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En second lieu, afin d'aborder le processus d'assemblage du génome qui est fortement impacté par l'abondance des ET, nous avons choisi de nous concentrer sur l'étape d'échafaudage et d'améliorer la qualité de l'assemblage en exploitant l'analyse des régions répétées sous la forme d'un pipeline. Nous présentons un travail préliminaire encourageant dans cette perspective.

Pour conclure ce manuscrit de thèse, nous présentons une ouverture concernant la dynamique des génomes par rapport aux différents aspects abordés. Ensuite, nous présentons les limites conceptuelles, applicatives et techniques identifiées par notre modèle expérimental. Enfin, nous proposons quelques perspectives sur la portée de nos contributions au-delà de mon projet doctoral.

Mots-clés

Résumé

Les variations du génome sont induites par de nombreux facteurs simultanément, ce qui se traduit par un ensemble de comportements génomiques liés à sa structure, son architecture, son expression, son évolution, etc., que l'on pourrait appeler la dynamique du génome. Au cours de mon projet de thèse, nous avons choisi de nous concentrer sur trois acteurs majeurs impactant la dynamique du génome :

• Structure de la chromatine inégalement compactée le long des chromosomes;

• Paysage de la recombinaison méiotique reflétant les variations de fréquences d'échange de fragments d'ADN lors de la division cellulaire ;

• ADN répétitif notamment les éléments transposables (ET) induisant des erreurs d'assemblage du génome. Durant les dernières décennies, l'avènement de la génomique a notamment été possible grâce aux avancées technologiques liées au séquençage haut-débit, rendant accessibles de plus en plus de génomes. Mais derrière la réalité de ce déluge de données, se cache la difficulté à traiter ces données de façon à pouvoir intégrer les informations qui s'y cachent. Loin d'être la seule source de données accessible pour observer les génomes, les données de séquençage sont souvent présentées comme une panacée permettant d'analyser les génomes, mais elles ne représentent qu'une facette des observations possibles. Au cours de la thèse, nous avons observé le génome non seulement en tant qu'entité dotée d'une structure, mais aussi en tant que modèle d'observation du vivant, imparfait et donc, perfectible. Nous avons focalisé notre attention sur l'observation des génomes eucaryotes, du point de vue de leur structure et dynamique, en relation avec les éléments répétés qu'ils contiennent. Chacun des paragraphes ci-dessous correspond à un chapitre du manuscrit 1 .

Concepts fondamentaux

Dans le règne du vivant, un organisme est considéré comme une espèce présente dans l'arbre de la vie. Chez les eucaryotes, organismes dont les cellules possèdent un noyau, celui-ci contient le matériel génétique, le génome. Le génome est organisé en chromosomes, chaque chromosome faisant intervenir deux parties appelées les chromatides, solidarisées au niveau du centromère. Un gène est une portion d'ADN (Acide DésoxyriboNucléique) menant à la production d'une protéine assurant une fonction donnée dans l'organisme. La séquence d'ADN est constituée d'une succession de nucléotides, également appelés bases, de quatre types, représentées par les lettres A (Adénine), C (Cytosine), G (Guanine) et T (Thymine). Et puisque la molécule d'ADN est constituée d'une double-hélice formée de deux brins complémentaires, chacune de ces lettres est associée par complémentarité à une autre, A avec T, C avec G. Cette xiv séquence de nucléotides s'organise en une structure appelée chromatine qui est constituée d'une succession de nucléosomes eux-mêmes formés à partir de nucléotides et de protéines : les histones. Ces nucléosomes organisent la compaction de la molécule d'ADN. Cette compaction de l'ADN joue un rôle dans les différents mécanismes en lien avec le génome, notamment la réplication, la réparation et la recombinaison, sur laquelle nous reviendrons dans le chapitre 1. La chromatine se divise en deux catégories : l'euchromatine et l'hétérochromatine. L'hétérochromatine ne change pas d'état de condensation au cours du cycle cellulaire, à l'inverse de l'euchromatine.

En-dehors des gènes codant l'information sur les protéines, il existe de nombreuses régions non-codantes dans l'ADN, que l'on a longtemps qualifiées d'ADN poubelle.

Dans ces régions, qui sont loin d'avoir révélées tout leur mystère, des séquences existent en plusieurs occurrences dans le génome, que l'on appelle régions répétées. Ces régions répétées sont de plusieurs types : les répétitions en tandem, qui sont de courtes séquences répétées consécutivement ; les répétitions de grande taille, aussi appelées duplications et qui peuvent concerner par exemple des gènes ; et enfin, les éléments transposables (ET), qui se distinguent par leurs grande diversité et dispersé le long des génomes. Ces ET ont révolutionné le champ de la génétique, et sont de plus en plus utilisés pour étudier la dynamique des génomes. En effet, hautement répétés, inégalement répartis le long des génomes, et se décomposant en plusieurs classes facilement identifiables grâce à leur structure, ces éléments peuvent représenter unr grande part des génomes et contribuer à la structuration des génomes. La composition des génomes en ET est très variable en fonction des espèces (de <1% à plus de 90% des génomes de plantes). Ils sont connus pour être impliqués dans différents processus biologiques comme les réarrangements chromosomiques, ou la modification de l'expression des gènes. Contrairement aux deux autres catégories de répétitions, les ET sont des répétitions mobiles: Ils peuvent se déplacer (ou se transposer) d'une position à l'autre le long du génome en suivant deux mécanismes différents : Les éléments de la classe 1 (rétrotransposons) utilisent le mécanisme copier-coller à travers un ARN (Acide RiboNucléique) intermédiaire. De cette façon, la séquence d'ADN du site donneur conserve l'ET d'origine pendant que sa copie trouve une séquence cible pour s'y insérer. D'autre part, les éléments de la classe 2 (transposons) utilisent le mécanisme de couper-coller pour sauter du site donneur à la séquence cible. Dans ce cas, la séquence du donneur subit une rupture d'ADN qui sera réparée soit en joignant les deux extrémités du gap, soit en recevant une nouvelle insertion d'ET. Tous ces événements donnent lieu à une très grande diversité (taille, nombre de copies, ...) d'ET, qui sont ensuite classés en sous-classes, super-familles et familles en fonction des caractéristiques de leurs séquences. Afin de mieux décrire l'impact des ET sur la structure et l'évolution de ces génomes, nous avons besoin de différents types d'informations. Par exemple, l'abondance et la distribution des ET, quelles familles d'ET sont principalement présentes, est-ce qu'il existe une corrélation entre les ET et d'autres caractéristiques génomiques telles que la densité des gènes et le taux de recombinaison, entre autres.

Étant donné que l'étude des ET nécessite de prendre en compte toutes leurs caractéristiques et tous leurs comportements, dans ce projet, nous avons choisi de tester les approches développées avec les génomes de moustiques. Les moustiques sont des vecteurs de maladies infectieuses chez l'homme (paludisme, Zika, fièvre jaune, etc.). Leurs génomes présentent un modèle unique d'évolution dont l'adaptation est l'un des processus évolutifs les mieux connus. Elle permet aux moustiques de développer une résistance aux insecticides et de survivre dans les environnements xv extrêmes et aux changements climatiques brutaux. Certaines familles d'ET sont impliquées dans un tel processus adaptatif. Nous nous sommes intéressés à trois espèces de moustiques: Aedes aegypti (1,3 Gb), Anopheles gambiae (278 Mb) et Culex pipiens (579 Mb), qui avaient été reassemblées au début de ma thèse. Nous nous référons à l'espèce Drosophila melanogaster (mouche du vinaigre) comme une référence hors groupe. Ces espèces phylogénétiquement très proches présentent une grande variabilité en termes de taille de génome et de contenu de séquences répétées, y compris les ET.

La dynamique des génomes, que l'on peut définir comme la capacité des génomes à évoluer dans leur structure, architecture ou expression, à différentes échelles, est l'objet d'étude en filigrane de la thèse. Loin de balayer les nombreux aspects liés à cette dynamique, nous avons concentré notre attention sur trois acteurs majeurs de la dynamique des génomes:

• la structure chromatinienne, notamment la répartition entre euchromatine et hétérochromatine, qui est inégale le long des génomes;

• la recombinaison méiotique qui permet l'échange de fragments d'ADN au cours de la division cellulaire;

• l'ADN répété, et particulièrement les ET, qui sont notamment l'un des facteurs perturbant la reconstruction des séquences génomiques après leur séquençage.

BREC, un outil d'observation de la structure chromatinienne et du taux de recombinaison le long des chromosomes

Dans les travaux qui suivent, nous nous intéressons aux génomes à l'échelle du génome complet, en tant que représentant d'un organisme donné. Les événements qui vont nous intéresser se produisent donc à une échelle suffisamment grande pour lisser ou occulter les variations ponctuelles que l'on peut observer entre les individus. Nous nous focaliserons ainsi sur la structure globale du génome, avec le premier problème de l'identification de zones structurellement non homogènes que sont les régions euchromatiques et hétérochromatiques. Pour déterminer ces zones avec acuité, il est intéressant de s'intéresser aux variations de taux de recombinaison le long des chromosomes. L'estimation de ce taux de recombinaison fait intervenir un premier type de données, les cartes de recombinaison, sur lesquelles nous nous sommes appuyées pour mettre au point une méthode d'analyse et de visualisation, détaillée ci-desssous et dans le chapitre 2.

Afin de déterminer ces frontières entre les régions le long des chromosomes, nous nous sommes intéressées à une donnée qui est fortement correlée à la nature chromatinienne, à savoir le taux de recombinaison. Ce taux est fortement variable le long des chromosomes, et il est possible de l'étudier avec divers procédés et à des échelles différentes. L'échelle qui nous intéresse ici est une échelle suffisamment grossière pour déterminer les tendances globales le long des génomes, et pouvoir les visualiser. Les méthodes d'inférence du taux de recombinaison sont de plusieurs natures et comptent notamment :

• les approches fondées sur l'étude des populations (groupe d'individus d'une même espèce et localisés sur une même zone géographique). Ces approches xvi nécessitent un très grand nombre de données mais produisent une estimation assez fine du taux de recombinaison ;

• les approches qui observent les gamètes et vont chercher les recombinaisons au coeur de la constitution de celles-ci. Mais elles ne sont applicables que sur les mâles et ne peuvent atteindre que des portions limitées du génome;

• les méthodes fondées sur le pédigrée, qui nécessitent d'étudier les recombinaisons observées entre les parents et leurs descendants. Ces méthodes sont moins précises, mais nécessitent moins de données que les précédentes. Elle sont fondées sur les données génomiques telles que les cartes génétiques et physiques. C'est le cas de l'approche des cartes de Marey, sur laquelle nous nous appuyons dans cette thèse. En effet, les données sont plus accessibles et moins coûteuses, et l'estimation proposée par cette méthode est suffisante pour atteindre le but recherché, à savoir l'observation globale de la structure chromatinienne.

Dans les cartes de Marey, notamment exploitées dans l'outil MareyMapOnline, on trouve deux types de données : les cartes physiques, qui représentent la cartographie de marqueurs donnés le long des chromosomes, avec des distances exprimées en paires de bases, et les cartes génétiques, qui se fondent sur l'observation des recombinaisons durant la méiose, à travers des liaisons statistiquement surreprésentées dans les triades parents-enfants. Ces dernières fournissent une distance statistique, exprimée en centiMorgan : la distance génétique entre deux marqueurs est le nombre moyen de crossing-overs entre les deux marqueurs par méiose. En croisant ces deux informations pour un certain nombre de marqueurs, il est possible d'inférer le taux de recombinaison le long du chromosome.

Afin de compléter les approches existantes, nous avons conçu un outil, BREC (Boundaries and RECombination rate estimates), qui se base sur ces données et propose une solution automatique, générique et ergonomique pour :

• estimer les bornes entre les régions euchromatiques et hétérochromatiques,

• estimer les taux de recombinaison localement,

• et ajuster les taux de recombinaison dans les régions où la structure de la chromatine est instable.

La méthode sous-jacente se déploie en une étape préliminaire et six étapes principales. L'étape préliminaire constitue une vérification des données d'entrée en terme de qualité, car la densité des marqueurs et leur distribution sont des facteurs importants pour obtenir une estimation de qualité. Voici les étapes principales :

1. Estimation du taux de recombinaison local en utilisant les cartes de Marey 4. Identification des bornes du centromère (s'il existe). Cette estimation se fonde sur l'extension de la zone où le taux de recombinaison est le plus faible, en tenant compte du caractère télocentrique ou atélocentrique du chromosome. L'implémentation de BREC consiste en un paquet R, utilisant le module d'interface Rshiny.

Afin de valider la méthode, nous l'avons appliquée à différents jeux de données, qui sont intégrés à l'outil par défaut. Nous en présentons quelques uns dans ce manuscrit, et nous avons concentré l'analyse sur le génome de la drosophile D. melanogaster et de la tomate Solanum lycopersicum, étudié l'influence des paramètres principaux, et utilisé des données simulées pour étudier la robustesse vis-à-vis de la qualité des données. Enfin, nous avons observé les résultats de BREC sur les génomes de moustiques.

Amélioration des assemblages de génomes

L'assemblage du génome est le processus consistant à rassembler des données de séquençage, les lectures, qui sont de petits fragments d'ADN, dans le but de produire, de la manière la plus proche possible, la forme originale du génome entier. Les régions répétées perturbent de façon importante le processus d'assemblage, qui se fonde essentiellement sur les chevauchements entre les fragments d'ADN lus lors du séquençage. Différentes technologies de séquençage existent, qui proposent des lectures essentiellement de deux types : les lectures courtes, de l'ordre de la centaine de paires de bases, et les lectures longues, atteignant plusieurs milliers ou dizaines de milliers de paires de bases. L'immense majorité des séquences génomiques disponibles dans les bases de données publiques provient de séquençage en lectures courtes, et sont malheureusement les données les plus sensibles au répétitions lors du processus d'assemblage. Ainsi, peu de génomes qualifiés de "complets" proposent des séquences à l'échelle du chromosome, et sont le plus souvent constitués de centaines, voire de milliers de séquences différentes.

Lors de la mise au point de BREC, il nous est apparu qu'il était indispensable, pour observer les phénomènes à l'échelle du génome complet, de disposer de séquences complètes et de bonne qualité pour ces génomes. L'observation d'une part des différences entre les différentes versions des génomes, et d'autre part de la fragmentation très importante des génomes dans les bases de données, nous a conduit sur la piste de l'amélioration des séquences génomiques existantes. L'objectif n'est pas ici de proposer un outil supplémentaire d'assemblage ou d'échafaudage de génomes, mais de considérer le problème posé par les régions répétées lors de l'assemblage, non plus comme un problème, mais également une solution potentielle. C'est l'objet du chapitre 3.

Dans cette partie, nous nous concentrons donc sur l'étape d'échafaudage de génomes, qui représente le produit fini accessible dans les bases de données, afin de déterminer, dans le cadre de données issues de séquençage en lectures courtes, s'il est possible d'exploiter favorablement la connaissance que l'on peut avoir des répétitions.

xviii L'idée de la méthode proposée est de s'appuyer sur le graphe d'échafaudage construit à partir des séquences assemblées, les contigs, et de l'alignement de courtes lectures appariées sur ces contigs. Le graphhe est défini comme suit :

• les sommets du graphe représentent les extrémités des contigs (il y a donc deux sommets par contig)

• les arêtes du graphe sont de deux types : des arêtes dites "de contig" rejoignent les deux extrémités correspondant à un contig donné (ces arêtes forment un couplage parfait du graphe), et des arêtes inter-contig, qui représentent les liens observés entre les contigs grâce à l'alignement des lectures sur les contigs.

Ces dernières sont porteuses d'un poids correspondant au nombre de paires de lectures qui relient ces extrémités.

Dans ce contexte, le problème de l'échafaudage de génome correspond à la recherche de chemins optimaux dans ce graphe, ce qui est un problème difficile dû au grand nombre de chemins possibles (autrement dit un problème NP-complet). Nous ne cherchons pas ici à résoudre ce problème, mais à améliorer le graphe d'échafaudage en amont de la résolution. La connaissance préalable que l'on peut avoir des répétitions peut ainsi guider l'élimination ou le renforcement de certaines arêtes dans ce graphe, ce qui a une incidence sur la résolution ensuite.

Nous avons mis au point un pipeline de traitement intégrant ces informations de répétitions, en les extrayant d'une base de données, les alignant sur les contigs afin d'étiqueter ces derniers, et comparer les arêtes du graphe d'échafaudage aux étiquettes des contigs qu'ils relient. En invalidant certaines arêtes dont les informations présentent des incohérences avec l'information des étiquettes, et en renforçant celles qui au contraire présentent une concordance entre les deux types d'informations, on obtient un graphe d'échafaudage modifié, prêt à être résolu.
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Context: on the interface of computer science and evolutionary genomics

Bioinformatics is a very recent research field, compared to biology, computer science and statistics. This discipline saw the light when genomic studies were unable to catch up to the enormous advances in whole genome sequencing technologies. For the last 20 years, bioinformatics gathers skillset from across multiple backgrounds. Mainly, there is molecular biology, computer science, data engineering, mathematics and statistics, and reaching further to chemistry, physics, electronics, among others. Figure 1.1 presents an overview highlighting computation-related skills. Therefore, being at the interface of such a wide variety of expertise is one of the major challenges facing this field as well as it's actors.

From Computer Science to Bioinformatics: Data science for life sciences

During this thesis project, we focus on approaching bioinformatics upon primarily three large aspects shown in Figure 1.1, customized to our study needs, as follows:

1. Domain science: Biology is the leading research interest, representing the concern to address, and providing the original data source as a starting point.

2. Tool building: Computer Science is the core layer. It consists of the conceptual and formal modeling of the biological problem, and the related computational resources allowing to develop a solution. Such complex tasks are achieved by a set of technical steps. To mention no to limit, the designed model goes through the process of implementing, testing, validating, experimenting, visualizing, and open sharing with the community, via easy and accessible automated tools.

3. Data science: Statistics is the theoretical design and formalism allowing to (1) infer the biological data into the computational model, ( 2) qualify and quantify the input data features, as well as interpreting the intermediate and the final solution outcomes. After all, it allows to evaluate and readjust the model parameter as per the quality of available data. [from http://www.datascience-paris-saclay.fr/data-science/]

It is important to note that throughout this project, we are not concerned with how data are generated nor with generating our customized input datasets. Instead, we will approach our biology research interests with a forward vision of how to develop a solution based on the already existing genomic data.

1.1. Context: on the interface of computer science and evolutionary genomics However, the field of bioinformatics is still unable to catch up to the data explosion, due to the lack of computational resources. Not only in terms of skillset and human expertise, but mainly in terms of developing automated solutions and tools (algorithms, programs, reproducible pipelines, experimental design, data visualization, user-friendly interfaces,...etc). Now, and more than ever before, life sciences are urgently in need of data science actors to handle the different challenges of big data. This latter is a tremendous sub-field of computer science that has been applied in almost all life areas. Its primary complications derive from the multitude of data facets. Figure 1.4 presents the simplest model of 5-Vs: volume, variety, value, velocity and veracity. 1.1. Context: on the interface of computer science and evolutionary genomics 5

From Genomics to Evolution: Mosquito research interests

Since the rise of genomics, besides the most studied biological species, the fruit fly Drosophila melanogaster, and among the very interesting model organisms (human, mouse, thale cress, etc.), mosquitoes are increasingly catching scientists attention. Not only because of the early availability of the first draft genome, sequenced in 2002 [START_REF] Holt | The Genome Sequence of the Malaria Mosquito Anopheles gambiae[END_REF], but mainly because of their capability to survive and adapt in a variety of different environments.

One of the best known evolutionary processes is adaptation. For example, an adaptation response allows mosquitoes to develop insecticide resistance as well as to survive extreme environments and brutal climate changes. As vectors of infectious human diseases (Malaria, Zika, yellow fever, dengue, chikungunya, ...), mosquitoes present highly complex biology challenges, in terms of their tremendous diversity, as well as the very rapid evolutionary processes observed in their genomes.

The latest mosquito enumeration has been reported in the Medical and Veterinary Entomology book [START_REF] Foster | Mosquitoes (Culicidae)[END_REF] as follows: "Culicidae, the mosquito family, is comprised of 41 recognized genera incorporating about 3,500 species, many of which are vectors of disease pathogens that have afflicted humans and domestic animals for centuries, with devastating consequences for tens of millions of people". And to better understand the impact of a mosquito-borne pandemic, the world map in figure 1.5 emphasises the geographic distribution of the West Nile virus, transmitted by the Culex mosquito species.

Furthermore, mosquito genomics has proven interesting in numerous other fields of application. More precisely, mosquito related research focuses on three main species: the host (human or vertebrate), the pathogen inducing the decease, and the mosquito being the vector responsible of transmitting the pathogen between host organisms. In conclusion, the interdisciplinary research context of this thesis project asserts the urgent need of skillset and expertise from computation and data science backgrounds, in an attempt to close the gap, as fast as humanly possible, between the enormously available genomic data and the insightful knowledge that might be extracted from it, to the service of all life science domains: biology, health care, medicine, agriculture, biodiversity, environment, etc.

Fundamental concepts 1.2.1 Genome architecture

In evolution, an organism is a living entity representing a species on the tree of life (also known as the tree of species), such as a human, a mouse, a plant, an insect, etc. In eukaryotes, each organism is composed of a set of organs, like the brain in the human body, which is itself composed of cells, like the neurons of the nervous system in this case. The cell is a miraculous machinery that encompasses all the components able to make the (human) body functions properly (or not, when there is a disorder). The nucleus is the core part where all the genetic material is conserved, in other words: the genome (see Figure 1.7).

A genome is organised into a set of chromosomes. As represented in Figure 1.7, each chromosome in a eukaryotic organism consists of two parts, called sister chromatids, on which genes are carried. Sister chromatids are glued together thanks to a genomic component called a centromere, that often is located on the center of a chromosome. A gene is a piece of DNA that codes for a functional protein (exp. an On top of coding DNA, there is non-coding DNA, that usually does not code for a protein. For a long time, non-coding DNA sequences was called as "junk DNA". It is mainly represented by repeated sequences (or repeats) of different sizes scattered between (or within) the genes, for which, recent studies are increasingly demonstrating its interest and function in the genome [START_REF] Bernardi | The "Genomic Code": DNA Pervasively Moulds Chromatin Structures Leaving no Room for "Junk[END_REF]. A repetitive sequence can be considered as a substring that can be found in several occurrences in the main string on the alphabet {A, C, G, T}.

Transposable Elements: one type of repetitive DNA

Whole genome sequencing has revealed the importance of DNA repeats in terms of their impact on the structure and evolution of almost all genomes.

Among DNA repeats, the literature distinguishes three main categories. Firstly, the tandem repeats known as satellites. Secondly, the DNA sequence, encompassing any or several types of DNA elements (repeats and genes), which are duplicated within the genome and so called duplications. They could even represent a duplicate copy of the entire genome. Thirdly, the interspersed repeats, called transposable elements (TEs), and which are the focus of this thesis.

TEs discovery has revolutionized the genetics field

It was the observation of pigmentation in maize kernels that shed the light on the possibility of the existence of novel genetic elements which are responsible for such unusual coloration, as shown in Figure In the editorial paper entitled "The mobile world of transposable elements", [START_REF] Navarro | The Mobile World of Transposable Elements[END_REF] describes the historical reversal of TEs value, from when they were first discovered and up till currently, as follows:

"It has been almost 70 years since Barbara McClintock first suggested that elements exist that have the capacity to move and reshape the genome, and that these elements could potentially control gene expression. At first met with skepticism and considered to be 'junk' or 'selfish' pieces of DNA, TEs have now been shown to be major components of the genome with the ability to influence genome evolution and function. Today, TEs have been shown not only to regulate host gene expression but are often co-opted by the host to serve new cellular functions."

TEs characteristics

Mobile DNA consists of dispersed, diverse, and highly repetitive sequences. TEs are classified in two main classes based on their transposition mechanism. Class I elements also called RNA retrotransposons transpose via a copy-and-paste mechanism while the Class II elements also called DNA transposons transpose via a cut-and-paste mechanism. Within each class, one can classify them into Subclasses, Superfamilies and Families based on their sequence features. There are two subclasses in the class I : retrotransposons with and without LTR (Long-Terminal Repeats). within the non-LTR elements, one can distinguish the LINE elements for Long Interspersed Nuclear Elements that are autonomous and the SINE elements for Short Interspersed Nuclear Elements that are non-autonomuos. Among the DNA elements, we can also identified autonomous elements called TIR for Terminal Inverted Repeats and non-autonomous elements called MITE for Miniature Inverted-repeats TEs (see Figure 1.9). 

TEs are ubiquitous and not evenly distributed across eukaryotic taxa

Advances of genome sequencing technologies have allowed to identify and analyze TEs more easily and accurately across a wide range of eukaryotic taxa. So far, TEs have been detected within the large majority of sequenced genomes suggesting their role in genome dynamics. Figure 1.10 by [START_REF] Wells | A Field Guide to Eukaryotic Transposable Elements[END_REF] gives an overview of TEs in the main genomes across eukaryotic taxa (human, animals, and plants). TE abundance can vary drastically from one species to another one, often associated with the genome size (e.g. from 85% in maize Zea mays [START_REF] Anderson | Transposable elements contribute to dynamic genome content in maize[END_REF] to 4.25% in honey bee Apis mellifera [START_REF] Petersen | Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects[END_REF]).

The proportion of TE types also varies between taxa. For example, the maize genome is composed of almost 70% of LTR elements while in zebrafish Danio rerio more than 25% of the genome is composed of DNA elements (Figure 1.10). Here, the honey bee TE content is likely an underestimate, as approximately 3% of the genome derives from unusual large retrotransposon derivatives [START_REF] Elsik | Finding the missing honey bee genes: lessons learned from a genome upgrade[END_REF]. For ease of visualization, YR retroelements have been included with LTRs and all class II elements are included under DNA. Data were acquired from genome RepeatMasker output files. Figure adapted with permission from [START_REF] Huang | Active Transposition in Genomes[END_REF]; the Volvox characteristic silhouette was provided by Matt Crook. (Imperviously used abbreviation: YR, tyrosine recombinase). [Adapted from [START_REF] Wells | A Field Guide to Eukaryotic Transposable Elements[END_REF] TEs are increasingly demonstrated to be involved in numerous biological processes of the host organisms, and thus are becoming an interesting resource to exploit when investigating the dynamics of genomes within and between species. For example, some specific TE types play a role in inducing chromosomal rearrangements, while others have an impact on the expression or repression in genes [START_REF] Bourque | Ten things you should know about transposable elements[END_REF].

Research scope: Genome dynamics

A genome is far away from being a stable entity. It does not only vary between species, but also within species on multiple scales, such as between populations from different geographical locations, between individuals sharing, or not, the same ancestors, within the same genome, and even along one specific chromosome. Furthermore, genomic variation is induced by numerous factors simultaneously, which results in a set of genomic behaviours related to its structure, architecture, expression, evolution, etc, which could be referred to as genome dynamics.

Among the genetic factors impacting the majority of genome dynamics, there is a large set from which scientists choose to focus on according to each research project they conduct, and more specifically, with regard to the biological questions to be addressed.

During my thesis project, and in order to dive in the field of bioinformatics by bridging my background in computer science with my scientific interests in genomics, we chose to focus on three major players impacting genome dynamics:

1. Chromatin structure: unevenly compacted along chromosomes;

2. Meiotic recombination: exchanging DNA fragments during cell division;

3. Repetitive DNA (especially TEs): inducing genome assembly errors.

One of the major genomic factors interfering with TEs behavior is meiotic recombination [START_REF] Kent | Coevolution between transposable elements and recombination[END_REF]. The significant variation in recombination rates is strongly correlated with TEs distribution [START_REF] Rizzon | Recombination Rate and the Distribution of Transposable Elements in the Drosophila melanogaster Genome[END_REF][START_REF] Petrov | Population Genomics of Transposable Elements in Drosophila melanogaster[END_REF][START_REF] Kent | Coevolution between transposable elements and recombination[END_REF] and diversity within various genomes.

In order to efficiently address the cause-effect relationship between TEs and recombination, genome-wide local recombination rates are vital. However, recombination maps are not so often available.

Chromatin regions: one chromosome, different genomic profiles

Among the genomic features, one can distinguish two primary domains of chromatin. Table 1.1 highlights the main differences [START_REF] Termolino | Insights into epigenetic landscape of recombination-free regions[END_REF], where:

1. Euchromatin, is lightly compact with a high gene density;

2. Heterochromatin, is highly compact due to specific proteins or chromatin modification, and with a paucity in genes. [START_REF] Termolino | Insights into epigenetic landscape of recombination-free regions[END_REF]]

The heterochromatin is represented in different chromosome regions mainly within the centromere and telomeres. Euchromatin and heterochromatin regions exhibit different behaviors in terms of genomic dynamics related to their biological function, such as the cell division process that ensures the organism viability. Consequently, easily distinguishing chromatin domains is necessary for conducting further studies in various research fields and to be able to address questions related to cellular processes such as meiosis, gene expression, epigenetics, DNA methylation, natural selection and evolution, genome architecture and dynamics, among others [START_REF] Chan | Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster[END_REF][START_REF] Stapley | Variation in recombination frequency and distribution across eukaryotes: patterns and processes[END_REF][START_REF] Morata | The evolutionary consequences of transposon-related pericentromer expansion in melon[END_REF].

Recombination rate: one genomic feature, different landscapes

Meiotic recombination is a major evolutionary force -Meiotic recombination is a vital biological process which guarantees the diversity of genetic material over generations. This process consists on the exchange of DNA fragments within and between chromosomes. Figure 1.11 illustrates the parental homologous chromosomes which duplicate during meiosis, and then recombine via a crossing-over event. This process increases the genetic diversity carried by new chromosomes in the descendants. Consequently, recombination plays an essential role in investigating genomewide structural and functional dynamics. Recombination events are observed in almost all eukaryotic genomes. Recombination is a fundamental process that ensures genotypic and phenotypic diversity. Thereby, it is strongly related to various genomic features such as gene density, repetitive DNA, and thus also chromatin domains (Coop and Przeworski, 2007;Duret and Galtier, 2009;Auton and McVean, 2012).

Recombination rate variation highlights heterochromatin regions

Recombination rate varies not only between species but also between populations, between sexes, between individuals, within individuals, as well as between and within chromosomes. Along chromosomes, different chromatin domains can be identified based on their recombination rate intensity (from low to high). This variation is a composite within-chromosome variation due to well-known genomic features such as open chromatin regions and crossing-over inference (see Figure 1.12).

Besides, the recombination landscape of numerous genomes exhibits an interestingly unique profile along heterochromatin regions, particularly, the telomeres, the ending parts of the chromosome which mainly protects the DNA sequence during cell division, and is directly associated to cell aging aspects, and the centromere, which connects both sister chromatids. The understanding of centromeres structure, organization, and evolution is currently a hot research area. Besides, the highly diverse mechanisms of centromere positioning [START_REF] Vanrobays | Heterochromatin Positioning and Nuclear Architecture[END_REF] and repositioning (Lu and He, 2019) remain a complicated obstacle in the face of fully understanding genome dynamics. Thus, generating high resolution genetic, physical, and recombination maps, as well as locating heterochromatin regions is increasingly attractive to the community across an extensive range of taxa [START_REF] Schueler | Genomic and genetic definition of a functional human centromere[END_REF][START_REF] Weinstock | Insights into social insects from the genome of the honeybee Apis mellifera[END_REF][START_REF] Silva-Junior | Genome-wide patterns of recombination, linkage disequilibrium and nucleotide diversity from pooled resequencing and single nucleotide polymorphism genotyping unlock the evolutionary history of Eucalyptus grandis[END_REF][START_REF] Robert | Thompson and Thompson genetics in medicine[END_REF][START_REF] Shen | Genome-wide recombination rate variation in a recombination map of cotton[END_REF][START_REF] Gui | Improving Nelumbo nucifera genome assemblies using high-resolution genetic maps and BioNano genome mapping reveals ancient chromosome rearrangements[END_REF][START_REF] Rowan | An ultra high-density arabidopsis thaliana crossover map that refines the influences of structural variation and epigenetic features[END_REF]. Despite the enormous advances offered by sequencing technologies, centromeres are still considered enigmas, mostly due to their enrichment in repeat DNA that prevents genome assembly algorithms to achieve more complete whole genome sequences [START_REF] Muller | The Impact of Centromeres on Spatial Genome Architecture[END_REF].

