
HAL Id: tel-03629984
https://theses.hal.science/tel-03629984

Submitted on 4 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure Machine Learning by means of Homomorphic
Encryption and Verifiable Computing

Abbass Madi

To cite this version:
Abbass Madi. Secure Machine Learning by means of Homomorphic Encryption and Verifiable Com-
puting. Cryptography and Security [cs.CR]. Université Paris-Saclay, 2022. English. �NNT : 2022UP-
ASG019�. �tel-03629984�

https://theses.hal.science/tel-03629984
https://hal.archives-ouvertes.fr

 Secure Machine Learning by means of

Homomorphic Encryption and Verifiable

Computing

Apprentissage machine sécurisé à l’aide de chiffrement homomorphe et de

calcul vérifiable

 Thèse de doctorat de l'université Paris-Saclay
École doctorale n ◦ 580, sciences et technologies de l’information et de

la communication (STIC)

Spécialité de doctorat: Mathématique et Informatique

Unité de recherche: Université Paris-Saclay, CEA, Institut LIST, 91191, Gif-sur-Yvette,

France

Graduate School : Informatique et sciences du numérique. Référent : Faculté des

sciences d’Orsay

Thèse préparée dans l’unité de recherche LIST (Université Paris-Saclay, CEA) sous la

direction de Renaud Sirdey, directeur de recherche au CEA List et le co-encadrement

de Oana Stan, chargée de recherche au CEA List

Thèse présentée et soutenue, le 10 mars 2022, par

Abbass Madi

Composition du Jury

Caroline FONTAINE

Directrice de Recherche CNRS, ENS Paris-Saclay
 Présidente

Philippe GABORIT

Professeur des Universités, Université de Limoges
 Examinateur

Dario Fiore

Associate Research Professor, IMDEA
 Rapporteur & Examinateur

Melek Önen

Maître de Conférence, HDR, EURECOM
 Rapporteur & Examinatrice

Renaud Sirdey

Directeur de Recherche CEA, CEA Paris-Saclay
 Directeur de thèse

N
N

T
 :
 2

0
2
2
U

P
A

S
G

0
1
9

T
H

E
S

E
 D

E
 D

O
C

T
O

R
A

T

Titre : Apprentissage machine sécurisé à l’aide de chiffrement homomorphe et de calcul vérifiable.

Mots clés : Cryptographie, chiffrement homomorphe, calcul vérifiable et Apprentissage machine.

Résumé : L’apprentissage automatique (ou le

Machine Learning) est un domaine scientifique très

en vogue en raison de sa capacité à résoudre les

problèmes automatiquement et de son large spectre

d’applications (par exemple, le domaine de la finance,

le domaine médical, etc.). Les techniques de Machine

Learning (ML) ont attiré mon attention du point de

vue cryptographique dans le sens où les travaux de

ma thèse ont eu comme objectif une utilisation

sécurisée des méthodes de ML.

Cette thèse traite l'utilisation sécurisée des

techniques de ML sous deux volets : la confidentialité

des données d’apprentissage ou des données pour

l’inférence et l’intégrité de l’évaluation à distance des

différentes méthodes de ML. La plupart des autres

travaux traitent que la confidentialité des données et

que pour la phase d’inférence.

Dans ma thèse, j’ai proposé trois architectures pour

assurer une évaluation à distance sécurisée pour les

configurations suivantes de ML: la classification à

distance grâce à un réseau de neurones (NN),

l’apprentissage fédéré (FL) et l’apprentissage par

transfert (TL). Notamment, les architectures pour

l’apprentissage fédéré et l’apprentissage par transfert

sont les premiers approches qui traitent à la fois la

confidentialité de données et l'intégrité du calcul. Ces

architectures ont été construites en utilisant ou en

modifiant un schéma de calcul vérifiable pré-existant

pour des données chiffrées en homomorphe. Nos

travaux ouvrent des nombreuses perspectives, qui ne

concernent pas forcément que les architectures de ML,

mais aussi les outils utilisés pour assurer les propriétés

de sécurité. Par exemple, une perspective importante

est de rajouter de la confidentialité différentielle (DP) à

notre architecture d’apprentissage fédéré.

Title : Secure Machine Learning by means of Homomorphic Encryption and Verifiable Computing.

Keywords : Cryptography, Homomorphic Encryption, Verifiable Computing, and Machine Learning.

Abstract : Machine Learning (ML) represents a new

trend in science because of its power to solve

problems automatically and its wide spectrum of

applications (e.g., business, healthcare domain, etc.).

This attractive technology caught our attention from

a cryptography point of view in the sense that we

worked during this Ph.D. to ensure secure usage of

ML setups.

Our Ph.D. work proposes a secure remote evaluation

over different ML setups (for inference and for

training). This thesis addresses two cornerstones:

confidentiality of training or inference data and

remote evaluation integrity in different ML setups

(federated learning or transfer learning-based

inference). In contrast, most other works focus only

on data confidentiality.

In our thesis, we proposed three

architectures/frameworks to ensure a secure remote

evaluation for the following ML setups: Neural Networks

(NN), Federated Learning (FL), and Transfer Learning

(TL). Particularly, our FL and TL architectures are the first

that treat both the confidentiality and integrity security

properties. We built these architectures using or

modifying pre-existing VC schemes over homomorphic

encrypted data: mainly we use VC protocols for BFV and

Paillier schemes. An essential characteristic for our

architectures is their generality, in the sense, if there are

improvements in VC protocols and HE schemes, our

frameworks can easily take into account these new

approaches. This work opens up many perspectives, not

only in privacy-preserving ML architectures, but also for

the tools used to ensure the security properties. For

example, one important perspective is to add

differential privacy (DP) to our FL architecture.

Contents

Synthèse en français 1

Acknowledgments 3

1 Introduction 5
1.1 General Scene . 5
1.2 Cryptography . 7
1.3 Thesis Technical Scene . 8
1.4 Our Contribution . 9
1.5 Manuscript Overview . 10
1.6 Publication and Talks . 12

I Context and state of the art 13

2 Context and Motivation 15
2.1 Machine Learning . 15
2.2 Security Threats . 17

2.2.1 Confidentiality Threats . 17
2.2.1.1 What is confidentiality ? 17
2.2.1.2 Threat analysis . 19

2.2.2 Integrity Threat . 20
2.2.2.1 Threat analysis . 20

2.2.3 Availability Threats . 21
2.3 Adversaries . 21
2.4 Countermeasures . 22

2.4.1 Confidentiality-Preserving Tools . 22
2.4.2 Integrity-Preserving Tools . 25

2.5 Use Case . 26
2.5.1 Machine Learning Training Application 26
2.5.2 Machine Learning Inference Application 27

3 Homomorphic Encryption 29
3.1 Security . 30

3.1.1 Security Notions . 30
3.1.2 FHE Security . 31
3.1.3 Hardness Assumptions . 32

3.2 Brief History . 32

i

3.2.1 Pre-FHE . 33
3.2.2 FHE-Generation . 33

3.3 Technical Preliminaries . 34
3.3.1 General notions . 34
3.3.2 Learning With Error . 36
3.3.3 HE schemes . 39

3.3.3.1 Paillier cryptosystem . 39
3.3.3.2 BGV . 40
3.3.3.3 BFV . 42

4 Verifiable Computing 45
4.1 VC approaches or Techniques . 45

4.1.1 Non-Proof-based and Hardware-based Solutions 46
4.1.2 Proof-Based Solutions . 46

4.1.2.1 Proof-Based Solution over clear data 46
4.1.2.1.1 Interactive Proof (IP) Based Solution. 46
4.1.2.1.2 Non-Interactive Solutions. 48

4.1.2.2 Proof-Based Solution over encrypted data 49
4.2 Background . 50

4.2.1 Problem Definition . 50
4.2.2 Properties of VC . 51

4.3 Preliminary tools . 54
4.3.1 Homomorphic Hash Function . 54
4.3.2 Pseudo Random Function with Amortized closed-form Efficient . . 55

4.4 VC schemes . 57
4.4.1 VC for Quadratic polynomials on BGV Encrypted data 57
4.4.2 VC for Paillier scheme . 59

II Our contribution 61

5 Computing NN using VC and FHE 63
5.1 Introduction . 63

5.1.1 Problem statement and contribution 64
5.2 Related work . 65

5.2.1 FHE for encrypted machine learning. 65
5.2.1.1 VC for machine learning. 66

5.2.2 Encrypted machine learning using Functional Encryption 66
5.3 Scenario and threat model . 68
5.4 Technical preliminaries . 70

5.4.1 FHE . 70
5.4.2 VC . 71
5.4.3 Pseudo Random Function with Amortized closed-form Efficient . . 72
5.4.4 Homomorphic Hash function . 72

5.5 VC for Quadratic polynomials over BFV Encrypted data 73
5.6 VC and FHE for first layer . 75
5.7 Experimental Results . 77

5.7.1 Results . 78
5.8 Conclusion . 78

ii

6 Secure FL using VC and HE 81
6.1 Introduction . 81
6.2 Related work . 83

6.2.1 Secure Federated Learning and Homomorphic Encryption 83
6.2.2 Secure Federated Learning and Verifiable computation 83
6.2.3 Secure Federated Learning and other Multi-Party Computation . . 84
6.2.4 Secure Federated Learning and Differential Privacy 84

6.3 Preliminaries . 84
6.3.1 Federated Learning (FL) . 84
6.3.2 Homomorphic Encryption (HE) . 85
6.3.3 Batching for Paillier . 86
6.3.4 Verifiable Computation . 86

6.4 A secure framework for Confidential and Verifiable Federated Learning . . 88
6.4.1 Overview of the architecture . 88
6.4.2 Threat and security analysis . 89
6.4.3 Cryptographic tools and optimizations 90

6.5 Experimental results . 91
6.5.1 Setting FL hyperparameters . 92
6.5.2 Quantization vs. utility . 92
6.5.3 Performance evaluation of LEPCoV scheme 94

6.6 Conclusion and perspectives . 96

7 Secure TL using VC and HE 97
7.1 Introduction . 97
7.2 Related work . 98
7.3 Background . 99

7.3.1 Transfer Learning (TL) . 99
7.3.2 Homomorphic Encryption (HE) . 99
7.3.3 Verifiable Computing (VC) . 101

7.4 Proposed Approach . 101
7.4.1 Our model . 101
7.4.2 Security Guarantees and Threats 102
7.4.3 Medical Use-Case . 103

7.5 Dimensionality Reduction of target domain 104
7.6 Experimental Evaluation . 104

7.6.1 Transfer Learning Parameters . 106
7.6.2 Performance of our architecture . 108

7.7 Conclusion and Future Work . 109

8 Conclusion 111
8.1 Motivation and Problem Statement . 111

8.1.1 Our Contribution . 112
8.2 Perspective & Future Work . 113

iii

Synthèse en français

L’apprentissage automatique (ou le Machine Learning) est un domaine scientifique très en
vogue en raison de sa capacité à résoudre les problèmes automatiquement et grâce à son
large spectre d’applications (par exemple, le domaine de la finance, le domaine médical,
etc.). Les techniques de Machine Learning (ML) ont attiré mon attention du point de
vue cryptographique dans le sens où les travaux de ma thèse ont eu comme objectif une
utilisation sécurisée des méthodes de ML.

Le besoin d’une grande quantité des données pour entraîner un modèle de ML pose
des différents questions (par exemple juridiques, éthiques, commerciales) et, en plus,
l’apprentissage collaboratif et les services à distance ouvrent la voie à de nouveaux cyber-
menaces. Cela motive les approches de ma thèse qui contribuent à ce domaine en utilisant
ou en construisant des outils cryptographiques pour profiter de la puissance des modèles
de ML tout en garantissant certains objectifs de sécurité. A ce titre, notre travail pro-
pose une évaluation sécurisée, à distance de différentes méthodes pour les algorithmes
de ML (à la fois pour la phase d’inférence et pour l’apprentissage). Cette thèse traite
l’utilisation sécurisée des techniques de ML sous deux volets : la confidentialité des don-
nées d’apprentissage ou des données pour l’inférence et l’intégrité de l’évaluation à dis-
tance dans les différentes méthodes de ML. La plupart des autres travaux traitent que la
confidentialité des données et que pour la phase d’inférence.

Une alternative pour assurer la confidentialité de données est le chiffrement homomorphe
(Homomorphic Encryption - HE) qui permet théoriquement d’évaluer n’importe quelle
fonction sur des données chiffrées. En complément, le calcul vérifiable (en anglais, Veri-
fiable Computation – VC) permet de prouver à un vérificateur l’exactitude d’évaluation
de la fonction déléguée à un proveur. Le VC permet donc d’assurer l’intégrité pour
l’évaluation d’une fonction déléguée à un serveur non fiable. En outre, le chiffrement
homomorphe et le calcul vérifiable utilisés dans ma thèse sont non-interactives, c.à.d.
aucune interaction entre l’utilisateur (le vérificateur) et le serveur (le proveur) n’est de-
mandée.

Dans ma thèse, j’ai proposé trois architectures pour assurer une évaluation à distance
sécurisée pour les configurations suivantes de ML : la classification à distance grâce à
un réseau de neurones (NN), l’apprentissage fédéré (FL), et l’apprentissage par trans-
fert (TL). Notamment, les architectures pour l’apprentissage fédéré et l’apprentissage par
transfert sont les premiers approches qui traitent à la fois la confidentialité de données
et l’intégrité du calcul. Ces architectures ont été construites en utilisant ou en modifiant
un schéma de calcul vérifiable pré-existant pour des données chiffrées en homomorphe.
Plus précisément, j’ai utilisé les protocoles de VC pour les schémas homomorphes BFV
et Paillier. Une caractéristique essentielle de ces architectures est leur généralité, c.à.d.

1

s’il y a des améliorations futures pour le calcul vérifiable ou le chiffrement homomor-
phe, nos architectures restent valides et pourront très facilement intégrer des primitives
cryptographiques nouvelles.

Nos travaux ouvrent des nombreuses perspectives, qui ne concernent pas forcément que les
architectures de ML, mais aussi les outils utilisés pour assurer les propriétés de sécurité.
Par exemple, une perspective importante est d’ajouter de la confidentialité différentielle
(DP) à notre architecture d’apprentissage fédéré et de concevoir des protocoles de calcul
vérifiable améliorés qui ne sont pas limités par le degré de la fonction déléguée. Aussi, l’un
de nos objectifs était que nos architectures soient suffisamment générales pour fonctionner
dans différents domaines et applications et donc une des perspectives vise leur application
dans de nouveaux secteurs d’activité.

2

Acknowledgments

Firstly and foremost, I would like to express my sincere thanks, appreciation, and deepest
gratitude to my supervisors, Professor Renaud Sirdey and Oana stan, whose expertise
was invaluable in formulating the research questions and methodology. Your insightful
feedback pushed me to sharpen my thinking and brought my work to a higher level, and
especially to stay with me against different difficulties. I mainly have you to thank for
that, your trust and your advice. Looking forward to working together with you some
more.

I would like to extend my sincere thanks to Melek Önen and Dario Fiore for reviewing
this thesis. Your encouraging words and thoughtful, detailed feedback have been very
important to me. I realize the amount of your work. For this and their kind words in
their reports, and at the Ph.D. defense, thank you.

I have Caroline Fontaine, Ph.D. committee president, to thank for a smooth and orderly
Ph.D. defense in these trying times. I extend the same gratitude to Philippe Gaborit, a
member of my Ph.D. committee. I was flattered by the interest that you showed in my
work and hope that we can have more such occasions to discuss on similar matters.

I am fortunate to have been a part of the CEA teams, I would like to acknowledge my
colleagues in the LCYL lab for their wonderful collaboration. To the guys at the DM2I
department -Aurélien Mayoue, Arnaud Grivet Sébert and Cédric Gouy-Pallier - thanks for
the opportunity to work with you. A special thanks to my friends Mohamad Amhaz, Ali
Mokh, Moussa kafal, Alaa Ali Hasan, Fatima Moustafa, Abbass Taki, Yousef Boukhair,
Zahraa Alayan.

In addition, I would like to express my gratitude and love to the most valuable people
of my life, my family. I would like to thank my parents who provided me with love and
support in every possible way. This day would not have been possible without them and
no words can express my thank and gratitude to you. For my parents-in-law, for your
support, for your wise counsel, and for your sympathetic ear, thank you very much! For
the support of my wife’s family -Mohamad, Alaa, Ali - thank you. A special thanks to all
members of my family-Ali, Hala, Imad, Jihad, Maged, nour- especially my sister Fatima
and my brother Khalil. This is in great part thanks to you. For Khalil, I have looked up
to your spirit of research and your determination all my life, I have always benefited from
our discussions and your support, motivation for me.

A big thanks to the love of my life, my wife, Batoul Awada. she has been extremely
supportive of me throughout this entire process and has made countless sacrifices to help
me get to this point. You provided happy distractions to me to rest my mind outside of
my research and thank you for your support and patience. Now that this is done, we can

3

expect many more challenges ahead and I look forward to our common struggles.

Of course, I can’t name everyone. Thank you everyone I may have missed in these
acknowledgments.

Finally, I thank my God, for letting me through all the difficulties. You are the one who let
me finish my degree. I will keep on trusting You for my future. Thank you, Lord.

4

Chapter 1

Introduction

1.1 General Scene . 5
1.2 Cryptography . 7
1.3 Thesis Technical Scene . 8
1.4 Our Contribution . 9
1.5 Manuscript Overview . 10
1.6 Publication and Talks . 12

1.1 General Scene
Facebook–Cambridge Analytica data scandal . On March 25, 2018, Marck Zucker-
berg, the CEO of Facebook, published a personal letter in various newspapers apologizing
on behalf of Facebook about the privacy violation of about 87 million Facebook users.
Cambridge Analytica has used Facebook users’ data from different applications via "Face-
book’s Open Graph platform". These data were used to provide analytical assistance to
the 2016 presidential campaigns of Ted Cruz and Donald Trump, and it was accused
of intervening with the Brexit referendum. The misuse of these data was disclosed in
2018 by a former Cambridge Analytica employee Christopher Wylie in interviews with
the New York Times and the Guardian journal. Eventually, Facebook apologized for its
role in data harvesting and underwent Zuckerberg to testify in front of the United States
Congress.

According to the New York Times1, the data collected by Facebook is detailed information
that can permit Cambridge Analytica to create psychographic profiles of the subjects of
the data, that included also the personal location, which is considered to be a very sensitive
information.

Today, information and data privacy is the preoccupation of institutions, media, and the
awareness media. Different ethical and legal questions were raised about the data use.
For example, here are some questions concerning the access and storage of the user’s
data: does one own their data, where this data is stored, can the provider service (such as
Facebook, Amazon) sell this data or give access without an immediate effect to friendly
and/or family zone?

1Journal available at https://www.nytimes.com/2018/03/17/us/politics/cambridge-analytica-trump-
campaign.html.

5

An essential property in the remote outsourcing evaluation is the user’s autonomy. The
users’ autonomy in the outsourcing evaluation over users’ data means obtaining the users’
consent after receiving information to understand: the purpose, the risks, and the method-
ology of the research being conducted over their data. Giving access to the users’ data
may have repercussions for all who share an essential part of the users’ private life. An-
other threat in the outsourcing evaluation is the case of hacked data, where the users’
cannot access or control their data.

Data mining is a growing research and technology field since machine learning techniques
and AI models are being progressively deployed in different activity sectors (e.g., health,
finance, autonomous vehicles, energy, etc.). In this context, the ethical, legal-related
questions become crucial (especially those that concern privacy) and more urgent to be
addressed. This is particularly true in countries where governments don’t care about data
protection and personal privacy.

An example of an interesting Machine Learning (ML) application that needs Big Data
is the medical domain (like cancer prediction), which requires large volumes of training
data to obtain reliable predictions. In this case, one would desire to contribute with their
personal information in the training phase of an ML system because of its lofty goals. Still,
one remains apprehensive about her/his data security, especially when her/his government
turns a blind eye to these securities of data.

After the Facebook-Cambridge scandal, in July 2019, Federal Trade Commission an-
nounced that Facebook was fined $ 5 billion due to privacy violations. In the UK, in
October 2019, Facebook agreed to pay a 500, 000£ fine to the UK Information Commis-
sioner’s Office for exposing the data of its users to a "serious risk of harm" according to
BBC NEWS2.

In the European Union, the legal and ethical issues related to the data place and its storage
are being solved with more consideration than in other countries. On 25 May 2018, the
EU approved the General Data Protection Regulation (GDPR), which governs how the
personal data of an individual in the EU could be processed and transferred. The GDPR
has a tiered penalty structure that will take a significant bite out of offenders’ funds and
the EU GDPR rules apply to both data controllers and processors. A non-compliance
to the EU GDPR rules results in fines up to 4% of the global revenue. Yet, we cannot
rely on Non-Governmental Organization (NGOs) and governments to ensure data privacy,
integrity, and confidentiality since each has its goals and instruments. Moreover, although
their good intentions are assumed, there are doubts about the ability of countries to impose
control or ensure data security in the digital world. There are companies whose revenues
are more significant than the global revenue for one country. At the time of writing
this thesis, the market value of Apple (Apple Inc) become $ 2.703 trillion in December
20213. It exceeds the total foreign exchange reserves (Forex reserves) of 4 countries:
Germany, France, the UK, and Italy, which is about $ 0.861 trillion4 of resources on
August 2021.

These ethical and legal questions motivate a growing body of research to solve them and
to develop new tools for improving data security. Then one can choose the suitable tools

2https://www.bbc.com/news/technology-50234141
3https://investor.apple.com
4https://tradingeconomics.com/country-list/foreign-exchange-reserves

6

to solve their specific issues. It is also necessary to research this topic to improve the
existing tools or discover new tools to solve pre-existing or newly emerging issues.

What do we search for? This work attempts to propose frameworks that permit one to
use their data in ML models with a more significant security level. Especially, we preserve
two broad security properties: integrity and confidentiality, and, more precisely, we ensure
data privacy and evaluation integrity. For example, it permits one to contribute with
their data in medical machine learning training or to analyze their medical data without
worrying about the data security, when the training or analysis are outsourced.

The following questions could be asked: Why does one trust a third party to access their
data, calculate any function over their data without any guarantees for the correctness of
outsourced computation and the confidentiality of their data. Instead, this third party
can sell the users’ data and analyze it to achieve a specific goal. But, one can achieve
their own goal and ensure their aimed security without using this third party. Imagine
that this is applicable with different companies that someone shares their data with. At
the same time, the government cannot ensure the users’ data security against misuse,
dissemination, and storage in a service provider (SP). Moreover, the users don’t trust a
third party, but they want to achieve a special benefit from their use of SP resources as
a large scale computation provider, and decrease the cost of storing data.

In this thesis, we strive to describe the types of threats for the outsourced computation
in the case of malicious servers and we describe the tools to ensure security for the users
data and calculation against the threats, and how to adapt these tools or improve them
to solve larger threat models. To address wider these threats there are many ways and,
each of them has to resolve a specific threat question like: what are we protecting?
Against who? What is the type of calculations delegated? What is the power of the
provider in the calculation? These questions and other ones will increase in the years
to come especially with the appeareance of a new type of service: the computation as
a commodity, which is the natural consequence of the increasing popularity of the cloud
computing paradigm.

1.2 Cryptography

Cryptography, also known as science of the information security, is the study of methods
to hide the information against a third party. The legend says that the first known cipher
was used in an ancient war a long time ago, where a squad leader shaves the element hair,
writes sensitive information on his head, and waits for the growth of its hair. Then, when
it was done, he sent the member inside the groups of enemies with this information to
pass to another sector of this squad to convey the information. Regardless of the reality
of this story, it is enough to give us an impression of the importance of cryptography in
history. By our uses of the internet and other connected devices in our daily lives, we are
aware of the importance of this branch of research to improve our daily life.

More formally, cryptography defines various secure methods to share information and
keep it secret when communicated between two or more parties over insecure channels in
such a way where only those for whom the information is intended can read and process
it. Cryptography is used to ensure secure and safe communication between these parts in
the presence of third parties called adversaries.

7

In the beginning, suppose that Alice (A)- as per tradition- wants to send a clear (or plain-
text) message m to Bob (B) over an insecure channel. She is going to use a cryptosystem
to transmit m to Bob. Namely, Alice runs the encryption process, i.e., transforming
message plaintexts into ciphertexts c under the use of a secret key, known only to Alice.
This is realized such that no one should find the original plaintext without knowledge
of the secret key. Then Alice shares sk with Bob on a secure channel (in person, for
instance) and sends the ciphertext in front of everyone. Now, Bob can use the sk and the
ciphertext received to retrieve the plaintext that Alice intended to share with him using
an algorithm called decryption. These methods are part of the large body of symmetric
encryption cryptographic methods.

The internet deployment and its different uses opened the Pandora’s box of digital security
ills, which increases the need to develop more versatile cryptographic systems. Many
cryptosystems appeared and this branch of sciences occupied its unique place in the
interests of governments and militaries.

Therefore, several cryptosystems have been used over the centuries, starting from the
Caesar cryptosystem to different cryptosystems today. For a long time, the cryptosystem
held symmetric keys; that is, the encryption and decryption algorithm use the same key
until the emergence of the public-key encryption schemes [1] (also known as asymmetric
encryption), which began a revolution in cryptography sciences. Later, the hybrid cryp-
tosystem surfaced that combined the use of asymmetric encryption to exchange the key
of symmetric encryption and use this key in a symmetric cryptosystem. Today the cryp-
tography branches contain different methods to ensure security for different applications
like digital signature, key management, and message authentication.

1.3 Thesis Technical Scene

The scope of our work is to ensure a secure evaluation for different outsourced machine
learning setups. We focus on the two core bases, information security methods, namely:
the integrity and the confidentiality, using two cryptographic tools: Homomorphic En-
cryption (HE), and Verifiable Computing (VC). In the following, we describe the terms
related to what is defined above. It is worth noting that these terms will be well presented
in this thesis.

Homomorphic Encryption is a corpus of cryptographic techniques that ensure data-
confidentiality. It evolved significantly in the last twenty years and it is one of the principal
tools used in this thesis. Specifically, it allows the computation directly over encrypted
data without decrypting them. Therefore, HE ensures data confidentiality while data
are exchanged and while a non-secure-enough platform processes them. The scheme
that accepts the calculation of any arbitrary function is known as Fully homomorphic
Encryption (FHE). Sadly, to this day, there are no FHE schemes that calculate any
arbitrary function in an acceptable time. In this research, we will define homomorphic
encryption, particularly the schemes employed in our work - BFV, BGV, Paillier- in much
more prominent details in chapter 3.

Verifiable computing comprises methods that support the delegation of the compu-
tation for a function on outsourced data to third parties, such that the data owner and
other users can verify that the third party has computed the outcome result correctly.

8

Consequently, it is used to ensure data integrity, with malicious servers that seek to breach
the data users’ security.

Machine Learning (ML). Our work does not address the Machine Learning core but
the Machine Learning applications. We intend to ensure a secure and efficient corpus
of methods/frameworks to evaluate machine learning methods securely. Specifically, we
focus on the two principal phases of a ML algorithm: either to provide a secure training
phase or to securely evaluate the inference phase. Generally, there exist different building
structures for the ML algorithm one has to protect against an intruder’s eyes, such as
the training algorithm, the topology of the underlying structure (in the case of neural
networks, the number of layers and the number of neurons per layers), and the data used
for the training and prediction, etc. Each of these elements poses its proper challenges.
In this work, we discuss providing security of the data and training model. In terms of
techniques, we present two secure classification algorithms of machine learning. Although
there exist other ML techniques (clustering, regression, etc.) the classification is one of
the most common and most used techniques.

Security: At first look, one may think it is a simple concept. However, that simplicity
quickly fades, particularly in the cryptography domain, where the security concept is
linked to several aspects mentioned earlier, like what do we want to secure? Against
what? What is the power of the adversary?.. This security can be ensured using different
methods such as material solutions or algorithmic solutions. To be precise, in this work,
essentially, in the outsourced evaluation of ML algorithm on a cloud (or external server),
we study three different setups (inference, federated learning and inference using transfer
learning), where we will take into account the different threats of security. Notably, in
this work, we detail the data confidentiality concept of outsourced computation and the
integrity of treatment (which includes the all/part of training or prediction algorithm)
with different uses cases.

1.4 Our Contribution

This thesis addressed the two cornerstones: confidentiality and integrity in the use of dif-
ferent setups and/or phases of machine learning methods. To achieve this goal, we build
three architectures/frameworks to ensure a secure evaluation for the following ML meth-
ods: Neural Networks, Federated Learning, and Transfer Learning. We tweak and use
existing FHE schemes and VC schemes to our convenience. Therefore, we can summarize
our contributions as follows:

• A secure Neural Network Evaluation The first contribution is described in
chapter 5. It was published as [2] and presented at the CLOUD S&P 2020 workshop.
This work proposes a practical framework for privacy-preserving predictions with
Homomorphic Encryption (HE) and Verifiable Computing (VC). We designed a
partially encrypted Neural Network in which the first layer consists of a quadratic
function and its homomorphic evaluation is checked for integrity using a VC scheme
which is a slight adaption of the one of Fiore et al. [3]. Inspired by the neural
network model proposed by Ryffel et al. [4] which combines adversarial training
and functional encryption for partially encrypted machine learning, our solution
can be deployed in different applications contexts and provides additional security
guarantees. We validate our work on the MNIST handwritten recognition dataset

9

for which we achieve high accuracy (97.54%) and decent latency for a practical
deployment (on average 3.8 seconds for both homomorphic evaluation and integrity
proof preparation and 0.021 seconds for the verification).

• A Secure Federated Learning framework This is the first Federated Learning
(FL) framework, which is secure against both confidentiality and integrity threats
from the aggregation server, in the case where the resulting model is not disclosed
to the latter. We do so by combining Homomorphic Encryption and Verifiable
Computing techniques to perform a Federated Averaging operator directly in the
encrypted domain (using HE) and produce formal proofs that the operator was
correctly applied (using VC). Due to the aggregation function’s simplicity, we can
ground our approach in additive HE techniques, which are highly mature in terms
of security and decently efficient. We also introduce several optimizations, which
allow reaching practical execution performances on the larger deep learning mod-
els end of the spectrum. Also, we provide extensive experimental results on the
FEMNIST dataset, demonstrating that the approach preserves the quality of the
resulting models at the cost of practically significant computing and communication
overheads. At least in the cross-silo setting, higher-end machines can be involved
on both the client and server sides.

• A Secure Transfer Learning Architecture This is the last contribution pre-
sented in detail in chapter 7, where we investigate the possibility of realizing com-
plex machine learning tasks over encrypted inputs with guaranteed integrity. Our
approach combines Fully Homomorphic Encryption (FHE) and Verifiable Comput-
ing (VC) to achieve these properties. To work around the practical difficulties when
using these techniques - high computational cost for FHE and limited expressivity
for VC- we leverage on transfer learning as a mean to (legitimately) decrease the
footprint of encrypted domain calculations without jeopardizing the target security
properties. In that sense, our approach demonstrates that scaling confidential and
verifiable encrypted domain calculations to complex machine learning functions does
not necessarily require scaling these techniques to the evaluation of large models. We
furthermore demonstrate the practicality of our approach on an image classification
task.

1.5 Manuscript Overview

Let us now describe, chapter by chapter, the content of this manuscript. Generally,
this manuscript consists of two parts. One introduces the background and the technical
overview surrounding our work, and the other specified our scientific contributions to that
background.

Part I presents the context and the state of the art of the landscape in which our work
was realized. We present in chapter 2 the context and motivation of our work for this
thesis focusing on machine learning and security guarantees to maintain confidentiality
and integrity. Specifically, we specify the position of our work in this field, in addition, to
helping the reader follow our choices and the limitations we faced. Chapter 3 is dedicated
to the introduction of the technical notions that we use throughout the thesis. It highlights
the FHE schemes that are used in our work, with the global goal to present a broad
overview of the primary scientific background of these schemes. In chapter 4, we present

10

the technical background for verifiable computing. It also covers more in details the VC
schemes based on fully homomorphic encryption.

Part II consists of three chapters, each of which introduces one of our contributions. We
note that each one of these chapters is an article that has been published (chapter 5 and
chapter 6) and accepted paper (chapter 7). Chapter 5 intended goal is to present our se-
cure training of neural networks using homomorphic encryption and verifiable computing.
Chapter 6 introduces our framework to evaluate secure federated learning using verifiable
computing on Pallier encryption scheme. Chapter 7 presents our architecture for a secure
evaluation of the transfer learning technique.

11

1.6 Publication and Talks
Published Papers

• A. Madi, R. Sirdey, and O. Stan. "Computing Neural Networks with Homomor-
phic Encryption and Verifiable Computing". International Conference on Applied
Cryptography and Network Security. Springer, Cham, 2020.

• A. Madi, O. Stan, A. Mayoue, A. Grivet-Sébert, C. Gouy-Pailler and R. Sirdey."A
Secure Federated Learning framework using Homomorphic Encryption and Veri-
fiable Computing", 2021 Reconciling Data Analytics, Automation, Privacy, and
Security: A Big Data Challenge (RDAAPS), 2021, pp. 1-8.

• A. Madi, O. Stan, R. Sirdey and C. Gouy-Pailler. "SecTL: Secure and Verifiable
Transfer Learning-based inference", 2022 International Conference on Information
Systems Security and Privacy provides (ICISSP).

Talks

• A secure approach for Neural Networks using Homomorphic Encryption and Verifi-
able Computation, Journées Codage & Cryptographie, May 2020.

• Computing Neural Networks with Homomorphic Encryption and Verifiable Com-
puting. International Conference on Applied Cryptography and Network Security,
October 2020.

• A Secure Federated Learning framework using Homomorphic Encryption and Veri-
fiable Computing, 2021 Reconciling Data Analytics, Automation, Privacy, and Se-
curity (RDAAPS), May 2021.

12

Part I

Context and state of the art

13

Chapter 2

Context and Motivation

2.1 Machine Learning . 15
2.2 Security Threats . 17

2.2.1 Confidentiality Threats . 17
2.2.1.1 What is confidentiality ? 17
2.2.1.2 Threat analysis . 19

2.2.2 Integrity Threat . 20
2.2.2.1 Threat analysis . 20

2.2.3 Availability Threats . 21
2.3 Adversaries . 21
2.4 Countermeasures . 22

2.4.1 Confidentiality-Preserving Tools . 22
2.4.2 Integrity-Preserving Tools . 25

2.5 Use Case . 26
2.5.1 Machine Learning Training Application 26
2.5.2 Machine Learning Inference Application 27

2.1 Machine Learning

Machine Learning is a branch of AI (Artificial Intelligence) and Computer Science which
focuses on the study of algorithms that give a computer the power to solve a problem
automatically without any explicit information about how to solve it. Namely, it au-
tomatically learns programs from data. It was born in 1950s and recently evolved to
reach a level of public attention and industry investment never seen before in the history
of Artificial Intelligence (AI), especially due to the use of Deep Convolutional Neural
Networks.

Supervised Learning is by far the most common approach in machine learning, used in
applications like image classification, speech recognition, optical character recognition,
and language translation. It mostly consists of classification and regression category,
where a regression algorithm (like linear, logistic) is used to predict continuous values and
a clafssification algorithm (like: linear classifiers, support vector machines, decision trees
and random forest) is used to predict/classify discrete values.

A supervised machine learning lifecycle can be divided into two main parts: a training
phase and an inference phase. The difference between them is described as follows:

15

• Training phase: This is the first phase, in which a model is created and/or trained
over data. The training starts by dividing the data into a training set and a testing
set, where the trained model uses the training data, and the test set is used to
evaluate the model once the training is complete. The success rate obtained after
training by an evaluation over the testing set determines the accuracy of the machine
learning algorithm.

• Inference phase: After the learning is complete, the model is put into action on
live data to classify/predict an actionable output for a real-world application. This
process is also referred to as "operationalizing a ML model" [5]. Figure 2.1 shows
the training and the inference phase of a standard machine learning system.

Figure 2.1: This figure represents the different classical steps of training and inference
phases of an ML system. First, in the training phase: the data scientist separates the
dataset into training (white) and testing set (blue) where the testing set will never be used
during the training process. Different parameters (for example weights of neural network)
for the model are created using several randomized sets of training data (yellow) with an
unchanging training algorithm. We compare these parameters by applying them over the
validation set (green), the best parameters are selected and the corresponding model is
tested for classification accuracy over the testing set. The inference phase evaluates the
selected model over new data. In some cases, if the model permits it, the result from the
inference phase is fed back to the training phase for a continual learning process.

In machine learning, we use the feedback process if the machine learning algorithm permits
it, where the machine learning model’s inference outputs are fed back to the model for a

16

constant learning process to improve the achievement in learning.

The data is an essential component of any machine learning model and it is the base of
any machine learning model to the extent that we can say that the data is more important
than the algorithm itself. Over time, the required data to train a machine learning model
increased and this is even truer with the inception of convolutional neural networks and
deep learning algorithms. Companies and governments work to access big data to perform
deep learning algorithms and data is rather a very valuable asset for that.

The goal of this work is not machine learning per se, but to respond to the following
question "How can we provide a secure machine learning application?". For this goal, our
work is to protect the data and/or the ML model for any user and/or any platform using
different techniques of machine learning which are "FHE-VC-friendly1". The capabilities
of FHE and VC are limited and their application can produce a high modification (size,
type..) in the data format and in the machine learning models, a consequence being that
we cannot apply any machine learning algorithm we would like.

2.2 Security Threats
In this thesis, we are interested in machine learning where some or all computations are
outsourced, and we want to achieve a secure remote machine learning function. Generally,
we have three entities, the user/querier, the owner of the data, the server performing the
evaluation of the training phase and/or the inference phase, and finally, an operator/client
having access to the results.

In terms of ML phases security, the best case is the evaluation of all ML phases securely.
However, depending on the use case, we can ensure "secure" training without "secure"
inference and vice versa.

The security of remote machine learning algorithms implies multiple aspects, covered by
the CIA triad model: Confidentiality, Integrity and Availability, the three main pillars of
cybersecurity.

2.2.1 Confidentiality Threats

2.2.1.1 What is confidentiality ?

We can consider that confidentiality and privacy definitions are at the heart of the ethical
and information security research. Often in the literature on information security the
two notions are indistinguishable and they are defined as ways of "keeping information
secret from all but those who are authorized to see it" according to [6]. In the context of
outsourcing computation, we can distinguish between confidentiality and privacy, where
confidentiality means the information are kept hidden, while on the other hand the privacy
means the inability to detect a correlation between an entity and its personal data.

