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VERSION FRANCAISE

INTRODUCTION

La these contient deux parties qui sont liées a la quantification par déformation,
une théorie qui utilise la déformation algébrique des algeébres de fonctions commu-
tatives pour décrire certains aspects de la mécanique quantique des physiciens.

La premiere partie de la theése contient une discussion de la localisation analy-
tique des algebres de fonctions en quantification par déformation, i.e. les fonctions
ne sont définies que sur une partie ouverte de la variété, comparée avec la locali-
sation non commutative a la Ore des algebres de fonctions déformées. L'exemple
le plus élémentaire d’une localisation est le passage de ’'anneau des entiers relatifs
aux nombres rationnels, les fractions, ou certains nombres sont rendus inversibles.

Nous décrivons d’abord le cadre de la localisation algébrique : il y a un procédé
général qui nest pas tres explicite, et il y a la construction d’Ore (voir [36]) qui
est beaucoup plus concrete, mais est plus particuliere parce que ’ensemble multi-
plicatif, qui constitueront ’ensemble des futurs dénominateurs, doit respecter une
certaine condition, les conditions d’Ore.

Ensuite, nous regardons deux exemples élémentaires, celui des fonctions définies
sur une partie ouverte et celui des germes de fonctions autour d’un point donné.
Dans le premier cas on obtient 1’équivalence entre 'approche analytique et I'ap-
proche algébrique. L'outil principal de la démonstration se base sur les travaux ana-
lytiques de Whitney, Malgrange et surtout sur le livre de J.-C.Tougeron. Pour les
germes, on obtient également une certaine équivalence, mais le choix le plus na-
turel échoue, et on doit légerement modifier I’ensemble multiplicatif. A la fin on
discute un cadre plus général, et algébrique, qui permet de formuler la question
suivante : « Est-ce que localisation et déformation commutent? ». On donne égale-
ment un exemple non Ore.

D’aute part, le lien de la deuxieme partie avec la quantification par déformation
est le plus élémentaire, celui des opérateurs différentiels, comme par exemple les
opérateurs de Schrodinger, en mécanique quantique. Dans cette partie on ne discute
pas les propriétés analytiques de ces opérateurs, comme par exemple le spectre,
mais on cherche a décrire la multiplication de deux opérateurs différentiels sur une
variété différentielle ou on n’a plus de coordonnés globales, mais —dans beaucoup
de situations géométriques intéressantes— on doit utiliser des dérivées covariantes
itérées.
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Par conséquent, il est intéressant de savoir comment la courbure et la torsion de
la connection, qui en effet donnent ces dérivées et qui fournissent beaucoup d’inva-
riants de la variété, entrent dans les formules de multiplication. Nous avons donc
choisi le cadre algébrique, notamment des algébres de Lie-Rinehart (Rinehart [42]
et Huebschmann [19]]) qui généralisent les algebres de Lie de tous les champs de
vecteurs et permettent d’utiliser des méthodes purement algébriques qui ne sont
pas utilisées en géométrie différentielle usuelle.

De sorte que, on a réussi a donner une description tres explicite de « I’algébroide
des chemins » de M.Kapranov (voir [23]) en termes des dérivées covariantes itérées,
de maniéré que courbure et torsion apparaissent dans une application canonique
de l'algébroide de Kapranov dans 1’algebre de Lie-Rinehart en question.

En autre, cette construction permet de décrire 'enveloppante de 1’algebre de Lie-
Rinehart, d’ailleurs analogue de l’algebre des opérateurs différentiels, comme quo-
tient d’une algebre plus grande —dont la multiplication est tres explicite — modulo
un idéal. En fait, la construction est —pour parler géométriquement — ‘« tensorielle »
et consiste en une « symétrisation » perturbée par des termes de courbure et torsion.
Dans plusieurs cas particuliers, la multiplication est calculable en termes d’une fac-
torisation des algebres enveloppante des algebres de Lie ce qui est un probléeme
connu en théorie de Lie.

LOCALISATION

L'objectif dans un premier temps (Chapitre [1) est de fixer la notation que nous
utiliserons tout au long du texte et d’introduire localisation d’un point de vue pu-
rement algébrique. Nous avons essentiellement divisé ce chapitre en deux parties,
dans la section nous décrirons comment la localisation peut étre définie pour
les K-algebres et nous chercherons les principales propriétés des constructions. En-
suite, dans la section nous traiterons la localisation dans un contexte général,
c’est-a-dire pour les algebres K qui ne sont pas nécessairement commutatives.

La proposition suivante résume bien le premier cas de localisation.

Proposition|1.2.10|: Soit R une K-algébre commutaive et S — R un sous ensemble
multiplicatif.be a multiplicative subset. Alors, ce qui suit est vrai :

a. 17(rs)(S) © U(Rg), c’est-a-dire, ’homomorphisme 7z ) envoie des éléments
de S aux éléments inversibles de Rg. En plus, pour K-algébre R unitaire et
commutatif, doté d’un sous-ensemble multiplicatif S = R, le paire (Rs, 7(r,s))
est universel.[]

b. Chaque élément de Rg s’écrit comme une fraction 7(r)n(s) !, oure RetseS.

1. Voir la remarque (1.2.11).
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c. ker(n(r,s)) ={r € R|rs=0forsomeseS}.

Ensuite, la proposition suivante généralise localisation pour toutes les K-algebres,
pas forcement commutatives. C’est important de remarquer le traitement via la
théorie de catégories.

Proposition|1.3.3|: Il y a une adjonction de foncteurs

KAlgMS KAlg

ou £ est I'adjointe a gauche au foncteur U/ ci-dessus de sorte que chaque composante
1N(r,s) de 'unité 11 : Iga1gms — UL de I'adjonction satisfait a la propriété universelle
a. de la proposition précédente dans le cas général non commutatif. Nous
nous référons a £ en tant que foncteur localisation. Pour un paire (R,S) donné
KAIgMS nous désignons par Rg la K-algebre £(R,S) donné par le foncteur £, et
pour 7(g,s) : R — R la composante de I'unité de I’adjonction.

Donc g u(r)) : R = Ry(r) est un isomorphisme, I'inverse étant la composante
€g de la counité e : LU — Ixalg de 'adjonction. De plus, chaque élément de la K-
algebre Rg est une somme finie de produits de la forme (17 = 7(g s))

n(r) (n(s0) ™ - (ne) (n(sw)) ™

ou ry,...,ry € Retsy,...,sy € S. Des termes comme ceux-ci peuvent étre appelés
«multifractions». Notez que, r; ou sy peut étre égale a I'unité de R.
Nous terminons ce premiere chapitre avec un théoreme de la localisation de Ore.

Théoréme|1.3.8]: Soit R une K-algebre unitaire et S — R un sous-ensemble multi-
plicative. Alors, ce qui suit est vrai :

1. La K-algebre R une K-algébre de fractions a droite Rg en ce qui concerne le
sous-ensemble multiplicatif S si et seulement si S est un ensemble de déno-
minateurs a droite.

2. Si tel est le cas, chacune de ces paires (Rg,7) est universel au sens du dia-
gramme (1.3.2) est chaque Rg est isomorphe a 1’algébre canonique localisée
Rg de la Proposition[1.3.3]

3. Chaque Rg est isomorphe a I'ensemble quotient RS~ := (R x S)/ ~ en ce qui
concerne la relation binaire suivante ~ en R x S

(r1,s1) ~ (r2,52) < 3by,by € Rtel que

51b1 =52b265and lel =7’2b2€R (21)

qui est une relation d’équivalence généralisant la relation (1.2.1]).
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Ensuite, nous réservons un chapitre dont l'objectif est d’explorer un objet im-
portant dans la quantification par déformation, les produits star, qui nous donnera
une structure non commutative dans l’algebre des fonctions lisses définies sur une
variété.

Néanmoins, depuis l'article fondateur de Bayen, Flato, Frensdal, Lichnerowicz
et Sternheimer en 1978, voir [2], la quantification par déformation est devenue un
vaste domaine de recherche qui couvre plusieurs théories algébriques comme la
théorie de la déformation formelle des algebres associatives, ainsi que des théo-
ries géométriques comme la théorie des variétés symplectiques et de Poisson, et des
théories physiques comme la théorie des cordes et la théorie de la jauge non com-
mutative.

Dans ce cas, la multiplication associative non commutative des opérateurs en mé-
canique quantique est considérée comme une déformation associative formelle de la
multiplication ponctuelle de I’algebre des symboles de ces opérateurs. Pour les va-
riétés de Poisson, les travaux de Kontsevich [28]] sont assez importants pour garantir
I'existence de certaines constructions de cette maniere.

Par contre, nous n‘approfondirons pas cette belle théorie, nous explorerons es-
sentiellement la multiplication déformée, le produit star, qui sera le symbole de
calcul des opérateurs différentiels en termes de séries de puissances formelles. Plus
précisément,

Definition 2.1.4]: Un produit star * sur une variété X est une opération associa-
tive bilinéaire C* (X)[[A]] x C*(X)[[A]] = C*(X)[[A]] satisfaisant les caractéristiques
suivantes pour tous f,g € C*(X):

(i) 1ef=fxl=f,

(i) frg=f-g+O(N),

(iii.) f*g =240 Cil(f,9)AY,

(iv) f+g—g*f=A{f, g} +O(A?) siune structure de Poisson est donné.
avec les opérateurs bilinéaires Cy : C*(X) ® C*(X) — € *(X). Nous supposons que
tous les Cy sont des opérateurs bidifferentiels.

Nous pouvons donc regarder les deux cas suivantes.

Localisation analytique : Notez que chaque produit star * peut étre localisé ana-
lytiquement a un produit star o défini sur C*(Q)[[A]] par la localisation de tous
les opérateurs bidifferentiels Cy a Ci|q. Ensuite on peux considérer

Localisation algébrique : Soit (X,7) une variété de Poisson, soit * = >.;° s AFCy
un produit étoile en (X, 7) et soit Q < X un ensemble ouverte fixée. On définie
K =K][[A]] et on considéré la K-algebre

R = (C*(X)[[A]], ). (2.2)

De plus, comme le produit star * n'implique que des opérateurs bidifferentiels, il se
limite a un produit étoile ¢ sur les séries entiéres formelles ¢ € Ry := C*(Q, K)[[A]]
tel que (Rq, *q) est aussi une K-algebre.
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Il s’ensuit que 'application de restriction 7o =7 : R — R : f — f|q est un mor-
phisme de K-algebres unitaires. Nous définissons le sous-ensemble suivant So < R:

So:={geR|VxeQ: gy(x)#0} (2.3)

Il est clair que la fonction constante 1 est en S, et pour toute g,/ € S nous avons
(gxh)o(x) = go(x)hg(x) # 0 (pour tous x € X) d’ou S est un sous-ensemble multiplicatif
de la K-algébre unitaire R.

Nous pouvons maintenant considérer la localisation non commutative de R par
rapport a S et la comparer avec la K-algebre unitaire Rq.

Le principal résultat de la premiere partie de cette thése est de répondre a la
question suivante :

Quelle est la relation entre Rg,,, la localisation algébrique au sens du chapitre et
R la localisation analytique que nous décrivons ci-dessus. Ces algebres sont-elles
isomorphiques ?

Ainsi, le théoréeme suivant, qui est le plus important de la premiere partie
de la these, montre que la localisation pour les produits étoile peut étre démontrée
en recherchant les propriétés de la définition[1.3.4}

Théoréme [3.1.1]: En utilisant les notations précédemment fixées, nous obtenons
pour tout ensemble ouvert Q — X :

1. (Rg,*q) avec le morphisme de restriction # constitue une K-algebre de frac-
tions a droite pour (R, S).

2. La conséquence immédiate est que S est un bon ensemble des dénominateurs.

3. Celaimplique en particulier que la localisation algébrique RS~! de R en ce qui
concerne S est isomorphe a la localisation concreéte R comme des K-algebres
unitaires.

ALGEBRES DE LIE-RINEHART ET CONNECTIONS

Il existe une formule explicite bien connue pour la multiplication de deux opéra-
teurs différentiels dans tout ensemble ouvert de R” en fonction de leurs symboles,
au moyen des coordonnées globales x et des coordonnées "conjuguées" supplémen-
taires p. Sur une variété différentiable équipé d’une connexion V dans le fibré tan-
gent, tout opérateur différentiel peut étre paramétré par un champ tenseur symé-
trique associé a une dérivée covariante itérée. Le produit de deux opérateurs diffé-
rentiels peut également étre écrit sous cette forme, mais la forme explicite contien-
dra des termes de courbure et de torsion compliqués qui, en général, semblent n’étre
connus que par 'application (inverse de la) exponentielle de V et le transport paral-
lele. Le probleme est fortement lié a la difficulté de trouver des formules explicites
pour les produits star sur les fibres cotangents : ces produits star ont été traités il y
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a longtemps par Fedosov, Bordemann, Neumaier, Waldman et Pflaum (voir (5], [4]
et [14]), ou l'existence et la classification posent des questions avait été résolu.

Dans cette deuxieme partie de la these, nous souhaitons exprimer plus explici-
tement les termes de courbure et de torsion apparaissant dans le produit de 'opé-
rateur différentiel. Nous avons choisi approche algébrique qui semble fonctionner
pour les anneaux commutatifs généraux K, A et tout morphisme K — A a condition
que K et donc A contienne les nombres rationnels.

Dans un premier temps, I’algebre de Lie de tous les champs vectoriels d'une va-
riété forme algebre de Lie-Rinehart L sur l'algebre unitaire commutative réelle A
de toutes les fonctions lisses a valeur réelle de la variété. En fait, I’algebre de tous
les opérateurs différentiels est isomorphe a l'algebre enveloppante dite universelle
U(L,A) de L, c’est pourquoi nous souhaitons décrire ces algebres en général. La A
linéarité (par opposition a la simple R linéarité) peut étre traduite en géométrie
comme "fibre-par-fibre" ou "tensorielle".

Notamment, le probleme d’algebre enveloppante, définie dans la section
peux étre abordé — algébriquement — comme suit : Soit (L,p,[[, ], A) une algébre de
Lie-Rinehart sur A (voir [42])), existe-t-il une K-algébre unital et associatif (U/(L, A),+,1)
équipé de deux applications K-linéaires 1 : L — U(L,A) et 14 : A — U(L, A) satisfai-
sant pour tousxe Letac A

iy:L—-U(LA)" morphisme de K—algbres de Lie (3.1)
ia:A—U(LA) morphisme de K—algbres unitaires  (3.2)
ia(a)ei(x) = (ax) et (3.3)

i (x) e1a(a) —1a(@)e1r(x) = 1a(px(a)), (3.4)

de telle sorte que pour toute k-algebre unitaire associative donnée B et toute appli-
cation K-linéaire 6 : L — B et j : A — B satisfaisant aux conditions analogues a 1
et 14 il existe un morphisme unique 6 : U/(L,A) — B de telle sorte que O o1 = 6 et
Ooiy=j?

Nous n’utilisons pas la construction de Rinehart de ¢/ (L, A), mais plutot la construc-
tion de Huebschmann (voir [19]) car elle se rapproche beaucoup plus des construc-
tions traitées dans cette these.

Ensuite, pour un A-module ancré donné (L, p) (voir définition (4.5) et un A-module
W, une connection, ou encore une dérive covariante V'V = V, c’est une application
K-linéaire

VLQW - W,
écrite comme V(x @ w) =: V,(w) de sorte que pour tousac A, xeL,etwe W
Var(w) =aVy(w) et Vyi(aw) = py(a)w +aV,(w). (3.5)

Les deux conditions mentionnées ci-dessus, pour la définition de V, sont connues
comme « les axiomes de Kozul».
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Nous appellerons le quadruple (voir (Lo, W,V") un A-module W avec
connexion paramétrée par le A-module ancré (L,p). Par la suite, les calcules avec des
dérivées covariantes itérées sont traitées dans le Chapitre[5|notamment sur I’algébre
libre unitaire associative T4 (L) itérée.

Pour cette partie, on peut souligner le théoréme suivant, qui est liée au produit

boyb' :=> b1V (1) (3.6)
()

sur l'algebre tensorielle T4 (L) et exprimé en termes de la connection en T4 (L) en
utilisant la notation de Sweedler pour la comultiplication Shuffle :

Théoréme [5.2.1: Soit (L,p) un A-module ancré, W un A-module, et soit V' une
connection en W. En suite, soit aussi V une connection en L, paramétré par (L,p),
et soit VA la connection en A induite par l'application d’ancré p, et V, V' et VA
désignent également les dérivés covariants itérés tels que définis en (5.1.18).

Nous avons les propriétés suivantes pour tous b,b’,b” e To(L) et we W :

Vo (VW) = Vi (W), (3.7)
Vy(0'0") = (V0 () (Ve (b)) (3.8)
()
[deg,V,] = 0 (3.9)
Aa(Vp(@)) = = 3 Vi (') ®a Vi ("), (3.10)
(b))
Ag(boyb) = DT (bW oy M) @, (b oy b)), (3.11)
(b))
(b<>vbl><>vb” = b<>v(b/<>vb//), (312)
b0vl = b = 10vb, (313)
e(boyl) = v;;‘(e(b’)):e(bov (e(b’)l)). (3.14)

En particuliére, (TA(L), 1,0, Ash,e) est une bialgebre de Rinehart sur A, voir sec-
tion [4.3|pour les définitions.

Pour la suite, l’algebre enveloppante ¢/ (L, A) sera un quotient de T4 (L) : I'idéal
bilatéral J (L, A) pour la seule multiplication R-linéaire (que nous devons moduler)
est également un coidéal par rapport a la comultiplication A-linéaire qui peut étre
explicitement décrite.

D’autre part, la partie primitive de T4 (L) deviendra importante : il s’agit d’une al-
gebre de Lie-Rinehart sur A isomorphe a I’algebre de Lie des chemins de M.Kapranov
([23]], 2007). 11 existe un morphisme canonique Z des algebres de Lie-Rinehart de
la partie primitive a L dont le noyau Py(L, A) porte une représentation en L égale a
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la A-algebre de Lie de 'holonomie infinitésimale. Il existe une équation de récur-
sion pour Z en termes de courbure et de torsion. Le coideal J(L,A) est engendré
A-linéairement par le noyau Py(L, A)

La relation avec I'algebroide de Lie des chemins de (voir Section[4.5.1) est contenu
dans le prochain théoreme.

Théoréme : L’algebre de Lie-Rinehart (PV(L,A),pV, [, ]V,A) est une algebre
libre de Lie-Rinehart, et pour tout morphisme de modules ancrés 6 : (L,p) — (L', p’)
donné, ot (L',p/,[[, ]') est une algébre de Lie-Rinehart sur A, le morphisme induit
des algebres de Lie-Rinehart 6 : Py(L,A) — L' peut étre calculé par la récurrence
suivante pour tous x € L and & € Py(L,A)

0(x) = 0(x) et O([x,&]) = [0(x),0(&)]' = 0 (Vx(£)) + 0 (Ve(x)). (3.15)

D’ou l'algebre de Lie-Rinehart Py(L,A) est isomorphe a l’algébroide de Lie de
Kapranov P(L,A) engendré parr (L,p). En particulier, pour deux connexions diffé-
rentes V, V' les deux algebres de Lie-Rinehart Py(L, A) et Py/(L, A) sont isomorphes.

Par aieurs, la définition suivante est importante pour la suite.

Definition : Nous définissons la torsion Tor = Tor" et la courbure R’ = RV
comme des applications linéaires LQg L — L et (L®k L) ®k V — V de maniére bien
connue. Pour tous x,yeLetveV,

Tor(x,y) = Vi(y)—V,(x)—[x]] (3.16)
R(x9)©) = Vi(V)©)) = V) (Vi) = Vi, g (v) (3.7

Dans le cadre de cette définition on peux par exemple faire un lien entre courbure
et torsion et les applications Z et H comme montre le théoréme suivant :

Théoréme : Soit (L, ol ]],A) une algebre de Lie-Rinehart sur A. Soit V
une connection sur L paramétré par L, et soit V an A-module donné muni d’une
connexion V' sur L. Ensuite, nous avons ce qui suit :

1. Il existe des récursions explicites simultanées en termes de courbure et de
torsion pour les applications Z et H : pour tout ve V, x € L, et £ € Py(L,A)
dont le A-module est identifie avec la A-algebre de Lie libre sur L, le bracket
[, | étant le crochet libre A-bilinéaire

Z(x)=x and H,=0, (3.18)
Z([x,&]) = (ViZ)(&)+ Hg(x) —Tor(x, Z(&)), (3.19)
Hg(v) = (V.H') (v) + R (% Z(&)) (). (3.20)
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2. En particulier, nous obtenons pour x1,x,,x3€ L :

Z([x1,x2]) = —Tor(xy,x2), (3.21)

Z ([x1,[x2,x3]]) = — (Vi Tor)(xp,x3) + Tor (x;, Tor(xp,x3)) +
+  R(xg,x3)(x1), (3.22)
Hi, o(v) = R(x1,x)(), (3.23)
H/[xl,[xz,x3]] (v) = (V4 R)(x2,x3)(v) = R'(x1,Tor(xz,x3)) (v). (3.24)

Finalement, on considére une algebre de Lie-Rinehart (L, p,[[ , ]],A) sur A. Soit
V une connection en L sur L. On rappelle la bialgébre de Rinehart (T4(L),o =
oy,1,Ag;,€). Rappelons aussi 'algebroide de Lie Py(L,A) (dont le sous-jacent A-
module est 1’algebre le Lie libre £4 (L) =: g), les applications Z (voir équation (5.4.5))
et H (voir équation ), et le noyau de Z, PY(L,A) (voir équation n
outre, ce dernier est un idéal de Lie-Rinehart Py(L,A) dont nous avions montré
qu’il était isomorphe au A-sousmodule

o0
hi=L3%(L) = @ LA(L) (3.25)
n=2
muni du crochet A-bilinéaire
v, dlen: [0,V =[c—2(C),¢ —Z(T')] +H(T') — He (), (3.26)

(voir équation (5.4.9) et Théoréme |5.4.4) iv.). Le crochet de Lie (6.2.2) peut étre

considéré comme une déformation du crochet de Lie libre restreint a . On définit
I’application bilinéaire suivante pour chaque Celiet be T4 (L) :

C>b:=Dc(b):=(C—Z(C))ob=0Cb—Z(C)b+ H(b) (3.27)
et le suivante K-submodule de T, (L)
Jv(LA):=b>Ta(L):=Span{C>b|Cel, beTy(L)}. (3.28)

Soit Y : S4(L) — T4 (L) le morphisme de symétrisation usuel. On obtitein —a ’aide
des considerations coalbebriques tres tecniques - la decomposition d’A-modules
suivant (voir proposition [6.2.2).

Ta(L) =Y (Sa(l)) @ Ty(L,A).

On clésique par
Py:TAL) —Sx(L)
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projection A-lineaire canonique qui est I'inverse de Y (restreite a Y(S4(L))) et dont
le noyau est égal au coidéal Jy(L,A). De plus, on définit

Jo(L,A) = V'ideal et coidal de T4 (L) engendr par [x,y] (3.29)

Py:T4(L) > Ta(L) (3.30)

la projection de bialgebres qui envoie les mots noncommutatifs sur des mots com-
mutatifs (dont le noyau vaut Jy(L, A)).
Ensuite, soit Dy : TA(L) — TA(L) tel que

n
Dof1) =0 Do(x) =0, Dol -++30) = S -++xp- Ty (331)

codérivation de T4 (L) dont I'image est Jy(L, A), et soit
D:Ta(L) = Ta(L)

l'application A-linéaire qie s’annule sur Y'(S4(L)) et vaut l'inverse de la restriction
de Dy a Jy(L,A). 11y a une formule explicite de D (voir|6.2.31). En fin, on définit les
deux applications A-linéaires Dy, Dy : T4 (L) — T4 (L) suivantes (Vb e T4 (L))

3 (Z((nhoé‘D)(b(l)))>b(2), (3.32)
®

Z ) . (3.33)

&
N
—~

S
N—

I

T
T
S

||

qui sont tout les deux des codérivations A-linéaires de T4(L) on ép: To(L) — T4 (L)
et I'idempotent de Dynkin modifie, i. e.

ep(1) = 0,ep(x) = x,ep(x1---x,) = [x1,[x2, -+, [Xp—1, %4]]]

Le résultat final de la deuxieme partie de la thése est le suivant :

Theoreme et[6.2.7]: V1,72 € Sa(L)
1.
U(A L) =Ty(L)/Sa(Ll) = Ty(L,A)

(isomorphisme de C3-coalgebres sur A)

0

Py:=Pyo Z ((—DZ +DH)OD)Or

r=0

et le produit K-bilinéaire ¢ sur S, (L) vaut
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INTRODUCTION

This thesis is written in two parts that have a connection in the theory of defor-
mation quantization. We prefer to introduce the main branches of this work also in
two parts.

PART |: LOCALIZATION

The first part of this thesis is devoted to localization. In commutative algebra, it
means a universal construction where a set of chosen elements in a given commuta-
tive ring is made invertible: the outcome is called a ring of fractions. The classical
example is the well-known passage from the integers to the field of rational num-
bers. It is a very important tool in algebraic and analytical geometry. In differential
geometry, however, localization is rather used in the analytic sense, i.e. the passage
from globally defined smooth functions to those which are only defined on an open
subset. It follows from the classical works by Whitney, Malgrange (see [33]]) and
Tougeron that these analytical localizations are often isomorphic to certain alge-
braic localizations in the smooth (or even CK, k € N) case.

Based on old work by ¢.0re in the 1930’s localization can be transferred to non-
commutative algebras: it turns out that there is a completely general construction
which is in some situations not very practical: on the other hand if there is an addi-
tional condition on the set of potential denominators, the famous right (or left) Ore
condition, the construction shares almost all properties of the commutative local-
ization.

In this work we should like to study noncommutative localization of algebras
arising in deformation quantization. In this theory, founded by [2] in 1978, formal
associative deformations of the algebra of all smooth complex valued functions on a
Poisson manifold, so-called star products, are studied aiming at an interpretation of
the noncommutative multiplication of operators used in quantum mechanics. It is
well-known that the first order commutator of such a deformation always gives rise
to a Poisson bracket, but it is highly non-trivial to show that every Poisson bracket
arises as a first order commutator of a deformation: this latter result is the famous
Kontsevich formality Theorem, see [28].

We consider star products given by formal power series of bidifferential operators
(as almost every-one): these multiplications immediately define star products of
locally defined functions by suitable ‘restrictions’.
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We first show that this analytical localization is isomorphic to the commutative al-
gebraic localization with respect to the set of all those formal power series of smooth
functions whose zeroth order term does nowhere vanish on the given open set. As
a by-product we have the result that this multiplicative set satisfies the right Ore
condition.

In a similar way we can show that the set of all analytical germs of a star product
algebra at a given point of the manifold is isomorphic the noncommutative local-
ization of the complement of the maximal ideal of all those formal power series of
functions whose term of order zero vanishes at the point.

We also sketch a more algebraic framework to compare the commutative localiza-
tion of bidifferential operators giving rise to a deformation of the localized algebra
and the noncommutative localization of the deformed algebra by a rather natural
mutliplicative set: here the question ‘Does localization commutes with deformation’
arises.

The first part of the thesis is organized as follows: in the Chapter [I| we recall
some basic concepts of the commutative algebra of smooth function algebras and
(non)commutative localization following Tougeron’s book [52]] and Lam’s very nice
text-book [29]. Next, in the Chapter 2] we explore a bit Deformation Quantization,
basically concerning Star products

In the following, in the Chapter [3|we show the first localization result concerning
open sets and we prove a similar result for germs.

PART Il: LIE-RINEHART ALGEBRAS AND CONNECTIONS

The second part of this thesis cover several objects, notably Lie-Rinehart algebras
as well as their universal enveloping algebras and connections. Of course, the choice
of these subjects was not by chance.

Fist of all, there is the following problem in differential geometry: whereas the
multiplication of differential operators on an open set of R" is relatively easy to de-
scribe thanks to the existence of global co-ordinates, it is less evident for differential
operators on a smooth manifold: of course, in every coordinate chart it looks like
the easy multiplication in R", but coordinate changes are quite involved, and very
often the differential operators are formulated in terms of connections related for
instance to a (pseudo)riemannian metric on the manifold.

On the other hand, since composition of differential operators again gives a differ-
ential operator, the interesting question is how this is reflected on global symbols.
One would expect formulas involving complicated curvature and torsion terms, and
we are convinced that it would be useful to get some precise description of that.

The problem is also related to deformation quantization, see e.g. [L1]], [5], [4]
and [15] where each symbol gives rise to a fibrewise polynomial function on the
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cotangent bundle of the underlying manifold, and this bundle is well-known to
be a symplectic manifold. We have decided to choose another more algebraic ap-
proach towards a solution of the problem: it is well-known that the algebra of all
differential operators (for simplicity we have restricted our attention to those act-
ing on smooth functions on the manifold) is generated as an associative algebra with
unit by the all the multiplications by smooth functions and the Lie derivatives along
all the vector fields on the manifold. The latter carries the algebraic structure of a
Lie-Rinehart algebra, see [42]], [19] which had recently been studied extensively in
particular in differential geometry.

A good algebraic object which shares all these features is the universal envelop-
ing algebra of a Lie-Rinehart algebra, already defined by G.Rinehart [42] which is
isomorphic to the differential operator algebra for the Lie-Rinehart algebra of all
vector fields in differential geometry, and which is a kind of analog of the classical
universal enveloping algebra of a Lie algebra, see [12].

As an additional feature we equip the Lie-Rinehart algebra with a connection in
the form of an algebraic version of a covariant derivative V well-known in differ-
ential geometry and study its iterations. For conceptual reasons we investigate this
for the more generalized anchored modules which do no longer carry Lie brackets:
their importance had been recognized by M.Kapranov [23] for the development of
his path algebroid.

In the Chapters[4/and [5|we discuss the basics topics and recall some results about
Lie Rinehart algebras and covariant derivatives.

Next, in the Chapter [§|we have come to the following results:

1. For any anchored module (L, p) with connection V in the A-module L the free
algebra T4(L) is equipped with a simple ‘smashed product-like’ K-bilinear
multiplication ¢ deforming the A-bilinear free multiplication which is explic-
itly expressed in terms of the iterated covariant derivative and the A-linear
shuffle comultiplication.

2. If @ < K (and hence Q < A): the primitive part of T4(L), Py(L,A) which is
isomorphic to the free A-linear Lie algebra over the A-module L carries a K-
bilinear Lie bracket deforming the free bracket, and an anchor morphism such
that it carries the structure of a Lie-Rinehart algebra over A: this Lie-Rinehart
algebra is isomorphic to Kapranov’s path algebroid. The Lie bracket is ex-
plicitly expressed in terms iterated covariant derivatives. The above algebra
(Ta(L),¢) is isomorphic to the universal enveloping algebra of its primitive
part.

3. As M.Kapranov has already remarked, there is a canonical Lie-Rinehart alge-
bra morphism Z from the primitive part Py(L, A) to L induced by the identity
map L — L. We construct an explicit recursion of Z in terms of torsion and
curvature of the connection and their covariant derivatives. Py(L,A) decom-
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poses into the direct sum of L and Py(L,A), the kernel of Z. The restriction
of the Lie-Rinehart bracket to this kernel is A-bilinear. It parametrizes the
well-known infinitesimal affine holonomy transformations.

. Finally, the 2-sided ideal generated by PO(L,A), Jy(L,A), in (Ta(L),©) can be

described in a rather explicit and A-linear way, and the quotient algebra is
isomorphic to the universal enveloping algebra of L. The key point here is the
well-known and innocent fact that Jy (L, A) is a coideal of the free algebra with
respect to the shuffle comultiplication and ‘deforms’ the usual ideal which is
the kernel of the symmetrization map Py : T4(L) — S4(L). The final multi-
plication formula for two symmetric symbols y,y’ € S4(L) is of the following
form

yey = =<P002(( Dz +Dy)oD) ) ZT D) ®a Ve (Y()
r=0

see eqn (6.2.51). Here Y : S4(L) — T4(L) is the usual symmetrization embed-
ding, Sweedler’s notation refers to the shuffle comultiplication, V denotes the
iterated covariant derivative, and the information on curvature and torsion is
contained in the terms Dy and Dy which are extensions of the above maps
Z and H as ‘left ordered’ coderivations by means of the Dynkin idempotent,
and D is an explicit A-linear endomorphism containing precise combinato-
rial information in terms of convolutions. The geometric series in the formula
recalls the features of homological perturbation theory although there is no
grading with a ‘true sign’ or a ‘differential’.

APPENDIX

An important part of the thesis is the appendix where we collect important defi-
nitions, results and proofs that are needed for all the subjects of the main part of the
thesis but for organization and didactic reasons were placed separated at the end of
this work.
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1.1

1. Algebraic localization

The aim of this introductory chapter is to fix the notation that we will utilize
along the text and introduce localization from a purely algebraic point of view. We
basically divided this chapter into two parts, in the section[I.2]we will describe how
localization can be defined for K-algebras and look for the main properties of the
constructions. After that, in the section we will treat localization in a general
context, i. e. for K-algebras that are not necessarily commutative.

PRELIMINARY

We can talk about localization in very basic context, for instance if we consider
integral domains. The basic idea is to formally invert nonzero elements to obtain a
quotient field. Let us recall some facts about it.

Definition 1.1.1 (Integral domain) An integral domain R is a commutative ring such
that does not have zero divisors, that is, if xy = 0 then x = 0 or y = 0, for x,y € R.

Let R be a integral domain and let us consider the set S = R\{Og}. In this case lets
consider the follow relation in the set R x S :

r,s) ~ (r',s") ifanonlyif rs' =sr 1.1.1)
y

where r,7" € Rand 5,5’ € S.
Notice that, obviously (r,s) ~ (r,s) and if (r,s) ~ (,s’) we obtain (+/,s") ~ (r,s),
for all 7,7 € R and s,s" € S. Moreover, if (r,s) ~ (1/,s") and (r',s') ~ (r",s") we have

/ / xs” o/ rn
rs = Sr — SS =SrsS

—~

= rs =sr (1.1.2)

=~
7’/5” — S/1,.// r/S//S — S/r//S
XS

and then (r,s) ~ (r”,s”). It shows that ~ in fact define an equivalence relation.

Hence we can consider the equivalence classes £ := (r,s) = {(r',s');(r',s") ~ (r,s)} in

R xS
the quotient set Rg := kil

~

Definition 1.1.2 (Field of Fractions) The field of fractions of an integral domain is
the smallest field in which it can be embedded.

Following, we observe that there is an application 77 : R — Rg which maps r — 7.

In fact, this function transforms elements of S in invertible elements in Rg. Notice

that, we have 1z, = 1 Op, = OTR and (%)_1 = %

—R
1R’



1.2

1.2. The commutative case

In that first approach of localization we use the fact that in R worth the cancel-
lation law to prove the reflexivity propriety of ~. Of course, all this facts are very
easy to be checked and well known to all. Even so, we decided to describe it with
the objective that in the next steps we can perceive the difference in the definition
of the equivalence relation. We will see that this definition will become more and
more general.

Example 1.1.3 If we localize the ring of integers Z we obtain the field of rational
numbers Q.

The quotient Zz, (o} that we obtain is isomorphic to the well-know field of rational
numbers.

Example 1.1.4 If we take the ring of real polynomials in one variable R[x] we will
obtain the set of rational polynomials R(x).

THE COMMUTATIVE CASE

We will define a similar relation in a more general context. In this way, from now
-if we do not specify- K will denote a fixed commutative associative unital ring,
such that 1 = 1x and 0 = 0g. We will consider 0 # 1 to avoid trivial cases.

Definition 1.2.1 (Modules) Let K be a commutative associative unital ring. A left K-
module M -or a left module over K- is an abelian group (M, +) with an additional
operation
KxM — M
(k,x) +— kx

such that satisfies the following properties for all x,y € M and k, k" in K:

(a) Ix=1

(b) (kk')x = k(k'x)

(c) (k+k')x=kx+k'x

(d) k(x+7vy) =kx+ky

Of course, we can also define right modules defining xk instead of xk making
analogous statements. We will use the word module, without specifying if its left
or right module, when is the case of left modules.

Definition 1.2.2 (Ideals) Let M be a K-module. A subset I = M is called a left ideal
of M if (I,+) is an additive subgroup of (M, +) and absorbs multiplication from the
left by elements of M, i. e. Vme M and x € I we have mx e I.



1.2.1

1. Algebraic localization

Definition 1.2.3 (Algebras) A K-Algebra A is a K-module equipped with an addi-
tional binary operation
AxA — A
(6p) — x-p
such that
(@) (x+v)-z=x-z+p-z
(b) z-(x+y)=z-x+z-y
(©) (kp)x-(kp)y = (kikp)(x - )
for all x,y,z€ A and ky,k; € K.

To simplify, we will write xy instead of x - y. All the K-algebras are supposed to
be associative and unital. We shall include unital K-algebras isomorphic to {0} for
which 1 = 0. In order to avoid exaggerated notations we shall not write 1p, 1, Og
or Og, but simply 1 and 0 where the precise interpretation should be clear from the
context.

For more definitions around those fundamental algebraic facts see [[7] and [9].

Localization for commutative K-algebras

In this section we will consider commutative K-algebras. Of course, the previous
case that we saw in the Section is included in that one.

That way, the set that we want to formally invert will be more general. Let us
consider the following.

Definition 1.2.4 (Multiplicative subset) If R is a K-algebra, a subset S of R is called
multiplicative subset if 0¢ S,1 € S and for all 5,5’ € S we have ss' € S.

We can also say that S is closed for multiplications.

Remark 1.2.5 Notice that S is non empty set because 1 € S. Note also that if we
allow 0 € S the multiplicative condition will always work for all the subsets of R. So
those conditions avoid trivial cases.

Example 1.2.6 Let R be a K-algebra. Let us fix x € R an arbitrary nonzero element.
The set S = {x";n € N} is a multiplicative subset or R.

Example 1.2.7 Let R be a K-algebra. Let P be an ideal of R. The set S := R\P < Riis
a multiplicative subset if and only if P is prime.

Let R be a commutative K-algebra and S < R a multiplicative subset, then the
following binary relation ~ on R x S defined by

(r1,51) ~ (rp,s7) ifandonlyif IseS: risps =185 (1.2.1)
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is an equivalence relation.

The reflexivity and the symmetry of this relation are completely trivial to check.
However, the transitivity is also not difficult but we decide to emphasizing to realize
the difference from the integral domain case. For instance in the following equation
we can’t cancel elements. More explicity, for (r{,s1),(rp,5) and (r3,s3) in
R x S such that (ry,s1) ~ (rp,57) and (,,5,) ~ (r3,53) follows this two equations

x S35’

1505 = 7515 ——> r1528(838") = rps18(s38")

1.2.2
12538 =1385y8" == 15535 (515) = 1r35,5(515) ( )
XS1$S
by which we obtain
r153(ss'sy) = 1381 (ss'sy) (1.2.3)

It shows that 3s( := ss’s, € S such that rys3sg = 35159 and then (r1,s1) ~ (r3,53). In
fact, there is always elements that remain multiplying r;s3 and r3s; in the equation
(1.2.3). It justifies the change in the definition of this equivalence relation.

Finally, we can consider the quotient set given by

RxS
R5!= X .

~

We will see that Rg is K- algebra, called quotient ring, their elements are equiv-
alence classes that we will denote by
r

5= (r,s) ={(r,s') € (R,S);3sg € S, rs'sg = tss¢ } (1.2.4)

For this, it is sufficient shows that the addition and multiplication rules, defined

r r+r r r !

. . r .
in the natural way, precisely - + — := and - - — := —, are well defined.
s ¢ s+ s ¢ ss’

Indeed, a very simple verification shows that this definitions independent of the
chosen classes.

Definition 1.2.8 (K- algebra morphism) If A and B are K-algebras a function f : A —
B is K-algebra morphism if

(a) f(kx)=kf(x)

(b) f(x+y)=f(x)+f(v)

() flxy)=fx)f(v)
forall ke K and x,y € A.

The property of making the elements of S invertible can be translated in the fol-
lowing definition.
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Definition 1.2.9 If R and R’ are K-algebras, a K-algebra morphism ¢ : R — R’ is
called S-inverting if ¢(S) < U(R’), where U(R’) denote the group of invertible
elements of R'.

In the above construction for each pair (R,S), where R is K-algebra and S < R
is a multiplicative subset, we obtained a K-algebra morphism, called numerator
morphism,

Nrs) =1:R—Rs givenby (1.2.5)

’
T —

which in particular defines the K-algebra structure of Rg.

Actually, (g s) is S-inverting. For that it is sufficient to check that the image of

elements in S by 7 have the form § and § -1 = 1g,.

Finally, the construction described above for a K-algebra and a multiplicative
subset can be resume in the following proposition.