Genome assembly: one genomic goal, different computational challenges

Genome assembly is the process consisting of putting together DNA fragments from sequencing with the aim of reconstruct the original form of a genome.

Genome assembly goes through mainly two steps as shown on Figure 1.13:

1. DNA fragments, which are the sequencing data (i.e. reads), are brought together to form longer sequences, called contigs;

2. The contigs are then oriented, ordered and connected to form more complete sequences which may hopefully reach the chromosome-length, called scaffolds.

Genome assembly has become crucial for conducting genomic studies in various fields as environment, health, genetics, evolution and many more. Thus, recent studies has highlighted the impact of assembly quality on result interpretations, that could be biased due to low quality genomes [START_REF] Chakraborty | Hidden genetic variation shapes the structure of functional elements in Drosophila[END_REF].

While the efficiency of bioinformatic tools used for assembly is increasing, errors of sequence construction persist. One of the most common sources of such errors is repeated regions, including TEs, as they are known for causing misassemblies (i.e. assembly errors. The presence of repeated elements can induce (1) chimeric contigs due to collapsed repeats and/or (2) assembly breaks [START_REF] Treangen | Repetitive DNA and next-generation sequencing: Computational challenges and solutions[END_REF].
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Exploiting overlaps with assembly tools 

Mosquitoes: an interesting model to aim for

Following one of the main research topics studied at ISE-M1 , my interest in mosquitoes has been driven by the remarkable adaptation response their genomes manifest.

Previous studies highlighted a strong variation across different mosquito species in terms of genome size, while their gene content is conserved. Indeed, these closely related species exhibit a high variability in terms of genome size, but also their content of repeat sequences including TEs (Figure 1 .16). TEs are suspected to have caused genome size expansion mainly in the heterochromatin regions [START_REF] Morata | The evolutionary consequences of transposon-related pericentromer expansion in melon[END_REF]. Meanwhile, such regions highlight reduced recombination rates. Thus, being a source of genomic diversity and novelty, TEs are good candidates to investigate the adaptive evolutionary process within genomes [START_REF] Biémont | A Brief History of the Status of Transposable Elements: From Junk DNA to Major Players in Evolution[END_REF].

Despite the correlation between the genome size and TEs coverage, TEs are not always present with the same types across the four genomes. Upon such observations, natural questions arise. Are TEs responsible for such genome size expansion? If so, which type of TEs is the most influencing these genomes? Are TEs influencing all chromosomes, within and between diptera species in the same way? What about on the same chromosome? Are there specific regions that are more affected than others, like in euchromatin vs. heterochromatin? More precisely, are centromeric and telomeric regions exhibiting any special TE-related patterns?

For example, what is the abundance and distribution of TEs? Which TE types, called families, are mostly present in a genome? Is there a correlation between TEs and other genomic features like gene density and recombination rate among others? By collecting enough knowledge on TEs organization and dynamics, the scientific community will be able to investigate their impact on genomes architecture and dynamics, as in chromosomal rearrangements.

Therefore, there is still plenty of issues to handle, such as the quality and completeness of genomes, which, among other factors, influence the quality of the TE annotations. Besides, the capacity of identifying the different genomics regions: chromatin domains.

Thesis overview

The rest of this PhD manuscript is organized in three chapters such as :

Chapter 2 -An automated computational tool that I develop to identify heterochromatin boundaries along chromosomes and estimating local recombination rates is presented. The tool based on the Marey maps method is called BREC for Boundaries and RECombination rate estimates.

Chapter 3 -Focusing on the scaffolding step with the aim of enhancing the assembly quality, an approach that exploited the repeated regions had been proposed.

Chapter 4

To conclude my thesis project with a showcase of the previous results, we present an opening regarding the genome dynamics. We provide some insights on the perspectives of the work presented here and how it may be extended to further the understanding of the related research topics. Furthermore, we present a preliminary case study in Appendix C where we focus on the analysis of TEs distribution in mosquito genomes to raise few perspectives.

Additional content As part of my research activity, I had the opportunity to present my results in numerous scientific events including national and international conferences. The set of my publications consists of various posters, one talk and one journal published article (see details in Appendix A). Also, I list the grants I got awarded as well as the peripheral scientific activities I took part in (see Appendix B).
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Context and motivation

In this chapter, we aim to address the issue of identifying the eu-heterochromatin boundaries, in order to distinguish the two main genomic regions, euchromatic and heterochromatic, and mainly for the latter, to localise the centromeric and telomeric regions along each chromosome. This aspect will allow us to address the various dynamics of such genomes, by conducting a deeper analysis according to the different chromatin domains. Besides, along chromosomes, and later on, investigate its correlation with the TE density and distribution.

Therefore, we chose to start by exploiting the previously available datasets, along with the existing grounds on recombination, in terms of fundamental knowledge, biological experimentation results, statistical analysis tools and computational implementation, in order to gather the various essential elements which will guide us towards a better understanding of genome dynamics in mosquitoes.

Approaches for estimating recombination rate variation

Numerous methods for estimating recombination rates exist. Genomics inference methods, covering population-based, pedigree-based , and gamete-based approaches (Auton and McVean, 2012;Peñalba and Wolf, 2020), are used to estimate the variation of recombination rates at different scales (see Figure 2.1):

1. The population-based approach estimates the recombination rate within a population, i.e. a group of individuals of the same species living in the same geographical zone. This approach provides fine-scale genome-wide recombination estimates . However, it requires at least 10000 generations analysed.

2. The pedigree-based approach estimates the recombination rate within one family of individuals, which are closely related, i.e. parents and their descendants. This approach provides average-scale genome-wide recombination estimates (10Kb-5Mb). But it requires only from 1 to 10 generations.

3. The gamete-based approach also known as the sperm typing method, because they are applicable on males only but they are limited to small regions of the genome.

Among the listed methods, population genetic-based methods (Stumpf and McVean, 2003) provide accurate fine-scale estimates. Nevertheless, these methods are costly, time-consuming, require substantial expertise, and most of all, do not apply to all kinds of organisms. Moreover, the sperm-typing method (Jeffreys, 2000), which is also extremely accurate, providing high-density recombination maps, is malespecific and is applicable only on limited genome regions. On the other hand, a purely statistical approach, the Marey Maps (Chakravarti, 1991), could avoid some of the above issues based on other available genomic data: the genetic and physical distances of genomic markers.

We have to compromise between the number of data analysed and the results resolution, which will drive the choice of the approach used.

Unfortunately, some data types are more rare than others or more challenging to obtain and generate to get the appropriate resolution, and that is one of the various reasons that motivate our interest in developing an automated and user-friendly solution. According to (Peñalba and Wolf, 2020), it would be interesting if the community aim for a unified approach as an attempt to include the complementary advantages of each of the three, and avoid their limitations as much as possible. The complementary Chapter 2. Recombination and heterochromatin regions

An approach to estimate quickly and easily the recombination rate along chromosomes

Thus, we chose to focus on the pedigree-based one, where physical and genetic maps are correlated to infer local recombination rate estimates, based on the Marey Maps (Chakravarti, 1991). This is at the heart of our contribution presented in the next section, since it consists of the one and only input data type we chose to exploit and build our new approach upon (see Figures 2.3,2.4).

Figure 2.3 illustrates what is a chromosome, genomic data, genetic map (and distance) and physical map (and distance), in addition to the link between them. For more clarity in further details, Figure 2.4 presents the type of data we will be dealing with for the rest of this chapter. It's a simple format: two maps representing the genetic and physical distances, stored as a CSV or TXT data file with a set of markers and their coordinates.

The Marey map approach consists of correlating the physical map with the genetic map representing respectively physical and genetic distances for a set of genetic markers on the same chromosome (Chakravarti, 1991) (see Figure 2.4). Some Marey map-based tools already exist, two of which are primarily used. The MareyMap Online (Rezvoy et al., 2007;[START_REF] Siberchicot | MareyMap online: a user-friendly web application and database service for estimating recombination rates using physical and genetic maps[END_REF] applies to multiple species, which makes it easily exploitable on user-specific data, while provides three regression models for the recombination rate estimates: 3th degree polynomial, Loess, and the cubic spline, as per the user's choice. Since it comes with a Shiny webbased application, it not only easily accessible, but also includes a data cleaning step where the used may select tat data points which appear to be more likely outliers, and proceed to the cleaning step. However, along some specific regions like the chromosome extremities, the recombination rates could not be accurately estimated, as pointed out in Figure 2.5 (e.g. negative values of the recombination rate). Chapter 2. Recombination and heterochromatin regions Second, the D. melanogaster Recombination Rate Calculator (RRC) (Fiston-Lavier et al., 2010) solves the previous issue, by identifying the centromeric and telomeric regions, along which it adjusts the recombination rate estimates, as pointed out on Figure 2.7. However, as indicated by its name, the RRC is D. melanogaster-specific, and it applies only the 3rd polynomial regression model for the interpolation, which is broad-scale, and thus less accurate estimates.

With the emerging NGS technologies, accessing whole chromosome sequences has become possible on a wide range of species. Therefore, we may expect an exponential increase in the markers number, requiring more adapted tools to handle such new scopes of data efficiently.

The lack of Fine-scale and/or high density maps like (Comeron, Ratnappan, and Bailin, 2012) It lies mainly in the incorrectly estimated RR on the heterochromatin regions, where the RR is expected to be null or at least very reduces, while this is not the case as shown in Figure 2.6. (Comeron, Ratnappan, and Bailin, 2012).

Despite the efficiency of this approach and mostly the availability of physical and genetic maps, generating recombination maps rapidly and for any organism is still challenging. Hence, the increasing need for an automatic, portable, and easy-to-use solution. Here, we propose a new Marey map-based method as an automated computational solution that aims to, firstly, identify heterochromatin boundaries (HCB) along chromosomes, secondly, estimate local recombination rates, and lastly, adjust recombination rates on chromosome along the chromosomal regions marked by the identified boundaries.

New Approach: BREC

Different heterochromatin regions exhibit different profiles of recombination rates. Therefore, in order to understand how and why the recombination rate varies, it is vital to break down the chromosome structure into smaller blocks where several genomic features, besides recombination rate, are also known to exhibit different profiles.

Within the context of genome architecture and evolution, introduced in the previous chapter, we will focus on the two first investigated aspects, which are the variation of meiotic recombination rates, and the identification of boundaries between euchromatin and heterochromatin regions on the chromosome scale.

BREC Workflow BREC [START_REF] Mansour | BREC: an R package/Shiny app for automatically identifying heterochromatin boundaries and estimating local recombination rates along chromosomes[END_REF] is designed following the workflow represented in Figure 2.8. To ensure that the broadest range of species could be analyzed by our tool, we designed a pipeline that adapts behavior with respect to input data. Each step of the workflow relies mostly on statistical analysis, adaptive algorithms, and decision proposals led by empirical observation.
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The workflow starts with a pre-processing module (called "Step 0") aiming to prepare the data prior to the analysis. Then, it follows six main steps: (1) estimate Marey Map-based local recombination rates, (2) identify chromosome type, (3) prepare the HCB identification, (4) identify the centromeric boundaries, ( 5) identify the telomeric boundaries, and ( 6) extrapolate the local recombination rate map and generate an interactive plot containing all BREC outputs (see Figure 2.8). Each step is detailed hereafter and summarised in Figure 2.9. A more detailed version is included in the Figure 2.9, where a zoomin on the main process is clarified for each of the six steps. Chapter 2. Recombination and heterochromatin regions

Step 0 -Apply data pre-processing

Since we have noticed that BREC estimates are sensitive to the quality of input data, we propose a pre-processing step to assess data quality and suggest an optional data cleaning for outliers. As such, we could ensure proper functioning during further steps.

Data quality control

The quality of input data is tested regarding two criteria: (1) the density of markers and ( 2) the homogeneity of their distribution on the physical map along a given chromosome. First, the mean density, defined as the number of markers per physical map length, is computed. This value is compared with the minimum required threshold of 2 markers/Mb. Based on the displayed results, the user gets to decide if data cleaning is required or not. The threshold of 2 markers/Mb is selected based on a simulation process that allowed to test BREC results while decreasing markers density until the observed HCB estimates seemed to be no longer exploitable (see Section Validation process: Simulated data for quality control testing). Second, the distribution of input data is tested via a comparison with a simulated uniform distribution of identical markers density and physical map length. This comparison is applied using Pearson's Chisquared test (Agresti, 2007), which allows examining how close the observed distribution (input data) is to the expected one (simulated data).

Data cleaning

The cleaning step aims to reduce the disruptive impact of noisy data, such as outliers, in order to provide a more accurate recombination rate and heterochromatin boundary results. If the input data fails to pass the Data Quality Control (DQC) test, the user has the option to apply or not a cleaning process. This process consists of identifying the extreme outliers and eliminating them upon the user's confirmation. Outliers are detected using the distribution statistics of the genetic map (see Figure 2.10). More precisely, inter-marker distances (separating each two consecutive points) are computed along the genetic map. Using a boxplot, distribution statistics (quartiles, mean, median) are applied on these inter-marker distances to identify outliers, which are chosen as the 5% of the data points with a greater genetic distance than the maximum extreme value, and should be discarded. Thus, the cleaning targets markers for which the genetic distance is quite larger than most of the rest. After the first cleaning iteration, DQC is applied again to assess the new density and distribution. The user can also choose to bypass the cleaning step, but BREC's behavior is no longer guaranteed in such cases.

Data cleaning: detecting outliers

Physical distance (Mb) Genetic distance (cM) outliers Boxplot of inter-marker distances along the genetic map 5 FIGURE 2.10: The data cleaning process implemented within BREC. Inter-marker distances (i.e. genetic distances between each two consecutive points along the genetic map) are represented using a boxplot in order to identify outliers and give the user the option to remove them. Here is an example showing raw data of a simulated chromosome (left) with the specific markers detected as outliers (red dots circled with red dashed ovals) and the corresponding genetic distances (also in red) on the boxplot (right).

Step 1 -Estimate Marey Map-based local recombination rates

Once the data are cleaned, the recombination rate can be estimated based on the Marey map (Chakravarti, 1991) approach by: (1) correlating genetic and physical maps, (2) generating two regression models -third degree polynomial and Loessthat better fits these data, (3) computing the prime derivative for both models which will represent preliminary recombination maps for the chromosome. The primary purpose of interpolation here is to provide local recombination rate estimates for any given physical position, instead of only the ones corresponding to available markers.

At this point, both recombination maps are used to identify the chromosome type as well as the approximate position of centromeric and telomeric regions. Nevertheless, as a final output, BREC will return only the Loess-based adjusted map for recombination rates since it provides finer local estimates than the polynomial-based map.

Step 2 -Identify chromosome type

BREC provides a function to identify the type of a given chromosome according to the position of its centromere. This function is based on the physical position of the smallest value of recombination rate estimates, which primarily indicates where the centromeric region is more likely to be located. Our experimentation allowed to come up with the following scheme (see Figure 2.11). Two main types are identified: telocentric and atelocentric [START_REF] Levan | Nomenclature for centromeric position on chromosomes[END_REF]. Atelocentric type could be either metacentric (centromere located approximately in the center with almost two equal arms) or not metacentric (centromere located between the center and Chapter 2. Recombination and heterochromatin regions one of the telomeres). The latter includes the two most known subtypes, submetacentric and acrocentric (recently considered types rather than subtypes). It is tricky for BREC to distinguish between submetacentric and acrocentric chromosomes correctly. Their centromeres' position varies slightly, and capturing this variation (based on the smallest value of recombination rate on both maps -polynomial and Loess-) could not be achieved yet. Therefore, we chose to provide this result only if the implemented process allowed to identify the subtype automatically. Otherwise, the user gets the statistics on the chromosome's data and is invited to decide according to further a priori knowledge. The two subtypes (metacentric and not metacentric) are distinguished following intuitive reasoning inspired by their definition found in the literature. First, BREC identifies whether the chromosome is an arm (telocentric) or not (atelocentric). Then, it tests if the physical position of the smallest value of the estimated recombination rate is located between 40% to 60% interval. In this case, the subtype is displayed as metacentric. Otherwise, it is displayed as not metacentric. The recombination rate is estimated using the Loess model ("LOcal regrESSion") (Cleveland and Devlin, 1988;Cleveland and Loader, 1996).

6 -confirmed as metacentric-is when the centromere is located approximately on the middle of the chromosome, here showed within the physical positions 40% and 60% of the chromosome's size (delimited by the red brackets and indicated with the tag "Meta"). (c) Atelocentric chromosome type -with no specification-is when the centromere is located either inside the first arm (between the beginning of the chromosome and 40% of its size), or inside the second arm (between 60% and the end, indicated with the tag "Don't know").

Step 3 -Prepare the HCB identification

The HCB identification is a purely statistical approach relying on the coefficient of determination R 2 , which measures how good the generated regression model fits the input data (Zhang, 2017). We chose this approach because the Marey map usually exhibits a lower quality of markers (density and distribution) on the heterochromatin regions. Thus, we aim to capture this transition from high to low quality regions (or vice versa) as it reflects the transition from euchromatin to heterochromatin regions (or vice versa). The coefficient R 2 is defined as the cumulative sum of squares of differences between the interpolation and observed data. R 2 values are accumulated along the chromosome. In order to eliminate the biased effect of accumulation, R 2 is computed twice: R 2f orward starts the accumulation from the beginning of the chromosome to provide the left centromeric and left telomeric boundaries. In contrast, R 2backwards starts from the end of the chromosome, providing the right centromeric and right telomeric boundaries. These R 2 values were calculated using the rsq package in R. To compute R 2 cumulative vectors, rsq function is applied on the polynomial regression model. In fact, there is no such function for non-linear regression models like the Loess because, in such models, high R 2 does not always indicate a good fit. A sliding window is defined and applied on the R 2 vectors to precisely analyze their variations (see details in the next step). In the case of a telocentric chromosome, the position of the centromere is then deduced as the left or the right side of the arm, while in the case of an atelocentric chromosome, the existence of a centromeric gap is investigated.

Step 4 -Identify centromeric boundaries

Since the centromeric region is known to present reduced recombination rates, the starting point for detecting its boundaries is the physical position corresponding to the smallest polynomial-based recombination rate value. A sliding window is then applied to expand the starting point into a region based on R 2 variations in two opposite directions. The sliding window's size is automatically computed for each chromosome as the largest value of ranges between each two consecutive positions on the physical map (indicated as i and i + 1 in Equation 2.1). After making sure the sliding window includes at least two data points, the mean of local growth rates inside the current window is computed and tested compared to zero. If it is positive (resp. negative) on the forward (resp. backward) R 2 curve, the value corresponding to the window's ending edge is returned as the left (resp. right) boundary. Else, the window moves by a step value equal to its size.

sliding_window_size(chromosome) = max{|physPos i+1 -physPos i | : 1 ≤ i ≤ n -1} (2.1)
There are some cases where chromosome data present a centromeric gap. Such a lack of data produces biased centromeric boundaries. To overcome this issue, chromosomes with a centromeric gap are handled with a slightly different approach. After comparing the mean of local growth rates regarding to zero, accumulated slopes of all data points within the sliding window are computed, adding one more point at a time. If the mean of accumulated slopes keeps the same variation direction as the mean of growth rates, the centromeric boundary is set as the window's ending edge.

Else, the window slides by the same step value as before (equal to its size). The difference between the two chromosome types is that only one sliding window is used for the telocentric case, its starting point is the centromeric side, and it moves away from it. As for the atelocentric case, two sliding windows are used (one on each R 2 curve), their starting point is the same, and they move in opposite directions to expand the centromere into a region.

Step 5 -Identify telomeric boundaries

Since telomeres are considered heterochromatin regions as well, they also tend to exhibit low fitness between the regression model and the data points. More specifically, the accumulated R 2 curve tends to present a significant depletion around telomeres. Therefore, a telomeric boundary is defined here as the physical position of the most significant depletion corresponding to the smallest value of the R 2 curve. As such, in the telocentric case, only one R 2 curve is used. It gives one boundary of the telomeric region (the other boundary is defined by the beginning of the left telomere or the end of the right telomere). Whilst in the atelocentric case, where the are two telomeres, the depletion on R 2f orward detects the end of the left telomeric region, and the depletion on R 2backwards detects the beginning of the right telomeric region.

The other two boundaries (the beginning of the left telomere and the end of the right telomere) are defined to be, respectively, the same values of the two markers with the smallest and the largest physical position available within the input data of the chromosome of interest.

Step 6 -Extrapolate the local recombination rate estimates and generate interactive plot

The extrapolation of recombination rate estimates at the identified centromeric and telomeric regions automatically performs an adjustment by resetting the initial biased values to zero along these heterochromatin ranges. Finally, all of the above BREC outputs are combined to generate one interactive plot to display for visualization and download (see details in Section BREC results: Easy, fast and accessible tool via an R-package and a Shiny app).

It is important to emphasize that throughout the whole main process module, only step 1 "Estimating Marey map-based local recombination rates" comes from previous methods (Chakravarti, 1991;Rezvoy et al., 2007). Otherwise, each of the steps 2-6 are fully developed (designed and implemented) within BREC and represent a new contribution, in addition to step zero "Data pre-processing", as mentioned above.

Validation process 2.3.1 Validation data

The only input dataset to provide for BREC is genetic and physical maps for one or several chromosomes. A simple CSV file with at least two columns for both maps is valid. If the dataset is for more than one chromosome or the whole genome, a third column, with the chromosome identifier, is required. (see Figure 2.4).

Our results have been validated using Release 5 of the fruit fly D. melanogaster [START_REF] Hoskins | Sequence finishing and mapping of Drosophila melanogaster heterochromatin[END_REF]Hoskins et al., 2015) genome as well as the domesticated tomato Solanum lycopersicum genome (version SL3.0).

We also tested BREC using other datasets of different species: house mouse (Mus musculus castaneus, MGI) chromosome 4 [START_REF] Cox | A new standard genetic map for the laboratory mouse[END_REF], roundworm (Caenorhabditis elegans, ws170) chromosome 3 (Hillier et al., 2008), zebrafish (Danio rerio, Zv6) chromosome 1 [START_REF] Freeman | Definition of the zebrafish genome using flow cytometry and cytogenetic mapping[END_REF], respectively (see Figure 2.12), as samples from the multi-genome dataset included within BREC (see further details on the full builtin dataset in Section Validation process: Description of main components of the Shiny app). 

Fruit fly genome D.melanogaster

Physical and genetic maps are available for download from the FlyBase website (http://flybase.org/; Release 5) [START_REF] Thurmond | FlyBase 2.0: the next generation[END_REF]. This genome is represented here with five chromosomal arms: 2L, 2R, 3L, 3R, and X (see Table 2.1), for a total of 618 markers, 114.59Mb of physical map and 249.5cM of genetic map. This dataset is manually curated and is already clean from outliers. Therefore, the cleaning step offered within BREC was skipped. 4) the physical map length (in Mb); ( 5) the genetic map length (in cM); and ( 6) the elapsed time when running BREC (in seconds). The last column summarises the same features for the whole genome.

Chromosomal arms

Tomato genome S. lycopersicum

Domesticated tomato with 12 chromosomes has a genome size of approximately 900Mb. Based on the latest physical and genetic maps reported by the Tomato Genome Consortium (Sato et al., 2012), we present both maps content (markers number, markers density, physical map length, and genetic map length) for each chromosome in Table 2.2. For a total of 1957 markers, 752.47Mb of physical map and 1434.49cM of genetic map along the whole genome. 4) the physical map length (in Mb); ( 5) the genetic map length (in cM); and ( 6) the elapsed time when running BREC (in seconds). The last column summarises the same features for the whole genome.

Simulated data for quality control testing

We call data scenarios, the layout in which the data markers are arranged along the physical map. For experimentally testing the limits of BREC, various data scenarios have been specifically designed based on D. melanogaster chromosomal arms (see Figure 2.13). In an attempt to investigate how the markers' density varies within and between the five chromosomal arms of D. melanogaster Release 5 genome, the density has been analyzed in two ways: locally (with 1Mb-bins) and globally (on the whole chromosome). Figure 2.14 shows the results of this investigation, where each little box indicates how many markers are present within the corresponding region of size 1Mb on the physical map. The mean value represents the global density. It is also shown in Table 2.1 where the values are slightly different. This is due to computing the marker's density in two different ways with respect to the analysis. The exact same analysis has been conducted on the tomato genome S. lycopersicum where the only difference lies in using 5-Mb instead of 1-Mb bins, due to the larger size of its chromosomes (see Figure 2.15). 

Validation metrics

The measure we used to evaluate the resolution of BREC's HCB is called shi f t hereafter. It is defined as the difference between the observed heterochromatin boundary (observed_HCB) and the expected one (expected_HCB) in terms of physical distance (in Mb)(see Equation 2.2).

shi f t = |observed_HCB -expected_HCB| (2.2)
The shi f t value is computed for each heterochromatin boundary independently. Therefore, we observe only two boundaries on a telocentric chromosome (one centromeric and one telomeric). In comparison, we observe four boundaries in the case of an atelocentric chromosome (two centromeric giving the centromeric region and two telomeric giving each of the two telomeric regions).

The shi f t measure was introduced not only to validate BREC's results with the reference equivalents but also to empirically calibrate the DQC module, where we are mostly interested in the variation of its value as per variations of the quality of input data.

Implementation and Analysis

The entire BREC project was developed using the R programming language (version 3.6.3 / 2020-02-29) and the RStudio environment (version 1.2.5033) (R Core Team, 2018). The graphical user interface is build using the shiny and shinydashboard packages [START_REF] Rstudio | Shiny: Easy web applications in R[END_REF]. The web-based interactive plots are generated by the plotly package. Data simulations, result analysis, reproducible reports, and data visualizations are implemented using a large set of packages such as tidyverse, dplyr, R markdown, Sweave and knitr among others. The complete list of software resources used is available on the online version of the BREC package accessible at https://github.com/GenomeStructureOrganization/BREC.

From inside an R environment, the BREC package can be downloaded and installed using the command in the code chunk in Figure 2.16. In case of installation issues, further documentation is available online on the ReadMe page of the GitHub repository. If all runs correctly, the BREC Shiny application will be launched on your default internet browser. All BREC experiments have been carried out using a personal computer with the following specs:
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• Processor: Intel R Core TM i7-7820HQ CPU @ 2.90GHz x 8

• Memory: 32Mo

• Hard disc: 512Go SSD

• Graphics: NV117 / Mesa Intel R HD Graphics 630 (KBL GT2)

• Operating system: 64-bit Ubuntu 20.04 LTS

Description of main components of the Shiny app

Build-in dataset

Users can either run BREC on a dataset of 44 genomes, mainly imported from (Corbett-Detig, Hartl, and Sackton, 2015), enriched with two mosquito genomes from (Dudchenko et al., 2017) and updated with D. melanogaster Release 6 from FlyBase (Thurmond et al., 2019) (see Tables 2.3), already available within the package, or, load new genomes data according to their own interest.

User-specific genomic data should be provided as inputs within at least a 3-column CSV file format, including for each marker: chromosome identifier, genetic distance, and physical distance, respectively. On the other hand, outputs from BREC running results are represented via interactive plots.

Species Common Name Taxonomy

Aedes and Sackton, 2015), enriched with two recently assembled mosquito genomes: Cx. pipiens and Ae. aegypti from (Dudchenko et al., 2017), domesticated tomato S. lycopersicum from (Sato et al., 2012), and D. melanogaster Release 6 (update) from FlyBase [START_REF] Thurmond | FlyBase 2.0: the next generation[END_REF].The species in red bold text are the ones used in BREC experiments. Since the data collection process is still ongoing, the current version of this dataset is continuously evolving.

GUI input options

The BREC Shiny interface provides the user with a set of options to select as parameters for a given dataset (see Figure 2.17a). These options are mainly necessary in case the user works on his/her own dataset and this way the appropriate parameters would be available to choose from.

First, a tab to specify the running mode (one chromosome). Then, a radio button group to choose the dataset source (existing within BREC or importing new dataset).

For the existing datasets case, there is a drop-down scrolling list to select one of the available genomes (over 40 options), a second one for the corresponding physical map unit (Mb or pb) and a third one for the chromosome ID (available based on the dataset and not the genome biologically speaking). While for the import new dataset case, three more objects are added (see Figure 2.17b); a fileInput to select csv data file, a textInput to enter the genome name (optional), and a drop-down scrolling list to select the data separator (comma , semicolon or tab character -set as the default-).

(A) Inputs -1 Run BREC for heterochromatin boundaries page, indicated on the left dark panel.

(B) Inputs -2 After selecting input parameters and clicking the "Run" button, a popup alert is displayed to ask the user to confirm the chromosome type. As for the Loess regression model, the span parameter is required. It represents the percentage of how many markers to include in the local smoothing process. There is a numericInput object set by default at value 15% with an indication about the range of the span values allowed (min = 5%, max = 100%, step = 5%). The user should keep in mind that the span value actually goes from zero to one, yet, in a matter of simplification, BREC handles the conversion on it's own. Thus, for example, a value of zero basically means that no markers are used for the local smoothing process by Loess, and so, it will induce a running error. Lastly, there is a checkbox to apply data cleaning if checked. Otherwise, the cleaning step will be skipped. This options could save the user some running time if s/he already have a priori knowledge that a specific genome's dataset has already been manually curated). The user is then all set to hit the Run button. BREC will start processing the chromosome of interest by identifying its type (telocentric or atelocentric). Since this step is quite difficult to automatically get the correct result, the user might be invited to interfere via a popup alert asking for a chromosome type confirmation (see Figure 2.17b).

As shown in Figure 2.18a, all available genomes could be accessed from the lefthand panel (in dark grey) and specifically on the tab "Genomic data" where two pages are available: "Download data files" which provides a data table corresponding to the selected genome on a scrolling list along with download buttons, and "Dataset details" displaying a more global overview of the whole build-in repository (see Figure 2.18b). To give a glance at the GUI outputs, Figure 2.17c shows BREC results displayed within an interactive plot where the user will have the an interesting experience by hovering over the different plot lines and points, visualising markers labels, zooming in and out, saving a snapshot as a PNG image file, and many more available options thanks to the plotly package [START_REF] Sievert | Interactive Web-Based Data Visualization with R, plotly, and shiny[END_REF].
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(A) (Top)
Download data files page from the Genomic data section, indicated on the left dark panel, is displayed here. After selecting on the top list the Gallus gallus genome and clicking the "Download selected" button, a dialog box is open waiting for the user to specify the file path to save the selected data file.

(B) (Bottom)

Dataset details page from the Genomic data section is showing a sample of ten available genomes provided within the BREC package. The table is intentionally sorted using the forth column values with descending number of "Total markers". 

BREC results

In this section, we present the results obtained through the following validation process. First, we automatically re-identified HCB with an approximate resolution to the reference equivalents. Second, we tested the robustness of BREC methods according to input data quality, using the well-studied D. melanogaster genome

BREC results
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data, for which recombination rate and HCB have already been accurately provided (Fiston-Lavier et al., 2010;Comeron, Ratnappan, and Bailin, 2012;[START_REF] Chan | Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster[END_REF]Langley et al., 2012)(Figure 2.19). Besides, we extended the robustness test to a completely different genome, the domesticated tomato S. lycopersicum (Sato et al., 2012) to better interpret the study results. Even if the Loess span value does not impact the HCB identification, but only the resulting recombination rate estimates, the span values used in this study are: 15% for D. melanogaster (for comparison purpose) and 25% for the rest of the experiments. Our analysis shows that BREC is applicable to data from various organisms, as long as the data quality is good enough. BREC is data-driven, thus, the outputs strongly depend on the markers density, distribution, and chromosome type identified (automatically, or with the user's a priori knowledge). 

Fruit fly genome D.melanogaster

Our approach for identifying HCB has been primarily validated with cytological data experimentally generated on the D. melanogaster Release 5 genome [START_REF] Riddle | Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin[END_REF][START_REF] Chan | Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster[END_REF][START_REF] Langley | Genomic variation in natural populations of Drosophila melanogaster[END_REF][START_REF] Thurmond | FlyBase 2.0: the next generation[END_REF]. For all five chromosomal arms (X, 2L, 2R, 3L, 3R). This genome presents a mean density of 5.39 markers/Mb and a mean physical map length of 22.92Mb. We obtained congruent HCB with a good overlap and shift, distance between the physical position of the reference and BREC, from 20Kb to 4.58Mb (see Section Validation process: Validation process). We did not observe a difference in terms of mean shift for the telomeric and centromeric BREC identification (χ 2 = 0.10, df = 1, pvalue = 0.75)(See Tables 2.1,2.4). We observe a lower resolution for the chromosomal arms 3L and 3R (see Figure 2.20). This suggests that those two chromosomal arms' data might not present as good quality as the rest of the genome. Interestingly, the local markers density for these two chromosomal arms shows a high variation, unlike the other chromosomal arms. For instance, the 2L for which BREC returns accurate results, shows a lower variation (see Figure 2.14). Without these two arms, the max shift for both centromeric and telomeric BREC boundaries is smaller than 1.54Mb, with a mean shift decreasing from 1.43Mb to 0.71Mb.

