
HAL Id: tel-03630843
https://theses.hal.science/tel-03630843

Submitted on 5 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for some hard problems and cryptographic
attacks against specific cryptographic primitives

Charles Bouillaguet

To cite this version:
Charles Bouillaguet. Algorithms for some hard problems and cryptographic attacks against specific
cryptographic primitives. Cryptography and Security [cs.CR]. Université Paris Diderot (Paris 7), 2011.
English. �NNT : �. �tel-03630843�

https://theses.hal.science/tel-03630843
https://hal.archives-ouvertes.fr

Université Paris Diderot
(Paris 7)

École Normale Supérieure
Équipe Crypto

Thèse de doctorat

Etudes d’hypothèses algorithmiques et attaques
de primitives cryptographiques

Spécialité : Informatique

présentée et soutenue publiquement le 26 septembre 2011 par

Charles Bouillaguet

pour obtenir le grade de

Docteur de l’université Paris Diderot

devant le jury composé de

Responsable scientifique : Pierre-Alain Fouque (École Normale Supérieure, France)

Rapporteurs : Joan Daemen (ST Microelectronics, Belgique)
Henri Gilbert (ANSSI)

Examinateurs : Hubert Comon-Lundh (CNRS & École Normale Supérieure de Cachan, France)
Arnaud Durand (Université Paris 7, France)
Ludovic Perret (Université Paris 6, France)
Vincent Rijmen (Katholieke Universiteit Leuven, Belgique)

Jacques Stern (CNRS & École Normale Supérieure, France)

Remerciements

Je souhaite remercier tous ceux qui, par leur soutien, ont contribué à la réussite de cette thèse. Je remercie
tout d’abord les membres du Jury d’avoir accepté d’être là aujourd’hui, en particulier ceux qui viennent de
l’étranger. Je remercie chaleureusement Joan Daemen et Henri Gilbert, qui ont dû relire un manuscrit plutôt
imposant en peu de temps, mais qui l’ont fait avec le sourire.

Cette thèse n’aurait pas été possible sans le soutien financier de la fondation EADS, envers qui je suis
évidement très reconnaissant.

Matérialiste convaincu, je mesure le profit que j’ai pu tirer de l’environnement exceptionnel dont Pierre-
Alain Fouque m’a fait bénéficier en me faisant entrer dans l’équipe de cryptographie du LIENS. Merci
donc aux autres chercheurs de l’équipe qui ont toujours été à l’écoute, c’est-à-dire par ordre alphabétique
Michel Abdalla (fournisseur officiel de café) Bruno Blanchet, Vadim Lyubashevsky, David Naccache et les
Men-in-Black, Phong NGuyen, David Pointcheval (pour avoir en plus supporté les inconvénients d’être mon
directeur de thèse officiel) et Damien Vergnaud (pour avoir prêté son appartement et son frigo). L’ambiance
de cette équipe ne serait pas ce qu’elle est sans ses thésards et post-docs, et pour cela je remercie sans ordre
particulier Léo Ducas pour nombre de séances de brainstorming souvent peu frucueuses, Qiang Tang, Georg
Fuchsbauer et Steven Gay pour le ping-pong de l’après-midi en 2007, Malika Izabachène, Céline Chevalier
et Yuan-Mi Chen pour être sympas, Aurore Guillevic (made in Bretagne) pour les mangas, Aurélie Bauer
pour être la Gentille Organisatrice et pour avoir créé un séminaire qui a porté brièvement son nom en signe
de reconnaissance éternelle, Olivier Blazy pour les produits dérivés Portal, Jérémie Jean parce qu’il a piraté
“Questions pour un champion” ou autre un jeu du même style, Dario Fiore et Mario Streffler parce que ce
sont de beaux gosses, David Cade parce que je n’avais jamais vu quelqu’un jouer à une sorte de Guitar-Hero
en entrant en transe au cours de la partie, et enfin Miriam Paiola parce qu’elle est souriante et que comme
elle est assise juste en face de moi c’est elle que je regarde tout le temps.

Je remercie plus particulièrement les thésards avec qui j’ai eu l’occasion de collaborer. Merci donc à
Gaëtan Leurent, mon sempai qui plaçait de facto la barre assez haut, à Sébastien Zimmer pour ses petites
siestes qui justifiaient les miennes et pour son aide tranquille mais efficace lors de mes débuts, à Elena
Andreeva pour avoir initié une collaboration internationale fructueuse et amicale, à Mehdi Tibouchi qui a
été mon oracle pour les problèmes de math qui me dépassaient, à Patrick Derbez pour sa créativité et sa
souplesse d’esprit (aussi avec les horaires et la rigueur mathématique), et enfin à Joana Treger-Marim pour
sa détermination à l’épreuve des balles, sa rigueur et sa jovialité.

Dans l’ensemble, je n’ai lu en détail que les thèses de Vivien Dubois, de Sébastien Kunz-Jacques, de
Magali Turrel-Bardet et de Gilles Macario-Rat. Elles ont été pour moi des documents de travail utiles, sur
le sérieux desquels je pouvais compter. J’espère juste que la mienne sera aussi bien.

Je remercie Bo-Yin Yang ainsi que Ludovic Perret et Jean-Charles Faugère, qui ont tous les trois instan-
tanément accepté de participer et de s’investir dans les projets que je leur proposais. Antoine Joux, Vincent
Rijmen et Adi Shamir et m’ont tous les trois fait le plaisir et l’honneur de travailler avec moi, et je les
remercie de la facilité avec laquelle ils partagent leur expérience et en font profiter leur entourage. Au gré
des rencontres, j’ai pu en bénéficier à plusieurs reprises.

Cette thèse n’aurait pas non plus été possible sans le soutien indéfectible de l’équipe administrative et
technique de l’ENS. Je remercie chaleureusement Jacques Beigbeder, Nasser Bacha et Ludovic Ricardou pour
le dévouement, le sérieux et l’efficacité dont ils ont toujours fait preuve face à mes demandes ou à mes appels
au secours. Ils ne seront jamais assez remerciés. Merci aussi à Michelle Angely, Lise-Marie Bivard, Isabelle
Delais, Joëlle Isnard et Valérie Mongiat, sans lesquelles je n’aurais jamais rien fait. Elles ne seront jamais
assez remerciées non plus.

3

Je remercie aussi Orr Dunkelman, qui en plus de m’avoir fait bénéficier de son talent et de son sens de
l’humour sur une base quotidienne lors de son séjour à l’ENS et même au-delà, est aussi un ami personnel.
Finalement, je remercie Pierre-Alain Fouque, très certainement la personne qui a joué le rôle le plus impor-
tant pour moi dans ces années de thèse. Il a supporté de m’avoir dans les jambes tous les jours pendant
pratiquement trois ans avec un calme olympien. Il m’a guidé, m’a proposé des pistes utiles qui ont pu dé-
boucher sur des résultats, s’est préoccupé de l’avancement et de l’aboutissement de mes travaux sans être
ni laxiste ni autoritaire. Le spectre large de ses domaines de compétence m’a permit de travailler des sujets
(multi)variés, et n’ayant même rien à voir entre eux. En gros, il est responsable des résultats que j’ai pu
obtenir.

J’en vient à la partie la plus difficile, celle où il faut que je remercie mon amoureuse. Pour les polémiques
de mauvaise foi sur “est-ce que la cryptologie est plus ou moins importante que l’influence du changement
climatique sur le régime de la Loire moyenne”, je ne sais pas si je dois te remercier. Néanmoins, tu as
toujours supporté que je me passionne pour des trucs bizarres, et tu as toujours recollé les morceaux quand
la déception succédait à l’enthousiasme prématuré. J’ai commencé cette thèse avant de te rencontrer, mais
maintenant la thèse est finie et toi, tu es toujours là. Bref, la science c’est bien, mais toi c’est mieux.

4

Sommaire

1 Introduction . 9
2 Présentation de mes Travaux . 11

I Modes opératoires de fonctions de hachage 21
3 Modes opératoires et attaques génériques . 31
4 Nouvelles attaques en seconde préimage génériques . 49
5 Autres attaques génériques contre d’autres constructions . 61
6 Compromis temps-mémoire-données pour les attaques en seconde préimage 69
7 Sécurité prouvée des modes opératoires . 75

II Cryptanalyse assistée par ordinateur de primitives orientées octet 93
8 Outils automatiques pour la recherche d’attaque à faible complexité en données 99
9 Une collection d’attaques à faible complexité en données . 111

III Etude d’hypothèses algorithmiques en cryptographie multivariée 139
10 Une boite à outil pour la cryptanalyse multivariée . 145
11 Recherche exhaustive pour la résolution d’équations booléennes 169
12 Problèmes “d’Isomorphisme de Polynômes” . 191
13 Etat de l’art . 199
14 Une méthode générale : les pinceaux de matrice . 213
15 Equivalence simultanée de formes quadratiques . 219
16 Equivalence de formes cubiques . 227
17 Équivalence linéaire de fonctions quadratiques inhomogènes 233
18 Équivalence linéaire de fonctions quadratiques homogènes . 241
19 Une classe de clefs faibles dans HFE . 263
Bibliographie . 280

5

Table des Matières

1 Introduction . 9
2 Présentation de mes Travaux . 11

2.1 Etude de modes opératoires pour les fonctions de hachage 12
2.2 Recherche automatiques d’attaques sur des versions réduites de l’AES 14
2.3 Étude de problèmes difficiles en cryptographie multivariée 16
2.4 Mes publications . 17

I Modes of Operations of Hash Functions 21
3 Modes of Operations and Generic Attacks . 31

3.1 Generalities . 31
3.2 The Merkle-Damg̊ard construction and its Security . 33
3.3 Generic Attacks Against Merkle-Damg̊ard . 35
3.4 Close Relatives of the Merkle-Damg̊ard Construction . 40
3.5 Other Hash Function Modes of Operation . 46

4 New Generic Second Preimage Attacks . 49
4.1 A New Generic Second Preimage Attack Against Merkle-Damg̊ard 49
4.2 Application to Dithered Hashing . 50
4.3 Application to Shoup’s UOWHF . 58

5 Other Generic Attacks on Other Constructions . 61
5.1 Herding Concatenated Hashes . 61
5.2 Herding Some Non-Streamable Modes of Operations . 63
5.3 A Generic Second Preimage Attack on Merkle-Damg̊ard-Again 65
5.4 The Trojan Message Attack . 66

6 Time-Memory Tradeoffs for Second Preimage Attacks . 69
6.1 Hellman’s Time-Memory Tradeoff Attack . 69
6.2 Time-Memory-Data Tradeoffs For Second Preimage Attacks 70
6.3 Dealing with High Complexity Dithering Sequences . 71

7 Provable Security for Modes of Operations . 75
7.1 Second-Preimage Resistance in the Random Oracle Model 76
7.2 Unavoidable Security Loss in Black-Box Reductions . 78
7.3 Indifferentiability in the Presence of Distinguishers . 83

II Computer-Aided Cryptanalysis of Byte-Oriented Primitives 93
8 Automated Tools For Low Data Complexity Attacks on AES Derivatives 99

8.1 Description of the AES . 100
8.2 A preliminary Tool for Simple Guess-And-Determine Attacks 101
8.3 An Improved Tool for Meet-In-The-Middle Attacks . 106

9 A Collection of Low Data Complexity Attacks on AES-Derivatives 111
9.1 Observations on the Structure of AES . 111
9.2 Attacks on One-Round AES . 113
9.3 Attacks on Two-Round AES . 117
9.4 Attacks on Three-Round AES . 123
9.5 Attacks on Four-Round AES . 126
9.6 Differential Attack on 6-Round AES . 129
9.7 A Forgery Attack Against Pelican-MAC . 129
9.8 A Key-Recovery Attack Against LEX . 131
9.9 Implementations . 135

6

Table des Matières

III Analysis of Hardness Assumptions in Multivariate Cryptography 139
10 A Toolbox for Multivariate Cryptanalysis . 145

10.1 Finite Fields and Vector Spaces . 145
10.2 Multivariate Polynomials . 146
10.3 Gröbner Bases . 150
10.4 Solving Polynomial Systems Using Gröbner Bases . 153
10.5 Regular and Semi-Regular Sequences . 157
10.6 Complexity of Gröbner Bases Computation . 158
10.7 Finite Vector Spaces Combinatorics . 160

11 Exhaustive Search for Boolean Equations . 169
11.1 Generalities . 170
11.2 Known Techniques for Quadratic Polynomials . 172
11.3 A Faster Enumeration Algorithm . 173
11.4 Finding the Common Zeroes of Several Multivariate Polynomials 179
11.5 Spatial and Temporal Proximity . 180
11.6 Parallelization-Related Issues . 183
11.7 Implementations . 185

12 “Isomorphism of Polynomials” problems . 191
12.1 Cryptographic Usage . 192
12.2 Taxonomy . 194
12.3 Challenges . 197

13 Revisiting Prior Algorithms for PLE . 199
13.1 Going To-and-Fro . 199
13.2 The Gröbner-Basis Algorithm . 200
13.3 The “Columnwise Sieve” Algorithm . 203
13.4 The “Algebraic Columnwise Sieve” Algorithm . 208
13.5 A Revolution in the QFSE World : the Jacobian Algorithm 208

14 A General Method for Quadratic PLE : Matrix Pencils . 213
14.1 More Linear Algebra Background . 214
14.2 Dimension of Matrix Pencils Solution Spaces. 215
14.3 Expected Dimension of V. 215
14.4 Computational Cost of Determining V . 217
14.5 Complexity of Generating The Resulting Polynomial Equations 217

15 Simultaneous Equivalence of Quadratic Forms . 219
15.1 Specializing the Pencil Strategy . 219
15.2 Complexity Analysis for Odd q . 221
15.3 Analysis for even q . 223
15.4 Solving the Quadratic Equations . 224
15.5 Implementation and Practical Results . 225

16 Equivalence of Cubic Forms . 227
16.1 Proof of the Theorem . 228

17 Linear Equivalence of Inhomogeneous Quadratic Maps . 233
17.1 To-and-Fro Without Exponentially-Expensive Inversions 233
17.2 A Pencil-Based Approach . 234
17.3 An IQMLE Library in MAGMA . 239

18 Linear Equivalence of Homogeneous Quadratic Maps . 241
18.1 The Global Strategy : Dehomogenization . 244
18.2 Distribution of the Rank of the Differential . 245
18.3 Sieving With Adjacent Vertices . 247
18.4 Sieving Using Whole Neighborhoods . 250

19 A Class of Weak Keys in HFE . 263
19.1 Hidden Field Equations . 265
19.2 A Specific Family of HFE Secret Polynomials . 266
19.3 The Key-Recovery . 267
19.4 Applications and Experiments . 273

Liste des figures . 277
Liste des tables . 278
Liste des algorithmes . 279
Bibliographie . 280

7

Chapitre 1

Introduction

Le premier chapitre de cette thèse reprend intégralement le texte de la brochure Sommes-nous pri-
sonniers des codes secrets, que j’ai écrite avec Pierre-Alain Fouque, et qui est parue aux Éditions
du Pommier en avril 2011. Pour cette raison, il ne peut être distribué sur internet sans violer les
droits de mon éditeur...

9

Chapitre 2

Présentation de mes Travaux

All Computer Science is
Algorithms

Donald Knuth

Les travaux que j’ai effectués durant ma thèse relèvent surtout du domaine de la cryptanalyse. Ils ne
consistent donc pas tant en la construction de nouveaux mécanismes cryptographiques qu’en l’étude et la
“démolition” de mécanismes existants.

J’ai commencé ma vie cryptographique à un moment où la concomitance de nouvelles attaques sur les
fonctions de hachage usuelles décidait le NIST (le National Institute for Standards and Technology) à lancer
une compétition afin de désigner une nouvelle fonction de hachage standardisée. Les nouvelles attaques et
la compétition SHA-3 ont créé un regain d’intérêt pour la construction et l’étude de fonctions de hachage.
Dans une première phase, j’ai donc travaillé sur quelques nouveaux modes opératoires qui venaient d’être
conçus pour la compétition, avec la perspective d’éviter certaines nouvelles attaques. Je me suis intéressé
en particulier aux attaques en seconde préimage, et j’en ai conçu une nouvelle en utilisant des techniques
originales. J’ai pu l’appliquer à une grande variété de constructions, y compris à un nouveau mode opératoires
conçu par Ron Rivest spécifiquement pour résister à ce genre d’attaques.

Au début de mes travaux, mon équipe d’accueil a créé l’évènement en présentant une attaque spectacu-
laire contre SFLASH, un schéma de signature “multivarié” qui était considéré comme sûr et était en passe
d’être standardisé. J’ai par la suite été entrâıné dans le courant de la cryptanalyse de schémas multivariés,
parallèlement à mes travaux sur les mode opératoires de fonctions de hachage. C’est dans ce contexte que
je me suis intéressé plus précisément à une des hypothèses algorithmique “standard” de la cryptographie
multivariée, le problème de l’Isomorphisme de Polynômes. J’ai conçu plusieurs nouveaux algorithmes pour
résoudre différentes variantes de ce problème, parfois très efficacement.

Enfin, durant ma thèse, un des principaux évènements cryptographiques a été la découverte de nouvelles
attaques sur l’AES, notamment une attaque à clef liée plus rapide que la recherche exhaustive sur l’AES-256,
ainsi qu’une attaque marginalement plus rapide que la recherche exhaustive sur l’AES-128. Je me suis donc
intéressé à mon tour à l’AES, mais plutôt que d’attaquer le plus grand nombre de tours possible, je me
suis concentré sur la recherche d’attaques très efficaces sur un petit nombre de tours. Ces attaques, bien
qu’elles ne remettent pas en question la sécurité de l’AES, peuvent parfois s’appliquer à d’autres primitives
cryptographiques qui utilisent des composants de l’AES. A cette fin, j’ai participé à la construction d’outils
automatiques de recherche d’attaques, qui ont trouvé des attaques ayant échappées aux cryptanalystes.

Je me suis donc penché à la fois à la cryptanalyse symétrique (fonctions de hachage, AES) et asymétrique
(schémas multivariés). J’ai logiquement été amené à manipuler des méthodes de cryptanalyse variées, à la
fois statistiques (probabilités, paradoxe des anniversaires, comportement aléatoire) et algébriques (résolutions
de systèmes d’équations polynomiaux, algèbre linéaire, calcul formel). La cryptanalyse symétrique est plus
naturellement statistique, et la cryptanalyse asymétrique plus naturellement algébrique, car les schémas
cryptographiques à clef secrète n’ont pas de structure algébrique, contrairement à la plupart des schémas
à clef publique. Mes résultats les plus intéressants ont cependant été obtenus en utilisant des méthodes
algébriques en cryptanalyse symétrique, et des méthodes statistiques en cryptanalyse multivariée.

Ma thèse s’articule en trois parties, en suivant la distinction thématique soulignée plus haut. Toutefois, il
semblait plus logique de présenter mes travaux sur l’AES avant mes travaux sur la cryptanalyse multivariée,
afin que mes travaux se présent selon la double progression :

symétrique → asymétrique

statistique → algébrique.

11

2. Présentation de mes Travaux

1: function Merkle-Damg̊ard (M)
2: Étendre puis découper le message M en r blocs m0, . . . ,mr de m bits chacun.
3: soit h−1 l’état interne initial (traditionnellement nommé IV).
4: pour chaque bloc de message mi, calculer hi = f (hi−1,mi).
5: renvoyer Hf (M) = hr.
6: end function

f

m0

f

m1

f

m2

f

mr

h0 h1 h2 H(M)IV

Figure 2.1 – Le mode opératoire de Merkle-Damg̊ard. La fonction de compression f , compresse n + m
bits en n bits.

2.1 Etude de modes opératoires pour les fonctions de hachage

Depuis les années 1990 (et même avant, si on y regarde bien), la plupart des fonctions de hachage itèrent
une fonction de compression via le mode opératoire de Merkle-Damg̊ard (cf. Figure 2.1). Il est simple, ef-
ficace, et bénéficie d’une forme intéressante de sécurité prouvée. Cependant, en 2004, 2005 et 2006, trois
nouvelles attaques, dues à Joux [Jou04], Kelsey et Schneier [KS05], ainsi que Kelsey et Kohno [KK06], sont
apparues, visant spécialement ce mode opératoire. Ce sont donc des attaques qui s’appliquent automatique-
ment à (presque) toutes les fonctions de hachage existantes, et en tout cas à toutes celles qui reposent sur la
construction de Merkle-Damg̊ard.

L’attaque en seconde préimage de Kelsey et Schneier est probablement la plus “ennuyeuse” des nouvelles
attaques génériques, car elle vise une des propriétés de base des fonctions de hachage cryptographiques, qui
est par exemple nécessaire pour les schémas de signature numérique. De plus, elle remettait brutalement en
question la croyance que le mode opératoire de Merkle-Damg̊ard offrait un niveau de sécurité de l’ordre de
2n évaluations de la fonction de compression face aux attaques en seconde préimage, puisqu’elle n’en requiert
que 2n/`, où ` désigne la taille du message donc on cherche une seconde préimage.

2.1.1 Attaque contre le Dithered Hashing de Rivest [ABF+08]

Pour empêcher l’attaque de Kelsey et Schneier, Ron Rivest a proposé une modification simple du schéma
de Merkle-Damg̊ard, qui consiste à ajouter une entrée supplémentaire à la fonction de compression, qu’on
appellera le dithering. Le dithering est une technique bien connue qui consiste à introduire volontairement
une certaine quantité de “bruit” dans un signal afin d’éviter des effets de seuil ou la formation de motifs. En
infographie, la technique est utilisée avec succès pour rendre des images avec peu de couleurs (cf. figure 2.2).
L’idée de Rivest était d’introduire un “bruit”, qui perturberait le processus de hachage. Si z[0], z[1], . . . est
une “séquence de dithering” bien choisie, cela revient à définir :

hi = f (hi−1,mi, z[i])

image originale noir et blanc par arrondi noir et blanc par dithering

Figure 2.2 – Illustration du “dithering” en infographie

12

2.1. Etude de modes opératoires pour les fonctions de hachage

m0

f2

f1

m1

f2

f1

m2

f2

f1

mr

f2

f1
IV

Figure 2.3 – Merkle-Damg̊ard-Again.

L’attaque de Kelsey et Schneier, repose dans le fond sur le fait qu’on peut former un message expansible
en trouvant quelques collisions, c’est-à-dire une famille de messages de toutes les tailles produisant le même
état interne. La présence du dithering rend ceci impossible, car elle rend le haché d’un bloc de message
dépendant non seulement de l’état interne précédent, mais aussi de sa position dans le message global. Même
s’il était possible de produire un message de n’importe quelle taille produisant le même haché, la séquence
de dithering serait décalée et viendrait tout perturber.

Pour attaquer cette construction, nous forgeons des seconde préimage M ′ qui ne diffèrent de M que sur
un très petit nombre de blocs, typiquement n/3. Pour cela, nous utilisons la technique du “herding” de Kelsey
et Kohno [KK06]. Nous repérons ensuite la séquence de taille n/3 qui revient le plus souvent dans z, et nous
appliquons notre attaque à toutes les positions correspondantes. (Mal)heureusement, la séquence z choisie
par Rivest possède un certain nombre de facteurs fréquents, et notre attaque est donc à peine plus coûteuse
que celle de Kelsey et Schneier.

2.1.2 Attaque contre Merkle-Damg̊ard-Again [ABDK09]

Une manière simple mais efficace de rendre une fonction de hachage itérée plus résistante consiste à
randomiser son état initial. Cela interdit déjà un certain nombre de calculs offline. Plus sophistiqué, il est
possible de hacher le message une première fois, de se servir du haché pour redéfinir l’état initial, puis de
re-hacher le message une seconde fois. Nous appelons le mode opératoire résultant Merkle-Damg̊ard-Again
(il est illustré figure 2.3), et on peut le définir par :

H ′(M) = H(H(IV,M),M)

Cette construction (qui fait partie du folklore) n’est pas facile à attaquer, car modifier le message pour
tenter de contrôler ce qui se passe dans l’une des deux itérations aboutit généralement à un résultat incon-
trôlable dans l’autre itération.

J’ai toutefois trouvé une attaque en seconde préimage contre cette construction folklorique, pour un coût
à peine supérieur à celui de l’attaque de Kelsey et Schneier sur Merkle-Damg̊ard. La difficulté consiste à
attaquer la seconde itération tout en garantissant que la première produit toujours le même résultat. Cela
est encore une fois possible à l’aide de techniques de “herding” qui permettent de contrôler la valeur de
chainage dans la première itération. A partir de là, on construit des multicollisions à la Joux, qui donneront
de la liberté dans la seconde itération tout en garantissant que le résultat de la première reste constant. Il est
ensuite possible de rejouer l’attaque en seconde préimage utilisée contre le dithered hashing dans la seconde
itération, “par dessus” les multicollisions.

2.1.3 Preuves de résistance aux attaques en seconde préimage

Face à l’apparition de l’attaque en seconde préimage de Kelsey et Schneier, ainsi que de celle que j’ai
proposée, il est naturel de se demander s’il existe des modes opératoires qui résistent prouvablement à ces
attaques. Il existait déjà des familles de fonctions de hachage qui résistent à des formes d’attaques en seconde
préimage (les Universal One-Way Hash Functions). L’une des plus efficaces est due à Shoup [Sho00a], et a un
niveau de sécurité prouvé de 2n/` évaluations de la fonction de compression. Plus récemment, Andreeva d’un
côté [AP08] et Yasuda de l’autre [Yas08] ont proposé de nouvelles variantes du mode de Merkle-Damg̊ard
bénéficiant de résistance prouvée aux attaques en seconde préimage. Mis à part la dernière, ces constructions
sont assez peu pratiques, car il s’agit de familles de fonctions de hachage, et non d’une unique fonction de
hachage.

13

2. Présentation de mes Travaux

f

m0

f

m1

f

m2

f

mr − 1

f

mr

h0 h1 h2 hr−1

0 1 2 r − 1 −1

H(M)IV

Figure 2.4 – Le mode opératoire Haifa.

2.1.3.1 Sécurité dans le modèle de l’oracle aléatoire [BFZ10]

D’un autre côté, Biham et Dunkelman ont proposé une autre variante simple de Merkle-Damg̊ard, qu’ils
ont nommée Haifa (et qui est illustré figure 2.4). Il s’agit (essentiellement) d’ajouter un compteur de tours
à la fonction de compression :

hi = f (hi−1,mi, i)

Biham et Dunkelman ont affirmé que calculer des secondes préimages sur Haifa était aussi dur que
la recherche exhaustive, mais sans présenter de preuve. J’ai donc mis au point une preuve élémentaire de
résistance aux secondes préimages pour Haifa : sous l’hypothèse que la fonction de compression est idéale,
alors trouver une seconde-préimage sur son Haifa-itération nécessite environ 2n évaluations de la fonction
de compression. L’argument clef est que chaque fois que l’adversaire évalue la fonction de compression il doit
fournir une valeur i du compteur. Dès lors, le résultat de la fonction de compression n’est exploitable que s’il
s’agit précisément de hi, et cela arrive avec probabilité 2−n si la fonction de compression est aléatoire. La
même technique de preuve permet au passage de prouver que l’attaque de Kelsey et Schneier est optimale si
la fonction de compression est idéale.

L’hypothèse de travail (la fonction de compression est idéale) est très forte, mais il n’est pas évident de
l’affaiblir. D’une part, si la fonction de compression est trop faible, le résultat peut ne plus être vrai. D’autre
part, cela nécessiterait alors de changer de technique de preuve, et le résultat cesserait probablement d’être
élémentaire.

2.1.3.2 Une perte de sécurité est inévitable dans le modèle standard

La quantité 2n/` est déjà apparue plusieurs fois dans ce résumé : c’est le coût de l’attaque de Kelsey
et Schneier, ainsi que de celle que j’ai découverte. C’est aussi le niveau de sécurité prouvée obtenus dans
le modèle standard (i.e., sans supposer que la fonction de compression est idéale) par les constructions de
Shoup, Andreeva et Yasuda. En fait, il ne s’agit pas d’une coincidence, car ces trois constructions utilisent la
même méthodologie pour démontrer leur résistance aux attaques en seconde préimage : il s’agit d’une preuve
par réduction en boite noire à la sécurité de la fonction de compression. Plus précisément, il est démontré
dans les trois cas qu’un adversaire en seconde préimage contre l’itération avec probabilité de succès ε peut
être transformé en un adversaire en seconde préimage contre la fonction de compression avec probabilité de
succès ε/`.

Il est possible de démontrer que cette “perte de sécurité” d’un facteur ` est inévitable, et ce pour prati-
quement n’importe quelle construction (dans certaines limites raisonnables). Pour cela, je montre qu’il est
possible de construire un environnement autour de la réduction (c’est-à-dire un adversaire contre l’itération
et une fonction de compression), dans lequel il est facile de montrer que la réduction ne peut réussir qu’avec
probabilité 1/`.

2.2 Recherche automatiques d’attaques sur des versions réduites de l’AES

La plupart du temps, lorsqu’ils sont confrontés à un système de chiffrement par bloc, les cryptanalystes
cherchent à casser le plus grand nombre de tours possible, tout en utilisant un peu moins de temps que la
recherche exhaustive et un peu moins de données que l’ensemble du codebook. Pour aller un peu plus loin,
ils se placent parfois dans des modèles plus puissant : chiffrés choisis, clefs liées, sous-clefs liées, clef connue,
etc. La signification pratique de ces modèles plus forts reste sujette à caution.

Dans ma thèse, j’ai choisi de m’intéresser à un aspect relativement inexploré de la sécurité des système
de chiffrement par blocs : la sécurité d’un petit nombre de tours face à des adversaires disposant de peu de
données. Les attaques avec peu de données peuvent parfois servir de “brique de base” dans des attaques plus

14

2.2. Recherche automatiques d’attaques sur des versions réduites de l’AES

sophistiquées (on l’a vu récemment avec la cryptanalyse de GOST [Iso11], où une attaque sur les 32 tours
est construite à partir d’une attaque sur 8 tours avec deux paires clair/chiffré connues).

La faible quantité de donnée qu’on se restreint à utiliser impose interdit l’usage des techniques de crypta-
nalyse “statistique” habituelles, telles que la cryptanalyse linéaire ou différentielle. Les attaques algébriques
sembleraient à priori plus adaptées, mais elles n’ont jamais réussi à casser même un seul tour d’AES. J’ai
donc cherché des attaques de type “guess-and-determine” dans un premier temps, puis des attaques de type
“meet-in-the-middle”, qui semblent a priori plus puissantes que les premières. Trouver ces attaques à la main
est difficile, car il y a beaucoup de “possibilités” à explorer, et il est facile de se tromper à un moment donné.
Il était donc naturel de concevoir des outils automatiques pour chercher ces attaques à ma place.

Ces outils travaillent à partir d’une description de l’AES sous forme d’un système d’équations linéaires
avec une bijection inerte qui représente la boite-S. Ils exploitent de façon inattendue la structure algébrique
de l’AES, notamment le fait que toutes les opérations admettent une description naturelle sur F28 .

2.2.1 Recherche automatique d’attaques “Guess-and-Determine” [BDF11]

Les attaques les plus facile à chercher de manière automatique sont les attaques “guess-and-determine”.
Dans leurs versions les plus simples, ces attaques consistent à énumérer toutes les valeurs possibles d’une
partie des secrets inconnus, puis d’utiliser la description du mécanisme cryptographique pour en déduire la
clef secrète, et enfin vérifier si cette clef est bien la bonne. J’ai donc conçu un outil qui énumère tous les
sous-ensembles de l’état interne, et détermine si la connaissance de chacun de ces sous-ensembles permet de
déduire la clef secrète, et si oui de quelle manière. Pour cela, l’outil cherche si des combinaisons linéaires des
équations permettent d’exprimer les parties inconnues de l’état interne en fonction de celles qu’on énumère.
Ce processus est exponentiel, mais il suffit de l’exécuter une seule fois pour en déduire un programme qui
effectue la récupération de clef.

Ce programme a trouvé des attaques sur 1, 2 et 3 tours complets de l’AES avec une seule paire clair/chiffré
connue. Sur 1 tour, l’attaque trouvée, d’une complexité de 240 opérations, est plus rapide que la meilleure
connue (qui était en 248). L’attaque sur 3 tours, d’une complexité de 2120 opérations, était inconnue aupa-
ravant.

Cet outil ne parvient pas véritablement à utiliser la donnée de plusieurs paires clair/chiffré, car il n’est
pas capable d’utiliser l’idée que si les différence sont connues à l’entrée et à la sortie d’une boite-S, alors les
valeurs peuvent être déduites facilement.

2.2.2 Recherche automatique d’attaques “Meet-in-the-Middle” [BDF11]

En partant de ce que la conception de ce premier outil m’avait appris, j’ai pu participer à la construction
d’un second outil plus puissant, qui cherche des attaques de type Meet-in-the-middle. Cet outil part de l’idée
que s’il existe deux algorithmes permettant d’énumérer efficacement les valeurs que peuvent prendre deux
ensembles A et B de variables apparaissant dans la primitive de chiffrement, alors il est peut-être possible
d’énumérer A ∪ B, en utilisant les équations qui lient ensemble les variables de A et B pour éliminer les
combinaisons “impossibles”. La procédure de recherche construit donc par “saturation” des algorithmes qui
énumèrent ensembles de variables de plus en plus gros, jusqu’à ce que l’un d’entre eux contienne la clef
secrète.

Un des avantages de ce nouvel outil par rapport au précédent est qu’il prend automatiquement en compte
les propriétés “différentielles” de la boite-S. Cela lui permet d’exploiter efficacement la présence de plusieurs
messages. Cet outil a amélioré (presque) toutes les attaques connues sur un petit nombre de tours d’AES,
qu’elles aient précédemment été trouvée manuellement ou automatiquement.

2.2.3 Application

Résultats sur des versions réduites de l’AES [BDD+10]. Ce deuxième outil a trouvé beaucoup d’attaques
sur l’AES lui-même. Il a amélioré l’attaque sur 1 tour avec un seul message (en 232 opérations). Il a trouvé une
attaque marginalement plus rapide que la recherche exhaustive sur 5 tours avec une seule paire clair/chiffré.
Il a également trouvé une attaque en 232 opérations sur 2 tours avec deux paires clair/chiffré connues, et en
28 opérations avec deux paires clair/chiffré choisies. Il a enfin trouvé une attaque contre 4 tours avec 4 paires
clair/chiffré choisies en 232 opérations. Dans un autre registre, il a amélioré l’attaque par faute de Piret et
Quisquater [PQ03], en réduisant la complexité de 232 opérations à 224.

Résultats sur d’autres primitives cryptographiques. L’outil a également donné des résultats sur un MAC
basé sur l’AES, Pelican-MAC [DR05b] et sur un système de chiffrement par flot également basé sur l’AES,
LEX [Bir05].

15

2. Présentation de mes Travaux

Sur Pelican-MAC, l’outil a aidé à la construction de la meilleure attaque connue à ce jour, en mettant au
point une procédure qui révèle l’état interne de la fonction en temps 232 une fois qu’une collision sur l’état
interne est trouvée. Cela est obtenu en résolvant l’équation AES4(x)`AES4(x`∆i) = ∆o en x, où AES4

dénote 4 tours complets d’AES sans addition de clef. L’attaque résultante a une complexité de 264 requêtes
au MAC (pour obtenir la collision).

Sur LEX, l’outil a également été utilisé pour construire une meilleure attaque. Il a d’abord aisément
retrouvé tout seul la meilleure attaque connue, de complexité environ 2100 opérations, puis, avec l’intervention
d’un utilisateur, il a produit une attaque de complexité 280, qui utilise 80 tera-octets de key-stream.

2.3 Étude de problèmes difficiles en cryptographie multivariée

La cryptographie multivariée est une appellation qui englobe l’ensemble des schémas (essentiellement à
clef publique) donc la sécurité repose notamment sur la difficulté de la résolution de systèmes d’équations
polynomiaux multivariés sur un corps fini. Quand ces polynômes sont de degré deux, le problème s’appelle
MQ, pour Multivariate Quadratic.

2.3.1 Nouvel algorithme de résolution d’équations polynomiales sur F2 [BCC+10]

Durant mes travaux, j’ai été amené à m’interroger sur la difficulté pratique du problème MQ, afin de
déterminer si des jeux de paramètres concrets pour certains schémas pouvaient être cassés avec les moyens
matériels restreints à ma disposition. Sur F2, la méthode de résolution la plus efficace de MQ reste la
recherche exhaustive, qui nécessite 2n opérations s’il y a n variables. C’est en essayant de programmer une
implémentation efficace que j’ai aperçu la possibilité d’améliorations algorithmiques. J’ai donc conçu un
algorithme de recherche exhaustive extrêmement efficace, puisqu’il permet de tester entre 2 et 3 solutions
par cycle du processeur sur chacun des coeurs d’une machine moderne. Ce nouvel algorithme a également été
implémenté sur GPU, permettant d’obtenir des performances plus élevées pour un coût plus faible qu’avec
les processeurs habituels. Il est possible de résoudre une instance de MQ avec q = 2 et n = 64 en un jour
pour environ $7500 sur le cloud. La technique algorithmique s’adapte également à des systèmes de degré plus
grand.

2.3.1.1 Attaque contre un schéma d’identification de Patarin [BFFP11]

En 1996, Patarin avait proposé de construire un schéma d’identification à clef publique basé sur la
difficulté de l’équivalence simultanée de paires de formes quadratiques (QFSE pour faire court). Il s’agit,
étant donné 4 formes quadratiques f1, f2, g1 et g2, de trouver une matrice inversible S telle que g1 = f1 ◦ S
et g2 = f2 ◦ S, lorsqu’elle existe. Aucun algorithme plus rapide que la recherche exhaustive n’était connu
à ce jour pour résoudre ce problème malgré plusieurs articles lui étant consacré. Le schéma d’identification
lui-même s’inspire très directement du schéma plus ancien de Goldreich, Micali et Wigderson reposant sur
la difficulté de l’isomorphisme de graphe.

Durant ma thèse, j’ai conçu un algorithme de résolution du problème algorithmique sous-jacent, qui
permet de casser en quelques secondes les paramètres proposés par Patarin, et dont le niveau de sécurité
attendu était de l’ordre de 2256. Cet algorithme fonctionne en faisant apparâıtre S comme la solution d’un
problème d’équivalence de pinceaux matriciels construit à partir de la représentation des formes quadratiques
par des matrices symétriques. Il apparâıt alors que S vit dans un sous-espace vectoriel de dimension O (n) de
l’ensemble des matrices, et qu’elle peut être entièrement déterminée par la résolution d’une (petite) instance
de MQ.

2.3.2 Etude du problème de l’équivalence linéaire de polynômes

Une partie de la cryptographie multivariée repose dans le fond sur une procédure d’obfuscation assez
simple. On choisit une fonction f : (Fq)n → (Fq)n qu’on sait facilement inverser, et qui admet une représen-
tation par des polynômes quadratiques. Ensuite, on la “cache” en définissant PK = T ◦ f ◦S, où S et T sont
des matrices inversibles secrètes. La clef publique PK (un vecteur de polynômes quadratiques multivariés)
est alors une version“masquée”de f , qu’on espère impossible à inverser. Le problème de l’équivalence linéaire
de polynôme (PLE pour faire court) consiste à retrouver S et T étant donné PK et f . La difficulté déduire
la clef secrète de la clef publique dans un certain nombre de schémas multivariés repose donc sur le caractère
difficile de ce problème. Ce problème se présente en deux variantes assez différentes, selon que f et PK sont
formés de polynômes homogènes (cas dur) ou inhomogènes (cas facile).

16

2.4. Mes publications

2.3.2.1 Nouveaux algorithmes pour le problème IQMLE

Faugère et Perret avaient déjà observé en 2006 que le problème de l’équivalence linéaire de polynômes
quadratiques inhomogènes (IQMLE) était (empiriquement) soluble en temps O

(
n9
)
. Néanmoins, leur asser-

tion ne reposait pas sur une preuve mathématique rigoureuse, mais sur l’observation du comportement d’un
algorithme de calcul de base de Gröbner.

J’ai mis au point deux algorithmes de résolution de IQMLE. Le premier, assez heuristique et inspiré de
la méthode “To-n-Fro” de Patarin, Goubin et Courtois, fonctionne en temps O

(
n3
)
, et échoue parfois de

manière surprenante. Le second fonctionne en temps O
(
n6
)

en moyenne, et s’applique à la (large) fraction
des instances qui satisfont une certaine condition. Ce deuxième algorithme fonctionne également en faisant
apparâıtre S et T comme solutions d’un problème d’équivalence de pinceaux matriciels, ce qui permet là
encore de démontrer qu’elles vivent dans un espace vectoriel de dimension O (n). Récupérer S et T revient
alors à résoudre un système de ≈ n3 équations quadratiques en n variables, ce qui est possible en temps
polynomial si les équations sont linéairement indépendantes.

Le caractère inhomogène de l’instance est crucial pour construire les pinceaux équivalents, et donc faire
marcher l’ensemble de la technique.

2.3.2.2 Nouveaux algorithmes pour le problème QMLE

Je me suis enfin intéressé au cas difficile où les polynômes sont homogènes (le problème QMLE), et où
les techniques précédentes ne s’appliquent pas. Dans cette configuration, la méthode “To-n-Fro” de Patarin,
Goubin et Courtois a une complexité au moins aussi grande que q2n. La complexité de l’algorithme de
Faugère et Perret, qui repose sur un calcul de base de Gröbner, est globalement inconnue, mais pourrait être
de l’ordre de O

(
218n

)
si un certain système d’équation quadratique a un comportement “régulier”.

J’ai conçu deux algorithmes, l’un s’exécutant en O
(
q2/3n

)
opérations, et l’autre, valable uniquement

quand q = 2, s’exécutant en 2n/2 opérations. Les deux algorithmes fonctionnent en tentant de déterminer
l’image de S en un point, ce qui permet de se ramener au cas inhomogène facile. Pour accomplir cet objectif
plus vite que la recherche exhaustive, les deux algorithmes reposent sur le paradoxe des anniversaires et
s’inspirent de la méthode de Weisfeiler-Lehman pour l’isomorphisme de graphe. Une pair de graphes est
construite, et S est un isomorphisme transformant l’un en l’autre. Pour trouver l’image de S en un point, on
échantillonne des noeuds dans le graphe et on explore la topologie de leur voisinage, qui est préservée par
l’isomorphisme. Une collision entre la “forme” de deux voisinages indique alors la possibilité d’une relation
de la forme y = S · x. Le premier algorithme ne regarde que les voisins immédiats de chaque noeud, tandis
que le second algorithme explore des voisinages plus gros.

2.3.3 Attaque d’une classe de clefs faibles dans HFE [BFJT09]

HFE est un schéma de chiffrement/signature proposé par Patarin en 1996. Il repose aussi sur l’idée de
l’obfuscation d’une fonction aisément inversible, mais cette fois-ci la fonction obfusquée est gardée secrète.
La sécurité de HFE ne repose donc pas sur la difficulté de problème d’équivalence linéaires de polynôme.
Patarin avait proposé, pour diminuer la taille des clefs, l’utilisation d’une variante “sous-corps”. Dans ce
cas-précis, le Frobenius commute avec la fonction aisément inversible f , et il existe en fait une paire de
matrices (U, V) telle que PK = U ◦PK ◦ V . Récupérer U et V revient à résoudre une instance de QMLE, et
ensuite, reconstruire la clef secrète à partir de U et V est faisable en pratique (et nous conjecturons que cela
peut se faire en temps polynomial). Cette attaque permet, sur la variante sous-corps de HFE, de récupérer
en pratique la clef secrète de HFE à partir de la clef publique pour les paramètres proposés par Patarin.

2.4 Mes publications

La liste de mes publications scientifiques figure dans les tables 2.1 et 2.2. Je suis également l’auteur de
deux textes de vulgarisation. J’ai écrit une postface au roman Le code de Cambridge de Tony Gheeraert,
paru en mars 2010 aux éditions Le Pommier, dans laquelle les idées et les techniques liées à la cryptographie
apparaissant dans le roman sont détaillées. Je suis également l’auteur d’un petit livre de vulgarisation
de la cryptographie intitulé Sommes-nous prisonniers des codes secrets ?, également paru aux éditions du
Pommier en avril 2011, dans laquelle je discute les tenants et les aboutissants de la cryptographie dans la
vie quotidienne de monsieur tout-le-monde.

17

2. Présentation de mes Travaux

[ABF+08] Second Preimage Attacks on Dithered Hash Functions
Elena Andreeva, C. B., Pierre-Alain Fouque., Jonathan J. Hoch, John Kel-
sey, Adi Shamir et Sébastien Zimmer (Eurocrypt 2008)

[BF08] Analysis of the Collision Resistance of RadioGatún Using Algebraic Techniques
C.B. et Pierre-Alain Fouque (SAC 2008)

[ABDK09] Herding, Second Preimage and Trojan Message Attacks beyond Merkle-
Damg̊ard
Elena Andreeva, C. B., Orr Dunkelman et John Kelsey (SAC 2009)

[BDFL10] Another Look at the Complementation Property
C.B., Orr Dunkelman, Pierre-Alain Fouque et Gaëtan Leurent (FSE 2010)

[BCC+10] Fast Exhaustive Search for Polynomial Systems in F2

C.B., Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederha-
gen, Adi Shamir et Bo-Yin Yang (CHES 2010)

[BFL10] Security Analysis of SIMD
C. B, Pierre-Alain Fouque et Gaëtan Leurent (SAC 2010)

[BDLF10] Attacks on Hash Functions Based on Generalized Feistel : Application to
Reduced-Round Lesamnta and SHAvite-3512
C. B., Orr Dunkelman, Gaëtan Leurent et Pierre-Alain Fouque (SAC 2010)

[BFFP11] Practical Cryptanalysis of the Identification Scheme Based on the Isomorphism
of Polynomial with One Secret Problem
C. B., Jean-Charles Faugère, P.-A. Fouque et Ludovic Perret (PKC 2011)

[BDLF11] New Insights on Impossible Differential Cryptanalysis
C. B., Orr Dunkelman, Gaëtan Leurent et Pierre-Alain Fouque (SAC 2011)

[BDF11] Automatic Search of Attacks on Round-reduced AES and Applications
C. B., Patrick Derbez et Pierre-Alain Fouque (Crypto 2011)

[BFMR11] Practical Key-recovery For All Possible Parameters of SFLASH
C. B., Pierre-Alain Fouque et Gilles Macario-Rat (Asiacrypt 2011)

Table 2.1 – Mes publications scientifiques acceptées dans des conférences internationales avec comité de
lecture.

18

2.4. Mes publications

[BFJT09] A Family of Weak Keys in HFE (and the Corresponding Practical Key-Recovery)
C. B., Pierre-Alain Fouque, Antoine Joux et Joana Treger (accepté au Jour-
nal of Mathematical Cryptology)

[BDD+10] Low Data Complexity Attacks on AES
C. B., Patrick Derbez, Orr Dunkelman, Nathan Keller et Pierre-Alain
Fouque (soumis aux IEEE Transactions on Information Theory)

[ABD+10] New Second Preimage Attacks on Hash Functions
Elena Andreeva, C. B., Orr Dunkelman, P.-A. Fouque, Jonathan Hoch, John
Kelsey, Adi Shamir et Sébastien Zimmer (soumis au Journal of Cryp-
tology)

[BFZ10] On the Resistance of Practical Hash Functions Constructions to Generic Second
Preimage Attacks
C. B., Pierre-Alain Fouque et Sébastien Zimmer (soumis aux Information
Processing Letters)

Table 2.2 – Mes publications scientifiques soumises à journaux internationaux avec comité de lecture.

19

Part One

Modes of Operations of Hash Functions

21

Introduction

A hash function is “any well-defined procedure or mathematical function that converts a large, possibly
variable-sized amount of data into a small datum, usually a single integer that may serve as an index to an
array” [Wik11]. When used to accelerate data lookup in databases or associative arrays, the most interesting
properties of hash functions are probably the speed at which they can be computed, and the uniformity of
the output distribution on more-or-less arbitrary inputs.

Cryptographic Hash Function Security

To be used in a cryptographic environnment, a hash function must of course be efficiently computable
and uniformly distributed, but this is hardly sufficient; a cryptographic hash function must also offer more
features. An easily-invertible, very malleable 1 function is of little use in cryptography, but, on the other hand,
“secret-protecting”functions can serve a handful of purposes. The usual intuition is that a cryptographic hash
function is such that H(M) reveals nothing useful about M . We briefly discuss several possible applications
of a cryptographic hash functions H, highlighting the various features required therefrom.

Password Storage. User accounts are very often protected by passwords in multi-user computing environ-
ments or online services. Directly storing these passwords is a bad practice: as a result of a misconfiguration,
for instance, users could possibly read the file containing all passwords. A mischievous user could try to boot
his colleague’s computer using an alternate media (such as bootable USB stick), then observe the content of
the hard-drive, and steal his colleague’s password. Lastly, online servers could be hacked, again resulting in
password theft.

Hash functions can be used to securely store passwords in a variety of contexts. Instead of directly
storing a password p, we store the hash of p. As long as H is a one-way hash function (also called preimage-
resistant hash functions), then reading the password file neither reveals the actual passwords nor“equivalent”
passwords that have the same hash. It is still possible to verify that users enter their passwords correctly,
by evaluating H on a user’s input and comparing the result with H(p).

Faster and Smaller Digital Signatures. In most electronic signature applications, it is beneficial to sign
the hash of a document rather than signing the document itself. Signature schemes tend to be slow (the RSA
signature algorithm is typically cubic in the size of the modulus, which has to be longer than the message
to sign), and it is desirable to keep the signatures as small as possible. Thus, instead of signing a document
M , we instead sign H(M). This practice can apparently be traced back down to [Wil80].

Doing so introduces the possibility that adversaries cheat the system without breaking the signature
algorithm, but instead by attacking the hash function. If the hash function is not collision-resistant, i.e., if
it is possible to find two distinct messages M1 and M2 such that H(M1) = H(M2), then a frauder could
repudiate his own signatures: he could compute a colliding pair M1,M2 such that H(M1) = H(M2), sign M1

(e.g. his electronic tax forms), and then later on pretend that he signed M2, since they have the same hash,
and therefore the same signature.

If the hash function is not second-preimage-resistant, then a third party could forge signatures and try to
impersonate a legitimate signer. Suppose Mélanie signs a message M , which is subsequently made public.
The signature algorithm has been applied to H(M), and if Victor (the Vilain) is able, given M , to find
another message M ′ such that H(M) = H(M ′), then he could exhibit a legitimate signature of M ′ by
Mélanie, even though Mélanie herself never signed it.

Note that in this scenario two different flaws in the hash function lead to two different breakages of the
signature scheme. If the hash function is not collision-resistant but only second-preimage resistant, then the
signature scheme is secure against malicious outsiders, but not against malicious users.

1. The usual meaning of this notion is that an input can be chosen in order to enforce that the output has a given property.

23

Introduction to part I

Timestamping. Suppose we would like to set up a secure timestamping web service. The users would like
to have a guarantee that they were in possession of a given file at a certain point in time. For instance, an
inventor could want to prove that she owned a description of her invention before making it public. On the
other hand, the users do not want us (the web service), or the general public to learn the content of their
files. Cryptographic hash functions solve this problem nicely: users send us the hashes of their files, and we
publish the hashes along with the times at which we received them. If the hash function is one-way, then no
information about the users’s files is leaked (the web service is “hiding”).

In order to be reliable, for instance to stand up in a court of law, our timestamps should resist forgeries,
in other words it must be binding : it must not be possible to send us a hash, and then, at a later point in
time, to forge a file, with a partially chosen content, yielding this particular digest (the users really commit
to their files). Here is a typical example in which such forgeries could be exploited: a con man could pretend
to be a medium and to be able to predict the future. To prove his point, he would tell everyone that he had
written down his prediction in a file and he would commit it to the timestamping web service. In fact, he
would perform some kind of precomputation and commit a carefully chosen hash hfraud to the web service.
Then, after the actual event takes place, he would write down a description of what happened (let us call this
“message”Mevent) and he would try to find a suffix Mforgery such that H(Mevent‖Mforgery) = hfraud. If he
succeeded, the con man could pretend that his prediction has been fulfilled, and reveal Mevent‖Mforgery to
prove his point. Of course his prediction file would contain a little bit of rubbish at the end, but who cares?

Observe that the relevant security notion of the hash function is a bit more sophisticated than what we
have seen before. If H is collision-resistant, then of course the timestamping is secure, but this condition is
not necessary. One-wayness is not sufficient, because the game played by the adversary is a priori easier than
just inverting the hash function. The right notion is Chosen Target Forced Prefix Collision resistance [KK06].

How to Make it Simple

Hash functions are the swiss army knife of contemporary cryptography, and if we examined more and
more common usages of hash functions (entropy extraction, key derivation, forward security, MACs, etc.)
we would likely come up with a few more security notions that a hash function should satisfy. This is going
to result in a (long) list of more-or-less natural security notions that a “good” hash function should satisfy
to be used in all the known cryptographic contexts.

On the one hand, it is good to know precisely what cryptographers expect from hash functions, as
this sets the objective hash function designers should try to achieve. On the other hand this leads to a
horrible and unsatisfactory definitional mess. What if tomorrow the killer application of hash functions
requires a completely new and unrelated security property? A possible way to simplify the theory of hash
function would be to come back to the initial intuition and to observe that, in essence, a public function
without any exploitable structure could be used every time a cryptographic hash function is required. In
addition, this definition of cryptographic hash functions could very likely be considered as reasonable by most
cryptographers. Unfortunately, this intuitive idea does not lend itself well to any useful kind of mathematical
formulation, which prevents its effective use in security proofs. The problem originates from the fact that it is
difficult, if not impossible, to formalize the notion of “not having any exploitable structure” or, equivalently,
of “not having any bad property” in a satisfactory way. This would further require a precise definition of
what a “bad” property is.

A satisfying way to create a function that does not have any “bad” property and that does not have any
“exploitable structure” is to simply pick it at random. Indeed, one can easily check that a random function
satisfies all the security notions outlined above. Furthermore, random functions are “usual” mathematical
objects having well-understood properties.

The Random Oracle Model

The observation that random functions would make great hash functions has led to the developpement
of the Random Oracle methodology, a computational model in which a “truly” random function (called the
Random Oracle) from {0, 1}∗ to {0, 1}n, for some n large enough (say n = 256), can be queried by everyone
via some kind of public interface.

The Random Oracle Model (ROM) had been implicitly used in the 1980’s, but was made explicit,
formalized, and advocated by Bellare and Rogaway in [BR93]. It was quickly found to be a very pow-
erful method to formally prove many protocols secure. For instance, standardized public-key schemes,
such as RSA-PSS [BR96] and RSA-OAEP [BR94] are only proved secure in the ROM. In fact, there
are so many papers proving a construction secure in the ROM that it is impossible to list them all:
[Cor02a, Cor02b, KW03, BGH07, Ber08, GPV08], etc.

24

The Random Oracle Model is practical, but has been the object of much (and heated) debate. Assuming
the existence of a public random function leads to a nice theory, but raises a burning problem in practice:
how to implement the Random Oracle in real life? It is indeed not very realistic to assume the existence of
a public random function from {0, 1}∗ to {0, 1}n. For instance, the Random Oracle is an infinite source of
statistically independent random bits (i.e., it contains an infinite amount of statistical entropy). This means
that a random function from {0, 1}∗ to {0, 1}n does not admit any finite description, while a hash function
is just a fixed piece of code. This fact has been used by Canetti, Goldreich and Halevi to build a signature
scheme that is provably secure in the Random Oracle Model, but that cannot be securely instantiated using
any hash function [CGH04]. Yet, in “real life”, the Random Oracle often turns out to be implemented with
a cryptographic hash function.

Of course, there would be some other ways to address this issue. A world-wide organization could build
a somewhat-secure hardware random number generator and use it to run a Random Oracle Web Service:

1: function Random-Oracle-Web-Service(Query)

2: if Log[Query] = ⊥ then Log[Query]
$←− {0, 1}n (using physical device)

3: return Log[Query]
4: end function

Countless technical problems would occur though, a major one being that the amount of storage required
to operate the random oracle web service (i.e., the space required to store the query log) would be ever
growing. A funny denial-of-service attack would then consist in repeatedly querying the random oracle on
pseudo-random junk. In addition, this would force every cryptographic primitive to be connected to the
internet to operate. Any similar way to implement the Random Oracle without using a fixed hash function
that everyone can evaluate independently would very likely turn out to be as impractical as this Web Service.

Theory and Practice

So, when a cryptographic scheme proved secure in the Random Oracle Model is about to be implemented
and deployed, then the public random function that does not actually exist has to be replaced by something,
usually by a hash function. This creates a detrimental gap between theory and practice, because the Random
Oracle is better than hash function can possibly be. Leurent and Nguyen for instance investigated the quality
of instantiations of the Random Oracle in various situations and the consequences of hash function failure
on ROM-secure schemes [LN09]; they found that some de facto classical Random Oracle instantiations were
fairly weak (much weaker than the hard problem the public-key scheme where they are used relies on). In
the worst case, the implementations of the Random Oracle by hash functions could lead to provably secure
protocols becoming practically insecure when implemented. The example of Canetti et al. is fairly unnatural,
but is sufficiently real to make cryptographers suspicious. In addition, a much less contrived example, due
to Ristenpart, Shacham and Shrimpton recently attracted some attention [RSS11].

Consider a secure storage web service. Users upload their precious files, and the web service stores them
reliably, typically using redundant storage. The users can be assured that their data will not be lost in the
event their computer fails or is stolen. However, the web service must not fail either. To gain the trust
of the users, the web service has set up an audit procedure that supposedly convince the users that their
files are still properly stored. To verify whether the web service still has an unaltered copy of a given file,
a user challenges the web service with an arbitrary string S, and the web service returns H(F‖S), where F
denotes the file’s content. In the Random Oracle Model, the web service cannot cheat, and cannot possibly
answer the challenge correctly without fully knowing F . However, as soon as H is instantiated by any secure
but iterated hash function (this includes the MD and SHA family, as well as the future SHA-3), then the
web service may cheat: it may store the internal state of the hash function after processing F , and use it
later on to compute H(F‖S), even if the actual content of F has been erased. This is a simple and natural
example of a cryptographic construction that is secure in the ROM, but that blatantly fails when using any
reasonable hash function.

The assimilation of hash functions with public random functions certainly simplifies protocol design, but
the extension of this paradigm has consequences on hash function design. Hash function designers are told:
“create something that resembles a random function”. For all reasons advocated above, this objective is vague
and it is not really a meaningful job assignment. In addition, this is very likely more difficult than designing
(say) one-way functions or randomness extractors. Besides, the resulting multi-purpose hash functions are
likely to be slower than their more specialized counterpart. An example: to extract a 128-bit session key from
a Diffie-Hellman element gxy mod n, a possible solution is to hash the bitstring representation of the group
element. However, Chevalier, Fouque, Pointcheval and Zimmer have shown in [CFPZ09] that it is sufficient
to truncate (instead of hashing) the bitstring representation of the group element to obtain sufficiently many
random bits!

If, instead of relying on the existence of a public random function, protocol designers could instead rely

25

Introduction to part I

on the existence of a single function (or eventually of a family of functions) enjoying a well-defined security
property such as collision-resistance, one-wayness, . . . then their protocols would be secure in the standard
model, and the problem would go away. There is a trend that tries to avoid the Random Oracle in security
proofs [Sho00b, BB04, BF05, Can97, MRV99], but this is complicated, often results in less efficient schemes...
and is sometimes provably impossible [Nie02, PV05, DOP05, KP09]. Let us nevertheless keep in mind that
a possible way to avoid problems related to the Random Oracle is to try not to use it, but instead to use a
function offering a more precise security property.

Let us look at the same problem from a different angle. The Random Oracle Model, by advocating
“one hash function for everything” puts more stress on the single hash function that gets to be used for
everything. This makes life simpler for protocol designers, as they do not have to determine precisely what
security property is required from the hash function in their particular scheme. However, the problem is
precisely that it is sometimes unclear what exact properties are required from the hash function. Sometimes,
the security proof crucially rely on the fact that the Random Oracle can generate random bits, something
that cannot be done by a hash function. A hash function supposed to simultaneously satisfy any possible
security notion, including those that are impossible to satisfy (e.g. randomness) and those its designers did
not think about, is more likely to have problems, than a merely collision-resistant function for instance.
The situation may become more complicated once problems happen, because the Random Oracle-substitute
provably does not satisfy some security notion, and the security of every scheme using it “as a random oracle”
must be re-assessed with respect to the new vulnerability. For instance, all public-key schemes would not
break as badly, and not in the same way, if collisions could be found for the standard hash function [LN09].
Ciphertext distinguishability would not be as bad as key-recovery, for instance.

On the Difficulty of Public Life

Like all other cryptographic constructions, the description of hash functions are public. Most other
cryptographic constructions are expected to show some cryptographic strength against adversaries from
which some information is kept secret (e.g., secret key in a block cipher, PRNG seed, etc.). In strong
contrast with nearly all the other cryptographic primitives, hash functions are expected to show cryptographic
strength without secret. This is an endless source of difficulties, both in practice and in theory. In practice,
because usually the existence of secret informations (the key of a MAC, the internal state of symmetric
cipher, etc.) seriously complicates the attackers’s life. On the contrary, no such obstacle lies in front
of adversaries trying to find a collision on a hash function: they have full knowledge of everything, all
input, output and internal state bits of the hash function. Adversaries against hash function are more
powerful than most others, they have more control. This resulted in many standard hash functions getting
broken, sometimes in practice (this is the case of MD4, MD5, SHA-0). Attacks have been found against
MD4 [Dob98, WLF+05, Leu08a], MD5 [dBB93, Dob96, WY05, Kli06, SLdW07, Leu08b, SA09, SSA+09],
SHA-0 [CJ98, WYY05b, BCJ+05, dCR08, JP07, MP08] and SHA-1 [WYY05a, dCR06, dCMR07], to mention
only the widely used hash functions existing prior to the SHA-3 competition. Practical breaks of widely-
deployed block ciphers are extremely rare by comparison.

Let us try to briefly explore the theoretical difficulties now. A well-established methodology to formally
define the security of a cryptographic primitive is to define an ideal version thereof, and then to compare
actual versions of the primitive with the ideal version. The maximum advantage of any distinguisher (with
bounded ressources) between the ideal and the actual versions is then a relevant security indicator. This
methodology have been used with great success for block ciphers, stream ciphers, pseudo-random functions,
pseudo-random number generators, etc.

For hash functions, we have seen that the ideal primitive would be a public random function, and the
actual primitives would be small and public pieces of code. This discrepancy makes it impossible to define
the security of hash functions via a distinguishing game, where a distinguisher would have to tell apart a
random function H∗ and some actual hash function H. Because H∗ can only be accessed via an external
interface, then our distinguishing game would see a distinguisher connected to a black box containing either
H∗ or H, and trying to tell which one it is. However, because the description of H is public, the distinguisher
can evaluate H by itself, and it is therefore able to predict the output of H on any input. The predictions
will only be satisfied by the random function with a negligible chance, and the distinguisher will succeed
with overwhelming probability after a single query.

So, while random functions are nice “ideal version” of hash functions, we do not know how to measure
the security of an actual hash function, namely to measure how close is our hash function to a random
function 2. It is not clear at all that such a measurement makes sense, or even exist. To conclude this

2. We note that although it makes sense to play a distinguishing game between a block cipher where the key is randomly
chosen and a random permutation, it does not make sense to play a distinguishing game between a particular block cipher and
the ideal cipher...

26

(a) Michelangelo di Lodovico
Buonarroti Simoni, The Delphic
Sibyl (1510)

(b) John Collier, Priestess of
Delphi (1891)

(c) J.W. Waterhouse, Consulting the Oracle, (1884)

introduction on the Random Oracle, we point out that several Oracle instantiations have been proposed in
the past, see Figure 2.5a and 2.5b. Querying these oracles can be done as shown in Figure 2.5c.

Iterated Hashing

Compressing an arbitrary quantity of data into a small fingerprint can be achieved in a natural way by an
iterated process, as first suggested in 1978 by Rabin [Rab78]: split the arbitrarily large input into a certain
number of small chunks of a fixed size and process these chunks one at a time. These small chunks are
usually called the message blocks, and are processed using an “inner” hash function that compresses a finite
amount of data into a smaller amount.

Iterated hash functions maintain an internal state, which is initialized to a default value called the
Initialization Vector (IV), and updated each time a message block is processed. The typical hash function

27

Introduction to part I

is therefore defined mathematically by a process of the form:

x−1 = IV

xi = f (xi−1,mi) ,

where the mi’s are the message blocks. After all the message blocks have been processed, a finalization
function (possibly the identity) extracts the hash value from the internal state. The function f is the
compression function. If the internal state is n-bit wide and the message blocks are m-bit wide, then f
compresses n + m bits into just n. Of course, if the length (in bits) of the “message” to be hashed is not a
multiple of m, then a padding scheme will add bits to the last block so that it reaches a length of m bits.

This construction is practical: its time complexity is linear in the message size (which is optimal if the
hash actually depends on every input bits), it requires a modest amount of memory, and it does not requires
the whole message to be stored in a fast memory so that it can be applied “on-the-fly” to data streams. In
addition, designing a compression function seems much simpler than designing a full-blown hash function
from scratch. Most existing hash functions are built on the same approach: a compression function is used
in some way to process the message, one chunk at a time. Thus, a hash function is formed of two essential
components, the compression function, and the mode of operation that describes how the compression should
be used. We usually denote the compression function by f , and the mode of operation by H. The full hash
function obtained by combining the compression function with the mode of operation is denoted by Hf , or
simply H when unambiguous.

Another trend in hash function design consist in iterating a weak function or permutation over a large
internal state which is not completely under the control of the adversary. The security of the whole iteration
then does not rely on any cryptographic strength of the underlying iterated construction. The sponge
paradigm [BDPA08] is an implementation of this idea.

Modes of Operations

This way of building hash function raises interesting questions: what properties should the compression
function satisfy? Can a secure hash function be obtained from a weak compression function? Conversely, is
it possible to turn a good compression function into a good hash function? Are the security properties of Hf

related to those of f? These question are central in hash function theory. This research area has been very
active in the first decade of the twenty-first century, mainly because the usual, standard mode of operation
(implemented in MD4, MD5, SHA-0, SHA-1, in all the SHA-2’s, etc.) turned out to have unexpected and
surprising problems. The preparation of the SHA-3 competition further stimulated research in modes of
operation, because all the hash function designers of the world had to give some thoughts to this issue at
some point. We even witnessed some candidates getting kicked out of the competition because of problems
in their mode of operation.

Attacks against the modes of operation are special in many aspects. They apply to Hf for any choice
of f , making them particularly irritating for any hash function designer investing a lot of time in the
design of a secure compression function. They often require only simple tools (basic algorithms and discrete
probabilities), but can become fairly intricate.

On the other hand, modes of operations admit a nice theory, and some form of “provable security”. For
instance, it does make sense to define the security of a mode of operation H by setting up a distinguishing
game where a distinguisher would have to tell apart the Random Oracle and Hf , where f is a random
compression function. A mode of operation not capable of resisting distinguishers up to a high number of
queries should very likely be thrown away. As a matter of fact, the mode of operation of MD4, MD5, SHA-0,
SHA-1 fails this test after two queries!

It thus appear that the random oracle model is a friendly framework to discuss the security of modes of
operations. Assuming that the compression function is a public random function, it is sometimes possible to
prove lower-bounds on the number of queries issued by the distinguisher to achieve a reasonable advantage.
A proof that a mode of operation offer some security property “in the Random Oracle Model” (i.e., assuming
that the compression function is random) does not offer any guarantee that extends to the standard model,
but it gives a good indication that the mode of operation is not inherently flawed: no attack can break it
when the compression function is unbreakable.

Organization of the Part. Chapter 3 describes the mainstream mode of operation of hash function, the
Merkle-Damg̊ard construction, as well as the numerous generic attacks that have been discovered prior to this
work. Variants of the Merkle-Damg̊ard construction that have been designed with the explicit objective of
preventing some of these attacks are also described, and known security results are recalled when they exist.
Chapter 4 present a new generic second-preimage attack that applies to the Merkle-Damg̊ard construction, as
well as to some of its variants. It allows to break a proposal by Ron Rivest that explicitly aimed at preventing

28

Multicollision

2nd Preimage Attack

Herding Attack
New 2nd

Preimage Attack

2nd Preimage Attack
on Dithered Hash

2nd Preimage Attack
on Shoup’s UOWHF

Trojan Message
Attack

TMDTO for
2nd Preimages

Hellman’s
TMDTO

Kite Generator

Herding Concatenated
Hashes

Herding the Zipper

2nd Preimage
on Hash-Again

Herding Hash-Again

chapter 3 chapter 6

chapter 4

chapter 5

Figure 2.5: Overview of part I

generic second preimage attacks. Chapter 5 present new generic attacks on concatenated hashes and some
non-streaming modes of operations. It culminates with a generic second preimage attack on the folklore
mode of operation that consists in hashing two concatenated copies of the message, and a new generic attack
on the Merkle-Damg̊ard mode of operation, the“Trojan message attack”. We have publicly demonstrated the
latter with the MD5 hash function. This was made possible because collisions have become so easy to find.
Chapter 6 discusses how Time-Memory-Data Trade-offs can be applied to generic second preimage attacks.
It allows for instance to attack shorter messages than the normal versions of the corresponding attacks, at
the expense of some large precomputation. In chapter 7 we present several security proofs for modes of
operation. We prove for instance that there are easy ways to repair the Merkle-Damg̊ard construction to
make it provably secure against generic second preimage attacks. We also prove that it is possible to iterate
“weak” compression functions in a provably secure way, for a certain notion of weakness that includes the
existence of symmetries and differential paths.

29

Chapter 3

Modes of Operations and Generic Attacks

In this chapter we recall the computational models and the security notions used throughout this
part. We also describe several modes of operations and discuss various attacks against them.

3.1 Generalities

A hash function H : {0, 1}∗ → {0, 1}n is a public function that should not have any exploitable structure.
At the very least, a hash function must be:

– Preimage-Resistant : given y ∈ {0, 1}n, no adversary must be able to find x ∈ {0, 1}∗ such that
H(x) = y faster than exhaustive search.

– Second Preimage-Resistant : given x ∈ {0, 1}∗, no adversary must be able to find x′ ∈ {0, 1}∗ such that
x 6= x′ and H(x) = H(x′) faster than exhaustive search.

– Collision-resistant : no adversary must be able to find x, x′ ∈ {0, 1}∗ such that x 6= x′ andH(x) = H(x′)
faster than exhaustive search

To make these notions meaningful, we should first determine what the expected security level is. If H
were a Random Oracle, then it would be easy to show that any adversary trying to find a (second-)preimage
would success with probability q/2n after issuing q queries to the random oracle. Each query would result in
a uniforly random answer in {0, 1}n, so that each query yields the (second-)preimage with probability 2−n.
The success probability scales linearly with the number of queries.

The situation is different for collision resistance because of the birthday paradox. Intuitively, after q
queries to H, the adversary knows q(q − 1)/2 input-output pairs, and each pair result in a collision with
probability 2−n. Thus, we expect to find a collision after only 2n/2 queries. This argument is informal and
not rigorous, but it can be made formal. This often involves throwing balls at random into bins.

Theorem 3.1 ([Sho09]). Suppose n balls are thrown independently and uniformly at random into m bins,
and let C denote the event that at least one bin contains more than one ball. Then:

1− e−
n(n−1)

2m ≤ P [C] ≤ n(n− 1)

2m

From this theorem, we deduce that if H is a random oracle, and if we keep hashing arbitrary but distinct
inputs, we will get a collision with probability close to 1/2 after 2n/2 queries. After 4 · 2n/2 queries, the
probability that a collision has been found is greater than 99.9%. It is often also interesting to estimate
the probability that two random subsets of {0, 1}n have a common element. A more colorful version of the
previous theorem does exactly that.

Theorem 3.2 ([Vau05a]). θ1

√
N red balls and θ2

√
N blue balls are thrown independently in a uniformly

random way into N bins. Let E be the event that no bin simultaneously contain red and blue balls. Then

P [E] −−−−−→
N→+∞

e−θ1θ2

In the sequel, we will often make use of these two theorems without mentioning them, and sometimes
neglecting (small) constants factors, as is commonly done in the field.

The above security definitions are informal, and any attempt to make the definition of Collision-Resistance
formal runs into difficulties. It is for instance useless to measure the smallest running time of any adversary
returning a collision, because there always exist trivial adversaries that contain a precomputed hard-coded
collision, print it and terminate in constant time. This difficulty can be removed by considering hash function
families, or equivalently, keyed hash functions. The collision adversaries could then be challenged with the

31

3. Modes of Operations and Generic Attacks

key, and cannot contain precomputed collisions for every possible keys 1. The drawback is that in practice
keyed hash function are only seldom used.

We will now give formal definitions of these informal security notions for keyed hash functions. Let M
denotes the space of all possible messages and K denotes the set of all possible keys. If A is an adversary
and if Adv(A) is a measure of its advantage, then we write Adv(t) to mean the maximal value of Adv(A)
over all possible adversaries A running in time t. We usually measure adversarial advantage by the success
probability of the adversaries. We are now ready to speak of the difficulty with which an adversary finds
collisions or (second-)preimages. The following definitions have been given by Rogaway and Shrimpton

in [RS04], and are now standard. Let K denote the space of possible keys (typically {0, 1}k) andM denotes

the space of possible messages (typically {0, 1}m). We write x
$←− X to denote the action of drawing x

uniformly at random from the set X.

Definition 3.1. Let H : K ×M → {0, 1}n be a hash function family, let ` ∈ N be such that {0, 1}` ⊆M,
and let A be a (collision) adversary. The Advantage of A against Coll is

AdvColl
H (A) = P

[
K

$←− K; (M,M ′)
$←− A(K) : (M 6= M ′) ∧ (HK(M) = HK(M ′))

]

The advantage of A against Sec/eSec/aSec is

Adv
Sec[`]
H (A) = P

[
K

$←− K;M
$←− {0, 1}` ;M ′

$←− A(K,M) : (M 6= M ′) ∧ (HK(M) = HK(M ′))
]

Adv
eSec[`]
H (A) = max

M∈{0,1}`
P
[
K

$←− K;M ′
$←− A(K) : (M 6= M ′) ∧ (HK(M) = HK(M ′))

]

Adv
aSec[`]
H (A) = max

k∈K
P
[
M

$←− {0, 1}` ;M ′
$←− A(M) : (M 6= M ′) ∧ (HK(M) = HK(M ′))

]

While there is a single kind of Collision adversaries, there are several notions of second preimage adver-
saries: Sec adversaries are imposed both the key and the challenge message, eSec adversaries may choose
the challenge message and are imposed the key (the definition of the advantage assumes that they choose
the easiest message for them), and finally aSec adversaries may choose the key and are imposed the chal-
lenge message. eSec stands for “everywhere second preimage resistance”, and aSec stands for “always second
preimage resistance”. By definition, an eSec-secure hash function family is called a Universal One-Way Hash
Function family (UOWHF), as defined by Naor and Yung [NY89].

The second preimage security notions depend on the length of the message because, as we shall see later,
there are adversaries that perform better when ` is large. It is also possible to define a keyless notion of
(second-)preimage resistance.

Definition 3.2. Let H : M→ {0, 1}n be a single hash function, let ` ∈ N be such that {0, 1}` ⊆M, and
let A be a (second-)preimage adversary. Then, the advantage of A against Spr is

Adv
Spr[`]
H (A) = P

[
M

$←− {0, 1}` ;M ′
$←− A(M) : (M 6= M ′) ∧ (H(M) = H(M ′))

]

The advantage of A against Pre is

AdvPre
H (A) = P

[
y

$←− {0, 1}n ;M
$←− A(y) : H(M) = y

]

An interesting attempt to formalize collision-resistance in the standard model that does not involve keyed
hash functions has been given by Rogaway in [Rog06]. His idea is to consider a secure cryptographic protocol
using a hash function H, and to build an explicitly reduction, i.e., an efficient program that may interract
with an adversary against the protocol, and that outputs a collision on H with essentially the same advantage
as the attacker against the protocol. Thus, as long as mankind does not “know” any collision on H, then the
protocol cannot be broken by hash functions collisions.

3.1.1 Indistinguishability and Indifferentiability

A reasonable way to reason about the security of modes of operations is to instantiate the inner primitive
(typically the compression function) by an ideal version thereof (an ideal block cipher, a random function or
permutation), and to see how the combination “mode of operation + ideal inner primitive” differs from the
Random Oracle.

1. it is standard to assume that the time complexity of a program includes the time of reading a full description thereof,
for instance to load it into memory prior to execution. Thus, an adversary with an exponentially large description has an
exponential complexity.

32

3.2. The Merkle-Damg̊ard construction and its Security

D

H f RO

(a) The Indistinguishability setting

D

H f SRO

(b) The Indifferentiability setting

Figure 3.1: The distinguishing games involved in the study of modes of operations

Definition 3.3. A Turing Machine H (implementing a mode of operation) with oracle access to an ideal
primitive f is said to be (t, q, ε)-indistinguishable from a Random Oracle if for any distinguisher D it holds
that: ∣∣P

[
DH = 1

]
− P

[
DRO = 1

]∣∣ < ε

The distinguisher runs in time at most t and makes at most q queries.

Figure 3.1a illustrates this scenario. Informally, a mode of operation H is indistinguishable from a
Random Oracle if no efficient algorithm D connected to either H or RO, is able to decide whether it
is interacting with H or RO. It makes sense to require indistinguishability, since a hash function is not
supposed to exhibit any “structure” that would make it different from a random function.

A good mode of operation should therefore not admit any distinguisher making only a polynomial number
of queries, for instance. While this security notion is simple and natural, it assumes that the distinguisher D
has black-box access to the hash function H, which implies in particular that D cannot access the compression
function f nor query it on chosen inputs. This assumption does not make much sense, because in practice
the description of the compression function is public. This flaw in the indistinguishablility framework has
led to the definition of a more refined setting, the indifferentiability framework, by Maurer, Renner and
Holenstein [MRH04].

Definition 3.4. A Turing Machine H (implementing a mode of operation) with oracle access to an ideal
primitive f is said to be (tS , tD, q, ε)-indifferentiable from a Random Oracle if there exist a simulator S, such
that for any distinguisher D it holds that:

∣∣P
[
DH,f = 1

]
− P

[
DRO,S = 1

]∣∣ < ε

The simulator has access to the Random Oracle and runs in time at most tS . The distinguisher runs in time
at most t and makes at most q queries.

Figure 3.1b illustrates this new framework. The idea is to let the distinguisher query not only the hash
function H, but also the compression function f . However, we must then put something in place of f in
the “Random Oracle” world, hence the need of a simulator that plays the role of f for the distinguisher. Of
course, since the answers of f and H are correlated, then the answers of the simulator must be correlated to
those of the Random Oracle, and it is necessary to let the simulator query the Random Oracle.

We note that if a hash function H is indifferentiable up to q queries, then no generic attacks can break H
in less than q queries, otherwise the attack could be used as a distinguisher. Indifferentiability proofs are
therefore proofs that there are no generic attacks. We conclude by observing that an indistinguishable mode
of operation is by definition indifferentiable.

3.2 The Merkle-Damg̊ard construction and its Security

The Merkle-Damg̊ard mode of operation used to be (and is still, at the time of this writing) the most
mainstream and most widely implemented mode of operation of hash functions. The Merkle-Damg̊ard
mode of operation constructs a full hash function Hf : {0, 1}∗ → {0, 1}n by iterating a compression function
f : {0, 1}n × {0, 1}m → {0, 1}n. The hash process is described and illustrated in Algorithm 3.1.

The common padding rule, referred to as the Merkle-Damg̊ard strengthening, appends to the original
message a single ’1’ bit followed by as many ’0’ bits as needed to complete an m-bit block after embedding
the message length at the end.

It is worth observing that a hash function family can easily be derived from the Merkle-Damg̊ard construc-
tion, by letting the IV be the key. In the sequel, unless mentioned otherwise, H denotes the Merkle-Damg̊ard

33

3. Modes of Operations and Generic Attacks

Algorithm 3.1 The Merkle-Damg̊ard mode of operation.

1: function Merkle-Damg̊ard (M)
2: Pad and split the message M into r blocks m0, . . . ,mr of m bits each.
3: let h−1 be the initialization value IV .
4: for each message block mi compute hi = f (hi−1,mi).
5: return Hf (M) = hr.
6: end function

f

m0

f

m1

f

m2

f

mr

h0 h1 h2 H(M)IV

mode of operation instantiated with any compression function, and Pad denote the padding scheme. When
M = m0, . . . ,mr is a message whose length is a multiple of the message block length, we denote by f∗(h,M)
the value f(f(. . . f(f(h,m0),m1) . . . ,mr−1),mr), i.e., the result of setting the internal state to h and hash-
ing M without padding. It follows that H(M) = f∗(IV,Pad(M)).

3.2.1 Effect of the “Strengthening”

Merkle [Mer89] and Damg̊ard [Dam89] proved independently in 1989 that this innocent-looking padding
rule has a very interesting consequence in terms of security, as it makes the scheme collision resistance
preserving, in the sense that a collision on the hash function Hf implies a collision on the compression
function f .

Theorem 3.3 ([Mer89, Dam89]). The Merkle-Damg̊ard mode of operation is Collision-Resistance Preserv-
ing, i.e., there is an algorithm that given two messages M 6= M ′ such that H(M) = H(M ′) finds two pairs
(h,m) 6= (h′,m′) such that f(h,m) = f(h′,m′) and whose running time is linear in the size of M .

Proof. Suppose we have two messages M 6= M ′ such that Hf (M) = Hf (M ′). We will show that it is easy
to derive a collision on f from M and M ′.

– Either |M | 6= |M ′|. In this case, by definition of the padding scheme, the inputs of the last invocation
of the compression are not the same when hashing M and M ′, and because M and M ′ collide, we have
found a collision on f (on its last invocation).

– Or |M | = |M ′|. Suppose that the compression function is invoked r times in both cases. In this case,
there are again two possibilities. Either (hr−1,mr) 6= (h′r−1,m

′
r), and we have a collision since hr = h′r,

or (hr−1,mr) = (h′r−1,m
′
r). The argument repeats. Either we find a collision along the way, or we

reach the conclusion that mi = m′i, for all i, which is impossible.

Adding the message length in the last block, the so-called “strengthening”, is the crucial ingredient in
establishing the collision-resistance preservation of Merkle-Damg̊ard. As an illustration of the well-known
fact that the devil is in the details, we show that many other natural padding schemes would lead to a
handful of security problems. Consider the padding scheme Pad0 that simply pads the last message block
with zeroes: it would fall to a very simple generic collision attack consisting in adding a single “0” bit at the
end of the message.

This could be avoided with a more sophisticated padding scheme Pad10 that adds a single “1” bit and
then pads the current block with zero bits. Sadly, this padding scheme would fall to a simple second-preimage
attack called the long message attack [MvOV]. Given a (long) message M = M1, . . . ,Mk, an adversary could
hash random messages M ′ until the hash of M ′ is equal to one of the intermediate chaining values (say hi)
obtained in hashing M . She could replace the beginning of M , up to the i-th block, with M ′, and she would
end up with as second preimage. The expected number of queries is 2n/k.

As a side effect, the strengthening defines a limit on the maximal length for admissible messages. In most
deployed hash functions, this limit is 264 bits, or equivalently 255 512-bit blocks. However, in SHA-384 and
SHA-512, as well as in some SHA-3 candidates, this limit has been increased to 2128 bits, or equivalently
2118 1024-bit blocks. In the sequel, we denote the maximal number of admissible blocks by 2κ.

34

3.3. Generic Attacks Against Merkle-Damg̊ard

3.2.2 Blockcipher-based Compression Functions

With a reasonable mode of operation such as Merkle-Damg̊ard, the problem of designing a (good) hash
function is reduced to that of designing a (good) compression function. One of the most succesful approaches
is to turn a block cipher into a compression function, with an appropriate mode of operation for compression
functions. There are countless ways to perform this task, so we only mention the most popular, the Davies-
Meyer constructions, that sets

f(h,m) = Em(h)` h

This construction is used in many standardized hash functions (MD4, MD5, all the SHA’s, etc.). It is simple
and efficient, since the complexity of evaluating the compression function is vastly the complexity of the
block cipher itself. In addition, amongst all symmetric cryptographic primitives, block ciphers are probably
the best understood, with the caveat that in the Davies-Meyer construction the adversary has full control
over the key, which means to some extent that the block cipher E has to be secure against related-keys
attacks. Winternitz first showed that the Davies-Meyer compression functions are optimally collision and
preimage resistant when the block cipher is an ideal cipher, i.e., a key-indexed collection of independent
random permutations [Win84].

A noticeable property of the Davies-Meyer construction is related to fixed points. Given a message
block m, it is straightforward to find a chaining value h∗ such that h∗ = f(h∗,m): the value of h∗ is by
definition E−1

m (0). It follows that for any m, the fixed point h∗ can be found for the cost of one compression
function evaluation. This is mostly not a problem, because the attackers usually do not control the chaining
value, but we will see in §3.3.3 that this can be leveraged into a second preimage attack.

Many other block-cipher based modes of operations have been described by Preneel, Govaerts and
Vandewalle [PGV93], and have been analyzed in the Ideal Cipher Model by Black, Rogaway and Shrimp-
ton [BRSS10]. Black, Cochran and Shrimpton proved that it is impossible to build a secure compression func-
tion with a single evaluation of a n-bit fixed permutation (i.e., a block cipher under a fixed key) [BCS05] 2.
Shrimpton and Stam proved that it is possible with three calls to three different n-bit fixed permuta-
tions [SS08].

3.2.3 Collisions on the Compression function

Finding collisions against H can be acheived by finding collisions on the compression function, i.e., by
finding pairs (h,m) 6= (h′,m′) such that f(h,m) = f(h′,m′). This can always be done by brute force, with
about 2n/2 evaluations of the compression function, even when the attacker only has black-box access to f .
There are several kinds of collision-finding algorithms: the chaining values h and h′ can be chosen by the
attacker, or may be imposed upon her. In addition, it may be required that h′ = h. This lead to four possible
kinds of adversaries, shown in Algorithm 3.2. All these algorithms terminate after about 2n/2 iterations if
f is a random function. In practice, when dealing with concrete hash functions, the complexity of finding
the various kinds of collisions are not completely identical. For instance, on MD5, there exist a version
of Collision that terminates in time equivalent to 216 compression function evaluations, but the fastest
equivalent of Dual-IV-Collision requires 241 compression function evaluations [SSA+09]. To conclude on
this subject, we note that the collision-finding techniques decsribed in Algorithm 3.2 have a high memory
complexity, but it is possible to search for collisions without any memory, using cycle-finding techniques such
as the algorithms of Floyd, Brent or Nivasch [Niv04].

3.3 Generic Attacks Against Merkle-Damg̊ard

Because of its simplicity and of its nice security properties, the Merkle-Damg̊ard mode of operation
has been widely deployed. However, more than 15 years after its introduction,it started to exhibit weird
properties, and to fall to nastier and nastier generic attacks.

3.3.1 The Length Extension Attack

The length extension attack is simple and dangerous, because it can be carried out without extensive
computational resources. It allows to distinguish the Merkle-Damg̊ard construction from a Random Oracle
using only two queries.

Theorem 3.4 (length-extension attack). There is an adversary that, given only the size of a message M and
its hash H(M), but not M itself, is capable of computing H(Pad(M)‖S) in time O (|S|), for any suffix S.
If H were a random oracle, achieving the same thing would require about 2n queries.

2. More precisely, they proved that there exist information-theoretic adversaries issuing a small number of queries to the
fixed permutation

35

3. Modes of Operations and Generic Attacks

Algorithm 3.2 Generic Brute-Force collision-finding algorithms

function Collision(IV)
T ← ∅
loop

m
$←− {0, 1}m

h← f(IV,m)
if T [h] = m′ then return (m,m′)
T [h]← m

end loop
end function

function Pseudo-Collision()
T ← ∅
loop

m
$←− {0, 1}m

x
$←− {0, 1}n

h← f(x,m)
if T [h] = (x′,m′) then return (x,m, x′,m′)
T [h]← (x,m)

end loop
end function

function Dual-IV-Collision(IV1, IV2)
T1 ← ∅
T2 ← ∅
loop

m
$←− {0, 1}m

h1 ← f(IV1,m)
h2 ← f(IV2,m)
if T2[h1] = m′ then return (m,m′)
if T1[h2] = m′ then return (m,m′)
T1[h1]← m
T2[h2]← m

end loop
end function

function Dual-IV-Pseudo-Collision()
T1 ← ∅
T2 ← ∅
loop

m
$←− {0, 1}m

x1
$←− {0, 1}n

x2
$←− {0, 1}n

h1 ← f(x1,m)
h2 ← f(x2,m)
if T2[h1] = (x′,m′)
or T1[h2] = (x′,m′)

then return (x,m, x′,m′)
T1[h1]← (x1,m)
T2[h2]← (x1,m)

end loop
end function

Here is how the attack works. We first observe that Pad(M) ends at a block boundary (by definition of
the padding scheme). Let k therefore denote the length of Pad(M) in blocks. We observe what happens
during the process of hashing M ′ = Pad(M)‖S. First, the padding scheme is applied to M ′, resulting in
a sequence of message blocks m0, . . . ,mt. Provided that S is more than m bits long, then generating mt

can be accomplished knowing only |M | and S. Then by definition of the Merkle-Damg̊ard construction,
H(M ′) = f∗(IV,m0, . . . ,mt). It then follows from the previous consideration that m1, . . . ,mk = Pad(M),
so that H(M ′) = f(H(M),mk+1, . . . ,mt).

Prefix-MAC. One of the simplest possible ways to build a MAC from a hash function is probably the
Prefix-MAC construction, defined by: prefix-MAC(K,M) = H(K ‖M). The length-extension attack
makes it completely insecure when H is any Merkle-Damg̊ard hash function. Indeed, after querying the MAC
on M , an adversary would be able to forge the MAC on Pad(M) ‖S, for any suffix S. This problem led to
the definition of more complicated hash-based MAC constructions such as HMAC [KBC97]. Candidates for
the SHA-3 competition were required to be immune to the length-extension attack.

Countermeasures. The attack can be avoided without modifying the Merkle-Damg̊ard construction too
much in several ways. A first possibility is to apply a prefix-free encoding to the messages before hashing
them, i.e., a function pf(·) such that pf(M) cannot be a strict prefix of pf(M ′), for any choice of M 6= M ′

(a possibility is to include the message length at the begining, or to use a special “last block” bit in every
message block). Another, but essentially equivalent option is to apply a one-way finalization function to the
internal state before returning it, i.e., to define H(M) = F (hr), where F should preferably be a permutation,
otherwise there could be a loss of entropy.

When the length-extension attack is thwarted, for instance by the use of a prefix-free encoding, then the
resulting Prefix-free-Merkle-Damg̊ard mode of operation is indifferentiable from a random oracle up to
2n/2 queries, as shown by Coron, Doodis, Malinaud and Puniya [CDMP05].

36

3.3. Generic Attacks Against Merkle-Damg̊ard

IV h0 h1 h2 hk

m0

m′0

m1

m′1

m2

m′2

Figure 3.2: Joux’s multicollision attack.

3.3.2 Joux’s Multicollision Attack

I wish I had the idea...

An anonymous reviewer

The multicollision attack on Merkle-Damg̊ard discovered by Joux in 2004 is fairly general and applies
more generally to (most) iterated hash functions [Jou04]. The point is to find a k-way multicollision, i.e., a
set of k messages M1, . . . ,Mk all hashing to the same value, much faster than exhaustive search.

Theorem 3.5 ([Jou04]). There exist an adversary that finds a k-way multicollision on H, for any k, with a
time and memory complexity equivalent to that of running the generic Collision algorithm (or any ad hoc
equivalent) dlog2 ke times. If H were a random oracle, this should require about 2n(k−1)/k evaluations of H.

For instance, finding a 4-way multicollision requires 23n/4 queries on the random oracle, but can be
achieved with only 2 · 2n/2 evaluations of the compression function for any Merkle-Damg̊ard hash function.
The main idea of multicollision is shown in Figure 3.2. First compute two colliding message blocks:

(m0,m
′
0)← Collision(IV)

and let h0 = f(IV,m0) denote their common hash. Now, starting from h0, we again compute two colliding
message blocks:

(m1,m
′
1)← Collision(h0)

At this stage, we already have a 4-way collision: the four messages (m0,m1), (m′0,m1), (m0,m
′
1) and (m′0,m

′
1)

result in the same intermediate chaining value h1 = f(h0,m1). By finding a third pair (m2,m
′
2) of message

blocks colliding from h1, we could build an 8-way multicollision, by appending either m2 or m′2 at the end
of our 4-way multicollision, and so on and so forth.

The multicollision attack is very difficult to avoid, because it is very general: it works for any padding
scheme, and only exploit the fact that the hash function is iterated. For instance, it applies to the Prefix-
free-Merkle-Damg̊ard mode of operation, allowing it to distinguish it from a random oracle by constructing
a 4-way multicollision, using about 4 · 2n/2 queries. This shows for instance that Prefix-Free-Merkle-
Damg̊ard cannot be indifferentiable from a Random Oracle beyond 2n/2 queries, so that the proof of Coron
et al. is tight [CDMP05].

3.3.3 Dean’s Second Preimage Attack

As discussed in §3.2.1, the Merkle-Damg̊ard strengthening prevents the long message second preimage
attack: because the original message and the forgery do not have the same length, the padding scheme makes
the last blocks different in Pad(M) and Pad(M ′), and even though the penultimate chaining values are the
same, the last ones are extremely likely to be different because the last message blocks are different.

A possible way to mount a successful second preimage attack on Merkle-Damg̊ard is to bypass the
strengthening by forging preimages of the same size as the original message. In his PhD thesis [Dea99],
Dean found a way to do this under the assumption that it is possible to find fixed points of the compression
function.

Theorem 3.6 ([Dea99]). If f is a Davies-Meyer compression function, then there is an adversary A that
finds second preimages of `-blocks messages for Hf with 2n/` compression function evaluations, after a
preprocessing phase of complexity 2n/2. If H were a Random Oracle, this would require 2n compression
function evaluations.

This result is, to the best of our knowledge, only present in Dean’s dissertation and has not been submitted
to any refereed publication. It therefore received very little publicity and the cryptographic community was
apparently unaware of it until several years later. This is a bit surprising, since this result is in fact quite
strong: the most widely used construction of a hash function out of a block cipher has a non-trivial security
flaw that nobody was aware of before.

37

3. Modes of Operations and Generic Attacks

Offline Phase. The adversary first tries to find two message blocks m↗ and m∗ such that f(IV,m↗) = h∗

and f(h∗,m∗) = h∗. If the compression function were an arbitrary random function, then there would not
be any way of finding these faster than exhaustive search. However, when f is a Davies-Meyer compression
function, thenm↗ andm∗ can be found after 2n/2 compression function evaluation, even when the underlying
block cipher is ideal:

1. Construct a table T1 of 2n/2 entries (h1,m1) where m1
$←− {0, 1}m and h1 = f(IV,m1).

2. Construct a table T2 of 2n/2 entries (h2,m2) where m2
$←− {0, 1}m and h2 = E−1

m2
(0).

3. Find (m↗,m∗) such that there exist h∗ ∈ {0, 1}n with (h∗,m↗) ∈ T1 and (h∗,m∗) ∈ T2.

Theorem 3.2 tells us that the probability to find the actual collision in the two lists is 1− 1/e, and that
this probability can be made arbitrarily large by slightly increasing the size of the two tables.

Online Phase. Presented with a (padded) challenge messageM = m0, . . . ,m`, the adversary hashes random
messages blocks m↘ until f(h∗,m↘) = hi, where hi = f∗(IV,m0, . . . ,mi) is the i-th intermediate chaining
value obtained while hashing M . We expect the adversary to find this “connecting” message block after 2n/`
evaluations of the compression function. The adversary can then forge a second preimage M ′ that has the
same size as M by replacing the first i blocks of M . This yields:

M ′ = m↗,m∗,m∗, . . . ,m∗,m↘,mi+1, . . . ,m`

It is then easy to check that H(M ′) = H(M). They key idea of the attack is to replace a prefix of M by
something of the same length that hashes to the same value.

3.3.4 Kelsey and Schneier’s Second Preimage Attack

Dean’s attack was in fact rediscovered independently by Kelsey and Schneier in 2005, and at this point
reached the general crypto community. Building on Joux’s multicollision attack, Kelsey and Schneier found
a more general second preimage attack that applies to any compression function [KS05].

Theorem 3.7 ([KS05]). There is an adversary A that finds second preimages of `-blocks messages for Hf

with 2n/` compression function evaluations, after a preprocessing phase of complexity κ · 2n/2. If H were a
Random Oracle, this would require 2n compression function evaluations.

Dean’s trick to bypass the Merkle-Damg̊ard strengthening was, after the right fixed point has been found,
to be able to build a message of any length hasing to the internal chaining value h∗. Kelsey and Schneier
observed that this is in fact a huge multicollision containing (at least) a message for any possible length
in some interval. They called such a multicollision an expandable message. To build expandable messages,
Kelsey and Schneier adapted Joux’s multicollision technique: instead of finding collisions between single
messages blocks, they find collisions between a single message block and a longer message.

Offline Phase. From a practical point of view, an expandable message is a datastructure M generated by
a preprocessing step, associated with a hash value h∗. Then an instantiation procedure takes M and an
integer `, and forges an `-block message M such that f∗(IV,M) = h∗. Pseudo-code for both steps are shown
in Algorithm 3.3.

The complexity of Generate-Expandable-Message is equivalent to that of finding κ collisions gener-
ically. An algorithm of the type Dual-IV-Collision could be used to find Mi and M′i at each step:
choose arbitrarily the first 2i blocks ofMi, and simultaneously findM′i and the last block ofMi by running
Dual-IV-Collision(h, f∗(h,Mi)). As a consequence, expandable messages could be built in practice for
MD5.

Online Phase. A second preimage attack can be carried out without too much trouble once an expandable
message has been constructed. The pseudo-code is shown in Algorithm 3.4. The same argument used to
establish the correctness of Dean’s attack also applies here: the attack uses the expandable message to
replace a prefix of M by something of the same length and that hashes to the same thing. We expect 2n/`
iterations of the repeat...until loop.

3.3.5 The Herding attack

The “herding attack” (also known as the “Nostradamus attack”, or the “con man” attack, as mentionned
in the introduction) was described by Kelsey and Kohno in 2006 [KK06]. It is a chosen-target forced prefix
preimage attack: an adversary commits to a public digest value h. After the commitment phase, the

38

3.3. Generic Attacks Against Merkle-Damg̊ard

Algorithm 3.3 Expandable messages: a multicollision between messages of different lengths.

1: function Generate-Expandable-Message()
2: h← IV
3: for i = 0 to κ do
4: Find (Mi,M′i) such that f∗(h,Mi) = f(h,M′i), |Mi| = 2i + 1 and |M′i| = 1
5: end for
6: return M = (M0,M′0), . . . , (Mκ,M′κ)
7: end function

The notation |m| denotes the size of the m in message blocks.

IV h0 h1 h2

M0

M′0

M1

M′1

M2

M′2

|M0|=20+1 |M1|=21+1 |M2|=22+1

|M′0|=1 |M′1|=1 |M′2|=1

1: function Instantiate-Expandable-Message(M, `)
2: bκ, . . . , b0 ← binary writing of (`− κ)
3: M ← ∅
4: for i = 0 to κ do
5: if bi = 1 then M ←M‖Mi else M ←M‖M′i
6: end for
7: return M
8: end function

Algorithm 3.4 The Kelsey-Schneier Second Preimage Attack.

function Second-Preimage(M)
m0, . . . ,m` ← Pad(M)
h−1 ← IV
for i = 0 to ` do hi ← f(hi−1,mi)
M← Generate-Expandable-Message()
h∗ ← f∗(IV,M′0, . . . ,M′κ)
repeat

m↘
$←− {0, 1}m

until f(h∗,m↘) = hi for some i ≥ κ
return Instantiate-Expandable-Message(M, i)‖mi+1, . . . ,m`

end function

h∗

IV H(M)
M hi

m↘

mi+1, . . . ,m`

Instantiate-Expandable-Message(M,i)

39

3. Modes of Operations and Generic Attacks

h�

x1

x3

x4

x2

x5

x6

2`

(a) The diamond structure

h�

x1

x3

x4

x2

x5

x6

IV hP
P

m↗

xj

(b) Online phase of the attack

Figure 3.3: The Herding Attack

adversary is challenged with a prefix P which she has no control over, and she is to produce a suffix S for
which h = H(P‖S). Of course, h is specifically chosen after a precomputation phase by the adversary. This
attack is reminiscent of (and can certainly be seen as) an attack against the eSec security notion.

Theorem 3.8 ([KK06]). There exist an adversary that chooses a hash value h after a precomputation phase
of complexity 2n/2+`/2+2, and which is then capable of finding messages S such that h = H(P‖S), for any
prefix P , in 2n−` compression function evaluations. If H were a Random Oracle, this would require 2n

queries.

