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du Laboratoire de Mécanique et d’Energétique d’Evry, pour la confiance qu’il m’a accordée
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Mâıtre de Conférences du Laboratoire de Mécanique et d’Energétique d’Evry, pour son

attention de tout instant sur mes travaux, pour ses conseils avisés, son écoute ainsi que sa
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vail.
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Chapter 1

General introduction

1.1 Background

Dynamic frictional contact involving recoverable interface adhesion represents a frequent

phenomenon of contact. Widely observed in nature, with examples on both the macroscopic

scale such as biological sticky pads of lizards and insects [4], and the microscopic scale such

as cell to cell contact [5, 6], recoverable adhesive contact has attracted significant attention

in research. In the adhesive contact, the adhesion effect is caused by intermolecular forces,

such as Van Der Waals forces and hydrogen bond, see Figure 1.1. There are numerous

examples of intermolecular forces in real life: adhesives contain polyvinyl alcohol and

water, which fuse to form hydrogen bonds, resulting in strong adhesion [7]; Gecko’s feet

has nearly five hundred thousand keratinous hairs or setae, which allow them to crawl on

walls due to van der Waals forces [8], see Figure 1.2.

Then, interface adhesion anisotropy is another topical issue, which have been inves-

tigated both experimentally and theoretically [9, 10, 11] by researchers in the area of

biomechanics, leading to numerous applications, such as bio-mimetic adhesive materials

[12, 13], as Figure 1.3. Some of them incorporate anisotropic interface properties of ad-
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Hydrogen bond

(a) (b)
Atom Atom

Nucleus Electron

Atom Atom

Van Der Waals Force

Figure 1.1: (a) Schematic of hydrogen bonds between polyvinyl alcohol (PVA)[1]; (b)
Schematic of Van Der Waals force

hesion [14, 15, 16, 17, 18, 19, 20]. In the area of anisotropic friction modelling, recent

contributions have led to numerous orthotropic interface models. We cite in particular the

development of orthotropic slip functions [21, 22, 23], orthotropic dry interface model [24]

and elasto-plastic interface model [25]. Konyukhov et al. proposed a series of contribu-

tions which implement anisotropic interface adhesion based on covariant description of the

interface kinematics [26, 27, 28]. Moreover, adhesive properties are often observed on the

surface of soft materials [29, 30], therefore many efforts have been made to investigate the

link between material properties and adhesion, such as rubber [31, 32, 33], biological soft

tissues [34, 35, 36, 37].

In the area of numerical modelling, despite the efforts exerted over the last decade to

develop adhesive contact algorithms [38, 39, 40], modelling realistic 3D problems of contact

and friction with recoverable adhesion involving both bonding and de-bonding between soft

matters, is still a challenging topic [41, 42], as well as, literature on modelling schemes ac-

counting for interface adhesion anisotropy is still in initial state [43, 44]. Achieving such

models requires first, an appropriate description of the contact laws in both normal and

tangential directions with a proper account for reversibility of the 3D interface adhesion,

and a robust and stable resolution algorithm, that can deal with the computational diffi-

culties inherent to the problem non-linearities. Secondly, adhesion anisotropy should also

3
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Figure 1.2: Structural hierarchy of the gecko adhesive system[2]

be considered to meet requirements of real applications. It has been demonstrated that nu-

merous factors during the bonding process may affect the final state of adhesion anisotropy

[45]. In this regard, both bonding and de-bonding processes including the interplay be-

tween adhesion forces and the state of damage of the adhesive bonds must be taken care

of. Therefore, properly modelling the bonding and de-bonding processes becomes one of

our main focuses. In the numerical modelling of surface adhesion associated with biolog-

ical soft tissues, the schemes of soft tissue structure [46, 47, 48] and interfacial adhesion

[49, 50, 41] have been respectively significant advances, however, little effort has been ex-

erted to propose a modelling scheme for biological soft tissues with surface adhesion [51].

Such modelling schemes, in addition to the previously described adhesive contact model,

should also involve a precise construction of structural continuum constitutive models of

soft tissue that incorporate information about the tissue morphology allowing for the in-

vestigation of the interrelation between structure and function in response to mechanical

loading [52].
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100 μm

Figure 1.3: Bio-mimetic mushroom-shaped fibrillar adhesive microstructure[3]

1.2 Literature review on related subjects

In order to construct a numerical model capable of dealing with dynamic three-dimensional

contact problems with adhesion and friction, we adopt the bi-potential contact approach

[53] and the Raous-Cangémi-Cocou (RCC) adhesive model [54] respectively, which can

thus be used to simulate adhesive contact problems with different hyperelastic materials.

1.2.1 Raous-Cangémi-Cocou adhesive model

Concerning the adhesive interface law, a number of models have been developed over

the past decades. The most prominent ones include Johnson-Kendall-Roberts (JKR)[49],

Maugis-Dugdale (MD)[50], and Greenwood and Johnson models[55]. These models, pro-

posed as early as the 1970s and considered as reference in the area ever since, provided the

5



theoretical basis for the contact and friction modelling of adhesive interfaces. Although

these early models are limited to simple, normal-load scenarios, they inspired numerous

subsequent researches that offer extension to mixed-load schemes involving normal and

tangential loads. We also note a few recent achievements based on finite element contin-

uum contact models that incorporate mixed mode constitutive interface laws [56, 42, 57],

all of which can describe the reaction of adhesive interfaces under complex load involving

tension and shear.

β

time

1

0

B
on

di
ng

Fully bonded adhesion
D

ebonding

Figure 1.4: Graphic representation of adhesive intensity β

In order to simulate complex interface behaviours with reversible adhesion, we adopt the

Raous-Cangémi-Cocou (RCC) model [58, 59, 60, 54], which over the years has confirmed

its robustness in dealing with adhesive frictional contact. The RCC model incorporates

a complete set of interface law involving friction and reversible adhesion. It describes

the strength of interface adhesion by prescribing an intensity parameter β [61]. Varying

between 0 and 1, as shown in Figure 1.4, β characterizes the damage level of the interface

adhesive bonds (0 refers to the state of complete de-bonding, 1 refers to complete bonding),

and subsequently describes the reversible de-bonding and bonding process as function of

the geometrical configuration of the contact interface [41, 62]. From thermodynamic point

of view, β derives from a free surface energy and a surface dissipation pseudo-potential.

In this regard, the RCC interface model can be considered as a particular case of the

6



unified adhesion interface model given in [63], which is similar to the Generalized Standard

Material (GSM) [64] for material modelling.

1.2.2 Bi-potential method

The second aspect that requires attention is the severe non-linearities inherent in contact

dynamics. In addition, the non-smooth and multivalued nature of the adhesive interface

law gives rise to further computational difficulty. It is therefore necessary to apply robust,

and stable algorithms to ensure iteration convergence, solution accuracy with balanced ef-

ficiency. A large number of algorithms for the modelling of contact problems by the finite

element method have been presented in the literature. See, for example, the monographs by

Wriggers [65] and Yastrebov [66], and the references therein. General computational meth-

ods for numerical treatment of contact constraints include penalty method [67], Lagrangian

multiplier method [68] and augmented Lagrangian method [69, 70]. The classical penalty

function method is a common algorithm for solving constrained optimization problems.

However, contact boundary conditions and friction laws represent significant numerical

difficulty, then it is tricky for the user to choose appropriate penalty factors. The method

may become unstable with numerical oscillations when the system approaches the state

of contact. In contrary, the Augmented Lagrangian Method is a convenient variant that

overcomes the aforementioned disadvantages of the penalty method. The Augmented La-

grangian Method was first introduced to deal with constrained minimization problems.

Since friction problems are not a minimization problem, the method has been extended by

Alart and Curnier [69], Simo and Laursen [70] to suit for problems of contact and friction.

We propose to use the bi-potential theory which was also developed based on the

augmented Lagrangian method, and in the first place, to solve contact problems in the

context of what is called implicit standard materials (ISM) [71, 53]. Compared to two

previous approaches, the bi-potential method couples the two variational inequalities of the

7
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Figure 1.5: Coulomb’s cone Kµ and its polar cone K∗µ

unilateral contact and friction law into one single displacement based variational principle

with one unique inequality. The frictional contact problem is treated in a reduced system

by means of a predictor-corrector solution algorithm in this method, where the corrector

can be analytically found with respect to the three possible contact statuses: τ ∈ Kµ

(sticking), τ ∈ K∗µ (no contact) and τ ∈ <3 − (Kµ ∪ K∗µ), where K∗µ is the polar cone

of Kµ, see Figure 1.5. Introduced in the 1990s, the approach has been recently extended

to problems involving hyperelatic or elastic-to-plastic contact [72, 73, 74] with interface

wear [75, 76]. In the area of adhesive contact modelling, the bi-potential theory has been

recently applied to solve 2D interface adhesion between elastic materials [77].

1.2.3 Hyperelastic materials

Hyperelastic material refers to a constitutive model of an ideal elastic material in which

the stress-strain relationship is expressed as a strain energy density function. Linear elastic

models do not properly explain the observed material behaviour for all deformable materi-

als, such as rubber, which is non-linearly elastic, isotropic, incompressible. Hyperelasticity

provides a means of modelling the stress-strain behaviour of such materials [78]. The Saint
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Venant–Kirchhoff model is one of the simplest hyperelastic material model, which is an

extension of the geometrically linear elastic material to the hyperelastic regime. In addi-

tion, there are numerous hyperelastic material models, such as Neo-Hookean model [79],

Mooney-Rivlin model [80], Ogden model [81], Gent model [82] etc. As well as, some con-

stitutive models to simulate the anisotropic hyperelasticity of biological soft tissues, such

as Holzapfel-Gasser-Ogden (HGO) model [83, 84]. More recently, Cai et al. proposed new

polyconvex constitutive models of soft tissues [85, 86].

In this thesis, we adopt the Blatz-Ko hyperelastic model, which is used to model com-

pressible foam-type polyurethane rubbers [87], to investigate the adhesive contact problems

between soft matters, this material model will always be present in the content of Chapters

2 and 3. In Chapter 4, we select HGO model to simulate the surface adhesion of collagenous

biological soft tissues. The collagen fibers behaviour lead to the anisotropy [52], which is

loaded in tension and buckled under compression [88]. Therefore, fibers arrangement has

a significant effect on the mechanical behaviour of soft tissues. Meanwhile, the matrix of

soft tissues behaves in an isotropic manner, hence the energy densities of collagenous soft

tissues contain isotropic and anisotropic parts [89, 90], and each collagen fiber family has an

independent anisotropic energy density. Following the formulation of HGO model, it has

been recently extended to problems involving modelling of atherosclerotic plaque delam-

ination [51] and brain tissue [91], fibers arrangement effect[92], and different hyperelastic

material comparison of matrix [93]. In our work, we extend the HGO model combining

with Yeoh hyperelastic constitutive law [94, 95] to represent the anisotropic hyperelastic

behaviour of soft tissues.

1.3 Dissertation structure

This thesis is organized in the following manner:
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In the current Chapter, we first present the background of the thesis, explaining the

current research results and the application directions of adhesive contact in the related

field. We then present, in the field of numerical simulation, the current challenges in

constructing the adhesive contact model capable of dealing with related quasi-industrial

problems. Furthermore, to overcome this challenge, the contact method, the adhesive

model and the material model chosen for this thesis are all illustrated.

In Chapter 2, an extended, ready-to-implement 3D model for quasi-industrial problems

of contact with friction and recoverable interface adhesion between soft material is for-

mulated using the Raous-Cangémi-Cocou (RCC) interface model and a bi-potential based

resolution method. According to the RCC description, the recoverable adhesive interface

behaviour derives from a free surface energy and a surface dissipation pseudo-potential.

The obtained interface law describes both the de-bonding process of adhesive links due

to tangential and normal interface deformation, and reversely, the bonding process that

takes place when two surfaces approach closely enough. We then propose an associated

formulation coupling 3D extended interface law and Blatz-Ko hyperelastic material, that

enables modelling large deformations of foam type soft matters under conditions of contact

and friction with recoverable adhesion. In the end, the subsequent local contact nonlin-

ear equations are solved using a Newton-like algorithm within the bi-potential framework.

Numerical examples are performed to demonstrate the capacity of the proposed approach.

Based on the formulation of Chapter 2, in order to deal with more complex contact

interface situations, an orthotropic adhesion model is proposed in Chapter 3 to solve ad-

hesive contact problems with orthotropic interface properties between hyperelastic bodies.

The model proposes a straightforward description of interface adhesion with orthotropic

adhesion stiffness, whose components are conveniently expressed according to the local or-

thogonal Cartesian coordinate system. Based on this description, a set of extended unilat-

eral and tangential contact laws has been formulated. Furthermore, we use an element-wise

scalar parameter β to characterize the strength of interface adhesive bonds, and the effects
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of damage. Therefore, complete cycles of bonding and de-bonding of adhesive links with

the account for orthotropic interface effects can be modelled. The proposed model has

been tested on cases involving both tangential and unilateral contact kinematics. The test

cases allowed emergence of orthotropic interface effects between elastomer bodies involv-

ing hyperelasticity. Meanwhile, the model can be implemented with minimum effort, and

provides inspiration for the modelling of adhesive interface effects in areas of applications

such as biomechanics.

In Chapter 4, a numerical formulation is proposed based on the Holzapfel-Gasser-Ogden

(HGO) model incorporating interfacial adhesion to investigate the effect of anisotropic hy-

perelastic behaviours of soft tissues on surface adhesion. The HGO anisotropic hyperelastic

constitutive law is widely used to model collagen fiber reinforced biological soft tissues, its

anisotropy arises from collagen fiber behaviour, and the matrix of soft tissues is isotropic

in nature. The energy densities of collagenous soft tissues contain both isotropic and

anisotropic components, each collagen fiber family has an independent anisotropic energy

density. In this work, the Yeoh hyperelastic constitutive law is adopted to model non-

collagenous matrix of soft tissues. We use the same adhesive contact constitutive law

constructed in Chapter 2, and then introduce the HGO anisotropic hyperelastic model

into the contact model. Numerical examples are performed to demonstrate the effect of

material anisotropy on surface adhesion.

In reality, the adhesive effect of adhesive tapes decreases with frequent contact. How-

ever, the contact model with recoverable adhesion and friction mentioned in Chapter 2

describes a perfectly reversible adhesion, which means that the adhesion intensity β can

always achieve 1 with a sufficient contact time. In response to more complex adhesive con-

tact problems, Raous et al. propose a relationship between the β maximum value and the

bond breakage level in adhesive bonds, which regulates the amount of adhesive degradation

through the product of a scalar parameter and the bond breakage level per debonding

process. In Chapter 5, we incorporate this relationship into our adhesive contact law for
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modelling adhesive degradation under cyclic loading. Numerical examples are performed

to demonstrate the effect of adhesive degradation by comparing perfectly recoverable cases

with partially recoverable cases.

In Chapter 6, we conclude the thesis and give perspectives on future research.
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Chapter 2

A bi-potential contact formulation

for recoverable adhesion between soft

bodies based on the RCC interface

model

2.1 Introduction

In this chapter, a 3D numerical formulation for contact problems with friction and recov-

erable interface adhesion between soft material is formulated using the Raous-Cangémi-

Cocou (RCC) interface model and a bi-potential based resolution method. The recoverable

adhesive interface law describes the bonding and debonding processes due to tangential and

normal interfacial deformation. We then incorporate a three-dimensional extended inter-

face law and Blatz-Ko hyperelastic materials for modelling large deformations of foam-like

soft materials under contact conditions with friction and recoverable adhesion. Finally,

the subsequent local contact nonlinear equations are solved using a Newton-like algorithm
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within the bi-potential framework.

In the following, in Section 2.2, after a brief description of the contact kinematics,

the RCC model is described, next, the complete framework of the adhesive contact law is

constructed, which includes extended formulations of Signorini contact law and Coulomb

friction rules. Then we present its implementation within the bi-potential framework, and

provide the formulation of the Blatz-Ko hyperelastic material. In Section 2.3, the complete

finite element formulation of the problem, including the resolution algorithm, is provided.

To validate the framework, we present numerical examples in Section 2.4. In the end, a

few concluding remarks are drawn in Section 2.5.

2.2 Problem setting

2.2.1 Contact kinematics

We describe in this section the geometric definitions and notations related to the contact

kinematics. Let’s consider two deformable bodies B1 and B2 coming into contact with

Nc contact points. Each body is discretized with finite elements with nodal positions

represented by X1 (for B1) and X2 (for B2) defined in the global coordinate system.

Contact points belonging to B1 are denoted by Pα
1 (α = 1, 2, ...Nc), and accordingly Pα

2 .

