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Résumé en français

Dans cette thèse, nous nous intéressons à des problèmes de propagation d’ondes acoustiques
dans un écoulement en vue d’applications en physique solaire. En effet, la structure interne
du Soleil peut être étudiée à partir de l’observation de ces ondes sur la surface solaire.
Dans un premier temps, nous rappelons le procédé de linéarisation des équations de la mé-
canique des fluides permettant de construire des modèles vectoriels de propagation d’ondes
en écoulement. Nous étudions alors l’équivalence entre les modèles obtenus à partir des
linéarisations eulériennes et lagrangiennes et nous montrons que cette équivalence ne peut
pas toujours être garantie en régime harmonique. D’un point de vue pratique, l’exploitation
numérique de cette équivalence semble inefficace, notamment pour la reconstruction des
perturbations lagrangiennes à partir des perturbations eulériennes. Nous nous concentrons
ensuite sur l’étude d’un phénomène de résonance en régime harmonique lorsque l’écoulement
porteur a des lignes de courant fermées. Une étude modale montre que les équations con-
sidérées dégénèrent sur certaines lignes de courant. Sur ces lignes, il n’est alors pas possible
de résoudre les équations. Il semble toutefois possible de résoudre ce problème en étudiant
ces équations dans un espace hilbertien dont les propriétés de régularités sont plus faibles
que pour les espaces de Hilbert habituellement utilisés pour l’étude des équations d’ondes
aéroacoustiques. D’un point de vue numérique, la recherche de la solution dans un tel espace
nécessite la construction de nouvelles méthodes numériques.
Dans la deuxième partie de ce travail, nous nous concentrons sur la construction de méthodes
numériques pour un modèle aéroacoustique simple : l’équation de Helmholtz convectée. Ce
modèle scalaire peut être obtenu à partir des modèles vectoriels lorsque l’écoulement porteur
est irrotationnel. Pour cette équation, nous construisons trois variantes de la méthode de
Galerkine Discontinue Hybride (HDG). Les méthodes HDG sont des méthodes de Galerkine
Discontinues mixtes dont le coût numérique reste raisonnable grâce à un procédé de con-
densation statique qui permet de réduire le problème à un problème posé uniquement sur
le squelette du maillage. Nous avons effectué une analyse détaillée de ces méthodes, en par-
ticulier nous avons montré le caractère bien posé des méthodes, ainsi que des estimations
de la vitesse de convergence pour des solutions régulières. Enfin, nous avons également dis-
cuté le choix du paramètre de pénalisation qui peut exercer une influence importante sur
la qualité des résultats numériques. Ces méthodes ont été implémentées dans le code open-
source Hawen et les résultats numériques ont permis d’illustrer les conclusions de notre étude
théorique. Nous avons également construit des conditions aux limites absorbantes (CLA)
d’ordre faible pour l’équation de Helmholtz convectée. Ces CLA sont obtenues par transfor-
mation de PrandtL-Glauert-Lorentz de CLA pour l’équation de Helmholtz standard lorsque
l’écoulement porteur est uniforme à l’extérieur du domaine. Ces CLA sont performantes
pour des écoulements dont le nombre de Mach est faible ou modéré et leur mise en œuvre
dans un code éléments finis, notamment HDG, est simple.
Enfin, la troisième partie de ce travail est consacrée à l’extension des méthodes HDG constru-
ites pour l’équation de Helmholtz convectée à des modèles plus réalistes. Dans un premier
temps, nous décrivons les changements à apporter pour traiter les cas vectoriels. La con-
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struction d’une méthode HDG pour le cas vectoriel sans convection semble relativement
aisée, mais la prise en compte des phénomènes convectifs pose de nombreuses questions tant
théoriques que pratiques. Finalement, nous illustrons les possibilités des méthodes HDG sur
un problème scalaire issu de l’astérosismologie qui prend en compte une partie des effets liés
à la gravité. Le modèle obtenu est semblable à une équation d’Helmholtz convectée par la
gravité.



Summary

In this thesis, we consider wave propagation problems in a flow arising in helioseismology.
Indeed, the Sun’s internal structure can be studied thanks to surface observations of those
waves.
In the first part of this work, we recall how vectorial aeroacoustic models can be derived by
linearizing the equations of fluid dynamics around an equilibrium state. We then study the
equivalence between the resulting equations when both lagrangian and eulerian linearization
are used. We show that this equivalence cannot always be guaranteed in the frequency
domain. From a practical point of view, exploiting this equivalence seems inefficient, when
trying to reconstruct the lagrangian perturbation from the eulerian ones. We then focus
on the study of a resonant-like phenomenon that occurs in the frequency domain when
the background flow has closed streamlines. The aeroacoustic equations are decomposed
as a modal system, which degenerates on some of those streamlines. On those resonant
streamlines it is therefore not possible to solve the equations. However, it seems possible to
overcome this difficulty by studying these equations in a Hilbert space with lower regularity
than the one commonly used from harmonic wave propagation problem. From a numerical
point of view, new numerical methods are required to look for the solution in this low-
regularity space.
In the second part of this work, we focus on the construction of numerical methods for a sim-
ple aeroacoustic model: the convected Helmholtz equation. This scalar model can be derived
from the vectorial ones when the carrier flow is irrotational. For this simple equation, we
construct three variants of the Hybridizable Discontinuous Galerkin (HDG) method. HDG
methods are mixed Discontinuous Galerkin (DG) methods whose numerical cost is reduced
thanks to a static condensation process leading to a problem only posed on the skeleton
of the mesh. For those methods, we performed a detailed analysis which includes well-
posedness results when the mesh is fine enough, as well as convergence estimates for regular
solutions. We also discussed the choice of penalization parameter, as it can impact the qual-
ity of the numerical results. Those methods were implemented in the open-source software
Hawen and the theoretical results were illustrated by the numerical simulations. Finally,
we also constructed low-order Absorbing Boundary Conditions (ABCs) for the convected
Helmholtz equation by using the Prandtl-Glauert-Lorentz transformation of ABCs for the
standard Helmholtz equation when the background flow is locally uniform in the vicinity of
the boundary of the domain. These ABCs are accurate for low intermediate Mach numbers,
easy to implement in a finite-element solver and well-suited to the HDG formulations that
we have constructed.
Finally, the last part of this work is devoted to the extension of those HDG methods to more
realistic models. We first describe the changes required to devise HDG methods for vectorial
aeroacoustic models. Even if it seems straightforward to construct HDG schemes for the
vectorial equation without convection, many theoretical and practical questions arise when
we try to take this phenomenon into account. We then illustrate the HDG methods that we
have constructed on a scalar problem arising in asteroseismology. This scalar model is similar
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to a convected Helmholtz equation where the velocity field is replaced by the gravitational
one.
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In this chapter, we give a general introduction to this work. Our goal is to give some
information about the context of this thesis and more precisely on helioseismology as most
readers may not be familiar with this field. As the subsequent chapters all have their
introduction, we do not go into details here and we keep this general introduction relatively
short.

1 Mechanical waves characterize the propagation medium
Helioseismology focuses on solar oscillations to probe the solar interior. These oscillations
can be understood as aeroacoustic waves propagating inside the Sun. We would like to recall
that there is a strong link between mechanical waves and their propagation medium: indeed,
measurements of those waves on the surface of an object can be used to probe the interior
of this object. This property has been used in many applications, such as
• seismology: the interior of the Earth has been imaged using measurements of seismic

waves,
• medical imaging: doctors can "see" inside a patient using electromagnetic (MRI) or

acoustic (ultrasound imaging) waves,
• nondestructive testing: it is used to assess the quality of some industrial products.

The idea behind wave-based imaging is that waves propagating inside an object will be
reflected or scattered by the internal structure of the object, and this will reflect on the
surface measurements.

Illustration of the interaction between waves and the propagation medium. Here,
we will illustrate the influence of the nature of the medium on wave propagation with some
numerical simulations with the Helmholtz equation

−ω2p− c2
0∆p = δ,

where ω is the frequency, c0 is the sound-speed and δ is a point-source, solved in the following
cases:
• Case #1: uniform sound-speed,

13



14 CHAPTER 0. INTRODUCTION

• Case #2: one obstacle and uniform sound-speed,
• Case #3: no obstacle and an inclusion with a change in sound speed.

For each of those cases, a point-source is located at the center of the domain, which is a disk
of radius R = 1.5, and an Absorbing Boundary Condition is used on the exterior boundary
of the domain. In Figure 1, the results in the whole domain and measured on the circle
of radius r = 1.2 are depicted. We can clearly see that changes in the propagation medium
lead to changes in the resulting waves.
Among those three cases, the closest one to helioseismology is Case #3. Indeed, the goal
of helioseismology is to use measurements of the solar oscillations to understand how the
physical parameters (such as density, pressure, . . . ) change inside the Sun. As illustrated
with Case #3, wave propagation is impacted by changes in the physical parameters, even if
those changes are located in a small area in the domain.

Inverse problems. Imaging the interior of an object from surface measurements of waves
is called an inverse problem, while determining how waves propagate in a known object is
the associated direct problem that was illustrated right before.
An inverse problem can be solved either in a qualitative or quantitative way. Qualitative
inversion only focuses on the localization of structure elements. A usual example of quali-
tative inversion is found in medical imaging: when using X-rays, doctors want to determine
where the fracture in a bone is, but they do not need to obtain information about the bone’s
density. In helioseismic inversion, solar physicists are actually interested in quantitative in-
formation on the solar interior, i.e. they want to obtain values for some parameters of interest
such as physical properties (sound speed, temperature, pressure, . . . ) or on the chemical
composition (abundance of certain elements).
One of the most advanced quantitative inversion procedure is the so-called full waveform
inversion (FWI) which can be summarized as follows:

1. An initial guess is made for the parameters of interest, this model is denoted by m0
2. The direct problem is solved using the initial guess leading to the numerical solution
uh(m0),

3. The results from this simulation is compared with the experimental (or observational)
data uexp

J (m0) := 1
2 ‖uexp − uh(m0)‖2 + regularisation,

where J is called the misfit functional,
4. The parameters of interest are updated

mk+1 = mk + αksk,

where sk is the direction and αk is the step-size, both are determined using a gradient
descent procedure on J ,

5. Steps 2-3-4 are repeated until J (mk) < tolerance or |J (mk)− J (mk−1)| < tolerance.
The choice of the initial guess m0 is quite important: indeed, as J may not have a unique
minimum, the algorithm could converge to a local minimum instead of the global one. If
prior information is available, it should therefore be incorporated into m0 to ensure a fast
convergence to the real model. If no such information is available, a uniform initial modal
can be used, but this may lead to a local minimum and take much more time to obtain
convergence. For more details on inverse problems, we refer the reader to [Fau17].
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Figure 1: Snapshots and measurements of the wave propagation the three cases described
above. The computational domain is a disk of radius R = 1.5.
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2 Solar models
Before moving to the description of the solar oscillations, we give a quick description of the
internal structure of the Sun, the interested reader can found more details in [Chr04, Sec.
3.2] or in [Chr02]. As the goal of helioseismology is to infer details about the solar structure,
we summarize how standard solar models, that describe the global structure of the Sun, are
constructed. Those models are usually constructed using Assumption 1. Even if they are
quite simple, those models are very useful in the pipeline of helioseismic inversion as they
can be used as an initial guess for the inversion procedure.

Assumption 1 (Standard solar models):
To construct a "standard" solar model, the following assumptions are made
• the internal structure is spherically symmetric,
• magnetic effects are neglected,
• rotation is neglected.

As the rotation is not taken into account by the standard model, it is usually one of the
parameters that are reconstructed by the inversion procedure.
To describe the solar structure, we introduce the solar radius R�, which is approximately
700 000km. The structure described by standard solar models is stratified under gravity
with three main layers:
• The nuclear core: Deepest part of the Sun, from 0 to 0.3R�, where the nuclear fusion

happens. This layer cannot be imaged using helioseismology.
• The radiative zone: Intermediate layer, from 0.3R� to 0.7R�, where the temperature

is so high that the energy transfer happens through radiative transfer.
• The convective zone: Outside layer, from 0.7R� to R�, where most of the energy

transfer happens through convection.
A sketch of this structure is given in Figure 2. It is interesting to notice that the equations
governing this structure are quite simple

dp
dr = −Gmρ

r2 ,

dm
dr = 4πr2ρ,

dT
dr = d lnT

d ln p
dp
dr , in the convective zone,

dT
dr = 3

16πac̃G
κp

GT 4
L(r)
m(r) , in the radiative zone,

dL
dr = 4πr2ρε,

where p is the pressure, m is the mass contained in the ball of radius r, ρ is the density, T is
the temperature, L is the flow energy per unit time through the sphere of radius r, ε is the
rate of nuclear energy generation per unit mass and time, u is the internal energy per unit
volume, G is the gravitational constant, c̃ is the speed of light, a is the radiation density
constant and κ is the opacity.
Even if those equations are quite simple, some complexity is actually hidden. Indeed, to use
those equations, source terms must be added. Those source terms are usually expressed in
terms of the basic unknowns p, m, T , L and of the abundance of chemical species. Those
source terms are designed to fit some properties of the Sun (e.g. chemical composition,
opacity, . . . ) and may lead to different results even if the same "basic" equations are used.
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As an example, the density of one of the most common solar model, called Model S, described
in [CDA+96] is depicted on Figure 3. In this plot, we can clearly see that it is exponentially
decreasing with r and that there is a huge drop close to the solar surface. As several orders
of magnitudes are lost between the solar interior and the surface, it may be challenging to
perform numerical simulation in those settings. To illustrate this further, we also give the
values of some of the physical properties of the Sun in Table 1. Once again we can see a
huge drop between the core and the surface as the temperature goes from 107K to 103K.

Property Value
Age 4.6 · 109 years
Mass (M�) 2 · 1030 kg
Radius (R�) 700 000 km
Temperature (surf) 5 770 K
Temperature (core) 1.5 · 107 K

Table 1: Some physical properties of the Sun.

Convective

Radiative

Core

Figure 2: Sketch of the internal structure of the Sun. Red arrows represent the rotation and
blue arrows represent convection bubbles that are not taken into account into the standard
models.

3 Describing solar oscillations
As the Sun is constituted of plasma, it can be described byMagneto-Hydro Dynamics (MHD)
equations, which are a coupling between Navier-Stokes’ or Euler’s equations describing the
fluid and Maxwell’s equations describing the magnetic field. However, as the MHD equations
contain both the solar oscillations and the other MHD effects occurring in the Sun, they are
not suitable for helioseismology. Indeed, the oscillations are small when compared to other
phenomena occurring in the Sun, and using MHD equations to study them would require a
very fine scale resolution of a non-linear system of PDEs. As this would be very expensive
from a computational point of view, we need to obtain a set of equations describing only the
solar oscillations.
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Figure 3: Density ρ (in g·cm−3) inside the Sun as predicted by Model S plotted against the
scaled radius r/R� in semi-log scale. Notice that Model S expands into the solar atmosphere,
where the density is very low.

To obtain this equation, we need to make some more simplifications. Depending on the
phenomena that we wish to study, we need to make one of those assumptions:
• Aeroacoustic approximation: the magnetic effects are neglected,
• Magneto-acoustic approximation: the hydrodynamic effects are neglected.

The first approximation can be used to probe deep into the solar interior and will be used
throughout this thesis. The second one is useful to study surface phenomena such as sun
spots. Once again, we only briefly recall the main ideas here, and we refer the interested
readers to [Chr04, Chr02] for more details.
In the aeroacoustic approximation, the Sun can be described as a perfect fluid satisfying
Euler’s equations. To obtain a set of equations for the solar oscillations, the Euler’s equations
are linearized around an equilibrium state. Each physical quantity is decomposed using the
following asymptotic development

q = q0 + εq′ +O(ε2), ε� 1,

where q is the total quantity, q0 is the quantity in the equilibrium state or background quantity
and q′ is the perturbation produced by solar oscillations. When this asymptotic development
is introduced into the Euler’s equations and after identifying the powers of ε, we obtain to
set of equations:
• the Euler’s equations for the equilibrium state at the zeroth order in ε,
• an equation for solar oscillations, also called aeroacoustic equation, at the first order

in ε.
If the displacement vector is used as the main unknown, the obtained aeroacoustic equation
is the so-called Galbrun’s equation

ρ0

(
∂

∂t
+∇v0

)2

ξ −∇
[
ρ0c

2
0div (ξ)

]
+ div (ξ)∇p0 −∇ [∇ξp0] +∇ξ∇p0 − ρ0∇ξg0 = s, (1)

where
• ξ is the displacement vector, which describes the solar oscillations,
• ρ0, p0, c0 and g0 are the background density, pressure, adiabatic sound-speed and

gravity respectively,
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• s is the source of the solar oscillations,
• ∇v0ξ is the directional derivative of ξ along v0.

This equation will be derived in Chapter 1. From a historical point of view, it was derived
for the first time in [Gal31] and it was introduced in astrophysics in [LO67]. It can be
decomposed into two parts. The first one,

ρ0

(
∂

∂t
+∇v0

)2

ξ −∇
[
ρ0c

2
0div (ξ)

]
,

is a vectorial convected wave operator and the remaining terms,

div (ξ)∇p0 −∇ [∇ξp0] +∇ξ∇p0 − ρ0∇ξg0,

describe the interaction between the oscillations and the background flow.
Different types of waves are supported by this vectorial wave equation. As the Sun is (almost)
spherical, it is convenient to decompose the waves onto the basis of spherical harmonics. We
can then obtain a power spectrum, which is a graphical representation of dispersion relations
linking the frequency of the wave and the harmonic degree l. An example of such a power
spectrum is given in Figure 4. Following [Chr04, Sec. 3], we give a quick description of the
three types of waves shown on Figure 4 below for the simple case where v0 = 0.

Figure 4: Power spectrum computed for Model S – Frequency is plotted vs the harmonic
degree l – Extracted from [Chr02]

Acoustic waves (p-modes). The so-called p-modes are standard acoustic waves whose
restoring force is pressure. For a wave vector κ, the acoustic waves satisfy the following
dispersion relation

ω2 = c2
0|κ|2.

Notice that the adiabatic sound-speed can be expressed as

c2
0 = γkBT0

muµ
,
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where γ = 5/3 is the heat capacity ratio, kB is the Boltzmann constant, T0 the background
temperature, µ is the mean molecular weight (which describes the presence of heavy elements
inside the Sun), mu is the atomic mass unit. The sound-speed therefore depends on T0/µ as
the other quantities are constant.
Those acoustic waves can propagate deep inside the Sun through the convective and radiative
zones. To describe their radial variation, we write the wave vector κ as

κ = κrer + κh,

and we can show that
κ2
r = ω2

c2
0

(
1− S2

l

ω2

)
,

where Sl = l(l + 1)c2
0/r

2 ' |κh|2c2
0 is the so-called Lamb frequency. This equation has

a geometric interpretation. As the temperature increases with depth, so does the sound-
speed, we can therefore see that κr decreases with depth. On the other hand, as depicted
on Figure 6, Sl increases with depth. As a result, the waves are refracted, and their
propagation rays are bent, this is illustrated on Figure 5. The turning point is located at
the depth rt where Sl(rt) = ω.
Finally, we would like to point out that most of the measured solar oscillations consist in
p-modes.

Figure 5: Propagation rays of p-modes inside the Sun – Extracted from [Chr04]

Gravity waves (f- and g-modes). The second important type of waves propagating
inside the Sun are gravity waves1. The restoring force of those waves is buoyancy. They can
be separated into two types: f-modes that are surfacic gravity waves and g-modes that are
internal gravity waves. All of those modes are approximately divergence-free.
The f-modes satisfy the following dispersion relation

ω2 = gs|κh|,

where gs is the surface gravity and κ = κrer + κh is the wave vector. As this dispersion
relation only depends on the surface gravity, the f-modes are independent of the internal
structure of the Sun. In the observations, they can therefore be identified even if there are
some model uncertainties. On the power spectrum of Figure 4, a f-mode is present. Its
frequency is similar to the frequencies of p-modes, but its harmonic degree is higher.

1Gravity waves of fluid dynamics should not be mistaken with the gravitational waves of general relativity.
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Figure 6: Characteristic frequencies inside the Sun computed with Model S: N/2π (solid
line), Sl/2π (dashed lines, labelled for l) – Heavy horizontal lines describe the trapping
region of a g-mode of frequency 100 µHz and a p-mode of frequency 3000 µHz – Extracted
from [Chr04]

To describe the g-modes, we need to introduce the so-called Brunt-Vaisala frequency, or
buoyancy frequency

N2 = |g0|
(

1
γp0

dp0

dr −
1
ρ0

dρ0

dr

)
.

Notice that, despite being a squared quantity, N2 can be negative. The g-modes can only
propagate when N2 > 0. This can be understood by a simple argument given in [Chr04]:

When a fluid element is displaced upwards in an adiabatic motion, its behavior
depends on the density of its new surroundings. If N2 > 0, the element is heavier
than the fluid and buoyancy forces it back into its original position leading to an
oscillatory motion. On the other hand if N2 < 0, the element is lighter than the
fluid and buoyancy acts to enhance the motion.

As it can be seen on Figure 6, where N is depicted by a solid line, the condition N2 > 0
is only achieved deep inside the Sun (in the core and in the radiative zone). In particular,
g-modes are evanescent the convective zone which is the outer layer of the Sun. As a result,
solar g-mode are difficult to measure as we only have access to surface observations.
The g-modes are described by the following dispersion relation

ω2 = N2

1 + κ2
r

|κh|2
,

where κ = κrer +κh is the wave vector. Notice that we have ω2 < N2, so the g-modes tend
to have a low frequency as it can be seen on the power spectrum of Figure 4.

Damping. In the previous paragraphs, we have written dispersion relations without damp-
ing. However, it was found out in [Bal92] that all solar modes are damped. It seems that an
important contribution to the damping effect comes from the turbulence. As the modelling
of the damping effect is still an open question, we only consider a very simple damping
function in this thesis. In the frequency domain, the frequency ω is replaced by

ω ←− ω + iσ,
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where σ is the damping parameter. This formally mimics the limiting absorption principle
coming from the analysis of the Helmholtz equation, we refer to [Wil75] for more details on
the analysis of the Helmholtz equation.

Effects of rotation. In this section, we have written down the equations without taking
the solar rotation into accounts. Considering this phenomenon can be done by simply adding
terms corresponding to the centrifugal and Coriolis forces to Galbrun’s equation (1), see
[LO67].
Taking the rotation into account has two main effects. Firstly, it breaks the spherical sym-
metry of the model that was obtained when the background flow only depends on the radial
coordinate. Secondly, new modes are supported by the equations such as Rossby waves,
or r-modes, whose restoring force is the Coriolis one. Those Rossby waves were recently
observed in the Sun, see [LGB+18].

Reduction to a scalar equation in simple cases. We would like to point out that it is
sometimes possible to obtain a scalar equation instead of the vectorial Galbrun’s equation
(1). Indeed, as described in [GBD+17], by taking the divergence of (1) and neglecting the
terms describing the interactions between the flow and the waves and some quadratic terms,
the following equation can be obtained

−(ω2 + 2iωσ)ψ − 2iωv0 · ∇ψ − c0div
( 1
c0
∇[ρ0c0ψ]

)
= s, (2)

where s := div (s) and ψ := c0div (ξ). The quantity ρ0c0ψ is homogenous to a pressure
perturbation. When ρ0 and c0 are solar-like, the scalar equation (2) captures most of the
physics linked with p-modes.

Measuring the solar oscillations. At this point, we have described both a model for
solar oscillations and the kind of modes that we expect to find inside the Sun. However
all of this cannot be used if there is no observational data to compare with the results of
numerical simulation. As we already mentioned, the solar oscillations were observed for the
first time in the 1950s. Most of those observations rely on the relativistic Doppler effect:
the Doppler shift in the solar spectrum can be linked to the projection of the displacement
vector ξ on the line-of-sight. Some observational data for the Sun are depicted on Figure
7. Notice that the bottom-right ridge on the power spectrum corresponds to the f-mode of
the theoretical power spectrum of Figure 4.
Solar data can come from:
• ground-based observations, in this case a network of observatory is needed to continu-

ously observe the Sun, the most important ground-based solar observation program is
the Global Oscillations Network Group (GONG) which relies on six identical telescopes
located in Hawaii, California, Chile, Tenerife, India and Australia,
• space-based observations, using satellites located at the Lagrange points of the Sun-

Earth system, among others some of the famous space mission dedicated to solar
observations are
– the Solar and Heliospheric Observatory (SOHO) which has been operating for 25

years (the planned mission duration was two years),
– the Solar Dynamics Observatory (SDO), launched in 2010, which is the follow-up

mission to SOHO,
– the Solar Orbiter (SoIO), launched in 2020, which aims at studying the link

between magnetic effects and solar eruptions.
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(a) Doppler image of the Sun taken by the
MDI instrument aboard the SOHO satel-
lite. (Credit: NASA)

(b) Power spectrum obtained from MDI
data (Credit: Stanford University)

Figure 7: Observational data for the Sun.

Timeline of the discovery of solar oscillations. We end this section by recalling the
timeline2 of the discovery of solar oscillations. In particular, we would like to point out that
helioseismology is quite a new branch of solar physics as the first certain observation of solar
oscillations dates back to the 1950s and the first helioseismic inference of solar properties to
the middle of the 1980s.
1962: first definitive observations by Leighton:

• roughly periodic oscillations in local Doppler velocity with period about 300s and
a lifetime of a few periods,
• convective motion at the supergranular scale,

confirmed the same year by Evans & Michard,
1970s: acoustic nature of the oscillations was understood in the works of Ulrich (1970),

Leibacher & Stein (1971), Wolff (1972), Ando & Osaki (1975),
1975: Deubner identified ridges in the wavenumber - frequency diagram describing the

modal structure of the oscillations confirmed by Rhodes et al. (1977) and constraints
on the properties of the convection zone were obtained,

1980: identification of global solar modes from observations at the South Pole by Grec,
Fossat & Pomerantz,

1983: observation of intermediate degree observations by Duvall & Harvey,
1984: first helioseismic inference of the internal solar rotation by Duvall et al.,
1985: first helioseismic inference of the internal solar sound speed by Christensen-Dalsgaard

et al..
2This timeline has been extracted from [Chr02] where more precise references can be found.
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4 Numerical methods
For a long time, solar physicits relied on semi-analytical methods to solve Galbrun’s equation
(1) by reducing the model to a scalar ODE. Even if those kinds of methods are very efficient,
they can only be used under restrictive assumptions.
As those methods can only be used for a spherically symmetric Sun, it is convenient to
introduce the spherical coordinates (r, θ, ϕ) and the associated basis vector-fields (er, eθ, eϕ).
Vector-fields can then be decomposed into their radial and horizontal parts as follows

ξ = ξrer + ξh, (3)

where ξh ∈ span(eθ, eϕ). A similar decomposition also holds for the gradient operator,
indeed let u be a regular function, we have

∇u = ∂u

∂r
er +∇hu, where ∇hu := 1

r

∂u

∂θ
eθ + 1

r sin θ
∂u

∂ϕ
eϕ.

Assumption 2 (Deriving a semi-analytical method):
To derive a semi-analytical method to solve (1), we assume
• a null velocity field: v0 = 0,
• a radial background flow: ∇hq0 = 0 for q0 ∈ {ρ0, p0, c0}.

Spherical harmonics. Let l be a non-negative integer and m an integer such that −l 6
m 6 l. We denote by S2 the unit sphere. The function Y m

l : S2 → C satisfying

−∆SY
m
l (θ, ϕ) = l(l + 1)Y m

l (θ, ϕ),

where ∆S is the Laplace-Beltrami operator over S2, is called the spherical harmonic function
of degree l and order m. The number l can be interpreted as the number of parallels and |m|
as the number of meridians in the graphical representation of Y m

l . The spherical harmonics
are the eigenfunctions of the spherical Laplace-Beltrami operator. The first few spherical
harmonics are depicted on Figure 8.
The spherical harmonics can be expressed in terms of the associated Legendre polynomials
Pm
l defined by

Pm
l (x) = (−1)m

2ll! (1− x2)m2 dl+m
dxl+m (x2 − 1)l,

the following formula links Y m
l and Pm

l

Y m
l (θ, ϕ) = cl,mP

m
l (cos θ)eimϕ,

where cl,m is a normalization constant.
As spherical harmonics constitute an orthogonal Hilbert basis of C(S2), any continuous
function over S2 can be decomposed as a series of spherical harmonics: let f : S2 → C be a
continuous function, we have

f(θ, ϕ) =
+∞∑
l=0

l∑
m=−l

fml Y
m
l (θ, ϕ).

This property is a key ingredient to devise semi-analytical methods for Galbrun’s equation
(1).
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Figure 8: Representation of the first spherical harmonics. The letters s,p,d,f. . . corresponds
to the valence shells in chemistry. Extracted from Wikipedia.

Reduction to a system of ODEs. The construction presented in this paragraph is a
summary of [Chr04, Chap. 4] to which we refer the interested reader for more details. To
devise a semi-analytical method, it is not really convenient to directly work with Galbrun’s
equation (1). Instead we consider the following system

ρ0
∂2ξ

∂t2
+ ρ′

ρ0
∇p0 +∇p′ = s, (4)

ρ′ + div (ρ0ξ) = 0, (5)
p′ + ρ0c

2
0div (ξ) + ξ · ∇p0 = 0, (6)

where the eulerian perturbations of density ρ′ and of pressure p′ explicitly appear. As it
will be detailed in Chapter 1, Galbrun’s equation (1) is actually derived from the system
(4)–(5)–(6).
Using the decomposition (3) of ξ into its radial and horizontal parts into (4), we can obtain
an equation for the horizontal component

ρ0
∂2ξh
∂t2

+∇hp
′ = sh,

as ∇hp0 = 0. By taking the horizontal divergence, we obtain

∂2divh (ξh)
∂t2

+ ∆hp
′ = divh (sh) . (7)

Using (5), we also have

ρ′ = − 1
r2
∂r2ρ0ξr
∂r

− ρ0divh (ξh) ,

so (7) becomes

− ∂2

∂t2

[
ρ′

ρ0
− 1
r2ρ0

∂r2ρ0ξr
∂r

]
+ ∆hp

′ = divh (sh) . (8)

The radial part of (4) is

ρ0
∂2ξr
∂t2

+ ρ′

ρ0

dp0

dr + ∂p′

∂r
= sr, (9)
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and (6) can be written as

p′ + ρ0c
2
0

(
1
r2
∂r2ξr
∂r

+ divh (ξh)
)

+ ξr
dp0

dr = 0,

which leads to

p′ + ρ0c
2
0

(
1
r2
∂r2ξr
∂r
− 1
r2ρ0

∂r2ρ0ξr
∂r

+ ρ′

ρ0

)
+ ξr

dp0

dr = 0. (10)

At this point, we notice that the partial derivatives with respect to θ and ϕ in (8)–(9)–(10)
only appear in the ∆h term in (8). We therefore introduce the following decompositions onto
the spherical harmonics

ξr(t, r, θ, ϕ) = Re
+∞∑
l=0

l∑
m=−l

ξr,lm(r)Y m
l (θ, ϕ)e−iωt,

p′(t, r, θ, ϕ) = Re
+∞∑
l=0

l∑
m=−l

p′lm(r)Y m
l (θ, ϕ)e−iωt,

ρ′(t, r, θ, ϕ) = Re
+∞∑
l=0

l∑
m=−l

ρ′lm(r)Y m
l (θ, ϕ)e−iωt,

where we further assumed that the time dependance is harmonic. Plugging this decomposi-
tion into the system (8)–(9)–(10) and identifying each mode, we obtain the following set of
modal equations

ω2
[
ρ′lm
ρ0
− 1
r2ρ0

dr2ρ0ξr,lm
dr

]
− l(l + 1)p′lm = divh (sh) , (11)

−ρ0ω
2ξr,lm + ρ′lm

ρ0

dp0

dr + dp′lm
dr = sr,lm, (12)

p′lm + ρ0c
2
0

(
1
r2

dr2ξr,lm
dr − 1

r2ρ0

dr2ρ0ξr,lm
dr + ρ′lm

ρ0

)
+ ξr,lm

dp0

dr = 0. (13)

The modal system (11)–(12)–(13) is a linear system of ODEs that can be solved indepen-
dently for each mode. A numerical solution can be obtained by truncating the series in l.
We can notice that because of the spherical symmetry, it does not depend on the order m.

Our proposed solution to go further. In the previous paragraph, we have shown how
the time-harmonic Galbrun’s equation (1) can be reduced to a linear system of ODEs (11)–
(12)–(13) for cases where Assumption 2 holds. For more realistic configurations, this cannot
be done anymore. For example, when v0 6= 0, it may not be possible to obtain a simple modal
system as the convection terms can couple different modes. To address those difficulties, we
propose to use different numerical methods that belong to the family of Galerkin methods,
or finite element methods.
Galerkin methods are more flexible and will allow to take more realistic configurations into
account. They are based on the discretization of a weak, or variational, formulation on an
unstructured mesh. In [GBD+17], Galerkin methods were introduced for the scalar model
(2) and interesting results were obtained. In particular, we will consider (Hybridizable) Dis-
continuous Galerkin methods for which the continuity of the solution between two elements
is only weakly enforced. Both theoretical and implementation details on the methods are
given in Chapter 3.
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5 Organization of this work
We end this introduction by saying a few words about the outline of this work.
• In Chapter 1: We describe how the aeroacoustic equations describing the solar os-

cillations can be derived from the equations describing an ideal gas.
• in Chapter 2: We study a resonant-like phenomenon that can occur when aeroacous-

tic waves interact with a recirculating flow.
• in Chapter 3: We introduce a framework for solving the convected Helmholtz equa-

tion using HDG methods, both numerical and theoretical results are obtained.
• in Chapter 4: We construct Absorbing Boundary Conditions (ABCs) for the con-

vected Helmholtz equation, they are based on the Lorentz transformation of the Engquist-
Madja ABCs for the standard Helmholtz equation.
• in Chapter 5: We give some details on how the HDG framework of Chapter 3

could be extended to the vectorial Galbrun’s equation, and we also point out the main
theoretical difficulties arising in this process.
• in Chapter 6: We use a scalar model coming from asteroseismology that takes some

effects of the gravity into account to illustrate that the HDG framework of Chapter 3
can be used for models that are more complex than the convected Helmholtz equation.
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Chapter 1

Derivation of aeroacoustic models
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Introduction
In this chapter, we recall how aeroacoustic wave equations are derived from the Euler’s
equations describing an ideal gas. Those equations are used to model the propagation of
waves in complex flows. We also discuss the equivalence between two aeroacoustic models
in time-harmonic domain: Galbrun’s equation and LEE. Finally, we give a brief reviews of
the different well-posedness results that are available for those equations.

1.1 Description of an ideal fluid
Before being able to describe the propagation of acoustic waves in a fluid, we need to have
a model for the fluid of interest.

Physical quantities : In all the document, we will use the following notations for the
physical quantities :
• ρ : mass density
• p : pressure

31



32 CHAPTER 1. DERIVATION OF AEROACOUSTIC MODELS

• v : velocity field
• g : gravity field
• e : internal energy
• c : sound speed

Directional derivative for vector-fields : We will use the notation ∇uv to describe the
convective part of the Euler’s equations. In cartesian coordinates, it should be understood
as the product between u and the jacobian matrix of v:

∇v =


∂v1
∂x1

. . . ∂v1
∂xd... ...

∂vd
∂x1

. . . ∂vd
∂xd

 , and [∇uv]` =
d∑
i=1

ui
∂v`
∂xi

.

Those formulas cannot be used for other systems of coordinates, as we need to take into
account the derivatives of the basis vector fields:

[∇uv]` =
d∑
i=1

ui
∂v`
∂xi

+
d∑

i,j=1
Γ`ijviuj,

where (Γ`)` should be interpreted as the jacobian matrices of the basis vector fields. For
example, in polar coordinates, the Γs1 are given by

Γr =
[
0 0
0 −1

r

]
, and Γθ =

[
0 1

r

0 0

]
.

We have chosen to use the notation ∇uv, which is the notation for the covariant derivative,
instead of the notation (u·∇)v, which is widely used in fluid dynamics, as we find the second
notation to be quite misleading. Indeed it should be interpreted as a matrix-vector product,
but it is written as a vector-matrix product, and one should be very careful when using this
notation in non-cartesian coordinate systems. However, for scalar quantities we have

∇up := u · ∇p,

by definition of the covariant derivative.

Euler’s equation : The classical Euler’s equations read

∂ρ

∂t
+ div (ρv) = 0, (Eul-ρ)

∂ρv

∂t
+ div (ρv ⊗ v) +∇p = ρg, (Eul-ρv)

∂

∂t

[
ρ

(
|v|2

2 + e

)]
+ div

((
ρ
|v|2

2 + ρe+ p

)
v

)
= 0. (Eul-e)

Here, ⊗ denotes the tensor product of two vector fields, and the derivative operator acts on
second-order tensor fields. In the followings, we will only use n alternative form of (Eul-ρv)
where this term does not appear. We there only give the expression of (Eul-ρv) in an
orthonormal basis

∂ρvi
∂t

+
d∑
j=1

∂

∂xj
[ρvivj] + ∂p

∂xi
= ρgi, ∀i ∈ [[1, d]].

1More precisely, they are the Christoffel symbols of the second kind computed the covention Γ`ij =
〈ω`,∇ej

ei〉, where (ω`)` is the dual basis of (ej)j .
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A derivation of those equations can be found for instance in [Lio96, Ch 1].
In order to form a closed system of equations, we need to add an equation of state

p = P(ρ, e)

The balance of momentum (Eul-ρv) can be rewritten as

ρ

(
∂v

∂t
+∇vv

)
+∇p = ρg (Eul-v)

Indeed one has
∂ρv

∂t
+ div (ρv ⊗ v) = ∂ρ

∂t
v + ρ

∂v

∂t
+ (ρdiv (v))v + ρ∇vv + (v · ∇ρ)v

= ρ

(
∂v

∂t
+∇vv

)
+
(
∂ρ

∂t
+ ρdiv (v) + v · ∇ρ

)
︸ ︷︷ ︸

=0 by (Eul-ρ)

v

The balance of total energy (Eul-e) leads to the following balance of internal energy e
∂ρe

∂t
+ div (ρev) + pdiv (v) = 0 (1.1)

Using (1.1) together with adiabatic equation of state for a polytropic ideal gas

e = p

ρ(γ − 1) ,

we obtain the following equation for pressure
∂p

∂t
+ v · ∇p+ γpdiv (v) = 0. (Eul-p)

In the following we will consider the system (Eul-ρ)–(Eul-v)–(Eul-p). This system is actually
used in helioseismology, see [Chr04, Ch. 3].

1.2 Linearized Euler’s Equations
The system (Eul-ρ)–(Eul-v)–(Eul-p) can be used to describe the evolution of a fluid. However
the variations due to wave propagation are small when compared to other fluid phenomena,
and the system (Eul-ρ)–(Eul-v)–(Eul-p) is therefore not suited to study wave propagation
in a fluid. From a numerical point of view, using a Computational Fluid Dynamics (CFD)
solver for this purpose would require a very fine mesh or a very high order and would lead to
a prohibitive numerical cost. To address this difficulty, we consider a perturbative approach
to derive an equation for wave propagation by linearizing (Eul-ρ)–(Eul-v)–(Eul-p) around
an equilibrium state.

Eulerian perturbations Let q ∈ {ρ,v, p} be a physical quantity, we assume that the
following perturbation expansion holds

q(x, t) = q0(x, t) + εq′(x, t) +O(ε2), (1.2)

where q0 is the equilibrium (or background) value of q, q′ is its perturbation due to wave
propagation, and ε� 1 is a small parameter.
As the space variable, x, is the same for all the quantities in (1.2), we say that q′ is an eulerian
perturbation. Introducing the perturbation expansion (1.2) in (Eul-ρ)–(Eul-v)–(Eul-p) leads
to two sets of equations: one for the equilibrium state and one for wave propagation.
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Basic assumptions on wave propagation We can now state the assumptions under
which we can derive a model for aeroacoustic wave propagation.

Assumption 3 (Basic assumptions):
To derive an equation for wave propagation, we make the following assumptions on the
physical processes
• Linear waves: (1.2) holds,
• Steady-state background flow: ∂q0

∂t
= 0 for q0 ∈ {ρ0,v0, p0},

• Adiabatic waves: (Eul-p) holds for the eulerian settings and δp = c2
0δρ for the

lagrangian settings (detailed later),
• Cowling approximation: there is no perturbation of gravitation, i.e. g′ = 0.

Sound waves are usually assumed to be adiabatic. To justify this assumption, the following
reason is often quoted: the propagation of sound waves is so fast that heat exchanges do not
have enough time to take place. As discussed in [Pie19, Ch. 1], the wave propagation always
produces a thermal gradient. This heat gradient can only be neglected for low and medium
frequencies. At those frequencies sound propagation is almost an adiabatic process. As
discussed in [MMMP17], the rigorous assumption to derive an aeroacoustic wave equations
is homentropicity: the entropy of the background flow is uniform. With this assumption,
the entropy perturbation satisfies a decoupled equation and only acts as a source term in
the other equations. Notice that the assuming that the background flow is homentropic is
more restrictive than assuming it is isentropic: indeed, for in an isentropic flow the entropy
density can change between streamlines, which is not the case for a homentropic flow.

Background equations Introducing the perturbation expansion (1.2) in (Eul-ρ)–(Eul-v)–
(Eul-p) and collecting the zeroth-order terms in ε leads to the following set of equations

∂ρ0

∂t
+ div (ρ0v0) = 0,

ρ0

(
∂v0

∂t
+∇v0v0

)
+∇p0 = ρ0g0,

∂p0

∂t
+ v0 · ∇p0 + γp0div (v0) = 0.

Furthermore, following Assumption 3, we assume that the background flow is steady-state,
i.e.

∂q0

∂t
= 0, ∀q0 ∈ {ρ0,v0, p0},

we obtain the following set of background equations

div (ρ0v0) = 0, (BG-ρ0)
ρ0∇v0v0 +∇p0 = ρ0g0, (BG-v0)

v0 · ∇p0 + γp0div (v0) = 0. (BG-p0)

Linearized Euler’s Equations We are now ready to obtain a system of equations for
wave propagation. Once again, this is done by introducing the perturbation expansion (1.2)
in (Eul-ρ)–(Eul-v)–(Eul-p). We then collect the first-order terms in ε to obtain

Dtρ
′ + ρ′div (v0) + div (ρ0v

′) = 0 (LEE-ρ′)
ρ0Dtv

′ + ρ0∇v′v0 + ρ′ (∇v0v0 − g0) +∇p′ = s (LEE-v′)
Dtp

′ + v′ · ∇p0 + γp0div (v′) + γp′div (v0) = 0 (LEE-p′)
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where the material derivative is defined as

Dt := ∂

∂t
+∇v0 ,

and s is the source of sound that encompasses:
• sound generated by the moving flow, these kind of sources were introduced by Lighthill

in [LN52] and specialized to LEE in [BBJ02], roughly speaking this models the "sound
of turbulence",
• sound generated by other sources, such as artificial devices.

Using (BG-v0), we can rewrite (LEE-v′) as

ρ0Dtv
′ + ρ0∇v′v0 −

(
1
ρ0
∇p0

)
ρ′ +∇p′ = s,

so the gravity term g0 does not explicitly appear in the equation. This is interesting as the
gravity term is useful for helioseismology, but usually neglected in other applications.
We also notice that, following the Cowling approximation of Assumption 3, there is no
perturbation of gravity.

1.3 Galbrun’s Equation
In the previous section, we obtained a first set of equations (LEE-ρ′)–(LEE-v′)–(LEE-p′) for
wave propagation in a flow. Those equations are based on an eulerian linearization around
an equilibrium state. It is possible to obtain an alternative model by considering lagrangian
perturbations instead of eulerian ones.

Lagrangian perturbations and displacement To define the eulerian perturbation in
(1.2), we considered the difference between the total and background quantities at a fixed
position. In the lagrangian framework, we fix a fluid parcel2 and follow its motion through
the flow. At time t, the parcel is at position x0 in the background flow, and due to the wave
propagation, this position changes to x = x0 + εξ in the total flow. The quantity ξ is called
the lagrangian displacement and is sketched in Figure 1.1. The lagrangian perturbation is
then defined by subtracting the total and background quantities following this given parcel

εδq(x0, t) = q(x0 + εξ, t)− q0(x0, t) +O(ε2), (1.3)

for any physical quantity q ∈ {ρ,v, p}. We can rewrite (1.3) as

q(x0 + εξ, t) = q0(x0, t) + εδq(x, t) +O(ε2), (1.4)

to mimic the structure of the perturbation expansion (1.2).

Remark 1.3.1: We have chosen to follow the convention of [Chr04] where q′ denotes the
eulerian perturbation of q and δq denotes its lagrangian perturbation. However there is no
standard notations for those perturbations and other conventions are sometimes used in the
literature.

2A fluid parcel is a very small amount of fluid, from a physical point of view, it is an averaged quantity
at the mesoscopic scale over the actual fluid particles.
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x0(t1)

x0(t2)

x(t1)

x(t2)

ξ(x0, t2)

ξ(x0, t1)

Figure 1.1: Sketch of the lagrangian displacement ξ. The trajectory of the parcel in the
background flow is depicted in solid black and its trajectory in the total flow is drawn in
dashed red.

Mixed Eulerian-Lagrangian representation We assume that there is no perturbation
at the initial time t = 0, leading to

x(0) = x0(0).

With this assumption, we can identify a given parcel by its position in the background flow
x0. Owing to its lagrangian nature, the displacement ξ is therefore a function of the time t
and of the position of the parcel in background flow x0.
It is also possible to express the displacement as a function of the time t and the position
x leading to the so-called mixed eulerian-lagrangian representation. In this framework,
lagrangian perturbations are expressed in terms of eulerian coordinates. Using the chain
rule, we have

∂ξ(x0, t)
∂t

= ∂ξ(x, t)
∂t

+∇v0ξ(x, t) =: Dtξ, (1.5)

where ξ(x0, t) is the displacement expressed in lagrangian coordinates and ξ(x, t) is the
displacement expressed in eulerian coordinates. Notice that the notation ξ is slightly over-
loaded, but unless explicitly stated otherwise, we will always use the mixed eulerian-lagrangian
representation in the remaining of this work.

Relating the displacement and the velocity For a given parcel, we denote by x0 its
position in the background flow and by x = x0 + εξ(x0, t) its position in the total flow.
Notice that the displacement ξ(x0, t) is expressed in lagrangian coordinates for now. The
velocity v of a parcel is given by

v = ∂x

∂t
= ∂x0

∂t
+ ε

∂ξ(x0, t)
∂t

,

and using (1.4) we also have

v = v0 + εδv +O(ε2).

Identifying the powers of ε leads to

δv = ∂ξ(x0, t)
∂t

+O(ε) = Dtξ(x, t) +O(ε), (1.6)

where we used (1.5) to obtain the last equality linking the lagrangian and mixed represen-
tations.
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Assuming that v is regular enough, we may write the following Taylor expansion around x0

v(x) = v(x0 + εξ) = v(x0) + ε∇ξv(x0) +O(ε2),

and subtracting v0(x0) leads to

v(x0 + εξ)− v0(x0) = v(x0)− v0(x0) + ε∇ξv(x0) +O(ε2).

Recalling the definitions of the lagrangian (1.3) and eulerian (1.2) perturbations, we have

εδv = εv′ + ε∇ξv(x0) +O(ε2),

and using the definition of the eulerian perturbation (1.2) inside the directional derivative
yields

δv = v′ +∇ξ [v0 + εv′] +O(ε).

Then, collecting the zeroth-order terms leads to

v′ = δv −∇ξv0 +O(ε),

and using (1.6), we finally have

v′ = Dtξ −∇ξv0 +O(ε). (1.7)

Derivation of Galbrun’s equation We will now derive Galbrun’s equation from LEE,
by adapting the construction from [God97]. To make the notations lighter, the O(ε) terms
will be omitted from now on, however one must keep in mind that the following equations
are only exact to first-order. Using (1.7), a direct computation shows that

div (v′) = Dt [div (ξ)]−∇ξ [div (v0)] , (1.8)
∇v′T = Dt [∇ξT ]−∇ξ[DtT ], (1.9)

where T is an arbitrary function of space and time with enough regularity for (1.9) to make
sense.
Using (1.7), (1.8) and (1.9) into (LEE-v′) leads to

ρ0D2
tξ − ρ0∇ξ[Dtv0] + ρ′

ρ0
∇p0 +∇p′ = s. (1.10)

In the same time, using (1.7), (1.8), and (1.9) into (LEE-ρ′) leads to

Dt [ρ′ + div (ρ0ξ)] + div (v0) [ρ′ + div (ρ0ξ)] = 0.

Together with the identity

Dt

[
ρ0 (ρ′ + div (ρ0ξ))

ρ0

]
= ρ0Dt

[
ρ′ + div (ρ0ξ)

ρ0

]
+ ρ′ + div (ρ0ξ)

ρ0
Dtρ0,

we obtain
ρ0Dt

[
ρ′ + div (ρ0ξ)

ρ0

]
+
(

Dtρ0

ρ0
+ div (v0)

)
(ρ′ + div (ρ0ξ)) = 0.

Then, the background continuity equation (BG-ρ0) finally yields

ρ0Dt

[
ρ′ + div (ρ0ξ)

ρ0

]
= 0.

At this point, we need to make the following assumption:
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Assumption 4 (No-resonance):
The following implication is true

ρ0Dt

[
ρ′ + div (ρ0ξ)

ρ0

]
= 0 =⇒ ρ′ + div (ρ0ξ) = 0.

Assumption 4 actually translates to constraints on the geometry of the background flow
that will be discussed in Section 1.8 and in Chapter 2.
In Assumption 3, we assumed that the wave propagation process is adiabatic, we therefore
have

p′ +∇ξp0 = c2
0 (ρ′ +∇ξρ0) . (1.11)

Together with Assumption 4, we have
p′ = −ρ0c

2
0div (ξ)−∇ξp0. (1.12)

Using Assumption 4 and (1.12) into (1.10) leads to

ρ0D2
tξ − ρ0∇ξ [Dtv0]− div (ρ0ξ)

ρ0
∇p0 −∇

[
ρ0c

2
0div (ξ) +∇ξp0

]
= s,

and using the background continuity equation (BG-ρ0) we have

ρ0D2
tξ −∇

[
ρ0c

2
0div (ξ)

]
+ div (ξ)∇p0 −∇ [∇ξp0] + ∇ξρ0

ρ0
∇p0 − ρ0∇ξ [Dtv0] = s.(1.13)

We notice that
−ρ0∇ξDtv0 = −ρ0∇ξ[∇v0v0] = −∇ξ[ρ0∇v0v0] + (∇ξρ0)∇v0v0, (1.14)

and if we combine the terms in ∇ξρ0, we obtain
∇ξρ0

ρ0
∇p0 + (∇ξρ0)∇v0v0 = ∇ξρ0

(
1
ρ0
∇p0 +∇v0v0

)
= (∇ξρ0)g0. (1.15)

We also notice that the second term of (1.14) gives
−∇ξ[∇v0v0] = −∇ξ[ρ0g0 −∇p0], (1.16)

and combining the first term of (1.16) with (1.15), we have
(∇ξρ0)g0 −∇ξ[ρ0g0] = −ρ0∇ξg0. (1.17)

Introducing (1.14), (1.15), (1.16) and (1.17) into (1.13) we obtain a first form of Galbrun’s
equation

ρ0D2
tξ −∇

[
ρ0c

2
0div (ξ)

]
+ div (ξ)∇p0 −∇ [∇ξp0] +∇ξ∇p0 − ρ0∇ξg0 = s. (1.18)

This form of Galbrun’s equation is obtained in [LO67, Eq. (22), (25) & (28)] and in [God97,
Eq. (29)]. If we assume that the coordinates are cartesian, we can simplify (1.18). Indeed
we have

−∇ [∇ξp0] +∇ξ∇p0 = −(∇ξ)T∇p0 −∇ξ∇p0 +∇ξ∇p0 = −(∇ξ)T∇p0,

leading to the usual form of Galbrun’s equation.

Proposition 1.3.1:
The lagrangian displacement ξ satisfies the following equation

ρ0D2
tξ −∇

[
ρ0c

2
0div (ξ)

]
+ div (ξ)∇p0 − (∇ξ)T∇p0 − ρ0∇ξg0 = s, (Gal)

called Galbrun’s equation.
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Remark 1.3.2: If we assume that the gravity is irrotational i.e. g0 = ∇ϕ0, we have

ρ0∇ξg0 = ρ0∇ξ∇ϕ0.

It is interesting to notice that this term accounts for the lagrangian perturbation of the
gravity, even if there is no eulerian perturbation of gravity under Cowling’s approximation.
Indeed, if we fix a given parcel, as its position has changed because of the wave propagation,
it does not "see" the same gravitational field, as depicted on Figure 1.2.

ξ
Position in the background flow x0

Position on the total flow x
Gravitational field

Figure 1.2: Lagrangian perturbation of the gravity

Other derivations of Galbrun’s equation In the previous paragraph, we derived Gal-
brun’s equation from LEE, as it was formerly done in [God97, HB21]. However it is also
possible to derive Galbrun’s equation using a continuum mechanics point of view where the
Euler’s equations (Eul-ρ)–(Eul-v)–(Eul-p) are written in a lagrangian frame. It is then possi-
ble to linearize those equation using lagrangian perturbations and to obtain Galbrun’s equa-
tion by going back to eulerian coordinates. This construction can be found in [Leg03, GM14]
and in [Poi85] where second-order perturbations are also considered. Finally we would like
to mention [LO67], where Galbrun’s equation is derived by directly computing lagrangian
perturbations in an eulerian frame, leading to a construction which is similar to the two
previous ones. In [? ] a construction similar to the one in [LO67] is used for solar cases
when v0 = 0.

On the necessity of the no-resonance assumption To derive Galbrun’s equation we
had to use Assumption 4 to relate ρ′ and ξ. This is one of the weaknesses of this con-
struction: indeed when Assumption 4 does not hold, we cannot obtain Galbrun’s equation
from LEE. As there are other constructions of Galbrun’s equation, we may wonder if As-
sumption 4 is really required. In [LO67, Eq. (18) & (19)] the relationship between ρ′ and
ξ

ρ′ = −div (ρ0ξ) (1.19)

is given but not proven. For the constructions based on lagrangian linearization, it seems
that Assumption 4 is not required. In [GM14, Sec. 2.3.5], a weaker version of Assumption
4 is used:

Dt

[
ρ′

ρ0

]
= 0 =⇒ ρ′

ρ0
= constant.

In [Poi85, Leg03] however no such assumptions are made. It is actually possible to obtain
an algebraic relationship that translates mass conservation in lagrangian coordinates which
leads to (1.19) after linearization, for more details we refer to [Sal05, Sec. II.4 & II.5]. Finally,
we would like to point out that even if Assumption 4 is not required to derive Galbrun’s
equation, similar problems will occur as ξ must satisfy the vectorial transport equation (1.7).
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1.4 Equivalence between those models
We will now investigate the relationship between Galbrun’s equation and LEE. The following
theorem holds.

