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autant aux bons moments passés ensemble le midi, à la pause café, à la pause
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passé ensemble au labo. Thanks Vasiliy for the good time spent together. Tanish
c’est maintenant toi le thésard senior, c’est dingue comme ça passe vite . . . Ça a
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Abstract

This thesis manuscript presents experiments realized with ultracold atomic gases
of dysprosium. This chemical element has specific properties such as a large spin
J = 8 and tunable light-spin couplings originating from significant tensor light-shift
contributions close to resonance.

An overview of the experimental setup is given, from the magneto-optical trap
with a Doppler temperature limit on the order of a few µK to the last stage of evap-
orative cooling. In particular we present the in-trap Doppler cooling step showing
the effect of the tensor light-shift on the atom trapping. Details on the use of spatial
modulation to tune the shape of an optical dipole trap are also given.

In the second part we detail the manipulation of spin states obtained from ul-
tracold atomic clouds. Light-induced spin squeezing is realized and used to prepare
squeezed and 'oversqueezed' states as well as Schrödinger cat states. The magnetic
sensitivity of these states is characterized using Ramsey spectroscopy. We provide
a reconstruction of the Husimi function of the different states deduced from popu-
lation measurements along various directions. These measurements also allow us to
compute the purity of the prepared states.

While spin squeezing initially induces an increase of metrological gain, we ob-
serve a strong contrast reduction of the Ramsey oscillations for oversqueezed states
obtained from the squeezing evolution at longer times. We introduce the Hellinger
distance between two states which can be used to generalize the notion of metrologi-
cal gain. The sensitivity is measured using this method and we show that it saturates
the Cramér-Rao bound. The Husimi and Wigner functions of an oversqueezed state
are experimentally measured and constitute to some extent a visualization of the
Majorana stellar representation of a spin J as a sum of 2J spins 1/2. Finally this
analogy is used to study a system of 16 interacting indistinguishable spins 1/2.

In the third part we present a proposal of a project that was not realized experi-
mentally but could be performed in the future on our setup. It consists in measuring
pairwise entanglement of spin states from photon absorption measurements, show-
ing the intrinsic difference between multipartite entanglement and reduced pairwise
entanglement.

We also introduce two projects that can be viewed as the addition of spatial
degrees of freedom to light-induced spin squeezing. The first one consists in the
realization of a system analogous to the Landau Hamiltonian of a charged particle
in a magnetic field, with one spatial dimension and one synthetic dimension using
the internal state of the atoms. The second project uses two spatial dimensions and
exhibits an artificial magnetic field originating from position-dependent light-shifts.



Résumé

Ce manuscrit de thèse est consacré à des expériences réalisées à partir de gaz
d’atomes de dysprosium ultrafroids. Cet élément chimique possède des propriétés
physiques particulières comme un grand moment angulaire J = 8 ou bien une com-
posante tensorielle du déplacement lumineux significative à proximité de résonance.

Nous donnons tout d’abord un aperçu du dispositif expérimental, depuis l’étape
de piégeage magnéto-optique jusqu’au refroidissement par évaporation. La mod-
ulation spatiale permettant de contrôler la forme d’un piège optique est détaillée,
ainsi que le rôle du déplacement lumineux tensoriel dans l’étape de refroidissement
Doppler dans un piège optique.

La seconde partie est dédiée à la préparation d’états de spin à partir de nuages
froids. La partie tensorielle du déplacement lumineux est utilisée pour préparer des
états comprimés et 'surcomprimés' ainsi que des états chats de Schrödinger. La
sensibilité magnétique de ces états est mesurée à l’aide de séquences de Ramsey
et permet de calculer le gain métrologique. La fonction de Husimi est reconstruite
expérimentalement à partir de mesures de population dans différentes directions, ce
qui permet aussi de déterminer la pureté des états préparés.

Les états comprimés ont effectivement une sensibilité accrue, mais on observe
pour les états surcomprimés une forte diminution du contraste des oscillations de
Ramsey. L’utilisation de la distance de Hellinger permet de quantifier la différence
entre deux états proches et ainsi donner une nouvelle définition du gain métrologique.
Dans ce contexte la limite de Cramér-Rao est atteinte et la sensibilité des états
surcomprimés est supérieure à celle des états comprimés. Les fonctions de Husimi
et Wigner pour un état surcomprimé rendent visible la représentation stellaire de
Majorana qui consiste à représenter l’état d’un spin J par 2J points sur la sphère,
équivalents à des spins 1/2. Cette analogie nous permet de réaliser un système de
16 spins 1/2 indistinguables en interaction.

Dans une troisième partie nous nous intéressons à un projet qui n’a pas été
réalisé en pratique. L’idée est de mesurer l’intrication de paire pour les états d’un
spin J à l’aide de probabilités d’absorption de photons. La différence de nature
entre l’intrication multipartite et l’intrication de paire est ainsi rendue manifeste.

En conclusion sont présentés deux projets qui consistent en l’ajout de degrés de
libertés externes à la dynamique des degrés de liberté internes. Dans le premier
cas est réalisé un système analogue à l’Hamiltonien de Landau pour une particule
chargée dans un champ magnétique, avec une dimension d’espace et une dimen-
sion synthétique. Dans le second cas, deux dimensions d’espace sont utilisées et
la présence d’un déplacement lumineux dépendant de la position réalise un champ
magnétique artificiel.
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Introduction

Cold atoms physics

The term quantum mechanics was introduced for the first time in 1924 by M.
Born [1], this word being based on the notion of ’quanta’ invented by M. Planck
in 1900 [2]. This theory based on a limited set of (sometimes counter-intuitive)
assumptions proved to be very powerful at describing the interactions between atoms
and electromagnetic fields at the microscopic level. Over the course of the 20th
century, new discoveries were accompanied by technical advances such as the first
maser in 1953 [3] and then the development of lasers which has been of extreme
importance in technological breakthroughs.

In particular, the advent of laser led to the development of the cold atom com-
munity which has had a major impact in the scientific community. This field of
research was recognized with the Nobel prize of Physics attributed to S. Chu, C.
Cohen-Tannoudji and W. Phillips in 1997 for the development of methods to cool
and trap atoms with laser light. It was soon followed by the observation of the first
gaseous Bose-Einstein condensate [4, 5] in 1995 which led to the attribution of the
2001 Physics Nobel prize to E. Cornell, C. Wieman and W. Ketterle in 2001.

These developments opened the door for high-precision quantum metrology, no-
tably frequency/time sensing with atomic clocks. The uncertainty achieved with
these devices went down from a value of 10−10 in the 1960s based on a hyperfine
transition of cesium to 2× 10−18 for the most recent optical clocks [6], developed in
the group of J. Ye.

Secondly, the ability to trap and cool atoms, as well as the high degree of precision
and control of these systems allowed for a new approach to understanding compli-
cated systems : quantum simulation, an idea attributed to Richard Feynman [7]. It
consists in experimentally realizing a theoretical model that cannot be solved an-
alytically or numerically in order to get an insight of the physical effects at play.
It is especially useful in the case of many-body interacting systems where classical
computers cannot keep up with the high degree of complexity. Cold atoms prove
to be a convenient toolbox to realize such systems thanks to a variety of tunable
parameters [8]. In particular the physics of the BEC-BCS crossover involving inter-
acting fermions in the unitary regime was successfully studied with cold atoms [9,
10]. A key goal in condensed-matter physics is the understanding of the physics
of high-Tc superconductors and whether or not it is well described by the Fermi-
Hubbard model [11]. The experimental study of this model and its phase diagram
with cold atoms [12] constitutes a step in this direction. In a general way artificial
gauge fields are a powerful tool to realize theoretical models of condensed-matter
physics with cold atoms [13], especially for systems where topological properties are
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expected [14].

Thirdly a general goal in cold atoms is the realization of exotic phases of matter
that are not necessarily found in any 'natural' system, with striking features such as
supersolidity, which is precisely one of the focus of ultracold dysprosium experiments
as mentioned in the following section.

Dysprosium experiments

The first historical realizations of atom trapping and cooling were performed with
alkali elements, as their electronic structure is relatively simple, with one electron
on the outer shell, leading to exploitable cycling transitions. In particular rubidium
is the most commonly used atomic species in cold atoms experiments due to its
convenience in terms of the wavelengths used and favorable atom-atom interactions.

Lanthanides have attracted the interest of the community in recent years be-
cause of their more complex electronic structure, leading to interesting atom-light
couplings and for most of them large atomic magnetic moment. Erbium was first
laser-cooled in 2008 by the team of J. McClelland (NIST Gaithersburg) [15] and dys-
prosium in 2010 by the team of B. Lev (Stanford) [16]. This triggered the creation
of several dysprosium experiments such as in the groups of T. Pfau (Stuttgart) [17]
and G. Modugno (Pisa) [18], the dysprosium-potassium and erbium-dysprosium ex-
periments in the groups of R. Grimm and F. Ferlaino (Innsbuck) [19, 20], as well
as ours (S. Nascimbene, Paris) [21]. This recent trend towards building cold atoms
dysprosium experiments was referred to as “dysprosium is the new rubidium” by
R. Grimm during a seminar, since it could become a common standard in the future
in the same way rubidium is.

Other groups mainly focused on the study of dipole-dipole interactions in quan-
tum gases [22], leading to striking features such as the observation of the Rosensweig
instability and the formation of stable quantum droplets [23], with a quantum liquid
behaviour [24]. The roton minimum was also observed [25] in systems exhibiting
supersolid behaviour [26–28]. On the other hand our team was more interested in
the phenomena related to the large spin of dysprosium, such as the preparation of
non-gaussian spin states using light-induced quadratic spin couplings. We also took
advantage of the large number of internal states to realize a synthetic Hall system
analogous to the Landau Hamiltonian of a charged particle in a magnetic field, one
dimension of space being simulated by the internal state of the atom.

In this manuscript we are interested in non-classical spin states prepared with
ultracold atoms of dysprosium and we study their magnetic field sensitivity. Our
goal is not to realize a practical sensor in terms of size, interrogation time, working
range, etc. but rather to demonstrate the intrinsic metrological interest of such spin
states, which could potentially be used in other situations. As for real magnetic
sensors, the most successful systems do not come from the field of cold atoms but
rather solid-state physics. Devices such as SQUIDs [29] based on Josephson junctions
are well-known and the less common SERF technique exhibits a sensitivity below 1
fT/
√

Hz [30].



4

Chronology and publications

The experiment I worked on during my PhD is a machine designed to pro-
duce cold atomic clouds of Dysprosium and during three years I worked on several
projects using these clouds to address quite a wide range of physical phenomena.
The experiment was already functional when I joined the team in October 2017 even
though cooling down to quantum degeneracy had not been achieved yet. The main
project at this time was the realization of Schrödinger-cat states using non-linear
light-spin couplings as it did not require Bose-Einstein condensates but only cold
thermal clouds. We were working with 164Dy at that time. In 2018 we implemented
in-trap Doppler cooling techniques to pursue the goal of quantum degeneracy. We
also changed isotope for 162Dy and were able to produce a Bose-Einstein condensate
in July 2018.

We continued to use non-linear spin couplings to produce oversqueezed states
and studied their magnetic field sensitivity in October 2018, followed by the study
of the Lipkin-Meshkov-Glick model in March 2019. The focus of the team then
shifted towards the realization of topological systems using artificial gauge fields.

I list below the publications related to the projects I was involved in during my
time in the group.

� Quantum-enhanced sensing using non-classical spin states of a highly magnetic
atom
T. Chalopin, C. Bouazza, A. Evrard, V. Makhalov, D. Dreon, J. Dalibard, L.
A. Sidorenkov, and S. Nascimbene
Nat. Commun. 9, 1-8 (2018).

� Anisotropic lightshift and magic-polarization of the intercombination line of
dysprosium atoms in a far-detuned dipole trap
T. Chalopin, V. Makhalov, C. Bouazza, A. Evrard, A. Barker, M. Lepers,
J.-F. Wyart, O. Dulieu, J. Dalibard, R. Lopes, and S. Nascimbene
Phys. Rev. A 98, 040502 (2018).

� Enhanced magnetic sensitivity with non-gaussian quantum fluctuations
A. Evrard, V. Makhalov, T. Chalopin, L. A. Sidorenkov, J. Dalibard, R. Lopes,
and S. Nascimbene
Phys. Rev. Lett. 122, 173601 (2019).

� Probing quantum criticality and symmetry breaking at the microscopic level
V. Makhalov, T. Satoor, A. Evrard, T. Chalopin, R. Lopes, and S. Nascimbene
Phys. Rev. Lett. 123, 120601 (2019).

� Probing chiral edge dynamics and bulk topology of a synthetic Hall system
T. Chalopin, T. Satoor, A. Evrard, V. Makhalov, J. Dalibard, R. Lopes, and
S. Nascimbene
Nature Phys (2020).

Outline and content of the chapters

This manuscript is divided in three parts. The first one consists in a general
presentation of the specific properties of dysprosium and of the experimental setup.
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The second part focuses on experimental results concerning non-gaussian spin states
and their enhanced magnetic field sensitivity. Finally the third part deals with
other projects related to pair entanglement and artificial gauge fields, adding spatial
degrees of freedom to the large-spin features of dysprosium.

Chapter 1 gives an overview of the experimental setup used to produce cold
atomic clouds. We present some properties of dysprosium and their use in the
experimental scheme. Details are given about in-trap Doppler cooling performed
after the atoms are transported to the glass cell.

Chapter 2 is a description of the spatial modulation of optical dipole traps
implemented on the experiment, allowing for a better starting point (in terms of
atom number and temperature) of the evaporative cooling procedure.

Chapter 3 starts with a general presentation of spin states and their represen-
tation on the Bloch sphere. The notion of coherent spin state is introduced, as well
as the one-axis twisting hamiltonian used in the preparation of squeezed spin states
or Schrödinger-cat states. The metrological gain is defined in the context of Ramsey
spectroscopy. Finally the experimental preparation of these states is described and
their sensitivity is measured.

Chapter 4 begins with general concepts of parameter estimation theory and the
introduction of the Cramér-Rao bound, which can be saturated with a well-chosen
observable in specific cases. The notion of metrological gain is extended further
than its definition based on Ramsey oscillations thanks to the Hellinger distance. In
particular it allows for the characterization of oversqueezed states which exhibit a
better sensitivity than squeezed states. It is followed by a brief presentation of the
experimental realization of the Lipkin-Meshkov-Glick model (for 16 spins 1/2).

Chapter 5 is a proposal for a project that has not been experimentally realized
yet. It consists in the measurement of the pairwise entanglement of states of a
spin J , characterized by a quantity called the concurrence, via photon absorption
probability.

Chapter 6 presents an extension of the ideas and tools introduced in chapter 4
to couple spatial degrees of freedom to the internal spin state of dysprosium atoms.
It constitutes an experimental realization of a topological system, equivalent to the
Landau Hamiltonian of a charged particle in a magnetic field. Finally a second
project that is currently investigated in the group is briefly presented, also dealing
with artificial gauge fields.



Part I

Production of ultracold
dysprosium gases



Chapter 1

Overview of the experiment

This chapter provides a description of some properties of dysprosium and how
they are involved in the optical cooling techniques used in the experimental appara-
tus. We use atomic transitions and laser cooling schemes which have been developed
in the group of T.Pfau [17] in 2014.

1.1 Properties of dysprosium

There are seven stable isotopes of dysprosium among which five are relatively
abundant in nature. They are listed in table 1.1 along with some of their properties.
The work presented in this manuscript only deals with bosonic 162Dy, except for
the data taken from [31] which uses 164Dy. This choice is motivated by the value of
the background s-wave scattering length, which facilitates the evaporative cooling
procedure. Apart from isotopic shifts in the atomic transitions, 164Dy is fairly similar
except for a slightly lower background scattering length. 160Dy is much less abundant
which makes large atomic samples difficult to obtain. This isotope has been Bose-
condensed with a scattering length value tuned by a nearby Feschbach resonance
but a background scattering length value could not be extracted [32].

Isotope 160Dy 161Dy 162Dy 163Dy 164Dy
Abundance 2.34 % 18.9 % 25.5 % 24.9 % 28.2 %
Statistics Boson Fermion Boson Fermion Boson

s-wave scattering length [a0] 140(7) 69(4)

Table 1.1 – Different isotopes of Dy and relevant properties. Scattering
lengths are expressed in units of the Bohr radius a0 = 4π~2/(mee

2). Their
values are taken from [33] for 162Dy and [34] for 164Dy.

There is no nuclear spin I for bosonic isotopes of dysprosium and therefore no
hyperfine structure. Its electronic structure can be written

[Xe]4f 106s2 (1.1)

which corresponds to the situation of a submerged shell. This means that even
though the 6s shell is filled with two electrons, the 'previous' 4f shell has only
10 electrons (out of 14). Its filling is indicated on figure 1.1 in which the four
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unpaired electrons lead to an orbital angular momentum L = 6 and an electronic
spin S = 2. The ground state of dysprosium corresponds to the case of a total
angular momentum J = L+ S = 8.

Figure 1.1 – (a) Electronic filling of the inner 4f shell giving L = 6
and S = 2. (b) J → J+1 cycling transition. This situation corresponds
to a positive Landé g factor for both the ground and excited manifolds.
The Zeeman shift between the different mJ states is induced by a positive
magnetic field as is the case on the experiment.

The large angular momentum in the ground state leads to accessible magnetic
sublevels mJ = −8 to mJ = 8 and a large magnetic dipole moment µ = mJgJµB =
9.93µB in the ground state. This value can be compared to the ones of Erbium
(6.98µB) and chromium (6µB [35]), the two other elements that have been used to
study dipolar quantum gases.

The large angular momentum also leads to a large number of electronic transi-
tions plotted on figure 1.2 among which a few stand out. First we need to mention
the J = 8 to J ′ = 9 transitions i.e. the cycling optical transitions relevant for laser
cooling (figure 1.1). We use two such transitions at λ = 421 nm and λ = 626 nm
which will be referred to in the following as the blue and red transitions.

The blue transition at 421 nm corresponds to an excitation of one of the outer
shell electrons to a singlet state 6s2(1S0)→ 6s6p(1P1) and is quite favorable, with a
large width Γ. The line at 626 nm corresponds to the partially forbidden transition
to the triplet state 6s6p(3P1) and is therefore much more narrow.

Most of the transitions plotted on figure 1.2 correspond to excitations of the 4f 10

shell electrons and are thus typically two orders of magnitude narrower than the blue
one. The consequence of this strong difference between the transition probabilities
will be visible in the following section.



1.2 Atom-light coupling 9

2000 1000 660 500 400

7

8

9

λ[nm]

J

λ = 421.3 nm
Γ/2π = 32.2 MHz

λ = 626.1 nm
Γ/2π = 135 kHz

Used for
cooling

λ = 832.8 nm
Γ/2π = 11.4 kHz

λ = 696 nm
Γ/2π = 15 kHz

Future
projects

Figure 1.2 – Energy levels of Dysprosium. Only the levels correspond-
ing to transitions J ′ = 7, 8, 9 are shown as the others cannot be excited
by a photon from the ground state J = 8. The two transitions used on
the experiment for cooling (J ′ = 9) are highlighted, as well as two other
transitions (J ′ = 8 and J ′ = 7) involved in future projects as described in
part III.

1.2 Atom-light coupling

As mentioned in the introduction, dysprosium is especially suited for spin squeez-
ing. The reason is that it is relatively easy to induce quadratic spin couplings with
light [36], which is the basic mechanism leading to squeezing and the preparation
of other non-classical spin states [37]. The derivation of the light-shift operator has
been detailed in the thesis of D. Dreon [38], and this version is similar to [39].

We write the coupling to an electric field E of frequency ω as

−d̂ ·E = −1

2
E d̂ · u e−iωt − 1

2
E∗ d̂ · u∗ eiωt (1.2)

where d̂ is the atomic dipole operator. Using time-dependent second order pertur-
bation theory, one obtains the energy shift of a given level |a〉 from

δEa = −|E|
2

4~
∑

b

Re

(
| 〈b|d̂ · u|a〉 |2

ωb − ωa − ω − iγba/2
+

| 〈b|d̂ · u∗|a〉 |2
ωb − ωa + ω + iγba/2

)
(1.3)



10 1. Overview of the experiment

where the sum runs over all states |b〉 (with energy ~ωb) different from |a〉 (energy
~ωa). The term γba = γa + γb is the sum of their width.

The energy shift δEa can be written as the expectation value 〈a|V̂ |a〉 of the
operator

V̂ =
|E|2

4

(
(d̂ · u∗)R+(d̂ · u) + (d̂ · u)R−(d̂ · u∗)

)
(1.4)

where

R± = −1

~
∑

b

Re

(
1

ωb − ωa ∓ (ω + iγba/2)

)
|b〉 〈b| (1.5)

Then we assume that not only the energy shift δEa but the entire physics of the
various possible couplings is described by V̂ . This assumption is not obvious but is
consistent with the Floquet formalism that is not detailed here.

One can see from the expression of V̂ that it is a tensor operator of rank 2
(because d̂ is a rank 1 tensor operator (i.e. a vector operator) and u a vector). It
can be decomposed as a sum of three irreducible tensors of respective rank 0, 1 and
2 as

V̂ = V̂s + V̂v + V̂t (1.6)

which are called the scalar, vector and tensor light shifts. In the end we decompose
V̂ as a sum of the contribution of each transition J → J ′ to the scalar, vector and
tensor parts as V̂ =

∑
J ′ V̂JJ ′ where we can write V̂JJ ′ in terms of angular momentum

operators Ĵ as

V̂JJ ′ = −|E|
2

4

[
αsJJ ′1− iαvJJ ′

(u∗ × u) · Ĵ
2J

+αtJJ ′
3[(u∗ · Ĵ)(u · Ĵ) + (u · Ĵ)(u∗ · Ĵ)]− 2Ĵ2

2J(2J − 1)

]
. (1.7)

The αs,v,tJJ ′ are respectively called the scalar, vector and tensor polarizabilities.
They contain the frequency dependence of the coupling (with the usual lorentzian
width) and depend on the Clebsch-Gordan algebra of the spins J and J ′. Their full
expression is given in appendix A. The real part of V̂ corresponds to the coupling
strength while its imaginary part corresponds to the photon scattering rate. The full
landscape of the polarizabilities as a function of the light wavelength λ is plotted on
figure 1.3. It corresponds to the sum of the contributions of the transitions J → J ′

for J ′ = J−1, J and J+1. The transition data correspond to values taken from [40].
Note that not all levels are used and the most narrow ones may have been omitted.
In particular the transitions at 696 nm and 832.8 nm mentioned on figure 1.2 are not
present. More detailed data are given in [41]. In practice we are either far from any
resonance when using optical dipole traps in which case the scalar part dominates
(figure 1.3), or almost resonant with a given transition (figure 1.4).

We provide a zoom of the three parts of the polarizability around the red tran-
sition at 626 nm on figure 1.4. We are able to induce quadratic spin couplings by
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Figure 1.3 – Real part of the three terms of the polarizability.
Apart from the narrow transitions, the broad line at 421 nm, as well as two
other lines at 405 and 419, set the global trend for the scalar term. However
these transitions have no contribution to the vector or tensor parts, which
remain close to zero away from any sharp resonance. The vertical dashed
line corresponds to the 626 nm transition. The atomic unit of polarizability
at.u. corresponds to 1 at.u. = 4πε0a

3
0 where a0 is the Bohr radius.

working close to this transition. Related experiments and results are presented in
chapter 3 and 4. Using the same resonance for Doppler cooling in the MOT stage
and quadratic spin-couplings is a choice based on the physical characteristics of the
resonance (value of the polarizability, small width and J ′ = 9). It is also motivated
by the fact that it is generally not simple to produce light at a desired wavelength.
Since the setup for the MOT beams at 626 nm had already been built, it was more
straightforward to assemble a twin setup for the spin coupling light.

While blue light at 421 nm is produced by a commercial laser, the production of
red light at 626 nm requires a more complex sum-frequency-generation described in
details in previous thesis manuscripts [38] and [42].
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Figure 1.4 – Zoom on the 626 nm transition. A narrow resonance
typically spans over a few nanometers. The scalar polarizability is then the
sum of the background value mostly given by the broad resonance in the
blue and the local contribution around the narrow resonance at 626 nm.
The overall trend is given by the resonance used rather than the effect of
the broad blue one. The vector and tensor parts become comparable to the
scalar part close to resonance.