Offline Phase. The main idea behind this attack is to build a special data structure known as a 2`-diamond
structure 3, and shown in Figure 3.3a. It contains 2` distinct chaining values D = x1, . . . , x2` from which
the adversary knows how to reach a common chaining value h�. To construct this data structure, which is
in fact a tree, the adversary picks about 2n/2−`/2+1/2 single-block messages mj , and evaluates f(xi,mj) for
all i and j. Due to the large number of values, it is expected that collisions occur, and it is expected that the
adversary will find for each of the xi’s a corresponding message block mα(i) such that the set

{
f
(
xi,mα(i)

)}

contains only 2`−1 distinct values. The process is then repeated `−1 more times until a final digest value h�
is found. The complexity of the first step should dominate the whole computation, so that the complexity
of building the diamond structure is roughly 2n/2+`/2+2 compression functions evaluations.

We are aware that this construction algorithm is a bit vague, and that this complexity analysis is not
rigorous. We essentially reproduced the description and analysis given in [KK06]. An improved and more
rigorous analysis [BSU11] revealed that the announced complexity is underestimated by a factor

√
`. Because

it is more convenient, and because the difference is not so large, we stick with the old complexity estimates.

Online Phase. In the online phase of the attack, the adversary is challenged with a prefix P , and she has
to find a suffix S so that H(P‖S) = h�. To this end, the adversary hashes random message blocks m↗

until f∗(P‖m↗) = xi ∈ D for some i. Once P is “connected”, via m↗, to the diamond structure, it is
possible to follow the path connecting xi to h� (which is at the “root” of the diamond) and produce the
required suffix S. Figure 3.3b illustrates the process.

The total time complexity of the attack is about 2n/2+`/2+2 offline compression function evaluations,
and 2n−` online compression function evaluations. Choosing ` = n/3 minimizes the total cost of the attack,
resulting in a total complexity of about 22n/3 compression function evaluations.

3.4 Close Relatives of the Merkle-Damg̊ard Construction

we have seen in §3.3 that in 2204, 2005 and 2006 many unexpected and disturbing generic attacks
were discovered on the venerable Merkle-Damg̊ard mode of operation. This stimulated the cryptographic
community to research alternative new modes of operations, and led to a flourishing of new designs, some
of which were explicitly aiming at preventing the generic attacks. In this section we survey the design that
are sufficiently close to the original Merkle-Damg̊ard.

3. We find this name somewhat unfortunate, but since it has been adopted we keep using it. We assume it has something
to do with “Lucy in the Sky with Diamonds”, as nothing else explains this name.

40

3.4. Close Relatives of the Merkle-Damg̊ard Construction

3.4.1 HAIFA : a HAsh Iterative FrAmework

Haifa is a collection of simple tweaks to Merkle-Damg̊ard proposed by Biham and Dunkelman in
2006 [Eli06, BD07]. We will not describe the full Haifa, because some details are irrelevant to us (for instance,
Haifa has a built-in salt mechanism that we deliberately ignore). A Haifa hash functionH : {0, 1}∗ → {0, 1}n
is built by iterating a compression function

f : {0, 1}m × {0, 1}n × {0, 1}κ → {0, 1}n .

The precise mode of operation is described in Algorithm 3.5 (and Pad denotes the usual Merkle-Damg̊ard
padding). The ability to “copy, cut, and paste” blocks of messages here and there is a fundamental ingredient
in the generic second preimage attacks, and the inclusion of a “round counter” in the compression function
seems very effective at preventing them, although Biham and Dunkelman did not give any security proof.
Haifa is immune to the length extension attack because of the “last-block” special padding, and is thus
provably indifferentiable up to 2n/2 queries. However, the multicollision and the herding attack both apply,
thus showing that this bound is tight. We will show in §7.1.2 that Haifa is in fact provably resistant to
generic second preimage attacks up to 2n queries. Haifa has had a great success, and it is implemented in
five second round SHA-3 candidates: BLAKE, ECHO, Shabal, SHAvite-3 and Skein.

Algorithm 3.5 The Haifa mode of operation.

1: function Haifa(M)
2: Pad and split the message M into r blocks m0, . . . ,mr of m bits each.
3: let h−1 be the initialization value IV .
4: for each message block mi, i < r compute hi = f (hi−1,mi, i).
5: compute hr = f (hr−1,mr,−1).
6: return Hf (M) = hr.
7: end function

f

m0

f

m1

f

m2

f

mr − 1

f

mr

h0 h1 h2 hr−1

0 1 2 r − 1 −1

H(M)IV

3.4.2 Rivest’s Dithered Hashing

Even before Haifa had been presented to the community, Rivest had come out with the idea of using a
counter to make the hashing process more “irregular”. However he was concerned about the loss of efficiency
that this would incur. When a “normal” compression function is used in a Haifa hash function, then κ bits
of its input would be dedicated to the round counter (which is about 10% of the total input in the MD and
SHA family), leading in a corresponding decrease in hashing speed. If a compression were to be designed
from scratch to accommodate the counter, then there would still be more input bits to mix together.

To avoid this problem, Rivest suggested in 2005 to use Dithered hashing [Riv05]. Instead of dedicating κ
bits of compression-function input to a counter, we would still perturbate the hash process by an additional
input to the compression function, but we would try to make this additional input as small as possible.
Rivest’s idea was to use the consecutive elements of a fixed dithering sequence. If the dithering sequence is
well-chosen, then this would still make the hash of a message block dependent on its position in the whole
message.

Since the dithering sequence has to be at least as long as the maximal number of blocks in any message
that can be processed by the hash function, it makes sense to consider infinite potential dithering sequences.
Let A be a finite alphabet, and let the dithering sequence z be an eventually infinite word over A. Let z[i]
denote the i-th element of z. The dithered Merkle-Damg̊ard construction iterates a compression function
f : {0, 1}n ×{0, 1}∗ ×A → {0, 1}n, by setting hi = f (hi−1,mi, z [i]) in the definition of the original Merkle-
Damg̊ard scheme.

41

3. Modes of Operations and Generic Attacks

Words and Sequences. Let ω be a word over a finite alphabet A. We use the dot operator to denote
concatenation. If ω can be written as ω = x.y.z (where x,y, or z can be empty), we say that x is a prefix
of ω and that y is a factor of ω. A finite non-empty word ω is a square if it can be written as ω = x.x,
where x is not empty. A finite word ω is an abelian square if it can be written as ω = x.x′ where x′ is a
permutation of x (i.e., a reordering of the letters of x). A word is said to be square-free (respectively, abelian
square-free) if none of its factors is a square (respectively, an abelian square). Note that abelian square-free
words are also square-free.

Sequences Generated by Morphisms. We say that a function τ : A∗ → A∗ is a morphism if for all words x
and y, τ(x.y) = τ(x).τ(y). A morphism is then entirely determined by the images of the individuals letters.
A morphism is said to be r-uniform (with r ∈ N) if |τ(x)| = r · |x| for any word x. If, for a given letter
α ∈ A, we have τ(α) = α.x for some word x, then τ is non-erasing for α. Given a morphism τ and an
initialization letter α, let un = τn(α) denote the n-th iterate of τ over α. If τ is r-uniform (with r ≥ 2)
and non-erasing for α, then un is a strict prefix of un+1, for all n ∈ N. Let τ∞(α) denote the limit of this
sequence: it is the only fixed point of τ that begins with the letter α. Such infinite sequences are called
uniform tag sequences [Cob72] or r-automatic sequences [All94].

An Infinite Abelian Square-Free Sequence. Infinite square-free sequences have been known to exist since
1906, when Axel Thue exhibited the Thue-Morse word over a ternary alphabet (there are no square-free
sequences of size greater than four on a binary alphabet).

The question of the existence of infinite abelian square-free sequences was raised by 1961 by Erdös,
and was solved by Pleasants [Ple70] in 1970: he exhibited an infinite abelian square-free sequence over a
five-letter alphabet. In 1992, Keränen [Ker92] exhibited an infinite abelian square-free sequence k over a
four-letter alphabet (there are no infinite abelian square-free words over a ternary alphabet). In the sequel,
we call this infinite abelian square-free word the Keränen sequence. Before describing it, let us consider the
permutation σ over A defined by:

σ(a) = b, σ(b) = c, σ(c) = d, σ(d) = a

Surprisingly enough, the Keränen sequence is defined as the fixed point of a 85-uniform morphism τ ,
given by:

τ(a) = ωa, τ(b) = σ (ωa) , τ(c) = σ2 (ωa) , τ(d) = σ3 (ωa) ,

where ωa is some magic string of size 85 (given in [Ker92, Riv05]).

Keränen-DMD. In [Riv05] Rivest suggests to directly use the Keränen sequence as a source of dithering
inputs. The dithering inputs are taken from the alphabet A = {a, b, c, d}, and can be encoded by two bits.
The introduction of dithering thus only increases number of data bits in the input of the compression function
by only two bits, which improves the hashing efficiency (compared to longer encodings of dither inputs). It
is possible to generate the Keränen sequence online, one symbol at a time, in logarithmic space and constant
amortized time.

Rivest’s Concrete Proposal. To speed up the generation of the dithering sequence, Rivest proposed a
slightly modified scheme, in which the dithering symbols are 16-bit wide. Rivest’s concrete proposal, which
we refer to as DMD-CP (Dithered Merkle-Damg̊ard–Concrete Proposal) reduces the need to generate the
next letter from the Keränen sequence. If the message M is r blocks long, then for 1 ≤ i < r the i-th dithering
symbol has the form: (

0,k
[⌊
i/213

⌋]
, i mod 213

)
∈ {0, 1} × A× {0, 1}13

The idea is to increment the counter for each dithering symbol, and to shift to the next letter in the
Keränen sequence, only when the counter overflows. This “diluted” dithering sequence can essentially be
generated 213 times faster than the Keränen sequence. The last dithering symbol has a different form (recall
that m is the number of bits in a message block):

(1, |M | mod m) ∈ {0, 1} × {0, 1}15

The dithered Merkle-Damg̊ard construction seems immune to the generic second preimage attacks of
Dean (§3.3.3) and Kelsey and Schneier (§3.3.4), but the multicollision and herding attack do apply as-is. We
also give a second-preimage attack in §4.2.

42

3.4. Close Relatives of the Merkle-Damg̊ard Construction

3.4.3 Shoup’s Universal One-Way Hash Function.

As mentioned in §3.1, a Universal One-Way Hash Function (UOWHF for short) is a keyed func-
tion H : K × {0, 1}∗ → {0, 1}n required to satisfy the eSec security notion. The best possible UOWHFs
will resist eSec adversaries up to 2n queries.

Bellare and Rogaway studied the construction of variable input length UOWHF from fixed input length
UOWHFs (i.e., eSec-secure keyed compression functions) [BR97]. They also demonstrated that UOWHFs
are sufficient for a number of signature applications. Shoup [Sho00a] improved on the former constructions by
proposing a simpler scheme that also yields shorter keys (by a constant factor). It is a Merkle-Damg̊ard-like
mode of operation, but before every compression function evaluation in the iteration, the state is updated by
XORing one out of a small set of possible masks into the chaining value. The number of masks is logarithmic
in the length of the hashed message, and the order in which they are used is carefully chosen to maximize
the security of the scheme. This is reminiscent of dithered hashing, except that here the dithering process
does not decrease the bandwidth available to actual data (it just takes a few more operations).

Algorithm 3.6 Shoup’s Universal One-Way Hash Function

1: function Shoup(K,M)
2: let (k, µ0, . . . , µκ) = K (the key of the iterated function)
3: pad and split the message M into r blocks m0, . . . ,mr of m bits each.
4: let h−1 be the initialization value IV .
5: for each message block mi compute hi = fk

(
hi−1 ` µν2(i),mi

)
.

6: return HK(M) = hr.
7: end function

Shoup’s construction works just like Merkle-Damg̊ard by iterating an eSec-secure compression function
family fk : {0, 1}n × {0, 1}m → {0, 1}n, as described in Algorithm 3.6, to obtain a variable input length
UOWHF.

The scheme uses a set of masks µ0, . . . , µκ−1 (where 2κ− 1 is the length of the longest possible message),
each one of which is a random n-bit string. The key of the whole iterated function consists of k and of
these masks. The order in which the masks are applied is defined by a specified sequence over the alphabet
A = {0, . . . , κ− 1}. The scheduling sequence is z[i] = ν2(i), for 1 ≤ i ≤ 2κ, where ν2(i) denotes the largest
integer ν such that 2ν divides i. Similarly to the Merkle-Damg̊ard construction, Shoup’s UOWHF enjoys a
nice security property.

Theorem 3.9 ([Sho00a]). If an adversary is able to break the eSec[λ] notion of Hf with probability ε in time
T , then one can construct an adversary that breaks the eSec notion of f in time T +O (λ), with probability
ε/λ.

In a nutshell, if no adversary can break the eSec property of f in time less than 2n queries, then no
adversary can break the eSec property of Hf in time less than 2n−κ queries. In other words, Shoup’s
hash function family is reasonably close to the original Merkle-Damg̊ard construction yet provably enjoys a
flavor of second-preimage resistance in the standard model. We give an eSec-attack on the UOWHF in §4.3,
showing in passing that the security bound is tight.

An intriguing connection between Shoup’s and Rivest’s hash functions shows up as soon as we notice that
the scheduling sequence z chosen by Shoup is abelian square-free. In fact, one year after Shoup’s construction
was published, Mironov proved that an even stronger notion of repetition-freeness was necessary: z is, and
has to be, even-free[Mir01]. A word is even-free if all of its non-empty factors contain at least one letter an
odd number of times. It is easy to see that even-free words are abelian square-free.

3.4.4 The Wide-Pipe Construction

Faced with the ever-more worrying flow of new generic attacks, Lucks suggested in 2005 a completely
different approach [Luc05]. His idea is quite simple: most generic attacks rely on the ability to find internal
state collisions, and exploit these collisions in a clever way. If finding these collisions is impossible in the
first place, then there would not be any generic attack. Making internal state collisions impossible to find in
less than 2n compression function evaluations is simply achieved by doubling the size of the internal state.
To produce n-bit hash values, a compression function f : {0, 1}2n × {0, 1}m → {0, 1}2n is iterated, resulting
in a 2n-bit final internal chaining value which is subsequently brought down to n bits by a finalization
function g (which usually discards half of the bits). This is illustrated by Figure 3.4. When g is simply
a truncation, then the resulting scheme is sometimes called “Chop-Merkle-Damg̊ard”. From a historical
perspective, CELLHASH and Subterranean, two earlier designs of Daemen are “wide-pipe” and thus predate
by about 15 years the more systematic proposal of Lucks.

43

3. Modes of Operations and Generic Attacks

f

m0

f

m1

f

mr

h1

2n

h2

2n 2n

g
IV

2n

H(M)
n

Figure 3.4: The “double-pipe” Merkle-Damg̊ard hash function.

m0

f2

f1

m1

f2

f1

m2

f2

f1

mr

f2

f1

h2
1

h1
1

h2
2

h1
2

h2
3

h1
3

IV1

IV2

Figure 3.5: Concatenated hashing.

Intuitively, all the attacks of §3.3 cannot be replayed, because finding collisions on the compression
function takes longer than inverting the full hash function. More formally, it is shown in [Luc05] that any
k-way multicollision (resp. second preimage) on H results in either a collision on f or a k-way multicollision
on g ◦ f (resp. a collision on f or a second preimage on g ◦ f), which shows that as long as f and g ◦ f are
secure, then H is free of multicollision and second-preimage adversaries.

It is possible to make an even stronger point in the indifferentiability framework. Coron et al. have
shown that the double-pipe is indifferentiable up to 2n/2 queries, which does not discard multicollision and
second-preimage attacks, but Chang and Nandi proved that the mode of operation is in fact indifferentiable
up to 2n/n queries, thus showing that no generic attack applies below this bound [CN08]. This bound was
subsequently improved to 2n/2 queries —which is asymptotically tight— by Bertoni, Daemen, Peeters and
Van Assche in [BDPA09], and by Daemen, Dusenge and Van Assche in [DDA11]. These authors describe
several sufficient conditions that a mode of operation must meet to be covered by their result, which is
therefore very general.

The wide-pipe mode of operation is therefore provably secure against all generic attacks. It also enjoys
some other theoretical advantages. For instance, consider the Merkle-Damg̊ard iteration of a compression
function f . If f falls to a pseudo-preimage attack of time complexity T (given y, an attacker can find h
and m such that f(h,m) = y), then the full H is susceptible of a Meet-in-the-Middle preimage attack of
complexity

√
4T · 2n/2. This is for instance how a break of the MD4 compression function led to a break of

the full hash function [Leu08a]. Such a lifting is impossible on double-pipe hash functions.

3.4.5 Concatenated Hashing

A simple way to build a hash function would simply be... to concatenate the output of two existing
hash functions. The implicit hope is that even if one of the hash function breaks, the other one would resist
(or, at the very least, not break in the same way). This idea was apparently first suggest by Preneel in his
PhD thesis [Pre93], and variants thereof made their ways into several standards. For instance, in TLS a
pseudo-random function family is created by considering the XOR of SHA-1 and MD5 [DA99]. We consider
the concatenation CH of k Merkle-Damg̊ard hash function (resulting in a bigger Merkle-Damg̊ard hash):

CH (M) = Hf1(IV1,M) ‖Hf2(IV2,M) ‖ . . . ‖Hfk(IVk,M).

Fig 3.5 illustrates the construction with k = 2. Unfortunately, concatenating two iterated n-bit hash functions
does not result in anything near a secure 2n-bits hash function.

44

3.4. Close Relatives of the Merkle-Damg̊ard Construction

IV1

IV2

Full collision !

Figure 3.6: Joux’s attack against concatenated hashes

3.4.5.1 Joux’s Collision Attack

We describe the collision attack of [Jou04] against the concatenated hash CH with two pipes. Starting
from two fixed chaining values IV1 and IV2 in the two pipes, the adversary first finds a 2n/2-way multicollision
(using the attack of §3.3.2) for the first hash function Hf1 . The adversary then evaluates Hf2 on the 2n/2

messages of the multicollision, all yielding the same chaining value for Hf1 , while yielding a set of 2n/2

chaining values for Hf2 , as shown in Figure 3.6. The adversary then looks for the expected collision in this
set. To construct a 2`-multicollision on the two pipes, just replay Joux’s attack using the two-pipe collision
finding algorithm described above ` times.

Joux also shows that this idea can be extended to find (multi)collisions in the concatenation of an arbitrary
number k of hash functions. To build a collision on k parallel pipes, the adversary proceeds inductively:
first construct a 2n/2-way multicollision on the first k− 1 pipes and hash the 2n/2 messages in the last pipe.
Then, by the birthday bound, a collision is expected amongst the set of 2n/2 values generated in the last
pipe. This collision is present in all the previous k− 1 pipes, and hence results in a full collision on all the k
pipes.

The cost of building a collision on k pipes is the cost of building the multicollision, plus the cost of hashing
the 2n/2 messages of length (n/2)k−1. Solving the recurrence yields a time complexity of k · (n/2)

k−1 · 2n/2
compression function calls. More generally, the complexity of building a 2`-way multicollision on k pipes is
exactly ` times the preceding expression, or ` · k · (n/2)

k−1 · 2n/2.
Preimages on the concatenation can also be found for roughly 2n compression function evaluations using

similar techniques [Jou04]. We give a herding attack in §5.1.

3.4.5.2 Some Form of Provable Security

The intuition that the concatenation CH = Hf1‖Hf2 might be secure even when f1 and f2 are very
badly broken compression functions contains some truth. Hoch and Shamir have studied the security of this
concatenation under the assumption that f1 and f2 are weak compression functions [HS08]. In this setting,
f1 and f2 are public random functions, but the adversary has access to inversion oracles that finds preimages
in unit time for either f1 or f2. More specifically the adversary has access to the following oracles:

– (h, ?, y)→ m such that f1(h,m) = y
– (h, ?, y)→ m such that f2(h,m) = y
– (?,m, y)→ h such that f1(h,m) = y
– (?,m, y)→ h such that f1(h,m) = y

The oracles return ⊥ if no solution exist, otherwise they choose uniformly at random a possible answer.
Observe that Hf1 and Hf2 are both very badly broken when taken individually. Using the inversions
oracle, an attacker can forge preimages for the iterated hash functions in unit time. Their concatenation is
nevertheless much more secure.

Theorem 3.10 ([HS08]). Let � denote any group operation (including concatenation on the free group),
and let f1, f2 be two weak compression functions. Then the concatenated hash function defined by H(M) =
Hf1(M) �Hf2(M) is indifferentiable from a random oracle with q � 2n/2 queries, even in the presence of
the inversion oracles.

The attack of Joux spun a wider interest in hash function combiners, i.e., simple ways of turning several
hash functions into a single and potentially strong one in a black-box way. Boneh and Boyen first considered
the case of H1‖H2, and showed in 2006 that any secure construction that evaluates H1 and H2 once cannot

45

3. Modes of Operations and Generic Attacks

output fewer bits than simply concatenating their outputs [BB06]. They left as an open problem to study the
combination of ` hash functions amongst which k are collision resistant. The concatenation of the output of
`−k+ 1 of them is collision resistant by definition, and Pietrzak showed that no secure combiner can output
less bits [Pie07]. Lastly, Lehmann and Fischlin observed that restricting the input domain of H1‖H2 to
messages of at most n/4 blocks thwarts Joux’s attack [FL07]. They showed that in this case, any adversary
allowed to find a polynomial number of collisions on the compression functions cannot find a collision on the
concatenation. The limitation on the input domain can be mitigated by using hash trees (cf §3.5.1).

3.5 Other Hash Function Modes of Operation

We move on to the “Oddities Museum” section of our hash function modes of operation zoo. We describe
some hash function modes of operation that are not very similar to Merkle-Damg̊ard.

3.5.1 Tree Hashes

Tree hashes were first suggested in [Mer89]. Let f : {0, 1}n×{0, 1}n → {0, 1}n be a compression function
used in the tree hash Hf . An `-bit message M is initially padded with a single “1” bit and as many “0” bits as
needed to obtain padTH(M) = m1,m2, . . . ,mL, where each mi is n-bit long, L = 2κ for κ = dlog2(`+ 1)/ne.
Consider the resulting message blocks as the leaves of a full binary tree of depth κ. Then, the compression
function is applied to any two leaves with a common ancestor, and its output is assigned to the common
ancestor. This procedure is followed in an iterative manner. A final compression function is applied to
the output of the root and an extra final strengthening block, normally containing the length of the input
message M . The resulting output is the final tree hash. Formally, the tree hash function Hf (M) is defined
by Algorithm 3.7. The main advantage of tree hashes is that the hash function can be evaluated in parallel.
Tree hashes are inherently victims of a long-message second preimage attack, unless specific countermeasures
prevent it.

Algorithm 3.7 Tree Hashing

function Tree-Hash(M)
m1,m2, . . . ,mL ← padTH(M)
for j = 1 to 2κ−1 do compute h1,j = f (m2j−1,m2j)
for i = 2 to κ do

for j = 1 to 2κ−i do compute hi,j = f (hi−1,2j−1, hi−1,2j)
end for
return Hf (M) = f (hκ,1, |M |).

end function

3.5.2 Merkle-Damg̊ard-Again

Hash twice, double the fun!

Hash function folklore

The “Hash-Twice” constructions, aka Merkle-Damg̊ard-Again, is a folklore non-streamable mode of op-
eration, meaning that the whole message must be present in memory during the whole hash process. The
idea is quite simple: hash a message using the Merkle-Damg̊ard iteration of some compression function, then
define the IV to be the resulting hash value, and hash the message again! Formally, we define

H = f∗
(
f∗(IV,M),M

)
,

where M is appropriately padded. Figure 3.7 illustrates the construction. This construction does not
enjoy any security result that we are aware of, but it seems remarkably resistant: none of the generic attacks
described in §3.3 apply as-is. However, a generalized version of Joux’s multicollision does apply [HS06, NS07]
with essentially the same complexity. In addition, we describe a herding attack in §5.2 and a second preimage
attack in §5.3, with essentially the same complexity as their Merkle-Damg̊ard counterparts.

3.5.3 The Zipper hash

The “Zipper” mode of operation has been proposed by Liskov in 2006, and is also a non-streamable mode
of operation quite similar to Merkle-Damg̊ard-Again. Let f1, f2 be two compression functions, and let M

46

3.5. Other Hash Function Modes of Operation

m0

f2

f1

m1

f2

f1

m2

f2

f1

mr

f2

f1

h2
0

h1
0

h2
1

h1
1

h2
2

h1
2

IV

Figure 3.7: Merkle-Damg̊ard-Again.

an appropriately padded message. We denote by M̃ the message M in which the blocks are written in the
opposite order. The zipper hash ZH is defined as:

ZH (M) = f∗2

(
f∗1 (IV,M), M̃

)
.

Liskov proved that this apparently bad construction enjoys a very interesting security feature, similar
to that of the concatenated hashing (cf. §3.4.5), namely that the construction is secure even if the two
compression functions are very weak.

Theorem 3.11 ([Lis06]). Let f1, f2 be two weak compression functions. Then the Zipper hash function ZH
is indifferentiable from a random oracle with q � 2n/2 queries, even in the presence of the inversion oracles.

This bound cannot be improved because the generalized variant of Joux’s multicollision attack does
apply [HS08, NS07]. We also give a herding attack in §5.2.1.

47

Chapter 4

New Generic Second Preimage Attacks

In this chapter we present a new generic second preimage attack against the Merkle-Damg̊ard
mode of operation and some derivatives. This new attack in particular breaks Rivest’s Dithered
hashing, which was specifically designed to avoid generic second preimage attacks. This work
led to a joint publication at EUROCRYPT 2008, along with Elena Andreeva, Orr Dunkelman,
Johnathan Hoch, John Kelsey, Adi Shamir and Sebastien Zimmer [ABF+08]. Andreeva, Dunkel-
man and Kelsey had in fact independently discovered the attack at the exact same time we did.

This chapter describes a new generic second preimage attack against Merkle-Damg̊ard. It relies heavily
on the diamond structure introduced by Kelsey and Kohno [KK06] and described in §3.3.5. On the plain
Merkle-Damg̊ard construction, the new attack does not really improve on the previously-known generic
second preimage attacks of Dean [Dea99] and Kelsey-Schneier [KS05]. The new attack is however much
more flexible, and can be applied to a broader spectrum of hash functions. We first describe the new attack
in its simplest form against the plain Merkle-Damg̊ard mode of operation in §4.1. We then show that it breaks
Rivest’s dithered hashing in §4.2, and that it matches the provable security bound on Shoup’s UOWHF in
§4.3. A refined, more sophisticated version of the attack breaks the folklore Merkle-Damg̊ard-again mode of
operation, but as this require some more machinery, we delay its exposition to chapter 5.

4.1 A New Generic Second Preimage Attack Against Merkle-Damg̊ard

Our new technique to find second preimages on Merkle-Damg̊ard hash functions relies on the “diamond
structure” of the herding attack that was described in §3.3.5.

The idea of the attack can be summarized as follows. Assume we have performed the offline phase of
the herding attack, and have computed a diamond structure with 2` “leaves” (or external nodes) and such
that the chaining value at the root is h�. This can be done with about 2n/2+`/2+2 compression function
evaluations. Then, given a target message M of length 2κ blocks, connecting h� to one of the 2κ chaining
values encountered during the computation of H(M) takes only 2n−κ compression function calls. Then,
connecting an arbitrary prefix P of the right size to the diamond structure takes time 2n−`, and leads to a
successful second preimage forgery, since all the steps have complexity less than 2n. The attack is illustrated
and more precisely described in Algorithm 4.1.

Complexity. The first step allows for precomputation and its time and space complexity is about 2(n+`)/2+2

(see §3.3.5). The second step of the attack is carried out online with 2n−κ work, and the third step takes 2n−`

work. The total time complexity of the attack is then 2(n+`)/2+2 precomputation and 2n−κ + 2n−` online
computations and their sum is minimal when ` = (n−4)/3 for a total of about 5 ·22n/3 +2n−κ computations.

Comparison with Previously Existing Generic Attacks. The attacks of [Dea99, KS05] are slightly more
efficient than ours. We present the respective offline and online complexities for the old and new variants of
the attack in Table 4.1 and we compare the attacks for MD5 (n = 128, κ = 55), SHA-1 (n = 160, κ = 55),
SHA-256 (n = 256, κ = 118), and SHA-512 (n = 512, κ = 118) in Table 4.2. Still, our technique gives the
adversary more control over the second preimage. She may choose a large chunk of the forgery, typically one
half. For example, she could choose to reuse most of the target message, leading to a second preimage that
differs from the original by only `+ 2 blocks.

The main difference between the older techniques and ours is that the previous attacks build on the use
of expandable messages. We note that our attack just offers a short patch. At the same time, our attack
can also be viewed as a new, more flexible technique to build expandable messages, by choosing a prefix of
the appropriate length and connecting it to the collision tree. This can be done in time 2(n+`)/2+2 + 2n−`.
Although it is more expensive, this new technique can be adapted to work even when an additional dithering
input is given, as we shall now demonstrate.

49

4. New Generic Second Preimage Attacks

Algorithm 4.1 Summary of our new attack on the plain Merkle-Damg̊ard construction.

1. Construct a collision tree of depth ` with a final chaining value at the root h�.

2. Connect h� to some intermediate chaining value in the target message M . This is done by generating
random message blocks B, until f (h�, B) = hi for some i, such that `+ 1 ≤ i <

∣∣M
∣∣. Let B↘ be the

message block satisfying this condition.

3. Generate an arbitrary prefix P of size i− `−2 blocks, and assume that it hashes to hP , then “connect”
it to the diamond. This can be done by generating random message blocks B, until f (hP , B) = xj ,
where xj is a chaining value labeling a leaf of the diamond. Let B↗ denote this block, and let T be
the chain of ` blocks traversing the diamond from xj to h�.

4. Form a message M ′ = P ||B↗||T ||B↘||mi+1, . . . ,m2κ−1.

h�

x1

x3

x4

x2

x5

x6

` blocks

IV
hi

H(M)
M

B↘

mi+1, . . . ,m2κ−1

hP

P

B↗

f
(
h�, B

↘) = hi

f
(
hP , B

↗) = xj

Attack Complexity Avg. Patch Message
Offline Online Memory Size Length

Dean? 2n/2+1 2n−κ 2 2κ−1 2κ

Kelsey-Schneier κ · 2n/2+1 + 2κ 2n−κ 2 · κ 2κ−1 2κ

New 2(n+`)/2+2 2n−` + 2n−κ 2`+1 `+ 2 2κ

Using TMDTO 2(n+`)/2+2 + 2n−λ 2n−` + 22λ 2`+1 + 2n−2λ `+ 2 2λ

(§. 6.2)
? — This attack assumes the existence of easily found fixed points in the compression function

Table 4.1: Comparison of Long Message Second Preimage Attacks

4.2 Application to Dithered Hashing

In this section we describe a generic second preimage attack against Rivest’s Dithered Hashing. This mode
of operation was explicitly designed to avoid the existing second preimage attack (this was the motivation
for choosing an abelian square-free dithering sequence). Before describing the attack itself, we investigate
several properties of the dithering sequence.

4.2.1 More Sequence Background

The number of distinct factors of a given size of an infinite word gives an intuitive notion of its complexity :
a sequence is more complex (or richer) if it possesses a large number of different factors. We denote by
Factz(`) the number of factors of size ` of the sequence z. Because they have a very strong structure,
r-uniform sequences have special properties, especially with regard to their complexity.

Theorem 4.1 (Cobham, 1972, [Cob72]). Let z be an infinite sequence generated by an r-uniform morphism,
and assume that the alphabet size

∣∣A
∣∣ is finite. Then z has linear complexity bounded by:

Factz(`) ≤ r · |A|2 · `.

50

4.2. Application to Dithered Hashing

Function MD5 SHA-1 SHA-256 SHA-512
(n, κ) (128,55) (160,55) (256,118) (512,118)

Dean Offline: 265 281 2129 2257

Online: 273 2105 2138 2394

Memory: 2 2 2 2
Patch: 254 254 2117 2117

Kelsey-Schneier Offline: 271 287 2136 2264

Online: 273 2105 2138 2394

Memory: 110 110 234 234
Patch: 254 254 2117 2117

New Offline: 293.5 2109.5 2189 2317

Online: 274 2106 2139 2395

Memory: 256 256 2119 2119

Patch: 57 57 120 120

First connection Offline: 298.3 2122.3 2194.3 2394

with TMDTO Online: 265 281 2129 2257

Memory: 265.6 281.6 2129.6 2257.6

Patch: 66 82 130 258
Length: 232 240 264 2118

The values were optimized for minimal online complexity.
TMDTO values were optimized for equal online and memory complexities.
Memory and patches are measured in blocks.
Length is given for cases where the message length may be shorter than 2κ.

Table 4.2: Comparison of the long-message second preimage attacks on real hash functions

A polynomial algorithm which computes the exact set of factors of a given length ` can be deduced
from the proof of this theorem. It is worth mentioning that similar results exist in the case of sequences
generated by non-uniform morphisms [ELR75, Pan84], although the upper bound can be quadratic in `.
The bound given by this theorem, although attained by certain sequences, is relatively rough. For example,
since the Keran̈en sequence is 85-uniform, the theorem gives Factk(`) ≤ 1360 · `. For ` = 50, this gives
Factk(50) ≤ 68000, while the factor-counting algorithm reveals that Factk(50) = 732. Hence, for small
values of `, the following more ad hoc upper bound may be tighter:

Lemma 4.2. Let z be an infinite sequence over the alphabet A generated by an r-uniform morphism τ . For
all `, 1 ≤ ` ≤ r, we have :

Factz(`) ≤ ` ·
(
Factz(2)− |A|

)
+
[
(r + 1) · |A| − Factz(2)

]
.

Proof. If ` ≤ r, then any factor of z of size ` falls in one of these two classes:
– Either it is a factor of τ(α) for some letter α ∈ A. There are no more than |A| · (r− `+ 1) such factors.
– Or it is a factor of τ(α).τ(β), for two letters α, β ∈ A (and is not a factor of either τ(α) or τ(β)). For

any given pair (α, β), there can only be ` − 1 such factors. Moreover, α.β must be a factor of size 2
of z.

So Factz(`) ≤ |A| · (r − `+ 1) + Factz(2) · (`− 1).

For the particular case of the Keränen sequence k, we have r = 85,
∣∣A
∣∣ = 4 and Factk(2) = 12 (all

non-repeating pairs of letters). This yields Factk(`) ≤ 8 · `+ 332 when ` ≤ 85, which is tight, as for ` = 50
it gives: Factk(50) ≤ 732.

4.2.1.1 Factor Frequency

Formally, let us denote by Nω(x) the number of occurrences of ω in x (which is expected to be a finite
word), and by z[1..i] the prefix of z of size i. The frequency of a given word ω in the sequence z is the limit
of Nω(z[1..i])/i when i goes to +∞.

We will see later on that we will have to choose a given factor of the Keränen sequence in the course of
our attack against Dithered Hashing, and that the complexity of the attack will depends on the frequency
this factor. If the frequency of the various factors is non uniform, then the attack should exploit this bias
(just like any cryptographic attack).

51

4. New Generic Second Preimage Attacks

We denote by 2−H∞(z,`) the frequency of the most frequent factor of length ` in the sequence z. It
follows immediately that H∞(z, `) ≤ log2 Factz(`). Hence, when the computation of H∞(z, `) is infeasible,
log2 Factz(`) can be used as an upper-bound. It is however possible to determine precisely the frequency
of certain words in sequences generated by uniform morphisms. For instance, it is easy to compute the
frequency of individual letters in the sequence generated by a morphism τ : if x is some finite word and
α ∈ A, then by definition we find:

Nα (τ (x)) =
∑

β∈A

Nα (τ (β)) ·Nβ (x) (4.1)

In this formula, Nα(τ(β)) is easy to determine from the description of the morphism τ . We define:

A = {α1, . . . , αk}

Us =

(
Nαj (τs (a))

`s

)

1≤j≤|A|

M =

(
Nαi(τ(αj))

`

)

1≤i,j≤|A|

It follows from equation (4.1) that:

Us+1 = M · Us.

The frequency of individual letters is given by the vector U∞ = lims→∞ Us. Fortunately, this vector lies in
the kernel of M−Ik (and is such that its component sum up to one). For instance, for the Keränen sequence,
and because of the very symmetric nature of τ , we find that M1 is a circulant matrix:

85 ·M =




19 18 27 21
21 19 18 27
27 21 19 18
18 27 21 19




We quickly obtain: U∞ = 1
4 (1, 1, 1, 1), meaning that no letter occurs more frequently than the other.

The frequencies of digrams (i.e., two-letters words) are slightly more complicated to compute, as the digram
formed from the last letter of τ(α) and the first letter of τ(β) is automatically a factor of τ(αβ) but is not
necessarily a factor of either τ(α) or τ(β) individually. We therefore need a new version of equation (4.1)
that takes this fact into account. Let us define Ω2 = {ω1, . . . , ωr}, the set of factors of size two of z. If ω is
such a factor, we obtain:

Nω (τ (x)) =
∑

γ∈A
Nω (τ (γ)) ·Nγ (x) +

∑

ωj∈Ω2

[
Nω (τ (ωj))−Nω (τ (ωj [1]))−Nω (τ (ωj [2]))

]
·Nωj (x) (4.2)

Again, in order to obtain a system of linear relations, we define:

Vs =

(
Nωi (τs (a))

`s

)

1≤i≤|Ω2|

M1 =

(
Nωi (τ (αj))

`

)

1≤i≤|Ω2|,1≤j≤|A|

M2 =

(
Nωi (τ (ωj))−Nωi (τ (ωj [1]))−Nωi (τ (ωj [2]))

`

)

1≤i,j≤|Ω2|

and equation (4.2) implies:

Vs+1 = M1 · Us +M2 · Vs

Again, we are interested in the limit V∞ of Vs when s goes to infinity, and this vector is a solution of the
equation: V∞ = M2 · V∞ +M1 · U∞. For the Keränen sequence k, where

Ω2 = {ab, ac, ad, ba, bc, bd, ca, cb, cd, da, db, dc} ,

52

4.2. Application to Dithered Hashing

we observe that:

85 ·M1 =




6 3 9 9
8 5 8 5
4 10 10 7
7 4 10 10
9 6 3 9
5 8 5 8
8 5 8 5
10 7 4 10
9 9 6 3
3 9 9 6
5 8 5 8
10 10 7 4




Because the magic string that defines the Keränen sequence begins and ends with an “a”, then the digram
formed by the last letter of τ(α) and the first letter of τ(β) is more precisely α.β. Thus, M2 is in fact 1/85
times the identity matrix. We can then compute V∞, and we find:

Factor ab ac ad ba bc bd ca cb cd da db dc

Frequency 9
112

13
168

31
336

31
336

9
112

13
168

13
168

31
336

9
112

9
112

13
168

31
336

Here, a discrepancy is visible, with “ba” being nearly 15% more frequent than “ab”. Computing the
frequency of factors of size less than ` is not harder, and the reasoning for factors of size two can be used
as-is. In fact, equation (4.2) holds even if ω is a factor of z of size less than `. Let us define:

S =

(
Nω (τ (αj))

`

)

1≤j≤|A|
,

T =

(
Nω (τ (ωj))−Nω (τ (ωj [1]))−Nω (τ (ωj [2]))

`

)

1≤j≤|Ω2|
.

Equation (4.2) then brings:

Nω
(
τs+1 (a)

)

`s+1
= S · Us + T · Vs

And the frequency of ω in z is then S ·U∞+T ·V∞. The frequency of any word could be computed using
this process recursively, but we will conclude here, as we have set up the machinery we need later on.

4.2.2 Description of the Attack

We now try to adapt the attack of §4.1 to the Dithered Hashing, assuming that there is an arbitrary
dithering sequence z. The first problem arises in the offline phase, because in order to construct the diamond
structure we must evaluate the compression function, and to evaluate the compression we must choose
dithering letters. A simple solution is to use the same dithering symbol for all the edges at the same depth
in the tree, as shown in Figure 4.1. A word of ` letters is then required to build a diamond structure with
2` external nodes. We also need an additional letter to connect the “root” of the diamond structure to the
message M . To summarize, in order to build a diamond structure of depth `, we have to fix a word ω of size
` + 1, use ω[i] as the dithering symbol at depth i, and use the last letter of ω to realize the connection to
the given message. Let us denote this customized diamond structure by Dω.

The dithering sequence makes the hash of a block dependent on its position in the whole message.
Therefore, the diamond structure Dω can be connected to its target only at certain positions, namely, at the
positions where ω and z match. The set of positions in the message where this is possible is then given by:

Range(z, ω) =
{
i ∈ N

∣∣∣
(
`+ 1 ≤ i

)
∧
(
z[i− `] . . . z[i] = ω

)}
.

The attack is precisely described in Algorithm 4.2. The adversary tries random message blocks m↘,
computing f(h�,m

↘, ω[`]), until some hi is encountered. If i ∈ Range(z, ω), then the second preimage
attack may carry on. Otherwise, another block m↘ needs to be found. Therefore, the goal of the adversary
is to build the diamond structure with a word ω which maximizes the cardinality of Range(z, ω).

To attain this objective, ω should be the most frequent factor of z. Its frequency, also known as the
min-entropy of z, is therefore very important in computing the complexity of our attack. In the worst case,
all factors of size ` + 1 appear in z with the same frequency, and the probability that a randomly chosen
factor of size ` + 1 in z is the word ω is 1/Factz(` + 1). However, when it is possible to actually compute

53

4. New Generic Second Preimage Attacks

a
b

a
c h�

IV

M

H(M)

d

z[1] z[2] a b a c d

Figure 4.1: A diamond built on top of a factor of the dithering sequence, connected to the message.

Algorithm 4.2 Second preimage attack on Dithered Hashing.

1. Choose the most frequent factor ω of z, of length `+ 1.

2. Build a collision tree of depth ` using the first ` symbols of ω as the dithering symbols in all the
leaf-to-root paths. Let h� be the target value of the tree.

3. Connect h� to some intermediate chaining value in the target message M (say hi), by using ω[`] as the
dithering letter. Repeat until i ∈ Range(z, ω), where

Range(z, ω) =
{
i ∈ N

∣∣∣
(
`+ 1 ≤ i

)
∧
(
z[i− `] . . . z[i] = ω

)}
.

Let m↘ be a message block satisfying this condition, i.e., hi = f(h�,m
↘, ω[`]).

4. Generate an arbitrary prefix P of size i − ` − 2 blocks, and assume that it hashes to hP , then
“connect” it to the diamond. This can be done by generating random message blocks B, un-
til f (hP , B, z[i− `− 1]) = xj , where xj is a chaining value labeling a leaf of the diamond. Let m↗

denote such a block, and let T be the chain of ` blocks traversing the diamond from xj to h�.

5. Form a message M ′ = P ‖ m↗ ‖ T ‖ m↘ ‖ mi+1, . . . ,m2κ−1.

the min-entropy of z, better results can be achieved. In any case, the cost of finding the second preimage
for a given sequence z is

2n/2+`/2+2 + 2H∞(z,`+1) · 2n−κ + 2n−`,

where H∞(z, ` + 1) is the min-entropy of ` + 1 words in the sequence z. In most “good sequences” (where
the probability of all factors is roughly the same) or when the computation of the exact H∞(z, ` + 1) is
infeasible, we can give an upper bound for the attack:

2n/2+`/2+2 + Factz(`+ 1) · 2n−κ + 2n−`.

4.2.3 The Multi-Diamond Attack

So far, we only used a single diamond Dω, built using a single factor ω of the dithering sequence. As
mentioned earlier, this diamond can only be used at specific locations, corresponding to the set of locations
of z where ω appears. We note that while the locations to connect into the message are determined by
the dithering sequence, the complexity of connecting to the diamond structure depends (mostly) on the
parameter `, which can be chosen by the adversary. Hence, to make the attack faster, we could try to
enlarge the range of our herding device at the expense of a more costly precomputation and more memory.

Let ω1.β.α and ω2.γ.α be two factors of size ` + 2 of the dithering sequence both ending by a given
letter α, with α, β, γ ∈ A (so that ω1 and ω2 are made of ` letters). We can build two independent
diamonds Dω1

and Dω2
using ω1 and ω2, respectively, to feed the dithering symbols. Assume that the root

of Dω1
(respectively, Dω2

) is labelled by h1
� (respectively, h2

�). Now, we could find a colliding pair (m1,m2)
such that f(h1

�,m1, β) = f(h2
�,m2, γ). Let us denote by h�� the resulting chaining value. Figure 4.2 illustrates

this. This last node can be connected to the message using α as the dither symbol. We have“herded”together
two diamonds with two different dithering words, and the resulting “multi-diamond” is more useful than any
of the two diamonds separately. This claim is justified by the fact that the range of the new multi-diamond
is the union of the two ranges of the two separate diamonds.

54

4.2. Application to Dithered Hashing

ω1

ω2

h1
�

h2
�

h��

β

γ

α

Figure 4.2: A “Multi-diamond” with 2 words.

ω1

ω2

ω3

ω4

h1
�

h2
�

h3
�

h4
�

h1
��

h2
��

δ

ε

ζ

η

β

γ
h���

α

Figure 4.3: A “Multi-diamond” with 4 words.

This technique can be used twice, as exemplified by Figure 4.3 to provide an even bigger range, as long
as there is a set of four factors of z of size `+ 3 that can be written:

{ω1.δ.β.α, ω2.ε.β.α, ω3.ζ.γ.α, ω4.η.γ.α} ,

where |ωi| = ` and α, β, γ, δ, ε, ζ, η ∈ A. A total number of 3 colliding pairs are needed to assemble the 4
diamonds together into this new multi-diamond.

Let us generalize this idea. We say that a set of 2k words is suffix-friendly if all the words end by the same
letter, and if after chopping the last letter of each word, the set can be partitioned into two suffix-friendly
sets of size 2k−1 each. A single word is always suffix-friendly, and thus the definition is well-founded. Of
course, a set of 2k words can be suffix-friendly only if all the words are of length greater than k. If the set of
factors of size `+ k + 1 of z contains a suffix-friendly subset of 2k words, then the technique described here
can be recursively applied k times.

An apparently tricky problem is to determine the biggest k such that a given set of words, say Ω, contains
a suffix-friendly subset of size 2k. This is fortunately doable in time polynomial in the sizes of Ω and A.

Also, given a word ω, we define the restriction of a multi-diamond herding tree to ω by removing nodes
from the original until all the paths between the leaves and the root are labelled by ω. For instance,
restricting the multi-diamond of Figure 4.3 to ω1.δ.β.α means keeping only the first sub-diamond and the
path h1

� → h1
�� → h���.

Now, assume that the set of factors of size `+k+1 of z contains a suffix-friendly subset of size 2k denoted
by Ω = {ω1, . . . , ω2k}. The multi-diamond formed by herding together the 2k diamonds corresponding to
the ωi’s can be used in place of any of them, as mentioned above. Therefore, its “frequency” is the sum of
the frequency of the ωi. However, once connected to the message, only its restriction to the `+ k + 1 letter
of z before the connection can be used. This restriction is a diamond with 2` leaves (followed by a “useless”
path of k nodes).

The cost of building a 2k-multi-diamond is 2k the time of building a diamond of size ` plus the cost of
finding 2k− 1 collisions. The cost of connecting the prefix to the multi-diamond is still 2n−` (this step is the

55

4. New Generic Second Preimage Attacks

same as in our original attack). Lastly, the cost of connecting the multi-diamond to the message depends on
the frequency of the factors chosen to build it, which ought to be optimized according to the actual dithering
sequence.

4.2.4 Cryptanalysis of Keränen-DMD

The cost of the single-diamond attack against Keränen-DMD depends on the properties of the sequence k
that have been outlined in §4.2.1. Let us emphasize again that since it has a very regular structure, k has
an unusually low complexity, and despite being strongly repetition-free, the sequence offers an extremely
weak security level against our attack. Following the ideas of §4.2.1, the min-entropy of k for words of
size ` ≤ 85 can be computed precisely: for 29 ≤ ` ≤ 85, the frequency of the most frequent factor of
size `+ 1 is 1/(4 ·85) = 2−8.4 (if all the factors of length, say, 50 were equally frequent, this would have been
1/732 = 2−9.5). We thus have H∞(z, ` + 1) = 8.4, and the cost of our attack on Keränen-DMD, assuming
that 29 ≤ ` ≤ 85, is:

2n/2+`/2+2 + 2n−κ+8.4 + 2n−`.

If n is smaller than 3κ− 8.4, the optimal value of ` is reached by fixing ` = (n− 4)/3. For n in the same
order as 3κ, all the terms are about the same (for n > 3κ, the first term can be ignored). Hence, to obtain
the best overall complexity (or to optimize the online complexity) we need to fix ` such that 2n−κ+8.4 = 2n−`,
i.e., ` = κ − 8.4. For example, for κ = 55 the optimal value of ` is 46.6. The online running time (which
is the majority of the cost for n > 3κ) is in this case 2n−46.6 which is much smaller than 2n in spite of the
use of dithering. For larger values of `, i.e., 85 ≤ ` < 128, we empirically measured the min-entropy to
be H∞(k, `+ 1) = 9.8 so that ` = κ− 9.8 can be used when n ≈ 3κ.

We also successfully applied the multi-diamond attack to Keränen-DMD. We determined the smallest `
such that the set of factors of size ` of the Keränen sequence k contains a 2k suffix-friendly set, for various
values of k:

k min ` Factk(`)

4 4 88
5 6 188
6 27 540
7 109 1572
8 194 4256

From this table we conclude that our choice of k we will most likely be 6, since choosing 7 would require
us to choose ` ≥ 109, which is going to unbalance the cost of the two online connections steps. Amongst all
the possible suffix-friendly sets of size 26 found in the factors of size about 50 of k, we chose one having a
high frequency using a greedy algorithm making use of the ideas exposed in §4.2.1. We note that checking
whether this yields optimal multi-diamonds is out of the scope of this work. In any case, we found that the
frequency of our multi-diamond, shown in Figure 4.4, is 2−3.97.

If n is sufficiently large (for instance, n = 256), the offline part of the attack is still of negligible cost.
Then, the minimal online complexity is obtained when 2n−κ+3.97 = 2n−`, i.e., ` = κ− 3.97. The complexity
of the attack is then roughly 2 · 2n−κ+4 for sufficiently large values of n. This represents a speed-up of
about 21 compared to the single-diamond attack.

4.2.5 Cryptanalysis of DMD-CP

We now apply our attack to Rivest’s concrete proposal. We first need to evaluate the complexity of its
dithering sequence. Recall from §3.4.2 that it is based on the Keränen sequence, but that we move on to
the next symbol of the sequence only when a 13-bit counter overflows (we say that it results in the dilution
of k with a 13-bit counter). The original motivation was to reduce the cost of the dithering, but it has
the unintentional effect of increasing the resulting sequence complexity. It is possible to study this dilution
operation generically, and to see to which extent it makes our attack more difficult.

Lemma 4.3. Let z be an arbitrary sequence over A, and let d denote the sequence obtained by diluting z
with a counter over i bits. Then for every ` not equal to 1 modulo 2i, we have:

Factd(`) =
(
2i − (` mod 2i) + 1

)
· Factz

(⌈
` · 2−i

⌉)

+
((
` mod 2i

)
− 1
)
· Factz

(⌈
(`− 1) · 2−i

⌉
+ 1
)

Proof. The counter over i bits splits the diluted sequence c into chunks of size 2i (a new chunk begins when
the counter reaches 0). In a chunk, the letter from z does not change, and only the counter varies. To
obtain the number of factors of size `, let us slide a window of size ` over d. This window overlaps at

56

4.2. Application to Dithered Hashing

c

a

d

b

c

c

a

da

ab
cb
db
c

bcd

b

cb

ca

c

db
d

a

b

cabadb

bcdbdadcdad
badac

c

d

a

bdc

dbcba

d

bcd

ab

daba

abcacdcb
cd

cda

bc

abacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcac
acdcbdcdadbdadcadabacadcdbcdcacbadabacabdad
abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacb
dbdacdcbdcdadbdadcadabacadcdbabcacdcbcdcadc
adabacabadbabcbdbadacdadbdcbabcbd
adcadabacadcdbabcacdcbcdcadcdbdab
cbacbcdcacdcbdcdadbdcbc
adcadabacabadbabcbdbada
abadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcb
dcadcdbdabacabadbabcbdbcbacbcdcacbabdabaca
dacabadabacbabdbcdcacdcbdcdadbdadcadabacad
dbcabadbabcbdbcbacbcdcacbabdcdacabadabacba
bdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcd
cadcdbcdcacbadabacabdadcadabacabadbabcbdbada
bcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcda
cbcdcacdbcbacbcdcacdcbdcdadbdcbcadabdbcbab
acabadbabcbdbadacdadbdcbabcbdbcabadbabc
acabadbabcbdbcbacbcdcacbabdabacadcbcdca
bcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabac
bcbdbadcdadbdacdcbdcdadbdadcadabacadcdbabca
adbabcbdbcbacbcdcacbabdabacadcbcdcacdbcba
cabadbabcbdbcbacbcdcacbabdcdacabadabacbab
cbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcd
dcdbcdcacbadabacabdadcadabacabadbabcbdbada
cbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadc
acdcbcdcadcdbdabacabadbabcbdbcbacbcdcacba
dbadcdadbdacdcbdcdadbdadcadabacadcd
acbadabacabdadcadabacabadbabcbdbada
acbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcb
bcbacbcdcacdcbdcdadbdcbcadabdbcbabcbdcbc
abdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbc
cdbcdcacbadabacabdadcadabacabadbabcbdbada

b

c
a

d
b

a
a

c

a

d
c

b
b

c
d

c
b

c
a

c
c

d
b

c
a

b
b

c

d

a
a

c

Figure 4.4: A suffix-friendly set of 32 factors of size 50 from the Keränen sequence.

least
⌈
` · 2−i

⌉
chunks (when the beginning of the window is aligned at the beginning of a chunk), and at

most
⌈
(l − 1) · 2−i

⌉
+ 1 chunks (when the window begins just before a chunk boundary). These two numbers

are equal if and only if ` ≡ 1 mod 2i. When this case is avoided, then these two numbers are consecutive
integers.

This means that by sliding this window of size ` over d we observe only factors of z of size
⌈
` · 2−i

⌉

and
⌈
` · 2−i

⌉
+ 1. Given a factor of size

⌈
` · 2−i

⌉
of z, there are

(
2i − (` mod 2i) + 1

)
positions of a window

of size ` that allow us to observe this factor with different values of the counter. Similarly, there are((
` mod 2i

)
− 1
)

positions of the window that contain a given factor of z of size
⌈
` · 2−i

⌉
+ 1.

By taking 2 ≤ ` ≤ 2i, we have that
⌈
` · 2−i

⌉
= 1. Therefore, only the number of factors of length 1 and 2

of z come into play. The formula can be further simplified into:

Factd(`) = ` ·
(
Factz(2)− Factz(1)

)
+ (2i + 1) · Factz(1)− Fact2(z).

For the Keränen sequence with i = 13, this gives: Factd(`) = 8 · ` + 32760. Diluting over i bits makes
the complexity 2i times higher, but it does not change its asymptotic expression: it is still linear in `, even
though the constant term is bigger due to the counter. The cost of the attack is therefore:

2
n
2 + `

2 +2 + (8 · `+ 32760) · 2n−κ + 2n−`.

At the same time, for any ` ≤ 2i, the most frequent factor of d is (α, 0), (α, 1), . . . , (α, `−1) when α is the
most frequent letter of the Keränen sequence. However, as shown in section 4.2.1.1, all the letters have the
same frequency, so most frequent factor of the diluted Keränen sequence d has a frequency of 2−15. Hence,
the cost of the above attack is:

2n/2+`/2+2 + 2n−κ+15 + 2n−`.

57

4. New Generic Second Preimage Attacks

This is an example where the most frequent factor has a frequency which is very close to the inverse of the
number of factors (2−15 vs. 1/(8 · ` + 32760)). In this specific case it may seem that the gain of using the
most frequent element is small.

As before, if n is greater than 3κ (in this specific case n ≥ 3κ − 41), the optimal value of ` is κ − 15,
and the complexity of the attack is then approximately 2 · 2n−κ+15. For settings corresponding to SHA-1, a
second preimage can be found in expected time of 2120 (for 40 < ` < 78).

4.2.6 Countermeasures

We just observed that the presence of a counter increases the complexity of the attack. If we simply use
a counter over i bits as the dithering sequence, the number of factors of size ` becomes Fact(`) = 2i (as long
as i ≤ `). The complexity of the attack would then become:

2n/2+`/2+2 + 2n−κ+i + 2n−`.

By taking i = κ, we obtain a scheme which is resistant to our attack. This is essentially the choice
made by the designers of Haifa, but such a dithering sequence consumes κ bits of bandwidth. Using a
counter (i.e., a big alphabet) is a simple way to obtain a dithering sequence of high complexity. Another,
somewhat orthogonal, possibility to improve the resistance of Rivest’s dithered hashing to our attack is to
use a dithering sequence of high complexity over a small alphabet (to preserve bandwidth).

Abelian Square-Free Sequences of Exponential Complexity. It is possible to construct an infinite abelian
square-free sequence of exponential complexity, although we do not know how to do it without slightly
enlarging the alphabet.

We start with the abelian square-free Keran̈en sequence k over {a, b, c, d}, and with another sequence u
over {0, 1} that has an exponential complexity. For example, such a sequence can be built by concatenating
the binary encoding of all the consecutive integers. Then we can create a sequence z̃ over the union alphabet
A = {a, b, c, d, 0, 1} by interleaving k and u:

z̃ = k[1].u[1].k[2].u[2]. . . .

The resulting shuffled sequence inherits both properties: it is still abelian square-free, and has a complexity
of order Ω

(
2`/2

)
. Using this improved sequence, with ` = 2κ/3, the total cost of the online attack is

about 2n−2κ/3 (assuming n > 8κ/3). Even with this exponentially complex dithering sequence, our attack
is still more efficient than brute-force in finding second preimages. Although it may be possible to find
square-free sequences with even higher complexity, it is probably very difficult to achieve optimal protection,
and the generation of the dithering sequences is likely to become more and more complex.

Pseudorandom Sequences. Another possible way to improve the resistance of Rivest’s construction against
our attack is to use a pseudo random sequence over a small alphabet. Even though it may not be repetition-
free, its complexity is almost maximal. Suppose that the alphabet has size

∣∣A
∣∣ = 2i. Then the expected

number of `-letter factors in a pseudo random word of size 2κ is lower-bounded by: 2i·` ·
(
1− exp

{
−2κ−i·`

})

(refer to [JLS04], theorem 2, for a proof of this claim). The total optimal cost of the online attack is then
at least 2n−κ/(i+1)+2 and is obtained with ` = κ/(i + 1). With 8-bit pseudorandom dithering symbols and
κ = 55, the complexity of our attack is about 2n−5, which still offers a small advantage over exhaustive
search.

To conclude, we note that we show how to perform some attacks on dithering sequences over small
alphabet in the precomputation model in §6.3 (i.e., when a one-time precomputation of complexity 2n

subsequently allows to find arbitrary second preimages faster than exhaustive search).

4.3 Application to Shoup’s UOWHF

We now adapt the attack of §4.1 to Shoup’s UOWHF. To the best of our knowledge, no previous attack
on this construction was known. The complexity of the attack matches the lower bound given in Shoup’s
security proof (cf §3.4.3), thus showing that both the attack and the proof are optimal.

We first give an alternate definition of the dithering sequence z used in Shoup’s UOWHF. In fact, the
alphabet over which the sequence z[i] = ν2(i) is built is not finite, as it is the whole N. In any case, we
define:

ui =

{
0 if i = 1,

ui−1.(i− 1).ui−1 otherwise.

As an example, we have u4 = 010201030102010. The following facts about z are easy to establish:

58

4.3. Application to Shoup’s UOWHF

i) |ui| = 2i − 1

ii) The number of occurrences of ui in uj (with i < j) is 2j−i.

iii) The frequency of ui in the (infinite) sequence z is 2−i.

iv) The frequency of a factor is the frequency of its highest letter.

v) Any factor of z of size ` contains a letter greater or equal to blog2 (`)c.
Let us consider a factor of size ` of z. It follows from the previous considerations that its frequency is

upper-bounded by 2−blog2(`)c−1, and that this bound is reached by a prefix of size ` of z. The frequency is
lower-bounded by the nicer expression 1/(2 · `).

Our attack can be applied against the eSec property of H as described above. Choose at random a (long)
target message M . Once the key is chosen at random, build a collision tree using a prefix of z of size `, and
continue as described in §4.2.2. The cost of the attack is then upper-bounded by:

T = 2n/2+`/2+2 + 2 · ` · 2n−κ + 2n−`.

The attack breaks the target collision resistance with a constant success probability (of about 63%).
Therefore, with Shoup’s security reduction, one can construct an adversary against f with running time T
and probability of success 0.63/2κ. If f is a black box, the best attack against the eSec property of f is
exhaustive search. Thus, the best adversary in time T against f has a success probability of T/2n. When
n ≥ 3κ, T ' (2κ + 2) · 2n−κ (with ` = κ − 1), and thus the best adversary running in time T has success
probability O (κ/2κ) while the success probability of our attack is 0.63/2κ. This implies that there is no
attack better than ours by a factor greater than O (κ) or, in other words, there is only a factor O (κ) between
Shoup’s security proof and our attack.

We note that in this case, there is a very large gap between the frequency of the most frequent factor
and the upper-bound provided by the inverse of the number of factors. Indeed, it can be seen that:

Factui(`) =





0 if |ui| < `

2i − ` if |ui−1| < ` ≤ |ui|
`+ Factui−1

(`) if |ui−1| ≥ `

And the expression of the number of factors follows:

Factuκ(`) = 2dlog2(`+1)e +
(
κ− dlog2(`+ 1)e − 1

)
· `

Hence, if all of them would appear with the same probability, the time complexity of the attack would have
been

T = 2
n
2 + `

2 +2 +
(

2dlog2(`+1)e +
(
κ− dlog2(`+ 1)e − 1

)
· `
)
· 2n−κ + 2n−`,

which is roughly κ times bigger than the previous expression.

4.3.1 Application of the Multi-Diamonds Attack

To apply the multi-diamond attack of §4.2.3, we need to identify a big enough suffix-friendly subset of
the factors of z of a given size, and to compute its frequency.

We choose to have end diamonds of size ` = 22i−1. Let us keep in mind that ` and κ must generally be of
the same order to achieve the optimal attack complexity, which suggest that i should be close to log2 log2 κ.
Now, we need to identify a suffix-friendly set of factors of z in order to build a multi-diamond. In fact, we
focus on the factors that have ui as a suffix. It is straightforward to check that they form a suffix-friendly
set. It now remains to estimate its size and its frequency.

Lemma 4.4. let Ωj be the set of words ω of size ` = 22i−1 such that ω.ui is a factor of uj. Then:

i) If κ ≥ 2i, then |Ωκ| =
(
κ− 2i + 1

)
· 22i−i−1

ii) There are 22i−i−1 (distinct) words in Ωκ whose frequency is 2−j (with 2i ≤ j ≤ κ).

Proof. We first evaluate the size of Ω, and for this we define fi(κ), the number of factors of uκ that can be

written ω.ui, with |ω| = 22i−1. We find:

|Ωκ| =

{
0 if 2κ < 22i−1 + 2i

|Ωκ−1|+ 22i−i−1 if 2κ ≥ 22i−1 + 2i
(4.3)

The first case of this equality is rather obvious. The second case stems from the following observation:
let x be a factor of uj , for some j. Then either x is a factor of uj−1, or u contains the letter “j − 1” (both

59

4. New Generic Second Preimage Attacks

Function MD5 SHA-1 SHA-256 SHA-512
(n, κ) (128,55) (160,55) (256,118) (512,118)

Single-Diamond Offline: 291 2107 2189 2317

Online: 280 2112 2145.7 2401.7

Memory: 250 250 2111.3 2111.3

Patch: 51 51 114 114

Multi-Diamond Offline: 296.5 2112.5 2194.5 2322.5

Online: 276.9 2108.9 2142 2398

Memory: 259 259 2123 2123

Patch: 60 60 124 124

Table 4.3: Comparison of the Time Complexity of Our Attacks on Shoup’s UOWHF

cases are mutually exclusive). Thus, we only need to count the numbers of factors of Ωκ containing the letter
“κ− 1” to write a recurrence relation.

If 2κ ≥ 22i−1 + 2i, then ui appears 2κ−i times in uκ, at indices that are multiples of 2i. The unique
occurrence of letter “κ − 1” in uκ is at index 2κ−1 − 1. Thus, elements of Ωκ containing the letter “κ − 1”
are present in uκ at indices 2κ−1− 22i−1 +α · 2i, with 0 ≤ α < 22i−i−1. Therefore, there are exactly 22i−i−1

distinct elements of Ωκ containing “κ−1” in uκ (they are necessarily distinct because they all contain “κ−1”
only once and at different locations).

Now that (4.3) is established, we can unfold the recurrence relation. We note that we have for i ≥ 1,⌈
log2

(
22i−1 + 2i

)⌉
= 2i, and thus we obtain (assuming that κ ≥ 2i):

|Ωκ| =
(
κ− 2i + 1

)
· 22i−i−1

Also, for 2i ≤ j ≤ κ, Ωκ contains precisely 22i−i−1 words whose greatest letter is “j − 1”, and thus whose
frequency in z is 2−j .

By just selecting the factors of Ωκ of the highest frequency, we would herd together

22i−i−1 = `/ (1 + log2 `)

diamonds, each one being of frequency 1/(2`). The frequency of the resulting multi-diamond then be-
comes 1/ (2 + 2 log2 `). The cost of the multi-diamond attack is thus roughly:

`

1 + log2 `
·
(

2(n+`)/2+2 + 2
n
2

)
+ (1 + log2 `) · 2n−κ+1 + 2n−`.

If n � 3κ, the preprocessing will be negligible compared to the online time, and the cost of the attack
is O (log κ · 2n−κ). Therefore, with the same reasoning as before, we can show that there is a factor O (log κ)
between Shoup’s security proof and our attack. Note that, depending on the parameters, this improved
version of the attack may be worse than the basic version.

We outline the complexities out our attacks (the regular and the multi-diamond ones) against MD5,
SHA-1, SHA-256, and SHA-512 in Table 4.3.

60

Chapter 5

Other Generic Attacks on Other Constructions

In this chapter we give more generic attacks on less standard modes of operations. Our results cul-
minate with a generic second preimage attack on Merkle-Damg̊ard-Again. This work has led to a
joint publication with Elena Andreeva, Orr Dunkelman and John Kelsey at SAC 2009 [ABDK09].

Iterated-Concatenated-Expanded (ICE) hash functions generalize the Merkle-Damg̊ard mode of operation
in a natural way, by allowing an arbitrary number of permuted copies of the message to be hashed sequentially.
The resulting construction is obviously non-streamable. the Merkle-Damg̊ard-Again construction and the
Zipper Hash are easily seen to be particular cases of this more general framework. A very general result
of Hoch and Shamir [HS06], generalizing a preliminary result of Nandi and Stinson [NS07], states that any
ICE hash function is susceptible to a generalization of Joux’s multicollision attack, with essentially the same
complexity.

In this chapter we aim at breaking some ICE hash functions using either a herding attack or a second
preimage attack. In §5.1 we build the main tool that helps us achieve these goals, namely the ability to
perform the herding attack on concatenated hashes. We then use this tool to find herding attacks on the
Zipper Hash and on Merkle-Damg̊ard-Again in §5.2. Building on this result we extend the second preimage
attack of chapter 4 to Merkle-Damg̊ard-Again in §5.3, combining Joux’s multicollisions, Kelsey and Scheier’s
expandable messages and Kelsey and Kohno’s diamond structure in a single attack, arguably the most
sophisticated generic attack on hash functions so far. We conclude this chapter by presenting in §5.4 the
Trojan Message Attack, a new kind of generic attack. Like Joux’s multicollision attack, the trojan message
attack only requires a few collisions, and is therefore practical on some legacy hash functions such as MD5.
We did a public demonstration of this attack at the rump session of CRYPTO 2009.

5.1 Herding Concatenated Hashes

We start by showing how to adapt the herding attack to concatenated hashes. The main idea behind the
new attack is to construct multi-pipe diamond structures, which can be done “on top” of multicollisions. We
recall that a multicollision on (k− 1) pipes can be used to construct a collision on k pipes. In the same vein,
we succeed in herding k pipes by building a k-pipe diamond using a (k− 1)-pipe diamond and a (k− 1)-pipe
multicollision.

Assume that the adversary succeeded in herding k − 1 pipes. Then, she faces the problem of herding
the last pipe. Now, if the adversary tries to connect to a diamond structure in the k-th pipe with a random
message block, she is very likely to lose the control over the previous pipes. However, if she uses a “block”
which is part of a multicollision on the first k − 1 pipes, she still maintains the control over the previous
pipes, while offering enough freedom for herding the last pipe. The attack is described recursively, and the
recurrence stops when there is only a single hash function left, in which case it is sufficient to apply the
“normal” herding attack.

5.1.1 Precomputation Phase

In the precomputation phase, the adversary starts with the (k− 1)-diamond which is already known and
aims at building the k-diamond that would allow herding the k pipes. Figure 5.1 depicts the process for
k = 2.

Randomization Step. Given the concatenated chaining values, the adversary constructs a 2n−`-multicollision
on the first k − 1 pipes. Let the resulting chaining value be

(
h1, h2, . . . , hk−1

)
. This multicollision allows to

randomize the chaining value in the last pipe while keeping the first k − 1 pipes under full control.

Actual Diamond Construction. The adversary picks at random 2` values for Dk = {hki }. Then, she gen-
erates a set of further 2n/2-multicollisions on the first k − 1 pipes, starting from the intermediate val-

61

5. Other Generic Attacks on Other Constructions

` blocks n− ` blocks ` · n/2 blocks

2`

2`

h1

h1
�

h2
�

Figure 5.1: Diamond Structure on two pipes

ues (h1, h2, . . . , hk−1). The diamond in the last pipe will be built on top of this multicollision. For each
possible message in the multicollision, and each starting point (hk1 , h

k
2 , . . . , h

k
2`), the adversary computes the

new chaining values, expecting to reach enough collisions, such that for any hki , there exists a “message”
mα(i) (i.e., a sequence of message blocks in the multicollision) such that

∣∣∣
{
fk
∗ (hki ,mα(i)

)
: i ∈

{
1, . . . , 2`

}}∣∣∣ = 2`−1.

After this step, the same process is repeated as in the “normal” herding attack, until a fully converging tree
has been built.

Running Time. The running time is dominated by the generation of the diamond structure in the last pipe.
First, we need to generate a 2n−`+n`/2-multicollision on k − 1 pipes, which requires:

(
n− `+

n`

2

)
· (k − 1) ·

(n
2

)k−2

· 2n/2

compression function calls. Then, we need to “hash” 2` values under 2
n−`+1

2 message sequences (for the last
layer of the diamond structure). While at a first glance it may seem that we need a very long time for each
message sequence, it can be done efficiently if we take into consideration the fact that there is no need to
recompute all the chaining values only if the last block was changed. Hence, the actual time required to
construct the diamond structure is 2 · 2n/2+`/2+2 (twice the time needed for a classic diamond structure). In
total, the complexity of the preprocessing is:

(
n− `+

n`

2

)
· (k − 1) ·

(n
2

)k−2

· 2n/2 + (2 · k − 1) · 2
n+`

2 +2.

One may ask what is the reason for the randomization step. As demonstrated in the online phase of the
attack, the need arises from the fact that herding the values in the first k − 1 pipes fixes the value in the
k-th pipe. Hence, we need enough “freedom” to randomize this chaining value, without affecting the already
solved pipes.

5.1.2 Online Phase

The online phase of the herding attack is illustrated when k = 2 in Figure 5.2. Given a precomputed
k-diamond structure, it is possible to apply the herding attack to k concatenated hash functions. The

adversary is given a prefix P , and tries various message blocks m↗1 until f1
∗
(
IV1, P ‖ m↗1

)
gives one of

the 2` chaining values in D1 (the diamond structure on the first pipe). Then, the adversary traverses the
first diamond structure to its root, finding the first part of the suffix S1. Note that so far all computations
have been done in the first pipe. At this point, the adversary computes f2

∗(IV2, P ‖ m↗1 ‖ S1 ‖ m↗2) for all

the 2n−` messages m↗2 of the multicollision in the randomization path, until one of them hits one of the 2`

values in D2 (the diamond on the second pipe). The adversary can then use the paths inside this second
diamond to reach h2

� in the second pipe, while the first pipe reaches h1
�. This process can start again (with

a randomization part, and traversing the diamond structure) until all k pipes were herded correctly.
We note that once a pipe is herded, there is no longer a need to evaluate it (as the multicollision predicts

its value), and then it is possible to start analyzing the next pipe. In each new pipe, we need to evaluate
2n−` “messages” (for all pipes but the first one, these messages are multicollisions on the previous pipes),

62

5.2. Herding Some Non-Streamable Modes of Operations

1 block ` blocks n− ` blocks ` · n/2 blocks

h′1

h′2

h1

h1
�

h2
�

Figure 5.2: The Online Phase of the Herding Attack for k = 2

IV

h�

he

h1

hm

` · n2 n− ` Challenge S

Figure 5.3: Herding the Zipper Hash

each takes on average (in an efficient implementation) two compression function calls (besides the first layer).
Hence, the online time complexity of the attack is

2n−` · [1 + 2 · (k − 1)] = (2k − 1) · 2n−`

compression function calls, essentially 2k times more than the normal herding attack.

5.2 Herding Some Non-Streamable Modes of Operations

In this section, we adapt the herding attack from the previous section to the Zipper Hash and to Merkle-
Damg̊ard-Again. This is not very difficult once these two construction are seen as the concatenation of two
hash functions (where the IV in the second pipe is not fixed a priori).

5.2.1 Herding the Zipper Hash Function

We begin by observing that the “regular” herding attack is not feasible on the Zipper Hash, because the
last message block going into the compression function is the first message block of the challenge. It follows
that an adversary capable of doing the herding attack could be used to invert the compression function. This
makes the Zipper Hash provably resistant to the Herding attack.

We therefore consider a variant of the herding attack where the challenge is placed at the end: the
adversary commits to a hash value h�, then she is challenged with a suffix S and has to produce a prefix P
such that ZH (P ‖S) = h�. If the hash function were a Random Oracle, this would obviously require 2n

queries.
Because each message block enters the hashing process twice, choosing a message block in the second

pass may change not only the chaining value going out the second pass but also the chaining value going
in the second pass. Choices of the message intended to affect the second pass must thus be done in a way
that does not randomize the result of the first pass. This can be done using the techniques developed for
the concatenation of two hash functions. The attack is illustrated by Figure 5.3.

5.2.1.1 Offline Phase

1. Starting from the IV , build a 2n`/2+n−`-multicollision that yields a chaining value h1.

63

5. Other Generic Attacks on Other Constructions

IV

hc

he

h1
�

h2
hc′

he′

h2
�

r

challenge

1 `

1st diamond

n− ` ` · n2
2nd diamond

Figure 5.4: Herding Merkle-Damg̊ard-Again

2. Build a diamond structure on top of the reversed multicollision (i.e., where the order of colliding
messages in the multicollision is reversed). The chaining value at the root of the second diamond is h�.

3. Commit to h�.

5.2.1.2 Online Phase

1. Given a challenge suffix S, compute the chaining value after the two copies of the challenge:

hm = f2
∗
(
f1
∗ (h1, S) , S̃

)
.

2. From hm, find a connecting path in the part of the (reversed) multicollision that is just before the
diamond (in the second run) yielding a chaining value he that belongs to the diamond structure
(he ∈ D1). Then find a path inside the (reversed) diamond structure towards the committed hash h�.

We note that the fact that two different compression functions f1 and f2 are used in the two passes
has no impact on our results, as the attack technique is independent of the actual functions used. The
precomputation phase takes 2 · 2(n+`)/2+2 + (n − ` + n`

2) · 2n/2 compression function evaluations, and the
online computation takes 2 · 2n−` compression function calls.

5.2.2 More Herding: Merkle-Damg̊ard-Again

The attack is essentially the same as the one against the concatenation of two hash functions, as shown in
figure 5.4. The adversary commits to h2

�, and is then being challenged with an unknown prefix P . Hashing

the prefix yields a chaining value hc. Starting from hc, she chooses a message block m↗1 connecting to a
chaining value he which is one of the starting points of the first diamond, then a path S1 inside it yields
the chaining value h1

� on the first pass, from which we traverse a precomputed 2n−`+n`/2-multicollision,
producing h2 as the input chaining value to the second pass. Starting from h2, the challenge prefix P leads
to a random chaining value hc′ in the second pass. Then, the second pass can be herded without losing
control of the chaining value in the first pipe thanks to the diamond built on top of the multicollision.
Amongst the 2n−` messages in the multicollision following the first diamond, we expect one to connect to
the chaining value he′ in the starting points of the second diamond. We can then follow a path inside the
second diamond, which is also a path in the multicollision of the first pipe, that yields the chaining value at
the root of the second diamond, namely h2

�.
The offline complexity of the attack is the time required for generating a diamond structure of 2` starting

points (which takes 2(n+`)/2+2), finding (n − `) + n · `/2 collisions (which takes [(n − `) + n · `/2] · 2n/2),
and constructing a two-pipe diamond (which takes 2 · 2(n+`)/2+2). The total offline complexity is there-
fore 3 · 2(n+`)/2+2 compression function evaluations.

The online complexity is composed of finding two connecting “messages”. The first search takes 2n−`,
while the second takes 2 · 2n−`, or a total of 3 · 2n−`.

Attacks on Merkle-Damg̊ard-Once-More. It is relatively clear that the attack can be generalized to the
case where the message is hashed three or more times (by using multicollisions on 3 pipes, or the respective
number of passes). The complexity of the attack becomes polynomially higher, though.

64

5.3. A Generic Second Preimage Attack on Merkle-Damg̊ard-Again

m↘

IV

H(M)

IV ha hb

h�

hi

2k

n− ` ` · n/2

2k − i

(a) First online step

Mex

i− (n− `)− ` · n/2− 1 n− ` ` · n/2 1 2k − i

m↘

IV

H(M)

ha hb

hc hd
he

h� hi

(b) Online steps 2 to 5

Figure 5.5: Second preimage attack on Merkle-Damg̊ard-Again

5.3 A Generic Second Preimage Attack on Merkle-Damg̊ard-Again

If a construction is susceptible to the herding attack, then it is natural to ask whether the second preimage
attack of chapter 4 is applicable. Recall that the general idea of this attack is to connect the root of the
diamond structure to some chaining value encountered during the hashing of the target message, and then
connect into the diamond structure (either from the corresponding location in the original message or from
a random prefix). This ensures that the new message has the same length (foiling the Merkle-Damg̊ard
strengthening).

In this section, we present a second preimage attack against the Merkle-Damg̊ard-Again construction.
The general strategy is to build a diamond structure, and try to connect it to the challenge message (in the
second pass). Some complications appear, because the connection may happen anywhere, and the diamond
only works on top of a multicollision that has to be located somewhere in the first pass. However, we can
use an expandable message (cf. §3.3.4) to move the multicollision (and therefore the diamond) around. Here
is a complete description of the attack. Let us assume that the adversary is challenged with a message M of
2κ blocks.

The offline procedure is as follows:

1. Generate an expandable message which can take any length between κ and 2κ + κ− 1, starting from

65

5. Other Generic Attacks on Other Constructions

the IV and yielding a chaining value ha.

2. Starting from ha, generate a multicollision of length (n−`)+` ·n/2 blocks, yielding a chaining value hb.

3. Build a diamond structure on top of the multicollision. It yields a chaining value h�. It is used to herd
the second pass.

The online phase, given a message M , is as follows (depicted in Figure 5.5):

1. Given h�, select at random message blocks m↘ until f(h�,m
↘) equals to a chaining value hi appearing

in the second pass.

2. To position the end of the diamond at the i-th block of M , generate the instance of the expandable
message of length i − n · `/2 − (n − `) blocks, and let us denote it by Mex. Note that we have
ha = f∗(IV,Mex).

3. Let hc = f∗ (hb,mi+1,mi+2, . . . ,m2κ−1). Compute the second pass on the expandable message, until
hd is reached: hd = f∗(hc,Mex). Now, using the freedom in the first n− ` blocks of the multicollision,
find a message m↗ that sends hd to a chaining value he occurring in the starting points of the diamond
in the second pass.

4. Find a path T inside the diamond in the second pass (this is also a path inside the multicollision of
the first pass). It yields the chaining value h� at the root of the diamond in the second pipe.

5. Let M ′ =Mex ‖m↗ ‖T ‖m↘ ‖mi+1, . . . ,m2κ−1. We readily find that H(M ′) = H(M).

Note that the message forged by assembling the right parts has the same length as M , therefore the
padding scheme act the same way on both. The offline complexity of the attack is the mostly dominated
by the need to construct a diamond structure on two pipes, i.e., 2 · 2(n+`)/2+2. The online time complexity
is 2n−κ for finding m, and 2 · 2n−` connecting to the diamond structure. Hence, the total online time
is 2n−κ + 2n+1−`, essentially the same as the attack on the regular Merkle-Damg̊ard mode of operation.

5.4 The Trojan Message Attack

Do not trust the horse, Trojans.
Whatever it is, I fear the Greeks
even when they bring gifts

Virgil’s Aeneid, Book 2, 19 BC

In this section, we introduce a new generic attack on many hash function constructions, called the Trojan
Message attack. A Trojan message is a string S which is produced offline by an attacker, and is then
provided to a victim. The victim then selects some prefix P from a constrained set of choices, and hashes
P ‖S. However, due to the way S was chosen, the attacker is now able to find a second preimage of H(P ‖S).

Given a Merkle-Damg̊ard hash for which collisions may be found, Trojan messages may be produced. In
general, the Trojan message requires at least one message input block, and one collision search, per possible
value of P . If there are 1024 possible values of P , an attacker may produce a 1024-block Trojan message,
requiring 1024 collision searches.

One can imagine a Trojan message attack being practical against applications which use MD5, and which
permit an attacker to provide the victim with ”boilerplate” text for the end of his document, while imposing
a relatively constrained set of choice for his part of the document.

Against Merkle-Damg̊ard hashes, Trojan message attacks take two forms:

1. If only the Collision procedure from algorithm 3.2 is available, second preimages for the full message
keep the victim’s choice of P , but introduce a limited change in S. That is, the attacker finds S′ 6= S
such that H(P ‖S) = H(P ‖S′).

2. If however the Dual-IV-Colliision procedure is also practical, second preimages for the full message
give the attacker a choice of P , and leave S mostly unchanged. That is, the attacker finds P ′ and S′

such that H(P ‖S) = H(P ′ ‖S′).
Let P = {P1, . . . , PN} be a set of N known prefix messages and hi0 = f∗(IV, Pi) be the intermediate

chaining value resulting from the computation of Pi. Note, that without loss of generality, we can assume
that all the prefixes have the same length (otherwise, we just consider padded versions). Therefore, we safely
disregard strengthening and padding issues.

5.4.1 Collision-Variant

The collision variant of the Trojan message attack makes use of the Collision procedure of Algorithm 3.2
(or any ad hoc equivalent), which takes a chaining value as parameter and produces a pair of messages
colliding from this chaining value. The attack proceeds as follows:

66

5.4. The Trojan Message Attack

1. A computes N colliding message pairs (Si, Ti) using Algorithm 5.1.

2. A sends B a suffix message S = S1 ‖ . . . ‖SN .

3. B commits to h = Hf (Pi ‖S) where Pi belongs to P.

4. A finds out Pi through exhaustive search amongst the N possible choices and outputs:

M ′ = Pi ‖S1 ‖ . . . ‖Ti ‖ . . . ‖SN

Algorithm 5.1 Trojan Message Attack, Collision Variant

1: function Collision-Trojan-Suffix(P1, . . . , PN)
2: h0 ← IV
3: for i = 1 to N do
4: (Si, Ti)← Collision

(
hii−1

)

5: for j = 1 to N do

6: hji ← f
(
hji−1, Si

)

7: end for
8: end for
9: return (S1, T1), . . . , (SN , TN)

10: end function

h1
0 h1

1 h1
2 h1

3 h1
4

h2
0 h2

1 h2
2 h2

3 h2
4

h3
0 h3

1 h3
2 h3

3 h3
4

h4
0 h4

1 h4
2 h4

3 h4
4

T1

S1

T2

S2

T3

S3

T4

S4

S2 S3 S4

S1 S3 S4

S1 S2 S4

S1 S2 S3

We indeed verify that Hf (M ′) = h. The hash of Pi ‖S and Pi ‖S′ differs only when Ti replaces Si, but
because these two blocks collide, then the two hash processes do not diverge.

The only non-trivial part of the attack for A is the first step where she precomputes N collisions for
each prefix from the set P (in time N · 2n/2), and evaluates the compression function N2 times. If finding
a collision for the hash function is easy, for instance on legacy hash functions such as MD5, then the attack
can even be practical. It has recently been shown that finding a collision in MD5 takes about 216 evaluations
of the compression function [SSA+09]. For instance, one can forge in a matter of seconds a suffix S of 46720
bytes permitting to find second preimages for MD5 if the prefix set P is the set of the days of the year.

5.4.2 The Herding Trojan Attack

The herding variant of the trojan message attack is stronger, and allows for more freedom for the attacker.
In exchange, the preprocessing and the online running times are larger.

Let K denote the length of all possible prefixes in P. We can extend K to be as large as we wish. The
herding variant of the Trojan message attack makes use of a different, more sophisticated ”chosen-prefix”
procedure Dual-IV-Collision(h1, h2) from Algorithm 3.2, which returns two messages m1 and m2, such
that f(h1,m1) = f(h2,m2). In some specific cases this collision is harder to find (for instance in MD5, such
collision takes 241 compression function evaluations [SSA+09]).

Another difference between this variant and the previous one, is that in this variant, the adversary is
challenged by a second prefix P ′, not controlled by him, which he has to herd to the same value as Hf (Pi ‖S).
The attack proceeds as follows:

1. A computes a diamond structure with 2` entry points, denoted by D1 = {xi}, converging to the hash
value h�0, with the constraint that ` < K − 2.

2. A generates N colliding message pairs using Algorithm 5.2.

3. A sends B a suffix message S = S1 ‖ . . . ‖SN .

4. B commits to h = Hf (Pi ‖S) where Pi ∈ P.

67

5. Other Generic Attacks on Other Constructions

Algorithm 5.2 Trojan Message Attack, Herding Variant

1: function Herding-Trojan-Suffix(P1, . . . , PN)
2: for i = 1 to N do
3: (Si, Ti)← Dual-IV-Collision

(
hii−1, h

�
i−1

)

4: for j = 1 to N do
5: hij ← f

(
hi−1
j , Si

)

6: end for
7: h�i ← f

(
h�i−1, Si

)

8: end for
9: end function

h1
0 h1

1 h1
2 h1

3 h1
4

h2
0 h2

1 h2
2 h2

3 h2
4

h3
0 h3

1 h3
2 h3

3 h3
4

h4
0 h4

1 h4
2 h4

3 h4
4

h�0 h�1 h�2 h�3 h�4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

S1 S2 S3 S4

x1

xi0

x2`

m�i0

5. A is challenged with an arbitrary prefix P ′ of size at most K − ` − 1 blocks, not necessarily in the
known prefix set.

6. A finds (by random trials) a connecting message C of size K − ` − |P ′| blocks such that xi0 =
f∗(P ′ ‖C) ∈ D1.

7. A forges a new prefix Q = P ′ ‖C ‖m�i0 , which is such that f∗(Q) = h�0.

8. As in the collision version, A outputs Q ‖S1 ‖ . . . ‖Ti ‖ . . . ‖SN .

As in the collision variant, we have that Hf (Q ‖S′) = h. The reasoning to establish this fact is essentially
the same. The workload of the attack is step one where A constructs a diamond structure with 2` starting
points and N collisions for each prefix from the set P . Thus, the precomputation complexity is of order
2n/2+`/2+2 +N ·2n/2. The online cost is the connection step for computing the prefix P ′ and is of order 2n−`.

Applications of the Trojan Attacks The trojan attack can be highly useful in instances with a set of
predictable prefixes, and where the attacker is able to suggest a suffix to introduce to the message. Such a case
is the X.509 certificate, where the adversary may generate a second certificate (with the same identification)
but with different public keys. Another possible application is a time stamping service, which signs H(ts,M)
where ts is a time stamp and M is the document.

68

Chapter 6

Time-Memory Tradeoffs for Second Preimage
Attacks

In this chapter, we briefly investigate how Time-Memory Tradeoff (TMTO) techniques apply to
generic second preimage attacks. Joint work with Elena Andreeva, Orr Dunkelman, Jonathan
Hoch and Adi Shamir

In the “standard” Time-Memory tradeoff (TMTO) discovered by Hellman [Hel80], the objective is to
invert an arbitrary function H : {0, 1}∗ → {0, 1}n. For this puprose, a precomputation requiring 2n eval-
uations of H is used to generate a special data-structure of size 22n/3, which subsequently allows to find a
preimage of most points of {0, 1}n with only 22n/3 evaluations of H. This general technique allows, after
an enormous precomputation, to find preimages (and thus second-preimages) of any message in (online)
time 22n/3. However, it cannot take advantage of the length of the target message.

We show in §6.2 that Time-Memory Tradeoffs can be applied to speed up all the known generic second
preimage attacks: after a preprocessing of complexity 2n−κ, the adversary is able to find second preimages
of long messages in online time 22(n−κ)/3. We finally turn our attention to Rivest’s Dithered Hashing again
in §6.3, and we derive attacks capable of coping with arbitrary dithering sequences after a precomputation
of order 2n.

6.1 Hellman’s Time-Memory Tradeoff Attack

Time-memory Tradeoff attacks (TMTO) were first introduced in 1980 by Hellman [Hel80]. The idea is
to improve brute force attacks by trading the online time for memory and precomputation when inverting
a function f : {0, 1}n → {0, 1}n. Suppose we have an image element y and we wish to find a pre-image x
such that f(x) = y. One extreme would be to go over all possible elements x until we find one such that
f(x) = y, while the other extreme would be to precompute a huge table containing all the pairs (x, f(x))
sorted by the second element. Hellman’s idea is to consider what happens when applying f iteratively. We
start at a random element x0 and compute xi+1 = f(xi) for t steps saving only the start and end points
of the generated chain (x0, xt). We repeat this process with different initial points and generate a total of
c chains. Given an input y, we start generating a chain starting from y and checking if we reached one of
the saved endpoints. If we have, we generate the corresponding chain, starting from the suggested starting
point and hope to find a preimage of y. Notice that as the number of chains, c, increases beyond 2n/t2,
the contribution (i.e., the number of new values that can be inverted) from additional chains decreases. To
counter this birthday paradox effect, Hellman suggested to construct a number of tables, each using a slightly
different function fi, such that knowing a preimage of y under fi implies knowing such a preimage under f .
Hellman’s original suggestion, which works well in practice, is to use fi(x) = f(x ` i). Thus, if we create
d = 2n/3 tables each with different fi’s, such that each table contains c = 2n/3 chains of length t = 2n/3,
about 80% of the 2n points will be covered by at least one table. Notice that the online time complexity of
Hellman’s algorithm is t · d = 22n/3 while the memory requirements are d · c = 22n/3.

It is worth mentioning, that when multiple targets are given for inversion (i.e., a set of possible targets
yi = f(xi)), where it is sufficient to identify only one of the preimages (xi for some i), one could offer better
trade off curves. For example, given m possible targets, it is possible to reduce the number of tables stored
by a factor of m, and trying for each of the possible targets, the attack (i.e., apply the chain). This reduces
the memory complexity (without affecting the online time complexity or success rate), as long as m ≤ d
(see [BS00] for more details concerning this constraint).

69

6. Time-Memory Tradeoffs for Second Preimage Attacks

6.2 Time-Memory-Data Tradeoffs For Second Preimage Attacks

All known generic second preimage attacks (including that of chapter 4) assume that the target message
is very long (2κ blocks). This enables the connection to the target message to be done with about 2n−κ

compression function calls by exhaustive search. This “connection” step can be seen as finding the inverse of
a function.

Recall that in the second preimage attack of chapter 4, we search for a message block m↘ such that
f(h�,m

↘) = hi. Something very similar happens in the attacks of Dean and Kelsey-Schneier. As there
are 2κ targets (and finding the preimage of only one hi’s is sufficient), then we can run a time-memory-data
tradeoff attack with a search space of N = 2n, D = 2κ available data points, time T , and memory M such
that N2 = TM2D2, after P = N/D preprocessing (and T ≥ D2). Let 2x be the online complexity of the
time-memory-data tradeoff, with the constraint that 2x ≥ 22κ, and the memory consumption is 2n−κ−x/2

blocks of memory. The resulting overall complexities are 2n/2+`/2+2 + 2n−κ preprocessing, 2x + 2n−` online
complexity, and 2`+1 + 2n−κ−x/2 memory, for messages of 2x/2 blocks.

Given the constraints on the online complexity (i.e., x ≥ 2κ), it can possibly be beneficial to con-
sider shorter messages, e.g., message of 2λ blocks (with λ ≤ κ). For such cases, the offline complexity
is 2n/2+`/2+2 + 2n−λ, the online complexity is 2x + 2n−`, and the memory consumption is 2n−λ−x/2 + 2`+1.

We can balance the online and memory complexities (as commonly done in time-memory-data tradeoff
attacks) by picking x such that 2x + 2n−` ≈ 2n−λ−x/2 + 2`+1. By picking λ = n/4, x = 2λ = n/2, and
` = n/2, the online complexity is 2n/2+1, the memory complexity is 3 · 2n/2, and the offline complexity
is 5 · 23n/4. This of course holds as long as n/4 = λ ≤ κ, or equivalently n ≤ 4κ.

We can for instance find a second preimage for a 240-block long message in SHA-1, with an online time
of 281 operations, 281.6 blocks of memory, and 2120 steps of precomputation. The equivalent Kelsey-Schneier
attack takes 2120 online steps (and about 271 offline computation). The standard time-memory tradeoff for
finding preimages on an n-bit function allows, after a preprocessing of complexity 2n, to find preimages using
time 2x and memory 2n−x/2. Hence, for the same 240-block message and 281.6 blocks of memory, the online
computation is about 2156.8 SHA-1 compression function calls, only marginally faster than exhaustive search.

Second Preimage Attack with Multiple Targets The existing generic second preimage attacks can be
applied efficiently to multiple target messages. The work needed for these attacks depends on the number of
intermediate hash values of the target message, as this determines the work needed to find a linking message
from the data structure used to forge a prefix of the challenge. A set of 2R messages, each of 2κ blocks, has
the same number of intermediate hash values as a single message of 2R+κ blocks, and so the difficulty of
finding a second preimage for one of a set of 2R such messages is no greater than that of finding a second
preimage for a single 2R+κ block target message. In general, for the older second preimage attacks, the total
work to find one second preimage falls linearly in the number of target messages; for our attack, it falls also
linearly as long as the total number of message blocks, 2S , satisfies S < (n− 4)/3.

Consider for example an application which has used SHA-1 to hash 230 different messages, each of 220

message blocks. Finding a second preimage for a given one of these messages using the attack of Kelsey and
Schneier requires about 2141 work. However, finding a second preimage for one of these of these 230 target
messages requires 2111 work. (Naturally, the adversary cannot control for which target message he finds a
second preimage.)

This works because we can consider each intermediate hash value in each message as a potential target to
which the root of the collision tree (or an expandable message) can be connected, regardless of the message
it belongs to, and regardless of its length. Once we connect to an intermediate value, we have to determine
to which particular target message it belongs. Then we can compute the second preimage of that message.

This observation is important for two reasons: first, simply restricting the length of messages processed
by a hash function is not sufficient to block the long-message attack. Second, this observation allows long-
message second preimage attacks to be applied to target messages of practical length. A second preimage
attack which is feasible only for a message of 250 blocks has no practical relevance, as there are probably no
applications which use messages of this length. A second preimage attack which can be applied to a large set
of messages of, say, 224 blocks each, might have some practical impact. While the computational requirements
of these attacks are still infeasible, this observation shows that the attacks can apply to messages of practical
length. Moreover, for hashes which use the same dithering sequence z in all invocations, this has an affect
on the frequency of the most common factors (especially when the most common factor is relatively in the
beginning of the dithering sequence, e.g., Shoup’s UOWHF with the same set of keys).

70

6.3. Dealing with High Complexity Dithering Sequences

6.3 Dealing with High Complexity Dithering Sequences

As discussed before, a possible improvement to the Dithered Hash that would prevent our second preim-
age attack would be to use a very-high complexity sequence. In this section, we give several attacks against
Dithered Hashing in the precomputation model, and whose complexity is independent of the dithering se-
quence. In the precomputation model, the adversary is allowed to perform a very expensive precomputation,
whose complexity may be of order 2n, after which she may store a data-structure of size strictly less than 2n.
When presented with a challenge, the adversary may make use of this data-structure to find a solution faster.
The idea is that the precomputation may be amortized over any number of subsequent forgeries.

We explore various techniques to break arbitrary dithering sequences. We start with a simple generaliza-
tion of our proposed attack. We follow with two new attacks which have an expensive precomputation, in
exchange for a much faster online phase: The kite generator and a variant of Dean’s attack tailored to these
settings.

6.3.1 Generalization of the Attack on Dithered Merkle-Damg̊ard

The main limiting factor of our attack on Dithered Hashing is the fact that the diamond structure can
only be positioned in specific locations of the target message. Once the sequence is of high enough complexity
(and assuming that there is no real bias in the factor distribution), then there are not enough“good”positions
where the attack can be performed. To overcome this difficulty, a possible solution is to build a more powerful
herding device that works at all the possible locations in the target message.

To build this “dithering-oblivious” diamond structure, we generate a converging tree in which each node
is a 2|A|-collision. Specifically, for a pair of starting points w0 and w1 we find a 2|A|-collision under different

dithering letters, i.e., we find m1
0, . . . ,m

|A|
0 and m1

1, . . . ,m
|A|
1 such that:

f(w0,m
1
0, α1) = f(w0,m

2
0, α2) = · · · = f

(
w0,m

|A|
0 , α|A|

)

= f(w1,m
1
1, α1) = f(w1,m

2
1, α2) = · · · = f

(
w1,m

|A|
1 , α|A|

)

This way, we can position the diamond structure in any position, unrelated to the actual dithering sequence,
as we are assured that there is a path from any leaf to the root labeled by any possible combination of letters.

To build the required diamond structure we propose the following algorithm: first for each starting point
(out of the 2`) find a |A|-collision (under the different dithering letters). Now, it is possible to find collisions
between different starting points (just like in the original diamond structure, where we use a |A|-collision
rather than one message). Hence, the total number of |A|-collisions which are needed from one specific
starting point (in order to build the next layer of the collision tree) is 2n/2−`/2. The cost for building this

number of |A| collisions is 2
2|A|−1

2|A| n−
`

2|A| , or a total of 2
2|A|−1

2|A| (n+`)+2 for the preprocessing step.
After the computation of the diamond structure (which may take more than 2n), one can connect to

any point in the message, independent of the used dithering letter. Hence, from the root of the diamond
structure we try the most common dithering letter, and try to connect to all possible locations (this takes
time 2n−κ+H∞(z,1) ≤

∣∣A
∣∣ · 2n−κ). Connecting from the message to the diamond structure takes 2n−` as

before.
The memory required for storing the diamond structure is O

(
|A| · 2`

)
. We note that the generation of

the |A|-collision can be done using the results of [JL09], which allow balancing between the preprocessing’s
time and its memory consumption.

6.3.2 The Kite Generator—Dealing with Small Dithering Alphabets

Even though the previous attack could handle any dithering sequence, its online complexity is about
the same as that of the simpler second preimage attacks on Merkle-Damg̊ard. We could in addition try to
leverage the huge precomputation required by the attack to further reduce the online complexity. To this end,
we introduce a new technique, the kite generator. The kite generator shows that a small dithering alphabet is
an inherent weakness, and after a O (2n) preprocessing, second preimages can be found for messages of length
2κ ≤ 2n/4 in O

(
22·(n−κ)/3

)
time and space for any dithering sequence (even of maximal complexity). Second

preimages for longer messages can be found in time max
(
O
(
2k
)
,O
(
2n/2

))
and memory O

(∣∣A
∣∣ · 2n−k

)
.

6.3.2.1 Outline of the Attack.

The kite generator uses a different approach, where the connections to and from the message are done
for free, regardless of the dithering sequence.

