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Version Française

1 Introduction

La thèse contient deux parties qui sont liées à la quantification par déformation,
une théorie qui utilise la déformation algébrique des algèbres de fonctions commu-
tatives pour décrire certains aspects de la mécanique quantique des physiciens.

La première partie de la thèse contient une discussion de la localisation analy-
tique des algèbres de fonctions en quantification par déformation, i.e. les fonctions
ne sont définies que sur une partie ouverte de la variété, comparée avec la locali-
sation non commutative à la Ore des algèbres de fonctions déformées. L’exemple
le plus élémentaire d’une localisation est le passage de l’anneau des entiers relatifs
aux nombres rationnels, les fractions, où certains nombres sont rendus inversibles.

Nous décrivons d’abord le cadre de la localisation algébrique : il y a un procédé
général qui n’est pas très explicite, et il y a la construction d’Ore (voir [36]) qui
est beaucoup plus concrète, mais est plus particulière parce que l’ensemble multi-
plicatif, qui constitueront l’ensemble des futurs dénominateurs, doit respecter une
certaine condition, les conditions d’Ore.

Ensuite, nous regardons deux exemples élémentaires, celui des fonctions définies
sur une partie ouverte et celui des germes de fonctions autour d’un point donné.
Dans le premier cas on obtient l’équivalence entre l’approche analytique et l’ap-
proche algébrique. L’outil principal de la démonstration se base sur les travaux ana-
lytiques de Whitney, Malgrange et surtout sur le livre de J.-C.Tougeron. Pour les
germes, on obtient également une certaine équivalence, mais le choix le plus na-
turel échoue, et on doit légèrement modifier l’ensemble multiplicatif. A la fin on
discute un cadre plus général, et algébrique, qui permet de formuler la question
suivante : « Est-ce que localisation et déformation commutent? ». On donne égale-
ment un exemple non Ore.

D’aute part, le lien de la deuxième partie avec la quantification par déformation
est le plus élémentaire, celui des opérateurs différentiels, comme par exemple les
opérateurs de Schrödinger, en mécanique quantique. Dans cette partie on ne discute
pas les propriétés analytiques de ces opérateurs, comme par exemple le spectre,
mais on cherche à décrire la multiplication de deux opérateurs différentiels sur une
variété différentielle où on n’a plus de coordonnés globales, mais –dans beaucoup
de situations géométriques intéressantes– on doit utiliser des dérivées covariantes
itérées.
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Par conséquent, il est intéressant de savoir comment la courbure et la torsion de
la connection, qui en effet donnent ces dérivées et qui fournissent beaucoup d’inva-
riants de la variété, entrent dans les formules de multiplication. Nous avons donc
choisi le cadre algébrique, notamment des algèbres de Lie-Rinehart (Rinehart [42]
et Huebschmann [19]) qui généralisent les algèbres de Lie de tous les champs de
vecteurs et permettent d’utiliser des méthodes purement algébriques qui ne sont
pas utilisées en géométrie différentielle usuelle.

De sorte que, on a réussi à donner une description très explicite de « l’algébroïde
des chemins » de M.Kapranov (voir [23]) en termes des dérivées covariantes itérées,
de maniéré que courbure et torsion apparaissent dans une application canonique
de l’algébroïde de Kapranov dans l’algèbre de Lie-Rinehart en question.

En autre, cette construction permet de décrire l’enveloppante de l’algèbre de Lie-
Rinehart, d’ailleurs analogue de l’algèbre des opérateurs différentiels, comme quo-
tient d’une algèbre plus grande –dont la multiplication est très explicite – modulo
un idéal. En fait, la construction est –pour parler géométriquement – ‘« tensorielle »
et consiste en une « symétrisation » perturbée par des termes de courbure et torsion.
Dans plusieurs cas particuliers, la multiplication est calculable en termes d’une fac-
torisation des algèbres enveloppante des algèbres de Lie ce qui est un problème
connu en théorie de Lie.

2 Localisation

L’objectif dans un premier temps (Chapitre 1) est de fixer la notation que nous
utiliserons tout au long du texte et d’introduire localisation d’un point de vue pu-
rement algébrique. Nous avons essentiellement divisé ce chapitre en deux parties,
dans la section 1.2 nous décrirons comment la localisation peut être définie pour
les K-algèbres et nous chercherons les principales propriétés des constructions. En-
suite, dans la section 1.3, nous traiterons la localisation dans un contexte général,
c’est-à-dire pour les algèbres K qui ne sont pas nécessairement commutatives.

La proposition suivante résume bien le premier cas de localisation.

Proposition 1.2.10 : Soit R une K-algébre commutaive et S Ă R un sous ensemble
multiplicatif.be a multiplicative subset. Alors, ce qui suit est vrai :

a. ηpR,SqpSq Ă UpRSq, c’est-à-dire, l’homomorphisme ηpR,Sq envoie des éléments
de S aux éléments inversibles de RS . En plus, pour K-algèbre R unitaire et
commutatif, doté d’un sous-ensemble multiplicatif S Ă R, le paire pRS ,ηpR,Sqq
est universel. 1

b. Chaque élément de RS s’écrit comme une fraction ηprqηpsq´1, où r P R et s P S.

1. Voir la remarque (1.2.11).
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c. kerpηpR,Sqq “ tr P R | rs “ 0 for some s P Su.

Ensuite, la proposition suivante généralise localisation pour toutes lesK-algebres,
pas forcement commutatives. C’est important de remarquer le traitement via la
théorie de catégories.

Proposition 1.3.3 : Il y a une adjonction de foncteurs

KAlgMS
L

ÝÝÝÝÝÑÐÝÝÝÝÝU
KAlg

où L est l’adjointe à gauche au foncteur U ci-dessus de sorte que chaque composante
ηpR,Sq de l’unité η : IKAlgMS

¨
ÝÑ UL de l’adjonction satisfait à la propriété universelle

a. de la proposition (1.3.1) précédente dans le cas général non commutatif. Nous
nous référons à L en tant que foncteur localisation. Pour un paire pR,Sq donné
KAlgMS nous désignons par RS la K-algèbre LpR,Sq donné par le foncteur L, et
pour ηpR,Sq : RÑ RS la composante de l’unité de l’adjonction.

Donc ηpR,UpRqq : R Ñ RUpRq est un isomorphisme, l’inverse étant la composante
εR de la counité ε : LU ¨

ÝÑ IKAlg de l’adjonction. De plus, chaque élément de la K-
algèbre RS est une somme finie de produits de la forme (η “ ηpR,Sq)

ηpr1q
`

ηps1q
˘´1

¨ ¨ ¨ηprN q
`

ηpsN q
˘´1

.

où r1, . . . , rN P R et s1, . . . , sN P S. Des termes comme ceux-ci peuvent être appelés
«multifractions». Notez que, r1 ou sN peut être égale à l’unité de R.

Nous terminons ce première chapitre avec un théorème de la localisation de Ore.

Théorème 1.3.8 : Soit R une K-algèbre unitaire et S Ă R un sous-ensemble multi-
plicative. Alors, ce qui suit est vrai :

1. La K-algèbre R une K-algèbre de fractions à droite ŘS en ce qui concerne le
sous-ensemble multiplicatif S si et seulement si S est un ensemble de déno-
minateurs à droite.

2. Si tel est le cas, chacune de ces paires pŘS , η̌q est universel au sens du dia-
gramme (1.3.2) est chaque ŘS est isomorphe à l’algèbre canonique localisée
RS de la Proposition 1.3.3.

3. Chaque ŘS est isomorphe a l’ensemble quotient RS´1 :“ pRˆ Sq{ „ en ce qui
concerne la relation binaire suivante „ en Rˆ S

pr1, s1q „ pr2, s2q ô Db1,b2 P R tel que

s1b1 “ s2b2 P S and r1b1 “ r2b2 P R (2.1)

qui est une relation d’équivalence généralisant la relation (1.2.1).
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Ensuite, nous réservons un chapitre dont l’objectif est d’explorer un objet im-
portant dans la quantification par déformation, les produits star, qui nous donnera
une structure non commutative dans l’algèbre des fonctions lisses définies sur une
variété.

Néanmoins, depuis l’article fondateur de Bayen, Flato, Frønsdal, Lichnerowicz
et Sternheimer en 1978, voir [2], la quantification par déformation est devenue un
vaste domaine de recherche qui couvre plusieurs théories algébriques comme la
théorie de la déformation formelle des algèbres associatives, ainsi que des théo-
ries géométriques comme la théorie des variétés symplectiques et de Poisson, et des
théories physiques comme la théorie des cordes et la théorie de la jauge non com-
mutative.

Dans ce cas, la multiplication associative non commutative des opérateurs en mé-
canique quantique est considérée comme une déformation associative formelle de la
multiplication ponctuelle de l’algèbre des symboles de ces opérateurs. Pour les va-
riétés de Poisson, les travaux de Kontsevich [28] sont assez importants pour garantir
l’existence de certaines constructions de cette manière.

Par contre, nous n’approfondirons pas cette belle théorie, nous explorerons es-
sentiellement la multiplication déformée, le produit star, qui sera le symbole de
calcul des opérateurs différentiels en termes de séries de puissances formelles. Plus
précisément,

Definition 2.1.4 : Un produit star ˚ sur une variété X est une opération associa-
tive bilinéaire C8pXqrrλssˆC8pXqrrλss Ñ C8pXqrrλss satisfaisant les caractéristiques
suivantes pour tous f ,g P C8pXq :

(i.) 1 ˚ f “ f ˚ 1“ f ,
(ii.) f ˚ g “ f ¨ g `Opλq,
(iii.) f ˚ g “

ř8
k“0Ckpf ,gqλ

k ,
(iv) f ˚ g ´ g ˚ f “ λtf ,gu`Opλ2q si une structure de Poisson est donné.

avec les opérateurs bilinéaires Ck : C8pXqb C8pXq Ñ C 8pXq. Nous supposons que
tous les Ck sont des opérateurs bidifferentiels.

Nous pouvons donc regarder les deux cas suivantes.
Localisation analytique : Notez que chaque produit star ˚ peut être localisé ana-

lytiquement à un produit star ˚Ω défini sur C8pΩqrrλss par la localisation de tous
les opérateurs bidifferentiels Ck à Ck |Ω. Ensuite on peux considérer

Localisation algébrique : Soit pX,πq une variété de Poisson, soit ˚ “
ř8
k“0λ

kCk
un produit étoile en pX,πq et soit Ω Ă X un ensemble ouverte fixée. On définie
K “Krrλss et on considéré la K-algèbre

R“
`

C8pXqrrλss,˚
˘

. (2.2)

De plus, comme le produit star ˚ n’implique que des opérateurs bidifferentiels, il se
limite à un produit étoile ˚Ω sur les séries entières formellesφ P RΩ :“ C8pΩ,Kqrrλss
tel que

`

RΩ,˚Ω
˘

est aussi une K-algèbre.
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Il s’ensuit que l’application de restriction ηΩ “ η : RÑ RΩ : f ÞÑ f |Ω est un mor-
phisme de K-algèbres unitaires. Nous définissons le sous-ensemble suivant SΩ Ă R :

SΩ :“ tg P R | @ x PΩ : g0pxq ‰ 0u (2.3)

Il est clair que la fonction constante 1 est en S, et pour toute g,h P S nous avons
pg˚hq0pxq “ g0pxqh0pxq ‰ 0 (pour tous x P X) d’où S est un sous-ensemble multiplicatif
de la K-algèbre unitaire R.

Nous pouvons maintenant considérer la localisation non commutative de R par
rapport à S et la comparer avec la K-algèbre unitaire RΩ.

Le principal résultat de la première partie de cette thèse est de répondre à la
question suivante :

Quelle est la relation entre RSΩ , la localisation algébrique au sens du chapitre 1, et
RΩ la localisation analytique que nous décrivons ci-dessus. Ces algèbres sont-elles
isomorphiques?

Ainsi, le théorème 3.1.1 suivant, qui est le plus important de la première partie
de la thèse, montre que la localisation pour les produits étoile peut être démontrée
en recherchant les propriétés de la définition 1.3.4.

Théorème 3.1.1 : En utilisant les notations précédemment fixées, nous obtenons
pour tout ensemble ouvert ΩĂ X :

1. pRΩ,˚Ωq avec le morphisme de restriction η constitue une K-algèbre de frac-
tions à droite pour pR,Sq.

2. La conséquence immédiate est que S est un bon ensemble des dénominateurs.

3. Cela implique en particulier que la localisation algébrique RS´1 de R en ce qui
concerne S est isomorphe à la localisation concrète RΩ comme des K-algèbres
unitaires.

3 Algèbres de Lie-Rinehart et connections

Il existe une formule explicite bien connue pour la multiplication de deux opéra-
teurs différentiels dans tout ensemble ouvert de Rn en fonction de leurs symboles,
au moyen des coordonnées globales x et des coordonnées "conjuguées" supplémen-
taires p. Sur une variété différentiable équipé d’une connexion ∇ dans le fibré tan-
gent, tout opérateur différentiel peut être paramétré par un champ tenseur symé-
trique associé à une dérivée covariante itérée. Le produit de deux opérateurs diffé-
rentiels peut également être écrit sous cette forme, mais la forme explicite contien-
dra des termes de courbure et de torsion compliqués qui, en général, semblent n’être
connus que par l’application (inverse de la) exponentielle de ∇ et le transport paral-
lèle. Le problème est fortement lié à la difficulté de trouver des formules explicites
pour les produits star sur les fibres cotangents : ces produits star ont été traités il y
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a longtemps par Fedosov, Bordemann, Neumaier, Waldman et Pflaum (voir [5], [4]
et [14]), où l’existence et la classification posent des questions avait été résolu.

Dans cette deuxième partie de la thèse, nous souhaitons exprimer plus explici-
tement les termes de courbure et de torsion apparaissant dans le produit de l’opé-
rateur différentiel. Nous avons choisi approche algébrique qui semble fonctionner
pour les anneaux commutatifs généraux K , A et tout morphisme K Ñ A à condition
que K et donc A contienne les nombres rationnels.

Dans un premier temps, l’algèbre de Lie de tous les champs vectoriels d’une va-
riété forme algèbre de Lie-Rinehart L sur l’algèbre unitaire commutative réelle A
de toutes les fonctions lisses a valeur réelle de la variété. En fait, l’algèbre de tous
les opérateurs différentiels est isomorphe à l’algèbre enveloppante dite universelle
U pL,Aq de L, c’est pourquoi nous souhaitons décrire ces algèbres en général. La A
linéarité (par opposition à la simple R linéarité) peut être traduite en géométrie
comme "fibre-par-fibre" ou "tensorielle".

Notamment, le problème d’algèbre enveloppante, définie dans la section 4.2.2
peux être abordé – algébriquement – comme suit : Soit

`

L,ρ, rr , ss,A
˘

une algèbre de
Lie-Rinehart surA (voir [42]), existe-t-il uneK-algèbre unital et associatif

`

U pL,Aq,˛,1
˘

équipé de deux applications K-linéaires ιL : LÑ U pL,Aq et ιA : AÑ U pL,Aq satisfai-
sant pour tous x P L et a P A

ιL : LÑ U pL,Aq´ morphisme de K´algbres de Lie (3.1)

ιA : AÑ U pL,Aq morphisme de K´algbres unitaires (3.2)

ιApaq ˛ ιLpxq “ ιLpaxq et (3.3)

ιLpxq ˛ ιApaq´ ιApaq ˛ ιLpxq “ ιA
`

ρxpaq
˘

, (3.4)

de telle sorte que pour toute k-algèbre unitaire associative donnée B et toute appli-
cation K-linéaire θ : L Ñ B et j : A Ñ B satisfaisant aux conditions analogues à ιL
et ιA il existe un morphisme unique θ̃ : U pL,Aq Ñ B de telle sorte que θ̃ ˝ ιL “ θ et
θ̃ ˝ ιA “ j ?

Nous n’utilisons pas la construction de Rinehart deU pL,Aq, mais plutôt la construc-
tion de Huebschmann (voir [19]) car elle se rapproche beaucoup plus des construc-
tions traitées dans cette thèse.

Ensuite, pour unA-module ancré donné pL,ρq (voir définition 4.5) et unA-module
W , une connection, ou encore une dérive covariante ∇W “ ∇, c’est une application
K-linéaire

∇ : LbW ÑW,

écrite comme ∇pxbwq “: ∇xpwq de sorte que pour tous a P A, x P L, et w PW

∇axpwq “ a∇xpwq et ∇xpawq “ ρxpaqw` a∇xpwq. (3.5)

Les deux conditions mentionnées ci-dessus, pour la définition de ∇, sont connues
comme « les axiomes de Kozul».
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Nous appellerons le quadruple (voir 5.1.1) pL,ρ,W ,∇W q un A-module W avec
connexion paramétrée par le A-module ancré pL,ρq. Par la suite, les calcules avec des
dérivées covariantes itérées sont traitées dans le Chapitre 5 notamment sur l’algèbre
libre unitaire associative TApLq itérée.

Pour cette partie, on peut souligner le théorème suivant, qui est liée au produit

b ˛∇ b
1 :“

ÿ

pbq

bp1q∇bp2qpb1q (3.6)

sur l’algèbre tensorielle TApLq et exprimé en termes de la connection en TApLq en
utilisant la notation de Sweedler pour la comultiplication Shuffle :

Théorème 5.2.1 : Soit pL,ρq un A-module ancré, W un A-module, et soit ∇1 une
connection en W . En suite, soit aussi ∇ une connection en L, paramétré par pL,ρq,
et soit ∇A la connection en A induite par l’application d’ancré ρ, et ∇, ∇1 et ∇A
désignent également les dérivés covariants itérés tels que définis en (5.1.18).

Nous avons les propriétés suivantes pour tous b,b1,b2 P TApLq et w PW :

∇1b
`

∇1b1pwq
˘

“ ∇1b˛∇b1pwq, (3.7)

∇bpb1b2q “
ÿ

pbq

`

∇bp1qpb1q
˘`

∇bp2qpb2q
˘

(3.8)

“

deg,∇b
‰

“ 0 (3.9)

∆sh
`

∇bpb1q
˘

“ “
ÿ

pbqpb1q

∇bp1qpb1p1qqbA ∇bp2qpb1p2qq, (3.10)

∆shpb ˛∇ b
1q “

ÿ

pbqpb1q

`

bp1q ˛∇ b
1p1q˘bA

`

bp2q ˛∇ b
1p2q˘, (3.11)

pb ˛∇ b
1q ˛∇ b

2 “ b ˛∇ pb
1 ˛∇ b

2q, (3.12)

b ˛∇ 1 “ b “ 1 ˛∇ b, (3.13)

εpb ˛∇ b
1q “ ∇Ab

`

εpb1q
˘

“ ε
´

b ˛∇
`

εpb1q1
˘

¯

. (3.14)

En particulière,
`

TApLq,1,˛,∆sh,ε
˘

est une bialgèbre de Rinehart sur A, voir sec-
tion 4.3 pour les définitions.

Pour la suite, l’algèbre enveloppante U pL,Aq sera un quotient de TApLq : l’idéal
bilatéral J pL,Aq pour la seule multiplication R-linéaire (que nous devons moduler)
est également un coidéal par rapport à la comultiplication A-linéaire qui peut être
explicitement décrite.

D’autre part, la partie primitive de TApLq deviendra importante : il s’agit d’une al-
gèbre de Lie-Rinehart surA isomorphe à l’algèbre de Lie des chemins de M.Kapranov
([23], 2007). Il existe un morphisme canonique Z des algèbres de Lie-Rinehart de
la partie primitive à L dont le noyau P0pL,Aq porte une représentation en L égale à
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la A-algèbre de Lie de l’holonomie infinitésimale. Il existe une équation de récur-
sion pour Z en termes de courbure et de torsion. Le coideal JpL,Aq est engendré
A-linéairement par le noyau P0pL,Aq

La relation avec l’algebroïde de Lie des chemins de (voir Section 4.5.1) est contenu
dans le prochain théorème.

Théorème 5.3.2 : L’algebre de Lie-Rinehart
`

P∇pL,Aq,ρ∇, r , s∇,A
˘

est une algèbre
libre de Lie-Rinehart, et pour tout morphisme de modules ancrés θ : pL,ρq Ñ pL1,ρ1q
donné, où

`

L1,ρ1, rr , ss1
˘

est une algèbre de Lie-Rinehart sur A, le morphisme induit
des algèbres de Lie-Rinehart θ̄ : P∇pL,Aq Ñ L1 peut être calculé par la récurrence
suivante pour tous x P L and ξ P P∇pL,Aq

θ̄pxq “ θpxq et θ̄
`

rx,ξs
˘

“ rrθpxq, θ̄pξqss1´ θ̄ p∇xpξqq`θ
`

∇ξpxq
˘

. (3.15)

D’où l’algèbre de Lie-Rinehart P∇pL,Aq est isomorphe à l’algébroïde de Lie de
Kapranov P pL,Aq engendré parr pL,ρq. En particulier, pour deux connexions diffé-
rentes ∇, ∇1 les deux algebres de Lie-Rinehart P∇pL,Aq et P∇1pL,Aq sont isomorphes.

Par aieurs, la définition suivante est importante pour la suite.

Definition 5.4.1 : Nous définissons la torsion Tor “ Tor∇ et la courbure R1 “ R∇
1

comme des applications linéaires LbK LÑ L et pLbK LqbK V Ñ V de manière bien
connue. Pour tous x,y P L et v P V ,

Torpx,yq :“ ∇xpyq´∇ypxq´ rrx,yss, (3.16)

R1px,yqpvq :“ ∇1x
`

∇1ypvq
˘

´∇1y
`

∇1xpvq
˘

´∇1rrx,ysspvq (3.17)

Dans le cadre de cette définition on peux par exemple faire un lien entre courbure
et torsion et les applications Z et H comme montre le théorème suivant :

Théorème 5.4.4 : Soit
`

L,ρ, rr , ss,A
˘

une algèbre de Lie-Rinehart sur A. Soit ∇
une connection sur L paramétré par L, et soit V an A-module donné muni d’une
connexion ∇1 sur L. Ensuite, nous avons ce qui suit :

1. Il existe des récursions explicites simultanées en termes de courbure et de
torsion pour les applications Z et H : pour tout v P V , x P L, et ξ P P∇pL,Aq
dont le A-module est identifie avec la A-algèbre de Lie libre sur L, le bracket
r , s étant le crochet libre A-bilinéaire

Zpxq “ x and H 1x “ 0, (3.18)

Z
`

rx,ξs
˘

“ p∇xZqpξq`Hξpxq´Tor
`

x,Zpξq
˘

, (3.19)

H 1rx,ξspvq “
`

∇xH 1
˘

ξpvq`R
1
`

x,Zpξq
˘

pvq. (3.20)
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2. En particulier, nous obtenons pour x1,x2,x3 P L :

Zprx1,x2sq “ ´Torpx1,x2q, (3.21)

Z
`“

x1, rx2,x3s
‰˘

“ ´
`

∇x1
Tor

˘

px2,x3q`Tor
`

x1,Torpx2,x3q
˘

`

` Rpx2,x3qpx1q, (3.22)

H 1rx1,x2s
pvq “ R1px1,x2qpvq, (3.23)

H 1“
x1,rx2,x3s

‰pvq “
`

∇1x1
R1
˘

px2,x3qpvq´R
1
`

x1,Torpx2,x3q
˘

pvq. (3.24)

Finalement, on considére une algèbre de Lie-Rinehart
`

L,ρ, rr , ss,A
˘

sur A. Soit
∇ une connection en L sur L. On rappelle la bialgèbre de Rinehart

`

TApLq,˛ “
˛∇,1,∆sh,ε

˘

. Rappelons aussi l’algebroïde de Lie P∇pL,Aq (dont le sous-jacent A-
module est l’algèbre le Lie libreLApLq “: g), les applications Z (voir équation (5.4.5))
et H (voir équation (5.4.6)), et le noyau de Z, P 0

∇pL,Aq (voir équation (5.4.7)). En
outre, ce dernier est un idéal de Lie-Rinehart P∇pL,Aq dont nous avions montré
qu’il était isomorphe au A-sousmodule

h :“ Lě2
A pLq “

8
à

n“2
LnApLq (3.25)

muni du crochet A-bilinéaire

@ ζ,ζ1 P h : rζ,ζ1sp∇q “
“

ζ´Zpζq,ζ1´Zpζ1q
‰

`Hζpζ
1q´Hζ1pζq, (3.26)

(voir équation (5.4.9) et Théorème 5.4.4) iv.q. Le crochet de Lie (6.2.2) peut être
considéré comme une déformation du crochet de Lie libre restreint à h. On définit
l’application bilinéaire suivante pour chaque ζ P h et b P TApLq :

ζB b :“Dζpbq :“
`

ζ´Zpζq
˘

˛ b “ ζb´Zpζqb`Hζpbq (3.27)

et le suivante K-submodule de TApLq

J∇pL,Aq :“ hBTApLq :“ SpantζB b | ζ P h, b P TApLqu. (3.28)

Soit Υ : SApLq Ñ TApLq le morphisme de symétrisation usuel. On obtitein –a l’aide
des considerations coalbebriques tres tecniques - la decomposition d’A-modules
suivant (voir proposition 6.2.2).

TApLq “ Υ pSApLqq‘J∇pL,Aq.

On clésique par
P∇ : TApLq Ñ SApLq
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projection A-lineaire canonique qui est l’inverse de Υ (restreite à Υ pSApLqq) et dont
le noyau est égal au coidéal J∇pL,Aq. De plus, on définit

J0pL,Aq “ l1ideal et coidal de TApLq engendr par rx,ys (3.29)

P0 : TApLq Ñ TApLq (3.30)

la projection de bialgèbres qui envoie les mots noncommutatifs sur des mots com-
mutatifs (dont le noyau vaut J0pL,Aq).

Ensuite, soit D0 : TApLq Ñ TApLq tel que

D0p1q “ 0, D0pxq “ 0, D0px1 ¨ ¨ ¨xnq “
n
ÿ

r“2

rx1 ¨ ¨ ¨xr´1,xrsxr`1 ¨ ¨ ¨xn, (3.31)

codérivation de TApLq dont l’image est J0pL,Aq, et soit

D̃ : TApLq Ñ TApLq

l’application A-linéaire qie s’annule sur Υ pSApLqq et vaut l’inverse de la restriction
de D0 à J0pL,Aq. Il y a une formule explicite de D̃ (voir 6.2.31). En fin, on définit les
deux applications A-linéaires DZ ,DH : TApLq Ñ TApLq suivantes (@b P TApLq)

DZpbq :“
ÿ

pbq

´

Z
`

pπh ˝ ẽDq
`

bp1q
˘˘

¯

bp2q, (3.32)

DHpbq :“
ÿ

pbq

HẽDpbp1qq
`

bp2q
˘

. (3.33)

qui sont tout les deux des codérivations A-linéaires de TApLq on ẽD : TApLq Ñ TApLq
et l’idempotent de Dynkin modifie, i. e.

ẽDp1q “ 0, ẽDpxq “ x, ẽDpx1 ¨ ¨ ¨xnq “ rx1, rx2, ¨ ¨ ¨ , rxn´1,xnsss

Le résultat final de la deuxième partie de la thèse est le suivant :

Theoreme 6.2.6 et 6.2.7 : @γ1,γ2 P SApLq

1.
U pA,Lq – TApLq{SApLq – J∇pL,Aq

(isomorphisme de C3-coalgèbres sur A)

2.

P∇ :“ P0 ˝

8
ÿ

r“0

`

p´DZ `DHq ˝ D̃
˘˝r

et le produit K-bilinéaire ˛ sur SApLq vaut
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3.

γ1 ˛γ2 “ P∇

¨

˝

ÿ

pγ1q

Υ
`

γ
p1q
1

˘

∇
Υ pγ

p2q
2 q

`

Υ pγ2q
˘

˛

‚
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Introduction

This thesis is written in two parts that have a connection in the theory of defor-
mation quantization. We prefer to introduce the main branches of this work also in
two parts.

Part I: Localization

The first part of this thesis is devoted to localization. In commutative algebra, it
means a universal construction where a set of chosen elements in a given commuta-
tive ring is made invertible: the outcome is called a ring of fractions. The classical
example is the well-known passage from the integers to the field of rational num-
bers. It is a very important tool in algebraic and analytical geometry. In differential
geometry, however, localization is rather used in the analytic sense, i.e. the passage
from globally defined smooth functions to those which are only defined on an open
subset. It follows from the classical works by Whitney, Malgrange (see [33]) and
Tougeron that these analytical localizations are often isomorphic to certain alge-
braic localizations in the smooth (or even Ck , k P N) case.

Based on old work by ø.Ore in the 1930’s localization can be transferred to non-
commutative algebras: it turns out that there is a completely general construction
which is in some situations not very practical: on the other hand if there is an addi-
tional condition on the set of potential denominators, the famous right (or left) Ore
condition, the construction shares almost all properties of the commutative local-
ization.

In this work we should like to study noncommutative localization of algebras
arising in deformation quantization. In this theory, founded by [2] in 1978, formal
associative deformations of the algebra of all smooth complex valued functions on a
Poisson manifold, so-called star products, are studied aiming at an interpretation of
the noncommutative multiplication of operators used in quantum mechanics. It is
well-known that the first order commutator of such a deformation always gives rise
to a Poisson bracket, but it is highly non-trivial to show that every Poisson bracket
arises as a first order commutator of a deformation: this latter result is the famous
Kontsevich formality Theorem, see [28].

We consider star products given by formal power series of bidifferential operators
(as almost every-one): these multiplications immediately define star products of
locally defined functions by suitable ‘restrictions’.
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We first show that this analytical localization is isomorphic to the commutative al-
gebraic localization with respect to the set of all those formal power series of smooth
functions whose zeroth order term does nowhere vanish on the given open set. As
a by-product we have the result that this multiplicative set satisfies the right Ore
condition.

In a similar way we can show that the set of all analytical germs of a star product
algebra at a given point of the manifold is isomorphic the noncommutative local-
ization of the complement of the maximal ideal of all those formal power series of
functions whose term of order zero vanishes at the point.

We also sketch a more algebraic framework to compare the commutative localiza-
tion of bidifferential operators giving rise to a deformation of the localized algebra
and the noncommutative localization of the deformed algebra by a rather natural
mutliplicative set: here the question ‘Does localization commutes with deformation’
arises.

The first part of the thesis is organized as follows: in the Chapter 1 we recall
some basic concepts of the commutative algebra of smooth function algebras and
(non)commutative localization following Tougeron’s book [52] and Lam’s very nice
text-book [29]. Next, in the Chapter 2 we explore a bit Deformation Quantization,
basically concerning Star products

In the following, in the Chapter 3 we show the first localization result concerning
open sets and we prove a similar result for germs.

Part II: Lie-Rinehart algebras and connections

The second part of this thesis cover several objects, notably Lie-Rinehart algebras
as well as their universal enveloping algebras and connections. Of course, the choice
of these subjects was not by chance.

Fist of all, there is the following problem in differential geometry: whereas the
multiplication of differential operators on an open set of Rn is relatively easy to de-
scribe thanks to the existence of global co-ordinates, it is less evident for differential
operators on a smooth manifold: of course, in every coordinate chart it looks like
the easy multiplication in Rn, but coordinate changes are quite involved, and very
often the differential operators are formulated in terms of connections related for
instance to a (pseudo)riemannian metric on the manifold.

On the other hand, since composition of differential operators again gives a differ-
ential operator, the interesting question is how this is reflected on global symbols.
One would expect formulas involving complicated curvature and torsion terms, and
we are convinced that it would be useful to get some precise description of that.

The problem is also related to deformation quantization, see e.g. [11], [5], [4]
and [15] where each symbol gives rise to a fibrewise polynomial function on the
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cotangent bundle of the underlying manifold, and this bundle is well-known to
be a symplectic manifold. We have decided to choose another more algebraic ap-
proach towards a solution of the problem: it is well-known that the algebra of all
differential operators (for simplicity we have restricted our attention to those act-
ing on smooth functions on the manifold) is generated as an associative algebra with
unit by the all the multiplications by smooth functions and the Lie derivatives along
all the vector fields on the manifold. The latter carries the algebraic structure of a
Lie-Rinehart algebra, see [42], [19] which had recently been studied extensively in
particular in differential geometry.

A good algebraic object which shares all these features is the universal envelop-
ing algebra of a Lie-Rinehart algebra, already defined by G.Rinehart [42] which is
isomorphic to the differential operator algebra for the Lie-Rinehart algebra of all
vector fields in differential geometry, and which is a kind of analog of the classical
universal enveloping algebra of a Lie algebra, see [12].

As an additional feature we equip the Lie-Rinehart algebra with a connection in
the form of an algebraic version of a covariant derivative ∇ well-known in differ-
ential geometry and study its iterations. For conceptual reasons we investigate this
for the more generalized anchored modules which do no longer carry Lie brackets:
their importance had been recognized by M.Kapranov [23] for the development of
his path algebroid.

In the Chapters 4 and 5 we discuss the basics topics and recall some results about
Lie Rinehart algebras and covariant derivatives.

Next, in the Chapter 6 we have come to the following results:

1. For any anchored module pL,ρq with connection ∇ in the A-module L the free
algebra TApLq is equipped with a simple ‘smashed product-like’ K-bilinear
multiplication ˛ deforming the A-bilinear free multiplication which is explic-
itly expressed in terms of the iterated covariant derivative and the A-linear
shuffle comultiplication.

2. If Q Ă K (and hence Q Ă A): the primitive part of TApLq, P∇pL,Aq which is
isomorphic to the free A-linear Lie algebra over the A-module L carries a K-
bilinear Lie bracket deforming the free bracket, and an anchor morphism such
that it carries the structure of a Lie-Rinehart algebra over A: this Lie-Rinehart
algebra is isomorphic to Kapranov’s path algebroid. The Lie bracket is ex-
plicitly expressed in terms iterated covariant derivatives. The above algebra
`

TApLq,˛
˘

is isomorphic to the universal enveloping algebra of its primitive
part.

3. As M.Kapranov has already remarked, there is a canonical Lie-Rinehart alge-
bra morphism Z from the primitive part P∇pL,Aq to L induced by the identity
map LÑ L. We construct an explicit recursion of Z in terms of torsion and
curvature of the connection and their covariant derivatives. P∇pL,Aq decom-
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poses into the direct sum of L and P∇pL,Aq, the kernel of Z. The restriction
of the Lie-Rinehart bracket to this kernel is A-bilinear. It parametrizes the
well-known infinitesimal affine holonomy transformations.

4. Finally, the 2-sided ideal generated by P 0
∇pL,Aq, J∇pL,Aq, in

`

TApLq,˛
˘

can be
described in a rather explicit and A-linear way, and the quotient algebra is
isomorphic to the universal enveloping algebra of L. The key point here is the
well-known and innocent fact that J∇pL,Aq is a coideal of the free algebra with
respect to the shuffle comultiplication and ‘deforms’ the usual ideal which is
the kernel of the symmetrization map P0 : TApLq Ñ SApLq. The final multi-
plication formula for two symmetric symbols γ,γ 1 P SApLq is of the following
form

γ ˛γ 1 :“ “

˜

P0 ˝

8
ÿ

r“0

`

p´DZ `DHq ˝ D̃
˘˝r

¸

¨

˝

ÿ

pγq

Υ
`

γp1q
˘

bA ∇Υ pγp2qq
`

Υ pγ 1q
˘

˛

‚.

see eqn (6.2.51). Here Υ : SApLq Ñ TApLq is the usual symmetrization embed-
ding, Sweedler’s notation refers to the shuffle comultiplication, ∇ denotes the
iterated covariant derivative, and the information on curvature and torsion is
contained in the terms DZ and DH which are extensions of the above maps
Z and H as ‘left ordered’ coderivations by means of the Dynkin idempotent,
and D̃ is an explicit A-linear endomorphism containing precise combinato-
rial information in terms of convolutions. The geometric series in the formula
recalls the features of homological perturbation theory although there is no
grading with a ‘true sign’ or a ‘differential’.

Appendix

An important part of the thesis is the appendix where we collect important defi-
nitions, results and proofs that are needed for all the subjects of the main part of the
thesis but for organization and didactic reasons were placed separated at the end of
this work.
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1. Algebraic localization

The aim of this introductory chapter is to fix the notation that we will utilize
along the text and introduce localization from a purely algebraic point of view. We
basically divided this chapter into two parts, in the section 1.2 we will describe how
localization can be defined for K-algebras and look for the main properties of the
constructions. After that, in the section 1.3, we will treat localization in a general
context, i. e. for K-algebras that are not necessarily commutative.

1.1 Preliminary

We can talk about localization in very basic context, for instance if we consider
integral domains. The basic idea is to formally invert nonzero elements to obtain a
quotient field. Let us recall some facts about it.

Definition 1.1.1 (Integral domain) An integral domain R is a commutative ring such
that does not have zero divisors, that is, if xy “ 0 then x “ 0 or y “ 0, for x,y P R.

Let R be a integral domain and let us consider the set S “ Rzt0Ru. In this case lets
consider the follow relation in the set Rˆ S :

pr, sq „ pr 1, s1q if an only if rs1 “ sr 1 (1.1.1)

where r, r 1 P R and s, s1 P S.
Notice that, obviously pr, sq „ pr, sq and if pr, sq „ pr 1, s1q we obtain pr 1, s1q „ pr, sq,

for all r, r 1 P R and s, s1 P S. Moreover, if pr, sq „ pr 1, s1q and pr 1, s1q „ pr2, s2q we have

rs1 “ sr 1
ˆs2
ùùñ rs1s2 “ sr 1s2

ljhn

ñ rs2 “ sr2

r 1s2 “ s1r2 ùñ
ˆs

hnlj

r 1s2s “ s1r2s

(1.1.2)

and then pr, sq „ pr2, s2q. It shows that „ in fact define an equivalence relation.
Hence we can consider the equivalence classes r

s :“ pr, sq “
 

pr 1, s1q;pr 1, s1q „ pr, sq
(

in

the quotient set RS :“
Rˆ S
„

.

Definition 1.1.2 (Field of Fractions) The field of fractions of an integral domain is
the smallest field in which it can be embedded.

Following, we observe that there is an application η : RÑ RS which maps r ÞÝÑ r
1 .

In fact, this function transforms elements of S in invertible elements in RS . Notice
that, we have 1RS “

1R
1R
,0RS “

0R
s and

`

s
1

˘´1
“ 1

s .
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1.2. The commutative case

In that first approach of localization we use the fact that in R worth the cancel-
lation law to prove the reflexivity propriety of „. Of course, all this facts are very
easy to be checked and well known to all. Even so, we decided to describe it with
the objective that in the next steps we can perceive the difference in the definition
of the equivalence relation. We will see that this definition will become more and
more general.

Example 1.1.3 If we localize the ring of integers Z we obtain the field of rational
numbers Q.

The quotient ZZzt0u that we obtain is isomorphic to the well-know field of rational
numbers.

Example 1.1.4 If we take the ring of real polynomials in one variable Rrxs we will
obtain the set of rational polynomials Rpxq.

1.2 The commutative case

We will define a similar relation in a more general context. In this way, from now
-if we do not specify- K will denote a fixed commutative associative unital ring,
such that 1“ 1K and 0“ 0K . We will consider 0‰ 1 to avoid trivial cases.

Definition 1.2.1 (Modules) Let K be a commutative associative unital ring. A left K-
module M -or a left module over K- is an abelian group pM,`q with an additional
operation

K ˆM Ñ M
pk,xq ÞÝÑ kx

such that satisfies the following properties for all x,y PM and k,k1 in K :
(a) 1x “ 1
(b) pkk1qx “ kpk1xq
(c) pk` k1qx “ kx` k1x
(d) kpx` yq “ kx` ky

Of course, we can also define right modules defining xk instead of xk making
analogous statements. We will use the word module, without specifying if its left
or right module, when is the case of left modules.

Definition 1.2.2 (Ideals) Let M be a K-module. A subset I ĂM is called a left ideal
of M if pI,`q is an additive subgroup of pM,`q and absorbs multiplication from the
left by elements of M, i. e. @m PM and x P I we have mx P I.
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1. Algebraic localization

Definition 1.2.3 (Algebras) A K-Algebra A is a K-module equipped with an addi-
tional binary operation

AˆA Ñ A
px,yq ÞÝÑ x ¨ y

such that

(a) px` yq ¨ z “ x ¨ z` y ¨ z
(b) z ¨ px` yq “ z ¨ x` z ¨ y
(c) pk1qx ¨ pk2qy “ pk1k2qpx ¨ yq

for all x,y,z P A and k1, k2 P K .

To simplify, we will write xy instead of x ¨ y. All the K-algebras are supposed to
be associative and unital. We shall include unital K-algebras isomorphic to t0u for
which 1 “ 0. In order to avoid exaggerated notations we shall not write 1R, 1K , 0R
or 0K , but simply 1 and 0 where the precise interpretation should be clear from the
context.

For more definitions around those fundamental algebraic facts see [7] and [9].

1.2.1 Localization for commutative K-algebras

In this section we will consider commutative K-algebras. Of course, the previous
case that we saw in the Section 1.1 is included in that one.

That way, the set that we want to formally invert will be more general. Let us
consider the following.

Definition 1.2.4 (Multiplicative subset) If R is a K-algebra, a subset S of R is called
multiplicative subset if 0 R S,1 P S and for all s, s1 P S we have ss1 P S.

We can also say that S is closed for multiplications.

Remark 1.2.5 Notice that S is non empty set because 1 P S. Note also that if we
allow 0 P S the multiplicative condition will always work for all the subsets of R. So
those conditions avoid trivial cases.

Example 1.2.6 Let R be a K-algebra. Let us fix x P R an arbitrary nonzero element.
The set S “ txn;n P Nu is a multiplicative subset or R.

Example 1.2.7 Let R be a K-algebra. Let P be an ideal of R. The set S :“ RzPĂ R is
a multiplicative subset if and only if P is prime.

Let R be a commutative K-algebra and S Ă R a multiplicative subset, then the
following binary relation „ on Rˆ S defined by

pr1, s1q „ pr2, s2q if and only if D s P S : r1s2s “ r2s1s (1.2.1)

6



1.2. The commutative case

is an equivalence relation.
The reflexivity and the symmetry of this relation are completely trivial to check.

However, the transitivity is also not difficult but we decide to emphasizing to realize
the difference from the integral domain case. For instance in the following equation
(1.2.2) we can’t cancel elements. More explicity, for pr1, s1q,pr2, s2q and pr3, s3q in
Rˆ S such that pr1, s1q „ pr2, s2q and pr2, s2q „ pr3, s3q follows this two equations

r1s2s “ r2s1s
ˆs3s

1

ùùùñ r1s2sps3s
1q “ r2s1sps3s

1q

r2s3s
1 “ r3s2s

1 ùùñ
ˆs1s

r2s3s
1ps1sq “ r3s2s

1ps1sq
(1.2.2)

by which we obtain
r1s3pss

1s2q “ r3s1pss
1s2q (1.2.3)

It shows that Ds0 :“ ss1s2 P S such that r1s3s0 “ r3s1s0 and then pr1, s1q „ pr3, s3q. In
fact, there is always elements that remain multiplying r1s3 and r3s1 in the equation
(1.2.3). It justifies the change in the definition of this equivalence relation.

Finally, we can consider the quotient set given by

RS :“
Rˆ S
„

.

We will see that RS is K- algebra, called quotient ring, their elements are equiv-
alence classes that we will denote by

r
s

:“ pr, sq “
 

pr 1, s1q P pR,Sq;Ds0 P S,rs
1s0 “ r

1ss0
(

(1.2.4)

For this, it is sufficient shows that the addition and multiplication rules, defined

in the natural way, precisely
r
s
`
r 1

s1
:“

r ` r 1

s` s1
and

r
s
¨
r 1

s1
:“

rr 1

ss1
, are well defined.

Indeed, a very simple verification shows that this definitions independent of the
chosen classes.

Definition 1.2.8 (K- algebra morphism) If A and B are K-algebras a function f : AÑ
B is K-algebra morphism if

(a) f pkxq “ kf pxq
(b) f px` yq “ f pxq` f pyq
(c) f pxyq “ f pxqf pyq

forall k P K and x,y P A.

The property of making the elements of S invertible can be translated in the fol-
lowing definition.
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1. Algebraic localization

Definition 1.2.9 If R and R1 are K-algebras, a K-algebra morphism φ : R Ñ R1 is
called S-inverting if φpSq Ă UpR1q, where UpR1q denote the group of invertible
elements of R1.

In the above construction for each pair pR,Sq, where R is K-algebra and S Ă R
is a multiplicative subset, we obtained a K-algebra morphism, called numerator
morphism,

ηpR,Sq “ η : RÑ RS given by (1.2.5)

r ÞÑ
r
1

which in particular defines the K-algebra structure of RS .

Actually, ηpR,Sq is S-inverting. For that it is sufficient to check that the image of
elements in S by η have the form s

1 and s
1 ¨

1
s “ 1RS .

Finally, the construction described above for a K-algebra and a multiplicative
subset can be resume in the following proposition.

Proposition 1.2.10 Let R be a commutative K-algebra and S Ă R be a multiplicative
subset. Then the following is true:

a. ηpR,SqpSq Ă UpRSq, that is, the homomorphism ηpR,Sq sends elements of S to
invertible elements of RS . Moreover, for any commutative unital K-algebra R
equipped with a multiplicative subset S Ă R, the pair pRS ,ηpR,Sqq is univer-
sal. 1

b. Every element of RS is written as a fraction ηprqηpsq´1, for some r P R and
s P S.

c. kerpηpR,Sqq “ tr P R | rs “ 0 for some s P Su.

See We shall give a more categorical description in the section 1.3.2.

Remark 1.2.11 In the Proposition (1.2.10) the universality of the pair pRS ,ηpR,Sqq
means the following. For any morphism of commutative unital K-algebras α : RÑ
R1 mapping S into the group of invertibles UpR1q uniquely factorizes, i.e. the fol-
lowing diagram commutes, were f is a morphism of unital K-algebras determined
by α.

R
η //

α ��

RS

f~~
R1

(1.2.6)

1. See remark (1.2.11).
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1.2. The commutative case

In other words, for each ηpR,Sq and given an S-inverting morphism α : R Ñ R1

exists a uniquely determined morphism of unital K-algebras f : RS Ñ R1 such that
α “ f ˝ η.

1.2.2 Examples

Example 1.2.12 Let us consider R “ Z and S the subset of all the powers of 10,
precisely S “

 

10k ;k P N
(

.

Observe that 0 R S and 1 P S. It is also easy to see that S is a multiplicative subset
of R. In this case, it is clear that RS is isomorphic to the set of rational numbers that
have a power of 10 is the denominator. Notice that RS ĹQ as for example 2

3 R RS .

Example 1.2.13 Let us set R “ C0pRnq “
 

f : Rn Ñ R;f is continuous
(

and fix an
open set U Ă Rn. Now consider the subset S “

 

f P R;f pxq ‰ 0,@x P U
(

. Further-
more, we can consider the K-algebra C0pU q “

 

f : U Ñ R;f is continuous
(

. Then
we can show that RS – C8pU q.

Proof. In the sense of the Proposition 1.2.10, the K-algebra RS that we obtain, is
given by the formal fractions f

g “
 

pf 1, g 1q | Dh P S;f g 1h“ hf 1g
(

.
Let us define the following map considering equivalence classes in RS :

f
g

ψ
ÞÝÑ

ˆ

x
φ
ÞÑ
f pxq
gpxq

,x P U
˙

(1.2.7)

First of all, if
f 1

g 1
“
f
g

, there is h P S such that f pxqg 1pxqhpxq “ f 1pxqgpxqhpxq which

implies
f 1pxq
g 1pxq

“
f pxq
gpxq

,@x P U . It shows that ψ is independent of the chosen element

in the class.

Injectivity: Consider
f
g

in RS and suppose that φ
`f
g

˘

“ 0. It implies that
f pxq
gpxq

“

0,@x P U and then we have f pxq “ 0 in U . But for
f
g
“ 0RS “

0
1

we should find h P S

such that f h“ 0.
In the appendix B we will describe a very important construction that works ba-

sically around construct a C8 function in Rn, called fonction aplatisseur (in french),
that is strictly positive in some open set and zero outside this set.

Take α as in the Lemma B.2.1, i. e. exists α : RnÑ R such that αpxq P r0,1s,αpxq “
0 for all x R U and αpxq ą 0 for all x P U .

It is clear that is the function h that we want. Indeed α P S and f pxqαpxq “ 0 in U
because f pxq “ 0 in U on the other hand f pxqαpxq “ 0 in RnzU since that αpxq “ 0
for x R U .
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1. Algebraic localization

Surjectivity: Consider φ P C0pU q. According to the C0-version of the Lemma B.2.1
there is a continuous function α : RnÑ R such that αpxq “ 0,x R U and αpxq ą 0,x P
U such that the following function,

φpxq “

"

φpxqαpxq if x P U
0 if x R U . (1.2.8)

is continuous in Rn.

It follows that ψ
ˆ

φ
α

˙

pxq “
φpxqαpxq
αpxq

“ φpxq. It finishes the proof.

The example 1.2.13 is also related to the following references: [40] and [13].