Theorem 1 : Relationship between Galbrun’s equation and LEE

The solution ξ of Galbrun’s equation (Gal) and (ρ′,v′, p′) of (LEE-ρ′)–(LEE-v′)–(LEE-p′)
are linked by the following system

ρ′ = −div (ρ0ξ) , (ρ′ ↔ ξ)
v′ = Dtξ − ξ · ∇v0, (v′ ↔ ξ)
p′ = −ρ0c

2
0div (ξ)− ξ · ∇p0. (p′ ↔ ξ)

Proof : The system (ρ′ ↔ ξ)–(v′ ↔ ξ)–(p′ ↔ ξ) has already be obtained, see (1.7) for
(v′ ↔ ξ), Assumption 4 or (1.19) for (ρ′ ↔ ξ) and (1.12) for (p′ ↔ ξ).
To show that Galbrun’s equation and LEE are actually equivalent, we need to prove that
• When the solution (ρ′,v′, p′) of (LEE-ρ′)–(LEE-v′)–(LEE-p′) is known, then the solu-

tion ξ of the system (ρ′ ↔ ξ)–(v′ ↔ ξ)–(p′ ↔ ξ) is also a solution of Galbrun’s equation
(Gal). This is what we have done when we derived Galbrun’s equation in the previous
section. Notice that we have to solve an overdetermined system of PDEs to construct
ξ, and that there may be no solution to (ρ′ ↔ ξ)–(v′ ↔ ξ)–(p′ ↔ ξ).
• When the solution ξ of Galbrun’s equation (Gal) is known, then (ρ′,v′, p′) defined by

(ρ′ ↔ ξ)–(v′ ↔ ξ)–(p′ ↔ ξ)is a solution of (LEE-ρ′)–(LEE-v′)–(LEE-p′). This can be
done by a lengthy direct computation detailed in Appendix 1.A.

Remark 1.4.1: Notice that because of the adiabaticity condition (1.11), (p′ ↔ ξ) and
(ρ′ ↔ ξ) are equivalent.

The issues with Theorem 1 At first glance, it may seem that Theorem 1 gives an
equivalence result between Galbrun’s equation and LEE, however some issues remain to be
dealt with:

1. As the system (ρ′ ↔ ξ)–(v′ ↔ ξ)–(p′ ↔ ξ) is overdetermined, it is not clear wether or
not it can be used to define ξ when (ρ′,v′, p′) are known, as there may be no solution.
For ξ to be a solution of Galbrun’s equation (Gal), it must satisfy the three equations
of (ρ′ ↔ ξ)–(v′ ↔ ξ)–(p′ ↔ ξ).

2. To ensure the solvability of (v′ ↔ ξ) an assumption similar to Assumption 4 will be
required, this can be critical in the time-harmonic domain.

3. Compatible boundary conditions must be derived to use this result in a practical
settings.

On the relationship between Galbrun’s equation and LEE There is an interesting
analogy that illustrates the relationship between Galbrun’s equation and LEE: Galbrun’s
equation can be seen as the "antiderivative" of LEE. Indeed, when the solution of Galbrun’s
equation is known, getting a solution of LEE only amounts to differentiating, which is
easy and always possible. On the other hand, when the solution of LEE is known, an
overdetermined system must be solved to obtain a solution of Galbrun’s equation, which is
harder and not always possible.
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We can therefore conclude that when Galbrun’s equation is well-posed, then so does LEE,
but the reciprocal may not be true.

1.5 Boundary conditions
As discussed in the previous section, the choice of boundary conditions is a difficult problem.

Usual boundary conditions in aeroacoustics In Table 1.1, we recall the usual bound-
ary conditions for the LEE and for Galbrun’s equation on the sliding boundary

Γ0 :=
{
x ∈ ∂O

∣∣∣ v0 · n = 0
}

of the domain. From a physical point of view, the sliding boundary cannot be crossed
by the background flow and is therefore used to models structures immersed in the flow.
One of the advantages of Galbrun’s equation over LEE is that the boundary conditions for
wave-structure interactions are naturally expressed in terms of the displacement ξ. For the
derivation of such boundary conditions, we refer e.g. to [Mye80] and to [God97, Sec. 3]. For
complex structure such as walls with acoustic treatment, the relevant boundary conditions
are obtained by combining the terms in Table 1.1. Once again, we refer to [Mye80, God97]
for more details.
In this section n always denotes the outward-oriented unit normal vector to the boundary
of the domain.

Boundary condition LEE Galbrun
Dirichlet v′ · n = 0 ξ · n = 0
Neumann p′ = 0 div (ξ) = 0
BG condition v0 · n = 0 v0 · n = 0

∇p0 × n = 0

Table 1.1: Usual boundary conditions for aeroacoustics on the sliding boundary Γ0

Other parts of the boundary where v0 ·n 6= 0 usually are artificial boundaries on which do-
main truncation techniques, such as Perfectly Matched Layers (PMLs) or Absorbing Bound-
ary Conditions (ABCs). We would like to point out that the sign of v0 · n may play an
important part in the treatment of those boundary conditions, indeed
• if v0 · n < 0: the flow goes into the domain,
• if v0 · n > 0: the flows goes outside the domain.

In particular, it was noted in [BBL03] that the presence of convection may render the PMLs
unstable as it may create backward propagating modes that go back into the computational
domain. Finally, we would like to point out that other boundary conditions can be used on
those parts of the boundary. For example, there are some cases in [Gab03] where the full
displacement ξ is prescribed on some parts of the boundary where v0 · n < 0.

Compatibility of the boundary conditions If we are interested in using Theorem 1
to reconstruct the solution ξ of Galbrun’s equation from the solution (ρ′,v′, p′) of LEE, we
need to ensure the compatibility of the boundary conditions. Indeed, as noted in [HB21],
Galbrun’s equation and LEE are equivalent in time-domain if the system (ρ′ ↔ ξ)–(v′ ↔ ξ)–
(p′ ↔ ξ) is satisfied at the initial time t = 0 and on the boundaries of the domain O.
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Assuming that we want to reconstruct the solution of Galbrun’s equation (Gal) with the Neu-
mann boundary condition div (ξ) = 0 on Γ0 from the solution of LEE (LEE-ρ′)–(LEE-v′)–
(LEE-p′). Plugging the Neumann boundary condition into (p′ ↔ ξ) leads to

div (ξ) = 0 =⇒ p′ = −ξ · ∇p0,

the Neumann boundary condition of Galbrun’s equation only leads to a Neumann boundary
condition for LEE when ∇p0|Γ0 = 0, i.e. when the background pressure is uniform in a
neighborhood of Γ0. Notice that once again the other way around is easier: if we want
to reconstruct a solution of LEE (LEE-ρ′)–(LEE-v′)–(LEE-p′) with Neumann boundary
conditions from a solution of Galbrun’s equation (Gal), we obtain the following Robin-like
boundary condition

p′ = 0 =⇒ ρ0c
2
0div (ξ) + ξ · ∇p0 = 0,

by plugging the Neumann boundary condition for LEE into (p′ ↔ ξ).

1.6 Time-harmonic solutions
In this section, we describe the time-harmonic conventions that we use to study Galbrun’s
equation (Gal) and LEE (LEE-ρ′)–(LEE-v′)–(LEE-p′) in the frequency domain.
The time-domain formulation is natural as it is easy to understand the time dependance of
the underlying physical phenomena. As the time-harmonic formulation leads to studying the
wave propagation problem at fixed frequencies, things become harder to visualise. However
this formulation can be very useful despite being less natural.
As this work takes place in a project whose long-term goal is to solve realistic inverse problems
to image the solar interior, it is natural to consider time-harmonic wave propagation. Indeed,
inversion problems are easier to solve in the frequency domain as different frequencies provide
different information on the propagation medium: low frequencies are useful to reconstruct
large structure, whereas high frequencies can be used to reconstruct finer details. For a
comprehensive introduction to inverse problems, we refer to [Fau17]. We would also like to
mention that a recent work has been done to adapt the methodology of large-scale inverse
problems to time-domain, see [Jac21].

Convention for time-harmonic solutions To study the wave propagation in the fre-
quency domain, we use the following ansatz for the solution of (Gal)

ξ(x, t)←− Re
[
ξ(x)e−iωt

]
,

where i is the imaginary unit i2 = −1 and ω > 0 is the angular frequency.
Similarly, for the solutions of (LEE-ρ′)–(LEE-v′)–(LEE-p′) we have

ρ′(x, t)←− Re
[
ρ′(x)e−iωt

]
,

v′(x, t)←− Re
[
v′(x)e−iωt

]
,

p′(x, t)←− Re
[
p′(x)e−iωt

]
.

In the frequency domain, partial derivatives with respect to time are transformed to multi-
plications, indeed with e−iωt convention, we have

∂ξ

∂t
←− −iωξ(x)e−iωt,
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and the material derivative becomes

Dtξ := ∂ξ

∂t
+∇v0ξ ←− (−iωξ(x) +∇v0ξ(x)) e−iωt.

If we further assume that the source term is also harmonic, i.e.

s(x, t)←− Re
[
s(x)e−iωt

]
,

then the exponential term e−iωt can be factored out of the equations, leading to a family of
equations parametrized by the frequency that do not depend on time anymore. As there is
one equation for each frequency, the problem can be solved independently for each frequency
of interest.

Damping term Aeroacoustic waves propagating inside the Sun are actually damped.
Modelling the damping inside the Sun is still an open problem, and in this work we will
only consider a very simple damping term formally coming from the limiting absorption
principle. We introduce a parameter σ > 0, and we replace the frequency by the following
complex number

ω ←− ω + iσ. (1.20)

For the standard Helmholtz equation, (1.20) models a damping term that allows to recover
the causality that was lost by going from time to frequency domain. However its physical
relevance for aeroacoustic wave propagation inside the Sun is not clear.

1.7 Numerical investigation of the equivalence in sim-
ple cases

In this section, we will investigate the equivalence result of Theorem 1. To do so, we solve
both Galbrun’s equation and LEE, and we then reconstruct the solutions using (v′ ↔ ξ).
We are therefore able to compare:
• ξ obtained from solving Galbrun’s equation, and ξ reconstructed from the solution of

LEE,
• v′ computed from solving LEE, and v′ reconstructed from the solution of Galbrun’s

equation.
We use the numerical methods from [CD18] in the montjoie solver3, in particular we use
the PQ-formulation for Galbrun’s equation, and we will therefore only consider the simple
case of a uniform background flow for which those numerical methods have been validated.
For the transport equation (v′ ↔ ξ), we use an upwind DG method similar to the one of
[Pey13, Sec. 2 & 3].
We would like to point out that the process of reconstructing the solution of Galbrun’s
equation from the solution of LEE has a practical interest. Indeed, as noted in [CD18],
using LEE seems to give better numerical results in solar-like cases than solving Galbrun’s
equation. As ξ is the quantity of interest in helioseismic inversion, this could provide a more
reliable direct solver.

3montjoie is a versatile high-order finite-element solver, see http://montjoie.gforge.inria.fr/.

http://montjoie.gforge.inria.fr/
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Settings We consider the following background flow :

ρ0 = 2.5, c0 = 0.8, p0 = 1, v0 =
[
v0
0

]
, ω = 2π · 0.78, σ = 0.1 (1.21)

We choose a gaussian source centered at (xc, yc) of the form

s = g(x, y)ex, where g(x, y) =
√
α

π
exp

[
−α

(
(x− xc)2 + (y − yc)2

)]
and the constant α is chosen so that g is equal to 10−6 when

(x− xc)2 + (y − yc)2 > 1

As it is shown in [CD18, Section 3] that the so-called PQ formulation of Galbrun’s equation
exhibits good convergence for the flow (1.21), we will use it compute a reference solution ξref
with Q12 elements on a regular mesh with N = 51 points in each direction.
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Figure 1.3: Results for a uniform background flow – PMLs case – PMLs not displayed

Case 1: Domain surrounded by PMLs To avoid dealing with the compatibility of
boundary conditions, we consider wave propagation in an infinite medium. From a practical
point of view, we need to truncate the domain to a finite one to perform numerical simulations
and we therefore surround the domain with Perfectly Matched Layers (PMLs). In general,
one should be careful when using PMLs for convected wave propagation, but as we only
consider simple background flows they provide reliable results. Indeed, as noted in [BBL03],
PMLs can become unstable in the presence of a background flow.
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Figure 1.4: Convergence of the reconstructed displacement – PMLs case

On Figure 1.4, the relative error between the reconstructed field and the reference solution
for different orders of approximation is depicted. The numerical results are depicted on
Figure 1.3
We can see that solving LEE and reconstructing the solution of Galbrun’s equation is ineffi-
cient, even if the results look promising from a visual inspection: indeed by using a numerical
method based on Q8 elements for the reconstruction process we obtain the same level of ac-
curacy as directly solving Galbrun’s equation with Q5-based method, see [CD18, Sec. 3].
Furthermore the convergence rate of the method seems to be lost in the process.

Case 2: Periodic boundary conditions For this case, we still use PMLs on the hori-
zontal boundaries, but we enforce a periodicity condition on the vertical boundaries. Once
again, this allows us to avoid the problem of dealing with boundary conditions.
The numerical results are depicted in Figure 1.5 and the convergence curve of the recon-
structed displacement is depicted in Figure 1.6. Once again, we can see that the recon-
struction process of ξ from v′ is inefficient as the error level seem to be locked at 10−5,
whereas 10−6 could be achieved in the previous case and there was no locking effect in the
convergence of the numerical method in [CD18].
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Figure 1.5: Results for a uniform flow – Periodic case
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Figure 1.6: Convergence of the reconstructed displacement – Periodic case

Conclusion Even in the very simple case of a uniform background flow, the reconstruction
of ξ from v′ is an inefficient process, as it does not exhibit a good convergence behavior. For
more complicated background flows, the well-posedness of the transport equation (v′ ↔ ξ)
will become an issue. So this process should probably not be used in practice, even if it may
look appealing to reconstruct ξ from v′ when the numerical solution of LEE seems nicer
than the numerical solution for Galbrun’s equation: indeed, we cannot guarantee the quality
of ξ obtained by this process.

1.8 Review of well-posedness results
Now that we have derived Galbrun’s equation, a natural question is whether or not this
equation leads to well-posed problem. In this section, we therefore review different well-
posedness results. We recall that problem is said to be well-posed in the sense of Hadamard
if it has the following properties:

1. a solution exists,
2. the solution is unique,
3. the solution’s behaviour changes continuously with the initial or boundary data.

Time-harmonic propagation for industrial applications The time-harmonic Gal-
brun’s equation has been studied for applications in aeronautics. Although this led to many
theoretical [BMM+12, Pey13, Leg03] and numerical [Jou10, Duc07, Gab03, Bér08] results,
they usually come with restrictive assumptions on the geometry of background flow. Figure
1.7 describes a typical configuration : the background is assumed to be uniform outside of a
bounded domain of interest O. Inflow and outflow boundaries Γ− and Γ+ are therefore de-
fined and the well-posedness is achieved when the flow «fills» the domain O in the following
sense: each point of the domain O is reached
• following a streamline,
• starting from the inflow boundary Γ−,
• in a bounded time.

Such flows are said to be O-filling, and in particular configurations with recirculations (closed
streamlines) or stopping points are forbidden. For aO-filling background flow, well-posedness
is achieved inH1(O) using a regularization technique. Standard finite-element methods can
therefore be used to solve Galbrun’s equation when the background flow is O-filling.
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O

Γ− Γ+

v0(x, y)

v0 = v∞ex

Figure 1.7: A typical configuration for applications in aeronautics

Time-domain propagation To the best of our knowledge, the first results for time-
domain propagations were obtained in [Ber06] for uniform flows. In particular existence
of strong solutions is obtained through standard Hille-Yosida theory. The case of general
background flows was considered in [HB21] where the authors showed the well-posedness
of LEE in the framework of Friedrichs’ systems and then exploited the equivalence between
Galbrun’s equation and LEE to obtain a well-posedness result for Galbrun’s equation. Those
results hold without the geometric assumptions on the background flow, but exponential
growth of the solution in time cannot be excluded.

Time-harmonic propagation for helioseismology As realistic solar background flows
do not belong to the class of O-filling flows, well-posedness in Hilbert space with low regu-
larity has been considered in [HH21]. In this work, the authors have shown that Galbrun’s
equation with modified damping is weakly T-coercive, which is more or less equivalent to an
inf-sup condition, in the Hilbert space

Hv0(O) :=
{
ξ ∈ L2(O)

∣∣∣ div (ξ) ∈ L2(O), ∇v0ξ ∈ L2(O)
}
.

Those findings are consistent with those of [Cha19] for the case where v0 = 0. We would
like to point out that it is not possible to use standard finite-element methods to exploit
those theoretical results. Indeed, for a function ξ ∈ Hv0(O), the continuity of the solution
on the interface between two elements depends on the interface:
• if v0 · n = 0: only the normal part of ξ is continuous (coming from the divergence),
• if v0 · n 6= 0: ξ is fully continuous (coming from the directional derivative),

where n is a unitary normal vector to the interface. This leads us to consider (Hybridizable)
Discontinuous Galerkin methods to weakly enforce those continuity requirements on the
different interfaces of the mesh.

Long-term behaviour We would also like to mention that a lot of theoretical works have
been done to study the long-term behaviour of the solution of Galbrun’s equation to adress
the question of the stability of stars. This is usually done by studying the spectrum of
Galbrun’s equation and details can be found e.g. in [LO67, DSC79, Bey02].
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Conclusion
In this chapter, we have discussed the derivation of two aeroacoustic models, Galbrun’s
equation and LEE, by linearizing fluid dynamic equations around an equilibrium state.
Even if those two models are said to be equivalent, their unknowns are linked by an overde-
termined system of equations. It is therefore not clear wether or not the solution of Galbrun’s
equation can be reconstructed from the solution of LEE. It is also important to point out
that the equivalence can only be achieved for compatible boundary conditions that may not
be well-defined. From a numerical point of view, we have shown that trying to use the
"equivalence" leads to a larger error than directly solving Galbrun’s equation, and to a loss
of the convergence properties of the numerical methods.
We also review the existing theoretical work on Galbrun’s equation. We have noticed that
the use of a standard hilbertian settings, H1(O), in time-harmonic domain requires strong
assumptions on the background flow: closed streamlines are forbidden. As closed streamlines
arise in helioseismology, we will study this case more precisely in the next chapter. We will
then determine if we can use the H1(O)-settings despite the closed streamlines, or if we
should resort to the low-regularity Hv0(O)-settings.



Appendix

1.A Proof of Theorem 1
In this appendix, we detailed the direct computations that show that a solution of LEE can
be reconstructed from a solution of Galbrun’s equation.
For ρ′ : Plugging (ρ′ ↔ ξ) and (v′ ↔ ξ) into (LEE-ρ′) leads to

−Dt [div (ρ0ξ)]− div (ρ0ξ) div (v0) + div (ρ0Dtξ − ρ0∇ξv0)

=− ∂

∂t
[div (ρ0ξ)]−∇v0 [div (ρ0ξ)]− div (ρ0ξ) div (v0) + div

(
ρ0
∂ξ

∂t
+ ρ0∇v0ξ − ρ0∇ξv0

)

=
���

���
��

−div
(
ρ0
∂ξ

∂t

)
−∇v0 [div (ρ0ξ)]− div (ρ0ξ) div (v0) + div

(
�
�
�

ρ0
∂ξ

∂t
+ ρ0∇v0ξ − ρ0∇ξv0

)
=−∇v0 [div (ρ0ξ)]− div (ρ0ξ) div (v0) + div (ρ0∇v0ξ − ρ0∇ξv0)
=−∇v0 [div (ρ0ξ)]− div (ρ0ξ) div (v0) + ρ0 (∇v0 [div (ξ)]−∇ξ [div (v0)])

+ (∇v0ξ −∇ξv0) · ∇ρ0

=−∇v0 [div (ρ0ξ)]− div (div (v0) ρ0ξ) + ρ0∇v0 [div (ξ)] + (∇v0ξ −∇ξv0) · ∇ρ0

=− div (ρ0div (v0) ξ)− div (ξ)∇v0ρ0 − v0 ·
(
∇ξT∇ρ0 +∇ξ∇ρ0

)
+ (∇v0ξ −∇ξv0) · ∇ρ0

=− (ρ0div (v0) +∇v0ρ0) div (ξ)−∇ξ [ρ0div (v0)]− v0 ·
(
∇ξT∇ρ0 +∇ξ∇ρ0

)
+ (∇v0ξ −∇ξv0) · ∇ρ0

=−∇ξ [ρ0div (v0)]− v0 ·
(
∇ξT∇ρ0 +∇ξ∇ρ0

)
+ (∇v0ξ −∇ξv0) · ∇ρ0

=∇ξ [∇v0ρ0]− v0 ·
(
∇ξT∇ρ0 +∇ξ∇ρ0

)
+ (∇v0ξ −∇ξv0) · ∇ρ0

=∇ξvT0∇ρ0 − v0 · (∇ξ)T∇ρ0 + (∇v0ξ −∇ξv0) · ∇ρ0

=
(
ξ · (∇v0)T − v0 · (∇ξ)T

)
∇ρ0 + (∇v0ξ −∇ξv0) · ∇ρ0

=0

As

v0 ·(∇ξ)T∇ρ0 =
∑
i

vi0

∑
j

∂ξj

∂xi
∂ρ0

∂xj

 =
∑
i,j

vi0
∂ξj

∂xi
∂ρ0

∂xj
=
∑
j

(∑
i

vi0
∂ξj

∂xi

)
∂ρ0

∂xj
= ∇v0ξ ·∇ρ0
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For p′ :

Dt [−γp0div (ξ)−∇ξp0] + (Dtξ −∇ξv0) · ∇p0 + γp0div (Dtξ −∇ξv0)
− γ (γp0div (ξ) +∇ξp0) div (v0)
= ∇v0 [−γp0div (ξ)]− ξ · ∇v0∇p0 −∇ξ∇v0p0 + γp0div (∇v0ξ −∇ξv0)
− γ (γp0div (ξ) +∇ξp0) div (v0)
= ∇v0 [−γp0div (ξ)]− ξ · ∇v0∇p0 −∇ξ∇v0p0 + γp0 (∇v0 [div (ξ)]−∇ξ [div (v0)])
− γ (γp0div (ξ) +∇ξp0) div (v0)
= −γdiv (ξ)∇v0p0 − ξ · ∇v0∇p0 −∇ξ∇v0p0 − γp0∇ξ [div (v0)]− γ (γp0div (ξ) +∇ξp0) div (v0)

= −γdiv (ξ) (∇v0p0 + γp0div (v0))− ξ · ∇v0∇p0 −∇ξ∇v0p0 − γp0∇ξ [div (v0)]− γ∇ξp0div (v0)

= −ξ · ∇v0∇p0 −∇ξ∇v0p0 − γp0∇ξ [div (v0)]− γ∇ξp0div (v0)
= −ξ · ∇v0∇p0 −∇ξ∇v0p0 −∇ξ [γp0div (v0)]
= −∇ξ [∇v0p0 + γp0div (v0)]
= 0

For v′ :

s =ρ0D2
tξ − ρ0Dt∇ξv0 − ρ0ξ · ∇v0∇v0 − ρ0∇ξ∇v0v0 + ρ0Dt∇ξv0 + div (ρ0ξ) ∇p0

ρ0

−∇
[
ρ0c

2
0div (ξ) +∇ξp0

]
=ρ0D2

tξ − ρ0ξ · ∇v0∇v0 − ρ0∇ξ∇v0v0 + div (ξ)∇p0 +∇ξρ0
∇p0

ρ0

−∇
[
ρ0c

2
0div (v0)

]
−∇ξT∇p0 −∇ξ∇p0

=ρ0D2
tξ −∇

[
ρ0c

2
0div (ξ)

]
+ div (ξ)∇p0 −∇ξT∇p0 − ξ · (ρ0∇v0∇v0 + ρ0∇∇v0v0 +∇∇p0)

−∇ξρ0 (∇v0v0 − g0)
=ρ0D2

tξ −∇
[
ρ0c

2
0div (ξ)

]
+ div (ξ)∇p0 −∇ξT∇p0 −∇ξ [ρ0∇v0v0 +∇p0] +∇ξρ0g0

=ρ0D2
tξ −∇

[
ρ0c

2
0div (ξ)

]
+ div (ξ)∇p0 −∇ξT∇p0 −∇ξ [ρ0g0] +∇ξρ0g0

=ρ0D2
tξ −∇

[
ρ0c

2
0div (ξ)

]
+ div (ξ)∇p0 −∇ξT∇p0 − ρ0∇ξg0

=s
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A resonant-like phenomena
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Introduction
In this chapter, we are interested in solving Galbrun’s equation with general background flow.
In particular, special care will be devoted to recirculating flows with closed streamlines,
as they are very common in helioseismology. They are however excluded from the well-
posedness results of [BMM+12, Pey13]. In [Ben18, BJM18] special care was devoted to the
study of Goldstein’s equation, which is an alternative aeroacoustic model, and it was proven
that a resonant-like phenomenon can occur for recirculating flows. In this chapter, we extend
this approach to LEE and Galbrun’s equation. We will show that it is not possible to solve
the aeroacoustic models (either Galbrun’s equation or LEE) at a given frequency ω if a
resonant line exists. Those frequencies are not the eigenvalues of some generalized Laplace
operator, as it is usually the case for resonant frequencies of time-harmonic wave equations.
In particular, they can constitute an uncountable set depending on the background flow.
This resonant-like phenomenon also gives a mathematical interpretation to the spurious
modes that can occur when using Lagrange finite elements to solve Galbrun’s equation.
This pollution effect was noted in [CD18] and in [DHM+14].

2.1 Model problem for recirculating flows
To study aeroacoustic wave propagation in recirculating background flow, we follow [Ben18]
and we introduce a simple model problem: the orthoradial flow in an annulus.
In this chapter, we will use cylindrical coordinates (r, θ) and the classical cylindrical basis
(er, eθ).

53
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The domain O is an annulus

O :=
{

(r, θ) ∈ R+ × [0, 2π)
∣∣∣∣ ri < r < re

}
,

where 0 < ri < re, and the flow v0 is orthoradial
v0(r, θ) := v0(r)eθ.

We will also assume that
∀r ∈ R+, v0(r) > 0

This situation is depicted in Figure 2.1. Notice that considering an annulus instead of a
circular domain prevents from dealing with a geometric singularity at r = 0.

v0

O

Figure 2.1: Orthoradial flow in an annulus

In this configuration, choosing v0 determines ρ0 and p0. It is therefore rather easy to produce
solutions to the steady-state Euler’s equations in this case. Indeed for a given v0 and
assuming that the background flow is an isentropic ideal gas, the following equation of state
holds

p0 = Kργ0 , (2.1)
where γ is the heat capacity ratio, defined by

γ := cP
cV
,

with cP and cV the specific heat capacities at constant pressure and volume respectively. In
this case, the density and pressure do not depend on θ and ρ0 solves

∂ρ0

∂r
− r

Kγ
Ω2

0(r)ρ2−γ
0 = 0 (2.2)

where we have introduced the angular velocity Ω0 = v0(r)
r

.
Equation (2.2) is an ordinary differential equation which belongs to the family of Bernoulli’s
differential equations. It can be solved by a change a function. By substituting

u = ργ−1
0

in (2.2) we get
1

γ − 1
∂u

∂r
= rΩ2

0(r)
Kγ

which is a linear differential equation, that can easily be solved compared to the steady-state
Euler’s equations (BG-ρ0)–(BG-v0)–(BG-p0), which is a set of non-linear PDEs, satisfied by
the background flow.
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2.2 Existence of resonance for the vectorial transport
equation

Before moving to time-harmonic solution, let us have a look at what happens in time domain.
From the previous chapter, we know that ξ and v′ are linked by the following vectorial
transport equation

Dtξ −∇ξv0 = v′,

and for an orthoradial flow, this specializes to

∂ξr
∂t

+ Ω0
∂ξr
∂θ

= v′r, (2.3)

∂ξθ
∂t

+ Ω0
∂ξθ
∂θ

+
(

Ω0 −
∂v0

∂r

)
ξr = v′θ. (2.4)

As the system (2.3)–(2.4) is only weakly coupled, we can solve (2.3) and use the result to
solve (2.4). We also notice that the unknowns ξr and ξθ are not differentiated with respect
to r, so the system (2.3)–(2.4) is actually a family of equations parametrized by r, and we
can independently solve the equations for fixed values of r.
Using the standard theory of transport equations, we know that

ξr(r, θ, t) = Φ(r, θ − Ω0(r)t) +
∫ t

0
v′r(r, θ + (s− t)Ω0(r), s)ds, (2.5)

where Φ is an arbitrary function which is 2π-periodic in its second argument. A similar
expression can be obtained for ξθ.

From time-domain to harmonic solutions To obtain harmonic solutions of (2.3), we
use the ansatz

ξr(r, θ, t)←− Re
[
ξr(r, θ)e−iωt

]
, and v′(r, θ, t)←− Re

[
v′(r, θ)e−iωt

]
. (2.6)

To study the solvability of (2.3) in the time-harmonic domain, let us first focus on the
homogenous problem whose solution is denoted by u

∂u

∂t
+ Ω0

∂u

∂θ
= 0,

according to (2.5), we have
u(r, θ, t) = Φ(r, θ − Ω0(r)t),

where Φ is 2π-periodic in its second argument. We can therefore use a decomposition into
Fourier series, leading to

u(r, θ, t) =
∑
n∈Z

Φn(r)ein(θ−Ω0(r)t) =
∑
n∈Z

Φn(r)einθe−inΩ0(r)t.

Let Ft denotes the Fourier transform with respect to time, we have

Ft[u](r, θ, ω) =
∑
n∈Z

Φn(r)einθδ(ω − nΩ0(r)),

where δ is the Dirac distribution. We can therefore conclude that (2.3) with the ansatz (2.6)
is not uniquely solvable when ω = nΩ0. Indeed if ξr(r, θ)e−iωt is a solution of (2.6) then
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w := (ξr(r, θ) + Φn(r)einθ)e−iωt is also one of them. To understand this, we plug (2.6) into
(2.3) to obtain

−iωw + Ω0
∂w

∂θ
= v′r,

and using that ω = nΩ0, we have

−inΩ0w + Ω0
∂w

∂θ
= v′r.

Finally using the definition of w(r, θ) := ξr(r, θ) + Φn(r)einθ yields

−inΩ0ξr + ∂ξr
∂θ

+−inΩ0Φne
inθ + inΩ0Φne

inθ︸ ︷︷ ︸
=0

= v′r.

Directly solving the equation in time-harmonic domain In this section, we will show
that those resonant lines also appear when we try to solve the vectorial transport equation
in time-harmonic domain. Using the same ansatz as before for time harmonic solutions

ξ(x, t)←− ξ(x)e−iωt,

the vectorial transport equation (2.3)–(2.4) becomes

−iωξr + Ω0
∂ξr
∂θ

= v′r, (2.7)

−iωξθ + Ω0
∂ξθ
∂θ

+
(

Ω0 −
∂v0

∂r

)
ξr = v′θ, (2.8)

with the periodicity conditions

ξr(·, 0) = ξr(·, 2π), and ξθ(·, 0) = ξθ(·, 2π). (2.9)

Notice that there is no derivative with respect to r, which therefore is a parameter. For
a given r, (2.7)–(2.8) is a system of weakly coupled ODEs, and we can proceed as in the
previous case by solving (2.7) and then (2.8).
Using Duhamel’s principle, we can write the solution of (2.7) as

ξr(r, θ) = K(r) exp
[
i
ω

Ω0
θ
]

+ Ω−1
0

∫ θ

0
exp

[
i
ω

Ω0
(θ − ϑ)

]
v′r(r, ϑ)dϑ,

where K is a function that must be determined using the periodicity condition (2.9). We
can see that (

1− exp
[
2iπ ωΩ0

])
K(r) = Ω−1

0

∫ 2π

0
exp

[
i
ω

Ω0
(2π − ϑ)

]
v′r(r, ϑ)dϑ.

It is clear that K can only be determined when

exp
[
2iπ ωΩ0

]
6= 1 ⇐⇒ ω

Ω0
6∈ Z,

⇐⇒ ω 6= nΩ0, ∀n ∈ Z.

As in the previous case, we can see that the time-harmonic vectorial transport equation is
not solvable when ω = nΩ0 for some n ∈ Z.
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Decomposition into Fourier series The two previous techniques relied on the simplic-
ity of the transport equation allowing us to solve it analytically. When moving to more
complicated systems such as Galbrun’s equation and LEE, this is not possible anymore, and
we therefore need another way to compute the resonant lines.
As the solution is 2π-periodic in its second argument, we can perform a decomposition into
Fourier series with respect to θ, leading to

ξr(r, θ) =
∑
n∈Z

ξr,n(r)einθ, and ξθ(r, θ) =
∑
n∈Z

ξθ,n(r)einθ. (2.10)

Introducing (2.10) into (2.7)–(2.8) leads to the following modal system

−iωξr,n + inΩ0ξr,n = v′r,n, (2.11)

−iωξθ,n + inΩ0ξθ,n +
(

Ω0 + ∂v0

∂r

)
ξr,n = v′θ,n, (2.12)

for all n ∈ Z. We can see that (2.11)–(2.12) is a purely algebraic system, whereas (2.7)–(2.8)
was a system of ODEs.
Once again, it is clear that (2.11)–(2.12) can only be solved when ω 6= nΩ0 for all n ∈ Z.

Distribution of the resonant lines. Following [Ben18], we consider a simple example
to illustrate the distribution of resonant lines. We consider a potential flow in the annulus
with ri = 0.5 and re = 3, this flow is given by

v0 = 1
r
eθ.

In Figure 2.2, we can clearly see that the number of resonant lines increases with the
frequency. In particular, the set of resonant lines can become uncountable when the frequency
is large enough. In [Ben18, Prop. 8.3.3], it is proven that if the background flow is not locally
in solid rotation, then there exists a frequency ω0 such that there is at least one resonant
line for each ω > ω0. As we will see in the following sections, it is not possible to solve the
aeroacoustic models (either Galbrun’s equation or LEE) at a given frequency ω if a resonant
line on which ω = nΩ0(r?) exists.

4 3 2 1 0 1 2 3 4
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(a) ω = 0.2
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(b) ω = 0.5
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(c) ω = 1.5

Figure 2.2: Resonant lines (in red) in the annulus {0.5 < r < 3.0} for three different frequen-
cies.

2.3 Existence of resonance for Galbrun’s equation
To study the existence of resonant lines for Galbrun’s equation (Gal), we cannot solve the
equation directly as we did for the transport equation. We therefore rely on the decomposi-
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tion into Fourier series

ξr(r, θ) =
∑
n∈Z

ξr,n(r)einθ, and ξθ(r, θ) =
∑
n∈Z

ξθ,n(r)einθ,

that led to the same resonant lines for the transport equation.
Writing down Galbrun’s equation into polar coordinates in the annulus and performing the
decomposition into Fourier series to get a modal system is a lengthy and cumberstone process
that has been detailed in [Poi85].
The following modal system is a 2D reduction of the 3D system obtained by B. Poirée in
[Poi85]

−d2ξr,n
dr2 −

1 +X

r

dξr,n
dr +

(
1−X
r2 − λ2

c2
0

)
ξr,n + in

d
dr

[
ξθ,n
r

]
−
(

2iv0λ+ in
M2 −X

r

)
ξθ,n
r

= sr,n,

(2.13)

in
dξr,n
dr +

(
2iMλ

c0
+ in

1 +M2

r

)
ξr,n +

(
n2 − λ2r2

c2
0

)
ξθ,n
r

= sθ,n,

(2.14)

where

λ(r) := ω − nΩ0(r),

M(r) := v0(r)
c0(r) ,

X(r) := r

ρ0c2
0

dρ0c
2
0

dr .

Singular points of ODEs We recall the definition of a singular point in the context of
ODEs. Let us consider the equation

A(r)d2u

dr2 +B(r)du
dr + C(r)u = S(r). (2.15)

Définition 1 :
We say that r? ∈ R is a singular point of (2.15) if A(r?) = 0.

It is possible to study the behavior of the solution of (2.15) around a singular point r? by
extending the equation to the complex plane, i.e. solving for u(z) with z ∈ C instead of u(r)
with r ∈ R. If the singularity at r? is regular enough, i.e. B

A
has a pole of order one and C

A

has a pole of order up to two, then Fuchs theorem states that (2.15) has a solution that can
be written as a generalized power series and can be constructed using Frobenius method.
Even if it is possible to give meaning to the solution of an ODE in the vicinity of a singular
point, let us point out some drawbacks:
• Regularity of the coefficients: as this result comes from complex analysis, the coeffi-

cients of (2.15) should be meromorphic. This will translate to regularity requirements
on the physical parameters that are not realistic.
• Regularity of the singularity: in practice, it is not possible to guarantee that the singular

points are regular.
• Not variational: the solutions defined by Fuchs theorem do not lie in the Hilbertian

settings required to use finite-element methods.
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A detailed study of an alternative aeroacoustic model called Goldstein’s equation with re-
circulating flows has been performed in [Ben18]. Thanks to Fuchsian theory, the authors
were able to devise semi-analytical methods. As the construction of those semi-analytical
methods heavily relies on the particular form of the considered problem, it may be difficult to
generalize them. Finally, we would like to recall that one of the goal of this work is to devise
numerical methods that are flexible enough to handle cases where semi-analytical methods
cannot be used.

Existence of singular points We will now show the existence of singular points for the
modal equation associated with Galbrun’s equation (Gal). Those singular points are closely
related to the resonant lines of the previous sections. Assuming that

λ2r2

c2
0
6= n2, (2.16)

we can use (2.14) to eliminate ξθ,n from (2.13). In particular, we have

d
dr

[
ξθ,n
r

]
= −in

(
n2 − λ2r2

c2
0

)−1 d2ξr,n
dr2 + F

(
dξr,n
dr , ξr,n

)
,

leading to the following second-order term in (2.13)n2
(
n2 − λ2r2

c2
0

)−1

− 1
 d2ξr,n

dr2 =: A(r)d2ξr,n
dr2 .

We can clearly see that if there exists an r? such that λ(r?) = 0, then A(r?) = n2n−2−1 = 0
and r? is therefore a singular point of (2.13). Those singular points are closely related to
the resonance of the previous section, indeed if λ = 0, then ω = nΩ0 for some n ∈ Z. We
would like to point out that the resonant points of the modal system correspond to resonant
streamlines for Galbrun’s equation, and they are therefore sometimes referred to as resonant
lines.
Notice that another set of points could lead to singularity, indeed to perform the previous
computations we had to make the assumption (2.16) and the points where λ2r2 = c2

0n
2

could also be singular. To see that they actually are not singular, it is easier to consider a
first-order system. We therefore introduce a new unknown

αn := dξr,n
dr ,

and we rewrite (2.13)–(2.14) as

dξr,n
dr =αn,

dαn
dr − in

d
dr

[
ξθ,n
r

]
=− 1 +X

r
αn +

(
1−X
r2 − λ2

c2
0

)
ξr,n (2.17)

−
(

2iv0λ+ in
M2 −X

r

)
ξθ,n
r
− sr,n,

in
dξr,n
dr =−

(
2iMλ

c0
+ in

1 +M2

r

)
ξr,n −

(
n2 − λ2r2

c2
0

)
ξθ,n
r

+ sθ,n. (2.18)

If
λ2r2

c2
0

= n2,
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then we obtain the following decoupled system for ξr,n and αn

dξr,n
dr − αn = 0,

in
dξr,n
dr +

(
2iMλ

c0
+ in

1 +M2

r

)
ξr,n = sθ,n,

and we can solve (2.17) for ξθ,n.
With this formulation we can also retrieve the singular points from before. Indeed if we
write (2.18) using αn and if we assume that (2.16) holds, we have

inαn +
(

2iMλ

c0
+ in

1 +M2

r

)
ξr,n +

(
n2 − λ2r2

c2
0

)
ξθ,n
r

= sθ,n.

Using this equation to eliminate ξθ,n from (2.17) leads to the following termn2
(
n2 − λ2r2

c2
0

)−1

− 1
 dαn

dr ,

and to the same singular points.

Designing numerical methods We have shown that it may not be possible to solve the
time-harmonic Galbrun’s equation because of resonant lines that appear when ω = nΩ0.
Indeed, for those frequencies there are resonant streamlines. Let L? = {r = r?}, with
r? ∈ (ri, re), be a resonant streamline and let nL? be an outward unit normal vector to L?.
As the background flow is orthoradial, i.e. v0 = v0(r)eθ, we have nL? ∝ er and therefore
v0 · nL? = 0.
At this point, we recall that there are two different Hilbertian settings for Galbrun’s equation:
the usual H1(O)-settings of [BMM+12], and the low-regularity Hv0(O)-settings of [HH21],
where

Hv0(O) :=
{
ξ ∈ L2(O)

∣∣∣ div (ξ) ∈ L2(O), ∇v0ξ ∈ L2(O)
}
.

If we approximate ξ in H1(O), then the numerical method will "try" to define the behavior
of ξ on L?, which will lead to bad-quality numerical results as the method will generate
spurious modes. The bad quality of the numerical results has been pointed out in [CD18],
and an example of resonant line is pictured in Figure 2.3 that has been obtained using the
PQ-formulation of [CD18] in the montjoie solver. In [DHM+14], it was noted that a mixed
finite-element discretization of Galbrun’s equation can produce spurious modes that pollute
the numerical solution. Those spurious modes, see e.g. [DHM+14, Fig. 17], are very similar
to the resonant phenomenon depicted in Figure 2.3.
On the other hand, if we work with the low-regularity settings and approximate ξ inHv0(O),
then the numerical method will not respect the behavior of ξ on L? as v0 ·nL? = 0. Indeed,
as we discussed in the previous chapter, the continuity of ξ ∈ Hv0(O) is only enforced on
curves where v0 · n 6= 0.
The previous remarks seem to favor the second approach to design numerical methods for
Galbrun’s equation. Given the properties of the spaceHv0(O), this will naturally lead us to
non-conforming numerical methods and to (Hybridizable) Discontinuous Galerkin methods
in particular.
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Figure 2.3: Resonant line for Galbrun’s equation

2.4 Existence of resonance for LEE
In the previous sections, we have pointed out that a resonant-like phenomenon can happen
for both the time-harmonic vectorial transport equation and Galbrun’s equation. In this
section, we would like to show that this phenomenon can also occur for the time-harmonic
LEE, which is more widely used than Galbrun’s equation.
We begin with writing the system (LEE-ρ′)–(LEE-v′)–(LEE-p′) for an orthoradial back-
ground flow in an annulus

−iωρ′ + Ω0
∂ρ′

∂θ
+ v′r

dρ0

dr + ρ0
dv′r
dr + 1

r
ρ0v
′
r + 1

r
ρ0
∂v′θ
∂θ

= 0,

ρ0

(
−iωv′r + Ω0

∂v′r
∂θ
− 2Ω0v

′
θ

)
+ 1
ρ0

dp0

dr ρ
′ + dp′

dr = sr,

ρ0

(
−iωv′θ + Ω0

∂v′θ
∂θ

+ Ω0v
′r
)

+ ρ0
dv0

dr v
′
θ + ∂p′

∂θ
= sθ,

−iωp′ + Ω0
∂p′

∂θ
+ dp0

dr v
′
r + γp0

(
dv′θ
dr + 1

r
v′r + 1

r

∂v′θ
∂θ

)
= 0.

As before, the unknowns are written as Fourier series

q(r, θ) =
∑
n∈Z

qn(r)einθ, ∀q ∈ {ρ′, v′r, v′θ, p′} ,

leading to the following modal system

i(−ω + nΩ0)ρ′n + v′r,n
dρ0

dr + ρ0

(
dv′r,n
dr + 1

r
v′r,n + in

r
v′θ,n

)
= 0, (2.19)

ρ0
(
i(−ω + nΩ0)v′r,n − 2Ω0v

′
θ,n

)
+ 1
r

dρ0

dr ρ
′
n + dp′n

dr = sr,n, (2.20)

ρ0
(
i(−ω + nΩ0)v′θ,n + Ω0v

′
r,n

)
+ ρ0

dv0

dr v
′
r,n + inp′n = sθ,n, (2.21)

i(−ω + nΩ0)p′n + dp0

dr v
′
r,n + γp0

(
dv′r,n
dr + 1

r
v′r,n + in

r
v′θ,n

)
= 0. (2.22)
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The system (2.19)–(2.20)–(2.21)–(2.22) is a Differential Algebraic System of Equations1

(DAE): indeed (2.21) is an algebraic equation, and ρ′n and v′θ,n are algebraic unknowns
that are not differentiated. To study this system of equations, we need to eliminate ρ′n and
p′n to obtain a usual differential system.
We begin with noticing that (2.19) and (2.22) lead to a second algebraic constraint. Indeed
by using that ρ0c

2
0 = γp0 and by multiplying (2.19) by c2

0, we have

i(−ω + nΩ0)ρ′n = i(−ω + nΩ0)p′n +
(

dp0

dr − c
2
0
dρ0

dr

)
v′r,n. (2.23)

Non-resonant lines If ω 6= nΩ0, we can use (2.21) and (2.23) to obtain

v′θ,n = i

ρ0(−ω + nΩ0)

[
inp′n +

(
Ω0 + ρ0

dv0

dr

)
v′r,n − sθ,n

]
,

ρ′n = 1
c2

0
p′n + i

−ω + nΩ0

(
c2

0
dρ0

dr −
dp0

dr

)
v′r,n,

which allows us to eliminate v′θ,n and ρ′n. We can then obtain the two following differential
equations for v′r,n and p′n

i

−ω + nΩ0

[
ρ0(−ω + nΩ0)2 + 1

r

dv0

dr

(
c2

0
dρ0

dr −
dp0

dr

)
− Ω0

(
Ω0 + ρ0

dv0

dr

)]
v′r,n

+
[

1
rc2

0

dv0

dr −
nΩ0

−ω + nΩ0

]
p′n + dp′n

dr = srn −
iΩ0

−ω + nΩ0
sθ,n, (2.24)

and

γp0
dv′r,n
dr +

(
dv0

dr + γp0

r
− γp0ρ0n

rρ0(−ω + nΩ)

(
Ω0 + ρ0

dv0

dr

))
v′r,n

+ i

(
−ω + nΩ0 −

γp0n
2

rρ0(−ω + nΩ0)

)
p′n = − γp0n

rρ0(−ω + nΩ)sθ,n. (2.25)

The system (2.24)–(2.25) is a differential system that can be solved if ω 6= nΩ0. However,
it is clear that points r? such that ω = nΩ0(r?) are singular points of (2.24)–(2.25). It is
natural to wonder if those singular points are singular points of (2.19)–(2.20)–(2.21)–(2.22),
or if they are introduced by the reduction to the differential system (2.24)–(2.25). This will
be investigated in the next paragraph.

Resonant lines We now assume that ω = nΩ0, and the system (2.19)–(2.20)–(2.21)–(2.22)
reduces to

v′r,n
dρ0

dr + ρ0

(
dv′r,n
dr + 1

r
v′r,n + in

r
v′θ,n

)
= 0, (2.26)

−2ρ0Ω0v
′
θ,n + 1

r

dρ0

dr ρ
′
n + dp′n

dr = sr,n, (2.27)

ρ0

(
Ω0 + dv0

dr

)
v′r,n + inp′n = sθ,n, (2.28)

dp0

dr v
′
r,n + γp0

(
dv′r,n
dr + 1

r
v′r,n + in

r
v′θ,n

)
= 0. (2.29)

We cannot use the algebraic constraint to eliminate ρ′n and v′θ,n as in the previous case,
however (2.28) indicates that we may try to eliminate p′n to obtain an equation for v′r,n only.

1Differential Algebraic systems of Equations should not be confused with Algebraic Differential Equations
arising in differential algebra.
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Indeed, using (2.26) we have

ρ0
in

r
v′θ,n = −ρ0

dv′r,n
dr −

(
dρ0

dr + ρ0

r

)
v′r,n, (2.30)

then (2.28) says that

inp′n = ρ0

(
Ω0 + dv0

dr

)
v′r,n − sθ,n,

we can now rewrite (2.27) only in terms of v′r,n and ρ′n

2Ω0

(
ρ0

r

dv′r,n
dr +

(
dρ0

dr + ρ0

r

)
v′r,n
r

)
+ in

r

dρ0

dr ρ
′
n + d

dr

[
ρ0

(
Ω0 + dv0

dr

)
v′r,n

]
= insr,n + dsθ,n

dr .

(2.31)

Finally, multiplying (2.30) by c2
0 and using the result in (2.29) leads to(

dp0

dr − c
2
0
dρ0

dr

)
v′r,n = 0. (2.32)

So on the resonant lines, the modal system (2.19)–(2.20)–(2.21)–(2.22) reduces to (2.32). As
the coefficient

dp0

dr − c
2
0
dρ0

dr
in the left-hand side can vanish, it is not clear whether or not (2.32) is solvable. Moreover,
we can see in (2.30) and in (2.31) that v′θ,n and ρ′n are expressed in terms of the derivative
of v′r,n, and this quantity is not defined by (2.32). So even if v′r,n is defined by (2.32), the
solution of LEE may not be well-defined on resonant lines where ω = nΩ0.
In particular, in this chapter we have considered the equation of state (2.1)

p0 = Kργ0 ,

which describes an isentropic ideal gas. With this choice of equation of state, we have

dp0

dr = Kγργ−1
0

dρ0

dr = γp0

ρ0

dρ0

dr = c2
0
dρ0

dr ,

as γp0 = ρ0c
2
0. We can conclude that (2.32) always degenerates, and that (2.26) and (2.29)

are equivalent. The modal system (2.26)–(2.27)–(2.28)–(2.29) is therefore underdetermined.
To compute the kernel associated with a resonant line, we consider the system (2.26)–(2.27)–
(2.28) with sr,n = sθ,n = 0. Using (2.28), we can eliminate p′n as we have

dp′n
dr =

ρ0
(
Ω0 + dv0

dr

)
in

dv′r,n
dr + d

dr

ρ0
(
Ω0 + dv0

dr

)
in

 v′r,n = A
dv′r,n
dr + dA

dr v
′
r,n,

where we introduced

A :=
ρ0
(
Ω0 + dv0

dr

)
in

to make the notations lighter. Equations (2.26) and (2.27) can then be rewritten as

dv′r,n
dr = 2ρ0Ω0

A
v′θ,n −

1
Ar

dρ0

dr ρ
′
n −

dA
dr v

′
r,n, (2.33a)

dv′r,n
dr = −inρ0

r
v′θ,n −

(
1
r

+ 1
ρ0

dρ0

dr

)
v′r,n. (2.33b)
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This system can be solved only if

− 1
Ar

dρ0

dr ρ
′
n =

(
dA
dr −

1
r
− 1
ρ0

dρ0

dr

)
v′r,n −

(
inρ0

r
+ 2ρ0Ω0

A

)
v′θ,n,

which makes (2.33a) equivalent to (2.33b). So the modal system (2.26)–(2.27)–(2.28) reduces
to the following system

dv′r,n
dr = −inρ0

r
v′θ,n −

(
1
r

+ 1
ρ0

dρ0

dr

)
v′r,n,

p′n = Av′r,n,

− 1
Ar

dρ0

dr ρ
′
n =

(
dA
dr −

1
r
− 1
ρ0

dρ0

dr

)
v′r,n −

(
inρ0

r
+ 2ρ0Ω0

A

)
v′θ,n,

which has a solution for any v′θ,n.
Finally we would like to point out that if we use the numerical method for LEE described
in [CD18], we obtain spurious modes that are similar to those of Galbrun’s equation. The
resonant line for LEE is depicted on Figure 2.4 and can be compared to Figure 2.3.
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Figure 2.4: Resonant line for LEE

2.5 The case of the convected Helmholtz equation
In the two previous sections, we have seen that resonant lines exist for both Galbrun’s
equation and LEE. It is interesting to study this phenomenon for the convected Helmholtz
equation, which is the simplest aeroacoustic model. LEE and Galbrun’s equations are aeroa-
coustic models that describe acoustic and hydrodynamic phenomena, whereas the convected
Helmholtz equation describes pure acoustic waves and is only valid for potential background
flow.
We consider the following convected Helmholtz equation

ρ0 (−iω +∇v0)2 p− div
(
ρ0c

2
0∇p

)
= s, (2.34)

where s is the acoustic source and p is an acoustic potential that is related to the eulerian
perturbations by the following identities

p′ = −ρ0c0(−iω +∇v0)p, (2.35)
v′ = −c0∇p.
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For more details on the convected Helmholtz equation, we refer to [Pie90].
In polar coordinates, this equation reads

ρ0

(
−ω2p− 2iωΩ0

∂p

∂θ
+ Ω2

0
∂2p

∂θ2

)
− 1
r

[
∂

∂r

(
rρ0c

2
0
∂p

∂r

)
+ ρ0c

2
0
∂2p

∂θ2

]
= s

We proceed as before and we perform a decomposition of p into Fourier series with respect
to θ

p(r, θ) =
∑
n∈Z

pn(r)einθ,

leading to the following modal equation

−ρ0(ω + nΩ0)2pn + ρ0c
2
0n

2

r
pn −

1
r

d
dr

(
rρ0c

2
0
dpn
dr

)
= sn. (2.36)

Contrary to the previous cases, it is clear that (2.36) cannot degenerate and that there
is therefore no resonant line. As (2.34) models pure acoustics, we can conclude that the
existence of resonant lines comes from the coupling between acoustic and hydrodynamic
effects.
Finally, we would like to point that the modal counterpart of (2.35) is

p′n = −iρ0c0(−ω + nΩ0)pn.

We can therefore see that even if the mode pn associated with a resonant line where ω = nΩ0
is well-defined, this mode does not contribute to the eulerian perturbation of pressure p′ in
the case of pure acoustics. This seems consistent with the hydrodynamic nature of the
resonant-like phenomenon.

Conclusion & perspectives
From this section we can draw several conclusions. We studied a model problem for time-
harmonic aeroacoustic wave propagation in recirculating background flows, i.e. flows with
closed streamlines, and we have shown that if

ω = nΩ0(r?),

for some r? ∈ (ri, re) and n ∈ Z, then the vectorial transport equation, Galbrun’s equation
or LEE cannot be solved. It is important to point out that the frequencies ω for which this
phenomenon happens are not eigenvalues of the Laplace operator, and that they can consti-
tute an uncountable set. This resonant-like phenomenon gives a mathematical interpretation
of spurious modes that have been observed in some numerical methods for time-harmonic
aeroacoustic wave propagation.
As we discussed, this resonant-like phenomenon does not occur in the case of pure acoustic
wave propagation and therefore comes from the coupling between acoustic and hydrodynamic
effects in Galbrun’s equation and LEE.
Fortunately, it seems possible to study Galbrun’s equation with recirculating flows by using
the well-posedness result of [HH21], where the following Hilbert space is used

Hv0(O) :=
{
ξ ∈ L2(O)

∣∣∣ div (ξ) ∈ L2(O), ∇v0ξ ∈ L2(O)
}
.