This first analysis suggests that BREC methods return accurate results on this genome. However, the boundaries identification process appears very sensitive to the markers' local density and distribution along a chromosome (see Figure 2.20). Therefore, we conducted further experiments on a different dataset, the tomato genome (see Figure 2.15).

Tomato genome S. lycopersicum

Results of experimenting BREC behaviour on all 12 chromosomes of S. lycopersicum genome (Sato et al., 2012) are shown as values in Table 2.5 and as plots in Figure 2.21. This genome presents a mean density of 2.64 markers/Mb and a mean physical map length of 62.71Mb. We observe a variation in the shift value representing the difference on the physical map between reference HCB and their equivalents returned by BREC. Unlike the D. melanogaster genome, which is of a smaller size, with five telocentric chromosomes (chromosomal arms) and a strongly different markers distribution, the tomato genome exhibits a completely different study case. It is a plant genome, with approximately 8-fold bigger genome size. It is organized as twelve atelocentric chromosomes of a mean size of 60Mb, except for chromosomes 2 and 6, which are more likely to be rather considered telocentric based on their markers distribution. Also, we observe a long plateau of markers along the centromeric region with lower density than the rest of the chromosomes. Something which highly differs from D. melanogaster data. We believe all these differences between both genomes give a good validation and evaluation for BREC behavior towards various data quality scenarios. Furthermore, since BREC is a data-driven tool, these experiments help analyze data-related limitations that BREC could face while resolving differently. From another point of view, BREC results on the tomato genome highlight the fact that markers distribution along heterochromatin regions, in particular, strongly impacts the identification of eu-heterochromatin boundaries, even when the density is of 2 markers/Mb or more. 

Consistency despite the low data quality

We aim in this part to study to what extent BREC results are depending on the data quality.

BREC handles low markers density

We started by assessing the markers' density on the BREC estimates. We generated simulated datasets with decreasing fractions of markers for each chromosomal arm (from 100% to 30%). For that, we randomly selected a fraction of markers, 30 times, and computed the mean shift between BREC and the reference telomeric and centromeric boundaries. We have noted that BREC's resolution decreases drastically with the fraction and therefore with the marker density (see Figure 2.22). However, BREC results appeared stable until 70% of the data for all the chromosomal arms, more specifically for the telomeric boundary detection. Only for the centromeric boundary of the chromosomal arm 3R, we observed the opposite pattern: BREC returns more accurate telomeric boundary estimates when the markers' number decreases. This supports the low quality of the data around the 3R centromere.

This simulation process allowed to set a minimum density threshold representing the minimum value for data density in order to guarantee accurate results for BREC estimates at 5 markers/Mb (fraction of around 70% of the data) on average in D. melanogaster. This analysis also supports the fact that because the markers' density alone can not explain the BREC resolution, BREC may also be sensitive to the marker distribution. 

BREC handles heterogeneous distribution

Along chromosomes, genetic markers are not homogeneously distributed. Therefore, to assess the impact of the distribution of markers on BREC results, we designed different data scenarios regarding a reference data distribution (see Section Validation process: Simulated data for quality control testing). We choose as reference the chromosomal arms 2L and 2R of D. melanogaster as we have obtained the most accurate results with their data. After the concatenation of the two arms, we ended up with a metacentric simulated chromosome as a starting simulation scenario (total physical length of 44Mb). While this length was kept unchanged, markers local density and distribution were modified (see Section Validation process: Simulated data for quality control testing and Figure 2.13).

One particular yet typical case is the centromeric gap. Throughout our analysis, we consider that a chromosome presents a centromeric gap if its data exhibit a lack of genetic markers on a relatively large region on the physical map. Centromeric regions usually are less accessible to sequence due to their highly compact chromatin state. Consequently, these regions are also hard to assemble, and that is why many genomes have chromosomes presenting a centromeric gap. It is essential to know that a centromeric gap is not always precisely located in the middle of a chromosome. Instead, its physical location depends on the chromosome type (see more details in Figure 2.11).

We also assess the veracity of BREC on datasets with variable distributions using simulated data with and without a centromeric gap (see Figure 2.13).

For all six simulation datasets, BREC results overlap the reference boundaries. Thus BREC correctly handles the presence of a centromeric gap (see Figure 2.13: (a)(c)(e)). BREC remains robust to a non-uniform distribution of markers, under the condition that regions flanking the boundaries are greater than 2 markers/Mb (see Figure 2.23). In the case of a non-uniform distribution, BREC resolution is higher when the local density is stronger around heterochromatin regions (see Figure 2.13: (c)(d)(e)(f)). This suggests that low density on euchromatin regions far from the boundaries is not especially a problem either.
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Accurate local recombination rate estimates
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After identifying the HCB, BREC provides optimized local estimates of recombination rate along the chromosome by taking into account the absence of recombination in heterochromatin regions. Recombination rates are reset to zero across the centromeric and telomeric regions regardless of the regression model. To closely compare the third degree polynomial with Loess, using different span values, we experimented with this aspect on D. melanogaster chromosomal arms and reported the results in Figure 2.25.

To assess the veracity of the recombination rates along the whole genome, we compared BREC results with previous recombination rate estimates (see Figure 2.26; [START_REF] Chan | Genome-Wide Fine-Scale Recombination Rate Variation in Drosophila melanogaster[END_REF][START_REF] Langley | Genomic variation in natural populations of Drosophila melanogaster[END_REF]). BREC recombination rate estimates are significantly strongly correlated with reference data (Spearman's: P << 0.001) while the reference estimates fail in telomeric regions. 2.5. Applying BREC to identify chromatin regions along the mosquito genome: Ae. aegypti 73

BREC is non-genome-specific

NGS, High Throughput Sequencing (HTS) technologies, and numerous further computational advances are increasingly providing genetic and physical maps with more and more accessible markers along the centromeric regions. Such progress in the availability of data of poorly accessible genomic regions is a huge opportunity to shift our knowledge of heterochromatin DNA sequences and their dynamics, as in the case of Transposable Elements (TEs), for example. Therefore, BREC is not identifying centromeric gaps as centromeric regions as it might seem. Instead, it is targeting centromeric as well as telomeric boundaries identification regardless of the presence or absence of markers neither of their density or distribution variations across such complicated genomic regions (see Figure 2.12). Given that BREC is nongenome-specific, applying HCB identification on various genomes has allowed to widen the experimental design and to test more thoroughly how BREC responds to different data scenarios. Despite the several challenges due to data quality issues and following a data-driven approach, BREC is a non-genome-specific tool that aims to help to tackle biological questions.

Easy, fast and accessible tool via an R-package and a Shiny app

BREC is an R-package entirely developed with the R programming language (R Core [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. The current version of the package and documentation are available on the GitHub repository: https://github.com/GenomeStructureOrganization/BREC

In addition to the interactive visual results provided by BREC, the package comes with a web-based Graphical User Interface (GUI) build using the shiny and shinydashboard libraries [START_REF] Rstudio | Shiny: Easy web applications in R[END_REF]. The intuitive GUI makes it a lot easier to use BREC without struggling with the command line (see screenshots in Figures 2.17 As for the speed aspect, BREC is quite fast when executing the main functions. We reported the running time for D. melanogaster R5 and S. lycopersicum in Tables 2.1 and 2.2, respectively (plotting excluded). Nevertheless, when running BREC via the Shiny application, and due to the interactive plots displayed, it takes longer because of the plotly rendering. Still, it depends on the size of the genetic and physical maps used, as well as the markers density, as slightly appears in the same tables. The results presented from other species (see Figure 2.12) highlight better this dependence.

Applying BREC to identify chromatin regions along the mosquito genome: Ae. aegypti

In this section, we present some preliminary results obtained using BREC (see Chapter 2) on the mosquito genomes presented in Chapter 1. We then carry out the study on TE distribution in the mosquito genomes and assess the association between some TE families known to be actives and the recombination pattern along the chromosomes. In March 2017, a research group (Dudchenko et al., 2017) ended up with the first chromosome-length scaffolds for Cx. pipiens quinquefaciatus and Ae. aegypti genomes. According to the TE evolutionary models, we may expect to observe an enrichment of TEs in regions poor in genes and regions of reduced recombination [START_REF] Petrov | Population Genomics of Transposable Elements in Drosophila melanogaster[END_REF]. To test this hypothesis, we estimated the local recombination rates using BREC (see Chapter 2) on both mosquito genomes Ae. aegyptiand Cx. pipiens quinquefaciatus. Two mosquito genomes were recently released at the beginning of this study : Ae. aegypti and Cx. pipiens for which the linkage maps were updated.

For both genomes, the quality have been improved adding Hi-C information to contigs from the previous versions (Dudchenko et al., 2017). The authors re-sequenced both genomes and checked the order of genetic markers to assess the quality on these new assemblies (see Figure 2.27). In the following, we indifferently use Cx. pipiens or Cx. pipiens quinquefasciatus to refer to the latter. As BREC is a data-driven tool, we started by investigating the quality of the data. The Ae. aegypti genome release used here is AaegL4 where the genetic and physical maps were downloaded from (Dudchenko et al., 2017). The whole genome dataset provides three huge chromosome-length scaffolds of 307, 472, and 404Mb, with 317, 923, and 586 markers, respectively, providing an average density of 1.49 markers/Mb for a total genetic map length of 235 cM. We then launched BREC. BREC identifies 3 metacentric chromosomes with a large decrease of recombination in the middle and also at the extremities of the chromosomes. The centromeric regions including the pericentromeric regions range from 0.42Mb (chr3) to 52.99Mb (chr1) (see Figure 2.28).

2.5. Applying BREC to identify chromatin regions along the mosquito genome: Ae. aegypti 75 FIGURE 2.28: Genomic features (right) and BREC results (left) for the Ae. aegypti AaegL4 genome. A specific pattern is observed on the three chromosomes where a large plateau region around the centromere is highlighting almost no variation on the genetic map, and expected to yield large heterochromatin regions with reduces/suppressed recombination rates.

According to [START_REF] Matthews | Improved reference genome of Aedes aegypti informs arbovirus vector control[END_REF], it is not relevant comparing AaegL5 to AaegL4 as these genomes derive from different strains. In addition, there is a high degree of natural diversity between Ae. aegypti strains. The authors estimated that only 70% of the older AaegL4 reference aligns to the new AaegL5 assembly with >95% identity [START_REF] Matthews | Improved reference genome of Aedes aegypti informs arbovirus vector control[END_REF]. The comparison of the two assemblies with an old assembly version (AaegL3) revealed only very few shifts of coordinates. In addition, the analysis of the nucleotide diversity between several Ae. aegypti strains highlight putative centrometic regions. Taking together, These preliminary results are encouraging as they suggest accurate chromatin boundaries definitions using BREC. To test if we can obtain the same quality of results in other species, we launched BREC on Cx. pipiens genome (see Appendix C).

Discussion and Conclusion

The main two results of BREC are the eu-heterochromatin boundaries and the local recombination rate estimates (see Figures 2.26 and 2.20).

The HCB algorithm, which identifies the location of centromeric and telomeric regions on the physical map, relies on the regression model obtained from the correlation between the physical distance and the genetic distance of each marker. Then, the goodness-of-fit measure, the R-squared, is used to obtain a curve upon which the transition between euchromatin and heterochromatin is detectable.

On the other hand, the recombination rate algorithm, which estimates local recombination rates, returns the first derivative of the previous regression model as the recombination rates, then resets the derivative values to zero along the heterochromatin regions identified (see Figure 2.9).

We validated BREC methods with a reference dataset known to be of high quality: D. melanogaster. While two distinct approaches were respectively implemented for the detection of telomeric and centromeric regions, our results show a similar high resolution (see Table 2.4 and Figure 2.20). Then we analysed BREC's robustness using simulations of a progressive data degradation (see Figures 2.22 and 2.23). Even if BREC is sensitive to the markers' distribution and thus to the local markers' density, it can correctly handle a low global markers' density. For the D. melanogaster genome, a density of 5 markers/Mb seems to be sufficient to detect the HCB accurately.

We also validated BREC using the domesticated tomato S. lycopersicum dataset (see Table 2.5 and Figure 2.21). At first glance, one might ask: why validating with this species when the results do not seem really congruent? In fact, we have decided to investigate this genome as it provides a more insightful understanding of the datadriven aspect of BREC and how data quality strongly impacts the heterochromatin identification algorithm. Variations in the local density of markers in this genome are particularly associated with the relatively large plateaued centromeric region representing more than 50% of the chromosome's length. Such data scenario is quite different from what we previously reported on the D. melanogaster chromosomal arms. This is partially the reason for which we chose this genome for testing BREC limits.

While analyzing the experiments more closely, we found that BREC processes some of the chromosomes as presenting a centromeric gap, while that is not actually the case. Thus, we forced the HCB algorithm to automatically apply the with-no-centromericgap-algorithm, then, we were inspired to implement this option into the GUI in order to give the users the ability to take advantage of their a priori knowledge and by consequence to use BREC more efficiently. Meanwhile, we are considering how to make BREC completely automated regarding this point for an updated version later on. Besides, the reference heterochromatin results we used for the BREC validation are rather an approximate than an exact indicator. The physical positions used as reference correspond to the first and last markers tagged as "heterochromatin" on the spreadsheet file published by the Tomato Genome Consortium authors in (Sato et al., 2012). However, we hesitated before validating BREC results with these approximate reference values due to the redundant existence of markers tagged as "euchromatin" directly before or after these reference positions. Unfortunately, we were unable to validate telomeric regions since the reference values were not available. As a result, we are convinced that BREC is approximating well enough in the face of all the disrupting factors mentioned above.

On the other hand, this method's ambition is to escape species-dependence, which means it is conceived to apply to a various range of genomes. To test that, we also launched BREC on genomic data from different species (the house mouse's chromosome 4, roundworm's chromosome 3, and the chromosome 1 of zebrafish). Experiments on these whole genomes showed that BREC works as expected and identifies chromosome types in 95% of cases (see Figure 2.12).

One can assume, with the exponential increase of genomic resources associated with the revolution of the sequencing technologies, that more fine-scale genetic maps will be available. Therefore, BREC has quite the potential to widen the horizon of deployment of data science in the service of genome biology and evolution. It will be crucial to develop a dedicated database to store all this data.

BREC package and design offer numerous advantageous functionalities (see Table 2.6) compared to similar existing tools [START_REF] Siberchicot | MareyMap online: a user-friendly web application and database service for estimating recombination rates using physical and genetic maps[END_REF]Fiston-Lavier et al., 2010). Thus, we believe our new computational solution will allow a large set of

Chapter 3

Improving the quality of genome assembly using repeats Conducting studies to further the understanding of genome dynamics requires the availability, accessibility, and mostly the completeness of the genome sequence of interest, thus, the high quality of its assembly.

Although a new genome sequence of the Cx. pipiens (CpipJ3) has been recently released (Dudchenko et al., 2017), our preliminary analysis highlighted a serious amount of assembly errors (chimeric, repeat collapse, . . . ). The improvement of the Cx. pipiens genome is currently in progress within our team, through the resequencing of this species, yet, we have been interested in investigating the possibility of making such improvement of genome quality achievable by means of optimizing the scaffolding process, instead of re-sequencing.

Context and motivation

Looking back at when it all begun, the first milestone for genome assembly goes back to the 1960s when the small genomes of yeast and E.coli have just been sequenced. Since then, enormous progress has been achieved, and the amount of genomic sequences produced has been regularly increasing tenfold. Figure 3.1 shows the evolution of both sequencing technologies and volume of genomic data. We can notice that most of reference genomes including mosquito genomes like D. melanogaster and An. gambiae have been produced during the Sanger sequencing technology era. After a decade of Next-Generation Sequencing (NGS) and expansion of the range of sequenced organisms, the field is currently undergoing the era of Third Generation Sequencing (TGS) and population scale sequencing. Due to the characteristics of these sequencing technologies, it is extremely rare to get the correct sequence of a whole genome directly from the sequencing data. When using NGS in particular, reads produced are short in length, only a few hundreds of bp. On the other hand, long reads produced by TGS reach a more interesting scale for inferring global information, e.g. thousands of bp. Yet, this is still not sufficient to get one unique complete genome sequence per chromosome. Therefore, sequencing data need to be computationally assembled into larger DNA fragments.

In this chapter, we focus on the way of producing de novo genomes, and what could be done to achieve chromosome scale sequences with better quality, using already available datasets. Thus, we (1) describe the assembly process yielding contigs and its potential weaknesses, (2) focus on the scaffolding step which is post-processing of the assembled sequences, and (3) highlight the role of repeated elements throughout these steps. Then, we describe a new approach to take into account the existing repeats between the contigs and the scaffolds, in order to improve the assembled genome.

Genome assembly overview

Genome assembly: Reconstructing the reference genome

Genome assembly is the computational process of reconstructing a genome, as complete as possible, based on the fragmented DNA sequences produced by the sequencers. Sequencers are the machines used for reading the genetic material of an organism, and converting it into a data file ready to be analysed with a computer for multiple purposes. Figure 3.2 shows an overview of the genome assembly process which aims to produce the reference genome based on a set of sequencing data [START_REF] Ghurye | Modern technologies and algorithms for scaffolding assembled genomes[END_REF]. To have a closer look at the assembly process, Figure 3.3 from (Sohn and Nam, 2018) details the general steps of an assembly workflow that may be applied to most genomes. The quality of the assembly is strongly impacted by not only the assembler's algorithms, but mainly by the starting quality of the reads. Therefore, making the right choice about the sequencing technology to rely on is of great importance. 

Sequencing data: the inputs for genome assembly approaches

In order to comprehend the scales variation between the different sequencing data currently available, Figure 3.4 by [START_REF] Peona | How complete are "complete" genome assemblies?-an avian perspective[END_REF] presents real-life inspired examples. This figure highlights the fact that dealing with short reads and long reads may be totally different. For simplification purposes, we chose to only introduce the short reads and long reads from a comparative point of view [START_REF] Murigneux | Comparison of long-read methods for sequencing and assembly of a plant genome[END_REF], especially because we will be focusing on the use of short reads in further sections of this chapter. Here, we focus on the main three used technologies:

• Short reads: Illumina is the leader of short-read sequencing technology, and Illumina data constitute the vast majority of genomic data stored in public databases. It represents about 80% of the sequencing market share1 .

• Long reads: Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) have been increasingly exploited, and more frequently combined with short-read data.

The read length is obviously not the only feature distinguishing the sequencing products mentioned above. There is also the quality of reads which depends on the error rate, as well as the cost covering the whole sequencing process. To what extent the current reference genomes are complete?

Model organisms across eukaryotic genomes, such as Arabidopsis thaliana (plant), D. melanogaster, and H. sapiens (human), have always been at the heart of most studies either in the genetics or genomics fields. Thus, the community is continuously in need of the whole genome sequence for these species in addition to others, in order to increase the accessibility to the hidden messages of their DNA.

Surprisingly, despite the enormous advances in terms of performance achieved by the sequencers as well as the assemblers, reaching the optimum goal of 100% fully assembled genome is still a dream. Table 3.2 by [START_REF] Peona | How complete are "complete" genome assemblies?-an avian perspective[END_REF] highlights this point by presenting the current state of the three genomes mentioned above. In addition to the fragmentation of the genome and the missing DNA, existing genomes qualified as complete may also present some errors and imprecise parts, like sequences composed of the generic nucleotide "N" meaning "any nucleotide". Also, some errors related to structural mistakes, occurred during the assembly, lead to so-called "misassemblies" which will be discussed hereafter. Some of them are unexpected insertion, deletion or genome rearrangements identified when compared to the reference genome.

Name

de novo assembly approaches

The name "de novo" means that the assembly process is going to reconstruct the genome sequence from scratch, and not based on a reference genome, which is called "reference assembly" (also known as "mapping assembly").

de novo assembly allows to produce the genome of a newly sequenced organism, or to preserve the genetic diversity of already existing reference genomes instead of losing specific characterising motifs that may exist in a new version of a genome but not in its assembled reference [START_REF] Mukherjee | Whole genome sequence and de novo assembly revealed genomic architecture of Indian Mithun (Bos frontalis)[END_REF].

In the literature, de novo assembly approaches are mainly based on 3 paradigms: Greedy algorithms, Overlap-Layer-Consensus (OLC), and De Bruijn graphs (DBG) [START_REF] Nagarajan | Sequence assembly demystified[END_REF]. The generic problem of assembly is often stated as the Shortest Superstring Problem (SSP): "from a set of strings, find the shortest string that contains them as factors". The modeling of the assembly problem does not take into account the fact that some repeats may appear in the result. Therefore, it is not surprising that such repeats are not well handled by the existing methods addressing such problem.

Greedy algorithms

The idea underlying the greedy algorithm is to greedily merge reads that "best" overlap, where the optimality criteria is the length of the overlap. The methods based on such algorithm are simple and quite easy to apply, but the memory consumption is absolutely crippling when it comes to assemble genomes of average size. Thus, this idea was mainly exploited at the beginning of the sequencing era, and quite abandoned after that for application on NGS data.

Overlap-Layer-Consensus

Figure 3.5 from [START_REF] Bleidorn | Phylogenomics. Cham[END_REF] illustrates the Overlap-Layout-Consensus assembly algorithm which consists of 3 phases as follows:

1. Overlap: compute overlaps between reads and infer a (directed) overlap graph defined as follows: vertices are sequences and edges represent their overlap, labeled by the length of this overlap.

2. Layout: Find an optimal path in the overlap graph, through a Hamiltonianlike process. We remind that the Hamiltonian Path Problem is NP-hard, thus this step is very time-consuming, except when using heuristics.

3. Consensus: From the previous path and together with the read sequence information, infer a consensus sequence as the final result. OLC strategy is applicable on relatively modest datasets, thus it is not used for large organisms sequenced with short reads. However, they regained popularity with the TGS era, since long reads datasets are smaller.

De Bruijn graphs

A De Bruijn Graph of strings of size k on a given alphabet, is a graph defined by: (1) the set of vertices is the set of all existing strings of size k on this alphabet, (2) the set of edges so that there is an edge between u and v when u and v present an overlap of size k -1.

DBG-based methods became popular when the amount of data overwhelmed the ability of other methods, especially when the sequencing depth (i.e. the average number of times a genomic position is read by the sequencer) increased. Users must find a way to store the overlapping information without memory and timeconsuming redundancy handling, and a way to do so is to consider reads as sets of k-mers, which are its factors of length k. Using then a k-mer graph instead of an overlap graph reduces the problem and allows to deploy several efficient storing strategies.

Figure 3.6 by [START_REF] Compeau | Initial sequencing and analysis of the human genome[END_REF] shows an example of the k-mer graphs that may be built from a sequencing dataset and the way to solve the assembly problem in such graphs. Though moving from an NP-hard problem, the Hamiltonian Cycle Problem, to a polynomial one, the Eulerian Cycle Problem, this kind of methods is not magically solving all the issues. First, the choice of the k value is crucial for both: (1) the size of the data-structure to store k-mers issued from reads, since larger are the k-mers, the more they can be, (2) and the handling of repeats, since the smaller are the k-mers, the less precision we get.

Mostly used short-read assembly tools use one or more k-mer graphs and the traversals of these graphs, which we will be focusing on in the following. Though the k-mer graph does not contain every possible k-mer but only those which are present in the reads, we will undifferentially use the terms k-mer graph and De Bruijn graph hereafter, since this is the common usage by the community. [from [START_REF] Compeau | Initial sequencing and analysis of the human genome[END_REF]]

Repeats: a big challenge facing the assembly process

Due to their repetitive nature, repeats present in the genome yield strong disruption in the assembly process. This occurs quasi-systematically when reads are too small to entirely represent the repeated sequence and its copies. Figure 3.7 from [START_REF] Bleidorn | Phylogenomics. Cham[END_REF] presents an example of a wrong assembly result, due to a repeated sequence. Thus, repeats can lead to erroneous overlaps. The repeat motive is given in red, a stretch of the true sequence which is missing in the resulting assembly is given in blue [from [START_REF] Bleidorn | Phylogenomics. Cham[END_REF]]

To more precisely analyse the impact of repeats on k-mer graphs, Figure 3.8 from [START_REF] Bleidorn | Phylogenomics. Cham[END_REF] shows an example of an anomaly causing ambiguous choices in the graph. Repetitive sequences can produce loops in the DBG, which make it difficult for the path search to be resolved. Figure 3.9 from [START_REF] Bleidorn | Phylogenomics. Cham[END_REF] shows other possible complicated structures that may occur in the graph when repeats are around.

To handle such messy subgraphs involving repeats, decisions must be made during the traversal of the graph. Figure 3.10 from [START_REF] Wajid | Do it yourself guide to genome assembly[END_REF] gives examples of such decisions, which are often subject to arbitrary parameters, and lead to a fragmented set of contigs. a tip is defined as a chain of nodes that is disconnected at one end. Tips are removed if they are shorter than t, where t is a user-defined parameter. Furthermore, if there is a longer/common path, it will also trigger a tip's removal. [from [START_REF] Wajid | Do it yourself guide to genome assembly[END_REF]]

In this paragraph, we focused on the DBG approaches, but it is important to bring the reader's attention to the fact that other methods are not better-armed to face this problem. By nature, the greedy approach will expurgate repeated regions from the solution. In OLC graphs, repeats may be represented with more precision, but there are still ambiguities that have to be solved (see Figure 3.11 from (Li et al., 2012)). 

Assemblers

Based on the assembly approaches previously mentioned, the literature counts a large variety of software tools that implement various algorithms to handle the genome assembly process.

Overall, there are 3 categories of computational resources for genome assembly, also called assemblers, as per the type of the sequencing data used:

• Short read assemblers: such as Velvet [START_REF] Zerbino | Velvet: Algorithms for de novo short read assembly using de Bruijn graphs[END_REF], Abyss (Jackman et al., 2017), AllPath [START_REF] Butler | ALLPATHS: de novo assembly of whole-genome shotgun microreads[END_REF], SPAdes [START_REF] Bankevich | SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing[END_REF], and Minia [START_REF] Chikhi | Space-efficient and exact de Bruijn graph representation based on a Bloom filter[END_REF].

• Long read assemblers: such as Canu [START_REF] Nurk | HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads[END_REF] and Flye [START_REF] Freire | Memory-Efficient Assembly using Flye[END_REF]. A review of assembly tools for long reads is published by [START_REF] Wee | The bioinformatics tools for the genome assembly and analysis based on third-generation sequencing[END_REF].

• Hybrid assemblers: which combine the short reads and long reads in order to optimise the assembly output, such as HybridSPAdes [START_REF] Antipov | hybridSPAdes: an algorithm for hybrid assembly of short and long reads[END_REF], and MaSuRCA [START_REF] Zimin | The MaSuRCA genome assembler[END_REF].

It is quite interesting to consider diving into this direction in order to better choose which tool for which project upon the research questions addressed [START_REF] Jung | Twelve quick steps for genome assembly and annotation in the classroom[END_REF]. Nevertheless, such tedious comparison is not within the scope of our work and we believe including this aspect is not of value here.

Genome scaffolding

As mentioned before, repeats are responsible for misassemblies, particularly by fragmenting the assembled sequence into contigs that represent correct parts of the genomes, yet, are quite short compared to the expected sequences. Fortunately, once the contigs are produced, it is still possible to go further towards a chromosome-scale sequence by means of the scaffolding step.

Assembling contigs into scaffolds

The scaffolding problem considers a set of contigs and outputs an orientation and an order on the oriented contigs, which should correspond to the orientation and order on the original genome. The oriented and ordered contigs form scaffolds. This problem is NP-hard. Thus, is it computationally difficult to handle large instances without using heuristics.

Interesting surveys on recent scaffolding methods are available in [START_REF] Mandric | Computational Methods for Next Generation Sequencing Data Analysis[END_REF][START_REF] Rice | New Approaches for Genome Assembly and Scaffolding[END_REF][START_REF] Luo | A comprehensive review of scaffolding methods in genome assembly[END_REF]. The underlying idea is to take advantage of additional information which is not considered during the contigs production process. For instance, some methods are based on the use of pairing of reads. Paired-end reads are produced by NGS technologies and correspond to external sequences of one same fragment. Considered individually during the assembly, paired-end reads may provide precious information on the proximity of contigs (see Figure 3.12 from (Ghurye and Pop, 2019)). On the base pair level, the difference between a contig and a scaffold is mainly distinguished by the presence of "N" strings representing the "Non available" signal of the corresponding sequence, which reflects a scaffolding gap linking two contigs. As it is shown in Figure 3.13, there is also a part of such gap that is represented by the absence of any letter, which indicates that we also miss the gap length information. In what follows, since our purpose is mostly to exploit already available sequencing data to improve over-fragmented genomes, we focus on a scaffolding method using paired-end short reads. Formally, it is possible to extract from these information a set of relationships between the contigs, that might be inconsistent.

The scaffold graph is defined as follows: vertices represent contig extremities, while edges are of two kinds: (1) contig edges, linking both extremities of a contig, and

(2) inter-contig edges relating the pairing-information. A weight function on the inter-contig edges indicates how many pairs are supporting this edge (see Figure 3.14). Due to repeats, some of the inter-contig edges are erroneous and have to be removed from the graph. In other cases, they are supported by the Repeated Regions (RRs). The scaffolding step is also touched by the RR issue. RRs location along contigs, especially when they are near the extremities, can lead to ambiguities at the scaffolding step. Indeed, most scaffolders use a graph structure establishing relationships between contigs sharing a piece of information. This information may come from a set of long reads (if available), or pairs of short reads, one read mapping on the first contig, and the mate mapping on the other contig. Typically, in the latter case, when the reads come from an RR, they may map ambiguously, and a choice has to be made during the processing of the graph. Here we propose, instead of just suffering from their presence, to use RR sequences as an attempt to enhance the scaffolding.

Correcting short read assembly errors

While the efficiency of bioinformatic tools used for assembly is increasing, errors of sequence construction from contiguous short reads persist. One way to untangle ambiguous parts of such assemblies is to use long reads, produced by TGS technologies. However, this is not always possible due to the high cost and high error rate factors.

Recent state-of-the-art on error correction tools targeting Illumina short reads shows that it is possible to enhance De Bruijn Graphs [START_REF] Heydari | Illumina error correction near highly repetitive DNA regions improves de novo genome assembly[END_REF], in particular when the correction targets reads near highly repetitive DNA regions [START_REF] Heydari | Evaluation of the impact of Illumina error correction tools on de novo genome assembly[END_REF]. However, such correction is proposed between the sequencing step and the assembly step, using analysis on the k-mers. Here, we propose an approach addressing a correction between the contig production step and the scaffolding step.

New approach: From classic to enhanced scaffolding

In this section, the main question we address is: How to improve the quality of genome assembly using RRs? A secondary question is raised about the type of repeats that are the most involved in misassemblies. Here, we focus on the improvement of genomes produced through a de novo approach using short reads (improvement of existing assemblies in databases), with a relatively well-defined repeat landscape (repeats documented in the Repbase database). We propose a pipeline progressively refining inter-contig edges through RR analysis.

Method description

We implemented a snakemake [START_REF] Mölder | Sustainable data analysis with Snakemake[END_REF] 

Data production

Simulation We validated our approach on simulated data. The first step was to generate paired-end reads as basic data for the assembly and then the scaffolding. To simulate short reads, we chose the ART [START_REF] Huang | Active Transposition in Genomes[END_REF] software (version 2.5.8;), which produces reads close to the commonly used technologies, and because of its simplicity of use, while allowing a large choice of options.

Assembly We chose to build the contigs with: (1) SPAdes (version 3.13.0 ; http:// cab.spbu.ru/software/spades/ ; [START_REF] Bankevich | SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing[END_REF]), which is one the mostly used assembly tools and proposes an iterative DBG approach, and ( 2) Minia (version 3.2.1 ; https://github.com/GATB/minia ; [START_REF] Chikhi | Space-efficient and exact de Bruijn graph representation based on a Bloom filter[END_REF])), which is 3.2. New approach: From classic to enhanced scaffolding 99 very light in terms of memory consumption, thanks to its use of Bloom filters. We therefore obtain two separate contig files from different assembly programs which will each be used in all the following steps of the pipeline so that we can compare their qualities at the end.

