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Abstract

In this thesis, we investigate real-time whole-body control of humanoid robots un-
der multi-contact-modes settings. That is to say, under different contact conditions
such as a mix of desired fixed contacts and desired (i.e., controlled) sliding ones. Seve-
ral methods are proposed to maintain the robot’s balance and keep the center-of-mass
(CoM) within an admissible set. Some of these methods require expensive computa-
tions of geometric balance regions. Consequently, the online realization of the balance
criteria in multi-contact has been a long-standing challenge. In this thesis, we tackle
this challenge in three main steps. First, we present a fast-computing method for the
2D CoM support region in a configuration of multiple fixed and intentionally sliding
contacts. To select the most appropriate CoM position within this region, we account
for (i) constraints of multiple fixed and sliding contacts, (ii) desired wrench distribu-
tion for contacts, and (iii) desired CoM position (eventually dictated by other tasks).
These are formulated as quadratic programming (QP) optimization problems. This
stage contains computational limitations and can not cover all feasible robot configu-
rations during the scenarios.

Next, we propose a whole-body control strategy for humanoid robots in multi-
contact settings that enables switching between fixed and sliding contacts under active
balance at will. This approach computes a safe center-of-mass position and wrench dis-
tribution of the contact points based on the Chebyshev center in real-time and without
any computational limitations. Moreover, this region-free approach does not need the
geometric computation of balance regions and a priori computation of them. We assess
our policy with experiments highlighting switches between fixed and sliding contact
modes in multi-contact configurations. A humanoid robot exhibits such contact inter-
changes from fully-fixed to multi-sliding and also shuffling of the foot. The scenarios
represent the execution of our control scheme in realizing the desired forces, CoM po-
sition attractor, and planned trajectories while actively maintaining balance.

Finally, we introduce a unified framework for the whole-body dynamic balance
controller of humanoid robots in multi-contact as an alternative to controlling the ba-
lance in a separate thread (planning). This framework considers the active motion tasks
of the robot in real-time within the balance criteria of the robot. We illustrate the appli-
cability of each step by simulations and empirical experiments on the HRP-4 humanoid
robot.

Keywords

Humanoid robots, Multi-contact, Dynamic balance, Whole-body control, Contact
modes, Chebyshev center.



RÉSUMÉ DE LA THÈSE

Dans cette thèse, nous abordons la commande corps complet de robots humanoïdes
dans des configurations de contact multiples multi-modaux. C’est-à-dire, sous dif-
férentes conditions de contact telles qu’un mélange de contacts fixes et de contacts
glissants désirés (i.e., contrôlés). Plusieurs méthodes sont proposées pour caractéri-
ser l’équilibre de robots humanoïdes, comme par exemple, le maintien du centre de
masse (CoM) dans un ensemble admissible. Certaines de ces méthodes nécessitent des
calculs coûteux des régions d’équilibre géométriques. Par conséquent, l’integration en
ligne (c’est-à-dire dans les boucles de commandes) des critères d’équilibre en multi-
contact est un défi majeur en robotique humanoïde. Dans cette thèse, nous abordons
ce défi en trois étapes principales. Tout d’abord, nous présentons une méthode de cal-
cul rapide pour la région de support en 2D du CoM dans une configuration de contacts
multiples fixes et (intentionnellement) glissants. Pour sélectionner la position la plus
appropriée du CoM dans cette région, nous tenons compte (i) des contraintes des mul-
tiples contacts fixes et glissants, (ii) de la distribution souhaitée du torseur des efforts
sur les contacts existants, et (iii) de la position souhaitée du CoM (éventuellement in-
fluencée par d’autres tâches). Ces contraintes sont formulées comme des problèmes
de programmation quadratique (QP) en optimisation. Cette étape comporte des limi-
tations et notamment, elle ne peut pas couvrir tout les scénarios des configurations
multi-contacts possibles du robot humanoïde.

Ensuite, nous étendons l’étude précédente aux configurations multi-contacts dans
l’espace 3D en offrant au contrôle corps complet la possibilité d’interchanger en ligne,
et à souhaits, des contacts fixes et des contacts glissants. Cette nouvelle approche cal-
cule une position sûre du centre de masse et une distribution du torseur des efforts sur
les contacts existants basée sur le centre de Chebyshev. Les calculs se font maintenant
en temps-réel et permettent de faire interagir le calcul des régions d’équilibre avec la
commande dans l’espace des tâches. De plus, cette approche ne nécessite pas le calcul
géométrique explicite des régions d’équilibre. Nous évaluons notre approche à l’aide
d’expériences mettant en évidence des commutations entre les modes de contacts fixes
et glissants et dans des configurations à contacts multiples non coplanaires. Les scé-
narios représentent l’exécution de notre schéma de contrôle en réalisant les forces dé-
sirées, avec un attracteur de la position du CoM et les trajectoires planifiées tout en
maintenant l’équilibre activement.

Enfin, nous introduisons un cadre unifié pour le contrôle de l’équilibre dynamique
du corps entier des robots humanoïdes en multi-contact comme une alternative au
contrôle de l’équilibre dans un schéma à deux phases. Ce cadre prend en compte les
tâches de mouvement actif du robot en temps réel dans le cadre des critères d’équilibre
du robot. Nous illustrons l’applicabilité de chaque étape par des simulations et des
expériences empiriques sur le robot humanoïde HRP-4.
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INTRODUCTION

The present modern-day is racing towards automation and advancement in tech-
nology to achieve 5-P goals which are productivity, proficiency, preciseness, progress,
and most importantly, perseverance! The 5-P keywords can efficiently express the rea-
son why humans need to rely on robots and accept them in the real-life. Robotic science
accelerates the progression and succession in the race of technology. Furthermore, by
leaning toward an advanced world, there is a substantial need to minimize humans’
presence in difficult and hazardous circumstances. Assisting the human and allevia-
ting the risks of workplaces are foremost goals of robotics. However, there are still
issues to address and enhance, which are the main focus of up-to-date researches as
the current study.

Currently, according to some specified roles and applications of robots, many ro-
botic manipulators operate in the industries. Nevertheless, it is not surprising that hu-
manoid robots are the fittest variants for enriching all human-like appearances and
capabilities in its territory. However, there exist still major challenges in humanoid ro-
botics, preventing the extensive application of these robots in the real world, which
are

• high cost of purchasing, maintenance, and repairment,

• limitations of actuator torques,

• limitations of the energy sources of the robots such as batteries preventing from
long-time usage,

• lack of effective controllers for maintaining the robot’s balance in every type of
workspace during the operation.

The former challenges are related to the design and economic aspects of the robot,
which are expected to be improved in the following years. But, the last challenge is the
main topic and prevailing direction of the current study.

Some humanoid robots with wheeled structures perform practical scenarios on a li-
mited scale for protected industrial, medical, and social environments. Therefore, they
do not have the balance challenge as mentioned above. Yet, there exist some restrictions
which prevent them from the vast majority of motions. The most serious limitation of
wheeled humanoid robots is the inability to cross the environment’s regular terrains
(essentially stairs, slopes, narrow spaces,...) to access specified localities, highlighting
the necessity of employing legged robots.
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Introduction

Humanoid robots are designed to reproduce all sorts of motion skills and physi-
cal activities that a human does during his daily life such as running, flipping, jum-
ping, crawling, etc. In theory, state-of-the-art humanoid robot technology could pro-
vide hardware capability to achieve –to some extended and relative performances,
some of these complex behaviors. Yet, they lack efficient control strategies with robust
equilibrium conditions.

Several solutions for the balance challenge of humanoid robots during the locomo-
tion phase have been introduced in the literature. But, naturally, for a robot’s maneu-
ver in the environment, we need to investigate the states in which the robot has more
contacts than feet with its surrounding, namely multi-contact configuration. These ad-
ditional contacts enable the robot to benefit from the surrounding objects to balance
and even cross the terrains. Additionally, it reduces the probability of losing balance
while performing the tasks. Consequently, the robot will be able to perform various
scenarios such as multi-contact locomotion, loco-manipulation, grasping, etc.

The balance of the humanoid robot in multi-contact conditions is still a topic of in-
terest and known as one of the open-ended challenges of this trend. Because, unlike the
existing methods for the balance of the robot while stance locomotion, evaluating the
balance criteria in the multi-contact condition is time-consuming due to the complex
computational process. Therefore, most of the proposed methods for multi-contact ba-
lancing contain an offline pre-computational phase according to the pre-planned sce-
narios. The online implementation of the multi-contact balance controller on the robot
is a primary challenge that we will discuss explicitly throughout this thesis.

We can classify the humanoid activities as fully-static, quasi-static, semi-dynamic,
and fully-dynamic motions from the control perspective. Each category can retain a
particular sort of configuration and scenario. A fully-static multi-contact system holds
zero CoM acceleration and, respectively, no contact movement. On the other hand, the
quasi-static motions contain small quantities of CoM acceleration so that the whole
body can move by keeping fixed contact with the environment. The other designs for
humanoid control in multi-contact configurations are fully-dynamic patterns. There is
a need for planning the CoM motions in these cases as the CoM acceleration is non-
zero. Moreover, this category covers the switching between contact modes.

There is a bridge between the quasi-static and fully-dynamic motions, which is
counted as semi-dynamic motions. In this category, we can control the movement and
switching of contact modes. The controller can be designed to explore different contact
modes such as sliding, soft, rolling, etc. However, the motion of the CoM does not need
any planning as we consider small quantities for CoM acceleration. Throughout this
thesis, we are going to explore semi-dynamic scenarios.

In addition to the balance concern of the multi-contact, the balancing controller
should be able to perform and cover the tasks involving different contact modes, such
as fixed, sliding, rolling, etc., to master the human-like behaviors on the robot. Be-
sides, the exploration of contact modes increases the complexity of the evaluation of
the multi-contact balance criterion. In this thesis, we will investigate and explore dif-
ferent contact modes of the robot and environment, on top of them, the sliding contact
mode. The proposed methods in this study enable the online implementation of the
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balance controller with a low computational cost which was the challenge for decades.
These methods also cover the presence of multiple contact modes, i.e. the multi-modal
condition.

The first chapter presents background on balance criteria in humanoid robots and
recent studies on multi-contact motion generation methods. The balance criteria in
multi-contact settings are essential due to the necessity of exploring challenging sce-
narios such as accessing narrow spaces, reaching objects and spots, loco-manipulation,
ladder climbing, etc. In order to employ different contact modes throughout the plans,
we investigate the relevant contact and force models. Finally, for realizing the models
and balancing methods on the robot, the whole-body control schemes together with
the preliminaries of its implementation are introduced.

In the second chapter, we tackle the online implementation of the balance control
strategies in multi-contact conditions in the presence of sliding contacts. We construct
the balance region in 2D using an analytical solution. The developed area is computa-
tionally cheap due to the simplifying assumptions in the analytical calculations. Ho-
wever, it enables the evaluation of the balance criteria in real-time with proper force
tracking. The proposed QP formulation generates the position of the CoM and the
wrench distribution for the planned scenario. Experiments show that the advanced
methodology guarantees equilibrium criteria for fixed contacts and keeps the robot’s
balance in the presence of intentionally sliding contacts.

In the third chapter, we tackle the computational limitations addressed by the ana-
lytical solution and aim to execute the multi-contact scenarios without any restrictions
mentioned above. In this chapter, the multi-sliding and fixed contacts are considered.
The framework is formulated based on Chebyshev’s optimization method, which gua-
rantees the balance online but is conservative. We implemented an online friction esti-
mation to adjust the accurate coefficient of friction during sliding. The output reference
CoM position and contact wrench distribution are achieved using task-space whole-
body admittance control. In the experiments, we also assess our approach through
complex scenarios involving switching between contact modes under active dynamic
balance and force control.

The fourth chapter takes one step further towards the balance control of huma-
noids. By considering the robot’s balance within the planner, we are keeping the full
range of the motion features, essentially real-time motion tasks and configurations
beyond the scene. In simple terms, the planner is not aware of this motion until the
robot contacts the environment. Therefore, we aim to blend a balancing strategy wi-
thin the controller rather than the planner. So, the whole-body controller of the robot
also accounts for the balance of the robot. The capability of the proposed unified frame-
work is evaluated through pushing and wiping scenarios on simulated HRP-4 robot.
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CHAPTER 1

BACKGROUND AND PRELIMINARIES

In this chapter, I will present the primary notions which are commonplace in huma-
noid robotics. These notions include the control aspects, contact modes, configuration,
scenarios, applications, and features associated with the robot’s appearance. Each of
these concepts plays a meaningful role in controlling the motion and performing suc-
cessful scenarios.

Controlling humanoid robots has numerous hurdles, and each one of these chal-
lenges carries separate themes and topics of interest. For instance, the robot’s balance
can be studied in standing or multi-contact configurations. These configurations re-
sult in varying balance control strategies, which can be linked to the ZMP concept for
the standing condition or CoM-related methods in multi-contact. Besides, the robot’s
motion should be considered dynamic or static according to the applications and ca-
pabilities of the real-time implementations.

The robot is in contact with its environment. In order to accomplish the motions and
desired scenarios with the robot, the contact modes should be adequately investigated.
For different contact modes such as fixed, sliding, rolling, etc., numerous models are
presented in the literature that we will be discussed in this section.

Humanoid robots utilize their degrees of freedom to accomplish various scenarios.
Executing such actions needs meticulous planning of the contact placements and the
corresponding consistent motion of the whole-body. To realize the robot’s motion ac-
cording to the designed scenarios, we need to implement a whole-body control stra-
tegy in standing or multi-contact conditions. For this purpose, we will introduce the
relevant control strategies for the position or torque-controlled robots in the following.

Applying the methods and strategies mentioned above and executing them on the
humanoid robot (wheeled or biped robots) can cover a wide range of scenarios and
human-like activities. So far, humanoid robots demonstrate several applications and
generate motions. Still, there are several unsolved challenges that can influence hu-
man life. The main objective of humanoid robotics is to accomplish all activities which
human does in his routine life. The current and future applications of humanoid ro-
bots will also be discussed in this section. Finally, this section will introduce the tools
we used to implement the controllers, such as the control framework, computational
method of the planner, and solvers, following the presented chapter’s conclusion.
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Background and Preliminaries 1.1. Multi-contact motions in humanoids

1.1 Multi-contact motions in humanoids

The main characteristic of humanoid robots is their ability to reproduce human-like
motions and replacing them with humans in haphazard and unexpected conditions, as
highlighted in DARPA Robotics Challenge (DRC) 1. There exist many leading lines of
research on the locomotion of humanoids as well as their manipulation capabilities.
However, the combination of locomotion and manipulation techniques for generation
of humans routine activities is inevitable. The robot should be capable of executing
these tasks in disaster scenarios and interacting with humans. Successful completion of
such physically demanding tasks requires exploring multi-contact applications where
all possible end-effectors may contact various surfaces through specific contact modes.

As signified in the previous paragraph, the term “multi-contact” in robotics refers
to the robot’s status with more than one limb interacting with its environment. For a
humanoid robot, the feet and hands of the robot are often considered as interacting
contacts as shown in Fig. 1.1(a). So, in general, the contact is defined by the interac-
tion of these parts with the environment, but in complex cases, one can choose other
contacting points, such as knees, elbows, etc. However, considering a single contact
point or a set of points for the contacts has been a topic of interest in robotics and will
be discussed further on.

The multi-contact applications in humanoid robots are primarily associated with
locomotion, and it has been studied since Frank (1968). The ZMP was the main crite-
rion to assess the locomotion. Vukobratović and Borovac (2004) extended this concept
for the multi-contact condition. Still, in his study, the contacts are assumed to be co-
planar. Later, the Generalized-ZMP (GZMP) concept was introduced in Harada et al.
(2003), which enables the participation of the multiple contacting limbs in the calcu-
lation of the supporting region with the projection methods. As a continuation of the
multi-contact applications, Hyon et al. (2007) investigated the balance strategy by dis-
tributing contact wrenches.

Unlike the robot’s locomotion, which considers the ZMP with the assumption of co-
planar surface contacts, real-world applications mainly deviate from this assumption.
Contact points may not be co-planar for stepping on terrains, grabbing and carrying
the objects, ladder climbing by holding a handrail, etc. Therefore, the multi-contact
applications of the robot are more challenging than the locomotion because of:

1. need for taking additional contacts into account in the scenario and balance in
contrary to simply regarding feet and ground contacts,

1. The Defense Advanced Research Projects Agency (DARPA) is a research and development agency
of the United States Department of Defense responsible for the development of emerging technologies
for use by the military. The DRC is a competition of robot systems and software teams vying to develop
robots capable of assisting humans in responding to natural and artificial disasters. Participating teams,
representing some of the most advanced robotics research and development organizations in the world,
are collaborating and innovating on a concise timeline to develop the hardware, software, sensors, and
human-machine control interfaces that will enable their robots to complete a series of challenge tasks
selected by DARPA for their relevance to disaster response Defense Advanced Research Projects Agency
(2018).
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2. consideration of acyclic motions rather than the repeated motion of stepping as a
constant pattern for locomotion.

As first investigations on contact interaction of robotic manipulators, Khatib (1980);
Raibert and Craig (1981) were considered as primary studies of this topic over dyna-
mics and force control aspects. However, in the context of multi-contact motion gene-
rations for humanoids, the virtual linkage model is introduced to continue the multi-
finger Joh and Lipkin (1991); Kumar and Waldron (1988); Sinha and Abel (1992) and
multi-arm Yun (1991); Zheng and S. Luh (1986) grasping and manipulation interests.
This model characterizes the internal wrenches by considering the manipulation pro-
cess as a closed chain mechanism and physically representing the interior and gravito-
inertial forces.

As a general statement, Sentis (2010) adopts the virtual linkage strategy for multi-
contact interaction of the robot with the environment (Fig. 1.1(b)) considering the ba-
lance criterion by retaining the CoM inside a cloud of achievable CoM static positions.
In the following, we focus more specifically on the multi-contact planning features of
recent investigations and developed methodologies in this domain.

(a) (b)

FIGURE 1.1 – Multi-contact motions of humanoids robots. (a) illustrates the HRP-4 robot with
four non-co-planar contacting limbs Samadi et al. (2021), and (b) is the demonstration of the
multi-contact posture assessed by the virtual-linkage model presented in Sentis (2010).

1.1.1 Multi-contact motion planning

In order to plan a multi-contact motion, the robot needs to choose the contact points
and their contact modes, the respective body configurations, a proper strategy to switch
between the contacts and configurations (as a smooth trajectory) and take into account
the constraints of the motion. These constraints also need to include the collision (in
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case of obstacles) Kanajar et al. (2017); Merkt et al. (2019) and self-collision avoidance
conditions Quiroz-Omaña and Adorno (2019); Koptev et al. (2021).

Multi-contact planning surpasses the locomotion problem and is crucial for increa-
sing humanoid robots’ loco-manipulation abilities in confined and narrow spaces Khed-
dar et al. (2019). The most common procedure to execute this hybrid motion is to de-
dicate the feet contacts for the balance problem while standing Kuffner et al. (2002);
Yamane et al. (2004) or during the locomotion phase Kuffner et al. (2001); Chestnutt
et al. (2003), along with manipulating with the remaining limbs. As a result, the pro-
blem can be decoupled for dual-arm robots with the locomotion capability Yoshida
et al. (2008).

On the other hand, there exist conditions in which the decoupling of locomotion
and manipulation motions is not considered as an efficient strategy; such as ladder
climbing Vaillant et al. (2016), accessing/crawling under the table Escande et al. (2013)
or box pushing Harada et al. (2007). The control of locomotion and manipulation pro-
blems have the actuated torques and contacting forces (involving the contact friction)
in common. So, the hybrid motion (loco-manipulation) can be considered as the same
problem.

Complex multi-contact motions are found in non-gaited or acyclic locomotion Re-
her et al. (2020); Kumagai et al. (2019) in complex and cumbersome scenes Chung and
Khatib (2015), grasping Collette et al. (2008), manipulation Garcia-Haro et al. (2019),
balancing in cramped spaces Henze et al. (2017), heavy-object pushing Murooka et al.
(2015), etc. Such skills shall be achieved under active balance of the humanoid ro-
bot Kajita et al. (2010); Caron et al. (2019); Morisawa et al. (2018, 2019). In what fol-
lows, we explore some of the most common applications of humanoid robots in multi-
contact scenarios.

Multi-contact Reaching Tasks

One of the most essential and basic motions that multi-contact conditions can carry
out is contacting the planned spots (namely, reaching). The reaching motion accompa-
nies numerous intentions such as grasping and manipulating different objects, main-
taining the balance with additional contact points with the environment, pushing or
holding things, performing industrial tasks such as pressing a button or placing par-
ticles into their place, etc.

Designing the algorithm of reaching a target in scenarios is the foremost step of the
multi-contact planner. After accomplishing the reaching motion, the robot can perform
the next states, such as pushing heavy objects. Mirjalili et al. (2018) designed a reaching
algorithm on top of the proposed method by Mason et al. (2018) for multi-contact loco-
motion in the presence of perturbations and illustrated the reaching capability through
a kid-sized humanoid robot as shown in Fig. 1.2(a).

In another study, Ruscelli et al. (2020) leverages the contact reaching for executing
the static balance of the robot in confined spaces. It places the feet on non-coplanar
surfaces and reaches the wall located beyond the robot. Also, Hiraoka et al. (2021)
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demonstrated multiple scenarios such as crossing over rough terrains and reaching
objects (see Fig. 1.2(b)) through a multi-contact online motion generator and prioriti-
zed inverse kinematics for realizing the targets from the planner. Moreover, Fig. 1.2(c)
displays the reaching and placing of the particle in multi-contact condition inside the
Airbus civilian airliner manufacturing plant Kheddar et al. (2019).