Positions of Pα
1 and Pα

2 can be written using an interpolation matrix B1 (accordingly B2)

as:

X(Pα
1 ) = B1X1, X(Pα

2 ) = B2X2. (2.1)

We consider on each Pα
1 a local orthogonal coordinate system, formed by T1, T2 and N,

representing respectively the tangential, and normal direction vectors defined with respect

to the global coordinates. Therefore, Pα
1 can be seen as the projection point of Pα

2 on B1.
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We can build the relative position between Pα
1 and Pα

2 by

Xα = X(Pα
2 )−X(Pα

1 ), (2.2)

with X(Pα
1 ) and X(Pα

2 ) the position vectors of Pα
1 and Pα

2 in the global coordinates. We can

then introduce xα, the local relative position vector of the contact point α, by projecting

Xα in the system (T1,T2,N):

xα =


xαt1 = TT

1 Xα

xαt2 = TT
2 Xα

xαn = NTXα

 . (2.3)

We can thus express the local position vector xα as function of the global vector X:

B1

B2

P1

P2

g N

T1

T2

Figure 2.1: Contact kinematics

xα = HαX
α, (2.4)

where Hα is the transition matrix obtained by combining Eqs.(2.1,2.2,2.3). Similar rela-

tions can be determined with respect to contact forces. The local gap vector between two
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contact points can be derived from the incremental form of Eq.(2.4):

xαi+1 = Hα∆Xα
i + gα, (2.5)

with gα = (0, 0, gα)T , the initial gap vector.

Then, let’s denote the local and global contact force vectors with respectively rα and

Rα. By writing the virtual work

(rα)T δxα = (Rα)T δXα, (2.6)

we obtain the relation between contact force vectors expressed in local and global coordinate

systems:

Rα = HT
αrα. (2.7)

Here, due to the presence of adhesion on the contact interface, contact reaction rα is

composed of the cumulative effects due to both dry contact and the interface adhesion,

hence

rα = r̄α + r̃α, (2.8)

in which we use r̄ to denote contact reactions associated with unilateral contact and tan-

gential friction, and r̃ contact forces due to interface adhesion. Note that the above relation

can be projected to the local coordinate system according to the normal and tangential

directions:  rαn = r̄αn + r̃αn

rαt = r̄αt + r̃αt

. (2.9)

We now assemble all the Nc contact points based on Eqs.(2.4,2.5,2.7), we obtain the
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following geometric and kinematic relations:

 x = H∆X + g

R = HT r
, (2.10)

with

H =


H1

...

HNc

 , x =


x1

...

xNc

 , r =


r̄1 + r̃1

...

r̄Nc + r̃Nc

 , g =


g1

...

gNc

 . (2.11)

2.2.2 RCC model for recoverable adhesion

We use in this work the RCC model to describe the effect of recoverable adhesion between

contact surfaces introduced by Raous et al. [54], this model accounts for unilateral contact,

friction and adhesion, based on an energy description of the contact interface, involving a

free surface energy Ψ written as:

Ψ(xt, xn, β) =
Cn
2
x2
nβ

2 +
Ct
2
‖xt‖2β2 − wβ +

⋃
<+

(xn) +
⋃
Q

(β) , (2.12)

and a pseudo-potential of the surface dissipation Φ:

Φ(ẋt, xn, β̇) = µ|rn − Cnxnβ2|‖ẋt‖+
b

2
|β̇|2 . (2.13)

In these expressions, β is a scalar parameter measuring the intensity of adhesion [61],

with β ∈ [0, 1]. Specifically, β = 0 represents no adhesion, β = 1 indicates perfect adhesion.

Therefore, any β ∈ (0, 1) refers to partial adhesion between contact surfaces. Other param-

eters in Eqs.(2.12,2.13) include: Ct and Cn: parameters characterizing the initial adhesive

stiffness when adhesion is complete, w: decohesion energy threshold,
⋃

: indicator function

that assures unilateral contact (xn > 0), and meaningful values of the degree of adhesion.
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The subscript Q indicates Q = {η | 0 6 η 6 1}, µ: friction coefficient, b: surface viscosity.

Deriving the surface free energy Eq.(2.12), we obtain the expression of the normal force of

adhesion:

radn = Cnxnβ
2 , (2.14)

and the tangential force of adhesion:

radt = Ctxtβ
2 . (2.15)

Both adhesion forces are dependant on the degree of adhesion β. Then deriving energy

functions Eq.(2.12) and Eq.(2.13) with respect to β and β̇ yields the incremental expression

of β which gives its evolution in time:


bβ̇ ≥ 0 with β = 0

bβ̇ = w − (Cnx
2
n + Ct‖xt‖2)β with 0 < β < 1

bβ̇ ≤ w − (Cnx
2
n + Ct‖xt‖2) with β = 1 .

(2.16)

In Eq.(2.16), we can see that two components may impact the variation of β: the

decohesion energy w and the elastic energy of the interface. When interface elastic energy

prevails, β̇ becomes negative, leading to decreasing β. Otherwise, β̇ is positive, then β

increases. We can view this adhesive model as a special spring system whose elasticity

incorporates damage and self-recoverable behaviours. In this regard, the value of β can

be seen as the degree of damage of the spring, whose stiffness is adjustable based on β.

Therefore, the decrease of the degree of adhesion β corresponds to the process of spring

damage and breaking. Inversely, it can be seen as a recovering process of the spring

stiffness.
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2.2.3 Adhesive contact law and friction rule

Modified Signorini law with adhesion

We recall the unilateral contact law, also called Signorini law, which for classical dry contact

is characterized by conditions of non-penetration and non adhesion. By using r̄αn to denote

local normal contact force on the point α due to dry contact, and the contact distance xn,

we have  xαn = ∆xαn + g = 0, r̄αn > 0

xαn = ∆xαn + g > 0, r̄αn = 0
⇒ xαn r̄

α
n = 0 . (2.17)

The first relation eliminates geometric penetration between contact surfaces. The second

inequality indicates the absence of adhesion forces between dry contact surfaces once they

are separated. For adhesive contact, since contact forces result from both the effects of dry

contact and adhesion, the classical conditions of unilateral contact should be modified by

considering Eq.(2.8), hence

 xαn = 0, rαn − r̃αn > 0

xαn > 0, rαn = r̃αn

⇒ xαn(rαn − r̃αn) = 0 . (2.18)

Here, normal adhesive forces r̃αn are zeros with surfaces in contact. They will appear when

contact surfaces start to separate (the second relation), and r̃αn will tend to maintain the

contact surfaces together. By considering Eq.(2.14), a modified Signorini condition with

account for adhesion writes xαn = 0, rαn − Cnxαnβ2 > 0

xαn > 0, rαn = Cnx
α
nβ

2
⇒ xαn(rαn − Cnxαnβ2) = 0 . (2.19)

The obtained unilateral contact law that incorporates the effect of interface adhesion

(Eq.(2.19)) can be graphically represented by Figure 2.2.
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Figure 2.2: Modified Signorini law with adhesion: graphic representation of normal adhe-
sion forces and the level of damage evolving with contact distance. An empirical limit of β,
denoted by ε, is adopted. With β < ε (ε = 10−4), adhesion bonds are considered broken.

By assuming perfect adhesion (β = 1) at xn = 0, the state of interface adhesion that

evolves with xn can be distinguished by three major phases:

(i) Fully bonded adhesion: Adhesion bonds remain undamaged (β = 1). In this

phase, elastic energy due to xn does not exceed the decohesion threshold w. Hence,

linear relationship dominates the adhesion force vs. displacement curve (light green

area in Figure 2.2).

(ii) Adhesion with damage: This phase is highlighted by the light cyan area in Figure

2.2. In this phase, β decreases as the decohesion energy w is overpassed. Damage

starts to accumulate on adhesion bonds. Adhesion force r̃αn = Cnx
α
nβ

2 continues

to increase briefly with xn, before it decreases under the effect of the decreasing

quadratic term β2, that represents the effect of damage to the interface adhesion.

(iii) Separation: Contact surfaces are separated due to broken adhesion bonds. β sig-
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nificantly decreases during the process. According to Eq.(2.16), the decreasing β

only tends towards zero without exactly reaching zero. It is therefore convenient to

consider a limit of β, that we denote by ε, below which the adhesion bonds can be

considered as completely broken. In practice, we adopt an empirical ε = 10−4 which

is associated with adhesion forces on the 10−9N magnitude according to our test in

Section 2.4.
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Figure 2.3: Evolution of adhesion forces as function of β on logarithmic scale: with β on
the order of 10−4, adhesion forces become negligible on the 10−9N order.

Figure 2.3 shows the evolution of adhesion forces as function of β on logarithmic scale.

Starting from Point O, adhesion force first increases with the gap between contact

surfaces, then due to the surface debonding, very quickly drops to insignificant levels.

With β on the order of 10−4, we observe negligible adhesion forces on the 10−9N order.

Modified Coulomb friction rule with adhesion

Classically, friction problems are studied using Coulomb friction model which is charac-

terized by a set of rate-independent slip rules. It describes tangential contact forces as
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function of normal forces in the context of dry friction:

 ‖r̄
α
t ‖ 6 µr̄αn ∀ ‖xαt ‖ = 0 (sticking)

r̄αt = −µr̄αn
xαt
‖xαt ‖

∀ ‖xαt ‖ 6= 0 (sliding) .
(2.20)

With consideration of adhesion, both tangential and normal contact forces are supple-

mented by contributions due to interface adhesion as shown in Eq.(2.8), the above rules

become  ‖r
α
t ‖ 6 µrαn ∀ ‖xαt ‖ = 0 (sticking)

rαt = −µ(rαn − r̃αn)
xαt
‖xαt ‖

+ r̃αt ∀ ‖xαt ‖ 6= 0 (sliding) ,
(2.21)

in which r̃αt , the adhesive tangential force on contact point α can be calculated by consid-

ering Eq.(2.15):

r̃αt = −Ctxαt β2 , (2.22)

and in the normal direction, contact forces are

 rαn − r̃αn = r̄αn ∀ xαn = 0 (unseparated)

rαn − r̃αn = 0 ∀ xαn > 0 (separated) .
(2.23)

With the consideration of interface adhesion, tangential friction is made from two contri-

butions. The first follows the classical Coulomb rule and disappears once contact surfaces

are separated. The second, r̃αt , the adhesive tangential force arises when slip occurs, and

maintains even with the surface starting to separate.

The obtained rule of tangential contact with interface adhesion (Eqs.(2.21,2.22)) can

be graphically interpreted by Figure 2.4.

By assuming perfect adhesion (β = 1) at xt = 0, the state of interface adhesion that

evolves with xt can be distinguished, similar to the normal scenario described in the previ-

ous section, by three major phases: (i) fully bonded adhesion, (ii) adhesion with damage,

and (iii) separation. Here, since both the slip vector xαt and the tangential adhesion force
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Figure 2.4: Modified Coulomb rule with adhesion: evolution of tangential adhesive forces
and the level of damage vs. slip

vector r̃αt lie in the local plane (T1,T2), their projection in the local system gives rise to

expressions of tangential displacement and forces according to axis T1 and T2. In the

case of isotropic tangential behaviour, the adhesion stiffness can be described by a unique

parameter Ct. Therefore, vectors of tangential forces lie on a circle of radius Ctxtβ
2. For

any given slip value xt, one distinct circle can be drawn, which graphically leads to a conic

representation of the adhesion force by swiping xt from 0 to +∞ as shown in Figure 2.4.

Complete contact law with adhesion

By combining the modified Signorini law and Coulomb rule, we obtain the complete contact

law with the account for interface adhesion as follows:

Separation : xαn > 0, rα = r̃α

Sticking : xαn = 0 and ‖xαt ‖ = 0, rα = r̄α

Sliding : xαn = 0 and ‖xαt ‖ > 0, rαn = r̄αn

rαt = −µr̄αn
xαt
‖xαt ‖
− Ctxαt β2 ,

(2.24)

in which r̄αn refers to the normal contact force on point α when surfaces are in contact. In

the Sticking situation, since no relative motion occurs, adhesive forces are absent, contact
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force vector r̄α lies in the classical Coulomb cone Kµ, defined by

Kµ = {r̄α ∈ R3 | rαn > 0, ‖rαt ‖ − µrαn 6 0}. (2.25)

However, with the appearance of relative motion, either following the normal direction

(Separation case), or the tangential direction (Sliding case), the contact force vector rα

exceeds the boundary of the classical Coulomb cone Kµ due to the adhesive forces r̃α.

Contrary to the classical Coulomb model for dry friction, the resultant contact force rα

will not remain on the boundary of the Coulomb Cone since the relation between ‖rαt ‖

and rαn is no longer linear, but subject to variations due to evolving β, xαt and xαn. We

cannot conclude an explicit expression relating r to x. In the work of Terfaya et al.

[77], the adhesion is directly incorporated into the bipotential [53]. We have adopted a

different approach where the progression of adhesion is solved at the resolution level by

the augmented Lagrangian method, which offers as accurate results [96].

2.2.4 Contact law within the bipotential method

Based on augmented Lagrangian method, the bi-potential method has been developed to

deal with contact and friction problems using a reduced system and a predictor-corrector

Uzawa algorithm. For unilateral frictional contact, compared to classical methods that

requires resolution of two minimum problems or variational inequalities: the first for uni-

lateral contact and the second for friction, the bi-potential resolution unifies unilateral

contact and friction, thus requires one single, unique inequality. From the perspective of

contact geometry relations, the bi-potential algorithm can be attributed to the category of

“node-to-segment” (NTS) contact algorithms. Comparative algorithms include sequential

multi-pass NTS approaches, and more recently, the improved virtual-slave-node-to-segment

(VTS) approach [97], which guarantees accurate assessment of contact interface pressure

requiring only a single-pass scheme. Comparison of the presented bi-potential method with
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other contact algorithms is provided in Appendix A.

The bipotential function and inequality of contact law is as follows:

bc(−xα, rα) =
⋃
<−

(−xαn) +
⋃
Ku

(rα) + µrαn || − xαt || (2.26)

bc(−xα, r′α)− bc(−xα, rα) ≥ −xα · (r′α − rα), ∀ r′α ∈ Kµ , (2.27)

where
⋃

is indicator function. <− and Kµ represent respectively the negative real numbers

and Coulomb cone.

The indicator functions become null when the variables −xα and rα comply with the

restraining conditions.

We multiply both sides of the inequality (2.27) a parameter ρ, which is used to ensure

numerical convergence, and substitude (2.26) into (2.27):

ρµ(r′αn − rαn)|| − xαt ||+ [rα − (rα − ρxα)] · (r′α − rα) ≥ 0 . (2.28)

Taking into account the decomposition x = xt + xnn, the following inequality has to

be satisfied:

(rα − r∗α) · (r′α − rα) ≥ 0, ∀ r′α ∈ Kµ , (2.29)

where the modified augmented contact force r∗α is defined by:

r∗α = rα − ρ(x + µ|| − xαt ||n) , (2.30)
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rα is the projection of r∗α onto the closed convex Coulomb cone:

rα = Proj(r∗α,Ku) . (2.31)

According to the three different contact states, the projection procedure becomes:

if µ||r∗αt || < −r∗αn then rα = 0 separating

elseif ||r∗αt || ≤ µr∗αn then rα = r∗α sticking

else rα = rα∗ − (
||rα∗t ||−µrα∗n

1+µ2
)(

rα∗t
||rα∗t ||

+ µn) sliding .

(2.32)

2.2.5 Blatz-Ko hyperelastic model for soft materials

Blatz-Ko hyperelastic model [87] is widely used to describe behaviours of compressible foam

type soft materials. In practical situations, such materials undergo large deformations. To

deal with the geometrical transformation with large deformation, we use the deformation

gradient tensor F for the soft bodies in contact:

F = I +∇u, (2.33)

where I is the unity tensor and u the displacement vector. The right Cauchy-Green

deformation tensor C is defined as C = FTF, and the Green-Lagrangian strain tensor

E = 1
2
(C− I). In the case of hyperelastic law, there exists a strain energy density function

W which is a scale function of one of the strain tensors, whose derivative with respect to a

strain component determines the corresponding stress component. This can be expressed

by

S = 2
∂W

∂C
, (2.34)
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where S is the second Piola-Kirchhoff stress tensor. In the particular case of isotropic

hyperelasticity[98], Eq.(2.34) can be written by

S = 2

[
I3
∂W

∂I3

C−1 +

(
∂W

∂I1

+ I1
∂W

∂I2

)
I− ∂W

∂I2

C

]
, (2.35)

where Ii denotes the three invariants of the right Cauchy-Green deformation tensor C:

I1 = Cii; I2 = (I2
1 − CijCij)/2; I3 = det(C). (2.36)

The Blatz-Ko strain energy density function is given as follows:

W =
G

2

(
I2

I3

+ 2
√

I3 − 5

)
, (2.37)

where G is the shear modulus. By deriving the energy density (2.37) with respect to the

three invariants, we obtain

∂W

∂I1

= 0;
∂W

∂I2

=
G

2I3

;
∂W

∂I3

=
G

2

(
−I2

I2
3

+
1√
I3

)
. (2.38)

Reporting the result in the second Piola-Kirchhoff stress tensor (2.35) gives

S = G
(
JC−1 −C−2

)
, (2.39)

where J = det(F), the Cauchy stress tensor σ is calculated from the second Piola-Kirchhoff

stress tensor as follows:

σ =
1

J
FSFT . (2.40)

Eq.2.41 can also be written as:

S(E) = G
[
J(2E + I)−1 − (2E + I)−2

]
, (2.41)
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in order to construct the tangential stiffness matrix K through the finite element nonlinear

structural analysis, we need to determine the stress-strain tangent tensor D:

Dijkl =
∂S

∂E
=G

{
−2J(2E + I)−1

ik (2E + I)−1
lj + J(2E + I)−1

lk (2E + I)−1
ij

+ 2
[
(2E + I)−1

ik (2E + I)−2
lj + (2E + I)−2

ik (2E + I)−1
lj

]}
.