Proposition 1.2.10 Let R be a commutative K-algebra and S < R be a multiplicative
subset. Then the following is true:

a. 1rs)(S) © U(Rs), that is, the homomorphism 7y 5) sends elements of S to
invertible elements of Rg. Moreover, for any commutative unital K-algebra R
equipped with a multiplicative subset S = R, the pair (Rg,7(gs)) is univer-

sal.[[

b. Every element of Rg is written as a fraction 7(r)1(s)~!, for some r € R and
seSs.

c. ker(nrs)) ={reR|rs=0forsomese S}.

See We shall give a more categorical description in the section|[1.3.2]

Remark 1.2.11 In the Proposition the universality of the pair (Rg, g s))
means the following. For any morphism of commutative unital K-algebras a : R —
R’ mapping S into the group of invertibles U(R’) uniquely factorizes, i.e. the fol-
lowing diagram commutes, were f is a morphism of unital K-algebras determined
by a.

R— T R (1.2.6)

N

Rl

1. See remark (1.2.11).
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In other words, for each 7 s) and given an S-inverting morphism a : R — R
exists a uniquely determined morphism of unital K-algebras f : Rg — R’ such that

a=fon.

Examples

Example 1.2.12 Let us consider R = Z and S the subset of all the powers of 10,
precisely S = {10%;k € N}.

Observe that 0 ¢ S and 1 € S. It is also easy to see that S is a multiplicative subset
of R. In this case, it is clear that Rg is isomorphic to the set of rational numbers that
have a power of 10 is the denominator. Notice that Rg & Q as for example % ¢ Rs.

Example 1.2.13 Let us set R = C°(R") = {f : R” — R; f is continuous} and fix an
open set U = R". Now consider the subset S = {f € R; f(x) # 0,Vx € U}. Further-
more, we can consider the K-algebra C®(U/) = {f :  — R; f is continuous}. Then
we can show that Rg = C*(U).

Proof. In the sense of the Proposition the K-algebra Rg that we obtain, is
given by the formal fractions g ={(f",¢)|3heS;fg'h=hf'g}.
Let us define the following map considering equivalence classes in Rg:

g.i, <xi§8,xeu> (1.2.7)

First of all, if ; = ; there is h € S such that f(x)g'(x)h(x) = f'(x)g(x)h(x) which
fx) _ fx)

implies () = M,Vx € U. It shows that 1) is independent of the chosen element

in the class.

f

Injectivity: Consider g in Rg and suppose that ¢(§) = 0. It implies that =

0,Vx € U and then we have f(x) = 0 in ¢/. But for g = Op, = g we should find he S

such that fh = 0.

In the appendix [B|we will describe a very important construction that works ba-
sically around construct a C* function in R”, called fonction aplatisseur (in french),
that is strictly positive in some open set and zero outside this set.

Take a as in the Lemma|[B.2.1} i. e. exists a : R” — R such that a(x) € [0,1],a(x) =
0 forall x¢ U and a(x) > 0 for all xe U.

It is clear that is the function / that we want. Indeed @ € S and f(x)a(x) = 0in U
because f(x) = 0 in ¢ on the other hand f(x)a(x) = 0 in R"\U/ since that a(x) = 0
forx¢ U.



1.3

1.3.1
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Surjectivity: Consider ¢ € C%(U). According to the C?-version of the Lemma
there is a continuous function a : R” — R such that a(x) = 0,x¢ U/ and a(x) > 0,x €
U such that the following function,

qb(x)—{ ¢(X)()a(x) :;;;Z (1.2.8)

is continuous in R".

It follows that ¢ (¢> (x) = ¢xalx) = ¢(x). It finishes the proof.

a
The example is also related to the following references: [40] and [13].

THE NONCOMMUTATIVE CASE

The procedure that we explore in the previous chapter, for each commutative K-
algebra and a multiplicative subset S — R, give us a universal K- algebra Rg and a
K- algebra morphism 77 : R — Rg with the following properties:

(1.2.10).(a) 1r,s)(S) = U(Rs) and the universality for the pair (Rs, g s)) is uni-
versal in the sense that any morphism of commutative unital K-algebras « :
R — R’ mapping S into the group of invertibles U(R’) uniquely factorizes, i.e.
the diagram

R R (1.3.1)

PN
R/
commutes.

1.2.10).(b) Every element in R — S has the form 7(r)1(s)~! where re Rand s € S.
1.2.10).(c) ker(r) ={reR:rs=0forsomese S} (an ideal in R)

In commutative algebra, localization provides one of the most powerful tools for
proving theorems. Thus, in studying noncommutative rings, it is natural to ask how
much of the localization machinery can be made to work in the noncommutative
case.

Existence of localization

We shall begin with a quite easy and completely general statement. From here we
will consider K- algebras not necessarily commutative.

10
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1.3. The noncommutative case

Proposition 1.3.1 Let R be a K-algebra and S < R a multiplicative set as above. There
is an S- inverting morphism from 1 to some K- algebra, denoted Rg, with the following
universal property: for any S- inverting morphism f : R — R’ there is a unique K- algebra

morphism f : Rg — R’ such that f = f on. In other words, the diagram below commutes
where R’ is an arbitrary K- algebra.

R—1+ R (1.3.2)

BN

R/

The proof of this fact can be found in [[29] p. 289]. We will present this proposition
in a different way. For the moment, let us consider the following example.

Example 1.3.2  Consider R = M,(K) where K is a nonzero ring and ¢;; € R denote
the matrix where in the position ij is 1 and in the other positions is Og. Let S
be the multiplicative set {Id,e;;}. Notice that the kernel of the map # : R — Rg is
an ideal in R. In the other hand we can show that this ideal have the form M, (i)
where U/ is an ideal in K. But E;E;; = 0 that implies E,; € ker(7) and it follow that
1 eU < U = K. Therefore, 1 is the zero map and Rg = (0).

This example, for instance, shows that we cannot predict the nature of Rg. In
general, it is difficult to prove things about Rg, because the universal map 7 : R — Rg

may no longer have the properties (1.2.10).(b) and (1.2.10).(c) and also there is no

easy description for the kernel of 7.
Another problem, that we will treat latter, concerns the elements in Rg the are
sums of words in 77(r)#(s) ™! like

n(rn(s)~" n(r) +n(s) (" n(s") ™!

where r,7/,r" € R and s,5's” € S.

Categories and Localization

The objective of this section is to present another proposition, consequently an-
other proof, that is more useful then the Proposition For that propose, we
will utilize some category language. Of course, for that, we will not go deeper in
this beautiful and powerful theory. We use the classic book [32] about categories.

Let us consider this two categories with their respective objects and morphisms.

11
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Category : KAlIgMS KAlg

Objects : (R,S); R
S © R mult. subset
Morphisms : ¢:(RS)—(R,S); ¢:R—R
$(S) =S’
In this context, KAlg is the category of the unital K-algebras. The objects are as-
sociative unital K-algebras and the morphisms are naturally K-algebra morphisms.
Moreover, let KAIgMS be the category witch the objects are all pairs (R, S) of asso-

ciative unital K-algebras R with a muliplicative subset S — R where the morphisms
(R,S) — (R’,S’) are morphisms of unital K-algebras R — R’ mapping S into S’.

The Localization Functor

First of all, since any morphism of unital K-algebras maps the group of invertible
elements in the group of invertible elements there is an obvious functor

U : KAlg — KAIgMS given by

R-Y% (R U(R)).

The localization that we already describe can be seen as a functor between the cat-
egories that we describe above. For commutative K-algebras, the Proposition (1.3.1
a.), gives rise to a functor

L: KAIgMS — KAlg given by

(R,S) -5 Rg
where Rg is the quotient algebra that we already know from the Chapter 2.

It is not hard to see that £ is a left adjoint of the functor U, see e.g. [32, p.79,
Ch.IV] for definitions: the unit of the adjunction gives back the canonical numerator
morphism #, and the counit is an isomorphism since localization w.r.t. the group of
all invertible elements is isomorphic to the original algebra.

Finally, the following statement is another version of the Proposition [1.3.1]

Proposition 1.3.3  There is an adjunction of functors

KAlgMS KAlg

12
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where L is the left adjoint to the above functor U such that each component g sy of the

unit 1) : Ix atgms — UL of the adjunction satisfies the universal property a. of the previous
Proposition in the general noncommutative case. We refer to L as a localization
functor. For a given (R, S) in KAIgMS we denote by Rg the K-algebra L(R,S) given by
the functor L, and by ng sy : R — Rg the component of the unit of the adjunction.

Then 1(r,u(r)) : R = Ry(r) is an isomorphism, the inverse being the component eg of
the counit € : LU — Ixa1g of the adjunction. Moreover, every element of the K-algebra
Rg is a finite sum of products of the form (11 = 1(g,s))

() (n(s1) ™" () (7 (sw)) ™ (1.3.3)

(which may be called ‘multifractions’) with ry,...,ry € Rand sq,...,sN5 € S (note that
or s\ may be equal to the unit of R).

Proof. The idea of the proof given in [29, Prop.(9.2), p.289] is as follows: there is
a natural surjective morphism of unital K-algebras éy from the free K-algebra gen-
erated by the K-module R, TgR, to R which provides us with a natural categorical
presentation of R ‘by generators and relations’: this morphism is given by the R-
component of the counit € of the well-known adjunction

KMod KAlg

where O is the forgetful functor and 7y the free algebra functor. Let x(R) < TgR
denote the kernel of é;. The next step is to add to the generating K-module R the
free K-module KS with basis S, and to consider the two-sided ideal «(R,S) in the
free algebra Ty (R@® KS) generated by x(R) and by the subsets

{(5,0)®(0,5) =17 | se S}and {(0,5) ®(s5,0) —17 | s€ S}

of Tx (R® KS) where the multiplication ® and the unit 17 are taken in the free
algebra T (R@®KS). The localized algebra £(R,S) = Rg is then defined by

Rs = Tx (R®KS)/x(R,S),

and the ‘numerator morphism’ 7z 5) : R — Rg is simply the canonical injection of R
into TxR < Tx (R®KS) followed by the obvious projection. It follows that for every
s € § its image 7(g s)(s) has an inverse by construction. The verification that this
leads to a well-defined functor £ which is a left adjoint to the functor ¢/ is lengthy,
but straight-forward.

Otherwise, we transfer all the details of this proof for the Appendix|C.I] O

13
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In fact, the preceding construction shows that the functor £ provides us with an
abstract universal numerator map 7 s) which is S-inverting in the sense that every
M(r,s)(s), s €S, is invertible in Rg and a natural isomorphism ep of an algebra with
its localization w.r.t. its group of units.

However, the construction by generators and relations renders the localized alge-
bra Rg quite implicit and not always computable.

Moreover, even for multiplicative subsets S — R not containing 0 it may happen
that the localized algebra Ry is trivial as example[1.3.2shows.

This can never happen in the commutative case since the equation % = % is equiv-
alent to the fact that 0 € S. This shows the lack of control over the kernel of the
‘numerator morphism’ g ).

There is another reason that we will discuss in the following section.

Ore sets

The presentation of elements of Rg in terms of sums of ‘multifractions’ as equation
shows is quite clumsy, and on would prefer simple right or left fractions.

In order to motivate some conditions on S in the following Definition we look at
the multifractions which span the localized K-algebra Rg, see eqn (C.1.1): it may
be desirable to transform a multifraction in a simple right fraction, and a partial
step may consist in transforming a left fraction (17(5))_117(1') (withre Rand s € S)

directly into a right fraction 7(r") (17(s")) - (for some 1’ € R and s’ € S) which implies
that every multifraction is equal to a right fraction by applying this step a finite
number of times. This above condition implies the equation #(rs’) = #(sr’) and
thus motivates the stronger condition that for any pair (r,s) € R x S there is a pair
(r',s") € R x S such that rs’ = s/, and this the well-known right Ore conditions.

Definition 1.3.4 Let R be an associative unital K-algebra, and S < R be a multi-
plicative subset. A K-algebra Rg equipped with a morphism of unital K-algebras
frs)y=1:R— Ry is said to be a right K-algebra of fractions of (R, S) if the follow-
ing conditions are satisfied:

a. 1j(r,s) is S-inverting,

b. Every element of Rg is of the form #j(r) (17(5))71 for some re Rand s€ S;

c. ker(rj) ={reR|rs=0, forsomese S} =:Igs)=:1.

Definition 1.3.5 Let R be an associative unital K-algebra, and S < R be a multi-
plicative subset, S is called a right denominator set if it satisfies the following two
properties:
a. Forall re Rand s e S we have rS nsR # (J (S right permutable or right Ore
set), i.e. there are ' € R and s’ € S such that rs’ = sr’.

14
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b. For all r € R and for all s’ € S: if s'r = 0 then there is s € S such that rs = 0 (S
right reversible).

Remark 1.3.6 In case that R is commutative every multiplicative subset is a right
denominator set of R.

Example 1.3.7 The group of all invertible elements ¢/ (R) of any unital K-algebra is
a right denominator set.

In fact, if x € R and s € U(R) we have s(s~'r) = r with implies sR n ri/(R) # @.
And also, if xr = 0 for x € 4(R) and r € R we have

1

xrx l=0=x"lxrx '=0=rx"'=0.

The next Theorem shows that such a right algebra of fractions exists if and only if
S is a right denominator set. In other words, it shows that the definitions and
are equivalents. See also [29, Thm (10.6), p.300]:

Theorem 1.3.8 Let R be a unital K-algebra and S < R be a multiplicative subset. Then
the following is true:
1. The K-algebra R has a right K-algebra of fractions Rg with respect to the multi-
plicative subset S if and only if S is a right denominator set.

2. If this is the case each such pair (Rg,1j) is universal in the sense of diagram m
and each Rg is isomorphic to the canonical localized algebra Rg of Proposition

3.3

3. Each Rg is isomorphic to the quotient set RS™! := (R x S)/ ~ with respect to the
following binary relation ~ on R x S

(r1,51) ~ (r2,52) < by, by € R such that

51171 =Szb265and lel =T2b2€R (134)
which is an equivalence relation generalizing relation .

Proof. The proof of this theorem is quite involved and can be found in (38} p.244,
Thm. 25.3]Eland in the appendix O

Remark 1.3.9 Let us state some commentaries about the proof.

e In the part (1.) the verification of the implication “(i.) = (ii.)” in Definition
[1.3.4]is straight-forward. The converse implication is much more involved: the
traditional -and difficult- way, that was originally set up by Jystein Ore, [36],
consists of a concrete construction of the K-algebra RS~! upon using the above

2. We are indebted to Alberto Eduque for having pointed out this reference.
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relation described in (3.) equation (1.3.4), which reflects the idea of creating
‘common denominators, and defining and verifying the canonical K-algebra
structure on the quotient set R x S/ ~ by hand which is elementary, but
extremely tedious. Moreover, even the fact that the above relation is transitive
requires some work. We refer to Lam’s book [29) p.300-302] for some of the
details.

e There is a different, and more elaborate, way to prove the part (1.) and the
rest of this Theorem. The proof is presented in [38) p.244, Thm. 25.3] and [29),
p.302].

e Actually, it is instructive to look first at the equivalence relations created by
an arbitrary S-inverting morphism of unital K-algebras a : R — R/, the classes
being defined by the fibres of the map

Pa:R xS — R given by p,(r,s) = a(r)(a(s))fl,

which is already very close to relation (1.3.4): thanks to the fact that the
right fractions oz(r)(oc(s))f1 form a K-subalgebra of R’ (here the Ore axiom
is needed) it creates an algebra structure on the quotient set isomorphic to the
aforementioned subalgebra of R’ whence there is no need of tedious verifica-
tions of identities of algebraic structures.

e The central point then is to construct a unital K-algebra R" and an S-inverting
morphism a : R — R’ whose kernel is minimal, hence equal to I(g sy which fi-
nally shows that the above algebra RS~! exists and does everything it should
do. For this construction, the following trick is used: after ‘regularizing’ R
by passing to the factor algebra R = R/I(g sy (where the image multiplicative
set S does no longer contain right or left divisors of zero) one looks at the
endomorphism algebra of the injective hull E of the right R-module R. Ev-
ery left multiplication with elements of R can nonuniquely be extended to
E, and the extensions of left multiplications with elements of S turn out to be
invertible (here the Ore axiom is needed). R’ will then be given by the subalge-
bra generated by all extensions of left multiplications and the inverses of left
multiplications with elements of S modulo the two-sided ideal of all R-linear
maps E — E vanishing on R: this will resolve the ambiguity of extension, and
Rinjects in R/, the injection being S-inverting.

Remark 1.3.10 Moreover, RS™! carries a canonical unital K-algebra structure, i.e.
addition and multiplication on equivalence classes rlsl_1 and r;zsz_1 (with r,7, € R
and sq,s, € S) is given by

1

rlsfl + r2s;1 = (ric; +1r¢p)s™, and (rlsfl)(rzsgl) = (r17")(sp8") 7! (1.3.5)

where we have written sjc; = sy,c, = s€ S (with ¢; € S and ¢, € R) and 8" = 577/

16
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(with s’ € S and r’ € R) using the right Ore property. The numerator morphism
nr: R — RS~!is given by ;(r) = r1~! for all r € R.

Examples

Example 1.3.11 A Noetherian ring is a ring which every ascending chain of right
ideals stabilizes. Precisely, for Iy,1,,---,1,,--- a sequence of right ideals which

Lchc - cl,c-

thereisan re Nsuchthatl, =1,,; =---.

That being said, in any noncommutative domain (no nontrivial zero divisors)
which is right noetherian the subset of nonzero elements is always a right denom-
inator set. This fact is shown in [29, p.304, Cor. (10.23)] and [6, p.14, Beisp. 2.3

b)]).

Two particular cases of the example [1.3.11} Every universal enveloping algebra
over a finite-dimensional Lie algebra (over a field of characteristic zero) and for the
Weyl-algebra generated by K".

Example 1.3.12  For the free algebra R = Tx V generated by a vector space V of di-
mension > 2 (which is well-known to be isomorphic to the universal enveloping al-
gebra of the free Lie algebra generated by V) the multiplicative subset of all nonzero
elements is neither a right nor a left denominator set: for two linearly independent
elements v and w in V we clearly have vR n wR = {0}.

Hence the above statement about universal enveloping algebras does no longer
apply to infinite-dimensional Lie algebras like the free Lie algebra generated by V.

Example 1.3.13 The inverse images of right denominator subsets are in general no
right denominator subsets as the example of the natural homomorphism Ty V —
Sk V of the free to the free commutative algebra generated by V shows: as SgV is
a commutative domain, the subset S = Sg V\{0} is a right denominator set whereas
its inverse image Tx V\{0} is not.

On the other hand, every homomorphic image of a right (or left) denominator set
clearly is again a right (or left) denominator set. However, there may be subsets of
right (or left) denominator sets which are no longer right (or left) denominator sets,
as we shall see later.
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2. Star products and localization

The aim of this chapter is to explore an important object in deformation quan-
tization, called Star Products, that will give us a noncommutative structure in the
algebra of the smooth functions defined in a manifold.

2.1 PRELIMINARY

Since the seminal article by Bayen, Flato, Frensdal, Lichnerowicz and Sternheimer
in 1978, see [2], deformation quantization has become a large research area which
cover several algebraic theories like the formal deformation theory of associative
algebras and as well as geometric theories like the theory os symplectic and Poisson
manifolds, and of physical theories like string theory and noncommutaive gauge
theory.

In this case, the noncommutative associative multiplication of operators in quan-
tum mechanics is considered as a formal associative deformation of the pointwise
multiplication of the algebra of symbols of these operators. For Poisson manifolds,
the work of Kontsevich [28]] is quite important to guarantees the existence os some
constructions in this way.

Nevertheless, we will not go deep in this beautiful theory, basically we will ex-
plore the deformed multiplication, the star product, that will be the symbol calculus
of differential operators in terms of formal power series.

We had as basis for some concepts and definitions some excellent textbooks [30],
(1], [14] and [55].

2.1.1 Multidifferential operators in R"

Let M be an n-dimensional manifold. Let (U, ¢ = (x1,---,x,)) be a chart. Recall-
ing that a multi-index I = (i,---,1,) is an element of N” with |[N|:=i; +--- + i, we
can denote by

ai1+---in

(1) (O

the usual abbreviation for iterated partial derivatives.

o) = (2.1.1)

Definition 2.1.1 A differential operator D of order N is a K-linear map D : C*(M,K) —
C*(M,K) such that in each chart (U,¢ = (xy,---,x,)) the operator takes the local
form

D(flly= >. D'ofly) (2.1.2)

IeN7;|I|<N

where f € C*(M,K) and for each multi-index I the function D! : U — K.
More generally, a multidifferential operator of rank r, or a r-differential operator,
is a K-r-multilinear map D : C*(M,K) x ---C*(M,K) — C*(M, K) such that there is
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2.1.2

2.1. Preliminary

an integer N such that in each chart (U, ¢ = (x1,---,x,)) the operator takes the local
form

Dlf fly= S DR (Al (fh) (213)
I, LeNs|I |, |[,|<N

where f,---, f, € C*(M,K) and for each r-tuple of multi-indicis (I,---,I,) the
function DI/ : U — K is C*.

Formal Power Series

We will start with some basic definitions about formal power series that latter
will allows us to define Star Products. For more details and proofs see the book
(45].

Let K be a ring and R be a K-algebra. First of all we can consider the K-algebra of
the formal power series with coefficients in K, more precisely

0
K[[A] = {a =Y Aaj,a eK,Vl}.

i=0

We shall write a map a : N — K in the form of a formal power series with coefficients
in K to represent a = Y ;- ; A'a;, where a; = a(i), i € N is called the rth component of
a and the symbol A is called the formal parameter.

Similarly, we can consider the K-algebra R[[A]] of the formal power series with co-
efficients in R. These two K-algebras have structure of abelian groups. For instance,
if a,b € K[[A]] we have

a+b= (Z )\lai> + (Z Albi> =Y A(a; +by)
i=0 i=0 i=0

Furthermore, R[[A]] carries the K[[A]]- module structure given by

o o o
(Z /\IOCi) (Z /\’ai> = Z /\lbi
i=0 i=0 i=0

where b; = Z;;:o ayb;_r € K,a; € K and b; € R, Vi.
An element of a € R[[A]] can be written uniquely as a = >,° a; A’ with a; € R, and
for a given a € R[[A]] and i € N we shall always write a; € R for the ith component

of a as a formal power series. We also note that for two K-algebras R, R’ we have
Hom(R[[A]], R'[[A]]) = Hom(R, R')[[A]]-
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2.1.3

2.1.4

2. Star products and localization

Formal Deformations of Associative Algebras

Let (A, pt9) be an associative algebra with unit over a commutative ring K.

Definition 2.1.2 A formal associative deformation of the associative algebra (Ay, p)
is given by a sequence of K-bilinear maps pyy, pip,--- : Ay x Ay — Aj such that

(1)

r

S (s (pr—s(a,b),€) = ps(a, py—(b,€))) = 0
s=0

for all re Nand a,b,c € A,.
(2) p,(1,a) =0=p,(a, 1) forall r <1 and ae A,.

Proposition 2.1.3  The space A = Ay[[A]] equipped with the K[[A]]-bilinear multiplica-
tion pi= %" Ay, i. e.

y(a, b) . Z /\r Z ,us(atl bu)

r=0  s+t+u=0

foralla=Y" A ayand b= _ A" b, in A, is an associative algebra over the algebra

KA.

Star Products

The following definition, introduced in [2] by Bayen, Flato, Frensdal, Lichnerow-
icz and Sternheimer given us the notion of formal Star Products.

Definition 2.1.4 (Star products) A (formal) star product * on a manifold X is a bilin-
ear continous associative operation C*(X)[[A]] x C*(X)[[A]] = C*(X)[[A]] satisfying
the following properties for all f, g e C*(X):

(i) 1xf=f=1=Ff,

(ii.) f+g=f-g+0(1),

(iii.) f*g =20 Cil(f, A,
with bilinear operators Cy : C*(X) ® C*(X) — € *(X). We assume that all Cj are
bidifferential operators. It is called natural if every Cy is a differential operator of
order k.

Example 2.1.5 The following well-known explicit star-product * on R? with coor-
dinates (x, p) will be used in the sequel:

S Ak ok f ok g
= _—— 2.1.4
frg kZ_O kI 9pF oxk (2.1.4)

for any two functions f,g € C*(R?).
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2.2

2.2.1

2.2. Noncommutative localization of smooth star-products on open subsets

In the physics literature A corresponds to (—ih). Moreover, for functions polyno-
mial in the ‘momenta’ p it is obvious that the above series converge, and for A = 1
one obtains the usual formula for the symbol calculus of multiplication of differen-
tial operators on the real line (where partial derivatives are always brought to the
right and replaced by the new variable p).

We mention the following facts although they are not necessary for the main sub-

ject of this paper:
We define the star commutator for a,b € € (X)[[A]] by [a,b], = axb—b*a. As usual,
the star commutator satisfies the Leibniz-identity, i.e. [a,bxc], = [a,b],xc+bx[a,c],,
and the Jacobi-identity and thus defines the structure of a non-commutative Poisson
algebra. Also the adjoint action is a derivation of €™ (X)[[A]] for all ae € (X)[[A]].
From this it can easily be deduced that the first order term of a star product defines
a Poisson bracket as follows

(f.81 =5 (f0) - G2 ) = 55 lfelliofor frge T (X). (213

For € *(X) it is well-known that every Poisson bracket comes from a unique Poisson
structure 1 which is a smooth bivector field 7, i.e. a smooth section in A2TX satis-
fying the identity [7, 7t]g = 0 where [, |5 denotes the Schouten bracket, see e.g. [553,
p.84-87]: the relation is {f,g} = n(df,dg). The very difficult converse problem
whether the Poisson bracket associated to any given Poisson structure 7t arises as
the first order commutator of a star-product had been solved by M. Kontsevich, see
(28]

We also note that two star products *, *" are called equivalent if there exists a formal
power series of differential operators T = id+>}° | A¥Ty, with T(1) = 1 such that
T(f)*xT(g) =T(f * g) forall f,ge €E*(X)[[A]]- The operator T in the above defini-
tion is always invertible and indeed, given a star product *, fx'g:= T~} (T(f)*T(g))
always gives a new equivalent star product. Two equivalent star products clearly
give rise to the same Poisson bracket.

NONCOMMUTATIVE LOCALIZATION OF SMOOTH STAR-PRODUCTS ON
OPEN SUBSETS

The aim of this section is to relate localization with Star Products.

Analytic and algebraic localization
Analytic localization

Note that every star-product = can be analytically localized to an associative star-
product #;; defined on C*(U)[[A]] by the localization of all the bidifferential oper-
ators Cy to Cly.

23



2.3

2. Star products and localization

Algebraic localization

Let (X, ) be a Poisson manifold, let * = 372, A*C; be a star-product on (X, 1),
and let Q) X be a fixed open set. We set K = K[[1]], and consider the K-algebra

R = (C*(X)[[A]], ). (2.2.1)

Moreover, since the star-product * only involves bidifferential operators, it restricts
to a star-product # on formal power-series ¢ € R := C*(Q,K)[[A]] such that
(Ra,*q) is also a K-algebra.

It follows that the restriction map 7o = : R — R : f — f|q is a morphism of
unital K-algebras. We define the following subset S < R:

So:={¢eR|VxeQ: gy(x)+#0} (2.2.2)

Clearly, the constant function 1 is in S, and for any g,h € S we have (g h)q(x) =
20(x)ho(x) # 0 (for all x € X) whence S is a multiplicative subset of the unital K-algebra
R.

We can now consider the noncommutative localization of R with respect to S and
compare it with the unital K-algebra Rq

The main result from the frist part of this thesis is to anser the following question:

What is the relation between Rg_, the algebraic localization in the sense of the
Chapter (1}, and Rq analytic localization the we describe above. Are these algebras
isomorphic?

GERMS

Let (X,70) again be a Poisson manifold, and let + = 3/° ) A!C; be a bidifferential
star-product. Let K = K[[A]], and we denote the unital K-algebra (C*(X,K)[[A]], *)
by R. For any open set U c X let Ry denote the unital K-algebra (C*(U,K)[[A]], *y),
where #; denotes the obvious action of the bidifferential operators in * to the local
functions in C* (U, K). We write Ry = R. For any two open sets with U > V, denote
by 1 : Ry — Ry be the restriction morphism where we write 77 for 7%. Clearly,
for U > V S W one has the categorical identities 7}y o 7/ = #Y and nY = idy. De-
noting by X the topology of X it is readily checked that the family (Ry) ,_, with
the restriction morphisms 7/ defines a sheaf of K-algebras over X, see e.g. the book
[? ] for definitions.

Let xo a fixed point in X, and let X, < X the set of all open sets containing xo.
We recall the definition of the stalk at xy, Ry, of the sheaf (RU)UeX whose ele-
ments are called germs at x,: it is defined as the inductive limit (or colimit, see [? ])
thezxo Ry. In order to perform computations we recall the more down-to-earth
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2.4

2.4. Commutative Localization of Star-Products

definition: let R, be the disjoint union of all the Ry, i.e. the set of all pairs (U, f)
where U is an open set containing xy and f € C*(U,K)[[A]]. Define an addition +
and a multiplication * on these pairs by

(U )+ (V,8) = (UnV,ni-v(f) +ni.v(g) and

(Ulf) * (V’g) = (U N V’ﬂng(f) *Unv ngr\V(g))'

and it is easily checked that the addition is associative and commutative, that the
multiplication is associative, and that there is the distributive law. Furthermore, the
sum of (U, f) and (V,0) equals (U n V, 5.y (f)) which is equal to (U, ) * (V,1) =
(V,1) % (U, f). Next the binary relation ~, defined by

(U f) ~x, (V,g) iff IWeX, with W UnV: ny(f) =nw(g)

turns out to be an equivalence relation. Denoting by R, the quotient set Ry / ~y,
and by 17,% : Ry — Ry, the restriction of the canonical projection R,  — R, to Ry ©
RXO (where 17,}5) will be shortened by 7, : R — R, ) it is easy to see that the above
addition and multiplication passes to the quotient, that all the zero elements (U, 0)
are equivalent as are all the unit elements (U, 1), and that this defines the structure
of a unital associative K-algebra denoted by (R,,, *y,) on the quotient set such that
all maps 7y : (Ry,#y) — (Ry,, *x,) are morphisms of unital K-algebras. Note the
following equations for all open sets U o V:

T, O 1Y = Ts- (2.3.1)
Define the following subset S = S(x() and I = I, of R:
§=5(xo) ={geR|g(x0) #0} and I=1I, ={geR[go(xo)=0}.  (23.2)

It is easy to see that S = R\[, that S is a multiplicative subset of R, and that I, is a
maximal ideal of R (the quotient R/I is isomorphic to the quotient K/(AK) = K which
is a field).

COMMUTATIVE LOCALIZATION OF STAR-PRODUCTS

Let A be a commutative associative unital K-algebra. We recall briefly the well-
known algebraic definition of an (algebraic) multidifferential operator where we
follow the book [55, p.566-578]:

We shall write unadorned tensor products ® short for ®x. A multidifferential oper-
ator D of rank p on A is a K-linear map D : A®P — A satisfying certain properties:
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2. Star products and localization

We denote by L, : A — A, L,(b) = ab for a,b € A the left multiplication, and
similarly for each integer 1 <i < p the map L} : AP — A®P, L} (a1 ® -+ ®a; ®a,) =
R -®(aa;)®- - ®ap. Further we denote by k = (kl,...,kp) € ZP a multi-index and
by e; € ZP the multi-index which is 1 in the i-th position and zero otherwise. We
shall use the partial ordering < on Z” defined by k < L iff for all 1 <i < p we have
ki < li'

Definition 2.4.1 We define the left A-module of p-multidifferential operators
DiffOpX(A,..., A;A)

on A of order k € NP inductively by DiffOp*(A4,...,A;A) = {0} if there exists k; < 0
and

DiffOp*(A,...,A;A) = (2.4.1)
{D e Homg (A®",A) |Yae AV1 <i<p: L,oD—DolLleDiffOp* “(A,..., A;A)}
for k € NP. Furthermore, we set DiffOp)(A;A) = Uiz DIffOp*(A,..., A; A).

Since clearly k < L implies that DiffOp*(A,...,A;A) c DiffOp'(4, ..., A; A) there is
the well-known result that each A-module of p-multidifferential operators is ex-
haustively filtered by the abelian group Z”.

Furthermore, for A = ¢*(X) for a manifold X this algebraic definition is well-
known to coincide with the analytic definition, see e.g. [55 p. 575, Satz A.5.2.]
which means that in local charts a (algebraically defined) differential operator looks
as in equation (2.4.1).

Returning to general A there is a well-known procedure to localize multidifferen-
tial operators:

Proposition 2.4.2  Let Sq < A be a multiplicative subset, let Ag, be the ordinary com-
mutative localization of A w.r.t. So, and let s,y = 1 : A — Ag be the numerator
morphism. Let D € DiffOpP) (A; A) a multidifferential operator of rank p.

Then there exists a unique multidifferential operator Dg € Dif'fOp(p) (Ag,;As,) of rank
p such that oD = Dg o y®P.
Furthermore, given another multidifferential operator D' € DiffOp(A; A) we have (D o;
D’)s = Dg o; Dg for each integer 1 <i < p.

Proof. This follows from the similar statement for differential operators, see e.g.
(53} Prop.3.3]. The second part follows from the uniqueness of the localization. [J

Observe now that the Definition of star-products can be generalized to any
commutative associative unital K-algebra A whence the significance ‘bidifferential’
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2.4. Commutative Localization of Star-Products

for the K-bilinear maps Cy : A x A — A is now given by the algebraic Definition

2411

Proposition 2.4.3  Given a differential star product » = > A'C; with bidifferential
operators C; on an algebra R = A[[A]] and a multiplicative set Sy < A there exists
a unique star product xg on Ag [[A]] such that the canonical K-linear map A[[A]] —
A, [[A]] induced by the numerator morphism 1 : A — Ag is a morphism of unital K-
algebras.

Proof. This follows from the previous proposition by considering the localization
of the bidifferential operators C;. It remains associative since the localization is
compatible with composition. O]
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3.1

3. Results

In this chapter we want to present the main results of the localization part.

NON COMMUTATIVE LOCALIZATION FOR SMOOTH STAR PRODUCTS ON
OPEN SUBSETS

This first theorem shows that localization for star products can be demonstrated
looking for the properties of the Definition [I.3.4}

Theorem 3.1.1  Using the previously fixed notations we get for any open set (3 < X:

1. (Rq,*q) together with the restriction morphism 1 consitutes a right K-algebra of
fractions for (R, S).

2. As an immediate consequence we have that S is a right denominator set.

3. This implies in particular that the algebraic localization RS~ of R with respect to
S is isomorphic to the concrete localization Rq as unital K-algebras.

Proof. 1. We have to check properties (i.a.), (i.b.), and (i.c.) of Definition[1.3.4}

e [Property (i.a.)] For this property we need to show that "5 is S-inverting”.
Indeed, this is a classical reasoning from deformation quantization which we shall
repeat for the convenience of the reader. Let g € S and y = 7(g) its restriction to
Q). Take 1 € Ry and try to solve the equation y *q ¢ = 1. At order k = 0 we get
the condition yy1y = 1, but since y((x) # 0 for all x € Q the function x — hy(x) :=
yo(x)~! is well-defined and smooth in C*(Q, K).

Suppose by induction that the functions ¢, ..., € C*(Q,K) have already been
found in order to satisfy equation y #g ¢ = 1 up to order k. At order k +1 > 1 the
condition reads

k+1

0= ), = 2 Ci(vp tq)

Lpg=0
I+p+q=k+1

= Yok+1 + Fxs1(Qor - Vo Vor- 0 Vis1) (3.1.1)

where the term starting with Fy, | denotes the difference (y*q ), ; —VoWr+1 which
obviously does not contain ;.

Again, since y, is nowhere zero on Q the function ¢4 ,; can be computed from
this equation by multiplying with x > y,(x)~!. Hence there is a solution 1 € R of
equation y ¢ ¢ = 1. In a completely analogous way there is a solution ¢’ € Rqy of
the equation 1’ x¢y ¥ = 1. By associativity of xq we get i = 1 as the unique inverse
of y in the unital K-algebra Rq,.
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3.1. Non commutative localization for smooth Star Products on open subsets

o [Property (i.b.)] "Every ¢ € Rq is equal to n(f) xq n(g)*~! for some f € R and
gesS”

The main idea is to transfer the proof of Lemme 6.1 of Jean-Claude Tougerons’s
book to the non-commutative situation. Let ¢ = 37" A'¢p; € Ry. We then fix the
following data which we get thanks to the fact that X and therefore each open set ()
is a second countable locally compact topological space: there is a sequence of com-
pact sets (K,)en of X, a sequence of open sets (W,,),cn, and a sequence of smooth
functions (g,)uen : X — R such that

UKi=0,

neN
and

1 if xe W,
VneN:K,cW,cW,cK,,; and g,(x)=< 0 ifx¢ K1, .
ye[0,1] else.

We denote by y; the restriction 7(g;) of g; to Q for each nonnegative integer j.
The idea is to define the denominator function g as a (non formal!) converging sum
g= ZJO-C;O €;gj- Choose a sequence (€;)en of strictly positive real numbers such that

1

‘ 1 . i
VjeN: eij}_H’j(gj) <5 and Vi<jeN: eleOijH,j(Cl(d)i_l,gj)) <57

(For the definition of the seminorms py ,, see Appendix[A.4) which is possible since
for each nonnegative integer j there are only finitely many seminorms and functions
involved. For all nonnegative integers i, j, N we define the functions gn) € C*(X,K),
and l,bij, Ilb(i,N) € COO(Q,K)Z

N i N i
g(N) = Z €i8j» Wij = Z Ci(pi—17j), YNy = 2 €jpij = Z Ci(Pi—iyiny),
1=0

j=0 j=0 I=0

and since supp(g;) < Kj1 = Q, hence supp(gnn)) = Kn41 © Q, there are unique
functions f;; € C*(X,K) such that

y if xeQ,
fi]-(x)::{ ¢,]()(x) 1f§§Q , hence #(fij) = ¢;; and supp(f;;) = Kj;;.

For each nonnegative integer N we set f(; N := Z?T:O €jfij € C*(X,K) with supp(f(;,n)) <
Ky 1. Clearly, n(fiin)) = Ny
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3. Results

We shall now prove that both sequences (g(n))nen, and for each nonnegative inte-
ger i, (fi,N))nen are Cauchy sequences in the complete metric space C*(X, K). First,
it is obvious that for any two compact subsets K, K’ and nonnegative integers N, N’
we always have for all f € C*(R",K)

if K < K" and m < m’ then pg ,,(f) < pxr,w (f)- (3.1.2)

Fix a nonnegative integer i. Let e e R, € > 0, K < X a compact subset, and m € N.
Then there is a nonnegative integer N such that

ﬁ<€’ m< Ny, and i <N

Then for all nonnegative integers N, p with N > N we get (since for all j € N such
that N+ 1 <jwehave m < No <N <jandi <N, and supp(fj;) © Ki'\; < Kj41)

N+p N+p N+p
P (finep) = fin)) = Prom Z €ifij|< Z eipkm(fij) = Z Eijij+1,m(4)ij)

j=N+1 j=N+1 j=N+1

N+p i N+p i

<D €PKLj (Z Cl(¢i—llgj)> < D€ 2Pk (Cildiig))

J=N+1 1=0 J=N+1  1=0

N+p
1 1 1 1 1

j=N+1

It follows that for each i € N the sequence (f(;n))nen is a Cauchy sequence in
the locally convex vector space C*(X,K) hence converges to a smooth function
fi = Z?’;O €;fij- Replacing in the above reasoning the function ¢, by the constant
function 1 on Q) it follows that the sequence (g(n))nen converges to a smooth func-
tion g: X — R. Now let x € (. Then there is a nonnegative integer j, such that
x € Kj,. It follows from the nonnegativity and the definition of all the g; and from
the strict positivity of €; that

0
= D €i8(x) > €j,gj,(x) = ¢, > 0
=0

showing that g takes strictly positive values on () whence g€ S.

Now let x ¢ Q. Then for any v € T, X with h(v,v) < 1 we have that

N
VmeN: (D"gn))(v)= > €/(D"g)(v)=0
j=0
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3.1. Non commutative localization for smooth Star Products on open subsets

because each g; has compact support in Kj; < (. Since gy — g for N — w0 it
follows by the continuity of differential operators and evaluation functionals that
D"gny(v) — D™g(v), and hence

VxeX\Q,VmeN, VveTX, h(v,v)<1: (D"g)(v)=0, (3.1.3)
and in a completely analogous manner
VxeX\Q,VmeN, VveT,X, h(v,v)<1: (D"f;)(v)=

Hence the infinite jets of all the functions ¢ and f;, i € N, vanish outside the
open subset ). ].-C. Tougeron calls the function g fonction aplatisseur for the family
(¢i)ienincase C;=0forl>1

Now we get

(p*un(g Z (i) = YiNy = 1(fin))-

Since the restriction map 7 : C*(X,K) — C*(Q,K) is continuous (where the Fréchet
topology on C*(Q),K) is induced by those seminorms pg ,, where K — Q) as are the
bidifferential operators C; we can pass to the limit N — oo in the above equation
and get

b (g ZN $ran(g); = D An(fi) =n(f).
i=0

Since g € S it follows that #(g) is invertible in Ry by property (i.a) of Definition
and the preceding equation implies ¢ = 7(f) *q 17(g)*@~! thus proving prop-
erty (i.b) of Definition|[1.3.4}

o [Property (i.c.)] "The kernel of 1 is equal to the space of functions f € R such that
thereis ge S with f xg = 0"

Clearly if there is f € R and g € S such that f * g = 0 then #(f) *q 11(g) = 0, and
since 7(g) is invertible in R we have #(f) = 0.