As we see above, machine learning solutions are widely employed in different domains to
improve real life. To make this solution perform better (high training/testing accuracy),

1FHE-VC-friendly means that we can evaluate this models over homomorphic encrypted data with
VC existing scheme and with practical performances.

17

you need a large dataset, which poses a problem with these data, in particular with the
confidentiality of these data.

Data confidentiality has become a primary concern for citizens and governments. Often,
the data owner does not allow anyone to use his/her private databases because the risks
of data disclosure are too great (like the Facebook–Cambridge Analytica data scandal).
Also, the collection of data can be prevented by society or governments in the name of
confidentiality and privacy.

Therefore, this work focuses on preserving the confidentiality and privacy of the data ex-
ploited by an outsourced computation machine learning algorithm that is important for
different kinds of reasons: legal, financial, and ethical issues. Outsourcing the training
and/or testing of machine learning models drives to understand the different confiden-
tiality and privacy properties that one desires to achieve. To illustrate these properties
and the related threats, we present an example of outsourcing medical machine learning
computing.

Consider the case of a health-related database, which reveals highly confidential personal
information. This database is collected from personal records (e.g., multi-dimensional
vectors) and stored on a secure server. Each record is composed of several attributes
(e.g., the element of the vectors) and contains personal or medical information (medical
records case). In this context, a client -an outside entity- wishes to train, analyze/diag-
nose their data with a remote machine learning model that requires an input: the query
(e.g., a multi-dimensional vector made up of attributes) without worrying about their
data security. More formally, the client wants to achieve the secure use of her/his data
during the outsourcing storage, computing, or in a remote learning process. There are
some confidentiality/privacy properties presented in [7] that allow ensuring the client’s
requirements that are presented below and enumerated from 1 to 7.

1. Record Confidentiality: No one excepts the authorized readers can read the clear
form of the records on the server. Reasons for this can be multiple, from the high
cost of acquiring a good database, to the legal or ethical constraints: there is a
common-law duty to keep personal data (including medical records) secure. It may
not be used or sold by anyone without the confirmation of the principal owner even
if that data is not linked to the user from which it was obtained.

2. User Privacy: Just the server can link a given user to its personal data in clear form.
It is weaker than record confidentiality as one could achieve user privacy but not
record confidentiality. The reverse is not true.

3. Attribute Privacy: Whereby no one can link a single user to the value of an attribute.
It is a harder constraint than user privacy.

4. Query Confidentiality: the nature of the query is known only by the client. It
can be important in the case where the computation outsourced is a comparison
of the client’s personal data (the query) with the server’s data. Similar to record
confidentiality, but with respect to the client.

5. Client Privacy: Whereby no one can have access to both the contents of the query
and the identity of the client. It is similar to user privacy, but with respect to the
client.

6. Computation confidentiality: Only the server knows the nature of the computation

18

Figure 2.2: This figure presents different basic protocols with or without FHE and their
impact on the privacy and/or confidentiality of the data involved. The ∼ symbol repre-
sents a property that is not achieved because of information leakage, the 7 symbol means
the property is trivially not achieved because data is sent in clear form.

that applies to the data. This can be important in the case where the nature of
the computation reveals information about a model/algorithm that is expensive to
obtain.

7. Result confidentiality: Only the client knows the final result. It can be important
in our medical context where the result can be a diagnosis. This diagnosis over the
query, which is the client’s personal medical data it is a very sensitive information.

There exist basic schemes to solve the problem but each of them achieves different confi-
dentiality requirements (presented in the Figure 2.2 from [7]), but not all of them. In the
ideal case, we are interested to ensure all the above properties related to privacy and confi-
dentiality. We will mention (or explain) the tools used to ensure the above confidentiality
properties in section 2.4 presenting the countermeasures.

2.2.1.2 Threat analysis

We start by describing two scenarios for medical machine learning models: one for the
training phase and the other for the inference phase:

For the training phase, a client like a hospital collects and stores the patient data on a
secure server to serve this phase.

For the inference phase, a client like a patient wants to use the evaluation realized by
a machine learning model, for medical diagnosis over his/her medical data, which re-
veals highly confidential information such as the disease history and his/her undergoing
treatment.

Therefore, in machine learning, we have three assets, on the data side: the training data

19

owned by the participants and the user’s inference data, on the model side: the machine
learning model. The training and inference data must be guaranteed with respect to the
threats coming from an adversary that can be the server or another participant or client
(regardless of the place of these training and inference phases, i.e. in the same place or
different servers). Furthermore, the confidentiality of the model must be guaranteed with
respect to the threat coming from the adversary attacking the server on which the model
is trained or evaluated. If this is not the case, the server must share his commercially
valuable model, or place the entire model in a trusted enclave space, for the client to
accept to share his/her information for this machine learning model. This sharing is non-
suitable for large models because they lose their competitive advantages, and then the
business value.

The focus of this thesis is to ensure confidentiality of training or inference phases of a
machine learning algorithm, and this is presented in detail in the following contribution
chapters. We note that we treat only the threats coming from the server and not the
threats coming from another participant or client of the ML model.

2.2.2 Integrity Threat

In the literature, the integrity is defined in several ways. Moreover, this term has specific
ethical and/or legal definitions depending on the country. It is generally indicating a
service "ensuring information has not been altered by unauthorized or unknown means"
according to [6].Namely it guarantees that a message was not modified during its trans-
mission.

Essentially, there are several desirable integrity goals, depending on the use-case and this
can be described as:

• The search/quest to ensure full confidence that the data one is receiving is the actual
valid data from the sender is called "data integrity".

• The attempts to achieve that the result calculated by a server is correct, which
can be simplified by the verification that the remote execution of a function on an
untrusted machine is correct or not, is called "execution integrity".

In this thesis, we are looking at model integrity in the case of outsourcing machine learn-
ing computation, where a client verifies that the training/inference steps delegated are
calculated correctly.

2.2.2.1 Threat analysis

Let’s take the case of the medical machine learning use case, where people accept that
the hospitals (or any provider healthiness services) manage their health records. This is
important particularly in countries where access to health care is complicated. In this
case, the participant in the training phase (like hospitals) sends the patients’ medical
records to evaluate the training over these records. Finally, a client (depending on the used
protocol) can send their medical records to the inference phase to achieve its intent.

Then, on the client-side, it is very important to ensure that the computation delegated
in the training and inference phases are correct, especially where the result of inference
is a medical diagnosis, very sensitive information. Ideally, in some cases where the client
evaluates a specific model before sending her/his data into the training and/or inference

20

phase, the server or other participants in the learning process want to ensure that the
specific client evaluates this model correctly.

In this work, we focus to guarantee the integrity of the training and/or inference steps
against threats coming from the server.

2.2.3 Availability Threats

In order for information system to be useful, it must be available to authorized users. In
the context of remote machine learning/training evaluation, practical remote evaluation
required the protection of timely and uninterrupted access to the authorized space of
training and/or inference algorithm to the authorized participants.

The most fundamental availability threats are non-malicious in nature, and include hard-
ware malfunctions, network bandwidth issues and scheduled software downtime.

Cryptography alone cannot do anything with availability threats, for this reason, these
threats are beyond the scope of this work.

2.3 Adversaries

As we determined above, when we outsource computation -even partially- we need to
ensure different security properties (like the integrity of results). Indeed, suppose that all
machine learning phases (training and inference) happen on the same server with locally
collected training and classification data. In that case, consequently, confidentiality can
be ensured using the network security by the server: ensuring there is no information
leakage on the server.

An adversary model is an entity: it may be an algorithm, or it may simply be a series
of statements. It is a formalization of an attacker. Typically the goal of the adversary is
to disrupt or prevent proper operations of a secure system (e.g. by violating the confi-
dentiality, data integrity, or availability of the system). With regards to the capabilities
of an adversary, there are a number of approaches in various fields of computer security
that fit within this umbrella.

In our work, we outsource computation -or a part of a computation- to an outsourced
entity. Then, we need to ensure the security of this outsourcing, but the security properties
(like confidentiality and integrity) required will depend on the level of trust for this entity.
For example, if we can trust this entity, achieving security can be reduced to simply
ensuring these properties over the transfer channels. Otherwise, additional measures will
be needed. This level of trust determines the level of adversarial strengths. Therefore,
we need to distinguish between the adversary depending on the adversarial strength as in
the literature, where two behaviors of adversaries are typically defined as follow:

1. Honest-but-curious (also known as semi-honest or passive adversary): a legitimate
participant in a communication protocol follows the protocol properly but he/she
tries to learn as much private information as possible. So, with this type of adversary
model, we do not need to address integrity threats.

2. Malicious adversaries (also commonly known as active adversaries), where it is neces-
sary to ensure both confidentiality and integrity threats coming from this adversary.

21

The malicious adversaries may behave arbitrarily (i.e. execute any computation)
for stealing, corrupting, and modifying data, without any specifications, and may
compute any function over data instead of the required computation.

Now, take the case of the above example, where a participant in the training phase sends
his/her medical records to participate in the training or sends a record finally to the
inference phase. In this context, the honest-but-curious server computes correctly the
delegated training/inference algorithm, with the exception that it keeps a record of all
its intermediate computations to learn whatever from this computation. On the other
hand, the malicious server can compute any algorithm and return any result, even if it is
a sensitive result as a medical diagnosis.

In this work, we are interested in adversarial server cases. We will go beyond the clas-
sic assumption that honest-but-curious servers perform calculations related to machine
learning phases (training or inference) to solve this malicious server’s confidentiality and
integrity threats.

2.4 Countermeasures

2.4.1 Confidentiality-Preserving Tools

Ensuring confidentiality can be done in different technical ways. Before presenting the
cryptographic methods, we present the "Anonymization"-type techniques which is a set
of confidentiality-preserving methods that can be integrated with the cryptographic ap-
proaches to achieve a higher level of confidentiality for an information system, especially
useful with remote machine learning protocols.

Anonymization:
Anonymization is in a set/corpus of practical methods for preserving user’s privacy, con-
sisting in obfuscating the relationship between a user and its data (name, address, identity
number, social security number, etc.) However, many attacks have been proposed against
this obfuscation.Take the famous case of Netflix Price, where it was announced a one-
million-dollar prize for the purpose of improving its movie recommendation system. To
do so, Netflix published anonymous movies ratings taken from 500,000 customers between
1998 and 2005 while assuring customers that this would not harm them as it had been
thoroughly anonymized. However, in 2006, Narayanan Arvind, and Shmatikov Vitaly
succeeded in de-anonymization this dataset using Internet Movie Database (IMDb) as
the source of background knowledge. This result was published in their paper "Robust
De-anonymization of Large Sparse Datasets" [8], where they successfully identified the
Netflix records of known users. Therefore, it is necessary to provide stronger privacy for
individuals whose records are used in an outsourcing machine learning computation.

There are generally two models that propose privacy guarantees that have been widely
adopted by the security community and are still the basis for most of the following
works:

• k-anonymity: This notion was introduced by Sweeny and Samarati in 1998 in [9].
This technique has been studied extensively in the database community to ensure
user privacy in big data. To achieve k-anonymity, there need to be at least k indi-
viduals in the dataset sharing the set of attributes that might become identifying

22

for each individual, and each record is indistinguishable from at least k − 1 other
records with respect to certain identifying attributes. This technique can be de-
scribed as a ‘hiding in the crowd’ guarantee. But this technique has been shown to
lack strong privacy guarantees: for example an adversary can discover the values
of sensitive attributes when there is little diversity in those attributes, and if it has
background knowledge and this is often the case. These weaknesses led to novel
and more powerful privacy techniques: like `−diversity [10], t−closeness [11] and
n−confusion [12].

• Differential Privacy (DP): DP is a set of methods to achieve data privacy, for-
mally defined by Dwork et al. [13], even if the randomized response mechanism (DP
mechanism) appeared for the first time in [14]. Generally, the best way to maintain
user privacy is the response in a wrong way to a question according to the funda-
mental law of information reconstructions [15], that states: "overly accurate answers
to too many questions will destroy privacy in a spectacular way". More precisely,
DP states that adding a conditional noise (less than a specific level to ensure that
the noised data remain usable) in the original data produce an overall less accurate
results. The work of Dwork [13] states that the result of computation would not
have been different if any individual user had not provided their record. From the
point of view of use-cases, a given application can propose a constraint over the
budget noise, where another one requires to guarantees less security versus more
accurate results. There are numerous variants and extensions that were proposed to
adapt DP with respect to different scenarios and attacker models. Desfontaines et
al. [16] proposed a classification of DP variants and extensions to provide potential
users with solid security guarantees.

Cryptography:

In cryptography, there are three general methods to achieve privacy of outsourcing ma-
chine learning computation: Multi-Party Computation (MPC), Fully Homomorphic En-
cryption (FHE), and Functional Encryption (FE). We present them briefly below.

Multi-Party Computation: It started in the late 1970s with the mental poker problem
that searches a solution for the question "How can one allow only authorized actors to
have access to certain information while not using a trusted arbiter?". The first design saw
the light in the 1980s as a theoretical solution to solve Yao’s millionaire problem, where
two millionaires wish to know which one of them is richer, without knowing any infor-
mation about each other’s wealth. In general, MPC was designed for privacy-preserving
applications, that give multiple entities which don’t trust each other, the ability to com-
pute a joint function over their data and arrive at the desired result, preventing any other
party from gaining information about anything else. All MPC techniques assumed that
there is a reliance on an exchange between the participants (two or more) involved as the
computation is going on. In the past decade, MPC has been a very active research area in
both theoretical and applied cryptography, with the rise of several efficient MPC schemes.
These MPC schemes are designed by means of both generic or specialized protocols, al-
lowing any kind of computation or designed specifically for a given set of computations.
The MPC for machine learning application assumes that a participant will be online dur-
ing the exchange of information and induces high-communication costs of the multi-party
computation.

Fully Homomorphic Encryption: The problem of constructing a fully homomorphic

23

encryption scheme was first proposed in 1978 [17], shortly after the invention of RSA [18]
scheme. The research around the HE scheme remained slowly developed until 2009, where
the turning point came by Craig Gentry, who put forward the first plausible construction of
a FHE scheme [19, 20] using the hardness of some lattice problem with the bootstrapping
idea. More details on this in the dedicated section, in chapter 3. The goal of constructing
a FHE scheme is to perform public, arbitrary, unbounded computation on encrypted data
securely. These three properties mean the following:

• Public computation: The public computation means that one can calculate any
operation over the encrypted data without any secret information. More precisely,
given an encryption of the value x (Enc(x)), and a function f , one can compute an
encryption of the evaluation of the function f over the value x (Enc(f(x))), on their
own non interactively using Enc(x), and a public key. It can be considered as the
heart of the FHE scheme, therefore, it is necessary that any FHE scheme verifies
this property.

• Arbitrary Computation: A scheme supporting arbitrary computations on encrypted
data Enc(x), can compute any function f over Enc(x) to obtain Enc(f(x)). A
cryptosystem that supports arbitrary computations on ciphertexts is said to be fully
homomorphic. For instance, most encryption schemes can be considered partially
homomorphic schemes in that they allow for some types of computation to be run
on encrypted data. Currently, the RSA scheme [21] supports an unlimited number
of modular multiplications, and the Paillier cryptosystem [22] supports an unlimited
number of modular additions.

• Unbounded computation: A specific type of FHE scheme called leveled FHE scheme
like [23, 24] can evaluate arbitrary functions but up to a certain (multiplicative)
depth L. To decrypt and obtain a correct message, it is necessary that the error
associated with the ciphertext must remain below a certain level threshold. This
error, added at the moment of the encryption, grows with the number of operations.
At some point, the noise level will become too large and it will be impossible to
decrypt correctly. There are Somewhat Homomorphic Encryption (SHE) schemes
for which the multiplicative-depth (or, rather, level of noise tolerance) has to be
specified at setup time. . This means that for a given depth L, an encryption
scheme can be parameterized to compute L operations correctly. A scheme allowing
for unbounded computations can be parametrized a priori, with a set of parameters
that would fit to be tailored for a specific application over any computation.

Functional Encryption: It was mentioned for the first time in the work of Adi Shamir
[25] as Identity-Based Encryption (IBE) without introducing the name itself. But it took
the functional encryption name for the first time with the work of Dan Boneh et al. [26] in
2010. It was originally aimed to generalize the description of access control in public-key
encryption, gathering together protocols like Identity-Based Encryption, Inner Product
Encryption, or Broadcast Encryption. In detail, it is an asymmetric cryptographic scheme,
that enables a key holder to learn a specific function on encrypted data, without learning
anything else about the data. It can be a good candidate for certain classes of machine
learning applications such as confidential machine learning. The work [4, 27, 28] used
the FE in the confidentiality-preserving machine learning. Therefore, the FE technique
seems a solution to solve the problem of confidentiality when a server needs to compute
a function over encrypted data, without learning anything else about this data. One of

24

the drawbacks of FE solutions is the need to introduce an authority. This entity holding
a master secret key msk can generate a key skf that enables the computation of the
function f on encrypted data and a public key pk. Now, the client uses the mpk to
encrypt the data and send the encrypted form to the server. The authority will derive a
secret key skf from its msk and send this key to the server. So the server can calculate
the function f using this key skf , over the client’s data and obtain a clear result (i.e.
plaintext result). Currently, to the best of our knowledge, at the time of writing this
thesis, there are two propositions of FE: one can evaluate scalar product e.g. [29], and
the other can evaluate degree-two polynomials [30]. Briefly, FE evaluates and decrypts
over encrypted data versus FHE evaluates over encrypted data.

2.4.2 Integrity-Preserving Tools

Integrity can be ensured in different ways, but in this work, we focus on the cryptographic
tools (without hardware solutions). There are several approaches in which integrity can
be ensured when outsourcing some type of machine learning computations. We present
them in the following:

Hash Function: Introduced in 1953 by German inventor Hans Luh [31] the hash function
that maps any message of a variable length into a small digest of fixed length with a
strong collision resistance. In general, hash functions are divided into two large categories:
cryptographic hash function (like MD5 [32], SHA−3 [33], etc) or non-cryptographic hash
function (checksum function[34], Cyclic Redudaucy Checks CRC [35]). The first designs
of cryptographic hash function date back to the 1970s, where their importance was first
realized with the invention of Diffie and Hellman cryptosystem [36]. It grew quickly,
and more schemes were proposed in the 1980s. In recent years, there were some attacks
on hash functions as for example, complete collisions of SHA-0 [37, 38], and a work of
Wang Xiaoyun announced a collision, including MD4 [39], MD5 [40],etc. In recent years
new secure hash functions have been proposed by NIST as SHA−2 [41], SHA−3 [33].
In general, hash functions are used as a tool to achieve the integrity of data. Zero-
Knowledge Proof (ZKP): ZKP methods are recent and were first developed in the
late 80s, where it appears in [42] written by: Shafi Goldwasser, Silvio Micali, and Charles
Rackoff. It has become a subject of study in cryptography. The ZKP constructs to prove
an argument while yielding nothing beyond its truth. More precisely, it enables an entity
called prover to convince another entity called verifier of an assertion without revealing
more information than strictly necessary to convince her. Numerous works proposed in
order to improve the efficiency of zero-knowledge proof [43–48]. The work of Ishai et al.
[49] use the MPC as a building block in the design of efficient and conceptually simple
zero-knowledge proofs.

Verifiable Computing: VC aims at verifying the remote execution of a function on an
untrusted machine. Namely, it enables a client to delegate to another entity (in most
cases a server) the computation of a function. The other entity evaluates the function
and returns the result with a proof that the computation of the function was carried
out correctly. This property has been extensively studied in the literature [50–55]. In
the context of Verifiable computing over encrypted data it is addressed in the seminal
paper of Gennaro et al. [56], where they introduced the notions of non-interactive ver-
ifiable computation, and they build a VC scheme for arbitrary function using garbled
circuits secrets and FHE. Goldwasser et al. [57] demonstrated how they can use their

25

succinct single-key functional encryption scheme in order to build a VC protocol. In spite
of advances in both of these two solutions in order to ensure both confidentiality and
integrity, they are still unpractical, e.g. [56] require the full FHE power, and [57] required
attribute-based encryption for expressive predicates and work for functions with single-bit
outputs. Stimulated by the growing need for verifiable computing on encrypted data for
general-purpose computation, in 2014 Fiore et al. [3] presented an efficient VC scheme
on encrypted data to delegate: polynomials of large degree, linear combinations, linear
functions over the rings Z2k and multivariate polynomials of degree 2. In 2020 Fiore et al.
presented new work in this line of research [58] allowing the computation of multivariate
polynomial degree ensuring public verifiability. However, they miss an implementation,
and it works with particular parameters (q prime larger than 2λ) for the homomorphic
parameters.

Figure 2.3: This figure presents the assets to protect and the countermeasure that we
have in both phases of ML.

Figure 2.3 summarizes the threats against the ML, and more precisely, against the data
and the model in the training and the inferences phases, with the corresponding coun-
termeasures. This thesis aims to ensure an outsourced secure ML evaluation by ensuring
the data confidentiality and the execution integrity for training or inference algorithms
by means of FHE and VC schemes.

2.5 Use Case
To clarify our context, we present the following ML applications using FHE and VC. The
first application permits to a hospital to create a secure training collaboration with other
healthcare service provides, while avoiding disclosure of the local hospital training data.
By means of FHE and VC we ensure the model confidentiality and its integrity with re-
gards to the threat coming from the central server making the global model update.

The second application aims to ensure a secure prediction over an external malicious server
which evaluates the model over FHE encrypted user’s data while ensuring the integrity
of model execution using VC scheme.

2.5.1 Machine Learning Training Application

For the training, we choose to focus ourselves on the Federated Learning framework which
allows several healthcare providers to collaboratively train a common AI model, with the
use of a central server. Each health service provider evaluates a local training algorithm

26

over clear patients’ data (like CT-scan, patients’ folder, analysis results), encrypts the
result of this algorithm and generates associated tags forwarded to the central server as in
Figure 2.4. The central server runs an averaging of the model parameters in the encrypted
domain to update the global model. At the same time, the server runs the averaging over
the input tags to generate an integrity tag associated with the averaged model parameters.
The server sends back the encrypted results with the tag to each participant. They check
the calculation of averaging and if it is ok, they decrypt the result to obtain the updated
global model. Hence, each local trainer is ready for a new iteration of the protocol.

For the threats: we will guarantee the confidentiality of the local model for a given
participant against the server threat by means the homomorphic encryption. Further, we
will achieve the integrity of the central server calculation by means of the VC scheme.

Figure 2.4: A figure presenting the training application between two types of entities, the
participants in the learning phase and the server that updates the training model.

2.5.2 Machine Learning Inference Application

Here, a user can be diagnosed based on his/her CT-scan using a secure inference model.
Firstly, like in Figure 2.5 the CT-scan is encrypted and an associated integrity tag is
generated. The patient encrypted data as well as the integrity tag are sent to the inference
provider server (that can be a malicious server), which evaluates the inference model over
encrypted data and over the integrity tag and sends back the encrypted diagnosis result
with the integrity computation tag. Finally, the practitioner of patient checks that the
inference model was computed correctly, and if so, he will decrypt the received encrypted
result. Otherwise, the clients will take appropriate actions depending on the protocol
used. Therefore, the confidentiality of the CT scan of a given user is achieved against the
threats coming from both the inference provider using homomorphic encryption, and the
integrity of the model is preserved by means the verifiable computing against the integrity
threat coming from a malicious server (the inference provider).

This chapter presents the ML with the associated threats coming from different entities
servers or adversaries, and we summarize the tools used against these threats. In the
following chapter, we detail the first tool, Homomrphic Encryption, used in our contribu-
tion.

27

Figure 2.5: A figure presenting the inference application between two entities, the partic-
ipants in the inference phase and the server that provide the ML algorithm. When the
user receive the encrypted result, it checks that the model was computed correctly using
VC and if so, it decrypts the result using FHE to obtain the diagnosis result.

28

Chapter 3

Homomorphic Encryption

3.1 Security . 30
3.1.1 Security Notions . 30
3.1.2 FHE Security . 31
3.1.3 Hardness Assumptions . 32

3.2 Brief History . 32
3.2.1 Pre-FHE . 33
3.2.2 FHE-Generation . 33

3.3 Technical Preliminaries . 34
3.3.1 General notions . 34
3.3.2 Learning With Error . 36
3.3.3 HE schemes . 39

3.3.3.1 Paillier cryptosystem . 39
3.3.3.2 BGV . 40
3.3.3.3 BFV . 42

A homomorphic cryptosystem is a special type of encryption allowing to perform com-
putation directly over encrypted data. A schema is said to be fully homomorphic if it
allows to perform both addition and multiplication over encrypted data. Finding a fully
homomorphic cryptosystem remained an open problem until the beginning of the second
millennium, more precisely until 2009 with the outbreak of Gentry scheme [19]. Even if
there existed already partially homomorphic schemes such as multiplicative homomorphic
encryption like RSA[18] or the additive homomorphic schemes as Paillier cryptosystem
[22] (allowing only one type of operation), they were not expressive enough to be used in
real world applications.

In abstract algebra, the homomorphism is seen as a map, that transforms all the algebraic
structures (like operation) of one domain/algebraic set to another domain/algebraic set.
This is the same idea for homomorphic encryption in the cryptographic domain, where
the homomorphic encryption allows to convert the addition or multiplication operations
between the plaintext and ciphertext spaces. This means that one can apply an addition
or multiplication over encrypted data without decrypting and the result corresponds to the
application of this operation over the corresponding plaintext. Thus, the homomorphic
encryption can be seen as a cryptosystem that converts the operation from the encrypted
layer to the clear layer while preserving the confidentiality of data.

29

3.1 Security

3.1.1 Security Notions

One approach for proving the security of a cryptographic scheme is called provable secure,
which divides in classes the type of security of the scheme depending on the attacker’s
capabilities and security goals that are needed. In this context, there are four classes of se-
curity for public-key cryptosystem: perfect secrecy, semantic security, indistinguishability,
and Non-malleability security.

• Perfect secrecy : It was proposed in the 19th century, by the Netherlands cryptogra-
pher Auguste Kerckhoffs and it was reformulated by the American mathematician
Claude Shannon [59]. It states that that the security of an encryption system must
reside only in the key and not in the cryptosystem, supposing that the attacker has
infinite resources and time.

• Semantic security (SS): SS was introduced by Goldwasser and Micali [60] as the
following notion: with a given ciphertext an adversary cannot obtain any partial
information about the plaintext. In this context the adversary is supposed to behave
as a probabilistic polynomial-time Turing machine.

• Indistinguishability (IND) [61]: If a cryptosystem possesses the property of indistin-
guishability, then an adversary with polynomial bounded computational resources
will be unable to distinguish pairs of ciphertexts based on the message they encrypt.

• Non-malleability (NM) [62]: Malleability is the ability for an encryption algorithm to
transform a ciphertext into another ciphertext which decrypts to a related plaintext.
In other words, if an encryption scheme is Non-Malleable, then an adversary cannot
generate a ciphertext from a different ciphertext i.e. for a given ciphertext Enc(x),
an adversary cannot generate another ciphertext that decrypts f(x) for a known
function f , without necessarily knowing x.

In the context of cryptanalysis, there are several attacker models depending on the ad-
versary access to the cryptosystem:

1. Chosen Plaintext Attacks (CPA): An adversary knows the plaintext and the cor-
responding ciphertext. In this model, we say that adversary has the access to the
encryption oracle.

2. Chosen Ciphertext Attacks (CCA1): in addition to the CPA, the attacker has the
access to a decryption oracle before it obtains a challenge ciphertext. This means
that the attacker can obtain the descriptions of chosen ciphertexts.

3. Adaptive Chosen Ciphertext Attacks (CCA2): the adversary has access to the de-
cryption/and encryption oracle even after it obtains a challenge ciphertext. The
non-degeneracy condition is that the adversary cannot use this access to decrypt
the challenge itself.

The combination of these security classes and these attacker methods produces security
levels for semantic and malleability security like IND-CPA, IND-CCA1, and so on. For
a given cryptographic scheme, the IND-CPA, IND-CCA1, IND-CCA2 are formalized as
a game between an adversary and some honest challenger. We say that this scheme is

30

semantic secure in the sense of Indistinguishability under Chosen Plaintext Attack (IND-
CPA) if an efficient adversary cannot win the IND-CPA game.

1. First, the challenger publishes the public key that corresponds to the cryptographic
scheme of the object of study.

2. Second, the adversary selects pairs of plaintext message and send them to the chal-
lenger.

3. Next, the challenger sends an encryption of only one of the plaintexts (at random)
back to the adversary.

4. Finally, the adversary determines which one of the plaintext messages was encrypted.

We say that the adversary wins if it succeeds in the guess of plaintext according to the
ciphertext sent by the challenger.

The IND-CCA1 is the same as the IND-CPA, but with the variation in the step 3 of the
game, where the adversary has access to decryption oracle before the challenge ciphertext
is sent. This means she can decrypt arbitrary messages at will, and even after seeing
the target ciphertext in the IND-CCA2. Actually, these notions are related among them
[63], and their relations are described in the Figure 3.1, where the CCA2 is stronger than
CCA1 and also than CPA with respect to the attacker models. Regarding the goals, the
NM model implies IND in general, but, in the CCA2 model, IND also implies NM, and
the IND is equivalent with the SS.

Figure 3.1: Relations between security notions [63]

Indeed, we note that the time taken by the adversary to win the game defines the security
of the cryptographic scheme. In detail, we call λ the security parameter of a scheme, with λ
a given integer.The adversary must not be able to win the game in O(2λ) operations.

3.1.2 FHE Security

Since they allow computations directly over encrypted data, it is simple to observe that
all FHE schemes are malleable by construction because any scheme that supports homo-
morphic operations is malleable. Then it remains, to define the position of the homo-

31

morphic encryption scheme against the three security notions IND-CPA, IND-CCA1 or
IND-CCA2.

The best we can get for homomorphic encryption schemes is IND-CCA1 because it is not
hard to see that homomorphism contradicts IND-CCA2 security, since, in the IND-CCA2
the adversary can ask to encryptm by the encryption oracle. Next, the adversary adds the
output ciphertext to the target ciphertext, then submits the newly resulting ciphertext
to the decryption oracle to decrypt. It subtracts m to get the desired plaintext and wins
the game without violating the conditions of the IND-CCA2 game (where the adversary
can decrypt any text except the challenge ciphertext). Consequently, the adversary can
determine which plaintext is hidden in the challenge ciphertext and win the game IND-
CCA2.

For IND-CCA1 security, any scheme using Gentry’s bootstrapping idea [19], cannot be
IND-CCA1 secure by construction, since the bootstrapping idea is based on the publica-
tion of a bootstrapping key which is the encryption of the secret key that can be found
in the public key. This is the weakness of the scheme using this idea, since, an adversary
can simply ask to decrypt this key, that gives data of the entire secret key. On the other
hand, other homomorphic encryption schemes are proven as indistinguishable under a
non-adaptive chosen ciphertext attack (IND-CCA1) like [64, 65]. we use the BFV and
Paillier schemes which are respectively IND-CPA and IND-CCA1 [66].

We will recall the notions of security used for any cryptographic scheme used in this thesis
when they will be presented in the corresponding section.

3.1.3 Hardness Assumptions

The evaluation of cryptographic security proof, in other words, the time it takes for an
efficient adversary to win the game, is a reduction from the adversary existence that
violates the security notions to the intractability/hardness to solve one or more mathe-
matical problems where it must be hard (hard in the means of resolution time) to solve
it. These are known as computational hardness assumptions as for instance, the Integer
factorization (i.e. factoring large composite numbers) assumptions used in RSA cryp-
tosystem. When the hardness assumption has been defined, an adversary is supposed to
use the fastest possible way to find a solution, therefore, win the game. Unmistakably,
a cryptographer’s goal is to create a cryptosystem that uses a "hard" problem1, which
makes solving it to require an outside time of nature (i.e. impractical time).

3.2 Brief History
In this section, we provide a slight overview of the development in the FHE models, not
only for the purpose to recognize the previous works but also to determine the limit of
this tool (i.e. how many operations can evaluate in encrypted domain), and thus define
the limits of our ambition.

Before this, we will present briefly the FHE model from a theoretical point of view: as we
presented above Homomorphic Encryption (HE) schemes allow to perform computations

1To demonstrate that a particular problem is "hard" is truly another difficult problem, and we cannot
deep delve into this proof. Since it is out of our scope in this thesis, we will only refer to the reference of
the proof when we use it.

32

directly over encrypted data without decrypting it first. That is, with a Fully homomor-
phic Encryption scheme E, we can compute E(m1 + m2) and E(m1 ×m2) from Encrypted
messages E(m1) and E(m2).

3.2.1 Pre-FHE

In the first 30 years after the appearance of the first FHE notions [17], the field has
slightly progressed. It started with the bit-wise additive Homomorphic encryption scheme
proposed by Goldwasser and Micali in 1982 [60], which is the first probabilistic public-key
encryption2 scheme provably secure. In the same line of research, Pascal Paillier [22]
invented an additive homomorphic encryption scheme which provides IND-CPA security.
A few years later, specifically in 2005 Boneh et al. [67] have also designed a system of
provable security encryption, which can evaluate quadratic multivariate polynomials on
ciphertexts domain, i.e. can perform an unlimited number of additions, but just one
multiplication in the ciphertext domain.

3.2.2 FHE-Generation

The turning point in the context of FHE schemes is the Gentry scheme [19, 20], with
his ground-breaking bootstrapping idea, and to this day, several homomorphic encryption
schemes proposed follow his blueprint. All the ciphertexts of the homomorphic encryption
schemes are noisy in some sense, and this noise grows as one adds and multiplies cipher-
texts until ultimately we can no longer decrypt. The main differences between all the
homomorphic schemes concern the noise management technique, the evaluation function
and the mathematical concepts that define them. Consequently, we can group them into
three generations that will be presented in details in the following. We will summarize
the main characteristics of each generation in Table 3.1.

1. First Generation: There are public-key encryption schemes based on the ideal lat-
tice on the polynomial ring [19, 20] and using the Gentry’s blueprint for the "boot-
strapping" concept. This type of scheme supports both homomorphic addition and
multiplication operations on the ciphertexts, where these operations are just an
addition or multiplication over the polynomial rings. The Gentry’s "noisy" boot-
strapping represents a tool to diminish the growth of ciphertexts: it is a refreshing
of an encrypted message using encryption of secret key and applying the decryption
procedure homomorphically. This resets the noise and allows for more operations
to take place. The resolution of the noise hurdle opens the door to more efficient
and practical FHE. The problem is still the time efficiency. To reduce the decryp-
tion complexity, a squashing technique is proposed under the hardness assumption
of the sparse subset-sum problem (SSS). The first implementation of this genera-
tion [68] achieved only a leveled homomorphic encryption (LHE) because it did not
succeed in implementing the squashing. Later implementation of Gentry scheme
[69] showed that a single bootstrapping operation takes between 30 seconds to 30
minutes depending on parameters.

2. Second Generation: It was born in 2011-2012 with Zvika Brakerski and, Vinod
Vaikuntanathan with their BGV scheme [70, 71]. They built an efficient LHE scheme

2Probabilistic public-key encryption is a public-key encryption scheme where the ciphertext of the
same message under the same public key differs on every run of the encryption algorithm.

33

based on the hardness of LWE or (Ring) Learning With Errors (RLWE) problem (see
section 3.3 for definition). They introduced a noise-management technique called re-
linearization to obtain a Somewhat Homomorphic Encryption (SHE) and replace the
bootstrapping procedure by the operations of Key switching and modulus switching
to transform it into LHE, where the homomorphic evaluation and decryption climb a
ladder of decreasing modulus and scale the ciphertext properly to ensure correctness.
This technique improves dramatically the performance by resulting in a slower noise
growth during homomorphic computation. The BGV is a reference scheme of this
generation. Brakerski et al. [72] simplified the BGV construction and improved
the underlying assumptions using the hardness of classical GapSVP. Fan et al. [24]
improved the last scheme by adapting it to Ring-LWE setting. All these schemes
have a seemingly complex multiplication.

3. Third Generation: The third generation of FHE saw the light with the works of
Gentry et al. in 2013 where they produced a new scheme GSW [73] in order to
avoid the BGV-like encryption drawback and the re-linearization step of the second
generation schemes. The authors of [74] proposed a new bootstrapping method
to improve the bootstrapping of [75]. By eluding the inefficiencies resulting from
the use of Boolean circuits and Barrington’s theorem used in [75], the number of
homomorphic operations on GSW ciphertexts is optimized compared with the one
from [75]. Hence, both FHEW [76] and TFHE [77, 78] obtain a more efficient
bootstrapping operation.

1st generation 2nd generation 3rd generation
Gentry09 BV11 GSW13

Not highly effi-
cient

Much more effi-
cient

Generally less ef-
ficient

ideal lattice (R) LWE as-
sumption

Safety slightly
better assump-
tion

No known weak-
nesses

Table 3.1: The main features of each generation

3.3 Technical Preliminaries

3.3.1 General notions

Sets. Given two real numbers a,b such that a ≤ b, [a,b] designates the set of all real
numbers between (and including) a and b.

Z/qZ denotes the set of integers modulo q with a given integer q, i.e. it is a set in [0, q−1].
We denote by Zq the set (−q/2, q/2], as such it should not be confused with the above
set.

Given x ∈ R, bxe is the rounding to the nearest integer and bxc , dxe to indicate rounding
up or down.

34

We write the vector a as
→
a . Every value is clearly presented as a vector or scalar

value.

Modulus. Given a positive integer q, rq(t) denoted the remainder modulo q (i.e. t modulo q)
into [0, q). Then c = ∆ · q + rq(c), where ∆ = bc/qc.

[·]q denotes the reduction modulo q into the interval (−q/2, q/2] of any integer or any
polynomial integer (obtained by applying [·]q to all its coefficients).

Polynomial Ring. The ring Z[x]/(f(x)) is denoted by R, where f(x) ∈ Z[x] is a monic
irreducible polynomial of degree d.

Given an integer q, we define theRq = R/qR as a set of polynomials inR with coefficients
in Zq. The polynomial a ∈ R, will be denoted by a =

∑d−1
i=0 ai · xi and a can be presented

as the vector
→
a= (a0, . . . , ad−1).

For a fixed integer w and lw,q = blogw(q)c + 1, a polynomial a ∈ Rq can be written in
base w as

∑lw,q−1
i=0 ai · wi.

We write || · ||p or `p to denote the `p norm of vectors over reals or integers.