(2.42)

2.3 Numerical implementation

2.3.1 Finite element formulation of the nonlinear problem

Since contact between soft bodies involves treatment of nonlinear kinematic relations and

hyperelastic constitutive models (Section 2.2.5), we formulate the nonlinear finite element

problem within the framework of large deformations. In this chapter, we use Green-

Lagrangian strain tensor E which comprises both linear and nonlinear terms, as function

of nodal displacements u:

E =
(
BL +

1

2
BNL(u)

)
u, (2.43)

where BL is the matrix relating the linear strain term to nodal displacements, and BNL(u),

relates the nonlinear strain term to nodal displacements. From Eq.(2.43), the incremental

form of the strain-displacement relationship can be written as:

δE =
(
BL + BNL(u)

)
δu. (2.44)

Using the principle of virtual displacement, we can write the virtual work δU of the problem

as:

δU = δuTMü + δuTAu̇ +

∫
V0

δETS dV − δuTFext − δuTR = 0, (2.45)
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where the second Piola-Kirchhoff stress tensor S, in the case of Blatz-Ko material model is

given in Section 2.2.5 by Eq.(2.41). The vector of contact reaction force R is expressed in

the global coordinate system. It is obtained by considering Eqs.(2.7,2.8,2.10) and includes

in particular contributions due to adhesion:

R = HT (r̄ + r̃), (2.46)

with r̄ and r̃ determined according to the contact and friction rules given in Section 2.2.3.

Other notations in Eq.(2.45) include V0, volume of the initial configuration; Fext, vector of

external loads; M, mass matrix; A, damping matrix; u̇, vector of velocity, and ü, vector

of acceleration. Substituting δE from Eq.(2.44) into Eq.(2.45) results in

δU = δuTMü + δuTAu̇ + δuT
∫
V0

(
BL + BNL(u)

)T
S dV − δuTFext − δuTR = 0. (2.47)

We can identify in Eq.(2.47) the vector of internal force:

Fint =

∫
V0

(
BL + BNL(u)

)T
SdV. (2.48)

Since δu is arbitrary, a set of nonlinear equations can be obtained as

Mü + Au̇ + Fint − Fext −R = 0. (2.49)

It is noted that the stiffness effect is taken into account by the internal force vector Fint.

Eq.(2.49) can be transformed into

M ü = F + R, where F = Fext − Fint −Au̇, (2.50)

with the initial conditions at t = 0

u̇ = u̇0 and u = u0. (2.51)
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Taking the derivative of Fint with respect to the nodal displacements u gives the tangent

stiffness matrix as

K =
∂Fint

∂u
=

∫
V0

[(
BL + BNL(u)

)T ∂S

∂u
+
∂BT

NL(u)

∂u
S
]
dV. (2.52)

In addition, by considering Eqs.(2.44, 2.41), the tangent stiffness matrix can be written as

the sum of the elastic stiffness matrix Ke, the geometric stiffness (or initial stress stiffness)

matrix Kσ and the initial displacement stiffness matrix Ku:

K = Ke + Kσ + Ku, (2.53)

with

Ke =

∫
V0

BT
LDBL dV

Kσ =

∫
V0

∂BT
NL

∂u
S dV

Ku =

∫
V0

(
BT
LDBNL + BT

NLDBL + BT
NLDBNL

)
dV.

(2.54)

2.3.2 Numerical integration algorithm

Now we need to integrate Eq.(2.50) between consecutive time configuration t and t +

∆t. The Newmark method is the most common method which is based on a second

order algorithm. However, higher order approximation does not necessarily mean better

accuracy and may even be redundant in impact problems. In cases presenting sudden

change of contact conditions (impact, release of contact), we observe discontinuous velocity

and acceleration, which lead to excessive regularity constraints that may cause serious

errors. For this reason, we use the method of Non-Smooth Contact Dynamics (NSCD)

[99] involving a first order time stepping algorithm. Implementation of this algorithm

for adhesion problems has been investigated in [100]. Based on NSCD, Eq.(2.50) can be
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transformed into:

M du̇ = F dt+ R dt . (2.55)

This algorithm is based on the following approximations:

∫ t+∆t

t

M du̇ = M
(
u̇t+∆t − u̇t

)
(2.56)

∫ t+∆t

t

F dt = ∆t
(
(1− ξ) Ft + ξ Ft+∆t

)
(2.57)

∫ t+∆t

t

R dt = ∆tRt+∆t (2.58)

ut+∆t − ut = ∆t
[
(1− θ) u̇t + θ u̇t+∆t

]
, (2.59)

where 0 ≤ ξ ≤ 1; 0 ≤ θ ≤ 1. In the iterative solution procedure, all the values at time

t+ ∆t are replaced by the values of the current iteration i+ 1; for example, Ft+∆t = Fi+1.

A standard approximation of Fi+1 gives

Fi+1 = Fi
int +

∂F

∂u
(ui+1 − ui) +

∂F

∂u̇
(u̇i+1 − u̇i) = Fi

int −Ki ∆u−Ai ∆u̇ . (2.60)

Finally, we obtain the recursive form of (2.55) in terms of displacements:

K̄i ∆u = F̄i + F̄i
acc + Ri+1

ui+1 = ui + ∆u ,
(2.61)

where the so-called effective terms are given by

K̄i = ξKi +
ξ

θ∆t
Ai +

1

θ∆t2
Mi (2.62)
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F̄i
acc = − 1

θ∆t2
Mi(ui − ut −∆t u̇t) (2.63)

F̄i = (1− ξ)
(
Ft
int + Ft

ext

)
+ ξ

(
Fi
int + Ft+∆t

ext

)
. (2.64)

At the end of each time step, the velocity is updated by

u̇t+∆t =
(

1− 1

θ

)
u̇t +

1

θ∆t
(ut+∆t − ut) . (2.65)

By setting θ = 1
2
, this scheme is then called the implicit trapezoidal rule and it is equivalent

to the Tamma - Namburu method in which the acceleration need not be computed [101].

It is noted that Eq.(2.61) is strongly non-linear, because of large rotations and large

displacements of solid, for instance in multibody contact/impact problems. Besides, as

mentioned above, the constitutive law of contact with friction is usually represented by

inequalities and the contact potential is even non differentiable. Instead of solving this

equation in consideration of all nonlinearities at the same time, Feng [102] has proposed

a solution strategy which consists in separating the nonlinearities in order to overcome

the complexity of calculation and to improve the numerical stability. As ∆u and R are

both unknown, Eq.(2.61) cannot be directly solved. First, the vector R is determined by

the bi-potential method and the adhesive model in a reduced system, which only concerns

contact nodes. Then, the vector ∆u can be computed in the whole structure, using adhesive

contact reactions as external loading.

The iterative solution procedure involving contact modeling is written as Figure 2.5:
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-Determine mass matrix M and damping matrix C

-Read the data

-Time iteration

-Determine Fext

-Detect contact conditions in local frame
-Newton iteration

- Compute K and Fint

- Compute K and F
- Solve KΔu= F
- Compute r, r and β by bipotential and 
adhesive model in local frame,  R=HT(r+r)
- Solve KΔu= F+R
- Actualize u=u+Δu
- Check convergence criteria

if not convergence-Compute velocity
-Gather element nodal displacement
-Compute stress and strains

Figure 2.5: The iterative solution procedure

2.4 Numerical results

The algorithm presented above has been implemented within the in-house finite element

code FER/Contact. In this section, four numerical examples based on contact simulations

are presented to show normal and tangential behaviours of the adhesive contact interface

under unidirectional and mixed loading conditions.

2.4.1 Indentation on adhesive hyperelastic material

The adhesion effect is usually most significant in the normal direction. In order to clearly

show the evolution of β during the complete process of bonding and de-bonding, the

first example simulates the normal adhesive contact between an elastic semi-sphere and a

hyperelastic block, shown in Figure 2.6(a). The density of two bodies is: ρ = 2500 kg/m3
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(sphere indentor); ρ = 1000 kg/m3 (block). Blatz-Ko hyperelastic material model is used

and the shear modulus G for the indentor and the hyperelastic block are respectively

2.6 × 1010 Pa and 16 × 106 Pa. In this case, the sphere indentor behaves as a rigid body

compared to the block.

A time dependent displacement is prescribed on the upper surface of the semi-sphere,

so that a complete cycle of indentation is performed in 4 seconds. Figure 2.6(b) is the load

curve showing the displacement of the upper surface of the sphere.

3 mm

30 mm

R=15 mm
x

y

uy

(a)

uy (mm)
t (s)

1 2 3 40

-1

(b)

d

O
A

Figure 2.6: Indentation on a hyperelastic material with adhesive surface: (a) Problem set;
(b) Loaded displacement on the upper surface of the sphere.

Figure 2.7(e) lists three different sets of adhesive parameters used in the test, whose

results are reported in Figure 2.7(c). Cocou et al. investigated similar scenarios and ob-

tained concordant results [41]. Figure 2.7(a) shows the evolution of β on 7 contact nodes in

Case 1. On any contact point, its horizontal distance from the center point O determines

the time duration of the contact process on this point, involving bonding and de-bonding.

The sequence of β evolution is thus distinctive on each point.

Figure 2.7(b) shows the normal adhesion force of the 7 contact nodes in Case 1. Sim-

ilarly, the distance from the center point O determines the sequence of separation, which

however does not influence the adhesion force at the moment of separation. Figure 2.7(c)

shows evolution of β on the contact point A under 3 groups of different adhesive param-

eters. Figure 2.7(d) shows the normal adhesion force of the contact point A during the

de-bonding process under 3 cases. We can see that the increase of Cn makes the detach-

ment difficult. The difference in adhesion force determines the rate of decrease of β as
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shown in Figure 2.7(c).
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Figure 2.7: Indentation on a hyperelastic material with adhesive surface: (a) Evolution of
β calculated on 7 contact nodes of the hyperelastic block. At t = 0 s, the only contact
point between the indentor and the block is point O, see Figure 2.6(a), and d represents
the horizontal distance between each node and the center point O; (b) Evolution of the
adhesion force R̃n calculated on 7 contact nodes of the hyperelastic block; (c) Evolution
of β with 3 different sets of adhesive parameters (w and Cn) on node A (d = 3.4 mm);
(d) Evolution of the adhesion force R̃n based on 3 different sets of adhesive parameters,
calculated on node A; (e) Table of the tested adhesive parameter sets.

2.4.2 Rolling adhesion of a hyperelastic wheel

This example investigates the rolling adhesion of a hyperelastic wheel confined between 2

rigid plates. As shown in Figure 2.8(a), the upper and lower plates exert compression on

the hyperelastic wheel, and slide simultaneously in opposite directions, driving the wheel
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in rotation under both the effects of interface adhesion and friction. As a result of the

interface adhesion, the rotating wheel presents inclined, asymmetrical geometry during

rotation. Since the rotating motion is cyclic, any point belonging to the wheel’s adhesive

surface will cyclically go through bonding and de-bonding process. The recoverability

of interface adhesion is thus accounted for. The present case follows the next loading

sequence: the upper plate first descends vertically for 5×10−4 m at the velocity of 0.1 m/s,

exerting slight compression on the wheel. Then, still on the upper plate, we prescribe a

sliding motion at the velocity of 1 m/s so as to drive the compressed wheel in rotation.

We investigate the effect of material properties on the adhesion by testing 3 different

shear modulus G = 5 × 106 Pa, 1 × 107 Pa, and 1.5 × 107 Pa for the hyperelastic wheel.

Concerning the interface properties, the following parameters are used: friction coefficient

µ = 0.4. Note that setting non-zero friction here is important to drive the wheel to

rotate. The wheel rotates consequently under the combined effects of interface friction and

adhesion. Parameters for the adhesive are : w = 20 J.m−2, Cn = Ct = 2× 109 N.m−3, and

b = 0.1 N.s.m−1.

Figure 2.8(c) shows the morphology and Von Mises stress distribution of the hyperelas-

tic wheel just following application of the compression by the upper plate. Figure 2.8(d)

shows the state of deformation and Von Mises stress distribution of the wheel during its

rotation. Due to the combined effects of the interface friction, which exerts pure tangential

force on the wheel, and the interface adhesion, which results in both normal and tangen-

tial forces on the wheel surface, the rotating wheel deforms into inclined, asymmetrical

geometry. This morphology is the result of the adhesion force (attraction) that appears at

the separation (de-bonding) between the plate and the wheel. In case adhesion is absent

and under the exclusive effect of friction, the wheel will not present inclined shape during

rotation, but remain in the configuration of Figure 2.8(c).

Figure 2.9(a) shows the evolution of the adhesion parameter β, and the adhesion forces

calculated on 3 selected nodes as indicated in Figure 2.8(b) with shear modulus G = 1 ×
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Figure 2.8: Rolling adhesion and friction of a confined hyperelastic wheel: (a) Problem
setup; (b) The initial state of hyperelastic wheel; (c) Shape and Von Mises stress distribu-
tion of the confined wheel just before rotation; (d) Deformed shape and Von Mises stress
distribution of the hyperelastic wheel during its rotation.

107 Pa. The de-bonding sequence is consistent with the wheel’s rotation direction. Figure

2.9(b) presents the evolution of β calculated on the first node (among the three selected

nodes) under the 3 tested hyperelastic materials (shear modulus G = 5×106 Pa, 1×107 Pa,

and 1.5×107 Pa ). We demonstrate that material shear modulus has no effect on β during

the bonding process, since the 3 curves perfectly coincide on this segment. However, during

the de-bonding process, greater shear modulus accelerates the rupture of the adhesive

bonds, which is obvious since stiffer material deforms less, and gets detached more easily

from the plate during the prescribed rotation. The same observation is obtained on the

normal adhesion force curves (Figure 2.9(c) and (d)).
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Figure 2.9: Rolling adhesion and friction of a confined hyperelastic wheel: (a) Evolution
of β calculated on 3 selected nodes on the wheel surface. Locations of the 3 nodes are
indicated in Figure 2.8(b). In this case, shear modulus G = 1× 107 Pa; (b) Evolution of β
calculated on the first node with 3 sets of shear modulus (G = 5× 106 Pa, 1× 107 Pa, and
1.5× 107 Pa); (c) Traction-separation curves of the first selected node with 3 sets of shear
modulus; (d) Evolution of the normal adhesion force R̃n with time on the first selected
node under 3 sets of shear modulus G.

2.4.3 Adhesive friction between a hyperelastic plate and a de-

formable semi-cylinder

In this example, we investigate the adhesive friction of a hyperelastic plate that slides on

top of a deformable semi-cylinder, as shown in Figure 2.10(a). Both the plate and the

semi-cylinder are modelled by Blatz-Ko hyperelastic material, based on the same material

property with shear modulus G = 10 MPa. Radius of the cylinder is 5 mm, and the plate

thickness H = 2 mm. The plate is sufficiently long so as to ensure contact between the plate
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and the cylinder during the simulation. While the plate is allowed to slide horizontally,

the bottom surface of the semi-cylinder is fixed. The simulated scenario involves 2 stages.

On the first stage, the upper plate descends for 1 mm to exert a slight compression on the

cylinder. Then on the second stage, a lateral displacement is prescribed on the plate at a

constant velocity. As a result of the combined effect of friction and adhesion, the cylinder

is dragged to deform, and we investigate the interfacial behaviour during the process. In

particular, by varying the descent velocity of the first stage, we modulate the total time

of compression before sliding, during which bonding process takes place. This will have

impact on the final adhesion level (characterized by β) before de-bonding starts at the

onset of the sliding stage. In order to explore the influence of the adhesion level β on the

subsequent adhesive friction behaviour, we set up 5 groups of cases with for each group a

different descent velocity (summarized by Figure 2.11(a)). Then for each group, we test

on 5 different friction coefficients µ, so as to investigate the combined effect of friction

and adhesion on the tangential interface behaviour. The adhesive parameters used in the

simulations are: w = 20 J.m−2, Cn = 2× 109 N.m−3 and b = 0.1 N.s.m−1.

uy
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Figure 2.10: Adhesive friction between a hyperelastic plate and a deformable semi-cylinder:
(a) Problem setup; (b) Distribution of Von Mises stress of the substrate and the cylinder
at the end of push down; (c) Distribution of Von Mises stress at the end of calculation.