(a) (b) (c)

FIGURE 1.2 – Multi-contact reaching maneuvers humanoid robots. The figure illustrates the
generated multi-contact motions for (a) object-reaching of kid-sized SURENA-mini Mirjalili
et al. (2018), (b) HRP-2 robot reaching a basket with establishing knee contact Hiraoka et al.
(2021), and (c) particle-placing of TORO in the airbus manufacturing site Kheddar et al. (2019).

Loco-manipulation and Multi-contact Locomotion

Moving different sizes and weights of objects by humanoid robots highlights the
necessity of investigations and execution of loco-manipulation tasks while maintai-
ning the robot’s balance. For the balance of the robot, the recent studies are focused on
motion generation Audren et al. (2014); Morisawa et al. (2019) and stabilization Far-
nioli et al. (2015) of multi-contact motions during the pushing motion Polverini et al.
(2020); Hiraoka et al. (2021).

There are relevant studies on this scope which are proposing the controllers for
pushing or pulling of objects Nishiwaki et al. (2006); Stilman et al. (2008) as well as
pivoting Yoshida et al. (2010); Murooka et al. (2014) (see Fig. 1.3(a)) the massive objects.
The other manipulation application of the humanoids would be opening the doors,
which is an inevitable task for the robot working in the real world. Recently, Murooka
et al. (2021) introduced a multi-contact control approach for loco-manipulation, which
deals with the external perturbances and handles the rolling contacts as demonstrated
in Fig. 1.3(b).

On the other hand, multi-contact locomotion is the additional capability that a hu-
manoid should master if it wants to perform scenarios in large-scale manufacturing
sites. The robot needs to traverse the pathways which are designed for humans and get
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assistance from the environment for the locomotion Morisawa et al. (2018); Kumagai
et al. (2020) and stair climbing Kumagai et al. (2021). The importance of multi-contact
locomotion is in expanding the support region and decreasing the probability of lo-
sing the balance. Fig. 1.3(c) shows the humanoid robot passing through an industrial
corridor using designed handrails.

(a) (b) (c)

FIGURE 1.3 – Loco-manipulation and Multi-contact Locomotion of humanoid robots. (a) illus-
trates the HRP-2 humanoid robot, pivoting the heavy and large object Murooka et al. (2014)
and (b) demonstrates the loco-manipulation of the HRP-5P robot with an industrial rolling
bobbin Murooka et al. (2021). Additionally, (c) displays the multi-contact locomotion capabi-
lity of this robot in a simulated industrial corridor Kumagai et al. (2020).

Multi-contact Ladder Climbing

The most outstanding demonstrations on ladder climbing have been performed
in the DARPA challenge. The champion team (SHAFT) was able to escalate the lad-
der using its feet only. The next group, HUBO+, was able to climb until the last rung.
They demonstrated multi-contact climbing scenarios based on the approach introdu-
ced in Zhang et al. (2013). This team employed the multi-limbed locomotion planner
stated in Luo et al. (2014) that generates the ladder-climbing trajectory based on the
ladder model. Fig. 1.4(a) shows a stair climbing scenario that is reproduced to be close
to the DARPA’s conditions. Other than these two teams, the other participants were
not able to climb.

However, ladder climbing is not a new challenge to tackle, and it has been the focus
of interest since the 80th. To this end, the Toshiba company designed a robot with
four limbs with grippers Iida et al. (1989). afterwards, there had been a majority of
designs for climbing purposes such as LIBRA as a three-legged climbing robot Bevly
et al. (2000), a metamorphic robot with deformable limbs Nakai et al. (2002), ASTERISK
robot Fujii et al. (2008) with six legs, and Gorilla III Yoneda et al. (2008) which executed
three demos of transverse, pace with constant velocity and trot with acceleration.

Recently, Noda et al. (2014) introduced a humanoid motion planner which enables
the robot to climb the ladder or a car as shown in Fig. 1.4(b). Vaillant et al. (2016) also
proposes a multi-contact planner by considering the pre-planned set of contacts for the
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climbing motion. He demonstrated the scenario with an HRP-2 humanoid robot and a
vertical ladder. The foot places in this approach can be placed on any rung at the will
of the planner. Fig. 1.4(c) displays this vertical ladder climbing.

(a) (b) (c)

FIGURE 1.4 – Multi-contact stair climbing of (a) a DRC-Hubo robot on an industrial ship lad-
der Luo et al. (2014) which is a simulated environment of DARPA robotic challenge, (b) clim-
bing a sloped Noda et al. (2014) and (c) vertical ladder Vaillant et al. (2016) with HRP-2 huma-
noid robot.

Accessing Narrow Spaces

When it comes to locomotion in an obstacle-free zone, the humanoids can only
move forward by attachment/detachment of the feet’ contacts with the ground. Ho-
wever, in the case of obstacles and pathways with terrains, the planner suggests ad-
ding interactions with the surroundings. There are situations in which the robot is
asked to pass through unexpected routes with barriers Verrelst et al. (2006); Yokoi et al.
(2009). Crawling motions (considering elbow and knee contacts) are needed to execute
these crossing scenarios from narrow spaces Escande et al. (2013) as Fig. 1.5(a). Further-
more, Lu et al. (2010) demonstrates the transformation of movements from walking to
crawling, highlighting the need for multiple contacting links with the environment.

One way of pathing through the terrains and obstacles is climbing over, crawling
under, or shuffling around them, primarily narrow spaces. Kanehiro et al. (2005) intro-
duces an online motion planner based on the produced 3D model of the environment,
which enables the robot to move under narrow spaces such as tables or tunnels to ar-
rive at a specified spot as shown in Fig. 1.5(b). Furthermore, Kanajar et al. (2017) tackles
the challenge of climbing over the enormous barriers for making use of objects in the
environment instead of bypassing them (see Fig. 1.5(c)).
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(a)

(b) (c)

FIGURE 1.5 – Multi-contact motion generation of humanoid robots for passing through the nar-
row spaces and crossing the obstacles by (a) crawling through tight tunnel Escande et al. (2013),
(b) moving under the table Kanehiro et al. (2005) and (c) climbing over the large barrier Kanajar
et al. (2017).

1.1.2 Humanoids execuing sliding motions

The state-of-the-art multi-contact planning and control considers only creating and
breaking contacts to support the motion Bouyarmane et al. (2019a). In many situations,
however, switching contacts through releasing one of the established ones is not pos-
sible. This is the case, for example, in narrow or cumbersome spaces where free space
is limited. Another example is when balance cannot be kept by breaking any of the
existing contacts. In such cases, using sliding contacts to support the motion and the
balance is an alternative. There are other contexts where tasks require sliding to be
controlled (e.g. sanding or surface smoothing).

The sliding motion is one of the actions that individuals master in performing se-
veral tasks in their daily lives. Sliding contacts have been studied on several robots by
considering dynamic friction forces and planning and controlling objects by pushing,
see a recent example in Shi et al. (2017). In this thesis, we will focus on sliding contact
modes included in multi-contact scenarios and address whole-body humanoid multi-
contact task-space control allowing interchangeable multi-contact transitions between
fixed (creating and removing) and sliding ones.
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1.2 Contact modeling

Contact is the state of physical touching. Contact modeling aims to determine the
interaction force between the contacts and identify the corresponding produced mo-
tion based on the contact forces. This model essentially depends on the geometry and
physics of contacts and their material properties, which are employed to calculate the
surfaces’ deformation and friction. In the following, we describe the fundamental de-
finitions of contact physics and dynamics.

1.2.1 Interaction features

To study the robot’s interaction with the surrounding environment, some defini-
tions are established that promote characterizing and formulizing the contact sorts. In
this section, we perceive these principal notions.

Contact mode

When an end-effector of the robot is in contact with the environment, the kinematic
transform comprises six degrees of freedom (DOF) which correspond to linear and an-
gular DoF. Establishing contact is equivalent to restraining some of DoF in the form of
equality constraints. Constraining the linear and angular DoF result in the generation
of contact forces and torques, respectively. The contact mode is a compound of these
constraints under a point or surface contact.

As mentioned, the contact mode is characterized by DoF, which constrains the
contact among all DoF. A fixed contact mode is provided by six constrained DoF, res-
tricting the contacting link from any movements. However, two DoF is set to be free
for generating a sliding motion on a 2D tangential surface. Still, numerous methods
assume keeping the fixed contact mode during the scenarios and excluding the possi-
bility of experiencing other modes Balkcom and Trinkle (2002).

The term contact swithcing refers to the transition between the contact modes, and
this switching happens when the force conditions reach the limits of the constraints.
Therefore, we need to acquire these boundary conditions for controlling the motion
of the end-effectors. The following definition is contact stability which comprises the
stated conditions.

Contact stability

During the scenario, if all contacts of the robot with the environment stay in the
same contact mode, the motion is known to be contact stable. So, this is a term contrary
to contact switching. It is also important to mention that the application of the term
“stable” is different from the standard definition of stability in control theory.
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Pang and Trinkle (2000) introduced the contact stability criterion in terms of contac-
ting forces which is commonly used in the literature Caron (2015). He indicated that
for a fixed contact, there exists a solution for the equations of motion satisfying the
contact mode for all contacting links and fulfill the following conditions:

• there occurs no relative motion of the contacting links (kinematic constraint),

• satisfies the joint torque limits,

• the contact forces do not exceed the limitation for fixed contact mode.

1.2.2 Contact models based on applications

Choosing the correct model of the contact depends instantly on the application and
purpose of the main scenario. Employing the proper analytical contact model helps
meet the setup’s functionality expectations, which can be enhanced through manipu-
lation or dexterous motions. There are two classifications of models developed for uni-
lateral constraints based on smooth and non-smooth contact dynamics accordingly.

Rigid-Body Models

This model incorporates the vast majority of manipulation and grasping purposes.
In this model, penetration and deformation of the interacting surfaces are not taken
into account. Thus, the contact forces are the direct consequence of the frictional and
rigidity property of the surfaces. The Rigid-body models are efficient due to their
straightforward and linear formulation, leading to an efficient computational process
in the algorithms.

Notwithstanding, there are some significant deficiencies beyond this model. When
it comes to manipulating multiple objects, the model is not capable of resolving the
static indeterminacy problem Bicchi (1994); Harada et al. (2000). Therefore, the model
is not able to determine the force of the multiple grasping points. Furthermore, the
deformation of manipulated objects is not always neglegible Lin et al. (2000).

Nevertheless, consideration of this deformation is out of the scope of the rigid-body
model. Based on researches such as Lötstedt (1982); Wang et al. (1991), applying the
Coulomb friction model can result in a lack or variety of solutions for mechanical pro-
blems. So, the compliant models would be advantageous for accurate and industrial
applications.

Compliant Models

The compliant model takes into account the deformation of the objects under in-
teracting forces. So, the contact force can be obtained by the stiffness model. Realizing
these models are more complicated than the rigid-body models. However, they resolve
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the static indeterminacy problem without neglecting the deformation of the contacting
regions under loads.

The exact model for stiff material and contacts is complex to use within the schemes.
Therefore, a reduced model with fewer variables is often favored to be used as a quasi-
rigid-body approach instead of the detailed one. In order to model the local deforma-
tion of the fixtures, 3D finite-element methods (FEM) Dandekar and Srinivasan (1995);
Xydas et al. (2000) or similar approaches Komvopoulos and Choi (1992); Tenek and
Argyris (1997) can be applied.

1.2.3 Contact kinematics

Contact kinematics refers to the kinematic study of links for generating the motion
with desired contact modes. In other words, contact dynamics take care of the motion
of linked bodies while maintaining the end-effector’s contact mode.

Assume two rigid-bodies in a workspace and the distance of their end-effectors
noted by d as a function of bodies’ configuration. According to this notion, d > 0 indi-
cates the detaching of end-effectors, and no contacts exist under this condition. Also,
d 6 0 can be the condition of penetration which is not reflected under the rigid-body
assumption. So, we concentrate on the contacting condition which is d = 0. According
to the kinematic chain, we calculate the derivation of distance in order to determine
and predict the contact while tracking a configuration trajectory with bodies. As indi-
cated, the distance term is a function of body configuration (q). So, the derivation of
distance can be calculated as follows:

ḋ = (∂d
∂q

)q̇. (1.1)

In this regard, we can leverage the Jacobian matrix expression for distance application
as Jd = ∂d

∂q . Therefore, we have the derivations of distance function as:

ḋ = Jdq̇ (1.2)

d̈ = J̇dq̇ + Jdq̈. (1.3)

Table 1.1 shows the interaction possibilities for two rigid-bodies.

1.2.4 Friction and forces

Assume that a rigid-body, with the mass of m, has a set of points in unilateral
contact with the environment. The vector n is a unit vector normal to the contac-
ting surface. The interaction (contact) force is noted by f c, and there can be the ex-
ternal forces acting on the rigid body, which we name as f ext. Fig. 1.6(a) illustrates the
mentioned setup. According to rigid-body dynamics, the normal (f z) and tangential
(f t = [fx f y]T ) components of the contact force are represented as:

f z def= n.f c (1.4)

f t def= f c − (n.f c)z (1.5)

15



Background and Preliminaries 1.2. Contact modeling

TABLE 1.1 – Conditions of contact establishment

d ḋ d̈ Explanation

> 0 − − complete detachment (no contact)

= 0 − − penetration (not considered in rigid-body model)

= 0 > 0 − beginning of contact breaking

= 0 < 0 − beginning of penetration (not considered)

= 0 = 0 > 0 beginning of contact breaking

= 0 = 0 < 0 beginning of penetration (not considered)

= 0 = 0 = 0 complete contact

where n = [0 0 1]T is the unit normal vector (along z axis).

Coulomb’s friction model describes the limits in which the contact mode switching
happens due to exerted forces. Assuming the object presented in Fig. 1.6(a), this friction
model indicates that there will be no movement if the contact force f c = [fx, f y, f z]T
lays inside the friction cone or equivalently, the inequality |fx| 6 µf z is satisfied for
the static friction coefficient µ. Note that the frames shown in Fig. 1.6 are local, and the
constraints need to be expressed in the lab frame using rotation matrices.

When the contact force reaches the boundaries of the inequality, the box will start to
slide with a different governing formula as fx = µdf z where µd indicates the dynamic
(kinetic) friction coefficient. In general, the complementary Coulomb condition is in
the following form:

f c.n > 0 (1.6)
‖n× f c × n‖2 6 µ(f c.n). (1.7)

Eq. (1.7) contains the Euclidean norm ‖◦‖2 which results in the friction cones with
circle sections. This representation is the exact assumption of the friction cones; howe-
ver, to employ the friction condition in the approaches, it is more convenient to use
the linearized cones Hauser (2014); Del Prete et al. (2016). Regarding the x and y as
tangential unit vectors (normal to vector n), the linearized Coulomb condition in the
complementary form becomes:

f c.n > 0 (1.8)
|f c.x| 6 µ(f c.n) (1.9)
|f c.y| 6 µ(f c.n) (1.10)

The Fig. 1.6(b) demonstrates the exact and linearized Coulomb friction cones.
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(a) (b)

FIGURE 1.6 – Representation of forces and frictional contact cones (a) acting on a box as a
rigid-body in 2D and (b) linearization of the corresponding friction cones by inner and outer
approximations in 3D. The xyz frame with the origin of o represents the local contact frame,
and XY Z are coordinates of the lab (global) frame with center O.

1.3 Whole-body multi-contact control

The planned motions and scenarios need to be implemented and executed on the
robot. For this purpose, a controller needs to be employed that controls all robot joints
based on the desired tasks. However, most of the time, multiple tasks need to be execu-
ted simultaneously on the robot (e.g., locomotion of the robot and manipulation of ob-
jects). Approaching various tasks is also the responsibility of the whole-body controller.

The multi-contact condition helps the humanoids to maintain balance in cumber-
some circumstances by using additional interactions with the environment. There are
several strategies introduced for controlling the robot in multi-contact conditions. As
the first implication, Samson and Espiau (1990) introduced the usage of task functions
for sensor-based control schemes and proposed a general model of interaction task.
This work discussed the definition of task functions, control stability criteria, and task
redundancy. Since then, there have been significant studies on task-space kinematic
and inverse dynamic control of the robots Mansard et al. (2009), particularly redun-
dant ones Siciliano and Slotine (1991).

The recent studies aim for formalizing the task-space controllers into a QP problem.
The execution of these tasks is based on their prioritization hierarchy. This order-based
scheme can be held either as a strict, weighted, or hybrid priority. Within the QP for-
mulation Kanoun et al. (2011); Escande et al. (2014); Kuindersma et al. (2014), the tasks
can be formulated as cost functions or constraints of the problem.

Saab et al. (2013) expressed the controller, which advises multiple objectives in
task-space with a strict hierarchy. In this work, they extend inverse kinematics to the
full dynamics of the robot for generating whole-body motions. A similar strict priori-
tization is implemented in Sentis (2010) to illustrate the complex interactions between
contact forces and CoM behavior. Recently Kim et al. (2018) proposed a multi-objective
whole-body control approach that delivers robustness and efficiency to the computa-
tions.

The study of Sentis (2010) deals with the internal forces in multi-contact as also
practised by Righetti et al. (2013) which is employed in the form of constraints inside
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the whole-body controller. As mentioned in the previous chapter, they use the virtual-
linkage model, which describes the internal and gravitio-inertial wrenches, to obtain
the optimal solution for the balancing problem. This optimization problem can further
include the regulation of the Center-of-Pressure (CoP) Wensing et al. (2013) of feet or
minimizing the contact wrenches Righetti et al. (2013) resulting in equal wrench distri-
bution between contacts.

Del Prete et al. (2014) provides a strict-prioritized optimization problem including
the linearized system dynamics. They indicated that using a strict hierarchy strategy
bypasses the diverse weight-tunings, which becomes critical in the existence of nu-
merous tasks. Some research studies the situations where the control forces exerted
from specific end-effectors are of much importance. For instance, assume the manipu-
lation of a fragile object where the grasping pressure should not exceed a certain value.
Considering these situations, Sherikov et al. (2015) proposed a strict prioritization fra-
mework for the force distribution of optional contacts in multi-contact settings.

The primary deficiency of strict hierarchy is the incompatibility of their formulation
with the addition of inequality constraints to the problem. One of the constraints that
should be considered in the whole-body controller framework is the contact stability
criteria that need to be implemented as inequality constraints.

To overcome this shortcoming, Saab et al. (2011); Escande et al. (2014) addressed the
hierarchical quadratic programming (HQP) algorithm. This approach categorizes the
tasks into higher and lower priority tasks. The algorithm can solve multiple QPs in the
order of priority. Consequently, the low priority tasks will be solved in the null-space
of high priority ones under constraints.

The major concern of solving two-level task categories is the smooth transition of
task hierarchies in their sudden rearrangement. In simple words, for a dynamic system
acting in the environment, some tasks need to be activated and deactivated through
the time steps with their corresponding priority and Keith et al. (2011); Petrič and Žlaj-
pah (2013) proposed the method for achieving a smooth rearrangement of hierarchies.
Also, this smooth transition has been carefully investigated in Liu et al. (2016). This
study introduces a semi-dynamic control structure with switchable strict and non-strict
priorities and dynamic transition of task hierarchy.

On the contrary, there is the term weighted prioritized task-space controllers Abe
et al. (2007). Optimization methods accompany these control structures with non-strict
task hierarchies. They are mostly solved as tasks and constraints in QP forms Liu
et al. (2011); Bouyarmane and Kheddar (2011a) with the implementation of different
weights. In this approach, strict priority can not be accomplished by assigning weights
for tasks.

Collette et al. (2007) introduced a weighted prioritized QP optimization task-space
formulation for performing the complicated scenarios in multi-contact. Consecutively,
Salini et al. (2010) argued the priorities between the tasks in a multi-contact balancing
structure. In this study, the linear QP (LQP) cost function is set as the weighted sum of
the task functions based on their importance.

The corresponding prioritization idea has been widely used in the literature Modu-
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gno et al. (2017); Lee et al. (2021). Bouyarmane et al. (2019b) proposed the whole-body
task-space controller based on the multi-robot concept, which is synthesized within
a unique optimization problem of the controller rather than the planner Bouyarmane
and Kheddar (2011a, 2012). The term multi-robot refers explicitly to modelling the ro-
bot’s interactions with the environment as a cluster of robots. The weight-prioritization
hierarchy is also the basis of this approach.

The whole-body motion of the robot in multi-contact settings is mainly classified
in two primary conditions. First, considering all the contacting links in the realization
of the balance of the robot and performing the desired tasks such as manipulation,
carrying, pushing, etc. The second condition is to discriminate between the balancing
and interacting contacts. Balancing contacts are considered contacts in charge of the ro-
bot’s balance and are not conducting other tasks. However, the remaining contacts aim
to realize the desired tasks, excluding the balance of the robot. In the latter form, the
computed wrenches of the interacting links should be involved in the computation of
the balance regions. Still, the duty of maintaining the balance is for balancing contacts.

As a matter of weighted prioritized controller, weights can be assigned so that the
corresponding contact wrenches for interaction are mainly contributed to their related
tasks at each control cycle. The rest of the wrenches are given to balancing. For instance,
for the execution of a manipulation task, weights are designed to select some specific
components of contacting wrenches and assign the rest for other tasks instead of do-
nating the entire contact elements for this purpose. Henze et al. (2014) prefaced this
weight-based implementation where the whole-body controller adjusts the hip orien-
tation the same as Ott et al. (2011). In this context, the presented method in Lee and
Goswami (2010) is applicable for controlling the whole-body momentum.

Classifying the contacts into balancing and interacting ones decreases the compu-
tation time and bypasses the repetition of balance region calculation at each control
cycle where a motion occurs. Abi-Farraj et al. (2019) leverages this method to preserve
the balance through high-force interaction tasks in multi-contact. Still, this compliant
controller suffers from high computational costs. Even with separating the balancing
contacts, there is a need for pre-computations of the balance region (more precisely, the
distance of the balancing wrench from edges of the balance region).