With ζn = e2πi/n, the n− th cyclotomic polynomial is defined as:

Φn(x) =
∏

1 ≤ q ≤ n
gcd(a, n) = 1

(x− ζan)

Dot product. The dot product of two vectors
→
u= (u0, . . . , ud−1), and

→
v= (v0, . . . , vd−1)

is defined as:
→
u · →v=< u, v >:=

i=d−1∑
i=0

uivi

Probability distribution. Given a probability distribution D over a set A, we use
x
D← A to denote that x is sampled from A accordingly to D. When sampling x from a

set A uniformly at random, we write $←− A.

Gaussian distribution :

The Gaussian distribution over R centered at µ (i.e. the expectation) with a standard
deviation σ ∈ R+ is denoted by N (µ, σ) and defined with the following density func-
tion:

1

σ
√

2π
e−

1
2

(x−µ
σ

)2 .

The width parameter of a Gaussian distribution is defined as
√

2π.

The discrete Gaussian distribution over Z centered on 0, with standard deviation σ,
denoted DZ,σ, is the probability distribution that assigns a probability proportional to

e
−π|x|2

σ2 to each x ∈ Z.

35

Definition 1. (WordDecomp & PowersOf) For any a ∈ R and b ∈ R, with coefficients in
(−w/2, w/2], we define WordDecomp and PowersOf as follows:{

WordDecompw,q(a) = ([a0]w, . . . , [alw,q−1]w) ∈ Rlw,q .
PowersOfw,q(b) = ([b · w0]q, . . . , [b · wlw,q−1]q) ∈ Rlw,q .

With this definition, we can observe that:

〈WordDecompw,q(a), Powersofw,q(b)〉 = ab mod q

Distribution probability. We note by χkey and χerr two discrete, bounded probability
distributions on R defined as follow:

χerr : discrete Gaussian distribution with parameter σ.
χkey : distribution in ({−1, 0, 1}), s.t.
Pr([x = −1]) = Pr([x = 1]) = 1/4 and Pr([x = 0]) = 1/2.

3.3.2 Learning With Error

The LWE problem. The LWE problem was introduced in 2005 by Regev [79]. Infor-
mally, the LWE problem consists in solving an over determined, but noisy linear system,
modulo an integer q. The LWE problem is defined around three parameters: the di-
mension n, the modulus q and the error factor α. The parameters q and α are chosen
according to n. We distinguish the two versions of the LWE problem; the Computational
and the decisional LWE versions.

Definition 2 (LWE Distribution). We let n ≥ 1, q ≥ 2 be two integers, and let χ be a
fixed noise probability distribution over Z. Let →s∈ Znq be a secret vector called the secret.
The LWE distribution denoted by A~s,χ over Znq × Zq is obtained as follows.

1. Sample a vector ~a $←− Znq ,

2. Choose e χ← Z,

3. Evaluate b =< ~a,~s > +e mod q ∈ Zq,

4. Output (~a, b) ∈ Znq × Zq.

Definition 3 (search-LWE). The problem is to find ~s ∈ Znq , from a given arbitrary n
samples

(~a, b)
A~s,χ←− Zn+1

q .

Definition 4 (Decision-LWE). It is the problem to distinguish the LWE distributions
(As,χ) from uniformly random samples of Znq ×Zq, i.e. determining whether a given (~a, b)
was taken form Zn+1

q according to As,χ or were generated uniformly at random.

These two problems reduce to each other in polynomial time, and LWE is proved as a
hard problem. Regev [79] proposed a public-key cryptosystem based on the hardness of
LWE.

In general, the distribution χ for LWE distribution is considered to be a discreet Gaussian
distribution DZ,σ, where σ = αq√

2π
with a given α.

36

The Ring-LWE problem. It first defined in the paper of Lyubashevsky et al. [80],
in which they introduced the algebraic variant of LWE called Ring-LWE. We will see in
the following that the structure of RLWE is very similar to LWE but over polynomial
rings.

RLWE is parametrized by a polynomial ring R, a modulus q ≥ 2 defining the quotient
ring Rq = R/qR, and a noise probability distribution χ over R.

Specifically, we take R = Z[x]/(f(x)) to be a cyclotomic ring with cyclotomic polynomial
f of degree d, and χ is discretized Gaussian in the canonical embedding of R.

Definition 5. RLWE-Distribution. For an s ∈ R, called the secret, the RLWE-
Distribution As,χ over Rq ×Rq is sampled by:

1. Choose a $←− Rq,

2. Select e χ←− R,

3. Evaluate b = a · s+ e mod q,

4. outputting (a, b) ∈ Rq ×Rq.

Definition 6 (Search- RLWE). It is the problem to find s ∈ Rq, from a given arbitrary
samples (a, b)

As,χ←− R2
q.

Definition 7 (Decision-RLWE). It is the problem of distinguishing the RLWE distribu-
tions (As,χ) from uniformly random samples of Rq×Rq, i.e. determining whether a given
(a, b) was taken form Rq ×Rq according to As,χ or were generated uniformly at random.

Same as for LWE problem, the Decision-RLWE and Search-RLWE are equivalent prob-
lems.

Hardness of (R)LWE-problem To prove the difficulty of these two problems, a re-
duction was used to show that an LWE problem can be reduced to the shortest vector
problem (SVP) over ideal lattices (using a classical reduction [81, 82] or using quantum
algorithm [79, 83]). Then, to solve the LWE problem is at least difficult as to solve all
instances of a variant of the SVP problem. For the RLWE problem, it has been proved
difficult, under certain restrictions, by reductions to a variant of SVP [84]. As shown in
[80, 85] s can be sampled from χ instead of being taken uniformly in Rq without any se-
curity implications. Moreover, the hardness of this problem is independent of the precise
shape of q [86]. As such q does not have to be prime and can be taken simply as a power
of 2.

(R)LWE encryption cryptosystem Generally, all the (R)LWE schemes are based on
the adding error principle, i.e. the encryption procedure consists in adding an error or
noise into ciphertext which must not exceed a certain threshold to ensure decryption.
This noise increases as the operation progresses (like addition or multiplication) inducing
an error propagation. We note that the RLWE encryption is more efficient than the LWE
peer due to its compactness (each b is N-dimensional) and due to implementation and
optimizations, such as the use of a Fast-Fourier-Transform.

37

Here, we present a basic (R)LWE-based encryption scheme with no homomorphic opera-
tions. Next in the following sections we present BGV and BFV encryption scheme. For
simplicity, we present the (R)LWE-based encryption scheme here with the plaintext space
taken as R2. It is easy to generalize it to work with larger plaintext Rt for some integer
t > 1.

Basic (R)LWE-Based Encryption Scheme (E):

E.ParamGen(λ, µ, b): Use the bit b ∈ {0, 1} to determine whether we are setting param-
eters for a LWE-based scheme (where d = 1) or a RLWE-based scheme (where n = 1).
Choose: a µ−bit modulus q (µ = log2(q)), d = d(λ, µ), n = n(λ, µ), N = d(2n+ 1)log(q)e,
the distribution χ appropriately to ensure that this scheme achieves 2λ security against
known attacks. Let params = (q, d, n,N, χ).

E.SecretKeyGen(params): Sample ~s′ χ←− Rn
q . Set sk = ~s← (1, s′1, . . . , s

′
n) ∈ Rn+1

q .

E.PublicKeyGensk(params): Takes as input a secret key sk = ~s = (1, s′) and params. It
generates the matrix A′ ← RN×n

q uniformly and samples a vector ~e χ← RN . It computes
b = A′~s′ + 2e. and sets A to be the (n + 1)−column matrix consisting of b elements
followed by the columns of the matrix −A′, Namely A = (A′s′ + 2e︸ ︷︷ ︸

n+1

| −A′︸︷︷︸
n+1

). Finally the

output is pk = A.

E.Encpk,params(m): To encrypt a message m ∈ R2, set m = (m, 0, . . . , 0) ∈ Rn+1
q , sample

r ← RN
2 and return the ciphertext c = m+ AT r ∈ Rn+1

q .

E.Decsk,params(c): Compute m =
[
[< c, s >]q

]
2
.

The correctness is easy to prove. For security, the above scheme is based on the LWE
assumption for d = 1 or RLWE assumption for n = 1. The above (R)LWE-based cryp-
tosystem can be proven to be semantically secure assuming the hardness of (R)LWE given
3 samples [80]. We note that to achieve 2λ security against known lattice attacks, one
must have n · d = Ω(λ · log(q/B)) where B is a bound on the length of the noise (i.e.
||χ|| < B), see e.g. [80].

LWE-based cryptosystem security

The security of LWE-based encryption is evolving over time because it depends immedi-
ately on the attack strength against them. The detection of faster LWE-attacks usually
means a modification of parameters used on LWE-based schemes is necessary, at a per-
formance cost. These parameters are set according to a desired security level λ defined
in chapter 3. One of the strengths of this scheme is the easy modification of their param-
eters.

Two important works studied the hardness of the LWE problem [87, 88]. The oldest
among them [87] provides a software tool called LWE-estimator as a Sage module to
estimate the hardness of concrete LWE instances. More precisely, it enables the users
to estimate the running times of the various attack algorithms for particular parameter
choices. That makes the selection of parameters for lattice-based primitives much easier
and more comparable. Also, it collects the existing attacks on LWE and affords a minimal-
security parameter λ for a clear estimation of the security of the scheme implemented with
those parameters. An up-to-date of these results is presented in [88]. This estimator is kept

38

up-to-date with the latest advancement in the field of cryptanalysis. Then this is the best
source of security required to select the parameters of a LWE-based cryptosystem.

This estimator supposed that it has access to an optimal number of samples (~a, b) (
according to the attacker) to solve the LWE problem. Bindel et al. [89] analyze the
hardness of LWE instances considering a limited number of samples, based on the LWE
estimator. This can provide a more practical choice of parameters for LWE-based schemes,
from a security point of view.

RLWE-based cryptosystem security It is generally supposed that any RLWE in-
stance, can be reduced to its equivalent version of the LWE instance. As long as it is
true, the security of RLWE can be considered equivalent to the security of LWE, and this
is the case at the time where we are writing this thesis. The problem of RLWE is still
widely used in the cryptography world due to its great services like speedy operations and
shorter keys.

All of the LWE-based encryption schemes used in this thesis were parametrized with
the LWE estimator, under the unlimited access of the attacker to the samples. The
cryptanalysis question of LWE-based cryptosystem is out of the extent in this work.

3.3.3 HE schemes

3.3.3.1 Paillier cryptosystem

As its name indicates, the cryptosystem of Paillier was invented by Pascal Paillier in 1990
[22]. It is an additive homomorphic cryptosystem, based on the hardness of computing
the n-th residue classes, which is believed to be computationally difficult. In the following,
we recall the general principles of this cryptosystem.

KeyGen(sz)→ (pk, sk): It generates the keys for the cryptosystem taking as input the
number of bits sz of the modulus.

Choose two large prime numbers pE and qE such that λ = lcm(pE − 1, qE − 1), and set
NE = pE ∗ qE. We note that the cleartext domain is ZNE and the ciphertext domain is
ZN2

E
.

Select a random g < N2
E such that gcd(L(gλ mod N2

E), NE) = 1,with L(u) = u−1
NE

.

Set pk = (NE, g) and sk = (pE, qE).

Encpk(m)→ c: The encryption algorithm produces a ciphertext c using the public key
pk by computing c = gmrNE mod N2

E, where m < NE is the message and r is uniformly
chosen in ZNE .

Decsk(c)→ m: The decryption algorithm is made by computing the plaintext m from the
ciphertext c, using the private key sk as follow:

Letting D = L(gλ mod N2
E) and D−1 its multiplicative inverse in ZNE , the decryption is

performed by evaluating

m = Dec(c) = L(cλ mod N2
E)×D−1 mod NE.

More importantly, for the present purpose, this cryptosystem has the following homomor-
phic properties:

39

1. Dec(Enc(m1)Enc(m2)) mod N2
E = m1 + m2 mod NE (addition of two encrypted

messages).

2. Dec(Enc(m)gk) mod N2
E = m + k mod NE, for all k ∈ ZNE (addition of an en-

crypted message to a clear integer).

3. Dec(Enc(m)k) mod N2
E = km mod NE, for all k ∈ ZNE (multiplication of an

encrypted message by a clear integer).

Theorem 1. [22] The cryptosystem showed above does provide semantic security against
chosen-plaintext attacks (IND-CPA) if and only if the Decisional Composite Residuosity
Assumption holds.

3.3.3.2 BGV

The BGV homomorphic encryption scheme was proposed in 2011 by Brakerski, Gentry
and Vaikuntanathan3 [23], based on LWE and on the RLWE instances. The RLWE
instance of BGV achieves a better performance than the LWE version. The idea is to
use the modulo switching introduced in [90], in order to keep the error of the ciphertext
under the limit that permits to decrypt it. This switching consists of a mapping of a
ciphertext c ∈ Rq, to a ring Rp where q > p, which still encrypts the same plaintext
with keeping the error e contained within the ciphertext at the same level. This permits
to multiply two ciphertexts and keep the error at the same level. One can apply this
concept indefinitely, which opens the way for an FHE scheme. In the following, we will
present in detail the outline of this scheme. Before this, we start by reminding the reader
some definitions from [23]: BitDecomp, PowersOf2, SwitchKeyGen, and Scale, needed to
explain the homomorphic encryption operations for this scheme.

(BitDecomp & PowersOf2) For any ~a ∈ Rn
q , and l = blog qc we define BitDecomp

and PowersOf as follows:{
BitDecomp(~a) = (a1,0, . . . , a1,l, . . . , an,0, . . . , an,l) ∈ Rl·n

q .
PowersOf2(~a) = (~a, 2 · ~a, . . . , 2l · ~a) ∈ Rl·n

q .

where ai,j is the j-th bit in ai’s binary representation .

With this definition, we can observe that:

〈BitDecomp(a), Powersof(b)〉 = ab mod q

SwitchKeyGen: permits to obtain a new ciphertext c2 of the same message of c1, but
under a secret key s2. It proceed as follows:

SwitchKeyGen(s1 ∈ Rn1
q , s2 ∈ Rn1

q):

1. Run A = E.PublicKeyGen(s2, N), for N = n1 · dlog qe, where n1 is the dimension
of s1.

2. Set B = A+ PowersOf2(s1),

3. Output τs1→s2 = B ∈ Rn2
q , where n2 is the dimension of s2.

3last update in 2014.

40

SwitchKey(τs1→s2 , c1): Output c2 = BitDecomp(c1)T ·B ∈ Rn2
q .

Scale(~x, q, p, r): is defined as the operation taking as input the vector ~x ∈ R, the
modulus p, q, and r and outputting x′ the R−vector closest to (p/q) · x that satisfies
x′ = x mod r.

Let us now describe the SHE scheme BGV as a 6-uplet (BGV.Setup, BGV.KeyGen,
BGV.Enc, BGV.Dec, BGV.Add, BGV.Mult) as follows:

• BGV.Setup(1λ, 1L): it takes as input the security parameter λ and the numbers
of levels L of arithmetic circuit that we want the BGV be able to evaluate.

1. Run paramsj ← E.ParamGen(λ, (j+1)·µ, b) to obtain a ladder of parameters,
including a ladder of decreasing moduli from qL((L + 1) · bits) down to q0(µ
bits).

2. Selects the discrete Gaussian distribution(denoted by χerr) as the error distri-
bution.

3. Set params=(q0, . . . , qL−1, χerr, L), as public parameters.

• BGV.KeyGen(params):
For j = L to 0 do the following:

1. Run sj =E.SecretKeyGen(paramsj).

2. Run Aj =E.PublicKeyGen(paramsj, sj).

3. Compute s′j = sj ⊗ sj ∈ R
(nj+1

2)
qj , where the ⊗ denotes the vector tensoring

operator.

4. If j 6= L, run τs′j+1→sj ← SwitchKeyGen(s′j+1, s
′
j).

Put sk = (s0, . . . , sL).
Set pk = (A0, . . . , AL,τs′L→sL−1

, . . . , τs′1→s0).

• BGV.Encpk,params(m ∈ R2): The encryption works by running:

c = E.EncAL,paramsL(m).

We note that the ciphertext could be augmented with an index indicating which
level it belongs to.

• BGV.Decsj ,paramsj(c): Supposing that the ciphertext is under s′j key, the decryption
algorithm works by running:

E.Decsj(c).

• BGV.Addpk(c1, c2): It takes two ciphertexts, which, without loss of generality, we
can suppose that are encrypted under the same sj (i.e. ci = BGV.Encsi,paramsi(mi),
for i = 1, 2). If they are not initially, one can use BGV.Refresh (defined below) to
make it so.

Compute c3 = c1 + c2 mod qj.

Output c4 = BGV.Refresh(c3, τs′j→sj−1
, qj, qj−1).

41

• BGV.Multpk(c1, c2): It takes two ciphertexts to multiply them. We suppose
that these ciphertexts are encrypted under the same sj. If not, one can use use
BGV.Refresh (defined below) to make it so.

Compute c3 = c1 · c2 mod qj.

Output: c4 = BGV.Refresh(c3, τs′j→sj−1
, , qj, qj−1).

• BGV.Refresh(c, τs′j→s′j−1
, qj, qj−1) : It takes two ciphertexts encrypted under s′j,

the auxiliary information τs′j→s′j−1
to facilitate key switching and the current and

next modulus qj and qj−1. It proceeds as follows:

1. Expand: Set c1 = PowersOf2(c, qj).

2. Switch Keys: Set c1 = SwitchKey(τs′j→s′j−1
, c, qj), a ciphertext under the key

sj−1 for modulus qj.

3. Switch Modulus: Set c2 = Scale(c1, qj, qj−1, 2), a ciphertext under the key sj−1

for modulus qj−1.

Theorem 2 ([23], Theorem 3). For some µ = θ(log λ+ log L), BGV is a correct L−leveled
scheme− specifically, it correctly evaluates circuit of depth L with Add and Mult gates
in R2. The per-gate computation cost is Õ(d · n3

L · log2
qj

) = Õ(d · n3
L · L2)). For the LWE

case (where d = 1) the per-computation cost is Õ(λ3 · L5). For the RLWE case (where
n = 1) the per-computation is Õ(λ · L3).

To achieve a FHE from the BGV scheme presented above, one can combine the Refresh
idea with the bootstrapping procedure.

3.3.3.3 BFV

The BV scheme was proposed by Fan and Vercauteren in 2012, based on the RLWE
problem [24] by porting the scheme proposed by Brakerski [72] from the LWE instance
to RLWE instance. Similar to [72], they make use of re-linearization, but their version is
more efficient. Also, they use the modulus switching in order to simplify the bootstrapping
method. The Gentry bootstrapping procedure without the squashing technique was used
to turn this SHE scheme to FHE.

The BFV scheme = (ParamGen, KeyGen, Enc, Dec, Add, Mult) consists of the following
algorithms:

• BFV.ParamGen(λ)→ (n′, q, t, χkey, χerr, w).
It uses the parameter λ in order to fix a positive integer n′, the modulus q and t
(such that 1 < t < q), the distributions χkey and χerr and finally an integer w > 1.

• BFV.KeyGen(n′, q, t, χkey, χerr, w):→ (pk, sk, rlk) = ((b, a), s, rlk). It works by:

1. Sample: s χ←− Rq, a
$←− Rq, and e

χ←− R.

2. Compute b = [−(a · s+ e)]q.

3. Sample: a′ $←− Rlw,q
q and e′ χerr←− Rlw,q

q .

For evaluation key:

42

– Version 1 : It takes as (sk, T)4. For i = 0, . . . ` = blogT (q)c:

1. Sample: ai
$← Rq, ei

χ←− Rq

2. Return

rlk =
[([
−(ai · s+ ei) + T i · s2

]
q
, ai

)
: i ∈ [0 · `]

]
.

– Version 2 : It takes (sk, p) and performs the following steps:

1. Sample a $← Rp·q, e
χ′←− Rp·q

2. Return
rlk =

([
−(a · s+ e) + p · s2

]
p·q , a

)
.

• BFV.Encpk(m)→ c = (ci, cj, ck = 0)
The encryption algorithm takes the message m ∈ M := Rt = R/tR and works as
follow:

1. Sample: u, e1, e2
χ←− R.

2. Return
c = ([p0 · u+ e1 + ∆ · [m]t]q, [p1 · u+ e2]q) ∈ R2

q.

• BFV.Decsk(c) :→ m. It takes the encrypted message and decryptes it by comput-
ing:

m =

[⌊
t

q
· [ci + cjs]q

⌉]
t

∈ Rt.

• BFV.Add(c1, c2):→ cadd s.t. cadd = c1 + c2

cadd =
(

[c1,i + c2,i]q , [c1,j + c2,j]q

)
.

• BFV.Mulrlk(c1, c2):→ cmul = (ci, cj, ck): It computes

cmul =

([⌊
t
q
· c1,i · c2,i

⌉]
q
,
[⌊

t
q
· (c1,i · c2,j + c1,j · c2,j)

⌉]
q
,
[⌊

t
q
· c1,j · c2,j

⌉]
q

)
• BFV.Relinrlk(ci, cj, ck)→ (c′i, c

′
j)

– version 1:

1. Write ck in base T , i.e. write ck =
∑`

i=0 c
(i)
k T

i, with c(i)
k ∈ RT

2. Return

(c′i, c
′
j) =

[ci +
∑̀
n=0

rlk0,n · c(n)
k

]
q

,

[
cj +

∑̀
n=0

rlk1,n · c(n)
k

]
q

 .

– version 2:

4T is a chosen base (note that T is totally independent of t) where we can write c in base T i.e.
c =

∑`
i=0 T

i · c(i)2 modq with ` = blogT (q)c and c(2i) are in RT .

43

1. Compute

(ck,0, ck,1) =

([⌊
ck · rlk0

p

⌉]
q

,

[⌊
ck · rlk1

p

⌉]
q

)

2. Return
(c′i, c

′
j) =

(
[ci + ck,0]q , [ci + ck,1]q

)
.

Theorem 3. (from [24]) Using the notation of the scheme BFV and supposing that ‖χ‖ <
B, BFV can correctly evaluate a circuit of multiplicative depth L with:

4 · δLR · (δR + 1.25)L+1 · tL−1 < bq/bc. (3.1)

where δR = max{‖a · b‖/(‖a‖ · ‖b‖) a, b ∈ Rq} is the expansion factor.

In table 3.2 we present a comparison between the BFV and BGV cryptosystems in terms
of key and ciphertext sizes. As explained in this table, we remark that the BGV scheme
presents a big overhead in terms of the sizes of its keys and ciphertexts.

Scheme Publick Key Size Private Key Size Ciphertext Size
BGV 2 ∗ d ∗ n ∗ log(q) 2 ∗ d ∗ log(q) 2 ∗ d ∗ log(q)

BFV 2 ∗ d ∗ log(q) d 2 ∗ d ∗ log(q)

Table 3.2: Public key, private key and ciphertext sizes for BGV and BFV scheme.

In this chapter, we present the first cryptographic tools used in our thesis to ensure data
confidentiality. We describe the HE schemes used in our work. In the following chapter,
we present the VC technique, more details on the VC schemes used in our thesis.

44

Chapter 4

Verifiable Computing

4.1 VC approaches or Techniques . 45
4.1.1 Non-Proof-based and Hardware-based Solutions 46
4.1.2 Proof-Based Solutions . 46

4.1.2.1 Proof-Based Solution over clear data 46
4.1.2.1.1 Interactive Proof (IP) Based Solution. 46
4.1.2.1.2 Non-Interactive Solutions. 48

4.1.2.2 Proof-Based Solution over encrypted data 49
4.2 Background . 50

4.2.1 Problem Definition . 50
4.2.2 Properties of VC . 51

4.3 Preliminary tools . 54
4.3.1 Homomorphic Hash Function . 54
4.3.2 Pseudo Random Function with Amortized closed-form Efficient . . 55

4.4 VC schemes . 57
4.4.1 VC for Quadratic polynomials on BGV Encrypted data 57
4.4.2 VC for Paillier scheme . 59

The need for outsourced computing or cloud computing increased significantly, after the
rise of a new type of services, the "computing services", where users desire to reduce the
charge of expensive computations by outsourcing any burdensome computational work-
load to a cloud or a service provider (SPs). The risks come with the growth of this type
services. Therefore, we need to confirm that the result delivered by the cloud or SPs is cor-
rect which can be error-prone or otherwise not entirely trustworthy because the complex
and large-scale of SPs structure. Consequently, an immediate need for result assurance
naturally aroused. Therefore this resulted in the appearance of a new cryptography tool
called Verifiable Computing (VC).

The main essential specialization of the VC is that the prover works to convince the
verifier about the correctness of the delegated computation function for it.

4.1 VC approaches or Techniques

This section attempts to present a slight overview of the VC approaches. Our goal is not
only to describe the related verifiable computing schemes but also to explain our position
and the limits of the work we conducted.

45

A deep look in the literature on Verifiable computing problems concludes on the existence
of two solution approaches, the first known as non-proof-based or hardware solutions and
the second proof-based solutions.

4.1.1 Non-Proof-based and Hardware-based Solutions

The principle idea of this approach is that the verifier delegates some computation to mul-
tiple independent servers [91–93], and according to the results returned by these servers,
the verifier decides the correctness of the result of this computation. For example, the
SETI@Home project [91] uses the BOINC middleware [92] in order to validate the result.
This middleware delegates the computation to different computers located in different
nodes and compares the results output by these computers. If the results returned by
these computers are matched, they are considered correct with high probability. Else, this
middleware delegates the computation to the new computers until obtaining a matched
result under the assumption that most computers are honest (applied the system cor-
rectly). Canetti et al. [93] improved this system to work with a single honest server
among different servers.

Then this approach requires using several server providers (SP) where at least one is
trusted since trusted hardware is usually strongly limited in scalability. In the following,
we show the VC scheme using theoretical tools.

4.1.2 Proof-Based Solutions

First of all, we notice that this is not a detailed presentation of this approach. We present
the general idea of each approach and several works related to it. We refer the interested
reader to a survey conducted by Walfish and Blumberg [94], where they focus on general-
purpose solutions that provide answers to the problem of VC for arbitrary functions.

The proposed VC schemes in this approach are composed of two entities: the verifier and
the prover. The prover works to convinces efficiently the verifier about the correctness of a
given computation which is represented as an NP-statement. To do this, in this approach
the prover sends the result along with proof to determine that the result was computed
correctly with a logical condition that the proof is inexpensive to check the result.

In the following, we present two types of proof-based VC solutions. In function of the
level of confidentiality of the insert data, we distinguish two approaches according to the
type of data of the delegated function: Proof-Based Solution over clear data, Proof-Based
Solution over cipher data.

4.1.2.1 Proof-Based Solution over clear data

In this approach we differentiate between two principal approaches: interactive proof-based
solution or non-interactive proof-based solution.

Indeed, we identify the two following characteristics used as follows:

4.1.2.1.1 Interactive Proof (IP) Based Solution. The Interactive Proofs system
(IPs) was proposed for the first time by Babai [95] and Goldwasser et al. [42] where a
verifier is a polynomial-time machine without any restrictions on prover. The verifier and
the prover open a "dialogue" in order to ensure the goal of this approach, i.e. that the

46

prover convinces the verifier about the correctness of computation using a proof. In [96]
Goldwasser et al. introduced the correct and sound proof concept (i.e. its not possible to
return a proof for an incorrect computation) together with efficiency concept (the verifier’s
task is less than that of prover’s). Nevertheless, such a system is very unpractical.

In order to put the IPs close to practicality of real scenario, Goldwasser et al. [96] trans-
ferred the concept of traditional IPs to the case of a quasi-linear verifier(super efficient)
as well as the case of a super-polynomial time honest prover and a dishonest efficient
prover. This IP is valid for any function representable as a log-space uniform boolean
circuit that has communication complexity being the depth of the circuit. They proposed
a preprocessing step to transform any function to such a circuit and the correctness of
output for each gate is validated in an interaction with the verifier. Even if this approach
is practical for the small circuit and functions that can be parallelized, other improve-
ments were proposed in [97, 98]. We note that this proof system is publicly delegatable,
which means that the entity who runs system setup can be different from the entities who
form a task to be outsourced, but not publicly verifiable where publicly verifiable means
that anybody can verify the correctness of the computation.

Probabilistically Checkable Proofs (PCP). In [99] Arora and Safra proposed a new
VC solution, where a verifier is legitimately confident about the correctness of computing
with "very high probability" and falsely convinced with "very small probability". In this
setting, a proof (say of size n) is encoded, in such a way that a prover can convince the
verifier about its correctness of computation (with high confidence level) using a quering
to check a constant number of randomly chosen locations in this encoding (via interaction
with prover). The PCP theorem [100, 101] stipulates that it’s not necessary to query and
verify the proof entirely (which can be very large and hard), to convince the verifier about
the correctness of proof. This is also inefficient because the length of encryption can be
so large and very hard. It yields more work both for the prover - to construct the proof
and the verifier - to check at sufficient random locations in the encodings. Amelioration
of this setting, particularly in the length of PCPs were proposed in [100, 101] but its still
not deployable in “the real world”, as well as soundness property is violated. The prover
may be tempted to change the value of the query position in the certificate in order to
answer the verifier’s later query, while speciously matching the earlier query. Therefore,
the proof calculated by the prover must be determined in advance in order to answer all
the verifier’s queries.

Argument Based Approach. Kilian introduced in 1992 [102] the idea of Interactive
protocols that are sound against computationally bounded dishonest provers. In a nut-
shell, they combine the PCPs with linear commitments1 and local openings. More in
details, the idea is to commit to a PCP string π, i.e. the prover needs to send the com-
mitment π to the verifier. Now the verifier can ask the prover to open the commitment in
several positions. Then we obtain a four-move argument system. This idea is improved
by Micali in [103] to turn this scheme into a one-move secure scheme. Several works based
on this approach were proposed (like the Ishai et al. work [104]), which are more efficient
in the sense of communication complexities and computation but not sufficient. The con-
sidered PCPs are linear functions, and the query verifier is a computation of function over

1A bit commitment protocol is a cryptographic protocol consisting of two parties, a sender and a
receiver. The sender commits to the receiver to a bit b, such that the receiver does not know the value
of b. Besides, the sender has no mean to change b after it was committed. Later on, the sender reveals
bit b and the receiver can verify that b is really the committed bit.

47

some input selected by the verifier. Additionally, it uses a linear homomorphic encrypted
scheme like Paillier [22] cryptosystem to issue a (linear) commitment to the proof.

Other directions for these approaches developed over the years such as: linear PCPs
[104],Pepper [105], Ginger [106, 107], an improved work of Ishai et all. [104], etc.

4.1.2.1.2 Non-Interactive Solutions. These are new VC solutions without inter-
action between the prover and the verifier with the main characteristics being that the
prover output the result of the delegated computation as well as proofs of correctness in
the same message. The first non interactive proof based system was proposed by Micali
in 2000 [103].

CS Proofs. Computationally Sound (CS) proofs as mentioned above were proposed by
Micali [103]. They combine the rationale behind PCP with an efficient argument system,
and uses the Fiat and Shamir heuristic [108] to eliminate the interaction between the
prover and verifier. We note that the CS proofs are publicly delegatable and verifiable.
Nevertheless, they rely on the random oracle model2.

SNARKS. Bitanski et al. [109] defines the concept of non-interactive argument of
knowledge (SNARK). The idea is to replace the random oracle used in the CS proof
with an extractable collision-resistant hash function (ECRH). This setting relies on the
unfalsifiable assumption3 that for a given ECRH image, there is an extractor to calculate a
pre-image. This scheme combines the theory behind CS proofs[103] with an instantiation
of a Private Information Retrieval (PIR) protocol4 (as the suggestion in [110]). This
setting is publicly delegatable but relies on non-standard and non-falsifiable assumptions.
As for the hardness Gentry and Wichs [109] display that it exists an intrinsic boundary
on solutions based on SNARKs and they cannot rely on falsifiable assumptions5.

Pinocchio Gennaro et al. [54] presented a way to construct succinct non-interactive argu-
ments of knowledge (SNARKs) by means of QSPs and QAP. All these schemes are secure
only under the non-falsifiable assumption. It also relies on a non-falsifiable assumption
(i.e. knowledge of exponential power), which is a non-standard assumption.

However, several recent works proposed are proof-based approaches such as Geppetto:
[111] (Generalized the QAP to MultiQAP, and how to reduce the server’s overhead by de-
composing circuits into a collection of subcircuits.), Succinct Non-Interactive Zero Knowl-
edge for a von Neumann Architecture [112] (new QAP based SNARK for arithmetic
circuits that allows for more efficient verification and proof generation), etc.

VC From Attribute-Based Encryption (ABE) VC scheme was proposed by Parno
et al. [113] to build a public delegation and public verification using an ABE scheme

2Random Oracle Model (ROM) is an oracle (a theoretical black box) that responds to every unique
query with a (truly) random response chosen uniformly fromits output domain. If a query is repeated, it
responds the same way every time that query is submitted.

3Defined by Gentry and Wichs [51], its proposed as a game model between a challenger and an
adversary under falsifiable assumptions.

4PIR protocol is a protocol that allows a user to retrieve an item from a server in possession of a
database without revealing which item is retrieved.

5A falsifiable assumption can be modeled as an interactive game between an efficient challenger and
an adversary at the conclusion of which the challenger can efficiently decide whether the adversary “won”
the game.

48

[114]6. Their construction verifies that a function f : {0, 1}n → {0, 1} can be computed
by a polynomial sized Boolean formula. They use the attribute idea, meaning that the
decryption of the encrypted message is successful under an attribute x iff f(x) = 1 holds.
We note that this setting does not provide input/output privacy, and the security has not
been analyzed yet.

4.1.2.2 Proof-Based Solution over encrypted data

VC on/from homomorphic encrypted data. A specific type of VC solutions, where
the prover works to convince the verifier on the correctness of function evaluated about
homomorphic encrypted data. These VC protocols use the FHE schemes as a building
block. We note that these schemes are privately verifiable and ensure both input and
output privacy.

Gennaro et al. [56] formalize the concept of non-interactive verifiable computation by
combining the garbled circuits[115, 116] with FHE [19], in the amortized model7 that
allows reusing the garbled circuit multiple times for multiple verification, nonetheless
preserving security. The idea of this solution is to represent function f (the function to
be outsourced) as a garbled circuit C that associates random labels to each wire in the
circuit, by the verifier that generates also the labels associated with an input. The prover
computes the label associated to calculation with the output of function as a response.
Now, the verifier uses the input, the input labels, the output of the garbled circuit to verify
the correctness of the computation delegated. In addition to ensuring confidentiality for
this construction, Gennaro et al. were the first to present a formal definition for the
notion of verifiable computation that will be presented in section 4.2.

Another solution of this kind was the one by Chung et al. [117], which proposed another
way to verify the correctness of a result using FHE in the amortized efficiency model while
the server’s overhead depends on the underlying FHE scheme, but in terms of security, it
ensures weaker security. In [118] a similar scheme with a reduction in the preprocessing
phase was presented but it’s a weak security scheme.

A special work in this category is the work of Fiore et al. [3], where they used the MAC8

to construct a verifiable computing scheme of multivariate polynomial with degree at most
2. This scheme is one of our principal pillars of our thesis, as described in detail in the
subsection 4.4.1. We can also classify this work under the class of verifiable computing
built using the MAC tool.

VC on/from Homomorphic Message Authentication Codes (MAC). Another
line of research to find a practical VC is using the cryptographic tools Message Authenti-
cation Codes [119, 120] that allows for private verification where the owner of a secret key
can verify the authenticators. The Homomorphic MAC was defined for the first time by
Gennaro and Wichs in [119]. With this structure, the prover can ensure the correctness
of arbitrary functions (particularly Boolean functions) on authenticated data, where the
prover can produce (homomorphically) an unforgettable tag that validates the correctness

6ABE is a public-key encryption in which the secret key of a user and the ciphertext are dependent
upon attributes .

7The verifier in the amortized model must perform one-time expensive preprocessing operations to
allow an unlimited number of valid verifications.

8Message Authentication Code (MAC) which is a cryptography tool to ensure that the received
message has not been changed in the way, then it ensures the integrity of data.

49

of the computation, without deploying any secret key. Its used only to check the validity
of tag that certifies the correctness of the computation. This setting used also FHE in
order to ensure data confidentiality.

There are several ways to ensure VC schemes using cryptographic tools like Homomor-
phic signature9(whereby anyone have access to the verifying public key can verify a ho-
momorphic signature without knowledge of the secret signing key) [50], AD-SNARK[121]
(combine QAP idea with linear homomorphic MACs).

VC for specified function. Other VC schemes proposed to address a specific class of
functions such as matrix computation [122–124], polynomial evaluation in [122, 123, 125,
126], and keyword search [125, 127].

Recently, in the middle of my thesis, new VC schemes were published. More precisely
in 2020, Fiore et al. [58] extended the approach of [3] to evaluate more than quadratic
functions (yet, of fixed degree) by means of zkSNARKs of polynomial rings as well as
the HE scheme (an instance, over BGV scheme [23]) with particular a prime modulus q
(bigger than 2λ) used in the zkSNARK. This is an efficient proof generation, but it lacks an
implementation, and it requires a relatively large value for the ciphertext modulus.

Another scheme proposed in 2021 by Bois et al. [128] ensures the correctness of functions
over encrypted data while simplifying the specification of the q parameter in the Fiore et
al. work [58], i.e. it allows a flexible choice of HE parameters.

Still, these two schemes have been limited, in the sense of HE improvement. For example,
they don’t support speedups through classical optimizations such as the, Residue Number
System10 (RNS).

4.2 Background
In this section, we present a formal definition of a verifiable computing scheme and their
relevant properties. We will define the VC in the following section according to the model
in [56] and taking into account the updates from Fiore et al. [3].

4.2.1 Problem Definition

Verifiable computing techniques allow to prove and verify the integrity of computations on
authenticated data. A Verifiable Computation scheme is defined as a protocol in which a
client (usually weak) has a function f and some data denoted x and delegates to another
client (in most cases a server) the computation of y = f(x). Then the same client or
another one can receive the result y plus a short proof of its correctness. More in details,
a user generates an authentication tag σx associated with his/her data x with his/her
secret key and the server computes an authentication tag σf,y that certifies the value
y = f(x) as an output of the function f . Now, anyone using the verification key (public
or secret) can verify y to check that y is indeed the result of f(x).

9The Homomorphic signatures is the "public" version of the homomorphic MAC scheme.
10Residue Number System: is a numeral system for representing an integer by their values modulo

several pairwise coprime integers, a method used for improving the speedup of the calculation for HE
scheme.