Figure 2.10(b) and (c) present the Von Mises stress distributions of the sliding system,

respectively at the onset of sliding, and during the sliding process. We post-process the
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frictional adhesive behaviour by isolating 2 nodes belonging to the system: as seen in Figure

2.10(a), one blue node on the lower surface of the plate in contact with the cylinder, and

one red node on top of the cylinder, in contact with the plate. Here, we investigate the

evolution of β during the first stage. By considering different descent velocities of the plate,

varying from 1000 mm/s to 200 mm/s, we modulate for each case the time for the bonding

process. As shown in Figure 2.11(c), the case with the plate slowly descending at 200 mm/s

(green curve) had sufficient time to achieve perfect bonding of adhesive links (β reached 1),

whereas the most rapid descent (blue curve) did not allow enough time for the formation

of complete bonding. In this case, de-bonding was already initiated after β reached 0.2.

We then investigate the influence of friction coefficient µ on the de-bonding behaviour, by

prescribing varying friction coefficients µ while considering the same plate descent velocity.

We report in Figure 2.11(b) 5 simulations based on 5 values of µ ranging from 0 to 0.8.

All the 5 cases consider the same plate descent velocity of 1000 mm/s (Case 1 of Figure

2.11(a)). Results in Figure 2.11(b) indicate the formation of stronger bond (higher β) on

rougher surfaces (greater µ). This can be interpreted by the fact that a rougher surface

(higher µ) delays the onset of sliding motion, according to the Coulomb friction model,

which results in longer time for better bonding of adhesive links. Therefore, we observe a

concordant trend on the curves reflecting tangential adhesion forces. With greater friction

coefficient (Figure 2.11(d)), the onset of de-bonding is delayed, creating increased level

of adhesion force. Then, lower descent velocity on the first stage (Figure 2.11(e)) also

creates the effect of delaying the onset of de-bonding, permitting better bonding and more

significant adhesion forces.
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Figure 2.11: Adhesive friction between a hyperelastic plate and a deformable semi-cylinder:
(a) 5 cases with different time and velocity of push down. This kind of setting is to ensure
that the substrate has the same displacement during the whole process; (b) Evolution of
β of blue node (see Figure 2.10(a)) with different friction coefficients µ in Case 1; (c) β
evolution of blue node with different descent velocities under µ = 0; (d) Evolution of the
tangential adhesion force R̃t of blue node with different friction coefficients µ in Case 1;
(e) Evolution of the tangential adhesion force R̃t of blue node with 5 cases under µ = 0.
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2.4.4 3D frictional adhesive twisting

We investigate the evolution of interface behaviours of a 3D twist tribosystem (Figure

2.12) under the combined effect of adhesion and friction. The system is composed of an

elastomer block that slides on a rigid surface under twisting load. The elastomer block is

3 mm high, and has a 10× 10 mm square section. The adhesive interface parameters are

: w = 100 J.m−2, Cn = 2 × 1010 N.m−3 and b = 0.1 N.s.m−1. The simulation scenario

involves 2 stages. On the first stage, we prescribe a slight compression on the elastomer

by descending its upper surface by 0.1 mm. Then on the second state, a twisting motion

is applied on the upper surface at the angular velocity of 20 rad/s so as to drive the

compressed elastomer block in clockwise twisting. The elastomer is modelled using Blatz-

Ko material. To prevent excessive shear deformation of the elastomer body during the

twist, we apply a significant shear modulus G = 2.1× 106 MPa.

z

y

x

Step 2:
Keep compressed state and twisting

3mm

10mm

Step 1: 
Vertical compression

3mm

10mm

Figure 2.12: 3D adhesive frictional twisting: Problem setup and loading sequence (Step 1,
compression and adhesion process; Step 2, twisting and de-bonding process)

We first investigate the effect of interface adhesion on the friction behaviour by compar-

ing 2 test cases, one based on dry friction twist, the other involves friction with adhesion.

Figure 2.13 compares the normal reaction forces of the two cases during the twist process.

9 frames of results are extracted in chronological order to represent the evolving twist

process. On each frame, we compare distributions of the normal force calculated on the

contact interface between dry friction and adhesive friction. Since the combined motion
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of compressive twisting is prescribed on the upper surface of the elastomer, the elastomer

body undergoes shear deformation during the twist. On each side of the elastomer body,

and along the direction of motion, the shearing kinematics creates a rotating moment that

tends to press the frontal part of the body against the ground surface while detaching

the rear part. This results in the evolving normal force distribution shown in Figure 2.13,

where the increasing blue colour reveals local interface detachment, and the red colour

indicates increased local compression. This phenomenon significantly increases with the

interface adhesion, which becomes the prevailing source of resistance to the prescribed

twist motion. Compared to the case of dry friction, interface sliding remains unnoticeable

up to t = 0.007 s on the adhesive case: contact interface appears untwisted despite the

external load, implying unbroken adhesive bonds. In contrary, the dry friction interface is

easily twisted by the external load, and the normal force distribution appears more homo-

geneous throughout the simulation. In this example, we observed initiation of de-bonding

at t = 0.007 s ∼ 0.008 s where normal forces decreased significantly, and the contact in-

terface twisting quickly caught up with the dry friction case. Upon complete de-bonding,

as can be seen in the frame t = 0.009 s, both cases present consistent configuration, with

synchronized twists and similar distribution of normal forces.

We then explore the effect of friction coefficients on the combined adhesive-frictional

interface behaviour, which includes interface forces and adhesion strength. Using 3 sets of

friction coefficients µ = 0.2, 0.4 and 0.6, we carry out simulations based on the previous

adhesive tribosystem, and investigate, for each friction coefficient, the evolution of normal

and tangential reactions, and the intensity of adhesion (represented by β). Figure 2.14

presents the distribution of normal contact forces that evolve with time for the tested 3

friction coefficients. Results obtained are concordant with what can be predicted by the

Coulomb friction model, since under equivalent conditions of compression, stronger friction

coefficients will have the effect of delaying the onset of interface sliding, and subsequently

the initiation of de-bonding process. For the same reason since the elastomer block admit-

ted higher shear deformation before complete de-bonding, increased level of normal forces
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μ μ + β
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Rn (N)

Figure 2.13: 3D adhesive frictional twisting: Evolution of the interface normal forces
R̄n distribution during the twisting process. Comparison between dry friction (left) and
adhesive friction (right) on each frame of time. For both cases, friction coefficient µ = 0.4
is used.

are observed on cases with higher friction coefficients. The effect of higher friction coeffi-

cients on the de-bonding process can be further confirmed by investigating the evolution

of β, as shown in Figure 2.15, in which light yellow colour indicates the state of com-

plete bonding of interface adhesives. We observe directly that higher friction coefficients

significantly delay the onset of be-bonding process.

We also investigate the evolution of tangential forces on the 3 sets of simulations. In

Figure 2.16, Euclidean norm of tangential forces are presented, allowing us to observe

the evolving intensity of tangential forces on the contact interface. In this figure, similar

distribution of tangential forces can be observed on frames µ = 0.2 / t = 0.006 s, µ =
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Figure 2.14: 3D adhesive frictional twisting: Influence of friction coefficient on the inter-
face adhesive frictional behaviour. 3 sets of friction coefficients µ = 0.2, 0.4 and 0.6 are
considered.

0.4 / t = 0.007 s, and µ = 0.6 / t = 0.008 s, then, on frames µ = 0.2 / t = 0.007 s,

µ = 0.4 / t = 0.008 s, and µ = 0.6 / t = 0.009 s, and so on. This observation also

results from the effect of higher friction coefficients on delaying the onset of be-bonding

process, and subsequently the appearance of every distribution pattern of tangential forces.

Chronologically, at the beginning of loading, tangential forces are most significant on the

outskirts of the contact area since linear velocity is higher. However, for the same reason,

this is also where the onset of de-bonding initiates and propagates towards the centre area.

Consequently, the peak of tangential forces is observed as an evolving circular band, whose
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t = 0.006 s t = 0.007 s t = 0.008 s t = 0.009 s t = 0.010 s

Figure 2.15: 3D adhesive frictional twisting: Evolution of the adhesion intensity during
the twisting load, cacluated using 3 sets of friction coefficients µ = 0.2, 0.4 and 0.6.

radius decreases with the twisting load, before it gradually disappears in the centre of

rotation, leading to complete de-bonding of interface adhesives.
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Figure 2.16: 3D adhesive frictional twisting: Evolution of tangential adhesion forces
∥∥∥R̃t

∥∥∥,

calculated using 3 sets of friction coefficients µ = 0.2, 0.4 and 0.6. The peak of tangen-
tial forces evolves as a circular band, whose radius reduces with time, before gradually
disappearing in the centre of rotation, leading to complete de-bonding.

2.5 Concluding remarks

In this chapter, an extended 3D formulation for quasi-industrial problems of adhesive

contact with recoverable interface between soft materials under large deformation is im-

plemented by using the RCC interface model and the bi-potential resolution method. The

RCC model proposes a straightforward description of the interface adhesion based on a

local scalar parameter, and enables coupling the effect of adhesion, friction and unilateral

contact within a unified framework. Both normal and tangential effects are taken into

account by the adhesive interface model, involving both the process of bonding and de-

bonding of the interface links. We have combined the 3D extended RCC adhesive interface

model with 3D Blatz-Ko hyperelasticity to account for frictional contact of foam type soft

material structures with recoverable interface under conditions of large deformation. To

illustrate the ability of the implemented model to deal with real problems, we have tested
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various 3D test cases involving normal, tangential, and mixed-directional scenarios of ad-

hesive contact with/without adhesion recoverability, which is very close to quasi-industrial

modelling situations.

Future extensions of this chapter include, for example, the account for anisotropic

interface behaviours and the effect of interface fatigue which is a common phenomenon in

adhesive applications involving cyclic loads.
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Chapter 3

A bi-potential contact formulation of

orthotropic adhesion between soft

bodies

3.1 Introduction

In this chapter, we propose an orthotropic adhesion modelling between soft materials based

on the adhesive contact model of Chapter 2. We extend, in the RCC model, derivatives

of the free surface energy that yields a straightforward description of the interface adhe-

sion orthotropy, whose stiffness components are conveniently expressed according to the

local orthogonal Cartesian coordinate system. A set of extended unilateral and tangential

contact rules incorporating the interface adhesion orthotropy is then formulated. We still

combine the orthotropic interface law with Blatz-Ko hyperelastic materials for modelling

large deformation contact problems with friction and orthotropic adhesion [103].

The remainder of the Chapter is organized in the following manner: in Section 3.2,

we firstly redescribe the contact kinematics with a covariant description, and present the
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orthotropic extension of RCC adhesive model of contact. Then, the complete contact law is

characterised, which includes an extended formulation of the unilateral and tangential rules

of contact involving interface adhesion orthotropy. To validate the framework, we present

numerical examples in Section 3.3. In the end, a few concluding remarks are drawn in

Section 3.4.

3.2 Problem setting

3.2.1 Contact kinematics

We describe in this section the geometric definitions and notations related to the contact

kinematics. Let’s consider two deformable bodies Bα, α = 1, 2 coming into contact. De-

formation of the two bodies is represented by ϕα, as shown in Figure 3.1, which maps

the initial configuration to positions of the current configuration. We assume that contact

occurs at the boundaries ϕ(Γαc ) in the current configuration where Γαc ⊂ ∂Bα are possible

contact surfaces of bodies Bα.

B2

B1

φ2

φ1

X2

X1

φ(B2)

φ(B1)

φ(X2) = φ(X1)
Γc

2

Γc
1 φ(    )Γc

1

φ(    )Γc
2

Figure 3.1: Finite deformation contact

Contact conditions need to be developed according to the current configuration. We
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set a contact point P2 on B2 and its projection P1 on B1 in the current configuration, as

shown in Figure 3.2.

n

ξ1

ξ2

a1

a2

x

yz
x1

x2
gN

P1

P2

φ(    )Γc
1

φ(    )Γc
2

Figure 3.2: The closest-point projection procedure and coordinate system.

By assuming that the contact boundary describes, at least locally, a convex region, we

can relate to P2 and P1 via the minimum distance problem [104]:

d(ξ1, ξ2) =
∥∥x2 − x1(ξ)

∥∥ , (3.1)

where x2 and x1 are the position vectors of two points in the global Cartesian coordinate

system xyz, ξ = (ξ1, ξ2) denotes the parametrization of the boundary ϕ(Γ1
c) via convective

coordinates [105, 106, 107, 108]. d(ξ1, ξ2) can be used to define the gap between two bodies.

In order to make Eq.(3.1) valid, x1 needs to satisfy the following condition:

∂

∂ξα
d(ξ1, ξ2) =

x2 − x1(ξ1, ξ2)

‖x2 − x1(ξ1, ξ2)‖
· x1

,α(ξ1, ξ2) = 0, with α = 1, 2, (3.2)
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where x1
,α(ξ1, ξ2) is the tangent vector aα. With the cross product of tangent vectors, the

normal vector n can be defined:

n =
a1 × a2

||a1 × a2||
, (3.3)

once the first term of Eq.(3.2) has the same direction as n, which proves that the current

position of P1 is the projection of P2 on B1. Therefore, the normal relative displacement

or gap gn is:

gn = (x2 − x1) · n. (3.4)

In the tangential sliding, the path of P2 on the contact surface of B1 is unknown, we

only know the relative velocity vector. Therefore, the path of P2 needs to be obtained by

integrating over its relative velocity. The increment of tangential relative displacement, as

shown in Figure 3.3, is:

dgt = aαdξ
α, (3.5)

with dξα = ξ̇α, the tangential relative displacement can be computed as:

gt =

(∫ t

t0

ξ̇α dt

)
aα, (3.6)

where t0 is the initial time and t represent the current time. From Eq.(3.6), in order to

obtain gt, we need to first calculate ξ̇α by the following relation:

∂

∂t
[x2−x1(ξ1, ξ2)]·aα = [v2−v1−aβ ξ̇

β]·aα+[x2−x1(ξ1, ξ2)]·ȧα = 0, with α, β = 1, 2, (3.7)

where vα = ẋα. We have ȧα = vα,α + xα,αβ ξ̇
β, Eq.(3.7) can be developed as an expression

containing ξ̇β:

(aαβ − gnbαβ)ξ̇β = [v2 − v1] · aα + gnn · vα,α, (3.8)

52



n

ξ1

ξ2

a1

a2

dgT

φ(    )Γc
1

Figure 3.3: Increment of tangential path.

with 
gnn = x2 − x1

aαβ = aα · aβ

bαβ = xα,αβ · n

, (3.9)

where aαβ and bαβ represent respectively the metric tensor and curvature tensor. Substi-

tuting ξ̇β from Eq.(3.8) into Eq.(3.6), we can solve the tangential slip gt.

Then the contact force vector r is defined as a covariant vector, which is expressed via

the contravariant basis surface vectors aα and n:

r = rt + rn = rαt aα + rnn, α = 1, 2, (3.10)

where rt and rn are respectively tangential and normal component of contact force vector.

Let’s denote the local and global contact force vectors with respectively r and R. The

relation between contact force vectors expressed in local and global coordinate systems

writes:

R = HT r, (3.11)
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where H is the transition matrix. Here, due to the presence of adhesion on the contact

interface, contact reaction r is composed of the cumulative effects due to both dry contact

and the interface adhesion, hence

r = r̄ + r̃, (3.12)

in which we use r̄ to denote dry contact reactions, and r̃ contact forces due to interface

adhesion. Note that the above relation can be projected to the local coordinate system

according to the normal and tangential directions:

 rn = r̄n + r̃n

rt = r̄t + r̃t

. (3.13)

Generalization of the RCC model is described in Cartesian coordinates.

3.2.2 RCC contact model with adhesion orthotropy

We develop an improved RCC contact model to describe the effect of orthotropic adhesion

between contact surfaces. Introduced by Raous et al. [54], the original RCC model accounts

for unilateral contact, friction and adhesion, based on an energy description of the contact

interface, involving a free surface energy Ψ and a pseudo-potential of the surface dissipation

Φ. Here, energy expressions Ψ and Φ are formulated based on displacements that we project

to the local system (a1, a2,n), leading to tangential and normal components gt1, gt2 and

gn:

Ψ(gt1, gt2, gn, β) =
Cn
2
g2
nβ

2 +
Ct1
2
g2
t1β

2 +
Ct2
2
g2
t2β

2 − wβ +
⋃
<+

(gn) +
⋃
Q

(β) , (3.14)

Φ(ġt, gn, β̇) = µ|rn − Cngnβ2|||ġt||+
b

2
|β̇|2 . (3.15)
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In the above expressions, β is a scalar parameter that measures the intensity of adhesion

[61], with β ∈ [0, 1]. Specifically, β = 0 indicates the absence of adhesion, β = 1 refers to

perfect adhesion. Hence, any β ∈ (0, 1) implies partial adhesion between contact surfaces.