By considering the whole-body motion of the humanoid, inverse kinematics pro-
vides the joint commands needed for realizing the desired trajectory of the CoM and
the respective body configuration. For a torque-controlled robot, Stephens and Atke-
son (2010) proposes a model-based dynamic balance force controller that commands
the joint torques to the whole-body based on the desired CoM and contact forces. This
framework employs virtual task forces in order to accomplish regular tasks as manipu-
lation and posture tasks and solves the quadratic optimization problem for calculating
the wrench distribution to control the motion of CoM and angular momentum of the
robot. As a passivity based whole-body controller, Henze et al. (2016) appropriated
the non-strict task hierarchy strategy for balancing the robot in multi-contact condi-
tions. The approach is devised based on the categorization of interacting and balancing
contacts.

The centroidal momentum control can be employed for whole-body control strate-
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gies Macchietto et al. (2009); De Lasa et al. (2010); Orin et al. (2013). They are known to
be more robust in the presence of perturbances than the controllers based on inverse-
dynamics Herzog et al. (2014). So far, there have been notable researches on the hy-
brid dynamics of the humanoids, which incorporate remarkable results as presented
in Posa et al. (2014); Neunert et al. (2018). Though, leveraging the mentioned methods
is computationally expensive. On the other hand, simplified dynamical models are
have been proposed that accelerate the calculations by decreasing the dimensions of
the problem Herzog et al. (2016); Winkler et al. (2018), such as centroidal dynamics Orin
et al. (2013); Dai et al. (2014).

Primarily, the planners provide the proper wrench distribution according to the
centroidal model. The whole-body balance controller takes responsibility for realizing
the wrenches on the robot and maintaining the balance. This control layer also operates
the mapping of the contact forces into the joint positions Bouyarmane et al. (2019b) or
torques Henze et al. (2016) for the position- or torque-controlled robots, respectively.
Polverini et al. (2020) exploits the pushing of heavy objects with a torque-controlled
platform and tracks the planned contacts through hierarchical inverse kinematics as a
multi-contact controller.

1.4 Balancing in multi-contact

Maintaining the robot’s balance in standing posture refers to the control of angu-
lar and linear momentums. For this purpose, the proper force of the contacting forces
should be assigned on the robot holding the support area of the feet Macchietto et al.
(2009). However, there is a need for additional contacting limbs in more challenging
situations to preserve the balance, leading to the multi-contact condition. The multi-
contact condition is not restricted to the hands and feet end-effectors. However, contac-
ting limbs can contain every part of the robot, such as knees and elbows. The major
limitation of using these contacts is the absence of sensors in mentioned spots of the
robot so that, for instance, the amount of force acting on them can not be measured
directly.

The balance controllers are mainly discussed through two categories. First, the
controllers which are based on the whole-body inverse dynamics Saab et al. (2013);
Posa et al. (2016) which aims for solving the optimal wrench distribution. Second cate-
gory utilizes an approximation of the introduced methods by inverse dynamics inclu-
ding the pre- Werner et al. (2016) or post-optimization Laurenzi et al. (2018) of contact
wrenches.

The robot’s motion is considered static, quasi-static, semi-dynamic, or dynamic ba-
sed on the purposes and capabilities of the scenarios. Ruscelli et al. (2020) implements
the centroidal statics model to ensure the balance of the robot while performing multi-
contact scenarios with planned contact transition on non-coplanar surfaces. Hiraoka
et al. (2021) proposed a multi-contact controller for quasi-static motions including the
control of wrench distribution, modeling of error compensation and adaption of actual
contact states with the environment.
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One of the most significant challenges in the motion of humanoid robots is sus-
taining the equilibrium in multi-contact settings. Ruscelli et al. (2020) implements the
centroidal statics model to ensure the balance of the robot while performing multi-
contact scenarios with planned contact transition on non-coplanar surfaces.

The objective of multi-contact planning and control of humanoid robots is applying
dynamic balance criteria that account for unilateral contacts Bouyarmane et al. (2019a).
Balance in multi-contact conditions was studied theoretically in Collette et al. (2007), Lee
et al. (2016), Bouyarmane and Kheddar (2011b), Henze et al. (2014) but restricted to
non-sliding contacts. To enforce dynamic balance for multi-legged robots in multi-
contact, recent methods suggest computing the Zero-tilting moment points (ZMP),
center-of-mass (CoM) support polygons, and gravito-inertial wrench cones (GIWC).
In the following, we discuss about the multi-contact balance approaches.

1.4.1 CoM-based methods

The CoM-based approaches are based on the evaluation of the CoM trajectory or its
acceleration. This evaluation can be executed through the construction of the balance
regions. The balance region contains all feasible solutions for the CoM (or acceleration)
of the relevant configurations that maintain the balance. Bretl and Lall (2008) and Au-
dren and Kheddar (2018) proposed static and dynamic multi-contact balance criteria
for frictional non-coplanar contacts.

The corresponding balance region is calculated via centroidal dynamics conside-
ring the equation of motion and contact stability conditions. In order to construct the
balance region, both studies use the ray-shooting algorithm. Bretl and Lall (2008) consi-
ders the null CoM acceleration, whereas Audren and Kheddar (2018) holds a bounded
set of accelerations in the computation of the corresponding region.

There are other approaches for the construction of balance regions, such as sam-
pling Sentis (2010), approximation Nozawa et al. (2016) or learning Carpentier et al.
(2017). These regions are essentially used for CoM trajectory planning purposes Au-
dren and Kheddar (2017); Orsolino et al. (2020). However, Del Prete et al. (2016) uses
this region for offline testing the feasibility of CoM positions.

The balancing strategies are associated with the trajectory of the CoM and the dis-
tribution of contact wrenches. The main restriction of applying the dynamic equation
of motion is the non-linearity concerning the cross-product of CoM and its accelera-
tion. In static mode, the acceleration is set to be zero, and the CoM balance region can
be computed directly through the linear relation.

Fernbach et al. (2018) expressed the CoM trajectory as a Bezier curve with only one
DoF to handle the cross-product issue. The other linearization technique is proposed
by Padois et al. (2017) by setting a fixed normal component of the position of CoM.
Concerning the optimal trajectory of CoM and joint configuration, Dai et al. (2014)
proposed a method by applying the constraints as a linear relationship between the
joint velocity and the momentum Orin et al. (2013).
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1.4.2 GIWC-based methods

Caron et al. (2015a) leveraged the GIWC as the general contact stability criteria.
This methods needs to be re-compute at each stance configuration switching. A recent
study on the interaction of the robot with the environment introduces a passivity-based
whole body balancing framework Abi-Farraj et al. (2019). In this latter work, gravito-
inertial wrench cone (GIWC) introduced in Caron et al. (2015b) is used to keep the ba-
lance in multi-contact by ensuring the feasibility of the balancing wrenches, eventually
under moving but not sliding contacts. Also, an independent algorithm is designed
based on the end-effectors configuration to shift the weight and forces between the
contacts in the absence of the effect of CoM position.

1.4.3 ZMP and MPC-based methods

As an extension of the ZMP criterion for the robot’s balance while locomotion, Ha-
rada et al. (2006) introduced the term generalized zero-moment point (GZMP) for per-
forming manipulation tasks. The balance region is calculated by considering the dis-
placement and the moment about the edges of the convex hull of supporting points.
Caron et al. (2017) evaluated the balance controller based on the generalization of
ZMP support areas for multi-contact applications with non-coplanar and frictional
contacts. They provide a fast-generating method for the ZMP-support region. This pro-
cedure is obtained through null motion constraints (full support area) and imposing
the constraints of Linear Pendulum Mode (LPM) for the motion of the robot (pendular
support area).

One of the proposed methods for controlling the balance of the humanoid robot
is constructing it upon the model predictive control (MPC). As a case in point, Ibanez
et al. (2012) proposed a ZMP-based balance controller for the lower body to accomplish
the robot’s balance. They also implemented a position-based controller to the upper
body for manipulation purposes. This framework employs the MPC method together
with consideration of the perturbances caused by manipulation tasks.

Ott et al. (2013) also suggested a comparable framework for kinesthetic teaching
that detects the disturbances using a momentum-based disturbance observer and uses
this information to generate whole-body compliant motions. Also, the balance control-
ler regards the perturbance entries into the preview horizon of the MPC. In other
words, the generated wrenches from performing a task is taken into account in the
balance controller. Henze et al. (2014) proposes a balance controller which does not
distinguish between the upper and lower body limb and contacts. Still, the legs are in
charge of stabilizing the pose of the robot.

1.4.4 Balance with motion and contact transitions

Planning of the multi-contact locomotion and loco-manipulation has been widely
studied in humanoids robotics for years. The locomotion himself is defined as a se-
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quence of contact transitions. Also, the planning of the multi-contact scenarios contains
this transition and refers to the same problem.

The feasibility of the contact transition needs to be evaluated at the beginning of
each planning cycle. Also, the stability of the contacts and the balance of the robot need
to be considered during the motion generation. Random sampling is a solution for fin-
ding the sequence of feasible contact and trajectories. However, it has computationally
expensive due to the large scale of possibilities.

In this scope, Tonneau et al. (2018) proposed an efficient algorithm for executing the
multi-contact locomotion using the reachability model with the convex hull of achie-
vable limb points. However, not all of the resulting robot postures were possible to
produce. To bypass the infeasible contacts, Fernbach et al. (2020) introduced an effi-
cient algorithm based on the CoM trajectory with contact transitions. The computation
cost of this approach for planning is of concern.

1.4.5 Balance in existence of sliding contacts

Recent works on humanoid robots are mostly focused on avoiding Kajita et al.
(2004); Zhou et al. (2018) or recovering Kaneko et al. (2005); Vázquez and Velasco-
Villa (2013) slips. A contact model introduced in Azad et al. (2016) for the interaction
of a KUKA arm with a compliant environment. Also, physical interactions of the robot
with compliant objects have been studied in Leidner (2019) and a distribution model
for particles is introduced to plan the wiping motion of the four-wheeled Rollin’ Justin
humanoid robot.

Keeping the balance while sliding on purpose has been studied for two feet contacts
in both rotational and translational directions. Linear contact constraints have been
used in Kojima et al. (2017) for the controller to keep the dynamic balance while slip-
ping in rotational directions on the feet. While rotational-slipping, considering the
force distribution within the contact surfaces is the most challenging part of the study.
Slip-turn motion for the robot is produced in Miura et al. (2013) by minimizing the
floor friction power. The works in Hashimoto et al. (2011); Koeda et al. (2011) are about
generating quick turning motion by rotational shuffling.

As a motion planning for translational shuffling, Kojima et al. (2015) implemen-
ted two-layer controller to satisfy the stability criteria of the robot using Zero-tilting
Moment Point (ZMP) and achieve proper force distribution in two feet contacts. Total
motion sequence of this method consists of both slide-and-stop phases and CoM tra-
jectory is generated solving a QP and related constraints. Also, keeping the dynamic
balance while shuffling is studied in Posa et al. (2014) by formulating complementary
constraints into a QP, and in Kim and Park (2011) by uniform force distribution as-
sumption on the sole for single support phase.

Sliding contacts under active balance is challenging in humanoid robots. There are
however successful achievements in specific tasks such as foot shuffling Kojima et al.
(2015); Or and Ames (2019); slip-turns and maneuvers by two feet contacts Kojima
et al. (2017); Miura et al. (2013); Koeda et al. (2011). Sliding contacts forces must be
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controlled to be exactly on their friction cone Trinkle et al. (1997). We have addressed
this problem in Samadi et al. (2020), where we considered a mix of sliding and fixed
multi-contact scenarios. The CoM support area (CSA) is derived analytically when the
fixed contacts are coplanar. To overcome this limitation and extend the balance criteria
to be used in control, we propose a novel formulation for the computation of the CoM
position and the contact wrenches using the Chebyshev center.

The aforementioned methods end up with computing regions (e.g., polytopes, po-
lyhedral cones...) where the CoM position or the wrenches should live. Reducing the
cost of such computations is the main challenge to integrate them in control and reac-
tive planning. Especially while considering the tasks with contact switchings and mo-
vements, e.g. pushing, sliding, etc. Indeed, they are mostly used in planning. This the-
sis will mainly focus on enriching the balance criteria with lower computation costs,
enabling the online implementation of the control framework.

1.5 Applications

Nowadays, robots are capable of performing complex scenarios. On top of them,
the vast majority of variations of animanoids and humanoids are acknowledged. Ex-
panding this technology aims to reach the objectives, such as replacing robots with
humans in risky environments like factories and interacting with humans in public,
industrial, and medical communities. Thus, in general, the application of these robots
covers research and educational purposes, assistant, rescue, healthcare, and manufac-
turing. However, there are many unsolved challenges that can lead to assessing the
human-like activities of the robots, as shown in Fig. 1.7.

New achievements of robotics are confirming considerable growth in humanoid ro-
botics. These robots demonstrated their capabilities in different areas such as walking,
running, crossing through terrains, stair, slope and ladder climbing, etc. Nevertheless,
there still exist numerous objections to delivering all humanoid abilities on the robot.
The first and most crucial step towards profiting from the capabilities of a humanoid
robot in complex scenarios is maintaining balance.

On the other hand, some humanoid robots do not have the balance challenge thanks
to their wheeled structure. For these robots, interacting and assisting a human is on
top of their intentions. Bolotnikova et al. (2020) explored the interaction of the pepper
humanoid robot with the human for physical assistance based on an optimized posture
generator. The demonstration of the close interaction of the robot with real humans for
assistance purposes Bolotnikova et al. (2021) as shown in Fig. 1.8.

Employing wheeled robots, we can primarily concentrate on goal-oriented tasks.
The applications such as wiping a board or surface Henze et al. (2016), grasping, and
manipulation Vahrenkamp et al. (2009) are of interest. Using the wheeled robots re-
duces the concern about the robot’s balance significantly. Fig. 1.9 illustrates the capaci-
ties of the wheeled robot in performing daily human routines.

Despite the balancing challenge of the legged humanoid robots, these robots can
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FIGURE 1.7 – Human routine activities as the intention for humanoid scenarios and applica-
tions.

FIGURE 1.8 – Pepper humanoid robot assisting an individual with close interaction Bolotnikova
et al. (2021).

perform more challenging scenarios compared to wheeled ones. For instance, there is
a need to cross the terrains for the robot’s operation in industrial environments, such as
climbing and stepping down the stairs Caron et al. (2019) and accessing narrow spaces
that are impracticable for wheeled robots to accomplish. The Fig. 1.10 demonstrates an
HRP-4 humanoid robot operating in the Airbus company Kheddar et al. (2019).

In order to improve the capabilities of the humanoid robot in diverse states and en-
vironments, additional contact modes (sliding, soft, etc.) need to be investigated and
considered. Lately, few fascinating scenarios are designed in the aforementioned re-
search direction in which the robot performs on soft contacts Henze et al. (2016) and
skateboard Takasugi et al. (2016, 2019). Also, remarkable studies accomplish the shuf-
fling motion Kojima et al. (2015); Koeda and Sugimoto (2018) and slip turn Koeda et al.
(2011); Miura et al. (2013); Kojima et al. (2017) with the legged robot.
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(a)

(b)

FIGURE 1.9 – Humanoid robots performing (a) wiping motion on a surface Henze et al. (2016)
and (b) grab and manipulation of dishes Vahrenkamp et al. (2009).

FIGURE 1.10 – TORO and HRP-4 humanoid robots operating multi-contact Kheddar et al.
(2019) and stair climbing Caron et al. (2019) tasks in the industrial environments.

The researches which contain sliding or soft contact modes are studied in uni- or
bi-contact postures. However, for multi-contact scenarios, the balance criteria are very
challenging. The online implementation of the balance with existing methods is not
feasible and needs pre-computations. So, in the current study, we tackle the challenge
of the real-time performance of multi-modal scenarios considering the dynamic ba-
lance.

The core objective for the humanoid robots is to perform the all human-like motions
and activities which includes multi-modal contacts without any pre-computations. So
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that they can perform any unplanned scenarios and react in presence of any pertur-
bances.

1.6 Preliminaries

This section will introduce the preliminaries employed for the implementation of
the controllers in the current study. The planning and controller schemes of this re-
search constitute optimization-based structures. Therefore, we represent the formula-
tion of the QP problem, which is utilized as the optimization method in this research.
Moreover, the Finite State Machine (FSM) is used to determine the desired motions and
accomplish the configuration transitions of the robot. The Controller and FSM features
are implemented in a framework named mc_rtc 2. In the following, we briefly present
the specified preliminaries.

1.6.1 Quadratic Programming

Mathematical optimization (also known as mathematical programming) refers to a
programming method that results in the selection of the best element among all pos-
sibilities and feasible solutions concerning the constraints and conditions. The opti-
mization process is accomplished by minimizing a particular function, named the cost
function. Considering a function F(x ∈ E) ∈ Rn, the objective of optimization problem
is to find a viable argument of the function x∗ in a way that:

F(x∗) = min.
x∈E
F(x). (1.11)

Solving the optimization problem is equivalent to finding the argument x∗. The
Eq. (1.11) presents an unconstrained optimization problem. However, it can be solved
under constrained formulation as

F(x∗) = min.
x∈E
F(x) (1.12)

s.t. l 6 G(x) 6 u (1.13)

where G(x) ∈ E is the governing function of the inequality constraints and l,u ∈ Rn

vectors are representing the lower and upper bounds on the function G(x).

Different optimization methods can be integrated according to the expression of the
F(x) and G(x) functions. The quadratic optimization function is the case that F(x) and
G(x) can be represented as quadratic and linear forms, respectively. So, for all x ∈ Rn,
the functions can be expressed as following:

F(x) = 1
2xT Px + qT x (1.14)

G(x) = Ax (1.15)

2. https://github.com/jrl-umi3218/mc_rtc
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where P is a positive semi-definite matrix accompanied by vector q for representing
the function F(x). Also, A is a non-parametric matrix used for the linear interpreta-
tion of the constraint. So, the quadratic programming problem can be re-written in the
following form:

min
x∈E

1
2xT Px + qT x (1.16)

s.t. l 6 Ax 6 u (1.17)

There are several solvers designed for solving the QP problems in programming
languages, mainly Python and C++, such as CVXOPT 3, qpOASES 4, quadprog 5, CVXPY 6,
Gurobi 7, and MOSEK 8. In our implementations, we use the C++ module of quadprog
which is compatible with Eigen3 9 library.

1.6.2 Finite State Machine

The controller minimizes the cost functions as tasks by considering the constraints
in QP formulation. This control structure is equipped with a finite-state machine (FSM).
FSM is in charge of monitoring the accomplishment of the tasks and constraints. The
planned states (derived from output of the planner) are sequence of statically stable
configurations of the robot q. The configuration of the robot is associated with the
established contacts of the robot with environment, namely its stance.

The sequence of stances and configurations of the robot which is derived from the
planner are named sequentially adjacent and transition configurations Bouyarmane and
Kheddar (2011a), respectively. Within the sequence of stances, the next stance of the
robot can be structured by adding or removing one contact. The transition of configu-
rations also checks the static stability of motion and addition/deletion of contact forces
from the corresponding added/removed contacts in the new configuration.

The tasks and constraints need to be defined within the FSM structure. The posture
task is a default task that solves the redundancy issue of the robot while performing
scenarios. The other default tasks mainly activated in the framework are dynamic (as-
sociated with control of dynamic balance and governing the Newton-Euler equations)
and kinematic constraints, and (self-)collision avoidances.

1.6.3 mc_rtc Framework

mc_rtc is an interface for the robotic systems which provides both simulation and

3. http://cvxopt.org/
4. https://github.com/coin-or/qpOASES
5. https://pypi.org/project/quadprog/
6. https://www.cvxpy.org/
7. https://www.gurobi.com/
8. https://www.mosek.com/
9. https://gitlab.com/libeigen/eigen
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implementation of the controllers and enables executing a wide range of industrial and
academic simulations and experiments.

The robot’s control system needs to supply the state of the robot, such as its confi-
guration, sensor readings, etc., and mc_rtc will generate the relevant commands for
performing the planned states (through FSM and controller specifications) practising
assigned classes.

The mc_rtc framework contains relevant packages and libraries involved in the
control of the robot, such as SpaceVecAlg 10, RBDyn 11 and Tasks 12 libraries and
handles the FSM states and ROS communications. It enables the user to write the
controller in both Python and C++ languages.

1.6.4 TVM Library

The Task with Variable Management (TVM) 13 is a library that enables users to write
and solve linear control problems for robotic systems. It is an optimization framework
with multiple serviceable features as variable management (that is needed in this re-
search) and a convenient way of writing the constraints.

This library distinguished the problem writing with solving process. It allows the
users to write the constraints close to their natural formulations and mathematical no-
tations. As constructing the relevant matrices is the main challenge of re-formulating
the constraints for users, this library handles matrix formulation automatically. This
feature enhances the computational cost and duration of the problem.

The main features of this library can be counted as follows:

• decoupling of the writing of the problem (which is close to its mathematical for-
mulation) with its solution process,

• a more handy way of declaring the task functions and constraints within the
structure,

• the capability of extension in case of addition/removal of tasks,

• containing the classical robotic functions as dynamic/kinematic constraints, col-
lision avoidances, etc.,

• compatible with consistently adding/removing decision variables,

• computation check for avoiding multiplication of process for deriving quantities.

10. https://github.com/jrl-umi3218/SpaceVecAlg
11. https://github.com/jrl-umi3218/RBDyn
12. https://github.com/jrl-umi3218/Tasks
13. https://github.com/jrl-umi3218/tvm
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1.7 Conclusion

This chapter mainly focused on the principal applications of the multi-contact mo-
tions, the execution of relevant controllers on the robot, and their performance chal-
lenges within the environment. Several studies focus on generating and planning the
multi-contact motions, performing challenging tasks like reaching, loco-manipulation,
ladder climbing, accessing narrow spaces,... which are addressed throughout the chap-
ter.