50

A verifiable computation scheme VC = (KeyGen,ProbGen,Compute,Verify) consists
of the four following algorithms:

• (PK,SK)←KeyGen(f, λ): Taking as input the security parameter λ and a function
f , this randomized key generation algorithm generates a public key (that encodes
the target function f) used by the server to compute f . It also computes a matching
secret key, kept private by the client.

• (σx,τx)←ProbGenSK(x): The problem generation algorithm uses the secret key
SK to encode the input x as a public value σx, given to the server to compute with,
and a secret value τx which is kept private by the client.

• σy ←ComputePK(σx): Using the client’s public key and the encoded input, the
server computes an encoded version of the function output y = f(x)

• (acc, y)←VerifySK(τx,σy): Using the secret key SK and the secret τx, this algorithm
converts the server output into a bit acc and a string y. If acc = 1 we say that the
client accepts y = f(x), meaning that the proof is correct, else (i.e. acc = 0) we say
the client rejects it.

4.2.2 Properties of VC

In this section, we recall the main properties for a verifiable computation scheme, as
defined in [56] and [3]: correctness, privacy, outsourceability with verification queries by
the adversary, function privacy (capability of the scheme to hide f from the server) and
adaptive security.

Definition 8 (Correctness). A VC scheme is correct if, for all (f , x), with:

• (PK, SK)← Key Gen(f, λ),

• (σx,τx)←ProbGenSK(x),

• σy ←ComputePK(σx).

Then
VerifySK(τx, σy)→ (1, y = f(x)).

When verifiable computing is correct for a given function f and input x, a malicious
server has a negligible probability to convince the one running the verification algorithm
to accept a wrong output ŷ, i.e. VerifySK(τx, σŷ)→ acc = 0 for ŷ6= f(x).

In order to introduce the other notions, we first need to define the following oracles.

• PProbGenSK(x): runs ProbGenSK(x) to get (σx,τx) and returns only σx.

• PVerifySK(τ, σ): returns acc of VerifySK(τ ,σ) (public acceptance/rejection bit
resulting from a verification request).

The following experiment is used to explain the notion of security for a VC scheme. Note
that, in this experiment, poly(.) is a polynomial on its inputs and A is an adversary allowed
to query PV erifySK(τ, .) with τ a secret encoding obtained with PProbGenSK .

Experiment ExpV erifA [V C, f, λ];

51

(PK,SK)←KeyGen(f, λ);

For i = 1, . . . , ` = poly(λ):

xi ← A(PK, x1, . . . , xi−1, σi−1);

(σi,τi)←ProbGenSK(xi);

(i, σ̂y)← A(PK, x1, σ1, . . . , x`, σ`);

(âcc, ŷ)←VerifySK(τi,σ̂y);

If âcc = 1 and ŷ6= f(xi), output ‘1’ else output ‘0’.

In this experiment, A has access to the above two oracles to generate the encoding of
many problem instances and, to check, arbitrarily, the response of the client. If A is
able to convince the verifier of the output she produced even if its incorrect, then A is
successful.

A verifiable computing scheme VC is correct for a function f and an adversary A running
in probabilistic polynomial time(PPT), if

Prob[ExpV erifA [V C, f, λ] = 1] ≤ neg(λ) (4.1)

where neg() is a negligible function on its input. This probability is the advantage of A
denoted AdvV erifA .

For efficient Verifiable Computing schemes, the time to encode an input and verify an
output have to be smaller than the time to compute the function from scratch. This
corresponds to the outsourceability property, defined as follows:

Definition 9. (Outsourceability) A VC can be outsourced if it allows efficient generation
and verification. So, for any x and σy, the time required for ProbGenSK(x) plus the
time required for VerifySK(σy) is o(T), where T is the time required to compute f(x).

The definition of input privacy, based on a typical indistinguishability argument, will
guarantee that no information about the inputs are leaked. If VC is private for input,
output privacy follows naturally.

Intuitively, a verifiable computation scheme is private when the public outputs of the
problem generation algorithm ProbGen over two different inputs are indistinguishable.
For a VC with function privacy, the public key generated with Keygen should not reveal
any information on the encoding of f even for an adversary with polynomial runs of
ProbGenSK on chosen inputs.

More formally, to define the privacy and the function privacy, we consider the following
experiments.

Experiment ExpPrivA [V C, f, λ]

(PK, SK)←KeyGen(f,λ);

b← {0, 1};

(x0, x1)← APVerify,PProbGen(PK);

(σ0,τ0)←ProbGenSK(x0);

(σ1, τ1)←ProbGenSK(x1);

b̂ :← APV erify,PProbGen(PK, x0, x1, σb);

if b̂ = b then output ‘1’, else ‘0’.

52

Experiment ExpFPrivA [V C, λ]

(f0, f1)← A(λ);

b← {0, 1};

(PK, SK)←KeyGen(fb, λ);

For i = 1, . . . , l = poly(λ) :

xi ←

APVerify(PK, x1, σ1, . . . , xi−1, σi−1);

(σi, τi)←ProbGenSK(xi);

b̂ :← APVerify(PK, x1, σ1, . . . ,
x`, σ`, σb);

if b̂ = b then output ‘1’, else ‘0’.

Definition 10. (Privacy) A verifiable computing VC is private for a function f if, for any
probabilistic polynomial time (PPT) adversary A,

Prob[ExpPrivA [V C, f, λ] = 1] ≤ 1

2
+ neg(λ) (4.2)

Definition 11. (Function Privacy) A verifiable computing VC is function private if, for
any PPT adversary A,

Prob[ExpFPrivA [V C, λ] = 1] ≤ 1

2
+ neg(λ) (4.3)

In [3], adaptive security for a VC scheme is defined as the security if the adversary chooses
f after having seen many “encodings” of σx for adaptively-chosen values x. As such, one
has to first specify the type of schemes allowing to compute σx before choosing f .

Definition 12. (Split Scheme) A scheme of verifiable computing is a split scheme if the
following conditions hold:

• There exists PPT algorithmsKeyGenE(λ),KeyGenV (f, λ) such that: if (PK, SK)←
KeyGen(f, λ), then PK = (PKE, PKV) and SK = (SKE, SKV), where: KeyGenE(λ)→
(PKE, SKE) and KeyGenV (f, λ, PKE, SKE)→ (PKV , SKV).

• There exist PPT algorithmsProbGenESKE(x), ProbGenVSKV (x) such that: if (σx, τx)←
ProbGenSKE ,SKV (x), then σx = σEx ← ProbGenESKE(x) and τx = τV ← ProbGenVSKV (x).

For a split scheme, and for any delegated f one can generate a valid σx before know-
ing f (because σx is independent of f). For this, one can run KeyGenE(λ) to obtain
(PKE, SKE), and setting σx ← ProbGenESKE(x) before knowing f . The validity of σx is
true for all (PK, SK) = ((PKE, PKV), (SKE, SKV)).

Let us now describe the following experiment necessary to define the adaptive security
for split schemes.

Experiment ExpAdap−V erifyA [V C, λ]

(PK, SK)← KeyGenE(λ);

For i = 1, . . . , `′ = poly(λ′):

x′i ← A(PKE, x
′
1, σ

′
1, . . . , x

′
i−1, σ

′
i−1);

σ′i ← ProbGenESKE(xi);

f ← A(x′1, σ
′
1, . . . , x

′
`′ , σ

′
`′);

(PKV , SKV)← KeyGenV (f, λ);

(PK, SK)← (PKE, PKV , SKE, SKV);

For i = 1, . . . , ` = poly(λ):

xi ← APVerify(PKE, x1, σ1, . . . , xi−1, σi−1);

53

(σi, τi)← ProbGenSK(xi);

(i, σ̂y)← APverify(PK, x1, σ1, . . . , x`, σ`);

(âcc, ŷ)← VerifySK(τi, σ̂i);

if âcc = 1 and ŷ 6= f(xi) output ‘1’, else
‘0’;

Definition 13. (Adaptive security) A verifiable computing VC is adaptively secure, if,
for any PPT adversary A,

Prob[Expadap−verifA [V C, λ] = 1] ≤ 1

2
+ neg(λ) (4.4)

4.3 Preliminary tools
Before presenting a detailed description of verifiable computing used in our work, we
present two required tools in the construction of Fiore et al. VC [3]: Pseudo Random
Function with Amortized closed-form Efficient, and Homomorphic Hash function.

4.3.1 Homomorphic Hash Function

Informally, a family of homomorphic hash functions H with domain X and range R
consists of three algorithms (H.KeyGen, H, H.Eval). The first one, the key generation
hash H.KeyGen, generates the description of the hash function HK ,where K is the key,
the function H computes the hash and, finally, H.Eval allows the computation over R
satisfying the following homomorphic property:

H.Eval(f, (H(x1), . . . ,H(xn))) = H(f(x1, . . . , xn)), xi ∈ X (H is a ring homomorphism).

Realizations of A Collision-Resistant Homomorphic Hash [3]

We present a realization of homomorphic hash Ĥ that permits to reduce a BGV encrypted
µ ∈ Rq[y] (µi = BGV.EncPK(mi)) into a v ∈ Z/qZ depending on the degree of µ denoted
degy(µ) while preserving the homomorphic property (Ĥ.Eval(f, (Ĥ(µ1), . . . , Ĥ(µn))) =

Ĥ(f(m1, . . . ,mn)) with mi a BGV plaintext). We point out that this realization is done
by Fiore et al. [3]

In their construction of Ĥ, they used the parameters bgpp = (q, g, h, e) where q be a prime
of λ bits, as well as a homomorphic hash function (H.KeyGen,H,H.Eval) with domain
Rq[y] and range Fq = Z/qZ, which is described as follows:

H.KeyGen : select (α, β) ∈ Rq × Z/qZ and set κ = (α, β).
Hκ(µ ∈ Rq[y]) : evaluates µ at Y = α and evaluate µ(α) at β.
H.Eval(fg, ν1, ν2) : compute fg(ν1, ν2) where fg is + or × .

For µ ∈ D = {µ ∈ Zq[x][y] : degx(µ) = N, degy(µ) = c} ⊂ Rq[y], Hα,β(µ) consists of
evaluating µ at y = α, and then evaluating µ(α) at β i.e. Hα,β(µ) = evβ ◦ evα(µ).

The authors of [3] demonstrated that the aboveH is homomorphic and universal one-way.
More precisely, for all µ, µ′ ∈ D, such that µ 6= µ′:

Pr[Hκ(µ) = Hκ(µ
′) : (α, β) ∈ Rq × Z/qZ] ≤ c+N

q
.

54

which is negligible for an appropriate choice of q ≈ 2λ. But its secure only if the keyκ =
(α, β) is kept secret and the function is used only one time(otherwise information on α
and β is leaked). For this reason, the authors proposed a new version of H marked as
Ĥ, which is a proven collision-resistant homomorphic hash preserving the homomorphic
property but only for the functions of degree 2.

• Ĥ.KeyGen→ (K,κ = (α, β)):
First at all, generate bgpp = (g, h, q),
Next, sample a random (α, β) ← (Fq)2. Afterwords, for i = 0, . . . , c, j = 1, . . . , N ,
we calculate gαiβj , and hαiαj and include them to K.
Output K and κ = (α, β).

• Ĥ: For µ ∈ D, in function of its degree degy(µ), Ĥκ(µ) is computed differently.

If degy(µ) ≤ 1 then Ĥκ(µ) = (T, U) = (gHκ(µ), hHκ(µ)) ∈ G1 ×G2.

If degy(µ) = 2, then e(g, h)Hκ(µ).

• Ĥ.Eval(fg, ν1, ν2): It computes in a homomorphic way a function of degree 2 on
the outputs of Ĥ.

For ν1 = (T1, U1), ν2 = (T2, U2) and (respectively, T̂1, T̂2 ∈ GT).
ν1 + ν2 = (T1 · T2, U1 · U2) (resp T̂ ← T̂1 · T̂2).

c · ν = (T c, U c) (resp T̂ c) for c ∈ Fq.
ν1 · ν2 = e(T1, U2) ∈ GT .

Fiore et al [3] demonstrated that this hash Ĥ is homomorphic and its collision-resistant
under the `−BDHI assumption11.

Theorem 4. The function Ĥ described above is homomorphic. Furthermore, if the `−BDHI
assumption holds for G (for any ` ≥ N, c), then Ĥ is collision-resistant. More precisely,
for (K,κ)← Ĥ.KeyGen :

Pr[Ĥ(µ) = Ĥ(µ′) ∧ µ 6= µ′|(µ, µ′)→ A(K)] = neg(λ).

We refer the one interested in this proof for this theorem to the theorem 3 in [3] .

4.3.2 Pseudo Random Function with Amortized closed-form Ef-
ficient

Now, let us present the notion of Pseudo Random Function(PRF) with Amortized Closed-
Form Efficiency [55], as well as its security notion.

Definition 14. [55] Consider a computation Comp that takes as input n random values
R1, . . . , Rn ∈ R, and a vector of m arbitrary values z = (z1, . . . , zm), and assume that the

11The `−Bilinear Diffie−Hellman Inversion (`−BDHI) Problem is defined as follows: Let G be a
bilinear map generator, and let bgpp = (q,G1,G2,GT , e, g, h) ← G(λ). Let z be chosen uniformly at
random in Zq. We say that the `− `−BDHI assumption holds for G if for every PPT adversary A and
any ` = poly(λ) the probability P

[
A(bgpp, g, h, gz, hz . . . , gz`

, hz
`

) = e(g, h)1/z
]
= neg(λ).

55

computation of Comp(R1, . . . , Rn, z1, . . . , zm) requires time t(n,m). Let L = (L1, . . . , Ln)
be arbitrary values in the domain χ of F such that each one can be interpreted as Li =
(∆, τi).

We say that a PRF (KG, F) satisfies amortized closed-form efficiency for (Comp, L) if
there exist two algorithms CFEval offComp,τ and CFEval onComp,∆ such that:

1. Given w ← CFEval offComp,τ (K, z) we have that:

CFEval onComp,∆(K,w) = Comp(FK(∆, τ1), . . . ,FK(∆, τp), z1, . . . , zm).

2. the running time of CFEvalonComp,∆(K,w) is O(t)12.

Definition 15. A PRF (F.KG, F) is secure if, for every PPT adversary A, we have that:∣∣Pr[AFK(·)(λ, pp) = 1]− Pr[AΦ(·)(λ, pp) = 1]
∣∣ ≤ neg(λ) where: (K, pp) ← KG(λ) and

Φ : χ→ R is a random function (i.e.its not possible to distinguish between F and Φ).

Realization of PRF with amortized closed-form efficiency.

Now we present the realization for the PRF with amortized closed-form efficiency, done
by Fiore et al. [3], an adaptation of the scheme of Bakes et al in [55] to work with the
asymmetric bilinear groups. The authors proposed this realization to acquire efficiency
for its VC schemes for quadratic multi-variate polynomials.

Let f : Fnq → Fq be an arithmetic circuit of degree 2, and, without loss of generality, parse
f(x1, . . . , xn) =

∑n
i,j ζi,j · xi · xj +

∑n
k=1 ζk · xk.

For some ζi,j, ζk ∈ Fq, it defines f̂ : (G1 × G2)n → GT as the compilation of f on group
elements such as: f̂(A1, B1 . . . , An, Bn) =

∏n
i,j ζi,j · e(Ai, Bj) ·

∑n
k=1 ζk · e(Ak, h).

• F.KG(λ)→ K = (K1, K2) :
First generate bgpp = (q, g, h, e) some bilinear group parameters, where G1 =<
g >,G2 =< h > and q = order(Gi) for i = 1, 2 and e : G1 × G2 → GT a
non−degenerate(GT =< e(g, h) >) bilinear map. Choose two seeds K1, K2 for a
family of PRF s F′K1,2

: {0, 1}∗ → F2
q. Output K1, K2. The parameters define

F : χ = {0, 1}∗ × {0, 1}∗ → R3.

• FK(∆, τ)→ (R, S, V): It generates (u, v)← F ′K1
(τ) and (a, b)← F ′K2

(∆) Finally it
calculates (R, S) = (gua+vb, hua+vb).

• CFEvaloffτ (K, f) → wf = ρ : For i = 1 to t : calculate (ui, vi) = F ′K1
(τi) and

construct a linear map ρi using (ui, vi) as ρi(x1, x2) = ui · x1 + vi · x2 Run ρ ←
f(ρ1, . . . , ρt), i.e., ∀z1, z2 ∈ Fq: ρ(z1, z2) = f(ρ1(z1, z2), . . . , ρt(z1, z2)).

• CFEvalon∆ (K,wf)→ W : It generates (a, b)← F ′k2(∆) and computesW = e(g, h)wf (a,b).

This realization F is a pseudorandom function with amortized closed-form efficiency for
Comp = f̂ , and its secure under the decision linear 13 [26] assumption in asymmetric
bilinear groups. These properties are proved in [3], especially, in the theorem 4.

12Big O Notation is the language we use to describe the complexity of an algorithm. We express the
runtime in terms of how quickly it grows relative to the input, as the input gets larger.

13The decision linear assumption holds for G if for every PPT algorithm A, AdvdlinA is negligible. Where
The AdvdlinA defined as: Let bgpp $← G. Let r0, r1, r2, x1, x2 ← Zq be chosen uniformly at random. Let T =

56

4.4 VC schemes

4.4.1 VC for Quadratic polynomials on BGV Encrypted data

In this section, we present the VC scheme of Fiore et al. [3] for the case of multi-variate
polynomials of degree 2, over BGV encrypted data. First the client encrypts his/her
data x = (x1, . . . , xn) as a BGV ciphertext, where the plaintext modulus q is chosen
to be prime. In parallel with the encryption of xi, he/she also generates a tag σi for
his/her data, using the combination of the PRF output and the hash collision-resistant
functions (that compresses a BGV ciphertext into a double group elements). Once the
server receives the BGV ciphertexts [xi]BGV and the tags σi from the user, it computes f
over [xi]BGV and over σi and it obtains y = f([xi]BGV) and respectively a tag σ = f(σi).
The server sends y with the associated tag to the user owning the verification keys, which
then checks the output in constant time (because he has already done a pre-computation
phase).

In this scheme, we require to authenticate:

1. Each of the 2n′ − Fq components of a BGV ciphertext;

2. The BGV evaluation circuit f̂ : F2nn′
q → F3n′

q instead of f : Fnq → Fq.

More formally, our VC scheme is specified by the following algorithms:

1. KeyGen(f, λ)→ (PK, SK), with the following steps:

• Generate bgpp = (q, g, h, e) some bilinear group parameters, where
G1 =< g >, G2 =< h >, q = order(G1) = order(G2) and e : G1 × G2 → GT

a non-degenerate bilinear map (GT =< e(g, h) >).

• Run BGV.Setup(λ)→ (n′, q, t, χerr, χkey, w) to generate the parameters for the
BGV encryption scheme. Run BGV.KeyGen()→ (pk, sk, evk).
Recall that the ciphertext of BGV scheme is Rq := Fq[X]/Φm(X) be the poly-
nomial ring where Φm(X) is the mth cyclotomic polynomial in Fq[X] of degree
n′ = Φ(m), the cleartextM is the ring Rq[Y].

• Run Ĥ.KeyGen→ (κ, K̂) to choose a random member of the hash function
family Ĥ : D = {µ ∈ Zq[x][y] : degx(µ) ≤ 2(n′ − 1) , degy(µ) ≤ 2} ⊂ Rq[y] →
G1×G2. In this scheme, we do not use the public key of Ĥ, so its not necessary
to calculate it.

• Sample a random value r ← Fq.

• Run PRF.KeyGen(λ) → (K, pp) to build FK : {0, 1}∗ → G1 × G2. In this
scheme, we need FK to be computationally indistinguishable from a function
that outputs (R, S) ∈ G1 × G2 such that Dlogg(R) = Dlogh(S) 14 is uniform
over Fq (i.e. e(R, h) = e(g, S)).

• Run CFEvaloffτ (K, f)→ wf , called the concise information of f .

(g, h, gx1 , gx2 , gx1r1 , gx2r2 , hx1 , hx2 , hx1r1 , hx2r2). We define the advantage of an adversary A in solving the
decision linear problem as AdvdlinA = |Pr[A(bgpp, T, gr1+r2 , hr1+r2) = 1]− Pr[A(bgpp, T, gr0 , hr0) = 1]|

14Dlog is the Discrete logarithms problem where The discrete logarithm to the base g of R in the
group G1 is defined to be x where R = gx in G1.

57

• Set SK = (pk, sk, κ, r,K,wf) and PK = (pk, pp, f).

2. ProbGenSK(−→x = (x1, . . . , xn))→ σx, τx, requiring the operations below:

• Choose an arbitrary string ∆ ∈ {0, 1}λ (identifier for −→x).

• For i=1 to n:

(a) Run BGV.Enc(xi)=µi ∈ R2
q and compute its hash value (Ti, Ui) = Ĥκ(µ) ∈

G1 ×G2. Next run FK(∆, i) = (Ri, Si) ∈ G1 ×G2.

(b) Compute Xi = (Ri · T−1
i)1/r and Yi = (Si · U−1

i)1/r ∈ G1,G2 respectively.

(c) Set σi = (Ti, Ui, Xi, Yi,Λi = 1GT) ∈ (G1 ×G2)2 ×GT . We denote the level
of tag as lev(σi) and we set lev(σi) = 1.

• Set σx = (∆, µ1, σ1, . . . , µn, σn) and τx =⊥.

3. ComputePK(σx)→ σy with an admissible circuit f it consist of the following steps:

• Run the evaluation circuit f on the BGV encrypted data to obtain µ =
BGV.Eval(f, µ1, . . . , µn).

• Apply (gate-by-gate) f over the authentication tags (σ1, . . . , σn), using the fol-
lowing gate functions GateEval().
GateEval:(fg, σ1, σ2)→ σ
Parse (Ti, Ui, Xi, Yi,Λi) ∈ (G1 × G2)2 × GT for i = 1, 2, where fg stands for
tag addition ("+") or tag multiplication ("×"). We try to compute σ =
(T, U,X, Y,Λ).

– Add two tags together. If fg ="+", the addition takes different forms de-
pending on the levels of the input tags.
If lev(σ1) = lev(σ2), then σ = (T1 ·T2, U1 ·U2, X1 ·X2, Y1 ·Y2,Λ1 ·Λ2) with
lev(σ) = 1.
Else, without loss of generality, let suppose that lev(σ1) = 1 and lev(σ2) =
2(i.e. there is a multiplication gate before this gate).
The idea is to create a level-2 tag (σ′1) from σ1 as follows: σ′1 =
(e(T1, h), e(g, U1), e(X1, h), e(g, Y1),Λ1). Then compute σ = σ′1 + σ2 as in
the first case but set lev(σ) = 2.

– Add a constant to a tag (c+ σ1). This method depends on the level of the
tag as follows:
If lev(σ1) = 1, then the result tag σ = (T1 · (gc), U1 · (hc), X1, Y1, ,Λ1).
If lev(σ1) = 2, then we obtain: σ = (T1·(e(g, h)c), U1·(e(g, h)c), X1, Y1, Z1,Λ1).
In both cases lev(σ) = lev(σ1).

– Multiplication by a constant (c · σ1). The result tag is σ = (T c1 , U
c
1 , X

c
1, Y

c
1 ,Λ

c
1)

and lev(σ) = lev(σ1).

– Multiplication. For fg ="×" on two tags (σ1 × σ2)
If levy(σ1) > 1 or levy(σ2) > 1 then reject. Else calculate T = e(T1, U2),
U = e(T2, U1), X = e(X1, U2) · e(X2, U1), Y = e(T2, Y1) · e(T1, Y2), Λ =
e(X1, Y2). Also set lev(σ) = 2.
Its not necessary to keep U and Y after a multiplication because T = U
and X = Y . We keep them only for the sake of clarity. As noted in [3],

58

one can see the function f as the composition of two functions fg(f1, f2)
in the last gate fg of f .

– Set σy = (∆, µ, σ), where σ is the tag obtained after evaluating the last
tag of f .

4. VerifySK(σy, τx)→ (acc, y), for σy = (∆, µ, σ), using the following operations:

• Compute Ĥκ(µ)→ ν̂.

• Run CFEvalon∆ (K,wf)→ W

• Check, depending on the of degree of f , as follows:

(a) If deg(f) = 1, check the following equations:

(T, U) = ν̂(= (g((µ(α))(β)), h((µ(α))(β))))

e(X, h) = e(g, Y)

W = e(T ·Xa, h).

(b) Else, check over GT the following equations:

T = U = ν̂(i.e. = e(g, h)((µ(α))(β))) (4.5)
X = Y (4.6)

W = T · (X)r · (Λ)
2

(4.7)

• If all equations are satisfied set the check bit acc to 1 (accept), otherwise set
it to 0 (reject).

• Finally, if acc=1, µ′ = µ mod Φm(x) = (c0, c1, c2) and set y = BGV.Decdk(µ
′),

otherwise set y =⊥.

Theorem 5. [3] If BGV is a semantically secure homomorphic encryption scheme, Ĥ is a
collision-resistant homomorphic hash function and F is a pseudorandom function, then
VC described above is correct, adaptive secure and input private.

4.4.2 VC for Paillier scheme

Now, we present the VC for Paillier cryptosystem [129]. More precisely, its a Linearly
Homomorphic Authenticated Encryption scheme with Public Verifiability (LAEPuV) and
provable correctness called LEPCoV and it allows the public verifiability of data returned
by the server. This scheme improves Catalano et al.’s instantiated scheme [130] by avoid-
ing false negatives during the verification step.

Let S = (KeyGenS, Sign, V erify) be a signature scheme.

• AkeyGen(sz, I): takes as input a prime size sz (in number of bits) and an integer I
representing the upper bound for the number of messages encrypted in each dataset.
It calculates the secure sk and public pk parameters as follows: sample four (safe)
primes pE, qE, pS, qS of size sz/2, such that NE = pE · qE and NS = pS · qS it
holds that ϕ(NS) = (pS−1)(qS−1), the group elements g0, g1, h1,. . ., hI ∈ Z∗Ns and
g ∈ Z∗

N2
E
of order NE, and picks a hash function H. Finally, it runs KeyGenS(sz) to

59

obtain the secure and private signature key (skS, pkS). Returns the key pair (sk, pk),
where pk = (NE, g, NS, g0, g1, h1, . . . , hI , H, pkS) and sk = (pE, qE, pS, qS, skS).

• AEncrypt(sk, τ, i,m): probabilistic algorithm that takes as input the secret parame-
ter, a messagem ∈M , a dataset identifier τ , and an index i ∈ {1, . . . , I} to calculate
the ciphertext c containing the encryption of the message with the tag of verification.
Thus, it computes the Paillier encryption C of the message m, R = H(τ ||i), and a
tuple (a, b) ∈ ZNE × Z∗NEsuch that gabNE = CR mod N2

E (using the factorisation
of NE). In addition, if τ is used for the first time, it chooses a not yet used prime
e of length l ≤ sz/2 such that gcd(eNE, ϕ(NS)) = 1, it computes its inverse e−1

mod ϕ(NS), and its signature µe = SignskS(τ ||e) and it stores (τ, e, e−1, µe) in the
list L. Otherwise, it takes (τ, e, e−1, µe) from the list L. Then, it chooses an element
s uniformly at random from ZeNE and it computes x using the pS and qS such that
xeNE = gs0hig

a
1 mod NS. It returns c = (C, ei, e

−1
i , µe, τ, σ), where σ = (a, b, s, x) is

the verification tag.

• AEval(pk, τ, f, {ci}i∈[I]): takes as input the public key pk, a dataset identifier τ , a
linear function f = (fi)i∈I and I ciphers {ci}i∈[I] = (Ci, ei, e

−1
i , τi, σi). The output

is a cipher c. The algorithm checks if there exists an index l∈[I] such that τ 6=τl, or
that the signature (V erify(pkS, τ ||el, µel) = 0). Furthermore, the algorithm checks
if there are two indexes i 6= j ∈ [I] such that ei 6= ej. If one of the checks is true,
the algorithm aborts. Otherwise, the algorithm sets e = e1, e

−1 = e−1
1 , µe = µe1

and evaluates f over ciphertext as: C =
∏I

i=1 C
fi
i mod N2

E. It also evaluates f
over the tag to obtain a new tag (a, b, s, x) as follows: a =

∑I
i=1 fiai mod NE,

b =
∏I

i=1 b
fi
i mod N2

E, s =
∑I

i=1 fisi mod eNE, s′ =
(∑I

i=1 fisi − s
)
/(eNE), a′ =(∑I

i=1 fiai − a
)
/NE, and x =

∏I
i=1 x

fi
i

gs
′

0 g
a′e−1
1

mod NS.

It returns the cipher c = (C, e, e−1, µe, σ).

• AV erify(pk, τ, c, f) : takes as input the public key pk, a dataset identifier τ , a
cipher c = (C, a, b, e, s, τ, x), and a linear function f = (fi)i∈[I], to detect if c is a
valid or invalid cipher. For this goal, the algorithm checks that:

V erify(pkS, τ ||e, σe) = 1;

a, s ∈ ZeNE ;

xeNE = gs0
∏I

i=1 h
fi
i g

a
1 mod NS;

gabNE = C
∏I

i=1H(τ ||i)fi mod N2
E;

If all checks pass, it outputs 1 (i.e c is a valid cipher), else it outputs 0, (i.e. c is an
invalid cipher).

• ADecrypt(sk, τ, c, f) : Taking as input the secret parameter sk, a data set identifier,
a cipher c, and a linear function f = (fi)i∈[I], it calculates the decryption of c or ⊥
(if c is invalid cipher). Then it verifies if c is a valid cipher by running AV erify
(pk, τ, c, f). If passed, the algorithm returns the message m obtained by Dec(c).
Otherwise, it returns ⊥.

We refer the reader to [130] for the proofs of correctness and security for the LAEPuV
scheme and to [129] for the security and correctness proofs of the LEPCoV scheme.

60

Part II

Our contribution

61

Chapter 5

Computing NN using VC and FHE

5.1 Introduction . 63
5.1.1 Problem statement and contribution 64

5.2 Related work . 65
5.2.1 FHE for encrypted machine learning. 65

5.2.1.1 VC for machine learning. 66
5.2.2 Encrypted machine learning using Functional Encryption 66

5.3 Scenario and threat model . 68
5.4 Technical preliminaries . 70

5.4.1 FHE . 70
5.4.2 VC . 71
5.4.3 Pseudo Random Function with Amortized closed-form Efficient . . 72
5.4.4 Homomorphic Hash function . 72

5.5 VC for Quadratic polynomials over BFV Encrypted data 73
5.6 VC and FHE for first layer . 75
5.7 Experimental Results . 77

5.7.1 Results . 78
5.8 Conclusion . 78

5.1 Introduction

Despite limitations due to high communication overheads, computing costs or expressiv-
ity, techniques for computing over encrypted data such as Fully Homomorphic (FHE),
Functional Encryption (FE) or Multi Party Computation (MPC), to name a few, are
becoming practical for a number of applications. At the same time, Artificial Intelligence
(AI) techniques and, especially, Neural Networks ones are becoming omnipresent in our
connected society and have already lead to countless practical applications impacting, for
better or worse, our daily lives. Yet, the AI applications ecosystem has so far developed
with a limited concern for user privacy.

In this context, we contribute to the study of how the aforementioned emerging crypto-
graphic techniques can contribute to address AI privacy challenges. More specifically, we
address the issue of ensuring the end-to-end confidentiality of some user data when they
pass through a neural network operated on some cloud server with the aim of providing
classification results to an operator. We do so by means of Homomorphic Encryption,

63

which is used to execute the neural network on the server, associated to Verifiable Com-
puting techniques in order to guarantee both the confidentiality of the user data as well
as the integrity of the execution of the network with respect to threats coming from the
server. Still, this is easier said than done, and in order to cope with the various con-
straints coming when using these techniques we also have to open the machine learning
box and to propose a specific solution in which both the neural net structure and the
crypto techniques are co-designed in order to achieve the desired overall system security
properties.

5.1.1 Problem statement and contribution

We propose an approach to build privacy preserving neural networks, combining a FHE
cryptosystem (here the BFV scheme [24]) with the Verifiable Computation protocol from
Fiore et al. [3], adapted for BFV encrypted data.

More specifically, we show how to evaluate the first layer of a neural network on homo-
morphically encrypted data on a server and how the operator, which decrypts them, can
check the result validity. The operator then pursue, in the clear domain, the network
evaluation to reach a final classification.

We present here a global architecture made of these three entities: the client, owner of
some private data, the server performing the computation over the encrypted layers of the
neural network and the operator computing the remaining layers of the neural network.
This architecture allows to deploy our semi-private evaluation of a neural network in order
to ensure data privacy for clients and also provide integrity proofs with respect to the
server computations. A complete description of the proposed architecture and an analysis
of the associated security threats are given in Section 5.2.

To achieve this we reuse the neural network model proposed in [4] in which the first layer
of the network acts as a whitener, ensuring, by means of adversarial training, that the
knowledge of the outputs of the first layer does not allow to recover selected (sensitive)
features of the input data while still preserving an ability to perform good quality clas-
sification. However, as shown in section 5.3, the implementation of our approach targets
different use cases and deployment scenarios as the ones from [4]. Although based on
different reference problems, since the underlying cryptographic primitives we use are
different (i.e. HE and VC), our work has similar security guarantees. This work thus
complements [4] approach by providing more versatility to their network partitioning ap-
proach. Also note that the neural network design, partitioning and training approaches
underlying [4] is widely applicable to virtually any classification problem.

We also provide an efficient implementation and demonstrate practical results on the
MNIST dataset [131], for the recognition of handwritten digits. Within our approach we
perform the classification of the encrypted image in less than 3.8 seconds and the integrity
check for the evaluation of the first layer in approx. 0.015 sec, with an overall accuracy
of 97.54% for 128 bits of security.

64

5.2 Related work

5.2.1 FHE for encrypted machine learning.

Research on the application of techniques for computing over encrypted data, FHE or
others "competing" techniques, to neural networks-related privacy issues is only at its
beginning. The first attempts at applying homomorphic encryption techniques to neural
networks have almost all focused on the inference phase and more specifically, as the
present work does, on the problem of evaluating a public (from the point of view of the
computer doing the evaluation) network over an encrypted input (hence producing an
encrypted output). The first work of this kind is CryptoNets [132] where the authors suc-
cessfully evaluate an approximation of a simple 6-layer Convolutional NN able to achieve
99% success recognition on the well-known MNIST hand-written digits database. That
network was composed only of simple Convolution, Square Activation and Mean Pool
Scaling layers with only one application of the “FHE-unfriendly” Sigmoid function at the
last layer which, in that specific case, could be dropped without affecting prediction qual-
ity (hence the final network only had 2 nonlinear Square Activation layers leading to a
small multiplicative depth). Their implementation uses the BFV FHE scheme [24] and
achieves network evaluation timings of around 4 minutes on a high-end PC. Yet, thanks
to the SIMD/batching property of FV-like schemes, one network evaluation can in fact
lead to 4096 evaluations of the network done in parallel on independent inputs (i.e. the
network is evaluated once on ciphertexts which have many "slots" and thus contain dif-
ferent cleartexts). So, although the latency remains of 4 minutes, the authors rightfully
claim their system to be able to sustain a throughput of around 60000 digit recognitions
per hour. In subsequent papers, Chabanne et al. [133], [134] are building approximations
with small multiplicative depth of networks with up to 6 nonlinear layers by combining
batch normalization layers with degree 2 approximations of the ReLU function (the for-
mer allowing to stabilize the inputs of the latter in order to decrease the sensitivity of the
network to approximation errors). Through significant hand-tuning of the learning step
of their networks, they show that these can achieve state-of-the-art prediction quality on
both hand-digit (MNIST) and face recognition. However their work lacks an implemen-
tation and, hence, they did not provide FHE evaluation timings. More recently, Bourse
et al. [135], have fine-tuned the TFHE cryptosystem towards a slight generalization of
BNNs (Binary Neural Networks) called DiNNs in which the nonlinear activation function
is the sign function which they intricate with the TFHE bootstrapping procedure for more
efficiency. Overall, they are able to evaluate small DiNN networks (100 neurons and only
one hidden layer) in around 1.5 seconds resulting in a (just decent) 96% prediction accu-
racy on the MNIST database. This line of research has also been pursued in [136] where
the authors have fine-tuned the TFHE cryptosystems for efficient evaluation of Hopfield
networks and tested their approach on a face recognition application achieving the eval-
uation of an encrypted network (with 256 neurons) over an encrypted input in 0.6 secs,
however for a recognition accuracy of only 86%. This latter work is the first to attempt at
both hiding the network and its input (and, by construction, its output). Also, in [137],
the authors focus on applying FHE to hide the model of a neural network-based system
in the case of a plain input for the special case of embedding-based networks.

Other notable works on the application of homomorphic encryption techniques to the pri-
vate inference step of ANN include, in a non-exhaustive way, nGraph-HE [138], nGraph-
HE2 [139], LOLA [140], TAPAS [141], NED [142], Faster CryptoNets [143]. As already

65

emphasized, all the previously mentioned papers focus only on the inference phase under
the hypothesis of an honest-but-curious evaluation server. It should also be mentioned
that the applications to ANN of other "competing" techniques for computing over en-
crypted data, the main one being Secure Multiparty Computations (MPC) also start to
be investigated in their associated communities (e.g., [144], [145]).

5.2.1.1 VC for machine learning.

As for applying the verifiable computing protocols for the computation of Neural Net-
works, there are only a few recent works on this subject.

The SafetyNets [146] is an interactive proof protocol to execute a deep neural network on a
cloud, using Interactive Proof Systems [98] to prove the correctness of the calculated result
returned by the cloud server. As such, it requires multiple interactions and calculations
with the server to complete the verification step and it replaces the ReLu function by the
function x → x2, which reduces the neural network accuracy. Since it is impossible for
the prover to prove a non-deterministic computation (i.e. to prove the correctness of a
computation while hiding some inputs) then the verifier and the prover need to share the
model. Zaho et al. [147] propose VeriML to verify a neural network using QAP-based
zk-SNARK. The VeriML ensures both security statement (privacy and integrity) but, it
has a fairly large proof complexity O(|→a | · |→x| + |→y) where →a denotes the kernel, →x the
input and →y the output. The combination of the GKR protocol and QAP (Quadratic
Arithmetic Programs) scheme has been proposed by Chabanne et al. [148]. To do this
the verifying process of GKR is verified in the QAP circuit. However; this still leads to a
large computation complexity of O(|→a | · |→x|+ |→y |) (according to [149]).