1.3 The noncommutative case

The procedure that we explore in the previous chapter, for each commutative K-
algebra and a multiplicative subset S Ă R, give us a universal K- algebra RS and a
K- algebra morphism η : RÑ RS with the following properties:

(1.2.10).(a) ηpR,SqpSq Ă UpRSq and the universality for the pair pRS ,ηpR,Sqq is uni-
versal in the sense that any morphism of commutative unital K-algebras α :
RÑ R1 mapping S into the group of invertibles UpR1q uniquely factorizes, i.e.
the diagram

R
η //

α ��

RS

f
��
R1

(1.3.1)

commutes.
(1.2.10).(b) Every element in R´S has the form ηprqηpsq´1 where r P R and s P S.
(1.2.10).(c) kerpηq “ tr P R : rs “ 0 for some s P Su (an ideal in R)

In commutative algebra, localization provides one of the most powerful tools for
proving theorems. Thus, in studying noncommutative rings, it is natural to ask how
much of the localization machinery can be made to work in the noncommutative
case.

1.3.1 Existence of localization

We shall begin with a quite easy and completely general statement. From here we
will consider K- algebras not necessarily commutative.
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1.3. The noncommutative case

Proposition 1.3.1 Let R be a K-algebra and S Ă R a multiplicative set as above. There
is an S- inverting morphism from η to some K- algebra, denoted RS , with the following
universal property: for any S- inverting morphism f : RÑ R1 there is a uniqueK- algebra
morphism f : RS Ñ R1 such that f “ f ˝η. In other words, the diagram below commutes
where R1 is an arbitrary K- algebra.

R
η //

f ��

RS

f
��
R1

(1.3.2)

The proof of this fact can be found in [29, p. 289]. We will present this proposition
in a different way. For the moment, let us consider the following example.

Example 1.3.2 Consider R “M2pKq where K is a nonzero ring and eij P R denote
the matrix where in the position ij is 1K and in the other positions is 0K . Let S
be the multiplicative set tId,e11u. Notice that the kernel of the map η : RÑ RS is
an ideal in R. In the other hand we can show that this ideal have the form M2pU q
where U is an ideal in K . But E22E11 “ 0 that implies E22 P kerpηq and it follow that
1 P U ô U “ K . Therefore, η is the zero map and RS “ p0q.

This example, for instance, shows that we cannot predict the nature of RS . In
general, it is difficult to prove things aboutRS , because the universal map η : RÑ RS
may no longer have the properties (1.2.10).(b) and (1.2.10).(c) and also there is no
easy description for the kernel of η.

Another problem, that we will treat latter, concerns the elements in RS the are
sums of words in ηprqηpsq´1 like

ηprqηpsq´1ηpr 1q` ηps1q´1ηpr2qηps2q´1

where r, r 1, r2 P R and s, s1s2 P S.

1.3.2 Categories and Localization

The objective of this section is to present another proposition, consequently an-
other proof, that is more useful then the Proposition 1.3.1. For that propose, we
will utilize some category language. Of course, for that, we will not go deeper in
this beautiful and powerful theory. We use the classic book [32] about categories.

Let us consider this two categories with their respective objects and morphisms.
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1. Algebraic localization

Category : KAlgMS KAlg

Objects : pR,Sq ; R
S Ă R mult. subset

Morphisms : φ : pR,Sq Ñ pR1,S 1q ; φ : RÑ R1

φpSq Ă S 1

In this context, KAlg is the category of the unital K-algebras. The objects are as-
sociative unital K-algebras and the morphisms are naturally K-algebra morphisms.
Moreover, let KAlgMS be the category witch the objects are all pairs pR,Sq of asso-
ciative unital K-algebras R with a muliplicative subset S Ă R where the morphisms
pR,Sq Ñ pR1,S 1q are morphisms of unital K-algebras RÑ R1 mapping S into S 1.

The Localization Functor

First of all, since any morphism of unital K-algebras maps the group of invertible
elements in the group of invertible elements there is an obvious functor

U : KAlgÑ KAlgMS given by

R
U
ÝÑ

`

R,UpRq
˘

.

The localization that we already describe can be seen as a functor between the cat-
egories that we describe above. For commutative K-algebras, the Proposition (1.3.1,
a.), gives rise to a functor

L : KAlgMSÑ KAlg given by

pR,Sq
L
ÝÑ RS

where RS is the quotient algebra that we already know from the Chapter 2.

It is not hard to see that L is a left adjoint of the functor U , see e.g. [32, p.79,
Ch.IV] for definitions: the unit of the adjunction gives back the canonical numerator
morphism η, and the counit is an isomorphism since localization w.r.t. the group of
all invertible elements is isomorphic to the original algebra.

Finally, the following statement is another version of the Proposition 1.3.1.

Proposition 1.3.3 There is an adjunction of functors

KAlgMS
L

ÝÝÝÝÝÑÐÝÝÝÝÝU
KAlg
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1.3. The noncommutative case

where L is the left adjoint to the above functor U such that each component ηpR,Sq of the
unit η : IKAlgMS

¨
ÝÑ UL of the adjunction satisfies the universal property a. of the previous

Proposition (1.3.1) in the general noncommutative case. We refer to L as a localization
functor. For a given pR,Sq in KAlgMS we denote by RS the K-algebra LpR,Sq given by
the functor L, and by ηpR,Sq : RÑ RS the component of the unit of the adjunction.

Then ηpR,UpRqq : RÑ RUpRq is an isomorphism, the inverse being the component εR of
the counit ε : LU ¨

ÝÑ IKAlg of the adjunction. Moreover, every element of the K-algebra
RS is a finite sum of products of the form (η “ ηpR,Sq)

ηpr1q
`

ηps1q
˘´1

¨ ¨ ¨ηprN q
`

ηpsN q
˘´1 (1.3.3)

(which may be called ‘multifractions’) with r1, . . . , rN P R and s1, . . . , sN P S (note that r1
or sN may be equal to the unit of R).

Proof. The idea of the proof given in [29, Prop.(9.2), p.289] is as follows: there is
a natural surjective morphism of unital K-algebras ε̂R from the free K-algebra gen-
erated by the K-module R, TKR, to R which provides us with a natural categorical
presentation of R ‘by generators and relations’: this morphism is given by the R-
component of the counit ε̂ of the well-known adjunction

KMod
TK

ÝÝÝÝÝÑÐÝÝÝÝÝO
KAlg

where O is the forgetful functor and TK the free algebra functor. Let κpRq Ă TKR
denote the kernel of ε̂R. The next step is to add to the generating K-module R the
free K-module KS with basis S, and to consider the two-sided ideal κpR,Sq in the
free algebra TKpR‘KSq generated by κpRq and by the subsets

tps,0qb p0, sq´ 1T | s P Su and tp0, sqb ps,0q´ 1T | s P Su

of TK
`

R‘ KS
˘

where the multiplication b and the unit 1T are taken in the free
algebra TK

`

R‘KS
˘

. The localized algebra LpR,Sq “ RS is then defined by

RS “ TK
`

R‘KS
˘

{κpR,Sq,

and the ‘numerator morphism’ ηpR,Sq : RÑ RS is simply the canonical injection of R
into TKRĂ TK

`

R‘KS
˘

followed by the obvious projection. It follows that for every
s P S its image ηpR,Sqpsq has an inverse by construction. The verification that this
leads to a well-defined functor L which is a left adjoint to the functor U is lengthy,
but straight-forward.

Otherwise, we transfer all the details of this proof for the Appendix C.1

13



1. Algebraic localization

In fact, the preceding construction shows that the functor L provides us with an
abstract universal numerator map ηpR,Sq which is S-inverting in the sense that every
ηpR,Sqpsq, s P S, is invertible in RS and a natural isomorphism εR of an algebra with
its localization w.r.t. its group of units.

However, the construction by generators and relations renders the localized alge-
bra RS quite implicit and not always computable.

Moreover, even for multiplicative subsets S Ă R not containing 0 it may happen
that the localized algebra RS is trivial as example 1.3.2 shows.

This can never happen in the commutative case since the equation 1
0 “

0
0 is equiv-

alent to the fact that 0 P S. This shows the lack of control over the kernel of the
‘numerator morphism’ ηpR,Sq.

There is another reason that we will discuss in the following section.

1.3.3 Ore sets

The presentation of elements of RS in terms of sums of ‘multifractions’ as equation
(1.3.3) shows is quite clumsy, and on would prefer simple right or left fractions.

In order to motivate some conditions on S in the following Definition we look at
the multifractions which span the localized K-algebra RS , see eqn (C.1.1): it may
be desirable to transform a multifraction in a simple right fraction, and a partial
step may consist in transforming a left fraction

`

ηpsq
˘´1

ηprq (with r P R and s P S)

directly into a right fraction ηpr 1q
`

ηps1q
˘´1 (for some r 1 P R and s1 P S) which implies

that every multifraction is equal to a right fraction by applying this step a finite
number of times. This above condition implies the equation ηprs1q “ ηpsr 1q and
thus motivates the stronger condition that for any pair pr, sq P Rˆ S there is a pair
pr 1, s1q P Rˆ S such that rs1 “ sr 1, and this the well-known right Ore conditions.

Definition 1.3.4 Let R be an associative unital K-algebra, and S Ă R be a multi-
plicative subset. A K-algebra ŘS equipped with a morphism of unital K-algebras
η̌pR,Sq “ η̌ : RÑ ŘS is said to be a right K-algebra of fractions of pR,Sq if the follow-
ing conditions are satisfied:

a. η̌pR,Sq is S-inverting,

b. Every element of ŘS is of the form η̌prq
`

η̌psq
˘´1 for some r P R and s P S;

c. kerpη̌q “ tr P R | rs “ 0, for some s P Su “: IpR,Sq “: I .

Definition 1.3.5 Let R be an associative unital K-algebra, and S Ă R be a multi-
plicative subset, S is called a right denominator set if it satisfies the following two
properties:

a. For all r P R and s P S we have rS X sR ‰H (S right permutable or right Ore
set), i.e. there are r 1 P R and s1 P S such that rs1 “ sr 1.
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1.3. The noncommutative case

b. For all r P R and for all s1 P S: if s1r “ 0 then there is s P S such that rs “ 0 (S
right reversible).

Remark 1.3.6 In case that R is commutative every multiplicative subset is a right
denominator set of R.

Example 1.3.7 The group of all invertible elements U pRq of any unital K-algebra is
a right denominator set.

In fact, if x P R and s P U pRq we have sps´1rq “ r with implies sRX rU pRq ‰ ∅.
And also, if xr “ 0 for x P U pRq and r P R we have

xrx´1 “ 0ñ x´1xrx´1 “ 0ñ rx´1 “ 0.

The next Theorem shows that such a right algebra of fractions exists if and only if
S is a right denominator set. In other words, it shows that the definitions 1.3.4 and
1.3.5 are equivalents. See also [29, Thm (10.6), p.300]:

Theorem 1.3.8 Let R be a unital K-algebra and S Ă R be a multiplicative subset. Then
the following is true:

1. The K-algebra R has a right K-algebra of fractions ŘS with respect to the multi-
plicative subset S if and only if S is a right denominator set.

2. If this is the case each such pair pŘS , η̌q is universal in the sense of diagram (1.3.2)
and each ŘS is isomorphic to the canonical localized algebra RS of Proposition
1.3.3.

3. Each ŘS is isomorphic to the quotient set RS´1 :“ pRˆ Sq{ „ with respect to the
following binary relation „ on Rˆ S

pr1, s1q „ pr2, s2q ô Db1,b2 P R such that

s1b1 “ s2b2 P S and r1b1 “ r2b2 P R (1.3.4)

which is an equivalence relation generalizing relation (1.2.1).

Proof. The proof of this theorem is quite involved and can be found in [38, p.244,
Thm. 25.3] 2 and in the appendix C.1.

Remark 1.3.9 Let us state some commentaries about the proof.
‚ In the part (1.) the verification of the implication “pi.q ùñ pii.q” in Definition

1.3.4 is straight-forward. The converse implication is much more involved: the
traditional -and difficult- way, that was originally set up byHystein Ore, [36],
consists of a concrete construction of theK-algebraRS´1 upon using the above

2. We are indebted to Alberto Eduque for having pointed out this reference.
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1. Algebraic localization

relation described in (3.) equation (1.3.4), which reflects the idea of creating
‘common denominators, and defining and verifying the canonical K-algebra
structure (1.3.5) on the quotient set RˆS{ „ by hand which is elementary, but
extremely tedious. Moreover, even the fact that the above relation is transitive
requires some work. We refer to Lam’s book [29, p.300-302] for some of the
details.

‚ There is a different, and more elaborate, way to prove the part (1.) and the
rest of this Theorem. The proof is presented in [38, p.244, Thm. 25.3] and [29,
p.302].

‚ Actually, it is instructive to look first at the equivalence relations created by
an arbitrary S-inverting morphism of unital K-algebras α : RÑ R1, the classes
being defined by the fibres of the map

pα : Rˆ SÑ R1 given by pαpr, sq “ αprq
`

αpsq
˘´1

,

which is already very close to relation (1.3.4): thanks to the fact that the
right fractions αprq

`

αpsq
˘´1 form a K-subalgebra of R1 (here the Ore axiom

is needed) it creates an algebra structure on the quotient set isomorphic to the
aforementioned subalgebra of R1 whence there is no need of tedious verifica-
tions of identities of algebraic structures.

‚ The central point then is to construct a unital K-algebra R1 and an S-inverting
morphism α : RÑ R1 whose kernel is minimal, hence equal to IpR,Sq which fi-
nally shows that the above algebra RS´1 exists and does everything it should
do. For this construction, the following trick is used: after ‘regularizing’ R
by passing to the factor algebra R “ R{IpR,Sq (where the image multiplicative
set S does no longer contain right or left divisors of zero) one looks at the
endomorphism algebra of the injective hull E of the right R-module R. Ev-
ery left multiplication with elements of R can nonuniquely be extended to
E, and the extensions of left multiplications with elements of S turn out to be
invertible (here the Ore axiom is needed). R1 will then be given by the subalge-
bra generated by all extensions of left multiplications and the inverses of left
multiplications with elements of S modulo the two-sided ideal of all R-linear
maps EÑ E vanishing on R: this will resolve the ambiguity of extension, and
R injects in R1, the injection being S-inverting.

Remark 1.3.10 Moreover, RS´1 carries a canonical unital K-algebra structure, i.e.
addition and multiplication on equivalence classes r1s

´1
1 and r2s

´1
2 (with r1, r2 P R

and s1, s2 P S) is given by

r1s
´1
1 ` r2s

´1
2 “ pr1c1` r2c2qs

´1, and pr1s
´1
1 qpr2s

´1
2 q “ pr1r

1qps2s
1q´1 (1.3.5)

where we have written s1c1 “ s2c2 “ s P S (with c1 P S and c2 P R) and r2s
1 “ s1r

1
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1.3. The noncommutative case

(with s1 P S and r 1 P R) using the right Ore property. The numerator morphism
ηI : RÑ RS´1 is given by ηIprq “ r1´1 for all r P R.

1.3.4 Examples

Example 1.3.11 A Noetherian ring is a ring which every ascending chain of right
ideals stabilizes. Precisely, for I1, I2, ¨ ¨ ¨ , In, ¨ ¨ ¨ a sequence of right ideals which

I1 Ă I2 Ă ¨¨ ¨ Ă In Ă ¨¨ ¨

there is an r P N such that Ir “ Ir`1 “ ¨¨ ¨ .
That being said, in any noncommutative domain (no nontrivial zero divisors)

which is right noetherian the subset of nonzero elements is always a right denom-
inator set. This fact is shown in [29, p.304, Cor. (10.23)] and [6, p.14, Beisp. 2.3
b)]).

Two particular cases of the example 1.3.11: Every universal enveloping algebra
over a finite-dimensional Lie algebra (over a field of characteristic zero) and for the
Weyl-algebra generated by Kn.

Example 1.3.12 For the free algebra R “ TKV generated by a vector space V of di-
mension ě 2 (which is well-known to be isomorphic to the universal enveloping al-
gebra of the free Lie algebra generated by V ) the multiplicative subset of all nonzero
elements is neither a right nor a left denominator set: for two linearly independent
elements v and w in V we clearly have vRXwR“ t0u.

Hence the above statement about universal enveloping algebras does no longer
apply to infinite-dimensional Lie algebras like the free Lie algebra generated by V .

Example 1.3.13 The inverse images of right denominator subsets are in general no
right denominator subsets as the example of the natural homomorphism TKV Ñ

SKV of the free to the free commutative algebra generated by V shows: as SKV is
a commutative domain, the subset S “ SKV zt0u is a right denominator set whereas
its inverse image TKV zt0u is not.

On the other hand, every homomorphic image of a right (or left) denominator set
clearly is again a right (or left) denominator set. However, there may be subsets of
right (or left) denominator sets which are no longer right (or left) denominator sets,
as we shall see later.
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2. Star products and localization

The aim of this chapter is to explore an important object in deformation quan-
tization, called Star Products, that will give us a noncommutative structure in the
algebra of the smooth functions defined in a manifold.

2.1 Preliminary

Since the seminal article by Bayen, Flato, Frønsdal, Lichnerowicz and Sternheimer
in 1978, see [2], deformation quantization has become a large research area which
cover several algebraic theories like the formal deformation theory of associative
algebras and as well as geometric theories like the theory os symplectic and Poisson
manifolds, and of physical theories like string theory and noncommutaive gauge
theory.

In this case, the noncommutative associative multiplication of operators in quan-
tum mechanics is considered as a formal associative deformation of the pointwise
multiplication of the algebra of symbols of these operators. For Poisson manifolds,
the work of Kontsevich [28] is quite important to guarantees the existence os some
constructions in this way.

Nevertheless, we will not go deep in this beautiful theory, basically we will ex-
plore the deformed multiplication, the star product, that will be the symbol calculus
of differential operators in terms of formal power series.

We had as basis for some concepts and definitions some excellent textbooks [30],
[1], [14] and [55].

2.1.1 Multidifferential operators in Rn

Let M be an n-dimensional manifold. Let pU,φ “ px1, ¨ ¨ ¨ ,xnqq be a chart. Recall-
ing that a multi-index I “ pi1, ¨ ¨ ¨ , inq is an element of Nn with |N | :“ i1` ¨¨ ¨ ` in we
can denote by

BI :“
Bi1`¨¨¨in

pBx1q
i1 ¨ ¨ ¨ pBxnqin

(2.1.1)

the usual abbreviation for iterated partial derivatives.

Definition 2.1.1 A differential operatorD of orderN is a K-linear mapD : C8pM,Kq Ñ
C8pM,Kq such that in each chart pU,φ “ px1, ¨ ¨ ¨ ,xnqq the operator takes the local
form

Dpf q|U “
ÿ

IPNn;|I |ďN

DIBIpf |U q (2.1.2)

where f P C8pM,Kq and for each multi-index I the function DI :U ÑK.
More generally, a multidifferential operator of rank r, or a r-differential operator,

is a K-r-multilinear map D : C8pM,Kqˆ¨ ¨ ¨C8pM,Kq Ñ C8pM,Kq such that there is
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2.1. Preliminary

an integer N such that in each chart pU,φ“ px1, ¨ ¨ ¨ ,xnqq the operator takes the local
form

Dpf1, ¨ ¨ ¨ , frq|U “
ÿ

I1,¨¨¨ ,IrPNn;|I1|,¨¨¨|Ir |ďN

DI1,¨¨¨ ,IrBI1pf1|U q ¨ ¨ ¨BIr pfr |rq (2.1.3)

where f1, ¨ ¨ ¨ , fr P C8pM,Kq and for each r-tuple of multi-indicis pI1, ¨ ¨ ¨ , Irq the
function DI1,¨¨¨ ,Ir :U ÑK is C8.

2.1.2 Formal Power Series

We will start with some basic definitions about formal power series that latter
will allows us to define Star Products. For more details and proofs see the book
[45].

Let K be a ring and R be a K-algebra. First of all we can consider the K-algebra of
the formal power series with coefficients in K , more precisely

Krrλss “

#

a“
8
ÿ

i“0

λiai , ai P K,@i

+

.

We shall write a map a : NÑ K in the form of a formal power series with coefficients
in K to represent a“

ř8
i“0λ

iai , where ai “ apiq, i P N is called the rth component of
a and the symbol λ is called the formal parameter.

Similarly, we can consider the K-algebra Rrrλss of the formal power series with co-
efficients in R. These two K-algebras have structure of abelian groups. For instance,
if a,b P Krrλss we have

a` b “

˜

8
ÿ

i“0

λiai

¸

`

˜

8
ÿ

i“0

λibi

¸

“

8
ÿ

i“0

λipai ` biq

Furthermore, Rrrλss carries the Krrλss- module structure given by

˜

8
ÿ

i“0

λiαi

¸˜

8
ÿ

i“0

λiai

¸

“

8
ÿ

i“0

λibi

where bi “
ři
k“0αkbi´k P K,αi P K and bi P R,@i.

An element of a P Rrrλss can be written uniquely as a“
ř8
i“0 aiλ

i with ai P R, and
for a given a P Rrrλss and i P N we shall always write ai P R for the ith component
of a as a formal power series. We also note that for two K-algebras R,R1 we have
HompRrrλss,R1rrλssq –HompR,R1qrrλss.
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2. Star products and localization

2.1.3 Formal Deformations of Associative Algebras

Let pA0,µ0q be an associative algebra with unit over a commutative ring K .

Definition 2.1.2 A formal associative deformation of the associative algebra pA0,µ0q

is given by a sequence of K-bilinear maps µ1,µ2, ¨ ¨ ¨ :A0ˆA0 ÑA0 such that
(1)

r
ÿ

s“0

pµspµr´spa,bq, cq´µspa,µr´spb,cqqq “ 0

for all r P N and a,b,c PA0.
(2) µrp1, aq “ 0“ µrpa,1q for all r ď 1 and a PA0.

Proposition 2.1.3 The space A“A0rrλss equipped with the Krrλss-bilinear multiplica-
tion µ :“

ř8
r“0λ

rµr , i. e.

µpa,bq :“
8
ÿ

r“0

λr
r
ÿ

s`t`u“0

µspat ,buq

for all a“
ř8
t“0λ

t at and b “
ř8
u“0λ

u bu inA, is an associative algebra over the algebra
Krrλss.

2.1.4 Star Products

The following definition, introduced in [2] by Bayen, Flato, Frønsdal, Lichnerow-
icz and Sternheimer given us the notion of formal Star Products.

Definition 2.1.4 (Star products) A (formal) star product ˚ on a manifold X is a bilin-
ear continous associative operation C8pXqrrλssˆC8pXqrrλss Ñ C8pXqrrλss satisfying
the following properties for all f ,g P C8pXq:

(i.) 1 ˚ f “ f ˚ 1“ f ,
(ii.) f ˚ g “ f ¨ g `Opλq,
(iii.) f ˚ g “

ř8
k“0Ckpf ,gqλ

k ,
with bilinear operators Ck : C8pXq b C8pXq Ñ C 8pXq. We assume that all Ck are
bidifferential operators. It is called natural if every Ck is a differential operator of
order k.

Example 2.1.5 The following well-known explicit star-product ˚ on R2 with coor-
dinates px,pq will be used in the sequel:

f ˚ g “
8
ÿ

k“0

λk

k!
Bkf

Bpk
Bkg

Bxk
(2.1.4)

for any two functions f ,g P C8pR2q.
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2.2. Noncommutative localization of smooth star-products on open subsets

In the physics literature λ corresponds to p´i~q. Moreover, for functions polyno-
mial in the ‘momenta’ p it is obvious that the above series converge, and for λ “ 1
one obtains the usual formula for the symbol calculus of multiplication of differen-
tial operators on the real line (where partial derivatives are always brought to the
right and replaced by the new variable p).

We mention the following facts although they are not necessary for the main sub-
ject of this paper:
We define the star commutator for a,b PC 8pXqrrλss by ra,bs‹ “ a‹b´b‹a. As usual,
the star commutator satisfies the Leibniz-identity, i.e. ra,b‹cs‹ “ ra,bs‹‹c`b‹ra,cs‹,
and the Jacobi-identity and thus defines the structure of a non-commutative Poisson
algebra. Also the adjoint action is a derivation of C 8pXqrrλss for all a PC 8pXqrrλss.
From this it can easily be deduced that the first order term of a star product defines
a Poisson bracket as follows

tf ,gu “
1
2
pC1pf ,gq´C1pg,f qq “

1
2λ
rf ,gs|λ“0 for f ,g PC 8pXq. (2.1.5)

ForC 8pXq it is well-known that every Poisson bracket comes from a unique Poisson
structure π which is a smooth bivector field π, i.e. a smooth section in Λ2TX satis-
fying the identity rπ,πsS “ 0 where r , sS denotes the Schouten bracket, see e.g. [55,
p.84-87]: the relation is tf ,gu “ πpdf ,dgq. The very difficult converse problem
whether the Poisson bracket associated to any given Poisson structure π arises as
the first order commutator of a star-product had been solved by M. Kontsevich, see
[28].
We also note that two star products ‹, ‹1 are called equivalent if there exists a formal
power series of differential operators T “ id`

ř8
k“1λ

kTk , with T p1q “ 1 such that
T pf q ‹T pgq “ T pf ‹1 gq for all f ,g PC 8pXqrrλss. The operator T in the above defini-
tion is always invertible and indeed, given a star product ‹, f ‹1g :“ T´1pT pf q‹T pgqq
always gives a new equivalent star product. Two equivalent star products clearly
give rise to the same Poisson bracket.

2.2 Noncommutative localization of smooth star-products on
open subsets

The aim of this section is to relate localization with Star Products.

2.2.1 Analytic and algebraic localization

Analytic localization

Note that every star-product ˚ can be analytically localized to an associative star-
product ˚U defined on C8pUqrrλss by the localization of all the bidifferential oper-
ators Ck to Ck |U .
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2. Star products and localization

Algebraic localization

Let pX,πq be a Poisson manifold, let ˚ “
ř8
k“0λ

kCk be a star-product on pX,πq,
and let ΩĂ X be a fixed open set. We set K “Krrλss, and consider the K-algebra

R“
`

C8pXqrrλss,˚
˘

. (2.2.1)

Moreover, since the star-product ˚ only involves bidifferential operators, it restricts
to a star-product ˚Ω on formal power-series φ P RΩ :“ C8pΩ,Kqrrλss such that
`

RΩ,˚Ω
˘

is also a K-algebra.
It follows that the restriction map ηΩ “ η : RÑ RΩ : f ÞÑ f |Ω is a morphism of

unital K-algebras. We define the following subset S Ă R:

SΩ :“ tg P R | @ x PΩ : g0pxq ‰ 0u (2.2.2)

Clearly, the constant function 1 is in S, and for any g,h P S we have pg ˚ hq0pxq “
g0pxqh0pxq ‰ 0 (for all x P X) whence S is a multiplicative subset of the unital K-algebra
R.

We can now consider the noncommutative localization of R with respect to S and
compare it with the unital K-algebra RΩ

The main result from the frist part of this thesis is to anser the following question:
What is the relation between RSΩ , the algebraic localization in the sense of the

Chapter 1, and RΩ analytic localization the we describe above. Are these algebras
isomorphic?

2.3 Germs

Let pX,πq again be a Poisson manifold, and let ˚ “
ř8
l“0λ

lCl be a bidifferential
star-product. Let K “Krrλss, and we denote the unital K-algebra

`

C8pX,Kqrrλss,˚
˘

byR. For any open setU Ă X letRU denote the unitalK-algebra
`

C8pU,Kqrrλss,˚U
˘

,
where ˚U denotes the obvious action of the bidifferential operators in ˚ to the local
functions in C8pU,Kq. We write RX “ R. For any two open sets with U Ą V , denote
by ηUV : RU Ñ RV be the restriction morphism where we write ηU for ηXU . Clearly,
for U Ą V ĄW one has the categorical identities ηVW ˝ η

U
V “ η

U
W and ηUU “ idU . De-

noting by X the topology of X it is readily checked that the family
`

RU
˘

UPX with

the restriction morphisms ηUV defines a sheaf of K-algebras over X, see e.g. the book
[? ] for definitions.
Let x0 a fixed point in X, and let Xx0

Ă X the set of all open sets containing x0.
We recall the definition of the stalk at x0, Rx0

of the sheaf
`

RU
˘

UPX whose ele-
ments are called germs at x0: it is defined as the inductive limit (or colimit, see [? ])
limUPXx0

RU . In order to perform computations we recall the more down-to-earth
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2.4. Commutative Localization of Star-Products

definition: let R̃x0
be the disjoint union of all the RU , i.e. the set of all pairs pU,f q

where U is an open set containing x0 and f P C8pU,Kqrrλss. Define an addition `
and a multiplication ˚ on these pairs by

pU,f q` pV ,gq :“
`

U XV ,ηUUXV pf q` η
V
UXV pgq

˘

and

pU,f q ˚ pV ,gq :“
`

U XV ,ηUUXV pf q ˚UXV η
V
UXV pgq

˘

,

and it is easily checked that the addition is associative and commutative, that the
multiplication is associative, and that there is the distributive law. Furthermore, the
sum of pU,f q and pV ,0q equals

`

U XV ,ηUUXV pf q
˘

which is equal to pU,f q ˚ pV ,1q “
pV ,1q ˚ pU,f q. Next the binary relation „x0

defined by

pU,f q „x0
pV ,gq iff DW P Xx0

with W ĂU XV : ηUW pf q “ η
V
W pgq

turns out to be an equivalence relation. Denoting by Rx0
the quotient set R̃x0

{ „x0

and by ηUx0
: RU Ñ Rx0

the restriction of the canonical projection R̃x0
Ñ Rx0

to RU Ă
R̃x0

(where ηXx0
will be shortened by ηx0

: R Ñ Rx0
) it is easy to see that the above

addition and multiplication passes to the quotient, that all the zero elements pU,0q
are equivalent as are all the unit elements pU,1q, and that this defines the structure
of a unital associative K-algebra denoted by

`

Rx0
,˚x0

˘

on the quotient set such that
all maps ηUx0

:
`

RU ,˚U
˘

Ñ
`

Rx0
,˚x0

˘

are morphisms of unital K-algebras. Note the
following equations for all open sets U Ą V :

ηVx0
˝ ηUV “ η

U
x0
. (2.3.1)

Define the following subset S “ Spx0q and I “ Ix0
of R:

S “ Spx0q “ tg P R | g0px0q ‰ 0u and I “ Ix0
“ tg P R | g0px0q “ 0u . (2.3.2)

It is easy to see that S “ RzI , that S is a multiplicative subset of R, and that Ix0
is a

maximal ideal of R (the quotient R{I is isomorphic to the quotient K{pλKq –K which
is a field).

2.4 Commutative Localization of Star-Products

Let A be a commutative associative unital K-algebra. We recall briefly the well-
known algebraic definition of an (algebraic) multidifferential operator where we
follow the book [55, p.566-578]:
We shall write unadorned tensor products b short for bK . A multidifferential oper-
ator D of rank p on A is a K-linear map D : AbpÑ A satisfying certain properties:
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2. Star products and localization

We denote by La : A Ñ A, Lapbq “ ab for a,b P A the left multiplication, and
similarly for each integer 1 ď i ď p the map Lia : Abp Ñ Abp,Liapa1b ¨¨ ¨ b ai b apq “
a1b¨¨ ¨bpaaiqb¨ ¨ ¨bap. Further we denote by k“ pk1, . . . , kpq P Zp a multi-index and
by ei P Zp the multi-index which is 1 in the i-th position and zero otherwise. We
shall use the partial ordering ă on Zp defined by k ă l iff for all 1 ď i ď p we have
ki ď li .

Definition 2.4.1 We define the left A-module of p-multidifferential operators

DiffOpk
pA, . . . ,A;Aq

on A of order k P Np inductively by DiffOpk
pA, . . . ,A;Aq “ t0u if there exists ki ă 0

and

DiffOpk
pA, . . . ,A;Aq “ (2.4.1)

 

D PHomKpA
bn,Aq | @a P A @1ď i ď p : La ˝D ´D ˝L

i
a PDiffOpk´ei pA, . . . ,A;Aq

(

for k P Np. Furthermore, we set DiffOpppqpA;Aq “
Ť

kPZp DiffOpk
pA, . . . ,A;Aq.

Since clearly k ă l implies that DiffOpk
pA, . . . ,A;Aq Ă DiffOpl

pA, . . . ,A;Aq there is
the well-known result that each A-module of p-multidifferential operators is ex-
haustively filtered by the abelian group Zp.

Furthermore, for A “ C 8pXq for a manifold X this algebraic definition is well-
known to coincide with the analytic definition, see e.g. [55, p. 575, Satz A.5.2.]
which means that in local charts a (algebraically defined) differential operator looks
as in equation (2.4.1).

Returning to general A there is a well-known procedure to localize multidifferen-
tial operators:

Proposition 2.4.2 Let S0 Ă A be a multiplicative subset, let AS0
be the ordinary com-

mutative localization of A w.r.t. S0, and let ηpA,S0q
“ η : A Ñ AS0

be the numerator
morphism. Let D PDiffOpppqpA;Aq a multidifferential operator of rank p.

Then there exists a unique multidifferential operator DS PDiffOpppqpAS0
;AS0

q of rank
p such that η ˝D “DS ˝ ηbp.
Furthermore, given another multidifferential operator D 1 P DiffOppA;Aq we have pD ˝i
D 1qS “DS ˝i D

1
S for each integer 1ď i ď p.

Proof. This follows from the similar statement for differential operators, see e.g.
[53, Prop.3.3]. The second part follows from the uniqueness of the localization.

Observe now that the Definition 2.1.4 of star-products can be generalized to any
commutative associative unital K-algebra A whence the significance ‘bidifferential’
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2.4. Commutative Localization of Star-Products

for the K-bilinear maps Ck : Aˆ A Ñ A is now given by the algebraic Definition
2.4.1.

Proposition 2.4.3 Given a differential star product ‹ “
ř8
i“0λ

iCi with bidifferential
operators Ci on an algebra R “ Arrλss and a multiplicative set S0 Ă A there exists
a unique star product ‹S0

on AS0
rrλss such that the canonical K-linear map Arrλss Ñ

AS0
rrλss induced by the numerator morphism η : A Ñ AS0

is a morphism of unital K-
algebras.

Proof. This follows from the previous proposition by considering the localization
of the bidifferential operators Ci . It remains associative since the localization is
compatible with composition.
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3. Results

In this chapter we want to present the main results of the localization part.

3.1 Non commutative localization for smooth Star Products on
open subsets

This first theorem shows that localization for star products can be demonstrated
looking for the properties of the Definition 1.3.4.

Theorem 3.1.1 Using the previously fixed notations we get for any open set ΩĂ X:

1. pRΩ,˚Ωq together with the restriction morphism η consitutes a right K-algebra of
fractions for pR,Sq.

2. As an immediate consequence we have that S is a right denominator set.

3. This implies in particular that the algebraic localization RS´1 of R with respect to
S is isomorphic to the concrete localization RΩ as unital K-algebras.

Proof. 1. We have to check properties pi.a.q, pi.b.q, and pi.c.q of Definition 1.3.4:
‚ [Property (i.a.)] For this property we need to show that ”η is S-inverting”.

Indeed, this is a classical reasoning from deformation quantization which we shall
repeat for the convenience of the reader. Let g P S and γ “ ηpgq its restriction to
Ω. Take ψ P RΩ and try to solve the equation γ ˚Ω ψ “ 1. At order k “ 0 we get
the condition γ0ψ0 “ 1, but since γ0pxq ‰ 0 for all x PΩ the function x ÞÑ ψ0pxq :“
γ0pxq

´1 is well-defined and smooth in C8pΩ,Kq.
Suppose by induction that the functions ψ0, . . . ,ψk P C8pΩ,Kq have already been

found in order to satisfy equation γ ˚Ω ψ “ 1 up to order k. At order k` 1 ě 1 the
condition reads

0“
`

γ ˚Ω ψ
˘

k`1 “

k`1
ÿ

l,p,q“ 0
l` p` q“ k` 1

Clpγp,ψqq “

“ γ0ψk`1`Fk`1pψ0, . . . ,ψk ,γ0, . . . ,γk`1q (3.1.1)

where the term starting with Fk`1 denotes the difference
`

γ˚Ωψ
˘

k`1´γ0ψk`1 which
obviously does not contain ψk`1.

Again, since γ0 is nowhere zero on Ω the function ψk`1 can be computed from
this equation by multiplying with x ÞÑ γ0pxq

´1. Hence there is a solution ψ P RΩ of
equation γ ˚Ω ψ “ 1. In a completely analogous way there is a solution ψ1 P RΩ of
the equation ψ1 ˚Ω γ “ 1. By associativity of ˚Ω we get ψ “ ψ1 as the unique inverse
of γ in the unital K-algebra RΩ.
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3.1. Non commutative localization for smooth Star Products on open subsets

‚ [Property (i.b.)] ”Every φ P RΩ is equal to ηpf q ˚Ω ηpgq˚Ω´1 for some f P R and
g P S”:

The main idea is to transfer the proof of Lemme 6.1 of Jean-Claude Tougerons’s
book to the non-commutative situation. Let φ “

ř8
i“0λ

iφi P RΩ. We then fix the
following data which we get thanks to the fact that X and therefore each open setΩ
is a second countable locally compact topological space: there is a sequence of com-
pact sets pKnqnPN of X, a sequence of open sets pWnqnPN, and a sequence of smooth
functions pgnqnPN : XÑ R such that

ď

nPN
Kn “Ω,

and

@ n P N : Kn ĂWn ĂWn Ă K
˝
n`1 and gnpxq “

$

&

%

1 if x PWn,
0 if x R Kn`1,
y P r0,1s else.

.

We denote by γj the restriction ηpgjq of gj to Ω for each nonnegative integer j.
The idea is to define the denominator function g as a (non formal!) converging sum
g “

ř8
j“0 εjgj . Choose a sequence pεjqjPN of strictly positive real numbers such that

@ j P N : εjpKj`1,jpgjq ă
1
2j

and @ i ď j P N : εj

i
ÿ

l“0

pKj`1,j
`

Clpφi´l , gjq
˘

ă
1
2j

(For the definition of the seminorms pK,m see Appendix A.4) which is possible since
for each nonnegative integer j there are only finitely many seminorms and functions
involved. For all nonnegative integers i, j,N we define the functions gpN q P C8pX,Kq,
and ψij ,ψpi,N q P C8pΩ,Kq:

gpN q :“
N
ÿ

j“0

εjgj , ψij :“
i
ÿ

l“0

Cl
`

φi´l ,γj
˘

, ψpi,N q :“
N
ÿ

j“0

εjψij “
i
ÿ

l“0

Cl
`

φi´l ,γpN q
˘

,

and since supppgjq Ă Kj`1 Ă Ω, hence supppgpN qq Ă KN`1 Ă Ω, there are unique
functions fij P C8pX,Kq such that

fijpxq :“
"

ψijpxq if x PΩ,
0 if x RΩ.

, hence ηpfijq “ ψij and supppfijq Ă Kj`1.

For each nonnegative integerN we set fpi,N q :“
řN
j“0 εjfij P C8pX,Kqwith supppfpi,N qq Ă

KN`1. Clearly, ηpfpi,N qq “ φpi,N q.
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We shall now prove that both sequences pgpN qqNPN, and for each nonnegative inte-
ger i, pfpi,N qqNPN are Cauchy sequences in the complete metric space C8pX,Kq. First,
it is obvious that for any two compact subsets K,K 1 and nonnegative integers N,N 1

we always have for all f P C8pRn,Kq

if K Ă K 1 and mďm1 then pK,mpf q ď pK 1,m1pf q. (3.1.2)

Fix a nonnegative integer i. Let ε P R, ε ą 0, K Ă X a compact subset, and m P N.
Then there is a nonnegative integer N0 such that

1
2N0

ă ε, mďN0, and i ďN0

Then for all nonnegative integersN,p withN ěN0 we get (since for all j P N such
that N ` 1ď j we have mďN0 ďN ď j and i ďN , and supppfi,jq Ă K˝j`1 Ă Kj`1)

pK,m
`

fpi,N`pq´ fpi,N q
˘

“ pK,m

¨

˝

N`p
ÿ

j“N`1

εjfi,j

˛

‚ď

N`p
ÿ

j“N`1

εjpK,m
`

fi,j
˘

“

N`p
ÿ

j“N`1

εjpKXKj`1,m
`

ψij
˘

ď

N`p
ÿ

j“N`1

εjpKj`1,j

˜

i
ÿ

l“0

Clpφi´l , gjq

¸

ď

N`p
ÿ

j“N`1

εj

i
ÿ

l“0

pKj`1,j
`

Clpφi´l , gjq
˘

ă

N`p
ÿ

j“N`1

1
2j
“

1
2N

ˆ

1´
1
2p

˙

ă
1

2N
ď

1
2N0

ă ε.

It follows that for each i P N the sequence pfpi,N qqNPN is a Cauchy sequence in
the locally convex vector space C8pX,Kq hence converges to a smooth function
fi “

ř8
j“0 εjfi,j . Replacing in the above reasoning the function φ0 by the constant

function 1 on Ω it follows that the sequence pgpN qqNPN converges to a smooth func-
tion g : X Ñ R. Now let x P Ω. Then there is a nonnegative integer j0 such that
x P Kj0 . It follows from the nonnegativity and the definition of all the gj and from
the strict positivity of εj that

gpxq “
8
ÿ

j“0

εjgjpxq ě εj0gj0pxq “ εj0 ą 0

showing that g takes strictly positive values on Ω whence g P S.

Now let x RΩ. Then for any v P TxX with hpv,vq ď 1 we have that

@ m P N : pDmgpN qqpvq “
N
ÿ

j“0

εjpD
mgjqpvq “ 0
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3.1. Non commutative localization for smooth Star Products on open subsets

because each gj has compact support in Kj`1 Ă Ω. Since gpN q Ñ g for N Ñ 8 it
follows by the continuity of differential operators and evaluation functionals that
DmgpN qpvq ÑDmgpvq, and hence

@ x P XzΩ, @ m P N, @ v P TxX, hpv,vq ď 1 : pDmgqpvq “ 0, (3.1.3)

and in a completely analogous manner

@ x P XzΩ, @ m P N, @ v P TxX, hpv,vq ď 1 : pDmfiqpvq “ 0.

Hence the infinite jets of all the functions g and fi , i P N, vanish outside the
open subset Ω. J.-C. Tougeron calls the function g fonction aplatisseur for the family
pφiqiPN in case Cl “ 0 for l ě 1.

Now we get

`

φ ˚U ηpgpN qq
˘

i
“

i
ÿ

l“0

Cl
`

φi´l ,ηpgpN qq
˘

“ ψpi,N q “ ηpfpi,N qq.

Since the restriction map η : C8pX,Kq Ñ C8pΩ,Kq is continuous (where the Fréchet
topology on C8pΩ,Kq is induced by those seminorms pK,m where K ĂΩ) as are the
bidifferential operators Cl we can pass to the limit N Ñ 8 in the above equation
and get

φ ˚Ω ηpgq “
8
ÿ

i“0

λi
`

φ ˚Ω ηpgq
˘

i “

8
ÿ

i“0

λiηpfiq “: ηpf q.

Since g P S it follows that ηpgq is invertible in RΩ by property pi.aq of Definition
1.3.4, and the preceding equation implies φ“ ηpf q ˚Ω ηpgq˚Ω´1 thus proving prop-
erty pi.bq of Definition 1.3.4.
‚ [Property (i.c.)] "The kernel of η is equal to the space of functions f P R such that

there is g P S with f ˚ g “ 0":
Clearly if there is f P R and g P S such that f ˚ g “ 0 then ηpf q ˚Ω ηpgq “ 0, and

since ηpgq is invertible in RΩ we have ηpf q “ 0.
Conversely, if f P R such that ηpf q “ 0, then for all integers i P N and for all x PΩ

we have f pxq “ 0. Hence the infinite jet of each fi vanishes at each point x PΩ since
Ω is open. Take the fonction aplatisseur g P S constructed in the preceding part of
the proof for φ0 “ 1,φi “ 0 for all i ě 1. Then we get @ x P X :

pf ˚ gqipxq “
i
ÿ

l“0

Clpfi´l , gqpxq “

“

"

0 if x PΩ since every jet of eachfi vanishes in Ω,
0 if x RΩ since every jet of g vanishes outside of Ω,
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where we have used equation (3.1.3) for the second alternative of the above state-
ment. This proves part 1. of the Theorem.

Statements 2. and 3. are immediate consequences of 1. and Theorem 1.3.8.

Remark 3.1.2 For zero Poisson structure and trivial deformation Cl “ 0 for all l ě 1
the above result specializes to the classical result that algebraic and analytic local-
isation with respect to an open subset Ω Ă X are isomorphic for the commutative
K-algebra C8pX,Kq.

Moreover, since for any closed set F Ă X Tougeron’s above construction gives
us a smooth function g : X Ñ R which is nowhere zero on the open set Ω “ XzF
and zero outside Ω, hence on F, one gets the well-known result that the Zariski
topology on X induced by the commutative K-algebra C8pX,Kq coincides with the
usual manifold topology because each set ZpIq is closed by continuity of all the
functions in the ideal I , and conversely every closed set F is the zero set ZpgAq of
the ideal gA (where A“ C8pX,Kq).

3.2 Noncommutative germs for smooth star products

Theorem 3.2.1 Using the previously fixed notations we get for any point x0 P X:

1. pRx0
,˚x0

q together with the morphism ηx0
: RÑ Rx0

consitutes a right K-algebra of
fractions for pR,Spx0qq.

2. As an immediate consequence we have that Spx0q is a right denominator set.

3. This implies in particular that the algebraic localization RS´1 of R with
respect to S “ Spx0q is isomorphic to the concrete stalk Rx0

as unital K-
algebras.

Proof. 1. Once again, we have to check properties pi.a.q, pi.b.q, and pi.c.q of Definition
1.3.4:
‚ ”ηx0

is S-inverting” (property pi.a.q):
Indeed, let g P Spx0q. Since g0px0q ‰ 0 there is an open neighbourhood U of x0

such that g0pyq ‰ 0 for all y PU . Hence the restriction ηU pgq is invertible in pRU ,˚U q
by Theorem 3.1.1.

Using eqn (2.3.1) we see that ηx0
pgq “ ηUx0

`

ηU pgq
˘

, and the r.h.s. is invertible in
Rx0

as the image of an invertible element ηU pgq in RU with respect to the morphism
of unital K-algebras ηUx0

.
‚ ”Every φ P Rx0

is equal to ηx0
pf q ˚x0

ηx0
pgq˚x0´1 for some f P R and g P Spx0q”

(property pi.b.q):
Indeed, let φ P Rx0

. By definition of Rx0
as a quotient set there is an open neigh-

bourhood U of x0 and an element ψ P RU with ηUx0
pU,ψq “ φ.
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3.2. Noncommutative germs for smooth star products

According to the preceding Theorem 3.1.1 there are elements f ,g P Rwith g0pyq ‰
0 for all y P U such that ηU pf q “ ψ ˚U ηU pgq. In particular, g0px0q ‰ 0, hence g P
Spx0q. Applying ηUx0

to the preceding equation we get (upon using eqn (2.3.1))

ηx0
pf q “ ηUx0

`

ηU pf q
˘

“

´

ηUx0
pψq

¯

˚x0

´

ηUx0

`

ηU pgq
˘

¯

“ φ ˚x0

`

ηx0
pgq

˘

proving the result since g P Spx0q and ηx0
pgq is invertible in the unital K-algebra

pRx0
,˚x0

q.
‚ The kernel of ηx0

is equal to the space of functions f P R such that there is g P Spx0q

with f ˚ g “ 0 (property pi.cq):
Indeed, given f P R with ηx0

pf q “ 0 then there is an open neighbourhood W of x0
such that ηW pf q “ ηW p0q “ 0. By the preceding Theorem 3.1.1 there is an element
g P SW Ă Spx0q (which can be chosen to be a fonction aplatisseur) such that f ˚ g “ 0.
This proves 1. of the Theorem.
2. and 3. are immediate consequences of part 1. and Theorem 1.3.8.
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Part II.

Lie-Rinehart algebras and

connections
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4. Preliminary

4.1 Lie-Rinehart algebras

In this Section K is always a fixed commutative associative unital ring. All mod-
ules are considered over K , and the symbol b is short for bK . Moreover, let A be a
commutative associative unital K-algebra in the sense that K Ñ A is a morphism of
unital commutative associative rings.

4.1.1 Lie algebras

First let us recall the definition of Lie algebras.

Definition 4.1.1 [Lie algebras] A Lie algebra over K is an K-module L, together
with a K-bilinear map

LˆL Ñ L
px,yq ÞÝÑ rx,ys

called Lie bracket, satisfying the following properties:

(L1) rx,xs “ 0, @x P L;
(L2) rx, ry,zss` ry, rz,xss` rz, rx,yss “ 0, @x,y,z P L (Jacobi identity).

We can denote a Lie algebra by
`

L, r , s
˘

.

Remark 4.1.2 The condition rx,xs “ 0 @x P L, in the definition (4.1.1, L1), is equiv-
alent to rx,ys “ ´ry,xs for all x,y P L. In fact, 0“ rx`y,x`ys “ rx,xs`rx,ys`ry,xs`
ry,ys “ rx,ys` ry,xs ùñ rx,ys “ ´ry,xs.

Example 4.1.3 (Derivations) Let A be a K- algebra and let us consider the set

DerKpAq “ tf PHomKpA,Aq;f is derivationu.

To recall, a derivation f : AÑ A is a K- linear map such that f paa1q “ f paqa1`af pa1q
for all a,a1 P A. Of course this is a subalgebra of the set the K-linear maps from A to
A, precisely HomKpA,Aq.

