝(𝑦 | 𝑥). (3.29)

71



Definition 3.5.3. Consider again 𝑋 and 𝑌 as in Definition 3.5.2. The mutual infor-
mation 𝐼(𝑋;𝑌 ) is the relative entropy between the joint distribution and the product
distribution 𝑝(𝑥)𝑝(𝑦):

𝐼(𝑋;𝑌 ) =
∑︁
𝑥

∑︁
𝑦

𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
. (3.30)

As shown in [39], there is a connection between mutual information and conditional
entropy:

𝐼(𝑋;𝑌 ) = 𝐻(𝑋)−𝐻(𝑋 | 𝑌 ). (3.31)

The definitions above can be now applied to define the mutual information filter
for Bernoulli Naive Bayes text classification in the following way. Let 𝑌 be the class
variable. Let 𝐵𝑤 be the random variable that takes 0 or 1 indicating if the word 𝑤 is
present in the document, and let 𝑏𝑤 denote its realization. Then, mutual information
between the feature and the class variable can be expressed as:

𝐼(𝑌 ;𝐵𝑤) =
∑︁
𝑦∈𝒴

∑︁
𝑏𝑤∈{0,1}

P(𝑦, 𝑏𝑤) log
P(𝑦, 𝑏𝑤)

P(𝑦)P(𝑏𝑤)
. (3.32)

The probabilities in Equation 3.32 can be estimated from the training set in the
following manner. P(𝑦, 𝑏𝑤) is estimated by the frequency of documents of class 𝑦
that contain 𝑤. P(𝑦) is estimated by the frequency of documents of class 𝑦 in the
training set. P(𝑏𝑤) is estimated by the frequency of the documents containing 𝑤 in
the training set.

In conclusion, the filter ranks the features by the value 𝐼(𝑌 ;𝐵𝑤) in descending
order, and takes a fixed number of features with the highest values of 𝐼(𝑌 ;𝐵𝑤). The
next section will demonstrate how to adapt this approach to select 𝑘-mers in the
framework of RAPPAS.

3.6 Mutual Information filters for RAPPAS

3.6.1 Deriving the Mutual Information Filter

Let us now express the mutual information between the class variable 𝑌 and the
variable indicating the presence of a 𝑘-mer 𝐵𝑤. According to Equation 3.31,

𝐼(𝑌 ;𝐵𝑤) = 𝐻(𝑌 )−𝐻(𝑌 | 𝐵𝑤)

= 𝐻(𝑌 )−
(︁
P(𝐵𝑤 = 1)𝐻(𝑌 | 𝐵𝑤 = 1) +P(𝐵𝑤 = 0)𝐻(𝑌 | 𝐵𝑤 = 0)

)︁
.

(3.33)

Let 𝑁 again denote the number of branches of 𝑇0. We assume a uniform prior
P(𝑦) over all branches of 𝑇0, which yields that 𝐻(𝑌 ) = −

∑︀
𝑦∈𝐸(𝑇0)

P(𝑦) logP(𝑦) =
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−𝑁(1/𝑁 log 1/𝑁) = − log 1/𝑁 is a constant value, which contributes equally to the
ranking of all features. Before we move on, one important point needs to be made.
P(𝐵𝑤 = 1) mentioned in Equation 3.33 means the probability of observing 𝑤 in
the query 𝑞 of arbitrary size. Those can be derived from conditional probabilities
of observing 𝑤 given the class 𝑦, i.e. P(𝐵𝑤 = 1 | 𝑦). In Sections 3.4.1 and 3.4.2
we discussed that if placed queries are shorter than the reference alignment, then
P(𝐵𝑤 = 1 | 𝑦) is estimated correctly by 𝑓𝑆𝑦(𝑤) not just 𝑆𝑦(𝑤). Here the parameter
𝑓 appears again, and it will play an important role in the expansion of Equation 3.33.

Let us now break down every member of Equation 3.33 and write them down in
terms of 𝑆𝑦(𝑤) and 𝑆𝑤 =

∑︀
𝑦 𝑆𝑦(𝑤). First, let us define the probabilities P(𝐵𝑤 = 1),

P(𝐵𝑤 = 0):

P(𝐵𝑤 = 1) =
∑︁
𝑦

P(𝑦)P(𝐵𝑤 = 1 | 𝑦) =
∑︁
𝑦

𝑓𝑆𝑦(𝑤)

𝑁
=

𝑓

𝑁

∑︁
𝑦

𝑆𝑦(𝑤) =
𝑓𝑆𝑤

𝑁
(3.34)

P(𝐵𝑤 = 0) = 1−P(𝐵𝑤 = 1) = 1− 𝑓𝑆𝑤

𝑁
. (3.35)

Now let us express the probabilities in 𝐻(𝑌 | 𝐵𝑤 = 1), 𝐻(𝑌 | 𝐵𝑤 = 0):

P(𝑦 | 𝐵𝑤 = 1) =
P(𝐵𝑤 = 1 | 𝑦)P(𝑦)

P(𝐵𝑤 = 1)
=

𝑓𝑆𝑦(𝑤) · 1/𝑁
1/𝑁 · 𝑓𝑆𝑤

=
𝑆𝑦(𝑤)

𝑆𝑤

(3.36)

P(𝑦 | 𝐵𝑤 = 0) =
P(𝐵𝑤 = 0 | 𝑦)P(𝑦)

P(𝐵𝑤 = 0)
=

(1− 𝑓𝑆𝑦(𝑤)) · 1/𝑁
1− 𝑓𝑆𝑤

𝑁

=
1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

. (3.37)

Finally, we can write down the conditional entropies of 𝑌 :

𝐻(𝑌 | 𝐵𝑤 = 1) = −
∑︁
𝑦

P(𝑦 | 𝐵𝑤 = 1) logP(𝑦 | 𝐵𝑤 = 1) = −
∑︁
𝑦

𝑆𝑦(𝑤)

𝑆𝑤

log
𝑆𝑦(𝑤)

𝑆𝑤

(3.38)

𝐻(𝑌 | 𝐵𝑤 = 0) = −
∑︁
𝑦

P(𝑦 | 𝐵𝑤 = 0) logP(𝑦 | 𝐵𝑤 = 0)

= −
∑︁
𝑦

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

log
1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

.

Therefore, maximising the mutual information

𝐼(𝑌 ;𝐵𝑤)→ max
𝑤

(3.39)

is equivalent to:
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𝑓𝑆𝑤

𝑁⏟ ⏞ 
P(𝐵𝑤=1)

∑︁
𝑦

𝑆𝑦(𝑤)

𝑆𝑤

log
𝑆𝑦(𝑤)

𝑆𝑤⏟  ⏞  
−𝐻(𝑌 |𝐵𝑤=1)

+
(︁

1− 𝑓𝑆𝑤

𝑁

)︁
⏟  ⏞  
P(𝐵𝑤=0)

∑︁
𝑦

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

log
1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤⏟  ⏞  
−𝐻(𝑌 |𝐵𝑤=0)

→ max
𝑤

(3.40)
Now we can see that it is impossible to proceed without having guessed the value

of 𝑓 . However, the filtering of phylo-𝑘-mers is meant to happen during the first stage
of the RAPPAS algorithm, that is, phylo-𝑘-mer database computation (see Section
1.5). During this stage, query sizes are unknown. Moreover, we would like to select
phylo-𝑘-mers that will be informative to place queries of different sizes. How would
it be possible?

One way could be to guess different values of 𝑓 in the range [0, 1], apply Equa-
tion 3.40 multiple times and produce multiple filtered databases. Depending on the
query size, the user would need to use the phylo-𝑘-mer database that was produced
with the value of 𝑓 that was the closest to (|𝑞|−𝑘+1)/(𝑚−𝑘+1). This seems imprac-
tical, because the rationale for filtering is to reduce the number of phylo-𝑘-mers, and
therefore to reduce the final size of produced phylo-𝑘-mer databases. From this point
of view, producing many databases could be counterproductive. Instead, I suggest a
simpler route: assume only one fixed value of 𝑓 and evaluate the performance of the
Mutual Information filter for this fixed value for queries of different sizes. Query sizes
are in the range [𝑘,𝑚], therefore 𝑓 ∈ (0, 1]. Let us make two different assumptions
about the value of 𝑓 .

3.6.2 Making assumptions about 𝑓

The first assumption will be 𝑓 = 1, which corresponds to full-length queries (|𝑞| = 𝑚).
This is a common scenario in metabarcoding that RAPPAS targets. Assuming 𝑓 = 1,
it is straightforward to derive the first filter from Equation 3.40:

𝑆𝑤

𝑁

∑︁
𝑦

𝑆𝑦(𝑤)

𝑆𝑤

log
𝑆𝑦(𝑤)

𝑆𝑤

+
(︁

1− 𝑆𝑤

𝑁

)︁∑︁
𝑦

1− 𝑆𝑦(𝑤)

𝑁 − 𝑆𝑤

log
1− 𝑆𝑦(𝑤)

𝑁 − 𝑆𝑤

→ max
𝑤

(3.41)

This is the definition of the first filter I suggest. Let us call it 𝑀𝐼𝑓=1. The value of
𝑓 suggests that this filter should produce phylo-𝑘-mers that place long queries better
than short queries. What happens in practice will be covered later in this chapter.

Another assumption will be 𝑓 → 0, for which RAPPAS is obtained from Bernoulli-
based placement. Our objective is to derive a closed-form expression of Equation 3.40
that does not contain 𝑓 . To do this, let us consider both members of the formula: 𝑓
does not appear in 𝐻(𝑌 | 𝐵𝑤 = 1), only in 𝐻(𝑌 | 𝐵𝑤 = 0). Let us take a closer look
at its value when 𝑓 → 0.

Theorem 3.6.1. 𝐻(𝑌 | 𝐵𝑤 = 0) = log𝑁 +𝒪(𝑓 2).

Proof. Let us look at the Taylor series of 𝐻(𝑌 | 𝐵𝑤 = 0) at 𝑓 = 0, where
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𝐻(𝑌 | 𝐵𝑤 = 0) = −
∑︁
𝑦

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

log
1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

Let us substitute 𝑔(𝑓) = 𝐻(𝑌 | 𝐵𝑤 = 0). Then, 𝑔(𝑓) = 𝑔(0) + 𝑔′(0) +𝒪(𝑓 2). The
first member of the series is:

𝑔(0) = −
∑︁
𝑦

1

𝑁
log

1

𝑁
= − log 1/𝑁 = log𝑁

To express the second member, we need to take the derivative of 𝑔.

Lemma 3.6.2. For

𝑔(𝑓) = −
∑︁
𝑦

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

log
1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

where log is the 𝑎 base logarithm, its derivative is

𝑑

𝑑𝑓
𝑔(𝑓) = −

∑︁
𝑦

1

ln 𝑎

𝑁𝑆𝑦(𝑤)− 𝑆𝑤

(𝑁 − 𝑓𝑆𝑤)2

(︁
ln

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

+ 1
)︁
.

Proof. See Appendix A.1.

Let us now calculate the value of 𝑔′ at 𝑓 = 0:

𝑔′(0) = −
∑︁
𝑦

1

ln 𝑎

𝑁𝑆𝑦(𝑤)− 𝑆𝑤

𝑁2

(︁
ln

1

𝑁
+ 1
)︁

=
ln𝑁 − 1

ln 𝑎

∑︁
𝑦

𝑁𝑆𝑦(𝑤)− 𝑆𝑤

𝑁2

=
ln𝑁 − 1

ln 𝑎

∑︁
𝑦

𝑆𝑦(𝑤)

𝑁
− 𝑁𝑆𝑤

𝑁2

=
ln𝑁 − 1

ln 𝑎

(︁𝑆𝑤

𝑁
− 𝑆𝑤

𝑁

)︁
= 0.

The statement of Theorem 3.6.1 follows immediately.