In the same line of research, Keuffer et al. build [150] a Verifiable Computing scheme,
by combining other two VC schemes: a general-purpose VC (GVC) like [52, 151] and a
specialized one (EVC), namely Sum-Check protocol [152]. As such, they achieve efficient
verification of complex operations as for example for large matrix-multiplication. In order
to verify a function, they perform the complex operation with the EVC protocol where
the GVC is least efficient, the remaining functions being handled by the GVC. They apply
this VC scheme to prove the correctness of a neural network evaluation.

As seen in this section and to the best of our knowledge, so far there are no approaches
for an outsourced machine learning method which support the integrity of its execution
while guaranteeing the data privacy by means of verifiable computation and homomorphic
encryption.

5.2.2 Encrypted machine learning using Functional Encryption

As already emphasized, our model for the neural network builds on the one from [4]
in which it is used for a partial encrypted-domain network evaluation using Functional
Encryption. Let us describe it here more in details.

To evaluate the first layer of the neural network, they use the Functional Encryption (FE)
scheme, from [153], designed for quadratic multi-variate polynomials, based on bilinear
pairings and with adaptive security under chosen-plaintext attacks (IND-CPA security).
As illustrated in Figure 5.1, the method they propose achieves user data privacy when
performing classification in a classical user-operator model. It is based on a neural network

66

composed of a private (running in the encrypted domain) and a public (running in the
clear domain) part, with the private part consisting of a quadratic evaluation function.
In their approach, the user encrypts his/her data x using a FE public key pk and sends
the encryption EncFE(x) to the operator.

Figure 5.1: Semi-encrypted Neural Network with Functional encryption

To classify, the operator applies the first layer of the neural network over the data it
received. More formally, the operator runs the quadratic activation function f over en-
crypted data by means of the FE scheme and uses the decryption key dkf to decrypt the
result of this layer as plaintext. These decrypted results are injected in the remaining
of the neural network which is then evaluated on clear data with the argmax function
applied at the end to obtain the cleartext output. They run the overall neural network
on top of a modified version of MNIST where there are two types of classes to predict:
the public label which is the digit on the image and the private label associated with the
font used to draw the image.

Moreover, they also propose a counter-measure to the threat associated from collateral
learning, coming from an adversary having access to the output of the quadratic network
and wanting to learn the private label (e.g. the font). As such, in order to reduce the
information leakage on the operator hosting the partially encrypted neural network, they
employ a semi-adversarial training method.

In this contribution, we choose to build upon their quadratic model for the first layer as
well as the same remaining neural network. However, our work is different in several as-
pects. First at all, even if the architectural framework is very similar our approach targets
different deployment scenarios and use cases (see below). Second, we ensure the data pri-
vacy and security using BFV homomorphic encryption scheme as well as a VC protocol,
adapted from [3] so we use different underlying cryptographic primitives. Finally, as shown
in the experimental part, in terms of performances, we obtain similar and sometimes even
better execution times for the different steps of the private classification.

In essence, the two approaches are complementary: in the Functional Encryption ap-
proach, there is also a server playing the role of a trusted authority for the generation
and distribution of the keys but which does not perform any calculations. Therefore, it
has only an offline key management role i.e., it only has to provide (once) the master
public key to the user as well as the secret functional decryption key associated to the

67

first network layer to the operator and plays no role in the processing of a client request.
In our setting, the server has an online active role in the sense that it is the entity re-
ceiving the encrypted client data and evaluating the first network layer (in the encrypted
domain). Thanks to the use of VC in our approach which provides the server with the
execution integrity which FHE alone does not provide, both approaches are equivalent in
terms of security model. They differ on where the main computing burden (primarily due
to the encrypted data processing) occurs: on the operator in the Functional Encryption
approach or on the server in our FHE/VC approach. It is difficult to state which of the
two is more relevant in practice as it clearly depends on the use-case at hand and where
some computational power is most naturally available (e.g., if the operator is a mobile
device such as a tablet then our approach is more relevant whereas in other cases it may
not be so).

5.3 Scenario and threat model
This section provides a general scenario of deployment for our method, the different threats
we address as well as the possible use cases.

We start by describing the general architecture in which we apply a neural network for a
semi-private evaluation of a user data. There are mainly three entities involved: the user/-
querier, owner of some confidential data x, the server performing the privacy-preserving
part of the neural network and an operator having access to the evaluation of this pre-
liminary classification and performing the remaining of the neural network in the clear
domain.

As such, the server evaluates in the homomorphic domain the first layer of the neural
network over the private data of one or many users. In our approach, this private step
is equivalent to the homomorphic evaluation of a quadratic function (which is totally
feasible and moreover with really good performances by existing FHE means).

Unlike other works using homomorphic encryption for private inference, we set up our
study in the case of a malicious server, which can possibly alter the results of the evalu-
ation (e.g. by not running the specified algorithm). To counter this, within our setting,
the server has to generate an integrity proof aside of the homomorphic results without
any interaction with the user or the operator. To do so, we make use of the VC protocol
of Fiore et al. [3] which allows to efficiently check that a computation over encrypted
data has been properly performed. To the best of our knowledge, this scheme is presently
the most practical to address the validity of computation over encrypted data with the
evaluation of multi-variate polynomials of degree at most 2. As VC schemes for degree
beyond 2 are not practical, this is one of the reasons we restrain the homomorphic eval-
uation to a first quadratic layer (practical Functional Encryption scheme also have the
same limitations1).

Then, the homomorphic evaluation of the private neural network along with the associated
integrity proof is sent to the operator. The last one decides (based on the proof) if
the server output is correct and, when it is so, can decide to decrypt the homomorphic
results of this first layer and to continue with the prediction on clear data. As a counter-

1This is due to the need to go beyond bilinear maps to achieve higher degrees in the underlying
cryptographics primitives involved in both VC and FE.

68

measure in the case of an operator which takes advantage of the decrypted results of this
intermediate layer operated by the server to recover the user sensitive data, the quadratic
first layer is trained based on the adversarial learning technique from [4]. Let us also
note that, since it is performed on plaintext data, this remaining part of the network can
involve more complex machinery and obviously more than one additional layers (including
non linear activation functions).

In summary, under the hypothesis of non collusion between the entities involved, the
architecture we propose has the following security properties:

• The user has access (obviously) to its own data x and, in function of the use case, can
have access to the overall classification result or the evaluation of the intermediate
first layer (if the operator shares it).

• The server, evaluating the first private layer of the neural network, has no access
to the inputs x nor to the output of the function f(x). While the homomorphic
encryption addresses the confidentiality threats on the user inputs, the verifiable
computation addresses the integrity threats to the homomorphic evaluation, in the
case of a malicious server.

• The operator, performing the remaining layers of the neural network, has access
to the decryption result of the first layer and can check the validity of the server
computation. It can then exploit the overall result of the evaluation of the neural
network to its own advantage or return it to the user. The adversarial training model
for the first layer addresses the case of an honest-but-curious operator which may
try to learn sensitive information about the user inputs based on the intermediate
results.

Table 5.1 illustrates the threat analysis in terms of the access to the sensitive data x and
to the result of the evaluation of the function f over x for all three entities involved in
our architecture.

User Server Operator
x Y N N

Enc(x) Y Y N

f(x) N N Y

Enc(f(x)) N Y Y

Table 5.1: Threat analysis in our architecture (Y: Yes, he has access; N: Non, he has no
access)

Let us know illustrate some applications in which our architecture could be useful.

Mail filter. In this application, we consider the scenario were an employer (operator)
wishes to perform statistics on its employees (users) emails. For example, she wishes to
know when an email is received whether it is professional or personal, a phishing attempt,
some advertisement or some spam. The employer needs to do so without having access
to the employees mail contents. In this context, a cloud provider can play the role of
the server. First, the employees encrypt their emails under the employer’s public key
and forward them to the cloud provider. The cloud provider then runs the first neural
net layer in the encrypted domain and sends the results to the employer (along with the

69

proof that the first layer was applied correctly) which then turns them into a concrete
classification to compute her statistics. In this setup, employees have to trust only that
the cloud server will not collude with their employer (e.g. by forwarding its encrypted
emails). In particular, the confidentiality of their emails is safe from server threats thanks
to the FHE layer. Thanks to VC protocol, the employer is guaranteed that the cloud
provider evaluates properly the first layer of her network. Also, because it reveals only
the first layer of its networks, the employer does not have to disclose the exact statistics
she in fine computes to the cloud provider.

Medical use-case. Suppose that a pharmaceutical firm wishes to conduct an epidemio-
logic study over a group of people. To do so, they need to evaluate for example a specific
neural network on some health-related data over a large set of patients while respecting
the following properties: (1) the evaluation of the NN should not be done by the patients
(i.e. for either or both cost and intellectual property issues) and (2) it needs to access only
the outputs of the neural net and it is not allowed to access the inputs of this network. For
this goal, consider a trusted health authority (server) in the center between these patients
(clients) and the firm (operator). The firm is the owner of all keys in our architecture
(FHE and VC keys). To apply its network, the firm (the operator in our architecture)
discloses its first network layer to the health authority. It is the authority responsibility to
guarantee that the first layer is acceptable in terms of privacy of the input data (one nice
thing is that the firm discloses only the first layer of its network to the authority) i.e. that
knowledge of the outputs of the first layer does not allow to recover specific features of
the associated inputs (after decryption of these outputs by the operator). If the authority
validates the first layer, it distributes the firm’s public key to the patients, which they use
to encrypt their data which are then sent to the authority. The authority then evaluates
the first layer of the neural network in the FHE domain and then sends its (encrypted)
results along with short proof of correctness to the firm. Finally, the firm uses its secret
key with the short proof it received, to verify the calculation of the server. Then if the
verification is successful, the firm decrypts the result and evaluates the remainder of its
network performed on clear data. The security properties are specified as above.

5.4 Technical preliminaries

5.4.1 FHE

Fully Homomorphic Encryption (FHE) schemes allow to perform arbitrary computations
directly over encrypted data. That is, with a fully homomorphic encryption scheme
E, we can compute E(m1 + m2) and E(m1 ×m2) from encrypted messages E(m1) and
E(m2).

In this section we recall the general principles of the BFV homomorphic cryptosystem
[24], which we use in combination with a VC scheme. Since we know in advance the
function to be evaluated homomorphically, we can restrain to the somewhat homomorphic
version described below. Moreover, we skip the description of the relinearisation step not
needed in our approach which evaluates only multi-variate quadratic polynomials.

Let R = Z [x] /Φm (x) denote the polynomial ring modulo the m-cyclotomic polynomial
with n′ = ϕ(m). The ciphertexts in the scheme are elements of polynomial ring Rq, where
Rq is the set of polynomials in R with coefficients in Zq. The plaintexts are polynomials

70

belonging to the ring Rt = R/tR.

As such, BFV scheme is defined by the following probabilistic polynomial-time algo-
rithms:

BFV.ParamGen(λ): → (n′, q, t, χkey, χerr, w).
It uses the security parameter λ to fix several other parameters such as n′, the degree of the
polynomials, the ciphertext modulus q, the plaintext modulus t, the error distributions,
etc.

BFV.KeyGen(n′, q, t, χkey, χerr, w):→ (pk, sk, evk).
Taking as input the parameters generated in BFV.ParamGen, it calculates the private,
public and evaluation key. Besides the public and the private keys, an evaluation key is
generated to be used during computation on ciphertexts in order to reduce the noise.

BFV.Encpk(m)→ c = (c0, c1, c2 = 0)
It produces a ciphertext c according to BFV-cryptosystem for a plaintext m using the
public key pk.

BFV.Decsk(c) :→ m
It computes the plaintext m from the ciphertext c, using private key sk.

BFV.Evalpk,evk(f, c1, . . . , cn):→ c, with c =BFV.Encpk(f(m1, . . . ,mn)), where ci =
BFV.Encpk(mi), and f has n inputs and has degree at most two.
It allows the homomorphic evaluation of f , gate-by-gate over ci using the following func-
tions: BFV.Add(c1, c2) and BFV.Mulevk(c1, c2).

For further details on this scheme, we refer the reader to the paper [24].

Let us just note that a BFV ciphertext c can be seen as an element in Rq[y]=
Z/qZ[X, Y]/Φm(x) with a degree at most 2 (i.e., c = c0 + c1y + c2y

2).

5.4.2 VC

Verifiable computation VC techniques allow to prove and verify the integrity of compu-
tations on authenticated data. A Verifiable Computation scheme is defined as a protocol
in which a client (usually weak) has a function f and some data denoted x and delegates
to another client (in most cases a server) the computation of y = f(x). Then the same
client or another one can receive the result y plus a short proof of its correctness. More
in details, a user generates an authentication tag σx associated with his/her data x with
his/her secret key and the server computes an authentication tag σf,y that certifies the
value y = f(x) as an output of the function f . Now, anyone using the verification key
(public or secret) can verify y to check that y is indeed the result of f(x).

A VC scheme includes the following algorithms:

1. (PK,SK)←KeyGen(f, λ): Taking as input the security parameter λ and a function
f , this randomized key generation algorithm generates a public key (that encodes
the target function f) used by the server to compute f . It also computes a matching
secret key, kept private by the client.

2. (σx,τx)←ProbGenSK(x): The problem generation algorithm uses the secret key
SK to encode the input x as a public value σx, given to the server to compute with,
and a secret value τx which is kept private by the client.

71

3. σy ←ComputePK(σx): Using the client’s public key and the encoded input, the
server computes an encoded version for the function output y = f(x).

4. (acc, y)←VerifySK(τx,σy): Using the secret key SK and the secret τx, this algorithm
converts the server output into a bit acc and a string y. If acc = 1 we say that the
client accepts y = f(x), meaning that the proof is correct, else (i.e. acc = 0) we say
the client rejects it.

5.4.3 Pseudo Random Function with Amortized closed-form Ef-
ficient

We present here the notion of Pseudo Random Function(PRF) with Amortized Closed-
Form Efficiency [55].

A PRF consists of two algorithms (F.KG, F). The key generation method F.KG takes
as input the security parameter λ to generate a secret key K and some public parameters
pp that specify the domain χ and the range R of the function F . The function FK takes
as input the data x ∈ χ and uses the key K to generate a value R ∈ R satisfying the
following pseudorandom property:

Definition 16. [55] Consider a computation Comp that takes as input n random values
R1, . . . , Rn ∈ R, and a vector of m arbitrary values z = (z1, . . . , zm), and assume that the
computation ofComp(R1, . . . , Rn, z1, . . . , zm) requires time t(n,m). Let L = (L1, . . . , Ln)
be arbitrary values in the domain χ of F such that each one can be interpreted as
Li = (∆, τi). We say that a PRF (KG, F) satisfies amortized closed-form efficiency
for (Comp, L) if there exist two algorithms CFEval offComp,τ and CFEval onComp,∆ such that:
1. Given w ← CFEval offComp,τ (K, z) we have that:

CFEval onComp,∆(K,w) = Comp(FK(∆, τ1), . . . , FK(∆, τp), z1, . . . , zm)
2. the running time of CFEvalonComp,∆(K,w) is o(t).

5.4.4 Homomorphic Hash function

Informally, a family of key homomorphic hash functions H with domain X and range R
consists of three algorithms (H.KeyGen, H, H.Eval). The first one, the key generation
hash H.KeyGen, generates the description of the hash function HK ,where K is the
key, the function H computes the hash and, finally, H.Eval allows the computation
over R satisfying the following homomorphic property: H.Eval(f, (H(x1), . . . , H(xn))) =
H(f(x1, . . . , xn)) where xi ∈ X (H is a ring homomorphism).

In the VC scheme for quadratic multi-variate polynomial over BFV encrypted data, we are
interested in the calculation of H.Eval for one level of multiplication (with two inputs)
and any numbers of additions over D.

In chapter 4, we presented the realization of homomorphic hash Ĥ, based on bilinear
groups. It allows to reduce a BFV ciphertext µ ∈ Rq[y] into a v ∈ Z/qZ depending on
the degree of µ denoted degy(µ) with preservation of the homomorphic properties. Hence
H.Eval(f, (H(µ1), . . . , H(µn))) = H(f(m1, . . . ,mn)) where µi = BFV.EncPK(mi) with
mi a BFV plaintext.

72

5.5 VC for Quadratic polynomials over BFV Encrypted
data

In this section, we present an application of the VC scheme of Fiore et al. [3] for the
case of multi-variate polynomials of degree 2, over BFV encrypted data instead over
BGV encrypted data as in the original paper. First the client encrypts his/her data
x = (x1, . . . , xn) as a BFV ciphertext, where the plaintext modulus q is chosen to be
prime. In parallel with the encryption of xi, he/she also generates a tag σi for his/her
data, using the combination of the PRF output and the hash collision-resistant functions
(that compresses a BFV ciphertext into a double of group elements). Once the server
receives the BFV ciphertexts [xi]BFV and the tags σi from the user, it computes f over
[xi]BFV and over σi and it obtains y = f([xi]BFV) and respectively a tag σ = f(σi). The
server sends y with the associated tag to the user owning the verification keys, which
then checks the output in constant time (because he has already done a pre-computation
phase).

In this scheme, we require to authenticate with our scheme:

1. Each of the 2n′ − Fq components of a BFV ciphertext.

2. The BFV evaluation circuit f̂ : F2nn′
q → F3n′

q instead of f : Fnq → Fq.

More formally, our VC scheme is specified by the following algorithms:

1. KeyGen(f, λ)→ (PK, SK), with the following steps:

• First generate bgpp = (q, g, h, e) some bilinear group parameters, where
G1 =< g >, G2 =< h >, q = order(Gi) for i = {1, 2} and e : G1 ×G2 → GT

a non-degenerate bilinear map (GT =< e(g, h) >).

• Run BFV.ParamGen(λ)→ (n′, q, t, χerr, χkey, w) to generate the parameters
for the BFV encryption scheme. Run BFV.KeyGen()→ (pk, sk, evk).

• Run H̃.KeyGen → (κ, K̃) to choose a random member of the hash function
family H̃ : D = {µ ∈ Zq[x][y] : degx(µ) ≤ 2(n′ − 1) , degy(µ) ≤ 2} ⊂ Rq[y] →
G1×G2. In our scheme, we do not use the public key of H̃, so it is not necessary
to calculate it. (For details see chapter 4) in the extended version.

• Sample a random value r ← Fq.

• Run PRF.KeyGen(λ) → (K, pp) to build FK : {0, 1}∗ → G1 × G2. In
this adaptation, we need FK to be computationally indistinguishable from a
function that outputs (R, S) ∈ G1 × G2 such that Dlogg(R) = Dlogh(S) is
uniform over Fq (i.e. e(R, h) = e(g, S)).

• Run CFEvaloffτ (K, f)→ wf , called concise information for f . (For details on
PRF and CFEval see Section 5.4.3).

• Set SK = (pk, sk, κ, r,K,wf) and PK = (pk, pp, f).

2. ProbGenSK(−→x = (x1, . . . , xn))→ σx, τx, requiring the operations below:

• Choose an arbitrary string ∆ ∈ {0, 1}λ (identifier for −→x).

• For i=1 to n:

73

(a) Run BFV.Enc(xi)=µi ∈ R2
q and compute its hash value (Ti, Ui) = H̃κ(µ) ∈

G1 ×G2. Next run FK(∆, i) = (Ri, Si) ∈ G1 ×G2.

(b) Compute Xi = (Ri · T−1
i)1/r and Yi = (Si · U−1

i)1/r ∈ G1,G2 respectively.

(c) Set σi = (Ti, Ui, Xi, Yi,Λi = 1GT) ∈ (G1 ×G2)2 ×GT . We denote the level
of tag as lev(σi) and we set lev(σi) = 1.

• Set σx = (∆, µ1, σ1, . . . , µn, σn) and τx =⊥.

3. ComputePK(σx)→ σy consisting of the following steps:

• Let f be an admissible circuit.

• Run the evaluation circuit f over the BFV encrypted data and obtain µ =
BFV.Eval(f, µ1, . . . , µn). Let us note that, for preserving the homomorphic
properties of the hash, the difference with the normal evaluation of the BFV
scheme is that here the multiplication of polynomials is performed over Rq with-
out the mod Φm(x)-reduction and without the rounding step, and we assume
thus that this modulus reduction and this rounding operations are performed
at the end by the verifier receiving the result of the evaluation of f .

• Apply (gate-by-gate) f over the authentication tags (σ1, . . . , σn), using the fol-
lowing gate functions GateEval(). GateEval:(fg, σ1, σ2)→ σ
Parse (Ti, Ui, Xi, Yi,Λi) ∈ (G1 × G2)2 × GT for i = 1, 2, where fg stands for
tag addition ("+") or tag multiplication ("×"). We try to compute σ =
(T, U,X, Y,Λ).

– Add two tags together. If fg ="+", the addition takes different forms
depending on the levels of the input tags.
If lev(σ1) = lev(σ2), then σ = (T1 ·T2, U1 ·U2, X1 ·X2, Y1 ·Y2,Λ1 ·Λ2) with
lev(σ) = 1.
Else, without loss of generality, let suppose that lev(σ1) = 1 and lev(σ2) =
2(i.e. there is a multiplication gate before this gate).
The idea is to create a level-2 tag (σ′1) from σ1 as follows: σ′1 =
(e(T1, h), e(g, U1), e(X1, h), e(g, Y1),Λ1). Then compute σ = σ′1 + σ2 as in
the first case but set lev(σ) = 2.

– Add a constant to a tag (c+ σ1). This method depends on the level of
the tag as follows:
If lev(σ1) = 1, then the result tag σ = (T1 · (gc), U1 · (hc), X1, Y1, ,Λ1).
If lev(σ1) = 2, then we obtain: σ = (T1·(e(g, h)c), U1·(e(g, h)c), X1, Y1, Z1,Λ1).
In both cases lev(σ) = lev(σ1).

– Multiplication by a constant (c·σ1). The result tag is σ = (T c1 , U
c
1 , X

c
1, Y

c
1 ,Λ

c
1)

and lev(σ) = lev(σ1).

– Multiplication. For fg ="×" on two tags (σ1 × σ2)
If levy(σ1) > 1 or levy(σ2) > 1 then reject. Else calculate T = e(T1, U2),
U = e(T2, U1), X = e(X1, U2) · e(X2, U1), Y = e(T2, Y1) · e(T1, Y2), Λ =
e(X1, Y2). Also set lev(σ) = 2.
It is not necessary to keep U and Y after a multiplication because T = U
and X = Y . We keep them only for the sake of clarity. As noted in [3],

74

one can see the function f as the composition of two functions fg(f1, f2)
in the last gate fg of f .

– Set σy = (∆, µ, σ), where σ is the tag obtained after evaluating the last
tag of f .

4. VerifySK(σy, τx)→ (acc, y), for σy = (∆, µ, σ), using the following operations:

• Compute H̃κ(µ)→ ν̃.

• Run CFEvalon∆ (K,wf)→ W (see Section 5.4.3 for details on the online closed-
form method).

• Check, depending on the of degree of f , as follows:

(a) If deg(f)=1, check the following equations:

(T, U) = ν̃(= (g((µ(α))(β)), h((µ(α))(β))))

e(X, h) = e(g, Y)

W = e(T ·Xa, h).

(b) Else, check over GT the following equations:

T = U = ν̃(i.e. = e(g, h)((µ(α))(β))) (5.1)
X = Y (5.2)

W = T · (X)r · (Λ)
2

(5.3)

• If all equations are satisfied set the check bit acc to 1 (accept), otherwise set
it to 0 (reject).

• Finally, if acc=1, µ′ = µ mod Φm(x) = (c0, c1, c2) and set µ′ = (dt · c0/qc, dt ·
c1/qc, dt · c2/qc) y = BFV.Decdk(µ

′), otherwise set y =⊥.

Theorem 6. If BFV is a semantically secure homomorphic encryption scheme, H̃ is a
collision-resistant homomorphic hash function and F is a pseudorandom function, then
VC described above is correct, adaptive secure and input private.

Proof. Same proof as for the scheme VCquad from [3]. �

5.6 VC and FHE for first layer
In this section, we present more in details our architecture for partially encrypted machine
learning using Verifiable Computing for BFV homomorphic encrypted data.

As illustrated in Figure 5.2, the client sends the homomorphic data encrypted at the
server along with a authentication tag. The server computes the first layer (f) of a
neural network on the homomorphic encrypted data, generates a short proof-calculation
for verifying the homomorphic results and sends them to an operator. He later on checks
using the short proof that the calculation of the first layer is correct and, if so, he decrypts
the result of this first layer and completes the neural network on clear data. More precisely,
the user runs the ProbGen algorithm (described below) to encrypt and to generate

75

a tag corresponding to his/her data. We note that a preliminary step consists in the
generation of the keys by the operator (Setup algorithm). The server runs the Compute
function (described below) over the received data to apply f , the first layer of the neural
network and to compute the tag associated with the result. It returns thus the ciphertext
Enc(f(x))BFV and the result tag σ = f(σi) to the operator which verifies the results it
receives with the Verify function. If the calculation is correct, he decrypts the result
using the homomorphic secret key and he completes the evaluation of the remaining of
the neural network over the clear data for obtaining the prediction result.

Figure 5.2: Semi-encrypted neural network using FHE and VC.

Let us now go into more details. The data represented as x = (x0, . . . , xn) is encrypted
with a BFV cryptosystem. For authentication the client uses the secret key to generate
a series of tags (σ1, . . . , σn), that will help the server produce (without any secret key)
the authentication tag σ corresponding to the result of the first private layer of the neu-
ral network, i.e. the quadratic activation function f (Compute algorithm). This tag
σ = f(σ1, . . . , σn) authenticates the ciphertext µ = f(µ0, . . . , µn) using the properties of
homomorphic BFV ciphertexts obtained. The one receiving f(µ0, . . . , µn) can verify ef-
fectively that the server performed the computation correctly (using the secret key of VC)
and can decrypt it to obtain f(m0, . . . ,mn) (using the homomorphic secret key). This
decrypted result is the input of the remaining of the neural network performed on clear
data (Clear-NN algorithm).

Our steps are specified as follows:

Setup(NN, λ): Takes as input the neural network and generates the public (PK) and
secret key (SK) to the VC scheme for BFV data.

ProbGenPK(−→x = (x1, . . . , xn)) : Takes as input the data−→x . For all i ∈ [1, n], it generates
in parallel the encrypted µi ← BFV.Encpk(xi) and the tags σi corresponding to the µi as
shown in the above section.

Finally, it outputs σx = (µ1, σ1, . . . , µn, σn) and τx =⊥.

ComputePK(σx): Taking as input the encrypted data and the corresponding tags, it
runs the evaluation circuit BFV f over the BFV encrypted data µi, and, in the same
time, it generates the tag corresponding to the evaluation of the circuit f over the tags

76

σi gate-by-gate as mentioned above in the GateEval algorithm. Finally, it returns σy =
(∆, µ, σ).

CompleteSK(σy, µ): Taking as inputs the tag and the encrypted result, it verifies the
calculation using VC.V erifySK(σy, τx) and if it is true, it decrypts the result and com-
pletes the remaining of neural network Clear-NN over f(x1, . . . , xn), else it refuses the
result.

The security of this architecture such as defined in section 5.3 is based on the security of
VC over BFV encrypted data and under the hypothesis of non collusion between these
three entities.

In this architecture, we can evaluate an activation function f : Fnq → Fq of degree at most
2, because our adaptation of VC works for a multi-variate function of degree at most 2. We
can also hide the function f from the server, using the same modification proposed in [3]
in the two algorithms KeyGen and Compute (namely, by modifying the multiplication-
by-constant method, using H̃K(EncBFV (c)) instead of c, which requires the modification
in the algorithms cited above).

5.7 Experimental Results
We present here the experimental results of applying our approach for the digit recognition
on the standard MNIST dataset.

In this section we work more to characterize the computational performances of our ar-
chitecture than really building an operational machine learning system. In other words,
despite that we use a small dataset size, this allows us to obtain a representative view for
our architecture in terms of execution times and performances.

Hardware and Software. Let us precise that all tests were performed on an 2016 DELL
PC(Genuine-Intel Core i7 − 6600U , 4 cores at 2.60GHz with 16GB RAM at 2.13GHz),
on Ubuntu (linux kernel 4.15.0-91-generic, with the architecture x86 − 64) as operating
system.

Choosing a model. For the training, we apply the adversarial training approach
from [153]. They learned P ∈ Zd×n and (Di)i∈[`] ∈ (Zd×d)`, with the model defined
as fi(x) = (Px)TDi(Px), ∀i ∈ [`]. Then, they generalized this model by adding a bias
term: fi(x) = (Px + b)TDi(Px + b) for b ∈ Zdp, and, for simplicity, they used an equiva-
lent of this model by systematically adding a 1 at the beginning of x when encrypting it
x′ = (1, x1, . . . , xn)T . The prediction for the class of x ∈ [0, 255]785 is argmaxi(fi(x)) for
i ∈ [`]. This modelling is important for FE efficiency [153], because it reduces the number
of pairing computations. In our implementation, we used an equivalent model g defined
as g(x) = Qt(Px)2, where Q ∈ Zd×` and Q[i, j] = Dj[i, i] (i.e. fi(x) = gi(x) = QT

i (Px)2

with Qi the i-th row of Q). The prediction for the class of x ∈ [0, 255]785 is argmax(g(x)).
As such, instead of using a matrix per label, we use a new matrix Q for all labels. There-
fore, the resulting model is a polynomial network of degree 2 with one hidden layer of d
neurons and a square for the activation function.

Implementation tools.

Homomorphic Encryption. We use the SEAL library [154], a homomorphic encryption
library developed by Microsoft and written in modern standard C++. In terms of security,

77

we choose parameters for providing 128 bits of security. We run SEAL with the following
parameters: n′ = 4096, log2(q) = 109 and t = 1032193. These parameters are chosen
using the Homomorphic Encryption Standardization report [155].

The table 5.2 illustrates the evolution of the noise budget for the prediction, and, as
expected, the noise growth caused by the homomorphic multiplications increases rapidly
(in our case hi × hi grows the noise by 38 bits).

[xi]BFV hi = Pi · [x]BFV h2
i Q2

i · h
Noise budget 45 bits 40 bits 8 bits 5bits

Table 5.2: Noise budget where Qi and Pi are the i − th row of Q and i − th row of P
respectively.

Verifiable computing. We use the HAL library [156], a library for Homomorphic Authen-
tication over encrypted BGV data, written in C and providing 128 bits of security, by
using the Barreto-Naehrig curve for pairings.

In our experiments, we encrypt and decrypt homomorphically the data with SEAL library
and we use the HAL library for authentication but for BFV encrypted data.

5.7.1 Results

Our tests consist in classifying a MNIST image data, a greyscale RGB image with 784
pixels, represented as a vector x ∈ [0, 255]784. As illustrated in Figure 5.3, we add 1
at the beginning of x when encrypting it (encrypting pixel by pixel) by the user. The
server evaluates the model g over encrypted data (Hidden layer). Now the operator runs
the Clear-NN algorithm for verifying the results and decrypting it to obtain g(x) and
calculate the argmax(g(x)). Our model achieves 97, 54% accuracy on a test set of 10000
labeled images. We note that in our test we obtain the same confusion matrix as for the
FE-model (see Figure 4 in [153]).

Performance. In Table 5.3, we describe the time evaluation for our approach. We
remark that the user can execute the encryption function and the tags generation in
parallel, so the user runs this step in average in less than 2.5s. (Let us note that this time
is inferior to the time of user for encryption using the FE−mode, of 8s.) Similarly, the
server calculates the quadratic function g over encryption and over the authentication tag
in parallel. Then, the server execution time is less than 3.8s. We note that for computing
the function g for all labels, we run in parallel the gi(σ1, . . . , σ785) for i ∈ [10]. Finally
using our architecture, the time on the operator side is negligible. Namely, the operator
time is 0.021s (decryption and verification together), while the time for argmax on the
decrypted results is negligible, as expected. In terms of memory requirements, Table 5.4
describes the size in KiloBytes of the data used our architecture. More precisely, we report
the size of the homomorphic ciphertexts and of the authentication tags on both user and
server sides.

5.8 Conclusion
In this work, we presented a solution for private classification of sensitive data based on
Homomorphic Encryption combined with a Verifiable Computing (VC) protocol to en-

78

Figure 5.3: Overview of our architecture with model g.

User-side Server-side Operator-side
Operation Enc GenTag g(Enc(x)) g(σ1, . . . , σn) V erify Dec

time 1.760 2.525 3.8 3.35 0.015 0.006

Table 5.3: Costs (in seconds) for our architecture, where x = (x1, . . . , x785)

User-side Server-side
Enc(xi) tag(σi) Enc(f(x)) f(σi)

Size 194 0.408 291 1.2

Table 5.4: Size (in KB) for MNIST test, where x = (x1, . . . , xi, . . . , xn), with i =
{1, . . . , 785}.

sure the result integrity. We built on a semi-encrypted neural-network trained using a
semi-adversarial model [4] and then preserve the confidentiality of sensitive data and the
integrity for treatments using an application of VC over BFV encrypted data. Our exper-
imental results for the MNIST image dataset are encouraging giving good classification
accuracy (nearly 97.54%) with decent execution performances (less than 6s for the overall
protocol). However, due to the limitations on the classes of functions supported in today
practical VC techniques for encrypted data, our work was to some extend restricted to
a private evaluation only for a first quadratic layer and we had to finalize (on another
entity) the rest of the classification process on clear data from the decrypted intermediate
values.

As such, one open research problem worth investigating consists in developing efficient
verifiable delegation protocols with support for the computation of a broader class of
functions, in particular any multi-variate polynomials. This will allow us to provide
more complete privacy and integrity solutions for the evaluation of neural networks. An-
other more concrete research line we plan to follow is to improve the performances of the

79

proposed approach by exploring the use of batching and other optimization techniques
dedicated to HE computation.

80

Chapter 6

Secure FL using VC and HE

6.1 Introduction . 81
6.2 Related work . 83

6.2.1 Secure Federated Learning and Homomorphic Encryption 83
6.2.2 Secure Federated Learning and Verifiable computation 83
6.2.3 Secure Federated Learning and other Multi-Party Computation . . 84
6.2.4 Secure Federated Learning and Differential Privacy 84

6.3 Preliminaries . 84
6.3.1 Federated Learning (FL) . 84
6.3.2 Homomorphic Encryption (HE) . 85
6.3.3 Batching for Paillier . 86
6.3.4 Verifiable Computation . 86

6.4 A secure framework for Confidential and Verifiable Federated Learning . . 88
6.4.1 Overview of the architecture . 88
6.4.2 Threat and security analysis . 89
6.4.3 Cryptographic tools and optimizations 90

6.5 Experimental results . 91
6.5.1 Setting FL hyperparameters . 92
6.5.2 Quantization vs. utility . 92
6.5.3 Performance evaluation of LEPCoV scheme 94

6.6 Conclusion and perspectives . 96

6.1 Introduction

In recent years, machine learning solutions and in particular deep learning ones are widely
employed in different domains such as healthcare, autonomous driving, finance and com-
puter vision. However, this raises several security and privacy issues since the learning
step requires access to massive amounts of heterogeneous data, part of which may be
sensitive or private information.

Federated Learning (FL), an emerging recent training setting, allows to collaboratively
train a model under the coordination of a central server or service provider without data
outsourcing. As such, the data of each client remain stored locally without being shared
and only the successive models are disclosed [157]. This is interesting for various reasons
such as coping with the sensitive nature of training data, privacy laws and data regulations

81

(e.g. GDPR [158], HIPAA [159], etc.) or business requirements. Even if this paradigm
offers privacy improvements over a traditional centralized training model, recent research
shows that attackers can indirectly retrieve private client data (based on the shared model
updates, see [160], [161], [162] for more details). Moreover, there are cases in which the
model itself is sensitive (e.g. due to proprietary reasons) or subject to attacks from/on the
coordination server in order to alter it or modify the resulting inference capabilities.

In this context, there have been recent proposals to improve data privacy and model con-
fidentiality through emerging cryptographic techniques such as Homomorphic Encryption
[163, 164] or Multi-Party Computation [165, 166]. However, none of these approaches
address integrity issues with respect to the computations performed to build the global
model or to the clients’ behavior. To the best of our knowledge, VerifyNet [167] is the
only work proposing a privacy-preserving training for "cross-device" FL (the clients are
a very large number of mobile or IoT devices) with guarantees of integrity of the global
model, using a double-masking protocol and a homomorphic hash function.

We complete the picture of this contribution by proposing a novel secure approach for
Federated Learning guaranteeing privacy protection for the training data and integrity
for the overall model, using Homomorphic Encryption and Verifiable Computation. Our
solution, which addresses threats coming from the server, is intended mainly for the "cross-
silo" FL setting [168] in which the training involves only a small number of clients (that
we suppose reliable), such as several organizations (e.g. medical, financial, insurance)
collaborating to train a model.

In this chapter, we make the following main contributions:

• We present a secure framework for privacy-preserving and verifiable FL relying on
Homomorphic Encryption and Verifiable Computation. Besides the general archi-
tecture, we also give some examples of practical use cases for our secure federated
learning solution.

• We concretely instantiate our framework using the Paillier additive homomorphic
scheme associated to the LePCoV primitive [129] which is a linearly homomorphic
Authenticated Encryption with Public Verifiability scheme derived from [130]. It
allows us to authenticate the computation of the global training model over the
homomorphically encrypted data, with the additional guarantee that the correctness
of the result can be publicly verified.

• In order to accelerate the performances of the system, we also propose a batching
approach for the homomorphically encrypted data. We then give extensive perfor-
mances results on the FEMNIST dataset and we study the accuracy of the resulting
models and the overhead induced by using our homomorphic encryption and authen-
tication primitives. All these results have been obtained using an efficient C/C++
prototype implementation of the framework written as part of this work.

• We provide a security and threat analysis for our FL approach. As such, under
the security hypothesis we made, we ensure that both the clients local data and
the updates to the gradients remain undisclosed to the server and that a malicious
server cannot tamper or misuse the model while training.

82

6.2 Related work

6.2.1 Secure Federated Learning and Homomorphic Encryption

Most of the work consisting in applying homomorphic encryption to machine learning
models concentrate on making the inference on private encrypted data (e.g. CryptoNets
[132], TAPAS [141], NED [142]) and not so much on the training.