1.3 Magneto-optical trapping and atomic transport

The experiment consists in several stages used to obtain a dilute atomic gas in
the ultracold temperature regime, starting from a sample of solid metallic dyspro-
sium. The whole experiment is under ultra-high vacuum as interactions with the
environment would prevent any atom trapping and/or cooling. Indeed collisions
with residual gas particles cause the atoms to leave the trap and lead to a certain
lifetime for the atomic cloud. Since we hold atoms for times of several seconds dur-
ing the total experimental cycle, we need a background-limited lifetime on the order
of at least 10 seconds. This sets a constraint on the value of the pressure to typically
10−10 mbar, obtained with ionic and getter pumps.

In fact the pressure is not the same in the different parts of the experiment
owing to differential pumping. The pressure is so low that the regime is ballistic and
the pressure does not equilibrate between the different parts as it would intuitively
because the probability for the remaining particles to find their way to the other
part is simply too low. The Zeeman slower geometry consists in a tube with a length
of 50 cm and internal diameter 1 cm which induces differential pumping between the
oven part and the MOT chamber. It maintains a pressure difference of one order of
magnitude , with respective pressures of around 10−9 mbar for the oven and below
10−10 mbar for the science cell (lowest value that the probes can measure).

1.3.1 Oven

The starting point is an oven used to heat up solid samples of dysprosium so that
its vapour pressure exceeds the actual pressure inside the experiment. The typical
working temperature is around 1100 °C and results in an effusive flow of dysprosium
atoms, that we refer to in the following as atomic beam.

The oven parts are made of tantalum to withstand very high temperatures (sev-



1.3 Magneto-optical trapping and atomic transport 13

Figure 1.5 – Scheme of the experiment with the main elements. The
Zeeman slower beam (blue arrow) counter propagates with respect to the
atomic beam (yellow arrow) to slow it down. Three of the six MOT beams
(red arrows) are represented. Finally the transport ODT (dark red arrow)
brings the atoms to the glass cell.

eral thousands of Celsius degrees). It consists in a crucible in which up to 15 grams
of dysprosium are loaded in the form of 1 mm granules. Electrical current passing
through a set of wires surrounding the crucible induce heating. The external part of
the oven is water cooled and only warm to the touch. The crucible has to be refilled
every three to six months. This implies partially breaking the vacuum to open the
oven, a valve being used to preserve the rest of the experiment. Repumping of the
oven part after the refill takes up to one week.

1.3.2 Zeeman slowing and Magneto-optical trapping

A blocking piece with a ∼ 1 cm hole placed after the oven ensures that the
atomic beam is narrower and aligned with the axis of the Zeeman slower. The
atoms initially propagate with an axial velocity distribution P (v) peaked around 460
m/s. A counter-propagating resonant laser beam is used to slow down the atoms
enough so that they can be trapped. Its working principle relies on the interplay
between the Doppler effect and the Zeeman effect. Note that the laser beam is sent
through a window with a 90◦ angle with respect to the atomic beam (figure 1.5).
This is designed such that the window does not get covered in dysprosium and does
not become opaque over time. The mirror placed inside vacuum gets covered in
dysprosium but still reflects light, although with additional diffusion slowly building
up over the years. This is not yet an issue after 7 years of operation and the Zeeman
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beam is still well collimated.
An atom is initially moving fast when it enters the Zeeman slower tube, and

therefore the light has to be detuned from resonance by a quantity ∆ to account
for the corresponding Doppler shift. As the atom starts absorbing and reemiting
photons it slows down and gets out of resonance. A space-dependent magnetic field
is used so that its Zeeman shift compensates the Doppler shift of the slowing atom
and maintains it at resonance with the light along the trajectory, as the atom slows
all the way down to 8 m/s in our case. The magnetic field profile B(x) is determined
by the chosen local detuning δ(x) at position x, according to

δ(x) = ∆ − k v(x)︸ ︷︷ ︸
Doppler

+ µB
gJ ′mJ ′ − gJmJ

~
B(x)

︸ ︷︷ ︸
Zeeman

(1.8)

Choosing δ(x) = 0 over the entire trajectory ensures maximal absorption prob-
ability at all times. We use the blue transition with σ− polarized light to take
advantage of a large transition width to slow down a broader range of velocity
classes present in the atomic beam.

Then the atoms are attracted to the center of the magneto-optical trap (MOT)
formed by 3 orthogonal pairs of counter-propagating beams and a vertical magnetic
field gradient. The magnetic field value can be set along all three directions using
coils of a few meters of diameter placed in Helmholtz configuration. A smaller
additional pair of coils placed around the MOT chamber sets the field gradient.
The red transition is used for its narrow linewidth resulting in a lower Doppler limit
Tmin = ~Γ/2kB ' 3 µK. The narrow transition leads to a small capture velocity
v . 5 m/s which is a limiting factor. There are two ways to counter this effect.
First the laser power is chosen such that the saturation parameter s = I/Is ' 50 is
large to induce power broadening on the atomic line. Second the laser frequency is
broadened by means of RF control and acousto-optic modulation up to a full width
of 6 MHz, with a center frequency detuning of -3 MHz. These two contributions
bring the capture velocity of the MOT to 8 m/s, in tune with the Zeeman slower.

This constitutes the first part of the MOT stage, the capture and trapping strictly
speaking. Once the number of atoms in the MOT reaches a plateau of typically
108, the power is reduced to s = 0.1 and the frequency modulation is turned off.
The center frequency is at the same time reduced to -1.5 MHz to compensate for
the reduction of trapping force occurring when lowering the power. These changes
result in compression and cooling of the MOT cloud down to 15 µK, which occurs
without losing atoms. The atoms are also polarized in the state |J = 8,mJ = −8〉
through processes detailed in [21] where a complete study of the MOT can be found.

1.3.3 Transport

Next we describe the transport setup and the main reasons why this is a sound
choice on the experiment. There are several reasons why a transport scheme is used,
the main one being optical access. Indeed the MOT chamber has 6 wide laser beams
coming from all directions which occupy most of the available space. Once a cold
cloud is obtained in the MOT, a next stage of trapping and evaporative cooling is
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required to go below the µK level, which in our case requires optical dipole traps.
Further experiments on a cold cloud or BEC would also require additional laser
beams. Rather than trying to find available directions of space to send additional
laser beams on the atomic cloud, the choice here is to transport the atoms to the
glass cell which is the last part of the experiment. This grants a lot more optical
access for further experimental schemes and also allows us to get rid of possible eddy
currents since the glass cell has no metallic casing like the MOT chamber. This is
especially relevant for experiments that require very fine tuning of the magnetic
field such as working close to a Feschbach resonance or spin squeezing close to zero
magnetic field as will be described later on.

The way we transport atoms is by using an optical dipole trap (ODT) at 1070
nm whose focal point can be moved along the direction of propagation of the laser.
The laser beam is produced by a YLR 50 W from IPG Photonics, with effectively
40 W of power on the atoms. A collimated beam goes through a converging lens
before being reflected by a corner reflector mounted on a translation stage. This can
artificially increase or decrease the distance between the lens and the focal point.
Other techniques commonly used are magnetic transport schemes [43], or recently
developed focus-tunable lenses for dipole traps [44].

The initial position of the focal point (with a waist of 35 µm) is at the center
of the MOT chamber where the laser beam overlaps with the atomic cloud and its
final position is 30 cm away, in the glass cell. A detailed description of the transport
setup was given in the thesis of C. Bouazza [45]. The key point to keep in mind is
the adiabaticity of the transport procedure. Increasing the magnetic field along the
vertical direction to split the Zeeman levels and making the transport slow enough
ensures that the atoms stay in the |J = 8,mJ = −8〉 state and that the center-of-
mass motion mode of the atomic cloud does not get excited. A few 106 atoms are
transported to the glass cell.

1.4 The glass cell

The glass cell is where the last steps of the experimental cycle occur. The atoms
are transferred from the transport beam to a crossed optical dipole trap (cODT)
where evaporative cooling is performed in order to obtain thermal atomic clouds
at typically 1 µK or Bose-Einstein condensates (BEC) at temperatures of a few
hundred nK. Figure 1.6 shows the cell and the various laser beams used.

1.4.1 In-trap Doppler cooling

The transport ODT has a trap depth of around 0.7 mK, such that the tem-
perature of the atomic cloud after transport is roughly 90 µK, whereas the MOT
temperature was 15 µK. This is not heating induced by non-adiabaticity of the trans-
port but simply due to the transfer from the MOT to a deep ODT, the volume and
temperature of the cloud adjusting themselves in an isentropic way. Even though
evaporative cooling could be performed right away with these initial conditions, it
proved to be necessary to first apply in-trap Doppler cooling in the transport ODT.
Indeed decreasing the temperature early on results in an enhanced collision rate, in-
creasing the evaporation efficiency. The condensation threshold can then be reached
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Figure 1.6 – Scheme of the glass cell and associated laser beams.
The trapped atoms (yellow) sit at the center of the cell at the intersection
of the two ODTs (dark red). An imaging beam (blue) overlaps with the
transport beam coming from the MOT region. Another imaging beam in
the horizontal plane arrives from the side of the cell and overlaps with the
spin dynamics beam (SD, red). The Doppler beam (red) comes from below.
Finally the TiSapph beam (orange) comes from the top and overlaps with
the third imaging beam along the vertical direction. Laser beams of different
wavelengths are superimposed using dichröıc mirrors. The magnetic coils
are not represented for simplicity.

before all the atoms leave the trap in the evaporation process.

At this point the atoms are only held by the transport beam and the cODT is not
yet on. A broad laser beam close to the 626 nm transition is sent from below to cool
down the atoms. There is no counter propagating beam as one would expect from
basic Doppler cooling theory. The fact that the atoms are held in the ODT is enough
to induce an attractive force towards the center of the trap. However the cooling
only occurs along the vertical direction and we expect the cloud to thermalize, the
atomic collisions spreading the velocity reduction among all three directions. In-trap
cooling has been performed in magnetic traps [46] as well as optical dipole traps [47].
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The peak density at the center of the trap is n0 ∼ 1.2×1013 cm−3 from which we
expect multiple photon scattering by the trapped atoms [48] and therefore reduced
cooling efficiency. The intuitive solution would be to use a mask to prevent light
from hitting atoms in the center of the trap and only address the wings of the atomic
distribution, but it has technical disadvantages. We present here a technique in the
spirit of [49] that relies on the tunability of the differential light-shift induced by the
trap to effectively prevent the atoms at the center of the trap from seeing resonant
Doppler-cooling light. This study led to a publication [50].

Differential polarizability

The ODT laser beam is linearly polarized (along u) and therefore the vector part
of the polarizability in the expression of V̂ (equation 1.7) will cancel. A magnetic
field sets the quantization axis and induces a Zeeman splitting such that the overall
Hamiltonian is

Ĥ = gJµB Ĵ ·B + V0(r)

(
αsJ(ω)1+ αtJ(ω)

3(u · Ĵ)2 − Ĵ2

2J(2J − 1)

)
(1.9)

where V0(r) = −|E|2/4 = −I(r)/(2ε0c) with I(r) the laser intensity. The space
dependence r corresponds to the gaussian profile of the ODT. The magnetic field
is large enough so that the light shift can be treated as a perturbation on top of
the Zeeman splitting. The ground state is still |J = 8,mJ = −8〉 and its energy is
shifted by

δEg = 〈mJ = −8|V̂ |mJ = −8〉 = V0(r)

(
αsJ(ω) + αtJ(ω)

3 cos2 θ − 1

2

)
(1.10)

where θ is the angle between the polarization vector u and the magnetic field B.
The tensor part remains much smaller than the scalar one.

However the tensor part becomes relevant once we consider the differential light-
shift which is the relevant quantity here. Indeed the excited state |J ′ = 9,mJ ′ = −9〉
experiences a light-shift δEe in the same way as equation 1.9 although its Landé
factor gJ ′ and polarizabilities are different. In the end the relative shift ∆E =
δEe − δEg between the two states is

∆E = −(J ′gJ ′ − JgJ)µBB + V0(r)

(
∆αs(ω) + ∆αt(ω)

3 cos2 θ − 1

2

)
(1.11)

where the ∆αs,t correspond to the polarizability difference between the two states.
This results in a global shift of the resonance frequency ν according to

ν = ν∗0 +
V0(r)∆α(θ)

h
(1.12)

where the Zeeman shift is contained in ν∗0 and ∆α(θ) encompasses the scalar term
and the angular dependence due to the tensor term. The scalar part no longer
dominates in this case as was observed by probing the 626 nm resonance with σ−
polarized light for different values of θ. A pulse of light at frequency ν is sent on
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Figure 1.7 – Measurement of the differential polarizability from
resonance shifts. (Left) Measurements of the resonance frequency as
a function of the angle θ. The three shades of blue correspond to three
different trap depth, i.e. three values of V0(r = 0). The darker shade
correspond to the absence of trap, i.e. the bare resonance frequency. The
magnetic field is kept constant for all the measurements hence the use of ν∗0
as reference. The link between the value of θ and the sign of the frequency
shift is clearly visible. (Right) Differential polarizability ∆α as a function
of θ. ∆αs and ∆αt are the two free parameters of the fit which yields
θmagic ' 57(2)◦.

the trapped atoms which receive a kick inducing a position shift δCoM after a time
of flight of 1.5 ms. The result is shown on figure 1.7.

Even though the scalar part is one or two orders of magnitude larger than the
tensor part for both the ground and excited states, ∆αs and ∆αt are comparable.
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As a result, ∆α(θ) can change sign and cancels for a certain angle θmagic which
corresponds to a situation of equal light-shifts for the ground and excited states.

Effect on the cooling efficiency

The set of tunable parameters involved in the cooling process are the light fre-
quency ν, the light intensity through the saturation parameter s, the duration of
the light pulse τ and, as we already detailed, the angle θ between the quantization
axis and the ODT linear polarization. Even though we expect the cooling to be op-
timal for a detuning ν − ν∗0 = −Γ/2 from usual Doppler cooling theory, the in-trap
cooling performed here can be quite different with the interactions between atoms
playing an important role in the redistribution of the cooling along the three spatial
directions as mentioned earlier. Nevertheless scans of the four different parameters
can be performed in a reasonable amount of time to reach an optimum.

The figure of merit to optimize is the elastic collision rate γcoll = (2/
√
π)n0σv̄

where n0 is the atom density at the center of the trap, σ the scattering cross-section
and v̄ the average velocity [51]. Indeed the step following the in-trap Doppler cooling
is evaporative cooling whose efficiency strongly depends on collisions between atoms.
The density scales like N/T 3/2 and the average velocity v̄ scales like T 1/2 so that
γcoll scales like N/T . In the procedure performed here, the total number of atoms
obviously cannot increase and the aim is therefore to optimize the cooling while
limiting atom losses to maximize the collision rate.
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Figure 1.8 – Optimal cooling configuration. (Left) Trap profiles for
the ground and excited states depending on the sign of ∆α. The ground
state trap profiles are represented identically and the excited state trap
'carries' the effect of the differential polarizability. In reality both the
ground and excited states traps change with θ but only the relative change
between them matters. (Right) Measured collision rate in the trap as a
function of the polarisation angle. The optimum corresponds to ∆α < 0.

Two different regimes are observed depending on the sign of ∆α as qualitatively
described on figure 1.8. For ∆α > 0, the Doppler beam is closer to resonance for the
atoms sitting at the center of the trap than it is for the trap wings. This means that
we are trying to cool down the atoms in the most dense region, causing light-assisted
collisions associated with high atom density and in turn atom losses. The process
is therefore inefficient.
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On the other hand for ∆α < 0, we address the wings of the spatial distribution
more efficiently while leaving the atoms at the center of the trap unaffected. The
optimum was found for θ = θmagic + 10◦, s = 0.5, τ = 20 ms and a frequency ν
corresponding to a detuning of typically -0.3 Γ. The gain in collision rate corresponds
to a factor 1.9 compared to the absence of Doppler cooling.

1.4.2 Magnetic field control

Coils placed around the glass cell in Helmholtz configuration are used to control
accurately the magnetic offset field and gradient separately along all three directions.
The main limitation concerning magnetic field stability is caused by the nearby Paris
metro line. This could be checked by overnight measurements which show how the
noise disappears when the metro lines are shut down. It consists in a slow variation
(with a typical timescale of 1 s) of the magnetic field along the vertical direction
only, with RMS value 2 mG.

Figure 1.9 – Scheme of the magnetic field noise compensation de-
sign. The symbol φ stands for magnetic flux based magnetometers

This noise is corrected using a basic open-loop design described on figure 1.9.
The noise is measured by a probe placed far enough from the experiment so that it
is not sensitive to magnetic field actively varied during the experimental sequence
nor magnetic field noise from other experiments or technical devices in the building.
This probe still feels the same metro-noise as the atoms since the source is located
far away. The probe signal is then sent to a power supply generating a current pro-
portional to its input signal. The power supply is connected to the large coils placed
around the entire experiment so that it compensates the metro-noise everywhere as
far as the experiment is concerned. This works as long as the variation that we are
trying to compensate is much slower than the reaction time of the compensation,
which is obviously the case here. The noise reduction factor is close to 7, with a
corrected noise RMS value of 0.3 mG (see figure 1.10), which is similar to the noise
on the two other directions of space.

In the end the remaining slow variations induce shot-to-shot variations on the
experimental results that can partially be taken into account by measuring the mag-
netic field with an external probe placed close to the atoms and post-processing the
data. An additional coil placed below the cell is used for Stern-Gerlach measure-
ments. Large capacitors (2.2 mF) are used to create a current discharge of several
hundred amperes over 1 ms resulting in a vertical magnetic field gradient of about
50 G/cm. This allows us to separate different spin-states along the vertical direction
and therefore measure the spin composition of the atomic cloud.
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Figure 1.10 – Recording of the magnetic field noise over several
hours. The offset between the two curves is arbitrary as the two signals
are recorded by probes placed at different spots. The noise is initially not
present because it corresponds to night hours when the metro is not running.
The x-axis corresponds to absolute durations, with the value 0 correspond-
ing to something close to 5 a.m. in reality.

1.4.3 Imaging

Standard absorption imaging is performed at resonance on the blue transition
at 421 nm. The large width of this transition ensures good absorption probability
irrespective of small energy level shifts. A pulse of light is sent on the atoms and a
camera placed after the cell takes a picture of the shadow of the atomic cloud. The
amount of light absorbed by the atoms can be related to the column density n̄(x, y)
using the Beer-Lamber law (valid for I � Isat)

I(x, y) = I0(x, y) exp (−σ0 n̄(x, y)) (1.13)

where n̄(x, y) =
∫

dz n(x, y, z) with z the direction of propagation, and σ0 = 3λ2/2π
is the scattering cross section at resonance. Then the total atom number N is

N =

∫
dx dy dz n(x, y, z) =

1

σ0

∫
dx dy log

I0(x, y)

I(x, y)
(1.14)

A first picture of the atoms is taken and then typically 100 ms later a background
picture, once the atoms have left the field of view. This constitutes a measure of
I(x, y) and I0(x, y) and in turn the density profile n̄(x, y) and N . Dividing I(x, y)
and I0(x, y) also has the advantage of removing static features such as diffraction
rings caused by dust particles or optics imperfections. The pixel size on the CCD
of the camera combined with the magnification of the various lenses used lead to a
resolution of 3 µm per pixel.
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In total there are three imaging beams around the glass cell. One along the
transport direction, a second perpendicular to it coming from the side of the cell
and finally a vertical one from the top (figure 1.6). This allows us to check that all
three dipole traps intersect correctly at the center of the cell which is part of the
routine checks on the experiment.

1.4.4 Atom trapping

After Doppler cooling is performed on the atoms trapped in the transport beam,
they are transferred to the cODT. The two dipole traps are generated using two
different 1064 nm AzurLight Systems infrared lasers at 50 W and 10 W. Acousto-
optic modulators are used to control the diffracted power effectively sent to the
atoms as well as the width of each laser beam thanks to spatial modulation as
detailed in chapter 2. They allow the implementation of evaporative cooling, also
described in chapter 2, used to obtain ultracold gases of dysprosium atoms.

These two beams are incident on the two sides of the glass cell at an angle
close to the Brewster angle (53° based on the optical index of quartz) to avoid
any unnecessary light reflexion and maximize transmission inside the cell. They are
focused at the position of the atoms at the center of the cell with a waist of typically
25 µm and are damped after exiting the cell.

1.4.5 Other laser beams

The other laser beams sent on the glass cell are related to various projects. The
red beam at 626 nm sent from the side is used to induce quadratic spin coupling
which will be detailed in chapter 3. By adding a counter propagating red beam to
the first one and playing with the detuning, one can perform Raman transfer within
the |J = 8, mJ = −8, ..., 8〉 manifold as described in chapter 6.

Finally a laser beam coming from a M Squared Ti-sapphire laser can be sent on
the atoms from the top. The wavelength of this beam can be tuned between 695 and
1005 nm which opens new perspectives about future projects discussed in part III.



Chapter 2

Dipole trap modulation and
Evaporative cooling

As briefly mentioned in the previous chapter, a spatial modulation of an ODT
can be used to increase its width in a tunable manner. This technique was used to
improve the atom transfer from the transport beam to the cODT by maximizing
the spatial overlap and was necessary to obtain a BEC at the end of the evapo-
rative cooling stage. In this chapter we first describe the idea of atom trapping
using far-detuned laser beams and then explain how their shape can be modified
using acousto-optic modulation. Such techniques have been used to produce double-
well potentials [52] and more recently to optimize the transfer between two dipole
traps [53] in a similar way to the work presented here.

The principle of evaporative cooling is then described and the efficiency of the
evaporation procedure in our setup is measured. This technique was first introduced
in the context of cooling hydrogen contained in a tank [54], which was the first
candidate for the realization of dilute quantum gases. It was later extended to mag-
netic and/or laser trapped alkali elements. It consists in a process of temperature-
dependent atomic losses where the hottest atoms are allowed to leave the trap, which
result in an overall reduction of the temperature of the gas. Historically it proved to
be necessary to reach Bose-Einstein condensation, even though this regime has been
reached recently using novel cooling techniques, without the use of evaporation [55].

2.1 Principle of time-averaged-potentials

2.1.1 Generalities about optical dipole traps

Optical trapping of neutral atoms relies on the atom-light interaction far from
any optical transition. It is a tunable tool whose main advantage is to produce
spin-independent trapping whereas magnetic traps can only be used for either low
field- or high field-seeking states. Optical traps were for example used to produce
spinor condensates [56]. In the far-detuned regime, the potential induced by a laser
field on an atom is [57]

Udip(r) = −I(r)

2ε0c
Re(α) (2.1)
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where α is the polarizability introduced in equation 1.7. From figure 1.3 we know
that the scalar part is positive and much larger than the vector or tensor parts away
from sharp resonances. We use linearly polarized light at 1064 nm and the overall
coupling is therefore attractive.

The intensity profile of a gaussian beam is

I(r) = I0

(
w0

w(z)

)2

exp

(−2(x2 + y2)

w(z)2

)
(2.2)

which corresponds to a beam of minimal waist w0 propagating along z. The max-
imum intensity I0 relates to the total power P as I0 = 2P/(πw2

0) and the waist at
position z is

w(z) = w0

√
1 +

(
z

zR

)2

(2.3)

where zR = πw2
0/λ is the Rayleigh length. The corresponding ODT is then given

by a potential

U(r) = −U0

(
w0

w(z)

)2

exp

(−2(x2 + y2)

w(z)2

)
(2.4)

where U0 = I0Re(α)/(2ε0c). As expected from the shape of a gaussian beam, the
confinement is much stronger along the transverse direction than it is along the axial
direction. One can extract the two corresponding trap frequencies by performing a
Taylor expansion of the expression of U(r) close to its maximum at r = 0. The
expression reduces to

U(x, y, z) = −U0 +
1

2
m
[
ω2
r(x

2 + y2) + ω2
zz

2
]

(2.5)

where ω2
r = 4U0/(mw

2
0) and ω2

z = 2U0/(mz
2
R) and indeed ωr/ωz =

√
2πw0/λ� 1

which means that the trap is much more tight in the transverse plane.
Based on this fact, one needs to combine two single-beam ODTs to obtain a

trap with a more or less spherical shape, depending on the relative angle between
the beams, relative powers and waists (assuming they have the same wavelength).
The most common case is to combine two orthogonal beams such that the resulting
trap frequencies can be immediately inferred from each of the transverse single-
beam frequencies (the second contribution would be the axial frequency from the
other beam which is negligible). This is the case on the experiment as described on
figure 1.6.