Conversely, if f € R such that 77(f) = 0, then for all integers i € N and for all x € Q
we have f(x) = 0. Hence the infinite jet of each f; vanishes at each point x € () since
Q) is open. Take the fonction aplatisseur g € S constructed in the preceding part of
the proof for ¢y =1,¢; =0foralli >1. Thenweget Vxe X:

Z (fi-1r8)

_ | 0 if xe O since every jet of eachf; vanishes in (),
0 if x ¢ () since every jet of g vanishes outside of (),
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3.2

3. Results

where we have used equation (3.1.3) for the second alternative of the above state-
ment. This proves part 1. of the Theorem.
Statements 2. and 3. are immediate consequences of 1. and Theorem[1.3.8] [

Remark 3.1.2  For zero Poisson structure and trivial deformation C; = 0 forall I > 1
the above result specializes to the classical result that algebraic and analytic local-
isation with respect to an open subset () c X are isomorphic for the commutative
K-algebra C*(X,K).

Moreover, since for any closed set F — X Tougeron’s above construction gives
us a smooth function g : X — R which is nowhere zero on the open set QO = X\F
and zero outside (), hence on F, one gets the well-known result that the Zariski
topology on X induced by the commutative K-algebra C*(X,K) coincides with the
usual manifold topology because each set Z(I) is closed by continuity of all the
functions in the ideal I, and conversely every closed set F is the zero set Z(gA) of
the ideal gA (where A = C*(X,K)).

NONCOMMUTATIVE GERMS FOR SMOOTH STAR PRODUCTS

Theorem 3.2.1 Using the previously fixed notations we get for any point xy € X:

1. (Ry,, *x,) together with the morphism 1, : R — Ry consitutes a right K-algebra of
fractions for (R,S(xq)).

2. As an immediate consequence we have that S(x) is a right denominator set.

3. This implies in particular that the algebraic localization RS™! of R with
respect to S = S(x() is isomorphic to the concrete stalk R, as unital K-
algebras.

Proof. 1. Once again, we have to check properties (i.a.), (i.b.), and (i.c.) of Definition

o "1y, is S-inverting” (property (i.a.)):

Indeed, let g € S(x(). Since gg(xo) # O there is an open neighbourhood U of x,
such that gg(y) # 0 for all y € U. Hence the restriction 7 (g) is invertible in (Ryy, *yy)
by Theorem

Using eqn we see that 7, (g) = 17)% (1u(g)), and the r.h.s. is invertible in
Ry, as the image of an invertible element 77;;(g) in Ry with respect to the morphism
of unital K-algebras 17}%.

e "Every ¢ € Ry, is equal to 1y (f) *y, 17XO(g)"‘th1 for some f € R and g € S(xq)”

(property (i.b.)):
Indeed, let ¢ € R, . By definition of R, as a quotient set there is an open neigh-
bourhood U of xy and an element i € Ry with qgo(U, Y) = ¢.
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3.2. Noncommutative germs for smooth star products

According to the preceding Theorem|3.1.1]there are elements f, g € R with gy (y) #
0 for all y € U such that 5y (f) = ¢ =y ny(g). In particular, gy(xo) # 0, hence g €
S(xg). Applying 17}% to the preceding equation we get (upon using eqn (2.3.1))

o (1) = 15 (10 () = (1)) 2, (18 (10(2)) ) = 6 24, (115, (2))

proving the result since g € S(xy) and 7, (g) is invertible in the unital K-algebra
(Rxo; *xo)-

e The kernel of 1, is equal to the space of functions f € R such that there is g € S(x)
with f * g = 0 (property (i.c)):

Indeed, given f € Rwith 77, (f) = 0 then there is an open neighbourhood W of x
such that 1y (f) = nw(0) = 0. By the preceding Theorem [3.1.1|there is an element
g€ Sw < S(xg) (which can be chosen to be a fonction aplatisseur) such that f =g = 0.
This proves 1. of the Theorem.

2. and 3. are immediate consequences of part 1. and Theorem[1.3.8] O]
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4.1

4.1.1

4. Preliminary

LiE-RINEHART ALGEBRAS

In this Section K is always a fixed commutative associative unital ring. All mod-
ules are considered over K, and the symbol ® is short for ®g. Moreover, let A be a
commutative associative unital K-algebra in the sense that K — A is a morphism of
unital commutative associative rings.

Lie algebras

First let us recall the definition of Lie algebras.

Definition 4.1.1 [Lie algebras] A Lie algebra over K is an K-module L, together
with a K-bilinear map
LxL — L

(6p) — [xy]
called Lie bracket, satisfying the following properties:
(L1) [x,x] =0, VxeL;
(L2) [x,[v,2]] + [v, [z x]] + [z [*,v]] =0, Vx,y,ze L  (Jacobi identity).
We can denote a Lie algebra by (L, [, ]).

Remark 4.1.2 The condition [x,x] = 0 Vx € L, in the definition L1), is equiv-
alent to [x,y] = —[y,x] forall x,y € L. In fact, 0 = [x+y,x+v] = [x,x] +[x,v]+ [y, x] +
9] =[x9]+[p.x] = [xy]=—[y,x].

Example 4.1.3 (Derivations) Let A be a K- algebra and let us consider the set
Derg(A) = {f € Homg (A, A); f is derivation}.

To recall, a derivation f : A — A is a K- linear map such that f(aa’) = f(a)a’ +af (a’)
for all a,a’ € A. Of course this is a subalgebra of the set the K-linear maps from A to
A, precisely Homg (A, A).

Then we can define the bracket [f,g] = fog—go f for f,g € Homg(A,A). More-
over, if we consider f, g € Derg(A) we obtain

[£,8l(ab) = f(g(ab))—g(f(ab)) =
= flgla)b+ag(b)] —glf(a)b+af(b)] =
= f(g(a)b+g(a)f(b) + f(a)g(b) +
+ af(g(b)) —g(f(a)b - f(a)g(b) —g(a)f (b) —ag(f(b)) =
= [f(g(a)) —g(f(a)]b +alf(g(b)) —g(f(b))] =
= [f.&l(@)b+alf,gl(b)

It shows that [f, g] is a derivation. In other words (Derg(A),[, ]) is a Lie algebra.
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4.1. Lie-Rinehart algebras

Example 4.1.4 More general, if we consider an associative K-algebra A and define
the bracket [x,y] = xy — px, for x,y € A, called frequently the commutator, is not
difficult to check that (A, [, ]) is a Lie algebra.

The Jacobi identity follows from the associativity. Indeed, it follows that, for
x,9,z € A we have:

2l + D zx]l + [z Dopl]l = [xyz] =[xyl + v 2x] = [y, xz] + [z, x9] = [2,9x] =
= XYZ —Y2ZX — XZV + ZYX + Y2X — ZXY — YXZ+XZY +2XY — XYz —zyx +yxz =0

Lie Rinehart algebras

We shall now recall the notion of a Lie-Rinehart algebra over A as defined in
G.Rinehart’s article, see [42]. Another rather good account of most of the material
is J. Huebschmann’s classical article [19].

Definition 4.1.5 A Lie-Rinehart algebra over A, (L,p,[[, ]|, A) is defined by the
following data:
1. Lis an left A-module.

2. p: L — Derg(A,A) is an A-linear map called the anchor morphism. We shall
write p(x)(a) in the more common way p,(a) for all xe L and a € A.

3. (L[, ]]) is a K-Lie algebra.
4. p:L — Derg(A,A)is a morphism of K-Lie algebras, i.e.

VX,}}ELI P[[x,y]]:PxOPy—Pyopx-
5. Forallaea, x,yeL:
[x, ay]] = px(a)y + a[[x, y]].

Definition 4.1.6 A map @ : (L,p,[[, [lA) — (L’,p’,[[, II'>A), considered over the
same commutative algebra A, is called a morphism of Lie Rinehart algebras, if @ : L —
L’ is A-linear map, such that forall x,y € L,

O ([[x,p]) = [P(x), @] and pg) = px- (4.1.1)

One thus obtains a category LieRin 4 /g whose objects consist of all the Lie-Rinehart
algebras over A and whose morphisms are defined as above in eqn (4.1.1).
Definition 4.1.7 Recall that this definition can be weakened in two ways:

1. A Lie derivation algebra over A is defined by the first four conditions i), ii),
iii), and iv) in Definition above with the modification that L carries no
A-module structure, and that the anchor morphism p is just K-linear.
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4. Preliminary

2. More importantly, an anchored A-module is defined by just the first two condi-
tions i) and ii) of Definition above without specifying a Lie bracket.
Defining morphisms in the appropriate way using eqn (4.1.1) one gets cate-
gories LieDer 4 x and AModAnck.

Remark 4.1.8 This first case of the definition occurs in differential geometry
in the case of a Lie algebra action on a smooth manifod X.

Example 4.1.9 We mention the following natural classes of examples of Lie-Rinehart
algebras:

— Choosing A = K we get Derg (K,K) = {0}, hence a Lie-Rinehart algebra in this
case has zero anchor morphism and reduces to an ordinary Lie algebra over
K.

— For arbitrary A the A-module L = Derg(A,A) always yields a Lie-Rinehart
algebra with the identity map as anchor morphism: in differential geometry,
given a smooth manifold X with A = C*(X,K), this example just describes the
space of all vector fields on X.

Definition 4.1.10 A Lie-Rinehart ideal i — L of a given Lie-Rinehart algebra (L, ol ]],A)
is an ideal of the K-Lie algebra (L,[[, ]]) which in addition an A-submodule on
which the anchor morphism vanishes.

The following Lemma is elementary, but is quite important. The proof is entirely
straight-forward.

Lemma 4.1.11 Let (L, ol ]],A) a Lie-Rinehart algebra.

1. Let i © L be a Lie-Rinehart ideal. Then the restriction of the Lie-bracket [[ , ]| to
i is A-bilinear, and the quotient A-module L/i carries a canonically induced Lie-
Rinehart structure.

2. Let ¢: (Lp,[[, [LA) — (Lo, I, A) be a morphism of Lie-Rinehart algebras
over A.
Then the kernel

h:=Ker(¢p)cL
is a Lie-Rinehart ideal.

Remark 4.1.12  Note that this applies to the particular case

p: (Lo [, ,A) — (Derg(A A)id, [, 1 A),

i.e. the anchor morphism is always a morphism of Lie-Rinehart algebras whence
the kernel of the anchor morphism is an ideal of L with A-linear Lie bracket.
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4.2.1

4.2. Universal Enveloping Algebras

Besides that, for later use we mention that by the induction functor AQ (see
Appendix |A.2.1) every Lie derivation algebra over A, (L,[, ],p,A) can be promoted
to a Lie-Rinehart algebra (A ®L,Ap,A[[ , ]]p,A) given us a functor

LieDerAlg, x — LieRinAlg, ¢
which we shall refer A©® L by setting
Nawx,a ®@x'T, = (apx(a") @' — (a'pw(a)) ®x + (aa) @ [x, %]

and “4p,e.(a) :=a(py(a)), (4.1.2)

and a morphism @ of Lie derivation algebras will be mapped as usual to id4 @ P.

We mention that this defines a functor L - A©® L (whose underlying A-module is
the relatively free A-module A® L) from LieDerx to LieRiny g, and there is the
obvious adjunction of functors

LieDerAlg, ¢ LieRinAlg , ¢

Note that for any Lie-Rinehart algebra (L, o} [, ]],A) the counit of the adjunction
is just the module multiplication map y; : A©L — L given by equation ap-
pendix which is a morphism of Lie-Rinehart algebra whence its kernel (L, A),
see equation (A.2.3} appendix[A.2), is a Lie-Rinehart ideal.

In fact, on the A-module A ® L there is also the trivial A-bilinear bracket A[ , ]
given by
Ala@x,d ®x']:= (ad) @ [x,x']. (4.1.3)

UNIVERSAL ENVELOPING ALGEBRAS

The central idea of the enveloping algebra construction is an universal process
to produce an associative algebra with ‘envelope’ the original algebra and also have
some analogous structure given by the map that give this ‘inclusion’.

First, in case A = K the categories of Lie-Rinehart algebras and ordinary Lie alge-
bras are isomorphic.

Universal Enveloping Algebras of Lie algebras

Recall that for any ordinary K-Lie algebra (g,[, ]) there is the notion of Universal
Enveloping Algebra, Uk (g).
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4. Preliminary

There is the following problem of universals: given a Lie algebra (g,[, ],) over
K, is there an associative unital K-algebra Ug(g) equipped with a K-linear map
ig = i:9— Ug(g) satisfying

i([x,v]y) =i(x)i(y) —i(y)i(x) forall x,peqg (4.2.1)

such that for any unital associative K-algebra B and any K-linear map 6 : g — B
satisfying 0 ([x,p]) = 6(x)0(y)—0()0(x) for all x,p € g there is a unique morphism
of unital K-algebras 0 : Ug(g) — B satisfying O oi =6 ?

In other words, the K-linear map i, is such that given a K- linear map 6 : g — B,
with the same property as the equation exists a K-linear map 0 : Ug(g) — B
such that the following diagram commutes

i

g —= Uxk(g) (4.2.2)

RN

B

|

The positive answer to this question can be rephrased in more categorical terms
that the obvious commutator functor ()~ : AssAlgyx — LieAlgy from all unital asso-
ciative K-algebras to all K-Lie algebras has a left adjoint:

LieAlgy

AssAlgy (4.2.3)

Here to any associative algebra B over K the Lie algebra B~ is associated where
the Lie bracket on the K-module B~ = B is just the commutator [b,b'] := bb’ — b'b
for all b,b’ € B.

We shall recall the usual construction, see e.g. the books by H.Cartan and S.Eilenberg,
[12, p.266-270], and by Bourbaki [8, Ch.I, p.22], for more details about this con-
struction see the Appendix[A.5]

4.2.2 Universal Enveloping Algebras of Lie-Rinehart algebras

For Lie-Rinehart algebras G.Rinehart formulated and solved the according uni-
versal problem in his thesis [42] p.197-198]: given a Lie-Rinehart algebra (L, ol ]],A)
over A, is there an associative unital K-algebra (U/(L,A),,1) equipped with two K-
linear maps i : L > U(L,A) and 14 : A — U(L, A) satisfying for all xe Land a€ A

i :L—>U(LA)” morphism of K—Lie algebras (4.2.4)

st A—>U(LA) morphism of unital K—algebras  (4.2.5)
ta(a)ei(x) = 1 (ax) and (4.2.6)

i(x) e1a(a) —1a(a) o1 (x) = 14(px(a)), (4.2.7)
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4.2. Universal Enveloping Algebras

such that for any given associative unital K-algebra B and any given K-linear maps
0:L — Band j:A — B satisfying the conditions analogous to i; and 14 there is a
unique morphism 0 : U(L,A) — B such that O o1, =0 and O o1y = j?

In othe words, the K-linear maps 14 and ¢ are such that for any given associative
unital K-algebra B and any given K-linear maps 6 : L — B and j : A — B satisfying
the conditions analogous to i; and 14 exists 0 : U(L,A) — B such that both sides of
the following diagram commutes?

U(LA) (4.2.8)

The comma category

We have already discussed the following categories

Category | Objects Morphisms
Associative uni- | @:B— B
AssAlgg tal K-algebras B | s. t. a(1p) = 1p
. K-Lie Algebras | ¢:L— L’
LieAl
5 (L)) P([x9]) = [¢(x), ¢(®)]'
(L[ 1,A) = (L0 [T, A)
Lie-Rinehart Al- | s. t. @ : L — L' is A-linear map and
LieRingx | gebras forallx,yelL,
Lol 14) | @(lxyl) = [, ] and
P (x) = Px-

The idea in the following is to see the universal construction as a left adjoint
functor from LieRin, g to some analogue of the above category AssAlgy of all as-
sociative unital K-algebras but which must incorporate the commutative algebra
A.

In that sense, this category can be found in a quite simple way by taking A |
AssAlg denoting the category of all associative K-algebras over A, see e.g. [50, p.88]
or [51} p.459] which is nothing but the comma category of all associative K-algebras
under A in the sense of Mac Lane, cf. [32, p.45, eqn (1)]. This category can be
described as following;:

Objects: Pairs (j,B,¢,1) where (B,¢,1) is an associative unital K-algebra, and j :
A — Bis a (not necessarily injective) morphism of unital K-algebras.
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Morphisms: (j,B,¢,1) — (j/,B’,¢/,1') is a morphism @ : B — B’ of unital algebras
intertwining j with j’ that means ®oj = j'.

Remark 4.2.1 Note that in general the image j(A) is a commutative subalgebra of
B which is in general NOT in the centre of B. An object (j, B) in that category will
be considered as a left A-module in the natural manner ab := j(a)b for all a € A and
beB.

Next, in order to get the analogue of the commutator functor we consider first
two K-Lie algebras over K: the K-Lie algebra Der(A, A) of all derivations of A — A
with respect to the commutator bracket of linear maps, and the K-Lie algebra B~
of B with the commutator bracket. In the direct sum Der(A, A) x B~ (where the Lie
bracket is just componentwise) consider the following submodule

B, := {(D,b) € Der(A,A) x B~ ’ VacA: j(D(a)) = [b,j(a)] }, (4.2.9)

which is analogous to the construction of the algebraic version of infinitesimal gauge
transformations in [19) p. 72]. Note that for A = K this construction is isomorphic
to the ordinary B™, and in case j is injective B, is isomorphic to the Lie normalizer
of j(A) in B.

Proposition 4.2.2  The association B — B, is a covariant functor from the category
A | AssAlgy to the category LieRinAlg, x with respect to the following definitions
where (j, B) and (j', B") are two associative unital K-algebras under A, a€ A, D,Dy,D, €
Derg(A,A), b,by,by € B such that (D,b),(Dy,by),(Dy,by) € By, and ® : B— B isa
morphism in A | AssAlgy:

[(Dy,b1),(Dy,b,)] := (DyoD;—DyoDy,[by,bs]), (4.2.10)
p(D,b)(a) := D(a), (4.2.11)
a(D,b) = (aD,j(a)b), (4.2.12)
@, (D,b) := (D,®(b)). (4.2.13)

Proof. Note that B}, is easily checked to be a K-Lie subalgebra of Der(A,A) x B~
which proves antisymmetry and the Jacobi identity of the bracket (4.2.10), as well as
the fact that the map is a morphism of Lie algebras since it is the restriction
of the projection on the first factor to a subalgebra. The fact that the subagebra B of
Der(A, A)x B~ is stable by left multiplication by a € A as indicated in follows
from the commutativity of A, and is a straight-forward computation. [

The construction of universal enveloping algebras of Lie-Rinehart algebras

The universal enveloping algebra of a Lie-Rinehart algebra will now be constructed
in several steps for which Huebschmann’s paper [19, p.63-66] has been a crucial in-
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4.2. Universal Enveloping Algebras

spiration. Let us fix a Lie-Rinehart algebra over A, (L, ol ]],A).

We shall not recall Rinehart’s construction of U(L, A), but rather Huebschmann'’s
construction (see [19]) because it comes much closer to the constructions we shall
do later on.

(1). Consider the universal enveloping algebra Uy (L) of the K-Lie algebra (L, [, ]]).
Recall that Uk (L) is an associative K-algebra with unit element 1, see Appendix[A.5]
and

Moreover, Uk (L) carries the well-known structure of a cocommutative Hopf algebra
over K, (Ug(L), 1, 1,A,€,S) where A : Ug (L) — Ug (L) ®k Uk (L) is the coassociative
cocommutative comultiplication, € : Ug(L) — K is the counit, and S : Ug(L) —
Uk (L) the antipode.

We shall use Sweedler’s notation A(u) =3, M ®u? for computations involv-
ing the comultiplication. Thanks to the universal property of Ug (L) the morphism
p:L — Derg(A,A)” of K-Lie algebras extends (via the unit of the adjunction i} : L —
Uk (L)) to a morphism of associative unital K-algebras, p : Ug(L) — Homg (A, A).
Since L acts by derivations on A there is the Leibniz rule (for all u € Ug(L), a,a’ € A)

Ou (aa’) = Zﬁu(n(a)ﬁu(z)(a/). (4.2.14)
(1)

In other words, A becomes a Ug(L)-module algebra, see e.g. [49) p.153-154] for
definitions.

(2). Consider the tensor product AQg Ug (L) = AQUx (L). First there is the trivial
factor-wise multiplication (for all 4,4’ € A and all u, u’ € Ug (L))

(a@u)(d @u'):= (ad") @ (uu’) (4.2.15)

on A®Ug (L) by which A®Ug(L) is an A-module and an associative A-algebra. In
a similar way, recall the trivial A-bilinear Lie bracket ][, ]| (4.1.3) on A® L. The
universal property for both enveloping algebras Uk (L) of the K-Lie algebra (L, [[, ]])
and U, (A®L) of the A-Lie algebra (A®L,“[[, ]]) shows the existence of a canonical
isomorphism of unital associative A-algebras:

A®Ug(L) =~ Uyu(A®L). (4.2.16)

The second more important multiplication ¢ on A ® Ug (L) takes into account the
anchor morphism p and is given in Huebschmann’s paper [19, p.63-66]: it is only
K-bilinear and given by the the smashed product A ® Ug(L) of Ug (L) with A (see
e.g. [24) p. 207, Example 3], where it is called crossed product): here the K-module
AQOUg(L) := A®Ug(L) is equipped with the multiplication ¢ (for all a,a’ € A and
u,veUg(L))

(a®u)o(d @v) = Z (a(pu(l) (a’))) ® (1) (4.2.17)
(u)
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which is associative and unital for 1 ® 1 which is fairly easy to check upon using
coassociativity of A and (4.2.14). Clearly, there are A-linear maps iy : A > A@QUg(L)
and iyg : AQL — A®Ug(L) given by (forallac Aand xe L)

ig(a):=a®x1 and iye(a®x)=a®ir(x) (4.2.18)
where 74 is a morphism of K-algebras satisfying
fa(d') oiggL(a®x) = izgr((a'a) ®@x), (4.2.19)

and we have for all a,a’ € A and x,x' € L:

[laeL(a®x), iagr(d @X)], =
= IeL(a®x) oisgr(d' ®x) — ixgr(d’ @x)oixgr(a®x) =
= ipgL ((apx (@)@x — (dpy(a)@x+ (ad)®][x, x’]) (4.2.20)

(3). The associative unital K-algebra (A@ Uk (L),o,1® 1) will still be too big, and
we need to divide out a two-sided ideal: first note that the K-bilinear Lie bracket
Al [lp on A®L defined by eqn (D occurs in the preceding equation (4.2.20)
whence we can write

[lagL(a®x), IagL(d @x)], = L‘A®L(A[[a®x,a’®x’]]p). (4.2.21)

Recall from Section that the kernel of the module multiplication y; : AQL —

L, see equation (A.2.1), (L, A), is a Lie-Rinehart ideal. It is easy to see that the
bracket 4[], [lp can be expressed as follows for all & = Zf\il a;®x;,& = Z?’zl a?@x}- €
AQL

N

M
AEETp =) (Pela)) @x) = > (per(a) @x; + A&, &), (4.2.22)
i=1

j=1

whence the bracket A[[ﬁ,q’]]p of two elements 77,1’ € i(L, A) reduces to the A-linear

bracket , A A
M1 =111l (4.2.23)

whence [i(L,A) is a A-Lie subalgebra (and in general NOT an ideal) of the A-Lie
algebra A® L equipped with the simple A-bilinear bracket 4, ]|. Moreover, by the
definition of the multiplication o we get (since g, = 0 for all 7 € (L, A)) the
following for all e (L, A), a€ A, and u € Ug(L):

Lagr(n) o (a®@u) =irgr(n)(a@u). (4.2.24)

Note that this implies that

I(L,A) :=iagr (B(L,A)) (AQUk(L)) = iagr (1(L,A)) o (A®Uk(L)). (4.2.25)
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4.2. Universal Enveloping Algebras

It is straight-forward to see that (L, A) is an A-submodule of the A-module A ®
Uk (L) and a two-sided ideal of the unital associative K-algebra (A®Ug(L),¢,1®1):
indeed, eqn implies at once that I(L, A) is a right ideal of (A®Ug(L),¢,1®1).
By induction over the filtration degree of u € Ug (L) we shall show that for each
a€ Aand n € i(L,A) there is a positive integer N, elements b},..., by, € A® Ug(L)
and elements #],..., 77y € (L, A) such that

2:

(a®u)oiagL(n Z oL (1]) ©

which of course shows that I(L,A) is a left ideal. Indeed, for u a K-multiple of
1 (degree 0) this is clear from eqn (4.2.19), and for u = i;(x), x € L, (degree 1)
this follows from eqs and and the fact that (L, A) is an ideal of
the K-Lie algebra (AQ L[, llp)- For the induction step n — 1+ 1 we may take
a® (ip(x)u) ~-where Ae A, xe L, and u € Ug(L) is of filtration degree n—upon noting
that a®(ip (x)u) = (1QiL(x))o(a®u)—(px(a)®u) and using the induction hypothesis
and the case n = 1.

The universal enveloping algebra of the Lie-Rinehart algebra (L, ol ]],A) is then
defined by the quotient
AOUk(L)

U(LA) =

(4.2.26)
which is an associative K-algebra with respect to the multiplication ¢ induced by o:
denoting by Il; : AQ Uk (L) — U(L,A) the canonical projection we define for any
b e AOUg(L)andac A

HL(b)OHL(b/>Z= HL(bOb/) and LA:A—>M(L,A):a»—>HL([A(a)). (4227)

(4). Finally, let ¢ : (L,p,[[, [LA) — (L.p"[[, II',A) a morphism of Lie-Rinehart
algebras. Since L — Ug (L) is a functor, the A-linear map id4y ® Uk (¢) : AQUg(L) —
A®Ug (L) is a morphism of A-algebras with respect to the A-bilinear multiplication
(4.2.15) mapping the unit element 14 ®g 1 to the unit element 1,4 ®g 1’. Moreover,
thanks to this fact and to the equation it follows that id4 ® Ug(¢) maps
the ideal I(L, A) into the ideal I(L’, A) and hence passes to the quotients to induce a
well-defined A-linear map U(¢p): U(L,A) > U(L,A).

After this construction we can state the following.

Proposition 4.2.3  The rule associating to each Lie-Rinehart algebra (L, [, 1 p,A) over
A the pair (14,U(L,A)) and to each morphism ¢ : (L,[[, Il p,A) — (L[, 1,0, A) of
Lie-Rinehart algebras the A-linear map U(P) : U(L,A) — U(L', A) defines a covariant
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functor U : LieRinAlg, x — A | AssAlgy.
Moreover U is a left adjoint functor to the above commutator functor (),

LieRinAlg , x A | AssAlgy

A

Remark 4.2.4 The relation to the aforementioned universal property of U(L,A) is
given as follows: the first morphism 14 : A — U(L, A) of K-algebras had been part of
the definition of the category A | AssAlgy and was defined in the equation (4.2.27),
and the morphism 1y : L — (U(L,A), )" is defined by (for all x € L)

lL(X) :HL(fA@)L(l@X)) :HL(1®1L(X)>, (4228)

and it is easy to see using the reasoning after the equation in the particular
case @ = idy(z 4) in the proof of the preceding Proposition that both 14 and
1 satisfy (4.2.6). It is immediate that 1 is the second component of the unit of the
adjunction.

Moreover, the associative unital K-algebra U/(L,A) is generated by all the 14(a),
a€ A, and all the 17 (x), xe L.

RINEHART BIALGEBRAS

In the category of associative unital K-algebras over A there is no immediate
monoidal or tensor structure: for the usual tensor product over K there would in
general not be a morphism of the reference algebra A to the tensor product, and for
the tensor product over A there is no longer a multiplication. Actually, there are
four possibilities to define a multiplications regarding the two possibilities in each
component.

Thus, there is a useful intermediate solution going back at least to M.E.Sweedler
[50] and M.Takeuchi [51]], and has frequently been used since, see [46], [23], [34]
and others.

Let (j,B,¢,1) and (j/,B,</,1’)) be associative unital K-algebras over A and let us
denote by

0B®A -B,

the A-tensor product of the two left A-modules B and B’ where
ab=j(a)ob , ab' =j'(a)o'V

forallae A,beB,b' e B.
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Note that the right multiplication by j(a) € A on the first factor, rél), and the right

multiplication by j’(a) € A on the second factor, ), of «B®y B’ are well-defined
left A-linear maps ,B®j B’ — ,B®, B’, hence define

Bx, B := ﬂ Ker(ngl) — réz)) c B®,.B. (4.3.1)
acA

The A-submodule B x4 B’ of the left A-module ,B®, (B’ that we define above
carries a natural associative unital multiplication ¢* induced by the multiplications
on B and on B'’: express B x4 B’ as a quotient of K-tensor products in the following

way (see Appendix equations (A.2.6) and (A.2.7) for the notation):

{/5 eBRB |VacA: pol? (j(a)®1 —1®j'(a)) € K(.B,.B')}
K(.B,.B)

Bxa B ~ (4.3.2)

Observe that, the denominator is a two-sided ideal in the numerator which is a
subalgebra of the associative unital K-algebra (B ®B, 021 1’).

Moreover the K-linear map jx4j': A — Bx 4B givenby a— j(a)®41 = 1®4j'(a)
is a well-defined morphism of unital algebras. It follows that (] Xaj,Bx B, 0, 1®4
1) is again an associative unital K-algebra over A. This association can be extended
to a bifunctor in A | AssAlgy: note that for two morphisms @ : By — B, and W :
B} — B), of unital associative K-algebras over A one clearly has

(P4 W)(B1 x4 B]) © By x4 B, (4.3.3)

and the restriction of ®®4 W to By x 4 B}, denoted by @ x 4 WV, thus gives a morphism
of unital associative K-algebras over A. However, Takeuchi has remarked in [51]]
that this bifunctor is in general NOT a monoidal structure.

In the following, an associative unital K-algebra over A, (j,B,¢,1), together with
the structure of an A-linear coassociative cocommutative counitary coaugmented
coalgebra (,B,A,€,1) is called a Rinehart bialgebra by Moerdijk and Mr¢un [34]
and [23] if an only if for all b,b’ € B there is the following compatibility of the A-
linear comultiplication A with the merely K-bilinear mutiplication o:

A(B) € BxaBC.B®y.B,
A(bob") = A(b) o A(b'), and e(bob') =e(boj(e(b))) (4.3.4)

where the first inclusion makes the right hand side of the second identity well-
defined.

The class of all Rinehart bialgebras, with respect to A and K, constitutes the ob-
ject class of a category RinBiAlg, ; whose morphisms are morphisms of unital K-
algebras over A (in particular A-linear with respect to the left A-module structure)
and in addition morphisms of counital coalgebras.
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Observe that, for each such morphism @ : B — B’ the A-linear map ® ® ® maps
the submodule B x 4 B of ,B®, B into the submodule B’ x4 B’ of ,B'®,4 B’. Note
that the multiplication of a Rinehart bialgebra is A-linear in its left argument:

(ab) ol = (j(a)ob) ol =j(a)o (bob") =a(bob'). (4.3.5)

Furthermore, it is well-known (see e.g. [34]) that for any Lie-Rinehart algebra
(L,p,[[, 1,A) its universal enveloping algebra U/ (L, A) canonically carries the struc-
ture of an A-linear coassociative cocommutative counitary coaugmented coalgebra
(Ae 1):

Indeed, it is not hard to see that the A-linear map 0 : L — JU(L,A) ®, JU(L,A)
given by 6(x) = 11 (x)®41+1®a 17 (x) takes its values in the A-submodule ,U/(L, A) x 4
J(L,A), is a morphism of K-Lie algebras and satisfies the identities and
(4.2.7). By the universal property, the induced map A = & : U(L,A) — J(L,A) x4
J(LA) < JU(LLA)®y JU(L,A) is a morphism of unital algebras over A satisfying
coassociativity. Defining e : (L, A) — A by u — p,(1) the rest of the axioms is clear.
Moreover each morphism U(¢) of universal enveloping algebras is readily seen to
preserve in addition the coalgebra structures whence the functor U/ corestricts to
the subcategory RinBiAlg , x of A | AssAlgy.

Alternatively, using Huebschmann’s construction in Section one may take
the K-linear coalgebra structure Ay, (1) and ey, (1) of the universal enveloping al-
gebra of the K-Lie algebra L, extend this in a natural A-linear way to A ® Ug (L)
and observe that the ideal I(A,L), compare eqn (4.2.25), is a coideal in the coalge-
bra A® Uk (L) since iggy (i(L,A)) is in the primitive part of A® Uk (L) whence the
comultiplication and the counit pass to the quotient.

Finally is easy to see that the primitive part of each Rinehart bialgebra is natu-
rally equipped with the structure of a Lie-Rinehart algebra: the Lie bracket of two
primitive elements is given by their commutator, and the anchor map by

x— (a—e(xoj(a))).

Furthermore, Moerdijk and Mrcun [34] proved the analog of the Cartier-Milnor-
Moore Theorem: viewing U as a functor from LieRinAlg , y to the category RinBiAlg , ¢
it has a right adjoint, which is the passage to the primitive part. In the particular
case where K is a field containing the rationals they show that this adjunction re-
stricts to an equivalence for A-projective Lie Rinehart algebras and complete graded
projective Rinehart bialgebras, see [34, Thm 4.1, Cor 4.2].

Similarly to the notion of a Lie-Rinehart ideal as we already define in the Sec-
tion we can define the notion of a Rinehart ideal J of a Rinehart bialgebra
(j, B, o, l,A,e) over A as a two-sided ideal of the unital associative K-algebra (B, o, 1).
In particular, it makes a left A-module via left multiplication with j(a)) and a
coideal of the counital coaugmented A-coalgebra (B, A€, 1). The following Lemma
is straight-forward:
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4.3. Rinehart bialgebras

Lemma 4.3.1 Let (], B,o,1,A, e) be a Rinehart bialgebra over A.
1. Let J < Bbea Rinehart ideal. Then the quotient A-module B/ J carries a canonical
structure of a Rinehart bialgebra over A such that the canonical projection B —
B/J is a morphism of Rinehart bialgebras.
2. Let (j’,B’,o’,l’,A/,e’) be another Rinehart bialgebra over A, and ® : B — B’ a

surjective morphism of Rinehart bialgebras. Then the kernel of ® is a Rinehart
ideal of B.

The following Proposition relates Lie-Rinehart ideals and Rinehart ideals and will
be important in the sequel for the description of universal enveloping algebras:

Proposition 4.3.2 Let (L, ol ]],A) be a Lie-Rinehart algebra over A, let i < L be a
Lie-Rinehart ideal. Let J; < U(L, A) denote the following A-submodule of the universal
enveloping algebra U(L, A):

Ji:=Span{i (n)ouclU(LA) | nei,ucld(L,A)}. (4.3.6)

1. Then J; is a Rinehart ideal of (lA,U(L,A),O, 1,A, e).

2. Let w: L — L/i be the canonical morphism of Lie-Rinehart algebras. Suppose that
the A-submodule i has a complementary A-submodule m in L, i.e. L =1@®m. Then
the induced morphism U(nt) : U(L,A) — U(L/i,A) descends to an isomorphism of
Rinehart bialgebras over A:

UL A)/T =U(L/i,A). (4.3.7)

Proof. i.) First note that forall xe L, y€i,a€ A, and u € (L, A) we have

27 ta(a)or(n)ou+iy (pq(a)) ou = a(lL(q) <>u) +0

(4.3.8)
since i is a Lie-Rinehart ideal, and all the maps L : u + 11 (17) o u are A-linear. Next
thanks to the fact that all the elements 17 (x), x € L are primitive elements of the
coalgebra (U(L,A),A, €) and to the compatibility of ¢ with the comutiplication, see
eqn 1) we can infer that each map Lz with 7 € i is an A-linear coderivation
whence J; is a coideal as a sum of images of coderivations. Moreover

e(tL(n)ou) R 6(1L(17)<>1A(€(u))> 28 (e(u))e(lL(q)) =0.

Next, J; clearly is a right ideal of the K-algebra (¢/(L,A),¢,1), and since it is gen-
erated by all the 17 (x), x € L, we have

() o(au) =1p(n)oa(a)ou

p(x)orp(n)ou = [1p(x),1.(n)], ou+ip(n)ow(x)ou B9 zL([[x,zq]])ou +1(n)oi(x)ou
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and both terms on the right hand side are in J; since i is a Lie-Rinehart ideal. By
induction over the number of generators and by eqn (4.3.8) it follows that J; is a
two-sided ideal of (U (L,A),o, 1) and therefore a Rinehart ideal.

ii.) For the sake of simplicity we set L’ = L/i. The morphism U (7t) clearly is a mor-
phism of Rinehart algebras ¢/ (L, A) — U (L', A), and since by construction U (n)or; =
i, omand U(m)o1y =1y (where //; and 1}, denote the corresponding canonical maps
for U(L',A)) it follows that U(m) is surjective, since 7t is surjective, and both uni-
versal enveloping algebras are generated by 14(a), 17 (x), and /4 (a), 17, (7(x)), respec-
tively, for allae A and x € L.

Moreover for every 7 € i the element U(n)(1.(n))) = 1}, (n(n7)) = 0, and since
U(m) is a morphism of unital associative K-algebras it follows that U/ () (J;) = {0}.
Hence U () descends to a well-defined surjective morphism of Rinehart bialgebras
O:ULA)T—UL,A).

In order to define an inverse map of @ we need the fact that i is complemented:
note that the restriction of the projection 7 : L — L’ to the submodule m of L is an
A-linear bijection, and let @ : L’ — m denote its inverse. Let B denote the Rinehart
bialgebra U(L,A)/J; and e its multiplication, and let j : A — B be the map a —
14(a) mod J;. Define

O:L' - B:x' — 0(x') := 1 (a(x')) mod J.

Clearly 6 is A-linear since a, 1} and the projection modulo J; are A-linear, and j
is a morphism of associative unital K-algebras. Moreover for all x},x}, € L’ we get

[06),0()], = 0([x1,2])) = [oe(@(xh)) e (@(xh) | = (a([x1,%4]) ) mod

n([a(xh),a(x)] - a([x,%])) ) mod J =0

since the term [ar(x}), a(x5)] — a([[x},x5]') is contained in i = Ker(r) as an appli-
cation of 7 to it readily shows. Likewise, for all ' € L’ and a € A we compute

06 j@], = [1 (@) 14@)] mod T = 14 (pace(@) mod ; = j(pl(@)).

It follows that j and O satisfy the properties (4.2.5), (4.2.4), (4.2.7), and (4.2.6).
By the universal property of U(L’,A) there is a morphism 6 =: W : U(L’,A) — B of
assoicative K-algebras over A such that Wo i}, =60 and W o/, = j. In order to show
that ® o W = idy 17,4y and W o @ = idy (1 4) one observes that these are identities
of K-algebra morphisms, and it thus suffices to check them on generators: clearly

(Wod)(j(a)) =j(a) and (PoW)(,(a)) = 4(a) forallac A, and forall xe L

(Wod) (tL(x) mod ji) = W(L'L, (n(x))) =0(n(x)) =1 (a (n(x))) mod J; = i1 (x) mod J;
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since the term x — a(7(x)) is in i. On the other hand for all x’ € L’

(PoW) (i (x)) =2(0(x)) = (zL (a(x')) mod jl> =1 (T( (a(x’))) =1,(x").
This shows that W is the inverse of @ which ends the proof. O

DIFFERENTIAL OPERATORS

Given two A-modules P and Q, recall the algebraic definition of the left A-module
of all differential operators D : P — Q:
First, the K-module of all differential operators of order 0, DglK(P,Q) is defined
to be equal to Hom4 (P, Q). By induction, for every nonnegative integer k define
D]/{{TKl (P, Q) to be the K-module of those K-linear maps D : P — Q such that

VaeA: pw— D(ap)—aD(p) is a differential operator of order k. (4.4.1)

It is well-known (see Krasil'chik, Vinogradov; Jet Nestruev; Lunts et al.) that Dz’f\l x(P,Q)c

DZTKl (P, Q) for all nonnegative integer k, and that each DIIEHK (P,Q)is aleft A-submodule

of the left A-module Homg (P, Q). Moreover the composition of differential opera-
tors P — Q and Q — V of order k and I, respectively, is a differential operator of
order k +1 from P to V. We write D4 x (P, Q) for the union of all the Dl;uK(P’ Q) and
speak of the left A-module of all differential operators P — Q. For P = Q, the left
A-module Dk (P, P) is an associative unital K-algebra by means of composition of
K-linear maps.