Other parameters in Eqs.(3.14,3.15) include: Ct1, Ct2 and Cn: parameters characterizing

the initial adhesive stiffness when adhesion is complete, w: decohesion energy threshold,
⋃

:

indicator function that assures unilateral contact (gn > 0), and meaningful values of the

degree of adhesion. The subscript Q indicates Q = {η | 0 6 η 6 1}, µ: friction coefficient,

b: surface viscosity.

Deriving the surface free energy Eq.(3.14), we obtain the expression of the normal force of

adhesion:

radn = Cngnβ
2 , (3.16)

and the tangential forces of adhesion:

 radt1 = Ct1gt1β
2

radt2 = Ct2gt2β
2 .

(3.17)

Both adhesion forces are dependent on the degree of adhesion β. Then deriving energy

functions Eq.(3.14) and Eq.(3.15) with respect to β and β̇ yields the incremental expression

of β which gives its evolution in time:


bβ̇ ≥ 0 with β = 0

bβ̇ = w − (Cng
2
n + Ct1g

2
t1 + Ct2g

2
t2)β with 0 < β < 1

bβ̇ ≤ w − (Cng
2
n + Ct1g

2
t1 + Ct2g

2
t2) with β = 1 .

(3.18)

In Eq.(3.18), we can see that two components may influence β: the decohesion energy

w, and the elastic energy of the interface
∑

i=n,t1,t2Cig
2
i . When interface elastic energy

prevails, β̇ becomes negative, which leads to decreasing β. Otherwise, β̇ is positive, then
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β increases. We can view Eq.(3.14) as a modified penalty function method where both are

a spring model with zero rest length, except that the two springs are stretched in opposite

directions.

3.2.3 Modified Coulomb slip rule with orthotropic adhesion

Classically, tangential problems are studied using the Coulomb model which is charac-

terized by a set of rate-independent slip rules. The original Coulomb model describes

tangential force that evolves with normal forces:

 ‖r̄
α
t ‖ 6 µr̄αn ∀ ‖gαt ‖ = 0 (sticking)

r̄αt = −µr̄αn
gαt
‖gαt ‖

∀ ‖gαt ‖ 6= 0 (sliding) .
(3.19)

Here, with the consideration of adhesion, both tangential and normal forces are supple-

mented by contributions due to interface adhesion as shown in Eq.(3.12), the above rules

become  ‖r
α
t ‖ 6 µrαn ∀ ‖gαt ‖ = 0 (sticking)

rαt = −µ(rαn − r̃αn)
gαt
‖gαt ‖

+ r̃αt ∀ ‖gαt ‖ 6= 0 (sliding) ,
(3.20)

in which r̃αt , the adhesive tangential force on the contact point α can be calculated by

considering Eq.(3.17), and the orthotropic adhesive stiffness parameters Ct1 and Ct2 defined

in Eq.(3.14)

r̃αt = −Ct1gαt1β2 − Ct2gαt2β2 =

 −Ct1g
α
t1β

2

−Ct2gαt2β2

 . (3.21)

With the consideration of interface adhesion, tangential forces are contributed by two

mechanisms. The first mechanism is comparable to static friction by the classical Coulomb

model. It vanishes once slip occurs. The second, arising from the effects of interface

adhesion and defined by Eq.(3.21), gives rise to adhesive tangential force r̃αt which emerges

with surface slip.
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The obtained rule of tangential contact with interface adhesion (Eqs.(3.20,3.21)) can be

graphically interpreted by Figure 3.4. By assuming perfect adhesion (β = 1) at gt = 0, the

Complete separation

Denbonding process

β = 1

1 > β > ε

ε > β 

Fully bonded adhesion

rt2

rt1

Ct1gti-Ct1gti
-Ct2gti

Ct2gti
rt1

rt2
rt

gt

glim

gti

Figure 3.4: Modified Coulomb rule with adhesion: evolution of tangential adhesive forces
and the level of damage vs. slip

state of interface adhesion that evolves with gt can be distinguished, similar to the normal

scenario described in the previous section, by three major phases: (i) fully bonded adhesion,

(ii) adhesion with damage, and (iii) separation. Here, since both the slip vector gαt and the

tangential adhesion force vector r̃αt lie in the local plane (a1, a2), their projection in the

local system gives rise to expressions of tangential displacement and forces according to axis

a1 and a2. Furthermore, in orthotropic adhesion, distinct adhesion stiffness parameters Ct1

and Ct2 can be defined in the two principal axes. Hence, the critical tangential forces are:

r̃critt1 = −Ct1gt1β2 and r̃critt2 = −Ct2gt2β2 . (3.22)

The two critical forces are at the extreme points of the tangential forces ellipse, given by

the equation:

(r̃αt1)2

(Ct1β2gt)
2 +

(r̃αt2)2

(Ct2β2gt)
2 = 1 . (3.23)

The ellipse intersects the x-axis at Ct1β
2gt and −Ct1β2gt. It intersects the y-axis at Ct2β

2gt

and −Ct2β2gt. To represent the adhesion orthotropy, any vector of adhesion force can be

indicated on the ellipse, pointing from its centre to one point on the periphery. Then for
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any given slip value gt, one distinct ellipse can be drawn, which graphically gives a conic

representation of the adhesion force by swiping gt from 0 to +∞ as shown in Figure 3.4.

3.3 Numerical results

The algorithm presented above has been implemented within the in-house finite element

code FER/Contact. In this section, three numerical examples based on contact simulations

are presented to show orthotropic behaviours of the adhesive contact interface.

3.3.1 Orthotropic adhesion under compression

In this first example, we investigate the orthotropic interface adhesion of a hyperelastic soft

body submitted to compressive load against a rigid surface. As shown in Figure 3.5, a ver-

tical displacement is constantly prescribed on the upper surface of the soft body, pressing

it against a fixed, rigid plate. The test scenario allows observing consecutively two phe-

nomena: first, the bonding process on the adhesive interface that takes place when contact

is set up, then, initiation of the de-bonding process on the contact interface where sliding

occurs due to compression induced section expansion of the soft body. We investigate how

the de-bonding area evolves with the compressive load, and how the evolution is affected

by the interface adhesion orthotropy. Characteristics of the system are described in the

following. The soft body is 6 mm high with a square section of 10× 10 mm. It is modelled

by Blatz-Ko hyperelastic material with a shear modulus of G = 2.1× 105 MPa. Adhesive

interface parameters are: w = 100 J.m−2, Ctx = 1× 1011 N.m−3, Cty = 1× 1010 N.m−3 and

b = 0.1 N.s.m−1. Therefore, interface adhesive behaviour is orthotropic, with adhesive stiff-

ness along x direction significantly stronger than that along y direction. We suppose that

the system does not involve initial adhesion on the interface (adhesion strength parameter

β = 0 at time 0).
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Figure 3.5: Orthotropic adhesion of a soft body under compression on a rigid surface

As soon as the two bodies are in contact, adhesive bonds on the contact interface begin

to form. Figure 3.6 depicts evolution of the adhesion strength parameter β, calculated on 6

nodes on the contact interface, along the diagonal from the centre to the periphery. At time

= 0.0015 s, β increases to 1.0, indicating the achievement of complete bonding (Zone 1 in

Figure 3.6) of the adhesive interface. In Zone 2, as we continue to apply compression on the

soft body, its section increases due to a compressive force. The section expansion produces

tangential interface effects involving shear stresses, which tend to weaken the interface

adhesion. However, since the adhesives bonds are undamaged on this stage (β = 1.0),

the soft body and the rigid surface remain stuck together, and we do not observe effective

sliding on the contact interface. As the load increases, the effect of adhesion damages

becomes noticeable starting from t = 0.011 s, which corresponds to Zone 3 in Figure 3.6.

On this stage, tangential effects have been sufficiently accumulated, leading to initiation of

damages to the adhesive bonds. As a result, β significantly decreases, especially on remote

nodes with respect to the centre, on which β falls back to 0, indicating rupture of the

adhesive bonds. We also find contours of β plotted on the contact surface in Figure 3.6,

where the effect of adhesion orthotropy can be distinguished. Since the adhesion stiffness
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in x axis Ctx is 10 times stronger than in y axis, significant resistance to interface sliding

can be expected in x axis. Therefore, rupture of the adhesive bonds first appears on the

upper and lower peripheries of the contact interface, and gradually propagates towards the

centre area. Meanwhile, peripheral areas near the left and right edges remain adhered due

to stronger adhesion stiffness Ctx in x axis.

Similar effects of adhesion orthotropy can be observed in Figure 3.7, which shows the

distribution of the Euclidean norm of tangential adhesive forces on the contact surface

and its evolution with time. We note that within areas where de-bonding is initiated,

particularly near the upper and lower edges, the adhesion forces decrease quickly to zero.

On the contrary, we observe important adhesion forces in areas near the left and right edges

since the adhesion orthotropy results in stronger resistance to sliding motions along the x

axis. In conformity with the contours of β given in Figure 3.6, distribution of the adhesion

forces in Figure 3.7 reflects identical effects of adhesion orthotropy, demonstrating better

resistance to tangential interface effects in x axis compared to y axis.
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Figure 3.6: Orthotropic adhesion under compression: (a) Evolution of β calculated on 6
nodes on the contact interface, along the diagonal from the centre to the periphery; (b)
Evolution of β on the contact interface and variation in the shape of the contact surface
in debonding process. In each square area, the colour progresses from dark red to blue,
which represents the damage of the adhesive strength β from perfect adhesion (β = 1) to
complete separation (β = 0).
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Figure 3.7: Orthotropic adhesion under compression: Distribution of the Euclidean norm

of tangential adhesive forces
∥∥∥R̃t

∥∥∥ on the contact surface and its evolution with time in the

debonding process. In each square area, the colour progresses from dark red to blue, which
represents the variation of the Euclidean norm of tangential adhesion from maximum to
zero.
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3.3.2 Orthotropic adhesion in shear sliding

We investigate in this example behaviours of orthotropic adhesion in a test scenario in-

volving shear sliding along varying orientations. Similar experimental setup which demon-

strates microstructure based orthotropic adhesion has been explored in [109]. Here, we

model the interface adhesion orthotropy by considering distinctive tangential adhesive stiff-

nesses Ctx and Cty, in x and y axis. The tested system is composed of an elastomer cylinder

that slides on a rigid surface under tangential load, which is oriented along varying ori-

entations on each test. As shown in Figure 3.8, the elastomer cylinder is 2 mm high,

and has a radius of 5 mm. The elastomer is modelled by Blatz-Ko material with shear

modulus G = 2.1 × 105 MPa. The adhesive interface parameters are: w = 100 J.m−2,

Ctx = 5× 109 N.m−3, Cty = 1× 1010 N.m−3 and b = 0.1 N.s.m−1. The simulation scenario

involves 2 stages. On the first stage, we prescribe a slight compression on the elastomer

by descending its upper surface by 0.1 mm after contact. The compression activates the

bonding process which leads to complete bonding on the adhesive interface. On the sec-

ond stage, a lateral motion at the velocity of 0.1 m/s is applied on the cylinder’s upper

surface. Under the tangential effect on the contact interface, de-bonding is initiated and

progresses until the rupture of adhesive bonds, which allows the cylinder to slide on the

support surface. A group of 10 tests have been performed. On each test, we align the

lateral motion to a new direction whose angle with respect to x axis, θ, increases from 0◦

to 90◦ by increments of 10◦.

Figure 3.9 presents the evolution of adhesion parameters calculated on the centre node

that belongs to the contact surface of the elastomer cylinder, for the 10 calculations per-

formed with θ ranging from 0◦ to 90◦. Positions of the centre node at the moment of

adhesion rupture are reported in Figure 3.9(a). Blue circles represent results based on or-

thotropic adhesion properties with Ctx = 0.5Cty. Red circles are obtained considering the

assumption of isotropic adhesion. For the isotropic cases, all the red circles are arranged
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Figure 3.8: Orthotropic adhesion in shear sliding: Problem setup and loading se-
quence(Step 1, compression and adhesion process; Step 2, sliding and de-bonding process),
where θ represents angle between sliding direction and x axis

at the same distance from the initial position, which conforms to expectations since the

problem becomes perfectly symmetric with isotropic interface properties. For the cases

with orthotropic interface adhesion, directions presenting stronger adhesive stiffness lead

to increased resistance to sliding. Consequently, distance travelled by the centre node be-

fore de-bonding is the lowest in the case of 90◦ sliding (along y axis), and highest in the

0◦ case (along x axis). Intermediate cases can be considered based on adhesion whose

stiffness results from the combination of Ctx and Cty. Norms of the maximum adhesion

forces ||R̃max
t || at the onset of de-bonding initiation for the 10 test cases are reported in

Figure 3.9(b). Here, Monotonous trend can be observed for the adhesion forces as function

of the sliding orientation angle θ. This observation is within our expectations because

as the sliding motion approaches y axis, adhesion force increases since Cty is significantly

higher compared to Ctx. We underline 4 of the tested cases, corresponding to sliding angles

θ = 0◦, 30◦, 60◦ and 90◦, and we report for the underlined cases evolutions of the adhe-

sion damage parameter β (Figure 3.9(c)) and adhesion forces ||R̃t|| (Figure 3.9(d)) for a

complete load cycle involving bonding and de-bonding. In Figure 3.9(c), we note indistin-

guishable time history of β during the stage of adhesion bonding. However, initiation of

de-bonding does not take place simultaneously for all the cases. It arises first in the case

of sliding along x axis, in which direction the adhesion stiffness is the lowest. For the same
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reason, this scenario also exhibits the lowest adhesion force at the onset of de-bonding pro-

cess (blue curve in Figure 3.9(d)). Comparatively, with the sliding direction approaching

y axis, stronger adhesion stiffness is involved. We observe accordingly retarded initiation

of de-bonding, accompanied by increased adhesion forces (red, yellow and purple curves in

Figure 3.9(d)).
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Figure 3.9: Orthotropic adhesion in shear sliding: (a) Final positions of center contact point
in isotropic/orthotropic cases with sliding angle θ = 0◦ to 90◦ respectively; (b) Maximum
tangential adhesion norms ||R̃max

t || of center contact point with sliding angle θ = 0◦ to 90◦

respectively; (c) β evolutions of center contact point with 4 different θ (0◦, 30◦, 60◦, 90◦);
(d) Tangential adhesion force evolutions of center contact point with 4 different θ.

3.3.3 Orthotropic adhesive twisting

In this example, we investigate the evolution of interface behaviours of a 3D twist tribosys-

tem (Figure 3.10) by considering both isotropic and orthotropic adhesions. The system is
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composed of an elastomer block that slides on a rigid surface under twisting load. The

elastomer block is 3 mm high, and has a 10 × 10 mm square section. For the isotropic

case, the tangential adhesive stiffness Ct = 1 × 1010 N.m−3, and for the orthotropic case

Ctx = 5× 1010 N.m−3, Cty = 1× 1010 N.m−3. The other adhesive interface parameters are:

w = 100 J.m−2, b = 0.1 N.s.m−1. The simulation scenario involves 2 stages. On the first

stage, we slightly compress the elastomer by lowering its upper surface by 0.1 mm. Then,

on the second stage, a twisting motion is applied to the upper surface at a rate of 20 rad/s,

driving the compressed elastomer block to twist clockwise. Blatz-Ko material is used to

model the elastomer. To prevent excessive shear deformation of the elastomer body during

the twist, we apply a significant shear modulus G = 2.1× 105 MPa.

z

y

x

Step 2:
Keep compressed state and twisting

3mm

10mm

Step 1: 
Vertical compression

3mm

10mm

Figure 3.10: Comparison between isotropic and orthotropic adhesive twisting: Problem
setup and loading sequence (Step 1, compression and adhesion process; Step 2, twisting
and de-bonding process).