2.1.2 Time-averaging criterion

The tunability and control of ODTs can be increased by adding spatial mod-
ulation. The idea is to move the position of the dipole trap in a periodic fashion
to create an averaged trap with a different shape. This is sometimes referred to as
'painting' since it is reminiscent of the way a painter would move their brush on
a canvas. It is a way to increase the trap size while at the same time reducing its
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depth, keeping the volume constant. For a single-beam ODT described previously,
we perform spatial modulation along the x direction only.

The modulation rate ω matters since we do not want to induce heating or lose
atoms in the process. The characteristic frequency to consider in this case is the
transverse trap frequency ωr since it sets the motion of a trapped atom.

The situation of a rate of change of the trap small compared to ωr corresponds
to the case where the atoms would follow the trap adiabatically. A modulation for
ω on the order of ωr would induce resonant excitation of the center-of-mass motion
mode of the atomic cloud and is therefore to be avoided. Finally when ω is much
larger than ωr, the atoms see only the averaged intensity profile which is precisely
the desired situation [58].

2.1.3 Formalism

To compute the averaged trapping potential V we only need to consider one
period of oscillation T , during which the center of the trap x0 moves in a periodic
way such that

V (x) =
1

T

∫ T/2

−T/2
dt U(x− x0(t)) (2.6)

where U(x) is the trapping potential along x in the focal plane U(x) = −U0 exp(−2x2/w2
0).

For example a choice of modulation shape could be a sine of amplitude A

x0(t) = A sin(2π
t

T
) (2.7)

where A is limited by the technical realization of the modulation and we typically
have Amax ' 4w0.

-T/4 T/4 3T/4

-A

A

t

x0

Figure 2.1 – Example of modulation shape. We can restrict ourselves
to a domain of half a period over which the function is monotonic to compute
the average potential.
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From this example one can see that we could compute the average over half of the
period only, between −T/4 and T/4, the second part of the modulation being the
'reflection' of the first part and yielding the exact same averaging. This is true only
for modulation shapes that are monotonically increasing over the first half of the
period and decreasing in a symmetric way over the second half. We restrict ourselves
to such cases in the following and use the word ramp to describe the modulation
shape.

We can perform a change of variable by writing x0 = f(2πt/T ) and restricting
the integral over the first half of the period

V (x) =
1

T

∫ T/2

−T/2
dt U(x− x0(t))

=
2

T

∫ T/4

−T/4
dt U(x− x0(t))

=
1

π

∫ A

−A

dx0
(f ′ ◦ f−1)(x0)

U(x− x0)

=

∫ A

−A
dx0 Π(x0)U(x− x0) (2.8)

where it is now visible that the average trap is the convolution product of the regular
profile U(x) with a normalized gate function Π(x) which depends on the modulation
shape. Flatter areas of the modulation shape (such as the sine modulation close to its
extrema) lead to maxima of the gate function. Indeed the laser beam 'spends more
time' in regions where the modulation shape is horizontal. Π(x) is a distribution that
reflects the amount of time spent by the laser beam at position x. It is normalized
according to

∫ A

−A
Π(x) dx = 1

We also see from the previous computations that if we want a symmetric potential
along x we need a modulation ramp that is an odd function.
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2.1.4 Choice of the modulation shape

A few examples of modulation ramps with their associated gate functions are
listed below :

� For a linear ramp, the beam spends the same amount of time at each position,
resulting in a uniform distribution

-T/4 T/4

A

t

x0

-A

A

Π

x0

� For a sine modulation, the fact that the ramp is flat on the edges leads to
divergences of Π. The function remains integrable as Π(x) ∝ 1/

√
1− x2/A2

and is a valid gate function.

-T/4 T/4

A

t

x0

-A

A

Π

x0

� Finally the arcsine modulation corresponds to the opposite behaviour com-
pared to the sine. Vertical slope on the edges lead to canceling of Π. In this
case Π(x) ∝ cos(πx/(2A)).

-T/4 T/4

A

t

x0

-A

A

Π
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These three modulation shapes correspond to the three following trap profiles.

x

V

A = 0
A = 1
A = 2
A = 3

Figure 2.2 – Average trap for a linear modulation for different
values of A. The fact that we obtain a flat-bottom trap is not surprising
given that the linear modulation corresponds to a uniform distribution. For
A = 0 there is no modulation and we recover the gaussian profile of the
bare laser beam. A is expressed in units of the beam waist w0.

x

V

A = 0
A = 1
A = 2
A = 3

Figure 2.3 – Average trap for a sine modulation for different values
of A. The trap looks almost the same as the previous one except that it
presents two local minima on the sides due to the shape of the gate function
for the sine modulation. It makes it a bad choice for usual atom trapping.

x

V

A = 0
A = 1
A = 2
A = 3

Figure 2.4 – Average trap for the arcsine modulation for different
values of A. The result looks quite similar to a usual gaussian trap,
although it is not exactly gaussian.
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The choice of the arcsine modulation is natural to obtain a trap which is harmonic
around its center (figure 2.4). This is a requirement to apply the usual results of
evaporative cooling and cold atoms collision theory in harmonic traps.

Note that if the modulation amplitude A is much larger than the waist of the
laser w0, one can assume that it is infinite and the convolution product introduced
in equation 2.8 can be extended from −∞ to +∞. In this case one can see that a
modulation shape given by x0(t) = erf−1(4t/T ), where erf is the error function, leads
to a gate function Π which is gaussian. The convolution of two gaussian distributions
being gaussian, this yields an average trap V which is exactly gaussian.

In practice A is finite and not necessarily much larger than the waist which
means that only a truncated erf−1 could be used (erf−1 is an odd function defined
in [−1, 1] with lim

x→1
erf−1(x) = +∞)

The question whether this truncated modulation would give a better average
trap than the arcsine one was not investigated as the difference is minor. In the
end according to the considerations presented so far the modulation choice is the
following

-T T

-A

A

t

x0

Figure 2.5 – Modulation signal chosen on the experiment.

2.2 Experimental realization

2.2.1 Optical setup

The trap modulation is experimentally realized with a collimated beam going
through an AOM whose working frequency can be tuned. When the AOM is working
at its center frequency ν0 = 80 MHz, the diffracted beam goes first through a
telescope formed by two lenses and then through the final lens to focus it on the
atoms as represented on figure 2.6 The beam is centered on these optical elements
for ν = ν0. A frequency shift δν results in a tilt θ at the output of the AOM and in
turn a position shift δ of the focal point in the focal plane of f3 according to

δ =
f1f3
f2

tan (θ) with θ =
λ δν

c
(2.9)

where the fi are the focal lengths of the three lenses in increasing order, λ = 1064
nm, c = 5740 m/s is the speed of sound in the AOM crystal and δν ranges from -15
MHz to 15 MHz for the AOM used (AA Optoelectronics MCQ80).

We insist on the fact that the AOM does not act as a source point but as a
deflector. This means that the AOM position is not constrained to the focal plane
of the first lens. Equation 2.9 is valid as long as θ is small enough for the paraxial
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Figure 2.6 – Scheme of the optical elements. The black lines corre-
spond to the AOM-diffracted beam for ν = ν0 while the red lines correspond
to ν = ν0 + δν. The initial tilt θ between the two collimated beams trans-
lates into a shift δ in the focal plane. The distance between f2 and f3 is
arbitrary and chosen for space convenience in practice.

approximation to be valid and the beam hits the first lens close enough to its center
to avoid aberrations.

However there is a constraint on the AOM position from the fact that we want the
beam to be focused on the atoms without any angle, which is the case on figure 2.6.
This requires that a collimated beam arriving on f3 from the other side of the optical
setup ends up focused after f1 at the AOM position. It is equivalent to saying that
the AOM is in the focal plane of the optical system formed by the three lenses. This
results in

d = f1 +
f 2
1

f2
+
f 2
1

f 2
2

(f3 − d23) (2.10)

where d is the distance between the AOM and f1, and d23 is the distance between
f2 and f3. Given the values of the three fi given below, d marginally depends on
d23 and is roughly equal to 80 mm. Both equations 2.9 and 2.10 are derived from
ray transfer matrix analysis summing up the optical elements used here.

The focal lengths of the lenses are chosen such that the beam is focused down to
a waist of 26 µm. The available space on the experimental setup sets f3 = 300 mm
and the initial diameter of the laser beam sets the telescope magnification, with a
choice of f1 = 75 mm and f2 = 684.5 mm. The resulting position shift for δν = 15
MHz is δ = 91 µm. By modulating δν at a rate of 50 kHz (much larger than the
trap frequency), we induce a widening of the trap allowing a better spatial overlap
when transferring atoms from the transport beam to the cODT.

2.2.2 Application of the modulation

Atomic transfer

The atoms are transferred from the transport ODT to the cODT by overlapping
the two traps and waiting for the atoms to 'fall' in the crossed region. The spatial
modulation is useful as the atomic cloud trapped in the transport beam has a very
elongated shape (so-called 'cigar' shape), with diameter ∼ w0 ' 35 µm and length
∼ zR ' 3.6 mm). In the absence of modulation, the spatial overlap with the
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cODT (which has a spherical shape of diameter ∼ w0 ' 25 µm) is quite poor.
When modulating at the full amplitude allowed by the bandwidth of the AOM, the
waist of each beam becomes around 4.5 times larger, accompanied by a trap depth
reduction by a factor 3.7. The atomic transfer is typically increased by a factor 2
thanks to the modulation.

The transfer lasts around 100 ms after which the modulation is turned off. As
mentioned in section 1.4.1, the efficiency of the evaporative cooling relies on a high
collision rate value. It is therefore beneficial to turn off the modulation and return
to a tight confinement to increase the atomic density at the center of the trap before
starting the evaporation. This process is isentropic if performed slowly enough.

Cloud shape tuning

The widening of both arms of a cODT allows for a tuning of the aspect ratio
of the atomic cloud which is particularly important in the case of dipolar BEC
stability. Indeed dipole-dipole interactions induce an orientation-dependent force
corresponding to the potential energy [59]

Udd(r) =
µ0µ

2

4π

1− 3 cos2 θ

r3
(2.11)

where µ0 is the vacuum permittivity, µ the atomic dipole moment, r the inter-atomic
distance and θ the angle formed by the vector connecting two atoms and the direc-
tion of the bias magnetic field along which the dipoles are aligned. In particular the
dipole-dipole interaction is attractive for certain values of θ, and attractive interac-
tions usually lead to BEC collapse [60]. The strength of the dipolar interaction can
be expressed in terms of a dipolar length add, similarly to the scattering length a
associated with s-wave collisions described by a δ-potential, as

add =
µ0µ

2m

12π~2
. (2.12)

The dimensionless quantity εdd = add/a is the usual figure of merit used to compare
the two interactions. The stability of a trapped dipolar BEC depends on the aspect
ratio of the cloud [61], as the trap shape can reduce attractive head-to-tail dipole-
dipole configurations. Indeed in a 'pancake' shape, with a polarizing magnetic
field, the dipoles are mostly aligned side-by-side which corresponds to repulsive
interactions. The ODT modulation can be used to tune the effective waist of a
beam in a continuous way to ensure stability.

Note that for all the work presented in this manuscript, we stay away from Fes-
chbach resonances so that the value of the scattering length is the background value
abg = 140(7) a0 for 162Dy, corresponding to εdd = 0.92(5). It can be shown [61] that
for εdd < 1, a dipolar BEC is stable regardless of the trap aspect ratio (assuming
cylindrical symmetry) so that stability is guaranteed in our case. Dipole-dipole in-
teractions still contribute to some extent in the collisions during the evaporation
process. In particular they enable evaporative cooling of fermions since they com-
pensate the lack of s-wave collisions at low temperature as demonstrated in [19].
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2.3 Evaporative cooling

2.3.1 Principle

The idea of evaporative cooling is to let the hottest atoms in the cloud leave the
trap while random collisions ensure thermalization between the remaining atoms,
resulting in an overall cooling of the cloud. The trap depth U0 is assumed to be not
too large compared to the energy 3kBT so that atoms may leave the trap. Some
'lucky' atoms undergo collisions that increase their velocity above the trapping
threshold and they leave the trap. They correspond to the tail of the Maxwell-
Boltzmann velocity distribution describing the gas at temperature T

PT (v) =

√
2

π

(
m

kBT

) 3
2

v2 exp

(
− mv2

2kBT

)
(2.13)

which is normalized to 1. The average kinetic energy 〈Ec〉 = m 〈v2〉 /2 = 3kBT/2
of an atom remains well below the trap depth U0 such that the cloud is trapped
properly.

v∗2 v∗1
√
2U0/m

v

P
(v
)

T1

T2

Figure 2.7 – Velocity distributions before and after atoms evap-
orate from the trap. The velocity

√
2U0/m corresponds to the escape

threshold U0 = mv2/2, while v∗1 (resp. v∗2) corresponds to the most probable
velocity at temperature T1 (resp T2).

The atoms from the gas at temperature T1 leave the trap and remove energy from
the system, which returns to equilibrium and thermalizes to a lower temperature T2
as represented on figure 2.7. T2 is implicitly defined from the truncated T1 profile
as

〈E2〉 =

∫ ∞

0

1

2
mv2PT2(v)dv =

∫ U0

0

1

2
mv2PT1(v)dv (2.14)

and we indeed have T2 < T1. For a given U0, this elementary process repeats
itself and T diminishes until the probability for an atom to escape the trap P ∝
exp(−U0/(kBT )) becomes too small. This corresponds to being at the equilibrium
temperature T , characterized by η = U0/(kBT ) ' 10. The timescale corresponding
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to the atoms spontaneously leaving the trap due to their high velocity scales as
τevap ∼ eη, while the losses due to collisions with residual gas particles in the vacuum
chamber are described by τloss. If τevap > τloss, one will simply lose atoms in an
inefficient way (since atom losses due to the residual gas are velocity-independent)
by waiting too long.

Another loss mechanism called dipolar relaxation can be caused by dipole-dipole
interactions [62]. This inelastic process consists in a spin-flipping collision between
atoms of the type |mJ〉+ |mJ + 1〉 → |mJ〉+ |mJ〉 which releases the Zeeman energy
∆E = ~ωZ under the form of kinetic energy, causing the two atoms to leave the
trap. This process is suppressed if all the atoms are polarized in the |−8〉 state and
kBT � ~ωZ so that the |−7〉 state is not thermally populated. We ensure this is
always the case by maintaining a sufficient magnetic field throughout the transport,
loading and evaporative cooling steps.

2.3.2 Evaporation efficiency

The goal of the evaporative cooling is to increase the phase space density (PSD).
The usual definition is

D = nλ3dB where λdB =

√
2π~2
mkBT

(2.15)

where λdB is the thermal de Broglie wavelength. This quantity is useful to describe
the length scale where quantum effects start being visible. Here we work with
harmonic traps and the PSD reads

D = N

(
~ω̄
kBT

)3

(2.16)

where ω̄ = (ωxωyωz)
1/3.

Evaporative cooling is efficient if the diminution of both N and T results in
an increase of N/T 3. Otherwise we simply have inefficient atom losses. Forced
evaporative cooling consists in reducing the trap depth U0 in a controlled way to
repeat the elementary step pictured on figure 2.7 to progressively increase the PSD.
This is done by lowering the laser power of both arms of the cODT.

The evaporation process relies on atomic collisions (occurring on a timescale
τcoll ∝ 1/γcoll) to restore a well-defined velocity distribution more quickly than the
truncation occurs. This leads to the condition

τcoll < τevap < τloss. (2.17)

A simple model of evaporation relating the number of atoms leaving the trap
dN to the induced reduction of temperature dT shows that [63]

dT

T
=

(
η + 1

3
− 1

)
dN

N
(2.18)

such that, from equation 2.16,

dD
D =

dN

N
− 3

dT

T
(2.19)

= (2− η)
dN

N
. (2.20)
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and the PSD increases as N diminishes if η ≥ 2. Note that dT and dN are negative
quantities.

The collision rate γcoll mentioned in section 1.4.1 satisfies, in the case of harmonic
traps,

γcoll =
mω̄3σ

2π2kB

N

T
. (2.21)

It scales like ω̄3N/T and it is not obvious whether it increases or decreases as the

evaporation goes on. Indeed ω̄ scales as U
1/2
0 according to equation 2.5 and decreases

as the trap depth is lowered. It is not guaranteed that N/T increases enough to
maintain a good collision rate. The runaway regime corresponds to the situation
where γcoll increases during the evaporation, which is the case if η ≥ 5 [64].

In practice the value of η is limited by the exponential scaling τevap ∼ eη which
still needs to remain smaller than τloss. Measurements of atom losses as a function of
the holding time in the cODT showed an exponential decay corresponding to a 1/e
lifetime ranging from 5 to 10 seconds, for different values of trap depth used during
the evaporation. The total evaporation time is typically 3 seconds and the collision
timescale τcoll on the order of 10−2 seconds so that condition 2.17 is satisfied. The
runaway regime is not attained in practice because of the opening of the optical
trap during the evaporation according to a precise model [65]. This issue can be
addressed by tuning the scattering length in the vicinity of a Feshbach resonance
during the evaporation.

The figure of merit used to characterize the efficiency of an evaporative cooling
sequence is the gain in PSD compared to the atom losses in log-log scale

χ = −d logD
d logN

(2.22)

where the minus sign is used to have a positive quantity, since d logN is negative
during the evaporation process.

The laser power of the cODT is controlled by exponential ramps, whose total
duration and time constant are optimized empirically by maximizing the PSD at
different steps of the evaporation. The PSD D is plotted as a function of the atom
number N during the evaporation on figure 2.8, as well as the collision rate γcoll
during the second half of the evaporation. As expected the atom number decreases
while the PSD increases which is the principle of evaporative cooling. The colli-
sion rate decreases over time since the optical trap opens progressively as the laser
power is lowered, yet the fitted evaporation efficiency remains constant at a value
χ = 3.6(4). The grey shaded region corresponds to the threshold of Bose-Einstein
condensation, occurring for D ≥ ζ(3) ' 1.2.

In practice we may not have to use BECs to perform experiments, in which
case the evaporation ramp is interrupted before the condensation threshold. This
allows us to save atoms if very low temperatures are not required, which increases
the signal-to-noise ratio of absorption images. This is precisely the case in the next
chapter where cold thermal clouds are used.
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Figure 2.8 – (Left) Evaporation efficiency. The graph should be read
from right to left to follow the evolution during the evaporation. The solid
blue line is a fit of the data, not taking into account the first few points
where the PSD does not increase. The grey region corresponds to the BEC
threshold. (Right) Collision rate as a function of time corresponding
to the data points plotted on the left. Equation 2.21 is no longer valid in
the grey region corresponding to the condensation threshold.
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Sensitivity of squeezed and
non-gaussian spin states



Chapter 3

Spin squeezing and
quantum-enhanced sensing

This chapter describes how the spin couplings induced by the light-shift operator
close to resonance are used to prepare spin-squeezed states within the ground state
Zeeman manifold |J = 8, mJ = −8, ..., 8〉. These techniques are similar to the ones
used to manipulate the hyperfine spin states of cesium in [66]. The Bloch sphere
representation is introduced in the usual way for a spin 1/2 and generalized to an
arbitrary spin J , in which case a state can be represented by its Husimi function.
In particular the notion of coherent spin state (CSS) plays a central role in this
representation.

We define the standard quantum limit (SQL) as a reference of sensitivity allowing
us to introduce the notion of metrological gain which is the usual figure of merit to
characterize the sensitivity of a state. It is related to the contrast of Ramsey fringes
to some extent, with some limitations that are developed in chapter 4.

Squeezed states exhibit reduced variance in a specific direction and are therefore
of particular interest when it comes to sensing. The first squeezed states of light
were obtained experimentally in 1985 [67] and have been recently used to increase
the sensitivity of gravitational waves interferometers [68]. We present the one-axis
twisting (OAT) Hamiltonian along with its use in the experimental preparation of
spin squeezed states, using tensor light-shifts. Different techniques such as cavity
feedback [69] or squeezing realized by atomic interactions [70] can also be used to
prepare spin squeezed states. We measure the purity of the prepared states and
show that squeezed states indeed exhibit an enhanced metrological gain. We also
provide a reconstruction of their Husimi function.

The enhanced sensitivity that we present in this thesis relies entirely on the large
spin J = 8 of dysprosium. Some of the sensitivity measurements and observables
considered here have been experimentally realized with ultracold ions for a spin
J = 1/2 in [71]. Even though we work with atomic clouds for good contrast and
averaging, the physical effects at play are only 'single-atom'. This guarantees ro-
bustness to decoherence [31] compared to systems where a large spin J = Nj is built
from an ensemble of atoms (or ions) with individual spin j. It is well known that
Schrödinger-cat states, which are coherent superpositions of macroscopic states, are
extremely sensitive to decoherence and therefore difficult to realize experimentally.
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We are able to prepare a superposition of the states |J,mJ = +J〉 and |J,mJ = −J〉
which can be considered as a cat state since J = 8 is quite large. However since
the corresponding Hilbert space is of dimension 2J + 1 (linear scaling with J), it
constitutes a simpler version of cat states than those constituted by N entangled
qubits, with an exponential scaling of the dimension 2N . Schrödinger-cat states with
up to 20 qubits have been prepared with arrays of Rydberg atoms trapped in optical
tweezers [72]. Our work naturally extends to systems constituted of a single spin
with a large number of internal states such as ultracold molecules [73].

3.1 Magnetic field sensitivity and metrological gain with a spin J

The Bloch sphere is a commonly used way to represent a spin 1/2 that we briefly
recall. A general state |ψ〉 is decomposed in the mz basis |−1/2〉 = |↓〉, |1/2〉 = |↑〉
according to

|ψ〉 = cos(θ/2) |↑〉+ sin(θ/2) eiφ |↓〉 (3.1)

where the angles θ and φ span the unit sphere.
This way of writing ψ leads to the following expression for the density matrix

ρ = |ψ〉 〈ψ|,

ρ =
1

2

(
1+ r · σ̂

)
(3.2)

where r =(sin θ cosφ, sin θ sinφ, cos θ) is the vector representing |ψ〉.
This parametrization is of particular interest when describing the evolution of

a spin 1/2 in a magnetic field. The Hamiltonian is Ĥ = −(γ~/2)B · σ̂ where the
σ̂i are the Pauli matrices and γ is called the gyromagnetic factor. The Schrödinger
equation for the density matrix

i~
dρ

dt
=
[
Ĥ, ρ

]
, (3.3)

using the formula (a · σ̂)(b · σ̂) = (a · b)1 + i (a ∧ b) · σ̂, reduces to

dr

dt
= −γB ∧ r (3.4)

which is precisely the equation governing the precession of a classical magnetic
moment in a magnetic field. This is what makes the Bloch sphere representation a
useful and intuitive tool to represent states of a spin 1/2.

3.1.1 Representing states of a spin J on the Bloch sphere

To generalize the representation on a sphere for any state of a spin J , the notion of
coherent spin states is required. Let us introduce the algebra of angular momentum
(or spin) operators Ĵx, Ĵy, Ĵz satisfying the commutation relation

[Ĵx, Ĵy] = iĴz (3.5)

and the other two obtained by circular permutation of the x, y, z indices. The 2J+1-
dimensional basis of the joint eigenstates of Ĵ2 and Ĵz (where the z direction can be
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chosen arbitrarily) is formed by the Dicke states |J,m〉z for m = −J,−J + 1, ..., J −
1, J . The z subscript is usually dropped for simplicity but it can be necessary in the
case of basis changes. The |J,m〉x basis for example will also be used in convenient
cases.

The Dicke states are similar to the Fock states in quantum optics, as they obey
the same 'ladder' behaviour with

Ĵ± |J,m〉 =
√
J(J + 1)−m(m± 1) |J,m± 1〉 (3.6)

where Ĵ± = Ĵx ± iĴy.

Coherent spin states

A coherent spin state that we write |θ, φ〉 is an eigenstate of the rotated spin
operator Ĵθ,φ = sin θ cosφ Ĵx + sin θ sinφ Ĵy + cos θĴz with eigenvalue J . Such a
state can also be referred to as a classical state since it is analogous to a classical
magnetic dipole pointing in the direction (θ, φ). It can be decomposed in the Dicke
basis according to [74]

|θ, φ〉 =
J∑

m=−J

√(
2J

J −m

)(
sin

θ

2

)J−m(
cos

θ

2

)J+m
e−i(J+m)φ |J,m〉 (3.7)

Now for a given state |ψ〉 of the spin J , one can define its Husimi function
Qψ(θ, φ) as

Qψ(θ, φ) = |〈ψ|θ, φ〉|2 . (3.8)

The value of Qψ at position (θ, φ) is nothing but the overlap between the CSS |θ, φ〉
and the state |ψ〉.