Contact modeling plays a significant role in the study of multi-contact motions.
The application of the scenarios leads to the adoption of decent contact models such
as rigid-body or compliant (interaction with stiff materials) models. Similarly, inves-
tigating the contact modes and conditions and considering the friction models and
kinematic constraints are crucial for exploiting contact switching through the scena-
rios.

The planned states and motions regularly cover the contact conditions based on the
contact models and constraints. However, the whole-body controller executes these
states on the real robot by calculating the relevant joint commands to the robot. The
controller also needs to ensure the balance of the robot. Evaluating the balance in multi-
contact conditions can be achieved using CoM, ZMP, GIWC, or MPC-based methods.
We reviewed the existing methods for assessing the balance criteria through the speci-
fied methods together with their strengths and shortages.

One of the prominent shortcomings of the multi-contact balance controllers refers
to their computational cost. They are computationally expensive due to the need for
the construction of balance regions. However, in the next chapter, we aim to tackle this
challenge by introducing an analytical solution for the computation of these regions
enabling the real-time implementation of the controller.
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CHAPTER 2

FAST COMPUTATION OF THE STATIC
EQUILIBRIUM REGION CONSIDERING

SLIDING CONTACTS

The previous chapter covers the gross state of the art on many aspects of our work,
altogether with the background in both software framework and the facilities available
in our laboratory. We emphasized the knowledge and recent approaches dealing with
all aspects of multi-contact behaviors for humanoids and the techniques for maintai-
ning the robot’s balance.

This chapter deals specifically with the balance of humanoids (or multi-legged ro-
bots) in a localized multi-contact setting (i.e., a localized floating base motion that does
not result in high-dynamic transitions of the contacts). We consider that a subset of
contacts is undergoing desired sliding-task motions while the remaining ones are en-
forced to not move, i.e., should be kept fixed. One method to sustain balance is to hold
the CoM within an admissible convex set. This set is an area that is computed based
on the contact positions of the robot limbs and subsequent applied forces by the envi-
ronment or any equivalent motion constraint.

We introduce an analytical methodology to compute this CoM-support area (CSA)
for intended multiple fixed and sliding contacts in real-time, enabling the controller’s
online implementation on the robot. To select the most appropriate CoM position wi-
thin CSA, we account for:

1. constraints of multiple fixed and sliding contacts;

2. desired wrench distribution for contacts; and

3. desired CoM position (eventually dictated by other tasks).

We formulate the mentioned objectives as a quadratic programming (QP) optimization
problem. We illustrate our approach by pushing against a wall and wiping scenarios.
The experiments are conducted using the HRP-4 humanoid robot.

We structured this chapter as follows. First, in Section 2.1 we introduce the CoM
support area for multiple fixed and sliding contacts. Holding the position of the CoM
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inside this area guarantees the robot’s balance while some chosen contacts slide and
others do not. Section 2.2 presents our method for calculating the CoM position under
constraints. Sections 2.3 and 2.4 shows experimental results and concludes this chapter,
respectively.

2.1 CoM support area

The equation of the motion of the robot in the static mode (assuming zero CoM
acceleration) can be described by Newton-Euler equations as follows:∑

contact i

wc
i = −wg (2.1)

where wc
i ∈ R6 and wg ∈ R6 are the i-th contact and the gravity wrenches respectively.

We follow the common practice to write the resultant linear term (force) first in the
wrench followed by the moment term; that is w = [f τ ]T . We can re-write Eq. (2.1) in
the world frame by separating the forces and torques:∑

i

f c
i = mg (2.2)

∑
i

pi × f c
i = c×mg (2.3)

where m is the total mass of the robot, pi, f c
i ∈ R3 are the position and force of the i-th

contact point respectively; g ∈ R3 is the gravity vector and is equal to
[
0 0 g

]T
for

g = −9.81 m
s2 , and c = [cX cY cZ ]T ∈ R3 is the position of the CoM with respect to the

lab (global) frame. By introducing the unit vector ez as
[
0 0 1

]T
, we can separate the

vertical component of the gravity vector:∑
i

f c
i = mgez (2.4)

∑
i

pi × f c
i = mgc× ez (2.5)

Moreover, by applying a cross-product to both sides of Eq. (2.5) by ez, we get the follo-
wing equation:

mgez × c× ez =
∑

i

ez × (pi × fi) (2.6)

Next, we use two well-known properties of the cross-product that are:

ez × c× ez =

c
X

cY

0

 (2.7)

a × (b× c) = (a.c)b− (a.b)c (2.8)
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by applying equations 2.7 and 2.8 into Eq. (2.6) we have:

mgcs =
∑

i

f z
i pi − pz

i fi (2.9)

where cs denotes the position of the CoM in the horizontal plane and is equal to
[cx cy 0]T . As a study case, let us consider a robot configuration that has three contacts
(i = 1, 2, 3) with his surrounding. The position of the CoM from Eq. (2.9) will be for-
mulated as follows:

cs = f z
3

mg
p3 + f z

2
mg

p2 + f z
1

mg
p1 −

pz
3

mg
f3 −

pz
2

mg
f2 −

pz
1

mg
f1 (2.10)

The Eq. (2.10) shows the general form of this formula by considering three contacts,
regardless of their orientation and positions. As a particular case, we assume that both
feet are on the ground so that pz

1 = pz
2 = 0. Consequently Eq. (2.10) becomes:

cs = f z
1

mg
p1 + f z

2
mg

p2 + f z
3

mg
p3 −

pz
3

mg
f3 (2.11)

In the following, we specify a region for the feasible position of CoM without losing
the balance according to the multi-modal configurations. This region was introduced
in Bretl and Lall (2008) as a static equilibrium CoM area and extended to 3D in Audren
and Kheddar (2018). The computation of the oriented area in this chapter considers
fixed and sliding contacts.

The purpose of our present work is to balance the robot in real-time for multi-
contact configurations with fixed or sliding contacts. We introduce an analytical solu-
tion with inexpensive computational cost, which enables the online implementation of
the controller. Furthermore, this method will guarantee the robot’s balance for sliding
contacts, such as wiping a board by hand or shuffling foot motions.

Let’s consider a humanoid having its feet on the ground and one arm (e.g., right
one) wiping a board (non-coplanar with the other contacts). Again, there is no limita-
tion or constraint on wiping direction, and we can design and plan it at will. Hence,
the position of the sliding contact is a pre-defined parameter according to the desired
wiping trajectory. Therefore, the last two elements of Eq. (2.11) can be considered as
constant variables at each iteration. We can define them as an independent constant
value Γ – regarding p1 and p2 variables:

cs = f z
1

mg
p1 + f z

2
mg

p2 + Γ (2.12a)

Γ = f z
3

mg
p3 −

pz
3

mg
f3 (2.12b)

then:
cs − Γ = f z

1
mg

p1 + f z
2

mg
p2 (2.13)

On the other hand, by considering Eq. (2.2) in vertical direction, we have the follo-
wing convex combination:

f z
1

mg
+ f z

2
mg

+ f z
3

mg
= 1 (2.14)
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In order to formulate the right-hand side of Eq. (2.14) in the convex form, we re-write it
as

f z
1

mg
+ f z

2
mg

= σc (2.15)

where
σc

def= 1− f z
3

mg
. (2.16)

So, Eq. (2.13) becomes:

cs − Γ =
∑

αi(σcpi) (2.17a)

αi = f z
i

σcmg
(2.17b)

where, ∑
i

αi = 1 (2.18)

αi > 0. (2.19)

The convex hull of a set of points or vectors is conv(v1, . . . , vn) = ∑
i αivi. So, the

Eq. (2.18) is a sufficient condition to show that the point cs − Γ is inside the convex
polygon constructed by connecting pi points.

There are two equivalent ways to represent the wrench applied by the environment
on the robot under a surface contact:

1. Contact forces applied at the vertices of the contact area Caron et al. (2015b);

2. A single contact wrench applied at a given point Audren and Kheddar (2018).

Here, we continue with the first method. To be able to use the surface contact ins-
tead of single points, we replace each of these points (pi) with four edges of the related
foot. Coordinates of new points are available by considering the 2-D dimension of each
foot contact. According to the specified scenario, the CoM-support convex hull from
Eq. (2.17) contains 8 contact points regarding the edges of the fixed contacts.

The convex hull of feasible CoM positions is executed on JVRC 1 humanoid model
using Pymanoid 2. Fig. 2.1 shows the evolution of the convex area during the wiping
motion of the right-hand end-effector. The trajectory of wiping can be arbitrary, and
here we keep it as straight segment lines, and the blue square inside the convex is the
position of CoM.

CSA for the designed scenario is depicted in Fig. 2.2. The green area on the ground
of Fig. 2.2(a) is CSA for close foot contacts, and Fig. 2.2(b) emphasizes this area for far
feet contacts in wiping motion.

1. https://github.com/jvrc/model
2. https://github.com/stephane-caron/pymanoid/
3. http://choreonoid.org/en/
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FIGURE 2.1 – Evolution of the CSA while wiping the wall with the JVRC humanoid model. The
order is from left to right, and blue arrows show the trajectory of wiping. The green and yellow
CSAs are for the current and preceding screenshots, respectively.

  

X

Y
Z

(a) (b)

FIGURE 2.2 – Humanoid robot with sliding hand contact on the wall simulated dynamically by
Choroenoid 3(a) and prototyped in pymanoid (b).

As a result, the CSA is constructed according to both sliding and multi-contact
conditions. To maintain the balance of the robot, the CoM should remain inside the
CSA during operating motions. Setting the exact position for the CoM inside the CSA is
explained in the next section. By considering the desired tasks and motion constraints,
a QP problem is formulated that outputs the CoM position and wrench distribution.

2.2 Centroidal Quadratic Program

A standard solution for keeping the robot’s balance is to put a constraint on the
position of the CoM and hold it inside the CSA. This constraint will ignore some pa-
rameters that affect the robot’s performance, such as locating the CoM in the safest
position and farest possible from the edges of the supporting region.

In this chapter, we specify a target for the CoM position rather than strictly constrai-
ning it (i.e., as equality on where to be). Furthermore, this target is provided in a way
that has the maximum distance from the borders of the CSA. In this sense, the CoM
position can be counted as the safest CoM target for the iteration.
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2.2.1 Decision Variables

Collette et al. Collette et al. (2007) proposed a quadratic program that takes into ac-
count the position of CoM, linearized contact forces, and the gravity wrench in static
equilibrium. Nevertheless, they consider all contacts to be fixed. On the other hand,
they need to set a target for the CoM position, but their framework lacks any compu-
tation or application of the balance region.

To consider sliding contacts in the controller and apply sliding constraints to the
selected contacts, we introduce the Centroidal QP. This QP is designed with the follo-
wing decision variables:

Y =
[
cs wrf wlf wrh

]T
1×21

(2.20)

where w denotes the contact wrench in the world frame and subscripts ◦rf, ◦lf and
◦rh correspond to the right-foot, left-foot, and right-hand contacts, respectively. The
centroidal QP computes the CoM position and the wrench distribution for all contacts.
The next step is to realize the computed variables in the centroidal QP. This is done
through the whole-body QP, which takes into account the respective tasks.

The static equilibrium of the system is given in Eq. (2.1). Accordingly, by conside-
ring three contacts (one hand contact and two feet contacts), the Newton-Euler equa-
tion writes:

wg + wrf + wlf + wrh = 0 (2.21)

where wrenches can be formulated as follows:

wg =



0 0 0
0 0 0
0 0 0
0 −mg 0
mg 0 0
0 0 0


cs +



0
0
−mg

0
0
0


(2.22)

wrf,lf =


I3×3 03×3

0 −cZ cY

cZ 0 −cX I3×3
−cY 0 cX


[R]rf,lf

lwrf,lf (2.23)

where lw shows the wrench in contact (local) frame and is equal to [lf ∈ R3 lτ ∈
R3]T and [R]i represents the rotation matrix from local to the global frame. Also, wrh is
calculated in a same way with wrf,lf. In this way, we can shortly write the equations as:

wm = Em1cs + Em2 (2.24a)

wrf = Erf
lwrf (2.24b)

wlf = Elf
lwlf (2.24c)

wrh = Erh
lwrh (2.24d)
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2.2.2 Sliding Condition

The up-to-date studies in locomotion, multi-contact conditions, or motion genera-
tion for humanoids avoid slippage, whereas we aim for it when needed. In order to
prevent slippage, it is common to use inequality constraints to hold each point-contact
resultant force within its associated friction cone Bouyarmane et al. (2019a). Instead,
we are implementing constraints to generate the sliding motion.

For generating controlled slipping motion, the force vector of the sliding contact (fc)
should remain at the edge of the related contact’s friction cone and hence express as
equality constraints. However, contact torques are considered as inequality constraints
to avoid tiltings during the slippage.

We continue the computations based on the designed scenario, which is the stan-
ding posture with the right hand on the vertical wall as shown in Fig. 2.2(a). To better
understand the implementation of equations, we consider the global frame where the
normal force to the hand is aligned to the Z direction of this frame. We introduce two
matrices named [S1] and [S2] such that the normal and frictional sliding contact forces
could be given to the QP as constraints:

[S1]6×6 =
[

I3×3 03×3
03×3 03×3

]
(2.25)

so that

[S1]wrh =
[
f3×1
03×1

]
rh

. (2.26)

In the global frame, fX
rh shows the normal force applied to the sliding contact. Note

that the direction X in the global frame of the scenario is perpendicular to the wiping
trajectory and wall. According to the wiping trajectory, we can calculate the contact
forces in Y and Z directions as frictional forces:

[
f3×1
03×1

]
rh

=



0 0 0 . . . 0
0 0 fY

fX . . . 0
fZ

fX

...
...

...
0 0 . . . 0


6×6

wrh +



fX

0
0
0
0
0


(2.27)

where fY

fX and fZ

fX are constant numbers, and they are independent of the forces. In
fact, they correspond to the friction coefficient of the sliding contact by considering the
wiping direction. So, based on the sliding movement, the respective elements can have
positive or negative quantities. From Eq. (2.26) and Eq. (2.27), we have:

[S1]wrh = [S2]wrh + k (2.28)
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thereby, we have the [S2] as:

[S2] =



0 0 0 . . . 0
0 0 fY

fX . . . 0
fZ

fX

...
...

...
0 0 . . . 0


. (2.29)

So, Eq. (2.27) can be written as

[S1 − S2]wrh = k. (2.30)

The above equation contains the necessary condition for the sliding motion of the
contact and will be applied to the Centroidal QP as an equality constraint.

2.2.3 Non-sliding Conditions

In the previous section, we showed that the sliding contacts are expressed with
equality constraints. However, to keep the rest of the contacts fixed on the ground
and surface, we must implement inequality constraints to maintain the related point-
contact force within their respective friction cone. Also, we need to avoid tilting and
detaching the contacts. So, the inequalities will apply to the whole contact wrench
(forces and torques).

The general constraints that should be applied to contact wrenches in the local
frame within the QP solver are expressed as in Caron (2015):

| fx |6 µf z , | f y |6 µf z , f z
min 6 f z 6 f z

min

| τx |6 Yf z , | τ y |6 Xf z , τ z
min 6 τ z 6 τ z

min
(2.31)

where X and Y are edge sizes of contact surfaces and can be measured by the shape of
the contacts, so:

τmin
z = −µ(X + Y)fz+ | Yfx − µτx | + | Xf y − µτ y | (2.32)

and
τ z

max = µ(X + Y)f z− | Yfx + µτx | − | Xf y + µτ y | (2.33)

The equations Eq. (2.31) are combined in the following form for fixed contacts:
fx

f y

f z

τx

τ y


rf,lf

6


µf z

µf z

f z
max
Yf z

Xf z


rf,lf

(2.34)

−


fx

f y

f z

τx

τ y


rf,lf

6


µf z

µf z

f z
max
Yf z

Xf z


rf,lf

(2.35)
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Furthermore, for sliding contacts, we consider torques similarly to Eq. (2.34) and Eq. (2.35)
in all directions inside the inequality constraints. Because sliding contact forces have
been considered as equality constraints to create the sliding motion. Note that there is
no τ z element inside the vectors, and it will be considered separately.

We need to generate vectors in a way that we can apply it as an inequality constraint
to the system. For this reason, we re-write these equations using Grf,lf,rh ∈ R6×21 and
hrf,lf,rh ∈ R6 matrices and vectors:

G1
rf,lf,rhY 6 h1

rf,lf,rh (2.36)

G2
rf,lf,rhY 6 h2

rf,lf,rh (2.37)
where:

G1
rf =

[
06×3 Υ1

rf 06×12
]

(2.38a)

G2
rf =

[
06×3 Υ2

rf 06×12
]

(2.38b)

G1
lf =

[
06×9 Υ1

lf 06×6
]

(2.38c)

G2
lf =

[
06×9 Υ2

lf 06×6
]

(2.38d)

G1
rh =

[
06×15 Υ1

rh

]
(2.38e)

G2
rh =

[
06×15 Υ2

rh

]
(2.38f)

where Υ1
rf,lf ∈ R6×6 is defined as:

Υ1
rf,lf =



1 0 −µ 0 . . .

0 1 −µ ...
... 0 1

−Yrf,lf 1
−Xrf,lf 1 ...

0 0 . . . 0


Note that Υ2

rf,lf is same as Υ1
rh,lf except the diagonal values of the matrix which

should be multiplied by −1. Also, for the sliding contact, we have:

Υ1
rh =



0 0 . . . 0
0
... . . . ...

0 0 0 ...
Xrh 0 . . . 0 1 0
Yrh 0 . . . 0 1


and for Υ2

rh, replace two last elements on the diagonal of the matrix with −1. For the
other side of the inequality, h is a zero vector for sliding contacts. For fixed contacts,
we have:

h1
rf,lf =

[
0 0 f z

max 0 0 0
]T

(2.39a)

h2
rf,lf =

[
0 0 f z

min 0 0 0
]T

(2.39b)

h1,2
rh = 06×1 (2.39c)
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Besides, we should consider inequality constraints on τ z. According to Eq. (2.31),
we divide it into two sets of boundaries which should be implemented for all contacts:

τ z − τ z
max 6 0 (2.40)

−τ z + τ z
min 6 0 (2.41)

Consider that there is two absolute values inside each of τ z
max and τ z

min based on Eq. (2.32)
and Eq. (2.33) that each equation results in four more rows inside the inequality matrix
that should be multiplied by Y.

We introduce Gz ∈ R4×21 matrices which covers the inequality constraints on τ z

element of wrenches:
Gz1,2

rf,lf,rhY 6 04×1 (2.42)

where:

Gz1
rf =

[
04×3 Ψ1

rf 04×12
]

(2.43a)

Gz2
rf =

[
04×3 Ψ2

rf 04×12
]

(2.43b)

Gz1
lf =

[
04×9 Ψ1

lf 04×6
]

(2.43c)

Gz2
lf =

[
04×9 Ψ2

lf 04×6
]

(2.43d)

Gz1
rh =

[
04×15 Ψ1

rh

]
(2.43e)

Gz2
rh =

[
04×15 Ψ2

rh

]
(2.43f)

where the Ψ ∈ R4×6 matrices are different for each contact and should be defined
separately, and they are calculated as follows. Consider Eq. (2.40) for the right foot.
By implementing the amount of τ z

max from Eq. (2.33) and considering positive sign for
both of the absolute values, we get to the following equation:

Yrhf
x + Xrhf

y + Crff
z + µτx + µτ y + τ z 6 0

where Crf = −µ(X + Y) and is computed in the same way for other contacts. By consi-
dering negative sign for absolute values, the other three equations are available, and
Ψ matrix for the upper bound of the right foot is calculated:

Ψ1
rf =


Yrf Xrf Crf µ µ 1
−Yrf Xrf Crf −µ µ 1
Yrf −Xrf Crf µ µ 1
−Yrf −Xrf Crf −µ µ 1


Notice that the first row of this matrix corresponds to the above equation. We calculate
the other matrices for the lower and upper bound of the contacts in the same way.

2.2.4 QP Formulation

In previous sections, we introduced the equality and inequality constraints to be
taken into account in the control of the robot based on the equation of motion and

40



Fast Computation of the Static Equilibrium Region 2.2. Centroidal Quadratic Program

contact stability. To improve the performance, we define the desired tasks and objec-
tives for the scenario. Finally, we write the problem in QP form with the CoM position
and contact wrenches as decision variables.

The goal of Centroidal QP is to reach Ydes as the desired value of these decision
variables while considering constraints. Therefore, the minimization problem is:

min
Y
‖Y −Ydes‖2 (2.44)

The desired position for CoM is the barycenter of the CSA, and for the fixed contact,
the desired wrench is set to be zero. According to the planned scenario, which has both
feet as the only fixed contacts, the zero reference points to the equal wrench distribution
between these contacts.

According to Eq. (2.44) as the objectives of the problem and also sliding and non-
sliding conditions as equality and inequality constraints, the QP formulation is in the
following form:

min
Y

1
2YT PY + υT Y (2.45a)

GY 6 h (2.45b)
AY = b (2.45c)

where P = I21×21 and υ = −Ydes. By introducing GT
rf as transpose matrix of Grf and the

same for the other contacts, matrices and vectors of the equality constraints in Eq. (2.45)
are:

G =
[
Gi,T

c Gzi,T
c

]T
21×60

; i = 1, 2; c = rf, lf, rh (2.46a)

h =
[
h1,T

rf h2,T
rf h1,T

lf h2,T
lf h1,T

rh h2,T
rh

]T
1×21

(2.46b)

On the other hand, the equality constraints are derived from Eq. (2.24) in section 2.2.1
and Eq. (2.30) in section 2.2.2. To combine these constraints in one equation and be able
to use them in QP directly, matrix A ∈ R12×21 and vector b ∈ R12 are defined as follows:

A =
[
Em1 Erf Elf Erh

06×3 06×6 06×6 S1 − S2

]
(2.47a)

b =
[
−ET

m2 ∈ R6×1 −fx 0 . . . 0
]T

(2.47b)

The Eq. (2.45) is the Centroidal QP with the desired objectives of the motion written
in the form of minimization tasks and contains the dynamic balance, contact stability,
and sliding condition of selected contacts as equality and inequality constraints. Mo-
reover, this QP outputs the safe position of CoM and respective wrench distribution of
all contacts as a planner, which will be realized on the real robot.