During the precomputation phase the adversary builds a static data structure, the kite generator: she
picks a set of 2n−κ chaining values, B, that contains the IV . For each chaining value x ∈ B and any dither

71

6. Time-Memory Tradeoffs for Second Preimage Attacks

IV

h0

h1

h2

h3

h4

h5

h6

h7

h8

h9

h10

h11

h12

h13

h14

Figure 6.1: A toy “Kite-Generator” with 16 nodes over a binary alphabet. Edges are labelled with a message
block and a letter. Hard edges correspond to the first letter, and dashed edges to the second letter. This big
straw ball unfolds into kites!

letter α ∈ A, the adversary finds two message blocks mx,α,1 and mx,α,2, such that both f(x,mx,α,1, α)
and f(x,mx,α,2, α) belong to B. The adversary then stores all mx,α,1 and all mx,α,2 in the data structure.
Figure 6.1 shows a toy kite generator.

In the online phase of the attack, given a message M , the adversary computes H(M), and finds with high
probability (thanks to the birthday paradox) an intermediate chaining value hi ∈ B (for 2κ > i > n − κ).
The next step of the attack is to find a sequence of i blocks from the IV that leads to this hi. This is done
in two steps. In the first step, the adversary perform a random walk in the kite generator, by just picking
random mx,α,i one after the other (in conformance with the dither sequence), until h′i−(n−κ) is computed (this

h′i−(n−κ) is independent of the value found in the computation of H(M)). At this point, the adversary stops

her random walk, and computes from hi−(n−κ) all the possible 2(n−κ)/2 chaining values reachable through
any sequence of mx,α,1 or mx,α,2 (which agrees with the dithering sequence)—this amounts to consider all
the paths starting from where the random walk stopped inside the kite generator and trying all the paths
whose labels agree with the dithering sequence. Then, the adversary computes the “inverse” tree, starting
from hi, and listing the expected 2(n−κ)/2 values 1 that may lead to it following the dither sequence. If there
is a collision between the two lists (which happens with high probability due to the birthday paradox), then
the adversary just found the required path—she “connected” the IV to hi. Figure 6.2 illustrates the process.

The precomputation takes O
(∣∣A

∣∣ · 2n−κ · 2κ
)

= O
(∣∣A

∣∣ · 2n
)
. The memory used to store the kite gener-

ator is O
(∣∣A

∣∣ · 2n−κ
)
. The online phase requires O (2κ) compression function calls to compute the chaining

values associated with M , and O
(
2(n−κ)/2

)
memory and time for the meet-in-the-middle phase. 2 We con-

clude that the online time is max
(
O (2κ) ,O

(
2(n−κ)/2

))
and the total used space is O

(∣∣A
∣∣ · 2n−κ

)
. For the

SHA-1 parameters of n = 160 and κ = 55, the time complexity of the new attack is 255, which is just the
time needed to hash the original message. However, the size of the kite generator for the above parameters
exceeds 2110.

To some extent, the “converging” part of the kite generator can be treated as a diamond structure (for
each end point, we can precompute this “structure”). Similarly, the expanding part, can be treated as the

1. See [Fel71] for a formal justification of this claim.
2. The meet-in-the-middle can be done using memoryless variants as well.

72

6.3. Dealing with High Complexity Dithering Sequences

IV H(M)hi
M

MitM

Figure 6.2: A “Kite” connected to and from the message. The “tail” is the random walk inside the kite
generator. Then comes the divergent tree and the convergent tree (which is very reminiscent of a diamond
structure) leading to hi, the intermediate chaining value occurring in both M and in the kite generator.
There exist a path between both trees with high probability.

trials to connect to this diamond structure from h′i−(n−κ).

We note that the attack can also be applied when the IV is unknown in advance (e.g., when the IV is
time dependent or nonce), with essentially the same complexity. When we hash the original long message,
we have to find two intermediate hash values hi and hj (instead of IV and hi) which are contained in the
kite generator and connect them by a properly dithered kite-shaped structure of the same length.

The main problem of this technique is that for the typical case in which κ < n/2, it uses more space than
time, and if we try to equalize them by reducing the size of the kite generator, we are unlikely to find any
common chaining values between the given message and the kite generator.

6.3.3 A Variant of Dean’s Attack for Small Dither Alphabet

In fact, the kite generator can be seen as an expandable message tolerating the dithering sequence, and
we can use it in a more “traditional” way. We first pick a special chaining value N in the kite generator.
From this N we are going to connect to the message (following the approaches suggested earlier, as if N were
the root of a diamond structure). Then, it is possible to connect from the IV to N inside the kite generator,
for any possible dithering sequence

For a kite containing 2` points, the offline complexity is O
(∣∣A

∣∣ · 2n
)
, and the online complexity is

2n−κ+H∞(z,1) + 2κ + 2`/2+1.

The memory required for the attack is O
(
2`
)
. It follows that we have nothing to lose to setting ` = 0, and

interestingly this degenerate case of the kite generator can be considered as an adaptation of Dean’s attack
to the case of a small dithering alphabet.

Assume that the kite generator contains only one chaining value, namely, IV . For each dither letter α,
we find xα such that f(IV, xα, α) = IV . Then, we can “move” from IV to IV under any dithering letter.
At this point, we connect from the IV to the message (either directly, or using time-memory-data tradeoff),
and “traverse” the degenerate kite generator under the different dithering letters.

Hence, a standard implementation of this approach would require O
(∣∣A

∣∣ · 2n
)

precomputation and

2n−κ+H∞(z,1) online computation (with
∣∣A
∣∣ memory). A time-memory-data variant can reduce the on-

line computation to 22(n−t−κ+H∞(z,1)) in exchange for 2t memory (as long as t ≤ n − 2(κ − H∞(z, 1))).
Table 6.1 compares all the techniques suggested for dithered hashing.

73

6. Time-Memory Tradeoffs for Second Preimage Attacks

Attack
Complexity Avg.

Offline Online Memory Patch

Single-� (§4.2.2) 2(n+`)/2+2 2n−κ+H∞(z,`+1) + 2n−` 2`+1 `+ 2

Multi-� (§4.2.3) 2k(2(n+`)/2+2 + 2n/2) 2n−κ+Hk∞(z,`+1) + 2n−` 2k+`+1 k + `+ 2

general. (§6.3.1)
2

2

∣∣A
∣∣−1

2

∣∣A
∣∣ ·(n+`)+2 2n−κ+H∞(z,1) + 2n−`

∣∣A
∣∣ · 2`+1 `+ 2

Kite gen. (§6.3.2)
∣∣A
∣∣ · 2n 2κ + 2(n−κ)/2+1

∣∣A
∣∣ · 2n−κ+1 2κ−1

“Self-loop” (§6.3.3)
∣∣A
∣∣ · 2n 2n−κ+H∞(z,1)

∣∣A
∣∣ 2κ−1

Hk
∞(z, `+ 1) — the maximal sum of probabilities for 2k suffix-friendly set of length `+ 1.

Table 6.1: Comparison of Long Message Second Preimage Attacks on Dithered Hashing

74

Chapter 7

Provable Security for Modes of Operations

This chapter presents some results on the provable security of hash function modes of operation.
This is the result of a joint work with Gaëtan Leurent and Sébastien Zimmer. The results of §7.3
have been published at SAC’2010 [BFL10].

The previous chapters presented several generic attacks against hash functions, i.e., attacks on their
modes of operation. This chapter concludes our study modes of operation of hash function by looking at
them from the provable security angle. One of the most distinctive feature of the Merkle-Damg̊ard mode of
operation is that it provably promotes a collision-resistant compression function into a collision-resistant hash
function. The situation is very different for second-preimage resistance, since even when the compression
function is ideal, the generic second preimage attacks of Dean, Kelsey and Schneier, and our own (chapter 4)
show that the iteration is not as secure as a Random Oracle.

The exact resistance of Merkle-Damg̊ard to generic second preimage attacks is thus unknown. The known
attacks give an upper-bound of order 2n/` for messages of size `, above the birthday paradox, and the fact
that a second preimage is also a collision gives a birthday lower-bound (because of the collision-resistance
preservation). In addition, the resistance of Haifa to generic second-preimage attacks lies somewhere be-
tween 2n/2 and 2n compression function evaluations, since no attack faster than exhaustive search is known.

Closing the Gap. It would be desirable to close this gap between attacks and proofs. But how? Recently,
the indifferentiability framework has had some success in proving the absence of generic attacks, in particular
by allowing to prove that hash function with an internal state of 2n bits resist all possible generic attacks up
to 2n/n queries [CN08]. Unfortunately, this proof technique cannot be used for our purpose. First of all, it
cannot say anything about Merkle-Damg̊ard: this venerable mode of operation is not even indistiguishable
from a Random Oracle, because of the length extension attack. More fundamentally, indifferentiability can
only be proved up to the birthday bound when the internal state is n-bit large, so that we cannot hope to
obtain interesting results on Haifa. This follows from the fact that once a collisions on the compression
function has been found, then it can often be used to build efficiently several pairs of colliding message by
exploiting the iterated nature of the process, and thus allowing a distinguisher to tell apart the iteration from
a random function. Obtaining provable security against second preimage adversaries therefore requires an
ad hoc approach. In §7.1, we prove lower-bounds on the resistance of Merkle-Damg̊ard and Haifa to second
preimage attacks under the assumption that the compression function is a random function. More precisely,
an adversary querying the compression function q times can find a second-preimage of an `-block message
on Merkle-Damg̊ard (resp. Haifa) with probability q`/2n (resp. 2q/2n). This shows that the upper-bounds
given above are tight, and that the known generic attacks are optimal.

Moving to the Standard Model. These results rely crucially on the assumption that the compression
function is random. This shows that any attack beating the bounds of our proofs must exploit in a way or
another a bias in the compression function, as it could be used to “distinguish” the compression function from
a random function, inasmuch as this means anything. While this guarantees that the modes of operation are
free of some bad flaw, does it mean that it will result in a secure hash function when an actual compression
function will be plugged in? Results such as the collision-resistance preservation of Merkle-Damg̊ard are
stronger, as they result in an actual break of a well-defined security notion of the compression function when
the full hash function is broken. Thus, as long as the compression function is secure, then the iteration is
secure.

Are there modes of operation provably resistant to second preimage attacks beyond the birthday bound
in the standard model? The answer is yes: the wide-pipe hash of Lucks achieves that (cf. §3.4). Are there
non-wide-pipe modes of operation provably resistant to second preimage attacks in the standard model?
The answer is again yes: UOWHFs are precisely keyed hash functions provably achieving second preimage
resistance in the standard model. Shoup’s UOWHF resists eSec adversaries up to 2n/` queries when the
compression function is as good as it gets. In addition, it is noteworthy that two other modes of operation

75

7. Provable Security for Modes of Operations

were presented in 2008, which obtain beyond-birthday second preimage security up to 2n/` queries in the
standard model: Yasuda’s split-padding [Yas08] as well as Andreeva and Preneel’s Three-property-secure
hash function [AP08].

Unavoidable Security Loss. It seems that all narrow-pipe provably second-preimage resistant constructions
only achieve security up to 2n/` queries for messages of ` blocks, even when the compression function is ideal.
On all these constructions, this follows from the fact a generic second preimage attack applies, be it either
that of Kelsey and Schneier or our own. This is not completely the end of the story though, because these
constructions could easily be patched to avoid generic second preimage attacks (by adding a round counter
as in Haifa), yet it would not be possible to prove them secure above 2n/` queries. We believe that this
is caused by the proof technique itself: we show in §7.2 that any narrow-pipe mode of operation (belonging
to a large and natural class) whose second-preimage resistance is reduced to the second-preimage resistance
of the compression function cannot be provably secure beyond O (2n/`) elementary operations (it might be
more secure, but not provably). In other terms, there is an unavoidable security loss in second-preimage
resistance proofs by black-box reductions.

Coping With Broken Compression Functions. As mentionned above, indifferentiability proofs are great
because they guarantee the absence of generic attacks. In these proofs, the compression function is assumed
to be ideal. What happens when the compression function turns out to have a flaw, or a specific property
making it “obviously” different from a random function? For instance, what happens if there exist two
differences ∆i and ∆o such that f(x ` ∆i) = f(x) ` ∆o for all possible x’s? Can the iteration of such
a compression function be secure? Researchers exhibiting “distinguishers” (whatever this means) for the
compression functions often argue that their findings voids the security proof of the full hash function.
Following the ideas of the SHABAL team [BCCM+09] we show in §7.3 that this is not necessarily true, and
that the Prefix-Free-Merkle-Damg̊ard iteration of a non-ideal compression function can be indifferentiable
from a Random Oracle. The security level assured by the proof degrades when the compression function
deviates more and more from a random function.

In this whole chapter, we will assume that the maximal size of hashed messages, 2κ blocks, is much
smaller than 2n/2. This allows us to assume that all the intermediate chaining values are different with very
high probability.

7.1 Second-Preimage Resistance in the Random Oracle Model

The proofs presented in this section assume that the compression function is an ideal primitive (i.e.,
a fixed-input length Random Oracle), to which computationally unbounded adversaries have oracle access.
The only obstacle they are facing is the randomness of the query responses. The number of queries sent to
the primitive is then a meaningful complexity measure, because the adversary cannot obtain any kind of
advantage by computation alone without querying the random function. In any case, it gives a lower-bound
on the time complexity of the adversary. This setting is very similar to the analysis of block cipher-based
constructions in the ideal cipher model by Black, Rogaway and Shrimpton [BRS02].

We usually denote by q the number of queries sent to the compression function f by an adversary A. For
the sake of convenience, we enforce second preimage adversaries not to abort, to always return a message M ′,
even if they do not win the security game, and to evaluate Hf (M ′) before terminating, by issuing the
corresponding queries to the compression function. We also enforce adversaries not to ask the same query
twice. We say that an adversary (q, `, ε)-breaks a hash function Hf if the adversary is being challenged with
an `-block message, issues q queries to f and succeeds in finding a second preimage with probability ε.

The main idea common to all the proofs presented here is almost directly adapted from the existing
generic second preimage attacks: we lower-bound the complexity of one particular step common to all these
attacks, namely when some kind of a possible prefix has to be “connected” to the target message.

7.1.1 The Existing Attacks Against Merkle-Damg̊ard are Optimal

We now prove that known generic second preimage attacks against Merkle-Damg̊ard, whose complexity
is of order 2n/` for messages of length `, are optimal.

Theorem 7.1. Let f be a random compression function, Hf be the Merkle-Damg̊ard iteration of f , and A
be a second preimage adversary against Hf which (q, `, ε)-break Hf . Then ε ≤ q · `/2n.

Proof. Consider an adversary A that (q, `, ε)-breaks the second preimage resistance of Hf . We denote by hi,
for 1 ≤ i ≤ `, the chaining values obtained while hashing M , according to the description in Algorithm 3.1.
If A succeeds in finding a second preimage, then in particular A has found a collision. As argued in §3.2.1,

76

7.1. Second-Preimage Resistance in the Random Oracle Model

in the presence of the Merkle-Damg̊ard strengthening, this implies a collision on the compression function f .
In our case, there exists an index i such that one of the colliding chaining value is hi. This collision on f is
therefore actually a second preimage of hi for f . Note that because f is a random function, all the chaining
values are random. 1

Every time A submits a new query to the oracle, it receives a uniformly-distributed random value. The
probability that A wins thanks to this particular query is upper-bounded by the probability that this random
value is one of the hi’s, and this probability is exactly ` · 2−n. Since A sends at most q queries, A wins with
probability at most q · ` · 2−n.

It must be noted that this proof is fairly general, because it reduces the problem of finding a second
preimage for Hf to the problem of finding a second preimage of one out of many random chaining values
for f . It actually covers nearly all the existing iterated hash functions.

7.1.2 The Round Counter Prevents Generic Second Preimage Attacks

The inventors of Haifa claimed that Haifa has optimal resistance against generic second preimage
attacks but they did not prove it. The bound given by theorem 7.1 is also not strong enough to back up their
claim. A slightly more involved proof technique is required to prove that Haifa achieves optimal second
preimage resistance. The key ingredient of Haifa that makes it more secure than Merkle-Damg̊ard is the
round counter.

Theorem 7.2. Let f be a random compression function, Hf be the Haifa-iteration of f , and A be a second
preimage adversary that (q, `, ε)-break Hf . Then ε ≤ q/2n−1.

Proof. We simulate the execution of the adversary A, and bookmark the queries sent by A to f : it is a set S of
tuples (x,m, c, y), with y = f(x,m, c). We suppose that A evaluates Hf (M), so A sends the corresponding
queries to the oracles at some point. Let us denote these particular queries (hi−1,mi, ci, hi)1≤i≤`. In
particular, Hf (M) = h`.

Suppose now that A wins. Then one of the two following situations arises:

1. If
∣∣M
∣∣ 6=

∣∣M ′
∣∣, then the values of the counter entering the compression function in its last invocation

are different. Therefore, A has found a second preimage of h` on f . Each query has a probability 2−n

to realize this event, because f is a random function.

2. Otherwise,
∣∣M
∣∣ =

∣∣M ′
∣∣. This means that A has found a collision with M .

Because of the round-counter, collisions now have a special property.

Lemma 7.3. Let Hf be the Haifa iteration of an arbitrary compression function f . If there are two
messages M and M ′ such that Hf (M) = Hf (M ′) with M 6= M ′ and

∣∣M
∣∣ =

∣∣M ′
∣∣, then there is a collision

on f , with the same value of the counter entering f .

Proof. let us write the two (padded) messages M = x1, . . . , xr and M ′ = x′1, . . . , x
′
r, the two initialization

vectors h−1 = h′−1 = IV , and for i ≥ 0, the chaining values hi = F (hi−1, xi, i) and h′i = f(h′i−1, x
′
i, i).

Since hr = h′r, either there is a collision on f (with counter value r), or (xr, hr−1) = (x′r, h
′
r−1). In the lat-

ter case, either there is a collision for f (with counter value r−1) or we again find that (xr−1, hr−2) = (x′r−1, h
′
r−2).

This argument repeats. Since
∣∣M
∣∣ =

∣∣M ′
∣∣, then either there is a collision for f at some point (with the

same counter value), or xi = x′i, for all i, 1 ≤ i ≤ r. In the latter case, M = M ′, which is impossible. This
completes the proof of the lemma.

This lemma means that if the adversary finds a second preimage of M , then there is in S a query
(x,m, i0, hi0) for a given value of i0 (recall that hi0 is the i0-th chaining value obtained in the process of
hashing M), and such that (x,m) 6= (hi0 ,mi0). We now upper-bound the probability that this event is
realized.

When A submits its i-th query to the compression function, a random value is chosen and returned to A.
Our event is realized if and only if this value is hi, and this happens with probability 2−n. This query may
also allow A to invert h` with probability 2−n. Each query allows A to win with probability 2−(n−1), and
there are q queries, which completes the proof.

1. We note that this claim is not necessarily true when the message is long and there are collision between the various
chaining values. However, as this has a non-negligible probability only when ` ≥ O(2n/2), we allow ourselves to disregard such
very long messages.

77

7. Provable Security for Modes of Operations

7.2 Unavoidable Security Loss in Black-Box Reductions

Theorems 7.1 and 7.2 give lower-bounds on the complexity of generic attacks, i.e., attacks that apply
even when the attacker only has black-box access to the (ideal) compression function. Security against
generic attacks is certainly a nice feature of modes of operations, but as we argued before it is not entirely
satisfactory. In particular, it does not formally shows that there does not exist actual adversaries against
the hash function. For instance, theorems 3.3 and 3.9 are stronger statements, as they show that any
Turing Machine breaking a security property of the actual hash function can be transformed into another
Turing machine that breaks a security property of the compression function. Thus, security of the iteration
with respect to a well-defined security property relies on a well-defined security property of the compression
function (as opposed to its “randomness”), hence the label “provable security in the standard model”.

In this section, we will focus our attention on the Sec security notion, but our reasoning carries over to the
other second-preimage resistance notions. In the standard model, time is the right measure of complexity.
We will say that an adversary (t, ε)-break a (keyed) function F if given M and K, the adversary returns a
message M ′ such that M 6= M ′ and FK(M) = FK(M ′) with probability ε. To compare such adversaries,
the relevant measure is the ratio t/ε: it tells us how much time do we have to wait before actually seeing
the adversary succeed.

We are aware of at least three narrow-pipe modes of operation that provably resist second preimage
adversaries beyond the birthday bound in the standard model: we already know Shoup’s UOWHF, but
there are also Andreeva and Preneel’s Three Property Secure Hash Function [AP08], and Yasuda’s Split
Padding [Yas08]. These three constructions use the same proof technique: they give an explicit black-box
reduction R(·, ·) that, given an adversary AH against the full hash function and a compression function f ,
yields an adversary R(f,AH) against f . Thus, if the full hash function gets broken, the compression
function gets broken as well. It is striking in the three modes of operation mentioned above, R(f,AH) only
succeeds with probability 1/` (the inverse of the number of blocks of the challenge message), even when the
adversary AH always succeeds. The main result of this section is to show that this is not a coincidence, and
that any such reduction cannot achieve a better success probability. Because this statement is very general,
we begin by defining a whole class of modes of operations that we wish to take into account in out reasoning.

7.2.1 Abstract Narrow-Pipe Modes of Operations

We will consider that a narrow-pipe mode of operation H(·) is a circuit that takes as its input M (the full
message), K (the key, if present), hi (the current chaining value) and i (the block counter). This circuit is
responsible for preparing the input to the compression function. The next chaining value hi+1 is the output
of the compression function on the input prepared by the circuit. The output of the whole hash function is
the output of the compression function on its last invocation. The circuit activate a special wire “last call”
to indicate that the hash process is terminated. We will assume that the number of calls to the compression
function does not depend on the input of the hash function (i.e., on M and K).

The incoming chaining value is set to a predefined value (say, zero) on the first invocation. This particular
class of modes of operation imposes that the output of the full hash function comes out of the compression
function without post-treatment, in particular without truncation. This, coupled with the fact that the
circuit has no internal memory makes it a narrow-pipe mode of operation. Appart from that, H may include
a “final transformation”, or process each message block multiple times. Formally, the hash process works
according to the pseudo-code shown in Algorithm 7.1.

Algorithm 7.1 Formal definition of the hash process with an abstract mode of operation

function Abstract-Mode-Of-Operation(M,K)
h−1 ← 0
i← 0
while not finished do

xi ← H(·) (M,K, i, hi−1)
hi ← f (xi)
i← i+ 1

end while
return hi−1

end function

There are constructions that are apparently not narrow-pipe, but that still fit in this framework, such
as the GOST hash function (the checksum can be computed in the last invocation, and do not need to be
transmitted between each invocation of the compression function).

78

7.2. Unavoidable Security Loss in Black-Box Reductions

Note that by choosing H(·) to be a circuit, we implicitly admit the existence of an upper-bound on the
size of the messages (if only because the block counter comes on a finite number of wires). In the sequel, by
“mode of operation”, we implicitly mean “a narrow-pipe mode of operation that fits the above framework”.
We are not aware of any narrow-pipe construction that does not fit the above definition though.

7.2.2 Collision-Resistance Preserving Modes of Operation

While we tried to make the definition of a mode of operation as generic as it gets, we are not interested
in really bad modes of operation. We are not interested in non-collision resistant constructions, for instance.
In this section, we characterize a few properties modes of operation should have not to be totally worthless.

We say that a mode of operation is strengthened if the binary encoding of the size of the processed
message is contained in the input to the last invocation of the compression function. It is well-known
that the Merkle-Damg̊ard mode of operation is strengthened, which is the key in establishing its important
collision-resistance preservation (theorem 3.3). However, in general, being strenghtened is not completely
sufficient to be collision-resistance preserving. Some further technicalities are required.

We say that a mode of operation is message-injective if for all functions f and all keys K, the function
that maps the message M to the sequence of compression-function inputs (xi) is injective. This implies that
hashing two different messages M and M ′ cannot generate the same sequence of inputs (xi). This property
is necessary for collision-resistance preservation: if H is not message-injective, there there exist a function f
and a key K such that there exist two colliding messages M and M ′ generating the same hash, without
causing a collision in the compression function.

We also say that a mode of operation is chaining-value-injective if for all f and all K, there exist a
(deterministic...) function that maps xi to hi−1. The combination of these three properties is sufficient to
ensure collision-resistance preservation

Lemma 7.4. A mode of operation H simultaneously message-injective, chaining-value-injective and strength-
ened is collision-resistance preserving.

This is essentially a more abstract version of theorem 3.3, and because the proof is awfully similar, we
omit it. Because of lemma 7.4, we call a mode H “collision-resistance preserving” if it satisfies these three
conditions.

7.2.3 Some particular Provably Second-Preimage Secure Modes of Operations

We briefly describe the three modes of operations mentionned in the introduction, and we show that
they fit in out framework. In passing, we will argue that they satisfy two more properties: they allow for
embedding and they are suffix-clonable.

Definition 7.1. A mode of operation H(·)(K,M, i, h) allows for embedding if it is always possible (and
computationally easy) to forge M and K such that the input of the i-th invocation of the compression
function takes a chosen value (i.e., if xi’s takes a specified value in Algorithm 7.1).

Definition 7.2. A mode of operation is suffix-clonable if given an (` + 1)-block message M , a key K and
an integer 0 ≤ i ≤ ` it is always possible to find a different (`+ 1)-block message M ′ such that if i > 0:

H(·)(K,M, i− 1, hi−2) 6= H ·(K,M ′, i− 1, hi−2)

and always:
∀j ∈ {i, . . . , `}, H(·)(K,M, j, hj−1) = H(·)(K,M ′, j, hj−1)

Shoup’s UOWHF. We have already described Shoup’s UOWHF in §3.4.3. This construction promotes the
eSec security of the compression function to that of the whole hash function. The key of the iterated hash
function is logarithmic in the maximal size of the messages that can be hashed. In our framework, this
construction is simple to describe:

1: function Shoup-UOWHF(M,K, i, hi−1)
2: let (k, µ0, . . . , µκ)← K
3: let (m0, . . . ,m`)← Pad(M)
4: return

(
k, hi−1 ` µν2(i),mi

)

5: end function

It is not easy to see that Shoup’s UOWHF allows for embedding, and we refer the reader to [Sho00a] (the key
idea is that at all points in the iteration there is always a mask that has been used only once). In addition,
this construction is also easily seen to be suffix-clonable: it suffices to leave K untouched an to modify the
begining of M . The security of the construction is guaranteed by theorem 3.9.

79

7. Provable Security for Modes of Operations

The Backwards Chaining Mode. Andreeva and Preneel described in [AP08] the Backwards chaining mode
which promotes the second-preimage resistance of an unkeyed compression function to the Sec security of
the (keyed) iterated hash function. We will assume for the sake of simplicity that the message block and
the chaining values have the same size, and in addition that a simplified padding scheme is applied: the last
block is padded with zeroes, and the message length in bits is included in an extra block. The iteration is
keyed, and the key is formed by a triplet (K1,K2,K3) of n-bit strings (note that its size is independent of
κ).

1: function BCM(M,K, i, hi−1)
2: let (K1,K2,K3)← K
3: let (m0, . . . ,m`)← Pad(M)
4: if 0 ≤ i < `− 1 then return (hi−1 `mi+1,mi)
5: if i = `− 1 then return (h`−2 `m` `K2,m` `K1)
6: if i = ` then return (h`−1 `K3,m` `K2)
7: end function

The backwards chaining mode allows for embedding. To embed at any index smaller than `− 1, just choose
mi and mi+1 with care. To embed at index `−1 or `, pick the message at random and choose K1,K2 and/or
K3 accordingly (the keys are necessary to embed in the last blocks because of the padding scheme). Again,
this construction is also easily seen to be suffix-clonable, with the same argument as before.

Theorem 7.5 ([AP08]). If an adversary is able to break the Sec[`] notion of Hf with probability ε in time T ,
then one can construct an adversary that breaks the Spr notion of f in time T +O (`), with probability ε/`.

The Split Padding. Yasuda’s Split Padding [Yas08] is a minor tweak to the Merkle-Damg̊ard-strenghtening.
For the sake of simplicity, we will assume that the message block is twice bigger than the chaining values
(i.e., it is 2n-bit wide). The tweak ensures that any message block going into the compression function
contains at least n bits from the original message (this is not necessarily the case in the last block of the
usual Merkle-Damg̊ard padding scheme).

It promotes a kind of eSec security of the compression function to the Spr security of the (unkeyed)
iteration. More precisely, the security notion required of the compression function is the following: the
adversary chooses a chaining value h and the first n bits of the message block m1, and is then challenged
with the last n bits of the message block m2. She has to find a new pair (h′,m′) 6= (h,m1 ‖m2) such
that f(h,m1 ‖m2) = f(h′,m′). To some extent, this is the eSec security notion, but here the “key” of the
compression function is the last n bits of the message block.

Theorem 7.6 ([Yas08]). If an adversary is able to break the Spr[`] notion of Hf with probability ε in
time T , then one can construct an adversary that breaks the eSec-like notion of f in time T +O (λ), with
probability ε/`.

The split-padding easily fits in our framework, because besides the padding scheme it is just the normal
Merkle-Damg̊ard mode.

1: function Split-padding(M,K, i, hi−1)
2: let (m0, . . . ,m`)← Special-Pad(M)
3: return (hi−1,mi)
4: end function

The split-padding does not allows for our previous definition of embedding, but it allows to embed n bits of
message block into any block. It is easily suffix-clonable, as it suffices to change a prefix of the message.

7.2.4 Proofs by Reduction

Resistance against second preimage attacks in the standard model of a mode of operation H(·) is often
announced by theorem formulated similar to the following.

Theorem (typical). There exist a black-box reduction R(·, ·) such that R(f,AH) is an adversary against the
compression function f that (t+ t′, α · ε+ β)-breaks f , for all compression functions f and all adversaries
AH that (t, ε)-break Hf .

Theorems 3.9, 7.5 and 7.6 are clearly instances of this general setting. Note that the reduction is given
black-box access to both the adversary and the compression function f . This is a way of formalizing that the
reduction must work for any adversary and any compression function. For the sake of simplicity, we allow
the reduction to issue only one query to the adversary. To some extent, this narrows our study a little, but
all the reductions we are aware of (in [Sho00a, Yas08, AP08]) fit into this category.

80

7.2. Unavoidable Security Loss in Black-Box Reductions

In the setting of the security theorem above, there are three parties: the challenger, the reduction and
the adversary. The challenger sends the reduction a challenge made of an input x to f , and a “key” k for f ,
whatever this means (chaining value or additional input). The reduction has to find a distinct input x′ such
that fk(x) = fk(x′). For this purpose, the reduction may use the AH adversary: the reduction sends the
adversary a challenge made of a message M of at most ` message blocks, and a key K. The adversary may
either returns a message M ′ such that Hf (K,M) = Hf (K,M ′) or fail. The precise sequence of interactions
is the following:

Challenger
x,k−−→ Reduction

Reduction
M,K−−−→ Adversary

Reduction
M ′←−− Adversary M 6= M ′ HK(M) = HK(M ′)

Challenger
x′←− Reduction x 6= x′ fk(x) = fk(x′)

Reductions are generally assumed to have to simulate the legitimate input challenge distribution the
adversary is normally expecting. In our case, this means that the distribution of the challenges M,K must
be indistinguishable from random. Note that if M,K were biased, then the adversary could detect that it
is “being used”, and fail deterministically. In any case, when we mention the success probability ε of the
adversary AH , we assume that its input distribution is uniformly random.

The interest of such reductions is that if the compression function f is secure, then for any adversary
AH against Hf , one must have: (t + t′)/(α · ε + β) ≥ 2n, and therefore the global complexity of AH is
lower-bounded by:

t

ε
≥ 2nα+

2nβ − t′

ε
. (7.1)

The right-hand side of equation (7.1) is the provable security level that the reduction offers. Note that it
bizarrely depends on the success probability of the adversary, but this seems unavoidable. When considering
a single run of the reduction, its success probability should depends very much on whether the adversary
succeeds or not. Therefore, it makes sense to write:

P [R succeeds] = ε · P
[
R succeeds

∣∣ AH succeeds
]

+ (1− ε) · P
[
R succeeds

∣∣ AH fails
]

This justifies why we assumed the success probability of the reduction to be of the form α · ε+β, and in fact
we have:

α = P
[
R succeeds

∣∣ AH succeeds
]
− P

[
R succeeds

∣∣ AH fails
]

β = P
[
R succeeds

∣∣ AH fails
]

Now, while our objective is to understand what happens when AH succeeds, it is easier to get a glimpse
of what happens when AH fails. In this setting, the reduction is just a randomized turing machine trying
to find second preimage resistance on an arbitrary black-box function, which cannot be done faster than
exhaustive search. For instance, f could be a Pseudo-Random Function with a randomly-chosen secret key.
We could even use our Random Oracle Web Service to simulate a “truly” random function. In any case, it
follows that β ≤ t′/2n. The provable security level offered by a reduction is thus upper-bounded by α · 2n.
We will thus say that a reduction is useable if α > t′/2n, as this implies that the reduction offers a provable
security level better than that of exhaustive search (or equivalently, that the reduction actually makes use
of the adversary).

7.2.5 How do Reductions Use the Adversary ?

In the sequel, we will make the natural assumption that the AH adversary the reduction has access to has
non-zero success probability. We will also restrict our attention to useable reductions. By doing so we rule
out modes of operation for which no useable reduction is known such as the Merkle-Damg̊ard construction.

Let us consider a provably secure mode mode of operation H also satisfying the hypotheses of lemma 7.4
(i.e., injective, extractable and strengthened). We will also assume that it is suffix-clonable. Since the mode
is provably secure, there exist a reduction R with a reasonably high success probability. Our objective, and
the main technical contribution of this section, is to show the following theorem:

Theorem 7.7. We always have α ≤ 1/` + t′/2n. It follows that the provable security level offered by R
cannot be higher than 2n/`+ t′.

The remaining of this section is devoted to the proof of this result. The general idea of the proof is to
built an environnment around the reduction R that simulates a legitimate “world” for R, but in which it is
easy to see that R has a low success probability. Then because R has to work in all legitimate environments,
it follows that in general R cannot succeed with higher probability.

81

7. Provable Security for Modes of Operations

Connection Point. Before going any further, let us observe what happens when the adversary finds a second
preimage. Let us denote by xi and hi (resp. x′i and h′i) the inputs and the outputs of f while evaluating
Hf (M) (resp. Hf (M ′)). Since M and M ′ collide, and because H satisfies the hypotheses of lemma 7.4, then
a second preimage of one of the xi input values can be readily obtained from M ′. Let us take a look back
at the proof of theorem 3.3. If

∣∣M
∣∣ 6=

∣∣M ′
∣∣, then we obtain a second preimage of f on the last invocation.

Otherwise, there exist an index i such that f(xi) = f(x′i) and xi 6= x′i. In the sequel, we call this particular
index i the “connection point”, and we note that at this particular index a second preimage of xi for f is
revealed, which we call “the second preimage at connection point”.

Embedding. The strategy used by all the reductions we are aware of consists in embedding the small
challenge (x, k) into the big challenge (M,K). Following our definition, we say that (x, k) is embedded into
(M,K) at location i if and only if fk(x) is evaluated during the i-th iteration of the main loop of Algorithm 7.1
during the evaluation of Hk(K,M). We will show that the second preimage returned by the adversary can
only be used by the reduction if the second preimage at connection points directly gives a solution to the small
challenge. Let us denote by ♣ the condition “the second preimage at connection point is a second preimage
of the small challenge sent by the Challenger to R”. Formally, this means that:

P [♣] = P
[(
∃i. xi = (x, k) in Algorithm 7.1

)
∧ (xi 6= x′i) ∧ (hi = h′i)

]

We can then write:

P
[
R succeeds

∣∣ A succeeds
]

= P
[
R succeeds

∣∣ A succeeds ∧ ♣
]
· P [♣]

+ P
[
R succeeds

∣∣ A succeeds ∧ ¬♣
]
· P [¬♣] (7.2)

We first argue that the challenge cannot be embedded more than once. If the challenge were embedded
twice or more, the input distribution of the adversary would not be random, because we would have xi = xj
for i 6= j in Algorithm 7.1, something that is highly unlikely when M and K are drawn at random. This is
not allowed in the first place, and the adversaries could straightforwardly detect it and abort.

Next, we claim that in order to be usable, a reduction must embed the challenge (x, k) into (M,K). This
is consistent with our observation that the three schemes of interest all allow some form of embedding. To
establish this result, we show that a legitimate world with various interesting properties can be built around
the reduction. When we argued that β is small, we used the (informal) argument that f could be implemented
by a Random Function simulator similar to the “Random Oracle Web Service” of the introduction, and that
inverting such a function faster than exhaustive search is impossible. We now make this argument more
formal, with the additionnal feature that we will be able to choose whether the adversary succeeds or fails,
and where it connects.

Simulation. The easy case is when we want AH to fail, as it is sufficient to let f simulate an arbitrary
random function, and let AH return some random junk. The more interesting case is when we want AH to
succeed. The difficulty comes from the fact that the view of the reduction must be consistent: after having
received M ′ from the AH , the reduction must be able to check that HK(M) = HK(M ′) by querying f . This
is in fact quite easy to achieve, by programming the function f . Here is how we simulate the execution of
the reduction:

Algorithm 7.2 A dummy random function simulator

function f-Simulator(x, k)

if Log[x, k] = ⊥ then Log[x, k]
$←− {0, 1}n

return Log[x, k]
end function

1. Before R sends its query (M,K) to AH , we simulate f by generating random answers and storing
them (for consistency), “implementing” f with Algorithm 7.2

2. When R sends its query (M,K) to AH , we choose a uniformly random integer i ∈ {0, . . . , `} (this
will be the connection point), and we use the suffix-clonability property of the mode of operation to
generate a different message M ′ 6= M satisfying the conditions of definition 7.2.

3. We evaluate Hf (M ′) in a special way. On the first i− 1 iterations we use Algorithm 7.2 in place of f .
On the i-th iteration we program f so that f(x′i) = hi, thus “connecting”M ′ to M in iteration i.

4. We return M ′ as the answer of AH to the reduction, and keep simulating f .

82

7.3. Indifferentiability in the Presence of Distinguishers

We acknowledge that there is a negligible probability of failure in the third step, but it does not really
matter. What matters is that the view of the reduction is consistent and legitimate. In this environment,
we are able to choose the connection point at will. For instance, we can make sure that the ♣ event never
happens. In this case, the reduction, even though it knows a collision on f , cannot find a second preimage
on f faster than exhaustive search (because each new query to f returns an independent random answer,
and thus each query yields a second preimage with probability 2−n).

It follows that if a reduction does not embed its challenge, then it cannot be usable. We conclude that
a usable reduction must embed its challenge exactly once with non-zero probability. As a matter of fact,
the reductions of the three schemes considered in the introduction published in the litterature embed their
challenge with probability one. Equation (7.2) then gives:

P
[
R succeeds

∣∣ A succeeds
]
≤ P

[
R succeeds

∣∣ A succeeds ∧ ♣
]
· P [♣] +

t′

2n
(7.3)

Now, to prove theorem 7.7, we upper-bound the probability that the ♣ condition occur. The reduction
cannot control “where” the adversary will “connect” to the big challenge M . Conversely, if the adversary
could guess where the challenge is embedded, then she could systematically refuse to connect precisely there.
In fact, we need not even worry about this complication, since the adversary can foil all the reduction’s plan
by connecting randomly. In our simulation procedure, if we choose the connection point uniformly at random
between 0 and `, then the ♣ event only happens with probability 1/`. Combining this with equation (7.3)
yields:

P
[
R succeeds

∣∣ AH succeeds
]
≤ 1

`
+

t′

2n

And this is exactly what we needed to complete the proof of theorem 7.7. We conclude by pondering on this
intringuing situation, where some narrow-pipe modes of operations are provably resistant to generic second
preimage attacks, yet this cannot be shown in the standard model...

7.3 Indifferentiability in the Presence of Distinguishers

In this final section, we discuss the security of the prefix-free Merkle-Damg̊ard iteration of non-ideal com-
pression functions. While our primary objective was to show that the distinguisher found by Leurent [BFL10]
for the compression function of SIMD [LBF08] did not void the security proof of SIMD, the reasoning and
the proof presented here are pretty general and could very well be adapted to other functions.

Here, H = {0, 1}n still denotes the set of chaining values, M = {0, 1}m still denotes the set of message
blocks, and F denotes the set of all functions H×M→ H. Let f ∈ F be a compression function taking as
input an n-bit chaining value and an m-bit message block.

The Prefix-Free-Merkle-Damg̊ard mode has been shown to be indifferentiable from a random oracle
up to the birthday bound by Coron, Dodis, Malinaud and Puniya [CDMP05]. This is done by constructing
a simulator S such that any distinguisher D cannot tell apart (Hf , f) and (RO,S) without a considerable
effort, where RO is a variable-input-length random oracle (VIL-RO, for short). Informally, if f is ideal, then
Hf is (supposedly) secure up to the level offered by the indifferentiability proof. More precisely, if H(·) is
(tD, tS , qS , q0, ε)-indifferentiable from a VIL-RO when the compression function is assumed to be a Fixed
Input Length Random Oracle (FIL-RO), then this means that there exists a simulator running in time tS ,
such that any distinguisher running in time tD and issuing at most qS (resp. q0) queries to the FIL-RO
(resp. VIL-RO) has success probability at most ε.

A drawback of this methodology is that it is not very “failure-friendly”, because the security argument
offered by the indifferentiability proof becomes vacuous as soon as the compression function used in a hash
function “turns out” to be non-ideal. For instance, distinguishers exhibiting a “non-random” behavior of the
compression function are usually advertised by their authors to nullify the security proof of the full hash
function.

This problematic situation was first tackled by the designers of Shabal, who provided a security proof
taking into account the existence of an efficient distinguisher on the internal permutation of their pro-
posal [BCCM+09]. We will follow their track and demonstrate that the security of Prefix-Free Merkle-
Damg̊ard can be proved despite the existence of an efficient distinguisher on its compression function.

LetHf therefore denote the prefix-free-Merkle-Damg̊ard iteration of f . Formally, the function g : {0, 1}∗ →M∗
is a prefix-free encoding if for all x, x′, g(x) is not a prefix of g(x′). The mode of operation H(·) simply applies
the Merkle-Damg̊ard iteration of f to the prefix-free encoding of the message.

Theorem 7.8 (ideal case, [CDMP05]). The Prefix-Free-Merkle-Damg̊ard mode of operation is (tD, tS , qS , qO, ε)-
indifferentiable from a VIL-RO when the compression function is modeled by a FIL-RO, for any running

time tD of the distinguisher, and tS = O
(

(qO + ` · qS)
2
)

where ` is an upper-bound on the size of the queries

83

7. Provable Security for Modes of Operations

sent to the VIL-RO. If q = qS +2κ · qO +1, where 2κ is again an upper-bound on the size (in block) of hashed
message, then the success probability of the distinguisher is upper-bounded by:

ε = 8 · q
2

2n

To restore the security argument damaged by the existence of distinguishers, we will show that the prefix-
free iteration of a non-ideal compression function is to some extent still indifferentiable from a VIL-RO.

7.3.1 Deterministic Distinguishers for the Compression Function

Let us consider a non-ideal compression function f .
– For instance, it may have weak states, that are such that querying f thereon with a well-chosen

message block produces a “special” output allowing to distinguish f from random in one query. Known
examples include for instance the symmetry on the compression function of Lesamnta [BDFL10] and
SIMD [BFL10], as well as on the internal permutation of CubeHash [ABM+09, FLM10].

– But f can also have bad second-order properties, meaning that the output of f on correlated input states
(with well-chosen message blocks) produces correlated outputs, allowing to distinguish f from random
in two queries. A notable example of this property include the existence of differential paths with
probability one in the compression function of Shabal [AMM09]. Symmetry properties also give second
order relations, which means that Lesamnta, CubeHash and SIMD have bad second-order properties
as well.

Relational Constraints. Following the methodology introduced in [BCCM+09], we model this situation by
saying that there are two relations R1 and R2 such that:

∀(h,m) ∈ H ×M : R1(h,m, f(h,m)) = 1

∀(h1, h2,m1,m2) ∈ H2 ×M2 : R2(h1,m1, h2,m2, f(h1,m1), f(h2,m2)) = 1

We denote by R the relation formed by the union of R1 and R2, and we will denote by F [R] the subset
of F such that the above two equations hold. We require the relations to be efficiently checkable, i.e., that
given h,m and h′, it is efficient to check whether R1(h,m, h′) = 1. The relation can thus be used as an
efficient distinguishing algorithm that tells F [R] apart from F .

A weak state is a state on which it is possible to falsify the relation R1. We formally define the set of
weak states for R1 in the following way:

W = {h ∈ H | ∃m,h′ ∈M×H such that R1(h,m, h′) = 0}

The set of weak states W should be a relatively small subset of H because the loss of security will be related
to the size of W. Moreover, we require that the IV is not in W.

In the same vein, a weak pair is a pair of states on which it is possible to falsify the relation R2. We
therefore define the set of weak pairs for R2 by an undirected graph GR2 = (H,WP), where the set of
edges WP is defined by:

WP =
{
h1 ↔ h2 | ∃m1,m2, h

′
1, h
′
2 ∈M2 ×H2 such that R2(h1,m1, h2,m2, h

′
1, h
′
2) = 0

}

Similarly, WP should be a relatively small subset of H2 because the security loss will be related to the
size of WP. For the sake of expressing things conveniently, we define a variant of the same graph, G′R2

=

(H×M,WP ′), where WP ′ is defined by:

WP ′ =
{

(h1,m1)↔ (h2,m2) | ∃h′1, h′2 ∈ H2 such that R2(h1,m1, h2,m2, h
′
1, h
′
2) = 0

}

To simplify the proof, we also require that the connected component of G′R2
have size at most two. This

rules out some second-order relations, but it includes for instance the existence of a differential path with
probability one with a non-zero difference in the input chaining value, as well as the symmetry in the
compression function of SIMD or Lesamnta. This restriction is somewhat artificial and could likely be lifted,
but there will be a loss of security related to the square of the size of connected components.

We also require the existence of sampling algorithms for R, namely of two efficient algorithms Sampler1

and Sampler2 such that:

Sampler1(h,m) : f
$←− F [R]; return f(h,m)

Sampler2(h1,m1, h2,m2, h
′
1) : f

$←− {f ∈ F [R] : f(h1,m1) = h′1} ; return f(h2,m2)

Informally, the sampling algorithms should produce an output that looks as if it were produced by a random
function constrained to conform to R. There are several ways to measure the constraint put on f by R.
Examples include:

84

7.3. Indifferentiability in the Presence of Distinguishers

1. The advantage of R to distinguish F [R] from F
2. The ratio between the cardinality of F [R] and that of F
3. The advantage with which the output of the samplers can be predicted

4. |W| and |WP|.
All these quantities are related, and in this section, we will use the cardinality of W and WP, as it appears
naturally in our results.

7.3.2 Adapting the Indifferentiability Proof to Non-Ideal Compression Functions

We now assume that the compression function is a public function chosen uniformly at random in F [R],
and for the sake of convenience we will call it a “biased FIL-RO”. We show that the prefix-free iteration
of biased FIL-RO is indifferentiable from a VIL-RO. In fact, we extend Theorem 7.8 to the case where the
compression function is biased.

Theorem 7.9 (biased case). Prefix-Free-Merkle-Damg̊ard is (tD, tS , qS , qO, ε)-indifferentiable from a
VIL-RO, when the compression function is modeled by a biased FIL-RO conforming to the relation R,

for any running time tD of the distinguisher, and tS = O
(

(qO + ` · qS)
2
)

where ` is an upper-bound on the

size of the queries sent to the VIL-RO. If q = qS + 2κ · qo + 1, where 2κ is an upper-bound on the size of
hashed messages, then the probability of success of the distinguisher is upper-bounded by:

ε = 16 · q
2

2n
+ 4 · |W| · q

2n,
+ 4 · |WP| · q2

(2n − q)2

The first term of the expression of ε is similar to the result given in Theorem 7.8, when the compression
function is ideal (up to a factor two that could be avoided by making the argument slightly more involved).
The two other terms reflect the fact that the compression function is biased. The relation induces a loss
in provable security if |W| is at least of order 2n/2, or if |WP| is at least of order 2n. Informally, it seems
possible to iterate compression functions having a relatively high bias in a secure way.

Free-start Differential Attacks. Let us assume that the compression function is weak because of the exis-
tence of a good differential path with a non-zero difference in the input chaining value. Even if the probability
of the differential path is 1, this has a very limited effect on the security of the hash function: this leads to
W = ∅ and |WP| = 2n−1. The advantage of the distinguisher is at most twice as high, compared to the
iteration of an ideal FIL-RO.

SIMD. In SIMD-256 (resp. SIMD-512), the internal state has n = 512 bits (resp. n = 1024 bits), and the
distinguisher given in [BFL10] yields |W| = 2n/2+16, |WP| = 2n+32 (resp. |W| = 2n/2+32, |WP| = 2n+64).
Therefore the advantage of any distinguisher in telling apart SIMD-256 from a VIL-RO with q queries is
upper-bounded by:

ε = 16 · q
2

2n
+ 4 · 2n/2+16 · q

2n
+ 4 · 2n+32 · q2

(2n − q)2

The mode of operation of SIMD-256 is then secure against generic attacks up to roughly 2256−16 queries,
even if the attacker is able to exploit the symmetries of the compression function. Similarly, for SIMD-512,
the bound goes up to 2512−32 queries.

Lesamnta. Lesamnta uses the prefix-free Merkle-Damg̊ard mode of operation due to its special finalization
function. An efficient distinguisher based on symmetries was shown in [BDFL10], with |W| = 2n/2 and
|WP| = 2n−1. According to Theorem 7.9, the advantage of any distinguisher in telling apart Lesamnta-256
from a random oracle with q queries is upper-bounded by:

ε = 16 · q
2

2n
+ 4 · 2n/2 · q

2n
+ 4 · 2n−1 · q2

(2n − q)2 ≈ 22 · q

2n/2

Our result shows that Lesamnta remains secure against generic attacks up to the birthday bound. This
is the best achievable proof for Lesamnta, since it does not behave as a good narrow-pipe hash function
beyond that bound: a dedicated herding attack based on the symmetry property is shown in [BDFL10], with
complexity 2n/2.

To establish theorem 7.9, we will proceed in two steps. We will first give a proof of theorem 7.8 (dealing
with the case where the compression function is ideal). Only then we will give a proof of theorem 7.9, by
“patching” the proof of the ideal case.

85

7. Provable Security for Modes of Operations

7.3.3 In the Ideal Case : Proof of Theorem 7.8

We now show that the prefix-free iteration of an ideal compression function is indifferentiable from a
random oracle, thus proving Theorem 7.8. The content of this section borrows very much to the proof in
the extended version of [CDMP05].

We consider a simulator S, which has oracle access to a random oracle RO : {0, 1}∗ → {0, 1}n, and
whose task is to simulate a random compression function. The pseudo-code of the simulator is shown in
Algorithm 7.3, and here are a few comments. The simulator maintains a log of the queries it has answered to.
This knowledge is maintained under the form of a graph G = (V,E), where the set of vertices V is a subset
of H, and where the edges are labelled by message blocks from M. The meaning of this graph is that there
is an edge labelled by m between h and h′ if the simulator lets the distinguisher know that f(h,m) = h′. We

denote this by h
m−→ h′. Initially, the graph contains only a single vertex IV . The simulator also maintains

a subset of V denoted by Reach, consisting of the vertices that are reachable from IV . It also associates to
each vertex v in Reach an ancestor in Reach. This allows, given v, to efficiently reconstruct the sequence of

message blocks that maps IV to v. We will note IV
M−→∗ v when there is such a path between IV and v. At

the beginning, Reach only contains the IV .

Algorithm 7.3 Pseudo-code of the Simulator S
1: function FreshValue(h,m)

2: if IV
M−→∗ h ∈ Reach then

3: if there exist M ′ such that M‖m = g(M ′) then
4: h′ ← RO(M ′)
5: else
6: h′

$←− H
7: end if
8: Reach← Reach ∪

{
h

m−→ h′
}

9: else
10: h′

$←− H
11: end if
12: V ← V ∪ {h, h′}
13: E ← E ∪

{
h

m−→ h′
}

14: return h′

15: end function

16: function Simulator(h,m)

17: if there exist a vertex h′ ∈ V and an edge h
m−→ h′ in E then

18: return this h′

19: else
20: h′ ← FreshValue(h,m)
21: return h′

22: end if
23: end function

Let f be a random compression function. Now, a distinguisher D interacts with either Hf and f (we
say that it is in the “construction world”), or with RO and S (and we say that it is in the “random oracle
world”), and it has to tell in which world it is. More formally, D is a Turing machine that has two interfaces.
It should output “1” if Hf and f are answering its oracle queries, and “0” if RO and S are. Our objective is
to show that the following holds for a small ε:

∣∣∣P
[
DH

f ,f = 1
]
− P

[
DRO,S = 1

]∣∣∣ ≤ ε

The proof uses a hybrid argument through a sequence of games. We will denote by qS and qO the number
of queries sent to the Simulator and the Oracle respectively, by the distinguisher.

Game 1: The distinguisher is in the random oracle world. It has access to RO and S. Let G1 be the event
that D outputs “1” in this setting:

P [G1] = P
[
DRO,S = 1

]

Game 2: We introduce a dummy relay algorithm T , which has oracle access to RO. Given a random oracle
query from the distinguisher, T just send the query to RO, and transmits the answer of RO back to D.

86

7.3. Indifferentiability in the Presence of Distinguishers

Let G2 be the event that D outputs “1” in this case. Since the view of D is left unchanged, we have:

P [G2] = P
[
DT

RO,S = 1
]

= P [G1]

Game 3: In this game, we modify the simulator S. In particular, we restrict the responses of the simulator
such that they never satisfy certain specific failure conditions. If the simulator comes up with a response
that would result in an inconsistent state, then it fails explicitly instead of sending that response. The failure
conditions describe certain situations that could be exploited by the distinguisher, such as collisions on the
internal state. We replace the FreshValue function by the one shown in Algorithm 7.4.

Algorithm 7.4 Patched simulator for Game 3

1: function FreshValue(h,m)

2: if IV
M−→∗ h ∈ Reach then

3: if there exist M ′ such that M‖m = g(M ′) then
4: h′ ← RO(M ′)
5: else
6: h′

$←− H
7: end if
8: if h′ ∈ V then
9: Abort

10: end if
11: Reach← Reach ∪

{
h

m−→ h′
}

12: else
13: h′

$←− H
14: end if
15: V ← V ∪ {h, h′}
16: E ← E ∪

{
h

m−→ h′
}

17: return h′

18: end function

It should be clear that until no abort occur, the subgraph Reach is in fact a tree rooted in IV . This
follows from the fact that the simulator aborts as soon as a collision in the internal state is detected. The
new value h′ is always drawn uniformly at random. It should be clear that as long as the simulator does not
abort, the number of nodes in V is upper-bounded by 2qS + 1.

Therefore, for a given query, the probability of failure is upper-bounded by (2qS + 1)/2n. For all the qS
queries sent by the distinguisher to the simulator, the probability of failure is therefore less than qS · (2 · qs + 1)/2n.
Let G3 be the event that D outputs “1” in this case. Since the view of D only changes when the simulator
aborts, we have:

|P [G3]− P [G2]| ≤ 2 · (qS + 1)
2

2n

In the sequel, we denote the patched simulator by S0.

Game 4: In this game, we modify the relay algorithm and leave the simulator unchanged. The underlying
idea is to make the responses of the relay algorithm directly dependent on the simulator. Thus, instead of
giving the new relay algorithm T1 an oracle access to the random oracle RO, it is now given oracle access
to the simulator S0. On a random oracle query X, the relay algorithm T1 computes g(X), the prefix-free
encoding of X. It then applies the Merkle-Damg̊ard construction to g(X) and queries the simulator S0 to
evaluate the compression function. Thus the relay algorithm T1 is essentially the same as the random oracle
construction pf-MD, except that it is based on the simulator S0 instead of random function f . Let G4 denote
the event that the distinguisher D outputs “1” when given oracle access to T1 and S0 in this game. Thus, we
know that

P [G4] = P
[
DT1,S0 = 1

]

Before going further, we establish two key properties of S0. Let us consider the sequence Q of queries
(hi,mi, h

′
i) sent to S0, where h′i is the answer and (hi,mi) is the question. We say that the IV is reachable,

and at a given point in the simulation h′i is reachable if there has been a previous query (hi,mi, h
′
i) where hi

was reachable. Then:

(i) Until S0 fails, Reach precisely describes the set of reachable chaining values.

(ii) Until S0 fails, Reach describes a tree.

87

7. Provable Security for Modes of Operations

These two properties are easy to establish by induction on the number of queries. When the simulator
detects that hi is reachable, it puts its answer h′i in Reach. What guarantees that our two properties hold
is that S0 aborts if h′i was already “known”. Thus, the set of reachable values can only be extended by one
element, namely h′i, and Reach is updated accordingly.

Next, we claim that the following three statements hold:

(i) In Game 3, i.e., when D interacts with
(
T RO,S0

)
, the answers of S0 are consistent with those of RO

as long as S0 does not abort.

(ii) In Game 4, i.e., when D interacts with
(
T pf−MD(S0)

1 ,S0

)
, the answers of S0 are consistent with those

of RO as long as S0 does not abort.

(iii) T RO and T pf−MD(S0)
1 give the same answers until the simulator aborts.

From these three points, we can deduce that the view of the distinguisher D remains unchanged from
game 3 to game 4 if the simulator S0 does not fail in either of the two games.

Proof. (i) To detect an inconsistency between S0 and RO, one has to build a chain of queries corresponding
to a valid message, and compare with the output of RO with the last query of the chain. Note that
if the chain is built out-of-order, then the simulator will abort. Therefore the last query to be sent to
S0 is the final block of the prefix free encoding of M . When S0 detects the final block of a message, it
queries RO on the decoded message, which is unique because Reach is a tree. The answers of RO and
S0 are thus consistent.

(ii) The justification is the same as in the previous point. The fact that T1 sends extra queries does not
change the fact that S0 answers are consistent with the Random Oracle.

(iii) Since S0 is consistent with the VIL-RO, the relay algorithm T1 does in fact return RO(M) by applying
the pf-MD construction with S0.

We can finally complete the argument by observing that if the maximum length of the prefix-free encoding
of a random oracle query made by D is ` blocks, then,

|P [G4]− P [G3]| ≤ P [S0 fails in Game 3] + P [S0 fails in Game 4]

≤ 2 · (qS + 1)
2

+ (qS + ` · qO + 1)
2

2n

Game 5: In this game, we modify the simulator S0 so as to make its responses independent of the random
oracle RO. For this purpose, we remove the random oracle RO from this game entirely and the new simulator
S1 always chooses a random n-bit response itself, even in situations where S0 would have consulted RO. We
also remove all the failure conditions from the new simulator S1. More precisely, we replace the FreshValue
function by the one in Algorithm 7.5

Algorithm 7.5 Patched simulator for Game 5

1: function FreshValue(h,m)

2: h′
$←− H

3: V ← V ∪ {h, h′}
4: E ← E ∪

{
h

m−→ h′
}

5: return h′

6: end function

The responses of these two simulators are identical except from the failure conditions which are used by
S0 and not by S1: even when S0 consults the random oracle, its responses are still uniformly distributed.
Thus, the distinguisher does not notice a difference between these games if in game 4, the simulator S0 does
not fail.

Let G5 denote the event that the distinguisher D outputs “1” in game 5, so that

P [G5] = P
[
DT1,S1 = 1

]

Then we can deduce that:

|P [G5]− P [G4]| ≤ P [S0 fails in game 4]

≤ 2 · (qS + ` · qO + 1)
2

2n

88

7.3. Indifferentiability in the Presence of Distinguishers

Game 6: This is the final game of our argument. Here we finally replace the simulator S1 with the random
function f . Since the relay algorithm T1 simply implemented the prefix-free Merkle-Damg̊ard construction,
then the view of the distinguisher is in fact the construction world. Now, by combining games 1 to 6, we
can show that ∣∣∣P

[
DH

f ,f = 1
]
− P

[
DRO,S = 1

]∣∣∣ ≤ 4 · (qS + 1)
2

+ (qS + ` · qO + 1)
2

2n

7.3.4 Non-Ideal Case: Proof of Theorem 7.9

Algorithm 7.6 Pseudo-code of the Simulator S0 for the non-ideal case, with abort conditions

1: function Simulator(h,m)

2: if there exist a vertex h′ ∈ V and an edge h
m−→ h′ in E then

3: return this h′

4: else
5: return FreshValue(h,m)
6: end if
7: end function

8: function FreshValue(h,m)
9: if there exist (u, v)↔ (h,m) ∈ G′R2

then (h,m)← (u, v)

10: if IV
M−→∗ h ∈ Reach then Swap (h,m) and (h,m) . (only if h is defined)

11: if IV
M−→∗ h ∈ Reach then

12: if there exist M ′ such that M‖m = g(M ′) then
13: h′ ← RO(M ′)
14: else
15: h′

$←− Height
16: end if
17: h′ ← Sampler2

(
h,m, h,m, h′

)
. (only if h is defined)

18: if h′ ∈ W or h′ ∈ V or Reach ∪ {h′} covers an edge of GR2 then Abort

19: Reach← Reach ∪
{
h

m−→ h′
}

20: else
21: h′ ← Sampler1(h,m)

22: h
′ ← Sampler2

(
h,m, h,m, h′

)
. (only if h is defined)

23: end if
24: V ← V ∪

{
h, h′, h, h′

}
. (only add h and h′ if defined)

25: E ← E ∪
{
h

m−→ h′, h
m−→ h′

}
. idem.

26: return h′ (or h′ if they were swapped in line 10)
27: end function

The proof proceed in the same way as the proof of Theorem 7.8. The simulator is shown in Figure 7.6.
The pseudo-code shows S0 with the failure conditions. Before going further, a few comments on S0 are in
order. When it receives a query (h,m), it checks whether there exist a symmetric query

(
h,m

)
, that would

trigger the symmetry relation (i.e., it checks whether the node (h,m) is connected to something in G′R2
).

If such a query exist, then both are treated simultaneously in a “symmetric” way. In particular, if either
one of these concerns a reachable state, then it is treated specially, even if it not the original query, but the
“symmetric” one. The first two games are identical to those of the ideal case.

Game 3: Let us discuss the probability that S0 fails. It can only happen if h is reachable, which in turn
means that h′ is randomly distributed in H. S0 aborts when h′ ∈ W, h′ ∈ V or when Reach∪{h′} covers an
edge of GR2

. The probability that h′ ∈ W is |W|/2n, and the probability that h′ ∈ V is upper-bounded by
(4 · qS + 1)/2n, since |V | ≤ 4 · qs + 1. Let us now discuss the probability that an edge of GR2 is covered by
Reach.

A simple induction on the number of queries shows that the chaining values in Reach are all randomly
and independently distributed in H (this is because Reach is always extended by h′ on line 19, and h′ is
itself always generated randomly). If we ignore the abort conditions, Reach is a random subset of H of

size k ≤ qs + 1 after qS queries. There are
(

2n

k

)
such subsets, and amongst these

(
2n

k−2

)
cover a given edge.

The probability that at least one edge out of |WP| is covered is thus upper-bounded by |WP| ·
(

2n

k−2

)
/
(

2n

k

)
,

89

7. Provable Security for Modes of Operations

which it itself upper-bounded by |WP| · k2/(2n− k)2. After qs queries, the probability of failure is therefore
bounded by:

|P [G3]− P [G2]| ≤ 4 · (qS + 1)
2

2n
+ |W| · qS + 1

2n
+ |WP| · qS + 12

(2n − qS − 1)
2

Game 4: We claim that the following four statements hold:

(i) In Game 3, i.e., when D interacts with
(
T RO,S0

)
, the answers of S0 are consistent with those of RO

as long as S0 does not abort.

(ii) In Game 4, i.e., when D interacts with
(
T pf−MD(S0)

1 ,S0

)
, the answers of S0 are consistent with those

of RO as long as S0 does not abort.

(iii) T RO and T pf−MD(S0)
1 give the same answers until the simulator aborts.

(iv) As long as it does not abort, the answer of S0 always comply with the relation R.

Consistency with the VIL-RO. Establishing the first three points can be done in the same as it was done
in the ideal case. The simulator relies on the fact that Reach is a tree, and that it exactly describes the
reachable chaining values in V . This can be established by arguing that if S does not abort, then h′ is the
only new reachable chaining value created by the current invocation of FreshValue. Note that h, if it
exists, is not reachable.

Conformance to the Relation. The main point is that the relation can never be falsified on reachable
states, and that the samplers are used on non-reachable states to ensure that the answers are consistent with
the relation. More precisely, the simulator aborts as soon as a state in W becomes reachable, or a pair of
states in WP becomes reachable.

Let us assume that the distinguisher can find a query (h,m, h′) with h
m−→ h′ such that R1(h,m, h′) does

not hold. Then we have h ∈ W by definition of W, therefore h cannot be reachable and h′ has necessarily
been build by Sampler1. By definition of Sampler1, R1(h,m, h′) must hold.

Similarly, let us assume that the distinguisher finds h1
m1−−→ h′1 and h2

m2−−→ h′2 such thatR2(h1,m1, h2,m2, h
′
1, h
′
2)

does not hold. By definition of WP we have (h1, h2) ∈ WP therefore h1 and h2 cannot both be reachable.
Moreover, we have (h1,m1)↔ (h2,m2) ∈ G′R2

. Without loos of generality, we assume that h2 is not reach-
able. When the first query involving (h1,m1) or (h2,m2) was sent to S0, the simulator built the second
query. If h1 was reachable, h′1 has been built by calling the VIL-RO and h′2 has been built by Sampler2,
with assures that R2(h1,m1, h2,m2, h

′
1, h
′
2) holds. Similarly, if h1 is not reachable, h′1 has been built by

Sampler1, and h′2 by Sampler2. We note that if h1 was not reachable at the time when it was queried, it
cannot become reachable later without causing the simulator to abort.

Finally, we obtain that the view of the distinguisher does not change as long as the simulator does not
abort:

|P [G4]− P [G3]| ≤ P [S0 fails in Game 3] + P [S0 fails in Game 4]

≤ 2 · P [S0 fails in Game 4]

≤ 8 · (qS + κ · qO)
2

2n
+ 2|W| · qS + κ · qO

2n
+ 2|WP| · (qS + κ · qO)

2

(2n − qS − κ · qO)
2

And we conclude:

ε =
∣∣∣P
[
DH

F ,F = 1
]
− P

[
DRO,S = 1

]∣∣∣
≤ |P [G1]− P [G6]|
≤ 4P [S0 fails in Game 4]

≤ 16 · (qS + κ · qO)
2

2n
+ 4 · |W| · qS + κ · qO

2n
+ 4 · |WP| · (qS + κ · qO)

2

(2n − qS − κ · qO)
2

90

Conclusion

Our work on hash functions modes of operations was mostly centered on second preimage attacks, and
provable second preimage resistance. These questions are essentially of theoretical interest, because generic
attacks are usually unlikely to ever become practical. This applies in particular to second preimage attacks
which do not just rely on a black-box collision finder that could efficient with the passage of time. The
Trojan Message Attack is a rare example of a generic attack becoming practical.

The complexity of generic attacks is usually above the birthday bound, but it is striking that as soon as
the adversary is allowed to perform at least 2n/2 operations, where n denotes the size of the internal state
of the hash function, uncontrollable phenomena happen. This is typically exemplified by the generic attacks
on concatenated or iterated hashes, where sophisticated herding techniques allows to keep an arbitrary large
number of parallel hash processes under control.

All-in-all, the avalanche of generic attacks on the Merkle-Damg̊ard construction stimulated the search for
alternatives. From a theoretical standpoint, this question has been settled: the wide-pipe mode of operation
and the sponge construction both offers unquestionable benefits over Merkle-Damg̊ard, most notably the
provable absence of generic attacks. The SHA-3 competition has also demonstrated that they can be efficient
and practical.

There might nevertheless be some practical scenario (e.g., very constrained memory) where narrow-pipe
constructions could be a better fit. In addition, investigating the properties of narrow-pipe hash functions is
more interesting, because the situation is much less clear. We have shown that there are narrow-pipe hash
function modes of operations immune to generic second preimage attacks. Are there narrow-pipe modes of
operation provably resistant against herding attacks? The Zipper Hash seems to be a promising candidate,
but it is very unpractical.

The designers of new hash function modes of operation will have to justify their work in light of the
existence of provably secure and decently practical constructions. We thus believe that these new modes
will have to provide some additional feature, e.g., stronger provable security in the standard model. The
sponge paradigm [BDPA08] is a striking example: it provides more features than most other constructions
(it can produce digests of any sizes, for instance). It has already gained respectability even though it only
appeared three years ago, because it was demonstrated that it could be simultaneously quite practical and
yield apparently secure constructions.

Finally, the interplay between attacks and security proofs is a fascinating subject. Our proofs of resis-
tance to second preimage attacks directly exploit the way the attacks work. Constructing simulators for
indifferentiability proofs is often a (challenging) trial-and-error process, where the designer, sometimes with
the help of a few colleagues, puts her own algorithm to the test of carefully crafted distinguishers. An
important phase of the elaboration of the security proof therefore consists in the elaboration of attacks...

91

Part Two

Computer-Aided Cryptanalysis of Byte-Oriented
Primitives

93

Introduction

The field of block cipher design has advanced greatly in the last two decades. New strategies of designing
secure block ciphers were proposed, and following the increase in computing power, designers could offer
larger security margins with reduced performance penalties. As a result, practical attacks on block ciphers
became extremely rare, and even “certificational attacks” (that is, attacks which are not practical but are
still faster than exhaustive key search on the full version of the cipher), are not very common. As we already
argued in the introduction of part I, the situation of hash functions (and also stream ciphers) is dramatically
different. Several commonly used hash functions were practically broken in recent years [SSA+09, MP08],
and practical attacks on new stream cipher designs appear every several months [SHJ09, HJ11].

This led to two approaches in the block-cipher cryptanalysis community. The first is to concentrate on
attacking reduced-round variants of block ciphers, where the usual goal of the adversary is to maximize the
number of rounds that can be broken, using less data than the entire codebook and less time than exhaustive
key search. This approach usually leads to attacks with extremely high data and time complexities, such as
those shown in [DS08, LDKK08]. The second approach is to allow the adversary more degrees of freedom in
his control. Examples of this approach are attacks requiring adaptive chosen plaintext and ciphertext queries,
the related-key model, the related-subkey model, and even the known-key model [BK09, DKS10b, KR07].
This approach allows to achieve practical complexities even against widely used block ciphers such as the
AES, but the practicality of the models themselves in real-life situations can be questioned.

Attacks following each of these approaches are of great importance, as they ensure that the block ciphers
are strong enough, almost independently of the way in which they are deployed. Moreover, they help to
establish the security margins offered by the ciphers. A block cipher which is resistant to attacks when the
adversary has a strong control and almost unrestricted resources offers larger security margins than a block
cipher which does not possess this resistance.

At the same time, concentrating the cryptanalytic attention only on such attacks may prove insufficient
to truly understand the security of the analyzed block cipher. It seems desirable to also consider other
approaches, such as restricting the resources available to the adversary in order to adhere to “real-life”
scenarios. For example, one may study the maximal number of rounds that can be broken with practical
data and time complexity, as considered for instance in [BDK+10] with respect to the related-key model.

Low Data Complexity Attacks. In this second part we pursue this direction of research, but we concentrate
on another restriction of the adversary’s resources. In the attacks we consider, the time complexity is not
restricted (besides the natural bound of exhaustive search), but the data complexity is restricted to only a
few known or chosen plaintexts. At first glance, this scenario may seem far fetched. However, it makes sense
to question whether it is easier in practice for an attacker to perform 250 elementary operations or to acquire
50 plaintext/ciphertext pairs. We are inclined to believe that in many actual-life situations, performing the
computation is easier. In addition, the EMV protocol for credit cards specifies that at most 216 signatures
shall be issued by a given chip, which practically restricts the quantity of available data. It also turns out
that this setup is very natural in the context of several classes of attacks:

– Slide attacks [BW99]: This class of attacks is especially designed against block ciphers whose rounds are
very similar to each other. The main feature of slide attacks is that they are independent of the number
of rounds, and thus, the common countermeasure of increasing the number of rounds is not effective
against them. Since most other attack techniques can be easily undermined by adding a few rounds,
this makes the slide attacks one of the most powerful attacks against modern block cipher designs. The
main idea of the slide attacks is to reduce the attack on the entire block cipher to an attack on a single
round, where the data available to the adversary is only two known plaintext/ciphertext pairs. Hence,
the scenario considered in our paper is exactly the one faced by the adversary in the slide attack. We
note that several variants of slide attacks suggested methods to increase the amount of data available
to the adversary [BW00, BDK07, Fur01]. However, all these methods either require the knowledge of
large portion of the codebook or perform in the adaptively chosen plaintext model.

– Attacks based on fixed point properties [CBW08]: In this class of attacks, the adversary looks for a
fixed point of some part of the encryption process. For such a fixed point, the cipher is reduced to a

95

Introduction to part II

smaller variant, which can (sometimes) be attacked efficiently. Since usually the number of fixed points
is extremely small (e.g., one or two), the adversary’s goal is to attack a reduced-round variant of the
cipher given a few known plaintexts.

– Side channel attacks: In this class of attacks, the adversary has access to some information on the
internal states during the encryption process. Usually, due to practical restrictions, the amount of data
available to the adversary is extremely low. In the (somewhat unlikely) case where the information
available to the adversary is the full intermediate state after a few rounds, the scenario the adversary
faces is exactly the one considered in our paper. We note that the complementary scenario, where the
adversary has access to a small part of the internal state in multiple encryptions, was studied in [DS09].

– Building block in more complex attacks: As we demonstrate on the example of AES, an attack on 2-
round AES with two known plaintexts can be leveraged to a known plaintext attack on 6-round AES.
The attack uses a meet-in-the-middle approach combined with a low probability differential. Also, the
block cipher GOST was recently broken by such an attack, where an attack against the full 32 rounds
is reduced to an attack against 8 rounds using four known plaintext [Iso11]. We expect that such
“leveraging” attacks are applicable against other block ciphers as well.

– Attacks on other primitives based on the block cipher : In recent years, many designs of stream ci-
phers (e.g., Sosemanuk [BBAC+05]), hash functions (e.g., Hamsi [OK09]), MACs (e.g., ALPHA-
MAC [DR05a]), etc., use a small number of rounds of a block cipher as one of their components.
Some of these constructions can be broken when internal collisions are found and thus the attackers
are in a setting in which they have to exploit a very limited quantity of data (the colliding inputs).
The attacks we consider can be used against these primitives, once collisions are found (which may
require a large quantity of data though).

The AES, a Natural Target. In order to make our results concrete, we have chosen to concentrate on a
single block cipher — the AES, the Advanced Encryption Standard [NIS01]. The AES is a 128-bit block
cipher with a variable key length (128, 192, and 256-bit keys are supported). Since its selection, AES
gradually became one of the most widely used block ciphers and received a great deal of cryptanalytic
attention, both during the AES process, and even more after its selection. Studying reduced-round versions
of AES is also motivated by the recent blossom of many AES-based primitives for hashing or authentication,
such as the Grøstl, ECHO, SHAVite-3 and LANE hash functions, the LEX [Bir06a] stream cipher, or the
Alpha-MAC [DR05a] and Pelican-MAC [DR05b] message authentication codes. In these construction, AES
rounds (and sometimes the full AES) are used as internal permutations. A possible explanation of this
fancy is that the AES enjoys very interesting security properties against statistical attacks: two rounds
achieve full diffusion, and there exist very good differential and linear lower bounds for the best differential
on four rounds [KMT01b, KMT01a, Kel04]. It results that in some applications (such as authentication or
hashing), only a small number of AES rounds are sufficient to yield a reasonable internal permutation. The
relative weakness of the permutation is then usually compensated by the fact that the internal state is either
hidden from the adversary (in MACs, because of the secret key), or only partially accessible to the adversary
(because only certain parts can be seen and modified). Furthermore, in some particular attacks, such as
side-channel attacks, only a small number of rounds of the cipher needs to be studied [PQ03, BK07].

Lastly, much attention has been recently devoted to the AES block cipher as a by-product of the NIST
SHA-3 competition. The low diffusion property of the key schedule has been used to mount several related-
key attacks [BKN09, BK09, BDK+10, KBN09] and differential characteristic developed for hash functions
have been used to also improve single-key attacks [DKS10a]. The AES is therefore a relevant and interesting
case study to demonstrate our techniques.

Algebraic Structure. Since the introduction of the AES in 2001, it has been questioned whether its simple
algebraic structure could be exploited by cryptanalysts. Soon after its publication as a standard [NIS01],
Murphy and Robshaw showed in 2002 an interesting algebraic property: the AES encryption process can
be described only with simple algebraic operations in GF

(
28
)

[MR02]. Such a result paved the way for
multivariate algebraic techniques [CP02, Cid04] since the AES encryption function can also be described
by a very sparse overdetermined multivariate quadratic system over GF (2). However, so far this approach
has not been so promising [MV04, CL05], and the initial objective of this simple structure, providing good
security protections against differential and linear cryptanalysis, has been fulfilled.

Techniques. Our concentration on attacks with an extremely small data complexity affects the techniques
available to us. The small amount of available data makes the usual statistical attacks, such as differential
and linear cryptanalysis, almost irrelevant. Algebraic attacks seem to be more well-suited, even though it
seems that they perform better when a lot of data is available. Anyway, such attacks using either SAT solvers
or Gröbner basis algorithms [MR02, BPW06], have never been able, so far, to endanger even very reduced

96

versions of the AES. These attacks encode the problem into a system of equations, then feeds the equations
to a generic, sometimes off-the-shelf equation solver, such as a SAT-solver or a Gröbner basis algorithm 2.
The main obstacle in these approaches is the non-linear component of the AES (the S-box), that only admits
“bad” representations (for instance, it is a high degree polynomial over the AES finite field), and increases
the complexity of the equations, even though low degree implicit equations may also exist.

Our attacks have an algebraic flavor, but are mostly based on the meet-in-the-middle approach, combined
with guess-and-determine and differential-type ideas, as well as vast exploitation of the key schedule of the
analyzed block cipher (a not-so-common feature in single-key attacks).

Automated Tools. Because of their special nature, finding low data complexity attacks “by hand” is dif-
ficult. A guess and determine attack against three AES rounds for instance involves about 50 deduction
steps. Even on a single AES rounds, where attacks should be easier to find, some subtle shortcuts are not
easy to find at all. To alleviate the task of cryptanalyst, a natural solution is to create automated tools
tailored to find an attack of some kind on a given primitive. This approach has been successful many times:
nice examples include the cryptanalyses of Grindhal by Peyrin [Pey07] and of RadioGatùn by Fuhr and
Peyrin [FP09]: in both case a custom-made program found a truncated or symmetric differential character-
istic leading to a collision. Biryukov and Nikolić designed a tool to automatically find related-key attacks in
the AES [BN10], and along with Khovratovich they designed a tool to search for collision attacks on byte-
oriented hash functions [KBN09]. Much earlier, Matsui designed a tool to find differential characteristics
and linear approximations [Mat93]. Leurent developed a tool to find good differential paths in MD4 and
MD5 [FLN07], while De cannière and Rechberger developed a tool to find good differential characteristics
in SHA-1 [CR06], etc.

This part devoted to low data complexity attacks is made of two chapters. In chapter 8 we describe
two tools we designed to find low-data complexity attacks against the AES. Both tools outperformed (well-
known) human cryptanalysts in several occasions. In chapter 9, we present a collection of low-data complexity
attacks reduced-round versions of the AES, and against AES-based primitives such as LEX, Alpha-MAC
or Pelican-MAC [DR05b]. Some of these attacks were found by hand, and some others were found by our
automated tool.

2. Gröbner Bases will be discussed more in-depth in part III

97

Chapter 8

Automated Tools For Low Data Complexity
Attacks on AES Derivatives

This chapter presents two software tools we have designed to find low-data complexity attacks.
These results are the product of a joint effort with Patrick Derbez, and they have been published
at CRYPTO’2011 [BDF11].

In this chapter, we describe two automated tools we designed to find low data complexity attacks on
the AES. The global strategy is to encode the cryptanalytic problem at hand (key-recovery, state-recovery,
differential pair-finding, etc.) as a system of equations over F28 . Our tools can then be seen as equation
solvers of a special kind, because they take the equations describing the problem and try to find all the
solutions of these equations in an efficient way. The tools are thus somewhat generic, as they are not
specialized to a particular block cipher.

This approach is yet quite different from the usual algebraic attacks. Our tools do not try to solve the
equations using a generic “one-size-fits-all” equation solver, but they first run a search for an ad hoc solver
tailored for the equations to solve. The tools generate the source code of this solver, build it (using standard
compilers) and run it in order to obtain the actual solutions. The resulting standalone program is, in fact,
the attack. It can be run independently of the tools that were used to find it. While the complexity of
the tools seems difficult to upper-bound, the tools give a decently precise approximation of the expected
run-time of the attacks they produce.

These tools can be applied to systems of linear equations containing non-linear permutations of the field,
such as bijective S-boxes. Our idea is to consider the S-box as a black box permutation. We only use few
properties of this function and our attacks work for any good instantiation of the S-box.

This approach is reminiscent of the ideas used by Khovratovich, Biryukov and Nicolić to find collisions
in an AES-based hash function (more precisely, a hash function using a large version of Rijndael in Davies-
Meyer mode) [KBN09]. They first found a “good” colliding truncated differential path, and they were facing
the problem of finding a conforming pair to obtain an actual collision. The basic strategy for finding a
message pair conforming to a differential characteristic consists in exhaustively trying all possible input
values and checking if the constraints are satisfied. In order to speed up the collision search, these authors
used a message modification technique: they described the hash function using a system of linear equations
with an S-box, and added equations to enforce that the message and chaining value follow their truncated
differential characteristic inside the function. Solving the equations would yield a collision, and the approach
they proposed is to look automatically for constraints that could be satisfied by setting a particular variable
to a particular value without violating other constraints. To this end, they use linear algebra, and essentially
consider x and S(x) to be independent variables, and then greedily satisfy constraints. This method is
however limited in that when the greedy strategy aborts, i.e., when no easily-satisfiable constraints remain,
then probabilistic trials is the only fallback.

Our tools exploit the algebraic simplicity of the AES, or, more precisely, the fact that none of its operations
interact in a disastrous way with the algebraic structure of F28 . The S-box operates on a single element of
F28 , and the only operation that involves more than one element of the field is the XOR, which is precisely
the addition of the field. The situation would be much less algebraically “clean” if, for instance, each column
were rotated by one bit: this particular operation is difficult to describe over F28 .

We also exploit the fact that the cipher can be described by sparse equations over F28 . Both features
stems from the fact that the AES is an (efficient) byte-oriented cipher. We believe that it is the first time
that the algebraic simplicity of the AES is effectively harnessed by cryptanalysts.

Techniques. Our tools try to find attacks automatically by searching some classes of guess-and-determine
and meet-in-the-middle attacks. They take as input a system of equations describing the cryptographic
primitive and some constraints on the plaintext and ciphertext variables (e.g., a differential relation). They

99

8. Automated Tools For Low Data Complexity Attacks on AES Derivatives

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15 3 7 11 15 15 3 7 11

ShiftRows MixColumns

SB SR MC
ARK⊕

ki
xi yi

zi wi

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Figure 8.1: An AES round

then solve the equations by first running a (potentially exponential) search for a customized solver for the
input system. The solver is built, run, and the solutions are computed.

We describe two tools. Our preliminary tool uses a depth-first branch-and-bound search to find “good”
guess-and-determine attacks. It has been used to generate some of the attacks published in [BDD+10] and
described in the next chapter, and outperformed human cryptanalysts in several occasions. The class of
attacks searched for by this preliminary tool is quite restricted, and it fails to take into account important
differential properties of the S-box. It is therefore mostly suited to the case where a single known plaintext
is available.

Many ideas developed for this preliminary tool could be reused in our second, more advanced tool,
which finds more powerful attacks, such as Meet-in-the-Middle attacks. For instance, this improved tool
automatically exploits the useful fact that an input and output difference on the S-box determine uniquely
on average the actual input and output values. Because the search procedure of our improved tool is
essentially a saturation procedure, the algorithmic techniques we use are reminiscent of (and inspired by)
the Buchberger algorithm [Buc65], as well as many techniques used in automated theorem proving.

We have applied these algorithms to reduced-round versions of the AES, to the stream cipher LEX,
to Pelican-MAC, to the block cipher SQUARE [DKR97], to SkipJack, etc. Some of the attacks found by
these algorithms are described in chapter 9. Once given a very little bit of human knowledge, our tools
automatically rediscover the best known attacks on Alpha-MAC and LEX. They also discovered the best
known attack on Pelican-MAC (a different attack with the same complexity was independently discovered at
about the same time by Dunkelman, Keller and Shamir [DKS11]). The tools also helped us to find the best
known attack on the LEX stream cipher. The tools can output the source code of a program performing
the attack, but can also provide a somewhat human-readable description of the attack procedure, which was
used in some cases to understand and describe the attacks.

8.1 Description of the AES

The Advanced Encryption Standard [NIS01] is a Substitution-Permutation network that supports key
sizes of 128, 192, and 256 bits. A 128-bit plaintext (resp. a 128-bit key or internal state) is treated as a byte
matrix of size 4× 4, where each byte represents a value in F28 . An AES round applies four operations to the
state matrix:

– SubBytes (SB) — applying the same 8-bit to 8-bit invertible S-box 16 times in parallel on each byte
of the state,

– ShiftRows (SR) — cyclic shift of each row (the i’th row is shifted by i bytes to the left),
– MixColumns (MC) — multiplication of each column by a constant 4× 4 matrix over F28 , and
– AddRoundKey (ARK) — XORing the state with a 128-bit subkey.
We outline an AES round in Figure 8.1. Before the first round, an additional AddRoundKey operation

(using a whitening key) is applied, and in the last round the MixColumns operation is omitted. The number
of rounds depends on the key length: 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for
256-bit keys. We use the round numbers 1, . . . , Nr, where Nr is the number of rounds (Nr ∈ {10, 12, 14}).
We only consider the AES with 128-bit keys and 10 rounds. Because the final AES round is different from
the others, we use the term “r.5 rounds AES” to denote the AES reduced to (r+1) rounds, including the final
round. We use “r rounds AES” to denote the AES reduced to r identical full rounds. In our terminology,
the “normal” 128-bit AES has 9.5 rounds.

Let F28 denote the finite field with 256 elements used in the AES, namely F2[X]/X8 +X4 +X3 +X + 1.
We denote the S-box of the SubBytes transformation by S : F28 → F28 . In a 4 × 4 matrix, we use the
following numbering of bytes: byte zero is the top-left corner, the first column is made of bytes 0-3, while the
last column is made of bytes 12-15, with byte 15 in the bottom-right corner (this is illustrated by Figure 8.1).
We denote the four columns of a 4× 4 matrix M by M [0..3],M [4..7],M [8..11] and M [12..15] respectively.

100

8.2. A preliminary Tool for Simple Guess-And-Determine Attacks

As we consider only the AES with 128-bit key, we shall describe only its key schedule algorithm. The
key schedule of the other variants can be found in [NIS01]. The key schedule of AES-128 takes the 128-bit
master key k0 and extends it into 10 subkeys k1, . . . , k10 of 128 bits each using a key-schedule algorithm
described by the following equations:

KSi :





ki[j] + ki[j − 4] + ki−1[j] = 0, j = 4, . . . , 15
ki[0] + ki−1[0] + S (ki−1[13]) + RCONi = 0
ki[1] + ki−1[1] + S (ki−1[14]) = 0
ki[2] + ki−1[2] + S (ki−1[15]) = 0
ki[3] + ki−1[3] + S (ki−1[12]) = 0

We denote by xi the internal state entering round i (i.e., before SubBytes), by yi the internal state
between the SubBytes and ShiftRows operations, while zi and wi denote the internal state before and after
the MixColumns operation, respectively. The plaintext is denoted by P , and the ciphertext is denoted by C.
One round is represented by these equations:

Ri :





yi + S(xi) = 0

wi +




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


×




yi[0] yi[4] yi[8] yi[12]
yi[5] yi[9] yi[13] yi[1]
yi[10] yi[14] yi[2] yi[6]
yi[15] yi[3] yi[7] yi[11]


 = 0

xi+1 + wi + k1+i = 0

It is straightforward to form the system of equations E describing the full encryption process along with
the key schedule: we just have to concatenate some KSi’s and some Ri’s (without forgetting the initial key
addition). Since the right-hand side of all these equations are zero, we stop representing it from now on.

These equations are extremely sparse, containing at most 5 terms. Each variable occurs in at most 3
equations. These equation form a constrained linear system, where the constraints are that for all variables,
the values of x and S(x) are not independent.

Let us denote by V (X) the vector space spanned by 1, x, S(x) for all x ∈ X, for any set of variables X.
If we denote by X the set of all key and internal state variables, then the cipher equations span a subspace
of V (X). Any basis of this subspace describes an equivalent system of equations. Therefore, by an abuse of
notation we identify the set of equations describing the block cipher with the vector space formed by all the
linear combinations of the equations, and we still denote it by E. We also introduce the notation S(E) to
denote the set of solutions of the equations E.

In some cases, we are interested in interchanging the order of the MixColumns and AddRoundKey opera-
tions. As these operations are linear they can be interchanged, by first XORing the data with an equivalent
key and only then applying the MixColumns operation. We denote the equivalent subkey for the altered
version by:

ui = MC−1(ki) =




0e 0b 0d 09
09 0e 0b 0d
0d 09 0e 0b
0b 0d 09 0e


× ki

8.2 A preliminary Tool for Simple Guess-And-Determine Attacks

Confronted with a system of equations in V (X) (possibly describing a cryptographic problem), the most
naive way to obtain its solutions consists in enumerating all the possible values of the variables and retaining
only the combinations satisfying all the equations. However, equations in V (X) are such that, in a given
equation, once all the terms but one are known then the last one can be found efficiently. This is especially
useful when the equations are sparse (efficient cryptographic primitives usually result in sparse equations).
This enables more or less efficient guess-and-determine techniques to solve the equations. In a cryptographic
setting, guess-and-determine attacks are often found when data is very scarce, and statistic attacks are
therefore impossible. Guess-and-determine attacks can be more or less sophisticated, but the simplest ones
typically take the following form:

1: for all values of some part of the (unknown) internal state do
2: Compute the full internal state
3: Retrieve the secrets
4: Check compatibility of secrets with available data
5: if match available data then return secrets
6: end for

101

8. Automated Tools For Low Data Complexity Attacks on AES Derivatives

The difficulty in finding such an attack is to find which parts of the internal state to enumerate, and to find
how to recover the rest. In this section, we present a preliminary tool that finds such attacks automatically.
It takes as an input a system of equations E ⊂ V (X) and a set K0 ⊂ X of initially known variables—these are
the variables corresponding to the available data, for instance the plaintext, the ciphertext, the keystream,
etc. The preliminary tool returns a C++ function (the “solver”) which enumerates the solutions of E (using
negligible memory), given the actual values of the known variables. The tool also returns the exact number
of elementary operations the solver performs in the worst case.

This preliminary tool has been developed while performing the research that led to the results presented
in the next chapter, and which have been published in [BDD+10]. The preliminary tool has for instance been
used to find one known plaintext attacks against 1, 1.5, 2, 2.5 and 3 AES rounds, systematically beating the
best results found manually. For instance, prior to the publication of [BDD+10], the best attack on one (full)
AES round was a guess-and-determine attack with complexity 248 described in [DK10b]. The preliminary
tool found in less than a second an attack of complexity 240 and generated its implementation, which we
verified to be correct.

8.2.1 Knowledge Propagation.

The core idea of this preliminary tool is quite simple: if there is a linear combination of the equations
in which the values of all terms are known except one, then the value of this last term can be determined
efficiently.

When applied to the AES, this simple procedure automatically harnesses the simple and clean algebraic
structure of the cipher. It automatically exploits the linear relations existing in the key-schedule, as well as
the MDS property of the MixColumns operation: if y = MixColumns(x) then knowlege of any four bytes in
(x, y) is sufficient to recover the remaining four efficiently.

An “Algebraic” Point of View. The acquisition of further knowledge, either by “guessing” or “determining”
has a simplifying effect on the equations (it removes an active variable whose value is unknown from the
problem). This simplification of the original equations in fact has a clean algebraic description.

Let K ⊂ X be a set of variables whose values are known. If we substituted the values of known variables
into the original equations E, we would indeed get a system with less variables. In fact, this reduced system
is essentially the quotient space of E by V (K): starting from an equation f ∈ E, its equivalence class [f]
in the quotient contains a representative where all the variables in K have disappeared. Alternatively, the
variable x can be deduced from K if either [x] or [S(x)] belong to the quotient of E by V (K), and we will write
x ∈ Propagate(K) when it is the case. To see why, observe that [x] ∈ V (E) /V (K) (or [S(x)] ∈ V (E) /V (K))
means that there exists k ∈ V (K) such that x + k ∈ V (E). In other terms, there is a linear combination
of the equations E that can be written x+ k (respectively, S(x) + k). It follows that in any solution of the
equations E, the value of x is the value of k. There is therefore a straight-line program of size O (|K|) that
uniquely determines the value of x given the values of the variables in K—it just has to evaluate k.

Observe in passing that it is not difficult to check whether x ∈ Propagate: it comes down to solving a
system of 2|X| linear equations in |E| variables over F28 .

8.2.2 Automatic Search for a Minimal Number of Guesses

Given a set of “known” variables K = K0, we may propagate knowledge and obtain the value of new
variables, yielding a new set of known variables K1. But it may turn out that new variables may again be
obtained from K1. We therefore define the function Propagate∗(X) which returns the least fixed point of
Propagate containing X:

Propagate∗(X) =

{
let Y = Propagate(X) in

if X = Y then return Y else return Propagate∗(Y)

Note that this definition is well-founded, because Propagate is both monotonic and bounded. Indeed,
it is very easy to check that X ⊆ Y implies Propagate(X) ⊆ Propagate(Y). It also follows that
Propagate∗ is also monotonic.

A guess-and-determine solver has been found as soon as we have found a set G of “guesses” such that
Propagate∗(G) = X. In that case, we will say that G is sufficient. The problem thus comes down to
automatically finding a sufficient set of minimal size.

The process of exhaustively searching such a guess-and-determine attack can be seen as the exploration
of a Directed Acyclic Graph (DAG) whose nodes are sets of variables. The starting node is the set K0, and

the terminal node is X. For any set of variables X, and any variable y /∈ X there is an edge X
y−→ X ∪ {y},

meaning that we may always choose to “guess” the value of y to gain knowledge. Finally, for any set of

102

8.2. A preliminary Tool for Simple Guess-And-Determine Attacks

root

Figure 8.2: The possible sets of guessed variables explored by the tool to find an attack one full AES round.
Each descendant has one more guess than its parent.

variables X, there is an edge X → Propagate∗(X), symbolizing the fact that increase our knowledge by
propagation.

In this setting, the objective of the preliminary tool is to find a path from K to X going through a small
(if not the smallest) number of “guess” edges. Indeed, the cost of the resulting attack is exponential in the
number of traversed “guess edges”. The problem is that the size of the DAG is exponential in the number of
variables.

The search works in a depth-first branch-and-bound fashion reminiscent of the DPLL procedure imple-
mented in many SAT-solvers. The pseudo-code of the search procedure is shown in Algorithm 8.1. The
function Explore(K,G,B) 1 returns a minimal set of variables to guess in order to be able to recover the
entire internal state. Here K denotes the set of currently known variables (i.e., the current node of the DAG),
G denotes the set of variables that have been guessed so far, and B denotes the set of variables that have
been guessed in the best known solution. This implicit assumption is that |G| < |B|, and that the result
of Explore has cardinality smaller than or equal to B. Evaluating Explore(K0, ∅,X) returns a minimal
solution.

8.2.3 Pruning Strategies

An obvious way to speed up the DAG exploration is to avoid guessing a permutation of a set of guesses
previously tested. This can be easily enforced by choosing a total order relation <X between variables and
only guessing variables in increasing order. In order to further speed-up the search procedure, we used several
pruning strategies that remove “guess” edges from the DAG without modifying its reachability properties.
These pruning strategies appear in Algorithm 8.1 under the form of the FilterGuesses function, which
only returns a subset of its argument.

1. no pun intended

103

8. Automated Tools For Low Data Complexity Attacks on AES Derivatives

Algorithm 8.1 Pseudo-code of the Preliminary Tool.

1: function Explore(K,G,B)
2: if K = X then return G
3: if K→ Propagate∗(K) then
4: return Explore(Propagate∗(K),G,B)
5: if |G| = |B| − 1 then return B
6: for all x ∈ FilterGuesses(K) do
7: recursive← Explore(K ∪ {x},G ∪ {x},B)
8: if |recursive| < B then B← recursive
9: if |G| = |B| − 1 then return B

10: end for
11: return B
12: end function

Local Pruning. In simple words, if we need to guess the value of a new variable, and if guessing the value
of x allows to deduce the value of y, then it is always better to guess x instead of y. More formally, we see
that if y ∈ Propagate∗(K ∪ {x}), then:

Propagate∗(K ∪ {y}) ⊆ Propagate∗(K ∪ {x})

Given a set of known variables, this translates to a partial order relation on variables:

x ¥K y if and only if y ∈ Propagate∗(K ∪ {x}).

From this order relation we extract a strict order relation:

x ¡K y ⇐⇒ x ¥K y and x ¦K y.

The pruning strategy informally described above amounts to consider only maximal elements for ¡K. We
call this strategy “local pruning” because it only requires a local exploration of the DAG around the current
node K.

Global Pruning. A somewhat surprising consequence of the fact that Propagate∗ is monotonic brings in
a interesting result, enabling us to further discard some bad guesses in a very powerful way.

Lemma 8.1. Let V X be an insufficient set of variables, and let G ⊆ X be a sufficient set of variables.
Then:

G ∩ (X−Propagate∗(V)) 6= ∅

Proof. Let us reason by contradiction and assume that G ∩ (X−Propagate∗(V)) = ∅. Then, because G
is a subset of X, then G ⊆ Propagate∗(V). By monotonicity and idempotence of Propagate∗ we find:
X = Propagate∗(G) = Propagate∗(V) 6= X.

If G denotes a sufficient set of minimal size, then Lemma 8.1 gives us a priori knowledge on G, and it
enables to choose the first guess of the search procedure in X − Propagate∗(V) without risking to throw
the best solution away.

It is possible to exploit lemma 8.1 even further for more pruning. Assume that in the exploration process
we currently know the variables inK, and that we have guessed the variables inG, so thatK = Propagate∗(G).
Let B be a sufficient set of minimal size such that G ⊆ B, i.e., the best we may hope to find from the current
state. Lemma 8.1 tells us that B ∩ (X−Propagate∗(V)) 6= ∅. This reveals us some variables in B, and
could be used to direct the exploration towards B. However, if V is badly chosen then it may very well be
that all the interesting variables we learn to be in B are already known, in which case we would not learn
anything.

However, choosing V to be a superset ofK ensures thatK ∩ (X−Propagate∗(V)) = ∅, and thus removes
the previous problem. We may safely choose our next guess in X − Propagate∗(V) when K ⊆ V . The
problem remains to (efficiently) find insufficient sets of variables V such that Propagate∗(V) is as big as
possible. At each step of the DAG exploration, there is a tradeoff between spending more time pruning the
graph and spending more time exploring it. We have found a simple greedy heuristic to be quite successful
to build a good set V . It is shown in Algorithm 8.2, along with other the pruning strategies we have
implemented.

104

8.2. A preliminary Tool for Simple Guess-And-Determine Attacks

Algorithm 8.2 Pruning Strategies for Algorithm 8.1.

1: function GreedyGlobalPruning(V)
2: Find variable x ∈ X− V such that |Propagate∗(V ∪ {x})| is minimal
3: if Propagate∗(V ∪ {x}) = X then return V
4: return GreedyGlobalPruning(V ∪ {x})
5: end function

6: function LocalPruning(K, V)
7: Bad← ∅
8: for all x ∈ V do
9: if x /∈ Bad then

10: for all y ∈ Propagate∗(K ∪ {x}) do
11: if y 6= x then Bad← Bad ∪ {y}
12: end for
13: end if
14: end for
15: return V −Bad
16: end function

17: function FilterGuesses(K)
18: Candidates← GreedyGlobalPruning(K)
19: for all x ∈ Candidates do
20: if there exist y ∈ G such that x <X y then Candidates← Candidates− {x}
21: end for
22: return LocalPruning(Candidates)
23: end function

Linearly Occurring Variables. Since the equations E describing a good cryptographic primitive cannot be
completely linear, then some variables appear both linearly, and under the S-box. However, some variables
may appear only linearly (this is for instance the case of the last round key in the AES). If a variable x occurs
only linearly, then it can be eliminated from all the equations except one by taking linear combinations of
the other equations. Taking apart the single equation containing x, we obtain a new system of equations E′
with one less equation and one less variable. The search procedure can safely be run on E′.