The explicit computation of the Husimi function of a CSS |θ0, φ0〉 is tractable
and yields

|〈θ0, φ0|θ, φ〉|2 =
1

22J

[
1 + cos(θ − θ0)− sin θ sin θ0

[
1− cos(φ− φ0)

]]2J
(3.9)

While this expression is not obvious at first sight, an expansion for θ close to θ0 and
φ close to φ0 can be performed to get

|〈θ0, φ0|θ, φ〉|2 ∼
[
1− (θ − θ0)2

4
− sin2 θ0

(φ− φ0)
2

4

]2J
(3.10)

∼ exp

[
−J

2

[
(θ − θ0)2 + sin2 θ0 (φ− φ0)

2
]]

(3.11)

which is a gaussian shape of width σ ∼ 1/
√
J represented on figure 3.1. This can

be understood from the fact that the exponent 2J = 16 strongly damps the Husimi
function away from its maximum. Representing a state by its Husimi function on
a sphere constitutes the generalized Bloch sphere representation. The remaining
factor sin2 θ0 is an artifact of the spherical coordinates.

The average magnetization mz = 〈θ, φ|Ĵz|θ, φ〉 of a CSS is equal to J cos θ as
expected from its graphical representation.
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Figure 3.1 – Husimi function of a CSS for a spin J = 8, centered on
the direction (θ, φ) on the generalized Bloch sphere.

A CSS |θ, φ〉 is a gaussian state in the sense that it saturates the Heisenberg
uncertainty principle

∆Ju∆Jv ≥

∣∣∣
〈

[Ĵu, Ĵv]
〉∣∣∣

2
=

∣∣∣〈Ĵθ,φ〉
∣∣∣

2
=
J

2
(3.12)

where u and v are two orthogonal directions in the plane orthogonal to (θ, φ). This
leads to ∆Ju =

√
J/2 for any direction u orthogonal to (θ, φ).

The size σ ∼ 1/
√
J of the Husimi function of a CSS is related to the fact that

the Bloch sphere has a radius J such that the apparent size of the Husimi function
is ∆J/J ∼ 1/

√
J .

A coherent state |θ, φ〉 can be defined as the action of a rotation operator R̂(θ, φ)
acting on the maximal state |J, J〉 as [75]

|θ, φ〉 = R̂(θ, φ) |J, J〉 = exp
[
θ (e−iφĴ+ − eiφĴ−)

]
|J, J〉 (3.13)

in a similar way to the definition of a coherent state of the electromagnetic field |α〉
as the displacement operator D̂(α) acting on the vacuum |0〉.

Dicke states

The Husimi function of a Dicke state is

|〈J,m|θ, φ〉|2 =
1

22J

(
2J

J −m

)
(1− cos θ)J−m (1 + cos θ)J+m (3.14)

and we see that it has no φ dependence. A quick computation of the derivative
shows that the Husimi function is maximal on a line of equation J cos θ = m which
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is a parallel of the sphere. The Husimi function indeed corresponds to a ring on the
Bloch sphere as shown on figure 3.2.

Figure 3.2 – Husimi function of three Dicke states for J = 8. Note
that the upper Dicke state m = 8 is also a CSS corresponding to the vertical
direction, pointing up, while m = −8 would be pointing down.

3.1.2 Rotations and magnetic field sensitivity

The effect of a magnetic field pointing along z on a CSS can be easily computed.
The time-independent Hamiltonian Ĥ = gJµBB · Ĵ = gJµBBĴz leads to a unitary
evolution operator Û(t) = exp(−iωtĴz) with ω = gJµBB/~. The state evolves
according to

Û(t) |θ0, φ0〉 = eiJωt |θ0, φ0 + ωt〉 (3.15)

which is a CSS precessing around the vertical axis with angular velocity ωt as de-
picted on figure 3.3. The global phase factor does not play a significant role and
disappears when computing the Husimi function. This result is valid for any mag-
netic field since we can always perform a basis change mapping the z-axis onto
the direction of the magnetic field. We recover the same behaviour as for a spin
1/2 on the Bloch sphere. This is another reason why the generalized Bloch sphere
representation is useful and intuitive.

The notion of magnetic field sensitivity of a spin state is related to how much it
rotates on the Bloch sphere under the influence of a magnetic field. The smallest
magnetic field that can be measured over a duration τ is related to the smallest
displacement Jδφ = Jωτ that can be resolved on the sphere. If Jδφ is larger than
the width of the state ∆J then the state displacement can be resolved. If it is
smaller, then the spread of the state hides the displacement. This effect is visible
on figure 3.3.

As previously described a Dicke state is invariant along φ and is therefore in-
variant under the application of a vertical magnetic field. This is to be expected
from the fact that Dicke states are eigenstates of Ĵz. The magnetic field sensitivity
intuitively corresponds to how much a state needs to change for a difference to be
measurable.
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Figure 3.3 – Husimi functions of two CSS, the first one centered on
x and the second one experiencing Larmor precession around the z-axis.
They both have an average magnetization mz = 0. The rotation angles are
0, π/6, π/3 and π/2 from left to right. The π/6 angle cannot be resolved
precisely due to the intrinsic variance of the CSS whereas π/3 is clearly
visible.

3.1.3 Sensitivity based on Ramsey oscillations

In order to quantify the sensitivity ∆φ that can be attained from a general
measurement corresponding to the operator Â (depending on φ), we use the method
of moments stating that [76]

∆φ =
∆Â∣∣∣d 〈Â〉 /dφ

∣∣∣
(3.16)

for a single measurement and a single probe.
For spin states, the experimentally accessible quantities are the populations of

the different |m〉z states, through a Stern-Gerlach measurement. We drop the letter
J in the kets since it will stay the same throughout the chapter. The z subscript
will be omitted as well unless basis changes are involved. The rotation around z
corresponding to the Larmor precession leaves the relative populations unchanged
and therefore they do not depend on the angle φ.

The technique of Ramsey interferometry is well known in the context of spins
1/2 and also applies to any spin J . It has the advantage of mapping variations of φ
onto variations of the populations along z and is therefore especially suited in this
context. We assume that the initial state is a CSS on the north pole of the sphere.
This is the situation usually found in experiments. A first π/2 rotation around y
(note that it could also be any axis of the xy plane) brings the CSS on the equator
of the sphere, on the x-axis. The first panel of figure 3.4 represents this state on the
x-axis. It will precess for a given waiting time τ due to the presence of the external
magnetic field along z. Then a −π/2 rotation around y brings the state away from
the equator and turns the accumulated phase φ into a change of the azimuthal angle
θ. This induces a change in populations as represented in figure 3.5. The population
distributions are binomial according to equation 3.7, and have a gaussian shape far
from the edges.

Using this technique and according to equation 3.16, the phase sensitivity is then

∆φ =
∆Jz

|dmz/dφ|
(3.17)
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Figure 3.4 – Scheme illustrating Ramsey oscillations. From left to
right (1, 2 and 3), three different precession times 0, τ1, τ2 (in blue) followed
by a −π/2 rotation R̂y around y-axis (in orange). On the third panel the
state is brought onto the x-axis by Larmor precession and remains invariant
under R̂y. The fourth panel represents the final states (orange) obtained
from the first three panels. It shows how the variations of φ on the equator
are mapped into variations of the azimuthal angle θ.

where ∆Jz is the variance along the vertical direction and mz is the average magneti-
zation along z. Intuitively a precise measurement corresponds to a small ∆φ, mean-
ing a small variance ∆Jz and a large 'change of mz per change of φ'. Explicit com-
putation of 〈Ĵ2

z 〉 is tractable and, together with the result 〈Ĵz〉 = J cosφ previously
derived (φ replaces θ thanks to the Ramsey rotations), yields ∆Jz =

√
J/2 sinφ and

finally ∆φ = 1/
√

2J .

This value corresponds to the Standard Quantum Limit (SQL). It is also referred
to as classical limit in the sense that it is similar to the 1/

√
N reduction of uncer-

tainty when averaging over the measurement outcomes of N uncorrelated probes.
In this case N = 2J corresponds to the fictitious 2J spins 1/2 combined to form a
large spin J . This analogy will be developed in details in chapter 4.
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Figure 3.5 – Populations of the three CSS obtained during the Ramsey
procedure (rightmost panel of figure 3.4). Three shades of orange, from light
to dark, are used to represent the three successive states with θ = 0, π/4 and
π/2. θ = 0 corresponds to only the upper m-state m = 8 being populated,
while θ = π/2 corresponds to mz = 0 with a Husimi function located on
the equator of the sphere.
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3.2 Spin squeezing and enhanced sensitivity

From looking at figure 3.3, one can see how a 'narrower' state would lead to an
increase of phase sensitivity. Such a state is called a squeezed state and is charac-
terized by a reduced variance along one axis. It can be prepared using the one-axis
twisting (OAT) Hamiltonian introduced for the first time in [37].

3.2.1 The one-axis twisting Hamiltonian

The OAT corresponds to the quadratic spin operator

Ĥ = ~χĴ2
u (3.18)

where u is a unit vector defining any direction on the sphere and χ is a real parameter
characterizing the coupling strength. We will always use the direction u = ex in the
following as it is the axis used on the experimental setup.

We first describe the effect of the OAT on the initial state |−J〉z. This is the
initial state prepared experimentally as will be described later. The evolution is
2π/χ-periodic and the different populations along z are plotted for J = 8 in fig-
ure 3.6. Only the states with even m get populated because the initial state has
even m and Ĵ2

x ∝ (Ĵ+ + Ĵ−)2 changes m-states by increments of 2. It is not easy to
follow the varying populations in all the 17 states at different times , but it can be
better understood by expressing the states in the x-basis (by performing the right
angle changes in equation 3.7), where the Ĵ2

x operator has a simple effect. Indeed

|ψ(t)〉 = e−iχtĴ
2
x |−J〉z

= e−iχtĴ
2
x

1

2J

J∑

m=−J

√(
2J

J −m

)
im |m〉x (3.19)

=
1

2J

J∑

m=−J

√(
2J

J −m

)
ei(mπ/2−m

2χt) |m〉x

which is a superposition of terms oscillating at different frequencies. Such a situation
leads to dephasing after a short time. In this case the timescale can be deduced from
the magnetization mz (second panel on figure 3.6). It experiences a collapse from
the initial value mz = −J corresponding to the singly occupied state |−J〉, to zero
corresponding to a superposition of all states. It can be shown [37] that

mz(t) = −J
[

cos(χt)
]2J−1

(3.20)

which for large J scales at short times as exp [−2J(χ2t2/2)]. The associated collapse
timescale is 1/(χ

√
2J).

The 2J+1 oscillating terms come back in phase for χt = π for which the resulting
state is

|ψ(π/χ)〉 =
1

2J

J∑

m=−J

√(
2J

J −m

)
im(−1)m |m〉x = |+J〉z (3.21)
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and is clearly visible with a maximum of the magnetization at χt = π.
Another simple quantum state occurs at χt = π/2 and is visible with a peak of

the variance to its maximal value ∆Ĵ2
z = 64. This situation corresponds to the two

extremal states |−J〉z and |+J〉z being equally populated. Indeed

|ψ(π/2χ)〉 =
e−iπ/4√

2
(|−J〉z + i |+J〉z) (3.22)

is a coherent superposition of these two states which can be called Schrödinger-cat
state, GHZ state [77] or N00N state [78]. The second half of the period is identical
to the first half and we recover the initial state |−J〉z at the end.
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Figure 3.6 – Evolution over one period of the OAT. We first plot
the populations as a function of time. A 'vertical slice' of this color plot
at a given time is a population histogram similar to the ones of figure 3.5.
From the populations Πm(z) along z, the mean mz and variance ∆Ĵ2

z are
computed as mz =

∑
mmΠm(z) and ∆Ĵ2

z =
∑

mm
2 Πm(z)−m2

z.

3.2.2 Squeezing parameter

At this stage the squeezing is not apparent yet. The squeezing parameter ξR
if the figure of merit usually used to characterize the amount of squeezing. It is
defined as [79]

ξR =
√

2J
∆Jmin

|mz|
(3.23)

where ∆Jmin is the minimal variance in the xy plane.
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For a CSS along the z direction, we have |mz| = J and ∆Jmin =
√
J/2 such that

ξR = 1.
In terms of magnetic field sensitivity, ξR can be related to the smallest displace-

ment that can be measured on the sphere in a similar way to figure 3.3. We now
have

∆φmin =
∆Jmin

|mz|
=

ξR√
2J

= ξR ∆φSQL. (3.24)

This leads to the notion of metrological gain GR defined as

GR =

(
∆φSQL

∆φ

)2

(3.25)

which for spin squeezing satisfies

GR = 1/ξ2R. (3.26)

We plot on figure 3.7 the minimal and maximal variance in the xy plane as well
as the metrological gain and the 'gaussianity' of the prepared state as a function of
the interaction time χt. This is the result of numerical simulations. We observe a
reduction of the minimal variance below 4 (the value for the initial coherent state)
at short times while the maximal variance increases to satisfy the Heisenberg uncer-
tainty principle. The squeezing is associated to an increase of the metrological gain
with a maximum at χts ' 0.15. This optimally squeezed state minimizes ξR.
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Figure 3.7 – Manifestation of the squeezing at short times. We
restrict the plot to short times up to χt = π/4 since the interesting changes
occur during the collapse timescale χt ∼ 1/

√
2J . Note that the maximum

of GR does not occur exactly at the same time as the minimal variance. The
maximal variance reaches a plateau at J(J+1/2)/2 = 34 in the oversqueezed
regime [80].

At longer times, the metrological gain collapses as the minimal variance reaches
an asymptotic value of J/2 = 4 and the average magnetization along z goes to
zero. This region corresponds to oversqueezed states, a word introduced for the
first time in [81]. This category of states had already been studied in [69] and [82].
In this regime the prepared state ceases to be gaussian as can be seen from the
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comparison between the product of uncertainties ∆Jmin∆Jmax and |mz|/2. The
Heisenberg uncertainty principle is no longer saturated which means that the states
become non-gaussian.

Note that for the cat state, prepared at χt = π/2, the magnetization along z
is equal to zero as plotted on figure 3.6, which means that the gain GR computed
from the squeezing parameter (equation 3.26) is GR = 0. However the cat state is
the one with the highest magnetic field sensitivity in the entire manifold [83]. This
is true if the sensitivity is extracted from an experimental sequence that is different
from Ramsey interferometry and the metrological gain defined in this chapter cannot
account for it. It is also the case for the oversqueezed states which indeed have a
sensitivity worse than a CSS in the case of Ramsey interferometry (GR < 1) but
in fact exhibit higher sensitivity for a different experimental protocol. These two
specific cases are described in chapter 4.

3.3 Experimental realization of the OAT

We now present the experimental realization of spin-squeezed states using ultra-
cold clouds of dysprosium. Off-resonant light at 626 nm is used to induce quadratic
spin coupling in a similar way to [66]. Arbitrary rotations of the prepared state can
be performed using magnetic field pulses. Finally the spin composition of the cloud
can be determined by a Stern-Gerlach measurement. The Husimi function of the pre-
pared states as well as their purity can be deduced from population measurements.
Their magnetic sensitivity is measured from Ramsey oscillations or equivalently from
computing the squeezing parameter ξR.

3.3.1 State preparation and readout

We work with cold gases of typically 105 atoms at a temperature of 1.1 µK. Note
that these are ultracold thermal clouds, not BECs. The specific features of BECs
are not required here and the compromise between low temperature (to resolve the
different spin states) and large atom number (for good absorption imaging contrast)
of the evaporation process led to the numbers mentioned here. The cloud is initially
polarized in the |−8〉z state thanks to the value of the vertical quantization field of
0.5 G used during the evaporative cooling stage. It is ramped down in typically 50
ms to a value of 60 mG which still corresponds to a Zeeman splitting of 5 µK. This
value is chosen to have a defined quantization axis while limiting thermal excitations
to higher m-states. We present the experimental setup on figure 3.8 and the steps
used to prepare and measure spin states. These various steps can also be separately
used as calibration tools presented afterwards.

Light pulse to induce one-axis twisting

The OAT dynamics is induced by a pulse of light close to the 626 nm transition.
The duration and amplitude of the pulse is controlled by an AOM with a rising time
of typically 100 ns and the laser beam is focused at the position of the atoms with a
waist of 50 µm and available power above 1 W. The cODT is turned off before the
light pulse is sent on the atomic cloud. The effect of gravity and thermal expansion
on its vertical position and size (a few µm) are not significant over the duration of
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Figure 3.8 – Scheme of the experimental setup for one-axis twist-
ing.

the spin dynamics (µs timescale). This allows us to neglect inhomogeneous coupling
over the spatial extension of the atomic cloud.

The light is linearly polarized along x which according to equation 1.7 leads to
the presence of a Ĵ2

x term and the absence of vector light-shift. The scalar term
corresponds to an overall m-independent energy term which has no effect on the
spin dynamics. The Hamiltonian therefore reduces to

Ĥ = ~ωZ Ĵz + ~χĴ2
x with χ = − 1

(J + 1)(2J + 1)

3πΓc2

2ω3
0

I

∆
(3.27)

where ωZ = gJµBB/~ corresponds to the presence of a vertical magnetic field. The
value of B = 60 mG specified above ensures that the Zeeman term remains small
compared to χ. The associated Larmor rotation is typically 3◦ over the duration of
the light pulse (a few 100 ns) and is therefore neglected. Therefore the light pulse
realizes the OAT Hamiltonian almost ideally.

Note that the rising time of the AOM and the total duration of the light pulse
are of the same order of magnitude. This results in a pulse shape (figure 3.10) which
is not rectangular but rounded. The interaction time χt introduced in the previous
section is proportional to the integrated pulse and is extracted numerically. The
detuning ∆ is chosen to be 2π ×−1.1 GHz which leads to a power-tunable value of
χ = 1− 10µs−1.

Magnetic pulses to induce rotations

Rotations around the y-axis can then be performed by sending current pulses
of various durations in the coils placed laterally around the cell. The goal is to be
able to bring a state from the pole of the Bloch sphere to the equator as described
in the previous section with the Ramsey sequence. The magnetic pulse consists in
changing the direction of the magnetic field over a short duration (typically 3 µs)
so that the Larmor precession is tilted and brings the state away from the pole as
described on figure 3.9.
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Figure 3.9 – Rotations corresponding to magnetic pulses of dif-
ferent strengths. From left to right, By increases while the value of Bz

remains constant, with the extreme case By � Bz corresponding to the
ideal π/2 rotation on the right. In the first case the pulse is not strong
enough to bring the state to the equator and cannot be used in a Ramsey
sequence. One can see that to reach the equator, the total magnetic field
needs to have an angle of at least 45◦ with respect to the vertical direction.

The case of an ideal π/2-pulse corresponds to a field By much larger than Bz

producing a rotation around the y-axis. However the technical limitations of the
power amplifier used on the experiment only allow for an imperfect π/2 pulse. The
state rotates around a tilted axis between z and y and therefore acquires a phase φ
when brought on the equator. With the value Bz = 60 mG previously mentioned,
we measure an offset phase of 1.94 radians that we take into account in the analysis
when speaking of a π/2 rotation. This offset is never an issue when performing a
Ramsey sequence.

Rotations around z naturally occur due to the Larmor precession induced by the
quantization field. A magnetic field of 60 mG corresponds to a Larmor period of 9.6
µs. We can therefore perform arbitrary rotations on the Bloch sphere by combining
active rotations (pulses) around y and passive rotations (waiting times) around z.

Stern-Gerlach state readout

The populations along z are measured by a Stern-Gerlach experiment. A mag-
netic field gradient is applied during a few milliseconds and induces a force

Fm = −mJ gJ µB∇B. (3.28)

which linearly depends on mJ . It separates the atomic cloud in up to seventeen
smaller clouds, corresponding to the different m-states. Two consecutive m-state
clouds are visibly distinguishable if their thermal expansion remains smaller than
the distance between them. This is achieved with a field gradient of around 50 G/cm
and a temperature of a few µK.

Absorption imaging leads to optical densities of the m-state clouds proportional
to the relative atom numbers in each of these states. Gaussian fits of the clouds allow
us to retrieve the relative populations by normalizing to the total atom number. An
example of single-shot pictures is given on figure 3.10.

This measurement projects each atomic state of the form |ψ〉 =
∑

m αm |m〉z on
the state |m〉z with probability Πm = |αm|2. Since there are 105 atoms, the number



50 3. Spin squeezing and quantum-enhanced sensing

Figure 3.10 – Experimental sequence for state preparation and ex-
amples of single-shot pictures for three CSS. (Left) The three traces
correspond to the recorded red laser power on a photodiode, the recorded
intensity corresponding to the rotation pulse and finally the Stern-Gerlach
pulse. The timescales are not identical for the three traces. These are the es-
sential ingredients used to prepare and probe states. The rotation stage can
be more complicated with additional pulses and well-chosen waiting times.
(Right) The three states correspond to average magnetizations mz = −8,
mz = −5 and mz = 0. The ground state m = −8 is the initial state in
all our experiments, the other two are obtained after performing magnetic
rotations of different durations. Pulses of red light were not used to prepare
these three states.

of atoms Nm found in each single-m cloud is directly proportional to Πm according
to

N =
∑

m

Nm and Πm =
Nm

N
. (3.29)

By combining this measurement along z with arbitrary rotations mapping a
direction n̂ onto z, we have access to the populations Πm(n̂) for any direction n̂.
From this measurement only, one cannot distinguish a superposition state from a
statistical mixture. However the purity of the states can be inferred from population
measurements along various directions, as described in section 3.3.2

Atom number calibration

The difference with standard absorption imaging described by equation 1.14 is
that the scattering cross section depends on m through the Clebsch-Gordan coeffi-
cients of the J = 8 → J ′ = 9 transition (at 421 nm). Therefore we need to take
these coefficients into account in order to extract unbiased populations. Note that
the imaging pulse also need to be short enough so that it does not induce optical
pumping resulting in a transfer between the different m-states.
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The cross section calibration is achieved by performing a sequence that populates
all the states while keeping the total atom number constant. The Ramsey sequence
is especially suited in this case as we do not expect magnetic rotations to induce
m-dependent losses. We know that the total atom number should be independent
from m if the different coefficients are well chosen. We perform a fit of these 17
coefficients to minimize the variance of the total atom number and get the result
plotted on figure 3.11. We observe a symmetric behaviour for the fitted coefficients
consistent with the fact that we use linearly polarized light to image the atoms.
The Clebsch-Gordan coefficients cm,q indeed satisfy c−m,−q = cm,q where q = −1, 0, 1
stands for σ−, π and σ+ polarizations. The additional visible tilt can be attributed
to slightly non uniform light intensity over the extension of the single-m clouds.
This method has the advantage of correcting experimental imperfections as well as
the physical imaging bias.
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Figure 3.11 – Calibration of the m-dependent cross sections. (Left)
Total atom number as a function of the average magnetization mz during
a Ramsey sequence, without calibration (light red), and with corrections
(blue). The atom number is normalized to 1 for the calibrated coefficients.
(Right) Calibrated cross sections for the different m-states.

Alignment of the quantization field

The magnetic field gradient direction is physically set by the way the coil is placed
below the glass cell and therefore cannot be changed. This is what sets the vertical
direction in practice. The direction of the magnetic field used as a quantization axis
is then aligned on it by imaging coherent states.

We know that the atomic cloud is initially polarized in the |−8〉u state where u
is the direction of the magnetic field. If u coincides with z, we should image only
a single cloud corresponding to the state |−8〉. If the two directions are different,
severalm-states will be populated in the spirit of figure 3.10. Scanning the transverse
magnetic field generated by the coils along x and y and minimizing the magnetization
mz down to -8 allows us to align the quantization field on the measurement axis.



52 3. Spin squeezing and quantum-enhanced sensing

3.3.2 OAT evolution, purity and squeezing parameter

We now present the experimental results published for the most part in [84].

Implementation of the OAT

Using the tools presented here, we can engineer the one-axis twisting Hamilto-
nian and probe the prepared states. We focus on the short-time evolution i.e. the
squeezing strictly speaking. We are able to experimentally reproduce the graphs of
figure 3.7 that we plot on figure 3.12 for χt < 0.5.
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Figure 3.12 – Magnetization and variance measurements. (Left)
Mean magnetization mz as a function of the interaction time χt. (Cen-
ter) Minimal and maximal variance in the xy plane. (Right) Uncertainty
product and lower bound of the Heisenberg uncertainty principle |mz|/2.
Solid lines correspond to the OAT predictions. Arrows point at the values
corresponding to the data obtained for the state represented in figure 3.13.