Then we can define the bracket rf ,gs “ f ˝ g ´ g ˝ f for f ,g PHomKpA,Aq. More-
over, if we consider f ,g PDerKpAq we obtain

rf ,gspabq “ f pgpabqq´ gpf pabqq “

“ f rgpaqb` agpbqs´ grf paqb` af pbqs “

“ f pgpaqqb` gpaqf pbq` f paqgpbq`

` af pgpbqq´ gpf paqqb´ f paqgpbq´ gpaqf pbq´ agpf pbqq “

“ rf pgpaqq´ gpf paqqsb` arf pgpbqq´ gpf pbqqs “

“ rf ,gspaqb` arf ,gspbq.

It shows that rf ,gs is a derivation. In other words pDerKpAq, r , sq is a Lie algebra.

40



4.1. Lie-Rinehart algebras

Example 4.1.4 More general, if we consider an associative K-algebra A and define
the bracket rx,ys “ xy ´ yx, for x,y P A, called frequently the commutator, is not
difficult to check that pA, r , sq is a Lie algebra.

The Jacobi identity follows from the associativity. Indeed, it follows that, for
x,y,z P A we have:

rx, ry,zss` ry, rz,xss` rz, rx,yss “ rx,yzs´ rx,zys` ry,zxs´ ry,xzs` rz,xys´ rz,yxs “

“ xyz´ yzx´ xzy` zyx` yzx´ zxy ´ yxz` xzy` zxy´ xyz´ zyx` yxz “ 0

4.1.2 Lie Rinehart algebras

We shall now recall the notion of a Lie-Rinehart algebra over A as defined in
G.Rinehart’s article, see [42]. Another rather good account of most of the material
is J. Huebschmann’s classical article [19].

Definition 4.1.5 A Lie-Rinehart algebra over A, pL,ρ, rr , ss,Aq is defined by the
following data:

1. L is an left A-module.

2. ρ : L Ñ DerKpA,Aq is an A-linear map called the anchor morphism. We shall
write ρpxqpaq in the more common way ρxpaq for all x P L and a P A.

3. pL, rr , ssq is a K-Lie algebra.

4. ρ : LÑDerKpA,Aq is a morphism of K-Lie algebras, i.e.

@ x,y P L : ρrrx,yss “ ρx ˝ ρy ´ ρy ˝ ρx.

5. For all a P a, x,y P L:
rrx,ayss “ ρxpaqy` arrx,yss.

Definition 4.1.6 A map Φ : pL,ρ, rr , ss,Aq Ñ pL1,ρ1, rr , ss1,Aq, considered over the
same commutative algebra A, is called a morphism of Lie Rinehart algebras, if Φ : LÑ
L1 is A-linear map, such that for all x,y P L,

Φ
`

rrx,yss
˘

“ rrΦpxq,Φpyqss1 and ρ1Φpxq “ ρx. (4.1.1)

One thus obtains a category LieRinA|K whose objects consist of all the Lie-Rinehart
algebras over A and whose morphisms are defined as above in eqn (4.1.1).

Definition 4.1.7 Recall that this definition can be weakened in two ways:

1. A Lie derivation algebra over A is defined by the first four conditions iq, iiq,
iiiq, and ivq in Definition 4.1.5 above with the modification that L carries no
A-module structure, and that the anchor morphism ρ is just K-linear.
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2. More importantly, an anchored A-module is defined by just the first two condi-
tions iq and iiq of Definition 4.1.5 above without specifying a Lie bracket.
Defining morphisms in the appropriate way using eqn (4.1.1) one gets cate-
gories LieDerA|K and AModAncK .

Remark 4.1.8 This first case of the definition 4.1.7 occurs in differential geometry
in the case of a Lie algebra action on a smooth manifod X.

Example 4.1.9 We mention the following natural classes of examples of Lie-Rinehart
algebras:

— Choosing A“ K we get DerKpK,Kq “ t0u, hence a Lie-Rinehart algebra in this
case has zero anchor morphism and reduces to an ordinary Lie algebra over
K .

— For arbitrary A the A-module L “ DerKpA,Aq always yields a Lie-Rinehart
algebra with the identity map as anchor morphism: in differential geometry,
given a smooth manifold X with A“ C8pX,Kq, this example just describes the
space of all vector fields on X.

Definition 4.1.10 A Lie-Rinehart ideal iĂ L of a given Lie-Rinehart algebra
`

L,ρ, rr , ss,A
˘

is an ideal of the K-Lie algebra
`

L, rr , ss
˘

which in addition an A-submodule on
which the anchor morphism vanishes.

The following Lemma is elementary, but is quite important. The proof is entirely
straight-forward.

Lemma 4.1.11 Let
`

L,ρ, rr , ss,A
˘

a Lie-Rinehart algebra.

1. Let i Ă L be a Lie-Rinehart ideal. Then the restriction of the Lie-bracket rr , ss to
i is A-bilinear, and the quotient A-module L{i carries a canonically induced Lie-
Rinehart structure.

2. Let φ :
`

L,ρ, rr , ss,A
˘

Ñ
`

L1,ρ1, rr , ss1,A
˘

be a morphism of Lie-Rinehart algebras
over A.
Then the kernel

h :“ Kerpφq Ă L

is a Lie-Rinehart ideal.

Remark 4.1.12 Note that this applies to the particular case

ρ :
`

L,ρ, rr , ss,A
˘

Ñ
`

DerKpA,Aq, id, r , s,A
˘

,

i.e. the anchor morphism is always a morphism of Lie-Rinehart algebras whence
the kernel of the anchor morphism is an ideal of L with A-linear Lie bracket.
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Besides that, for later use we mention that by the induction functor Ab (see
Appendix A.2.1) every Lie derivation algebra over A,

`

L, r , s,ρ,A
˘

can be promoted
to a Lie-Rinehart algebra pAbL,Aρ,Arr , ssρ,Aq given us a functor

LieDerAlgA|K ÝÑ LieRinAlgA|K

which we shall refer AdL by setting

A“rab x,a1b x1ssρ :“ paρxpa
1qqb x1´pa1ρx1paqqb x`paa

1qb rx,x1s

and Aρabxpa
1q :“ a

`

ρxpa
1q
˘

, (4.1.2)

and a morphism Φ of Lie derivation algebras will be mapped as usual to idAbΦ .
We mention that this defines a functor LÑ AdL (whose underlying A-module is

the relatively free A-module Ab L) from LieDerA|K to LieRinA|K, and there is the
obvious adjunction of functors

LieDerAlgA|K
Ad

ÝÝÝÝÝÝÑÐÝÝÝÝÝÝ
Res

LieRinAlgA|K

Note that for any Lie-Rinehart algebra
`

L,ρ, rr , ss,A
˘

the counit of the adjunction
is just the module multiplication map µL : Ad LÑ L given by equation (A.2.1, ap-
pendix A.2) which is a morphism of Lie-Rinehart algebra whence its kernel hpL,Aq,
see equation (A.2.3, appendix A.2), is a Lie-Rinehart ideal.

In fact, on the A-module Ab L there is also the trivial A-bilinear bracket Ar , s
given by

Arab x,a1b x1s :“ paa1qb rx,x1s. (4.1.3)

4.2 Universal Enveloping Algebras

The central idea of the enveloping algebra construction is an universal process
to produce an associative algebra with ’envelope’ the original algebra and also have
some analogous structure given by the map that give this ’inclusion’.

First, in case A“ K the categories of Lie-Rinehart algebras and ordinary Lie alge-
bras are isomorphic.

4.2.1 Universal Enveloping Algebras of Lie algebras

Recall that for any ordinary K-Lie algebra
`

g, r , s
˘

there is the notion of Universal
Enveloping Algebra, UKpgq.
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There is the following problem of universals: given a Lie algebra
`

g, r , sg
˘

over
K , is there an associative unital K-algebra UKpgq equipped with a K-linear map
ig “ i : gÑ UKpgq satisfying

i
`

rx,ysg
˘

“ ipxqipyq´ ipyqipxq for all x,y P g (4.2.1)

such that for any unital associative K-algebra B and any K-linear map θ : g Ñ B
satisfying θ

`

rx,ysg
˘

“ θpxqθpyq´θpyqθpxq for all x,y P g there is a unique morphism
of unital K-algebras θ̄ : UKpgq Ñ B satisfying θ̄ ˝ i “ θ ?

In other words, the K-linear map ig is such that given a K- linear map θ : gÑ B,
with the same property as the equation 4.2.1, exists a K-linear map θ̄ : UKpgq Ñ B
such that the following diagram commutes

g
ig //

θ
!!

UK
`

g
˘

θ
��
B

(4.2.2)

The positive answer to this question can be rephrased in more categorical terms
that the obvious commutator functor p q´ : AssAlgK Ñ LieAlgK from all unital asso-
ciative K-algebras to all K-Lie algebras has a left adjoint:

LieAlgK
U

ÝÝÝÝÝÝÑÐÝÝÝÝÝ
p q´

AssAlgK (4.2.3)

Here to any associative algebra B over K the Lie algebra B´ is associated where
the Lie bracket on the K-module B´ “ B is just the commutator rb,b1s :“ bb1 ´ b1b
for all b,b1 P B.

We shall recall the usual construction, see e.g. the books by H.Cartan and S.Eilenberg,
[12, p.266-270], and by Bourbaki [8, Ch.I, p.22], for more details about this con-
struction see the Appendix A.5.

4.2.2 Universal Enveloping Algebras of Lie-Rinehart algebras

For Lie-Rinehart algebras G.Rinehart formulated and solved the according uni-
versal problem in his thesis [42, p.197-198]: given a Lie-Rinehart algebra

`

L,ρ, rr , ss,A
˘

over A, is there an associative unital K-algebra
`

U pL,Aq,˛,1
˘

equipped with two K-
linear maps ιL : LÑ U pL,Aq and ιA : AÑ U pL,Aq satisfying for all x P L and a P A

ιL : LÑ U pL,Aq´ morphism of K´Lie algebras (4.2.4)

ιA : AÑ U pL,Aq morphism of unital K´algebras (4.2.5)

ιApaq ˛ ιLpxq “ ιLpaxq and (4.2.6)

ιLpxq ˛ ιApaq´ ιApaq ˛ ιLpxq “ ιA
`

ρxpaq
˘

, (4.2.7)
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4.2. Universal Enveloping Algebras

such that for any given associative unital K-algebra B and any given K-linear maps
θ : LÑ B and j : AÑ B satisfying the conditions analogous to ιL and ιA there is a
unique morphism θ̃ : U pL,Aq Ñ B such that θ̃ ˝ ιL “ θ and θ̃ ˝ ιA “ j?

In othe words, the K-linear maps ιA and ιL are such that for any given associative
unital K-algebra B and any given K-linear maps θ : LÑ B and j : AÑ B satisfying
the conditions analogous to ιL and ιA exists rθ : U pL,Aq Ñ B such that both sides of
the following diagram commutes?

U pL,Aq

rθ

��

L

ιL
;;

θ ##

A

ιA
cc

j{{
B

(4.2.8)

The comma category

We have already discussed the following categories

Category Objects Morphisms

AssAlgK
Associative uni-
tal K-algebras B

α : BÑ B1

s. t. αp1Bq “ 1B1

LieAlgK
K-Lie Algebras
pL, r, sq

φ : LÑ L1

φprx,ysq “ rφpxq,φpyqs1

LieRinA|K
Lie-Rinehart Al-
gebras
pL,ρ, rr , ss,Aq

Φ : pL,ρ, rr, ss,Aq Ñ pL1,ρ1, rr, ss1,Aq
s. t. Φ : LÑ L1 isA-linear map and
for all x,y P L,
Φ
`

rrx,yss
˘

“ rrΦpxq,Φpyqss1 and
ρ1Φpxq “ ρx.

The idea in the following is to see the universal construction as a left adjoint
functor from LieRinA|K to some analogue of the above category AssAlgK of all as-
sociative unital K-algebras but which must incorporate the commutative algebra
A.

In that sense, this category can be found in a quite simple way by taking A Ó
AssAlgK denoting the category of all associative K-algebras over A, see e.g. [50, p.88]
or [51, p.459] which is nothing but the comma category of all associative K-algebras
under A in the sense of Mac Lane, cf. [32, p.45, eqn (1)]. This category can be
described as following:

Objects: Pairs pj,B,˛,1q where pB,˛,1q is an associative unital K-algebra, and j :
AÑ B is a (not necessarily injective) morphism of unital K-algebras.
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4. Preliminary

Morphisms: pj,B,˛,1q Ñ pj 1,B1,˛1,11q is a morphism Φ : BÑ B1 of unital algebras
intertwining j with j 1 that means Φ ˝ j “ j 1.

Remark 4.2.1 Note that in general the image jpAq is a commutative subalgebra of
B which is in general NOT in the centre of B. An object pj,Bq in that category will
be considered as a left A-module in the natural manner ab :“ jpaqb for all a P A and
b P B.

Next, in order to get the analogue of the commutator functor we consider first
two K-Lie algebras over K : the K-Lie algebra DerpA,Aq of all derivations of AÑ A
with respect to the commutator bracket of linear maps, and the K-Lie algebra B´

of B with the commutator bracket. In the direct sum DerpA,AqˆB´ (where the Lie
bracket is just componentwise) consider the following submodule

B´A :“
!

pD,bq PDerpA,AqˆB´
ˇ

ˇ

ˇ
@ a P A : j

`

Dpaq
˘

“
“

b, jpaq
‰

)

, (4.2.9)

which is analogous to the construction of the algebraic version of infinitesimal gauge
transformations in [19, p. 72]. Note that for A “ K this construction is isomorphic
to the ordinary B´, and in case j is injective B´A is isomorphic to the Lie normalizer
of jpAq in B.

Proposition 4.2.2 The association B Ñ B´A is a covariant functor from the category
A Ó AssAlgK to the category LieRinAlgA|K with respect to the following definitions
where pj,Bq and pj 1,B1q are two associative unital K-algebras under A, a P A, D,D1,D2 P

DerKpA,Aq, b,b1,b2 P B such that pD,bq,pD1,b1q,pD2,b2q P B
´
A , and Φ : B Ñ B1 is a

morphism in A ÓAssAlgK :
““

pD1,b1q,pD2,b2q
‰‰

:“
`

D1 ˝D2´D2 ˝D1, rb1,b2s
˘

, (4.2.10)

ρpD,bqpaq :“ Dpaq, (4.2.11)

apD,bq :“
`

aD,jpaqb
˘

, (4.2.12)

Φ
´
A

`

D,b
˘

:“
`

D,Φpbq
˘

. (4.2.13)

Proof. Note that B´A is easily checked to be a K-Lie subalgebra of DerpA,Aq ˆ B´

which proves antisymmetry and the Jacobi identity of the bracket (4.2.10), as well as
the fact that the map (4.2.11) is a morphism of Lie algebras since it is the restriction
of the projection on the first factor to a subalgebra. The fact that the subagebra B´A of
DerpA,AqˆB´ is stable by left multiplication by a P A as indicated in (4.2.12) follows
from the commutativity of A, and (4.2.13) is a straight-forward computation.

The construction of universal enveloping algebras of Lie-Rinehart algebras

The universal enveloping algebra of a Lie-Rinehart algebra will now be constructed
in several steps for which Huebschmann’s paper [19, p.63-66] has been a crucial in-
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4.2. Universal Enveloping Algebras

spiration. Let us fix a Lie-Rinehart algebra over A,
`

L,ρ, rr , ss,A
˘

.
We shall not recall Rinehart’s construction of U pL,Aq, but rather Huebschmann’s

construction (see [19]) because it comes much closer to the constructions we shall
do later on.

(1). Consider the universal enveloping algebra UKpLq of theK-Lie algebra
`

L, rr , ss
˘

.
Recall that UKpLq is an associative K-algebra with unit element 1, see Appendix A.5
and 4.2.1.

Moreover, UKpLq carries the well-known structure of a cocommutative Hopf algebra
over K ,

`

UKpLq,µ,1,∆,ε,S
˘

where ∆ : UKpLq Ñ UKpLq bK UKpLq is the coassociative
cocommutative comultiplication, ε : UKpLq Ñ K is the counit, and S : UKpLq Ñ
UKpLq the antipode.

We shall use Sweedler’s notation ∆puq “
ř

puqu
p1qbup2q for computations involv-

ing the comultiplication. Thanks to the universal property of UKpLq the morphism
ρ : LÑDerKpA,Aq´ ofK-Lie algebras extends (via the unit of the adjunction iL : LÑ
UKpLq) to a morphism of associative unital K-algebras, ρ̄ : UKpLq Ñ HomKpA,Aq.
Since L acts by derivations on A there is the Leibniz rule (for all u P UKpLq, a,a1 P A)

ρ̄upaa
1q “

ÿ

puq

ρ̄up1qpaqρ̄up2qpa
1q. (4.2.14)

In other words, A becomes a UKpLq-module algebra, see e.g. [49, p.153-154] for
definitions.

(2). Consider the tensor product AbKUKpLq “ AbUKpLq. First there is the trivial
factor-wise multiplication (for all a,a1 P A and all u,u1 P UKpLq)

pabuqpa1bu1q :“ paa1qb puu1q (4.2.15)

on AbUKpLq by which AbUKpLq is an A-module and an associative A-algebra. In
a similar way, recall the trivial A-bilinear Lie bracket Arr , ss (4.1.3) on Ab L. The
universal property for both enveloping algebras UKpLq of the K-Lie algebra

`

L, rr , ss
˘

and UApAbLq of the A-Lie algebra
`

AbL,Arr , ss
˘

shows the existence of a canonical
isomorphism of unital associative A-algebras:

AbUKpLq – UApAbLq. (4.2.16)

The second more important multiplication ˛ on AbUKpLq takes into account the
anchor morphism ρ and is given in Huebschmann’s paper [19, p.63-66]: it is only
K-bilinear and given by the the smashed product Ad UKpLq of UKpLq with A (see
e.g. [24, p. 207, Example 3], where it is called crossed product): here the K-module
AdUKpLq :“ AbUKpLq is equipped with the multiplication ˛ (for all a,a1 P A and
u,v P UKpLq)

pabuq ˛ pa1b vq “
ÿ

puq

´

a
`

ρ̄up1qpa
1q
˘

¯

b
`

up2qv
˘

(4.2.17)
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which is associative and unital for 1b 1 which is fairly easy to check upon using
coassociativity of ∆ and (4.2.14). Clearly, there are A-linear maps ι̂A : AÑ AdUKpLq
and ι̂AbL : AbLÑ AdUKpLq given by (for all a P A and x P L)

ι̂Apaq :“ abK 1 and ι̂AbLpab xq “ ab iLpxq (4.2.18)

where ι̂A is a morphism of K-algebras satisfying

ι̂Apa
1q ˛ ι̂AbLpab xq “ ι̂AbLppa

1aqb xq, (4.2.19)

and we have for all a,a1 P A and x,x1 P L:
“

ι̂AbLpab xq, ι̂AbLpa
1b x1q

‰

˛
:“

“ ι̂AbLpab xq ˛ ι̂AbLpa
1b x1q ´ ι̂AbLpa

1b x1q ˛ ι̂AbLpab xq “

“ ι̂AbL
`

paρxpa
1qqb x1 ´ pa1ρx1paqqb x`paa

1qb rx,x1s
˘

(4.2.20)

(3). The associative unital K-algebra
`

AdUKpLq,˛,1b1
˘

will still be too big, and
we need to divide out a two-sided ideal: first note that the K-bilinear Lie bracket
Arr , ssρ on Ab L defined by eqn (4.1.2) occurs in the preceding equation (4.2.20)
whence we can write

“

ι̂AbLpab xq, ι̂AbLpa
1b x1q

‰

˛
“ ι̂AbL

`Arrab x,a1b x1ssρ
˘

. (4.2.21)

Recall from Section 4.1.2 that the kernel of the module multiplication µL : AbLÑ
L, see equation (A.2.1), hpL,Aq, is a Lie-Rinehart ideal. It is easy to see that the
bracket Arr , ssρ can be expressed as follows for all ξ “

řM
i“1 aibxi ,ξ

1 “
řN
j“1 a

1
jbx

1
j P

AbL

Arrξ,ξ 1ssρ “
N
ÿ

j“1

`

ρ̂ξpa
1
jq
˘

b x1j ´
M
ÿ

i“1

`

ρ̂ξ1paiq
˘

b xi `
Arrξ,ξ 1ss, (4.2.22)

whence the bracket Arrη,η1ssρ of two elements η,η1 P hpL,Aq reduces to the A-linear
bracket (4.1.3),

Arrη,η1ssρ “
Arrη,η1ss (4.2.23)

whence hpL,Aq is a A-Lie subalgebra (and in general NOT an ideal) of the A-Lie
algebra AbL equipped with the simple A-bilinear bracket Arr , ss. Moreover, by the
definition (4.2.17) of the multiplication ˛ we get (since ρ̂η “ 0 for all η P hpL,Aq) the
following for all η P hpL,Aq, a P A, and u P UKpLq:

ι̂AbLpηq ˛ pabuq “ ι̂AbLpηqpabuq. (4.2.24)

Note that this implies that

IpL,Aq :“ ι̂AbL
`

hpL,Aq
˘`

AbUKpLq
˘

“ ι̂AbL
`

hpL,Aq
˘

˛
`

AbUKpLq
˘

. (4.2.25)
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4.2. Universal Enveloping Algebras

It is straight-forward to see that IpL,Aq is an A-submodule of the A-module Ab
UKpLq and a two-sided ideal of the unital associative K-algebra

`

AdUKpLq,˛,1b1
˘

:
indeed, eqn (4.2.25) implies at once that IpL,Aq is a right ideal of

`

AdUKpLq,˛,1b1
˘

.
By induction over the filtration degree of u P UKpLq we shall show that for each
a P A and η P hpL,Aq there is a positive integer N , elements b11, . . . , b

1
N P AdUKpLq

and elements η11, . . . ,η
1
N P hpL,Aq such that

pabuq ˛ ι̂AbLpηq “
N
ÿ

i“1

ι̂AbLpη
1
iq ˛ b

1
i ,

which of course shows that IpL,Aq is a left ideal. Indeed, for u a K-multiple of
1 (degree 0) this is clear from eqn (4.2.19), and for u “ iLpxq, x P L, (degree 1)
this follows from eqs (4.2.20) and (4.2.21) and the fact that hpL,Aq is an ideal of
the K-Lie algebra

`

Ab L,Arr , ssρ
˘

. For the induction step n Ñ n` 1 we may take
abpiLpxquq –where A P A, x P L, and u P UKpLq is of filtration degree n–upon noting
that abpiLpxquq “ p1biLpxqq˛pabuq´pρxpaqbuq and using the induction hypothesis
and the case n“ 1.

The universal enveloping algebra of the Lie-Rinehart algebra
`

L,ρ, rr , ss,A
˘

is then
defined by the quotient

U pL,Aq :“
AdUKpLq
IpL,Aq

(4.2.26)

which is an associative K-algebra with respect to the multiplication ˛ induced by ˛:
denoting by ΠL : AbUKpLq Ñ U pL,Aq the canonical projection we define for any
b,b1 P AdUKpLq and a P A

ΠLpbq ˛ΠLpb
1q :“ΠLpb ˛ b

1q and ιA : AÑ U pL,Aq : a ÞÑΠL
`

ι̂Apaq
˘

. (4.2.27)

(4). Finally, let φ :
`

L,ρ, rr , ss,A
˘

Ñ
`

L1,ρ1, rr , ss1,A
˘

a morphism of Lie-Rinehart
algebras. Since LÑ UKpLq is a functor, the A-linear map idAbUKpφq : AbUKpLq Ñ
AbUKpL1q is a morphism of A-algebras with respect to the A-bilinear multiplication
(4.2.15) mapping the unit element 1AbK 1 to the unit element 1AbK 11. Moreover,
thanks to this fact and to the equation (A.2.3) it follows that idA b UKpφq maps
the ideal IpL,Aq into the ideal IpL1,Aq and hence passes to the quotients to induce a
well-defined A-linear map U pφq : U pL,Aq Ñ U pL1,Aq.

After this construction we can state the following.

Proposition 4.2.3 The rule associating to each Lie-Rinehart algebra
`

L, rr , ss,ρ,A
˘

over
A the pair

`

ιA,U pL,Aq
˘

and to each morphism φ :
`

L, rr , ss,ρ,A
˘

Ñ
`

L1, rr , ss1,ρ1,A
˘

of
Lie-Rinehart algebras the A-linear map U pφq : U pL,Aq Ñ U pL1,Aq defines a covariant
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functor U : LieRinAlgA|K Ñ A ÓAssAlgK .
Moreover U is a left adjoint functor to the above commutator functor p q´A :

LieRinAlgA|K
U

ÝÝÝÝÝÝÑÐÝÝÝÝÝ
p q
´
A

A ÓAssAlgK

Remark 4.2.4 The relation to the aforementioned universal property of U pL,Aq is
given as follows: the first morphism ιA : AÑ U pL,Aq of K-algebras had been part of
the definition of the category A ÓAssAlgK and was defined in the equation (4.2.27),
and the morphism ιL : LÑ

`

U pL,Aq,˛
˘´ is defined by (for all x P L)

ιLpxq “ΠL
`

ι̂AbLp1b xq
˘

“ΠL
`

1b iLpxq
˘

, (4.2.28)

and it is easy to see using the reasoning after the equation (A.2.6) in the particular
case Φ “ idU pL,Aq in the proof of the preceding Proposition 4.2.3 that both ιA and
ιL satisfy (4.2.6). It is immediate that ιL is the second component of the unit of the
adjunction.

Moreover, the associative unital K-algebra U pL,Aq is generated by all the ιApaq,
a P A, and all the ιLpxq, x P L.

4.3 Rinehart bialgebras

In the category of associative unital K-algebras over A there is no immediate
monoidal or tensor structure: for the usual tensor product over K there would in
general not be a morphism of the reference algebra A to the tensor product, and for
the tensor product over A there is no longer a multiplication. Actually, there are
four possibilities to define a multiplications regarding the two possibilities in each
component.

Thus, there is a useful intermediate solution going back at least to M.E.Sweedler
[50] and M.Takeuchi [51], and has frequently been used since, see [46], [23], [34]
and others.

Let pj,B,˛,1q and pj 1,B1,˛1,11qq be associative unital K-algebras over A and let us
denote by

‚BbA ‚B
1

the A-tensor product of the two left A-modules B and B1 where

ab “ jpaq ˛ b , ab1 “ j 1paq ˛1 b1

for all a P A,b P B,b1 P B1.
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4.3. Rinehart bialgebras

Note that the right multiplication by jpaq P A on the first factor, rp1qa , and the right
multiplication by j 1paq P A on the second factor, rp2qa , of ‚BbA ‚B1 are well-defined
left A-linear maps ‚BbA ‚B1Ñ ‚BbA ‚B

1, hence define

BˆA B
1 :“

č

aPA

Ker
`

r
p1q
a ´ r

p2q
a

˘

Ă ‚BbA ‚B
1. (4.3.1)

The A-submodule BˆA B1 of the left A-module ‚BbA ‚B
1 that we define above

carries a natural associative unital multiplication ˛ˆ induced by the multiplications
on B and on B1: express BˆA B1 as a quotient of K-tensor products in the following
way (see Appendix A.2.1 equations (A.2.6) and (A.2.7) for the notation):

BˆA B
1 –

!

β P BbB1 | @ a P A : β ˛r2s
`

jpaqb 11´ 1b j 1paq
˘

PK
`

‚B,‚B
1
˘

)

K
`

‚B,‚B1
˘ (4.3.2)

Observe that, the denominator is a two-sided ideal in the numerator which is a
subalgebra of the associative unital K-algebra

`

BbB1,˛r2s,1b 11
˘

.
Moreover the K-linear map jˆAj 1 : AÑ BˆAB

1 given by a ÞÑ jpaqbA11 “ 1bAj 1paq
is a well-defined morphism of unital algebras. It follows that

`

jˆAj
1,BˆAB

1,˛ˆ,1bA
11
˘

is again an associative unital K-algebra over A. This association can be extended
to a bifunctor in A Ó AssAlgK : note that for two morphisms Φ : B1 Ñ B2 and Ψ :
B11 Ñ B12 of unital associative K-algebras over A one clearly has

pΦ bA Ψ q
`

B1ˆA B
1
1
˘

Ă B2ˆA B
1
2, (4.3.3)

and the restriction ofΦbAΨ to B1ˆAB
1
1, denoted byΦˆAΨ , thus gives a morphism

of unital associative K-algebras over A. However, Takeuchi has remarked in [51]
that this bifunctor is in general NOT a monoidal structure.

In the following, an associative unital K-algebra over A, pj,B,˛,1q, together with
the structure of an A-linear coassociative cocommutative counitary coaugmented
coalgebra

`

‚B,∆,ε,1
˘

is called a Rinehart bialgebra by Moerdijk and Mrčun [34]
and [23] if an only if for all b,b1 P B there is the following compatibility of the A-
linear comultiplication ∆ with the merely K-bilinear mutiplication ˛:

∆pBq Ă BˆA BĂ ‚BbA ‚B,

∆pb ˛ b1q “ ∆pbq ˛ˆ ∆pb1q, and εpb ˛ b1q “ ε
`

b ˛ jpεpb1qq
˘

(4.3.4)

where the first inclusion makes the right hand side of the second identity well-
defined.

The class of all Rinehart bialgebras, with respect to A and K , constitutes the ob-
ject class of a category RinBiAlgA|K whose morphisms are morphisms of unital K-
algebras over A (in particular A-linear with respect to the left A-module structure)
and in addition morphisms of counital coalgebras.
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Observe that, for each such morphism Φ : BÑ B1 the A-linear map Φ bΦ maps
the submodule BˆA B of ‚BbA ‚B into the submodule B1ˆA B1 of ‚B1bA ‚B1. Note
that the multiplication of a Rinehart bialgebra is A-linear in its left argument:

pabq ˛ b1 “
`

jpaq ˛ bq ˛ b1 “ jpaq ˛
`

b ˛ b1
˘

“ apb ˛ b1q. (4.3.5)

Furthermore, it is well-known (see e.g. [34]) that for any Lie-Rinehart algebra
`

L,ρ, rr , ss,A
˘

its universal enveloping algebra U pL,Aq canonically carries the struc-
ture of an A-linear coassociative cocommutative counitary coaugmented coalgebra
p∆,ε,1q:

Indeed, it is not hard to see that the A-linear map δ : L Ñ ‚U pL,Aq bA ‚U pL,Aq
given by δpxq “ ιLpxqbA1`1bAιLpxq takes its values in theA-submodule ‚U pL,AqˆA
‚U pL,Aq, is a morphism of K-Lie algebras and satisfies the identities (4.2.6) and
(4.2.7). By the universal property, the induced map ∆ “ δ̄ : U pL,Aq Ñ ‚U pL,Aq ˆA
‚U pL,Aq Ă ‚U pL,Aq bA ‚U pL,Aq is a morphism of unital algebras over A satisfying
coassociativity. Defining ε : U pL,Aq Ñ A by u ÞÑ ρ̄up1q the rest of the axioms is clear.
Moreover each morphism U pφq of universal enveloping algebras is readily seen to
preserve in addition the coalgebra structures whence the functor U corestricts to
the subcategory RinBiAlgA|K of A ÓAssAlgK .

Alternatively, using Huebschmann’s construction in Section 4.2.2, one may take
the K-linear coalgebra structure ∆UK pLq and εUK pLq of the universal enveloping al-
gebra of the K-Lie algebra L, extend this in a natural A-linear way to Ab UKpLq
and observe that the ideal IpA,Lq, compare eqn (4.2.25), is a coideal in the coalge-
bra AbUKpLq since ι̂AbL

`

hpL,Aq
˘

is in the primitive part of AbUKpLq whence the
comultiplication and the counit pass to the quotient.

Finally is easy to see that the primitive part of each Rinehart bialgebra is natu-
rally equipped with the structure of a Lie-Rinehart algebra: the Lie bracket of two
primitive elements is given by their commutator, and the anchor map by

x ÞÑ pa ÞÑ εpx ˛ jpaqqq.

Furthermore, Moerdijk and Mrčun [34] proved the analog of the Cartier-Milnor-
Moore Theorem: viewingU as a functor from LieRinAlgA|K to the category RinBiAlgA|K
it has a right adjoint, which is the passage to the primitive part. In the particular
case where K is a field containing the rationals they show that this adjunction re-
stricts to an equivalence forA-projective Lie Rinehart algebras and complete graded
projective Rinehart bialgebras, see [34, Thm 4.1, Cor 4.2].

Similarly to the notion of a Lie-Rinehart ideal as we already define in the Sec-
tion 4.1.2 we can define the notion of a Rinehart ideal J of a Rinehart bialgebra
`

j,B,˛,1,∆,ε
˘

over A as a two-sided ideal of the unital associative K-algebra
`

B,˛,1
˘

.
In particular, it makes a left A-module via left multiplication with jpaq) and a
coideal of the counital coaugmented A-coalgebra

`

B,∆,ε,1
˘

. The following Lemma
is straight-forward:
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Lemma 4.3.1 Let
`

j,B,˛,1,∆,ε
˘

be a Rinehart bialgebra over A.

1. LetJ Ă B be a Rinehart ideal. Then the quotientA-module B{J carries a canonical
structure of a Rinehart bialgebra over A such that the canonical projection B Ñ
B{J is a morphism of Rinehart bialgebras.

2. Let
`

j 1,B1,˛1,11,∆1,ε1
˘

be another Rinehart bialgebra over A, and Φ : B Ñ B1 a
surjective morphism of Rinehart bialgebras. Then the kernel of Φ is a Rinehart
ideal of B.

The following Proposition relates Lie-Rinehart ideals and Rinehart ideals and will
be important in the sequel for the description of universal enveloping algebras:

Proposition 4.3.2 Let
`

L,ρ, rr , ss,A
˘

be a Lie-Rinehart algebra over A, let i Ă L be a
Lie-Rinehart ideal. Let Ji Ă U pL,Aq denote the following A-submodule of the universal
enveloping algebra U pL,Aq:

Ji :“ Span
 

ιLpηq ˛u P U pL,Aq | η P i,u P U pL,Aq
(

. (4.3.6)

1. Then Ji is a Rinehart ideal of
`

ιA,U pL,Aq,˛,1,∆,ε
˘

.

2. Let π : LÑ L{i be the canonical morphism of Lie-Rinehart algebras. Suppose that
the A-submodule i has a complementary A-submodule m in L, i.e. L“ i‘m. Then
the induced morphism U pπq : U pL,Aq Ñ U

`

L{i,A
˘

descends to an isomorphism of
Rinehart bialgebras over A:

U pL,Aq{Ji – U
`

L{i,A
˘

. (4.3.7)

Proof. i.q First note that for all x P L, η P i, a P A, and u P U pL,Aq we have

ιLpηq ˛ pauq “ ιLpηq ˛ ιApaq ˛u
p4.2.7q
“ ιApaq ˛ ιLpηq ˛u` ιA

`

ρηpaq
˘

˛u “ a
`

ιLpηq ˛u
˘

` 0
(4.3.8)

since i is a Lie-Rinehart ideal, and all the maps L˛η : u ÞÑ ιLpηq ˛u are A-linear. Next
thanks to the fact that all the elements ιLpxq, x P L are primitive elements of the
coalgebra

`

U pL,Aq,∆,ε
˘

and to the compatibility of ˛ with the comutiplication, see
eqn (4.3.4), we can infer that each map L˛η with η P i is an A-linear coderivation
whence Ji is a coideal as a sum of images of coderivations. Moreover

ε
`

ιLpηq ˛u
˘ p4.3.4q
“ ε

´

ιLpηq ˛ ιA
`

εpuq
˘

¯

p4.3.8q
“

`

εpuq
˘

ε
`

ιLpηq
˘

“ 0.

Next, Ji clearly is a right ideal of the K-algebra
`

U pL,Aq,˛,1
˘

, and since it is gen-
erated by all the ιLpxq, x P L, we have

ιLpxq˛ιLpηq˛u “ rιLpxq, ιLpηqs˛˛u`ιLpηq˛ιLpxq˛u
p4.2.4q
“ ιL

`

rrx,ηss
˘

˛u`ιLpηq˛ιLpxq˛u
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and both terms on the right hand side are in Ji since i is a Lie-Rinehart ideal. By
induction over the number of generators and by eqn (4.3.8) it follows that Ji is a
two-sided ideal of

`

U pL,Aq,˛,1
˘

and therefore a Rinehart ideal.
ii.q For the sake of simplicity we set L1 “ L{i. The morphism U pπq clearly is a mor-
phism of Rinehart algebras U pL,Aq Ñ U

`

L1,A
˘

, and since by construction U pπq˝ιL “
ι1L1 ˝π and U pπq˝ ιA “ ι1A (where ι1A and ι1L1 denote the corresponding canonical maps
for U pL1,Aq) it follows that U pπq is surjective, since π is surjective, and both uni-
versal enveloping algebras are generated by ιApaq, ιLpxq, and ι1Apaq, ι

1
L1pπpxqq, respec-

tively, for all a P A and x P L.
Moreover for every η P i the element U pπq

`

ιLpηq
˘

q “ ι1L1
`

πpηq
˘

“ 0, and since
U pπq is a morphism of unital associative K-algebras it follows that U pπq

`

Ji
˘

“ t0u.
Hence U pπq descends to a well-defined surjective morphism of Rinehart bialgebras
Φ : U pL,Aq{JiÑ U pL1,Aq.

In order to define an inverse map of Φ we need the fact that i is complemented:
note that the restriction of the projection π : LÑ L1 to the submodule m of L is an
A-linear bijection, and let α : L1 Ñ m denote its inverse. Let B denote the Rinehart
bialgebra U pL,Aq{Ji and ˛ its multiplication, and let j : A Ñ B be the map a ÞÑ
ιApaqmod Ji. Define

θ : L1Ñ B : x1 ÞÑ θpx1q :“ ιL
`

αpx1q
˘

mod Ji.

Clearly θ is A-linear since α, ιL and the projection modulo Ji are A-linear, and j
is a morphism of associative unital K-algebras. Moreover for all x11,x

1
2 P L

1 we get

“

θpx11q,θpx
1
2q
‰

˛
´θ

`

rrx11,x
1
2ss
1
˘

“

”

ιL
`

αpx11q
˘

, ιL
`

αpx12q
˘

ı

˛
´ ιL

´

α
`

rrx11,x
1
2ss
1
˘

¯

mod Ji

“ ιL
´

““

αpx11q,αpx
1
2q
‰‰

´α
`

rrx11,x
1
2ss
1
˘

¯

mod Ji “ 0

since the term
““

αpx11q,αpx
1
2q
‰‰

´α
`

rrx11,x
1
2ss
1
˘

is contained in i “ Kerpπq as an appli-
cation of π to it readily shows. Likewise, for all x1 P L1 and a P A we compute

“

θpx1q, jpaq
‰

˛
“

”

ιL
`

αpx1q
˘

, ιApaq
ı

˛
mod Ji “ ιA

`

ραpx1qpaq
˘

mod Ji “ j
`

ρ1x1paq
˘

.

It follows that j and θ satisfy the properties (4.2.5), (4.2.4), (4.2.7), and (4.2.6).
By the universal property of U pL1,Aq there is a morphism θ “: Ψ : U pL1,Aq Ñ B of
assoicative K-algebras over A such that Ψ ˝ ι1L1 “ θ and Ψ ˝ ι1A “ j. In order to show
that Φ ˝ Ψ “ idU pL1,Aq and Ψ ˝ Φ “ idU pL,Aq one observes that these are identities
of K-algebra morphisms, and it thus suffices to check them on generators: clearly
pΨ ˝Φq

`

jpaq
˘

“ jpaq and pΦ ˝Ψ q
`

ι1Apaq
˘

“ ι1Apaq for all a P A, and for all x P L

pΨ ˝Φq

´

ιLpxqmod Ji
¯

“ Ψ

´

ι1L1
`

πpxq
˘

¯

“ θ
`

πpxq
˘

“ ιL
´

α
`

πpxq
˘

¯

mod Ji “ ιLpxqmod Ji
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4.4. Differential Operators

since the term x´α
`

πpxq
˘

is in i. On the other hand for all x1 P L1

pΦ ˝Ψ q
`

ι1L1px
1q
˘

“ Φ
`

θpx1q
˘

“ Φ

´

ιL
`

αpx1q
˘

mod Ji
¯

“ ι1L1
´

π
`

αpx1q
˘

¯

“ ι1L1px
1q.

This shows that Ψ is the inverse of Φ which ends the proof.

4.4 Differential Operators

Given twoA-modules P andQ, recall the algebraic definition of the leftA-module
of all differential operators D : P ÑQ:
First, the K-module of all differential operators of order 0, D0

A|KpP ,Qq is defined
to be equal to HomApP ,Qq. By induction, for every nonnegative integer k define
Dk`1
A|K pP ,Qq to be the K-module of those K-linear maps D : P ÑQ such that

@ a P A : p ÞÑDpapq´ aDppq is a differential operator of order k. (4.4.1)

It is well-known (see Krasil’chik, Vinogradov; Jet Nestruev; Lunts et al.) that Dk
A|KpP ,Qq Ă

Dk`1
A|K pP ,Qq for all nonnegative integer k, and that each Dk

A|KpP ,Qq is a leftA-submodule
of the left A-module HomKpP ,Qq. Moreover the composition of differential opera-
tors P Ñ Q and Q Ñ V of order k and l, respectively, is a differential operator of
order k` l from P to V . We write DA|KpP ,Qq for the union of all the Dk

A|KpP ,Qq and
speak of the left A-module of all differential operators P Ñ Q. For P “ Q, the left
A-module DA|KpP ,P q is an associative unital K-algebra by means of composition of
K-linear maps.

It is well-known, see as for example Stefan Waldmann book [55], that for the
particular caseA“ C8pX,Kq, P “ Γ8pX,Eq, andQ “ Γ8pX,E1q (whereX is a smooth
manifold and E,E1 are smooth vector bundles over X) that the algebraic definition
coincides with the analytic definition of a differential operator by iterated partial
derivatives in coordinates.

Returning to general algebras A over K , the case P “ A “ Q is interesting: here
A injects into HomApA,Aq “D0

A|KpA,Aq ĂDA|KpA,Aq in the natural way via j : a ÞÑ

pa1 ÞÑ aa1q whence
`

j,D0
A|KpA,Aq

˘

is an associative unital K-algebra over A. Since
derivations are obviously differential operators of order 1 the anchor morphism ρ
of any Lie-Rinehart algebra

`

L,ρ, rr , ss,A
˘

provides us with a canonical morphism,
also called ρ : LÑ DA|KpA,Aq

´
A – DerKpA,Aq, of Lie-Rinehart algebra, and thus by

the universal property a morphism of associative unital K-algebras over A

ρ̄ : U pL,Aq ÑDA|KpA,Aq. (4.4.2)

In the particular case where L “ DerKpA,Aq with the identity as the anchor mor-
phism the above morphism (4.4.2) is an isomorphism provided L “ DerKpA,Aq is
a finitely generated projective left A-module: this is the case for the Lie algebroid
consisting of all vector fields on a smooth manifold.
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4.5 Anchored A-modules and Free Lie-Rinehart algebras

4.5.1 Anchored A-modules

We have already mentioned the notion of an anchored A-module, notion appear-
ing in [23]. It consists in a left A-module M equipped with an A-linear map

ρ :M ÝÑ DerKpA,Aq
x ÞÝÑ ρx

These modules occur in differential geometry as the smooth section spaces of
so-called anchored vector bundles E over a manifold X which are equipped with a
morphism of vector bundles also called ρ : EÑ TX.

In that sense, they form a category AModAncK whose morphisms are A-module
morphisms φ : LÑM, where pL,ρq and pM,ρ1q are anchored A-modules, intertwin-
ing the anchor morphisms, precisly

ρ1φpxq “ ρx (4.5.1)

There is an obvious forgetful functor from the category of all Lie-Rinehart alge-
bras over A, LieRinAlgA|K, to AModAncK by just forgetting the Lie bracket rr , ss:

LieRinAlgA|K
Forget
ÝÑ AModAncK (4.5.2)

4.5.2 Free Lie-Rinehart algebras

In this Section we shall briefly describe a left adjoint functor P to this functor,
the free Lie-Rinehart algebra generated by the anchored A-module M or the path Lie
algebroid according to Kapranov’s construction in [23]:

Theorem 4.5.1 (M.Kapranov 2007) The forgetful functor from the category of all Lie-
Rinehart algebras over A to the category of all anchored modules over A has a left adjoint
P :

AModAncK
P

ÝÝÝÝÝÝÑÐÝÝÝÝÝÝ
Forget

LieRinAlgA|K (4.5.3)

Proof. We sketch a different proof à la Huebschmann: Take an anchored A-module
pM,ρq and consider first the free Lie algebra LieKpMq generated by the K-module
M, see Appendix A.6.2, with the canonical map iM : M Ñ LieKpMq, the unit of the
adjunction

KMod
LieK

ÝÝÝÝÝÝÝÑÐÝÝÝÝÝÝÝ
Forget

LieAlgK psee also eq.A.6.12q (4.5.4)

56



4.5. Anchored A-modules and Free Lie-Rinehart algebras

Then there is a unique morphism of K-Lie algebras ρ̄ : LieKpMq Ñ DerKpA,Aq
induced by the anchor morphism ρ, i.e. ρ̄ ˝ iM “ ρ.

Clearly
`

LieKpMq, r , s, ρ̄,A
˘

will be a Lie derivation algebra overA. It follows from
Section 4.1.2 that

`

Ab LieKpMq,Ar , sρ̄, pρ̄,A
˘

will be a Lie-Rinehart algebra where pρ̄
is the anchor morphism induced by the anchor morphism ρ̄ in eqn (4.1.2) (with ρ
replaced by ρ̄), and Ar , sρ̄ is the Lie bracket in eqn (4.1.2).

Denote by ß̂M : AbMÑ AbLieKpMq the A-linear map idAbiM . Recall the kernel
hpM,Aq of the multiplication map µM : AbM ÑM, see Appendix A.2.1 equation
A.2.2.

Clearly, by definition pρ̄ vanishes on ß̂M
`

hpM,Aq
˘

. Define the followingK-submodule
JpM,Aq of Ab LieKpMq by

JpM,Aq “ ß̂M
`

hpM,Aq
˘

` (4.5.5)

` KSpan
!

A
”

ß̂Mpξ1q,
A“ß̂Mpξ2q, . . . ,

Arß̂Mpξn´1q, ß̂Mpξnqsρ̄ ¨ ¨ ¨ sρ̄
‰

ρ̄

ı

ρ̄

ˇ

ˇ

ˇ

ˇ

n P N, ně 2, ξ1, . . . ,ξn P AbM, D i P N, 1ď i ď n : ξi P hpM,Aq
)

.

It is not hard to check using the Jacobi identity that JpM,Aq is the ideal of the K-
Lie algebra

`

AbLieKpMq,Ar , sρ̄
˘

generated by the K-submodule ß̂M
`

hpM,Aq
˘

. Note
that the anchor morphism pρ̄ vanishes on JpM,Aq because it vanishes on ß̂M

`

hpM,Aq
˘

.
Next, JpM,Aq is an A-submodule of Ab LieKpMq: indeed this is true in degree

n “ 1 since hpM,Aq is an A-submodule of AbM; and for elements of degree n ě 2
in eqn (4.5.5) being of the form A

“

ß̂Mpξq,ζ
‰

ρ̄ with ξ P AbM and ζ P Ab LieKpMq
such that ξ P hpM,Aq or ζ P JpM,Aq there is the trivial identity for all a P A,

aA
“

ß̂Mpξq,ζ
‰

ρ̄ “
A“ß̂Mpaξq,ζ

‰

ρ̄` ß̂M
`

pρ̄ζpaqξ
˘

.

If ξ P hpM,Aq the r.h.s. of the preceding equation clearly is in JpM,Aq, and if
ζ P JpM,Aq then pρ̄ζpaq “ 0 and the r.h.s. is also in JpM,Aq. It follows that JpM,ρq is
a Lie-Rinehart ideal ofAbLieKpMqwhence the projection on the quotientA-module

ΠM : Ab LieKpMq Ñ P pM,Aq :“
Ab LieKpMq

JpM,Aq
(4.5.6)

naturally equips P pM,Aq with the structure of a Lie-Rinehart algebra
`

P pM,Aq, r , sM,ρ, ρ̃,A
˘

over A such thatΠM is a morphism of Lie-Rinehart algebras, see e.g. Lemma 4.1.11.
This defines the functor P on objects, and for a morphismφ : pM,ρ,Aq Ñ pM 1,ρ1,Aq

of anchored modules over A it is easy to see that the A-linear map idA b LieKpφq
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defines a morphism A b LieKpMq Ñ A b LieKpM 1q of Lie-Rinehart algebras over
A (where the fact that φ intertwines the anchor morphisms plays a crucial role)
mapping the ideal JpM,Aq to the ideal JpM 1,Aq, hence idA b LieKpφq passes to the
quotient to define a morphism P pφq : P pM,Aq Ñ P pM 1,Aq of Lie-Rinehart algebras.
The functor properties of P are immediate. We shall write ß̌M : M Ñ P pM,Aq for
the A-linear map ΠM ˝ ß̂M .