This functional framework does not set the behavior of ξ on the resonant lines. Approxi-
mation of functions in this non-standard Hilbert space requires new numerical methods. To
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the best of our knowledge, no such result exists for either LEE or the vectorial transport
equation. Extending the work of [HH21] to those two equations seems very interesting. It
could either lead to a similar result for LEE, and therefore prove the equivalence between
LEE and Galbrun’s equation in time-harmonic domain. Or, it could exhibits configurations
where one of the model is well-posed and the other is not.
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Introduction
Nowadays the solar interior is studied by considering the propagation of aeroacoustic waves
in time-harmonic domain. Realistic models of solar oscillations require to approximate
non-standard Hilbert settings leading to non-conforming methods, such as Discontinuous
Galerkin Methods. As those methods have a very important numerical cost, we consider
the so-called Hybridizable Discontinuous Galerkin Methods (HDG), which relies on a static
condensation process to reduce the number of degrees of freedom.
As a first step towards the use of HDG in helioseismology, we construct and study HDG for
the simplest aeroacoustic model : the convected Helmholtz equation.
HDG have been used and validated by numerous authors for various problems such as elliptic
equations in [CGL09, CDG+09, CC12, CC14], acoustic wave propagation in [GM11, GSV18,
NPRC15], elastic wave propagation in [HPS17, BDMP21, CS13, FCS15, BCDL15], Maxwell
equations in [CQSS17, CQS18, CLOS20]. These methods have also been used to implement
the forward propagator in the context of quantitative inverse problems in [FS20] where a
specific formulation of the adjoint method is developed. In this paper, we will consider
the HDG+ variant of HDG, introduced in [Leh10], where different polynomial degrees are
used for the different unknowns. This HDG+ has been considered for various applications
in [CQSS17, Oik14, Oik16, Oik18, QSS16, QS16a, QS16b, Hun19] and to the best of our
knowledge, the case of the convected Helmholtz equation has not been addressed yet.
Theory for HDGs is rather similar to the one for mixed finite elements and the actual
connection was first established by Cockburn and his coworkers in [CGS10]. For a self-
contained introduction to the theory of HDG, we refer to [DS19]. For a historical perspective
on HDG, we refer to [Coc14].
For a comparison between HDG and Continuous Galerkin methods, we refer to [KSC12,
YMKS16]. The relationship between HDG and HHO (Hybrid High-Order, another new
generation of high-order face-based finite element method) has been studied in [CDPE16].

Main results: We construct three variants of the HDG method for convected acoustics
in the frequency domain. Our main results include a detailed analysis of those methods
where the most important properties of the method are proved including local and global
solvability, convergence rate for regular solutions. The choice of the penalization parameter
is also discussed. Finally, those three methods were implemented in hawen (see [Fau21]) and
we also provide numerical experiments. Using those numerical experiments, we can conclude
that the HDG+ and HDG-σh methods should be preferred to the HDG-qh method as they
seem more robust.
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Organization of this chapter: This work is organized as follows:
• in Section 3.1: we present the convected Helmholtz equation and recall some results

on this equation, we also present two ways to reach a first-order in space formulation;
• in Section 3.2: we introduce some notations and the approximation spaces needed to

construct HDGs developed in this paper;
• in Section 3.3: we construct the HDG-σh method based on the total flux formulation

of the convected Helmholtz equation, we also provide theoretical results and discuss
the optimal choice of penalization parameter for this method;
• in Section 3.4: we construct the HDG-qh and HDG+ methods based on the diffusive
flux formulation of the convected Helmholtz equation, we also provide detailed analysis
of those methods;
• in Section 3.5: we give details on how those methods can be implemented in a nodal

settings;
• in Section 3.6: we present numerical experiments to illustrate our theoretical results,

as well as some illustrative examples.

3.1 Model problem
As a model problem we consider the so-called convected Helmholtz equation

ρ0
(
−ω2p− 2iωv0 · ∇p+ v0 · ∇(v0 · ∇p)

)
− div

(
ρ0c

2
0∇p

)
= s (3.1)

where ω is the angular frequency, ρ0 is the density of the fluid, v0 is the velocity of the fluid,
c0 is the adiabatic sound speed, and s is the acoustic source.

Validity of this equation: Equation (3.1) is the simplest aeroacoustic models and there-
fore has a limited validity. This equation can be used for
• a uniform background flow, in this case the unknown p can be interpreted as a pressure

perturbation,
• a potential background flow, in this case the unknown p should be interpreted as an
acoustic potential and the physical quantities can be retrieved using the following
identities

Pressure perturbation: p′ = −ρ0c0(−iω + v0 · ∇)p,
Velocity perturbation: v′ = −c0∇p,

see [Pie90, Sec. II.].

Combining the second-order differential operators: We will assume that the back-
ground flow is incompressible which leads to the following local mass conservation equation

div (ρ0v0) = 0.

With this assumption, we have

ρ0v0 · ∇(v0 · ∇p) = div (ρ0(v0 · ∇p)v0)− (v0 · ∇p)������div (ρ0v0)
= div (ρ0(v0 · ∇p)v0)
= div

(
ρ0v0v

T
0∇p

)
Leading to

ρ0
(
−ω2p− 2iωv0 · ∇p

)
− div (K0∇p) = s (3.2)
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where K0 = ρ0
(
c2

0Id− v0v
T
0

)
.

It is easy to prove that

Lemma 3.1.1:
K0 is symmetric positive-definite and

Sp(K0) =
{
ρ0c

2
0, ρ0(c2

0 − |v0|2)
}

Proof: K0v0 = ρ0 (c2
0 − |v0|2)v0 and K0u = ρ0c

2
0u for all u ∈ v⊥0 .

Fredholm type : If the background flow is subsonic, ie.

inf
O

(
c2

0 − |v0|2
)
> 0, (3.3)

then (3.2) leads to a problem of Fredholm type. Indeed, by using Lemma 3.1.1 we can con-
clude that −div (K0∇p) is a coercive operator, and that the convected Helmholtz equation
therefore has a coercive + compact structure.

Boundary conditions: Let Γ be the boundary of the domain O and let n be the outward-
facing normal vector.
We will use the following boundary conditions

Neumann: (K0∇p) · n+ 2iω(ρ0v0 · n)p = gN on ΓN (3.4a)
Dirichlet: p = gD on ΓD (3.4b)

Impedance: (K0∇p) · n+ Zp = gI on ΓI (3.4c)

and
Γ = ΓN ∪ ΓD ΓD ∩ ΓN = ∅.

Remark 3.1.1: In this report, we will only consider Dirichlet (3.4b) and Neumann (3.4a)
boundary conditions. Impedance boundary condition (3.4c) is useful to consider local ab-
sorbing boundary conditions which will be considered in a future work.

3.1.1 First-order formulations
As it is usually done in the framework of HDG methods, we will rewrite (3.2) as a first-order
in space system. Notice that we have chosen to keep a second-order dependance in frequency.
Adaptation of our method to a first-order in frequency formulation is straightforward.
We will compare two different ways to reach a first-order in space formulation.
To lighten the notations in the remaining of this paper, we introduce the following vector
field

b0 := ρ0v0,

that satisfies the following mass conservation equation

div (b0) = 0.
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Diffusive flux formulation:

We begin by introducing the diffusive flux

q := −K0∇p

as a new unknown, leading to the following first-order in space system

W0q +∇p = 0 (3.5a)
−ρ0ω

2p− 2iωb0 · ∇p+ div (q) = s (3.5b)

where
W0 := K0

−1 = 1
ρ0c2

0

[
Id + v0v

T
0

c2
0 − |v0|2

]
. (3.6)

Note that K0 is always invertible thanks to (3.3), indeed we have

detK0 = ρ0c
2
0

(
c2

0 − |v0|2
)
6= 0.

The second equality in (3.6) comes from the Sherman-Morrison formula, see [SM50] :

Lemma 3.1.2:
If A ∈ GLn(R) and u,v ∈ Rn, then A + uvT is invertible if and only if 1 + vTA−1u 6= 0
and (

A+ uvT
)−1

= A−1 − A
−1uvTA−1

1 + vTA−1u
.

With this formulation, the Neumann boundary condition (3.4a) becomes

q · n− 2iω(b0 · n)p = −gN .

Variational formulation: We can now write a variational formulation for (3.5a)–(3.5b)
: Seek (q, p) ∈Hdiv(O)×H1(O) such that for all (r, w) ∈Hdiv(O)×H1(O)∫

O
W0q · r∗dx−

∫
O
pdiv (r∗) dx = −

∫
∂O
pr∗ · ndσ (3.7a)

−ω2
∫
O
ρ0pw

∗dx+ 2iω
∫
O
pb0 · ∇w∗dx−

∫
O
q · ∇w∗dx

+
∫
∂O
w∗q · n− 2iωpw∗b0 · ndσ =

∫
O
sw∗dx (3.7b)

where the boundary integrals should formally be interpreted as the duality bracket 〈·, ·〉
H−

1
2 (∂O),H

1
2 (∂O)

between H− 1
2 (∂O) and H 1

2 (∂O). Notice that we have not enforced the boundary conditions
in this weak formulation to keep it closer to he local problems of the HDG methods.

Total flux formulation:

As div (b0) = 0, we notice that

2iωb0 · ∇p = div (2iωpb0) ,

and we can therefore rewrite (3.2) as

−ρ0ω
2p− div (K0∇p+ 2iωpb0) = s.
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This leads to another possible first-order in space formulation. We introduce the total flux

σ := −K0∇p− 2iωpb0,

leading to the following system

W0σ +∇p+ 2iωpW0b0 = 0, (3.8a)
−ρ0ω

2p+ div (σ) = s. (3.8b)

With this formulation, the Neumann boundary condition (3.4a) becomes

σ · n = −gN .

Variational formulation: We can now write a variational formulation for (3.8a)–(3.8b)
: Seek (σ, p) ∈Hdiv(O)×H1(O) such that for all (r, w) ∈Hdiv(O)×H1(O)∫

O
W0σ · r∗dx−

∫
O
pdiv (r∗) dx+ 2iω

∫
O
pW0b0 · r∗dx = −

∫
∂O
pr∗ · ndσ (3.9a)

−ω2
∫
O
ρ0pw

∗dx−
∫
O
σ · ∇w∗dx+

∫
∂O
w∗σ · ndσ =

∫
O
sw∗dx (3.9b)

where the boundary integrals should formally be interpreted as the duality bracket 〈·, ·〉
H−

1
2 (∂O),H

1
2 (∂O)

between H− 1
2 (∂O) and H 1

2 (∂O). Notice that we have not enforced the boundary conditions
in this weak formulation to keep it closer to he local problems of the HDG methods.

3.2 Notations
In this section, we introduce the notations and approximation spaces that will be used to
construct the HDG methods considered in this paper.

3.2.1 Approximation spaces
We consider a mesh Th of the domain O of dimension n. For an element K ∈ Th, we denote
by E(K) the set of its edges. We also consider

The set of boundary edges: Ebh := {e = ∂K ∩ Γ | K ∈ Th} ,
The set of interior edges: E ih := {e = ∂K+ ∩ ∂K− | K+, K− ∈ Th} ,

The set of all edges: Eh := Ebh ∪ E ih.

To study the convergence of the methods, we will assume that the mesh has the usual
shape-regularity property, see [EG04, Def. 1.107].
For K ∈ Th, we denote by Pk(K) the space of polynomials of total degree at most k defined
on K. We will also use the space of vectorial polynomials Pk(K) = Pk(K)n. Even if those
spaces can be defined for k > 0, in this paper we will usually assume that k > 2 as HDG
method of lower order have little interest from a computational point of view. Indeed, for
k 6 2, there is no internal degrees of freedom to eliminate. The static condensation process
leads to a problem with only one scalar unknown and therefore eliminates the local vectorial
unknown. The HDG methods with k 6 2 are therefore mixed methods with a numerical
cost similar to primal methods.
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On each element K ∈ Th, we introduce the following approximation spaces for the pressure
and the flux

Vh(K) :=
{
q ∈ L2(K)

∣∣∣ q|K ∈ Pk(K)
}

for the flux qh or σh,

Wh(K) :=
{
p ∈ L2(K)

∣∣∣ p|K ∈ P`(K)
}

for the pressure ph.

In this work we will consider both standard HDG formulation where ` = k and the so-called
HDG+ formulation where ` = k + 1.
To construct HDG formulations, we will need to add a surfacic unknown, called the numerical
trace and denoted by p̂h, to the problem. This unknown will be the main unknown of the
method as the static condensation process will allow to eliminate the local unknowns to
obtain a so-called global problem. To approximate this new unknown we introduce the
following space for e ∈ E(K)

Mh(e) :=
{
µ ∈ L2(e)

∣∣∣ µ|e ∈ Pk(e)} .
As those approximation spaces are discontinuous, we can construct the global approximation
spaces as the cartesian product of the local ones

Vh :=
∏
K∈Th

Vh(K) for the flux qh or σh,

Wh :=
∏
K∈Th

Wh(K) for the pressure ph,

Mh :=
∏
e∈Eh

Mh(e) for the trace p̂h.

In Figure 3.1, we have depicted the differences in the degrees of freedom for the continuous
(CG), discontinuous (DG) and hybridizable discontinuous (HDG) Galerkin methods. The
degrees of freedom of the HDG methods are the ones associated with the numerical trace
p̂h. As the numerical cost of the method is directly linked to the number of degrees of
freedom, we can clearly see that the HDG method is less expensive than the DG method.
We would like to recall one of the main advantages of mixed methods: as they are based
on a first-order formulation, they can be used to obtain an approximation of the gradient
of the unknown without the loss of order associated with the numerical evaluation of the
derivatives. However mixed methods are usually more expensive than primal methods from
a computational point of view and mixed DG methods usually have a prohibitive numerical
cost. HDG methods have the advantages of both DG and mixed methods for a reasonable
computational cost.

(a) CG (b) DG (c) HDG

Figure 3.1: Polynomial interpolation of degree 3

In Table 3.1, we give a summary of the choice of local spaces for the different variations of
the HDG method considered in this report.
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Variable Space HDG (ph,σ) HDG (ph, qh) HDG+ (ph, qh)
Pressure ph Wh(K) Pk(K) Pk+1(K)
Flux qh or σh Vh(K) Pk(K)
Trace p̂h Mh(e) Pk(e)

Table 3.1: Choice of local spaces and penalization parameter for the different methods

Let us now introduce the orthogonal projection on the space of piecewise polynomial func-
tions on the edges

PM :
∏
K∈Th

L2(∂K) −→ Rk(∂Th) :=
∏
K∈Th

∏
e∈E(K)

Pk(e),

which will be required to construct the HDG+ formulation.
It is important to emphasize the difference between the space Rk(∂Th) and Mh. Indeed as

Mh =
∏
e∈Eh
Pk(e) 6=

∏
K∈Th

∏
e∈E(K)

Pk(e),

the functions in Mh are single-valued on the skeleton of the mesh, whereas the functions
in the other space are multi-valued on the interior edges. Functions in both spaces are
discontinuous at the vertices.

Remark 3.2.1: It is also possible to choose a continuous space for p̂h, this leads to the
so-called Locally Discontinuous but Globally Continuous method (LDGC), see eg. [ALA13,
FLd14]. However this choice does not seem to improve the convergence rate of the method.

3.2.2 Hermitian products and norms
For an element K ∈ Th, we denote the standard L2-hermitian product1 and its associated
norm by

(u, v)K :=
∫
K
u · v∗dx and ‖u‖2

K := (u, u)K ,

we then introduce the broken hermitian product and norm

(u, v)Th :=
∑
K∈Th

(u, v)K and ‖u‖2
Th :=

∑
K∈Th

‖u‖2
K .

On the boundary of an element K, we also denote the local hermitian product by

〈u, v〉∂K :=
∑

e∈E(K)

∫
e
u · v∗dσ and ‖u‖2

∂K := 〈u, u〉∂K ,

and the broken hermitian product is denoted by

〈u, v〉∂Th :=
∑
K∈Th

〈u, v〉∂K and ‖u‖2
∂Th :=

∑
K∈Th

‖u‖2
∂K .

Here we would like to point out that, depending on the regularity of u and v, 〈·, ·〉∂K can
denote either the hermitian product of L2(∂K) or the duality bracket between H−

1
2 (∂K)

and H 1
2 (∂K).

1For vector fields, the Rn dot-product is used inside the integral as the conjugate is already applied.
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We also define the following weighted norms

‖u‖2
ρ0,K

:= (ρ0u, u)K which satisfies ‖u‖ρ0,K
6 ‖ρ0‖

1
2
L∞(K) ‖u‖K

‖q‖2
W0,K

:= (W0q, q)K which satisfies ‖q‖W0,K
6 CW0,K ‖q‖K

where

CW0,K =
(

max
K

1
ρ0 (c2

0 − |v0|2)

) 1
2

is the square root of the largest eigenvalue of W0 in K, see Lemma 3.1.1.

3.2.3 Faces, jumps and averages
In this subsection, we will introduce notations for the face quantities. As usual with methods
belonging to the DG family, we will need to define jumps and averages which link the
unknowns between two elements.

Faces and normals: For an interior face E ih 3 e = ∂K+ ∩ ∂K−, we denote by n+ (resp.
n−) a unitary outgoing normal vector of ∂K+ (resp. ∂K−). We will always assume that the
flow v0 goes from K− to K+, as depicted on Figure 3.2.

K−
n−

K+

n+

v0 e = ∂K+ ∩ ∂K−

Figure 3.2: Outgoing normal vectors on an interior face

When the orientation of the face does not matter, we will denote by n any unitary normal
vector to e.
If e is a boundary edge, then n denotes the outward-pointing unitary normal vector.

Jumps and averages: We will often use the average operator defined by

On E ih 3 e = ∂K+ ∩ ∂K−, {{ϕ}}e := 1
2
(
ϕ+ + ϕ−

)
,

On Ebh 3 e = ∂K ∩ Γ, {{ϕ}}e := 1
2ϕ,

where ϕ can either be a scalar or vectorial quantity.
We will also make frequent use of the jump operator defined by

On E ih 3 e = ∂K+ ∩ ∂K−, [[q]]e := q+ · n+ + q− · n−,
On Ebh 3 e = ∂K ∩ Γ, [[q]]e := q · n,
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for a vectorial quantity. Notice that with this definition, the jump operator only controls
the normal part of the vector. For a scalar quantity, the jump operator is defined by

On E ih 3 e = ∂K+ ∩ ∂K−, [[p]]e := p+ − p−,
On Ebh 3 e = ∂K ∩ Γ, [[p]]e := p,

for a scalar quantity. A sketch of those quantities is given in Figure 3.3.

K− K+

n−

n+

[[ϕ
]] {{ϕ}}

Figure 3.3: 1D-sketch of the jump and average on an interior node

3.3 HDG method for the total flux formulation
In this section, we will focus on the total flux formulation. We will first construct the HDG
method and we will then discuss its most important properties.

3.3.1 Constructing the formulation
On an element K ∈ Th, the construction of the HDG method relies on the following integra-
tion by parts formula, which is related to the weak formulation (3.9a)–(3.9b)∫

K
W0σ · r∗dx−

∫
K
pdiv (r∗) dx+ 2iω

∫
K
pW0b0 · r∗dx = −〈p, r · n〉∂K , (3.11a)

−ω2
∫
K
ρ0pw

∗dx+
∫
K

div (σ)w∗dx =
∫
K
sw∗dx, (3.11b)

for all (r, w) ∈Hdiv(K)×H1(K) and where (σ, p) ∈Hdiv(O)×H1(O) is the unknown.

Choice of approximation spaces: We denote by σh and ph the approximations of σ
and p on K.
For this method, we choose to use the following local approximation spaces

Vh(K) = Pk(K) for the flux σh,
Wh(K) = Pk(K) for the potential ph,

where k > 3 is the degree of the method. We recall that if k 6 2, then there are no
interior degrees of freedom and the HDG method has little interest over the DG methods
from a computational point of view. Notice that we use the same interpolation degree for
both unknowns, which may lead to unstable continuous Galerkin methods, see e.g. [EG04,
"Checkerboard-like instablitiy" p.188]. As we will discuss later, this is not a problem for
HDG methods.
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Introduction of the hybrid unknown: To reach a HDG formulation, we introduce a
new unknown p̂h which is an approximation of p on Eh, the skeleton of the mesh Th. We
will usually refer to p̂h as the numerical trace. This unknown is the main unknown of the
HDG method. Indeed, we will be able to use a static condensation process to eliminate the
interior degrees of freedom and to obtain a so-called global problem for p̂h only. To introduce
this unknown in the formulation, the boundary integral in (3.11a) is discretized as follows∫

∂K
pr∗ · ndσ becomes

∫
∂K
p̂hr

∗
h · ndσ.

For this new unknown, we will use the following approximation space

Mh(e) = Pk(e), ∀e ∈ E(K).

Penalization parameter: The unknown p̂h is often called a Lagrange multiplier. Indeed,
when going from a continuous Galerkin method to a HDG one, the continuity of the numerical
solution is not strongly enforced anymore and it is added in the method as a constraint.
The quantity p̂h is therefore the Lagrange multiplier that enforces this weak continuity
requirement.
To enforce this constraint, we introduce a penalization parameter denoted by τ , and the
following boundary term

〈τ(ph − p̂h), wh〉∂K
will be added to the local problem. This boundary term can be interpreted as a weak
enforcement of the following Dirichlet boundary condition

ph = p̂h, on ∂K.

Practical choice of τ will be discussed in Section 3.3.2.

Local problem: Using the integration by parts formula (3.11a)–(3.11b) on an element
K ∈ Th, we define the local problem : seek (σh, ph) ∈ Vh(K)×Wh(K) such that

(W0σh, rh)K − (ph, div (rh))K + 2iω (phW0b0, rh)K + 〈p̂h, rh · n〉∂K = 0, (3.12a)
−ω2 (ρ0ph, wh)K + (div (σh) , wh)K + iω 〈τ(ph − p̂h), wh〉∂K − (s, wh)K = 0, (3.12b)

for all (rh, wh) ∈ Vh(K)×Wh(K).
Notice that (3.12a)–(3.12b) is the variational formulation of the convected Helmholtz equa-
tion on K with weak Dirichlet boundary conditions on ∂K, we can emphasize this fact by
rewriting (3.12a) as

(W0σh, rh)K + (∇ph, rh)K + 2iω (phW0b0, rh)K + 〈p̂h − ph, rh · n〉∂K = 0.

However we have to chosen keep (3.12a) as it is the usual way to implement this local
equation.

Transmission condition: Due to the discontinuous nature of the approximation spaces,
we need to link all the local problems together. To this end, we introduce the numerical flux
for σh

σ̂h · n := σh · n+ iωτ(ph − p̂h), (3.13)

which satisfies the following weak continuity equation



80 CHAPTER 3. HDG FOR THE CONVECTED HELMHOLTZ EQUATION

〈σ̂h, µh〉∂Th\ΓD =
∑
e∈Ei

h

〈[[σ̂h]], µh〉e = 0, (3.14)

as σh ∈ Vh, ph ∈ Wh and p̂h ∈ Mh, we have [[σ̂h]] ∈ Mh and we therefore conclude that
[[σ̂h]] = 0, as [[σ̂h]] is a polynomial of degree up to k orthogonal to all polynomials of degree
up to k. We recall that on an interior edge E ih 3 e = ∂K+ ∩ ∂K−, the jump operator is
defined as

[[σh]] := σ+
h · n+ + σ−h · n−.

This weak continuity requirement can be expressed as the following transmission condition

〈σ̂h, µh〉∂Th\ΓD + 〈p̂h − gD, µh〉ΓD = 〈gN , µh〉ΓN (3.15)

for all µh ∈Mh.
Notice that (3.15) enforces the normal continuity of σ̂h on the interior faces as well as the
Neumann and Dirichlet boundary conditions on ΓN and ΓD.

Remark 3.3.1: The transmission condition (3.15) can be understood as a weak require-
ment of Hdiv(O)-conformity. Indeed it is shown in [PE12, Lemma 1.2.4] that σh ∈Hdiv(O)
means

∀K ∈ Th, σKh ∈Hdiv(K) and ∀e ∈ E ih, [[σh]]e ≡ 0.
The former is a consequence of the polynomial nature of the approximation spaces, and we
will now focus and the latter. Owing to the transmission condition, we have

∀e ∈ E ih, 0 = [[σ̂h]] = [[σh]] + iω[[τ(ph − p̂h)]].

As ph and p̂h are two approximations of the same unknown p, the quantity ph−p̂h is expected
to be small. We can therefore conclude that [[σh]] is small and that

[[σh]] −→
hK→0

0.

For applications where a precise approximation of the flux is required, a post-processing
scheme producing a new approximate σ̃h with strong Hdiv-conformity was introduced in
[CGS10, Sec. 5.1].

Compact formulation:

HDG methods are usually stated in a compact form that can be obtained by summing
the local problems (3.12a)–(3.12b) over the mesh elements and by adding the transmission
condition (3.15). This formulation reads : seek (σh, ph, p̂h) ∈ Vh ×Wh ×Mh such that

(W0σh, rh)Th − (ph, div (rh))Th + 2iω (phW0b0, rh)Th + 〈p̂h, rh · n〉∂Th = 0, (3.16a)
−ω2 (ρ0ph, wh)Th + (div (σh) , wh)Th + iω 〈τ(ph − p̂h), wh〉∂Th = (s, wh)Th ,(3.16b)

〈σh · n+ iωτ(ph − p̂h), µh〉∂Th\ΓD + 〈p̂h − gD, µh〉ΓD = 〈gN , µh〉ΓN ,(3.16c)

for all (rh, wh, µh) ∈ Vh×Wh×Mh. This formulation will be useful to perform the numerical
analysis of the method. We recall that (3.16c) should be understood as a rewriting of the
weak continuity requirement (3.14).

Remark 3.3.2: At this point, to completely define the HDG method, it only remains to
choose the penalization parameter τ , this will be done in the next section.
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Condensed variational formulation

The compact formulation (3.16a)–(3.16b)–(3.16c) cannot directly be used to efficiently im-
plement the HDG method. Indeed it is not clear how a formulation involving only p̂h can
be reached. To emphasize how it can be done, we will now write a condensed variational
formulation for p̂h only.
We introduce the so-called local solvers

PK : (p̂h, s) 7−→ pKh ,

ΣK : (p̂h, s) 7−→ σKh ,

Σ̂K : (p̂h, s) 7−→ σ̂h
K · nK := ΣK(p̂h, s) · n+ iωτ

(
PK(p̂h, s)p̂h

)
,

where (σKh , pKh ) is the solution of (3.12a)–(3.12b) and σ̂hK is defined by (3.13).
We can therefore rewrite the transmission condition (3.16c) as

ah(p̂h, µ) = `h(µ), (3.17)

where

ah(p̂h, µh) :=
〈

ΣK(p̂h, s) · n+ iωτ(PK(p̂h, s)− p̂h), µh
〉
∂Th\ΓD

+ 〈p̂h, µh〉ΓD ,

`h(µh) := 〈gN , µh〉ΓN + 〈gD, µh〉ΓD .

Equation (3.17) is the so-called global problem and is the main equation of the HDG method.
From a computational point of view, we proceed as described in Algorithm 1.

Algorithm 1: Solving HDG-σh
1 for K ∈ Th do
2 Construct the local solvers PK , ΣK , Σ̂K

3 Add local contribution to the global problem (3.17)
4 Solve the global problem (3.17) for p̂h // This is the most expensive step
5 for K ∈ Th do
6 Reconstruct the local unknowns pKh = Pk(p̂h, s) and σKh = Σ(p̂h, s)

This algorithm is the blueprint of the practical implementation of the HDG method which
will be discussed in Section 3.5.

3.3.2 Choice of penalization parameter
In this section, we will show how the penalization parameter can be chosen to obtain an up-
winding mechanism with physical meaning. To do that, we will first rewrite the HDG method
as a DG one, we will then solve a Riemann problem to obtain the value of τ .

DG formulation

In this section, we will rewrite the HDG method (3.16a)–(3.16b)–(3.16c) as a standard
discontinuous Galerkin method.
We introduce the following bilinear form

Bh([σh, ph]; [rh, wh]) := (W0σh, rh)Th − (ph, div (rh))Th + 2iω (phW0b0, rh)Th
− ω2 (ρ0ph, wh)Th + (div (σh) , wh)Th
+
∑
e∈Eh

(
〈p̂h, [[rh]]〉e + 〈σ̂h · n, [[wh]]〉e

)
, (3.18)
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from which all the mixed DG methods can be generated by choosing p̂h and σ̂h. Notice that
p̂h was an unknown of the HDG method whereas it now should be chosen by the user of the
method.
For example, the LDG method is obtained by choosing

p̂h = {{ph}}+ α[[ph]] and σ̂h = {{σh}}+ β[[σh]]n+ γ[[ph]]n,

and the DG method with central flux is obtained by choosing

p̂h = {{ph}} and σ̂h = {{σ}} − α[[ph]].

Proposition 3.3.1:
The HDG method (3.16a)–(3.16b)–(3.16c), with the following of numerical flux for σh

σ̂h · n± = σ±h · n± + iωτ±
(
p±h − p̂h

)
,

and the DG method associated to the bilinear form (3.18) are equivalent if and only if

p̂h = {{ph}}+ τ+ − τ−

2(τ+ + τ−) [[ph]] + 1
iω(τ+ + τ−) [[σh]], (3.19a)

σ̂h · n = {{σh}} · n+ iω
τ+τ−

τ+ + τ−
[[ph]]−

τ+ − τ−

2(τ+ + τ−) [[σh]], (3.19b)

for all interior edges Ebh 3 e = ∂K+ ∩ ∂K− and where τ± = τ |∂K± .

This proposition is an intermediate result required to prove Proposition 3.3.2, where values
of τ± with physical meaning will be computed.
We recall the convention for the labelling ∂K± : v0 is directed from ∂K− toward ∂K+ and
we denote by n any normal vector to the face when the orientation does not matter.
Proof: Writing down the transmission condition (3.16c) on an interior face e, we have

[[σh]] + 2iω
(
{{τ}}{{ph}}+ 1

4[[τ ]][[ph]]
)
− 2iω{{τ}}p̂h = 0,

which leads to

p̂h = {{ph}}+ [[τ ]]
4{{τ}} [[ph]] + 1

2iω{{τ}} [[σh]],

and we obtain (3.19a) by developing the jumps and average terms.
As the numerical flux σ̂h is continuous across the interface, we have

σ̂h · n = {{σ̂h}} · n

= {{σh}} · n+ iω

2 [[τ ]] ({{ph}} − p̂h) + iω

2 {{τ}}[[ph]]

= {{σh}} · n−
iω

2 [[τ ]]
(

[[τ ]]
4{{τ}} [[ph]] + 1

2iω{{τ}} [[σh]]
)

+ iω

2 {{τ}}[[ph]]

and we obtain (3.19b) as

− [[τ ]]2

4{{τ}} + {{τ}} = −(τ+)2 − 2τ+τ− + (τ−)2

2(τ+ + τ−) + (τ+)2 + 2τ+τ− + (τ−)2

2(τ+ + τ−) = 2 τ+τ−

τ+ + τ−
.
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We now have to show that this choice of numerical flux σ̂h is compatible with the HDG
method. Starting from (3.19b) we have

σ̂h · n+ = σ+
h · n+ − 1

2

(
1 + τ+ − τ−

τ+ + τ−

)
[[σh]] + iω

τ+τ−

τ+ + τ−
[[ph]]

= σ+
h · n+ − τ+

τ+ + τ−
[[σh]] + iω

τ+τ−

τ+ + τ−
[[ph]],

on the other hand, rewriting (3.19a) gives

− τ+

τ+ + τ−
[[σh]] = iωτ+

[
{{ph}} − p̂h + τ+ − τ−

2(τ+ + τ−) [[ph]]
]

= iωτ+(p+
h − p̂h) + iω

τ+

2

(
τ+ − τ−

τ+ + τ−
− 1

)
[[ph]]

= iωτ+(p+
h − p̂h)− iω

τ+τ−

τ+ + τ−
[[ph]],

so we finally have
σ̂h · n+ = σ+

h · n+ + iωτ+(p+
h − p̂h).

Similar computations can be carried out on ∂K−.

Particular form of the HDG fluxes: We would like to point out that p̂h depends on
[[σh]], this is a distinctive feature of HDG methods among the family of DG methods. To
understand this, let us consider DG method with the following fluxes

p̂h = {{ph}}+ α[[ph]] and σ̂h = {{σh}}+ β[[σh]]n+ γ[[ph]]n, (3.20)

where α, β, γ are arbitrary constants. This construction is adapted from [HW08, Sec 7.2.2].
Testing (3.18) with [rh, 0] leads to

(W0σh, rh)Th − (ph, div (rh))Th + 2iω (phW0b0, rh)Th +
∑
e∈Eh
〈p̂h, [[rh]]〉e = 0.

Integrating by parts leads to

(W0σh, rh)Th = − (∇ph, rh)Th − 2iω (phW0b0, rh)Th +
∑
e∈Eh

[〈[[ph]]n, {{rh}}〉e − 〈p̂h, [[rh]]〉e]

+
∑
e∈Ei

h

〈{{ph}}, [[rh]]〉e , (3.21)

where we used the identity

〈ph, rh · n〉∂Th =
∑
e∈Eh
〈[[ph]]n, {{rh}}〉e +

∑
e∈Ei

h

〈{{ph}}, [[rh]]〉e ,

coming from [HW08, Lemma 7.9]. Using the definition of p̂h given in (3.20), the surfacic
terms in (3.21) become

−
∑
e∈Ei

h

〈[[ph]], {{rh}} · n− α[[rh]]〉e −
∑
e∈Eb

h

〈ph, rh · n〉e .

We now introduce the lifting operator L defined by

(L(ph), rh)Th =
∑
e∈Ei

h

〈[[ph]], {{rh}} · n− α[[rh]]〉e +
∑
e∈Eb

h

〈ph, rh · n〉e , ∀rh ∈ Vh,
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and (3.21) becomes

(W0σh, rh)Th = (−∇ph − 2iωphW0b0 − L(ph), rh)Th .

We can see that σh is completely defined in terms of ph and it is therefore not possible to
add a transmission condition, which is required to allow the static condensation process.
On the other hand, if the HDG flux

p̂h = {{ph}}+ α[[ph]] + δ[[σh]]

is used, we will obtain an expression of σh in terms of ph and [[σh]]. We will therefore need to
add the transmission condition to close the discrete system and it will be possible to perform
the static condensation.

Computing the penalization parameter

Proposition 3.3.2:
On an interior face E ih 3 e = ∂K+ ∩ ∂K− the following choice of penalization parameter

τ± = ρ0(c0 + v0 · n±), (3.22)

where τ± = τ |∂K± , leads to an upwinding mechanism.

To prove this proposition, we will need to solve a Riemann problem and compare its solution
with Proposition 3.3.1 to obtain a value for τ± with physical meaning. The first step to
be able to solve the Riemann problem is to rewrite the original equation as a time-domain
hyperbolic system.

Hyperbolic system: We start from the convected acoustic wave equation

ρ0

(
∂

∂t
+ v0 · ∇

)2

p− div
(
ρ0c

2
0∇p

)
= 0

and we write it as a hyperbolic system. First we have

ρ0
∂2p

∂t2
− div

(
K0∇p− 2ρ0

∂p

∂t
v0

)
= 0,

we therefore introduce the total flux

∂σ̃

∂t
= −K0∇p+ 2ρ0

∂p

∂t
v0,

leading to the following first-order formulation

∂p

∂t
= − 1

ρ0
div (σ̃) , (3.23a)

∂σ̃

∂t
= −K0∇p+ 2ρ0

∂p

∂t
v0. (3.23b)

However this formulation does not have the form of a hyperbolic system.
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Using (3.23a) in (3.23b), we have

∂p

∂t
= − 1

ρ0
div (σ̃) , (3.24a)

∂σ̃

∂t
= −K0∇p− 2div (σ̃)v0. (3.24b)

Notice that we need to work with a first-order in time formulation whereas our methods are
written for second-order in time (or equivalently in frequency) formulations. However we
have the following relationship between σ and σ̃

σ = iωσ̃,

making it possible to go back to a second-order formulation.
The system (3.24a)–(3.24b) can be written as

∂U
∂t

= Ax
∂U
∂x

+ Ay
∂U
∂y

, (3.25)

where

U :=
[
p
σ̃

]
; Ax :=

 0 − 1
ρ0

0
−M0,xx −2v0,x 0
−M0,yx −2v0,y 0

 ; Ay :=

 0 0 − 1
ρ0

−M0,xy 0 −2v0,x
−M0,yy 0 −2v0,y

 .
To check that (3.25) is a hyperbolic system, one needs to show that for all α, β ∈ R the
matrix

Aα,β := αAx + βAy = −

 0 α
ρ0

β
ρ0

αM0,xx + βM0,xy 2αv0,x 2βv0,x
αM0,yx + βM0,yy 2αv0,y 2βv0,y


is diagonalizable with real eigenvalues, see Figure 3.4.

Figure 3.4: Computation of the eigenvalues of Aα,β with the symbolic computation engine
WolframAlpha
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Riemann solver: To compute the upwind penalization parameters, we consider a vertical
interface located at x = 0 and we assume that the background flow is uniform.
We will solve the problem (3.25) with the following initial condition

U(x, y, 0) = U+, if x > 0,
U(x, y, 0) = U−, if x < 0.

With this choice of initial condition, we obtain a well-posed problem which is invariant with
respect to y.
Our goal is to compute U at x = 0.
Due to the invariance with respect to y, we can rewrite (3.25) as

∂U
∂t

= Ax
∂U
∂x

.

Furthermore, we can obtain the following system for [p, σ̃x]T only

∂

∂t

[
p
σ̃x

]
=
[

0 − 1
ρ0

−M0,xx −2v0,x

]
︸ ︷︷ ︸

=:A

∂

∂x

[
p
σ̃x

]
,

as the DG method is only written in terms of σ̃ · n = σ̃x.
To compute the eigenvalues of A, we need to solve∣∣∣∣∣ −λ − 1

ρ0

−M0,xx −2v0,x − λ

∣∣∣∣∣ = 0 ⇐⇒ λ2 + 2v0,xλ−
M0,xx

ρ0
= 0.

Recalling that
M0,xx = ρ0c

2
0 − ρ0v

2
0,x,

we obtain the two following eigenvalues

λ1 = − (c0 + v0,x) ,
λ2 = c0 − v0,x,

and the associated eigenvectors are

w1 :=
[

1
ρ0(c0 + v0,x)

]
and w2 :=

[
1

ρ0(v0,x − c0)

]
.

We can now define
W :=

[
1 1

ρ0(c0 + v0,x) ρ0(v0,x − c0)

]
,

and therefore
W−1 = 1

2ρ0c0

[
ρ0(c0 − v0,x) 1
ρ0(c0 + v0,x) −1

]
=
[
`1
`2

]
.

We have[
p
σ̃x

]
(0, t) = `1

[
p+

σ̃+
x

]
w1 + `2

[
p−

σ̃−x

]
w2

= ρ0(c0 − v0,x)p+ + σ̃+
x

2ρ0c0

[
1

ρ0(c0 + v0,x)

]
+ ρ0(c0 + v0,x)p− − σ̃−x

2ρ0c0

[
1

ρ0(v0,x − c0)

]
,
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therefore

p̂ = 1
2
(
p+ + p−

)
− v0,x

2c0

(
p+ − p−

)
+ 1

2ρ0c0

(
σ̃+
x − σ̃−x

)
,

̂̃σx = 1
2
(
σ̃+
x + σ̃−x

)
+ v0,x

2c0

(
σ̃+
x − σ̃−x

)
+ ρ0

c2
0 − v2

0,x

2c0

(
p+ − p−

)
.

Finally, we can infer the form of the DG flux for a generic interface

p̂ = {{p}} − v0 · n−

2c0
[[p]] + 1

2ρ0c0
[[σ̃]], (3.27a)

̂̃σ · n− = {{σ̃}} · n− + v0 · n−

2c0
[[σ̃]] + ρ0

c2
0 − (v0 · n)2

2c0
[[p]]. (3.27b)

Notice that we had to chose an orientation of the normal vector. Following our convention,
we have chosen to use n− as it has the same orientation as v0.
Rewriting (3.27a)–(3.27b) in terms of σ instead of σ̃ leads to

p̂h = {{p}} − v0 · n−

2c0
[[p]] + 1

2iωρ0c0
[[σ]] (3.28a)

σ̂ · n− = {{σ̃}} · n− + v0 · n−

2c0
[[σ̃]] + iωρ0

c2
0 − (v0 · n−)2

2c0
[[p]]. (3.28b)

Comparing (3.28a)–(3.28b) with (3.19a)–(3.19b) , we see that

τ+ + τ− = 2ρ0c0, (3.29a)
τ+τ−

τ+ + τ−
= ρ0

c2
0 − (v0 · n−)2

2c0
. (3.29b)

The system (3.29a)–(3.29b) leads to the following second-order equation

(τ+)2 − 2ρ0c0τ
+ + ρ2

0

(
c2

0 − (v0 · n−)2
)

= 0,

and to the two following families for τ±

τ+
1 = ρ0(c0 + v0 · n−), τ−1 = ρ0(c0 − v0 · n−),
τ+

2 = ρ0(c0 − v0 · n−), τ−2 = ρ0(c0 + v0 · n−).

To discriminate between τ±1 and τ±2 we once again go back to (3.19a)–(3.19b) and we see
that the solution must satisfy

τ+ − τ−

2(τ+ + τ−) = −v0 · n−

2c0
.

We can therefore conclude that the upwind fluxes are obtained by using the τ±2 solution. We
can make this choice independent of the orientation convention by noticing that n+ = −n−,
leading to

τ±2 = ρ0(c0 + v0 · n±).

Remark 3.3.3: To keep polynomial fluxes on the interfaces, the background quantities
will be approximated by their value at the center of the interface.
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Remark 3.3.4: In the context of DG and HDG methods, τ is usually chosen to be of the
«order of unity» to ensure optimal convergence rate. In the error analysis of the method,
we allow the dependency to the background coefficient to be hidden in the constants, so the
choice (3.22) is actually possible.

3.3.3 Local solvability
We will now show the local solvability for the total flux formulation. Proving the well-
posedness of the local problems is always very important when working with HDG methods.
For the strongly coercive problems, for which HDG methods were initially designed, this
property usually comes directly from the continuous problem. However for harmonic wave
equations, which are only weakly coercive, things are more complicated : indeed solving
the local problem amounts to solving a wave problem with Dirichlet boundary conditions.
We therefore need to ensure that the local problem does not introduce resonance into the
method, which is the case when the elements are small enough. In this section, we will prove
that the static condensation process is well-defined when the mesh is fine enough.

Notice that in this case the proof relies on an absorption technique and is therefore very
technical. Readers who are not familiar with HDG theory should probably begin with the
proof for the diffusive flux formulation which is easier. It will be detailed in Subsection
3.4.2.

First, we need to show the

Lemma 3.3.1:
For ph ∈ Pk(K) with k > 0, the following inverse inequality holds

‖∇ph · n‖∂K . ‖∇ph‖∂K . h
− 1

2
K ‖∇ph‖K .

Proof:
First, we notice that if ph is constant the desired inequality reduces to 0 . 0. We therefore
only consider non-constant ph.
Let K̃ be the reference unit element. We consider the map F : K̃ −→ K. We use ·̃ to
denote quantities on the reference element instead of the more standard notation ·̂ to avoid
confusion, as we already used ·̂ to denote the numerical fluxes.
Let γ̃1 : H2(K̃) −→ L2(∂K̃) be the normal derivative operator in the reference element. As
γ̃1 is continuous, we have ∥∥∥γ̃1(p̃h)

∥∥∥
∂K̃

. ‖p̃h‖2,K̃ . |p̃h|1,K̃
The second inequality holds as p̃h ∈ Pk(K̃) which is a finite-dimensional vector-space on
which all the norms are equivalent and ph is not constant.
We now recall the following scaling inequalities, see [DS19, Eq (1.6), (1.7) & (1.8)]

|p̃h|1,K̃ .| det Jac(F )|− 1
2 ‖Jac(F )‖ |ph|1,K . |ph|1,K ;

h
1
2
K ‖µh‖∂K . ‖µ̃h‖∂K̃

Due to the regularity of the mesh, we have

h
1
2
K ‖∇ph · n‖∂K . ‖∇ph‖K .
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Theorem 2 : Local solvability for the total flux HDG method
If τ is chosen such that

∃τ0 > 0, ∀e ∈ E(K), 0 < τ0 6 τ + b0 · n,

then there exists a constant α+ > 0 such that the local problem is well-posed if ωhK < α+.

Proof: As (3.12a)–(3.12b) is a finite-dimensional problem, we only need to prove uniqueness
of the solution. We therefore assume that p̂h = 0 and s = 0, and we need to show that the
system

(W0σh, rh)K − (ph, div (rh))K + 2iω (phW0b0, rh)K = 0, ∀rh ∈ Vh(K) (3.31a)
−ω2 (ρ0ph, wh)K + (div (σh) , wh)K + iω 〈τph, wh〉∂K = 0, ∀wh ∈ Wh(K).(3.31b)

has only one solution (σh, ph) = (0, 0).
We will prove the theorem by contradiction. We therefore assume that there is a non-zero
solution (σh, ph) to (3.31a)–(3.31b).
Step 1: Energy-like identity.
We test (3.31a) with rh = σh and conjugate the resulting equation, we then test (3.31b)
with wh = ph and add the two resulting equations leading to

‖σh‖2
W0,K

− ω2 ‖ph‖2
ρ0,K
− 2iω (σh, phW0b0)K + iω 〈τph, ph〉∂K = 0.

We then focus on the third term, as W0 is real and symmetric we have

(σh, phW0b0)K = (W0σh, phb0)K .

Taking rh = ph {b0}, where {b0} is the average of b0 on K, in (3.31a), we have

(W0σh, ph {b0})K − (ph, {b0} · ∇ph)K + 2iω (phW0b0, ph {b0})K = 0,

leading to

− (W0σh, phb0)K + (ph, b0 · ∇ph)K − 2iω (phW0b0, phb0)K = −ε,

where

ε := (W0σh, ph(b0 − {b0}))K− (ph, (b0 − {b0}) · ∇ph)K + 2iω (phW0b0, ph(b0 − {b0}))K .

We chose the notation ε to emphasize that this quantity is small, as it will be discussed in
Step 3.
So we have

‖σh‖2
W0,K

−ω2(‖ph‖2
ρ0,K

+ 4 ‖phb0‖2
W0,K

) (3.32)
− 2iω (ph, b0 · ∇ph)K − 2iωε+ iω 〈τph, ph〉∂K = 0

Step 2: Boundary condition
Taking the imaginary part (3.32) leads to

2ωRe (phb0,∇ph)K + ω 〈τph, ph〉∂K + 2ωReε = 0,
(by Lemma 4.1.1) 〈(τ + b0 · n)ph, ph〉∂K = −2Reε.
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As we have chosen τ such that there is 0 < τ0 6 τ + b0 ·n where τ0 does not depend on hK ,
we have

‖ph‖2
∂K . |ε|. (3.33)

As we do not have shown that p|∂K = 0 , we cannot use Poincaré’s inequality, however
according to [EG04, Lemma B.63 & Example B.64] we have

‖ph‖K 6 ‖ph‖1,K 6 CK ‖∇ph‖K + CK
meas(∂K) ‖ph‖∂K ,

where CK is the Poincaré constant of K2. Using standard scaling inequalities, we have

CK . hK and CK
meas(∂K) . h

1
2
K .

Using (3.33) to estimate the boundary term, this leads to

‖ph‖K . hK ‖∇ph‖K + h
1/2
K |ε|1/2. (3.34)

Step 3: Estimating |ε| and ‖ph‖K . We have

|ε| .hK ‖σh‖W0,K
‖ph‖K + hK ‖ph‖K ‖∇ph‖K + ωhK ‖ph‖2

K

(by Young) .h2
K ‖σh‖

2
W0,K

+ (1 + ωhK) ‖ph‖2
K + h2

K ‖∇ph‖
2
K

.h2
K ‖σh‖

2
W0,K

+ (1 + ωhK)
(
h2
K ‖∇ph‖

2
K + hK |ε|

)
+ h2

K ‖∇ph‖
2
K

If hK is small enough, the term hK |ε| in the right-hand side can be absorbed by the left-hand
side leading to

|ε| .h2
K ‖σh‖

2
W0,K

+ (1 + ωhK)h2
K ‖∇ph‖

2
K .

Assuming that hK is small enough, we can overestimate ωhK . 1, leading to

|ε| . h2
K ‖σh‖

2
W0,K

+ h2
K ‖∇ph‖

2
K . (3.35)

Together with the generalized Poincaré’s inequality (3.34) we have

‖ph‖2
K . h2

K ‖∇ph‖
2
K + h2

K ‖σh‖
2
W0,K

, (3.36)

and using that
√
a2 + b2 6 |a|+ |b| we also have

‖ph‖K . hK ‖∇ph‖K + hK ‖σh‖W0,K
.

Step 4: Estimating ‖σh‖W0,K

Taking the real part of the Garding’s identity (3.32), we have

‖σh‖2
W0,K

.ω2 ‖ph‖2
K + ω ‖ph‖K ‖∇ph‖K + ω|ε|

(by (3.36)) .ω2
(
h2
K ‖∇ph‖

2
K + h2

K ‖σh‖
2
W0,K

)
+ ω

(
hK ‖∇ph‖K + hK ‖σh‖W0,K

)
‖∇ph‖K + ω|ε|

(by Young) .
(
ω2h2

K + ωhK
)
‖∇ph‖2

K + ω2h2
K ‖σh‖

2
W0,K

+ ωhK ‖σh‖2
W0,K

+ ω|ε|

(by (3.35)) .
(
ω2h2

K + ωhK
)
‖∇ph‖2

K +
(
ω2h2

K + ωhK
)
‖σh‖W0,K

.ωhK ‖∇ph‖2
K + ωhK ‖σh‖W0,K

2The constant used by the authors of [EG04] is the inverse of the usual Poincaré constant.
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We obtained the last line by assuming that ω2h2
K . ωhK which is true if hK is small enough.

If hK is small enough the term ωhK ‖σh‖2
W0,K

in the right-hand side can be absorbed by the
left-hand side, leading to

‖σh‖2
W0,K

. ωhK ‖∇ph‖2
K . (3.37)

Step 5: Estimating ‖∇ph‖K
Taking rh = ∇ph in (3.31a) and reverting the integration by parts, we have

‖∇ph‖2
K = |(W0σh,∇ph)K + 2iω (phW0b0,∇ph)K + 〈ph,∇ph · n〉∂K |
. ‖σh‖W0,K

‖∇ph‖K + ω ‖ph‖K ‖∇ph‖K + ‖ph‖∂K ‖∇ph‖∂K
(by Lemma 3.3.1) . ‖σh‖W0,K

‖∇ph‖K + ω ‖ph‖K ‖∇ph‖K + h
−1/2
K ‖ph‖∂K ‖∇ph‖K

So we have

‖∇ph‖K . ‖σh‖W0,K
+ ω ‖ph‖K + h

−1/2
K ‖ph‖∂K

. ‖σh‖W0,K
+ ω ‖ph‖K + (1 + ωhK)hK ‖∇ph‖K

. ‖σh‖W0,K
+ ωhK ‖∇ph‖K + ωh

3/2
K ‖σh‖W0,K

+ (1 + ωhK)hK ‖∇ph‖K

Finally we have
‖∇ph‖K . ‖σh‖W0,K

. ‖σh‖K . (3.38)

Step 6: Contradiction
Combining (3.37) and (3.38), we have

‖σh‖2
K . ωhK ‖σh‖2

K

as we assumed that σh 6= 0, we can divide by ‖σh‖K , leading to

1 . ωhK ,

which does not hold if ωhK is small enough.
This is the desired contradiction, and we can therefore conclude that (σh, ph) = (0, 0) is the
only solution of the system (3.31a)–(3.31b).

3.3.4 Error analysis
The error analysis can be carried out by following the projection analysis for the Helmholtz
equation given in [DS19, Sec. 3.5.1 & 3.5.2] with some minor changes.
This error analysis relies on the tailored HDG projection that fits the structure of the nu-
merical trace. This projection (Π,Π), with

(Π,Π) : Hdiv(O)×H1(O) −→ Vh ×Wh := Pk(Th)× Pk(Th)

is defined by the following equations

(Πσ, rh)K = (σ, rh)K , ∀rh ∈ Pk−1(K),
(Πp, wh)K = (p, wh)K , ∀wh ∈ Pk−1(K),

〈Πσ · n+ iωτΠp, µh〉∂K = 〈σ · n+ iωτp, µh〉∂K , ∀µh ∈ Rk(∂K).

Notice that denoting the image of (σ, p) under (Π,Π) by (Πσ,Πp) is a slight abuse of
notation as both components depend on σ and p. However it is very convenient and often
found in the literature.
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We define the following error quantities

δσh := Πσ − σ ; δph := Πp− p ; δ̂ph := p− PMp

and
εσh := Πσ − σh ∈ Vh ; εph := Πp− ph ∈ Wh ; ε̂ph := PMp− p̂h ∈Mh.

We will split the errors as

‖σh − σ‖W0,Th 6 ‖ε
σ
h‖W0,Th + ‖δσh ‖W0,Th ,

‖ph − p‖ρ0,Th 6 ‖ε
p
h‖ρ0,Th + ‖δph‖ρ0,Th ,

Notice that the following estimates hold

‖δph‖K . hk+1
K (|p|k+1,K + τ−1

max| divσ|k,K) ,
‖δσh ‖K . hk+1

K (|σ|k+1,K + τ ?|p|k+1,K) ,

for some constants τmax and τ ?. So we only need to prove estimates for ‖εσh‖W0,Th , ‖ε
p
h‖ρ0,Th .

The error analysis can be summarized as follows
1. we derive an estimate for ‖εσh‖W0,Th using the energy-like inequality,
2. we use a dual problem to estimate ‖εph‖ρ0,Th in terms of ‖εσh‖W0,Th ,
3. those estimates are combined through a bootstrapping process.

This analysis is therefore strongly related to the Aubin-Nitsche method and only works for
regular solutions.
We will now give the main changes needed to adapt the error analysis from [DS19].
The error equations (3.30) become

(W0ε
σ
h , rh)Th − (εph, div (rh))Th + 2iω (εphW0b0, rh)Th

+ 〈ε̂ph, rh · n〉∂Th = (W0δ
σ
h , rh)Th + 2iω (δphW0b0, rh)Th

−ω2 (ρ0ε
p
h, wh)Th + (div (εσh ) , wh)Th = −iω 〈τ(εph − ε̂

p
h), wh〉∂Th − ω

2 (ρ0δ
p
h, wh)Th

−〈εσh · n+ iωτ(εph − ε̂
p
h), µh〉∂Th = 0.