8.2.4 Computing and Testing Solutions

If xi ∈ Propagate(K), then there exist a vector αi such that [E · αi] = [xi] (resp. [S(xi)]), where the
square brackets again denotes the equivalence class in the quotient by V (K). The vector αi can be computed
using straightforward linear algebra given xi and K, as mentioned in §8.2.1. Once a sufficient set G has been
found, and all the vectors αi have been computed, we consider the subspace P spanned by E · αi for all
vectors αi corresponding to “propagated” variables in X−G. All the equations belonging to this subspace P
are satisfied by definition once the variables in X−G are “determined” from those (in G) whose values have
been guessed.

It is therefore interesting to consider a supplementary C of P in V (E): it describes equations that are
(linearly) independent from those used for the “determine” step of the attack. To check whether a given
choice of values for the guessed variables is correct, it suffices to a) determine the values of the other variables
and b) check whether the equations in C hold. The complexity of the resulting procedure is roughly 256|G|

encryptions.

8.2.5 Implementation Details

Writing a proof-of-concept implementation of Algorithm 8.1 is not very complicated, but writing an
efficient version thereof is a bit more challenging. The only non-trivial part in the implementation of the
search procedure is the Propagate function. To make it efficient, we exploited the sparsity of the equations
E. Recall from §8.2.1 that Propagate tries to solve the equation in α:

[E · α] = [x] (8.1)

The problem boils down to solving systems of linear equations. This is much more efficient if the equations
come in some kind of triangular form. We therefore first echelonize the equations E, and then use a sparse
triangular solver with sparse right-hand-side, i.e., a sparse linear algebra subroutine that solves A · x = y

105

8. Automated Tools For Low Data Complexity Attacks on AES Derivatives

when A is triangular and sparse, and y is also sparse. The interest of this procedure is that it may perform
sensibly less than n operations when A and y are sparse enough (see [Dav06] for more details).

The quotient operation in fact removes rows from the matrices and the vectors it is applied to. So, when
a new variable x becomes “known”, we have to remove the rows x and S(x) from the matrix representing
the equations. If one of these rows was pivotal, then removing it may leave the matrix in a non-echelonized
state. This can be fixed through a simple column permutations in some cases. In some other cases, a
new column has to be recomputed, using a variant of the sparse triangular solver. All in all, removing
rows and re-echelonizing the matrix represent a negligible fraction of the running time, because the matrix
representing E is stored in a special sparse data-structure: non-zero entries are stored column-wise and row-
wise in doubly-linked lists. This allows to efficiently remove rows and columns. Removed entries are kept
in memory, and can be efficiently restored when backtracking. An array stores the pivot column for each
(pivotal) row. A useful optimization follows the from the observation that equation (8.1) only has a solution
if x (resp. S(x)) is a pivotal row in the matrix.

The code has been written in the OCaml language, and weights about 5000 lines, more than 1500 of
them devoted to the linear algebra. Debugging the sparse linear algebra subroutines was a bit challeng-
ing because of the unusual data-structure holding the matrix. Parallelizing the DAG exploration is not
difficult, and we developed a distributed version of Algorithm 8.1 using a customized version of the MapRe-
duce framework [DG10a] built on top of Leroy’s OcamlMPI library (and building on ideas by Filliâtre and
Kalyanasundaram [FK11]). We used it to run our program on two types of platform:

– Roughly 100 Intel cores of various speeds (between 2 and 3 Ghz) in parallel using all the desktop
computers of the lab during the night.

– 400 MIPS-like cores in a server containing 8 Tilera TilePRO64 CPUs with 50 available cores each
(unfortunately, the OCaml compiler cannot generate native MIPS assembly, and hence generated
bytecode. Interpreting the bytecode causes a tenfold performance penalty).

On the second platform, exploring the graph for one full round takes about a minute. For 1.5 rounds,
it takes 18 minutes (and finds an attack with 7 guessed bytes). For 2 full rounds, it takes 67 minutes. For
2.5 rounds, it takes 3 weeks. We did not have the patience to wait a few weeks for the exhaustive search to
terminate on 3 rounds (a solution faster than exhaustive search was found, but we have no guarantee that
it is the fastest attack of this class of attacks). At the very least, we hope that we demonstrated that it is
possible to parallelize the search process at will.

8.2.6 Limitations

The main limitation of this approach is that it completely fails to take into account the differential
properties of the S-box. For instance, it cannot exploit the fact that when the input and output differences
of the S-box are fixed and non-zero, then at most 4 possible input values are possible. Therefore, this
approach alone does not bring useful results when more than one plaintext is available. However, it can be
used as a sub-component in a more complex technique. We now move on to describe such a generalization
that allows to find more powerful attacks.

8.3 An Improved Tool for Meet-In-The-Middle Attacks

The equations describing the AES enjoy an interesting and important property. Let us consider a partition
of the set of variables, X = X1∪X2. Then any equation f ∈ E can be written f = f1+f2, with f1 ∈ V (X1) and
f2 ∈ V (X2). In some sense, these equations are separable. We will see that this allows a “divide-and-conquer”
meet-in-the-middle approach.

8.3.1 Solving Subsystems Recursively

The simple algebraic structure of the equations allows us to efficiently extract from a system E a subsystem
containing only certain variables (say X1), by simply computing the vector space intersection E ∩ V (X1).
In the sequel we will denote it by E (X1). We note that a solution of E is also a solution of E(X1), for
any X1 X, but that the converse is not true in general.

Now let us be given a partition X = X1 ∪ X2 and two black-box solvers A1 and A2 that find all the
solutions of E(X1) and E(X2), respectively. We then seek to use the two sub-solvers A1 and A2 to find the
solutions S(E) of the full problem. An obvious way is to compute the solutions S1 of E(X1) and S2 of E(X2),
and to test all the solutions in the Cartesian product S1×S2. This would require checking |S1|·|S2| candidates
against the equations.

However, it is possible to do better. First, we observe that the vectors in S1 × S2 automatically satisfy
the equations in E(X1) +E(X2). Therefore we first compute a supplementary of E(X1) + E(X2) inside E (let
us denote it by M). The solutions of E are in fact the elements of S1 × S2 satisfying the equations of M.

106

8.3. An Improved Tool for Meet-In-The-Middle Attacks

This already makes less constraints to check. Second, sieving the elements satisfying these constraints can
be done in roughly |S1| + |S2| operations, using variable separation and a table. Let (fi)1≤i≤m be a basis
ofM, and fi = gi+hi with gi ∈ V (X1) and hi ∈ V (X2). If the values of all the variables in X1 (resp. X2) are
available, then the gi’s (resp. hi) may be evaluated. We denote by G (resp. H) the function that evaluates
all the gi (resp. hi) on its input. If ` = |X1|, then:

G : (x1, . . . , x`) 7→
(
g1(x1, . . . , x`), . . . , gm(x1, . . . , x`)

)

We build two tables:

L1 ←− {(G(x1), x1) | x1 solution of E(X1)}
L2 ←− {(H(x2), x2) | x2 solution of E(X2)}

Then, the solutions of E are the pairs (x, y) for which there exist a z such that (z, x) ∈ L1 and (z, y) ∈ L2.
They can be identified efficiently by various methods (sorting the tables, using a hash index, etc.). We have
just combined A1 and A2 to form a new solver, A = A1 on A2, that enumerates the solutions of E.

Complexity of the Combination. Given a partition X = X1 ∪ X2, and two sub-solvers A1 and A2, re-
spectively, computing S(E(X1)) and S(E(X2)), the complexity and the properties of A1 on A2 are easy to
determine. Let us denote by T (A) the running time of A, by M(A) its memory consumption, by V (A) the set
of variables occurring in the corresponding equations, and by S(A) the set of solutions of the corresponding
equations. The number of operations performed by the combination is the sum of the number of operations
produced by the sub-solvers, plus the number of solutions (the time required to scan the tables, namely
|S1|+ |S2|, is in the worst case of the same order as the running time of the two sub-solvers). However, we
use the following approximation

T (A1 on A2) = max
(
T (A1), T (A2), |S(E(V (A1) ∪ V (A2)))|

)

It is possible to store only the smallest table, and to enumerate the content of the other “on the fly”, while
looking for a collision. This reduces the memory complexity to the maximum of the memory complexity of
the sub-solvers, and the size of the smaller table. This yields:

M(A1 on A2) = max
{
M(A1),M(A2),min

(
|S(A1)| , |S(A2)|

)}

Heuristic Assumption On the Number of Solutions. Evaluating the complexity of a given (possibly re-
cursive) combination requires evaluating the number of solutions of various sub-systems. This is a difficult
problem in general, and in order to be able to quickly evaluate the properties of a combination, we use the
following heuristic assumption:

log256

∣∣∣S(E(X))
∣∣∣ ≈ |X| − dimE(X)

This heuristic assumption introduces a risk of failure, or of wrong estimation of the complexity. To protect
ourselves against this risk, we have tried, when possible, to run an implementation of the solvers and
check whether this assumption holds. A difficulty that we encountered in practice stems from the following
“differential” system:

x+ y = ∆i

S(x) + S(y) = ∆o

If S is the S-box of the AES, then this system has one solution on average (over the random choice of the
differences), and the hypothesis holds. However, in degenerate situations, for instance when ∆i = ∆o = 0,
then the system has 28 solutions... Surprisingly, an S-box with very bad differential properties would make
life more difficult for our tool. This follows from the fact that in a good S-box, there are very few pairs
of input/output values that generate a given input/output difference, and this makes our assumption more
likely to hold in “differential” situations. On the other hand, an S-box with bad differential properties would
have many impossible differentials, and this could also be exploited by the tool (for example by assuming
that an input and output difference can only coexist with small probability).

In any case, this assumption makes it very easy to evaluate the performance of the combination of two
sub-solvers: it boils down to computing a vector-space intersection.

107

8. Automated Tools For Low Data Complexity Attacks on AES Derivatives

8.3.2 Automatic Search for Recursive Combinations of Solvers

Given a system of equations, we would like to build an efficient solver by breaking the problem down to
smaller and smaller subsystems, recursively generating efficient sub-solver for the sub-problems and combin-
ing them back.

Note that E({x}) (the intersection of the vector space E with 〈x, S(x), 1〉 cannot be further broken down
because {x} cannot be partitioned anymore. It is a “base case” of the decomposition, and it can be dealt
with in two ways:

– Either E({x}) = ∅, so that we cannot easily determine how the variable x is constrained by the
equations. In that case, the “solutions” of E({x}) are in fact the whole field F28 .

– Or E({x}) 6= ∅, so that we know an equation involving only x and S(x). In that case, the set of all
solutions of E({x}) is very likely to have very few elements, which can be precomputed and returned
as a list.

The case where a single variable remains is a base case of the decomposition, and we will say that it is
dealt with by “base solvers”, implementing one of the above strategies. Combining base solvers in various
ways yields solving trees of various shapes. In such a tree, the leaves are the “base solvers” associated to
variables of X, and the nodes are combinations of solvers. A tree describes a valid solver for E as long as all
the variables of E appear as the leaves of the tree.

Note that the guess-and-determine attacks discussed in the previous section form a particular case of
this more general framework. They can be described by a recursive combination where X2 always contains
a single variable. However, it turns out that allowing more general tree shape results in better attacks.

Comparing Solvers. It is always possible to construct several solving trees that solve the same problem in
different ways, and sometimes more or less efficiently. We therefore want to be able to compare solvers in a
meaningful way. We want A1 � A2 if A1 is overally more interesting (works faster, finds solution of a bigger
system). We also want the order relation to be compatible with the combination operation (i.e., A1 � A2

implies A1 on A3 � A2 on A3). We thus define:

A1 � A2 ⇐⇒





T (A1) ≤ T (A2)
V (A1) ⊇ V (A2)
|S (A1) | ≤ |S (A2) |

Just like any other partial order, this order relation induces an equivalence relation:

A1 ≡ A2 if and only if A1 � A2 and A2 � A1.

This equivalence relation also carries an interesting meaning: if A1 ≡ A2 then A1 and A2 offer essentially
the same functionality with the same performance. The equivalence relation is also compatible with the
combination operation. We observe that given a set of variables X1, there can be only one maximal solver
(up to equivalence) for E(X1). Thus, our objective is now clearly identified: find a maximal (i.e., the best)
solver for E (up to equivalence).

Exhaustive Search for the Best Recursive Solver. The procedure ExhaustiveSearch in Algorithm 8.3
computes the set of all maximal solvers for all sub-systems of a given system of equations E (up to equiv-
alence). In particular, it will construct a maximal solver for E itself. The algorithm is reminiscent of
(and inspired by) the Buchberger algorithm for Gröbner bases [Buc65]. More generally Algorithm 8.1 is
a saturation procedure, and this also makes it similar to many automated deduction procedures (such a
Resolution-based theorem provers or the Knuth-Bendix completion algorithm). At each step, the algorithm
maintains a list G of solvers for subsystems of the original system E. It also maintains a list P of pairs of
solver that remain to be processed. When a new solver is found, all the solvers that are worse are removed
from G (and all pairs containing it are removed as well). Then, new pairs containing the new solver are
scheduled for processing.

The complexity of this algorithm seems difficult to evaluate. It depends on the equations, and on the
order in which the combinations are performed. In any case, the size of its ouput is upper bounded by 2|X|

(because it will return only one maximal solver for each subset of X). The parameter Tup allows the user
to enforce an upper-bound on the time complexity of the generated solvers (by discarding the ones that are
too slow). For small values of Tup, this may for instance allow to prove the non-existence of recursive solvers
with complexity lower than a threshold. The running time of the exhaustive search also gets smaller with
lower values of Tup.

In practice, what dominates the execution of this algorithm is the computation of the dimension of
the combination C, and the bookkeeping required to update G and P. A nice improvement is to use the
Propagate∗ function from §8.2.2: each time a new solver C is constructed, we could check whether V (C)

108

8.3. An Improved Tool for Meet-In-The-Middle Attacks

is stable by Propagate∗. If not, we could combine it with the base solvers in Propagate∗(V (C))−V (C),
thus improving it without increasing its running time.

Algorithm 8.3 Exhaustive Search for a good recursive solver

1: function Update-Queue(G,P,A)
2: if A′ § A for all A′ ∈ G then
3: G← {A′ ∈ G | A § A′} ∪ {A}
4: P ←

{
(Ai,Aj) ∈ P : Ai ¦ A and Aj ¦ A

}
∪
{

(A,A′) : A 6= A′ ∈ G
}

5: end if
6: return (G,P)
7: end function

8: function ExhaustiveSearch(E, Tup)
9: G←

{
BaseSolver(x) : x ∈ X

}

10: P ←
{

(Gi, Gj) : 1 ≤ i < j ≤ |G|}
11: while P 6= ∅ do
12: Pick (Ai,Aj) ∈ P and remove it from P
13: C ← Gi on Gj
14: if T (C) ≤ Tup then (G,P)← Update-Queue(G,P, C)
15: end while
16: return G
17: end function

Randomized Search. The complexity of the exhaustive search is inherently exponential, and exploring the
whole space might not be feasible. In that case, a non-exhaustive randomized search might find good results,
without offering the guarantee that they are the best possible. The procedure RandomizedSearch on
Algorithm 8.4 shows a possible randomized search that we have found to give good results. The idea is again
quite simple: at each step, we choose a random set of variables Y , we build a solver for E(Y), and if it is
not subsumed by any previously known solver, we include it in the current solver list, and we try to combine
it with all the solvers we know. It would make sense to choose Y with some care, for instance using the
pruning strategies discussed in §8.2.3.

There are many possible other ways to perform such a randomize search: Choose the size of the random
subsets of X according to some distribution, periodically restart the procedure, periodically flush “bad”
solvers from G, run the exhaustive search for a while, fill G, then switch to randomized search, etc. This
presently seems to be more of an art than a science.

Algorithm 8.4 Randomized Search for a good recursive solver

1: function RandomizedSearch(E, Tup)
2: G← ∅
3: P ← ∅
4: loop
5: Y ← random subset of X, of size Tup
6: (xi1 , xi2 , . . . , xi`)← Propagate∗(Y)
7: B ← BaseSolver(xi1) on BaseSolver(xi2) on . . . on BaseSolver(xi`)
8: (G,P)← Update-Queue(G,P, B)
9: while P 6= ∅ do

10: Pick (Ai,Aj) ∈ P and remove it from P
11: C ← Ai on Aj
12: if T (C) > Tup then drop C
13: if V (C) = X then return C
14: (G,P)← Update-Queue(G,P, C)
15: end while
16: end loop
17: end function

8.3.3 Usage

Algorithms 8.3 and 8.4 have been developed and implemented in C by Patrick Derbez. The running time is
dominated by the computation of the time-complexity of a combination of solvers, which involves computing

109

8. Automated Tools For Low Data Complexity Attacks on AES Derivatives

the dimension of a vector-space intersection. Various tricks can also be used to speed this operation up (using
a sparse representation, precomputing partially echelonized forms, not computing an intersection but a sum,
etc. The program is 10’000 lines long, the majority of which is dedicated to linear algebra subroutines.

When an interesting solver for E is found by the search procedure, it is not particularly complicated
to recursively generate a C++ implementation thereof (i.e., a function that takes as input the “known”
variables, and returns the solutions of the system of equations), or a text file that describes which variables
to enumerate, which tables to join, in a nearly human-readable language. The generated C++ files typically
have ≥ 10k lines, with thousands of more-or-less dummy functions. They seem to be good torture tests for
current compilers...

We emphasize again that this method is strictly more general than that presented in the previous section,
because any attack that could be discovered by the preliminary tool can also be found by Algorithms 8.3
and 8.4. The next chapter show multiple examples of attacks found by both tools.

110

Chapter 9

A Collection of Low Data Complexity Attacks on
AES-Derivatives

We present a collection of low-data complexity attacks on round-reduced versions of the AES, as
well as attacks on several other cryptographic algorithms derived from the AES. These attacks
have been found in the course of a joint work with Derbez, Dunkelman, Keller and Rijmen, during
which the automated tools of the previous chapter have been developed. Some of these results led
to the submission of a journal paper [BDD+10], while some others were presented in [BDF11].

During the course of 2009 and 2010, Dunkelman and Keller announced in several occasions that they
were investigating low-data complexity attacks against the AES, and announced interesting results. We
developed the automated tools described in the previous chapter hoping to catch up on their results. This
effort has been gratifying, as the tools could often improve on the manually-found attacks. When it is the
case, it is interesting to compare both the manually-found and the automatically-found attacks. Our results
on round-reduced versions of the AES are summarized in Table 9.1.

Because our tools are somewhat generic, they are not restricted to the AES as a block cipher, and we
used them to find new attacks on the message authentication code Pelican-MAC [DR05b], and to the stream
cipher LEX [Bir05]. The tools found the fastest known attacks on these two constructions, again a gratifying
result. This demonstrates in a concrete way that low-data complexity attacks can be leveraged into actual
attacks on full versions of some primitives. Our results on AES-based primitives are summarized in Table 9.2.

This chapter is organized as follows: several useful observations on the AES are presented in §9.1. Then,
attacks on one, two, three and four AES rounds are given in §9.2, §9.3, §9.4, and §9.5 respectively. A
new attack on 6 AES rounds in the known-plaintext model is given in §9.6. The best known attack on
Pelican-MAC is given in §9.7, and the best known attack against LEX is given in §9.8.

9.1 Observations on the Structure of AES

In this section we present well-known observations on the structure of AES, that we use in our attacks.
We first consider the propagation of differences through SubBytes, which is the only non-linear operation in
AES.

Property 9.1 (the SubBytes property). Consider pairs (α 6= 0, β) of input/output differences for a single
S-box in the SubBytes operation. For 129/256 of such pairs, the differential transition is impossible, i.e.,
there is no pair (x, y) such that x ` y = α and S(x) ` S(y) = β. For 126/256 of the pairs (α, β), there
exist two ordered pairs (x, y) such that x` y = α and S(x)` S(y) = β, and for the remaining 1/256 of the
pairs (α, β) there exist four ordered pairs (x, y) that satisfy the input/output differences. Moreover, the pairs
(x, y) of actual input values corresponding to a given difference pattern (α, β) can be found instantly from
the difference distribution table of the S-box. We recall that the time required to construct the table is 216

evaluations of the S-box, and the memory required to store the table is about 217 bytes.

The second observation uses the linearity of the MixColumns operation, and follows from the structure
of the matrix used in MixColumns:

Property 9.2 (the MixColumns property). Consider a pair (a, b) of 4-byte vectors, such that a = MC(b),
i.e., the input and the output of a MixColumns operation applied to one column. Denote a = (a0, a1, a2, a3)
and b = (b0, b1, b2, b3) where ai and bj are elements of F28 . The knowledge of any four out of the eight bytes
(a0, a1, a2, a3, b0, b1, b2, b3) is sufficient to uniquely determine the value of the remaining four bytes.

The third observation is concerned with the key schedule of AES, and exploits the fact that most of
the operations in the key schedule algorithm are linear. It allows the adversary to get relations between
bytes of non-consecutive subkeys (e.g., kr, kr+3 and kr+4), while “skipping” the intermediate subkeys. The
observation extends previous observations of the same nature made in [FKL+00, DK10a].

111

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

Attacks on round reduced version of the AES-128
Complexity

#Rounds Data Time Memory Description Found by

1 1 KP 248 1 [DK10b] human beings

1 1 KP 240 1 §9.2.2 preliminary tool

1 1 KP 232 224 §9.2.2 improved tool

1 1 KP 232 216 improved tool

1.5 1 KP 256 1 preliminary tool

1.5 2 KP 224 216 improved tool

2 1 KP 280 1 §9.3.4 human beings,preliminary tool

2 1 KP 264 248 §9.3.5 improved tool

2 2 KP 248 1 §9.3.1 human beings

2 2 KP 232 224 §9.3.1 improved tool

2 3 KP 232 1 §9.3.2 human beings

2 2 CP 228 1 §9.3.3 human beings

2 2 CP 28 28 §9.3.3 improved tool

2.5 1 KP 296 1 preliminary tool

2.5 1 KP 288 288 improved tool

2.5 2 KP 280 280 improved tool

2.5 2 CP 224 216 improved tool

3 1 KP 2120 1 §9.4.4 preliminary tool

3 1 KP 296 296 improved tool

3 9 KP 240 235 §9.4.3 human beings, improved tool

3 2 CP 232 1 [BDD+10] human beings

3 2 CP 216 28 §9.3.3 improved tool

4 1 KP 2120 2120 improved tool

4 2 CP 2104 1 [BDD+10] human beings

4 2 CP 280 280 improved tool

4 5 CP 264 268 §9.5.2 human beings

4 4 CP 232 224 §9.5.3 improved tool

4 10 CP 232 224 §9.5.1 human beings

4.5 1 KP 2120 2120 improved tool
KP — Known plaintext, CP — Chosen plaintext,
Time complexity is measured in approximate encryption units.
Memory complexity is measured approximately

Table 9.1: Summary of our Proposed Attacks on AES-128

Property 9.3 (the key-schedule properties). Consider a series of consecutive subkeys kr, kr+1, . . . , and
denote kr = (a, b, c, d) and:

u = RotBytes(SubBytes(kr[12..15]))`RCON [r + 1]

v = RotBytes(SubBytes(kr+1[12..15]))`RCON [r + 2]

w = RotBytes(SubBytes(kr+2[12..15]))`RCON [r + 3]

x = RotBytes(SubBytes(kr+3[12..15]))`RCON [r + 4]

Then, the subkeys kr+1, kr+2, . . . can be represented as linear combinations of (a, b, c, d) (the columns of kr)
and the 32-bit words u, v, w, x, as shown in the following table:

Round k[0..3] k[4..7] k[8..11] k[12..16]
r a b c d

r + 1 a` u a` b` u a` b` c` u a` b` c` d` u
r + 2 a` u` v b` v a` c` u` v b` d` v
r + 3 a` u` v ` w a` b` u` w b` c` v ` w c` d` w
r + 4 a` u` v ` w ` x b` v ` x c` w ` x d` x

112

9.2. Attacks on One-Round AES

Attacks on Primitives based on AES
Primitive Complexity Where Found by

Data Time Memory

Pelican-MAC 285.5 queries 285.5 285.5 [YWJ+09] human beings

Pelican-MAC 264 queries 264 264 §9.7 improved tool

Pelican-MAC 264 queries 264 264 §[DKS11] human beings

Alpha-MAC 265 queries 264 264 [YWJ+09] human beings

LEX 236.3 bytes 2112 236 [DK08] human beings

LEX 240 bytes 2100 264 [DK10a] human beings

LEX 236.3 bytes 296 280 §9.8.1 improved tool

LEX 248 bytes 288 248 §9.8.2 improved tool

LEX 248 bytes 280 248 improved tool

modified LEX 360 bytes 240 243 §9.8.3 human beings

AES-128 1 fault 232 232 [PQ03] human beings

AES-128 1 fault 224 216 §9.4.2 improved tool
Time complexity is measured in approximate encryption units.
Memory complexity is measured approximately

Table 9.2: Summary of our Proposed Attacks on Primitives based on AES

As a result, we have the following useful relations between subkeys

i) kr+2[0..3]` kr+2[8..11] = kr[8..11],

ii) kr+2[4..7]` kr+2[12..15] = kr[12..15],

iii) kr+2[4..7]` v = kr[4..7],

iv) kr+4[12..15]` x = kr[12..15],

v) kr+3[12..15] = kr[8..11]` kr[12..15]` w.

9.2 Attacks on One-Round AES

We start our analysis with the simplest case, an adversary who seeks to break one full round of AES (a
sequence of AddRoundKey, SubBytes, ShiftRows, MixColumns, and AddRoundKey operations).

9.2.1 Two Known Plaintexts

We first describe a simple but suboptimal attack. It starts by applying SR−1 ◦MC−1 to the ciphertext
difference, to obtain the output differences of all the S-boxes. Since the input differences of the S-boxes are
equal to the plaintext difference in the respective bytes, the adversary can consider each S-box independently,
go over the 28 possible pairs of inputs whose difference equals the plaintext difference, and find the pairs
suggesting the “correct” output difference. In each S-box, the expected number of suggested pairs is two, and
each such pair gives a suggestion of one byte in the subkey k0. 1 Thus, the adversary gets 216 suggestions
for the entire subkey k0, which can be checked by trial encryption.

This attack, whose time complexity is 216 encryptions, can be further improved using the relation between
the subkeys k0 and k1. If the adversary checks the S-boxes in bytes 0, 5, 10, and 15, she can use the 24 = 16
suggestions of output values of these S-boxes to get 16 suggestions for the column k1[0..3], along with bytes
0, 5, 10, 15 of k0. Similarly, checking bytes 3, 4, 9, 14 yields 16 suggestions for the column k1[4..7], along with
bytes 3, 4, 9, 14 of k0. Combining the suggestions, the adversary obtains 256 suggestions for two columns
of k1 and eight bytes of k0. At this stage, the adversary can use the relation k1[4] = k0[4] ` k1[0], which
holds by the AES key schedule, as a consistency check. Only a single suggestion is expected to remain. The
value of the remaining 8 bytes of k0 can be obtained similarly by examining the other eight S-boxes. This
improvement reduces the time complexity of the attack to 212 S-box applications.

9.2.2 One Known Plaintext

If the data available to the adversary is only a single plaintext, then the attack must use the relation
between the two subkeys k0 and k1. If the subkeys were independent, then the information available to the

1. We note that this step can be performed only if the differences in all S-boxes are non-zero. However, since in the known
plaintext attack model it is common to assume that the plaintexts are chosen at random, it is expected that two known
plaintexts have non-zero difference in all the 16 bytes with probability (255/256)16 = 0.939.

113

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

ARK

k0

SB SR MC ARK
k1

2

2

2

2

22

2

3

3

3

3

33

3

4

4

4

4

44

4

1

1

5

5

6

6

7

7

7

7

8

89

9

10

10

11

11

12

1213

14 14

14

15 15

15

16 16

16

17

17

18

18

19

19

19

19

20

20

21

21

22

22

23

23

23

23

24

2424

25

2525

26

26

26

26

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Figure 9.1: A 240 time attack on one round AES given one known plaintext. Bytes marked by black are
guessed, bytes marked by gray are known.

adversary would not be sufficient to retrieve the key uniquely. Since any relation between the plaintext and
the ciphertext involves the MixColumns operation, it seems likely that any such attack should require the
guess of a full column, and thus have complexity of at least 232 encryptions. 2

In this setup, the best attack found manually is a guess-and-determine attack by Dunkelman and
Keller [DK10b] that has a running time equivalent to that of 248 encryptions. The preliminary tool of
§8.2 found a faster attack with time complexity of 240 encryptions and a negligible memory requirement,
while the tool of §8.3 found an even faster attack with time complexity of 232 encryptions, and memory
requirement of 225 bytes. Thus, it seems that we are closing on to the optimum for this variant.

9.2.2.1 The Preliminary Tool’s Attack

The first attack, depicted in Figure 9.1, is based on Property 9.4 below. The adversary guesses five bytes
of the subkey k0 — the column k0[12..15] as well as an additional byte, k0[0]. The steps in the key derivation
are shown in the figure, where the number in each cell denotes the step in which its value is retrieved. Steps
1 and 13 are based on Property 9.4, steps 5, 9, 17, 21, and 22 exploit the key schedule, steps 7, 19, 24, and 25
are based on Property 9.2, and the rest of the steps are performed using the application of known operations
on known values.

Discovering Property 9.4 below is the key step in finding the attack. Given this observation, (human)
cryptanalysts would have no problem completing the attack. Yet finding the Property was difficult, and was
only “achieved” by the preliminary tool (we mere humans had a hard time figuring out what was going on).
The Property shows that the knowledge of a single column in one of the subkeys, along with the input and
output values of the round, allows the retrieval of the value of a few “unexpected” additional subkey bytes.

Property 9.4. The knowledge of P,C and the column k0[12..15] allows to retrieve two additional bytes of
k0, namely k0[1] and k0[8].

The main idea behind this observation is that the linearity of the MixColumns operation interacts with
the almost linear key schedule of the AES. This allows to apply the MixColumns operation to the XOR of
two columns, and to move backwards one round in the key-schedule where the same column-XOR appears.

Proof. The derivation of the two additional bytes is performed as follows. Consider the 32-bit value w[8..11]`
w[12..15]. By the key schedule, we have:

w[8..11]` w[12..15] =
(
C[8..11]` C[12..15]

)
`

(
k1[8..11]` k1[12..15]

)

=
(
C[8..11]` C[12..15]

)
` k0[12..15]. (9.1)

Following the linearity of MixColumns, we obtain that:

z[8..11]` z[12..15] = MC−1(w[8..11])`MC−1(w[12..15])

= MC−1
(
w[8..11]` w[12..15]

)
. (9.2)

It is possible to compute z[12] using the knowledge of k0[12] as:

z[12] = S(P [12]` k0[12]). (9.3)

2. We note that the problem of attacking one round AES without the MixColumns operation with a single known plaintext
is studied in [DK10b]. It is shown that 216 encryptions are sufficient to retrieve the key.

114

9.2. Attacks on One-Round AES

ARK

k−1

SB SR MC ARK

k0

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

5

5

5

5

6

6

7

7

8

8

9

9

10

11

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(a) First half of the attack

ARK

k0

SB SR MC ARK
k1

1

1

2

2

3

3

4

4

4

4

5

5

5

5

6

6

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

12

12

121313

13

1415

16 17 18

19

19 19

19

20

20

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(b) Second half of the attack

Figure 9.2: An attack on one round AES given one known plaintext with time complexity of 232 and memory
complexity of 224. Bytes marked by gray are known (from previous steps of analysis). Bytes marked with
tilted lines have at most 12 possible values by Property 9.5.

Then, the value of z[8] can be retrieved by combining Equations (9.1), (9.2) and (9.3). From z[8] it is possible
to compute the subkey byte k0[8] using:

k0[8] = P [8]` x[8] = P [8]` S−1(z[8]).

It is possible to use a similar procedure to obtain the value z[13], and retrieve the subkey byte k0[1] as:

k0[1] = P [1]` x[1] = P [1]` S−1(z[13]).

We note that if the adversary knows also the value k0[2], a similar strategy allows her to retrieve the
value k0[6]. This derivation is used in the attack described just above. We also note that similar statements
hold if the adversary knows k0[4..7] or k0[8..11].

9.2.2.2 The Improved Tool’s Attack

The second attack, depicted in Figure 9.2, is based on Property 9.5 below. In the first phase of the
attack, the adversary guesses the column k1[0..3], and retrieves the value of seven additional subkey bytes.
This phase is shown in Figure 9.2a, where steps 6 and 10 are based on key schedule arguments, and the
rest of the steps use the application of known operations on known values. The second phase of the attack,
depicted in Figure 9.2b, starts with retrieving the possible values of bytes k0[7] and k0[8] using Property 9.5.
Steps 6, 7, 8, and 15 use the key schedule, steps 13 and 19 use Property 9.2, and the rest of the steps follow
the application of AES’ operations to known values.

Again, the key step of the attack is the discovery of Property 9.5. It is even more sophisticated than the
previous one and was “found” by the improved tool of §8.3. We went though the output produced by the
tool to write a readable description of the solver’s steps.

Property 9.5. The knowledge of P,C, and the column k1[0..3] allows one to retrieve bytes k0[7] and k0[8]
by a table look-up to a precomputed table of size 224. For each value of k1[0..3], there are at most 12 values
of (k0[7], k0[8]), and on average a single value. The time complexity required to generate the table is 232

operations.

115

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

The proof of this property is slightly more complex than that of the previous property, and is based on
obtaining two nonlinear 8-bit relations involving two key bytes (given that other bytes of the key and the
state are known). In such a case, we expect on average one solution to these equations (and as our test
shows, in reality the maximal number of solutions is 12). Moreover, as there are 232 possible systems, one
can precompute the acceptable solutions and store them.

Proof. First, we note that the knowledge of the column k1[0..3] along with the plaintext and the ciphertext
allows us to retrieve one additional byte of k1 and six bytes of k0, as shown in Figure 9.2a.

We denote a = y[8] and b = y[7], and express several other bytes in terms of a, b, and known bytes (from
the plaintext, the ciphertext and k1[0..3]). Our goal is to obtain a system of two equations in a and b, and
to solve it using a precomputed table. This system is constructed in 5 steps.

1. First, note that the third column of k1 can be expressed as:

k1[8..11] = C[8..11]` w[8..11]

= C[8..11]`MC(z[8..11])

= C[8..11]`MC
(
a, S(P [13]` k0[13]), S(P [2]` k0[2]), b

)
. (9.4)

In this expression, bytes 2 and 13 of k0 can be deduced from the 4 guessed bytes in k1 after the first
phase of the attack, as shown in Figure 9.2a.

2. Let us now turn our attention towards the second column of k1. Note that k1[5] can be computed
following the procedure shown in Figure 9.2a, and the remaining three bytes of k1[4..7] can be expressed
as: 




k1[4] = k1[8]` S−1(a)` P [8],
k1[6] = k1[10]` k0[10],
k1[7] = k1[3]` S−1(b)` P [7].

(9.5)

Again, k0[10] (appearing in the expression of k1[6]) can be derived from the guessed bytes.

3. Next, we will turn our attention away from the key-schedule, to the second column of z, and in
particular to z[4] and z[5]. We first express it in function of the plaintext. It follows from the definition
of the encryption and schedule algorithm that:

{
z[4] = S

(
P [4]` k0[4]

)
= S

(
P [4]` k1[0]` k1[4]

)

z[5] = S(P [9]` k0[9]) = S(P [9]` k1[9]` k1[5]),
(9.6)

It must be noted that all key bytes occurring in these expression can be readily derived from a, b and
the four guessed key bytes.

4. On the other hand, the whole column z[4..7] can be expressed as a function of the ciphertext:

z[4..7] = MC−1(w[4..7]) = MC−1
(
C[4..7]` k1[4..7]

)
. (9.7)

5. Identifying z[4] and z[5] in (9.6) and (9.7), and exploiting (9.4) and (9.5) results in a system of two
equations in the unknowns a, b, and the known plaintext, ciphertext, and bytes that can be derived
from k1[0..3]. These equations can be written in the form:

{
∆1 = f1(a, b)` S(f2(a, b) + ∆3),
∆2 = f3(a, b)` S(f4(a, b) + ∆4),

(9.8)

where f1, f2, f3, and f4 are fixed known functions, and ∆1,∆2,∆3, and ∆4 are one-byte parameters
depending on the plaintext, the ciphertext, and the guessed subkey bytes. The actual expressions are
not given, as they are a bit lengthy, but they can be found in [Der10].

Equation (9.8) allows to perform the following two-phase procedure:

Offline Phase: for each of the 232 possible values of (a, b,∆3∆4), evaluate the right-hand in (9.8), and find
the values of ∆1 and ∆2. Store the pair (a, b) in a data-structure (typically an array of linked lists, or a hash
table) indexed by (∆1,∆2,∆3,∆4). It turns out that the maximal number of solutions for given values of
(∆1,∆2,∆3,∆4) is 12, and the average number is 1. Hence, we can construct a table of the solutions in 232

time and 232 memory.

116

9.3. Attacks on Two-Round AES

Online phase: once the values of P,C are known, and for each guess of k1[4..7], compute the value
(∆1,∆2,∆3∆4), and obtain from the precomputed table the corresponding values of (a, b). Then deduce the
subkey bytes k0[7] and k0[8] using the equations:

k0[8] =P [8]` x[8] = P [8]` S−1(a),

k0[7] =P [7]` x[7] = P [7]` S−1(b).
(9.9)

Reducing the Memory Complexity: We can reduce the 232 memory required for storing the solutions to
only 224. This is done by fixing ∆1, such that we can deal only with the equations relevant to this specific
∆1 in each step of the attack. The specific expression of ∆1 makes it easy to enumerate the 224 possible
first columns of k1 leading to this specific value of ∆1. The outcome of such an approach is the ability to
reduce the number of possible systems that we need to consider in a given time to 224, which reduces the
memory complexity without affecting the time complexity. Going into the details would require giving the
actual expressions of the ∆’s and the f ’s, which the interested reader will find in [Der10].

9.3 Attacks on Two-Round AES

In this section we consider attacks on two rounds of AES, denoted by rounds 1 and 2. First we present
attacks on two full rounds with two known plaintexts. We then study the interesting case of two chosen
plaintext. In both settings, the tools vastly outperformed human cryptanalysts. We then look at the case
of a single known plaintext. We conclude by presenting an improved attack with two known plaintexts that
can be applied if the MixColumns operation in round 1 is omitted (i.e., if we are facing 1.5 rounds). This
attack is used as a procedure in our attack on 6-round AES presented in §9.6.

9.3.1 Two Known Plaintexts

The Manually-Found Attack. We first describe an attack found manually by Dunkelman and Keller. This
attack with two known plaintexts, depicted in Figure 9.3, is based on Property 9.1. As in the one-round attack
with two known plaintexts, we observe that the ciphertext difference allows us to retrieve the intermediate
difference after the SubBytes operation of round 2. This observation is used in both phases of the attack.
We also “swap” the order of the MixColumns and the AddRoundKey operations of the second round. This
can be done since both operations are linear, as long as the subkey k2 is replaced by the equivalent subkey
u2 = MC−1(k2).

In the first phase of the attack, the adversary guesses bytes 0, 5, 10, 15 of k0, which allows her to retrieve
the intermediate difference in x2[0..3] (i.e., just before the SubBytes operation of round 2). Then, Prop-
erty 9.1 can be applied to the four S-boxes in that column, yielding their actual input/output values in both
encryptions. This in turn allows us to obtain k1[0..3] (as the values before the AddRoundKey with k1 are
known). At this stage, the adversary tries to deduce and compute as many additional bytes as she can.

In the second phase of the attack, the adversary guesses two additional subkey bytes (k0[7] and k0[8])
which are sufficient to retrieve the intermediate difference in x1[8..11]. Then, Property 9.1 can be applied to
the four S-boxes in bytes 8–11 of round 2.

We note that the while the first phase of the attack allows us to obtain several bytes in u2, the knowledge
of these bytes cannot be combined directly with the knowledge of bytes in k1 and k0, since u2 does not satisfy
the equations of the key schedule algorithm. Hence, in the second phase of the attack, we obtain bytes in
both u2 and k2 in parallel, and apply Property 9.2 to the relation between k2 and u2, since they are the
input and output of a MixColumns operation.

In Phase 1 of the attack, depicted in the top half of Figure 9.3, step 5 is based on Property 9.1, steps
9 and 13 exploit the key schedule, and the rest of the steps are performed using encryption/decryption. In
the second phase, depicted in the bottom half of the figure, step 5 is based on Property 9.1, step 12 uses
Property 9.2 applied to the relation between k2 and u2, steps 9, 10, 11, and 13 exploit the key schedule, and
the rest of the steps are performed using encryption/decryption.

The time complexity of the attack is determined by the fact that 6 subkey bytes are guessed, and for
each guess a few simple analysis steps are performed. Hence, the time complexity of the attack is 248.

The Automatically-Found Attack. The improved tool of §8.3 has found an attack with time and memory
complexity 232 in this setting, vastly outperforming human cryptanalysts. The attack is a meet-in-the-middle
whose main ingredient is the possibility to isolate a set of about 232 candidates for both k1[0..3] and k1[12..15]
with only 232 operations. These 8 bytes are then sufficient to recover the full key instantly.

First, we assume that x1[12..15] is known, and we try to derive the value of some other bytes. We can
easily obtain the differences in x1[12..15]. Then, by linearity of the MixColumns operation, we obtain the

117

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

ARK

k0

SB SR MC ARK
k1

SB SR ARK
u2

MC

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

10

10

11

11

12

12

13

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(a) First half of the attack: The difference in the bytes marked is guessed. The bytes marked by 5 are found using the known
input and output differences.

k2

ARK

k0

SB SR MC ARK

k1

SB SR ARK
u2

MC

MC−1

MC

2

2

1

1

3

3

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9 9

9

10

10

11

11

12

12

12

12

13

13

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(b) Second Half: The difference in the bytes marked in black is guessed. The bytes marked by 5 are found using the known input
and output differences. The bytes marked by 12 are found using the relation between the keys k2 and u2.

Figure 9.3: The attack with two known plaintexts on two round AES

118

9.3. Attacks on Two-Round AES

differences in w0[12..15]. Using Property 9.1, we also obtain the values and the differences in byte 1, 6, 11
and 12 of x0 (and thus of k0). Note that the values of w0[12..15] and k1[12..15] are revealed in the process.
Let us denote by A the set of bytes that can be obtained from x1[12..15].

Similarly, if the value of x1[0..3] is known, then the values (and differences) in byte 0,2, 5,10, 13 and 15
of x0 and k0, as well as w0[0..3] and k1[0..3] could be recovered. Let us denote these bytes by B.

Even though the bytes in A∪B can take 264 values, this can efficiently be narrowed down to 232. There
exist (at least) 4 linear relationships between bytes of A and those of B:

f1(A) = g1(B)

f2(A) = g2(B)

f3(A) = g3(B)

f4(A) = g4(B)

Thanks to these relations, a tuple of values from A is associated to a single tuple of values of B on average:
for each one of the 232 tuples of values in A, evaluate the fi’s and store the result in a hash table. Then for
each one of the of the 232 tuples of values in B, evaluate the gi’s, and loop-up the corresponding value(s) in
A.

Two of these linear relations can be obtained very simply: given k1[0..3] and k1[12..15], we deduce k2[0..3].
From there, it is also possible to compute bytes 0, 5, 10 and 15 from x1 by partial decryption. Amongst
these, x1[15] occurs in A while x1[0] occurs in B. This already gives two linear equations connecting A and
B.

Two other constraints can be obtained in a more sophisticated way. First, we notice that given the
key bytes in A and B, it is possible to retrieve the full k2 except byte 4, 8 and 12 by just exploiting the
key-schedule and Property 9.3. Focusing on the last two columns of w1, we find that 3 bytes are known in
each column in w1 and two bytes are known in each column of z1. Thanks to Property 9.2, this gives a linear
relation for between the known bytes of each column.

9.3.2 A Three Known Plaintext Variant

We note that if the adversary is given three known plaintexts, then a simpler attack can be applied, with
the same complexity, namely 232 encryptions. The adversary applies the first phase of the manually-found
attack twice (for the pairs (P1, P2) and (P1, P3)), and uses the values of k1[0..3] retrieved in that phase for a
consistency check. Since for the correct guess of bytes 0, 5, 10, 15 of k0, both pairs suggest the same value of
the four bytes of k1, and for an incorrect guess, the two pairs suggest the same value only with probability
2−32, this allows us to discard most of the wrong guesses. Then, the adversary performs the second phase of
the attack only for the remaining guesses, and thus the time complexity of the attack is dominated by the
first step, whose complexity is 232 encryptions.

9.3.3 A Two Chosen Plaintext Variant

If the adversary is given two chosen plaintexts, then the time complexity can be reduced. We first
describe an attack found manually by Dunkelman and Keller, with a complexity of 228 encryptions. We will
next describe an attack found by the improved tool, with complexity 28 (!).

The Manually-Found Attack. In order to improve on the known-plaintext scenario, the adversary asks for
the encryption of two plaintexts which differ only in four bytes composing one column. Figure 9.4 shows
the difference pattern. In this case, at the end of round 1, there are exactly 127 possible differences in
each column. For each such difference, the adversary can apply Property 9.1 to the four S-boxes of the
column, and obtain one suggestion on average for the actual values after the SubBytes operation of round 2.
Combining the values obtained from all four columns, the adversary gets about 228 suggestions for the entire
state after the SubBytes operation of round 2, and each such suggestion yields a suggestion of the subkey
k2. Thus, the time complexity of the attack is 228 encryptions.

The Automatically-Found Attack. The adversary also asks for the encryption of two plaintexts which
differ only in four bytes composing one column. The attack relies on Property 9.6 below, which cleverly uses
the linearity in the key-schedule of the AES.

Property 9.6. For all i ≥ 1 we have the following equations:

i) zi−1[4..7]` zi[0..3]` zi[4..7] = MC−1
(
xi[4..7]` xi+1[0..3]` xi+1[4..7]

)

119

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

P

ARK

0
1
2
3

x0

SB

SR

0
1

2
3

z0

MC

ARK

1
1
1
1

2
2
2
2

3
3
3
3

0
0
0
0

x1

SB

SR

1
1

1
1

2
2

2
2

3
3

3
3

0
0

0
0

z1

MC

ARK

C

Figure 9.4: Two chosen plaintexts attack on two AES rounds. Gray bytes indicate the presence of a
difference, and hatched bytes indicate the presence of a known difference. If byte i is known in x0, then the
actual values of all the bytes with the same number can be found.

ii) zi−1[8..11]` zi[4..7]` zi[8..11] = MC−1
(
xi[8..11]` xi+1[4..7]` xi+1[8..11]

)

iii) zi−1[12..15]` zi[8..11]` zi[12..15] = MC−1
(
xi[12..15]` xi+1[8..11]` xi+1[12..15]

)

Proof. Here again the theme is to exploit the interaction between the linearity of MixColumns and the linear
operations in the key-schedule. We only prove the first equation (the proofs of the other two is quite similar).
Expressing y in terms of w gives:

zi−1[4..7] = MC−1 (wi−1[4..7])

We can relate wi−1 to xi thanks to the AddRoundKey operation:

zi−1[4..7] = MC−1 (ki[4..7]` xi[4..7])

And there, we can exploit the linearity of the key-schedule:

zi−1[4..7] = MC−1 (ki+1[0..3]` ki+1[4..7]` xi[4..7])

The subkeys can then be expressed back in terms of w and x:

zi−1[4..7] = MC−1 (wi+1[0..3]` xi+1[0..3]` wi+1[4..7]` xi+1[4..7]` xi[4..7])

And then, the linearity of MixColumns can be exploited as well:

zi−1[4..7] = zi[0..3]` zi[4..7]`MC−1 (xi[4..7]` xi+1[0..3]` xi+1[4..7]) .

Assume that x0[0] is known: it is possible to deduce therefrom the value (and the difference) in z0[0], and
finally the difference in x1[0..3] (by Property 9.2). Because the difference in y1[0..3] can be deduced from the
ciphertexts, it follows that the actual values in x1[0..3] can be deduced thanks to Property 9.1. This also
reveals bytes 0,7,10 and 13 of z1 (observe Figure 9.4). It follows that if x0[0..3] were known, then the key
could easily be deduced. The attack works by constructing a set of possibles values of x0[0..3] of expected
size 256 in which the actual solution is guaranteed to be found. This process has a complexity of the order
of 256 encryptions, and therefore dominates the complexity of the attack. A pseudo-code of the attack is
shown in Algorithm 9.1. The attack works in 3 stages, each one using property 9.6 in a different way.

1. We first show that once x0[1] is known, then x0[0] can be determined using Property 9.6, item iii).
The equation is:

z0[12..15]` z1[8..11]` z1[12..15] = MC−1
(
x1[12..15]` C[8..11]` C[12..15]

)
,

We enumerate the possible values of x0[1] and compute all the bytes marked “1” in Figure 9.4. At this
stage, the right-hand side the equation is fully known. In the left-hand side, z0[13] and z1[9] are known,
and therefore z1[13] can be deduced by projecting the (vector) equation on the second component. The
actual values and the differences can then be deduced in x1[1], which reveals the difference in z0[0] (by
Property 9.2). The actual values in x0[0] can then be deduced by Property 9.1. We expect on average
one possible value of x0[0] per value of x0[1].

2. We then seek to extend this procedure to x0[2] and x0[3]. To this end, we still use Property 9.6,
equation ii):

z1[4..7]` z1[8..11] = z0[8..11]`MC−1
(
x1[8..11]` C[4..7]` C[8..11]

)
, (♣)

120

9.3. Attacks on Two-Round AES

Algorithm 9.1 Pseudo-code of the attack on 2 rounds using 2 chosen plaintexts.

1: function 2R-2CP-Attack(P,C)
2: for all x0[2] ∈ F28 do . Build T2

3: compute z0[10] and x1[8..11]
4: let u = x1[8..11]` C[4..7]` C[8..11] in
5: let i = z0[10]` (0d, 09, 0e, 0b) · u in
6: T2[i]← T2[i] ∪ {x0[2]}
7: end for
8: for all x0[3] ∈ F28 do . Build T3

9: compute z0[7] and x1[4..7]
10: let u = x1[4..7]` C[0..3]` C[4..7] in
11: let i = z0[7]` (0b, 0d, 09, 0e) · u in
12: T3[i]← T3[i] ∪ {x0[3]}
13: end for
14: for all x0[1] ∈ F28 do . Retrieve the key
15: Compute z0[13], x1[12..15], z1[3], z1[6], z1[9], z1[12]
16: Compute z1[13] . Using property 9.6
17: Compute x1[1], the difference in z0[1], and x0[0]
18: Compute z0[0], x1[0..3], z1[0], z1[7] and z1[10]
19: Read possible value(s) of x0[2] in T2

[
z1[6]` z1[10]

]

20: Read possible value(s) of x0[3] in T3

[
z1[3]` z1[7]

]

21: Compute k2 and check for correctness
22: end for
23: end function

The third coordinate of the right-hand side can be entirely deduced from x0[2]. We can therefore build
a table yielding x0[2] from the third coordinate of the right-hand side of (♣), as shown in Algorithm 9.1,
lines 2–7.

We perform the same operations with x0[3], using Property 9.6, equation i):

z1[0..3]` z1[4..7] = z0[4..7]`MC−1
(
x1[4..7]` C[0..3]` C[4..7]

)
, (♥)

Here, the fourth coordinate of the right-hand side can be entirely deduced from x0[3]. We therefore
build a table yielding x0[3] from the third coordinate of the right-hand side of (♥) (as shown in
Algorithm 9.1, lines 8–13).

3. Once the two tables T2 and T3 have been built, we are ready to derive x0[2] and x0[3]. For this purpose,
we enumerate the values of x0[1], derive x0[0] as explained above. The third component of equation (♣)
and the fourth component of (♥) can be computed, and thanks to T2 and T3 the corresponding values
of x0[2] and x0[3] can be retrieved in constant time, resulting in an average of 256 suggestion for the
first column of x0. From there, k2 can be deduced, and the key-schedule can be inverted to retrieve k0.

9.3.4 One Known Plaintext

Both Dunkelman and Keller, and the preliminary tool of §8.2 independently found a 1 known-plaintext
attack against two full rounds. One possible version of the attack, depicted in Figure 9.5, is based mainly
on Property 9.3 (the “jumps” in the key-schedule) and on many simpler key schedule considerations.

In the first phase of the attack, the adversary guesses nine subkey bytes (marked in black in the upper
part of the figure). Step 7 uses Property 9.3(3), step 8 uses Property 9.3(2), steps 5, 6, and 9 use the key
schedule, and the remaining steps are computed using the AES algorithm.

In the second phase of the attack, the adversary guesses one state byte (marked in black in the lower
part of the figure). Steps 9 and 13 are based on Property 9.3(1), steps 1, 5, 29, and 32 use Property 9.2,
steps 3,7,8,10–12, and 21–24 use the key schedule, and the remaining steps are performed by applying AES’
operations on known values.

The time complexity of the attack is determined by the amount of bytes which are guessed. Namely, as
the adversary guesses 10 bytes, the time complexity of the attack is 280 encryptions. Because the automated
tools are quite flexible, we could check without any effort that the SQUARE [DKR97] block cipher was a
bit less strong than its successor (the AES): in the same setup, the preliminary tool finds an attack with 9
guessed bytes, i.e., a time complexity of 272 encryptions.

121

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

ARK

k0

SB SR MC ARK
k1

SB SR MC ARK
k2

1 1

1

1 1

1

2 2

2

2 2

2

3 3

3

3 3

3

4

4

4

4

5

6

7

7

8

8

9

10

10

10

11

11

11

12

12

12

13

13

1313

13

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(a) First half of the attack: the value of the bytes marked in black is guessed. The bytes marked by 7 and 8 are found using
Property 9.3.

ARK

k0

SB SR MC ARK
k1

SB SR MC ARK
k21

1

1

1

2

2

3

3

4

4

5

5

5

5

6

78

9

10

1112

13

14

14

15

15 16

16

17

17

17

17

18

18

18 18

18 18

19

19

19 19

19 19

20

2021

22

23

24

25 26 27

28

29

29

29

29

30

31

31

31

3232

32

32

33

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(b) The bytes marked is black are guessed. The bytes marked by 9 and 13 are found using Property 9.3(1).

Figure 9.5: The attack with one known plaintext on two round AES.

122

9.4. Attacks on Three-Round AES

9.3.5 A Time-Memory Tradeoff

The time complexity can be reduced at the expense of enlarging the memory complexity, using non-linear
equations and a precomputed table as in Property 9.5. This improved attack was found by the improved
tool of §8.3. In order to achieve this reduction, the adversary performs the following precomputation: Let
bytes 4 and 14 of k0 be denoted by b and c. 3 It is possible to represent all the bytes found during the attack
procedures in terms of b, c, the plaintext, the ciphertext, and the other 8 key bytes which are guessed in the
original attack procedure. At the end of the deduction procedure, after a suggestion for the full subkey k2

(in terms of b and c) is obtained, the adversary decrypts the ciphertext through the last round and obtains a
suggestion for bytes 4 and 5 of k1. These bytes can be used as a consistency check, as they can be retrieved
independently by the key schedule algorithm, using the suggestion of k2. This consistency check supplies
two non-linear equations in b and c, and it turns out that the equations are of the following form:

a5 =f0(b, c, a0, a1, a2, a3, a4),

a7 =f1(b, c, a0, a1, a2, a4, a6),
(9.10)

where f0 and f1 are fixed known functions, and a0, a1, . . . , a7 are one-byte parameters depending on the
plaintext, the ciphertext, and the eight additional subkey bytes guessed in the original attack. Since the
values of a0, a1, . . . , a7 are very cumbersome, we do not present them in this paper, and refer the reader
to [Der10].

Hence, it is possible to compute in advance the values of (b, c) corresponding to each value of (a0, a1, . . . , a7),
and store them in a table. In the online phase of the attack, the adversary guesses only 8 subkey bytes (in-
stead of 10), computes the values of (a0, a1, . . . , a7), and uses the table in order to retrieve b and c. The rest
of the attack is similar to the original attack.

The time complexity of the resulting attack is reduced to 264, but on the other hand, the attack requires
265 bytes of memory.

The memory requirement can be further reduced to 249 bytes by observing that the knowledge of a1, a4,
and the six subkey bytes k0[6], k0[11], k0[12], k1[8], k1[13], k1[15] allows one to deduce the value of the two
remaining subkey bytes guessed in the modified attack. Using this observation, the attack procedure can be
slightly changed as follows: The adversary starts with guessing the values of a1 and a4, and prepares the
table for the given value of a1, a4. In the online phase of the attack, the adversary guesses the six subkey
bytes k0[6], k0[11], k0[12], k1[8], k1[13], k1[15], deduces the value of the two additional required subkey bytes,
and performs the original attack. This change reduces the memory complexity to 249 bytes (since the table
is constructed according to 6 byte parameters instead of 8), while the time complexity remains unchanged
at 264.

9.3.6 Improved Attack When the Second MixColumns is Omitted

In §9.6 we present a differential attack on 6-round AES which uses as a subroutine a 2-round attack on
AES. In the attack scenario, the two rounds attacked in the subroutine are the last two rounds of AES, i.e.,
a full round and a round without the MixColumns operation. In this section we present an improved variant
of the attack with two known plaintexts presented above that applies in this scenario. We note that this
attack gives another evidence to the claim made in [DK10b] that the omission of the the last MixColumns

operation in AES reduces the security of the cipher.
The attack, presented in Figure 9.6, consists of two phases. In the first phase, the first 13 steps are

identical to the first 13 steps of the attack on two full rounds presented in §9.3.1 above. Steps 14–20 and 25
exploit the key schedule, and the rest of the steps apply AES’ operations to known values.

The second phase uses Property 9.3 and simpler key schedule observations. Step 1 uses Property 9.3(1,2),
step 20 uses Property 9.3(1), step 9 uses Property 2, steps 2–4,11,12,16–19, and 25 use the AES key schedule,
and the remaining steps are performed using partial encryption or decryption.

9.4 Attacks on Three-Round AES

In this section we consider attacks on three rounds of AES, denoted by rounds 1–3. First we present
a simple attack with two chosen plaintexts, then we present a bit more complex meet-in-the-middle attack
with 9 known plaintexts, and finally we present a very time-consuming attack with a single known plaintext.

3. We note that in this subsection we use notations which are somewhat different from the notations in the rest of the paper,
in order to be consistent with the reference [Der10], in which this improvement is described in detail.

123

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

ARK

k0

SB SR MC ARK
k1

SB SR ARK
k2

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

10

10

11

11

12

12

13 1415

161718

19

20

21

212121

22

2222 22

23

2323 23

24 24 24

25

26 27 28

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(a) First half of the attack.

ARK

k0

SB SR MC ARK
k1

SB SR ARK
k2

1

1

2

3

4

5

56

6

7

7

8

9

9

9

9

10

11

12

13

13

14

14

15

15

1617

18

19

20

212223

2425

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(b) Second Half.

Figure 9.6: The attack on two rounds of AES without the second MixColumns using two known plaintexts.
Bytes marked in black are guessed, and bytes marked in gray are known at this phase of the attack.

124

9.4. Attacks on Three-Round AES

x0

SB

SR

1

z0

MC

ARK

2

2

5

8

x1

SB

SR

2

2

5

8

z1

MC

ARK

3

3

3

3

9

9

9

9

6

6

6

6

3

3

3

3

x2

SB

SR

3 9 6 3

39 6 3

3 96 3

3 9 63

z2

MC

ARK

C

k1 k2 k3

Figure 9.7: Fault attack against the AES. Gray square indicates the presence of a difference. The number
indicates the step of the attack in which the value of each byte is discovered.

9.4.1 Two Chosen Plaintexts

The 2-round attack of §9.3.3 can easily be leveraged into a 3-round attack of complexity 216, thus
improving on an attack found manually by Dunkelman and Keller with complexity 232, and described
in [BDD+10].

In this improved attack, the adversary asks for the encryption of two plaintexts which differ only in the
first byte. By guessing k0[0], the adversary obtains the differences in x1[0..3]. This is sufficient to apply the
attack of §9.3.3 to rounds 2 and 3. The complexity of the process is therefore 216 encryptions.

9.4.2 Improvement to the Piret-Quisquater Fault Attack

In the Piret-Quisquater fault attack, against the full AES, an unknown difference is introduced in byte
0 of the internal state x7. The adversary observes the output difference, and recovers the secret key in time
232 [PQ03]. We show an improved procedure (found by the improved tool of §8.3) that recovers the key after
the equivalent of 224 encryptions.

The attack considers the last three rounds (rounds 8, 9 and 10), but to be consistent with the other
three-round attack, we number the attacked rounds 1, 2 and 3. In this setting, the plaintext is unknown, and
the only information is that there is a non-zero difference δ in x0[0]. For the sake of simplicity, we describe
the attack assuming that the final MixColumns operation has not been removed. The attack can be replayed
without it, but some details become significantly messier.

One possible way to view this attack would be to guess the“fault”difference δ, to guess the actual value of
x0[0], to derive the difference in x1[0..3], and to apply the two-round attack of §9.3.3 to rounds 2-3. However,
it is possible to give a more direct yet pleasantly simple description of the key-recovery.

1. Guess the difference in z0[0]

2. Guess the actual value of x1[0] and x1[1]

3. Compute the difference in x2[0..3] and x2[12..15], then the actual values thanks to Property 9.1.

4. Use Property 9.6, with i = 2 and j = 3 (second component of the vector equation) to filter the guesses.
Only 216 out of 224 should pass the test.

5. Guess the actual value of x1[2]

6. Compute the difference in x2[8..11], then the actual values.

7. Use Property 9.6 with i = 2 and j = 2 (third component of the vector equation) to filter the guesses
of step 5. Only 216 should pass.

8. Guess the actual value of x1[3]

9. Compute the difference in x2[4..7], then the actual values.

10. Use Property 9.6 with i = 2 and j = 1 (fourth component of the vector equation) to filter the guesses
of step 8. Only 216 should pass.

11. At this point we should have 216 candidates for the actual values and the differences in x1[0..3]. From
those, x2 can be reconstructed entirely, as well as k3. It remains to simply test all the candidates.

9.4.3 Nine Known Plaintexts

An attack with 9 known plaintexts has been found manually by Dunkelman and Keller. It uses a
combination between the differential approach and the standard meet-in-the-middle approach. The adversary

125

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

guesses subkey material in k0 and k3, and obtains a consistency check on the intermediate difference after
the ShiftRows operation of round 2.

Concretely, denote the intermediate values in byte 0 after the ShiftRows operation of round 2 by
X1, X2, . . . , X9. In the first phase of the attack, the adversary guesses bytes 0, 7, 10, 13 of the equivalent
subkey u3 and partially decrypts the ciphertexts through the last round (obtaining the actual values in
x3[0..3]). Then, using the linearity of the MixColumns operation, the adversary computes the differences
X1`X2, X1`X3, . . . , X1`X9, and stores their concatenation (a 64-bit vector) in a hash table. In the sec-
ond phase of the attack, the adversary guesses bytes 0, 5, 10, 15 of k0 and byte k1[0] and by partial encryption
of the plaintexts, obtains the values of X1`X2, X1`X3, . . . , X1`X9, and checks whether their concatena-
tion appears in the hash table. This consistency check is a 64-bit filtering, and thus only 272 · 2−64 = 28 key
suggestions are expected to remain. By repeating the procedure with the three other columns, the adversary
obtains about 232 suggestions for the full subkey k0 (along with many other subkey bytes), which can be
checked by exhaustive key search. The time complexity of the attack is about 240 encryptions, and the
memory requirement is 235 bytes of memory.

9.4.4 One Known Plaintext

The preliminary tool of §8.2 found a guess-and-determine attack with a single known plaintext, depicted
in Figure 9.8. The attack consists of two phases.

In the first phase (shown in the top part of the figure) the adversary guesses 15 subkey bytes, and uses
key schedule considerations deduce numerous additional subkey bytes in the four subkeys k0, k1, k2, and k3.
Step 4 of the deduction uses Property 9.3(1), and the other steps use the key schedule algorithm directly.

The second phase (shown in the bottom part of the figure) is the meet-of-the-middle part of the attack.
Using the known subkey bytes, the adversary partially encrypts the plaintext and decrypts the ciphertext
and obtains sufficient information in order to apply Property 9.2 to the MixColumns operations of rounds 2
and 3. Steps 13 and 17 of this part use Property 9.2, and the other steps use AES’ operations and the
knowledge obtained in previous steps.

Since the adversary guesses 15 key bytes, the time complexity of the attack is 2120 encryptions. As in
the single-plaintext attacks on one-round and two-round AES, the adversary can reduce the time complexity
at the expense of enlarging the memory requirement, using non-linear equations and a precomputed table.
The time complexity of the resulting attack is 2104 encryptions, and the memory requirement is 249 bytes.
Since the technique is similar to the improvement of the 2-round attack presented in §9.3.4, and the obtained
equations are quite cumbersome, we do not present the improvement here and refer the reader to [Der10].

9.5 Attacks on Four-Round AES

In this section we consider attacks on 4-round AES. The improved tool of §8.3 found a single known-
plaintext attack of complexity approximately 2120 operations. It is unclear that this “attack” can be imple-
mented faster than exhaustive search, and our (limited) efforts to describe it in a human-readable way have
failed so far.

No other known plaintext attacks could be found manually, so we turned our attention to chosen-plaintexts
attacks. The well-known “square” attack on 4 rounds requires 256 chosen plaintexts and the equivalent of 214

encryptions. Dunkelman and Keller manually found attacks with 10,5 or 2 chosen plaintexts with respective
time complexities 240, 264 and 2104. The improved tool of §8.3 automatically found a practical attack using
four plaintext differing only in one byte, of complexity about 232.

We note that these attacks can be transformed into known plaintext attacks using the standard birthday-
based transformations, but these usually result in a high data complexity. We do not present the attacks on
2 and 4 chosen plaintext as they are quite complex. The attacks using 5 and 10 chosen plaintexts are used
in §9.8.3 below to give attacks on a modified version of the LEX stream cipher.

9.5.1 Ten Chosen Plaintexts

The attack with 10 chosen plaintexts is similar to the 3-round attack with 9 known plaintexts presented
in §9.4.3. The adversary asks for the encryption of ten plaintexts which differ only in bytes 0,5,10,15. Then
she guesses subkey material in the subkeys k0, k1 and the equivalent subkeys u3 and u4, and obtains a
consistency check on some intermediate difference after the MixColumns operation of round 2.

Let us denote the intermediate values in byte 0 after the MixColumns operation of round 2 byX1, X2, . . . , X10.
In the first phase of the attack, the adversary guesses bytes 0, 7, 10, 13 of the equivalent subkey u4 and byte
0 of the equivalent subkey u3 and partially decrypts the ciphertexts through the last two rounds obtaining
the actual values in the byte x3[0]. (Note that reversing the order of the MixColumns and AddRoundKey

126

9.5. Attacks on Four-Round AES

k0 k1 k2 k3

1

1

1

111

1

1

1

1

2

2

2

2

333

333

333

4

5

5

5

6 6

6

6

6

6

6

67

7

7

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(a) The first half of the attack only uses the key-schedule. All bytes
but one are guessed in k3 (marked in black), and the diagram shows
in which order other subkey bytes can be deduced using the key
relations.

ARK

k0

SB SR MC ARK
k1

SB SR MC ARK
k2

SB

SR MC ARK
k3

1 1

1

1 1 1 1

1 1 1 1

2 2

2

2 2 2 2

2 2 2 2

3 3

3

3 3 3 3

3 3 3 3 4

4

4

4

5

5

5

6

6

6

7

7

7

8

8

8

8

8

8

8

8

8

8

8

8

8

8

9

9

9

9

9

9

9

9

9

9

9

9

10

10

10

10

10

10

10

10

10

10

10

10

11

11

11

11

11

11

11

11

11

11

11

11

12

12

12

12

12

12

12

12

12

12

12

13

13

13

13 13

13

13

13

14

14

15

15

16

16

17

17

17

8

18

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

(b) Second half of the attack: deduction of the remaining subkey bytes. Known bytes are marked in gray.

Figure 9.8: The attack on three rounds of AES using one known plaintext

127

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

operations in the two last rounds allows her to obtain this intermediate value by guessing only 40 sub-
key bits). Then, using the linearity of the AddRoundKey operation, the adversary computes the differences
X1 `X2, X1 `X3, . . . , X1 `X10, and stores their concatenation (a 72-bit vector) in a hash table.

In the second phase of the attack, the adversary guesses bytes 0, 5, 10, 15 of k0 and the byte k1[0]. By the
structure of the chosen plaintexts, this allows her to compute the differences between pairs of intermediate
values w2[0..3] (since the actual values in byte 0 before the MixColumns operation of round 2 are known
by partial encryption, and the difference in bytes 1, 2, 3 is zero). Thus, the adversary obtains the values of
X1 `X2, X1 `X3, . . . , X1 `X10, and checks whether their concatenation appears in the hash table. This
consistency check is a 72-bit filtering, and thus only 280 · 2−72 = 28 key suggestions are expected to remain.
By repeating the procedure with the three other columns (from the ciphertext side), the adversary obtains
about 232 suggestions for the full equivalent subkey u4 (along with many other subkey bytes), which can
be checked by exhaustive key search. The time complexity of the attack is about 240 encryptions, and the
memory requirement is about 243 bytes of memory.

9.5.2 Five Chosen Plaintexts

If only five chosen plaintexts are available to the adversary, she can perform a variant of the attack
described above, at the expense of enlarging the time and memory complexities. The plaintexts are chosen
as before, but more key material is guessed: from the ciphertext side, the adversary guesses bytes 0, 7, 10, 13
of u4 and bytes 0, 1, 2, 3 of u3, and from the plaintext side, the adversary guesses bytes 0, 5, 10, 15 of k0 and
bytes 0, 1, 2, 3 of k1. This allows her to get a consistency check on the intermediate difference at the end of
round 2 in bytes 0, 5, 10, 15 (instead of only byte 0), and thus, the four pairs which can be extracted from
the data supply a 128-bit filtering and only the correct key suggestion is expected to remain. Finally, the
adversary repeats the attack procedure with three other columns from the ciphertext side, and obtains a
single suggestion (or a few suggestions) for the full equivalent subkey u4. The time complexity of the attack
is about 264 encryptions, and the memory requirement is about 268 bytes.

9.5.3 Four Chosen Plaintexts

The improved tool of section 8.3 found a practical attack requiring only 4 chosen plaintexts and the time
equivalent of about 232 encryptions. The four plaintext only differ in byte 0 of the plaintext (but they must

be pairwise different). We use the notation x
(j)
i to denote the j-th message.

In a first phase, we construct 16 hash tables T0, . . . , T15, which are subsequently used in the remaining
steps of the attack. The table T` is constructed according to the following steps:

1. First, enumerate all the possible values of x
(0)
0 [0]. Because the differences in x0 are known, then x

(i)
0 [0]

can be deduced for i = 1, 2, 3. This in turn allows to determine the differences in y0[0], and also in
x1[0..3].

2. Define c2 = b`/4c and r1 = σ(c2), where σ denotes the permutation (0321).

3. Next, enumerate x
(0)
1 [r1]. Because the differences in this byte are known, then the values in x

(i)
1 [r1]

can be deduced for i = 1, 2, 3. This allows to find the differences in y1[r1], and then in x2[4c2..4c2 + 3].

4. Finally, enumerate the values of x
(0)
2 [`]. Again, recover x

(i)
2 [`] for i = 1, 2, 3, and thus recover the

differences in y2[`].

5. Store the association

(
y

(0)
2 [`]` y

(1)
2 [`], y

(0)
2 [`]` y

(2)
2 [`], y

(0)
2 [`]` y

(3)
2 [`]

)
7→
(
x

(0)
0 [0], x

(0)
1 [r1]

)

in the hash table T`.

The hash tables are now used in the following way: enumerate the values of x
(0)
3 [0..3], compute the

differences in byte 0, 5, 10 and 15 of y2, and use the differences to look-up in T0, T5, T10 and T15. Only keep

values of x3[0..3] that suggest the same value of x
(0)
0 [0] (there should be about 28 of them). We implemented

the attack, and we could indeed verify in practice that this procedure isolates a set of about 28.5 candidates
for the first column of x3. It can then be repeated for the other three columns, and we are left with about
234.5 candidates for the full x3, each one of which suggest a full key (partial encryption reveals w3, which in
turns reveal k4 and the key-schedule can be inverted back to k0).

This could be refined a little bit by only considering the quadruplets of columns that suggest the same
values of x1[0..3](0) (and there should very likely be very few of them). This would avoid testing 232 keys.

128

9.6. Differential Attack on 6-Round AES

SB,SR

MC,ARK

SB,SR

MC,ARK
SB SR,MC

ARK

232

differences

232

differences

∆x1 ∆x2 ∆x3

∆y3 ∆x4

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Figure 9.9: The 3-Round Truncated Differential Used in the 6-round Differential Attack.

9.6 Differential Attack on 6-Round AES

The design of AES follows the wide trail design strategy, which assures that the probability of differentials
is extremely low, even for only four rounds of the cipher. For example, it was proved in [PSC+02, PSLL03],
that any 4-round differential of AES has probability of at most 2−110. Hence, it is widely believed that no
regular differential attack can be mounted on more than 5 rounds of AES. Furthermore, the best currently
known differential attack on AES-128 is on only four rounds, and all known attacks on 5 and more rounds
use “more sophisticated” techniques like impossible differentials, boomerangs, or Squares.

In this section we show that the low data complexity attack on 2-round AES presented in §9.3.6 can be
leveraged to a differential attack on 6-round AES. Although the data complexity of the resulting attack is
high, the data complexity of its known plaintext variant is still smaller than the data complexity of the best
known attack on 6-round AES in the known plaintext model. While our attack certainly does not threaten
the security of AES, it shows that its security with respect to conventional differential attacks is lower than
expected before.

As in most published attacks on reduced-round variants of AES, we assume that the MixColumns operation
in the last round is omitted, like in the full AES. We were not able to extend the attack to the case where
the last MixColumns operation is not omitted. This gives another evidence to the claim made in [DK10b]
that the omission of the last round MixColumns affects the security of AES.

Our 6-round attack is based on the following 3-round truncated differential: The input difference in all
bytes except for byte 0 is zero, and the output difference in all bytes except for bytes 0, 5, 10, 15 is zero. We
depict the differential in Figure 9.9. A pair satisfying the input and output requirements of the differential
in rounds 2–4 is called a right pair.

Consider a right pair (P, P ′). By the structure of AES, the intermediate difference at the input of round 3
is zero in all bytes except for 0, 1, 2, 3. Thus, there are at most 232 possible differences in the input of the
SubBytes operation of round 4. On the other hand, since the difference at the output of round 4 is zero
in all bytes except for 0, 5, 10, 15, there are only 232 possible differences after the SubBytes operation of
round 4. Note that by Property 9.1, the input and output differences of a SubBytes operation yield a single
suggestion (on average) for the actual values. Therefore, if (P, P ′) is a right pair, then there are only 264

possibilities of the corresponding actual values after the SubBytes of round 4 (or equivalently, for the actual
values after the MixColumns operation of round 4).

This observation allows us to mount the following known plaintext attack:

1. Ask for the encryption of 2108.5 plaintexts Pi under the unknown key, and denote the corresponding
ciphertexts by Ci.

2. Insert (Pi, Ci) into a hash table indexed according to bytes 1–4,6–9,11–14 of Pi and bytes 1–6,8,9,11,12,14,15
of Ci, and consider only the colliding pairs in the hash table (which are the only pairs which may be
right). The number of remaining pairs is 2216 · 2−192 = 224.

3. For each of the remaining pairs, assume that it is a right pair, and for each of the 264 possible actual
values after the MixColumns operation of round 4, apply the attack presented in §9.3.6 on rounds 5–6.
Note that the 2-round attack requires that the difference in the four bytes x2[0..3] in the attacked variant
is non-zero, and this condition is indeed satisfied in our attack (for the state x6 which corresponds to
x2 in the two-round attack).

Since the time complexity of the 2-round attack presented in §9.3.6 is 232 encryptions, the overall com-
plexity of the attack is 224 · 264 · 232 = 2120 encryptions. The data complexity of the attack is 2108.5 known
plaintexts, which is smaller than the data complexities of the previously known attacks in the known plaintext
model (see, e.g., [CKK+01]).

9.7 A Forgery Attack Against Pelican-MAC

Pelican-MAC [DR05b] is a Message Authentication Code designed by Daemen and Rijmen in 2005. It
is an instance of the more general ALRED construction by the same authors, which is reminiscent of CBC-

129

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

MAC but aims at greater speed [DR05a]. MACs derived from the ALRED construction enjoy some level of
provable security: it is shown that breaking an ALRED MAC requires breaking the underlying block cipher
or generating an inner collision, which presumably requires at least 2n/2 queries if the block cipher is n-bit
wide. Pelican-MAC works as follows:

1. The internal state (an AES state) is initialized to x0 = AESK(0).

2. The message is split in 16-byte chunks, and each chunk is processed in two steps: it is XORed to the
internal state, and 4 keyless AES rounds are applied (the AddRoundKey operation is skipped).

3. Finally, the full AES is applied with the key K to the internal state, which is then truncated and
returned as the tag.

In this construction, recovering the internal state x0 is sufficient to perform nearly-universal forgeries:
first the adversary asks the MAC of an arbitrary message. Given her knowledge of x0, she can compute the
internal state xlast just before the full AES is applied and the tag T is returned. Then, given an arbitrary
message M , she computes the internal state xM after M has been fully processed. Then, she knows that
Pelican-MACK(M ‖xM ` xlast) = T , without querying the MAC (the extra message block sets the internal
state to xlast, which is known to result in the tag T).

The best published attacks against Alpha-MAC (another ALRED construction) and Pelican-MAC has
been recently found by Zheng Yuan, Wei Wang, Keting Jia, Guangwu Xu, Xiaoyun Wang [YWJ+09] and
aim at recovering the initial secret internal state. For Alpha-MAC, after having found an internal state
collision (this requires 265 queries), the internal state is recovered with a guess-and-determine attack that
makes about 264 simple operations. For Pelican-MAC, an impossible differential attack recovers the internal
state with data and time complexity 285.5.

The general idea of our attack on Pelican-MAC is to find a single collision in the internal state, found
by injecting message blocks following a fixed truncated differential characteristic. Then, the state recovery
problem has been encoded in equations and given to the improved tool of §8.3. It must be noted that
an attack with the same global complexity has been independently found time by Dunkelman, Keller and
Shamir [DKS11], using impossible differential techniques. The “state-recovery” phase presented here is faster
though. However, these authors also give attacks against 5-round and 6-round Pelican-MAC.

Our Attack. We now present our attack against Pelican-MAC, with time and data complexity 264. We
pick an arbitrary message block M1 and query the MAC with 264 random two-block messages M1 ‖ M2,
and store the (message,tag) pair in a table. Then, we query the MAC on (M1 `∆) ‖M ′2, where ∆ is zero
everywhere except on the first byte, and M ′2 is random. When the tags collide, we check whether there is
also a collision in the internal state by checking if:

MACK(M1 ‖ M2 ‖ M3) = MACK
(

(M1 `∆) ‖M ′2 ‖M3

)

for several random message blocks M3. If all the resulting tags collide, then we known that an internal
collision occurred after the first two blocks with overwhelming probability, and we have:

AES4(x0 `M1)`M2 = AES4(x0 `M1 `∆)`M ′2

In other terms, the input difference ∆ goes to the output difference M2 `M
′
2 though 4 keyless AES rounds.

The most likely differential characteristic is the one shown in Figure 9.10, even though there could be
accidental difference cancellations with small probability.

We then write down the state-recovery problem as a system of equations: two unknown states with a
known one-byte difference yields two unknown states with a known (full) difference. The improved tool of
§8.3 quickly found 4 an attack that runs in time and space about 232, and which is summarized by Figure 9.10.
Property 9.2 tells us that if α, β, γ and δ denote the differences in z1, then the differences in x2 are:




02α β γ 03δ
α β 03γ 02δ
α 03β 02γ δ

03α 02β γ δ




The state-recovery proceeds as follows:

1-a. Guess the values in x3[0..3] and obtain the differences (thanks to the output difference).

1-b. Partially decrypt to get suggestions for α, β, γ and δ (using Property 9.2).

4. it also found an attack with a smaller memory consumption 224, but the improved attack is much more complicated to
describe

130

9.8. A Key-Recovery Attack Against LEX

x0 z0 x1

α

δ

γ

β

z1 x2

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

z2

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

x3 z3

Figure 9.10: Truncated Differential characteristic used in the attack against Pelican-MAC. Gray squares
denote the presence of a difference. Hatched squares denote a known difference.

Odd Round Even Round

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Hello, here is some text without a meaning. This text should show, how a printed text will look like at this place. If you read this text, you
will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like ≫Huardest gefburn≪.
Kjift – Never mind! A blind text like this gives you information about the selected font, how the letters are written and the impression of the
look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for a special
contents, but the length of words should match to the language.

Figure 9.11: State Bytes which Compose the Output in Odd and Even Rounds of LEX. The gray bytes are
the leaked bytes.

1-c. Store bytes 0–3 of x3 in a hash table T0 indexed by (α, β, γ, δ)

2. Repeat the process with the second column of x3. Store bytes 4–7 of x3 in a table T1 indexed by
(α, β, γ, δ).

3. Repeat the process with the third and fourth column of x3. Build tables T2 and T3

4. Enumerate (α, β, γ, δ). Look-up T0, T1, T2 and T3 and retrieve the parts of x3 corresponding to
(α, β, γ, δ), if present.

5. if (α, β, γ, δ) occurs in the 4 tables, then we get a complete suggestion for x3. Decrypt 3 rounds and
recover x0. Check if the input difference is right.

Alpha-MAC. Obviously, we cannot overally improve on the attack of [YWJ+09], since finding the inter-
nal state collision dominates the running time of their attack. However, it is noteworthy that the tool
found a state-recovery procedure that requires only 232 elementary operations and memory, when the first
input message difference contains only one active byte. This is much more efficient than its counterpart
in [YWJ+09].

9.8 A Key-Recovery Attack Against LEX

LEX is a stream cipher presented by Biryukov as an example of the leak extraction methodology of stream
cipher design [Bir05, Bir06a]. In this methodology, a block cipher is used in the OFB mode of operation,
where after each round of the cipher, some part of the intermediate encryption value is output as part of the
key stream. LEX itself uses the AES as the block cipher.

In the initialization step of LEX, the publicly known IV is encrypted by AES under the secret key K to
obtain S = AESK(IV). Actually, LEX uses a tweaked version of AES where the AddRoundKey before the
first round is omitted, and the MixColumns operation of the last round is present. Then, S is repeatedly
encrypted in the OFB mode of operation under K, where during the execution of each encryption, 32 bits
of the internal state are leaked in each round. These state bits compose the key stream of LEX. The state
bytes used in the key stream are shown in Figure 9.11. After 500 encryptions, another IV is chosen, and the
process is repeated. After 232 different IVs, the secret key is replaced. It follows that with a given key LEX
can only generate 246.3 bytes of keystream.

9.8.1 Prior Art

LEX was submitted to the eSTREAM competition (see [Bir05, Bir06b]). Due to its high speed (2.5 times
faster than the AES in counter mode), fast key initialization phase (a single AES encryption), and expected
security (based on the security of AES), LEX was considered a very promising candidate and selected to the
third (and final) phase of evaluation. However, it was not selected to the final portfolio of eSTREAM due to
an attack with data complexity of 236.3 bytes of key stream and time complexity of 2112 encryptions found
by Dunkelman and Keller a few weeks before the end of the eSTREAM competition [DK08]. These authors
subsequently improved their own result, and the best published attack on LEX requires about 240 bytes of
keystream and the time equivalent of 2100 AES encryptions [DK10a].

131

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

x1 z1 w1

k2

x2 z2

0 0

00

0 0

0 0

w2

k3

0 0

00

0 0

0 0

x3

0 0

0 0

0 0

0 0

z3

0 0

0 0

0 0

0 0

x3

k4

0 0

0 0

0 0

0 0

x4

0 0

0 0

0 0

0 0

z4 x4

k5

x5

Figure 9.12: Gray squares are leaked to form the key-stream. The differences are null in squares with a
0. The differences in the hatched squares can be deduced from the leaked bytes and the existence of zero
differences.

Their attack is illustrated by Figure 9.12. The key idea is to find a pair of internal states, potentially
obtained with different IVs, and after different numbers of encryptions, that partially collide after 4 rounds.
More precisely, the objective is to find a pair of state yielding the same bytes in x4[4..7] and x4[12..15].
Because this is a collision on 64 bits, the birthday paradox guarantees that 232 distinct internal states are
necessary. In fact, the attack is not restricted to “start” at the first round of an AES encryption cycle, but
can be applied (with minor variations) to rounds 1, . . . , 8. Thus, only 264/8 = 261 pairs of encryptions are
necessary for the collision to occur. This number of pairs can be obtained from 231 distinct encryptions, and
thus from 232 · 10 · 4 = 236.3 keystream bytes.

One of the problems is that the collision needed for the attack cannot be fully detected just by observing
the keystream: it can be detected on bytes 4,6,12 and 14, but we have no way of detecting whether bytes
5,7,13 and 15 collide or not. The only solution is to assume that the full collision occurred and to run the
next steps of the attack. In case of failure, we know a posteriori that the full collision did not occur. Thus,
the remaining steps of the attacks have to be carried out on average 232 times in order for a full collision to
occur.

In the first attack of Dunkelman and Keller (given in [DK08]), the collision is exploited by a guess-and-
determine attack that guesses 10 bytes. Their second attack (given in [DK10a]) uses an improved key-ranking
procedure that filters the guesses and discards unlikely candidates.

Revisiting the Existing Attacks. The key-recovery problem can be encoded as a system of equations and
given to the tools. The improved tool of §8.3 found that Dunkelman and Keller first attack was sub-optimal,
as the guess-and-determine part of the attack could be dealt with in 264 elementary operations (versus 280

previously). This yields an attack with time complexity about 296 and data complexity 236.3, marginally
improving on their second attack.

9.8.2 A New Attack

It turns out that the tool can be used to mount a different, more efficient attack. This new attack
proceeds in 3 phases. The first phase is similar to the existing attacks. However, instead of looking for a pair
of states colliding on bytes 4-7 and 12-15 in x4, we look for 3-way collisions on these bytes (i.e., a triplet of
states all having the same values in these bytes). The advantage of working with 3 messages instead of just
two is that observation 9.1 generalizes nicely to this case: if 4 differences α, β, γ, δ are randomly chosen in
F28 , then the probability that S(x` α)` S(x) = γ and S(x` β)` S(x) = δ is 2−9.5. Thus, in most cases,
no single value of x satisfies these constraints.

132

9.8. A Key-Recovery Attack Against LEX

Phase 1: Finding the 3-Collision. Finding the 3-collision requires 2128/8 = 2125 triplets of encryptions,
which can be obtained from 242.5 distinct encryptions. This makes 247.8 bytes of key-stream, about three
times the maximally allowed quantity for a given key. This means that in the normal setting where LEX
is restricted to produce 246.3 bytes of key stream (80 terabytes), then out attack will only succeed with
probability ≈ 1/32. Indeed, under the normal restrictions, only 500×232 encryptions are allowed, leading to
2120.3 triplets. Because each triplet leads to a 3-collision with probability 2−125, it follows that the probability
that the 3-collision exists is about 1/32. Our attack thus targets on average one key over 32.

The problem of detecting the 3-collision is even more acute than previously, because it can only be
partially observed. The strategy is again to repeat the last two phases of the attack on the expected 264

triplets matching on the observable 32 bits. The subsequent steps require about 224 simple operations,
yielding a total time complexity of 288.

Phase 2: Exploiting the 3-Collision. First of all, by exploiting the zero-difference bytes and the known
key-stream bytes, it is possible to reconstruct the differences between the 3 concurrent processes in vast
portions of the internal state. Figure 9.12 shows the situation.

– The differences in bytes 0, 2, 8 and 10 of w4 are given by the leakage in x5. Also, the differences are
known to be zero in bytes 1, 3, 9 and 11 of z4. Thus, thanks to observation 9.2n the differences can be
found in bytes 0-3 and 8-11 of both z4 and w4.

– It is also known that the differences are zero in bytes 4-7 and 12-15 of both z3 and w3, and these zero
differences propagate to x3 and w2. Accordingly, using Property 9.2 in z2 and w2 yields the missing
differences in x3, w2 and z2.

The second phase of the attack obtains the value of bytes 0-3 and 8-11 in x2, as well as bytes 5,7,13 and 15
in x3 and bytes 0,2,8 and 10 in x4. This requires 218 simple operations, and is illustrated by Figure 9.13. In
fact, four independent processes could be run in parallel:

1-a. Guess bytes 7 and 13 of x3 (these are the dotted squares). This enables to find the actual values in
the 3 concurrent states in bytes 8–11 of z3 and w3, because the differences in x3 are known. This also
yields the differences in bytes 8-11 of x4.

1-b. In both x4 and y4, the differences are now known in bytes 8 and 10. Only a fraction 2−9.5 of the
differences are consistent in each byte. Thus, we expect to sieve all the wrong guesses in the previous
step, and to be left with only the right value. In addition, the actual values in bytes 8 and 10 of x4 are
revealed.

2-a. Guess bytes 5 and 15 of x3 (cross-hatched squares). This yields the differences in bytes 0–3 of x4.

2-b. Using the same sieving technique allows us to filter just the right value for the two guesses, and to get
bytes 0 and 2 in 4.

3-a. Guess bytes 1 and 3 in x2 (cross-hatched squares). This yields the corresponding differences in w1.
Then, the differences in bytes 0–3 of w1 and x2 can be found thanks to Property 9.2.

3-b. The differences are known in bytes 0 and 2 in both x2 and y2. Therefore, the sieving technique yields
the only feasible value for bytes 0–3 of x2.

4. Guess bytes 9 and 11 in x2 (dotted squares). Use the same difference propagation and sieving to recover
the only value of bytes 8–11 in x2.

Phase 3: a Guess-and-determine Finish. The third phase of the attack is a standard guess-and-determine
procedure that guesses 2 bytes in order to completely recover k3, and thus the master key. It requires 216

simple operations, and is summarized by Figure 9.14. The actual values are known (from the previous phase)
in gray squares. Hatched squares denotes known differences. The bytes are numbered in the order in which
they can be computed. Circled bytes numbered 11 are guessed. In fact, some key bytes can be determined
from the result of the second phase without guessing anything.

Step 1,5,10,13 and 17 result from the knowledge of both wi and xi+1. Step 2,6,7,14 and 18 exploit the
key-schedule equations, and bytes obtained in previous steps. Steps 3,8 and 15 are just partial encryp-
tions/decryptions. Step 4,9,12 and 16 use Property 9.2.

9.8.3 An Attack on a Variant of LEX

In order to study the leak extraction design methodology, we consider a modified variant of LEX, in
which instead of extracting 32 bits of the state after every AES round, the cipher outputs the entire state
after every four rounds. In this case, the core cipher is reduced to 4-round AES (without the initial key
whitening), but due to the stream cipher environment, the adversary is restricted to 246.3 known plaintext
bytes (as after that amount of key material, the stream cipher is rekeyed). It turns out that while 4-round
AES is considered very weak due to the Square attack which can break it with only 28 chosen plaintexts,

133

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

x1 z1 w1

k2

x2 z2

0 0

00

0 0

0 0

w2

k3

0 0

00

0 0

0 0

x3

0 0

0 0

0 0

0 0

z3

0 0

0 0

0 0

0 0

w3

k4

0 0

0 0

0 0

0 0

x4

0 0

0 0

0 0

0 0

z4 w4

k5

x5

Figure 9.13: LEX: second stage of the attack.

x1

4

49

9

z1

3

3

4

49

8

9

8

8

w1

10

7

10

7

2

2

5

5

7

7

18

18

18

14

14
k2

4

4

11

11

x2

11

11

4

4

z2

3

3 12

12

12

124

4

w2

1 1

1 1

2

2

6

6

13

13

1814

14

17

18

17
k3

15

15

15

15

16

16

x3

15

15

16

16 15

15

z3

15

15

16

16

w3

1 1

1 114

14
k4

x4 z4 w4

k5

x5

Figure 9.14: LEX: third phase of the attack.

134

9.9. Implementations

all the previously known attacks on AES have very high data complexity when transformed to the known
plaintext model, and thus cannot be applied in our scenario. Thus, a priori, it is not clear whether this
variant of LEX is less secure than the original LEX.

However, using the attacks on reduced-round AES presented in the previous sections, we can show that
this variant is practically insecure, and that even a stronger variant in which the full state is output every 5
rounds is still less secure than the original LEX.

Note that four-round AES without the initial key whitening step is equivalent to three full AES rounds
(since the adversary can encrypt all the plaintexts through the first round without knowledge of the key).
Thus, the attack on 3-round AES with nine known plaintexts, described in §9.4.3, applies directly to this
variant and allows to break it with only 360 bytes of keystream (obtained from 9 AES invocations), time
complexity of 240 encryptions, and 243 bytes of memory.

Similarly, if the full state is output every 5 rounds, then the underlying cipher is equivalent to four full
AES rounds. In this case, our low complexity attacks perform only in the chosen plaintext model, and
thus we use transformation to the known plaintext model, based on collecting a sufficient number of known
plaintexts, until enough pairs with the required input difference are encountered.

We consider the attack with five chosen plaintexts presented in §9.5.2. A set of 249.5 plaintexts picked at
random is expected to contain 298 · 2−96 = 4 pairs with zero difference in the 12 input bytes required in the
chosen plaintext attack, and thus the attack can be applied with data complexity of 254.5 keystream bytes,
time complexity of 264 encryptions and memory requirement of 268 bytes.

It is possible to reduce the data complexity of this attack to 233.5 known plaintexts at the expense
of enlarging the time complexity, by slightly changing the underlying chosen plaintext attack. Instead of
considering only pairs of plaintexts with zero difference in 12 bytes of the state, the adversary uses pairs with
zero difference in only eight bytes: 2, 3, 4, 7, 8, 9, 13, and 14. The adversary guesses bytes 0, 1, 5, 6, 10, 11, 12, 15
of k0 and bytes 0, 15 of k1, and obtains the intermediate difference in w2[0..3] (i.e., at the output of round 2).
On the other hand, the guess of bytes 0, 7, 10, 13 of u4 and byte 0 of u3 is sufficient to obtain the intermediate
difference in byte 0 at the end of round 2, which can be used as a consistency check. The rest of the attack
is similar to the chosen plaintext attack on 4-round AES with ten chosen plaintexts presented in §9.5. Since
the filtering is on 8 bits, 15 pairs with the required input difference are sufficient to discard most of the
wrong key guesses. Thus, the data complexity is 233.5 known plaintexts, or 238.5 bytes of keystream. The
memory requirement is 244 bytes, and the time complexity is 280 encryptions.

9.9 Implementations

We have implemented and verified attacks (or parts thereof) in practice. This brief section mentions some
of the technique we used and the result we obtained. The source code of some of these attack is available at:

http://www.di.ens.fr/~bouillaguet/implementation.html

Several attacks are meets-in-the-middle that require hash tables containing 232 entries, each entry being 2
or 4-byte long. The main difficulty in implementing these attacks was memory management (how to represent
and store the tables). Careful and “low-level” memory management, e.g., using mmap, was necessary for the
attack to be somewhat practical. The standard techniques for hash tables (storing buckets as linked lists)
incurs an important space overhead in our case, because the pointers are 64-bit wide, and are impractical.

We also observed that the distribution of the number of entries in each bucket roughly follows a Poisson
law of expectation 1, so that the maximum number of entries in a bucket can be represented by an 8-bit
number. We thus use three arrays to store the hash table:

– An array Ac stores the size of each bucket in 8-bit entries (size = 4Gbyte)
– An array Ah stores the content of all the buckets (size=16Gbyte)
– An array Ai stores the location of each bucket in the previous array (size=16Gbyte)
The last array is useful to access the hash table in O (1) time, but it needs not be stored, which means

that such a hash table can be stored in a 20Gbyte file. We then used a two-pass approach: first count the
number of entries with the same key in the table and update Ac. Then computes the entries in Ai. Lastly,
perform a second pass and stores the actual data in Ah. This way, the peak memory consumption is 36Gbyte.

1 AES Round / 1 Known Plaintext. The code of a purely guess-n-determine attack that enumerates all
the possible value of 5 bytes has been generated by the preliminary tool of §8.2. We easily parallelized the
code by inserting some OpenMP statements at the right positions. This way, the attack runs in about 18
hours using 8 Intel Xeon E5440 cores at 2.83GHz.

The code of a meet-in-the-middle attack has been generated by the improved tool, and runs in a few
minutes.

135

http://www.di.ens.fr/~bouillaguet/implementation.html

9. A Collection of Low Data Complexity Attacks on AES-Derivatives

2 AES Rounds / 2 Known Plaintext. The meet-in-the-middle part attack has been implemented manually
in C. Using the above techniques, it uses 52Gbyte of RAM, and isolates a set of about 232 candidates for
the first and last column of x1 in about two hours. We checked that the set of candidates actually contains
the correct solution, and that the number of candidates was consistent with our estimates.

2 AES Rounds / 2 Chosen Plaintext. The automated tools generated an implementation of this attack,
which allowed us to test it. The automatically-generated C file is 110Kbyte long. On average, there are 28.65

candidates for x0[0..3], which is very close to our hypothesis.

Piret-Quisquater Fault Attack. We implemented this attack manually in C and validated it in practice.
It terminates in a couple of seconds on a laptop and finds the right solution. In particular, we could check
that the actual number of tested candidates was consistent with the expected number.

4 AES Rounds / 4 Chosen Plaintext. We implemented the meet-in-the-middle part of the attack manually
in C++. Our implementation uses the above techniques for representing the hash tables, and each one of
the 16 tables requires 112Mbyte. The attack therefore runs on a laptop and uses less than 1.8Gbyte of
RAM. The total running time of the meet-in-the-middle phase is about 2 hours on a single core (the code is
easily parallelized is easy using OpenMP, and actually runs in 14 minutes using eight Xeon E5520 cores at
2.27Ghz).

Pelican-MAC. We implemented the state-recovery part of the attack (the collision-finding would not be
feasible in practice for us) and validated it experimentally. The program, written in C++ is 650 lines long.
Building the 4 tables took little less than 3 hours on one core of the above machine. Scanning the tables
looking and testing the candidates took half an hour. The number of tested candidates is consistent with the
expected number (232). We used C++ templates to write a single version of the function that generates the
table, indexed by the number of the table to generate ; this way, the compiler does a good job of customizing
the function for each table, while we only had to write it once.

LEX. We used our automatic code-generator to generate an implementation of phases 2 and 3 of the attack.
On average, some bytes are assigned 220.3 times, which is higher than our assumption. But their number is
very small and finally, the overall complexity is close to 216 encryptions.

136

Conclusion

We have only had a limited experience with these tools so far, yet it is possible to draw a few preliminary
observations.

Using the tools requires some knowledge of the primitive under scrutiny. For instance, the tools cannot
are not designed to find good truncated differential paths. They can exploit such a path, for instance by
finding a conforming pair efficiently, but the path has to be found by the user (or by a different tool). In
this specific context, it is also up to the user to find a path that can be exploited by the tool. For instance,
on two AES rounds, two truncated differential paths with probability one yield two very different results: if
the 4 active byte are on the same column, the tool finds an attack of complexity about 28, whereas if the
active bytes are on a diagonal, the best attack found by the tool has complexity 232.

The tools can be used to quickly verify high-level ideas or intuitions, while taking care of the low-level and
nasty details”. For instance, the idea “let us try to attack LEX with a 3-collision” could quickly be found to
be effective, even though the concrete details of the attack took some time to be fully worked out.

In their present forms, the tools are suited to situations where all the solutions of the given equations are
wanted. If there are much more variables than equations, the number of solutions will be overwhelming,
and returning them all will be very expensive (and often unnecessary). A typical example is the case of
collisions in hash functions (there are many, yet a single one is sufficient). A possible workaround would be
to arbitrary fix some of the variables, but this requires human intervention, and it is not clear how to obtain
good results this way. Another possibility would be to design a new set of tools tailored to find at least
one solution to the given equations. This would likely require different strategies though (i.e., no expensive
precomputation). This seems to be an interesting topic for future work, since AES-based hash functions
seem to be a natural target for automated techniques.

137

Part Three

Analysis of Hardness Assumptions in Multivariate
Cryptography

139

Introduction

Public-key cryptography crucially relies on hard problems. Recall that in this setting the public key
contains enough information to encrypt or verify a signature in polynomial time, while the secret-key contains
enough information to perform the converse operations (decrypting or generating signatures) efficiently. The
two keys are usually, if not always, related by a hard problem: the public key completely defines an instance of
a computational problem whose solutions form the set of corresponding secret keys. In the well-known RSA
cryptosystem [RSA78] for instance, the public-key n is the product of two large secret prime numbers p and
q. Retrieving the two primes from their product (i.e., factorizing the public modulus) is probably the most
classical hard problem in cryptography. Similarly, in the ElGamal encryption/signature scheme [Gam84],
the public key is gx, where g is a known element of some group, and x is a secret exponent. Retrieving x
from g and gx is known as the discrete logarithm problem, and is hard in some groups. The list of hard
problems used in cryptography is ever growing and is already too long to be quoted extensively.