In order to see that P is a left adjoint to the forgetful functor, fix an anchored
A-module pM,ρ,Aq and a Lie-Rinehart algebra

`

L1,ρ1, rr , ss1,Aq over A. The adjugant
ϕM,L1 (see Appendix A.1) will be the composition of the morphism Φ : P pM,Aq Ñ L1

of Lie-Rinehart algebras with ß̌M , Φ ˝ ß̌M , and its inverse goes as follows: to every
A-linear map θ : M Ñ L1 associate its K-Lie algebra morphism θ̄ : LieKpMq Ñ L1.
Then the A-linear map µL1 ˝

`

idAb θ̄
˘

from AbLieKpMq to L1 clearly vanishes on the
ideal JpM,Aq and thus passes to the quotient to define a morphism of Lie-Rinehart
algebras θ̌ : P pM,Aq Ñ L1. By using the fact that ß̌MpMq generates P pM,Aq it is
easily seen that the two preceding maps are inverses, their naturality being obvious.
MÑ ß̌M will be the unit, and ˇidL1 : P pL1,Aq Ñ L1 the counit of the adjunction which
will become rather important in the sequel.
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5. Connections

5.1 Covariant derivatives

5.1.1 Basic definitions

Definition 5.1.1 For a given anchored A-module pL,ρq and a given A-module W , a
connection, or a covariant derivative ∇W “ ∇, is a K-linear map

∇ : LbW ÑW,

written ∇pxbwq “: ∇xpwq such that for all a P A, x P L, and w PW

∇axpwq “ a∇xpwq and ∇xpawq “ ρxpaqw` a∇xpwq. (5.1.1)

We shall call the quadruple pL,ρ,W ,∇W q anA-moduleW with connection parametrized
by (or along) the anchored A-module pL,ρq.

Remark 5.1.2 About the above Definition 5.1.1 we have:
— Sometimes the conditions in the equation 5.1.1 are called Koszul’s axioms.
— For each element w P w there is a canonical A-linear map

∇pwq : LÑW : x ÞÑ ∇xpwq. (5.1.2)

Definition 5.1.3 A morphism of A-modules with connection parametrized by the an-
chored A-module L, pL,ρ,W ,∇q to pL,ρ,W 1,∇1q is an A-linear map Φ : W Ñ W 1 sat-
isfying Φ

`

∇xpwq
˘

“ ∇1x
`

Φpwq
˘

for all x P L and w PW . In this case Φ is also called
connection preserving.

The difference of two connections ∇1´∇, with is an A-linear map LbAW ÑW ,
is a connection. Furthermore, the sum of any connection with any A-linear map is
again a connection.

Example 5.1.4 For each x P L the K-linear map v ÞÑ ∇xpvq clearly is a differential
operator of order 1, see Section 4.4 for more details.

Example 5.1.5 A first canonical example of a connection parametrized by a given
anchored A-module pL,ρq is A seen as an A-module in the usual way: here the con-
nection ∇A is simply given by the anchor morphism

∇Ax paq :“ ρxpaq (5.1.3)

for all x P L and a P A.

Example 5.1.6 More generally, let P be a K-module, and let Ab P be the relatively
free A-module generated by the K-module P , see Appendix A.2.1. Then it is easy to
check that the following map ∇0 from LbK pAbP q to AbP is a covariant derivative
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in AbP parametrised by pL,ρq, called the canonical covariant derivative (for all a P A
and p P P ):

∇0
xpab pq :“

`

ρxpaq
˘

b p. (5.1.4)

We can easily go from relatively free A-modules to relatively projective modules,
see again Appendix A.2.1 for details, where connections always exist:

Proposition 5.1.7 Let pL,ρq be an anchored A-module and let W be a relatively projec-
tive A-module. Pick any section σ :W Ñ AbKW (see Appendix A.2.1 for details). Then
the map ∇σ : LbK W ÑW defined by (for all x P L and w PW )

∇σx pwq :“
`

µW ˝∇0
x ˝ σ

˘

pwq (5.1.5)

is a covariant derivative in W parametrised by pL,ρq.

The following result of transferring connections to tensor products and Hom-
spaces is very important for the sequel and well-known in differential geometry:

Proposition 5.1.8 Let pL,ρq be an anchoredA-module, and let pV ,∇V q, pW,∇W q, pY ,∇Y q,
and pZ,∇Zq be A-modules with connection parametrized by the anchored A-module L.
Then we have the following:

1. There is a unique connection ∇VbAW in the A-module V bAW parametrized by
the anchored A-module L such that for all elements x P L, v P V and w P W the
following holds:

∇VbAWx pvbAwq “
`

∇Vx pvq
˘

bAw` vbA
`

∇Vx pwq
˘

. (5.1.6)

2. There is a connection ∇HpV ,W q in the A-module HomApV ,W q defined for any A-
linear map ϕ : V ÑW and any v P V by

`

∇HpV ,W q
x pϕq

˘

pvq :“ ∇Wx
`

ϕpvq
˘

´ϕ
`

∇Vx pvq
˘

. (5.1.7)

Hence ϕ is connection preserving iff ∇HpV ,W q
x pϕq “ 0 for all x P L. Moreover there

is a canonical A-linear map ∇pϕq : LbA V ÑW defined by

∇pϕq
`

xbA v
˘

:“ ∇HpV ,W q
x pϕq

`

v
˘

(5.1.8)

for all x P L and v P V .

3. For any ϕ PHomApV ,W q and ψ PHomApW,Y q we have for all x P L

∇HpV ,Y q
x pψ ˝ϕq “

`

∇HpW,Y q
x pψq

˘

˝ϕ`ψ ˝
`

∇HpV ,W q
x pϕq

˘

. (5.1.9)
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4. For any ϕ PHomApV ,W q and χ PHomApY ,Zq we have for all x P L

∇HpVbAY ,WbAZq
x pϕbAχq “

`

∇HApV ,W q
x pϕq

˘

bAχ ` ϕbA
`

∇HApY ,Zq
x pχq

˘

(5.1.10)

Remark 5.1.9 The preceding Proposition 5.1.8 has the following categorical inter-
pretation: consider the class of all pairs pV ,∇q where V is a left A-module (where
A is a fixed associative commutative unital K-algebra, and K is a fixed associative
commutative unital ring containing the rationals) and ∇ is a covariant derivative
with respect to an anchored A-module pL,ρq. It becomes a category A-modConnL
by declaring a morphism pV ,∇q Ñ pW,∇1q to be an A-linear map Φ which is connec-
tion preserving, i.e. ∇1x ˝Φ “ Φ ˝∇x for all x P L. This category is clearly symmetric
monoidal when equipped with the usual tensor product bA over A of A-modules
(and covariant derivative according to eqn (5.1.6)) and unit object A (with covari-
ant derivative the anchor map), and it is a routine-check that the associator, left
and right unitors λ and ρ, and the braiding γ are all connection preserving. Next
the symmetric monoidal category C “A-modConnL is closed, i.e. the usual natural
isomorphism from the category of all A-modules,

HomApV bAW,Xq –HomA
`

V ,HomApW,Xq
˘

,

restricts to a natural isomorphism

HomC
`

pV bAW,∇VbAW q,pX,∇Xq
˘

–HomC
`

pV ,∇V q,pHomApW,Xq,∇HpW,Xqq
˘

,
(5.1.11)

whence the usual Hom-space HomApW,Xq with its covariant derivative ∇HpW,Xq

(see eqn(5.1.7)) will become an internal Hom-object in that closed symmetric monoidal
category C.

5.1.2 Iterated covariant derivatives on TApLq

Now fix an anchored A-module pL,ρq (where again A is an associative commu-
tative unital K-algebra, K being an associative commutative unital ring containing
the rational numbers as a subring), and fix a connection ∇ “ ∇L in the A-module
L parametrized by the anchored A-module pL,ρq. Let pW,∇W “ ∇1q be another A-
module with connection parametrized by the anchored A-module pL,ρq.

We shall first extend ∇ in a standard ‘derivational’ manner to a connection

LbK TApLq Ñ TApLq,

also written ∇pxbK bq “: ∇TApLqx pbq “ ∇xpbq for all x P L and b P TApLq, i.e.

∇xp1q :“ 0, and ∇xpx1 ¨ ¨ ¨xnq :“
n
ÿ

r“1

x1 ¨ ¨ ¨xr´1
`

∇xpxrq
˘

xr`1 ¨ ¨ ¨xn (5.1.12)
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5.1. Covariant derivatives

for all integers n ě 1 and x,x1, . . . ,xn P V . This is a well-defined connection thanks
to an iteration of the first statement eqn (5.1.6) of Proposition 5.1.8. It is immediate
from the definition that ∇x preserves tensor degree, i.e. for all x P L

∇x ˝deg“ deg ˝∇x, (5.1.13)

and that it is a derivation of the unital algebra TApLq, seen as a K-algebra (!), i.e. for all
b,b1 P TApLq and x P L

∇xpbb1q “
`

∇xpbq
˘

b1` b
`

∇xpb1q
˘

. (5.1.14)

In other words, the free multiplication µ : TApLq bA TApLq Ñ TApLq is connection
preserving. It follows from the preceding Proposition 5.1.8, iv), that the induced
covariant derivative ∇r2sx “ ∇TApLqbATApLqx is a derivation of the associative algebra
TApLqbATApLq “: TApLqr2s since µbAµ is connection preserving as well as the usual
middle-four-interchange permution. Clearly this generalizes in the obvious way to
any k-fold tensor product of TApLq with itself.

Next, it is not hard to see that the shuffle-comultiplication ∆sh is connection pre-
serving, i.e. ∇x is compatible with the comultiplication ∆sh in the following way for
all x P L, b P TApLq:

∆sh
`

∇xpbq
˘

“ ∇r2sx
`

∆shpbq
˘

, (5.1.15)

or in Sweedler’s notation for all b P TApLq:
ÿ

`

∇TApLqx pbq
˘

`

∇TApLqx pbq
˘p1q

bA
`

∇TApLqx pbq
˘p2q

“
ÿ

pbq

`

∇TApLqx pbp1qq
˘

bA b
p2q`

ÿ

pbq

bp1qbA
`

∇TApLqx pbp2qq
˘

. (5.1.16)

Proof. Indeed, this is easily seen by induction over the tensorial degree of b: since
∇xp1q “ 0, for all b P TApLq and x P L we can infer from formula eqn (5.1.6) that

∇r2sx pbbA 1q “
´

∇xpbq
¯

bA 1, ∇r2sx p1bA bq “ 1bA
´

∇xpbq
¯

. (5.1.17)

For any a P A we have

∇r2sx
`

∆shpa1q
˘

“ ∇r2sx
`

ap1bA 1q
˘

“ ρxpaq
`

∆shp1q
˘

“ ∆sh
`

∇xpa1q
˘

,

and for all y P L

∇r2sx
`

∆shpyq
˘

“ ∇r2sx
`

ybA1`1bA y
˘ p5.1.17q

“ p∇xpyqqbA1`1bA p∇xpyqq “ ∆sh
`

∇xpyq
˘

.

Hence the equation (5.1.15) is satisfied for tensorial degree 0 and 1.
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Suppose that the equation (5.1.15) holds up to tensor degree equal to n, let b be
of tensor degree n and y P L. We compute (using the induction hypothesis and the

fact that ∇r2sx is a derivation of TApLqbA TApLq)

∆sh
`

∇xpybq
˘

“ ∆sh

´

`

∇xpyq
˘

b
¯

`∆sh

´

y
`

∇xpbq
˘

¯

“

´

`

∇xpyq
˘

bA 1` 1bA
`

∇xpyq
˘

¯

`

∆shpbq
˘

`
`

ybA 1` 1bA y
˘

´

∆sh
`

∇xpbq
˘

¯

“

´

∇r2sx
`

∆shpyq
˘

¯

`

∆shpbq
˘

`
`

∆shpyq
˘

´

∇r2sx
`

∆shpbq
˘

¯

“ ∇r2sx
`

∆shpybq
˘

which shows the induction, and equation 5.1.15 holds.

Observe that ∇TApLqx is NOT a coderivation of the coalgebra pTApLq,∆shq since it is in
general not A-linear! The equation 5.1.15 is an equality of K-linear maps,

Resp∆shq ˝∇
TApLq
x “ ∇TApLqbATApLqx ˝Resp∆shq,

(where we have used the forgetful functor Res, see Appendix A.2.1), but the co-
variant derivative ∇TApLqbATApLqx is NOT equal to an expression like ∇TApLqx bA id`
idbA ∇

TApLq
x for which the tensor product bA for the corresponding maps would be

ill-defined.
We resume the above considerations in the following

Proposition 5.1.10 All the A-linear maps of the free algebra TApLq over the A-module L,
the free multiplication, µ : TApLqr2sÑ TApLq, the shuffle comultiplication ∆sh : TApLq Ñ
TApLqr2s, the counit ε : TApLq Ñ A, the unit 1 : AÑ TApLq, and the antipode S : TApLq Ñ
TApLq are connection preserving.

Now we shall extend the aforementioned ‘action’ of L on W or on TApLq via the
covariant derivatives ∇1 and ∇ to a K-linear map, also written ∇1 : TpV q bW Ñ W
by the classical rule of iterated covariant derivatives in differential geometry, see as for
example [25, p.124-125].

In order to get an idea, recall that –according to the definition of covariant deriva-
tives (5.1.1)– for fixed w PW the map ∇1pwq : LÑW : x ÞÑ ∇1xpwq is A-linear. Hence
according to Proposition 5.1.8, eqn (5.1.7), we can compute its covariant derivative

∇HpL,W qx1

`

∇1pwq
˘

, and the map px1,x2q ÞÑ

´

∇HpL,W qx1

`

∇1pwq
˘

¯

px2q can be considered as

an A-linear map LbA LÑW , see eqn (5.1.8) of Proposition 5.1.8. We can thus set
for all x1,x2 P L and w PW

∇12x1x2
pwq “ ∇1x1x2

pwq :“
´

∇1HpL,W qx1

`

∇1pwq
˘

¯

px2q
p5.1.7q
“ ∇1x1

`

∇1x2
pwq

˘

´∇1∇x1 px2q
pwq.

The map x1x2 ÞÑ ∇12x1x2
pwq is thus a well-defined A-linear map from T2

ApLq to W .
It is thus possible to recursively define for each w P W a sequence

`

∇1npwq
˘

nPN of
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5.1. Covariant derivatives

A-linear maps TnAL Ñ W , the nth iterated covariant derivative as follows: for all
w PW , all x P L, and all b P TnApLq

∇101 pwq :“ w, and ∇1pn`1q
xb pwq :“ ∇1x

`

∇1nb pwq
˘

´∇1n∇xpbqpwq, (5.1.18)

and this gives the usual recursion formula for iterated covariant derivatives by set-
ting x “ x1 P L and b “ x2 ¨ ¨ ¨xn`1 P L

bn:

∇1pn`1q
x1x2¨¨¨xn`1pwq “ ∇

1
x1

`

∇1nx2¨¨¨xn`1
pwq

˘

´

n`1
ÿ

r“2

∇1n
x2¨¨¨xr´1

`

∇x1 pxrq
˘

xr`1¨¨¨xn`1
pwq. (5.1.19)

In the following we shall use the simpler notation ∇1bpwq instead of ∇1nb pwq, and
∇1pwq for the A-linear map TALÑ W . Replacing W by L or TApLq and ∇1 by ∇ we
get analogous maps ∇ : TApLqbK LÑ L and TApLqbK TApLq Ñ TApLq.

There is the following analog of Proposition 5.1.8 which is a Leibniz formula of
iterated covariant derivatives:

Proposition 5.1.11 Let V ,W ,X three A-modules equipped with connections ∇V ,∇W ,
and ∇X , respectively, with respect to an anchored A-module

`

L,ρ
˘

with connection ∇
over A, and let ν : V bAW Ñ X be an A-linear map which is connection preserving.
Then for all b P TApLq, v P V , and w P w we have the following iterated Leibniz formula

∇Xb
`

νpvbAwq
˘

“
ÿ

pbq

ν
´

∇Vbp1qpvqbA ∇
W
bp2qpwq

¯

(5.1.20)

where the right hand side of the preceding equation (5.1.20) makes sense as the tensor
product over A of the two A-linear maps ∇V pvq : TApV q Ñ V and ∇W pwq : TApV q ÑW
composed with the A-linear shuffle comultiplication ∆sh : TApV q Ñ TApV qbA TApV q.
We get the following four particular cases

1. For V “ A and ν being the module multiplication AbAW ÑW we get for all a P A
and w PW

∇1bpawq “
ÿ

pbq

∇bp1qpaq∇1bp2qpwq. (5.1.21)

2. For V ,W arbitrary, and X “ V bAW (where ν is the identity map), and ∇X the
obvious connection in the tensor product (5.1.6) we get for all b P TApLq, v P V ,
and w PW :

∇VbAWb pvbAwq “
ÿ

pbq

∇Vbp1qpvqbA ∇
W
bp2qpwq. (5.1.22)

3. Let ϕ PHomApV ,W q and ψ PHomApW,Xq. Then we get

∇HpV ,Xq
b pψ ˝ϕq “

ÿ

pbq

∇HpW,Xq
bp1q pψq ˝∇HpV ,W q

bp2q pϕq. (5.1.23)
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4. Let ϕ PHomApV ,W q and v P V . Then

∇Wb
`

ϕpvq
˘

“
ÿ

pbq

`

∇HpV ,W q
bp1q pϕq

˘`

∇Vbp2qpvq
˘

. (5.1.24)

In particular, if ϕ is connection preserving, then for all b P TAL we have

∇HpV ,W q
b pϕq “ εpbqϕ, hence ∇Wb ˝ϕ “ ϕ ˝∇

V
b . (5.1.25)

(equation of K-linear maps).

Proof. See Appendix C.2.

We shall now show that the iterated covariant derivative ∇1 leads to an action of
TApLq on W , but with a modified (only K-bilinear) multiplication:

Proposition 5.1.12 Let pL,ρq be an anchored A-module, and letW be an A-module, and
let ∇1 be connection in W , ∇ be a connection in L parametrized by pL,ρq, and let ∇ and
∇1 also denote the iterated covariant derivatives as defined above in (5.1.18).
Then for any b,b1 P TpV q and w PW we get the two formulas

∇1bb1pwq “

´

∇1HpTAL,W qb

`

∇1pwq
˘

¯

pb1q, (5.1.26)

∇1b
`

∇1b1pwq
˘

“
ÿ

pbq

∇1
bp1q

`

∇
bp2q pb

1q

˘pwq. (5.1.27)

Proof. The first statement is proved by induction on the tensor degree of b, the cases
of degree 0, b “ a1 (where a P A), and of degree 1, b “ y P L, being obvious and direct
consequences of the definition, equation (5.1.18).

Supposing equation (5.1.26) to be true up to tensor degree n of b, we compute
the equation replacing b by xb where x P L, b,b1 P TpV q, and upon writing ∇1H for
∇1HpTAL,W q

∇1xbb1pwq “ ∇1x
`

∇1bb1pwq
˘

´∇1p∇xpbqqb1pwq´∇
1
bp∇xpb1qqpwq

“ ∇1x
´

`

∇1Hb
`

∇1pwq
˘˘

pb1q
¯

´

´

∇1Hb
`

∇1pwq
˘

¯

`

∇xpb1q
˘

´

´

∇1H∇xb
`

∇1pwq
˘

¯

pb1q

“

´

∇1Hx
´

∇1Hb
`

∇1pwq
˘

¯¯

pb1q´
´

∇1H∇xb
`

∇1pwq
˘

¯

pb1q “
´

∇1Hxb
`

∇1pwq
˘

¯

pb1q

which proves the induction and eqn (5.1.26).
Next, we compute

∇1b
`

∇1b1pwq
˘

“ ∇1b
``

∇1pwq
˘

pb1q
˘ p5.1.24q

“
ÿ

pbq

´

∇1HpTApLq,W qbp1q
`

∇1pwq
˘

¯

`

∇bp2qpb1q
˘ p5.1.26q

“
ÿ

pbq

∇1
bp1q

`

∇
bp2q pb

1q

˘pwq

which proves the equation (5.1.27).
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5.2 Rinehart bialgebra structure on TApLq

The preceding Proposition 5.1.12 suggests the following multiplication ˛∇ “ ˛ on
TApLq defined by

b ˛∇ b
1 :“

ÿ

pbq

bp1q∇bp2qpb1q (5.2.1)

for all b,b1 P TApLqwhich we shall call the ∇-deformed multiplication of TApLq because
obviously

b ˛∇ b
1 “ bb1` terms of strictly lower tensor degree. (5.2.2)

Notice that the multiplication ˛∇ is only K-bilinear. Then, we get the following:

Theorem 5.2.1 Let pL,ρq be an anchored A-module, let W be an A-module, and let ∇1
be connection in W , ∇ be a connection in L parametrized by pL,ρq, let ∇A denote the
connection in A induced by the anchor map ρ, and let ∇, ∇1 and ∇A also denote the
iterated covariant derivatives as defined above in (5.1.18).

We have the following properties for all b,b1,b2 P TApLq and w PW :

∇1b
`

∇1b1pwq
˘

“ ∇1b˛∇b1pwq, (5.2.3)

∇bpb1b2q “
ÿ

pbq

`

∇bp1qpb1q
˘`

∇bp2qpb2q
˘

(5.2.4)

“

deg,∇b
‰

“ 0 (5.2.5)

∆sh
`

∇bpb1q
˘

“ “
ÿ

pbqpb1q

∇bp1qpb1p1qqbA ∇bp2qpb1p2qq, (5.2.6)

∆shpb ˛∇ b
1q “

ÿ

pbqpb1q

`

bp1q ˛∇ b
1p1q˘bA

`

bp2q ˛∇ b
1p2q˘, (5.2.7)

pb ˛∇ b
1q ˛∇ b

2 “ b ˛∇ pb
1 ˛∇ b

2q, (5.2.8)

b ˛∇ 1 “ b “ 1 ˛∇ b, (5.2.9)

εpb ˛∇ b
1q “ ∇Ab

`

εpb1q
˘

“ ε
´

b ˛∇
`

εpb1q1
˘

¯

. (5.2.10)

In particular,
`

TApLq,1,˛,∆sh,ε
˘

is a Rinehart bialgebra over A, see Section 4.3 for
definitions.

Proof. The first equation, number (5.2.3), is just a reformulation of the equation
(5.1.27) of Proposition 5.1.12 using the ∇-deformed multiplication described in the
equation (5.2.1).

The iterated derivation rule (5.2.4) is a direct consequence Proposition 5.1.11
upon setting ν “ µ.

The homogeneity equation (5.2.5) is shown by induction over the tensor degree
of b: again, since ∇1 “ id this is true in degree 0, and in degree 1 (b “ x P v) this
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follows from eqn (5.1.13). Suppose by induction that the asserted equation (5.2.5)
is true for all b P TpV q whose tensor degree is less or equal than n, and consider the
element xb for any x P V . We compute (using the fact that ∇xpbq is of degree ď n
according to eqn (5.1.13))

“

∇xb,deg
‰

“

”

∇x ˝∇b´∇∇xpbq,deg
ı

“
“

∇x,deg
‰

˝∇b`∇x ˝
“

∇b,deg
‰

´

”

∇∇xpbq,deg
ı

Ind.Hyp.
“ 0` 0´ 0“ 0

proving the induction.
In the following, the formula (5.2.6) follows from the fact that the shuffle comuti-

plication ∆sh is connection preserving (see Proposition 5.1.10), from statement eqn
(5.1.25), and from formula (5.1.22) of the Proposition 5.1.11.

The equation (5.2.7) can be shown directly upon using eqs (5.2.1) and (5.2.6):

∆shpb ˛∇ b
1q “

ÿ

pbq

∆sh
`

bp1q∇bp2qpb1q
˘ p5.2.6q
“

ÿ

pbqpb1q

`

pbp1qq∇bp3qpb1p1qq
˘

bA
`

pbp2qq∇bp4qpb1p2qq
˘

p∆sh cocomm.q
“

ÿ

pbqpb1q

`

pbp1qq∇bp2qpb1p1qq
˘

bA
`

pbp3qq∇bp4qpb1p2qq
˘

“
ÿ

pbqpb1q

`

bp1q ˛∇ b
1p1q˘bA

`

bp2q ˛∇ b
1p2q˘.

Next, the equation (5.2.8) encodes the associativity of the ∇-deformed multipli-
cation ˛∇: this can also be shown directly:

b ˛∇ pb
1 ˛∇ b

2q “

“
ÿ

pbqpb1q

pbp1qq∇bp2q
`

pb1p1qq∇b1p2qpb2q
˘ p5.2.4q

“
ÿ

pbqpb1q

pbp1qq
`

∇bp2qpb1p1qq
˘`

∇bp3q
`

∇b1p2qpb2q
˘˘

“

p5.2.1q,p5.2.3q
“

ÿ

pbqpb1q

`

bp1q ˛∇ b
1p1q˘`∇bp2q˛∇b1p2qpb

2q
˘ p5.2.7q

“
ÿ

pbqpb1q

`

pb ˛∇ b
1qp1q

˘`

∇pb˛∇b1qp2qpb
2q
˘

“

p5.2.1q
“ pb ˛∇ b

1q ˛∇ b
2.

In order to prove the equation (5.2.9) we note that trivially 1 ˛∇ b “ b from the
definition (5.2.1). On the other hand, since the unit 1 is connection preserving by
Proposition 5.1.10 it follows by the equation (5.1.25) of Proposition 5.1.11 that

∇bp1q “ εpbq1, hence b ˛∇ 1“
ÿ

pbq

bp1q∇bp2qp1q “
ÿ

pbq

bp1qεpbp2qq1“ b1“ b

which proves (5.2.9).
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Finally, in order to show the last equation, number (5.2.10), we compute for all
b,b1 P TpV q

εpb ˚ ˛∇b
1q “

ÿ

pbq

ε
`

bp1qq∇bp2qpb1q
˘

“
ÿ

pbq

εpbp1qqε
`

∇bp2qpb1q
˘

“

“ ε
`

∇ř
pbq εpb

p1qqbp2qpb
1q
˘

“ ε
`

∇bpb1q
˘

“ ∇Ab
`

εpb1q
˘

“ ε
´

∇Ab
`

εpb1q
˘

1
¯

“ ε
´

∇b
`

εpb1q1
˘

¯

.

where the fact that ε is also connection preserving by Proposition 5.1.10 and
equation (5.1.25) has been used. Replacing in the above equation b1 by its projection
εpb1q1 is easily seen to give the same result, whence statement (5.2.10) is shown.

Finally, the preceding statements (5.2.8), (5.2.9), the fact that
`

TApLq,∆sh,ε,1
˘

is a
coassociative cocommutative counitary coaugmented coalgebra over A, statements
(5.2.7) and (5.2.10) show almost all the properties of a Rinehart bialgebra over A,
see Section 4.3, eqn (4.3.4).

It remains to show that the image of the shuffle comultiplication ∆sh is in the A-
submodule TApLq ˆA TApLq, see eqn (4.3.1): let b P TApLq and a P A. We compute –
upon using coassoacitivity and cocommutativity of ∆sh:

r
p2q
a

`

∆shpbq
˘

“
ÿ

pbq

bp1qbA pb
p2q ˛ aq “

ÿ

pbq

bp1qbA
`

bp2q∇bp3qpaq
˘

“
ÿ

pbq

bp1qbA
`

∇bp3qpaqbp2q
˘

“
ÿ

pbq

bp1q
`

∇bp3qpaq
˘

bA b
p2q “

ÿ

pbq

bp1q
`

∇bp2qpaq
˘

bA b
p3q “

ÿ

pbq

pbp1q ˛ aq
˘

bA b
p2q

“ r
p1q
a

`

∆shpbq
˘

The particular case A “ K is simple, but important for the sequel: here any an-
chored module K-module L has vanishing anchor morphism, and the Rinehart bial-
gebra TKpLq is an ordinary bialgebra over K . Any connection ∇ is thus an arbitrary
K-bilinear map Lb LÑ L. It comes with no surprise that the bialgebra structures
on TKpLq with the free multiplication and the multiplication ˛∇ are isomorphic:

Proposition 5.2.2 The K-linear map Φ : TKpLq Ñ TKpLq defined by Φp1q “ 1 and for
all N P Nzt0u, x1, . . . ,xN P L by

Φpx1 ¨ ¨ ¨xN q “ x1 ˛∇ ¨ ¨ ¨ ˛∇ xN . (5.2.11)

provides an isomorphism of K-bialgebras
`

TKpLq, ¨,1,∆sh,ε
˘

Ñ
`

TKpLq,˛∇,1,∆sh,ε
˘

.
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Proof. Since pTKpLq, ¨,1q is a free algebra over the K-module L, the map Φ obviously
is a well-defined morphism of unital associative algebras

`

TKpLq, ¨,1
˘

Ñ
`

TKpLq,˛∇,1
˘

induced by the identity map on the generating module L. Since the product on the
right hand side of eqn (5.2.11) is equal to the free product x1 ¨ ¨ ¨xN plus terms of
lower tensor degree, a simple filtration argument shows that Φ is bijective.

The identities ε ˝ Φ “ ε and pΦ b Φq ˝ ∆sh “ ∆sh ˝ Φ are identities of algebra
morphisms

`

TKpLq,µ
˘

Ñ K and
`

TKpLq,µ
˘

Ñ
`

TKpLqbTKpLq,˛
r2s
∇
˘

, respectively (see
eqs (5.2.7) and (5.2.10)), and are obviously satisfied on generators in L, hence they
hold everywhere thanks to the freeness of TKpLq.

Returning to the general case with a priori different A and K we shall discuss the
relation between TKpLq and TApLq in the presence of a connection ∇ : Lb LÑ L in
the anchored A-module pL,ρq: first, more generally, let pV ,∇V q and pW,∇W q two
A-modules with connection along pL,ρq. Denoting by ∇̃V and ∇̃W the same maps
∇V and ∇W , respectively, considered just as K-bilinear (one could have used the
restriction functor Res, see Appendix A.2.1 we obviously get for all v P V andw PW
(thanks to eqn (5.1.6)

πV ,W
´

∇̃Vx pvqbw` vb ∇̃wx pwq
¯

“ ∇VbAWx
`

vbAw
˘

, (5.2.12)

where πV ,W : V bW Ñ V bAW is the canonical projection, see equation A.2.7.
Applying this to V “ W “ L, ∇V “ ∇W “ ∇ in an iterative way (where ∇̃ also

denotes the induced iterated connection in TKpLq) and writing π : TKpLq Ñ TApLq
for the K-linear canonical projection, see also Appendix A.6.1, an easy induction
over tensorial degree yields the following for all b̃, b̃1 P TKpLq

π
`

∇̃b̃pb̃
1q
˘

“ ∇πpb̃q
`

πpb̃1q
˘

hence π
`

b̃ ˜̨b̃1
˘

“ πpb̃q ˛∇ πpb̃q. (5.2.13)

where we have written ˜̨ “ ˛∇̃ for the multiplication in TK according to Proposition
5.2.2.

5.3 The primitive part P∇pL,Aq of TApLq and the path Lie algebroid

Let pL,ρq be an anchored module over A, let ∇ be a connection in the A-module
L along pL,ρq. We denote by the same symbol ∇ the iterated covariant derivative in
TApLq. We will suppose in this section that QĂ K .

Recall that the primitive part of the counital coaugmented A-coalgebra TApLq is
equal to LApLq, the A-Lie subalgebra of the free A-algebra TApLq generated by the
A-submodule L, see Appendix A.6.2, which in turn is isomorphic to the free A-Lie
algebra over the A-module L.

We can conclude that the statement 5.2.7 of the preceding Theorem 5.2.1 directly
implies the following

70



5.3. The primitive part P∇pL,Aq of TApLq and the path Lie algebroid

Proposition 5.3.1 The primitive part of the Rinehart bialgebra
`

TApLq,˛∇ “ ˛,1,∆sh,ε
˘

carries the structure of a Lie-Rinehart algebra over A where the K-bilinear Lie bracket
r , s∇ and the anchor morphism ρ∇ are explicitly given as follows for all ξ,ξ 1 P P∇pL,Aq
and a P A:

rrξ,ξ 1ss∇ :“ ξ ˛ ξ 1´ ξ 1 ˛ ξ “ rξ,ξ 1s`∇ξpξ 1q´∇ξ1pξq, and ρ∇ξ paq “ ∇
A
ξ paq. (5.3.1)

Moreover, note that for any A-module with connection along L, pV ,∇1q there is the for-
mula

@ ξ1,ξ2 P P∇pL,Aq : ∇1
rrξ1,ξ2ss

∇ “

”

∇1ξ1
,∇1ξ2

ı

. (5.3.2)

We shall write P∇pL,Aq for the A-module LApLq equipped with the above Lie-Rinehart
structure.

Indeed this follows from the multiplication formula (5.2.1) and the fact that

∆shpξq “
ÿ

pξq

ξp1qbA ξ
p2q “ ξ bA 1` 1bA ξ

for each primitive element in TApLq.
Moreover, according to the Leibniz formula (5.1.21) for the caseW “ A, it follows

that for each ξ P P∇pL,Aq the map ∇Aξ : AÑ A is a derivation, and the commutator
of K-linear maps,

“

∇Aξ ,∇Aη
‰

, clearly equals ∇A
rξ,ηs∇ (as well as for A replaced by V )

according to eqn (5.2.3) which shows (5.3.1).
Note that the underlying A-module of P∇pL,Aq, LApLq, is graded by tensor degree,

i.e. P∇pL,Aq “ ‘8n“1P∇pL,Aqn, but the Lie bracket r , s∇ does no longer preserve the
grading, but is merely filtration preserving.

The relation to Kapranov’s path Lie algebroid (see Section 4.5.1) is contained in
the following

Theorem 5.3.2 The Lie-Rinehart algebra
`

P∇pL,Aq,ρ∇, r , s∇,A
˘

is a free Lie-Rinehart
algebra, and given any morphism of anchored modules θ : pL,ρq Ñ pL1,ρ1qwhere

`

L1,ρ1, rr , ss1
˘

is any Lie-Rinehart algebra over A, the induced morphism of Lie-Rinehart algebras θ̄ :
P∇pL,Aq Ñ L1 can be computed by the following recursion for all x P L and ξ P P∇pL,Aq

θ̄pxq “ θpxq and θ̄
`

rx,ξs
˘

“ rrθpxq, θ̄pξqss1´ θ̄ p∇xpξqq`θ
`

∇ξpxq
˘

. (5.3.3)

Hence the Lie-Rinehart algebra P∇pL,Aq is isomorphic to Kapranov’s path Lie algebroid
P pL,Aq generated by pL,ρq. In particular, for two different connections ∇, ∇1 the two Lie-
Rinehart algebras P∇pL,Aq and P∇1pL,Aq are isomorphic.

Proof. We shall show the universal property for the Lie-Rinehart algebra P∇pL,Aq,
i.e. that for any given Lie-Rinehart algebra pL1,ρ1, rr , ss1,Aq and every morphism
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θ : pL,ρq Ñ pL1,ρ1q of anchored A-modules there is a unique induced morphism θ̃ of
Lie-Rinehart algebras P∇pL,Aq Ñ L1, and every morphism of Lie-Rinehart algebras
P∇pL,Aq Ñ L1 is of that form.

Indeed, take the free Lie algebra over K generated by the K-module L, LieKpLq.
Since Q Ă K we can take the Lie subalgebra LKpLq Ă TKpLq generated by the K-
module L which is equal to the primitive part of the coalgebra

`

TKpLq, 1̃, ∆̃sh, ε̃
˘

and
isomorphic to LieKpLq, see Appendix A.6.2.

There is a unique morphism of K-Lie algebras θ̌ :
`

LKpLq, r , s„
˘

Ñ
`

L1, rr , ss1
˘

such
that for all x P L we have θ̌pxq “ θpxq.

Observe now that the restriction of the above bialgebra morphism

Φ :
`

TKpLq, µ̃, 1̃, ∆̃sh, ε̃
˘

Ñ
`

TKpLq, ˜̨, 1̃, ∆̃sh, ε̃
˘

,

see Proposition 5.2.2, to LKpLq is an isomorphism of K-Lie algebras
`

LKpLq, r , s„
˘

Ñ
`

LKpLq, r , s∇̃
˘

(where we have written r , s∇̃ for the Lie bracket (5.3.1) with A re-
placed by K and ∇ by ∇̃, see the paragraph at the end of Section 5.1.2) since Φ is
an isomorphism of coaugmented coalgebras and preserves primitive elements. It
follows that the K-linear map

θ̂ “ θ̌ ˝Φ´1 :
´

LKpLq, r , s∇̃
¯

Ñ
`

L1, rr , ss1
˘

(5.3.4)

is a morphism of K-Lie algebras (where we have used the same symbol Φ for the
restriction of Φ to LKpLq).

Recall that the canonical K-algebra morphism π :
`

TKpLq, µ̃
˘

Ñ
`

TApLq,µ
˘

, see
equation (A.6.10), is also a K-algebra morphism

`

TKpLq, ˜̨
˘

Ñ
`

TApLq,˛∇
˘

, see the
discussion at the end of Section 5.1.2.

Thanks to the equation A.6.11 π maps primitive elements onto primitive ele-
ments, and the restriction of π to LKpLq (which we continue to write π) is thus a
morphism of K-Lie algebras from

`

LKpLq, r , s∇̃
˘

to
`

P∇pL,Aq, r , s∇
˘

.
We shall now show by induction on the tensor degree n P Nzt0u that the above map
θ̂ descends to an A-linear map: more precisely, for each positive integer n there
exists an A-linear map θ̄n : P∇pL,AqnÑ L1 such that for all ξ̃ P LnpL,Aq

θ̄n
`

πpξ̃q
˘

“ θ̂pξ̃q and ρ1θ̄npπpξ̃qq
“ ∇A

πpξ̃q

´

“ ρ∇
πpξ̃q

¯

. (5.3.5)

Indeed, this is obvious for n “ 1 by setting θ̄1 “ θ from the definition of a mor-
phism of anchored modules.

Suppose that the induction hypothesis is true up to rank ně 1.
Induction step (nÑ n` 1): Let ξ̃ P LnKpLq be a left ordered multiple commutator

ξ̃ “
”

x1,
“

x2, rx3, . . . , rxi , . . . , rxn´1,xns
„ss„ ¨ ¨ ¨ s„

‰„
ı„
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5.3. The primitive part P∇pL,Aq of TApLq and the path Lie algebroid

with x1, . . . ,xn if n ě 2 and if n “ 1, ξ̃ “ x1. For a chosen integer 1 ď i ď n and a P A
we shall write ξ̃piqpaq for the above multiple commutator in which xi is replaced by
axi .

It is not hard to see that the intersection of the kernel of the projection π (which is
graded by the positive integers) with each LnKpLq, n ě 2 an integer, is spanned over
K by all elements of the form ξ̃piqpaq´ ξ̃pjqpaq for all 1ď i ă j ď n.

In the following, choose any x P L. Thanks to the fact that θ̂ is a morphism of
K-Lie algebras, thanks to the form of the Lie bracket r , s∇̃ (see eqn (5.3.1)) for
∇ replaced by ∇̃) we get upon using the induction hypothesis (5.3.5) and formula
(5.2.13) and upon writing ξ “ πpξ̃q, x “ πpxq, θ̄1pxq “ θpxq:

θ̂
`

rx, ξ̃s„
˘

“ rrθpxq, θ̂pξ̃qss1´ θ̂
`

∇̃xpξ̃q
˘

` θ̂
`

∇̃ξ̃pxq
˘

“ rrθpxq, θ̄npξqss
1´ θ̄n p∇xpξqq`θ

`

∇ξpxq
˘

. (5.3.6)

Replacing ξ̃ by ξ̃piqpaq (for any a P A) we get upon using the evident equation
π
`

ξ̃piqpaq
˘

“ aπpξ̃q “ aξ and the A-linearity of θ̄n thanks to the induction hypothe-
sis:

θ̂
`

rx, ξ̃piqpaqs
„
˘

“ rrθpxq, aθ̄npξqss
1´ θ̄n p∇xpaξqq` aθ

`

∇ξpxq
˘

“ arrθpxq, θ̄npξqss
1` ρ1θpxqpaqθ̄npξq´ aθ̄n p∇xpξqq´ ρxpaqθ̄npξq` aθ

`

∇ξpxq
˘

“ aθ̂
`

rx, ξ̃s„
˘

(5.3.7)

and (here we use the second part of the induction hypothesis (5.3.5))

θ̂
`

rax, ξ̃s„
˘

“ rraθpxq, θ̄npξqss
1´ aθ̄n p∇xpξqq`θ

`

∇ξpaxq
˘

“ arrθpxq, θ̄npξqss
1´ ρ1θ̄npξqpaqθpxq´ aθ̄n p∇xpξqq` aθ

`

∇ξpxq
˘

`∇Aξ paqθpxq

“ aθ̂
`

rx, ξ̃s„
˘

. (5.3.8)

Both equations (5.3.7) and (5.3.8) give the same result independently of the inte-
ger i which implies that θ̂ vanishes on the kernel of π in degree n` 1 and descends
to an A-linear map θ̄n`1 : P∇pL,Aqn`1 Ñ L1 satisfying θ̂|Ln`1pL,Kq “ θ̄n`1 ˝π|Ln`1pL,Kq.
In particular it follows that θ̂

`

rx, ξ̃s„
˘

“ θ̄
`

rx,ξs
˘

.

It remains to show the second part of the induction, equation (5.3.5): again using
eqn (5.3.6) we can write for all a P A

ρ1θ̄n`1prx,ξsq
paq “ ρ1

θ̂prx,ξ̃s„q
paq “ ρ1

rrθpxq,θ̄npξqss1
paq´ ρ1θ̄np∇xpξqqpaq` ρ

1

θp∇ξpxqq
paq

“

”

ρ1θpxq,ρ
1

θ̄npξq

ı

paq´ ρ1θ̄np∇xpξqqpaq` ρ
1

θp∇ξpxqq
paq

p5.3.5q
“

”

∇Ax ,∇Aξ
ı

paq´∇A∇xpξqpaq`∇
A
∇ξpxqpaq “ ∇

A
rx,ξspaq, (5.3.9)
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which proves the induction.
Let θ̄ : P∇pL,Aq Ñ L1 be the A-linear map defined on each component P∇pL,Aqn

by the above A-linear map θ̄n. We clearly have θ̂ “ θ̄ ˝π. Next, the second part of
the induction hypothesis (5.3.5) implies that θ̄ intertwines anchor morphisms. It
remains to show that θ̄ :

`

P∇pL,Aq, r , s∇
˘

Ñ
`

L1, rr , ss1
˘

is a morphism of K-Lie alge-
bras: let ξ1,ξ2 P P∇pL,Aq, and by the surjectivity of the restriction of π to positive
degrees there are ξ̃1, ξ̃2 P LKpLq such that πpξ̃1q “ ξ1 and πpξ̃2q “ ξ2. Recall that
θ̂ :

`

LKpLq, r , s∇̃
˘

Ñ
`

L1, rr , ss1
˘

is a morphism of K-Lie algebras by construction, and
that π :

`

LKpLq, r , s∇̃
˘

Ñ
`

P∇pL,Aq, r , s∇
˘

is a morphism of K-Lie algebras. We get

θ̄
´

rξ1,ξ2s
∇
¯

“ θ̄
´

“

πpξ̃1q,πpξ̃2q
‰∇
¯

“ θ̄
´

π
`

rξ̃1, ξ̃2s
∇̃˘
¯

“ θ̂
`

rξ̃1, ξ̃2s
∇̃˘“

“
““

θ̂pξ̃1q, θ̂pξ̃2q
‰‰1
“
““

θ̄
`

πpξ̃1q
˘

, θ̄
`

πpξ̃2q
˘‰‰1
“

“
““

θ̄pξ1q, θ̄pξ2q
‰‰1 (5.3.10)

The recursion equation (5.3.3) is a simple particular case of the preceding equa-
tion (5.3.10) for x “ ξ1 and ξ “ ξ2 showing that θ̄ is a morphism of K-Lie algebras
which shows existence of the induced morphism θ̄. Again by the recursion equa-
tion (5.3.3) it is clear that the higher degree terms θ̄n for ně 2 uniquely depend on
θ̄1 “ θ which makes the assignment θ ÞÑ θ̄ a map.

Clearly if θ,χ : pL,ρq Ñ
`

L1,ρ1, rr , ss1,A
˘

are morphisms of anchored A-modules,
then θ̄ “ χ̄ implies θpxq “ χpxq for all x P L and θ ÞÑ θ̄ is thus injective. Finally, note
that every morphism of Lie-Rinehart algebras Θ : P∇pL,Aq Ñ L1 satisfies the recur-
sion relation (5.3.3), is hence uniquely determined by its restriction θ “Θ|L : LÑ L1,
and hence equal to θ̄ which shows the surjectivity of θ ÞÑ θ̄, and the universal prop-
erty.

Since P pL,Aq, P∇pL,Aq and P∇1pL,Aq are all universal objects the rest of the Theo-
rem follows.

In the same way as above we show the following

Theorem 5.3.3 Let pL,ρ,∇q be an anchored A-module with connection. Then the Rine-
hart bialgebra

`

TApLq,˛∇,1,∆sh,ε
˘

is isomorphic to the free unitary associative K-algebra
overA generated by the anchoredA-module pL,ρq: given any unital associative K-algebra
over A,

`

j 1,B1,˛1,11
˘

, and a morphism θ : pL,ρq Ñ B1´A of anchored A-modules there is
a unique morphism Θ :

`

ιA,TApLq,˛∇,1
˘

Ñ
`

B1,˛1,11
˘

of unital associative K-algebras
over A with Θpxq “ θpxq for all x P L.
It follows that

`

TApLq,˛∇,1,∆sh,1
˘

is isomorphic (as a Rinehart bialgebra) to the univer-
sal enveloping algebra U

`

P∇pL,Aq,A
˘

of the Lie-Rinehart algebra P∇pL,Aq.
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Proof. The construction ofΘ goes along the same lines as the proof of the preceding
Theorem 5.3.2: note first that the morphism θ : pL,ρq Ñ B1´A of anchored A-modules
means that there exists a unique A-linear map ϑ : LÑ B1 satisfying for all x P L

θpxq “
`

ρx,ϑpxq
˘

such that @ a P a : j 1 pρxpaqq “ ϑpxq˛
1 j 1paq´ j 1paq˛1ϑpxq (5.3.11)

see eqn (4.2.9) for details.
Next we define a morphism of unital K-algebras ϑ̌ :

`

TKpLq, µ̃, 1̃
˘

Ñ
`

B1,˛1,11
˘

thanks to the freeness of TKpLq, use the K-linear isomorphism Φ :
`

TKpLq, µ̃, 1̃
˘

Ñ
`

TKpLq,˛∇̃, 1̃
˘

, see eqn (5.2.11), to get a morphism of unital K-algebras ϑ̂ “ ϑ̌ ˝Φ´1 :
`

TKpLq,˛∇̃, 1̃
˘

Ñ
`

B1,˛1,11
˘

. By induction over the tensor degree n P N we show the
existence of A-linear maps ϑ̄n from TnApLq Ñ B1 satisfying for all a P A, x P L, and
b̃ P TnKpLq

ϑ̄0pa1q “ j 1paq, ϑ̄1pxq “ ϑpxq, and ϑ̄n
`

πpb̃q
˘

“ ϑ̂pb̃q.

Replacing in the proof of Thm 5.3.2 the multiple commutator ξ̃ by the product
b̃ “ x1 ¨K ¨ ¨ ¨ ¨K xn where ¨K is the free multiplication in TKpLq, and x1, . . . ,xn P L, and
for each a P A and each integer 1 ď i ď n replacing ξ̃piqpaq by b̃piqpaq (the factor xi
goes to paxiq) and using the morphism equation

ϑ̂px ¨K b̃q “ ϑpxq ˛1 ϑ̂pb̃q´ ϑ̂
`

∇̃xpb̃q
˘

(5.3.12)

we get by induction, equation (5.3.11) and eqn (5.2.13) that

ϑ̂
`

paxq ¨K b̃
˘

“ j 1paq ˛1 ϑ̂px ¨K b̃q “ ϑ̂
`

x ¨K b̃piqpaq
˘

which shows that ϑ̂ vanishes on the kernel of π in positive degrees and descends
to an A-linear map ϑ̄ implying the induction and the unique existence of the mor-
phism ϑ̄ : TApLq Ñ B1 of unital K-algebras over A. Universality is shown in a similar
way as in Theorem 5.3.2.

Finally, given any morphism χ : P∇pL,Aq Ñ B1´A of Lie-Rinehart algebras, it is
uniquely determined by its restriction θ to L (which is a morphism of anchored
A-modules), and the preceding construction ϑ̄ : TApLq Ñ B1 will do the job whence
`

ιA,TApLq,˛∇,1
˘

is isomorphic to U
`

P∇pL,Aq,A
˘

.

In the following section we shall suppose that QĂ K .
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5.4 Path Lie algebroid for Lie-Rinehart algebras with
connections

We shall apply the results of the preceding Section to the following important
particular case where the anchoredA-module is a Lie-Rinehart algebra

`

L,ρ, rr , ss,A
˘

over A. Let ∇ be a connection in L along L, let V be an arbitrary A-module equipped
with a connection ∇1 along L.

Let us recall two well-known classical quantities which are of fundamental im-
portance in differential geometry.

Definition 5.4.1 We define the torsion Tor “ Tor∇ and the curvature R1 “ R∇
1

as
linear maps from LbK LÑ L and pLbK Lq bK V Ñ V in the following well-known
way: for all x,y P L and v P V

Torpx,yq :“ ∇xpyq´∇ypxq´ rrx,yss, (5.4.1)

R1px,yqpvq :“ ∇1x
`

∇1ypvq
˘

´∇1y
`

∇1xpvq
˘

´∇1rrx,ysspvq (5.4.2)

Remark 5.4.2 Both quantities have the following properties which are well-known
in differential geometry. See e.g. [25, p.133-135] and [48, p.59-61].