The energy-like identity of Prop. 3.7 becomes

‖εσh‖
2
W0,Th − ω

2 ‖εph‖
2
ρ0,Th − 2iω (εσh , ε

p
hW0b0)Th =− iω 〈τ(εph − ε̂

p
h), ε

p
h − ε̂

p
h〉∂Th (εσh ,W0δ

σ
h )Th

− 2iω (εσh , δ
p
hW0b0)Th

− ω2 (ρ0δ
p
h, ε

p
h)Th ,

leading to the following estimate∣∣∣‖εσh‖2
W0,Th + iω 〈τ(εph − ε̂

p
h), ε

p
h − ε̂

p
h〉∂Th

∣∣∣ .ω2 ‖εph‖
2
ρ0,Th + ω ‖εσh‖W0,Th ‖δ

p
h‖ρ0,Th

+ ω ‖εσh‖W0,Th ‖δ
p
h‖ρ0,Th + ω2 ‖εph‖ρ0,Th ‖δ

p
h‖ρ0,Th

+ ‖εσh‖W0,Th ‖δ
σ
h ‖W0,Th .

The adjoint problem (3.31) becomes

W0ξ −∇θ − 2iωθW0b0 = 0
−ρ0ω

2θ − div (ξ) = εph.
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We state the elliptic regularity assumption which is a key ingredient in the error analysis

‖θ‖2,O + ‖ξ‖1,O 6 Creg ‖εph‖O
The identity of Prop. 3.8 becomes

‖εph‖
2
ρ0,Th =ω2 (ρ0(Πθ − θ), εph − δ

p
h)Th − ω

2 (ρ0θ − {ρ0θ} , δph)Th
− (W0(Πξ − ξ), εσh − δσh )Th + (W0ξ − {W0ξ} , δσh )Th
− 2iω (θb0,W0ε

σ
h )Th + 2iω (W0ξ, (εph − δ

p
h)b0)Th

+ 2iω (W0(Πξ − ξ), (εph − δ
p
h)b0)Th ,

leading to the following estimate

‖εph‖ρ0,Th .h
(
‖εph‖ρ0,Th + ‖δph‖ρ0,Th

)
+ h

(
‖εσh‖W0,Th + ‖δσh ‖W0,Th

)
+ ‖εσh‖W0,K

+ ‖εph‖ρ0,K
+ ‖δph‖ρ0,K

,

where the dependance to ω has been hidden in the . symbol.
Notice that in contrast to the HDG method for the standard Helmholtz equation, both ph
and σh have the same convergence rate.
It is now straightforward to follow the bootstrapping argument of Sec. 3.5.2 to obtain the

Theorem 3 : Convergence of the HDG method with total flux
Assuming that ωh is small enough and under the elliptic regularity assumption, we have

‖ph − Πp‖Th = O(hk+1) ; ‖σh −Πσ‖Th = O(hk+1).

Remark 3.3.5: Some HDG methods are known to achieve super-convergence, ie taking
ph ∈ Pk leads to the following error estimate

‖Πp− ph‖Th = O(hk+2).

Superconvergence is an attractive property for a numerical scheme, indeed using a postpro-
cessing scheme it is possible to use the solution (σh, ph) to construct a new approximation
p̃h which converges with order O(hk+2), see [Ste91], [CGS10, Sec. 5] for more details.
Here we were only able to prove optimal convergence and the use of post-processing schemes
to improve the convergence rate is therefore not possible.

3.3.5 Global solvability
The analysis that we have carried out in the previous subsection works for any solution
(σh, ph, p̂h) of the discrete system (3.16a)–(3.16b)–(3.16c) provided that such solution exists.
We already discussed the well-posedness of the local problems in Theorem 2, but we have
not yet proved that the global problem (3.17) for p̂h was well-posed.
To do that we can either directly show the well-posedness of the global problem (3.17). Or
we can take advantage of the error estimates of Theorem 3 as we will describe below3.

Resonant frequencies: We recall that the convected Helmholtz equation is a problem
of Fredholm type. It is therefore uniquely solvable except on a set of resonant frequencies.
For those frequencies, there exist non-zero solutions to the homogenous equation and unique
solvability cannot be guaranteed.

3In [DS19] this idea is attributed to B. Cockburn.
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Main result: We can now state and prove the main result of this section.

Theorem 4 : Global solvability
Under the assumptions of Theorem 2 and Theorem 3 and if ω is not a resonant frequency
of the convected Helmholtz equation (3.1) then the global problem is well-posed, ie p̂h is
uniquely defined by (3.17).

Proof: First we recall that (3.16a)–(3.16b)–(3.16c), or equivalently (3.17), is a square system
of linear equations, we therefore only need to show the uniqueness of the solution of the
homogenous system (when gN = gD = s = 0).
Assuming that ω is not a resonant frequency of (3.1), the exact solution is p = 0 and σ = 0,
and therefore

‖p‖s,O = 0 and ‖σ‖t,O = 0

and
εph = −ph ; εσh = −σh ; ε̂ph = −p̂h.

The aim of the error analysis was to prove the following inequalities when h is small enough
:

‖εph‖Th . ‖p‖s,O + ‖σh‖t,O = 0 (3.39a)
‖εσh‖Th . ‖p‖s,O + ‖σh‖t,O = 0 (3.39b)

Notice that we have hidden the powers of h in . as they do not play a role here.
Therefore using (3.39a) and (3.39b) we have shown that

ph ≡ 0 and σh ≡ 0

when h is small enough.
For all K ∈ Th, we can now rewrite (3.12a) as

〈p̂h, rh · n〉∂K = 0, ∀rh ∈ Vh(K),

which leads to
p̂h ≡ 0.

3.4 HDG(+) methods for the diffusive flux formulation
In this section, we will construct HDG methods based on the diffusive flux formulation,
where q is used instead of σ. We will mostly describe the HDG+ method where different
polynomial degrees are used for the different unknowns, as it the most important novelty
of this paper. Adaptation of the formulation construction and theoretical results to a more
standard HDG method with the same polynomial interpolation for all the unknowns is
straightforward. The main differences between the HDG and HDG+ methods are stated
but the details are left out.
The global solvability will not be included in this section as the adaptation of the result from
the previous section is immediate.
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3.4.1 Construction of the method
On an element K ∈ Th, the construction of the HDG method relies on the following integra-
tion by parts formula, which is related to the weak formulation (3.7a)–(3.7b),

∫
K
W0q · r∗dx−

∫
K
pdiv (r∗) dx+ 〈p, r · n〉∂K = 0, (3.40a)

−ω2
∫
K
ρ0pw

∗dx− 2iω
∫
K
b0 · ∇pw∗dx+

∫
K

div (q)w∗dx =
∫
K
sw∗dx, (3.40b)

for all (r, w) ∈Hdiv(K)×H1(K), and where (q, p) ∈Hdiv(O)×H1(O) is the unknown.

Choice of approximation spaces: For the HDG+ method, the choice of approximation
spaces is different from the choice made for the previous HDG method. We consider the
following local approximation spaces

Vh(K) = Pk(K), for the flux qh,
Wh(K) = Pk+1(K), for the potential ph,

where k > 2 is the degree of the method. The use of a higher polynomial degree for ph is
the distinctive feature of the HDG+ method.

Introduction of the hybrid unknown: As we did before, we introduce the numerical
trace p̂h which approximates p on the skeleton Eh of the mesh. As before the boundary
integral in (3.40a) will be discretized as∫

∂K
pr∗ · ndσ becomes

∫
∂K
p̂hr

∗
h · ndσ.

For the HDG+ method, we use the following approximation space for p̂h
Mh(e) = Pk(e), ∀e ∈ E(K).

With this choice, ph and p̂h do not have the same polynomial degree and we therefore have
two approximations of p with different polynomial degrees on the skeleton of the mesh. We
therefore need to change the penalization term to

τ(PMph − p̂h), (3.41)

where PM is the L2-orthogonal projection onto Mh. This is called the reduced stabilization
and it was introduced in [Leh10]. It allows to get convergence rate of k + 2 for ph for the
cost of a method of degree k. A large penalization parameter τ ∼ hK

−1 is needed to obtain
optimal convergence as it will be detailed in Subsection 3.4.3.

Local problem: Using the integration by parts formula (3.40a)–(3.40b) on an element
K ∈ Th, we define the so-called local problem : seek (qh, ph) ∈ Vh(K)×Wh(K) such that

(W0qh, rh)K − (ph, div (rh))K + 〈p̂h, rh · n〉∂K = 0, (3.42a)
−ω2 (ρ0ph, wh)K − 2iω (b0 · ∇ph, wh)K + (div (qh) , wh)K

+2iω 〈τ(PMph − p̂h)− τupw(ph − p̂h), wh〉∂K = (s, wh)K , (3.42b)

for all (rh, wh) ∈ Vh(K)×Wh(K).
Following [QS16a], we have introduced a second penalization parameter τupw defined by

τupw := max(b0 · n, 0).

To understand why this second parameter is required, we recall that in HDG methods the
penalization serves two purposes:
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1. it enforces the Dirichlet boundary condition for the local problems,
2. it controls the stability of the method.

Here as qh does not take the convection into account, the penalization term (3.41) with τ
only stabilizes the diffusion. We therefore need to add a second penalization to stabilize the
convection. We denoted it τupw as it leads to an upwinding behavior that will be detailed in
the next paragraph.

Transmission condition: Following the previous example, we introduce the following
numerical flux

q̂h · n := qh · n+ 2iωτ (PMph − p̂h) , (3.43)

where τ = O(hK−1). As discussed before, we need to require the normal continuity of the
total flux on the interface between two elements, ands the quantity q̂h · n only takes the
diffusion into account. To deal with convection we add a second numerical flux

2iωp̂hb0 · n := 2iω(b0 · n)p̂h + 2iωτupw(ph − p̂h). (3.44)

It is important to notice that this flux has an upwind behavior. Let e = ∂K+ ∩ ∂K− be an
interior edge with b0 · n− > 0 on ∂K−. We have

On ∂K−: τupw := max(b0 · n, 0) = b0 · n, so 2iωp̂hb0 · n = 2iω(b0 · n)ph,(3.45a)
On ∂K+: τupw := max(b0 · n, 0) = 0, so 2iωp̂hb0 · n = 2iω(b0 · n)p̂h.(3.45b)

So on the outflow boundary we use the interior value ph, whereas on the inflow boundary
we use the trace value p̂h.
Finally we write the transmission condition as〈(

q̂h − 2iωp̂hb0

)
· n, µh

〉
∂Th\ΓD

+ 〈p̂h − gD, µh〉ΓD = 〈gN , µh〉ΓN . (3.46)

This formulation enforces normal continuity of the total flux between the elements and the
boundary conditions on ΓD and ΓN .

Remark 3.4.1: To ensure the well-posedness of the local problems, the second penalization
must be

τupw(ph − p̂h),

and not
τupw(PMph − p̂h),

see Theorem 5.

Remark 3.4.2: We would like to point out the main theoretical difficulty of this method
: when the background flow is not constant, the second flux (3.44) leads to non-polynomial
terms on the skeleton. This is usually avoided as much as possible in HDG methods.

Adaptation to a standard HDG method: With this formulation, it is also possible to
consider a standard HDG method by using the same polynomial degree for ph and qh, i.e. by
using the following local approximation spaces

Vh(K) = Pk(K), for the flux qh,
Wh(K) = Pk(K), for the pressure ph.
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In this case, as Wh and Mh have the same polynomial degree, the projection term becomes
simpler, indeed

PMph = ph.

For this formulation, we do not require a large penalization parameter anymore, and we only
need τ = O(1).

Compact formulation of the methods:

HDGmethods are usually stated in a compact way that can be obtained by summing the local
problems (3.42a)–(3.42b) over the mesh elements and by adding the transmission condition
(3.46). This formulation reads : seek (qh, ph, p̂h) ∈ Vh ×Wh ×Mh, such that

(W0qh, rh)Th − (ph, div (rh))Th + 〈p̂h, rh · n〉∂Th = 0, (3.47a)
−ω2 (ρ0ph, wh)Th − 2iω (b0 · ∇ph, wh)Th + (div (qh) , wh)Th (3.47b)

+2iω 〈τ(PMph − p̂h)− τupw(ph − p̂h), wh〉∂Th = (s, wh)Th〈(
q̂h − 2iωp̂hb0

)
· n, µ

〉
∂Th\ΓD

+ 〈p̂h − gD, µh〉ΓD = 〈gN , µh〉ΓN , (3.47c)

for all (rh, wh, µh) ∈ Vh ×Wh ×Mh.

Condensed variational formulation

The compact formulation (3.47a)–(3.47b)–(3.47c) cannot be used to efficiently implement
the HDG method, indeed with this formulation it is not clear how the global problem for p̂h
only can be obtained. To describe this process , we will now write a condensed variational
formulation for p̂h only.
We introduce the so-called local solvers

PK : (p̂h, s) 7−→ pKh ,

QK : (p̂h, s) 7−→ qKh ,

Q̂K : (p̂h, s) 7−→ q̂h
K · nK := QK(p̂h, s)− 2iωτ

(
PMPK(p̂h, s)− p̂h

)
− 2iωτupw

(
PK(p̂h, s)− p̂h

)
,

where (qKh , pKh ) is the solution of (3.42a)–(3.42b) and q̂hK is defined by (3.43).
We can therefore rewrite the transmission condition (3.47c) as

ah(p̂h, µ) = `h(µ), (3.48)

where

ah(p̂h, µh) :=
〈

QK(p̂h, s) · n+ 2iωτ(PMPK(p̂h, s)− p̂h) + 2iωτupw(PK(p̂h, s)− p̂h), µh
〉
∂Th\ΓD

+ 〈p̂h, µh〉ΓD ,
`h(µh) := 〈gN , µh〉ΓN + 〈gD, µh〉ΓD .

Equation (3.48) is the so-called global problem and is the main equation of the HDG method.
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From a computational point of view, we proceed as described in Algorithm 2.
Algorithm 2: Solving HDG+

1 for K ∈ Th do
2 Construct the local solvers PK , QK , Q̂K

3 Add local contribution to the global problem (3.17)
4 Solve the global problem (3.17) for p̂h // This is the most expensive step
5 for K ∈ Th do
6 Reconstruct the local unknowns pKh = Pk(p̂h, s) and qKh = QK(p̂h, s)

3.4.2 Local solvability
It is worth remembering that HDG methods were originally developed for elliptic problems
and that harmonic wave equations are only coercive. It is well-known that solving those
equations with Dirichlet boundary conditions4 leads to numerical pollution due to the res-
onance phenomenon. In this section we will show that the static condensation process is
well-defined when the mesh is fine enough, ie. the local problem does not produce resonance.
Before actually showing the local solvability, we need to prove the following lemma.

Lemma 3.4.1:
If p ∈ H1(K) and b0 ∈ L∞(K)∩C(O), where C(O) is the space of vector functions continuous
in the domain O, then the following identity holds

Re (pb0,∇p)K = 1
2 〈(b0 · n)p, p〉∂K .

Proof: We use an integration by parts to obtain a relationship between (pb0,∇p)K and its
complex conjugate :

2Re (pb0,∇p)K = (pb0,∇p)K + (pb0,∇p)∗K
= (pb0,∇p)K + (∇p, pb0)K
= − (div (pb0) , p)K + 〈(b0 · n)p, p〉∂K + (∇p, pb0)K

(div (b0) = 0) = − (∇p, pb0)K + 〈(b0 · n)p, p〉∂K + (∇p, pb0)K
= 〈(b0 · n)p, p〉∂K .

We can now state and prove the main result of this section.

Theorem 5 : Local solvability for the HDG+ methods
If

∀e ∈ E(K), τ |e < 0 (3.49)

and if

ωhK <
−CW0,K ‖b0‖L∞(K) +

(
C2
W0,K

‖b0‖2
L∞(K) + ‖ρ0‖L∞(K)

) 1
2

CW0,KC ‖ρ0‖L∞(K)
(3.50)

where C > 0 is a constant that depends only on the shape regularity of K, then the local
solver

(p̂h, s) 7−→ (ph, qh)

is well-posed.
4Which is what the local solver does.
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Proof:
As the local problems have a finite dimension, we only need to prove uniqueness of the
solution. We therefore assume that p̂h = s = 0 and we need to prove that the system

(W0qh, rh)K − (ph, div (rh))K = 0, (3.51a)
−ω2 (ρ0ph, wh)K − 2iω (b0 · ∇ph, wh)K

+ (div (qh) , wh)K + 2iω 〈τPMph − τupwph, wh〉∂K = 0, (3.51b)

has only one solution : (ph, qh) = (0,0).
We will prove the theorem by contradiction. We therefore assume that the system (3.51a)–
(3.51b) has a non-zero solution (ph, qh).
Step 1: An energy-like system
We begin by testing (3.51b) with wh = ph

−ω2 ‖ph‖2
ρ0,K

+ 2iω (phb0,∇ph)K + (div (qh) , ph)K + 〈2iωτPMph − 2iωτupwph, ph〉∂K = 0
(3.52)

Then, (3.51a) is tested with rh = qh and conjugated :

‖qh‖2
W0,K

− (div (qh) , ph)K = 0 (3.53)

We now add (3.52) and (3.53) leading to

‖qh‖2
W0,K

− ω2 ‖ph‖2
ρ0,K

+ 2iω (phb0,∇ph)K + 〈2iωτPMph − 2iωτupwph, ph〉∂K = 0 (3.54)

We now obtain the following system by taking the real and imaginary parts of (3.54)

Re : ‖qh‖2
W0,K

− ω2 ‖ph‖2
ρ0,K
− 2ωIm (phb0,∇ph)K = 0 (3.55)

Im : Re (phb0,∇ph)K + 〈τPMph, ph〉∂K = 〈τupwph, ph〉∂K (3.56)

Indeed, as PMph ∈Mh and τ is constant on each edge, one has

〈τPMph, ph〉∂K = 〈τPMph, PMph〉∂K ∈ R

Step 2: We focus on (3.56) to express ph|∂K .
By the Lemma 4.1.1 we have

Re (phb0,∇ph)K = 1
2 〈(b0 · n)ph, ph〉∂K

and (3.56) becomes

1
2 〈(b0 · n)ph, ph〉∂K + 〈τPMph, ph〉∂K = 〈τupwph, ph〉∂K

For the sake of simplicity, we assume that the sign of b0 · n is constant on each edge. It
amounts to assuming that hK is small enough. For a given edge e ∈ E(K), the three following
cases are exhaustive:
• Case 1: b0 · n < 0: therefore τupw := max(b0 · n, 0) = 0 and

〈τPMph, PMph〉∂K︸ ︷︷ ︸
60 by (3.49) as τ < 0

60︷ ︸︸ ︷
−1

2 〈|b0 · n|ph, ph〉∂K = 0
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• Case 2: b0 · n > 0: therefore τupw := max(b0 · n, 0) = b0 · n and

1
2 〈|b0 · n|ph, ph〉∂K + 〈τPMph, PMph〉∂K = 〈|b0 · n|ph, ph〉∂K

⇐⇒ 〈τPMph, PMph〉∂K︸ ︷︷ ︸
60 by (3.49) as τ < 0

60︷ ︸︸ ︷
−1

2 〈|b0 · n|ph, ph〉∂K = 0

• Case 3: b0 · n = 0: in this case we only have

〈τPMph, PMph〉∂K = 0.

In the first two cases we have ph|∂K = PMph = 0 and in the third one we only have PMph = 0.
In particular, the following identity holds for all the three previous cases∫

∂K
phdσ = 0, (3.57)

indeed as PMph is the L2-orthogonal projection of ph onto Mh, we have∫
∂K
PMphµ

∗
hdσ =

∫
∂K
phµ

∗
hdσ, ∀µh ∈Mh :=

∏
e∈E(K)

Pk(e),

and the previous identity is obtained by taking µh = 1.
Step 3: Contradiction
As ph ∈ Pk+1(K), we have ph ∈ H1(K) and the following Poincaré-Friedrichs inequality
holds5

‖ph‖K 6 ChK ‖∇ph‖K +
∫
∂K
phdσ, (3.58)

see [EG04, Lemma B.66] with f(v) =
∫
∂K vdσ. The constant C is the same one as in (3.50).

Using (3.57), the inequality (3.58) becomes

‖ph‖K 6 ChK ‖∇ph‖K .

Going back to (3.51a), integrating by parts and testing it with rh = ∇ph we have

‖∇ph‖2
K = |(W0qh,∇ph)K |
6 CW0,K ‖qh‖W0,K

‖∇ph‖K
‖∇ph‖K 6 CW0,K ‖qh‖W0,K

(3.59)

On the other hand, from (3.55) we see that

‖qh‖2
W0,K

= ω2 ‖ph‖2
ρ0,K

+ 2ωIm (phb0,∇ph)K
6 ω2 ‖ρ0‖L∞(K) ‖ph‖

2
K + 2ω ‖b0‖L∞(K) ‖ph‖K ‖∇ph‖K

‖qh‖2
W0,K

6 C2 ‖ρ0‖L∞(K) ω
2h2

K ‖∇ph‖
2
K + 2C ‖b0‖L∞(K) ωhK ‖∇ph‖

2
K (3.60)

Combining (3.59) and (3.60) we have

‖∇ph‖2
K 6 C2

W0,K

[
C2 ‖ρ0‖L∞(K) ω

2h2
K ‖∇ph‖

2
K + 2C ‖b0‖L∞(K) ωhK ‖∇ph‖

2
K

]
,

5When b0 · n 6= 0 we can use the standard Poincaré inequality instead.-
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as we assumed (qh, ph) 6= (0, 0) we can divide by ‖∇ph‖K to obtain

1 6 C2
W0,K

[
C2 ‖ρ0‖L∞(K) ω

2h2
K + 2C ‖b0‖L∞(K) ωhK

]
. (3.61)

We now define the function

f : α 7−→ C2
W0,K

C2 ‖ρ0‖L∞(K) α
2 + 2C2

W0,K
C ‖b0‖L∞(K) α− 1

Rewriting (3.61) in terms of f gives

f(ωhK) > 0.

We notice that f is a second-order polynomial whose roots are

α± =
−CW0,K ‖b0‖L∞(K) ±

(
C2
W0,K

‖b0‖2
L∞(K) + ‖ρ0‖L∞(K)

) 1
2

CW0,KC ‖ρ0‖L∞(K)

As the leading coefficient of f is positive, we know that

∀α ∈ (α−, α+), f(α) < 0

and it is obvious that α− < 0 and α+ > 0.
Finally, we can see that the assumption on ωhK (3.50) is exactly

0 < ωhK < α+,

which means
f(ωhK) < 0.

This is the desired contradiction and concludes the proof, as we necessarily have ph ≡ 0 and
qh ≡ 0.

Remark 3.4.3: For triangular elements, the constant C satisfies

C <
1
π
.

Remark 3.4.4: when b0 = 0, the solvability assumption (3.49) becomes

ωhK <
1

CCW0,K ‖ρ0‖
1
2
L∞(K)

which is similar to the ones given in [DS19, Prop. 3.9] and [Hun19, Prop. 3.4.2].

Remark 3.4.5: this proof is written for the HDG+ method, for the more standard HDG
method only minor changes are needed : in Step 2, PMp should be replaced by p. Assumption
(3.49) can therefore be replaced with

∀e ∈ E(K), τ |e < 0 or τ |e > max
e

(1
2 |b0 · n|

)
.
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3.4.3 Error analysis of the HDG+ method
In this section we will carry out a detailed error analysis of the HDG+ method. The adap-
tation of this process to the HDG method is straightforward, see Subsection 3.4.4.
We chose to use the orthogonal L2 projections instead of the tailored HDG(+) projections
that fit the numerical trace. As we study problems involving convection, the design of a new
projection would be required as using the standard HDG(+) projection would not lead to
cleaner error system. The design of such a projection seems very difficult when b0 is not
constant.
We denote by πV , πW and PM the L2-orthogonal projections onto Vh, Wh and Mh respec-
tively.
We recall the following estimates due to standard approximation theory for polynomials and
trace inequalities which will be useful for our analysis, see e.g. [EG04, Prop. 1.135] :

‖p− πWp‖O . hs ‖p‖s,O , 0 6 s 6 k + 2, (3.62a)
‖q − πV q‖O . ht ‖q‖t,O , 0 6 t 6 k + 1, (3.62b)

‖p− PMp‖∂Th . hs−
1
2 ‖p‖s,O , 1 6 s 6 k + 1, (3.62c)

‖p− πWp‖∂K . hs−
1
2‖p‖s,K , 1 6 s 6 k + 2, (3.62d)

‖q · n− πV q · n‖∂K . ht−
1
2‖q‖t,K , 1 6 t 6 k + 1, (3.62e)

where a . b means that there exists a constant C > 0 independent of the mesh size and
frequency such that a 6 Cb.
We will also frequently use the following inverse inequality

‖w‖∂K . h−
1
2‖w‖K , ∀w ∈ Wh. (3.63)

Error equations

Let (p, q) be the solution of the original problem (3.7a)–(3.7b). We define the projection
errors

δqh := πV q − q ; δph := πWp− p ; δ̂ph := p− PMp

and
εqh := πV q − qh ∈ Vh ; εph := πWp− ph ∈ Wh ; ε̂ph := PMp− p̂h ∈Mh
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Lemma 3.4.2:
The error quantities (εqh, ε

p
h, ε̂

p
h) satisfy the following error equations:

(W0ε
q
h, rh)Th − (εph, div (rh))Th + 〈ε̂ph, rh · n〉∂Th = (W0δ

q
h, rh)Th

(3.64a)
−ω2 (ρ0ε

p
h, wh)Th + 2iω (εphb0,∇wh)Th − (εqh,∇wh)Th +

〈
Q̂ · n− Q̂h · n, wh

〉
∂Th

=

−ω2 (ρ0δ
p
h, wh)Th + 2iω (δphb0, wh)Th (3.64b)〈
Q̂ · n− Q̂h · n, µh

〉
∂Th

= 0 (3.64c)

where
Q̂ · n = q · n− 2iω(b0 · n)p on ∂Th

and

Q̂ · n− Q̂h · n = εqh · n− 2iω(b0 · n)ε̂ph + 2iωτ (PMεph − ε̂
p
h)− 2iωτupw (εph − ε̂

p
h)

−δqh · n− 2iω(b0 · n)δ̂ph − 2iωτPMδph + 2iωτupw
(
δph − δ̂

p
h

)
(3.65)

Proof: Notice that (p, q) satisfy the equations (3.47a)–(3.47b)–(3.47c), introduce the pro-
jections wherever possible and subtract the actual discrete equations.

A useful estimate: We will need to use the following estimate for ‖∇εph‖∂Th to carry out
our analysis

Lemma 3.4.3:
The following estimate holds

‖∇εph‖Th 6 CW0,Th

(
‖εqh‖W0,Th + ‖δqh‖W0,Th

)
+ C

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th

Proof: Going back to (3.64a), testing with rh = ∇εph and integrating by parts leads to

(W0ε
q
h,∇ε

p
h)Th + ‖∇εph‖

2
Th + 〈ε̂ph − ε

p
h,∇ε

p
h · n〉∂Th = (W0δ

q
h,∇ε

p
h)Th

As εph ∈ Wh, ∇εph · n ∈ Pk and we can use the following property of the projection PM :

〈PMεph,∇ε
p
h · n〉∂Th = 〈εph,∇ε

p
h · n〉∂Th

Using the Cauchy-Schwartz inequality we get∣∣∣〈ε̂ph − εph,∇εph · n〉∂Th∣∣∣ =
∣∣∣〈ε̂ph − PMεph,∇εph · n〉∂Th∣∣∣

6 C ‖PMεph − ε̂
p
h‖∂Th ‖∇ε

p
h‖∂Th

for some constant C > 0.
Using the following trace inequality (3.63)

∀w ∈ Wh, ‖w‖∂K 6 Ch
− 1

2
K ‖w‖K

we have

‖∇εph‖
2
Th 6 CW0,K ‖ε

q
h‖W0,K

‖∇εph‖Th+‖PMεph − ε̂
p
h‖∂Th Ch

− 1
2

K ‖∇ε
p
h‖Th+CW0,K ‖δ

q
h‖W0,K

‖∇εph‖Th

which is the desired estimate as τ |K = O(h−1
K ).
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Using the Poincaré-Wirtinger inequality: We denote by {u} the L2-projection of u
on P0, ie

∀K ∈ Th, {u} |K = 1
|K|

∫
K
udx

We will need to subtract {u} from the equations to apply the Poincaré-Wirtinger inequality
:

‖u− {u}‖Th 6 Ch ‖∇u‖Th . (3.66)

We can do that thanks to the following property of the projections πW and πV , indeed we
have for ξ and q

(πV q, {W0ξ})Th = (q, {W0ξ})Th as {W0ξ} ∈ P0 ⊂ Pk

therefore

(δqh,W0ξ)Th = (q − πV q,W0ξ)Th = (q − πV q,W0ξ − {W0ξ})Th . (3.67)

Similar results can be obtained in the same way for the other quantities.

Best approximation property of PM : During the analysis, we will often need to com-
pare quantities like ‖u− PMu‖∂K and ‖u− {u}‖∂K .

Lemma 3.4.4:
For u ∈ Pk+1(Th), the following inequality holds

‖u− PMu‖∂K . ‖u− {u}‖∂K

Proof:
We recall that Mh := ∏

e∈Eh Pk(e) is a finite-dimensional vector subspace of L2(∂Th). We
recalled that functions in Mh are bi-valued piecewise polynomials of degree up to k on the
skeleton of the mesh.
On an internal edge e = ∂K− ∩ ∂K+, we define

{u}e :=


{
u−
}
on K−{

u+
}
on K+

, where u± = u|K± .

With this definition {u}e is a bi-valued piecewise constant on the skeleton of the mesh, and
therefore {u}e ∈Mh.
As PM is the orthogonal projection onto Mh, we can use the Hilbert projection theorem to
obtain

‖u− PMu‖∂Th 6 inf
v∈Mh

‖u− v‖∂Th .

We can therefore conclude that

‖u− PMu‖∂Th 6 ‖u− {u}e‖∂Th .

When no confusions are possible, we will denote {u}e by {u}.
This property will often be referred to as the best approximation property of PM .
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Discrete energy-like equality: We will now establish a discrete energy-like equality
which will be one of the key ingredients to study the convergence of our method.

Lemma 3.4.5:
The following discrete energy-like equality holds

‖εqh‖
2
W0,Th − ω

2 ‖εph‖
2
ρ0,Th − 2iω

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥2

∂Th
− 2iω

∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥

2

∂Th

−2ωIm (εphb0,∇εph)K
= −ω2 (ρ0δ

p
h, ε

p
h)K + 2iω (δphb0,∇εph)K + (εqh,W0δ

q
h)K

+
〈
δqh · n+ 2iω(b0 · n)δ̂ph + 2iωτPMδph − 2iωτupw

(
δph − δ̂

p
h

)
, εph − ε̂

p
h

〉
∂Th
(3.68)

Furthermore if p ∈ Hs(O) and q ∈ Ht(O) where s ∈ [1, k + 2] and t ∈ [1, k + 1] then the
following estimate holds∣∣∣∣∣∣‖εqh‖2

W0,Th − 2iω
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥2

∂Th
+
∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥

2

∂Th

∣∣∣∣∣∣
.ω2 ‖εph‖

2
Th + ω ‖εph‖Th

(
‖εqh‖W0,Th + ht ‖q‖t,O +

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th

+ ωhs−1 ‖p‖s,O
)

+ ‖εqh‖W0,Th

(
ht ‖q‖t,O + ωhs ‖p‖s,O

)
+ h2t ‖q‖2

t,O + ωhs−1 ‖p‖s,O h
t ‖q‖t,O

+
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

(
ωhs−1 ‖p‖s,O + ht ‖q‖t,O

)
(3.69)

where
h := max

K∈Th
hK .

Proof: Test (3.64a)–(3.64b)–(3.64c) with (εqh, ε
p
h, ε̂

p
h) and sum the resulting equations to

obtain

‖εqh‖
2
W0,K

− ω2 ‖εph‖
2
ρ0,K

+ 2iω (εphb0,∇εph)K +
〈
Q̂ · n− Q̂h · n− εqh · n, ε

p
h − ε̂

p
h

〉
∂K

=
−ω2 (ρ0δ

p
h, ε

p
h)K + 2iω (δphb0,∇εph)K + (εqh,W0δ

q
h)K

We will now compute the boundary terms using (3.65).
Boundary terms involving PM :
Notice that, as PMεph − ε̂

p
h ∈Mh(K) and τ ∈ R0 , we have

〈τ(PMεph − ε̂
p
h), PMε

p
h〉∂K = 〈τ(PMεph − ε̂

p
h), ε

p
h〉∂K

and therefore

〈τ(PMεph − ε̂
p
h), ε

p
h − ε̂

p
h〉∂K = 〈τ(PMεph − ε̂

p
h), PMε

p
h − ε̂

p
h〉∂K =

∥∥∥τ 1
2 (PMεph − ε̂

p
h)
∥∥∥2

∂K

.
We also have the following estimate

2ω
∣∣∣〈τPMδph, εph − ε̂ph〉∂Th∣∣∣ 6 2ω

∣∣∣〈|τ |PMδph, PMεph − ε̂ph〉∂Th∣∣∣
6 2ω

∣∣∣∣〈|τ | 12 δph, |τ | 12 (PMεph − ε̂
p
h)
〉
∂Th

∣∣∣∣
. ω

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th
|τ |

1
2 ‖δph‖∂Th

(τ = O(h−1) and by (3.62d)) . ωhs−1
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th
‖p‖s,O
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Boundary terms involving convection:
As in Step 2 of the proof of Theorem 5, we will separate the volumetric term involving b0

into its real and imaginary parts. By the Lemma 4.1.1 we have

Re (εphb0,∇εph)K = 1
2 〈(b0 · n)εph, ε

p
h〉∂K

and we can now obtain the second boundary norm

〈(b0 · n)ε̂ph, ε
p
h − ε̂

p
h〉∂Th −

1
2 〈(b0 · n)εph, ε

p
h〉∂Th + 〈τupw(εph − ε̂

p
h), ε

p
h − ε̂

p
h〉∂Th

=
〈
−1

2(b0 · n)(εph − ε̂
p
h), ε

p
h − ε̂

p
h

〉
∂Th
− 1

2 〈(b0 · n)ε̂ph, ε̂
p
h〉∂Th + 〈τupw(εph − ε̂

p
h), ε

p
h − ε̂

p
h〉∂Th

=
〈(
τupw −

1
2(b0 · n)

)
(εph − ε̂

p
h), ε

p
h − ε̂

p
h

〉
∂Th

=
∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥

2

∂Th

indeed as ε̂ph is single-valued across the skeleton of the mesh we have

〈(b0 · n)ε̂ph, ε̂
p
h〉∂Th = 〈[[ε̂phb0]], ε̂ph〉∂Th = 0

and we also use that
τupw −

1
2(b0 · n) = 1

2 |b0 · n| > 0 (3.70)

to use the square root.
We will now eliminate the terms involving τupw from the right-hand side.∥∥∥∥∥

(1
2 |b0 · n|

) 1
2

(εph − ε̂
p
h)
∥∥∥∥∥
∂Th

. ‖εph − ε̂
p
h‖∂Th

. ‖εph − PMε
p
h‖∂Th + ‖PMεph − ε̂

p
h‖∂Th

(by Lemma 3.4.4 and τ = O(h−1)) . ‖εph − {ε
p
h}‖∂Th + h

1
2
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

(by (3.63)) . h−
1
2 ‖εph − {ε

p
h}‖Th + h

1
2
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

(by (3.66)) . h
1
2 ‖∇εph‖Th + h

1
2
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

(by Lemma 3.4.3) . h
1
2

(
‖εqh‖W0,Th + ‖δqh‖Th +

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th

)

(by (3.62e)) . h
1
2

(
‖εqh‖W0,Th + ht ‖q‖t,O +

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th

)
(3.71)

Using the following inequalities that can be derived from (3.70)

τupw .
1
2 |b0 · n|

b0 · n .
1
2 |b0 · n|
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and using (3.62d) with s− 1 instead of s to keep s 6 k + 2, we deduce that

2ω
〈
(b0 · n)δ̂ph, ε

p
h − ε̂

p
h

〉
∂Th

= 2ω
〈
(b0 · n) 1

2 δph, (b0 · n) 1
2 (εph − ε̂

p
h)
〉
∂Th

. 2ω
〈

(b0 · n) 1
2 δph, (

1
2 |b0 · n|)

1
2 (εph − ε̂

p
h)
〉
∂Th

. ω
∥∥∥δ̂ph∥∥∥∂Th

∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥
∂Th

. ωhs−
3
2

∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥
∂Th

‖p‖s,O

. ωhs−1
(
‖εqh‖W0,Th + ht ‖q‖t,O

+
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

)
‖p‖s,O

and

2ω
〈
τupw(δph − δ̂

p
h), ε

p
h − ε̂

p
h

〉
∂Th

. ω
∥∥∥δph − δ̂ph∥∥∥∂Th

∥∥∥∥∥
(
τupw −

1
2b0 · n

) 1
2

(εph − ε̂
p
h)
∥∥∥∥∥
∂Th

. ωhs−
3
2

∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥
∂Th

‖p‖s,O

. ωhs−1
(
‖εqh‖W0,Th + ht ‖q‖t,O

+
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

)
‖p‖s,O

Boundary term involving δqh:

〈δqh · n, ε
p
h − ε̂

p
h〉∂Th = 〈δqh · n, ε

p
h − PMε

p
h + PMε

p
h − ε̂

p
h〉∂Th

= 〈δqh · n, ε
p
h − PMε

p
h〉∂Th︸ ︷︷ ︸

=:T1

+ 〈δqh · n, PMε
p
h − ε̂

p
h〉∂Th︸ ︷︷ ︸

=:T2

Using a weighted Cauchy-Schwartz inequality and recalling that τ = O(h−1) we have

T2 .
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

h
1
2 ‖δqh‖∂Th

(by (3.62e)) . ht
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th
‖q‖t,O

T1 = 〈δqh · n, ε
p
h − PMε

p
h〉∂Th

. ‖δqh‖∂Th ‖ε
p
h − PMε

p
h‖∂Th

(by Lemma 3.4.4) . ‖δqh‖∂Th ‖ε
p
h − {ε

p
h}‖∂Th

(by (3.62e) and (3.62d)) . ht−
1
2 ‖q‖t,O h

− 1
2 ‖εph − {ε

p
h}‖Th

(by (3.66)) . ht ‖q‖t,O ‖∇ε
p
h‖Th

(by Lemma 3.4.3) . ht ‖q‖t,O
(
‖εqh‖W0,Th + ‖δqh‖Th +

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th

)
by (3.62b)) . ht ‖q‖t,O

(
‖εqh‖W0,Th +

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th

)
+ h2t ‖q‖2

t,O
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Therefore

〈δqh · n, ε
p
h − ε̂

p
h〉∂Th . ht ‖q‖t,O

(
‖εqh‖W0,Th +

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th

)
+ h2t ‖q‖2

t,O

Volumetric terms: By similar computations using the Cauchy-Schwartz inequality, the pro-
jection estimates in (3.62) and Lemma 3.4.3 we can show that

ω2 (ρ0δ
p
h, ε

p
h)Th . ω2hs ‖p‖s,O ‖ε

p
h‖Th

2ω (δphb0,∇εph)Th . ωhs ‖p‖s,O
(
‖εqh‖W0,Th + ht ‖q‖t,O +

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th

)
(W0ε

q
h, δ

q
h)Th . ht ‖εqh‖W0,Th ‖q‖t,O

2ω (εphb0,∇εph)Th . ‖ε
p
h‖Th

(
‖εqh‖W0,Th + ht ‖q‖t,O +

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥
∂Th

)

We can rewrite estimate (3.69) in a more readable form :

Corollary 3.4.1:
The following estimate holds∣∣∣∣∣∣‖εqh‖2

W0,Th − 2iω
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥2

∂Th
+
∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥

2

∂Th

∣∣∣∣∣∣
.ε

(
‖εqh‖

2
W0,Th +

∥∥∥|τ | 12 (PMεph − ε̂
p
h)
∥∥∥2

∂Th

)
+ 1
ε

(
ω2 ‖εph‖

2
Th + h2t ‖q‖2

t,O + ω2h2s−2 ‖p‖2
s,O

)
Proof: apply the weighted Young’s inequality to the right-hand side of (3.69). The value of
ε will be discussed later.

Adjoint problem

As the identity (3.68) does not allow us to directly obtain any error estimate, we need to use
a duality argument. For an introduction to the Aubin-Nitsche method we refer to [EG04, Sec.
2.3.4], similar processes for HDG(+) methods in the context of wave equations have been
carried out in [QSS16], [Hun19, Sec. 3.5] and [DS19, Sec. 3.5.2] and for coercive problems
with convection in [QS16a].
The adjoint problem is

W0ξ −∇θ = 0 in O
−ρ0ω

2θ − 2iωb0 · ∇θ − div (ξ) = εph in O
θ = 0 on ΓD

ξ · n− 2iω(b0 · n)θ = 0 on ΓN
and (ξ, θ) ∈ H1(O) × H2(O) satisfy the following discrete problem for all (rh, wh, µh) ∈
Vh ×Wh ×Mh

(W0ξ, rh)Th + (θ, div (rh))Th = −〈θ, rh · n〉∂Th (3.73a)
−ω2 (ρ0θ, wh)Th + (2iωθb0 + ξ,∇wh)Th = −〈ξ · n− 2iω(b0 · n)θ, wh〉∂Th + (εph, wh)Th(3.73b)

〈ξ · n, µh〉∂Th\ΓD = 0 (3.73c)
The last equation (3.73c) translates the continuity of ξ ·n between the elements and should
be interpreted as a jump term. Indeed by the same argument as when we discussed weak
continuity of qh · n in Subsection 3.4.1, we can show that (3.73c) is equivalent to∑

K∈Th

∫
∂K
ξ · nµ∗hdσ =

∑
e∈Ei

h

∫
e
[[ξ]]µ∗hdσ −

∫
ΓD
ξ · nµ∗hdσ. (3.74)
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Remark 3.4.6: The functional framework for (3.73c) is a bit complicated. Indeed the
interior integrals should formally be interpreted as duality brackets between H−

1
2 and H

1
2

and the restriction of those distributions to a segment is not defined. Notice however that
the right-hand side of (3.74) is well-defined, therefore giving meaning to the left-hand side.
Moreover, as we assume additional regularity (ξ, θ) ∈ H1(O) × H2(O) for the solution of
the adjoint problem and as we will work with polynomial quantities at the discrete level,
this is not problematic.
In our analysis we will need to use the following elliptic regularity estimate for the dual
problem

‖θ‖2,O + ‖ξ‖1,O 6 Creg ‖εph‖O . (3.75)

This estimate holds when ξ and θ are regular enough, which amounts to requiring enough
regularity on the background quantities ρ0, c0 and b0, and the convexity of the domain O.

Lemma 3.4.6:
We have the following dual identity :

‖εph‖
2
Th =− (W0ε

q
h,πV ξ − ξ)Th + ω2 (ρ0ε

p
h, πW θ − θ)Th + 2iω (∇εph, (πW θ − θ)b0)Th

− 2iω 〈(b0 · n)εph, πW θ − θ〉∂Th
+ (W0δ

q
h,πV ξ)Th − ω

2 (ρ0δ
p
h, πW θ)Th + 2iω (δphb0,∇(πW θ))Th

+ 2iω 〈(b0 · n)ε̂ph − τ (PMεph − ε̂
p
h) + τupw (εph − ε̂

p
h) , πW θ − PMθ〉∂Th

− 2iω
〈
(b0 · n)δ̂ph − τPMδ

p
h + τupw

(
δph − δ̂

p
h

)
, πW θ − PMθ

〉
∂Th

+ 〈δqh · n, πW θ − PMθ〉∂Th

Proof: Introducing the projections in (3.73a)–(3.73b)–(3.73c) and testing with (εqh, ε
p
h, ε̂

p
h)

(W0πV ξ, ε
q
h)Th + (πW θ, div (εqh))Th − 〈PMθ, ε

q
h · n〉∂Th = (W0 (πV ξ − ξ) , εqh)Th(3.76a)

−ω2 (ρ0πW θ, ε
p
h)Th + 2iω ((πW θ)b0,∇εph)Th − (div (πV ξ) , εph)Th − 2iω 〈(b0 · n)πW θ, εph〉∂Th =

(εph, ε
p
h)Th − ω

2 (ρ0(πW θ − θ), εph)Th + 2iω ((πW θ − θ)b0,∇εph)Th − 2iω 〈(b0 · n)(πW θ − θ), εph〉∂Th
(3.76b)

〈πV ξ · n, ε̂ph〉∂Th = 0 (3.76c)

Now conjugate and sum those equations and compare with the sum of (3.64a)–(3.64b)–
(3.64c) tested with (πV ξ, πW θ, PMθ).

(W0ε
q
h,πV ξ)Th − (εph, div (πV ξ))Th + 〈ε̂ph,πV ξ · n〉∂Th = `1(πV ξ) (3.77a)

−ω2 (ρ0ε
p
h, πW θ)Th − 2iω (∇εph, (πW θ)b0)Th (3.77b)

+ (div (εqh) , πW θ)Th + 2iω 〈(b0 · n)εph, πW θ〉∂Th = `2(πW θ)
−〈εqh · n, PMθ〉∂Th = `3(PMθ) (3.77c)
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where
`1(πV ξ) := (W0δ

q
h,πV ξ)Th

`2(πW θ) :=− ω2 (ρ0δ
p
h, πW θ)Th + 2iω (δphb0,∇πW θ)Th

+ 2iω 〈(b0 · n)ε̂ph − τ (PMεph − ε̂
p
h) + τupw (εph − ε̂

p
h) , πW θ〉∂Th

+
〈
δqh · n+ 2iω(b0 · n)δ̂ph + 2iωτPMδph − 2iωτupw(δph − δ̂

p
h), πW θ

〉
∂Th

`3(PMθ) :=− 2iω 〈(b0 · n)ε̂ph − τ (PMεph − ε̂
p
h) + τupw (εph − ε̂

p
h) , PMθ〉∂Th

−
〈
δqh · n+ 2iω(b0 · n)δ̂ph + 2iωτPMδph − 2iωτupw

(
δph − δ̂

p
h

)
, PMθ

〉
∂Th

.

Notice that an integration by parts has been carried out in `2.
As W0 is real and symmetric, we have

(W0πV ξ, ε
q
h)Th = (πV ξ,W0ε

q
h)Th

and we can therefore notice that the left-hand sides of (3.76a)–(3.76b)–(3.76c) and (3.77a)–
(3.77b)–(3.77c) (after being conjugated) are the same, leading to

(W0ε
q
h,πV ξ − ξ)Th + (εph, ε

p
h)Th − ω

2 (ρ0ε
p
h, πW θ − θ)Th

−2iω (∇εph, (πW θ − θ)b0)Th + 2iω 〈(b0 · n)εph, πW θ − θ〉∂Th
= `1(πV ξ) + `2(πW θ) + `3(PMθ)

And the identity is obtained by a reorganisation of the different terms.

Remark 3.4.7: conjugating gives the good sign for the convection term, indeed : [iz]∗ =
−iz∗, therefore [

2iω ((πW θ)b0,∇εph)Th
]∗

= −2iω (∇εph, (πW θ)b0)Th

Lemma 3.4.7:
Assuming that the regularity assumption (3.75) holds and that ω2h2 ‖ρ0‖∞CregC (where
C is the constant of Theorem 5) is small enough, if p ∈ Hs(O) and q ∈ Ht(O) where
s ∈ [1, k + 2] and t ∈ [1, k + 1] then

‖εph‖Th . ht+1(1+ω) ‖q‖t,O+hs(1+ω+ω2) ‖p‖s,O+ωh
∥∥∥τ 1

2 (PMεph − ε̂
p
h)
∥∥∥
∂Th

+h(1+ω) ‖εqh‖W0,Th

where
h := max

K∈Th
hK

Proof: we are going to estimate the terms in the right hand side of the Lemma 3.4.6.
Volumetric terms involving εqh :

(W0ε
q
h, ξ − πV ξ)Th . h ‖εqh‖W0,K

‖ξ‖1,O . h ‖εqh‖W0,Th ‖ε
p
h‖Th (3.78a)

and ∣∣∣(W0δ
q
h,πV ξ)Th

∣∣∣ =
∣∣∣(W0δ

q
h, ξ)Th − (W0δ

q
h, ξ − πV ξ)Th

∣∣∣
(by (3.67)) =

∣∣∣(δqh,W0ξ − {W0ξ})Th − (W0δ
q
h, ξ − πV ξ)Th

∣∣∣
. ‖q − πV q‖Th ‖W0ξ − {W0ξ}‖Th + ‖q − πV q‖Th ‖ξ − πV ξ‖Th

(by (3.66) and (3.62b)) . ht ‖q‖t,O h|ξ|1,O + ht ‖q‖t,O h ‖ξ‖1,O

(by regularity (3.75)) . ht+1 ‖q‖t,O ‖ε
p
h‖Th (3.78b)
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Volumetric term involving εph :

ω2 (ρ0ε
p
h, πW θ − θ)Th . ω2h2 ‖εph‖ρ0,K

‖θ‖2,O . ω2h2 ‖εph‖O (3.78c)

and ∣∣∣ω2 (ρ0δ
p
h, πW θ)Th

∣∣∣ =
∣∣∣(ρ0δ

p
h, θ)Th − (ρ0δ

p
h, θ − πW θ)Th

∣∣∣
(by (3.67)) = ω2

∣∣∣(δph, ρ0θ − {ρ0θ})Th − (ρ0δ
p
h, θ − πW θ)Th

∣∣∣
. ω2 ‖p− πWp‖Th ‖ρ0θ − {ρ0θ}‖Th + ω2 ‖p− πWp‖Th ‖θ − πW θ‖Th

(by (3.66) and (3.62a)) . ω2hs ‖p‖s,O h|θ|1,O + ω2hs ‖p‖s,O h ‖θ‖1,O

(by regularity (3.75)) . ω2hs+1 ‖p‖s,O ‖ε
p
h‖Th (3.78d)

Volumetric convection term :

2ω (∇εph, (πW θ − θ)b0)Th . ω ‖∇εph‖Th ‖πW θ − θ‖Th
(by Lemma 3.4.3) . ω

(
‖εqh‖W0,Th + ‖δqh‖Th +

∥∥∥τ 1
2 (PMεph − ε̂

p
h)
∥∥∥
∂Th

)
‖πW θ − θ‖Th

using (3.62b), (3.62a), (3.66) and (3.75), we have

. ω
(
‖εqh‖W0,Th + ht ‖q‖t,O +

∥∥∥τ 1
2 (PMεph − ε̂

p
h)
∥∥∥
∂Th

)
h ‖εph‖Th

. ω
(
h ‖εqh‖W0,Th + ht+1 ‖q‖t,O (3.78e)

+ h
∥∥∥τ 1

2 (PMεph − ε̂
p
h)
∥∥∥
∂Th

)
‖εph‖Th

and

2ω
∣∣∣(δphb0,∇(πW θ))Th

∣∣∣ = 2ω
∣∣∣(δphb0,∇θ)Th − (δphb0,∇(θ − πW θ))Th

∣∣∣
(by (3.62a)) . ω ‖p− πWp‖Th ‖θ‖1,O

(by (3.62a) and (3.75)) . ωhs ‖p‖s,O ‖ε
p
h‖Th (3.78f)

Boundary terms involving b0 · n : As we want to keep s 6 k + 2, we will use (3.62c) with
s− 1 instead of s.
As

〈(b0 · n)ε̂ph, πW θ − PMθ〉∂Th = 〈(b0 · n)ε̂ph, πW θ − θ〉∂Th
we focus on

2ω 〈(b0 · n)(εph − ε̂
p
h), πW θ − θ〉∂Th . ω ‖εph − ε̂

p
h‖∂Th ‖πW θ − θ‖∂Th

(by (3.71)) . ωh2 ‖εph‖Th
[
‖εqh‖W0,Th + ht ‖q‖t,O (3.78g)

+
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

]
and

2ω
〈
(b0 · n)δ̂ph, πW θ − PMθ

〉
∂Th

. ω
∥∥∥δ̂ph∥∥∥∂Th ‖πW θ − PMθ‖∂Th

(by (3.62d) and (3.62c)) . ωhs−
1
2 ‖p‖s,O h

3
2 ‖θ‖2,O

(by (3.75)) . ωhs ‖p‖s,O ‖ε
p
h‖Th (3.78h)
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Boundary terms involving τ :

2ω 〈τ (PMεph − ε̂
p
h) , πW θ − PMθ〉∂Th . ω ‖τ(PMεph − ε̂

p
h)‖∂Th ‖πW θ − PMθ‖∂Th

(τ = O(h−1)) . ωh−
1
2
∥∥∥τ 1

2 (PMεph − ε̂
p
h)
∥∥∥
∂Th

h
3
2 ‖θ‖2,O

. ωh
∥∥∥τ 1

2 (PMεph − ε̂
p
h)
∥∥∥
∂Th
‖εph‖Th (3.78i)

and

2ω 〈τPMδph, πW θ − PMθ〉∂Th = 2ω 〈τPMδph, PM(πW θ − θ)〉∂Th
. ω ‖τPMδph‖∂Th ‖PM(θ − πW θ)‖∂Th

(τ = O(h−1)) . ωh−1 ‖p− πWp‖∂Th ‖θ − πW θ‖∂Th
(by (3.62d)) . ωh−1hs−

1
2 ‖p‖s,O h

2− 1
2 ‖θ‖2,O

. ωhs ‖p‖s,O ‖ε
p
h‖Th (3.78j)

Boundary terms involving τupw: As we want to keep s 6 k+ 2, we will use (3.62c) with s− 1
instead of s.

2ω 〈τupw (εph − ε̂
p
h) , πW θ − PMθ〉∂Th . ω ‖εph − ε̂

p
h‖∂Th ‖πW θ − PMθ‖∂Th

. ωhs−
3
2 ‖p‖s,O h

3
2 ‖θ‖2,O

. ωhs ‖p‖s,O ‖ε
p
h‖Th (3.78k)

and

2ω
〈
τupw

(
δph − δ̂

p
h

)
, πW θ − PMθ

〉
∂Th

. ωhs ‖p‖s,O ‖θ‖2,O

. ωhs ‖p‖s,O ‖ε
p
h‖Th (3.78l)

Boundary term involving δqh:

〈δqh · n, πW θ − PMθ〉∂Th . ht−
1
2 ‖q‖t,O h

3
2 ‖θ‖2,O (by (3.62e) and (3.62d))

. ht+1 ‖q‖t,O ‖ε
p
h‖Th (3.78m)

The desired estimate can now be obtained by collecting the estimates (3.78a), (3.78b),
(3.78c), (3.78d), (3.78e), (3.78f), (3.78g), (3.78h), (3.78i), (3.78j), (3.78k), (3.78l) and (3.78m),
and using that h −→ 0.