By substituting the result above into Equation 3.40, we then have that 𝐼(𝑌 ;𝐵𝑤)→
max𝑤 is equivalent to:

𝑓𝑆𝑤

𝑁

∑︁
𝑦

𝑆𝑦(𝑤)

𝑆𝑤

log
𝑆𝑦(𝑤)

𝑆𝑤

− (1− 𝑓𝑆𝑤

𝑁
)(log𝑁 +𝒪(𝑓 2))→ max

𝑤
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− log𝑁 +
𝑓𝑆𝑤

𝑁

(︃∑︁
𝑦

𝑆𝑦(𝑤)

𝑆𝑤

log
𝑆𝑦(𝑤)

𝑆𝑤

+ log𝑁

)︃
+𝒪(𝑓 2) +𝒪(𝑓 3)→ max

𝑤

If we ignore − log𝑁 (a constant) and only keep the 𝑂(𝑓) term which dominates
over the higher-degree infinitesimals for 𝑓 → 0, we get:

𝑓𝑆𝑤

𝑁

(︃∑︁
𝑦

𝑆𝑦(𝑤)

𝑆𝑤

log
𝑆𝑦(𝑤)

𝑆𝑤

+ log𝑁

)︃
→ max

𝑤

which finally allows us to drop 𝑓/𝑁 since it contributes to all classes equally.
Thus, Equation 3.40 with 𝑓 → 0 is equivalent to:

𝑆𝑤

(︁
log𝑁 +

∑︁
𝑦

𝑆𝑦(𝑤)

𝑆𝑤

log
𝑆𝑦(𝑤)

𝑆𝑤

)︁
→ max

𝑤
(3.42)

or, equivalently:

𝑆𝑤

(︁
𝐻(𝑌 )−𝐻(𝑌 |𝐵𝑤 = 1)

)︁
→ max

𝑤
(3.43)

Equations 3.42 and 3.43 are definitions of the second filter suggested in this work.
Let 𝑀𝐼𝑓→0 denote this filtering function. Equation 3.43 has an interesting interpre-
tation: on the one hand, it favors 𝑘-mers with high 𝑆𝑤, i.e., probable ones. On the
other hand, it favors the ones that produce higher reductions in the entropy of the
class variable when the 𝑘-mer is in the query. In other words, the filter based on
𝑀𝐼𝑓→0 selects 𝑘-mers that reduce entropy the most if observed.

𝑀𝐼𝑓=1 (defined in Equation 3.41) and 𝑀𝐼𝑓→0 are used to rank features for filtering,
and the ranking determines in what order features should be selected. There is still
an essential detail of the implementation of feature selection we have to cover: how
many features should we select?

3.6.3 Filter-based selection of phylo-𝑘-mers

Before I describe the selection process, let me again clarify the meaning of 𝑘-mers
and phylo-𝑘-mers to avoid confusion between them. 𝑘-mers are substrings of size 𝑘
observed in the query sequence, i.e., features of classification. Phylo-𝑘-mers are pairs
{(𝑏𝑟𝑎𝑛𝑐ℎ, 𝑠𝑐𝑜𝑟𝑒)} associated with a particular 𝑘-mer, i.e., feature values. Filters select
informative 𝑘-mers based on their phylo-𝑘-mer scores.

Filters lack mechanisms for finding how many features should be selected contrary
to wrappers: they do not evaluate the selected subset of features. Instead, users
suggest a fixed number of features to select. However, for RAPPAS, selecting a fixed
number of 𝑘-mers is inappropriate for the following reason. The way phylo-𝑘-mers are
stored implies that they take different amounts of space depending on the 𝑘-mer: the
number of scores stored for a particular 𝑘-mer is the number of branches whose score
surpasses the threshold 𝜀 (as described at page 37). Selection of a fixed number of
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𝑘-mers phylo-𝑘-mer scores
AA (𝑦1, 0.9) (𝑦4, 0.3)
AC (𝑦1, 0.99) (𝑦2, 0.1) (𝑦3, 0.01) (𝑦4, 0.01)
AT (𝑦4, 0.7)
. . . . . .
TA (𝑦1, 0.01) (𝑦2, 0.01) (𝑦3, 0.01) (𝑦4, 0.01)

Figure 3-1 – A toy example of a database of phylo-𝑘-mers. Selection of a fixed number
of 𝑘-mers results in a different numbers of phylo-𝑘-mers in the filtered database,
depending on what 𝑘-mers are selected. For example, selecting a single 𝑘-mer would
result storing only one phylo-𝑘-mer if AT is selected and four phylo-𝑘-mers for AC.

features can favor filters that give high ranks to 𝑘-mers with a larger number of phylo-
𝑘-mers explicitly stored. As a result, filtered databases can differ in final size, which
makes it unfair to compare the performance of filters using this approach (Figure 3-1
illustrates the problem).

Instead, I suggest another way. Let 𝒟 denote the entire database of phylo-𝑘-mers,
and |𝒟| denote the total number of phylo-𝑘-mers stored in 𝒟. Let 𝜇 denote the
relative size of the selected subset of features compared to the full one, 𝜇 ∈ (0, 1].
For example, for the value of 𝜇 = 0.5, the filtered database should be no larger than
|𝒟|/2 in the number of phylo-𝑘-mers; 𝜇 = 0.1 means that the filtered database should
be no larger than |𝒟|/10. 𝜇 = 1.0 corresponds to the entire original database with
no filtering applied. Filtering happens as follows: having all 𝑘-mers ranked by the
filtering function, we iteratively include 𝑘-mers one by one to the filtered database
until it reaches 𝜇·|𝒟| in the number of phylo-𝑘-mers. Since each 𝑘-mer 𝑤 is associated
with a different number of scores 𝑆𝑦(𝑤) stored explicitly, the final number of 𝑘-mers
included may vary for different filters even if 𝜇 is the same.

3.6.4 Random filter

In practice, filters do not assume evaluation of their performance, which makes them
faster compared to other feature selection methods. However, we still need to evaluate
the performance of suggested filters to answer these questions:

1. How could we understand which filter is better?

2. How effective are filters on different datasets compared to a meaningful baseline?

3. How does filtering influence placement accuracy?

To answer those questions, we need to choose a baseline filtering method to com-
pare against and an evaluation procedure. For the baseline, I suggest ranking all 𝑘-
mers randomly and selecting them according to their ranks until the database reaches
𝜇 · |𝒟| in the number of phylo-𝑘-mers. I will call this process Random filtering. The
process of evaluation will be described in Section 3.7.
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3.7 Experimental evaluation
This section presents experimental evaluation of suggested filtering methods. All ex-
periments were carried out using Placement Evaluation WOrkflows (PEWO) [129],
a recently published framework for comparing phylogenetic placement tools perfor-
mance. Effectiveness of filters is evaluated in terms of relative placement accuracy
achieved with filtered databases compared to non-filtered ones. PEWO suggests
two procedures to measure placement accuracy: pruning-based accuracy (PAC) and
likelihood-based accuracy (LAC). The main experiments used the latter method, which
is a technique introduced in [129]. This choice is based on that PAC is computation-
ally much more heavy; however, some results obtained using PAC are also presented
below.

I implemented all filtering methods in XPAS, a new tool for computing databases
of phylo-𝑘-mers. Computed databases were used by RAPPAS2, a new tool for phy-
logenetic placement that I developed in this work. A detailed description of those
programs will follow in Chapter 4; XPAS and RAPPAS2 were used in conjunction
with PEWO for LAC and PAC experiments.

3.7.1 Likelihood-based Accuracy

LAC is a placement evaluation procedure I implemented while working on this project.
It is one of two evaluation procedures available in PEWO at the moment, and it
assesses the relative accuracy of phylogenetic placement. The procedure is as follows.

1. Align a query 𝑞 within the reference alignment 𝐴, obtaining an alignment 𝐴𝑞.
In PEWO, HMMER is used as the standard alignment tool.

2. Given a reference tree 𝑇 , a placement method with a fixed set of parameters,
place the query 𝑞 to 𝑇 . Let 𝑦(𝑞) be the branch that is returned as the most
likely placement for 𝑞.

3. Create an extended tree 𝑇𝑞 by modifying 𝑇 as follows: create a new node in
𝑇𝑞 by splitting 𝑦(𝑞) in two branches. Attach to this new node a new pendant
branch leading to a leaf labelled by 𝑞.

4. Reoptimize the branch lengths of 𝑇𝑞 under the same model used to infer 𝑇
and calculate the log-likelihood (referred to as logℒ(𝑞)) of 𝑇𝑞. PEWO uses
RAxML-ng for this purpose:

$ raxml -ng --evaluate --msa Aq --tree Tq \
--model MODEL

We also call logℒ(𝑞) LAC values to differentiate them from the log-likelihoods of
the different possible placements for one query reported by phylogenetic placement
software. LAC values obtained for different placement methods and the same query
sequence can be compared. However, in this chapter, I do not compare different
placement software. Instead, I compare the performance of RAPPAS2 applied with
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filtered databases against its performance with non-filtered databases. The relative
performance of placement obtained with different filtering methods is also a subject
of interest.

For every dataset consisting of a reference alignment and a reference tree, the
following procedure was applied. In order to generate query sequences, a large subtree
was pruned out of the original tree. Then, sequences that corresponded to the leaves
of the subtree were excluded from the alignment. Those sequences were used to
randomly sample query subsequences of a specific size. The branch lengths in the rest
of the original tree were reoptimized and the phylo-𝑘-mer database was computed on
the basis of the resulting tree, as follows. For a fixed combination of parameters 𝑘,
𝜀, a database of phylo-𝑘-mers was computed and filtered with gradually decreasing
values of 𝜇 : 1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625. This corresponded to
filtering out 0%, 50%, 75%, 87.5%, ≈ 94%, ≈ 97%, ≈ 98.5% of phylo-𝑘-mers from the
entire database. Queries generated from the pruned subtree were placed using every
filtered database. For every query placed with a filtered database obtained for a fixed
value of 𝜇, the LAC value (logℒ𝜇(𝑞)) was compared to the LAC value obtained by
placing the same query with a non-filtered database (logℒ1.0(𝑞)):

∆ logℒ(𝑞) = logℒ𝜇(𝑞)− logℒ1.0(𝑞) (3.44)

Figures 3-2, 3-3, 3-4, and 3-5 present the results of those experiments for different
datasets. A detailed analysis of these results is presented below. Every figure of these
plots presents the means of ∆ logℒ averaged over all queries placed. Values of zero
mean that LAC values have not changed on average due to filtering; negative values
of LAC difference mean worse accuracy on average obtained for filtered databases
compared to non-filtered ones.

3.7.2 Datasets

The first dataset, D652, consists of 652 bacterial 16S rRNA sequences and a reference
tree, taken as-is from [130]. It was derived from another dataset used in literature,
namely bv from [200] used in other works on phylogenetic placement [15, 43, 22]. The
LAC procedure was applied twice for this dataset by taking subtrees of 386 taxa and
235 taxa which were used to compute phylo-𝑘-mer databases for 𝑘 = 10; the rest of
the tree was used to generate queries of different size. The second dataset — D500 —
consists of 500 Rbcl gene sequences [20]. The procedure was applied for one subtree
of 192 taxa but databases were built for 𝑘 = 10 and 𝑘 = 12. Finally, D155 from [130]
consists of 155 whole-genome sequences (9.5k base pairs) of the hepatitis C virus,
from which a subtree of 65 taxa was taken as reference. See Table 3.1 for parameter
values used in all experiments.
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Dataset Figure # taxa 𝑚 𝑘 𝜀 query size #queries

D652 3-2a 386 / 652 1.7Kbp 10 (1.5/4)𝑘 300 100
D652 3-2b 386 / 652 1.7Kbp 10 (1.5/4)𝑘 800 100
D652 3-2c 386 / 652 1.7Kbp 10 (1.5/4)𝑘 1500 100
D652 3-3a 235 / 652 1.7Kbp 10 (1.5/4)𝑘 300 200
D652 3-3b 235 / 652 1.7Kbp 10 (1.5/4)𝑘 800 200

D500 3-4a 192 / 500 1.4Kbp 10 (1.5/4)𝑘 300 100
D500 3-4b 192 / 500 1.4Kbp 10 (1.5/4)𝑘 700 100
D500 3-4c 192 / 500 1.4Kbp 10 (1.5/4)𝑘 1300 100
D500 3-4d 192 / 500 1.4Kbp 12 (1.5/4)𝑘 300 100
D500 3-4e 192 / 500 1.4Kbp 12 (1.5/4)𝑘 700 100
D500 3-4f 192 / 500 1.4Kbp 12 (1.5/4)𝑘 1300 100

D155 3-5a 65 / 155 9.5Kbp 10 (1.5/4)𝑘 300 50
D155 3-5b 65 / 155 9.5Kbp 10 (1.5/4)𝑘 4800 50
D155 3-5c 65 / 155 9.5Kbp 12 (1.5/4)𝑘 300 50
D155 3-5d 65 / 155 9.5Kbp 12 (1.5/4)𝑘 4800 50

Table 3.1 – The parameters of LAC experiments on 𝑘-mer filtering.
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Figure 3-2 – Means and standard errors of LAC differences obtained for the first
experiment on D652 for three filtering methods: 𝑀𝐼𝑓→0 (red), 𝑀𝐼𝑓=1 (cyan), and
Random filtering (yellow). Higher values are better. Positive values indicate that
filtering had improved placement on average compared to placement using the entire
database of phylo-𝑘-mers. Every dot represents a mean of 100 LAC value differences
for queries placed with a filtered phylo-𝑘-mer database obtained with a fixed set of
parameters 𝑘, 𝜀, and 𝜇. (a), (b), (c) present results for queries of size 300, 800, and
1500 base pairs, respectively.
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Figure 3-3 – Means and standard errors of LAC differences obtained for the second
experiment on D652 for three filtering methods, 200 queries per database. This figure
should be interpreted in the same way as Figure 3-2. (a) Query size of 300 bp. (b)
Query size of 800 bp.