The following result is quite lengthy to check then we will omit its proof.

Proposition 5.4.3 With the above definitions and notations: both torsion and curva-
ture descend to well-defined A-linear maps LbA L Ñ L and pLbA Lq bA V Ñ V , re-
spectively, which we shall denote in the usual way by x bA y ÞÑ Tor∇px,yq and by
x bA y bA v ÞÑ R∇

1

px,yqpvq, respectively. They satisfy the following Bianchi identi-
ties where the symbol Spx,y,zqFpx,y,zq of a map of three arguments px,y,zq ÞÑ Fpx,y,zq
denotes the cyclic sum Fpx,y,zq`Fpy,z,xq`Fpz,x,yq:

Spx,y,zq

˜

R∇px,yqpzq´
`

∇xpTor∇q
˘

py,zq´Tor∇
`

Tor∇px,yq, z
˘

¸

“ 0, (5.4.3)

Spx,y,zq

˜

`

∇1xpR∇
1

q
˘

py,zqpvq`R∇
1`

Tor∇px,yq, z
˘

pvq

¸

“ 0. (5.4.4)

Here ∇xpTor∇q or ∇1xpR∇
1

q denote the covariant derivatives of the A-linear maps
Tor∇ : Lba LÑ L and R∇

1

: pLbA LqbAW ÑW .
We shall now describe an important particular case of Theorem 5.3.2 where the

Lie-Rinehart algebra L1 is equal to L (in categorical terms this corresponds to the
counit of the adjunction (4.5.3)): we shall denote the morphism of Lie-Rinehart
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algebras
`

P∇pL,Aq,ρ∇, r , s∇,A
˘

Ñ
`

L,ρ, rr , ss,A
˘

induced by the identity map LÑ L
by Z “ Z∇. It satisfies for all x P L, ξ,ξ 1 P P∇pL,Aq, and a P A

Zpxq “ x, Z
´

rrξ,ξ 1ss∇
¯

“
““

Zpξq,Zpξ 1q
‰‰

, ρZpξqpaq “ ∇Aξ paq. (5.4.5)

It follows at once that for each ξ P P∇pL,Aq the K-linear map

H 1ξ : V Ñ V : v ÞÑH 1ξpvq “ ∇
1
ξ´Zpξqpvq (5.4.6)

is A-bilinear from P∇pL,Aq ˆ V to V : indeed, this is clear for the index argument,
and for all a P A we have

H 1ξpavq “ ∇
1
ξpavq´∇

1
Zpξqpavq “

“ ∇Aξ paqv` a∇
1
ξpvq´ ρZpξqpaqv´ a∇

1
Zpξqpvq

p5.4.5q
“ aH 1ξpvq.

In particular, this holds for V “ L and ∇1 “ ∇ in which case we write Hξ . We shall
use the same symbol Hξ for the A-linear derivation of the free algebra TApLq equal
to Hξ on generators. It is straight-forward to see that Hξ is also a coderivation of
`

TApLq,∆sh,ε
˘

whence it preserves the primitive part P∇pL,Aq and is a derivation for
the free A-bilinear Lie bracket r , s.

Next, define

P 0
∇pL,Aq :“ KerpZ∇q (5.4.7)

which is a Lie-Rinehart ideal, and since the A-linear map can be seen as a projection
P∇pL,Aq Ñ P∇pL,Aq onto L with kernel P 0

∇pL,Aq we have the direct decomposition

P∇pL,Aq “ P 0
∇pL,Aq‘L. (5.4.8)

The following skew-symmetric A-bilinear bracket P∇pL,AqˆP∇pL,Aq Ñ P∇pL,Aq
will be of interest: for all ξ,ξ 1 P P∇pL,Aq set

rξ,ξ 1sp∇q :“
“

ξ ´Zpξq,ξ 1´Zpξ 1q
‰

`Hξpξ
1q´Hξ1pξq. (5.4.9)

We provide a fairly explicit description of Z and H in the following Theorem.

Theorem 5.4.4 Let
`

L,ρ, rr , ss,A
˘

be a Lie-Rinehart algebra over A. Let ∇ be a connec-
tion in L along L, and let V be an arbitrary A-module equipped with a connection ∇1
along L. Then we have the following:

1. There are simultaneous explicit recursions in terms of curvature and torsion for the
maps Z and H : for all v P V , x P L, and ξ P P∇pL,Aq whose underlying A-module
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is identified with free A-Lie algebra over L, the bracket r , s being the A-bilinear free
bracket:

Zpxq “ x and H 1x “ 0, (5.4.10)

Z
`

rx,ξs
˘

“ p∇xZqpξq`Hξpxq´Tor
`

x,Zpξq
˘

, (5.4.11)

H 1rx,ξspvq “
`

∇xH 1
˘

ξpvq`R
1
`

x,Zpξq
˘

pvq. (5.4.12)

2. In particular we get for x1,x2,x3 P L:

Zprx1,x2sq “ ´Torpx1,x2q, (5.4.13)

Z
`“

x1, rx2,x3s
‰˘

“ ´
`

∇x1
Tor

˘

px2,x3q`Tor
`

x1,Torpx2,x3q
˘

`

` Rpx2,x3qpx1q, (5.4.14)

H 1rx1,x2s
pvq “ R1px1,x2qpvq, (5.4.15)

H 1“
x1,rx2,x3s

‰pvq “
`

∇1x1
R1
˘

px2,x3qpvq´R
1
`

x1,Torpx2,x3q
˘

pvq.(5.4.16)

3. We have the following two identities for the bracket that we define in the equation
(5.4.9):

“

H 1ξ ,H
1
ξ1
‰

´H 1
rξ,ξ1sp∇q “ 0, (5.4.17)

Hξ
`

Zpξ 1q
˘

´Hξ1
`

Zpξq
˘

´Z
´

rξ,ξ 1sp∇q
¯

“ 0. (5.4.18)

4. For all η,η1 P P 0
∇pL,Aq the Lie-Rinehart bracket rrη,η1ss∇ coincides with the above

A-bilinear bracket rη,η1sp∇q in (5.4.9).
It follows that r , sp∇q is anA-bilinear Lie bracket, and theA-Lie algebra

`

P∇pL,Aq, r , sp∇q
˘

is isomorphic to the semidirect product of the A-Lie algebra P 0
∇pL,Aq with its mod-

ule L (by eqn (5.4.17)) which is an abelian ideal for this structure.
5. The A-submodule Lě2

A pLq :“ ‘8n“2LnApLq is a Lie subalgebra of
`

P∇pL,Aq, r , sp∇q
˘

which is isomorphic to the subalgebra P 0
∇pL,Aq via the isomorphism of A-Lie alge-

bras
P∇pL,Aq Ñ P∇pL,Aq : ξ ÞÑ ξ ´Z

`

ξě2˘. (5.4.19)

where ξě2 denotes the projection onto Lě2
A pLq with kernel L.

Proof. 1.q The initial conditions (5.4.10) are clear from the definitions of Z and of
H 1 (see (5.4.6)). Moreover, since Z is a morphism of Lie algebras we get for all v P V ,
x P L and ξ P P∇pL,Aq using the initial conditions Zpyq “ y and Hy “ 0 for all y P L
and eqn (5.3.2) in a straight-forward computation:

Z
`

rx,ξs
˘

“ Z
`

rx,ξs∇
˘

´Z p∇xpξqq`Z
`

∇ξpxq
˘

“
““

x,Zpξq
‰‰

´∇x
`

Zpξq
˘

`∇Zpξqpxq`∇x
`

Zpξq
˘

´Z p∇xpξqq`∇ξ´Zpξqpxq
“ ´Tor

`

x,Zpξq
˘

`p∇xZqpξq`Hξpxq
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5.4. Path Lie algebroid for Lie-Rinehart algebras with connections

proving (5.4.11), and

H 1rx,ξspvq “ H 1
rx,ξs∇pvq´H

1
∇xpξqpvq`H

1
∇ξpxqpvq

“ ∇1
rx,ξs∇pvq´∇Z

`

rx,ξs∇
˘pvq1´H 1∇xpξsqpvq` 0

“
“

∇1x,∇1ξ
‰

pvq´∇1rrx,Zpξqsspvq´H
1
∇xpξqpvq

“
“

∇1x,H 1ξ
‰

pvq`
”

∇1x,∇1Zpξq
ı

pvq´∇1rrx,Zpξqsspvq´H
1
∇xpξqpvq

“
`

∇1xH 1
˘

ξ pvq`R
1
`

x,Zpξq
˘

pvq,

proving eqn (5.4.12).
2.q Is not hard to see that the equations (5.4.13), (5.4.14), (5.4.15), and (5.4.16)

are simple consequences of the recursion equations (5.4.11) and (5.4.12).
3.q Clearly, since Zpxq “ x @ x P L each ξ ´Zpξq is an element of KerpZq, and we

get

““

ξ ´Zpξq,ξ 1´Zpξ 1q
‰‰∇

“
“

ξ ´Zpξq,ξ 1´Zpξ 1q
‰

`Hξ
`

ξ 1´Zpξ 1q
˘

´Hξ1
`

ξ ´Zpξq
˘

“ rξ,ξ 1sp∇q´Hξ
`

Zpξ 1q
˘

`Hξ1
`

Zpξq
˘

. (5.4.20)

Applying Z to both sides of eqn (5.4.20) and using the morphism property (5.4.5)
of Z we get the cocycle identity (5.4.18) since Hξ

`

Zpξ 1q
˘

P L.
Moreover, applying ∇1 to both sides of the equation (5.4.20) and using equation

(5.3.2) we get the equation (5.4.17) since H 1y “ 0 for all y P L.

4.q By the direct decomposition (5.4.8) it suffices to express the bracket r , sp∇q on
elements ξ “ x`η, ξ 1 “ x1`η1 for x,x1 P L and η,η1 P P 0

∇pL,Aq: an easy computation
using the definitions (5.3.1), (5.4.9), and the fact that Zpxq “ x for all x P L and
Zpηq “ 0 for all η P P 0

∇pL,Aq gives

rη,η1sp∇q “ rrη,η1ss∇, rη,x1sp∇q “Hηpx
1q, and rx,x1sp∇q “ 0. (5.4.21)

The Jacobi identity for the bracket r , sp∇q trivially holds if two of the three ele-
ments are in L, it is also clear if the three elements are in P 0

∇pL,Aq (because it holds
for the Lie bracket rr , ss∇), and in case two elements are in P 0

∇pL,Aq and one in L the
Jacobi identity follows from the representation identity (5.4.17).

The semidirect product structure is now clear from the concrete brackets (5.4.21).
5.q It is clear that the A-linear map (5.4.19) (which we call T ) is invertible with

inverse T´1pξq “ ξ ` Zpξě2q. It clearly maps Lě2
A pLq into P∇pL,Aq. On the other

hand if an element η P P 0
∇pL,Aq is written as a sum ζ` x with ζ P Lě2

A pLq and x P L,
then 0 “ Zpηq “ Zpζq ` x whence x “ ´Zpζq, and the restriction of T to Lě2

A pLq is
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an isomorphism onto P 0
∇pL,Aq. Next we compute

T
`

rξ,ξ 1sp∇q
˘

“ rξ,ξ 1sp∇q´Z
`

rξ,ξ 1sp∇q
˘

p5.4.18q
“ rξ ´Zpξq,ξ 1´Zpξ 1qs`Hξpξ

1q´Hξ1pξq´Hξ
`

Zpξ 1q
˘

`Hξ1
`

Zpξq
˘

“

T pξq,T pξ 1q
‰p∇q

“
“

ξ ´Zpξq,ξ 1´Zpξ 1q
‰p∇q

“
“

ξ ´Zpξq,ξ 1´Zpξ 1q
‰

`Hξ
`

ξ 1´Zpξ 1q
˘

´Hξ1
`

ξ ´Zpξq
˘

since Z
`

ξ ´ Zpξq
˘

“ 0 and Hx “ 0, and the two preceding equations show that T
is an isomorphism of A-Lie algebras. This shows that Lě2

A pLq is a Lie subalgebra of
`

P∇pL,Aq, r , sp∇q
˘

which can also be seen directly by the definition (5.4.9).

Remark 5.4.5 Note that the A-linear map Z can be seen as a 1-cocycle of the Lie
algebra

`

P∇pL,Aq, r , sp∇q
˘

with values in the module L (via the map H , see eqn
(5.4.17)).

Besides that, under the hypotheses of Theorem 5.4.4, we can define the following
A-submodule of HomApV ,V q

Hol1∇pV q :“
 

H 1ξ
ˇ

ˇ ξ P P∇pL,Aq
(

Ă HomApV ,V q. (5.4.22)

This is related to the usual infinitesimal linear holonomy Lie algebra in differential
geometry, see e.g. [25, p.152-153, Thm.9.2] following the work by Nijenhuis (1953),
[35], and Ozeki (1956), [37] which describes an infinitesimal version of parallel
transport around closed loops:

Proposition 5.4.6 Let
`

L,ρ, rr , ss,A
˘

a Lie-Rinehart algebra over A with connection ∇
in L along L. Let V be an A-module with connection ∇1 along L.

Then Hol1∇pV q is an A-Lie subalgebra of the A-Lie algebra HomApV ,V q equipped with
the commutator or A-linear maps.

Moreover

Hol1∇pV q “ A Śpan
 `

∇1bpR
1q
˘

px,yq
ˇ

ˇ b P TApLq, x,y P L
(

(5.4.23)

whence the connection ∇1 restricts to the A-submodule Hol1∇pV q of HomApV ,V q.

Proof. The first statement follows at once from eqn (5.4.17) and the fact Hξ “
Hξ´Zpξq whence η “ ξ ´ Zpξq P P 0

∇pL,Aq. The second statement is proved by in-
duction over the tensor degree of ξ using the recursion (5.4.12).

The inclusion "Ă": We show that eachH 1ξ , ξ P P∇pL,Aq, is a covariant derivative of
the curvature tensor R1: indeed if ξ “ x P L then H 1x “ 0, and we are done choosing
b “ 0,x “ 0 “ y, and if ξ “ rx,ys (x,y P L) then H 1

rx,ys “ R1px,yq, so b “ 1 and the
given x,y P L will do.
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5.4. Path Lie algebroid for Lie-Rinehart algebras with connections

Suppose that for each ξ P P∇pL,Aq of degree ď n there is a nonnegative inte-
ger N , elements bi P TApLq, xi , yi P L for each integer 1 ď i ď N (all dependent on

ξ) such that H 1ξ “
řN
i“1

´

∇1bi pR
1q

¯

pxi , yiq. Let z P L and consider ∇zpξq which also

has degree ď n. Likewise there is a nonnegative integer N 1, elements b1j P TApLq,
x1j , y

1
j P L for each integer 1 ď j ď N 1 (all dependent on ξ) such that H 1∇zpξq “

řN 1
j“1

´

∇1b1j pR
1q

¯

px1j , y
1
jq. we get –upon using (5.4.12)–

H 1rz,ξs “ ∇1zpH 1ξq´H
1
∇zpξq`R

1
`

z,Zpξq
˘

“

N
ÿ

i“1

´´

∇1zbi pR
1q

¯

pxi , yiq`
´

∇1∇zpbiqpR
1q

¯

pxi , yiq`
´

∇1bi pR
1q

¯

`

∇zpxiq, yi
˘

`

´

∇1bi pR
1q

¯

`

xi ,∇zpyiq
˘

¯

´

N 1
ÿ

j“1

´

∇1b1j pR
1q

¯

px1j , y
1
jq ` R1

`

z,Zpξq
˘

proving the induction.
The inclusion "Ą": We show by induction over the tensor degree of b P TApLq

that for all x,y P L there is ξ P P∇pL,Aq with
`

∇1bpR1q
˘

px,yq “ H 1ξ . The cases n “ 1
and n “ 2 are as in the preceding inclusion. Let z P L. Then we write by definition
of the iterated covariant derivative and there by the induction hypothesis there are
ξ,ξ 1 P P∇pL,Aq of degree at most n such that
`

∇1zbpR
1q
˘

px,yq “ ∇1z
``

∇1bpR
1q
˘

px,yq
˘

´
`

∇1bpR
1q
˘`

∇zpxiq, yi
˘

´
`

∇1bpR
1q
˘`

xi ,∇zpyiq
˘

´

´

∇1∇zpbqpR
1q

¯

px,yq

“ ∇1z
`

H 1
˘

ξ `H
1
∇zpξq`H

1
ξ1
p5.4.12q
“ H 1rz,ξs´H

1
rz,Zpξqs`H

1
ξ2

with ξ2 “ ∇zpξq ` ξ 1 proving the induction which obviously implies the last state-
ment.

Remark 5.4.7 Note that in general Hol1∇pV q is no longer a finitely generated pro-
jective module even if V and L are although it always carries a connection: as a
counterexample take a 2-dimensional smooth manifold X embedded in R3 where
L “ V “ Γ8pX,TXq is given by the Lie algebroid of all smooth vector fields and ∇
the Levi-Civita connection (see e.g. [25]) of the induced Riemannian metric where
the embedding is chosen in such a way that there are open sets of X where the cur-
vature vanishes (here the localization of Hol1∇pV q vanishes) and others where it does
not (where the localization of Hol1∇pV q is non trivial): here Hol1∇pV q can no longer
be regarded as the smooth section space of a regular constant rank subbundle of
HompTX,T Xq.
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6. Results evolving connections and Lie-Rinehart algebras

6.1 Particular cases and flat extensions of Lie-Rinehart
algebras with connection

Consider a Lie-Rinehart algebra
`

L,ρ, rr , ss,A
˘

over A. Let ∇ be a connection in L
along L. Let V be an A-module with connection ∇1 along L.

The following particular cases for connections ∇ in the A-module L are important
for the sequel:

Definition 6.1.1 Let
`

L,ρ, rr , ss,A
˘

a Lie-Rinehart algebra over A with connection ∇
in L along L. Let V be an A-module with connection ∇1 along L.

1. The connection ∇1 is called flat if and only if R1px,yqpvq “ 0 for all x,y P L and
v P V .

2. The connection ∇ is called CRCT if and only if ∇xpRq “ 0 and ∇xpTorq “ 0 for
all x P L. The abbreviation means constant curvature and constant torsion.

3. The connection is called FCT if and only if R“ 0 and ∇xpTorq “ 0 for all x P L.
The abbreviation means flat constant torsion.

The above notions all come from differential geometry: flatness of connections is
of course well-known, moreover CRCT connection are related to manifolds which
locally look like reductive homogeneous spaces, see e.g. [26], equipped with their
canonical invariant connections.

Here the particular case of constant curvature and vanishing torsion, the so-called
locally symmetric spaces, see e.g. [26] or [16] is very important. The case of a flat
constant torsion connection is typically given for any Lie group where the connection
is defined to be zero on all left invariant vector fields.

We mention some simple well-known properties of flat connections:

Proposition 6.1.2 Let
`

L,ρ, rr , ss,A
˘

a Lie-Rinehart algebra over A with connection ∇
in L and let V be an A-module equipped with a flat connection ∇1 along L.
Then the map H 1 (see (5.4.6)) vanishes whence ∇1ξ “ ∇

1
Zpξq for all ξ P P∇pL,Aq.

Moreover if the connection ∇ is flat then H “ 0, and the recursion equation (5.4.11)
simplifies to

Z
`

rx,ξs
˘

“ p∇xZqpξq´Tor
`

x,Zpξq
˘

. (6.1.1)

In that case the restriction r , s0 of the Lie bracket r , s∇ to the Lie-Rinehart ideal
P 0
∇pL,Aq coincides with the free Lie bracket whence it is a A-Lie-subalgebra of the free Lie

algebra LApLq.

Proof. This clearly follows by induction from eqs (5.4.10), (5.4.12), and (5.4.9).

Before we turn to the other cases of Definition 6.1.1 it is advantageous to consider
the following construction of a flat extension:
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The A-linear maps Z “ Z∇ and H (see (5.4.5) and (5.4.6) together give an A-
linear map of P∇pL,Aq into L‘HomApL,Lq. One may wonder whether there is a
Lie-Rinehart structure on this A-module extending in some way the Lie-Rinehart
structure on L: this is indeed the case as the following Theorem shows:

Theorem 6.1.3 Let
`

L,ρ, rr , ss,A
˘

be a Lie-Rinehart algebra over A and ∇ a connection
in L along L.

1. The following K-bilinear map rr , ssH on the A-module L‘HomApL,Lq and the
A-linear map ρH define the structure of a Lie-Rinehart algebra over A on L ‘
HomApL,Lq: for all x,y P L, a P A and φ,ψ PHomApL,Lq

““

px,φq,py,ψq
‰‰H :“

´

rrx,yss,Rpx,yq`∇xpψq´∇ypφq` rφ,ψs
¯

, (6.1.2)

ρHpx,φqpaq :“ ρxpaq. (6.1.3)

Here the bracket rφ,ψs denotes the commutator of A-linear maps. Moreover the
projection on the first factor is a morphism of Lie-Rinehart algebras over A.

2. The map Y : P∇pL,Aq Ñ L‘HomApL,Lq given by

Y pξq “
`

Zpξq,Hξ
˘

(6.1.4)

for all ξ P P∇pL,Aq is a morphism of Lie-Rinehart algebras.

3. The following map∇H is a flat connection on L‘HomApL,Lq along L‘HomApL,Lq
for all x,y P L and φ,ψ PHomApL,Lq:

∇Hpx,φqpy,ψq :“
´

∇xpyq`φpyq,∇xpψq` rφ,ψs
¯

(6.1.5)

whose torsion (and covariant derivative there of) is given by

TorH
`

px,φq,py,ψ
˘

“

´

Torpx,yq`φpyq´ψpxq,´Rpx,yq` rφ,ψs
¯

.

(6.1.6)
´

∇Hpx,φq
`

TorH
˘

¯

`

py,ψq,pz,χq
˘

“

´

`

∇xpTorq
˘

py,zq`φ
`

Torpy,zq
˘

´Tor
`

φpyq, z
˘

´ Tor
`

y,φpzq
˘

,´p∇xpRqqpy,zq

´ rφ,Rpy,zqs`R
`

φpyq, z
˘

`R
`

y,φpzq
˘

¯

(6.1.7)

for all px,φq,py,ψq,pzχq P L‘HomApL,Lq

Proof. 1.q The proof of the Jacobi identity of the bracket (6.1.2) is long, but straight-
forward and uses the two Bianchi identities (5.4.3) and (5.4.4), and the fact that the
ρH is an anchor morphism is not hard to see.
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2.q Y is clearly A-linear, intertwines anchor maps, and we compute for all ξ,ξ 1 P
P∇pL,Aq

Y
`

rξ,ξ 1s∇
˘

“

´

Z
`

rξ,ξ 1s∇
˘

q,Hrξ,ξ1s∇
¯

“

´

““

Zpξq,Zpξ 1q
‰‰

,∇rξ,ξ1s∇ ´∇Z
`

rξ,ξ1s∇
˘

¯

and

∇rξ,ξ1s∇ ´∇Z
`

rξ,ξ1s∇
˘ “

“

∇ξ ,∇ξ1
‰

´∇rrZpξq,Zpξ1qss “
“

Hξ `∇Zpξq,Hξ1 `∇Zpξ1q
‰

´∇rrZpξq,Zpξ1qss

“
“

Hξ ,Hξ1
‰

`∇Zpξq
`

Hξ1
˘

´∇Zpξ1q
`

Hξ
˘

`R
`

Zpξq,Zpξ 1q
˘

whence

Y
`

rξ,ξ 1s∇
˘

“
““`

Zpξq,Hξ
˘

,
`

Zpξ 1q,Hξ1
˘‰‰H

“
““

Y pξq,Y pξ 1q
‰‰H
. (6.1.8)

3.qNote that∇H
px,φq preserves theA-submodule L and theA-submodule HomApL,Lq

separately, and the latter is induced by the former. It suffices to compute van-
ishing curvature for the component ∇p1q of ∇H acting on L: for all x,y,z P L and
φ,ψ PHomApL,Lq
”

∇p1q
px,φq,∇

p1q
py,ψq

ı

pzq´∇p1q
rrpx,φq,py,ψqsspzq

“
“

∇x`φ,∇y `ψ
‰

pzq´∇rrx,ysspzq´Rpx,yqpzq´ p∇xpψqqpzq`
`

∇ypφq
˘

pzq´ rφ,ψspzq “ 0.

The computation for the torsion of ∇H and its covariant derivative is lengthy, but
straight-forward.

Remark 6.1.4 Note that the extended Lie bracket rr , ssH (6.1.2) is motivated by
a simple geometric construction: given a smooth manifold X, consider the vector
fields on its tangent bundle TX whose Lie bracket with the Euler field vanishes. In
the presence of a connection ∇ in the tangent bundle they can be written as sums of
horizontal lifts of vector fields x on X and those vertical vector fields φ on TX which
are linear along the fibres. Their Lie brackets correspond to (6.1.2) up to signs due
to the definition of the Lie bracket: the Lie bracket of ‘matrix vector fields’ is minus
the matrix vector field corresponding to the matrix commutator.

For the CRCT case we have the following statement.

Proposition 6.1.5 Let
`

L,ρ, rr , ss,A
˘

a Lie-Rinehart algebra over A with CRCT connec-
tion ∇ in L along L.

Then the maps Z and H (see (5.4.6)) are covariantly constant, i.e. ∇ypZq “ 0 and
`

∇ypHq
˘

ξ
“ 0 for all y P L and ξ P P∇pL,Aq.

The recursions for Z and H simplify in the following way for all x,z P L and ξ P
P∇pL,Aq: Zpxq “ x and Hx “ 0,
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Z
`

rx,ξs
˘

“ Hξpxq´Tor
`

x,Zpξq
˘

, (6.1.9)

Hrx,ξspzq “ R
`

x,Zpξq
˘

pzq. (6.1.10)

It follows that the A-Lie algebra Hol∇pLq is spanned by the values of the curvature
tensor.

Finally, the A-linear map Y , see equation (6.1.4), is also a morphism of the A-module
P∇pL,Aq “ LApLq, equipped with the free A-bilinear Lie bracket r , s, onto the A-module
g :“ L‘ Hol∇pLq equipped with the A-bilinear Lie bracket (for all x,y P L and φ,ψ P
Hol∇pLq)

“

px,φq,py,ψq
‰

g
:“

`

´Torpx,yq´φpyq`ψpxq,Rpx,yq´ rφ,ψs
˘

(6.1.11)

Proof. We prove the equations
`

∇ypZqqpξq “ 0 and
`

∇ypHq
˘

ξ
“ 0 by induction over

the tensor degree of ξ P P∇pL,Aq. We first compute the followig expressions for all
x,y,z P L and ξ in P∇pL,Aq in a lengthy, but straight-forward manner upon using the
equations (5.4.11) and (5.4.12):

`

∇ypZq
˘`

rx,ξs
˘

“
`

∇yxZ
˘

pξq´Tor
´

x,
`

∇ypZq
˘

pξq
¯

`
`

∇ypHq
˘

ξ
pxq´

`

∇ypTorq
˘`

x,Zpξq
˘

,
`

∇ypHq
˘

rx,ξs
pzq “

`

∇yxpHq
˘

ξ
pzq`R

´

x,
`

∇ypZq
˘

pξq
˘

¯

pzq´
`

∇yR
˘`

x,Zpξq
˘

pzq.

The equations
`

∇ypZqqpξq “ 0 and
`

∇ypHq
˘

ξ
“ 0 are obvious true for ξ of degree

1 since the restriction of Z to L is the identity map and the restriction of H (in its
index argument) to L vanishes. Suppose that both equations are satisfied for all ξ
of degree less or equal that n. For the induction step observe that the right hand
sides of the above equations for

`

∇ypZq
˘`

rx,ξs
˘

and
`

∇ypHq
˘

rx,ξs
pzq only depend

on ∇xpZqpξ 1q and p∇xpHqqξ1 for ξ 1 of degree ď n whence we can use induction and
the CRCT-property to conclude that the left hand sides vanish which proves the
induction step.

The two simplified recursion equations (6.1.9) and (6.1.10) are now obvious con-
sequences of (5.4.11) and (5.4.12). The statement about the infinitesimal holonomy
Lie algebra Hol∇pLq then becomes clear by eqn (5.4.23).

Finally, it is clear that the image of Y is equal to L‘Hol∇pLq (since Z is surjective
on L and H maps KerpZq surjectively on Hol∇pLq.

For all ξ,ξ 1 P P∇pL,Aq, if we utilize the equation (6.1.8) and that∇xpY q “
`

∇xpZq,∇xpHq
˘

“
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p0,0q
˘

we can obtain

Y
`

rξ,ξ 1s
˘

“ Y
`

rξ,ξ 1s∇
˘

´Y
`

∇ξpξ 1q
˘

`Y
`

∇ξ1pξq
˘

“
““

Y pξq,Y pξ 1q
‰‰H
´∇ξ

`

Y pξ 1q
˘

`∇ξ1 pY pξqq

“

´

““

Zpξq,Zpξ 1q
‰‰

´∇Zpξq
`

Zpξ 1q
˘

´Hξ
`

Zpξ 1q
˘

`∇Zpξ1q
`

Zpξq
˘

`Hξ1
`

Zpξq
˘

,
“

Hξ ,Hξ1
‰

`∇Zpξq
`

Hξ1
˘

´∇Zpξ1q
`

Hξ
˘

`R
`

Zpξq,Zpξ 1q
˘

´∇ξ
`

Hξ1
˘

`∇ξ1
`

Hξ
˘

¯

“

´

´Tor
`

Zpξq,Zpξ 1q
˘

´Hξ
`

Zpξ 1q
˘

`Hξ1
`

Zpξq
˘

,R
`

Zpξq,Zpξ 1q
˘

´
“

Hξ ,Hξ1
‰

¯

.

(6.1.12)

It remains to show that the antisymmetric A-bilinear bracket (6.1.11) satisfies
the Jacobi identity when restricted to the A-module L‘Hol∇pLq. Actually, this fact
follows from an iteration of the defining CRCT-equations∇xpTorq “ 0 and p∇xRq “ 0
implying for all v,w,x,y P L

Rpv,wq
`

Torpx,yq
˘

“ Tor
`

Rpv,wqpxq, y
˘

`Tor
`

x,Rpv,wqpyq
˘

rRpv,wq,Rpx,yqs “ R
`

Rpv,wqpxq, y
˘

`R
`

x,Rpv,wqpyq
˘

hence for x,y,z,v,w,v1,w1,v2,w2 P L and φ “ Rpv,wq,ψ “ Rpv1,w1q,χ “ Rpv2,w2q P
Hol∇pLq the Jacobi identity for r , sg follows the above derivational identities and the
Bianchi identities (5.4.3) and (5.4.4).

Remark 6.1.6 Note that this case and the reductively decomposed Lie algebra g is
well-known from the 1950’s, see the work by Konstant and Yamaguti 1, see [56], and
occurs for reductive homogeneous spaces, see for instance [26].

The following FCT case will be very important in the sequel and is an easy con-
sequence of the preceding Proposition 6.1.5:

Corollary 6.1.7 Let
`

L,ρ, rr , ss,A
˘

a Lie-Rinehart algebra over A with FCT connection
∇ in L along L.

Then the map H (see (5.4.6)) vanishes and Z is covariantly constant. It can be com-
puted explicitly for all x,x1, . . . ,xn P L for all integers ně 2: Zpxq “ x and

Z
´”

x1,
“

x2, . . . , rxn´1,xns ¨ ¨ ¨
‰

ı¯

“ p´1qn´1Tor
´

x1,Tor
`

x2, . . . ,Torpxn´1,xnq ¨ ¨ ¨
˘

¯

.

(6.1.13)
Moreover, the A-bilinear map´Torp , q is a Lie bracket on L, and the A-linear map Z is

a surjective morphism of A-Lie algebras from the A-Lie algebra LApLq (equipped with the
free Lie bracket r , s) to the A-Lie algebra

`

L,´Torp , q
˘

. It follows that the Lie-Rinehart

1. I thank S.Benayadi and F.Wagemann for referring me to Yamaguti’s work.
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ideal P 0
∇pL,Aq is not only an A-Lie-subalgebra, but an ideal with respect to the free Lie

bracket of the free Lie algebra LApLq.

Example 6.1.8 We have already come across two examples of Lie-Rinehart algebras
with FCT connections:

i.q Let
`

L,ρ, r , s,A
˘

an arbitrary Lie derivation algebra (for instance a Lie-Rinehart
algebra), and consider the induced Lie-Rinehart algebra AdL, more precisely
`

AbL,Ar , sρ,A
˘

, see eqn (4.1.2).
Then the K-bilinear map ∇0 on A d L which can be deduced from (5.1.4),
namely (for all a,a1 P A and x,y P L)

∇0
abx

`

a1b y
˘

:“
`

aρxpa
1q
˘

b y. (6.1.14)

is seen to be an FCT-connection on Ad L in a straight-forward way. We shall
call ∇0 the canonical connection in Ab L. The covariantly constant torsion of
this connection, Tor0, is given by

Tor0 “´Ar , s (6.1.15)

which is minus times the A-bilinear Lie bracket (4.1.3).

i.q Let pL,ρq be an anchored A-module and ∇ a connection in L along L. Con-
sider the path Lie algebroid P∇pL,Aq. Then the iterated covariant derivative
∇ defines an FCT connection in P∇pL,Aq along P∇pL,Aq: in fact this follows
immediately from eqs (5.3.1) and (5.3.2) from which we can deduce that the
covariantly constant torsion equals minus the free A-bilinear Lie bracket, for
all ξ,ξ 1 P P∇pL,Aq

Torpξ,ξ 1q “ ´rξ,ξ 1s. (6.1.16)

6.2 Multiplication of Universal Enveloping Algebras of
Lie-Rinehart algebras

In this Section we shall suppose that Q Ă K . Moreover we shall often write g for
the A-module LApLq Ă TApLq.

6.2.1 The Rinehart ideal J∇pL,Aq

Consider a Lie-Rinehart algebra
`

L,ρ, rr , ss,A
˘

over A. Let ∇ be a connection in L
along L. Recall the Rinehart bialgebra

`

TApLq,˛ “ ˛∇,1,∆sh,ε
˘

. Recall furthermore
the path Lie algebroid P∇pL,Aq (whose underlying A-module is the free Lie algebra
LApLq “: g), the maps Z (see equation (5.4.5)) and H (see equation (5.4.6)), and the
kernel of Z, P 0

∇pL,Aq (see equation (5.4.7)). Moreover the latter is a Lie-Rinehart
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ideal of P∇pL,Aq and hence a K-Lie subalgebra of
`

TApLq,˛
˘

which we had shown to
be isomorphic to the A-submodule

h :“ Lě2
A pLq “

8
à

n“2
LnApLq (6.2.1)

(by means of the A-linear map ζ ÞÑ ζ ´ Zpζq) equipped with the A-bilinear Lie
bracket

@ ζ,ζ1 P h : rζ,ζ1sp∇q “
“

ζ´Zpζq,ζ1´Zpζ1q
‰

`Hζpζ
1q´Hζ1pζq, (6.2.2)

(see eqn (5.4.9) and Theorem 5.4.4) iv.q. The Lie bracket (6.2.2) can be seen as a
deformation of the free Lie bracket restricted to h. Define the following bilinear
map for each ζ P h and b P TApLq:

ζB b :“Dζpbq :“
`

ζ´Zpζq
˘

˛ b “ ζb´Zpζqb`Hζpbq (6.2.3)

and the following K-submodule of TApLq

J∇pL,Aq :“ hBTApLq :“ SpantζB b | ζ P h, b P TApLqu. (6.2.4)

Proposition 6.2.1 With the above notations:

1. The map (6.2.3) is A-bilinear and defines an A-linear representation of the A-Lie
algebra

`

h, r , sp∇q
˘

on TApLq by coderivations of pTApLq,∆sh,εq.

2. The K-submodule J∇pL,Aq of TApLq is a Rinehart ideal of TApLq, hence an A-
submodule, a two-sided ideal of the K-algebra

`

TApLq,˛,1
˘

and a coideal of the
A-coalgebra

`

TApLq,∆sh,ε,1
˘

.

Proof. In the following let ζ,ζ1 P h and set η “ ζ ´Zpζq, η1 “ ζ1 ´Zpζ1q which are
two elements in KerpZq “ P 0

∇pL,Aq.
i.q: Equation (6.2.3) is well-defined since ∇η “ Hη “ Hζ , see eqn (5.4.6). It follows
that B is A-bilinear. We compute

∆sh
`

Dζpbq
˘

“ ∆shpζB bq “ ∆sh
``

η ˛ b
˘ p5.2.7q

“
ÿ

pbq

`

η ˛ bp1q
˘

bA b
p2q`

ÿ

pbq

bp1qbA
`

η ˛ bp2q
˘

“
`

Dζ bA id` idbADζ
˘`

∆shpbq
˘

whence each Dζ is an A-linear coderivation of
`

TApLq,∆sh,ε,1
˘

. Moreover since
rη,η1sp∇q “ rζ,ζ1sp∇q´Z

`

rζ,ζ1sp∇q
˘

, see Theorem 5.4.4, v.q and eqn (5.4.19) we get

“

Dζ ,Dζ1
‰

pbq “ η ˛ η1 ˛ b´ η1 ˛ η ˛ b “ rrη,η1ss∇ ˛ b “ rη,η1sp∇q ˛ b

“

´

`

rζ,ζ1sp∇q´Z
`

rζ,ζ1sp∇q
˘

¯

˛ b “Drζ,ζ1sp∇qpbq,
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showing that D gives a representation of the A-Lie algebra
`

h, r , sp∇q
˘

on the A-
module TApLq.
ii.q: Clearly, J∇pL,Aq is given by finite sums sums of elements of the form ζ B b
with ζ P h and b P TApLq, and thanks to the A-bilinearity of B it is an A-submodule
of TApLq. Moreover it is a sum of the images of the coderivations Dζ , ζ P h, and
therefore a coideal of the A-coalgebra

`

TApLq,∆sh,ε,1
˘

.
In order to prove that J∇pL,Aq is a two-sided ideal w.r.t. the multiplication ˛ we
proceed as follows: firstly, since ζBb “ η˛bwe get for all b1 P TApLq that pζBbq˛b1 “
η ˛ b ˛ b1 “ ζ B pb ˛ b1q whence J∇pL,Aq is a right ideal with respect to ˛. In order
to show that is a left ideal we use induction of the tensor degree of b1. Indeed for
b1 “ a1 (for some a P A) this is evident. Let x1 P L. Then rrx,ηss∇ P P 0

∇pL,Aq since
P 0
∇pL,Aq “ KerpZq is a Lie-Rinehart ideal. We can uniquely write it as rrx,ηss∇ “
ζ̂ ´ Zpζ̂q where ζ̂ P h is the canonical projection of rrx,ηss∇ onto h “ Lě2

A along L.
Therefore

x1 ˛ pζB bq “ x1 ˛ η ˛ b “ rrx1,ηss∇ ˛ b` η ˛ x1 ˛ b “ ζ̂B b` ζB px1 ˛ bq P J∇pL,Aq.

Suppose by induction that b1 ˛ pζ B bq is in J∇pL,Aq for all b1 of tensor degree ď n.
Let x1 P L, and to show the induction step we compute

px1b1q ˛ pζB bq “ x1 ˛ b1 ˛ pη ˛ bq´∇x1pb1q ˛ pζB bq

and both terms on the right hand side are in J∇pL,Aq by the case n “ 1 and by the
induction hypothesis (note that the tensor degree of ∇x1pb1q is ď n). This proves the
induction, whence J∇pL,Aq is a two-sided ideal to the K-algebra

`

TApLq,˛,1
˘

.

For later use we mention that the ‘coderivational’ action D of the A-Lie algebra
`

h, r , sp∇q
˘

on the coalgebra
`

TApLq,∆sh,ε
˘

canonically induces a module action (also
denoted byD) of its universal enveloping algebra UAphq on

`

TApLq,∆sh,ε
˘

in the usual
sense: let u “ ζ1 ¨ ¨ ¨ζn P UAphq (multiplication in UAphq) with n a strictly positive
integer, ζ1, . . . ,ζn P h, and b P TApLq then

DpubA bq :“Dupbq :“ uB b :“ ζ1B
`

ζ2B ¨ ¨ ¨ pζnB bq ¨ ¨ ¨
˘

, (6.2.5)

and upon using the A-Hopf algebra structure,
`

UAphq,µU ,1U ,∆U ,εU ,SU
˘

and the
fact that the primitive elements act as coderivations

∆shpuB bq “
ÿ

puq

ÿ

pbq

´

up1qB bp1q
¯

bA

´

up2qB bp2q
¯

(6.2.6)

whence
`

TApLq,∆sh,ε
˘

becomes a module coalgebra over the Hopf algebra
`

UAphq,µU ,1U ,∆U ,εU ,SU
˘

.
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We shall be interested in the quotient algebra TApLq{J∇pL,Aq (which –as we shall
see later– turns out to be isomorphic to the universal enveloping algebra U pL,Aq).
But we first need a more practicable description of the ideal J∇pL,Aq. In order to do
this we have to make a detour to symmetric algebras since they are much simpler
to handle: consider the symmetric algebra SApgq “ SApLApLqq. Thanks to the direct
decomposition g “ h‘ L as A-submodules of g we have the natural morphisms of
Hopf algebras

I : SApLq ãÑ SApgq and P : SApgq� SApLq (6.2.7)

induced by the injection L ãÑ g and by the projection g� L along h, respectively.

Note that P ˝ I “ idSApLq whence I ˝ P is an idempotent Hopf algebra map. The
kernel of P clearly is the ideal and coideal

IpL,Aq :“ A -Span
 

ζ ‚ β
ˇ

ˇ ζ P h, β P SApgq
(

(6.2.8)

and we thus have the direct decomposition

SApgq “ ˚I pSApgqq ‘ IpL,Aq. (6.2.9)

To make contact to TApLq, recall first the symmetrization map ω : SApLApLqq Ñ
TApLq given by ωp1Sq “ 1 and for all strictly positive integers n and ξ1, . . . ,ξn P
LApLq:

ω : ξ1 ‚ ¨ ¨ ¨ ‚ ξn ÞÑ
1
n!

ÿ

σPSn

ξσp1q ¨ ¨ ¨ξσpnq. (6.2.10)

It is well-known thatω defines anA-linear isomorphism of coalgebras from
`

SApgq,∆S ,εS ,1S
˘

to
`

TApLq,∆sh,ε,1
˘

, the inverse being the convolution exponential e‹̃e
p1q

, see the
convolution table (6.2.12) and the definition of the Eulerian idempotent ep1q, eqn
(A.6.5). We therefore have the injective morphism of C3-coalgebras Υ : SApLq Ñ
TApLq given by

Υ “ω ˝ I (6.2.11)

In order to simplify the combinatorial notations, for later use in the sequel, we
shall introduce the following list of convolutions (see Appendix A.3 for definitions)
on the Hom-spaces HomApC,Bq depending on the A-coalgebra C and the A-algebra
B and some of their actions on the Hom-spaces HomApC,V q where the A-module V
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is a left B-module which:

convolution algebra B B´module V coalgebra C
‹

`

TApLq,µ,1
˘

none
`

TApLq,∆sh,ε
˘

˚
`

TApLq,µ,1
˘

none
`

SApgq,∆S ,εS
˘

˜̊
`

SApgq,‚,1S
˘

none
`

SApgq,∆S ,εS
˘

‹̃
`

SApgq,‚,1S
˘

none
`

TApLq,∆sh,ε
˘

ˆ̊
`

UAphq,µU ,1U
˘

none
`

SApgq,∆S ,εS
˘

˚1
`

HomAph,hq,˝, idh
˘

none
`

SApgq,∆S ,εS
˘

˚2
`

HomAph,hq,˝, idh
˘

h
`

SApgq,∆S ,εS
˘

B
˚

`

UAphq,µU ,1U
˘

TApLq
`

SApgq,∆S ,εS
˘

B
‹

`

UAphq,µU ,1U
˘

TApLq
`

TApLq,∆sh,ε
˘

(6.2.12)

Recall that the first six convolutions are associative A-bilinear multiplications
on the corresponding Hom-spaces HomApC,Bq, and the last three describe the left
module actions of these associative A-algebras on the Hom spaces HomApC,V q.

Next, we shall need several projection maps followed by injections in the sequel:

kernel
pL : TApLq � L ãÑ TApLq A1‘8n“2 T

n
ApLq

q : SApgq � g ãÑ TApLq A1‘8n“2 S
n
Apgq

qL : SApgq � L ãÑ TApLq A1‘ h‘‘8n“2S
n
Apgq

qh : SApgq � h ãÑ TApLq A1‘L‘‘8n“2S
n
Apgq

rh : SApgq � h ãÑ UAphq A1‘L‘‘8n“2S
n
Apgq

(6.2.13)

where of course q “ qL` qh.
Recall first that the symmetrization map ω (see (A.6.21)) has the form of a con-

volution exponential, see eqn (A.6.22). We shall need another more refined isomor-
phism of coalgebras Θ∇ : SApgq Ñ TApLq for which we make the following ansatz:

Θ∇ :“ e ˆ̊ rh B˚ e˚qL . (6.2.14)

Before we prove that this is an isomorphism of C3-coalgebras recall the isomor-
phism of A-modules

HomA pSApgq,gq Ñ CoderA pSApgq,SApgqq : d ÞÑ d ˜̊idSApgq (6.2.15)

(see e.g. eqn (A.3.7)) with inverse DÑD ˜̊SSApgq by means of the antipode of SApgq.
Define

CoderhA pSApgq,SApgqq :“
 

d ˜̊idSApgq
ˇ

ˇ d PHomA pSApgq,hq
(

. (6.2.16)

We have the following
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Proposition 6.2.2 With the above notations we have the following:

1. The A-linear map Θ∇ is an isomorphism of C3-coalgebras.

2. The following map is an injective morphism of A-modules:

HomA pTApLq,hq Ñ CoderA pTApLq,TApLqq : χ ÞÑ χ
B
‹ idTApLq (6.2.17)

We shall call its image CoderhA pTApLq,TApLqq.

3. There is an explicit A-linear isomorphism E : HomA
`

SApgq,h
˘

ÑHomA pTApLq,hq
inducing the equalityΘ∇˝CoderhA pSApgq,SApgqq˝Θ

´1
∇ “ CoderhA pTApLq,TApLqq .

4. We have the isomorphisms

Θ∇ pIpL,Aqq “ J∇pL,Aq and Θ∇˝I “ Υ , hence TApLq “ Υ pSApLqq‘J∇pL,Aq.
(6.2.18)

5. The quotient Rinehart bialgebra TApLq{J∇pL,Aq is isomorphic to the universal en-
velopping algebra U pL,Aq.

Proof. i.q By the usual convolution exponential form, see equation (A.3.4), it follows
that Θh : SApgq Ñ UAphq and ΘL : SApgq Ñ TApLq given by

Θh :“ e ˆ̊ rh and ΘL :“ e˚qL (6.2.19)

are morphisms of C3-coalgebras over A. Upon using this fact, eqn (6.2.6) and the
cocommutativity of ∆S we compute

∆sh ˝Θ∇ “ ∆sh ˝D ˝
`

ΘhbAΘL
˘

˝∆S

“
`

DbAD
˘

˝
`

idUphqbA τ bA idTApLq
˘

˝
`

∆UphqbA ∆sh
˘

˝
`

ΘhbAΘL
˘

˝∆S

“
`

DbAD
˘

˝
`

ΘhbAΘLbAΘhbAΘL
˘

˝
`

∆S bA ∆S
˘

˝∆S

“
`

Θ∇bAΘ∇
˘

˝∆S

showing that Θ∇ is a morphism of coalgebras. By a similar computation it becomes
clear that Θ∇ intertwines counits and maps 1S to 1 whence it is a morphism of
C3-coalgebras. Since both coalgebras are cofree, see Appendix A.6.1, it suffices to
show that the restriction of Θ∇ to the primitive part g of SApgq induces a A-linear
isomorphism onto the primitive part of TApLq which is LApLq “ g: indeed, let ξ P g,
and decompose it ξ “ ζ` x with ζ P h and x P L. Since ∆Spξq “ ξ bA 1S ` 1S bA ξ,
since Θh projects away x and ΘL projects away ζ then

Θ∇pξq “ΘhpζqB 1` 1UphqBΘLpxq “ ζB 1` x “ ζ´Zpζq` x

and this is an isomorphism gÑ g according to eqn (5.4.19).
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ii.q Using the fact that χ takes values in the primitive part h of UAphq, eqn (6.2.6),
the fact that ∆sh is cocommutative and coassociative, and the fact that 1UphqB b “ b
for all b P TApLq we get

∆sh ˝
`

χ
B
‹ idTApLq

˘

“ ∆sh ˝D ˝
`

χbA idTApLq
˘

˝∆sh

“
`

DbAD
˘

˝
`

idUphqbA τ bA idTApLq
˘

˝
`

∆UphqbA ∆sh
˘

˝
`

χbA idTApLq
˘

˝∆sh

“
`

DbAD
˘

˝
`

χbA idTApLqbA 1UphqbA idTApLq
˘

˝
`

∆shbA idTApLq
˘

˝∆sh

`
`

DbAD
˘

˝
`

1UphqbA idTApLqbA χbA idTApLq
˘

˝
`

idTApLqbA ∆sh
˘

˝∆sh

“

´

`

χ
B
‹ idTApLq

˘

bA idTApLq` idTApLqbA
`

χ
B
‹ idTApLq

˘

¯

˝∆sh

whence χ
B
‹ idTApLq is always a coderivation of

`

TApLq,∆sh,ε
˘

.