In the next section, we describe the whole-body controller used to perform the plan-
ned tasks on the real robot. The role of this QP is to receive the planned states and
values from Centroidal QP and execute them in the whole-body task-space control
framework.
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2.2.5 Controller Specification

The Centroidal QP calculates the position of the CoM and wrench distribution of
contacts. These values should be applied to the real robot as commands and tasks to
accomplish. For this purpose, we use a whole-body dynamic controller based on ano-
ther weight-prioritized QP formulation introduced in Bouyarmane et al. (2019b). The
main tasks to execute are stipulated as the following specifications.

Posture task

Posture task solves for the redundancy and the remaining joints’ motion. In other
words, the posture task is a regularization task based on degrees of freedom q that
brings the robot to a reference joint-angle (e.g., to a half-sitting configuration qhalf-sit) its
derivatives by considering task stiffness Kp via:

q̈ = Kp(qhalf-sit − q)− 2
√

Kpq̇ (2.48)

End-effector admittance task

End-effector admittance task takes the desired position pd ∈ R6 as a target in world
frame, desired wrench wd ∈ R6 in sensor frame and admittance gains A ∈ R6. For a
given degree of freedom i, the task is a position task ifAi = 0 and a force task ifAi 6= 0
and in this case, force feedback is applied by ṗi = Ai(wd

i − wi). In experiments, we
apply this task to the robot’s right hand, which is in contact with the wall.

CoM task

CoM task takes a desired position cd ∈ R3, velocity ċd ∈ R3 and acceleration c̈d ∈ R3

of the CoM in world frame as target. This is a standard second-order task. Internally, it
will realize:

c̈ = Kc(cd − c) + B(ċd − ċ) + c̈d (2.49)

where B is the task damping (usually 2
√

Kc) and ċ = Jcomq̇ is the CoM velocity where
J shows CoM Jacobian matrix.

Finally, we regulate the weight distribution between the two feet on the ground
while the robot’s end-effector acts on the contact surface. For this purpose, we use foot
force difference control (FFDC).

Foot force difference control Kajita et al. (2010), Kajita et al. (2013)

This control scheme applies to two co-planar end-effectors, which are the balancing
contacts of the robot. As a standing posture in our case, the contacts are the left and
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right feet. FFDC servos both CoP and normal force targets of each foot. The force dif-
ference of target value (f z,tar

lf − f z,tar
rf ) provided by the centroidal QP is regulated to

the measured value (f z,mes
lf − f z,mes

rf ) by applying damping control to a virtual offset z.
FFDC can be implemented as:

żlf = żd
lf − 0.5vf + 0.5vp (2.50)

żrf = żd
rf + 0.5vf + 0.5vp (2.51)

vf ≡ Af ((f z,tar
lf − f z,tar

rf )− (f z,mes
lf − f z,mes

rf )) (2.52)

vp ≡ Ap((pz,tar
lf + pz,tar

rf )− (pz,sur
lf + pz,sur

rf )) (2.53)

where the superscripts ◦tar and ◦mes point to the target and measured values of the
respective variable. p is the center of pressure (CoP) of the sole, and ◦sur refers to the
surface pose of the sole center. The velocity term vf performs a damping control that
raises the foot with high normal force and drops the other. This velocity is tuned by
the admittance gain Af . The other velocity term vp is supplemented for vertical drift
coverage. The frequency gain Ap set to 1 Hz in practice.

2.2.6 Controller Schematic

According to the provided content, we present an overall scheme of the controller
in this section. First, as shown in the Fig. 2.3, the FSM determines the planned states.
Then, according to these states, CSA is computed in real-time for each iteration of the
designed scenario. Ultimately, we send the CoM reference to the Centroidal QP as a
safe position in the sense of the robot’s balance.

This QP calculates the CoM target and contact wrenches, considering the robot’s
dynamic balance and desired tasks. The outputs of the Centroidal QP are then sent to
the whole-body QP for the online execution of the controller. Next, the whole-body QP
realizes the CoM and force targets within a task-space formulation. Finally, the joint
commands are sent to the real robot, and the measured and estimated states of the
robot are directed to the planner.

2.3 Experiments and Results

We implemented the proposed methodology based on Centroidal QP and kept the
balance through several experiments with the HRP-4 humanoid robot. In this section,
we present three of these experiments and show the performance of our controller in
pushing and wiping scenarios. So, all the scenarios are in multi-contact condition and
consist of fixed (co-planar) and sliding contacts.

The baseline for our study is considering a fixed position for the robot’s CoM while
executing the scenario. Because, as mentioned before, the existing methods use pre-
computation to assess the balance region. Without pre-computations, we can set a
constant position for the robot’s CoM, which is in the middle of the supporting foot
contacts.
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FIGURE 2.3 – Schematic of the overall task-space control framework with Centroidal QP.

For example, Figure 2.5 shows the robot scrabbling to increase the normal force on
the hand contact and achieve the target force of 60 N but fails. This failure is because
of the kinematic chain, which tries to keep CoM in the middle, and the controller is
not taking the third contact into account in the balance criteria. Force tracking of ad-
mittance control shows that the failure occurs in less than 20 N normal force, and the
robot cannot achieve the target force with this posture anymore.

On the other hand, we did the same experiment with the proposed controller. The
scenario aims to push against the wall with the maximum force of 50 N. The Fig. 2.7
shows successful tracking of the normal force with the generated posture of the robot
due to the position of CoM and kinematics of the robot. The black mat under the robot’s
feet is to have the desired friction of the fixed contacts, which helps to apply high
normal forces like this 50 N.

Also, the trajectory of CoM while increasing and decreasing the right-hand force
is shown in Fig. 2.8. As you can see, the position of the CoM moves forward by in-
creasing the normal target force and lays back by decreasing the force without losing
the balance. It is a more human-like performance enabled by taking all contacts into
account while evaluating the balance criteria in real-time.

The last experiment deals with sliding contact and shows the controller’s perfor-
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FIGURE 2.4 – Pushing the wall using fixed CoM.
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FIGURE 2.5 – Normal force tracking while pushing the wall using fixed CoM.

mance while wiping a vertical surface with a normal force of 30 N on sliding contact.
It starts with establishing contact with the wall by zero force and increasing it to the
desired quantity. This step is the same as the previous pushing experiment. Afterward,
the robot starts to wipe along with keeping the CoM inside the CSA. Fig. 2.10 shows
the normal force tracking of sliding contact from the beginning of the scenario until
removing the contact as the final FSM state.

In this experiment, the normal force is set to 30 N. We use the admittance task of the
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FIGURE 2.6 – Pushing the wall using the proposed method.
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FIGURE 2.7 – Normal force tracking while pushing the wall using our strategy.

controller as a force control strategy. The wiping motion starts wiping from 16th second
after reaching the desired normal force. There is a jerky force tracking when starting
the wiping motion because of the sudden switch between the fixed and contact mode.
The error happens at the beginning of the plot, which is the moment of establishing
contact. After these jumps in force tracking, the normal force converges perfectly to the
target value. Videos of the experiments 4 and the open-source code of the controller 5

4. https://www.youtube.com/watch?v=Wai-Lp4e5FE
5. https://github.com/SaeidSamadi/SlidingContact_CentroidalQP
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FIGURE 2.8 – Position of CoM while pushing the wall

FIGURE 2.9 – Wiping the wall using proposed strategy.

are available online.

The experiments show that the proposed methodology keeps the balance of the ro-
bot in multi-contact settings. Also, the experiments include sliding contacts. All the
implementations on the robot were online, and there was no pre-computation of the
balance region. However, the limitation of the method is the co-planarity of the fixed
contacts. As you noticed from the experiments, feet were the fixed contacts, and they
were on the same plane (ground). For the pushing scenario, we kept the sliding as-
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FIGURE 2.10 – Normal force tracking while wiping the wall using proposed strategy
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FIGURE 2.11 – Position of CoM while wiping the wall

sumption of the right hand with zero tangential velocity.
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2.4 Conclusion

In this chapter, we studied humanoids’ equilibrium criteria based on the position
of the CoM in a multi-contact localized motion setting. Furthermore, a methodology
for constructing balance region (CSA) in multi-contact conditions is introduced. Our
method computes the area under limiting assumptions in a closed-form analytical so-
lution. This solution can be implemented online thanks to its low computational cost.

Our method applies in a multi-contact setting where a subset of contacts is fixed
whereas some of the remaining subset is allowed to slide to achieve a sliding task.
For setting the CoM inside the CSA, we use Centroidal QP with contact and dynamic
balance constraints. In this QP, the sliding and fixed conditions of the selected contacts
are considered. The outputs of the QP are the CoM position and wrench distribution
of the contacts.

We assessed our developments through real experiments on the HRP-4 humanoid
robot. The latter achieves the desired configuration and tasks by implementing our
whole-body task-space controller. This is done through the whole-body QP and imple-
mented the desired CoM position and contact wrenches in task space.

Simulations and experiments show that our balance control is valid for both fixed
and sliding contacts in practice. Also, by using our method, the robot can achieve a
proper body configuration to reach target forces in contact without losing balance. Ho-
wever, the transition between fixed and sliding contact modes is still challenging to
solve, as it causes errors in target force tracking.

In the next chapter, we tackle the main limitation of the proposed method: co-
planarity of the fixed contacts, among other light technical shortcomings. Accordingly,
we introduce a technique that can be applied in real-time and has no limitation of the
chosen multi-contact configuration. Furthermore, this method also allows switching
between any contact to be sliding or fixed at will. Also, we implement a simple friction
estimation for the sliding contacts in order to improve the sliding performance during
the control.
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CHAPTER 3

REGION-FREE MULTI-CONTACT
BALANCE CONTROL

In the previous chapter, we developed an analytical closed-form solution for hu-
manoid balance in multi-contact settings including fixed and sliding contacts. Never-
theless, this was possible because the fixed contacts are assumed to be co-planar. This
is very limiting in many situations; for example Kheddar et al. (2019) reported a tasks
(bracket gluing on an airplane fuselage) where fixed contacts (feet and robot gripper’s
palm) are not coplanar when the other arm is achieving a light sliding due to positio-
ning a glueing the bracket.

In this chapter we get rid of the previous limitation (co-planarity of fixed contacts)
and propose a whole-body control strategy for humanoid robots in multi-contact set-
tings, enabling switching between fixed and sliding contacts at will, under active dy-
namic balance. We compute, in real-time, a safe CoM position and wrench distribution
of the contact points based on the so-called Chebyshev center method.

Our solution is formulated as a quadratic programming problem without the need
for a priori computation of balance regions. We assess our approach with experiments
highlighting switches between fixed and sliding contact modes in non-coplanar multi-
contact configurations. A humanoid robot demonstrates such contact interchanges from
fully-fixed to multi-sliding and also shuffling of the foot.

Our proposed experimental scenario, with the HRP-4 humanoid robot, illustrates
the performance of our control scheme in achieving the desired forces, CoM position
attractor, and planned trajectories while actively maintaining multi-contact balancing.
Beside, the computational cost performance enables online planning and whole-body
control in a closed-loop fashion.

3.1 Background

Two main ingredients shall be considered for a stable dynamic balance of huma-
noid robots Featherstone (2014): (i) a good control of the robot/environment interac-
tion forces, and (ii) a good control of the dynamic motion, governed by Newton-Euler
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equations, contact constraints and balancing of the external wrench. To maintain the
robot’s dynamic balance, we need to incorporate all contacts in the computations and
avoid excluding the interacting contacts.

Standing or walking with a stable balance on flat terrains Wieber (2006); Bras-
seur et al. (2015) can be achieved by maintaining the ZMP inside its contacts sup-
port area Senoo and Ishikawa (2017); the latter being the convex hull of all the contact
points. Whereas for non-coplanar multi-contact postures and motions, sustaining stable
balance is less trivial to achieve.

3.1.1 Related Works and Contribution

Enforcing dynamic balance of humanoid robots in multi-contact non-coplanar confi-
gurations can be addressed with one of the following inclusions:

• constraining the gravito-inertial wrench within the GIWC, e.g. Caron et al. (2015a);

• building a safe region (convex polyhedron) for the CoM concerning a given CoM
acceleration convex set and contact friction cones, e.g. Audren and Kheddar (2018);

• building a safe region (convex polyhedral cone) within which the CoM accelera-
tion shall safely lie for a given CoM convex set and contact friction cones, e.g. Ca-
ron and Kheddar (2016).

The fast computation and efficiency of these balance equilibrium regions have been
thoroughly investigated. For this purpose, numerous computational procedures have
been introduced, which have their benefits and limitations.

The proposed method in Caron et al. (2015a) fulfilled the multi-contact balance cri-
terion by computing the GIWC for each stance. In this approach, there is no need to
update the GIWC for fixed contact stances. However, GIWC needs to be re-computed
at each iteration in the case of moving or sliding contacts. Unfortunately, since calcu-
lating the GIWC is computationally expensive, it is impossible to use this method in
closed-loop control.

In a recent work, Abi-Farraj et al. (2019) challenged shortcoming related to the cal-
culation cost. They are specifying two different sets of contacts in multi-contact motion
settings: interacting (hence moving) contacts, and balancing contacts that are chosen and
constrained to be fixed (i.e. static contacts). Subsequently, only balancing contacts are
used to compute the GIWC. Other contacts are considered as external forces induced
by tasks to be balanced altogether with the robot dynamics. This approach is appro-
priate when the external contacts are concerned with holding a free-floating object.

However, Abi-Farraj et al. (2019) is limiting in all the other cases that can exploit
task-induced contacts (including the moving ones) for balance (e.g. pushing an object,
sliding, etc.). This is because with Abi-Farraj et al. (2019), task contacts won’t be allo-
wed to contribute to balance, and this is clearly not the way we as humans perform. By
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this categorization of contacts (even if switches are possible), the multi-contact GIWC
pre-calculation is made on a subset of contact (those fixed) for balance, hence relatively
tractable; yet it excludes all other contacts that could eventually contribute to balance.

Computation efficiency also exists for the CoM-support regions Audren and Khed-
dar (2018). It was leveraged using 3D morphing techniques between two regions Au-
dren et al. (2016) but without guarantee on the balance validity all along the morphing
shape pathway between the two regions. To control a humanoid in multi-contact, Sen-
tis (2010) used the virtual-linkage model. Their method consists of constructing a multi-
contact CoM area as the envelope of valid points.

In our recent previous work Samadi et al. (2020) as explicitely described in the last
chapter, we introduced an analytical solution to compute the CoM-support area in real-
time. However, these developments apply only when the fixed contacts are coplanar.
This coplanarity can not be the case for general and more complex scenarios.

We propose an alternative formulation that allows balance criteria to be used in
closed-loop control. This formulation applies to moving/sliding and fixed contacts. It
also permits on-the-fly switching between these contact modes. Our approach do not
separate balancing and interacting contacts with different contact modes, when the
latter can contribute to balance (and vice versa, i.e. balance contribute to achieving the
task). Our approach distinguishes from existing work as follows:

• No need for constructing or pre-computing explicitly the multi-contact balance
region (GIWC);

• Fast computation performances enabling real-time closed-loop control;

• Calculating CoM position and wrench distribution of contacts using the Cheby-
shev center;

• Covering all types of contact modes (e.g. multi-sliding contacts) without any of
the limitations pointed in Samadi et al. (2020);

• contrary to Abi-Farraj et al. (2019), we do not exclude interacting contacts to
contribute to dynamic balance stability.

3.1.2 Centroidal Model

Same as the previous chapter, we consider semi-dynamic motion scenarios without
locomotion as stated by Eq. (2.1). The two main approaches for deriving the equation
of motion of the robotic systems are through Euler-Lagrange or Newton-Euler formu-
lations. We leverage the latter for deriving the static equilibrium of the robot for l limbs
in contact with the environment:

wg +
l∑

i=1
wc

i = 0 (3.1)

where wg ∈ R6 and wc
i ∈ R6 are gravity wrench and the ith contact wrench in the world

frame respectively, and w = [f τ ]T . Note that in Eq. (3.1), the CoM acceleration is not
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appeared due to the static assumption of the motion. Gravity and contact wrenches are
specified in the following form:

wg =
[

f g

c× f g

]
(3.2a)

wc
i =

[
f c
i

pi × f c
i + τ c

i

]
(3.2b)

In the above equations f g = [0 0 mg]T is the gravity force, c = [cX cY cZ ]T the position
of the CoM, and contact points pi are given with respect to a global frame. Note that
the contact wrenches are mapped from the local to the global frame by rotation matrix
[R]i ∈ R6×6:

wc
i = [R]i lwc

i (3.3)

where l◦ denotes the contact point in the local frame, the wrenches without this nota-
tion refer to the global frame.

We consider the following state variables to be computed at each iteration:

Y = [c wc
1 wc

2 . . . wc
l ] (3.4)

which is comparable with the decision variables represented by Eq. (2.20) containing
the desired number of contacting limbs and no restriction on the normal direction of
CoM position.

Sliding and equality bounds on contact forces

For every contact of the robot, we determine the wrench. Equation Eq. (3.2) can be
re-written as:

wg = Agc− bg (3.5)

wc
i = Ac

i
lwc

i where i = 1, . . . , l (3.6)

On the other hand, the sliding condition of the desired contact comes with additional
equality constraints as stated in Samadi et al. (2020). In this chapter, we are aiming
to cover the generic configurations of the robot. Therefore, contrary to the previous
chapter, we need to write all equations based on local frames and rotation matrices. So,
the normal contact force (f z

i ) in local frame for sliding is aligned to the normal of the
local surface frame by convention. The dynamic friction coefficient (µi) of each sliding
contact is estimated online during the motion and updated at each iteration.

The force along other axes (fx
i and f y

i ) of the tangent space is derived from the
pre-defined velocity and trajectory of the sliding motion. Let,

lfi =
[
fx

i f y
i f z

i

]T
i = 1, . . . , s, (3.7)

be the sliding contact forces in the local frame, and s being the number of sliding
contacts. We can write in a matrix form

lfk =

0 0 µx
k

0 0 µy
k

0 0 0

 lfk +

 0
0
f z

k

 (3.8)
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or, 1 0 −µx
k

0 1 −µy
k

0 0 1

 lfk =

 0
0
f z

k

 (3.9)

giving the kth sliding contact velocity as

vk = vx
k i+ vy

kj,

and

µx
k = µkα

x
k,

µy
k = µkα

y
k,

from which

αx
k = vx

k

‖vk‖
,

αy
k = vy

k

‖vk‖
,

and µk is the kth dynamic friction coefficient. We can write Eq. (3.9) in a compact form:

C lfk = K (3.10)

det(C) = 1, C is an invertible matrix, hence:

lfk = C−1K (3.11)

Also, by using matrix transforms, we change the coordinate to the global frame:

f c
k = [Rk]3×3C−1K (3.12)

which can be written using the selection matrix [S]3×6 = [I3×3 03×3] as:

[S]wc
k = [Rk]3×3C−1K (3.13)

Eq. (3.13) is embedded to the controller along with eqs. Eq. (3.5) and Eq. (3.6), and
can be written as:

Asl
i

lwi − bsl
i = 0; i = 1, . . . , s. (3.14)

This equation is applied to the s sliding contacts with respect to their desired sliding
forces. Hence, in this equation lwi refers to sliding contacts only.

Fixed contacts

The non-sliding condition of contacts is fulfilled when the contact force lies strictly
within the friction cone. Linearized equations for non-sliding conditions were tho-
roughly discussed in Caron (2015). The equations introduced in previous chapter Eq. (2.31)
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are sufficient conditions to avoid slippage and tilting of the contacts in all R6 coordinate
of the local frame. By considering n non-sliding contacts, the inequality constraints are
in the following form:

Υub
i

lwi 6 hub
i i = 1, . . . , n (3.15a)

Υlb
i

lwi 6 hlb
i i = 1, . . . , n (3.15b)

where superscripts ◦ub and ◦lb show the upper and lower bounds. Υi matrices and
hi vectors are introduced in Eq. (2.38) and Eq. (2.39) in the previous section for both
sliding and fixed contacts. Also, Ψi enforces inequality constraints on τz element of
wrenches:

Ψub
i

lwi 6 04×1 i = 1, . . . , n (3.16a)

Ψlb
i

lwi 6 04×1 i = 1, . . . , n (3.16b)

For the sliding contacts, the same inequalities as Eq. (3.16) constraints need to be
implemented (on the torque of the contact wrenches) to avoid the tilting of the rota-
tional slippages. However, for the contact forces, the equality constraints introduced
in Eq. (3.14) need to be considered.

3.2 Optimal Control Framework

As stated in the last section, for the purpose of implementing the controller in multi-
contact settings, it is required to inquire about the dynamic balance criteria of the robot
during the entire scenario. We need to introduce and practice an optimal control fra-
mework for controlling the balance in real-time without any computational and confi-
guration limitations.

In this section, we propose the implementation of the Chebyshev center theorem Beck
and Eldar (2007) in a two-level control framework. Inspired from Collette et al. (2007);
Samadi et al. (2020) such an implementation can be formulated as a first-level qua-
dratic program (QP) that outputs the CoM position and contact wrenches distribution
together with the Chebyshev center and its radius.

The low computation cost of this calculation enables the real-time implementation
of the controller. The outputs of the first-level QP are then integrated as task objectives
or constraints in a running whole-body task-space controller formulated as a second-
level QP Bouyarmane et al. (2019b) (see later Section 3.4). In the following, we present
the concept of the Chebyshev center method and implement this method in our pro-
blem.