3.8 Experimental results & discussion

3.8.1 Filter performance: LAC experiments

D652

Figure 3-2a shows that all filters perform very well for 𝜇 = 0.5 (mean change in
likelihood is close to zero), suggesting that filtering out a half of the phylo-𝑘-mers did
not decrease the accuracy of the placement in this case. For even smaller values of
𝜇 the placement accuracy drops at different rates for different filters. For 𝜇 < 0.5,
𝑀𝐼𝑓→0 (red) performs better on average than 𝑀𝐼𝑓=1 (cyan), except for 𝜇 = 0.125.
Both 𝑀𝐼𝑓→0 and 𝑀𝐼𝑓=1 perform much better than Random filtering (yellow).

Results are similar for longer queries (Figures 3-2b, 3-2c): until 𝜇 reaches the
value of 0.25 for queries of 800 bp and 0.03125 for queries of 1500 bp, both mutual
information-based filters show the performance close to the baseline; they perform
much better for very small values of 𝜇. 𝑀𝐼𝑓=1 shows a better performance in the mid-
range of 𝜇 values than 𝑀𝐼𝑓→0, achieving positive values of mean LAC difference. This
suggests that filtering may improve the accuracy of placement for this case, and some
phylo-𝑘-mers in non-filtered databases may be harmful for phylogenetic placement;
however, the statistical significance of this effect was not confirmed. 𝑀𝐼𝑓→0 shows
more stable performance for all values of 𝜇 tested: for example, 3-2c suggests that
for longer queries, taking only 1.5% of phylo-𝑘-mers (𝜇 = 0.015625, red line) is as
good as taking 50% (𝜇 = 0.5) or 100% (𝜇 = 1.0). The latter is a strong indication
that the assumption of phylo-𝑘-mer database redundancy is correct, at least for some
combination of input parameters of the method.

An interesting effect can be noticed if we compare the performance of the Ran-
dom filter for different query sizes. The baseline performance degrades slower with
decreasing 𝜇 for longer queries: on Figure 3-2a, 𝜇 = 0.5 is as good as 𝜇 = 1.0; on
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Figure 3-4 – Means and standard errors of LAC differences obtained for the exper-
iment on D500 for three filtering methods, 100 queries per database. (a), (b), (c)
present results obtained for 𝑘 = 10 and query sizes of 300 bp, 700 bp, 1300 bp,
respectively; (d), (e), (f) for 𝑘 = 12 and the same query sizes.

Figure 3-2b, 𝜇 = 0.25 is enough for accurate placement, and on Figure 3-2c, even
𝜇 = 0.03125 is as good as 𝜇 = 1.0. This suggests that longer queries are easier to
place: they contain more of a phylogenetic signal that helps to determine the query’s
exact placement. This result is consistent with the results of [130], where RAPPAS
and other phylogenetic placement tools such as EPA-ng and PPLACER showed
higher placement accuracy for longer queries.

D500

Figure 3-4 present results for D500, obtained for different query sizes (300, 700, and
1500) and two values of 𝑘: 𝑘 = 10 (3-4a, 3-4b, 3-4c) and 𝑘 = 12 (3-4d, 3-4e, 3-4f).
In all cases 𝑀𝐼𝑓→0 performs better than 𝑀𝐼𝑓=1; both filters achieve high accuracy
even for very small values of 𝜇, outperforming random filtering. Notice that 𝑀𝐼𝑓→0

slightly improves the accuracy of placement for long queries (Figures 3-4c, 3-4f), while
𝑀𝐼𝑓=1 does not, contrary to the case of D652. The significance of the improvement
is to be established.
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D155

For this dataset, the picture is more complicated, and it is different depending on the
value of 𝑘. For 𝑘 = 10 (Figures 3-5a, 3-5b) both mutual information-based filters show
good performance only for 𝜇 ≥ 0.25. For 𝜇 < 0.25, they do not perform better than
random filtering. The reasons of poor performance for smaller values of 𝜇 are unclear.
One reason could be that the reference alignment of D155 is much longer (≈ 9.6k base
pairs against ≈ 1.7k and ≈ 1.4k base pairs for the previous datasets), and the size
of 𝑘-mers may be relatively too small. Experiments of [130] also suggested that this
dataset is challenging for RAPPAS: it showed poor performance compared to other
phylogenetic placement tools. However, increasing the size of the 𝑘-mer (𝑘 = 12,
Figures 3-5c, 3-5d) improves the results: proposed filters show better performance
than the baseline. This could mean that computing a phylo-𝑘-mer database with
𝑘 = 10 and low 𝜇 values (𝜇 < 0.25) is insufficient to represent the phylogeny as
a collection of phylo-𝑘-mers, and such values do not allow the database to describe
the high amount of phylogenetic information of this dataset. I will comment on this
problem later in Section 3.8.3.

3.8.2 Filter performance: PAC experiments

In addition to the LAC experiments, I conducted more classic PAC experiments with
two datasets (D500 and D652), on which the filtering showed promising results in
the previous section. These experiments are much more computationally expensive
since they require computing many phylo-𝑘-mer databases (see Section 1.4 for details
of this procedure). These experiments aimed at determining the absolute placement
accuracy of filtered databases (that is, how far in terms of node distance filtered
databases can place query sequences). Because of the computational complexity of
these experiments, the values of 𝑘 were reduced to 8 and 10. For every dataset and
a set of parameters 𝑘, 𝜇, 30 pruning experiments were done; for every pruning of the
reference tree, a database of phylo-𝑘-mers was calculated and used to place query
sequences of size 300 bp generated from the pruned subtree. Then, the node distance
of every query was calculated, and the mean node distance for the pruning is shown
as a single dot on the resulting figures.

Figure 3-6 presents the results of those experiments obtained for D652. In all fig-
ures of PAC experiments, the lower the values, the better. Any cloud of points can be
compared with the cloud obtained for 𝜇 = 1 of the same plot to understand the effect
of filtering on accuracy compared to placement without filtering. For 𝑘 = 8, 𝑀𝐼𝑓→0

and 𝑀𝐼𝑓=1 (Figures 3-6a, 3-6b) perform as well as random filtering (Figure 3-6c) for
𝜇 ≥ 0.125 and show a better performance for lower values of 𝜇. Apart from the lowest
value of 𝜇 = 0.015625, it is difficult to determine which of the suggested MI-based
filters works better. Finally, for 𝑘 = 10, 𝑀𝐼𝑓→0 (Figure 3-6d) outperforms 𝑀𝐼𝑓=1

(Figure 3-6e), especially for the lowest values of 𝜇. All those results are consistent
with the results obtained with LAC, where 𝑀𝐼𝑓→0 consistently outperformed 𝑀𝐼𝑓=1

for the same query size of 300bp.
Figure 3-7 presents the results for D500. For 𝑘 = 8, Figure 3-7a shows that 𝑀𝐼𝑓→0
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Figure 3-5 – Means and standard errors of LAC differences obtained for the experi-
ment on D155, 50 queries per database. (a), (b) show results for 𝑘 = 10 and query
sizes of 300 bp, 4800 bp, respectively; (c, d) show results for 𝑘 = 12 and the same
query sizes.
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Figure 3-6 – Mean node distance values obtained during PAC experiments on D652
for three filters: 𝑀𝐼𝑓→0 (red), 𝑀𝐼𝑓=1 (cyan), and Random filtering (yellow). (a, b,
c) correspond to the results obtained with 𝑘 = 8, (d, e, f) correspond to the results
obtained with 𝑘 = 10. Every dot represents one pruning of the original tree used to
produce a filtered database and a set of queries; node distances of placed queries are
used to calculate the mean value of mean node distances. Lower values are better.
The lines represent the mean values of the distributions.
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Figure 3-7 – Mean node distance values obtained during PAC experiments on D500.
This figure should be interpreted in the same way as Figure 3-6.

allows us to lower 𝜇 to 0.125 without reducing the placement accuracy, outperforming
the baseline (Figure 3-7c). 𝑀𝐼𝑓=1 (Figure 3-7b) shows similar but slightly worse
results on average, still performing better than random filtering, especially for low
values of 𝜇. For 𝑘 = 10, the difference between two mutual information-based filters
is higher: 𝑀𝐼𝑓=1 (Figure 3-7e) suffers from outliers while still performing better
than the baseline (Figure 3-7f) on average. 𝑀𝐼𝑓→0 (Figure 3-7d) shows the best
results, allowing to lower 𝜇 to 0.0625 with no loss of the placement accuracy. The
improvement in accuracy produced by filtering for long sequences (1300bp) obtained
in LAC experiments for this dataset is yet to be reproduced.

3.8.3 Dataset complexity and parameter choice

The difference in filtering performance for different datasets shows that not all datasets
are equally easy to deal with. I assume that different datasets have different intrinsic
complexity, which we can think of as the amount of information needed to describe
the data. For example, long and variable reference alignments have more information
than short and conservative ones. I assume that higher values of 𝑘 are needed to
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represent phylogenies inferred from longer sequences in phylo-𝑘-mers. Similarly, for
“easy” datasets, more phylo-𝑘-mers can be filtered out, which we observe in the LAC
experiments on D652 and D500 compared to D155. In light of this, important prac-
tical questions arise: How to estimate the complexity of a dataset? What parameters
should be used for each specific dataset? So far, there is no direct answer to these
questions, but some considerations can help us sort this out.

First, we should note that increasing 𝑘 causes us to keep more data, and decreasing
𝜇 causes us to keep less. For phylogenetic placement of targeted metabarcoding
reads (such as 16S rRNA, 18S rRNA) with a length of no more than a couple of
thousand base pairs, RAPPAS2 shows good accuracy in the cases of 𝑘 = 10, 12.
Most likely, 𝜇 ∈ [0.1, 0.5] can be used in these cases without a significant loss of
accuracy. For placing reads on phylogenies inferred from longer alignments (more
than several thousand base pairs), it is most likely worth using 𝑘 = 12 (or more)
and more conservative values of 𝜇 ∈ [0.5, 1.0]. In any case, more experiments with
this type of data are needed to make recommendations on parameter values for such
cases.

Of course, we would like to keep 𝜇 as low as possible as long as it does not
significantly decrease placement accuracy: reducing 𝜇 leads to a decrease in memory
consumption during both phylo-𝑘-mer database computation and placement. So far,
we cannot easily figure out what value of 𝜇 is optimal in this sense. It is an open
question whether or not it is possible to determine the optimal value from dataset
characteristics alone. I believe that, for now, the only realistic way to find the optimal
𝜇 is to use wrappers or embedded methods. However, as discussed before, such a
solution will significantly increase the time needed to build the database of phylo-𝑘-
mers. Until we know fast and reliable ways to estimate optimal values of 𝜇, it makes
sense to use the maximum amount of RAM available on the user’s machine.

The problem of finding the optimal value for 𝑘 also exists. We want to keep 𝑘
as low as possible without hurting placement accuracy. However, the question of
how to choose the optimal value of 𝑘 remains unanswered. Intuitively, we should
expect to obtain higher placement accuracy when increasing values of 𝑘. Values of
𝑘 higher than 10 did not seem practical before: phylo-𝑘-mer computation was too
long, and the resulting databases were too large. Further improvements of phylo-𝑘-
mer computation algorithms, combined with the filtering algorithms presented here,
could move this boundary. This may extend the scope of RAPPAS2 in the future,
making phylogenetic placement for long alignments with RAPPAS2 more accurate.

3.9 Conclusion

In this chapter, we addressed the question of the informativeness of phylo-𝑘-mers. I
described the method of RAPPAS as classification and showed that RAPPAS is a
Naive Bayes classifier. I showed that RAPPAS is equivalent to phylogenetic place-
ment based on the Bernoulli Naive Bayes classification obtained with 𝑓 → 0. This
condition may be interpreted as follows: placements of RAPPAS and the Bernoulli
Naive Bayes are identical when queries are very short relative to the reference align-
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ment. In addition to giving us a more accurate understanding of the nature of RAP-
PAS, it also gives rise to a discussion about its optimality. First, from a Bayesian
point of view, the parameter estimate (i.e., the formula by which phylo-𝑘-mer scores
are computed) may be refined. So far, there are no precise estimates of how inaccu-
rate the scores of the phylo-𝑘-mers calculated by RAPPAS are. I will discuss it in
Section 5.1.2. Second, while Bernoulli-based placement is identical to RAPPAS for
short queries and long alignments, it is yet unknown how this classifier behaves for
other cases. It may turn out that the accuracy of RAPPAS can be improved with
the Bernoulli classifier based on phylo-𝑘-mers. I will discuss it in Section 5.1.3.