The first works addressing the problem of privacy-preserving machine learning training
concentrated on a centralized setting where all the data are outsourced and the models
are only linear [169, 170]. As for the few approaches proposing a complete centralized
training of neural networks on homomorphic encrypted data, they have quite impractical
performances or huge cryptographic parameters ([171]).

Other works propose solutions in the case of multi-servers either for clustering or regres-
sion. A lot of recent approaches employing homomorphic encryption are proposed for
a collaborative distributed learning in which there is no central server mostly for linear
models [172, 173] and, more recently, for neural networks [174].

As for the case of cross-silo FL, there are only a few recent papers, proposing the use
of homomorphic encryption (usually additive) to ensure the secure computation of the
global model ([163],[164], [175]). The first two approaches are only theoretical and the
third one uses different datasets for the validation. Morever, all the above approaches are
under the classical hypothesis of an honest but curious central server, without making use
of any verifiable computing protocols to ensure the global model integrity.

6.2.2 Secure Federated Learning and Verifiable computation

In order to solve the problem of privacy protection and verifiability in deep learning sys-
tem, several works have been proposed, like SafetyNets [146], and Slalom [176]. However,
these schemes either support a small variety of activation functions like in [146] or require
additional hardware assistance as in [176].

As for applying the verifiable computing protocols for the FL setting (i.e. verify the
integrity of the aggregated results returned from the central server), to the best of our
knowledge, there is only a recent work on this subject. Xu et al. [167] introduce the
VerifyNet architecture as a solution for cross-device FL preserving the integrity and the
confidentiality of the model with regards to the global server. The verification of the
server calculation results (i.e. the aggregated model) is realized using the homomorphic
hashes and pseudorandom functions. The privacy of user’s gradients is guaranteed via
a double-masking protocol, having the inconvenient that it requires multiple exchanges
between the users.

As seen in this section and, to the best of our knowledge, so far there are no approaches
for a secure FL which supports the integrity of the server calculation results while guar-
anteeing the model privacy by means of verifiable computation and homomorphic encryp-
tion.

83

6.2.3 Secure Federated Learning and other Multi-Party Compu-
tation

Multi-party computation (MPC) protocols allow several parties to collaborate in order
to compute a function on their private data such that each party knows only its input
and output. There are several FL approaches using MPC [165], [166] but due to the
high-communication costs of the multi-party computation and the inherent distributed
nature of FL, it is difficult to implement efficient methods.

6.2.4 Secure Federated Learning and Differential Privacy

A few works [177–180] have implemented differential privacy to protect clients’ data from
other clients or end-users in a FL context. These works suggest that differential privacy
is more appropriate for cross-device FL applications. Indeed, a high number of clients is
required to simultaneously allow that

• the ratio of participants per round is low, thus limiting the probability that a given
client participates and therefore (indirectly) releases any information about his train-
ing data in the considered round

• the absolute number of participants per round is high, reducing the sensitivity of
the model updates in a client-level differential privacy point of view

This hypothesis is not reasonable in the context of this contribution where the number of
clients does not exceed a few hundreds. That is why we focus in this chapter on scenarios
in which we consider that the recipients of the final model (clients and end-users) do not
perform attacks like membership inference [181, 182] or model inversion [160, 162] on the
model updates or the final model. Properly implementing differential privacy would need
further experiments and we wish to design such a framework in a future work.

6.3 Preliminaries

6.3.1 Federated Learning (FL)

FL is a decentralized framework that enables multiple clients to collaboratively train a
shared global model under the orchestration of a central server while keeping the training
data distributed on the client devices. As a starting point, the server initializes a global
model randomly and then the FL process consists of multiple rounds. At the beginning
of each round, the server selects a subset of clients that take part in training and sends
to them the current global model. Next, each selected client trains the model locally on
his own data and communicates only the model updates back to the server. Finally, the
server aggregates these updates before accumulating them into the global model thereby
concluding the round. The most common approach to optimization for FL is the Federated
Averaging algorithm [157]. Here, each client runs several epochs of minibatch stochastic
gradient descent (SGD) minimizing a local loss function, and then the central server
performs a weighted averaging of the updated local models to form the updated global
model. Pseudocode is given in Algorithm 1. By removing the need to aggregate all data
on a central server, FL helps to ensure data privacy and reduces communication costs.
As a result, FL applies best in situations where data are privacy-sensitive or large in such
a way that it is undesirable or infeasible to transmit them to the server.

84

Algorithm 1 Federated Averaging M is the total number of clients; K is the number
of participants per round t; the selected clients are indexed by k with Dk the training set
of data points on client k and nk = |Dk|; B is the local minibatch size; E is the number
of local epochs; µ is the learning rate; w are model parameters and l is the local loss
function.
Server executes:

initialize w0

for each round t do
Kt ← random set of K ≤M clients
for each client k ∈ Kt in parallel do

(wkt+1, nk)← ClientUpdate(k, wt)
wt+1 ←

∑K
k=1

nk
n
wkt+1 where n =

∑K
k=1 nk

ClientUpdate(k, w):
initialize wk = w
B ← split nk samples of Dk into batches of size B
for each round epoch from 1 to E do
for each batch b ∈ B do
wk ← wk − µ

`
l(wk; b)

return (wk, nk)

6.3.2 Homomorphic Encryption (HE)

Homomorphic Encryption (HE) schemes allow to perform computations directly over en-
crypted data without decrypting it first. That is, with a Fully homomorphic Encryption
scheme E, we can compute E(m1 + m2) and E(m1 ×m2) from Encrypted messages E(m1)
and E(m2). Thus homomorphic encryption provides a way to outsource computations to
the cloud while protecting the data confidentiality. Moreover, a simple additive homo-
morphic cryptosystem (i.e. allowing to obtain only the encryption of the addition of two
messages) is enough to perform secure federated averaging. Let us recall the general prin-
ciples of the Paillier cryptosystem, a well-known and popular additive homomorphic
scheme [22].

KeyGen(sz)→ (pk, sk): It generates the keys for the cryptosystem taking as input the
number of bits sz of the modulus.

Choose two large prime numbers pE and qE such that λ = lcm(pE − 1, qE − 1), and set
NE = pEqE. We note that the cleartext domain is ZNE and the ciphertext domain is
ZN2

E
.

Select a random g < N2
E such that gcd(L(gλ mod N2

E), NE) = 1,with L(u) = u−1
NE

.

Set pk = (NE, g) and sk = (pE, qE).

Encpk(m)→ c: It produces a ciphertext c using the public key pk by computing c = gmrNE

mod N2
E, where m < NE is the message and r is uniformly chosen in ZNE .

Decsk(c)→ m: It computes the plaintext m from the ciphertext c, using the private key
sk.

Letting D = L(gλ mod N2
E) and D−1 its multiplicative inverse in ZNE , the decryption is

85

performed by evaluating

m = Dec(c) = L(cλ mod N2
E)×D−1 mod NE.

More importantly, for the present purpose, this cryptosystem has the following homomor-
phic properties:

1. Dec(Enc(m1)Enc(m2)) mod N2
E = m1 + m2 mod NE (addition of two encrypted

messages).

2. Dec(Enc(m)gk) mod N2
E = m + k mod NE, for all k ∈ ZNE (addition of an en-

crypted message to a clear integer).

3. Dec(Enc(m)k) mod N2
E = km mod NE, for all k ∈ ZNE (multiplication of an

encrypted message by a clear integer).

6.3.3 Batching for Paillier

We can batch several plaintext messages mi in a same Paillier ciphertext, each one rep-
resented on t bits. Let b be the size of a batch, i.e. the maximum number of pos-
itive messages we can encrypt in a same Paillier ciphertext cp = gm1+m2+...+mb ∗ rNE
mod N2

E or written differently Enc(m1|m2| . . . |mb). To decrypt correctly cp it follows
that |m1 + m2 + . . .mb| ≤ NE and b ≤ log(NE)/t (i.e. with a modulus of 2048 bits and
messages of t = 64 bits, it is possible to pack together max 32 messages).

However, if we want to perform addition on these packed ciphertexts, one must take this
into account to set up the dimension of the initial batch to avoid an overflow. Let nbadd
the number of additions we want to perform on these packed messages. The padding (i.e.
the number of zero bits) that has to be added to each slot is equal to nbadd.

As such, one has to encrypt Enc(m1 0 . . . 0| m2 0 . . . 0| . . . | mb 0 . . . 0). The size of the
batch will then have to be at most: b =

⌊
log2(NE)
t+nbadd

⌋
.

Let us give a short example. Suppose each message we want to encrypt is a real positive
number between 0 and U , with U = 100 and mi having 4 representative digits after the
decimal point. As such to represent these messages, one must have at least dlog2(U ∗
104)e, i.e. 20 bits. To perform two additions on ciphertexts batching these type of
messages, for a modulus of 2048 bits, one can pack 2048/(20 + 2) = 93 messages in a
single ciphertext. For 100 additions on the ciphertexts of the same format, one can have
at most 17 slots/ciphertext.

6.3.4 Verifiable Computation

Verifiable Computation (or Verifiable Computing) VC is a cryptography tool meant to
secure the integrity of computations on authenticated data. It enables a client to delegate
to another entity (in most cases a server) the computation of a function. The other entity
evaluates the function and returns the result with a proof that the computation of the
function was carried out correctly.

Now, we present the VC for Paillier cryptosystem [129]. It is a Linearly Homomorphic
Authenticated Encryption scheme with Public Verifiability (LAEPuV) and provable cor-
rectness called LEPCoV and it allows the public verifiability of data returned by the

86

server. This scheme improves Catalano et al.’s instantiated scheme [130] by avoiding false
negatives during the verification step.

Let S = (KeyGenS, Sign, V erify) be a signature scheme.

• AkeyGen(sz, I): takes as input a prime size sz (in number of bits) and an integer I
representing the upper bound for the number of messages encrypted in each dataset.
It calculates the secure sk and public pk parameters as follows: sample four (safe)
primes pE, qE, pS, qS of size sz/2, such that NE = pE · qE and NS = pS · qS it
holds that ϕ(NS) = (pS−1)(qS−1), the group elements g0, g1, h1,. . ., hI ∈ Z∗Ns and
g ∈ Z∗

N2
E
of order NE, and picks a hash function H. Finally, it runs KeyGenS(sz) to

obtain the secure and private signature key (skS, pkS). Returns the key pair (sk, pk),
where pk = (NE, g, NS, g0, g1, h1, . . . , hI , H, pkS) and sk = (pE, qE, pS, qS, skS).

• AEncrypt(sk, τ, i,m): probabilistic algorithm that takes as input the secret parame-
ter, a messagem ∈M , a dataset identifier τ , and an index i ∈ {1, . . . , I} to calculate
the ciphertext c containing the encryption of the message with the tag of verification.
Thus, it computes the Paillier encryption C of the message m, R = H(τ ||i), and a
tuple (a, b) ∈ ZNE × Z∗NEsuch that gabNE = CR mod N2

E (using the factorisation
of NE). In addition, if τ is used for the first time, it chooses a not yet used prime
e of length l ≤ sz/2 such that gcd(eNE, ϕ(NS)) = 1, it computes its inverse e−1

mod ϕ(NS), and its signature µe = SignskS(τ ||e) and it stores (τ, e, e−1, µe) in the
list L. Otherwise, it takes (τ, e, e−1, µe) from the list L. Then, it chooses an element
s uniformly at random from ZeNE and it computes x using the pS and qS such that
xeNE = gs0hig

a
1 mod NS. It returns c = (C, ei, e

−1
i , µe, τ, σ), where σ = (a, b, s, x) is

the verification tag.

• AEval(pk, τ, f, {ci}i∈[I]): takes as input the public key pk, a dataset identifier τ , a
linear function f = (fi)i∈I and I ciphers {ci}i∈[I] = (Ci, ei, e

−1
i , τi, σi). The output

is a cipher c. The algorithm checks if there exists an index l∈[I] such that τ 6=τl, or
that the signature (V erify(pkS, τ ||el, µel) = 0). Furthermore, the algorithm checks
if there are two indexes i 6= j ∈ [I] such that ei 6= ej. If one of the checks is true,
the algorithm aborts. Otherwise, the algorithm sets e = e1, e

−1 = e−1
1 , µe = µe1

and evaluates f over ciphertext as: C =
∏I

i=1 C
fi
i mod N2

E. It also evaluates f
over the tag to obtain a new tag (a, b, s, x) as follows: a =

∑I
i=1 fiai mod NE,

b =
∏I

i=1 b
fi
i mod N2

E, s =
∑I

i=1 fisi mod eNE, s′ =
(∑I

i=1 fisi − s
)
/(eNE), a′ =(∑I

i=1 fiai − a
)
/NE, and x =

∏I
i=1 x

fi
i

gs
′

0 g
a′e−1
1

mod NS.

It returns the cipher c = (C, e, e−1, µe, σ).

• AV erify(pk, τ, c, f) : takes as input the public key pk, a dataset identifier τ , a
cipher c = (C, a, b, e, s, τ, x), and a linear function f = (fi)i∈[I], to detect if c is a
valid or invalid cipher. For this goal, the algorithm checks that:

V erify(pkS, τ ||e, σe) = 1;

a, s ∈ ZeNE ;

xeNE = gs0
∏I

i=1 h
fi
i g

a
1 mod NS;

gabNE = C
∏I

i=1H(τ ||i)fi mod N2
E;

If all checks pass, it outputs 1 (i.e c is a valid cipher), else it outputs 0, (i.e. c is an

87

invalid cipher).

• ADecrypt(sk, τ, c, f) : Taking as input the secret parameter sk, a data set identifier,
a cipher c, and a linear function f = (fi)i∈[I], it calculates the decryption of c or ⊥
(if c is invalid cipher). Then it verifies if c is a valid cipher by running AV erify
(pk, τ, c, f). If passed, the algorithm returns the message m obtained by Dec(c).
Otherwise, it returns ⊥.

For lack of space, we refer the reader to [130] for the correctness and the security proofs
for LAEPuV scheme and to [129] for the security and correctness proofs of the LEPCoV
scheme.

6.4 A secure framework for Confidential and Verifiable
Federated Learning

6.4.1 Overview of the architecture

Figure 6.1 shows the high-level view of the FL framework while training with a total of
M clients in the case of a malicious central server. In our approach, the confidentiality of
the model is ensured by homomorphic encryption and the integrity for the computation
of the global model by the central server is guaranteed by public verifiability.

Before the training actually begins, the central server shares with theM clients the global
architecture of the neural network that will be trained. Also, once the enrollment of the
clients participating to the training is completed, the keys necessary for the homomorphic
encryption and the signatures are generated by one of the clients. This client responsi-
ble for the key generation can be randomly selected by the server or be the result of a
leadership election protocol. All the clients will then share the same pair of (sk, pk) keys,
with the sk key necessary for the decryption and signing and the public key pk for evalu-
ation and verification. The central server holds only the pk required for the homomorphic
evaluation and signature of the global model.

At each round of the training which is an iterative process, the server randomly selects K
out of the M clients. Each client sends its local updates of the weights homomorphically
encrypted together with an authentication tag. The server updates the global model by
computing a homomorphic aggregation on the weights. In the same time, it computes
the signature tag associated with the global model. The homomorphic result and the
signature tag are sent back to the K clients. Each of them will verify that the global
model was computed correctly and if so they will decrypt the received global weights.
This concludes the current round and a new iteration can begin. If the verification fails,
the clients will take appropriate actions, outside the scope of our work.

Once the training is finished, the parameters of the final global model are sent back to the
M clients which decrypt them and explore them internally for prediction on their local
datasets.

It is noted that the same technique can be extended with minor modifications to the case
we consider gradients instead of weights as local updates sent by the clients.

As example of a relevant application of our secure FL framework, one can cite the training
of a federated model across multiple medical institutions without sharing the patient

88

data. This allows to collaborate and build relevant models while keeping the patient data
in local, at the hospital and thus reduce the risk of data leakage while respecting the
health regulations. Another example of use case is the training of a common model by
the partners of a common defence alliance (e.g. NATO) without sharing their sensitive
military data.

Figure 6.1: Cross-silo federated learning architecture with Homomorphic Encryption and
public Verifiability

6.4.2 Threat and security analysis

Following common cybersecurity practices, this section summarizes the security properties
of our framework in terms of assets, threats and countermeasures. In our setup we have
two assets: the training data, owned by the clients, and the model they collectively
build with the help of the aggregation server. First, the confidentiality of the training
data of a given client must be guaranteed with respect to threats coming from both
the server as well as (ideally) the other clients. Additionally, the confidentiality of the
model (or, rather the successive models) must be guaranteed with respect to threats from

89

the server (as all the clients are granted access to the succession of models, there is no
confidentiality requirements on the models w. r. t. the clients in our protocol). The
integrity of the model should also be guaranteed against threats coming from the server
and, ideally, from the clients. In this setup, the framework presented here encompasses
two complementary countermeasures in order to address the above server threats: Fully
Homomorphic Encryption and public Verifiable Computing. Since FHE allows the server
to perform its aggregation function by working directly over encrypted model data, it
addresses confidentiality threats on the model data coming from the server and, as a
by-product that the server works in the encrypted-domain, on the clients’ training data
as well. Now, turning to integrity, our Verifiable Computing-approach allows all clients
to formally establish that the server correctly performs its aggregation function (albeit
on encrypted data) and, as such, mitigates integrity threats from the server. At present,
client threats are not (yet) covered by our framework. In particular Differential Privacy,
by adding an appropriate noise to the successive models coefficients (thus preventing
model inversion attacks and the like by the clients which receive the successive models),
can help mitigating confidentiality threats on the clients training data with respect to
one another. Still, properly introducing DP within a FL framework is easier said than
done and will be the focus of another work. The last kind of threats that our framework
does not fully cover (and which would also stay uncovered even when bringing DP into
the picture) concerns integrity threats on the model coming from the clients [160]. It
should however be emphasized that these threats are very hard to mitigate as malicious
clients can misbehave in many different and possibly harmful ways (e.g. from lying on
their training set sizes to using false or even misleading training data). Still, some form of
integrity on the final model can be checked a posteriori, for example by having each client
running the model on its own private test set and measuring the resulting classification
rate. Let us also note that our security model is valid under the hypothesis of non collusion
between the server and any user participating in the FL protocol.

6.4.3 Cryptographic tools and optimizations

As detailed in the section 6.3.3, one can batch several messages into the same Paillier
ciphertext. In the context of our FL approach, the weights updates by client as well as
the overall global model parameters are quite important in terms of size. By batching the
weights local updates and the weights of the global model one can diminish the bandwidth
requirements and also the evaluation time on the server side.

Let us now give the example on how the batching technique applies on federated averaging.
For the federated averaging, on the central server side, one must compute in the encrypted
domain: wt+1 ←−

∑K
k=1

nk
n
∗wkt+1 based on the encrypted updates of the weights received

from the clients k.

Of course 0 < nk/n ≤ 1 with r representative digits after the decimal point. The weights
are usually real numbers for which we will keep only p representative digits of precision.
For simplicity reason, we suppose that all weights are translated into the positive domain.
In this case, one must have for each slot in the packed message extra space for the term
nk/n. As such, each slot i for a packed ciphertext will be in the form

[nk/n︸ ︷︷ ︸
dlog2(10r)c

| wkt+1,i︸ ︷︷ ︸
dlog2(10p)c

| 0 . . . 0︸ ︷︷ ︸
K

].

90

Therefore, one can pack at most b weights in a single ciphertext with

b =
⌊ log2(n)

log2(10r) + log2(10p) +K

⌋
.

More concretely, let us suppose nk/n = (0, r1r2r3), each weight is in the form (0, p1p2p3p4)
and K = 10. It follows that we can have at most b2048/(log2(103∗104)+K)c = 61 packed
messages in a single ciphertext.

Let us now go into more details on the training protocol when using the above specified
cryptographic primitives.

At each round of the training, each client sends the result of AEncrypt over the local
updates of the weights: c = (C, e, e−1, µe, σ) containing the ciphers (C, e, e−1, µe) con-
catenated with the corresponding tag σ. The server updates the global model by calling
the AEval algorithm over the received messages c and using f , where f is the aggre-
gation function. The output of AEval is sent back to the K clients. Each of them
runs the AV erify algorithm to verify that the global model was computed correctly. If
so they will evaluate the ADecrypt over the message received to decrypt this message
and obtain the global weights. As mentioned in the section 6.3.4, the VC scheme for
Paillier encryption (LEPCoV) verifies the outsourced computation of any linear func-
tion over any messages in ZNE . Then to adapt the LEPCoV for the Paillier batching
encryption of weights it is sufficient to modify only the message weights wk to w′k, the
packed version of the weights. Then each user runs AEncrypt(sk, τ, i, w′k) instead of
AEncrypt(sk, τ, i, wk) and the cipher becomes c = (C ′, e, e−1, µe, σ), where C ′ = Enc(w′k)
as illustrated above. The remaining of the framework is completed like before. Finally,
we note that in the evaluation algorithm, we can evaluate C, b, and x in parallel (i.e.
the runtime of AEval = max(AEval(C), AEval(b), AEval(s) +AEval(a) +AEval(x))).
Each user can run AEncrypt and respectively AV erify in parallel over the batches of
uploaded and respectively downloaded weights so the associated evaluation times can also
be reduced.

6.5 Experimental results
We use the Federated Extended MNIST (FEMNIST) dataset1 as experimental setup. The
extended version of MNIST contains 62 classes (digits, upper and lower letters) and comes
with the writer id in such a way that its federated version was built by partitioning the
data based on the writer [183]. Among the 3,596 writers contained in the original dataset,
we keep the 500 users with the most data. Each selected user’s dataset has a train/test
data split for a total of 165,050 train and 27,433 test images.

Evaluations were done with a standard CNN composed of two convolution layers (the
first with 5 ∗ 5 kernel size and 128 channels, the second with 3 ∗ 3 kernel size and 64
channels, each followed with 2 ∗ 2 max pooling), a fully connected layer with 512 units
and ReLu activation, and a final softmax output layer (486,654 total parameters). The
evaluation metric was the accuracy on the test sets and, for each experimentation, 200
learning rounds were done.

1Dataset available at https://www.nist.gov/itl/products-and-services/emnist-dataset

91

We have led two distinct sets of experimentation. On one hand, we aimed at finding the
best hyperparameters (K, B, E)2 to improve the speedup of the learning process and thus
decrease the communication cost. On the other hand, our concern was about privacy and
our goal was to secure the FL process without degrading its performance.

6.5.1 Setting FL hyperparameters

To evaluate the speedup of the learning process relative to the FL hyperparameters, we
report the number of communication rounds to reach a decent target accuracy of 80%.
We first experiment with the number K of participants per round, which controls the
amount of multi-client parallelism. Setting B = 5 and E = 10, we show the impact of
varying K (see Fig.6.2). Above K = 10, there is only a small advantage in increasing the
client fraction. Thus, for the remainder of our experiments we fix K = 10, which strikes
a good balance between computational efficiency and convergence rate.

Figure 6.2: Test set accuracy vs. communication rounds varying the number of partici-
pants (B=5 and E=10)

Our second experiment aims at choosing B and E, which control the number of local
calculations for each client. Starting from B = 50 and E = 1, we add more computation
per client on each round, either decreasing B, increasing E, or both. Table 6.1 demon-
strates that adding more local SGD updates per round can produce a dramatic decrease
in communication costs. In the following, we use the parameters B=5 with E=10 which
give the best convergence rate for the FL process.

6.5.2 Quantization vs. utility

Since the encryption quantifies the clear messages, we conducted experiments to analyze
the impact of this quantization on the utility of the model. Contrary to Section 6.5.1,

2Notations are those introduced in Algorithm 1

92

E
1 5 10 20

B

50 - 195 149 152
10 155 50 48 44
5 87 40 33 34

Table 6.1: Number of communication rounds to reach a target accuracy of 80% varying
both B and E (while K=10)

we fixed the number of learning rounds to 200 and reported in Table 6.2 the accuracy
varying the precision on both wk and nk

n
for each participant k. We observe that a 104

precision is required not to degrade performances. In Figure 6.3, we focus on performance
deterioration due to precision on wk by showing accuracy for each round considering
different weights precisions (while precision on nk

n
is float32).

precision on wk
float32 104 103 102

pr
ec
is
io
n

on
n
k n

float32 84.6% 84.2% 82.6% 75.4%
104 84.5% 84.6% 82.8% 75.1%
103 83.5% 83.3% 82.0% 75.4%
102 78.0% 78.0% 77.2% 73.9%

Table 6.2: Accuracy after 200 learning rounds depending on precision on both wk and nk
n

Figure 6.3: Test set accuracy vs. communication rounds varying the precision on weights
wk (while precision on nk

n
is float32)

93

6.5.3 Performance evaluation of LEPCoV scheme

In the beginning, let us specify that all tests presented in this section were performed on a
2016 DELL PC(Genuine-Intel Core i7− 6600U , 4 cores at 2.60GHz with 16GB RAM at
2.13GHz), on Ubuntu (Linux kernel 4.15.0− 91− generic, with the architecture x86− 64
) as an operating system. Finally we used the C++ language to implement the LEPCoV
scheme.

Table 6.3 summarizes the average runtimes of AKeyGen, AEncrypt, AV erify, ADecrypt,
AEval and the detailed evaluation, over the tag σ = (a, b, s, x), and over the ciphers C.
Note that the evaluation time of AEncrypt and ADecrypt depends only on the size of the
cryptosystem parameters and the evaluation time of AKeyGen, AEval, AV erify further
depends on the number of participants K. We note that the AKeyGen is performed once.
The time presented in this table for AEncrypt is the time evaluation for the encryption
and tag generation for one message (weight). We recall that we can evaluate f over C,
b, and x in parallel (i.e. the runtime of AEval = max(AEval(C), AEval(b), AEval(s) +
AEval(a) + AEval(x))). We also remark that the verification time is rather fast (e.g
28, 87ms for K = 10 and a 2048 bits modulus).

Modulus size 1024 2048 3072

K 10 20 50 10 20 50 10 20 50

AkeyGen 19.98 20.07 21.04 163.9571 167.89 170.84 638.79 644.5 645.44

AEncrypt 5.17 5.23 5.36 37.12 37.05 37.12 124.07 117.39 118.6

AV erify 4.36 4.54 5.93 28.87 30.3 34.14 96.54 96.21 101.35

Decrypt 1.71 1.26 1.21 8.6 9.01 8.69 28.18 27.8 28.34

AEval 0.38 0.46 1.16 2.76 1.57 4.16 8.58 8.17 9.31
AEval(c) 0.23 0.46 1.14 0.8 1.57 4.08 1.77 3.82 9.31

AEval(a) 0.0006 0.0008 0.001 0.0008 0.001 0.002 0.001 0.001 0.003

AEval(b) 0.23 0.43 1.16 0.77 1.55 4.16 1.75 3.55 8.53

AEval(s) 0.0009 0.001 0.004 0.001 0.001 0.003 0.001 0.002 0.004

AEval(x) 0.38 0.37 0.42 2.76 2.73 2.5 8.58 8.17 7.52

Table 6.3: Average runtimes (in ms) of AkeyGen, AEncrypt, Adecrypt and AEval,
for different modulus and data size K. With the function f(x) =

∑k
i=0 nk/n wi where

nk/n and wk of size 104

Table 6.4 shows the batching characteristics one can use to encrypt with Paillier cryptosys-
tem the clients updates for the CNN model described earlier with 486,654 parameters.
As such, we report the number of slots (column "#slots") and the number of ciphertexts
(column "#ctxts") per participant in one round in function of the number of participants
(K), the precision of the weights wk and of the term nk/n as well as the modulus size. The
number of slots (and implicitly the number of encrypted messages per round) depends
on the number of bits of the modulus, the number of participants K and the precision of
both nk/n and wk.

Table 6.5 shows the bandwidth size in one round between a client and the central server on
upload and download. On the upload (direction client-server) this message is the output
of AEncrypt algorithm, it thus contains the cipher c and the tag of verification σ. On
the download, it contains the result of AEval algorithm that runs on the central server.

94

Modulus size
1024 2048 3072

nk/n precision 10^4 10^3 10^4 10^3 10^4 10^3
K wk precision #slots #ctxt #slots #ctxt #slots #ctxt #slots #ctxt #slots #ctxt #slots #ctxt

10
10^4 27 18024 30 16221 55 8848 61 7977 83 5863 92 5289
10^3 30 16221 34 14313 61 7977 68 7156 92 5289 102 4771
10^2 34 14313 38 12806 68 7156 76 6403 102 4771 115 4231

20
10^4 21 23174 23 21158 43 11317 47 10354 65 7486 71 6854
10^3 23 21158 25 19466 47 10354 51 9542 71 6854 76 6403
10^2 25 19466 27 18024 51 9542 55 8848 76 6403 83 5863

50
10^4 13 37434 13 37434 26 18717 27 18024 40 12166 41 11869
10^3 13 37434 14 34761 27 18024 29 16781 41 11869 43 11317
10^2 14 34761 15 32443 29 16781 30 16221 43 11317 46 10579

Table 6.4: Paillier batching requirements in function of the precision and number of
participants

For example, for a modulus size of 2048 bits, 104 of precision for both nk/n and wk and
K = 10, each user (out of 10) sends 486, 654×5.6 KB ' 2.5 GB to central server without
batching or it sends 8848× 5.6 KB ' 48.3 MB to the central server with batching. Each
client receives the same message from the server of the size 2.5 GB in the case without
batching or 49.5 MB with batching. The 5.6 KB mentioned above is the size for one
message, containing the size of the ciphers C = (c, e, e−1, µe, τ,) auditioned with the size
of the tag σ = (a, b, x, s), both of equal sizes.

without batching with batching

mod
K 10,20,50 10 20 50

Client, Server 1024 1200 49.2 63.3 102.3
Client, Server 2048 2500 48.3 61.8 102.3
Client, Server 3072 3800 47.5 60.6 98.6

Table 6.5: Size of bandwidth (in MB) between one client and the central server in one
round, with 104 precision of both nk/n and wk.

Table 6.6 shows the sequential evaluation times for the different cryptographic primitives
with batching, for one round of the training, for a precision level of 104 for both nk/n and
wk and a modulus size of 2048 bits. The experiments were performed for a modulus on
2048 bits since in terms of security, a modulus size of 2048 bits provides long-term security
guarantees following common practice, 1024 bits is considered insufficient and 3078 bits
is reserved for “beyond 30 years” confidentiality requirements. Columns "unit" report the
times per unitary encrypted messages while columns "total" report the times spent to
execute the model with all the 486 654 parameters but without any parallelization. Let
us however emphasize that the execution times especially for AEncrypt and AV erify
can be further improved by involving simple multi-core parallelization, which seems a
viable option in the cross-silo FL context to which this work applies. Indeed, on the client
side, each ciphertext (which contains several weights) can be prepared independently (and
furthermore the Paillier encryption function can be split in a message independent part,
which can be precomputed, and an online message dependent part in order to reduce
latency). Similarly, on the server side, the averages can also be computed independently.
So due to the “embarrassingly parallel” nature of both, the computing times in Table
6.6 can easily (e.g. by an OpenMP parallel-for) be reduced by one or two orders of
magnitude depending on the number of cores of the machines involved in the protocol.

95

Again, involving high-end machines on both client and server sides seems realistic in the
cross-silo setting.

K = 10 K = 20 K = 50
unit total unit total unit total

AEncrypt 0.73 6469.7 0.756 8552.49 0.741 13865.18
AEval 0.03 244.82 0.06 650.50 0.14 2619.63
AEval(c) 0.028 244.82 0.06 650.50 0.14 2619.63
AEval(a) ≈0 0.02 ≈0 0.06 ≈0 0.18
AEval(b) 0.03 243.94 0.06 636.35 0.14 2619.63
AEval(s) ≈0 0.04 ≈0 0.09 ≈0 0.19
AEval(x) ≈0 36.45 ≈0 46.62 ≈0 78.61
AVerify 0.07 579.54 0.10 1144.15 0.21 4004.69

ADecrypt 0.01 76.09 0.01 97.89 0.01 160.97

Table 6.6: Sequential runtimes (in seconds) for 104 precision of both nk/n and wk and a
modulus size of 2048 bits

6.6 Conclusion and perspectives
The framework presented in this work addresses both confidentiality and integrity threats,
on both the training data and model, coming from the aggregation server by means of
HE and VC techniques. On top of providing strong cryptographic security guarantees,
and despite the far from negligible overhead induced by these techniques, we claim that
our framework achieves practical performances at least in cross-silo setting when the
participants are willing to deploy high-end machines (between 10 to 100 cores) to decrease
the overall protocol latency to a sustainable level.

As such, this framework is a significant step towards private-by-design federated learning.
However, it is also desirable to cover a wider security model by also countering threats
from the end-users thus extending our solution to a fully secure framework applicable in
a context where the recipients of the final model may not be trusted (to some extent).
Notably, this will require to bring differential privacy (DP) into the picture in order to
prevent indirect leakage of sensitive information on the training data from the successive
models built (and disclosed to the clients) in the protocol. In a scenario in which the
clients or the end-users of the final model may be malicious, DP would indeed protect the
model updates or the model itself from attacks like membership inference [181, 182] or
model inversion [160, 162]. Yet, there are a number of subtleties in doing so, in particular
with respect to distributed noise generation or interferences between HE and VC on one
hand and DP on the other hand.

96

Chapter 7

Secure TL using VC and HE

7.1 Introduction . 97
7.2 Related work . 98
7.3 Background . 99

7.3.1 Transfer Learning (TL) . 99
7.3.2 Homomorphic Encryption (HE) . 99
7.3.3 Verifiable Computing (VC) . 101

7.4 Proposed Approach . 101
7.4.1 Our model . 101
7.4.2 Security Guarantees and Threats 102
7.4.3 Medical Use-Case . 103

7.5 Dimensionality Reduction of target domain 104
7.6 Experimental Evaluation . 104

7.6.1 Transfer Learning Parameters . 106
7.6.2 Performance of our architecture . 108

7.7 Conclusion and Future Work . 109

7.1 Introduction

In recent years, a major domain of research concerns the machine learning (ML) methods
and the efforts in having high quality predictive models [184–186]. Yet, in practical usage
scenario, it is often necessary to evaluate these models in a privacy-preserving fashion,
for example by evaluating a model on a server over encrypted data, the inputs or the
derived predictions are not disclosed to the server. In this context, this work studies
how complex machine learning can be performed securely in practice by combining Fully
Homomorphic Encryption (for computing over encrypted data), Verifiable Computing
(for integrity guarantees) as well as Transfer Learning (as a means for scaling without
prohibitively large volumes of costly encrypted operations). The common point of the
most previous works in the Machine Learning domain is that the training data and testing
data enjoy precisely the same feature space and identical data distributions. In contrast,
Transfer Learning (TL) aims to build an effective model that transfers knowledge in one
context to enhance learning in a different context. Therefore, it predicts even if the data
distribution is not identical with the previous one, without constructing a new model
from scratch. This is interesting for various reasons such as saving efforts, energy, and
time.

97

Classification is one of the most investigated applications of transfer learning [187–198].
The problem of lacking sufficient labeled or unlabeled data in a target domain can be
solved by the transfer learning, which also leads to more reliable classification results.
Other typical applications exploiting TL have been proposed in recent years, such as
pedestrian detection [199], improved image recognition in the medical field [200], improv-
ing visual tracking [201], and features selection [202, 203]. In the machine learning context,
one important issue is data confidentiality and model integrity. Homomorphic Encryption
is one of the methods to ensure the data privacy that allows to apply an operation over
encrypted data without decrypting it first. The integrity of computation on encrypted
data or clear data can be further on verified using verifiable computing techniques.

In this context, this contribution addresses the confidentiality threat and the leakage of
information in the transfer learning process. We leverage homomorphic encryption and
verifiable computing to provide solutions for the secure evaluation step of the transfer
learning. Our contributions are as follows:

• Propose a secure architecture for privacy-preserving and verifiable TL by means of
Homomorphic Encryption and Verifiable Computing. Beside this architecture, we
also give an example of a practical medical use case for our secure transfer learning
solution.

• Provide an instantiation of our framework using the VC protocol from [3] with the
BFV [24] homomorphic encryption scheme, to classify an encrypted image into two
classes (dogs and cats)1.

• Propose PEOLE, a method of dimension reduction of the features space in order
to efficiently apply the homomorphic encryption techniques without a significant
accuracy loss.

• Evaluate the practical performances of our architecture (≈2 min for prediction an
encrypted image) by several classification experiments consisting in extracting the
feature from a pre-trained model VGG16 [204] for image classification and train a
MLP (Multi-Layer Perceptron) classifier on top of it.

7.2 Related work
It is worth noting that most of the studies in the privacy of data to machine learning
consisting of applying homomorphic encryption to machine learning models concentrates
on making the inference on private data (e.g. CryptoNets [132], TAPAS [141], NED
[142]) and not so much on the training phase. Zhu and Wu [205] have fine-studied how
to deal with noisy class label problems in the line of research between supervised and
unsupervised learning. In another line of research, Yang et al. [206] have studied the cost
of learning when the additional tests can be made to future samples.

A particularly interesting application approach using encryption for performing machine
learning for Deep Neural Network (DNNs) has been done in [207] where all the images
used for training are encrypted using a tailored-made cryptosystem called Tanaka. Siri-
chotedumrong, Kinoshita, and Kiya (SKK) scheme [208] proposed a privacy-preserving

1Dataset available at https://www.kaggle.com/shivamb/cnn-architectures-vgg-resnet-inception-tl/
data.

98

https://www.kaggle.com/shivamb/cnn-architectures-vgg-resnet-inception-tl/data
https://www.kaggle.com/shivamb/cnn-architectures-vgg-resnet-inception-tl/data

scheme for DNN that encrypts the images (pixel-based image encryption method) un-
der different keys, and allows one to use data augmentation in the encrypted domain.
Glyph [171] is another approach, based on homomorphic encryption, allowing to fast
and accurately train DNNs on encrypted data by switching between TFHE (Fast Fully
Homomorphic Encryption over the Torus) and BGV cryptosystems.

The problem of ensuring privacy and verifiability in a deep learning system is examined
in a few works such as SafetyNets [146], and Slalom [176]. However, these schemes (Safe-
tyNets, Slalom) propose only a small variety of activation functions or require additional
hardware assistance as in [176]. An interesting architecture proposed by Madi et al. [2]
to achieve both confidentiality and integrity for the inference step of a neural network
is comprised of three entities: client, server, and operator. Even if similar to ours, in
their case, the server executes the first layers privately (using FHE and VC) and it is the
operator which is performing on clear the last layers of the NN. As such, they cannot take
advantage of a public pre-trained model and moreover, they are obliged to use an adver-
sarial learning model against the leakage of information after decryption on the operator
side.