We begin by investigating the effect of interface adhesion by comparing cases with

and without the interface adhesion orthotropy. Figures 3.11-3.12 compare respectively

the evolution of adhesion damage parameter β, and the tangential adhesion forces
∥∥∥R̃t

∥∥∥,

between the isotropic and orthotropic cases during the twisting process. For each group of

comparison, 5 frames of result are extracted in chronological order to represent the evolving

twist process. This allows us to highlight for each time instant, differences between the

isotropic and orthotropic cases in terms of β and
∥∥∥R̃t

∥∥∥ distributions. In Figure 3.11, we

use dark red colour to indicate complete bonding of the interface adhesives. As we apply
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twist kinematics to the elastomer body, tangential interface effects start to appear on

the contact interface. They become first noticeable on the outskirts of the contact area

where interface sliding is most significant. Damage to the adhesive bonds is thus initiated

with decreasing β emerging at the corners of the contact interface, where also the first

de-bonded area is observed. Then with the increasing load, de-bonding propagates from

the outskirt area towards the centre, whereas the bonded region gradually shrinks until

complete disappearance. During the process, the bonded region appears within a round

area in the isotropic case. However, when adhesion orthotropy is involved, since stronger

resistance to de-bonding is encountered in the x axis where tangential adhesive stiffness is

more significant, delayed de-bonding is observed following the x axis, leading to an elliptical

bonded region.

t = 0.006 s t = 0.007 s t = 0.008 s t = 0.009 s t = 0.01 s

anisotropy

isotropy
(Ctx = Cty)

00.10.20.30.40.50.60.70.80.91.0
β

(Ctx = 5Cty)

Figure 3.11: Comparison between isotropic and orthotropic adhesive twisting: Evolution
of the adhesion intensity β in isotropic case and orthotropic case during the debonding
process and their shape variation of the contact surface. In each square area, the colour
progresses from dark red to blue, which represents the damage of the adhesive strength β
from perfect adhesion (β = 1) to complete separation (β = 0).

We also investigate the evolution of tangential forces on the same setup. In Figure

3.12, Euclidean norms of tangential forces are depicted, allowing us to observe the evolving

intensity of tangential forces on the contact interface. Chronologically, at the beginning

of load, tangential forces are most significant on the outskirts of the contact area since

67



linear velocity is higher. This is also where de-bonding is initiated and propagates towards

the centre. Consequently, the peak of tangential forces appears in the form of an evolving

circular band, whose radius decreases with the twist load, until gradually disappears in the

centre of rotation, leading to complete de-bonding of the interface adhesives. In the case

of orthotropic adhesion, the circular band appears in the form of an ellipse since stronger

tangential adhesive stiffness is involved in x axis, following which de-bonding requires more

efforts. This observation is in accordance with the evolution of β during the simulation.

t= 0.006 s t= 0.007 s t= 0.008 s t= 0.009 s t= 0.01 s

anisotropy

(Ctx = 5Cty)

isotropy

(Ctx = Cty)

0510152025
||Rt|| (kN)

Figure 3.12: Comparison between isotropic and orthotropic adhesive twisting: Evolution

of tangential adhesion forces
∥∥∥R̃t

∥∥∥ in two cases during the debonding process. In each

square area, the colour progresses from dark red to blue, which represents the variation of
the Euclidean norm of tangential adhesion from maximum to zero.

3.4 Concluding remarks

In this chapter, we proposed an orthotropic adhesion model to deal with problems of adhe-

sive contact with orthotropic interface properties between hyperelastic bodies. This model

has been implemented within the bi-potential method, based on a set of extended unilat-

eral and tangential contact laws. The behaviour of orthotropic adhesion is described by

adhesion stiffness, whose components can be expressed according to the local coordinate

system. In this model, the strength of interface adhesive bonds and the effect of interfa-
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cial damage are characterized by a scalar parameter β, therefore an entire bonding and

debonding process of the adhesive links with the account for orthotropic interface effects

can be modelled. The proposed approach has been tested on cases involving both tangen-

tial and unilateral contact kinematics, which allowed emergence of orthotropic interface

effects between soft bodies. Owing to the straightforward description of the contact rules,

the presented approach can be easily implemented. Therefore, immediate implementation

of this orthotropic adhesion model within a third-party software can be suggested for direct

application on real problems.
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Chapter 4

Modelling of anisotropic hyperelastic

behaviour of soft tissues with surface

adhesion

4.1 Introduction

This chapter describe a numerical formulation based on the Holzapfel-Gasser-Ogden (HGO)

model incorporating interfacial adhesion to investigate the effect of anisotropic hypere-

lastic behaviours of soft tissues on surface adhesion. The HGO anisotropic hyperelastic

constitutive law is widely used to model collagen fiber reinforced biological soft tissues, its

anisotropy arises from collagen fiber behaviour, and the matrix of soft tissues is isotropic

in nature. The energy densities of collagenous soft tissues contain both isotropic and

anisotropic components, each collagen fiber family has an independent anisotropic energy

density. In this work, the Yeoh hyperelastic constitutive law is adopted to model non-

collagenous matrix of soft tissues. We use the same adhesive contact constitutive law

constructed in Chapter 2, and then introduce the HGO anisotropic hyperelastic model
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into the contact model.

In the follows: in Section 4.2, we provide the formulation of the anisotropic hyperelastic

constitutive law incorporating Yeoh hyperelastic model. Then the complete finite element

formulation, including the resolution algorithm, is provided. To validate the framework,

we present numerical examples in Section 4.3. In the end, a few concluding remarks are

drawn in Section 4.4.

4.2 HGO hyperelastic model for biological soft tissues

Holzapfel-Gasser-Ogden(HGO) model is widely used to describe anisotropic hyperelastic

behaviours of biological soft tissues [83]. It is usually assumed that anisotropy is commonly

attributed to the behaviour of collagen fibers [52], while the ground substance is considered

to be isotropic, energy densities modeling transversely isotropic and orthotropic soft tissues

are split in isotropic and anisotropic components [89, 90].

W = Wiso +
n∑
a=1

W a
ani . (4.1)

Each anisotropic energy density W a
ani refers to a preferred direction of the material. The

number of fiber families n is generally set to 1 model tissues as ligaments or tendons

while it is set to 2 to represent the behaviour of arterial walls. For example,to model the

embedded collagen fibers of soft biological arterial tissues, HGO constitutive law [83, 52]

superposes two transversely isotropic energies with two distinct preferred directions a1 and

a2 corresponding to two fiber families:

a1 =


cosθ

sinθ

0

 , a2 =


cosθ

−sinθ

0

 . (4.2)
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The phenomenological angle θ represents the angle between the collagen fibers and the

circumferential direction for a strip extracted, for example, from the media of artery, as

shown in Figure 4.1. To deal with the geometrical transformation with large deformation,

a1
a2

θθ

Figure 4.1: Angle θ between the collagen fibers of the artery wall and the circumferential
direction

we use the deformation gradient tensor F for the soft bodies in contact. The constraint of

incompressibility (isochoric deformation) is given by [110]

J = det(F) = 1. (4.3)

According to the Zhang-Rychlewski’s theorem [111], the condition of material symme-

try is satisfied if structural tensors are additionally included in the strain energy density

representation. Transversely isotropic densities can then be expressed with the three in-

variants I1, I2, and I3 of the right Cauchy-Green deformation tensor and two additional

mixed invariants J4 and J5 [112, 113, 114].

I1 = tr(C), I2 = tr(I3C
−T ), I3 = det(C), J4 = tr(CM), J5 = tr(C2M), (4.4)

where M is the so-called structural tensor representing the transverse-isotropy group and
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referring to a preferred direction a of the material:

M = a⊗ a. (4.5)

It is noted that Eqs.(4.4,4.6) give

J4 = tr(FTFa⊗ a) = ‖Fa‖2 , (4.6)

where the double brackets represent the usual Euclidean norm. The square root of J4

represents thus the stretch in the fiber direction. It can also be interpreted as the radial

coordinate of Fa in a cylindrical coordinate system where the polar angle γ represents the

deformed angle between the collagen fibers and the circumferential direction (Figure 4.2).

γ

θ
a

Fa

J4
x2

x1

Figure 4.2: Cylindrical coordinate system

In the case of hyperelastic law, there exists a strain energy density function W which is a

scale function of one of the strain tensors, whose derivative with respect to a strain compo-

nent determines the corresponding stress component. In the particular case of anisotropic
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hyperelasticity, Eq.(??) can be written by

S =2

[
I3
∂W

∂I3

C−1 +

(
∂W

∂I1

+ I1
∂W

∂I2

)
I− ∂W

∂I2

C +
∂W

∂J1
4

Ma1

+
∂W

∂J2
4

Ma2

+

∂W

∂J1
5

(CMa1

+ Ma1

C) +
∂W

∂J2
5

(CMa2

+ Ma2

C)

]
,

(4.7)

To uncouple the deviatoric part to the dilatational part of the response, the volume pre-

serving part F̂ = J−1/3F of the deformation is introduced [89]. The modified invariants

related to Ĉ = F̂
T
F̂ = J−2/3C are expressed from Eq.(4.4) by

Î1 = I1J−2/3, Î2 = I2J−4/3, Ĵa4 = Ja4J−2/3, Ĵa5 = Ja5J−4/3. (4.8)

The exponential type HGO density adopted in this work uses these modified invariants as

follows:

W = Ŵ (Î1, Ĵ
a
4) +WH(J), (4.9)

Generally, soft biological tissues are assumed to be incompressible. Eq.(4.10), which was

proposed by Horgan and Saccomandi [115], represents a penalty term added to the finite

element model to account for the incompressible behavior of the material. Here, d is the

material incompressibility parameter. The initial bulk modulus K is defined as K = 2/d.

WH(J) =
1

d

(
J2 − 1

2
− lnJ

)
, (4.10)

Ŵ (Î1, Ĵ
a
4) = Wiso(Î1) +

2∑
a=1

Wani(Ĵa4), (4.11)

W a
ani =


k1
2k2

[
ek2(Ĵa4−1)2 − 1

]
if Ĵa4 ≥ 1

0 if Ĵa4 < 1

. (4.12)

This energy density is case-sensitive with respect to Ĵa4 because the case of Ĵa4 < 1 represents
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the shortening of the fibers which is assumed to generate no stress. The proof of convexity

of Eq.(4.12) with respect to F is given in [116, 90]. The noncollagenous matrix of the

media is modeled by the Yeoh model, which describes isotropic incompressible rubber-like

materials [94, 95]. The energy density is given by:

Wiso(Î1) =
3∑
i=1

Ci0(Î1 − 3)i, (4.13)

where Ci0 are material constants. In our particular case, Eq.(4.7) is reduced to

S = 2

[
I3
∂W

∂I3

C−1 +
∂W

∂I1

I +
∂W

∂J1
4

Ma1

+
∂W

∂J2
4

Ma2

]
. (4.14)

By deriving the energy density W with respect to the invariants (I1, I3 and Ja4), we obtain:

∂W

∂I1

= I
−1/3
3

dWiso

dÎ1

,

∂W

∂I3

= − 1

3I3

[
Î1
dWiso

dÎ1

+
2∑

a=1

Ĵa4
dWani

dĴa4

]
+

1

2d

(
1− 1

J2

)
,

∂W

∂Ja4
= I
−1/3
3

dWani

dĴa4
,

(4.15)

with
dWiso

dÎ1

= C10 + 2C20(Î1 − 3) + 3C30(Î1 − 3)2,

dWani

dĴa4
= k1(Ĵa4 − 1)ek2(Ĵa4−1)2 .

(4.16)

4.3 Numerical results

This section presents numerical examples to demonstrate the effect of anisotropic hypere-

lastic behaviour of soft tissues on surface adhesion. The algorithms presented above have

been implemented into the in-house finite element code FER/Contact.
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4.3.1 Stretch-release test

We investigate the adhesive anisotropic hyperelastic behaviour of soft tissues submitted

to a stretch-release test between two fixed and rigid plates, where initially a tiny gap

exists between the soft tissue and the rigid plate, as shown in Figure 4.3. A displacement

along the positive x-axis is constantly prescribed on the right surface of the soft tissue

and its left surface is fixed, causing the soft tissue to be stretched in the axial direction

and expanded in the radial direction due to collagen fibers. As two fiber families are

parallel to the x− z plane in our case, the extension of the soft tissue is along the y-axis,

therefore upper and lower surfaces of the soft tissue will come into contact with two rigid

plates during the stretching process. After stretching the soft tissue to ensure perfect

adhesion (β = 1) between its contact surfaces and two rigid plates, we release the loading

on the right surface to observe the adhesion behaviour during the soft tissue rebound. The

test scenario allows observing consecutively two phenomena: first, the bonding process on

the adhesive interface that takes place when contact is set up, then, initiation of the de-

bonding process on the contact interface where normal separation and tangential sliding

of the adhesive interface occur due to the soft tissue rebound. We investigate how the

de-bonding area evolves with the soft tissue rebound, and how the evolution is affected

by the fiber arrangement. Characteristics of the system are described in the following.

The soft tissue is 10 mm long with a square section of 2 × 2 mm2, and it has an initial

gap of 0.06 mm from the rigid plate. The material parameters used for Yeoh part of the

HGO model correspond to a skin model[117]: C10 = 26912.5 kPa, C20 = 37606.5 kPa,

C30 = 41596.3 kPa, k1 = 996.6 kPa and k2 = 524.6. Adhesive interface parameters are:

w = 100 J.m−2, Cn = Ct = 1×1010 N.m−3 and b = 0.1 N.s.m−1. The soft tissue is stretched

by 0.7 mm in 0.007 s before releasing load.

Before exploring the adhesive anisotropic hyperelastic behaviour, we investigate the

effect of fiber arrangements on radial extension intensity by a conventional tensile test of
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Stretch first, then release 
for lateral loading

0.06 mm

θ
θ a1

a2

Figure 4.3: Problem setup: in this case, collagen fibers parallel to the x− z plane; The left
surface of soft tissue is fixed and we apply a load along the positive direction of x-axis on
the right surface, releasing after the soft tissue has been stretched to a certain length.

soft tissue with 5 different fiber angles θ (35◦, 40◦, 45◦, 50◦, 60◦) using the exact same soft

tissue structure model, loading condition and material parameters, except that the upper

and lower rigid plates are removed. We choose a node (blue point in Figure 4.4) at the

edge of the upper surface to observe the evolution of its displacements Uy and Uz over

time.

In Figure 4.4, solid lines represent the displacement of the selected node along the

y-axis and dashed lines are the displacement along the z-axis. We observe that radial

extension occurs from 35◦ to 45◦, indicating that their fibers have been loaded. Although

the displacement Uy at 50◦ is negative, its Uy and Uz curves gradually separate, indicating

that its fibers have also been loaded. However, Uy and Uz of 60◦ have always overlapped

from t = 0 s to t = 0.007 s, hence it is still in isotropic state, in other words, its fibers have

not yet been loaded. According to the structural assumptions in [83, 118, 119], the collagen
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Figure 4.4: Tensile test of soft tissue (no upper and lower rigid plates): lateral displacements
Uy (solid lines) and Uz (dashed lines) of a selected node (blue point) with 5 different fiber
angles (35◦, 40◦, 45◦, 50◦, 60◦), which is on the edge of the upper surface as shown in figure.

is embedded as two families of fibers in the soft tissue matrix, which are symmetrically

distributed with respect to the tensile direction. The embedded collagen fibers need to be

rotated almost to the direction of loading before they can carry the load. This results in a

significant radial extension and thus an increase in the soft tissue thickness. Additionally,

due to the incompressibility constraint, the width of soft tissue reduces. As we observed in

Figure 4.4, smaller fiber angle θ means closer to the tensile direction, therefore the radial

extension of 35◦ occurs fastest and has the largest displacement Uy at t = 0.007 s, the

extension intensity decreases with increasing fiber angle θ, then, in the z-axis direction,

the degree of concavity decreases with increasing θ as well, due to the incompressibility of

tissues.

Based on the results of Figure 4.4 and the initial gap between the soft tissue and

the rigid plate, we select soft tissues with 35◦ and 40◦ fiber angles, whose surface can be

in contact with rigid plate during stretching, to investigate the effect of different radial

extension intensity on interfacial adhesive damage during soft tissue rebound. We also
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pick 60◦ as a reference to compare the distinction between contact and no contact.

Figure 4.5(a) shows Uy evolution of 3 sets of selected fiber angles in the x − y plane

view. During the loading phase (from t = 0 s to t = 0.007 s), we observe that the soft tissue

with 35◦ fiber angle expands faster than 40◦, while the soft tissue with 60◦ fiber angle is

depressed inwards in the y-axis direction, which is consistent with the results in Figure 4.4.