Mapping The next step is to map the paired-end reads to the contigs obtained in the previous step. The contigs were mapped on the reference sequences using: (1) Minimap2 (version 2.17 ; https://github.com/lh3/minimap2 ; (Li, 2018)), and ( 2) BWA-MEM ( version 0.7.17-r1188 ; https://github.com/lh3/bwa ; [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF] ). Both mapping tools are also famous for their interesting performances and reliability.

The initial protocol used BWA [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF], an alignment tool using "reverse search" (backward search) with the Burrows-Wheeler transform. We chose to use BWA-MEM, improvement of BWA, because the latter did not take into account the information in paired-end reads. We decided to compare it with Minimap2 for the speed of execution of the latter.

Graph generation

Generating paired-end scaffold graphs is performed with the Scaftools tool [START_REF] Weller | Exact approaches for scaffolding[END_REF], from the mapping of pairedend reads to the contigs. The graphs generated in each of the four cases (both assembly tools and both mapping tools) will then be passed onto our graph improvement tool.

Repeated Regions analysis

Repeated Region detection

The consensus sequences of the repeated regions were obtained from the Repbase Update (RU) database [START_REF] Bao | Repbase Update, a database of repetitive elements in eukaryotic genomes[END_REF]. RU contains more than 38,000 sequences of different families or subfamilies. The RRs present within the contigs were then detected by aligning the RU consensus sequences using BLAST (McGinnis and Madden, 2004) using megablast default parameters. Consequently, we obtain an alignment file used to label the contigs.

Clustering contigs according to repetitions family Two contigs carrying repetitions of different families can be linked within the PE graph. This link is induced due to the similarities between these RRs, however, it is not coherent with the biological reality. It is therefore necessary to separate the contigs according to the repetitions they carry, in order to limit such incoherent links and, instead, favor them in case of contigs carrying the same RR. The classification and clustering of repetitions can be done at different levels/scales: (1) clusters that are too small would be less informative, (2) while clusters that are too large would make the further processing heavier/more complicated. We performed the clustering at the subfamily level.

Building the RR graph At this stage, each contig is defined by the following values: its name, its length ( ), the name of the repetition family carried, the identifier of the original repetition (repid), the start bound (start), and the end bound (end) of the RR on the contig. If one of the bounds is equal to 1 or , the RR is considered external, otherwise it is qualified as internal. Within each cluster, the position of the RRs on each contig is evaluated and then exploited in order to join the contigs carrying the same RR. The purpose of these junctions is to orient the contigs according to the RR information they carry. These information allow, for each cluster, to generate a graph using Graphviz format [START_REF] Gansner | An open graph visualization system and its applications to software engineering[END_REF]. The set of all these graphs is called the RRs graph. The process leading to the RR graph is described in Figure 3.16. Using RR graphs to correct a PE graph We use the edges from the RR graph to apply corrections to the PE graph. We remind that in both graphs, vertices are contig extremities and edges are links between these extremities. It is obvious that the applied corrections only concern the edges implied as for repetitions. However, we can assume that the edges not affected by RRs are less likely to cause problems because they are not impacted by them. These corrections can be of several types:

• Edges common in the PE graph and the RR graph. We are a priori assured of the validity of an edge if it is present within both graphs. In this case, we add an additional weight to the weight of the PE edge, to strengthen this edge during the final scaffolding. This weight is relative to the size of the cluster from which the RR comes, with an additional weight of one per hundred elements in the cluster.

• PE edges between contigs carrying RRs from different families. In this case, the PE edges are removed from the PE graph, since the similarity yielding this edge has been invalidated by the RR sequences.

• PE edge with only one contig carrying RRs. In this case, the validation process depends on the way the RR is mapped on the contig. The invalidation is performed only when the RR should be present on both contigs (see Figure 3.17). 

Results
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After the RR analysis: solving and quality analysis Solving the graphs The resolution of the graphs obtained is also carried out with Scaftools, for the graphs of paired-end as well as for the improved graphs. By solving the graph, we mean extracting from the scaffold graph a set of paths of maximum total weight, corresponding to the scaffolds. Knowing that they cause incoherent alignments, the RRs will induce a bias in the scores of inter-contig edges, which will result in poor resolution of the graph. From each original reference genome, we obtain at the end of the pipeline, 8 different genomes.

Quality assessment Each assembly was validated with QUAST-LG (version 5.0.2 ; http://cab.spbu.ru/software/quast-lg./ ; [START_REF] Gurevich | QUAST: Quality assessment tool for genome assemblies[END_REF], [START_REF] Mikheenko | Versatile genome assembly evaluation with QUAST-LG[END_REF]). We expected to get a reduction of misassemblies in the tests performed with RRs-corrected PE graphs (PE+RR graph).

Data simulated

We decided to take as reference genomes (1) D. melanogaster for the very high quality of its sequenced genome as well as the knowledge of its repeated regions (Hoskins et al., 2015), and ( 2) Caenorhabditis elegans for its small genome, containing little repetitions, and also for its sequencing quality. We simulated sequencing data using D. melanogaster and C. elegans with the following common specifications:

• Simulated technology: Illumina HiSeq 2000

• Coverage: 20X

• Reads size: 100bp

• Insert size 300bp

• Standard deviation: 10%

Results

Impact on the assembly quality

For each dataset, the eight scaffold sets produced by the pipeline are compared to the reference using QUAST. We selected the following criteria to analyse the efficiency of the approach: number of contigs (in this case, number of final scaffolds), number of unaligned contigs (scaffolds), percentage of the genome covered by the scaffolds, NG50 (corresponding to the scaffold size such that 50% of the known or estimated genome size are supposed to be of the NG50 length or longer), and the number of misassemblies.

D. melanogaster

Table 3.3 shows the results for the eight genomes produced on the D. melanogaster dataset.

Chapter 3. Improving the quality of genome assembly using repeats For D. melanogaster, the results show a slight decrease in the genome's unaligned scaffolds and NG50 coverage (length for which the collection of contigs of this length cover at least half of the reference genome), while an improvement in the number of misassemblies up to 26% for SPAdes (but no improvement with Minia). SPAdes provides fewer contigs than Minia, and produces far fewer unaligned contigs. It also provides greater genome coverage. Our hypothesis to explain this difference between both assembly tools is that Minia, due to its decision process to cut nodes with a large in-degree or out-degree in the DBG, may isolate more drastically RRs as contigs, thus RRs could not help connecting them to other contigs. Difference between the use of Minimap2 vs. the use of BWA-MEM in the mapping does not appear to be significant.

C. elegans

Table 3.4 shows the results for the eight assemblies produced on the C. elegans dataset.

The results are not very positive for the C. elegans genome, when applied on the whole genome. Misassemblies are more numerous with the application of the method, contrary to the expectations. Improvement rates are negative, but small. Again, results are better with SPAdes than with Minia.

On the contrary, when the method is applied separately on each chromosome, results are far better, as shown in Table 3.5 (only the number of misassemblies are reported here, for a better readability), for SPAdes. For the assembly: "S" stands for SPAdes and "Mi" for Minia. For the mapping: "M2" stands for Minimap2. For scaffolding graphs, the "+" sign indicates an enhanced graph (PE+RR).

RR within the misassemblies

To analyze the misassemblies detected by QUAST, we mapped them on the reference genome. We crossed this mapping with a GFF file of D. melanogaster genome, with RRs (tandem repetitions, pseudo-genes and transposable elements), and detected the RRs present at the ends of the missasemblies. We have observed that RRs are involved in 60% to 70% of the remaining misassemblies. Even if we detect some tandem repetitions and pseudo-genes, the vast majority is composed of transposable elements. We can therefore deduce that transposable elements are the most disturbing for the reconstruction of genomes, because of their numerous specificities (size, activity, age). We performed this analysis on the genome of D. melanogaster using the latest available version of its sequenced genome (release 6.26), which lists all of the annotated regions known to date. Results of this analysis on the eight scaffoldings, for the 2R chromosomal arm, are presented on Figure 3.18. Results are very similar on other chromosomal arms and chromosomes.

To complete this analysis and find out if one type of TE is particularly involved in the assembly disturbance, we also considered an "historical" approach, and had a look at the the first release of the Drosophila melanogaster genome. This previous release is more fragmented, and the gaps are essentially due to repeat-rich regions (Hoskins We mapped the drosophila known TEs on the gaps constated when aligning release 1 against release 6 and examined each categories. Result is shown on Figure 3.19, revealing that essentially LTR are responsible for these misassemblies.

Discussion and conclusion

Improving the quality of sequence reconstructions is necessary for a better understanding of the evolution of genomes and their dynamics. Repeated regions present challenges for genome assembly and scaffolding. We presented a pipeline based on scaffold graph enhancement when combining classic paired-end reads information with repeated regions information.

This pipeline shows promising results when used with the SPAdes assembly tool.

Probably due to the fact that we based our analysis on reference genomes, which are well-assembled but escape repeat-rich regions, the result may not appear spectacular, however it opens a window on assembly improvement. We also showed that repeated regions are involved on the misassemblies, and that they are essentially transposable elements, which is not surprising but allows us to concentrate on these particular repeats. Amongst those transposable elements, LTR were responsible for the vast majority of gaps observed on the D. melanogaster previous releases.

A lot of pending questions remain however. First, it would be interesting to exploit other options when using the pipeline. For the moment, the re-weighting of the consistent edges is quite arbitrary, and depends on the size of the clusters. It would be interesting to study the robustness of this criteria, with respect to the clustering scale for instance, as well as it possible improvement using distance information. Indeed, distance between contigs may be estimated using the pairing information together with the insert size between mate fragments in the short reads sequencing. This estimation is not really precise, but may help refining the consistency in ambiguous cases, when compared to the length of the detected RRs. In the presented version, the removal of intercontig edges is a binary decision process: we decide to keep or to remove edges. This process could be done with more subtlety by introducing a continuous measure on the edges reliability, which would influence the weight of the edge positively ("keep the edge" case) or negatively ("remove the edge" case).

For instance we could try to quantify how we can come across these RRs randomly, and consequently to establish probability of decision. Of course, another natural perspective of our work is to extend it to a larger variety of genomes and assembly tools.

BREC's heterochromatin boundaries have been validated with cytological equivalents experimentally generated on the fruit fly D. melanogaster genome, for which BREC returns congruent corresponding values. Also, BREC's recombination rates have been compared with previously reported estimates. Based on the promising results, we believe our tool has the potential to help bring data science into the service of genome biology and evolution. We introduce BREC within an R-package and a Shiny web-based user-friendly application yielding a fast, easy-to-use, and broadly accessible resource. BREC R-package is available at the GitHub repository https://github.com/GenomeStructureOrganization/BREC.

Identifying the boundaries delimiting euchromatin and heterochromatin allows investigating recombination rate variations along the whole genome, helping to compare recombination patterns within and between species. Furthermore, such functionality is fundamental for identifying the position of the centromeric and telomeric regions. Indeed, the position of the centromere along the chromosome has an influence on the chromatin environment, and recent studies are interested in investigating how genome architecture may change with centromere organization [START_REF] Muller | The Impact of Centromeres on Spatial Genome Architecture[END_REF].

Throughout this thesis project, and especially for our software development, our vision has been to not only share our computational solutions with the scientific community, but also to cover as much as possible the minimum requirements which would allow other researchers to easily find, access, and reuse our software and data resources. We tried to ensure some of the increasingly demanded FAIR requirements, which aim for providing Findable, Accessible, Interoperable, and Reusable research software and datasets [START_REF] Katz | Taking a fresh look at FAIR for research software[END_REF].

BREC's limitations

We identified some limitations that may make the use of BREC less relevant, and which can be handled in a future version, such as:

• The choice of the best regression model and span value in case of the Loess.

• Taking into account the non-zero recombination rates in (sub)telomeric regions as well as the sex-biased recombination landscape which in some cases would not be precisely representative of such variation in the species (Sardell and Kirkpatrick, 2020).

• Handling the issue of the overlapping heterochromatin boundaries (see Figure C.1). io/ that we chose to test a first deployment of the BREC shiny app. This will allow to switch to an install-free alternative with a direct online access in order to improve the user experience and avoid most of the technical issues related to portability and scalability. This process is a work in progress as the R-package should be adapted first before it can be correctly deployed on the server. 

Ongoing deployment of BREC for an install-free web access

BREC 2.0 is on the way

The new version of BREC is a work in progress, and it will mainly provide the significant update of running in the whole-genome mode, where BREC will automatically run on all the available chromosomes of a specific genome. The Figure 4.2 shows a screenshot of the current development status, where the identified centromeric and telomeric regions are represented by the corresponding ideograms, and the centromere is distinguished by a red dot for more clarity. In addition to ergonomic improvements, we consider methodological evolutions.

As short-term perspectives for this work, we may consider extending the robustness tests to additional datasets with high quality and mandatory information (e.g. boundaries identified with the cytological method, high quality maps). Retrieving such datasets seems to become less and less complicated. We may also improve the identification of boundaries with a more refined analysis around them, using an iterative multi-scale algorithm for instance. As mid-term perspectives, we underline that BREC could integrate other algorithms aiming to provide further analysis options such as the comparison of heterochromatin regions between closely related species. Also, we are aware that it would be interesting to compare BREC results with more existing methods. Thus, we plan to properly do so in the near future.

How can BREC serve the community?

Finally, we are highly interested in the different facets of applying BREC. Figure 4.3 gives a glance at the type and scale of studies that would benefit form our BREC package, in order to further advance the understanding of how and why recombination rates vary within and between species, and this impacts the architecture and evolution of eukaryotic genomes. Amongst the most accessible questions, we can highlight that studies relative to specific transposable elements, and addressing their association with genomic features and evolution, need data provided by BREC as inputs. This is the case for instance in [START_REF] Chen | Human L1 Transposition Dynamics Unraveled with Functional Data Analysis[END_REF], where they combine TEs insertion landscape, recombination rate estimates and methylation data. In this paper, the recombination rate estimate is qualified as "low" and is not really recent ( 2006), thus we may hope that BREC could provide a better input data for such studies.

A new assembly pipeline to improve the assembly of repeat rich regions

In Chapter 3 we addressed the impact of DNA repeats on the quality of the genome assemblies. We proposed a pipeline to improve genome assembly at the scaffolding step, by taking into account the information provided by the annotation of contigs with known repeated regions. We got encouraging results on well-referenced genomes. This work was a proof of concept, which needs to be enriched in the future.

First, as a short-term perspective, it would be interesting to explore the robustness of the method with respect to several factors like input data quality and features and solving methods. We would like to apply them on real datasets as well, and cross

Chapter 4. Conclusion and Perspectives

the results with other scaffolding methods using external information. A second short-term perspective concerns the core-algorithm, which may be optimized and generalized to accept a wider range of source information. For instance, it would have been interesting to enrich the pipeline with an automatic TE detection step on sufficiently large contigs, and with TE from other databases.

Also, we focused in this study on short read assemblies, which concern a vast majority of fragmented existing genomes on databases. Other sequencing data are also exploited, yielding less fragmented genomes, like long-read dedicated or hybrid methods. This would imply to adapt the decision algorithm to hybrid or long-read dedicated scaffolding method, which are based on different kinds of graphs. For instance, we could map RRs directly on long reads, and exploit those which are overlapping extremities to prevent misassemblies.

A mid-term perspective would be to enlarge the application field of our tool by testing whether some TEs are more disruptive elements in the face of genome assembly process and if this due the TE biology or the TE age. And if this appears to be true, how could we infer information on TEs obtained before the assembly to limit this disruptive effect during the assembly. For instance, crossing the TE landscape of related species with the TE contents on contigs could yield evidences on their putative localisation on the genome.

Conclusion/Discussion : Towards mosquito genomes

Overall, our preliminary results of BREC seem encouraging as we are able to reidentify with accuracy the pericentromeric regions. We believe that the Shiny interface will be very useful for non computer scientists or users working on non-model organisms to appreciate the BREC outputs and choose the best models.

Though previous contributions have been thought as non genome-specific tools, we saw in Chapter 2 that crossing generic treatments with specific information provide useful insight to understand how are organised those genomes. A lot of questions still remain. One research aim in the ISEM team is to establish links between TE dynamics and the chromatin landscape. As present in the introduction, the strong genome size and repeat content variation across mosquitoes species make them good models to investigate such association. The preliminary results obtained using BREC on Ae. aegypti support the veracity of our approach as BREC is able to define with accuracy the pericentromeric regions. In Cx. pipiens, our preliminary analyses show a clear association between the chromatin structure and the distribution of some TE elements : While MITE elements are enriched in euchromatic regions, LINE elements appear active and dense in pericentromeric regions (see Appendix C). A comparative genomics analysis between Ae. aegypti and Cx. pipiens suggests that genome size variation is partially explained by large insertions/deletions in the pericentromeric regions where TEs, and more specially LINEs, are known to appear highly dynamic (see Appendix C). Such observation suggests the implication of the TE dynamics in the genome size variation through pericentromeric expansion/contraction. To test this hypothesis, it would be interesting to conduct the same kind of study on other mosquito genomes such as An. gambiae.

More and more studies are conducted using large genomic dataset, like for instance in [START_REF] Melo | Mosquito genomes are frequently invaded by transposable elements through horizontal transfer[END_REF], where 24 mosquitoes genomes are analysed to highlight (i.e. number and distribution of the markers along the genome) and to remove low-quality data according to the user's preference. Our approach automatically re-adjusts estimates in regions with a depletion of fitness between the polynomial and the data to detect the eu-heterochromatin boundaries for centromeric and telomeric regions in order to keep the estimates as authentic as possible to the biological process. Identifying these boundaries allows investigating recombination variations along the whole genome which will help comparing recombination patterns within and between species, especially insects in our case.

Our approach for the eu-hetero-chromatin boundaries detection has been primarily validated with cytological results that are experimentally generated on the Drosophila melanogaster genome [Comeron et al., 2012]. Moreover, since the pipeline we are proposing is non-genome-specific, our study is e ciently portable on other model as well as non-model genomes for which both genetic and physical maps are available. We have started interpreting the results on the mosquito specie Culex pipiens. We estimated the recombination rate along this genome and identified the heterochromatin boundaries on its three chromosomes. Also, after annotating its TEs, we have analyzed the correlation between TEs and recombination patterns. As in D. melanogaster, we observed non-homogenous distribution for active TE families such as LINEs and MITEs. In Cx. pipiens, while LINEs are enriched in pericentromeric regions, MITEs exhibit a higher density in euchromatin. In an attempt to explain such distribution bias, we investigated the dynamics for these two TE families through a comparative genomic approach carried out on other insect genomes. We find our preliminary results quite promising since the TE distribution patterns across genomes generally show enrichment in specific regions such as constitutive heterochromatic exhibiting low recombination and low gene density. Therefor, we aim to take advantage of genome-wide recombination landscape to seek an explanation to the cause/e↵ect association between recombination rate and TEs. Meiotic recombination is a vital biological process which guarantees the diversity of genetic material over generations. This process consists on the exchange of DNA fragments within and between chromosomes.

Various experimental (biological) methods for estimating recombination rate exist. They provide accurate fine-scale estimates, yet, they are very expensive, time-consuming, require a strong expertise and, most of all, are not applicable on all kinds of organisms [1,2]. A purely statistical approach, the Marey Maps [3], could avoid some of the above issues based on other available genomic data : the genetic and physical distances.

Fiston-Lavier, et al. 2010 adapted [5] Coordinates along the chromosomal arm 2L

Coordinates along the chromosomal arm 2R

?

Several Marey Map-based tools are available for different specefic genomes [4,5,6]. However, more adapted tools are required to better handle New Generation Sequencing (NGS) data, which are providing new insights for :

• 

Abstract :

Mosquitoes are human infectious disease vectors that have been extensively studied, not only because of the high genetic diversity their genomes manifest, but also for their remarkably strong capacity of fast adaptation, such as climate changes or insecticide resistance. While several studies of genes known to be involved in adaptation help to shed light on the putative role of transposable elements (TEs) in such evolution process, the impact of TEs on mosquito genome structure and evolution are still poorly tackled (Assogba et al., 2016).

Here, we carry out the study on TE abundance and distribution in mosquito genomes. In March 2017, a research group ended up with the first chromosome-length scaffolds in Culex pipiens quinquefaciatus and Aedes aegypti. We decided to start focusing on the new version of the Cx. pipiens genome assembly (CpipJ3) (Dudchenko et al., 2017). We started developing a new tool to estimate the recombination rates along chromosomes based on Marey maps (Fiston-Lavier et al., 2010) (Rezvoy et al., 2007). Our tool includes a statistical-based approach for the detection of the heterochromatin boundaries that automatically re-adjusts estimates in regions with a depletion of fitness between the polynomial and the data. After assessing the veracity of the tool with experimental data from Anopheles gambiae (Sharakhova et al., 2010), we estimated the recombination rate along the Cx. pipiens new assembly.

On the other hand, we annotated individual TE insertions in Cx. pipiens. We built a Culex specific TE library, a set of canonical sequences representative of TE families in this genome.

We then annotated them combining results from homology-based (TEfam database: https://tefam.biochem.vt.edu/) and signature-based approaches. We reported a high diversity with TE families from the three main types of TEs (DNA, LTR, non-LTR).

The annotation of individual TE insertions in CpipJ3 reveals a higher TE content compared with previous studies (33% instead of 29% for CpipJ2). Our results also showed a nonhomogenous distribution of TEs along the Cx. pipiens chromosomes with an enrichment of TEs in the heterochromatin. In-depth analysis of the TE organization is currently in process.

Our results should help explaining the Cx. pipiens genome structure but also assessing the quality of the new release of the assembly.

Lyon, 8 to 10th of November 2017 https://project.inria.fr/aiem2017/ Meiotic recombination is a vital biological process which guarantees the diversity of genetic material over generations. This process consists on the exchange of DNA fragments within and between chromosomes. Recombination rate is a metric to estimate the frequency of the DNA fragment exchange along the chromosome. Various experimental (biological) methods for estimating recombination rate exist. They provide accurate fine-scale estimates, yet, they are very expensive, time-consuming, require a strong expertise and, most of all, are not applicable on all kinds of organisms [1,2]. A purely statistical approach, the Marey Maps [3], could avoid some of the above issues based on other available genomic data : the genetic 1 and physical distances 2 . The Marey maps for recombination rate 3 estimates consist on correlating, for the same chromosome, the physical map with the genetic map containing respectively physical distances and genetic distances for a set of genetic markers 4 . Despite the efficiency of this method and mostly the availability of physical and genetic maps, generating recombination maps rapidly and for any organism is still challenging. Thus, there is an increasing need for an automatic, portable and easy-to-use tool.

Here, we propose an automated bioinformatic non-genome-specific solution based on the Marey maps method in order to provide local recombination rate estimates. Furthermore, our approach allows to determine the eu-hetero-chromatin boundaries along chromosomes. This functionality allows identifying the location of the peri/centromeric and telomeric regions known to present a reduced recombination rate in most genomes. We implemented our recombination tool by fitting a third-order polynomial for each chromosome based on genetic and physical maps. Also, we used the R 2 statistic in order to automatically re-adjust estimates in regions with a depletion of fitness between the polynomial and the data. A sliding window on the R 2 curves allows to identify eu-hetero-chromatin boundaries with a reliable accuracy. Compared to previous tools [4,5], we have added new modules as to assess the quality of the data (i.e. number and distribution of the markers along the genome) and to remove low-quality data according to the user's preference. Our tool is implemented using the R-programming language 5 and thus is simple to run on any platform.

Our results has been primarily validated with experimentally generated equivalents on the fruit fly genome Drosophila melanogaster [6]. Moreover, the pipeline we are proposing is efficiently portable on other model as well as non-model genomes for which both genetic and physical maps are available. We find our preliminary results quite promising. Therefore, we aim to take advantage of genome-wide recombination landscape to seek an explanation to the cause/effect association between recombination 1. Genetic distance is a measure that statistically estimates how far apart are two markers on the chromosome, it's unit is CentiMorgan (cM).

2. The physical position of the genetic marker on the chromosome, it's measured in Base pair (bp). 

Abstract

Mosquitoes are human infectious disease vectors that have been extensively studied, not only because of the high genetic diversity their genomes manifest, but also for their remarkably strong capacity of fast adaptation, such as climate changes or insecticide resistance. While several studies of genes known to be involved in adaptation help to shed light on the putative role of transposable elements (TEs) in such evolution process, the impact of TEs on mosquito genome structure and evolution are still poorly tackled (Assogba et al., 2016). Here, we carry out the study on TE abundance and distribution in mosquito genomes. In March 2017, a research group ended up with the first chromosome-length scaffolds in Culex pipiens quinquefaciatus and Aedes aegypti. We decided to start focusing on the new version of the Cx. pipiens genome assembly (CpipJ3 ) (Dudchenko et al., 2017).

According to TE evolutionary models, we may expect to observe an enrichment of TEs in regions poor in genes and regions of reduced recombination. To test this hypothesis, we started developing a new tool to estimate the recombination rates along chromosomes based on Marey maps (Fiston-Lavier et al., 2010) (Rezvoy et al., 2007). Our tool includes a statistical-based approach for the detection of the heterochromatin boundaries that automatically re-adjusts estimates in regions with a depletion of fitness between the polynomial and the data. After assessing the veracity of the tool with experimental data from Anopheles gambiae (Sharakhova et al., 2010), we estimated the recombination rate along the Cx. pipiens new assembly. On the other hand, we annotated individual TE insertions in Cx. pipiens. We built a Culex specific TE library, a set of canonical sequences representative of TE families in this genome. We then annotated them combining results from homology-based (TEfam database: https://tefam.biochem.vt.edu/) and signature-based approaches. We reported a high diversity with TE families from the three main types of TEs (DNA, LTR, non-LTR). * Speaker † Corresponding author: anna-sophie.fiston-lavier@umontpellier.fr sciencesconf.org:cnet2017:160773

The annotation of individual TE insertions in CpipJ3 reveals a higher TE content compared with previous studies (33% instead of 29% for CpipJ2 ). Our results also showed a nonhomogenous distribution of TEs along the Cx. pipiens chromosomes with an enrichment of TEs in the heterochromatin. In-depth analysis of the TE organization is currently in process. Our results should help explaining the Cx. pipiens genome structure but also assessing the quality of the new release of the assembly.

Introduction

Mosquitoes are human infectious disease vectors that have been extensively studied, not only because of the high genetic diversity their genomes manifest, but also for their remarkably strong capacity of fast adaptation, such as climate changes or insecticide resistance.

While several studies of genes known to be involved in adaptation help to shed light on the putative role of transposable elements (TEs) in such evolution process, the impact of TEs on mosquito genome structure and evolution are still poorly tackled.

Here, we carry out the study on TE abundance and distribution in mosquito genomes.

Results

Conclusion Validation of the heterochromatc boundary detection

• Automated and optimized statistical tool for the estimation of the recombination rate along the chromosomes:

• Validation of our approach with experimental results on Drosophila melanogaster

• TE distribution confirms our eu-heterochromtic boundaries

• A genome enriched in DNA elements:

• New TE content estimate (33%)

• More than two-third of the genome is composed of DNA elements

• Around 75% of the DNA elements are MITEs

• Some families known to be active are more highly represented than non-active families

• TE family distribution suggests insertion bias in Cx. pipiens genome:

• RNA elements are enriched in heterochromatin while DNA elements are preferentially located in euchromatin We start focusing on the new version of the Culex pipiens quinquefaciatus genome assembly (CpipJ3) which provides the first chromosome-length scaffolds [1].

•

A genome enriched in DNA elements

Using our pipeline with the new release of the genome assembly (CpipJ3), we re-estimated the TE content in this genome. We ended up with 33% of TEs that is greater than previous estimates (30%).

Class I Class II (MITEs)

Number Enrichment of some TE families mostly DNA elements (e.g.,Sola, Zator or TC1).

An in depth analysis allows identifying a high number of MITE copies (>10 000).

Thanks to all the members of the EVAS (ISEM-CIAWOL) and MAB (LIRMM) teams.

Organization of insect genomes driven by active transposable element families

Yasmine MANSOUR 1,2 , Mickael HAMOUMA 1,2 , Annie CHATEAU 1,3 , and Anna-Sophie FISTON-LAVIER 2 1 The Montpellier Laboratory of Informatics, Robotics and Microelectronics (LIRMM), Montpellier, France 2 Institute of Evolution Science of Montpellier (ISEM), Montpellier, France 3 The Computational Biology Institute (IBC), Montpellier, France Transposable elements (TEs) have been rapidly gained in insect species such as the P-element, which invaded the worldwide Drosophila melanogaster populations in less than 50 years. Such feature makes TEs as good markers of recent evolution processes, such as adaptation. Unfortunately, the impact of TEs on the structure and the evolution of insect genomes is still poorly tackled mostly because of the low-quality genome assemblies. Here, we investigated the TE organization in two insect genomes: Culex pipiens, a recent genome assembly and, D. melanogaster, offering high-quality genome assemblies and annotations. The TE distribution patterns across genomes generally show enrichment in particular areas such as constitutive heterochromatic showing a low recombination and low gene density. As no recombination rate estimates were available in Cx. pipiens as in most of the insect genomes, we developed a statistical approach that generates broad-scale maps of recombination by fitting a third-order polynomial to each chromosome arm based on genomic and physical maps. This new approach offers several functionalities to remove low-quality genomic map data, assess the quality of the data (i.e. number and repartition of the markers along the genome). Our approach automatically re-adjusts estimates in regions with a depletion of fitness between the polynomial and the data to estimate the heterochromatin boundaries. We validated our approach in D. melanogaster. We then estimated the recombination rate along the Cx. pipiens genome and identifed the heterochromatin boundaries. After the annotation of TEs in Cx. pipiens, we analyzed the relationship between TEs and recombination. In both species, we observed non-homogenous distributions for active TE families such LINE and MITE. In Cx. pipiens, while LINEs are enriched in pericentromeric regions, MITEs are richer in euchromatin. To attempt to explain such distribution bias, we investigated the TE dynamics for these two TE families launching a comparative genomic approach in other insect genomes.

`Organization of insect genomes driven by some transposable element families

Co-Evolution between Transposable Elements (TEs) and Recombination

This highlights an increased level of TE activity in Cx. pipiens through specific TE families. If true, we may also expect to observe a similar pattern of TE activity in Ae. Aegypti. However, we cannot exclude a reduced intensity of selection against TE insertions. The estimations of the TE activity should help discriminate between these two hypotheses.

Conclusion

TEs are mobile DNA, mostly dispersed repeats, highly repetitive sequences and detected in almost all the organisms sequenced so far. TEs were classified in two classes (Class I and Class II), superfamilies and families based on their transposition mechanism and sequence features. More and more studies continue to support the role of such repeated elements in genome evolution.

Recombination consists on the exchange of DNA fragments within and between chromosomes.

This evolutionary force guarantees the diversity of genetic material over generations. Recombination varies among species and along chromosomes. Such heterogeneity may impact the levels of diversity, the efficiency of selection, and by consequence the composition of genomes.

Cx. Pipiens : a genome enriched in DNA elements

We started developing a statistical R package called BRec that generates broad-scale maps of recombination based on genetic and physical maps. Our package offers several functionalities to estimate automatically and in a more accurate way the recombination rates along entire chromosomes [Mansour et al 2018, in prep].

BRec validation with

Drosophila melanogaster

[* flybase.org/convert/coordinates]

Physical location (Mb) on chromosome 2

The TE distribution supports the centromeric boundaries estimated by the BRec tool. 

Transposable elements (TEs) Recombination

Enrichment of TEs in heterochromatic regions

We then re-annotated all TE insertions and analyze the TE distribution taking into account the chromatin boundaries defined in the last release of the Cx. pipiens genome (CpipJ3).

[ Source Dudchenko, et al. 2017 adapted] 

BRec, a new R package

We provide here an automated tool for the estimation of the chromatin boundaries based on the recombination rate. While LINEs are enriched in centromeric regions, a paucity of MITEs is observed in heterochromatin. 

A vast majority of DNA elements

Accumulation of active elements mainly into centromeres

Automatic recombination rates and chromatin boundaries estimates

TE invasion in centromere s

How to improve genome assembly using repetitive elements.