Bootstraping process

We will now combine the results of Corollary 3.4.1 of Lemma 3.4.5 and Lemma 3.4.7
through a bootstrapping process to obtain a convergence result.
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Theorem 6 : Convergence of the HDG+ method

Assuming that the regularity assumption (3.75) holds and that ω2h2 ‖ρ0‖∞CregC (where
C is the constant of Theorem 5) is small enough, if p ∈ Hs(O) and q ∈ Ht(O) where
s ∈ [1, k + 2] and t ∈ [1, k + 1] then

‖εqh‖W0,Th +
√

2ω
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

+
∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥
∂Th


. ht ‖q‖t,O + hs−1 ‖p‖s,O

and
‖εph‖Th . (1 + ω)

(
ht+1 ‖q‖t,O + hs ‖p‖s,O

)
Optimal error estimates are

‖πWp− ph‖Th = O(hk+2) and ‖πV q − qh‖Th = O(hk+1),

and
‖p− ph‖Th = O(hk+2) and ‖q − qh‖Th = O(hk+1).

Proof: to make the computations easier we introduce the following notations

P := ω ‖εph‖Th ; Q := ‖εqh‖W0,Th ; T :=
∥∥∥τ 1

2 (PMεph − ε̂
p
h)
∥∥∥
∂Th

and
Ph := ωhs−1 ‖p‖s,O ; Qh := ht ‖q‖t,O

B :=
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

+
∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥
∂Th

α := (ω + ω2)h ; β :=
(
1 + ω + ω2

)
h ; γ := ω2h

With those shorthands the estimate of Lemma 3.4.7 can be rewritten as

P . (ω + ω2)hQh + (1 + ω + ω2)hPh + ω2hT +
(
ω + ω2

)
hQ

. αQh + βPh + γB + αQ (3.79)

and the estimate of Corollary 3.4.1 can be rewritten as

Q2 + 2ωB2 .
∣∣∣Q2 − 2iωB2

∣∣∣ . ε
(
Q2 + T 2

)
+ 1
ε

(
P 2 +Q2

h + P 2
h

)
. ε

(
Q2 +B2

)
+ 1
ε

(
P 2 +Q2

h + P 2
h

)
(3.80)

Taking the square of (3.79) and using Young’s inequality leads to

P 2 . α2Q2
h + β2P 2

h + γ2B2 + α2Q2. (3.81)

Using (3.81) in (3.80) gives

Q2 + 2ωB2 .
(

1 + 1
ε

) [(
1 + α2

)
Q2
h +

(
1 + β2

)
P 2
h

]
+
(
ε+ γ2

(
1 + 1

ε

))
B2

+
(
ε+ α2

(
1 + 1

ε

))
Q2.
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Let C1 denote the constant hidden in .. Choosing ε so that C1ε < 1 and assuming that h
is small enough the last two terms of the right hand side can be absorbed by the left hand
side, leading to

Q2 + 2ωB2 .
(

1 + 1
ε

) [(
1 + α2

)
Q2
h +

(
1 + β2

)
P 2
h

]
.

As ε does not depend on ω and h, we can hide the first factor of the right-hand side into .
leading to

Q2 + 2ωB2 .
(
1 + α2

)
Q2
h +

(
1 + β2

)
P 2
h .

As α, β = O(h), we can overestimate α, β . 1 leading to

Q2 + 2ωB2 . Q2
h + P 2

h .

And finally we have

Q+
√

2ωB . Ph +Qh. (3.82)

Now by taking s = k + 2 and t = k + 1 in (3.62b) and (3.62d), we can see that

Q = O(hk+1) and B = O(hk+1) (3.83)

and finally by using (3.82) in (3.79), we have

P = O(hk+2). (3.84)

It is also possible to obtain a convergence result for the trace p̂h which is the main unknown
of the method :

Corollary 3.4.2:
Under the assumptions of Theorem 6, the following error estimates for p̂h hold

‖ε̂ph‖∂Th = O(hk+ 3
2 ) and ‖p− p̂h‖∂Th = O(hk+ 1

2 ).

Proof: We have

‖εph‖∂Th 6 ‖PMε
p
h‖∂Th + ‖PMεph − ε̂

p
h‖∂Th

(τ = O(h−1)) . ‖PMεph‖∂Th + h
1
2
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

(PM continuous) . ‖εph‖∂Th + h
1
2
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

(by (3.63)) . h−
1
2 ‖εph‖Th + h

1
2
∥∥∥|τ | 12 (PMεph − ε̂

p
h)
∥∥∥
∂Th

(by (3.83) and (3.84)) = O(h− 1
2hk+2 + h

1
2hk+1)

= O(hk+ 3
2 ),

which is the first estimate. The second one comes from (3.62c) with s = k + 1.
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3.4.4 Error analysis of the HDG method with diffusive flux
As the error analysis for the HDG method is very similar to the one for the HDG+ method we
only state the main theorem. The intermediate results (error equations, Garding’s equality,
dual estimate, . . . ) are stated without proof in Appendix 3.A.

Theorem 7 : Convergence of the HDG method with diffusive flux

Assuming that the regularity assumption (3.75) holds and that ω2h2 ‖ρ0‖∞CregC (where
C is the constant of Theorem 5) is small enough, if p ∈ Hs(O) and q ∈ Ht(O) where
s, t ∈ [1, k + 1] then

‖πWp− ph‖Th = O(hk+ 3
2 ) ; ‖PMp− p̂h‖∂Th = O(hk+ 1

2 ) ; and ‖πV q − qh‖Th = O(hk+ 1
2 ),

and

‖p− ph‖Th = O(hk+1) ; ‖p− p̂h‖∂Th = O(hk+ 1
2 ) ; and ‖q − qh‖Th = O(hk+ 1

2 ).

Remark 3.4.8: Some HDG methods are known to achieve superconvergence, ie taking
ph ∈ Pk leads to the following error estimate

‖πWp− ph‖Th = O(hk+2),

this is not possible for this method because of the convection term

2ω
∣∣∣(δphb0,∇(πW θ))Th

∣∣∣ . ωhs ‖p‖s,O ‖ε
p
h‖Th

in the dual estimate which locks the convergence rate to O(hk+1) for the scalar variable ph.
Superconvergence is an attractive property for a numerical scheme, indeed using a postpro-
cessing scheme it is possible to use the solution (ph, qh) to construct a new approximation
p̃h which converges with order O(hk+2), see [Ste91], [CGS10, Sec. 5] for more details.

3.5 Implementation
In this section, we will give details on how we have implements the HDG(+) methods. For
the sake of simplicity, we will assume that the physical coefficients are constant on each
element. In this case, the integrals may be computed using
• an analytic integration procedure that relies on the decomposition of the basis functions

in the monomial basis,
• high-order quadrature rules.

Taking into account the variations of the physical parameters inside the elements only re-
quires a straightforward generalization of the material presented here. However this imple-
mentation is only possible if quadrature rules are used to evaluate the integrals.
To make the notations lighter, we will drop the subscript h in this section. The quantities
(q, p, p̂) will denote the solutions of (3.47a)–(3.47b)–(3.47c) and (qK , pK , p̂e) their restrictions
to an element K ∈ Th and an edge e ∈ Eh respectively.
In Table 3.2, we recall the main differences between the three variants of the HDG methods
considered in this work.
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Variable Space HDG (ph,σh) HDG (ph, qh) HDG+ (ph, qh)
Pressure ph Wh(K) Pk(K) Pk+1(K)
Flux qh or σh Vh(K) Pk(K)
Trace p̂h Mh(e) Pk(e)
Penalization τ |K O(1) O(h−1

K )

Table 3.2: Choice of local spaces and penalization parameter for the different methods

3.5.1 Framework and notations
In this section we present the notations used in [BCDL15, FS20] which are very close to the
ones used in hawen6. We will then give details on how the matrices are assembled.

Local problem: The discretization of the local problem (3.47a)–(3.47b) leads to the fol-
lowing system

AKWK + CKΛK = SK , (3.85)
where

WK :=
[
pK qKx qKy qKz

]T
and ΛK :=

[
p̂g(K,1) p̂g(K,2) p̂g(K,3) p̂g(K,4)

]T
,

and pK denotes the vector of the coefficients of pKh in the basis of Wh(K).

Global problem: The discretization of the transmission condition (3.47c) leads to∑
K∈Th

BKWK + LKΛK = 0 (3.86)

We denote by Λ the global trace approximation and for each element K ∈ Th we introduce
the connectivity map which is the operator AK such that7

AKΛ = ΛK .

Using (3.85), we can express WK in terms of Λ

WK =
(
AK

)−1
SK −

(
AK

)−1
CKAKΛ

and we can finally construct the global problem using (3.86)
∑
K∈Th

ATK
[
−BK

(
AK

)−1
CK + LK

]
AKΛ = −

∑
K∈Th

ATKBK
(
AK

)−1
SK . (3.87)

For conciseness, we will denote

KK := −BK
(
AK

)−1
CK +LK , K :=

∑
K∈Th

ATKKKAK and S := −
∑
K∈Th

ATKBK
(
AK

)−1
SK .

Remark 3.5.1: the invertibility of matrix AK was the subject of Theorem 2 (HDG-σh)
and Theorem 5 (HDG+ and HDG-qh) and the invertibility of the global matrix K was the
subject of Theorem 4.

6See https://ffaucher.gitlab.io/hawen-website/.
7The aim of operator AK is to copy the global informations to the local solver, depending on the element

it may be a simple copy or also involve reordering.

https://ffaucher.gitlab.io/hawen-website/
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Remark 3.5.2: to efficiently implement the HDG(+) methods, we will need to compute
the inverse of AK . As this matrix is not too large, it is possible to perform this operation
using lapack. However the discretization of the global problem will lead to a large sparse
system which will be solved using mumps.

Solving HDG: In Algorithm 3, we describe how the HDG method can be efficiently
implemented. Details on the construction of the local matrices AK , CK , BK and LK and on
the implementation of boundary conditions will be given in the next sections.

Algorithm 3: Solving HDG
/* Step 1: Construction of the local and global problems */

1 for K ∈ Th do
2 Construct the local matrices AK , CK , BK and LK
3 Compute (AK)−1 using lapack

4 Compute KK = BK
(
AK

)−1
CK + LK

5 Modify KK to enforce the boundary conditions
6 Use the connectivity operator AK to add the local contribution to the global matrix K

/* Step 2: Construction of the source term */
7 Localize the source
8 for K ∈ Th where s 6= 0 do
9 Construct the local source term SK

10 Compute −BK(AK)−1SK
11 Use the connectivity operator AK to add the local contribution to the global source S

/* Step 3: Resolution of the global system */
12 Solve KΛ = S with mumps

/* Step 4: Reconstruction of the solution */
13 for K ∈ Th do
14 Compute the local unknowns WK =

(
AK

)−1
SK −

(
AK

)−1
CKAKΛ

Convention for the indices: we will always use the following convention for the indices
:
• index of basis functions : i (test), j (trial), r (other)
• component of a vector : u, v ∈ {x, y, z}
• global number of an edge : m
• local number of an edge : `
• polynomial degree : k

The global number of the `-th face of element K will be denoted by g(K, `).

Dimension of polynomial spaces: We recall that the dimension of the space of polyno-
mials of n variables and of degree up to k is given by

dim (Pk(K)) =
(
k + n
n

)
=: dn(k), for K ⊂ Rn.

3.5.2 Implementation of the diffusive flux HDG method
In this section, we focus on the implementation of the HDG-qh method.
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Definition of the elementary matrices

We introduce the basis (ΦK
j )dn(k)

j=1 of Pk(K) and (Ψe
j)
dn−1(k)
j=1 of Pk(e) and we decompose the

unknowns as

pK =
dn(k)∑
j=1

pKj ΦK
j ; qKu =

dn(k)∑
j=1

qKu,jΦK
j ; p̂e(x) =

dn−1(k)∑
j=1

p̂ejΨe
j

for u ∈ {x, y, z}, K ∈ Th and e ∈ Eh.
We introduce the following matrices

MK
ij =

∫
K

ΦK
i ΦK

j dx DK
u,ij =

∫
K

ΦK
j ∂uΦK

i dx

EK`,ij =
∫
∂K`

ΦK
i ΦK

j dσ FK`,ij =
∫
∂K`

Ψg(K,`)
j ΦK

i dσ

Gm
ij =

∫
em

Ψm
i Ψm

j dσ

(3.88)

where g(K, `) is the global number of the `-th face of element K and m is also the global
number of the edge em.
Notice that all those matrices except FK` (which has dimension dn(k)× dn−1(k)) are square
matrices and that all the elementary matrices are real.

Local problem

We introduce the following shorthand to make the algebra easier

α` = min
∂K`

(b0 · n, 0) and tupw,` = max
∂K`

(b0 · n, 0)

it corresponds to using the expression (3.45a)–(3.45b) of the numerical flux. From an imple-
mentation point of view, this can be evaluated using array slicing or a ternary operator.
Using the elementary matrices introduced in (3.88) we can write (3.47a) as∑

u

W0,vuMKqKu − DK
v p

K +
∑
`

nK,`v FK` p̂g(K,`) = 0, ∀v ∈ {x, y, z} (3.89)

and (3.47b) as

−ω2ρ0MKpK + 2iω
∑
u

b0,uDK
u p

K +
∑
u

(DK
u )T qu

+2iω
∑
`

[
−α`FK` p̂g(K,`) − tupw,`EK` pK + τ`(EK` pK − FK` p̂g(K,`))

]
= SK (3.90)

Matrix form: To construct the global problem (3.87) we need to construct the matrices
AK and CK of the local problem (3.85) using (3.89) and (3.90).
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Matrix AK :

AK pK qKx qKy qKz

−ρ0ω
2MK + 2iω∑u b0,uDK

u (DK
x )T (DK

y )T (DK
z )T

pK +2iω∑`(τ` − tupw,`)EK` −DK
x +∑

` n
K,`
x EK` −DK

y +∑
` n

K,`
y EK` −DK

z +∑
` n

K,`
y EK`

qKx −DK
x WK

0,11MK WK
0,12MK WK

0,13MK

qKy −DK
y WK

0,21MK WK
0,22MK WK

0,23MK

qKz −DK
z WK

0,31MK WK
0,32MK WK

0,33MK

The red terms can be used instead of the black ones, depending on wether or not an inte-
gration by parts is performed.
Matrix CK :

CK p̂g(K,1) p̂g(K,2) p̂g(K,3) p̂g(K,4)

pK −2iω(τ1 + α1)FK1 −2iω(τ2 + α2)FK2 −2iω(τ3 + α3)FK3 −2iω(τ4 + α4)FK4

qKx nK,1x FK1 nK,2x FK2 nK,3x FK3 nK,4x FK4

qKy nK,1y FK1 nK,2y FK2 nK,3y FK3 nK,4y FK4

qKz nK,1z FK1 nK,2z FK2 nK,3z FK3 nK,4z FK4

Remark 3.5.3: We chose to write the matrix form of the method with the equation for
pK first which is the opposite of the system (3.47a)–(3.47b)–(3.47c). This convention is
interesting because the matrices for the method in dimension n are submatrices of the ones
for dimension n+ 1.

Global problem

The transmission condition (3.47c) can be written as

∑
K,`

(∑
u

nK,`u (FK` )T qKu

+2iω
[
−
(
α`Gg(K,`)p̂g(K,`) + tupw,`(FK` )TpK

)
+ τ

(
(FK` )TpK −Gg(K,`)p̂g(K,`)

)] )
= 0(3.91)

Matrix form: We will now use (3.91) to construct the matrices BK and LK of (3.86).
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Matrix BK :

BK pK qKx qKy qKz

e1 2iω(τ1 − tupw,1)(FK1 )T nK,1x (FK1 )T nK,1y (FK1 )T nK,1z (FK1 )T

e2 2iω(τ2 − tupw,2)(FK2 )T nK,2x (FK2 )T nK,2y (FK2 )T nK,2z (FK2 )T

e3 2iω(τ3 − tupw,3)(FK3 )T nK,3x (FK3 )T nK,3y (FK3 )T nK,3z (FK3 )T

e4 2iω(τ4 − tupw,4)(FK4 )T nK,4x (FK4 )T nK,4y (FK4 )T nK,4z (FK4 )T

Matrix LK :

LK p̂g(K,1) p̂g(K,2) p̂g(K,3) p̂g(K,4)

e1 −2iω(τ1 + α1)Gg(K,1)

e2 −2iω(τ2 + α2)Gg(K,2)

e3 −2iω(τ3 + α3)Gg(K,3)

e4 −2iω(τ4 + α4)Gg(K,4

Boundary conditions:

The transmission condition (3.47c) was also used to weakly enforce the boundary conditions

q · n− 2iω(b0 · n)p = gN on ΓN
p = gD on ΓD

Neumann boundary condition: If we want to enforce the Neumann boundary condition
on edge ` of element K we only need to add a right-hand side to (3.91) :

Gg(K,`)gN

where we assumed that
gN =

∑
i

gN,iΨi.

Weak Dirichlet boundary conditions: However if we want to enforce the Dirichlet
boundary condition on edge ` of element K we need to change the matrices BK and LK . This
first method of implementation corresponds to weakly enforcing the boundary conditions, ie
using the expression

〈p̂h − gD, µ〉ΓD = 0.

This method is used for a modal implementation of the HDG method. It can be implemented
as follows described in Algorithm 4.
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Algorithm 4: Implementation of weak Dirichlet BC
1 The corresponding row of BK is set to 0 : BK [e`, :] = 0
2 The corresponding entry of LK is changed : LK [e`, p̂g(K,`)] = Gg(K,`)

3 The following right-hand side is added : Gg(K,`)gD, where gD = ∑
i gD,iΨi.

Strong Dirichlet boundary conditions: For a nodal implementation of the HDGmethod,
it is also possible to strongly enforce the boundary condition on ΓD :

p̂h = gD,

on edge ` of element K. We need to change the local contribution

KK = LK − BK
(
AK

)−1
CK ,

to the global problem as described in Algorithm 5. We recall that KK has the same shape
as LK .

Algorithm 5: Implementation of strong Dirichlet BC
1 The corresponding entries of KK are replaced with an identity block : KK [e`, p̂g(K,`)] = Id
2 The following right-hand side is added : [gD(xr)]Tr , where xr ∈ dof

(
eg(K,`)

)

3.5.3 Implementation of the total flux HDG method
Using the same notations as in the previous section, we can write the discrete form of the
total flux HDG method (3.16a)–(3.16b)–(3.16c).

Local problem

The local problem (3.12a)–(3.12b) can be written as

∑
u

W0,vuσ
K
u − DK

v p
K + 2iω

(∑
u

W0,vub0,u

)
MKpK +

∑
`

n`vFK` p̂g(K,`) = 0, ∀v ∈ {x, y, e}

−ω2ρ0MKpK +
∑
u

(DK
u )TσKu + iω

∑
`

τ `
(
EK` pK − FK` p̂g(K,`)

)
= SK

Matrix form: Matrix AK : We introduce βv := ∑
uW0,vub0,u.

AK pK σKx σKy σKz

pK −ρ0ω
2MK + iω

∑
` τ`EK` (DK

x )T (DK
y )T (DK

z )T

σKx −DK
x + 2iωβxMK WK

0,11MK WK
0,12MK WK

0,13MK

σKy −DK
y + 2iωβyMK WK

0,21MK WK
0,22MK WK

0,23MK

σKz −DK
z + 2iωβzMK WK

0,31MK WK
0,32MK WK

0,33MK
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Matrix CK :

CK p̂g(K,1) p̂g(K,2) p̂g(K,3) p̂g(K,4)

pK −iωτ1FK1 −iωτ2FK2 −iωτ3FK3 −iωτ4FK4

σKx nK,1x FK1 nK,2x FK2 nK,3x FK3 nK,4x FK4

σKy nK,1y FK1 nK,2y FK2 nK,3y FK3 nK,4y FK4

σKz nK,1z FK1 nK,2z FK2 nK,3z FK3 nK,4z FK4

Global problem

The discrete transmission condition (3.15) can be written∑
K,`

[
nK,`u (FK` )TσKu + iωτ `

(
(FK` )pK −Gg(K,`)p̂g(K,`)

)]
= 0

Matrix form: Matrix BK :

BK pK σKx σKy σKz

e1 iωτ1(FK1 )T nK,1x (FK1 )T nK,1y (FK1 )T nK,1z (FK1 )T

e2 iωτ2(FK2 )T nK,2x (FK2 )T nK,2y (FK2 )T nK,2z (FK2 )T

e3 iωτ3(FK3 )T nK,3x (FK3 )T nK,3y (FK3 )T nK,3z (FK3 )T

e4 iωτ4(FK4 )T nK,4x (FK4 )T nK,4y (FK4 )T nK,4z (FK4 )T

Matrix LK :

LK p̂g(K,1) p̂g(K,2) p̂g(K,3) p̂g(K,4)

e1 −iωτ1Gg(K,1)

e2 −iωτ2Gg(K,2)

e3 −iωτ3Gg(K,3)

e4 −iωτ4Gg(K,4

3.5.4 Implementation of the HDG+ method
As pK ∈ Pk+1(K), qK ∈ Pk(K) and p̂e ∈ Pk(e), one should be very careful while writing
the matrix form of the system, indeed we have

pK ∈ Cdn(k+1) and qK ∈ Cn×dn(k) (⇐⇒ qKu ∈ Cdn(k), u ∈ {x, y, z})

so some of the elementary matrices will be rectangular.
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Definition of the elementary matrices

Let (ΦK,k
j )dn(k)

j=1 be the basis for Pk(K) and (Ψe,k
j )dn−1(k)

j=1 be the basis for Pk(e).
The unknowns are therefore decomposed in the following way

pK =
dn(k+1)∑
j=1

pKj ΦK,k+1
j ; qKu =

dn(k)∑
j=1

qKu,jΦ
K,k
j ; p̂e =

dn−1(k)∑
j=1

p̂ejΨ
e,k
j

for u ∈ {x, y, z}.
We define the following elementary matrices :

MK,k
ij =

∫
K

ΦK,k
i ΦK,k

j dx

DK,k
u,ij =

∫
K

ΦK,k
j ∂uΦK,k

i dx DK,k,k+1
u,ij =

∫
K

ΦK,k+1
j ∂uΦK,k

i dx

FK,k`,ij =
∫
∂K`

ΦK,k
i Ψg(K,`),k

j dσ FK,k+1,k
`,ij =

∫
∂K`

ΦK,k+1
i Ψg(K,`),k

j dσ (3.92)

EK,k`,ij =
∫
∂K`

ΦK,k
i ΦK,k

j dσ

Gm
i,j =

∫
em

Ψm,k
i Ψm,k

j dσ

where g(K, `) is the global number of the `-th face of element K and m is also the global
number of the edge em.
Most of those matrices are not square matrices and their sizes are recalled in Table 3.3.

Matrix Rows Columns
MK,k+1 dn(k + 1) dn(k + 1)
DK,k+1
u dn(k + 1) dn(k + 1)

DK,k,k+1
u dn(k) dn(k + 1)

FK,k+1,k
` dn(k + 1) dn−1(k)

TK,k+1
` dn(k + 1) dn(k + 1)

EK,k+1
` dn(k + 1) dn(k + 1)
(a) Matrices needed for (3.47b)

Matrix Rows Columns
MK,k dn(k) dn(k)
DK,k,k+1
u dn(k) dn(k + 1)

FK,k` dn(k) dn−1(k)
(b) Matrices needed for (3.47a)

Matrix Rows Columns
FK,k` dn(k) dn−1(k)
FK,k+1,k
` dn(k + 1) dn−1(k)

Gm,k
` dn−1(k) dn−1(k)
(c) Matrices needed for (3.47c)

Table 3.3: Summary of the dimensions of the local matrices

The matrix TK,k+1
` will be used to evaluate the projection PMp and will be defined in (3.96).

It was added to Table 3.3 for completeness.

Remark 3.5.4: To compute the integrals involving polynomials of different degrees in a
nodal framework, it is possible to directly use the expressions given in (3.92) or to use the
following trick. Let (xk+1

j )dn(k+1)
j=1 be the degrees of freedom associated with Pk+1(K). We

define the projection matrix P by

PK,k,k+1
ij = ΦK,k

i (xk+1
j ).
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Seeing ΦK,k
i as as polynomial of degree k + 1, we can express it in the basis (ΦK,k+1

j )dn(k+1)
j=1 .

Due to the nodal nature of the basis functions, we have

ΦK,k
i =

dn(k+1)∑
r=1

ΦK,k
i (xk+1

j )ΦK,k+1
r =

dn(k+1)∑
r=1

PK,k,k+1
ir ΦK,k+1

r .

The matrix DK,k,k+1 is therefore given by

DK,k,k+1 = PK,k,k+1DK,k+1.

Evaluating the projection:

The evaluation of the term
〈τPMph, wh〉∂K (3.93)

where wh ∈ Pk+1(K) is a difficult part of the implementation of the HDG+ method.
Notice however that the implementation of the term

〈PMph, µh〉∂K , µ ∈Mh(∂K)

arising in the discretization of the transmission condition (3.47c) is straightforward. Indeed
as µh ∈ Pk(e), by definition of PM we have

〈PMph, µh〉∂K = 〈ph, µh〉∂K .

In this section we present three techniques to compute (3.93).

Efficient implementation using a hierarchical basis: The easiest way to compute
(3.93) is to use a hierarchical and orthogonal basis for Pk+1(K). Let (ΦK

j )dn(k+1)
j=1 be such a

basis, then (ΦK
j )dn(k)

j=1 is a basis for Pk(K). Therefore if

pK =
dn(k+1)∑
j=1

pKj ΦK
j

then

PMp
K =

dn(k)∑
j=1

pKj ΦK
j .

A good choice for such a basis would probably be Dubiner’s one which is L2-orthogonal if
the reference element is
• in 2D: the triangle with vertices

x1 = (−1,−1) ; x2 = (1,−1) ; x3 = (−1, 1),

• in 3D: the tetrahedron with vertices

x1 = (−1,−1,−1) ; x2 = (1,−1,−1) ; x3 = (−1, 1,−1) ; x4 = (−1,−1, 1).

See [Dub91, Kir04] for more details.
As our solver is developed in the framework of nodal discontinuous Galerkin methods, we
will not use this method for our implementation.
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Efficient implementation through Gauss-Legendre quadrature: As τ is constant
on each edge, we have

〈τPMph, u〉∂K = 〈τPMph, PMu〉∂K .

This integral can be efficiently computed in two dimensions by using a Gauss-Legendre
quadrature. This trick is described in [Oik14, Sec. 3.4]. In two dimensions, the edges of a
triangle is a one-dimensional interval I. For simplicity, we assume that I = [−1, 1].
Denote by Gk the k points Gauss-Legendre quadrature rule. For a function f , it is given by

Gk[f ] =
k∑
i=1

wif(ai)

where (wi)i∈[[1,k]] are the quadrature weights and (ai)i∈[[1,k]] are the quadrature points. If the
function f is regular enough, then Gk approximates the integral of f over I. In particular
Gk+1 is exact for polynomials of degree up to 2k + 1. The usual stabilization term with
p, u ∈ Pk+1(K), can be exactly computed with the k + 2 quadrature rule Gk+2 (which is
exact for polynomials of degree up to 2k + 3), i.e.

Gk+2[τpu] = 〈τp, u〉∂K .

If the k + 1 points rule Gk+1 is used instead, the HDG+ stabilization term is obtained

Gk+1[τpu] = 〈τPMp, PMu〉∂K .

Lemma 3.5.1:

∀u, v ∈ Pk+1(I), Gk+1[uv] =
∫
I
PMuPMvdx

Proof: Let ϕm be the Legendre polynomial of order m > 0. On I, we can write

u =
k+1∑
i=0

uiϕi and v =
k+1∑
i=0

viϕi.

Due to the hierarchical nature of the Legendre polynomials, we know that

PMu =
k∑
i=0

uiϕi and PMv =
k∑
i=0

viϕi.

We recall that Gk+1 is exact for polynomials of degree up to 2k + 1 and that ϕk+1 vanishes
at the quadrature points, ie.

∀i ∈ [[1, k + 1]], ϕk+1(ai) = 0.

Then we have

Gk+1[uv] =
k+1∑
i=1

[
wi

k+1∑
`=0

u`ϕ`(ai)
k+1∑
m=0

vmϕm(ai)
]

=
k+1∑
i=1

[
wi

k∑
`=0

u`ϕ`(ai)
k∑

m=0
vmϕm(ai)

]

=
k+1∑
i=1

wi(PMu)(ai)(PMv)(ai)

= Gk+1[PMuPMv]

=
∫
I
PMuPMvdx,

as deg(PMuPMv) = 2k.



126 CHAPTER 3. HDG FOR THE CONVECTED HELMHOLTZ EQUATION

Remark 3.5.5: the decomposition onto the Legendre basis is needed to prove the result,
but another basis (eg. Lagrange’s nodal basis) can be used in the implementation of the
method.

Remark 3.5.6: unfortunately this result is not yet generalized for three-dimensional prob-
lems.

Generic implementation: We will now present a way to compute (3.93) that works for
every choice of polynomial basis in every space dimension. As this technique requires to
precompute the projections for all the basis functions of order k + 1, the nodal HDG+
method may be less attractive when p-adaptivity is needed.
We assume that

pK =
dn(k+1)∑
j=1

pKj ΦK,k+1
j and wh = ΦK,k+1

i

(3.93) therefore becomes

〈
PMp

K
h , wh

〉
∂K`

=
dn(k+1)∑
j=1

pKj
〈
PMΦK,k+1

j ,ΦK,k+1
i

〉
∂K`

. (3.94)

The next step is to decompose PMΦK,k+1
j onto the basis of Mh(∂K)

PMΦK,k+1
j =

dn−1(k)∑
r=1

θK,`j,r Ψe,k
r ,

and we can construct a linear system for θK,`j using the definition of PM

dn−1(k)∑
r=1

〈
Ψe,k
r ,Ψe,k

i

〉
∂K`

θK,`j,r =
〈
ΦK,k+1
j ,Ψe,k

i

〉
∂K`

, ∀i ∈ [[1, dn−1(k)]]

or in matrix form
Gg(K,`)θK,`j = sK,`j

where
sK,`j,i :=

〈
ΦK,k+1
j ,Ψe,k

i

〉
∂K`

.

Plugging this result into (3.94), we have

〈
PMp

K
h ,Φ

K,k+1
i

〉
∂K`

=
dn(k+1)∑
j=1

dn−1(k)∑
r=1

pKj θ
K,`
j,r

〈
Ψe,k
r ,ΦK,k+1

i

〉
∂K`

. (3.95)

We define the following matrix

TK,k+1
`,ij :=

dn−1(k)∑
r=1

FK,k+1,k
`,ir θK,`j,r , (3.96)

where we recall that
FK,k+1,k
`,ij :=

∫
∂K`

ΦK,k+1
i Ψg(K,`),k

j dσ,

and we can rewrite (3.95) in matrix form

〈
PMp

K
h ,Φ

K,k+1
i

〉
∂K

=
4∑
`=1

dn(k+1)∑
j=1

TK,k+1
`,ij pKj .
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Local problem

Using the elementary matrices introduced in (3.92) we can write (3.47b) as

−ρ0ω
2MK,k+1pK + 2iω

∑
u

bu0DK,k+1
u pK +

∑
u

(DK,k,k+1
u )T qKu

+2iω
∑
`

τ`
(
TK,k+1
` pK − FK,k+1,kp̂g(K,`)

)
− 2iω

∑
`

[
α`FK,k+1,kp̂g(K,`) + tupw,`EK,k+1

` pK
]

= SK

(3.97)

and (3.47a) as∑
u

W0,vuMK,kqKu − DK,k,k+1
v pK +

∑
`

nK,`v FK,k` p̂g(K,`) = 0 ∀v ∈ {x, y, z} (3.98)

Using Table 3.3 it is easy (and important) to check that (3.97) has dn(k+ 1) equations and
(3.98) has dn(k) equations.

Matrix form: We can now construct the matrices AK and CK for the local problem (3.85).
Matrix AK : (size : (dn(k + 1) + 3dn(k))2)

AK pK qKx qKy qKz

−ρ0ω
2MK,k+1 + 2iω∑u b0,uDK,k+1

u

pK −2iω∑` tupw,`EK,k+1
` (DK,k,k+1

x )T (DK,k,k+1
y )T (DK,k,k+1

z )T

+2iω∑` τ`T
K,k+1
`

qKx −DK,k,k+1
x WK

0,11MK,k WK
0,12MK,k WK

0,13MK,k

qKy −DK,k,k+1
y WK

0,21MK,k WK
0,22MK,k WK

0,23MK,k

qKz −DK,k,k+1
z WK

0,31MK,k WK
0,32MK,k WK

0,33MK,k

Matrix CK : (size: (dn(k + 1) + 3dn(k))× (4dn−1(k)))

CK p̂g(K,1) p̂g(K,2) p̂g(K,3) p̂g(K,4)

pK −2iω(τ1 + α1)FK,k+1,k
1 −2iω(τ2 + α2)FK,k+1,k

2 −2iω(τ3 + α3)FK,k+1,k
3 −2iω(τ4 + α4)FK,k+1,k

4

qKx nK,1x FK,k1 nK,2x FK,k2 nK,3x FK,k3 nK,4x FK,k4

qKy nK,1y FK,k1 nK,2y FK,k2 nK,3y FK,k3 nK,4y FK,k4

qKz nK,1z FK,k1 nK,2z FK,k2 nK,3z FK,k3 nK,4z FK,k4

Global problem

Using the elementary matrices introduced in (3.92) we can write (3.47c) as
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∑
K,`

[∑
u

nK,`u (FK,k` )T qKu + 2iω
∑
`

τ`
(
(FK,k+1,k

` )TpK −Gg(K,`),kp̂g(K,`)
)]

−2iω
∑
K,`

[
α`Gg(K,`),kp̂g(K,`) + tupw,`(FK,k+1,k

` )TpK
]

= 0 (3.99)

Once again, Table 3.3 should be used to check the dimensions of the matrices involved in
(3.99).

Matrix form: We will now use (3.99) to construct the matrices BK and LK of (3.86).
Matrix BK : (size: 4dn−1(k)× (dn(k + 1) + 3dn(k)))

BK pK qKx qKy qKz

e1 2iω(τ1 − tupw,1)(FK,k+1,k
1 )T nK,1x (FK,k1 )T nK,1y (FK,k1 )T nK,1z (FK,k1 )T

e2 2iω(τ2 − tupw,2)(FK,k+1,k
2 )T nK,2x (FK,k2 )T nK,2y (FK,k2 )T nK,2z (FK,k2 )T

e3 2iω(τ3 − tupw,3)(FK,k+1,k
3 )T nK,3x (FK,k3 )T nK,3y (FK,k3 )T nK,3z (FK,k3 )T

e4 2iω(τ4 − tupw,4)(FK,k+1,k
4 )T nK,4x (FK,k4 )T nK,4y (FK,k4 )T nK,4z (FK,k4 )T

Matrix LK : (size: (4dn−1(k))2)

LK p̂g(K,1) p̂g(K,2) p̂g(K,3) p̂g(K,4)

e1 −2iω(τ1 + α1)Gg(K,1),k

e2 −2iω(τ2 + α2)Gg(K,2),k

e3 −2iω(τ3 + α3)Gg(K,3),k

e4 −2iω(τ4 + α4)Gg(K,4),k

3.5.5 Comparison of the cost of the HDG and HDG+ methods
Now that we have written down the discrete systems for the HDG and HDG+ methods, it
is interesting to compare the sizes of systems that we need to solve.
In Table 3.4 we have written down the sizes of the matrices for both methods. We can see
that the global problem K of the HDG+ has the same dimension as the one of the HDG
method of degree k. As the resolution of the global problem is the most expensive step in
the resolution of the method, the cost of the HDG+ method is therefore similar to the cost
of the HDG method of degree k, while yielding to an order of convergence of k + 2 instead
of k + 1. We can also notice that the cost of the local problems of the HDG+ method is
intermediate between the cost of the local problems of the HDG methods of degree k and
k + 1. However this has a really limited impact on the computational cost.
We denote by Nelt the number of elements in the mesh, ie Nelt = card(Th), and by Nface the
number of faces in the mesh.
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Matrix HDG k HDG+ HDG k + 1
AK (4dn(k))2 (dn(k + 1) + 3dn(k))2 (4dn(k + 1))2

CK 4dn(k)× 4dn−1(k) (dn(k + 1) + 3dn(k))× (4dn−1(k)) 4dn(k + 1)× 4dn−1(k + 1)
BK 4dn−1(k)× 4dn(k) 4dn−1(k)× (dn(k + 1) + 3dn(k)) 4dn−1(k + 1)× 4dn(k + 1)
LK (4dn−1(k))2 (4dn−1(k))2 (4dn−1(k + 1))2

K ∼ (Nfacedn−1(k))2 ∼ (Nfacedn−1(k))2 ∼ (Nfacedn−1(k + 1))2

Table 3.4: Size of the matrices for the HDG and HDG+ methods in 3D

In Figure 3.5, we have plotted the number of degrees of freedom for local problems (N loc
dof)

and for the global problem (Nglob
dof ) with Nelt = 103 for several polynomial degrees in 3D.

Notice that AK has dimension (N loc
dof)2 and K has dimension (Nglob

dof )2.
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Figure 3.5: Local and global number of degrees of freedom for the three HDG methods in
3D

To put these different costs in perspective, we can also compare them to the cost of two
standard DG methods: the SIPDG method which uses a primal formulation with only one
scalar unknown, and the LDG method which is a mixed DG method with four unknowns
on each elements. First we recall that each element has four faces in 3D and that a face is
common to two elements, i.e.

Nface ∼
4
2Nelt ∼ 2Nelt.

Using Table 3.4, we know that the number of degrees of freedom of the HDG method of
degree k is

NHDG-k
dof ∼ Nfacedn−1(k) = Nface

(
k + n− 1
n− 1

)
∼ 2kn−1Nelt,

whereas the number of degrees of freedom of a SIPDG method of degree k is

NSIPDG-k
dof ∼ Neltdn(k) = Nelt

(
k + n

n

)
∼ knNelt,

and the number of degrees of freedom of a LDG method of degree k is

NLDG-k
dof ∼ 4Neltdn(k) = 4Nelt

(
k + n

n

)
∼ 4knNelt,
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which becomes much larger as k increases. Those sizes have been depicted in Figure 3.6,
with and without the LDG method to see the difference between HDG and SIPDG more
clearly. We have depicted both the HDG methods with interpolation degrees k and k + 1
as the HDG+ method has an intermediate cost between those two standard HDG methods.
For orders up to 6, the HDG and SIPDG methods have similar costs, while the LDG method
is clearly more expensive. Using the HDG method instead of the SIPDG one has one major
advantage: the flux can be evaluated without any loss of order as it is an unknown of the
HDG method, and the HDG method is therefore a mixed method with the cost of a primal
one. We can also see that for orders higher than 7, the HDG method is cheaper than both
LDG and SIPDG methods, and we can clearly see the advantage of using a HDG method
over a DG one.
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Figure 3.6: NHDG-k
dof , NHDG-k + 1

dof , NSIPDG-k
dof and NLDG-k

dof in 3D with Nelt = 103

3.6 Numerical experiments
In this section we will provide some numerical experiments for the three HDG methods that
were described and analysed in this paper. We will first focus on the simple case of duct
modes propagating in a waveguide to obtain convergence curves and validate the theoretical
results of the previous sections. We will then provide some illustrative examples to show
that those methods can be used in more realistic cases.

3.6.1 Convergence rate
In this subsection, we will present some numerical experiments to illustrate our theoretical
results. As most of the estimates obtained in our analysis involve projection errors of the
form

‖ph − πWp‖Th or ‖qh − πV q‖Th ,

we will need to evaluate those projections before actually computing errors. In Table 3.5
we recall the different projections used for the analysis of the three different variants of the
HDG method that we considered.
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Method πW πV PM

HDG q L2 L2 L2

HDG + L2 L2 L2

HDG σ HDG HDG L2

Table 3.5: Summary of the different projections used for the analysis of the HDG methods

Geometric settings: As depicted on Figure 3.7 we consider a uniform directional flow
v0 = Mc0ex, where M is the Mach number.

`

ex

ey

v0

v0

v0

Figure 3.7: Sketch of the geometric configuration

Unless stated otherwise, we will always use the following parameters for the convergence
tests

O = (0, 2)× (0, 1) ; ρ0, c0 ≡ 1 ; ω = 5.55π,

and the choice of M will be specified for each numerical experiment.

Analytic solution: The duct modes are a family of analytic solutions of (3.1) in a waveg-
uide, see [BBL03]. They are given by

p±n (x, y) = eiβ
±
n xϕn(y)

where

n < N0 : β±n =
−κM ±

√
κ2 − n2π2

`2
(1−M2)

1−M2

n > N0 : β±n =
−κM ± i

√
n2π2

`2
(1−M2)− κ2

1−M2

with
κ = ω

c0
and M = v0

c0

N0 =
⌊

κ`

π
√

1−M2

⌋
and

ϕ0(y) :=
√
`−1

ϕn(y) :=
√

2`−1 cos
(
nπy

`

)
, n ∈ N∗

The choice of n will be specified for each numerical experiment.
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Evaluating the projections: Here we give the details for evaluating the L2 projection
onto Wh, the process is very similar for the other projections.
We recall that the dimension of the polynomial spaces is given by

dimPk(K) =
(
n+ k

n

)
=: dn(k), for K ⊂ Rn.

All the projections considered are local to an element K, so evaluating them amounts to
solving a linear system on each K. Indeed, the definition of the L2 projection ontoWh(K) =
Pk(K) gives

∀i ∈ [[1, dn(k)]],
(
πWp,ΦK,k

i

)
K

=
(
p,ΦK,k

i

)
K
.

As πWp ∈ Wh(K), we can write

πWp =
dn(k)∑
j=1

πjΦK,k
j ,

where π = (πj)j is the vector of the coordinates of πWp in the basis (ΦK
j )j of Pk(K). We

therefore obtain the following system

∀i ∈ [[1, dn(k)]],
dn(k)∑
j=1

πj
(
ΦK,k
j ,ΦK,k

i

)
K

=
(
p,ΦK,k

i

)
K
,

or in matrix form
MK,kπ = s, where si =

(
p,ΦK,k

i

)
K
.

The integral in the right-hand side is evaluated using a 91 points Gauss-Lobatto quadrature
formula and the linear system can be solved using lapack.

Evaluating the L2-error: Now that the projections can be evaluated, it remains to com-
pute the L2 norms. As the numerical solution and the projections are polynomial quantities,
this can be done using the mass matrix. Indeed, for u ∈ Pk(K) we have

‖u‖2
K =

dn(k)∑
j=1

ujΦK,k
j ,

dn(k)∑
i=1

uiΦK,k
i


K

=
dn(k)∑
i,j=1

uju
∗
i

(
ΦK,k
j ,ΦK,k

i

)
K

=
dn(k)∑
i=1

u∗i

dn(k)∑
j=1

MK,k
ij uj

= u∗MK,ku.

To obtain more meaningful results, we will use relative errors instead of the standard L2-
error. This choice allows us to compare the errors computed on different meshes without any
pollution coming from the different number of elements. The relative error for ph is given by

Ep :=
‖ph − πWp‖Th
‖πWp‖Th

,

and similar expressions will be used for the other volumetric quantities.
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Some notation: To allow the comparison between the HDG+ method and the two HDG
methods, we would like to emphasize that k always denotes the polynomial degree used to
approximate the trace unknown p̂h. We have chosen to plot the relative errors against the
quantity k

h
which is proportional to the number of degrees of freedom per wavelength. We

would like to point out that all the plots in the next sections will use a log-log scale.

Hardware configuration: Those numerical experiments were carried out on a miriel
node on the plafrim cluster8. This node is equipped with a 2 dodeca-core Haswell Intel
Xeon E5-2680 v3 with a clock rate of 2.5 GHz and 128 Go of memory.

Acoustic case without flow

A first important test to validate our implementation in the acoustic case without flow. In
this case, the convected Helmholtz equation reduces to the standard Helmholtz equation
and the HDG methods, either with the diffusive or total flux, are the same when there is
no convection. We should therefore be able to reproduce the super-convergence of the HDG
method for the Helmholtz equation , i.e.

Ep = O(hk+2),

when an approximation of degree k is used for all the unknowns.
Here we have chosen to use the following parameters

n = 0, and M = 0,

which correspond to a plane-wave.
The resulting convergence curve is depicted on Figure 3.8 and we can clearly see that the
super-convergence is obtained.
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Figure 3.8: Convergence history for the HDG method without flow for the volumetric un-
known ph

Low Mach

We then move to a flow with a low Mach number. In this case we have used the following
parameters

n = 3, and M = 0.2.
8See http://www.plafrim.fr.

http://www.plafrim.fr
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(a) HDG with diffusive flux qh
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Figure 3.9: Low Mach convergence history for the volumetric unknown ph for both the
diffusive and total flux HDG method

The convergence history for the volumetric unknown ph is displayed on Figure 3.9 for
both of the HDG methods. We can see that the diffusive flux formulation achieves an order
of convergence of k + 3/2 as expected. On the other hand the total flux formulation also
achieves an order of convergence of k + 3/2 which is better than the expected order k + 1.
However for uniform flows and upon well choosing the penalization parameters both of those
methods are algebraically equivalent and we therefore expect to obtain the same order of
convergence for ph. On Figure 3.10 the convergence rate for the volumetric unknown ph
for the HDG+ method is displayed. As expected the optimal convergence rate of k + 2 is
obtained. As discussed in Table 3.6, it is clear that the use of the HDG+ method is less
expensive than the use of the HDG methods.
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Figure 3.10: Low Mach convergence history for the volumetric unknown ph for the HDG+
method
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Figure 3.11: Low Mach convergence history for the first component of volumetric unknown
qh for the HDG+ method
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(a) HDG with diffusive flux qh
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(b) HDG with total flux σh

Figure 3.12: Low Mach convergence history for the first component of the volumetric flux
unknown

If we now move to the flux unknown, we can see on Figure 3.11 that qh converges with the
optimal order k+1 as expected. For the HDG methods, the convergence histories for qh and
σh are depicted on Figure 3.12. The diffusive flux formulation achieves a convergence order
of k+1/2 as expected, whereas the total flux formulation outperforms the theoretical results
and achieves an order of k+ 3/2. For this formulation it was however expected that both ph
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and σh converge with the same order, which is actually the case. Finally we would like to
point out that the choice between the formulations with qh or σh is application dependent.
Finally information regarding the size of the global problems for a fixed number of degrees
of freedom per wavelength are given in Table 3.6. We have included the HDG+ method
with (k, k − 1) and the HDG+ method with (k + 1, k). When using the HDG+ method
with (k, k − 1), a smaller global problem is solved to obtain the same convergence rate as
the HDG methods. When using the HDG+ method with (k + 1, k), larger elements can
be used to obtain the same number of degrees of freedom per wavelength because of the
higher polynomial interpolation degree. We can clearly see that the HDG+ methods are
computationally less expensive than both of the HDG methods.

k h/k HDG-qh HDG-σh HDG+ HDG+
(k, k − 1) (k + 1, k)

nnz 20 384 20 384 10 968 8 720
3 10−1 nnz LU 36 872 36 872 15 216 9 800

MUMPS time 2.5 · 10−2 1.6 · 10−2 1.8 · 10−2 1.7 · 10−2

nnz 872 216 872 216 481 528 467 280
3 10−2 nnz LU 3 572 752 3 572 752 1 835 148 1 673 560

MUMPS time 0.27 0.23 0.15 0.10
nnz 17 130 17 130 8 720 4 980

4 10−1 nnz LU 24 125 24 125 9 800 4 644
MUMPS time 1.9 · 10−2 2.0 · 10−2 1.7 · 10−2 9.5 · 10−3

nnz 752 330 752 330 467 280 423 600
4 10−2 nnz LU 2 874 075 2 874 075 1 673 560 1 397 418

MUMPS time 0.19 0.17 0.10 8.6 · 10−2

nnz 12 552 12 552 4 980 4 332
5 10−1 nnz LU 14 112 14 112 4 644 4 068

MUMPS time 1.7 · 10−2 2.7 · 10−2 9.5 · 10−3 9.9 · 10−3

nnz 672 840 672 840 432 600 414 456
5 10−2 nnz LU 2 409 006 2 409 006 1 397 418 1 333 368

MUMPS time 0.12 0.11 8.6 · 10−2 6.8 · 10−2

Table 3.6: Size of the global systems and mumps elapsed time for different interpolation
degree k for the low Mach case with a fixed number of degrees of freedom per wavelength

Notice that the numerical experiments performed here lead to relatively small linear system.
Indeed our goal was to validate the numerical method rather than showing the ability of
hawen to handle large numerical simulations.
In Table 3.7, we review the size of the global system for various interpolation degrees k
with a fixed error threshold for ph. As we did before, we use the relative L2-error defined by

Ep :=
‖ph − πWp‖Th
‖πWp‖Th

.

We can clearly see that, when the desired error is smaller than 10−2, increasing the interpo-
lation degree and thus the order of the method leads to solving a smaller linear system to
obtain the same error level. This less visible for an error threshold of 10−2, as this accuracy
can be obtained with relatively large elements even with a low interpolation degree. For this
error level, we can also see that there is no real difference in the size of the linear systems
of HDG and HDG+ methods. This is expected as there is no real difference between the
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different interpolation degrees for this error threshold. However for smaller error thresholds,
we can see that the HDG-qh, HDG-σh and HDG+ with (k, k − 1) lead to linear systems
with similar sizes, which is expected as they share the same order. The HDG+ method with
(k+ 1, k) also has a higher convergence rate and therefore lead to significantly smaller linear
system for the same error level.

k Ep HDG-qh HDG-σh HDG+ HDG+
(k, k − 1) (k + 1, k)

nnz 49 784 39 216 37 200 26 920
3 10−2 nnz LU 116 208 85 416 97 371 53 088

MUMPS time 3.1 · 10−2 1.8 · 10−2 2.5 · 10−2 1.3 · 10−2

nnz 99 920 102 800 92 040 49 784
3 10−3 nnz LU 293 328 293 328 283 155 116 272

MUMPS time 3.0 · 10−2 2.8 · 10−2 3.2 · 10−2 1.9 · 10−2

nnz 210 360 267 784 255 552 140 640
3 10−4 nnz LU 689 568 926 352 944 826 440 584

MUMPS time 4.9 · 10−2 6.2 · 10−2 8.1 · 10−2 3.63 · 10−2

nnz 28 240 28 240 26 920 28 240
4 10−2 nnz LU 51 050 51 150 53 088 51 050

MUMPS time 2.3 · 10−2 1.4 · 10−2 1.3 · 10−2 1.4 · 10−2

nnz 58 560 58 560 49 784 42 050
4 10−3 nnz LU 126 350 126 450 116 272 84 075

MUMPS time 1.9 · 10−2 2.0 · 10−2 1.9 · 10−2 2.2 · 10−2

nnz 106 880 151 600 140 640 77 770
4 10−4 nnz LU 284 050 433 450 440 584 182 875

MUMPS time 2.5 · 10−2 3.2 · 10−2 3.63 · 10−2 2.1 · 10−2

nnz 255 580 255 580 372 640 156 100
4 10−5 nnz LU 787 925 787 925 1 383 296 446 855

MUMPS time 3.9 · 10−2 4.1 · 10−2 0.10 3.4 · 10−2

nnz 24 660 24 660 28 240 24 660
5 10−2 nnz LU 34 740 34 740 51 050 34 740

MUMPS time 1.1 · 10−2 1.4 · 10−2 1.4 · 10−2 1.9 · 10−2

nnz 40 656 40 656 42 050 40 656
5 10−3 nnz LU 73 440 73 296 84 075 73 512

MUMPS time 1.6 · 10−2 1.4 · 10−2 2.2 · 10−2 1.3 · 10−2

nnz 84 312 88 200 77 770 60 540
5 10−4 nnz LU 181 944 192 996 182 875 120 636

MUMPS time 2.6 · 10−2 1.9 · 10−2 2.1 · 10−2 1.5 · 10−2

nnz 148 704 153 888 156 100 111 972
5 10−5 nnz LU 392 580 409 752 446 855 263 340

MUMPS time 3.1 · 10−2 2.9 · 10−2 3.4 · 10−2 2.5 · 10−2

Table 3.7: Size of the global systems and mumps elapsed time for different interpolation
degree k for the low Mach case with a fixed error threshold Ep

Large Mach

Finally we also considered a flow with a large March number. In this case, we used the
following parameters

n = 3, and M = 0.8.
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As the simulations of acoustic wave propagation in flows with large Mach numbers is known
to be more challenging, we expect to see worse performances than in the previous subsection.
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Figure 3.13: Large Mach convergence history for the volumetric unknown ph for both of the
HDG methods
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Figure 3.14: Large Mach convergence history for the volumetric unknown ph for the HDG+
method

The convergence history for the volumetric unknown is depicted in Figure 3.13 for both of
the HDG methods. We can see that the total flux formulation still achieves the convergence
order of k + 3/2 whereas the behaviour of the diffusive flux formulation seems less robust.
The same convergence history for HDG+ method is displayed on Figure 3.14 and we can
see that it still achieves the optimal convergence rate of k + 2.
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(a) HDG with diffusive flux qh
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(b) HDG with total flux σh

Figure 3.15: Large Mach convergence history for the second component of the volumetric
flux unknown

The convergence history for the volumetric flux unknown qh or σh is depicted in Figure
3.15 for the HDG methods and in Figure 3.16 for the HDG+ method. As in the low-Mach
case, the HDG methods have a convergence rate of k + 3/2 and the HDG+ method has a
convergence rate of k + 1. Notice that the HDG-σh method seems to be the most robust
method for the approximation of the flux unknown for high Mach numbers.
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Figure 3.16: Large Mach convergence history for the second component of the volumetric
unknown qh for the HDG+ method
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3.6.2 A posteriori error estimate
In this section, we will show that it is possible to compute a simple a posteriori error
indicator. For more complete approach to a posteriori error analysis for HDG methods, we
refer to [CZ12, CZ13]. We introduce the relative jump error

Ejump =

√∑
K,` ‖p̂h − ph‖

2
∂K`√∑

K,` ‖p̂h‖
2
∂K`

,

which measures the jump between ph and p̂h. For the HDG+ method, ph should be replaced
with PMph.

Jump error and residuals for the HDG methods: To understand the importance of
this quantity, we introduce the residuals

δh := −ω2ρ0ph + div (σh)− s, and ∆h := W0σh +∇ph + 2iωphW0b0.