Security Proofs and Hardness Assumptions. The current trend in cryptographic design is to give math-
ematical proofs that any attacker able of breaking a cryptographic scheme is in fact capable of solving
instances of a hard problem. This argument is usually made formal by exhibiting reductions, i.e., programs
supposed to solve the hard problem efficiently, and that for this purpose may use the attacker by sending
it challenges to break, and exploit the corresponding answers. The security of the cryptographic scheme is
therefore reduced to the hardness of the hard problem. The “security proofs” do not prove that the crypto-
graphic scheme is unconditionally secure, but they prove that it is secure as long as solving instances of the
hard problem requires too much computation to be possible in practice.

Of course, we must then trust the hard problem to be hard enough. The fact that they remain hard after
decades of intense scrutiny is probably a good indicator that they will remain hard for the years to come.
This seems somewhat unsatisfactory, but rigorous lower bounds on the complexity of solving computational
problems are notoriously hard to obtain (just consider the P vs. NP issue). In fact, there is no provably
hard problem known to date, in the sense that we do not know any function family that could be evaluated
with a polynomial number of operations, but that provably could not be inverted with a polynomial number
of operations.

The security of public key schemes therefore relies on the validity of hardness assumptions, whose formu-
lation often looks similar to: “solving any instance of size n of problem P requires at least f(n) operations”,
where f is a fast-growing, typically (sub)exponential function. Under such an assumption, choosing n big
enough such that f(n) operations is vastly beyond the current computational power of mankind guaran-
tees that the cryptographic scheme at hand is secure. Of course, not all instances of the hard problem are
necessarily hard, and weak instances must be avoided.

Hardness assumptions can be falsified by the discovery of new algorithms for solving the hard problem.
This was for instance the case when the Number Field Sieve [LLMP93] was invented, and when the security
of factorization-based schemes, such as RSA, had to be re-evaluated.

A universal Hardness Assumption. Consider any cryptographic primitive F taking as input a plaintext
and a key, and producing something dependent on both (for instance F can be the RSA encryption, the
AES, etc.). It is standard to assume that the description of F is known to the attacker, who is then able to
synthesize a boolean circuit evaluating F . Since F is efficient, the circuit size is polynomial in the security
parameter. In turn, from the boolean circuit, it is possible to derive a system of boolean equations in the
input and output variables of F , as well as in some internal state variables. The size of this system is
also polynomial in the security parameter. Given sufficiently input-output pairs so that the key is uniquely
determined, retrieving the key amounts to solve the boolean equations in the key variables.

Cryptography would badly break down if solving large systems of boolean equations were feasible. It is
therefore implicitly assumed that this is a very hard problem. Shannon pointed out in 1949 [Sha49] that
lower-bounding the complexity of breaking a cryptographic scheme by that of solving a (complicated) system
of boolean equations would be satisfying, because in any case there would not be any efficient cryptography
if this were generically feasible.

141

Introduction to part III

From Boolean functions to Multivariate Polynomials. Solving systems of boolean equations is essentially
equivalent to solving systems of polynomial multivariate equations over F2 (the field with two elements).
Indeed, the multiplication in F2 is the AND operation between individual bits, and the addition is the XOR.
Adding one then amounts to negate a boolean variable. Any system of boolean equations can be rewritten
to contain only ANDs, XORs, and constants, with at most a polynomial blowup.

In turn, any system of multivariate polynomial equations can be transformed into a system of multivariate
quadratic equations with the exact same solutions, by introducing new variables and new equations, with
again an at most polynomial blowup. So, our slogan could be that “solving quadratic multivariate systems of
equations over F2 is as hard as everything in cryptography” (but we know that this is a little exaggerated).

Note that this shows in passing that the problem of solving quadratic multivariate systems of equations
over F2 is NP-complete, with an obvious reduction to SAT [GJ79]. This is also true over any finite field.
The problem of solving Multivariate Quadratic equations (MQ for short) is thus fundamental, besides being
mathematically natural and simple to understand.

In addition, no quantum algorithm is known to solve it faster than in the classical world, in contrast to
some number-theoretic problems, such as factorization, to which Shor’s polynomial-time algorithm [Sho97]
would apply if quantum computer were available. It therefore makes sense to argue that cryptographic
schemes relying on the hardness of MQ would survive in a world where efficient quantum computers exist.

Multivariate Cryptography. It was therefore natural to design cryptographic schemes whose security ex-
plicitly relies on the hardness of MQ. This resulted in “multivariate cryptography”, a brand that encompasses
all such cryptographic constructions. Multivariate polynomials have been used in cryptography as early as
1984 [OSS84a, OSS84b, FD85], mostly with the purpose of designing RSA variants with faster decryption.
However, even before that, a group of Japanese researchers around Imai and Matsumoto designed the first
public-key scheme explicitly based on the hardness of MQ. In fact, they built several, but only one (their
“Scheme A”) made it to the general crypto community, and was presented at Eurocrypt’88 [MI88] under the
name C∗.

Several years later, Patarin [Pat95] found a devastating attack against C∗, allowing to decrypt and to
forge signatures very efficiently, but not to recover the secret key from the public key. Soon after, he
proposed a new multivariate trapdoor one-way function called Hidden Field Equations (HFE), on top of
which reasonably efficient signature and encryption schemes could be built [Pat96b].

The decade starting with the introduction of HFE retrospectively looks like the golden age of multivariate
cryptography. Many multivariate scheme have been proposed (we know at least 20 of them), including a
plethora of bogus and vainly complicated proposal with a short lifespan. Three constructions stood out and
received more attention than the others, because of their simplicity and their elegance:

– HFE [Pat96b] is a generalization of C∗, retains its simplicity, but looks much more solid. Decryption
is a bit more complicated and less efficient though. HFE has been the object of much scrutiny and
cryptanalysis [KS99, FJ03, WP05b, GJS06, DGS06, DG10b], and we discuss its security at length in
chapter 19. The most notable result on HFE is the practical break of an HFE challenge supposed
to offer 80 bits of security by Faugère [FJ03]. Because of that, the cryptographic community vastly
perceives HFE as broken, while the truth is apparently more complex.

– The Unbalanced Oil and Vinegar (UOV) signature scheme [KPG99] has been proposed in 1999 by
Kipnis, Patarin and Goubin, as an improvement of the older “Oil and Vinegar” [Pat97] proposed in
1997 by Patarin. The original OV scheme turned out to be vulnerable to the “Rank-Attack” of Kipnis
and Shamir [KS98], but UOV is immune to it, and remains unbroken to this day despite its simplicity.

– The SFLASH signature scheme [PCG01a] designed in 2001 by Courtois, Goubin and Patarin, is famous
for having been considered by the NESSIE consortium to be suitable for signature in constrained
environments. It is essentially the original C∗ with a crucial tweak that prevents Patarin’s attack.
SFLASH has been very badly broken in 2007 by Dubois et al. [DFS07, DFSS07], and all possible hopes of
making it secure disappeared with a subsequently improved attack of Macario-Rat and Fouque [MR10].

The demise of SFLASH, coming after the practical break of the 80-bit HFE challenge, marks the end of the
golden age of multivariate cryptography. It shattered the hopes, and trust, of the cryptographic community
at large in multivariate cryptography, and at some point it was not unrealistic to say that multivariate
cryptography was dead. In any case, it seems to be a less active field of research than what it was a decade
ago.

Multivariate Cryptanalysis. The blossom of multivariate cryptanalysis is a consequence of that of mul-
tivariate cryptography. The cryptanalysis of multivariate schemes has a particular “flavor”, compared to
cryptanalysis of number-theoretic constructions, for instance.

Breaking the newly designed multivariate schemes required new and ad hoc cryptanalysis techniques and
tools that it is impossible to exhaustively mention. Linear algebra and Gröbner basis [Buc65, CLO91] compu-

142

tations are the main tools of multivariate cryptanalysts. They even designed their own algorithms to tackle
MQ and challenge its hardness assumption: first the relinearization technique [KS99] for overdetermined
systems, then the eXtended Linearization (XL for short) [CKPS00], the linear method [KJ07], the eXtended
Sparse Linearization (XSL) [CP02] and their numerous variants. XL was claimed to be subexponential, but
the claim turned out to be bogus [Die04]. In the same vein, XSL was claimed to break the AES, but the
claim was debunked in [CL05]. In addition, XL was eventually found [AFI+04] to be a rediscovery of an old
Gröbner basis computation algorithm by Lazard [Laz83], which made it theoretically inferior to the most
recent algorithms designed for this task, such as Faugère’s F4 [Fau99] and F5 [Fau02]. The linear method is
essentially an independent reformulation of “matrix-F5”, a simplification of F5 described in [Bar04].

Some multivariate cryptanalysts also tried to use their new tools and techniques to attack symmetric
primitives. The main ingredient of algebraic attack is to write down a system of multivariate quadratic equa-
tions describing the cryptographic primitive, and try to recover the secret key by solving it using generic
solvers. Multivariate cryptanalysts first tried to attack real-life block ciphers, such as the AES [Cou04, CP02],
without success, except maybe on very reduced versions of the DES [CB07]. Weak block ciphers have been
broken this way though, such as Toyocrypt [Cou02] and Keelock [CBW08]. This kind of attack turned out
to be a more serious thread against stream ciphers, as they could generically apply to whole families of
designs [CM03, Cou03, COQ09]. In addition, algebraic techniques can be used as a sub-component of oth-
erwise statistical attacks (for example to perform various kinds of “message modification”), as demonstrated
for instance by [SKPI07, BF08, KMNP11].

Multivariate Trapdoor One-Way Functions. In multivariate public-key schemes, the public key is very
often a family of quadratic polynomials f1, . . . , fm in n variables, with coefficients in a finite field Fq. En-
crypting a given vector x ∈ (Fq)n is done by simply evaluating the m polynomials over x. An attacker, given
the public key (the equations) and a ciphertext (the result of the evaluation of the polynomials), could try
to recover the plaintext by solving the equations, i.e., by solving an instance of MQ—which is supposedly
intractable.

To make decryption possible, the polynomial equations must have a special structure enabling the legit-
imate user, aware of this special structure, to solve the equations in polynomial time. This is essentially
achieved by taking an easily invertible system of polynomial equations, and performing a random linear
change of coordinates, as well as a random linear combination of the equations. This could be seen as an
obfuscation technique, because the public key is essentially an obscured representation of an easily-invertible
system of quadratic equations. The implicit assumption is that knowing the two secret linear maps involved
in the obfuscation process is the only way to access the easily-invertible core.

A seemingly insurmountable problem with this way of building multivariate trapdoor one-way function
is that the public key is then provably not a uniformly distributed system of quadratic equations. As a
consequence it is paradoxically impossible to prove that these schemes rely on the average-case hardness
of MQ, because they only rely on the hardness of specific instances of the problem. This explains why a
reasonably-sized HFE challenge could be broken: we do not know how to solve “generic” system of quadratic
equations over F2 faster than exhaustive search, but HFE public keys turned out to be much easier to solve
than “generic” systems.

Hardness assumptions in Multivariate Cryptography. An adversary could also attack multivariate schemes
by trying to recover the secret linear change of coordinates from the public key. Multivariate schemes thus
do not only rely on the hardness of MQ, but also on the hardness of another problem, that of retrieving the
secret key from the public key. For C∗, this problem has a relatively simple algebraic formulation in terms
of equivalence of quadratic maps. Even after Patarin broke C∗, the C∗ key-recovery problem looked quite
difficult. This prompted Patarin to promote it as a hardness assumption of its own, somewhat unfortunately
called the Isomorphism of Polynomials (IP) problem.

Besides MQ, IP is the most widely spread hardness assumption in multivariate cryptography, and a lot of
work has been devoted to understand its exact hardness [PGC98b, GMS03, dVP03, Per05, FP06]. A third
hard problem, MinRank, is sometimes used in multivariate cryptography [Cou01] and cryptanalysis [KS99].
While MQ and MinRank are NP-complete [BFS99], the status of IP however turned out to be much less clear.

Contributions. The third part of this dissertation is devoted to the study of hardness assumptions in
multivariate cryptography. Chapter 10 describes our cryptanalytic toolbox. In chapter 11, we describe a
new exhaustive-search algorithm for MQ with very good practical performances. Chapters 12 to 18 form a
comprehensive study of the IP problem. The problem is defined in chapter 12, where its relevant subcases are
determined and its cryptographic uses are also surveyed. Prior art in IP solving is reviewed in chapter 13.
In chapter 14 we introduce the generic technique that we will use in the subsequent chapters to design
new IP algorithms. We apply this generic technique to four subcases: to the Quadratic Forms Simultaneous

143

Introduction to part III

Equivalence problem (aka “Isomorphism of polynomial with One secret”, or IP1S) in chapter 15, to the
Cubic Form Equivalence problem (aka cubic IP1S) in chapter 16, to the Inhomogeneous Quadratic Maps Linear
Equivalence problem (aka inhomogeneous IP) in chapter 17 and finally to the (homogeneous) Quadratic Maps
Linear Equivalence problem (aka full IP) in chapter 18. We conclude by presenting an application of these
new polynomial equivalence algorithms to the cryptanalysis of HFE in chapter 19.

144

Chapter 10

A Toolbox for Multivariate Cryptanalysis

This chapter collects the mathematic preliminaries and useful results that are used throught the
last part of this dissertation. Most of these results are known or well-known, with the exception
of some results on the properties of random matrices presented in §10.7 that are, to the best of
our knowledge, original.

In this chapter, we expose the main ideas, techniques and notions used in multivariate cryptography
and cryptanalysis. We recall very basic facts about finite fields and linear algebra. We next introduce our
main object of study, namely multivariate polynomials, and we define useful derived notions. In particular
we recall the usual theory of quadratic forms over odd-characteristic fields, and the less usual theorey of
quadratic forms over a characteristic-two field. This leads us to consider the set of common roots of a family
of multivariate polynomial, and the associated algebraic structures, the ideal they span. We then present
Gröbner bases, and some of the mainstream algorithms used to compute them. We conclude by establishing
some results on random matrices by counting the number of linear maps meeting various conditions over a
given finite field.

10.1 Finite Fields and Vector Spaces

When f1, . . . , fk belong to a vector space, we denote by 〈f1, . . . , fk〉 the subspace they span. We denote
by e1, . . . , en the canonical basis of a finite vector space of dimension n.

Let K be a finite field and L an extension of K of degree n > 1. Recall that L is essentially the quotient
of K[X] by the principal ideal generated by P (X), an irreducible polynomial of degree n over K[X]. L is
isomorphic to Kn via an application ϕ. For the sake of convenience, it can be specified that ϕ returns the
only polynomial of each equivalence class of degree less than n. Hence, any application A defined over L can
be seen as an application over Kn and conversely (just consider ϕ−1 ◦ A ◦ ϕ). Recall that any application
over L is a polynomial of L[X]. Lastly, given a fixed element a ∈ L, the application x 7→ a · x is linear, and
thus can be represented over Kn by a matrix Ma. Lastly, we denote by Mi• the i-th row of the matrix M ,
and by M•j the j-th column.

The Frobenius Map. The application F : X 7→ Xq over L is called the Frobenius map. It is an automor-
phism of L that fixes any element of K. As a consequence, F can also be seen as a matrix F ∈ GLn (K). A
polynomial P ∈ L[X] commutes with F if and only if its coefficients are in K.

Endomorphisms We denote byMn (K) the set of all n×n matrices over the field K. It is well-known that
matrices represent linear maps, and that square n×n matrices in particular represent endomorphisms of Kn.
As usual, GLn (K) denotes the set of all invertible n× n matrices over K. The identity matrix of order n is
denoted by In. Two matrices A,B are said to be similar (resp. congruent) if there exist P ∈ GLn (K) such
that A = P−1×B×P (resp. A = tP ×B×P). We recall the rank-nullity theorem: given an endomorphism
of Kn, then the dimension of its image plus the dimension of its kernel equals n.

Symmetric and Skew-Symmetric matrices. A matrix M is said to be symmetric if it is equal to its
transpose (tM = M). A matrix M is skew-symmetric (also called anti-symmetric) if tM = −M and the
diagonal coefficients of M are all zero. Symmetric and skew-symmetric matrices are usually very different
objects. However, over fields of characteristic two, where 1 = −1, the distinction is much less clear. The
condition that the diagonal of a skew-symmetric matrix should be zero is not redundant in characteristic
two, where skew-symmetric matrices are precisely the symmetric matrices with null diagonal. We will say
that a matrix is non-skew symmetric if it is symmetric but not skew-symmetric (i.e., if it has a non-zero
element on the diagonal). The following theorems recall some elementary results on these objects.

Theorem 10.1 ([Alb38], theorem 1, 3, 4 and 6). Over any field,

145

10. A Toolbox for Multivariate Cryptanalysis

i) The rank of a skew-symmetric matrix is always even.

ii) Every matrix congruent to a skew-symmetric matrix is skew-symmetric.

iii) Every n× n skew-symmetric matrix of rank 2r is congruent to:




0 −Ir 0
Ir 0 0
0 0 0




iv) Two skew-symmetric matrices are congruent if and only if they have the same rank.

Theorem 10.2 ([Alb38], theorem 2 and 6). Over any field, we have:

1. Every matrix congruent to a non-skew symmetric matrix is non-skew symmetric.

2. Every non-skew symmetric matrix is congruent to a diagonal matrix.

10.2 Multivariate Polynomials

The ring of all polynomials in n variables with coefficients over a finite field, conventionally denoted
by Fq[x1, . . . , xn] plays a central role in multivariate cryptography.

Definition 10.1. If f ∈ Fq[x1, . . . , xn], then the homogeneous component of degree d of f , denoted by
f (d), is the sum of all monomials of degree d occuring in f . A degree-d polynomial is said to be homogeneous
if it only contains monomials of degree d.

A distinctive property of degree-d homogeneous polynomials is that if α ∈ K, then f(α · x) = αd · f(x).

10.2.1 Quadratic Forms and Associated Bilinear Forms

Since multivariate quadratic polynomials play a special role in multivariate cryptography, we investigate
some of their properties in more detail. A particularly important class of quadratic polynomials is formed
by quadratic forms.

Definition 10.2. A quadratic form f : Kn → K is a homogeneous multivariate polynomial of degree two:

f =

n∑

i=1

n∑

j=1

aij · xixj

It is customary to represent a quadratic form by the matrix A = (aij)1≤i,j≤n. This representation is
however redundant: it is not difficult to verify that if N is a skew-symmetric matrix, then A and A + N
both represent the same quadratic form form (in fact, all the possible representations of a given f can be
written this way). It follows that a quadratic form can be uniquely represented by a (upper/lower) triangular
matrix. In odd characteristic, a quadratic form can be uniquely represented by a symmetric matrix, and
this more convenient representation is often prefered. It is also deeply connected, as we shall see below, to
another standard object, the polar form.

Definition 10.3. If f is a quadratic form then φ(x,y) = f(x + y) − f(x) − f(y) is a symmetric bilinear
form called the polar form of f .

We are aware that the usual definition of the polar form is φ(x,y) = 1
2 (f(x + y)− f(x)− f(y)). The

advantage of the usual definition is that in odd characteristic f(x) = φ(x,x). However, the inconvenient is
that the polar form is undefined in characteristic two. Our definition is such that f(x) = 1

2φ(x,x) in odd
characteristic. In even characteristic, we have φ(x,x) = 0, and in fact φ is then a skew-symmetric bilinear
form.

Bilinear forms are also conveniently represented by matrices: if (ei)1≤i≤n is a basis of Kn, and if we

consider the matrix A defined by A = (φ(ei, ej))1≤i,j≤n, then φ(x,y) = tx · A · y. We denote by P (f) the
matrix of the polar form of f in the canonical basis. The following lemma is straightforward, and links the
polar form with the matrix representation of the corresponding quadratic form.

Lemma 10.3. If a quadratic form f is represented by a matrix A, then P (f) = A+ tA.

Definition 10.4. Two quadratic forms f and g are said to be equivalent if there exist a matrix S ∈ GLn (K)
such that f = g ◦ S.

146

10.2. Multivariate Polynomials

The equivalence of quadratic forms has an immediate counterpart on their polar forms. It is easy to
check that if S is a n×n matrix, and g = f ◦S, then P (g) = tS×P (f)×S. Equivalent bilinear forms thus
have congruent representations, and vice-versa.

We may now leverage our knowledge on symmetric matrices. Let K be a field of odd characteristic
from now on. We therefore know that 2f(x) = tx · A · x for some symmetric matrix A. By theorem 10.2,
A = tS ×D× S, where S ∈ GLn (K) and D = Diag(d1, . . . , dn) is a diagonal matrix. Thus, f is equivalent,
via S, to:

g(x) =

n∑

i=1

di · x2
i

We have just established the classical result: “any quadratic form is equivalent to a diagonal form”. Note
that if di = 0 in the expression of g, then f is equivalent to a quadratic form with (at least) one less variable.

Definition 10.5. The rank of a quadratic form f is the smallest integer r such that f is equivalent to
a quadratic form in r variables. If the rank of f is strictly smaller than n, then f is said to be degenerate
(otherwise it is regular).

It is straightforward that the rank of f is the number of non-zero di’s in the expression of g. It follows
that the rank of f is also the rank of its polar form, and of its symmetric matrix representation (but not of
any matrix representation).

In characteristic two, this beautiful and practical theory unfortunately completely breaks down. The
polar form is still congruent to a diagonal matrix, but this no longer implies that the corresponding quadratic
form is equivalent to a diagonal form. In addition, diagonal forms are particularly uninteresting. First of
all, since the Frobenius map is linear, the diagonal quadratic forms are in fact linear. In addition, they are
all equivalent.

Lemma 10.4. Any two non-zero diagonal quadratic forms are always equivalent over F2k .

Proof. Let f(x) =
∑n
i=1 ai · x2

i be a diagonal quadratic form. We assume w.l.o.g. that a11 = 1, and we
define:

S =




1
√
a2
√
a3 · · · √an

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1




Note that the square root is always well-defined and unique, since the Frobenius map is a bijection. Now,
we set g = f ◦ S. Then g is clearly equivalent to f , and we find:

g(y) = g

(
y1 +

n∑

i=2

√
ai · yi,y2, . . . ,yn

)

=

(
y1 +

n∑

i=2

√
ai · yi

)2

+

n∑

i=2

ai · y2
i

= y2
1

Since this applies to any f , the result is established.

Lastly, theorem 10.1 implies that a non-diagonal quadratic form cannot be equivalent to a diagonal
quadratic form. This follows from the fact that in characteristic two, the polar form is skew-symmetric, and
thus cannot be congruent to a non-skew symmetric matrix. So, in characteristic two, diagonal forms are
certainly not the nice canonical form they are in odd characteristic.

Another problem is that while the function that maps a quadratic form to its polar form is bijective
in odd characteristic, this is no longer the case in characteristic two (the “diagonal terms” are lost in the
process).

10.2.2 Quadratic Maps

In most cryptographic contexts, it is difficult to do much with a single polynomial. However, quadratic
functions (i.e., vectors of quadratic polynomials) are more interesting objects.

Definition 10.6. A quadratic map is a vector of n polynomials in n variables with coefficients over K.
The map itself is seen as a function from Kn to Kn, where each coordinate is a quadratic expression of the
input coordinates.

147

10. A Toolbox for Multivariate Cryptanalysis

While a quadratic map is naturally a vector of quadratic polynomials, it can also be seen as a single
quadratic polynomial whose coefficients are vectors in Kn:

(
5x2 + 7xy − 3y2

x2 − 3xy + 2y2

)
'
(

5
1

)
x2 +

(
7
−3

)
xy +

(
−3
2

)
y2

Most, if not all, usefull notions for quadratic polynomials translate nicely to quadratic maps, except
maybe the pleasant representation by a single matrix with coefficients in K.

10.2.3 Differentials and Derivatives

For instance, the polar form is easily adapted to quadratic maps. In the existing cryptographic litterature,
this object has been called the differential, for reasons we explain below.

Definition 10.7. The (discrete) differential of a quadratic map a is the symmetric bilinear map:

Da : (x,y) 7→ a(x + y)− a(x)− a(y) + a(0)

Given a vector x ∈ Kn, the differential of a in x, denoted by Dxa, is the endomorphism of Kn that maps y
to Da(x,y).

The name (“differential”) comes from the analogy with the notion of the same name in calculus: if f a
is (real) function from Rn to Rm, then we say that f is differentiable at p ∈ Rn if there is a linear map
dfp : Rn → Rm, called the differential, such that for any ε > 0, there is a neighbourhood N(p) of p such that
for x ∈ N(p):

|f(x)− f(p)− dfp(x− p)| < ε · |x− p|

So, in calculus, the differential is a linear map associated to a point p, and expressing how a multivariate
function varies around that point. Our discrete differential has similar properties. As the name suggests,
this is reminiscent of the notion of derivation. However, the usual derivatives from “calculus I” make little
sense over finite fields. We again have a related, ad hoc discrete notion.

Definition 10.8. The (discrete) derivative ∂f
∂x of a quadratic map a with respect to a vector x ∈ Kn is:

∂a

∂x
: y 7→ a(x + y)− a(y).

The (discrete) derivative ∂a
∂i of a with respect to its i-th variable is ∂a

∂ei
.

Just like the usual derivative, if a is a polynomial map of total degree d, then ∂a
∂x is a polynomial map of

degree d− 1. In particular, if a is a quadratic map, then ∂a
∂x is an affine function whose homogeneous linear

component is Dxa. It is also useful to note that:

f(x + ei) = f(x) +
∂f

∂i
(x) (10.1)

It is also important to notice that if K is a field of characteristic two, then for any x ∈ Kn, Dxa is
singular, since it vanishes on x.

10.2.4 Ideals and Varieties

Multivariate cryptography is built on the hardness of solving simultaneous polynomial equations over
finite fields. While this can always be done in finite (exponential) time by exhaustive search, the inherently
algebraic formulation of the problem leads to inherently algebraic algorithms. The theory of multivariate
polynomial systems is fascinating, deep and elegant. In this section we briefly examine some selected aspects
of the problem. The interested reader should consult [CLO91] for a more detailed exposition. While our
objective is only to discuss the complexity of finding the solutions of a system, we will be dragged quite far.

Consider a system S of linear equations over K, and the set X ⊂ Kn of all its solutions. Take any linear
combinations of the equations: it also vanishes on X. A linear combination of the original equation is a new
equation that “follows” from the original equations. The set of all the linear equations that can be derived
from S is precisely the set of all possible linear combinations of the equations of S, and it is a vector space.
What is nice is that any other linear system generating this vector space has exactly the same solutions as
S.

With polynomial systems, the situation is more complex. Consider now a system S ′ of multivariate
polynomials in K[x1, . . . , xn], and let X ′ ⊂ Kn be the set of its solutions. Take any polynomial combination

148

10.2. Multivariate Polynomials

of the original equations (i.e., a sum of products of an initial equation and an arbitrary polynomial): we
obtain a new polynomial that also vanish on X ′, i.e., a new equation that “follows” from the original
equations. The set of all polynomial equations that can be derived from S ′ is an ideal of K[x1, . . . , xn].
Recall that an ideal of K[x1, . . . , xn] is a subset I ⊂ K[x1, . . . , xn], such that if f, g ∈ I then f + g ∈ I, and
if f ∈ I, g ∈ K[x1, . . . , xn], then fg ∈ I. Any other system of polynomials generating the same ideal will
have the same solutions, but the converse is not true in general (the polynomial systems (x, y) and (x2, y2)
have the same solutions, namely {(0, 0)}, but they generate different ideals). More precisely, the sequence of
polynomials f1, . . . , fm span the ideal 1

〈f1, . . . , fm〉 =

{
m∑

i=1

Pi · fi, with P1, . . . , Pm ∈ K[x1, . . . , xn]

}

The affine variety associated to an ideal I is the subset of (Fq)n over which all the polynomials in the
ideal vanish:

V (I) = {x ∈ Kn | ∀P ∈ I, P (x) = 0}

It is also possible to associate an ideal to a variety:

I (V) = {P ∈ K[x1, . . . , xn] | ∀x ∈ V, P (x) = 0}

The ideal I (V) is therefore by definition the largest ideal whose associated variety is V . For instance,
continuing on the previous example, V ({(0, 0)}) = {x, y}.

Solving a system of polynomial equations essentially amounts to determine the variety of the ideal gener-
ated by the polynomials. Solving systems of linear equations is (usually) achieved by computing an equivalent
system with a special shape, from which the solutions can be easily deduced, for instance a triangular sys-
tem. The global strategy to solve polynomial equations is similar, and the key step is to compute a “nice”
equivalent system.

10.2.5 Homogeneous Ideals

Definition 10.9. A homogeneous ideal of K[x1, . . . , xn] is an ideal which is generated only by homoge-
neous polynomials (however it does not only contains homogeneous polynomials).

Homogeneous ideals are very convenient to express certain results, and overall their theory is easier than
that of general ideals. Given an ideal I, we may “homogenize” it using an extra dummy homogenization
variable.

Definition 10.10. Let f ∈ K[x1, . . . , xn] be a degree-d polynomial. The homogenized version of f ,
denoted by fh, is the homogeneous polynomial of degree d of K[x1, . . . , xn, h] defined by

fh(x1, . . . , xn) = hd · f
(x1

d
, . . . ,

xn
d

)

Homogenized polynomials can be de-homogenized: f(x1, . . . , xn) = fh(x1, . . . , xn, 1). We may therefore
work with homogeneous ideals without lost of (much) generality. Given an ideal I = 〈f1, . . . , fn〉, we may
consider its homogenized version Ih =

〈
fh1 , . . . , f

h
n

〉
. As expected, the image of Ih through the function that

sets the last variable to 1 is indeed I [BKW93, lemma 10.53].
It must be noted that homogenizing a system of polynomial equation may introduce solutions“at infinity”,

i.e., solutions with h = 0 that cannot be solutions of the original system and are thus parasitic.

10.2.6 Linearization

Before discussing techniques to solve multivariate systems of polynomial equations into further detail, we
describe a folklore method for solving very overdetermined systems of multivariate quadratic polynomials.
Given (at least) (n+1)(n+2)/2 linearly independent quadratic equations in n variables, a standard strategy
is to consider each one of the

(
n+2

2

)
monomial as an independent variable, and to solve the system of

linear equations obtained this way. We therefore obtain the value of each monomial. When the system is
inhomogeneous, this directly reveals the value of the variables. When the system is homogeneous, we only
find the values of the quadratic monomials, but the actual values of the variables can be easily determined.

1. we extend our notation for the linear span to the “ideal” span.

149

10. A Toolbox for Multivariate Cryptanalysis

10.3 Gröbner Bases

A Gröbner basis of an ideal is a generating set enjoying additional properties making it nice to work
with. They are the nice form of polynomial systems, from which the solutions of the polynomial equations
can be easily read off, to which we previously alluded to. They serve a handful of other purposes though,
such as deciding the Ideal Membership problem (i.e., testing if a given polynomial belongs to a given ideal).
Our exposition is vastly inspired by [CLO91].

10.3.1 Monomial Orderings

In a univariate polynomial ring K[x], there is a natural (strict) total order relation between monomials:
1 < x < x2 < x3 < This order is well-founded, and enjoy the additional property that if m1,m2

and m3 are monomials such that m1 < m2, then m1m3 < m2m3. Moving on to multivariate polynomials,
several such orders exist. Monomial orderings of the ring K[x1, . . . , xn] are in one-to-one correspondance
with orderings of Nn (the bijection is examplified by x3yz7 ↔ (3, 1, 7) in K[x, y, z]).

Definition 10.11. Let α = (α1, . . . , αn) and β = (β1, . . . , βn). The lexicographic ordering >lex is such
that α >lex β if, in the vector difference α− β ∈ Zn, the leftmost non-zero entry is positive.

It follows that in K[x, y, z], we have x >lex y >lex z, but also x >lex y
5z10, and in fact any variable

dominates any monomial involving only smaller variables. The lexicographic order thus completely ignores
the degree of the monomials. This feature can somewhat be bothersome, but there fortunately exist ordering
that refine the degree (they are also called graded orderings). For instance, compare monomials according
to their degree, and use the lexicographic ordering to break ties. In practice one of the most useful ordering
is a twisted version of this one.

Definition 10.12. Let α = (α1, . . . , αn) and β = (β1, . . . , βn). The graded reverse lexicographic order
>grevlex is such that α >grevlex β if

|α| =
n∑

i=1

αi > |β| =
n∑

i=1

βi

or |α| = |β| and the rightmost nonzero entry of α− β ∈ Zn is negative.

We can again check that x >grevlex y >grevlex z. The grevlex order looks at the rightmost variable and
favors the smallest power: x5yz >grevlex x

4yz2.
Given a multivariate polynomial f and a monomial ordering, we may sort the monomial occuring in the

polynomial. The greatest one will be denoted by LM(f), and is called the leading monomial. The coefficient
of the leading monomial in f , denoted by LC(f) is called the leading coefficient. The product LC(f) ·LM(f)
forms the leading term of f , denoted by LT (f).

10.3.2 Multivariate Polynomial Division

In the univariate case, it is a well-know result that K[x] is a principal ring, meaning that all its ideals
have a unique generator. Given an ideal I = 〈f〉, a polynomial g ∈ K[x] belongs to I if and only if it is a
multiple of f . This gives an easy algorithm to decide Ideal Membership: compute the euclidean division of
g by f , and check whether the remainder is zero. Recall that the division algorithm works by repeatedly
subtracting to g a suitable multiple of f , so that at each step the leading term of g is canceled out. The
remainder cannot be affected in this way by f , because it is of strictly smaller degree.

It is quite tempting to extend this process to the multivariate setting. Algorithm 10.1 works the same
way: given an (ordered) sequence of polynomials f1, . . . , ft and a polynomial g ∈ K[x1, . . . , xn], repeatedly
substract to g products m · fi, where m is a carefully chosen monomial such that LT (m · fi) = LT (g). This
algorithm shows that given our sequence of polynomials, every polynomial g ∈ K[x1, . . . , xn] can be written
as:

g = a1f1 + · · ·+ atft + r

where ai, r ∈ K[x1, . . . , xn], and either r = 0, or r is a linear combination with coefficients in K, of monomials,
non of which is divisible by any of LT (f1), . . . , LT (fs).

The problem is that, as opposed to what happens in the univariate case, the remainder r is not uniquely
defined by this process. This may happen, for instance, if fi and fj have the same leading term, and could
both be used at some point to cancel the leading term of g. This process cannot be used to test ideal
membership because of the non-uniqueness of the remainder r.

150

10.3. Gröbner Bases

Algorithm 10.1 Multivariate Polynomial Division.

1: function MultivariateDivision(f, f1, . . . , fs)
2: a0 ← 0, . . . , as ← 0
3: p← f
4: while p 6= 0 do
5: i← 1
6: division-occured ← false
7: while i ≤ s and division-occured= false do
8: if LT (fi) divides LT (p) then

9: ai ← ai +
LT (p)

LT (fi)

10: p← p− LT (p)

LT (fi)
· fi

11: division-occured ← true
12: else
13: i← i+ 1
14: end if
15: if division-occured = false then
16: r ← r + LT (p)
17: p← p− LT (p)
18: end if
19: end while
20: end while
21: return (as, as−1, . . . , a1), r
22: end function

10.3.3 Definition of Gröbner Bases

Given an ideal I ⊂ K[x1, . . . , xn] other than {0}, we consider the set LT (I) of leading terms of elements
of I. Thus,

LT (I) = {LT (f) | f ∈ I}

The ideal of leading terms of I is the ideal spanned by LT (I). By a slight abuse of notation, we write
it 〈LT (I)〉. In general, given an ideal I = 〈f1, . . . , fm〉, the ideal of leading terms of I is not necessarily
equal to 〈LT (f1), . . . , LT (fm)〉, as the former may be strictly bigger than the latter.

Definition 10.13. Fix a monomial order <. A finite subset G = {g1, . . . , gt} of an ideal I is said to be a
Gröbner basis for I with respect to < if:

〈LT (g1), . . . , LT (gt)〉 = 〈LT (I)〉

Proposition 10.5. If G = {g1, . . . , gs} is a Gröbner basis of I ⊂ K[x1, . . . , xn], then I = 〈G〉.

A Gröbner basis is thus a “good” generating set of an ideal. In the remaining of this section, we shall
explore further what good properties they have, and why there are so useful.

Proposition 10.6. Let I ⊂ K[x1, . . . , xn], < a monomial order, and G a finite subset of I. Then G is a
Gröbner basis with respect to < if for all f ∈ I, there exists g ∈ G such that LT (g) divides LT (f).

The Hilbert Basis Theorem [CLO91, chapter 2, §2, theorem 4] states that every ideal of K[x1, . . . , xn]
admits a Gröbner basis. This shows in passing that all multivariate ideals are finitely generated, a non-
obvious, powerful and strong mathematical result. One of the crucial features of Gröbner bases is that the
result of the multivariate division algorithm is uniquely defined when dividing by a Gröbner basis.

Lemma 10.7. Let G = {g1, . . . , gs} be a Gröbner basis for an ideal I ⊂ K[x1, . . . , xn] and let f be a
polynomial in K[x1, . . . , xn]. Then there is a unique r ∈ K[x1, . . . , xn] such that:

(i) No term of r is divisible by any of LT (g1), . . . , LT (gs).

(ii) There is g ∈ I such that f = g + r.

We give the proof of this result (taken from [CLO91]), as it illustrates the connection between the
definition of Gröbner bases and the division algorithm, besides being relatively simple.

151

10. A Toolbox for Multivariate Cryptanalysis

Proof. The existence of such an r is guaranteed by the division algorithm. To prove uniqueness, suppose
that f = g + r = g′ + r′ both satisfy the conditions of the lemma. Then r − r′ = g − g′ ∈ I, so that if
r 6= r′, then LT (r − r′) ∈ 〈LT (I)〉 = 〈LT (g1), . . . , LT (gs)〉 (because G is a Gröbner basis). Now 〈LT (I)〉
is a monomial ideal (i.e., an ideal generated solely by monomials), and it is not difficult to check that the
monomials belonging to a monomial ideal are precisely the multiples of the generators. This means that
LT (r − r′) is a multiple of some LT (gi), but this is impossible because no terms of r, r′ is divisible by one
of LT (g1), . . . , LT (gs). Thus, r − r′ must be zero.

Note that the uniqueness of the remainder means that provided we know a Gröbner basis of an ideal I,
we may use it to decide the Ideal Membership problem (but we do not know with which complexity yet).

For various reasons, it is often very convenient to work with homogeneous ideals. We have already seen
that considering the homogenized version of an ideal I, we may revert to the original by fixing the extra
variable to one. The good thing is that this operation preserves Gröbner bases.

Theorem 10.8 ([BKW93], lemma 10.57, (vii)). Let I be an ideal of K[x1, . . . , xn], Ih its homogenized
version and Gh a Gröbner basis of Ih. Then setting the last variable of all the polynomials of Gh to 1 yields
a Gröbner basis of I.

It is natural to question the unicity of Gröbner bases. In vector spaces, bases are not unique, but
echelonized bases are unique. Gröbner bases are not unique, and can even be somewhat redundant. However,
while the situation is again a bit more complicated, it is possible to define an analogous notion of“echelonized”
Gröbner basis.

Definition 10.14. A minimal Gröbner basis for a polynomial ideal I is a Gröbner basis such that:

(i) LC(p) = 1 for all p ∈ G.

(ii) For all p ∈ G, LT (p) /∈ 〈LT (G− {p})〉.

To compute a minimal Gröbner basis, we may simply compute a Gröbner basis and remove from it all
the polynomials not matching the criterion. Even like that, there may be several minimal Gröbner bases,
but it is possible to single one out.

Definition 10.15. A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis such that:

(i) LC(p) = 1 for all p ∈ G.

(ii) For all p ∈ G, no monomial of p lies in 〈LT (G− {p})〉.

If I 6= {0} is a polynomial ideal, then given a monomial order, I has a unique reduced Gröbner ba-
sis [CLO91, chapter 2, §7, proposition 6]. Most computer algebra systems compute reduced Gröbner bases.
This is convenient, if only because then comparing the reduced Gröbner bases allows to decide whether two
ideals are equal.

10.3.4 Gröbner Bases as “Linear” Bases

Following [Laz83], we outline the connection between Gröbner basis and Gaussian elimination. Consider
an ideal I = 〈f1, . . . , ft〉. It can be seen as a K-vector space of infinite dimension, spanned by m · fi when i
ranges across 1, . . . , t and m ranges across all monomials. As a vector space, I does not have a finite basis,
but it is possible to write down a program that returns in finite time a sparse representation of the i-th
vector of the basis. On the (infinite) basis of K[x1, . . . , xn] consisting of all the monomials, the generators of
I define an infinite matrix, each row of which represent a given m · fi. Each row thus has a finite number
of non-zero entry (as many as fi). On the column corresponding to some monomial m, the only coefficient
that appear are those in m′fi, where m′ divides m. This shows that they are also in finite number.

This finiteness property makes it possible to triangulate the matrix by row operations. This is a finite
process for each pivot, which enumerates a basis of I as a vector space. Another way of expressing the
same idea would be to say that a the list of basis vectors of I is coinductive and can be enumerated by a
corecursive function. The whole list cannot be generated in finite time, but the “next” basis vector can be
obtained in finite time. However, while a “linear” basis of I (i.e., a basis of I seen as a vector space) is not
finite, it admits a finite description, and (big surprise!) Gröbner bases are showing up again. Notice the
connection between the following result and proposition 10.6.

Proposition 10.9 ([Laz83]). G = {g1, . . . , gs} is a Gröbner basis of the ideal I = 〈f1, . . . , ft〉 if and only if
the following set of polynomials is a basis of I seen as a vector space

{mfi | 1 ≤ i ≤ t, m is a monomial, LT (mfi) is not a multiple of LT (fj) for j < i}

152

10.4. Solving Polynomial Systems Using Gröbner Bases

10.4 Solving Polynomial Systems Using Gröbner Bases

Given a set of polynomial equations, the killer tool to derive its solution is a Gröbner basis of the ideal
spanned by the equations with respect to the lexicographic order. This is notably due to the following
theorem.

Theorem 10.10 (The Elimination Theorem). Let I ⊂ K[x1, . . . , xn] be an ideal and let G be a Gröbner
basis of I with respect to lexicographic order x1 > x2 > · · · > xn. Then, for every 0 ≤ ` ≤ n, the set

G` = G ∩K[x`, . . . , xn]

is a Gröbner basis of the `-th elimination ideal I` = I ∩K[x`, . . . , xn].

Given a Gröbner basis G for an ideal I = 〈f1, . . . , fs〉 with respect to the lexicographic order, G∩K[xn] is
a Gröbner basis of the (potentially empty) univariate ideal I ∩K[xn]. All the solutions of f1 = 0, . . . , fs = 0
in particular satisfy the univariate polynomial equation(s) in xn contained in the n-th elimination ideal
G ∩ K[xn]. If this last ideal is not empty, then we can find all the possible values of the last variable by
determining the roots of univariate polynomial(s). We can then substitute these values in the bivariate
equations in G ∩ K[xn−1, xn], thus making them univariate. Solving in xn−1 will reveal all the possible
values of both xn−1 and xn. The process can be repeated with xn−2, then xn−3, . . . , x1. The only problem
is that at some point the `-th elimination ideals may not reveal more information than the previous ones, so
that we would not be able to determine the possible values of the `-th variable. We would then get stuck.

10.4.1 Zero-Dimensional Ideals

This issue is nicely resolved when the equations have a finite number of solutions. Generally speaking, it
is possible to associate a notion of dimension to ideals and affine varieties that generalizes the usual notion
in linear algebra, but we do not want to get into too much detail. The important point is that affine varieties
associated to ideals of dimension zero only contain a finite number of points in the algebraic closure of the
field. Conversely, the affine variety associated to a positive-dimensional ideal has an infinite number of points
in the algebraic closure of the field. Most if not all polynomial systems we will encounter in the next chapter
are zero-dimensional. The Gröbner bases of such ideals have special properties, resolving the above problem.

Theorem 10.11 ([BKW93], theorem 6.54). Let I ⊂ K[x1, . . . , xn] be a proper ideal, and K be algebraically
closed. Then the following conditions are equivalent:

(i) V (I) is finite

(ii) I is of dimension zero

(iii) For every ordering and every Gröbner basis G of I with respect to the chosen ordering there exist, for
each 1 ≤ i ≤ n, gi ∈ G with LT (gi) = Xνi

i , for some 0 < νi ∈ N.

This guarantees that G ∩ K[x`, . . . , xn] always contains an equation of the form xν` + Therefore,
substituting the possible values of x`+1, . . . , xn into the `-th elimination ideal does result in (at least) one
polynomial equation(s) in x`, which thus yields the set of possible values of x`.

If K is finite, then any system of polynomial equations has a finite number of solutions, but it does
not mean that the ideal spanned by the equations is zero-dimensional, because the field is obviously not
algebraically closed. We may of course always embed our equations in the algebraic closure of K, but then
the number of solutions may become infinite. Theorem 10.11 tells us that when the number of solutions
in the algebraic closure is finite, then we may expect any Gröbner basis to have the nice shape property
from item (iii). Note that the number of solutions in the algebraic closure may very well be exponentially
bigger than the number of solutions in the base field. This is essentially a problem when using the FGLM
order-changing algorithm discussed below.

When K = Fq is a finite field, it is possible to enforce that the solutions in the algebraic closure are
exactly those over the ground field. This is achieved by adding to the system the so-called field equations,
i.e., the equations xqi − xi = 0, where q is the cardinality of the field. If L is an overfield of Fq, then the
only elements of L satisfying xq − x = 0 are the elements of Fq. Therefore, any ideal containing the field
equations is guaranteed to be zero-dimensional.

Adding the field equations is usually beneficial to the complexity of Gröbner basis computations when
the field is “not too big” compared to the degree of the polynomials reached during the computation. When
q = 2, it often speeds up Gröbner basis computations quite a lot. When q is large (say q = 256), it may
however slow them down.

153

10. A Toolbox for Multivariate Cryptanalysis

10.4.2 Worst-Case Complexity of Gröbner Bases Computation

We will not describe algorithms to compute Gröbner bases. First of all, the description of the simplest one,
Buchberger’s algorithm [Buc65] 2, can be found in any good textbook [CLO91, BKW93]. The descriptions
of the more sophisticated ones, Faugère’s F4 and F5 can be found in [Fau99, Fau02]. Our main reason
not to describe these algorithms is that it actually reflects the way we have been thinking about them: we
used them as black-boxes in a more general polynomial system-solving procedure. Their only property that
matters to us is their running time.

We will discuss this delicate issue more in-depth later, and we first mention some general results for
the sake of completeness. Ideal Membership is EXPSPACE-complete over Q [May89]. In addition, there
are infinite families of ideals, over any field, such that any Gröbner basis thereof contains a polynomial
of degree 22Ω(n) (resp. contains 22Ω(n) polynomials) [MM82, Huy86] 3. Later on, Kühnle and Mayr gave
an exponential-space (but completely impractical) algorithm to compute Gröbner bases [KM96], thereby
matching the space lower-bound.

When dealing with homogeneous ideals (i.e., ideals generated by homogeneous polynomials), things are
a bit better, since Homogeneous Ideal Membership is “only” PSPACE-complete [May95]. Unfortunately,
computing a Gröbner basis provably requires exponential space (thus doubly exponential time) in this case.

These alarming results are worst-case results though, and they do not fully reflect the “average” behav-
ior of Gröbner basis algorithm. The oldest and simplest Gröbner basis algorithm was designed by Buch-
berger [Buc65], and can be practical under certain circumstances (but may take more than exponential space
under some others). Faugère’s F4 algorithm [Fau99] is essentially an smart reformulation of Buchberger’s
algorithm using efficient linear algebra to perform polynomial reductions in the spirit of Lazard [Laz83].
It is often several orders of magnitude faster than Buchberger’s algorithm when implemented with care,
and several implementations of very high quality are available commercially, most notably in the MAGMA
computer algebra system [BCP97]. Faugère’s F5 algorithm [Fau02] is somewhat different, and uses a more
sophisticated criterion than its predecessors to avoid useless computations. Only toy implementations of
F5 are available for cryptographic purposes though. A simplified version of F5 is very cleanly described in
Bardet’s thesis [Bar04], but is less efficient than the full-fledged algorithm.

10.4.3 D-Gröbner Bases

Sometimes the computation of a full Gröbner basis is not necessary to work with a given ideal. When
dealing with homogeneous ideals, a satisfying notion of “partial Gröbner Basis” is available.

Definition 10.16. A finite subset G of a homogeneous ideal I is a D-Gröbner basis if for any f of degree
at most D, LT (f) is divisible by LT (gi) for some gi ∈ G (or equivalently if the division of every polynomial
f of degree at most D in I by G always yields a zero remainder).

Thus, a D-Gröbner basis is capable of deciding the Ideal Membership problem for polynomials of degree at
most D. In addition, D-Gröbner bases can be computed in time polynomial in nD, for instance, by dropping
any computation with polynomial of degree higher than d in Buchberger’s Algorithm. In fact, looking a
bit into proposition 10.9 results in an algorithm to compute a D-Gröbner basis of the homogeneous ideal
〈f1, . . . , ft〉 [Laz83, Bar04]:

1. Construct the Macaulay matrix of degree d, i.e., the matrix Md whose rows are the products m · fi of
degree at most d (where m ranges across all the monomials of the right degree)

2. Compute its reduced row-echelon form M̃d

3. Define Gd to be the set of polynomials found on the rows of M̃d whose leading monomial does not
match that of the same line of Md.

4. Then G =

D⋃

d=0

Gd is a D-Gröbner basis

Given a homogeneous ideal I and a monomial ordering, there is a degree Dmax such that a Dmax-Gröbner
basis of I is in fact a “normal” Gröbner basis of I. This Dmax can be chosen to be the highest degree of any
polynomial in a Gröbner basis of I with respect to the ordering. It follows that using the above Gaussian-

elimination technique, a full Gröbner basis can be computed in time O
(

(n+Dmax)
Dmax

)
.

2. By the way, Buchberger named the objects computed by his algorithm algorithm after his advisor Wolfgang Gröbner
3. While this apparently contradicts the fact that the problem is decidable in EXPSPACE, the contradiction is only

apparent. In the model of space-bounded computation, an exponentially-space-bounded Turing machine is allowed to take
doubly-exponential time to write a result of doubly-exponential size to the output tape, while using only a simply exponential
working memory.

154

10.4. Solving Polynomial Systems Using Gröbner Bases

Looking at his algorithm reveals why the XL algorithm [CKPS00] invented by cryptographers is in
fact essentially a Gröbner basis computation algorithm known for about twenty years, as was pointed out
in [AFI+04].

10.4.4 Hilbert Function and the Degree of Regularity

To understand the complexity of Gröbner basis computation, it seems important to look into this degree
Dmax defined just above. The set of all homogeneous polynomials of degree exactly d is not a vector space
because it misses zero. We therefore consider the following set:

K[x1, . . . , xn]d = {0} ∪
{
f ∈ K[x1, . . . , xn] | f is homogeneous of degree = d

}

And K[x1, . . . , xn]d is a vector-space. This allows us to define the vector space of homogeneous polynomials
of degree d in I:

Id = Id ∩K[x1, . . . , xn]

When I is homogeneous, then Id is the row-space of the Macaulay matrix of degree d. This matrix has(
n+d
d

)
columns, because this is the number of degree-d monomials on n variables. Yet, its rank is dim Id,

independently of the number of rows. There are indeed often non-trivial linear dependencies between the
rows of the Macaulay matrices: if fi =

∑
αkmk and fj =

∑
βkm

′
k are both degree-d generators of I,

where the mk’s are monomials, then fifj =
∑
αkmkfj =

∑
βkm

′
kfi. As a consequence, we find that∑

αkmkfj −
∑
βkm

′
kfi = 0 in the Macaulay matrix of degree 2d. Gauss-Reducing the Macaulay matrices is

thus an inefficient way to compute Gröbner bases, as it will often produce zero rows (just like Buchberger’s
algorithm will reduce S-polynomials to zero).

Definition 10.17. The Hilbert function of an homogeneous ideal I ⊂ K[x1, . . . , xn] is the function on
the nonnegative integers d defined by

HFI(d) = dimK[x1, . . . , xn]d − dim Id =

(
n+ d

d

)
− dim Id

When I is a monomial ideal (i.e., an ideal generated by monomials only), then the Hilbert function
counts the number of monomials of degree d not contained in I. It is known that the Hilbert function
coincide with a certain polynomial for sufficiently large values of d. This polynomial is called the Hilbert
polynomial. It follows from proposition 10.11 that when I is a homogeneous ideal of dimension zero, then
the Hilbert polynomial is identically zero.

Definition 10.18. The degree of regularity of I (also called index of regularity) is the smallest
integer s0 such that for all s ≥ s0 the Hilbert function is equal to the Hilbert polynomial. We denote it by
H(I) in the sequel (but note that it depends on the ordering).

It plays a crucial role in the complexity of many algorithms operating on ideals.

Proposition 10.12. A reduced H(I)-Gröbner basis of a zero-dimensional homogeneous ideal I is in fact a
full Gröbner basis of I.

Proof. Let G be the reduced Gröbner basis of I, f be a polynomial of G of maximum degree, and d be its
degree. Let us reason by contradiction and assume that d > H(I). We will show that LT (f) belongs to
〈LT (G− {f})〉, thus contradicting the fact that G is minimal (and reduced).

Because I is zero-dimensional, its Hilbert Polynomial is identically zero, and therefore IH(I) is in fact
equal to K[x1, . . . , xn]H(I). As a consequence, there is in IH(I) a polynomial g whose leading monomial
divides that of f . By definition of Id, g can be written as a polynomial combination of G−{f} (because f is
of greater degree than g). This shows that LT (g) ∈ 〈LT (G− {f}〉, and contradicts the minimality of G.

10.4.5 Generic Properties

The depressing worst-case results mentioned above suggest that H(I) can become exponential in some
cases. However, the situation is generically better than what the worst-case result suggest.

Definition 10.19. Consider the vector space Km. A property P is generically true over Km if it is true
on all points of Km except on a given proper affine variety (or, equivalently, a property is generic if it is true
on a Zariski open set of Km).

155

10. A Toolbox for Multivariate Cryptanalysis

The intuition is that generic properties are true “most” of the time. A non-trivial but interesting example:
n × n matrices are generically invertible over any field K. Indeed, non-invertible matrices have a zero
determinant, and the determinant is a polynomial in the matrix coefficients. This means that“most”matrices
are invertible, and this result is consistent with our expectations: invertible matrices over R form a dense
subset of all the matrices over R. Indeed, if we choose “at random” the coefficients of a matrix over R, the
probability that the polynomoial equation det = 0 holds is negligible.

A funny consequence of the definition of generic properties, is that over an infinite field, if a given property
is true except on an algebraic variety, then it suffices to show that it is true on one point to show that it is
true almost everywhere.

This reasoning clearly does not extend to finite fields. The fact that a generic property holds almost
everywhere is clearly not true, because the algebraic variety over which the property is not true represent
a fixed fraction of the sampling space. A Generic property is thus true with some (unknown) probability.
This is examplified again by invertible matrices: over F28 , more than 99.5% of all matrices are invertible,
yet over F2, on the other hand, only 28.88% of the matrices are invertible.

This example illustrates simultaneously the power and the limitations of this concept: the result about
invertible matrices is mostly valid and makes sense, but we may have to be cautious, especially over small
finite field. In this latter case, we expect generic property to hold with a non-negligible probability, but in
general this is the best we can say.

10.4.6 Generic Behavior of Gröbner Bases

We are now ready to discuss the generic properties of Gröbner bases.

Theorem 10.13 ([Laz83], theorem 1). Let I = 〈f1, . . . , fk〉 ⊂ K[x1, . . . , xn] be a homogeneous ideal of
dimension zero, where fi is of degree di and k ≤ n. Then after a generic change of variables, every Gröbner
base for the lexicographic order contains a polynomial of degree d1d2 . . . dk

Theorem 10.14 ([Laz83], theorem 2). Let I = 〈f1, . . . , fk〉 ⊂ K[x1, . . . , xn] be a homogeneous ideal of
dimension zero, where fi is of degree di and k ≤ n. Then after a generic change of variables, the elements
of any minimal reduced Gröbner base for the grevlex ordering have degree at most

k∑

i=1

di − n+ 1.

The bound of the second theorem was first given by Macaulay in the context of his work on multivariate
resultants. Theorem 10.14 tells us that computing a Gröbner basis is in fact simply exponential “most of the
time”when dealing with homogeneous ideals of dimension zero. This comes from the fact that we may obtain
an actual Gröbner basis with respect to the grevlex order by computing only a D-Gröbner basis of the ideal,
where D is the bound of the second theorem. When dealing with with n quadratic equations in n variables,
theorem 10.14 tells us that we can (generically) compute a Gröbner basis by crunching polynomials of degree
at most 2k − n+ 1. This is less than n+ 1, and the bound is reached when we have k = n equations.

10.4.7 Influence of the Ordering

The two previous theorems suggest that the choice of the ordering has a deciding influence on the
complexity of computing a Gröbner basis. Consider for instance the ideal:

I =
〈
x5 + y4 + z3 − 1, x3 + y3 + z2 − 1

〉

A Gröbner basis of I with respect to the grevlex order is:

G =
{
y6 + xy4 + 2y3z2 + xz3 + z4 − 2y3 − 2z2 − x+ 1,
x2y3 − y4 + x2z2 − z3 − x2 + 1,
x3 + y3 + z2 − 1

}

A Gröbner basis of I with respect to the lexicographic order, on the other hand, is too messy to be shown.
One of its polynomial has 282 terms, total degree 25, and a largest coefficient of 170255391...

In most cases, the preferred strategy to compute a (more useful) lexicographic Gröbner basis is to first
compute a Gröbner basis for the grevlex order, and then use an ad hoc to change the order of the Gröbner
basis.

156

10.5. Regular and Semi-Regular Sequences

10.4.8 Order Changing Algorithms

There are two algorithms to change the order of an already-computed Gröbner basis: the FGLM algo-
rithm [FGLM93] and the Gröbner Walk [CKM97]. The former only applies to zero-dimensional ideals, while
the latter can always be used. However, except in very special cases its complexity is unknown, while the
complexity of FGLM is well-understood.

Theorem 10.15 ([FGLM93]). Let I be a zero-dimensional ideal, G1 a reduced Gröbner basis of I with
respect to <1. There is an algorithm that, given G1, computes a Gröbner basis of I with respect to <2 with
O
(
n ·D3

)
arithmetic operations in K, where D is the number of solutions of I in the algebraic closure of K.

Over finite fields, adding the field equations helps keeping D as low as possible, and thus makes the
FGLM algorithm work faster.

10.5 Regular and Semi-Regular Sequences

What makes the behavior of the usual Gröbner basis algorithms difficult to understand is the possibility
that the sequence of actions taken by the algorithm depends very much on the coefficients of the input
polynomial system. This dependency also exist in, say, the euclidean algorithm to compute the Greatest
Common Divisor, or in the Gaussian algorithm to put a matrix in row-echelon-form, but these cases the
dependency less critical (i.e., the Gaussian algorithm will perform O

(
n3
)

operations no matter what the
actual coefficients of the matrix are). In particular, algebraic relations between the coefficients of the poly-
nomial may lead to unpredictable numerical cancellation in the course of the algorithm, or unpredictable
polynomial relations where there should not be any.

10.5.1 Regular Sequences.

However, the behavior of the usual algorithms is better understood when these unfortunate events are
guaranteed not to happen. This lead to the definition of sequence of polynomials that “behave”.

Definition 10.20. Let R = K[x1, . . . , xn]. The sequence f1, . . . , fm ∈ R is a regular sequence if:

(i) 〈f1, . . . , fm〉 6= R

(ii) for all 1 ≤ i ≤ m, and all g ∈ R, then

gfi ∈ 〈f1, . . . , fi−1〉 =⇒ g ∈ 〈f1, . . . , fi−1〉

This is equivalent to say that fk must not be a zero divisor in R/ 〈f1, . . . , fk−1〉, or that multiplication
by fk must be injective on the quotient.

The notion of regular sequence of polynomials generalizes that of linearly independent sequence of vectors.
If a family of vectors x1, . . . ,xt are linearly independent, then there are no non-trivial linear relations of the
form α1x1 + · · · + αtxt = 0. If f1, . . . , fm is a regular sequence, then there are no “non-trivial” polynomial
relations between the fi’s. Of course the situation is more complicated, because some polynomial relations
always exist: if we pick Pk ∈ 〈f1, . . . , fk−1〉, then by definition of ideals Pkfk ∈ 〈f1, . . . , fk−1〉, and there
exist a sequence of polynomials P1, . . . , Pk−1 such that P1f1 + · · · + Pk−1fk−1 + Pkfk = 0. Such relations
always exist, and are therefore “trivial”.

If the fi’s are regular, then all polynomial relations between the fi’s are “trivial”. More precisely, if there
exist a sequence of Pi’s such that P1f1 + · · ·+Pk−1fk−1 +Pkfk = 0, then by definition of ideal Pkfk belongs
to 〈f1, . . . , fk−1〉. In other terms, Pkfk is congruent to zero modulo this ideal. Because multiplication by fk
is injective in the quotient, then Pk itself is necessarily congruent to zero, ergo Pk belongs to 〈f1, . . . , fk−1〉,
and the polynomial relation is trivial. Regular sequences enjoy many additional nice properties, summarized
in the following theorem.

Theorem 10.16 ([Bar04]). Let f1, . . . , fm be a regular sequence of homogeneous polynomials of respective
degree di in K[x1, . . . , xn], with m ≤ n, and let I = 〈f1, . . . , fm〉.

(i) I has dimension n−m.

(ii) The Hilbert Series of f1, . . . , fm is

∞∑

d=0

HFI(d) · zd =

m∏

i=1

(
1− zdi

)/
(1− z)n

and reciprocally, every sequence of polynomials having this Hilbert series is a regular sequence

157

10. A Toolbox for Multivariate Cryptanalysis

(iii) The degree of regularity of I is

k∑

i=1

(di − 1) + 1 (Macaulay’s bound)

(iv) An arbitrary sequence of m polynomials is generically regular.

We have seen that linearization is capable of dealing with very overdetermined systems in polynomial
time, which suggests that overdetermined systems are easier to solve, for instance by having a lower degree
of regularity. The framework of generic sequences unfortunately cannot be used to explore this aspect of
Gröbner basis complexity. The first item of the theorem indeed implies that a regular sequence cannot have
more than n elements (observe again the analogy with linearly independent families of vectors). This is
further annoying because most systems encountered in cryptography are overdetermined.

10.5.2 Semi-Regular Sequences: Dealing With Overdetermined Systems

To overcome this difficulty, Bardet and Faugère extended the notion of regular sequence to overdetermined
systems.

Definition 10.21. Let R = K[x1, . . . , xn]. The sequence of homogeneous polynomials f1, . . . , fm ∈ R is a
semi-regular sequence if:

(i) I = 〈f1, . . . , fm〉 6= R

(ii) for all 1 ≤ i ≤ m, and all g ∈ R, then

gfi ∈ 〈f1, . . . , fi−1〉 and deg(gfi) < H(I) =⇒ g ∈ 〈f1, . . . , fi−1〉

Informally speaking, semi-regular sequences behave like regular sequences“up to the degree of regularity”.
The polynomials in a semi-regular sequence are thus “as independent as possible”.

Theorem 10.17 ([Bar04]). The sequence f1, . . . , fm of homogeneous polynomials of respective degrees d1, . . . , dm
in K[x1, . . . , xn] is semi-regular if and only if the Hilbert series of the corresponding ideal is

[
m∏

i=1

(
1− zdi

)m/
(1− z)n

]
,

where
[∑

aiz
i
]

=
∑
biz

i with bi = ai when aj > 0 for all j ≤ i, and bi = 0 otherwise.

It is shown in [Bar04] that the set of semi-regular sequences of m polynomial in K[x1, . . . , xn] is a Zariski
open set. The problem is to show that it is non-empty for any value of n and m. An explicit example is
known when m = n + 1 [Frö85], but no general example are known for other values of m. In addition,
generic properties has little meaning other the finite fields that interest us. It is conjectured, on the basis
of extensive experiments, in [Bar04] that the proportion of semi-regular systems becomes 1 when n goes to
+∞. Therefore, we will often assume that for large n a random system is almost surely semi-regular (which
is certainly not a best-case assumption, as it means that the system is not easier to solve than the average).

It follows from theorem 10.17 that when f1, . . . , fm are homogeneous and form a semi-generic sequence,
then the degree of regularity of 〈f1, . . . , fm〉 is the smallest degree d such that the coefficient of degree d in
the series expansion of

∏m
i=1

(
1− zdi

)m
/(1 − z)n is not strictly positive. This property enables an explicit

computation of the degree of regularity of semi-regular sequences for given values of m and n, thus allowing
to determine the complexity of computing a Gröbner basis.

Furthermore, Bardet et al. [Bar04, BFSY05] give asymptotic developments of the expression of the degree
of regularity in the case of α · n equations in n variables, for any constant α greater than 1. When there are
α · n semi-regular quadratic equations in n variables, [BFSY05] gives:

Dreg = n

(
α− 1

2
−
√
α(α− 1)

)
− a1

2(α(α− 1))
1
6

n
1
3 −

(
2− 2α− 1

4
√
α(α− 1)

)
+O

(
1/n1/3

)
,

with a1 ≈ −2.33811. (10.2)

10.6 Complexity of Gröbner Bases Computation

These results on semi-regular sequences enable us to estimate the complexity of a Gröbner basis compu-
tation without actually running it.

We have seen that the computation of a Gröbner basis essentially amounts to echelonize a sparse matrix
with M columns and potentially many more rows, where M is the number of monomials of degree Dreg

158

10.6. Complexity of Gröbner Bases Computation

128

256

384

512

640

768

896

1024

0 16 32 48 64 80 96 112 128

m

n

232 248 264 280 2128

Figure 10.1: Projected number of field operations required to compute a Gröbner basis of a semi-regular
sequence of m quadratic polynomials in n variables. The graph shows iso-complexity lines (top-left is lower,
bottom-right is higher).

in n variables. The F5 algorithm tries very hard to reduce the number of rows to the minimum, and it
is shown in [Fau02, Bar04] that on a regular or semi-regular sequence it produces matrices without linear
dependencies between the rows. The complexity of echelonizing these matrices is roughly the equivalent of
performing O

(
nω·Dreg

)
arithmetic operations in K, with 2 < ω ≤ 3 being the linear algebra constant, and

n the number of variables of ideal considered. Because the matrices are very sparse, it is not unreasonable
to consider that ω = 2. A distinctive feature of Gröbner basis computation as a way of solving multivariate
polynomial systems is that the complexity of computing a Gröbner basis is vastly independent from the
cardinality of the field. Exhaustive search, on the other hand, becomes quickly very impractical when the
size of the field increases.

In her PhD thesis [Bar04], Bardet determined that a simplified version of the F5 algorithm computes a
Gröbner basis of a regular sequence of n quadratic polynomial in n variables in 24.295n arithmetic operations
in K. For the sake of comparison, echelonizing the Macaulay matrix of degree given by the Macaulay bound
requires about 26n field operations. This suggests that exhaustive search is an asymptotically faster way to
solve a system of n quadratic equations in n variables over Fq if and only if q ≤ 20. If q is bigger, then
computing a Gröbner basis will be faster. With more than n equations, Macaulay’s bound is improved
by equation (10.2). In any case, the exact degree of regularity can always be read off the Hilbert series.
Figure 10.1 shows how the complexity of computing a Gröbner basis of a semi-regular sequence of quadratic
polynomials evolves with the parameters.

10.6.1 The Case of very Overdetermined Systems

The linearization technique is capable of solving in timeO
(
n6
)

systems of≈ n2/2 equations in n variables.
It unfortunately breaks down if we have (say) only n2/3 equations. How hard is this particular case? It is
particularly relevant for multivariate cryptanalysis, because it is one of the rare situations where Gröbner
basis computations might solve systems of multivariate quadratic equations that would not be tractable by
exhaustive search or any other technique. We may always use the Hilbert series to determine the degree of
regularity of corresponding semi-regular sequences and derive the complexity of a Gröbner basis computation.
This for instance enables us to draw the points on Figure 10.1.

While we are well-aware that it is not theoretically justified (because equation (10.2) is established for a
constant α), we now set α = βn, and express dreg as a function of β in (10.2). This yields

dreg(β) =
1

8β
− a1

2β1/3
− 3

2
+O (1/n) . (10.3)

We compared the result predicted by this equation to the actual values (given by the Hilbert series), for
sufficiently big n. Figure 10.2 shows both values. We (empirically) found the constant term of (10.3) to be

159

10. A Toolbox for Multivariate Cryptanalysis

0

5

10

15

20

25

32 64 96 128

d r
eg

1/�

exact result (Hilbert series)
(corrected) asymptotic estimate

Figure 10.2: Degree of regularity (for n sufficiently big) of α · n2 semi-regular quadratic polynomials in n
variables.

inaccurate (the best fit seems to be 1/3). We therefore estimate that given α · n2 semi-regular quadratic
equations in n variables we should expect for n big enough a degree of regularity of:

Dreg =
1

8α
− a1

2α1/3
+

1

3

10.7 Finite Vector Spaces Combinatorics

We conclude this “toolbox” chapter by determining the probability that a uniformly random endomor-
phism of (Fq)n, potentially conditioned on meeting certain conditions, satisfies some given properties. The
probability that a random endomorphism is invertible is well-known. The probability that a random endo-
morphism has a given rank is less well-known but is readily found in the literature [Coo00], even in the case
where the entries of the matrix are not uniformly distributed. The probability that a given vector belongs
to the image of a random linear map is (apparently) less well-known and much less readily available in the
existing litterature. We also investigate the probability that a random endomorphism satisfies combina-
tions of these events. We establish all these results by counting the number of endomorphisms meeting the
conditions at hand. The results presented here are heavily inspired by Dubois’s PhD thesis [Dub07].

Goldman and Rota first counted the number of subspaces of a vector space over Fq [GR69]. After
that, the analogy between set combinatorics and finite vector space combinatorics has been investigated by
many researchers. The toolbox of combinatoricians, including Möbius inversion [BG75] and the exclusion-
inclusion principle [CR92], has been progressively adapted to finite vector spaces, as q-analogs of their
set-combinatorics counterparts.

q-Analogs. We will try to express our results using the formalism of q-analogs. A q-analog is “a mathemat-
ical expression parameterized by a quantity q that generalizes a known expression and reduces to the known
expression in the limit q → 1” [Wei]. The starting point is the observation that:

lim
q→1

1− qn

1− q
= n

This leads to the definition of [n]q (read: “the q-bracket of n”), which is the q-analog of the integer n:

[n]q =
1− qn

1− q

It is then possible to define q-analogs of the usual combinatorial quantities.

160

10.7. Finite Vector Spaces Combinatorics

q-Factorial. It seems natural to define the q-factorial to be:

[n]q! = [1]q[2]q . . . [n− 1]q[n]q

We readily verify that we recover the usual factorial when q → 1, but the analogy is in fact deeper. For
instance, [n]q! is the number of complete flags of (Fq)n, i.e., of sequences of subspace S0, . . . , Sn with the
strict inclusions:

〈0〉 = S0 ⊂ S1 ⊂ · · · ⊂ Sn = (Fq)n

This result is easy to establish by induction on n [Sta86]: given such a flag,

〈0〉 = S1/S1 ⊂ S2/S1 ⊂ · · · ⊂ Sn/S1
∼= (Fq)n−1

is a complete flag of (Fq)n−1
. There are [n]q possibles choices for S1: a one-dimensional vector space is fully

specified by the choice of a non-zero vector, which makes qn− 1 possibilities, but q − 1 colinear vectors span
the same subspace. When q → 1, we recover the usual result that n! is the number of sequences of n subsets
of [1;n] such that:

∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = [1;n]

Such sequences in fact define a total ordering of [1;n], or, in other terms, a permutation.

q-Binomial. Armed with the q-factorial, we may define the q-binomial coefficient just like the usual thing:

(
n

k

)

q

=
[n]q!

[k]q![n− k]q!

It is well-known that
(
n
k

)
is the number of k-element subsets of [1;n]. We claim that

(
n
k

)
q

is the number of

k-dimensional subspaces of (Fq)n. To see why, let Ek be a subspace of dimension k, and observe that [n]q!
is the product of the number of k-dimensional subspaces and of the number of complete flags of (Fq)n such
that Sk = Ek. Such a complete flag completely determines (and is completely determined by) two complete
flags:

〈0〉 = S0 ⊂ S1 ⊂ · · · ⊂ Ek ∼= (Fq)k

〈0〉 = Ek/Ek ⊂ Sk+1/Ek ⊂ · · · ⊂ Sn/Ek ∼= (Fq)n−k

Therefore, the number of complete flags of (Fq)n such that Sk = Ek is [k]q![n − k]q!, and the expression of
the q-binomial coefficient is established. A different but equally interesting way to establish the same result
would be to remark that

(
n

k

)
=

#sequences of k distinct elements in an n-set

#sequences of k distinct elements in a k-set
,

and showing that: (
n

k

)

q

=
#sequences of k independent vectors in (Fq)n

#sequences of k independent vectors in (Fq)k
.

It is also notable that the q-binomial coefficients enjoy q-analog versions of the usual identities:

(
n

k

)

q

=

(
n

n− k

)

q(
n

k

)

q

=
qn − 1

qk − 1

(
n− 1

k − 1

)

q(
n

k

)

q

= qk
(
n− 1

k

)

q

+

(
n− 1

k − 1

)

q(
n

k

)

q

=

(
n− 1

k

)

q

+ qn−k
(
n− 1

k − 1

)

q

Automorphisms of (Fq)n. The number of automorphisms of (Fq)n is easy to derive from the q-analogs.
An automorphism L determines in a unique way a complete flag of (Fq)n, by setting Si = Si−1 + 〈L(ei)〉.
However, the converse is not true, and many possible L’s generate the same flag. Given a complete flag,
we consider the n one-dimensional subspaces Li of (Fq)n such that Li is a supplementary of Si−1 in Si, for
i = 1, 2, . . . , n (the Li’s are not unique but we choose some). The image of L on ei must be the sum of a

161

10. A Toolbox for Multivariate Cryptanalysis

non-zero vector of Li and of any vector of Si−1. There are therefore (q−1)qi−1 choices for L(ei). This shows
that:

|GLn (Fq) | = [n]q! · qn(n−1)/2 · (q − 1)n

The q-analogy is not as satisfying as we would like, because it would seem natural that the number of
automorphisms (i.e., the linear permutations of an n-dimensional vector space) of (Fq)n degenerates to n!
(i.e., the number of actual permutation of an n-element set) when q → 1, yet it is not the case. We therefore
introduce an ad hoc notation for the number of automorphisms of (Fq)n:

〈〈n〉〉q! = |GLn (Fq) | = [n]q! · qn(n−1)/2 · (q − 1)n

It must be noted that expanding this expression yields the expected:

〈〈n〉〉q! =

n∏

i=1

(
qn − qi

)

This product is usually derived in the following way: since all the L(ei) must be non-zero and linearly
independent, then L(ei) must be chosen in (Fq)n − 〈L(e1), . . . , L(ei−1)〉, and this set has qn − qi elements.

Injective Linear Maps From (Fq)k to (Fq)n. An injective linear map f from (Fq)k to (Fq)n uniquely
determines a k-dimensional subspace E of (Fq)n (its image). In turn, any basis of E determines f completely.
Note that there is a one-to one correspondance between the bases of (Fq)n and its automorphisms. This

shows that the number of injective linear maps from (Fq)k to (Fq)n is 〈〈k〉〉q!
(
n
k

)
q
.

Endomorphisms of a Given Rank. We wish to count the number of endomorphisms of (Fq)n whose kernel
is of dimension k and contains a given subspace F (of dimension smaller than k). This result is well-known,
and our exposition is vastly plagiarized from [Dub07]. We proceed in two steps, punctuated by the two
following lemma.

Lemma 10.18. The number of subspaces of (Fq)n of dimension k containing a subspace F of dimension
s ≤ n is

(
n−s
k−s
)
q
.

Proof. The idea is that subspaces of (Fq)n of dimension k containing F are in one-to-one correspondance
with the subspaces of dimension k − s of the quotient (Fq)n /F . Let us verify this assertion. Let G be a
subspace of (Fq)n containing F , and let H be a supplementary of F in G, so that G = H

⊕
F , and H has

dimension k− s. The point is that the image of F in the quotient is the trivial subspace, while the image of
H is isomorphic to H (hence the one-to-one correspondance).

So, the number we are interested in is also the number of subspaces of dimension k − s in the quotient,
which has dimension n− s, and we know that this is

(
n−s
k−s
)
q
.

Lemma 10.19. The number of endomorphisms of (Fq)n whose kernel a) is of dimension k and b) contains
a given subspace F of dimension s ≤ k is:

D(n, k, s) =

(
n− s
k − s

)

q

(
n

k

)

q

〈〈n− k〉〉q!

Proof. Let U be a subspace of (Fq)n of dimension k containing F , and V a complementary subspace. Any
endomorphism of (Fq)n is uniquely defined by its restriction to U and V . An endomorphism admits U as
its kernel if and only if it vanishes on U and is injective on V . We have seen that there are

(
n

n−k
)
q
〈〈n− k〉〉q!

injective linear maps from V to (Fq)n. By lemma 10.18 there are
(
n−s
k−s
)

subspaces U of dimension k containing
F . The result of the lemma is the product of these two quantities (via an easy q-binomial identity), as U
and the image on V can be chosen independently.

Probability to be Invertible. The probability that a random endomorphism is invertible is a widely used
result. It follows from the expression of D(n, 0, 0) that:

P [f ∈ GLn (Fq)] =
〈〈n〉〉q!
qn2 =

n∏

i=1

(
1− 1

qi

)

162

10.7. Finite Vector Spaces Combinatorics

Throughout the next chapters, we denote this probability by λ(n). As a function of n, this quantity is
positive and decreasing, thus it reaches a finite limit when n → ∞. It is quite easy to obtain a reasonable
approximation thereof:

log λ(n) = log

n∏

i=1

(
1− 1

qi

)
=

n∑

i=1

log

(
1− 1

qi

)
≈ −

n∑

i=1

1

qi
≈ 1

1− q

And thus:
lim
n→∞

λ(n) ≈ e1/(1−q)

This suggest that for large values of q, a random endomorphism is invertible with probability close to one.
An alternate, more rigorous, and apparently less well-known way to obtain a much better approximation is
to turn the infinite product into an infinite sum without using the logarithm, but instead through Euler’s
pentagonal number theorem [Bel10]:

∞∏

i=1

(
1− 1

qi

)
=

+∞∑

i=−∞
(−1)i · q−i(3i+1)/2 (10.4)

Considering the partial sums yields a close approximation of the asymptotic probability, for any value of q.
In particular, we find:

lim
n→∞

λ(n) = 1− 1

q
+

1

q2
+

1

q5
+

1

q7
− 1

q12
+O

(
1

q15

)

In the same vein, we deduce from lemma 10.19 the probability that a random endomorphism vanishing
on a subspace F has a kernel of dimension k ≥ dimF :

P
[
dim kerL = k

∣∣ F ⊆ kerF
]

=
D(n, k, s)

qn(n−s) =
λ(n)λ(n− s)

λ(k)λ(k − s)λ(n− k)
q−k(k−s) (10.5)

The interest of this expression is that the ratio of the λ expressions lives in a small interval, independently
of q, n, k and s, so that the probability is of order q−k(k−s).

Expected Cardinality of the Kernel. A more sophisticated result, and less readily available in the available
litterature, is the expected cardinality of the kernel of a random endomorphism, and its variance.

Lemma 10.20. Let f be a uniformly random endomorphism of (Fq)n, vanishing on a subspace F of (Fq)n,
with dimF = s. Then:

E
[
| ker f |

∣∣ F ⊆ ker f
]

= qs + 1− 1

qn−s

This result is quite strong, as it states that a random endomorphism known to vanish on qk points in
fact vanish on average on qk + 1 points, even for large k.

Proof. By definition the expectation is:

En = E
[
| ker f |

∣∣ F ⊆ ker f
]

=

n∑

k=s

D(n, k, s)

qn(n−s) qk

A combinatorial and/or elementary argument completely eluded us. We therefore use the method of“creative
telescoping” to establish the result by induction on n. First, we notice that the announced results holds when
n = s. Let us therefore assume n > s. We denote by T (n, k, s) the hairy term under the sum. It is a q-
hypergeometric term because if we set X = qn and Y = qk, we see that the two following ratios are rational
functions of X and Y :

T (n+ 1, k, s)

T (n, k, s)
=

q2X2 − (q + qs+1)X + qs

q2X2 − qXY
T (n, k + 1, s)

T (n, k, s)
= qs+2 X + Y

X (qY − qs) (qY − 1)

We thus used the q-analog of Zeilberger’s algorithm [WZ92] (as implemented in Maple [MGH+05]), and
it found the nice recurrence relation:

a · T (n+ 1, k, s)− b · T (n, k, s) = g(n, k + 1, s)− g(n, k, s) (?)

163

10. A Toolbox for Multivariate Cryptanalysis

where:

a = qn+1 + qn+s+1 − qs+1

b = qn+1 + qn+1+s − qs

g(n, k, s) =

(
qk − qs

) (
qk − 1

) (
qn+s+1 − qn+s+2 − qk+s + qn+k+1 + qn+k+s+1

)

q2k (qn+1 − qk)
T (n, k, s)

The point is that summing (?) over k = s, . . . , n− 1 yields:

a (En+1 − T (n+ 1, n+ 1, s)− T (n+ 1, n, s))− b (En − T (n, n, s)) = g(n, n, s)− g(n, s, s)

At this point, it is easy to find that g(n, s, s) = 0, and we check (using a computer algebra system!) that:

g(n, n, s) + a · (T (n+ 1, n+ 1, s) + T (n+ 1, n, s)) + b · T (n, n, s) = 0

Thus, we have established that:
(

1 + qs − 1

qn−s

)
En+1 =

(
1 + qs − 1

qn+1−s

)
En

Thus, if the result holds at rank n, then it also holds at rank n+ 1.

Variance of the Cardinality of the Kernel. Using the same proof technique, we also obtain the variance of
the cardinality of the kernel of a random endomorphism conditioned to vanish on a fixed subspace.

Lemma 10.21. Let f be a uniformly random endomorphism of (Fq)n, vanishing on a subspace F of (Fq)n,
with dimF = s. Then the variance of the cardinality of its kernel is:

qs(q − 1)

(
1− qs + 1

qn
+

qs

q2n

)

Before giving the proof, we observe that coupled with lemma 10.20, this result enables the use of Cheby-
chev’s inequality: the probability that the kernel of a random endomorphism known to vanish on a subspace
of dimension s is quite concentrated around qs.

Proof. We will use the same proof technique. The variance is:

Vn =

n∑

k=s

D(n, k, s)

qn(n−s) q2k

︸ ︷︷ ︸
Un

−
(
qs + 1− 1

qn−s

)2

We will first demonstrate by induction on n ≥ s that:

Un = q2s + 1 + (1 + q)

(
qs − 1

qn−s
− 1

qn−2s

)
+

1

q2n−1−2s
(♣)

When n = s, we should have Un = q2n, and looking at (♣) carefully reveals that our expression of Un
simplifies to this value. Let us therefore assume n > s, and let us again denote by T (n, k, s) the hairy term
under the sum. It is again a q-hypergeometric term, and running the q-analog of Zeilberger’s algorithm
yields:

a · T (n+ 1, k, s)− b · T (n, k, s) = g(n, k, s)− g(n, k + 1, s) (?)

where:

a = −qn+s+2 + qs+1+2n + q1+2n + q2s+2 − q2s+n+1 − qs+1+n − q2s+2+n + q2s+2n+1 + qs+2+2n

b = −q1+2n + qn+s − qs+1+2n + qs+1+n − q2s + q2s+n+1 + q2s+n − q2s+2n+1 − qs+2+2n

g is a complicated term with a singularity when n+ 1 = k. We again notice that g(n, s, s) = 0 and that:

a · T (n+ 1, n+ 1, s) + a · T (n+ 1, n, s)− b · T (n, n, s) = g(n, n, s)

So that summing (?) over k = s, . . . , n− 1 and exploiting the previous equation yields:

a · Un+1 = b · Un
By induction hypothesis, (♣) holds at rank n. Plugging the expression of Un into this recurrence relation
and simplifying shows that (♣) holds at rank n + 1 — please use a computer algebra system if you really
want to verify this.

Moving back to the expression of Vn, it is not difficult to verify that the result of the lemma holds.

164

10.7. Finite Vector Spaces Combinatorics

Partly Specified Endomorphisms. Being able to estimate the probability that a random endomorphism
is invertible is useful, but there are situations where this result cannot be applied, for instance when the
endomorphisms are known to be singular.

We therefore move on to count the number of endomorphisms whose image has certain properties, without
requiring that the kernel is trivial. The natural question we would like to answer is: “what is the probability
that a random endomorphism contains a given vector in its image?”. This question is much less frequently
addressed in the literature. The only related result we could find is:

Theorem 10.22 ([CR92], example 2.4). Let U and W be subspaces of (Fq)n of respective dimensions ` and
m. The number Xn(`,m) of endomorphisms f of (Fq)n such that for any 0 6= u ∈ U, f(u) /∈W is:

Xn(`,m) =
∑

k≥0

(−1)kq(
k
2)qn(n−k)qmk

(
l

k

)

q

We initially hoped that with U = (Fq)n and W = 〈x〉, Xn(n, 1) would count the number of endomorphism
such that f(y) 6= x. Unfortunately, this is not what Xn(`,m) counts. The problem is that 0 ∈ W , since W
is a vector space, and therefore Xn(`,m) counts the number of endomorphism that are injective on U , but
avoid W . This means that setting U = (Fq)n is useless, because then we would be counting permutations of
(Fq)n, and they cannot avoid W . We thus resorted to an ad hoc reasoning.

Lemma 10.23. Let F and G be two subspaces of (Fq)n of dimensions s and t respectively. The number of
endomorphisms f of (Fq)n such that:

1. The kernel of f has dimension k (with s ≤ k ≤ n− t),

2. F is contained in the kernel of f and

3. G is contained in the image of f ,

is: (
n− s
k − s

)

q

(
n− t
k

)

q

〈〈n− k〉〉q!

Proof. Let us fix the the kernel of f : let us call it U , and assume that it is of dimension k, with s ≤ k ≤ n−t.
By lemma 10.18, there are

(
n−s
k−s
)
q

possible kernels of dimension k.

Let V be a supplementary of U . The endomorphisms f are uniquely determined by their restriction fV
to V . Because G is contained in the image of f , then G is also contained in the image of fV . The question
then boils down to: “how many injective maps from V to (Fq)n whose image contains G are there?”. By
lemma 10.18 there are

(
n−t

n−k−t
)
q

possible images of fV . However, fV determines a particular basis of its

image, so there are therefore
(
n−t

n−k−t
)
q
· 〈〈n− k〉〉q! possible choices of fV . Multiplying by the number of

possible kernels yields the result.

Interestingly, the same arguments yields dual results, when the inclusions are reversed. A duality argu-
ment has eluded us, and we therefore give a direct counting argument.

Lemma 10.24. Let F and G be two subspaces of (Fq)n of dimensions (n− s) and (n− t) respectively. The
number of endomorphisms f of (Fq)n such that the kernel of f has dimension k and is contained in F , and
the image of f is contained in G is:

(
n− s
k

)

q

(
n− t
k − t

)

q

〈〈n− k〉〉q!

Proof. Let us first count such endomorphisms with a k-dimensional kernel, with t ≤ k ≤ n − s. There are(
n−s
k

)
q

possible kernels of dimension k. For each one, there are
(
n−t
n−k
)
q
〈〈n− k〉〉q! possible injective maps from

a supplementary of the kernel to G, and thus we obtain the result by multiplying these two numbers and
doing some easy “q-binomial” manipulations.

As an immediate corollary, we may remove the condition on the dimension of the kernel by summing
over all admissible kernel dimensions.

Corollary 10.25. Let F and G be two subspaces of (Fq)n of dimensions s and t respectively.

i) The number of endomorphisms f of (Fq)n such that F is contained in the kernel of f and G is contained
in the image of f is:

I(n, s, t) =

n−t∑

k=s

(
n− s
k − s

)

q

(
n− t
k

)

q

〈〈n− k〉〉q! (10.6)

165

10. A Toolbox for Multivariate Cryptanalysis

ii) The number of endomorphisms f of (Fq)n such that the kernel of f is contained in F and the image of
f is contained in G is I(n, n− t, n− s).

We conclude by establishing two useful recurrence relations for I(n, 0, 1) and I(n, 1, 1).

Lemma 10.26. For any n ∈ N, we have:

i) I(n, 0, 1) = (qn − 1) ·
(
q(n−1)2

+
(
qn−1 − 1

)
· I(n− 1, 0, 1)

)

ii) I(n, 1, 1) = qn(n−1) − 1

qn − 1
· I(n, 0, 1).

Proof. i) We first show that I(n, 0, 1) is governed by the relatively simple recurrence relation announced
in the statement of the lemma. Let M be the matrix representation (in any basis) of an endomorphism
f such that e1 ∈ Im f . The first row of M is then non-zero. There are thus qn − 1 possible first rows,
and we may assume w.l.o.g. that that M has the following shape:

M =




1 0

C D




Indeed, given an arbitrary first row, we may choose a particular basis of (Fq)n such that the matrix
representation of f in this basis has this particular shape. There are then two cases: either C = 0, and
in that case f(e1) = e1 so that D is not constrained, and there are q(n−1)2

possible D’s. Or C 6= 0, and
D must not be arbitrary. To deal with this more complicated case, we observe that there are qn−1 − 1
possible choices for C, and we consider a given choice. In this setting, e1 belongs to the image of f if
and only if −C belongs to the image of D. Thus we have established the recurrence relation:

I(n, 0, 1) = (qn − 1) ·
(
q(n−1)2

+
(
qn−1 − 1

)
· I(n− 1, 0, 1)

)
(?)

ii) We now prove that the number of matrices whose kernel contains a given non-zero vector x and whose
image does not contain a given non-zero vector y is I(n, 0, 1)/(qn−1), and this will establish the second
part of the lemma.

We choose two bases of (Fq)n, B1 = (x,x2 . . . ,xn), and B2 = (y,y2 . . . ,yn), and we consider the matrix
representation of an endomorphism meeting our requirements, with the input coordinates expressed
in B2 and expressing the output coordinates in B1. Because it vanishes on x, M necessarily has the
following shape:

M =




0 A

0 B




In order to have x /∈ ImM , we can either have A = 0, or have A 6= 0 and kerB ⊆ kerA. If A = 0, then
B can be arbitrary and this yields q(n−1)2

choices. If A is non-zero there are qn−1 − 1 possible choices
for A, and the kernel of A kernel has dimension n − 2. By corollary 10.25, the number of possible B
such that kerB ⊆ kerA is I(n− 1, 0, 1) Thus we have found:

qn(n−1) − I(n, 1, 1) = q(n−1)2

+
(
qn−1 − 1

)
· I(n− 1, 0, 1)

Then, using (?), we find:

I(n, 1, 1) = qn(n−1) − 1

qn − 1
· I(n, 0, 1)

Asymptotic Probability that a Given Vector is Contained in the Image. The probability pn that a given
vector x of dimension s is contained in the image of a random linear map is simply I(n, 0, 1)/qn

2

. This
probability converges to a finite limit different from 0 and 1 when n → +∞ (in fact, this probability is
greater than the probability that a random matrix is invertible, obviously). We have not been able to
demonstrate any definitive result, but we have a fairly good idea of what is going on.

166

10.7. Finite Vector Spaces Combinatorics

Conjecture 10.1. If f is a random endomorphism of (Fq)n, then:

lim
n→∞

P [e1 ∈ Im f] = lim
n→∞

I(n, 0, 1)

qn2 =

∞∑

k=0

(−1)kq−k(k+1)/2

We now give evidence that the conjecture is true. We check that I(1, 0, 1) = q − 1, and we set:

Jn =
I(n, 0, 1)

qn2 − qn2−n ,

and we find out that lemma 10.26, item i) translates to:

Jn+1 = q−n +
(
1− q−n

)2
Jn

With J1 = 1. We therefore define the sequence of polynomials:

P1 = 1 Pn+1 = Xn + (1−Xn)2Pn

and it is obvious that Jn = Pn(1/q). It is also quite obvious that Pn+1 − Pn is a multiple of Xn. This
naturally extends by induction, so that Pn − Pn0

is a multiple of Xn0 for any n > n0. This means that

Pn(1/q) approximates the limit of I(n, 0, 1)/qn
2

with precision q−n. The key (empirical) observation is that
Pn coincides with

∑
(−1)kXk(k−1)/2 up to degree n − 1 (i.e., all the terms of Pn of degree less than n are

correct). For instance:

P10 = 1−X +X3 −X6 + . . .

P30 = 1−X +X3 −X6 +X10 −X15 +X21 −X28 + . . .

P60 = 1−X +X3 −X6 +X10 −X15 +X21 −X28 +X36 −X45 +X55 + . . .

P100 = 1−X +X3 −X6 +X10 −X15 +X21 −X28 +X36 −X45 +X55 +X78 −X91 . . .

We thus in fact conjecture that:

lim
n→∞

Pn(1/q) =

∞∑

k=0

(1)kq−k(k+1)/2

The problem remains to find a proof that the first terms of Pn actually coincide with those of
∑

(1)kq−k(k+1)/2.
A proof of this assertion precisely remains to be found...

Sums of Singular Endomorphisms. We conclude this section by counting the number of pairs of endomor-
phisms vanishing on certain points, and whose sum is singular.

Lemma 10.27. Let x be a non-zero vector of (Fq)n. The number of pairs of endomorphisms f, g of (Fq)n

such that f(x) = 0, g /∈ GLn (Fq), and f + g /∈ GLn (Fq) is:

q2n(n−1) ·
(

1 + (qn − 1) · (1− λ(n− 1))
2
)

Proof. Without loss of generality, we assume that x = e1. Let A and B be matrix representations of f and
g. If B · x = 0, then the sum A+B vanish on x and is thus singular. This already makes q2n(n−1) pairs of
matrices. Now, if B · x 6= 0, then we fix the image of B on x (qn − 1 choices), and we assume that it is e1.
This yields:

A =




0 A1

0 A2




B =




1 B1

0 B2




Since B has a non-trivial kernel, then B2 necessarily has a non-trivial kernel as well. For the same reason,
the dimension of the kernel of the sum A+B is in fact the dimension of the kernel of A2 +B2:

A+B =




1 A1 +B1

0 A2 +B2




167

10. A Toolbox for Multivariate Cryptanalysis

Thus, A1 and B1 are arbitrary (qn−1 choices for each). The submatrix B2 is a arbitrary but non-singular

(and there are q(n−1)2 − 〈〈n− 1〉〉q! of those), and for each possible choice of B2, the number of possibles A2

is precisely the number of non-singular matrices of dimension n− 1, because M 7→M +B2 is a permutation
of Mn−1 (Fq). Putting things together we find:

Nn = q2n(n−1) ·
(

1 + (qn − 1) · (1− λ(n− 1))
2
)

10.7.1 Random Quadratic Forms

We conclude by quickly investigating a few properties of random quadratic forms, i.e., of quadratic forms
whose coefficient have been uniformly chosen at random in Fq. We start by discussing the probability that
a random quadratic forms f is non-degenerate. In odd characteristic (resp. in characteristic two), the polar
form is a random symmetric matrix (resp. skew-symmetric). We therefore use the two following results
about random (skew-)symmetric matrices.

Lemma 10.28 ([Mac69], theorem 2). Let N(n, r) denote the number of symmetric matrices of size n × n
over Fq and of rank r.

N(n, 2s) =

s∏

i=1

q2i

q2i − 1
·

2s−1∏

i=0

(
qn−i − 1

)

N(n, 2s+ 1) =

s∏

i=1

q2i

q2i − 1
·

2s∏

i=0

(
qn−i − 1

)

Lemma 10.29 ([Mac69], theorem 3). Let N0(n, r) denote the number of skew-symmetric matrices of size
n× n over F2k and of rank 2s.

N0(n, 2s) =

s∏

i=1

q2i−2

q2i − 1
·

2s−1∏

i=0

(
qn−i − 1

)

N0(n, 2s+ 1) = 0

In odd characteristic, lemma 10.28 is the tool we need, as non-degenerate quadratic forms are in one-to-
one correspondance with non-singular symmetric matrices.

P [f non degenerate] = q−
n(n+1)

2 ·
n/2∏

i=1

q2i

q2i − 1
·
n∏

i=1

(
qi − 1

)
=

λ(q, n)

λ (q2, n/2)
(10.7)

We find thanks to equation (10.4) that:

lim
n→+∞

P [f non degenerate] = 1− 1

q
− 1

q3
+

1

q4
+O

(
1

q5

)
(10.8)

In characteristic two, if n is odd, then the quadratic forms are necessarily degenerate. On the other hand,
if n is even, then lemma 10.29 tells us something nice:

P [f non degenerate] = q−
n(n−1)

2 ·
n/2∏

i=1

q2i−2

q2i − 1
·
n−1∏

i=0

(
qn−i − 1

)
=

λ(q, n)

λ (q2, n/2)

We also determine, when q is even and n is odd, the probability that the polar form of a random quadratic
form is of maximal rank (i.e., n− 1).

P
[
rank f = n− 1

∣∣ n = 1 mod 2
]

= q−
n(n−1)

2 ·
(n−1)/2∏

i=1

q2i−2

q2i − 1
·
n∏

i=2

(
qi − 1

)

=
λ(q, n)

λ(q2, (n− 1)/2)
· 1

1− 1/q

168

Chapter 11

Exhaustive Search for Boolean Equations

In this chapter we discuss the practical complexity of the problem of solving multivariate quadratic
equations over F2. Over such a small field, Gröbner basis algorithms are usually less efficient
than exhaustive search. We revisit this venerable technique and push it to its limits. This joint
work with Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, Adi Shamir
and Bo-Yin Yang resulted in a publication at CHES’2010 [BCC+10].

Solving a system of m polynomial equations in n variables over Fq is a natural mathematical problem
that has been investigated by several research communities.

The hardness of this problem, and in particular the fact that its random instances seems as hard as
they get, has been used by cryptographers to design many public-key cryptographic schemes [MI88, Pat96b,
PGC98a, KPG99, PCG01a, PCG01b, WHL+05, DWY07, GMK08, BCD08, CBD+09], but also symmetric
primitives, such as the stream cipher QUAD [BGP06] or the hash function MQ-Hash [BRP07].

Conversely, from a cryptanalytic point of view, it is sometimes possible to attack cryptosystems by writing
down a system of equations and finding its solutions using off-the-shelf generic solvers (such as SAT solvers
or Gröbner basis algorithms). The AES has been claimed to be broken this way [CP02], but the claim has
been debunked in [CL05]. However, KeeLoq [CBW08] and some other weak block ciphers can be broken this
way. Furthermore, an algebraic technique is claimed to yield a faster collision attack on SHA-1 reduced to
58 rounds [SKPI07], as well as on the Hamsi hash function [DS10].

Since the pioneering work of Buchberger [Buc65], Gröbner basis techniques have been the most prominent
tool for solving systems of polynomial equations, especially after the emergence of faster algorithms such
as F4 or F5 [Fau99, Fau02], which broke the first HFE challenge [Pat96b, FJ03]. Cryptographers indepen-
dently rediscovered some of the ideas underlying several Gröbner basis algorithms under the form of the XL
algorithm [CKPS00] and its “mutant” variants. They also introduced techniques to deal with special cases,
particularly that of sparse systems [vRS06, Sem07, Rad07].

One of the striking features of Gröbner basis algorithms is that their complexity is only marginally
affected by the size of the field. In her PhD thesis [Bar04], Bardet determined the number of field operations
performed by a simplified version of the F5 algorithm to compute the Gröbner basis of an ideal spanned
by n quadratic equations in n variables. She finds this number to be of order 24.295n, independently of the
size of the field. Therefore, as soon as q ≥ 20, running a Gröbner basis algorithm should be asymptotically
faster than exhaustive search. When q = 2, conversely, we expect Gröbner basis algorithm to be slower than
exhaustive search. This is illustrated in a dazzling way by the following example: the implementation of F4

in MAGMA-2.16 [BCP97], often cited as the best Gröbner-basis solver commercially available at the time of
this writing 1, will completely use up all the available RAM (64 GB) to solve “just” 25 cubic equations in
as many variables over F2, and eventually fail. Exhaustive search on the other hand takes 0.001 seconds to
solve the same problem. This also illustrates the fact that the computation of a Gröbner basis is often a
memory-bound process. Since memory is usually a scarce resource, sophisticated techniques can be inferior
in practice to exhaustive search, which uses almost no memory (and is parallelizable at will).