Furthermore, the connections to Naive Bayes classifiers pushed me to look into
feature selection methods that are commonly used for these classifiers. As a result,
I suggested two new methods of selecting informative phylo-𝑘-mers based on Mutual
Information — 𝑀𝐼𝑓→0 and 𝑀𝐼𝑓=1 — and conducted experiments measuring place-
ment accuracy obtained with filtered databases. The experimental results suggest
that both methods perform better than the baseline (i.e., the random selection of
phylo-𝑘-mers). As for comparing 𝑀𝐼𝑓→0 and 𝑀𝐼𝑓=1 with each other, the results are
inconsistent, but 𝑀𝐼𝑓→0 more often shows higher accuracy than 𝑀𝐼𝑓=1 and should
be the default filtering method for phylo-𝑘-mers.

Both methods allow to significantly reduce database sizes with a little or no loss
in placement accuracy. PAC and LAC experiments with short phylogenetic markers
(16S rRNA for D652 and Rbcl gene for D500) and short queries (query size of 300
bp) showed that even though database sizes were only 6% and 12% (𝑘 = 10 for
D500 and D652, respectively) compared to unfiltered databases, they still provided
enough phylogenetic information to place queries just as accurately as with unfiltered
databases. LAC experiments showed that database sizes can be reduced to as little
as 3% for longer queries without loss of placement accuracy. Experiments with a
dataset based on a longer alignment (D155, complete HCV sequences) have shown
that databases can be halved without loss of accuracy for placing short sequences
(query size of 300 bp) and be reduced to no more than 6% in size for placing long
sequences (𝑘 = 12, query size of 4.8 Kbp). This suggests that the appropriate degree
of filtering may depend on how long sequences are to be placed, how long is the
reference alignment, and what is the size of 𝑘.

The different nature of the data (bacteria in D652, plants in D500, viruses in
D155) shows the versatility of the phylo-𝑘-mer filtering approach in general, which
works for data from different kingdoms. Therefore, we can confidently answer the
chapter’s original question: not all phylo-𝑘-mers are necessary for accurate placement.
Moreover, even selecting a random small part of phylo-𝑘-mers is often enough for
precise placement. In addition to that, some experimental results appear to show
that filtering may improve phylogenetic placement, suggesting that some phylo-𝑘-
mers may be not just non-informative but harmful and misleading for the classification
algorithm. Those results, however, are yet to be reproduced and confirmed in different
experimental setups.
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Chapter 4

XPAS and RAPPAS2

This chapter describes two practical results of my work: XPAS and RAPPAS2, two
new phylo-𝑘-mer related tools, which entirely reimplement RAPPAS. The functional-
ity of RAPPAS is split into two parts: XPAS implements the phylo-𝑘-mer database
computation, and RAPPAS2 implements the phylogenetic placement. XPAS in-
cludes the new algorithm for computing phylo-𝑘-mers (see Chapter 2) and the phylo-
𝑘-mer filtering discussed in Chapter 3. I implemented those tools having high effi-
ciency in mind. As a result, the presented tools are one to two orders of magnitude
faster than RAPPAS.

4.1 XPAS: a standalone tool for creating phylo-𝑘-
mer databases

XPAS (a recursive acronym for XPAS: Phylo-𝑘-mers of Ancestral Sequences) is a
reimplementation of RAPPAS that preprocesses the reference dataset and computes
phylo-𝑘-mer databases. The reason XPAS has become an independent tool is simple:
phylo-𝑘-mers are now used for other tasks than phylogenetic placement. One such
application is SHERPAS, an application for alignment-free detection of recombina-
tion in viral genomes [189]. Another application, CLAPPAS, uses phylo-𝑘-mers to
classify protein gene families (Linard et al., unpublished results. This software is
under development at the time of this writing). Thus, three different programs need
to use phylo-𝑘-mers databases. A standalone solution for computing such databases
is now XPAS, which is used in all these cases.

There are two parts of XPAS: the database computation tool and the static
library. Once a database of phylo-𝑘-mers is created, it can be accessed by the XPAS
Core Library, which provides an API for loading databases into memory and
searching for 𝑘-mers. This separation allows reusing the XPAS code to create new
phylo-𝑘-mer based applications.

I implemented XPAS in C++ for performance reasons. An efficient C++ imple-
mentation and the new phylo-𝑘-mer computation algorithm allows XPAS to compute
databases much faster than RAPPAS, which is written in Java. The comparison of
their performance will follow in Section 4.4.1. The source code of XPAS is freely
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available at https://github.com/phylo42/xpas.

4.1.1 Creating a phylo-𝑘-mer database

Creating a phylo-𝑘-mer database is similar to the procedure used in RAPPAS, de-
scribed in Section 1.5.2. However, it includes one additional stage: the optional
phylo-𝑘-mer filtering. Thus, the computation of a phylo-𝑘-mer database can be done
as follows:

1. For a given input, compute the whole database of phylo-𝑘-mers as described in
Chapter 1.

2. (Optional) Rank all 𝑘-mers according to a filtering criterion.

3. (Optional) Select a subset of highest-ranked 𝑘-mers, forming the resulting database
of a smaller size.

Although filtering allows us to process larger datasets, the approach described
above implemented naively negates this advantage of filtering in terms of the required
memory consumption: the naive implementation assumes that the entire database of
phylo-𝑘-mers is in memory at a certain point.1 To address this problem, I proposed
a modified algorithm for constructing databases of phylo-𝑘-mers. It consists of three
steps. First, we compute phylo-𝑘-mers branch by branch, writing results for every
branch to disk. This avoids storing the entire phylo-𝑘-mer database in memory.
Second, we filter 𝑘-mers in batches, keeping in memory only one batch of 𝑘-mers
at a time. Finally, we combine the batch filtering results into a filtered phylo-𝑘-
mer database. Now I will describe this process in more detail, which corresponds to
Algorithms 6 and 7.

Reference alignment filtering (Algorithm 6, line 3), ghost node injection (line 5),
and the process of ancestral reconstruction (lines 8—10) remain the same as in RAP-
PAS (refer to Section 1.5.2 for detail about these steps). XPAS supports two ex-
ternal tools to reconstruct ancestral states: PhyML [80] and RAxML-NG [115].
Next, we compute phylo-𝑘-mers; the phylo-𝑘-mer computation procedure (lines 13—
24) is different compared to RAPPAS, and it is as follows. We split the whole
range of possible 𝑘-mers into 𝛽 batches, i.e., subranges 𝑏1, 𝑏2, . . . , 𝑏𝛽 of the same size
𝜎𝑘/𝛽 (Figure 4-1 illustrates the idea). We compute phylo-𝑘-mers separately for each
branch; I will describe this process for one branch 𝑦𝑖. For every ghost node 𝑔 ∈ 𝐺𝑦𝑖

we compute phylo-𝑘-mers using DivideAndConquerThr or BranchAndBound
(line 17, for the description of the algorithms see Section 2.3). The resulting collec-
tion of phylo-𝑘-mers is a branch database 𝒟𝑖. We split 𝒟𝑖 into 𝛽 temporary databases
𝐵𝑖1, 𝐵𝑖2, . . . , 𝐵𝑖𝛽: every temporary database stores phylo-𝑘-mers of the corresponding
batch of 𝑘-mers for branch 𝑦𝑖. Finally, we write every temporary database on disk to
a separate file and unload 𝒟𝑖 from memory. We repeat this process for all branches;

1Here we discuss the memory consumption of XPAS, i.e., computation of phylo-𝑘-mer databases.
Regardless of how it is implemented, filtering does reduce memory consumption during placement
done by RAPPAS2.
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Figure 4-1 – All possible 𝑘-mers are split in 𝛽 batches of the same size.

the result of these steps is a collection of 𝐵𝑖𝑗 databases on disk. Figure 4-3 illustrates
the process and what happens next.

When all temporary databases are computed and written on disk, we filter 𝑘-mers
in the process called batch filtering. This is a three-stage procedure which I also call
merge-filter-merge; Algorithm 7 describes this procedure, and it is as follows. First,
we load 𝐵1𝑗, 𝐵2𝑗, . . . 𝐵𝑁𝑗 back into memory and merge them to form a batch database
𝐵𝑗 (the first merge, which corresponds to lines 7—8 of Algorithm 7). Note that there
is a difference between branch databases 𝒟𝑖 =

⋃︀𝛽
𝑗=1𝐵𝑖𝑗 split on the previous step

and batch databases 𝐵𝑗 =
⋃︀𝑁

𝑖=1 𝐵𝑖𝑗 merged here (see Figure 4-2 for an illustration).
Then, for every 𝑘-mer 𝑤 of the corresponding batch 𝑏𝑗, we calculate the filter value
(lines 10—11) using the corresponding filtering function ℱ . This is the value of
Mutual Information for 𝑀𝐼𝑓→0 and 𝑀𝐼𝑓=1 (Equations 3.42 and 3.41) or a random
value in the range [0, 1] for random filtering. Afterward, we sort filter values of 𝑘-mers
of every batch database 𝐵𝑗 in descending order (line 13).

Let |𝐷𝑖| denote the total number of phylo-𝑘-mers in 𝐷𝑖. Having 𝑘-mers of every
batch sorted by filter value, we need to select 𝑘-mers from those batches until we
obtain 𝜇 · |

⋃︀𝑁
𝑖=1 𝐷𝑖| phylo-𝑘-mers associated to those 𝑘-mers. This is similar to the

merge procedure of the merge sort, except that we have 𝛽 batches to “merge”. We use
a simple 𝛽-way merge algorithm (the second merge, lines 15—25 of Algorithm 7). We
add the maximum filter values of every batch to a max-heap. Then, the maximum
element of the heap contains the maximum value of the filtering function achieved
for a 𝑘-mer 𝑤. We mark 𝑤 as filtered and pop out its filter value from the heap. If 𝑤
belongs to the batch 𝑏𝑗, then we push the next filter value (if any) of the batch to the
heap. Then, the next maximum value of the heap is considered; having obtained the
necessary number of phylo-𝑘-mers, we load all batches one by one to finally merge
the corresponding phylo-𝑘-mers into the final database (lines 27—32). Finally, we
compress the final database and write it on disk.

The naive implementation of filtering would require 𝒪(
∑︀𝛽

𝑗=1 |𝐵𝑗| + 𝜎𝑘) of ad-
ditional memory consumption (not counting the size of the final database). Batch
filtering allows us to reduce the memory consumption to 𝒪(max𝛽

𝑗=1 |𝐵𝑗|+ 𝜎𝑘). From
this bound, we can see that the minimal additional memory consumption is achieved
by choosing 𝛽 such that max𝛽

𝑗=1 |𝐵𝑗| < 𝜎𝑘. In the worst-case, the maximum batch
database can reach 𝜎𝑘/𝛽 ·𝑁 in the number of phylo-𝑘-mers, which gives us a hint for
a good value of 𝛽:

𝛽
max
𝑗=1
|𝐵𝑗| < 𝜎𝑘 (4.1)
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Algorithm 6: Creating of a phylo-𝑘-mer database
Input : A reference alignment 𝐴0, a reference tree 𝑇0, 𝑘, a threshold

parameter 𝜔, a reduction ratio 𝑟, a filter ℱ , 𝜇
Output: 𝒟, the database of phylo-𝑘-mers

1 Function CreatePhyloKmerDatabase 𝐴0, 𝑇0, 𝑘, 𝜔, 𝑟,ℱ , 𝜇
2 /* Reference alignment filtering */
3 𝐴← remove columns of 𝐴0 in which the fraction of gaps exceeds 𝑟
4 /* Tree extension */
5 𝑇 ← inject ghost nodes for every branch of 𝑇0

6 𝑁 ← the number of branches of 𝑇0

7 /* Ancestral reconstruction */
8 foreach branch 𝑦 of 𝐸(𝑇0) do
9 foreach ghost node 𝑢 ∈ 𝐺𝑦 do

10 𝑃 𝑢 ← estimate probabilities of every state at every site of 𝐴, based
on 𝑇 and 𝐴

11 𝜀← (𝜔/|Σ|)𝑘, the score threshold value
12 /* Computation of phylo-𝑘-mers */
13 for 𝑖← 1 . . . 𝑁 do
14 𝑦 ← 𝑖-th branch of 𝑇0

15 𝒟𝑖 ← empty database
16 foreach ghost node 𝑢 ∈ 𝐺𝑦 do
17 𝒟𝑖 ← compute phylo-𝑘-mers using 𝑃 𝑢