We have chosen to work with the HDG-σh formulation as we recommend it over the HDG-qh
one, but the adaptation to the HDG-qh formulation is immediate.
Reverting the integrations by parts in (3.12a)–(3.12b), we have

(∆h, rh)K = 〈ph − p̂h, rh · n〉∂K ,
(δh, wh)K = −iω 〈τ(ph − p̂h), wh〉∂K ,

as δh and ∆h are usually not polynomial quantities this means that

(PV ∆h, rh)K = 〈ph − p̂h, rh · n〉∂K ,
(PW δh, wh)K = −iω 〈τ(ph − p̂h), wh〉∂K ,

where PV and PW are the L2-orthogonal projections onto Vh(K) and Wh(K) respectively.
Notice that if δh and ∆h are actually polynomials things are even simpler as PW δh = δh
and PV ∆h = ∆h. Taking rh = PV ∆h and wh = PW δh, and using the following inverse
inequality

‖wh‖∂K 6 Ch
− 1

2
K ‖wh‖K , ∀wh ∈ Wh,

leads to

‖PV ∆h‖K 6 C∆h
− 1

2
K ‖ph − p̂h‖∂K ,

‖PW δh‖K 6 Cδh
− 1

2
K ‖ph − p̂h‖∂K .

As
‖δh‖K 6 ‖PW δh‖K + ‖(Id− PW )δh‖K , (3.100)

we can see that the size of the residuals and hence the quality of the approximation depends
only on the size of the jump ph− p̂h (first term of the rhs) and the approximation properties
of Wh(K) (second term of the rhs).
When p ∈ Hs(K) with s ∈ [[0, k + 1]], we have

‖p− PWp‖K 6 ChsK ‖p‖s,K ,

so the penalization term τ(ph − p̂h) will ensure the stability of the method. Indeed (3.100)
will therefore lead to

‖δh‖K 6 Cδh
− 1

2
K ‖ph − p̂h‖∂K + ChsK ‖δh‖s,K ,
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and assuming that hK is small enough, we have

‖δh‖K 6 Ch
− 1

2
K ‖ph − p̂h‖∂K ,

as the last term of the right-hand side can be absorbed by the left-hand side. A similar
result can be obtained for ∆h.
To illustrate this, we have depicted Ejump for the HDG methods for a low-Mach flow in
Figure 3.17 and for a large-Mach flow in Figure 3.18.
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(a) HDG with diffusive flux qh
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(b) HDG with total flux σh

Figure 3.17: Low Mach convergence history for the jump error
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(a) HDG with diffusive flux qh
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Figure 3.18: Large Mach convergence history for the jump error

Adaptation to the HDG+ method: For the HDG+ method, nothing changes for the
vectorial residual ∆h but things are a little different for the scalar residual δh. Indeed this
time we have

‖PW δh‖K . h
− 1

2
K

(
‖|τ |(PMph − p̂h)‖∂K + ‖|τupw|(ph − p̂h‖∂K

)
,

. h
− 1

2
K ‖|τ |(PMph − p̂h)‖∂K ,

(as τ = O(hK−1)) . h
− 3

2
K ‖PMph − p̂h‖∂K .

To illustrate this, we have depicted Ejump for the HDG+ method for a low-Mach flow in
Figure 3.19 and for a large-Mach flow in Figure 3.20. Once again, we can see that these
quantities are clearly decreasing.
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Figure 3.19: Low Mach convergence history for the jump error for the HDG+ method
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Figure 3.20: Large Mach convergence history for the jump error for the HDG+ method

3.6.3 Is the upwinding mechanism necessary ?
In this section we investigate the numerical impact of upwinding mechanisms. We have
performed the same numerical simulations with the three methods with and without those
mechanisms. For the HDG-qh and the HDG+ methods, deactivating the upwinding mech-
anism corresponds to taking τupw ≡ 0. For the HDG-σh it corresponds to taking τ = 1
instead of the value given by the Riemann solver.
As it can be seen on Figure 3.21 the HDG-qh without upwinding leads to poor numerical
results, whereas the two other methods seem to perform well.

Method With upwinding Without upwinding
HDG-qh 4.3 · 10−7 0.53
HDG-σh 4.9 · 10−7 5.8 · 10−7

HDG+ 6.3 · 10−8 5.77 · 10−7

Table 3.8: Jump error Ejump for the different method

We have also computed the jump error Ejump as quality indicator of the numerical solution.
The values are given in Table 3.8. Even if the error is higher without upwinding for the
HDG+ and HDG-σh, it seems to remain at a reasonable level. For the HDG+ method,
we can conclude that the τupw penalization seems optional. This can be understood as we
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need to choose τ = O(hK−1) which is large, so the method seems less sensitive to changes
in the penalization. On the other hand, this τupw penalization is mandatory to make the
HDG-qh formulation work. Finally, for the HDG-σh we still recommend to use the upwind
penalization parameter τ as it leads to a method with no arbitrary choice to make.
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Figure 3.21: ph for the different HDG methods with and without upwind

3.6.4 Point-sources in a uniform flow
For many practical applications it is necessary to consider point-sources. In this section, we
show that our method can be used for such computations.

Settings: We consider a uniform flow in an infinite plane. We use a Dirac point source
s = δ(0,0) located at the origin. We write b0 as

b0 = M (cosαex + sinαey) ,

where M is the Mach number, α the angle between b0 and the horizontal axis, and we
normalize ρ0, c0 ≡ 1.
The physical domain Ophys is surrounded with PMLs, see Figure 3.22 for a sketch of the
geometric settings.



3.6. NUMERICAL EXPERIMENTS 145

b0

OPML

Ophys

δ(0,0)

α

Figure 3.22: Geometric settings

We have depicted the solution for a large Mach number (M = 0.8) in Figure 3.23 and for a
low Mach number (M = 0.4) in Figure 3.24. The presence of convection leads to a clearly
visible Doppler effect : indeed because of the convection, the apparent frequency changes in
the domain. The apparent frequency is higher in the bottom-left part of the domain than in
the top-right part. The artifacts in the top-right part of the domain are due to the PMLs.
Notice that the artifacts are more visible for the large Mach flow.
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(a) Numerical result (b) Analytic solution

Figure 3.23: ph computed with the HDG-σh method for ω = 6π, M = 0.8 and α = π/4.
PMLs are not displayed. The colorbar is the same for the two pictures.
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(a) Numerical result (b) Analytic solution

Figure 3.24: ph computed with the HDG-σh method for ω = 6π, M = 0.4 and α = π/4.
PMLs are not displayed. The colorbar is the same for the two pictures.

Analytic solution: In this context it is possible to write an analytic solution for (3.1).
Following [HPN19], we first need to introduce the so-called Prandlt-Glauert-Lorentz trans-
formation in the frequency domain. This transformation maps x = (x, y) to x̃ = (x̃, ỹ) and
ω to ω̃, where 

x̃ =
(

1 +M2 cos2 α

β(1 + β)

)
x+M2 cosα sinα

β(1 + β) y

ỹ = M2 cosα sinα
β(1 + β) x+

(
1 +M2 sin2 α

β(1 + β)

)
y

ω̃ = ω

β

,

with β :=
√

1−M2. As a shorthand, we write this transformation

x̃ = Ax, with A :=
(1 +M2 cos2 α

β(1+β)

)
M2 cosα sinα

β(1+β)

M2 cosα sinα
β(1+β)

(
1 +M2 sin2 α

β(1+β)

) .
This Prandtl-Glauert-Lorentz transformation is closely related to the Lorentz transform aris-
ing in special relativity. It is well-known that, when the background coefficients are uniform,
these transformation maps the convected Helmholtz equation to a standard Helmholtz equa-
tion, see eg. [MBAG20, HPN19]. This can be understood as the Lorentz transformation was
introduced as the transformation between two inertial frames that preserves wave equations,
for a deeper insight of the connection between flow acoustics and Lorentzian geometry we
refer to [Vis98]. The analytic solution is given by

pexact(x, ω) = − i

4βH
(1)
0

(
ω

β
|Ax|

)
exp

[
iω

β
Ax · b0

]
where H(1)

0 is the Hankel function of the first kind of order 0 and

r̃ :=
√
x̃2 + ỹ2.

Even if there is an analytic solution in this case, we were not able to obtain meaningful
convergence plots due to the bad quality of the PMLs.

Computational cost: In Table 3.9 we have written down the sizes of the linear systems
to solve for the different HDG methods using an interpolation of order 5 for the trace
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variable. To give a reference, we also added the size of the system obtained when solving
the convected Helmholtz equation (3.1) with a continuous finite element method (CG) with
same interpolation degree using the montjoie solver9. We have also added the size of the
system obtained when solving the standard Helmholtz equation with a Local Discontinuous
Galerkin method (LDG), which is a first-order DG method, using the montjoie solver (as
LDG methods are not implemented for the convected Helmholtz equation in montjoie).

Method HDG-qh HDG-σh HDG+ CG LDG
k 5 5 4 5 5
nnz 12 237 750 12 237 750 6 243 750 1 353 750 46 862 808
nnz LU 67 515 161 67 515 161 34 244 845 39 008 186 259 272 979
Ejump 1.4 · 10−3 1.0 · 10−3 8.9 · 10−4

Table 3.9: Size of the linear system to solve for the Dirac in a uniform flow

We can see that using HDG instead of LDG leads to significantly smaller linear systems. For
the convected Helmholtz equation, it is possible to use the CG method which less expensive
than the HDG ones, see [CD16]. However, we would like to point out that the CG method is
known to give bad numerical results for more realistic aeroacoustic models such as Galbrun’s
equation, see [CD18].

Local refinement: To handle the point-sources, a mesh with a local refinement around
the source should be used, otherwise artifacts could be present in the numerical solution.
With the HDG method, those artifacts seem really limited when no local refinement is used,
see Figure 3.25.

−0.1

−5 · 10−2

0

5 · 10−2

0.1

Figure 3.25: Point-source without local refinement

Illustrative example: To show that our method can handle more complex simulations,
we consider the same test-case as before but with two point-sources located near the origin.
On Figure 3.26, we can still see the changes in the apparent frequency due to the Doppler
effect, but also interference patterns due to the interactions between the two sources.

9montjoie is a versatile and well-tested high-order finite element solver. For more informations about the
numerical method used to solve the convected Helmholtz equation, see http://montjoie.gforge.inria.
fr/helmholtz.php.

http://montjoie.gforge.inria.fr/helmholtz.php
http://montjoie.gforge.inria.fr/helmholtz.php


148 CHAPTER 3. HDG FOR THE CONVECTED HELMHOLTZ EQUATION

−0.1

−5 · 10−2

0

5 · 10−2

0.1

Figure 3.26: Interference between two point-sources

3.6.5 Gaussian jet
In this section we focus on a space-varying flow. We will use a gaussian jet, which is a
common test-case in the literature, see e.g. [MMMP17, Sec. 3]. To work with parameters
and unknowns without dimension, we choose

ρ0 = c0 ≡ 1,
and we consider the following gaussian jet flow

v0 = M0(y)ex, where M0(y) := M∞ + µ exp
(
− y

2

R2

)
,

which is a gaussian perturbation of the uniform flow v0 = M∞ex.
For this simulation, we work with the following values for the parameters

Ophys = (0, 3)× (−1, 1) ; ω = 6π ; s = δ(1,0.5) ;
and

M∞ = 0.1 ; µ = 0.3 ; R = 0.35.
The physical domain Ophys is surrounded by PMLs.
Notice that these kind of jet-flows are not potential flows and should therefore not be used
with the convected Helmholtz equation. However, as discussed in [MMMP17], with this
choice of parameters the vorticity of the flow stays small and can be neglected. The convected
Helmholtz equation is therefore a good approximation of the more realistic models.
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(b) Numerical solution

Figure 3.27: Reph for the gaussian jet, obtained with the HDG+ method
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On Figure 3.27, we can see that there is a phase-shift inside the jet, as it is expected :
this refraction-like effect can be seen in the center-left and center-right parts of the domain
at the limit between the jet and uniform flows. There is also a small Doppler effect as the
apparent frequency changes in the domain : it is different in the the bottom-left part of the
domain and in the center-right one. However this effect is less obvious than in the previous
example as the Mach number is significantly lower.

Conclusion
In this chapter, we have introduced three HDG methods to solve the convected Helmholtz
equation. Two of them are standard HDG methods that use the same polynomial degree
for the approximation of all the unknowns. The third one is less standard and uses a higher
polynomial degree for the scalar unknown and a reduced stabilization process.
For all of those methods, detailed theoretical results on convergence and well-posedness are
provided. It is important to note that we could not obtain the super-convergence prop-
erty for the two standard HDG methods because of convection. We also provided numer-
ical experiments that are consistent with the absence of super-convergence. The HDG+
method achieves optimal convergence. Due to the reduced stabilization this leads to a
"super-convergence like behaviour" as we obtain a convergence rate of k + 2 for the cost of
a HDG method of degree k without post-processing.
During the numerical experiments, it occurred to us that the HDG+ and HDG-σh methods
seemed more robust than the HDG-qh method. In particular, they are less sensitive to the
choice of penalization parameter.
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Appendix

3.A Intermediate results for the error analysis of the
HDG method with diffusive flux

In this appendix we state the intermediate results allowing to adapt the analysis conducted
in Subsection 3.4.3 to prove the convergence of the HDG method stated in Theorem 7.
The proofs are omitted but are very similar to the ones given in Subsection 3.4.3.
The main differences to keep in mind are : s ∈ [1, k+1] instead of s ∈ [1, k+2] and τ = O(1)
instead of τ = O(h−1).

Gradient estimate: this corresponds to Lemma 3.4.3

Lemma 3.A.1:
The following estimate holds

‖∇εph‖Th . ‖ε
q
h‖W0,Th + ‖δqh‖Th + h−

1
2 ‖εph − ε̂

p
h‖∂Th

Energy-like equality: this corresponds to Lemma 3.4.5.

Lemma 3.A.2:
The following energy-like equality holds

‖εqh‖
2
W0,Th − ω

2 ‖εph‖
2
ρ0,K
− 2iω

‖εph − ε̂ph‖2
∂Th +

∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥

2

∂Th


=− ω2 (ρ0δ

p
h, ε

p
h)Th + 2iω (δphb0,∇εph)Th + (W0ε

q
h, δ

q
h)Th + 2ωIm (εphb0,∇εph)Th

+
〈
δqh · n+ 2iω(b0 · n)δ̂ph − 2iωτ(δph − δ̂

p
h) + 2iωτupw(δph − δ̂

p
h), ε

p
h − ε̂

p
h

〉
∂Th

Furthermore if p ∈ Hs(O) and q ∈Ht(O) where s, t ∈ [1, k+ 1] then the following estimate
holds ∣∣∣∣∣∣‖εqh‖2

W0,Th − 2iω
‖εph − ε̂ph‖2

∂Th +
∥∥∥∥∥
(1

2 |b0 · n|
) 1

2
(εph − ε̂

p
h)
∥∥∥∥∥

2

∂Th

∣∣∣∣∣∣
.ω2 ‖εph‖

2
Th + ω ‖εph‖Th

(
‖εqh‖W0,Th + ht ‖q‖t,O + h−

1
2 ‖εph − ε̂

p
h‖∂Th + ωhs ‖p‖s,O

)
+ ‖εqh‖W0,Th

(
ht ‖q‖t,O + ωhs ‖p‖s,O

)
+ h2t ‖q‖2

t,O

+ h−
1
2 ‖εph − ε̂

p
h‖∂Th

(
ωhs ‖p‖s,O + ht ‖q‖t,O

)
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Dual identity: this corresponds to Lemma 3.4.6.

Lemma 3.A.3:
The following dual identity holds

‖εph‖
2
Th =− (W0ε

q
h,πV ξ − ξ)Th + ω2 (ρ0ε

p
h, πW θ − θ)Th + 2iω (∇εph, (πW θ − θ)b0)Th

− 2iω 〈(b0 · n)εph, πW θ − θ〉∂Th
+ (W0δ

q
h,πV ξ)Th − ω

2 (ρ0δ
p
h, πW θ)Th + 2iω (δphb0,∇(πW θ))Th

+ 2iω 〈(b0 · n)ε̂ph − τ (εph − ε̂
p
h) + τupw (εph − ε̂

p
h) , πW θ − PMθ〉∂Th

− 2iω
〈
(b0 · n)δ̂ph − τ(δph − δ̂

p
h) + τupw

(
δph − δ̂

p
h

)
, πW θ − PMθ

〉
∂Th

+ 〈δqh · n, πW θ − PMθ〉∂Th

Dual estimate: this corresponds to Lemma 3.4.7.

Lemma 3.A.4:
Assuming that the regularity assumption (3.75) holds and that ω2h2 ‖ρ0‖∞CregC (where
C is the constant of Theorem 5) is small enough, if p ∈ Hs(O) and q ∈ Ht(O) where
s, t ∈ [1, k + 1] then

‖εph‖Th . ht+1(1 + ω) ‖q‖t,O + hs(1 + ω + ω2) ‖p‖s,O + h(1 + ω) ‖εqh‖W0,Th

where
h := max

K∈Th
hK
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Absorbing Boundary Conditions for
the convected Helmholtz equation

Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.1 Model problem and geometric settings . . . . . . . . . . . . . . 158

4.1.1 Equation and carrier flow . . . . . . . . . . . . . . . . . . . . . . . 158
4.1.2 Absorbing boundary condition, weak formulation and well-posedness159
4.1.3 Geometric assumptions for the background flow . . . . . . . . . . . 162

4.2 Prandtl-Glauert-Lorentz transformation and approximate ABCs162
4.2.1 Prandtl-Glauert-Lorentz transformation . . . . . . . . . . . . . . . 162
4.2.2 Transformation of the convected Helmholtz equation . . . . . . . . 163
4.2.3 Transformation of the boundary condition . . . . . . . . . . . . . . 165
4.2.4 Outgoing solutions of the convected Helmholtz equation . . . . . . 169
4.2.5 New ABCs for the convected Helmholtz equation in 2D . . . . . . 169

4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . 172
4.3.1 Experiments with a uniform flow . . . . . . . . . . . . . . . . . . . 172
4.3.2 Experiments with a potential flow . . . . . . . . . . . . . . . . . . 177

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
4.A Proof of Lemma 4.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . 181
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Introduction
Domain truncation is an important problem of computational wave dynamics. Indeed in
many applications, the waves propagate in an infinite medium which must be truncated to
a finite one to allow numerical simulation using finite element methods. The introduction
of an artificial boundary should be treated carefully to avoid numerical pollution due to
reflections at the boundary. Among others, the two most popular truncation techniques are
• Perfectly Matched Layers (PMLs), introduced in [Ber94], which consist in surrounding

the computational domain by a layer in which the waves are highly absorbed,
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• Absorbing Boundary Conditions (ABCs), introduced in [EM77], which minimize the
reflected waves generated by waves impinging the boundary introduced for truncating
the computational domain.

It is worth remembering that ABCs are often expressed in terms of non-local operators and
that finding efficient local approximation of those operators is usually a challenging problem.
In this chapter we consider the convected Helmholtz equation which is the simplest model
for acoustic wave propagation in a flow. It has been shown that standard PMLs are un-
stable because of the existence of back-propagating modes. In [BBL03], stable PMLs for
the convected Helmholtz equation were derived, and this work was generalized to more gen-
eral configurations in [MBAG20]. The key ingredient of those stable PMLs is a change of
variables that transforms the convected Helmholtz equation into the standard one. The
so-called Prandtl-Glauert-Lorentz transformation (PGL) of [HPN19] is the most common
example of such a change of variables. Similar work for time-domain acoustics has been
performed in [DJ06]. On the other hand, ABCs for the convected Helmholtz equation in a
waveguide were derived in [Kim14] and [MAGB21]. For industrial applications in which an
exact radiation condition is required, a FEM-BEM coupling that approximates the non-local
Dirichlet-to-Neumann operator has been considered in [CES14, BCD+14].
Herein, we construct a family of local ABCs based on the Prandtl-Glauert-Lorentz transfor-
mation for the convected Helmholtz equation. Those ABCs are constructed from the ABCs
formerly derived for the standard Helmholtz equation in [EM77]. As the Prandtl-Glauert-
Lorentz transformation is only used to compute the impedance operator on the artificial
boundary, the new ABCs are valid for a flow that varies inside the domain but becomes
uniform at infinity. Those new ABCs are efficient for low and intermediate Mach numbers
and are easy to implement in an existing finite-element solver.
This chapter is organized as follows:
• in Section 4.1, we recall some results on the convected Helmholtz equation and pre-

cisely state the assumptions under which the new ABCs are derived,
• in Section 4.2, we use the Prandtl-Glauert-Lorentz transformation to construct the

new ABCs,
• in Section 4.3, we present numerical results to illustrate the performance of the new

ABCs.

4.1 Model problem and geometric settings
In this section, we introduce the convected Helmholtz equation and recall some of its prop-
erties. We also precisely state the assumptions under which the new Absorbing Boundary
Condition are constructed. Finally, we show that on a bounded domain the convected
Helmholtz equation with absorbing boundary conditions is a well-posed problem.

4.1.1 Equation and carrier flow
We consider the following convected Helmholtz equation written in pressure formulation

−ω2p− 2iωv0 · ∇p+ v0 · ∇[v0 · ∇p]− div
(
c2

0∇p
)

= s, (4.1)
where p is the acoustic potential, v0 is the velocity of the carrier flow, c0 is the adiabatic
sound speed and s is the acoustic source.
In this chapter, we use the following convention for time-harmonic solutions

p(x, t) = p(x, ω)e−iωt. (4.2)
To make the notations lighter, the e−iωt factor is omitted.
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As there are several ways to write the convected Helmholtz equation, see [Pie90], we have
chosen the simple form (4.1) as a model problem for this chapter. The construction of the
ABCs presented here can then be adapted to the other forms of the equation without major
difficulties.

Assumptions on the carrier flow. In this chapter we will make the following usual
assumptions on the carrier flow:

Assumption 5 (Conservation of mass):
The velocity v0 satisfies the following mass conservation equation

div (v0) = 0.

Assumption 6 (Subsonic flow):
The carrier flow is subsonic, i.e.

inf
O

(
c2

0 − |v0|2
)
> 0.

Second-order operator: We introduce the matrix

K0 := c2
0Id− v0v

T
0 ,

using Assumption 5, (4.1) can be rewritten as

−ω2p− div (K0∇p+ 2iωpv0) = s. (4.3)

The quantity
σ := −K0∇p− 2iωpv0

is called the total flux and will be convenient to derive absorbing boundary conditions.
Indeed, let Γ be a curve and nΓ its unitary normal vector, then the acoustic energy flux
going through Γ is proportional to σ|Γ · nΓ.

4.1.2 Absorbing boundary condition, weak formulation and well-
posedness

Truncated domain. Equation (4.3) is posed on the free space Rn for n = 2 or 3. Even
if we only present numerical examples in two dimensions, the ABCs derived here are also
valid in dimension 3. However to perform numerical simulation we need to work on a finite
domain. In practice, we introduce a boundary Σ, the so-called artificial boundary, which
limits a region including the support of the acoustic source and thus defines a bounded
computational domain O. The ABC is then set on the artificial boundary Σ.

Boundary condition. There exists an exact boundary condition which makes the artificial
boundary transparent. It can be written as

σ · n+ DtN(p) = 0, on Σ, (4.4)
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where DtN is the Dirichlet-to-Neumann map which is a non-local operator. In the context
of convected acoustics, the quantity σ ·n should be interpreted as −∂np. We have therefore
chosen to call DtN the operator involved in the exact radiation condition.
In this chapter, we will approximate (4.4) by the following local absorbing boundary condition

σ · n+ Zp = 0, on Σ, (4.5)

where Z ∈ C is a local approximation of the DtN-operator which will be determined later.
The condition (4.5) has the form of an impedance boundary condition and we refer to Z as
an impedance-like coefficient.
For now we will make the following assumption on Z and we will later show that it holds.

Assumption 7 (Value of Z):
The value of Z is chosen such that

ImZ 6= ωv0 · n,

and the sign of ImZ does not change on Σ.

Weak formulation: Equation (4.3) and the impedance boundary condition (4.5) lead to
the following problem:

Seek p ∈ H1(O) such that a(p, wh) = `(wh), for all wh ∈ H1(O), (4.6)

where

a(p, wh) :=
∫
O
K0∇p · ∇w∗h + 2iωpv0 · ∇w∗h − ω2pw∗hdx−

∫
∂O
Zpw∗hdσ, (4.7a)

`(wh) :=
∫
O
sw∗hdx. (4.7b)

Notice that this formulation can only be obtained when Assumption 5 is true.

Well-posedness. Before actually showing the well-posedness of the problem (4.6), we
recall the Lemma 4.1.1 from Chapter 3.

Lemma 4.1.1:
Under Assumption 5 and if p ∈ H1(O) and v0 ∈ L∞(O) ∩ C(O), the following identity
holds

Re
∫
O
pv0 · ∇p∗dx = 1

2

∫
∂O

(v0 · n)|p|2dσ.

Using this lemma, we can now prove that the convected Helmholtz equation with absorbing
boundary conditions is a well-posed problem.

Theorem 8 :
Under Assumption 5, Assumption 6 and Assumption 7, the problem (4.6) has a unique
solution p ∈ H1(O).
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Proof : When Assumption 6 holds, K0 is a symmetric positive-definite matrix and its
spectrum is given by

Sp(K0) =
{
c2

0, c
2
0 − |v0|2

}
.

The problem (4.6) is therefore of Fredholm type and existence of the solution will follow
from its uniqueness.
Taking wh = p in (4.7a) and s = 0 in (4.7b) leads to the following energy-like identity∥∥∥∥K 1

2
0∇p

∥∥∥∥2

O
− ω2 ‖p‖2

O + 2iω
∫
O
pv0 · ∇p∗dx−

∫
∂O
Z|p|2dσ = 0, (4.8)

where ‖·‖O is the norm of L2(O).
Taking the imaginary part of (4.8) leads to

2ωRe
∫
O
pv0 · ∇p∗dx− Im

∫
∂O
Z|p|2dσ = 0,

and using Lemma 4.1.1, we have

ω
∫
∂O

(v0 · n)|p|2dσ − Im
∫
∂O
Z|p|2dσ = 0,

which yields ∫
∂O

(ωv0 · n− ImZ)|p|2dσ = 0.

Finally we obtain that p|∂O = 0 if ImZ 6= ωv0 · n and if the sign of ImZ does not change.
On ∂O we have

∇p = (∂np)n+∇∂Op,

where ∇∂O is the tangential gradient on ∂O. As p|∂O = 0, we have ∇∂Op = 0 and therefore

∇p = (∂np)n.

Owing to boundary condition (4.5), we also have

σ · n = 0,

and, as p|∂O = 0,
0 = (K0∇p) · n = (∂np)nTK0n︸ ︷︷ ︸

>0

,

which finally leads to ∂np = 0 as K0 is positive-definite.
To prove the uniqueness of the solution we rely on the unique continuation principle: let P
be a second-order differential operator

P =
n∑

i,j=1
aij

∂2

∂xi∂xj
+

n∑
j=1

aj
∂

∂xj
+ a

that satisfies the ellipticity condition
n∑

i,j=1
aijξiξj > |ξ|2, for all ξ = (ξi)ni=1,

and let S be an hypersurface located at x0 then
Pu = 0
u|S = 0

∂nu|S = 0
=⇒ u = 0 in a neighborhood of x0,

where ∂n is the normal derivative on S. For more details, we refer to [Pro59].
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4.1.3 Geometric assumptions for the background flow
As the absorbing boundary conditions will be constructed using the Prandtl-Glauert-Lorentz
transformation, the background flow must be locally uniform around the artificial boundary.
We therefore make the following assumption.

Assumption 8 (Uniform flow outside O):
There exists a compact K ( O such that v0 and c0 are constant outside K.

Assumption 8 is a reasonable assumption: in practice we can always assume that the
background flow becomes uniform if the artificial boundary is located far away from the
acoustic source. It is also worth noticing that a similar assumption is usually used to derive
ABCs for the standard Helmholtz equation. A sketch of this configuration is given in Figure
4.1.

K

∂K

v0(x, y)

v0 = v∞ex

Figure 4.1: Flow around an aircraft, the flow is uniform outside of K

4.2 Prandtl-Glauert-Lorentz transformation and approx-
imate ABCs

In this section we introduce the Prandtl-Glauert-Lorentz transformation, which is the main
tool for the construction of the new ABCs. We recall that the Prandtl-Glauert-Lorentz
transformation maps the convected Helmholtz equation into the standard one. As for the
Helmholtz equation, the behaviour of the solution of the convected Helmholtz equation
at infinity must be specified to ensure its uniqueness, leading to the notion of outgoing
solution. In this section, we prove that the Prandtl-Glauert-Lorentz transformation of an
outgoing solution of the standard Helmholtz equation is an outgoing solution of the convected
Helmholtz equation. We then show how the boundary conditions are transformed under this
change of coordinates.

4.2.1 Prandtl-Glauert-Lorentz transformation
We define the Lorentz factor

α :=
√

1−M2,
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where M is the Mach-number defined as

M0 := 1
c0
v0, and M := |M0|.

Following [HPN19], we use the following transformation

t̃ = αt+ 1
αc0

(M0 · x) ; x̃ = Ax :=
(

Id + 1
α(1 + α)M0M

T
0

)
x. (4.9)

This transformation called Lorentz transformation in [MBAG20], Prandtl-Glauert trans-
formation in [Cha00] and Prandtl-Glauert-Lorentz transformation in [HPN19]. The term
Lorentz transformation is used as this transformation is close to the Lorentz transformation
arising in special relativity.
Using the Sherman-Morrisson formula [SM50], it is easy to show that

A−1 = Id− 1
1 + α

M0M
T
0 .

We can therefore write the inverse Prandtl-Glauert-Lorentz transformation

t = 1
α
t̃− 1

αc0
(M0 · x̃) ; x = A−1x̃ :=

(
Id− 1

1 + α
M0M

T
0

)
x̃. (4.10)

4.2.2 Transformation of the convected Helmholtz equation
In this subsection, we prove that the Prandtl-Glauert-Lorentz transformation maps the con-
vected Helmholtz equation to the standard Helmholtz equation. The material covered here
is standard and can be found e.g. in [HPN19]. We have added it here for the sake of com-
pleteness. We would like to point out that as the Prandtl-Glauert-Lorentz transformation is
a spacetime transformation, it is easier to work in time-domain. Then we go back to the
frequency domain thanks to a Fourier transform.

Transformation of the time-domain wave equation. Let us consider the time-domain
convected wave equation (

∂

∂t
+ v0 · ∇

)2

p− c2
0∆p = s, (4.11)

where s denotes a source term.

Lemma 4.2.1:
If c0 and v0 are constant, the quantity

p̃(x̃, t̃) := p(x, t), (4.12)

satisfies the following wave equation

∂2
t̃̃t
p̃− c2

0∆̃p̃ = s̃, (4.13)

where ∆̃ is the Laplace operator with respect to x̃ and (x̃, t̃) is defined by (4.9).

Proof : To make the proof more concise, we only consider the case where M0 = Mex.
The other cases reduce to this one by rotation. In this case, (4.11) can be rewritten as

∂2p

∂t2
+ 2c0M∂2

txp− c2
0

(
1−M2

) ∂2p

∂x2 − c
2
0
∂2p

∂y2 = s, (4.14)
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and the Lorentz factor is still given by

α =
√

1−M2.

Using the chain rule and (4.10), we have

∂2
t̃̃t
p̃ = 1

α2
∂2p

∂t2
, (4.15a)

∂2
x̃x̃p̃ = M2

α2c2
0

∂2p

∂t2
− 2M
αc0

(
1− M2

1 + α

)
∂2
txp+

(
1− M2

1 + α

)2
∂2p

∂x2 , (4.15b)

∂2
ỹỹp̃ = ∂2p

∂y2 . (4.15c)

We notice that

1− M2

1 + α
= 1−M2 + α

1 + α
= α(1 + α)

1 + α
= α. (4.16)

As (4.13) can be rewritten as

∂2
t̃̃t
p̃− c2

0∂
2
x̃x̃p̃− c

2
0∂

2
ỹỹp̃ = s̃,

using (4.15a)–(4.15b)–(4.15c) and (4.16) immediately leads to (4.14).

Transformation of time-harmonic solutions. We will now derive a relationship be-
tween the solutions in the frequency domain.

Lemma 4.2.2:
Let p be a solution of (4.3) and let p̃ be defined by (4.12). If c0 and v0 are constant, the
following identity holds

F [p̃](x̃, ω̃) = α exp
[
iω
M0 · x
α2c0

]
F [p](x, ω), (4.17)

where F denotes the Fourier transform with respect to time and the relationship between
the frequencies is

ω̃ = ω

α
. (4.18)

The same identity holds for the source-term s, i.e.

F [s̃](x̃, ω̃) = α exp
[
iω
M0 · x
α2c0

]
F [s](x, ω).

Proof : As discussed in (4.2) we chose the e−iωt convention for time-harmonic solutions, we
shall therefore use the following convention for the Fourier transform with respect to time

F [p](x, ω) :=
∫
R
p(x, t)eiωtdt.

Let us begin with the solution in Lorentz coordinates, the frequency domain solution is given
by

F [p̃](x̃, ω̃) =
∫
R
p̃(x̃, t̃)eiω̃t̃dt̃,
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and (4.9) implies

=
∫
R
p̃(x̃, t̃)eiω̃αt exp

(
iω̃
M0 · x
αc0

)
αdt,

and we have

= α exp
(
iω̃
M0 · x
αc0

)∫
R
p(x, t)eiαω̃tdt.

Finally, we get that

F [p̃](x̃, ω̃) = α exp
(
iω̃
M0 · x
αc0

)
F [p](x, αω̃), (4.19)

Taking ω = αω̃ in (4.19) leads to (4.17) and (4.18).
To summarize, when c0 and v0 are constant, then Lemma 4.2.1 and Lemma 4.2.2 imply
that the Prandtl-Glauert-Lorentz transformation maps the convected Helmholtz equation
(4.3) into the following Helmholtz equation

−
(
ω

α

)2
p̃− c2

0∆̃p̃ = s̃.

4.2.3 Transformation of the boundary condition
We will now focus on how the boundary conditions are changed under the Prandtl-Glauert-
Lorentz transformation.
We denote by Σ the artificial boundary in physical coordinates and Σ̃ the artificial boundary
in Lorentz coordinates. We will choose a circle centered on the origin for Σ̃, Σ will therefore
be an ellipse. An example is depicted on Figure 4.2.

−2 −1 0 1 2
−2

−1

0

1

2 Σ̃
Σ

Figure 4.2: Σ and Σ̃ for M0 = [0.6 0.2]T and R = 2

More precisely, the following lemma holds.
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Lemma 4.2.3:
Let R > 0. If the artificial boundary in Lorentz coordinates satisfies

Σ̃ =
{
x̃
∣∣∣ |x̃|2 = R2

}
=
{
x̃ = R (cos(t)ex + sin(t)ey)

∣∣∣ t ∈ S1
}
,

then the artificial boundary in physical coordinates satisfies

Σ =
{
x
∣∣∣ |Ax| = R2

}
=
{
x = R (cos(t)A1 + sin(t)A2)

∣∣∣ t ∈ S1
}
,

where A1 and A2 are the first and second columns of A−1.

Remark 4.2.1: At first glance, the other choice (taking a circle in physical coordinates
and an ellipse in Lorentz coordinates) may seem more natural. However ABCs for the
Helmholtz equation on an ellipsoid are more complicated to implement. If they are derived
using an analytical point of view, those ABCs are expressed using special functions whose
numerical evaluation may be unstable, see [BST12, Sai08]. On the other hand, if a geometric
point of view is used, the resulting ABCs involve curvature operators that are difficult to
approximate, see [BT80, ABB99].

Transformation of the impedance boundary condition. We will now state and prove
the main result of this chapter.

Theorem 9 :
Let p be the solution of

−ω2p− div (K0∇p+ 2iωv0) = s, in O, (4.20a)
σ · n+ Zp = 0, on Σ, (4.20b)

then if v0 and c0 are constant, p̃ defined by (4.17) satisfies

−ω̃2p̃− c2
0∆̃p̃ = s̃, in Õ, (4.21a)

∂ñp̃+ Z̃ p̃ = 0, on Σ̃, (4.21b)

if the impedance operators satisfy

Z(x, ω) = −c
2
0
µ
Z̃(x̃, ω̃) + iωv0 · n, (4.22)

and µ := |A−Tn|−1 is a scaling factor.

Remark 4.2.2: In (4.22) we can see that the impedance-like coefficient for the convected
Helmholtz equation is the impedance coefficient of the standard Helmholtz equation scaled
and shifted with a correction term that takes convection into account.
Proof : The equivalence of the volumetric parts (4.20a) and (4.21a) is a direct consequence
of Lemma 4.2.1 and Lemma 4.2.2. Let us now focus on the boundary conditions (4.20b)
and (4.21b). This is adapted from [HPN19, Sec. 3].
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We assume that Σ and Σ̃ have the following cartesian equations

Σ : {Φ(x) = 0} ,
Σ̃ :

{
Φ̃(x̃) = 0

}
.

Step 1:
Because of the chain rule, we have the following relationship between their normal directions

∇Φ = ∂Φ
∂x

= ∂x̃

∂x

∂Φ̃
∂x̃

= AT ∇̃Φ̃ (4.23)

Let n and ñ be the unit normal vectors to Σ and Σ̃ respectively. We have

ñ = 1
|∇̃Φ̃|

∇̃Φ̃,

which becomes thanks to (4.23)

= 1
|A−T∇Φ|A

−T∇Φ,

then, since ∇Φ = |∇Φ|n, we have

= |∇Φ|
|A−T∇Φ|A

−Tn,

which implies

ñ = µA−Tn,

where µ is a scaling factor that ensures that |ñ| = 1.
Step 2:
We have

A−1M0 =
(

Id− 1
1 + α

M0M
T
0

)
M0 =

(
1− |M0|2

1 + α

)
M0 = αM0.

Starting from [HPN19, Eq. (11)], multiplying by A−1 on the left and by A−T on the right,
we have

c2
0M0M

T
0 − c2

0Id = −c2
0A
−1A−T ⇐⇒ A−1A−T = Id−M0M

T
0 .

Step 3:
We recall that

p̃(x̃, ω̃) = αα exp
[
iω

α2c0
M0 · x

]
p(x, ω).

Using the chain rule, we have

∇̃p = A−T∇p, and ∇̃
[
α exp

[
iω

α2c0
M0 · x

]]
= iω

α2c0
α exp

[
iω

α2c0
M0 · x

]
A−TM0,
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and therefore

∂ñp̃ = ñ · ∇̃p̃

= α exp
[
iω

α2c0
M0 · x

]
ñT

(
A−T∇p+ iω

α2c0
pA−TM0

)
= α exp

[
iω

α2c0
M0 · x

]
µnTA−1

(
A−T∇p+ iω

αc0
pM0

)
= α exp

[
iω

α2c0
M0 · x

]
µnT

(
(Id−M0M

T
0 )∇p+ i

ω

c0
pM0

)

= α exp
[
iω

α2c0
M0 · x

]
µ

c2
0
nT

K0∇p+ 2iωpv0︸ ︷︷ ︸
=−σ

−iωpv0


= α exp

[
iω

α2c0
M0 · x

]
µ

c2
0

(Zp− iωpv0 · n)

Using (4.22) and
p(x, ω) = 1

α
exp

[−iω
α2c0

M0 · x
]
p̃(x̃, ω̃),

we have

∂ñp̃ = −Z̃ p̃,

which concludes the proof.

Remark 4.2.3: The minus sign in (4.22) comes from the fact that we have chosen to work
with σ ·n which should be interpreted as −∂np. As described in Chapter 3, this choice of
unknown is convenient for constructing mixed finite element methods.

Alternative flux. Up to this point, we have worked with the total flux σ which is a
convenient quantity to work with mixed finite-element methods. However when working with
continuous primal finite-element methods, it is possible to obtain a symmetric formulation,
which would lead to an alternative boundary flux [HPN17, HPN19, LMG+20]. This flux is

g := −c2
0∇p+ (−iωp+ v0 · ∇p)v0 = −K0∇p− iωpv0.

This alternative flux is related to σ by

g = σ + iωpv0,

and we can define the following ABC

g · n+ Zgp = 0.

Corollary 4.2.1:
The impedance operator Zg satisfies

Zg(x, ω) = −c
2
0
µ
Z̃(x̃, ω̃).

The ABCs derived here can therefore be easily adapted to other finite-element formulations.
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4.2.4 Outgoing solutions of the convected Helmholtz equation
The existence of outgoing solutions for an equation is the key condition for obtaining absorb-
ing conditions that can give well-posed boundary problems. In this section, we will prove
that the notion of outgoing solution for the convected Helmholtz equation can be inher-
ited from the one for the standard Helmholtz equation through the Prandtl-Glauert-Lorentz
transformation.

Lemma 4.2.4:
The Prandtl-Glauert-Lorentz transformation maps outgoing solutions of the convected
Helmholtz equation to outgoing solutions of the Helmholtz equation. More precisely, the
following diagram is commutative

pconv(x, t) pconv,ω(x)

p̃std(x̃, t̃) p̃std,ω̃(x̃)

PGLt

t→∞

t̃→∞

PGL−1
ω

where pconv and p̃std are the time-domain solutions of the convected and standard wave equa-
tions, and pconv,ω and p̃std,ω̃ are outgoing solutions of the convected and standard Helmholtz
equations. In particular, we have

p̃std,ω̃(x̃) = α exp
[
iω
M0 · x
α2c0

]
pconv,ω(x).

This result is proven by using the limiting amplitude principle which consists in studying
the long-term behaviour of the time-domain solution with the following source term

g(x, t) =
{
s(x)e−iωt, if t > 0

0, if t 6 0
,

where s is a function in L2(O) with compact support. As the proof of this lemma is rather
long and technical, it is given in Appendix 4.A.

4.2.5 New ABCs for the convected Helmholtz equation in 2D
In this section, we derive the practical values used for the impedance-like operators for the
convected Helmholtz equation from Absorbing Boundary Conditions formerly derived for
the Helmholtz equation.

Lorentz ABCs

In this section, we recall some absorbing boundary conditions on a circle for the Helmholtz
equation. The ABCs of this section are specific to the 2D setting, however the extension to
3D is straightforward as the result of Theorem 9 holds for any dimension. Notice that even
if Theorem 9 is stated for a uniform flow, the new Absorbing Boundary Conditions can be
used in the more general case described by Assumption 8. Indeed as the Prandtl-Glauert-
Lorentz transformation will only be used to construct the impedance operator, the carrier
flow only needs to be locally uniform close to the artificial boundary, which we can always
assume if the boundary is located far away from the source. Those conditions will define the
Z̃ operator applied on Σ̃. The value of Z will then be obtained using the transformation of
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the time-harmonic solutions described in Lemma 4.2.2 and the transformation of impedance-
like coefficients described in Theorem 9.
We will consider the Engquist-Madja absorbing boundary conditions, see [EM77], in the
Lorentz variable.
We assume that the artificial boundary in Lorentz coordinates Σ̃ is a circle of radius R.

Proposition 4.2.1:
The ABCs constructed as the Prandtl-Glauert-Lorentz transformation of the Engquist-Madja
ABCs are
• ABC of order 0:

σ · n+ Zp = 0, with Z := i

(
c0

αµ
+ v0 · n

)
ω, (ABC0)

• ABC of order 1:

σ · n+ Zp = 0, with Z := −c
2
0

2µR + i

(
c0

αµ
+ v0 · n

)
ω. (ABC1)

As a comparison point, the ABC that selects the outgoing planewaves that are locally or-
thogonal to the boundary is

σ · n+ Zp = 0, with Z := i(c0 + v0 · n)ω. (ABC-PW)

For all of those three ABCs, Assumption 7 holds and (ABC0), (ABC1) and (ABC-PW) all
lead to a well-posed problem.

ABC of order 0 The zeroth order ABC reads(
∂ñ − i

ω̃

c0

)
p̃ = 0.

The impedance-like operators are therefore defined by

Z̃ := −i ω̃
c0

and Z := i

(
c0

αµ
+ v0 · n

)
ω. (4.24)

It is now clear that Assumption 7 holds, so the ABC (4.24) leads to a well-posed problem.
In the remaining of this chapter, this ABC will be called ABC0.

ABC of order 1 The first order ABC reads(
∂ñ − i

ω̃

c0
+ 1

2R

)
p̃ = 0.

The impedance-like operators are therefore defined by

Z̃ := −i ω̃
c0

+ 1
2R and Z := −c

2
0

2µR + i

(
c0

αµ
+ v0 · n

)
ω. (4.25)

Once again it is clear that Assumption 7 holds, so the ABC (4.25) also leads to a well-posed
problem. In the remaining of this chapter, this ABC will be called ABC1.
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Plane-wave ABC

To dispose of comparison elements, we will derive an absorbing boundary condition that
selects outgoing plane-waves that are locally orthogonal to the artificial boundary Σ. In the
remaining of this chapter, it will be called ABC-PW.
We begin by computing the plane waves for the convected Helmholtz equation (4.1). We
write p as

pPW = p0e
iκ·x

where p0 ∈ C and where κ is the wave vector.
We can rewrite (4.1) as

p0
[
−ω2 + 2ωv0 · κ+ κTK0κ

]
= 0,

and therefore
−ρ0ω

2 + 2ωρ0v0 · κ+ ρ0c
2
0|κ|2 − ρ0(v0 · κ)2 = 0. (4.26)

As we only have one equation for two unknowns, we make the following assumptions

κ := κ

[
cos θ
sin θ

]
, where θ ∈ [0, 2π) is assumed to be known,

v0 := Mc0

[
cos θ0
sin θ0

]
, where θ0 ∈ [0, 2π).

With those assumptions, (4.26) becomes

−ω2 + 2ωκMc0 (cos θ0 cos θ + sin θ0 sin θ) + c2
0κ

2 −M2c2
0κ

2 (cos θ0 cos θ + sin θ0 sin θ)2 = 0,

or equivalently

−ω2 + 2ωκMc0 cos(θ − θ0) + c2
0κ

2
(
1−M2 cos2(θ − θ0)

)
= 0.

Solving this last equation for κ leads to the two following solutions

κ− = −ω
c0(1−M cos(θ − θ0)) and κ+ = ω

c0(1 +M cos(θ − θ0)) .

Notice that κ can be rewritten as

κ = κ±
Mc0

(
cos(θ − θ0)v0 + sin(θ − θ0)v⊥0

)
.

The plane-wave solutions of (4.3) are therefore

pPW = p0e
iκ±·x, with κ± = ±ω

c0(1±M cos(θ − θ0)) ,

and the total flux σPW therefore satisfies

σPW = −ic0κ±
M

(
(1−M2) cos(θ − θ0)v0 + sin(θ − θ0)v⊥0

)
p0e

iκ·x.

As we want to select plane-waves that are locally orthogonal to the artificial boundary Σ,
we have

n = κ±
|κ±|

=
[
cos θ
sin θ

]
,

leading to
v0 · n = Mc0 cos(θ − θ0), and v⊥0 · n = Mc0 sin(θ − θ0).
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We then have

σ · n = −iωc0 (1±M cos(θ − θ0)) p = −iω (c0 ± v0 · n) p.

We can now define the impedance-like operator Z as

Z = −σPW · n
pPW

= iω(c0 + v0 · n),

which leads to (ABC-PW)
σ · n+ iω(c0 + v0 · n)p = 0.

We have chosen the ABC with the + sign as a consequence of the convention e−iωt that we
use for time-harmonic solutions .
Once again Assumption 7 holds, so using this ABC leads to a well-posed problem.

4.3 Numerical experiments
The numerical experiments of this section will be performed using the HDG-σ method of
Chapter 3, which uses the following first-order in space and second-order in frequency
formulation:

σ +K0∇p+ 2iωpv0 = 0,
−ω2p+ div (σ) = s.

As the total flux σ is an unknown of the method, it is very natural to work with the absorbing
boundary condition (4.5).
This method has been implemented in the hawen solver, see [Fau21].

4.3.1 Experiments with a uniform flow
We consider a point-source in a uniform flow

M0 := M

[
cos θ0
sin θ0

]
, s = δ0, c0 = 1, ω = 6π.

Using Lemma 4.2.2 and standard theory on the Helmholtz equation we can express the
reference solution as

p̃ref(x̃, ω̃) = i

4H
(1)
0 (ω̃r̃),

which leads to
pref(x, ω) = i

4αH
(1)
0

(
ω

α
|Ax|

)
exp

(
− iω

α2c0
M0 · x

)
. (4.27)

Unless stated otherwise, we will use θ0 = π
4 in this section as it leads to a circular artificial

boundary in both physical and PGL coordinates. The effect of θ0 will only be illustrated in
the end of this section.

Validation of the ABCs.

We define the relative error as

EO :=

√√√√∑K,i |Re(ph − pref)(xKi )|2∑
K,i |Re(pref)(xKi )|2 ,

where ph is the numerical solution and (xKi )i are the degrees of freedom in element K ∈ Th.
As the solution pref is singular at x = (0, 0), the error will be computed on O\B(0, ρ) where
B(0, ρ) is the open ball centered on x = 0 with radius ρ = 2h.



4.3. NUMERICAL EXPERIMENTS 173

Low Mach number. The relative error EO for various values of R is given in Table 4.1
for a low Mach number M = 0.4. In this case, we can see that the three ABCs perform well,
even if the two PGL-based ABCs ((ABC0) and (ABC1)) perform better than (ABC-PW).
As expected, (ABC1) performs better than (ABC0) and for M = 0.4, we can see that a
relative error of ∼ 0.1% is obtained even with R = 0.5.

R (ABC0) (ABC1) (ABC-PW)
0.5 3.49% 0.11% 4.69%
1.0 1.73% 0.15% 4.57%
1.5 1.16% 0.15% 3.89%
2.0 0.86% 0.14% 3.56%

Table 4.1: Relative error EO in the domain for M = 0.4

Intermediate Mach number. In Table 4.2, the relative error EO is computed for several
values of R for M = 0.6. In this case (ABC-PW) performs badly, leading to an error level
of ∼ 10%, whereas the PGL-based ABCs give good numerical results with an error level of
∼ 1%. This is also illustrated in Figure 4.3. Once again (ABC1) performs better than
(ABC0). Indeed (ABC1) leads to an error level below 1% even for very small values of R
whereas a larger R is required to obtain a similar error level with (ABC0).

R (ABC0) (ABC1) (ABC-PW)
0.5 3.20% 0.91% 10.14%
1.0 1.58% 0.82% 9.02%
1.5 1.17% 0.83% 9.60%
2.0 0.98% 0.75% 8.23%

Table 4.2: Relative error EO in the domain for M = 0.6
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Figure 4.3: Comparison between two ABCs for M = 0.6 and R = 2

To understand the distribution of the error in the domain, we also consider the error in
decibel (dB)

EdB := 20 log10

∣∣∣∣∣ ph
pref + 10−12

∣∣∣∣∣ .
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Notice that we have added absolute values and a small term in the denominator to avoid
invalid values due to floating-point arithmetic inside the logarithm.
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Figure 4.4: Error in dB |EdB| in the domain for M = 0.6 and R = 2

In Figure 4.4, the error in decibel in plotted for (ABC1) and (ABC-PW) for M = 0.6 and
R = 2. For (ABC1), we cannot really see a pattern for the error distribution. For (ABC-PW)
however there is a clear pattern: the ABC performs better in the top-right and bottom-left
parts of the domain. This can be understood as this ABC is constructed to select outgoing
plane-waves that are locally orthogonal to the boundary. By looking at Figure 4.3, we can
see that p is almost orthogonal to the boundary in the top-right and bottom-left parts of the
domain where (ABC-PW) performs well. However due to the presence of convection, p is
clearly not orthogonal to the boundary in the top-left and bottom-right parts of the domain,
where ABC-PW exhibits its worst behavior.
To further illustrate this idea, we also consider the local error on the artificial boundary Σ

EΣ := |Re(ph − pref)|Σ| .

This error is depicted in Figure 4.5 for (ABC1) and (ABC-PW). For (ABC-PW), the
same effect as in Figure 4.4 can be seen. For (ABC1) however, we notice that most of
the error is located in bottom part of the domain. The effects of the flow angle θ0 on this
error distribution will be discussed in Table 4.4 at the end of this section. We would like
to point out that the error levels for (ABC1) are one order of magnitude lower than those
of (ABC-PW) as expected.



4.3. NUMERICAL EXPERIMENTS 175

0°

45°

90°

135°

180°

225°

270°

315°

0.00025
0.00050

0.00075
0.00100

0.00125
0.00150

0.00175

(a) (ABC1)

0°

45°

90°

135°

180°

225°

270°

315°

0.001
0.002

0.003
0.004

0.005
0.006

0.007

(b) (ABC-PW)

Figure 4.5: Local error EΣ on Σ for M = 0.6 and R = 2

Large Mach number. For a large Mach number, the use of the PGL-based ABCs leads
to a higher error. It therefore seems natural to consider larger domain, but as it can be
seen in Table 4.3, even for R = 10 the error does not get below 2% with (ABC1). It also
seems that in this case, using (ABC1) instead of (ABC0) does not improve the quality of
the solution.

R (ABC0) (ABC1) (ABC-PW)
3 2.71% 2.69% 16.92%
10 2.06% 2.05% 14.87%

Table 4.3: Relative error EO in the domain for M = 0.8

In Figure 4.6 we have plotted the numerical solution ph obtained with (ABC1) and (ABC-PW)
for the smaller domain. Even if we can see some artifacts in the bottom-left part of the do-
main with (ABC1), the quality of the result is clearly far superior than with (ABC-PW).
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Figure 4.6: Comparison between two ABCs for M = 0.8 with R = 3

In Figure 4.7 we have depicted the numerical solution ph and the error in decibel EdB for
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(ABC1) with R = 10. Even if the relative error EO is of 2.05%, by looking at the plot of EdB
it seems possible to trust the solution far enough from the artificial boundary.

−0.1

−5 · 10−2

0

5 · 10−2

0.1

(a) Numerical solution ph
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Figure 4.7: Results and error for (ABC1) with M = 0.8 and R = 10

Finally we would like to point out that considering a larger domain leads to a much more
expensive problem from a computational point of view. The numerical experiments were
runned on a miriel node of the plafrim cluster1 equipped with 2 dodeca-core Haswell Intel
Xeon E5-2680 v3 with a clock rate of 2.5 GHz and 128 Go of memory. The case in the small
domain with R = 3 ran in 1min, whereas for the test with R = 10, it took 1h15min to run.

Influence of the flow angle

In this section, we try to understand the influence of the flow angle θ0 on the performance of
the ABCs. In Table 4.4 the errors obtained when using (ABC1) are given for various values
of θ0. We can clearly see that EO is smaller when the flow is aligned with one of the axis (for
θ0 = 0 or θ0 = π/2). This can be understood as the change of spatial coordinatesA−1, which
is used to construct the ABCs, is contracting: the domain is smaller in physical coordinates
than in PGL ones. When θ0 = 0 or π/2, this contraction only occurs in one direction,
whereas it occurs in both directions for the other values of θ0. The error is therefore smaller
when the flow is aligned with one of the axis. The maximal error appears to be achieved for
θ0 = π/4 which is the angle with the highest contraction, as both directions are contracted
in the same way.

Flow angle θ0 Error EO
0 1.38 · 10−3%
π/3 0.40%
π/4 0.65%
π/6 0.41%
π/2 1.37 · 10−3%

Table 4.4: Domain error EO for M = 0.6 with (ABC1) and R = 2.5

As the error seems minimal for a flow aligned with one of the axis, performing a rotation
should therefore be considered before using those ABCs. However as the relative error stays
below 1%, results obtained for other values of θ0 are exploitable.