We indeed observe a reduction of the minimal variance in the xy plane i.e. spin
squeezing, in good agreement with the predictions of the OAT. There is an increasing
difference between experimental results and theory for data points at times longer
than χt = 0.25 that we attribute to the Ĵz term in the Hamiltonian. Its effect gets
visible as the interaction time increases.

The only fitted quantity is the overall scaling of the x axis as the coupling χ is
proportional to the power of the laser beam used to induce the Ĵ2

x coupling at the
position of the atoms. This is a quantity that we cannot accurately measure because
of the small absorption caused by the sides of the glass cell. The value of χ was also
subject to daily recalibration, as the laser beam can drift away from the position
of the atoms and its total power also drifts over days (because of small alignment
drifts building up in the optical setup). By measuring the mean magnetization mz

for a few states as plotted on the left panel of figure 3.12 and comparing it with the
predictions of the OAT, we can calibrate χ before any data acquisition.

The successive steps used to measure the minimal and maximal variance in the xy
plane are represented in figure 3.13. We measure for a squeezed state the populations
Πm(n̂) for n̂ in the xy plane to extract the squeezing direction φmin.
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Figure 3.13 – Experimental steps used to measure the minimal and
maximal variance in the xy plane for a squeezed state. Since the
initial state |−8〉z is oriented along the direction −z, we choose to represent
the z-axis pointing down for an easier visualization (a) . After preparing
a squeezed state (b), an additional waiting time induces a rotation with
respect to the z-axis, on top of the sphere (not represented here). It is
followed by a rotation bringing the state to the equator, which allows a
mapping of the variance in the xy plane to the z-axis. By adjusting the
waiting time during which the state rotates about z, one can change φ
and vertically align the squeezed state along its minimal (c) or maximal
(d) variance. The Husimi functions shown here are the results of simula-
tions while the populations are single-shot pictures. (Bottom) Populations
Πm(n̂) along the direction n̂ in the xy plane used to compute the minimal
and maximal variance for the squeezed state prepared at χt = 0.21. The
solid (resp. dotted) red line corresponds to the average magnetization mz

(resp. variance).
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Purity measurements

The purity of a spin state can be written as a function of its populations Πm(n̂)
[85] as

Tr
[
ρ2
]

= (2J + 1)
J∑

m=−J

∫
dΩ

4π
Πm(n̂)

[
Πm(n̂)− Πm+1(n̂)

]
(3.30)

where we define ΠJ+1(n̂) = 0. The derivation of this equation is given in appendix B.
We evaluate the integral (3.30) from a discrete set of ' 1000 independent Πm(n̂)

measurements sampling the sphere. The quantity p(θ) is obtained after an integra-
tion over the azimuthal angle φ, i.e.

p(θ) = (2J + 1)
J∑

m=−J

∫ 2π

0

dφ

2π
Πm(n̂) [Πm(n̂)− Πm+1(n̂)] , (3.31)

such that

Tr
[
ρ2
]

=
1

2

∫ π

0

p(θ) sin θ dθ. (3.32)

The quantity p(θ) is measured for coherent, squeezed and oversqueezed states and
matches well the values expected from the one-axis twisting model as can be seen on
figure 3.14. Integrating over the variable θ, we obtain purity values Tr[ρ2] = 1.00(2),
1.00(3) and 1.01(4) respectively. Thanks to the symmetry Πm(θ, φ) = Π−m(π−θ, φ+
π), it is sufficient to compute p(θ) for θ < π/2. The error bars are determined using
a bootstrap sampling method.
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Figure 3.14 – Intermediate quantity p(θ) used to measure the pu-
rity. p(θ) is computed from Πm(θ, φ) for a coherent (χt = 0), squeezed
(χt = 0.12) and oversqueezed (χt = 0.55) state. The solid lines corre-
spond to the prediction of the one-axis twisting Hamiltonian. Intuitively
p(θ) should be peaked more around θ = 0 for the initial coherent state since
it has population Πm(z) in m = −8 only. When the OAT evolves towards
the squeezed and oversqueezed states, the populations spread among the
m-states and the quantity p(θ) becomes more and more uniform.
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Husimi functions

We can also experimentally reconstruct the Husimi function Q(θ, φ) = Q(n̂) of
the prepared states. Using equation 3.13, Q can be related to the populations Πm

as

Q(θ, φ) = |〈θ, φ|ψ〉|2 =

∣∣∣∣
(
R̂(θ, φ) |mJ = +J〉

)†
|ψ〉
∣∣∣∣
2

(3.33)

=
∣∣∣〈mJ = +J | R̂(−θ, φ) |ψ〉

∣∣∣
2

= Πm=+J (−θ, φ). (3.34)

We plot on figure 3.15 the reconstructed Husimi function for the initial coherent
state and for a squeezed state at χt = 0.12. Using again the symmetry Πm(θ, φ) =
Π−m(π − θ, φ + π), we only need to take data sampling half of the sphere. Two
points of the Husimi function that are opposite on the sphere correspond to the
same populations data.
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Figure 3.15 – Reconstructed Husimi function for a CSS and a
squeezed state. We plot the Husimi function in a planar way for an easier
visualization. The angles Θ and Φ correspond to a parametrization of the
sphere in the (y, z, x) frame. This choice is made so that the distribution
is centered on the graph and therefore remains minimally distorted, as the
poles of the sphere are mapped onto lines on the graph. The data used here
are the same as for the purity measurements.

These measurements confirm that the state preparation procedure is correct
and that the corresponding states can be used for metrology. From the reduced
variance observed in section 3.3.2, we expect enhanced magnetic field sensitivity,
which remains to be explicitly shown from experimental Ramsey oscillations.
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3.3.3 Ramsey oscillations for different states

The experimental sequence used to measure Ramsey oscillations is the following.
The Ĵ2

x coupling is applied for a duration t, after which we let the state precess on
the north pole for a given time so that, once it is brought to the equator by a π/2
rotation, its direction of maximal variance is aligned on the z axis, and its minimal
variance is aligned on the equator (except for the coherent state which is circular).
We let the state precess on the equator during a waiting time τ before applying
another π/2 rotation.

We represent on figure 3.16 the populations Πm(z) measured after the afore-
mentioned sequence as a function of the azimuthal angle θ. The initial state of the
Ramsey sequence obtained after the OAT preparation corresponds to θ = π.
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Figure 3.16 – Ramsey oscillations for a (Left) coherent state and
(Right) squeezed state (corresponding to χt = 0.15). The solid red line
corresponds to the average magnetization mz and the red dotted lines cor-
respond to mz ± ∆Jz computed from the populations Πm(z). The Bloch
spheres show a semi-classical representation of the states and their trajec-
tory during the Ramsey sequence.

We focus on the magnetization mz and variance ∆J2
z of these states as they are

involved in the expression of the phase sensitivity according to equation 3.16. One
can see that the slope |dmz/dθ| is maximal at θ = π/2 for both states. However
while the variance is maximal at this point for the coherent state (expected value of
4, measured value of 4.3(1)), it is minimal for the squeezed state. Therefore when
computing ∆θ at position θ = π/2 for both states, we find

∆θcoh =

√
4.3(1)

8.01(4)
= 1.04(3) ∆θSQL and ∆θsqueezed = 0.48(2) ∆θSQL

The sensitivity is indeed higher for the squeezed state. The oscillation contrast
of mz is smaller than 8 due to the fact that the states m = −8 , m = −6 and
m = −4 are populated, compared to the case of the coherent state. However the
reduced variance greatly compensates this. The metrological gain GR is deduced
from the uncertainties ∆θ and can be compared to the values of 1/ξ2R obtained from
the minimal variance measurements of figure 3.12. As can be seen on figure 3.17,
they coincide quite well.
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Figure 3.17 – Metrological gain and Ramsey oscillations for an
oversqueezed state. (Left) Comparison between the metrological gain
GR directly computed from Ramsey oscillations and the 1/ξ2R value ob-
tained from the minimal variance of the states. The arrow points at the
oversqueezed state corresponding to the Ramsey oscillations. (Right) De-
tails of the populations in the different m-states (along z) for the Ramsey
oscillations of an oversqueezed state. The solid and dotted red lines corre-
spond to the same quantities as for the previous Ramsey graphs.

We also plot on figure 3.17 the Ramsey oscillations obtained for an oversqueezed
state. The fact that many m-states are populated induces a strong reduction of the
contrast on the oscillations of mz. Therefore the metrological gain computed from
the method of moments is smaller than 1. However one can see how the populations
of the single m-states vary quickly around θ = 0. This means that even though the
mean mz is constant in the vicinity of θ = 0, the state is changing rapidly. This is
exactly what it means for a state to be sensitive : it changes 'a lot' under the effect
of a magnetic field. This change is however not captured by the first and second
moments of the population distribution. This suggests the use of another figure of
merit that takes advantage of the variation at the single-m level. We present this
figure of merit in the next chapter along with details of the oversqueezed states that
are not captured by looking only at the mean and variance of Ramsey oscillations.



Chapter 4

Generalized metrological gain
applied to non-gaussian spin states

Following the previous chapter, we first recall notions of parameter estimation
theory which enable us to introduce a quantity called the Fischer information and
the corresponding Cramér-Rao bound. This sets a theoretical limit on the metrolog-
ical gain that we can obtain with a given state. We show an example of a well-chosen
observable, the parity, that allows to reach this limit for the cat state.

We then introduce a statistical distance between distributions from which we can
extract the metrological gain in a way that generalizes the definition given in equa-
tion 3.25 and works for all the states present in the OAT evolution [86]. In particular
the metrological gain of an oversqueezed state computed in this new framework is
better than that of a squeezed state. We show that this new definition of the metro-
logical gain saturates the Cramér-Rao bound and is therefore optimal. It makes use
of the full population distribution whereas the Ramsey sequence is intrinsically lim-
ited as it uses only the mean and variance of the population distribution. We provide
a reconstruction of the Wigner function for an oversqueezed state, illustrating the
metrological interest of these states.

We then describe how a state of a spin J can be seen as a symmetric state of
N = 2J fictitious spins 1/2. In particular a CSS corresponds to the absence of
entanglement between them, while the cat state obtained at χt = π/2 is maximally
entangled. The Majorana stellar representation is introduced and used to get a
better understanding of the Husimi function of an oversqueezed state.

Finally this analogy is used to simulate a system of 16 indistinguishable inter-
acting spins 1/2 corresponding to the Lipkin-Meshkov-Glick model.

4.1 Optimal sensitivity measurements

4.1.1 Parameter estimation theory and Cramér-Rao bound

In the context of spin states, measuring a magnetic field consists in measuring
the angle φ corresponding to the effect of the Larmor rotation on a quantum state.
The initial state ρ̂0 evolves according to the unitary evolution ρ̂φ = Ûφ ρ̂0 Û

†
φ under

the effect of the external magnetic field that we want to measure and/or controlled
manipulations such as the π/2 rotations in a Ramsey sequence. While a full quantum
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state tomography would be a way to deduce the value of φ (assuming we know the
exact expression of Ûφ), this is not feasible in most cases because of the size of the
density matrix.

The phase φ can also be deduced from measurements on ρ̂φ whose outcome are
used to infer the value of φ with minimum possible error. We assume that the
measurements are described by an operator Â with average outcome µ = Tr[ρ̂φÂ].
We write P (µ|φ) the probability to obtain a result µ given that the parameter has
the value φ. By performing N such measurements independently, we obtain a set
of results {µ1, ..., µN} from which we can define an estimator Φ(µ) which associates
a value of φ to the measured value of µ. It is a random variable with average
value Φ̄ =

∑N
i=1 P (µi|φ)Φ(µi) and variance ∆Φ2 =

∑N
i=1 P (µi|φ)(Φ(µi) − Φ̄)2. An

estimator is said to be locally unbiased if it satisfies Φ̄ = φ which means that the
statistical average yields the parameter φ itself. In this context, the Cramér-Rao
bound sets a limit to the minimum variance on the parameter φ that can be deduced
from N independent measurements according to

∆φ 2 ≥ ∆φ 2
CR =

1

N F (φ)
(4.1)

where the 1/N factor corresponds to the usual reduction of variance with the number
of measurements, and F (φ) is the Fischer information defined as

F (φ) =
N∑

i=1

1

P (µi|φ)

(
∂P (µi|φ)

∂φ

)2

. (4.2)

F (φ) still depends on the choice of the operator Â producing the measurements
µi. The quantum Fischer information is defined as FQ(φ) = maxÂ F (φ) and the
quantum Cramér-Rao bound now sets a limit on the minimal achievable variance
irrespective of the chosen observable Â as

∆φ 2
QCR =

1

N FQ(φ)
(4.3)

In the case we are interested in here (pure spin states, unitary evolution), it can
be shown that the quantum Fischer information simply is [87]

FQ(φ) = max
n̂

4 ∆Ĵ2
n̂ (4.4)

where n̂ is a direction on the sphere. However this does not mean that it suffices
to measure the mean magnetization in the direction n̂ to exhibit the maximum
sensitivity. Saturating the quantum Cramér-Rao bound may require in practice
complex measurements involving higher orders of the spin operators Ĵkn̂ [88] .

This yields for the maximum metrological gain Gmax to be expected from a given
state, knowing that ∆φSQL = 1/

√
2J , the value

Gmax =

(
∆φSQL

∆φQCR

)2

=
2

J
∆Ĵ2

n̂ (4.5)
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where the variance ∆Ĵ2
n̂ is obtained from the averaging of several measurements on

the considered state and therefore 'contains' the factor 1/N .
The maximum variance ∆Ĵ2

n̂ among all spin states is obtained for a coherent
superposition of |+J〉 and |−J〉 with equal weights i.e. a cat state. It has a variance
∆Ĵ2

n̂ = J2 and therefore the overall gain limit irrespective of the state is G = 2J .
This global bound is called the Heisenberg limit [89].

4.1.2 Use of the parity operator to measure the sensitivity of a cat state

So far we have only considered the metrological gain GR related to the contrast
of Ramsey oscillations, which shows an increase of sensitivity at short times but
decreases below one in the oversqueezed regime. However as suggested previously
we should be able to obtain a better sensitivity by choosing another observable. An
example of specific observable which saturates the Cramér-Rao bound is the parity
operator P̂x = (−1)J−Ĵx applied to the cat state [83]. The method of moments can
be applied to this observable by computing its mean value and variance as

px = 〈ψ| P̂x |ψ〉 =
∑

m,m′

α∗m′αm 〈m′|x (−1)m |m〉x =
∑

m

(−1)m Πm(x) (4.6)

∆P 2
x = 〈ψ| P̂ 2

x |ψ〉 − p2x = 1− p2x (4.7)

where we decomposed |ψ〉 in the x-basis as |ψ〉 =
∑

m αm |m〉x.
We plot computations of the metrological gain Gpar inferred from the parity on

figure 4.1, as well as the Cramér-Rao bound, for χt up to π/2. We can see that it
indeed yields the maximum gain at χt = π/2 and reaches the Heisenberg limit.
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Figure 4.1 – Cramér-Rao bound and metrological gain expected
from a parity measurement. The three curves are the result of simula-
tions. While the standard Ramsey gain GR (red) collapses when entering
the oversqueezed regime, the gain Gpar obtained from the parity (black)
saturates the Cramér-Rao bound (blue) for the cat state at χt = π/2.

The experimental results presented in this section were published in [31]. We
start by preparing a cat state with a light pulse of duration χt = π/2 as shown
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on figure 4.2. The preparation is not perfect as the obtained state has a variance
∆Ĵ2

z = 57.1(2) due to the presence of a non-zero quantization field along z (with a
value of 18.5(3) mG) which perturbs the ideal OAT dynamics plotted on figure 3.6.
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Figure 4.2 – Preparation of a cat state from the OAT Hamiltonian at
χt = π/2. We plot both the magnetization and variance along z computed
from the measured populations Πm(z). The red dashed lines correspond to
the ideal OAT predictions while the solid blue lines are fitted taking into
account imperfections such as non-zero magnetic field along z and inho-
mogeneous spin-coupling due to the spatial extension of the atomic cloud.
The state identified as a 'cat' state corresponds to the variance maximum
occurring a bit before χt = π/2.

We let the cat state acquire a phase φ under Larmor precession during a certain
waiting time and explicitly write its evolution. We drop the global phase factor from
equation 3.22 for simplicity. The acquired phase reads

|ψ(φ)〉 =
1√
2

(eiJφ |−J〉z + ie−iJφ |+J〉z) (4.8)

which corresponds to a phase difference of 2Jφ between the two states. We can
indeed see that the cat state is 2J times more sensitive to magnetic fields than a
coherent state since it experiences a phase shift 2J times larger (in the same amount
of time). However this phase shift cannot be measured from the populations along
z, as these quantities remain invariant (eigenstates of Ĵz).

We already saw in the previous chapter that it was beneficial to decompose the
cat state in the x-basis. It allows to compute the parity easily as

|ψ(φ)〉 =
1

2J

J∑

m=−J

√(
2J

J −m

)
im

1√
2

(
eiJφ + i(−1)me−iJφ

)
|m〉x (4.9)

such that

Πm(x) =
1

2J

(
2J

J −m

)(
1 + (−1)m sin(2Jφ)

)
(4.10)
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and finally

px =
J∑

m=−J
(−1)m Πm(x) = sin(2Jφ) (4.11)

which indeed corresponds to an oscillation period 2π/(2J).
The parity along x is experimentally accessible by performing a rotation mapping

the z-axis onto x (i.e. a π/2 rotation along y). We plot on figure 4.3 the populations
along x and the deduced average parity (according to equation 4.6) as a function of
φ.
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Figure 4.3 – Measured parity oscillations as a function of the Lar-
mor phase φ. (Left) Populations in each m-state along x plotted as a
color scale. Only even-m states are populated at φ = 0, while only odd-m
states at φ = 2π/32 (half period). The period is 16 times smaller than
the Larmor period measured for a standard Ramsey sequence with a CSS.
(Right) Parity computed from the corresponding populations. The solid
line corresponds to a fit of the data points. While it should in principle
have a contrast of one (equation 4.11), experimental imperfections in the
measurement of the populations lead to a reduced contrast C = 0.74(2).

While the metrological gain computed from the method of moments applied
to the oscillations of px is supposed to saturate the Cramér-Rao bound and reach
G = 16, we do not obtain this value experimentally. Even though the factor 2J in
the oscillation frequency is observed, taking into account the reduced contrast C,
the experimental value of the metrological gain is computed as G = 2JC2 = 8.8(4)
which is quite far from the Cramér-Rao bound for this state 2∆Ĵ2

z /J = 14.3(1).
This can be understood from the fact that the experimental computation of the
parity is very sensitive to detection imperfections. Populations are spread between
many m-states and small population imbalances between even and odd m build up
when computing

∑
m(−1)m Πm.
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4.1.3 Metrological gain based on the Hellinger distance

The extraction of a metrological gain from a Ramsey sequence, presented in
details in chapter 3, is optimal only for gaussian states, and the parity operator is
an example of specific observable which is supposed to be optimal for the cat state.
Yet in practice we are not able to recover the expected maximal sensitivity. These
two types of measurements both rely on the method of moments, i.e. the mean and
variance of operators, in the first case a spin operator Ĵû, in the second case the
parity operator P̂ .

However we have access to the single-m populations, i.e. all the information
encoded in a given state, not just the first and second moments of the distribution
Πm. The idea that we can make use of all the populations separately was already
hinted at in figure 3.17, which is a plot of Ramsey oscillations for an oversqueezed
state. We introduce the notion of statistical distance [90] and in particular the
(squared) Hellinger distance between two distributions Πm(θ, φ) and Πm(θ′, φ) as

d2H(θ, θ′) =
1

2

∑

m

[√
Πm(θ, φ)−

√
Πm(θ′, φ)

]2
. (4.12)

This quantity accounts for changes in population for every m-state in a way that
the method of moments cannot. It allows to generalize the notion of metrological
gain according to [91]

G(θ) =
2

J

∂2d2H(θ, θ + α)

∂α2

∣∣∣∣
α=0

(4.13)

i.e. the sensitivity is related to the rate of change of d2H when performing an infinites-
imal rotation of angle α. We expect G(θ) to be maximum around θ = 0 according
to [86]. Note that this new definition of the metrological gain coincides with GR

(related to the contrast of Ramsey oscillations) for gaussian states, i.e. coherent and
squeezed states.

The Hellinger distance was already used as an experimental tool to characterize
the sensitivity of non-gaussian spin states of an ensemble of N = 380 ± 15 atoms in
the group of M. Oberthaler [82]. The intrinsic difference with our work is the fact
that in their case the OAT is engineered through atomic interactions. Cat states
remain out of reach for such systems despite a very good experimental precision,
since the decoherence scaling is exponentially unfavorable as mentioned already.
In our case, the metrological gain of the cat state is measured from the Hellinger
distance curvature at a value G = 13.9(11), quite close to the corresponding Cramér-
Rao bound Gmax = 14.3(1). This technique based on the Hellinger distance can be
applied to the entire range of oversqueezed states, provided that all measurement
directions are accessible. For oversqueezed states there is no 'lucky' observable like
the parity for the cat state, and they require a complex combination of spin operators
of order 5 [88]. In addition this operator choice depends on the specific preparation
time χt and therefore cannot be easily used in a systematic way.

Experimental procedure

We describe the experimental procedure to extract the value of the metrological
gain from a state prepared at χt = 0.21(3). We first plot on figure 4.4 the populations
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when performing small-θ rotations for two different values of φ to understand the
role of φ on the metrological gain computed from the Hellinger distance. We see in
(a) that only the even states are initially populated and we observe no change as a
function of θ. On the other hand in (b) the odd states get populated as θ increases,
which results in a large change of d2H(0, θ).

0 0.1 0.2
-8

-4

0

4

8

θ [rad]

m

0 0.1 0.2

θ [rad]

(a) (b)

◦

x

y

z

(b) (a)

Figure 4.4 – Variation of the populations Πm for small rotations
θ in two directions. After preparing a squeezed state (so that we can
define the directions of minimum and maximum variance), we measure its
populations along z after performing small-θ rotations with φ chosen in the
direction of minimum (a) and maximum (b) variance as illustrated on the
sphere on the right.

The metrological gain G is deduced from the curvature of the Hellinger distance
as plotted on figure 4.5.
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Figure 4.5 – Curvature of the Hellinger distance resulting in dif-
ferent values of G. (Left) Hellinger distance around θ = 0 for the two
angles φmin (red) and φmax (blue) corresponding to the directions plotted
on figure 4.4. Solid lines are quadratic fits performed at small-θ (more de-
tails are given below). (Right) Value of the metrological gain G deduced
from the curvature of the Hellinger distance. The red and blue dots are the
extremal points corresponding to φmin and φmax. The black solid line is a
sine fit of the data and grey dots correspond to the Cramér-Rao bound.
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It is not obvious how to fit the curvature of d2H(0, θ) in the vicinity of θ = 0. The
procedure used here is to measure first d2H(θ, θ′) as shown on figure 4.6 and perform
a fit with the ansatz

d2H(θ, θ′) =
∑

0≤p+q≤n
ap,q(θ − θ′)2p(θ + θ′)2q (4.14)

which is a polynomial of order n in the two variables (θ− θ′)2 and (θ + θ′)2. This a
way to separate the (θ− θ′)2 terms that we are interested in from the (θ+ θ′)2 terms
which come from experimental imperfections or appear only far from the origin
θ = θ′ = 0. Equation 4.13 then simply yields G = 4a1,0/J . Different values of n
were considered, with an optimal result for n = 2. Indeed n = 1 does not allow for
the presence of quartic terms and the fit of the harmonic part picks up higher order
contributions. For n ≥ 3, the error bars (obtained from a bootstrap method) become
increasingly large which suggests that the number of fitted parameters becomes too
large and the fit is therefore not constrained enough. The fact that the value of G
obtained for n = 2 remains consistent with the Cramér-Rao bound also validates
the analysis. The data plotted on the left panel of figure 4.5 is a line-cut of d2H(θ, θ′)
for θ′ = 0.
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Figure 4.6 – Extracting the value of G from the Hellinger distance.
(Left) Hellinger distance d2H(θ, θ′) plotted as a color scale. (Center) Fitted
polynomial of degree n = 2. (Right) Different values of G obtained for
different values of n.