3.2.1 Chebyshev Center

Let U ∈ Rn be a set of inequality constraints describing a bounded polygon, and
x ∈ U. We introduce depth and dist operators indicating the depth and distance of a
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Chebyshev Center

Chebyshev Radius
FIGURE 3.1 – Chebyshev circle enclosed in a polygon.

point within the bounded set. The depth of the point x is defined as

depth(x,U) = dist(x,Rn\U) (3.17)

The dist operator shows the distance of x from exterior of U and depth operator calcu-
lates the radius of the largest ball inside U and centered on x. So, the Chebyshev center
is calculated as the argument which results in the maximum radius:

xcheb(U) = arg max depth(x,U) (3.18)

So, as stated, the Chebyshev center of U is the center of the largest enclosure circle Amir
(1984). Fig. 3.1 illustrates the Chebyshev center and radius of a given polygon. Based
on the computations of the Chebyshev center, we do not need to build the vertices of
the polygon (i.e., no need for the v-representation of U ). Consequently, in concise form,
for a point, x in the interior of U , the Chebyshev center x̂ is a point among all possible
x such that Knitter (1988):

arg min
x

max
x̂∈U
||x− x̂||2 (3.19)

In the following, we are introducing the definition of the Chebyshev center for convex
sets and Polyhedra.

Chebyshev Center of a Convex Set

For the convex set of U, the depth of this set is a concave function for x ∈ U.
Accordingly, the computation of the Chebyshev center becomes a convex optimization
problem. Suppose a set of convex inequalities defines U ∈ Rn which applies to any
bounded non-empty convex set:

U = {x | fi(x) 6 0; i = 1, . . . , n}, (3.20)

where x is a vector of a given dimension, and n the number of inequalities. These
inequalities are valid for all points inside the convex set. Hence, constituent points of
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the Chebyshev ball enclosed in the convex set, with center x̂ and radius r fulfill the
inequalities too. The idea is to compute the largest Chebyshev ball, which satisfies the
convex condition Eq. (3.20):

max r (3.21a)
s.t. hi=1,...,n(x, r) 6 0 (3.21b)

where the function hi is defined as:

hi=1,...,n = sup
‖a‖61

fi=1,...,n(x + ra) 6 0 (3.22)

The Eq. (3.21b) is an optimization problem. Each function of hi is convex and elected
as the pointwise maximum of a class of convex functions of x and r. The supremum
form of Eq. (3.22) allows accessing all points within the ball according to the variable
a.

x

y

z

FIGURE 3.2 – Illustration of the Chebyshev center of an enclosed Euclidean ball within a multi-
contact balance GIWC.

Chebyshev Center of a Polyhedron

For a polytope, the inequalities are in the form of {αT
i x − βi 6 0, i = 1, . . . , n}. So

the condition Eq. (3.22) is modified as following:

hi=1,...,n = sup
‖a‖61

αT
i (x + ra)− βi = αT

i x + r ‖a‖∗ − βi (3.23)

Note that by substituting the inequality of the polytope into Eq. (3.21b), the term αT
i ra

appears. Supremum of this term will provide r ‖αi‖∗. The trace norm, ‖‖∗, is introdu-
ced for computing the norm of the matrices. In case of vectors, one can use the simple
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l1 or l2 vector norms. Consequently, the optimization problem is:

max r (3.24a)

s.t. αT
i x + r ‖αi‖ − βi 6 0 i = 1, . . . , n (3.24b)

r > 0 (3.24c)

Fig. 3.2 illustrates the link between the above generalities concerning the Cheby-
shev center and humanoid balance. The polyhedron represents the GIWC that can be
obtained as in e.g. Abi-Farraj et al. (2019). The advantage of computing the Chebyshev
center instead of the GIWC is undeniably the speed. The price to pay for the speed is
the conservativeness of the balance region, as can clearly be seen in Fig. 3.2.

3.2.2 Chebyshev Quadratic Programming

Recall from Eq. (3.4) that the decision variables are noted as Y = [c wi=1,...,l]T where
Y ∈ R3+6k. The QP formulation is structured based on the equality and inequality
constraints introduced in section 3.1.2 expressed as:

AY = b (3.25a)
GY 6 h (3.25b)

whereas:

A =
[

Ag Ac

06n×3 Asl

]
(6+6n)×(3+6k)

(3.26)

and the matrices Ac and Asl are defined as:

Ac =
[
Ac

1 . . . Ac
k

]
6×6k

(3.27)

Asl = [diag(Asl
i )]ρsl; i = 1, . . . , n (3.28)

The equation above contains a selection matrix ρsl
6n×6k for the elements related to

the sliding contacts in the Asl matrix and diag() refers to the diagonal matrix structure.
The rest of the parameters of Eq. (3.25) are defined as:

b =
[
−bg bsl

1 . . . bsl
n

]T
1×7n

(3.29)

G = [diag(Υi,Ψi)]20k×10kρ
G; i = 1, . . . , k (3.30)

h =
[
hub

i hlb
i 01×8k

]T
1×20k

; i = 1, . . . , k (3.31)

and ρG
20k×3+6k is the selection matrix for the G matrix.

For maximizing the radius and selecting the optimal Chebyshev center, inequality
constraint Eq. (3.25b) is modified in the following form, based on Eq. (3.24b), in pre-
sence of Chebyshev radius r:

GY + rξ 6 h (3.32)
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where ξ ∈ R20k is a vector which consists of the norm of the rows of G matrix separa-
tely:

ξ = [ξ1, ξ2, . . . , ξ20k] (3.33)
ξj = ‖G(j, :)‖ ; j = 1, . . . , 20k (3.34)

and the operator (j, :) shows the jth row of the matrix. The vector ξ in Eq. (3.32) is
equivalent to the vector ‖α‖where the i-th element of the vector

α(i) = αi ∀i ∈ {1, . . . , n}

in Eq. (3.24b). This way, we aim at maximizing the Chebyshev radius by taking into
account all inequalities without the need to compute the GIWC or any balance region.
The decision variables of this first-level QP are the position of CoM, wrench distribu-
tion, and r. Next, we modify the vectors and matrices in order to include the Cheby-
shev radius within the decision variables as follows:

X = [Y r]T (3.35)
A∗ = [A 0] (3.36)

G∗ =
[
G ξ
0 −1

]
(3.37)

h∗ = [h 0]T (3.38)

Maximizing the Chebyshev radius is equivalent to minimizing (−r). Other objec-
tives of the QP can be:

• Setting the current position of the CoM as a target for the next iteration (smoo-
thing CoM trajectory)

• Minimizing the wrench distribution: sharing the load on non-constrained (contact)
force.

These objectives can be defined through Xdes = [Ydes rdes], and the optimization fra-
mework writes:

min
X
‖X−Xdes‖2 − r ≡ 1

2XT PX + qT X (3.39a)

G∗X 6 h∗ (3.39b)
A∗X = b (3.39c)

where

P = 2Q (3.40)
q = [Ydes − 1] (3.41)

We prioritize the solution of the QP by using a weight matrix Q(4+6k)×(4+6k) with
chosen weights on the corresponding decision variables. The weights are implemented
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through the diagonal elements of the Q matrix. However, we do not set any target for
the Chebyshev radius.

We need to adopt a low computation weight for rdes. Because, there is no target
given for the Chebyshev radius. On the other hand, we keep this decision variable in
the formulation to maximize it. That is to say:

min
X
‖X−Xdes‖2 − r (3.42)

with the computations, we have:

‖X−Xdes‖2 − r = (X−Xdes)TQ(X−Xdes)− r
= XTQX−XTQXdes −Xdes

TQX + Xdes
TQXdes − r

= XTQX− 2Xdes
TQX− r

We give a very small weight ε for the Chebyshev radius (ignoring rdes) in the cor-
responding element of the weight matrix Q. So, the precise form of Eq. (3.41) for the
quadratic form Eq. (3.39) is in the following format:

P = 2Q (3.43)
q = [Ydes − 1 + ε] (3.44)

We avoid supplying zero value as weight because the QP solver requires P to be
positive definite. Yet, we still have the quadratic form with almost no emphasis on
the rdes. This QP problem, named Chebyshev QP for the rest of the paper, provides
the optimal position of CoM and wrench distribution by maximizing the Chebyshev
radius.

3.2.3 Online Estimation of the Friction Coefficient

In this work, we are dealing with multi-sliding contacts. Implementing the sliding
motion of contact needs a good estimation of the friction coefficient. This implementa-
tion is considered in Eq. (3.8) and has a major role in matrix Asl of Eq. (3.26). Dynamic
and static friction coefficients are defined as a property of a pair of surfaces in contact
and can not be known intrinsically. So, we need to estimate the friction coefficient of
the sliding contacts to advance the movement.

Let lf tan
i and lfnor

i be the tangential and normal forces respectively in the local frame
of the i-th contact surface, the norm of the Coulomb friction equation Greenwood and
Williamson (1966) leads us to the following formulation:∥∥∥lf tan

i

∥∥∥
2

= µmes | lfnor
i | (3.45)

where lf tan
i = [lfx

i
lf y

i ]T and µmes is the calculated friction coefficient from the measured
local forces of the force sensors:

µmes =

√
lfx

i
2 + lf y

i
2

| lf z
i |

(3.46)

61



Region-free Multi-contact Balance Control 3.3. Radius Denotation in Balance Regions

To minimize the effect of the force measurements noise, we also apply a simple filter
with 0 6 γ 6 1 and calculate the filtered friction coefficient at each time iteration t:

µfilt
t = γµmes

t−1 + (1− γ)µmes
t (3.47)

The plots of the experimental results include the measured and estimated friction co-
efficient of the sliding contacts, which you will notice in section 3.5.

3.3 Radius Denotation in Balance Regions

As mentioned in the previous section, employing the region-free approach allows
us to bypass the construction of balance regions. This exclusion results in high com-
putational speed, which facilitates the real-time implementation besides paying for
conservativeness. Nevertheless, to investigate the relation of the computed properties
such as Chebyshev radius with the balance region, we will analyze the problem more
specifically.

3.3.1 Dynamic and Contact Stabilities

We can write the equation of motion of a robot that has point or surface contacts
with the environment, as

M(q)q̈ + h(q, q̇) = STτ a +
∑

contact i

JT
i ωi (3.48)

where

• q, q̇, q̈ are the n-dimensional vectors of degrees of freedom (DOF),

• h(q, q̇) is the n-dimensional vector of gravity and Coriolis forces,

• τ a is na-dimensional vector of torques at the actuated joints and S is selection
matrix,

• ωi denotes the contact wrench taken with respect to a single contact point Ci on
link i,

• Ji = [JC
T
i Jrot, T

i ]T denotes the 6 × n matrix obtained by stacking vertically the
translation and rotation jacobians.
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Dynamic Equilibrium

This robotic system is considered as a set of connected links as its kinematic chain.
The linear momentum P and angular momentum LCoM of the system are defined by

P := 1
m

∑
link k

miċi (3.49)

LCoM :=
∑

link k

mi(pi − c)× ċi + Iiωi. (3.50)

In the above equations, Ii and ωi are inertial matrix and angular velocity of the link in
the absolute frame and c and pi account for position of the CoM of the robot and links,
respectively. The dynamic wrench of the robot at CoM is noted as the wrench (Ṗ, L̇CoM)
which can be derived by forward kinematics from joint-angle positions, velocities and
accelerations. The dynamic wrench of the robot is equal to the total wrench of forces
acting on the system: [

Ṗ
L̇CoM

]
=
[
f g

0

]
+

∑
contact i

[
fi

(pi − c)× fi

]
(3.51)

where f g is the gravity force acting on the CoM. This equation is also called dynamic
balance or the dynamic equilibrium of the system. The Gravito-Inertial Wrench (GIW)
wgi, is defined concerning a fixed point O as following:

wgi
O :=

[
f gi

τ gi
O

]
:=
[

f g − Ṗ
(c− pO)× (f g − Ṗ)− L̇CoM

]
(3.52)

Meanwhile, the contact wrench wc is represented as:

wc
O :=

[
f c

τ c
O

]
:=

∑
contact i

[
f

pi × fi

]
(3.53)

So, the dynamic equilibrium or balance of the system can then be written as

wgi + wc = 0. (3.54)

The dynamic equilibrium in form of Eq. (3.54) is known as wrench-space formulation.
The underlying reason behind this formulation is that

• the gravito-inertial wrench describes the motion of the overall system,

• while the contact wrench describes its interactions with the environment.

Contact Stability

According to the contact stability criterion from Caron (2015) and Pang and Trinkle
(2000), there exists a solution (q̈, τ , w1, ..., wn) of the equations of motion satisfying
the contact mode for all contacting links. For instance for a fixed contact we have
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• no relative motion of the contacting link: Jiq̇ = 0,

• torque limits are satisfied,

• contact wrenches are in their respective CWCs.

On the other hand, as all local contact wrenches lie in wrench cones, the whole-body
wrench cone must lie in the (whole-body) contact wrench cone C (sum of local contact
wrench cones). Note that a polyhedral convex cone image by a linear mapping is itself
a polyhedral convex cone. Since the gravito-inertial and contact wrenches are simply
opposites, the gravito-inertial wrench also lies in a cone −C. So, the proposition states
that the motion of the robot is (weak-contact) stable if and only if the contact wrench
(resp. gravito-inertial wrench) it generates belongs to the CWC (resp. GIWC).

The GIWC is called as a general multi-contact stability criterion. According to Hi-
rukawa et al. (2006), If (f gi, τ gi

O) is an internal element of the CWC, then the contact
is strongly stable to (f gi, τ gi

O). However, Caron et al. (2015a) noticed that their proof
of stability was wrong. This is because of the assumption they made in their compu-
tations. They assumed the humanoid robot to act like a rigid body in which the fixed
contacting links result in the fixed position of CoM. But, according to the redundancy
in the actuation of the robot, this hypothesis can be voided.

3.3.2 Calculation of the Range of Contact Wrench and GIW

Chebyshev radius is the output of the minimization problem Eq. (3.39). However,
this radius indicates a range that applies to all contact wrenches. We can additionally
calculate the range of the gravito-inertial wrench within the GIWC based on the com-
puted radius. This can be done by considering this radius within the computation pro-
cess of the GIWC.

Note that the contact wrench cone is simply the opposite of the GIWC. So, the cal-
culation for range accounts for both whole-body contact and gravito-inertial wrenches.
Assuming a set of contact wrenches, expressed at CoM, within their respective contact
wrench cones wi ∈ Ci for i = 1, . . . , l, and representation of region-free method Eq. (3.21b),
we have

wi + ra ∈ Ci (3.55)

Regarding the sum of contact wrenches and their ranges (ra), we can write
l∑

i=1
wi + l × ra ∈ C1 ⊕ . . .⊕ Cl (3.56)

where⊕ denotes the Minkowski sum of the contact wrenches cones which is the expli-
cit definition of the CWC. So, the range for the valid whole body contact and gravito-
inertial wrenches is the sphere with the radius of

rcwc = l × r (3.57)

Next, we show the reason why we need to implement the Minkowski sum with a
numerical example.
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Minkowski Sum

Assume that A and B are convex sets in wrench space and a and b are wrenches in
which a ∈ A and b ∈ B. Then we can write

a =
∑

i

αivi; αi > 0,
∑

i

αi = 1 (3.58)

b =
∑

j

βjwj; βj > 0,
∑

j

βj = 1 (3.59)

where vi and wi are vertices of A and B accordingly, and i and j are the number of
vertices of A and B. We aim for finding the convex hull containing all possible a + b:

a + b =
∑

i

αivi +
∑

j

βjwj

=
∑

i

αi(vi +
∑

j

βjwj)

=
∑

i

αi(
∑

j

βj(vi + wj))

=
∑

i

∑
j

αiβj(vi + wj)

⇒ a + b =
∑
i,j

αiβj(vi + wj)

According to the properties of coefficients, we have

∑
i αi = 1∑
j βj = 1

}
⇒
∑

i

αi

∑
j

βj = 1⇒
∑
i,j

αiβj = 1 (3.60a)

αi > 0
βj > 0

}
⇒ αiβj > 0 (3.60b)

According to Eq. (3.60), a + b is in the convex hull of vi + wj vertices, named C
where the mathematical notation for this operation is C = A⊕ B.

Numerical Example

Here we consider a simple numerical example to clarify the concept of Minkowski
sum and range of GIW. As shown in Fig. 3.3, the contact forces and their convex poly-
hedra are considered in 3D. For two contact points in Euclidean space

• positions are pc1 = [0.25 0 0]T and pc2 = [−0.25 0 0]T with respect to O,

• orientations are θc1 = [20 20 0]T and θc2 = [10 − 10 0]T in degrees with respect
to O,
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• friction coefficients are µ1 = 0.5 and µ1 = 0.35

According to the friction coefficients of the contacts, Fig. 3.3(b) illustrates the corres-
ponding friction cones. Note that the friction cones are in vector space, which is not
shown to avoid the figure’s complexity.

(a) (b)

FIGURE 3.3 – A numerical example of the standing robot with two feet contacts. (a) demons-
trates the position of contacts, their normal vectors, and CoM in the proposed coordinate sys-
tem, and (b) is a scaled illustration of the corresponding friction cones of the contacts.

We choose the position of CoM to be pG = [0 0 0.6]T . Fig. 3.4(a), Represents the
translation of the polyhedra and forces in the location where CoM exists. The polyhe-
dron in the CoM position is the Minkowski sum of contact polyhedra.

In order to have a clear vision of the CWC, we illustrate arbitrary forces which lie on
the edge of their corresponding friction cone in Fig. 3.3(a). The translated sum of these
forces to the position of CoM is shown in the Fig. 3.4(a). As pointed in the picture, The
resultant force is inside the Minkowski sum of the friction cones, namely CWC.

In the calculation of the friction cones, we considered the upper limit for the normal
force. So, the cones have ceilings. The computed wrench and Chebyshev radius results
in spheres for all contacts within their cones as shown in the Fig. 3.4(b). Consequently,
the larger sphere inside the GIWC has a radius equal to twice the Chebyshev radius
(the sum of small spheres). This sphere is always located inside the GIWC or CWC and
the conservativeness of the approach is demonstrated geometrically.

Finally, in this section, we determined the radius rcwc from Eq. (3.57) which indicates
the minimum distance which the GIW or contact wrench will keep from the borders
of the GIWC or CWC accordingly. This distance will support the balance of the robot
with a safe margin. Moreover, over retaining this distance, we can constantly generate
CoM accelerations in every direction before losing the balance.
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+

+

(a)

+

(b)

FIGURE 3.4 – Illustration of the Minkowski sum of the friction cones in the position of CoM.
(a) includes the arbitrary forces which lie on the edge of their corresponding friction cone (for
illustration purposes) and the translated sum of these forces to the position of CoM. (b) shows
the spheres as a result of the computed wrenches and Chebyshev radius in contact points. The
radius of the larger sphere is equal to the sum of small ones.

3.3.3 Calculation of the Range of CoM Position

Now, we are aiming for translating the Chebyshev radius into the static equilibrium
region and calculate the range for CoM position. First we represent the CWC, W, at a
fixed point O:

AOWO 6 0 (3.61)

According to the section 3.3.2, we apply the Chebyshev range for contact wrench as
rcwcto the i− th row of AO. The inequality becomes:

AO,iWO + rcwc ‖AO,i‖ 6 bi (3.62)

According to WO = [f τO]T and using the dual twist representation of the inequality
from Caron and Kheddar (2016) as [aO a]T , we can re-write the above equation as

aO.f + a.τO + rcwc ‖AO,i‖ 6 bi (3.63)

where aO = [aOx aOy aOz]T and a = [ax ay az]T . By considering static equilibrium
(τG = 0 and f = mg) and representing the inequality at point G, we continue the
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calculation as following:

m(aO + a × pG).g + rcwc ‖AO,i‖ 6 bi

−mg(aOz − ayxG + axyG) + rcwc ‖AO,i‖ 6 bi

−1
‖AO,i‖

(aOz − ayxG + axyG) + rcwc

mg
6

bi

mg ‖AO,i‖
−1
‖AO,i‖

(aOz − ayxG + axyG)− bi

mg ‖AO,i‖
6 −rcwc

mg

Without loss of generality, we can assume ‖AO,i‖ = 1. So, the inequality Eq. (3.61)
becomes:

−(aOz − ayxG + axyG −
bi

mg
) 6 −rcwc

mg
(3.64)

We denote the signed distance between (xG, yG) and the supporting line−aOz +ayxG−
axyG + bi

mg
= 0 of the corresponding equilibrium polygon’s edge as

σA,i(xG, yG) = aOz − ayxG + axyG −
bi

mg
(3.65)

The above inequality indicates that the minimum distance of the CoM from the borders
of static equilibrium region (from Bretl) is rcom = rcwc

mg

3.4 Whole-body Admittance Controller

In this section, we present the overall task-space whole-body admittance controller
as shown in Fig. 3.5. For each scenario, a Finite State Machine (FSM) is designed/planned.
Each state of the FSM, defines a set of tasks and constraints for the controller as well as
desired positions, forces, and sliding conditions for each contact, if any.

The Chebyshev QP computes optimal and safe contact wrenches and CoM position
depending on the current state of the robot and planned FSM targets. These optimal
wrenches and CoM position are then used as objectives for tasks driven by the whole-
body QP (WBQP) framework.

Each task is formulated as a cost function and/or eventually associated constraints
on joint acceleration (or torque for torque-based humanoids) and contact forces. The
resulting joint acceleration is integrated twice (or torques) and sent as a target for the
robot actuators’ low-level controllers, see Bouyarmane et al. (2019b).

Ordinarily, the measured and estimated state of the robot is used to close the loop at
the task level. In order to maintain the balance of the robot at the control level, we use
the Chebyshev formulation for closing this loop, as you can see in Fig. 3.5. We compute
the optimal CoM position and wrench distribution from the desired contact force and
the measured and estimated states of the robot. This method guarantees the dynamic
balance of the robot in real-time. For sliding contacts, we implement an online friction
estimation accompanying by a first-order filter.
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FIGURE 3.5 – Schematic of the overall task-space control framework with Chebyshev QP.