1See https://www.plafrim.fr.

https://www.plafrim.fr
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Some of the cases of Table 4.4 are depicted in Figure 4.8. On those figures, the elliptical
shapes of the domain can clearly be seen when θ0 6= π/4, as well as the contraction effect
due to the change of coordinates.
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Figure 4.8: Numerical examples for various values of θ0 with M = 0.6 and (ABC1)

Illustrative examples with multiple sources

To illustrate the ability of the ABCs to handle more complex cases, we consider multiple
point-sources in a uniform flow. For the numerical simulations, the following parameters are
used

M = 0.6, θ0 = π

4 , ω = 6π, R = 2.

The sources will be located at (±0.1,±0.1) for the case with two point-sources and at
(±0.1,±0.1) and (±0.1,∓0.1) for the case with four point-sources.
In Figure 4.9 the results obtained with the above parameters and (ABC1) are depicted.
We can clearly see the interference patterns between the sources as well as changes in the
apparent frequency due to the Doppler effect. Those physical phenomena seem to be handled
well by the ABC and it looks like there is no numerical pollution inside the domain

4.3.2 Experiments with a potential flow
In this section, we give illustrative examples where the PGL-based ABCs are used with a
non-uniform flow. As the convected Helmholtz equation is only valid for potential flows, we
focus on the case of a potential flow around a circular obstacle.



178 CHAPTER 4. ABCS FOR THE CONVECTED HELMHOLTZ EQUATION
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Figure 4.9: Interferences between multiple point-sources for M = 0.6 with (ABC1)

We have constructed ABCs for an artificial boundary Σ centered on the source. The expres-
sion for the potential flow should therefore be translated as it is usually written for a circular
obstacle located at (0, 0).
We assume that the obstacle has a radius of RC and its center is located at xC = (xC , yC).
For a point x = (x, y), we define the translated polar coordinates around xC by

r := |x− xC |, and θ := arctan
(
y − yC
x− xC

)
.

Let M∞ be the Mach number of the flow at infinity, the potential flow is naturally expressed
in the previous polar coordinates by

v0 := M∞

[(
1− R2

C

r2

)
cos θer −

(
1 + R2

C

r2

)
sin θeθ

]
,

leading to the following expression in cartesian coordinates

v0 = M∞

[ (
x− xC
r

(
1− R2

C

r2

)
cos θ + y − yC

r

(
1 + R2

C

r2

)
sin θ

)
ex

+
(
y − yC
r

(
1− R2

C

r2

)
cos θ − x− xC

r

(
1 + R2

C

r2

)
sin θ

)
ey

]
.

The configuration for this case is depicted in Figure 4.10.
In Figure 4.11, we depicted ph obtained with the following parameters

xC = (±1, 0), RC = 0.5, M∞ = 0.4, ω = 6π.

It seems there is no reflection at the artificial boundary Σ and the expected physical phenom-
ena are visible. We can clearly see a change in apparent frequency due to the Doppler effect,
phase-shifts due to a refraction-like effect and an interference pattern due to the reflection
of the wave on the obstacle. For the upstream example, we can also see a silent zone behind
the obstacle as expected. For the downstream case, creeping waves can be seen around the
obstacle, and a constructive interference pattern is visible behind the obstacle.
Similar cases to the downstream one have been considered in [LMG+20] and in [BCD+14].
The results obtained by the authors are depicted on Figure 4.12, and they are very similar
to the ones of this paper, therefore validating the new ABCs that we have constructed.
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Figure 4.10: Sketch of the settings: in blue: streamlines of v0, in red: artificial boundary
Σ, in green: artificial boundary in PGL coordinates, in magenta: point-source, in black:
obstacle
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Figure 4.11: Point-source in a potential flow around a circular obstacle for M∞ = 0.4

(a) Extracted from [LMG+20] (b) Extracted from [BCD+14]

Figure 4.12: Similar cases found in the literature
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Conclusion
In this chapter, we have seen that the use of the Prandtl-Glauert-Lorentz transformation
to construct ABCs for the convected Helmholtz equation leads to very good results for low
and intermediate Mach numbers. For higher Mach numbers, a very large domain seems to
be required and the ABCs constructed in this chapter should be used carefully. Due to the
presence of convection, the usual idea of selecting waves that are locally orthogonal to the
boundary leads to bad results, and the PGL-based ABCs should be preferred. Among those
ABCs, the use of ABC1 instead of ABC0 gives better results for no additional cost. Finally
we would like to point out that the ABCs constructed in this chapter are really easy to
implement in an existing finite-element solver for the convected Helmholtz equation as the
PGL transformation is only required to compute the impedance-like operator Z.
In [Gab03, Chap. 3] and [Bér08, Chap. 5], ABCs for Galbrun’s equation are studied.
Galbrun’s equation is an aeroacoustic model which is more realistic than the convected
Helmholtz equation as it allows for more general background flows. However the ABCs
derived in those dissertations were only illustrated with uniform flows for which the two
models are equivalent. This can clearly be seen as the reference solution used in [Bér08,
p. 129 - last equation] is the same as the one we described in (4.27). Even if various
conditions are described, the best performing one is somewhat similar to the ABC-PW
condition (ABC-PW) of this chapter, and the authors only obtained an error level of 4.5%
for M = 0.3 and ω = 6π. Extending the results of could therefore lead to better ABCs for
Galbrun’s equation.
For the convected Helmholtz equation, usual PMLs are known to be unstable. In [BBL03]
stable PMLs for the convected Helmholtz equation were derived, but only for propagation in
a waveguide. This work was extended to arbitrary geometries in [MBAG20], this formulation
is also based on the Prandtl-Glauert-Lorentz transformation. For high Mach numbers, the
so-called Lorentz PMLs of [MBAG20] seem to perform better than the ABCs of this chapter.
Indeed, the authors were able to obtain an error level fo 1.2% using a smaller domain for
M = 0.8. However this formulation seems difficult to implement in the context of HDG
methods and, as stated in [MAGB21], their efficiency for non-uniform flows remains unclear.
Finally, we would like to point out that similar PMLs have been derived for time-domain
convected acoustic wave equation in [DJ06].

Perspectives Even if we only presented 2D results, the extension of this work to 3D is
straightforward as the result of Theorem 9 relating Z and Z̃ holds for any dimension.
Extension of this work to higher order boundary conditions is possible even if the expected
gain is not clear. As pointed out in [ABB99] higher order ABCs for the Helmholtz equation
are expressed as perturbations of low order ABCS. These perturbations involve curvature
operators (Gaussian and mean curvatures essentially) and their derivatives which are can-
celed for a circle. Hence there is no expected gain in 2D in using higher order ABCs. The
question remains open in 3D.
Extension to more realistic aeroacoustic models seem possible. The most straightforward
model to consider for this extension is Goldstein’s equation [MMMP17] which consists in a
coupling between a convected Helmholtz equation and a vectorial transport equation. The
ABCs of this chapter could be used for the convected Helmholtz equation and it is possible
to obtain an exact outgoing condition for the transport equation. Extension to Galbrun’s
equation [BMM+12] or to the Linearized Euler’s Equations [BBJ02] seems more complicated,
mostly due to the lack of a "standard" equation for which ABCs can be derived.



Appendix

4.A Proof of Lemma 4.2.4
In this appendix, we prove the result of Lemma 4.2.4. As the numerical examples of this
chapter are in 2D, we have chosen to prove the result in the same dimension. Extension
to 3D is straightforward and would involve the 3D Green functions instead of the Hankel
functions.
Proof : This result is proven by using the limiting amplitude principle which consists in
studying the long-term behaviour of the time-domain solution with the following source term

g(x, t) =
{
s(x)e−iωt, if t > 0

0, if t 6 0
,

where s is a function in L2(O) with compact support.
Step 1: Green functions in time-domain.
The Green function for the two-dimensional acoustic wave-equation in time-domain reads

Gstd(x, t) =
H
(
t− r

c0

)
2π
√
t2 − r2

c2
0

,

where H is the Heaviside function and r = |x|. For the proof, we refer to [DJ06, Th. 1] or
[Ver10, Sec. A.4.2].
The Green function for the convected wave equation in time-domain has been computed
in the case M0 = Mex using the Cagniard-de Hoop method in [DJ06, Th. 6]. The case
of a generic M0 reduces to this one by rotation. In [DJ06], the parameter σ denotes the
absorption parameter used in PMLs, so we take σ = 0 leading to A = B = 0 in [DJ06, Th.
6].
With the assumption that M0 = Mex, the Prandtl-Glauert-Lorentz transformation reads

t̃ = αt+ 1
αc0

Mx, x̃ = x

α
, ỹ = y, r̃2 = x̃2 + ỹ2, θ̃ = arctan ỹ

x̃
. (4.28)

We define the following change of variables in space

x̂ = x̃

α
, and ŷ = ỹ

α
. (4.29a)

In polar coordinates, we also define

r̂2 = x̂2 + ŷ2, and θ̂ = arctan ŷ
x̂
. (4.29b)

It is straightforward to check that

r̂ = r̃

α
, and θ̂ = θ̃.

181
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The Green function corresponding to the convected acoustic wave equation reads

Gconv(x, t) =
H(t− r̂

c0
(1−M cos θ̂))

2π
√

1−M2
√

(t+ Mr̂
c0

cos θ̂)2 − r̂2

c0

.

Using the intermediate change of variables (4.29a)–(4.29b) and expressing in terms of the
Prandt-Glauert-Lorentz coordinates (4.28), we have

Gconv(x, t) =
H
(
t+ M

c0
x̂− r̂

c0

)
2πα

√
(t+ M

c0
x̂)2 − r̂2

c2
0

,

=
H
(
t+ M

αc0
x̃− r̃

αc0

)
2πα

√
(t+ M

αc0
x̃)2 − r̃2

α2c2
0

,

=
H
(
t+ M

α2c0
x− r̃

αc0

)
2πα

√
(t+ M

α2c0
x)2 − r̃2

α2c2
0

,

=
H
(

1
α

[
αt+ M

αc0
x− r̃

c0

])
2πα 1

α

√
(αt+ M

αc0
x)2 − r̃2

c2
0

,

=
H
(
t̃− r̃

c0

)
2π
√
t̃2 − r̃2

c2
0

= Gstd(x̃, t̃).
As Gconv is mapped to Gstd through the Prandtl-Glauert-Lorentz transformation, we can
therefore prove that this transform also maps outgoing solutions to the convected Helmholtz
equation to outgoing solutions to the standard Helmholtz equation by using standard argu-
ments of the limiting amplitude principle.
Step 2: Limiting amplitude principle for the standard Helmholtz equation.
We recall that the following identities hold∫ +∞

r

eiωt

2π
√
t2 − r2

dt = 1
2π

∫ +∞

0
eiωr cosh θdθ = i

4H
(1)
0 (ωr), (4.30)

where we used the following change of variables t = r cosh θ and the integral form of the
Hankel function, see [OLBC10, Eq. 10.9.10].
Using the integral representation we have

pstd(x, t) =
∫
R2

∫
R
Gstd(x1, t1)g(x− x1, t− t1)dt1dx1,

using the integral identity (4.30) for the Hanekl function, we have

=
∫
R2

∫ +∞

|x1|
c0

g(x− x1, t− t1)

2π
√
t21 −

|x1|2
c2

0

dt1dx1

and since g(x, t) = s(x)e−iωtH(t), where s is a L2-function with compact support, we obtain

=
∫
R2
s(x− x1)e−iωt

∫ t

|x1|
c0

eiωt1

2π
√
t21 −

|x1|2
c2

0

dt1dx1

=
∫
R2
s(x− x1)e−iωt

[
i

4H
(1)
0

(
ω

c0
|x1|

)
+ rstd

]
dx1
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where rstd(x1, t) = −
∫+∞
t

eiωt1

2π
√
t21−

|x1|2

c2
0

dt1 with t > |x1|
c0

,

=
∫
R2
s(x− x1)e−iωt i4H

(1)
0

(
ω

c0
|x1|

)
dx1 + Rstd,

and

Rstd(x, t) = e−iωt
∫
R2
s(x−x1)rstd(x1, t)dx1 = −e−iωt

∫
R2
s(x−x1)

∫ +∞

t

eiωt1

2π
√
t21 −

|x1|2
c2

0

dt1dx1.

We now prove that Rstd(x, t) −−−−→
t→+∞

0. The first step is to show that the integral defining
rstd is actually finite-valued. We have

rstd(x1, t) :=−
∫ +∞

t

eiωt1

2π
√
t21 −

|x1|2
c2

0

dt1

=− lim
A→+∞


 eiωt1

2iπω
√
t21 −

|x1|2
c2

0


A

t

+
∫ A

t

t1e
iωt1

2π
(
t21 −

|x1|2
c2

0

) 3
2

dt1


<+∞,

as

lim
A→+∞

eiωA

2iπω
√
A2 − |x1|2

c2
0

= 0, and

∣∣∣∣∣∣∣∣
t1e

iωt1

2π
(
t21 −

|x1|2
c2

0

) 3
2

∣∣∣∣∣∣∣∣ = t1

2π
(
t21 −

|x1|2
c2

0

) 3
2
∼

t1→∞

1
t21
.

We can therefore express rstd as

rstd(x1, t) = eiωt

2iπω
√
t2 − |x1|2

c2
0

−
∫ +∞

t

t1e
iωt1

2π
(
t21 −

|x1|2
c2

0

) 3
2

dt1

and Rstd as

Rstd(x, t) =
∫
R2

s(x− x1)

2π
√
t2 − |x1|2

c2
0

dx1 + e−iωt
∫
R2
s(x− x1)

∫ +∞

t

t1e
iωt1

2π
(
t21 −

|x1|2
c2

0

) 3
2

dt1dx1.

We can now show that both of these quantities vanish at infinity. Let us first focus on the
first term in Rstd ∫

R2

s(x− x1)

2π
√
t2 − |x1|2

c2
0

dx1.

As we are interested in the limit as t → +∞ and as the space integral is over a compact
domain, we can assume that

3t2
4 >

|x1|2

c2
0
,

which leads to
|s(x− x1)|

2π
√
t2 − |x1|2

c2
0

<
|s(x− x1)|

π|t|
,
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and we have

∫
R2

∣∣∣∣∣∣∣∣
s(x− x1)

2π
√
t2 − |x1|2

c2
0

∣∣∣∣∣∣∣∣ dx1 6
1
π|t|

∫
R2
|s(x− x1)|dx1 −−−−→

t→+∞
0,

as the last integral is over a compact domain. By taking the limit in the previous inequality,
we have

lim
t→+∞

∫
R2

∣∣∣∣∣∣∣∣
s(x− x1)

2π
√
t2 − |x1|2

c2
0

∣∣∣∣∣∣∣∣ dx1 = 0.

We can now work on the second term.
As we are interested in the limit as t → +∞ and as the space integral is over a compact
domain, we can assume once again that

3t21
4 >

3t2
4 >

|x1|2

c2
0
,

which leads to
t1

2π
(
t21 −

|x1|2
c2

0

) 3
2
<

t1
π
4 t

3
1

= 4
πt21

.

We therefore have

∫ +∞

t

∣∣∣∣∣∣∣∣
t1e

iωt1

2π
(
t21 −

|x1|2
c2

0

) 3
2

∣∣∣∣∣∣∣∣ dt1 <
4
π

∫ +∞

t

1
t21

dt1 = 4
πt
−−−−→
t→+∞

0.

Finally we have

∫
R2
|s(x− x1)|

∫ +∞

t

∣∣∣∣∣∣∣∣
t1e

iωt1

2π
(
t21 −

|x1|2
c2

0

) 3
2

∣∣∣∣∣∣∣∣ dt1dx1 6
∫
R2
|s(x− x1)| 4

πt
dx1

6
4
πt

∫
R2
|s(x− x1)|dx1 −−−−→

t→+∞
0.

Notice that the last integral is finite as the support of s is compact. By taking the limit in
the previous inequalities, we have

lim
t→+∞

∫
R2
|s(x− x1)|

∫ +∞

t

∣∣∣∣∣∣∣∣
t1e

iωt1

2π
(
t21 −

|x1|2
c2

0

) 3
2

∣∣∣∣∣∣∣∣ dt1dx1 = 0.

We therefore have
lim
t→+∞

|Rstd(x, t)| = 0, ∀x ∈ R2.

Now, we define the time-harmonic Green function by

Wstd(x, ω) = i

4H
(1)
0

(
ω

c0
|x|
)
.
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We end up with the limiting amplitude principle

lim
t→∞

∥∥∥pstd(x, t)− pstd,ω(x)e−iωt
∥∥∥ = 0,

where pstd,ω := Wstd(·, ω) ∗ s is the outgoing solution of the standard Helmholtz equation.
Step 3: Limiting amplitude principle for the convected Helmholtz equation. We have

p(x, t) =
∫
R2

∫
R
Gconv(x1, t1)g(x− x1, t− t1)dt1dx1

=
∫
R2

∫
R
Gstd(x̃1, t̃1)g

(
A−1(x̃− x̃1), 1

α
(t̃− t̃1) + 1

αc0
M0 · (x̃− x̃1

)
dt̃1dx̃1

=
∫
R2

∫ +∞

|x̃1|
c0

g
(
A−1(x̃− x̃1), 1

α
(t̃− t̃1)− 1

αc0
M0 · (x̃− x̃1)

)
2π
√
t̃21 −

|x̃1|2
c2

0

dt̃1dx̃1

using that g(x, t) = s(x)e−iωtH(t), where s is a function with compact support,

=
∫
R2
s(A−1(x̃− x̃1))e−iω( 1

α
t̃− 1

αc0
M0·x̃)

e
−i ω

αc0
M0·x̃1

∫ t̃−M0
c0
·(x̃−x̃1)

|x̃1|
c0

ei
ω
α
t̃

2π
√
t̃21 −

|x̃1|2
c2

0

dt̃1dx̃1

=
∫
R2
s(A−1(x̃− x̃1))e−iω( 1

α
t̃− 1

αc0
M0·x̃)

e
−i ω

αc0
M0·x̃1

[
i

4H
(1)
0

(
ω

αc0
|x̃1|

)
+ rconv

]
dx̃1

=
∫
R2

1
α
s(x− x1)e−iωte−i

ω
α2c0

M0·x1 i

4H
(1)
0

(
ω

αc0
|Ax1|

)
dx1 + Rconv,

where rconv and Rconv are defined as rstd and Rstd in the previous step. By using similar
arguments to the ones in the previous step, we can show that

lim
t→+∞

‖Rconv(·, t)‖ = 0.

We now define the time-harmonic Green function by

Wconv(x, ω) = 1
α

exp
[
− iω

α2c0
M0 · x

]
i

4H
(1)
0

(
ω

αc0
|Ax|

)
,

and we can also obtain the limiting amplitude principle for the convected Helmholtz equatio

lim
t→∞

∥∥∥p(x, t)− pconv,ω(x)e−iωt
∥∥∥ = 0,

where pconv,ω = Wconv(·, ω) ∗ s is the outgoing solution of the convected Helmholtz equation.
Step 4: Equivalence under Prandtl-Glauert-Lorentz transformation.
We notice that

Wconv(x, ω) = 1
α

exp
[
− iω

α2c0
M0 · x

]
i

4H
(1)
0

(
ω

αc0
|Ax|

)
= 1
α

exp
[
− iω

α2c0
M0 · x

]
Wstd

(
x̃,
ω

α

)
,

We recall that s̃ is defined by

s̃(x̃, ω̃) := α exp
[
iω
M0 · x
α2c0

]
s(x, ω),

and we define
p̃std,ω̃ := Wstd(·, ω̃) ∗ s̃ =

∫
R2
s̃(· − x̃1)Wstd(x̃1, ω̃)dx̃1.
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We have

p̃std,ω̃(x̃) = α exp
[
iω
M0 · x
α2c0

]
pconv,ω(x),

indeed

p̃std,ω̃(x̃) =
∫
R2
s̃(x̃− x̃1)Wstd(x̃1, ω̃)dx̃1,

=
∫
R2
α exp

[
iω
M0 · (x− x1)

α2c0

]
s(x− x1)α exp

[
iω
M0 · x1

α2c0

]
Wconv(x1, ω)dx1

α
,

= α exp
[
iω
M0 · x
α2c0

] ∫
R2
s(x− x1)Wconv(x1, ω)dx1.

So the outgoing solutions to the convected Helmholtz equation are mapped to outgoing
solution to the standard Helmholtz equation through the Prandtl-Glauert-Lorentz transfor-
mation.
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Chapter 5

First steps toward the construction of
a computational framework for
realistic simulations of helioseismic
waves
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Introduction
In this chapter, we perform some illustrative numerical simulations to show how the HDG
solver introduced in Chapter 3 could be used to perform pure acoustic simulation with
solar-like parameters. We will then describe the difficulties encountered when trying to
extend this solver to the more realistic Galbrun’s equation.

5.1 Solar-like numerical simulations
As discussed in the introduction, the convected Helmholtz equation can be used to study
the propagation of pure acoustic waves, or p-modes, inside the Sun. This simple model has

191



192 CHAPTER 5. TOWARDS REALISTIC SIMULATIONS

already been studied in e.g. [GBD+17] using the numerical methods described in [CD16].
In this section, we will show that the HDG solver described in Chapter 3 can be used to
perform numerical simulation in solar-like settings.

Evaluation of the physical parameters. Let R� = 696340 · 103m be the solar radius.
For this application, we use scaled coordinates so the computational mesh is a circle of
radius 1.0007126. The background physical parameters ρ0 and c0 come from the Model S of
[CDA+96]1. For r 6 1, the Model S describes the solar interior, and for r > 1 it describes
the solar atmosphere. They are interpolated in the computational domain using a spline
representation and converted into SI units instead of the cgs units used in [CDA+96]. As no
velocity field is provided by the Model S, we have chosen to use an orthoradial flow

v0 = Mc0eθ,

where the Mach number M is chosen so that there is no convection in the radiative zone
(0 6 r 6 0.6R�) and the velocity |v0| is 30% of the sound-speed c0 in the convection zone
(r > 0.6R�). This choice of velocity field also satisfies the mass-conservation property

div (v0) = 0.

Nondimensionalization. As we are interested in waves with a frequency of several mHz,
we need to perform a nondimensionalization of the system. This will allow us to work with
quantities having the same order of magnitude leading to more stable numerical methods.
We denote by x the physical coordinates inside the Sun

0 6 |x| 6 R�,

and by x̃ = x/R� the normalized coordinates used to perform the numerical simulations

0 6 |x̃| = |x|
R�

6 1.

For a quantity f defined in the Sun, we can evaluate it on the mesh using the normalized
coordinates

f̃(x̃) := f(x).
The derivatives in scaled coordinates can then be evaluated using the chain rule, and we
have

∇x = 1
R�
∇x̃, and divx = 1

R�
divx̃.

The convected Helmholtz equation

−ρ0ω
2p− 2iωρ0v0 · ∇xp− divx (K0∇xp) = s,

therefore becomes

−ρ0ω
2p̃− 2iω

R�
ρ0v0 · ∇x̃p̃−

1
R2
�

divx̃ (K0∇x̃p̃) = s,

and we multiply by R2
� leading to

−ρ0ω̃
2p̃− 2iω̃ρ0v0 · ∇x̃p̃− divx̃ (K0∇x̃p̃) = s̃,

where ω̃ = R�ω and s̃ = R2
�s. This multiplication by R2

� allows us to work with the correct
nondimensionalization with minimal changes: we only need to modify the frequency in the
input file, and we do not have to make any change inside the code.

1Values for this model can be obtained here: https://phys.au.dk/~jcd/solar_models/.

https://phys.au.dk/~jcd/solar_models/
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Boundary conditions. For solar applications, the acoustic source must be located in
the vicinity of the surface, so the Prandtl-Glauert-Lorentz based ABCs of Chapter 4 do
not seem to be well-suited for those applications : indeed to use the PGL-based ABCs, we
would need to consider a computational domain centered on the source, and the domain of
interest would represent only about half of the computational domain. We will therefore use
the ABC-PW that selects outgoing plane-waves that are locally orthogonal to the boundary.
Even if the quality of this ABC is lower than the quality of the PGL-based ones, using it here
should be sufficient as our goal is only to illustrate the robustness of the HDG solver to solar-
like configuration. More realistic ABCs for helioseismology were derived in [BCD+17, BFP19]
by carefully studying the solar atmosphere when no velocity field is present. However, it is
not clear how those ABCs should be extended in the presence of a background flow.

Numerical results. On Figure 5.1, some numerical results obtained with HDG-σ method
in those settings are depicted. We have used a complex frequency to model the damping

ω ←− ω + iσ,

and we have considered ω = 2.6·106 after nondimensionalization, which corresponds to about
3mHz in physical values, and three values for σ: σ1 = 2.6 ·105, σ2 = 1.2 ·105 and σ3 = 6.0 ·104

(corresponding to 10%, 5% and 2.5% of ω respectively) after nondimensionalization. As we
can see on Figure 5.1, this is quite effective as a higher value for σ leads to more attenuated
waves in the domain, however it is not clear if this is a good model for the physical damping
process occurring in the Sun. We can also see on those simulations that the acoustic waves
do not propagate through the solar core, as predicted by the asymptotic theory. Finally,
we would like to mention that we had to use a mesh refined near the surface to account for
the rapid variations of the background parameters in this particular area of the Sun. Some
elements on the size of the numerical problem are given in Table 5.1, and we can see that
simulation ran fast even if the problem is quite large.

Number of triangles 214 562
nnz LU 449 043 667
MUMPS time 11 min
Memory used 13 GiB

Table 5.1: Size of the numerical problem

5.2 Approximation of Galbrun’s equation in the low-
regularity settings

As we discussed in Chapter 2, using standard finite-element methods to solve Galbrun’s
equation in H1 leads to bad numerical results, due to the presence of spurious modes. In
a recent work, [HH20], a well-posedness result was obtained for Galbrun’s equation in the
low-regularity space

Hv0(O) :=
{
ξ ∈ L2(O)

∣∣∣ div (ξ) ∈ L2(O), ∇v0ξ ∈ L2(O)
}
.

As this space does not define the behavior of ξ on the resonant lines that we have computed in
Chapter 2, trying to approximate Galbrun’s equation in Hv0(O) instead of H1(O) could
lead to better numerical results. In [HH20] the authors have proven that the variational
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Figure 5.1: Numerical results for the Sun.
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form associated to Galbrun’s equation is weakly T-coercive on Hv0(O), which leads to a
"Fredholm-like" behavior where existence and unicity are equivalent.
As discussed in Chapter 1, the continuity of a function ξ ∈ Hv0(O) on the interface
between two elements depends on the interface:
• if v0 · n = 0: only the normal part of ξ is continuous (coming from the divergence),
• if v0 · n 6= 0: ξ is fully continuous (coming from the directional derivative),

where n is a unitary normal vector to the interface. Because of this non-standard continuity
between elements, it seems rather difficult to devise a conforming method forHv0(O), leading
us to consider HDG methods instead.

5.2.1 Different notions of coercivity
As mentioned in the previous section, the authors of [HH20] used the notion of weak T-
coercivity to prove the well-posedness of Galbrun’s equation in Hv0(O). As this notion is
not very common, we will investigate it in this section. In particular, we will focus on how
weak T-coercivity can be used to devise numerical methods. Let a : V × V −→ C be a
continuous sesquilinear form.

Définition 2 : Coercivity
We say that
• a is V -coercive if

∃α > 0, ∀v ∈ V, |a(v, v)| > α ‖v‖2
V ,

• a is weakly V -coercive if there exists a compact operator c such that a+ c is coercive,
• a is T-coercive if

∃T ∈ L(V ), bijective, ∃α > 0, ∀v ∈ V, |a(v,Tv)| > α ‖v‖2
V ,

• a is weakly T-coercive if a(·,T·) is only weakly coercive in the previous definition.

Remark 5.2.1: In the previous definition, we can notice that the weak notions have the
same structure: they can be decomposed as the strong one and a compact perturbation.
The notion of T-coercivity was introduced to deal with problems with sign-changing coeffi-
cients, see e.g. [CC12]. For applications of this notion to more usual wave problems, we refer
to [Cia12]. Weak T-coercivity is a less common notion, other examples of weakly T-coercive
problems can be found in [Hal19a, Hal19b]. Before further investigating this notion, we recall
the Banach-Necas-Babushka (BNB) theorem on the well-posedness of variational problems,
for the proof we refer to [EG04, Th. 2.6].
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Theorem 10 : Banach-Necas-Babushka
Let a : V × V −→ C be a continuous sesquilinear form and ` ∈ V ′, then the problem

Seek v ∈ V , such that a(v, w) = 〈`, v〉V ′,V for all w ∈ V ,

is well-posed if, and only if, a satisfies
• the inf-sup (or stability) condition

∃α > 0, ∀v ∈ V, sup
w∈V \{0}

|a(v, w)|
‖w‖V

> α ‖v‖V , (5.1)

• the unicity condition
(∀w ∈ V, a(v, w) = 0) =⇒ v = 0.

To discretize continuous problems in the framework of Theorem 10, we usually require that
the stability condition (5.1) holds uniformly, i.e. that there is a sequence of finite-dimensional
Hilbert spaces (Vh)h, where the index h is a small parameter that can be interpreted as the
mesh size2 and Vh ⊂ V , such that

∃α†, ∃h†, ∀h ∈ (0, h†), ∀vh ∈ Vh, sup
wh∈Vh\{0}

|a(vh, wh)|
‖wh‖V

> α† ‖vh‖V .

5.2.2 Numerical approximation of weakly T-coercive problems
In this section, we will focus on the numerical approximation of weakly T-coercive problems
using a conforming method where the discrete space Vh is a subset of the continuous space
V . Some of the most common examples of conforming numerical methods are Lagrange
finite-elements used to discretize problems posed in the Sobolev space H1, and Hermite
finite-elements that are used for problems in the Sobolev space H2. However Discontinuous
Galerkin Methods do not belong to the category of conforming numerical methods.

2Even if there is no mesh in this abstract analysis, in practice the space Vh will be associated with a mesh
of the domain to perform numerical simulations.
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Proposition 5.2.1:
Let V be a Hilbert space endowed with its hermitian product (·, ·)V and associated norm
‖·‖V . Let b : V ×V → C and c : V ×V → C be two continuous sesquilinear forms such that
• b is T-coercive,
• c is compact.

Let a = b+c be a continuous sesquilinear form on V , and ` ∈ V ′. We consider the variational
problem

Seek v ∈ V , such that a(v, w) = 〈`, v〉V ′,V for all w ∈ V . (5.2)

Let (Vh)h be a family of finite-dimensional subsets of V that satisfy the following approxi-
mation property

∀v ∈ V, lim
h→0

(
inf
vh∈Vh

‖v − vh‖V
)

= 0. (5.3)

Assuming that
• the continuous problem (5.2) is well-posed, i.e. the operator A associated with the

sesquilinear form a is invertible with bounded inverse,
• the sesquilinear form b satisfies the following discrete Th-coercivity property

∃α?, β? > 0, ∀h > 0, ∃Th ∈ L(Vh), |||Th||| 6 β? and ∀vh ∈ Vh|b(vh,Thvh)| > α? ‖vh‖2
V ,

(5.4)
then a satisfies the following uniform discrete stability condition

∃α† > 0, ∃h† > 0, ∀h ∈ (0, h†), ∀vh ∈ Vh, sup
wh∈Vh\{0}

|a(vh, wh)|
‖wh‖V

> α† ‖vh‖V . (5.5)

Proof : 3 This result will be proven by contradiction. We assume that

∀α†, ∀h†, ∃h ∈ (0, h†), ∃vh ∈ Vh, sup
wh∈Vh\{0}

|a(vh, wh)|
‖wh‖V

< α† ‖vh‖V ,

which is the negation of (5.5).
We can therefore extract a subsequence (Vhk)k∈N∗ of (Vh)h with limk→+∞ hk = 0, and con-
struct a sequence (µhk)k∈N∗ of strictly positive real numbers that tends to 0 such that

∀k ∈ N∗, ∃v0
hk
∈ Vhk ,

∥∥∥v0
hk

∥∥∥
V

= 1 and sup
whk∈Vhk\{0}

|a(v0
hk
, whk)

‖whk‖V
6 µhk .

In the following, we will denote those quantities by (Vh)h, (µh)h and (v0
h)h to make the

notations lighter.
Step 1: For w ∈ V , h > 0 and ∀wh ∈ Vh, we have

|a(v0
h, w)| =

∣∣∣a(v0
h, wh) + a(v0

h, w − wh)
∣∣∣ ,

6 |a(v0
h, wh)|+

(
Av0

h, w − wh
)
V
,

6 |a(v0
h, wh)|+ |||A|||

∥∥∥v0
h

∥∥∥
V︸ ︷︷ ︸

=1

‖w − wh‖V ,

6 µh ‖wh‖V + |||A||| ‖w − wh‖V .
3The blueprint for this proof was found in an exam given at ENSTA Paris by P. Ciarlet and A.-S.

Bonnet-BenDhia. This result on the approximation of weakly T-coercive problems seems clearer than the
ones usually found in the literature.
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As this inequality holds for any wh ∈ Vh, we can chose wh = P⊥Vh(w) where P⊥Vh denotes the
orthogonal projection onto Vh and we therefore have

‖w − wh‖V = inf
vh∈Vh

‖w − vh‖V .

Using this with the approximation property (5.3) and using that limh→0 µh = 0, we have

∀w ∈ V, lim
h→0

a(v0
h, w) = 0. (5.6)

Step 2: Let w ∈ V , as A is bijective so is its adjoint A∗ and there exists w̃ ∈ V such that
w = A∗w̃. We therefore have

lim
h→0

(
v0
h, w

)
V

= lim
h→0

(
v0
h,A∗w̃

)
V

= lim
h→0

(
Av0

h, w̃
)
V

= 0,

where we used (5.6). We can therefore conclude that

v0
h ⇀
h→0

0.

Step 3: Let h > 0 and let Th be the operator defined in (5.4), we have

|b(v0
h,Thv

0
h)| =

∣∣∣a(v0
h,Thv

0
h)− c(v0

h,Thv
0
h)
∣∣∣ ,

=
∣∣∣a(v0

h,Thv
0
h)−

(
Cv0

h,Thv
0
h

)
V

∣∣∣
6
(
µh +

∥∥∥Cv0
h

∥∥∥
V

) ∥∥∥Thv
0
h

∥∥∥
V
,

where C is the operator associated with the sesquilinear form c.
As C is compact and v0

h converges weakly to 0 in V , we know that

lim
h→0

∥∥∥Cv0
h

∥∥∥
V

= 0.

Using this and the fact that limh→0 µh = 0, we have

lim
h→0
|b(v0

h,Thv
0
h)| = 0,

which leads to a contradiction. Indeed, owing to the discrete T-coercivity of b, we also have

|b(v0
h,Thv

0
h) > α?

∥∥∥v0
h

∥∥∥2

V
,

where the term in the right-hand side does not tend to 0.
Proposition 5.2.1 can be summarized by saying that if a continuous problem has the
structure "T-coercive + compact", then it can be discretized using conforming numerical
methods. We would like to point out that the assumption of the discrete T-coercivity for
b is not too restrictive in the framework of conforming methods. Indeed, it is proven in
[Cia12, Cor. 1] that for those methods, the discrete T-coercivity can be inherited from the
continuous one.
Finally, we would like point out that there are two ways to discretize a T-coercive sesquilinear
form:
• the Petrov-Galerkin approach, where the coercive form b(·,T·) is discretized and the

space of test-functions is different from the space of trial-functions, see [CC12],
• the T-conform mesh approach, where the knowledge of T is translated into constraint

on the mesh so that TVh ⊂ Vh, see [CC12, Sec. 4].
However, it is not clear how those techniques should be translated for "T-coercive + compact"
problems. As the proof presented here to derive an inf-sup condition is not constructive, it
also seems difficult to use this condition directly to devise numerical methods.
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5.2.3 Theoretical gaps for the non-conforming discretization of
(weakly) T-coercive problems

In the previous section, we have seen that the conforming discretization (i.e. with Vh ⊂
V ) of weakly T-coercive problems is possible. However, as we already discussed, devising
conforming approximation spaces for Hv0(O) turns out to be difficult. It seems natural to
consider non-conforming discretization methods instead. Indeed, using a (H)DG method
to solve Galbrun’s equation in Hv0(O) would allow us to require weakly the continuity
constraints associated with this space, leading to a more natural numerical method. To the
best of our knowledge, there is no theory allowing us to do that, and we use this section
to state some of the open questions that should be answered before using such a numerical
method to solve Galbrun’s equation:
• With non-conforming methods, the discrete T-coercivity is not inherited from the

continuous one and should be proven by hand in a discrete mesh-dependent norm,
how is this norm chosen for (H)DG methods ? What is the relationship between the
discrete operator Th and the continuous one T ?
• As the Petrov-Galerkin approach seems difficult for weakly T-coercive problems, how

can we build (weak T)-conform meshes for those problems ?
• How can we use the (discrete) weak T-coercivity to prove the well-posedness of the

local problems of the HDG methods ?
• Proofs of convergence of HDG methods usually rely on some Aubin-Nitsche-like tech-

niques and therefore require very regular solutions, can we prove the convergence of
HDG methods in Hv0(O) ?

Notice that some of those questions are specific to HDG methods as we prefer them over
usual DG methods to reduce the cost of the numerical simulations. Using DG methods
instead may lead to simpler answers to some of those questions, in particular results on
the convergence of DG methods to low-regularity solutions can be found e.g. in [PE12, Sec.
4.2.5]. To the best of our knowledge no such results are available for HDG methods and the
extension of the DG results to HDG does not seem straightforward4.

5.3 Towards the construction of a HDG method for
Galbrun’s equation

Before actually trying to devise a HDG method for Galbrun’s equation, we will consider
a simpler vectorial wave problem: the velocity formulation of the Helmholtz equation. It
is interesting to notice that Galbrun’s equation reduces to this model when there is no
convection and no hydrodynamic terms. We will then present a way to add the convection
terms to the HDG method for this model.

5.3.1 Velocity formulation of the Helmholtz equation
First we consider the following equation

−ρ0ω
2ξ −∇

[
ρ0c

2
0div (ξ)

]
= s, in O, (5.7a)

c2
0div (ξ)− iωξ · n = 0, on ∂O.

4Those results are usually proven for SIPDG-like formulations and extended to other DG flavors by
proving that the method can be locally rewritten as a primal formulation, for HDG methods this can only
be done globally.
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To reach a first-order formulation we introduce the lagrangian pressure

p = −ρ0c
2
0div (ξ) ,

leading to the following system

−ρ0ω
2ξ +∇p = s, in O,

p

ρ0c2
0

+ div (ξ) = 0, in O,
p

ρ0
− iωξ · n = 0, on ∂O.

In [Cha19, Th 3.2] it is proven that if s ∈ L2(O), then ξ ∈Hdiv(O) and p ∈ H1(O).

Weak formulation. By multiplying by a test-function and integrating over an element
K ∈ Th, we obtain the following weak formulation: seek (ξ, p) ∈ Hdiv(K) × H1(K) such
that

−ω2
∫
K
ρ0ξ · r∗hdx+

∫
K
∇p · r∗hdx =

∫
K
s · r∗hdx,∫

K

p

ρ0c2
0
w∗hdx−

∫
K
ξ · ∇w∗hdx+

∫
∂K
ξ · nw∗hdσ = 0,

for all (rh, wh) ∈Hdiv(K)×H1(K).

Approximation spaces. To reach a HDG formulation we introduce the following approx-
imation spaces

Vh(K) := Pk(K) for ξh,
Wh(K) := Pk−1(K) for ph.

The interpolation degree for ξ is higher than the one for p as ξ is the main unknown
of the model. If we assume that ξh ∈ Pk+1(K) it is therefore natural to assume that
ph := div (ξh) ∈ Pk(K).

Numerical trace. As usual with HDG methods, we also introduce a numerical trace.
Although it may look at appealing to use an approximation of ξ · n as it would lead to a
scalar global problem, this oriented quantity is dual-valued on interior edges, indeed we have

ξ · n+ = −ξ · n−, on E ih 3 e = ∂K− ∩ ∂K+,

where the normal continuity of ξ over e was assumed. However, we can notice that

(ξ · n+)n+ = (ξ · n−)n−, on E ih 3 e = ∂K− ∩ ∂K+,

we therefore introduce a new unknown λh which approximates ξ on Eh. We will only require
normal continuity leading to the following stabilization term

iω 〈τ (PM(ξh) · n− λh · n)n,µ〉∂K .

For this new unknown λh we introduce the following approximation space

Mh(e) = Pk−1(e), ∀e ∈ E(K).
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Construction of the local problems. We can now construct the local problems by
approximating the weak formulation on an element K ∈ Th: seek (ph, ξh) ∈ Wh(K)×Vh(K)
such that (

ph
ρ0c2

0
, wh

)
K

− (ξh,∇wh)K + 〈λh · n, wh〉∂K = 0,

−ω2 (ρ0ξh, rh)K + (∇ph, rh)K + iω 〈τ (PM(ξh) · n− λh · n)n, rh〉∂K = (s, rh)K ,(5.10a)

for all (wh, rh) ∈ Wh(K) × Vh(K). The boundary term in (5.10a) corresponds to a weak
enforcement of Dirichlet boundary conditions on ∂K. This amounts to requiring the normal
continuity of ξh between two elements. The projection PM has been added to deal with the
different interpolation degrees of ξh and λh.

Transmission condition. As p ∈ H1(O), we need to enforce the continuity of ph between
two elements. To this end, we introduce the numerical flux for ph

p̂hn := phn+ iωτ (PM(ξh) · n− λh · n)n ∈Mh,

where τ 6= 0 is a stabilization parameter. We have written the flux using p̂hn instead of p̂h to
make things easier when we will add the convection to the model. If one is only interested in
a HDG method for the problem without convection, then a scalar flux can be used instead.
This flux p̂hn satisfies the following transmission condition

〈p̂hn,µ〉∂Th\ΓD + 〈phn+ iω [τξh · n− (τ + 1)λh · n]n,µ〉ΓD = 0, (5.11)

for all µ ∈Mh. Notice that (5.11) enforces the continuity of ph on the interior edges, indeed
we have

〈p̂hn,µ〉∂Th\ΓD =
∑
e∈Ei

h

〈[[p̂h]],µ〉e = 0.

As p̂hn ∈Mh, we have [[p̂h]] ∈Mh and therefore [[p̂h]] = 0.
We can notice that (5.11) also enforces the absorbing boundary condition which has been
discretized as

p̂h − iωλh · n = 0.

Local solvability. We can now prove the local problems are well-posed.

Proposition 5.3.1:
There is a constant Csolv > 0 such that if ωhK < Csolv and τ 6= 0, then the local problem is
uniquely solvable.

Proof : As the local problems are finite-dimensional, we only need to prove the uniqueness
of the solution. If there are two distinct solutions (p1

h, ξ
1
h) and (p2

h, ξ
2
h), then their difference

(ph, ξh) with ph = p2
h − p1

h and ξh = ξ2
h − ξ1

h satisfies the following system(
ph
ρ0c2

0
, wh

)
K

− (ξh,∇wh)K = 0, (5.12a)

−ω2 (ρ0ξh, rh)K + (∇ph, rh)K + iω 〈τPM(ξh) · n, rh · n〉∂K = 0, (5.12b)

with s = λh = 0. We will prove the result by contradiction. We therefore assume that the
system (5.12a)–(5.12b) has a non-zero solution (ph, ξh) ∈ Pk−1(K)×Pk(K).
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Testing (5.12a)–(5.12b) with wh = ph and rh = ξh, and adding the resulting identities after
conjugating (5.12a) leads to∥∥∥∥∥∥ ph√

ρ0c2
0

∥∥∥∥∥∥
2

K

− ω2 ‖√ρ0ξh‖2
K + iω 〈τPMξh · n, PMξh · n〉∂K = 0, (5.13)

where we used that

〈τPMξh · n, ξh · n〉∂K = 〈τPMξh · n, PMξh · n〉∂K , as deg(PMξh) = k − 1,

to obtain the boundary term.
Splitting the energy-like identity (5.13) into its real and imaginary parts, we obtain

Re :

∥∥∥∥∥∥ ph√
ρ0c2

0

∥∥∥∥∥∥
2

K

− ω2 ‖√ρ0ξh‖2
K = 0, (5.14a)

Im : 〈τPMξh · n, PMξh · n〉∂K = 0. (5.14b)

As τ 6= 0, (5.14b) leads to PMξh · n = 0 on ∂K.
Going back to (5.12a) and testing with wh = 1 leads to

{ph} = 0,

where {·} denotes the average value over the element. We can therefore use the following
Poincaré-Wirtinger inequality

‖ph‖K = ‖ph − {ph}‖K 6 ChK ‖∇ph‖K . (5.15)

Testing (5.12b) with rh = ∇ph leads to

‖∇ph‖2
K = ω2 |(ρ0ξh,∇ph)K | 6 ω2 ‖ρ0ξh‖K ‖∇ph‖K .

As we assumed that ph 6= 0 and we have proven that {ph} = 0, we have ∇ph 6= 0 and we
can divide by ‖∇ph‖K to obtain

‖∇ph‖2
K . ω4 ‖√ρ0ξh‖2

K , (5.16)

where the constant hidden in . accounts for the changes involving ρ0.
Going back to (5.14a) we have

ω2 ‖√ρ0ξh‖2
K =

∥∥∥∥∥∥ ph√
ρ0c2

0

∥∥∥∥∥∥
2

K

. ‖ph‖2
K

(by (5.15) . h2
K ‖∇ph‖

2
K

(by (5.16)) . ω4h2
K ‖
√
ρ0ξh‖2

K .

As we have assumed that ξh 6= 0, we can divide by ω2
∥∥∥√ρ0ξh

∥∥∥2

K
to obtain

1 . ω2h2
K ,

if we denote by C2
solv the constant hidden in ., we have

ω2h2
K > C2

solv,

which is in contradiction with the assumption that ωhK < Csolv. We therefore obtained
a contradiction and we can conclude that (ph, ξh) = (0,0). The system (5.12a)–(5.12b) is
therefore uniquely solvable.
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Characterization of the global problem. As we have proven that the local problems
are well-posed, we can introduce the so-called local solvers that satisfy

pKh = PK(λh) + PKsrc(s), and ξK = ΞK(λh) + ΞK
src(s),

where (PK(λh),ΞK(λh)) is defined by(
PK(λh)
ρ0c2

0
, wh

)
K

−
(
ΞK(λh),∇wh

)
K

= −〈λh · n, wh〉∂K , (5.17a)

−ω2
(
ρ0ΞK(λh), rh

)
K

+
(
∇PK(λh), rh

)
K

= −iω
〈
τ(PMΞK(λh)− λh) · n, rh · n

〉
∂K
,(5.17b)

for all (wh, rh) ∈ Wh(K)× Vh(K) and (PKsrc(s),ΞK
src(s)) is defined by(

PKsrc(s)
ρ0c2

0
, wh

)
K

−
(
ΞK

src(s),∇wh
)
K

= 0,

−ω2
(
ρ0ΞK

src(s), rh
)
K

+
(
∇PKsrc(s), rh

)
K

+ iω
〈
τ(PMΞK

src(s) · n), rh · n
〉
∂K

= (s, rh)K ,

for all (wh, rh) ∈ Wh(K)× Vh(K).
We want to obtain a characterization of the global problem

ah(λh,µ) = `(µ).

As they do not depend on λh the terms involving PKsrc(s) and ΞK
src(s) can be moved into

`(µ), and we will only focus on the terms involving PK(λh) and ΞK(λh).

Proposition 5.3.2:
The bilinear form ah of the global problem satisfies

ah(λh,µ) =
PK(λh)√

ρ0c2
0

,
PK(µ)√
ρ0c2

0


Th

− ω2
(√

ρ0ΞK(λh),
√
ρ0ΞK(µ)

)
Th

+ iω
〈
τ
(
PMΞK(λh) · n− λh · n

)
, PMΞK(µ) · n− µ · n

〉
∂Th

+ iω 〈λh · n,µ · n〉ΓD ,

for all µ ∈Mh.

Proof : We recall that the transmission condition (5.11) reads

〈ph + iωτ (PMξh · n− λh · n) ,µ · n〉∂Th − iω 〈λh · n,µ · n〉ΓD = 0,

for all µ ∈Mh, and we rewrite it as

ah(λh,µ) := −
〈

PK(λh) + iωτ
(
PMΞK(λh) · n− λh · n

)
,µ · n

〉
∂Th

+iω 〈λh · n,µ · n〉ΓD = `(µ).

Going back to (5.17a) written for an arbitrary µ ∈ Mh, conjugating it and summing over
the elements, we obtain(

wh,
PK(µ)
ρ0c2

0

)
Th

−
(
∇wh,ΞK(µ)

)
Th

+ 〈wh,µ · n〉∂Th = 0,
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testing this last equation with wh = PK(λh) we obtainPK(λh)√
ρ0c2

0

,
PK(µ)√
ρ0c2

0


Th

−
(
∇PK(λh),ΞK(µ)

)
Th

= −
〈

PK(λh),µ · n
〉
∂Th

.

We therefore have

ah(λh,µ) =
PK(λh)√

ρ0c2
0

,
PK(µ)√
ρ0c2

0


Th

−
(
∇PK(λh),ΞK(µ)

)
Th

− iω
〈
τ
(
PMΞK(λh) · n− λh · n

)
,µ · n

〉
∂Th

+ iω 〈λh · n,µ · n〉ΓD .

Going back to (5.17b), testing with rh = ΞK(µ) and summing over the elements, we have

−ω2
(√

ρ0ΞK(λh),
√
ρ0ΞK(µ)

)
Th

+ iω
〈
τ
(
PMΞK(λh) · n− λh · n

)
n,ΞK(µ) · n

〉
∂Th

= −
(
∇PK(λh),ΞK(µ)

)
Th
,

which leads to

ah(λh,µ) =
PK(λh)√

ρ0c2
0

,
PK(µ)√
ρ0c2

0


Th

− ω2
(√

ρ0ΞK(λh),
√
ρ0ΞK(µ)

)
Th

+ iω
〈
τ
(
PMΞK(λh) · n− λh · n

)
,ΞK(µ) · n− µ · n

〉
∂Th

+ iω 〈λh · n,µ · n〉ΓD .

The desired characterization is obtained by noticing that〈
τ
(
PMΞK(λh) · n− λh · n

)
,ΞK(µ) · n

〉
∂Th

=
〈
τ
(
PMΞK(λh) · n− λh · n

)
, PMΞK(µ) · n

〉
∂Th

,

as deg
[
τ
(
PMΞK(λh) · n− λh · n

)]
= k − 1.

We can clearly see that ah has the expected structure of the discretization of a harmonic
wave equation: it is symmetric but can become indefinite if ω is large enough.
If we take µ = λh we can also obtain the following Gårding-like inequality

Reah(λh,λh) + (ω2 + 1)
∥∥∥√ρ0ΞK(λh)

∥∥∥2

Th
>

∥∥∥∥∥∥PK(λh)√
ρ0c2

0

∥∥∥∥∥∥
2

Th

+
∥∥∥√ρ0ΞK(λh)

∥∥∥2

Th
,

where the right-hand side should be interpreted as a weighted Hdiv(O)-norm. This suggests
that the global problem is uniquely solvable when ω is not a resonant frequency.

5.3.2 Adding the convection to the numerical method
We will now show a way to add convection to this method. We consider the following
equation

−ρ0ω
2ξ − 2iωρ0∇v0ξ + ρ0∇v0 [∇v0ξ]−∇

[
ρ0c

2
0div (ξ)

]
= s,

instead of (5.7a). Contrary to the scalar case, we cannot combine the two second-order terms
into only one anisotropic Laplace operator. We will therefore use a construction similar to
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the extended scheme of [DS19, Sec. 4.4]. We therefore add an additional unknown to the
problem

q := ∇v0ξ.
With this choice, a boundary term involving v0 · n will be added to the problem. Even if
boundary terms involving background coefficient should be avoided as much as possible in
the context of HDG methods, this one can be handled in a way that is quite similar to the
HDG+ scheme for the convected Helmholtz equation.
We obtain the following first-order formulation

−ρ0ω
2ξ − 2iωρ0∇v0ξ + ρ0∇v0q +∇p = s,

p

ρ0c2
0

+ div (ξ) = 0,

ρ0q − ρ0∇v0ξ = 0.

In the previous case, a vectorial unknown was used for the numerical trace to ensure the
solvability of the method for the velocity formulation of the Helmholtz equation. We can
therefore use this vectorial unknown to enforce the full continuity when v0 · n 6= 0 without
having to add a second skeleton unknown associated with q. So even if the size of the local
problems is increased when the convection is added to the model, the size of global problem
(which is the main problem of the HDG method) does not change.
To reach a HDG formulation we introduce the following approximation spaces

Vh(K) := Pk(K) for ξh,
Wh(K) := Pk−1(K) for ph,
Qh(K) := Pk−1(K) for qh.

Depending on the expected regularity for the solution of Galbrun’s equation, multiple choices
are possible for the flux q̂h which has the form

q̂h = (continuity of qh) + (penalization)(PMξh − λh),

where the first term can be:
• (v0 · n)qh to translate full continuity of qh on the interfaces where v0 · n 6= 0,
• (v0 · n)(qh · n)n to translate the normal continuity of qh on the interfaces where
v0 · n 6= 0,

and the penalization term can be chosen among:
• the most natural choice v0 · n to enforce the full continuity of ξ on interfaces where
v0 · n 6= 0,
• some kind of upwinding parameter such as max(v0 · n, 0) which mimics the τupw pa-

rameter of the scalar case.
In the weak formulation the term ∇v0q will appear either as

(∇v0q, rh)K , or − (q, div (v0 ⊗ rh))K + 〈(v0 · n)q, rh〉∂K ,

and both of those expressions make sense only if we assume that

q ∈
{
ξ ∈ L2(O)

∣∣∣ ∇v0ξ ∈ L2(O)
}
.

This is quite similar to what happened in the case without convection: even if we only had
ξ ∈Hdiv(O), it was possible to prove that p = ρ0c

2
0div (ξ) ∈ H1(O). However this additional

regularity for q, or equivalently for ∇v0ξ, is not proven and we should remain careful when
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using it. Indeed, as we have discussed in Chapter 2, requiring too much regularity may
lead to spurious oscillations in the numerical results. It therefore seems natural to consider
the following numerical flux for q

q̂h = (v0 · n) [qh + iωτq(PMξh − λh)] .

Notice that we have multiplied the penalization term by iωτq: the multiplication by iω was
performed to ensure the solvability of the local problems as it was the case for the previous
models, and we added the parameter τq as HDG methods with different polynomial orders
on one element usually require large penalization values to converge.
We notice that

div (ρ0v0 ⊗ v) = ρ0∇v0v + div (ρ0v0)v,

together with the usual continuity equation

div (ρ0v0) = 0,

this leads to
div (ρ0v0 ⊗ v) = ρ0∇v0v,

and we therefore have

(ρ0∇v0ξh,v)K = − (ξh, div (ρ0v0 ⊗ v))K + 〈ρ0(v0 · n)ξh,v〉∂K
= − (ξh,∇v0v)K + 〈ρ0(v0 · n)ξh,v〉∂K ,

introducing the numerical trace λh into the boundary term, we obtain

= − (ξh,∇v0v)K + 〈ρ0(v0 · n)λh,v〉∂K .