This is not completely the end of the story though. In particular, we know from §10.6.1 that Gröbner-
basis methods have an advantage on overdetermined systems (with man more equations than unknowns)
and on systems with certain algebraic “weaknesses”, such as HFE public keys.

All-in-all, small fields, in particular F2, are an unfavorable setting for Gröbner basis algorithms, and a
favorable setting for brute force. It is also an interesting setup, because field operations in F2 are particularly
simple to implement, making it a tempting ground to design new cryptographic primitives both in hardware
and software. Multivariate public-key cryptography has often been advertized to be easy to implement on
smartcards.

1. no competitive implementation of F5 is publicly available

169

11. Exhaustive Search for Boolean Equations

Questions. Our purpose in this chapter is to investigate, theoretically and practically, how fast we can
solve systems of multivariate polynomial equations over F2. We focus our study on exhaustive search, i.e.,
algorithms that essentially enumerate (F2)

n
and check whether each individual assignment of the variable

satisfies all the equations. The question we answer are: how fast can it get in practice? is it possible
to improve on the folklore exhaustive search techniques? Can we get better performance using different
hardware such as GPUs? Is it possible to solve in practice, with a modest budget, a system of 64 equations
in 64 unknowns over F2? Less than 15 years ago, this was considered so difficult that it even underlied the
security of a particular signature scheme [Pat96a].

To illustrate our point, let us consider the recent algebraic attack against Hamsi of Dinur and Shamir [DS10].
The attack critically relies on the ability to enumerate all the possible values of 62 degree-6 polynomials in
32 variables in less time than required to evaluate the Hamsi compression function 232 times, which would
require 245 bit operations (because one compression function evaluation requires 10500 bit operations). If
this polynomial evaluation were done (very) naively, it would require 62 ·

(
32
6

)
· 232 = 257 bit operations,

and there would be no attack. Using an optimized Moebius transform (see §11.2), Dinur and Shamir bring
this cost down to 62 · 7 · 232 = 240.7 bit operations, and their procedure is faster than exhaustive search on
the compression function. This illustrates that there are several, more-or-less optimal ways to perform the
exhaustive search on boolean polynomial, and that the speed of exhaustive search does matter.

Contributions. Our contribution is twofold. On the theoretical side, we present a new type of exhaustive
search algorithm which is both asymptotically and practically faster than existing techniques (but competes,
probably in a favorable way, with [DS10]). In particular, we show that finding all the zeroes of a single
degree-d polynomial in n variables over F2 requires just d · 2n bit operations. We then extend this technique
and show how to find all the common zeroes of m random quadratic polynomials in log2 n·2n+2 bit operations,
which is only slightly higher. Surprisingly, this complexity is independent of the number of equations m.

On the practical side, we have implemented our new algorithms on x86 CPUs and on NVIDIA GPUs.
Our CPU implementation is fairly optimized, and is capable of testing a bit more than two (F2)

n
-vectors

per CPU cycle. Yet our GPU implementation running on one single NVIDIA GTX 295 graphics card runs
up to 9 times faster than the CPU implementation using all four cores of an Intel Core i7 at 3 GHz, one of
the fastest CPUs available at the time of this study (summer 2010). We can solve 48+ quadratic equations
in 48 binary variables using just an NVIDIA GTX 295 graphics card in 21 minutes. This device is presenlty
available for about $500. It would be 36 minutes for cubic equations and two hours for quartics.

To evaluate the practical relevance of this level of performance, we determine the budget necessary to
solve several size of instances on the cloud (more precisely, on the Amazon Elastic Compute Cloud using
GPU instances). At the time of this writing, each “GPU instance” (on the EC2 Cloud) is equipped with
8 Xeon core at 2.93Ghz and two NVIDIA Tesla M2050 GPUs (which are at least as fast as the NVIDIA
GTX 295 that we tested). Such an instance is thus capable of testing about 239 candidate per second,
and is available at the rate of $0.74 per hour. It follows that the 64-bit signature challenge [Pat96a] can
thus be broken in 9320 computing hours, with a budget of $7000. This computation may be completed in
a single month using 12 instances in parallel. This show with a concrete example that (relatively simple)
computations requiring 264 operations could be carried out in practice with readily available hardware and
a modest budget.

More interestingly, let us consider a quadratic system of 80 equations in 80 variables over F2, supposedly
offering 80 bits of security, which is the standard security level as of 2011. Solving this system requires 610
millions computing hours, which is certainly large, and which would cost about 450 millions of dollars. It
would nevertheless require a bit more than 20 years to a present actual supercomputer (the Tiahne-1A) to
solve the problem...

In addition, our results show that the performance/price ratio of the GPU implementation running on
an NVIDIA GTX 295 board is three times better than that of the CPU implementation running on the most
price-efficient CPU (an AMD Phenom). We also highlight the fact that GPUs can been used successfully
by the cryptographic community to obtain very efficient implementations of combinatorial algorithms or
cryptanalytic attacks, in addition to the more numeric-flavored cryptanalysis algorithm demonstrated by the
implementation of the ECM factorization algorithm on GPUs [BCC+09].

Lastly, our implementations are (by some orders of magnitude) the fastest existing generic solvers for
(low-degree, dense) systems of polynomial equations over F2.

11.1 Generalities

In this chapter, we will mostly be working over the finite vector space (F2)
n
. The canonical basis is

denoted by (e0, . . . , en−1). We use ` to denote addition in (F2)
n
, and + to denote integer addition. We use

i� k (resp. i� k) to denote binary left-shift (resp. right shift) of the integer i by k bits.

170

11.1. Generalities

i GrayCode (i)

0 000
1 001
2 011
3 010
4 110
5 111
6 110
7 100
8 101

Table 11.1: First 8 numbers in our “usual” Gray Code.

11.1.1 Gray Code

Gray Codes play a crucial role in this chapter. Recall that a Gray Code is binary numeral system where
two successive values differ in only one bit (or equivalently, a permutation of (F2)

n
such that two consecutive

vectors differ in only one bit). There are many Gray Codes with various properties, but we will use the most
“standard” one

Definition 11.1. GrayCode (i) = i` (i� 1).

Table 11.1 shows the first 8 numbers of the Gray Code. It requires some thinking to get convinced that
definition 11.1 actually yields a Gray Code. However, it is a fairly standard construction therefore we will
not elaborate further.

Let us denote by bk(i) the index of the k-th lowest-significant bit of i set to 1, or −1 if the hamming
weight of i is less than k. For example, bk(0) = −1, b1(1) = 0, b1(2) = 1 and b2(3) = 1. The following
property is also standard (this could be an alternate definition).

Proposition 11.1. For i ∈ N, GrayCode (i+ 1) = GrayCode (i)` eb1(i+1).

Gray Codes have other useful properties. For instance, it easily follows from the definition that GrayCode (i` j) =
GrayCode (i) `GrayCode (j). The following result expresses how the Gray Code behaves with respect
to left-shifting.

Lemma 11.2. For j ∈ N:

GrayCode
(
2k + j · 2k+1

)
=

{
GrayCode

(
2k
)
` (GrayCode (j)� (k + 1)) if j is even

GrayCode
(
2k
)
` (GrayCode (j)� (k + 1))` ek if j is odd.

Proof. It should be clear that 2k+j·2k+1 and 2k`j·2k+1 in fact denote the same number. Also, GrayCode is
a linear function on (F2)

n
. Thus it remains to establish that GrayCode

(
j · 2k+1

)
= GrayCode (j)� k + 1

(resp. ek ` (GrayCode (j)� k + 1)) when j is even (resp. odd). Again, j · 2k+1 = j � (k + 1), and by
definition we have:

GrayCode
(
j · 2k+1

)
= GrayCode (j � (k + 1)) = (j � (k + 1))` ((j � (k + 1))� 1)

Now, we have :

(j � k + 1)� 1 =

{
(j � 1)� k + 1 when j is even

((j � 1)� k + 1)` ek when j is odd

and the result follows.

11.1.2 A Framework for Enumeration Algorithms

We are interested in enumeration algorithms, i.e., algorithms that evaluate a polynomial f over all
the points of (F2)

n
to find its zeroes. Such an enumeration algorithm is composed of two functions:

Init and Next. Init (f, x0, k0) returns a State containing all the information the enumeration algo-
rithm needs for the remaining operations. The resulting State is configured for the evaluation of f over
x0` (GrayCode(i)� k0), for increasing values of i. Next(State) advances to the next value and updates
State. Three values can be directly read from the state: State.x, State.y and State.i. These are linked at
all times by the following three invariants:

171

11. Exhaustive Search for Boolean Equations

i) State.y = f(State.x)

ii) State.x = x0 ` (GrayCode(State.i)� k0).

iii) Next(State).i = State.i+ 1.

Algorithm 11.1 Main loop common to all enumeration algorithms.

1: procedure Zeroes(f)
2: State← Init(f, 0, 0)
3: for i from 0 to 2n − 1 do
4: if State.y = 0 then State.x is a zero of f
5: Next(State)
6: end for
7: end procedure

Finding all the zeroes of f is then achieved with Algorithm 11.1. In this chapter, most functions are
described in an “object-oriented” way: Init and Next explicitly handle States, and all the (global) variables
occuring inside a function are in fact part of the state. This allows to unambiguously run several copies of the
enumeration algorithm on (say) different polynomials, and disambiguates some intricate recursive situations.
We could have made the dependence on the state explicit:

1: function Some-Function(State)
2: State.x← 2State.x +

√
State.y − 1

3: end function

But for the sake of less cumbersome notations, we make this dependence implicit:

1: function Some-Function(State)
2: x← 2x +

√
y − 1

3: end function

11.2 Known Techniques for Quadratic Polynomials

We briefly discuss the enumeration techniques we know of.

11.2.1 Naive Evaluation.

The simplest way to implement an enumeration algorithm is to evaluate the polynomial f from scratch
at each point of (F2)

n
. If f is of degree d, this requires (d− 1) AND per monomial, and nearly one XOR per

monomial. Since the evaluation takes place many times for the same f with different values of the variables,
we will usually assume that the polynomial can be hard-coded, and that multiplication of a monomial by
its coefficient comes for free. Each call to Next would then require at most d ·

(
n
d

)
bit operations, 1/d of

which being XORs and the rest being ANDs (not counting the cost of enumerating (F2)
n
, i.e., incrementing

a counter). This can be improved a bit, using what is essentially a multivariate Hörner evaluation technique.
If f is quadratic, it can be written:

f(x) = c`

n−1∑

i=0

xi ·


cj `

n−1∑

j=i+1

aij · xj


 (11.1)

If f is cubic, it can be written:

f(x) = c`

n−1∑

i=0

xi ·


cj `

n−1∑

j=i+1

xj ·


cij `

n−1∑

k=j+1

aijk · xk






And so on and so forth. The required numbers of operations in this representation is given by:

NAND =

d−1∑

k=1

(
n

k

)
NXOR =

d∑

k=1

(
n

k

)

This naive method is not without its advantages, chiefly (a) insensitivity to the order in which the points
of (F2)

n
are enumerated, and (b) we can bit-slice and get a speed up of nearly ω, where ω is the maximum

width of the CPU logical instructions.

172

11.3. A Faster Enumeration Algorithm

11.2.2 The Folklore Differential Technique.

It was pointed out in §10.2.3 that once f(x) is known, computing f(x` ei) amounts to compute ∂f
∂i (x),

and then perform an addition. If f is quadratic, and in this case only, this derivative happens to be an affine
function which can be efficiently evaluated by computing a vector-vector product and a few scalar additions.
This strongly suggests to evaluate f on (F2)

n
using a Gray Code, and leads to Algorithm. 11.2.

Algorithm 11.2 The Folklore differential enumeration algorithm.

1: function Init(f, k0,x0)
2: i← 0
3: x← x0

4: y← f (x0)
5: for all 0 ≤ k ≤ n− 1 do
6: Dk ← Dekf
7: ck ← f(0)` f(ek)
8: end for
9: return State

10: end function

11: function Next(State)
12: i← i+ 1
13: let k = b1(i) in
14: let z = DotProduct (Dk,x)` ck in
15: y← y ` z
16: x← x` ek+k0

17: end function

We believe this technique to be folklore (it was told to us by J.-C. Faugère), and in any case it appears
more or less explicitly in the existing literature [BBG07]. Each call to Next requires n ANDs, as well as
n + 2 XORs, which makes a total bit operation count of 2(n + 1). This is about n/4 times less than the
naive method applied to a quadratic f .

11.2.3 A Fast Fourrier Transform for Boolean Functions : the Moebius Transform

Any boolean function f : (F2)
n → F2 can be represented by a multivariate polynomial in n variables

with coefficients in F2. This particular representation of f is usually called the algebraic normal form of f .
Other representations of f would be possible, for instance by its truth table. In algebraic normal form, f
can be written:

f(x1, . . . ,xn) =
∑

a∈(F2)n

g(a1, . . . ,an)

n∏

i=1

xai
i

The function that given the truth table of f returns the truth table of g (or equivalently the coefficients
of the ANF of f) is called the Moebius transform (observe the analogy with the Discrete Fourier Transform).
Unlike the usual DFT on polynomials, the Moebius transform is involutive (i.e., it is its own inverse), and
just like the DFT it can be computed by a “fast” algorithm with O (n · 2n) XOR operations, given in [Jou09b,
§ 9.2]. Algorithm 11.3 shows the pseudo-code. Note that this is not an enumeration algorithm, but can be
used for this purpose (in the g-to-f direction). Its total (time) complexity is n · 2n XOR operations on
one bit, plus n · 2n integers additions, and its total space complexity is 2n bits. This algorithm can be
implemented with decent efficiently (see [Jou09b]), but we suspect that its performances are affected by the
available memory bandwidth. Also, it cannot take advantage of the possibility that the degree of f is small
(i.e., that g is mostly zero).

Dinur and Shamir subsequently proposed in [DS10] an improved version of the Moebius Transform, which
is degree-aware and offer better performances on quadratic polynomials.

11.3 A Faster Enumeration Algorithm

In this section, we present a new algorithm which is both asymptotically and practically faster than other
known exhaustive search techniques in evaluating a polynomial of any degree on all the points of (F2)

n
.

173

11. Exhaustive Search for Boolean Equations

Algorithm 11.3 Moebius Transform algorithm.

Require: Input truth table of the boolean function f , with 2n entries
Ensure: Overwrites the input with Moebius transform of f .

1: for i from 0 to n− 1 do
2: let Sz = 2i and Pos = 0 in
3: while Pos < 2n do
4: for j from 0 to Sz − 1 do
5: f [Pos+ Sz + i]← f [Pos+ Sz + j]` f [Pos+ j]
6: end for
7: Pos← Pos+ 2 · Sz
8: end while
9: end for

11.3.1 Faster Enumeration in Degree Two

In Algorithm 11.2, the dominating part is the dot product computed in Next (on line 14). It would
be great if it were possible to exploit the fact that x is only slightly changed between two calls to Next.
The problem is that k (defined on line 13) is never the same in two consecutive iterations. Now assume we
modify the function, by storing the last value of z computed with each value of k:

1: function Next(State)
2: i← i+ 1
3: let k = b1(i) in
4: z[k]← DotProduct (Dk,x)` ck
5: x[k]← x
6: y← y ` z[k]
7: x← x` ek
8: end function

In the modified function, on line 4, the previous value of z[k], when it exists, is still available, and this
value is the dot product of Dk with x[k] (which is the previous value of x for the same value of k). Thus,
the new value of z[k] is going to be z[k]`Dk · (x` x[k]). The key observation is proposition 11.3 below, as
its consequence is that the computation of the scalar product can be done in constant time, with two ANDs
and one XOR. We will need to discuss the values of some variables inside functions, and in order to avoid
any ambiguity, we denote by x> the value of x at the begining of the function (before any instruction is
exectued).

Proposition 11.3. At the beginning of the function, x> ` x[k]> has hamming weight two.

Proof. x[k0]> is only accessed and modified when b1
(
i> + 1

)
= k0, for any given k0. The integers u such

that b1(u) = k0 are precisely the integers written u = 2k0 + j · 2k0+1, for j ≥ 0. Then, if we consider the
values of the variables at the beginning of the function, by invariant ii, we have for some j:

x> = GrayCode
(
2k + (j + 1) · 2k+1

)

x[k]> = GrayCode
(
2k + j · 2k+1

)

Thus, it follows from lemma 11.2 that just before line 1 is executed, we have:

x> ` x[k]> = ek ` (GrayCode(j)� (k + 1))` (GrayCode(j + 1)� (k + 1))

= ek ` ((GrayCode (j)`GrayCode (j + 1))� (k + 1))

and by lemma 11.1,
x> ` x[k]> = ek ` ek+1+b1(j+1) (11.2)

By looking closely at the proof of proposition 11.3, we can write an optimized differential algorithm.
However, before that, a few details still need to be addressed.

– The first time that b1(i) = k, then z[k] is not defined. In this case, we in fact know that i = 2k.
Therefore, special care must be taken to initialize z[k] when b2(i) = −1, which is equivalent to saying
that the hamming weight of i is less than two. In that case, by invariant ii, we have:

x =

{
e0 if i = 1

ek ` ek−1 if i = 2k and k > 0

174

11.3. A Faster Enumeration Algorithm

– Also note that with the notation k1 = b1(i) and k2 = b2(i), then if b2(i) 6= −1, equation (11.2) becomes:

x` x[k] = ek1 ` ek2

And thus,

DotProduct(Dk1
,x` x[k1]) = Dk1

[k1]`Dk1
[k2]

This last formula can be further simplified by observing that Dk1
[k1] = 0.

All these considerations lead to Algorithm 11.4. Note that the conditional statement could be removed
by unrolling the loop carefully. The critical part of the algorithm is therefore an extremely reduced section
of the code, that performs two XORs, increment a counter, and evaluate b1 as well as b2. The cost of
maintaining i, k1 and k2 can again be reduced greatly by unrolling the loop.

Algorithm 11.4 An optimized differential enumeration algorithm for quadratic polynomials.

1: function Init(f, k0,x0)
2: i← 0
3: x← x0

4: y← f(x0)
5: for all 0 ≤ k ≤ n− 1 do
6: Dk ← Dekf
7: ck ← f(0)` f(ek)
8: end for
9: z[0]← c0

10: for all 1 ≤ k ≤ n− 1 do
11: z[k]← Dk[k − 1]` ck
12: end for
13: end function

14: function Next(State)
15: i← i+ 1
16: k1 = b1(i)
17: k2 = b2(i)
18: if k2 6= −1 then z[k1]← z[k1]`Dk1 [k2]
19: y← y ` z[k1]
20: x← x` ek0+k1

21: end function

11.3.2 Recursive Generalization to Any Degree

It is possible to generalize Algorithm 11.4 so that it handles polynomials of any degree. The core idea is
that in this algorithm, a given derivative is evaluated on the consecutive points of something that looks very
much like a Gray code. This suggest using the technique recursively.

To make this thing explicit, we introduce a new State for each of the derivatives of f used in the
enumeration of f . Instead of storing x[k] and z[k], we will access Derivative[k].y and Derivative[k].y. Also,
Derivative[k].i will count the number of times b1(k) happened. We now reformulate our new algorithm in this
framework. However, now, the x0 and k0 parameters appearing in invariant ii will play a more important
role. Algorithm 11.5 works for polynomials f of any degre. The two functions Init[d] and Next[d] are
designed to handle degree-d polynomials.

11.3.3 Correctness

At first glance, it may not seem trivial that the combination of algorithms 11.1 and 11.5 results in a
method for finding all the zeroes of f . We thus prove by induction on d (the degree of f) that the two

functions Init[d] and Next[d] of Algorithm 11.5 maintain and preserve the three invariants of enumeration
algorithms, defined in §11.1.2. The base case is when f is a constant polynomial (i.e., d = 0). we hope
that the reader will be convinced that the “base case” of the algorithm correctly enumerates the values of a
constant polynomial...

In the recursive case where f is not constant, it is not difficult to check that the three invariants are
enforced at the end of Init[d]. Let us now assume that f has degree d ≥ 1. Let us assume that we are in the
middle of the main loop, and that the invariants defining our enumeration algorithm hold at the beginning
of Next[d]. Our objective is to show that they still hold at the end, and that the state has been updated

175

11. Exhaustive Search for Boolean Equations

Algorithm 11.5 The recursive differential enumeration algorithm for all degrees.

1: function Init[d](f, k0, x0)
2: i← 0
3: x← x0

4: y← f(x0)
5: if d > 0 then

6: Derivative[0]← Init[d−1]

(
∂f

∂k0
, k0 + 1, x0

)

7: for k from 1 to n− k0 − 1 do

8: Derivative[k]← Init[d−1]

(
∂f

∂k + k0
, k + k0 + 1, x0 ` ek0+k−1

)

9: end if
10: end function

11: function Next[d](State)
12: i← i+ 1
13: let k = b1(i) in
14: x← x` ek+k0

15: if d > 0 then
16: y← y `Derivative[k].y

17: Next[d−1] (Derivative [k])
18: end if
19: end function

correctly. Let us then focus on the Next[d] part of algorithm 11.5. Invariant iii is easily seen to be enforced
by line 12, while invariant ii follows from line 14, and from lemma 11.1. The non-trivial part is to show that
invariant i holds. The three following lemma are devoted to this task. We will always denote by x> (resp.
x⊥) the value that the x variable had at the begining of the execution of the function (resp. at the end).

Lemma 11.4. After k is updated on line 13 of Next[d], we have:

i> + 1 = 2k +Derivative[k].i> × 2k+1.

Proof. It is not difficult to see that the `-th value of j such that b1(j) = k is 2k + `× 2k+1. The statement
of the lemma is equivalent to saying that Derivative[k].i> counts the number of time where b1(i) = k
happened since the beginning of the main loop (not counting i>+ 1). This simply follows from the fact that

Derivative[k].i> counts the number of times Next[d−1] (Derivative[k]) has been called.

Lemma 11.5. Let Π : (F2)
n → (F2)

n
denote the projection that sets the (k+k0)-th coordinate to zero. After

k is updated on line 13, and before x is updated on line 14 of Next[d], we have:

Π
(
x> `Derivative[k].x>

)
= 0

Proof. By assuming that invariant ii holds for the current state at the entry of Next[d], we have:

x> = x0 `
(
GrayCode

(
i>
)
� k0

)
.

Because after line 13, k is set to b1
(
i> + 1

)
, it follows from lemma 11.1 that:

x> = x0 `
((

GrayCode
(
i> + 1

)
` ek

)
� k0

)

= x0 ` ek+k0 `
(
GrayCode

(
i> + 1

)
� k0

)

Then, because lemma 11.4 grants us: i> + 1 = 2k +Derivative[k].i> × 2k+1, this becomes:

x> = x0 ` ek+k0
`
(
GrayCode

(
2k +Derivative[k].i> × 2k+1

)
� k0

)

Applying lemma 11.2 gives:

Π
(
x>
)

= Π
(
x0 `

(
GrayCode

(
2k
)
� k0

)
`

(
GrayCode(Derivative[k].i>)� (k0 + k + 1)

))

We now distinguish two cases.

176

11.3. A Faster Enumeration Algorithm

– Either k > 0, and since ∂f
∂k+k0

is of strictly smaller degree than f , then by induction hypothesis on
Derivative[k], invariant ii grants:

Derivative[k].x> = x0 `

(
GrayCode

(
Derivative[k].i>

)
� k + k0 + 1

)
` ek+k0−1

And thus:

Π
(
x> `Derivative[k].x>

)
= Π

((
GrayCode

(
2k
)
� k0

)
` ek+k0−1

)

= Π
((
ek+k0

` ek+k0−1

)
` ek+k0−1

)

= 0

– Or k = 0, and by induction hypothesis invariant ii yields:

Derivative[0].x> = x0 `

(
GrayCode

(
Derivative[0].i>

)
� k0 + 1

)

Next,

Π
(
x> `Derivative[0].x>

)
= Π

(
GrayCode

(
2k
)
� k0

)

= Π (ek0
)

= 0

Lemma 11.6. We have y⊥ = f(x⊥). In other terms, invariant i is preserved.

Proof. By induction hypothesis on Derivative[k], invariant i :

Derivative[k].y> =
∂f

∂k + k0
(Derivative[k].x>)

However, because we are in characteristic two, we have: ∂f
∂k+k0

= ∂f
∂k+k0

◦ Π, and lemma 11.5 in fact grants
us:

Derivative[k].y> =
∂f

∂k + k0

(
x>
)

So, this yields (using lemma 11.1):

y⊥ = y> `
∂f

∂k + k0

(
x>
)

= f
(
x>
)
` f

(
x>
)
` f

(
x> + ek+k0

)

= f
(
x⊥
)

11.3.4 Time and Space Complexity Considerations

It should be clear from the description of Next[d] that it has complexity O (d). Therefore, the complexity
of enumerating all the values of f on (F2)

n
can be done with complexity O (d · 2n). What is the space

requirement of the algorithm? The answer to this question is twofold: there is an internal state that gets
modified by the algorithm, and that correspond to the y field of all the non-constant derivatives. There is
also an array of constants, which is only read from the memory, and that correspond to the y field of degree-d
derivatives.

Init stores one bit per degree-d derivative ∂f/∂i1∂i2 . . . ∂id, with 1 ≤ i1 < i2 < · · · < id ≤ n. The
number of such tuples (i1, i2, . . . , id) is known to be

(
n
d−1

)
. This yields the following result:

Proposition 11.7. The algorithm allocates

d−1∑

i=0

(
n

i

)
bits of internal state and

(
n

d

)
bits of constants

Numerical Results. For instance, to enumerate 64 quadratic polynomials in 64 variables simultaneously,
520 bytes of internal state and 16128 bytes of constants are needed. For the Hamsi algebraic attack, where
62 degree-6 polynomials in 32 variables are enumerated, 1.8 Megabytes of internal state and 6.7 Megabytes
of constants are required.

177

11. Exhaustive Search for Boolean Equations

11.3.5 An iterative Version

Algorithm 11.5 is (relatively) easy to prove correct, but does not lend itself well to an efficient imple-
mentation. We therefore move on to writing an iterative version of Algorithm 11.5. This iterative version
allows more optimization, such as the removal of extra useless work, and is generally easier to think about
with performance in mind.

Algorithm 11.6 An equivalent version of Next.

1: function Next2(State)
2: i← i+ 1
3: let k = b1(i) in
4: if i 6= 2k then Next2 (Derivative [k])
5: x← x` ek+k0

6: y← y `Derivative[k].y
7: end function

But first, we introducce the function Next2 (Algorithm 11.6). It does exactly the same thing as Next,
but in a slightly different way. Instead of calling Next at the end, it calls it at the beginning, except the first
time a given value of k is reached (to avoid calling it an extra time at the begining). We can therefore work
on Next2 from now on. A first remark is that maintaining x is required by the invariants, but is otherwise
useless for the actual computation. A first step is to completely remove x from the algorithm. Less obviously,
we can also avoid maintaining i. To see that, we first need an equivalent of lemma 11.4 adapted to Next2,
the proof of which is left to the reader.

Lemma 11.8. After k is updated on line 3 of Next2, we have:

i> + 1 = 2k +
(
Derivative[k].i> + 1

)
× 2k+1.

It is an easy consequence of lemma 11.8 that in Next2, after k is updated on line 3, we have for any j:

bj(Derivative[k].i+ 1) = bj+1(i> + 1).

Thus, it is possible to avoid storing the i values, except in the main loop, and to re-generate them on-
the-fly by evaluating bj on the index of the main loop. These computations, although taking amortized
constant time, can be made negligible by unrolling. To make notations less heavy, we introduce the following
shorthand:

D[k1, k2, . . . , k`] := State.Derivative[k1].Derivative[k2]Derivative[k`].y

With this notation, Algorithm 11.7 is just an unrolled version of the Algorithm 11.5 in which all the
useless operations have been removed.

Algorithm 11.7 Iterative algorithm for all degrees.

1: procedure Zeroes(f)

2: State← Init[d](f, 0, 0)
3: for i from 0 to 2n − 1 do
4: if State.y = 0 then GrayCode(i) is a zero of f
5: let k1 = b1(i+ 1) in
6: let k2 = b2(i+ 1) in

7:
...

8: let kd = bd(i+ 1) in
9: if kd > −1 then D [k1, . . . , kd−1]← D [k1, . . . , kd−1]`D [k1, . . . , kd−1, kd]

10:
...

11: if k3 > −1 then D [k1, k2]← D [k1, k2]`D [k1, k2, k3]
12: if k2 > −1 then D [k1]← D [k1]`D [k1, k2]
13: y← y `D [k1]
14: end for
15: end procedure

178

11.4. Finding the Common Zeroes of Several Multivariate Polynomials

11.4 Finding the Common Zeroes of Several Multivariate Polynomials

In the previous section, we discussed how to enumerate a single polynomial. We now move on to the
enumeration of several polynomial simultaneously.

We will use several time the following simple idea: all the techniques we discussed previously perform
a sequence of operations that is independent of the coefficients of the polynomials. Therefore, m instances
of Algorithm 11.7 could be run in parallel on f1, . . . , fm. All the parallel runs would execute the same
instruction on different data, making the parallel combination efficiently implementable on any architectures
with registers, not to mention vector or SIMD units. In each iteration of the main loop, it is easy to check
if all the polynomials vanished on the current point of (F2)

n
. Evaluating all the m polynomials in parallel

using Algorithm 11.7 would require roughly m · d · 2n bit operations. The point of this section discussion is
that it is possible to do better than this.

Note that if m > n, we can focus on the first n equations, since a system of n randomly chosen multivariate
polynomial equations in n variables of constant degree d is expected to have a constant number of solutions,
which can in turn be checked against the remaining equations efficiently. If m < n, then we can specialize
m−n variables, and solve the m equations in m variables for any possible values of the specialized variables.
All-in-all, the interesting case is when m = n.

Let us first introduce a useful notation. Given an ordered set U , we denote the common zeroes of
f1, . . . , fm belonging to U by Z([f1, . . . , fm], U). Let us also denote Z0 = (F2)

n
, and Zi = Z ([fi], Zi−1). It

should be clear that Z = Zm is the set of common zeroes of the polynomials, and therefore the object we
wish to obtain.

11.4.1 A General Technique: Splitting the Problem

A possible strategy is to compute the Zi recursively: first Z1, then Z2, etc. However, while the algorithms
of §11.3 can be used to compute Z1, they cannot be used to compute Z2 from Z1, because they intrinsically
enumerate all (F2)

n
. In practice, the best results are in fact obtained by computing Zk, for some well-chosen

value of k, using k parallel runs of Algorithm 11.7, and then computing Zm using a secondary algorithm.
Computing Zk requires d · k · 2n bit operations. It then remains to compute Zm from Zk, and to find the
best possible value of k.

Also note that while it makes sense to choose k according to the targeted hardware platform (e.g., k = 32
if 32-bit registers are available), it is an interesting theoretical problem choose k in order to minimize the
global number of bit operations. We now move on to discuss several secondary algorithms to compute Zm
from Zk, and discuss their relative merits.

11.4.2 Naive Secondary Evaluation

The simplest possibility is to compute Zi+1 from Zi using naive evaluation, for k ≤ i ≤ n − 1. It is
clear that the expected cardinality of Zi for random polynomial equations is 2n−i. We will assume for
the sake of simplicity that evaluating a degree-d polynomial requires

(
n
d

)
bit op., following the reasoning of

§11.2. Computing Zi+1 then requires about
(
n
d

)
· 2n−i bit ops. The expected cost of computing Z is then

approximately:
n∑

i=k

(
n

d

)
· 2n−i ≈

(
n

d

)
· 2n−k+1 bit operations.

Minimizing the global cost means solving the equation:

k · d · 2n =

(
n

d

)
· 2n−k+1.

which is easily seen to be equivalent to:

(k · ln 2) · exp(k · ln 2) = 2 ·
(
n

d

)
· ln 2

d

Now, the Lambert W function is such that W (x) · exp(W (x)) = x. Thus, the solution of our equation is:

k = W

((
n

d

)
· 2 · ln 2

d

)
/ ln 2

Using the known fact [dB61] that when x goes to infinity:

W (x) = lnx− ln lnx+ o(ln lnx)

179

11. Exhaustive Search for Boolean Equations

we find that when n→∞:

k = 1 + log2

((
n

d

)
· 1

d

)
+O (ln lnn)

The full cost of the algorithm is then approximately d2 · log2 n · 2n+1 bit operations.

11.4.3 Differential Secondary Evaluation

We only describe the quadratic case, but this could be extended to higher degrees. We can efficiently
evaluate Zi+1 from Zi using an easy consequence of equation (10.1): given f(x), computing f(x + ∆) takes
2|∆| ·n bit operations, where |∆| denote the hamming weight of ∆, by computing |∆| dot products with the
derivatives. Let us order the elements of Zi by writing: Zi =

{
xi1, . . .x

i
qi

}
(the elements are ordered using

the usual lexicographic order), and ∆i
j = xij+1 ` xij .

Computing Zi+1 therefore requires approximately:

2n ·
qi−1∑

j=1

|∆i
j | bit operations.

Now, let us consider the ∆i
j as integer number between 0 and 2n − 1. The xij+1 are the zeroes of a

set of i random polynomials, and under the assumption that each point of (F2)
n

has one chance over 2i to
be such a zero, then the difference ∆i

j between two such consecutive zeros follows a geometric distribution

of parameter 2−i, and thus has expectation 2i. The hamming weight |∆i
j | is upper-bounded by

⌈
log2 ∆i

j

⌉

(considered as an integer), and therefore |∆i
j | has expectation less than i.

Computing Zi+1 therefore requires on average 2n · i · 2n−i bit op. Finally, computing Z from Zk requires
on average:

2n ·
n−1∑

i=k

i · 2n−i ≤ 4n · (k + 1) · 2n−k bit operations

An approximately optimal value of k would then satisfy

2k · 2n = 4n · (k + 1) · 2n−k

which is approximately k = 1 + log2 n. The complexity of the whole procedure is then 4 log2 n · 2n. However,
implementing this technique efficiently looks like a lot of work for at best a 2× gain.

11.4.4 Practical Considerations

Choosing the “optimal” value of k is not only of theoretical interest, but may have a practical significance
if a very ad hoc circuit were to be designed from scratch. Even in the software implementations we are
concerned with in this paper, it provides a guideline. However, when implemented in software on processors
with registers, the logical operation width of the hardware becomes a determinant argument in the actual
choice of k. If operations are always performed on ω-bit registers, then it is likely that the best choice of k is
precisely ω. In all our implementations, we used the “Early-abort + Naive Evaluation” strategy with k = 32.
This enables us to make use of the full register width, while keeping the “naive evaluation” time negligible.
However, this means that the enumeration process must store 32 times more data in fast memory, compared
to the evaluation of only one polynomial.

11.5 Spatial and Temporal Proximity

The critical loop of Algorithm 11.7 is very short, since it performs only d logical operations. Implementing
it very efficiently is nevertheless a bit tricky. For instance, it accesses the memory d+1 times, which suggests
that memory bandwith will be an actual performance bottleneck.

The remaining of this chapter is devoted to the issue of efficiently implementing Algorithm 11.7. In
§ 11.6, we will show that the memory-bandwidth problem present itself again, yet differently, when we try
to parallelize the algorithm on shared-memory architectures. In this section, we argue that the algorithm is
cache-efficient, i.e., that is uses the cache efficiently regardless of its size. This shows that the algorithm has
good spatial and temporal proximity, and cannot be really improved in this respect.

180

11.5. Spatial and Temporal Proximity

Cache Model. We will study the behavior of the algorithm in the Ideal Cache Model [FLPR99]. This
model considers a computer with a two-level memory hierarchy consisting of an ideal (data) cache of Z
words and an arbitrarily large main memory. The cache is partitioned into cache lines, each consisting of L
consecutive words that are always moved together between cache and main memory. The processor can only
reference words that reside in the cache. If the referenced word belongs to a line already in cache, a cache hit
occurs, and the word is delivered to the processor. Otherwise, a cache miss occurs, and the line is fetched
into the cache. The ideal cache is fully associative: cache lines can be stored anywhere in the cache. If the
cache is full, a cache line must be evicted. The ideal cache uses the optimal off-line strategy of replacing
the cache line whose next access is farthest in the future, and thus it exploits temporal locality perfectly.
An algorithm with an input of size n is measured in the ideal-cache model in terms of the usual number of
operation performed by the processor, but also in terms of its Cache Complexity Q(n,Z, L) – the number
of cache misses it incurs as a function of Z and L. We now move on to evaluate the cache complexity of
the enumeration algorithm, as show in fig. 11.7. We will assume that the “memory cells” accessed by the
algorithm have the same size as the a word in the cache (if this were not the case, it would only incur a
constant multiplicative loss, and we are mostly interested in an asymptotic result).

Cyclic Memory Accesses in Algorithm 11.7. The memory words accessed in the algorithm belong to arrays
of various dimension, and are accessed with indices of variable length. It should be clear from the description
of the algorithm that for all k ≤ d, the memory location of index [i1, . . . , ik] is accessed at step s if bj(s) = ij ,
for all j ≤ k. This memory access pattern is in fact very regular. We say that a memory word is accessed
with period T if, when it is accessed at iteration i, it is also accessed at iteration i+ T , but not in-between.

Lemma 11.9. For all k ≤ d, the memory location of index [i1, . . . , ik] is accessed with period 2ik+1.

Proof. We associate with an index [i1, . . . , ik] the set Ωi1,...,ik of integers n such that b1(n) = i1, . . . , bk(n) =
ik. The problem amounts to show that the difference between two consecutive elements of this set is 2ik+1.
But it is easily seen that if n ∈ Ωi1,...,ik , then n+ j · 2ik+1 ∈ Ωi1,...,ik for any positive integer j. This follows
from the fact that bj(n) = bj(n+ 2`) if ` > j, and establishes the result.

It should be clear that all the memory location accessed with period exactly T are accessed in the first
T iteration of the main loop. Moreover, they are accessed in a certain order. For instance, memory words
with period 8 are accessed in this order in the first 8 iterations: [2], [0, 2], [1, 2]. By definition of the period,
this access pattern is reproduced without modifications in the next T iterations. Thus, memory words with
period T are accessed in a cyclic fashion.

The algorithm easily defines a total order relation on the memory locations it accesses: x ≤ y if and
only if the first access to x takes places before the first access to y. Let us assume that the actual memory
addresses are compatible with this order relation. Then, more frequently accessed words are stored with
the lowest addresses, and words with the same access frequency are stored contiguously in memory. There

are
∑min(d−1,k)
i=0

(
k
i

)
memory locations that are accessed with period 2k+1.

Critical Period. This being said, we will focus on the case where all the
∑d
i=0

(
n
i

)
memory words accessed

by the algorithm do not fit into the cache, to avoid studying the trivial case. Let us define the critical period
2Tc+1 to be the biggest integer such that all the memory words accessed with period 2Tc+1 fit in the cache:

Tc∑

k=0

min(d−1,k)∑

i=0

(
k

i

)
≤ Z − 1

Under the (mild) assumption that the cache contains Z ≥ 2d words, and thus that Tc is greater than d, this
condition becomes:

2d − 1 +

Tc∑

k=d

d−1∑

i=0

(
k

i

)
≤ Z − 1

This is the summation in a rectangle inside Pascal’s triangle, then by applying Pascal’s rule recursively, we
may simplify this expression, and find that it is equivalent to:

d∑

i=0

(
Tc + 1

i

)
≤ Z

181

11. Exhaustive Search for Boolean Equations

Tc can be easily expressed as a function of Z when d is small:

d = 2 → Tc + 1 =

√
8Z − 7− 1

2

d = 3 → Tc + 1 =

(
3 · (Z − 1) +

√
Z2 − 2Z + 368/243

) 2
3 − 15

(
3 · (Z − 1) +

√
Z2 − 2Z + 368/243

) 1
3

The important point is that all memory words with period 2Tc+1 fit in the cache and do not leave it.
This fact is almost true by definition of Tc: the optimal off-line cache strategy will not evict a cache line that
will be accessed in T steps if it can evict a cache line that will only be accessed in 2T steps. And there will
always be a cache line not containing a word accessed with period 2Tc+1 or less. Note that this shows that
the cache complexity of the algorithm is essentially independent of L in the ideal cache model. This being
said, we can state our result:

Theorem 11.10. Under the assumption that Tc ≥ 2d, the following two inequalities hold:

i) Q(n, d, Z, L) ≤ 2n−2−Tc · (d+ 1) ·
(
Tc + 1

d− 1

)

ii) Q(n, d, Z, L) ≤ 2n−2−Tc · d · (d+ 1)

Tc + 2− d
· Z

Proof. The second inequality is a nearly-direct consequence of the first one, and of the definition of Tc. Let
us thus focus on the first one.

By definition of Tc, the algorithm may make a cache miss every time it accesses a memory location whose
index contain a coordinate bigger than Tc. Such memory words have period greater than 2Tc+2, so each of
them is accessed at most 2n−Tc−2 times. Multiplying this by the number of such memory words yields the
total number of cache misses:

Q(n, d, Z, L) =

n∑

k=Tc+1

2n−1−k ·
d−1∑

i=0

(
k

i

)

≤ 2n−1
d−1∑

i=0

+∞∑

k=Tc+1

2−k ·
(
k

i

)

It is well-known that
∑
k

(
k
i

)
xk = xi/(1− x)i+1. Thus, we find with x = 1/2:

+∞∑

k=0

2−k ·
(
k

i

)
= 2

We can therefore rewrite

Q(n, d, Z, L) ≤ 2n−1 ·
d−1∑

i=0

(
2−

Tc∑

k=0

2−k ·
(
k

i

))

Now we claim that

2−
Tc∑

k=0

2−k ·
(
k

i

)
= 2−Tc ·

i∑

j=0

(
Tc + 1

j

)
.

It is not particularly difficult to establish this by induction on i, by using Pascal’s rule. Going back to the
expression of Q(n, d, Z, L), we find:

Q(n, d, Z, L) ≤ 2n−Tc−1 ·
d−1∑

i=0

i∑

j=0

(
Tc + 1

j

)

≤ 2n−1−Tc ·
d−1∑

j=0

(d− j) ·
(
Tc + 1

j

)

182

11.6. Parallelization-Related Issues

And since
(
n
k

)
= n

k

(
n−1
k−1

)
, we obtain:

Q(n, d, Z, L) ≤ 2n−1−Tc ·


d ·

d−1∑

j=0

(
Tc + 1

j

)
− (Tc + 1) ·

d−1∑

j=1

(
Tc
j − 1

)


We next claim that by applying Pascal’s rule recursively, we obtain:

2 ·
d−1∑

j=1

(
Tc
j − 1

)
=

(
Tc
d− 2

)
+

d−2∑

j=0

(
Tc + 1

j

)

Substituting this into Q(n, d, Z, L) yields:

Q(n, d, Z, L) ≤ 2n−1−Tc ·


d ·

d−1∑

j=0

(
Tc + 1

j

)
− Tc + 1

2
·



(

Tc
d− 2

)
+

d−2∑

j=0

(
Tc + 1

j

)




≤ 2n−1−Tc ·


d ·

(
Tc + 1

d− 1

)
+

2d− Tc − 1

2
·
d−2∑

j=0

(
Tc + 1

j

)
− Tc + 1

2
·
(

Tc
d− 2

)


≤ 2n−1−Tc ·


 (d+ 1)(Tc + 1)

2(d− 1)
·
(

Tc
d− 2

)
+

2d− Tc − 1

2
·
d−2∑

j=0

(
Tc + 1

j

)


≤ 2n−1−Tc ·


d+ 1

2
·
(
Tc + 1

d− 1

)
+

2d− Tc − 1

2
·
d−2∑

j=0

(
Tc + 1

j

)


And under the (again mild) assumption that Tc ≥ 2d, we find:

Q(n, d, Z, L) ≤ 2n−2−Tc · (d+ 1) ·
(
Tc + 1

d− 1

)

Numerical Application. Let us consider a polynomial in 64 variables. If we assume an incredibly small
cache of Z = 210 bits and that our polynomial is of degree 2, then Tc = 44 and the enumeration will make
about 225 cache misses, for a running time of at least 265. If we assume that our polynomial is of degree
4, and that the cache is 214-bit large, then Tc = 24, and there will be 252 cache misses, for more than 266

attempted memory accesses.

11.5.1 Transforming the Equations to do Less Work

We conclude this section by presenting a ruse allowing to cut off a fraction 1/(d · 2d) of the work in some
cases. This is mostly interesting when d = 2, where it reduces the workload by 12.5%. The most frequently
accessed constant is D[0, 1, 2, . . . , d− 1]. If this constant were equal to zero, then we could just remove the
code that XORs it. This constant is accessed with period 2d, and there are d · 2d XOR between two accesses
to this constant.

Now, how can we force D[0, 1, 2, . . . , d − 1] to be zero? Suppose we want to find the solutions of a
polynomial system (f1, f2), and that the first step is to find all the zeroes of f1. The constant has a 50%
chance to be zero by itself, but if it is not, we can always first enumerate f2. If the constant is again non-zero
when enumerating f2, we can enumerate f1 + f2 instead without affecting the solution set, but this time the
constant will be zero by linearity of the differential (i.e., D(f + g) = Df + Dg). This easily generalizes to
more than two polynomials (one must however be carefull to perform an invertible linear combination of the
polynomials).

11.6 Parallelization-Related Issues

Parallelizing Algorithm 11.7 is awfully easy, as the problem is “embarrassingly parallel”. It simply comes
down to partitioning the search space into the number of available cores. For instance, the main loop of
Algorithm 11.1 can be split in independent chunks, as illustrated by Algorithm 11.8. On distributed-memory

183

11. Exhaustive Search for Boolean Equations

Algorithm 11.8 Parallel enumeration, assuming one processing unit capable of running 2T threads.

procedure Dumb-Parallel-Zeroes(f, T)
parallel-for t from 0 to 2T − 1 do
State[t]← Init (f, 0,GrayCode (t · 2n−t))
for i from 0 to 2n−t − 1 do

if State[t].y = 0 then State[t].x is a zero of f
Next(State[t])

end for
end parallel-for

end procedure

architectures, this would be perfectly fine. However, on shared-memory architectures, the problem of any
parallelization is that it will put even more pressure on the memory subsystem than the sequential version.
Recall from §11.3.4 that the State is made of a read-write part (the “internal state”) and of a read-ony part
(the “constants”). That each thread needs its own internal state makes perfect sense. However, that each
thread needs its own copy of the constants seems wasteful, because these constants are functions of the
enumerated polynomial(s), and all threads enumerate the same. However, in Algorithm 11.8, the constants
also depends on the “starting point” of the enumeration (the third argument of Init), and therefore they are
different in all threads.

This seems suboptimal, if only because it cannot exploit shared caches in an efficient way (most modern
multi-core CPUs have a large Level-3 cache shared between all the cores). The memory bandwidth problem
becomes even more pressing on some parallel architectures, such as GPUs, or the Cell, in which the “fast”
memory available to each core is fairly restricted, and main memory is relatively slow and/or inaccessible.
Even on a single-core of a desktop CPUs it is possible to run several parallel copies of Algorithm 11.7 using
SIMD instructions, but if multiple instances compete for the caches and try to access the main memory
simultaneously, then the pressure on the memory subsystem should increase.

In addition, in some parallel architecture there are no caches, but instead a small “scratch pad” of fast
memory that must be explicitly managed by the program (as opposed to caches that are managed by the
CPU itself). This means we will need to decide, given its size, what goes in the (fast) scratch pad, and what
remains in the (slow) main memory. This can be made even more complicated by the fact that the scratch
pad is shared between multiple threads). Note that the previous section gives reasonably good guidelines to
deal with this problem.

Sharing Constants. While the increased memory consumption of running multiple instances of any enumer-
ation algorithm cannot be completely avoided, because each copy needs its own internal state, the problem
can be partially alleviated by sharing the constants between all the threads. This is essentially achieved
by splitting the main loop of algorithm 11.7 in chunks of a given size (say, 2L) that can be processed con-
currently. This results in Algorithm 11.9. Enumerating a chunk of size 2L is comparable to enumerating a
polynomial in L variables (it makes the same number of calls to Next).

Internal State. The full sequential process stores and maintains an internal state of
∑d−1
i=0

(
n
i

)
= O

(
nd−1

)

bits. However, when processing a chunk of size 2L, a smaller internal state is sufficient. Counting the number
of reachable internal state bits amounts to counting the number of possible tuples (k1, k2, . . . , kd−1) that will
be generated in the loop.

Our first observation is that as soon as the hamming weight of i + 1 is greater than d, then all the kj ’s

will be smaller than L. When all the k indices are smaller than L, only
∑d−1
i=0

(
L
i

)
bits of internal state can

be addressed. Now, let us assume that HammingWheight(i+ 1) = w < d. In this case, we find

kj =

{
bj(i+ 1) when j ≤ w
L+ bj−w(i0) otherwise

So, when w < d, then the value of kj(j > w) is uniquely determined by i0, and is greater than L. Thus, in a
given thread, for a given value of w, the number of possible tuples (k1, k2, . . . , kd−1) is precisely the number
of possible values of i with hamming weight w.

Proposition 11.11. An internal state of 2 ·
d−1∑

i=0

(
L

i

)
= O

(
Ld−1

)
bits is sufficient for each thread.

184

11.7. Implementations

Algorithm 11.9 Parallel Iterative algorithm for all degrees.

1: procedure Smart-Parallel-Zeroes(f, L, T)
2: initialize C (the constants shared by all the threads)
3: for b from 0 to 2n−L−T − 1 do
4: parallel-for t from 0 to 2T − 1 do
5: initialize St (the internal state of thread t)
6: let i0 =

(
b+ t · 2n−T−L

)
· 2L in

7: for i from 0 to 2L − 1 do
8: if yt = 0 then GrayCode(i0 + i) is a zero of f
9: let k1 = b1(i0 + i+ 1) in

10: let k2 = b2(i0 + i+ 1) in

11:
...

12: kd = bd(i0 + i+ 1) in
13: let if kd > −1 then St [k1, . . . , kd−1]← St [k1, . . . , kd−1]` C [k1, . . . , kd−1, kd]

14:
...

15: if k3 > −1 then St [k1, k2]← St [k1, k2]` St [k1, k2, k3]
16: if k2 > −1 then St [k1]← St [k1]` St [k1, k2]
17: yt ← yt ` St [k1]
18: end for
19: end parallel-for
20: end for
21: end procedure

Synchronous Behavior. Let us consider for a moment than all the 2T threads are executed synchronously
(on an SIMD unit for instance). In this setting it is an advantage that all the threads behave similarly:
if they access the same memory location, then often it can be read once and broadcast to all the threads.
Conversely, if they access contiguous memory locations, then the queries can sometimes be coalesced and
served with only one request from the main memory.

When the hamming weight of i is greater than d, then the tuple (k1, . . . , kd) depends only on i, and
therefore is the same in all the thread. This places us in the favorable situation described above. In fact,
this favorable case presents itself a bit more often. For instance, if HammingWheight(i+ 1) = w < d and
if b has hamming weight at least d− w, then all the threads will end up having the same kj ’s. In fact, this
situation does not happen only when b · 2Li + 1 has hamming weight less than d, and it is easy to see that
the number of times this happens is

d−1∑

i=0

(
n− T
i

)
= O

(
(n− T)d−1

)
. (11.3)

This means that even though the algorithm performs an exponential number of steps, all the 2T threads
behave synchronously except in a polynomial number of steps. This feature is interesting, because on some
architecture penalties apply when threads do not behave synchronously. Table 11.2 shows how the algorithm
can be run with 4 threads and obtain the number of non-broadcasts advertised

11.7 Implementations

11.7.1 A Brief Description of the Hardware Platforms

Vector Units on x86-64. The most prevalent SIMD (single instruction, multiple data) instruction set today
is SSE2, available on all current Intel-compatible CPUs. SSE2 instructions operate on 16 architectural xmm
registers, each of which is 128-bit wide. We use integer operations, which treat xmm registers as vectors of
8-, 16-, 32- or 64-bit operands.

The SSE instruction set includes Loads and Stores (to/from xmm registers, memory — both aligned
and unaligned, and traditional registers), Packing/Unpacking/Shuffling, Logical Operations (AND, OR, NOT,

XOR, Shifts Left, Right Logical and Arithmetic — bit-wise on units and byte-wise on the entire xmm register),
and Arithmetic (add, substract, multiply, max-min) with some or all of the arithmetic widths. The interested
reader is referred to Intel and AMD’s manuals for details on these instructions, and to references such as
[Fog10] for throughput and latencies.

185

11. Exhaustive Search for Boolean Equations

th
read

0
th

rea
d

1
th

rea
d

2
th

read
3

i0
�
L

i
+

1
k

1
k

2
i0
�
L

i
+

1
k

1
k

2
i0
�
L

i
+

1
k

1
k

2
i0
�
L

i
+

1
k

1
k

2

00
0
0

0
0
1

0
-1

0
1
0
0

0
0
1

0
5

1
0
0
0

0
0
1

0
6

1100
001

0
5

X
00

0
0

0
1
0

1
-1

0
1
0
0

0
1
0

1
5

1
0
0
0

0
1
0

1
6

1100
010

1
5

X
00

0
0

0
1
1

0
1

0
1
0
0

0
1
1

0
1

1
0
0
0

0
1
1

0
1

1100
011

0
1

00
0
0

1
0
0

2
-1

0
1
0
0

1
0
0

2
5

1
0
0
0

1
0
0

2
6

1100
100

2
5

X
00

0
0

1
0
1

0
2

0
1
0
0

1
0
1

0
2

1
0
0
0

1
0
1

0
2

1100
101

0
2

00
0
0

1
1
0

1
2

0
1
0
0

1
1
0

1
2

1
0
0
0

1
1
0

1
2

1100
110

1
2

00
0
0

1
1
1

0
1

0
1
0
0

1
1
1

0
1

1
0
0
0

1
1
1

0
1

1100
111

0
1

00
0
0

100
0

3
-1

0
1
0
0

1
0
0
0

3
5

1
0
0
0

1
0
0
0

3
6

1100
1000

3
5

X

00
0
1

0
0
1

0
3

0
1
0
1

0
0
1

0
3

1
0
0
1

0
0
1

0
3

1101
001

0
3

00
0
1

0
1
0

1
3

0
1
0
1

0
1
0

1
3

1
0
0
1

0
1
0

1
3

1101
010

1
3

00
0
1

0
1
1

0
1

0
1
0
1

0
1
1

0
1

1
0
0
1

0
1
1

0
1

1101
011

0
1

00
0
1

1
0
0

2
3

0
1
0
1

1
0
0

2
3

1
0
0
1

1
0
0

2
3

1101
100

2
3

00
0
1

1
0
1

0
2

0
1
0
1

1
0
1

0
2

1
0
0
1

1
0
1

0
2

1101
101

0
2

00
0
1

1
1
0

1
2

0
1
0
1

1
1
0

1
2

1
0
0
1

1
1
0

1
2

1101
110

1
2

00
0
1

1
1
1

0
1

0
1
0
1

1
1
1

0
1

1
0
0
1

1
1
1

0
1

1101
111

0
1

00
0
1

100
0

4
-1

0
1
0
1

1
0
0
0

4
5

1
0
0
1

1
0
0
0

4
6

1101
1000

4
5

X

00
1
0

0
0
1

0
4

0
1
1
0

0
0
1

0
4

1
0
1
0

0
0
1

0
4

1110
001

0
4

00
1
0

0
1
0

1
4

0
1
1
0

0
1
0

1
4

1
0
1
0

0
1
0

1
4

1110
010

1
4

00
1
0

0
1
1

0
1

0
1
1
0

0
1
1

0
1

1
0
1
0

0
1
1

0
1

1110
011

0
1

00
1
0

1
0
0

2
4

0
1
1
0

1
0
0

2
4

1
0
1
0

1
0
0

2
4

1110
100

2
4

00
1
0

1
0
1

0
2

0
1
1
0

1
0
1

0
2

1
0
1
0

1
0
1

0
2

1110
101

0
2

00
1
0

1
1
0

1
2

0
1
1
0

1
1
0

1
2

1
0
1
0

1
1
0

1
2

1110
110

1
2

00
1
0

1
1
1

0
1

0
1
1
0

1
1
1

0
1

1
0
1
0

1
1
1

0
1

1110
111

0
1

00
1
0

100
0

3
4

0
1
1
0

1
0
0
0

3
4

1
0
1
0

1
0
0
0

3
4

1110
1000

3
4

00
1
1

0
0
1

0
3

0
1
1
1

0
0
1

0
3

1
0
1
1

0
0
1

0
3

1111
001

0
3

00
1
1

0
1
0

1
3

0
1
1
1

0
1
0

1
3

1
0
1
1

0
1
0

1
3

1111
010

1
3

00
1
1

0
1
1

0
1

0
1
1
1

0
1
1

0
1

1
0
1
1

0
1
1

0
1

1111
011

0
1

00
1
1

1
0
0

2
3

0
1
1
1

1
0
0

2
3

1
0
1
1

1
0
0

2
3

1111
100

2
3

00
1
1

1
0
1

0
2

0
1
1
1

1
0
1

0
2

1
0
1
1

1
0
1

0
2

1111
101

0
2

00
1
1

1
1
0

1
2

0
1
1
1

1
1
0

1
2

1
0
1
1

1
1
0

1
2

1111
110

1
2

00
1
1

1
1
1

0
1

0
1
1
1

1
1
1

0
1

1
0
1
1

1
1
1

0
1

1111
111

0
1

00
1
1

100
0

5
-1

0
1
1
1

1
0
0
0

6
-1

1
0
1
1

1
0
0
0

5
6

1111
1000

7
-1

X

T
a
b
le

1
1.2

:
E

n
u
m

eratio
n

w
ith

n
=

7
,

in
ch

u
n
k
s

o
f
L

=
2

3
elem

en
ts

w
ith

4
b

a
tch

es
o
f
T

=
4

co
n

cu
rren

t
th

read
s.

T
h
e

tick
m

ark
s

(X
)

m
ean

s
th

at
th

e
4

th
read

s
d
o

n
ot

a
ccess

th
e

sam
e

con
sta

n
t.

In
co

n
form

an
ce

w
ith

(1
1
.3

),
th

ere
a
re

1
+

(7
−

2
)

=
6

n
o
n
-b

ro
a
d
ca

st
m

em
o
ry

a
ccesses.

186

11.7. Implementations

G2xx-series Graphics Processing Units from NVIDIA. We choose NVIDIA’s G2xx GPUs as they have the
least hostile GPU parallel programming environment called CUDA (Compute Unified Device Architecture).
In CUDA, we program in the familiar C/C++ programming language plus a small set of GPU extensions.

An NVIDIA GPU contains anywhere from 2–30 streaming multiprocessors (MPs). There are 8 ALUs
(streaming processors or SPs in market-speak) and two super function units (SFUs) on each MP. A top-end
“GTX 295”card has two GPUs, each with 30 MPs, hence the claimed“480 cores”. The theoretical throughput
of each SP per cycle is one 32-bit integer or floating-point instruction (including add/subtract, multiply,
bitwise AND/OR/XOR, and fused multiply-add), and that of an SFU 2 floating-point multiplications or 1
special operation. The arithmetic units have 20+-stage pipelines.

Main memory is slow and forms a major bottleneck in many applications. The read bandwidth from
memory on the card to the GPU is only one 32-bit read per cycle per MP and has a latency of > 200 cycles.
To ease this problem, the MP has a register file of 64 KB (16,384 registers, max. of 128 per thread), a shared
memory of 16 KB, and an 8-KB cache for read-only access to a declared “constant region” of at most 64 KB.
Every cycle, each MP can achieve one read from the constant cache, which can broadcast to many thread at
once.

Each MP contains a scheduling and dispatching unit that can handle a large number of lightweight
threads. However, the decoding unit can only decode once every 4 cycles. This is typically 1 instruction, but
certain common instructions are “half-sized”, so two such instructions can be issued together if independent.
Since there are 8 SPs in an MP, CUDA programming is always on a Single Program Multiple Data basis,
where a “warp” of threads (32) should be executing the same instruction. If there is a branch which is taken
by some thread in a warp but not others, we are said to have a “divergent” warp; from then on only part of
the threads will execute until all threads in that warp are executing the same instruction again. Further, as
the latency of a typical instruction is about 24 cycles, NVIDIA recommends a minimum of 6 warps on each
MP, although it is sometimes possible to get acceptable performance with 4 warps.

11.7.2 Implementations Details

Preliminary implementations have been written in C (using the compiler’s “intrinsics” to generate SSE
instructions), and using the CUDA tools for GPUs. We used the fact that both GT2xx and x86 are essentially
SIMD units processing several 32-bit registers at the same time to enumerate the first 32 polynomials
simultaneously using algorithm 11.9. We then expect 2n−32 points of (F2)

n
satisfying the first 32 equations,

that have to be checked against the remaining n− 32 equations. This is done using a bitsliced version of the
naive evaluation strategy.

The inner loop of algorithm 11.9 was unrolled 28 times to avoid explicitly computing the kj indices.
On GPUs it is useful to run more threads than the number of hardware cores, to amortize the latency of
the arithmetic units and of the memory. There is however a delicate tradeoff: running more threads gives
the scheduler an opportunity to run instructions from other threads while some threads are waiting for the
(slow) main memory, yet more threads consumme more memory, causing more frequent access to the main
memory, and more waiting time... We chose to run 27 threads on each MP, and 216 threads in total. On
CPUs, we used SIMD instructions to run 4 threads simultaneously. Each thread enumerates a chunk of
L ≈ 230 elements.

11.7.3 Practical Results

Tables 11.3 and 11.4 shows what our preliminaries implementations are capable of. They are currently the
fastest software for solving (generic, dense) systems of multivariate quadratic equations over F2. Table 11.4
in particular shows that on modern CPUs equiped with efficient SIMD units, our implementation checks on
average more than two vectors of (F2)

n
in one CPU cycle. We consider this to be a decent achievement in

terms of implementation quality.
Performances degrade when the degree increases because of the increased pressure on the cache and

memory subsystem. The impact on the GPUs (where fast memory is scarce) is clearly visible. The impact
is also greater on Phenom CPUs, because they have less cache than the others. The benchmarked Intel
CPUs are more “efficient” than their AMD counterpart because they can dispatch one more SSE instructions
per cycle (3 instead of 2). Writing efficient implementations is challenging. It is very time-con summing,
as it requires many experiments. It also requires a quite deep understanding of the underlying hardware.
For instance, developing these implementations lead us to discover an undocumented feature of G2xx series
GPUs: the CUDA compiler (nvcc) reliably generates conditional move instructions, that are executed by
the SPs and the SFUs very efficiently.

187

11. Exhaustive Search for Boolean Equations

Time (minutes) Testing platform #cores n = 64 in 1 month
d = 2 d = 3 d = 4 GHz Arch. Name cost (#used) budget

1217 2686 3191 2.2 K10 Phenom 9550 $120 4(1) $54,000
1157 1992 2685 2.3 K10+ Opteron 2376 $184 4(1)

$113,316
142 240 336 2.3 K10+ Opteron 2376×2 $368 8(8)
780 1364 1819 2.4 C2 Xeon X3220 $210 4(1) $60,720
671 1176 1560 2.83 C2+ Core2 Q9550 $225 4(1)

$55,575
179 294 390 2.83 C2+ Core2 Q9550 $225 4(4)
761 1279 1856 2.26 Ci7 Xeon E5520 $385 4(1)

$78,720
95 154 225 2.26 Ci7 Xeon E5520×2 770 8(8)
41 73 271 1.3 G200 GTX 280 n/a 240 n/a
21 36 126 1.25 G200 GTX 295 $500 480 $15,500

Table 11.3: Performance results for n = 48 and projected budgets for solving n = 64 in one month (as of
summer 2010)

188

11.7. Implementations

n
=

32
n

=
4
0

n
=

4
8

T
es

ti
n

g
p
la

tf
o
rm

d
=

2
d

=
3

d
=

4
d

=
2

d
=

3
d

=
4

d
=

2
d

=
3

d
=

4
G

H
z

A
rc

h
.

N
a
m

e
0.

58
1.

21
1.

41
0.

57
1
.2

7
1
.4

3
0
.5

7
1
.2

6
1
.5

0
2
.2

K
1
0

P
h

en
o
m

9
5
5
0

0.
57

0.
91

1.
32

0.
57

0
.9

8
1
.3

1
0
.5

7
0
.9

8
1
.3

2
2
.3

K
1
0
+

O
p

te
ro

n
2
3
7
6

0.
40

0.
65

0.
95

0.
40

0
.7

0
0
.9

4
0
.4

0
0
.7

0
0
.9

3
2
.4

C
2

X
eo

n
X

3
2
2
0

0.
40

0.
66

0.
96

0.
41

0
.7

1
0
.9

4
0
.4

1
0
.7

1
0
.9

4
2
.8

3
C

2
+

C
o
re

2
Q

9
5
5
0

0.
50

0.
66

1.
00

0.
38

0
.6

5
0
.9

1
0
.3

7
0
.6

2
0
.8

9
2
.2

6
C

i7
X

eo
n

E
5
5
2
0

2.
87

4.
66

15
.0

1
2.

69
4
.6

2
1
7
.9

4
2
.7

2
4
.8

2
1
7
.9

5
1
.2

9
6

G
2
0
0

G
T

X
2
8
0

2.
93

4.
90

14
.7

6
2.

70
4
.6

2
1
5
.5

4
2
.6

9
4
.5

7
1
5
.9

7
1
.2

4
2

G
2
0
0

G
T

X
2
9
5

T
ab

le
11

.4
:

E
ffi

ci
en

cy
co

m
p

a
ri

so
n
:

cy
cl

es
p

er
(F

2
)n

-v
ec

to
r

te
st

ed
o
n

o
n

e
co

re

189

Chapter 12

“Isomorphism of Polynomials” problems

This chapter introduces the polynomial linear equivalence problem(s) we are concerned with. We
discuss its cryptographic relevance, and provide a classification of instances.

The equivalence of linear maps is a standard notion of linear algebra. Geometrically speaking, two
linear maps are said to be equivalent if they describe the same transformation, but with input and output
coordinates expressed in different bases. In algebraic terms, two matrices A and B represent equivalent
linear maps if there exist two invertible matrices S and T such that B = T ×A× S. Here, S changes the
basis in which the input coordinates are expressed, while T changes the basis of the output space.

It is well-known that S and T exist if and only if A and B have the same rank. Therefore, there is an
efficient algorithm for the decision problem, namely the problem of testing whether two given matrices are
equivalent: it suffices to check whether the ranks of A and B are equal. The search problem, i.e., actually
finding S and T if they exist, is a bit more complicated, but efficient algorithms are nevertheless available.

This equivalence relation lends itself to a natural generalization, wich is the equivalence of polynomial
maps. Two polynomial maps a and b are said to be (linearly) equivalent if there exist two bijective endo-
morphisms S and T such that b = T ◦ a ◦ S. The analogy with the usual matrix equivalence is blatant, and
it carries the same geometrical meaning: two equivalent polynomial maps describe the same transformation,
but with coordinates expressed in potentially different bases. We observe that it is equivalent, and much
more convenient, to work with the following definition of S and T :

T ◦ b = a ◦ S (12.1)

The equivalence of polynomial maps naturally raises algorithmic issues. There is again a decision problem
(“Are a and b equivalent ?”) and a search problem (“Given the promise that a and b are equivalent, what
are S and T ?”). We will forget about the decision problem and focus on the search problem, which we call
Polynomial Linear Equivalence (PLE), as it does not seem any easier, and is more relevant. Also, the degree-
two case is special enough to give it a name of its own. The Quadratic Maps Linear Equivalence problem
(QMLE) refers to the special subclass of PLE where the total degree of the polynomials defining the maps is
two.

The equivalence of polynomial maps will look familiar to anyone who has been taught the usual theory
of quadratic forms. Recall from §10.2 that two quadratic forms f and g are said to be equivalent if there
exist a invertible matrix S such that f = g ◦S. When n = 2, the equivalence classes are formed of parabolas,
hyperbolas, etc. Again, the equivalence notion has a geometic interpretation: equivalent quadratic forms
define the same “kind of curve”. We have seen that testing the equivalence of quadratic forms is easy, even
in characteristic two, because of the existence of easily-computable canonical forms.

The equivalence of quadratic forms also lend itself to several natural generalizations. We are interested
in particular in the equivalence of higher-degree forms, and most notably the Cubic Form Equivalence (CFE)
problem. In an orthognal direction, an interesting problem is to test the simultaneous equivalence of more
than one pair of quadratic forms: given two pairs of quadratic forms f, f ′, g and g′, is there an invertible
matrix S such that f = g ◦ S and f ′ = g′ ◦ S?

Example 12.1. Let us consider the curve of R3 formed by all the points over which the two quadratic
polynomials a1 = y2 − x and a2 = (x + z)2 − y vanish. Now, let us pick an invertible random change of
coordinates:

S =




7 2 −4
6 7 −3
−5 −9 1




By construction, the zeroes of b = a ◦S describe the same curve as those of a, but in a linearly transformed
space (or, equivalently, with coordinates expressed in a different basis). We easily compute b:

b1 = 4x2 + 28xy − 36xz + 49y2 − 126yz + 81z2 − 7x− 6y + 5z

b2 = 9x2 + 18xy − 24xz + 9y2 − 24yz + 16z2 − 2x− 7y + 9z

191

12. “Isomorphism of Polynomials” problems

By construction, a and b are made of two simultaneously equivalent quadratic polynomials.

Of course, we are not restricted to the equivalence of two pairs of quadratic forms, and we could check the
equivalence of an arbitrarily high number. We call the corresponding search problem the Quadratic Forms
Simultaneous Equivalence (QFSE) problem.

12.0.4 Related Problems

The most well-known related problem is probably Graph-Isomorphism (GI). Given two graphs G1 and G2,
the problem is to decide whether G1 is equal to G2, up to a relabelling of the vertices. This particular problem
is special in many aspects. After more than 40 years of research there is still no wost-case polynomial time
algorithm for GI. On the other hand, GI is unlikely to be NP-complete, since this would make the polynomial
hierarchy collapse.

A related problem is the following: suppose you have oracle access to two boolean functions f, g :
{0, 1}n → {0, 1}. They are said to be isomorphic if they are equal up to a permutation of the inputs. How
many queries to the oracles are required in the worst case to decide if f and g are isomorphic? Alon and
Blais show in [AB10] that the query complexity of the problem is Θ

(
qn/2

)
. They also show that if f is

known, then the complexity of the problem drops to Θ (n) for almost all functions f .

12.1 Cryptographic Usage

PLE has been (quite badly) called the“Isomorphism of Polynomials”(IP) problem by Patarin in 1996 [Pat96b]
and has received some attention from the cryptographic community. The hardness of the problem indeed
underlied the security of several quadratic multivariate trapdoor one-way function. In addition, Patarin
proposed to build an identification scheme out of it.

12.1.1 Building Trapdoor-One-Way Function

During the blossom of multivariate cryptography, many Trapdoor One-Way Functions were proposed,
based on the following idea: the public-key is a quadratic map, and evaluating the trapdoor one-way function
essentially amounts to evaluate the quadratic map. The intuitive security argument is that inverting arbitrary
quadratic maps (i.e., solving an instance of MQ) is well-known to be NP-complete (cf. chapter 10). The
trapdoor is that these quadratic maps are built with a special structure allowing the owner of the secret
key to invert them. Usually, the idea was to choose an easily-invertible internal quadratic map f as well as
two random invertible matrices S and T , and to “obfuscate” the easy-to-invert f by composing it with S
and T . One would then hope that PK = T ◦ f ◦S looks random, and therefore should be as hard-to-invert as
random quadratic maps. The public-key is then an “obscure representation” of some special, easily-invertible
function f .

After breaking C∗ [Pat95], and while introducing HFE [Pat96b], Patarin brought the attention of the
crypto community to QMLE as a hardness assumption of its own, on the hardness of which other schemes
could be based. The underlying reasoning was that while C∗ had succumbed to a decryption attack, it had
so far resisted all attempts to mount a key-recovery attack. A successful key-recovery attack would implicitly
find the solution of an instance of QMLE. This seemed hard, so why not build a new hardness assumption
out of it? More generally, if the public-key is formed by the composition: PK = T ◦ f ◦ S and if f is public,
then recovering the secret key amounts to solving an instance of QMLE.

Subsequent multivariate public-key schemes relying on the hardness of QMLE include the Hidden Matrix
(HM) encryption scheme [PGC98a], the SFLASH [PCG01a] signature scheme, the traceable block cipher of
Billet and Gilbert [BG03], the Tractable Rational Map Signatures (TRMS) [WHL+05], the `-IC signature
scheme [DWY07], the Multivariate Quadratic Quasigroup encryption scheme (MQQ) [GMK08], as well as
the SQUARE [CBD+09] and SQUARE-Vinegar [BCD08] encryption schemes. We do not wish to waste time
and space by discussing the superabundant and mostly uninteresting variants of the Tame Transformation
Signature scheme (TTS) or of the Stepwise Triangular System (STS).

It is worth remarking that all the schemes relying on the hardness of QLME have been broken: a key-
recovery attack against C∗ can be found in [FMRS08], HM is broken in [FJPT10], a decryption attack against
SFLASH is given in [DFS07, DFSS07], and a key-recovery attack can be found in [MR10]. The traceable
block cipher is broken in [FMRS08], an early version of TRMS is broken in [JKJMR05], and a revised version
is broken in [BFP08], the `-IC signature are broken in [FMRPS08], MQQ is broken in [MDBW09], while
SQUARE and SQUARE-Vinegar are broken in [BMR09].

We are led to believe that basing the security of a multivariate public-key primitive on the hardness of
QMLE seems unsound per se. In fact, a more detailed study of the abundant literature mentioned above
shows that in all these cases, the corresponding QMLE instances that were broken had a special structure:

192

12.1. Cryptographic Usage

indeed, the problem was to find S and T such that PK = T ◦ f ◦S, where f had to be easily invertible by the
legitimate user. For this reason, the internal map f could not be arbitrary, and the adversaries were facing
special, easier, instances of QMLE.

12.1.2 Revisiting a Venerable Identification Scheme

In the same paper in which he introduced QMLE (we mean [Pat96b]), Patarin also suggested to base an
identification scheme on the hardness of arbitrarily chosen instances of QMLE. This is interesting, because
we may avoid the structured instances that turned out to be weak.

In an identification scheme, a prover, who has generated a pair of private/public keys (PK,SK), wants
to prove her identity to a verifier who knows PK. In fact the provers wants to prove that she knows SK,
but without revealing any information about SK to the verifier, or to anybody else. This is essentially a
zero-knowledge proof of knowledge.

Zero-Knowledge proofs were introduced in 1985 by Goldwasser, Micali and Rackoff in [GMR85]. The next
year, two notable and now-classical identification schemes appeared, making use of zero-knowledge proofs.
Fiat and Shamir [FS86] proposed to use the hardness of Quadratic-Residuosity, while Goldreich, Micali
and Wigderson [GMW86] built an elegant zero-knowledge proof system for GI and used it to build their
identification scheme. The latter is illustrated by Algorithm 12.1. It is straightforwardly zero-knowledge:
Peggy only reveals ρ (a random permutation), or ρ ◦ σ−1 (the composition of the secret σ with a random
permutation, i.e., a random permutation). If she actually knows σ, then Peggy is able to convince Victor
in all cases. If Isabelle (the Impostor), who only knows G1 and G2 but not σ tries to play the game with
Victor, she fails with probability 1/2. If she chooses a permutation π and set G3 = π(G1), she succeeds in
convincing Victor if he picks tails (because she can just reveal π), and she fails if Victor picks heads (because
she does not know the isomorphism between G2 and G3). Symmetrically, if Isabelle sets G3 = π(G2), she
succeeds in convincing Victor if he picks heads (she reveals π), but she fails if he picks tails (because she
does not know the isomorphism between G1 and G3). Victor is very playful and asks her partner to play
with him again and again, so that the probablity that Isabelle succeeds in convinving him that she is in fact
Peggy becomes exponentially small.

Algorithm 12.1 Identification scheme based on Graph Isomorphism

1. Peggy (the Prover) generates a graph G1, chooses a random vertex-permutation σ, and computes
G2 = σ(G1). She publishes (G1, G2) and keeps σ secret.

2. Victor (the Verifier) knows G1 and G2 (he found them in a public directory), and he wants Peggy to
prove him that she knows σ.

3. Peggy chooses a random vertex-permutation ρ and computes G3 = ρ(G1). She sends G3 to Victor.

4. Victor flips a coin. If heads (resp. tails) come out, he asks Peggy to reveal ρ (resp. ρ ◦ σ−1).

5. Peggy kindly complies.

6. Victor checks that G3 = ρ(G1) (resp. G3 = ρ ◦ σ−1(G2)).

On the (slightly more) practical side, the difficulty in coming up with a concrete realization of the GI-
based identification scheme is that most instances of GI are extremely easy to solve. For instance, there is
an algorithm that solves random instances in expected linear time (see the survey [For96] for more details).
So far, this is not so bad: random integers are easy to factor, but RSA is still there, because we know how to
generate hard instances of the factorization problem. With GI the situation is much worse, because generating
hard instances of GI is extremely delicate: many powerful heuristics have to be fooled simultaneously.

Patarin’s idea was to simply replace GI by QMLE in Algorithm 12.1. The main reason one would want to do
this is that it seems easier to generate hard instances of QMLE — choosing them uniformly at random seems
essentially sufficient. Under the assumption that random QMLE is hard, then the resulting identification
scheme could even reach decent key sizes.

In order to further improve performance and key size, QMLE could even be replaced by QFSE. The
resulting scheme is then competitive with the state of the art in terms of key sizes, as discussed below. In
terms of security, it seems that using QFSE instead of GI cannot worsen the (asymptotic) security level:
Courtois, Patarin and Goubin indeed established that QFSE is GI-hard. They proved that any instance of
GI could be transformed into a (polynomially bigger) instance of QFSE, the solution of which would reveal
the solution of the original GI instance. Ergo, replacing GI with QFSE could in theory only lead to a security
improvement, while making hard instance generation much easier. A drawback is that it has also been
shown that QFSE was also unlikely to be NP-complete, as it would also make the polynomial hierarchy
collapse [PGC98b, FP06].

193

12. “Isomorphism of Polynomials” problems

Comparison With Other Identification Schemes. Many other identification schemes appeared after the
aforementioned works of Fiat-Shamir and Goldreich-Micali-Wigderson. While some of them rely on the
hardness of number-theoretic assumptions, some cryptographers took a different line of research, and tried
to design identification scheme from different computational assumptions, not relying on number theory, but
instead on the NP-hardness of some specific combinatorial problems. We highlight that Patarin’s QFSE-
based identification scheme does not look too shabby in terms of key size.

One of the very-first combinatorial identification scheme was proposed by Shamir [Sha89], and relied on
the hardness of the Permuted Kernel Problem (PKP). Later on, Stern proposed in [Ste93] a scheme based on
the intractability of Syndrome Decoding (SD), a hard problem from coding theory, and in [Ste94] a scheme
based on the intractability of Constrained Linear Equations (CLE). Pointcheval [Poi95] proposed a scheme
related to the hardness of the Perceptron problem, originating from the area of learning theory. Very recently,
Sakumoto, Shirai and Hiwatari [SSH11] proposed a clever scheme based on the average-case hardness of MQ.
All these problems are NP-complete (as opposed to QFSE). The designers proposed practical parameters,
aiming for a security level of 264 or more, which are summarized in table 12.1. It must be noted that several
cryptanalytic results may apply to these parameters [BCCG92, Geo92, PC93, KM99].

In all these schemes, it is required that all users share a public common string, usually describing an
instance of the hard problem at hand. For instance, in number-theoretic problems, the description of the
curve, or of the group over which a discrete logarithm problem is considered is a common public information.
While this information is not a “key” stricto sensu, it must nevertheless be stored by the prover and by the
verifier, leading to higher memory requirements. However, in some case it can be chosen randomly, or
generated online from a small seed using a PRNG.

Scheme Common String Public Key Secret Key

PKP
2048 256 374
7992 512 808

SD
131 072 256 512
524 288 512 1024

CLE
3600 80 80
3600 96 96

Perceptron 10807 144 117
MQ 265’680 80 80

QFSE 0 256 272

Table 12.1: Key sizes in bits corresponding to practical parameters proposed in [Sha89, Ste93, Ste94, Poi95,
Pat96c, SSH11] in order to obtain a security level of at least 264.

On the contrary, the QFSE-based identification scheme proposed by Patarin in [Pat96b, Pat96c] does not
need the prover and the verifier to share additional information (except maybe the description of the finite
field, which is very small). The PKP and SD schemes lead to bigger keys than QFSE, while the Perceptron
scheme leads to comparable key-sizes, and CLE yields smaller keys, if we neglect the additional memory
requirement imposed by the common string shared between all the participants.

Additionnaly, the QFSE-based identification scheme does not make use of either hash functions or com-
mitment schemes. This is in strong contrast with all the other proposals.

As a final note, let us mention that Lyubashevsky recently proposed in [Lyu08] to build an identification
scheme using the hardness of lattice problems, but did not propose concrete parameters.

12.2 Taxonomy

A complete study of Polynomial Linear Equivalence problems is difficult, because many characteristics of
the instances influence the performance of the various algorithms. We have already identified three relevant
subproblems: QFSE, CFE and QMLE. In this section we try to refine this classification, and to isolate the
relevant (sub-)subproblems. Ideally, this classification would help understand and express the performance
of corresponding algorithms. Bits and pieces of this classification were done by the authors of the various
existing PLE algorithms, but no complete picture was available up to date.

Presence of T . While it may sound kind of obvious, QMLE and QFSE are different problems. Of course,
QMLE algorithms should apply “as-is” to QFSE, but this is rarely optimal.

194

12.2. Taxonomy

Number of Polynomials. When we introduced QMLE at the beginning of this chapter, it was more or less
implicit that we considered quadratic maps over (Fq)n, i.e., vectors of n quadratic polynomials. However,
when we introduced QFSE, we explicitly stated that we could deal with an arbitrary number of quadratic
forms. Let us therefore denote by u the number of polynomials at hand. Key-recovery problems for encryption
schemes often yield instances of QMLE with u = n (u < n is impossible, otherwise the ciphertext would
contain less information than the plaintext, and u > n is possible but bad in terms of bandwidth). For this
reason (amongst others), QMLE has exclusively been studied with u = n. We also believe the other cases to be
much harder. At the very least, it seems that most QMLE algorithms break down when u 6= n, and cannot be
fixed in a simple way. Informally, the instance contains O

(
u · n2

)
units of information, and the solution that

has to be recovered contains O
(
u2 + n2

)
units of information, so the problem is maximally overdetermined

when u = n. The situation is essentially the same for QFSE, except that there is no cryptographic motivation
pushing to study in particular the case u = n. In fact, the exact opposite is true: in the identification scheme,
choosing u as small as possible reduces the key size and the communication complexity. It also apparently
makes the scheme more secure: we will show in chapter 13 that the existing algorithms have an exponential
running-time when u ≪ n. Note that u = 2 is the lowest admissible value, because we already discussed
that the equivalence of single quadratic forms is easy. If a and b are of higher degree, then it would make
sense to consider u = 1 though.

Bijectivity of S and T . The definition of PLE problems makes it very clear that S and T should be invertible.
If we drop this requirement, we face a completely different problem, also somewhat unfortunately termed the
Morphism of Polynomial (MP) problem by [PGC98b]. This other problem is much harder, as it easy to show
that it is NP-complete. Interestingly enough, finding the minimum number of field multiplications required
to multiply two n × n matrices reduces to an instance of MP. It is known that this number is 7 for n = 2,
but it is still unknown for n ≥ 3. See [PGC98b] for more details regarding MP.

Degree. Certainly the most important parameter of PLE instances is the degree of the polynomial maps.
Because of their cryptographic applications, most of our work is devoted to the quadratic case. However,
since Patarin proposed to use cubic polynomials in his identification scheme, we investigate this particular
matter in chapter 16.

The way in which the degree affects the complexity of solving instances depends of the algorithm used.
Some algorithms, including the ones we present in chapters 17 and 18, only work on quadratic instances.
The “to-n-fro” algorithm, presented in §13.1 is essentially degree-independent, while the complexity of the
Gröbner-basis approach presented in §13.2 increases with the degree.

Homogeneous vs Inhomogeneous. The second most important characteristic of a PLE instance is whether
the polynomials are homogeneous or not. This was (to the best of our knowledge) first observed in [dVP03],
in which it was shown that (linear) inhomogeneous QFSE with u = n was solvable in polynomial time.
Homogeneous instances are always harder (sometimes exponentially). The following result (vastly plagiarized
from [FP06]) expresses the fundamental reason behind this.

Lemma 12.1. If T ◦ b = a ◦ S, with S, T ∈ GLn (Fq), then for all i ∈ N, we have: T ◦ b(i) = a(i) ◦ S.

In more concrete terms, lemma 12.1 states that when dealing with an inhomogeneous instance, S and T
are simultaneously the solutions of homogeneous instances corresponding to each lower-degree homogeneous
component. What becomes very interesting is then to look at the homogeneous components of degree zero
and one. We find:

T × b(1) = a(1) × S,
T × b(0) = a(0).

These two relations degenerate to 0 = 0 in the homogeneous case, but otherwise reveal an important amount
of information on S and T , and play a crucial role in the new algorithms we present in chapter 17. Prior to
this work, Faugère and Perret proposed in [FP06] the first algorithm that (empirically) runs in polynomial
time on inhomogeneous instances of any degree.

In general, we could summarize the difference between the homogeneous and inhomogeneous cases by
saying that “there is no free lunch 1 in the homogeneous case”. As shown above, there are various ways to
obtain “free” information on S and T in the inhomogeneous case, but none of these are applicable to the
homogeneous case. To emphasize the difference between the homogeneous and the inhomogeneous case of
the QMLE problem, we distinguish between Inhomogeneous QMLE (IQMLE) and the standard (homogeneous)
QMLE.

1. in reference to [WM97]

195

12. “Isomorphism of Polynomials” problems

Linear vs Affine. We stress that it is only possible to take advantage of the inhomogeneity of an instance
if S and T are linear (as opposed to affine) bijections. While bringing in affine transformations is not in
the spirit of the generalization of matrix equivalence we started with, it is very natural if the purpose of S
and T is to obfuscate the representation of some quadratic map (in an encryption/signature context). In
the presence of affine transformation, equation (12.1) becomes:

T ◦ b(x) + d = a (S · x + c) , with S, T ∈ GLn (Fq) , and c,d ∈ (Fq)n (12.2)

Affine instances were thought to be harder, and the strategy proposed in [PGC98b] was to guess c and d
before doing anything else. It is in fact possible to do better, and the starting point is to adapt lemma 12.1
to the affine case. The result is unfortunately less appealing.

Lemma 12.2. If T ◦ b(x) + d = a (S · x + c), with S, T ∈ GLn (Fq) and c,d ∈ (Fq)n, then for all k ≥ 1 we
have

b(k) = T ◦
(

a +
∂a

∂c

)(k)

◦ S.

In particular, if d is the degree of a and b, then b(d) = T ◦ a(d) ◦ S.

Proof. Starting from equation (12.2) we have:

T ◦ b(x) + d = a (S · x + c) = a (S · x) +
∂a

∂c
(S · x)

The first statement of the lemma follows from applying lemma 12.1 to the leftmost and rightmost sides of
this equation. The second statement follows from the fact that deg ∂a

∂c = deg a− 1.

Lemma 12.2 has three important consequences.

1. When facing an affine instance, the linear part of the solution (S and T) is amongst the solutions of
the linear homogeneous instance formed by considering only the homogeneous component of highest
degree. Thus, c and d do not need to be guessed beforehand if the homogeneous problem can be
cracked down.

2. If a and b are quadratic and homogeneous, then the value of c and d can be retrieved efficiently, as

observed in [GSB01]. Because b is homogeneous, then b(1) is identically zero. This means that
(
∂a
∂c

)(1)

is identically zero as well. Because a is quadratic, the function that maps c to ∂a
∂c is linear. Thus ∂a

∂c = 0
in fact yields n2 linear equations on the n coordinates of c, and c can be retrieved in polynomial-time
by straightforward linear algebra. Once c has been recovered, d comes for free.

3. The same reasoning applies to quadratic affine inhomogeneous instances, but S and T must be known
before c and d can be recovered.

To summarize, when dealing with affine instances, the procedure is the following: solve the linear homo-
geneous instance obtained by looking only at the homogeneous component of highest degree. Once S and T
have been retrieved, recover c and d in polynomial time.

This shows that the linear homogeneous case is complete, in the sense that if we know how to solve it
efficiently, then we will know how to deal with all the other cases. This was already observed in the context
of QFSE by Perret in [Per05]. So, the study of QMLE in fact boils down to two cases: the (easy) linear
inhomogeneous case, and the (difficult) linear homogeneous case.

Parity of q and n. In some algorithms, the parity of the characteristic of the field plays a role. This
happens for essentially two reasons: firstly, Dx always vanish on x when q is even. Secondly, in characteristic
two, the theory of quadratic forms comes in a specific “flavor”. For instance, the sets of symmetric and
skew-symmetric matrices nearly coincide, with funny consequences.

The algorithms often have to be analyed differently in characteristic two and in odd characteristic, and
some of their properties are different (it is often trickier in characteristic two). In addition, in characteristic
two, the parity of n sometimes also plays a role, notably because when n is odd, symmetric matrices with
zeroes on the diagonal are always singular. This particular problem manifests itself in the Jacobian algorithm
for QFSE presented below, and in the QFSE algorithm we present in chapter 15.

Bijectivity of a and b, and Other Properties. There are some pre-existing algorithms where the fact that
a and b are bijective quadratic maps makes the algorithm faster and the analysis simpler. In the same way,
some specific algorithms may depend on particular properties of the quadratic maps. When it is the case, it
is important that these properties are clearly stated.

196

12.3. Challenges

Challenge n q Public Key Private Key Broken ?

A1 16 2 272 bits 256 bits by us, in 1s
B1 6 16 168 bits 144 bits [GMS03, FP06]†

(a) QFSE challenges (2 quadratic polynomials, affine transform)

Challenge n q Public Key Private Key Broken ?

C1 16 2 816 bits 256 bits by us, in 1 month
D1 6 16 224 bits 144 bits by us, in 411s

(b) CFE challenges (1 cubic form, affine transform)

Challenge n q Public Key Private Key

E1 64 2 133 184 bits 8192 bits
F1 16 16 8768 bits 2048 bits
G1 8 256 2368 bits 1024 bits

(c) QMLE challenges (quadratic,inhomogeneous, affine, u = n)

Table 12.2: Patarin’s challenges [Pat96c], along with the corresponding key-sizes for the identification scheme
of section 12.1.2.

12.3 Challenges

We have identified three pre-existing algorithms for QFSE [Per05, dVP03, GMS03], and two algorithms
for QMLE [PGC98b, FP06]. We survey all of them in chapter 13. Unfortunately though, comparing these
algorithms based on their theoretical features is close to impossible. Some may fail with a given probability,
while the others always succeed, but with uncertain complexity. Their inventors sometimes identified classes
of instances that their algorithm solve efficiently (i.e., in polynomial-time), but it is not always the case, and
more often than not is just an empirical observation. Besides, these classes do not really intersect.

The authors of PLE algorithms thus measured the efficiency of their techniques in practice, by trying
to break wider and wider ranges of parameters (except for the authors of [PGC98b] who did not measure
the efficiency of their algorithms in practice). Patarin did the right thing by proposing concrete challenges
in [Pat96c]. He did not provide actual instances, but he specified several parameter sets that he believed were
more and more secure. These challenges can be used as milestones to measure the progress accomplished
since their introduction. The corresponding parameter sets are shown in Table 12.2.

A few words of commentary. The QFSE/CFE challenges use the smallest number of polynomials that
makes sense, which seems to make the problem as hard as is gets. The QMLE challenges have affine trans-
formations S and T , which makes them belong to the hardest class of the problem. They were designed to
require a workload of at least O (qn) operations. To illustrate the difference in behavior between homoge-
neous and inhomogeneous instances, we will consider linear inhomogeneous variants of the challenges, and
we will denote them by Ã1, B̃1, . . .

These challenges were apparently designed, 15 years ago, to provide a security level of roughly 264

elementary operations. According to Moore’s law, the available computing power has been multiplied by
about 1000 since that time. These challenge are therefore legacy challenges (let us denote them by A1, B1,
etc). It would make sense to increase n by at least 25%, to form updated challenges (A2, B2, . . .), and to
even double n to form safer challenges (A3, B3, . . .).

Some of these challenges could be broken by the algorithms published prior to this work, however, the
authors of the corresponding papers did not realize it, or did not advertize it. These challenges are marked
with a dagger (†) in the table.

197

Chapter 13

Revisiting Prior Algorithms for PLE

We describe and discuss the pre-existing algorithms for all variants of PLE.

In this chapter we describe and discuss the features of five pre-existing algorithms. Essentially two
non-trivial algorithms have been proposed so far for QMLE: the “To-and-Fro” approach of Courtois, Goubin
and Patarin [PGC98b] on the one hand, and the “Gröbner Basis” approach of Faugère and Perret [FP06]
on the other hand. While the former is historically the first algorithm to improve on exhaustive search, its
complexity is greater than qn. The authors of the latter conjectured, without giving any supporting evidence,
that their technique is subexponential, and observed that it empirically terminates in polynomial on random
inhomogeneous instances, thereby providing the first concrete evidence that these instances were easy.

To our knowledge, the first algorithm dedicated to QFSE was given in 2003 by Geiselmann, Meier and
Steinwandt [GMS03], and because it needs a name, we call it the “columnwise sieve”. Soon after, Levy-
dit-Vehel and Perret [dVP03] suggested to replace the “exhaustive search” component of the columnwise
sieve by the computation of a Gröbner basis, resulting in the “algebraic columnwise sieve”. Both algorithms
are exponential by nature, and their complexity was not even vaguely known. A breakthrough took place
in 2005, when Perret [Per05] proposed a new algorithm, that we call the “Jacobian” algorithm because its
distinctive feature is the use of Jacobian matrices. This algorithm is polynomial when the number u of
polynomials in a and b is equal to the number of variables n. Recall that in the context of QFSE and CFE,
a and b have u polynomials, and that we do not enforce u = n a priori.

While we originally intended to do a quick survey of the state of the art, doing it turned out to be
surprisingly challenging and disappointing. The algorithms were often quite vaguely described, with room
for interpretation and without pseudo-code. In addition, their success probability, and/or their running time,
were often not discussed. We thus give our own complexity analysis for four of the five algorithms under
review.

13.1 Going To-and-Fro

Informal Description. The first non-trivial algorithm for QMLE, given in 1998 by Courtois, Goubin and
Patarin [PGC98b]. It has been independently rediscovered five years later by Biryukov, De Cannière, Braeken
and Preneel [BCBP03], under the form of an algorithm to test the linear equivalence of S-boxes.

The to-n-fro algorithm is based on the following informal observation: if we know the value of S on a
few linearly independent points, then we can efficiently “amplify”our knowlegde of S into an exponentially
bigger knowledge of T . Let F = 〈f1, . . . , fr〉 be a subspace of (Fq)n over which S is known. Then for any
x ∈ F , it is no big surprise that:

T · b (x) = a (S · x) .

This reveals T over the qr points forming the image of F by b. Since b is by definition non-linear, we may
legitimately hope to discover T on a subspace of (Fq)n of dimension greater than r.

The second idea underlying the algorithm is that knowledge of T can be“transferred”back into knowledge
of S, yet doing so is very expensive. Following its inventors, we will assume that a and b are bijective quadratic
maps (we will try to drop this assumption later on). The point is that for all x ∈ (Fq)n we have:

a〈−1〉(T · x) = S
(
b〈−1〉(x)

)
(13.1)

So, from the equality y = T ·x, involving only T , we deduce the equality a〈−1〉(y) = S
(
b〈−1〉(x)

)
, involving

only S. Solving two instances of the MQ problem thus reveals the image of S on a point. On some points of
G, the preimage will not belong to F , and our knowledge of S will then be increased, allowing us to re-iterate
the procedure, until S and T have been completely determined.

199

13. Revisiting Prior Algorithms for PLE

More In-Depth Study. The inventors of this algorithm did not give any in-depth complexity analysis, and
did not give pseudo-code. Instead, they illustrated their algorithm on a toy example. Algorithm 13.1 shows
our attempt at writing a rigorous description.

Algorithm 13.1 Bijective to-n-fro algorithm for QMLE.

1: function Bijective-To-n-Fro(a,b, F) . S is initially known on F
2: repeat
3: for all x ∈ F do . Enlarge G
4: G← G+ 〈b(x)〉
5: remember that T · b(x) = a(S · x)
6: end for
7: if dimG = dimF then report failure
8: for all x ∈ G− b(F) do . Enlarge F
9: u← b〈−1〉(x)

10: v← a〈−1〉(T · x)
11: F ← F + 〈u〉
12: remember that S · u = v
13: end for
14: until dimF = n
15: Fully determine T
16: return S and T
17: end function

Looking at the pseudo-code, we realize that the algorithm may fail. In that case, it must be restarted
with an enlarged F (which means that the image of S on one more point must be found). The algorithm
fails on line 7 if b(F) is a vector space. Note that this will always happen if dimF = 1, q = 2 and the
polynomials are homogeneous. Under the same conditions, if F = 〈u,v〉, q = 2 then failure would mean that
b(u+v) = b(u) +b(v). If b were a random permutation we could assert that this happens with probability
2−n (over the random choice of b). We can in fact check that this is true even though b is a random bijective
quadratic map, but we skip the details.

It therefore seems clear that the “Bijective to-n-fro” will find the solution with high probability given one
(resp. two) known relation in F when q is greater than two (resp. equal two). In both cases, 2n instances
of the MQ problem will have to be solved.

Giving Up on Bijectivity. It seems natural to try to drop the bijectivity requirement, as a random QMLE
instance is not bijective with overwhelming probability. This is in fact surprisingly challenging, and there
are many possible ways to adapt the bijective algorithm. The main issue is that there may now be zero, one,
or more than one preimages. The simplest option is probably to ignore the cases when there is not a single
preimage. This however creates a non-negligible possibility of failure: for instance, if q = 2, F = 〈x,y〉 and
the polynomials are homogeneous, then if everything goes well we will have G = 〈b(x),b(y),b(x + y)〉, and
G − b(F) contains 4 elements. We know the distribution of the number of preimages of b from §10.2, and
the probability that none of these 4 elements has a single preimage is (1 − 1/e)4 ≈ 16%. Algorithm 13.2
shows our attempt at getting rid of the bijectivity constraint.

The case where there are more than one preimage could be dealt with by“guessing” the right permutation
of the preimages and going on, but this then yields a more complicated backtracking algorithm, and it is
unclear that the result will be more efficient. In any case, the number of MQ instances that we need to solve
in order to find a point of G having a single preimage follows a geometric distribution of parameter 1/e.
Therefore, we expect, all-in-all to have to solve 3.7n instances of the MQ problem.

To conclude, we note that the method generally has problems with non-bijective instances of QMLE, but
its failure probability goes down when the size of the field grows. Lastly, it is inherently exponential, as it
assumes the possibility to invert the quadratic maps. Moreover, since the image of S must be known on at
least one point (two when q = 2), then the full algorithm has a complexity of order O

(
n · q2n

)
when q > 2,

and O
(
n · q3n

)
when q = 2 (in conformance with the claims of Courtois, Goubin and Patarin).

13.2 The Gröbner-Basis Algorithm

Let us take a look back at equation (12.1):

T ◦ b = a ◦ S

200

13.2. The Gröbner-Basis Algorithm

Algorithm 13.2 General (non-bijective) to-n-fro algorithm for QMLE.

1: function General-To-n-Fro(a,b, F) . S is initially known on F
2: repeat
3: for all x ∈ F do . Enlarge G
4: G← G+ 〈b(x)〉
5: remember that T · b(x) = a(S · x)
6: end for
7: if dimG = dimF then report failure
8: for all x ∈ G− b(F) do . Enlarge F
9: U ← b〈−1〉(x)

10: if |U | = {u} then
11: v ← a〈−1〉(T · x)
12: F ← F + 〈u〉
13: remember that S · u = v
14: end if
15: end for
16: until dimF = n
17: Fully determine T
18: return S and T
19: end function

This is an equation between two vectors of multivariate polynomials. If we pick a random vector x ∈ (Fq)n,
we observe that T · b(x)− a(S · x) = 0. In this equality the coefficients of S and T appear with degree two
and one, respectively. We thus have n quadratic equations in 2n2 variables. But nothing prevents us to
generate a different vector of n quadratic equations in these same variables by choosing a different random
vector x. In fact, repeating this process 2n3 times would yield 2n4 quadratic equations in 2n2 unknowns,
and it would be possible to solve the resulting system by linearization in time O

(
n6
)
.

This approach, while very tempting and independently rediscovered many times, in fact fails miserably.
The reason is that the number of linearly independent equations that can be generated that way is in fact
upper-bounded by n2 · (n − 1)/2 in the homogeneous case (this is n times the number of monomials in n
variables of degree exactly two), and by n · (n+ 2) · (n+ 1)/2 in the inhomogeneous case (this is n times the
number of monomials in n variables of degree at most two), as shown in [FP06].