It is well-known, see as for example Stefan Waldmann book [55]], that for the
particular case A = C*(X,K), P =T*(X,E), and Q = '*(X,E’) (where X is a smooth
manifold and E,E’ are smooth vector bundles over X) that the algebraic definition
coincides with the analytic definition of a differential operator by iterated partial
derivatives in coordinates.

Returning to general algebras A over K, the case P = A = Q is interesting: here
A injects into Homy (A, A) = D91|K(A’A) < Dy (A, A) in the natural way via j : a —
(a' — ad’) whence (j, DB&\K(A'A)) is an associative unital K-algebra over A. Since
derivations are obviously differential operators of order 1 the anchor morphism p
of any Lie-Rinehart algebra (L,p,[[, ]|, A) provides us with a canonical morphism,
also called p: L — Dyx(A,A), = Derg (A, A), of Lie-Rinehart algebra, and thus by
the universal property a morphism of associative unital K-algebras over A

In the particular case where L = Derg (A, A) with the identity as the anchor mor-
phism the above morphism (4.4.2) is an isomorphism provided L = Derg(A,A) is

a finitely generated projective left A-module: this is the case for the Lie algebroid
consisting of all vector fields on a smooth manifold.
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4.5.1

4.5.2

4. Preliminary

ANCHORED A-MODULES AND FREE LIE-RINEHART ALGEBRAS

Anchored A-modules

We have already mentioned the notion of an anchored A-module, notion appear-
ing in [23]]. It consists in a left A-module M equipped with an A-linear map

p:M — Derg(AA)

X —> Px

These modules occur in differential geometry as the smooth section spaces of
so-called anchored vector bundles E over a manifold X which are equipped with a
morphism of vector bundles also called p: E — TX.

In that sense, they form a category AModAncg whose morphisms are A-module
morphisms ¢ : L — M, where (L,p) and (M, p’) are anchored A-modules, intertwin-
ing the anchor morphisms, precisly

Pp(x) = Px (4.5.1)

There is an obvious forgetful functor from the category of all Lie-Rinehart alge-
bras over A, LieRinAlgy x, to AModAnc by just forgetting the Lie bracket [[ , ]|:

Forget

LieRinAlg, y — AModAncg (4.5.2)

Free Lie-Rinehart algebras

In this Section we shall briefly describe a left adjoint functor P to this functor,
the free Lie-Rinehart algebra generated by the anchored A-module M or the path Lie
algebroid according to Kapranov’s construction in [23]:

Theorem 4.5.1 (M.Kapranov 2007) The forgetful functor from the category of all Lie-
Rinehart algebras over A to the category of all anchored modules over A has a left adjoint

P:

AModAncg

Forget LieRinAlgA|K (4.5.3)

Proof. We sketch a different proof a la Huebschmann: Take an anchored A-module
(M, p) and consider first the free Lie algebra Liex (M) generated by the K-module

M, see Appendix with the canonical map iy; : M — Lieg (M), the unit of the
adjunction

KMod

LieAlg, (see alsoeqA.6.12) (4.5.4)

Forget
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4.5. Anchored A-modules and Free Lie-Rinehart algebras

Then there is a unique morphism of K-Lie algebras p : Liex (M) — Derg(A,A)
induced by the anchor morphism p, i.e. poiy = p.

Clearly (Lieg (M),[, ],p,A) will be a Lie derivation algebra over A. It follows from
Section that (A ® LieK(M),A[ , ]‘5, 5,A) will be a Lie-Rinehart algebra where 5
is the anchor morphism induced by the anchor morphism ¢ in eqn (4.1.2) (with p
replaced by p), and 4], |p is the Lie bracket in eqn (4.1.2).

Denote by QM :AQM — A®Lieg (M) the A-linear map id4 ®1y,. Recall the kernel
(M, A) of the multiplication map pp : AQM — M, see Appendix equation
A22

Clearly, by definition p vanishes on B ((M, A)). Define the following K-submodule
J(M,A) of A®Liex (M) by

JIM,A) = By (8(M,A)) + (4.5.5)
+ Kspan{ *|By (&), [Bu (&) Bu (& 1) Bu (€] 1], |

P
neN, n>2 &,.,6,cA@M, JieN, 1<i<n: Eieh(M,A)}.

It is not hard to check using the Jacobi identity that J(M, A) is the ideal of the K-
Lie algebra (A®Liex (M),A[, |;) generated by the K-submodule 8 (13(M, A)). Note
that the anchor morphism p vanishes on J(M, A) because it vanishes on 8, (B(M, A)).

Next, J(M,A) is an A-submodule of A® Liex(M): indeed this is true in degree
n =1 since i(M, A) is an A-submodule of A ® M; and for elements of degree n > 2
in eqn (4.5.5) being of the form A[EM(E),C]p_ with £ e AQM and C € A® Lieg(M)
such that £ € i(M, A) or C € J(M, A) there is the trivial identity for all a € A,

a[Bu(8), c]; =" [Bu(ad), ], + B (Pe(@)é).

If £ € i(M,A) the r.h.s. of the preceding equation clearly is in J(M,A), and if
CeJ(M,A) then p;(a) = 0 and the r.h.s. is also in J(M, A). It follows that J(M, p) is
a Lie-Rinehart ideal of A®Lieg (M) whence the projection on the quotient A-module

[Ty AQLieg (M) - P(M,A) := W (4.5.6)

naturally equips P(M, A) with the structure of a Lie-Rinehart algebra
(PM,A), [ M 00 A)

over A such that I'Ty; is a morphism of Lie-Rinehart algebras, see e.g. Lemma4.1.11
This defines the functor P on objects, and for a morphism ¢ : (M,p,A) — (M',p’,A)
of anchored modules over A it is easy to see that the A-linear map idy ® Lieg(¢)
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defines a morphism A ® Liex(M) — A ® Lieg(M’) of Lie-Rinehart algebras over
A (where the fact that ¢ intertwines the anchor morphisms plays a crucial role)
mapping the ideal J(M, A) to the ideal J(M’, A), hence id4 ® Lieg(¢) passes to the
quotient to define a morphism P(¢) : P(M,A) — P(M’, A) of Lie-Rinehart algebras.
The functor properties of P are immediate. We shall write 8); : M — P(M, A) for
the A-linear map Iy, o Bg.

In order to see that P is a left adjoint to the forgetful functor, fix an anchored
A-module (M, p,A) and a Lie-Rinehart algebra (L',p/,[[, ]|, A) over A. The adjugant
®m,1 (see Appendix[A.1) will be the composition of the morphism @ : P(M,A) — L'
of Lie-Rinehart algebras with £,;, ® o 8, and its inverse goes as follows: to every
A-linear map 0 : M — L’ associate its K-Lie algebra morphism 0 : Lieg(M) — L'.
Then the A-linear map py/ o (idA ®9) from A®Lieg (M) to L’ clearly vanishes on the
ideal J(M, A) and thus passes to the quotient to define a morphism of Lie-Rinehart
algebras 6 : P(M,A) — L. By using the fact that 8,;(M) generates P(M,A) it is
easily seen that the two preceding maps are inverses, their naturality being obvious.
M — 88, will be the unit, and id;, : P(L/,A) — L’ the counit of the adjunction which
will become rather important in the sequel. O]
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5. Connections

5.1 COVARIANT DERIVATIVES

5.1.1 Basic definitions

Definition 5.1.1 For a given anchored A-module (L,p) and a given A-module W, a
connection, or a covariant derivative VW =V, is a K-linear map

VILQW - W,
written V(x @ w) =: V,(w) such that forallae A, xeL,and we W
Vax(w) =aVy(w) and V,(aw) = py(a)w +aV,(w). (5.1.1)

We shall call the quadruple (L, p, W, VW) an A-module W with connection parametrized
by (or along) the anchored A-module (L,p).

Remark 5.1.2  About the above Definition [5.I.1lwe have:
— Sometimes the conditions in the equation are called Koszul’s axioms.
— For each element w € w there is a canonical A-linear map

Vw):L—>W: x— V,(w). (5.1.2)

Definition 5.1.3 A morphism of A-modules with connection parametrized by the an-
chored A-module L, (L,p, W,V) to (L,p, W,V’) is an A-linear map ® : W — W’ sat-
isfying @ (V,(w)) = Vi (P(w)) for all x € L and w € W. In this case P is also called
connection preserving.

The difference of two connections V' — V, with is an A-linear map L&,y W — W,
is a connection. Furthermore, the sum of any connection with any A-linear map is
again a connection.

Example 5.1.4 For each x € L the K-linear map v — V,(v) clearly is a differential
operator of order 1, see Section 4.4 for more details.

Example 5.1.5 A first canonical example of a connection parametrized by a given
anchored A-module (L, p) is A seen as an A-module in the usual way: here the con-
nection V4 is simply given by the anchor morphism

Vf(a) = py(a) (5.1.3)
forallxe L and a <€ A.

Example 5.1.6 More generally, let P be a K-module, and let A® P be the relatively
free A-module generated by the K-module P, see Appendix Then it is easy to
check that the following map V° from L®g (A®P) to AQP is a covariant derivative
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in A®P parametrised by (L, p), called the canonical covariant derivative (for all a e A
and peP):

Via®p):= (px(a)) @p. (5.1.4)

We can easily go from relatively free A-modules to relatively projective modules,
see again Appendix for details, where connections always exist:

Proposition 5.1.7  Let (L, p) be an anchored A-module and let W be a relatively projec-
tive A-module. Pick any section 0 : W — AQg W (see Appendix[A.2.1|for details). Then
the map V° : LQg W — W defined by (for all xe L and we W)

VI(w) := (uw o Veoo)(w) (5.1.5)
is a covariant derivative in W parametrised by (L,p).

The following result of transferring connections to tensor products and Hom-
spaces is very important for the sequel and well-known in differential geometry:

Proposition 5.1.8  Let (L, p) be an anchored A-module, and let (V,VV), (W,VW), (Y,VY),
and (Z,V?) be A-modules with connection parametrized by the anchored A-module L.
Then we have the following:

1. There is a unique connection VV®W in the A-module V ®4 W parametrized by
the anchored A-module L such that for all elements x e L, v e V and we W the
following holds:

VYO (@, w) = (VY () ®4w+v®, (VY (w)). (5.1.6)

2. There is a connection VEV'W) in the A-module Hom,(V, W) defined for any A-
linear map ¢ : V. — W and anyve V by

(VY (@) () = V¥ (9(v)) — (VY () (5.1.7)

Hence ¢ is connection preserving iff VxH(V’W)((p) = 0 for all x € L. Moreover there

is a canonical A-linear map V(@) : L®s V — W defined by

V(p)(x®@4v) := V,PCI(V'W)((p) (v) (5.1.8)

forallxe LandveV.
3. For any ¢ € Homy(V, W) and e Homy (W, Y) we have for all xe L

Vi og) = (W) g g (). (519)
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4. For any @ € Homy(V, W) and x e Homy (Y, Z) we have for all x € L

E(V@AY,W@AZ)((P®AX) _ (V)I;IA(V,W)((P))®AX n (P®A( xHA(Y’Z)(X)) (5.1.10)

Remark 5.1.9 The preceding Proposition [5.1.8 has the following categorical inter-
pretation: consider the class of all pairs (V,V) where V is a left A-module (where
A is a fixed associative commutative unital K-algebra, and K is a fixed associative
commutative unital ring containing the rationals) and V is a covariant derivative
with respect to an anchored A-module (L,p). It becomes a category A-modConnL
by declaring a morphism (V,V) — (W, V’) to be an A-linear map ® which is connec-
tion preserving, i.e. V. o® = ® oV, for all x € L. This category is clearly symmetric
monoidal when equipped with the usual tensor product ®,4 over A of A-modules
(and covariant derivative according to eqn (5.1.6)) and unit object A (with covari-
ant derivative the anchor map), and it is a routine-check that the associator, left
and right unitors A and p, and the braiding y are all connection preserving. Next
the symmetric monoidal category C =A-modConnlL is closed, i.e. the usual natural
isomorphism from the category of all A-modules,

Hom, (V ®4 W,X) = Homy (V,Homy (W, X)),
restricts to a natural isomorphism

Home ((V @4 W,VV®W) (X, VX)) = Home (V, V), (Homy (W, X), VEW-X))),
(5.1.11)
whence the usual Hom-space Hom, (W, X) with its covariant derivative VH(WX)
(see eqn([5.1.7)) will become an internal Hom-object in that closed symmetric monoidal
category C.

5.1.2 Iterated covariant derivatives on T,4(L)

Now fix an anchored A-module (L,p) (where again A is an associative commu-
tative unital K-algebra, K being an associative commutative unital ring containing
the rational numbers as a subring), and fix a connection V = V! in the A-module
L parametrized by the anchored A-module (L,p). Let (W,V" = V') be another A-
module with connection parametrized by the anchored A-module (L, p).

We shall first extend V in a standard ‘derivational’ manner to a connection

L@k Ta(L) = Ta(L),

also written V(x ®g b) =: IA(L)(ZJ) =V,(b) forallxe Land be T4(L), i.e.

n
Vi(1):=0, and V,(xq---x,):= Z X1 Xp_q (Vx(xr))er C Xy (5.1.12)

r=1
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5.1. Covariant derivatives

for all integers n > 1 and x,x,...,x, € V. This is a well-defined connection thanks
to an iteration of the first statement eqn (5.1.6) of Proposition It is immediate
from the definition that V, preserves tensor degree, i.e. forall xe L

V,odeg=degoV,, (5.1.13)

and that it is a derivation of the unital algebra T (L), seen as a K-algebra (!), i.e. for all
b, eTy(L)and xe L

V,(bb') = (V4 (b)) + b(V,(b)). (5.1.14)

In other words, the free multiplication p: T4 (L) ®4 T4(L) — T4 (L) is connection
preserving. It follows from the preceding Proposition iv), that the induced
covariant derivative V,[Cz] = VIA(L)@TA(L) is a derivation of the associative algebra
TA(L)®ATA(L) = TAo(L)? since p®y pt is connection preserving as well as the usual
middle-four-interchange permution. Clearly this generalizes in the obvious way to
any k-fold tensor product of T, (L) with itself.

Next, it is not hard to see that the shuffle-comultiplication Ay, is connection pre-
serving, i.e. V, is compatible with the comultiplication Ay, in the following way for

allxe L, beTy(L):

Ay (Vi (1)) = VE (A (D)), (5.1.15)

or in Sweedler’s notation for all b e T4(L):
Z ( IA(L)(b))(l) ®a ( IA(L)(b))O)
(vt o))

Dpmy) +Zb(1 PP B)). (5.1.16)
<b>

Proof. Indeed, this is easily seen by induction over the tensorial degree of b: since
V,(1) =0, forall be T4(L) and x € L we can infer from formula eqn (5.1.6) that

v b@s1) = (Vx(b)) @41, Vaeib) =10, (Vx(b)>. (5.1.17)
For any a € A we have
F(Amn(a1)) = Vi (a(1@4 1)) = (@) (Asu(1)) = A (Vi (a1)),
and forallyeL

2]

Bl ag) = V2 (@1 +1049) BED (v,(»)

Ra1+1@4 (V2()) = A (V2 (3))-
Hence the equation (5.1.15)) is satisfied for tensorial degree 0 and 1.
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Suppose that the equation (5.1.15) holds up to tensor degree equal to n, let b be
of tensor degree n and y € L. We compute (using the induction hypothesis and the

fact that VI is a derivation of TA(L)®aTa(L))
A (Tx@8)) = Aa((Ve0))b) +Aqi((Va(0)) )
((Ve3) @41 4104 (V+)) ) (Asn(0)) + (@41 +1@4) (A (V:(0)))

(V¥ (8 3))) (As(8)) + (Ar)) (V! (A1) ) = VE (A (90)
which shows the induction, and equation [5.1.15|holds. O

Observe that ViA'") is NOT a coderivation of the coalgebra (T (L), Ayy,) since it is in
general not A-linear! The equation [5.1.15|is an equality of K-linear maps,

Res(Agp,) © v _ glaD@aTald) Res(Agp),

(where we have used the forgetful functor Res, see Appendix , but the co-

variant derivative VIA(L)&‘TA(L) is NOT equal to an expression like VIA(L) ®gid +

id®4 VIA(L) for which the tensor product ®,4 for the corresponding maps would be
ill-defined.
We resume the above considerations in the following

Proposition 5.1.10  All the A-linear maps of the free algebra T 4 (L) over the A-module L,
the free multiplication, u: T 4(L)[2) — T (L), the shuffle comultiplication Ay, : T4 (L) —
Ta(L)2, the counit € : T4(L) — A, the unit 1: A — T4 (L), and the antipode S : T4(L) —
Ta(L) are connection preserving.

Now we shall extend the aforementioned ‘action” of L on W or on T4 (L) via the
covariant derivatives V' and V to a K-linear map, also written V': T(V)@ W — W
by the classical rule of iterated covariant derivatives in differential geometry, see as for
example [25] p.124-125].

In order to get an idea, recall that —according to the definition of covariant deriva-
tives (5.1.1)- for fixed w € W the map V/(w) : L —» W : x — V/(w) is A-linear. Hence
according to Proposition eqn (5.1.7), we can compute its covariant derivative

Vle(L’W) (V/(w)), and the map (x;,x5) — Vle(L’W) (V’(w))) (x,) can be considered as
an A-linear map L®4 L — W, see eqn (/5.1.8) of Proposition We can thus set
forall x;,x,e Landwe W

V2 (w) = Vi, (w) = (Ve (V) ) () B2 4 (VE, () = Vi (o ()

The map x;x; — V/2, (w) is thus a well-defined A-linear map from T4 (L) to W.

X1%2
It is thus possible to recursively define for each w € W a sequence (V" (w)), _ of

neN
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5.1. Covariant derivatives

A-linear maps T, L — W, the nth iterated covariant derivative as follows: for all
weW,allxeL,and all be T}(L)

VP(w) = w, and V" (w) = Vi (Vi (w) = Vi ) (w), (5.1.18)

and this gives the usual recursion formula for iterated covariant derivatives by set-
tingx=x;eLand b=x,---x,,.; € L

n+1
/(n+1) o m m
VX1X2 Xp41 ( ) - vxl (sz Xn+1 rZz sz x,_ 1 Xl x,))x,Hn-an (w> (51 19)

In the following we shall use the simpler notation Vj(w) instead of V}'(w), and
V/(w) for the A-linear map T4L — W. Replacing W by L or T4(L) and V' by V we
get analogous maps V: T4 (L)®x L — Land T4 (L) ®k To(L) = T4(L).

There is the following analog of Proposition which is a Leibniz formula of
iterated covariant derivatives:

Proposition 5.1.11 Let V,W,X three A-modules equipped with connections VV,VW,
and VX, respectively, with respect to an anchored A-module (L, p) with connection V
over A, and let v : V®4 W — X be an A-linear map which is connection preserving.
Then forallbe TA(L), ve V, and w € w we have the following iterated Leibniz formula

v?(V(V®Aw)):Z ( (1)( )®aV (2)( )) (5.1.20)
(b)

where the right hand side of the preceding equation makes sense as the tensor
product over A of the two A-linear maps VV (v) : To(V) — V and VWV (w) : To(V) - W
composed with the A-linear shuffle comultiplication Ag, : TA(V) = T4(V)®4 T4(V).
We get the following four particular cases
1. For V = A and v being the module multiplication AQ, W — W we get forall ae A
and we W

V), (aw) vam Vi (w). (5.1.21)

2. For V,W arbitrary, and X = V ®4 W (where v is the identity map), and VX the
obvious connection in the tensor product we get forall b e Ty(L), veV,
and we W:

v, oY (v @, w) va(l V) ®@a Vi (w). (5.1.22)

3. Let p e Homy(V, W) and ¢ € HomA(W,X). Then we get

H(V,X H(W,X H(V,W
Vi Vo) =00 @) o vy M (@), (5.1.23)
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4. Let ¢ e Homy(V, W) and ve V. Then

VI (0)) = Y (Vi) (@) (Vi (). (5.1.24)
(b)

In particular, if @ is connection preserving, then for all b e T oL we have

H(V, W)(

vV, @) = e(b)p, hence V)Y op=¢poV}. (5.1.25)

(equation of K-linear maps).

Proof. See Appendix|C.2} O

We shall now show that the iterated covariant derivative V’ leads to an action of
T4(L) on W, but with a modified (only K-bilinear) multiplication:

Proposition 5.1.12  Let (L, p) be an anchored A-module, and let W be an A-module, and
let V' be connection in W, V be a connection in L parametrized by (L,p), and let V and
V' also denote the iterated covariant derivatives as defined above in (5.1.18).

Then for any b,b’' € T(V) and w e W we get the two formulas

Lo(w) = (V;H(TAL'W)(V’(W)))(b’), (5.1.26)
Vi (Vi (w)) = %V;m(vb(z)(m)(“’)' (5.1.27)

Proof. The first statement is proved by induction on the tensor degree of b, the cases
of degree 0, b = al (wherea e A), and of degree 1, b = y € L, being obvious and direct
consequences of the definition, equation (5.1.18).

Supposing equation to be true up to tensor degree n of b, we compute

the equation replacing b by xb where x € L, b,b’ € T(V), and upon writing V' for
y/H(TALW)

Vi (Vi (W) = Vi, iy (w) = Vi, o)) (@)
= V(v (V) 1)) - (v’H( w)) ) (Ve(6) = (V15 (V@) ) )
(VE (VE (V' ())) ) () — (Vi (V') ) () = (VA (V) ) (&)

which proves the induction and eqn (5.1.26).

Next, we compute

Vi (Vi (w)) =V (V') () mz( Vi V@) (Ve ) BEE VG ()
(b) (b) ’

wop (W)

which proves the equation (5.1.27). O
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5.2. Rinehart bialgebra structure on T4 (L)

RINEHART BIALGEBRA STRUCTURE ON T (L)

The preceding Proposition[5.1.12suggests the following multiplication oy = ¢ on
T4(L) defined by
boyb' :=> b1V (1) (5.2.1)
(b)
for all b, b’ € T4 (L) which we shall call the V-deformed multiplication of T 4 (L) because
obviously
boyb' =bb' + terms of strictly lower tensor degree. (5.2.2)

Notice that the multiplication oy is only K-bilinear. Then, we get the following:

Theorem 5.2.1 Let (L,p) be an anchored A-module, let W be an A-module, and let V'
be connection in W, V be a connection in L parametrized by (L,p), let V4 denote the
connection in A induced by the anchor map p, and let V, V' and VA also denote the
iterated covariant derivatives as defined above in (5.1.18).

We have the following properties for all b,b’,b” € T4(L) and w e W:

Vi(Viy @) = Ve, (W), (5.2.3)
V(b)) = > (V0 (1)) (Ve (b)) (5.2.4)
(b)
[deg,V,] = 0 (5.2.5)
A (V@) = = > Vo (') @4 Vi (1Y), (5.2.6)
(b)(b")
Ag(boyb) = > (bW oy M) @, (b oy b'?), (5.2.7)
(b)(b")
<b<>vb/)<>vb” = b<>v(b/<>vb”>, (528)
bOVI = b = 1<>Vb, (529)
e(boyl') = vg‘(e(b’))ze(bov (e(b’)l)). (5.2.10)

In particular, (TA(L),1,<>, Ash,e) is a Rinehart bialgebra over A, see Section for
definitions.

Proof. The first equation, number (5.2.3), is just a reformulation of the equation
of Proposition[5.1.12|using the V-deformed multiplication described in the
equation (5.2.1).

The iterated derivation rule is a direct consequence Proposition
upon setting v = p.

The homogeneity equation (5.2.5) is shown by induction over the tensor degree
of b: again, since V; = id this is true in degree 0, and in degree 1 (b = x € v) this
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follows from eqn (5.1.13). Suppose by induction that the asserted equation (5.2.5)
is true for all b € T(V) whose tensor degree is less or equal than #, and consider the
element xb for any x € V. We compute (using the fact that V,(b) is of degree < n

according to eqn (5.1.13))

[ Vb, deg] = [VX oV, — va(b),deg] = [Vy, deg] oV}, +V, 0|V, deg| — [va(b),deg]

AP 01 0-0=0

proving the induction.
In the following, the formula (5.2.6) follows from the fact that the shuffle comuti-
plication Ay, is connection preserving (see Proposition [5.1.10), from statement eqn

(5.1.25), and from formula (5.1.22) of the Proposition|5.1.11

The equation (5 can be shown directly upon using eqgs (5.2.1) and (5.2.6):

)5'i6 DT (M) (1)) @4 (6 Vy0 (62))

(&)(b")

A, .

(Asn COZCOHIHI) Z ((b( ))Vb(z)(b/(l))) @ ((b(3))Vb(4>(b’(2)))
(0) (")

= Z (b(l) oy b’(l)) @4 (b(Z) oy b/(Z)).
() (")
Next, the equation ([5.2.8) encodes the associativity of the V-deformed multipli-
cation oy: this can also be shown directly:

Asp(boy ') = Z Ay (0D Ve (1)

bOV (b/ Oy b”) =

= Z by Vo ( ' ))Vb/(z)(b”)) Z (b(l))(vb(z)(b,(l))) (Voo (Ve (b)) =
b)(b") (b)(®")
--5.2' Z (b 1) <>V b/(l)) (Vh(z)ovb’(z) (b”)) Z b <>V (1)) (V(bovb’)(z) (b”)) =
(b)(®") (b)(®")
B2 (hogb)oy b

In order to prove the equation (5.2.9) we note that trivially 1 oy b = b from the
definition (5.2.1). On the other hand, since the unit 1 is connection preserving by

Proposition |5.1.10]it follows by the equation (5.1.25)) of Proposition 5.1.11|that

Vy(1) = e(b)1, hence boy1l=>b1V,u(1) Zb” M =b1=1b
(b)
which proves (5.2.9).
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Finally, in order to show the last equation, number (5.2.10), we compute for all
bt eT(V)

e(bxoyb) = > e(bMVo (1)) = Ye(dM)e(Vye (b)) =
(b) (b)

= e(vx(b)e(ba))b(z)(b’)) = G(Vb(b/))
—Vi(e)) = e(Vi(eW)1) =e(Vy(e()n)).

where the fact that € is also connection preserving by Proposition and
equation has been used. Replacing in the above equation b’ by its projection
€(b)1 is easily seen to give the same result, whence statement is shown.

Finally, the preceding statements , , the fact that (TA (L), Agps €, 1) isa
coassociative cocommutative counitary coaugmented coalgebra over A, statements
(5.2.7) and (5.2.10) show almost all the properties of a Rinehart bialgebra over A,
see Section [4.3] eqn (4.3.4).

It remains to show that the image of the shuffle comultiplication Ay, is in the A-
submodule T4 (L) x4 T4(L), see eqn (4.3.1): let b € T4(L) and a € A. We compute —
upon using coassoacitivity and cocommutativity of Ag:

i (b)) = Zb @4 (b Zb &4 (62,00 (2) = Y60 @4 (V4o (a)6?)

(b)

Zb (Voo (a)) ®4 b<2> =Y bW (Ve (a) @4 b3 =D (01 0a)) @4 b
(b) (b)

ré”(Ashw))

O

The particular case A = K is simple, but important for the sequel: here any an-
chored module K-module L has vanishing anchor morphism, and the Rinehart bial-
gebra Tk (L) is an ordinary bialgebra over K. Any connection V is thus an arbitrary
K-bilinear map L® L — L. It comes with no surprise that the bialgebra structures
on Tk (L) with the free multiplication and the multiplication oy are isomorphic:

Proposition 5.2.2  The K-linear map ® : Tx (L) — Ty (L) defined by ®(1) = 1 and for
all N e N\{0}, xq,...,xy € L by

q)(xl"'xN):xl oy - Oy XN - (5.2.11)

provides an isomorphism of K-bialgebras (TK (L),-,1,Aq, e) — (TK(L),OV, 1,A, e).
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Proof. Since (Tg(L),-,1) is a free algebra over the K-module L, the map ® obviously
is a well-defined morphism of unital associative algebras (Tx (L), 1) — (Tx(L),ov,1)
induced by the identity map on the generating module L. Since the product on the
right hand side of eqn is equal to the free product x; ---xy plus terms of
lower tensor degree, a simple filtration argument shows that @ is bijective.

The identities e c® = € and (P ® D) 0 Ay, = Ay 0 O are identities of algebra
morphisms (Tg (L), ) — K and (Tg (L), u) — (Tg (L) ®TK(L),<>[V2]), respectively (see
eqs (5.2.7) and (5.2.10)), and are obviously satisfied on generators in L, hence they
hold everywhere thanks to the freeness of Tg(L). O

Returning to the general case with a priori different A and K we shall discuss the
relation between Tg (L) and T4 (L) in the presence of a connection V: LQ L — L in
the anchored A-module (L,p): first, more generally, let (V,V") and (W,V") two
A-modules with connection along (L,p). Denoting by VV and V" the same maps
VY and V", respectively, considered just as K-bilinear (one could have used the
restriction functor Res, see Appendix[A.2.Tjwe obviously get forallv e Vand we W
(thanks to eqn (5.1.6))

Ty, W (V;’(v)(@w—i—v@W{(w)) = ;/@Aw(v A w), (5.2.12)

where ty 1 VW — V ®4 W is the canonical projection, see equation

Applying this to V.= W = L, V¥ = VW = V in an iterative way (where V also
denotes the induced iterated connection in Tg (L)) and writing 7 : Tg(L) — T4 (L)
for the K-linear canonical projection, see also Appendix an easy induction
over tensorial degree yields the following for all b,b" € Ti (L)

1 (V5(b)) = Vs ((8')) hence 7 (b3b") = m(b) oy 7 (b). (5.2.13)

where we have written & = oy for the multiplication in Tk according to Proposition

622

THE PRIMITIVE PART Py (L, A) OF T (L) AND THE PATH LIE ALGEBROID

Let (L,p) be an anchored module over A, let V be a connection in the A-module
L along (L,p). We denote by the same symbol V the iterated covariant derivative in
Ta(L). We will suppose in this section that Q c K.

Recall that the primitive part of the counital coaugmented A-coalgebra T4 (L) is
equal to £4(L), the A-Lie subalgebra of the free A-algebra T,(L) generated by the
A-submodule L, see Appendix which in turn is isomorphic to the free A-Lie
algebra over the A-module L.

We can conclude that the statement[5.2.7]of the preceding Theorem [5.2.T|directly
implies the following
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Proposition 5.3.1  The primitive part of the Rinehart bialgebra (T (L), oy = ©,1, Ay, €)
carries the structure of a Lie-Rinehart algebra over A where the K-bilinear Lie bracket
[, 1V and the anchor morphism pV are explicitly given as follows for all &,&" € Py(L, A)
and a € A:

[&,&N =&’ —& o0& =[£,E]+ Ve (&) —Ve(&), and pf(a) =Vi(a). (5.3.1)

Moreover, note that for any A-module with connection along L, (V,V') there is the for-
mula

V&,&EePY(LA): el = [ gl,vgz] : (5.3.2)

We shall write Py(L,A) for the A-module L,(L) equipped with the above Lie-Rinehart
structure.

Indeed this follows from the multiplication formula (5.2.1)) and the fact that

Ap() =Y W@, EP =E@41+1®4 &
&)

for each primitive element in T4 (L).
Moreover, according to the Leibniz formula (5.1.21) for the case W = A, it follows

that for each & € Py(L, A) the map V‘g : A — Ais a derivation, and the commutator

of K-linear maps, [V’g, V‘,‘]\], clearly equals V’[L‘é’,]]v (as well as for A replaced by V)

according to eqn which shows (5.3.1).

Note that the underlying A-module of Py (L, A), L4(L), is graded by tensor degree,
i.e. Py(L,A) = ®% Py(L,A)", but the Lie bracket [, ]V does no longer preserve the
grading, but is merely filtration preserving.

The relation to Kapranov’s path Lie algebroid (see Section [4.5.1) is contained in
the following

Theorem 5.3.2  The Lie-Rinehart algebra (PV(L,A),pV, [, ]V,A) is a free Lie-Rinehart
algebra, and given any morphism of anchored modules 0 : (L,p) — (L', p") where (L', p', ([, ')
is any Lie-Rinehart algebra over A, the induced morphism of Lie-Rinehart algebras O :
Py(L,A) — L' can be computed by the following recursion for all x € L and & € Py(L,A)

0(x) = 0(x) and 0([x,£]) =[[0(x), (&) =0 (V4(£) +6 (Ve(x)).  (5.3.3)

Hence the Lie-Rinehart algebra Py (L, A) is isomorphic to Kapranov’s path Lie algebroid
P(L,A) generated by (L,p). In particular, for two different connections V, V' the two Lie-
Rinehart algebras Py (L, A) and Py/ (L, A) are isomorphic.

Proof. We shall show the universal property for the Lie-Rinehart algebra Py (L, A),
i.e. that for any given Lie-Rinehart algebra (L’,p/,[[ , ]|,;A) and every morphism
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0:(Lp)— (L, p') of anchored A-modules there is a unique induced morphism 6 of
Lie-Rinehart algebras Py(L,A) — L', and every morphism of Lie-Rinehart algebras
Py(L,A) — L' is of that form.

Indeed, take the free Lie algebra over K generated by the K-module L, Lieg(L).
Since Q < K we can take the Lie subalgebra Li (L) c Tg(L) generated by the K-
module L which is equal to the primitive part of the coalgebra (Tx(L),1, Ay, €) and
isomorphic to Lieg (L), see Appendix

There is a unique morphism of K-Lie algebras 0 : (Lx (L), [, 17) = (L,[[,]) such
that for all x € L we have 6(x) = 0(x).

Observe now that the restriction of the above bialgebra morphism

®: (T (L), 1, Ag, €) — (Tk(L),5,1,Agy €),

see Proposition to L (L) is an isomorphism of K-Lie algebras (Lx(L),[, ]~) —
(Lx(L),[, 1Y) (where we have written [, ]V for the Lie bracket {i with A re-
placed by K and V by V, see the paragraph at the end of Section [5.1.2) since @ is
an isomorphism of coaugmented coalgebras and preserves primitive elements. It
follows that the K-linear map

=000 !: </.‘K(L), [ ]V) SN A (5.3.4)

is a morphism of K-Lie algebras (where we have used the same symbol @ for the
restriction of @ to Li(L)).

Recall that the canonical K-algebra morphism 7 : (Tx(L),ji) — (Ta(L),p), see
equation , is also a K-algebra morphism (Tg(L),8) — (Ta(L),oy), see the
discussion at the end of Section[5.1.2

Thanks to the equation 7 maps primitive elements onto primitive ele-
ments, and the restriction of 7@ to Lg (L) (which we continue to write 7t) is thus a
morphism of K-Lie algebras from (Lx(L),[, ]V) to (Py(L,A),[, 1Y).

We shall now show by induction on the tensor degree n € N\{0} that the above map
0 descends to an A-linear map: more precisely, for each positive integer n there
exists an A-linear map 0, : Py(L,A)" — L’ such that for all £ € £"(L,A)

0,(r(£)) = 0(8) and pj, o) =Vie) (= pYig))- (5.3.5)

Indeed, this is obvious for n = 1 by setting 6; = 0 from the definition of a mor-
phism of anchored modules.

Suppose that the induction hypothesis is true up to rank n > 1.

Induction step (n — n+ 1): Let £ € L (L) be a left ordered multiple commutator

~

&= [xl,[xz, [x3,...,[x1-,...,[Xn_pxn]w]]w"']N]N]
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5.3. The primitive part Py(L,A) of T4(L) and the path Lie algebroid

with x1,...,x, if n > 2and if n =1, £ = x;. For a chosen integer | <i<nandae A
we shall write 5 y(a) for the above multiple commutator in which x; is replaced by
ax;.

It is not hard to see that the intersection of the kernel of the projection 7 (which is
graded by the positive integers) with each L% (L), n > 2 an integer, is spanned over
K by all elements of the form g(i)(a) - 5”(] (a)forall 1 <i<j<n.

In the following, choose any x € L. Thanks to the fact that 6 is a morphism of
K-Lie algebras, thanks to the form of the Lie bracket [ , ]V (see eqn 1) for
V replaced by V) we get upon using the induction hypothesis and formula

and upon writing & = (), x = 7(x), 0;(x) = O(x):
0([xE]7) = [0(x)0E)] 6 (Vx(€)) +0 (Ve(x)
= [[0(x),0,(E)]) —0,(V(&)) + 0 (Ve(x)). (5.3.6)

Replacing & by ( y(a) (for any a € A) we get upon using the evident equation
(cf(l)( )) = an(&) = a& and the A-linearity of 0, thanks to the induction hypothe-
sis:

A ~

O([x. &y (@)]™) = [0(x),a0,(E)] =0, (Vs(a
= al[6(x),0,(E)]) + po(xy(a)
= a0([x4]")

and (here we use the second part of the induction hypothesis (5.3.5))

O([ax, &%) = [[a0(x),6,()] —ab, (V. (€)) + 0 (Ve (ax))

&) +ab (Ve (x))
g

£
n(&) — a0, (V4(&)) — px(a)0, (&) + a0 (Ve (x))

(5.3.7)

al[0(x), 0 ( ' = 0p, )0 (x) = a8, (Vx(£)) +ab (Ve (x)) + Vi (a)6 (x)

= a0([x,&]™). (5.3.8)

Both equations and give the same result independently of the inte-
ger i which implies that 6 vanishes on the kernel of 7 in degree n + 1 and descends
to an A-linear map 0,1 : Py(L,A)"*! — L/ satisfying GA|U+1(L,K) =0, OTT| £rt1(L,K)-
In particular it follows that 8 ([x,&]™) = 0([x,&]).

It remains to show the second part of the induction, equation (5.3.5): again using

eqn we can write forall ae A

Po(1xE1) (@) = Plo,6,01 (D) ~ o, v,(6) (D) T Po(v,(x)) (@)
= |Powr P86 | @) = P .6 (@) + Py @

(5.3.5))
3 [V;?, vg‘] (a) = V4 (6)(@) + V4 () (@) = VA (), (5.3.9)

P8, 1 (e (@)

n+1
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which proves the induction.

Let O : Py(L,A) — L’ be the A-linear map defined on each component Py (L, A)"
by the above A-linear map 0,. We clearly have 6=0onm. Next, the second part of
the induction hypothesis implies that O intertwines anchor morphisms. It
remains to show that 6 : (Py(L,A),[, V) — (L[, ]I') is a morphism of K-Lie alge-
bras: let &;,&; € Py(L,A), and by the surjectivity of the restriction of 7 to positive
degrees there are &;,&, € Li(L) such that ©(&;) = & and n(&,) = &,. Recall that
0: (Lx(L),[, 1Y) — (L, [[, II') is a morphism of K-Lie algebras by construction, and
that 7t: (Lx(L),[, ]Y) = (Py(L,A),[, ]V) is a morphism of K-Lie algebras. We get

0(l06]") = 0([xE)m(&)]") =0(r (16, &1)) = 0(1&,61%) =
= [0, 0&)] = [0(n(£)).0(n(£))] =
= [6(z1),0(&)] (5.3.10)

The recursion equation is a simple particular case of the preceding equa-
tion for x = &; and & = &, showing that 6 is a morphism of K-Lie algebras
which shows existence of the induced morphism 6. Again by the recursion equa-
tion (5.3.3) it is clear that the higher degree terms 0,, for n > 2 uniquely depend on
0, = 0 which makes the assignment 6 — 0 a map.

Clearly if 6, x : (L,p) — (L/, oL, ]]’,A) are morphisms of anchored A-modules,
then 6 = x implies 6(x) = x(x) for all x € L and 6 — 6 is thus injective. Finally, note
that every morphism of Lie-Rinehart algebras © : Py(L, A) — L' satisfies the recur-
sion relation (5.3.3), is hence uniquely determined by its restriction 6 =©|, : L —» L,
and hence equal to O which shows the surjectivity of 0 — 6, and the universal prop-
erty.

Since P(L,A), Py(L,A) and Py, (L, A) are all universal objects the rest of the Theo-
rem follows. O

In the same way as above we show the following

Theorem 5.3.3 Let (L,p,V) be an anchored A-module with connection. Then the Rine-
hart bialgebra (T 4(L), oy, 1, Agy, €) is isomorphic to the free unitary associative K-algebra
over A generated by the anchored A-module (L, p): given any unital associative K-algebra
over A, (j',B,¢,1"), and a morphism 6 : (L,p) — B of anchored A-modules there is
a unique morphism © : (14, T4(L),oy,1) — (B,¢/,1’) of unital associative K-algebras
over A with ©(x) = 0(x) for all x € L.