We can now construct the local problems: seek (ph, qh, ξh) ∈ Wh(K)×Qh(K)×Vh(K) such
that (

ph
ρ0c2

0
, wh

)
K

− (ξh,∇wh)K + 〈λh · n, wh〉∂K = 0,

(ρ0qh,v)K + (ξh, ρ0∇v0v)K − 〈ρ0(v0 · n)λh,v〉∂K = 0,
−ω2 (ρ0ξh, rh)K + 2iω (ρ0∇v0ξ, rh)K + (ρ0∇v0qh, rh)K + (∇ph, rh)K

+iω 〈τ (PM(ξh) · n− λh · n)n+ τq(v0 · n) (PMξh − λh) , rh〉∂K = (s, rh)K ,

for all (wh,v, rh) ∈ Wh(K)×Qh(K)×Vh(K). We can also write the transmission condition
on the interior edges as

〈phn+ (v0 · n)qh + iωτ(PMξh · n− λh · n)n+ iωτq(v0 · n)(PM − λh) + q̂h,µ〉∂Th\ΓD = 0,

for all µ ∈Mh.
Here we have chosen to write the transmission condition on the interior edges only, as the
choice of boundary conditions for Galbrun’s equation is quite difficult.
Due to the lack of theory that we have discussed earlier, we cannot prove that the choices
that we presented here to construct a HDG method for Galbrun’s equation are actually the
best ones, even if they seem reasonable.
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Characterization of the global problem Assuming that the local problems are well-
posed, we can introduced the local solvers

ξKh = ΞK(λh) + ΞK
src(s), pKh = PK(λh) + PKsrc(s), qKh = QK(λh) + QK

src(s),

where (PK(λh),QK(λh),ΞK(λh)) is defined by(
PK(λh)
ρ0c2

0
, wh

)
K

−
(
ΞK(λh),∇wh

)
K

= −〈λh · n, wh〉∂K

(
ρ0QK(λh),v

)
K

+
(
ΞK(λh), ρ0∇v0v

)
K

= 〈ρ0(v0 · n)λh,v〉∂K

−ω2
(
ρ0ΞK(λh), rh

)
K

+ 2iω
(
ρ0∇v0ΞK(λh), rh

)
K

+
(
ρ0∇v0QK(λh), rh

)
K

+
(
∇PK(λh), rh

)
K

+iω
〈
τ(PMΞK(λh) · n− λh · n)n+ τq(v0 · n)(PMΞK(λh)− λh), rh

〉
∂K

= 0,

for all (wh,v, rh) ∈ Wh(K)×Qh(K)×Wh(K). The local solvers PKsrc(s), QK
src(s) and ΞK

src(s)
are defined as in the previous section, and the terms involving those solvers can be moved
to the right-hand-side and we will therefore omit them for the sake of conciseness.
Making only minor changes to the proof of Proposition 5.3.2, we can obtain a characteri-
zation

ah(λh,µ) = `(µ),
of the global problem.

Proposition 5.3.3:
The bilinear form ah associated with the global problem satisfies

ah(λh,µ) =
PK(λh)√

ρ0c2
0

,
PK(µ)√
ρ0c2

0


Th

−
(√

ρ0QK(λh),
√
ρ0QK(µ)

)
Th
− ω2

(√
ρ0ΞK(λh),ΞK(µ)

)
Th

+ 2iω
(
ρ0∇v0ΞK(λh),ΞK(µ)

)
Th

+ iω
〈
τ(PMΞK(λh) · n− λh · n)n,ΞK(µ)− µ

〉
∂Th

− iω
〈
ρ0(v0 · n)(PMΞK(λh)− λh),ΞK(µ)− µ

〉
∂Th

,

for all µ ∈Mh.

Once again, we would like to point out that we have neglected the boundary terms as the
choice of boundary conditions for the Galbrun’s equation is a difficult problem.
Using this characterization we can see the major difficulty arising when trying to solve
Galbrun’s equation. Indeed, the termPK(λh)√

ρ0c2
0

,
PK(µ)√
ρ0c2

0


Th

−
(√

ρ0QK(λh),
√
ρ0QK(µ

)
Th
,

is equivalent to

(√ρ0c0div (ξh) ,
√
ρ0c0div (rh))Th − (√ρ0∇v0ξh,

√
ρ0∇v0rh)Th ,
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in primal form. This last form does not seem correspond to a coercive operator, but the
second term is expected to be smaller than the first one if the flow is subsonic, i.e. if
c2

0 > |v0|2. To illustrate this we recall the main step of the analysis of Galbrun’s equation
in the regularized framework of [Pey13]. In this framework, the solution ξ is looked for in
H1(O) and a regularization term(√

ρ0c0curl (ξ) ,√ρ0c0curl (rh)
)
Th

is added to the variational formulation. The authors can then prove that

(√ρ0c0div (ξ) ,√ρ0c0div (rh))Th + (√ρ0c0curl (ξ) ,√ρ0c0curl (rh))Th = (√ρ0c0∇ξ,
√
ρ0c0∇rh)Th

+ compact perturbation,

leading to(√
ρ0c

2
0div (ξ) ,√ρ0c0div (ξ)

)
Th
− (√ρ0∇v0ξ,

√
ρ0∇v0ξ)Th > inf

O
(c2

0 − |v0|2) ‖∇ξ‖2 .

However, this identity cannot be used for the low-regularity settings ξ ∈ Hv0(O), and the
well-posedness of this discrete formulation should be studied using discrete weak T-coercivity.

Conclusion
In this section we have presented how the numerical tools described in the previous chapters
could be used or extended to perform realistic simulations of wave propagation inside the
Sun.
It seems possible to use the HDG solver of Chapter 3 to perform numerical simulations
in solar-like configurations, even if some more precise boundary conditions that work in the
presence of convection would be required to obtain better numerical results.
We have also considered the well-posedness of Galbrun’s equation obtained in [HH20]. Even
if this result seems to fit quite naturally in the framework of Galerkin methods, it is not quite
usable yet. As we discussed, well-posedness results based on T-coercivity or its variants can
only be used to devise conforming numerical method. However the space Hv0(O) in which
Galbrun’s equation is well-posed is too complicated to devise such methods onto and we have
to rely on non-conforming numerical methods instead. We have shown that a HDG method
can easily be built for the velocity formulation of the Helmholtz equation, which is essentially
Galbrun’s equation without convection, that has the usual properties of a discretization of
a wave equation. Unfortunately, due to the lack of theory linking T-coercivity and non-
conforming methods, as well as some more precise regularity estimates for the solution of
Galbrun’s equation, it seems very difficult to extend this HDG method to the full Galbrun’s
equation.
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Chapter 6

A scalar model with gravity
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Introduction
In a previous chapter, we have constructed HDG methods for the convected Helmholtz
equation. In Chapter 5, we have used the HDG methods of Chapter 3 to perform some
numerical simulations in solar-like settings. To further illustrate how this method can be
useful in the context of helioseismology, have chosen to use it on a scalar model involving
gravity coming from asteroseismology that was introduced in [LG09]. This will therefore
show the possibility to use the HDG framework of Chapter 3 to study more complex
problems.

6.1 Total field
The scalar model that we will use in this chapter can take gravity and some of the effects of
rotation into account. We begin with recalling the Euler’s equations in a rotating frame.

6.1.1 Euler’s Equations in a rotating frame
We consider an ideal gas in rotating frame that satisfies the following set of equations

211



212 CHAPTER 6. A SCALAR MODEL WITH GRAVITY

∂ρ

∂t
+ div (ρv) = 0, (6.1)

ρ

[
∂v

∂t
+∇vv + 2Ω× v

]
+∇p = ρ [g −Ω× (Ω× x)] , (6.2)

∂p

∂t
+ v · ∇p+ γpdiv (v) = 0, (6.3)

p = P(ρ). (6.4)

Equation (6.4) is an equation of state that is required to close the system. One of the most
simple example of such equations is the equation of state for a polytropic ideal gas

p0 = Kργ,

where K is a positive constant and γ is the adiabatic index1.
The centrifugal force is potential, indeed we have

Ω× (Ω× x) = −∇
[1
2 |Ω× x|

2
]
.

We can therefore define the effective gravity

g0 = −∇
[
ϕ− 1

2 |Ω× x|
2
]

where ϕ is the gravitational potential solving Poisson’s Equation :

∆ϕ = 4πGρ

6.1.2 Can we neglect the Coriolis force ?
As described in [Tas00, Sec 2.2.3], we can study the influence of the Coriolis force by defining
the Rossby number Ro as

Ro := Acceleration in the rotating frame
Acceleration due to the Coriolis force = |∂tv +∇vv|

|2Ω× v|
.

For high Rossby numbers, the contribution of the Coriolis force to the acceleration is small
when compared to the acceleration in the rotating frame, and the Coriolis force can therefore
be neglected. In the frequency domain, the Rossby number becomes

Ro = | − iωv +∇vv|
|2Ω× v|

and it is therefore possible to neglect the Coriolis force when the frequency ω is large enough.
In Section 6.2 we will derive a scalar model for acoustic waves in the presence of gravity.
However this model is valid only when the Coriolis force 2Ω× v can be neglected. This can
be done by neglecting the effets of rotation altogether, i.e. by setting Ω = 0, but also when
the frequency ω is large enough. We would like to point out that even if the Coriolis force
is neglected, the model will still encompass some of the effects of rotation as the centrifugal
force is still present.

1We have γ = cp

cv
where cp is the isobaric (constant pressure) specific heat index and cv is the isochoric

(constant volume) specific heat index.
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6.2 Reduction to a scalar model when the Coriolis force
can be neglected

To obtain the underlying scalar model, we focus on eulerian perturbations

εq′(x, t) = q(x, t)− q0(x, t) +O(ε), (6.5)

for a physical quantity q ∈ {ρ, p,v}, and ε being a small parameter. Moreover, we will make
the Cowling approximation: acoustic wave propagation does not create a perturbation of
gravity.
The assumptions required to derive the scalar model are stated in Assumption 9.

Assumption 9 (Scalar model with gravity):
To derive the scalar model with gravity, we assume that
• the Coriolis force can be neglected (no rotation or ω large enough),
• the asymptotic expansion (6.5) holds,
• the Cowling approximation holds: g′ = 0,
• the background flow is steady-state:

∀q0 ∈ {ρ0, p0},
∂q0

∂t
= 0,

• the background velocity field is null: v0 = 0.

6.2.1 Background flow
As it was stated in Assumption 9, we assume that the background velocity field is null and
that the background flow is steady-state. Introducing the asymptotic expansion (6.5) into
the Euler’s equations (6.1), (6.2) et (6.3) and identifying the zeroth order terms in ε, we
obtain the equations satisfied by the background flow.
They consist of to the following set of steady-state Euler’s equations

∇p0 = ρ0g0 = ρ0∇
[
ϕ0 + 1

2 |Ω× x|
2
]
, (6.6)

p0 = P0(ρ0), (6.7)
∆ϕ0 = 4πGρ0.

It is important to note that if v0 = 0 and
∂ρ0

∂t
= 0,

then (6.1) degenerates to
div (0) = 0,

and there is therefore no further constraints on ρ0.
We can now define the adiabatic sound speed c0 using the equation of state (6.7): the square
of the adiabatic sound speed is given by

c2
0 = ∂P0

∂ρ0
,

and we have
ρ0c

2
0 = γp0.
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6.2.2 Linearized Euler’s Equations without the Coriolis force
Introducing the asymptotic expansion (6.5) into the Euler’s equations (6.1), (6.2) et (6.3)
and identifying the first order terms in ε, we obtain the Linearized Euler’s Equations that
describe the acoustic perturbation.

∂ρ′

∂t
+ div (ρ0v

′) = 0 (6.8)

ρ0
∂v′

∂t
= −∇p′ + ρ′g0 (6.9)

∂p′

∂t
+ v′ · ∇p0 + γp0div (v′) = 0 (6.10)

Following [LG09], we will now derive a single scalar equation from the system (6.8)–(6.9)–
(6.10).
We begin by rewriting (6.10) in a more convenient way

γp0div (v′) = ρ0c
2
0div (v′) ,

= c2
0 [div (ρ0v

′)− v′ · ∇ρ0] ,

= c2
0

[
−∂ρ

′

∂t
− v′ · ∇ρ0

]
,

so we finally have
∂p′

∂t
+ v′ · ∇p0 = c2

0

[
∂ρ′

∂t
+ v′ · ∇ρ0

]
(6.11)

Élimination of v′. We begin by reordering the terms in (6.11)

∂p′

∂t
+ v′ · ∇p0 = c2

0

[
∂ρ′

∂t
+ v′ · ∇ρ0

]
,

∂p′

∂t
= c2

0
∂ρ′

∂t
+ v′ ·

(
c2

0∇ρ0 −∇p0
)
,

∂p′

∂t
= c2

0
∂ρ′

∂t
+ ρ0c

2
0v
′ ·
(
∇ρ0

ρ0
− ∇p0

ρ0c2
0

)
,

and we obtain

∂p′

∂t
= c2

0
∂ρ′

∂t
+ ρ0c

2
0v
′ ·
(
∇ρ0

ρ0
− ∇p0

γp0

)
(6.12)

Then, (6.12) is derived with respect to time, leading to

∂2p′

∂t2
= c2

0
∂2ρ′

∂t2
+ c2

0ρ0
∂v′

∂t
·
(
∇ρ0

ρ0
− ∇p0

γp0

)
.

The derivative of v′ can now be eliminated thanks to (6.9)

∂2p′

∂t2
+ c2

0

(
∇ρ0

ρ0
− ∇p0

ρ0c2
0

)
· ∇p′ = c2

0

[
∂2ρ′

∂t2
+N2

0ρ
′
]
,

where N2
0 is the Brunt-Väisälä or buyoancy frequency defined by

N2
0 = g0 ·

(
∇ρ0

ρ0
− ∇p0

γp0

)
.
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We would like to point out that even if it is a squared quantity, N2
0 can be negative. We

already discussed this phenomenon when we described the g-modes, or internal gravity waves,
in the Introduction as g-modes can only propagate when N2

0 > 0. We recall the explanation
for this phenomenon given in [? ]:

When a fluid element is displaced upwards in an adiabatic motion, its behavior
depends on the density of its new surroundings. If N2

0 > 0, the element is heavier
than the fluid and buoyancy forces it back into its original position leading to an
oscillatory motion. On the other hand if N2

0 < 0, the element is lighter than the
fluid and buoyancy acts to enhance the motion.

Using the background equations (6.6)–(6.7), we notice that

∇ρ0

ρ0
− ∇p0

γp0
= g0 ·

(
∇ρ0

ρ0
− ∇p0

γp0

)
g0

|g0|2
,

and we obtain
∂2p′

∂t2
+ c2

0N
2
0

|g0|2
g0 · ∇p′ = c2

0

[
∂2ρ′

∂t2
+N2

0ρ
′
]
. (6.13)

Taking the derivative of (6.8) with respect to time and using (6.9) leads to

∂2ρ′

∂t2
+ div (ρ′g0) = ∆p′ (6.14)

Time-harmonic solutions. In order to obtain a single scalar equation, we consider time-
harmonic solutions

q(x, t) = Re
(
q(x)e−iωt

)
.

The two final equations of the previous paragraph (6.14) and (6.13) therefore become

−ω2ρ′ + div (ρ′g0) = ∆p′, (6.15)

c2
0

[
N2

0 − ω2
]
ρ′ = −ω2p′ + c2

0N
2
0

|g0|2
g0 · ∇p′. (6.16)

From (6.16) we obtain

ρ′ = −ω2

c2
0 (N2

0 − ω2)p
′ + N2

0
|g0|2 (N2

0 − ω2)g0 · ∇p′ , (6.17)

and using (6.17) in (6.15) leads to[
ω4

c2
0 (N2

0 − ω2) − div
(

ω2

c2
0 (N2

0 − ω2)g0

)]
p′ + N2

0
|g0|2 (N2

0 − ω2) (g0 · ∇)2 p′

+
[
−ω2

(N2
0 − ω2)

(
1
c2

0
+ N2

0
|g0|2

)
+ div

(
N2

0
|g0|2 (N2

0 − ω2)g0

)]
g0 · ∇p′ = ∆p′.

We notice that

N2
0

|g0|2 (N2
0 − ω2) (g0 · ∇)2 p′ = div

(
N2

0
|g0|2 (N2

0 − ω2)g0g
T
0∇p′

)
−div

(
N2

0
|g0|2 (N2

0 − ω2)g0

)
g0·∇p′,
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so the scalar equation becomes[
ω4

c2
0 (N2

0 − ω2) − div
(

ω2

c2
0 (N2

0 − ω2)g0

)]
p′

− ω2

N2
0 − ω2

(
1
c2

0
+ N2

0
|g0|2

)
g0 · ∇p′ − div (K0∇p′) = 0,

where the anisotropy tensor K0 is defined by

K0 := Id− N2
0

|g0|2 (N2
0 − ω2)g0g

T
0 .

As discussed in Chapter 3, it is convenient to write the convective term g0·∇p′ in divergence
form to derive HDG methods. In this regard, we have

− ω2

c2
0 (N2

0 − ω2)

(
1
c2

0
+ N2

0
|g0|2

)
∇p′ =− div

(
ω2

(N2
0 − ω2)

(
1
c2

0
+ N2

0
|g0|2

)
p′g0

)

+ p′div
(

ω2

(N2
0 − ω2)

(
1
c2

0
+ N2

0
|g0|2

)
g0

)
,

so the scalar model becomes

ω2
[

ω2

c2
0 (N2

0 − ω2) + div
(

N2
0

|g0|2 (N2
0 − ω2)g0

)]
p′

−div
(
K0∇p′ +

ω2

N2
0 − ω2

(
1
c2

0
+ N2

0
|g0|2

)
p′g0

)
= 0.

Finally we end up with the following model:
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Proposition 6.2.1:
In the time-harmonic domain, the eulerian pressure pertubation satisfies either
• the equation in diffusive flux formulation[

ω4

c2
0 (N2

0 − ω2) − div
(

ω2

c2
0 (N2

0 − ω2)g0

)]
p′

− ω2

N2
0 − ω2

(
1
c2

0
+ N2

0
|g0|2

)
g0 · ∇p′ − div (K0∇p′) = 0, (6.18a)

• or the equation in total flux formulation

ω2
[

ω2

c2
0 (N2

0 − ω2) + div
(

N2
0

|g0|2 (N2
0 − ω2)g0

)]
p′

−div
(
K0∇p′ +

ω2

N2
0 − ω2

(
1
c2

0
+ N2

0
|g0|2

)
p′g0

)
= 0. (6.18b)

The eulerian density perturbation satisfies

ρ′ = −ω2

c2
0 (N2

0 − ω2)p
′ + N2

0
|g0|2 (N2

0 − ω2)g0 · ∇p′,

and the eulerian velocity perturbation satisfies

v′ = ∇p
′

iωρ0
− ρ′

iωρ0
g0.

The tuple (ρ′,v′, p′) is a solution to the Linearized Euler’s Equations (6.8)–(6.9)–(6.10) in
time-harmonic domain.

Remark 6.2.1: In [LG09], where this model was introduced, the authors did not directly
solve (6.18a) or (6.18b). Instead, they considered the asymptotic behaviour when ω2 � N2

0
and used the WKB approximation

p′ = Re
(
Aeiθ(x)−iωt

)
,

to obtain an eikonal equation, that can be solved using ray methods.

Relationship with convected Helmholtz equation. We would like to point out that
(6.18a) is similar to the convected Helmholtz equation

−ρ0ω
2p− 2iωρ0v0 · ∇p− div (K0∇p) = s.

The HDG framework that have constructed in Chapter 3 is therefore well-suited to perform
some numerical simulations using this model. To emphasize the relationship between these
two equations, we can make the following approximations:
• Approximation 1: if we assume that N2

0 = 0 (which is relevant in the convective zone,
i.e. when r > 0.7R� where R� is the solar radius, then (6.18a) becomes[

−ω2 + c2
0div

(
1
c2

0
g0

)]
p′ + g0 · ∇p′ − c2

0∆p′ = 0.
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• Approximation 2: if we consider the asymptotic regime in ω, i.e. if we assume that
ω2 � N2

0 , then we have

ω2

N2
0 − ω2 ' −1, and N2

0
N2

0 − ω2 ' −
N2

0
ω2 ,

and (6.18a) therefore becomes[
−ω

2

c2
0

+ div
(

1
c2

0
g0

)]
p′+

(
1
c2

0
+ N2

0
|g0|2

)
g0 ·∇p′−div

((
Id + N2

0
ω2|g0|2

g0g
T
0

)
∇p′

)
= 0

where the term involving gravity in the second-order operator is small.
However, we would like to point out one important difference in the physics involved within
those two models. In Chapter 3, the waves were convected by a velocity field v0 that
satisfied the local steady-state mass conservation equation

div (ρ0v0) = 0.

In (6.18a) on the other hand, the waves are convected by the gravity field g0 for which this
mass conservation property does not hold.

Source term. Adding a source term s in the RHS of (6.9) leads to the following source
term s in (6.18a) or (6.18b)

s := − ρ0ω
2N2

0
|g0|2 (N2

0 − ω2)g0 · s+ div
(

ρ0c
2
0N

2
0

|g0|2 (N2
0 − ω2)(g0 · s)g0

)
+ div (s) , (6.19)

where
• the first term comes from −ω2ρ′ term in (6.15),
• the second term comes from div (ρ′g0) term in (6.15),
• the third term comes from div (ρ0v

′) term in (6.8).
We will assume that the source term is compactly supported in O and regular enough for
(6.19) to be well-defined.
If the support of s is entirely included in the convective zone (r > 0.7), it may be reasonable
to assume that N2

0 ' 0 and to use
s ' div (s)

instead of (6.19).

Dimensional analysis. As the model described in Proposition 6.2.1 is not a standard,
it seems important to check the homogeneity of (6.18b). We denote the dimension of a
physical quantity q by [q], and the dimension of mass, time and length by M, T and L
respectively, finally we use 1 for physical quantities without dimension. For the background
parameters we have

[ω] = T−1, [ρ0] = ML−3, [c0] = LT−1, [p0] = ML−1T−2, [g0] = LT−2,

where g0 is homogenous to the gravitational acceleration. We recall that the dimension of
the derivatives of a physical quantity q is[

∂q

∂x

]
= L−1[q].
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First we notice that [
N2

0

]
= [g0] [∇ρ0]

[ρ0] = LT−2 ML−4

ML−3 = T−2,

so N2
0 is homogenous to a squared frequency as expected. To lighten the notations, we

rewrite (6.18b) as
Ap′ − div (K0∇p′ −Bp′g0) = s.

We can now focus on the reaction term. We have[
ω4

c2
0 (N2

0 − ω2)

]
= [ω2]

[c2
0] = L−2, as

[
ω2

(N2
0 − ω2)

]
= 1,

and we also have [
ω2div

(
N2

0
|g0|2 (N2

0 − ω2)g0

)]
= T−2L−1[g0]−1 = L−2,

so we have
[Ap′] = L−2[p′].

We then work on the Laplace operator. We begin by noticing that

[K0] = 1,

so we have
[div (K0∇p′)] = L−2[p′].

We can now focus on the convection term, and we have[
N2

0
|g0|2

]
= 1

T2
T4

L2 = T2L−2 =
[

1
c2

0

]
= [B],

so we have
[Bg0] = T2L−2LT−2 = L−1,

and therefore
[div (Bp′g0)] = L−2[p′].

We can finally conclude this dimensional analysis. Indeed, we have

[Ap′] = [div (K0∇p′)] = [div (Bp′g0)] = L−2[p′],

so (6.18b) is actually homogeneous.

6.2.3 Well-posedness of the scalar model
In this section, we recall some elements of the theory of elliptic partial differential equations
to prove the well-posedness of the scalar model of Proposition 6.2.1. This well-posedness
result will be proven under the following assumptions.

Assumption 10 (Well-posedness of the scalar model with gravity):
We assume that
• the frequency is large enough: ω2 > N2

0 ,
• the following boundary conditions are enforced

p′ = ϕ1, on ΓD,[
K0∇p′ +

ω2

(N2
0 − ω2)

(
1
c2

0
+ N2

0
|g0|2

)
p′g0

]
· n = ϕ2, on ΓN ,
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with ∂O = ΓD ∪ ΓN and ΓD 6= ∅.

A well-posedness result for elliptic PDEs

In this section, we state a well-posedness result for elliptic PDEs. For the sake of simplic-
ity, we consider only homogenous Dirichlet boundary conditions, but the extension to the
boundary conditions of Assumption 10 is immediate and can be found e.g. in [GT01, Ch.
8 – Notes]
Let O be an open bounded subset of Rn, aij be C1(O) functions and ai be C(O) functions.
We consider the following weak formulation

Seek p′ ∈ H1
0 (O), s.t a(p′, q) = `(q) ∀q ∈ H1

0 (O). (6.20)

with

a(u, v) :=
∫
O

∑
i,j

aij
∂u

∂xi

∂v

∂xj
dx+

∫
O

∑
i

ai
∂u

∂xi
vdx+

∫
O
a0uvdx,

`(v) :=
∫
O
fvdx.

We recall the following result coming from [Bre87, Th IX.23].

Theorem 11 :
If the variational problem (6.20) satisfies the following uniform ellipticity condition

∃α > 0, ∀x ∈ Rn,
∑
i,j

aijxixj > α|x|, (6.21)

then the two following propositions are true:
1. If f = 0 then there is a d-dimensional linear subspace of H1

0 (O) of solutions to (6.20).
2. If f 6= 0, then there exists a d-dimensional linear subset F ⊂ L2(O) such that

((6.20) admits a unique solution in H1
0 (O)) ⇐⇒ ∀v ∈ F, (f, g)O = 0.

Remark 6.2.2: We would like to point out that Theorem 11 is nothing but a Fredholm
alternative and the problem (6.20) has the same behavior as a harmonic wave equation.
For the scalar model of Proposition 6.2.1, this means that eigenmodes can exist for some
frequencies.

Remark 6.2.3: If the coefficient a0 in (6.20) is positive, it is possible to prove that the
problem is always uniquely solvable using the maximum principle. For the scalar model of
Proposition 6.2.1, we cannot guarantee the sign of a0.
A quick way to prove that the ellipticity condition (6.21) holds is to study the spectrum of
A := (aij)ij. Indeed, we denote by λ1 < · · · < λn the eigenvalues of A and w1, . . . ,wn be
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the associated basis of eigenvectors, we have∑
i,j

aijxixj = Ax · x,

= A

(∑
m

βmwm

)
·
(∑

n

βnwn

)
,

=
(∑

m

βmλmwm

)
·
(∑

n

βnwn

)
,

=
∑
m

λmβ
2
m,

> λ−|x|2,

where λ− := minx∈O λ1. Notice that for the scalar model of this section, A has only three
eigenvalues.

Application to the scalar model of Proposition 6.2.1.

We recall the anisotropy tensor of the scalar model is

K0 := Id− N2
0

|g0|2 (N2
0 − ω2)g0g

T
0 ,

the second-order part of the primal variational formulation is therefore

a(p′, q) =
∫
O
K0∇p′ · ∇q?dx+ low-order terms,

and we now need to study the spectrum of K0.

Lemma 6.2.1:
The spectrum of g0g

T
0 is

Sp(g0g
T
0 ) =

{
0, |g0|2

}
,

and the spectrum of K0 therefore is

Sp(K0) =
{

1, ω2

ω2 −N2
0

}
.

Proof:
Step 1: Let v ∈ Rn be a vector such that g0 ⊥ v, we have

g0g
T
0 v = 0.

In dimension n and if g0 6= 0, the space of vectors orthogonal to g0 has dimension n − 1.
The eigenspace

E0(g0g
T
0 ) :=

{
v ∈ Rn

∣∣∣ g0g
T
0 v = 0

}
therefore has dimension n− 1. We also have

g0g
T
0 g0 = |g0|2g0.

The eigenvalues of g0g
T
0 therefore are 0 and |g0|2.
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Step 2: Let v be an eigenvector of K0 and λ be the associated eigenvalue, we have

K0v = λv ⇐⇒ v − N2
0

|g0|2 (N2
0 − ω2)g0g

T
0 v = λv,

⇐⇒ g0g
T
0 v = (1− λ) |g0|2 (N2

0 − ω2)
N2

0
v,

so we have
(1− λ) |g0|2 (N2

0 − ω2)
N2

0
∈ Sp(g0g

T
0 ),

and the result is immediate.
This immediately leads to the following result.

Corollary 6.2.1:
Under Assumption 10, the scalar model of Proposition 6.2.1 is well-posed except on a
set of resonant frequencies.

Proof: Using the assumption on the frequency, we can see that both the eigenvalues of K0

computed in Lemma 6.2.1 are positive, so we can use Theorem 11.

Remark 6.2.4: The assumption ω2 > N2
0 is really important here, indeed if ω2 < N2

0 then

ω2

ω2 −N2
0
< 0,

and we cannot use Theorem 11.

6.3 Numerical aspects
Axisymmetric domain. To obtain 3D solutions using the 2D solver described in Chap-
ter 3, we consider an axisymmetric domain. We denote by (r, θ, z) the 3D-cylindrical
coordinates and by (er, eθ, ez) the associated basis vector-fields. Numerical results in 3D are
obtained by performing 2D numerical simulations in the (r, z)-plane and a modal decompo-
sition into Fourier series in the θ-variable.

Assumption 11 (Axisymmetric domain):
We assume that the background quantities only depend on (r, z).

An immediate consequence of Assumption 11 is that

∇p0 = ∂p0

∂r
er + ∂p0

∂z
ez,

together with the background balance of momentum (6.6), we have

g0 = grer + gzez.

The anisotropy tensor
K0 := Id− N2

0
|g0|2 (N2

0 − ω2)g0g
T
0 ,

therefore becomes

K0 =

Krr 0 Krz

0 1 0
Kzr 0 Kzz

 ,
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with

Krr = 1− N2
0

|g0|2 (N2
0 − ω2)g

2
r = |g0|2 (N2

0 − ω2)−N2
0 g

2
r

|g0|2 (N2
0 − ω2) ,

Kzz = 1− N2
0

|g0|2 (N2
0 − ω2)g

2
z = |g0|2 (N2

0 − ω2)−N2
0 g

2
z

|g0|2 (N2
0 − ω2) ,

Kzr = Krz = − N2
0

|g0|2 (N2
0 − ω2)grgz.

Development of the equation in cylindrical coordinates. We recall that the scalar
equation (6.18b) reads

ω2
[

ω2

c2
0 (N2

0 − ω2) + div
(

N2
0

|g0|2 (N2
0 − ω2)g0

)]
p′ − div

(
K0∇p′ +

ω2

N2
0 − ω2

(
1
c2

0
+ N2

0
|g0|2

)
p′g0

)
= 0,

developing the operators in cylindrical coordinates (r, θ, z) leads to

Ap′ − 1
r

∂

∂r

[
rKrr

∂p′

∂r
+ rKrz

∂p′

∂r
− rBgrp′

]
− ∂

∂z

[
Krz

∂p′

∂r
+Kzz

∂p′

∂z
−Bgzp′

]
+ 1
r2
∂2p′

∂θ2 = 0,

(6.22)
where

A := ω4

c2
0 (N2

0 − ω2) + ω2div
(

N2
0

|g0|2 (N2
0 − ω2)g0

)
,

B := ω2

N2
0 − ω2

(
1
c2

0
+ N2

0
|g0|2

)
.

Decomposition into Fourier series. The unknown p′ is expanded as
p′(r, θ, z) =

∑
m∈Z

p′m(r, z)eimθ. (6.23)

Introducing (6.23) into (6.22) and identifying each mode leads to the followingmodal equation(
A+ m2

r2

)
p′m−

1
r

∂

∂r

[
rKrr

∂p′m
∂r

+ rKrz
∂p′m
∂r
− rBgrp′m

]
− ∂

∂z

[
Krz

∂p′m
∂r

+Kzz
∂p′m
∂z
−Bgzp′

]
= 0,

which can be rewritten as
Amp

′
m − div (K0∇p′m −Bp′mg0) = 0, (6.24)

where Am := A+m2/r2 and the differential operators only act on r and z.

First-order formulation. To use a HDG method to solve (6.24), we need to reach a
first-order in space formulation. As we have chosen to work with (6.18b), it is natural to use
the HDG-σh method of Chapter 3. We therefore introduce the total flux

σm = −K0∇p′m +Bp′mg0,

leading to the total flux formulation
K0

−1σm +∇p′m −Bp′mK0
−1g0 = 0,

Amp
′
m + div (σm) = s.

Using the Sherman-Morisson formula we have

W0 := K0
−1 = Id− N2

0
ω2|g0|2

g0g
T
0 .



224 CHAPTER 6. A SCALAR MODEL WITH GRAVITY

HDG formulation. We can now write the local problems of the HDG method in polar
coordinates. The global problem, which translates the continuity of σh, is the same as the
one for the convected Helmholtz equation. On an element K ∈ Th, we multiply the system
by the test-function (v, w) leading to∫

K
(Wrrσr +Wrzσz −Bp(Wrrgr +Wrzgz)) vrrdrdz

+
∫
K

(Wrzσr +Wzzσz −Bp(Wrzgr +Wzzgz)) vz rdrdz −
∫
K
p

(
1
r

∂rvr
∂r

+ ∂vz
∂z

)
rdrdz

+
∫
∂K
p̂v · nrds = 0,

and ∫
K

(
Amp+ 1

r

∂rσr
∂r

+ ∂σz
∂z

)
w rdrdz +

∫
∂K
iτ(p− p̂)wrds =

∫
K
swrdrdz.

Using the matrix notations of Chapter 3 this can be written as

∑
v∈{r,z}

rWrvMKσKv −Br

 ∑
v∈{r,z}

Wrvgv

MKpK − rDK
r p

K −MKpK +
3∑
`=1

rn`rFK` p̂g(K,`) = 0,

∑
v∈{r,z}

rWzvMKσKv − rB

 ∑
v∈{r,z}

Wzvgv

MKpK − rDK
z p

K +
3∑
`=1

rn`zFK` p̂g(K,`) = 0,

rAmMKpK + r(DK
r )TσKr + MKσKr + r(DK

z )TσKz + i
3∑
`=1

rτ`
(
EK` pK − FK` p̂g(K,`)

)
= rSK ,

and we can finally get the matrix form of the local problem

AK

p
K

σKr
σKz

+ CK

p̂
g(K,1)

p̂g(K,2)

p̂g(K,3)

 = SK ,

which allows the elimination of the local unknowns through static condensation. The matri-
ces AK and CK are given by
Matrix AK : We introduce βu = Br

∑
vWuvgv to lighten the notations.

AK pK σKr σKz

pK rAmMK + i
∑
` τ`rEK` r(DK

r )T + MK r(DK
y )T

σKr −rDK
r − βrMK −MK rWK

0,11MK rWK
0,12MK

σKz −rDK
z − βzMK rWK

0,21MK rWK
0,22MK
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Matrix CK :

CK p̂g(K,1) p̂g(K,2) p̂g(K,3)

pK −irτ1FK1 −irτ2FK2 −irτ3FK3

σKr nK,1r rFK1 nK,2r rFK2 nK,3r rFK3

σKz nK,1z rFK1 nK,2z rFK2 nK,3z rFK3

Evaluation of the physical quantities and nondimensionalization. As we already
discussed in Chapter 5, we need to perform a nondimensionalization of the problem in order
to get stable numerical methods. We denote the solar radius by R�, the physical coordinates
inside the Sun by x and the normalized coordinates used to perform the numerical simulation
by x̃ = x/R�. For a quantity f defined in the Sun, the associated quantity in normalized
coordinates is defined by

f̃(x̃) := f(x) = f(R�x̃).

The values for the physical parameters, ρ0, p0 and c0 come from the Model S of [CDA+96].
We use the same convention as in [FFP20]2, where the scaled pressure and gravitational
potential ˜̃p0(x̃) := p0(R�x̃)

R2
�

, and ˜̃ϕ0(x̃) := ϕ0(R�x̃)
R2
�

,

are used instead of the usual background quantities. As the sound-speed is related to the
pressure by

c2
0 = γp0

ρ0
,

this naturally leads to a scaled sound-speed

˜̃c0(x̃) := c0(Rodotx̃)
R�

.

As the unknown p′ is homogenous to a pressure, we follow this convention and we define the
scaled unknown ˜̃

p′(x̃) := p′(R�x̃)
R2
�

.

If we compute the auxiliary physical parameters using the scaled quantities, e.g.

˜̃g0 := −∇x̃ ˜̃ϕ0, and ˜̃
N2

0 := ˜̃g0 ·

∇x̃ρ̃0

ρ̃0
− ∇x̃

˜̃p0

γ̃˜̃p0

 = Ñ2
0 ,

then the equation for ˜̃p′ is the same as the one for p′. Indeed, if p′ satisfies (6.18b), then ˜̃
p′

satisfies ˜̃
A
˜̃
p′ − divx̃

(
K0∇x̃

˜̃
p′ − ˜̃

B
˜̃
p′˜̃g0

)
= s̃.

2The values for those scaled quantities can be obtained here : https://phaidra.univie.ac.at/view/o:
1097638.

https://phaidra.univie.ac.at/view/o:1097638
https://phaidra.univie.ac.at/view/o:1097638
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Numerical results. We end up this chapter with some numerical results. On Figure
6.1, we have depicted the mode m = 0 in the (r, z)-plane for a frequency of 3mHz. The
source term is Dirac mass located close to the axis of symmetry and to the surface at the
point (10−3, 0.9). Using three different saturation levels, we can see that there is a wave
propagating close to the surface. This is consistent with the fact that the scalar model of
this chapter was derived to support surfacic gravity waves, or f-modes. We would also like to
point out that the amplitude of the solution decreases as the index m increases. To illustrate
this we have depicted the solutions for indexes m = 2 and m = 4 in Figure 6.2. We have
also plotted 3D results for modes m = 0 in Figure 6.3, m = 1 in Figure 6.4 and m = 4 in
Figure 6.5. As the amplitude of the modes decreases, there is almost no visual difference
between the mode m = 0 and the truncated sum

N∑
m=−N

pm(r, z)eimθ = p0(r, z) + 2
N∑
m=1

pm(r, z) cos θ,

that we have depicted in Figure 6.6. Notice that the last equality holds as m only appears
as m2 in the modal equations, so we have pm(r, z) = p−m(r, z).

−100

−50

0

50

100

(a) Low saturation
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(b) Medium saturation
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1
·10−6

(c) High saturation

Figure 6.1: Numerical results for mode m = 0 in the (r, z)-plane.

Conclusion
In this chapter we have illustrated the possibility of using the HDG framework introduced in
Chapter 3 to more complex wave-like equations. To this end, we have considered a scalar
model involving gravity for wave propagation inside a star. The coefficients of this model
are more complicated than the ones of the convected Helmholtz equation. It is worth noting
that this model could be used to validate other numerical solvers. Indeed, when Galbrun’s
equation is solved for realistic solar-like applications, there is no reference solution to validate
the numerical results. This scalar model could be used as a comparison point to validate the
results obtained with a numerical solver for Galbrun’s equation with gravity. However, we
would like to point out that there is still some work to do. In particular, questions regarding
boundary conditions and source terms should be addressed carefully before using this model
as a reference one.
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Figure 6.2: Numerical results for modes m = 2 and m = 4 in the the (r, z)-plane.
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Figure 6.3: 3D numerical result for mode m = 0.
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Figure 6.4: 3D numerical result for mode m = 1.
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Figure 6.5: 3D numerical results for mode m = 4.
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Figure 6.6: 3D numerical result, summing mode for |m| = 0 to 6.
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Conclusion

The main contribution consists of a computational framework based upon HDG formulations
for convected Helmholtz equations. This piece of software has been developed from scratch
and is meant to become part of a helioseismic branch of the open-source software hawen.

Modelling aspects
Summary of our contributions. During the first part of this study, we have considered
the existence of a resonant-like phenomenon for aeroacoustic propagation in a recirculating
flow. We are particularly interested in this question because it is crucial for the modelling
of the interior of the Sun where flows are recirculating. Previous well-posedness results for
time-harmonic aeroacoustic wave models specifically excluded those background flows, while
they are common for applications in helioseismology. We have shown that a resonant-like
phenomenon can occur if the symbol of the material derivative vanishes inside the computa-
tional domain. This phenomenon gives a mathematical interpretation for the spurious modes
that have been reported when Lagrange finite-elements are used to solve Galbrun’s equation.
Finally, when this phenomenon occurs, the equivalence between aeroacoustic models, such
as Galbrun’s equation and LEE, cannot be guaranteed.

Perspectives: using the low-regularity settings. As we have mentioned, the well-
posedness of Galbrun’s equation has also been studied in a Hilbert spaceHv0(O) with lower
regularity requirements than H1(O). Functions belonging to Hv0(O) do not have a trace
on the resonant lines that we have computed. The approximation of Galbrun’s equation
in Hv0(O) instead of H1(O) could lead to new numerical methods and better numerical
results. At this point, the only results available in this settings is the well-posedness of
Galbrun’s equation. A next step could be the derivation of sharper regularity results for the
solution to allow a rigorous construction of numerical methods.

Perspectives: solving the equations in time-domain. In this thesis, we have con-
sidered time-harmonic solutions to aeroacoustic models. The meaning of these solutions is
given by the limiting amplitude principle: they can be interpreted as the limit of time-domain
solutions as time goes to infinity. In other words, we show that time-harmonic solutions cor-
respond to the established regime of time-dependent solutions letting t to infinity So there is
a hidden physical assumptions for the time-harmonic solutions to make sense: the physical
parameters must be "nice" enough to allow this periodic regime. It turns out that it is not the
case for realistic applications in helioseismology. Hence more reliable results could perhaps
be obtained by solving these equations in time-domain instead of the time-harmonic domain.
The numerical methods constructed in this thesis could be used for the semi-discretization
in space in a time-domain aeroacoustic solver.
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Perspectives: considering non-linear wave models. The models considered in this
thesis are obtained by linearizing the equations of fluid dynamics around an equilibrium
state. Some of the difficulties encountered when trying to solve those equations may be
linked to the linear nature of those models. Indeed, if an instability occurs in a linear model
it can only grow exponentially. On the other hand, some non-linear effects can contain those
instabilities as it happens with the Kelvin-Helmholtz instability. Taking some of the non-
linear effects into account could be a way to obtain better results. In particular, using the
second-order asymptotic expansion

q = q0 + εq′ + ε2q′′ +O(ε3),

leads to the equations of weakly non-linear acoustics. Those equations consist of a coupled
system of two Galbrun’s equations, one for each perturbation order. It is possible that the
non-linear and the coupling terms help controls the resonant-like phenomenon that we have
described.

Numerical aspects
Summary of our contributions. In a second part of this work, we have introduced a
HDG framework for the convected Helmholtz equation. To the best of our knowledge, this
is an original contribution. HDG methods are mixed DG methods that rely on a static
condensation process to eliminate the interior degrees of freedom. This allows to keep all the
advantages of DG methods for a reduced numerical cost. Among other advantages, DG meth-
ods are easily implemented in a parallel way with hp-adaptivity and arbitrary high-order.
In particular, their non-conforming nature seems well-suited to work with the low-regularity
space Hv0(O). As the theory for the convected Helmholtz equation is well established and
quite standard, we were able to derive precise theoretical results on the HDG methods that
we have introduced, including well-posedness of both the local and global problems, as well
as a detailed convergence analysis. We have also proposed a simple technique to construct
Absorbing Boundary Conditions (ABCs) based on the Prandtl-Glauert-Lorentz transforma-
tion, that maps the convected Helmholtz equation to the standard one. This provide ABCs
that are both efficient for low and intermediate Mach numbers and easy to implement in any
finite-element solver. In particular, the resulting ABC is easily included in the HDG formu-
lation which is not obvious in general. Finally we have shown that this HDG framework can
be extended to handle more complex problems.

Ongoing work: toward the extension to Galbrun’s equation. We have also briefly
presented a way to extend this HDG framework to the full Galbrun’s equation, which is
a vectorial and more realistic aeroacoustic model. As we have introduced a rigorous HDG
framework for convected acoustics, it seems possible to extend these methods to more realistic
aeroacoustic models. Even if these constructions will be less rigorous, it can lead to efficient
numerical methods. One way to avoid the resonant-like phenomenon that we have described
is to study this equation in a low regularity settings. The continuity of functions belonging to
this space between two mesh elements is interface-dependent, making it difficult to construct
conforming approximation spaces. One way to derive suitable numerical methods could
be then to use Hdiv(O)-conform finite elements with a penalization term to enforce this
interface-dependent continuity between mesh elements. This is an ongoing work in the team
of T. Hohage in Göttingen in the framework of project C04, and it turns out that this
approach leads to a non-conforming method. If we have to use a non-conforming method,
it occurs to us that it is easier and more natural to consider HDG approximations in the
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continuity of our work on the convected Helmholtz equation. Whatever the approach is,
we will end up with the same difficulty of approximating T-coercive problems with non-
conforming methods.

Perspectives: choosing the penalization parameters. One of the main drawbacks
of HDG methods is the necessity to choose the penalization parameters. Indeed, if those
parameters are badly chosen the quality of the numerical solutions are poor. For the HDG+
variant, the penalization parameters should be very large to ensure optimal convergence,
and this method therefore seems less sensitive than standard HDG methods to the choice
of penalization parameters. If the solved system is hyperbolic, we have presented a choice
penalization parameter with physical meaning by solving a Riemann problem on the interface
between two elements. It is not clear how to extend this method to problems whose transient
counterpart is not hyperbolic, but it could be very attractive as the method would become
parameter-free.

Perspectives: inverse problems. The methods that we have constructed in this thesis
were implemented in the hawen solver. This solver is dedicated to solving both direct and
quantitative inverse problems. Therefore, it offers us the computational framework to per-
form the inverse problem using the Full Waveform Inversion (FWI) technique. In particular,
we could reconstruct solar parameters such as the background flow v0, the sound-speed c0
or the density ρ0.
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Dans	 cette	 thèse,	 nous	 nous	 intéressons	 à	 des	 problèmes	 de	 propagation	 d’ondes	 acoustiques	 dans	 un	 écoulement	 en	 vue	
d’applications	en	physique	solaire.	En	effet,	la	structure	interne	du	Soleil	peut	être	étudiée	à	partir	de	l’observation	de	ces	ondes	sur	
la	surface	solaire.	

Dans	un	premier	temps,	nous	rappelons	le	procédé	de	linéarisation	des	équations	de	la	mécanique	des	fluides	permettant	de	construire	
des	modèles	vectoriels	de	propagation	d’ondes	en	écoulement.	Nous	étudions	alors	l’équivalence	entre	les	modèles	obtenus	à	partir	
des	linéarisations	eulériennes	et	lagrangiennes	et	nous	montrons	que	cette	équivalence	ne	peut	pas	toujours	être	garantie	en	régime	
harmonique.	 D’un	 point	 de	 vue	 pratique,	 l’exploitation	 numérique	 de	 cette	 équivalence	 semble	 inefficace,	 notamment	 pour	 la	
reconstruction	des	perturbations	 lagrangiennes	à	partir	des	perturbations	eulériennes.	Nous	nous	concentrons	ensuite	sur	 l’étude	
d’un	phénomène	de	résonance	en	régime	harmonique	lorsque	l’écoulement	porteur	a	des	lignes	de	courant	fermées.	Une	étude	modale	
montre	que	les	équations	considérées	dégénèrent	sur	certaines	lignes	de	courant.	Sur	ces	lignes,	il	n’est	alors	pas	possible	de	résoudre	
les	 équations.	 Il	 semble	 toutefois	possible	de	 résoudre	 ce	problème	en	étudiant	 ces	 équations	dans	un	espace	hilbertien	dont	 les	
propriétés	de	régularités	sont	plus	faibles	que	pour	les	espaces	de	Hilbert	habituellement	utilisés	pour	l’étude	des	équations	d’ondes	
aéroacoustiques.	D’un	point	de	vue	numérique,	la	recherche	de	la	solution	dans	un	tel	espace	nécessite	la	construction	de	nouvelles	
méthodes	numériques.		

Dans	 la	 deuxième	 partie	 de	 ce	 travail,	 nous	 nous	 concentrons	 sur	 la	 construction	 de	 méthodes	 numériques	 pour	 un	 modèle	
aéroacoustique	simple	:	l’équation	de	Helmholtz	convectée.	Ce	modèle	scalaire	peut	être	obtenu	à	partir	des	modèles	vectoriels	lorsque	
l’écoulement	porteur	est	irrotationnel.	Pour	cette	équation,	nous	construisons	trois	variantes	de	la	méthode	de	Galerkine	Discontinue	
Hybride	(HDG).	Les	méthodes	HDG	sont	des	méthodes	de	Galerkine	Discontinues	mixtes	dont	le	coût	numérique	reste	raisonnable	
grâce	à	un	procédé	de	condensation	statique	qui	permet	de	réduire	le	problème	à	un	problème	posé	uniquement	sur	le	squelette	du	
maillage.	Nous	avons	effectué	une	analyse	détaillée	de	ces	méthodes,	en	particulier	nous	avons	montré	 le	caractère	bien	posé	des	
méthodes,	ainsi	que	des	estimations	de	la	vitesse	de	convergence	pour	des	solutions	régulières.	Enfin,	nous	avons	également	discuté	
le	choix	du	paramètre	de	pénalisation	qui	peut	exercer	une	influence	importante	sur	la	qualité	des	résultats	numériques.	Ces	méthodes	
ont	été	 implémentées	dans	 le	code	open-source	Hawen	et	 les	résultats	numériques	ont	permis	d’illustrer	 les	conclusions	de	notre	
étude	 théorique.	Nous	 avons	 également	 construit	 des	 conditions	 aux	 limites	 absorbantes	 (CLA)	 d’ordre	 faible	 pour	 l’équation	 de	
Helmholtz	convectée.	Ces	CLA	sont	obtenues	par	transformation	de	PrandtL-Glauert-Lorentz	de	CLA	pour	l’équation	de	Helmholtz	
standard	lorsque	l’écoulement	porteur	est	uniforme	à	l’extérieur	du	domaine.	Ces	CLA	sont	performantes	pour	des	écoulements	dont	
le	nombre	de	Mach	est	faible	ou	modéré	et	leur	mise	en	œuvre	dans	un	code	éléments	finis,	notamment	HDG,	est	simple.	

Enfin,	 la	 troisième	 partie	 de	 ce	 travail	 est	 consacrée	 à	 l’extension	 des	 méthodes	 HDG	 construites	 pour	 l’équation	 de	 Helmholtz	
convectée	 à	 des	modèles	 plus	 réalistes.	 Dans	 un	 premier	 temps,	 nous	 décrivons	 les	 changements	 à	 apporter	 pour	 traiter	 les	 cas	
vectoriels.	 La	 construction	d’une	méthode	HDG	pour	 le	 cas	 vectoriel	 sans	 convection	 semble	 relativement	 aisée,	mais	 la	 prise	 en	
compte	des	phénomènes	 convectifs	pose	de	nombreuses	questions	 tant	 théoriques	que	pratiques.	 Finalement,	 nous	 illustrons	 les	
possibilités	des	méthodes	HDG	sur	un	problème	scalaire	issu	de	l’astérosismologie	qui	prend	en	compte	une	partie	des	effets	liés	à	la	
gravité.	Le	modèle	obtenu	est	semblable	à	une	équation	d’Helmholtz	convectée	par	la	gravité.	

 
 
 
 
 
 
 

	

	

	



235


	Introduction
	Mechanical waves characterize the propagation medium
	Solar models
	Describing solar oscillations
	Numerical methods
	Organization of this work
	References

	I Aeroacoustic modelling & resonance
	Derivation of aeroacoustic models
	Introduction
	Description of an ideal fluid
	Linearized Euler's Equations
	Galbrun's Equation
	Equivalence between those models
	Boundary conditions
	Time-harmonic solutions
	Numerical investigation of the equivalence in simple cases
	Review of well-posedness results
	Conclusion
	Appendix
	Proof of Theorem 1
	References

	A resonant-like phenomena
	Introduction
	Model problem for recirculating flows
	Existence of resonance for the vectorial transport equation
	Existence of resonance for Galbrun's equation
	Existence of resonance for LEE
	The case of the convected Helmholtz equation
	Conclusion & perspectives
	References


	II Numerical methods
	A HDG framework for the convected Helmholtz equation
	Introduction
	Model problem
	First-order formulations

	Notations
	Approximation spaces
	Hermitian products and norms
	Faces, jumps and averages

	HDG method for the total flux formulation
	Constructing the formulation
	Choice of penalization parameter
	Local solvability
	Error analysis
	Global solvability

	HDG(+) methods for the diffusive flux formulation
	Construction of the method
	Local solvability
	Error analysis of the HDG+ method
	Error analysis of the HDG method with diffusive flux

	Implementation
	Framework and notations
	Implementation of the diffusive flux HDG method
	Implementation of the total flux HDG method
	Implementation of the HDG+ method
	Comparison of the cost of the HDG and HDG+ methods

	Numerical experiments
	Convergence rate
	A posteriori error estimate
	Is the upwinding mechanism necessary ?
	Point-sources in a uniform flow
	Gaussian jet

	Conclusion
	Appendix
	Intermediate results for the error analysis of the HDG method with diffusive flux
	References

	Absorbing Boundary Conditions for the convected Helmholtz equation
	Introduction
	Model problem and geometric settings
	Equation and carrier flow
	Absorbing boundary condition, weak formulation and well-posedness
	Geometric assumptions for the background flow

	Prandtl-Glauert-Lorentz transformation and approximate ABCs
	Prandtl-Glauert-Lorentz transformation
	Transformation of the convected Helmholtz equation
	Transformation of the boundary condition
	Outgoing solutions of the convected Helmholtz equation
	New ABCs for the convected Helmholtz equation in 2D

	Numerical experiments
	Experiments with a uniform flow
	Experiments with a potential flow

	Conclusion
	Appendix
	Proof of Lemma 4.2.4
	References


	III Per aspera ad astra
	First steps toward the construction of a computational framework for realistic simulations of helioseismic waves
	Introduction
	Solar-like numerical simulations
	Approximation of Galbrun's equation in the low-regularity settings
	Different notions of coercivity
	Numerical approximation of weakly T-coercive problems
	Theoretical gaps for the non-conforming discretization of (weakly) T-coercive problems

	Towards the construction of a HDG method for Galbrun's equation
	Velocity formulation of the Helmholtz equation
	Adding the convection to the numerical method

	Conclusion
	References

	A scalar model with gravity
	Introduction
	Total field
	Euler's Equations in a rotating frame
	Can we neglect the Coriolis force ?

	Reduction to a scalar model when the Coriolis force can be neglected
	Background flow
	Linearized Euler's Equations without the Coriolis force
	Well-posedness of the scalar model

	Numerical aspects
	Conclusion
	References

	Conclusion