Directly Obtaining The Interesting Equations. Faugère and Perret demonstrated that it is easy to directly
acquire a basis of the vector space spanned by these equations. If we rewrite (12.1) into T ◦b−a◦S = 0, then
the multivariate polynomials on the left are identically zero, and therefore the coefficient of each monomial
must be zero. These coefficients are themselves quadratic polynomials in the entries of S and T . So, this
coefficient-wise identification yields one quadratic equation in the entries of S and T for each occurrence
of each monomial in a or b, and this makes precisely n ·

(
n+2

2

)
equations. So, a possible QMLE algorithm

consists in:

1. Acquiring the n ·
(
n+2

2

)
quadratic equations in S and T resulting from (12.1).

2. Computing a Gröbner basis of the corresponding ideal.

3. Actually finding all the solutions of these equations using the Gröbner basis.

Properties of the Equations. First of all, the system of equations obtained that way is overdetermined. As
a consequence, even without adding the field equations we find that the existence of solutions in the algebraic
closure besides those in Fq is extremely unlikely, which suggests that the properties of this QMLE algorithm
are relatively independent from the size of the field. This concurs to make this remarkable method unique.

Additionnaly, when a and b are homogeneous, then I is a bi-homogeneous ideal of positive dimension
(most likely one). The coefficients of T only occur linearly, while the coefficients of S appear in monomials
having the same degree as a, thus the ideal is bi-homogeneous. Some specialized Gröbner basis algorithm
could then possibly be applied [FDS11].

When there is a solution, there is in fact an infinite family of solutions in the algebraic closure of the
field, because if (S, T) is a solution, then (λ · S, λ2 · T) is also a solution. This justifies in passing that the
ideal is of positive dimension.

201

13. Revisiting Prior Algorithms for PLE

13.2.1 Theoretical and Practical Complexity

Faugère and Perrey empirically observed that when applied to quadratic random inhomogeneous in-
stances, the degree of the polynomials handled by the Gröbner basis computation was always less than or
equal to three. This means, according to the discussion in §10.4, that the complexity of computing the
Gröbner basis is O

(
n9
)
. They also observed that in this particular case, the running time of the whole

procedure was dominated by the cost of constructing the equations, and not by that of their resolution! This
motivates a little more in-depth investigation of the matter.

Generating the Equations. A first observation is that if we have to generate O
(
n3
)

quadratic equations in

O
(
n2
)

variables, then our system of equation can have up to O
(
n7
)

non-zero coefficients in the worst case.
Were we to use a dense representation to store our equations, the time needed to generate them would then
obviously be Ω

(
n7
)
. The only way this bound could be beaten would be to exhibit some kind of pattern in

the equations and to use a sparse representation, as shown below.
We will focus, for the sake of simplicity, on the homogeneous case. Suppose then that we are given a

(resp b) as a collection of n quadratic forms, each represented by an upper-triangular n× n matrix over Fq
denoted by A[i] (resp. B[i]). If we look at the k-th coordinate of equation (12.1), we see:

Tk• · b(x) = ak(S · x)

It is not incredibly difficult to work out that this translates as:

n∑

i=1

n∑

j=i

(
n∑

`=1

Tk` ·B[`]
ij

)
· xixj =

n∑

i=1

n∑

j=1

(
n∑

`=1

n∑

m=`

S`i ·A[k]
`m · Smj

)
· xixj

Identifying the coefficients of the x2
i monomials yields:

n∑

`=1

Tk` ·B[`]
ii =

n∑

`=1

n∑

m=`

S`i ·A[k]
`m · Smi (13.2)

And doing the same with the xixj monomials gives:

n∑

`=1

Tk` ·B[`]
ij =

n∑

`=1

n∑

m=`

(S`i + S`j) ·A[k]
`m · (Smi + Smj) (13.3)

And our system of n2(1 + n) quadratic equations Squad is formed by assembling (13.2) and (13.3) for all
1 ≤ k ≤ n, 1 ≤ i ≤ n and i < j ≤ n. More interestingly, if we look at an individual equation, we find
that only the coefficients of S•i, S•j and Tk• occur. Thus the generators of Squad are indeed sparse, and the
complete set of equations can be represented with O

(
n5
)

non-zero coefficients. In addition, these coefficients
can be obtained without any arithmetic operations, with just some shuffling around of the coefficients of a
and b.

Solving the Equations. The equations in Squad are certainly not random-looking. This can be seen with an
informal information-theoretic argument: a random system of O

(
n3
)

equations in O
(
n2
)

variables cannot

be described by less that O
(
log q · n7

)
bits, while Squad is completely characterized by only O

(
log q · n3

)

bits (this is the size of a complete description of a and b).
The authors of [FP06] considered two distinct settings and evaluated their algorithm in both: the inhomo-

geneous case in which random homogeneous components of all degrees are present, and the semi-homogeneous
case, where only the quadratic and linear homogeneous components are present, but not the constant one.
It is also interesting to take a look at the (fully) homogeneous case.

Let us assume, for the sake of the argument, that Squad is a semi-regular system (cf. §10.5). In the
homogeneous case, we only have quadratic equations, so we directly compute the degree of regularity using
the Hilbert series, assuming the presence of 2n2 variables and n2(n+1)/2 equations. In the semi-homogeneous
case, we note that there are n2 linear equations in the system, which amounts to remove n2 variables. We
therefore compute the degree of regularity assuming the presence of n2 variables and n2(n+ 1)/2 quadratic
equations. In the inhomogeneous case, we assume that the degree of regularity is 3, as observed by Faugère
and Perret. These degrees of regularity are shown in Figure 13.1a and the corresponding complexities are
shown in Figure 13.1b. In the inhomogeneous case, we find a polynomial complexity, as expected. In the
semi-homogeneous case, we find a complexity of order O

(
26n
)
, and in the (fully) homogeneous case, a

complexity of order O
(
218n

)
.

We note that this directly contradicts [FP06], in which it was conjectured that the Gröbner basis com-
putation would be subexponential in the semi-homogeneous case. Our complexity estimates are established
under the debatable assumption that quite structured systems of quadratic equations are semi-regular. Thus,
determining the complexity of this algorithm is an essentially open problem.

202

13.3. The “Columnwise Sieve” Algorithm

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30

d r
eg

n

semi homogeneous case
fully homogeneous case

(a) Degree of regularity

20

220

240

260

280

2100

2120

2140

2160

2180

0 5 10 15 20 25 30

#O
pe

ra
tio

ns

n

inhomogeneous case
semi homogeneous case
fully homogeneous case

(b) Estimated Complexity of GB computation

Figure 13.1: Properties of semi-regular systems with the same number of equations and variables as Squad.

13.2.2 Experimental Results

log log log is known to grow to
infinity, but it has never been
observed doing so...

Don Coppersmith

We could not obtain definitive results on the complexity of the algorithm from a theoretical point of view,
but we still have a chance to study it in practice. It would be interesting to compare our estimates with the
actual behavior of the algorithm. Getting a complete picture of the practical behavior of the algorithm is
nevertheless not very simple, for two reasons: a) many parameters influence the behavior of the algorithm,
and b) the time and space complexity quickly becomes so high that only very small values of the parameteres
can be considered in practice. This makes it close to impossible to check whether the asymptotic estimates
are meaningful. For instance, in the fully-homogeneous case over F28 , the algorithm terminates in 30s when
n = 5 but runs for more than 2 weeks when n = 6.

We could try to benchmark the performance of the algorithm, but we would in fact vastly be benchmarking
a particular implementation of a particular Gröbner basis algorithm, specifically, the implementation of F4 in
the MAGMA [BCP97] computer algebra system. We therefore quote the numbers from [FP06] in Table 13.1.

13.3 The “Columnwise Sieve” Algorithm

In [GMS03] Geiselmann, Meier and Steinwandt presented a nice and simple algorithm for QFSE. Their
objective was to tackle the affine case, but for the sake of simplicity we will consider their ideas in the linear
case.

The initial idea is quite simple, and consists in sieving the individual columns of S. Since we have
b = a ◦ S, then evaluating over a vector of the canonical basis of (Fq)n yields: b(ei) = a (S•i). Therefore,
the set of possible candidates for the i-th column can be restricted to:

Ci = {x ∈ (Fq)n | b(ei) = a (x)}

Next, if we have sieved the possible candidate for columns i and j of S, we can sieve further, by noting that
for all α, β ∈ Fq, we should have: b(α · ei + β · ej) = a (α · S•i + β · S•j). If the equation does not hold, then
we know that the combination (S•i, S•j) is wrong. In other terms, we extend our candidate sets to pairs of
columns:

Cij = {x,y ∈ (Fq)n | ∀α, β ∈ Fq, b(α · ei + β · ej) = a (α · x + β · y)}

We could extend our definition of candidate sets to more than two columns in the same way ; we illustrate
this with the extension to three columns:

Cijk = {x,y, z ∈ (Fq)n | ∀α, β, γ ∈ Fq, b(α · ei + β · ej + γ · ek) = a (α · x + β · y + γ · z)}

203

13. Revisiting Prior Algorithms for PLE

type n q F5 running time (s)

inhomogeneous

8

216

0.14
10 0.63
12 2.16
15 10.9
17 27.95
20 91.54
10

65521

0.44
15 8.08
20 69.96
23 235.91

semi-homogeneous

5

216

0.13
6 1.03
7 6.15
8 54.34
9 79.85
10 532.33

homogeneous
5

28 30
6 ≥ 14 days

Table 13.1: Practical performance of the Gröbner basis algorithm, using MAGMA’s F4.

A Simplified Version. We are now ready to build a simplified version of the columnwise sieve. Algo-
rithm 13.3 is the result of a compromise between faithfulness to the ideas of [GMS03] and simplicity. We
stress that there are countless ways to improve our presentation of the algorithm, but we do not elaborate
further.

Algorithm 13.3 A simplified version of the columnwise-sieve algorithm.

1: function Columnwise-Sieve(a,b)
2: C1 ← ∅ . Compute C1

3: for all x ∈ (Fq)n do
4: if b(e1) = a(x) then C1 ← C1 ∪ {x}

5: for i from 2 to n do

6: Ci ← ∅ . Compute Ci
7: for all x ∈ (Fq)n do
8: if b(ei) = a(x) then Ci ← Ci ∪ {x}

9: C1,2,...,i ← ∅ . Compute C1,2,...,i

10: for all (x1,x2, . . . ,xi−1) ∈ C1,2,...,i−1 and xi ∈ Ci do

11: for all (k1, . . . , ki) ∈ (Fq)i do
12: if b (k1 · e1 + · · ·+ ki · ei) 6= a (k1 · x1 + · · ·+ ki · xi) then jump to line 14
13: C1,2,...,i ← C1,2,...,i ∪ {(x1,x2, . . . ,xi)}
14: end for

15: end for
16: return C1,2,...,n

17: end function

After regretting that the complexity analysis we are going to sketch is absent from [GMS03], we begin
with a few remarks. First of all, Algorithm 13.3 always succeeds, and returns the set of all possible S.
Secondly, just computing C1, C2, . . . , Cn makes its complexity Ω (n · qn). Taking into account the time (and
space) complexity of what happens in line 9–14 is a bit more troublesome, as it cannot be done without (at
least) estimating the sizes of the various sets handled by the algorithm.

It is reasonable to expect |Ci| = qn−u. On the other hand, the usual complications appear as soon as we
try to estimate the size of Cij : it depends on whether a and b are homogeneous or not. Indeed, a given pair
(x,y) must satisfy q2 conditions to belong to Ci (one condition per pair (α, β) in the definition of Ci). The
point is that some of these conditions are always satisfied, such as the condition with α = 0, β = 0, which
says nothing about x and y.

204

13.3. The “Columnwise Sieve” Algorithm

– If a and b are inhomogeneous, this is the only always-satisfied condition, and therefore:

|Cij | ≈ q2·n−u·(q2−1)

– If a and b are homogeneous, then the conditions (α, β) and (α · γ, β · γ) are equivalent if γ 6= 0. To see
why, observe that:

b(γ · α · ei + γ · β · ej) = γ2 · b(α · ei + β · ej)

Something similar holds for a. Thus, we may restrict α to be equal to either zero or one without loss
of generality, and when α = 0 we may safely restricts ourselves to β = 1. This leaves q + 1 non-trivial
conditions, and we find:

|Cij | ≈ q2·n−u·(q+1)

So, as usual, things are worse in the homogeneous case. Having noted this fact, we switch back to the
inhomogeneous case that was the prime concern of [GMS03]. By extending the above reasoning, we expect
that:

|Ci1,...,i` | ≈ q
`·n−u·(q`−1)

To measure the spatial complexity of the algorithm, we would need to measure the maximal size reached
by C1,...,i during the course of the computation. It is not particularly difficult to verify that the maximum
cardinality is reached for imax = logq(n/(u ln q)), and that the maximum cardinality itself is roughly:

qu ·
(

n

u · ln q

)n
· e−n

So, the number of times line 12 is executed when i = imax is:

T12 = |Ci1,...,imax | · |Cimax | · qimax

= qu ·
(

n

u · ln q

)n
· e−n · qn−u · n

u ln q

=
n

u · ln q
·
(

n · q
e · u · ln q

)n

So all-in-all, the complexity of algorithm 13.3 is approximately:

Tcolumnwise = max

(
n · qn, n

u · ln q
·
(

n · q
e · u · ln q

)n)
(13.4)

Figure 13.2 illustrates how the complexity of is influenced by q, n and u. It appears that increasing u makes
the algorithm more efficient. Interestingly enough, u = 1 and u = 2 looks like the worst-cases, yet these
settings yield the smallest keys in the identification scheme of §12.1.2.

Possible Improvements Using Extension Fields. The authors of this algorithm proposed several non-
trivial improvements to the simple version that we presented. The intuition behind our definition of Ci is
that b(ei) = a(S•i). One improvement is that this equality can be quantified over Fq: for all λ ∈ Fq, we
have b(λ · ei) = a(λ · S•i). We could therefore extend a bit our definition of Ci, by considering:

{
x ∈ (Fq)n | ∀λ ∈ Fq, b(λ · ei) = a (λ · x)

}

Note that when q = 2, then quantifying over all F2 does not improve anything. However, as the authors
of [GMS03] pointed out, this problem can be circumvented by embedding Fq in a suitably large field extension
(say, Fqk , with qk ≥ d+ 1), and setting:

C
[k]
i =

{
x ∈ (Fq)n | ∀λ ∈ Fqk , b(λ · ei) = a (λ · x)

}

One may even hope that the cardinality of C
[k]
i would be a decreasing function of k. Of course, we always

have C
[k]
i ⊆ Ci. Introducing this new set of candidates would only be interesting if C

[k]
i were quite smaller

than Ci. Again, we must be very careful that when a and b are homogeneous, then Ci = C
[k]
i (for reasons we

in fact discussed above). However, in the inhomogeneous case this might work and sensibly reduce the size
of the candidate sets. The following lemma will help us figure by how much, and generally clarifies things.

205

13. Revisiting Prior Algorithms for PLE

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80

U

N

2^16

2^32

2^64

2^80

2^128

(a) q = 2

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80

U

N

2^16

2^32

2^64

2^80

2^128

(b) q = 3

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80

U

N

2^32

2^64

2^80

2^128

(c) q = 4

0

2

4

6

8

10

12

14

16

10 20 30 40 50 60 70 80

U

N

2^32

2^64

2^80

2^128

(d) q = 5

Figure 13.2: Iso-complexity lines of Algorithm 13.3 (in the inhomogeneous case) for various values of q. The
complexity is smaller than indicated by each line on the left, and greater on the right. The lines become
vertical when n ·qn dominates the complexity, and increasing u no longer helps in making Tcolumnwise smaller
in equation (13.4) smaller.

Lemma 13.1. Let α be a primitive element in Fqk , and let β1, . . . , βd be d distinct non-zero elements of
Fqk . Consider the set:

C̃
[k]
i = {x ∈ (Fq)n | b(β1 · ei) = a (β1 · x) , . . . ,b(βd · ei) = a (βd · x)}

C
[k]

i = {x ∈ (Fq)n | b(α · ei) = a (α · x)}

When k ≥ d, then we have: C
[k]
i = C̃

[k]
i = C

[k]

i .

Proof. Let f be an arbitrary polynomial of total degree d in n variables, and let x be a non-zero vector in
(Fq)n. Let us define the degree-d polynomial over Fqk [X]:

Pf ,x(X) =

d∑

i=0

f (i)(x) ·Xi

We obviously have: f(λ · x) = Pf ,x(λ). Therefore, we may reformulate the definition of C
[k]
i :

C
[k]
i =

u⋂

j=1

{
x ∈ (Fq)n | ∀λ ∈ Fqk , Pbj ,ei(λ) = Paj ,x(λ)

}

But it now becomes clear that if Pbj ,ei and Paj ,x (which are are degree-d polynomials) coincide on d + 1
points, then they are in fact equal coefficient-wise, and will coincide on the whole Fqk . And since we always
have Pbj ,ei(0) = Paj ,x(0), we find that it is in fact sufficient to check d distinct values of λ (as opposed to

206

13.3. The “Columnwise Sieve” Algorithm

type q n u degree predicted complexity

Linear inhomogeneous
7 7 1 cubic 224

16 6 6
quadratic

227?

2 16 7 222

Affine inhomogeneous

16 6 3

quadratic n.a.
3 10 3
2 16 8
2 8 2

Table 13.2: Parameters solved in practice in [GMS03]. Our reasoning does not cover the affine variant of
the algorithm.

challenge n q u predicted complexity

A1 16 2 2 252.9

A2 20 2 2 272

A3 32 2 2 2135

B1 6 16 2 226.6 ?

B2 8 16 2 235 ?

B3 12 16 2 251.6 ?

C1 16 2 1 269.9

C2 20 2 1 293

C3 32 2 1 2168.3

D1 6 16 1 226.6 ?

D2 8 16 1 235 ?

D3 12 16 1 258.2

Table 13.3: Projected complexity of the Columnwise Sieve on the challenges.

qk). This shows that C
[k]
i = C̃

[k]
i . We observe that as soon as q ≥ d+ 1, then there is no gain in using a field

extension, since we may very well choose the βi in Fq.
It remains to show that if k ≥ d, then C

[k]
i = C

[k]

i . Let us thus assume that k ≥ d, and that Pbj ,ei(α) =
Paj ,x(α). Applying the Frobenius map to both sides of this equation yields:

Pbj ,ei(α)q = Paj ,x(α)q

d∑

k=0

αq·k · b(k)
j (ei) =

d∑

k=0

αq·k · a(k)
j (x)

Pbj ,ei(α
q) = Paj ,x(αq)

This argument repeats, and we find that for any integer 1 ≤ k ≤ d, Pbj ,ei

(
αq

k
)

= Paj ,x

(
αq

k
)

. This shows

that C̃
[k]
i ⊆ C

[k]

i (with βi = αq
i

), and establishes the result.

In [GMS03], it was suggested to choose a somewhat large extension, with the underlying hope that the

bigger the extension is, the smaller C
[k]
i would get. Lemma 13.1 shreds this hope to pieces. Making use

of an extension field is only useful if q ≤ d (typically, when q = 2). In the quadratic case, with q = 2, a
degree-two extension is sufficient, and testing only one well-chosen value of λ is also sufficient. It also makes

it reasonable to expect |C [k]
i | ≈ qn−d·u, as soon as qk ≥ d+ 1.

Achievements. To conclude, we report in Table 13.2 the parameter ranges that have been broken in practice
in [GMS03]. The star (?) indicates that the running time should be dominated by the computation of the
Ci.

We have extrapolated how much time would the Columnwise Sieve require to break the challenges,
and show the result in Table 13.3. We first conclude that it should clearly be able to break the linear
inhomogeneous legacy challenges B̃1 and D̃1 with roughly 227 operations. It seems plausible that it would
also have broken the affine variants. The challenges with greater n are more difficult: we project that the
algorithm would perform 253 evaluations of a and store 235 candidates to solve Ã1. These figures grow to
270 operations and 250 candidates for challenge C̃1. The affine cases should be even harder.

207

13. Revisiting Prior Algorithms for PLE

q n u (projected) complexity of algorithm 13.3
2 15 15 218

2 15 13 218

2 10 11 218

11 10 10 238

11 10 9 238

Table 13.4: Parameters solved in practice in [dVP03]. In all these cases, the running time of algorithm 13.3
would be dominated by the computation of the Ci.

Moving on to the updated challenges, it seems plausible that the algorithm would break B2 and D2 (in
235 operations). Breaking B3 seems theoretically possible, but would be challenging (252 operations are
required), and breaking D3 seems quite impractical (258 operations required). All the other challenges are
out of reach.

13.4 The “Algebraic Columnwise Sieve” Algorithm

In [dVP03], Perret and Levy-dit-Vehel proposed a reformulation of the columnwise sieve in more algebraic
terms. It is indeed clear that:

Ci = a〈−1〉 (b(ei))

Let us try to move to a more algebraic framework. Let us consider the ring R = Fq[x1, . . . ,xn], and let
Iq = 〈xiq − xi〉1≤i≤n be the “field ideal” whose variety is precisely (Fq)n. It is not hard to express Ci as a
variety:

Ci = V
(
Iq + 〈bj(ei)− aj(x)〉1≤j≤u

)

The same goes for the more sophisticated version C ′i, which quantifies over Fq:

C ′i = V

(
Iq +

〈
bj(α · ei)− aj(α · x)

〉
1≤i≤n
α∈Fq, α6=0

)

Interestingly, the discussion of lemma 13.1 has a counterpart here: in the inhomogeneous case, C ′i contains
only d · u linearly independent equations (and not q · u).

The first algorithm given in [dVP03] essentially amounts to compute C ′1, C
′
2, . . . , C

′
n trough a Gröbner

basis computation, and then to exhaustively search their cartesian product. The point is that for big values
of q, computing C ′i this way is going to be more efficient than by exhaustive search. However, if n−u is big,
searching the cartesian product will be prohibitivey expensive. As it seems that Levy-dit-Vehel and Perret
mostly had the u = n case in mind, we also stick to this case. In this setting, then computing C ′i amounts to
solve a system of d · n equations of degree d in n variables. In the case where d = 2, we find that the degree
of regularity of a system of 2n semi-regular quadratic equations in n variables is (thanks to (10.2)):

Dreg = 0.0858n+ 1.041n1/3 − 1.50

Using this, we may estimate, more or less precisely, the complexity determining C ′i. Figure 13.3 shows an
asymptotic improvement over exhaustive search when q ≥ 3. The practical signification of this asymptotic
result is not completely clear though.

Achievements. We report in Table 13.4 the parameter ranges that were broken in practice in [dVP03].
Again, we note that the improvement over [GMS03] is not breathtaking. On the other hand, the difference
would probably be more visible on bigger fields, where Gröbner bases have a greater edge over exhaustive
search.

13.5 A Revolution in the QFSE World : the Jacobian Algorithm

De l’audace, encore de l’audace,
toujours de l’audace !

Georges Jacques Danton
(1759–1794)

208

13.5. A Revolution in the QFSE World : the Jacobian Algorithm

20

220

240

260

280

2100

2120

2140

2160

2180

2200

10 20 30 40 50 60 70 80

C
om

pl
ex

ity

n

Complexity of GB computation (projected)
2n

3n

5n

Figure 13.3: Expected improvement from replacing exhaustive search by Gröbner bases computations.

This section is devoted to the aglorithm described by Perret in [Per05]. We call it the “Jacobian Algo-
rithm”, since one of its distinctive features is that it makes use of Jacobian matrices. This algorithm clearly
improves on its predecessors, since it terminates in time polynomial in n, under the condition that u ≈ n.
We first recall the definition of Jacobian matrices.

Definition 13.1. Let f : (Fq)n → (Fq)u be an arbitrary function. The Jacobian matrix of f is the u× n
matrix:

Jf =




∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fu
∂x1

· · · ∂fu
∂xn




where ∂f
∂x1

denotes the usual high-school “Calculus I” derivative.

If g(x) = f(α · x), then a high-school student would find that
dg

dx
(y) = α · df

dx
(α · y). The following result

is a generalization to the multivariate setting.

Lemma 13.2 ([Per05], theorem 1). For all x ∈ (Fq)n, we have: Jb(x) = Ja(S · x)× S

A particularly interesting consequence is that evaluating the Jacobian matrix on the null vector does not
require prior knowledge of S, and yet yields u · n linear equations on the entries of S:

Jb(0) = Ja(0)× S (13.5)

Intuitively, it is visible that if u = n then this nearly completely reveals S. More precisely, it does reveal
S if the Jacobian matrix is nonsingular. In fact, Ja(0) is exactly the matrix formed by the coefficients of
the linear terms in a, thus it is fully random if a is random. Therefore when u = n, the probability that
equation (13.5) completely specifies S is λ(n) (cf. §10.7) . Therefore, bigger values of q makes it more likely
to be able to terminate in polynomial time when u = n.

We remark that, as usual, nothing comes for free when a is homogeneous: in that case, the entries of its
Jacobian matrix are also homogeneous, and thus Ja(0) is... the null matrix.

Now, let us turn the idea of using the Jacobian matrix into a full algorithm. The approach described
in [Per05] is to find ` relations yi = S · xi on S, and then use lemma 13.2 to obtain ` · u · n additional linear

209

13. Revisiting Prior Algorithms for PLE

equations in the coefficients of S. As soon as n2 linearly independent such equations have been obtained,
then S can be fully reconstructed with usual linear algebra, in time O

(
n6
)
.

The value of ` is therefore the critical parameter of the algorithm. Let us denote by `⊥ the minimal
possible value (assuming no unfortunate linear dependency occurs), as a function of n and u. In the inho-
mogeneous case, equation (13.5) brings in u · n equations, the ` relations bring ` · n equations, and using
the Jacobian matrix (by fixing x in lemma 13.2) the ` relations give birth to an additional ` · u · n equa-
tions. Therefore, if all the linear equations we obtain are independant, we will need to acquire at least
`⊥ = d(n− u)/(u+ 1)e relations. In the homogeneous case, a similar argument yields `⊥ ≥ dn/(u+ 1)e.

13.5.1 Selective Exhaustive Search

The relations are found thanks to a so-called “selective exhaustive search” that exploits the idea that S
transforms ker Ja(0) into kerJb(0), as implied by equation (13.5). It also exploits the similar fact that S
transforms the kernel of P (ai) into that of P (bi). The exhaustive search process can therefore be restricted
to these subspaces of (Fq)n, assuming that they are not reduced to the zero vector, and hoping that they
are not too big.

We will try to derive some useful results on the complexity of the Selective Exhaustive Search, assuming
that instances are randomly chosen. This will enable us to derive complexity bounds on the full algorithm.

In the inhomogeneous case, we will assume that u ≤ n. Indeed, if u ≥ n, then Ja(0) has full rank with
high probability and it should be possible to deduce S from equation (13.5) in nearly all cases. If u = n, we
will assume that det Ja(0) = 0, for the same reason. We will focus on the inhomogeneous case, and we will
distinguish between two situations: u = n and u ≥ n/2.

Case u = n. If Ja(0) is invertible, then S can be deduced from (13.5) in time O
(
n3
)
, and this happens

with probability λ(n). In the other case, we see that `⊥ = 1, so we will focus on obtaining one relation.
For the sake of simplicity, we forget about the polar forms, since we are guaranteed to find our relation
in the kernel of the jacobian matrix. We thus pick an arbitrary x ∈ ker Ja(0), and we try all the possible
y ∈ Jb(0). The expected number of tries is the expected cardinality of ker Ja(0), which is a uniformly
distributed random matrix as argued above. Lemma 10.20 then tells us that the expected number of tries is
q+O (1/q). Therefore we conclude that finding the single needed relation is very efficient, and the algorithm
should run in expected polynomial time, even if the Jacobian matrix is non-invertible.

Case u ≥ n/2. It is easy to deduce from the expression of `⊥ that n/2 is the smallest value of u such
that a single relation will be neeed. However, the kernel of Ja(0) will then contains qn−u elements, and
searching it is expensive. We therefore turn our attention to the kernels of the polar forms, hoping that
they will not all be trivial. We have determined the probablity that P (ai) is non-singular in §10.7.1. Since
the original presentation of the algorithm assumed q to be odd, we will stick to this choice, and then the
probability that will find at least one relation without searching ker Ja is exactly:

1−
(

λ(q, n)

λ(q2, n/2)

)n
≈ 1− e−n/q

We observe that this estimate is surprisingly accurate. All-in-all, we conclude that as long as u ≥ n/2, the
expected running time of the algorithm is:

E [running time] = n6 + e−n/q · qn−u (13.6)

Homogeneous Case. In the homogeneous, ker Ja(0) = (Fq)n, and searching it is no longer an option.
The only way the selective exhaustive search could perform better than an actual exhaustive search is by
exploiting the kernels of the P (ai)’s. However, we have seen that with they will all be trivial with probability
about e−n/q. When u = n, in which case only one relation is required, the expected complexity is therefore
O
(
n6 + e−q/n · qn

)
.

Achievements. We report in Table 13.5 the parameter ranges that were broken in practice in [Per05].
Because of its ability to solve instance with arbitrarily large values of n, the Jacobian algorithm is an

actual milestone in QFSE solving. This is made possible by the use of different techniques, such as the
Jacobian matrix, and by the idea to make S appear as the solution of a system of linear equations that must
be built during the course of the algorithm. Because the algorithm is plainly exponential when u≪ n, the
Jacobian algorithm unfortunately cannot tackle the challenges.

Note that from a historical perspective, the Jacobian is the determinant of the Jacobian matrix, named
after Carl Gustav Jacob Jacobi (1804–1851). It is not to be mistaken with the Jacobins, the most radical

210

13.5. A Revolution in the QFSE World : the Jacobian Algorithm

q n u resolution time (quadratic) projected resolution time (cubic)

2 70 70

10s poly. 5min
2 70 65
2 70 60
2 70 55

11 60 60 0.2s poly. 10s
11 60 55

2min
29.5

1h
11 60 50 226.5

257 50 50 0.2s poly. 10s
257 50 45 3min 240 6h

Table 13.5: Parameters solved in practice in [Per05]. The instances are linear and inhomogeneous.

political fraction of the National Convention during the French Revolution. Along with their political Leader,
Maximilien Robespierre, they are often associated with the Reign of Terror (September 1793–July 1794), the
most “intense” and critical period of the Revolution. As for QFSE instances, they shall be terrorized some
more in chapter 15.

211

Chapter 14

A General Method for Quadratic PLE: Matrix
Pencils

In this chapter we introduce a generic method to solve some classes of polynomial equivalence problems
efficiently. This general method naturally has to be specialized for each particular case.

Our method is based on pencils of matrices. The key idea is that the solutions of an instance of the
polynomial equivalence problem at hand are also generally solutions of a certain matrix pencil equivalence
problem. Before going into the details, let us quickly define what these objects are.

Definition 14.1. An n×nmatrix pencil Pλ,µ over K is an n×n matrix whose coefficients are homogeneous
polynomials of degree one in two variables (usually denoted by λ and µ). It can also be written Pλ,µ =
λ ·A+ µ ·B where A and B are matrices over K. The dependency in the two variables is often omitted.

Definition 14.2. Two matrix pencils P and Q are said to be equivalent if there exist two invertible
matrices S and T such that:

T ×P = Q× S, S, T ∈ GLn (K) (14.1)

This is an obvious generalization of the usual notion of matrix equivalence to matrix pencils. In addition,
we remark that if P = λ ·A+ µ ·B and Q = λ · C + µ ·D, then:

T ×P = Q× S ⇐⇒
{

T ×A = C × S
T ×B = D × S (14.2)

Definition 14.3. A Matrix pencil Pλ,µ is said to be regular if the determinant det Pλ,µ, which is in fact
a homogeneous bivariate polynomial in K[λ, µ], is not identically zero. A non-regular pencil is said to be
singular.

The interest of making this distinction is that when dealing with regular pencils, we may without loss
of generality assume that one of the two matrices is invertible. Suppose that two pencils P = λ ·A+ µ ·B
and Q = λ · C + µ ·D are equivalent, and let V(P,Q) denote the set of pairs (S, T) such that T×P = Q×S.
We introduce a “change of coordinates” in the parameters:

λ = α1λ̃+ α2µ̃

µ = β1λ̃+ β2µ̃
α1β2 − α2β1 6= 0

And we express the two pencils using the new parameters:

P̃ = λ̃ (α1A+ β1B) + µ̃ (α2A+ β2B)

Q̃ = λ̃ (α1C + β1D) + µ̃ (α2C + β2D)

Because α1β2 − α2β1 6= 0, the change of coordinates is reversible, and (P,Q) can be obtained back from
(P̃, Q̃) after an other related change of coordinates. Under this condition, the change of coordinates preserves
the equivalence, and V(P,Q) = V(P̃, Q̃). Since P is regular, there exists a pair (α1, β1) such that detα1A+
β1B 6= 0, and α2, β2 can be chosen so that the constraint α1β2 − α2β1 6= 0 is satisfied. However, α1, β1, α2

and β2 may only live in a suitable field extension of Fq, and not in Fq itself. This requires embedding the
whole problem in a larger field, but does not modifies the set of solutions.

The Pencil Equivalence Problem. The matrix pencil equivalence problem is easy, as it essentially amounts
to solve a system of 2n2 homogeneous linear equations in 2n2 unknowns. It has been extensively studied in
the second half of the 19th century: Weierstraß established necessary and sufficient conditions for two regular

213

14. A General Method for Quadratic PLE: Matrix Pencils

pencils to be equivalent in 1867, and Kronecker extended these results to the singular case in 1890. They also
demonstrated that these pencils, just like regular matrices, admit nearly unique canonical forms that can be
computed in time O

(
n3
)
, over any field. The system of matrix equations on the right-hand-side of (14.2) is

called a coupled generalized Sylvester equation, after James J. Sylvester (1814–1897), who incidentally also
invented the term“matrix”. These equations appear frequently in the resolution of generalized eigenproblems,
where given A and B the point is to find vectors x such that A ·x = λB ·x (see [vL00] for more background).

Coming back to polynomial equivalence, our idea is that, given an instance (a,b) of a polynomial equiv-
alence problem, it is sometimes possible to find two matrix pencils P and Q such that the solutions of the
polynomial equivalence problem are also solutions of the pencil equivalence problem:

T ◦ b = a ◦ S =⇒ T ·P = Q · S

The converse will not be true in general, because pencil equivalence is an inherently linear problem while
PLE problems are non-linear. Our strategy is to compute a basis of the vector space V(P,Q) in which the
solutions of the pencil equivalence problem are living. The point is that the dimension of this vector space
will generally be much smaller than 2n2, and knowing that S and T live in V(P,Q) dramatically reduces
the quantity of information that remains to be found. To see why is this useful, let us consider an instance
of an (unspecified) PLE problem:

T ◦ b = a ◦ S
and the (unspecified) associated matrix pencil equivalence:

T ×P = Q× S

We build the pencils so that solutions of the PLE problem are also solutions of the pencil equivalence problem.
Let ` = dimV(P,Q) and

(
S[1], T [1]

)
, . . . ,

(
S[`], T [`]

)
be a basis thereof. Let us also consider the polynomial

ring Fq[x1, . . . , x`]. Because all the solutions of the PLE instance belong to V(P,Q), there is a one-to-one
correspondance between them and the solutions in x1, . . . , x` of the following equation:

(∑̀

i=1

xi · T [i]

)
◦ b = a ◦

(∑̀

i=1

xi · S[i]

)
(?)

Following the ideas of Faugère and Perret, we obtain an equivalent system Squad of quadratic equations in
x1, . . . , x` by identifying coefficient-wise both side of (?). Compared to the “direct” method exposed exposed
in §13.2, we have as many equations, but we hope to have much less variables. The implicit hope is that
in most (non-completely degenerate) situations the dimension of V(P,Q)) is going to be approximately n,
rather than 2n2. We will show in §14.3 below that this hope is quite reasonable.

If the equations composing Squad were linearly independent, then it would be plausible to determine its
solutions efficiently, either by plain linearization or by a Gröbner basis computation.

The rest of this chapter is organised as follows: in §14.2 we express the dimension of V(P,Q) in terms of
the invariants of the pencil, and we estimate this dimension when the pencils are random in §14.3. We then
discuss how to determine a basis of the solution space in §14.4, and how to generate the quadratic equations
of Squad in §14.5.

14.1 More Linear Algebra Background

A λ-matrix is a matrix whose entries are polynomials in λ. Given any rank-r (eventually rectangular)
λ-matrix A(λ), we denote by Dj(λ) the greatest common divisor of all the minors of order j of A(λ) (we
assume it is unitary). It is (said to be) easy to see that in the series

Dr(λ), Dr−1(λ), . . . , D1(λ), D0(λ) := 1

each polynomial is divisible by the preceding one. The corresponding quotients will be denoted by i1(λ), . . . , ir(λ):

ir(λ) =
Dr(λ)

Dr−1(λ)
, . . . , i1(λ) =

D1(λ)

D0(λ)
(14.3)

Definition 14.4. The polynomials i1(λ), . . . , ir(λ) defined by (14.3) are called the invariant polynomials
of A(λ). Given a “normal” matrix M with entries in Fq, the invariant polynomials of M (also called
invariant factors or similarity invariants) are the n invariant polynomial of the λ-matrix M − λ · In.

The important result is that two square matrices are similar if and only if they have the same invariant
polynomials. The equivalence classes for the similarity relation are thus formed of all matrices sharing the
same the invariant polynomials.

In addition, if in(λ), . . . , i1(λ) are the invariant polynomial of M , then in is the minimal polynomial of
M , the product in × · · · × i1 is the characteristic of M , and ik divides ik+1.

214

14.2. Dimension of Matrix Pencils Solution Spaces.

14.1.1 Commutativity

It is well-known that matrix multiplication is not commutative. However, it sometimes happen that
A×B = B ×A. For instance, all powers of A commute with A.

Definition 14.5. Given an n × n matrix A, the set of all matrices B such that A × B = B × A forms a
vector space called the commutant of A.

The commutant is a classical object of linear algebra, and the equation A × X = X × A has been the
object of much study. For instance, when the minimal and characteristic polynomial of a matrix coincide,
then all the powers of A are linearly independent, and the commutant is at least of dimension n. This fact
is in fact more generally true.

Theorem 14.1. The commutant of any matrix is of dimension greater than or equal to n.

Another classical result relates the exact dimension of the commutant of a matrix A to its invariant
polynomials. The following theorem in fact tells us, for instance, that in the case where the minimal and
characteristic polynomial of a matrix coincide, then the commutant is of dimension exactly n (i.e., as small
as it gets).

Theorem 14.2 ([Gan59],chapter VIII, §2, theorem 2). The dimension of the commutant of a given matrix
A is

r∑

k=1

(2k − 1) deg ik(λ),

where ik(λ) is the k-th invariant factor of A.

14.2 Dimension of Matrix Pencils Solution Spaces.

We now move on to discuss the dimension of V(P,Q) under the assumption that the pencils P and Q are
regular. If P and Q are not equivalent, then the problem is not very interesting, and we will therefore assume
that they are equivalent. The following theorem seems to be a standard result, altough it is apparently not
very well-known.

Theorem 14.3. Let P = λA + µB and Q = λC + µD be two n × n regular and equivalent pencils, where
in addition A and C are (without loss of generality) non-singular. Let is(λ), . . . , i1(λ) be the invariants
polynomials of C = B ×A−1. Then we have

n ≤ dimV = dim Commutant(C) =

s∑

k=1

(2s− 2k + 1) · deg ik(λ)

Proof. Exploiting the non-singularity of A and C, it is possible to express S as a function of T in a unique
way:

S = C−1 · T ·A

Substituting this new expression of S in T ×P = Q× S yields the equivalent equation:

T ×B ×A−1 = D × C−1 × T (14.4)

Next, we make use of our particular solution (S0, T0). Because T0 is a solution of (14.4), then this very
equation is equivalent to:

(
B ×A−1

)
×
(
T0
−1 × T

)
=
(
T0
−1 × T

)
×
(
B ×A−1

)

From there it is easy to see that the solution space of equation (14.1) is isomorphic to the commutant
of C = B ×A−1. The theorem then follows from theorems 14.1 and 14.2.

14.3 Expected Dimension of V.

As discussed above, the interest of considering a matrix pencil is to discover, without expensive com-
putation, as “small” subspace in which the solutions of a PLE problem live. But how small does it gets on
average? If we pick up a random regular pencil, then C = B×A−1 is a random matrix (we implicitly assume
that A is invertible, as we may make it invertible when the pencils are regular).

As seen in §14.1, the solution space of the pencil equivalence problem is as small as possible as possible
when the minimal polynomial of C is in fact also its characteristic polynomial.

215

14. A General Method for Quadratic PLE: Matrix Pencils

0.0001

0.001

0.01

0.1

1

2 3 4 5 7 8 9 11 13 16 17

P
ro

ba
bi

lit
y

q

experimental observation
theory

Figure 14.1: Probability to not be cyclic, observed with n = 32 for various values of q and a large number
of samples.

Definition 14.6. A matrix whose minimal and characteristic polynomials coincide is said to be a cyclic
matrix.

This name comes from the observation that given a cyclic matrix A, there is a vector x such that, Ai · x
for i = 1, . . . , n, is a basis of (Fq)n. In fact, most matrices are cyclic.

Theorem 14.4 ([Ful01], theorem 1). Let c(n, q) be the proportion of cyclic n× n matrices. We have:

1

q2(q + 1)
< 1− c(n, q) < 1

(q2 − 1)(q − 1)

And asymptotically, we have:

lim
n→∞

c(n, q) =
q5 − 1

q2(q − 1)(q2 − 1)
·
∞∏

i=1

(
1− 1

qi

)

This is particularly interesting, because when C is cyclic, then theorem 14.3 tells us that the dimension
of the solution space of the pencil equivalence problem reaches its smallest possible value (namely, n).
Combining theorem 14.4 with equation (10.4) yields:

lim
n→∞

P [a random n× n matrix is cyclic] = 1− q−3 − q−4 − 2q−5 − q−6 +O
(
q−7
)

(14.5)

It follows that C is cyclic with a not-at-all negligible probability of order 1−1/q3. We deduce therefrom that
things only need to be “ random enough” for this approach to yield its full potential. As suggested by the
non-asymptotic statement of the theorem, c(n, q) seems to only weakly depend on n, and quickly converges
to its limit. Figure 14.1 shows that the actual probability coincides quite well with its limit.

In general, if the instance of the PLE problem is randomly chosen, then dimV may be seen as a random
variable, and its distribution —which is specific to the way P and Q are built— depends on the parameters
of the problem. If C is random though, then as argued above dimV will often be minimal. This makes this
approach quite promising.

216

14.4. Computational Cost of Determining V

14.4 Computational Cost of Determining V

Let Mφ denote the 2n2 × 2n2 matrix representing the following linear operator:

φ : (Fq)2n2

→ (Fq)2n2

(X,Y) →
(
Y ×A−B ×X
Y × C −D ×X

)

The Kernel of Mφ is thus the vector space V(P,Q) above. Since Mφ has dimensions 2n2 × 2n2, then it
seems that constructing it and determining its kernel should take time O

(
n6
)
. The matrix Mφ is however

quite sparse, and quite structured, so that there are shortcuts allowing most operations to be faster than in
the generic case. The matrix in fact has a nice expression in terms of tensor products (also called Kronecker
products in the context of matrices).

Lemma 14.5. Mφ has the following 2× 2 block structure:

Mφ =

(
In ⊗ tA −B ⊗ In
In ⊗ tC −D ⊗ In

)

We omit the proof of this result, as it is both elementary and tedious. Here is an “expanded view” of
what the matrix looks like:

φ(X,Y) =




tA −B11 · In · · · −B1n · In
. . .

...
. . .

...
tA −B1n · In · · · −Bnn · In

tC −D11 · In · · · −D1n · In
. . .

...
. . .

...
tC −D1n · In · · · −Dnn · In




·




X1•
...

Xn•
Y1•

...
Yn•




We will not dig too deeply into the issue of computing V as fast as possible, for several reasons:

a) It is rarely the most expensive step in practice.

b) Intelligent linear algebra codes will exploit the fact that φM has only O
(
n3
)

non-zero entries instead of

O
(
n4
)
.

c) One could always reduce the pencils P and Q to Kronecker Canonical Form in time O
(
n3
)
. We would

then be dealing with a simplified case where A,B,C and D are (block-)diagonal, and ultra-sparse, with
typically O (1) entries in each line (note that we would find conjugates of the solution, but this is not a
problem).

14.5 Complexity of Generating The Resulting Polynomial Equations

We now discuss how to turn the following equation into an equivalent system Squad of quadratic equations.

(∑̀

i=1

xi · T [i]

)
◦ b = a ◦

(∑̀

i=1

xi · S[i]

)

We will assume that a and b are homogeneous (and in any case, the linear and constant components are
much easier to deal with). We will also assume that the quadratic forms ai and bi are represented by
upper-triangular matrices. Our starting point is:

∑̀

i=1

xi · T [i]
m · bi(y) = am

(∑̀

i=1

xi · S[i] · y

)

We will denote by A[m] (resp. B[m]) the (upper-triangular) matrix representation of am (resp. bm). Ex-
panding the definitions of a,b and the matrix-vector product with y yields:

n∑

u=1

n∑

v=u

(∑̀

r=1

[
n∑

i=1

T
[r]
mi ·B

[i]
uv

]
xr

)
· yuyv =

n∑

u=1

n∑

v=1


∑̀

r=1

∑̀

t=1




n∑

i=1

n∑

j=i

A
[m]
ij · S

[r]
iu · S

[t]
jv


 · xrxt


 · yuyv

217

14. A General Method for Quadratic PLE: Matrix Pencils

We observe that the nested structure of Fq[x1, . . . , x`][y1, . . . ,yn] is clearly visible. In any case, identifying
the coefficients of the yuyv monomials yields two sets of equations:

Squad =

〈∑̀

r=1

(
n∑

i=1

T
[r]
mi ·B

[i]
uu

)
xr −

∑̀

r=1

∑̀

t=1




n∑

i=1

n∑

j=i

S
[r]
iu ·A

[m]
ij · S

[t]
ju


 · xrxt

〉

1≤u≤n
1≤m≤n

S ′quad =

〈∑̀

r=1

(
n∑

i=1

T
[r]
mi ·B

[i]
uv

)
xr −

∑̀

r=1

∑̀

t=1




n∑

i=1

n∑

j=i

A
[m]
ij ·

(
S

[r]
iu · S

[t]
jv + S

[r]
iv · S

[t]
ju

)

 · xrxt

〉

1≤u<v≤n
1≤m≤n

It seems that determining S ′quad would take time Ω
(
n7
)

if done naively, which seems suboptimal. However,
there is a lot of structure in these expressions, that begs to be exploited. We may indeed factor some
computation out by observing that the innermost double-sum is in fact the expression of a given coefficient
in a matrix-matrix-matrix triple product. To take advantage of this, we define M [m,r,t] = tS[r]×A[m]×S[t],
and we find out:

Squad =

〈∑̀

r=1

(
n∑

i=1

T
[r]
mi ·B

[i]
uu

)
xr −

∑̀

r=1

∑̀

t=1

M [m,r,t]
uu · xrxt

〉

1≤u≤n
1≤m≤n

S ′quad =

〈∑̀

r=1

(
n∑

i=1

T
[r]
mi ·B

[i]
uv

)
xr −

∑̀

r=1

∑̀

t=1

(
M [m,r,t]
uv +M [m,r,t]

vu

)
· xrxt

〉

1≤u<v≤n
1≤m≤n

At this point, the equations can just be obtained by dispatching the coefficients of the M [m,r,t] matrices. So,
Squad can be computed in time O

(
`2 · n4

)
, and we really hope that this is O

(
n6
)
.

218

Chapter 15

Simultaneous Equivalence of Quadratic Forms

In this chapter we discuss the algorithm we have designed for the QFSE problem. The results of
this chapter have been the object of an article presented at PKC’11 [BFFP11], along with those
of the next chapter.

Recall that an instance of the QFSE problem is formed by two vectors a and b of u quadratic forms over
Fq[x1, . . . , xn], along with the promise that there exist S ∈ GLn (Fq) such that:

b = a ◦ S, (15.1)

Solving the QFSE instance means solving the above equation in S, i.e., finding all the possible bijective
changes of coordinates transforming a in b.

In this chapter, we present a pencil-based algorithm for QFSE, and we try to understand its behavior.
This algorithm is deterministic and returns all the possible solutions. On the practical side, it is quite
efficient, and empirically solves classes of random instance of the problem in time polynomial in n. Its most
distinctive feature compared to the prior state of the art is that this polynomial behavior persists when u = 2
in some cases. For instance, we are able to solve the case q = 2, u = 2, n = 128 in about one hour. We have
seen in chapter 13 that all the other algorithms have an exponential complexity in that case.

The cryptographic implication of these result is that using the QFSE-based identification scheme with
random instances is no longer secure, as the secret-key would be recovered in very practical time from the
public-key. Unfortunately, the hope that random instances of the problem were hard was the main moti-
vation for suggesting to replace GI by QFSE in the identification scheme of Goldreich, Micali and Wigder-
son [GMW86]. However, it might remain possible to choose hard instances of the problem, while still getting
an advantage over GI.

On the theoretical side, we try to justify this empirically good behavior of the algorithm. We study its
complexity under the assumption that the input instance has been uniformly chosen at random amongst the
set of instances that have a solution. We are aware that there must be hard instances that the algorithm
is not capable of solving in polynomial time (otherwise, we would have GI ∈ P). We nevertheless indentify
a (large) class of instances over which the algorithm should perform well, and then estimate the probablity
that a random instance belongs to this class. In these favorable cases the problem reduces to that of solving
a system of quadratic equations. This in turn appears to be surprisingly tractable for wide and interesting
ranges of parameters.

15.1 Specializing the Pencil Strategy

We wish to recover the change of coordinates S between a = (a1, . . . ,au) and b = (b1, . . . ,bu). Let
A1, . . . , Au, B1, . . . , Bu be matrix representations of the respective quadratic forms, and let us define Mi =
Bi − tS × Ai × S. Then by definition, (15.1) is equivalent to saying that Mi is skew-symmetric for all
1 ≤ i ≤ u. This can be reformulated in an equivalent way in saying that for all i, Mi + tMi = 0 (and in
addition the diagonal coefficients must be zero). And, by our definition of the polar form, we find that (15.1)
is equivalent, regardless of the characteristic of the field, to:





P (b1) = tS × P (a1)× S
...

...
...

P (bu) = tS × P (au)× S
(15.2)

At this point, let us observe that if u ≥ 3, then (15.2), is easily converted (by left-multipling by tS−1) into
a very overdetermined system of u ·n2 linear equations in the 2n2 coefficients of S, S−1, and these equations
are extremely likely to have only one solution. Thus, roughly 15 years after its introduction, we find out with
about 10 lines of elementary algebraic manipulations that QFSE with u ≥ 3 can be solved in time O

(
n6
)
.

219

15. Simultaneous Equivalence of Quadratic Forms

We will therefore focus our attention on the case where u = 2, which seem to be the hardest one, and which
is the most cryptographically relevant one. When u = 2, then for any value of q, equation (15.2) becomes:

{
P (b1) = tS × P (a1)× S
P (b2) = tS × P (a2)× S

This looks very much like a pencil equivalence problem, and it can be reformulated as such:

tS−1 ×


λ · P (b1) + µ · P (b2)︸ ︷︷ ︸

Q


 =


λ · P (a1) + µ · P (a2)︸ ︷︷ ︸

P


× S (15.3)

Theorem 14.3 tells us that if the pencils are regular, then equation (15.3) admits at least qn solutions, which
makes it hopeless to try them one-by-one. We note in passing that this contradicts the idea more-or-less
clearly expressed in [PGC98b, section 9].

Let us denote by V the vector space spanned by the solutions of (15.3), and let ` = dimV and let us
consider

(
S[1], U [1]

)
, . . . ,

(
S[`], U [`]

)
, a basis of V. Let us also consider the ring Fq[x1, . . . , x`]. We set:

S̃ =
∑̀

i=1

xi · S[i]

There is then a one-to-one correspondance between the solutions of (15.1) and those of:

b = a ◦ S̃

This last equation is a set of equality between polynomials and following the idea of Faugère and Perret,
we identify the two sides of the equation coefficient-wise, and this gives a set Squad of of n(n+ 1) quadratic
equations in x1, . . . , x`. To recover all the solutions of (15.1), we find all the solutions of Squad by computing
a Gröbner basis of the ideal it spans, and we determine the corresponding variety. Algorithm 15.1 shows a
pseudo-code of the method we outlined.

Algorithm 15.1 Pseudo-code of the pencil-based QFSE algorithm.

1: function Pencil-QFSE(a,b)
2: let Mφ denote the 2n2 × 2n2 matrix representing:

φ : (Fq)2n2

→ (Fq)2n2

(X,Y) →
(
Y ×B1 −A1 ×X
Y ×B2 −A2 ×X

)

3: let V = kerMφ

4: let ` = dimV and
(
S[i], U [i]

)
1≤i≤`

be a basis of V

5: consider the two rings R⊥ ← Fq[x1, . . . , x`] and R> ← Fq[x1, . . . , x`][y1, . . . , yn]

6: let S̃ =
∑`
i=1 xi · S[i]

7: let y = (y1, . . . , yn)

8: let z(y) = b(y)− a
(
S̃ · y

)
. z belongs to

(
R>
)2

9: let Squad be the set of coefficients of z1 and z2 . Squad ⊆ R⊥
10: let I be the ideal of R⊥ spanned by Squad

11: return the image of V (I) by ψ : (ui)1≤i≤` 7→
∑̀

i=1

ui · S[i]

12: end function

Sketch of a Complexity Analysis. The only step of the algorithm whose complexity is not easily predictible
is the Gröbner basis computation involved in determining the solutions of Squad. An additional problem is
that while there is always n(n+ 1) equations in Squad, the number of variables depends on the choice of the
instance.

To analyze our algorithm, we will consider dimV as a random variable, taken over the random choice
of the input. We will try to obtain enough information about its distribution to argue that the Gröbner
basis computation should terminate quickly with high probability. The key tool to obtain information on
dimV is theorem 14.3, but it only applies if the pencils are regular. We therefore begin by investigating the
probability that it is the case. However, several steps of the analysis differ according to the parities of q and
n.

220

15.2. Complexity Analysis for Odd q

15.2 Complexity Analysis for Odd q

De la musique avant toute chose,
Et pour cela préfère l’Impair
Plus vague et plus soluble dans l’air,
Sans rien en lui qui pèse ou qui pose.

Art Poétique, Paul Verlaine

It now remains to estimate the complexity of the Gröbner basis computation. For this purpose, we need
to investigate the distribution of dimV for our special case.

Regularity of the Pencils. We note that as soon as one of the polar form has full rank, then the pencil is
regular. As seen is section 10.7.1, a (random) polar form is non-singular with probability λ(q, n)/λ(q2, n/2).
We conclude that the probability that at least one of the polar form is non-singular is:

P [P is regular] ≥ 1−
(

1− λ(q, n)

λ(q2, n/2)

)2

And asymptotically (using equation (10.4)) we find:

lim
n→∞

P [P is regular] ≥ 1− q−2 − 2q−4 + 2q−5 +O
(
q−6
)

(15.4)

Distribution of dimV. Under the assumption that the pencil is regular, we may make use of theorem 14.3.
This will boil down to analyzing the matrix C occuring in the statement of the theorem. We will assume
w.l.o.g. that P (a1) is invertible, so that C = P (a2) × P (a1)

−1
. Since the inverse of a symmetric matrix

is also a symmetric matrice, then C is the product of two random symmetric matrices (one of them being
invertible). Unfortunately, C is provably not a uniformly distributed matrix: it has the rank distribution
of symmetric matrices (given by theorem 10.28), while if it were random it would have the “normal” rank
distribution (given by equation (10.5)). So, unfortunately, the nice results regarding the invariant factors of
random matrices cannot be used.

One could hope that the distribution of dimV we obtain is close to what it is when C is uniformly chosen
at random. We compared the two distributions experimentally, and Figure 15.1 shows the outcome of our
little experience. While the probability that dimV = n seems close in the two cases, things are visibly not
as nice for the other values of dimV. We will therefore focus our attention where we might expect a nice
behavior, and we consider the two sequences:

uq = P
[
dimV = n

∣∣ P from algorithm (15.2), and regular
]

vq = P
[
dimV = n

∣∣ P chosen at random over Fq (amongst regular pencils)
]

Fig 15.2a and 15.2b show that uq and vq are quite close. What is more surprising is the great precision
with which we could verify that:

vq − uq ≈
1

q2
− 1

q3
− 1

q4
+

1

q5

This, in conjunction with lemma 14.4 (giving the expression of vq) lead us to conjecture an expression for
the probability of dimV = n in the algorithm.

Conjecture 15.1. In algorithm 15.1, when the pencils are regular, then the probability that C is cyclic
(which is also the probability that dimV = n) is:

P
[
dimV = n

∣∣ P is regular
]

= 1− 1

q2
− 3

q5
+O

(
q−6
)

We checked that this conjecture holds for q ≥ 3 (q odd) up to a precision of about 10−4 (which is in fact
smaller than 3−6).

Putting Things Together. So, we may now estimate the probability that dimV = n over the random
choice of the instance. we find:

P [dimV = n] = P
[
dimV = n

∣∣ P is regular
]
· P [P is regular]

≥ 1− 2

q2
− 1

q4
− 1

q5
+O

(
1

q6

)

221

15. Simultaneous Equivalence of Quadratic Forms

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

13 31 33 35 37 55 57 59

E
xp

er
im

en
ta

l P
ro

ba
bi

lit
y

Dimension

product of two random symm. mat
random matrix

Figure 15.1: Distribution of dimV when C is generated at random vs. when C is the product of a non-
singular random symmetric matrix and a random symmetric matrix. The parameters were n = 13 and q = 3.
A discrepancy is visible, but the log-scale may make it look worse than it really is.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

5 10 15 20 25 30 35

q

vq- uq

q-2- q-3- q-4+ q-5

(a) Normal scale

0.0001

0.001

0.01

0.1

5 10 15 20 25 30 35

q

vq- uq

q-2- q-3- q-4+ q-5

(b) Log scale

Figure 15.2: Comparison between the probability of C being cyclic in algorithm 15.1 (uq) and the probability
that a random matrix is cyclic (vq). All the values of 2 ≤ n ≤ 32 have been considered; the graphs shows
the minimum, the average, and the maximum over the range of n.

222

15.3. Analysis for even q

q 2 4 8 16 32
exp. prob. 0.9577 0.9989 0.99997 0.9999988 0.9999999

1− q−4 0.9375 .9961 0.9998 0.99998 0.999999

Table 15.1: Experimentally observed probability that dimV = 2n under the condition that the pencils are
regular. The experiment involves one million random trials.

15.3 Analysis for even q

When q is even, the situation is quite different, and overally more complicated. Things start to go bad
when n is odd. In that case, the prencil is singular, since Pλ,µ is a skew-symmetric matrix (and thus cannot
have rank n, when n is odd, in virtue of lemma 10.1).

We will therefore focus on the nicer case where n is even, and try to replay the analysis of the previous
section. We have seen in §10.7.1 that the probability that a random polar form is invertible is the same as
when q is odd. Therefore, the result of equation (15.4) still holds when n and q are even.

The next problem we have to deal with is the distribution of dimV. Earlier we empirically studied the
probability that C is cyclic to obtain an interesting result. This time, when q is even, C is the product of
two skew-symmetric matrices. Things get from bad to worse, because the product of two skew-symmetric
matrices is very far from being random, and C is in fact cyclic with probability zero. We also observed
that dimV was always greater than 2n (and that this also was the most frequent value). This phenomenon
puzzled us quite a bit, but it turns out to be a consequence of a property of the product of skew-symmetric
matrices. The following theorem was stated (in a particular case) in 1919 by Bennet [Ben19], and then in a
more general setting by Stenzen in 1922 [Ste22]. According to [IF09], from where we quote it, it has been
rediscovered in 1952, in 1974, in 1984, in 1991 and in 1997.

Theorem 15.1 (Bennet, Stenzen et al.). An n×n matrix M is the product of two skew-symmetric matrices
if and only if the following conditions are fulfilled:

a) Every elementary divisor 1 corresponding to a non-zero eigenvalue of M occurs an even number of times.

b) Let λm1 , λm2 , . . . , λms be the elementary divisors of M corresponding to its zero eigenvalue and let:

m1 ≥ m2 ≥ · · · ≥ ms

Then:

m2i−1 −m2i ≤ 1, i = 1, 2, . . .

(if s is odd, we set ms+1 = 0).

While it is not completely obvious, this theorem implies that the minimal polynomial of the product of
two skew-symmetric matrices has degree at most n/2, and that the characteristic polynomial is a square.
Here is the relevant consequence in our setting.

Corollary 15.2. If q and n are even, then dimV ≥ 2n.

Proof. Since C is the product of two skew-symmetric matrices, we know that C meets the condition of
theorem 15.1. We now argue that C has at least two invariant factors. If the minimal polynomial of C is not
xk for some k, then by condition a), it occurs at least twice. If the minimal polynomial is xk, then it cannot
be the only invariant factor, because of condition b).

So, the minimal polynomial appears twice in the invariant factors of C. If there are no other invariant
factors, then it is of degree n/2, and theorem 14.3 tells us that dimV = 2n. If C has more invariants, dimV
can only get higher.

What we would in fact need to know is the probability that V is exactly of dimension 2n. According to
the proof of corollary 15.2, this would mean that C has only two similarity invariants, which implies that it
has a minimal polynomial of maximal degree (a property reminiscent of cyclic matrices). It seems plausible
that C is unlikely to have a very high number of similarity invariants. We could not compute explicitly this
probability that dimV = 2n.

We measured it experimentally, under the assumption that the pencils are regular. The results are shown
in table 15.1, and lead us to state the following conjecture:

1. A quick reminder on elementary divisors is available in §10.1

223

15. Simultaneous Equivalence of Quadratic Forms

Conjecture 15.2. When q and n are even, then:

P
[
dimV = 2n

∣∣ P is regular
]
≥ 1− 1

q4

To conclude, we assemble the pieces:

P [dimV = 2n] = P
[
dimV = 2n

∣∣ P is regular
]
· P [P is regular]

≥ 1− 1

q2
− 3

q4
+O

(
1

q5

)

So, the best we can hope for, dimV = 2n, hopefully happens frequently.

15.4 Solving the Quadratic Equations

L’ignorance qui se sait, qui se juge et
qui se condamne, ce n’est pas une
entière ignorance : pour l’être, il faut
qu’elle s’ignore soi-même.

Essais, Montaigne

If a and b are represented by upper-triangular matrices A[1], A[2], B[1] and B[2], then following what we
did in §14.5, we let M [i,r,t] = tS[r] ×A[i] × S[t], and we find out:

Squad =

〈
B[i]
uu −

∑̀

r=1

∑̀

t=1

M [i,r,t]
uu · xrxt

〉

1≤u≤n
i=1,2

S ′quad =

〈
B[i]
uv −

∑̀

r=1

∑̀

t=1

(
M [i,r,t]
uv +M [i,r,t]

vu

)
· xrxt

〉

1≤u<v≤n
i=1,2

Observe that the equations can be obtained by dispatching the coefficients of the M [i,r,t] matrices, so that
these equations be computed in time O

(
`2 · n3

)
, and we argued that this is O

(
n5
)

with high probability. It
follows from the previous reasonings that there are essentially three different scenarios to discuss:

a) q odd, ` ≈ n
b) q even, n even, ` ≈ 2n

c) q even, n odd, ` ≈ n+ 1

In all these cases, Squad should be composed of n(n + 1) quadratic equations in O (n) variables, and
we would expect to be able to solve this very overdetermined system of quadratic equations either by plain
linearization, or via a very quick Gröbner basis computation. This implicitly assumes that the quadratic
equations in Squad and S ′quad are linearly independent, but it makes sense to challenge this crucial assumption.

And this assumption turns out to be plainly false. In all cases, there are in fact only O (n) linearly
independent equations in Squad +S ′quad, as Table 15.2 shows. This means that we cannot argue that solving
these equations is doable in polynomial time. An explanation of this phenomenon has eluded us so far. In
particular, we have not been able to directly determine a basis of the vector space spanned by the equations.

However, when q is odd, it seems that in most cases, the linear spans of Squad and S ′quad are equal. When
q is even, these are two distinct linear spaces. Fully understanding this phenomenon is a fascinating subject
for future work.

If the quadratic equations in Squad + S ′quad were semi-regular, then solving them would be plainly ex-
ponential. We note that even in this (pessimistic) setting, then our algorithm would still outperform all its
predecessors.

Fortunately, the equations in Squad + S ′quad are much easier to solve than semi-regular equations. When
n is small enough, then the Gröbner basis computation would be feasible even with semi-regular equations.
However, when q is small, the maximal degree reached by polynomials during the Gröbner basis computation
is unexpectedely small. Table 15.3 shows the corresponding complexities. For instance, when q = 2 and
n = 128, we are solving a system of 256 quadratic equations in 256 variables over F2. When the equations
are random, this is completely infeasible. In our case, it just takes 3 minutes! We have no clear explanation
of this phenomenon. It appears that many linear equations appear in the first steps of the Gröbner basis
computation, thus reducing the complexity of the whole process dramatically.

224

15.5. Implementation and Practical Results

scenario n q ` # independent equations in Squad + S ′quad comment

a 8 17 8 8

n+ 1
2 (`− n)

a 16 17 16 16
a 27 3 27 27
a 27 3 29 28
a 27 3 31 29
a 27 3 33 30
a 27 3 35 31
a 27 3 39 33

b 8 256 16 16

2n+ 1
2 (`− n)

b 16 256 32 32
b 32 2 64 80
b 32 2 72 84
b 32 2 80 88
b 32 2 88 92

Table 15.2: Number of linearly independent equations in Squad, in the most favorable cases (i.e., it can
sometimes be less).

q N field equations Time Memory Degree

2 80 yes 20s 2.8GB 4
2 128 yes 160s 15.8GB 4
3 80 yes 220s 2.GB 6
4 32 yes 19 595s 8GB 4
4 64 yes out of memory ≥ 100GB ?
5 20 yes 43s 151Mb 8
5 32 yes 31 714s 9GB 8

256 12 no 31 480s 374MB 10
256 12 no 420s 68M 4 ?
256 16 no 3898s 272MB 4 ?

65536 8 no 2.8s 11.5Mb 8
65537 8 no 8s 11Mb 10

Table 15.3: Complexity of computing a Gröbner basis of the ideal spanned by Squad and S ′quad.

For q = 256 and n = 12, 16, computing the Gröbner basis is feasible, but converting it to a suitable
monomial order is much longer. We therefore decided to resort to hybrid solving, by enumerating all the
values of a given variable and computing q Gröbner bases. This turn out to be much faster. In table 15.3,
we marked with a star (?) the lines where we used this technique. The table shows that for n = 12, q = 256
this yields an important speedup.

To conclude, the case where q = 2, 3 seems practical for any (reasonable) value of n. The cases where
n ≤ 20 also seems tractable, but in some cases the complexity of the whole process will be proportional to q.

15.5 Implementation and Practical Results

We implemented the algorithm described in this chapter using the computer algebra system MAGMA [BCP97].
The code (which is in the public domain) is available at:

http://www.di.ens.fr/~bouillaguet/implem/qfse.magma

This implementation is only 50 lines long. It breaks random instances of QFSE in very practical time when q
or n are “small”. For instance, all the challenges presented in §12.3 are solved in a few seconds. The (legacy)
challenge A1, in particular, is broken in 1.1s on a laptop. If we double n (“safer challenge” A3), the running
time of the algorithm goes up to 20s. MAGMA is apparently not particularly good at manipulating low-
degree dense multivariate polynomials. When q = 2 and n is large, the running time of the implementation
is dominated by the formation of Squad. Actually solving the resulting quadratic equations turns out to be
easier than generating them.

225

http://www.di.ens.fr/~bouillaguet/implem/qfse.magma

15. Simultaneous Equivalence of Quadratic Forms

In our implementation, the Gröbner basis is computed using the off-the-shelf implementation F4 [Fau99]
algorithm present in MAGMA. Converting the Gröbner-basis to the lexicographic order is done using either
the FGLM algorithm [FGLM93] or using the Gröbner Walk [CKM97], at MAGMA’s own discretion.

0.1

1

10

100

1000

10000

100000

0 20 40 60 80 100 120

tim
e

(s
ec

on
ds

)

n

q=2, n odd
q=2, n even

q=3
q=4, n odd

q=4, n even
q=5

Figure 15.3: Time complexity of solving the QFSE problem for pairs of quadratic forms.

226

Chapter 16

Equivalence of Cubic Forms

This chapter presents an algorithm for the equivalent cubic forms problem. It is inspired by the
method of the previous chapter, that cannot apply when polynomials are cubic. The original idea
was found by Ludovic Perret while discussing the algorithm of the previous chapter. Later on,
Ludovic Perret and Jean-Charles Faugère proved the main theorem. The results of this chapter,
along with those of the previous one, were published at PKC’11 [BFFP11].

In this chapter, we focus on the case where a and b are composed of a single cubic polynomial:

a =

n∑

i=1

n∑

j=i

n∑

k=j

Ai,j,k · xixjxk, b =

n∑

i=1

n∑

j=i

n∑

k=j

Bi,j,k · xixjxk.

and we are promised that there exist an (unknown) invertible n× n matrix S such that:

b = a ◦ S (16.1)

The problem is to recover S given a and b. The techniques developed previously for the quadratic case
unfortunately cannot be directly applied in this setting. Indeed, cubic forms are no longer represented by
matrices. However, it is still possible to define an equivalent of the polar form:

φf (x,y) = f(x + y)− f(x)− f(y)

This yields a symmetric “biquadratic” form (of total degree 3). There are no easily available matrix involving
S here. However it is fairly obvious that for all vectors x and y:

φb(x,y) = φa(S · x, S · y)

Applying the Gröbner-based algorithm to this equation does not result in anything better than applying it
directly to (16.1). However, if we set y = S−1 · z, then we find:

φb(x, S−1 · z) = φa(S · x, z) (16.2)

This equation is more interesting than the previous one, because the coefficients of S and S−1 occur with
degree 2. Identifying coefficient-wise both sides of (16.2) results in n3 + n2 quadratic equations in 2n2

variables, to which we could add 2n2 quadratic equations expressing the fact that S−1 is both the left- and
and right-inverse of S.

More formally, let R be the ring Fq[s1,1, . . . , sn,n, u1,1, . . . , un,n]. We consider the algebra As of all n× n
matrices over R. Let S = (si,j) and U = (ui,j) in As be symbolic matrices. We denote by Ia,b the ideal
generated by all the coefficients in R of the equations:





Da(S · x,y)−Db(x, U · y) = 0,
U · S − 1n = 0n,
S · U − 1n = 0n.

A possible solution is to directly compute a Gröbner basis of Ia,b. Under the (debatable) assumption
that the equations spanning Ia,b form a semi-regular sequence, the degree of regularity (and the projected
complexity) can be derived from the results of §10.5. From fig. 16.1, it seems that the complexity of this
Gröbner basis computation is of order O (8n), which might be feasible for small values of n. Indeed, for
q = 16, n = 5, computing a Gröbner basis of Ia,b terminates in degree 3, after 6s of computation. When
n = 6, the computation also terminate in degree 3, and takes 411s. When n = 7, it requires 17630s, uses
3GB of RAM, and still terminates in degree 3. However, when n = 8, after echelonizing a 555′829× 355′546
matrix for a couple days, the Gröbner basis computation started crunching degree-4 polynomials, and died
after using the 74Gbytes of available RAM.

227

16. Equivalence of Cubic Forms

0

20

40

60

80

100

5 10 15 20 25 30

lo
g 2

#F
ie

ld
 O

pe
ra

tio
ns

n

[FP06]
GB of the polar equations

Enumeration + GB when q=2
Enumeration + GB when q=3
Enumeration + GB when q=4

Figure 16.1: Comparison between the various possible methods, including: running the Gröbner-based
algorithm on (16.1), computing a Gröbner-basis of Ia,b, and enumerating all the possible first rows of S,
then computing a Gröbner basis of Ia,b + J . The complexity of computing a Gröbner Basis of Ia,b seems
to be O (8n).

It turns out that if a little bit of information about the final solution is available, then computing a
Gröbner basis of Ia,b becomes much easier. Let the n× n matrix S̃ = (s̃ij) over Fq be a particular solution
of (16.1), and let J denote the following ideal:

J 〈s1j − s̃1j | j = 1, . . . , n〉 .

If the first row of the particular solution S̃ is known, then the ideal J is known, and we may try to
compute a Gröbner basis of Ia,b + J . In fact, this Gröbner basis computation is extremely efficient.

Theorem 16.1. The degree of regularity of Ia,b + J is 2. Therefore, computing a Gröbner basis of this
ideal takes time O

(
n6
)
.

Before giving the proof of this theorem, we discuss its implications. We could enumerate all the possible
first rows of S̃, and then for each of them compute a Gröbner basis of Ia,b. If the resulting ideal is non-empty,
then we have found an actual solution of the problem. This requires O

(
qn · n6

)
field operations to solve

the whole instance. For small values of q, this may be asymptotially faster than computing a Gröbner basis
of Ia,b, as Figure 16.1 suggests. Moreover, it is easily parallelizable, and requires only a modest amount of
memory, which makes it more practical.

The biggest proposed cubic CFE challenge (Challenge C in Table 12.2) has u = 1, n = 16 and q = 2.
Given that J is known, the computation of a Gröbner basis of Ia,b +J takes 90 seconds on a 2.8Ghz Xeon
CPU using the publicly available implementation of F4 in MAGMA. Since this has to be repeated 215 times,
we conclude that the whole process should take about one CPU-month, so that it can be carried out in
practice.

16.1 Proof of the Theorem

We use the fact, established by Lazard in 1983 [Laz83], that the degree of regularity of an ideal is
generically left invariant by any linear change of the variables or generators. In particular, we consider the
ideal I ′a,b generated by all the coefficients in K[x1, . . . , xn, y1, . . . , yn] of the equations:

Da(S0(S + In)x,y)−Db(x, (U + In)S−1
0 y) = 0, U · S = 0n, S · U = 0n.

It is clear that I ′a,b is obtained from Ia,b by replacing S (resp. U) by S0(In+S) (resp. (U + In)S−1
0). Thus,

the degree of regularity of I ′a,b and Ia,b are equal. Using the same transformation, the ideal J becomes

J ′ = 〈s1,j | j = 1, . . . , n〉 .

228

16.1. Proof of the Theorem

We now estimate the degree of regularity of the ideal I ′a,b +J ′. For a reason which will become clear in the
sequel, it is more convenient to work with I ′a,b +J ′. In what follows, F will denote the set of the generators
of I ′a,b + J ′. We will show that many new linear equations appear when considering equations of degree 2.
To formalize this, we introduce some definitions related to the F4 algorithm [Fau99]. In particular, we will
denote by Id,k the linear space generated during the k-th step of F4 when considering polynomials of degree
d.

Definition 16.1. We have the following recursive definition of Id,k:

Id,0(F) = 〈F 〉
Id,1(F) = 〈si,j · f | 1 6 i, j 6 n and f ∈ Id,0(F)〉+ 〈ui,j · f | 1 6 i, j 6 n and f ∈ Id,0(F)〉
Id,k(F) = 〈si,j · f, ui,j · f | 1 6 i, j 6 n and f ∈ Id,k−1(F) and deg(f) ≤ d− 1〉

Roughly speaking, the index k is the number of steps in the F4/ Ffive algorithm to compute an element
f ∈ Id,k(F). We show that I2,1(F) contains exactly n2 + 2n linear equations. This means that we have
already many linear equations generated during the first step of a Gröbner basis computation of F .

Lemma 16.2. I2,1(F) contains the following linear equations:

{u1,j | j = 1, . . . , n}. (16.3)

Proof. From the first row of the following zero matrix S · U we obtain the following equations:





s1,1 u1,1 + s1,2 u2,1 + s1,3 u3,1 + · · ·+ s1,n un,1 = 0,

s1,1 u1,2 + s1,2 u2,2 + s1,3 u3,2 + · · ·+ s1,n un,2 = 0,

s1,1 u1,3 + s1,2 u2,3 + s1,3 u3,3 + · · ·+ s1,n un,3 = 0,

· · ·
s1,1 u1,n + s1,2 u2,n + s1,3 u3,n + · · ·+ s1,n un,n = 0

Using the equations s1,j = 0 from the ideal J ′, we obtain u1,1 = 0, u1,2 = 0, . . . , u1,n = 0.

We can also predict the existence of other linear equations in I2,1(F).

Lemma 16.3. For all (i, j) ∈ {1, . . . , n}2 the coefficient of y1yixj in

Da(S0(S + In)x,y)−Db(x, (U + In)S−1
0 y)

is a non zero 1 linear equation modulo the equations of the ideal J ′ and modulo equation (16.3). Among
these equations, there are n which depend only of the variables {sk,` | 1 ≤ k, ` ≤ n}.

Proof. We consider the coefficient of the monomial m = y1yixj in the expression

∆ = Da(S0(S + In)x,y)︸ ︷︷ ︸
∆a

−Db(x, (U + In)S−1
0 y)︸ ︷︷ ︸

∆b

.

Since the monomial m is linear in xj it is clear that the corresponding coefficient in ∆a is also linear in the
variables si,j ; moreover this coefficient is non zero. We have now to consider the coefficient of m in ∆b. Since
Db(x,y) is the differential of an homogeneous polynomial of degree 3 we can always write:

Db(x,y) =

n∑

i=1

n∑

j=i

`i,j(y1, . . . , yn)xixj +

n∑

i=1

qi(y1, . . . , yn)xi (16.4)

where `i,j (resp. qi) is a polynomial of degree 1 (resp. 2). Consequently, the coefficient of m in Db is also
the coefficient of y1yi in qj((U + In)S−1

0 y). That is to say, in qj(y) we now have to replace y = (y1, . . . , yn)
by ((U + In)S−1

0 y). Thus, modulo the equations of the ideal J ′ and modulo equation (16.3), we can write

1. more precisely, generically non zero.

229

16. Equivalence of Cubic Forms

the product ((U + In)S−1
0 y) as:

=




y1

...

...
yn



×




1 0 0 0
u2,1 · · · · · · u2,n

... · · · · · ·
...

un,1 · · · · · · un,n


×




∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗




=




y1

...

...
yn



×




∗ ∗ ∗ ∗
(∗u2,1 + · · ·+ ∗u2,n) · · · · · · (∗u2,1 + · · ·+ ∗u2,n)

... · · · · · ·
...

(∗un,1 + · · ·+ ∗un,n) · · · · · · (∗u2,1 + · · ·+ ∗un,n)




=




∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn

...
∗y1 + (∗u2,1 + · · ·+ ∗u2,n)y2 + · · ·+ (∗un,1 + · · ·+ ∗un,n)yn




Hence the coefficient of y1yi in qj((U + In)S−1
0 y) is linear in the variables uk,l when i 6= 1 and the coefficient

of y2
1 is a constant.

To summarize:

Lemma 16.4. I2,1(F) contains exactly n2 + 2n linear equations.

Proof. In I2,1(F), we have n linear equations from lemma 16.3, n linear equations from the very definition
of J ′, and n2 linear equations from lemma 16.3.

As explained before, we obtain n2 + 2n linear equations for I2,1(F). However, we have 2n2 variables.
So, we have to consider I2,2(F), i.e., the equations generated at degree 2 during the second step. Thanks
to lemma 16.4, we can reduce the original system to a quadratic system in 2n2 − (2n+ n2) = (n− 1)2.
variables. Without loss of generality we can assume that we keep only the variable ui,j where 2 ≤ i, j ≤ n.
Let F ′ be the system obtained from F after substituting the 2n + n2 linear equations of lemma 16.4. All
the monomials in K[x1, . . . , xn, y1, . . . , yn] of Da(S0(S + In)x,y)−Db(x, (U + In)S−1

0 y) have the following
shape:

xiyjyk or yixjxk with 1 ≤ i, j, k ≤ n.

Hence the number of such monomials is 2nn(n+1)
2 = n2(n + 1) ≈ n3, which implies that the number of

equations in F ′ is also n3.
Thanks to this remark, we will now prove that we can linearize F ′. Let T (F ′) be the set of all monomials

occurring in F ′. We can assume that T (G′) = [t1 < t2 < · · · < tN]. It is important to remark that t1 = u2,2

up to t(n−1)2 = un,n are in fact variables. Now, let M be the matrix representation of G′ w.r.t. T (G′). Since
we know precisely the shape of the equations from the proof of lemma 16.3, it is possible to establish that:

1. most of the equations are very sparse, namely each equation contains about n2 non-zero terms.

2. all the variables t1, . . . , t(n−1)2 occur in all the equations

After a Gaussian elimination of the matrix M , we obtain the following shape:

M̃ =




1(n−1)2 0 0 0
0 × · · · · · ·

0 ×
. . .

...

0 × · · ·
. . .




Hence, we obtain after a second step of computation in degree 2 the equations:

u2,2 = · · · = un,n = 0.

This means that after 2 steps of computation at degree 2, we obtain (n−1)2 +2n+n2 = 2n2 linear equations
in 2n2 unknowns. This explains why the maximum degree reached during the Gröbner basis computation
of I ′a,b + J ′ is bounded by 2, and concludes the proof of theorem 16.1.

230

16.1. Proof of the Theorem

16.1.1 An Interesting Failure

We conclude this section with a simple idea that could have lead to an improvement, by efficiently giving
the image of S on one point, but which fails in an interesting manner. Let us denote by Za (resp. Zb) the
set of zeroes of a (resp. b). We have:

S

(∑

x∈Za

x

)
=
∑

y∈Zb

y

This yields a relation on S, which is enough to use theorem 16.1. a and b may be assumed to have about
qn−1 zeroes. Finding them requires time O (qn). The complexity of the attack could thus be improved to
O
(
n6 + qn

)
. Surprisingly, this trick fails systematically, and this happen to be consequence of the Chevalley-

Warning theorem .

Theorem 16.5 (Chevalley-Warning [Che35, War35]). Consider a system of polynomial equations Pj(x1, . . . , xn) =
0, j = 1, . . . , r, where the Pj are polynomials with coefficients in a finite field K and such that the number
of variables satisfies n > d1 + · · ·+ dr, where dj is the total degree of Pj.

The characteristic of K divides the number of solutions in K of the polynomial system (which is always
finite because K is finite).

Corollary 16.6. The sum of the zeroes of a cubic form on 5 variables or more over Fq is always zero.

Proof (found by Mehdi Tibouchi). Let us consider the elements of Za having α as their first coordinate, and
let us denote by nα their number. These are in fact the common zeroes of (a, x1 − α). By the Chevalley-
Warning theorem, if a has at least 5 variables, then the characteristic of the field divides nα. Therefore,
their sum has zero on the first coordinate. Applying this result for all values of α shows that the sum of
zeroes of a has a null first coordinate. We then just consider all coordinates successively.

231

Chapter 17

Linear Equivalence of Inhomogeneous Quadratic
Maps

In this chapter we present two algorithms for the IQMLE. This problem was empirically known
to be solvable in polynomial time, however these new algorithms are much faster than their pre-
decessors. We give strong arguments to justify that they terminate in polynomial time with high
probability.

In this chapter we study the IQMLE problem (equivalence of inhomogeneous quadratic maps). Given two
inhomogeneous quadratic maps a and b, along with the promise that there exist two matrices S, T ∈ GLn (Fq)
such that:

T ◦ b = a ◦ S, (17.1)

the problem is to find S and T (given just a and b). The maps a and b are inhomogeneous if they contain
linear and constant terms.

As we discussed in §13.2, random instances of this problem were empirically found to be solvable in
polynomial time by the Gröbner-based technique of Faugère and Perret. After running series of experiments,
they conjectured that the running time of their algorithm was at most O

(
n9
)
.

We present two improved algorithms. The first one is in fact a variation of the “to-n-fro” algorithm, that
uses the presence of a linear component to circumvent the need to invert the quadratic maps. It provably
runs in time O

(
n3
)

and heuristically succeed with high probability probability as soon as the homogeneous
components of degree one of a and b are invertible.

The second algorithm we present is an instanciation of the matrix-pencil strategy outlined in chapter 14.
It is more robust than our first algorithm, as it may succeed on classes of instances where the other one
would fail deterministically. We show that it runs in time O

(
n6
)

on a constant fraction of the instances,
and that it succeeds on another constant fraction 1− 1/q of the instances.

Both algorithm have been implemented, and we report on their practicality at the end of the chapter.

17.1 To-and-Fro Without Exponentially-Expensive Inversions

There are two sources of exponentially high costs in the to-n-fro algorithm of Courtois, Goubin and
Patarin, that we presented in §13.1. On one hand, we need to know the image of S on one (and sometimes
two) points, and it was originally suggested to exhaustively try all the possibilities (cost: qn or q2n). On the
other hand, the quadratic maps have to be inverted at least n times, and each inversion has an exponential
cost, be it done by exhaustive search or through a Gröbner basis computation.

It turns out that in the inhomogeneous case both problems can be circumvented. Ironically, the solution
was almost entirely contained in some remarks of Faugère and Perret [FP06], the authors of the only other
algorithm for QMLE prior to this work. Indeed, the observation at the heart of the new technique is
lemma 12.1, which is directly taken from [FP06]. This lemma yields in particular:

T × b(1) = a(1) × S (17.2)

T × b(0) = a(0) (17.3)

It follows immediately that in the linear inhomogeneous case we have a priori knowledge 1 on T , because
of equation (17.3). In some cases this knowledge can be “transferred” to S without inverting b, but instead
using equation (17.2): assume that b(0) = b(1) ·x and a(0) = a(1) ·y, it follows that y = S ·x. This removes
the need to know time image of S on one point prior to running the algorithm.

If a(1) and b(1) are invertible and if a(0) 6= 0, then this much less expensive knowledge transfer always
succeeds. It can even be used in all the subsequent iterations of the to-n-fro algorithm, thus removing

1. Patarin, Goubin and Courtois actually pointed out that this is cheating.

233

17. Linear Equivalence of Inhomogeneous Quadratic Maps

the need for exponentially costly inversions of the quadratic maps. The complete pseudo-code is shown in
Algorithm 17.1.

Complexity. The complexity of this procedure is O
(
n3
)
: inverting both a(1) and b(1) can be done once for

all. The matrix-vector products take O
(
n2
)

and there are n of them. Lastly, reconstructing S and T takes

only O
(
n3
)
, because in the basis (xi)i≤n, S is made of the yi’s. Changing the basis amounts to performing

one matrix inversion and two matrix-matrix products. For all realistic ranges of parameters, the algorithm
either fails or terminates in less than a second, even for parameters that were taking several minutes to the
Gröbner-based algorithm.

Algorithm 17.1 A variant of the “To-and-Fro” algorithm without exponential inversions

1: function Inhomogeneous-To-n-Fro(a,b)
2: if a(1) is non-invertible or a(0) = 0 then abort
3: x1 ← a(0)
4: y1 ← b(0)
5: for i = 1 to n do . At this point one has yi = T · xi
6: y′i ←

(
a(1)

)−1 · xi
7: x′i ←

(
b(1)

)−1 · yi . And we obtain y′i = S · x′i
8: if x′i ∈ 〈x′1, . . . ,x′i−1〉 then abort
9: yi+1 ← b (x′i)

10: xi+1 ← a (y′i)
11: end for
12: Reconstruct S from the pairs (x′i,y

′
i) and T from the pairs (xi,yi).

13: return (S, T)
14: end function

Success Probability. It is easy to evaluate the probability that the algorithm fails because its prerequisite
are not met on line 2. We have seen in §10.7 that a random n×n matrix is invertible with probability greater
than λ(n). This tells us that for a random inhomogeneous instance, the probability that a(1) is invertible is
about 0.288 when q = 2 (this quickly grows to one for higher values of q) and the probability that a(0) 6= 0
is 1− 1/qn. Again, q = 2 looks like a worst case.

Deterministic Failure in Degenerate Cases. To highlight the danger of relying on heuristic assumptions
and unfinished analysis, we point out that it is quite easy to cook up a class of instances satisfying the two
prerequisites but on which the algorithms fails deterministically, since these conditions are necessary but
not sufficient. In particular, it may fail unexpectedly if a and b are not “random” enough. Indeed, the
non-linearity of a and b plays a crucial role in making each new relation on S and T linearly independent
from the previous ones, as is it required for the algorithm to work.

For example, this algorithm cannot be used to determine the automorphism group of a quadratic map a,
namely the set of pairs (S, T) such that T ◦ a = a ◦S. In this special case, the initial “bootstraping” relation
T ·a(0) = a(0) describes a fixpoint of T , and we have x1 = y1. It is not difficult to check that we will always
have xi = yi and x′i = y′i. The algorithm in fact only discovers the images of S and T over their respective
invariant subspaces. Thus, it cannot fully discover S and T , unless both were... the identity matrix!

This particular class of instances is not a contrived example. We will see in chapter 19 that problems of
this kind arise naturally when studying a variant of HFE.

17.2 A Pencil-Based Approach

We now present an instanciation of the general matrix pencil strategy outlined in chapter 14 in the case
of IQMLE. The problem is to find a matrix pencil equivalence problem that is satisfied by the solutions of
the IQMLE equation (17.1).

17.2.1 Obtaining a Related Pencil Equivalence Problem

Equation (17.2) already gives us a matrix equation, between S and T , but we would need another one to
have a full pencil equivalence problem. It is possible to obtain this second matrix equation by differentiating
both sides of (17.1). However, in order to carry out this operation, the image of S must be known on one
point. We have seen in the previous section that with some luck, this much knowledge about S can in fact

234

17.2. A Pencil-Based Approach

be deduced from equations (17.2) and (17.3): if there exist y be such that a(0) = a(1) · y, then there also
exist x such that b(0) = b(1) · x and we find that y = S · x.

The two vectors x and y can only be identified uniquely if a(1) (and therefore b(1)) is invertible. Otherwise,
if dim ker a(1) = r > 1, a possible solution is to choose arbitrarily a particular solution for x, and then try
the qr possible values of y until a match is found — the possible x and y can be computed by straightforward
linear algebra.

Given a “right pair” y = S · x, we obtain as announced above a new matrix equation by differentiating
equation (17.1). It follows from the definition of the differential that if y = S · x:

T ×Dxb = Dya× S.

Putting things together, we have found that S and T are the solutions of a matrix pencil equivalence problem:

T ·


λ · b(1) + µ ·Dxb︸ ︷︷ ︸

P


 =


λ · a(1) + µ ·Dya︸ ︷︷ ︸

Q


 · S (17.4)

17.2.2 Analysis of the Corresponding Algorithm.

Algorithm 17.2 Pencil-based algorithm for IQMLE.

1: function Inhomogeneous-Pencil-QMLE(a,b)
2: let x be particular solution of b(1) · x = b(0). If no solution exist then abort.
3: let y0 be a particular solution of a(1) · y = a(0)

4: let Sols = ∅
5: for all y ∈ y0 + ker a(1) do
6: let Mφ denote the 2n2 × 2n2 matrix representing:

φ : Mn (Fq)×Mn (Fq) → Mn (Fq)×Mn (Fq)

(X,Y) →
(
Y × b(1) − a(1) ×X
Y ×Dxb−Dya×X

)

7: let V = kerMφ

8: let ` = dimV and
(
S[1], T [1]

)
, . . . ,

(
S[`], T [`]

)
be a basis of V

9: if ` ≥ n then
10: consider the two rings R⊥ ← Fq[x1, . . . , x`] and R> ← Fq[x1, . . . , x`][y1, . . . , yn]

11: let S̃ =
∑`
i=1 xi · S[i] and T̃ =

∑`
i=1 xi · T [i]

12: let y = (y1, . . . , yn)

13: let z(y) = T̃ · b(y)− a
(
S̃ · y

)
. z belongs to

(
R>
)n

14: let Squad be the set of coefficients of z1, . . . , zn . Squad ⊆ R⊥
15: let I be the ideal of R⊥ spanned by Squad

16: compute U = V (I) ∩ (Fq)` by first computing a Gröbner basis of I.

17: Sols← Sols ∪

{(∑̀

i=1

ui · S[i],
∑̀

i=1

ui · T [i]

)∣∣∣∣∣ (u1, . . . , u`) ∈ U

}

18: end if
19: end for
20: return Sols
21: end function

Unfolding the general pencil technique outlined in chapter 14 and adapting the details yields Algo-
rithm 17.2. We will say that an instance of the problem over which the algorithm does not fail on line 2 is
nice. On a nice instance, then in at least one iteration of the loop we will actually have y = S · x, and thus
the matrix pencil equivalence problem will actually have solutions that include the actual solutions of the
IQMLE problem. In this case, these solutions will be found and the algorithm will eventually return them.
Note that in this iteration, the dimension of V is necessarily greater than or equal to n (as per theorem 14.3).
This allows the “if” on line 9 to discard bad choices of y very efficiently. It remains to compute the fraction of
nice instances, the expected number of iterations of the loop, the expected dimension of V, and the expected
running time of the Gröbner basis computation.

235

17. Linear Equivalence of Inhomogeneous Quadratic Maps

q 2 3 4 5 6 7 8 16 256 65536
Pnice 0.610 0.703 0.765 0.808 0.838 0.860 0.877 0.937 0.996 0.999985

Table 17.1: Probability that the pencil-based algorithm succeeds on random instances.

Failure Probability. If an instance is random, then b(1) is a random linear map, while b(0) is a random
vector. The probability that the latter is non-zero is simply 1−q−n. The probability that a specified non-zero
vector belongs to the image of a random linear map can be derived from equation (10.6), and is shown in
Table 17.1. The probability that a random instance is nice is essentially Pnice = 1− 1/q + 1/q3 +O

(
1/q6

)
.

When q = 2, where this probability is minimal, the algorithm is capable to deal with only 61% of all the
instances.

Expected Number of Iterations of the Loop. The number of iterations of the loop is the expected cardi-
nality of ker b(1), which is a uniformly random matrix. Therefore, lemma 10.20 tells us that this expectation
is 2 + O (1/qn). In addition, we can easily obtain an interesting deviation bound using lemma 10.19 and
equation (10.4), by observing that the probability that there will be at most q iterations is:

p′ =
D(n, 0, 0) +D(n, 1, 0)

qn2 ≤ λ(n) ·
(

1 +
q

(q − 1)2

)
= 1− 1

q4
+O

(
1

q5

)

As soon as we try to figure out anything about dimV, the usual complications pop up.

17.2.3 Analysis In Odd Characteristic

Regularity of the Pencil. Exactly as in chapter 15, we observe that the pencil is regular as soon as one of
the two matrices it is made from is invertible. The linear component b(1) are easy to deal with: since it is
uniformly random, it is invertible with probability λ(n). The other matrix, Dxb is a priori a bit tougher to
handle, since we do not know what it looks like. Fortunately, it is in fact plainly random, as the next lemma
shows.

Lemma 17.1. Let Fq be a field of odd characteristic. Given a matrix M ∈ Mn (Fq) and a non-zero vector
y ∈ (Fq)n, then the number of quadratic maps f such that Dyf = M is independent from L and y. Therefore,
the differential of a random quadratic map at a given point is a random matrix.

Proof. We first note that Dyf depends only on y and on the quadratic homogeneous component of f . The
linear and constant terms of f play no role here, thus we will assume f to be homogeneous. Let us therefore
represent f as:

f =

n∑

i=1

n∑

j=i

fij · xixj , fij ∈ (Fq)n .

Let us also be given a matrix M represented as:

M · x =

n∑

i=1

M•i · xi

We want to find all the possible assignments of fij such that M = Dyf . It follows from the bilinearity of the
differential that this is equivalent to:

n∑

i=1

M•i · xi =

n∑

i=1



i−1∑

j=1

fji · yj + 2fii · yi +

n∑

j=i+1

fij · yj


 · xi

Since this equation holds for all values of x, we deduce that:

M•i =

i−1∑

j=1

fji · yj + 2fii · yi +

n∑

j=i+1

fij · yj , i = 1, . . . , n

This can be represented as a nice “generalized” linear system, where the matrix of the “polar form” of f
appears: 



M•1
M•2

...
M•n


 =




2f11 f12 · · · f1n

f12 2f22 · · · f2n

...
...

. . .
...

f1n f2n · · · 2fnn


 ·




y1

y2

...
yn




236

17.2. A Pencil-Based Approach

Anyway, since y 6= 0, we can assume w.l.o.g. (up to renumbering) that yn 6= 0. We then find two necessary
and sufficient conditions for Dyf = M :

fin =
1

yn


M•i −

i−1∑

j=1

fji · yj − 2fii · yi −
n−1∑

j=i+1

fij · yj


 , 1 ≤ i < n

fnn =
1

2yn


M•n −

n−1∑

j=1

fjn · yj


 ,

To summarize, the fij can be chosen arbitrarily for j < n, and these choices determine the the fin in a
unique way. This shows that the number of possible quadratic maps f is always the same. In turn, this
ensures that Dyf is uniformly distributed as long as f itself is uniformly distributed.

So, coming back to the regularity of the pencils, lemma 17.1 tells us that Dxb is in fact a random matrix.
It must be noted that this matrix is statistically independent from b(1) (because it depends only on the
quadratic terms of b). The pencil is therefore regular with probability:

P [P is regular] ≥ 1− (1− λ(n))2 = 1− 1

q2
− 2

q3
+O

(
1

q4

)

Distribution of dimV. Since we argued that the pencil is uniformly random, we will be able to directly
make use of the results presented in chapter 14, notably of lemma 14.4, under the assumption that the pencil
is regular. This yields:

P [dimV = n] ≥ P [a random n× n matrix over Fq is cyclic] · P [P is regular]

Thus when n goes to +∞, we find:

P [dimV = n] ≥ 1− 1

q2
− 3

q3
− 2

q4
− 1

q5
+O

(
1

q6

)

17.2.4 Analysis in Characteristic Two

Regularity of the Pencil. The situation is a bit different in characteristic two, since Dxb always vanishes on
x (it is then not uniformly random). The pencil is always regular if b(1), which is still uniformly distributed,
is non-singular:

P [P is regular] ≥ λ∞(q) = 1− 1

q
+O

(
1

q2

)

This lower-bound is looser than the one we obtained using similar a similar reasoning in the odd case. To
improve on this result, we must also take the matrix Dxb into account. For this purpose, we first need an
analogous of lemma 17.1 in the even case.

Lemma 17.2 ([Dub07], theorem 2). Let Fq be a field of characteristic two. Given a matrix M ∈ Mn (Fq)
and a vector y such that M ·x = 0, then the number of quadratic maps f , such that Dyf = M is independent
from M and y. Therefore, the differential of a random quadratic map on a given point is a random matrix
vanishing at that point.

Proof. The proof is quite similar to that of lemma 17.1 (in fact, the proof of lemma 17.1 is heavily inspired
by this one, which was originally given by Dubois). The reasoning is essentially the same, except that the
“diagonal” terms are gone:

M•i =

i−1∑

j=1

fji · yj +

n∑

j=i+1

fij · yj , i = 1, . . . , n (17.5)

And again, as a “generalized” linear system:




M•1
M•2

...
M•n


 =




0 f12 · · · f1n

f12 0 · · · f2n

...
...

. . .
...

f1n f2n · · · 0


 ·




y1

y2

...
yn




237

17. Linear Equivalence of Inhomogeneous Quadratic Maps

Since y 6= 0, we again assume w.l.o.g. that yn 6= 0. This time, we find that a necessary and sufficient
condition for Dyf = M is:

fin =
1

yn


M•i −

i−1∑

j=1

fji · yj −
n−1∑

j=i+1

fij · yj


 , 1 ≤ i < n

These values are chosen to satisfy equation (17.5) for 1 ≤ i < n. We readily verify that (17.5) holds even
when i = n, because M vanishes on y:

n−1∑

i=1

fin · yi =
1

yn

(
n−1∑

i=1

yi ·M•i

)
− 1

yn



n−1∑

i=1

i−1∑

j=1

fji · yiyj


− 1

yn



n−1∑

i=1

n−1∑

j=i+1

fij · yiyj




= M•n

To summarize, the fij can again be chosen arbitrarily for j < n, while the fin are determined by the choice
of the others.

Back to our pencil regularity problem, lemma 17.2 tells us that Dxb is uniformly distributed amongst the
matrices that vanish at x. To obtain a tighter lower-bound on the probability that the pencils are regular, we
observe that if b(1) + Dxb is non-singular, then the pencil is regular. We will thus compute the probability
that b(1) + Dxb is non-singular when b(1) is singular. This probability is in fact given by lemma 10.27:

P
[
det
(
b(1) + Dxb

)
6= 0

∣∣ det b(1) = 0
]

= 1−
(
1− λ(n− 1)

)2
+O

(
1

qn

)

All-in-all we find:

P [P is regular] ≥ P
[
det b(1) 6= 0

]
+ P

[
det b(1) = 0

]
· P
[
det
(
b(1) + Dxb

)
6= 0

∣∣ det b(1) = 0
]

≥ λ(n) + (1− λ(n)) ·
(

1−
(
1− λ(n− 1)

)2)
+O

(
1

qn

)

And when n goes to infinity, we find:

P [P is regular] ≥ 1− 1

q3
− 3

q4
− 3

q5
+O

(
1

q6

)

This improved bound seems better than the one we derived in the odd case. This is not very surprising,
as we did a somewhat deeper analysis, taking into account the interaction between the two matrices of the
pencil.