At the end of the stretching (t = 0.007 s), majority of the contact surfaces of the 35◦ and

40◦ cases touch the rigid plate. After releasing the load (from t = 0.007 s to t = 0.015 s), we

observe that the rebound rate in the y-axis direction is inversely proportional to the radial

extension rate. The reason is that, during stretching process, the march of soft tissue in

extension direction is blocked by rigid plates, hence the work done for extension is converted

into elastic potential energy of matrix, which is accumulated in the contact area of the soft

tissue. As shown in Figure 4.4, the radial extension of 35◦ case is greater than 40◦, therefore

the soft tissue with 35◦ fiber angle needs to release more potential energy during rebound,

which causes its Uy to decrease slowly. At t = 0.015 s, we observe that the Uy of 35◦ and 40◦

cases is still visible, while the soft tissue with 60◦ has almost completely rebounded in the

y-axis direction, which is the result of adhesion hindering the interface separation. Due to

combination of the adhesive effect and the difference of rebound rate, the radial extension

area of 35◦ case is larger than 40◦ at t = 0.015 s. In order to visualize the evolution of

displacements in the x, y and z directions throughout the whole load-release process, we

choose the same observation node of Figure 4.4 and plot its displacement curves at three

selected fiber angles, as shown in Figure 4.5(b). Comparing Ux curves, 35◦ and 40◦ cases

are perfectly coincided during loading process, however, Ux of 60◦ is slightly higher than

other two angles due to the lack of interference from contact interface. In rebound phase,

we can observe that the disparity in Ux between contacted cases and uncontacted case

is immediately apparent, this phenomenon is not clearly observed in Figure 4.5(a). The

displacement evolution in y-axis or z-axis directions is expected, which shows the same

tendency as in Figure 4.4 in loading process and the identical results as observed in Figure

4.5(a) in rebound stage.
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Figure 4.6(a) shows the evolution of adhesion intensity β on upper contact interface

with 2 different sets of fiber angles (35◦, 40◦) in rebound process. Both contact areas

of two fiber angles are perfectly adhered with the rigid plates prior to release loading.

After release, we observe that the adhesive bonds break in the same direction as the

rebound. In the initial phase of soft tissue rebound, from t = 0.007 s to t = 0.009 s, the

propagation of adhesive fracture at 40◦ is faster than 35◦, as the results of Figure 4.5(a),

the Uy of 40◦ decay more rapidly than 35◦ due to a larger displacement variation, which

accelerates the adhesive damage of soft tissue in 40◦ case. From t = 0.011 s, the adhesive

damage rate of 35◦ gradually catches up, and its damage propagation line becomes sharper

compared to 40◦. At t = 0.015 s, the adhesive damaged area of 35◦ has overtaken 40◦. This

phenomenon seems to be contrary to Uy variation of these two fiber angles, the reason is

that, in addition to the displacement variation in y-axis, which affects normal separation,

the tangential sliding in z direction of the interface also breaks the adhesive bond. During

soft tissue rebound, the Uz gradually increases from the edge to the center, hence the β

at the edge of the contact surface is the first to decrease, which create the curvature of

damage propagation lines. Due to incompressibility, the larger displacement extension in

the y-axis leads to a deeper concavity in the z-axis, therefore the Uz variation of 35◦ is

larger than 40◦, as we can observed in the curves of Figure 4.5(b). Under the dual actions

of Uy and Uz, the soft tissue with 35◦ fiber angle has a larger adhesive fractured area, and

its damage propagation line is sharper due to a greater Uz. Figure 4.6(b) shows the β

evolution for the same observation node in Figure 4.4 at fiber angles of 35◦ and 40◦. At

t = 0.0068s, β increases to 1, indicating the achievement of complete bonding (Zone 1 in

Figure 4.6(b)) of the adhesive interface. Comparing the two curves, since the soft tissue

with 35◦ fiber angle is the first to come into contact with the rigid plate, it grows faster

than 40◦ to β = 1 in Zone 1. In Zone 2, we release the loading, the soft tissue starts to

rebound. As the observation point is in the middle of the edge, it takes some time for the

damage propagation line to advance to that position, therefore the β of observation node

is still 1. As the rebound of soft tissue proceeds, the fracture of adhesive bond advances
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to the left, the effect of adhesion damages becomes noticeable starting from t = 0.0098s,

which corresponds to Zone 3 in Figure 4.6(b). By the time the adhesive break propagates

to the observation node, the effect of Uz on β is already evident, hence β of 35◦ falls more

quickly. At t = 0.015s, β values for both fiber angles are identical to the results in Figure

4.6(a).

Figure 4.7 shows the evolution of adhesive force in x-axis (Radh-x) on upper contact

interface with 2 different sets of fiber angles (35◦, 40◦) in rebound process. We note that

Radh-x slides from right to left, which is consistent with the rebound direction in x-axis.

And the adhesive forces shrink along the edge towards the center. The reason is the same

as the curvature variation of the damage propagation line, β decreases from the outside

to inside due to the release direction of Uz during rebound, causing the Radh-x to shrink

inwards. In addition, we observe that Radh-x of 40◦ advances faster until t = 0.012s. Due

to a faster reduction of β at 40◦ in the early stages of rebound, as observed in Figure 4.6,

its adhesive forces in x-axis move quickly. Then, Radh-x of 35◦ catches up as the effect of

Uz in 35◦ case gradually becomes apparent.

Figure 4.8 shows the distribution of adhesive forces in y-axis (Radh-y) on upper contact

interface with 2 different sets of fiber angles (35◦, 40◦) in rebound process. We observe

that Radh-y is barely visible on the contact surface of 35◦ case until t = 0.011s, as the Uy

variation of 35◦ is very subtle in the early stages of rebound, as shown in Figure 4.5(a).

After t = 0.011s, as the upper surface begins to drop, Radh-y of 35◦ gradually become visible

in the area where β is still strong. The soft tissue with 40◦ fiber angle is much weaker in

radial extension, which allows its adhesive forces in the y-axis to play a role throughout the

rebound process. The advance directions of Radh-y at both fiber angles are also consistent

with the damage propagation line.

Figure 4.9 shows the distribution of adhesive forces in z-axis (Radh-z) on upper contact

interface with 2 different sets of fiber angles (35◦, 40◦) in rebound process. The adhesive

forces at both angles in the z-axis direction are evident from the beginning of the rebound.
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Knowing that the displacement variation in the z-axis direction is from the boundary to

the centre, therefore we observe that the Radh-z are visible in the upper and lower edge

regions. As a resistance, the direction of the Radh-z is always opposite to the direction of

movement in this area. Moreover, the action of Radh-z is tightened to the left following the

propagation of adhesive bond break.
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Figure 4.5: (a) Uy displacement evolution of 3 different sets of fiber angles (35◦, 40◦, 60◦)
in the x − y plane view; (b) The whole displacements Ux, Uy and Uz of the same contact
node of Figure 4.4 with 3 selected fiber angles.
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Figure 4.8: Evolution of adhesive force Radh-y on upper contact interface with 2 different
sets of fiber angles (35◦, 40◦) in rebound process
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4.3.2 Normal peeling of soft tissue

The second example is a normal peeling case, in which we investigate the effect of anisotropic

hyperelastic behaviour on the soft tissue debonding process. The initial state of this ex-

ample is a perfect adhesion (β = 1) between the soft tissue and a rigid substrate. A

displacement loading along the positive y-axis is applied on the right side surface of the

soft tissue and its left side surface is held in place, as shown in Figure 4.10. Here, two fiber

families are equally parallel in the x− z plane, therefore, when the soft tissue is stretched

axially it will expand in the y direction. According to the problem setting, the effect of

variations in collagen fiber angle on debonding rates of soft tissue will be the focus of our

investigation in this example. Characteristics of the system are described in the follow-

ing. The soft tissue dimension is 10× 3× 0.5 mm. The HGO+Yeoh material parameters

are: C10 = 26912.5 kPa, C20 = 37606.5 kPa, C30 = 41596.3 kPa, k1 = 996.6 kPa and

k2 = 524.6. Adhesive interface parameters are: w = 100 J.m−2, Cn = Ct = 1× 1010 N.m−3

and b = 0.1 N.s.m−1. The right surface of the soft tissue is elevated by 3 mm in 0.015 s.

x
z
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Fixed
 su

rfac
e

Normal loading
10 mm

a1

a2

θ

θ

3 m
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Figure 4.10: Problem setup: in this case, collagen fibers parallel to the x − z plane; The
left surface of soft tissue is fixed and we apply a normal load on the right surface to peel off
the soft tissue. In the initial state, the contact surface of the soft tissue adheres perfectly
to the substrate (β = 1).
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Figure 4.11(a) shows the deformation shape and Uz displacement distribution of the soft

tissue at t = 0.015s for 4 different fiber angles of 35◦, 40◦, 45◦, 50◦. For a clearer comparison

of the debonding between 4 cases, we overlapped the deformed shape contours of 4 sets of

soft tissue, as shown in Figure 4.11(b) and Figure 4.11(c) respectively. We observe that

the debonding contact area decreases with increasing fiber angle. According to previous

results, a smaller fiber angle allows the soft tissue to reveal the anisotropic behaviour more

rapidly. The anisotropy results in soft tissue expansion along the y-axis and accelerated

inward concavity in the z-axis. However, which variable directly accelerates the breakage

of the interfacial adhesive bond in the current example?

For this purpose, we perform 4 sets of tensile tests on the current model. The Uy

and Uz curves obtained are shown in Figure 4.12. We observe a similar phenomenon to

that in Figure 4.4, except that the soft tissue expansion is less pronounced in this model.

According to Eq.(3.18), a greater variation of displacement during debonding will accelerate

β reduction. During debonding, the radial expansion prevents the increasing of the normal

displacement due to its perpendicularity to the contact surface, while the concavity leads to

a continuous variation in the tangential displacement. Since the radial expansion is much

smaller than the internal concavity in the current model, the Uz variation is the key factor

affecting the debonding rate for different fiber angles. This also confirms the distribution

of Uz displacements in Figure 4.11(a): the greatest Uz variation at 35◦ is associated with

the largest debonding area.

Figure 4.13(a) shows β evolution of the contact surface at four different sets of fiber

angles. We observe the same phenomenon as in Figure 4.6, where the adhesive bonds

break fastest at 35◦ and the debonding contact area is the largest and the debonding

speed decreases with increasing angle. The combined effect of the tangential and normal

displacements makes the bond break faster at the edges of the contact surface than in the

central region, which results in an arc-shaped adhesive fracture propagation line. Figure

4.13(b) shows β evolution curves of the selected point at 4 different sets of fiber angles,
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where the observation point is located in the middle of the contact surface edge (the red

node shown in the figure). The sequence of decreasing β in the graph also corroborates the

tendency in Figure 4.13(a). Figure 4.14 shows the distribution of adhesive forces along the

y-axis Radh-y on the contact surface. We observe that the adhesive forces propagate from

right to left and are mainly apparent around the adhesive fracture propagation line. The

propulsion of adhesive force is also consistent with β evolution for different fiber angles,

i.e. 35◦ is the fastest and 50◦ the slowest.
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Figure 4.11: Deformed shape and Uz displacement distribution at t = 0.015s of soft tissue
for 4 different sets of fiber angles (35◦, 40◦, 45◦, 50◦); (b) Deformed shape contour overlap
map for 4 groups of soft tissues at t = 0.015s
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4.4 Concluding remarks

In this chapter, we incorporated the HGO+Yeoh constitutive law and an adhesive contact

model implemented by the bi-potential method and the RCC model. This approach has

been tested through an adhesive contact of soft tissue during a stretch-rebound process and

a normal peeling test. We investigated the effect of anisotropic hyperelastic behaviour on

surface debonding by varying collagen fiber angles. The results clearly show the deforma-

tion differences in the soft tissue and on the contact surfaces. Owing to the straightforward

descriptions of structural continuum constitutive models of soft tissues and the adhesive

contact rules, the presented approach can be easily implemented into a finite element pro-

gram. Therefore, this adhesive anisotropic hyperelastic model can be suggested to deal

with the related issues in biological and medical application fields.
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Chapter 5

Interfacial adhesion fatigue under

cyclic loading

5.1 Introduction

In reality, the reversible adhesion varies depending on the contact surface, the contact

environment and the contact frequency, e.g. the adhesion of a tape degrades with successive

sticking and removing. The RCC model used in Chapter 2 presents a perfect reversible

adhesion, which means that a perfect adhesion (β = 1) can be achieved with a sufficient

contact time, even if the bonding-debonding process is repeated numerous times. For

modelling the degradation of adhesive effect, Raous et al. [62] propose a relationship

between the maximum adhesive intensity and the number of debonding. In this chapter,

we add this adhesive degradation into our adhesive contact model to investigate the contact

problems with partial recoverable adhesion.

In the follows: in Section 5.2, we describe the relation of degradation and reconstruct

the differential equation of β. Then, we present numerical examples in Section 5.3. In the

end, a few concluding remarks are drawn in Section 5.4.
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5.2 Recoverability degradation of RCC adhesive model

Based on the RCC adhesive model, Raous et al. [62] propose an evolution equation to

achieve partial recoverability by regulating the maximum value of β (β ∈ [0, βmax]):

βmax = β0
max + λ

∫ t

0

[
β̇(x, t)

]−
dt , (5.1)

where λ represents the degradation factor with λ ∈ [0, 1] and β0
max ∈ [0, 1] is the initial

maximum adhesive intensity. The function of [ ]− is used to retain the negative part

in the square brackets, in Eq.5.1, the result in the square brackets is maintained when β̇

is negative, conversely (β̇ ≥ 0), the result in the square brackets equals zero. Moreover,

Eq.5.1 can be developed to the following form:


βmax = β0

max + λ(βt − β0)−

if (βt − β0) < 0, (βt − β0)− = βt − β0, debonding

if (βt − β0) ≥ 0, (βt − β0)− = 0, bonding

(5.2)

Therefore, βmax is reduced only when adhesive bond breakage (β̇ < 0) occurs, and the

degree of each degradation depends on the product of the bond breakage level (βt − β0)

and the degradation factor λ. The differential equation (Eq.2.16) of β can be written as:


bβ̇ ≥ 0 with β = 0

bβ̇ = w − (Cnx
2
n + Ct‖xt‖2)β with 0 < β < βmax

bβ̇ ≤ w − (Cnx
2
n + Ct‖xt‖2) with β = βmax .

(5.3)

Assuming that we set a 5 cycles of bonding-debonding process with β0
max = 1 and

λ = 0.25, which means that the maximum adhesive strength βmax decreases by 25% after

each cycle. The comparative schematic between complete recoverability and recoverability

degradation is shown as Figure 5.1.
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Figure 5.1: Comparative schematic between complete recoverability and recoverability
degradation in β evolution

5.3 Numerical results

5.3.1 Unilateral cyclic loading

The adhesion effect is usually most significant in the normal direction. In order to clearly

show the adhesion degradation over several loading cycles, the first example simulates the

normal adhesive contact between a hyperelastic block and a rigid plate, shown in Figure

5.2(a). The density of elastomer is: ρ = 700 kg/m3 and its shear modulus G is 2×1010 Pa.

A time dependent displacement is prescribed on the upper surface of elastomer, as shown

in Figure 5.2(b), which is the load curve showing the displacement of the upper surface of

the block. Parameters for the adhesive are : w = 1000 J.m−2, Cn = Ct = 1× 1011 N.m−3,

and b = 0.1 N.s.m−1. We assume that the contact interface is perfectly adhered with β = 1,

the initial maximum adhesive intensity β0
max = 1 and the degradation factor λ = 0.6.
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Figure 5.2: Interfacial adhesion fatigue in unilateral contact of elastomer: (a) Problem set;
(b) Loaded displacement on the upper surface of elastomer.

Figure 5.3(a) shows β evolutions of observation point, as shown in figure, in two different

recoverable adhesion scenarios, where the blue line represents a perfect recoverability and

the red line represents a partially recoverability. Since the initial contact interface is at

perfect adhesion (β = 1), two lines of β coincide completely during the first debonding

process, and the first degradation of β also occurs in this process. From the graph, we

observe that the last bond breakage level is approximately 0.9, therefore during the first

bonding process, the maximum value of β in the partially recoverable case is approximately

0.45 with the set degradation factor λ = 0.6, and βmax in perfectly recoverable case rises to

1 as we expected. In the second bonding process, the bond break of the partially recoverable

case precedes the perfect case due to its smaller β, which produces less adhesive force. For

the second debonding, we also observe that βmax in partially recoverable case continues to

degrade from the previous cycle, whereas βmax in the perfect case remains the same. Figure

5.3(b) shows the evolutions of the normal adhesive force R̃n in two cases. The tendency of

the adhesive forces observed in the graph is the same as in Figure 5.3(a), two cases overlap

perfectly in the first debonding, the discrepancy arises in the second bond break due to

the β degradation.
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Figure 5.3: Interfacial adhesion fatigue in unilateral contact of elastomer: (a) Evolution of
β in perfectly recoverable case and in partially recoverable case (λ = 0.6); (b) Evolution
of normal adhesive force R̃n in perfectly recoverable case and in partially recoverable case
(λ = 0.6).
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5.3.2 Rolling adhesion of a hyperelastic wheel

For this example we use the exact same modelling as the rolling example in Chapter 2

to compare the difference between the perfect recoverability and the partial recoverability.