For each interaction time χt, the Hellinger distance d2H(θ, θ′) is measured for
different values of φ according to the previous method. The value of φmax depends on
the orientation of the prepared state since the directions of minimum and maximum
variance rotate as the state gets squeezed [37]. By maximizing the measured value
of G over the angle φ as shown on the right panel of figure 4.5, we can extract the
overall maximum of G for a given state. We plot the result on figure 4.7 as well as
the values of GR corresponding to the 'old' definition with a Ramsey sequence. We
see that we saturate the Cramér-Rao bound meaning that the Hellinger distance is
an optimal figure of merit for the class of states corresponding to the OAT [86]. The
reason why it works so well is that we have access to the single-m populations, which
is a key feature of our system and does not have a simple equivalent in systems of N
interacting qubits. Therefore one cannot necessarily expect to saturate the Cramér-
Rao bound in other situations.
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Figure 4.7 – Metrological gain for the different prepared states.
Blue circles are the values obtained from the Hellinger distance curvature
while red circles are the values from figure 3.17, corresponding to Ramsey
oscillations. Grey squares correspond to the Cramér-Rao bound. The solid
blue and dashed red lines are theoretical predictions of the OAT with the
only fitted parameter being the scaling of the x-axis i.e. the value of χ.

4.1.4 The Wigner function

A feature of oversqueezed states is that their Wigner function exhibits negative
parts, which is a sign of non-classicality [92]. The Wigner function is similar to the
Husimi function in the sense that it is a function of the variables θ and φ used to
represent spin states on the sphere. So far we used only the Husimi function to
represent coherent and squeezed states as it intuitively represents the probability
P (θ, φ) = |〈ψ|θ, φ〉|2 to measure a spin state |ψ〉 entirely polarized in the direction
(θ, φ). However for oversqueezed states and for the cat state the Wigner function
exhibits characteristic oscillatory features that are not captured by the Husimi func-
tion.

The Wigner function WÂ(θ, φ) of an operator Â is defined as [75]

WÂ(θ, φ) =
2J∑

k=0

k∑

q=−k
AkqY

q
k (θ, φ) (4.15)

which corresponds to an expansion on the basis of multipole operators T̂k,q with

Akq = Tr[Â T̂ †kq] (4.16)

T̂kq =
J∑

m,m′=−J
(−1)J−m

√
2k + 1

(
J k J
−m q m′

)
|J,m〉 〈J,m′| (4.17)

where the bracket term is a Wigner-3j coefficient.
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The formalism of the Wigner function yields a convenient way to compute traces
as [93]

Tr[ÂB̂] =

∫
WÂ(θ, φ)WB̂(θ, φ) dΩ (4.18)

for any operators Â and B̂. In the case where the operator Â is the density matrix
ρ of a given state, we can define the Wigner function of this state as W (θ, φ) =
Wρ(θ, φ). In the same way that we were able to express the Husimi function and the
purity in terms of the populations Πm(n̂) in the direction n̂, the Wigner function
can be decomposed as

W (n̂) =
J∑

m=−J
(−1)J−mamΠm(n̂) (4.19)

where

am =
2k + 1√

4π

2J∑

k=0

(
J J k
m −m 0

)
(4.20)

as shown in appendix C. The Wigner function, reconstructed from Πm(n̂) measure-
ments similarly to the Husimi functions of figure 3.15, is plotted on figure 4.8.
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Figure 4.8 – Wigner function of an oversqueezed state. The state
corresponds to χt = 0.55. (Left) Wigner function experimentally re-
constructed from measurements of the populations in different directions
Πm(n̂). (Right) Expected Wigner function. Red regions correspond to the
negative parts of the Wigner function which is an indicator of non classi-
cality.

The fringes of the Wigner function are a way to intuitively understand the mag-
netic field sensitivity of oversqueezed states. Indeed the sensitivity is equivalent to
the amount of change that a state undergoes under an infinitesimal rotation, which
is why the Hellinger distance proved to be a successful tool. The Wigner function
of a state undergoing an infinitesimal rotation of angle δθ has the shame shape has
the initial Wigner function, with a small global shift δθ. Therefore the overlap Oδθ

between the initial state |ψ〉 and the slightly rotated state |ψδθ〉, which is equal to

Oδθ =
∣∣ 〈ψ|ψδθ〉

∣∣2 = Tr[ρ ρδθ] (4.21)
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can be written in terms of Wigner functions thanks to equation 4.18 as

Oδθ =

∫
W (θ, φ)Wδθ(θ, φ) dΩ (4.22)

=

∫
W (θ, φ)W (θ − δθ, φ) dΩ. (4.23)

The overlap varies a lot even with small values of δθ due to the presence of small-
scale oscillations between positive and negative values in the Wigner function of an
oversqueezed state, resulting in a large sensitivity.

The Wigner function of the cat state, plotted on figure 4.9 with the so-called
Mollweide (or elliptical) projection, is even more striking as it also shows that this
state is much more sensitive to rotations around z than other directions. The explicit
effect of such a rotation has already been mentioned in equation 4.8. The interference
pattern on the equator shows how a rotation of angle δφ along z is going to induce
a large change when computing

∫
W (θ, φ)W (θ, φ + δφ) dΩ. Note that the fringes

consist in 16 oscillations on the equator of the Bloch sphere corresponding to the
value G = 16 mentioned earlier.

Figure 4.9 – Wigner function for the cat state with an elliptical
projection of the sphere computed numerically from equation 4.19.

4.2 Investigating the link to symmetric states of 2J entangled qubits

4.2.1 Husimi function of an oversqueezed state

As we just described, the Wigner function can be perceived as a more power-
ful representation than the Husimi function. However the Husimi function of the
oversqueezed state is still worth taking a closer look at. We plot on figure 4.10 the
reconstructed Husimi function for an oversqueezed state at χt = 0.55, from the same
data used to reconstruct the Wigner function, along with the exact shape expected
from calculations. As the elliptical shape of the squeezed state gets more stretched,
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it wraps around the sphere and starts overlapping with itself. The wrapping is vis-
ible on the edges of the planar plot, which has periodic boundary conditions in Φ.
This shows the intrinsic difference between squeezed states of the electromagnetic
field in representation x̂, p̂ and spin squeezed states. The topology of the sphere
leads to a saturation of the squeezing 'efficiency' [69] while on a plane there is no
intrinsic limit to how much a squeezed state can stretch. This 'self-overlap' occurs
together with the apparition of 'holes' in the distribution Q(n̂).
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Figure 4.10 – Husimi function of an oversqueezed state. The state
corresponds to χt = 0.55. (Left) Experimentally reconstructed Husimi
function. (Right) Expected Husimi function. The key feature is the ap-
parition of 'holes' in the distribution, interpreted as the directions opposites
to that of the unit spins 1/2 constituting the spin J , and represented as red
crosses.

If we consider a spin J as an assembly of 2J spins 1/2, the OAT Hamiltonian ap-
pears as a way to induce correlations between these spins, resulting in non-isotropic
variance, i.e. squeezing. A coherent spin state |θ, φ〉 corresponds to all the unit spins
pointing in the direction (θ, φ). The Dicke state |m〉z corresponds to J + m spins
1/2 pointing up and J −m pointing down.

We define the ûi as the orientations (in the sense of equation 3.1) of the 2J spins
1/2, allowing to write the Husimi function as

Q(n̂) ∝
2J∏

i=1

|〈ûi|n̂〉|2 (4.24)

where |n̂〉 corresponds to the state of a qubit pointing in direction n̂. Note that if
n̂ is defined by the angles (θ, φ) and ûi by (θi, φi), we have

|〈ûi|n̂〉|2 = 1 + ûi · n̂ = 1 + cos(θ − θi)− sin θ sin θi
[
1− cos(φ− φi)

]
(4.25)

such that if all the ûi coincide in the direction (θ0, φ0), we recover the expression of
the Husimi function for a coherent state given in equation 3.9.

The Majorana stellar representation is a way to define the state of a spin J
uniquely by the position of 2J points on the Bloch sphere. Q(n̂) has 2J zeroes
corresponding to the directions opposite to the Majorana 'stars' n̂ = −ûi, some of
them being visible as they sit close to regions where the Husimi function is localized,
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causing the presence of 'holes'. Red marks on the experimental data of figure 4.10
stand for the positions of the zeroes fitted according to equation 4.24.

These zeroes are entirely defined, for a state written as |ψ〉 =
∑

m cm |m〉z, as
the 2J roots of the polynomial (of degree 2J)

P (z) =
J∑

m=−J
(−1)J−m

√(
2J

J −m

)
cm z

J+m (4.26)

where z is a complex number [94]. The position of the zeroes on the sphere in terms
of the angles (θ, φ) is deduced from the stereographic projection of the complex
plane on the sphere by writing z in terms of modulus and argument as

z = tan(θ/2) eiφ. (4.27)

Red marks on the expected Husimi function of figure 4.10 are deduced from equa-
tion 4.26, given the coefficients cm of the oversqueezed state prepared at χt = 0.55.

Construction of the Dicke basis

The equivalence between a system of N = 2J spins 1/2 and a large spin J is
only valid for symmetric states, i.e. invariant under exchange of any two spins 1/2.
Indeed in the picture of 2J fictitious spins 1/2 adding up to form a spin J , we cannot
label the spins and specify which one would be up or down.

The dimension of the Hilbert space for a general system made of N spins 1/2 is
2N , however in the case of symmetric states the only relevant quantity is the number
of spins pointing up or down. The basis of symmetric states is thus constituted of
the N + 1 states





|↓↓ ... ↓〉(
|↑↓ ... ↓〉+ |↓↑ ... ↓〉+ ...+ |↓↓ ... ↑〉

)
/
√
N

:

∑

(N
k) terms

|k× ↑, N − k× ↓〉 /
√(

N

k

)

:

|↑↑ ... ↑〉

which correspond to the 2J + 1 states of the Dicke basis {|J,m〉 , m = −J, ..., J}
for N = 2J . This is equivalent to saying that we have taken into account the
indistinguishability of the spins 1/2 by symmetrizing the basis states of the full
Hilbert space.

4.2.2 Decoherence of a cat state

The cat state obtained from OAT at χt = π/2 corresponds in this context to the
superposition of the states |↓↓ ... ↓〉 and |↑↑ ... ↑〉. However it lives in the 2J + 1 -
dimensional subspace of symmetric states, not in the full 22J - dimensional Hilbert
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space of 2J spins 1/2. The number of decoherence channels is reduced and we expect
the dephasing of the cat state to occur 2J = 16 times faster than for a coherent
state, to be compared for example with a N2 scaling of the decoherence observed
for N = 14 qubits in [95]. Measurements of decoherence for a coherent state, based
on the reduction of the contrast C of Ramsey oscillations over time, are plotted on
figure 4.11, along with the decoherence of a cat state. The latter is characterized
by a reduction of the reconstructed density matrix correlation term |ρ−J, J |. While
the 1/e decay time for the coherent state is measured at τ0 = 740± 80µs and taken
as reference, the 1/e decay for the cat state is τ = 58± 4µs. In the end we obtain
τ0/τ = 13(2) from these measurements, showing that the increase in metrological
gain comes together with an intrinsic fragility to decoherence. In this case it can
be considered as 'classical' decoherence in the sense that it is directly proportional
to the sensitivity. It is equivalent to saying that the cat state is 16 times more
sensitive to magnetic field noise than a coherent state, and therefore decoheres 16
times faster.

Figure 4.11 – Decoherence for a coherent state and a cat state.
(Left) The measured contrast of Ramsey oscillations decays from its initial
value of 8 because of magnetic field fluctuations. (Right) The off-diagonal
term of the density matrix |ρ−8, 8| corresponding to the coherence of the cat
state decays much faster. Solid lines correspond to exponential decay fits.

The fundamental difference with the 'real' entanglement of N qubits can be
illustrated by considering the loss of one atom. In our case it does not change
the state of the entire system since the entanglement is not induced by atom-atom
interactions bur rather 'contained' within each of the atoms with large spin J . This
is to be opposed with the entanglement of a NOON state

(
|N, 0〉 + |0, N〉

)
/
√

2,
whose coherence is destroyed by the loss of only one atom.

This is what justifies the interest of oversqueezed states, with a plateau of metro-
logical gain G = J + 1

2
. However the method we use to extract the metrological

gain (with the Hellinger distance) relies on the fact that we are able to measure
single-m populations. This cannot necessarily be transferred to other systems, in
particular to the case of a large spin formed by N qubits. It could nevertheless be
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applied to the case of ultracold molecules which constitute a natural extension of our
large-spin atom study [73]. Oversqueezed states are obtained for interaction times
χt ∼ 1/

√
2J , short for relatively large J compared to χt = π/2 for the cat state.

This is of particular interest in situations where there are fluctuations of the cou-
pling strength χ. In such cases, the preparation of the cat state would be strongly
altered whereas states prepared at short times are more reliable.

4.2.3 Analogy with a system of 16 interacting spins 1/2

Ground state preparation

Based on the equivalence between the electronic spin J = 8 of dysprosium (in
the ground state) and symmetric (upon exchange) states of N = 2J = 16 spins 1/2
described previously, we simulate a system of 16 interacting spins 1/2. The results
presented in this section were published with further details in [96].

The Lipkin-Meshkov-Glick model (LMGm) describes indistinguishable quantum
spins with infinite range Ising interactions in a transverse field. The corresponding
Hamiltonian reads

Ĥ = − ~λ
4(N − 1)

∑

i 6=j
σ(i)
x σ

(j)
x +

~ωz
2

∑

i

σ(i)
z (4.28)

where σ
(i)
x,z are the Pauli matrices applied to the spin i. The interaction strength

λ > 0 corresponds to spin-spin interactions, ωz is the Zeeman energy associated with
the transverse magnetic field and the factor 1/(N −1) ensures the extensivity of the
energy in the large N limit. From the expression of equation 4.28 it is clear that the
Hamiltonian is invariant under spin-exchange, as the interactions are all-to-all and
of infinite range (there cannot be a notion of position in this system as the spins are
indistinguishable).

We introduce the collective spin operators Ĵx,z = 1
2

∑
i σ

(i)
x,z from which we get

Ĥ = − ~λ
N − 1

(
Ĵ2
x −

N

4

)
+ ~ωzĴz. (4.29)

We can neglect the constant term in Ĥ to obtain

Ĥ = − ~λ
2J − 1

Ĵ2
x + ~ωzĴz (4.30)

which has the same Ĵ2
x and Ĵz terms as the experimental implementation of the OAT

in presence of a quantization field along z given in equation 3.27. The difference is
that now the goal is to prepare the ground-state of the Hamiltonian, whereas for
the OAT the goal was to induce coherent dynamics in the {|J,m〉 ,m = −J, ..., J}
Zeeman manifold. Instead of a light pulse, here the laser power is adiabatically
ramped up, in approximately 100 µs. The other experimental aspects are identical
to the ones used for the study of spin squeezing and metrological gain that we
already presented.
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Quantum phase transition

The LMGm exhibits a phase transition at λ/ωz = 1, which we can study properly
with well-chosen values of the experimental parameters. The value of the magnetic
field is Bz = 114(1) mG, leading to ωz = 2π × 198(2) kHz, the available laser
power being large enough to reach values around λ/ωz = 4, with typical ramp speed
λ̇ ' 0.015ω2

z . In the absence of light (λ = 0), the ground state is |−J〉z due to

the Ĵz term of the Hamiltonian. In the limit λ/ωz � 1, the −Ĵ2
x term is dominant

and the ground state is a superposition of |−J〉x and |+J〉x, where the x subscript
corresponds to the decomposition of a state in the x-basis.
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Figure 4.12 – Populations along x showing the crossover between
paramagnetic and ferromagnetic phases. (Left) Measured popula-
tions along x. These are single-shot measurements, showing the relatively
low experimental noise. (Right) Spin correlator along x deduced from the
variance of the populations. The blue line corresponds to the prediction of
the LMGm while the black dotted line corresponds to a classical mean-field
model exhibiting the usual discontinuity of the derivative at the transition
point λ = 1.

We plot on figure 4.12 the measured populations along x as a function of λ. We
observe at λ = 0 populations centered on m = 0 consistent with the decomposition
of |−J〉z in the x-basis given in equation 3.19. In the ferromagnetic phase for large
λ/ωz & 2, the population distribution shows two peaks close to the |−J〉x and |+J〉x
states. The correlator 〈σ1xσ2x〉 characterizing the relative alignment between spins
along x is deduced from the variance of the populations. Indeed we have [97]

N +N(N − 1)〈σ(1)
n̂ σ

(2)
n̂ 〉 = 4〈Ĵ2

n̂〉 (4.31)

from the indistinguishability between the spins 1/2. While the notion of symmetry
breaking is usually associated to ferromagnetic phases, it is only true in the thermo-
dynamic limit and we observe no spontaneous symmetry breaking in our finite-size
system.

We expect entanglement to occur between the spins in the critical region [98]
around λ = 1. This quantity is not directly accessible because we only simulate the
16 interacting spins by working with a large spin J = 8, although this question will
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be addressed in more details in chapter 5. However entanglement can be indirectly
probed by measuring spin correlations [99]. The populations along y and the corre-

lator 〈σ(1)
y σ

(2)
y 〉 deduced from the variance are plotted on figure 4.13. For a separable

state being symmetric upon spin exchange, correlators satisfy 〈σ(1)
n̂ σ

(2)
n̂ 〉 = 〈σ(1)

n̂ 〉2 and
are therefore positive [100]. However the value measured in figure 4.13 is negative,
with higher values (in absolute value) near λ/ωz = 1, showing that the corresponding
state is not separable, i.e. entangled.
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Figure 4.13 – Populations along y showing reduced variance in
the critical region. (Left) Measured populations along y. This is the
averaging of 5 measurements. We observe a reduction of variance in the
critical region. (Right) Spin correlator along y deduced from the variance
of the populations. The solid blue (resp. dotted black) line corresponds
to the LMGm (resp. mean-field model) similarly to figure 4.12. Note that
the correlator remains smaller than 5 · 10−2 whereas it has values of order
1 along x (figure 4.12), hence the need for more averaging and the slight
discrepancy between theory and experimental results.

Symmetry breaking

The state preparation can be strongly affected by the presence of a small mag-
netic field bias along x, the corresponding energy term −~ωxĴx lifting the degen-
eracy between |−J〉x and |+J〉x. This phenomenon is illustrated with an effective

potential plotted on figure 4.14. The order parameter 〈σ(1)
x 〉 is proportional to the

average magnetization mx = 〈Ĵx〉 as 〈Ĵn̂〉 = J 〈σ(1)
n̂ 〉. In the ferromagnetic phase for

λ > 1, it stays in the symmetric state 〈σ(1)
x 〉 = 0 only on a very narrow region where

ωx is sufficiently small. Away from the line ωx = 0, a bias field corresponding to
ωx/ωz < 1/100 is enough to make the state 'fall' in the minimum of potential as
illustrated by the green curves.
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Figure 4.14 – Symmetry breaking illustrated by the tilting of a
potential. The order parameter 〈σ(1)

x 〉 is plotted in color scale as a func-
tion of ωx and λ. This is the result of computations. One can see that the
transition between positive and negative values is sharp at λ = 2 but be-
comes smoother as λ approaches 1. (Inset) Effective potential (green) and
corresponding wavefunction (black) in the symmetric and symmetry-broken
cases.

This behaviour is characterized in figure 4.15(a,b) where a magnetic field bias
along x is applied during the state preparation, for λ/ωz = 1.40(3). The system

'picks a side' based on the sign of ωx, with a smoothened region in the center. 〈σ(1)
x 〉

saturates to a value smaller than 1 because the value of λ used here cannot guarantee
that only the states |±J〉x are populated (similarly to figure 4.12). The mean-field
approach predicts an infinitely sharp transition between the two sides.

We then set the value of ωx to zero with as much precision as possible and perform
very slow ramps of the ferromagnetic coupling λ̇ = 10−3ω2

z so that the system gets
sensitive to the magnetic field noise along x. We repeat this procedure to obtain
100 shots for four different values of λ and plot the result on figure 4.15(c). While
at low values of λ the ground state is always |−J〉z, in the ferromagnetic phase the
system randomly ends up on the positive or negative sides, based on the sign of ωx
set by the noise during the preparation. This procedure works as intended because
the state preparation lasts typically 1 ms while the magnetic field noise varies on
much larger timescales, inducing only shot-to-shot variations. The magnetic field
bias induced by the slowly varying noise was independently measured. We could
see that for large values of λ, small fluctuations of the magnetic field along x were
correlated with the order parameter of the prepared state.
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Figure 4.15 – Measurements showing the symmetry breaking. (a)
Populations along x as a function of the bias field ωx for λ = 1.40(3). (b)
Order parameter computed from the average of the populations plotted in
(a). The solid blue (resp. dotted black) line corresponds to the LMGm
(resp. mean-field model). (c) Order parameter of the state prepared under
the effect of magnetic field noise. Each of the four colors represents a set of
100 measurements, for four different values of λ.

These results demonstrate the relevance of our device as a magnetic field sen-
sor. This illustrates the metrological interest of this system of 16 indistinguishable
interacting spins 1/2 realized with the large spin J = 8 of dysprosium.



Part III

Perspectives



Chapter 5

Pairwise entanglement

In this chapter we are interested in quantifying the 'amount of entanglement'
that is present in various states of a total spin J . We have already described in sec-
tion 4.2.1 how such a state can be seen as a collection of 2J qubits in a symmetrized
state. The simplest case of entanglement is defined for a pair of qubits which is why
we want to use this formalism to describe an arbitrary spin J . Entanglement in this
case will therefore be referred to as pairwise entanglement.

We intend to show how quantum correlations between the fictitious spins 1/2
can be extracted to probe pairwise entanglement. First we introduce the notion of
concurrence and explain how such a figure of merit is useful to quantify pairwise
entanglement. Then we define the reduced two-qubit density matrix describing the
quantum state of a pair of qubits extracted from the set of 2J qubits. We show
that this density matrix can be obtained from the probability of light absorption by
an atom. The absorption process for a transition J → J − 1 can be viewed as the
extraction of two qubits out of the set of 2J qubits, in a state defined by the light
polarization. Finally we are able to propose an experimental protocol to extract the
concurrence from photon absorption measurements.

5.1 Defining entanglement

Entanglement has been extensively studied in the particular case of qubits for
several reasons. On the one hand they play a central role in fundamental tests
of quantum mechanics, in particular the violation of Bell inequalities [101]. On
the other hand the main features of quantum technologies and metrology such as
quantum parallelism or squeezing are based on entanglement as it is a phenomenon
which is absent from classical physics.

5.1.1 Indirect definition based on separability

A general definition of entanglement relies on the notion of separability of a
state. If one considers a system composed of two subsystems with respective Hilbert
spaces HA and HB and given states |ψ〉A and |ϕ〉B of these two systems, then the
state of the global system is described by |ψ〉A ⊗ |ϕ〉B. Such a state is called a
separable state. However a given state of HA⊗HB may not necessarily be separable
(written as a product state) in which case it is said to be entangled. It therefore
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exhibits correlations between the two subsystems, in particular the outcome of a
measurement performed on HA gives information about the state of HB.

This definition of entanglement is not really practical in the sense that it is
indirect and characterizes an entangled state by the fact that it does not have a given
property, the separability. It does not characterize the 'amount' of entanglement of
a given state.

5.1.2 The notion of concurrence

A way to define the entanglement of a bipartite system is to compute the von
Neumann entropy of either of its two parts [102] i.e. E(ψ) = −Tr ρ log ρ where ρ is
the partial trace of |ψ〉 〈ψ| over one of the subsystems. The entropy computed this
way does not depend on the choice of the subsystem that we trace over. However it
is not very convenient, especially in the context of indistinguishable spins viewed as
symmetrized multiple qubits states because one does not know which spin should
be traced out.

A quantity called the concurrence [103] has very useful properties and can be
used to quantify entanglement. While a two-qubit state is usually decomposed on
the basis {|↑↑〉 , |↓↓〉 , |↑↓〉 , |↓↑〉}, we introduce another basis, which is nothing but
the Bell states with additional global phases :





|e1〉 = (|↑↑〉+ |↓↓〉)/
√

2

|e2〉 = i(|↑↑〉 − |↓↓〉)/
√

2

|e3〉 = i(|↑↓〉+ |↓↑〉)/
√

2

|e4〉 = (|↑↓〉 − |↓↑〉)/
√

2

If we decompose a state |ψ〉 on this basis as |ψ〉 =
∑

i αi |ei〉, we can define the
concurrence as

C(ψ) =

∣∣∣∣∣
∑

i

α2
i

∣∣∣∣∣ (5.1)

which ranges from 0 to 1.