It follows that (T 4(L), oy, 1, Ag, 1) is isomorphic (as a Rinehart bialgebra) to the univer-
sal enveloping algebra U (Py(L,A), A) of the Lie-Rinehart algebra Py (L, A).
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Proof. The construction of © goes along the same lines as the proof of the preceding
Theorem note first that the morphism 6 : (L, p) — B/, of anchored A-modules
means that there exists a unique A-linear map 9 : L — B’ satisfying for all xe L

0(x) = (px,9(x)) suchthat Yaca: j'(pi(a))=9(x)o j'(a)—j'(a)o' 9(x) (5.3.11)

see eqn for details.

Next we define a morphism of unital K-algebras § : (Tx(L),1,1) — (B,9,1)
thanks to the freeness of Tx (L), use the K-linear isomorphism @ : (Tx(L), % 1) —
(Tk(L),05,1), see eqn , to get a morphism of unital K-algebras § = §o®~1:
(TK (L), %%, i) — (B’, ¢/,1"). By induction over the tensor degree n € N we show the
existence of A-linear maps ¥, from T} (L) — B’ satisfying for all a € A, x € L, and
beTg(L)

So(al) = j'(a), §1(x) = 9(x), and §,(n(b)) = $(b).

Replacing in the proof of Thm the multiple commutator & by the product
b=x; g g X, where -k is the free multiplication in Tg (L), and xy,...,x, € L, and
for each a € A and each integer 1 < i < n replacing é(i)(a) by E(i)(a) (the factor x;
goes to (ax;)) and using the morphism equation

3(0) — 8 (V. (b)) (5.3.12)

which shows that § vanishes on the kernel of 7 in positive degrees and descends
to an A-linear map 9 implying the induction and the unique existence of the mor-
phism 9 : T4 (L) — B of unital K-algebras over A. Universality is shown in a similar
way as in Theorem [5.3.2

Finally, given any morphism y : Py(L,A) — By of Lie-Rinehart algebras, it is
uniquely determined by its restriction 6 to L (which is a morphism of anchored

A-modules), and the preceding construction 9 : T,(L) — B’ will do the job whence
(lA,TA(L),OV, 1) is isomorphic to U(PV(L,A),A). O

In the following section we shall suppose that Q c K.
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PATH LIE ALGEBROID FOR LIE-RINEHART ALGEBRAS WITH
CONNECTIONS

We shall apply the results of the preceding Section to the following important
particular case where the anchored A-module is a Lie-Rinehart algebra (L, ol ]],A)
over A. Let V be a connection in L along L, let V be an arbitrary A-module equipped
with a connection V' along L.

Let us recall two well-known classical quantities which are of fundamental im-
portance in differential geometry.

Definition 5.41 We define the torsion Tor = Tor" and the curvature R’ = RV as
linear maps from L®yg L — L and (L®k L) ®k V — V in the following well-known
way: forall x,ye LandveV

Tor(x, )
R'(x,9)(v)

V(@) = Vy(x) =[x 9], (5.4.1)
V; (V;(v)) B V; (V;c<v)) B /[[x,y]](v) (5'4-2)

Remark 5.4.2 Both quantities have the following properties which are well-known
in differential geometry. See e.g. [25) p.133-135] and [48} p.59-61].

The following result is quite lengthy to check then we will omit its proof.

Proposition 5.4.3  With the above definitions and notations: both torsion and curva-
ture descend to well-defined A-linear maps L&y L — L and (L&, L)®4V — V, re-
spectively, which we shall denote in the usual way by x @4 v — Tor'(x,v) and by
X®a v Q@4 v — R (x,9)(v), respectively. They satisfy the following Bianchi identi-
ties where the symbol S, , ,\F(x,9,2) of a map of three arguments (x,9,z) — F(x,,2)
denotes the cyclic sum F(x,y,z) + F(y,z,x) + F(z,x,9):

S(xp,2) (Rv(x,y)(z) — (Vx(TorV)) (v,2) — Tor" (Torv(x,y),z)> 0, (5.4.3)

S(x.2) ((VQ(RV)) (9,2)(v) + R (Tor" (x,), 2) (v)> 0. (5.4.4)

Here V,(Tor") or V.(RY') denote the covariant derivatives of the A-linear maps
TorV:L®,L—LandRY : (L&, L)Q4u W — W.

We shall now describe an important particular case of Theorem [5.3.2] where the
Lie-Rinehart algebra L’ is equal to L (in categorical terms this corresponds to the
counit of the adjunction (4.5.3)): we shall denote the morphism of Lie-Rinehart
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5.4. Path Lie algebroid for Lie-Rinehart algebras with connections

algebras (Py(L,A),p",[, ]Y,A) = (Lp,[[, Il A) induced by the identity map L — L
by Z = Zy. It satisfies forall xe L, &,&" € Py(L,A), and a€ A

zx) =% Z([6€1Y) = [2©,2(E)] pzea) = Vi) (5.4.5)
It follows at once that for each & € Py(L, A) the K-linear map
He: V= Viveo He(v) = Vi_z6(v) (5.4.6)

is A-bilinear from Py(L,A) x V to V: indeed, this is clear for the index argument,
and for all a € A we have

Hg(av) = Vi (av) = Vg (av) =

(.45)
= V2 (a)v +aVi(v) — pz(e)(a)v — aV'y ) (v) aHg (v).

In particular, this holds for V = L and V' = V in which case we write H;. We shall
use the same symbol H for the A-linear derivation of the free algebra T4 (L) equal
to Hg on generators. It is straight-forward to see that Hy is also a coderivation of
(Ta(L), Agpy €) whence it preserves the primitive part Py(L, A) and is a derivation for
the free A-bilinear Lie bracket |, ].

Next, define

PYUL,A) = Ker(Zy) (5.4.7)

which is a Lie-Rinehart ideal, and since the A-linear map can be seen as a projection
Py(L,A) — Py(L,A) onto L with kernel PJ(L, A) we have the direct decomposition

Py(L,A) =PHLA)DL. (5.4.8)

The following skew-symmetric A-bilinear bracket Py(L,A) x Py(L,A) — Py(L,A)
will be of interest: for all &,&" € Py (L, A) set

[6,&NV) = [& = Z(&),&' — Z(&)] + He (&) — Her(E). (5.4.9)
We provide a fairly explicit description of Z and H in the following Theorem.

Theorem 5.4.4 Let (L,p,[[, ]|, A) be a Lie-Rinehart algebra over A. Let V be a connec-
tion in L along L, and let V be an arbitrary A-module equipped with a connection V'
along L. Then we have the following:

1. There are simultaneous explicit recursions in terms of curvature and torsion for the
maps Z and H: for allve V, xe L, and & € Py(L, A) whose underlying A-module
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is identified with free A-Lie algebra over L, the bracket [, | being the A-bilinear free

bracket:
Z(x)=x and H, =0, (5.4.10)
Z([x&]) = (ViZ)(&)+He(x)—Tor(x, Z(&)), (5.4.11)
Hi () = (V.H) (v)+R (x,Z(&)) (). (5.4.12)
2. In particular we get for xq,x,,x3 € L:
Z([x1,x2]) = —Tor(xy,x3), (5.4.13)
Z ([x1,[x2,x3]]) = —(Vy, Tor)(xp,x3) + Tor (x;, Tor(xy,x3)) +
+  R(xp,x3)(x1), (5.4.14)
Hiy () = R(x1,x)(), (5.4.15)
H/[xl,[xz,xg]] (v) = (V5,R') (x2,%3)(v) — R'(x1,Tor(x,x3)) (v)(5.4.16)
3. We have the following two identities for the bracket that we define in the equation
5.4.9):
[Hg Herl = Hig eny = 0, (5.4.17)
He (Z(&)) — He (2(8)) - Z ([g,g’]m) - 0. (5.4.18)

4. For all ,n" € PY(L, A) the Lie-Rinehart bracket [[1,n']|V coincides with the above

A-bilinear bracket [1,1']V) in .

It follows that [, |\V) is an A-bilinear Lie bracket, and the A-Lie algebra (Py(L,A), [, ](V))
is isomorphic to the semidirect product of the A-Lie algebra PY(L, A) with its mod-
ule L (by eqn (5.4.17)) which is an abelian ideal for this structure.

5. The A-submodule L3*(L) := ®%_, L% (L) is a Lie subalgebra of (Py(L,A),[, V)
which is isomorphic to the subalgebra PQ(L, A) via the isomorphism of A-Lie alge-

bras
Py(LA) - Py(LA): & & —2Z(E72). (5.4.19)

where £ denotes the projection onto Eiz(L) with kernel L.

Proof. 1.) The initial conditions are clear from the definitions of Z and of
H' (see (5.4.6)). Moreover, since Z is a morphism of Lie algebras we get forallve V,
x € L and & € Py(L, A) using the initial conditions Z(y) =y and H, =0 forally e L
and eqn (5.3.2) in a straight-forward computation:

Z(x&]) = Z([x&]Y) = Z(Ve(&) + Z (Ve (%))

[x,Z(&)] = Vi (Z(&)) + V() (x) + Vi (Z(E)) = Z (Vi (&) + Ve_z(6) (%)
—Tor(x,Z(&)) + (V4Z) (&) + He (x)
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proving (5.4.11)), and

Hig(v) = Hi e (v) = Hy, ()(v) + Hy, () (v)
Vixgr () = Yy (peqr) @) = Hy gy (v) +0
= Vo Vel (v) = Vi 2o (v) — Hy,6) (V)

proving eqn (5.4.12).
2.) Is not hard to see that the equations (5.4.13), (5.4.14), (5.4.15), and (5.4.16))

are simple consequences of the recursion equations (5.4.11) and (5.4.12).
3.) Clearly, since Z(x) = x V x € L each £ — Z(&) is an element of Ker(Z), and we

get

\%

[ —2z(&).&—2z(&)] [£—2Z(&),& = Z(&)] + He (&' = Z(&)) —He (& — Z(8))

= [£,&Y) —Hy (Z(£) + He (Z(€)). (5.4.20)

Applying Z to both sides of eqn ([5.4.20) and using the morphism property (5.4.5)

of Z we get the cocycle identity (5.4.18) since H (Z(&')) € L.

Moreover, applying V' to both sides of the equation (5.4.20) and using equation
we get the equation since H,, = 0 forall y € L.

4.) By the direct decomposition it suffices to express the bracket [, ]V) on
elements & = x+1, & =x'+1' for x,x' € Land 1,1’ € PY(L, A): an easy computation
using the definitions (5.3.1), (5.4.9), and the fact that Z(x) = x for all x € L and
Z(n) = 0 for all € PY(L, A) gives

[q,q'](v) =n. 471", [q,x'](v) = H, ('), and [x,x']V) = 0. (5.4.21)

The Jacobi identity for the bracket [, |(V) trivially holds if two of the three ele-
ments are in L, it is also clear if the three elements are in P9(L, A) (because it holds
for the Lie bracket [[, V), and in case two elements are in P9(L, A) and one in L the
Jacobi identity follows from the representation identity (5.4.17).

The semidirect product structure is now clear from the concrete brackets (5.4.21).

5.) It is clear that the A-linear map (which we call T) is invertible with
inverse T~1(&) = & + Z(&>?). It clearly maps £37(L) into Py(L,A). On the other
hand if an element 1 € PY(L, A) is written as a sum { + x with C € Eiz(L) andxel,
then 0 = Z(#) = Z(C) + x whence x = —Z(C), and the restriction of T to £i2(L) is
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an isomorphism onto PJ(L, A). Next we compute

T(&&1Y) =

(5.

[aéﬂw*fzaaéT“)

[€—2(£),&" = Z(")] + He (&) — Her (&) — He (Z(1)) + He (Z(€))
(& —z(8),& —z(&"Y

= [E=2(8),& = Z(& ]+ He (&' = Z(&")) — Her (& — Z())

since Z(& —Z(&)) = 0 and H, = 0, and the two preceding equations show that T

is an isomorphism of A-Lie algebras. This shows that £37(L) is a Lie subalgebra of
(Py(L,A),[, 1'V)) which can also be seen directly by the definition (5.4.9). O

N
—

3)

(7€), 7N

Remark 5.4.5 Note that the A-linear map Z can be seen as a 1-cocycle of the Lie
algebra (Py(L,A),[, ](V)) with values in the module L (via the map H, see eqn
(5.4.17)).

Besides that, under the hypotheses of Theorem we can define the following
A-submodule of Hom,(V, V)

Holy (V) := {Hg | £ e Py(L,A)} < Homy(V,V). (5.4.22)

This is related to the usual infinitesimal linear holonomy Lie algebra in differential
geometry, see e.g. [25, p.152-153, Thm.9.2] following the work by Nijenhuis (1953),
[35], and Ozeki (1956), [37] which describes an infinitesimal version of parallel
transport around closed loops:

Proposition 5.4.6 Let (L,p,[[, ]|, A) a Lie-Rinehart algebra over A with connection V
in L along L. Let V be an A-module with connection V' along L.

Then Holy (V') is an A-Lie subalgebra of the A-Lie algebra Homy (V, V') equipped with
the commutator or A-linear maps.

Moreover

Holg (V) = A—Span{(V}(R"))(x,) | be Ta(L), x,y e L} (5.4.23)
whence the connection V' restricts to the A-submodule Holgy (V') of Homy (V, V).

Proof. The first statement follows at once from eqn and the fact Hy =
He_z(c) whence n = & —Z(&) € PI(L,A). The second statement is proved by in-
duction over the tensor degree of & using the recursion (5.4.12).

The inclusion "c": We show that each Hf, & € Py(L, A), is a covariant derivative of
the curvature tensor R’: indeed if & = x € L then Hj, = 0, and we are done choosing
b': 0,x=0= Y and if & = [x,9] (x,y € L) then fo,y] = R'(x,v), so b =1 and the
given x,y € L will do.
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Suppose that for each & € Py(L,A) of degree < n there is a nonnegative inte-
ger N, elements b; € T4(L), x;,v; € L for each integer 1 < i < N (all dependent on

&) such that Hy = SN (VZ, (R’)) (x;,v;). Let z € L and consider V,(&) which also
has degree < n. Likewise there is a nonnegative integer N’, elements b} € Ta(L),
xj,y; € L for each integer 1 < j < N’ (all dependent on &) such that Hy ) =

Z?’;l ( b (R’)) (x;-,y]’-). we get —upon using (5.4.12)-
]

Hl g = Vi(H;)—Hy ) +R(22(¢))

= i (( /zb, (R/)> (xi, i) + (V/Vz(b;)(R/)) (xi,v;) + (Vgi (R/)) (Vz(xi),yi)
i=1
+ (V3 (R)) (3 V. (21)) ) - » (v (R)) (<4.9)) + R (2.2(2))
j=1

proving the induction.

The inclusion ">": We show by induction over the tensor degree of b € T4(L)
that for all x,y € L there is & € Py(L,A) with (V}(R)) (x,y) = H. The cases n =1
and n = 2 are as in the preceding inclusion. Let z € L. Then we write by definition
of the iterated covariant derivative and there by the induction hypothesis there are

&,& e Py(L,A) of degree at most # such that
(Vi (R)) (x9) = VL((VH(R)) (x9)) = (V3(R) (Va(xi),9:) = (V5 (R) (%1, Vo (1))
(Vo) (®)) (9)

o / / / / / / /
= VL(H')¢ +Hy o)+ Hy =" Hj, o — Hp 70y + Hi

with £” = V(&) + & proving the induction which obviously implies the last state-
ment. O

Remark 5.4.7 Note that in general Holy (V) is no longer a finitely generated pro-
jective module even if V and L are although it always carries a connection: as a
counterexample take a 2-dimensional smooth manifold X embedded in R® where
L=V =T%(X,TX) is given by the Lie algebroid of all smooth vector fields and V
the Levi-Civita connection (see e.g. [25]) of the induced Riemannian metric where
the embedding is chosen in such a way that there are open sets of X where the cur-
vature vanishes (here the localization of Holgy (V') vanishes) and others where it does
not (where the localization of Holy (V) is non trivial): here Holy (V) can no longer
be regarded as the smooth section space of a regular constant rank subbundle of
Hom(TX, TX).
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6.1

6. Results evolving connections and Lie-Rinehart algebras

PARTICULAR CASES AND FLAT EXTENSIONS OF LIE-RINEHART
ALGEBRAS WITH CONNECTION

Consider a Lie-Rinehart algebra (L,p,[[, ], A) over A. Let V be a connection in L
along L. Let V be an A-module with connection V' along L.

The following particular cases for connections V in the A-module L are important
for the sequel:

Definition 6.1.1 Let (L, ol ]],A) a Lie-Rinehart algebra over A with connection V
in L along L. Let V be an A-module with connection V' along L.

1. The connection V' is called flat if and only if R'(x,y)(v) = 0 for all x,y € L and
veV.

2. The connection V is called CRCT if and only if V,(R) = 0 and V,(Tor) = 0 for
all x € L. The abbreviation means constant curvature and constant torsion.

3. The connection is called FCT if and only if R = 0 and V(Tor) = 0 for all x € L.
The abbreviation means flat constant torsion.

The above notions all come from differential geometry: flatness of connections is
of course well-known, moreover CRCT connection are related to manifolds which
locally look like reductive homogeneous spaces, see e.g. [26l], equipped with their
canonical invariant connections.

Here the particular case of constant curvature and vanishing torsion, the so-called
locally symmetric spaces, see e.g. [26] or [L16] is very important. The case of a flat
constant torsion connection is typically given for any Lie group where the connection
is defined to be zero on all left invariant vector fields.

We mention some simple well-known properties of flat connections:

Proposition 6.1.2 Let (L, ol ]],A) a Lie-Rinehart algebra over A with connection V
in L and let V be an A-module equipped with a flat connection V' along L.
Then the map H' (see ) vanishes whence Vi = V' for all & € Py(L, A).
Moreover if the connection V is flat then H = 0, and the recursion equation
simplifies to

Z([x,&]) = (VoZ)(&) — Tor(x, Z(&)). (6.1.1)

In that case the restriction [ , |° of the Lie bracket [, |V to the Lie-Rinehart ideal
PI(L, A) coincides with the free Lie bracket whence it is a A-Lie-subalgebra of the free Lie
algebra L4 (L).

Proof. This clearly follows by induction from eqs (5.4.10), (5.4.12), and (5.4.9). O

Before we turn to the other cases of Definition it is advantageous to consider
the following construction of a flat extension:
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The A-linear maps Z = Zy and H (see (5.4.5) and (5.4.6) together give an A-
linear map of Py(L,A) into L ® Homy(L,L). One may wonder whether there is a

Lie-Rinehart structure on this A-module extending in some way the Lie-Rinehart
structure on L: this is indeed the case as the following Theorem shows:

Theorem 6.1.3  Let (L,p,[[, ]|, A) be a Lie-Rinehart algebra over A and V a connection
in L along L.
1. The following K-bilinear map [[, ]| on the A-module L ® Hom(L,L) and the

A-linear map p™ define the structure of a Lie-Rinehart algebra over A on L ®
Homu(L,L): forall x,y €L, ac A and ¢,1p € Homu(L,L)

[ ) @] = (Lol Ry + Vild) = V,(0) + [69]), (61.2)
Plopy (@) = px(a). (6.1.3)

Here the bracket [¢p,] denotes the commutator of A-linear maps. Moreover the
projection on the first factor is a morphism of Lie-Rinehart algebras over A.

2. Themap Y : Py(L,A) - LdHomy (L, L) given by
Y(&) = (Z(&), He) (6.1.4)

forall & € Py(L, A) is a morphism of Lie-Rinehart algebras.

3. The following map V! is a flat connection on L ® Hom 4 (L, L) along L&Hom 4 (L, L)
forall x,ye L and ¢, € Homy(L,L):

V@) = (Ve)+6), Vu(p) +[9,9]) (6.1.5)

whose torsion (and covariant derivative there of) is given by

Tor' ((x,¢),(v.9) = (Tor(x,y) +$(y) — p(x), ~R(x.y) +[¢,]).

(6.1.6)
((Ve(Tor) 3,2) + ¢ (Tor(,2)) — Tor (¢ (), 2)
— Tor(3,¢(2)),— (Vx(R)) (3.2)
= [6:R@:2)] +R(6(),2) + R(3.(2)) (6.1.7)

for all (x,$), (3, ), (zx) € L&Homy (L, L)

Proof. 1.) The proof of the Jacobi identity of the bracket (6.1.2) is long, but straight-

forward and uses the two Bianchi identities (5.4.3) and (5.4.4), and the fact that the

pf is an anchor morphism is not hard to see.

(Vﬁ,@ (TOYH)) (). (zx))
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6. Results evolving connections and Lie-Rinehart algebras

2.) Y is clearly A-linear, intertwines anchor maps, and we compute for all £,&" €
Py(L,A)

Y([&&T) = (Z([éfcf’]v)),H[é,a]Q = ([[Z(cf),Z(cf')]l'V[é,é']V _VZ<[§,§/]V)>

and

Vieen =V (eer) = Ve Vel =Vize.zen = [He + Yz Hy + V20| = Vizeze
= [He He] + V2@ (Her) = Vzee) (He) + R(2(8), 2(£)

whence

Y ([&,&17) = [(2(&), He), (2(), He) ™ = [¥ (&), v(eN]". (6.1.8)

3.) Note that V&qb) preserves the A-submodule L and the A-submodule Hom 4 (L, L)
separately, and the latter is induced by the former. It suffices to compute van-
ishing curvature for the component V(1) of VH acting on L: for all x,y,z € L and
¢, e Homy(L,L)

[V&)'Vg?w] (2) = Vg @)
= [Vat+ ¢, Vy + 9] (2) = Vi (2) = R(x,9)(2) — (Vi()) (2) + (Vy () (z) — [, ](2) = 0.

The computation for the torsion of V! and its covariant derivative is lengthy, but
straight-forward. O

Remark 6.1.4 Note that the extended Lie bracket [, " is motivated by
a simple geometric construction: given a smooth manifold X, consider the vector
fields on its tangent bundle TX whose Lie bracket with the Euler field vanishes. In
the presence of a connection V in the tangent bundle they can be written as sums of
horizontal lifts of vector fields x on X and those vertical vector fields ¢ on TX which
are linear along the fibres. Their Lie brackets correspond to up to signs due
to the definition of the Lie bracket: the Lie bracket of ‘matrix vector fields’ is minus
the matrix vector field corresponding to the matrix commutator.

For the CRCT case we have the following statement.

Proposition 6.1.5  Let (L,p,[[, [l A) a Lie-Rinehart algebra over A with CRCT connec-
tion Vin L along L.

Then the maps Z and H (see ) are covariantly constant, i.e. V,(Z) = 0 and
(Vy(H))g =0forallyeLand & e Py(L A).

The recursions for Z and H simplify in the following way for all x,z € L and & €
Py(L,A): Z(x) = x and H, = 0,
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6.1. Particular cases and flat extensions of Lie-Rinehart algebras with connection

Z([x,é]) = Hé(x)—Tor(x,Z(é)), (6.1.9)
Hiy6)(2) R(x,Z(&))(2). (6.1.10)

It follows that the A-Lie algebra Holy(L) is spanned by the values of the curvature
tensor.

Finally, the A-linear map Y, see equation (6.1.4), is also a morphism of the A-module
Py(L,A) = LA(L), equipped with the free A-bilinear Lie bracket | , |, onto the A-module
g := L@ Holy(L) equipped with the A-bilinear Lie bracket (for all x,y € L and ¢, ¢ €
HOlv(L))

[ ¢), (0, 9)] = (= Tor(x,9) = $(v) + P (x), R(x,9) — [, P]) (6.1.11)

Proof. We prove the equations (V,(Z))(&) = 0 and (V},(H))é
the tensor degree of & € Py(L,A). We first compute the followig expressions for all
x,9,z€ Land £ in Py(L, A) in a lengthy, but straight-forward manner upon using the

equations (5.4.11) and (5.4.12):

= 0 by induction over

(Vy(z)) ([x,é]) = (vyxz) (€) —Tor(x, (Vy(z)) (5)) + (Vy(H))é (x) — (vy(Tor)) (X,Z(E)),

(Vo) (2) = (VyulH)) (2) + R (% (V,(2))(€)) ) (2) = (V,R) (%, Z(8)) ().

The equations (V,(Z))(¢&) = 0 and (VV(H))é
1 since the restriction of Z to L is the identity map and the restriction of H (in its
index argument) to L vanishes. Suppose that both equations are satisfied for all £
of degree less or equal that n. For the induction step observe that the right hand
sides of the above equations for (V,(Z)) ([x,&]) and (VV(H>)[x,g] (z) only depend
on V(Z)(&') and (Vi (H)), for & of degree < n whence we can use induction and
the CRCT-property to conclude that the left hand sides vanish which proves the
induction step.

The two simplified recursion equations and are now obvious con-
sequences of (5.4.11) and (5.4.12). The statement about the infinitesimal holonomy
Lie algebra Holy(L) then becomes clear by eqn (5.4.23).

Finally, it is clear that the image of Y is equal to L@ Holy(L) (since Z is surjective
on L and H maps Ker(Z) surjectively on Holy(L).

= 0 are obvious true for £ of degree

Forall &,&" € Py(L, A), if we utilize the equation (6.1.8) and that V,(Y) = (V,(Z),V.(H))
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6. Results evolving connections and Lie-Rinehart algebras

(0,0)) we can obtain

Y ([, &)

[He, Her' | + Vo) (Her) — Vzeen (He) + R(Z(&),Z(&))
—Vg (Hé +V§/ Hg )

It remains to show that the antisymmetric A-bilinear bracket satisfies
the Jacobi identity when restricted to the A-module L ® Holy(L). Actually, this fact
follows from an iteration of the defining CRCT-equations V,(Tor) = 0 and (V,R) =0
implying for all v, w,x,y e L

R(v,w)(Tor(x,v)) Tor (R(v,w)(x),v) + Tor (x,R(v,w)(v))
[R(v,w), R(x,)] R(R(v,w)(x),p) + R(x,R(v,w)(y))
hence for x,9,z,v,w,v',w,v",w”" € L and ¢ = R(v,w),p = R(v',w'), x = R(W",w") €

Holy (L) the Jacobi identity for [, |, follows the above derivational identities and the
Bianchi identities (5.4.3) and (5.4.4). O

Remark 6.1.6 Note that this case and the reductively decomposed Lie algebra g is
well-known from the 1950’s, see the work by Konstant and Yamaguti[l, see [56], and
occurs for reductive homogeneous spaces, see for instance [26]].

The following FCT case will be very important in the sequel and is an easy con-
sequence of the preceding Proposition

Corollary 6.1.7 Let (L,p,[[, ]|, A) a Lie-Rinehart algebra over A with FCT connection
Vin L along L.

Then the map H (see (5.4.6)) vanishes and Z is covariantly constant. It can be com-
puted explicitly for all x,xy,...,x, € L for all integers n = 2: Z(x) = x and

4 ([xl, [0, [Xp1, %] - ]D = (—1)”_1Tor(x1,Tor(x2,...,Tor(xn_l,xn) : )>
(6.1.13)
Moreover, the A-bilinear map —Tor(, ) is a Lie bracket on L, and the A-linear map Z is
a surjective morphism of A-Lie algebras from the A-Lie algebra L (L) (equipped with the
free Lie bracket [, ]) to the A-Lie algebra (L,—Tor(, )). It follows that the Lie-Rinehart

1. I'thank S.Benayadi and F.Wagemann for referring me to Yamaguti’s work.
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Y ([&,E1%) =Y (Ve(E) + Y (Ver (&) = [Y(£), Y ()] = Ve (Y(&)) + Ver (Y ()
([[Z(E);Z N = Vi) (Z(&) —He (Z(&) + Yz (Z(&)) + Her (Z2(8)),

(= Tor(2(£), Z(&") = He (Z(&") + Her(Z(8)), R(Z(£), Z(2) — [He, Her] ).

(6.1.12)



6.2

6.2.1

6.2. Multiplication of Universal Enveloping Algebras of Lie-Rinehart algebras

ideal PY(L,A) is not only an A-Lie-subalgebra, but an ideal with respect to the free Lie
bracket of the free Lie algebra L (L).

Example 6.1.8 We have already come across two examples of Lie-Rinehart algebras
with FCT connections:

i.) Let (L,p,[, ],A) an arbitrary Lie derivation algebra (for instance a Lie-Rinehart
algebra), and consider the induced Lie-Rinehart algebra A© L, more precisely
(A®LA[, 15,A), see eqn (4.1.2).

Then the K-bilinear map VY on A ® L which can be deduced from ,
namely (for alla,a’€e Aand x,y e L)

V2®x (0 ®y) = (apx(d')) ®7. (6.1.14)

is seen to be an FCT-connection on A© L in a straight-forward way. We shall
call VO the canonical connection in A® L. The covariantly constant torsion of
this connection, Tor?, is given by

Tor® = —4[, ] (6.1.15)

which is minus times the A-bilinear Lie bracket (4.1.3).

i.) Let (L,p) be an anchored A-module and V a connection in L along L. Con-
sider the path Lie algebroid Py(L,A). Then the iterated covariant derivative
V defines an FCT connection in Py(L,A) along Py(L,A): in fact this follows
immediately from eqs (5.3.1) and (5.3.2)) from which we can deduce that the
covariantly constant torsion equals minus the free A-bilinear Lie bracket, for
all &,&" e Py(L,A)

Tor(,&') = —[£,&'). (6.1.16)

MuLTIPLICATION OF UNIVERSAL ENVELOPING ALGEBRAS OF
LiIE-RINEHART ALGEBRAS

In this Section we shall suppose that QQ = K. Moreover we shall often write g for
the A-module £4(L) = T4(L).

The Rinehart ideal Jy(L,A)

Consider a Lie-Rinehart algebra (L,p,[[, ]|, A) over A. Let V be a connection in L
along L. Recall the Rinehart bialgebra (TA (L), o = oy, 1,Aq, e). Recall furthermore
the path Lie algebroid Py(L,A) (whose underlying A-module is the free Lie algebra

L4(L) =: g), the maps Z (see equation (5.4.5)) and H (see equation (5.4.6))), and the
E47)

kernel of Z, PS(L,A) (see equation . Moreover the latter is a Lie-Rinehart
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6. Results evolving connections and Lie-Rinehart algebras

ideal of Py(L, A) and hence a K-Lie subalgebra of (T4(L),o) which we had shown to
be isomorphic to the A-submodule

hi=L3%(L) = ézsg(L) (6.2.1)
=2

=

(by means of the A-linear map C — C — Z(C)) equipped with the A-bilinear Lie
bracket

v, en: [0,V =[C—2Z(C),¢' = Z(T)] + He(C') — He (), (6.2.2)
(see eqn (5.4.9) and Theorem iv.). The Lie bracket can be seen as a

deformation of the free Lie bracket restricted to . Define the following bilinear
map for each Celhand be T4 (L):

C>bi=De(b):= (C—Z(C)) ob = Cb—Z(C)b + He (b) (6.2.3)
and the following K-submodule of T4 (L)
jv(L,A) =h |>TA(L) = Span{C >b ’ C e, be TA(L)} (624)

Proposition 6.2.1  With the above notations:
1. The map is A-bilinear and defines an A-linear representation of the A-Lie
algebra (b, [, ] V)) on Ta(L) by coderivations of (T4(L), Agp, €).

2. The K-submodule Jy(L,A) of T4(L) is a Rinehart ideal of TA(L), hence an A-
submodule, a two-sided ideal of the K-algebra (Ta(L),o,1) and a coideal of the
A-coalgebra (Ta(L),Agy,€,1).

Proof. In the following let ,’ e hand set § = C — Z(C), ' = U’ — Z(C’) which are
two elements in Ker(Z) = PI(L, A).

i.): Equation (6.2.3) is well-defined since V, = H, = H, see eqn (5.4.6). It follows
that > is A-bilinear. We compute

A (De(b)) = Agh(C > b) = Agy (170 b) 2, (106) @ 0@ + 3160 @4 (106
(b) ()
= (Dc®aid +id®4 D) (A (b))

whence each D¢ is an A-linear coderivation of TA(L),Ash,e,l). Moreover since
[17,7'1V) =[¢,'1V) — Z([,C']V)), see Theorem v.) and eqn (5.4.19) we get

[De, D] (b) = non'ob—y'onob=[nn1" ob=[nn]1" b
(([c,c’] V) —z([¢,7 <V>)) ob =Dy (b),
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6.2. Multiplication of Universal Enveloping Algebras of Lie-Rinehart algebras

showing that D gives a representation of the A-Lie algebra (I, [, ](V)) on the A-
module T4(L).

ii.): Clearly, Jy(L,A) is given by finite sums sums of elements of the form C > b
with C e i and b e T4(L), and thanks to the A-bilinearity of > it is an A-submodule
of To(L). Moreover it is a sum of the images of the coderivations D, C € 1, and
therefore a coideal of the A-coalgebra (T4(L), Ay €,1).

In order to prove that Jy(L,A) is a two-sided ideal w.r.t. the multiplication ¢ we
proceed as follows: firstly, since C>b = yob we get for all b’ € T4 (L) that (C>b)ob’ =
nobob =C>(bol') whence Jy(L,A) is a right ideal with respect to ¢. In order
to show that is a left ideal we use induction of the tensor degree of b’. Indeed for
b’ = al (for some a € A) this is evident. Let x’ € L. Then [[x,7]]Y € PY(L,A) since
PY(L,A) = Ker(Z) is a Lie-Rinehart ideal. We can uniquely write it as [[x, ]|V =
¢ — Z(C) where C € i is the canonical projection of [[x,7]]V onto It = £37 along L.
Therefore

Xo(C>b)=xonob=[x,q]Vob+noxob=C>b+C>(x' ob)e Jy(L,A).

Suppose by induction that b’ o (C > b) is in Jy(L, A) for all b’ of tensor degree < n.
Let x' € L, and to show the induction step we compute

(xX'b)o(C>b)=x"ob' o(ob) —Vu(b')o(C>b)

and both terms on the right hand side are in Jy(L, A) by the case n = 1 and by the
induction hypothesis (note that the tensor degree of V,/(b’) is < n). This proves the
induction, whence Jy (L, A) is a two-sided ideal to the K-algebra (T4(L),¢,1).

0

For later use we mention that the ‘coderivational” action D of the A-Lie algebra
(1,[, V) on the coalgebra (T4(L), A, €) canonically induces a module action (also
denoted by D) of its universal enveloping algebra U, (i) on (T 4(L), Ay, €) in the usual
sense: let u = C;-+-C, € Uy(l) (multiplication in U, (l)) with n a strictly positive
integer, Cq,...,C, €, and be T4 (L) then

D(u®ab):=D,(b):=urb:=C > (0> (¢, > b)), (6.2.5)

and upon using the A-Hopf algebra structure, (U (), py, 1y, Ay, €y, Sy) and the
fact that the primitive elements act as coderivations

Ap(ub) =YY (u“) >b(1>> ®4 (u<2)>b<2>) (6.2.6)
) ©)

whence (TA (L), Asp, e) becomes a module coalgebra over the Hopf algebra (UA([]), wu, 1y, Ay, ey, SU).

91



6. Results evolving connections and Lie-Rinehart algebras

We shall be interested in the quotient algebra T4(L)/Jy(L,A) (which —as we shall
see later— turns out to be isomorphic to the universal enveloping algebra U/(L,A)).
But we first need a more practicable description of the ideal Jy(L,A). In order to do
this we have to make a detour to symmetric algebras since they are much simpler
to handle: consider the symmetric algebra S,(g) = So(L£4(L)). Thanks to the direct
decomposition g = b @ L as A-submodules of g we have the natural morphisms of
Hopf algebras

ISA(L)%SA(Q) and PSA(Q)—»SA(L) (627)

induced by the injection L < g and by the projection g — L along h, respectively.

Note that PoI = ids, () whence [ o P is an idempotent Hopf algebra map. The
kernel of P clearly is the ideal and coideal

I(L,A):=A-Span{Cep|Cel, peSs(y)} (6.2.8)
and we thus have the direct decomposition

Sa(g) = #I(Sa(9)) ® I(L,A). (6.2.9)

To make contact to T4(L), recall first the symmetrization map w : Sy(L4(L)) —
T4(L) given by w(1s) = 1 and for all strictly positive integers n and &y,...,¢&, €
‘CA (L)

1
w:Ep ooy D &) Eom)- (6.2.10)

' oes,

It is well-known that w defines an A-linear isomorphism of coalgebras from (S4(g),As, €s,15)
to (Ta(L),Agpy€,1), the inverse being the convolution exponential ¥, see the
convolution table and the definition of the Eulerian idempotent e(!), eqn
. We therefore have the injective morphism of C3-coalgebras Y : S,(L) —

TA(L) given by
Y =wol (6.2.11)
In order to simplify the combinatorial notations, for later use in the sequel, we
shall introduce the following list of convolutions (see Appendix[A.3|for definitions)

on the Hom-spaces Hom 4 (C, B) depending on the A-coalgebra C and the A-algebra
B and some of their actions on the Hom-spaces Hom 4 (C, V') where the A-module V
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is a left B-module which:

convolution algebra B B —module V | coalgebra C
* (Ta(L), 1) none (Ta(L), Agp, €)
* (Ta(L), p1) none (Sa(g),As, €5)
¥ (SA(g),o,ls) none (SA(g),AS,eS)
* (SA (g)’ e, 15) none (TA (L), Ashr e)
& (Ua(), pu, 1p) none (Sa(g), As,€s) (6.2.12)
! (Hom (I3, In), 0,idy) none (Sa(g),As,€5)
* (Hom 4 (11, ), o, idy) b (Sa(9),As, €5)
- (Ua(h), pu, 1y) Ta(L) (Sa(a),Ag, €5)
- (Ua(t), p, 1) Tal) | (Ta(D) Age)

Recall that the first six convolutions are associative A-bilinear multiplications
on the corresponding Hom-spaces Hom,(C, B), and the last three describe the left
module actions of these associative A-algebras on the Hom spaces Hom4 (C, V).

Next, we shall need several projection maps followed by injections in the sequel:

kernel
pr: Tall) —» L — TAQL)| A1@Z,Ti(L)
q: Sa(e) - 9 — Ta(l)| A1@;L,Si(9) (6.2.13)
ar: Sa(@) — L — Tu(l) | A1OL®S;L,S(9) o
ay: Sa@) — b = Tu(l) | AlOLO®S;,S)(9)
rg: Sa(g) — b — Ux(h) | A1@LO®;.,S}k(g)

where of course g = q; + q.

Recall first that the symmetrization map w (see (A.6.21)) has the form of a con-
volution exponential, see eqn (A.6.22). We shall need another more refined isomor-
phism of coalgebras Oy : S,(g) — T4 (L) for which we make the following ansatz:

Oy 1= e*s % oL, (6.2.14)

Before we prove that this is an isomorphism of C3-coalgebras recall the isomor-
phism of A-modules

Homy (S4(9),9) — Codery (S4(9),S4(9)) : d — d¥ids ) (6.2.15)

(see e.g. eqn (A.3.7)) with inverse D — D#%Sg, ;) by means of the antipode of S4(g).
& €q 4(g) DY p
Define

Coder’, (Sa(g),S4(9)) := {d¥ids, (g | d € Homy (Sa(g), )} (6.2.16)

We have the following
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Proposition 6.2.2  With the above notations we have the following:
1. The A-linear map Oy is an isomorphism of C>-coalgebras.

2. The following map is an injective morphism of A-modules:
Homy (T4(L), i) — Codery (To(L), Ta(L)): x — x * idt, (1) (6.2.17)

We shall call its image Coderg (TA(L), Ta(L)).
3. There is an explicit A-linear isomorphism € : Homy (S4(g),11) — Homy (TA(L), b)
inducing the equality @voCoderg (Sa(g),Sa(g)) o®§1 = Coderg (Ta(L), Ta(L)).
4. We have the isomorphisms
@V (I(L,A)) = jv(L,A) and ®VOI = T, hence TA(L) = T(SA(L))@jv(L,A)
(6.2.18)
5. The quotient Rinehart bialgebra T 4(L)/Jy (L, A) is isomorphic to the universal en-
velopping algebra U (L, A).