The two cases follow the next loading sequence: the upper plate first descends vertically for

5×10−4 m at the velocity of 0.1 m/s, exerting slight compression on the wheel. Then, still

on the upper plate, we prescribe a sliding motion at the velocity of 1 m/s so as to drive the

compressed wheel in rotation. Material properties are: shear modulus G = 5× 106 Pa and

the density ρ = 1000 kg/m3. Concerning the interface properties, the following parameters

are used: friction coefficient µ = 0.4. Note that setting non-zero friction here is important

to drive the wheel to rotate. The wheel rotates consequently under the combined effects

of interface friction and adhesion. Parameters for the adhesive are : w = 200 J.m−2,

Cn = Ct = 2× 1010 N.m−3, b = 0.1 N.s.m−1, and the degradation factor λ = 0.4

r = 0.006 m

R = 0.01 m x
y

uy ux

u ux

Step 1：vertical compression Step 2：horizontal rolling

Figure 5.4: Adhesive fatigue in rolling adhesion of a hyperelastic wheel: Problem set

Figure 5.5 shows the evolution of the morphology and the Von Mises stress distribution

during one rotation of the hyperelastic wheel in perfectly recoverable case and in partially

recoverable case (λ = 0.4). We picked the yellow dot as a reference point to observe the

wheel rolling movement. We observe that in the perfect case the morphology and stress
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distribution of the wheel remains consistent at all times, however, the deformation in the

partial case diminishes with each debonding due to the adhesive degradation. Finally, it

approximates to the morphology at the end of vertical compression, indicating that the

adhesion effect is very small at this moment.

0 1 2 2.8

t = 0.02 s t = 0.04 s t = 0.08 s 

Perfect 
recoverability

Partial 
recoverability

Mises (MPa)

Figure 5.5: Adhesive fatigue in rolling adhesion of a hyperelastic wheel: Deformed shape
and Von Mises stress distribution of the hyperelastic wheel in perfectly recoverable case
and partially recoverable case (λ = 0.4)

Figure 5.6 presents β evolutions of the reference point (yellow dot) in two different

recoverable adhesion scenarios, where the blue line represents a perfect recoverability and

the red line represents a partial recoverability. During vertical compression step and the

first debonding process, the beta evolutions in two cases are exactly overlap, as expected.

In the second bonding, βmax of the partial case can only reach 0.6 due to the degradation

factor λ = 0.4, which also causes it to precede the perfect case in the second debonding. Due

to the previous accumulation, the bonding-debonding process for the subsequent partially

recoverable case is overall advanced.
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Figure 5.6: Adhesive fatigue in rolling adhesion of a hyperelastic wheel: Evolution of β
of yellow dot (see Figure 5.4) in perfectly recoverable case and partially recoverable case
(λ = 0.4)

5.4 Concluding remarks

In this chapter, a numerical formulation for contact problems with friction and partially

recoverable adhesion between soft materials under large deformation is implemented by

using the RCC interface model and the bi-potential resolution method. The RCC model

proposes a straightforward description of the interface adhesion based on a local scalar

parameter β. Both normal and tangential effects are taken into account by the adhesive

interface model, involving both the process of bonding and de-bonding of the interface

links. For achieving the adhesive degradation, a relationship between the maximum ad-

hesive intensity and the number of debonding is also described. We have combined the

RCC adhesive model with Blatz-Ko hyperelasticity to account for frictional contact of foam

type soft material structures with partial recoverable interface under conditions of large

deformation. The proposed approach has been tested on cases involving both unilateral

and mixed-directional contact kinematics in perfect recoverability case and partial recov-

erability case. This model can be an effective tool for dealing with more complex adhesive
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contact problems.
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Chapter 6

General conclusions and future

prospects

In this work, we have developed firstly in Chapter 2 a contact formulation for recoverable

adhesion between soft bodies based on the bi-potential method and the RCC interface

model. The model proposes a straightforward description of the interface adhesion based on

a local scalar parameter, and allows coupling the effect of adhesion, friction and unilateral

contact within a unified framework. Both normal and tangential effects are taken into

account by the adhesive interface model, which represents both the processes of bonding

and de-bonding of interfaces links. Interface behaviours can be tracked beyond the onset

of tangential sliding or normal separation, with reversible interface adhesion driven by

the conditions of normal contact. In this regard, a complete contact and friction law

with extension to reversible interface adhesion is proposed. Numerical examples have been

performed to investigate the effects of friction and adhesion, including their combined effect,

on the interface behaviour based on frictional contact scenarios involving cyclic loading in

both in tangential and normal directions.

In regard to meeting the requirements of dealing with adhesive friction problems at
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complex contact interfaces, we have extended the adhesive contact model of Chapter 2

with adhesive orthotropy. In Chapter 3, we proposed an orthotropic adhesion model to

deal with problems of adhesive contact between hyperelastic bodies. This model has been

implemented within the same contact laws of Chapter 2. The behaviour of orthotropic

adhesion is described by adhesion stiffness, whose components can be expressed according

to the local coordinate system. In this model, the entire bonding and debonding process

of the adhesive links with the account for orthotropic interface effects is modelled. The

proposed approach has been tested on cases involving both tangential and unilateral contact

kinematics, which allowed emergence of orthotropic interface effects between soft bodies.

In Chapter 4, we proposed an adhesive anisotropic hyperelastic formulation to modeling

soft tissues with surface adhesion. Due to the fibre-reinforced structure of collagenous soft

tissues, the HGO model was used to simulate the deformation anisotropy arising from the

arrangement of collagen fibres in the soft tissue, and we chose the Yeoh material model

to represent the isotropic matrix in the soft tissues. The adhesive contact model, which

is the same contact constitutive law as Chapter 2, implemented by bi-potential method

and RCC model, based on a set of extended unilateral and tangential contact laws. The

proposed approach has been tested through an adhesive contact of soft tissue during a

stretch-rebound process and normal peeling. Due to the radial extension of soft tissue

caused by collagen fiber arrangement, the effect of material anisotropy on the adhesive

behaviour of contact interface has been investigated.

In Chapter 5, in order to deal with adhesive degradation problems in realistic contact

environments, we incorporated an equation for regulating β maximum value into the adhe-

sive contact model of Chapter 2. This relationship determines the amount of degradation

generated during the current debonding process by the product of a scalar factor and

bond breakage level (i.e. the reduction of β in each debonding process), resulting in a new

maximum value of β which has to be lower than the value in the previous bonding pro-

cess. Numerical examples demonstrated the effect of adhesive degradation by comparing
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perfectly recoverable cases with partially recoverable cases.

To the best knowledge of the author, adhesive contact is a highly interesting topic

in the medical and biological fields, especially in numerical analysis, where efficient and

practical numerical models are very limited, and the commonly used commercial software

does not perfectly address all the needs of the researcher. As the adhesion effect occurs

in numerous scenarios, a robust, efficient adhesive contact model therefore has a very

promising application. In the following we give our perspectives on potential applications

based on the proposed recoverable adhesive contact model:

• In the biological and bio-mimetic field, in addition to the biological soft tissues and

bio-mimetic materials mentioned in this thesis, adhesive contact models have many

other application scenarios, such as, the effect of carcinogenesis on the cells adsorp-

tion, the effect of surface adhesion on the use of hydrogels in biomedical area, and

the adhesion effect of some new micro structures of bio-mimetic materials, etc.

• Automated tape placement of carbon fibre composites is an important process for

large aerospace component manufacturing, which creates adhesion between contact

interfaces by heating the resin of the composite strip, pressing and cooling. How-

ever, the proposed adhesive contact model in this thesis is insufficient for modelling

this scenario. In order to achieve this aim, a multi-physics adhesive contact model,

which incorporate temperature-dependent material properties and adhesive parame-

ters, needs to be constructed.
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Appendix A

Comparison of the bi-potential

method with other contact

algorithms

To solve the adhesive interface law between hyperelastic bodies, a contact algorithm based

on bi-potential theory is used. This algorithm, according to its description of contact

kinematics, can be attributed to the category of “node-to-segment” approaches and, with

regard to the resolution technique that enforces the contact geometry, belongs to the class

of augmented Lagrangian methods. Let us refer to the present contact algorithm with

“NTS-AL” (meaning “node-to-segment” contact using augmented Lagrangian resolution),

and compare it with other established contact algorithms using alternative schemes of

contact kinematics and resolution. In this regard, we consider the widely adopted contact

patch test introduced by Taylor and Papodopoulos [120] and compare our results with those

reported in [97]. The contact patch test investigates the capacity of a contact algorithm

to correctly evaluate the normal contact stresses on contact interface, regardless of its

discretization.
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As depicted in Fig.(A.1.a), the test case under consideration consists of two surfaces

discretized with non-conforming meshes put into normal contact. A homogeneous pressure

is prescribed on the upper side of elements that define the slave surface. We investigate

both the geometrical configuration of the contact surfaces (see Fig.(A.1.b-f)), and the

normal pressure distribution on the contact interface (see Fig.(A.2)).

p = 1(a) (b)

(c) (d)

(e) (f)

one-pass NTS

two-pass NTS-ARone-pass NTS-AR

one-pass NTS-ALone-pass VTS-ME

2 2 4 4

243 3

Figure A.1: Magnified contact interface configuration with and without surface penetra-
tion: comparison of the present contact algorithm (“NTS-AL”) to other algorithms based
on results reported in [97]. Here, “NTS” refers to “node-to-segment” contact; “AR” to
the technique of area regularization; “ME” to moment equilibrium; “AL” to augmented
Lagrangian and “VTS” to the “ Virtual-slave-node-To-Segment” approach.

As has been extensively studied by Zavarise et al. in [97] and recalled in Fig.(A.2),

classical NTS contact algorithms, especially those using one-pass approaches introduce

significant errors to contact stresses evaluation on non-conforming meshes. To obtain

acceptable behaviours using classical NTS description, it is necessary to implement two-

pass sequential schemes in conjunction with Lagrangian multiplier method, or, develop

improved one-pass schemes, for example the VTS (“virtual-node-to-segment”) method.

VTS method extends the classical NTS approach by considering additional virtual slave

nodes on the slave surface, leading to augmented slave segments.

In Fig.(A.1.b-f) and Fig.(A.2), we confront the presented NTS-AL approach to exist-

ing methods, which include one- or two-pass classical NTS approaches with or without

112



0 2 4 6 8 10 12
0.8

0.9

1

1.1

1.2

0 2 4 6 8 10 12
0.8

1.0

1.2

1.4

1.6

x coordinate

C
on

ta
ct

 p
re

ss
ur

e

one-pass NTS
one-pass NTS-AR
two-pass NTS-AR
one-pass VTS-ME
one-pass NTS-AL

Figure A.2: Contact patch test: comparison of several contact algorithms regarding the
interface normal stresses. “NTS” refers to “node-to-segment” contact; “AR” to the tech-
nique of area regularization; “ME” to moment equilibrium; “AL” to augmented Lagrangian
and “VTS” to the “ Virtual-slave-node-To-Segment” approach. The comparison highlights
our result (“NTS-AL”) among existing established methods, based on results reported in
[97].

contact area regularization (“AR”), and the improved VTS method proposed by the work

of Zavarise et al. We observed satisfactory contact geometry in Fig.(A.1.f) and the same

level of accuracy as VTS method in Fig.(A.2) which confirm the capacity of augmented

Lagrangian methods in enforcing geometrical relations of contact surfaces and improving

the computational accuracy.
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[90] D. Balzani, P. Neff, J. Schröder, and G.A. Holzapfel. A polyconvex framework for

soft biological tissues. adjustment to experimental data. International Journal of

Solids and Structures, 43(20):6052–6070, 2006.

[91] T. Wu, A. Alshareef, J. S. Giudice, and M. B. Panzer. Explicit modeling of white

matter axonal fiber tracts in a finite element brain model. Annals of Biomedical

Engineering, 47(9):1908–1922, 2019.

[92] F. Peyraut, Z.-Q. Feng, N. Labed, and C. Renaud. A closed form solution for the

uniaxial tension test of biological soft tissues. International Journal of Non-Linear

Mechanics, 45(5):535–541, 2010.

[93] Z.-W. Chen, P. Joli, and Z.-Q. Feng. Anisotropic hyperelastic behavior of soft bi-

ological tissues. Computer Methods in Biomechanics and Biomedical Engineering,

18(13):1436–1444, 2015.

[94] O. H. Yeoh. Some Forms of the Strain Energy Function for Rubber. Rubber Chemistry

and Technology, 66(5):754–771, 1993.

[95] C. Renaud, J.-M. Cros, Z.-Q. Feng, and B. Yang. The Yeoh model applied to the

modeling of large deformation contact/impact problems. International Journal of

Impact Engineering, 36(5):659–666, 2009.

[96] L. B. Hu, Y. Cong, P. Joli, and Z.-Q. Feng. A bi-potential contact formulation

for recoverable adhesion between soft bodies based on the RCC interface model.

Computer Methods in Applied Mechanics and Engineering, in press.

[97] G. Zavarise and L. De Lorenzis. A modified node-to-segment algorithm passing

the contact patch test. International journal for numerical methods in engineering,

79(4):379–416, 2009.

125
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Titre : Modélisation des problèmes de contact frictionnel adhésif pour les matières molles

Mots clés : Contact dynamique; Adhérence récupérable; modèle RCC; Méthode bi-potentielle;
Matériaux hyperélastiques

Résumé : Le contact frictionnel dynamique
et l’adhésion interfaciale récupérable impliquant
des matériaux mous représentent un phénomène
de contact fréquent. Dans le domaine de la
modélisation numérique, la construction d’un
modèle capable de traiter le contact avec frot-
tement et l’adhésion récupérable a toujours été
un sujet difficile. Dans cette thèse, un modèle
3D étendu, prêt à être implémenté pour les
problèmes quasi-industriels de contact avec fric-
tion et d’adhésion récupérable entre matériaux
mous est formulé en utilisant le modèle d’interface
Raous-Cangémi-Cocou (RCC) et une méthode
de résolution basée sur le bi-potentiel. Le
modèle RCC propose une description simple de
l’adhésion de l’interface basée sur un paramètre
scalaire local. Les effets normaux et tangentiels
sont pris en compte par le modèle d’interface
adhésif, impliquant à la fois le processus de
collage et de décollage des liens de l’interface.
Ce modèle adhésif a été implémenté dans la

méthode bi-potentielle, basée sur un ensemble
de lois de contact unilatérales et tangentielles
étendues. Nous combinons le modèle d’interface
adhésive étendu 3D avec différents modèles hy-
perélastiques pour étudier les problèmes de con-
tact à grande déformation dans diverses condi-
tions d’interface adhésive. Par exemple, le modèle
de matériau de Blatz-Ko pour les problèmes de
contact à grande déformation dans des condi-
tions d’interface adhésive isotrope et orthotrope
; le comportement mécanique des tissus mous
biologiques avec adhésion de surface est étudié
à l’aide du modèle d’hyperélasticité anisotrope
Holzapfel-Gasser-Ogden (HGO)+Yeoh. Pour il-
lustrer la capacité du modèle mis en œuvre, nous
avons mis en place divers cas d’essai dans chaque
chapitre pour explorer le contact adhésif dans
des scénarios de direction normale, tangentielle
et mixte pour différents modèles de matériaux et
conditions d’interface, ce qui nous rapproche de
situations de modélisation quasi-industrielles.



Title: Modelling of adhesive frictional contact problems for soft matters

Keywords: Dynamic contact; Recoverable adhesion; RCC model; Bi-potential method; Hyperelastic
materials

Abstract: Dynamic frictional contact and recov-
erable interfacial adhesion involving soft materi-
als represent a frequent contact phenomenon. In
the numerical modelling field, constructing of a
model capable of addressing contact with friction
and recoverable adhesion has always been a chal-
lenging topic. In this thesis, an extended, ready-
to-implement 3D model for quasi-industrial prob-
lems of contact with friction and recoverable in-
terface adhesion between soft material is formu-
lated using the Raous-Cangémi-Cocou (RCC) in-
terface model and a bi-potential based resolution
method. The RCC model proposes a straightfor-
ward description of the interface adhesion based
on a local scalar parameter, both normal and tan-
gential effects are taken into account by the ad-
hesive interface model, involving both the pro-
cess of bonding and de-bonding of the interface
links. This adhesive model has been implemented

within the bi-potential method, based on a set of
extended unilateral and tangential contact laws.
We combine the 3D extended adhesive interface
model with different hyperelastic models to in-
vestigate large deformation contact problems un-
der various adhesive interface conditions. Such
as, Blatz-Ko material model for large deformation
contact problems under isotropic and orthotropic
adhesive interface conditions; The mechanical be-
haviour of biological soft tissues with surface ad-
hesion is investigated by using the Holzapfel-
Gasser-Ogden (HGO)+Yeoh anisotropic hypere-
lasticity model. To illustrate the capability of the
implemented model, we set up various test cases
in each chapter to explore adhesive contact in nor-
mal, tangential and mixed directional scenarios
for different material models and interface condi-
tions, which brings us closer to quasi-industrial
modelling situations.
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