The main tasks we used in our experiments are the following: (i) CoM task, to even-
tually track the optimal CoM position, (ii) Admittance tasks for the desired wrench
which map wrench error to contact surface velocity which in turn is used as a target
for an end effector trajectory task.

3.5 Experimental Results

In order to assess our approach, we performed experiments with the HRP-4 huma-
noid robot. We investigate the capabilities of our proposed optimal control framework
through a multi-contact scenario under active dynamic balance that exhibits:

• combination and switching of fixed and sliding modes;

• multi-fixed-and-sliding contacts on non-coplanar surfaces;

• shuffling of the foot on a tilted surface.

We prepared a non-coplanar multi-contact set-up consisting of a tilted fake wooden
slope for the left foot, a tilted wooden board for the right hand, and a wall for the left
hand. The right foot is on the experimental room ground. The three materials have
different friction coefficients, which are not measured beforehand. The scenario starts
by setting the HRP-4 in a half-sitting pose, both feet on the grounds.
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The motion begins with stepping the left foot up the slope and establishing a planar
contact with the wall by the left hand. Then contact is established by the right hand on
the tilted board (slope of ' 50◦). Each contact is established while sustaining the exis-
ting ones and moving the whole body while keeping the CoM close to the suggested
one by the Chebychev QP.

Alike in Kheddar et al. (2019) and since we use guarded motion and a calibrated en-
vironment, embedded robot vision was not used this time. At this stage, we have four
contacts. Then HRP-4 gets prepared for the co-wiping motion under user-specified sur-
face normal forces: 10 N for the right hand and 15 N for the left hand. Setting contacts
and preparation for the co-wiping state are shown in Fig. 3.6.

FIGURE 3.6 – Establishing fixed contacts and preparing for sliding motions.

The next stage is the wiping motion of both hands simultaneously. During co-
wiping, the end effectors track the desired normal force and planned trajectories of
circles with a radius of 10 and 8 cm for right and left hands, respectively. Notice that
in a multi-contact non-coplanar setting, the range of motion of HRP-4 is limited due
to intrinsic kinematics closed-chain constraints. Figures Fig. 3.7 and Fig. 3.8 illustrate
the co-wiping experiment and force tracking of the end-effectors contacts using admit-
tance force control discussed in Bouyarmane et al. (2019b).

The alignment of the end effectors with surfaces while establishing the contacts is
guaranteed by zeroing the torques reference in x and y directions with respect to the
local contact frame. The trajectory tracking of end-effectors is shown in Fig. 3.9.

Once the co-wiping tasks are achieved, both contacts switch from sliding to fixed
modes, and the left foot contact switches from fixed to sliding mode. Now we have
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FIGURE 3.7 – Simultaneous sliding of both hands on non-coplanar wooden board and wall
surfaces.
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FIGURE 3.8 – Force tracking of the end-effectors during co-wiping tasks.

three fixed contacts and one sliding. The left foot on the slope shuffles back and for-
ward. Fig. 3.10 shows the shuffling experiment and the normal force tracking for the
end effectors, respectively.
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FIGURE 3.9 – Target trajectory tracking of the sliding hands. The light discrepancies are due to
uncertainties of planed board and wall position with respect to HRP-4.

In the last part of the scenario, HRP-4 releases both hands at a time and steps back to
the floor (initial pose). During all sliding motions, online friction estimation Eq. (3.47) is
executed. The estimation process begins with initial guesses, as shown in Fig. 3.12, and
computes friction only when the normal forces are above a given threshold. Moreover,
the CoM position tracking of both co-wiping and shuffling scenarios during the entire
experiment is displayed in Fig. 3.13.

The experiments computations were made by a laptop computer having Intel(R)
Xeon(R) E-2276M CPU at 2.80 GHz×12. With this setup, we noted the average com-
putation times for the Chebyshev QP and the whole framework as 0.2 and 1 ms, res-
pectively. These values are largely within the implemented real-time control loop with
mc_rtc framework that is 5 ms.

3.6 Conclusion

This chapter devised a whole-body humanoid non-coplanar multi-contact motion
planning and control for mixed sliding and fixed contacts that can be switched at will.
Our method does not require the construction of GIWC or CoM-support polytopes,
thanks to a single and fast optimization problem based on the Chebyshev center. This
formulation makes it suitable for closed-loop control because there is no need for any
time-consuming pre-computation of balance regions.
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The previous works on multi-contact applications classified the supporting and in-
teracting contacts to exclude the interaction ones from dynamic balance. The Cheby-
shev QP formulation also allows exploiting all the contacts, including moving/sliding
ones, for dynamic balance when possible and permits balance contacts also to contri-
bute to force tasks.

We assess our approach through complex scenarios with the HRP-4 humanoid ro-
bot: four contacts are controlled in force under dynamic balance with switches between
fixed and sliding contact modes at the user’s will. A simple online friction estimator
is implemented to update the friction coefficient of the sliding contacts. A video of the
experiments 1 and the open-source code of the controller 2 are available online.

In future work, we aim at improving the force tracking based on the extension
of Pham and Pham (2020) that is currently limited to translation forces (i.e. non-moments).
We are also considering the extension of multi-contact modalities to include soft sup-
ports. That is to say, contact that combines fixed, sliding, pushing, and rolling even-
tually on soft supports. We then need to develop more sophisticated friction identi-
fication models and associated filters. These modalities would then cover almost all
spectrum of possible contacts encountered in the targeted applications. Robustness
consideration concerning uncertain dynamic parameters shall also be accounted (e.g.,
considering relative forces instead of absolute ones).

Finally, we shall cover multi-contact planning that considers such multi-modal contacts
to achieve tasks requiring accessing narrow or cumbersome passages. These skills will
be deployed in real use-case scenarios defined by two large-scale manufacturing indus-
trial partners, one of which is the continuation of Kheddar et al. (2019) and in physical
human-robot assistive robotics Bolotnikova et al. (2020).

In the next chapter, we are aiming to merge the region-free method with the whole-
body QP. This way, a single QP will compute the demanded targets for execution on
the robot. However, all involved tasks will associate in calculating the QP together
with the Chebyshev implementation. Also, to reflect the dynamic motion, the decision
variable will contain the CoM acceleration rather than the position.

1. https://youtu.be/cFYd9oQueRE
2. https://github.com/SaeidSamadi/Multi-sliding-Contacts
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(a)

(b)

FIGURE 3.10 – Preparing posture for shuffling scenario (a) while keeping the hands as fixed
contacts and (b) shuffling of the left foot on a slope tilted by 20◦. w.r.t. the ground in a multi-
contact setting.
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FIGURE 3.11 – Normal Force tracking of hands and left foot contact during the shuffling motion.
The oscillations are due to the change into the reverse direction in the shuffling motion.
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fling scenarios (bottom).
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FIGURE 3.13 – CoM trajectory tracking in x and y directions for co-wiping (up) and shuffling
scenarios (bottom)
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CHAPTER 4

INTEGRATED WHOLE-BODY BALANCE
CONTROL OF HUMANOIDS IN

MULTI-CONTACT MODES

The previous chapter investigated the robot’s balance within the multi-contact sce-
narios employing a region-free approach. This method enables the real-time imple-
mentation of the whole control framework without pre-computation of the balance
regions. This framework consists of a planner, which holds the centroidal dynamics of
the robot together with the implemented balance criteria, and the whole-body control-
ler for realizing the desired motion parameters from the planner on the robot.

An online-executable planner needs to generate the balancing parameters with the
minimum motion feedback such as contact points, force measurement, and CoM po-
sition estimation. However, the full range of the motion features, essentially real-time
motion tasks and configurations, are kept beyond the scope of the planner. In simple
words, if for instance, an end-effector trajectory task is carried out during a control
state, the planner is not aware of this movement until the robot contacts the environ-
ment.

The current chapter aims to integrate a balancing strategy within the controller ra-
ther than the planner. We consider the balance criteria–based on the region-free approach–
and all active motion tasks in an online framework through this integration. So, the
whole-body controller of the robot also accounts for the balance of the robot. Moreo-
ver, we consider the robot’s centroidal and actuated dynamics, which results in the
whole-body motion of the robot.

Consequently, By considering the whole-body motion of the humanoid, inverse ki-
nematics provides the joint commands required for accomplishing the desired trajec-
tory of the CoM and the respective body configuration within the controller. In the
following, we reformulate the actuated and under-actuated dynamics of the robot to
be compatible with the framework accompanied by region-free balance control. The
framework also covers the sliding contact mode as investigated in previous chapters.
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4.1 Whole-body and Centroidal Dynamics

The humanoid robot is considered a floating-based system. Assuming j as the num-
ber of joints, the system has 6+j DoF. The whole-body dynamics govern 6+j equations
connecting the joint configurations q = [qu qa]T and its derivations (containing unac-
tuated qu ∈ R6 and actuated qa ∈ Rj terms) with the actuator torques τ a and contact
wrenches wi ∈ R6 as

M(q)q̈ + N(q, q̇) =
[
06
τ a

]
+

∑
contact i

JT
i wi. (4.1)

Note that the first six rows of Eq. (4.1) reflect the under-actuated dynamics of the robot,
namely the centroidal dynamics Orin et al. (2013). Also, M is the generalized mass
matrix, N contains the centrifugal and Coriolis effects, and Ji refers to the i-th contact
Jacobian.

The Newton-Euler equation is associated with centroidal dynamics. Assuming that
the robot has u links, the linear (P) and angular (L) momentum terms are defined as
following in the global frame:

P def= mċ (4.2a)

L def= Iuωu +
∑

link u

(pu − c)×mċ (4.2b)

where Iu,ωu, and pu refer to the inertia matrix, angular velocity and position of CoM of
the link u, respectively. Also, c = [cx cy cz]T is the position of the CoM in global frame.
The centroidal dynamics of Eq. (4.1) can be expressed by derivative of momenta Caron
et al. (2015a):

Ṗ =
∑

contact i

fi +mg (4.3a)

L̇ =
∑

contact i

(pi − c)× fi + τ i (4.3b)

whereas g = [0 0 − 9.81]. In the following, we aim for re-writing Eq. (4.3) in terms of
gravito-inertial wrench wg = [f g τ g] which are defined as follows:

f g def= m(g− c̈) (4.4a)

τ g def= c×m(g− c̈)− L̇. (4.4b)

By substituting Eq. (4.4) into Eq. (4.3) and considering Ṗ = mc̈, we have:

f g = −
∑

contact i

fi (4.5a)

τ g = −
∑

contact i

pi × fi + τ i. (4.5b)

We recall the dynamic equilibrium of the robot by Newton-Euler equation for l limbs
in contact with the environment is represented in Eq. (3.1),

wg +
l∑

i=1
wi = 0,
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for the gravity and contact wrenches specified in Eq. (3.2) as the following form:

wg =
[

f g

c× f g

]

wi =
[

fi

pi × fi + τ i

]
.

Contrary to Samadi et al. (2021) which accounts for the static equation of motion,
we consider the dynamic motion of the robot. The Newton-Euler equation Eq. (3.1) for
decoupled force and torques becomes:∑

i

fi = m(c̈− g) (4.6a)∑
i

(pi × fi + τ i) = mc× (c̈− g) (4.6b)

where all vectors are represented with respect to the inertial frame, m is the total mass
of the robot.

4.2 Constraints of the Motion

The whole-body controller framework is formulated in task space and solved as
a QP problem. This section introduces the constraints of the motion that we need to
fulfill in the QP formulation. These constraints consist of both equality and inequality
forms. Also, we need to specify the decision variables of this formulation. We write the
framework in task-space as a quadratic problem that solves for

• configuration accelerations, q̈,

• contact wrenches, wi,

• actuator torques, τ a, and

• Chebyshev radius, r, which will be thoroughly addressed in the next section.

In the following, we define motion constraints to be formulated and implemented as a
function of decision variables.

4.2.1 Equation of Motion

Previous chapters 1 were containing two separate QPs for the planner and whole-
body controller which CoM position was considered as one of the decision variables of
the planner. However, in the present study, we implement the computations within the

1. Researchs are also published in Samadi et al. (2021) and Samadi et al. (2020).
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whole-body framework. Therefore, we need to formulate the equations based on CoM
acceleration rather than its position as it is straightforward to derive CoM acceleration
from q̈ thanks to the CoM Jacobian JCoM :

c̈ = JCoM q̈ + J̇CoM q̇. (4.7)

Note that we can directly calculate the term J̇CoM q̇ using the outputs of the last
iterations. Besides, Eq. (4.7) is considered as the initial equality constrain of the QP for-
mulation. Therefore, we do not need to add the CoM acceleration among the decision
variables of the whole-body QP, and it can be explicitly derived and replaced by this
equation.

The cross product in Eq. (4.6b) results in a nonlinear equation with respect to c and
c̈ variables. However, to keep the CoM acceleration as a decision variable in the QP
calculation, we consider c = [cX cY cZ ]T as a constant value (by reference of lab frame)
at each iteration. So, we can re-write Eq. (4.6) as:∑

i

fi −mc̈ = −mg (4.8a)∑
i

(pi × fi + τ i)−m[c]×c̈ = −m[c]×g (4.8b)

where [c]× is the skew-symmetric matrix of c:

[c]× =

 0 −cZ cY

cZ 0 −cX

−cY cX 0

 .

The dynamic equation of motion is specified in Eq. (4.8). In this equation, the cur-
rent position of the CoM is considered as the constant value of each iteration for com-
puting [c]×. So, this skew-symmetric matrix becomes constant at each calculation stage.
Then the equation of motion Eq. (4.8) can be written as:

∑
i

wi −m
[
I3×3
[c]×

]
c̈ = −m

[
g

[c]×g

]
(4.9)

So, by considering a constant [c]× matrix, the right-hand term of the above equation is
noted as a consistent value at each iteration, and the equation Eq. (4.9) can be written
as a function of [c̈ w1 . . . wi]T :

AEoM


c̈

w1
...

wi

 = bEoM (4.10)

where:

AEoM =
[
−m

[
I3×3
[c]×

]
I1

6×6 . . . Il
6×6

]
(4.11)

bEoM = −m
[

g
[c]×g

]
(4.12)
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The superscript ◦EoM indicates the Equation of Motion. Note that the elements Ii
6×6

are all identity matrices, and ◦i shows the number of components that are equal to the
number of contacts l.

4.2.2 Contact Modes

The robot can contact the surrounding with multiple modes as fixed, sliding, soft,
etc. We need to consider the proper model of the contact modes within the framework.
Here we consider the fixed and sliding contacts which are also discussed in previous
chapters (Section 2.2 and Section 3.1.2). Here we recall the contact constraints for fixed
and sliding modes. As stated in Eq. (2.31), by considering µs as static coefficient of
friction, we can realize the inner approximation of friction cone by µ = µs/

√
2. Regar-

ding the x and y as tangential unit vectors, the linearized Coulomb condition in the
complementary form becomes

|fx| 6 µf z, (4.13)
|f y| 6 µf z, (4.14)
f z > 0. (4.15)

Also, assuming that τ c = [τx τ y τ z]T is the contact torque exerted by its force around the
point o (where the contact wrench is defined in local frame), the following conditions
are also determined to avoid tilting and rotational slippages:

|τx
o | 6 Dxf z, (4.16)
|τ y

o | 6 Dyf z, (4.17)
τ z

min 6 τ z
o 6 τ z

max (4.18)

where

τ z
max := +µ(Dx +Dy)f z − |Dyfx + µτx

o | − |Dxf y + µτ y
o |

τ z
min := −µ(Dx +Dy)f z + |Dyfx − µτx

o |+ |Dxf y − µτ y
o |

and Dx,y are scalars and calculated based on the distance of the point o with the edges
of the rectangular contact surface Caron (2015).

On the other hand, the constraints are different for sliding contacts. According to
the Fig. 1.6, when the contact force lies on the edge of friction cone, the box starts the
sliding motion. Based on Coulomb’s friction model, the sliding contact mode occurs
with a governing formula as f t = µdfn for f t, fn, and µd as tangential and normal
contact forces, and dynamic (kinetic) friction coefficient, respectively.

The value of frictional forces of i-th sliding contact in the tangential directions are
associated their velocity vi = [vx

i vy
i ]T , assuming no detachment of contact (vz

i = 0). So,
the the equality constraints governing the sliding conditions are

f
{x,y}
i = µd

i f
z
i

v
{x,y}
i

‖vi‖
(4.19)
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Furthermore, the normal force control is of interest during the sliding motion and is
mainly controlled to converge the desired value f z

i,des. So, this condition (f z
i = f z

i,des)
will be added to the equality constraints together with Eq. (4.19) in the following matrix
form: 

1 0 −µd
i

vx
i

‖vi‖

0 1 −µd
i

vy
i

‖vi‖
0 0 1

 f c
i =

 0
0

f z
i,des

 (4.20)

For the sliding contacts, the inequalities on contact torques need to be applied as Eq. (4.18)
to avoid tilting and rotational slippages. Also, the contact forces in Eq. (4.20) are expres-
sed in the local frame.

4.2.3 Joint Constraints

One of the decision variables of the whole-body controller is the joint accelerations
as mentioned in Section 4.2. This controller needs to accomplish the motion tasks wi-
thin the feasible actuator limits. Therefore, the robot’s motion needs to fulfill certain
joint-related limits, characterized in the following items.

Joint position limits

The robot consists of multiple actuators, each of which has its operational range due
to mechanical design and hardware limits. Throughout each robot scenario, regardless
of the planner and controllers, these constraints need to be fulfilled. Therefore, the
workspace of the actuators need to be constrained based on the design of the robot as

qa
min 6 qa 6 qa

max. (4.21)

The Eq. (4.22) needs to be written in terms of the decision variables of the robot Bouyar-
mane et al. (2019b). We can re-write this equation with respect to the configuration ac-
celeration of the robot (q̈) and consideration of the time iteration ∆t in the following
form:

qa
min − qa − q̇a∆t

1
2∆t2

6 q̈ 6
qa

max − qa − q̇a∆t
1
2∆t2

. (4.22)

This equation needs to be an active inequality constraint during the whole motion of
the robot.

Joint velocity limits

The current of the actuators can generate an explicit range of actuator velocities.
These velocities need to be in the feasible capacity to operate. So, in addition to the
joint positions’ constraints, we need to take care of the joint velocity. The restriction on
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the joint velocity can be directly imposed by derivation of the actuator configuration
vector as

q̇a
min 6 q̇a 6 q̇a

max. (4.23)

Same as Eq. (4.22), we need to translate this inequality in terms of the joint accelera-
tions:

q̇a
min − q̇a

∆t 6 q̈ 6
q̇a

max − q̇a

∆t . (4.24)

Utilizing Eq. (4.24) within the inequality constraints of the whole-body QP fulfills the
velocity limitation of joints during the robot’s motion.

Joint torque limits

A common challenge in using the robotic setups, especially while performing the
challenging scenarios, is the over-torquing issue which burns the actuator. Due to the
expense of the motors, it is of high importance to restrict the actuator torques within
a safe range by applying a safety margin. According to the decision variables of the
whole-body QP, which contains the joint torques, we can explicitly apply the torque
limits by

τ a
min 6 τ a 6 τ a

max. (4.25)

Typically, if a scenario rides one of the actuator torques to its maximum/minimum
limit, the safest option for the robot would be to stop the controller and servo off the
robot immediately.

Collision-avoidance

Throughout the execution of a scenario, the robot needs to avoid the collision of its
links. This constraint needs to be formulated regarding the distance between the two
specified links a and b, vis. d(a, b):

ḋ(a, b) > kdmpd(a, b)− δmin

δmax − δmin

(4.26)

where kdmp represents the damping coefficient of the joint velocities. Also, δmax and
δmin refer to the distance between links which the constraint needs to be activated, and
the minimum distance threshold, respectively. This equation can be re-written in terms
of a constraint on q̈ as

d̈(a, b) 6 1
∆t(−k

dmpd(a, b)− δmin

δmax − δmin

− ḋ(a, b)) (4.27)
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4.3 Region-free Whole-body Control Structure

According to the studies, for keeping the robot’s balance, the contact stability cri-
terion is a necessary condition but not sufficient. The balance of the robot needs to be
evaluated through the balance regions. However, the computation of these regions is
a time-consuming process, and therefore, there is a need for offline pre-computations.
So, the online implementation of the complete balance criterion is still a challenge.

We recently tackled the real-time implementation of the balance controller on the
robot by introducing an analytical solution limited to specific configurations in Chap-
ter 2 (see also Samadi et al. (2020)). Later, we resolved these limitations and extended
the method for more generic scenarios by introducing the QP formulation based on
the Chebyshev center method in Chapter 3 (see also Samadi et al. (2021)). However,
in the mentioned study, we implemented the region-free approach on the planner QP.
Therefore, the QP was not considering the real-time motion tasks (such as position and
orientation tasks, etc.) in the balance control.

The current chapter aims to implement the region-free (Chebyshev) method wi-
thin the Whole-body controller framework that accounts for all existing tasks and
constraints in the balance control. In the following, we concisely summon back to Sec-
tion 3.2.1 to recall the Chebyshev center method and its employment in the balance
control problem.

4.3.1 Integration of Region-Free Method

We will use the proposed region-free method introduced in Chapter 3 within the
whole-body controller. Therefore, we briefly recall the technique and discuss its inte-
gration with the controller.