Proof. i.) By the usual convolution exponential form, see equation (A.3.4), it follows
that ©,:S4(g) = Ua(l) and ©p : Sa(g) — Ta(L) given by

Qy:=¢" and O :=e*n (6.2.19)

are morphisms of C3-coalgebras over A. Upon using this fact, eqn (6.2.6) and the
cocommutativity of Ag we compute

A 0Oy = AgoDo (@h ®a @L) oAg

= (D4 D)o (idyp ®aT®aidr, (1)) © (Aum) ®a Asn) © (O @4 Or) 0 Ag
(D4 D)o (Oy®40,®40,®401) 0 (As®4Ag) 0Ag
(®V ®a ®V) oAg

showing that Oy is a morphism of coalgebras. By a similar computation it becomes
clear that Oy intertwines counits and maps 15 to 1 whence it is a morphism of
C3-coalgebras. Since both coalgebras are cofree, see Appendix it suffices to
show that the restriction of @y to the primitive part g of S4(g) induces a A-linear
isomorphism onto the primitive part of T4 (L) which is £4(L) = g: indeed, let £ € g,
and decompose it & = { + x with C e hand x € L. Since Ag(&) = E®4 15+ 15®4 &,
since Oy, projects away x and ©; projects away C then

@V((E) Z@[](C)[>1+lu([])|>®L(X) =C>1+x:C—Z(C)+x

and this is an isomorphism g — g according to eqn (5.4.19).
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ii.) Using the fact that x takes values in the primitive part i of U4 (Ir), eqn (6.2.6),
the fact that Ay, is cocommutative and coassociative, and the fact that 1y >b =10
forall be T4(L) we get

Agno (x * idr, (1)) = AgoDo(x®aidr, 1)) oAy

= (D®aD)o (idyg) ®a T®aidr, (1)) © (Aum ®a As) © (X @aidr, (1)) 0 Ay
= (D®aD)o (x®aidr,r)®a luwm) ®aidr, 1)) © (A ®aidr, 1)) © Ash
+(D®aD) o (Lywp) ®a idr, (1) ®a X ®aidy, (1)) © (id7, (1) ®a Ash) © Agp

= ((x % idr,w) @aidr, ) +idr, @) ®@a (x * idr,m)) oAy

whence x * idt, (1) is always a coderivation of (Ta(L), Agps€).

Next, suppose that for some x € Hom, (T4 (L), i) we have x * idr, () = 0. We
shall prove by induction over the tensor degree of b € T4(L) that then x(b) = 0 for
all b € To(L) implying x = 0 which proves the desired injectivity: indeed for b = 1
we have

0= (x % idr,m)) (1) = x(1) > 1= x(1) = Z(x(1)).

Since x(1) € h and Z(x(1)) € L it follows that x(1) = 0. Suppose that x(b) =
0 for all b € T4(L) of tensor degree < n. Then for all x € L the element xb is of
tensor degree n + 1, (and every such element is a linear combination of this kind of
elements), and we get

0= ()( * idTA(L)> (xb) = Zx(xb(l)) e +Zx(b(1)) > (xb®).
(b) ()

By induction the second sum has to vanish since all the arguments b{!) of y are of
tensor degree < 1, and in the first sum the only surviving term of the comultiplica-
tion Ag,(b) is b®4 1 yielding

0= (x(xb))>1=x(xb) — Z(x(xb))

implying x(xb) = 0 which proves the induction.

_ iii.) In order to get an idea, we take any d € Hom, (S4(g), 1) and compute (setting
d = d%ids, g) and using the fact that it is a coderivation and eqn 1)

®VOE = DO(®I}®A®L)OASOE
Do ((@y0d) @401 ) 0As +Do (0, ®4 (O 0d) o As

Using the definition of @} in terms of the projection gy, see eqs (6.2.19), (6.2.13),
and (6.2.14) we see —thanks to the derivation property (A.3.6)- that the second term
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6. Results evolving connections and Lie-Rinehart algebras

vanishes since the projection g; in ©; kills the values of the map d. Next, we com-
pute the term ©, o d: recall first the following well-known derivative of the exponen-
tial map: Let (B,n,15, (F(n)B)neZ) be complete filtered associative unital A-algebra,
let ze F_;)B, and D : B — B a filtration preserving derivation, then ~upon writing

ad,, : 2" — 2/ wZ" — 7" w7 for any 7/, 2" € B— we have

D (e") = <ead:d_idB(D(z))> e, (6.2.20)

We get —using (A.3.6) and setting B = Homy4 (Sa(g),Ua(h)), = = #

ad* .

_ N — e" T —id — 5

Opod = eMmod= 1B 0d) |4 e,
ad’f""h

Observe now that r,0d = d (where the values of d are seen as elements of Uy, (I)).
Moreover, let ¢ : S4(g) — I any A-linear map then for any € S4(g) thanks to the
cocommutativity of Ag:

(ader, @) (B) = 2 (m(BV)9(ED) = p (B (B)) = X [ra (B, (2]
(B) B)

= Yadlo, (w(B?) = (adi” <" 9) (B)
)

where we have written ad'¥) for the adjoint representation of the A-Lie algebra

(5[, ]V), ie. ad(cv)((:’) = [¢,¢']™Y) for any C,(’ € I and used the convolution ac-
tion #”, see the table (6.2.12). It follows that the resulting map again takes its values
in the primitive part Iy of U4 (Ii), and using an easy induction we can finally write

(see the table (6.2.12)))

>x<’ad(lV> id

- e v —1di€ 5 %

Opod = th #d |4 e = E(d)% e,
*’adrh

Clearly the above A-linear map E is an invertible endomorphism of Homy4 (Sa(g), )
because the zeroth order term of the series is the identity map and the higher order
terms lower the degree. It follows that

(©yod)(B) = (Do((@yod)®401)o0As)(B) =X ((E@(E™M) (e (p@))) & (e (p))
(B)

= D E@ED) & ((#5(52) & ((69) ) = Y (E@)(EM) & (Oy(?)).
B) ?)
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If we define the linear isomorphism £ : Hom 4 (SA (9), [1) — Homy (TA (L), h) by

e*/adﬁhv) —idge
E(d):=E(d)oOy' = th #'d o0y’ (6.2.21)
*,adrh
we finally get
Oyodo®y' = (E(d)) = idr,( (6.2.22)

which proves the statement.

iv.) An arbitrary element of the ideal and coideal Z(L,A) is a linear combination
of elements of the form Cep with f € S4(g) and C € 1. Observe that the map g +— Cef
is a coderivation of the form Ceg#ids, (q) = Ces. By part iii.) we have for all f € S,(g)
upon setting b = Oy (B) € TA(L):

Oy(Cep) = (OyoTes)(p) = ((E(Tes)) * idr, ) ) (Ov(B)) = Y (£(Ces)) (6D b?)
(b)

and the last term is a finite sum of terms of the form {'>b" with ¢’ e hand b’ € T4 (L)
since the maps £(Ces) takes its values in 1. Hence Oy(C o ) is an element of the
coideal Jy (L, A) proving the inclusion Oy (Z(L,A)) < Jy(L,A).

On the other hand, an arbitry element of the coideal Jy(L,A) is a finite sum of
elements of the form { > b with C e hand b € T4(L). Clearly, according to part ii.)

the coderivation b — C > b is of the form (Ce) * id7, (). Let d; € Homy, (SA(g),h)
the unique A-linear map such that £(d;) = Ce. Then acccording to part iii.) we get
for all b e T4(L) upon setting f = @V_l(b) €SA(9):

Cob=((Ce) * idr, 1)) (b) = Oy (dc () = D Oy (dc (b)) o 1)
®)

and the right hand side is in ©y (Z (L, A)) since the values of the map d; are elements
of . This proves the other inclusion Oy (Z(L,A)) > Jy(L,A) and the first equality
in (6.2.18).

Next, using the fact that I : S,(L) — Sx(g) is a morphism of C3-coalgebras and

eqn (A.3.5) we get
Oyol =Do (0,®401)0Agol =Do ((Oy0I)R4 (O 01)) 0 As, (1)
We have (writing #; for the convolution with algebra U4 (L) and coalgebra S, (L))
Opol =e*bol = ehlmeh) = M0 =1 (yes 1) = (1uy,mes) o1
and (writing *; for the convolution with algebra T4 (L) and coalgebra S, (L))

@L ol =e*Lo] = e*L(‘iLOI) _ e*L(qu) —e*o] wol,
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whence

Oyoi = Do (((1UA(11)€S) o) ®a (woi)> oAs,)y=Do ((1UA(11)€S) ®a w) oAgsoi

= woi=7Y

which shows the second part of statement (6.2.18).

Finally, the direct decomposition T4(L) = Y (S4(L)) ® Jy(L,A) is a direct conse-
quence of the fact that ©y is an isomorphism, the direct decomposition (6.2.9), and
the two preceding isomorphisms. v.) This follows at once from the second statement
of Proposition upon noting that the Rinehart bialgebra (T4(L),o,1,Agy, €) is
isomorphic to U (Py(L,A),A) (see the last statement of Theorem ??), and that the
Rinehart ideal Jy(L, A) is generated by the kernel of the surjective Lie-Rinehart al-
gebra morphism Z and is complemented by L according to iv.). O]

There is the following Corollary which may be of interest:

Corollary 6.2.3  The following A-linear map is an isomorphism of left U 4 (Ir)-modules:

= UA([]) &®a SA(L> - TA(L> U4 y—=ub (T(}/)) (6223)

The coderivation Dy

In order to describe the projection Iy : T4(L) — Sz(L) < T (L) modulo the Rine-
hart ideal Jy(L,A) a straight-forward description would be to use the inverse of the
isomorphism Oy, see eqn (6.2.14) and then use the ‘easy’ projection S, (g) — S4(L)
along the ‘easy’ ideal Z(L, A), followed by the symmetrization injection Y : S (L) —
Ta(L). The problem is that the inverse of Oy does not seem to be very explicit. We
have therefore chosen another description of Jy(L,A) —which is the sum of the im-
ages of many coderivations, i.e. of the D¢, C € - in terms of the image of only one
coderivation Dy which we describe in this Section. The fact that Dy is a coderiva-
tion will allow us to use the ‘pull-through-formulas’ to check certain prop-
erties on the ‘easier’ symmetric algebra S,(g).

The trivialcase: [, [|=0,p=0,V=0

We shall first treat the trivial case where Lie-Rinehart bracket, anchor map, and
connection are vanishing: here the maps H and the restriction of Z to h vanish,
whence the bracket [, () on & reduces to the free Lie bracket, and I is a Lie subal-
gebra (in fact a Lie ideal) of the free Lie algebra g = £4(L) equipped with its usual
bracket. The action > of i on T4 (L) is just left multiplication, i.e. C > b = Cb for all
Cehand beT(L). Define the well-known symmetrization map [Ty : To(L) — Ta(L)
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6.2. Multiplication of Universal Enveloping Algebras of Lie-Rinehart algebras

defined for all integers n > 1 and xy,...,x, € L by

1
Ho(l) =1, and HO(xl '-'Xn) = E Z Xo(l)-"xg(n). (6.2‘24)

" oes,

which is involutive, i.e. ITj o ITj = I'l;. In convolution notation this is equal to
[Ty = e*Pr (6.2.25)

see the tables ) and (6.2.13) for the notation, whence ITj is a morphism of
C3- coalgebras over A accordmg to E Next define the coideal

Jo(L,A) = A-Span{Cbh | Ceh, be T,4(L)} (6.2.26)

It is easily seen by direct inspection of the definitions and by elementary combina-
torics that Jy(L, A) is a two-sided ideal of the free algebra T4(L), and that defining
the complementary projection Qg :=idrt, 1) —

Ker(ITy) = Jp(L,A) =Im(Qg) and Im(ITy) =Y (Sa(L)) = Ker(Qp). (6.2.27)

Define the two projections 7y : g - L — g with kernel y and 7, : g — I — g with
kernel L. Clearly, 1 + 1ty = id,.

Recall the ‘modified Dynkin idempotent’ ép, see eqn (A.6.17). We define the
following coderivation of (T4(L), Ag, €,1) (where we have not explicitly written the
corestriction of ép to g):

DO = (T(hOéD) *idTA(L)' (6228)

Note that in our trivial case the usual convolution * is equal to * whence Dy is a
coderivation. There is the following very simple formula for Dy: using 7, = idy—7p,
the obvious identity 7y o ép = py, see the table , and the Von Waldenfels
formula we get
Dy = ép *idt, (1) — pr *id1,(1) = Deg* S xidt, (1) — pr *idr, (1) = Deg — pr *idt, (1)
(6.2.29)
since by definition the antipode S is the convolution inverse to the identity map.
This computation immediately gives us the explicit formula for all x,xy,...,x, € L
where the integer n is > 2:

n
Dy(1) =0, Dy(x)=0, Do(x Z Xy, Xy X e X (6.2.30)

For each n € N define the following A-linear map D™ : T% (L) — T%(L) by D(® = 0
D =0, and for each n > 2

- 1 1 ("2 .
Bt ;Z n—k—1) (pL *idr, )) @) n! (kZ n_k> pr'lre) (6.2.31)
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and let D : T4(L) — T4(L) be the direct sum of the D), i.e. D|T;§(L) — D™ for all
neN.

Lemma 6.2.4 The coderivation Dy and the A-linear map D have the following proper-
ties:

1. Dy preserves each submodule T} (L), n e N.
2. Both Dy and D vanish on Y (S4(L)) and preserve the ideal and coideal Jy(L,A)

3. The restriction of Dy to Jo(L, A) is invertible, and its inverse is equal to the restric-
tion of D to Jo(L, A):

VbeJy(L,A): Dy(D(b)) =b=D(Dy(b)). (6.2.32)
4. Im(Dy) = Jo(L,A) = Im(D) and Ker(Dy) = Y (Sa(L)) = Ker(D).
Proof. 1.) is obvious from eqn (6.2.30).

Before going on it is useful to show some preparatory combinatorial identities ‘in
convolutional disguise”: in this proof only, in order to avoid clumsy computations
we shall write p for py, id for idr, (1), and id,, for idyx(;). We set E := p xid, and for
each nonnegative integer k: E®) .= p*k xid (i.e. E© :=1id, and of course E(!) = E).
Observe that E is a coderivation according to (A.3.7). It is not a derivation, but we
rather have —using p(bc) = p(b)e(c) + e(b)p(c) for all b,c e T4 (L):

E(be) = )] p< (1)) b2 _ Z (p ) 4 e(b(l))p(c(l))> b2 (2)
(®)(0)
= Zp bW)p c+2pc c(z): b)c+bE(c Z
(b) (©)
(6.2.33)

Clearly, po E = p = Eop. Since E is a coderivation we get for all integers k > 1

p*k E - Z pOE) p*kflfi _ kp*k. (6.2.34)

On the other hand we get —using (6.2.33)—
(Eop*(kﬂ)) b) = ZE(p*k(b(l))p(b(z)))
(b)
-6.2:.33 ZE(p*k (b(l)))p(b(z)) + Zp*k (b(l))p(b(z)) + Z [P (b(z)),p*k (b(l))]

(b) (b) (b)
= ((Eep™)xp+pFup+0)(0)
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which allows to show by induction over k the identity

Eop*™ = kp** p**oE. (6.2.35)

Moreover, since E is a coderivation we get
EWoE = (p*eid)oE B2Y (o o) wid 4 p* o E=kpFaid + p+) vid
= kW 4 g+ (6.2.36)
which allows to show by induction over all integer k > 1 that
E® —(E—(k—1)id)o (E— (k—2)id)o---(E—id)o

This proves in particular that all the maps E®), E(), and p*" commute for arbi-
trary nonnegative integers k,1,m since each E®) is a composition polynomial of E.

Moreover, eqn ((6.2.35) shows that
[IyoE =p#e”? =Eolly, hence ITyoE® =p* s = E® o1, (6.2.37)

since (p* * id) oIly = p** » 1, because ITj is a morphism of C3-coalgebras and
polly = p. Next, since Deg is a derivation and coderivation we get using Degop =
p =poDeg

Degop*™* = kp** = p** oDeg, hence Degolly=pxe”? =TIjoDeg.  (6.2.38)
To sum up, all the maps E®), p*/, Deg and T1, commute and satisfy the preceding

identities.
ii.) We compute

HooDO:H()O(Deg—E) é (Deg_E)oHO:p*e*p_p*e*pzo.

This shows that Dy vanishes on Y (S4(L)) and preserves [Jy(L,A) because it com-
mutes with id — I
Next we compute for fixed integer n > 2 recalling that IT; is a morphism of C3-

coalgebras and eqn (A.3.5) and poIly =p

-2
Doll, = ;'nZ(n—k—l)! (p*k*id>oH0
= nli n— —1 '< *k*Ho)
1 p*(nfk)
= *2”_ - (” (n—k)!)

1 ("2 1
_— *nOH n
™ nl (énk) P olry @)

S
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and of course also ITy o D = 0 thanks to eqn (6.2.37). Therefore D vanishes on
Y (Sa(L)) and preserves Jy(L, A) because it commutes with the projection Qg = id —
ITp.

iii.) From the preceding identities it is clear that the maps Dy and D commute. For
fixed degree n > 2 we compute observing that Deg|t () = nid,;:

D~ODO‘T1’}A(L) = D~O (”id—E)\T’;\(L)
n n—2 n n—2 1
= — N m—k—=1)1E® —— ;
n! kZ:;)( ) (L) nl (kgo n— k> P ’TA(L)
1 n—2 ) - 1 n—2 1 o
—HZ(n— —1HE OET”(L)jLE Zn k)P °Elr
k=0 =0
EZEZED o (n—k—1) ¢ 1 (N L
= - EX Py
= (n—1)! e (n—1)! =n k A
1 n—2
N n—k-1) (kE(k) +E(k+1>)
n! T4(L)
k=0
1 = 1 *1n
* (n—1)! (kz_o n—k) Pl
n—2 1\ n—2 EAY
= id, + ] (n—k 1)'(n k) E®) N 'k) g®
i ! L i T4(L)
lE(n—l)
" THD)
=i B i = il
n n n
o ThD) ) s
because obviously E("~1) L) = p*=Dxp T = p*n’Tﬁ\(L) which proves the state-
ment.
iv.) This is an immediate consequence of the preceding statement. O]

The general case

Let us return to the case of a general Lie-Rinehart algebra (L,p,[[, ]|, A) over A,
and V a connection in L along L. We can see this as a deformation of the trivial case,
for instance by introducing a parameter € K and observing that (L, tp,t[[, ]|, A, tV)
is a Lie-Rinehart algebra over A for all values of t: this would be a sort of interpola-
tion from the trivial case (t = 0) to the general case (t = 1).
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In order to find a description of the ideal and coideal Jy(L,A) as the image of a
single coderivation as in the trivial case we generalize eqn (6.2.28) in the obvious
way and define

Dy := (myoép) * idr, ). (6.2.39)

We define the A-linear maps D, and Dy from T,4(L) to itself in the following way
Vbe TA (L)

Dz(b) = (2 (o) (1)), (6.2.40)
()
DH(b) = ZHéD(b(l))(b(Z))' (6241)
(b)
We have the following

Theorem 6.2.5 With the above notations:

1. We have the decomposition
Dy =Dy — Dy + Dy, (6.2.42)

and Dy, Dy and Dy are coderivations of (Ta(L), Agy, €). Dz and Dy are decreasing
the tensor degree by at least one.

2. We have
Ker(Dy) = Y(Sa(L)) and Im(Dy) = Jy(L,A). (6.2.43)

Moreover, the restriction of Dy to Jy(L, A) induces an A-linear isomorphism of the
A-submodule Jy(L, A) with the A-submodule Jy(L,A).

Proof. i.) The decomposition follows directly from the definition of Dy
(6.2.41) and of >, see eqn (6.2.3). It is clear that Dy and Dy are coderivations, see
Prop. ii). Moreover, Dy is of the form x xidy, (1) with x(b) = Z((ry 0 ép)(b) €
L < g, hence a coderivation according to eqn (A.3.7). It follows that Dy is a coderiva-
tion. Furthermore, for given b € T4 (L) consider Dz (b) and Dy (b): by the definitions
and the argument b is split into two parts b(!) and b(?) by the shuf-
fle comultiplication, and in the surviving terms b(!) is of degree at least 2 (since it
is projected to 1) whence the degree of the ‘rest’ b(?) is decreased by at least two:
the result is decreased by at least two by Dy (since H; preserves degrees) and by at
least one by Dy since the values of Z are of degree one. ii.) We have

épolly=pyp,
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which can be shown by direct combinatorics from the definitions (6.2.24) and (??)
or using eqs (6.2.25), (A.6.18)), (6.2.38), and Sop; = —p;:

épolly = (Deg*S)olly = (Degolly) x (Solly) =pyxePLxe *PL =p;.

This implies mty0ép oIl = myopy = 0, and since Dy contains the combination mtp0ép
it follows that Dy vanishes on the image of Y.
Let be T4o(L). Then

Dy(b) = Y ((my 0 2p) (b)) ) > b

(b)

which clearly is a finite linear combination of terms of the form > b’ with C € h and
b’ € T4(L) showing that the image of Dy is contained in Jy(L,A).
On the other hand, to show the other inclusion we take a detour to the symmetric
algebra S,(g):let c € Jy(L,A). Since Dy obviously is a coderivation in the partic-
ular A-module CoderEx (Ta(L), T4(L)), see Proposition ii.), the corresponding
coderivation ®§1 0Dy 0@y = D of S4(g) is in the A-module Coderlj1 (Sa(9),Sa(g)),
see eqs (6.2.14), (6.2.16) and Proposition|[6.2.2]iii.) for definitions, and hence of the
form

©y ' 0Dy 0Oy =D = d#ids, (g
where d : S, (g) — I is the A-linear map defined by

vad”)

12d™V) .
e*'adn —idyeg

d=&"(myoep) = " (my 0 ép 0 Oy),

see eqs (6.2.21) and (6.2.22) for definitions. We compute the zeroth and first Taylor
coefficients dy and d; of d: clearly dy(1g) = d(1g) = 0 since ép(1) = 0, and for any
& € g of tensor degree n > 1 which we write £ = C + x with C e i and x € L, we get
—upon using Oy (&) =C—Z(C) +xand A (&) =E@a1+1®4 E-

A

d1(8) = d(©) = (0 (O9(0)) ) BE my(nC = Z(0) + x) = nC = ny(€).

Let D; denote the coderivation cfl§idsA(g), and let &y,...,&,, € g of tensor degree
ny,..., Ny, respectively. Then

D1<él°""£k>:Zni(nh(éi))'51""'51'—1'51'4-1'""5171
izl

and Dj is also a derivation of the commutative untial algebra (SA(g), o, 15) and for
any xi,...,Xx € Land Cy,...,(; € i of degree ny,...,n; > 2, respectively, we thus get

A

Dl(xl.....xk.cl.....cl):(nl+...+nl)xl.....xk.cl.....cl_
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For I > 1 the sum (n; + --- + n;) is strictly positive, hence invertible in Q, and this
shows that the restriction of D; to the ideal and coideal Z(L,A) induces an invert-
ible map Z(L,A) — Z(L,A) since it is spanned by elements x; e ---ex, 0 ;o ---0(;
with [ > 1. Since the higher order Taylor coefficients dj = lﬂsA(g) for k > 2 lead to

coderivations dj *1ds§‘(g)

ideal and coideal Z(L, A) invariant it follows that the restriction of the coderivation
D to Z(L,A) induces an invertible map Z(L,A) — Z(L,A):

which strictly lower the symmetric degree and leave the

Dl|z(r,a):Z(L,A) > I(L,A) isinvertible. (6.2.44)

Now let ¢ € Jy(L,A). We apply the inverse @51 of the map Oy : S,(g) — Ta(L) to
c and get an element = @51(0) of the ideal and coideal Z(L,A) of S4(g), see eqn

(6.2.8) and Proposition iv.) eqn (6.2.18). By the preceding reasoning there is a

unique element ' € Z(L, A) such that g = D(p’) and therefore
c=0y(D(B")) = Dy(0y(p)).

This shows that every ¢ € Jy(L,A) is in the image of Dy which proves the second
statement of eqn (6.2.43).

Conjugating the coderivation D of the preceding part with @y gives us the following
statement analogous to (6.2.44):

DV|jV(L,A) . jv(L,A) — jv(L,A) is invertible. (6245)

Thanks to the direct decomposition T4 (L) = Jy(L,A) @Y (Sa(L)), see eqn (6.2.18)
of Proposition we can thus conclude that

Ker(Dy) = Y (S4(L)),

and this implies that the restriction of Dy to Jy(L,A) is still surjective on Jy(L,A)
and has vanishing kernel which proves the last statement of ii.). O]

The projection modulo Jy(L,A) and the multiplication formula

The description of the Rinehart ideal Jy(L,A) in the last Section will allow us to
give a fairly explicit formula for the A-linear projection defined as the A-linear map

b ifbe Y (Sa(L),

0 ifbe Jy(LA). (6.2.46)

HV : TA(L) g TA(L) :b— {
which obviously is an idempotent map whose image is Y (S4(L)) and whose kernel
is the Rinehart ideal Jy (L, A). We are seeking a description of Iy as a sort of defor-
mation of the symmetrization projection I1y which has the same image as I'ly, but the
Rinheart ideal J,(L,A) as its kernel.

Inspired by homological perturbation theory we have come to the following
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Theorem 6.2.6  Let (L,p,[[, ]|, A) a Lie-Rinehart algebra over A, and let V be a connec-
tion in the A-module L along L. With the above conventions and notations, the projection

[Ty : TA(L) > Ta(L), see eqn (6.2.46), has the following properties:
1. Tly is morphism of C3-coalgebras over A.
2. There is the following explicit formula for Tly in terms of the maps Z, H, and D:
a0

HV = 1_[0 e} Z(—l)r((—Dz +DH) OD)Or = HO ¢ (idTA(L) + (_DZ +DH) OD)_
r=0

1

(6.2.47)

Proof. i.) We have to compare the two A-linear maps Ay, o Ily and (Hv ®a HV) o
Agy,. Since the symmetrization embedding Y : S4(L) — T4(L) is a morphism of C3-
coalgebras over A we get for all y € S4(L)

Agp (HV(T(V))> = Aa(Y(y)) :ZT@(U) @Y (y?) :ZHV(T(VU))) ®aTly (Y (7))
03] 03]

= (Iy®ally) (Ash (T(V))>’
and for all c € Jy(L,A) we have —since Jy(L,A) is a coideal:

Ash (Hv(c)) = Ash(o) =0 and (HV ®A Hv) (Ash(c)) = Env(()(l)) ®A Hv (C(Z)) =0
(c)

because in the sum >} (cM @4 (c@ either ¢V or ¢(? can be chosen to be in the

coideal Jy(L,A) = Ker(Tly). Hence ITy is a morphism of C3-coalgebras since Jy (L, A)
is in the kernel of e.

i1). First of all the infinite series on the right hand side of eqn is well-defined

since the maps D, and Dy strictly decrease the tensor degree. We have to check the

right hand side of eqn (6.2.47) on elements Y(y), ¥ € S4(L) and on elements ¢ of

the coideal Jy(L,A). Since D oY = 0, see statement ii.) of Lemma it follows

that

(Ho 0 > (=1)((~Dz + Dy)o 15)”) (Y(7) =T (Y () = Y(7)-
r=0

Since Dy maps Jy(L,A) to Jy(L,A) and D induces a bijection of Jy(L,A) being
the inverse of the restriction of Dy to Jy(L,A), see eqn and eqn (6.2.32))
in statement iii.) of Lemma we have that for any ¢ € Jy(L,A) there exists a
c" € Jy(L, A) such that

¢ =Dy(D(c")) = (Dy — Dz + Dy )(D(c)) = (idt,(1) + (—Dz + Dy) o D) ('),
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6.2. Multiplication of Universal Enveloping Algebras of Lie-Rinehart algebras

hence for each nonnegative integer r
“\o <\o 1
((-Dz+Dg)oD)"(¢) = ((~Dz+D)oD)” (") + ((~Dz+ D)o D)™ V(e

implying that only the term r = 0 survives in the alternating sum on the right hand

side of eqn giving
e ¢]
(HOOZ (=Dz +Dy)oD)° )(c) =TIy(c) =0

showing that formula (6.2.47) is correct. O

We shall now come to an ‘explicit description’ of the multiplication # in the
universal enveloping algebra ¢/(L,A) of the Lie-Rinehart algebra (L,p,[[, ], A) by
means of a connection V in L along L: we have seen that the universal envelop-
ing algebra is isomorphic as a Rinehart bialgebra to the quotient T4(L)/Jy(L,A),
see Proposition v.). Let Py : T4(L) — Sa(L) denote the usual canonical Hopf
algebra morphism given by (for all positive integers n and xy,...,x, € L)

Py(1) =15,y and Py(xq---x,) =x; e ex,. (6.2.48)
Note that
PO oY = idsA(L) and HO =Y OPQ, hence PO OHO = Po. (6249)

We define the projection Py : T4(L) — Sa(L) by

ee]
Py:=Pyo > ((=Dz+Dy)oD)” = Pyolly (6.2.50)
r=0

and a K-bilinear multiplication ¢ on S, (L) for all y,9" € Ss(L)

yey' = PR(Y(y)oX())) = (6.2.51)
= (POOZ (( Dz+DH OD ) ZT ®AV’Y‘( (2))(T(7/l))
r=0

As an A-module the quotient T4 (L)/Jy (L, A) is isomorphic to the symmetric algebra
Sa(L). We have the following

Theorem 6.2.7 Let (L,p,[[, ]|, A) a Lie-Rinehart algebra over A, and let V be a connec-
tion in the A-module L along L. With the above conventions and notations we have:

The quintuple (Sy(L),%,1s, (1), As, (1), €s,(1)) is @ Rinehart bialgebra over A|K which is
isomorphic —as a Rinehart bialgebra— to the universal enveloping algebra U (A, L) of L.
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Proof. Note first that Y o Py = I1y. Moreover
YoPgoY =IlyoY =7, hence FyoY =ids,()

according to the definition of TTy. It follows that Py is surjective and that
the kernel of Py is equal to the Rinehart ideal Jy(L,A). Next the equation Py =
Py oTly, see eqn (6.2.50), shows that Py is a morphism of C3-coalgebras over A from
(Ta(L), Agpy€,1) to (Sa(L),As, (1) €s, (1) 1s,(1)) because Py and Iy are morphisms
of C3-coalgebras over A, see the first statement of Theorem m In particular we
have Py(al) = als, (1) for all a € A whence Py preserves unit element and intertwines
the injections of A. The natural injection A — S, (L) is an algebra morphism for
since Y(a) o Y(a') = Y(aa'), and the map (—Dy + Dy) o D clearly vanishes on the
image of Y. Next since for any b € T4(L) the difference b — Y (Py(b)) is annihilated
by Py, hence contained in the Rinehart ideal Jy (L, A), it follows from the definition
of the multiplication « that for all b,b" € T (L)

Py(bob) = Py (Y (By(v))) o (Y (By(1))) ) = (By(b)) » (By (b))

proving that Py is a morphism of unital K-algebras and showing the associativity of
o. It therefore is a morphism of unital associative K-algebras over A. This implies
that Py maps T4 (L) x4 Ta(L) onto S4(L) x 4 S4(L) whence properties become
clear for (SA(L),o, ISA(L),ASA(L),GSA(L)) which thus is a Rinehart bialgebra over A|K,
and Py is a morphism of Rinehart bialgebras. Since Py vanishes on the Rinehart ideal
Jv(L,A) and since Py oY = ids, (1) its follows that Py descends to an isomorphism
of Rinehart bialgebras T4(L)/Jy(L,A) — S4(L). It had been shown before that the
quotient T4 (L)/Jy(L,A) is isomorphic to the universal enveloping algebra U/ (L, A),
see Propostion[6.2.2} v.). This proves the Theorem. O
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A.l

A2

A. Some basic topics

ADJUNCTION OF FUNCTORS (CATEGORY THEORY)

The aim of this part of the appendix is to fix the notation in which we follow
almost exclusively Mac Lane’s book [32], p.79,Chap.IV].
The following definition is important for understand adjunctions.

Definition A.1.1 Given two categories C, D, and functors F: C - D, G: D — C,
hence a diagram

C —— D
G

with a natural isomorphism
®c,4 : Homp (F(c),d) — Homc(c, G(d))

for any object c in C and any object d in D is called an adjunction of functors, with
F the left adjoint functor of G (or G the right adjoint functor of F), see e. g. [22], and
the adjugant ¢ 4.

The importance is that, left adjoint functors (and right adjoint functors) to a given
functor are unique up to natural isomorphism if they exist.

Moreover, with any adjunction there are two important natural morphisms, the
unit of the adjunction, sometimes called 7 : |c — GF and the counit, sometimes
written as € : FG — Ip, where 1, = @ (¢ (idr()) and €4 = 906(101),01 (idg(a))-

Furthermore, for each object ¢ in C the pair (F(c),7, is universal to G. In this
thesis, we mostly deal with the situation where G is some ‘forgetful” functor, and
F creates ‘free objects’. We shall often denote by xy — x the inverse of the adju-
gant, (pc_,; which describes the ‘induced map’ of the ‘simpler map’ x. The adjugant
itself, ¢, 4, is often someting like ‘restriction to generators’. The unit is ‘insertion
of generators’ and the counit plays the role of some ‘natural presentation by a free
object’.

BAsIC ALGEBRA

In this appendix we will suppose that K is always a fixed commutative associative
unital ring. Recall that K = {0} iff 1 = 0. We shall frequently assume that K contains
the field of all rational numbers Q as a unital subring, and we shall indicate it at
every instant when it is really needed. All modules are considered over K, and
the symbol ® is short for ®g. In view of Schauenburg’s Strengesatz (see [47), p.264,
Cor.4.4] we can, but shall not always assume that it is associative.

Moreover, let A be a commutative associative unital K-algebra in the sense that
1: K — Ais a (not necessarily injective) morphism of unital commutative associative
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A.2. Basic algebra

rings. Its unit will sometimes be denoted by 1, and identified with the unit 1 of K.
Recall that any associative commutative unital ring A can naturally be viewed as an
algebra over the ring of all integers.

In several of the following Sections which are not dealing with the relative (A, K)-
situation we shall use the fixed commutative associative unital ring K which may
play the role of A or of K. Then all modules will be over K and ® is short for ®x.

A-Modules and K-Modules

Let KMod and AMod denote the categories of all K-modules and A-modules,
respectively. Recall the well-known restriction functor Res : AMod — KMod which
considers A-modules as K-modules. It has a left adjoint, the induction functor A®,
which transforms every K-module E in the tensor product AQE which thus becomes
a left A-module in a natural way and maps each K-linear map ¢ to the A-linear map
idy ® ¢:

A®

es

KMod AMod

The induced module A ® E is also called the relatively free A-module generated by
the K-module E, see also [32, p.196]. Definition: In an A-module isomorphic to an
A-module A®E is called a relatively free module. The notation is a generalization of
a free A-module over a set S where A is an associative commutative unital ring: A is
an algebra over K = Z in a natural way, and it is easy to see that the free A-module
generated by S is isomorphic to the relatively free module A ®7 (ZS) for the case
K = Z where ZS is the free Z-module generated by S.

Note that the unit of the adjunction Ig,04 — Res(A® ) is given by the natural
K-linear map E — A®E given by x — 1, ®k x, for each element x in the K-module
E whereas the counit of the adjunction, (A® )Res — Igmod, is just the module
multiplication (we sloppily write W for Res(W))

Pw AQW - W:ia®w — py(a®@w) = aw (A.2.1)

for any A-module W, a € A and w € W which is always surjective. Quite often
we shall use the kernel of pyy, denoted by bhi(W,A) € A® W: from the identities
aQw=aQw—1® (aw) + 1 ® (aw) and p,, (1 ®w) = w we can infer

N

[](W,A) = {Z ((aéa,-)@wi —a;®(aiwi)) N GN\{O}, ai-,ai €A, w;eW VieN, 1<i<N

i=1
(A.2.2)
Note also that the naturality of y entails that for any A-linear map @ : W — W'

the A-linear map idy ® ¢ : AQ W — A® W’ maps kernels to kernels, hence
(ida®¢)((W,A)) < i(W', A). (A.2.3)
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Furthermore, recall the notion of a relatively projective A-module: here any com-
mutative diagram (where f : P — N is A-linear, 7 : M — N is A-linear and surjec-
tive, and s : M < N is K-linear such that mos =idy)

P can be completed to

p
N LN
the commutative diagram M - N —{0)
(A.2.4)
where f : P — M is A-linear. Obviously, any projective A-module is relatively pro-
jective (the converse statement is obviously true in the important particular case
where K is a field). The following Lemma is no doubt well-known and of some

practical use:

N

M N —{0}

Lemma A.2.1 An A-module W is relatively projective if and only if there is a section,
i.e. an A-linear map oy = 0 : W — A® W such that py o ow = idy. In that case we
have

AQW =ow(W)®nr(W,A). (A.2.5)

Indeed, if W is relatively projective, then the particular case P = W = N, M =
A®W, W — W the identity map, 1w = py, and s(w) = 1 @w for all w e W of the left
diagram of shows the existence of 0. Conversely, if a section op: P - A®P
exists, and if we are given the diagram on the left of (A.2.4), then this diagam can be
tensored by A over K: in the resulting commutative diagram the map id4 ® 7t is still
surjective (since AR is a right exact functor), and id4 ® s is now A-linear, whence
the A-linear map F = (idy ®s) o (id4 ® f) : AQ P - A® M completes the tensored
diagram. It is not hard to see that f = upoFoop then completes the original diagram
whence P is relatively projective.

Actually, each relatively free A-module A ® E is relatively projective (choose the
section 0y : a®x +— a® (14 ®x)), and Lemma shows that every relatively pro-
jective A-module is isomorphic to a direct summand of a relatively free A-module.

Conversely, any direct summand W of a relatively free A-module F is relatively
projective where a section oyy is given by the composition (id4 ® 1ty ) © 0g 0 iy with
the obvious inclusion iy : W — F and projection mtyy : F — W.

Recall that both categories Amod and Kmod are well-known to be closed symmet-
ric monoidal categories, see e.g. [32, p.255], by means of the corresponding tensor
products ®,4 over A and ® over K. The restriction functor Res (which we abbre-
viate by G in this paragraph) is known to be symmetric monoidal, the morphism
Gy : K — G(A) being k — k1, and the natural morphism G, : ®(G x G) —> G®a
(see [32, p.255, eqn (1)] for definitions) being the canonical K-linear morphism
Gz VW = Tty w - G(V) ® G(W) — G(V ®A W) induced by the biadditive middle-K-
associative map (v,w) — v ®4 w for any A-modules V,W and any ve V and we W.
The kernel of 1ty 1y is given by the K-submodule K(V, W) < G(V) ® G(W) defined
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by

Ker(mty w) =: KK(V, W) := Kspan{(ax) ®y —x® (ay) | x€ V,y € W,and a € A}.
(A.2.6)
Indeed, it is clear that (V, W) is contained in the kernel of 7y thus my
passes to the quotient to define a K-linear map (G(V)®x G(W))/K(V,W) — G(V®,
W). On the other hand, the map V x W — (G(V) ® G(W))/K(V, W) sending the
pair (x,v) to (x ®k v) modulo K(V, W) is clearly biadditive and middle-associative,
hence -by the universal property of the tensor product ®4- defines a unique map of
K-modules G(V)®4 G(W) — (G(V ®k W))/K(V, W), and it is a routine check that
the two preceding K-linear maps are inverses to each other. Both G(V)®4 G(W)
and its K-submodule C(V, W) are A-A-bimodules in a natural way, and the A-A-
bimodule structure on the quotient (V ®x W)/K(V, W) is automatically symmetric
and reduces to a left (or right) A-module structure. Hence we shall often use the
map 7y, (in more sloppy notation omitting the restriction functor)

to parametrize the tensor product over A, V ®4 W, by the ‘easier’ tensor product
over K, VRW.

Next, let A and B be associative algebras over A. Then both A® B and A®y4 B are
associative algebras over K in a natural way, and it is straight-forward to check that
the K-linear map t453: A® B — A®, B is a morphism of associative algebras over
K.

COALGEBRAS

In this Section we will utilize as standard reference the Sweedler’s book [49]] in
which K mostly is a field. For more general rings we recommend the Appendix of
[39] and [8].

Recall that a coassociative counitary coaugmented coalgebra (C,A,€,1) over K con-
sists of a K-module C, K-linear maps A : C - C®C (comultiplication) and e : C - K
(counit), and an element 1 € C satisfying the usual identities (A®id¢) oA = (id¢ ®
A)oA, (e®idc) oA =idc = (idc®e) oA, €(1) =1, and A(1) = 1®1. We refer to
them as C3-coalgebras.

As usual, we use Sweedler’s notation A(c) = Z(C) ¢ ® c® where the sum is finite,
is in general not unique (and does not have to be) and the constituents symbolized
by ¢V and ¢(® are in C. We have the direct decomposition C = K1@® C* where
C* denotes the kernel of the counit. Morphisms of this category of coalgebras are
K-linear maps intertwining comultiplications, counits and coaugmentations in the
appropriate way. We shall sometimes call this category C3-Coalgy.
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Recall that a coderivation along a coalgebra morphism ¢ : C — C’ is a K-linear map
D :C — (' satisfying A’oD = (D® ¢ + ¢ ® D) o A. Note that for any coderivation
€’ oD = 0, but we do NOT necessarily have and demand that D(1) = 0. We shall
speak of coderivations in the particular case C = C" and ¢ =idc.

Recall that a coideal I  C is a K-submodule such that I « C* and A(I) c Im(I ®
C) +Im(C®I). It follows that on the factor module C/I there exists a well-defined
comultiplication, counit and coaugmentation making the canonical projection 7 :
C — C/I a morphism of coalgebras. Conversely, kernels of surjective (!) morphisms
of coalgebras of this category are always coideals.