It can be shown [103] that the concurrence is related in a monotonic way to the
Von-Neumann entropy, such that it is a good figure of merit to measure the amount
of entanglement in a two-qubit state.

The concurrence can also be computed directly from the two-qubit density matrix
ρ12 and will be more useful for us. Note that the following formula is also valid in
the case of mixed systems, even though we are dealing only with pure states in our
case. From ρ12 one can construct the matrix R ≡ ρ12 (σy ⊗ σy) ρ∗12 (σy ⊗ σy) where
σy ⊗ σy is a four-by-four matrix. If we label λ1 ≥ λ2 ≥ λ3 ≥ λ4 the four eigenvalues
of R, it can be shown [103] that

C = max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4). (5.2)
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5.2 Symmetrized two-qubit density matrix

We already saw that considering only symmetric states of a collection of 2J
qubits led to a Hilbert space of reduced dimension 2J + 1. The same applies here
for two qubits and leads to a Hilbert space of dimension 3 corresponding to the
structure of a spin 1. We have to consider symmetrized two-qubit states in our
study of the pairwise entanglement of a spin J because the qubits are fictitious and
therefore indistinguishable.

5.2.1 Definition

The three-by-three symmetrized two-qubit density matrix ρS12 relates to a general
four-by-four two-qubit density matrix in the following way :

ρ12 =




a1,1 a1,0/
√

2 a1,0/
√

2 a1,−1
a0,1/
√

2 a0,0/2 a0,0/2 a0,−1/
√

2

a0,1/
√

2 a0,0/2 a0,0/2 a0,−1/
√

2

a−1,1 a−1,0/
√

2 a−1,0/
√

2 a−1,−1


 (5.3)

where a = ρS12 is written in the |J = 1,m = 1, 0,−1〉 basis. ρ12 is expressed in
the usual |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 basis. This result directly comes from the fact that
|J = 1,m = 0〉 = (|↑↑〉+ |↓↓〉)/

√
2.

5.2.2 Link to an arbitrary spin J

In the following we only consider symmetrized states of the system. Therefore
the most convenient basis is that of the spin J for the full system, and that of the
spin 1 for the symmetrized state of two qubits. To obtain the two-qubit density
matrix we need to perform a partial trace on 2J − 2 qubits 'in a symmetric way'
to keep only the remaining two. This is equivalent to describing the spin J as
a combination of spins J − 1 and 1 and tracing out the J − 1 part. If we write
ρ = |ψ〉 〈ψ| the density matrix of the spin J and |ei〉 a basis for the spin J − 1, then

ρS12 =
∑

i

〈ei| ρ |ei〉

=
J−1∑

m=−(J−1)
〈J − 1,m|ψ〉 〈ψ|J − 1,m〉

where 〈J − 1,m|ψ〉 is the 'remaining part' corresponding to the spin 1 and is there-
fore a ket living in the corresponding three dimensional Hilbert space. Then we can
write the different coefficients 〈q′|ρS12|q〉 of ρS12 for q, q′ = −1, 0, 1 as

〈q′|ρS12|q〉 = 〈1, q′|
J−1∑

m=−(J−1)
〈J − 1,m|ψ〉 〈ψ|J − 1,m〉 |1, q〉 (5.4)

=
J−1∑

m=−(J−1)
〈J − 1,m ; 1, q′|ψ〉 〈ψ|J − 1,m ; 1, q〉 (5.5)
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where |J − 1,m ; 1, q〉 is to be understood as a state of a spin J , for a given substate
m (resp. q) of the spin J − 1 (resp. 1).

This formula can be rewritten in a more compact way by using symmetrized
states (i.e. states of a spin J) as

〈q′|ρS12|q〉 =
J−1∑

m=−(J−1)
cq,m cq′,m 〈J,m+ q′|ψ〉 〈ψ|J,m+ q〉 (5.6)

where the coefficient

cq,m =




(
2

q + 1

)(
2J − 2

J +m− 1

)

(
2J

J +m+ q

)




1/2

(5.7)

comes from combinatorials accounting for the symmetrization of the 2J-, (2J − 2)-
and 2-qubit vectors similarly to the explicit basis given in section 4.2.1.

5.3 Probing pairwise entanglement using atom-light interaction

We now consider an atom prepared in an electronic state |ψ〉 of angular mo-
mentum J coupled through resonant light to an excited electronic state of angular
momentum J ′ = J − 1. We show how the photon absorption probability is related
to the symmetrized two-qubit density matrix.

5.3.1 Photon absorption probability

The states |ψ〉 and |ψ′〉 of the unperturbed atomic Hamiltonian Ĥ0 (with energies
E and E ′) are coupled through a perturbation term. In this case the perturbation
is the atom-light interaction

V̂ = −d̂ ·E = −1

2
E d̂ · ε e−iωt − 1

2
E∗ d̂ · ε∗ eiωt (5.8)

where E is the field amplitude, ε the polarization vector and ω the light frequency.
We can compute the probability of transfer W|ψ′〉(t) (that is, the probability to find
the system in state |ψ′〉 at time t) using first order perturbation theory, assuming
the coupling is turned on abruptly at t = 0. We also assume that t remains smaller
than the lifetime of the excited state and therefore neglect spontaneous emission so
that

W|ψ′〉(t) =
1

~2

∣∣∣∣
∫ t

0

dt′ei(E
′−E)t′/~ 〈ψ′|V̂ (t′)|ψ〉

∣∣∣∣
2

=
1

4~2

∣∣∣∣E 〈ψ′|d̂ · ε|ψ〉
ei(ω0−ω)t − 1

ω0 − ω
+ E∗ 〈ψ′|d̂ · ε∗|ψ〉 e

i(ω0+ω)t − 1

ω0 + ω

∣∣∣∣
2

,

where ω0 = (E ′−E)/~. In the following we neglect the counter rotating term ω0+ω
since we assumed resonant coupling |ω0 − ω| � ω0, ω. By performing an expansion
for small t the transfer rate therefore reduces to

W|ψ′〉(t) =
|E|2t2
4~2

∣∣∣〈ψ′|d̂ · ε|ψ〉
∣∣∣
2

. (5.9)
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Since there are several states |ψ′〉 coupled to the initial state |ψ〉 through the atom-
light coupling, the probability of absorbing a photon after a short time t reads

Pabs =
|E|2t2
4~2

∑

|ψ′〉

∣∣∣〈ψ′|d̂ · ε|ψ〉
∣∣∣
2

. (5.10)

We introduce the spherical basis in which we are going to decompose the electric
field and dipole operator. This is a natural basis for circular polarization as can
be seen from its structure. From the usual cartesian basis (ex, ey, ez) we define the
three basis vectors e−, e0 and e+ as

e+ =
−1√

2
(ex + iey)

e− =
1√
2

(ex − iey)

e0 = ez

and write d̂ =
∑

q=−1, 0, 1
d̂qeq and in the same way ε =

∑

q

εqeq.

The fact that d̂ is hermitian and the conjugation rules in the spherical basis lead
to d̂ · ε =

∑
q(−1)qd̂qε−q and (d̂ · ε)† =

∑
q(−1)qd̂q(ε

∗)−q. The accessible states |ψ′〉
are |J ′,m′〉 for m′ = −(J − 1), ..., (J − 1). Then

Pabs =
|E|2t2
4~2

∑

|ψ′〉
〈ψ|
∑

q′

(−1)q
′
d̂q′ (ε∗)−q′ |ψ′〉 〈ψ′|

∑

q

(−1)q d̂q ε−q |ψ〉

=
|E|2t2
4~2

∑

q, q′,m′

(−1)q+q
′
(ε∗)−q′ ε−q 〈ψ| d̂q′ |J − 1,m′〉 〈J − 1,m′| d̂q |ψ〉

=
|E|2t2
4~2

∑

q, q′

(−1)q+q
′
(ε∗)−q′ ε−q aq,q′ (5.11)

where we add the projector on the J manifold
∑

m |J,m〉 〈J,m| acting on |ψ〉, which
is nothing but the identity on this subspace, to define aq,q′ as

aq,q′ =
∑

m1,m2,m′

〈ψ|J,m1〉 〈J,m1|d̂q′|J − 1,m′〉 〈J − 1,m′|d̂q|J,m2〉 〈J,m2|ψ〉 .

We can make use of the Wigner-Eckart theorem to transform the expression of
aq,q′ . Since d̂q is a tensor operator (which we write d̂1,q to make it more apparent),
we can write its matrix elements in a reduced form using a coefficient independent
from q (hence the dropped index) and Clebsch-Gordan coefficients as

〈J − 1,m′|d̂1,q|J,m2〉 = 〈J − 1||d||J〉 〈J,m2 ; 1, q|J − 1,m′〉

= 〈J − 1||d||J〉 (−1)q
√

2J − 1

2J + 1
〈J,m2|J − 1,m′ ; 1,−q〉

= 〈J − 1||d||J〉 (−1)q
√

2J − 1

2J + 1
〈J − 1,m′ ; 1,−q|J,m2〉
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where we used the fact that the Clebsch-Gordan coefficients are real numbers, and
in the same way

〈J,m1|d̂1,q′|J − 1,m′〉 = 〈J − 1,m′|d̂1,q′ |J,m1〉
∗

= 〈J − 1||d||J〉∗ (−1)q
′
√

2J − 1

2J + 1
〈J,m1|J − 1,m′ ; 1,−q′〉∗

= 〈J − 1||d||J〉∗ (−1)q
′
√

2J − 1

2J + 1
〈J,m1|J − 1,m′ ; 1,−q′〉 .

We introduce the notation dJ−1, J = 〈J − 1||d||J〉 for simplicity and we can then
write

aq,q′ = (−1)q+q
′ 2J − 1

2J + 1
|dJ−1, J |2

∑

m1,m2,m′

〈ψ|J,m1〉 〈J,m1|J − 1,m′ ; 1,−q′〉

× 〈J − 1,m′ ; 1,−q|J,m2〉 〈J,m2|ψ〉
which, by identifying the sums over m1 and m2 as the identity acting on |ψ〉 reduces
to

aq,q′ = (−1)q+q
′ 2J − 1

2J + 1
|dJ−1, J |2

∑

m′

〈ψ|J − 1,m′ ; 1,−q′〉 〈J − 1,m′ ; 1,−q|ψ〉

= (−1)q+q
′ 2J − 1

2J + 1
|dJ−1, J |2 〈−q|ρS12| − q′〉 (5.12)

where we used equation (5.5). We finally find the link between the probability to
absorb a photon according to its helicity and the corresponding coefficients of the
symmetrized two-qubit density matrix as

Pabs =
|E|2t2
4~2

2J − 1

2J + 1
|dJ−1, J |2

∑

q, q′

(ε∗)−q′ ε−q 〈−q|ρS12| − q′〉

= (Ωt)2
∑

q,q′

(ε∗)q′ εq 〈q|ρS12|q′〉

= (Ωt)2 〈ε∗|ρS12|ε∗〉 (5.13)

where Ω =
|E||dJ−1, J |

2~

√
2J − 1

2J + 1
is the coupling strength and we identified the sum

over q and q′ to the matrix product 〈ε∗|ρS12|ε∗〉 where the ket notation |ε〉 for the
polarization is a vector containing the three components ε+, ε0 and ε−.

This result can be interpreted by considering the state |ψ〉 of a spin 1 corre-
sponding to |ψ〉 〈ψ| = ρS12 such that 〈ε∗|ρS12|ε∗〉 = |〈ψ|ε∗〉|2. The photon is absorbed
if there is a mode matching between |ψ〉 and |ε∗〉.

5.3.2 A well-chosen basis for the symmetrized two-qubit density matrix

Different photon-absorption experiments should enable us to reconstruct ρS12.
There are 8 independent real coefficients ai to determine writing ρ as

ρ =
1

3
1 +

1

2

8∑

i=1

aiMi (5.14)
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where the identity plus these 8 matrices form a basis of three-by-three hermitian
matrices of trace one :

M1 =
1√
2




0 1 0
1 0 1
0 1 0


 M2 =

1√
2




0 −i 0
i 0 −i
0 i 0


 M3 =




1 0 0
0 0 0
0 0 −1




M4 =




0 0 1
0 0 0
1 0 0


 M5 =




0 0 −i
0 0 0
i 0 0


 M6 =

1√
2




0 −i 0
i 0 i
0 −i 0




M7 =
1√
2




0 1 0
1 0 −1
0 −1 0


 M8 =

1√
3




1 0 0
0 −2 0
0 0 1




These matrices are similar to the Gell-Mann matrices and they also correspond to
operators of a spin L = 1 expressed in the basis formed by the eigenstates of L̂2 and
L̂z : |1〉 , |0〉 , |−1〉 as

M1 = L̂x, M2 = L̂y, M3 = L̂z,

M4 = L̂2
x − L̂2

y,

M5 = L̂xL̂y + L̂yL̂x, M6 = L̂yL̂z + L̂zL̂y, M7 = L̂zL̂x + L̂xL̂z,

M8 =
1√
3

(
− 21 + 3 L̂2

z

)
.

5.4 Proposed experimental implementation

The electronic transition of dysprosium at λ = 696 nm couples the ground state
J = 8 to an excited state J ′ = J − 1 and is therefore suited for this experiment. Its
linewidth Γ = 2π × 15 kHz corresponds to an excited state lifetime Γ−1 = 10.6µs,
meaning that the resonant light pulse should remain smaller than 1 µs for the short
time approximation to be valid. The coupling Ω can be more easily computed by
expressing the dipole coupling dJ−1, J using

Γ =
ω3
0

3πε0~c3
|dJ−1, J |2 (5.15)

so that

Ω2 =
3πΓc2

2ω3
0

I0
~

2J − 1

2J + 1
(5.16)

where we used |E|2/4 = I0/(2ε0c). For a waist of 50µm and a power of 100 mW, we
get Ω = 2π× 104 MHz. This means that even if the laser producing light at 696 nm
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is not stable down to the level of Γ, the natural laser stability measured at ∼5 MHz
is sufficient to address the transition in a reliable way thanks to power broadening.

5.4.1 Choice of light polarization

Linear polarization

From equation 5.13 and using the basis decomposition of equation 5.14, we obtain
that for a linear polarization ε = eθ, φ the probability to absorb a photon reads

Pabs(eθ, φ)

P0

=
1

3
− a8

4
√

3
− a4

2
sin2 θ cos(2φ) +

a5
2

sin2 θ sin(2φ)

+
a6
2

sin(2θ) sinφ− a7
2

sin(2θ) cosφ− a8
√

3

4
cos(2θ) (5.17)

where P0 = (Ωt)2. It allows to determine coefficients a4 to a8 from measurements
along different directions. When defining the polarization in such a way, we assume
that the light propagates along a line orthogonal to a plane containing the polar-
ization vector. This choice is not unique. While this a priori requires the ability to
send a linearly polarized laser beam on the atoms along various directions, the use
of magnetic rotations mapping the z axis onto any direction (similarly to the ones
described in section 3.3.1) allows us to use only one direction of propagation.

Circular polarization

In the case where ε = e±, meaning that the polarization is circular and the light
is propagating along z, we get

Pabs(e±)

P0

=
1

3
∓ a3

2
+

a8

2
√

3
(5.18)

so that a3 can be extracted as

a3 =
Pabs(e−)− Pabs(e+)

P0

. (5.19)

The same is true for a1 and a2, choosing circularly polarized light propagating re-
spectively along x and y. If we write e±, θ, φ the polarization vector corresponding
to a circularly polarized light propagating along the direction (θ, φ), we can write
in the most general case

Pabs(e−, θ, φ)− Pabs(e+, θ, φ)

P0

= sin θ cosφ a1 + sin θ sinφ a2 + cos θ a3 (5.20)

Once again the use of rotations on the Bloch sphere would enable us to use only one
direction of propagation for the circularly polarized light.

5.4.2 Detection

The resonant light pulse would be followed by a time-of-flight with a typical
duration of a few milliseconds. An atom which absorbs a photon acquires a velocity
vrec = ~k/m = 3.5 µm/ms in the direction of light propagation. Since the lifetime of
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the excited state is typically 10 µs, the atom travels a negligible distance vrec/Γ ' 40
nm during this short time. Then a photon is spontaneously emitted, giving another
vrec kick in a random direction, resulting in a circular velocity distribution. After
time-of-flight this velocity distribution leads to a ring-shaped atomic distribution
plotted on figure 5.1. The propagation of scattered atoms needs to be compared
with the thermal expansion of the atomic cloud at velocity vth =

√
kBT/m. The

cloud expansion needs to be smaller than the ring pattern so that they do not
overlap. This yields the criterion vth ≤ vrec, valid for T ≤ 250 nK.

vth
vrec

vrec

atoms
Resonant light

(a)

(b)

Figure 5.1 – Atomic distribution resulting from time-of-flight af-
ter photon absorption and spontaneous emission. (a) Schematic
representation. The distance that an atom in the excited state travels
before spontaneously emitting a photon is negligible and therefore not rep-
resented. The total velocity results from a first vrec kick in the direction of
the laser followed by a second vrec kick in a random direction. The graph
corresponds to vth = 0.5 vrec (b) Picture taken from [104], obtained with
sodium atoms. The net displacement to the right due to the finite lifetime
of the excited state is visible on the picture.

The number of atoms measured in the ring pattern after a resonant light pulse
should be proportional to the total atom number and to the absorption probability
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as

Nring = Pabs(ε)Ntot. (5.21)

Shot-to-shot fluctuations in atom number could be ignored by measuring Ntot and
Nring on each image. This leaves P0 as the only parameter that remains to be
calibrated.

5.5 Examples with different states

We briefly recall the successive steps to compute the pairwise entanglement of
a state |ψ〉 of a spin J . First the three-by-three symmetrized two-qubit density
matrix ρS12 is deduced from ρ = |ψ〉 〈ψ| according to equation 5.6. Then the four-by-
four matrix ρ12 is deduced from ρS12 using equation 5.3. Then we form the product
ρ12 (σy ⊗ σy) ρ

∗
12 (σy ⊗ σy) and the concurrence is computed from its eigenvalues

according to equation 5.2.

5.5.1 Coherent state

For a coherent spin state |ψ〉 = |−J〉z, the symmetrized two-qubit density matrix
reduces to a single coefficient

ρS12 =




0 0 0
0 0 0
0 0 1


 (5.22)

from which the computed concurrence is C = 0 which is not surprising as a coherent
state should not exhibit any entanglement. This corresponds to the ai coefficients
being all equal to zero except for a3 = −1 and a8 = 1/

√
3. Therefore the photon

absorption probabilities read

Pabs(eθ, φ)

P0

=
1− cos(2θ)

4
(5.23)

which cancels for θ = 0 corresponding to ε = ez and we also have

Pabs(e+, z)

P0

= 1 and
Pabs(e−, z)

P0

= 0 (5.24)

consistent with the absence of mJ = −9 or mJ = −8 levels in the J = 7 manifold
as shown on figure 5.2. The specific case of the σ+ polarization applied to the |−8〉z
state can be used as a way to calibrate P0. Indeed this is the only case (with the
symmetric situation of σ− polarized light sent on the state |+8〉z) where Pabs = P0.
It corresponds to the maximum number of scattered atoms Nring and can be used
as a reference for other polarizations.

5.5.2 The W state

The state that has the maximum concurrence C = 2/N = 1/J among symmetric
states is the so-called W state |ψ〉 = |−J + 1〉z [105], also equal to

(
|↑↓ ... ↓〉 +
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Figure 5.2 – Transition from the J = 8 to the J = 7 manifold.

|↓↑ ... ↓〉+ ...+ |↓↓ ... ↑〉
)
/
√
N in the N qubits picture. The high degree of symmetry

of the states considered in this chapter justifies the fact that the maximum value of
the concurrence remains much smaller than one.

For the W state the reduced symmetrized density matrix is equal to

ρS12 =




0 0 0
0 1/8 0
0 0 7/8


 (5.25)

and its concurrence is equal to 1/8. The values of the coefficients a3 and a8 obtained
from ρS12 lead to the verification that

Pabs(e−, z)

P0

= 0 (5.26)

as expected from the absence of mJ = −8 state in the J = 7 manifold.

5.5.3 Cat state

For the cat state |ψ〉 =
(
|−J〉z + |J〉z

)
/
√

2, the reduced matrix reads

ρS12 =




1 0 0
0 0 0
0 0 1


 (5.27)

for which the concurrence is C = 0. This result suggests the need for carefulness
when dealing with the notion of entanglement. While the cat state is said to be
'maximally-entangled', this is only true in terms of multipartite entanglement in the
case where it is formed by N real qubits. When considering pairwise entanglement
which is especially suited to our system of fictitious (and therefore indistinguishable)
qubits, the cat state has a concurrence equal to zero.

The W state can be seen as the counterpart of the cat state. It has been shown
in [106] that in three-qubit systems, multipartite-entangled states can be divided in
two equivalence classes represented respectively by the cat state and the W state,
showing their intrinsic difference. While for the cat state taking the partial trace
over one of the qubits leads to a completely mixed state of the remaining two, for
the W state the remaining pair is in a fully-entangled state.

A systematic numerical computation of the concurrence for the states prepared
with the one-axis twisting Hamiltonian is given in [107]. On the other hand the
presence of pairwise entanglement at the critical point for spin models similar to the
LMGm is studied in [100, 108]. These two aspects could be realized experimentally
by combining the results of this chapter with the results of chapters 3 and 4.



Chapter 6

Other projects, conclusion and
outlook

The last chapter of this manuscript is dedicated to projects that extend the use
of the spin degree of freedom of dysprosium by coupling it to external degrees of
freedom.

The first project was realized in 2019 and I only provide a brief presentation of
it as it has already been fully described in the thesis of T. Chalopin [42]. It consists
in realizing an analogy of the two-dimensional Landau Hamiltonian of a charged
particle in a magnetic field. This model is emblematic of quantum Hall systems
exhibiting topological properties. In our case there is one dimension of space and
one synthetic dimension, the internal (angular momentum) state playing the role of
the second dimension, similarly to [109, 110]. The experimental results related to
this project have been published in [111].

The second project is similar to the first one, except that there are two spatial
dimensions, one of them being coupled to the atomic spin. This position-dependent
internal state results in the presence of a Berry curvature playing the role of an
artificial magnetic field.

6.1 Synthetic Hall system

6.1.1 Simulating the Landau Hamiltonian

Dysprosium is especially suited for the realization of artificial gauge fields, as
the light-induced spin coupling may result in a coupling between the internal and
external degrees of freedom, usually referred to as spin-orbit coupling. This requires
the light field to be chosen such that its polarization and/or amplitude are posi-
tion/momentum dependent. The system presented here can be considered as an
extension of the light-induced spin squeezing realized in chapter 3, since it adds a
spatial degree of freedom to the 2J + 1 = 17 internal states of the ground state
Zeeman manifold.

Usually the term artificial gauge field refers to systems that can be described by
a Hamiltonian of the form

Ĥ =

(
p̂−A(r̂)

)2

2m
(6.1)
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where A(r̂) is a vector potential, similarly to the Landau Hamiltonian

ĤLandau =

(
p̂− qA(r̂)

)2

2m
(6.2)

characterizing the dynamics of a charged particle in a magnetic field described by
the associated vector potential A(r̂). Realizing a system analogous to the Landau
Hamiltonian with neutral atoms and light fields illustrates the principle of quantum
simulation. Neutral atoms can be trapped, cooled and imaged relatively easily while
electrons are more difficult to work with individually. Of course the difficult part
is to mimic the interaction between a charged particle and a magnetic field with
neutral atoms.

The scheme we use is similar to the one realized for the first time with effec-
tive two-levels atoms in [112]. Atoms are dressed by two counter-propagating Ra-
man beams creating a momentum-dependent coupling between two internal atomic
states. The Raman coupling scheme we use extends this idea to the case of dys-
prosium. It is based on a proposal related to the use of Raman beams to realize
synthetic gauge fields with lanthanide atoms [113].

x
y

z

Dy atom

Gradient coil

ω ω+ωz + δ

−2
−1

0
1

2

Figure 6.1 – Configuration of the Raman beams. A vertical magnetic
field splits the mJ manifold and the two orthogonally polarized beams lead
to Raman transfers in the entire ladder of states, with only a few repre-
sented. The detuning with the upper manifold is large (compared to the
width Γ) to avoid any real excitation and consider only virtual processes.