To the best of our knowledge, this is the first work to use the application of the verifiable
computing and homomorphic encryption for the transfer learning setting (i.e. verify the
integrity of the encrypted prediction results returned by the model).

7.3 Background

7.3.1 Transfer Learning (TL)

Transfer Learning (TL) is the process of learning to solve a problem in a "target" domain
using part of the knowledge acquired on the reference problem to solve a similar target
problem. In this context, we can distinguish several approaches depending on what, when
and how we want to transfer. The application of this idea in ML implies reusing all or
part of a model learned on reference data to solve a target problem by re-learning on the
target data. This is attractive for several purposes, such as learning about sensitive data,
while respecting privacy policies and business requirements and in different domains like
the health or the autonomous driving field.

In a Transfer Learning setting, some labeled data Dsrc are available in a source domain,
while only unlabeled data Dtar are available in the target domain. We denote the source
domain data as Dsrc = {(xsrc1 , ysrc1), . . . , (xsrcn1 , ysrcn1)}, where xsrci ∈ Rm is the input
data and ysrci is the corresponding label. Furthermore, we indicate the target domain
data as Dtar = {xtar1 , . . . , xtarn2}, and, without loss of generality, we suppose that the
input xtari in Rm. Let P(Xsrc) and Q(Xtar) (denoted by P , and Q in short) being the
marginal distributions of Xsrc and Xtar, respectively. Generally, they can be different.
The task of transfer learning is then to predict the labels ytari corresponding to the inputs
xtari ∈ Dtar.

7.3.2 Homomorphic Encryption (HE)

Fully Homomorphic Encryption (FHE) schemes allow to perform arbitrary computations
directly over encrypted data. That is, with a fully homomorphic encryption scheme

99

E, we can compute E(m1 + m2) and E(m1 ×m2) from encrypted messages E(m1) and
E(m2).

In this section we recall the general principles of the BFV homomorphic cryptosystem [24],
which we use in combination with a VC scheme. Since we know in advance the function
to be evaluated homomorphically, we can restrain to the somewhat homomorphic version
described below.

The biggest problem of Homomorphic Encryption, especially in the homomorphic mul-
tiplicative is the size of the ciphertext that is growing exponentially in the number of
operations, which can have a great influence on the correctness and the capability of de-
cryption. For this reason for some HE scheme, there exists a relinearisation operation
to solve the growth of error rate. We skip the description of the relinearisation step for
the BFV since this is not needed for our usage - we evaluate only multi-variate quadratic
polynomials of degree at most 2 (i.e. at most 2 multiplications and a modular reduction
which can be realized upon decryption).

Let R = Z [x] /Φm (x) denote the polynomial ring modulo the m-cyclotomic polynomial
with n′ = ϕ(m). The ciphertexts in the scheme are elements of polynomial ring Rq, where
Rq is the set of polynomials in R with coefficients in Zq. The plaintexts are polynomials
belonging to the ring Rt = R/tR.

As such, BFV scheme is defined by the following probabilistic polynomial-time algo-
rithms:

BFV.ParamGen(λ): → (n′, q, t, χkey, χerr, w).
It uses the security parameter λ to fix several other parameters such as n′, the degree of the
polynomials, the ciphertext modulus q, the plaintext modulus t, the error distributions,
etc.

BFV.KeyGen(n′, q, t, χkey, χerr, w):→ (pk, sk, evk).
Taking as input the parameters generated in BFV.ParamGen, it calculates the private,
public and evaluation key. Besides the public and the private keys, an evaluation key is
generated to be used during computation on ciphertexts in order to reduce the noise.

BFV.Encpk(m)→ c = (c0, c1, c2 = 0)
It produces a ciphertext c according to BFV-cryptosystem for a plaintext m using the
public key pk.

BFV.Decsk(c) :→ m
It computes the plaintext m from the ciphertext c, using private key sk.

BFV.Evalpk,evk(f, c1, . . . , cn):→ c, with c =BFV.Encpk(f(m1, . . . ,mn)), where ci =
BFV.Encpk(mi), and f has n inputs and has degree at most two.
It allows the homomorphic evaluation of f , gate-by-gate over ci using the following func-
tions: BFV.Add(c1, c2) and BFV.Mulevk(c1, c2).

For further details on this scheme, we refer the reader to the paper [24].

Let us just note that a BFV ciphertext c can be seen as an element in Rq[y] =
Z/qZ[X, Y]/Φm(x) with a degree at most 2 (i.e., c = c0 + c1y + c2y

2).

100

7.3.3 Verifiable Computing (VC)

Verifiable computation VC techniques allow to prove and verify the integrity of compu-
tations on authenticated data. A Verifiable Computation scheme is defined as a protocol
in which a client (usually weak) has a function f and some data denoted x and delegates
to another client (in most cases a server) the computation of y = f(x). Then the same
client or another one can receive the result y plus a short proof of its correctness. More
in details, a user generates an authentication tag σx associated with his/her data x with
his/her secret key and the server computes an authentication tag σf,y that certifies the
value y = f(x) as an output of the function f . Now, anyone using the verification key
(public or secret) can verify y to check that y is indeed the result of f(x).

A VC scheme includes the following algorithms:

1. (PK,SK)←KeyGen(f, λ): Taking as input the security parameter λ and a function
f , this randomized key generation algorithm generates a public key (that encodes
the target function f) used by the server to compute f . It also computes a matching
secret key, kept private by the client.

2. (σx,τx)←ProbGenSK(x): The problem generation algorithm uses the secret key
SK to encode the input x as a public value σx, given to the server to compute with,
and a secret value τx which is kept private by the client.

3. σy ←ComputePK(σx): Using the client’s public key and the encoded input, the
server computes an encoded version for the function output y = f(x).

4. (acc, y)←VerifySK(τx,σy): Using the secret key SK and the secret τx, this algorithm
converts the server output into a bit acc and a string y. If acc = 1 we say that the
client accepts y = f(x), meaning that the proof is correct, else (i.e. acc = 0) we say
that the client rejects it.

7.4 Proposed Approach

7.4.1 Our model

We begin by explaining our proposal for an architecture allowing to deploy the secure
transfer learning model using homomorphic encryption and verifiable computing. Our
architecture is composed of three entities: user, server, and operator. In the following,
we describe a high-level view of our TL design with the role of each entity as revealed in
the Figure 7.1. Let us denote by f , the global Machine Learning model deployed by our
architecture, consisting of n layers and taking as input the data x.

1. The user - owner of some data denoted x - starts the process by applying the first (n-
i) layers of the model, i.e. fn−i(x) When the result is calculated, the user encrypts
homomorphically fn−i(x) , and she generates the associated integrity tag. These
encryption data and the associated tag are sent to the server.

2. The server has the task of evaluating in the homomorphic domain, the remaining
layers of the neural network over the private data [fn−i(x)]HE. Due to the restrictions
imposed by the Verifiable Computing protocol used in our approach (i.e. ability to
evaluate the correctness of the evaluation of multi-variate polynomials of degree at
most two), in our case the server will homomorphically evaluate only a quadratic

101

Figure 7.1: Our architecture for a confidentiality & integrity preserving inference phase
of transfer learning

function (which is totally feasible and with really good performances by existing
FHE means). Now, the homomorphic evaluation of the private part of the model
along with the associated integrity proof is sent to the operator.

3. The operator has access to the evaluation of the server evaluation, and to the result
of the TL model. Therefore, it can check the validity of the server computation. If
it is correct it decrypts the result and then employs it as it wants.

We note that the number of layer i evaluated on the server side, depends directly on the
limitation of the VC and FHE methods.

7.4.2 Security Guarantees and Threats

Unlike other works using homomorphic encryption for private inference, we set up our
study in the case of a malicious server, which can possibly alter the results of the evalua-
tion (e.g. by not running the specified algorithm). We argue that it is necessary to have
integrity guarantees against threats coming from this adversary in addition to the confi-
dentiality offered by the homomorphic encryption.The malicious adversaries may conduct
arbitrarily (i.e. execute any computation) for stealing, corrupting, and modifying data,
without any specifications, and may compute any function over data instead of the re-
quired computation (function delegated). For this goal, in our approach, we use verifiable
computing technique, in particular the VC protocol of Fiore et al. [3], that allows anyone
to check efficiently the calculation evaluated on the server over encrypted data, in order
to check that the server correctly calculates the layers delegated to it. To the best of
our knowledge, this VC is the most practical verifiable computing protocol to address the
validity of computation over encrypted data with the limitation that it evaluates muti-
variate functions of degree at most 22. Therefore, this constraint restrains the number of

2This is due to the need to go beyond bilinear maps to achieve higher degrees in the underlying
cryptographic primitives involved in both VC and FE.

102

layers that can be delegated to the server in our architecture (i.e. the server can evaluate
homomorphically maximum the last quadratic layers of a model).

In our architecture, unlike other works using homomorphic encryption, especially Glyph
[171] and Madi et al. work [2], the server evaluates in the homomorphic domain the last
layers of the model as knowing the encryption of fn−i(x) to obtain the encryption of f(x).
The operator, after receiving the encryption result decrypts f(x), which is contrary to
the Glyph and Madi approach, where they compute the first layers of the model and send
this encrypted to the operator that decrypts this result and obtain f1(x) and complete
model. Therefore, in terms of information leakage, it is clear that our model is optimal.
In summary, using our architecture we prevent threats coming from the server executing
the last layer and wanting to infer information about the learning.

7.4.3 Medical Use-Case

As quickly described in [209], imagine a scenario where a radiologist (user) has just ac-
quired images from the body of one of its patients and needs to interact with a remote
proprietary diagnostic service (server) to get some insights. The service itself is expect-
ing images as input and crunches them through an advanced deep neural network which
outputs highly reliable insights in terms of the pathology the patient is suffering from as
well as personalized treatment approaches. Clearly, as health-related data, the patient
images and data are considered sensitive and cannot be shared without protecting their
confidentiality. On the other hand, the neural network has been carefully crafted by the
service provider using a lot of precious hard-earned training data and is considered crit-
ical intellectual property. In this scenario, it is thus acceptable neither that the service
provider is granted access to the patient data (or to a by-product of these) nor that the
radiologist is disclosed the network. Thus without additional means to prevent disclosure
of these assets, a high value service is prevented to exist.

One way to resolve these conflicting requirements is by bringing privacy preserving FHE
calculations into the picture. In principle, in the above scenario, the radiologist may
be the owner of a FHE cryptosystem and send its patient’s data encrypted under that
cryptosystem to the service provider. The service provider then evaluates its neural
network directly over these encrypted data, producing results which are sealed under the
radiologist’s cryptosystem. The final results are then sent back to the radiologist who is
the only party able to decrypt them. So we are done. The patient data are not disclosed to
the service provider (since they, and their by-products, are sealed under a cryptographic
layer at all time) and the network is not disclosed to the radiologist since it stays on the
service provider computing premises. Unfortunately, this naïve view is impractical since,
despite the advances made and yet to be made in FHE operators efficiency, it is unlikely
that they will be sufficient to enable practical homomorphic evaluation of the large scale
neural nets involved in advanced machine learning tasks. Fortunately, as we shall now see,
scaling FHE calculations to complex machine learning tasks does not necessarily mean
scaling FHE calculations to large scale models.

Now let us assume that the service provider has followed the transfer learning philosophy
to build its neural network. As such, its network can thus be split in two parts:

• A first preprocessing network (e.g. VGG16) which is publicly available and has no
dependencies on the precious hard-earned training data of the service provider.

103

• A second much smaller decisional network trained on the service provider sensitive
data which turns VGG16 ouputs into the highly reliable insights expected by the
radiologist.

In light of the above, we can now rework our scenario to make it much more FHE
friendly. Indeed, the publicly available preprocessing network can be disclosed to the
radiologist’s information system and run in the clear domain before encryption. So rather
than sending FHE-encrypted images, the radiologist(’s information system) only sends a
FHE-encryption of the resulting feature vector(s), which is furthermore of much smaller
size than high-resolution images. On the service provider side, only the smaller deci-
sional network has to be run in the encrypted domain therefore dramatically decreasing
the footprint of FHE-calculations and resulting de facto in much better scaling properties.
Since transfer learning techniques are widely applicable and applied in the neural network
community we can therefore claim that performing advanced machine learning tasks over
encrypted data does not require scaling encrypted-domain calculation to large networks,
as, as argued above, the fact of running the preprocessing on the user/radiologist side
does not impact the confidentiality properties of the setup.

7.5 Dimensionality Reduction of target domain
In order to provide a good TL model, that can be used with our architecture, we propose
a dimensionality reduction method of the target domain Dtar .

The proposed TL dimensionality reduction, which will be called Probability Elimination of
Output with Light Effect (PEOLE) uses a projection map ψ : Rm → Rm′ that eliminates
the features extracted by the public model. It consists in finding the minimal dimension
of the feature space such that there is not a very high loss of accuracy in the prediction
of the final model (i.e. finding m′ s.t. m′ = ψ(Rm)).

We note by X ∈ Rn2×m the matrix representing the Dtar where we put the xtari in the
i− th line of X. We want to find the new matrix X ′ ∈ Rn2×m′ representing the Dtar.

Our method consists in performing two steps:

First step For any column, we calculate the percentage of elements less than a chosen
threshold s(s can be for example 10−6).

Second step Eliminate the column that has a percentage bigger than a chosen percentage
p (for example for p = 90% , and s = 10−6, we eliminate the column that has more than
90% elements smaller than 10−6).

For a percentage p and a sill s, if we delete all the columns of X that have a percent-
age more than p elements smaller than s, so we do not lose a remarkable amount of
accuracy.

7.6 Experimental Evaluation
In our experiments, we want to evaluate our architecture for the case where we extract
the features from a pre-trained model for image classification and train a classifier on top
of it. We note that the ML implementations in this chapter are done on Google Collab.
We use a dataset consisting in images containing only 2 types of animals (dogs and cats)

104

3 where the train folder contains 12,500 images for each class. Each image in this folder
has the label as part of the filename. The test dataset contains 12,500 images, named
according to a numeric id.

As for the public pre-trained model, we used the VGG16 model [204] to extract the data
features, which is a convolutional neural network model proposed by K. Simonyan and
A. Zisserman [204]. We note that this model is trained over the ImageNet4, a dataset of
14 million images belonging to 1000 classes. Our evaluation metric was the accuracy of
prediction for the test sets.

The VGG16 architecture consists of:

1. A total of 16 layer in which weights and bias parameters are learnt.

2. This network contains a total of 13 convolutional layers with 3 ∗ 3 kernel size, and
increasing numbers of filters corresponding to the layers, with 3 dense layers for
classification (comprises of 4096, 4096, and 1000 nodes each).

3. Each convolutional layers is followed by a ReLu activation, and a final softmax
output layer (25, 088 total parameters).

4. A 2 ∗ 2 max pooling applied at different steps (after the: 2nd, 4th, 7th, 10th, 13th
convolution layer) to obtain the informative features.

We state that, in our experimentation, we do not want to add the last layer of VGG16
architecture, since we add a classifier, essentially a Multilayer perceptron.

On top of the VGG16 model, we build our own private model, a simple neural network
- MLP (Multi-Layer Perceptron) to classify over our own dataset (images of dogs and
cats). Then, our private model is a MLP composed of one hidden layer with 55 neurons
with an identity activation function that trains using the pre-trained features by VGG16.
We note that the weight matrix for the first layer is 25, 088 × 55 and the hidden layer
consists of 55 × 1 weight vector. We recall that the features extracted from VGG16 are
in the form of a vector of length 25, 088. Figure 7.2 represents the different steps in our
test architecture.

The first step of our experiment is to encrypt the extracted features using VGG16 and to
generate the corresponding authentication tags. Afterwards, we evaluate the MLP model
over these encrypted data and their tags (the server private computation part) and send
the encrypted result with the computed result tag to an operator that can verify (over
the result tag) that the calculation is correct, and decrypt this result if the verification
passed.

We build two distinct sets of experimentation. On one hand, we aimed at reducing the
output of VGG16 of 25088 features to an acceptable size which permits us to encrypt it
using a homomorphic encryption system and to improve the speedup of the prediction
over encrypted features. Using our PEOLE method we tried to find the best set of
parameters (s, p)5 while preserving the accuracy level. Let us emphasise that our main
focus was on the evaluation of the techniques for privacy and integrity (i.e. homomorphic

3Dataset available at https://www.kaggle.com/shivamb/cnn-architectures-vgg-resnet-inception-tl/
data.

4Dataset available at https://www.image-net.org/
5Notations are those introduced in section 7.5

105

https://www.kaggle.com/shivamb/cnn-architectures-vgg-resnet-inception-tl/data
https://www.kaggle.com/shivamb/cnn-architectures-vgg-resnet-inception-tl/data

Figure 7.2: Our test architecture.

encryption and respectively VC) in order to achieve a secure transfer learning model
without degrading its performance.

7.6.1 Transfer Learning Parameters

To evaluate the speedup of the prediction process relative to the TL parameter and
to accelerate the computation of the private model over encrypted data, we start our
experiments by describing the variation of the dimension of the target domain (more
precisely the output of VGG16) corresponding to the elimination of the column depending
on the percentage p of elements with value less than s = 10−2. As expected, the dimension
of the features vector after elimination is reduced, as seen in Figure 7.3. For example,
we remark that the dimension of the output VGG vector is decreased more than 75% for
p=80% meaning that its size decreases from 25088 to 5638.

To show a complete view of our method and its importance, we need to describe the accu-
racy modification using PEOLE with different values for the percentage p. Figure 7.4 de-
scribes the evolution of the accuracy with p ∈ [80, 100] and s ∈ {10−6, 10−5, 10−4, 10−3, 10−2}.
As we can see in this figure the accuracy for (s, p) = (10−2, 80) is 97.5625 for an ini-
tial accuracy of 98.3125 (without PEOLE) and then it is a small decrease of accuracy
(0, 75%).We remark that the accuracy can be the same for multiple choices of s and p,
e.g. p=83, 84 and s = 10−3, 10−4 where we obtain an accuracy different from the other s
and p values.

As such, PEOLE method is a relatively easy way to explore the features space obtained
with the initial public model and to diminish its dimension with a small loss in the
accuracy of the final model - i.e. as seen in the Figure 7.4, for p = 80% and s = 10−2, the

106

Figure 7.3: Variation of VGG16 output vs percentage using our idea PEOLE.

accuracy becomes 97.5625.

As for the homomorphic encryption, the plaintext are polynomials from the ringR = with
integer coefficients modulo t. Thus one has to encode the features and the parameters
of the model before performing homomorphic operations on top of them. As such, we
also conducted experiments to analyze the impact of this quantization on the accuracy
of the final model. In this test we fixed the parameters s and p to (10−2,80%). The
accuracy varies depending on the precision of both features(output of VGG16) and the
weights of each layer. In Table 7.1, we focus on the performance deterioration due to the
approximations on both wk and fe by showing the accuracy for the model with regards
to the rounding precision for the weights and the features.

Table 7.1 describes the evolution of accuracy depending on the approximation of both:
weight and features with fixed (p, s) = (80%, 10−2). We draw your attention that when
we refer to a precision of an element of 102 for exemple, then we round it to the nearest
integer element by taking only the two-digit after the floating point (i.e; for a feature value
of 12, 345 the approximated value will be 1234). As you see in this table the accuracy
varies from 97.5625% to 97.5 %, then with loss = 0.0625 %, with precision 102 of features
for any precision of weights, but it is unremarkable variance. For this reason, and taking
into account all of the results for the previously mentioned experiments, we work with the
following parameters: s = 10−2, p = 80% that produces a feature vector of length 5638,
with a good accuracy 97.5 (loss equal 0.8125 %).

107

Figure 7.4: Evolution of the model testing accuracy with respect to the percentage p and
different s with PEOLE method

precision on wi
102 103 104 105 106

102 97.5 % 97.5% 97.5% 97.5% 97.5%
103 97.5625 % 97.5625% 97.5625% 97.5625% 97.5625%
104 97.5625 % 97.5625% 97.5625% 97.5625% 97.5625%
105 97.5625 % 97.5625% 97.5625% 97.5625% 97.5625%pr

ec
is
io
n

on
f
e

105 97.5625 % 97.5625% 97.5625% 97.5625% 97.5625%

Table 7.1: Accuracy of model after application of our PEOLE method with (p, s) =
(80%, 10−2) depending on precision on both wi and fe

7.6.2 Performance of our architecture

In the beginning, let us specify that all tests presented in this section were performed on a
2016 DELL PC(Genuine-Intel Core i7− 6600U , 4 cores at 2.60GHz with 16GB RAM at
2.13GHz), on Ubuntu (Linux kernel 4.15.0−91−generic, with the architecture x86−64)
as an operating system. Finally we used the C++ language to implement the encryption
and verifiable computing part of our architecture.

In our experiments, we encrypt and decrypt homomorphically the data with the SEAL
[154] library and we use the HAL [156] library for authentication but for BFV encrypted
data. We note that we choose the security parameters in the way that achieve a 128 bits
of security

108

operation times

User-side Enc 36.11
GenTag 0.005

Server-side MLP (Enc(x)) 66.3
MLP (σ1, . . . , σn) 1.48

Operator-side V erify 0.027
Dec 0.002

Table 7.2: Costs (in seconds) for our architecture, where x = (x1, . . . , x785)

Table 7.2 shows the sequential evaluation times for the different steps of our architecture
to predict the class of one image after applying our PEOLE method for a percentage
p = 80% and a sill s = 10−2. Then, the dimension of the features extracted using VGG16
passes from 25088 to 5638. As presented in this table the encryption of this vector of 5638
takes 36.6 sec and the generation of the tag for authentication takes 0.005 sec. The last
one is the cost of generation for a single tag since we note that the tags can be generated
in parallel for each encrypted element. The application of MLP over this encryption data
takes about one minute and the execution of MLP over the tag takes about 2 seconds
(1.48 sec) also note that the evaluation of the MLP model and the tag can be executed
in parallel. Finally, the verification of authentication the result is very fast and it takes
about 0.027 sec.

7.7 Conclusion and Future Work
The architecture proposed in this chapter is the first in the TL domain to address both
integrity and confidentiality threats by means of homomorphic and verifiable computing
techniques. To validate our approach, we evaluated for the evaluation of the last layer
of a ML model using unencrypted weights and encrypted feature data. In this scenario,
we prevent the threats coming from the server executing the last layer and wanting infor-
mation about the learning, potentially interested in infering. We create our architecture
using the Keras [210] library to build the VGG16 trained over the Imagenet, and test our
approach using the MLP with one hidden layer of 55 neurons that show a good accuracy
for the private prediction of the class for one image (∼ 97 %) in an acceptable time
(∼ 2 min=(2min for HE and in parallel 1.512 min for VC)) with a fast verification of
result.

Our architecture remains generic and can be easily extended to further deployments where
the private evaluation of the neural network model delegated to the server is more complex
(more layers, other activation functions, etc). In order to go further, there are several
interesting directions to follow. First, a concrete optimization idea consists in the use of
the VC protocols for the homomorphic schemes in batched mode which can improve the
performance and reduce the memory used for the encryption data. Other idea is to use
newer and more complex verifiable computing protocols, in order to be able to evaluate
more than quadratic multivariate polynomials. Finally, we hope that this contribution
opens the door to further work covering a more general threat model for the secure AI
applications using homomorphic encryption.

109

110

Chapter 8

Conclusion

8.1 Motivation and Problem Statement

As predicted by Jeremy Rifkin, we assist today at what it is called The Third Industrial
Revolution, thanks to the development of more and more online resources and services.
The cornerstone of this revolution is personal data, which can be private or not. For
this reason, the study of improving and evolving the encryption tools and cryptosystems
takes an important place in the last decade, particularly on tools that preserve confi-
dentiality and integrity such as: homomorphic encryption (HE) and verifiable computing
(VC).

The HE evolved in the last ten years from a theoretical idea to existence of several
cryptosystems, libraries, and a lot of results, software, and hardware, with each of them,
focused on a practical side. It is a very active field, with every year bringing performance
improvements and new emerging applications.

Verifiable computing has been studied because it is important in cloud computing. Cloud
computing has become the leading trend of modern computing since it has highly diverse
usages and various final clients: small businesses, hand-held devices and, private users.
This main tool used -VC over encrypted data using HE- stated in chapter 4, it boosts the
security of outsourced computation and more precisely the execution integrity.

These two cryptographic tools compose the pillars of our work, in the sense of ensuring
integrity and confidentiality properties for ML based applications. The state-of-the art
is a moving field and new approaches continue to improve their efficiency and effective-
ness.

Thus, we started our manuscript by explaining our context, by showing the ML phases
with detailed security analysis, specifically on the side of confidentiality threats and in-
tegrity threats. We presented an analysis of the existing works. We have shown that
the designs of the second generation of FHE schemes (BGV, BFV,. . .) are at the center
of the work of the scientific community. There is also an interest for the schemes of the
third generation which have better management of the noise. We presented in details the
design of the HE schemes used in our contribution. Moreover, we presented the design of
the VC scheme of Fiore et al. [3] that is one of the main pillars for our building of our
contributions.

111

Regardless of the limitation of these tools, they are an important addition for any work
where they operate over it. Specifically, these tools offer: good security properties against
threats and flexibility of computing over encrypted data. In the ML context, these tech-
niques (i.e. FHE, VC) help with security problems related to the building of good AI
models. Indeed, our work demonstrates that scaling confidential and verifiable encrypted
domain calculations to complex machine learning functions does not necessarily require
scaling these techniques to large volumes of encrypted domain calculations.

These are the motivations that gave us the enthusiasm and passion to dive into this thesis,
i.e. using FHE and VC to ensure secure use of Machine Learning.

8.1.1 Our Contribution

We started our PhD by studying the way to eliminate the limitations of existing VC pro-
tocols. More precisely, we started by analyzing and trying to generalize the VC protocol
of Fiore et al. [3] that is restricted by the delegation of multivariate polynomials of degree
of max 2 for data encrypted with BGV homomorphic scheme. The Fiore et al. [3] core
tools (homomorphic hash functions and amortized closed-form efficient PRFs) were in-
stantiated with bilinear groups. We work to instantiate it with a multilinear map for more
general functionalities, and use these generalized tools to construct verifiable computing
schemes on encrypted data for evaluation of multivariate polynomials of higher degree.
Still, we encountered another obstacle which is: proposed homomorphic hash function
does not work correctly due to the reduction modulo φ(x) (the modulo in the ciphertext).
unfortuanetly, it is a complicated research subject which may constitute a standalone
PhD topic. Therefore, taking into account the scope of our thesis, we decided not to dive
up into this subject further on. Yet, we obtain from this research the following result: the
adaptation of the VC Fiore scheme with BFV homomorphic encryption scheme, that we
used to fulfill our goal.

The first contribution of this thesis is the adaptation of the existing FHE and VC tools
with their limitations to ensure a secure evaluation of a neural network over secure data
during an inference phase. We build an architecture allowing the evaluation of a neu-
ral network over private data, while conserving the security of user’s data. The server
evaluates the first layer of NN in the homomorphic domain, and sends the result to an
operator that performs the remaining layers with assuring that the server evaluations are
correct.

The second contribution involves the training phase of a ML algorithm, known to be
difficult for applying homomorphic encryption techniques. As such, we take a deep look at
Federated Learning (FL) which is collaborative training allowing to keep local data secure
and train over it using a central server. The central server performs only an aggregation
function over the locally trained models. We constructed a FL framework with a high-
security level with both integrity and confidentiality guarantees, in the sense of preserving
the confidentiality of participants’ local data, and the integrity of the computation made
by the central server in each round of the FL algorithm.

As a third major result, we proposed the first secure Transfer Learning architecture that
eliminates the information leakage issue in the first contribution while preserving func-
tionality as well as integrity and confidentiality guarantees.

One of the advantages of the proposed architectures is that they can be adapted with

112

the new VC protocols that work over the FHE schemes, that ensure the integrity of
computation for multi-variate polynomials of a higher degree.

8.2 Perspective & Future Work
What is next? In this section, we want to answer this question, in the sense, what are
the doors that this work opens in the academic or industrial research. There are a lot of
approaches to provide ML usage with confidentiality and integrity guarantees by means
of hardware or software solutions.

After everything that we have presented in this thesis, it is evident that the Generaliza-
tion of VC Fiore scheme [3] is part of our perspectives. However, we did not have time
to finalize this study during this PhD. If done, this generalization allows anyone to safely
evaluate a ML model in any phase of machine learning (learning and / or inference phase)
by a malicious server, that is to say, ensuring both the confidentiality and the integrity of
this delegation.

Another challenge consists of discovering and/or adapting the existing VC schemes
to work with batched homomorphic encryption that achieves integrity and con-
fidentiality with optimal time and memory uses for this evaluation. We consider this
important because the cost of cloud usage is increasing from day to day. The hurdle here
is to batch several plaintext messages in one plaintext and at the same time generate a tag.
This tag permits the verification of function evaluation over the batched message.

Yet another challenge is adapting or discovering a VC scheme that can work with
another type of Homomorphic encryption scheme, that can be more versatile than
BGV and BFV like TFHE. Depending on the targeted application, this can result in a
more efficient and less memory consuming homomorphic execution.

Another interesting perspective is the study of the combination of the Multi-Party Com-
putation with public Verifiable Computing to propose an efficient Multi-party VC
scheme, essentially in order to use sensitive data from different sources with a guarantee
against confidentiality and integrity threats.

Finally, we note that the perspectives are manifold to ensure the integrity for homomorphic
computation: for example using techniques other than VC such as Blockchain, hardware
based solutions, etc.

113

114

Bibliography

[1] David MMandelbaum. “On a Class of Arithmetic Codes and a Decoding Algorithm
Proof: If t 5 r, then M $/C mod M, has exactly t nonzero”. In: IEEE Transactions
on Information Theory (1976) (page 8).

[2] Abbass Madi, Renaud Sirdey, and Oana Stan. “Computing Neural Networks with
Homomorphic Encryption and Verifiable Computing”. In: International Confer-
ence on Applied Cryptography and Network Security. Springer. 2020, pp. 295–317
(pages 9, 99, 103).

[3] Dario Fiore, Rosario Gennaro, and Valerio Pastro. “Efficiently verifiable computa-
tion on encrypted data”. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. 2014, pp. 844–855 (pages 9, 26, 49–51,
53–59, 64, 67, 68, 73–75, 77, 98, 102, 111–113).

[4] Théo Ryffel, Edouard Dufour Sans, Romain Gay, Francis Bach, and David Pointcheval.
“Partially encrypted machine learning using functional encryption”. In: arXiv preprint
arXiv:1905.10214 (2019) (pages 9, 24, 64, 66, 69, 79).

[5] Eberhard Hechler, Martin Oberhofer, and Thomas Schaeck. “The operational-
ization of AI”. In: Deploying AI in the Enterprise. Springer, 2020, pp. 115–140
(page 16).

[6] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. “Applied cryptog-
raphy”. In: CRC, Boca Raton (1996) (pages 17, 20).

[7] Martin Zuber. “Contributions to data confidentiality in machine learning by means
of homomorphic encryption”. PhD thesis. Université Paris-Saclay, 2020 (pages 18,
19).

[8] Arvind Narayanan and Vitaly Shmatikov. “How to break anonymity of the netflix
prize dataset”. In: arXiv preprint cs/0610105 (2006) (page 22).

[9] Pierangela Samarati and Latanya Sweeney. “Protecting privacy when disclosing
information: k-anonymity and its enforcement through generalization and sup-
pression”. In: (1998) (page 22).

[10] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan
Venkitasubramaniam. “l-diversity: Privacy beyond k-anonymity”. In: ACM Trans-
actions on Knowledge Discovery from Data (TKDD) 1.1 (2007), 3–es (page 23).

[11] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. “t-closeness: Privacy
beyond k-anonymity and l-diversity”. In: 2007 IEEE 23rd International Conference
on Data Engineering. IEEE. 2007, pp. 106–115 (page 23).

[12] Klara Stokes and Vicenç Torra. “n-Confusion: a generalization of k-anonymity”.
In: Proceedings of the 2012 Joint EDBT/ICDT Workshops. 2012, pp. 211–215
(page 23).

[13] Cynthia Dwork. “Differential privacy”. In: International Colloquium on Automata,
Languages, and Programming. Springer. 2006, pp. 1–12 (page 23).

115

[14] Stanley L Warner. “Randomized response: A survey technique for eliminating eva-
sive answer bias”. In: Journal of the American Statistical Association 60.309 (1965),
pp. 63–69 (page 23).

[15] C Dwork and A Roth. The algorithmic foundations of differential privacy. Found
Trends Theor Comput Sci 9 (3/4): 211–407. 2014 (page 23).

[16] Damien Desfontaines and Balázs Pejó. “Sok: differential privacies”. In: arXiv preprint
arXiv:1906.01337 (2019) (page 23).

[17] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. “On data banks and pri-
vacy homomorphisms”. In: Foundations of secure computation 4.11 (1978), pp. 169–
180 (pages 24, 33).

[18] RL Rivest, A Shamir, and L Adleman. “A method for obtaining digital signa-
tures and publi-key cryptosystems, Communications of the ACM 21”. In: (1978)
(pages 24, 29).

[19] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings
of the forty-first annual ACM symposium on Theory of computing. 2009, pp. 169–
178 (pages 24, 29, 32, 33, 49).

[20] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis. Stanford, CA,
USA, 2009. isbn: 9781109444506, 2009 (pages 24, 33).

[21] RL Rivest. “Shamir, a. and Adelman”. In: L." On Digital Signatures and Public
Key (1978) (page 24).

[22] Pascal Paillier. “Public-key cryptosystems based on composite degree residuos-
ity classes”. In: International conference on the theory and applications of cryp-
tographic techniques. Springer. 1999, pp. 223–238 (pages 24, 29, 33, 39, 40, 48,
85).

[23] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully homo-
morphic encryption without bootstrapping”. In: ACM Transactions on Computa-
tion Theory (TOCT) 6.3 (2014), pp. 1–36 (pages 24, 40, 42, 50).

[24] Junfeng Fan and Frederik Vercauteren. “Somewhat Practical Fully Homomorphic
Encryption.” In: IACR Cryptology ePrint Archive 2012 (2012), p. 144 (pages 24,
34, 42, 44, 64, 65, 70, 71, 98, 100).

[25] Adi Shamir. “Identity-based cryptosystems and signature schemes”. In: Workshop
on the theory and application of cryptographic techniques. Springer. 1984, pp. 47–
53 (page 24).

[26] Dan Boneh, Amit Sahai, and Brent Waters. “Functional encryption: Definitions
and challenges”. In: Theory of Cryptography Conference. Springer. 2011, pp. 253–
273 (pages 24, 56).

[27] Tilen Marc, Miha Stopar, Jan Hartman, Manca Bizjak, and Jolanda Modic. “Privacy-
enhanced machine learning with functional encryption”. In: European Symposium
on Research in Computer Security. Springer. 2019, pp. 3–21 (page 24).

[28] Michel Abdalla, Florian Bourse, Hugo Marival, David Pointcheval, Azam Soleima-
nian, and Hendrik Waldner. “Multi-client inner-product functional encryption in
the random-oracle model”. In: International Conference on Security and Cryptog-
raphy for Networks. Springer. 2020, pp. 525–545 (page 24).

[29] Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. “Efficient functional en-
cryption for inner-product values with full-hiding security”. In: International Con-
ference on Information Security. Springer. 2016, pp. 408–425 (page 25).

116

[30] Edouard Dufour-Sans, Romain Gay, and David Pointcheval. “Reading in the dark:
Classifying encrypted digits with functional encryption”. In: Cryptology ePrint
Archive (2018) (page 25).

[31] Hallam Stevens. “Hans Peter Luhn and the birth of the hashing algorithm”. In:
IEEE Spectrum 55.2 (2018), pp. 44–49 (page 25).

[32] Ronald Rivest. RFC1321: The MD5 message-digest algorithm. 1992 (page 25).
[33] FIPS PUB DRAFT. “202. SHA-3 Standard: Permutation-Based hash and extendable-

output functions”. In: Information Technology Laboratory, National Institute of
Standards and Technology. Recovered on May (2014) (page 25).

[34] WilliamW Plummer. “TCP checksum function design”. In: ACM SIGCOMM Com-
puter Communication Review 19.2 (1989), pp. 95–101 (page 25).

[35] Dilip V. Sarwate. “Computation of cyclic redundancy checks via table look-up”.
In: Communications of the ACM 31.8 (1988), pp. 1008–1013 (page 25).

[36] Michael Steiner, Gene Tsudik, and Michael Waidner. “Diffie-Hellman key distribu-
tion extended to group communication”. In: Proceedings of the 3rd ACM Confer-
ence on Computer and Communications Security. 1996, pp. 31–37 (page 25).

[37] Eli Biham and Rafi Chen. “Near-collisions of SHA-0”. In: Annual International
Cryptology Conference. Springer. 2004, pp. 290–305 (page 25).

[38] Antoine Joux. “Collisions for SHA-0”. In: CRYPTO 2004 rump session (Aug.)
(2004) (page 25).

[39] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. “Crypt-
analysis of the Hash Functions MD4 and RIPEMD”. In: Annual international con-
ference on the theory and applications of cryptographic techniques. Springer. 2005,
pp. 1–18 (page 25).

[40] Xiaoyun Wang and Hongbo Yu. “How to break MD5 and other hash functions”.
In: Annual international conference on the theory and applications of cryptographic
techniques. Springer. 2005, pp. 19–35 (page 25).

[41] Secure Hash Standard and PUB FIPS. “180-2”. In: August 1 (2002), p. 72 (page 25).
[42] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity

of interactive proof systems”. In: SIAM Journal on computing 18.1 (1989), pp. 186–
208 (pages 25, 46).

[43] Joan Boyar, Gilles Brassard, and René Peralta. “Subquadratic zero-knowledge”.
In: Journal of the ACM (JACM) 42.6 (1995), pp. 1169–1193 (page 25).

[44] Ronald Cramer and Ivan Damgård. “Linear zero-knowledge—A note on efficient
zero-knowledge proofs and arguments”. In: Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing. 1997, pp. 436–445 (page 25).

[45] Joe Kilian and Erez Petrank. “An efficient noninteractive zero-knowledge proof
system for NP with general assumptions”. In: Journal of Cryptology 11.1 (1998),
pp. 1–27 (page 25).