Moreover, images of coderivations are always coideals. Recall that the primitive
part of C, Prim(C) c C is the K-submodule of all ¢ € C such that A(c) =c®1+1®c.

Recall that every C3-coalgebra C over K is equipped with an (ascending) filtration

(Q/(n)c> 7 where an) = {0} whenever n < —1, Q C =K1, and
ne

Al)—c®1—1®c € K1®1+Zlm< (/COQui1-C)

(A.3.1)

Comultiplication and counit are clearly filtration preserving. The C3-coalgebra
is called connected iff this filtration is exhaustive, i.e. | J,c, QEH)C = C, see [39] for
a similar definition. This filtration is related to the well-known coradical filtration
in case K is a field, see [49] p.185-191]). Returning to the case of a general ring K,
note that every morphism of C3-coalgebras preserves the above filtrations 15.3.1 .
In particular, it is easy to see that every homomorphic image of a connected C3-
coalgebra is again connected.

Next a very important tool is convolution: for an arbitrary C>-coalgebra (C, A, €,1¢)
over K and an arbitrary associative unital algebra (B, yig,15) over K let x denote
the following K-bilinear operation on the Hom-space Hom(C, B): for any ¢, ¢’ €
Homy (C, B)

Q(n+1)c = {CE C

p*¢' =ppo (¢ )oAc, or Ve: (px¢') Z(p @' (c?)). (A3.2)

It is well-known that the convolution multiplication * equips the Hom-space
Homy (C, B) with an associative multiplication with unit 1ze. Moreover, in case
(C,A,e,1¢) is connected and if the algebra (B, up,15) is equipped with the trivial
filtration defined by F,,B = {0} if n < —1, and F,B = B if n > 0, then the Hom-space
Homg (C, B) equipped with its canonical filtration and convolution is a complete
filtered associative unital algebra over K.

Note that a K-linear map ¢ : C — B is strictly filtration decreasing if and only
if ¢(1¢) = 0; and for those maps any convolution power series >,,- ya,¢*", a, € K,
automatically converges to a well-defined K-linear map C — B.
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Consider now a bialgebra (B, up,1p,Ap, EB) over K: there are both the structure
of an asscociative unital algebra and a C3-coalgebra such that ug: B® B — Bis a
morphism of counital coalgebras. The following important relation appears in an
article by J.Helmstetter [17]: there is the following explicit natural bijection (where
C is a connected cocommutative)

Homg (C*,Prim(B)) — Homcs_coalg, (C, B) (A.3.3)

given by

o0
. . (—1)"
s pFP — e o #(r+1)
p—e with the inverse @ — In,(P): r_EO p 1(CID 1gec) . (A.3.4)

Note further that for any morphism of C3—coalgebras v (C, A€, 1@) — (C, Ac,€ec, lc)
right composition is a morphism of convolution algebras (Homy (C, B), *) — (HomA(é, B), %),
i.e. for any ¢, ¢’ € Homy(C, B)

(px@' oW = (poW)i(¢p' oW). (A.3.5)

Similarly left composition with morphisms of unital associative algebras are also
morphism of convolution algebras. Likewise, for any coderivation D : C — C along
W right composition with D is a derivation of convolution algebras, i.e.

(px@"YoD = (poD)i(¢ oW)+ (poW)i(¢ oD). (A.3.6)

and likewise for left composition with derivations along algebra morphisms.
Finally, note that for any bialgebra (B, up, 1p,Ap, eB) over K whose comultiplica-
tion is cocommutative and any K-linear map x : B — Prim(B) the convolutions

x*xidg and idgxx (A.3.7)

are always coderivations of (B,AB, eB).

FRECHET TOPOLOGY

Recall the definition of the seminorms pg y : C*(R",K) (where K < R" is a com-
pact set and N is a nonnegative integer)

pr(f) = max{|Df f(x)| | xe K, || < N} (A.4.1)

where B = (f1,...,B,) € N is a multi-index, |f| := 1 + -+ + B, and
ﬁl ﬁn
DP = i i )
6x1 8x1
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C*(R",K) is known to be a locally convex topological vector space which is complete
in the sense that every Cauchy sequence converges, see e.g. [43}, p.33]. It is obvious
that for any two compact subsets K, K’ and nonnegative integers N, N’ we always
have for all f € C*(R",K)

if K< K"and N < N’ then pg n(f) < prrn/(f) (A.4.2)

UNIVERSAL ENVELOPING ALGEBRAS OF LIE ALGEBRAS

We shall recall the usual construction, see e.g. the books by H.Cartan and S.Eilenberg,

[12], p.266-270], and by Bourbaki [8, Ch.I, p.22].

There is the following problem of universals: given a Lie algebra (g, [, ]g) over
K, is there an associative unital K-algebra Uy (g) equipped with a K-linear map
iy = i:g — Ug(g) satisfying i([x,y]y) = i(x)i(y) —i()i(x) for all x,y € g such that
for any unital associative K-algebra B and any K-linear map 6 : g — B satisfying
0([x,v]y) = 0(x)0(v) —6(v)0(x) for all x,p € g there is a unique morphism of unital
K-algebras 6 : Uk (g) — B satisfying O oi = 6?

The positive answer to this question can be rephrased in more categorical terms
that the obvious commutator functor ()~ : AssAlgyx — LieAlgy from all unital asso-
ciative K-algebras to all K-Lie algebras has a left adjoint:

LieAlgy AssAlgy (A.5.1)

_U
oN
In this case, to any associative algebra B over K the Lie algebra B~ is associated

where the Lie bracket on the K-module B~ = B is just the commutator [b,b'] :=

bb' —b'b for all b, b’ € B. The map 0 — 0 is the inverse of the adjugant, and the natu-
ral morphism i : g — Ug(g) is the unit of the adjunction. The standard construction
of Uk(g) is given by the free algebra over the K-module g, Tk (g), modulo the two-

sided ideal Zx (g) generated by the set of all elements of the form xy —yx — [x,y],,

x,v € g (warning: in [12]] Uk (g) is denoted by g° and the ideal Zk (g) by U(g)...). Mor-

phisms of K-Lie algebras are first lifted to algebra morphisms of the corresponding

free algebras where they map the first ideal to the second and thus descend to mor-
phisms of universal enveloping algebras.

Note that the K-linear map i : g — Ug(g) is not necessarily injective. It is classical
that i is always injective in case g is a free K-module, for instance if K is a field,
thanks to to the Poincaré-Birkhoff-Witt Theorem, see e.g. [12, p.271-274], where
a basis of Uk(g) is constructed. Moreover, i is known to be injective in the other
important particular case Q c K, see e.g. the Appendix of [39] or Theorem|[A.5.1]
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Moreover, it is well-known that for any K-module V the natural morphism of Lie
algebras Lieg (V) — T (V)™ induces the isomorphism

U (Liex (V) = Tk(V) (A.5.2)

of unitary associative algebras which can easily be seen by the universal properties
of Lieg (V) and T (V).

Next, returning to a general Lie algebra g recall that Ug(g) carries a natural Hopf
algebra structure (Uk(g), py,1,A,€,S) where the cocommutative comultiplication
A and the counit € are induced by the diagonal morphism 6:g — g xg:x — (x,x)
of Lie algebras, i.e. A = Ug(0), and the zero map g — {0}, i.e. € = Ug(0), respec-
tively. This can also be seen by the fact that the ideal Z (g) of the free algebra is a
coideal stable by the antipode S of the free algebra: this implies that each univer-
sal enveloping algebra is a connected cocommutative C3-coalgebra because it is a
homomorphic image of the connected cocommutative C3-coalgebra T (V) with its
structure, see Section[A.6.1]

Turn to the case Q c K: there is the well-known symmetrization map w = wy :
Sk (g) — Uk (g) defined by (for all n e N\{0}, x1,...,x, € g)

W) =1, w(ne o) = S ilkm) i (xom): (A.5.3)

‘ 0€S,

Then, writing s, for the K-linear map Sk(g) — g % Uk(g) (which has kernel
K1 @ Ker(i) ®®;.,S"(g)) it is easy to see that w can be written as a convolution
exponential w = e*% (with the comultiplication in Sk(g) and the multiplication in
Uk (g)) whence it is a morphism of C3-coalgebras, see eqn . It turns out that
this is always an isomorphism of C3-coalgebras:

Theorem A.5.1 Let Q < K. Then the collection of all symmetrization maps wq defines

a natural isomorphism w : S — U where both functors are seen as functors from the
category of K-Lie algebras to the category of all cocommutative connected C3-coalgebras
over K. In particular the insertion maps i are always injective.

Proof. 1t is well know that the collection of all the symmetrization maps forms a
natural transformation S — U. It remains to show that each wy is an isomorphism

In that sense, we have already seen that the symmetrization map w is an iso-
morphism for free Lie algebras, see Proposition [A.6.2lupon using the isomorphism
(A.5.2). We shall prove the statement of the Theorem by a detour to free (Lie) alge-
bras.

Let (g,[, ]5) be a K-Lie algebra, consider the free Lie algebra generated by the
K-module g, Lieg(g), and consider the natural counit map €, : Liex(g) — g of the
adjunction which is a surjective morphism of K-Lie algebras restricting to

119



A. Some basic topics

the identiy map on g < Liek(g) the natural inclusion being given by the unit of the
adjunction (A.6.12). Let k = kg < Liek(g) be the kernel of €. It follows that there is
the direct decomposition

Liek(g) =k®Pg (A.5.4)

where k is an ideal of the Lie algebra Liek(g). Thanks to Proposition we can
and shall henceforth identify the free Lie algebra with the Lie subalgebra L (g)
of the free algebra Tk (g) which is isomorphic to the universal enveloping algebra
Uy (Liex(9)), see (A.5.2).

Consider the right ideal kTk (g) of Tk (g): since k is an ideal of the free Lie algebra
and since the free algebra is generated by g it follows that kTk(g) is a two-sided
ideal of the associative unital algebra Ty (g). Moreover since left multiplications are
coderivations and images of coderivations are coideals it follows that kTk(g) is a
coideal of (Tk(g), Agp€,1).

We shall first show that the quotient algebra Tk (g)/kTk(g) is isomorphic to to the
universal enveloping algebra Uk (g) by showing the universal property. Indeed, let
B be any unital associative K-algebra, and let 6 : g — B~ be a morphism of K-Lie
algebras. Observe that the morphism 0 o ¢, : Liex(g) — B~ is equal to the Lie al-
gebra morphism Lieg(g) — B~ induced by the K-linear map 6 and the universal
property of the free Lie algebra since both morphisms restrict to the same K-linear
map 6 on g. This is also a simple consequence of the naturality of the counit and
works for any adjunction of functors. Let 6 : Tg(g) — B the morphism of unital
associative algebras induced by the K-linear map 6. Since O coincides with the
unital algebra morphism Tk (g) — B induced by the Lie algebra morphism 6 o ¢,
(upon using again the isomorphism ) it follows that 6 vanishes on k, the
kernel of €5, and more generally, on each multiple of k whence it vanishes on the
ideal kT (g) and thus passes to the quotient to define a morphism of unital algebras
0:Tk(9)/kTk(g) — B. The map 0 — 0 clearly is injective which can immediately be
seen by restricting to generators. It is also surjective: let © : Tk (g)/kTk(g) — B be
any morphism of unital associative algebras. By composing with the natural pro-
jection Tk (g) — Tk (g)/kTk(g) the resulting algebra morphism Ty (g) — B restricted
to Liex(g) = Lx(g) vanishes on k whence there is a unique Lie algebra morphism
¥:g — B such that ©|,, () = 9 0 €;. Clearly the induced morphism 9:Tk(g) — B
coincides with © on Lk (g) and hence on the generating submodule g, whence © = 9
proving surjectivity. Hence the quotient algebra Tk (g)/k Tk (g) satisfies the universal
property and is thus isomorphic to the universal enveloping algebra of g.

Next, thanks to the decomposition (A.5.4), we have the canonical isomorphism
Sk (Liek (9)) = Sk (k) @ Sk(g). The kernel of the projection S(ey) : Sk (Liex(g)) —
Sk(g) is thus the ideal and coideal keSk (Liek(g)) of the commutative and cocommu-
tative bialgebra Sk (Liek(g)), and there is the direct decomposition Sk (Liek(g)) =
k o Sk (Liex(g)) @ I(Sk(g)) where I : Sk(g) — Sk(Liek(g)) denotes the natural in-
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jection of bialgebras induced by the inclusion g — Lieg(g). We shall show that the
symmetrization isomorphism w : Sk (Lieg (g)) — Tk(g) satisfies

a)(koSK(LieK(g))) — KTk (g). (A.5.5)

Since w is a bijection this will imply that the subalgebra I(Sk(g)) —which is a
complementary submodule to k e Sk (Liex(g)) in Sk(Lieg(g))- will bijectively be
mapped onto a submodule Y (Sk(g)) of Tx(g) which is complementary to kTk(g).
Passing to the quotient shows that the restriction of @ to I(Sk(g)) followed by the
projection Tg(g) — Tk(g)/kTk(g) will give the symmetrization w; which thus is
a bijection. In order to show the statement (A.5.5), it is easy to see that w maps
k o Sk (Liek(g)) into the ideal and coideal kT (g) because the value of w of a com-
mutative word containing at least one element # of k will be a linear combination
of noncommutative words each containing 7 but not necessarily at the beginning.
By iterated commutators with # —which create new elements of k since it is an Lie
ideal- is is seen that each such word is an element of kTk(g).

The inverse inclusion is a bit more involved: let 7 € k and b € Tk (g) we want
to show that #b is a linear combination of terms w(n’ e ) with #' € k and B’ €
Sk (LieK(g)). In order to avoid too concrete combinatorics we shall argue with the
coalgebra structures: the left multiplication L, with the primitive element 7 is a
coderivation Tk (g) — Tk (g) which can be written in the convolution form nexidr, (g
as can be seen immediately, where the convolution « is w.r.t. the multiplication and
comultiplication of the bialgebra Tk(g). It follows that the K-linear map w ™! oL,ow
is a coderivation of the coalgebra Sk (Liek(g)) which is always of the convolution
form d = d¥ids, (Lieg(g)) Where d is a K-linear map SK(LieK(g)) — LieK(g)) and
the convolution # is w.r.t. the multiplication and comultiplication of the bialgebra
Sk (Liex(g)). Suppose that the values of d lie in the ideal k of Lieg(g). Recall the
classical formula for the derivative of the exponential map: Let (B,s,15, (F(n)B),ZeZ)
be complete filtered associative unital A-algebra, let z€e F_;)B,and D: B — B a
filtration preserving derivation, then —upon writing ad,., : 2 — 2/ wz” — 2" n 2’ for
any z/,z" € B- we have

D(e") = (W(B(z))) e (A.5.6)

It follows that, upon setting B = (Homy (Sk(Liek(9)), Tk(9)), *) and D(¢@) = @od,

CL)OE

A ady, _ ;
e*qog (eqmd;g(d)> xe™,

ad,,

since god = d viewed as a map into k  Lieg(g) < Tk(g).
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Moreover, let { : Sk (Liek(g)) — k any K-linear map then for any p € Sk (Liek(g))
thanks to the cocommutativity of Ag:

(adug(@) () = 2 (aBp(B®) — w(B™)a(B™)) = 3 [a(BM), 9 (8]
(B) B)

Yadgqg) (9(B?)) = (ad, " 9) ()
®)

where we have written ad for the adjoint representation of the free K-Lie alge-
bra, i.e. ad (C') = [C, ] for any ,’ € Liek(g) and used the convolution action

" of the convolution algebra (HomK (SK (Liek(g)), Homg (k,k)),*’) on the mod-

ule Homg (SK (LieK(g)),k) which is well-defined since k is an ideal of Lieg(g) hence

stable by all the linear maps ad, C € Liex(g). By an easy induction we can finally
write

e _id e =1 i

Clearly the above K-linear map E is an invertible endomorphism of Homg (SK (LieK (g)), k)

because the zeroth order term of the series is the identity map and the higher order
terms lower the degree. It follows that there is a unique solution d : Sk (Liex(g)) — k
of the equation E(d) = njes showing that for all g € Sk (Liek(g))

nw(B) =Ly (o(p)) = w(d(B)) = @ (Zd(ﬁ“’) . ﬁ(2)> e w(keSk(Liex(v)) )
(B)

which proves the inclusion S of eqn (A.5.5) and hence the Theorem. O

It follows that that the primitive part of the universal enveloping algebra is iso-
morphic to the Lie algebra in this case. Moreover, note that a posteriori it becomes
clear that the inverse of w can written in the convolution exponential form e** (see
the proof of Proposition[A.6.2) where x : U(g) — g is given by the composition of the
Eulerian idempotent eél) of Uk (g) —defined as for the free algebra in eqn but
which can be done for the more general universal enveloping algebras since all the
ingredients (identity map, counit, cocommutative comultiplication) are also there—
followed by the injection into g © Sk(g) which is now well-defined thanks to the
preceding Theorem. Note however that the very nice (modified) Dynkin idempo-
tent in general makes no sense for universal enveloping algebra.

There is a Baker-Campbell-Hausdorff type convolution formula for universal en-
veloping algebras in case Q c K, see e.g. [3]].
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A.6

A.6.1

A.6. Free algebras

FREE ALGEBRAS

Free (Symmetric) Algebras

Recall some standard material on the tensor algebra over a fixed K-module V: It
is defined by Tg(V) = T(V) = @2 ,V® with V& := K =: K1, V®! := V, and for
each integer r > 2 the symbol V& means the r-times iterated tensor product of V
with itself, see [21} p.139-141].

Recall that T(V) carries an associative multiplication p written pu(b ® b’) =: bb’
defined by the tensor product by means of which (T(V),y,1) is a unital associative
algebra which is a free unital algebra over V, i.e. for any given associative unital alge-
bra (B, UB, IB) there is a natural bijection ¢ — cﬁ of the set Homg (V, B) of all linear
maps from V to the underlying K-module of B to the set Hom, (T(V), B) of all
morphisms of unital algebras by means of the well-known formula ‘on generators’

P(1) =14, P(x1---x,) == (P(x1)) -+ (P(x4))

for all integers n > 1, and xy,...,x, € V and where the multiplication on the right
hand side is in B. In other words V — T(V) defines a functor Kmod to AssAlgg
which is left adjoint to the obvious forgetful functor:

Tk

KMod AssAlgy (A.6.1)

Forget

Recall furthermore that T(V) carries a comultiplication Ay, : T(V) - T(V)QT(V)
which is defined to be the morphism of associative algebras defined on generators
x €V by Agy(x) =x®1+ 1®x. Define for all integers 1 <r < n—1 the subset of all
shuffle multiplications in the usual way by

Sh(r,n—r):={o€S,|o(l)<--<oa(r), o(r+1)<---<o(n)} (A.6.2)

It is now easy to see by induction the following expression for Ay, Ay, (1) =1®1,
Agp(x1) = x1®14+1®x for all x; € V, and for all integers n > 2 and xy...,x, € V we
get

Agn(x1--%) = (X1 %) @1+ 1® (x1 -+ x,,)

n—1
+30 2 (o) %) ® (Xe(ra1) - Xa(w) (A6.3)

r=1¢0€eSh(r,n—r)

It easy to check on generators that Ay, is cocommutative and coassociative. In
the text we shall use Sweedler’s notation (see Appendix to avoid the above
clumsy expression (A.6.3). Next, the projection map e : T(V) — K which is defined
to vanish on the augmentation ideal T*(V) := @, V® " and satisfies (A1) := A for
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all A € K is a counit of the coalgebra (T(V),Ay;), i.e. we get hence the quintuple
(T(V), 4,1, Ag, €) is a cocommutative bialgebra.

In addition to that, we mention the antipode S : T(V) — T(V) which is a K-linear
map defined by

S(1)=1, and S(x;xy---x%) = (=) xpxp_1 -+ xpx7. (A.6.4)

Note that the canonical filtration (an) (TK(V))> N of the C3 coalgebra

ne

(TK(V), Agp, €, 1), see equation

is exhaustive since for all nonnegative integers n we have ®;_, T (V) © Q’(n) (Tx(V)).

It follows that the C3 coalgebra (Tx(V), Agy €,1) is always connected.

Next, we shall very often perform induction arguments with respect to the tensor
degree: recall that the degree derivation Deg: T(V) — T(V) is defined in the obvious
way by Deg(b) = nb for any nonnegative integer n and b € V®". It is quite useful in
case Q c K. It is obvious that Deg is both a derivation of y and a coderivation of Ay,
as can be seen directly.

Clearly, all elements of T(V) of tensor degree zero are of the form k1 for some
k € K, all elements of tensor degree 1 are of the form x € V, and every element of
tensor degree less or equal than n + 1 for some nonnegative integer n is a K-linear
combination of elements of the form xb or b’x where x € V and b,b’ € T(V) having
tensor degree less or equal than n. We shall not repeat these characterizations each
time we are using it.

Note that, in case Q < K, there is a convolution logarithm of the identity map
idt, (v) the so-called Eulerian idempotent

7‘

= (idr ) - 1e) Y (A.6.5)

ee}
e :=1n, (idr(v) Z

which is well-defined because Tk (V) is a connected cocommutative coalgebra. The
above equation (A.6.5) is a particular case of formula (A.3.4). The following formu-
las

Agp 0 e — (1) ®1+1 ®e(1) et e o) = (1) (A.6.6)

can be shown: the first by showing an exponentiated version, and the second by
a straight-forward computation using the first identity. These equations imply that
e(!) is a projection onto the primitive part of the C3-coalgebra (Tx(V), Ay, €,1). This
primitive part will be shown to be isomorphic to the free Lie algebra generated by
V, see Proposition [A.6.1]of the Appendix

Recall the symmetric algebra generated by the K-module V, Sx(V): it is defined
to be the quotient of the free algebra Tx (V) modulo the two-sided ideal J,(V) =
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Jo(V,K) of Tg(V) generated by all the elements of the form xy — yx with x,p €
V. This makes the Sg(V) a commutative associative unital K-algebra such that
the natural projection Py : Tg(V) — Sk(V) is a morphism of unital algebras. We
shall denote the resulting commutative multiplication by e. Note that the grading
of the free algebra induces a grading Sk (V) = @®;._,Sk(V). Since Jy(V) is also
easily seen to be a coideal it follows that Sx (V') carries a canonical comultiplication
Ag, a counit €5, and an antipode S such that the coalgebra Sk (V) is a connected
cocommutative C3-coalgebra and such that P, is a map of C>-coalgebras. As in the
case of the free algebra Tg(V), the assignment V — Sk(V) is a functor from the
category of all K-modules to the category of all unital commutative associative K-
algebras where the action on K-linear maps ¢ : V.— W is defined as the induced
map of T¢ which sends the ideal Jy(V) to the ideal Jy(W). This functor is easily
seen to be left adjoint functor for the obvious forgetful functor from the category
of all unital commutative associative K-algebras to the category of all K-modules,
hence similar to diagram where the category on the right is specialized to
commutative algebras.

The coalgebra structure on Sk (V) is particularly important: note that the mor-
phisms Sg¢ are also morphisms of C3-coalgebras. For the case Q = K —which
will be the most important for us- it turns out that S (V) is cofree in the sense
that the functor S defines a right adjoint functor for the particular forgetful func-
tor ()T from the category of all cocommutative connected C3-coalgebras over K,
C3CoalgCCy, to the category of all K-modules assigning to each coalgebra C the
K-submodule C* = Ker(¢e) < C:

oM

K

C3CoalgCC K-mod (A.6.7)
8Lk

meaning that for a any given connected cocommutative C3-coalgebra C and a K-
module W the two following Hom-spaces are naturally isomorphic:

Homg mod (CT, W) = Homescoargee, (Cr Sk (W))

The isomorphism from the left Hom-space to the right one is again given by a
convolution exponential ]
p—e? (A.6.8)

where ¢ : C™ — W is K-linear and # denotes the convolution with respect to the
multiplication e in Sg(W) and the comultiplication Ac of C which of course is a
particular case of formula (A.3.4). The restriction of ¢ to the submodule S"(V) is
called the rth Taylor coefficient of ¢. We also note the following well-known fact that
the map

Homg (Sk(V), V) — Coderg (Sk(V),Sk(V)) :d — d = d % ids,(v) (A.6.9)
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induces an isomorphism of K-modules where the latter K-module denotes the set
of all coderivations of the coalgebra (Sk(V),As,€es). The inverse map is just the
composition of the coderivation with the natural projection pry : Sx(V) — V (the
counit of the above adjunction (A.6.7)).

Finally, we need a natural comparison between T4 (V) and Tg(V) for a given A-
module V: in order to distinguish the structures we shall denote by y, 1, Ay, and
€ the usual A-linear bialgebra structure of T,(V), and by fi, 1, A,;, and € the cor-
responding K-linear bialgebra structure of Tg (V). Note that the natural morphism
my,w: VAW — V@, W, see Appendix[A.2.Tjwhere V, W are A-modules canonically
extends to a natural morphism of unital K-algebras

m: (Te(V), 1) = (Ta(V),u1) (A.6.10)

where of course (A1) = (1)1 where 1 : K — A denotes the given morphism of
unital rings. Then there is the relation

T, (1), Ta(v) © (M@T) 0Agy = Agyon and 1oé=eom (A.6.11)

which is clear by their definitions.
Note also that the restriction of 7t to T™(V) is surjective, the kernel being the
two-sided ideal generated by K(L,L), see eqn (A.2.6).

Free Lie Algebras

A good introduction to this topic is Bourbaki’s book [8] or Reutenauer’s book [41]].
Let LieAlgy be the category of all K-Lie algebras, and let Forget be the obvious for-
getful functor from this category to the category K-mod by omitting the Lie bracket.
There is a well-known functor Lieg from K-mod to LieAlgy which is a left adjoint
for Forget:

K-mod LieAlgy (A.6.12)

Forget

For any K-module V the K-Lie algebra Liek (V) is called the free K-Lie algebra gener-
ated by V. We shall briefly recall its definition, see also [8] since there seem to exist
misleading definitions in some text-books.

Let BPT denote the set of all binary planar trees, see e.g. [31}, p.597], with grafting
as nonassociative binary multiplication. It parametrizes bracketings in nonasso-
ciative algebras such as ((ab)c)d or a((bc)d). It can also be seen as a subset of the
free associative monoid (without unit for simplicity) generated by two generators
t,p: look at the nonassociative operation u ® v = uvp and take the nonassociative
monoid generated by t under this operation, see Jacobson’s contribution [20, p. 122-
123] in [18]). In any case BPT is a nonassociative monoid (without unit) graded by
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the degree in f, BPT = J,cn (o) BPT,. Then the free K-module KBPT generated by
the set BPT is a nonassociative algebra over K graded by the positive integers. For
any K-module V the K-module

Magk (V) = ®7_,KBPT, ® V&" (A.6.13)

is a nonassociative algebra in a natural way. Moreover it is free in the sense that for
any given nonassociative algebra (B,s) and any K-linear map 0 : V — B there is a
unique induced morphism 6 : Magg (V) — B of nonassociative algebras such that
O(t ®x) = O(x) for all x € V. The free Lie algebra Lieg (V) is defined to be the quo-
tient of Magg (V) by the two-sided ideal generated by the set of all {xx | x€ V} and
the set {(xy)z + (vz)x + (zx)y | x,9,z € V}. The Lie bracket is the induced nonasso-
ciative multiplication. Note that the unit of the adjunction, the natural insertion of
generators iy : V — Lieg (V) is still injective since the ideal is graded and contained
in degrees > 2. This also implies that the free Lie algebra is graded by the positive
integers. It is easy to see —upon using the Jacobi identity— that a system of non inde-
pendent generators of the K-module Lieg (V) is given by the followng iterated left
ordered commutators:

X, ..., [xl, [xz, [x3,. ) [Xn_1, %] ]]] (A.6.14)

where n > 2 is a positive integer, and x,xy,...,x, € V. Though nonunique, these
generators serve to express the unique morphism of Lie algebras O : Lieg(V) —
(g,[, ]g) induced by an arbitrary K-linear map 6 : V — g (with xy,...,x, € V)

0(|x [xa s el 1] ]) = [0000), [0(x2), [0(x3),. [00u-1), 0(x)gly-- ], |

g
(A.6.15)

Next, recall that the free algebra T (V) is a Lie algebra over K with respect to the
commutator of the associative multiplication y, denoted by Tx(V)~. There is thus
a unique morphism Lieg (V) — T (V)™ of K-Lie algebras induced by the injection
V — Tk (V) whose image is the Lie subalgebra of Ty (V)™ generated by V, L (V).
Note that in general this morphism is NOT injective in higher degrees.

However, in case Q < K as a subring, and this we shall suppose for the rest of this
appendix part, this is the case (see [20} p.167-174], [31]], [41] for fields of characteric
0).

For the convenience of the reader we shall give the indication of the proof:

Proposition A.6.1 Let Q c K as a subring, and let V be a K-module. Then

Liex(V) = Lg(V) = Prim(T(V)):= (A.6.16)
{beT(V)|Apu(b) =b®1+1®Db}.
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Proof. Firstly it is clear by the Jacobi identity that the K-module L (V) is spanned
by left ordered commutators of elements of V in T (V), see eqn (A.6.14). This easily
implies the inclusion L (V) < Prim(T(V)). For the converse inclusion and for the
rest of the proof the important thing is the existence of the following K-linear map
ép : Tx(V) — Tx (V) whose image is equal to Lk (V) defined by (for all xe V, neN,
n=2,xy,...,x,€V)

ep(1):=0, ep(x) =x, &p(x;---x,) = [xl,[xz,[x3,...,[xn_1,xn]---]]]. (A.6.17)

The following Von Waldenfels convolution formula (see [54] and [41} p.20-21, Lemma
1.5]) is easy to check by induction over the tensor degre as well as the stated conse-
quence

ép =Deg*S implying V& ePrim(T(V)): ép(&) = Deg(&). (A.6.18)

where * is convolution with respect to the free multiplication and the shuffle co-
multiplication of Tg(V) and S is the antipode of T (V). Since the homogeneous
components of every primitive element are obviously primitive and have strictly
positive tensor degree (which is invertible in Q < K) the other inclusion is clear
showing the last equality in eqn (A.6.16). As has been stated above there is a natu-
ral morphism of K-Lie algebras Lieg (V) — L (V) induced by the identity map of
V.

It remains to show that Lieg (V') has the universal property because this implies
that the above natural map is an isomorphism: indeed, let (g,[, ];) an arbitrary
K-Lie algebra, and 6 : V — g an arbitrary K-linear map. Then the following K-
linear map 6 : Tg(V) — g written in the following way for any integer n > 2, and
X,X1,...,X, € V: 6(1):= 0, 6(x) := 6(x), and

v

O(x,---x,) i= [Q(xl), [0(x,), [9(x3),...,[e(xn_l),e(xn)]g]g...]g]g. (A.6.19)

is well-defined by the universal property of the tensor product. We shall show by
induction over the tensor degree that for all b € T (V)

6(ép(b)) = 6 (Deg(b)). (A.6.20)
Indeed, this is clear for b of degree 0 or 1. In order to do the induction we can

take b of degree n and x € V, and use first the obvious equation ép(xb) = [x,ép(b)]
whence
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by the induction hypothesis. To compute the term —é(éD(b)x) we can assume that
b is of the form b = y; ---y, (for vy,...,y, € V) and use the adjoint representation of
g, i.e. adg(C’) = [C, ']y for all ¢, T’ € g to write

v

O(y1-yux) = <adg(yl) SR ad?)(y,,)) (6(x))

and thanks to the Jacobi identity, i.e. [adg,adg,] = ad?C,C’]g we get

—0(ep(b)x) = —[adg(m,[adg(yz),...,[adg(ynil),adg(yn)]...]] (0(x))
—adj (6(x))

(060 [0), [062)--, 0311 051yl | = Oxb)

whence 6 (ép(xb)) = n6(xb) + 0(xb) = (n + 1)0(xb) proving the induction.

Defining now the K-linear map 6 : Lx(V) — g on each homogeneous element &
1

of positive degree n by 6(&) = Hé(é) we see —upon using eqn (A.6.20)- that this
obviously well-defined map satisfies the above identity (A.6.15) with 6 replaced by
0. Finally, by an easy induction over the tensor degree of & € L (V) it can be shown
that for all &,&' € L4 (which we alwys can write as left-ordered commutators) the
morphism identity [é(é),é(é’)]g = 0([&,&']) holds. This and the fact that Lx (V)
in generated by V shows the universal property, and in particular the isomorphism

with the Lie algebra Lieg (V). O

Recall that the normalized version of ép, ep, which is defined by ep(x;---x,,) =
%ED(xl ---x,) for all strictly positive integers n is an idempotent map (one of the
many Lie idempotents) and sometimes known under the name of Dynkin idempotent.

Recall that for the case Q c K and any K-module V there is the symmetrization
map w : Sk (Lie(V)) — Tk (V) given by (for all ne N\{0}, &,,...,&, € Lie(V))

w1) =1, w(&e--e&y) :=% 2. (&) (&) (A.6.21)

' oes,

where i : Lieg (V) — T (V) denotes the natural morphism which is injective in our
case, see Proposition There is the well-known

Proposition A.6.2 Let Q c K, and let V be a K-module. Then the symmetrization map
w : Sk (Lie(V)) — Tk (V), see eqn is an isomorphism of C3-coalgebras.

Proof. Let q : Sk (Lie(V)) — Tk (V) the K-linear map consisting of the projection
Sk (Lie(V)) — Lie(V) (with kernel equal to K1®@®;° ,Sk (Lie(V))) followed by the
injection i (see also the second map of eqn (6.2.13) ), and let = denote the convolution
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with respect to the comultiplication in Sk(Lie(V)) and the free multiplication in
Tk (V). Then clearly w is equal to the following convolution exponential

w = e* (A.6.22)

and hence a morphism of C3-coalgebras. In order to construct an inverse map recall
the Eulerian idempotent e(!) : Tg (V) — T (V) (see eqn (A.6.5)), which projects onto
the primitive part of Tx(V'), hence the Lie subalgebra Lx (V') which is isomorphic to
the free Lie algebra, see Proposition Let x : Tg(V) — Sk (Liex(V)) be equal to
the corestriction of e(!) to Lk (V) followed by the injection to Sk (Lie(V)), then the
convolution exponential e*X, see the convolution table (6.2.12), is readily checked
to be an inverse of w. O

DIFFERENTIAL GEOMETRY VERSUS ALGEBRA

Let X be a differentiable manifold (always supposed to be Hausdorff and second
countable). For the sake of laziness we shall assume that X is connected. Let K
denote the field R of all real numbers or the field C of all complex numbers. Let A
be the K-algebra of all smooth real-valued functions X — K, A = C*(X,K). Here
the constant functions 1 and 0 are the only idempotents of A thanks to the fact
that X is connected. We first set K = K. Next, let KVBy the category of all vector
bundles over X where the object class consists of all K-vector bundles (E, t, X) over
X (t: E — X denoting the bundle projection; we shall often write just E, E’), where
a morphism W : (E,t,X) — (E/,7/,X) is a smooth fibrewise linear map W : E — E’
such that T’ oW = 1.

Recall that for any two vector bundles E,E’ over X there is the fibrewise direct
sum E@E’ and the fibrewise tensor product EQ E’ which can be seen as a coproduct
structure and a symmetric closed monoidal structure on the category KVBx where
the unit object is X (seen as the trivial vector bundle X x {0}) for the fibrewise
direct sum, and the trivial bundle X x K for the fibrewise tensor product. These
structures are compatible in the usual ‘distributive manner’ explicited in the so-
called distributive monoidal categories, see e.g. [? | for more details.

Recall that the category of all R-modules (where R is some fixed unital ring) is also
distributive monoidal with respect to the usual direct sum @ and tensor product ®.

There is a well-known functor I' from KVBy to A-mod associating to each vec-
tor bundle (E,7,X) over X its A-module I'(E) := I'*(X,E) of all smooth sections,
i.e. smooth maps ¢ : X — E with to ¢ = idy, and to each morphism ¢ : E — E’
of vector bundles over X the composition ¢ — ¢ o ¢. This clearly is a monoidal
functor (for both structures), see [32, p.255] for details, where the natural map
I :T(E)®4T(E") > T(E®E’) mapping two sections to their fibrewise tensor prod-
uct is an isomorphism (the same being true for direct sums). According to the Serre-
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Swan Theorem (see e.g. [10, p.154, Lemma (14.4)]) all the A-modules I'(E) are finitely
generated and projective.

On the other hand, if we restrict the category A-mod to the full subcategory A-
modg,,, where the objects are finitely generated projective A-modules, then there is
a functor B from A-modg,, to KVBx: Let V be a finitely generated projective A-
module, and fix a set €y,...,€) € V of generators. Furthermore, for each x € X let
0y : A = K :a— a(x) be the usual evaluation (‘delta’) functional and I, c A its
kernel is a maximal ideal of A (and closed w.r.t. the usual Fréchet topology on A).
The field K becomes an A-module by means of 9, isomorphic to A/I, =~ K®, A.
Denote by B(V), = V/(I,V) @ K®, V which is a finite-dimensional K-vector space
of dimension n, < M (which we call the rank of V at x), and write —-by abuse of
notation- 6, : V. — B(V), for the canonical map v — 1g ®4 v for which we shall
also write 9,(v) =: v(x). By elementary linear algebra we can assume that there are
positive integers 1 <i; <--- <1i, < M such that the elements ¢; (x),...,einx (x) form
a basis of B(V),. Consider the set given by

B(V) = | <{x} « I;/) (A7.1)

xeX

(disjoint union) together with the obvious projection 7 : B(V) — X induced by the
first factor projection.

Moreover, since each A-linear map @ : V. — W induces a well-defined canoni-
cal K-linear map B(®), : B(V), — B(W), there is a fibrewise linear set map B(®P) :
B(V) — B(W). It remains to show how to construct the locally trivial vector bundle
structure on B(V): this is traditionally be done by first passing to the algebra and
module of all germs at a point x and applying the theorem that all finitely gener-
ated projective modules over a local ommutative ring are free, see e.g. [21} p.413,
Thm.7.5], and then going back to the localized modules.

We sketch a more elementary reasoningﬂ For each open subset U of X consider
the local function algebra Ay := C*(U,K) with the obvious restriction map ry :
A—Ay:f— (y— f(v)) for all y € U which is a morphism of unital K-algebras,
and write V; for the ‘localized’ module Ay ®,4 V. Since V is finitely generated
and projective there is another finitely generated (and a posteriori projective) A-
module V' such that the direct sum V @ V' is isomorphic to a free module AN for
some nonnegative integer N. By choosing generators €/,...,€), of V/ we get by an
entirely analogous construction a choice 1 < j; < ---j,» < M’ of integers such that
e;»l (x),...,€: (x) form a base of the K-vector space B(V’), whence —thanks to the

it
obvious decomposition KN =~ B(V), ®B(V’), resulting from V® V' = AN— we have
the rank equality n, + n, = N. Upon considering all the elements of V and of V’,

1. T'would like to thank S.Waldmann for communicating this nice short argument.
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in particular the generators €y,...,ey and €/, ..., 5 as KN-valued smooth functions
on X and upon applying the usual arguments of minors we can infer that neither the
rank of V nor the rank of V’ can locally fall, and since they always sum up to N they
have to be locally constant. Hence for each x € X there is an open neighbourhood U,
such that the restrictions ry_(€; ),..., rUX(e,-M) form a base for the localized module
Vy, which is hence a free module of rank n,. Since X is connected and since the
rank of a free module over any commutative ring is well-known to be an invariant
(seee.g. [21], p.412, Prop.7.18]), it follows that there is a nonnegative integer n for all
x € X such that , = n. This allows to construct local trivializations of (B(V), 7, X) as
set maps, and the change of these trivializations on the overlap U of two domains
will be a GL(n,K)-valued smooth map (composed out of elements of A;) giving
rise to the usual cocycle of transition functions from which the entire differentiable
bundle structure can uniquely be constructed, see e.g. [27, p.51-52, Theorem|. This
makes the functor B well-defined on objects, as well as on morphisms (upon passing
to local representatives).
It is not hard to see that the diagram of functors

KVBy

Amodgg, (A.7.2)

is an equivalence of categories preserving the distributive symmetric closed monoidal
structures.
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B.1

B. Tougeron’s Lemma

PRELIMINARY

We will present in this part of the appendix some constructions around the Tougeron’s

lemma.

First of all, the objective is construct a smooth real function defined in R" that is
constant igual to 1 in B,_,(0), 0 outside B,(0) and this function assume values in
[0,1].