The two Raman beams propagate along x and have linear polarizations tilted by
45 degrees with respect to the vertical quantization magnetic field B = Bẑ. One
has frequency ω and the other ω + ωz + δ as represented on figure 6.1. The sum of
these two light fields results in a position-dependent light polarization as

ε =
1

2
e−iω0t

[
eikx(ŷ + ẑ) + e−i(kx+ ωzt+ δt)(ŷ − ẑ)

]
(6.3)

resulting for the light-shift Hamiltonian presented in equation 1.7 in

V̂ = V0

[
αs1 + αv sin(φ)

Ĵx
2J

+ αt
Ĵ2 − 3Ĵ2

x + 3 cos(φ)(Ĵ2
y − Ĵ2

z )

2J(2J − 1)

]
(6.4)
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where the light coupling V0 and phase φ are given by

V0 =
3πΓc2

2ω3
0

√
I1I2
∆

(6.5)

φ = 2kx+ (ωz + δ)t, (6.6)

I1 and I2 being the intensities of the Raman beams. The total Hamiltonian is given
by

Ĥ =
p̂2

2m
+ ~ωzĴz + V̂ (6.7)

and we perform a unitary transformation corresponding to

˜|ψ〉 = Û |ψ〉 = exp
(
i(ωz + δ)tĴz

)
|ψ〉 (6.8)

which also transforms the Hamiltonian according to

H̃ = i~
dÛ

dt
Û † + ÛĤÛ †. (6.9)

The point of this transformation is to isolate rapidly oscillating terms to perform
the rotating wave approximation (RWA) and neglect them. The RWA only affect
the light coupling term V̂ and yields

Ṽ /V0 = αs1− iα
v

8J
(e2ikxĴ−− e−2ikxĴ+) +

αt

2J(2J − 1)

(
Ĵ2 − 3

2
(Ĵ2
x + Ĵ2

y )

)
(6.10)

where the characteristic feature of Raman beams is visible : the absorption or
emission of a photon is characterized by a change in internal state via the operator
Ĵ± and momentum kick ±2~k.

Another step is necessary to obtain a form similar to the Landau Hamiltonian.
The unitary transform defined by the operator

Û = exp (2ikx̂Ĵz) (6.11)

makes the spin-orbit coupling visible similarly to equation 6.1 as

Û
p̂2x
2m

Û † =
(p̂2x − 2~kĴz)2

2m
. (6.12)

The total Hamiltonian finally reads

Ĥ =
(p̂2x − ~KĴz)2

2m
− ~Ω

(
Ĵx +

Ĵ2
z

2J + 3

)
− ~δĴz (6.13)

where

K = 2k and ~Ω =
2J + 3

4(J + 1)(2J + 1)
V0 (6.14)



92 6. Other projects, conclusion and outlook

according to the exact expressions of the scalar and tensor light-shifts for the J →
J + 1 transition. An additional position-dependent energy term (with no effect on
the internal state) was neglected to obtain equation 6.13. This term can induce an
attractive or repulsive potential, whose effect remains negligible on the timescale of
the experiment (a few hundred µs).

The analogy with the Landau Hamiltonian can be seen by writing

Ĥ =
(p̂2x − ~KĴz)2

2m
− ~ΩĴx + V (Ĵz) (6.15)

ĤLandau =
(p̂2x − eBŷ)2

2m
+

p̂2y
2m

(6.16)

with the identifications Ĵz ↔ ŷ and ~K ↔ eB. While the Landau Hamiltonian in-
volves two dimensions of space, ours has only one dimension of space and a synthetic
dimension played by the internal state. The kinetic energy term p̂2y/2m is played by

Ĵx which couples neighbouring m states.
The energy scale which separates the free-particle regime where the kinetic en-

ergy dominates from the strongly coupled regime is Erec = ~2K2/(2m), the recoil
energy associated to an elementary Raman process of photon absorption followed
by stimulated emission of a photon. For ~Ω = Erec, the effect of V (Ĵz) is minor and
even flattens the energy band plotted on figure 6.2. The strong similarity with the
energy structure of the Landau Hamiltonian validates the analogy between the two
systems.

For Ω = 0, each parabola of the spectrum corresponds to a given m state and
they are not coupled. On the other hand for Ω = Erec, the m state is coupled to
the momentum p in the ground band through a phenomenon of spin-momentum
locking. It is due to the fact that spin-hopping occurs together with the acquisition
of a momentum kick from a Raman process.

6.1.2 State preparation in the ground band

We prepare states of arbitrary momentum p in the ground band in the following
way. A cloud of 8(2)×104 atoms at 0.55(6) µK is released from the cODT. The initial
internal state of an atom is |−J〉 similarly to the other experiments presented in the
manuscript, and it has no velocity in the laboratory frame. It is more convenient
to place ourselves in the moving frame associated with the detuning δ between the
two Raman beams. Indeed while δ = 0 results in a 'standing wave' (it is not a 1D
trapping lattice since the polarizations are orthogonal but only a modulation of the
light polarization), δ 6= 0 corresponds to the nodes moving at a speed vlatt. = −δ/K.
Initially δ = 0 and the light power is increased adiabatically up to ~Ω = 1.02(6)Erec,
inducing the energy structure plotted on figure 6.2.

We perform a ramp of detuning δ̇ which results in an inertial force F = −mv̇latt. =
mδ̇/K so that the equation of motion ṗ = F yields

p(t) = p0 +
m

K
δ(t) with p0 = −8~K. (6.17)

This allows us to prepare a state of given p by ramping the detuning δ up to a final
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Figure 6.2 – Energy spectrum of the Hamiltonian. The eigen ener-
gies calculated numerically for ~Ω = 0, 0.1Erec and 1Erec are plotted as a
function of p. In the absence of Raman couplings (Ω = 0), the spectrum
corresponds to the kinetic energy of a free particle. The fact that there
are 2J + 1 = 17 parabolas centered on integer multiples of ~K from -8 to
8 is artificial since there is no spin-coupling in this case. It starts being
relevant as Ω increases, as the coupling progressively opens a gap, leading
to a flat ground band for ~Ω = Erec. (Bottom right) Energy spectrum
of the Landau Hamiltonian in a ribbon geometry : infinite along x (with
associated momentum p) and finite along y, to respect the analogy with our
finite synthetic dimension. The analogy between the two systems is valid
at least for the two lowest bands which are quite flat.

value

δ = 2
( p

~K
+ J

) Erec

~
. (6.18)

Both the internal state of an atom and its velocity in the lab frame can be measured
by a time-of-flight measurement as shown on figure 6.3.

A magnetic field gradient induces a m-dependent space separation identically
to the other projects presented so far, and the velocity in the laboratory frame
induces a separation in the orthogonal direction. These two displacements can be
imaged simultaneously by absorption imaging and the fact that the imaged clouds
are aligned illustrates the phenomenon of spin-momentum locking. This allows us
to recover the velocity in the moving frame as a function of p across the ground
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Figure 6.3 – (Left) Detection of both the velocity and internal m
state. During a time-of-flight of a few ms, the velocity in the laboratory
frame and the Stern-Gerlach magnetic field gradient split the atomic cloud
in two orthogonal directions. This image was obtained by superimposing
the single shot pictures corresponding to the preparation of all accessible p-
states in the ground band. (Right) Velocity distribution in the moving
frame across the ground band. The region of zero velocity corresponds
to the bulk, as opposed to the edges, corresponding to the edges of the
synthetic dimension. Grey dots correspond to the average velocity 〈v̂〉 while
the solid red line is the value expected from the derivative of the ground
band dispersion ∂pE0.

band, plotted on figure 6.3.
It shows distinctive behaviours in regions that can be defined as the bulk and

two edges. In the bulk the velocity is close to zero, which is consistent with the
value expected for a flat band 〈v̂〉 = ∂E0/∂p = 0. The velocity can be defined as
the derivative of the operator x̂ with respect to time in the Heisenberg picture as

v̂ =
i

~

[
Ĥ, x̂

]
=

1

m

(
p̂− ~KĴz

)
(6.19)

It means that the spin-momentum locking occurs only in the bulk, while on the
edges the velocity varies linearly with p, the internal state being either |−J〉 (for
p < −8~K) or |+J〉 (for p > 8~K).

6.1.3 Cyclotron orbits and chiral edge states

The state preparation scheme exhibits topological behaviour, as the inertial force
in the real dimension induces transport (change of internal state) in the (orthogonal)
synthetic dimension. Another topological feature of this system is visible when
probing the gap between the ground and the first excited band. The detuning is
ramped to prepare a given p-state in the ground band and then abruptly increased
by a value of 2Erec/~. This quench shifts the value of p by one unit of ~K according
to equation 6.18. This non-adiabatic transfer induces a superposition of a ground
and excited states of identical momentum p′ = p + ~K, leading to oscillations of
both velocity and magnetization at frequency ωc = (E1−E0)(p

′)/~, proportional to
the energy gap at momentum p′. By integrating the measured velocity oscillations
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with respect to time, we obtain cyclotron orbits in the bulk and skipping orbits
on the edges, a key feature of topological systems. They are plotted on figure 6.4,
where the transition from bulk behaviour to edge behaviour is clearly visible. The
orbits are closed in the bulk, whereas on the edges the trajectory is ballistic, with
two opposite directions corresponding to opposite chirality. They are characterized
by skipping orbits, which 'bounce' on the edge of the system (since there is no
accessible m = ±9 state).
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Figure 6.4 – Cyclotron and skipping orbits. Trajectories in the (x,mz)
plane measured after a detuning quench, for different initial mz. Note that
while the m states are discrete, the average magnetization mz varies in a
continuous way. The position 〈x̂〉 is not measured directly but inferred from
integration of the velocity and is initially zero for all trajectories. (Inset)
Cyclotron frequencies measured for the different orbits. The result is
consistent with the fact that the first excited band is not perfectly flat as
shown on figure 6.2.

This system already exhibits topological features, yet one may ask what would
happen if interactions between atoms were present. So far they have always been
neglected as the mean-field interaction energy scale gn remains much smaller than
kBT for thermal gases, where g = 4π~2a/m and a is the scattering length. The
problem with lowering the temperature and going to the BEC regime in this case
is that the different m states are all spatially overlapped and only one dimension
of space is accessible. It means that there can potentially be contact interactions
between all couples of m states, whereas the only scattering length whose value has
been measured is a−8,−8 = abg.
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In the second project, the system is similar with the additional constraint that the
synthetic dimension (i.e. the internal state) is mapped onto a real spatial dimension.
Therefore different m states are spatially separated which leaves only a reduced
amount of coefficients am,m′ to consider, their values being expected to be positive
and of the same order of magnitude as abg. Going to the BEC regime is necessary to
see the effect of the interactions. In particular the nucleation of vortices is usually
expected for a BEC in presence of a gauge field.

6.2 Artificial gauge field with two spatial dimensions

The following laser configuration is inspired from a proposal [114] suggesting the
use of two laser beams to engineer an artificial gauge field thanks to space-dependent
light shifts. It is currently developed and has not been realized on the experiment
yet. It consists in sending two counter-propagating beams of identical power on the
atoms with a position offset d as represented on figure 6.5. The waist w, identical
for the two beams, is comparable with d so that it creates a region where the ground
state of the light-shift operator varies monotonically.

x

y
atoms

σ+

σ−

d

Figure 6.5 – Laser configuration.

The expression of the light shift operator can be computed similarly to the
previous project. We neglect the variation of the waist in the axial direction as the
Rayleigh length is supposed to be much larger than the length scale of the system.
The contributions of the two laser beams are therefore

E1 = E0 exp
(
−(y + d)2/w2

)
ei(kx−ω0t)e+

E2 = E0 exp
(
−(y − d)2/w2

)
e−i(kx+ω0t)e−

so that the total electric field is

E = 2E0e
−(y2+d2)/w2

e−iω0t cosh(2yd/w2)︸ ︷︷ ︸
Ẽ0(y)

(eikx cos θ(y) e+ + e−ikx sin θ(y) e−)︸ ︷︷ ︸
ε(y)

(6.20)

where θ(y) is a parameter defined as tan θ(y) = exp(y/y0) with y0 = w2/(4d) so that
θ varies roughly between 0 and π/2. The light shift operator is then deduced using
equation 1.7. We do not give its full expression as it is not necessary to understand
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the main features of this system. The light used here is close to the resonance at
833 nm corresponding to a J → J transition. This ensures that the state |−J〉z
(resp. |+J〉z) is not coupled to an excited state via σ− (resp. σ+) polarized light.
These states are said to be dark states, since they cannot absorb light and then
spontaneously emit photons (which would make them appear bright).

In fact the local y-dependent ground state is always a dark state and varies
continuously from |J〉z for θ = 0 (y/y0 � 1, y negative) to |−J〉z for θ = π/2
(y/y0 � 1, y positive) through the y-dependent mixing of the two opposite circular
polarizations as represented on figure 6.6.

Figure 6.6 – Spin populations of the position-dependent ground
state. The populations along z as a function of θ are plotted on the left
and the corresponding magnetization on the right. These are the result of
numerical simulations.

The situation is therefore similar to the previous project except that now the
internal degree of freedom is locked to the position y. This kind of locking behaviour
between the internal state and the position is usually associated to the apparition of
a quantity called the Berry connection. It comes from the fact that the eigenstates
of the Hamiltonian depend on the position through the parameter θ. If we describe
the adiabatic evolution of a state |ψ(t)〉 in the basis formed by the eigenstates |ψn〉
(with energy En) of the Hamiltonian as

|ψ(t)〉 =
∑

n

cn(t) |ψn(θ(t))〉 , (6.21)

the Schrödinger equation leads in first order approximation to

i~ċn(t) =

(
En − i~

∂θ

∂t

∑

i

〈ψn|∂iψn〉
)
cn(t). (6.22)

The Berry connection A = i~ 〈ψn|∇ψn〉, whose components along the three
spatial directions are involved in the previous equation, is a vector potential corre-
sponding to an artificial magnetic field B = ∇ × A. In the case of our system, it
yields

B = ~k
∂mz

∂y
ez (6.23)
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where mz = 〈Ĵz〉. It can be cast in a dimensionless way as B(y) = (~k/y0)B(y/y0)
where a numerical computation of B in the strong-coupling limit is plotted on fig-
ure 6.7. The fact that B can be written in such a way, independently of the laser
power, shows a key feature of dark states. The effects at play are purely geometrical
and based on the structure of the J → J transition. The advantage is that the laser
power can be increased without being constrained by the photon scattering rate.
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Figure 6.7 – Artificial magnetic field profile.

Preliminary numerical simulations of the Gross-Pitaevskii equation for a Bose-
Einstein condensate in presence of this artificial magnetic field are promising and
show the apparition of vortices. They were performed with equal scattering length
for all m states since we have no information on them. Since the vortex size is
proportional to the healing length ξ = 1/

√
8πan, which depends on the atomic

density n and the scattering length a, it could provide an estimation of the values
of the different scattering lengths for even m. Indeed only states with even m are
populated in this system as can be seen on figure 6.6.

6.3 Conclusion

In this manuscript we have presented the realization of various types of physical
systems using ultracold atoms of dysprosium. The large spin and specific light-shifts
in the electronic ground state are especially suited for the realization of spin squeez-
ing and spin-orbit coupling leading to artificial gauge fields. Moreover, the use of
J → J ′ transitions with J ′ = 7 and 8 will allow us to probe novel interesting sys-
tems. Furthermore several tools that are commonly used in the context of ultracold
gases such as optical lattices or digital micromirror devices (DMD), able to engineer
arbitrary potentials, could in the future enrich the experimental setup. They have
not been implemented yet, since dysprosium already exhibits striking features in
relatively simple configurations.

The main direction taken by the group is the study of topological many-body
systems. They constitute good candidates in the cold atoms field for the realization
of sought-after exotic phases of matter. For example a system exhibiting topological
superfluidity could be realized by applying spin-orbit coupling to a degenerate gas
of fermionic dysprosium. A first step in this direction was realized in the group of
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B. Lev [115]. This would require working at very low magnetic field to suppress
dipolar relaxation, for which we consider implementing magnetic shielding around
the glass cell in the future.



Part IV

Appendices



Appendix A

Full expression of the atomic
polarizabilities

We provide the full expression of the scalar, vector and tensor polarizabilities
involved in the light shift operator related to a J → J ′ transition

V̂JJ ′ = −|E|
2

4

[
αsJJ ′1− iαvJJ ′

(u∗ × u) · Ĵ
2J

+αtJJ ′
3[(u∗ · Ĵ)(u · Ĵ) + (u · Ĵ)(u∗ · Ĵ)]− 2Ĵ2

2J(2J − 1)

]
. (A.1)

They read

αsJJ ′ = − 1√
3(2J + 1)

α
(0)
JJ ′(ω) (A.2)

αvJJ ′ =

√
2J

(J + 1)(2J + 1)
α
(1)
JJ ′(ω) (A.3)

αtJJ ′ =

√
2J(2J − 1)

3(J + 1)(2J + 1)(2J + 3)
α
(2)
JJ ′(ω) (A.4)

where

α
(k)
JJ ′(ω) = (−1)J+J

′+k
√

2k + 1

{
1 k 1
J J ′ J

}
|〈J ′||d||J〉|2

× 1

~
Re

[
1

ωJ ′ − ωJ − ω − iγJJ ′/2
+

(−1)k

ωJ ′ − ωJ + ω + iγJJ ′/2

]
. (A.5)

The curly-brackets term is a Wigner-6j symbol and 〈J ′||d||J〉 is the reduced matrix
element of the dipole operator introduced in the context of the Wigner-Eckart the-
orem, used in chapter 5. The fact that the Wigner-6j symbol vanishes for J = 1/2
and k = 2 explains why there is no tensor light-shift for the ground state of alkali
atoms.



Appendix B

Computing the purity from spin
populations

We present here the derivation of equation 3.30 used to compute the purity from
the measured spin projection probabilities Πm(n̂). According to spin tomography
theory, the density matrix of a quantum spin can be reconstructed from integration
of the probabilities Πm(n̂) over the Bloch sphere, as [116]

ρ =
J∑

m=−J

∫

S2

dn̂

4π
Πm(n̂)D̂(m, n̂) (B.1)

where S2 is the unit sphere and the expression for the operator D̂ is

D̂(m, n̂) =
2J + 1

π

∫ 2π

0

dγ sin2 γ

2
eiγ(m−Ĵ·n̂). (B.2)

The purity can then be written as [85]

Tr
[
ρ2
]

=
J∑

m=−J

∫

S2

dn̂

4π
Πm(n̂) Tr [ρD(m, n̂)] (B.3)

= (2J + 1)
J∑

m=−J

∫

S2

dn̂

4π
Πm(n̂) [Πm(n̂)− Πm+1(n̂)] , (B.4)

with the convention ΠJ+1(n̂) = 0.



Appendix C

Expression of the Wigner function
in terms of spin populations

From equation 4.15, we derive the expression given in equation 4.19. We decom-
pose a state |ψ〉 as

∑
m cm |m〉z. It is sufficient to prove the result for the particular

case θ = 0, φ = 0, since it is always possible to perform a basis change to be in this
situation.

The density matrix is

ρ =
∑

m1,m2

c∗m1
cm2 |m2〉 〈m1| (C.1)

so that the coefficients of its decomposition in the multipole basis are

ρkq = Tr[ρ T̂ †k,q] (C.2)

=
∑

m1,m2

c∗m1
cm2(−1)J−m2

√
2k + 1

(
J k J
−m2 q m1

)
. (C.3)

Then we have

Y q
k (0, 0) =

√
2k + 1

4π
δq, 0 (C.4)

so that

W (0, 0) =
2J∑

k=0

k∑

q=−k
ρkqY

q
k (0, 0) (C.5)

=
2J∑

k=0

ρk0

√
2k + 1

4π
(C.6)

=
2J∑

k=0

∑

m1,m2

c∗m1
cm2(−1)J−m2

2k + 1√
4π

(
J k J
−m2 0 m1

)
. (C.7)

Finally the selection rule of the Wigner-3j symbols states that it is zero unless
m1 = m2, so that

W (0, 0) =
∑

m

|cm|2(−1)J−m
2J∑

k=0

2k + 1√
4π

(
J k J
−m 0 m

)
(C.8)
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Note that if we had labeled as '
′z′' the direction (θ, φ) and chosen this direction

as the quantization axis for the basis to decompose |ψ〉 in, the previous derivation
would have been identical. We can then write

W (θ, φ) =
∑

m

Πm(θ, φ)(−1)J−m
2J∑

k=0

2k + 1√
4π

(
J J k
m −m 0

)
(C.9)

=
∑

m

(−1)J−mamΠm(θ, φ) (C.10)

where we also applied an even permutation leaving the Wigner-3j symbol invariant.
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ABSTRACT 

 

This thesis manuscript presents experiments realized with ultracold atomic gases of dysprosium. This 

element has specific properties such as a large spin J=8 and tunable light-spin couplings originating from 

significant tensor light-shift contributions close to resonance. An overview of the experimental setup is 

given, from magneto-optical trapping to evaporative cooling. In particular we present the role of the tensor 

light-shift in the in-trap Doppler cooling process. Details on the use of spatial modulation to tune the shape 

of an optical dipole trap are also given. 

In the second part we describe the preparation of squeezed and ‘oversqueezed’ spin states as well as 

Schrödinger cat states using light-induced spin couplings. The magnetic sensitivity of these states is 

characterized using Ramsey spectroscopy. The Husimi function is reconstructed from population 

measurements along various directions, also allowing us to compute the purity of the prepared states. 

While squeezed states show an increased metrological gain, oversqueezed states exhibit a strong 

Ramsey oscillations contrast reduction. The Hellinger distance is used to extend the notion of metrological 

gain and the sensitivity measured in this case saturates the Cramér-Rao bound. Finally a system of 16 

indistinguishable interacting spins 1/2 is realized. In the third part we present the measurement of pairwise 

entanglement from photon absorption measurements, which was not realized experimentally. 

Finally we present two projects where spatial degrees of freedom are added to the dynamics of internal 

levels. The first one consists in the realization of a system analogous to the Landau Hamiltonian of a 

charged particle in a magnetic field, with one spatial dimension and one synthetic dimension. The second 

project uses two spatial dimensions and exhibits an artificial magnetic field originating from position-

dependent light-shifts. 

MOTS CLÉS 

 

Dysprosium, états comprimés de spin, gain métrologique, distance de Hellinger 

RÉSUMÉ 

 

Ce manuscrit de thèse est consacré à des expériences réalisées à partir de gaz d’atomes de dysprosium 

ultrafroids. Cet élément possède des propriétés particulières comme un grand moment angulaire J=8 ou 

bien un déplacement lumineux tensoriel significatif à proximité de résonance. Le dispositif expérimental est 

présenté dans son ensemble, du piégeage magnéto-optique au refroidissement par évaporation. La 

modulation spatiale permettant de contrôler la forme d’un piège optique est détaillée, ainsi que le rôle du 

déplacement lumineux tensoriel dans l’étape de refroidissement Doppler dans un piège optique. 

La seconde partie est dédiée à l’utilisation du déplacement lumineux tensoriel dans la préparation 

d’états comprimés et ‘surcomprimés’ ainsi que des états chats de Schrödinger. La sensibilité magnétique 

de ces états est mesurée à l'aide de séquences de Ramsey et permet de calculer le gain métrologique. La 

fonction de Husimi est reconstruite expérimentalement à partir de mesures de population dans différentes 

directions, ce qui permet aussi de déterminer la pureté des différents états préparés. 

Les états comprimés ont une sensibilité accrue, mais les états surcomprimés montrent une forte 

diminution du contraste des oscillations de Ramsey. L’utilisation de la distance de Hellinger permet de 

quantifier la différence entre deux états proches et ainsi donner une nouvelle définition du gain 

métrologique. La limite de Cramér-Rao est alors atteinte et la sensibilité des états surcomprimés est 

supérieure à celle des états comprimés. Enfin un système de 16 spins 1/2 indistinguables en interaction est 

réalisé. Dans une troisième partie nous présentons la mesure de l’intrication de paire pour les états d’un 

spin J à l’aide de probabilités d’absorption de photons, qui n’a pas été réalisée expérimentalement. 

En conclusion sont présentés deux projets où des degrés de libertés externes sont ajoutés à la 

dynamique des degrés de liberté internes. Dans le premier cas il s’agit d’un système analogue à 

l’Hamiltonien de Landau pour une particule chargée dans un champ magnétique, avec une dimension 

d’espace et une dimension synthétique. Dans le second cas, deux dimensions d’espace sont utilisées et la 

présence d’un déplacement lumineux dépendant de la position réalise un champ magnétique artificiel. 

KEYWORDS 

 

Dysprosium, spin squeezing, oversqueezed states, metrological gain, Hellinger distance 
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