[46] Joan Boyar, Ivan Damgård, and René Peralta. “Short non-interactive crypto-
graphic proofs”. In: Journal of Cryptology 13.4 (2000), pp. 449–472 (page 25).

[47] Jens Groth, Rafail Ostrovsky, and Amit Sahai. “Perfect non-interactive zero knowl-
edge for NP”. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer. 2006, pp. 339–358 (page 25).

[48] Yael Tauman Kalai and Ran Raz. “Succinct non-interactive zero-knowledge proofs
with preprocessing for LOGSNP”. In: 2006 47th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS’06). IEEE. 2006, pp. 355–366 (page 25).

117

[49] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. “Zero-knowledge
from secure multiparty computation”. In: Proceedings of the thirty-ninth annual
ACM symposium on Theory of computing. 2007, pp. 21–30 (page 25).

[50] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. “Signing a linear
subspace: Signature schemes for network coding”. In: International Workshop on
Public Key Cryptography. Springer. 2009, pp. 68–87 (pages 25, 50).

[51] Craig Gentry and Daniel Wichs. “Separating succinct non-interactive arguments
from all falsifiable assumptions”. In: Proceedings of the forty-third annual ACM
symposium on Theory of computing. 2011, pp. 99–108 (pages 25, 48).

[52] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. “Pinocchio: Nearly
practical verifiable computation”. In: 2013 IEEE Symposium on Security and Pri-
vacy. IEEE. 2013, pp. 238–252 (pages 25, 66).

[53] Srinath Setty, Victor Vu, Nikhil Panpalia, Benjamin Braun, Andrew J Blumberg,
and Michael Walfish. “Taking proof-based verified computation a few steps closer
to practicality”. In: 21st {USENIX} Security Symposium ({USENIX} Security 12).
2012, pp. 253–268 (page 25).

[54] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic
span programs and succinct NIZKs without PCPs”. In: Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques. Springer.
2013, pp. 626–645 (pages 25, 48).

[55] Michael Backes, Dario Fiore, and Raphael M Reischuk. “Verifiable delegation of
computation on outsourced data”. In: Proceedings of the 2013 ACM SIGSAC con-
ference on Computer & communications security. 2013, pp. 863–874 (pages 25, 55,
56, 72).

[56] Rosario Gennaro, Craig Gentry, and Bryan Parno. “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers”. In: Annual Cryptology
Conference. Springer. 2010, pp. 465–482 (pages 25, 26, 49–51).

[57] Shafi Goldwasser, Yael Tauman Kalai, Raluca Ada Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. “How to run turing machines on encrypted data”. In: An-
nual Cryptology Conference. Springer. 2013, pp. 536–553 (pages 25, 26).

[58] Dario Fiore, Anca Nitulescu, and David Pointcheval. Boosting verifiable computa-
tion on encrypted data. 2020 (pages 26, 50).

[59] C. E. Shannon. “Communication theory of secrecy systems”. In: The Bell System
Technical Journal 28.4 (1949), pp. 656–715. doi: 10.1002/j.1538-7305.1949.
tb00928.x (page 30).

[60] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption & How to Play Men-
tal Poker Keeping Secret All Partial Information”. In: Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing. STOC ’82. San Francisco,
California, USA: Association for Computing Machinery, 1982, pp. 365–377. isbn:
0897910702. doi: 10.1145/800070.802212. url: https://doi.org/10.1145/
800070.802212 (pages 30, 33).

[61] Shafi Goldwasser and Silvio Micali. “Probabilistic encryption”. In: Journal of com-
puter and system sciences 28.2 (1984), pp. 270–299 (page 30).

[62] D Dolev, C Dwork, and M Naor. Non-Malleable Cryptography. STOC’91. 1991
(page 30).

[63] Yodai Watanabe, Junji Shikata, and Hideki Imai. “Equivalence between semantic
security and indistinguishability against chosen ciphertext attacks”. In: Interna-
tional Workshop on Public Key Cryptography. Springer. 2003, pp. 71–84 (page 31).

118

https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212
https://doi.org/10.1145/800070.802212

[64] Ronald Cramer and Victor Shoup. “A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack”. In: Advances in Cryptology —
CRYPTO ’98. Ed. by Hugo Krawczyk. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1998, pp. 13–25. isbn: 978-3-540-68462-6 (page 32).

[65] Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikuntanathan.
“Chosen-ciphertext secure fully homomorphic encryption”. In: IACR International
Workshop on Public Key Cryptography. Springer. 2017, pp. 213–240 (page 32).

[66] Frederik Armknecht, Stefan Katzenbeisser, and Andreas Peter. “Group homomor-
phic encryption: characterizations, impossibility results, and applications”. In: De-
signs, codes and cryptography 67.2 (2013), pp. 209–232 (page 32).

[67] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. “Evaluating 2-DNF formulas on ci-
phertexts”. In: Theory of cryptography conference. Springer. 2005, pp. 325–341
(page 33).

[68] Nigel P Smart and Frederik Vercauteren. “Fully homomorphic encryption with
relatively small key and ciphertext sizes”. In: International Workshop on Public
Key Cryptography. Springer. 2010, pp. 420–443 (page 33).

[69] Craig Gentry and Shai Halevi. “Implementing gentry’s fully-homomorphic encryp-
tion scheme”. In: Annual international conference on the theory and applications
of cryptographic techniques. Springer. 2011, pp. 129–148 (page 33).

[70] Zvika Brakerski and Vinod Vaikuntanathan. “Efficient fully homomorphic encryp-
tion from (standard) LWE”. In: SIAM Journal on Computing 43.2 (2014), pp. 831–
871 (page 33).

[71] Zvika Brakerski and Vinod Vaikuntanathan. “Fully homomorphic encryption from
ring-LWE and security for key dependent messages”. In: Annual cryptology confer-
ence. Springer. 2011, pp. 505–524 (page 33).

[72] Zvika Brakerski. “Fully homomorphic encryption without modulus switching from
classical GapSVP”. In: Annual Cryptology Conference. Springer. 2012, pp. 868–886
(pages 34, 42).

[73] Craig Gentry, Amit Sahai, and Brent Waters. “Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-based”.
In: Annual Cryptology Conference. Springer. 2013, pp. 75–92 (page 34).

[74] Jacob Alperin-Sheriff and Chris Peikert. “Faster bootstrapping with polynomial
error”. In: Annual Cryptology Conference. Springer. 2014, pp. 297–314 (page 34).

[75] Zvika Brakerski and Vinod Vaikuntanathan. “Lattice-based FHE as secure as
PKE”. In: Proceedings of the 5th conference on Innovations in theoretical computer
science. 2014, pp. 1–12 (page 34).

[76] Léo Ducas and Daniele Micciancio. “FHEW: bootstrapping homomorphic encryp-
tion in less than a second”. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer. 2015, pp. 617–640 (page 34).

[77] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. “Faster
fully homomorphic encryption: Bootstrapping in less than 0.1 seconds”. In: inter-
national conference on the theory and application of cryptology and information
security. Springer. 2016, pp. 3–33 (page 34).

[78] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. “Faster
packed homomorphic operations and efficient circuit bootstrapping for TFHE”.
In: International Conference on the Theory and Application of Cryptology and
Information Security. Springer. 2017, pp. 377–408 (page 34).

119

[79] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptog-
raphy”. In: Journal of the ACM (JACM) 56.6 (2009), pp. 1–40 (pages 36, 37).

[80] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On ideal lattices and learn-
ing with errors over rings”. In: Annual international conference on the theory and
applications of cryptographic techniques. Springer. 2010, pp. 1–23 (pages 37, 38).

[81] Miklós Ajtai. “Generating hard instances of lattice problems”. In: Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing. 1996, pp. 99–
108 (page 37).

[82] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
“Classical hardness of learning with errors”. In: Proceedings of the forty-fifth annual
ACM symposium on Theory of computing. 2013, pp. 575–584 (page 37).

[83] Oded Regev. “On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography”. In: STOC ’05. New York, NY, USA: Association for Computing Ma-
chinery, 2005, pp. 84–93. isbn: 1581139608. doi: 10.1145/1060590.1060603. url:
https://doi.org/10.1145/1060590.1060603 (page 37).

[84] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On ideal lattices and learn-
ing with errors over rings”. In: Journal of the ACM (JACM) 60.6 (2013), pp. 1–35
(page 37).

[85] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. “Fast crypto-
graphic primitives and circular-secure encryption based on hard learning prob-
lems”. In: Annual International Cryptology Conference. Springer. 2009, pp. 595–
618 (page 37).

[86] Adeline Langlois and Damien Stehlé. “Hardness of decision (R) LWE for any mod-
ulus”. In: IACR Cryptol. ePrint Arch. 2012 (2012), p. 91 (page 37).

[87] Martin R Albrecht, Rachel Player, and Sam Scott. “On the concrete hardness of
learning with errors”. In: Journal of Mathematical Cryptology 9.3 (2015), pp. 169–
203 (page 38).

[88] Rachel Player. “Parameter selection in lattice-based cryptography”. PhD thesis.
Royal Holloway, University of London, 2018 (page 38).

[89] Nina Bindel, Johannes Buchmann, Florian Göpfert, and Markus Schmidt. “Estima-
tion of the hardness of the learning with errors problem with a restricted number of
samples”. In: Journal of Mathematical Cryptology 13.1 (2019), pp. 47–67 (page 39).

[90] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic Encryp-
tion from (Standard) LWE. Cryptology ePrint Archive, Report 2011/344. https:
//ia.cr/2011/344. 2011 (page 40).

[91] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
“SETI@ home: an experiment in public-resource computing”. In: Communications
of the ACM 45.11 (2002), pp. 56–61 (page 46).

[92] David P Anderson. “Volunteer computing: the ultimate cloud”. In: XRDS: Cross-
roads, The ACM Magazine for Students 16.3 (2010), pp. 7–10 (page 46).

[93] Ran Canetti, Ben Riva, and Guy N Rothblum. “Practical delegation of computa-
tion using multiple servers”. In: Proceedings of the 18th ACM conference on Com-
puter and communications security. 2011, pp. 445–454 (page 46).

[94] Michael Walfish and Andrew J Blumberg. “Verifying computations without reexe-
cuting them”. In: Communications of the ACM 58.2 (2015), pp. 74–84 (page 46).

[95] László Babai. “Trading group theory for randomness”. In: Proceedings of the sev-
enteenth annual ACM symposium on Theory of computing. 1985, pp. 421–429
(page 46).

120

https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://ia.cr/2011/344
https://ia.cr/2011/344

[96] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. “Delegating Com-
putation: Interactive Proofs for Muggles”. In: Proceedings of the Fortieth Annual
ACM Symposium on Theory of Computing. STOC ’08. Victoria, British Columbia,
Canada: Association for Computing Machinery, 2008, pp. 113–122. isbn: 9781605580470.
doi: 10.1145/1374376.1374396. url: https://doi.org/10.1145/1374376.
1374396 (page 47).

[97] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. “Practical verified
computation with streaming interactive proofs”. In: Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference. 2012, pp. 90–112 (page 47).

[98] Justin Thaler. “Time-optimal interactive proofs for circuit evaluation”. In: Annual
Cryptology Conference. Springer. 2013, pp. 71–89 (pages 47, 66).

[99] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: A new char-
acterization of NP”. In: Journal of the ACM (JACM) 45.1 (1998), pp. 70–122
(page 47).

[100] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. “Short PCPs verifiable in polylogarithmic time”. In: 20th Annual IEEE Con-
ference on Computational Complexity (CCC’05). IEEE. 2005, pp. 120–134 (page 47).

[101] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vad-
han. “Robust PCPs of proximity, shorter PCPs, and applications to coding”. In:
SIAM Journal on Computing 36.4 (2006), pp. 889–974 (page 47).

[102] Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceed-
ings of the twenty-fourth annual ACM symposium on Theory of computing. 1992,
pp. 723–732 (page 47).

[103] Silvio Micali. “Computationally sound proofs”. In: SIAM Journal on Computing
30.4 (2000), pp. 1253–1298 (pages 47, 48).

[104] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. “Efficient arguments with-
out short PCPs”. In: Twenty-Second Annual IEEE Conference on Computational
Complexity (CCC’07). IEEE. 2007, pp. 278–291 (pages 47, 48).

[105] Srinath TV Setty, Richard McPherson, Andrew J Blumberg, and Michael Walfish.
“Making argument systems for outsourced computation practical (sometimes).” In:
NDSS. Vol. 1. 9. 2012, p. 17 (page 48).

[106] Srinath Setty, Andrew J Blumberg, and Michael Walfish. “Toward practical and
unconditional verification of remote computations”. In: Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Systems, HotOS. Vol. 13. 2011,
pp. 29–29 (page 48).

[107] Srinath Setty, Benjamin Braun, Victor Vu, Andrew J Blumberg, Bryan Parno,
and Michael Walfish. “Resolving the conflict between generality and plausibility
in verified computation”. In: Proceedings of the 8th ACM European Conference on
Computer Systems. 2013, pp. 71–84 (page 48).

[108] Amos Fiat and Adi Shamir. “How to prove yourself: Practical solutions to identi-
fication and signature problems”. In: Conference on the theory and application of
cryptographic techniques. Springer. 1986, pp. 186–194 (page 48).

[109] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. “From extractable
collision resistance to succinct non-interactive arguments of knowledge, and back
again”. In: Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference. 2012, pp. 326–349 (page 48).

121

https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/1374376.1374396

[110] Giovanni Di Crescenzo and Helger Lipmaa. “Succinct NP proofs from an ex-
tractability assumption”. In: Conference on Computability in Europe. Springer.
2008, pp. 175–185 (page 48).

[111] Craig Costello, Cédric Fournet, Jon Howell, Markulf Kohlweiss, Benjamin Kreuter,
Michael Naehrig, Bryan Parno, and Samee Zahur. “Geppetto: Versatile verifiable
computation”. In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015,
pp. 253–270 (page 48).

[112] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. “Succinct
non-interactive zero knowledge for a von Neumann architecture”. In: 23rd {USENIX}
Security Symposium ({USENIX} Security 14). 2014, pp. 781–796 (page 48).

[113] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. “How to delegate
and verify in public: Verifiable computation from attribute-based encryption”. In:
Theory of Cryptography Conference. Springer. 2012, pp. 422–439 (page 48).

[114] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. “Attribute-based
encryption for fine-grained access control of encrypted data”. In: Proceedings of the
13th ACM conference on Computer and communications security. 2006, pp. 89–98
(page 49).

[115] Andrew C Yao. “Protocols for secure computations”. In: 23rd annual symposium on
foundations of computer science (sfcs 1982). IEEE. 1982, pp. 160–164 (page 49).

[116] Andrew Chi-Chih Yao. “How to generate and exchange secrets”. In: 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986). IEEE. 1986, pp. 162–
167 (page 49).

[117] Kai-Min Chung, Yael Kalai, and Salil Vadhan. “Improved delegation of compu-
tation using fully homomorphic encryption”. In: Annual Cryptology Conference.
Springer. 2010, pp. 483–501 (page 49).

[118] Chunming Tang and Yuenai Chen. “Efficient Non-Interactive Verifiable Outsourced
Computation for Arbitrary Functions.” In: IACR Cryptol. ePrint Arch. 2014 (2014),
p. 439 (page 49).

[119] Rosario Gennaro and Daniel Wichs. “Fully homomorphic message authenticators”.
In: International Conference on the Theory and Application of Cryptology and
Information Security. Springer. 2013, pp. 301–320 (page 49).

[120] Shweta Agrawal and Dan Boneh. “Homomorphic MACs: MAC-based integrity for
network coding”. In: International Conference on Applied Cryptography and Net-
work Security. Springer. 2009, pp. 292–305 (page 49).

[121] Michael Backes, Manuel Barbosa, Dario Fiore, and Raphael M Reischuk. “AD-
SNARK: nearly practical and privacy-preserving proofs on authenticated data”.
In: 2015 IEEE Symposium on Security and Privacy. IEEE. 2015, pp. 271–286
(page 50).

[122] Dario Fiore and Rosario Gennaro. “Publicly verifiable delegation of large poly-
nomials and matrix computations, with applications”. In: Proceedings of the 2012
ACM conference on Computer and communications security. 2012, pp. 501–512
(page 50).

[123] Liang Feng Zhang and Reihaneh Safavi-Naini. “Verifiable delegation of computa-
tions with storage-verification trade-off”. In: European symposium on research in
computer security. Springer. 2014, pp. 112–129 (page 50).

[124] Yihua Zhang and Marina Blanton. “Efficient secure and verifiable outsourcing
of matrix multiplications”. In: International Conference on Information Security.
Springer. 2014, pp. 158–178 (page 50).

122

[125] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. “Verifiable delegation
of computation over large datasets”. In: Annual Cryptology Conference. Springer.
2011, pp. 111–131 (page 50).

[126] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. “Signatures of cor-
rect computation”. In: Theory of Cryptography Conference. Springer. 2013, pp. 222–
242 (page 50).

[127] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. “VABKS: Verifiable attribute-
based keyword search over outsourced encrypted data”. In: IEEE INFOCOM 2014-
IEEE conference on computer communications. IEEE. 2014, pp. 522–530 (page 50).

[128] Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. “Flexible and
efficient verifiable computation on encrypted data”. In: IACR International Con-
ference on Public-Key Cryptography. Springer. 2021, pp. 528–558 (page 50).

[129] Patrick Struck, Lucas Schabhüser, Denise Demirel, and Johannes Buchmann. “Lin-
early homomorphic authenticated encryption with provable correctness and public
verifiability”. In: International Conference on Codes, Cryptology, and Information
Security. Springer. 2017, pp. 142–160 (pages 59, 60, 82, 86, 88).

[130] D. Catalano, A. Marcedone, and O. Puglisi. “Authenticating Computation on
Groups: New Homomorphic Primitives and Applications”. In: ASIACRYPT 2014.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 193–212 (pages 59, 60,
82, 87, 88).

[131] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database.
2010”. In: URL http://yann. lecun. com/exdb/mnist 7 (2010), p. 23 (page 64).

[132] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. “CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy”. In: International conference on machine
learning. PMLR. 2016, pp. 201–210 (pages 65, 83, 98).

[133] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and
Emmanuel Prouff. Privacy-Preserving Classification on Deep Neural Network. Cryp-
tology ePrint Archive, Report 2017/035. 2017 (page 65).

[134] Herve Chabanne, Roch Lescuyer, Jonathan Milgram, Constance Morel, and Em-
manuel Prouff. “Recognition Over Encrypted Faces: 4th International Conference,
MSPN 2018, Paris, France”. In: 2019 (page 65).

[135] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. “Fast Homomorphic Evaluation
of Deep Discretized Neural Networks”. In: Proceedings of CRYPTO 2018. Springer,
2018 (page 65).

[136] Malika Izabachène, Renaud Sirdey, and Martin Zuber. “Practical Fully Homomor-
phic Encryption for Fully Masked Neural Networks”. In: Cryptology and Network
Security. Ed. by Yi Mu, Robert H. Deng, and Xinyi Huang. Cham: Springer In-
ternational Publishing, 2019 (page 65).

[137] Martin Zuber, Sergiu Carpov, and Renaud Sirdey. Towards real-time hidden speaker
recognition by means of fully homomorphic encryption. Cryptology ePrint Archive,
Report 2019/976. 2019 (page 65).

[138] F. Boemer, Y. Lao, and C. Wierzynski. “NGraph-HE: A Graph Compiler for Deep
Learning on Homomorphically Encrypted Data”. In: CoRR (2018) (page 65).

[139] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski. “NGraph-HE2: A
High-Throughput Framework for Neural Network Inference on Encrypted Data”.
In: Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied
Homomorphic Cryptography. WAHC’19. 2019, pp. 45–56 (page 65).

123

[140] A. Brutzkus, O. Oren Elisha, and R. Gilad-Bachrach. “Low Latency Privacy Pre-
serving Inference”. In: Proceedings of the 36th International Conference on Ma-
chineLearning, Long Beach, California, PMLR 97. 2019 (page 65).

[141] A. Sanyal, M. Kusner, A. Gascón, and V. Kanade. “TAPAS: Tricks to Accelerate
(encrypted) Prediction As a Service”. In: ICML. June 2018 (pages 65, 83, 98).

[142] E. Hesamifard, H. Takabi, and M. Ghasemi. “Deep Neural Networks Classification
over Encrypted Data”. In: ACM CODASPY. 2019, pp. 97–108 (pages 65, 83, 98).

[143] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and Li Fei-Fei. “Faster Cryp-
toNets: Leveraging Sparsity for Real-World Encrypted Inference”. In: CoRR (2018)
(page 65).

[144] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schiman-
ski. Garbled Neural Networks are Practical. Cryptology ePrint Archive, Report
2019/338. 2019 (page 66).

[145] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. “DeepSecure:
Scalable Provably-Secure Deep Learning”. In: CoRR (2017) (page 66).

[146] Zahra Ghodsi, Tianyu Gu, and Siddharth Garg. “Safetynets: Verifiable execution of
deep neural networks on an untrusted cloud”. In: Advances in Neural Information
Processing Systems. 2017, pp. 4672–4681 (pages 66, 83, 99).

[147] Lingchen Zhao, Qian Wang, Cong Wang, Qi Li, Chao Shen, Xiaodong Lin, Sheng-
shan Hu, and Minxin Du. “VeriML: Enabling Integrity Assurances and Fair Pay-
ments for Machine Learning as a Service”. In: arXiv preprint arXiv:1909.06961
(2019) (page 66).

[148] Hervé Chabanne, Julien Keuffer, and Refik Molva. “Embedded Proofs for Verifiable
Neural Networks.” In: IACR Cryptol. ePrint Arch. 2017 (2017), p. 1038 (page 66).

[149] Seunghwa Lee, Hankyung Ko, Jihye Kim, and Hyunok Oh. “vCNN: Verifiable
Convolutional Neural Network.” In: IACR Cryptol. ePrint Arch. 2020 (2020), p. 584
(page 66).

[150] Julien Keuffer, Refik Molva, and Hervé Chabanne. “Efficient proof composition
for verifiable computation”. In: European Symposium on Research in Computer
Security. Springer. 2018, pp. 152–171 (page 66).

[151] Jens Groth. “On the size of pairing-based non-interactive arguments”. In: Annual
international conference on the theory and applications of cryptographic techniques.
Springer. 2016, pp. 305–326 (page 66).

[152] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. “Algebraic meth-
ods for interactive proof systems”. In: Journal of the ACM (JACM) 39.4 (1992),
pp. 859–868 (page 66).

[153] Edouard Dufour Sans, Romain Gay, and David Pointcheval. “Reading in the Dark:
Classifying Encrypted Digits with Functional Encryption.” In: IACR Cryptology
ePrint Archive 2018 (2018), p. 206 (pages 66, 77, 78).

[154] Microsoft SEAL (release 3.0). http://sealcrypto.org. Microsoft Research, Red-
mond, WA. Oct. 2018 (pages 77, 108).

[155] Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Jeffrey
Hoffstein, Kristin Lauter, Satya Lokam, Dustin Moody, Travis Morrison, Amit
Sahai, and Vinod Vaikuntanathan. Security of Homomorphic Encryption. Tech.
rep. Redmond WA, USA: HomomorphicEncryption.org, July 2017 (page 78).

[156] Martin Zuber and Dario Fiore. HAL: A Library for Homomorphic Authentication.
http://www.myurl.com. 2017 (pages 78, 108).

124

http://sealcrypto.org
http://www.myurl.com

[157] H.B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Aguera y Arcas.
“Communication-Efficient Learning of Deep Networks from Decentralized Data”.
In: Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics. 2017, pp. 1273–1282 (pages 81, 84).

[158] GDPR 2018 reform of EU data protection rules. European Commission. 2018.
url: https://ec.europa.eu/commission/sites/beta-political/files/data-
protection-factsheet-changes_en.pdf (visited on 06/17/2019) (page 82).

[159] Centers for Medicare & Medicaid Services. The Health Insurance Portability and
Accountability Act of 1996 (HIPAA). Online at http://www.cms.hhs.gov/hipaa/.
1996 (page 82).

[160] B. Hitaj, G. Ateniese, and F. Ferez-Cruz. Deep Models Under the GAN: Informa-
tion Leakage from Collaborative Deep Learning. 2017. arXiv: 1702.07464 [cs.CR]
(pages 82, 84, 90, 96).

[161] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. “Ex-
ploiting unintended feature leakage in collaborative learning”. In: IEEE SP. 2019,
pp. 691–706 (page 82).

[162] M. Fredrikson, S. Jha, and T. Ristenpart. “Model Inversion Attacks that Exploit
Confidence Information and Basic Countermeasures”. In: ACM SIGSAC. 2015,
pp. 1322–1333 (pages 82, 84, 96).

[163] Le Trieu Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacy-Preserving
Deep Learning via Additively Homomorphic Encryption. Cryptology ePrint Archive,
Report 2017/715. https://eprint.iacr.org/2017/715. 2017 (pages 82, 83).

[164] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. “Federated machine
learning: Concept and applications”. In:ACM TIST 10.2 (2019), pp. 1–19 (pages 82,
83).

[165] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth. “Practical Secure Aggregation for Privacy-
Preserving Machine Learning”. In: ACM SIGSAC. 2017, pp. 1175–1191 (pages 82,
84).

[166] V. Mugunthan and A. Polychroniadou. “SMPAI: Secure Multi-Party Computation
for Federated Learning”. In: 2019 (pages 82, 84).

[167] Guowen Xu, Hongwei Li, Sen Liu, Kan Yang, and Xiaodong Lin. “Verifynet: Secure
and verifiable federated learning”. In: IEEE Transactions on Information Forensics
and Security 15 (2019), pp. 911–926 (pages 82, 83).

[168] P. Kairouz et al. “Advances and Open Problems in Federated Learning”. arXiv
preprint 1912.04977. 2019 (page 82).

[169] Flavio Bergamaschi, Shai Halevi, Tzipora T Halevi, and Hamish Hunt. “Homo-
morphic Training of 30,000 Logistic Regression Models”. In: International Confer-
ence on Applied Cryptography and Network Security. Springer. 2019, pp. 592–611
(page 83).

[170] S. Carpov, N. Gama, M. Georgieva, and J. R. Troncoso-Pastoriza. Privacy-preserving
semi-parallel logistic regression training with Fully Homomorphic Encryption. Cryp-
tology ePrint Archive, Report 2019/101. https://eprint.iacr.org/2019/101.
2019 (page 83).

[171] Qian Lou, Bo Feng, Geoffrey C Fox, and Lei Jiang. “Glyph: Fast and Accu-
rately Training Deep Neural Networks on Encrypted Data”. In: arXiv preprint
arXiv:1911.07101 (2019) (pages 83, 99, 103).

125

https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://arxiv.org/abs/1702.07464
https://eprint.iacr.org/2017/715
https://eprint.iacr.org/2019/101

[172] Wenting Zheng, Raluca Ada Popa, Joseph E Gonzalez, and Ion Stoica. “Helen:
Maliciously secure coopetitive learning for linear models”. In: 2019 IEEE SP).
IEEE. 2019, pp. 724–738 (page 83).

[173] Junyi Li and Heng Huang. “Faster Secure Data Mining via Distributed Homomor-
phic Encryption”. In: ACM SIGKDD. 2020, pp. 2706–2714 (page 83).

[174] Sinem Sav, Apostolos Pyrgelis, Juan R Troncoso-Pastoriza, David Froelicher, Jean-
Philippe Bossuat, Joao Sa Sousa, and Jean-Pierre Hubaux. “POSEIDON: Privacy-
Preserving Federated Neural Network Learning”. In: arXiv preprint arXiv:2009.00349
(2020) (page 83).

[175] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu.
“Batchcrypt: Efficient homomorphic encryption for cross-silo federated learning”.
In: 2020 {USENIX} Annual Technical Conference ({USENIX}{ATC} 20). 2020,
pp. 493–506 (page 83).

[176] Florian Tramer and Dan Boneh. “Slalom: Fast, verifiable and private execution of
neural networks in trusted hardware”. In: arXiv preprint arXiv:1806.03287 (2018)
(pages 83, 99).

[177] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. “Learning
differentially private language models without losing accuracy”. In: arXiv preprint
arXiv:1710.06963 (2017) (page 84).

[178] Robin C Geyer, Tassilo Klein, and Moin Nabi. “Differentially private federated
learning: A client level perspective”. In: arXiv preprint arXiv:1712.07557 (2017)
(page 84).

[179] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. “Distributed
learning without distress: Privacy-preserving empirical risk minimization”. In:NeurIPS
31 (2018), pp. 6343–6354 (page 84).

[180] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar,
and Brendan McMahan. “cpsgd: Communication-efficient and differentially-private
distributed sgd”. In: NeurIPS 31 (2018), pp. 7564–7575 (page 84).

[181] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. “Member-
ship inference attacks against machine learning models”. In: IEEE SP. IEEE. 2017,
pp. 3–18 (pages 84, 96).

[182] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Hervé
Jégou. “White-box vs black-box: Bayes optimal strategies for membership infer-
ence”. In: ICML. 2019, pp. 5558–5567 (pages 84, 96).

[183] S. Caldas, S.M. Karthik Duddu, P. Wu, T. Li, J. Konečný, H.B. McMahan, V.
Smith, and A. Talwalkar. “LEAF: A Benchmark for Federated Settings”. arXiv
preprint 1812.01097. 2019 (page 91).

[184] Xiaoxin Yin, Jiawei Han, Jiong Yang, and Philip S Yu. “Efficient classification
across multiple database relations: A crossmine approach”. In: IEEE Transactions
on Knowledge and Data Engineering 18.6 (2006), pp. 770–783 (page 97).

[185] Ludmila I Kuncheva and Juan J Rodriguez. “Classifier ensembles with a random
linear oracle”. In: IEEE Transactions on Knowledge and Data Engineering 19.4
(2007), pp. 500–508 (page 97).

[186] Elena Baralis, Silvia Chiusano, and Paolo Garza. “A lazy approach to associative
classification”. In: IEEE Transactions on Knowledge and Data Engineering 20.2
(2007), pp. 156–171 (page 97).

126

[187] Tatiana Tommasi and Barbara Caputo. “The more you know, the less you learn:
from knowledge transfer to one-shot learning of object categories”. In: BMVC.
CONF. 2009 (page 98).

[188] Tatiana Tommasi, Francesco Orabona, and Barbara Caputo. “Safety in numbers:
Learning categories from few examples with multi model knowledge transfer”. In:
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition. IEEE. 2010, pp. 3081–3088 (page 98).

[189] Hua Wang, Feiping Nie, Heng Huang, and Chris Ding. “Dyadic transfer learning for
cross-domain image classification”. In: 2011 International conference on computer
vision. IEEE. 2011, pp. 551–556 (page 98).

[190] Yusuf Aytar and Andrew Zisserman. “Tabula rasa: Model transfer for object cate-
gory detection”. In: 2011 international conference on computer vision. IEEE. 2011,
pp. 2252–2259 (page 98).

[191] Luo Jie, Tatiana Tommasi, and Barbara Caputo. “Multiclass transfer learning
from unconstrained priors”. In: 2011 International Conference on Computer Vi-
sion. IEEE. 2011, pp. 1863–1870 (page 98).

[192] Yin Zhu, Yuqiang Chen, Zhongqi Lu, Sinno Jialin Pan, Gui-Rong Xue, Yong Yu,
and Qiang Yang. “Heterogeneous transfer learning for image classification”. In:
Twenty-Fifth AAAI Conference on Artificial Intelligence. 2011 (page 98).

[193] Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. “From n to n+ 1: Mul-
ticlass transfer incremental learning”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2013, pp. 3358–3365 (page 98).

[194] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang Sun, and Philip S Yu.
“Transfer feature learning with joint distribution adaptation”. In: Proceedings of the
IEEE international conference on computer vision. 2013, pp. 2200–2207 (page 98).

[195] Novi Patricia and Barbara Caputo. “Learning to learn, from transfer learning to
domain adaptation: A unifying perspective”. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition. 2014, pp. 1442–1449 (page 98).

[196] Marcus Rohrbach, Sandra Ebert, and Bernt Schiele. “Transfer learning in a trans-
ductive setting”. In: Advances in neural information processing systems 26 (2013),
pp. 46–54 (page 98).

[197] Nitish Srivastava and Ruslan Salakhutdinov. “Discriminative Transfer Learning
with Tree-based Priors.” In: NIPS. Vol. 3. 4. Citeseer. 2013, p. 8 (page 98).

[198] Wei Wang, Hao Wang, Chen Zhang, and Fanjiang Xu. “Transfer feature representa-
tion via multiple kernel learning”. In: Twenty-Ninth AAAI Conference on Artificial
Intelligence. 2015 (page 98).

[199] Xianbin Cao, Zhong Wang, Pingkun Yan, and Xuelong Li. “Transfer learning for
pedestrian detection”. In: Neurocomputing 100 (2013), pp. 51–57 (page 98).

[200] Bernardino Romera-Paredes, Min SH Aung, Massimiliano Pontil, Nadia Bianchi-
Berthouze, Amanda C de C Williams, and Paul Watson. “Transfer learning to
account for idiosyncrasy in face and body expressions”. In: 2013 10th IEEE Inter-
national Conference and Workshops on Automatic Face and Gesture Recognition
(FG). IEEE. 2013, pp. 1–6 (page 98).

[201] Jin Gao, Haibin Ling, Weiming Hu, and Junliang Xing. “Transfer learning based
visual tracking with gaussian processes regression”. In: European conference on
computer vision. Springer. 2014, pp. 188–203 (page 98).

127

[202] Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. “Transfer learning through
greedy subset selection”. In: International Conference on Image Analysis and Pro-
cessing. Springer. 2015, pp. 3–14 (page 98).

[203] Ilja Kuzborskij, Francesco Orabona, and Barbara Caputo. “Scalable greedy algo-
rithms for transfer learning”. In: Computer Vision and Image Understanding 156
(2017), pp. 174–185 (page 98).

[204] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for
large-scale image recognition”. In: arXiv preprint arXiv:1409.1556 (2014) (pages 98,
105).

[205] Xingquan Zhu and Xindong Wu. “Class noise handling for effective cost-sensitive
learning by cost-guided iterative classification filtering”. In: IEEE Transactions on
Knowledge and Data Engineering 18.10 (2006), pp. 1435–1440 (page 98).

[206] Qiang Yang, Charles Ling, Xiaoyong Chai, and Rong Pan. “Test-cost sensitive
classification on data with missing values”. In: IEEE Transactions on Knowledge
and Data Engineering 18.5 (2006), pp. 626–638 (page 98).

[207] Masayuki Tanaka. “Learnable image encryption”. In: 2018 IEEE International
Conference on Consumer Electronics-Taiwan (ICCE-TW). IEEE. 2018, pp. 1–2
(page 98).

[208] Warit Sirichotedumrong, Takahiro Maekawa, Yuma Kinoshita, and Hitoshi Kiya.
“Privacy-preserving deep neural networks with pixel-based image encryption con-
sidering data augmentation in the encrypted domain”. In: 2019 IEEE International
Conference on Image Processing (ICIP). IEEE. 2019, pp. 674–678 (page 98).

[209] Romain Mormont, Pierre Geurts, and Raphaël Marée. “Comparison of Deep Trans-
fer Learning Strategies for Digital Pathology”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops. 2018, pp. 2262–
2271 (page 103).

[210] Francois Chollet et al. Keras. https : / / github . com / fchollet / keras. 2015
(page 109).

128

https://github.com/fchollet/keras

	Synthèse en français
	Acknowledgments
	Introduction
	General Scene
	Cryptography
	Thesis Technical Scene
	Our Contribution
	Manuscript Overview
	Publication and Talks

	I Context and state of the art
	Context and Motivation
	Machine Learning
	Security Threats
	Confidentiality Threats
	What is confidentiality ?
	Threat analysis

	Integrity Threat
	Threat analysis

	Availability Threats

	Adversaries
	Countermeasures
	Confidentiality-Preserving Tools
	Integrity-Preserving Tools

	Use Case
	Machine Learning Training Application
	Machine Learning Inference Application

	Homomorphic Encryption
	Security
	Security Notions
	FHE Security
	Hardness Assumptions

	Brief History
	Pre-FHE
	FHE-Generation

	Technical Preliminaries
	General notions
	Learning With Error
	HE schemes
	Paillier cryptosystem
	BGV
	BFV

	Verifiable Computing
	VC approaches or Techniques
	Non-Proof-based and Hardware-based Solutions
	Proof-Based Solutions
	 Proof-Based Solution over clear data
	Interactive Proof (IP) Based Solution.
	Non-Interactive Solutions.

	 Proof-Based Solution over encrypted data

	Background
	Problem Definition
	Properties of VC

	Preliminary tools
	Homomorphic Hash Function
	Pseudo Random Function with Amortized closed-form Efficient

	VC schemes
	VC for Quadratic polynomials on BGV Encrypted data
	VC for Paillier scheme

	II Our contribution
	Computing NN using VC and FHE
	Introduction
	Problem statement and contribution

	Related work
	FHE for encrypted machine learning.
	VC for machine learning.

	Encrypted machine learning using Functional Encryption

	Scenario and threat model
	Technical preliminaries
	FHE
	VC
	Pseudo Random Function with Amortized closed-form Efficient
	Homomorphic Hash function

	VC for Quadratic polynomials over BFV Encrypted data
	VC and FHE for first layer
	Experimental Results
	Results

	Conclusion

	Secure FL using VC and HE
	Introduction
	Related work
	Secure Federated Learning and Homomorphic Encryption
	Secure Federated Learning and Verifiable computation
	Secure Federated Learning and other Multi-Party Computation
	Secure Federated Learning and Differential Privacy

	Preliminaries
	Federated Learning (FL)
	Homomorphic Encryption (HE)
	Batching for Paillier
	Verifiable Computation

	A secure framework for Confidential and Verifiable Federated Learning
	Overview of the architecture
	Threat and security analysis
	Cryptographic tools and optimizations

	Experimental results
	Setting FL hyperparameters
	Quantization vs. utility
	Performance evaluation of LEPCoV scheme

	Conclusion and perspectives

	Secure TL using VC and HE
	Introduction
	Related work
	Background
	Transfer Learning (TL)
	Homomorphic Encryption (HE)
	Verifiable Computing (VC)

	Proposed Approach
	Our model
	Security Guarantees and Threats
	Medical Use-Case

	Dimensionality Reduction of target domain
	Experimental Evaluation
	Transfer Learning Parameters
	 Performance of our architecture

	Conclusion and Future Work

	Conclusion
	Motivation and Problem Statement
	Our Contribution

	Perspective & Future Work