Let us consider the following function p : R — R given by

—1

et ift=0
t):=
p(t) {o ift<0

Figure B.1. — Graph of p

k
Of course, p is C* in R\{0} and d—p(t) =0fort <0. If t >0 we have d—p(t) =

dtk at
-1 e I - d> _ -1
(et) =e (Tl)/zt—ze g andd—t‘;(t)z (t—f+%4)e r.
Actually, we can proof by recurrence that
L 1y,=1 .
i(t)': pk(t)et ift>0
dtk 7 0 ift<0
where py is a polynomial of degree 2k.
It is not dificult to proof that ‘Zk—tf always exists in R and is equal to 0 in ¢ = 0, it

means that p is C*. Observe also that p is positive for ¢ > 0 and strictly increasing

and limitated by tlir+n e = 1.
—+00
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Afterward, les us take two real numbers 0 < a < b. Then the function pg : R —» R

Pap = p(t —a)p(b—1)

it is clearly a C*-function such that assumes values in [0,1] < R. Also note that
pap(t) =0fort <aandt>bandalso 0 <pg(t) <1fora<t<b.

Figure B.2. — Graph of p,, fora=1,31and b = 6,5

Next let us define ¢, : R — R by

L paw(0)dr
bty i= 5 2

But from 0 < "% p,p(7)dT = Ss pap(T)dT < 0 follow that ¢, is increasing and C*
such that

{0} ift<a
Pap(t) e [0,1] ifa<t<b
{1}  ift>0.

Finally, let us take € and r two positive real numbers such that 0 <r —e <r. We
then define the function ¢, . : R” — R by

Pre(x) = ¢(r—s)2r2 (”2 +(r— 6)2 - ||x||2)

where ||x||> = x? + x3 + -~ + x2 for x = (x1,x,,--,x,). This function is also C* and

1 if||x]| <r—e
lzbr,e(x): yE[O,l] ifr—€<’|x|’<T
0 if ||x|| = r.

The following theorem can be found in Rudin’s book, see [44][p.147, Thm 6.20].
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06

04

02

Figure B.3. — Graph of ¢, in red

Theorem B.1.1  Soit (O — R" une partie ouverte nonvide et (U, ) ,cs une famille d’ouverts
telle que l'on a | yeq Uy = Q. Alors

1. Il existe une suite (Bi)ieN\{O} de boules fermées de centre s; € Q) et de rayon r; > 0,
i.e. B; = B, (s;) telles que

VieN\{0} Ja;€95 telsque B;c U, et U U%(si)z U B;,=Q
ieN\{0} ieN\{0}
En particulier, Q) est une réunion dénombrable de parties compactes de R".
2. Il existe une suite (;)jen (0} de fonctions de classe C* de R" — R telle que
a) VieN\{0},YxeR": 0<1;(x) <1etsupp(y;) c B; c Uy,
b) VxeQ3ieN\{0}VjeN\{0}:xe U%(si) et sij =i+ 1 alors U%(si)m

supp(y;) = &. En particulier, cela veut dire que la famille des supports des
Y; est localement finie.

¢) Lasomme Y.° | 1; est une fonction numérique bien définie et 'on a
0 .
1 sixe(),
i(x) = .
;l’b’() {0 six¢ Q.
1=

d) Pour toute partie compacte K < Q il existe un entier strictement positif m et
une partie ouverte W o K tels que

VxeW: (x)+-+1,(x)=1.

136



B.1. Preliminary

e=08
S e
3
'é.i
- q
B(0) -~7 ", R ‘8-'.'?".. ;:'
- o . e
e o2 .
':’?t-‘a‘ o
’ PR
i e 1 B () /
’ J \ e
I J/ B0) \ .
P
! ' ‘\ 1 |
1 | 1
|
:.—z '| -1 [] 1 r' ! 3 4 5
(r—e)
.o:b' \ i\ i,
. \ ‘ ? -
.‘,’.'I% . / X ‘M'...
. 1 ’
£#.o\" ~ - /
y,& - P ’
;RI#‘
R -7
'3;. R I i

Figure B.4. — Example in R?: points in the surface of i, ¢ in the form (x,7, ¥, (x, 7))

Proof. 1. Consider S — Q) a countable dense subset, as for example S = Q n Q". If
we take s€ S as QO = | J,c; U, then 37 € R;B,(s) < Q) and By(s) n U, # @, for some
a € L. Notice that, U, is open and then we can take r € Q such that B,(s) < U,. In
addition, as the center of this balls are in S, this is a countable number of balls, so
let us call then B; = B,.(s;) and V; = B (s)-

In the other hand, fixed x € O we obtain a « € L such that xe U, < Q). As U, is
open thereisa 6 > 0, that we can suppose rational, such that Bs(x) — U,. Moreover,
exists s € S such that d(x,s) < %, because S is dense. Here d is the Euclidean distance
inR". Letbeze B%'(s). Then,

d(x,z) <d(x,s)+d(s,z) < Z + g = 316 <o and

xeB%(s)cB (s) © Bs(x) = U,.

)
2

Consequently, B% (s) U, and then B% (s) is some B;, and moro x is in some V;, it

shows that
Yvi=UJsi=0.
ieN ieN

2. Let us consider a sequence of functions (®;);cny where for each i € N we have
®; : R" — R such that Vx e R",0 < ®;(x) < 1, {x € R";¢p(x) # 0} = supp(P) < B;
and @;(x) = 1,Vx € V;. From the above construction is sufficient to take the function
;x> Py o (x—5;).
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Now let us define the following sequence of functions
1 =P and  Vi=2,i(x) = (1 -D1(x))(1 = Dy(x)) -+ (1 = Djy (x))D;
We obtained that each ¥; is C*, 0 < ¢;(x) < 1,Vx € R"” and for all x e R"

supp(¢;) < supp(®;) = B; and
Vijil<j<i—landVxeViuV,u -0 Vi=1;(x) =0

because @;(x) =1 = (1 - D;(x) = 0),Vx € V. It shows (a) and (b).
(d) Let K < Q) be a compact subset. As the family (V;);en (0} covers K so there is
a strictly positive integer m such that K < V; u--- U V,, := W. The equation

Pr+octPi=1—(1=¢1)(1-¢;) (VieN\{0}) (B.1.1)
shows that for all x e W it comes that iy (x) + -+ + ¥, (x) = 1. O

Corollary B.1.2  Soit QO < R" un ouvert non vide, et (K,,),en une suite de parties com-
pactes de Q) telle que

U K,=Q et YneN: K, <K, (lintérieur de K, ;).
neN

Alors il existe une suite (W,,),en de parties ouvertes de () et une suite (a,),en de
fonctions de classe C* d valeurs réelles sur R" telle que

1 sixeW,,
VneN:K,cW,cW,cKy,; et a,(x)=< 0 six¢ K, 1,
y€[0,1] autrement.

B.2 TOUGEREON’S LEMMA

The following Lemma is quite important for the proof of the Theorem and
was taken from Jean-Claude Tougeron’s book [52}, p.113, Lemme 6.1].

Lemma B.2.1  Let Q) be an open set of R", and (¢;);en a sequence of smooth functions
Q — K. Then there is a smooth function a : R" — R such that

1. a takes only values between 0 and 1. Moreover a(x) = 0 for all x ¢ 3, and a(x) > 0
for all x € Q.

2. For each nonnegative integer i the function ¢’ : R" — K defined by

ren . ) dix)a(x) ifxeQ
¢i<x>.—{ Jo) ifxe0

is smooth.
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Proof. Let (K,) ey be a sequence of compact sets of R” such that
VneN: K,cKy,y and | JK,=Q,
neN

let (W,),eny be a sequence of open subsets of (), and let (a,,),cy be a sequence of
smooth functions R” — R such that

o 1 sixeW,,
VneN:K,cW,cW,cK;,; and a,(x)=< 0 six¢ K,y 1,
y€[0,1] autrement.

Recall the definition of the seminorms pg y : C*(R",K) (where K < R" is a com-
pact set and N is a nonnegative integer)

prn(f) :=max{|Df (x)| | xe K, |B| < N} (B.2.1)

where B = (B1,...,B,) € N" is a multi-index, || := B +--- + B, and

b (2N (2N
T (3x1 0x1 ’

C*(R",K) is known to be a locally convex topological vector space which is complete
in the sense that every Cauchy sequence converges, see e.g. [43, p.33].

It is obvious that for any two compact subsets K,K’ and nonnegative integers
N, N’ we always have for all f € C*(R",K)

if K< K"and N < N’ then pxn(f) < prn/(f) (B.2.2)

Choose a sequence (€,,),cy of strictly positive real numbers such that

1

, 1 .
VjeN: p., j(€a;) < 5 and Vi<jeN: pg. i(eja;¢;) < i

which is possible since for each nonnegative integer j there are only finitely many
seminorms involved. For each nonnegative integer N set

N
dN) = Z €ja]'.
j=0

Clearly a(y) is smooth, has nonnegative real values, and has its support in Ky, ; <
Kn4+1 < Q. Fix i € N. Then for each nonnegative integer j the function ¢; ; defined
by

VxeQ: ¢;i(x) =di(x)e;(x)
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is clearly smooth in ) and has compact support contained in the support of a;,
hence in K7, ; < K4y < Q. It trivially follows that each ¢;; can be considered as
the restriction to Q of a smooth function ¢} ; : R"” — K (having compact support in
K7\, © Kjy1 < Q) which is defined to be zero outside of ().

In the same spirit we can extend the smooth function x — ¢;(x)a(y)(x) to the

smooth function
N

/ /
biny = D€ P
j=0
having compact support in Ky, ; < Ky < Q.
Fix a nonnegative integer i. Let € € R, € > 0, K < R" a compact subset, and m € N.
Then there is a nonnegative integer Nj such that

ﬂ<€’ m < Ny, and i <N

Then for all nonnegative integers N,p with N > N, we get (since for all j ey such
that N+1<jwehave m<Ny<N <jandi<N,and supp(qbg’j) < K7,y < Kjy1)

N+p N+p N+p
PK,m (¢§(N+p) _(P;(N)) = PKm Z Ej({l);,j < Z e]'pK,m (¢;,]) = Z eijij+1,m(¢iaj)

j=N+1 j=N+1 j=N+1

N+p

<DL €GP (¢iag)

j=N+1

N+p
1 1 1 1 1

j=N+1

It follows that for each i € N the sequence (Qb;(N))NeN is a Cauchy sequence in
the locally convex vector space C*(R",K) hence converges to a smooth function
i = Z;'io ej(p;’]-. Replacing in the above reasoning the function ¢; by the constant
function 1 on Q) it follows that the sequence (a(y))nen converges to a smooth func-
tion a : R" — R.

Now let x € (). Then there is a nonnegative integer jy such that x € K. It follows
from the nonnegativity of all the a; that

o0
a(x) = Z ejaj(x) = €jaj (x) =€, >0
j=0

showing that « takes strictly positive values on (). Now let x ¢ Q3. Then for any
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multi-index g € N” we have that
N
VNeN: (D) (x) = D €j(DFel;)(x) =0
j=0

because each q.')ij has compact support in Q.

Since (P;(N) — ¢} for N — oo it follows by the continuity of differential opera-
tors that Dﬁ(f)g(N) — DP¢!, and hence Dﬁ(p;(N) (x) — DP¢!(x) for all x € R" by the
continuity of the delta functional o,. It follows that

VxeRMNQ, VBeN": (DF¢pi)(x)=0,
and in a completely analogous manner
VxeRMNQ,VpeN": (DPa)(x) =0,

which proves the Lemma. O
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C.1

C. Proof of some results

In this last part of the appendix we will give the proof of some important results
that are more technical and flee a bit from the main object of the thesis.

REsuULTS FROM THE PART |

Proposition

There is an adjunction of functors

KAlgMS KAlg

where £ is the left adjoint to the above functor U such that each component 7y s)
of the unit 77 : Igaigms — UL of the adjunction satisfies the universal property a. of
the previous Proposition (1.3.1) in the general noncommutative case. We refer to £
as a localization functor.

For a given (R,S) in KAIgMS we denote by Rs the K-algebra £(R,S) given by the
functor £, and by 1(g s) : R — Rs the component of the unit of the adjunction. Then
N(RUR)) : R —= Ry(gr) is an isomorphism, the inverse being the component ey of the
counit € : LU — Igajg of the adjunction. Moreover, every element of the K-algebra
Ry is a finite sum of products of the form (17 = 17r 5))

1(r)(n(s1) () (n(sw)

(which may be called ‘multifractions’) with ry,...,ry € Rand sy,...,s5 € S (note that
r1 or sy may be equal to the unit of R).

(C.1.1)

Proof. Recall first the following functorial presentation of a unital K-algebra by
‘generators and relations’: for a given unital K-algebra R (with unit 1) there is
a natural surjective algebra homomorphism €y : Tx (R) — R where Tk (R) is the free
associative unital K-algebra (or tensor algebra) generated by the K-module R. Note
that the natural morphism €y is just theh R-component of the counit € of the ad-
junction given by the functor Ty from the category Kmod of all K-modules to the
category KAlg which is a left adjoint of the obvious forgetful functor KAlg to Kmod.
The morphism €y is determined by defining it to be the identity on the generating
module R. The kernel x(R) c Tg(R) of €y is a canonical 2-sided ideal in the free
algebra Ty (R) (containing for instance r @+’ — rr/, r,r’ € R, and 11 — 1g) for which
Tk ®(x(R)) < x(R’) for any morphism of unital K-algebras @ : R — R’. Hence R is
canonically presented by the ‘K-module of generators R” and by the ‘ideal of rela-
tions x(R)’.

Next, for any object (R,S) in KAlgMS let KS denote the free (!) K-module having
basis S, and consider the free K-algebra Ty (R@® KS) generated by the K-module
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R@KS. The natural K-linear injection ig : R — RGKS given by iz(r) = (r,0) defines
a natural injection Tkig : TxR — Tx (R®KS). Let k(R,S) be the two-sided ideal in
Tx (R®KS) generated by Tgig(x(R)) and by the subsets {(s,0)® (0,s) — 17 | s € S}
and {(0,5) ® (5,0) — 17 | s € S} of Tx (R®KS) where the multiplication ® and the
unit 17 are taken in the free algebra Ty (R@® KS). Define the localized K-algebra
with respect to S, L(R,S) =: R, by the factor algebra Rg := Tx (R® KS)/x(R,S).
Since a morphism @ : (R,S) — (R,S’) in KAlgMS clearly maps R to R’ and KS
to KS’, the induced algebra morphism Tx (R@®KS) — Tx (R'@KS’) maps x(R,S)
to x(R’,S’), and induces hence a morphism L£® : Rg — R, of unital K-algebras.
It is readily checked that £ is a covariant functor KAIgMS — KAlg. Denoting by
T(R,s) : Tk (RG—)K S ) — Rg the canonical projection we observe that —by construction—
for every s € S the image 7(g 5)(s,0) € Rg has the inverse 7t(g 5)(0,s) and is thus an
invertible element of Rg.

Furthermore, for any (R,S) in KAlgMS there is a canonical map 75y : R — Rg
determined by the diagram

N(r,S)©€r = T(R,5)© Txigr, hence VreR: ngs)(r)=mrs)(r,0), (C.1.2)

which is a well-defined morphism of K-algebras since the right hand side of this
equation vanishes on the kernel x(R) of €g thanks to Txir(x(R)) = x(R,S) = ker(m (g s))-
It follows that for any s € S we have 7(g 5)(s) = 7 (g 5)(s,0) which is invertible in Rg,
hence g s) defines a morphism (R,S) — (Rg,U(Rs)) = UL(R,S) in the category
KAIgMS.

Moreover, for any R in KAlg we consider the canonical K-linear map jg : R®
KU(R) — R given by jR(r,ij:l Ausp) =1+ Z;\]:l Apsyt forany re R, Ay,..., A, €
K, and si,...,s, € U(R), and its induced morphism of K-algebras Tgjr : Tx(R@®
KU(R)) — TxR. Note that jg oig = idg. There is a canonical K-linear map ey :
Ry(r) — R defined by the diagram

EROTUR,U(R)) = €R © Tk Jr-

This is a well-defined morphism of K-algebras since the right hand side é o Txjr
vanishes on the generators of the ideal (R, U(R)): this is clear for Txig(x(R)), and
(5,0)®(0,s)—17 is first mapped to (s®s~!)—17 by Tx jr, and then clearly annihilated
by éR-

It is readily seen that the collection 7 of all the maps 7 s) defines a natural
transformation Igaigms — UL, and the collection € of all the maps ey defines a
natural transformation LU — Igalg- Moreover, the identity jroig = idg immediately
shows the identity

EROM((R,U(R)) = idR
by a combination of the above two diagrams. This implies the categorical equation
(Ueg) o (yr) = idyr which is the first equation of eqn (8) in 32, p.82], and if R is
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replaced by some localized algebra Rg w.r.t. some multiplicative S < R in the above
equation we get the categorical equation e, (g ) o L1 ;s) = idg(r,s) which is the
second equation of equation (8) of [32, p.82]. It follows now from [32, p.83, Thm
2.(v)] that £ is a left adjoint of ¢/ with unit # and counit e.

Finally, for any r € R and s € U(R) we have (ig o jg)(r,s) = (r +s71,0): since
7 (r,5)(0,5) is the inverse of 7 s)(s,0) as is n(R,S)(S*I,O) we have (0,s) — (s71,0) e
ker(rm(gs)) = x(R,S) showing that 1 y(ry) © €r = idRU(R) by a combination of the
above first and second diagram. It follows in addition that € is a natural isomor-
phism Ry gy — R with inverse 7(g y(ry). This proves the the first statement of the
Proposition since units and counits of adjunctions are automatically universal. In
order to prove formula we observe that each element of Rg is a finite sum
of elements of images (under (g s)) of words in Tx (R@®KS) consisting of letters of
the form (r,0) or (0,s) with r € Rand s € S. We clearly have (writing 7t = 7(p s)) for
allr,r’ e R: ((r,0)®(r,0)) = m(r,0)7e(r',0) = 7(rr’,0) (since Txir(x(R)) < k(R,S)).
Moreover, for all s, s’ € S: 7((0,5)®(0,s")) = 7(0,5)7(0,s") = (71(5,0))71 (71(5,0))71 =
(71(5',0)71(5,0))_1 = (n(s's,0))~! = m(0,s’s), which shows that it suffices to take
words where the generators (r,0) and (0,s) are alternating. Now 7t(r,0) = #(r) and
7(0,s) = (17(5))71 which proves formula . O

Theorem

Let R be a unital K-algebra and S < R be a multiplicative subset. Then the fol-
lowing is true:

1. The K-algebra R has a right K-algebra of fractions Rg with respect to the mul-
tiplicative subset S if and only if S is a right denominator set.

2. If this is the case each such pair (Rg,#) is universal in the sense of diagram
(1.3.2) and each Rg is isomorphic to the canonical localized algebra Rg of
Proposition[1.3.3}]

3. Each Rg is isomorphic to the quotient set RS~! := (R x S)/ ~ with respect to
the following binary relation ~ on R x S

(r1,s1) ~ (r2,55) < 3by,by € Rsuch that siby =s,b, € Sand r;b; =ryb, €R
(C.1.3)
which is an equivalence relation generalizing relation . Moreover, RS~!
carries a canonical unital K-algebra structure, i.e. addition and multiplication
on equivalence classes rlsl_1 and r252_1 (with 1,7, € R and s4,5, € S) is given

by

rlsl_1 + rzsz_1 =(ric; + rzcz)s_l, and (rlsl_l)(rzsz_l) = (rlr')(szs')_l (C.1.4)
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where we have written sjc; = s,cp = s € S (with ¢; € S and ¢, € R) and
rps’ = syr' (with s € S and ' € R) using the right Ore property.The numer-
ator morphism 7; : R — RS~! is given by n;(r) = r17! for all r e R.

Proof. We shall write RP for the property ‘right permutable’ (ii.a) and RR for the
property ‘right reversible’ (ii.b):

1.“(i.) = (ii.)".

Indeed, in order to see Property (a.) of Definition givenre Rand s e S
we can write the element (ﬁ(s))flﬁ(r) in the form 17(r”)(17(s”))71 for some r” € R
and s” € S according to Property (i.b) of Definition So we have 7j(r)7j(s") =
77(s)7j(r") implying 7j(rs” — s”) = 0, and therefore —according to Property (c.) of
Definition [1.3.4} it follows that there is s” € S such that (rs” — sr”)s” = 0 whence
r(s”s") = s(r"s") which shows (ii.a).

In order to see Property (b.) of Definition[1.3.4, given r € Rand s’ € S with s'r = 0,
then 0 = 7j(s")#j(r), hence 0 = 7j(r) since 7j(s’) is invertible. By Property (i.c) of
Definition[I.3.4]there is s € S with rs = 0, proving (ii.b). \%

By the preceding implication we have seen that the fact that S is a right denomi-
nator set is necessary for the two other statements in the Theorem. Before we prove
the converse implication “(i.) <= (ii.)” of part 1. and the two other parts we
shall first look at general S-inverting morphisms R — R’ and come to an embedding
statement from which the rest of the Theorem will easily follow. We shall proceed
in several steps:

We suppose that S is a right denominator set.

I. Suppose that R’ is another unital K-algebra and a : R — R’ is an S-inverting
morphism of unital K-algebras. We shall denote by J, = ] the kernel of «, a two-
sided ideal of R. Clearly, if r € I(g 5y then there is s € § such that rs = 0, hence
0 =a(r)a(s), hence 0 = a(r) whence we always have the inclusion

I(R,S) C]a. (C15)
Consider the map
Pa:RxS—>R:(r,5)— a(r)(a(s))_l.

I.1 The equivalence relation ~; on R x S given by (ry,s1) ~j (r2,52) iff pa(r1,51) =
Pa(r2,52) only depends on the two sided ideal ], — R and is equivalent to

(1”1,51) ~7 (1’2,52) — 3C1,C2€RZ 51C1 =5262€Sand rlcl—rzcze]a. (C16)

We shall denote the equivalence class of (r,s) € R x S by the ‘right ], ~fraction (rs~1);".
Indeed, ~; is an equivalence relation by definition whose classes are the fibres of

Po- Suppose first that (ry,s;) ~j (r2,52). Then a(r;) = a(rz)(a(sz))_la(sl). An
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application of RP on the pair (s1,s;) € R x S yields the existence of a pair (1/,s’) €
R x S with s;s’ = s,7’ which is in S since s’ is. Applying a gives (a(sz))_la(sl) =
a(r')(a(s)) ~! and therefore

a(rs)=a(r,r') = s =s,r'eSand ris' —rr' €],

implying the existence of ¢; = s” and ¢, = r’ such that the condition of the r.h.s. of
eqn[C.1.6|is satisfied. In order to prove the other implication note first the follow-
ing important property of ‘multiplying numerator and denominator by the same
element from the right”: let (r,s) € R x S and suppose that there is ¢ € R such that
sce S. It follows that a(sc) is invertible in R" whence

= a(rc)(a(sc)) !

a(r)(a(s))fla(sc) = a(r)(a(s))fla(s)a(c) =a(rc) = a(r)(a(s))
(C.1.7)

Suppose now that there are cq,c; € R such that the r.h.s. of eqn holds. By the
preceding equation (C.1.7) we get

a(r) (1)) = alre)(a(sic) " = alrne)(a(se) ' =a(n)(as) ™

implying that (ry,s;) ~j (72,5,). Thanks to eqn the relation ~; only depends
on J,. \Y
The following reasoning will be used quite often:

I.1a Let C : R — Ry be another S inverting morphism of unital K-algebras such that each

element of Ry is equal to a right fraction C(r) (C(s))_l. If f,g: Ry — R are morphisms
of unital K-algebras such that « = foCand a = go( then f = g.
Indeed we get for any (r,s) € R x S the following equation proving f = g:

1

FEM@©) ™) = (FoOm((For)s) ™ =
—a(r)(a(s) ' = (2o O ((go0)s) " =g(c(CE) )

1.2 The quotient set RSf1 := (Rx S)/ ~j carries a unique structure of a unital K-algebra
(only depending on J,,) isomorphic to the subalgebra a(R)a(S) ™! := {a(r)a(s)~' | (r,s) €
Rx S} of R' by the injective morphism of unital K-algebras f, : RS]_1 — R’ induced by the
map p,. Moreover, there is an S-inverting morphism 1y : R — RS]_1 of unital K-algebras
—only depending on ] ,— such that a = f, o1;. The morphism 1 satisfies properties (i.a.)
and (i.b.) of Definition [1.3.4 having kernel ker(1;) = .

Any other morphism of unital K-algebras ¢ : RSf1 — R’ satisfying a = ¢ oy is equal to
fa-

Indeed, the map p, descends to a set-theoretical injection f, of the quotient set
RS]_1 onto the subset a(R)a(S)™! of R’ by definition of the equivalence relation ~;.
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Let (r1,s1) and (7,,5;) be two elements in R x S. Applying RP on the pair (s1,s;) we
get ' € Rand s’ € S such that s;s’ = 5,7’ =: s € S, and the application of RP on the
pair (rp,s1) gives us (r”,s”) € R x S such that rps” = s;7”. We compute

fa (st D)) + fa (253 ))) = Palris1) +palras:) = alr)(a(s) ™ +a(r)(als,)) ™

a(rls’+r2r’)(a(s))_l :fa<((rls’+rzr’)s_l)]>,

showing that the subset @(R)a(S)~! of R’ is closed under addition, and using the
inverse of the corestriction of f, to the r.h.s. of the above equation we see that the
formula

(rlsl_l)] + (rzsz_l)] = ((rs"+ rzr’)s_l)] (C.1.8)

equips RS]_1 with a well-defined addition (only depending on J,) such that f, :
RSf1 — R’ is an additive map. Similarly, replacing addition in R’ by multiplication
in the above reasoning we show that the subset @(R)a(S)~! of R’ is a unital K-
subalgebra, and that the following multiplication

(risy )y(rasy )y = ((rr")(s25")71), (C.1.9)

(which only depends on J,) together with the above addition equips RSf1
with the structure of a unital K-algebra (with zero element (01~!); and unit element
(1171);) isomorphic to the subalgebra a(R)a(S)~! via f, which turns out to be a
morphism of unital K-algebras RSf1 — R’. Moreover, since f,((s17');) = a(s) and
fo((1s7h))) = (oc(s))f1 we can infer from the injectivity of f, that (1s~!); € RS ! is
the inverse of (s17!); for each s € S. Note that addition and multiplication
(C.1.9) are already very similar to the —still to be proved- formulas (??) in statement
3. of the Theorem.

The map 7 is defined by #;(r) := (r17!); for all r € R. It follows that f, (1;(r)) =
pa(r,1) = a(r). Since f, is an injective morphism of unital K-algebras it follows that
1y is a morphism of unital K-algebras whose kernel is equal to to J,, the kernel of a.
Since the inverse of 77;(s) = (s17!); has been computed to be (1s~!); it follows that
1y is S-inverting (property (i.a) of Definition ?? for the pair (RSj_l,q])). Moreover,
observing that in formula for the particular case s; = 1 we can choose s” =1
and r” = r, getting

(17 )y(rsy )y = ((nr)sy '), = (57 = (1Y) (17 =y () (g ()
proving property (i.b) of Definition for the pair (RSfl,ry]). The final state-

ment follows from I.1a. \Y%
I.3. Let J; < J, < R be two two-sided ideals of R which both are kernels of S-inverting
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unital K-algebra morphisms. Then there is a unique morphism 65 : RSfl1 — RS];1 of
unital K-algebras such that 1;, = 051 o1y,
Indeed, since J; < J, for any two pairs (r1,51),(72,52) € R x S we have the impli-
cation (ry,81) ~j, (r2,52) = (r1,51) ~j, (r2,5,). This gives a canonical map 0, :
(RS™1);, — (RS™1);, on quotient sets sending the class (rs~!); to the ‘bigger’ class
(rs™1);, clearly satisfying 1, = 65 o#;,. Upon using formulas (C.1.8) and (C.1.9) it
is easy to see that 0,; is a morphism of unital K-algebras which is unique by I.1a.
\Y%

II. The preceding considerations in I. work well for those two-sided ideals in R
which are kernels of S-inverting morphisms. According to eqn those ideals
all contain I sy of which we shall now describe the structure.
IL1. Irs) is a two-sided ideal of the K-algebra R which is contained in the kernel I, of
any S-inverting morphism a : R — R’ (see also [29, Exercise 0., p.317]):

Indeed, I is obviously closed by left multiplications with any element of R. Let
11,1, € I, then there are s1,s, € S with r;s; = 0 and rps, = 0. Clearly (r; +1,)s; = 157.
Then RP on (s,s;) yields the existence of (r,s") € R x S with s;s’ = s,7/, whence
(r1 +12)s18 =ry518" = rpsp1' =0, hence 1| + r, € I. Thirdly, let r € I and 7 € R. There
is s € S with rs = 0. RP on the pair (#,s) yields the pair (”,s”) € R x S such that
7s” = sr”. 1t follows that r#s” = rsr” = 0 whence rf € I proving that I is also a right
ideal.

\Y%

We shall denote by R the factor algebra R/I(g sy, by 7 : R — R the canonical pro-
jection, and by S = 71t(S).

I1.2. The subset S of the factor algebra R is a multiplicative subset satisfying RP and
does not contain right or left divisors of zero which implies RR (see also [29, Exercise
1., p.317)):

Indeed, since 7t is a surjective morphism of unital K-algebras it is immediate that
the subset S is multiplicative and satisfies RP. Next, if there are r € R and s € S with
0 = 7t(r)7m(s) = m(rs) then rs € I. Hence there is § € S with 0 = rs$, whence r € I and
7t(r) = 0. On the other hand if there are r € R and s’ € S with 0 = 7t(s')n(r) = n(s'r)
then s'r € I whence there is s” € S with s’rs” = 0, and according to RR there is s” € S
such that 0 = rs”s"”, and it follows that r € I, hence 7(r) = 0.

\Y%

III. In this principal part of the proof we shall show the existence of a unital K-
algebra R’ together with an S-inverting injection R — R’. This will imply the key
result that the important two-sided ideal (g s) is also the kernel of an S-inverting
morphism R — R’.

R is a right R-module by means of its multiplication. Let E be a right R-module
which is an injective hull of the right R-module R: recall that this means that R is a
right R-submodule of E, that E is injective in the sense that for each right R-module
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M and R-submodule M’ ¢ M each morphism of right R-modules  : M’ — E can —in
general not uniquely- be extended to a morphism { : M — E of right R-modules,
and that R ¢ E is a large submodule in the sense that any submodule N of E such
that N n R = {0} has to be trivial, N = {0}. For each a € Rlet I, : R — R denote
the left multiplication I,(a’) = aa’ (for all a’ € R) which obviously is a morphism
of right R-modules. Since E is injective every [, : R — R  E has at least one —in
general nonunique— extension I, : E — E as a morphism of right R-modules. Then
the following holds:
MI.1. {ecE|3teS: et =0} ={0}. Indeed, let N denote the left hand side of
this equation, and let e;,e; € N. There are t1,t, € S such that e;t; = 0 and e,t, = 0.
Clearly (e; + e,)t; = eyt;. Then RP on (t;,t,) yields the existence of (a/,#') e R x S
with t1' = t,a’, whence (e; +e,)t;t’ = eyt t’ = eptra’ =0, hencee; +e, € N. Letee N
and a € R. Then there is t € S with et = 0. An application of RP to the pair (a,t)
yields (a”,t") € R x S with at” = ta” whence eat” = eta” = 0 which shows ea e N, and
N is a right R-submodule of E. Since S does not contain any right divisor of zero,
N n R = {0}, hence N = {0} because R is a large submodule of E.
\Y%

IIL.2. For each t € S: every extension I, : E — E of I, is an invertible morphism of right
R-modules. Indeed, let K; denote the kernel of ;. It clearly is a right R-submodule
of E, and K, nR = {a € R | 0 = [;(a) = ta}, but the latter vanishes according to
I1.2.. Since R is large, K; vanishes, and I, is injective. Let M; — E be the image of I;.
Then the corestriction of I, to M, has an inverse x, : M; — E which is a surjective
morphism of right R-modules. Since E is injective, there is an extension f;: E — E
of x; as a surjective morphism of right R-modules. It follows that %, o [, = idg
whence the morphism P, = [, o ¢, is a projection, i.e. P, o P, = P;, onto M,. This also
follows from injectivity, see [29, Prop.(3.4)(2), p.61]. Let Q; be the kernel of P;. Then
there is the direct sum of right R-modules E = M; ® Q;. Let a € Q; n R. Applying
RP to the pair (a,t) we get a pair (a/,#') € R x S such that at’ = ta’. Since Q; n R
is a right R-submodule of E it follows that at’ € Q, " R, but at’ = ta’ = I,(a’) € My,
whence at’ € R~ Q; n M; = {0} thanks to the above direct sum. Hence at’ = 0, and
by IL.2. it follows a = 0 whence Q; n R = {0}, and finally Q; = {0} because R was a
large submodule of E. Hence M, = E, hence I, is surjective and therefore invertible.

\Y%

The remaining problem in the preceding paragraph is the possible nonunique-
ness of the extensions of left multiplications of R to E: two such extensions may
a priori differ by a morphism of right R-modules E — E vanishing on R. In order to
cope with that we consider the following subsets of the K-algebra /) := Homg(E, E)
of all right R-module morphisms E — E:

B = {peh|JacR:p(d)=ad =1,(a)Vd eR},
I = {peh|ed)=0VdeR}
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R := unital K—subalgebra of fj generated by Band by {pe H|IteR: ¢ =1 "}

By definition, 1 is a K-subalgebra of §) consisting of all the extensions of left
multiplications, and I —which obviously is a left ideal in - is contained in 1 and
hence in K. I ‘measures’ the nonuniqueness of the extensions. We can now show
the desired embedding:

I11.3. 1 is a two-sided ideal of R, and the prescription f : R — R’ := R/I defined by
a— I, mod I is a well-defined injective S-inverting morphism of unital K-algebras.

Indeed, it remains to show that I is a right ideal in R: let ¢ € I, ¢ € I (restricting
to I; for some 4 € R on the submodule R of E), t € S, and a € R. Then ¢ (¢p(a)) =
Y (da) = 0, whence ¢ o ¢ € 1. Moreover apply RP to the pair (4,t) in order to get a
pair (a',t') € R x S with at’ = ta’. Then

(0@ @))¢ =90 (@) = (i (ta) = 9 (I (1)) = (@) = 0

which implies —according to IIL.1.- that (¢ o ft_l) (a) = 0, and since the above rea-
soning works for any a € R we have ol ! €I for all t € R. Since R is generated
by @ € B and all ;! it follows that I is a two-sided ideal in R, and that hence the
factor algebra R’ is well-defined. Let @ : R — R’ the canonical projection. Since
two extensions I, and I’ of the left multiplication I,, a € R, differ by an element of
1 it follows that the map f: R — R’ is well defined satisfying f(a) = @(I,). For any
a;,a, € R we have

ﬁ(al + a2) = (D(ial-i-az) = @(ial) + ‘D(iaz) + @(ial-&-az - l~a1 - l~a2) = ;B(al) +;B(a2) +0

since the restriction of l;,lﬂl2 —l;l — l~a2 to R clearly vanishes whence this map belongs
to I. Likewise it is shown that f(aja,) = p(a;)B(a,) upon noting that l;m — l~a1 o l~a2
belongs to I. It follows that f is a morphism of unital K-algebras. Let d € ker(p).
Then I; € T whence in particular 0 = [;(1%) = d showing that f is injective. Finally,
let t € S and choose an extension I;. According to II1.2. there is an inverse ft_l of the
map [; which by construction is in R. If 7:= @([; ') then

pir=a(o( ) =a(loli ') =a(idg) = 1x

and likewise tf(t) = 1g showing that each f(t) is invertible in R’. \Y%
I11.4. There is an S-inverting morphism of unital K-algebras a : R — R’ whose kernel
equals I s). It follows that the kernel of 1y is equal to I = I(g s).

Indeed, the composition a = o7 does the job since the kernel of 7t equals I( 5) and
p is injective. \

We can now define the following: according to IT1.4 the unital K-algebra (RS™!);
together with the S-inverting morphism 7; : R — (RS™!); having kernel I = I (g g)
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is well-defined. We shall call it RS~!. It clearly satisfies all three properties (i.a.),
(i.b.), and (i.c.) of Definition according to I.2 and I11.4 whence it constitutes
(together with 7;) a right K-algebra of fractions which proves the more difficult
implication “(i.) <= (ii.)” in Definition and therefore part 1 of the Theorem
is proved.

The relation ~ (see eqn ((1.3.4)) in part 3 of the Theorem is equal to ~;: indeed,
if two pairs (r{,s1) and (r,,s,) are equivalent w.r.t. ~; then there are ¢y, ¢, € R with
S1¢] = Sp¢y € Sand ryc; —1,¢9 € I, hence thereis s € S with r;¢cys = ry¢55, and of course
$1C15 = 55C5 € S whence they are equivalent w.r.t. ~ (upon setting by = ¢;s,b, = ¢;5).
The other implication is trivial since 0 € I. This proves part 3. of the Theorem
except for the universality statement. We shall abbreviate the equivalence classes

by (rs~!); by rs7L.

Let @ : R — R’ any S-inverting morphism of unital K-algebras with kernel ], =J.
By I.2 a factorizes as @ = f, 015 (with unique morphism f, : RS]_1 — R’), and thanks
to 1.3 (setting J; = I and J, = J) there is a unique morphism of unital K-algebras
R S - RS]_1 with 7, = 0,1 oy whence a = (f, 0 60;;) o ;. The uniqueness of
composition ¢ := (f, 0 8,;) in the preceding equation follows from I.1a. Hence the
pair (RS™1,#;) is universal in the sense of diagram proving 3. for RS~

Finally, let (Rg,7) be a right K-algebra of fractions of R. By hypothesis 7} is
S-inverting. Thanks to 1.2 there is a unique morphism of unital K-algebras f; :
RS~! — Rg satisfying 1j = fiy ony. Since by hypothesis Rg is equal to its subalgebra
#(R)(1(S ))71 it follows that f; is surjective, and the fact that the kernel of both 7
and 7; is equal to I shows that f; is an isomorphism, thus proving universality of
the pair (Rg, ) and therefore the first statement in part 2. of the Theorem.

Now, both pairs (RS~1,7;) and (Rs,#) are universal with respect to diagram
by the preceding reasoning and thanks to Proposition It follows that there
are two unique morphisms of unital K-algebra, ¢ : RS~! — Rg and ¢ : Rg — RS~!
satisfying 7 = ¢ oy and #; = 1 o . Hence the morphism of unital K-algebras
¢ o1 : Rg — Rg is the identity on the image of #, and using the fact that each el-
ement of Rg is a sum of multifractions (see (C.1.1)) it follows that ¢ o ¢ = idp,.
Likewise the morphism of unital K-algebras (o ¢ : RS™! — RS~! is the identity on
the image of 7, and since every element of RS~! is a right fraction it follows that
Po¢ = idgg-1 proving that RS~! is isomorphic to Rg which finishes the proof of the
Theorem. O
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REsuLTs FROM THE PART Il

Proof of Proposition [5.1.17]

Proof. Eqn is proved by induction on the tensorial degree of b, the case of
degree 0 being obvious, and the case of degree 1 follows from the fact that v inter-
twines the connection on X and the connection VV®4W on V®,4 W, and the property
of the latter. Let b € T4(L) have tensor degree less or equal than n and x € L,
then for all v € V and w € W we get —since v and the shuffle comultiplication in
Ta(L) are connection preserving—

VE (v ®@sw)) = Vi((Vi((V(‘U@A w))) _V)V(X(b) (v(v®aw))

Ind.hyp. Z VX ( b(l) )®aV b2 (w))>
(b)

- Z V(VE/ ())(1)( )®A V(V (b))(z)( ))

(Vi(b))
n:l, Zv< b(l) ®A (VZ\(Iz)(w)))
(b)
+ ZV< b (V) @4 (Vi (Vy ()

—~

b)

v( b(l)) ) ®a V(o (W) — D (Vi () @4 VY ey (W))

(b) (b)

- Zv<(vxb(1>(v))) ®a (V3 (w))) +ZV<(V;‘,/<1)(V)) ®a4 (Ve ()))
(0) (b)
= (Vo @) @4 (Ve @),

(xb)

proving the induction and hence the stated equation (5.1.20).

Moreover the eqs and are immediate consequences. In order to
prove eqn we have to replace V by the A-module Hom,(V, W) with con-
nection VA(V"W) "W by the A-module Hom (W, X) with connection VE(W-X) and
X by the A-module Hom,(V,X) with connection VH(V:X), Equation and
show that the composition o : Hom (W, X) ®4 Hom,4(V, W) — Hom 4 (V, X)
is A-bilinear and connection preserving. Finally the evaluation map can be seen
as an A-linear map Homy(V,W)®4 V — W, and the main statement will
give statement (5.1.24). By an easy induction over the tensorial degree of b’ with

e(b’) = 0 it is shown that if ¢ is connection preserving then Vb,( W)((p) = 0. Then
statement (5.1.24) will imply the last statement eqn (5.1.25) smce b)) can be re-
placed by €(b'1))1 and the result follows thanks to b = 2 € e(bMp?), O
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