Next, suppose that for some χ P HomA pTApLq,hq we have χ
B
‹ idTApLq “ 0. We

shall prove by induction over the tensor degree of b P TApLq that then χpbq “ 0 for
all b P TApLq implying χ “ 0 which proves the desired injectivity: indeed for b “ 1
we have

0“
´

χ
B
‹ idTApLq

¯

p1q “ χp1qB 1“ χp1q´Z
`

χp1q
˘

.

Since χp1q P h and Z
`

χp1q
˘

P L it follows that χp1q “ 0. Suppose that χpbq “
0 for all b P TApLq of tensor degree ď n. Then for all x P L the element xb is of
tensor degree n` 1, (and every such element is a linear combination of this kind of
elements), and we get

0“
´

χ
B
‹ idTApLq

¯

pxbq “
ÿ

pbq

χ
`

xbp1q
˘

B bp2q`
ÿ

pbq

χ
`

bp1q
˘

B
`

xbp2q
˘

.

By induction the second sum has to vanish since all the arguments bp1q of χ are of
tensor degree ď n, and in the first sum the only surviving term of the comultiplica-
tion ∆shpbq is bbA 1 yielding

0“
`

χpxbq
˘

B 1“ χpxbq´Z
`

χpxbq
˘

implying χpxbq “ 0 which proves the induction.

iii.q In order to get an idea, we take any d PHomA pSApgq,hq and compute (setting
d “ d ˜̊idSApgq and using the fact that it is a coderivation and eqn (A.3.6))

Θ∇ ˝ d “ D ˝
`

ΘhbAΘL
˘

˝∆S ˝ d

“ D ˝

´

`

Θh ˝ d
˘

bAΘL

¯

˝∆S `D ˝

´

ΘhbA
`

ΘL ˝ d
˘

˝∆S

Using the definition of ΘL in terms of the projection qL, see eqs (6.2.19), (6.2.13),
and (6.2.14) we see –thanks to the derivation property (A.3.6)– that the second term
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vanishes since the projection qL in ΘL kills the values of the map d. Next, we com-
pute the term Θh ˝ d: recall first the following well-known derivative of the exponen-
tial map: Let

`

B,‚,1B ,pFpnqBqnPZ
˘

be complete filtered associative unital A-algebra,
let z P Fp´1qB, and D : BÑ B a filtration preserving derivation, then –upon writing
ad‚z1 : z2 ÞÑ z1 ‚ z2´ z2 ‚ z1 for any z1, z2 P B– we have

D pe‚zq “

˜

ead‚z ´ idB
ad‚z

`

Dpzq
˘

¸

‚ e‚z. (6.2.20)

We get –using (A.3.6) and setting B “HomA
`

SApgq,UAphq
˘

, ‚“ ˆ̊

Θh ˝ d “ e ˆ̊ rh ˝ d “

˜

ead ˆ̊ rh ´ idB
ad ˆ̊ rh

`

rh ˝ d
˘

¸

ˆ̊ e ˆ̊ rh .

Observe now that rh ˝d “ d (where the values of d are seen as elements of UAphq).
Moreover, let ψ : SApgq Ñ h any A-linear map then for any β P SApgq thanks to the
cocommutativity of ∆S :
´

ad ˆ̊ rhpψq
¯

pβq “
ÿ

pβq

´

rhpβ
p1qqψpβp2qq´ψpβp2qqrhpβ

p1qq

¯

“
ÿ

pβq

“

rhpβ
p1qq,ψpβp2q

‰p∇q

“
ÿ

pβq

adp∇qrhpβp1qq

´

ψpβp2q
¯

“

´

adp∇qrh ˚
2 ψ

¯

pβq

where we have written adp∇q for the adjoint representation of the A-Lie algebra
`

h, r , sp∇q
˘

, i.e. adp∇qζ pζ1q “ rζ,ζ1sp∇q for any ζ,ζ1 P h and used the convolution ac-
tion ˚2, see the table (6.2.12). It follows that the resulting map again takes its values
in the primitive part h of UAphq, and using an easy induction we can finally write
(see the table (6.2.12)))

Θh ˝ d “

¨

˝

e˚
1adp∇qrh ´ idhεS

˚1adp∇qrh

˚2 d

˛

‚ˆ̊ e ˆ̊ rh “: Epdq ˆ̊ e ˆ̊ rh .

Clearly the aboveA-linear map E is an invertible endomorphism of HomA
`

SApgq,h
˘

because the zeroth order term of the series is the identity map and the higher order
terms lower the degree. It follows that

`

Θ∇ ˝ d
˘

pβq “

´

D ˝

´

`

Θh ˝ d
˘

bAΘL

¯

˝∆S

¯

pβq “
ÿ

pβq

´

`

Epdqpβp1qq
˘`

e ˆ̊ rhpβp2qq
˘

¯

B
`

e˚qLpβp3qq
˘

“
ÿ

pβq

`

Epdqpβp1qq
˘

B
´

`

e ˆ̊ rhpβp2qq
˘

B
`

e˚qLpβp3qq
˘

¯

“
ÿ

pβq

`

Epdqpβp1qq
˘

B
`

Θ∇pβ
p2qq

˘

.
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If we define the linear isomorphism E : HomA
`

SApgq,h
˘

ÑHomA
`

TApLq,h
˘

by

Epdq :“ Epdq ˝Θ´1
∇ “

¨

˝

e˚
1adp∇qrh ´ idhεS

˚1adp∇qrh

˚2 d

˛

‚˝Θ
´1
∇ (6.2.21)

we finally get

Θ∇ ˝ d ˝Θ
´1
∇ “

`

Epdq
˘ B
‹ idTApLq (6.2.22)

which proves the statement.
iv.q An arbitrary element of the ideal and coideal IpL,Aq is a linear combination

of elements of the form ζ‚β with β P SApgq and ζ P h. Observe that the map β ÞÑ ζ‚β
is a coderivation of the form ζεS ˜̊idSApgq “ ζεS . By part iii.qwe have for all β P SApgq
upon setting b “Θ∇pβq P TApLq:

Θ∇pζ‚βq “
`

Θ∇˝ζεS
˘

pβq “
´

`

EpζεSq
˘ B
‹ idTApLq

¯

`

Θ∇pβq
˘

“
ÿ

pbq

`

EpζεSq
˘

pbp1qqBbp2q

and the last term is a finite sum of terms of the form ζ1Bb1 with ζ1 P h and b1 P TApLq
since the maps EpζεSq takes its values in h. Hence Θ∇pζ ‚ βq is an element of the
coideal J∇pL,Aq proving the inclusion Θ∇

`

IpL,Aq
˘

Ă J∇pL,Aq.
On the other hand, an arbitry element of the coideal J∇pL,Aq is a finite sum of

elements of the form ζ B b with ζ P h and b P TApLq. Clearly, according to part ii.q

the coderivation b ÞÑ ζ B b is of the form pζεq
B
‹ idTApLq. Let dζ P HomA

`

SApgq,h
˘

the unique A-linear map such that Epdζq “ ζε. Then acccording to part iii.q we get
for all b P TApLq upon setting β “Θ´1

∇ pbq P SApgq:

ζB b “
`

pζεq
B
‹ idTApLq

˘

pbq “Θ∇
`

dζpβq
˘

“
ÿ

pβq

Θ∇
`

dζpb
p1qq ‚ βp2q

˘

and the right hand side is inΘ∇
`

IpL,Aq
˘

since the values of the map dζ are elements
of h. This proves the other inclusion Θ∇

`

IpL,Aq
˘

Ą J∇pL,Aq and the first equality
in (6.2.18).

Next, using the fact that I : SApLq Ñ SApgq is a morphism of C3-coalgebras and
eqn (A.3.5) we get

Θ∇ ˝ I “D ˝
`

ΘhbAΘL
˘

˝∆S ˝ I “D ˝
`

pΘh ˝ IqbA pΘL ˝ Iq
˘

˝∆SApLq.

We have (writing ˆ̊L for the convolution with algebra UApLq and coalgebra SApLq)

Θh ˝ I “ e
ˆ̊qh ˝ I “ e ˆ̊Lpqh˝Iq “ e ˆ̊L0 “ 1UAphqεSApLq “

`

1UAphqεS
˘

˝ I

and (writing ˚L for the convolution with algebra TApLq and coalgebra SApLq)

ΘL ˝ I “ e
˚qL ˝ I “ e˚LpqL˝Iq “ e˚Lpq˝Iq “ e˚q ˝ I

pA.6.22q
“ ω ˝ I,
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whence

Θ∇ ˝ i “ D ˝

´

``

1UAphqεS
˘

˝ i
˘

bA pω ˝ iq
¯

˝∆SApLq “D ˝

´

`

1UAphqεS
˘

bAω
¯

˝∆S ˝ i

“ ω ˝ i “ Υ

which shows the second part of statement (6.2.18).
Finally, the direct decomposition TApLq “ Υ

`

SApLq
˘

‘ J∇pL,Aq is a direct conse-
quence of the fact that Θ∇ is an isomorphism, the direct decomposition (6.2.9), and
the two preceding isomorphisms. v.q This follows at once from the second statement
of Proposition 4.3.2 upon noting that the Rinehart bialgebra

`

TApLq,˛,1,∆sh,ε
˘

is
isomorphic to U

`

P∇pL,Aq,A
˘

(see the last statement of Theorem ??), and that the
Rinehart ideal J∇pL,Aq is generated by the kernel of the surjective Lie-Rinehart al-
gebra morphism Z and is complemented by L according to iv.q.

There is the following Corollary which may be of interest:

Corollary 6.2.3 The following A-linear map is an isomorphism of left UAphq-modules:

Ξ : UAphqbA SApLq Ñ TApLq : ubA γ ÞÑ uB pΥ pγqq. (6.2.23)

6.2.2 The coderivation D∇

In order to describe the projectionΠ∇ : TApLq Ñ SApLq ãÑ TApLqmodulo the Rine-
hart ideal J∇pL,Aq a straight-forward description would be to use the inverse of the
isomorphism Θ∇, see eqn (6.2.14) and then use the ‘easy’ projection SApgq Ñ SApLq
along the ‘easy’ ideal IpL,Aq, followed by the symmetrization injection Υ : SApLq Ñ
TApLq. The problem is that the inverse of Θ∇ does not seem to be very explicit. We
have therefore chosen another description of J∇pL,Aq –which is the sum of the im-
ages of many coderivations, i.e. of the Dζ , ζ P h– in terms of the image of only one
coderivation D∇ which we describe in this Section. The fact that D∇ is a coderiva-
tion will allow us to use the ‘pull-through-formulas’ (6.2.22) to check certain prop-
erties on the ‘easier’ symmetric algebra SApgq.

The trivial case: rr , ss “ 0, ρ “ 0, ∇“ 0

We shall first treat the trivial case where Lie-Rinehart bracket, anchor map, and
connection are vanishing: here the maps H and the restriction of Z to h vanish,
whence the bracket r , sp∇q on h reduces to the free Lie bracket, and h is a Lie subal-
gebra (in fact a Lie ideal) of the free Lie algebra g “ LApLq equipped with its usual
bracket. The action B of h on TApLq is just left multiplication, i.e. ζB b “ ζb for all
ζ P h and b P TpLq. Define the well-known symmetrization map Π0 : TApLq Ñ TApLq
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defined for all integers ně 1 and x1, . . . ,xn P L by

Π0p1q “ 1, and Π0px1 ¨ ¨ ¨xnq :“
1
n!

ÿ

σPSn

xσp1q ¨ ¨ ¨xσpnq. (6.2.24)

which is involutive, i.e. Π0 ˝Π0 “Π0. In convolution notation this is equal to

Π0 “ e
‹pL (6.2.25)

see the tables (6.2.12) and (6.2.13) for the notation, whence Π0 is a morphism of
C3-coalgebras over A according to (A.3.4). Next define the coideal

J0pL,Aq “ A -Spantζb | ζ P h, b P TApLqu (6.2.26)

It is easily seen by direct inspection of the definitions and by elementary combina-
torics that J0pL,Aq is a two-sided ideal of the free algebra TApLq, and that defining
the complementary projection Q0 :“ idTApLq´Π0

KerpΠ0q “ J0pL,Aq “ ImpQ0q and ImpΠ0q “ Υ pSApLqq “ KerpQ0q. (6.2.27)

Define the two projections πL : g� L ãÑ g with kernel h and πh : g� h ãÑ g with
kernel L. Clearly, πL`πh “ idg.

Recall the ‘modified Dynkin idempotent’ ẽD , see eqn (A.6.17). We define the
following coderivation of

`

TApLq,∆sh,ε,1
˘

(where we have not explicitly written the
corestriction of ẽD to g):

D0 :“
`

πh ˝ ẽD
˘

‹ idTApLq. (6.2.28)

Note that in our trivial case the usual convolution ‹ is equal to
B
‹ whence D0 is a

coderivation. There is the following very simple formula forD0: using πh “ idg´πL,
the obvious identity πL ˝ ẽD “ pL, see the table (6.2.12), and the Von Waldenfels
formula (A.6.18) we get

D0 “ ẽD ‹ idTApLq´ pL ‹ idTApLq “ Deg ‹ S ‹ idTApLq´ pL ‹ idTApLq “ Deg´ pL ‹ idTApLq
(6.2.29)

since by definition the antipode S is the convolution inverse to the identity map.
This computation immediately gives us the explicit formula for all x,x1, . . . ,xn P L
where the integer n is ě 2:

D0p1q “ 0, D0pxq “ 0, D0px1 ¨ ¨ ¨xnq “
n
ÿ

r“2

rx1 ¨ ¨ ¨xr´1,xrsxr`1 ¨ ¨ ¨xn. (6.2.30)

For each n P N define the following A-linear map D̃pnq : TnApLq Ñ TnApLq by D̃p0q “ 0,
D̃p1q “ 0, and for each ně 2

D̃pnq “
1
n!

n´2
ÿ

k“0

pn´ k´ 1q!
´

p‹kL ‹ idTApLq

¯ˇ

ˇ

ˇ

TnApLq
´

1
n!

˜

n´2
ÿ

k“0

1
n´ k

¸

p‹nL |TnApLq (6.2.31)
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and let D̃ : TApLq Ñ TApLq be the direct sum of the D̃pnq, i.e. D̃|TnApLq “ D̃pnq for all
n P N.

Lemma 6.2.4 The coderivation D0 and the A-linear map D̃ have the following proper-
ties:

1. D0 preserves each submodule TnApLq, n P N.

2. Both D0 and D̃ vanish on Υ pSApLqq and preserve the ideal and coideal J0pL,Aq

3. The restriction of D0 to J0pL,Aq is invertible, and its inverse is equal to the restric-
tion of D̃ to J0pL,Aq:

@ b P J0pL,Aq : D0
`

D̃pbq
˘

“ b “ D̃
`

D0pbq
˘

. (6.2.32)

4. ImpD0q “ J0pL,Aq “ ImpD̃q and KerpD0q “ Υ pSApLqq “ KerpD̃q.

Proof. 1.q is obvious from eqn (6.2.30).
Before going on it is useful to show some preparatory combinatorial identities ‘in

convolutional disguise’: in this proof only, in order to avoid clumsy computations
we shall write p for pL, id for idTApLq, and idn for idTnApLq. We set E :“ p ‹ id, and for
each nonnegative integer k: Epkq :“ p‹k ‹ id (i.e. Ep0q :“ id, and of course Ep1q “ E).
Observe that E is a coderivation according to (A.3.7). It is not a derivation, but we
rather have –using ppbcq “ ppbqεpcq` εpbqppcq for all b,c P TApLq:

Epbcq “
ÿ

pbqpcq

p
´

bp1qcp1q
¯

bp2qcp2q “
ÿ

pbqpcq

´

ppbp1qqεpcp1qq` εpbp1qqppcp1qq
¯

bp2qcp2q

“
ÿ

pbq

ppbp1qqbp2qc`
ÿ

pcq

ppcp1qqbcp2q “ Epbqc` bEpcq`
ÿ

pcq

“

ppcp1qq,b
‰

cp2q.

(6.2.33)

Clearly, p ˝E “ p “ E ˝ p. Since E is a coderivation we get for all integers k ě 1

p‹k ˝E
pA.3.6q
“

k´1
ÿ

i“0

p‹i ‹ pp ˝Eq ‹ p‹k´1´i “ kp‹k . (6.2.34)

On the other hand we get –using (6.2.33)–
´

E ˝ p‹pk`1q
¯

pbq “
ÿ

pbq

E
´

p‹k
`

bp1q
˘

p
`

bp2q
˘

¯

p6.2.33q
“

ÿ

pbq

E
`

p‹k
`

bp1q
˘˘

p
`

bp2q
˘

`
ÿ

pbq

p‹k
`

bp1q
˘

p
`

bp2q
˘

`
ÿ

pbq

“

p
`

bp2q
˘

,p‹k
`

bp1q
˘‰

“

´

`

E ˝ p‹k
˘

‹ p` p‹k ‹ p` 0
¯

pbq
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which allows to show by induction over k the identity

E ˝ p‹k “ kp‹k
p6.2.34q
“ p‹k ˝E. (6.2.35)

Moreover, since E is a coderivation we get

Epkq ˝E “

´

p‹k ‹ id
¯

˝E
pA.3.6q
“ pp‹k ˝Eq ‹ id` p‹k ‹E “ kp‹k ‹ id` p‹pk`1q ‹ id

“ kEpkq`Epk`1q (6.2.36)

which allows to show by induction over all integer k ě 1 that

Epkq “ pE´pk´ 1qidq ˝ pE´pk´ 2qidq ˝ ¨ ¨ ¨ pE´ idq ˝E.

This proves in particular that all the maps Epkq, Eplq, and p‹m commute for arbi-
trary nonnegative integers k, l,m since each Epkq is a composition polynomial of E.
Moreover, eqn (6.2.35) shows that

Π0 ˝E “ p ‹ e
‹p “ E ˝Π0, hence Π0 ˝E

pkq “ p‹k ‹ e‹p “ Epkq ˝Π0 (6.2.37)

since
`

p‹k ‹ id
˘

˝Π0 “ p‹k ‹Π0 because Π0 is a morphism of C3-coalgebras and
p ˝Π0 “ p. Next, since Deg is a derivation and coderivation we get using Deg ˝ p “
p “ p ˝Deg

Deg ˝ p‹k “ kp‹k “ p‹k ˝Deg, hence Deg ˝Π0 “ p ‹ e
‹p “Π0 ˝Deg. (6.2.38)

To sum up, all the maps Epkq,p‹l ,Deg and Π0 commute and satisfy the preceding
identities.
ii.qWe compute

Π0 ˝D0 “Π0 ˝
`

Deg´E
˘ p6.2.37q,p6.2.38q

“
`

Deg´E
˘

˝Π0 “ p ‹ e
‹p´ p ‹ e‹p “ 0.

This shows that D0 vanishes on Υ pSApLqq and preserves J0pL,Aq because it com-
mutes with id´Π0.
Next we compute for fixed integer n ě 2 recalling that Π0 is a morphism of C3-
coalgebras and eqn (A.3.5) and p ˝Π0 “ p

D̃ ˝Π0 “
1
n!

n´2
ÿ

k“0

pn´ k´ 1q!
´

p‹k ‹ id
¯

˝Π0

ˇ

ˇ

ˇ

TnApLq
´

1
n!

˜

n´2
ÿ

k“0

1
n´ k

¸

p‹n ˝Π0|TnApLq

“
1
n!

n´2
ÿ

k“0

pn´ k´ 1q!
´

p‹k ‹Π0

¯ˇ

ˇ

ˇ

TnApLq
´

1
n!

˜

n´2
ÿ

k“0

1
n´ k

¸

p‹n|TnApLq

“
1
n!

n´2
ÿ

k“0

pn´ k´ 1q!

˜

p‹k ‹
p‹pn´kq

pn´ kq!

¸ˇ

ˇ

ˇ

ˇ

ˇ

TnApLq

´
1
n!

˜

n´2
ÿ

k“0

1
n´ k

¸

p‹n|TnApLq “ 0,
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and of course also Π0 ˝ D̃ “ 0 thanks to eqn (6.2.37). Therefore D̃ vanishes on
Υ pSApLqq and preserves J0pL,Aq because it commutes with the projectionQ0 “ id´
Π0.
iii.q From the preceding identities it is clear that the maps D0 and D̃ commute. For
fixed degree ně 2 we compute observing that Deg|TnApLq “ nidn:

D̃ ˝D0|TnApLq “ D̃ ˝
`

nid´E
˘

|TnApLq

“
n
n!

n´2
ÿ

k“0

pn´ k´ 1q! Epkq
ˇ

ˇ

ˇ

TnApLq
´
n
n!

˜

n´2
ÿ

k“0

1
n´ k

¸

p‹n|TnApLq

´
1
n!

n´2
ÿ

k“0

pn´ k´ 1q! Epkq ˝E
ˇ

ˇ

ˇ

TnApLq
`

1
n!

˜

n´2
ÿ

k“0

1
n´ k

¸

p‹n ˝E|TnApLq

p6.2.36qp6.2.34q
“

n´2
ÿ

k“0

pn´ k´ 1q!
pn´ 1q!

Epkq
ˇ

ˇ

ˇ

TnApLq
´

1
pn´ 1q!

˜

n´2
ÿ

k“0

1
n´ k

¸

p‹n|TnApLq

´
1
n!

n´2
ÿ

k“0

pn´ k´ 1q!
´

kEpkq`Epk`1q
¯
ˇ

ˇ

ˇ

TnApLq

`
1

pn´ 1q!

˜

n´2
ÿ

k“0

1
n´ k

¸

p‹n|TnApLq

“ idn`
n´2
ÿ

k“1

pn´ k´ 1q!
n!

pn´ kq Epkq
ˇ

ˇ

ˇ

TnApLq
´

n´2
ÿ

k“1

pn´ kq!
n!

Epkq
ˇ

ˇ

ˇ

TnApLq

´
1
n!
Epn´1q

ˇ

ˇ

ˇ

ˇ

TnApLq

“ idn´
1
n!
Epn´1q

ˇ

ˇ

ˇ

ˇ

TnApLq
“ idn´

1
n!
p‹n

ˇ

ˇ

ˇ

ˇ

TnApLq
“ Q0|TnApLq

because obviously Epn´1q
ˇ

ˇ

TnApLq
“ p‹pn´1q ‹ p

ˇ

ˇ

TnApLq
“ p‹n|TnApLq which proves the state-

ment.
iv.q This is an immediate consequence of the preceding statement.

The general case

Let us return to the case of a general Lie-Rinehart algebra
`

L,ρ, rr , ss,A
˘

over A,
and ∇ a connection in L along L. We can see this as a deformation of the trivial case,
for instance by introducing a parameter t P K and observing that

`

L,tρ, trr , ss,A, t∇
˘

is a Lie-Rinehart algebra over A for all values of t: this would be a sort of interpola-
tion from the trivial case (t “ 0) to the general case (t “ 1).
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6.2. Multiplication of Universal Enveloping Algebras of Lie-Rinehart algebras

In order to find a description of the ideal and coideal J∇pL,Aq as the image of a
single coderivation as in the trivial case we generalize eqn (6.2.28) in the obvious
way and define

D∇ :“
`

πh ˝ ẽD
˘ B
‹ idTApLq. (6.2.39)

We define the A-linear maps DZ and DH from TApLq to itself in the following way
@ b P TApLq:

DZpbq :“
ÿ

pbq

´

Z
`

pπh ˝ ẽDq
`

bp1q
˘˘

¯

bp2q, (6.2.40)

DHpbq :“
ÿ

pbq

HẽDpbp1qq
`

bp2q
˘

. (6.2.41)

We have the following

Theorem 6.2.5 With the above notations:

1. We have the decomposition

D∇ “D0´DZ `DH , (6.2.42)

andD∇,DZ andDH are coderivations of
`

TApLq,∆sh,ε
˘

. DZ andDH are decreasing
the tensor degree by at least one.

2. We have

Ker
`

D∇
˘

“ Υ
`

SApLq
˘

and Im
`

D∇
˘

“ J∇pL,Aq. (6.2.43)

Moreover, the restriction of D∇ to J0pL,Aq induces an A-linear isomorphism of the
A-submodule J0pL,Aq with the A-submodule J∇pL,Aq.

Proof. i.q The decomposition (6.2.42) follows directly from the definition of D∇
(6.2.41) and of B, see eqn (6.2.3). It is clear that D0 and D∇ are coderivations, see
Prop. 6.2.2, iiq. Moreover, DZ is of the form χ ‹ idTApLq with χpbq “ Z

`

pπh ˝ ẽDq
`

b
˘

P

LĂ g, hence a coderivation according to eqn (A.3.7). It follows thatDH is a coderiva-
tion. Furthermore, for given b P TApLq consider DZpbq and DHpbq: by the definitions
(6.2.40) and (6.2.41) the argument b is split into two parts bp1q and bp2q by the shuf-
fle comultiplication, and in the surviving terms bp1q is of degree at least 2 (since it
is projected to h) whence the degree of the ‘rest’ bp2q is decreased by at least two:
the result is decreased by at least two by DH (since Hζ preserves degrees) and by at
least one by DZ since the values of Z are of degree one. ii.qWe have

ẽD ˝Π0 “ pL,

103



6. Results evolving connections and Lie-Rinehart algebras

which can be shown by direct combinatorics from the definitions (6.2.24) and (??)
or using eqs (6.2.25), (A.6.18), (6.2.38), and S ˝ pL “´pL:

ẽD ˝Π0 “
`

Deg ‹ S
˘

˝Π0 “
`

Deg ˝Π0
˘

‹
`

S ˝Π0
˘

“ pL ‹ e
‹pL ‹ e´‹pL “ pL.

This implies πh˝ ẽD ˝Π0 “ πh˝pL “ 0, and sinceD∇ contains the combination πh˝ ẽD
it follows that D∇ vanishes on the image of Υ .
Let b P TApLq. Then

D∇pbq “
ÿ

pbq

´

pπh ˝ ẽDq
`

bp1q
˘

¯

B bp2q

which clearly is a finite linear combination of terms of the form ζBb1 with ζ P h and
b1 P TApLq showing that the image of D∇ is contained in J∇pL,Aq.
On the other hand, to show the other inclusion we take a detour to the symmetric
algebra SApgq:let c P J∇pL,Aq. Since D∇ obviously is a coderivation in the partic-
ular A-module CoderhA pTApLq,TApLqq, see Proposition 6.2.2 ii.q, the corresponding
coderivation Θ´1

∇ ˝D∇ ˝Θ∇ “ D̂ of SApgq is in the A-module CoderhA pSApgq,SApgqq,
see eqs (6.2.14), (6.2.16) and Proposition 6.2.2 iii.q for definitions, and hence of the
form

Θ
´1
∇ ˝D∇ ˝Θ∇ “ D̂ “ d̂ ˜̊idSApgq

where d̂ : SApgq Ñ h is the A-linear map defined by

d̂ “ E´1 pπh ˝ ẽDq “
˚1adp∇qrh

e˚
1adp∇qrh ´ idhεS

˚2 pπh ˝ ẽD ˝Θ∇q ,

see eqs (6.2.21) and (6.2.22) for definitions. We compute the zeroth and first Taylor
coefficients d̂0 and d̂1 of d̂: clearly d̂0p1Sq “ d̂p1Sq “ 0 since ẽDp1q “ 0, and for any
ξ P g of tensor degree n ě 1 which we write ξ “ ζ ` x with ζ P h and x P L, we get
–upon using Θ∇pξq “ ζ´Zpζq` x and ∆shpξq “ ξ bA 1` 1bA ξ–

d̂1pξq “ d̂pξq “ πh
´

ẽD
`

Θ∇pξq
˘

¯

pA.6.18q
“ πhpnζ´Zpζq` xq “ nζ “ nπhpξq.

Let D̂1 denote the coderivation d̂1 ˜̊idSApgq, and let ξ1, . . . ,ξm P g of tensor degree
n1, . . . ,nm, respectively. Then

D̂1pξ1 ‚ ¨ ¨ ¨ ‚ ξkq “
m
ÿ

i“1

ni
`

πhpξiq
˘

‚ ξ1 ‚ ¨ ¨ ¨ ‚ ξi´1 ‚ ξi`1 ‚ ¨ ¨ ¨ ‚ ξm

and D̂1 is also a derivation of the commutative untial algebra
`

SApgq,‚,1S
˘

and for
any x1, . . . ,xk P L and ζ1, . . . ,ζl P h of degree n1, . . . ,nl ě 2, respectively, we thus get

D̂1px1 ‚ ¨ ¨ ¨ ‚ xk ‚ ζ1 ‚ ¨ ¨ ¨ ‚ ζlq “ pn1` ¨¨ ¨`nlqx1 ‚ ¨ ¨ ¨ ‚ xk ‚ ζ1 ‚ ¨ ¨ ¨ ‚ ζl .
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6.2. Multiplication of Universal Enveloping Algebras of Lie-Rinehart algebras

For l ě 1 the sum pn1 ` ¨¨ ¨ ` nlq is strictly positive, hence invertible in Q, and this
shows that the restriction of D̂1 to the ideal and coideal IpL,Aq induces an invert-
ible map IpL,Aq Ñ IpL,Aq since it is spanned by elements x1 ‚ ¨ ¨ ¨ ‚ xk ‚ ζ1 ‚ ¨ ¨ ¨ ‚ ζl
with l ě 1. Since the higher order Taylor coefficients d̂k “ d̂|SApgq for k ě 2 lead to
coderivations d̂k ˜̊idSkApgq

which strictly lower the symmetric degree and leave the
ideal and coideal IpL,Aq invariant it follows that the restriction of the coderivation
D̂ to IpL,Aq induces an invertible map IpL,Aq Ñ IpL,Aq:

D̂|IpL,Aq : IpL,Aq Ñ IpL,Aq is invertible. (6.2.44)

Now let c P J∇pL,Aq. We apply the inverse Θ´1
∇ of the map Θ∇ : SApgq Ñ TApLq to

c and get an element β “ Θ
´1
∇ pcq of the ideal and coideal IpL,Aq of SApgq, see eqn

(6.2.8) and Proposition 6.2.2 iv.q eqn (6.2.18). By the preceding reasoning there is a
unique element β1 P IpL,Aq such that β “ D̂pβ1q and therefore

c “Θ∇
`

D̂pβ1q
˘

“D∇
`

Θ∇pβ
1q
˘

.

This shows that every c P J∇pL,Aq is in the image of D∇ which proves the second
statement of eqn (6.2.43).
Conjugating the coderivation D̂ of the preceding part withΘ∇ gives us the following
statement analogous to (6.2.44):

D∇|J∇pL,Aq : J∇pL,Aq Ñ J∇pL,Aq is invertible. (6.2.45)

Thanks to the direct decomposition TApLq “ J∇pL,Aq ‘ Υ pSApLqq, see eqn (6.2.18)
of Proposition 6.2.2, we can thus conclude that

KerpD∇q “ Υ pSApLqq ,

and this implies that the restriction of D∇ to J0pL,Aq is still surjective on J∇pL,Aq
and has vanishing kernel which proves the last statement of ii.q.

6.2.3 The projection modulo J∇pL,Aq and the multiplication formula

The description of the Rinehart ideal J∇pL,Aq in the last Section will allow us to
give a fairly explicit formula for the A-linear projection defined as the A-linear map

Π∇ : TApLq Ñ TApLq : b ÞÑ
"

b if b P Υ pSApLqq ,
0 if b P J∇pL,Aq.

(6.2.46)

which obviously is an idempotent map whose image is Υ pSApLqq and whose kernel
is the Rinehart ideal J∇pL,Aq. We are seeking a description of Π∇ as a sort of defor-
mation of the symmetrization projection Π0 which has the same image as Π∇, but the
Rinheart ideal J0pL,Aq as its kernel.
Inspired by homological perturbation theory we have come to the following
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Theorem 6.2.6 Let
`

L,ρ, rr , ss,A
˘

a Lie-Rinehart algebra over A, and let ∇ be a connec-
tion in the A-module L along L. With the above conventions and notations, the projection
Π∇ : TApLq Ñ TApLq, see eqn (6.2.46), has the following properties:

1. Π∇ is morphism of C3-coalgebras over A.

2. There is the following explicit formula for Π∇ in terms of the maps Z, H , and D̃:

Π∇ “Π0 ˝

8
ÿ

r“0

p´1qr
`

p´DZ `DHq ˝ D̃
˘˝r
“Π0 ˝

`

idTApLq`p´DZ `DHq ˝ D̃
˘´1

(6.2.47)

Proof. i.q We have to compare the two A-linear maps ∆sh ˝Π∇ and
`

Π∇ bA Π∇
˘

˝

∆sh. Since the symmetrization embedding Υ : SApLq Ñ TApLq is a morphism of C3-
coalgebras over A we get for all γ P SApLq

∆sh

´

Π∇
`

Υ pγq
˘

¯

“ ∆sh
`

Υ pγq
˘

“
ÿ

pγq

Υ
`

γp1q
˘

bA Υ
`

γp2q
˘

“
ÿ

pγq

Π∇
`

Υ
`

γp1q
˘˘

bAΠ∇
`

Υ
`

γp2q
˘˘

“
`

Π∇bAΠ∇
˘

´

∆sh
`

Υ pγq
˘

¯

,

and for all c P J∇pL,Aq we have –since J∇pL,Aq is a coideal:

∆sh
`

Π∇pcq
˘

“ ∆shp0q “ 0 and
`

Π∇bAΠ∇
˘`

∆shpcq
˘

“
ÿ

pcq

Π∇
`

cp1q
˘

bAΠ∇
`

cp2q
˘

“ 0

because in the sum
ř

pcqpc
p1q bA pc

p2q either cp1q or cp2q can be chosen to be in the
coidealJ∇pL,Aq “ KerpΠ∇q. HenceΠ∇ is a morphism ofC3-coalgebras sinceJ∇pL,Aq
is in the kernel of ε.
iiq. First of all the infinite series on the right hand side of eqn (6.2.47) is well-defined
since the maps DZ and DH strictly decrease the tensor degree. We have to check the
right hand side of eqn (6.2.47) on elements Υ pγq, γ P SApLq and on elements c of
the coideal J∇pL,Aq. Since D̃ ˝ Υ “ 0, see statement ii.q of Lemma 6.2.4, it follows
that

˜

Π0 ˝

8
ÿ

r“0

p´1qr
`

p´DZ `DHq ˝ D̃
˘˝r

¸

`

Υ pγq
˘

“Π0
`

Υ pγq
˘

“ Υ pγq.

Since D∇ maps J0pL,Aq to J∇pL,Aq and D̃ induces a bijection of J0pL,Aq being
the inverse of the restriction of D0 to J0pL,Aq, see eqn (6.2.43) and eqn (6.2.32)
in statement iii.q of Lemma 6.2.4, we have that for any c P J∇pL,Aq there exists a
c1 P J0pL,Aq such that

c “D∇
`

D̃pc1q
˘

“ pD0´DZ `DHq
`

D̃pc1q
˘

“
`

idTApLq`p´DZ `DHq ˝ D̃
˘

pc1q,
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hence for each nonnegative integer r

`

p´DZ `DHq ˝ D̃
˘˝r
pcq “

`

p´DZ `DHq ˝ D̃
˘˝r
pc1q`

`

p´DZ `DHq ˝ D̃
˘˝pr`1q

pc1q

implying that only the term r “ 0 survives in the alternating sum on the right hand
side of eqn (6.2.47) giving

˜

Π0 ˝

8
ÿ

r“0

p´1qr
`

p´DZ `DHq ˝ D̃
˘˝r

¸

`

c
˘

“Π0pc
1q “ 0

showing that formula (6.2.47) is correct.

We shall now come to an ‘explicit description’ of the multiplication ˛ in the
universal enveloping algebra U pL,Aq of the Lie-Rinehart algebra

`

L,ρ, rr , ss,A
˘

by
means of a connection ∇ in L along L: we have seen that the universal envelop-
ing algebra is isomorphic as a Rinehart bialgebra to the quotient TApLq{J∇pL,Aq,
see Proposition 6.2.2, v.q. Let P0 : TApLq Ñ SApLq denote the usual canonical Hopf
algebra morphism given by (for all positive integers n and x1, . . . ,xn P L)

P0p1q “ 1SApLq and P0px1 ¨ ¨ ¨xnq “ x1 ‚ ¨ ¨ ¨ ‚ xn. (6.2.48)

Note that

P0 ˝Υ “ idSApLq and Π0 “ Υ ˝ P0, hence P0 ˝Π0 “ P0. (6.2.49)

We define the projection P∇ : TApLq Ñ SApLq by

P∇ :“ P0 ˝

8
ÿ

r“0

`

p´DZ `DHq ˝ D̃
˘˝r
“ P0 ˝Π∇ (6.2.50)

and a K-bilinear multiplication ˛ on SApLq for all γ,γ 1 P SApLq

γ ˛γ 1 :“ P∇
`

Υ pγq ˛Υ pγ 1q
˘

“ (6.2.51)

“

˜

P0 ˝

8
ÿ

r“0

`

p´DZ `DHq ˝ D̃
˘˝r

¸

¨

˝

ÿ

pγq

Υ
`

γp1q
˘

bA ∇Υ pγp2qq
`

Υ pγ 1q
˘

˛

‚.

As an A-module the quotient TApLq{J∇pL,Aq is isomorphic to the symmetric algebra
SApLq. We have the following

Theorem 6.2.7 Let
`

L,ρ, rr , ss,A
˘

a Lie-Rinehart algebra over A, and let ∇ be a connec-
tion in the A-module L along L. With the above conventions and notations we have:
The quintuple

`

SApLq,˛,1SApLq,∆SApLq,εSApLq
˘

is a Rinehart bialgebra over A|K which is
isomorphic –as a Rinehart bialgebra– to the universal enveloping algebra U pA,Lq of L.
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Proof. Note first that Υ ˝ P∇ “Π∇. Moreover

Υ ˝ P∇ ˝Υ “Π∇ ˝Υ “ Υ , hence P∇ ˝Υ “ idSApLq

according to the definition (6.2.46) of Π∇. It follows that P∇ is surjective and that
the kernel of P∇ is equal to the Rinehart ideal J∇pL,Aq. Next the equation P∇ “
P0 ˝Π∇, see eqn (6.2.50), shows that P∇ is a morphism of C3-coalgebras over A from
`

TApLq,∆sh,ε,1
˘

to
`

SApLq,∆SApLq,εSApLq,1SApLq
˘

because P0 and Π∇ are morphisms
of C3-coalgebras over A, see the first statement of Theorem 6.2.6. In particular we
have P∇pa1q “ a1SApLq for all a P Awhence P∇ preserves unit element and intertwines
the injections of A. The natural injection AÑ SApLq is an algebra morphism for ˛

since Υ paq ˛ Υ pa1q “ Υ paa1q, and the map p´DZ `DHq ˝ D̃ clearly vanishes on the
image of Υ . Next since for any b P TApLq the difference b´Υ

`

P∇pbq
˘

is annihilated
by P∇, hence contained in the Rinehart ideal J∇pL,Aq, it follows from the definition
(6.2.51) of the multiplication ˛ that for all b,b1 P TApLq

P∇pb ˛ b
1q “ P∇

´

`

Υ
`

P∇pbq
˘˘

˛
`

Υ
`

P∇pb
1q
˘˘

¯

“
`

P∇pbq
˘

˛
`

P∇pb
1q
˘

proving that P∇ is a morphism of unital K-algebras and showing the associativity of
˛. It therefore is a morphism of unital associative K-algebras over A. This implies
that P∇ maps TApLqˆATApLq onto SApLqˆASApLq whence properties (4.3.4) become
clear for

`

SApLq,˛,1SApLq,∆SApLq,εSApLq
˘

which thus is a Rinehart bialgebra over A|K ,
and P∇ is a morphism of Rinehart bialgebras. Since P∇ vanishes on the Rinehart ideal
J∇pL,Aq and since P∇ ˝ Υ “ idSApLq its follows that P∇ descends to an isomorphism
of Rinehart bialgebras TApLq{J∇pL,Aq Ñ SApLq. It had been shown before that the
quotient TApLq{J∇pL,Aq is isomorphic to the universal enveloping algebra U pL,Aq,
see Propostion 6.2.2, v.q. This proves the Theorem.
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A. Some basic topics

A.1 Adjunction of functors (Category theory)

The aim of this part of the appendix is to fix the notation in which we follow
almost exclusively Mac Lane’s book [32, p.79,Chap.IV].

The following definition is important for understand adjunctions.

Definition A.1.1 Given two categories C, D, and functors F : C Ñ D, G : D Ñ C,
hence a diagram

C
F

ÝÝÝÝÑÐÝÝÝÝ
G

D

with a natural isomorphism

ϕc,d : HomD
`

Fpcq,d
˘

ÑHomC
`

c,Gpdq
˘

for any object c in C and any object d in D is called an adjunction of functors, with
F the left adjoint functor of G (or G the right adjoint functor of F), see e. g. [22], and
the adjugant ϕc,d .

The importance is that, left adjoint functors (and right adjoint functors) to a given
functor are unique up to natural isomorphism if they exist.

Moreover, with any adjunction there are two important natural morphisms, the
unit of the adjunction, sometimes called η : IC

¨
ÝÑ GF and the counit, sometimes

written as ε : FG ¨
ÝÑ ID, where ηc “ ϕc,FpcqpidFpcqq and εd “ ϕ

´1
Gpdq,dpidGpdqq.

Furthermore, for each object c in C the pair
`

Fpcq,ηc is universal to G. In this
thesis, we mostly deal with the situation where G is some ‘forgetful’ functor, and
F creates ‘free objects’. We shall often denote by χ ÞÑ χ̄ the inverse of the adju-
gant, ϕ´1

c,d which describes the ‘induced map’ of the ‘simpler map’ χ. The adjugant
itself, ϕc,d , is often someting like ‘restriction to generators’. The unit is ‘insertion
of generators’ and the counit plays the rôle of some ‘natural presentation by a free
object’.

A.2 Basic algebra

In this appendix we will suppose that K is always a fixed commutative associative
unital ring. Recall thatK “ t0u iff 1“ 0. We shall frequently assume thatK contains
the field of all rational numbers Q as a unital subring, and we shall indicate it at
every instant when it is really needed. All modules are considered over K , and
the symbol b is short for bK . In view of Schauenburg’s Strengesatz (see [47, p.264,
Cor.4.4] we can, but shall not always assume that it is associative.

Moreover, let A be a commutative associative unital K-algebra in the sense that
ι : K Ñ A is a (not necessarily injective) morphism of unital commutative associative
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rings. Its unit will sometimes be denoted by 1A and identified with the unit 1 of K .
Recall that any associative commutative unital ring A can naturally be viewed as an
algebra over the ring of all integers.

In several of the following Sections which are not dealing with the relative pA,Kq-
situation we shall use the fixed commutative associative unital ring K which may
play the rôle of A or of K . Then all modules will be over K and b is short for bK.

A.2.1 A-Modules and K-Modules

Let KMod and AMod denote the categories of all K-modules and A-modules,
respectively. Recall the well-known restriction functor Res : AMod Ñ KMod which
considers A-modules as K-modules. It has a left adjoint, the induction functor Ab,
which transforms everyK-module E in the tensor productAbE which thus becomes
a left A-module in a natural way and maps each K-linear map φ to the A-linear map
idAbφ:

KMod
Ab

ÝÝÝÝÝÝÝÑÐÝÝÝÝÝÝÝ
Res

AMod

The induced module Ab E is also called the relatively free A-module generated by
the K-module E, see also [32, p.196]. Definition: In an A-module isomorphic to an
A-module AbE is called a relatively free module. The notation is a generalization of
a free A-module over a set S where A is an associative commutative unital ring: A is
an algebra over K “ Z in a natural way, and it is easy to see that the free A-module
generated by S is isomorphic to the relatively free module AbZ pZSq for the case
K “ Z where ZS is the free Z-module generated by S.

Note that the unit of the adjunction IKmod
¨
ÝÑ RespAb q is given by the natural

K-linear map EÑ AbE given by x ÞÑ 1AbK x, for each element x in the K-module
E whereas the counit of the adjunction, pAb qRes ¨

ÝÑ IAmod, is just the module
multiplication (we sloppily write W for RespW q)

µW : AbW ÑW : abw ÞÑ µW pabwq “ aw (A.2.1)

for any A-module W , a P A and w P W which is always surjective. Quite often
we shall use the kernel of µW , denoted by hpW,Aq Ă AbW : from the identities
abw “ abw´ 1bpawq` 1bpawq and µwp1bwq “ w we can infer

hpW,Aq “

#

N
ÿ

i“1

`

pa1iaiqbwi ´ a
1
i bpaiwiq

˘

ˇ

ˇ

ˇ

ˇ

ˇ

N P Nzt0u, a1i , ai P A, wi PW @ i P N, 1ď i ďN

+

.

(A.2.2)
Note also that the naturality of µ entails that for any A-linear map Φ : W Ñ W 1

the A-linear map idAbφ : AbW Ñ AbW 1 maps kernels to kernels, hence

pidAbφq
`

hpW,Aq
˘

Ă hpW 1,Aq. (A.2.3)
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Furthermore, recall the notion of a relatively projective A-module: here any com-
mutative diagram (where f : P Ñ N is A-linear, π : M Ñ N is A-linear and surjec-
tive, and s :MÐN is K-linear such that π ˝ s “ idN )

P
Œ

M Õ N Ñ t0u

can be completed to
the commutative diagram

P
Ó Œ

M Ñ N Ñ t0u
(A.2.4)

where f̂ : P ÑM is A-linear. Obviously, any projective A-module is relatively pro-
jective (the converse statement is obviously true in the important particular case
where K is a field). The following Lemma is no doubt well-known and of some
practical use:

Lemma A.2.1 An A-module W is relatively projective if and only if there is a section,
i.e. an A-linear map σW “ σ : W Ñ AbW such that µW ˝ σW “ idW . In that case we
have

AbW “ σW pW q‘ hpW,Aq. (A.2.5)

Indeed, if W is relatively projective, then the particular case P “ W “ N , M “

AbW , W ÑW the identity map, π “ µW , and spwq “ 1bw for all w PW of the left
diagram of (A.2.4) shows the existence of σ . Conversely, if a section σP : P Ñ Ab P
exists, and if we are given the diagram on the left of (A.2.4), then this diagam can be
tensored by A over K : in the resulting commutative diagram the map idAbπ is still
surjective (since Ab is a right exact functor), and idAb s is now A-linear, whence
the A-linear map F̂ “ pidAb sq ˝ pidAb f q : Ab P Ñ AbM completes the tensored
diagram. It is not hard to see that f̂ “ µP ˝F̂˝σP then completes the original diagram
whence P is relatively projective.

Actually, each relatively free A-module Ab E is relatively projective (choose the
section σ0 : ab x ÞÑ abp1Ab xq), and Lemma A.2.1 shows that every relatively pro-
jective A-module is isomorphic to a direct summand of a relatively free A-module.

Conversely, any direct summand W of a relatively free A-module F is relatively
projective where a section σW is given by the composition pidAbπW q ˝ σ0 ˝ iW with
the obvious inclusion iW :W Ñ F and projection πW : FÑW .

Recall that both categories Amod and Kmod are well-known to be closed symmet-
ric monoidal categories, see e.g. [32, p.255], by means of the corresponding tensor
products bA over A and b over K . The restriction functor Res (which we abbre-
viate by G in this paragraph) is known to be symmetric monoidal, the morphism
G0 : K Ñ GpAq being k ÞÑ k1A and the natural morphism G2 : bpG ˆ Gq ¨

Ñ GbA
(see [32, p.255, eqn (1)] for definitions) being the canonical K-linear morphism
G2 V ,W “: πV ,W : GpV q bGpW q Ñ GpV bAW q induced by the biadditive middle-K-
associative map pv,wq ÞÑ vbAw for any A-modules V ,W and any v P V and w PW .
The kernel of πV ,W is given by the K-submodule KpV ,W q Ă GpV q bGpW q defined
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by

KerpπV ,W q “:KpV ,W q :“ Kspantpaxqb y´ xbpayq | x P V ,y PW,and a P Au.
(A.2.6)

Indeed, it is clear that KpV ,W q is contained in the kernel of πV ,W thus πV ,W
passes to the quotient to define a K-linear map

`

GpV qbKGpW q
˘

{KpV ,W q Ñ GpVbA
W q. On the other hand, the map V ˆW Ñ

`

GpV q bK GpW q
˘

{KpV ,W q sending the
pair px,yq to pxbK yq modulo KpV ,W q is clearly biadditive and middle-associative,
hence -by the universal property of the tensor product bA- defines a unique map of
K-modules GpV q bA GpW q Ñ

`

GpV bK W q
˘

{KpV ,W q, and it is a routine check that
the two preceding K-linear maps are inverses to each other. Both GpV q bA GpW q
and its K-submodule KpV ,W q are A-A-bimodules in a natural way, and the A-A-
bimodule structure on the quotient pV bK W q{KpV ,W q is automatically symmetric
and reduces to a left (or right) A-module structure. Hence we shall often use the
map πV ,W (in more sloppy notation omitting the restriction functor)

πV ,W : V bW Ñ V bAW – pV bW q{KpV ,W q (A.2.7)

to parametrize the tensor product over A, V bAW , by the ‘easier’ tensor product
over K , V bW .