Quentin Delorme ⇤ 1 , Annie Chateau † 2,3 , Anna-Sophie Fiston-Lavier 4 , Yasmine Mansour 5,6,7 Repetitive DNA sequences are abundant in almost all species: RRs (Repetitive Regions) may represent up to 90% of genome size [1]. Despite being a fundamental source of genomic diversity and novelty, RRs are responsible of assembly errors yielding bad quality of genome assemblies [2]. Even with advanced high-throughput sequencing technologies, genome assembly is facing a big challenge towards achieving its optimum quality. While reads assembly overcome this issue, often by collapsing or excluding repeats from contigs, sca↵olding step ought to handle RRs. The perspective of this work is to detect, classify and use misassemblies due to RRs to improve genome assemblies. Our hypothesis is that some RRs like Transposable Elements (TEs) are more disruptive elements in the face of genome assembly process than others, due to their biology. We intend to test whether the assembly errors are more likely caused by long and young TE insertions [3]. We are currently working on Anopheles gambiae's reference genome. Anopheles gambiae is the principal vector of malaria, a disease that a✏icts more than 500 million people and causes more than 1 million deaths each year. Improving assemblies may lead to a better understanding of his genome's dynamic and ⇤ Speaker † Corresponding author: annie.chateau@lirmm.fr appearance of insecticide resistance. We intend to exploit sequence similarities between repeats family on a three-step process :

-A first step consists to investigate how information on TEs obtained independently of the assembly, could limit their disruptive e↵ects. Using CENSOR [4], we are able to detect di↵erent types of RRs dans tag them on contigs.

-In a second step, we put together contigs clusters based on labeled RRs families. This step is meant to reduce possibilities of misjunction between contigs holding two di↵erent kind of RRs.

-In each cluster each combinaison of two contigs, leading to the formation of hypothetic sca↵olds, is querying against the repeat database Repbase. Thus, sca↵olds can be validate by matching with an existing repeat region, leading to the reconstruction of the original sequence.

The aim is to generate sca↵old graph from those RRs informations. This graph could be different than sca↵old graph based on paired-end reads informations. Here, the challenge will be to confront orientation informations from both graph and try to resolve hypothetic conflict. Algorithmic approach will be developped for evaluation of information relevance. C. Biemont. A brief history of the status of transposable elements: from junk DNA to major players in evolution. Genetics, 186( 4 We are currently working on Anopheles Gambiae's reference genome, which presents about 20 % of RRs 2 . Anopheles Gambiae is the principal vector of malaria, a disease that afflicts more than 500 millions people and causes more than one million deaths each year. Improving assemblies may lead to a better understanding of its genome's dynamic and appearance of insecticide resistance.

The perspective of this work is to detect, classify and use misassemblies due to RRs to improve genome assemblies.

Our dataset from Anopheles gambiae's genome is constituted by 43 000 contigs among which 13 000 bear repeats. Alignment of paired-ends reads on contigs leads to the generation of a scafold graph. Here, bold edges represent contigs, vertices represent the ends of the contig and thin edges represent the link between contigs. The score represents the number of paired reads supporting the link. Impact of RR on this graph causes distorded support scores whose lead to reconstruction errors.

For each cluster, connected contigs are associated in a new sort of scafold graph.

In our graph, vertices are contigs and edges represent repeats overlapping contigs. These edges are polarized according to contig's orientation. Also, we try to infer link between presence of RR and multiplicity of contig. This information may lead to improvement of scafolding quality. To this end, we evaluate multiplicity of contigs according to the presence or absence of RRs. We observe twice more overlapping external RRs on multiple contigs than on other contigs. This confrms that external RRs are great candidates to improve scafolding. The aim is not to replace paired-end graph but to complete it: we have to fnd a way to conciliate paired-end and RRs informations. The challenge will be to confront orientation information from both graphs and try to resolve hypothetic conficts.

Multiplicity

Perspectives Bibliography

In-depth analysis of the impact of transposable elements on genome assembly quality Rémy Costa ⇤ † 1 , Yasmine Mansour ‡ 2,3 , Annie Chateau § 3,4 , Anna-Sophie Fiston-Lavier ¶ 2 Genome assembly has become crucial for conducting genomic studies in various field as environment, health, genetics, evolution and many more. Recent studies highlighted the impact of assembly quality on result interpretations [1]. While e ciency of bioinformatic tools used for assembly is increasing, errors of sequence construction from contigous short reads persist. One of the known sources of errors is repeated elements. The presence of repeated elements can induce (i) chimeric contigs due to collapsed repeats and (ii) assembly breaks. Among repeated elements, transposable elements (TEs) are ubiquitous sequences, i.e. detected in the vast majority of sequenced genomes, and make up for a large fraction of them (e.g. up to 90% for the maize genome) [2]. A variety of TEs can be identified. They are classified according to their transposition mecanisms and sequence properties [3].

The recently sequenced and assembled genome of Ambystoma mexicanum (Mexican axolotl) shows that up to 97% of contigs encompass TEs at their ends. Analysis of these TEs showed that they are recent (sharing a high sequence identity) and abundant (present in numerous copies). Such active TEs mainly correspond to a specific group : LTR retrotransposons [4]. Even if advanced sequencing technologies has improved assembly quality such as long read sequencing, no short read based approaches allow investigating in-depth analysis of disruptive TEs. We expect TE-rich genomes to be harder to assemble, and specific type of TEs to cause more errors than others. Recent and long TEs with a high copy number should induce more assembly biases. As TEs do not insert homogenously in the genome, we also expect regions ⇤ Speaker † Corresponding author: remy.costa@etu.umontpellier.fr ‡ Corresponding author: yasmine.mansour@umontpellier.fr § Corresponding author: annie.chateau@lirmm.fr ¶ Corresponding author: anna-sophie.fiston-lavier@umontpellier.fr enriched in TEs to be more challenging to assemble.

Here we aim to test our hypotheses by estimating the impact of TEs on assembly quality through identifying the most disruptive TE types and analyzing the impact of TE density on the assembly quality. For that, we will use an approach based on assembly simulation by controlling TE features in the Drosophila melanogaster genome. This genome harbors one of the highest quality genomic sequences and annotations. Our results should help improving the process of genome assembly by taking advantage of the TE information. The recently sequenced and assembled genome of Ambystoma mexicanum [START_REF] Nowoshilow | The axolotl genome and the evolution of key tissue formation regulators[END_REF], using an approach combining long-read sequencing (PacBio), optical mapping and a genome assembler (MARVEL), revealed a 32Gb genome with a high proportion of repetitive sequences (65.6% of the contig assembly, representing 18.6Gb). TEs represent the largest fraction of these repeated elements.

1) How to estimate the impact of TEs on genome assembly?

Diferent approaches can be used based on the data available : (i) without reference sequences, we can analyse the contig ends (see axolot study); (ii) with high quality reference sequences, we can launch a genomic comparative study focusing on the misalignment regions. Using Mummer (Kurtz et al. 2004), an alignment package dedicated to large DNA sequences, we identifed the sequences breakpoints and aimed to estimate the number of TE sequences in the vincinity of these breakpoints on chromosome arm 2L.

2) Can we characterize this association between the breakpoints and TEs ? What are the more disruptive TEs ?

Analysis of TEs showed that they are recent (sharing a high sequence identity), abundant (present in numerous copies) and including elements of more than 10kb in length, corresponding to a specifc group : Long Terminal Repeats retrotransposons, also called LTRs. Such long elements represent a challenge for assembly, as 97% of contigs encompass LTR at their ends.

Even if advanced sequencing technologies has improved assembly quality such as long read sequencing, they remain expensive. No short read based approaches allow investigating indepth analysis of disruptive TEs. Thus, we need to estimate and caracterise the impact of TEs to assess the quality of the assembly.

Among repeated elements, transposable elements (TEs) are ubiquitous sequences, i.e. detected in almost all of genomes sequenced so far, and make up for a large fraction of them [START_REF] Copetti | The Dark Side of the Genome : Revealing the Native Transposable Element/Repeat Content of Eukaryotic Genomes[END_REF]. A variety of TEs can be identifed. They are classifed according to their transposition mecanisms and sequence properties in TE types (DNA, LINE, LTR, SINE; [START_REF] Wicker | A unified classification system for eukaryotic transposable elements[END_REF]. TEs do not insert homogenously in the genome. Because of the biases they can induce, we expect TE-rich genomes and regions to be harder to assemble, and specifc type of TEs to cause more errors than others. It is then important to determine the most disruptive TEs and how to assess their impact. [START_REF] Nowoshilow | The axolotl genome and the evolution of key tissue formation regulators[END_REF] To illustrate the improvment of the genome assemblies through time, we selected one highrepeat density region : the cluster of histone genes.

This cluster located on the 2L chromosom arm of 21.5Mb is composed of 23 tandem units (Fig 4). This cluster is located in the centromeric region, known to be challenging to assemble.

We then compared the same region on older releases versus release 6 to illustrate this evolution. However, most of genome sequences and assemblies so far do not reach such high quality, reinforcing the necessity to estimate the impact of TEs.

The presence of repeated elements can induce :

(1) chimeric contigs due to collapsed repeats (2) assembly breaks Althought the sequencing and assembly technics have been improved, our preliminary fndings support a high impact of TEs on genome assembly. The status for most of the genomes sequenced so far is « draft »., thus closer to the releases 1 and 3 than the release 6 of D. melanogaster. As TEs are ubiquitous, we may expect to identify the same impact for most of the genomes. Some TEs are more disruptive than others. In several studies (like ours), LTR elements are often emphazed as disruptive ( synonyme) genomic elements as they are still active elements. We also show that by combining short-reads, long-reads and optical mapping, it is possible to drastically reduce the efect of TE (data not show). However, such approach is costly and timeconsuming.

To go further, we are elaborating an approach based on assembly simulation by controlling TE features. Analysis of the impact of TEs on genome assembly will allow to propose new approaches in order to improve genome assembly. TE informations can be infered to the scafolding (see poster #27).

We expected young and long TE sequences to be the most disruptive elements such as LTR elements. To test this hypothesis, we analyzed the TE sequences associated to the breakpoints (type, length, copy number, age). Our analyses support the disruptive efect of LTR elements. However, the sequencing technologies help reducing their impact. 

Reads simulation

We used ART (Weichun et al., 2011) to generate our paired-end reads with a 20X coverage, simulating Illumina's HighSeq2000 from high quality genome references: Drosophila melanogaster and Caenorhabditis elegans.

Assembly

To realise the assembly, we used Minia (Chikhi & Rizk, 2013) and Spades [START_REF] Bankevich | SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing[END_REF] in order to compare the most effecicient tool.

Mapping

The mapping was realised with BWA [START_REF] Li | Fast and accurate short read alignment with Burrows-Wheeler transform[END_REF] and Minimap2 [START_REF] Li | Minimap2: Pairwise alignment for nucleotide sequences[END_REF].

Generating graphs

We generated the paired-end graph with Scaftools (Chateau & Giroudeau, 2014).

Solving graphs

The graph solution was also generated with Scaftools.

Quality assessment

Finally, the quality comparison of the scaffolds obtained in our pipeline was realised using QUAST-LG [START_REF] Mikheenko | Versatile genome assembly evaluation with QUAST-LG[END_REF] with the reference genome.

Graph enhancement

RRs may in some cases induce erroneous support scores in inter-contig edges leading to reconstruction errors and have to be eliminated from the graph.

Our method is based on a pipeline refining inter-contig edges through RR analysis, described as follows:

1. identifiy RR sequences on contigs using a repeat database, map them on contigs, tag the contigs with this information, and cluster them according to RR families; Results show a slight reduction of the covered genome fraction and the NG50, but an improvement in the reduction of misassemblies up to 26 % with SPAdes (and no improvement with minia). To analyse further these misassemblies, we aligned them on the reference genome to observe if RR were implicated. We designed an efficient method to reduce the number of misassemblies due to RRs on the scaffolding. Remaining misassemblies are also mainly due to RRs escaping the method. The most disturbing type of RRs identified are young and active transposable elements (TEs).

Results Perspectives

We are currently working on solutions to adress this issue and furhter increase the quality of the reconstruction. Our first goal is to confront the distance information of the paired-end reads between two contigs to the length of the RR detected between at their extremities. If the information distance concurs, this method will allow us to inferhe sequence between two contigs with the consensus sequence of the RR.

We also wish to smoothen Step 4 of the pipeline by introducing a probabilistic measure to ponder the inter-contig weight instead of deleting it.

We'll analyze the deleted edges to determine the relevence of this step and calibrate the probabilistic measure.

Background

Meiotic recombination is a vital biological process that plays an essential role in investigating genome-wide structural and functional dynamics. Recombination events are observed in almost all eukaryotic genomes. Crossover, a one-point recombination event, is the exchange of DNA fragments between sister chromatids during meiosis. Recombination is a fundamental process that ensures genotypic and phenotypic diversity. Thereby, it is strongly related to various genomic features such as gene density, repetitive DNA, and DNA methylation [1][2][3].

Recombination rate varies not only between species but also within species and along chromosomes. Different heterochromatin regions exhibit different profiles of recombination events. Therefore, in order to understand how and why the recombination rate varies, it is vital to break down the chromosome structure into smaller blocks where several genomic features, besides recombination rate, are also known to exhibit different profiles. Chromatin boundaries allow to distinguish between two primary states of chromatin that can be defined as euchromatin, which is lightly compact with a high gene density, and on the contrary, heterochromatin, which is highly compact with a paucity in genes. The heterochromatin is represented in different chromosome regions: the centromere and the telomeres. Euchromatin and heterochromatin regions exhibit different behaviors in terms of genomic features and dynamics related to their biologic function, such as the cell division process that ensures the organism viability. Consequently, easily distinguishing chromatin states is necessary for conducting further studies in various research fields and to be able to address questions related to cellular processes such as meiosis, gene expression, epigenetics, DNA methylation, natural selection and evolution, genome architecture and organization, among others [4][5][6]. In particular, the profound understanding of centromeres, their complete and precise structure, organization, and evolution is currently a hot research area. These repeat-rich heterochromatin regions are currently still either poorly or not assembled at all across eukaryote genomes. Despite the enormous advances offered by the Next Generation Sequencing (NGS) technologies, centromeres are still considered enigmas, mostly because they prevent genome assembly algorithms from reaching their optimal performance to achieve more complete whole genome sequences [7]. Besides, the highly diverse mechanisms of heterochromatin positioning [8] and repositioning [9] remain a complicated obstacle in the face of fully understanding genome organization. Thus, generating high resolution genetic, physical, and recombination maps and locating heterochromatin regions is increasingly attractive to the community across an extensive range of taxa [10][11][12][13][14][15][16].

Numerous methods for estimating recombination rates exist. Genomic inference methods, covering population-based, pedigree-based and gamete-based approaches, have been included in the latest review by [17]. Among the listed methods, population genetic-based methods [18] provide accurate fine-scale estimates. Nevertheless, these methods are costly, time-consuming, require substantial expertise, and most of all, do not apply to all kinds of organisms. Moreover, the sperm-typing method [19], which is also extremely accurate, providing high-density recombination maps, is male-specific and is applicable only on limited genome regions. On the other hand, a purely statistical approach, the Marey Maps [20], could avoid some of the above issues based on other available genomic data: the genetic and physical distances of genomic markers.

The Marey maps approach consists of correlating the physical map with the genetic map representing respectively physical and genetic distances for a set of genetic markers on the same chromosome. Despite the efficiency of this approach and mostly the availability of physical and genetic maps, generating recombination maps rapidly and for any organism is still challenging. Hence, the increasing need for an automatic, portable, and easy-to-use solution.

Some Marey map-based tools already exist, two of which are primarily used. The MareyMap Online [21,22] applies to multiple species, yet, it does not allow an accurate estimate of recombination rates on specific regions like the chromosome extremities. Second, the Drosophila melanogaster Recombination Rate Calculator (RRC) [23] solves the previous issue by adjusting recombination rate estimates on such chromosome regions, but as indicated by its name, it is D. melanogaster-specific. With the emerging NGS technologies, accessing whole chromosome sequences has become possible on a wide range of species. Therefore, we may expect an exponential increase in the markers number, requiring more adapted tools to handle such new scopes of data efficiently.

Here, we propose a new Marey map-based method as an automated computational solution that aims to, firstly, identify heterochromatin boundaries (HCB) along chromosomes, secondly, estimate local recombination rates, and lastly, adjust recombination rates on chromosome along the chromosomal regions marked by the identified boundaries. Our proposed method, called BREC (heterochromatin Boundaries and RECombination rate estimates), is provided within an R-package and a Shiny web-based graphical user interface. BREC takes as input the same genomic data, genetic and physical distances, as in previous tools. It follows a workflow (see Fig. 1) that, first, tests the data quality and offers a cleaning option, then estimates local recombination rates and identify HCB. Finally, BREC re-adjusts recombination rate estimates along heterochromatin regions, the centromere and telomere(s), in order to keep the estimates as authentic as possible to the biological process [24]. Identifying the boundaries delimiting euchromatin and heterochromatin allows investigating recombination rate variations along the whole genome, helping to compare recombination patterns within and between species. Furthermore, such functionality is fundamental for identifying the position of the centromeric and telomeric regions. Indeed, the position of the centromere along the chromosome has an influence on the chromatin environment, and recent studies are interested in investigating how genome architecture may change with centromere organization [7].

Our results have been validated with cytological equivalents, experimentally generated on the fruit fly D. melanogaster genome [4,25,[START_REF] Thurmond | FlyBase 2.0: the next generation[END_REF]. Moreover, since BREC is non-genome-specific, it could efficiently be run on other model as well as non-model organisms for which both genetic and physical maps are available. Even though it is still an ongoing study, BREC has also been tested with different species, and the results are reported.

This paper is organized as follows: the set of our results, based on both simulated and real data, are reported in "Results" section. They are then discussed in "Discussion" section. Concluding remarks with some perspectives are outlined in "Conclusions" section. The full set of BREC modules, detailed within a step-by-step workflow, as well as further details on the data involved, and how the methods were calibrated and validated, are presented in "Methods" section. Additional files: 1, 3, 4, , where a zoom-in on the main process is clarified for each of the six steps 5,7,8,9,10,11,12,13,14,16,18,and Additional files: 2,6,15,17,20,21 include Tables S1-S6).

Results

In this section, we present the results obtained through the following validation process. First, we automatically re-identified HCB with an approximate resolution to the reference equivalents. Second, we tested the robustness of BREC methods according to input data quality, using the well-studied D. melanogaster genome data, for which recombination rate and HCB have already been accurately provided [4,23,25,27] (Additional file 1). Besides, we extended the robustness test to a completely different genome, the domesticated tomato S. lycopersicum [START_REF] Sato | The tomato genome sequence provides insights into fleshy fruit evolution[END_REF] to better interpret the study results. Even if the Loess span value does not impact the HCB identification, but only the resulting recombination rate estimates, the span values used in this study are: 15% for D. melanogaster (for comparison purpose) and 25% for the rest of the experiments. Our analysis shows that BREC is applicable to data from various organisms, as long as the data quality is good enough. BREC is data-driven, thus, the outputs strongly depend on the markers density, distribution, and chromosome type identified (automatically, or with the user's a priori knowledge).

Approximate, yet congruent HCB

Fruit fly genome D.melanogaster

Our approach for identifying HCB has been primarily validated with cytological data experimentally generated on the D. melanogaster Release 5 genome [4,25,[START_REF] Thurmond | FlyBase 2.0: the next generation[END_REF][START_REF] Riddle | Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin[END_REF]. For all five chromosomal arms (X, 2L, 2R, 3L, 3R). This genome presents a mean density of 5.39 markers/Mb and a mean physical map length of 22.92Mb. We obtained congruent HCB with a good overlap and shift, distance between the physical position of the reference and BREC, from 20Kb to 4.58Mb (see "Data and implementation" section). We did not observe a difference in terms of mean shift for the telomeric and centromeric BREC identification ( χ 2 = 0.10 , df = 1, pvalue = 0.75)(See Table 1 and Additional file 2). We observe a lower resolution for the chromosomal arms 3L and 3R (see Additional file 3). This suggests that those two chromosomal arms' data might not present as good quality as the rest of the genome. Interestingly, the local markers density for these two chromosomal arms shows a high variation, unlike the other chromosomal arms. For instance, the 2L for which BREC returns accurate results, shows a lower variation (see Additional file 4). Without these two arms, the max shift for both centromeric and telomeric BREC boundaries is smaller than 1.54Mb, with a mean shift decreasing from 1.43 to 0.71 Mb.

This first analysis suggests that BREC methods return accurate results on this genome. However, the boundaries identification process appears very sensitive to the markers' local density and distribution along a chromosome (see Additional file 3). Therefore, we conducted further experiments on a different dataset, the tomato genome (see Additional file 5).

Tomato genome S. lycopersicum

Results of experimenting BREC behaviour on all 12 chromosomes of S. lycopersicum genome [START_REF] Sato | The tomato genome sequence provides insights into fleshy fruit evolution[END_REF] are shown as values in Additional file 6 and as plots in Additional file 7. This genome presents a mean density of 2.64 markers/Mb and a mean physical map length of 62.71Mb. We observe a variation in the shift value representing the difference on the physical map between reference HCB and their equivalents returned by BREC. Unlike the D. melanogaster genome, which is of a smaller size, with five telocentric chromosomes (chromosomal arms) and a strongly different markers distribution, the tomato genome exhibits a completely different study case. It is a plant genome, with approximately 8-fold bigger genome size. It is organized as twelve atelocentric chromosomes of a mean size of 60Mb, except for chromosomes 2 and 6, which are more likely to be rather considered telocentric based on their markers distribution. Also, we observe a long plateau of markers along the centromeric region with lower density than the rest of the chromosomes. Something which highly differs from D. melanogaster data. We believe all these differences between both genomes give a good validation and evaluation for BREC behavior towards various data quality scenarios. Furthermore, since BREC is a data-driven tool, these experiments help analyze data-related limitations that BREC could face while resolving differently. From another point of view, BREC results on the tomato genome highlight the fact that markers distribution along heterochromatin regions, in particular, strongly impacts the identification of eu-heterochromatin boundaries, even when the density is of 2 markers/Mb or more.

Consistency despite the low data quality

We aim in this part to study to what extent BREC results are depending on the data quality.

BREC handles low markers density

We started by assessing the markers' density on the BREC estimates. We generated simulated datasets with decreasing fractions of markers for each chromosomal arm (from 100% to 30%). For that, we randomly selected a fraction of markers, 30 times, and computed the mean shift between BREC and the reference telomeric and centromeric boundaries. We have noted that BREC's resolution decreases drastically with the fraction and therefore with the marker density (see Additional file 8). However, BREC results appeared stable until 70% of the data for all the chromosomal arms, more specifically for the telomeric boundary detection. Only for the centromeric boundary of the chromosomal arm 3R, we observed the opposite pattern: BREC returns more accurate telomeric boundary estimates when the markers' number decreases. This supports the low quality of the data around the 3R centromere.

This simulation process allowed to set a minimum density threshold representing the minimum value for data density in order to guarantee accurate results for BREC estimates at 5 markers/Mb (fraction of around 70% of the data) on average in D. melanogaster. This analysis also supports the fact that because the markers' density alone can not explain the BREC resolution, BREC may also be sensitive to the marker distribution.

Additional file 4 clearly shows that markers' density varies within and between the five chromosomal arms with a mean of 4 to 8 markers/Mb. The variance is induced by the extreme values of local density, such as 0 or 24 markers/Mb on the chromosomal arm X. Still, the overall density is around 5 markers/Mb for the whole genome.

BREC handles heterogeneous distribution

Along chromosomes, genetic markers are not homogeneously distributed. Therefore, to assess the impact of the distribution of markers on BREC results, we designed different data scenarios regarding a reference data distribution (see "Simulated data for quality control testing" section). We choose as reference the chromosomal arms 2L and 2R of D. melanogaster as we have obtained the most accurate results with their data. After the concatenation of the two arms, we ended up with a metacentric simulated chromosome as a starting simulation scenario (total physical length of 44Mb). While this length was kept unchanged, markers local density and distribution were modified (see "Simulated data for quality control testing" section and Additional file 9).

One particular yet typical case is the centromeric gap. Throughout our analysis, we consider that a chromosome presents a centromeric gap if its data exhibit a lack of genetic markers on a relatively large region on the physical map. Centromeric regions usually are less accessible to sequence due to their highly compact chromatin state. Consequently, these regions are also hard to assemble, and that is why many genomes have chromosomes presenting a centromeric gap. It is essential to know that a centromeric gap is not always precisely located in the middle of a chromosome. Instead, its physical location depends on the chromosome type (see more details in Additional file 10).

We also assess the veracity of BREC on datasets with variable distributions using simulated data with and without a centromeric gap (see Additional file 9).

For all six simulation datasets, BREC results overlap the reference boundaries. Thus BREC correctly handles the presence of a centromeric gap (see Additional file 9: (a)(c) (e)). BREC remains robust to a non-uniform distribution of markers, under the condition that regions flanking the boundaries are greater than 2 markers/Mb (see Additional file 11). In the case of a non-uniform distribution, BREC resolution is higher when the local density is stronger around heterochromatin regions (see Additional file 9: (c)(d)(e) (f )). This suggests that low density on euchromatin regions far from the boundaries is not especially a problem either.

Accurate local recombination rate estimates

After identifying the HCB, BREC provides optimized local estimates of recombination rate along the chromosome by taking into account the absence of recombination in heterochromatin regions. Recombination rates are reset to zero across the centromeric and telomeric regions regardless of the regression model. To closely compare the third degree polynomial with Loess, using different span values, we experimented with this aspect on D. melanogaster chromosomal arms and reported the results in Additional file 12.

To assess the veracity of the recombination rates along the whole genome, we compared BREC results with previous recombination rate estimates (see Fig. 2; [4,25]).

BREC recombination rate estimates are significantly strongly correlated with reference data (Spearman's: P ≪ 0.001 ) while the reference estimates fail in telomeric regions.

BREC is non-genome-specific

NGS, High Throughput Sequencing (HTS) technologies, and numerous further computational advances are increasingly providing genetic and physical maps with more and more accessible markers along the centromeric regions. Such progress in the availability of data of poorly accessible genomic regions is a huge opportunity to shift our knowledge of heterochromatin DNA sequences and their dynamics, as in the case of Transposable Elements (TEs), for example. Therefore, BREC is not identifying centromeric gaps as centromeric regions as it might seem. Instead, it is targeting centromeric as well as telomeric boundaries identification regardless of the presence or absence of markers neither of their density or distribution variations across such complicated genomic regions (see Additional file 13). Given that BREC is non-genome-specific, applying HCB identification on various genomes has allowed to widen the experimental design and to test more thoroughly how BREC responds to different data scenarios. Despite the several challenges due to data quality issues and following a data-driven approach, BREC is a non-genome-specific tool that aims to help to tackle biological questions.

Easy, fast and accessible tool via an R-package and a Shiny app

BREC is an R-package entirely developed with the R programming language. The current version of the package and documentation are available on the GitHub repository: https:// github. com/ Genom eStru cture Organ izati on.

In addition to the interactive visual results provided by BREC, the package comes with a web-based Graphical User Interface (GUI) build using the shiny and shinydashboard As for the speed aspect, BREC is quite fast when executing the main functions. We reported the running time for D. melanogaster R5 and S. lycopersicum in Additional files 2 and 15, respectively (plotting excluded). Nevertheless, when running BREC via the Shiny application, and due to the interactive plots displayed, it takes longer because of the plotly rendering. Still, it depends on the size of the genetic and physical maps used, as well as the markers density, as slightly appears in the same tables. The results presented from other species (see Additional file 13) highlight better this dependence.

Discussion

The main two results of BREC are the eu-heterochromatin boundaries and the local recombination rate estimates (see Fig. 2 and Additional file 3).

The HCB algorithm, which identifies the location of centromeric and telomeric regions on the physical map, relies on the regression model obtained from the correlation between the physical distance and the genetic distance of each marker. Then, the goodness-of-fit measure, the R-squared, is used to obtain a curve upon which the transition between euchromatin and heterochromatin is detectable.

On the other hand, the recombination rate algorithm, which estimates local recombination rates, returns the first derivative of the previous regression model as the recombination rates, then resets the derivative values to zero along the heterochromatin regions identified (see Additional file 16).

We validated BREC methods with a reference dataset known to be of high quality: D. melanogaster. While two distinct approaches were respectively implemented for the We also validated BREC using the domesticated tomato S. lycopersicum dataset (see Additional files 6 and 7). At first glance, one might ask: why validating with this species when the results do not seem really congruent? In fact, we have decided to investigate this genome as it provides a more insightful understanding of the datadriven aspect of BREC and how data quality strongly impacts the heterochromatin identification algorithm. Variations in the local density of markers in this genome are particularly associated with the relatively large plateaued centromeric region representing more than 50% of the chromosome's length. Such data scenario is quite different from what we previously reported on the D. melanogaster chromosomal arms. This is partially the reason for which we chose this genome for testing BREC limits.

While analyzing the experiments more closely, we found that BREC processes some of the chromosomes as presenting a centromeric gap, while that is not actually the case. Thus, we forced the HCB algorithm to automatically apply the withno-centromeric-gap-algorithm, then, we were inspired to implement this option into the GUI in order to give the users the ability to take advantage of their a priori knowledge and by consequence to use BREC more efficiently. Meanwhile, we are considering how to make BREC completely automated regarding this point for an updated version later on. Besides, the reference heterochromatin results we used for the BREC validation are rather an approximate than an exact indicator. The physical positions used as reference correspond to the first and last markers tagged as "heterochromatin" on the spreadsheet file published by the Tomato Genome Consortium authors in [START_REF] Sato | The tomato genome sequence provides insights into fleshy fruit evolution[END_REF]. However, we hesitated before validating BREC results with these approximate reference values due to the redundant existence of markers tagged as "euchromatin" directly before or after these reference positions. Unfortunately, we were unable to validate telomeric regions since the reference values were not available. As a result, we are convinced that BREC is approximating well enough in the face of all the disrupting factors mentioned above.

On the other hand, this method's ambition is to escape species-dependence, which means it is conceived to apply to a various range of genomes. To test that, we also launched BREC on genomic data from different species (the house mouse's chromosome 4, roundworm's chromosome 3, and the chromosome 1 of zebrafish). Experiments on these whole genomes showed that BREC works as expected and identifies chromosome types in 95% of cases (see Additional file 13).

One can assume, with the exponential increase of genomic resources associated with the revolution of the sequencing technologies, that more fine-scale genetic maps will be available. Therefore, BREC has quite the potential to widen the horizon of deployment of data science in the service of genome biology and evolution. It will be crucial to develop a dedicated database to store all this data. BREC package and design offer numerous advantageous functionalities (see Additional file 17) compared to similar existing tools [22,23]. Thus, we believe our new computational solution will allow a large set of scientific questions, such as the ones raised by the authors of [5,[START_REF] Lenormand | Evolutionary mysteries in meiosis[END_REF], to be addressed more confidently, considering model as well as non-model organisms, and with various perspectives.

Conclusions

We designed a user-friendly tool called BREC that analyses genomes on the chromosome scale, from the recombination point-of-view. BREC is a rapid and reliable method designed to determine euchromatin-heterochromatin boundaries on chromosomal arms or whole chromosomes (resp. telocentric or metacentric). BREC also uses its heterochromatin boundary results to improve the recombination rate estimates along the chromosomes.

Currently, the Shiny app is being deployed on the https:// shiny apps. io server, in order to provide an install-free experience to the users. In addition, the "whole genome" version of BREC is a work in progress. It will allow to run BREC on all the chromosomes of a genome of interest at once. This version might also present the identified heterochromatin regions on chromosome ideograms. As short-term perspectives for this work, we may consider extending the robustness tests to additional datasets with high quality and mandatory information (e.g. boundaries identified with the cytological method, high quality maps). Retrieving such datasets seems to become less and less complicated. We may also improve the identification of boundaries with a more refined analysis around them, using an iterative multiscale algorithm for instance. Finally, we will be happy to consider the users' feedback and improve our tool's ergonomy and usability. As mid-term perspectives, we underline that BREC could integrate other algorithms aiming to provide further analysis options such as the comparison of heterochromatin regions between closely related species. Also, we are aware that it would be interesting to compare BREC results with more existing methods. Thus, we plan to properly do so in the near future.

Methods

New approach: BREC

BREC is designed following the workflow represented in Fig. 1. To ensure that the broadest range of species could be analyzed by our tool, we designed a pipeline that adapts behavior with respect to input data. Each step of the workflow relies mostly on statistical analysis, adaptive algorithms, and decision proposals led by empirical observation.