18 𝐵𝑖 ← empty array
19 for 𝑗 ← 1 . . . 𝛽 do
20 𝐵𝑖𝑗 ← phylo-𝑘-mers of 𝒟𝑖 that are in the batch 𝑏𝑗
21 Write 𝐵𝑖𝑗 on disk
22 𝐵𝑖.add(filename of the serialized batch)

23 𝐵 ← [𝐵1, 𝐵2, . . . , 𝐵𝑁 ]
24 𝒟 ← MergeFilterMerge(𝐵, ℱ , 𝜇)
25 return 𝒟
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Algorithm 7: Batch filtering
Input : a 𝑁 × 𝛽 table 𝐵 of temporary database files, a filter ℱ , 𝜇
Output: 𝒟, a filtered database of phylo-𝑘-mers

1 Function MergeFilterMerge 𝐵,ℱ , 𝜇
2 /* Matrix of filter values of all 𝑘-mers */
3 𝐹 ← empty (𝜎𝑘/𝛽)× 𝛽 matrix
4 for 𝑗 ← 1 . . . 𝛽 do
5 /* Load all databases of the batch and merge them */
6 𝐵𝑗 ← empty database
7 forall 𝑖← 1 . . . 𝑁 do
8 𝐵𝑗 ←Merge(𝐵𝑗,Load(𝐵𝑖𝑗))

9 /* Calculate filter values for all 𝑘-mers of the batch */
10 forall 𝑖← 1 . . . |𝑏𝑗| do
11 if 𝑤𝑖 ∈ 𝐵𝑗 then 𝐹𝑗𝑖 ← ℱ(phylo-𝑘-mers of 𝑤𝑖) ;
12 else 𝐹𝑗𝑖 ← −∞;

13 Sort the 𝑗-th row of 𝐹 in descending order

14 /* 𝛽-way merge algorithm for 𝐹1*, 𝐹2*, . . . , 𝐹𝛽,* */
15 𝐻 ← empty max-heap
16 for 𝑗 ← 1 . . . 𝛽 do
17 𝐻.push(𝐹𝑗0)

18 𝑠𝑖𝑧𝑒← the total number of pairs (𝑘-mer, score) in all batches
19 while 𝑆 < 𝜇 · 𝑠𝑖𝑧𝑒 do
20 𝑤 ← the 𝑘-mer on the top of 𝐻
21 𝑗 ← the batch of 𝑤
22 Mark 𝑤 as filtered
23 𝐻.pop()
24 𝐻.push(the next 𝑘-mer of batch 𝑏𝑗 after 𝑤, if its filter value ̸= −∞)
25 𝑆 = 𝑆 + size of all phylo-𝑘-mers of 𝑤

26 /* Load batches one by one and collect filtered phylo-𝑘-mers
*/

27 𝒟 ← empty database
28 forall 𝑗 ← 1 . . . 𝛽 do
29 𝐵𝑗 ← Load(Batch database 𝑗)
30 forall 𝑤 ∈ 𝑏𝑗 do
31 if 𝑤 is marked as filtered then
32 𝒟.add(phylo-𝑘-mers of 𝑤 from 𝐵𝑗)

33 return 𝒟
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Figure 4-2 – Unions of databases in one row are branch databases 𝒟𝑖, i.e., collections
of all phylo-𝑘-mers for one branch. Unions of databases in one column are batch
databases 𝐵𝑗, i.e. collections of phylo-𝑘-mers of the batch 𝑏𝑗 for all branches.

𝜎𝑘/𝛽 ·𝑁 < 𝜎𝑘 (4.2)

𝛽 > 𝑁 (4.3)

However, this value may be too extreme: batch filtering produces 𝛽 ·𝑁 temporary
files on disk. For the case of 𝛽 > 𝑁 and large trees, Ω(𝑁2) of files may be unwanted
if the disk is slow. The machine’s filesystem can also be a potential problem since it
limits the number of files that can be created. Thus, the 𝛽 value choice is a trade-
off between disk and random-access memory usage. The best values of 𝛽 are still
unclear, and few experiments have been done on this. For DNA, I propose using 𝛽
of low powers of two such as 8, 16, 32. At the moment, 𝛽 = 16 is the default value in
XPAS.

4.1.2 The XPAS Core Library

The XPAS Core Library (XCL) is a library that provides functionality for seri-
alizing and deserializing phylo-𝑘-mer databases. XPAS uses it to serialize database
results. It is also used by phylo-𝑘-mer-based applications, such as RAPPAS2 and
SHERPAS, to load databases and quickly search for 𝑘-mers in the database. Fig-
ure 4-4 illustrates the dependencies between these software modules and the data.
The library encapsulates the details about the serialization format, the compression
algorithm and the way 𝑘-mers are searched. The advantage of this is that applica-
tions do not depend on the details of the library implementation. Instead, they use
it transparently to load the database and make 𝑘-mer search queries to it. Thus, it
makes it easier to develop new applications in the future and improve the implemen-
tation of XPAS. XCL uses the Robin-Map library for associative arrays [76], which
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Figure 4-3 – An illustration to the batch filtering procedure (Algorithms 6, 7). Every
branch database (in cyan) is split into temporary batch databases; those of different
branches are merged together to form a batch database (in red). Filter values are
calculated for every batch database and sorted. Finally, filtered 𝑘-mers are selected
based on their filter values using a 𝛽-way merge algorithm until the database reaches
𝜇 · |

⋃︀𝑁
𝑖=1 𝐷𝑖| in the number of phylo-𝑘-mers.
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Figure 4-4 – Dependency graph for XPAS, phylo-𝑘-mer-based applications, and data.
XPAS, RAPPAS2 and SHERPAS use the library to serialize, deserialize databases,
and search for phylo-𝑘-mers.

implements robin-hood hashmaps providing fast search of 𝑘-mers. For compression,
XCL uses the zlib library [74].

XCL can be wrapped to load phylo-𝑘-mer databases and use them in programs in
other languages. XCL includes such a wrapper for the python language. It is currently
under development, and although it does not provide full functionality, it does make
it possible to load phylo-𝑘-mer databases and search for 𝑘-mers in the database.
Wrappers like this can be helpful for quickly prototyping in scripting languages like
python.
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4.2 RAPPAS2: a faster reimplementation of RAP-
PAS

RAPPAS2 is a reimplementation of RAPPAS’ placement algorithm in C++. The
placement algorithm is identical to the one of RAPPAS; however, thanks to the effi-
cient implementation, RAPPAS2 allows to place queries much faster than RAPPAS
(we will compare their performance later in Section 4.4.1). The input of RAPPAS2
is a phylo-𝑘-mer database and a set of query sequences.

First, RAPPAS2 uses XCL to load the phylo-𝑘-mers into RAM and create an
associative array: every 𝑤 is mapped to the list of pairs {(𝑦, 𝑆𝑦(𝑤))}. Then, it places
queries one by one. To place a query, it splits the query into 𝑘-mers, searches for
the 𝑘-mers in the hashmap, and places the query in the same way as RAPPAS (see
Section 1.6, Equation 1.6).

4.3 The phylo-𝑘-mer database computation bug in
early versions RAPPAS

While implementing XPAS, I found a serious bug in the phylo-𝑘-mer computation
procedure of RAPPAS. The algorithm for computing phylo-𝑘-mers stopped much
earlier than expected, which resulted in many phylo-𝑘-mers with scores above 𝜀 not
being computed. For all these phylo-𝑘-mers, the value of the 𝜀 was thus assumed
according to Equation 1.4. This bug was fixed in RAPPAS v.1.12, but it was still
in the code when the original article was published. There is reason to believe that
incomplete phylo-𝑘-mer databases caused the placement accuracy of RAPPAS to be
underestimated in that article [130]. For example, for datasets D218 and D652,
which contained a high percentage of gaps (more than 30% of the reference alignment
positions), the average RAPPAS placement accuracy worsened with increasing 𝑘-mer
lengths. The authors believed that the gaps were the reason for this, but it could
have been related to the algorithm’s omission of the phylo-𝑘-mers due to the bug.

Correcting the bug led to two results. First, the computation time of phylo-𝑘-mers
increased considerably since many more phylo-𝑘-mers should be computed. Figure 4-
5a demonstrates the difference in the number of phylo-𝑘-mers being computed if the
bug is fixed, and it almost reaches one order of magnitude for 𝑘 = 8, which was the
default value of 𝑘 for DNA data. Consequently, the time to calculate phylo-𝑘-mers
grows pro-rata (Figure 4-5b), and the fixed version is about one order of magnitude
slower at constructing phylo-𝑘-mer databases.

The second consequence is improved placement accuracy. Figures 4-6, 4-7 show the
results of PAC experiments for two datasets, D652 and D218. For D652, the mean
node distance of the phylogenetic placement performed by RAPPAS v1.21 (currently
its latest version, in which the bug is not present) is much lower than that of RAPPAS
v1.05 (which contained the bug) for 𝑘 = 8 and 𝑘 = 10. The mean node distance
obtained by XPAS+RAPPAS2, run with the same parameters, is also presented
for comparison and is consistent with the results obtained by RAPPAS v1.21. For
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Figure 4-5 – Comparison of phylo-𝑘-mer database computation for the D652 dataset
(𝜔 = 1.0, gap jumps disabled) performed by two versions of RAPPAS: with and
without the bug, v1.05 and v1.12 respectively.

D218, the effect of the bug on accuracy is less noticeable but is also present. Again,
the results obtained by XPAS+RAPPAS2 match those of RAPPAS v1.21, which
improves the results of RAPPAS v1.05 containing the bug.

4.4 Experimental results

4.4.1 Time and memory requirements

I carried out experiments measuring placement time for EPA-ng, App-SpaM, RAP-
PAS and RAPPAS2 for two datasets, neotrop ([140], 18S rRNA environmental
sequences) and D155 ([130], complete genome sequences of the Hepatitis C virus).
For neotrop, I used one hundred thousand queries used in [15]; for D155, I used
one million simulated sequences from [130]. Placement time does not include the time
needed to preprocess the dataset, i.e., query alignment for EPA-ng and the phylo-𝑘-
mer database computation for RAPPAS and XPAS+RAPPAS2. I run all tools with
the default values of parameters; I also run alignment-free tools with some non-default
parameters. See Table 4.1 for the parameter values and their interpretation.

Experiments were carried out one by one on a single core of a computer equipped
with Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz / 8.25 MB Cache / 62 GB RAM.
All experiments of RAPPAS took two threads to run (because of the additional
thread reserved by the virtual machine). Running time and memory consumption
was measured with /usr/bin/time, which reports the total memory consumption of
the process (i.e., for RAPPAS, all memory implicitly reserved by the Java machine
but not used by RAPPAS is counted). For the running time, the total wall clock
time is considered. For the RAM consumption, the peak maximum resident set size
(RSS) is considered.
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Figure 4-6 – Mean node distance for D652 obtained with RAPPAS v1.05 (includes
the bug), the fixed version of RAPPAS, and XPAS+RAPPAS2. The threshold
value is 𝜀 = (1.5/4)𝑘.
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Figure 4-7 – Mean node distance for D218 obtained with RAPPAS v1.05, RAPPAS
v1.21, and XPAS+RAPPAS2 for the threshold value of 𝜀 = (1.5/4)𝑘.
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Software Parameters

RAPPAS 𝑘 = 7, 𝜔 = 1.5*

RAPPAS 𝑘 = 8*, 𝜔 = 1.5*

XPAS+RAPPAS2 𝑘 = 8, 𝜔 = 1.5*

XPAS+RAPPAS2 𝑘 = 10*, 𝜔 = 1.5*

App-SpaM 𝑤 = 8, 𝑝 = 1*, 𝑚 = LCACOUNT*

App-SpaM 𝑤 = 12*, 𝑝 = 1*, 𝑚 = LCACOUNT*

EPA-ng --dyn-heur*, 𝑔 = 0.99999*

* Default parameters and options.

Table 4.1 – The parameters of tested software for placement time experiments. For
RAPPAS and XPAS+RAPPAS2, lower values of 𝑘 generally lead to faster place-
ment with lower accuracy. For App-SpaM, higher values of 𝑤 lead to faster placement
with lower accuracy.