Next, letA and B be associative algebras over A. Then bothAbB andAbAB are
associative algebras over K in a natural way, and it is straight-forward to check that
the K-linear map πA,B :AbBÑAbA B is a morphism of associative algebras over
K .

A.3 Coalgebras

In this Section we will utilize as standard reference the Sweedler’s book [49] in
which K mostly is a field. For more general rings we recommend the Appendix of
[39] and [8].

Recall that a coassociative counitary coaugmented coalgebra pC,∆,ε,1q over K con-
sists of a K-moduleC, K-linear maps∆ : CÑ CbC (comultiplication) and ε : CÑK
(counit), and an element 1 P C satisfying the usual identities p∆b idCq ˝∆“ pidC b
∆q ˝∆, pεb idCq ˝∆ “ idC “ pidC b εq ˝∆, εp1q “ 1, and ∆p1q “ 1b 1. We refer to
them as C3-coalgebras.

As usual, we use Sweedler’s notation ∆pcq “
ř

pcq c
p1qb cp2q where the sum is finite,

is in general not unique (and does not have to be) and the constituents symbolized
by cp1q and cp2q are in C. We have the direct decomposition C “ K1‘ C` where
C` denotes the kernel of the counit. Morphisms of this category of coalgebras are
K-linear maps intertwining comultiplications, counits and coaugmentations in the
appropriate way. We shall sometimes call this category C3-CoalgK.
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Recall that a coderivation along a coalgebra morphism φ : CÑ C1 is a K-linear map
D : C Ñ C1 satisfying ∆1 ˝D “ pD bφ`φbDq ˝∆. Note that for any coderivation
ε1 ˝D “ 0, but we do NOT necessarily have and demand that Dp1q “ 0. We shall
speak of coderivations in the particular case C “ C1 and φ“ idC .

Recall that a coideal I Ă C is a K-submodule such that I Ă C` and ∆pIq Ă ImpI b
Cq` ImpCb Iq. It follows that on the factor module C{I there exists a well-defined
comultiplication, counit and coaugmentation making the canonical projection π :
CÑ C{I a morphism of coalgebras. Conversely, kernels of surjective (!) morphisms
of coalgebras of this category are always coideals.

Moreover, images of coderivations are always coideals. Recall that the primitive
part of C, PrimpCq Ă C is the K-submodule of all c P C such that ∆pcq “ cb1`1b c.

Recall that every C3-coalgebra C over K is equipped with an (ascending) filtration
´

Q1
pnqC

¯

nPZ
where Q1

pnqC :“ t0u whenever nď´1, Q1
p0qC “K1, and

Q1pn`1qC :“

#

c P C

ˇ

ˇ

ˇ

ˇ

ˇ

∆pcq´ cb 1´ 1b c P K1b 1`
n
ÿ

r“1

Im
´

Q1prqCbQ
1
pn`1´rqC

¯

+

(A.3.1)
Comultiplication and counit are clearly filtration preserving. The C3-coalgebra

is called connected iff this filtration is exhaustive, i.e.
Ť

nPZQ
1
pnqC “ C, see [39] for

a similar definition. This filtration is related to the well-known coradical filtration
in case K is a field, see [49, p.185-191]). Returning to the case of a general ring K,
note that every morphism of C3-coalgebras preserves the above filtrations (A.3.1).
In particular, it is easy to see that every homomorphic image of a connected C3-
coalgebra is again connected.

Next a very important tool is convolution: for an arbitraryC3-coalgebra
`

C,∆,ε,1C
˘

over K and an arbitrary associative unital algebra pB,µB,1Bq over K let ‹ denote
the following K-bilinear operation on the Hom-space HomKpC,Bq: for any ϕ,ϕ1 P
HomKpC,Bq

ϕ ‹ϕ1 “ µB ˝
`

ϕbϕ1
˘

˝∆C , or @ c :
`

ϕ ‹ϕ1
˘

pcq “
ÿ

pcq

ϕpcp1qqϕ1pcp2qq. (A.3.2)

It is well-known that the convolution multiplication ‹ equips the Hom-space
HomKpC,Bq with an associative multiplication with unit 1Bε. Moreover, in case
pC,∆,ε,1Cq is connected and if the algebra pB,µB,1Bq is equipped with the trivial
filtration defined by FnB “ t0u if n ď ´1, and FnB “ B if n ě 0, then the Hom-space
HomKpC,Bq equipped with its canonical filtration and convolution is a complete
filtered associative unital algebra over K.

Note that a K-linear map ϕ : C Ñ B is strictly filtration decreasing if and only
if ϕp1Cq “ 0; and for those maps any convolution power series

ř8
r“0αrϕ

‹r , αr P K,
automatically converges to a well-defined K-linear map CÑ B.
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Consider now a bialgebra
`

B,µB,1B,∆B,εB
˘

over K: there are both the structure
of an asscociative unital algebra and a C3-coalgebra such that µB : Bb B Ñ B is a
morphism of counital coalgebras. The following important relation appears in an
article by J.Helmstetter [17]: there is the following explicit natural bijection (where
C is a connected cocommutative)

HomK
`

C`,PrimpBq
˘

ÑHomC3-CoalgK
pC,Bq (A.3.3)

given by

ϕ ÞÑ e˚ϕ with the inverse Φ ÞÑ ln˚pΦq :“
8
ÿ

r“0

p´1qr

r ` 1
pΦ ´ 1BεCq

˚pr`1q. (A.3.4)

Note further that for any morphism ofC3-coalgebrasΨ :
`

Ĉ,∆Ĉ ,εĈ ,1Ĉ
˘

Ñ
`

C,∆C ,εC ,1C
˘

right composition is a morphism of convolution algebras
`

HomApC,Bq,˚
˘

Ñ
`

HomApĈ,Bq, ˆ̊
˘

,
i.e. for any ϕ,ϕ1 PHomApC,Bq

pϕ ˚ϕ1q ˝Ψ “ pϕ ˝Ψ q ˆ̊pϕ1 ˝Ψ q. (A.3.5)

Similarly left composition with morphisms of unital associative algebras are also
morphism of convolution algebras. Likewise, for any coderivation D : ĈÑ C along
Ψ right composition with D is a derivation of convolution algebras, i.e.

pϕ ˚ϕ1q ˝D “ pϕ ˝Dq ˆ̊pϕ1 ˝Ψ q` pϕ ˝Ψ q ˆ̊pϕ1 ˝Dq. (A.3.6)

and likewise for left composition with derivations along algebra morphisms.
Finally, note that for any bialgebra

`

B,µB,1B,∆B,εB
˘

over K whose comultiplica-
tion is cocommutative and any K-linear map χ : BÑ PrimpBq the convolutions

χ ‹ idB and idB ‹χ (A.3.7)

are always coderivations of
`

B,∆B,εB
˘

.

A.4 Fréchet topology

Recall the definition of the seminorms pK,N : C8pRn,Kq (where K Ă Rn is a com-
pact set and N is a nonnegative integer)

pK,N pf q :“maxt|Dβf pxq| | x P K, |β| ďNu (A.4.1)

where β “ pβ1, . . . ,βnq P Nn is a multi-index, |β| :“ β1` ¨¨ ¨` βn, and

Dβ :“
ˆ

B

Bx1

˙β1

¨ ¨ ¨

ˆ

B

Bx1

˙βn
.
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C8pRn,Kq is known to be a locally convex topological vector space which is complete
in the sense that every Cauchy sequence converges, see e.g. [43, p.33]. It is obvious
that for any two compact subsets K,K 1 and nonnegative integers N,N 1 we always
have for all f P C8pRn,Kq

if K Ă K 1 and N ďN 1 then pK,N pf q ď pK 1,N 1pf q (A.4.2)

A.5 Universal enveloping algebras of Lie algebras

We shall recall the usual construction, see e.g. the books by H.Cartan and S.Eilenberg,
[12, p.266-270], and by Bourbaki [8, Ch.I, p.22].

There is the following problem of universals: given a Lie algebra
`

g, r , sg
˘

over
K, is there an associative unital K-algebra UKpgq equipped with a K-linear map
ig “ i : gÑ UKpgq satisfying i

`

rx,ysg
˘

“ ipxqipyq ´ ipyqipxq for all x,y P g such that
for any unital associative K-algebra B and any K-linear map θ : g Ñ B satisfying
θ
`

rx,ysg
˘

“ θpxqθpyq´θpyqθpxq for all x,y P g there is a unique morphism of unital
K-algebras θ̄ : UKpgq Ñ B satisfying θ̄ ˝ i “ θ?

The positive answer to this question can be rephrased in more categorical terms
that the obvious commutator functor p q´ : AssAlgK Ñ LieAlgK from all unital asso-
ciative K-algebras to all K-Lie algebras has a left adjoint:

LieAlgK
U

ÝÝÝÝÝÝÑÐÝÝÝÝÝ
p q´

AssAlgK (A.5.1)

In this case, to any associative algebra B over K the Lie algebra B´ is associated
where the Lie bracket on the K-module B´ “ B is just the commutator rb,b1s :“
bb1´b1b for all b,b1 P B. The map θ ÞÑ θ̄ is the inverse of the adjugant, and the natu-
ral morphism i : gÑ UKpgq is the unit of the adjunction. The standard construction
of UKpgq is given by the free algebra over the K-module g, TKpgq, modulo the two-
sided ideal IKpgq generated by the set of all elements of the form xy ´ yx´ rx,ysg,
x,y P g (warning: in [12] UKpgq is denoted by ge and the ideal IKpgq by Upgq...). Mor-
phisms of K-Lie algebras are first lifted to algebra morphisms of the corresponding
free algebras where they map the first ideal to the second and thus descend to mor-
phisms of universal enveloping algebras.

Note that the K-linear map i : gÑ UKpgq is not necessarily injective. It is classical
that i is always injective in case g is a free K-module, for instance if K is a field,
thanks to to the Poincaré-Birkhoff-Witt Theorem, see e.g. [12, p.271-274], where
a basis of UKpgq is constructed. Moreover, i is known to be injective in the other
important particular case QĂK, see e.g. the Appendix of [39] or Theorem A.5.1.
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Moreover, it is well-known that for any K-module V the natural morphism of Lie
algebras LieKpV q Ñ TKpV q

´ induces the isomorphism

UK
`

LieKpV q
˘

– TKpV q (A.5.2)

of unitary associative algebras which can easily be seen by the universal properties
of LieKpV q and TKpV q.

Next, returning to a general Lie algebra g recall that UKpgq carries a natural Hopf
algebra structure

`

UKpgq,µU ,1,∆,ε,S
˘

where the cocommutative comultiplication
∆ and the counit ε are induced by the diagonal morphism δ : gÑ gˆ g : xÑ px,xq
of Lie algebras, i.e. ∆ “ UKpδq, and the zero map g Ñ t0u, i.e. ε “ UKp0q, respec-
tively. This can also be seen by the fact that the ideal IKpgq of the free algebra is a
coideal stable by the antipode S of the free algebra: this implies that each univer-
sal enveloping algebra is a connected cocommutative C3-coalgebra because it is a
homomorphic image of the connected cocommutative C3-coalgebra TKpV q with its
structure, see Section A.6.1.

Turn to the case Q Ă K: there is the well-known symmetrization map ω “ ωg :
SKpgq Ñ UKpgq defined by (for all n P Nzt0u, x1, . . . ,xn P g)

ωp1q “ 1, ω
`

x1 ‚ ¨ ¨ ¨ ‚ xn
˘

“
1
n!

ÿ

σPSn

i
`

xσp1q
˘

¨ ¨ ¨ i
`

xσpnq
˘

. (A.5.3)

Then, writing sg for the K-linear map SKpgq � g
i
Ñ UKpgq (which has kernel

K1‘ Kerpiq ‘ ‘8n“2S
npgq) it is easy to see that ω can be written as a convolution

exponential ω “ e˚sg (with the comultiplication in SKpgq and the multiplication in
UKpgq) whence it is a morphism of C3-coalgebras, see eqn (A.3.4). It turns out that
this is always an isomorphism of C3-coalgebras:

Theorem A.5.1 Let Q Ă K. Then the collection of all symmetrization maps ωg defines
a natural isomorphism ω : S ¨

Ñ U where both functors are seen as functors from the
category of K-Lie algebras to the category of all cocommutative connected C3-coalgebras
over K. In particular the insertion maps i are always injective.

Proof. It is well know that the collection of all the symmetrization maps forms a
natural transformation S ¨

Ñ U. It remains to show that each ωg is an isomorphism
In that sense, we have already seen that the symmetrization map ω is an iso-

morphism for free Lie algebras, see Proposition A.6.2 upon using the isomorphism
(A.5.2). We shall prove the statement of the Theorem by a detour to free (Lie) alge-
bras.

Let
`

g, r , sg
˘

be a K-Lie algebra, consider the free Lie algebra generated by the
K-module g, LieKpgq, and consider the natural counit map εg : LieKpgq Ñ g of the
adjunction (A.6.12) which is a surjective morphism of K-Lie algebras restricting to
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the identiy map on g Ă LieKpgq the natural inclusion being given by the unit of the
adjunction (A.6.12). Let k“ kg Ă LieKpgq be the kernel of εg. It follows that there is
the direct decomposition

LieKpgq “ k‘ g (A.5.4)

where k is an ideal of the Lie algebra LieKpgq. Thanks to Proposition A.6.1 we can
and shall henceforth identify the free Lie algebra with the Lie subalgebra LKpgq

of the free algebra TKpgq which is isomorphic to the universal enveloping algebra
UK

`

LieKpgq
˘

, see (A.5.2).
Consider the right ideal kTKpgq of TKpgq: since k is an ideal of the free Lie algebra

and since the free algebra is generated by g it follows that kTKpgq is a two-sided
ideal of the associative unital algebra TKpgq. Moreover since left multiplications are
coderivations and images of coderivations are coideals it follows that kTKpgq is a
coideal of

`

TKpgq,∆sh,ε,1
˘

.
We shall first show that the quotient algebra TKpgq{kTKpgq is isomorphic to to the

universal enveloping algebra UKpgq by showing the universal property. Indeed, let
B be any unital associative K-algebra, and let θ : g Ñ B´ be a morphism of K-Lie
algebras. Observe that the morphism θ ˝ εg : LieKpgq Ñ B´ is equal to the Lie al-
gebra morphism LieKpgq Ñ B´ induced by the K-linear map θ and the universal
property of the free Lie algebra since both morphisms restrict to the same K-linear
map θ on g. This is also a simple consequence of the naturality of the counit and
works for any adjunction of functors. Let θ̃ : TKpgq Ñ B the morphism of unital
associative algebras induced by the K-linear map θ. Since θ̃ coincides with the
unital algebra morphism TKpgq Ñ B induced by the Lie algebra morphism θ ˝ εg
(upon using again the isomorphism (A.5.2)) it follows that θ̃ vanishes on k, the
kernel of εg, and more generally, on each multiple of k whence it vanishes on the
ideal kTKpgq and thus passes to the quotient to define a morphism of unital algebras
θ : TKpgq{kTKpgq Ñ B. The map θ ÞÑ θ clearly is injective which can immediately be
seen by restricting to generators. It is also surjective: let Θ : TKpgq{kTKpgq Ñ B be
any morphism of unital associative algebras. By composing with the natural pro-
jection TKpgq Ñ TKpgq{kTKpgq the resulting algebra morphism TKpgq Ñ B restricted
to LieKpgq – LKpgq vanishes on k whence there is a unique Lie algebra morphism
ϑ : gÑ B´ such that Θ|LKpgq

“ ϑ ˝ εg. Clearly the induced morphism ϑ : TKpgq Ñ B

coincides withΘ on LKpgq and hence on the generating submodule g, whenceΘ “ ϑ
proving surjectivity. Hence the quotient algebra TKpgq{kTKpgq satisfies the universal
property and is thus isomorphic to the universal enveloping algebra of g.

Next, thanks to the decomposition (A.5.4), we have the canonical isomorphism
SK

`

LieKpgq
˘

– SKpkq b SKpgq. The kernel of the projection Spεgq : SK
`

LieKpgq
˘

Ñ

SKpgq is thus the ideal and coideal k‚SK
`

LieKpgq
˘

of the commutative and cocommu-
tative bialgebra SK

`

LieKpgq
˘

, and there is the direct decomposition SK
`

LieKpgq
˘

“

k ‚ SK
`

LieKpgq
˘

‘ I pSKpgqq where I : SKpgq Ñ SK
`

LieKpgq
˘

denotes the natural in-
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jection of bialgebras induced by the inclusion gÑ LieKpgq. We shall show that the
symmetrization isomorphism ω : SK

`

LieKpgq
˘

Ñ TKpgq satisfies

ω
´

k ‚SK
`

LieKpgq
˘

¯

“ kTKpgq. (A.5.5)

Since ω is a bijection this will imply that the subalgebra I
`

SKpgq
˘

–which is a
complementary submodule to k ‚ SK

`

LieKpgq
˘

in SK
`

LieKpgq
˘

– will bijectively be
mapped onto a submodule Υ

`

SKpgq
˘

of TKpgq which is complementary to kTKpgq.
Passing to the quotient shows that the restriction of ω to I

`

SKpgq
˘

followed by the
projection TKpgq Ñ TKpgq{kTKpgq will give the symmetrization ωg which thus is
a bijection. In order to show the statement (A.5.5), it is easy to see that ω maps
k ‚ SK

`

LieKpgq
˘

into the ideal and coideal kTKpgq because the value of ω of a com-
mutative word containing at least one element η of k will be a linear combination
of noncommutative words each containing η but not necessarily at the beginning.
By iterated commutators with η –which create new elements of k since it is an Lie
ideal– is is seen that each such word is an element of kTKpgq.

The inverse inclusion is a bit more involved: let η P k and b P TKpgq we want
to show that ηb is a linear combination of terms ωpη1 ‚ βq with η1 P k and β1 P
SK

`

LieKpgq
˘

. In order to avoid too concrete combinatorics we shall argue with the
coalgebra structures: the left multiplication Lη with the primitive element η is a
coderivation TKpgq Ñ TKpgqwhich can be written in the convolution form ηε‹idTKpgq

as can be seen immediately, where the convolution ‹ is w.r.t. the multiplication and
comultiplication of the bialgebra TKpgq. It follows that the K-linear mapω´1˝Lη ˝ω
is a coderivation of the coalgebra SK

`

LieKpgq
˘

which is always of the convolution
form d “ d ˜̊idSKpLieK pgqq where d is a K-linear map SK

`

LieKpgq
˘

Ñ LieKpgq
˘

and
the convolution ˜̊ is w.r.t. the multiplication and comultiplication of the bialgebra
SK

`

LieKpgq
˘

. Suppose that the values of d lie in the ideal k of LieKpgq. Recall the
classical formula for the derivative of the exponential map: Let

`

B,‚,1B ,pFpnqBqnPZ
˘

be complete filtered associative unital A-algebra, let z P Fp´1qB, and D : B Ñ B a
filtration preserving derivation, then –upon writing ad‚z1 : z2 ÞÑ z1 ‚ z2 ´ z2 ‚ z1 for
any z1, z2 P B– we have

D pe‚zq “

˜

ead‚z ´ idB
ad‚z

`

Dpzq
˘

¸

‚ e‚z. (A.5.6)

It follows that, upon setting B “
`

HomK pSKpLieKpgqq,TKpgqq ,˚
˘

andDpϕq “ ϕ˝d,

ω ˝ d “ e˚q ˝ d
pA.5.6q
“

˜

ead˚q ´ idB
ad˚q

`

d
˘

¸

˚ e˚q.

since q ˝ d “ d viewed as a map into kĂ LieKpgq Ă TKpgq.
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Moreover, let ψ : SK
`

LieKpgq
˘

Ñ k any K-linear map then for any β P SK
`

LieKpgq
˘

thanks to the cocommutativity of ∆S :

`

ad˚qpψq
˘

pβq “
ÿ

pβq

´

qpβp1qqψpβp2qq´ψpβp2qqqpβp1qq
¯

“
ÿ

pβq

“

qpβp1qq,ψpβp2qq
‰

“
ÿ

pβq

adqpβp1qq
´

ψpβp2qq
¯

“
`

adq ˚
2 ψ

˘

pβq

where we have written ad for the adjoint representation of the free K-Lie alge-
bra, i.e. adζpζ1q “ rζ,ζ1s for any ζ,ζ1 P LieKpgq and used the convolution action

˚2 of the convolution algebra
´

HomK

´

SK
`

LieKpgq
˘

,HomK
`

k,k
˘

¯

,˚1
¯

on the mod-

ule HomK

´

SK
`

LieKpgq
˘

,k
¯

which is well-defined since k is an ideal of LieKpgq hence

stable by all the linear maps adζ , ζ P LieKpgq. By an easy induction we can finally
write

ω ˝ d “

˜

e˚
1adq ´ idkεS
˚1adq

˚2 d

¸

˚ ω “: Epdq ˚ω “
´

`

Epdq ˝ω´1˘ ‹ idTKpgq

¯

˝ω

Clearly the above K-linear map E is an invertible endomorphism of HomK

´

SK
`

LieKpgq
˘

,k
˘

because the zeroth order term of the series is the identity map and the higher order
terms lower the degree. It follows that there is a unique solution d : SK

`

LieKpgq
˘

Ñ k

of the equation Epdq “ ηεS showing that for all β P SK
`

LieKpgq
˘

ηωpβq “ Lη
`

ωpβq
˘

“ω
`

dpβq
˘

“ω

¨

˝

ÿ

pβq

dpβp1qq ‚ βp2q

˛

‚ P ω
´

k ‚SK
`

LieKpgq
˘

¯

which proves the inclusion Ą of eqn (A.5.5) and hence the Theorem.

It follows that that the primitive part of the universal enveloping algebra is iso-
morphic to the Lie algebra in this case. Moreover, note that a posteriori it becomes
clear that the inverse of ω can written in the convolution exponential form e‹̃χ (see
the proof of Proposition A.6.2) where χ : Upgq Ñ g is given by the composition of the
Eulerian idempotent ep1qg of UKpgq –defined as for the free algebra in eqn (A.6.5) but
which can be done for the more general universal enveloping algebras since all the
ingredients (identity map, counit, cocommutative comultiplication) are also there–
followed by the injection into g Ă SKpgq which is now well-defined thanks to the
preceding Theorem. Note however that the very nice (modified) Dynkin idempo-
tent in general makes no sense for universal enveloping algebra.

There is a Baker-Campbell-Hausdorff type convolution formula for universal en-
veloping algebras in case QĂ K , see e.g. [3].
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A.6 Free algebras

A.6.1 Free (Symmetric) Algebras

Recall some standard material on the tensor algebra over a fixed K-module V : It
is defined by TKpV q “ TpV q “ ‘8r“0V

br with Vb0 :“ K “: K1, Vb1 :“ V , and for
each integer r ě 2 the symbol Vbr means the r-times iterated tensor product of V
with itself, see [21, p.139-141].

Recall that TpV q carries an associative multiplication µ written µpb b b1q “: bb1

defined by the tensor product by means of which
`

TpV q,µ,1
˘

is a unital associative
algebra which is a free unital algebra over V , i.e. for any given associative unital alge-
bra

`

B,µB,1B
˘

there is a natural bijection φ ÞÑ φ̄ of the set HomKpV ,Bq of all linear
maps from V to the underlying K-module of B to the set HomAlg

`

TpV q,B
˘

of all
morphisms of unital algebras by means of the well-known formula ‘on generators’

φ̄p1q “ 1A, φ̄px1 ¨ ¨ ¨xnq :“
`

φpx1q
˘

¨ ¨ ¨
`

φpxnq
˘

for all integers n ě 1, and x1, . . . ,xn P V and where the multiplication on the right
hand side is in B. In other words V Ñ TpV q defines a functor Kmod to AssAlgK
which is left adjoint to the obvious forgetful functor:

KMod
TK

ÝÝÝÝÝÝÑÐÝÝÝÝÝÝÝ
Forget

AssAlgK (A.6.1)

Recall furthermore that TpV q carries a comultiplication ∆sh : TpV q Ñ TpV qbTpV q
which is defined to be the morphism of associative algebras defined on generators
x P V by ∆shpxq “ xb1`1b x. Define for all integers 1ď r ď n´1 the subset of all
shuffle multiplications in the usual way by

Shpr,n´ rq :“
 

σ P Sn | σp1q ă ¨ ¨ ¨ ă σprq, σpr ` 1q ă ¨ ¨ ¨ ă σpnq
(

. (A.6.2)

It is now easy to see by induction the following expression for ∆sh: ∆shp1q “ 1b1,
∆shpx1q “ x1b1`1bx1 for all x1 P V , and for all integers ně 2 and x1 . . . ,xn P V we
get

∆shpx1 ¨ ¨ ¨xnq “ px1 ¨ ¨ ¨xnqb 1` 1bpx1 ¨ ¨ ¨xnq

`

n´1
ÿ

r“1

ÿ

σPShpr,n´rq

`

xσp1q ¨ ¨ ¨xσprq
˘

b
`

xσpr`1q ¨ ¨ ¨xσpnq
˘

(A.6.3)

It easy to check on generators that ∆sh is cocommutative and coassociative. In
the text we shall use Sweedler’s notation (see Appendix A.3) to avoid the above
clumsy expression (A.6.3). Next, the projection map ε : TpV q Ñ K which is defined
to vanish on the augmentation ideal T`pV q :“ ‘8r“1V

b r and satisfies εpλ1q :“ λ for

123



A. Some basic topics

all λ P K is a counit of the coalgebra
`

TpV q,∆sh
˘

, i.e. we get hence the quintuple
`

TpV q,µ,1,∆sh,ε
˘

is a cocommutative bialgebra.
In addition to that, we mention the antipode S : TpV q Ñ TpV q which is a K-linear

map defined by

Sp1q “ 1, and Spx1x2 ¨ ¨ ¨xkq “ p´1qkxkxk´1 ¨ ¨ ¨x2x1. (A.6.4)

Note that the canonical filtration
´

Q1
pnq

`

TKpV q
˘

¯

nPN
of the C3 coalgebra

`

TKpV q,∆sh,ε,1
˘

, see equation A.3.1,

is exhaustive since for all nonnegative integers nwe have‘nr“0T
r
KpV q ĂQ

1
pnq

`

TKpV q
˘

.
It follows that the C3 coalgebra

`

TKpV q,∆sh,ε,1
˘

is always connected.
Next, we shall very often perform induction arguments with respect to the tensor

degree: recall that the degree derivation Deg : TpV q Ñ TpV q is defined in the obvious
way by Degpbq “ nb for any nonnegative integer n and b P Vbn. It is quite useful in
case QĂK. It is obvious that Deg is both a derivation of µ and a coderivation of ∆sh
as can be seen directly.

Clearly, all elements of TpV q of tensor degree zero are of the form k1 for some
k P K, all elements of tensor degree 1 are of the form x P V , and every element of
tensor degree less or equal than n` 1 for some nonnegative integer n is a K-linear
combination of elements of the form xb or b1x where x P V and b,b1 P TpV q having
tensor degree less or equal than n. We shall not repeat these characterizations each
time we are using it.

Note that, in case Q Ă K, there is a convolution logarithm of the identity map
idTKpV q the so-called Eulerian idempotent

ep1q :“ ln‹
`

idTKpV q
˘

:“
8
ÿ

r“0

p´1qr

r ` 1

`

idTKpV q´ 1ε
˘˚pr`1q (A.6.5)

which is well-defined because TKpV q is a connected cocommutative coalgebra. The
above equation (A.6.5) is a particular case of formula (A.3.4). The following formu-
las

∆sh ˝ e
p1q “ ep1qb 1` 1b ep1q et ep1q ˝ ep1q “ ep1q (A.6.6)

can be shown: the first by showing an exponentiated version, and the second by
a straight-forward computation using the first identity. These equations imply that
ep1q is a projection onto the primitive part of theC3-coalgebra

`

TKpV q,∆sh,ε,1
˘

. This
primitive part will be shown to be isomorphic to the free Lie algebra generated by
V , see Proposition A.6.1 of the Appendix A.6.2.

Recall the symmetric algebra generated by the K-module V , SKpV q: it is defined
to be the quotient of the free algebra TKpV q modulo the two-sided ideal J0pV q “
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J0pV ,Kq of TKpV q generated by all the elements of the form xy ´ yx with x,y P
V . This makes the SKpV q a commutative associative unital K-algebra such that
the natural projection P0 : TKpV q Ñ SKpV q is a morphism of unital algebras. We
shall denote the resulting commutative multiplication by ‚. Note that the grading
of the free algebra induces a grading SKpV q “ ‘8n“0S

n
KpV q. Since J0pV q is also

easily seen to be a coideal it follows that SKpV q carries a canonical comultiplication
∆S , a counit εS , and an antipode S such that the coalgebra SKpV q is a connected
cocommutative C3-coalgebra and such that P0 is a map of C3-coalgebras. As in the
case of the free algebra TKpV q, the assignment V Ñ SKpV q is a functor from the
category of all K-modules to the category of all unital commutative associative K-
algebras where the action on K-linear maps φ : V Ñ W is defined as the induced
map of Tφ which sends the ideal J0pV q to the ideal J0pW q. This functor is easily
seen to be left adjoint functor for the obvious forgetful functor from the category
of all unital commutative associative K-algebras to the category of all K-modules,
hence similar to diagram (A.6.1) where the category on the right is specialized to
commutative algebras.

The coalgebra structure on SKpV q is particularly important: note that the mor-
phisms SKφ are also morphisms of C3-coalgebras. For the case Q Ă K –which
will be the most important for us– it turns out that SKpV q is cofree in the sense
that the functor S defines a right adjoint functor for the particular forgetful func-
tor p q` from the category of all cocommutative connected C3-coalgebras over K,
C3CoalgCCK, to the category of all K-modules assigning to each coalgebra C the
K-submodule C` “ Kerpεq Ă C:

C3CoalgCCK
p q`

ÝÝÝÝÝÝÑÐÝÝÝÝÝÝ
SK

K-mod (A.6.7)

meaning that for a any given connected cocommutative C3-coalgebra C and a K-
module W the two following Hom-spaces are naturally isomorphic:

HomK-mod
`

C`,W q –HomC3CoalgCCK

`

C,SKpW q
˘

The isomorphism from the left Hom-space to the right one is again given by a
convolution exponential

ϕ ÞÑ e ˜̊ϕ (A.6.8)

where ϕ : C` Ñ W is K-linear and ˜̊ denotes the convolution with respect to the
multiplication ‚ in SKpW q and the comultiplication ∆C of C which of course is a
particular case of formula (A.3.4). The restriction of ϕ to the submodule SrpV q is
called the rth Taylor coefficient of ϕ. We also note the following well-known fact that
the map

HomK
`

SKpV q,V
˘

Ñ CoderK
`

SKpV q,SKpV q
˘

: d ÞÑ d “ d ˜̊ idSKpV q (A.6.9)
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induces an isomorphism of K-modules where the latter K-module denotes the set
of all coderivations of the coalgebra

`

SKpV q,∆S ,εS
˘

. The inverse map is just the
composition of the coderivation with the natural projection prV : SKpV q Ñ V (the
counit of the above adjunction (A.6.7)).

Finally, we need a natural comparison between TApV q and TKpV q for a given A-
module V : in order to distinguish the structures we shall denote by µ, 1, ∆sh, and
ε the usual A-linear bialgebra structure of TApV q, and by µ̃, 1̃, ∆̃sh, and ε̃ the cor-
responding K-linear bialgebra structure of TKpV q. Note that the natural morphism
πV ,W : VbW Ñ VbAW , see Appendix A.2.1 where V ,W areA-modules canonically
extends to a natural morphism of unital K-algebras

π :
`

TKpV q, µ̃, 1̃
˘

Ñ
`

TApV q,µ,1
˘

(A.6.10)

where of course πpλ1̃q “ ιpλq1 where ι : K Ñ A denotes the given morphism of
unital rings. Then there is the relation

πTApV q,TApV q ˝
`

πbπ
˘

˝ ∆̃sh “ ∆sh ˝π and ι ˝ ε̃ “ ε ˝π (A.6.11)

which is clear by their definitions.
Note also that the restriction of π to T`pV q is surjective, the kernel being the

two-sided ideal generated by KpL,Lq, see eqn (A.2.6).

A.6.2 Free Lie Algebras

A good introduction to this topic is Bourbaki’s book [8] or Reutenauer’s book [41].
Let LieAlgK be the category of all K-Lie algebras, and let Forget be the obvious for-
getful functor from this category to the category K-mod by omitting the Lie bracket.
There is a well-known functor LieK from K-mod to LieAlgK which is a left adjoint
for Forget:

K-mod
LieK

ÝÝÝÝÝÝÝÑÐÝÝÝÝÝÝÝ
Forget

LieAlgK (A.6.12)

For any K-module V the K-Lie algebra LieKpV q is called the free K-Lie algebra gener-
ated by V . We shall briefly recall its definition, see also [8] since there seem to exist
misleading definitions in some text-books.

Let BPT denote the set of all binary planar trees, see e.g. [31, p.597], with grafting
as nonassociative binary multiplication. It parametrizes bracketings in nonasso-
ciative algebras such as ppabqcqd or appbcqdq. It can also be seen as a subset of the
free associative monoid (without unit for simplicity) generated by two generators
t,p: look at the nonassociative operation u d v “ uvp and take the nonassociative
monoid generated by t under this operation, see Jacobson’s contribution [20, p. 122-
123] in [18]. In any case BPT is a nonassociative monoid (without unit) graded by
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the degree in t, BPT “
Ť

nPNzt0uBPTn. Then the free K-module KBPT generated by
the set BPT is a nonassociative algebra over K graded by the positive integers. For
any K-module V the K-module

MagKpV q “ ‘
8
n“1KBPTnbV

bn (A.6.13)

is a nonassociative algebra in a natural way. Moreover it is free in the sense that for
any given nonassociative algebra pB,‚q and any K-linear map θ : V Ñ B there is a
unique induced morphism θ̄ : MagKpV q Ñ B of nonassociative algebras such that
θ̄ptb xq “ θpxq for all x P V . The free Lie algebra LieKpV q is defined to be the quo-
tient of MagKpV q by the two-sided ideal generated by the set of all txx | x P V u and
the set tpxyqz` pyzqx` pzxqy | x,y,z P V u. The Lie bracket is the induced nonasso-
ciative multiplication. Note that the unit of the adjunction, the natural insertion of
generators iV : V Ñ LieKpV q is still injective since the ideal is graded and contained
in degrees ě 2. This also implies that the free Lie algebra is graded by the positive
integers. It is easy to see –upon using the Jacobi identity– that a system of non inde-
pendent generators of the K-module LieKpV q is given by the followng iterated left
ordered commutators:

x, . . . ,
”

x1,
“

x2, rx3, . . . , rxn´1,xns ¨ ¨ ¨ s
‰

ı

(A.6.14)

where n ě 2 is a positive integer, and x,x1, . . . ,xn P V . Though nonunique, these
generators serve to express the unique morphism of Lie algebras θ̄ : LieKpV q Ñ
pg, r , sgq induced by an arbitrary K-linear map θ : V Ñ g (with x1, . . . ,xn P V )

θ
´”

x1,
“

x2, rx3, . . . , rxn´1,xns ¨ ¨ ¨ s
‰

ı¯

“

”

θpx1q,
“

θpx2q, rθpx3q, . . . , rθpxn´1q,θpxnqsgsg . . .
‰

g

ı

g
.

(A.6.15)

Next, recall that the free algebra TKpV q is a Lie algebra over K with respect to the
commutator of the associative multiplication µ, denoted by TKpV q

´. There is thus
a unique morphism LieKpV q Ñ TKpV q

´ of K-Lie algebras induced by the injection
V Ñ TKpV q whose image is the Lie subalgebra of TKpV q

´ generated by V , LKpV q.
Note that in general this morphism is NOT injective in higher degrees.

However, in case QĂK as a subring, and this we shall suppose for the rest of this
appendix part, this is the case (see [20, p.167-174], [31], [41] for fields of characteric
0).

For the convenience of the reader we shall give the indication of the proof:

Proposition A.6.1 Let QĂK as a subring, and let V be a K-module. Then

LieKpV q – LKpV q “ Prim
`

TpV q
˘

:“ (A.6.16)

“
 

b P TpV q | ∆shpbq “ bb 1` 1b b
(

.
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Proof. Firstly it is clear by the Jacobi identity that the K-module LKpV q is spanned
by left ordered commutators of elements of V in TKpV q, see eqn (A.6.14). This easily
implies the inclusion LKpV q Ă Prim

`

TpV q
˘

. For the converse inclusion and for the
rest of the proof the important thing is the existence of the following K-linear map
ẽD : TKpV q Ñ TKpV q whose image is equal to LKpV q defined by (for all x P V , n P N,
ně 2, x1, . . . ,xn P V )

ẽDp1q :“ 0, ẽDpxq “ x, ẽDpx1 ¨ ¨ ¨xnq “
”

x1,
“

x2, rx3, . . . , rxn´1,xns ¨ ¨ ¨ s
‰

ı

. (A.6.17)

The following Von Waldenfels convolution formula (see [54] and [41, p.20-21, Lemma
1.5]) is easy to check by induction over the tensor degre as well as the stated conse-
quence

ẽD “ Deg ‹ S implying @ ξ P Prim
`

TpV q
˘

: ẽDpξq “ Degpξq. (A.6.18)

where ‹ is convolution with respect to the free multiplication and the shuffle co-
multiplication of TKpV q and S is the antipode of TKpV q. Since the homogeneous
components of every primitive element are obviously primitive and have strictly
positive tensor degree (which is invertible in Q Ă K) the other inclusion is clear
showing the last equality in eqn (A.6.16). As has been stated above there is a natu-
ral morphism of K-Lie algebras LieKpV q Ñ LKpV q induced by the identity map of
V .

It remains to show that LieKpV q has the universal property because this implies
that the above natural map is an isomorphism: indeed, let

`

g, r , sg
˘

an arbitrary
K-Lie algebra, and θ : V Ñ g an arbitrary K-linear map. Then the following K-
linear map θ̌ : TKpV q Ñ g written in the following way for any integer n ě 2, and
x,x1, . . . ,xn P V : θ̌p1q :“ 0, θ̌pxq :“ θpxq, and

θ̌px1 ¨ ¨ ¨xnq :“
”

θpx1q,
“

θpx2q, rθpx3q, . . . , rθpxn´1q,θpxnqsgsg . . .
‰

g

ı

g
. (A.6.19)

is well-defined by the universal property of the tensor product. We shall show by
induction over the tensor degree that for all b P TKpV q

θ̌
`

ẽDpbq
˘

“ θ̌
`

Degpbq
˘

. (A.6.20)

Indeed, this is clear for b of degree 0 or 1. In order to do the induction we can
take b of degree n and x P V , and use first the obvious equation ẽDpxbq “

“

x, ẽDpbq
‰

whence

θ̌
`

ẽDpxbq
˘

“ θ̌
`

xẽDpbq
˘

´θ̌
`

ẽDpbqx
˘

“
“

θpxq, θ̌
`

ẽDpbq
˘‰

g
´θ̌

`

ẽDpbqx
˘

“ nθ̌pxbq´θ̌
`

ẽDpbqx
˘
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by the induction hypothesis. To compute the term ´θ̌
`

ẽDpbqx
˘

we can assume that
b is of the form b “ y1 ¨ ¨ ¨yn (for y1, . . . , yn P V ) and use the adjoint representation of
g, i.e. adgζpζ

1q “ rζ,ζ1sg for all ζ,ζ1 P g to write

θ̌py1 ¨ ¨ ¨ynxq “
´

adgθpy1q
˝ ¨ ¨ ¨ ˝ adgθpynq

¯

`

θpxq
˘

and thanks to the Jacobi identity, i.e.
“

adgζ ,adgζ1
‰

“ adg
rζ,ζ1sg

we get

´θ̌
`

ẽDpbqx
˘

“ ´

”

adgθpy1q
,
“

adgθpy2q
, . . . , radgθpyn´1q

,adgθpynqs . . .
‰

ı

`

θpxq
˘

“ ´adg“
θpy1q,

“

θpy2q,...,rθpyn´1q,θpynqsgsg...
‰

g

‰

g

`

θpxq
˘

“

”

θpxq,
“

θpy1q,
“

θpy2q, . . . , rθpyn´1q,θpynqsgsg . . .
‰

g

‰

g

ı

g
“ θ̌pxbq

whence θ̌
`

ẽDpxbq
˘

“ nθ̌pxbq` θ̌pxbq “ pn` 1qθ̌pxbq proving the induction.
Defining now the K-linear map θ̃ : LKpV q Ñ g on each homogeneous element ξ

of positive degree n by θ̃pξq “ 1
n θ̌pξq we see –upon using eqn (A.6.20)– that this

obviously well-defined map satisfies the above identity (A.6.15) with θ̄ replaced by
θ̃. Finally, by an easy induction over the tensor degree of ξ P LKpV q it can be shown
that for all ξ,ξ 1 P LA (which we alwys can write as left-ordered commutators) the
morphism identity

“

θ̃pξq, θ̃pξ 1q
‰

g
“ θ̃

`

rξ,ξ 1s
˘

holds. This and the fact that LKpV q
in generated by V shows the universal property, and in particular the isomorphism
with the Lie algebra LieKpV q.

Recall that the normalized version of ẽD , eD , which is defined by eDpx1 ¨ ¨ ¨xnq “
1
n ẽDpx1 ¨ ¨ ¨xnq for all strictly positive integers n is an idempotent map (one of the
many Lie idempotents) and sometimes known under the name of Dynkin idempotent.

Recall that for the case Q Ă K and any K-module V there is the symmetrization
map ω : SK

`

LiepV q
˘

Ñ TKpV q given by (for all n P Nzt0u, ξ1, . . . ,ξn P LiepV q)

ωp1q “ 1, ω
`

ξ1 ‚ ¨ ¨ ¨ ‚ ξn
˘

:“
1
n!

ÿ

σPSn

`

ipξσp1qq
˘

¨ ¨ ¨
`

ipξσp1qq (A.6.21)

where i : LieKpV q Ñ TKpV q denotes the natural morphism which is injective in our
case, see Proposition A.6.1. There is the well-known

Proposition A.6.2 Let QĂK, and let V be a K-module. Then the symmetrization map
ω : SK

`

LiepV q
˘

Ñ TKpV q, see eqn (A.6.21) is an isomorphism of C3-coalgebras.

Proof. Let q : SK
`

LiepV q
˘

Ñ TKpV q the K-linear map consisting of the projection
SK

`

LiepV q
˘

Ñ LiepV q (with kernel equal to K1‘‘8r“2S
r
K
`

LiepV q
˘

) followed by the
injection i (see also the second map of eqn (6.2.13) ), and let ˚ denote the convolution
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with respect to the comultiplication in SK
`

LiepV q
˘

and the free multiplication in
TKpV q. Then clearly ω is equal to the following convolution exponential

ω “ e˚q (A.6.22)

and hence a morphism of C3-coalgebras. In order to construct an inverse map recall
the Eulerian idempotent ep1q : TKpV q Ñ TKpV q (see eqn (A.6.5)), which projects onto
the primitive part of TKpV q, hence the Lie subalgebra LKpV qwhich is isomorphic to
the free Lie algebra, see Proposition A.6.1. Let χ : TKpV q Ñ SK

`

LieKpV q
˘

be equal to
the corestriction of ep1q to LKpV q followed by the injection to SK

`

LiepV q
˘

, then the
convolution exponential e‹̃χ, see the convolution table (6.2.12), is readily checked
to be an inverse of ω.

A.7 Differential Geometry versus Algebra

Let X be a differentiable manifold (always supposed to be Hausdorff and second
countable). For the sake of laziness we shall assume that X is connected. Let K
denote the field R of all real numbers or the field C of all complex numbers. Let A
be the K-algebra of all smooth real-valued functions X Ñ K, A “ C8pX,Kq. Here
the constant functions 1 and 0 are the only idempotents of A thanks to the fact
that X is connected. We first set K “ K. Next, let KVBX the category of all vector
bundles over X where the object class consists of all K-vector bundles pE,τ,Xq over
X (τ : EÑ X denoting the bundle projection; we shall often write just E,E1), where
a morphism Ψ : pE,τ,Xq Ñ pE1, τ 1,Xq is a smooth fibrewise linear map Ψ : E Ñ E1

such that τ 1 ˝Ψ “ τ .
Recall that for any two vector bundles E,E1 over X there is the fibrewise direct

sum E‘E1 and the fibrewise tensor product EbE1 which can be seen as a coproduct
structure and a symmetric closed monoidal structure on the category KVBX where
the unit object is X (seen as the trivial vector bundle X ˆ t0u) for the fibrewise
direct sum, and the trivial bundle X ˆK for the fibrewise tensor product. These
structures are compatible in the usual ‘distributive manner’ explicited in the so-
called distributive monoidal categories, see e.g. [? ] for more details.

Recall that the category of all R-modules (whereR is some fixed unital ring) is also
distributive monoidal with respect to the usual direct sum ‘ and tensor product b.

There is a well-known functor Γ from KVBX to A-mod associating to each vec-
tor bundle pE,τ,Xq over X its A-module Γ pEq :“ Γ8pX,Eq of all smooth sections,
i.e. smooth maps ϕ : X Ñ E with τ ˝ ϕ “ idX , and to each morphism φ : E Ñ E1

of vector bundles over X the composition ϕ ÞÑ φ ˝ ϕ. This clearly is a monoidal
functor (for both structures), see [32, p.255] for details, where the natural map
Γ2 : Γ pEq bA Γ pE1q Ñ Γ pEbE1q mapping two sections to their fibrewise tensor prod-
uct is an isomorphism (the same being true for direct sums). According to the Serre-
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Swan Theorem (see e.g. [10, p.154, Lemma (14.4)]) all theA-modules Γ pEq are finitely
generated and projective.

On the other hand, if we restrict the category A-mod to the full subcategory A-
modfgp, where the objects are finitely generated projective A-modules, then there is
a functor B from A-modfgp to KVBX : Let V be a finitely generated projective A-
module, and fix a set ε1, . . . ,εM P V of generators. Furthermore, for each x P X let
δx : A Ñ K : a ÞÑ apxq be the usual evaluation (‘delta’) functional and Ix Ă A its
kernel is a maximal ideal of A (and closed w.r.t. the usual Fréchet topology on A).
The field K becomes an A-module by means of δx isomorphic to A{Ix – KbA A.
Denote by BpV qx “ V {pIxV q –KbA V which is a finite-dimensional K-vector space
of dimension nx ď M (which we call the rank of V at x), and write –by abuse of
notation– δx : V Ñ BpV qx for the canonical map v ÞÑ 1K bA v for which we shall
also write δxpvq “: vpxq. By elementary linear algebra we can assume that there are
positive integers 1ď i1 ă ¨¨ ¨ ă inx ďM such that the elements εi1pxq, . . . ,εinx pxq form
a basis of BpV qx. Consider the set given by

BpV q :“
ď

xPX

ˆ

txuˆ
V
IxV

˙

(A.7.1)

(disjoint union) together with the obvious projection τ : BpV q Ñ X induced by the
first factor projection.

Moreover, since each A-linear map Φ : V Ñ W induces a well-defined canoni-
cal K-linear map BpΦqx : BpV qx Ñ BpW qx there is a fibrewise linear set map BpΦq :
BpV q Ñ BpW q. It remains to show how to construct the locally trivial vector bundle
structure on BpV q: this is traditionally be done by first passing to the algebra and
module of all germs at a point x and applying the theorem that all finitely gener-
ated projective modules over a local ommutative ring are free, see e.g. [21, p.413,
Thm.7.5], and then going back to the localized modules.

We sketch a more elementary reasoning 1: For each open subset U of X consider
the local function algebra AU :“ C8pU,Kq with the obvious restriction map rU :
AÑ AU : f ÞÑ

`

y ÞÑ f pyq
˘

for all y P U which is a morphism of unital K-algebras,
and write VU for the ‘localized’ module AU bA V . Since V is finitely generated
and projective there is another finitely generated (and a posteriori projective) A-
module V 1 such that the direct sum V ‘ V 1 is isomorphic to a free module AN for
some nonnegative integer N . By choosing generators ε11, . . . ,ε

1
M1 of V 1 we get by an

entirely analogous construction a choice 1 ď j1 ă ¨¨ ¨ jn1x ďM 1 of integers such that
ε1j1pxq, . . . ,ε

1
jn1x
pxq form a base of the K-vector space BpV 1qx whence –thanks to the

obvious decomposition KN – BpV qx‘BpV 1qx resulting from V ‘V 1 – AN– we have
the rank equality nx ` n1x “ N . Upon considering all the elements of V and of V 1,

1. I would like to thank S.Waldmann for communicating this nice short argument.
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in particular the generators ε1, . . . ,εN and ε11, . . . ,εM1 as KN -valued smooth functions
onX and upon applying the usual arguments of minors we can infer that neither the
rank of V nor the rank of V 1 can locally fall, and since they always sum up toN they
have to be locally constant. Hence for each x P X there is an open neighbourhoodUx
such that the restrictions rUxpεi1q, . . . , rUxpεinx q form a base for the localized module
VUx which is hence a free module of rank nx. Since X is connected and since the
rank of a free module over any commutative ring is well-known to be an invariant
(see e.g. [21, p.412, Prop.7.18]), it follows that there is a nonnegative integer n for all
x P X such that nx “ n. This allows to construct local trivializations of

`

BpV q, τ,X
˘

as
set maps, and the change of these trivializations on the overlap U of two domains
will be a GLpn,Kq-valued smooth map (composed out of elements of AU ) giving
rise to the usual cocycle of transition functions from which the entire differentiable
bundle structure can uniquely be constructed, see e.g. [27, p.51-52, Theorem]. This
makes the functor B well-defined on objects, as well as on morphisms (upon passing
to local representatives).