The workflow starts with a pre-processing module (called "Step 0") aiming to prepare the data prior to the analysis. Then, it follows six main steps: (1) estimate Marey Mapbased local recombination rates, (2) identify chromosome type, (3) prepare the HCB identification, (4) identify the centromeric boundaries, (5) identify the telomeric boundaries, and ( 6) extrapolate the local recombination rate map and generate an interactive plot containing all BREC outputs (see Fig. 1). Each step is detailed hereafter and summarised in Additional file 16.

Step 2 -Identify chromosome type BREC provides a function to identify the type of a given chromosome according to the position of its centromere. This function is based on the physical position of the smallest value of recombination rate estimates, which primarily indicates where the centromeric region is more likely to be located. Our experimentation allowed to come up with the following scheme (see Additional file 10). Two main types are identified: telocentric and atelocentric [START_REF] Levan | Nomenclature for centromeric position on chromosomes[END_REF]. Atelocentric type could be either metacentric (centromere located approximately in the center with almost two equal arms) or not metacentric (centromere located between the center and one of the telomeres). The latter includes the two most known subtypes, submetacentric and acrocentric (recently considered types rather than subtypes). It is tricky for BREC to distinguish between submetacentric and acrocentric chromosomes correctly. Their centromeres' position varies slightly, and capturing this variation (based on the smallest value of recombination rate on both maps -polynomial and Loess-) could not be achieved yet. Therefore, we chose to provide this result only if the implemented process allowed to identify the subtype automatically. Otherwise, the user gets the statistics on the chromosome's data and is invited to decide according to further a priori knowledge. The two subtypes (metacentric and not metacentric) are distinguished following intuitive reasoning inspired by their definition found in the literature. First, BREC identifies whether the chromosome is an arm (telocentric) or not (atelocentric). Then, it tests if the physical position of the smallest value of the estimated recombination rate is located between 40% to 60% interval. In this case, the subtype is displayed as metacentric. Otherwise, it is displayed as not metacentric. The recombination rate is estimated using the Loess model ("LOcal regrESSion") [33,[START_REF] Cleveland | Smoothing by local regression: principles and methods[END_REF].

Step 3 -Prepare the HCB identification

The HCB identification is a purely statistical approach relying on the coefficient of determination R 2 , which measures how good the generated regression model fits the input data [START_REF] Zhang | A coefficient of determination for generalized linear models[END_REF]. We chose this approach because the Marey map usually exhibits a lower quality of markers (density and distribution) on the heterochromatin regions. Thus, we aim to capture this transition from high to low quality regions (or vice versa) as it reflects the transition from euchromatin to heterochromatin regions (or vice versa). The coefficient R 2 is defined as the cumulative sum of squares of differences between the interpolation and observed data. R 2 values are accumulated along the chromosome. In order to elimi- nate the biased effect of accumulation, R 2 is computed twice: R 2forward starts the accumulation from the beginning of the chromosome to provide the left centromeric and left telomeric boundaries. In contrast, R 2backwards starts from the end of the chromosome, providing the right centromeric and right telomeric boundaries. These R 2 values were calculated using the rsq package in R. To compute R 2 cumulative vectors, rsq function is applied on the polynomial regression model. In fact, there is no such function for non-linear regression models like the Loess because, in such models, high R 2 does not always indicate a good fit. A sliding window is defined and applied on the R 2 vectors to precisely analyze their variations (see details in the next step). In the case of a telocentric chromosome, the position of the centromere is then deduced as the left or the right side of the arm, while in the case of an atelocentric chromosome, the existence of a centromeric gap is investigated.

Since the centromeric region is known to present reduced recombination rates, the starting point for detecting its boundaries is the physical position corresponding to the smallest polynomial-based recombination rate value. A sliding window is then applied to expand the starting point into a region based on R 2 variations in two opposite directions. The sliding window's size is automatically computed for each chromosome as the largest value of ranges between each two consecutive positions on the physical map (indicated as i and i + 1 in Eq. 1). After making sure the sliding window includes at least two data points, the mean of local growth rates inside the current window is computed and tested compared to zero. If it is positive (resp. negative) on the forward (resp. backward) R 2 curve, the value corresponding to the window's ending edge is returned as the left (resp. right) boundary. Else, the window moves by a step value equal to its size.

There are some cases where chromosome data present a centromeric gap. Such a lack of data produces biased centromeric boundaries. To overcome this issue, chromosomes with a centromeric gap are handled with a slightly different approach. After comparing the mean of local growth rates regarding to zero, accumulated slopes of all data points within the sliding window are computed, adding one more point at a time. If the mean of accumulated slopes keeps the same variation direction as the mean of growth rates, the centromeric boundary is set as the window's ending edge. Else, the window slides by the same step value as before (equal to its size). The difference between the two chromosome types is that only one sliding window is used for the telocentric case, its starting point is the centromeric side, and it moves away from it. As for the atelocentric case, two sliding windows are used (one on each R 2 curve), their starting point is the same, and they move in opposite directions to expand the centromere into a region.

Step 5 -Identify telomeric boundaries

Since telomeres are considered heterochromatin regions as well, they also tend to exhibit low fitness between the regression model and the data points. More specifically, the accumulated R 2 curve tends to present a significant depletion around telom- eres. Therefore, a telomeric boundary is defined here as the physical position of the most significant depletion corresponding to the smallest value of the R 2 curve. As such, in the telocentric case, only one R 2 curve is used. It gives one boundary of the telomeric region (the other boundary is defined by the beginning of the left telomere or the end of the right telomere). Whilst in the atelocentric case, where the are two telomeres, the depletion on R 2forward detects the end of the left telomeric region, and the deple- tion on R 2backwards detects the beginning of the right telomeric region. The other two boundaries (the beginning of the left telomere and the end of the right telomere) are defined to be, respectively, the same values of the two markers with the smallest and the largest physical position available within the input data of the chromosome of interest.

( 1)

sliding_window_size(chromosome) = max{|physPos i+1 -physPos i | : 1 ≤ i ≤ n -1}

Step 6 -Extrapolate the local recombination rate estimates and generate interactive plot

The extrapolation of recombination rate estimates at the identified centromeric and telomeric regions automatically performs an adjustment by resetting the initial biased values to zero along these heterochromatin ranges. Finally, all of the above BREC outputs are combined to generate one interactive plot to display for visualization and download (see details in "Easy, fast and accessible tool via an R-package and a Shiny app" section).

It is important to emphasize that throughout the whole main process module, only Step 1 " Estimating Marey map-based local recombination rates " comes from previous methods ( [20,21]). Otherwise, each of the steps 2-6 are fully developed (designed and implemented) within BREC and represent a new contribution, in addition to step zero " Data pre-processing ", as mentioned above.

Data and implementation

Validation data

The only input dataset to provide for BREC is genetic and physical maps for one or several chromosomes. A simple CSV file with at least two columns for both maps is valid. If the dataset is for more than one chromosome or the whole genome, a third column, with the chromosome identifier, is required.

Our results have been validated using Release 5 of the fruit fly D. melanogaster [START_REF] Hoskins | Sequence finishing and mapping of Drosophila melanogaster heterochromatin[END_REF][START_REF] Hoskins | The release 6 reference sequence of the Drosophila melanogaster genome[END_REF] genome as well as the domesticated tomato Solanum lycopersicum genome (version SL3.0).

We also tested BREC using other datasets of different species: house mouse (Mus musculus castaneus, MGI) chromosome 4 [START_REF] Cox | A new standard genetic map for the laboratory mouse[END_REF], roundworm (Caenorhabditis elegans, ws170) chromosome 3 [START_REF] Hillier | Wholegenome sequencing and variant discovery in C. elegans[END_REF], zebrafish (Danio rerio, Zv6) chromosome 1 [START_REF] Freeman | Definition of the zebrafish genome using flow cytometry and cytogenetic mapping[END_REF], respectively (see Additional file 13), as samples from the multi-genome dataset included within BREC (see further details on the full built-in dataset in "Description of main components of the Shiny app" section).

Fruit fly genome D.melanogaster Physical and genetic maps are available for download from the FlyBase website (http:// flyba se. org/; Release 5) [START_REF] Thurmond | FlyBase 2.0: the next generation[END_REF]. This genome is represented here with five chromosomal arms: 2L, 2R, 3L, 3R, and X (see Additional file 2), for a total of 618 markers, 114.59Mb of physical map and 249.5cM of genetic map. This dataset is manually curated and is already clean from outliers. Therefore, the cleaning step offered within BREC was skipped.

Tomato genome S. lycopersicum Domesticated tomato with 12 chromosomes has a genome size of approximately 900Mb. Based on the latest physical and genetic maps reported by the Tomato Genome Consortium [START_REF] Sato | The tomato genome sequence provides insights into fleshy fruit evolution[END_REF], we present both maps content (markers number, markers density, physical map length, and genetic map length) for each chromosome in Additional file 15. For a total of 1957 markers, 752.47Mb of physical map and 1434.49cM of genetic map along the whole genome.

Simulated data for quality control testing

We call data scenarios, the layout in which the data markers are arranged along the physical map. For experimentally testing the limits of BREC, various data scenarios have been specifically designed based on D. melanogaster chromosomal arms (see Additional file 9).

In an attempt to investigate how the markers' density varies within and between the five chromosomal arms of D. melanogaster Release 5 genome, the density has been analyzed in two ways: locally (with 1Mb-bins) and globally (on the whole chromosome). Additional file 4 shows the results of this investigation, where each little box indicates how many markers are present within the corresponding region of size 1Mb on the physical map. The mean value represents the global density. It is also shown in Additional file 2 where the values are slightly different. This is due to computing the markers' density in two different ways with respect to the analysis. Additional file 2, presenting the genomic features of the validation dataset, shows markers density in Column 3, which is simply the result of the division of markers number (in column 2) by the physical map length (in Column 4). For example, in the case of chromosomal arm X, this gives 165/21.22 = 7.78markers/Mb . On the other hand, Additional file 4, aimed for analyzing the variation of local markers density, displays the mean of of all 1Mb-bins densities, which is calculated as the sum of local densities divided by the number of bins, and this gives 165/22 = 7.5markers/Mb.

The exact same analysis has been conducted on the tomato genome S. lycopersicum where the only difference lies in using 5-Mb instead of 1-Mb bins, due to the larger size of its chromosomes (see Additional file 5).

Validation metrics

The measure we used to evaluate the resolution of BREC's HCB is called shift hereafter. It is defined as the difference between the observed heterochromatin boundary ( observed_HCB ) and the expected one ( expected_HCB ) in terms of physical distance (in Mb)(see Equation 2).

The shift value is computed for each heterochromatin boundary independently. Therefore, we observe only two boundaries on a telocentric chromosome (one centromeric and one telomeric). In comparison, we observe four boundaries in the case of an atelocentric chromosome (two centromeric giving the centromeric region and two telomeric giving each of the two telomeric regions).

The shift measure was introduced not only to validate BREC's results with the reference equivalents but also to empirically calibrate the DQC module, where we are mostly interested in the variation of its value as per variations of the quality of input data.

Implementation and Analysis

The entire BREC project was developed using the R programming language (version 3.6.3/2020-02-29) and the RStudio environment (version 1.2.5033).

The graphical user interface is build using the shiny and shinydashboard packages. The web-based interactive plots are generated by the plotly package. Data simulations, result analysis, reproducible reports, and data visualizations are implemented using a large set of packages such as tidyverse, dplyr, R markdown, Sweave and knitr among (2) shift = |observed_HCB -expected_HCB| others. The complete list of software resources used is available on the online version of the BREC package accessible at https:// github. com/ Genom eStru cture Organ izati on.

From inside an R environment, the BREC package can be downloaded and installed using the command in the code chunk in Additional file 19. In case of installation issues, further documentation is available online on the ReadMe page of the GitHub repository. If all runs correctly, the BREC shiny application will be launched on your default internet browser (see Shiny interface screenshots in Additional file 14).

All BREC experiments have been carried out using a personal computer with the following specs:

• Processor: Intel ® Core TM i7-7820HQ CPU @ 2.90GHz x 8 • Memory: 32Mo • Hard disc: 512Go SSD • Graphics: NV117 / Mesa Intel ® HD Graphics 630 (KBL GT2) • Operating system: 64-bit Ubuntu 20.04 LTS

Description of main components of the Shiny app

Build-in dataset

Users can either run BREC on a dataset of 44 genomes, mainly imported from [START_REF] Corbett-Detig | Natural selection constrains neutral diversity across a wide range of species[END_REF], enriched with two mosquito genomes from [START_REF] Dudchenko | De novo assembly of the aedes aegypti genome using hi-c yields chromosome-length scaffolds[END_REF] and updated with D. melanogaster Release 6 from FlyBase [START_REF] Thurmond | FlyBase 2.0: the next generation[END_REF] (see Additional files 20 and 21), already available within the package, or, load new genomes data according to their own interest.

User-specific genomic data should be provided as inputs within at least a 3-column CSV file format, including for each marker: chromosome identifier, genetic distance, and physical distance, respectively. On the other hand, outputs from BREC running results are represented via interactive plots.

GUI input options

The BREC shiny interface provides the user with a set of options to select as parameters for a given dataset (see Fig. 3a). These options are mainly necessary in case the user works on his/her own dataset and this way the appropriate parameters would be available to choose from. First, a tab to specify the running mode (one chromosome). Then, a radio button group to choose the dataset source (existing within BREC or importing new dataset). For the existing datasets case, there is a drop-down scrolling list to select one of the available genomes (over 40 options), a second one for the corresponding physical map unit (Mb or pb) and a third one for the chromosome ID (available based on the dataset and not the genome biologically speaking). While for the import new dataset case, three more objects are added (see Fig. 3b); a fileInput to select csv data file, a textInput to enter the genome name (optional), and a drop-down scrolling list to select the data separator (comma , semicolon or tab character -set as the default-). As for the Loess regression model, the span parameter is required. It represents the percentage of how many markers to include in the local smoothing process. There is a numericInput object set by default at value 15% with an indication about the range of the span values allowed (min = 5%, max = 100%, step = 5%). The user should keep in mind that the span value actually goes from zero to one, yet, in a matter of simplification, BREC handles the conversion on its own. Thus, for example, a value of zero basically means that no markers are used for the local smoothing process by Loess, and so, it will induce a running error. Lastly, there is a checkbox to apply data cleaning if checked. Otherwise, the cleaning step will be skipped. This options could save the user some running time if s/he already have a priori knowledge that a specific genome's dataset has already been manually curated). The user is then all set to hit the Run button. BREC will start processing the chromosome of interest by identifying its type (telocentric or atelocentric). Since this step is quite difficult to automatically get the correct result, the user might be invited to interfere via a popup alert asking for a chromosome type confirmation (see Fig. 3b). As shown in Additional file 14a, all available genomes could be accessed from the left-hand panel (in dark grey) and specifically on the tab " Genomic data " where two pages are available: " Download data files " which provides a data table corresponding to the selected genome on a scrolling list along with download buttons, and " Dataset details " displaying a more global overview of the whole build-in aata repository (see Additional file 14b). To give a glance at the GUI outputs, Fig. 3c shows BREC results displayed within an interactive plot where the user will have the an interesting experience by hovering over the different plot lines and points, visualising markers labels, zooming in and out, saving a snapshot as a PNG image file, and many more available options thanks to the plotly package.

Introduction

Motivation. Repeated genomic regions are usually defined as parts of the genomes which are enriched in repeated elements. Repeated elements are sequences appearing in several copies in genomes 1 . We use to classify them in three main categories: Segmental duplications, which are low-copy number elements encompassing several genomics elements such as genes or other repeats; Tandem repeats, which are highcopy number elements present consecutively; Transposable Elements (TEs), which are high-copy number elements dispersed along the genomes.

Repeated Regions (RRs) are detected using specific tools, and there is a large variety of them2 , concerning particular taxonomic groups (Insects, Bacteria, etc.). A generic tool broadly used to find them is called RepBase 3 . Through its tool Censor 3 4 , it is possible to detect RRs coming from a variety of organisms and their localisation in a set of given sequences. Matching sequences are listed, together with the identifier of the RRs. Several families of repeats, and especially TEs, are mentioned in the following. These families are those usually classified in RepBase (LINE, SINE, LTR, etc.).

Repetitive regions in DNA sequences are present in almost all organisms and may represent over 80% of the genome size 5 . Fundamental source of genetic plasticity and diversity, yet, they are a source of complication when it comes to assembling genomes. Amongst repeated elements, we pay particular attention to TEs, which are variously present in the genomes we considered. They may be particularly able to bring exploitable information in assembly, due to their diversity and evolutionary pace.

Genomes are usually obtained by sequencing, which produces a set of reads whose length and quality depend on the sequencing technology 6 . Those reads are then assembled using dozens of possible tools, the most recent proposing hybrid strategies using both short and long reads 7 . Genome assembly has become crucial for conducting genomic studies in various fields as environment, health, genetics, evolution and many more. Recent studies has highlighted the impact of assembly quality on result interpretation 8 . Even with advanced high-throughput sequencing technologies, genome assembly is facing a big challenge towards achieving it's optimum quality. Indeed, most of the genomes in databases are fragmented in huge sets of contigs, short for contiguous DNA sequences. Such fragmentation is observed even for well-studied genomes, unless they have been sequenced again, with long read technologies for instance. To reduce this fragmentation and improve existing available genomes, the scaffolding step exploits additional information on original data (e.g. pairing information), to infer the order and the orientation of the contigs along the target genome, using a set of possibly inconsistent pairing information. Formally, it is possible to extract from these information a set of relationships between the contigs, that may be inconsistent. The scaffold graph is defined as follows: vertices represent contig extremities, while edges are of two kinds: (1) contig edges, linking both extremities of a contig, and (2) inter-contig edges relating the pairinginformation. A weight function on the inter-contig edges indicates how many pairs are supporting this edge (see Figure 1). Due to repeats, some of the inter-contigs edges are erroneous and have to be removed from the graph. In other cases, they are supported by RRs. Interesting surveys on recent scaffolding methods are available in While the efficiency of bioinformatic tools used for assembly is increasing, errors of sequence construction from contiguous short reads persist. One way to untangle ambiguous parts of these graphs is to use long reads, produced by third-generation sequencing technologies, for instance like in 12 . However, this is not always possible due to high cost and lower quality. Recent state-of-the-art on the error correction tools targeting Illumina short reads shows that it is possible to enhance De Bruijn Graph 13 . especially when the correction targets reads near highly repetitive DNA regions 14 .

The scaffolding step is also touched by the repetitive region issue. RRs locations [START_REF] Chakraborty | Hidden genetic variation shapes the structure of functional elements in Drosophila[END_REF] on contigs, especially when they are near the extremities, can lead to ambiguities at the scaffolding step. Indeed, most scaffolders use a graph structure establishing relationships between contigs sharing a piece of information. This information may come from a set of long reads (if available), or pairs of short reads, one read mapping on the first contig, and the mate mapping on the other contig. Typically, in this latter case, when the reads come from a RR, they may map ambiguously, and a choice has to be made during the processing of the graph. Here we propose, instead of just suffer from their presence, to use RR sequences to enhance scaffolding.

Contribution. The main question we address here is: How to improve the quality of genome assembly using RRs ? A secondary question is raised about the type of repeats which are the most involved in misassemblies. We focus here on the improvement of genomes produced using a de novo approach using short reads (improvement of existing assemblies in databases), with a relatively well-defined repeat landscape (repeats documented in the Repbase database). We propose a method based on a pipeline progressively refining inter-contig edges through RR analysis. The paper is organised as follows: in Section 2 we describe the method and the data used for validation, whereas results are presented in Section 3, and discussed in Section 4.

Materials and methods

Method description

We implemented a snakemake 15 pipeline summarized on Figure 3. The first four steps aim to produce datasets composed of both a reference genome and a contig set which can be compared to the reference. Further steps are separated in two paths: first path correspond to a classical scaffolding with paired-end reads information leading to generation of paired-ends scaffolding graph (PE graph), whereas the second path includes repeated regions analysis. The original part of our work lies in this second path, which we describe in details in Paragraph 2.1.2. Simulation. We validated our approach on simulated data. The first step was to generate paired-end reads as basic data for the assembly and then the scaffolding. To simulate short reads, we chose the ART 16 software (version 2.5.8;), which produces reads close to the technologies commonly used, and because of its simplicity of use, while allowing a large choice of options.

Assembly. We chose to build the contigs with Spades (version 3.13.0 ; http: //cab.spbu.ru/software/spades/ ; 17 ), which is one the mostly used assembly tools and proposed an iterative DBG approach, and Minia (version 3.2.1 ; https:// github.com/GATB/minia ; 18 ), which is very light in terms of memory consumption, thanks to its use of Bloom filters. We therefore obtain two separate contig files from different assembly programs which will each be used in all the following steps of the pipeline so that we can compare their qualities at the end.

Mapping. The next step is to map the paired-end reads to the contigs obtained in the previous step. The contigs were mapped on the reference sequences using Min-imap2 (version 2.17 ; https://github.com/lh3/minimap2 ; 19 ) and BWA MEM ( version 0.7.17-r1188 ; https://github.com/lh3/bwa ; 20 ). Both mapping tools are also famous for their interesting performances and reliability. The initial protocol used BWA 20 , an alignment tool using "reverse search" (backward search) with the Burrows-Wheeler transform. We chose to use BWA MEM, improvement of BWA, because the latter did not take into account the information in paired-end reads.

We decided to compare it with Minimap2 for the speed of execution of the latter.

Graph generation. Generating paired-end scaffold graphs is done with the Scaftools tool 21 , from the mapping of paired-end reads to the contigs. The graphs generated in each of the four cases (both assembly tools and both mapping tools) will then be passed into our graph improvement tool.

Repeated Regions analysis

Repeated Region detection. The consensus sequences of the repeated regions were obtained from the Repbase Update (RU) database. RU contains more than 38,000 sequences of different families or subfamilies. The RRs present within the contigs were then detected by aligning the RU consensus sequences using BLAST (megablast default parameters). We therefore obtain an alignment file used to label the contigs.

Clustering contigs according to repetitions family. Two contigs carrying repetitions of different families can be linked within the PE graph. This link is due to the similarities between these RRs but is not coherent with the biological reality. It is therefore necessary to separate the contigs according to the repetitions they carry in order to limit such incoherent links and instead, favor them in case of contigs carrying the same RR. The classification and clustering of repetitions can be done at different levels/scales: clusters that are too small would be less informative, [START_REF] Chakraborty | Hidden genetic variation shapes the structure of functional elements in Drosophila[END_REF] while clusters that are too large would make the further processing heavier/more complicated. We performed the clustering at the subfamily level.

Building the RR graph. At this stage, each contig is defined by the following values: its name, its length ( ), the name of the repetition family carried, the identifier of the original repetition (repid), the start bound (start) and the end bound (end) of the RR on the contig. If one of the bounds is equal to 1 or , the RR is considered external, otherwise it is qualified as internal. Within each cluster, the position of the RRs on each contig is evaluated and then exploited in order to join the contigs carrying the same RR. The purpose of these junctions is to orient the contigs according to the RR information they carry. These information allow, for each cluster, to generate a graph in Graphviz format 22 . The set of all these graphs is called the RRs graph. The processus leading to the RR graph is described on Figure 4. Using RR graphs to correct a PE graph. We use the edges from the RR graph to apply corrections to the PE graph. We recall that in both graphs, vertices are contig extremities and edges are links between these extremities. It is obvious that the corrections applied concern only the edges implied as for repetitions. However, we can assume that the edges not affected by RR are less likely to cause problems because they are not impacted by them. These corrections can be of several types:

• Edges in common in the PE graph and the RR graph. We are a priori assured of the validity of an edge if it is present within both graphs.

In this case, we add an additional weight to the weight of the PE edge, to strengthen this edge in the final scaffolding. This weight is relative to the size of the cluster from which the RR comes from, with an additional weight of one per hundred elements in the cluster. • PE edges between contigs carrying RRs from different families. In this case, the PE edges are removed from the PE graph, since the similarity yielding this edge has been invalidated by the RR sequences. • PE edge with only one contig carrying RRs. In this case, the validation process depends on the way the RR is mapped on the contig. The invalidation is performed only when the RR should be present on both contigs (see Figure 5). Solving the graphs. The resolution of the graphs obtained is also carried out with Scaftools, for the graphs of paired-end as well as for the improved graphs. By solving the graph, we mean extracting from the scaffold graph a set of paths of maximum total weight, corresponding to the scaffolds. Knowing that they cause incoherent alignments, the repeated regions will induce a bias in the scores of intercontigs edges, which will result in poor resolution of the graph. From each original reference genome, we obtain at the end of the pipeline, 8 different genomes.

Quality assessment. Each assembly was validated with QUAST-LG (version 5.0.2 ; http://cab.spbu.ru/software/quast-lg./ ; 23 , 24 ). We expected to get a reduction of misassemblies in the tests performed with RRs-corrected PE graphs (PE+RR graph).

Data

We decided to take as reference genomes Drosophila melanogaster for the very high quality of its sequenced genome as well as the knowledge of its repeated regions 25 , and Caenorhabditis elegans for its small genome, containing little repetitions, and also for its sequencing quality. We simulated sequencing data using D. melanogaster and C. elegans with the following common specifications: 

Results

Effect on the assembly quality

For each dataset, the eight scaffold sets produced by the pipeline are compared to the reference using QUAST. We selected the following criteria to analyse the efficiency of the approach: number of contigs (in this case, number of final scaffolds), number of unaligned contigs (scaffolds), percentage of the genome covered by the scaffolds, NG50 (corresponding to the scaffold size such that 50% of the known or estimated genome size are supposed to be of the NG50 length or longer), and the number of misassemblies.

D. melanogaster.

Table 1 shows the results for the eight genomes produced on the Drosophila Melanogaster dataset.

For D. melanogaster, the results show a slight reduction in genome and NG50 coverage (length for which the collection of contigs of this length cover at least half of the reference genome) but an improvement in the number of misassemblies up to 26% for SPAdes (but no improvement with minia). SPAdes provides fewer contigs than minia, and produces far fewer unaligned contigs. It also provides greater genome coverage. Our hypothesis to explain this difference between both assembly tools is that minia, due to its decision process to cut nodes with a large in or out-degree in the DBG, may isolate more drastically repeated region as contigs, thus RRs could not help connecting them to other contigs. Difference between the use of minimap2 vs. the use of BWA-MEM in the mapping does not appear to be significant. 2 shows the results for the eight genomes produced on the Caenorhabditis elegans dataset.

C. elegans Table

Results are not so positive for the C. elegans genome, when applied on the whole genome. Misassemblies are more numerous with the application of the method, contrary to the expectations. Improvement rate are negative, but small. Again, results are better for SPAdes than for minia.

On the contrary, when the method is applied separately on each chromosome, [START_REF] Chakraborty | Hidden genetic variation shapes the structure of functional elements in Drosophila[END_REF] results are far better, as shown on Table 3 (only the number of misassemblies are reported here, for a better readibility), for SPAdes.

RR within the misassemblies

To analyze the misassemblies detected by QUAST, we mapped them on the reference genome. We crossed this mapping with a GFF file of D. melanogaster genome, with RRs (tandem repetitions, pseudo-genes and transposable elements), and detected the RRs present at the ends of the missasemblies. We have observed that RRs are involved in 60% to 70% of the remaining misassemblies. Even if we detect some tandem repetitions and pseudo-genes, the vast majority is composed of transposable elements. We can therefore deduce that transposable elements are the most disturbing for the reconstruction of genomes, because of their numerous specificities (size, activity, age). We performed this analysis on the genome of D. melanogaster using the latest available version of its sequenced genome (release 6.26), which lists all of the annotated regions known to date. Results of this analysis on the eight scaffoldings, for the 2R chromosomal arm, are presented on Figure 6. Results are very similar on other chromosomal arms and chromosomes. To complete this analysis and find out if one type of TE is particularly involved in the assembly disturbance, we also considered an "historical" approach, and had a look at the the first release of the Drosophila melanogaster genome. This previous release is more fragmented, and the gaps are essentially due to repeat-rich regions 25 which necessitate non-trivial techniques to be partially desintricated. We mapped the drosophila known TEs on the gaps constated when aligning release 1 against release 6 and examined each categories. Result is shown on Figure 7, revealing that essentially LTR are responsible for these misassemblies.

Discussion and conclusion

Improving the quality of sequence reconstructions is necessary for a better understanding of the evolution of genomes and their dynamics. Repeated regions present challenges for genome assembly and scaffolding. We presented a pipeline based on scaffold graph enhancement when combining classical paired-end reads information with repeated regions information.

This pipeline shows promising results when used with the SPAdes assembly tool. Probably due to the fact that we based our analysis on reference genomes, which are well-assembled but escape repeat-rich regions, the result may not appear spectacular, however it opens a win- [START_REF] Chakraborty | Hidden genetic variation shapes the structure of functional elements in Drosophila[END_REF] dow on assembly improvement. We also showed that repeated regions are involved on the misassemblies, and that they are essentially transposable elements, which is not surprising but allows us to concentrate on these particular repeats. Amongst those transposable elements, LTR were responsible for the vast majority of gaps constated on the Drosophila melanogaster previous releases.

A lot of pending questions remain however. First, it would be interesting to exploit other options when using the pipeline. For the moment, the re-weighting of the consistent edges is quite arbitrary, and depends on the size of the clusters. It would be interesting to study the robustness of this criteria, with respect to the clustering scale for instance, as well as it possible improvement using distance information. Indeed, distance between contigs may be estimated using the pairing information together with the insert size between mate fragments in the short reads sequencing. This estimation is not really precise, but may help refining the consistency in ambiguous cases, when compared to the length of the detected RRs. In the presented version, the removal of intercontig edges is a binary decision process: we decide to keep or to remove edges. This process could be done with more subtility by introducing a continuous measure on the edges reliability, which would influence the weight of the edge positively ("keep the edge" case) or negatively ("remove the edge" case). For instance we could try to quantify how we can come across these RRs randomly, and consequently to establish probability of decision. Of course, another natural perspective of our work is to extend it to a larger variety of genomes and assembly tools.

same time to the diverse structural nature of these repeats, and how TE insertions might be either correctly or ambiguously annotated on a reference genome for the purpose of identification.

To perform the annotation task, we choose the tools which are mostly used in the repeat community: RepeatMasker and RepeatModeler1 . RepeatModeler lists all repetitive regions in a genome, then build clusters corresponding to RR families and produce a consensus sequence for each cluster. Its output consists in a multifasta file containing the annotated consensus sequences. RepeatMasker uses this file to annotate the genome with relaxed parameters in order to find even more divergent elements. Though, these tools are not specific TEs which are on our focus. Repbase update [START_REF] Bao | Repbase Update, a database of repetitive elements in eukaryotic genomes[END_REF]) also provides information on the nature of repetitive sequences, which allows to identify TEs among other repeats. A database specific to TEs is also available: TEfam, which is part of Dfam database2 .

C.2.1 Cx. pipiens: a genome enriched in DNA elements

We annotated individual TE insertions in Cx. pipiens. We built a Culex specific TE library, a set of canonical sequences representative of TE families in this genome. We then annotated them combining results from homology-based (TEfam database: https://tefam.biochem.vt.edu/) and signature-based approaches. We reported a high diversity with TE families from the three main types of TEs (DNA, LTR, non-LTR) (see We re-launched BREC with a polynomial regression model, and we ended up with more accurate heterochromatic boundaries (red dotted lines for centromeric boundaries and green dotted lines for telomeric boundaries). Interestingly, we observe that TE distribution varies depending on the TE type (Class I Vs. Class II). Class 

2 .

 2 Identification du type de chromosome 3. Préparation de l'identification des bornes hétérochromatiques (calcul d'un facteur d'adéquation entre le taux de recombinaison estimé et les données, et test local à l'aide d'une fenêtre glissante).

xvii 5 .