Recall of Chebyshev Center Method

The Chebyshev center method was first introduced by Garkavi (1964) and is an
optimization process for computing the largest enclosure ball and its center inside a
specified bounded set with non-empty interior Amir (1984). This set is defined by in-
equalities, which need to be modified by the Chebyshev radius, rc, as an additional
term. Assume the set U ∈ Rn in the following form:

U = {x |αT
i x− βi 6 0, i = 1, . . . , n} (4.28)

which is defined as a bounded polytope for x ∈ U. The following optimization pro-
blem (equivalent to Eq. (3.24b)) results in the optimal center xc, namely Chebyshev
center, by maximizing the radius of enclosure sphere Boyd and Vandenberghe (2004):

max
x,rc

rc (4.29a)

s.t. αT
i x + rc ‖αi‖ − βi 6 0 i = 1, . . . , n (4.29b)

rc > 0 (4.29c)
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Note that the implementation of the region-free method rests in the alteration of the
respective inequality constraints and maximizing the radius. As you can see, Eq. (4.28)
is modified to Eq. (4.29b) by considering the rc. We refer the readers to Chapter 3
and Boyd and Vandenberghe (2004) for more detail on the Chebyshev center method
and its applications.

Chebyshev Implementation for Balance Control

For the balance control of the robot, instead of computing the balance regions geo-
metrically, we leverage the corresponding inequalities which define the polytopes and
implement the region-free approach by modifying them as mentioned in Section 4.3.1.

The inequalities on the contact forces for non-sliding contacts, Eq. (1.10) and Eq. (4.18),
represent the contact friction cones as shown in Fig. 1.6. The Minkowski sum Fukuda
et al. (2004) of these cones results in the CWC Hirukawa et al. (2006) or GIWC Ca-
ron et al. (2015a) which are used for evaluating the contact stability criterion Pang and
Trinkle (2000). The balance regions, such as CoM Bretl and Lall (2008) or CoM acce-
leration Audren and Kheddar (2018) regions, can be relatively derived based on the
equation of motion.

The inequalities of the non-sliding contacts in Eq. (1.10) can be represented in the
global frame and re-written in the matrix form:

GiRif c
i 6 03×1 (4.30)

where

Gi =


1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ
0 0 −1

 , f c
i =

f
x
i

f y
i

f z
i

 .

Note that the rotation matrix is orthogonal with ‖Ri‖ = 1, and preserves the norm of
three-dimensional vectors (rows of Gi matrix). So, the multiplication of Ri in Eq. (4.30)
does not affect the norm of these vectors.

In order to implement the region-free method, we need to modify the constraints on
the contact friction forces and also consider the positive values for the Chebyshev ra-
dius as in Eq. (4.29c). So, the inequality constraint Eq. (4.30) for i-th non-sliding contact
becomes: [

Gi ζi

01×3 −1

] [
Ri 0
0 1

] [
f c
i

rc

]
6 04×1. (4.31)

Denoting that Gi(j, :) and ζi(j) represent the j-th row and element of Gi matrix and ζi

vector, respectively, we have:

ζi(j) = ‖Gi(j, :)‖ (4.32)

Also, in the Eq. (4.31), the first matrix on the left-hand side of the equation contains the
−1 value, which is for considering the rc > 0 condition.
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4.3.2 Reducing Conservativeness of the Region-Free Method

In the previous chapter, we considered a single Chebyshev radius within variables
for all contact forces and torques, as stated in Eq. (3.35). The computed Chebyshev
radius must be valid for all contacts through the QP problem. In other words, the com-
puted wrench distribution of contacts and a specific range around them (a sphere with
Chebyshev radius) should be within the corresponding cones.

As a numerical example, we can consider a humanoid robot in contact with the
environment by two points, as shown in Fig. 4.1. In this figure, we displayed the linea-
rized friction cones of forces with different coefficients of frictions. Considering a single
Chebyshev radius in the problem reveals that the respective spheres within cones are
not always the most extensive ones. In other words, in Fig. 4.1(a) the radii of spheres
inside C1 and C2 need to have the same values, and therefore, the sphere within C2 is
not the largest possible sphere within this cone.

(a) (b)

FIGURE 4.1 – Comparison of the resultant sphere within the CWC.

In the current study, we define independent Chebyshev radii for each contact. This
way, each frictional cone will contain the most extensive corresponding sphere of fea-
sible wrenches. As an illustration of the numerical example, Fig. 4.1(b) represents r1
and r2 as related radii for C1 and C2, respectively. Therefore, the resultant sphere wi-
thin the CWC has a larger rcwc than the sphere defined in Fig. 4.1(a). So, the resultant
sphere covers more space of the exact CWC. Consequently, the conservativeness of the
approach reduces.
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According to Samadi et al. (2021), the radius of the feasible sphere within the GIWC
or CWC, rcwc, is equal to the number of contacts (nc) multiplied by the Chebyshev
radius, rcwc = nc× rc, in case of considering only one Chebyshev radius for all contacts
(Fig. 4.1(a)). However, by considering multiple radii, the resulting sphere will be sum
of them as

rcwc =
nc∑

i=1
rc,i.

By considering the unique radius as in previous chapter, we select the minimum value
among possible contact wrench ranges. However, regarding multiple radii helps en-
large the sphere in CWC and reduces the conservativeness of the approach because the
contact wrench can have a more comprehensive feasibility range. We can evaluate this
conservativeness by calculating the sphere induced by the Chebyshev implementation
within the CoM regions. Therefore, in the following, we translate the computed Che-
byshev radius into the CoM position and acceleration regions as static and dynamic
solutions.

4.3.3 Evaluation of Balance Criterion

According to Eq. (3.57), the radius of the feasible sphere within the GIWC or CWC,
rcwc, is equal to the number of contacts (nc) multiplied by the Chebyshev radius,

rcwc = nc × rc.

As indicated in Section 3.3.3, the contact stability of the motion is qualified by the
implementation of the Chebyshev center method. However, for evaluating the balance
of the robot, contact stability is required but not sufficient. The geometrical balance
regions for CoM position or acceleration have been investigated as sufficient balance
criteria in the literature. However, as mentioned before, the computation of these re-
gions is time-consuming and prohibits the online implementation of balance criterion.

Leveraging the Chebyshev center method, we can guarantee the balance of the
robot sufficiently without the need for geometric calculation of the balance regions.
In Section 3.3.3, we investigated the translation of the Chebyshev radius into the sta-
tic equilibrium region. In the following, we derive the half-space representation of the
regions mentioned above for dynamic motions with their respective safety margins.

Note that the region-free approach significantly decreases the computational cost
and enables the balance control’s real-time implementation. There is no need for any
computation of the balance region. Accordingly, the following analysis is carried out
interdependently to examine the balancing appearances of the method.

A mathematical proof is provided for the evaluation of the static equilibrium while
integrating the region-free method through Eq. (3.65). To continue, we assess the dy-
namic balance control within the CoM acceleration region.

The contact wrench with respect to the fixed point O (which is the origin of the lab
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frame as shown in Fig. 1.6) is defined according to Eq. (4.6) as

wO
def=
[

f
τO

]
=
∑

i

[
fi

pi × fi

]
. (4.33)

We can represent the CWC at this point by

AOωO 6 0. (4.34)

According to the calculated rcwc radius within the CWC, we can re-formulate Eq. (4.34)
for the i−th row of this inequality based on the Chebyshev implementation Eq. (3.24b)
in the following form:

AO,iωO + rcwc ‖AO,i‖ 6 0 (4.35)

Next, we present the AO,i by the dual twist [aO a] ∈ R6 Featherstone (2014). So, Eq. (4.35)
becomes

aO.f + a.τO + rcwc ‖AO,i‖ 6 0. (4.36)

We can represent the above equation in another point as CoM. For this purpose, we
need to replace aO with ac = aO + a × c Caron and Kheddar (2016) based on the
Varignon formula Moore (2021):

ac.f + a.τ c + rcwc ‖AO,i‖ 6 0. (4.37)

According to Eq. (4.6), considering zero angular moment of the motion, τ c = 0, and
f = m(c̈− g) in dynamic motions, the inequality Eq. (4.37) becomes:

mac.c̈−mac.g + rcwc ‖AO,i‖ 6 0 (4.38)

Assuming σâ = −aOz + ayc
x − axc

y, we can re-write the equation as:

mac.c̈−mgσâ + rcwc ‖AO,i‖ 6 0 (4.39)

Note that σâ includes position of CoM which we consider it as constant variable at each
iteration as specified in Section 4.2.1 and Eq. (4.9). The term ac.c̈ is calculated as

ac.c̈ = φc̈x + ϕc̈y − σâc̈
z

φ = −azc
y + ayc

z + aOx

ϕ = +azc
x − axc

z + aOz.

By assuming ‖AO,i‖ = 1 without loss of generality, the inequality becomes:

φc̈x + ϕc̈y − σâc̈
z − gσâ 6 −rcwc

m
(4.40)

Considering slackness of the inequality as

σacc = −φc̈x − ϕc̈y + σâ(c̈z + g)

which is the half-space representation of the CoM acceleration region for any z̈G > −g,
we have:

σacc >
rcwc

m
. (4.41)

The above equation indicates that in the respective configuration, the CoM of the robot
can generate a minimum acceleration of rcwc

m
in every desired direction for maintaining

the balance.
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4.3.4 Whole-body Controller Framework

The planned motions and scenarios need to be implemented and executed on the
robot. For this purpose, a controller needs to be employed that controls all robot joints
based on the desired tasks. However, most of the time, multiple tasks need to be execu-
ted simultaneously on the robot (e.g., locomotion of the robot and manipulation of ob-
jects). Approaching various tasks is also the responsibility of the whole-body controller.

We base our framework on top of the whole-body controller introduced in Bouyar-
mane et al. (2019b). Additionally, the proposed strategy will contain a region-free and
online balance controller thanks to the implementation of the Chebyshev center me-
thod. We address the objectives of this controller as a QP problem in task-space by

• steering the task tj around a set-point, as CoM and configuration tasks, or

• directing the task from an initial value to a target, such as end-effector or CoM
trajectory tasks.

We aim to reach the desired motions (tdes
j ) in the whole-body controller by task-

space formulation and maximizing the Chebyshev radius. In the current implemen-
tation, we consider a independent Chebyshev radii (rc,i) for each contact. Therefore,
we introduce the Chebyshev radius vector containing all radii as rc = [rc,1, . . . , rc,i]T .
Consequently, we can formulate the unified QP scheme as follows:

min
q̈a,w,τa,rc

−
∑

i

rc,i +
∑

j

wj

∥∥∥ẗj − ẗdes
j

∥∥∥2
(4.42)

s.t. Eq. (4.9), Eq. (4.20), Eq. (4.24), Eq. (4.25), Eq. (4.26), Eq. (4.29c), and Eq. (4.31).

where wj denotes the weight of which assigned to each motion task. Fig. 4.2 demons-
trates the schematic of the integrated framework which comparable with the presented
schematics in previous chapters (Fig. 2.3 and Fig. 3.5). In this framework, the motion
states are directed to the controller. In order to be able to implement the additional
decision variables (rc) to the classical approach within the mc_rtc framework, we uti-
lized a recently developed library named TVM for formulating the quadratic problems
which is addressed in Section 1.6.4.

4.4 Simulations and Results

In the last section, we expressed the structure of the unified framework as the
whole-body controller. This schematic licenses the humanoid robot to traverse the sce-
narios under active dynamic balance. The principal contribution of the current chapter
concerning the previous one is implementing the online balance strategy within the
controller rather than the separate planner. By the proposed formation, all real-time
motion tasks are involved in the robot’s balance.

In this section, we are investigating the capacities of the unified framework through
pushing and wiping scenarios. The simulations are carried out by the whole-body
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FIGURE 4.2 – Schematic of the integrated whole-body balance controller framework.

controller and consist of numerous motion tasks. In the following, we examine the
designed plans while pushing and wiping motions of the robot.

4.4.1 Pushing Against the Board

The framework has no limitation on the configuration of contacts. Therefore, we
can design scenarios with random contact positions and orientations such as tilted
boards. Here, we use a panel with an angle of ≈ 50◦. The scenario starts by moving
the hand towards the tilted board by executing an end-effector trajectory task within
the FSM planner. Then the robot continues his motion to make contact with the board.
The completion criterion of this state is based on the force-sensing of the relevant end-
effector. So, the movement stops after sensing the small quantity of force (around 5 N
of normal force).

To continue, we aim for controlling the force of the end-effector using the admit-
tance force control within the force task. The user can define the force target within the
FSM. We regulate the pressure to raise up to 15 N and then release it to zero. Fig. 4.4
showes the normal force tracking of the right-hand while pushing against the panel.

The following figures demonstrate the CoM of the robot and its derivatives during
the whole motion. The Fig. 4.5(a) is the CoM position of the robot in X and Y direc-
tions of the global frame. The Fig. 4.5(b) is extracted from the performance of the same
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FIGURE 4.3 – Simulation of Pushing against a tilted board.
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FIGURE 4.4 – Normal force tracking of the HRP-4 humanoid robot with the contacting end-
effector.

scenario using the proposed method in the previous chapter, which can be compared
with Fig. 4.5(a).

91



Integrated Whole-Body Balance Control of Humanoids 4.4. Simulations and Results

0
5

10
15

20
Ti

m
e 

[s
ec

]

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Position [m]

C
oM

 P
os

iti
on

 (x
)

0
5

10
15

20
Ti

m
e 

[s
ec

]

0.
04

5

0.
04

0

0.
03

5

0.
03

0

0.
02

5

0.
02

0

0.
01

5

0.
01

0

0.
00

5

0.
00

0

Position [m]

C
oM

 P
os

iti
on

 (y
)

(a
)

10
15

20
25

30
Ti

m
e 

[s
ec

]

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Position [m]

C
oM

 P
os

iti
on

 (x
)

10
15

20
25

30
Ti

m
e 

[s
ec

]

0.
04

5

0.
04

0

0.
03

5

0.
03

0

0.
02

5

0.
02

0

0.
01

5

0.
01

0

0.
00

5

0.
00

0

Position [m]

C
oM

 P
os

iti
on

 (y
)

(b
)

FI
G

U
R

E
4.

5
–

C
oM

pr
ofi

le
of

th
e

H
R

P-
4

hu
m

an
oi

d
ro

bo
tw

hi
le

ex
ec

ut
io

n
of

pu
sh

in
g

ex
pe

ri
m

en
tw

it
h

(a
)i

nt
eg

ra
te

d
w

ho
le

-b
od

y
fr

am
ew

or
k,

an
d

(b
)t

he
pr

op
os

ed
ap

pr
oa

ch
in

C
ha

pt
er

3.

92



Integrated Whole-Body Balance Control of Humanoids 4.4. Simulations and Results

In the current chapter, we are considering the dynamic balance of the robot that
contains the CoM acceleration within its calculation. Fig. 4.6 and Fig. 4.7 show the
CoM velocity and acceleration trajectories of the robot during the pushing scenario.
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FIGURE 4.6 – CoM Velocity profile of the HRP-4 humanoid robot while execution of pushing
experiment.

0 5 10 15 20
1.0

0.5

0.0

0.5

A
cc

el
er

at
io

n 
[m

/s
^2

] CoM Acceleration (x)

0 5 10 15 20
Time [sec]

1.0

0.5

0.0

0.5

A
cc

el
er

at
io

n 
[m

/s
^2

] CoM Acceleration (y)

FIGURE 4.7 – CoM Acceleration profile of the HRP-4 humanoid robot while execution of pu-
shing experiment.

The robot keeps his balance due throughout the scenario without adding any balance-
related tasks such as a CoM task. In the following, we extend the application to the sli-
ding methods and investigate the controller’s capabilities through a wiping scenario.
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4.4.2 Wiping the Tilted Board

After accomplishing the pushing task leveraging the unified structure, we aim for
the wiping motion of the robot. For this purpose, we re-do the steps up to pushing the
wall with 15 N. Afterwards, we begin a wiping scenario and the end-effector of the
robot draws a circle of 10 cm on the same tilted board. By starting the sliding motion,
the whole-body controller considers the contact as a sliding contact due to its tangential
velocity and uses the corresponding contact equations within the constraints.

FIGURE 4.8 – Simulation of wiping a tilted board.

Fig. 4.9 illustrates the target (user-defined value) and measured force of the sliding
end-effector in the normal direction of the board.
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FIGURE 4.9 – Normal force tracking of the HRP-4 humanoid robot with the contacting end-
effector while wiping the tilted board.

Moreover, Fig. 2.11 shows the CoM of the robot, which is calculated as the output
of the whole-body QP. By execution of the same scenario using the proposed method

94



Integrated Whole-Body Balance Control of Humanoids 4.4. Simulations and Results

of the previous chapter (region-free approach within the planner), the CoM position as
the output of the planner QP is demonstrated in Fig. 4.10(b) which can be compared
with Fig. 2.11.
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Also, the following figures illustrate the range of the CoM velocity and acceleration
profiles of the wiping scenario.
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FIGURE 4.11 – CoM Velocity profile of the HRP-4 humanoid robot while execution of wiping
experiment.
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FIGURE 4.12 – CoM Acceleration profile of the HRP-4 humanoid robot while execution of wi-
ping experiment.

The execution of the scenarios mentioned above shows the current structure’s ca-
pabilities in executing the whole-body generated motions accompanied by an online
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balance control. A video of the respective simulations are available online 2. However,
several aspects need to be investigated and extended to reach a fully automatic whole-
body balance controller, which will be addressed in the next chapter as future works.

4.5 Conclusion

Previously, in Chapter 3, we introduced a region-free approach that enables the
online implementation of the balance controller without any configuration limitations
addressed in Chapter 2. This method is fast as it does not need the geometric compu-
tation of the balance region. In this chapter, we picked another step towards the online
balance of the robot by introducing a unified structure for the robot’s motion.

While executing the motion tasks, such as end-effector tasks, the balance controller
established within the planner has no sense of the robot’s configuration. The actuator
position is not considered as part of this planner. However, only the contact points and
wrenches are considered to this extent after establishing the contacts. In other words,
if the robot moves its free limbs without any contact as a motion task, the planner
assumes no robot’s motion.

In this chapter, we leveraged the region-free approach as a fast balance strategy wi-
thin the whole-body controller. This controller contains all motion tasks and constraints
and solves the QP problem by considering the robot’s balance. Therefore, any executed
tasks are considered within a unified balancing framework. To formulate the problem
of whole-body structure with the additional and dynamic variables, we utilized the
TVM library.

The capabilities of the proposed framework are investigated through pushing and
wiping scenarios. The robot was able to accomplish the underlying tasks under dy-
namic balance. The current implementation is a road map for the future of the online
balance control of humanoids. Still, multiple characteristics need to be studied and
stretched. In the following chapter, we will mention the future works based on this
research.

2. https://drive.google.com/file/d/1bXtqQKwfbpdcSFJQkn_h_rx0QLXJlaAy/view?
usp=sharing
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CONCLUSION

Performing complex scenarios is primarily available via multi-contact settings. Also,
the presence of different contact modes promotes the accomplishment of these tasks.
The robot’s balance in multi-contact has been widely investigated through geometric
construction and evaluation of the balance regions. However, the online implementa-
tion of the balance criteria is still a challenge to solve.

According to the most recent researches Caron et al. (2015a); Abi-Farraj et al. (2019),
the computation of multi-contact balance regions needs to be at least calculated at each
stance configuration of the robot (a configuration without change of contact modes).
However, the geometric computation of multi-contact regions is a time-consuming
process that prohibits real-time controller implementation. Moreover, exploring other
contact modes than the fixed one results in a change in stance configuration and, sub-
sequently, an increase in computational time.

In this thesis, we investigated the balance control of the humanoid robots in multi-
contact settings. Also, we tackled the challenge of real-time implementation of the ba-
lance control strategies. We introduced two main strategies for solving the online im-
plementation issue, which are

• constructing the CoM-support area using an analytical solution, and

• introducing a fast-computed QP formulation for balance control.

The first strategy aims to form and calculate the balance region in 2D (balance area)
under mathematical assumptions for the analytical solution. However, the mentioned
assumptions reduce the range of use cases that can leverage from this method. In this
approach, the fixed contacts are assumed to be coplanar, and this is not the case in
many scenarios unless we fix the feet on the ground and execute manipulation and
wiping tasks using the hands.

The second approach solved the addressed mathematical limitation by proposing a
QP formulation based on the region-free method. In this method, there is no need for
explicit geometrical representation of the balance regions. The corresponding inequa-
lities are involved in the QP, and the balance is guaranteed with the cost of conserva-
tiveness. So, using this strategy, not only the implementation of the balance controller
is available online without any restrictions and computational limitations, but also dif-
ferent contact modes can be simultaneously involved in the scenario as executed in the
experiments of the third chapter.

As a final step of this thesis towards the balance control of the humanoid robots,
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Conclusion

we integrate the online balancing structure within the whole-body controller rather
than the planner. The balance criterion is based on the proposed region-free approach,
which enables real-time implementation. Leveraging this unified framework, all mo-
tion tasks and constraints are considered within the robot’s balance, which was not the
case for planners. Additionally, by holding the centroidal and actuated dynamics of the
robot, we are able to generate the whole-body motions under active balance. The capa-
bilities of the proposed strategy are evaluated through pushing and wiping scenarios
in simulations.

The current study is an initiative at the future of balance control in humanoids, and
there exist several aspects to investigate and accomplish. As short-term aspirations for
continuing this research direction, we can consider the extension of contact modes to
soft and rolling contacts. This helps the robot to execute more generic scenarios as well
as keep the balance in real-time. Moreover, the conservativeness of the approach can
be reduced by further evaluation and analysis of the region-free method.

Producing the planned and challenging outlines by the current or modified version
of the balance controller can be counted as a mid-term intent for the future. The scena-
rios which contain the contact plannings and need switches between contact modes can
be executed under balance. For this circumstance, a considerable case study could be
accessing narrow spaces and generating the crawling motion pattern, which contains
more contacts than hands and feet (additional contacts as knees and elbows).

Finally, the extension of the approach for multi-contact locomotion and loco-manipulation
tasks can be considered a long-term objective for the current study. Many challenges
in humanoid robotics, such as stair and ladder climbing, multi-contact travel,..., can be
adequately addressed by an efficient balance control strategy. Implementing the plan-
ning methods for executing such tasks and their compatibility with the whole-body
balance controller can result in impressive scenarios.
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