Running time

The neotrop experiment (see Figure 4-8a) shows that RAPPAS2 improves RAP-
PAS by more than an order of magnitude (𝑘 = 8): to place 100,000 queries, RAPPAS
takes almost an hour, while RAPPAS2 finishes under two minutes (34-fold change).
The improvement for the D155 experiment (Figure 4-8b) is less: RAPPAS places a
million queries in 16 minutes, while RAPPAS2 does it in five minutes. Both exper-
iments show that App-SpaM outperforms RAPPAS, which is consistent with [22].
However, RAPPAS2 scales better than App-SpaM with the increasing number of
queries regardless of the parameter values. Recall that this comparison considers only
the running time of placement (but not that of phylo-𝑘-mer database computation).
Also, note that for 𝑘 = 10, the running time of RAPPAS2 placing tens and hun-
dred thousand queries is dominated by the constant time needed to first load the
phylo-𝑘-mer database into RAM, which explains the slow growth for RAPPAS2 in
Figure 4-8a.

I also compared RAPPAS and XPAS in terms of the running time to compute a
database of phylo-𝑘-mers for the same datasets and different values of 𝑘. Figure 4-9
shows the results averaged over three runs. These measurements only include time to
compute phylo-𝑘-mers and write resulting databases on disk, which is the most time-
consuming part of the database creation. (Another time-consuming part, ancestral
reconstruction, is identical for both tools since they use external software for this.) For
neotrop, the improvement of XPAS over RAPPAS is 35-fold for 𝑘 = 7 (30 seconds
against 18 minutes), and is 100-fold for 𝑘 = 10 (11 minutes against 18 hours). For
D155, XPAS is two orders of magnitude faster than RAPPAS: 30 seconds against
one hour for 𝑘 = 8, and four minutes against 15 hours for 𝑘 = 10.

The default 𝑘-mer length in RAPPAS is 8. However, the faster running time of
XPAS allows for changing the default value of 𝑘 to 10. Experiments on placement
accuracy (will be discussed later) suggest that using phylo-𝑘-mer databases with
𝑘 = 10 often improves placement accuracy compared to databases with 𝑘 = 8. Using
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Figure 4-8 – Running time taken by RAPPAS, RAPPAS2, EPA-ng and App-SpaM
to place different number of query sequences for neotrop and D155. Preprocessing
(i.e., query alignment for EPA-ng and phylo-𝑘-mer database computation for RAP-
PAS and RAPPAS2) is not included. Solid lines correspond to default parameter
values.
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Figure 4-9 – Running time of RAPPAS and XPAS needed to compute a database of
phylo-𝑘-mers for neotrop and D155 using the default threshold value of 𝜔 = 1.5.
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Figure 4-10 – Peak memory consumption of phylogenetic placement tools for two
datasets and different numbers of queries. Peak RAM during preprocessing is not
included. Solid lines correspond to default parameter values.

values of 𝑘 higher than 10 may produce databases that are too big in size, often
without improving placement accuracy.

Memory consumption

Figure 4-10 gives a comparison of RAPPAS, RAPPAS2, EPA-ng and App-SpaM
in terms of peak RAM usage in the same experiments that measured the running
time. The neotrop experiment showed that RAPPAS2 improved the memory con-
sumption of RAPPAS from 4Gb to under 1Gb (if both tools are run with 𝑘 = 8).
RAM consumption of RAPPAS was the same while placing different number of
queries, probably due to the Java machine reserving memory. In the D155 exper-
iment, RAPPAS2 also improves the result of RAPPAS (reducing it from 4Gb to
2Gb for one million queries placed). App-SpaM showed lower memory consumption
than RAPPAS2 if the latter was run with 𝑘 = 10. For 𝑘 = 8, RAPPAS2 shows
lower memory consumption than App-SpaM for placing no more than one hundred
thousand queries.

4.4.2 Placement accuracy

Placement accuracy experiments consisted of running the pruning-based accuracy
pipeline of PEWO for several DNA datasets based on short alignments — D218
(bacterial 16S rRNA, 2.3kbp), D500 (chloroplast rbcL gene, 1.4kbp) from [20], D652
(bacterial 16S rRNA, 1.7kbp) from [130] — and two datasets based on longer align-
ments: the HIV-genome dataset (13kbp) containing whole-genome sequences of
HIV from [189], and D155 (10kbp), a dataset of complete genomes of hepatitis C
virus [130]. PAC experiments were run with different parameters for each software.
RAPPAS was run as
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$ java ... -jar RAPPAS.jar ... --gap -jump -thresh 1.0

to disable experimental gap jump strategies. XPAS was run as

$ python xpas.py build ... -u 1.0 --filter no-filter

to disable phylo-𝑘-mer filtering. Under these conditions, RAPPAS and XPAS
produce almost identical phylo-𝑘-mers databases: differences are only in phylo-𝑘-
mers close to the threshold so that the floating-point operations in different im-
plementations start to matter. Those differences are negligible. RAPPAS and
XPAS+RAPPAS2 were run with several values of 𝑘. Other tools were run with
their default parameters.

For every dataset, queries of different sizes were placed: 150, 1200 base pairs for
datasets based on short alignments (D218, D500, D652), and 150, 10000 base pairs
for viral datasets of longer alignments (D155, HIV-genome). For every software-
parameter combination, the mean node distance among all prunings was calculated.
The resulting values are shown in Figure 4-11. For RAPPAS and XPAS+RAPPAS2
results obtained for 𝑘 = 10 are shown, since it is the default value of 𝑘 for XPAS. For
each experiment, mean node distance values, not averaged over different prunings,
can be found in the appendix (Figures B-1, B-2, B-3, B-4, B-5). The results obtained
for RAPPAS and XPAS+RAPPAS2 for other values of 𝑘 can also be found there.

In most experiments, APPLES showed worse accuracy than other tools (Figure 4-
11), which is consistent with the results of [22]. Since APPLES targets ultra-large
trees, and these experiments were carried out for small trees (the largest was HIV-
genome, with 881 leaves), I will not further discuss APPLES here. In all experi-
ments, EPA-ng and pplacer showed similar accuracy; because of this and because
EPA-ng supports pplacer’s algorithm as an option, I will only discuss the results
of EPA-ng. Both RAPPAS and XPAS+RAPPAS2 were run for three datasets:
D218, D500, and D652 (Figures 4-11a, 4-11c). In these experiments, two versions
of RAPPAS show identical accuracies, indicating that the RAPPAS results are re-
producible with XPAS+RAPPAS2. Having this in mind, I will focus on comparing
the accuracy of RAPPAS2 with that of EPA-ng and App-SpaM.

Let us first consider short-alignment datasets (D218, D500, and D652, see Fig-
ures 4-11a and 4-11c). RAPPAS2 shows slight improvement over the competing
methods when placing short sequences (Figure 4-11a). For dataset D218, this repli-
cates and confirms the results of [22]. However, RAPPAS2 is slightly inferior to
EPA-ng (but not App-SpaM) when placing longer queries (1200 base pairs, Fig-
ure 4-11c), except for D652.

Now, let us consider long-alignment viral datasets (D155 and HIV-genome, see
Figures 4-11b and 4-11d). RAPPAS was not run for these datasets because it takes
too long to preprocess them using RAPPAS. Instead, only XPAS+RAPPAS2 were
run to compare against other methods, and the results are inconsistent. App-SpaM
shows higher accuracy than EPA-ng and RAPPAS2 on the HIV dataset for short
queries (Figure 4-11b), but not for long ones, for which RAPPAS2 shows the best
result (Figure 4-11d). For D155, RAPPAS2 shows similar accuracy compared to
EPA-ng in both short and long sequence placement (Figures 4-11b, 4-11d), while
App-SpaM shows worse accuracy in both cases.
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Figure 4-11 – Mean (colored bars) and standard deviation (black lines) of node dis-
tance obtained for PAC experiments on multiple datasets and different query sizes.
Lower values are better. (a), (b): results for placing queries of 150 base pairs for
short-alignment and long-alignment datasets, respectively. (c): results for placing
queries of 1.2 Kbp in length for short-alignment datasets. (d): results for placing
queries of 10 Kbp in length for long-alignment datasets.
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4.5 Conclusion
I completely reimplemented RAPPAS, splitting it into two separate programs: XPAS
and RAPPAS2. This is to make it more convenient to develop new software apply-
ing phylo-𝑘-mers for other bioinformatics tasks. In addition to the new algorithm
for calculating phylo-𝑘-mers, XPAS also applies the filtering methods described in
Chapter 3. To reduce memory consumption during filtering, I proposed and imple-
mented the batch filtering approach. The XPAS Core Library, which underlies
XPAS, can be used by other applications to load and use XPAS-built phylo-𝑘-mer
databases. It is currently used in three phylo-𝑘-mers based software: RAPPAS2,
SHERPAS, and CLAPPAS.

I conducted experiments to compare the accuracy of the phylogenetic placement
of RAPPAS2 and the state-of-the-art placement tools. RAPPAS2 shows the same
placement accuracy as RAPPAS, i.e., high accuracy, comparable to that of maximum-
likelihood methods (EPA-ng and pplacer). In addition, I have conducted exper-
iments measuring the speed of computing phylo-𝑘-mer databases using XPAS and
placement using RAPPAS2. XPAS is one to two orders of magnitude faster than
RAPPAS in phylo-𝑘-mer database computation; the improvement depends on the
input parameters and the dataset. As for placement, RAPPAS2 is significantly faster
than both RAPPAS (up to one order of magnitude) and EPA-ng (when run in a
single thread).

The speed competitor for RAPPAS2 is App-SpaM, a recently released alignment-
free phylogenetic placement software. App-SpaM, although it may outperform RAP-
PAS2 in placement speed (depending on the input parameters and the number of
queries), is nevertheless inferior in placement accuracy to RAPPAS2 in most experi-
ments. These results are consistent with those obtained by the authors of App-SpaM
[22]. In addition, with the increasing number of query sequences, the running time of
RAPPAS2 scales better than that of App-SpaM.

The faster speed of XPAS compared to RAPPAS allows for longer 𝑘-mer lengths,
which may lead to higher placement accuracy. Consequently, the default value of 𝑘
can be increased to 10. The lower memory consumption of XPAS, as well as the
implemented phylo-𝑘-mer filtering methods, increase the possibility of using XPAS
and RAPPAS2 on machines with small amounts of RAM. Accurate alignment-free
phylogenetic placement with phylo-𝑘-mers for small and medium-size datasets can
now be performed on any modern laptop.
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Chapter 5

Conclusion and perspectives

In this final chapter, I summarize the results of my work and discuss some directions
for future work on phylo-𝑘-mers, and outline my thoughts on the future of the field.

The raison d’être of phylo-𝑘-mers is to represent phylogenetic information in the
form of 𝑘-mers, which are straightforward to use in designing new alignment-free
methods. At the moment, there are three phylo-𝑘-mer based methods for solving
different bioinformatics problems: besides phylogenetic placement, phylo-𝑘-mers are
used by SHERPAS for recombination detection in viruses [189] and by CLAPPAS
for protein family classification (unpublished results). Other methods may be de-
veloped in the future. They all need to have the phylogeny be represented with
phylo-𝑘-mers to work. RAPPAS presented the method and its implementation for
this problem. However, it had limitations for peak memory usage and running time
for large datasets. My work addressed those limitations, and the objective was to
answer the question of how to efficiently represent phylogenies with phylo-𝑘-mers.

I addressed this question from three different perspectives. First, I described the
algorithmic side of the question: I considered the problem of computing phylo-𝑘-mers
that had earned little attention before. I provided a new algorithmic solution to this
problem, described in Chapter 2. Under one reasonable condition, this problem is
solved optimally. Nevertheless, algorithms showing faster performance in practice
may exist; I will discuss this in Section 5.1.

Second, I addressed the question from a mathematical and information-theoretic
point of view. Studying the problem of finding informative (for phylogenetic place-
ment) phylo-𝑘-mers led to a rethinking of why and how exactly the method of RAP-
PAS works from a machine learning and classification perspective. I connected RAP-
PAS to the Bernoulli Naive Bayes Classification used for classifying texts. Not only
did it give insights on how to filter phylo-𝑘-mers (which led to the results of Chap-
ter 3), but it also provided food for thought on improving the RAPPAS method,
which I will cover in Section 5.1. The phylo-𝑘-mer filtering approach I suggested al-
lows decreasing the size of phylo-𝑘-mer databases dramatically. This in turn reduces
RAM consumption during phylogenetic placement, which improves the scalability of
RAPPAS for larger datasets.

Finally, I applied all my knowledge of software development to create more ef-
fective programs for phylo-𝑘-mer computation (XPAS) and phylogenetic placement
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(RAPPAS2, Chapter 4). Speed improvement of those programs is up to two or-
ders of magnitude, which will allow applying phylo-𝑘-mer based methods for larger
phylogenies and larger amounts of sequencing data.