 5 Identification des bornes des télomères. Cette estimation identifie une chute significative dans les courbes d'adéquation. 6. Extrapolation du taux de recombinaison local et affichage du résultat.
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 11 FIGURE 1.1: An overview of a representative data science ecosystem.
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 12 FIGURE 1.2: Sequencing cost per human genome -source: NIH, May 2020-[from https://www.reddit.com/r/singularity/comments/hi9rok/ oc_the_cost_of_sequencing_the_human_genome/]
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 1314 FIGURE 1.3: Total amount of human sequence in the High Throughput Genome Sequence (HTGS) division of GenBank. The total is the sum of finished sequence (red) and unfinished (draft plus predraft) sequence (yellow). [Figure by (Consortium, 2001)]
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 1 6 clarifies few examples where the contribution of human, plant and animal genomics in general, and mosquitoes in particular, has become fundamental.
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 15 FIGURE 1.5: Geographic distribution of the Culex mosquito-borne West Nile virus, first appeared in 1937. Based on data from the Centers for Disease Control and Prevention, USA.[START_REF] Foster | Mosquitoes (Culicidae)[END_REF] 
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 16 FIGURE 1.6: Highlighting the multiple areas benefiting from mosquito genomics. [Adapted from https://www.hardingloevner.com/ big-data-infects-life-itself/]
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 17 FIGURE 1.7: From a living cell to it's DNA sequence: a look at the scales of genomic data [from https://www.color.com/ genetics-101-understanding-the-basics-of-genetics-891dc6b733be]
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 19 FIGURE 1.9: TE classification -Adapted from (McCullers and Steiniger, 2017).
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 110 FIGURE 1.10: Distribution of TEs across the eukaryote phylogeny. Reference genome size (sea green circles) varies dramatically across eukaryotes and is loosely correlated with TE content. Here, the honey bee TE content is likely an underestimate, as approximately 3% of the genome derives from unusual large retrotransposon derivatives[START_REF] Elsik | Finding the missing honey bee genes: lessons learned from a genome upgrade[END_REF]. For ease of visualization, YR retroelements have been included with LTRs and all class II elements are included under DNA. Data were acquired from genome RepeatMasker output files. Figure adapted with permission from[START_REF] Huang | Active Transposition in Genomes[END_REF]; the Volvox characteristic silhouette was provided by Matt Crook. (Imperviously used abbreviation: YR, tyrosine recombinase). [Adapted from[START_REF] Wells | A Field Guide to Eukaryotic Transposable Elements[END_REF] 
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 111112 FIGURE 1.11: Illustration of the parental homologous chromosomes which duplicate during meiosis, and then recombine via a crossingover event. [from https://www.khanacademy.org/science/ap-biology/ heredity/non-mendelian-genetics/a/linkage-mapping]
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 113 FIGURE 1.13: From sequencing data (reads) to sequence assembly (chromosome-length scaffold).
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 114 FIGURE 1.14: Different types of repeat-related assembly errors. This is a scenario of a DNA sequence composed of three contigs A, B, C and two copies of the same repeat (R).
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 1 15 by (Dudchenko et al., 2017) shows the phylogeny of four diptera genomes: the most famous three mosquito species, Aedes aegypti (1.3Gb), Culex pipiens (579Mb), Anopheles gambiae (278Mb), and the fruit fly D. melanogaster (180Mb).
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 115 FIGURE 1.15: The content of chromosome arms is strongly conserved across mosquitoes. Here each 100-kb locus in Ae. aegypti is assigned a color. For the other species, each 100-kb locus is assigned a combination of the colors of the corresponding DNA sequences in Ae. aegypti, weighted by length. (MYA) million years ago. [Figure by(Dudchenko et al., 2017)].
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 116 FIGURE 1.16: Genome size and TE content [data from[START_REF] Petersen | Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects[END_REF]].
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 21 FIGURE 2.1: Summary of the three genomic-based approaches to infer the recombination landscape. In the schematic figure, grey stars indicate recombination events. cM, centiMorgans; SNP, singlenucleotide polymorphism. [from (Peñalba and Wolf, 2020)]

Figure 2 .

 2 2 sheds the light more closely on the difference in data types between the three approaches mentioned above. Despite the dissimilarities in terms of estimates accuracy, the recombination rate variation of the three different approaches (a), (b), and (c) converge towards the same recombination landscape. Furthermore,since population-based and gamete-based approaches present numerous limitations in terms of data availability, particularly for the non-model organisms where datasets are rare or difficult to access, we believe the most feasible solution Chapter 2. Recombination and heterochromatin regions is the pedigree-based approach, shown in (b) of the same figure, with increasingly available data(Corbett-Detig, Hartl, and Sackton, 2015).
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 22 FIGURE 2.2: From inference to landscape. The actual result of each inference method and how it translates to the recombination landscape. a | Population-based inference involves direct analysis of haplotype structure along chromosomes. Contemporary haplotypes are composed of ancestral haplotypes (various shades) that arose at different points in the past. The identity and length of ancestral haplotype blocks are a function of the time at which the haplotype arose and recombination. b | Pedigree-based inference involves a comparative representation of genetic distance and physical distance where the local recombination rate is the slope at any given location. c | Gamete-based inference takes the crossover frequency of a given window and translates it into the recombination landscape. cM, centi-Morgans. [from (Peñalba and Wolf, 2020)]

FIGURE 2 . 3 :

 23 FIGURE 2.3: (Left) Illustration of an ideogram for a chromosome where the cytogenetic map is represented by the colored bands on p arm, the centromere, and the q arm. The corresponding genetic and physical maps pointed out with the red arrows represent the two sets of data of our interest, where the genetic and physical distances are given in centiMorgans (cM) and Mega base-pairs (Mb), respectively. [from https://www.genome.gov/genetics-glossary/ Physical-Map. (Right) A sample of the input data file for the chromosome 2 of D. melanogaster genome, showing a set of markers (lines)and their coordinates (columns).
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 24 FIGURE 2.4: (Left) A sample of the input data file for the chromosome 2 of D. melanogaster genome, serving to build it's Marey Map (Right).

FIGURE 2 . 5 :

 25 FIGURE 2.5: Screenshot of the MareyMapOnline plots of D. melanogaster data: (Right) the arm 2L and (Left) the 2R arm. (top) The Marey maps with the interpolation. (Bottom) the recombination rate estimates (RR). [Adapted from the online version]
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 26 FIGURE 2.6: Comparison of recombination rate estimates between Marey map-based by RRC the (Fiston-Lavier et al., 2010) and population genetics-based by(Comeron, Ratnappan, and Bailin, 2012).
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 27 FIGURE 2.7: RRC: Dmel 2L + 2R (the original motivation for BREC development. [Adapted from (Fiston-Lavier et al., 2010)]

FIGURE 2 . 8 :

 28 FIGURE 2.8: BREC workflow. This figure provides an overview of the tool design explaining how the different modules are linked together and how BREC functionalities are implemented. The top-tobottom diagram starts with the required input data, how they are pre-processed (Step 0) and exploited (Main process: 6 major steps), then, what outputs are expected to be returned and in which format.A more detailed version is included in the Figure2.9, where a zoomin on the main process is clarified for each of the six steps.
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FIGURE 2 . 9 :

 29 FIGURE 2.9: BREC workflow. As a more detailed version of Figure 2.8, this figure provides an overview of the tool design explaining how the different modules are linked together and how BREC functionalities are implemented. The left part represents the top-tobottom diagram, starting with the required input data, how they are pre-processed (Step 0) and exploited (Main process), then, what outputs are expected to be returned and in which format. The right part of the figure, representing a zoom-in on BREC's main module (estimating recombination rates, identifying chromosome type, identifying HCB, extrapolating the recombination map and generating the interactive plot), clarifies each step following a more detailed scheme.
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 211 FIGURE 2.11: A schematic description of the chromosome type identification process implemented within BREC. (a) Telocentric chromosome type is when the centromere (the grey colored circle) is located on one of the chromosomal arm extremities (indicated with the green upside down triangle). (b) Atelocentric chromosome type -confirmed as metacentric-is when the centromere is located approximately on the middle of the chromosome, here showed within the physical positions 40% and 60% of the chromosome's size (delimited by the red brackets and indicated with the tag "Meta"). (c) Atelocentric chromosome type -with no specification-is when the centromere is located either inside the first arm (between the beginning of the chromosome and 40% of its size), or inside the second arm (between 60% and the end, indicated with the tag "Don't know").
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 212 FIGURE 2.12: BREC results on different species: from top to bottom are M. musculus (house mouse) chromosome 4, C. elegans (roundworm) chromosome 3, D. rereo (zebrafish) chromosome 1, respectively. For each species, two plots are shown: on the left is the chromosome's genetic markers (black points), their distribution along the physical map (rug on the x-axis), and reported genomic features (label in blue). On the right is BREC results: HCB for centromeric (red highlight) and telomeric (grey highlight) regions, (RR) local recombination rate estimates (red line), and the running time of BREC's algorithms to get these results (loading data and plotting are excluded).

FIGURE 2 . 13 :

 213 FIGURE 2.13: Distribution simulations. BREC results on the simulated chromosomes with different scenarios of markers distribution around heterochromatin regions, as presented in the table (top) . Plots (right after) are presenting the corresponding results for each simulation scenario. On the left, (a, c, e) show the cases with the existence of centromeric gap while the ones on the right (b, d, f) show the cases with no centromeric gap. From top to bottom, cases (a) and (b) show a uniform distributions while (c) to (f) are for non uniform distributions. Cases (c) and (d) show a higher density of markers around heterochromatin regions while cases (e) and (f) show a lower density on the same regions. Black dots represent genetic markers. Vertical lines represent HCB for BREC centromeres (in red dashed line), for BREC telomeres (in grey dashed line) and for the reference (in solid blue line). The heterochromatin regions identified by BREC are highlighted for the centromere (in red) and the telomere (in grey). The rug plot, added on the x axis, shows more clearly the variation in markers density as well as the existence or not of the centromeric gap.

FIGURE 2 . 14 :

 214 FIGURE 2.14: Variations of markers local density per 1-Mb bins along D. melanogaster Release 5 chromosomal arms. The red dashed line indicates the mean and represents the global density. Each bin indicates the number of markers it contains. Local density values are represented within the little boxes.
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 215 FIGURE 2.15: Variations of markers local density per 5-Mb bins along the tomato genome S. lycopersicum 12 chromosomes. The red dashed line indicates the mean and represents the global density. Each bin indicates the number of markers it contains. Local density values are represented within the little boxes.
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 216 FIGURE 2.16: Download, install and launch BREC. Code chunk showing the R commands allowing to download, install and run the BREC Shiny application. The entire R package is available with open access on the indicated GitHub repository.
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 217 FIGURE 2.17: Screenshots of BREC web application -Run BREC web page(2.17a) and(2.17b) show the inputs interface.(2.17c) shows the output of running BREC on the specified inputs, represented with an interactive web-based plot as a result.
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 S7 Figure S7: Screenshots of BREC web application -Genomic data web pages.

FIGURE 2 . 18 :

 218 FIGURE 2.18: Screenshots of BREC web application -Genomic data web pages.
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 7219 FIGURE 2.19: BREC workflow steps applied on chromosomal arm 2L of D. melanogaster Release 5. For each one of the five plots, the x and both y axes are the same. The x-axis represents physical distances (Mb). The left y-axis represents genetic distances (cM) shared between markers (blue data points) and the regression model (orange line). The right y-axis represents recombination rates (cM/Mb) for local estimates (green line). For simplification and less redundancy purposes, in steps 1 and 2, both y axes are written only once to be complementary for both plots: the left as well as the right one. R 2 values, varying between zero and one, are following R 2f orward (red line) and R 2backwards (purple line). Left telomere and Right centromere (resp. black and purple dashed lines) indicate HCB for the corresponding identified heterochromatin region.
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 220 FIGURE 2.20: Plots representing results of BREC and reference HCB on the D. melanogaster genome. The results are summarized in Table 2.4. From top to bottom are the five chromosomal arms X, 2L, 2R, 3L, 3R, respectively. Black dots represent genetic markers in ascendant order according to their physical position (in Mb). Vertical lines represent HCB for BREC centromeres (in red dashed line), for BREC telomeres (in grey dashed line) and for the reference (in solid blue line). The heterochromatin regions identified by BREC are highlighted for the centromere (in red) and the telomere (in grey). For each chromosomal arm, two shift values of centromeric and telomeric boundaries are shown under the chromosome identifier.

FIGURE 2 . 21 :

 221 FIGURE 2.21: Plots representing results of BREC and reference HCB on the S. lycopersicum genome. The results are summarized in Table 2.5. From top to bottom are the twelve chromosomes 1 to 12, respectively. Black dots represent genetic markers in ascendant order according to their physical position (in Mb). Vertical lines represent HCB for BREC centromeres (in red dashed line), and for the reference (in solid blue line). The heterochromatin regions identified by BREC are highlighted for the centromere (in red). Rug plot on the x-axis represents the markers density according to the physical map.

Figure 2 .

 2 Figure 2.14 clearly shows that markers density varies within and between the five chromosomal arms with a mean of 4 to 8 markers/Mb. The variance is induced by the extreme values of local density, such as 0 or 24 markers/Mb on the chromosomal arm X. Still, the overall density is around 5 markers/Mb for the whole genome.
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 222 FIGURE 2.22: The impact of decreasing markers density on the resolution of BREC's HCB expressed by the shift value.Here is an overview of the variation of shift values (see Equation2.2) for BREC's HCB compared to reference results for the five D. melanogaster chromosomal arms (X, 2L, 2R, 3L, 3R). For each arm, two HCB are shown: squares (in red) for telomeric and triangles (in light blue) for centromeric boundaries. The horizontal dashed line (in black) delimits results smaller than a shift value of 3Mb for all arms while the vertical dashed line (in black) indicates up to which fraction the 3Mb shift is conserved on each chromosomal arm's simulations. Note that the x axis is reversed, so from left to right it goes from 100% to 30% with a step of -5%at each point. The simulation process is further clarified for one fraction on the chromosomal arm 2L and is illustrated in Figure2.23.
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 15223 FIGURE 2.23: Low density simulations BREC results on the simulated telocentric chromosomes with different density scenarios. Simulating decreasing markers density going from 100% to 30% of the original chromosome 2L (of size 23Mb) of the D. melanogaster Release 5 genome. These simulations allow to study the impact of variable markers density on BREC results compared to reference HCB. (a) on the left is before and (b) on the right is after the cleaning step. These simulations have been conducted on each of the five chromosomes (X, 2L, 2R, 3L, 3R) 30 times where the mean shift value is reported in Figure 2.22. Black dots represent genetic markers. Vertical lines represent HCB for BREC centromeres (in red dashed line), for BREC telomeres (in grey dashed line) and for the reference (in solid blue line). The heterochromatin regions identified by BREC are highlighted for the centromere (in red) and the telomere (in grey). The corresponding fraction and markers density is shown on the top left of each simulation plot.

Figure 2 .

 2 Figure 2.24 is a combined recap of the inputs and outputs of BREC when applied on the whole genome of D. melanogaster R6.
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 224 FIGURE 2.24: Genomic features (right) and BREC results (left) for the D. melanogaster R6 genome.
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 225 FIGURE 2.25: Comparison of regression models for recombination rate estimates along the five chromosomes (X, 2L, 2R, 3L, 3R) of D. melanogaster Release 5. Regression models used here are Loess with span values, 15%, 25%, 50%, 75% and third degree polynomial. The HCB defined by BREC remain unchanged and only local recombination rates differ according to the model used to fit the genetic and physical maps. Recombination rate is represented by the derivative of the model. In case of two or more models yielding the same recombination rate estimates on the same physical position, the overlap results in only one curve line. Here, all curves show null recombination rate value on the centromeric and telomeric regions.

FIGURE 2 . 26 :

 226 FIGURE 2.26: Comparison of BREC vs. FlyBase recombination rate recombination rates along the five chromosomal arms (X, 2L, 2R, 3L, 3R) of D. melanogaster Release 5. Both recombination maps are obtained using the same regression model: Loess with span 15%. The HCB defined by BREC are represented in red and the reference data are in blue. Heterochromatin regions identified by BREC are highlighted in yellow.

  and 2.18).
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 227 FIGURE 2.27: Comparison of AaegL4 and CpipJ3 with genetic maps. (A) They compared AaegL4 with a genetic map of Ae. aegypti. Their assembly agreed with the genetic map on 1822 out of 1826 markers. The exceptions are due to misjoins in AaegL2 that were not corrected in AaegL4. (B) Similarly, CpipJ3 is in agreement with a genetic map of Cx. pipiens quinquefasciatus. [Figure by (Dudchenko et al., 2017)]
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 229 FIGURE 2.29: The relationship between genetic (cM) and physical map (Mb) positions and estimated local recombination rates across the three chromosomes of a previous version of the Ae. aegypti genome. The physical length was measured as the number of base pairs mapped to a particular genetic position for chromosomes A) 1, B) 2, and C) 3. Local recombination rates for chromosomes D) 1, E) 2, and F) 3, estimated using the Loess function with the MareyMap R package(Rezvoy et al., 2007), show depressed recombination in the centromeric regions of each chromosome. [from[START_REF] Juneja | Assembly of the Genome of the Disease Vector Aedes aegypti onto a Genetic Linkage Map Allows Mapping of Genes Affecting Disease Transmission[END_REF] 
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 31 FIGURE 3.1: Milestones in genome assembly. Timeline illustrating many of the major genome assembly achievements ranging from the beginning of the sequencing era to the large-scale genome projects currently ongoing. Each genome or genome project (GP) is placed under a color-coded background according to the sequencing approach adopted. Light red: early sequencing methods, Yellow: Sanger-based shotgun sequencing, Green: NGS, Light blue: TGS (Third Generation Sequencing). [from[START_REF] Giani | Long walk to genomics: History and current approaches to genome sequencing and assembly[END_REF] 

FIGURE 3 . 2 :

 32 FIGURE 3.2: Overview of the genome assembly process. First, genetic material is sequenced, generating a collection of sequenced fragments (reads). These reads are processed by a computer program called an assembler, which merges the reads based on their overlap to construct larger contigs. Contigs are then oriented and ordered with respect to each other with a computer program called a scaffolder, relying on a variety of sources of linkage information. The scaffolds provide information about the long-range structure of the genome without specifying the actual DNA sequence within the gaps between contigs. The size of the gaps can also only be approximately estimated. (contig, contiguous genomic segment). [from[START_REF] Ghurye | Modern technologies and algorithms for scaffolding assembled genomes[END_REF] 
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 33 FIGURE 3.3: General workflow of the de novo assembly of a whole genome By overlapping reads, contigs are assembled from short reads before scaffolding by large-insert reads, and the remaining gaps are filled. The scaffolding and gap-filling steps can be iteratively performed until no contigs are scaffolded or no additional gaps are resolved before completion. Through this procedure, a draft genome consisting of chromosomes is built. Some unfilled gaps may remain in the draft genome. [from[START_REF] Sohn | The present and future of de novo wholegenome assembly[END_REF] 
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 34 FIGURE 3.4: Currently available genomics technologies. (a) Schematic illustration of the data structure of these technologies produced from a hypothetical input DNA molecule. Short reads come in read pairs, long reads as single reads, linked-read clouds (LRC) as short-read pairs with a unique barcode (red asterisk) for each input molecule. Optical maps (OM) contain physical distances between short sequence motifs, and Hi-C maps are short-read pairs of 3D genome interactions obtained through chromatin conformation capture. (b) Schematic size relations of the data structure from panel (a). Examples are scaled by illustrating 1 base pair as 1 mm. (Icons made by Freepik from www.flaticon.com).[from[START_REF] Peona | How complete are "complete" genome assemblies?-an avian perspective[END_REF] 

FIGURE 3 . 5 :

 35 FIGURE 3.5: Overlap-layout-consensus genome assembly algorithm: Reads are provided to the algorithm. (a) Sequence reads for assembly. (b) Overlap graph. (c) Alignment of reads after layout step, in which a Hamiltonian path was searched for in the overlap graph. The consensus sequence is the resulting contig. [from (Bleidorn, 2017)]
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 36 FIGURE 3.6: Two strategies for genome assembly: from Hamiltonian cycles to Eulerian cycles. (a) An example small circular genome. (b) In traditional Sanger sequencing algorithms, reads were represented as nodes in a graph, and edges represented alignments between reads. Walking along a Hamiltonian cycle by following the edges in numerical order allows one to reconstruct the circular genome by combining alignments between successive reads. At the end of the cycle, the sequence wraps around to the start of the genome. The repeated part of the sequence is grayed out in the alignment diagram. (c) An alternative assembly technique first splits reads into all possible k-mers: with k = 3, ATGGCGT comprises ATG, TGG, GGC, GCG and CGT. Following a Hamiltonian cycle (indicated by red edges) allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive nodes) is shifted by one position. This procedure recovers the genome but does not scale well to large graphs. (d) modern short-read assembly algorithms construct a de Bruijn graph by representing all k-mer prefixes and suffixes as nodes and then drawing edges that represent k-mers having a particular prefix and suffix. For example, the k-mer edge ATG has prefix AT and suffix TG. Finding an Eulerian cycle allows one to reconstruct the genome by forming an alignment in which each successive k-mer (from successive edges) is shifted by one position. This generates the same cyclic genome sequence without performing the computationally expensive task of finding a Hamiltonian cycle.[from[START_REF] Compeau | Initial sequencing and analysis of the human genome[END_REF] 
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 37 FIGURE 3.7: Example of a wrong assembly of a repetitive region.The repeat motive is given in red, a stretch of the true sequence which is missing in the resulting assembly is given in blue [from[START_REF] Bleidorn | Phylogenomics. Cham[END_REF] 
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 38 FIGURE 3.8: Repetitive sequences can lead to loops in a de Bruijn graph. The repetitive motive is indicated in red. [from (Bleidorn, 2017)]
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 393101 FIGURE 3.9: Sequence errors and repeats lead to more complex kmer graphs. Nodes representing k-mers are indicated by red boxes. (a) Errors at the end of sequence introduce dead ends into the graph. (b) Errors in the middle of sequences introduce bubbles into the graph. (c) Repeat sequences lead to a pattern of convergent and divergent paths [from (Bleidorn, 2017)]
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 311 FIGURE 3.11: The difference to represent repeats in OLC and DBG graphs. (A) Two separate genomic regions share a repeat fragment (in the middle) and the flanking regions are unique sequences. Top is the genomic sequence and bottom are the sequenced reads. (B) The OLC reads graph. The nodes represents reads and the links show overlap relations. All the repeat reads are placed on the graph as nodes. (C) The k-mer graph. The reads are chopped into shorter k-mers. The k-mers from repeat regions are collapsed together. [from (Li et al., 2012)]
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 312 FIGURE 3.12: Use of pairwise linkage information for scaffolding. (a) Paired-end reads are sequenced from the genome. Depending on the technology, the approximate distance and/or relative orientation of the paired reads may not be known. (b) The reads are aligned to contigs. Reads with their ends aligned to two different contigs provide linkage information useful for scaffolding. (c) Linkage information is used to orient and order the contigs into scaffolds. Usually not all constraints can be preserved, and algorithms attempt to minimize inconsistencies (marked with X). [from (Ghurye and Pop, 2019)]
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 313 FIGURE 3.13: Illustration of the difference between contigs and scaffolds in genome assemblies. Scaffolds are created by chaining contigs together using additional information about the relative position and orientation of the contigs in the genome. Contigs in a scaffold are separated by gaps, which are designated by a variable number of "N" letters. [from https://www.pacb.com/blog/ genomes-vs-gennnnes-difference-contigs-scaffolds-genome-assemblies/]

FIGURE 3 .

 3 FIGURE 3.14: A scaffold graph with nine contigs (bold edges) and twenty inter-contig edges. Vertices are contig extremities. For instance, contig C 1 is figured by vertices labelled by 0 and 1, the (0,1) direction corresponds to the forward reading of the contig in the assembly file, and the (1,0) direction corresponds to the reverse direction. Inter-contig edges are labelled by the number of pairs of reads connecting one contig extremity to another.
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 316 FIGURE 3.16: RRs detection and characterization.

FIGURE 3 .

 3 FIGURE 3.17: PE Edge validation for case with only one contig carrying RR. Validation depends on position of RR within the contig.
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 318 FIGURE 3.18: Analysis of the number of repeats on the extremities of misassemblies along the 2R chromosomal arm of D. melanogaster. For the assembly: "S" stands for SPAdes and "Mi" for Minia. For the mapping: "M2" stands for Minimap2. For scaffolding graphs, the "+" sign indicates an enhanced graph (PE+RR).
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 319 FIGURE 3.19: Number of TEs related to gaps, classified by type for D. melanogaster R1 vs. R6

Figure 4 .

 4 Figure 4.1 shows a screenshot of the self-service platform https://www.shinyapps.io/ that we chose to test a first deployment of the BREC shiny app. This will allow to switch to an install-free alternative with a direct online access in order to improve the user experience and avoid most of the technical issues related to portability and scalability. This process is a work in progress as the R-package should be adapted first before it can be correctly deployed on the server.
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 41 FIGURE 4.1: Screenshot of the ongoing deployment of BREC on the shinyapps.io platform.
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 42 FIGURE 4.2: Screenshot of current BREC interface status.
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 43 FIGURE 4.3: Comparing recombination landscape and frequency (REC) across different taxonomic and spatial scales (boxes on the left) provides complementary data to address outstanding questions about how and why recombination varies (boxes on right). [From (Stapley et al., 2017)]
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 3 Conclusion/Discussion : Towards mosquito genomes 113 the horizontal transfers of TEs between species. This yield a wider perspective on how genomes are evolving and use TEs as vectors to propagate adaptation.
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 1 Figure 1. Dudchenko, et al. 2017 adapted [1] 

  Figure 2. Fiston-Lavier, et al. 2010 adapted [3] Coordinates along the chromosomal arm 2LCoordinates along the chromosomal arm 2R ?

  of the estimations of the chromatin boundaries [flybase.org: Release 5; Fiston-Lavier et al 2009]. Previous studies showed a strong and negative correlation between TE distribution and recombination overall. The TE distribution patterns across genomes generally show an enrichment in particular areas such as constitutive heterochromatic harboring low recombination and low gene density. The TE distribution is the consequence of both TE insertion bias and natural selection against deleterious TE insertions.

  To understand how TEs are distributed along genomes and decipher their association with recombination, we investigated a genomic comparative study among the taxonomic group of disease-vector mosquitoes with Drosophila melanogaster as outgroup. The increase of the TE content since the divergence from the An. gambiae lineage suggests an increased level of TE activity and/ or weaker force of selection against TE insertions in the two culicinae lineages. We thus first choose to focus on TEs and recombination in Culex pipiens, recently reassembled (CpipJ3)[Dudchenko et al 2017].

  and short elements do not appear as deleterious elements as they are mainly located in euchromatic regions. Previous studies revealed retrotransposons as the dominant TEs in mosquitoes [Arensburger et al 2010]. Our finding support this observation. We observed a strong insertion bias of LINEs in centromeric regions.

  ):1085{1093, Dec 2010. H.Tang. Genome assembly, rearrangement, and repeats. Chemical Reviews, 107:3391{3406, 2007. Rajiv C. McCoy, Ryan W. Taylor, Timothy A. Blauwkamp, Joanna L. Kelley, Michael Kertesz, Dmitry Pushkarev, Dmitri A. Petrov, and Anna-Sophie Fiston-Lavier. Illumina truseq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements. PLOS ONE, 9(9):1{13, 09 2014. J.Urka et al. Censor -a program for identication and elimination of repetitive elements from dna sequences. Computers and Chemistry, 20« Sciences et Numérique pour la Santé » , parcours « Bioinformatique, Connaissances, Données », Université de Montpellier 2: LIRMM -Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, Montpellier 3: ISEM -Institut des Sciences de l'Évolution de Montpellier, Montpellier *: These authors contributed equally to this work Repetitive DNA sequences 1 are abundant in almost all species: RRs (Repetitive Regions) may represent up to 90 % of genome size 1 . Despite being a fundamental source of genomic diversity and novelty, RRs are reponsible of assembly errors like misarrangments or sequence skipping, yielding bad quality of genome assemblies (for more details, see poster #91 in this session). Impact of Repetitive Regions (RRs) on quality of genome assemblies Repetitive Regions detection & caracterization:a three-step process Using Repetitive Regions information to improve scafolding graph This project was supported by the Labex CeMEB incorporated into the I-site MUSE 2/ We then clusterize the contigs based on their RR annotation. 3/ For each cluster, RR's position on the contigs is evaluated as internal or external and contigs sharing a same external RR will be associated. 1/ Using CENSOR 3 , we are able to detect RRs on contigs. Censor is based on RRs database Repbase 4 and identifes repeats by sequence homology. Each contig is characterized by repetitives region's name and position(s) on contig.

1

  Tang,H., « Genome assembly, rearrangement and repeats », Chemical Reviews 107:3391-3406 (2007) ; 2 Holt,RA et al. « The genome sequence of the malaria mosquito Anopheles Gambiae », Science 298:129-149 (2002) ; 3 Pavlicek, A , Kohany, O. , Jurka, J. . « Repeat mining:basic tools for detection and analysis » Analytic Tools for DNA, genes and genomes nuts and bolts (2005); 4 Jurka, J et al. «Repbase Update, a database of eukaryotic repetitive elements », Cytogenetic and Genome Research 110:462-467 (2005) led to the constitution of 43 clusters of different sizes: the more contigs are numerous, the more overlaps of external RRs can occur.

  for assembly is increasing, errors of sequence construction from contigous short reads persist. One of the known sources of errors is repeated elements (cf Fig 1).
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 3 Fig 3. Pie charts of major repeat types (LINE, longinterspersed nuclear elements; SINE, short interspersed nuclear elements)[START_REF] Nowoshilow | The axolotl genome and the evolution of key tissue formation regulators[END_REF] 

Figure 1 .

 1 Figure 1. Assembly errors due to repeated elements. The two copies of the same repeat are represented as red rectangles (R).
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 24a5a Fig 2. Axolotl -(Malta National Aquarium)
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 5b Figure 5b. D. melanogaster release timeline and technologies used to assemble the genome.
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 4b6 Figure 4b. Annotations of the histone cluster region (Gbrowse, fybase.org)

Figure 7 .

 7 Figure 7. Number of TEs related to gaps, classifed by family
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 1 Figure 1. Assembly errors due to repeated elements. RR are represented as red rectangles (R).
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Fig. 1

 1 Fig. 1 BREC workflow. This figure provides an overview of the tool design explaining how the different modules are linked together and how BREC functionalities are implemented. The top-to-bottom diagram starts with the required input data, how they are pre-processed (Step 0) and exploited (Main process: 6 major steps), then, what outputs are expected to be returned and in which format. A more detailed version is included in the Additional file 16, where a zoom-in on the main process is clarified for each of the six steps
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 2 Fig. 2 Comparison of BREC versus FlyBase recombination rate recombination rates along the five chromosomal arms (X, 2L, 2R, 3L, 3R) of D. melanogaster Release 5. Both recombination maps are obtained using the same regression model: Loess with span 15%. The HCB defined by BREC are represented in red and the reference data are in blue. Heterochromatin regions identified by BREC are highlighted in yellow

Fig. 3

 3 Fig. 3 Screenshots of BREC web application -Run BREC web page a and b show the inputs interface. c It shows the output of running BREC on the specified inputs, represented with an interactive web-based plot as a result
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 12 Fig.1: A scaffold graph with nine contigs (bold edges) and twenty inter-contig edges. Vertices are contig extremities. For instance, contig C 1 is figured by vertices labelled by 0 and 1, the (0,1) direction corresponds to the forward reading of the contig in the assembly file, and the (1,0) direction corresponds to the reverse direction. Inter-contig edges are labelled by the number of pairs of reads connecting one contig extremity to another.
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 3 Fig. 3: Overview of the pipeline.
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 4 Fig. 4: RRs detection and characterization.

output 7 Fig. 5 :

 75 Fig. 5: PE Edge validation for case with only one contig carrying RR. Validation depends on position of RR within the contig.
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 20 Fig.6: Analysis of the number of repeats on the extremities of misassemblies along the 2R chromosomal arm of D. melanogaster. For the assembly: "S" stands for Spades and "Mi" for Minia. For the mapping: "M2" stands for Minimap2. For scaffolding graphs, the "+" sign indicates an enhanced graph (PE+RR).
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 7 Fig. 7: Number of TEs related to gaps, classified by type for D. melanogaster R1 vs. R6

  Figure C.2).