It is not hard to see that the diagram of functors

KVBX
Γ

ÝÝÝÝÝÑÐÝÝÝÝÝ
B

Amodfgp (A.7.2)

is an equivalence of categories preserving the distributive symmetric closed monoidal
structures.
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B. Tougeron’s Lemma

B.1 Preliminary

We will present in this part of the appendix some constructions around the Tougeron’s
lemma.

First of all, the objective is construct a smooth real function defined in Rn that is
constant igual to 1 in Br´εp0q, 0 outside Brp0q and this function assume values in
r0,1s.

Let us consider the following function ρ : RÑ R given by

ρptq :“

#

e
´1
t if tě 0

0 if tď 0

Figure B.1. – Graph of ρ

Of course, ρ is C8 in Rzt0u and
dkρ

dtk
ptq “ 0 for t ă 0. If t ą 0 we have dρ

dt ptq “

pe
´1
t q1 “ e

´1
t
`

´1
t

˘1
“

1
t2
e
´1
t and d2ρ

dt2 ptq “
`

´2
t3 `

1
t4
˘

e
´1
t .

Actually, we can proof by recurrence that

dkρ

dtk
ptq :“

#

pkp
1
t qe

´1
t if tą 0

0 if tă 0

where pk is a polynomial of degree 2k.

It is not dificult to proof that dkρ
dtk

always exists in R and is equal to 0 in t “ 0, it
means that ρ is C8. Observe also that ρ is positive for t ą 0 and strictly increasing
and limitated by lim

tÑ`8
e
´1
t “ 1.
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Afterward, les us take two real numbers 0ă aă b. Then the function ρab : RÑ R

ρab :“ ρpt´ aqρpb´ tq

it is clearly a C8-function such that assumes values in r0,1s Ă R. Also note that
ρabptq “ 0 for t ď a and t ě b and also 0ă ρabptq ă 1 for aă t ă b.

Figure B.2. – Graph of ρab for a“ 1,31 and b “ 6,5

Next let us define φab : RÑ R by

φabptq :“

şt
´8

ρabpτqdτ
ş`8

´8
ρabpτqdτ

.

But from 0ă
ş`8

´8
ρabpτqdτ “

şb
a ρabpτqdτ ă8 follow that φab is increasing and C8

such that

φabptq P

$

&

%

t0u if t ď a
r0,1s if aď t ď b
t1u if t ě b.

Finally, let us take ε and r two positive real numbers such that 0 ă r ´ ε ă r. We
then define the function ψr,ε : RnÑ R by

ψr,εpxq :“ φpr´εq2r2pr2`pr ´ εq2´ ||x||2q

where ||x||2 “ x2
1` x

2
2` ¨¨ ¨` x

2
n for x “ px1,x2, ¨ ¨ ¨ ,xnq. This function is also C8 and

ψr,εpxq “

$

&

%

1 if ||x|| ď r ´ ε
y P r0,1s if r ´ ε ď ||x|| ď r

0 if ||x|| ě r.

The following theorem can be found in Rudin’s book, see [44][p.147, Thm 6.20].
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Figure B.3. – Graph of ϕab in red

Theorem B.1.1 SoitΩĂ Rn une partie ouverte nonvide et pUαqαPS une famille d’ouverts
telle que l’on a

Ť

αPSUα “Ω. Alors

1. Il existe une suite pBiqiPNzt0u de boules fermées de centre si PΩ et de rayon ri ą 0,
i.e. Bi “ Bri psiq telles que

@ i P Nzt0u D αi P S tels que Bi ĂUαi et
ď

iPNzt0u
U ri

2
psiq “

ď

iPNzt0u
Bi “Ω

En particulier, Ω est une réunion dénombrable de parties compactes de Rn.

2. Il existe une suite pψiqiPNzt0u de fonctions de classe C8 de RnÑ R telle que

a) @ i P Nzt0u,@ x P Rn : 0ď ψipxq ď 1 et supppψiq Ă Bi ĂUαi ,

b) @ x P Ω D i P Nzt0u @ j P Nzt0u : x P U ri
2
psiq et si j ě i ` 1 alors U ri

2
psiq X

supppψjq “ H. En particulier, cela veut dire que la famille des supports des
ψi est localement finie.

c) La somme
ř8
i“1ψi est une fonction numérique bien définie et l’on a

8
ÿ

i“1

ψipxq “

"

1 si x PΩ,
0 si x RΩ.

d) Pour toute partie compacte K ĂΩ il existe un entier strictement positif m et
une partie ouverte W Ą K tels que

@ x PW : ψ1pxq` ¨ ¨ ¨ `ψmpxq “ 1.
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B.1. Preliminary

Figure B.4. – Example in R2: points in the surface of ψr,ε in the form px,y,ψr,εpx,yqq

Proof. 1. Consider S ĂΩ a countable dense subset, as for example S “ΩXQn. If
we take s P S as Ω “

Ť

αPLUα then Dr P R;Brpsq ĂΩ and Brpsq XUα ‰ ∅, for some
α P L. Notice that, Uα is open and then we can take r P Q such that Brpsq Ă Uα. In
addition, as the center of this balls are in S, this is a countable number of balls, so
let us call then Bi “ Bri psiq and Vi “ B ri

2
psiq.

In the other hand, fixed x P Ω we obtain a α P L such that x P Uα Ă Ω. As Uα is
open there is a δ ą 0 , that we can suppose rational, such that Bδpxq ĂUα. Moreover,
exists s P S such that dpx,sq ă δ

4 , because S is dense. Here d is the Euclidean distance
in Rn. Let be z P B δ

2
psq. Then,

dpx,zq ď dpx,sq` dps,zq ă
δ
4
`
δ
2
“

3δ
4
ă δ and

x P B δ
4
psq Ă B δ

2
psq Ă Bδpxq ĂUα .

Consequently, B δ
2
psq Ă Uα and then B δ

2
psq is some Bi , and moro x is in some Vi , it

shows that
ď

iPN
Vi “

ď

iPN
Bi “Ω.

2. Let us consider a sequence of functions pΦiqiPN where for each i P N we have
Φi : Rn Ñ R such that @x P Rn,0 ď Φipxq ď 1, tx P Rn;φpxq ‰ 0u “ supppΦq Ă Bi
and Φipxq “ 1,@x P Vi . From the above construction is sufficient to take the function
Φi : x ÞÑ ψri ,

ri
2
px´ siq.
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Now let us define the following sequence of functions

ψ1 “ Φ1 and @i ě 2,ψipxq “ p1´Φ1pxqqp1´Φ2pxqq ¨ ¨ ¨ p1´Φi´1pxqqΦi

We obtained that each ψi is C8, 0ď ψipxq ď 1,@x P Rn and for all x P Rn

supppψiq Ă supppΦiq Ă Bi and

@j;1ď j ď i´ 1 and @x P V1YV2Y ¨¨ ¨YVj ñ ψipxq “ 0

because Φjpxq “ 1ñ p1´Φjpxq “ 0q,@x P Vj . It shows (a) and (b).
(d) Let K ĂΩ be a compact subset. As the family pViqiPNzt0u covers K so there is

a strictly positive integer m such that K Ă V1Y ¨¨ ¨YVm :“W . The equation

ψ1` ¨¨ ¨`ψi “ 1´p1´φ1q ¨ ¨ ¨ p1´φiq
`

@i P Nzt0u
˘

(B.1.1)

shows that for all x PW it comes that ψ1pxq` ¨ ¨ ¨ `ψmpxq “ 1.

Corollary B.1.2 Soit Ω Ă Rn un ouvert non vide, et pKnqnPN une suite de parties com-
pactes de Ω telle que

ď

nPN
Kn “Ω et @ n P N : Kn Ă K

˝
n`1 pl

1intérieur de Kn`1q.

Alors il existe une suite pWnqnPN de parties ouvertes de Ω et une suite pαnqnPN de
fonctions de classe C8 à valeurs réelles sur Rn telle que

@ n P N : Kn ĂWn ĂWn Ă K
˝
n`1 et αnpxq “

$

&

%

1 si x PWn,
0 si x R Kn`1,
y P r0,1s autrement.

B.2 Tougereon’s Lemma

The following Lemma is quite important for the proof of the Theorem 3.1.1 and
was taken from Jean-Claude Tougeron’s book [52, p.113, Lemme 6.1].

Lemma B.2.1 Let Ω be an open set of Rn, and pφiqiPN a sequence of smooth functions
ΩÑK. Then there is a smooth function α : RnÑ R such that

1. α takes only values between 0 and 1. Moreover αpxq “ 0 for all x RΩ, and αpxq ą 0
for all x PΩ.

2. For each nonnegative integer i the function φ1i : RnÑK defined by

φ1ipxq :“
"

φipxqαpxq if x PΩ
0 if x RΩ

is smooth.
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Proof. Let pKnqnPN be a sequence of compact sets of Rn such that

@ n P N : Kn Ă K
˝
n`1 and

ď

nPN
Kn “Ω,

let pWnqnPN be a sequence of open subsets of Ω, and let pαnqnPN be a sequence of
smooth functions RnÑ R such that

@ n P N : Kn ĂWn ĂWn Ă K
˝
n`1 and αnpxq “

$

&

%

1 si x PWn,
0 si x R Kn`1,
y P r0,1s autrement.

Recall the definition of the seminorms pK,N : C8pRn,Kq (where K Ă Rn is a com-
pact set and N is a nonnegative integer)

pK,N pf q :“maxt|Dβf pxq| | x P K, |β| ďNu (B.2.1)

where β “ pβ1, . . . ,βnq P Nn is a multi-index, |β| :“ β1` ¨¨ ¨` βn, and

Dβ :“
ˆ

B

Bx1

˙β1

¨ ¨ ¨

ˆ

B

Bx1

˙βn
.

C8pRn,Kq is known to be a locally convex topological vector space which is complete
in the sense that every Cauchy sequence converges, see e.g. [43, p.33].

It is obvious that for any two compact subsets K,K 1 and nonnegative integers
N,N 1 we always have for all f P C8pRn,Kq

if K Ă K 1 and N ďN 1 then pK,N pf q ď pK 1,N 1pf q (B.2.2)

Choose a sequence pεnqnPN of strictly positive real numbers such that

@ j P N : pKj`1,jpεjαjq ă
1
2j

and @ i ď j P N : pKj`1,jpεjαjφiq ă
1
2j

which is possible since for each nonnegative integer j there are only finitely many
seminorms involved. For each nonnegative integer N set

αpN q :“
N
ÿ

j“0

εjαj .

Clearly αpN q is smooth, has nonnegative real values, and has its support inK˝N`1 Ă

KN`1 ĂΩ. Fix i P N. Then for each nonnegative integer j the function φi,j defined
by

@ x PΩ : φi,jpxq “ φipxqαjpxq
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is clearly smooth in Ω and has compact support contained in the support of αj ,
hence in K˝j`1 Ă Kj`1 Ă Ω. It trivially follows that each φi,j can be considered as
the restriction to Ω of a smooth function φ1i,j : RnÑ K (having compact support in
K˝j`1 Ă Kj`1 ĂΩ) which is defined to be zero outside of Ω.

In the same spirit we can extend the smooth function x ÞÑ φipxqαpN qpxq to the
smooth function

φ1ipN q “
N
ÿ

j“0

εjφ
1
i,j .

having compact support in K˝N`1 Ă KN`1 ĂΩ.
Fix a nonnegative integer i. Let ε P R, ε ą 0, K Ă Rn a compact subset, and m P N.
Then there is a nonnegative integer N0 such that

1
2N0

ă ε, mďN0, and i ďN0

Then for all nonnegative integers N,p with N ě N0 we get (since for all j PN such
that N ` 1ď j we have mďN0 ďN ď j and i ďN , and supppφ1i,jq Ă K

˝
j`1 Ă Kj`1)

pK,m
`

φ1ipN`pq´φ
1
ipN q

˘

“ pK,m

¨

˝

N`p
ÿ

j“N`1

εjφ
1
i,j

˛

‚ď

N`p
ÿ

j“N`1

εjpK,m
`

φ1i,j
˘

“

N`p
ÿ

j“N`1

εjpKXKj`1,m
`

φiαj
˘

ď

N`p
ÿ

j“N`1

εjpKj`1,j
`

φiαj
˘

ă

N`p
ÿ

j“N`1

1
2j
“

1
2N

ˆ

1´
1
2p

˙

ă
1

2N
ď

1
2N0

ă ε.

It follows that for each i P N the sequence pφ1ipN qqNPN is a Cauchy sequence in
the locally convex vector space C8pRn,Kq hence converges to a smooth function
φ1i “

ř8
j“0 εjφ

1
i,j . Replacing in the above reasoning the function φi by the constant

function 1 on Ω it follows that the sequence pαpN qqNPN converges to a smooth func-
tion α : RnÑ R.

Now let x PΩ. Then there is a nonnegative integer j0 such that x P Kj0 . It follows
from the nonnegativity of all the αj that

αpxq “
8
ÿ

j“0

εjαjpxq ě εj0αj0pxq “ εj0 ą 0

showing that α takes strictly positive values on Ω. Now let x R Ω. Then for any
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multi-index β P Nn we have that

@ N P N : pDβφ1ipN qqpxq “
N
ÿ

j“0

εjpD
βφ1i,jqpxq “ 0

because each φ1i,j has compact support in Ω.
Since φ1ipN q Ñ φ1i for N Ñ 8 it follows by the continuity of differential opera-

tors that Dβφ1ipN q Ñ Dβφ1i , and hence Dβφ1ipN qpxq Ñ Dβφ1ipxq for all x P Rn by the
continuity of the delta functional δx. It follows that

@ x P RnzΩ, @ β P Nn : pDβφ1iqpxq “ 0,

and in a completely analogous manner

@ x P RnzΩ, @ β P Nn : pDβαqpxq “ 0,

which proves the Lemma.
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C. Proof of some results

In this last part of the appendix we will give the proof of some important results
that are more technical and flee a bit from the main object of the thesis.

C.1 Results from the Part I

Proposition 1.3.3

There is an adjunction of functors

KAlgMS
U

ÐÝÝÝÝÝÝÝÝÝÝÑL
KAlg

where L is the left adjoint to the above functor U such that each component ηpR,Sq
of the unit η : IKAlgMS

¨
ÝÑ UL of the adjunction satisfies the universal property a. of

the previous Proposition (1.3.1) in the general noncommutative case. We refer to L
as a localization functor.
For a given pR,Sq in KAlgMS we denote by RS the K-algebra LpR,Sq given by the
functor L, and by ηpR,Sq : RÑ RS the component of the unit of the adjunction. Then
ηpR,UpRqq : RÑ RUpRq is an isomorphism, the inverse being the component εR of the
counit ε : LU ¨

ÝÑ IKAlg of the adjunction. Moreover, every element of the K-algebra
RS is a finite sum of products of the form (η “ ηpR,Sq)

ηpr1q
`

ηps1q
˘´1

¨ ¨ ¨ηprN q
`

ηpsN q
˘´1 (C.1.1)

(which may be called ‘multifractions’) with r1, . . . , rN P R and s1, . . . , sN P S (note that
r1 or sN may be equal to the unit of R).

Proof. Recall first the following functorial presentation of a unital K-algebra by
‘generators and relations’: for a given unital K-algebra R (with unit 1R) there is
a natural surjective algebra homomorphism ε̂R : TKpRq Ñ R where TKpRq is the free
associative unital K-algebra (or tensor algebra) generated by the K-module R. Note
that the natural morphism ε̂R is just theh R-component of the counit ε̂ of the ad-
junction given by the functor TK from the category Kmod of all K-modules to the
categoryKAlg which is a left adjoint of the obvious forgetful functorKAlg toKmod.
The morphism ε̂R is determined by defining it to be the identity on the generating
module R. The kernel κpRq Ă TKpRq of ε̂R is a canonical 2-sided ideal in the free
algebra TKpRq (containing for instance r b r 1 ´ rr 1, r, r 1 P R, and 1T ´ 1R) for which
TKΦpκpRqq Ă κpR1q for any morphism of unital K-algebras Φ : RÑ R1. Hence R is
canonically presented by the ‘K-module of generators R’ and by the ‘ideal of rela-
tions κpRq’.

Next, for any object pR,Sq in KAlgMS let KS denote the free (!) K-module having
basis S, and consider the free K-algebra TK

`

R‘ KS
˘

generated by the K-module
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R‘KS. The natural K-linear injection iR : RÑ R‘KS given by iRprq “ pr,0q defines
a natural injection TK iR : TKRÑ TK

`

R‘KS
˘

. Let κpR,Sq be the two-sided ideal in
TK

`

R‘KS
˘

generated by TK iR
`

κpRq
˘

and by the subsets tps,0q b p0, sq ´ 1T | s P Su
and tp0, sq b ps,0q ´ 1T | s P Su of TK

`

R‘KS
˘

where the multiplication b and the
unit 1T are taken in the free algebra TK

`

R ‘ KS
˘

. Define the localized K-algebra
with respect to S, LpR,Sq “: RS , by the factor algebra RS :“ TK

`

R ‘ KS
˘

{κpR,Sq.
Since a morphism Φ : pR,Sq Ñ pR1,S 1q in KAlgMS clearly maps R to R1 and KS
to KS 1, the induced algebra morphism TK

`

R‘ KS
˘

Ñ TK
`

R1 ‘ KS 1
˘

maps κpR,Sq
to κpR1,S 1q, and induces hence a morphism LΦ : RS Ñ R1S1 of unital K-algebras.
It is readily checked that L is a covariant functor KAlgMS Ñ KAlg. Denoting by
πpR,Sq : TK

`

R‘KS
˘

Ñ RS the canonical projection we observe that –by construction–
for every s P S the image πpR,Sqps,0q P RS has the inverse πpR,Sqp0, sq and is thus an
invertible element of RS .

Furthermore, for any pR,Sq in KAlgMS there is a canonical map ηpR,Sq : RÑ RS
determined by the diagram

ηpR,Sq ˝ ε̂R “ πpR,Sq ˝ TK iR, hence @ r P R : ηpR,Sqprq “ πpR,Sqpr,0q, (C.1.2)

which is a well-defined morphism of K-algebras since the right hand side of this
equation vanishes on the kernel κpRq of ε̂R thanks to TK iRpκpRqq Ă κpR,Sq “ kerpπpR,Sqq.
It follows that for any s P S we have ηpR,Sqpsq “ πpR,Sqps,0q which is invertible in RS ,
hence ηpR,Sq defines a morphism pR,Sq Ñ

`

RS ,UpRSq
˘

“ ULpR,Sq in the category
KAlgMS.

Moreover, for any R in KAlg we consider the canonical K-linear map jR : R‘
KUpRq Ñ R given by jR

`

r,
řN
n“1λnsn

˘

“ r `
řN
n“1λns

´1
n for any r P R, λ1, . . . ,λn P

K , and s1, . . . , sn P UpRq, and its induced morphism of K-algebras TK jR : TKpR ‘
KUpRqq Ñ TKR. Note that jR ˝ iR “ idR. There is a canonical K-linear map εR :
RUpRqÑ R defined by the diagram

εR ˝πpR,UpRqq “ ε̂R ˝ TK jR.

This is a well-defined morphism of K-algebras since the right hand side ε̂R ˝ TK jR
vanishes on the generators of the ideal κpR,UpRqq: this is clear for TK iRpκpRqq, and
ps,0qbp0, sq´1T is first mapped to psbs´1q´1T by TK jR, and then clearly annihilated
by ε̂R.

It is readily seen that the collection η of all the maps ηpR,Sq defines a natural
transformation IKAlgMS

¨
ÝÑ UL, and the collection ε of all the maps εR defines a

natural transformationLU ¨
ÝÑ IKAlg. Moreover, the identity jR˝iR “ idR immediately

shows the identity
εR ˝ ηpR,UpRqq “ idR

by a combination of the above two diagrams. This implies the categorical equation
pUεRq ˝ pηURq “ idUR which is the first equation of eqn (8) in [32, p.82], and if R is
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replaced by some localized algebra RS w.r.t. some multiplicative S Ă R in the above
equation we get the categorical equation εLpR,Sq ˝ LηpR,Sq “ idLpR,Sq which is the
second equation of equation p8q of [32, p.82]. It follows now from [32, p.83, Thm
2.(v)] that L is a left adjoint of U with unit η and counit ε.

Finally, for any r P R and s P UpRq we have piR ˝ jRqpr, sq “ pr ` s´1,0q: since
πpR,Sqp0, sq is the inverse of πpR,Sqps,0q as is πpR,Sqps´1,0q we have p0, sq ´ ps´1,0q P
kerpπpR,Sqq “ κpR,Sq showing that ηpR,UpRqq ˝ εR “ idRUpRq by a combination of the
above first and second diagram. It follows in addition that εR is a natural isomor-
phism RUpRq Ñ R with inverse ηpR,UpRqq. This proves the the first statement of the
Proposition since units and counits of adjunctions are automatically universal. In
order to prove formula (C.1.1) we observe that each element of RS is a finite sum
of elements of images (under πpR,Sq) of words in TKpR‘KSq consisting of letters of
the form pr,0q or p0, sq with r P R and s P S. We clearly have (writing π “ πpR,Sq) for
all r, r 1 P R: π

`

pr,0qbpr 1,0q
˘

“ πpr,0qπpr 1,0q “ πprr 1,0q (since TK iRpκpRqq Ă κpR,Sq).

Moreover, for all s, s1 P S: π
`

p0, sqbp0, s1q
˘

“ πp0, sqπp0, s1q “
`

πps,0q
˘´1`

πps,0q
˘´1

“
`

πps1,0qπps,0q
˘´1

“ pπps1s,0qq´1 “ πp0, s1sq, which shows that it suffices to take
words where the generators pr,0q and p0, sq are alternating. Now πpr,0q “ ηprq and
πp0, sq “

`

ηpsq
˘´1 which proves formula (C.1.1).

Theorem 1.3.8

Let R be a unital K-algebra and S Ă R be a multiplicative subset. Then the fol-
lowing is true:

1. The K-algebra R has a right K-algebra of fractions ŘS with respect to the mul-
tiplicative subset S if and only if S is a right denominator set.

2. If this is the case each such pair pŘS , η̌q is universal in the sense of diagram
(1.3.2) and each ŘS is isomorphic to the canonical localized algebra RS of
Proposition 1.3.3.

3. Each ŘS is isomorphic to the quotient set RS´1 :“ pRˆ Sq{ „ with respect to
the following binary relation „ on Rˆ S

pr1, s1q „ pr2, s2q ô Db1,b2 P R such that s1b1 “ s2b2 P S and r1b1 “ r2b2 P R
(C.1.3)

which is an equivalence relation generalizing relation (1.2.1). Moreover, RS´1

carries a canonical unital K-algebra structure, i.e. addition and multiplication
on equivalence classes r1s

´1
1 and r2s

´1
2 (with r1, r2 P R and s1, s2 P S) is given

by

r1s
´1
1 ` r2s

´1
2 “ pr1c1` r2c2qs

´1, and pr1s
´1
1 qpr2s

´1
2 q “ pr1r

1qps2s
1q´1 (C.1.4)

146



C.1. Results from the Part I

where we have written s1c1 “ s2c2 “ s P S (with c1 P S and c2 P R) and
r2s

1 “ s1r
1 (with s1 P S and r 1 P R) using the right Ore property.The numer-

ator morphism ηI : RÑ RS´1 is given by ηIprq “ r1´1 for all r P R.

Proof. We shall write RP for the property ‘right permutable’ pii.aq and RR for the
property ‘right reversible’ pii.bq:

1. “pi.q ùñ pii.q”.
Indeed, in order to see Property pa.q of Definition 1.3.4, given r P R and s P S

we can write the element
`

η̃psq
˘´1

η̃prq in the form η̃pr2q
`

η̃ps2q
˘´1 for some r2 P R

and s2 P S according to Property pi.bq of Definition 1.3.4. So we have η̃prqη̃ps2q “
η̃psqη̃pr2q implying η̃prs2 ´ sr2q “ 0, and therefore –according to Property pc.q of
Definition 1.3.4– it follows that there is s3 P S such that prs2 ´ sr2qs3 “ 0 whence
rps2s3q “ spr2s3q which shows pii.aq.

In order to see Property pb.q of Definition 1.3.4, given r P R and s1 P S with s1r “ 0,
then 0 “ η̃ps1qη̃prq, hence 0 “ η̃prq since η̃ps1q is invertible. By Property pi.cq of
Definition 1.3.4 there is s P S with rs “ 0, proving pii.bq. ∇

By the preceding implication we have seen that the fact that S is a right denomi-
nator set is necessary for the two other statements in the Theorem. Before we prove
the converse implication “pi.q ðù pii.q” of part 1. and the two other parts we
shall first look at general S-inverting morphisms RÑ R1 and come to an embedding
statement from which the rest of the Theorem will easily follow. We shall proceed
in several steps:

We suppose that S is a right denominator set.
I. Suppose that R1 is another unital K-algebra and α : RÑ R1 is an S-inverting

morphism of unital K-algebras. We shall denote by Jα “ J the kernel of α, a two-
sided ideal of R. Clearly, if r P IpR,Sq then there is s P S such that rs “ 0, hence
0“ αprqαpsq, hence 0“ αprq whence we always have the inclusion

IpR,Sq Ă Jα . (C.1.5)

Consider the map

pα : Rˆ SÑ R1 : pr, sq ÞÑ αprq
`

αpsq
˘´1

.

I.1 The equivalence relation „J on R ˆ S given by pr1, s1q „J pr2, s2q iff pαpr1, s1q “
pαpr2, s2q only depends on the two sided ideal Jα Ă R and is equivalent to

pr1, s1q „J pr2, s2q ðñ D c1, c2 P R : s1c1 “ s2c2 P S and r1c1´ r2c2 P Jα . (C.1.6)

We shall denote the equivalence class of pr, sq P Rˆ S by the ‘right Jα-fraction prs´1qJ ’.
Indeed, „J is an equivalence relation by definition whose classes are the fibres of
pα. Suppose first that pr1, s1q „J pr2, s2q. Then αpr1q “ αpr2q

`

αps2q
˘´1

αps1q. An
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application of RP on the pair ps1, s2q P Rˆ S yields the existence of a pair pr 1, s1q P
Rˆ S with s1s1 “ s2r 1 which is in S since s1s1 is. Applying α gives

`

αps2q
˘´1

αps1q “

αpr 1q
`

αps1q
˘´1, and therefore

αpr1s
1q “ αpr2r

1q ùñ s1s
1 “ s2r

1 P S and r1s
1´ r2r

1 P Jα

implying the existence of c1 “ s
1 and c2 “ r

1 such that the condition of the r.h.s. of
eqn C.1.6 is satisfied. In order to prove the other implication note first the follow-
ing important property of ‘multiplying numerator and denominator by the same
element from the right’: let pr, sq P Rˆ S and suppose that there is c P R such that
sc P S. It follows that αpscq is invertible in R1 whence

αprq
`

αpsq
˘´1

αpscq “ αprq
`

αpsq
˘´1

αpsqαpcq “ αprcq ùñ αprq
`

αpsq
˘´1

“ αprcq
`

αpscq
˘´1

.
(C.1.7)

Suppose now that there are c1, c2 P R such that the r.h.s. of eqn C.1.6 holds. By the
preceding equation (C.1.7) we get

αpr1q
`

αps1q
˘´1

“ αpr1c1q
`

αps1c1q
˘´1

“ αpr2c2q
`

αps2c2q
˘´1

“ αpr2q
`

αps2q
˘´1

implying that pr1, s1q „J pr2, s2q. Thanks to eqn (C.1.6) the relation „J only depends
on Jα. ∇
The following reasoning will be used quite often:
I.1a Let ζ : RÑ R1 be another S inverting morphism of unital K-algebras such that each
element of R1 is equal to a right fraction ζprq

`

ζpsq
˘´1. If f ,g : R1 Ñ R1 are morphisms

of unital K-algebras such that α “ f ˝ ζ and α “ g ˝ ζ then f “ g.
Indeed we get for any pr, sq P Rˆ S the following equation proving f “ g:

f
´

ζprq
`

ζpsq
˘´1

¯

“ pf ˝ ζqprq
`

pf ˝ ζqpsq
˘´1

“

“ αprq
`

αpsq
˘´1

“ pg ˝ ζqprq
`

pg ˝ ζqpsq
˘´1

“ g
´

ζprq
`

ζpsq
˘´1

¯

I.2 The quotient set RS´1
J :“ pRˆSq{ „J carries a unique structure of a unital K-algebra

(only depending on Jα) isomorphic to the subalgebra αpRqαpSq´1 :“ tαprqαpsq´1 | pr, sq P
RˆSu of R1 by the injective morphism of unital K-algebras fα : RS´1

J Ñ R1 induced by the
map pα. Moreover, there is an S-inverting morphism ηJ : RÑ RS´1

J of unital K-algebras
–only depending on Jα– such that α “ fα ˝ηJ . The morphism ηJ satisfies properties pi.a.q
and pi.b.q of Definition 1.3.4 having kernel kerpηJq “ Jα.
Any other morphism of unital K-algebras φ : RS´1

J Ñ R1 satisfying α “ φ˝ηJ is equal to
fα.

Indeed, the map pα descends to a set-theoretical injection fα of the quotient set
RS´1

J onto the subset αpRqαpSq´1 of R1 by definition of the equivalence relation „J .
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Let pr1, s1q and pr2, s2q be two elements in RˆS. Applying RP on the pair ps1, s2q we
get r 1 P R and s1 P S such that s1s1 “ s2r 1 “: s P S, and the application of RP on the
pair pr2, s1q gives us pr2, s2q P Rˆ S such that r2s2 “ s1r2. We compute

fα
`

pr1s
´1
1 qJ

˘

` fα
`

pr2s
´1
2 qJ

˘

“ pαpr1, s1q` pαpr2, s2q “ αpr1q
`

αps1q
˘´1

`αpr2q
`

αps2q
˘´1

“ αpr1s
1` r2r

1q
`

αpsq
˘´1

“ fα
´

`

pr1s
1` r2r

1qs´1˘

J

¯

,

showing that the subset αpRqαpSq´1 of R1 is closed under addition, and using the
inverse of the corestriction of fα to the r.h.s. of the above equation we see that the
formula

pr1s
´1
1 qJ `pr2s

´1
2 qJ :“

`

pr1s
1` r2r

1qs´1˘

J (C.1.8)

equips RS´1
J with a well-defined addition (only depending on Jα) such that fα :

RS´1
J Ñ R1 is an additive map. Similarly, replacing addition in R1 by multiplication

in the above reasoning we show that the subset αpRqαpSq´1 of R1 is a unital K-
subalgebra, and that the following multiplication

pr1s
´1
1 qJpr2s

´1
2 qJ :“

`

pr1r
2qps2s

2q´1˘

J (C.1.9)

(which only depends on Jα) together with the above addition (C.1.8) equips RS´1
J

with the structure of a unitalK-algebra (with zero element p01´1qJ and unit element
p11´1qJ ) isomorphic to the subalgebra αpRqαpSq´1 via fα which turns out to be a
morphism of unital K-algebras RS´1

J Ñ R1. Moreover, since fα
`

ps1´1qJ
˘

“ αpsq and

fα
`

p1s´1qJ
˘

“
`

αpsq
˘´1 we can infer from the injectivity of fα that p1s´1qJ P RS

´1
S is

the inverse of ps1´1qJ for each s P S. Note that addition (C.1.8) and multiplication
(C.1.9) are already very similar to the –still to be proved– formulas (??) in statement
3. of the Theorem.
The map ηJ is defined by ηJprq :“ pr1´1qJ for all r P R. It follows that fα

`

ηJprq
˘

“

pαpr,1q “ αprq. Since fα is an injective morphism of unital K-algebras it follows that
ηJ is a morphism of unital K-algebras whose kernel is equal to to Jα, the kernel of α.
Since the inverse of ηJpsq “ ps1´1qJ has been computed to be p1s´1qJ it follows that
ηJ is S-inverting (property pi.aq of Definition ?? for the pair

`

RS´1
J ,ηJ

˘

). Moreover,
observing that in formula (C.1.9) for the particular case s1 “ 1 we can choose s2 “ 1
and r2 “ r2 getting

pr11´1qJpr2s
´1
2 qJ “

`

pr1r2qs
´1
2

˘

J ùñ prs´1qJ “ pr1
´1qJp1s

´1qJ “ ηJprq
`

ηJpsq
˘´1

,

proving property pi.bq of Definition 1.3.4 for the pair
`

RS´1
J ,ηJ

˘

. The final state-
ment follows from I.1a. ∇
I.3. Let J1 Ă J2 Ă R be two two-sided ideals of R which both are kernels of S-inverting
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unital K-algebra morphisms. Then there is a unique morphism θ21 : RS´1
J1
Ñ RS´1

J2
of

unital K-algebras such that ηJ2 “ θ21 ˝ ηJ1 .
Indeed, since J1 Ă J2 for any two pairs pr1, s1q,pr2, s2q P Rˆ S we have the impli-
cation pr1, s1q „J1 pr2, s2q ùñ pr1, s1q „J2 pr2, s2q. This gives a canonical map θ21 :
pRS´1qJ1 Ñ pRS´1qJ2 on quotient sets sending the class prs´1qJ1 to the ‘bigger’ class
prs´1qJ2 clearly satisfying ηJ2 “ θ21 ˝ ηJ1 . Upon using formulas (C.1.8) and (C.1.9) it
is easy to see that θ21 is a morphism of unital K-algebras which is unique by I.1a.

∇
II. The preceding considerations in I. work well for those two-sided ideals in R

which are kernels of S-inverting morphisms. According to eqn (C.1.5) those ideals
all contain IpR,Sq of which we shall now describe the structure.
II.1. IpR,Sq is a two-sided ideal of the K-algebra R which is contained in the kernel Iα of
any S-inverting morphism α : RÑ R1 (see also [29, Exercise 0., p.317]):

Indeed, I is obviously closed by left multiplications with any element of R. Let
r1, r2 P I , then there are s1, s2 P S with r1s1 “ 0 and r2s2 “ 0. Clearly pr1`r2qs1 “ r2s1.
Then RP on ps1, s2q yields the existence of pr 1, s1q P Rˆ S with s1s

1 “ s2r
1, whence

pr1` r2qs1s
1 “ r2s1s

1 “ r2s2r
1 “ 0, hence r1` r2 P I . Thirdly, let r P I and r̂ P R. There

is s P S with rs “ 0. RP on the pair pr̂ , sq yields the pair pr2, s2q P Rˆ S such that
r̂s2 “ sr2. It follows that rr̂s2 “ rsr2 “ 0 whence rr̂ P I proving that I is also a right
ideal.

∇
We shall denote by R the factor algebra R{IpR,Sq, by π : RÑ R the canonical pro-

jection, and by S “ πpSq.
II.2. The subset S of the factor algebra R is a multiplicative subset satisfying RP and
does not contain right or left divisors of zero which implies RR (see also [29, Exercise
1., p.317]):

Indeed, since π is a surjective morphism of unital K-algebras it is immediate that
the subset S is multiplicative and satisfies RP. Next, if there are r P R and s P S with
0 “ πprqπpsq “ πprsq then rs P I . Hence there is ŝ P S with 0 “ rsŝ, whence r P I and
πprq “ 0. On the other hand if there are r P R and s1 P S with 0 “ πps1qπprq “ πps1rq
then s1r P I whence there is s2 P S with s1rs2 “ 0, and according to RR there is s3 P S
such that 0“ rs2s3, and it follows that r P I , hence πprq “ 0.

∇
III. In this principal part of the proof we shall show the existence of a unital K-

algebra R1 together with an S-inverting injection R Ñ R1. This will imply the key
result that the important two-sided ideal IpR,Sq is also the kernel of an S-inverting
morphism RÑ R1.
R is a right R-module by means of its multiplication. Let E be a right R-module
which is an injective hull of the right R-module R: recall that this means that R is a
right R-submodule of E, that E is injective in the sense that for each right R-module
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M and R-submoduleM 1 ĂM each morphism of right R-modules ζ :M 1Ñ E can –in
general not uniquely– be extended to a morphism ζ̃ : M Ñ E of right R-modules,
and that R Ă E is a large submodule in the sense that any submodule N of E such
that N X R “ t0u has to be trivial, N “ t0u. For each a P R let la : R Ñ R denote
the left multiplication lapa

1q “ aa1 (for all a1 P R) which obviously is a morphism
of right R-modules. Since E is injective every la : R Ñ R Ă E has at least one –in
general nonunique– extension l̃a : E Ñ E as a morphism of right R-modules. Then
the following holds:
III.1. te P E | D t P S : et “ 0u “ t0u. Indeed, let N denote the left hand side of
this equation, and let e1, e2 P N . There are t1, t2 P S such that e1t1 “ 0 and e2t2 “ 0.
Clearly pe1 ` e2qt1 “ e2t1. Then RP on pt1, t2q yields the existence of pa1, t1q P Rˆ S
with t1t1 “ t2a1, whence pe1`e2qt1t

1 “ e2t1t
1 “ e2t2a

1 “ 0, hence e1`e2 PN . Let e PN
and a P R. Then there is t P S with et “ 0. An application of RP to the pair pa, tq
yields pa2, t2q P RˆS with at2 “ ta2 whence eat2 “ eta2 “ 0 which shows ea PN , and
N is a right R-submodule of E. Since S does not contain any right divisor of zero,
N XR“ t0u, hence N “ t0u because R is a large submodule of E.

∇
III.2. For each t P S: every extension l̃t : EÑ E of lt is an invertible morphism of right

R-modules. Indeed, let Kt denote the kernel of l̃t. It clearly is a right R-submodule
of E, and Kt X R “ ta P R | 0 “ l̃tpaq “ tau, but the latter vanishes according to
II.2.. Since R is large, Kt vanishes, and l̃t is injective. Let Mt Ă E be the image of l̃t.
Then the corestriction of l̃t to Mt has an inverse χt : Mt Ñ E which is a surjective
morphism of right R-modules. Since E is injective, there is an extension χ̃t : EÑ E
of χt as a surjective morphism of right R-modules. It follows that χ̃t ˝ l̃t “ idE
whence the morphism Pt “ l̃t ˝ χ̃t is a projection, i.e. Pt ˝ Pt “ Pt, onto Mt. This also
follows from injectivity, see [29, Prop.(3.4)(2), p.61]. LetQt be the kernel of Pt. Then
there is the direct sum of right R-modules E “Mt ‘Qt. Let a P Qt XR. Applying
RP to the pair pa, tq we get a pair pa1, t1q P Rˆ S such that at1 “ ta1. Since Qt X R
is a right R-submodule of E it follows that at1 P Qt XR, but at1 “ ta1 “ ltpa

1q P Mt,
whence at1 P RXQt XMt “ t0u thanks to the above direct sum. Hence at1 “ 0, and
by II.2. it follows a “ 0 whence Qt XR “ t0u, and finally Qt “ t0u because R was a
large submodule of E. Hence Mt “ E, hence l̃t is surjective and therefore invertible.

∇
The remaining problem in the preceding paragraph is the possible nonunique-

ness of the extensions of left multiplications of R to E: two such extensions may
a priori differ by a morphism of right R-modules EÑ E vanishing on R. In order to
cope with that we consider the following subsets of the K-algebra H :“ HomRpE,Eq
of all right R-module morphisms EÑ E:

B :“ tϕ P H | D a P R : ϕpa1q “ aa1 “ lapa
1q @ a1 P Ru,

I :“ tϕ P H | ϕpa1q “ 0 @ a1 P Ru,
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R :“ unital K´subalgebra of H generated by B and by tϕ P H | D t P R : ϕ “ l̃´1
t u.

By definition, B is a K-subalgebra of H consisting of all the extensions of left
multiplications, and I –which obviously is a left ideal in H– is contained in B and
hence in R. I ‘measures’ the nonuniqueness of the extensions. We can now show
the desired embedding:

III.3. I is a two-sided ideal of R, and the prescription β : RÑ R1 :“ R{I defined by
a ÞÑ l̃a mod I is a well-defined injective S-inverting morphism of unital K-algebras.

Indeed, it remains to show that I is a right ideal in R: let ψ P I, ϕ PB (restricting
to lâ for some â P R on the submodule R of E), t P S, and a P R. Then ψ

`

ϕpaq
˘

“

ψpâaq “ 0, whence ψ ˝ϕ P I. Moreover apply RP to the pair pa, tq in order to get a
pair pa1, t1q P Rˆ S with at1 “ ta1. Then

´

ψ
`

l̃´1
t paq

˘

¯

t1 “ ψ
`

l̃´1
t pat1q

˘

“ ψ
`

l̃´1
t pta1q

˘

“ ψ
´

l̃´1
t

`

l̃tpa
1q
˘

¯

“ ψpa1q “ 0

which implies –according to III.1.– that
`

ψ ˝ l̃´1
t

˘

paq “ 0, and since the above rea-
soning works for any a P R we have ψ ˝ l̃´1

t P I for all t P R. Since R is generated
by ϕ P B and all l̃´1

t it follows that I is a two-sided ideal in R, and that hence the
factor algebra R1 is well-defined. Let $ : R Ñ R1 the canonical projection. Since
two extensions l̃a and l̃1a of the left multiplication la, a P R, differ by an element of
I it follows that the map β : RÑ R1 is well defined satisfying βpaq “ $pl̃aq. For any
a1, a2 P R we have

βpa1` a2q “ $
`

l̃a1`a2

˘

“$
`

l̃a1

˘

`$
`

l̃a2

˘

`$
`

l̃a1`a2
´ l̃a1

´ l̃a2

˘

“ βpa1q` βpa2q` 0

since the restriction of l̃a1`a2
´ l̃a1

´ l̃a2
to R clearly vanishes whence this map belongs

to I. Likewise it is shown that βpa1a2q “ βpa1qβpa2q upon noting that l̃a1a2
´ l̃a1

˝ l̃a2

belongs to I. It follows that β is a morphism of unital K-algebras. Let ǎ P kerpβq.
Then l̃ǎ P I whence in particular 0 “ l̃ǎp1Rq “ ǎ showing that β is injective. Finally,
let t P S and choose an extension l̃t. According to III.2. there is an inverse l̃´1

t of the
map l̃t which by construction is in R. If τ :“$

`

l̃´1
t

˘

then

βptqτ “$
`

l̃t
˘

$
`

l̃´1
t

˘

“$
`

l̃t ˝ l̃
´1
t

˘

“$
`

idE
˘

“ 1R1

and likewise τβptq “ 1R1 showing that each βptq is invertible in R’. ∇
III.4. There is an S-inverting morphism of unital K-algebras α : RÑ R1 whose kernel
equals IpR,Sq. It follows that the kernel of ηI is equal to I “ IpR,Sq.
Indeed, the composition α “ β˝π does the job since the kernel of π equals IpR,Sq and
β is injective. ∇

We can now define the following: according to III.4 the unital K-algebra pRS´1qI
together with the S-inverting morphism ηI : RÑ pRS´1qI having kernel I “ IpR,Sq
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is well-defined. We shall call it RS´1. It clearly satisfies all three properties pi.a.q,
pi.b.q, and pi.c.q of Definition 1.3.4 according to I.2 and III.4 whence it constitutes
(together with ηI ) a right K-algebra of fractions which proves the more difficult
implication “pi.q ðù pii.q” in Definition 1.3.4, and therefore part 1 of the Theorem
is proved.

The relation „ (see eqn (1.3.4)) in part 3 of the Theorem is equal to „I : indeed,
if two pairs pr1, s1q and pr2, s2q are equivalent w.r.t. „I then there are c1, c2 P R with
s1c1 “ s2c2 P S and r1c1´r2c2 P I , hence there is s P S with r1c1s “ r2c2s, and of course
s1c1s “ s2c2s P S whence they are equivalent w.r.t.„ (upon setting b1 “ c1s,b2 “ c2s).
The other implication is trivial since 0 P I . This proves part 3. of the Theorem
except for the universality statement. We shall abbreviate the equivalence classes
by prs´1qI by rs´1.

Let α : RÑ R1 any S-inverting morphism of unital K-algebras with kernel Jα “ J .
By I.2 α factorizes as α “ fα˝ηJ (with unique morphism fα : RS´1

J Ñ R1), and thanks
to I.3 (setting J1 “ I and J2 “ J) there is a unique morphism of unital K-algebras
θ21 : RS´1 Ñ RS´1

J with ηJ “ θ21 ˝ ηI whence α “ pfα ˝θ21q ˝ ηI . The uniqueness of
composition φ :“ pfα ˝θ21q in the preceding equation follows from I.1a. Hence the
pair pRS´1,ηIq is universal in the sense of diagram (1.2.6) proving 3. for RS´1.

Finally, let pŘS , η̌q be a right K-algebra of fractions of R. By hypothesis η̌ is
S-inverting. Thanks to I.2 there is a unique morphism of unital K-algebras fη̌ :
RS´1 Ñ ŘS satisfying η̌ “ fη̌ ˝ ηI . Since by hypothesis ŘS is equal to its subalgebra

η̌pRq
`

η̌pSq
˘´1 it follows that fη̌ is surjective, and the fact that the kernel of both η̌

and ηI is equal to I shows that fη̌ is an isomorphism, thus proving universality of
the pair pŘS , η̌q and therefore the first statement in part 2. of the Theorem.
Now, both pairs pRS´1,ηIq and pRS ,ηq are universal with respect to diagram (1.2.6)
by the preceding reasoning and thanks to Proposition 1.3.3. It follows that there
are two unique morphisms of unital K-algebra, φ : RS´1 Ñ RS and ψ : RS Ñ RS´1

satisfying η “ φ ˝ ηI and ηI “ ψ ˝ η. Hence the morphism of unital K-algebras
φ ˝ψ : RS Ñ RS is the identity on the image of η, and using the fact that each el-
ement of RS is a sum of multifractions (see (C.1.1)) it follows that φ ˝ ψ “ idRS .
Likewise the morphism of unital K-algebras ψ ˝φ : RS´1 Ñ RS´1 is the identity on
the image of ηI , and since every element of RS´1 is a right fraction it follows that
ψ˝φ“ idRS´1 proving that RS´1 is isomorphic to RS which finishes the proof of the
Theorem.
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C.2 Results from the Part II

Proof of Proposition 5.1.11

Proof. Eqn (5.1.20) is proved by induction on the tensorial degree of b, the case of
degree 0 being obvious, and the case of degree 1 follows from the fact that ν inter-
twines the connection on X and the connection ∇VbAW on V bAW , and the property
(5.1.6) of the latter. Let b P TApLq have tensor degree less or equal than n and x P L,
then for all v P V and w P W we get –since ν and the shuffle comultiplication in
TApLq are connection preserving–

∇Xxb
`

νpvbAwq
˘

“ ∇Xx
´

∇Xb
`

νpvbAwq
˘

¯

´∇X∇xpbq
`

νpvbAwq
˘

Ind.hyp.
“

ÿ

pbq

∇Xx
´

ν
`

∇Vbp1qpvqbA ∇
W
bp2qpwq

˘

¯

´
ÿ

p∇xpbqq
ν
`

∇V
p∇xpbqqp1q

pvqbA ∇Wp∇xpbqqp2qpwq
˘

n“1,p5.1.6q
“

ÿ

pbq

ν
´

`

∇Vx p∇Vbp1qpvqq
˘

bA
`

∇Wbp2qpwq
˘

¯

`
ÿ

pbq

ν
´

`

∇Vbp1qpvq
˘

bA
`

∇Wx p∇Wbp2qpwqq
˘

´
ÿ

pbq

ν
`

∇V∇xpbp1qqpvqbA ∇
W
pbqp2qpwq

˘

´
ÿ

pbq

ν
`

∇Vbp1qpvqbA ∇
W
∇xpbp2qq

pwq
˘

“
ÿ

pbq

ν
´

`

∇Vxbp1qpvqq
˘

bA
`

∇Wbp2qpwq
˘

¯

`
ÿ

pbq

ν
´

`

∇Vbp1qpvq
˘

bA
`

∇Wxbp2qpwqq
˘

“
ÿ

pxbq

ν
´

`

∇V
pxbqp1qpvqq

˘

bA
`

∇W
pxbqp2qpwq

˘

¯

,

proving the induction and hence the stated equation (5.1.20).
Moreover the eqs (5.1.21) and (5.1.22) are immediate consequences. In order to
prove eqn (5.1.23) we have to replace V by the A-module HomApV ,W q with con-
nection ∇HpV ,W q, W by the A-module HomApW,Xq with connection ∇HpW,Xq, and
X by the A-module HomApV ,Xq with connection ∇HpV ,Xq. Equation (5.1.7) and
(5.1.9) show that the composition ˝ : HomApW,Xq bA HomApV ,W q Ñ HomApV ,Xq
is A-bilinear and connection preserving. Finally the evaluation map can be seen
as an A-linear map HomApV ,W q bA V Ñ W , and the main statement (5.1.20) will
give statement (5.1.24). By an easy induction over the tensorial degree of b1 with
εpb1q “ 0 it is shown that if ϕ is connection preserving then ∇HpV ,W q

b1 pϕq “ 0. Then
statement (5.1.24) will imply the last statement eqn (5.1.25) since bp1q can be re-
placed by εpbp1qq1 and the result follows thanks to b “

ř

pbq εpb
p1qqbp2q.
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