5.1 Future work

5.1.1 The optimal algorithm for phylo-𝑘-mer computation

Section 2.3.3 described a new divide-and-conquer algorithm for computing phylo-𝑘-
mers in a 𝑘-sized window 𝑊 of the alignment for a ghost node of a given branch.
The algorithmic complexity of this algorithm is 𝒪(𝑘 · 𝜎𝑘/2 + |𝒵𝑊

𝜀 |), where 𝒵𝑊
𝜀 is a

set of 𝑘-mers obtaining scores higher than 𝜀 in this window. It is an improvement
over the existed branch-and-bound algorithm. Moreover, it is easy to see that the
new algorithm is optimal under the condition |𝒵𝑊

𝜀 | = Ω(𝑘 · 𝜎𝑘/2).

Whether there is an algorithm computing phylo-𝑘-mers in 𝒪(|𝒵𝑊
𝜀 |) time for any

input remains unclear. Future work could further develop algorithms working in
optimal time if 𝒵𝑊 contains only a few 𝑘-mers achieving scores higher than 𝜀.

5.1.2 Alternative score model

A possible improvement to RAPPAS comes from a thorough reassessment of the
meaning of phylo-𝑘-mer scores, which has been the subject of an important reflection
that we carried out as part of my work. I will try to summarize it here briefly.

RAPPAS views a query as a sequence of 𝑘-mers 𝑊1,𝑊2, . . . ,𝑊𝑚−𝑘+1, where 𝑊𝑗

is the 𝑘-mer starting at the 𝑗th site in the query. Each 𝑘-mer 𝑊𝑗 can be seen as a
random variable whose distribution depends on the phylogenetic origin of the query.
This distribution is given by the 𝑃 𝑢

𝑗 (𝑤) values defined in Section 1.5.2. In other
words,

P [𝑊𝑗 = 𝑤 | the query originates from node 𝑢] = 𝑃 𝑢
𝑗 (𝑤).

We also assume, quite unrealistically, that the 𝑊𝑗 for different values of 𝑗 are statisti-
cally independent of each other. (In particular, this is unrealistic because consecutive
𝑘-mers such as 𝑊𝑗 and 𝑊𝑗+1 should in principle share a common (𝑘 − 1)-mer, but
the assumption of independence does not enforce this.)

Now let us denote “the query originates from node 𝑢” simply with 𝑢, and let us
focus on the following probabilities:

P [𝑊1,𝑊2, . . . ,𝑊𝑚−𝑘+1 contains 𝑤 | 𝑢] = P [∃𝑗 : 𝑊𝑗 = 𝑤 | 𝑢] . (5.1)
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We can express them as follows:

P[∃𝑗 : 𝑊𝑗 = 𝑤 | 𝑢] = 1−P[∀𝑗 : 𝑊𝑗 ̸= 𝑤 | 𝑢]

= 1−
𝑚−𝑘+1∏︁
𝑗=1

P[𝑊𝑗 ̸= 𝑤 | 𝑢]

= 1−
𝑚−𝑘+1∏︁
𝑗=1

(1−P [𝑊𝑗 = 𝑤 | 𝑢])

= 1−
𝑚−𝑘+1∏︁
𝑗=1

(︀
1− 𝑃 𝑢

𝑗 (𝑤)
)︀

(5.2)

We are now going to make a final assumption, and later we will examine how we
should proceed if we do not wish to make this assumption. The assumption — which
we call the strong no co-occurrence hypothesis — is that 𝑘 is sufficiently large that the
probabilities 𝑃 𝑢

1 (𝑤), 𝑃 𝑢
2 (𝑤), . . . , 𝑃 𝑢

𝑚−𝑘+1(𝑤) are all very close to 0 with the exception
of at most one of them. This is similar, but not equivalent, to the assumption that no
𝑘-mer can occur more than once in a query of size 𝑚. The strong no co-occurrence
hypothesis presumes further that there is at most one position in the query where the
probability of observing 𝑤 is non-negligible. Under this assumption, it is easy to see
that

1−
𝑚−𝑘+1∏︁
𝑗=1

(︀
1− 𝑃 𝑢

𝑗 (𝑤)
)︀
≈ 𝑚−𝑘+1

max
𝑗=1

𝑃 𝑢
𝑗 (𝑤). (5.3)

Recall that 𝑆𝑢(𝑤) ≈ max𝑚−𝑘+1
𝑗=1 𝑃 𝑢

𝑗 (𝑤) (Equation 1.4), which combined with Equa-
tions 5.1, 5.2, 5.3, provides a straightforward interpretation for 𝑆𝑢(𝑤):

𝑆𝑢(𝑤) ≈ P [𝑊1,𝑊2, . . . ,𝑊𝑚−𝑘+1 contains 𝑤 | 𝑢] . (5.4)

Now recall that 𝑆𝑦(𝑤) is defined as the maximum of 𝑆𝑢(𝑤) across all ghost nodes
𝑢 ∈ 𝐺𝑦 (Eqn. 1.5), which also gives us a relatively simple interpretation for the
phylo-𝑘-mer scores:

𝑆𝑦(𝑤) ≈ max
𝑢∈𝐺𝑦

P [𝑊1,𝑊2, . . . ,𝑊𝑚−𝑘+1 contains 𝑤 | 𝑢] . (5.5)

We now turn to the central question of this section: given that Equations 5.4 and
5.5 provide the intended meanings for 𝑆𝑢(𝑤) and 𝑆𝑦(𝑤), are there better ways to
define 𝑆𝑢(𝑤) and 𝑆𝑦(𝑤), based on formulas whose validity does not depend on the
strong no co-occurrence hypothesis?

The answer is trivially yes, and is obtained by simply using the left-hand side
of Equation 5.3 instead of its right-hand side. This leads us to the following new
definitions:
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𝑆∃
𝑢(𝑤) := max

{︃
1−

𝑚−𝑘+1∏︁
𝑗=1

(︀
1− 𝑃 𝑢

𝑗 (𝑤)
)︀
, 𝜀∃

}︃
, (5.6)

𝑆∃
𝑦 (𝑤) := max

𝑢∈𝐺𝑦

𝑆∃
𝑢(𝑤) (5.7)

Here we smooth out the very low probabilities by ensuring that no stored proba-
bility is smaller than 𝜀∃, similarly to what is done for 𝑆𝑢(𝑤). In the original definition,
𝜀 could be interpreted as the minimum value allowed for 𝑃 𝑢

𝑗 (𝑤). Then, the minimum
value allowed for 𝑆∃

𝑢(𝑤) is simply given by the following formula, which I take as
definition of 𝜀∃:

𝜀∃ := 1− (1− 𝜀)𝑚−𝑘+1. (5.8)

This completes the definition of the alternative model to score phylo-𝑘-mers. One
direction for future work may be to implement in XPAS the formulas 5.6, 5.7 and
5.8. I will then conduct experiments measuring phylogenetic placement accuracy
on various datasets. It will be particularly interesting to test the new approach on
long reference alignments, where 𝑚 is large relative to 𝑘, and thus the strong no
co-occurrence hypothesis is most likely to be violated.

5.1.3 Bernoulli-based phylogenetic placement

In Chapter 3, we discussed that the underlying model of RAPPAS is closely related to
the Bernoulli model for text classification. I also described the method of phylogenetic
placement based entirely on the Bernoulli model (see Section 3.4.1). Applying the
same method of estimating scores of phylo-𝑘-mers as in RAPPAS, or the alternative
score model from Section 5.1.2, we can place the query sequences using Bernoulli’s
formula (Equation 3.26):

𝑦(𝑞) = arg max
𝑦∈𝐸(𝑇0)

(︁ ∏︁
𝑤:𝑏𝑤=1

𝑓𝑆𝑦(𝑤)
∏︁

𝑤:𝑏𝑤=0

(1− 𝑓𝑆𝑦(𝑤))
)︁

(5.9)

with 𝑓 being the parameter that depends on the query length:

𝑓 =
|𝑞| − 𝑘 + 1

𝑚− 𝑘 + 1
(5.10)

Recall that RAPPAS uses this formula instead:

𝑦(𝑞) = arg max
𝑦∈𝐸(𝑇0)

∏︁
𝑤:𝑛𝑤>0

𝑆𝑦(𝑤)𝑛𝑤 (5.11)

An interesting difference between Formula 5.9 and 5.11 is that the first one takes
the absence of 𝑘-mers into account. For any 𝑘-mers present in full-sized sequences
originated from 𝑦 with high probability, the Bernoulli placement formula penalizes 𝑦
for those queries that do not contain those 𝑘-mers. In other words, if we expect 𝑤 to
be present with high probability in sequences from 𝑦, then the absence of 𝑤 in the
query is taken by Bernoulli placement (but not RAPPAS) as evidence that 𝑦 is not
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the correct placement for the query. This penalty is stronger the closer the value of
𝑓 is to one, i.e., the closer the query size is to the reference alignment size.

How good such a classifier is in practice, it is possible to find out only experi-
mentally. One direction of development of RAPPAS2 may be the implementation
of Bernoulli placement and testing this model for different types of data. I suspect
that this formula may help us achieve higher placement accuracy than the classic for-
mula for trees inferred from conservative alignments, where the absence of important
𝑘-mers in the query may be informative. In addition, perhaps it may improve place-
ment accuracy for those queries whose length approaches the length of the alignment.

5.1.4 Parallelism and distributed memory

From Figure 4-3, it is easy to see the parallel nature of computing and filtering phylo-
𝑘-mers. This is no coincidence: during the XPAS design process, I envisioned future
parallelization of the phylo-𝑘-mer database creation. This process can be seen as a
two-stage parallel algorithm:

1. Compute phylo-𝑘-mers for each ghost node of the tree in parallel. The results
of these calculations are serialized on disk.

2. Merge the branch databases into batch databases.

3. Calculate filter values for each batch in parallel. After, serialize the results on
disk.

4. Merge the previous step’s results using the 𝛽-way merge algorithm and select
filtered 𝑘-mers.

5. Form the final phylo-𝑘-mer database from filtered 𝑘-mers.

Thus, XPAS can be implemented in distributed memory to increase the method’s
applicability and create phylo-𝑘-mer databases for larger trees. Filtering the phylo-
𝑘-mers will allow controlling the memory consumption and the size of the resulting
databases. For example, such an implementation would make it possible to pre-
pare phylo-𝑘-mer databases for large trees based on popular phylogenetic markers
such as greengenes [52] (16S rRNA sequences of bacteria and archaea), SILVA [165]
(small 16S/18S and large subunit 23S/28S rRNA of bacteria, archaea, and eukarya)
or EzBioCloud 16S database [234] (a large collection of genome sequence-derived 16S
rRNA sequences). Once computed, those databases can be published for accurate
alignment-free placement on those phylogenies.
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5.2 Final thoughts
I would like to wrap up my thesis with an historical example. In January 1954, a
major event occurred in New York City for all machine translation researchers: IBM
and George Washington University presented a new machine translation system [97].
This system could automatically translate short sentences from Russian into English,
which was an incredible success at the time. Here are examples of translations made
by this machine that day:

Original (romanized) Translation

Mi pyeryedayem mislyi posryedstvom
ryechi.

We transmit thoughts by means of
speech.

Vyelyichyina ugla opryedyelyayatsya ot-
noshyenyiyem dlyini dugi k radyiusu.

Magnitude of angle is determined by the
relation of length of arc to radius.

As a native Russian speaker, I can confirm that those translations are correct. This
experiment brought much attention to the field of machine translation. The expecta-
tions of contemporaries were very high: one of researchers, Léon Dostert, stated that
“five, perhaps three, years hence, interlingual meaning conversion by electronic pro-
cess in important functional areas of several languages may well be an accomplished
fact.” [97]. Two years later, the famous Dartmouth Summer Research Project on
Artificial Intelligence took place, which is considered to be the founding event of the
field of artificial intelligence [157]. Nevertheless, a decade of research in this area led
to a great disappointment. The problem of machine translation turned out to be
much more challenging than it seemed. A critical report by the ALPAC (Automatic
Language Processing Advisory Committee) reviewing the state of the field, published
in 1966, dashed all hopes of a quick solution to the problem of machine translation
[96, 95, 5]. This report led to a significant decrease in funding for the field of machine
translation. Curiously, one of important applications of machine translation at the
time was the automated translation of Russian-language scientific publications into
English. However, the committee was so disappointed with the results of automatic
translations that it admitted that it would be easier to learn Russian [5].

The field of machine translation has had a very long road to success. Rosenblatt
introduced the perceptron model in 1958 [174]; backpropagation was proposed back
in the 1970s and refined in 1986 ([176, 131]). The machine learning boom of the 1990s
and early 2000s, and the development of deep learning in the 2010s finally led to the
fact that anyone can benefit from quality machine translation services. It took not
three, not five, but more than fifty years to bring the idea from proof-of-concept to
ready-to-use solutions.