FIGURE C. 2 :

 2 FIGURE C.2: Culex TE database construction pipeline.

FIGURE C. 4 :

 4 FIGURE C.4: Correlation of TEs distribution and heterochromatin boundaries in CpipJ3 -chromosome 2.

  

  

  

  

  

  

  

  

étendu Contexte scientifique : description du projet de thèse

  التكرارات، من واحد نوع ، TE بوفرة بشدة تتأثر التي جينوم ال تجميع عملية جة معال أجل من ا، ً ثاني حليل ت استغلال خلال من التجميع جودة تعزيز بهدف جينومية ال السقالات خطوة على التركيز اخترنا الهدف. هذا حو ن مشجعة أولية نتيجة نقدم للتحسين. جي برم أنابيب خط واقتراح المتكررة المناطق ختلفة الم جوانب بال يتعلق فيما جينوم ال ديناميكيات خص ي تمهيدا نقدم الأطروحة، هده لاختتام تصميمنا حددها التي والتقنية والتطبيقية المفاهيمية حدود ال إلى نشير ذلك، بعد تناولها. تم التي Durant ce doctorat, nos travaux ont porté essentiellement sur des problématiques en lien avec la structuration du génome et son évolution. Le génome est une composante indispensable des individus, qui participe à leur identification, et propose un angle d'observation du vivant qui fluctue en terme de contenu à différentes échelles, que ce soit au niveau de l'espèce, des variétés ou des individus appartenant à une même espèce, le tout dans une dynamique qui est alimentée par les croisements entre les patrimoines génétiques des individus. Pour observer ces génomes et leur dynamique, nous disposons de plusieurs outils mêlant les modèles numériques et les données expérimentales.

	الأطروحة ملخص
	من مجموعة إلى يؤدي مما واحد، وقت في العوامل من العديد خلال من جينومي ال التباين حدوث يتم خاص ال الدكتوراه مشروع خارج مساهماتنا نطاق حول النظر وجهات بعض نقترح ًا، أخير التجريبي. بي. الإشارة يمكن والتي ذلك، إلى وما وتطورها، وتعبيرها، وبنيتها، بهيكلها، المتعلقة جينومية ال السلوكيات رئيسيين لاعبين ثلاثة على التركيز اخترنا أطروحتي، مشروع خلال جينوم. ال ديناميكيات باسم إليها المفتاحية: الكلمات جينوم: ال ديناميكيات على يؤثرون ية، حيو ال المعلوماتية جينوم، ال علم
	النووي، حمض ال تكرارات للنقل، القابلة العناصر جينوم. ال تجميع

الـكروموسومات. طول على متساو غير بشكل مضغوطة الـكروماتين: بنية • أثناء النووي حمض ال قطع تبادل وتيرة في الاختلافات يعكس النصفي: التركيب لإعادة منظر • خلية. ال انقسام في أخطاء تسبب التي (TE) للنقل القابلة العناصر خصوص ال وجه على المتكرر: النووي حمض ال • جينوم. ال تجميع حدود حديد بت يسمح مما ماري، خرائط يقة طر على ً بناء آلية، حسابية أداة نقترح ،ً أولا المسماة يقتنا، طر حلية. الم التركيب إعادة معدلات وتقدير الـكروموسومات طول على الهيتروكروماتين وتعمل جينوم، ال حددة م غير التركيب( إعادة معدل وتقديرات الهيتروكروماتين حدود )تقديرات BREC تعتمد أداة هي BREC متوفرة. يائية والفيز جينية ال خرائط ال أن طالما النموذجي غير جينوم ال على حتى البيانات جودة )مراقبة للبيانات المسبقة جة المعال وحدة بتوفير قمنا لذلك، الإحصائية. البيانات على المقارن جينوم ال علم نهج باستخدام أوسع نطاق على حليل ت بإجراء BREC نتائج ستسمح والتنظيف(. إلى وما ، TE وكثافة التركيب، إعادة مشهد حيث من حديدها ت تم التي الهيتروكروماتين مناطق على ذلك. xiii Résumé
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1: Main features associated to the different chromatin domains in higher eukaryotes. [Cropped from
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	.2 reports the an-

TABLE 1 . 2 :

 12 Statistics on the TE content of four diptera genomes, listing the genome assembly size as well as the genome coverage of DNA, LINE, LTR, SINE, and Unknown transposons (in Mb).

[Adapted from

[START_REF] Petersen | Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects[END_REF]

] FIGURE 1.17: TEs distribution in mosquitoes and D. melanogaster: pie charts reproduced with data of Table

1

.2 from

[START_REF] Petersen | Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects[END_REF] 
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1: Genomic features and BREC running time for the D. melanogaster Release 5 genome. The first five columns represent chromosomal arms. Rows represent the genome features as follows: (1) the names of chromosomal arms X, 2L, 2R, 3L, and 3R; (2) the markers number included in the study; (3) the markers density (in markers/Mb); (
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	Chromosome	1	2	3	4	5	6	7	8	9	10	11	12	Genome
	Markers number	232	176	184	160	150	151	145	144	171	148	142	154	1957
	Markers density (marker/Mb)	2.58	3.66	2.84	2.55	2.32	3.34	2.22	2.29	2.54	2.32	2.68	2.36	2.64
	Physical map length (Mb)	89.85	48.10	64.77	62.79	64.52	45.20 65.18 62.87	67.37 63.66 52.98	65.18	752.47
	Genetic map length (cM)	150.72 154.58 134.52 122.64 137.91 106.63 92.48 106.63 108.90 88.92 119.99 110.72 1434.49
	BREC run time (sec)	2.164	1.391	1.434	1.295	1.098	1.197 1.102 1.047	1.357 1.095 1.081	1.221	15.479

2: Genomic features and BREC running time for the S. lycopersicum . The first twelve columns represent chromosomes. Rows represent the genome features as follows: (1) the identifiers of chromosomes 1 to 12; (2) the markers number included in the study; (3) the markers density (in markers/Mb); (

Table 2 .

 2 1, presenting the genomic features of the validation dataset, shows markers density in Column 3, which is simply the result of the division of markers number (in column 2) by the physical map length (in Column 4). For example, in the case of chromosomal arm X, this gives 165/21.22 = 7.78markers/Mb. On the other hand, Figure2.14, aimed for analyzing the variation of local markers density, displays the mean of of all 1Mb-bins densities, which is calculated as the sum of local densities divided by the number of bins, and this gives 165/22 = 7.5markers/Mb.
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	aegypti	Yellow fever mosquito	Animal
	Anopheles gambiae	African malaria mosquito Invertebrate
	Apis mellifera scutellata	Honeybee	
	Bombyx mandarina	Silkworm	
	Caenorhabditis briggsae	Roundworm	
	Caenorhabditis elegans	Roundworm	
	Culex pipiens	Common house mosquito	
	Drosophila melanogaster R5	Fruit fly	
	Drosophila melanogaster R6	Fruit fly	
	Drosophila pseudoobscura	Fruit fly	
	Heliconius melpomene melpomene	Postman butterfly	
	Bos taurus	Cow	Animal
	Canis lupus	Wolf	Vertebrate
	Cynoglossus semilaevis	Tongue sole	
	Danio rerio	Zebrafish	
	Equus ferus przewalskii	Prewalksii's horse	
	Ficedula albicollis	Collared flycatcher	
	Gallus gallus	Chicken	
	Gasterosteus aculeatus	Stickleback	
	Homo sapiens	Human	
	Lepisosteus oculatus	Spotted gar	
	Macaca mulatta	Rhesus macaque	
	Meleagris gallopavo	Turkey	
	Mus musculus castaneus	House mouse	
	Oryzias latipes	Medaka	
	Ovis canadensis	Bighorn sheep	
	Papio anubis	Olive baboon	
	Sus scrofa	Wild boar	
	Citrus reticulata	Mandarin Orange	Plant
	Gossypium raimondii	New world cotton	Woody
	Populus trichocarpa	Black cottonwood	
	Prunus davidiana	David's peach	
	Arabidopsis thaliana	Thale cress	Plant
	Brachypodium distachyon	Purple false brome	Herbaceous
	Capsella rubella	Pink Shepherd's Purse	
	Citrullus lanatus lanatus	Watermellon	
	Cucumis sativus var. hardwickii	Cucumber	
	Glycine soja	Wild soybean	
	Medicago truncatula	Barrel medic	
	Oryza rufipogon	Wild rice	
	Setaria italica	Foxtail millet	
	Sorghum bicolor subsp. verticilliflorum Wild Sudan grass	
	Solanum lycopersicum	Domesticated tomato	
	Zea mays ssp parviglumis	Teosinte	

3: BREC's built-in dataset of genomic data. The available genetic and physical maps for 44 species from (Corbett-Detig, Hartl,

2.4.1 Approximate, yet congruent HCB

  

	Chromosomal arm	Centromeric (Mb)	Telomeric (Mb)	
		Boundaries	Shift	Boundaries	Shift
		Reference BREC		Reference BREC	
	X	20.67	20.10	0.56	2.46	0.92	1.54
	2L	19.95	20.33	0.38	0.70	0.68	0.02
	2R	6.09	5.01	1.08	20.02	20.71	0.69
	3L	18.41	20.30	1.90	0.36	2.26	1.91*
	3R	8.35	3.77	4.58*	27.25	25.64	1.61
	Min. shift		0.38			0.02	
	Max. shift		4.58			1.91	
	Mean shift		1.70			1.15	
	Median shift		1.08			1.54	
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4: BREC HCB compared to reference boundaries from the reference genome of D. melanogaster. The shift is the absolute value of the distance between the BREC and the reference physical heterochromatin boundary. The first five rows represent all chromosomal arms. Grouped columns present reference, BREC and shift values for the centromeric boundaries (Columns 2-4), and for the telomeric boundaries (Columns 4-6). Here the boundary values correspond to the internal HCB. The external boundaries are represented by the physical positions of the first and the last markers of the chromosomes. All values are expressed in Megabase (Mb). The red asterisk indicates the largest shift value reported on centromeric and telomeric boundaries separately (see corresponding Figure 2.20). The last four rows represent general statistics on the shift value. From top to bottom, they are minimum, maximum, mean, and median respectively. See details on the shift metrics in Section Validation process:

Validation metrics

(2.3.3)

.
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	Chromosome	Centromeric left (Mb)	Centromeric right (Mb)
		Boundaries	Shift	Boundaries	Shift
		Reference BREC		Reference BREC	
	1	5.78	22.88	17.09	67.80	76.48	8.68
	2	3.15	1.51	1.64	27.43	21.31	6.12
	3	5.75	6.98	1.23	55.34	49.28	6.06
	4	5.48	1.21	4.27	54.92	47.21	7.72
	5	6.02	15.03	9.01	60.23	51.04	9.19
	6	1.50	1.68	0.19	29.62	20.42	9.20
	7	5.62	23.05	17.43	52.51	33.52 18.98*
	8	5.10	22.87	17.77	51.73	43.96	7.77
	9	4.38	32.51 28.12*	61.16	49.16	12.00
	10	4.40	24.37	19.97	58.83	49.92	8.91
	11	5.56	10.86	5.29	47.57	32.77	14.80
	12	7.27	14.34	7.07	60.27	54.33	5.94
	Min. shift		0.19			5.94	
	Max. shift		28.12			18.98	
	Mean shift		10.76			9.61	
	Median shift		8.04			8.80	

5: Results of BREC and reference HCB on the genome of S. lycopersicum. The shift is the absolute value of the distance between the BREC and the reference physical heterochromatin boundary. The first twelve rows represent all chromosomes. Grouped columns present reference, BREC and shift values for the left centromeric boundaries (Columns 2-4), and for the right centromeric boundaries (Columns 4-6). All values are expressed in Megabase (Mb). The red asterisk indicates the largest shift value reported on centromeric and telomeric boundaries separately (see corresponding Figure 2.21). The last four rows represent some general statistics on the shift value. From top to bottom, they are minimum, maximum, mean, and median respectively. See details on the shift metrics in Section Validation process: Validation metrics. 2.3.3.

  The approximate physical position of the pericentromere/centromere reported on the latest AaegL5 version of this genome

are: chr1: 145-177Mb/166Mb, chr2: 219-258Mb/243Mb, chr3: 184-219Mb/206Mb

(Matthews et al., 2018) (Supp Data 12)

. BREC chromatin boundaries showed a clear overlap for the centromeric regions with 4 to 12Mb distance from the centromeres to the closest BREC boundaries (chr1:

) 2.29. BREC supports the high variation of the pericentromeric regions between the Chapter 2. Recombination and heterochromatin regions three chromosomes. Also, for the first time, using BREC we were able to define the physical location of the telomeric regions of this genome.

Table 3 .

 3 1 presents an example of a brief comparison of such features between the Illumina, PacBio SMRT, and Oxford Nanopore MinION technologies[START_REF] Bansal | Sequencing Technologies and Analyses: Where Have We Been and Where Are We Going?[END_REF].

	Technology Illumina	Read Length 100-300 bp	Error Rate (%) 0.1	Estimated cost per Gb (US$) 40-60
	PacBio SMRT	10-100 kb	5-15	300-900
	ONT MinION Variable (up to 1,000 kb)	5-20	50-500

TABLE 3 . 1 :

 31 Comparison of the read lengths, error rates, and costs of various DNA Sequencing Technologies. [table from[START_REF] Bansal | Sequencing Technologies and Analyses: Where Have We Been and Where Are We Going?[END_REF], costs from[START_REF] Logsdon | Long-read human genome sequencing and its applications[END_REF] 

Chrs (n) a Scaffolds Expected size (Gb) a Assembly size (Gb) Missing (Mb) b "N" gaps (Mb) c

  

								% missing
								DNA d
	A. thaliana [TAIR10]	5	7	0.125	0.12	5.33	0.20	4.4
	D. melanogaster [dm6]	4	1,870	0.17	0.14	30.00	1.10	18.0
	H. sapiens[hg38]	23	594	3.42	3.25	162.00	161.00	10.3

TABLE 3 .

 3 

	2: Quantification of missing DNA in the reference genomes of three model organisms. [from (Peona, Weissensteiner, and Suh, 2018)] Notes | n: Haploid chromosome number. | We-
	blinks to sampled genome assemblies are listed in Supporting Infor-
	mation Data S1 of the original reference. | a Chromosome number
	and genome size estimates. Genome size estimates were converted
	from C-values into billion basepairs (Gb) assuming 1 pg = 0.978 Gb

(see original reference for data sources). | b Assembly size subtracted from expected genome size. | c Sum of all "N" nucleotides present in the genome assembly. | d Percentage of the expected genome size either missing in the assembly or assembled as "N" nucleotides.

  pipeline summarized in. The first four steps aim to produce datasets composed of both a reference genome and a contig set that can be compared to the reference. Further steps are separated in two paths:(1) the first path corresponds to a classic scaffolding with paired-end reads information leading to generation of paired-end scaffolding graph (PE graph), (2) whereas the second path includes repeated regions analysis. The original part of our work lies in the second path, which we describe in detail in Paragraph Repeated Regions analysis.

	Reference genome		
	1. Reads simulation	4. Graph generation	
	Reads	Paired-end graph	Enhanced paired-end graph
	2.Assembly	5. Solving graph	
	Contigs	Scaffolds	Enhanced scaffolds
	3. Mapping	6. Quality assessment
	SAM file	Quality comparison

FIGURE 3.15: 

Overview of the pipeline.

TABLE 3 .

 3 

			SPAdes			Minia	
	D.melanogaster	Minimap2	BWA-MEM	Minimap2	BWA-MEM
		PE only PE + RR PE only PE + RR PE only PE + RR PE only PE + RR
	Scaffolds	1894	2019	1861	2032	2212	2158	2307	2249
	Unaligned scaffolds	8	8	8	6	103	66	140	109
	Coverage (%)	83.586	83.147	83.564	83.163	82.691	82.357	82.749	82.42
	NG50	138 662 129 502 141 803 133 722 120 493 115 298 115 249 114 878
	Nb of misassemblies	708	552	770	567	159	164	252	261
	Improvement rate %	22.03	26.36	-3.14	-3.57
	TABLE 3.3: Result on the D. melanogaster dataset. Bold figures shows	
	the improvement achieved by the method. The improvement rate	
	on last row is calculated using the number of misassemblies (100×(PE	
			only -(PE+RR))/PE only).			
			SPAdes			Minia	
	C. elegans	Minimap2	BWA-MEM	Minimap2	BWA-MEM
		PE only PE + RR PE only PE + RR PE only PE + RR PE only PE + RR
	Scaffolds	4266	4597	4244	4541	5236	5286	5230	5301
	Unaligned scaffolds	0	0	0	0	1	0	3	4
	Coverage (%)	89.686	89.26	89.673	89.325	87.804	87.501	87.825	87.549
	NG50	33 576	29 337	33 157	29 884	24 884	24 437	24 864	24 275
	Nb of misassemblies	1770	1783	1893	1921	981	1009	1258	1305
	Improvement rate %	-0.73	-1.48	-2.85	-3.89

4: Result on the C. elegans dataset (whole genome). The improvement rate on last row is calculated using the number of misassemblies (100×(PE only -(PE+RR))/PE only).

TABLE 3 .

 3 

5: Number of misassemblies on the C. elegans dataset, chromosome per chromosome. Results are significantly better with SPAdes, and equivalent with Minia (see p-values).

aegypti Yellow fever mosquito animal invertebrate Anopheles gambiae African malaria mosquito animal invertebrate Apis mellifera scutellata

  

	(5) Using a sliding window,			
	apply a statistical test on each			
	cumulative R² curve to identify			
	centromeric boundaries			
	Pseudo algorithm for			
	HCB identification			
	Species	Common Name	Kingdom	Subgroup
	Aedes Honeybee	animal	invertebrate
	Bombyx mandarina	Silkworm	animal	invertebrate
	Caenorhabditis briggsae	Roundworm	animal	invertebrate
	Caenorhabditis elegans	Roundworm	animal	invertebrate
	Culex pipiens	Common house mosquito	animal	invertebrate
	Drosophila melanogaster	Fruitfly	animal	invertebrate
	Drosophila pseudoobscura	Fruitfly	animal	invertebrate
	Heliconius melpomene melpomene	Postman butterfly	animal	invertebrate
	Bos taurus	Cow	animal	vertebrate
	Canis lupus	Wolf	animal	vertebrate
	Cynoglossus semilaevis	Tongue sole	animal	vertebrate
	Danio rerio	Zebrafish	animal	vertebrate
	Equus ferus przewalskii	Prewalksii's horse	animal	vertebrate
	Ficedula albicollis	Collared flycatcher	animal	vertebrate
	Gallus gallus	Chicken	animal	vertebrate
	Gasterosteus aculeatus	Stickleback	animal	vertebrate
	Homo sapiens	Human	animal	vertebrate
	Lepisosteus oculatus	Spotted gar	animal	vertebrate
	Macaca mulatta	Rhesus macaque	animal	vertebrate
	Meleagris gallopavo	Turkey	animal	vertebrate
	Mus musculus castaneus	House mouse	animal	vertebrate
	Oryzias latipes	Medaka	animal	vertebrate
	Ovis canadensis	Bighorn sheep	animal	vertebrate
	Papio anubis	Olive baboon	animal	vertebrate
	Sus scrofa	Wild boar	animal	vertebrate
	Citrus reticulata	Mandarin Orange	plant	woody
	Gossypium raimondii	New world cotton	plant	woody
	Populus trichocarpa	Black cottonwood	plant	woody
	Prunus davidiana	David's peach	plant	woody
	Arabidopsis thaliana	Thale cress	plant	herbaceous
	Brachypodium distachyon	Purple false brome	plant	herbaceous
	Capsella rubella	Pink Shepherd's Purse	plant	herbaceous
	Citrullus lanatus lanatus	Watermellon	plant	herbaceous
	Cucumis sativus var. hardwickii	Cucumber	plant	herbaceous
	Glycine soja	Wild soybean	plant	herbaceous
	Medicago truncatula	Barrel medic	plant	herbaceous
	Oryza rufipogon	Wild rice	plant	herbaceous
	Setaria italica	Foxtail millet	plant	herbaceous
	Sorghum bicolor subsp. Verticilliflorum	Wild Sudan grass	plant	herbaceous
	Zea mays ssp parviglumis	Teosinte	plant	herbaceous
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Table 1

 1 BREC HCB compared to reference boundaries from the reference genome of D. melanogasterThe shift is the absolute value of the distance between the BREC and the reference physical heterochromatin boundary. The first five rows represent all chromosomal arms. Grouped columns present reference, BREC and shift values for the centromeric boundaries (Columns 2-4), and for the telomeric boundaries. Here the boundary values correspond to the internal HCB. The external boundaries are represented by the physical positions of the first and the last markers of the chromosomes. All values are expressed in Megabase (Mb). The asterisk indicates the largest shift value reported on centromeric and telomeric boundaries separately (see corresponding Additional file 3). The last four rows represent general statistics on the shift value. From top to bottom, they are minimum, maximum, mean, and median respectively. See details on the shift metrics in "Validation metrics" section detection of telomeric and centromeric regions, our results show a similar high resolution (see Table1 and Additional file 3). Then we analysed BREC's robustness using simulations of a progressive data degradation (see Additional files8 and 11). Even if BREC is sensitive to the markers' distribution and thus to the local markers' density, it can correctly handle a low global markers' density. For the D. melanogaster genome, a density of 5 markers/Mb seems to be sufficient to detect the HCB accurately.

	Chromosomal arm	Centromeric (Mb)			Telomeric (Mb)		
		Boundaries		Shift	Boundaries		Shift
		Reference	BREC		Reference	BREC	
	X	20.67	20.10	0.56	2.46	0.92	1.54
	2L	19.95	20.33	0.38	0.70	0.68	0.02
	2R	6.09	5.01	1.08	20.02	20.71	0.69
	3L	18.41	20.30	1.90	0.36	2.26	1.91*
	3R	8.35	3.77	4.58*	27.25	25.64	1.61
	Min. shift	0.38			0.02		
	Max. shift	4.58			1.91		
	Mean shift	1.70			1.15		
	Median shift	1.08			1.54		

  WSPC/INSTRUCTION FILE output 4 QD, RC, YM, ASFL, AC

  WSPC/INSTRUCTION FILE output 6 QD, RC, YM, ASFL, AC

Table 1 :

 1 Result on the D. melanogaster dataset. Bold figures shows the improvement achieved by the method. The improvement rate on last row is calculated using the number of misassemblies (100×(PE only -(PE+RR))/PE only).

	• Simulated technology: Illumina HiSeq 2000 • Coverage: 20X • Reads size: 100bp • Insert size 300bp • Standard deviation: 10%

Table 2 :

 2 WSPC/INSTRUCTION FILE output Involving Repetitive Regions in Scaffolding Improvement 9 Result on the C. elegans dataset (whole genome). The improvement rate on last row is calculated using the number of misassemblies (100×(PE only -(PE+RR))/PE only).

			SPAdes				minia	
	C. elegans	minimap2	BWA-MEM	minimap2	BWA-MEM
		PE only PE + RR PE only PE + RR PE only PE + RR PE only PE + RR
	Scaffolds	4266	4597	4244	4541	5236	5286	5230	5301
	Unaligned scaffolds	0	0	0	0	1	0	3	4
	Coverage (%)	89.686	89.26	89.673	89.325	87.804	87.501	87.825	87.549
	NG50	33 576	29 337	33 157	29 884	24 884	24 437	24 864	24 275
	Nb of misassemblies	1770	1783	1893	1921	981	1009	1258	1305
	Improvement rate %		-0.73		-1.48		-2.85		-3.89

Table 3 :

 3 Number of misassemblies on the C. elegans dataset, chromosome per chromosome. Results are significantly better with SPAdes, and equivalent with minia (see p-values).

  WSPC/INSTRUCTION FILE output Involving Repetitive Regions in Scaffolding Improvement 11

En premier lieu, nous proposons un outil de calcul automatisé, basé sur la méthode des cartes de Marey, permettant d'identifier les limites d'hétérochromatine le long des chromosomes et d'estimer les taux de recombinaison locale. Notre méthode, appelée BREC (heterochromatin Boundaries and RECombination rate estimates) n'est pas spécifique au génome, et s'exécute même sur des génomes non modèles tant que des cartes génétiques et physiques sont disponibles. BREC est basé sur des statistiques et axé sur les données, ce qui implique qu'une bonne qualité des données d'entrée reste une exigence forte. Par conséquent, un module de pré-traitement des données (nettoyage et contrôle de la qualité des données) est fourni. Les résultats de BREC permettent de mener une approche de génomique comparative sur les régions hétérochromatiques identifiées en terme de paysage de recombinaison, de densité de ET, etc.

Nous avons fait le choix de ne pas faire apparaître les citations dans ce résumé long, leur densité risquant d'en gêner la lecture.

Nous avons testé la méthode sur deux génomes de référence considérés comme de bonne qualité, le génome de la drosophile D. melanogaster et le génome du nématode Caenorhabditis Elegans. Le premier est connu pour comporter des répétitions et notamment des ET, le second est moins riche en répétitions. Plusieurs méthodes d'assemblage et d'alignement ont été testées. Nous avons notamment observé le nombre de discordances d'assemblage par rapport à la référence. Les résultats se révèlent encourageant pour le génome de la drosophile pour un type d'assembleur, et à retravailler pour C. elegans. Nous avons ensuite analysé ces résultats sous le prisme des ET et constaté qu'ils sont très largement impliqués dans les discordances restantes.

Institut des Sciences de l'Évolution de Montpellier, France 1.4. Mosquitoes: an interesting model to aim for

Chapter 2. Recombination and heterochromatin regions
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Supplementary figures

Chapter 4 In an attempt to explain, as precisely as possible, the impact of TEs on the evolution of genomes, we needed to produce various types of information regarding their abundance, distribution and dynamics, at the genome-wide scale. To do so, we started with developing a set of computation methods and tools which are nongenome specific. We distinguish two contributions, the first one providing analysis on the chromatin structure of genomes, the second one focusing on the production of high quality genomes.

Conclusion and Perspectives

BREC : A user-friendly tool for accurate recombination rate and chromatin boundary estimates

In chapter 2 , we propose an automated computational tool, based on the Marey maps method, allowing to identify heterochromatin boundaries along chromosomes and estimating local recombination rates: called BREC for Boundaries and RECombination rate estimates. BREC is provided within an R-package and a Shiny webbased graphical user interface. BREC takes as input the same genomic data, genetic and physical distances, as in previous tools. It follows a workflow that, first, tests the data quality and offers a cleaning option, then estimates local recombination rates and identify HCB. Finally, BREC re-adjusts recombination rate estimates along heterochromatin regions, the centromere and telomere(s).

BREC is non-genome-specific, running even on non-model genomes as long as genetic and physical maps are available. BREC handles different markers' density and distribution issues.

Appendix A

Communications

FIGURE A.1: Vertical timeline for the main scientific communications related to this thesis project.

A. Meiotic recombination is a vital biological process which plays an essential role for investigating genome-wide structural as well as functional dynamics. Various methods for estimating recombination rates exist in the literature. Population genetic based-methods [Stumpf and McVean, 2003] provide accurate fine-scale estimates. Nevertheless, these methods are very expensive, time-consuming, require a strong expertise and, most of all, are not applicable on all kinds of organisms. Moreover, the sperm-typing method [Je↵reys et al., 2000], which is also extremely accurate providing high-density recombination maps, is male-specific and share the same experimental requirements as population genetic methods. On the other hand, a purely statistical approach, the Marey Maps [Chakravarti, 1991], could avoid some of the above issues based on other available genomic data : the genetic and physical distances. The Marey maps for recombination estimates consist on correlating, for the same chromosome, the physical map with the genetic map containing respectively physical distances and genetic distances for a set of genetic markers. Despite the e ciency of this method and mostly the availability of physical and genetic maps, generating recombination maps rapidly and for any organism is still challenging. Hence, the increasing need of an automatic, portable and easy-to-use tool.

Here, we propose an automated bioinformatic solution based on the Marey maps method in order to provide local recombination rate estimates for various organisms. Furthermore, our approach allows to determine the eu-hetero-chromatin boundaries along chromosomes. This functionality is fundamental for identifying the location of the peri/centromeric and telomeric regions known to present a reduced recombination rate in most genomes. Most importantly for genomes which are provided as whole chromosomes instead of two arms per chromosome. We implemented our recombination tool by fitting a third-order polynomial to each chromosome based on genetic and physical maps. Compared to previous tools [Fiston-Lavier et al., 2010, Rezvoy et al., 2007], we have add a couple of new modules as to assess the quality of the data ⇤ Speaker † Corresponding author: yasmine.mansour@umontpellier.fr

Non-genome specific tool

Computational tool and results : Drosophila melanogaster genome -Release 5 -chromosome 2

We thank the Algerian Government and particularly the Ministry of Higher Education and Scientific Research for funding this thesis, and also the LabEx CeMEB (ERJ) for funding a part of this study.

Data quality control

Using inter-marker ranges of physical distances to assess :

• The number of data points per chromosome • Their distribution along the chromosome :

Chi-squared test χ 2

• Boolean function to alert the user of his data quality

Data cleaning

A sample of available genetic and physical maps for 40 species [6] updated with new genome versions and enriched with 2 recently assembled mosquito genomes : Culex pipiens and Aedes aegypti [8] Meiotic recombination : Crossing-over Step 0 -Apply data pre-processing

Since we have noticed that BREC estimates are sensitive to the quality of input data, we propose a pre-processing step to assess data quality and suggest an optional data cleaning for outliers. As such, we could ensure proper functioning during further steps. Data quality control (DQC) The quality of input data is tested regarding two criteria: (1) the density of markers and ( 2) the homogeneity of their distribution on the physical map along a given chromosome. First, the mean density, defined as the number of markers per physical map length, is computed. This value is compared with the minimum required threshold of 2 markers/Mb. Based on the displayed results, the user gets to decide if data cleaning is required or not. The threshold of 2 markers/Mb is selected based on a simulation process that allowed to test BREC results while decreasing markers density until the observed HCB estimates seemed to be no longer exploitable (see "Simulated data for quality control testing" section). Second, the distribution of input data is tested via a comparison with a simulated uniform distribution of identical markers density and physical map length. This comparison is applied using Pearson's χ 2 test [START_REF] Agresti | An introduction to categorical data analysis[END_REF], which allows examining how close the observed distribution (input data) is to the expected one (simulated data).

Data cleaning The cleaning step aims to reduce the disruptive impact of noisy data, such as outliers, in order to provide a more accurate recombination rate and heterochromatin boundary results. If the input data fails to pass the Data Quality Control (DQC) test, the user has the option to apply or not a cleaning process. This process consists of identifying the extreme outliers and eliminating them upon the user's confirmation. Outliers are detected using the distribution statistics of the genetic map (see Additional file 18). More precisely, inter-marker distances (separating each two consecutive points) are computed along the genetic map. Using a boxplot, distribution statistics (quartiles, mean, median) are applied on these inter-marker distances to identify outliers, which are chosen as the 5% of the data points with a greater genetic distance than the maximum extreme value, and should be discarded. Thus, the cleaning targets markers for which the genetic distance is quite larger than most of the rest. After the first cleaning iteration, DQC is applied again to assess the new density and distribution. The user can also choose to bypass the cleaning step, but BREC's behavior is no longer guaranteed in such cases.

Step 1 -Estimate Marey Map-based local recombination rates

Once the data are cleaned, the recombination rate can be estimated based on the Marey map [20] approach by: (1) correlating genetic and physical maps, (2) generating two regression models -third degree polynomial and Loess-that better fits these data, (3) computing the prime derivative for both models which will represent preliminary recombination maps for the chromosome. The primary purpose of interpolation here is to provide local recombination rate estimates for any given physical position, instead of only the ones corresponding to available markers.

At this point, both recombination maps are used to identify the chromosome type as well as the approximate position of centromeric and telomeric regions. Nevertheless, as a final output, BREC will return only the Loess-based adjusted map for recombination rates since it provides finer local estimates than the polynomial-based map. 
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B.1 The journey of my PhD towards bioinformatics

B.4 Co-supervision experience

Co-supervised a Master's internship student thanks to a grant from Labex CeMEB (6Ke)

• ERJ project : 1st edition offering funding to build a junior research team, 2018;

• based on a selected research project;

• as a support for the PhD student's research (hardware, conference fees, etc.);

• gratification of the intern Rémy COSTA (M1 BCD); 

C.2 Analysis of the distribution of TEs along the Cx. pipiens genome

To analyse the TE distribution in genomes, we have first to identify and qualify repeats along the sequence. This task present an intrinsic complexity, due at the The TE distribution is the consequence of both TE insertion bias and natural selection against deleterious TE insertions. As both TE families are known to be active in this genome, our results may suggest a TE insertion bias. However, we can exclude that long TE elements insertions like LINEs (around 9kb length) are more deleterious than MITEs (around 100bp length) in gene-rich regions. By consequence, such elements might be rapidly removed by purifying selection.