This is, of course, an extreme example. However, I think it can teach us a thing
or two. First, the fact that our expectations sometimes may be unreasonably high.
Projecting this onto bioinformatics, I am afraid that we can hardly expect to describe
all the available diversity of life anytime soon, even with NGS technologies and new
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methods in phylogenetics. On the other hand, this would mean that phylogenetic
placement for sequence identification will remain relevant for a long time. The second
lesson of this story is that it is not enough to develop new scientific methods. The
essential condition for success is our ability to disseminate these methods and convince
the public that they need them. Only by doing this can we engage the necessary
resources and new people to move the field forward truly. The scientific community
of the 1960s failed to convince ALPAC that the field of machine translation was
worthy of funding, which slowed progress in the field for many years.

Returning to the thesis topic, I have to admit that I observe a poor awareness of
the bioinformatics community about phylogenetic placement. It has begun to attract
more and more interest with the emergence of new methods, but after ten years of
research and development, it is rarely used in large pipelines for analyzing metabar-
coding data. Despite the emerging evidence showing that for short 16S rRNA se-
quences, phylogenetic placement should be preferred to inferring phylogenies de novo
[100], the latter is standard in the analysis of amplicon data. I cannot explain this
by anything other than poor communication. The situation has changed somewhat
with the integration of SEPP into the QIIME2 pipeline, but it has been almost ten
years since SEPP was published.

Probably the main problem of communication in bioinformatics is its multidisci-
plinarity. Applied researchers have no time to learn new emerging methods, frame-
works, and pipelines. Scientists inventing new methods do not always pay enough
attention to bring their programs to a state where they are usable by someone far
from programming. (I remember very well the day I first used a bioinformatics tool.
The experience of using it was that the flag --help did not work.) A classic situation
is when an applied researcher runs a complex program with default parameters, even
if these parameters are not appropriate for the input data, simply because it is not
easy to figure out what these parameters mean. The situation is similar with new
scientific software: many applied researchers use the programs they are used to, even
if these programs are obsolete.

I, of course, largely address this appeal to myself. I hope the reader will forgive
me for being self-centered. Unfortunately, I have not yet done enough to dissemi-
nate the results of my work. Since my early days in bioinformatics, I have felt the
lack of communication due to a strong division between bio-bioinformatics and info-
bioinformatics. I hope that this division will be overcome in the future.
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Appendix A

Tables and proofs

A.1 Proof of Lemma 3.6.2

Given the function

𝑔(𝑓) = −
∑︁
𝑦

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

log
1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

where log is the base 𝑎 logarithm, its derivative is:

𝑑

𝑑𝑓
𝑔(𝑓) = −

∑︁
𝑦

1

ln 𝑎

𝑁𝑆𝑦(𝑤)− 𝑆𝑤

(𝑁 − 𝑓𝑆𝑤)2

(︁
ln

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

+ 1
)︁

Proof. Let us substitute 𝑢 = 1−𝑓𝑆𝑦(𝑤)

𝑁−𝑓𝑆𝑤
and 𝑣 = log 𝑢.

Then,

𝑑

𝑑𝑓
𝑔(𝑓) = − 𝑑

𝑑𝑓

∑︁
𝑦

𝑢(𝑓, 𝑦) · 𝑣(𝑓, 𝑦)

= −
∑︁
𝑦

𝑑

𝑑𝑓
(𝑢(𝑓, 𝑦) · 𝑣(𝑓, 𝑦))

Let us find 𝑢′ and 𝑣′:

𝑑

𝑑𝑓
𝑢 =

𝑑

𝑑𝑓

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

=
−𝑆𝑦(𝑤)(𝑁 − 𝑓𝑆𝑤) + (1− 𝑓𝑆𝑦(𝑤))𝑆𝑤

(𝑁 − 𝑓𝑆𝑤)2
=

𝑆𝑤 −𝑁𝑆𝑦(𝑤)

(𝑁 − 𝑓𝑆𝑤)2

.
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𝑑

𝑑𝑓
𝑣 =

𝑑

𝑑𝑓
log 𝑢 =

𝑢′

ln 𝑎 · 𝑢
=

𝑁 − 𝑓𝑆𝑤

ln 𝑎 · (1− 𝑓𝑆𝑦(𝑤))
· 𝑆𝑤 −𝑁𝑆𝑦(𝑤)

(𝑁 − 𝑓𝑆𝑤)2
=

=
𝑆𝑤 −𝑁𝑆𝑦(𝑤)

ln 𝑎 · (1− 𝑓𝑆𝑦(𝑤))(𝑁 − 𝑓𝑆𝑤)

Finally, 𝑔′(𝑓) = −
∑︀

𝑦(𝑢
′𝑣 + 𝑢𝑣′):

𝑔′(𝑓) = −
∑︁
𝑦

(𝑢′𝑣 + 𝑢𝑣′) =

= −
∑︁
𝑦

(︁𝑆𝑤 −𝑁𝑆𝑦(𝑤)

(𝑁 − 𝑓𝑆𝑤)2
· log

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

+
1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

· 𝑆𝑤 −𝑁𝑆𝑦(𝑤)

ln 𝑎 · (1− 𝑓𝑆𝑦(𝑤))(𝑁 − 𝑓𝑆𝑤)

)︁
=

= −
∑︁
𝑦

𝑁𝑆𝑦(𝑤)− 𝑆𝑤

(𝑁 − 𝑓𝑆𝑤)2

(︁
log

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

+
1

ln 𝑎

)︁
=

= −
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𝑦

1

ln 𝑎

𝑁𝑆𝑦(𝑤)− 𝑆𝑤

(𝑁 − 𝑓𝑆𝑤)2

(︁
ln 𝑎 · log

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

+ 1
)︁

=

= −
∑︁
𝑦

1

ln 𝑎

𝑁𝑆𝑦(𝑤)− 𝑆𝑤

(𝑁 − 𝑓𝑆𝑤)2

(︁
ln

1− 𝑓𝑆𝑦(𝑤)

𝑁 − 𝑓𝑆𝑤

+ 1
)︁
.

Q.E.D.
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A.2 Tables

Software Year Ref Language Method Conda 1st Author PMID

PPlacer 2010 [146] OCaml/C Aln+ML y Matsen F.A. 21034504
EPA (RAxML) 2011 [20] C Aln+ML n Berger S.A. 21436105
LSHPLace 2013 [29] N/A Aln+AS n Brown D.G. 23424136
Phyclass 2015 [65] N/A Distances n Filipski A. 25923672
EPA-ng 2018 [15] C++ Aln+ML y Barbera P. 30165689
RAPPAS 2019 [130] Java AS y Linard B. 30698645
Apples 2021 [11] Python Aln+ML n Balaban M. 31545363
AppSPAM 2021 [22] C++ Distances y Blanke M. N/A

Table A.1 – Auxiliary information about state-of-the-art phylogenetic placement
tools. Abbreviations: not available (N/A), maximum-likelihod (ML), alignment
(Aln.), ancestral sequences (AS).

Name Year Ref Language Type Conda 1st Author PMID

GUPPY 2011 NA OCaml multi-tool y Matsen F.A. NA
Genesis 2019 [42] C++ library n Czech L. 30169747
GAPPA 2019 [42] C++ library n Czech L. 30169747

SEPP 2012 [155] Python pipeline n Mirarab S. 22174280
pplacerDC 2021 [112] Python pipeline n Koning E. NA
pplacerXR 2021 [222] Python pipeline n Koning E. NA

PhyloSift 2014 [44] Perl pipeline n Darling. A. 24482762
HmmUFOtu 2018 [237] C++ pipeline n Zheng Q. 29950165
PhyloMagnet 2019 [191] Nextflow/

Python
pipeline n Schön M.E. 31647547

PEWO 2020 [129] Python framework y Linard B. 32697844

SCRAPP 2020 [14] Python down n Barbera P. 32996237
Table A.2 – Phylogenetic placement-related libraries, pipelines, and dowstream anal-
ysis tools. Abbreviations: not available (N/A).
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Appendix B

Figures

119



M
LSE

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Mean Node Distance

apples | query size = 150

12.0

appspam
 | query size = 150

0.99999

epang | query size = 150

6

pplacer | query size = 150

8
10

rappas | query size = 150

8
10

rappas2 | query size = 150

M
LSE

criteria

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Mean Node Distance

apples | query size = 1200

12.0
weight

appspam
 | query size = 1200

0.99999
g

epang | query size = 1200

6
m

ax-strikes

pplacer | query size = 1200

8
10

k

rappas | query size = 1200

8
10

k

rappas2 | query size = 1200

F
igure

B
-1

–
T

he
results

ofPA
C

experim
ents

on
accuracy

for
D

218.

120



M
LS

E

2468101214 Mean Node Distance

ap
pl

es
 | 

qu
er

y 
siz

e 
= 

15
0

12
.0

ap
ps

pa
m

 | 
qu

er
y 

siz
e 

= 
15

0

0.
99

99
9

ep
an

g 
| q

ue
ry

 si
ze

 =
 1

50

6

pp
la

ce
r |

 q
ue

ry
 si

ze
 =

 1
50

8
10

ra
pp

as
 | 

qu
er

y 
siz

e 
= 

15
0

8
10

12

ra
pp

as
2 

| q
ue

ry
 si

ze
 =

 1
50

M
LS

E
cr

ite
ria

2468101214 Mean Node Distance

ap
pl

es
 | 

qu
er

y 
siz

e 
= 

12
00

12
.0

we
ig

ht

ap
ps

pa
m

 | 
qu

er
y 

siz
e 

= 
12

00

0.
99

99
9

g

ep
an

g 
| q

ue
ry

 si
ze

 =
 1

20
0

6
m

ax
-s

tri
ke

s

pp
la

ce
r |

 q
ue

ry
 si

ze
 =

 1
20

0

8
10

k

ra
pp

as
 | 

qu
er

y 
siz

e 
= 

12
00

8
10

12
k

ra
pp

as
2 

| q
ue

ry
 si

ze
 =

 1
20

0

F
ig

ur
e

B
-2

–
T

he
re

su
lt

s
of

PA
C

ex
pe

ri
m

en
ts

on
ac

cu
ra

cy
fo

r
D

50
0.

121



M
LSE

2 4 6 8 10 12 14

Mean Node Distance

apples | query size = 150

0.99999

epang | query size = 150

6

pplacer | query size = 150

8
10

rappas | query size = 150

8
10

12

rappas2 | query size = 150

M
LSE

criteria

2 4 6 8 10 12 14

Mean Node Distance

apples | query size = 1200

0.99999
g

epang | query size = 1200

6
m
ax-strikes

pplacer | query size = 1200

8
10

k

rappas | query size = 1200

8
10

12
k

rappas2 | query size = 1200

F
igure

B
-3

–
T

he
results

ofPA
C

experim
ents

on
accuracy

for
D

652.

122



M
LS
E

12345678 Mean Node Distance

ap
pl
es
 | 
qu
er
y 
siz

e 
= 
15

0

12
.0

ap
ps
pa
m
 | 
qu
er
y 
siz

e 
= 
15

0

0.
99

99
9

ep
an
g 
| q

ue
ry
 si
ze
 =
 1
50

6.
0

pp
la
ce
r |
 q
ue
ry
 si
ze
 =
 1
50

8
10

12

ra
pp
as
2 
| q

ue
ry
 si
ze
 =
 1
50

M
LS
E

cr
ite

ria

12345678 Mean Node Distance

ap
pl
es
 | 
qu
er
y 
siz

e 
= 
10

00
0

12
.0

we
ig
ht

ap
ps
pa
m
 | 
qu
er
y 
siz

e 
= 
10

00
0

0.
99

99
9

g

ep
an
g 
| q

ue
ry
 si
ze
 =
 1
00

00

6.
0

m
ax
-s
tri
ke
s

pp
la
ce
r |
 q
ue
ry
 si
ze
 =
 1
00

00

8
10

12
k

ra
pp
as
2 
| q

ue
ry
 si
ze
 =
 1
00

00

F
ig

ur
e

B
-4

–
T

he
re

su
lt

s
of

PA
C

ex
pe

ri
m

en
ts

on
ac

cu
ra

cy
fo

r
D

15
5.

123



MLSE
0

5

10

15

20

25

M
ea
n 
No

de
 D
ist
an
ce

apples | query size = 150

12.0

appspam | query size = 150

0.99999

epang | query size = 150

8 10

rappas2 | query size = 150

MLSE
criteria

0

5

10

15

20

25

M
ea
n 
No

de
 D
ist
an
ce

apples | query size = 10000

12.0
weight

appspam | query size = 10000

0.99999
g

epang | query size = 10000

8 10
k

rappas2 | query size = 10000

Figure B-5 – The results of PAC experiments on accuracy for HIV-genome.
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