Dimension of V. Under the assumption that the pencil is regular, we may as usual use theorem 14.3.

However, we cannot use lemma 14.4 as in the odd case, because C = Dxb×
(
b(1)

)−1
is always singular (and

thus not random). It is in fact still possible to use lemma 14.4, but we must first circumvent the singularity
of C.

Theorem 17.3. Let p = P
[
dimV ≤ n + 2

∣∣ P is regular
]
. Then p is greater than the probability that a

random (n− 1)× (n− 1) matrix over Fq is cyclic. Thus:

lim
n→∞

p ≥ 1− 1

q3
+O

(
1

q4

)

Proof. When P is regular, theorem 14.3 tells us that the dimension of V is the dimension of the commutant

of C = Dxb×
(
b(1)

)−1
, and this dimension in turn only depends on the similarity invariants of C.

Let P ∈ GLn (Fq) be such that P · e1 = x, and define C′ = P−1 × C × P . By definition, C and C′
have the same similarity invariants, thus dimV is a function of C′. Next, we claim that C′ is uniformly
distributed amongst the matrices that have a first null column: lemma 17.2 tells us that Dxb is uniformly

distributed amongst the matrices vanishing at x. Because
(
b(1)

)−1
is a bijection, then the product C is

uniformly distributed amongst the matrices that vanish at x. The conjugation by P is a permutation of the
set of matrices that transforms matrices vanishing at x into matrices with a null first column.

Let U be the (n−1)× (n−1) submatrix of C′ obtained by removing the first row and the first column. It
is clear from the previous point that U is a uniformly random matrix (to which lemma 14.4 may be applied).
Also, it is easy to see that CharPoly(C) = X · CharPoly(U), and that MinPoly(U) divides MinPoly(C).

238

17.3. An IQMLE Library in MAGMA

Lemma 14.4 tells us that the probability that the minimal polynomial of U has degree n−1, and therefore
that the the degree of MinPoly(C) is at least n− 1, is c(n, q). Assuming that deg MinPoly(C) ≥ n− 1, there
are two possible cases. Either C is cyclic, and it has one similarity invariant, MinPoly(C), which is of degree
n. In this case, dim kerS = n. Or C has two similarity invariants: X, and MinPoly(C), which is of degree
n− 1, and dim kerS = n+ 2.

Assembling all the pieces, we find:

P [dimV ≤ n+ 2] ≥ P [a random (n− 1)× (n− 1) matrix over Fq is cyclic] · P [P is regular]

Thus when n goes to +∞, we find:

P [dimV ≤ n+ 2] ≥ 1− 2

q3
− 4

q4
− 5

q5
+O

(
1

q6

)

17.2.4.1 Summary

We have seen that regardless of the parity of q, the dimension of V is of order n (resp. n + 2) with a
probability of order 1 − 1/q2. The set of equations Squad is therefore made of O

(
n3
)

equations in O (n)
variables with high probability, a situation where we expect to be able to solve the equations in polynomial
time by linearization if they are linearly independent. The pathetic failure of this hypothesis in chapter 15
has made us cautious. This time the problem is less structured, and we do not expect to observe the same
funny behavior. Experiments confirm this intuition, and we have observed that we are always able to solve
Squad by linearization in time O

(
n6
)
.

The main obstacle in a possible extension of the analysis is that it is difficult to control the dimension of
V without assuming that the linear part of the instance is invertible. However, one may expect that if it is
of rank, say, n− 1, then the situation is not very different in practice.

17.3 An IQMLE Library in MAGMA

We have implemented the two algorithms described in this chapter using the MAGMA computer algebra
system, as well as the Gröbner-basis algorithm of Faugère and Perret (described in §13.2). Given an instance
of the problem, the most natural strategy seems to first try the fastest algorithm (the inversion-free to-n-fro),
and in case of failure to fall back on the second fastest algorithm (the pencil-based strategy). In case of a
second failure, we would then use the Gröbner-basis algorithm, that never fails. We again rely on MAGMA’s
efficient implementation of Gröbner basis algorithms. Our implementation is in the public-domain, and is
available at:

http://www.di.ens.fr/~bouillaguet/implem/iqmle.magma

Figure 17.1 shows the running time of our implementation of Pencil-IQMLE. The actual running time of
the function seems to be cubic.

239

http://www.di.ens.fr/~bouillaguet/implem/iqmle.magma

17. Linear Equivalence of Inhomogeneous Quadratic Maps

0.1

1

10

100

1000

0 5 10 15 20 25 30 35

tim
e

(s
ec

on
ds

)

n

q=2
q=3
q=4
q=5

Figure 17.1: Running time of Pencil-IQMLE (when the function does not abort).

240

Chapter 18

Linear Equivalence of Homogeneous Quadratic
Maps

In this chapter we present several new algorithms for the (homogeneous) QMLE problem. All
known techniques are exponential in this case. Our algorithms rely on the birthday paradox to
improve on naive exhaustive search. When possible, we establish a rigorous upper-bound on the
time complexity of these algorithms. This analysis is the result of a joint work with Amandine
Véber.

We conclude our study of polynomial linear equivalence problem by presenting new algorithms for the
hard (i.e., homogeneous) case of QMLE. The method designed in the previous chapter for IQMLE cannot be
directly applied in the homogeneous case for obvious reasons. However, the fact that IQMLE is easy is of
utmost importance, because the most promising strategy to tackle QMLE is apparently to reduce it to one
or several instances of IQMLE.

Let us recall that given two homogeneous quadratic maps a and b, the problem is to find two bijective
endomorphisms of (Fq)n, S and T such that:

T ◦ b = a ◦ S (18.1)

In this chapter, we propose two Monte-Carlo algorithms for QMLE. The first one is simpler and runs in
time equivalent to Poly(n) · q2n/3 arithmetic operations in Fq. Our second algorithm is more sophisticated
and runs in time equivalent to Poly(n)·qn/2 field operations, yet so far it is only applicable when q = 2. Recall
that the to-n-fro algorithm (Algorithm 13.1) has a complexity of O

(
n · q2n

)
, and that in the homogeneous

setting standard estimates suggest that the Gröbner-based algorithm of §13.2 has a complexity of order
O
(
218n

)

Interestingly, while all our other algorithms are deterministic, these ones are probabilistic, and an essen-
tially algebraic problem is addressed by essentially statistical methods. These algorithms sometimes fail to
detect that two quadratic maps are equivalent (there are false negatives), but never wrongly claim that they
are equivalent. In addition, when they do not explicitly fail, the algorithms explicitly determine S and T ,
which can be used to certify the result. For the sake of simplicity, in this whole chapter we will assume that
q is even, and we will discuss how the techniques we present can be adapted to fields of odd characteristic.

Dehomogenization. Our key idea when dealing with QMLE is to dehomogenize the problem: if the image
of S is known on a given vector x, then we can explicitly determine the two related inhomogeneous quadratic
maps a′(z) = a(z + S · x) and b′(z) = b(z + x). The solutions of equation (18.1) are then precisely the
solutions of the inhomogeneous instance: T ◦ b′ = a′ ◦ S. We expect to be able to solve the IQMLE instance
in practical time, so that the whole problem boils down to acquiring the image of S on (at least) one point.
This already leads to a semi-trivial algorithm: fix a non-zero vector x, enumerate all the qn − 1 possible
non-zero vectors y, dehomogenize the problem assuming that y = S · x, and solve the resulting IQMLE
instance using the techniques of chapter 17. We discuss this semi-trivial approach a bit further in §18.1.

Main Ideas. Our global strategy to improve on the (semi-)trivial approach is to first discover the image
of S on a single point faster than exhaustive search, then to dehomogenize the problem and turn it into
an instance of IQMLE. The intuitions behind our techniques to recover the image of S are nicely explained
in a graph-theoretic framework. Consider the pair of undirected graphs Ga = (V,Ea) and Gb = (V,Eb),
where the common set of vertices is V = Fq − {0}, and the edges are such that (x, y) ∈ Ea if and only if
x ∈ ker Dya (the same goes for Eb). Figure 18.1 shows a “medium-sized” connected component of such a
graph. It is striking that the graph is formed by small triangles, but is otherwise tree-like. The presence of
the small triangles follows from the vector-space structure of the kernel: if there are edges x↔ y and x↔ z,
then there is necessarily an edge x ↔ (y + z). In particular, a node is always connected to itself, so that

241

18. Linear Equivalence of Homogeneous Quadratic Maps

Figure 18.1: A “large” connected component of Ga, with q = 2 and n = 64. Self-edges are not shown.

as soon as there is an edge x ↔ y, there is also an edge x↔ (x+ y), and an edge (x + y) ↔ y, forming a
triangle. The interest of these graphs is that they nicely capture the action of S on a and b.

Lemma 18.1. The secret matrix S is a permutation of V that, when seen as a graph isomorphism, transforms
Gb into Ga.

This result is an easy consequence of the fact that S transform ker Dxb into ker D(S·x)a, which is itself
an easy consequence of the “differential” equation:

T ×Dxb = D(S·x)a× S (18.2)

This equation can be obtained by “differentiating” equation (18.1) at x, as was done in the previous chapter.
The usual algorithms for Graph Isomorphism cannot really be used to recover the isomorphism between

Ga and Gb, since they are at least linear in the size of the graph. In addition, recovering the full isomorphism
(whose size is exponential) is not necessary, as knowing how the isomorphism transforms a single vertex is
sufficient to completely retrieve it by dehomogenization and usage of an IQMLE solver.

Recall that the distance between two nodes x, y ∈ V is the minimal number of edges that must be crossed
to move from x to y. If x and y do not belong to the same connected component, then the distance between
them is +∞. The neighborhood of radius k of a given node x is the set of all nodes y such that the distance
between x and y is less than or equal to k. The Weisfeiler-Lehman method for Graph Isomorphism exploit

242

Figure 18.2: A breadth-first exploration of the top part of the graph shown in Figure 18.1. The exploration
starts from the black node. Thin red edges are “backwards” and will not appear in the tree. Thick edges
form the BFS tree.

the fact that the size of neighborhoods are preserved by the isomorphism. This can be used to restrict
the number of possible images in Ga of a given node in Gb: their neighborhoods of all possible radii must
have the same size. A quite direct and simple application of this idea yields a simple algorithm faster than
exhaustive search.

Theorem 18.2. There is a Monte-Carlo QMLE algorithm that makes O
(
q2n/3

)
calls to an external IQMLE

solver, after a preprocessing of complexity O
(
q2n/3

)
.

This algorithm is the object of §18.3. It works by isolating nodes having degree q
√
n/3 in Ga and Gb.

It can be estimated that there are O
(
q2n/3

)
such nodes, and therefore after building two sets U and V of

O
(
qn/3

)
nodes with q

√
n/3 neighbors in Ga and Gb respectively, we are guaranteed by the birthday paradox

to find a “right pair” in U × V , i.e., a pair (x, y) such that y = S · x. The O
(
q2n/3

)
pairs in U × V can be

tested using the available IQMLE algorithms.

Theorem 18.3. When q = 2, there is a heuristic Monte-Carlo QMLE algorithm that makes O (1) calls to
an external IQMLE solver, after a preprocessing of complexity O

(
2n/2

)
.

This second algorithm, which is the object of §18.4, reduces the number of candidate pairs to O (1), by
using the ideas of the Weisfeiler-Lehman method more in-depth. The point is that our first algorithm only
exploits the fact that the isomorphism preserves the number of adjacent nodes. Our second algorithm exploit
the fact that the isomorphism preserves the actual topology of neighborhoods. One of the problems is to
represent the topological structure of the neighborhoods in a way that is both independent from the labels
of the vertices, and practical to deal with (e.g., deterministic).

The main point is that the two graphs Ga and Gb are very sparse, as each node only has a single neighbor
on average (besides itself). We thus do not expect to find other cycles than the triangles while exploring only
a small fraction of the full graph. Starting a polynomial-radius Breadth-First Search from any point of the
graph and removing “backwards” edges (i.e., edges pointing to an already explored node) yields an unordered
tree, as illustrated by Figure 18.2. These tree are somewhat random, and the distribution of the number of
children of each node is known (and it is the same for all nodes). We can thus associate a random-looking
unordered, unlabeled, tree T (f ,x) to a quadratic map f and a vector x of (F2)

n
. It is then possible to show

that these trees are valid encoding of the topology of neighborhoods, since T (b,x) = T (a, S · x).
Because most connected components in Ga and Gb are very small, and thus do not provide enough

interesting information, we restrict our attention to nodes with having“large” neighborhoods (more precisely,
to nodes whose neighborhood is turned into a “high” tree by the BFS), as these neighborhoods are nearly
all pairwise distinct. We thus select two sets U and V of 2n/2 nodes with large neighborhoods in Ga and

243

18. Linear Equivalence of Homogeneous Quadratic Maps

Gb respectively, and the birthday paradox guarantees that there will be a right pair in U × V . Because
the topology of the neighborhoods contain more informtion than the degree, it can be used to efficiently
identify the right pair in a nearly-unique way. We analyze the behavior of this algorithm under the heuristic
assumption that the trees resulting from the Breadth-First Searches are critical Galton-Watson trees. The
assumption that q = 2 is critical, as it ensures that the graph has a certain shape, and that trees can easily
be found by a BFS.

Rank Distributions. Two probability distributions are ubiquitous in this chapter. Let N be smaller than
qn, x1, . . . ,xN be non-zero distinct points of (Fq)n, and let f be a uniformly random quadratic map. We
pay special attention to the family of random variables:

Xi = dim ker Dxif

Next, let L1, . . . , LN a sequence of independent and uniformly distributed random endomorphisms of (Fq)n

such that Li · xi = 0. We also pay special attention to the sequence of random variables:

Yi = dim kerLi

We will show in §18.2 that the Xi and the Yi have the same distribution. However, the Yi are independent,
while the Xi are not even pairwise independent. We will however show in §18.2.2 that the bias is extremely
small, and that no algorithm can distinguish (X1, X2) from (Y1, Y2) with advantage better than 1/qn. This
leads us to state the following conjecture.

Conjecture 18.1. No algorithm with running time O
(
Poly(n) · qn/2

)
can distinguish with non-negligible

advantage between
(
X1, . . . , Xqn/2

)
and

(
Y1, . . . , Yqn/2

)
.

This computational conjecture supports the heuristic assumption that the trees obtained by locally ex-
ploring the graphs are indeed independent random trees.

18.1 The Global Strategy: Dehomogenization

As argued in the introduction of this chapter, dehomogenizing a homogeneous instance requires the
knowledge of the image of S on one point. Indeed, if y = S · x1, then we define a′(z) = a(z + y) and
b′(z) = b(z + x), and we have T ◦ b′ = a′ ◦ S. Lemma 12.2 allows us to easily compute a′ and b′, while
ensuring that they are inhomogeneous with overwhelming probability:

a(1) = Dya a(0) = a(S · x)

b(1) = Dxb b(0) = b(x)

This immediately shows that dehomogenized instances are not random inhomogeneous instances. First of
all, their linear and quadratic homogeneous components are correlated. Much worse, since we assume q
to be a power of two, their linear homogeneous components are always singular. This means for instance
that the inversion-free to-n-fro algorithm (aka Algorithm 17.1) cannot successfully solve them, and that the
pencil-based algorithm (aka Algorithm 17.2) has a lower success probability on dehomogenized instances
than on random instances.

It is possible to make the pencil-based IQMLE algorithm work smoothly in this context though. The
problem is that the algorithm will only work if the dehomogenized instance is nice (as defined in §17.2). It is
fortunately not difficult to make the dehomogenized instances nice. We will say that x is nice with f if f(x)
is non-zero and belongs to the image of Dxf . The dehomogenized instance is therefore nice when b is nice
with x. In this case, we can run the pencil-based IQMLE algorithm on the dehomogenized instance, and we
know that it will eventually succeed. It is therefore sufficient to choose a vector x that is nice with b. This
results in algorithm 18.1.

This algorithm is almost easy to analyze, and the only question not quickly receiving an obvious answer
is the number of iteration of the first loop (that selects x). We will assume that x and b being random, b(x)
should be non-zero with probability 1−q−n. Lemma 17.2 tells us that Dxb is a random linear map vanishing
on x, and lemma 10.26 combined with conjecture 10.1 gives us the probability that each one contains b(x)
in its image. Therefore the expected number of iterations of this loop is:

E [#iterations] = q − 1

q
+

1

q3
− 1

q4
+

1

q5
+O

(
1

q6

)

This shows that with overwhelming probability, the cost of determining x in Algorithm 18.1 is negligible
in front of that of invoking Pencil-IQMLE about qn−1 times. The same reasoning carries over with minor
tweaks to fields of odd characteristic.

244

18.2. Distribution of the Rank of the Differential

Algorithm 18.1 Semi-trivial algorithm based on dehomogenization.

function Exhaustive-Dehomogenization(a,b)
repeat

Pick a random vector x ∈ (Fq)n

until b(x) 6= 0 and there exist z ∈ (Fq)n such that b(x) = Dxb · z
for all 0 6= y ∈ (Fq)n do

a′(z)← a(z + y)
b′(z)← b(z + x)
(S, T)← Pencil-IQMLE(a′,b′)
if solution found then return (S, T)

end for
return “Not Equivalent”

end function

18.2 Distribution of the Rank of the Differential

In this section we study the distributions of the two families of random variables Xi and Yi defined in
the introduction of this chapter. It follows from lemma 10.19 (with s = 1) and lemma 17.2 that when q is
even,

P [Xi = k] = P [Yi = k] =
λ(n)λ(n− 1)

λ(k)λ(k − 1) · λ(n− k)
· q−k(k−1), 1 ≤ k ≤ n

The Xi and Yi have the same distribution because given any non-zero vector x, and any linear map L
vanishing on x, the number of quadratic maps f such that Dxf = L is independent from the choice of x and
L (as per lemma 17.2).

18.2.1 Correlation between the Xi’s

If the Xi were independent, we would have P [Xi = r,Xj = s] = P [Xj = r]P [Xj = s]. It is unfortu-
nately not the case, and the bias comes from the symmetry of the differential: xi ∈ ker Dxj f is equivalent
to xj ∈ ker Dxif , and therefore the two random variables Xi and Xj are correlated. It is nevertheless possible
to compute the joint distribution.

Lemma 18.4. When q is a power of two, then for all r, s ∈ [1;n]:

P [Xi = r,Xj = s]

P [Xi = r]P [Xj = s]
=

qn

qn − 1

(
1− qr + qs − 2q

qn − q
+

qn

qn − q
· q

r+s − qr+1 − qs+1 + q2

qn − q

)

Proof. The proof proceeds in two steps. First, we claim that if x 6= y are both non-zero, then the distribution
of (dim ker Dxf ,dim ker Dyf) when a is random is the same as the distribution of (dim kerL,dim kerL′) where
(L,L′) are random linear maps such that L(x) = 0, L′(y) = 0 and L(y) = L′(x). This assertion is in fact
demonstrated in [DGS06] (and it is lemma 12 in [Dub07]).

Next, we determine the distribution of (dim kerL,dim kerL′) where (L,L′) are random linear maps such
that L(x) = L′(y) = 0 and L(y) = L′(x). First of all, there are qn(2n−3) such pairs (L,L′). It remains to
count the number of pairs satisfying the rank conditions. Recall from §10.7 that we denote by D(n, k, s) the
set of all n× n matrices with a kernel of dimension k containing a fixed subspace of dimension s.

We first observe that there are D(n, r, 2) ·D(n, s, 2) pairs such that both L and L′ vanish on both x and y.
Next, we count the pairs such that L(y) = L′(x) 6= 0. The first member of the pair can be chosen arbitrarily
as long as it is of rank r, that L(x) = 0 and that L(y) 6= 0. There are therefore D(n, r, 1)−D(n, r, 2) possible
choices. For L′, the image of L′ on x is fixed, therefore only a fraction 1/(qn − 1) of the matrices with rank
s vanishing on y and non-vanishing on x are admissible.

All-in-all this yields:

P
[
X(x) = r
X(y) = s

]
=

1

qn(2n−3)

(
D(n, r, 2) ·D(n, s, 2)

+
[D(n, r, 1)−D(n, r, 2)] · [D(n, s, 1)−D(n, s, 2)]

qn − 1

)

It follows from lemma 10.19, using easy q-binomial manipulations that:

D(n, r, 2) =
[r − 1]q
[n− 1]q

×D(n, r, 1) =
qr − q
qn − q

×D(n, r, 1)

245

18. Linear Equivalence of Homogeneous Quadratic Maps

This allows the “simplification”:

P
[
X(x) = r
X(y) = s

]
=
D(n, r, 1) ·D(n, s, 1)

qn(2n−3)



qr − q
qn − q

· q
s − q
qn − q

+

[
1− qr − q

qn − q

]
·
[
1− qs − q

qn − q

]

qn − 1




Now, we know that P [X(x) = r] = D(n, r, 1)·q−n(n−1). Therefore we find after some other manipulations:

P
[
X(x) = r
X(y) = s

]

P [X(x) = r]P [X(y) = s]
=

qn

qn − 1

(
1− qr + qs − 2q

qn − q
+

qn

qn − q
· q

r+s − qr+1 − qs+1 + q2

qn − q

)

18.2.2 Distinguishing the two distributions

The bias between the Xi’s and the Yi’s seems quite small. To formalize this notion, we consider the
following game, parametrized by an integer N :

1. The Challenger flips a coin b

2. If b = 0, the Challenger samples a tuple (X1, . . . , XN), and if b = 1 she samples (Y1, . . . , YN)

3. The Challenger sends her tuple to the adversary

4. The adversary then outputs her guess for the value of b

We first note that given N = 1 sample, no adversary can do better than random guessing, because
what she receives always has the same distribution. However, given N = 2 samples, an adversary can
try to detect the eventual presence of a correlation between the two samples thanks to her knowledge of
lemma 18.4. It is however possible to show that when N = 2, all adversaries only achieve a very small
advantage over random guessing. To establish this fact, we build an optimal Neyman-Pearsons (maximum-
likelihood) distinguisher D2 between (X1, X2) and (Y1, Y2), and we upper-bound its success probability. It
follows from lemma 18.4 that:

P [Xi = r,Xj = s] > P [Xi = r]P [Xj = s]⇐⇒





r = s = 1
or

r ≥ 2 and s ≥ 2

Therefore our maximum-likelihood distinguisher works as follows:

D2(r, s) =

{
0 if (r = s = 1) or (r ≥ 2 and s ≥ 2)

1 otherwise

Lemma 18.5. The success probability of D2 is:

ε =
1

2
+ λ(n)2 q2

(
qn+1 + qn − q

)

(qn − 1) (qn − q) (q − 1)
2 =

1

2
+O

(
1

qn

)

Proof. The generic expression of the success probability is given by:

ε =
1

2

(
1− P

[
D2 = 1

∣∣ b = 0
]

+ P
[
D2 = 1

∣∣ b = 1
])

Let us assume that D2 receives the pair of integers (r, s). Taking into account the description of D2 gives:

2ε = 1− P
[
(r = 1 ∧ s ≥ 2) ∨ (r ≥ 2 ∧ s = 1)

∣∣ b = 0
]

+ P
[
(r = 1 ∧ s ≥ 2) ∨ (r ≥ 2 ∧ s = 1)

∣∣ b = 1
]

Exploiting the knowledge of b yields:

ε =
1

2
+

n∑

s=2

(
P [Yi = 1, Yj = s]− P [Xi = 1, Xj = s]

)

Now, exploiting the independence of the Yi, lemma 18.4, and the fact that the Xi’s and Yi’s have the same
distribution, we find:

ε =
1

2
+ P [Yi = 1]

n∑

s=2

P [Yj = s]

[
1− qn

qn − 1

(
1− qs − q

qn − q

)]

246

18.3. Sieving With Adjacent Vertices

To lighten the notational burden, let us write α = P [Yi = 1]. We thus have:

ε =
1

2
+ α

n∑

s=2

P [Yj = s]− α · qn

qn − 1

(
n∑

s=2

P [Yj = s]−
n∑

s=2

P [Yj = s]
qs − q
qn − q

)

This can be further simplified into:

ε =
1

2
+ α(1− α)− α · qn

qn − 1

(
1− α− 1

qn − q

(
n∑

s=2

P [Yj = s] qs − q · (1− α)

))

Lemma 10.20 shows that
n∑

s=0

P [Yj = s] qs = q + 1− 1

qn−1
.

Using this identity, we obtain :

ε =
1

2
+ α(1− α)− α · qn

qn − 1

(
1− α− 1

qn − q

(
1 + q · α− 1

qn−1

))

Factoring α and simplifying (a lot!) yields:

ε =
1

2
+ α2 qn − q + qn+1

(qn − 1)(qn − q)

Lemma 10.19 tells us that α = λ(n)/λ(1) = λ(n) q
q−1 . The announced result follows.

Justification of Conjecture 18.1 Building a provably efficient distinguisher between the two tuples (X1, . . . , XN)
and (Y1, . . . , YN) seems difficult. However, the distinguisher D2 could be run on the N2 pairs, and it seems
plausible that the advantage of doing so would scale linearly with the number of pairs. In view of lemma 18.5,
an advantage of order one should be achieved with qn pairs, and these can be obtained with N = qn/2 sam-
ples. However, processing the qn pairs should require at least qn elementary operations. Conjecture 18.1
relies on the idea that if even if the right amount of data is available, it cannot be processed in the limited
amount of time allowed.

18.3 Sieving With Adjacent Vertices

In this section we discuss Algorithm 18.2. It is made of an auxiliary function, RankList and a main
function Rank-QMLE. The function RankList(f , `, k) generates by rejection sampling an `-element ran-
dom subset of (Fq)n composed of vectors x satisfying dim ker Dxf = k. For the sake of convenience, let us
define:

Rk(f) = {x ∈ (Fq)n | dim ker Dxf = k}

Thus, RankList(f , `, k) returns a uniformly random subset of Rk(f) of cardinality `. The main function,
Rank-QMLE, first uses RankList to generate two random subsets U and V ofRk(b) andRk(a) respectively
(with k =

√
n/3), of cardinality 2qn/3. It then enumerates all the pairs (x, y) ∈ U × V , and checks whether

y = S ·x by building the corresponding inhomogeneous instance (a′,b′) and sending it to an external IQMLE
solver. The IQMLE solver will at some point return a (valid) solution as soon as there is a right pair (i.e.,
such that the relation y = S ·x actually holds) in U ×V . In the remaining of this section, we will first prove
theorem 18.2 by showing that Rank-QMLE returns a correct pair (S, T) when a and b are equivalent with
probability greater than 1 − 1/e ≈ 63%. We will then attempt to replace the generic IQMLE-Solver by
Pencil-IQMLE (i.e., Algorithm 17.2). We will adapt Algorithm 18.2 accordingly, discuss the complexity
of the resulting combination and present practical results.

18.3.1 Proof of Theorem 18.2 : Generic Analysis

When a and b are not equivalent, the derived inhomogeneous instance cannot have a solution, and thus
Rank-QMLE always returns “probably not equivalent”. When a and b are equivalent, on the other hand,
Rank-QMLE will only find a valid solution if there is a pair (x,y) in U × V such that y = S · x.

The core idea the algorithm relies on is that equation (18.2) implies that the two linear maps Dxb
and DS·xa have the same rank. In other terms, for any k, the unknown (invertible) matrix S maps the
elements of Rk(b) to those of Rk(a), which means that we may restrict our attention to one of the Rk(a)
for a well-chosen value of k. Another way of expressing the same idea would be to say that we restrict our
attention to vertices of Ga and Gb having exactly qk − q2 adjacent nodes.

247

18. Linear Equivalence of Homogeneous Quadratic Maps

Algorithm 18.2 Rank/Birthday Based Algorithm

1: function RankList(f , `, k)
2: L← {}
3: repeat
4: repeat
5: x← random element of (Fq)n

6: until dim ker Dxf = k
7: L← L ∪ {x}
8: until |L| = `
9: return L

10: end function

11: function Rank-QMLE(a,b)

12: U ← RankList
(
a,
√

2qn/3,
√
n/3

)

13: V ← RankList
(
b,
√

2qn/3,
√
n/3

)

14: for all (x, y) ∈ U × V do
15: a′(z)← a(z + y)
16: b′(z)← b(z + x)
17: (S, T)← IQMLE-Solver(a′,b′)
18: if solution is found then return (S, T)
19: end for
20: return “Probably not equivalent”
21: end function

The sets Rk(a) form a partition of (Fq)n when k ranges across [1;n], and interestingly they have different
sizes. By linearity of the expectation, we find that E [|Rk(a)|] = qn · P [Xi = k], and the distribution of the
Xi’s then gives us the expected cardinality of Rk(·). If a is a random quadratic map, then:

qn−k(k−1) ≤ E [|Rk(a)|] ≤ 2qn−k(k−1).

It follows that when k =
√
n/3, the expected cardinality of Rk(a) is less than 2 · q2n/3 (up to rounding

errors). The two random subsets U and V defined in Rank-QMLE both contain
√

2 · qn/3 elements, and
this is precisely the square root of the (upper-bound on the) expected size of Rk(a).

Both U and V have more than
√
|Rk(a)| elements, and thus lemma 3.2 ensures that Algorithm 18.2

succeeds with probability greater than 1− 1/e (the blue balls are the images of the vectors in U by S, while
the red balls are the vectors in V).

Let us now complete the proof of theorem 18.2. We remark that U × V contains O
(
q2n/3

)
elements, so

that the main loop invokes the external IQMLE solver O
(
q2n/3

)
times. It remains to show that determining

U and V can be done with O
(
q2n/3

)
operations. Turning our attention to RankList, we first argue that as

long as ` does not exceed
√
|Rk(f)|, then the number of iterations of the outer loop will be O (`). Indeed, the

inner-loop of lines 4–6 chooses a random vector x ∈ Rk(f), and “collisions” inside Rk(f) are unlikely before√
|Rk(f)| random vectors are sampled. We also find that the number of iterations of the inner loop follows

a geometric distribution of parameter |Rk(f)|/qn ≈ q−n/3, so that the expected number of iterations of the
inner loop is O

(
qn/3

)
. This means that in average each of the two invocations of RankList will perform

O
(
q2n/3

)
matrix operations.

18.3.2 Specialization to Pencil-IQMLE

We now move on to replace the abstract and generic IQMLE-Solver of line 17 by our best candidate
for the job, namely Pencil-IQMLE (Algorithm 17.2). This raises certain problems though. First of all, the
inhomogeneous instances are not random, if only because the kernel of the linear component has dimension√
n/3. Note that this rules out the inversion-free to-n-fro algorithm, which would fail systematically. It is

quite difficult to say anything meaningful regarding the performance of the Gröbner-basis algorithm of [FP06]
on these special instances, but we have all reasons to believe that it would be slower than on random instances,
even if we do not know by how much. We thus stick to Pencil-IQMLE, because it should be faster and we
understand it better.

Still, the failure probability of Pencil-IQMLE should be much higher on these “low-rank” instances
than on random instances. Some specific counter-measures have to be adopted, otherwise Pencil-IQMLE
might fail on the probably-single right-pair of U × V , and the whole process would fail. To circumvent

248

18.3. Sieving With Adjacent Vertices

this problem, we patch the RankList function so that it only selects vectors x making the dehomogenized
instances nice. The patched function is shown in Algorithm 18.3. The corresponding patched definition of
Rk is:

R′k(f) = {x ∈ (Fq)n | dim ker Dxf = k and f(x) 6= 0 and f(x) ∈ Im Dxf}

Algorithm 18.3 Specialized function for Pencil-IQMLE.

1: function RankList(f , `, k)
2: L← {}
3: repeat
4: repeat
5: x← random element of (Fq)n

6: until dim ker Dxf = k and b(x) 6= 0 and b(x) ∈ Im Dxf
7: L← L ∪ {x}
8: until |L| = `
9: return L

10: end function

It remains to estimate the complexity of the patched RankList function, and that of Pencil-IQMLE
on the corresponding instances. The parameters of the algorithm will then be modified to minimize the total
running time.

Complexity of the Patched RankList. When q is a power of two, the differential of a random quadratic
map at a random non-zero point x is a random linear map vanishing on x. The number of linear maps whose
kernel has dimension k and contains a given vector, and whose image contains another fixed vector is given
by lemma 10.23 (with s = t = 1), and is:

(
n− 1

k − 1

)

q

(
n− 1

k

)

q

〈〈n− k〉〉q!

Exploiting the fact that
(
n−1
k

)
q

has order qk(n−k) reveals that the expected cardinality of R′k(a) is essentially

qn−k
2

, up to small constant multiplicative factors. It also follows that for each iteration of the outer loop of
the patched RankList, there will be on average qk

2

iterations of the inner loop.
As previously, we choose the size of U and V to be the square root of the expected cardinality of R′k,

for some value of k that we will determine. The complexity of building U and V is therefore O
(
qn/2+k2/2

)

matrix operations.

Complexity of Pencil-IQMLE. When the homogeneous linear component has a kernel of dimension k, then
the main loop of Pencil-IQMLE performs qk iterations. We will therefore assume that the complexity of
running Pencil-IQMLE on these particular instances is that of qk matrix operations (this is a somewhat

crude approximation). Testing all the qn − k2 pairs in U × V therefore costs roughly O
(
qn−k

2+k
)

matrix

operations.

Adapting the Parameters. To minimize the total running time, we must therefore choose k such that:

n

2
+
k2

2
≈ n− k2 + k

And the solution is:

k =
√
n/3− 1

3
+ o(1)

Leading to a total complexity of roughly O
(
q2n/3+

√
25n/27

)
matrix operations.

18.3.3 Practical Results.

We have implemented the combination of Algorithm 18.2 with Pencil-IQMLE inside the MAGMA
computer algebra system, running on one core of a 2.8 Ghz Xeon machine. As shown in Table 18.1, we found
out that in practice it is difficult to balance the cost of the two parts of the algorithm because k can only
take

√
n integer values. We could nevertheless verify in practice that the complexity of building the lists and

the expected number of right pairs in them is consistent with our theoretical results. The source code is in
the public domain, and is available at:

249

18. Linear Equivalence of Homogeneous Quadratic Maps

n q generating U and V total time target rank |U | |P|
16 2 0s 68s 3 1 4
22 2 28s 35000s 4 13 400
28 2 4913s 8087s 5 8 64

Table 18.1: Experimental results on Rank-QMLE.

http://www.di.ens.fr/~bouillaguet/implem/rank-qmle.magma

18.4 Sieving Using Whole Neighborhoods

In the remaining of this chapter, we assume that q = 2, and we investigate Algorithm 18.4, which is more
efficient and more sophisticated. Note that we still use the notation q, as it helps distinguishing numerical
constants depending on the size of the field and “accidental” ones.

Rank-QMLE used the rank of the differential as a discriminating function that could tell apart wrong
pairs y 6= S · x. However, this discriminating function splits (Fq)n in only

√
n classes, resulting in many

false positives, and an exponential number of candidate pairs have to be tested. To improve on the previous
approach, we seek a more precise discriminating function in order to partition the search space into expo-
nentially many classes. A possible solution consists in exploring larger neighborhoods of Ga and Gb than
the immediately adjacent nodes. However, representing this more complex topological structure is more
difficult than just storing the number of neighbors. Our new discriminating function performs a radius-k
BFS starting from a given node x, and generates the corresponding tree (assuming no cycle occurs and re-
moving backwards edges). It has the following recursive definition, where the double-brace notation denotes
a multiset :

Tree[k](f ,x) = Node[k](f , 0,x)

Node[k](f ,x,y) =
{{

Node[k−1](f,y, z)
∣∣∣ z ∈ ker Dyf and z /∈ 〈x,y〉

}}

Node[0](f ,x,y) = ∅

After noting that Tree[k] can be evaluated in finite time for any given value of k, we claim that it can be
used as a discriminating function.

Lemma 18.6. For all k ∈ N and 0 6= x ∈ (F2)
n

, we have Tree[k](b,x) = Tree[k](a, S · x).

Proof. We show by induction on k that Node[k](b,x,y) = Node[k](a, S · x, S · y), as this implies the result
of the lemma. This is trivially true when k = 0, and when k > 0, equation (18.2) implies that ker Dyb
is transformed into ker DS·ya by S. This means that it is possible to write ker Dyb = {u1, . . . , u`} and
ker DS·ya = {v1, . . . , v`} such that vi = S · ui. Then:

Node[k](b,x,y) =
{{

Node[k−1](b,y, ui)
∣∣∣ i ∈ [1; `] and ui /∈ 〈x,y〉

}}

Node[k](a, S · x, S · y) =
{{

Node[k−1](a, S · y, S · ui)
∣∣∣ i ∈ [1; `] and S · ui /∈ 〈S · x, S · y〉

}}

In the definition of the second multiset, the condition S ·ui /∈ 〈S · x, S · y〉 is clearly equivalent to ui /∈ 〈x,y〉,
because S is invertible. The induction hypothesis tells us that

Node[k−1](b,y, ui) = Node[k−1](a, S · y, S · ui),

and the two multisets are in fact equal.

The purpose of the condition “z /∈ 〈x,y〉” in the definition of Node is to keep the multisets as small as
possible without discarding relevant information. For instance, zero always belong to ker Dxf , just because
the kernel is a vector space, yet this does not help in discriminating (this is why zero was removed from
the graphs). In addition, because the differential is symmetric, then y ∈ ker Dxf implies that x ∈ ker Dyf .
Finally, since q = 2, we always have x ∈ ker Dxa. We thus remove from the multisets values that we know
would be here independently of a and b. It is equivalent to say that we do not record self-edges in Ga and
Gb, that the graph is undirected, and that we do not want to follow “backwards” edges during the BFS.

250

http://www.di.ens.fr/~bouillaguet/implem/rank-qmle.magma

18.4. Sieving Using Whole Neighborhoods

Algorithm 18.4 Branching Process Based Algorithm.

1: function TreeList(f , `)
2: L← {}
3: repeat
4: repeat
5: x← random element of (F2)

n

6: T ← Tree[n logn](f ,x)
7: until Height(T) = n log n
8: and SpineDecomp(T, n

√
log n)

9: L← L ∪ {x}
10: until |L| = `
11: return L
12: end function

13: function Branching-QMLE(a,b)
14: U ← TreeList

(
a, qn/2/

√
n
)

15: V ← TreeList
(
b, qn/2/

√
n
)

16: P ← {(x,y) ∈ U × V | Tree(a,x) = Tree(b,y)}
17: for all (x, y) ∈ P do
18: a′(z)← a(z + y)
19: b′(z)← b(z + x)
20: (S, T)← IQMLE-Solver(a′,b′)
21: if solution is found then return (S, T)
22: end for
23: return “Probably not equivalent”
24: end function

{{·}}

∅ ∅ {{·}}

∅

{{·}}

∅

{{·}}

∅ ∅ {{·}}

{{·}}

∅

Figure 18.3: A representation of {{∅, ∅ {{∅}} {{∅}} , {{∅, ∅, {{{{∅}}}}}}}}.

The connection between the nested multisets returned by Tree[k] and the trees resulting for locally
breadth-first searching the graphs is that the nested multisets are naturally represented by unordered tree.
For instance, {{∅, ∅ {{∅}} {{∅}} , {{∅, ∅, {{{{∅}}}}}}}} is the tree of height 4 with 13 nodes shown in Figure 18.3
(with the convention that the root has height 0). We denote by Height the function that returns the height
of a tree.

We say that a tree has a unique spine decomposition (or unique backbone decomposition) if there is a
unique path starting from the root that reach a leaf of maximal height (this implies that there is a unique
leaf of maximal height). We also say that a tree has a unique spine decomposition up to height k if there
is a unique path starting from the root and reaching height k that extends to a path reaching nodes of
maximal height. Figure 18.4 shows a tree with a spine decomposition up to a certain level. The predicate
SpineDecomp(T, k) returns true if and only if the tree T admits a unique spine decomposition up to height
k. Note that this predicate can easily be evaluated in linear time.

Algorithm 18.4 makes use of an auxiliary function, TreeList(f , `), which generates by rejection sampling

251

18. Linear Equivalence of Homogeneous Quadratic Maps

Figure 18.4: A Tree of height n log n with a spine decomposition up height n
√

log n (there has a unique
path starting from the root and reaching height n

√
log n that extends to a path of maximal length).

a random subset of (F2)
n

composed of ` vectors x such that Tree[n logn](f ,x) has height n log n and has a
unique spine decomposition up to height n

√
log n.

It seems natural to question how good a discriminating function Tree[k] is, or, more precisely, how often
do we have Tree[k](b,x) = Tree[k](a,y) when y 6= S · x. In Algorithm 18.4, this directly influences the
cardinality of P, and thus the number of inhomogeneous instances to discharge to the IQMLE solver. In
§18.4.1 we will show that when x is randomly chosen, then Tree[k](b,x) = ∅ with high probability, making
the discriminating function essentially useless over the whole (F2)

n
. This is why in TreeList we restrict

our attentions to the following subset of (F2)
n
:

H(f) =



x ∈ (F2)

n

∣∣∣∣∣∣

T ← Tree[n logn](f ,x),
Height(T) = n log n,
SpineDecomp

(
T , n
√

log n
)

= true





We will show in §18.4.3 that sampling a random tree from H(f) can be done in expected time O
(
n2 log2 nq3

)
,

which makes it reasonable to consider this particular subset of (F2)
n
. We will next show in §18.4.4 that

Tree[n logn] is nearly injective on R(f). This makes Tree[n logn] a nearly-optimal discriminating function,
when restricted to H(f). This allows us to show in §18.4.5 that the expected cardinality of P is O (1). The
proofs of these claims are the pièce de résistance of this chapter. Theorem 18.3 (from the introduction)
follows from these claims by combining the ingredients together.

18.4.1 Discriminating with Random Trees

We may consider Tree[k](f ,x) as a random variable when f is randomly chosen, and we will now try to

derive useful information on its distribution. We argue that the trees produced by Tree[k] in fact result from
a branching process, because the number of children of each node in the tree is random and follows the same
fixed distribution (except at the root). This in turn follows from the fact that the number of descendants
of a given node is a function of the rank of the differential of a or b on the corresponding point of (F2)

n
.

We therefore use the standard terminology of branching processes to describe the output of Tree[k]. We
focus on the usual properties of the random trees produced by Tree[k]: what is the offspring distribution
(number of children of each node)? the average progeny (mean number of children per node)?

We unfortunately cannot directly use the distribution of the Xi’s to answer these questions, for the
following reason: by definition of Node[k](f ,x,y), we always have y ∈ ker Dxf , so that by symmetry of

252

18.4. Sieving Using Whole Neighborhoods

the differential, ker Dyf always contains x. Except when x = 0 at the root of the tree, this means that
dim ker Dyf is always greater than or equal to two, and thus does not follow the distribution of the Xi’s.

Lemma 18.7. The offspring distribution of every non-root node is:

`n(i) = P [a given particle produces i offspring] =

{
pn,k when i = qk − q2

0 otherwise

where

pn,k =
λ(n)λ(n− 2)

λ(k)λ(k − 2)λ(n− k)
· q−k(k−2)

The expected progeny of each node is:

µ =

n∑

k=2

(
qk − q2

)
· pn,k = 1− 1

qn−2

And the variance of the offspring distribution is:

σ2 =

n∑

k=2

(
2k − q2

)2 · pn,k − µ2 = q2(q − 1)

(
1− q2 + 1

qn
+

q2

q2n

)

Proof. It is clear that the number of descendants of each node can only be of the form qk − q2, for some k.
This k is precisely the dimension of ker Dxf , conditionned on y ∈ ker Dxf . The expression of pn,k is then a
direct consequence of lemma 10.19 (via an implicit use of lemma 17.2). Next, by linearity of the expectation
and because the pn,k add up to one, we find that

µ =

n∑

k=2

qk · pn,k − q2.

In this expression, the value of the sum is given by lemma 10.20.
The variance can be established in the same way. Expanding its expression yields:

σ2 =

n∑

k=2

q2k · pn,k − 2q2
n∑

k=2

qk · pn,k + q4 − µ2

The second sum is equal to (µ+ q2), and therefore the previous equation simplifies to:

n∑

k=2

q2k · pn,k − (q2 + µ)2

This is exactly the expression of the variance of the cardinality of the kernel of a random endomorphism
conditioned to vanish on two given points, and its value is given by lemma 10.21.

Before any further considerations, we note that the probability that a node has no children is:

P [no offspring] = pn,2 =
λ(n)

λ(1)
−−−−→
n→∞

1− 1

q2
+O

(
1

q3

)

In particular, this shows that Tree[k] returns the empty tree with high probability, making it a seemingly
pretty lousy discriminating function (as previously advertized). We shall see that it is possible to get much

more from Tree[k].

Does Tree[k] Produces Random Trees? We will analyze the algorithm under the heuristic assumption
that the output of Tree[k] is a (truncated) Galton-Watson tree with offspring distribution `n. This is very
convenient because these objects are well-known and have been extensively studied.

If the graph were a random graph with degree distribution `n, then it would be possible to argue that
a connected component is a tree asymptotically almost surely, and that Tree[k] does return a random tree
with offspring distribution `n. The problem is that the graph is not random, if only because of the triangles.
Removing backwards edges in the BFS takes care of the triangles, but this does not mean that the resulting
tree is random, because the graphs are deterministic products of a and b.

Our (heuristic) assumption that Tree[k] produces Galton-Watson trees with law `n (i.e., trees where the
number of descendants of each node is chosen independently according with law `n) relies on two arguments.

253

18. Linear Equivalence of Homogeneous Quadratic Maps

First, the offspring distribution of trees produced by Tree[k] is actually `n, and it is the same for each node,
as long as no cycles are encountered. Second, Conjecture 18.1 means that it is impossible to detect if the
number of descendants of each node in the trees are correlated. The running time of Algorithm 18.4 (yet to
be established) is too short to allow a successful detection of the correlation. We shall therefore assume in

the sequel that for all useful purposes the output of Tree[k] is a truncated Galton-Watson tree with offspring
distribution `n.

Slightly More Advanced Properties of the Trees. Let us denote by Pn the law of Galton-Watson trees
with offspring distribution `n. Figure 18.5 shows a random tree sampled according to this distribution (we
chose a big one). Because µ ≤ 1, the trees are finite with probability one [AN72, chapter I, part A, section
5,theorem 1].

In addition, the probability that a tree sampled according to Pn has height greater than h is equivalent
to 2/(hσ2) ≈ 2/(h · q3) [AN72, chapter I, part B,section 9, theorem 1]. A first consequence is that sampling
a tree of height n log n requires sampling O

(
q3 · n log n

)
trees on average. Another consequence is that the

expected height of trees sampled according to Pn is not finite; this justifies why we restrict the height of the
result of Tree. It is also known that the expected total number of nodes after h generation is h+ 1 [Pak71],

so that computing Tree[k] requires on average O (k) matrix operations. This means that the complexity of

finding a vector x such that Tree[n logn](f ,x) has height at least n log n is essentially the same as that of
performing O

(
q3 · n2 log2 n

)
rank computations on n× n matrices.

The probability that two random Galton-Watson trees are equal is easy to determine, however this would
be useless here, because Galton-Watson trees are ordered trees (i.e., sibling nodes are distinguished, there is
a leftmost brother and a rightmost brother for instance). We could not find in the available literature the
probability that two Galton-Watson trees are isomorphic (i.e., equal if considered as unordered trees, where
sibling nodes are indistinguishable). Figure 18.6 shows two trees that are distinct if considered as ordered
trees, but isomorphic and thus equal if considered as unordered (and unlabeled) trees. We address this issue
using the spine decomposition.

18.4.2 The Spine Decomposition in Detail

For any n ≥ 3, let Tn be a tree sampled according to Pn, and let PHn be the law of Tn conditioned to have
height at least n log n (without loss of generality, we write n log n instead of bn log nc). In fact, PHn [·] stands
for Pn

[
·
∣∣ Height(Tn) ≥ n log n

]
, and allows to make notations less cumbersome.

We need a criterion to decide whether two conditioned trees are isomorphic or not, and we need it to
be simple enough so that we may evaluate the probability that it holds. The criterion we will use is the
following: two isomorphic trees with a unique spine decomposition must have empty subtrees emanating
from the backbone at the exact same heights. Of course, if the spine decomposition is unique up to height
h, then this holds only up to height h. This will intuitively show that two random trees with a unique spine
decomposition up to height h are isomorphic with a probability that gets exponentially small in h. We will
make this intuition formal later, but we must first introduce some properties of the spine decomposition.

We decompose a conditioned tree (i.e., a tree of law PHn) into a backbone (or spine) going from the root
to height n log n, on which we graft a given number of unconditioned Galton-Watson trees at each of its
nodes. Looking at all nodes of height n

√
log n, if only one of them has descendants at height n log n then

the spine up to height n
√

log n is uniquely determined: necessarily, it is the path in the tree going from the
root to this node (Figure 18.4 illustrates this).

Let us work for a moment with ordered Galton-Watson trees. That is, we also record who is the descendant
of each parent and offspring are ordered (so that we can talk about brothers to the left or to the right of
an individual). In [Gei99], Geiger shows that if we define the sequence of independent random variables
(V nm, Y

n
m) ,m ∈ N by

P
[
V nm = j, Y nm = k

]
=
Pn [Height(Tn) ≥ m− 1]

Pn [Height(Tn) ≥ m]
· Pn [Height(Tn) < m− 1]

j−1 · `n(k),

1 ≤ j ≤ k <∞, (18.3)

then Tn conditioned to have height at least h has the same law as the random tree constructed inductively
as follows:

– The root (i.e., the first node of the spine) has Y nh offspring.
– To each of the V nh − 1 first offspring node we graft a Galton-Watson tree with offspring distribution
`n and conditioned to have height (strictly) less than h − 1. These V nh − 1 trees are independent of
each other (and of the rest of the construction). These subtrees are on the left of the backbone on
Figure 18.7.

254

18.4. Sieving Using Whole Neighborhoods

Figure 18.5: A random Galton-Watson tree with distribution P (the leaves are not drawn). 255

18. Linear Equivalence of Homogeneous Quadratic Maps

root

left right

child a child b

6=

root

right

child b child a

left

Figure 18.6: Two distinct, but isomorphic trees. Both are represented as unordered trees by {{∅, {{∅, ∅}}}}.

Figure 18.7: Illustration of the spine decomposition (this is Figure 1 from [Gei99]). This shows the Galton-
Watson tree conditionned on non-extinction at generation n and n + 1 respectively. GW (k) denotes a
Galton-Watson tree conditioned to be extinct at generation k. The subtrees to the right of the line of
descent of the left-most particle are ordinary Galton-Watson trees.

– To each of the Y nh − V nh last offspring, we graft an unconditioned Galton-Watson tree with offspring
distribution `n (again, these trees are independent of each other and of the rest of the construction).
These subtrees are on the right of the backbone on Figure 18.7.

– The V nh -th offspring node continues the spine. It has Y nh−1 offspring, the first V nh−1 ones are the roots
of i.i.d. Galton-Watson trees conditioned to have height less than h− 2, the last Y nh−1 − V nh−1 are the
roots of i.i.d. unconditioned Galton-Watson trees and the spine carries on with the V nh−1-th offspring,
which has Y nh−2 offspring nodes, and so on.

Observe that the marginal distribution of Y nm is given by

P [Y nm = y] =
1− Pn [Height(Tn) < m− 1]

y

Pn [Height(Tn) ≥ m]
· `n(y), (18.4)

which is 0 if y = 0 or if y is not of the form qk − q2 for some k ∈ {3, . . . , n}. Hence, the spine can be seen as
a “prolific” line of descent that survives up to generation h by producing a biased number of offspring, while
the other individuals of the population reproduce essentially according to the initial offspring distribution
(we refer to [Gei99] for an explanation of the fact that trees emanating from brothers to the left of the spine
are conditioned not to have descendants at generation h).

256

18.4. Sieving Using Whole Neighborhoods

18.4.3 Sampling in H(f) Takes Polynomial Time

We are ready to show that our random trees, when conditioned to have height n log n, have a spine
decomposition up to height n

√
log n with very high probability.

Theorem 18.8. There exists a constant C such that the probability that a random tree sampled according
to PHn has a spine decomposition up to height n

√
log n is greater than 1− C/

√
log n.

Before proving this theorem, we review its implications. Informally speaking, it means that when
Tree[n logn] produces a tree of height n log n, then this tree has a unique spine decomposition up to height
n log

√
n asymptotically almost surely. In the auxiliary function TreeList, only a negligible fraction of the

trees will be rejected because it does not meet the unique spine decomposition condition. Therefore, the
number of iterations of the inner loop of TreeList is O

(
n2 · q2

)
, which is the number required to sample

a sufficiently high tree. In addition, this shows that, by linearity of the expectation, that:

2qn

σ2 · n log n

(
1− C

n
√

log n

)
≤ E [|H(f)|] ≤ 2qn

σ2 · n log n
. (18.5)

proof of theorem 18.8. We show that under PHn , with high probability only one path from the root to height
n
√

log n extends to a path reaching height n log n. Call this event An. Since this property is purely topolog-
ical, then it does not matter whether the tree is ordered or not. We obtain the desired result by bounding
from below the probability of An by the probability that all trees emanating from the spine under height
n
√

log n are of height less than n(log n −
√

log n). The independence of this family of trees, together with
the fact (easy to check) that for every integer i in the interval {1, . . . , n

√
log n− 1}

Pn
[
Height(Tn) < n(log n−

√
log n)

∣∣ Height(Tn) < n log n− i
]

≥ Pn
[
Height(Tn) < n(log n−

√
log n)

]
,

enables us to write

PHn [An] ≥
n
√

logn−1∏

i=0

E
[
Pn
[
Height(Tn) < n(log n−

√
log n)

]Y nn logn−i−1
]

≥ E

[
Pn
[
Height(Tn) < n(log n−

√
log n)

]∑n
√

logn−1
i=0 Y nn logn−i

]
. (18.6)

Now, as n→ +∞, all the pn,k (for k ∈ {3, . . . , n}) converge to a finite limit p∞,k , and we also have µn → 1
(recall that µn < 1 for every n) and σ2

n → q3 − q2 =: σ2. The last two convergences happen exponentially
fast in n, therefore the same proof as that of Theorem 3.1 in [Gei99] (in which µn = 1 for all n) shows that
whenever (mn)n≥1 tends to infinity at most polynomially, we have

lim
n→∞

mn · Pn [Height(Tn) ≥ mn] =
2

σ2
. (18.7)

Furthermore, we have the following lemma.

Lemma 18.9. There exist C3, C4 > 0 such that for every n ≥ 3,

P



n
√

logn−1∑

i=0

Y nn logn−i > C3 · n
√

log n


 ≤ C4

n
√

log n
.

We postpone the proof of Lemma 18.9 until the end of the proof of Theorem 18.8. Armed with (18.7)
and Lemma 18.9, we can come back to (18.6) and write for every n

PHn [An] ≥ E
[
Pn
[
Height(Tn) < n(log n−

√
log n)

]C3n
√

logn

1{∑n
√

logn−1
i=0 Y nn logn−i≤C3n

√
logn

}]

≥
(

1− C5

σ2n log n

)C3n
√

logn

× P



n
√

logn−1∑

i=0

Y nn logn−i ≤ C3 · n
√

log n




≥ e−C6/
√

logn

(
1− C4

n
√

log n

)
≥ 1− C7√

log n
. (18.8)

Note that for the third inequality, use the fact that 1−x ≥ e−2x for every x ∈ [0, 1/2]. What (18.8) shows is
that for every n ≥ 3, if we sample a Galton-Watson tree Tn according to PHn , then with probability at least
1− C7/

√
log n there will be a unique spine decomposition under height n

√
log n.

257

18. Linear Equivalence of Homogeneous Quadratic Maps

proof of lemma 18.9. We use Markov’s inequality (in a Chebychev-like fashion) as follows: if C3 > 0, we
have for each n ≥ 3

P



n
√

logn−1∑

i=0

Y nn logn−i > C3n
√

log n




= P



n
√

logn−1∑

i=0

(
Y nn logn−i − E

[
Y nn logn−i

])
> C3 · n

√
log n−

n
√

logn−1∑

i=0

E
[
Y nn logn−i

]



≤

E






n
√

logn−1∑

i=0

(
Y nn logn−i − E

[
Y nn logn−i

])



2




C3 · n

√
log n−

n
√

logn−1∑

i=0

E
[
Y nn logn−i

]



2 . (18.9)

Let us show that the numerator in the right-hand side of (18.9) is of order n
√

log n, while the denominator
is of order n2 log n whenever C3 > 0 is large enough. These two points rely on appropriate bounds on the
first two moments of all Y nn logn−i’s (observe that the numerator is in fact the sum of the variances of the
Y nn logn−i’s). Indeed, recall from (18.4) that for every k ∈ {3, . . . , n},

P
[
Y nn logn−i = qk − q2

]
=

1− Pn [Height(Tn) < n log n− i− 1]
qk−q2

Pn [Height(Tn) ≥ n log n− i]
· pn,k

and these are the only possible values for Y nn logn−i. Because 1 − e−x ≤ x for all x ≥ 0, we can write for

every i ≤ n
√

log n− 1 :

1− Pn [Height(Tn) < n log n− i− 1]
qk−q2

≤ −
(
qk − q2

)
logPn [Height(Tn) < n log n− i− 1]

≤ −
(
qk − q2

)
logPn

[
Height(Tn) < n log n− n

√
log n− 2

]
.

We thus have for every such integer i

1− Pn [Height(Tn) < n log n− i− 1]
qk−q2

(qk − q2) · Pn [Height(Tn) ≥ n log n− i]
≤ −

logPn
[
Height(Tn) < n log n− n

√
log n− 2

]

Pn [Height(Tn) ≥ n log n]
.

Moreover, because λ(·) is decreasing,

λ(n)λ(n− 2)

λ(k)λ(k − 2)λ(n− k)
≤ lim
n→∞

1

λ(n)
=: Cq.

Combining the above, we arrive at

P
[
Y nn logn−i = qk − q2

]
≤ −

logPn
[
Height(Tn) < n log n− n

√
log n− 2

]

Pn [Height(Tn) ≥ n log n]
· Cq ·

(
qk − q2

)
q−k(k−2)

for every n ≥ 3 and k ∈ {2, . . . , n}. This yields

E
[
Y nn logn−i

]
≤ −

logPn
[
Height(Tn) < n log n− n

√
log n− 2

]

Pn [Height(Tn) ≥ n log n]
· Cq ·

n∑

k=3

(
qk − q2

)2
q−k(k−2)

E
[(
Y nn logn−i

)2] ≤ −
logPn

[
Height(Tn) < n log n− n

√
log n− 2

]

Pn [Height(Tn) ≥ n log n]
· Cq ·

n∑

k=2

(
qk − q2

)3
q−k(k−2)

Now, by (18.7) we have

lim
n→∞

−
logPn

[
Height(Tn) < n log n− n

√
log n− 2

]

Pn [Height(Tn) ≥ n log n]
= 1,

and furthermore,

∞∑

k=3

(
qk − q2

)2
q−k(k−2) =: m1 <∞ and

∞∑

k=3

(
qk − q2

)3
q−k(k−2) =: m2 <∞.

258

18.4. Sieving Using Whole Neighborhoods

As a consequence, there exists C > 0 such that for every n ≥ 3, we have

n
√

logn−1∑

i=0

E
[
Y nn logn−i

]
≤ Cm1n

√
log n,

and (using the independence of all Y nm’s)

E






n
√

logn−1∑

i=0

Y nn logn−i − E
[
Y nn logn−i

]



2

 =

n
√

logn−1∑

i=0

Var
(
Y nn logn−i

)
≤ C ′n

√
log n,

for a constant C ′ > 0 depending on m1 and m2. Choosing C3 > Cm1 and coming back to (18.9), we obtain
the existence of C4 > 0 such that for every n ≥ 3,

P



n
√

logn−1∑

i=0

Y nn logn−i ≥ C3n
√

log n


 ≤ C4

n
√

log n

n2 log n
=

C4

n
√

log n
.

This completes the proof of Lemma 18.9.

18.4.4 Near-injectivity of Tree[n logn] over H(f).

Our key argument to establish the properties of Algorithm 18.4 is that Tree[n logn] is close to injective
over H(f).

Theorem 18.10. There is a constant κ ∈]0; 1[such that if two trees sampled according to PHn have a unique
spine decomposition up to height n

√
log n, then the probability that they are isomorphic is upper-bounded by

κn
√

logn.

Over H(f), our discriminating function Tree[n logn] produces random trees meeting the conditions of the

theorem, which then tells us that the result of two distinct invocations of Tree[n logn] are non-isomorphic
with overwhelming probability.

proof of theorem 18.10. Let us use again Tn (from §18.4.2) and its spine decomposition under the additional
conditioning that all trees emanating from the spine under height n

√
log n are of height smaller than n(log n−√

log n). We write P̃Hn for the law of this tree. By construction, each brother of the i-th node of the spine
(0 ≤ i ≤ n

√
log n− 1) has no offspring with probability

en := Pn
[
Tn = ∅

∣∣ Height(Tn) ≤ n(log n−
√

log n)
]

=
Pn [Tn = ∅]

Pn
[
Height(Tn) ≤ n(log n−

√
log n)

]

=
`n(0)

Pn
[
Height(Tn) ≤ n(log n−

√
log n)

] . (18.10)

Brother to the right or to the left does not matter here since the condition at the denominator is stronger
than Height(T) < n log n− i−1 for our range of integers i. Let us use (18.10) to obtain some bounds (away
from 0 and 1), uniform in n and i ≤ n

√
log n− 1, for the probability that all of the Y nn logn−i − 1 brothers of

the i-th node of the spine have zero offspring. Because `n(0) = pn,2 and using (18.7), the right-hand side of
(18.10) is equivalent as n→∞ to

`n(0)

1− 2/(σ2 · n log n)
'

n→∞
lim
n→∞

λ(n)

λ(2)
=: e ∈]0, 1[. (18.11)

Thus, if we denote α = P̃Hn [no nephews at height i], then by definition

α ≥ P
[
Y nn logn−i = q3 − q2

]
· (en)q

3−q2−1

Using (18.4) and (18.7),

α ≥
1−

(
1− 2

σ2(n log n− i− 1)
+ o

(
1

n logn

))q3−q2

2

σ2(n log n− i)
+ o

(
1

n logn

) · pn,2 · (en)q
3−q2−1

259

18. Linear Equivalence of Homogeneous Quadratic Maps

The fraction is equal to q3− q2 + o(1/(n log n)), and given the expression of pn,3 as well as (18.11), the lower
bound on α is equivalent to

q3 − q2

q3
· e

q3−q2−1

λ(1)λ(3)
·
∞∏

j=1

(
1− 1

qj

)
= eq

3−q2−1
∞∏

j=4

(
1− 1

qj

)
∈]0, 1[.

Likewise,

P̃Hn [at least one nephew at height i] ≥ P
[
Y nn logn−i = q3 − q2

] (
1− (en)q

3−q2−1
)

' (1− eq
3−q2−1)

∞∏

j=4

(
1− 1

qj

)
∈]0, 1[.

Hence, since these two probabilities belong to]0, 1[for all n ≥ 3 and i ≤ n
√

log n − 1, and belong to a
smaller interval of]0, 1[bounded away from 0 and 1 whenever n is large enough, this provides the existence
of κl, κu ∈]0, 1[such that for every n ≥ 3 and i ∈ {0, . . . , n

√
log n− 1},

1− κl ≤ P̃Hn [no nephews at height i] ≤ κu. (18.12)

Now, let Tn, T ′n be two trees of height at least n log n and such that their spine decompositions are unique
under height n

√
log n. For every i ∈ {0, n

√
log n − 1}, let γni (resp. γ′

n
i) be the indicator function of the

event that all brothers of the i-th node of the spine have no offspring. It follows from the properties of the
spine decomposition that for every n ≥ 3, {γni , 0 ≤ i ≤ n

√
log n− 1} form a family of independent random

variables and by (18.12), we have

P̃Hn
[
γni = 1

]
≤ κu and P̃Hn

[
γni = 0

]
≤ κl.

Comparing the absence or presence of nephews of the spine in Tn and in T ′n, and defining the constant κ = max(κl, κu) < 1,
we obtain:

P̃Hn [T = T ′] ≤ κn
√

logn.

18.4.5 Back to Algorithm 18.4: Proof of Theorem 18.3

Armed with theorems 18.8 and 18.10, we are ready to show that Algorithm 18.4 lives up to the expec-
tations we expressed in theorem 18.3. Note that thanks to lemma 3.2, there will be a right pair in U × V
with probability 1− 1/e, as claimed. We must still investigate the complexity of building U and V , and the
number of pairs in P that will have to be tested.

Corollary 18.11. Let ` =
√

2/(
√
n log n) ·qn/2−1, (x1, . . . ,x`) and (y1, . . . ,y`) be two collections of distinct

vectors in H(f). Define Ui = Tree[n logn](a,xi) and Vi = Tree[n logn](b,yi).

All the Ui’s (resp. Vi’s) are pairwise non-isomorphic with otherwheling probability. In addition, the Ui’s
are pairwise non-isomorphic from the Vi’s with overwhelming probability.

Proof. Observe that the Ui’s and Vi’s are unlabeled and unordered trees sampled according to PHn and with
spine decomposition up to height n

√
log n. The number of collisions between the Ui’s and the Vi’s is

N =
∑

I≤i<j≤`

1Ui=Vj .

If all the Ui’s are different 1 —it is a worst-case assumption—, then applying Markov’s inequality to N and
using theorem 18.10 yields:

P [N ≥ 1] ≤
∑

1≤i<j≤`

P [Ui = Vj] ≤ `2 · κn
√

logn ≤ qn · κn
√

logn n→+∞−−−−−→ 0

Since κ < 1, then qnκn
√

logn converges to zero faster than the inverse of any polynomial, regardless of the
value of q. The exact same reasoning shows that the Ui (resp. Vi) are pairwise non-isomorphic with the
same probability.

Corollary 18.11 is all we need to conclude the study of Algoritm 18.4. It shows that in TreeList all the
trees selected by the inner loop will be pairwise non-isomorphic, so that the total number of iterations of the
outer loop is O (`). It also shows that with overwhelming probability only the right pairs will remain in P.
As a last remark, note that P can be formed in time O

(
qn/2

)
by various methods (hash-table, sorting, . . .).

This completes the proof of theorem 18.3, under the assumption that Tree[n logn] produces independent
random trees.

1. i.e., non-isomorphic

260

18.4. Sieving Using Whole Neighborhoods

n q generating U and V computing P |U | |P|
16 2 3.6 s 1s 64 6
24 2 123 s 13s 836 5
32 2 61 min 200s 11585 2
40 2 31 h 2h 165794 7

Table 18.2: Experimental results on Branching-QMLE

18.4.6 Practical Results.

We have implemented Algorithm 18.4 using MAGMA, and we found out that it works well in practice, as
Table 18.2 shows. The experiment clearly shows that |P| is constant. This justify our heuristic assumption
a posteriori. The implementation is also in the public domain and is available at:

http://www.di.ens.fr/~bouillaguet/implem/branching-qmle.magma

Possible improvement. Our current implementation stores the whole trees. It would be possible to save
some memory by hashing the trees on-the-fly. For instance, to hash the trees to 128-bit digests (suitable
with qn up to 2128), pick up two 128-bit random primes p1 and p2, and let:

Tree[k](f ,x) = Node[k](f , 0,x)

Node[k](f ,x,y) =

(
p2 +

∑

i

p1
i ·Node[k−1](f,y, zi)

)
mod 2128 z = ker Dyf − 〈x,y〉

Node[0](f ,x,y) = p2

18.4.7 Getting Rid of the q = 2 Limitation

So far, our best algorithm is restricted to the case where q = 2. One of the problems when q > 2 is
that the vector space structure of the kernels creates cycles of length 4 in the graph. For instance, with
q = 3, when there is an edge x ↔ y, there is also an edge x ↔ 2y, and there are also two edges y ↔ 2x
and 2y ↔ 2x. This complicates (if it does not simply prevents) using the same methodology to encode the
topological structure of neighborhoods into trees. All hope is not lost though, because many decompositions
of graphs into tree may be used for this purpose. For instance, the modular decomposition introduced by
Gallai in 1967 comes to mind, as it would likely pack together collinear vector in a single “module” of the
graph. In addition, it can be computed in linear time [TCHP08].

261

http://www.di.ens.fr/~bouillaguet/implem/branching-qmle.magma

Chapter 19

A Class of Weak Keys in HFE

In this chapter we present a new cryptographic application of QMLE algorithms. A class of weak
keys for HFE is identified, the security of which reduces to the hardness of QMLE. Ironically, the
use of such weak keys was suggested as a way to reduce key sizes. In that case the attack described
in this chapter recovers the secret key in practice. This joint work with Antoine Joux and Joana
Treger-Marim resulted in a publication in the Journal of Mathematical Cryptology.

The HFE cryptosystem has been proposed in 1996 by Patarin in [Pat96b] in order to avoid his own

attack on the C∗ cryptosystem [MI88, Pat95]. The latter basically hides the power function X 7→ X1+qθ

in an extension field of degree n over Fq, using two secret linear bijections S and T . In order to invert it,
it suffices to remark that this power function, as the RSA power function, can be easily inverted provided
that

(
1 + qθ

)
is invertible modulo (qn − 1). In [Pat96b], Patarin proposed to change the internal known

monomial into a secret polynomial f of small degree. The legitimate user can still easily invert the public
key since she knows S and T , and can invert the small degree polynomial using the Berlekamp algorithm for
instance.

Related Work. From the adversary point of view, the action of S and T transforms the secret internal
polynomial into a very sparse univariate polynomial of very high degree, as shown for instance by Kipnis
and Shamir in [KS99].

A possible decryption attack would consist in inverting or factorizing this polynomial. However, there
are no efficient algorithms to perform these tasks (an attempt 1 can be found in [SG03]), and merely deciding
the existence of roots is in fact NP-complete [KS99].

HFE belongs to the category of public-key cryptosystems based on the hardness of computing a functional
decomposition: given the composition of two functions f and g, can one identify the two components? Other
examples include C∗, SFLASH [PCG01a], FAPKC [TC86], 2R [PG97] and McEliece [McE78]. With the
exception of the latter, the former have all been broken because computing a functional decomposition was
not as hard as expected. In the context of HFE, computing such a decomposition is related to decomposing
the univariate representation of the public key, in order to recover the secret internal polynomial f as well
as polynomial representations of S and T . Computing polynomial decompositions is a simple and natural
mathematical problem which has a long history, going back to the works of Ritt and Ore in 1922 and
1930 respectively [Rit22, Ore34]. Today, polynomial decomposition algorithms exist for some classes of
polynomials over finite fields [vzG90a, vzG90b], but no such algorithm is applicable to HFE. One step of
the attack presented in this article amounts to computing a polynomial decomposition, and makes use of
Gröbner bases.

The complexity of existing attacks gainst HFE, which all amount to solving systems of quadratic equa-
tions, depends on the degree d of the secret internal polynomial. When this degree is fixed, their complexity
is polynomial in the security parameter n, although the exponent can be ridiculously large. In order for
decryption to be polynomial, d must grow at most polynomially in n, and in that case the attacks are no
longer polynomial. We consider this setting to be the most natural one and we will then suppose in the
remaining of the chapter that d is polynomial in n.

A simple decryption attack against HFE consists, given a ciphertext, in trying to solve the equations
given by the public key. In 2003, Faugère and Joux experimentally showed that the HFE equations are not
random systems of multivariate equations, because computing a Gröbner basis for these equations is much
easier than the corresponding problem with random quadratic equations [FJ03]. This allowed a custom
implementation of the F5 algorithm [Fau02] to break the first HFE challenge, for which the public key has 80
quadratic equations in 80 unknowns over F2. Later, Granboulan et al. [GJS06] showed that specific algebraic
properties of the HFE equations make the complexity of inverting HFE subexponential, in O

(
exp

(
log2 n

))

when q = 2.

1. unsuccessful, as far as we understand

263

19. A Class of Weak Keys in HFE

In general, the hardness of recovering the secret key of HFE from the public key is unrelated to PLE
problems, unless the internal polynomial is made public. A key recovery attack in the usual case where
this polynomial is secret was presented in [KS99] and turns the problem of recovering T into an instance
of the MinRank problem, the decisional version of which is NP-Complete [BFS99]. Solving this instance
of MinRank can be done by solving an overdetermined system of about n2 quadratic equations in about
(n · log d) variables. The complexity of solving these equations is subexponential in O

(
exp

(
log3 n

))
. This is

too high to be practical, even for parameters corresponding to the HFE challenge that was broken.
These results show that HFE is not as robust as expected. However, can we consider that HFE is really

completely broken? Is it still a viable alternative to RSA?
The cryptographic community often perceives HFE as broken, because of the practical attacks on some

instances, and vastly lost both trust and interest in it. We would like to argue that the situation of HFE
is slightly more complex. The complexity of some Gröbner basis algorithms, such as F5, is better under-
stood [BFSY05] and allows to estimate the complexity of the decryption attacks, which remains relatively
high for general instances. Moreover, standard modification—such as removing some equations from the
public key—destroy the algebraic structure exposed by the public key and that was exploited by Gröbner
basis algorithms. HFE with removed public equations is often called HFE−, and seems suitable as a signa-
ture scheme. No attack against HFE− faster than exhaustive search have been found (yet). In particular,
the second HFE cryptanalytic challenge, with removed public equations, is currently far from being broken.
Furthermore, Dubois and Gama have studied the degree of regularity of various classes of HFE instances
in [DG10b]. While they only provide an upper-bound on the complexity of computing a Gröbner basis of the
public key, their result show that there are wide ranges of parameters that are not provably broken by the
direct Gröbner attack. If their upper-bound were tight (this is a small leap of faith), then many interesting
ranges of HFE parameters would be secure.

All in all, HFE is comparatively in better shape than the SFLASH signature scheme for which polynomial
time algorithms are known both to invert [DFS07, DFSS07] and to recover equivalent private keys [FMRS08].
SFLASH is based on C∗, hence has a single internal monomial. The attacks against SFLASH exploit the fact
that multiplication matrices commute in some way with this internal monomial. Using this property, it is
possible to recover conjugates of the multiplications by the secret matrix S using simple linear algebra on the
differential of the public key [FMRS08]. However, for general HFE, the multiplications no longer commute
with the secret polynomial. Another issue is that we also need to recover the internal secret polynomial.

In this chapter, we consider the key recovery problem on a class of weak keys for HFE. As opposed to
the decryption attack of Faugère and Joux [FJ03], we recover an equivalent representation of the secret key
that subsequently allows to inverse the trapdoor with the same complexity as the legitimate user. The weak
instances we attack have an internal polynomial with coefficients in the ground field and not in the extension
field as it was originally specified, or instances that are reducible to these specific ones (by considering
equivalent transformations S and T , see §19.2). Some instances belonging to this category were proposed by
Patarin himself in [Pat96c] (an extended version of [Pat96b]) with the aim of reducing the size of the HFE
public key (the so-called “subfield” variant). However, notice that the family of weak keys described here
does not reduce to this subfield variant, and choosing the coefficients of the secret polynomial in the base
field could be used to reduce the secret-key size. While in general, the hardness of the key-recovery does not
depend on the hardness of QMLE, we show that on weak keys, the key-recovery problem can be reduced to
an instance of the QMLE problem, and that the solutions of this problem allow us to efficiently recover all
the secret elements (or equivalent data). Our QMLE algorithms allow to solve the instances in practice for
realistic parameter sets.

Coming back to the subfield variant, other schemes, including UOV [KPG99] for instance, also have
subfield variants, and the default in the design of an older version of SFLASH (v1) was to choose the secrets
in a subfield. These schemes, or their subfield variants have all been broken: SFLASH v1 was attacked
by Gilbert and Minier in [GM02], and subfield-UOV was shown to be insecure as well [BWP05]. Although
SFLASH and HFE share a similar structure, the Gilbert-Minier attack against SFLASH v1 cannot be applied
to subfield-HFE, since it is based on Patarin’s attack against C∗. Because this latter attack has no equivalent
for HFE, there is no known attack against the subfield variant of HFE.

As mentioned above, the complexity of nearly all existing attacks on HFE depends on the degree of the
internal secret polynomial. Even the most concrete and realistic threat, namely computing a Gröbner basis
of the public-key, will become unrealistic if this degree is chosen high enough (a drawback is that decryption
then becomes slower). A nice feature of the attack presented in this paper is that its asymptotic complexity
is only marginally affected by the degree of the internal polynomial. As such, it be applied in practice to HFE
instances on which existing attacks would be completely intractable. We also argue that under standard
conjectures on the complexity of Gröbner basis computation, it is possible to establish that the complexity
of our remains polynomial when the degree of the internal polynomial grows polynomially with n.

264

19.1. Hidden Field Equations

19.1 Hidden Field Equations

The HFE scheme was designed in [Pat96b] by Patarin. Note that specific variations of HFE exist, but
we will focus on the basic HFE scheme. Let us briefly recall its mechanism.

Let K = Fq. The HFE secret key is made up of an extension L of degree n over K, a low-degree polynomial
f over L, and two invertible affine mappings S and T over Kn. The secret polynomial f has the following
particular shape:

f(X) =
∑

0≤i,j≤n

qi+qj≤d

ai,j ·Xqi+qj +
∑

0≤k≤n

qk≤d

bk ·Xqk + c, (19.1)

with the ai,j , the bk and c lying in L. Polynomials with the same shape as f are called HFE polynomials. Note
that these polynomials were also studied much earlier in a completely different context by Dembowski and
Ostrom [DO68], so they are sometimes referred to as D–O polynomials in the literature. Because decryption
requires to invert f , the maximum degree of f , denoted by d, has to be chosen so that the factorization of f
over L is efficient. All known algorithms for factorizing over finite fields are at least quadratic in the degree
of the polynomial, which restricts d to values smaller than about 216. It also makes sense to consider degree
bounds of the form d = 2 · qD, because in equation (19.1), we may then consider the sum over values of i and
j smaller than D. Because the iterates of the Frobenius are K-linear, then f , seen as a transformation of Kn,
can be represented by a vector of n quadratic polynomials in n variables over K. This property extends to
the public key of the basic HFE scheme, defined by PK = T ◦ f ◦S. In order to offer non-trivial encryption,
f must logically be non-linear. Also, because HFE was designed specifically to circumvent the attack that
destroyed C∗, we will assume that the internal polynomial always has at least two non-linear terms.

Note that when K = F2, we may assume ai,i = 0, by choosing bi+1 accordingly. As such, there are
D(D + 5)/2 + 3 terms in f when q 6= 2 and (D + 2)(D + 1)/2 + 2 terms when q = 2.

19.1.1 Equivalent Keys for HFE

In HFE, the public key can be derived from the secret key in polynomial time by an algorithm PKGen
that takes as argument T, f , S and L (i.e., the irreducible polynomial P defining L and the correspondance
ϕ between L and Kn). Two secret keys are equivalent if they yield the same public key. For instance, it was
shown in [WP05a] that an HFE public-key is always generated by a secret key in which S and T are linear
(as opposed to affine). The affine part of S and T can be removed by changing the constant component of f .
Next, if α, β ∈ L, then it is possible to simultaneously replace T by T ·Mα and S by Mβ · S. It is sufficient
to replace f by α · f(β−1 ·X) in order for the public key to remain the same, and this allows to choose the
values of both S and T on one point.

As a consequence, a set of q2n · (qn − 1)
2

equivalent secret keys is identified (this number assumes that L
is fixed). It was not formally established that all the equivalent secret keys belong to this set, even though
this seems likely when f is a randomly-chosen HFE polynomial.

19.1.2 Irrelevance of Keeping the Extension Field Secret

While the original description of HFE [Pat96b] explicitly specifies that the extension field L must be part
of the secret key, the same paper notes that this does not improve the security of the trapdoor, because there
always exist equivalent secret keys for all the possible descriptions of L. As a matter of fact, the specifications
of both Quartz [PCG01b] and SFLASH [PCG01a] make the extension field public. In any case, it is possible
to generate the same public key from the same secret polynomial, while fixing an arbitrary irreducible
polynomial P defining L, and an arbitrary correspondence between L and Kn. It simply requires slight
modifications on S and T . Indeed, recall that any isomorphism between Kn and L must be an invertible
K-linear map [LN97]. We will use this in the following proposition to justify our point:

Proposition 19.1. Let SK = (T, f , S, P, ϕ) be an HFE secret key. Then for any choice of an extension field
L′ = K[X]/P ′(X) of degree n, and for any choice of an isomorphism ϕ′ between L′ and Kn, there exist two
affine bijections S′ and T ′ such that SK′ = (T ′, f , S′, P ′, ϕ′) is equivalent to SK (i.e., generates the same
public key).

Proof. It is well-known [LN97] that all finite fields of the same cardinality are isomorphic. Therefore let us
consider a field isomorphism ζ : L → L′. Recall that ϕ : Kn → L and ϕ′ : Kn → L′ are both isomorphisms
as well. The notation PK = T ◦ f ◦ S is unambiguous when the extension field L is clearly defined. Here we
will write:

PK = T ◦ ϕ−1 ◦ fL ◦ ϕ ◦ S
PK′ = T ′ ◦ ϕ′−1 ◦ fL′ ◦ ϕ′ ◦ S′

265

19. A Class of Weak Keys in HFE

Kn Kn Kn Kn
S f T

PK

Figure 19.1: Description of weak keys. The broken arrow indicates that f has coefficients in K.

Let us solve PK = PK′ for S′ and T ′. Because the two internal polynomial in PK and PK′ are the
same, we can write:

ϕ ◦ T−1 ◦PK ◦ S−1 ◦ ϕ−1 = ζ−1 ◦ ϕ′ ◦ T ′−1 ◦PK′ ◦ S′−1 ◦ ϕ′−1 ◦ ζ

And it follows that in order to enforce PK = PK′ it is sufficient to have:

T ′ = T ·
(
ϕ′−1 ◦ ζ ◦ ϕ

)−1

S′ = S ·
(
ϕ′−1 ◦ ζ ◦ ϕ

)

And since ϕ′−1◦ζ◦ϕ is an automorphism ofKn, we have S′, T ′ ∈ GLn (K). Thus the secret key (T ′, f , S′, P ′, ϕ′)
is equivalent to (T, f , S, P, ϕ).

Thus, keeping the representation of L secret does not improve the resistance of HFE to key-recovery
attacks. Would the extension be secret, one could just arbitrarily fix its own and be guaranteed that an
equivalent secret key exists. As a consequence, throughout the sequel, we assume that the description of L
is public.

19.1.3 Linear Polynomials

Let f be an endomorphism of Kn. It can be represented by a matrix M over Kn, but also as a polynomial
over L. Such K-linear (or “additive”) polynomials only have monomials of degree qi, for 0 ≤ i ≤ n−1. In the
sequel, we will always identify an endormophism of (Fq)n with its polynomial representation over L, and we
will refer to the polynomial representation over L of such an endomorphism. The set of matrices commuting
with F over Mn(K) is the K-vector space of dimension n generated by

(
F0,F, . . . ,Fn−1

)
.

19.2 A Specific Family of HFE Secret Polynomials

Similarly to the attacks against C∗ or SFLASH, the main idea we exploit is that some HFE secret
polynomials may commute with some special functions. This commutativity property can then in turn be
used to acquire informations on the secret elements.

A Commutativity property for Some HFE Secret Polynomials. Let us first consider the à la C∗ case,
where the secret polynomial f over L is just a monomial a · Xqi+qj , with a ∈ L. Then the public key
PK = T ◦ f ◦S can also be written as (T ·Ma)◦Xqi+qj ◦S, by “absorbing” the multiplication by the constant
a into the outer secret linear transformation. As a consequence, without loss of generality, we can assume
that a = 1.

This secret monomial has very special commutativity properties, which were used in [DFS07, DFSS07]
to break SFLASH. More precisely, composing it on the right hand size by multiplications Mx by an element
x ∈ L is equivalent to composing it on the left hand size by Mxqi+q

j . Another property, not used in [DFS07,
DFSS07], is that it also commutes with the Frobenius map F (and hence with the iterates of the Frobenius
map).

When we consider an arbitrary HFE secret polynomial, the two commutation properties no longer hold
in general. However, if we restrict the HFE polynomials to have their coefficients in K (instead of the
extension field L), we lose commutativity with multiplications but commutativity with the Frobenius map
still remains. In the sequel, we show how this specific property can be exploited to perform a key-recovery
attack, described in §19.3. Therefore, we will say the the secret keys in which the internal polynomial has
coefficients in K are weak secret keys. Such instances of HFE are illustrated by Figure 19.1.

Our key-recovery attack could also apply to monomial instances of HFE, but this is not the point of this
paper, as it has already been efficiently done [DFS07, DFSS07, FMRS08].

266

19.3. The Key-Recovery

Corresponding Public Keys. The attack we discuss recovers a useful secret key by exploiting only knowledge
of the public key, and it works at the sole condition that the public key can be generated by a weak secret key.
Therefore, we will say that such public keys are weak public keys. We note that a weak public key has not
necessarily been generated by a weak secret key. For instance, let f be an HFE polynomial with coefficients
in K, and let a, b ∈ L. Then let us define f ′ : x 7→ a · f(b ·x). This HFE polynomial has coefficients in L. Now
let S, T ∈ GLn (K), and consider the HFE secret key (T, f ′, S). It does not fall into our definition of weak
secret keys, because f ′ /∈ K[X], but it generates a weak public key: it is straightforward that it is equivalent
to (T ·Ma, f ,Mb · S). To summarize, our attack will be applicable whenever the internal polynomial has the
following shape:

f(X) =
∑

0≤i,j≤n

qi+qj≤d

(
a · ui,j · bq

i+qj
)
·Xqi+qj +

∑

0≤k≤n

qk≤d

(
a · vk · bq

k
)
·Xqk + a · c, (19.2)

with ui,j , vk, c ∈ K, a, b ∈ L. Notice that legitimate users could easily check whether their secret key
generates a weak public key by checking if their internal polynomial can be written as in equation (19.2).

19.2.1 An Estimation of the Cardinality of this Family

We now show that the probability that the uniform random choice of a secret key yields a weak public
key is by all means negligible. This unfortunate event happens if and only if the internal polynomial f has
the shape given by equation (19.2). We therefore go on to count the number of such polynomials (we will
call them “weak polynomials” for the sake of brevity). Let us denote their number by #WP , and the number
of HFE polynomials of degree d over L by #HFE(d, n,L). An obvious upper-bound is found by assuming
that for any choice of α, β ∈ L∗ and f ∈ K[X], Mα ◦ f ◦Mβ is a distinct polynomial. This yields:

#WP ≤ (qn − 1)
2 ·#HFE(d, n,K)

However this bound can be improved, because some polynomials are counted several times. For instance,
if π ∈ K and Π ∈ L, then Π · f =

(
Π · π−1

)
· (π · f). The same goes for right-composition. The bound

therefore improves to:

#WP ≤
(
qn − 1

q − 1

)2

·#HFE(d, n,K)

In the simpler case where d = 2qD and q 6= 2, then we have #HFE(d, n,K) = q
D(D+5)

2 +3, and therefore
the probability of randomly generating a weak public key is upper-bounded by:

#WP

#HFE(d, n,L)
=

(
qn − 1

q − 1

)2

·
(
q
D(D+5)

2 +3
)−(n−1)

= O
((

q2−D2/2
)n−1

)

This shows that the probability of generating a weak key out of bad luck is exponentially small in the security
parameter. In the same vein, we could obtain a fairly obvious lower-bound on this probability by counting
only the polynomials of the form Mα ◦ f . Indeed, nothing rules out the existence of several pairs (α, β) and
(α′, β′) such that Mα ◦ f ◦Mβ = Mα′ ◦ f ◦Mβ′ , and for this reason our upper-bound is not necessarily a
lower-bound. Their number is delicate to estimate, because it depends on the shape and coefficients of f .

19.3 The Key-Recovery

We now describe a key-recovery attack against the class of weak keys described in §19.2. In the sequel,
we then assume that the internal secret polynomial f has coefficients in K.

As the attack is a bit complex, let us first give an overview. A pseudo-code of the attack is given in
Algorithm 19.1. First, we show that the representation of L can be supposed to be public. Then, as already
mentioned in §19.2, we use the commutation of the Frobenius map with the secret polynomials considered,
which propagates to the public key PK. This key property allows us to recover applications closely related
to S and T . An interpolation of PK combined with these applications then gives us a polynomial over K
from which we recover f or an equivalent low-degree polynomial by computing a functional decomposition.
In any case, we obtain the original secret key or an equivalent one that allows us to decrypt as efficiently as
the secret key owner. All these assertions are made explicit and justified in this section.

267

19. A Class of Weak Keys in HFE

Algorithm 19.1 Pseudo-code of the attack

Require: An HFE public key PK, generated by (T, f , S) such that f ∈ K[X].
Ensure: An equivalent secret key: (T ′, f ′, S′), with deg f ′ ≤ deg f .

1: repeat
2: Let U, V ∈ GLn (K) be a (random) solution to the IP problem: U ◦PK = PK ◦ V .
3: until there exist P,Q ∈ GLn (K) such that U = P · F ·Q
4: for all i0 in [1;n− 1] co-prime with n do
5: Let k = i0

−1 mod n
6: Compute S̃, T̃ such that F = S̃ · V k · S̃−1 = T̃−1 · Uk · T̃
7: Interpolate g = T̃−1 ·PK · S̃−1.
8: if g has all coefficients in K then
9: Compute F1, F2 ∈ GLn (K) and f2 ∈ K[X], such that deg f2 ≤ deg f and g ◦ F1 = F−1

2 ◦ f2.

10: return
(
T̃ · F−1

2 , f2, F
−1
1 · S̃

)

11: end if
12: end for

19.3.1 A Useful Property of HFE Secret Polynomials Lying in K[X]

Recall from §10.1 that because f has coefficients in K, then it commutes with F:

f ◦ F(X) = F ◦ f(X) (19.3)

Patarin left as an open problem whether this property has security implications or not. We shall demon-
strate that it does indeed. Most importantly, this property is detectable in the public-key.

Proposition 19.2. There exist non-trivial endomorphisms L such that L ◦PK = PK ◦ L. More precisely,
the invertible map ψ defined below transforms a matrix M that commutes with f into a solution of the above
equation:

ψ : M 7→
(
T ·M−1 · T−1, S−1 ·M · S

)

As a consequence, ψ(F), . . . , ψ
(
Fn−1

)
are non-trivial automorphisms of PK.

Proof. Let M be a matrix such that f ◦M = M ◦ f . Then we get:

PK ◦ (S−1 ·M · S) = T ◦ f ◦ S · S−1 ·M · S
= T ◦M ◦ f ◦ S
= (T ·M · T−1) ◦PK

⇔ PK = (T ·M · T−1)−1 ◦PK ◦ (S−1 ·M · S)

Then, because of (19.3), ψ(F), . . . , ψ
(
Fn−1

)
are automorphisms of the public key.

The existence of other solutions besides those mentioned in proposition 19.2 is extremely unlikely, un-
less the situation is very degenerate. Indeed, this would imply the existence of other linear applications
commuting with the (non-linear) internal polynomial. However, besides the monomial instances, where mul-
tiplication matrices commute in some sense with f , we are not aware of instances that would verify such a
property. Thus, if we consider a particular solution of the problem of retrieving an automorphism of the
public-key, we can assume that it is ψ

(
F i0
)
, for some unknown power i0.

Hardness of the QMLE Problem. Determining the automorphisms of the public key can be done by
running a PLE algorithm. We will be able to use IQMLE algorithms when:

i) The secret transformations S and T are linear (as opposed to affine).

ii) The K-linear coefficients bk of (19.2) are not all zero.

iii) The constant coefficient c of (19.2) is non-zero.

The first condition can only be satisfied if choosing linear S and T was a deliberate decision (otherwise
it will only happen with negligible probability). There are good reasons of doing so: first it reduces a bit the
size of the private key. Second, as shown in §19.1.1, S and T can be assumed to be linear, because of the
existence of equivalent keys. However, we stress that this last fact is no longer true if the internal polynomial
f is chosen in K[X] instead of L[X]. Series of bad design decisions could still lead to the combination of a
restricted f and linear S and T .

The second condition will always be satisfied with high probability, and the third will be satisfied with
probability 1/q. It must be noted that if S and T are linear, and if c = 0 in (19.1), then the public-key sends
zero to zero, which might not be desirable.

268

19.3. The Key-Recovery

In the case where S and T are affine, the situation is much more painful, as we are facing a homogeneous
instance of QMLE, and our best shot is algorithm 18.4, that has a workload of qn/2. In the case of the
“subfield variant” though, all the numerical quantities lie in a subfield Fq′ of Fq, where q′ is quite small (the
typical value is q′ = 2). This makes breaking the QMLE instances feasible in practice for the subfield variant
(we discuss this issue further in §19.4).

19.3.2 Retrieving “nearly S” and “nearly T” Applications

Let us assume that we have found an automorphism (U, V) = ψ
(
Fi0
)

of the public-key, for some unknown
integer i0 in the interval [1;n− 1]. The whole point of the attack is to “extract” enough information about
S and T from this automorphism. For this purpose, the value of i0 has to be known, and it is required that
i0 and n are relatively prime. This latter condition can be easily checked for: Fi and Fj are similar if and
only if gcd(i, n) = gcd(j, n). Therefore, i0 is relatively prime with n if U and F are similar. If this turns
out not to be the case, we take another automorphism of PK, until it passes the test. Since there are φ(n)
values of i0 that are prime with n, we expect to check n/φ(n) = O (log log n) candidates.

To derive the actual value of i0, we simply guess its value, and check whether the remaining steps of the
attack are carried out successfully. Fortunately, there is a way to discard bad guesses systematically before
the most computationally expensive step of the attack, as we will explain in §19.3.3. With the preceding
notations, we have the following result:

Proposition 19.3. Let (U, V) = ψ
(
Fi0
)
, with gcd(i0, n) = 1. Let k be such that k · i0 = 1 mod n.

i) There exist S̃, T̃ in GLn (K) such that F = S̃ · V k · S̃−1 and F = T̃−1 · Uk · T̃ .

ii) Both S̃ · S−1 and T̃ · T−1 commute with F, hence their polynomial representations over L are in fact
polynomials with coefficients in K.

Proof. The first point follows from the fact that U and V are both similar to Fi0 . Thus Uk and V k are both
similar to Fi0·k = F.

Regarding the second point, let us consider the case of S̃ (something similar holds for T̃). We have:

F = S̃ · V k · S̃−1

= S̃ · S−1 · Fi0·k · S · S̃−1

= S̃ · S−1 · F · S · S̃−1

And thus F · S̃ · S−1 = S̃ · S−1 · F. This commutation property directly implies the announced result on the
polynomial representations (cf. §10.1).

In practice, S̃ and T̃ can be found very efficiently through linear algebra, given that i0 is known. Note
that for now, this proposition cannot be used to test whether our current guess for i0 is correct, since we do
not know S.

19.3.3 Building an Equivalent Secret Key

The information about S (resp. T) contained in S̃ (resp. T̃) can be used to cancel the action of S and T

on the public key. It follows from proposition 19.3 that F1 = S̃ ·S−1 and F2 = T−1 ·T̃ are linear combinations
over K of powers of F, because they commute with F. We immediately obtain that:

T̃−1 ◦PK ◦ S̃−1 = F−1
2 ◦ T−1 ◦ T ◦ f ◦ S ◦ S−1 ◦ F−1

1

= F−1
2 ◦ f ◦ F−1

1 . (19.4)

We therefore define:
g = T̃−1 ◦PK ◦ S̃−1 mod

(
Xqn −X

)
(19.5)

Because the HFE polynomials are stable by left and right composition by additive polynomials and by
reduction modulo Xqn −X, the “peeled off” polynomial g is still an HFE polynomial. Thus g has O

(
n2
)

coefficients, and that they can be uniquely determined in polynomial time by interpolation (this was noted
in [KS99]. Note that there would not be a unique solution if we did not perform the modular reduction of

g). By doing so, we obtain an equivalent secret key, namely
(
T̃ ,g, S̃

)
.

By itself, this equivalent key is not particularly useful, since the degree of g is typically qn, and we are
therefore still facing our initial task of factorizing a sparse polynomial of very high degree. However, g has
a very important property which brings us one step closer to the original secret-key:

Proposition 19.4. The coefficients of g are in K (and not in L).

269

19. A Class of Weak Keys in HFE

Kn Kn Kn Kn

Kn Kn

S f T

PK

S̃ T̃
F1 F2

g

Figure 19.2: PK = T ◦ f ◦ S = T̃ ◦ g ◦ S̃. Broken arrows stand for applications with coefficients in K.

Proof. By hypothesis, the coefficients of f are in K. From proposition 19.3, item ii), we have that the
coefficients of the polynomial representation of F1 and F2 are in K, then, so are those of the polynomial
representations of F1

−1 and F2
−1:

Lemma 19.5. Let M ∈ GLn (K) be an invertible matrix, and let P =
∑n−1
i=0 ai ·Xi (resp. Q =

∑n−1
i=0 bi ·Xi)

the polynomial representation of M over L (resp. M−1). In general the ai’s and bi’s live in L. But we have:

(a0, a1, . . . , an−1) ∈ Kn ⇐⇒ (b0, b1, . . . , bn−1) ∈ Kn

proof of lemma 19.5. If the polynomial representation of M has coefficients in K, then M commutes with
F. This implies that M−1 also commutes with F, which in turn implies that the polynomial representation
of M−1 has coefficients in K.

This and (19.4) shows that T̃−1 ◦PK ◦ S̃−1 has coefficients in K. From there, it is straightforward that
g has coefficients in K.

The result of proposition 19.4 is illustrated in figure 19.2. This figure also helps remembering how the
applications introduced so far intervene. This proposition can be used to verify if our guess for i0 was right.
Indeed, if g is found not to be in K[X], then the guess was wrong. We are aware that the fact that g ∈ K[X]
does not rigorously prove that we have found the right value of i0. However, it does not matter, as g ∈ K[X]
is sufficient for the subsequent step to work.

19.3.4 Recovering a Low-Degree Equivalent Secret Key

To be useful, an equivalent secret key must have an internal polynomial of low degree. We now show how
to obtain one, by actually computing the decomposition given by equation (19.4). This is in fact a much
easier problem than computing the equivalent decomposition on the original public key, because we deal
with applications whose coefficients belong to K. They are then left invariant by the Frobenius (hence by
F1 and F2), which implies that the problem of finding the decomposition reduces to finding a solution of an
overdetermined system of quadratic equations. This system can be solved in practical time by computing a
Gröbner basis, as we now show. To this end, we introduce the following notations, where all the coefficients
in the expressions are now known to lie in K:

F1(X) =

n−1∑

k=0

xkX
qk F−1

1 (X) =

n−1∑

k=0

ykX
qk

F2(X) =

n−1∑

k=0

zkX
qk F−1

2 (X) =

n−1∑

k=0

tkX
qk

g(X) =
∑

qi+qj<qn

aijX
qi+qj +

n−1∑

i=0

biX
qi + c

f2(X) =
∑

qi+qj≤d

eijX
qi+qj +

∑

qi≤d

fiX
qi + g

Then, we consider the following polynomial equation, also represented by figure 19.3, obtained by com-
posing both sides of equation (19.4) with F1:

g ◦ F1 = F−1
2 ◦ f2. (19.6)

270

19.3. The Key-Recovery

Kn Kn

Kn Kn

f2

F1 F2

g

Figure 19.3: g = F−1
2 ◦ f2 ◦ F−1

1 . Broken arrows stand for applications with unknown coefficients.

Let us now substitute the expression of F1 and g in the left-hand-side of (19.6). We find:

g ◦ F1 =
∑

qi+qj<qn

aij

(
n−1∑

k=0

xkX
qk

)qi+qj
+

n−1∑

i=0

bi

(
n−1∑

k=0

xkX
qk

)qi
+ c

=
∑

k,l∈{0,...,n−1}

qi+qj<qn

aij · xk · xl ·Xqi+k+ql+j +
∑

i,k∈{0,...,n−1}

bi · xk ·Xqi+k + c,

We observe that g ◦F1 is a polynomial whose coefficients are quadratic polynomials in the coefficients of F1.
Now, let us substitute the expression of F−1

2 and f2 in the right-hand-side of (19.6). We find:

F−1
2 ◦ f2 =

n−1∑

k=0

tk


 ∑

qi+qj≤d

eijX
qi+qj +

∑

qi≤d

fiX
qi + g



qk

=
∑

k∈{0,...,n−1}

qi+qj≤d

tk · eij ·Xqi+k+qj+k +
∑

qi≤d

k∈{0,...,n−1}

tk · fi ·Xqi+k + g ·
n−1∑

k=0

tk

We again find that F−1
2 ◦ f2 is a polynomial whose coefficients are quadratic polynomials in the coefficients

of both f2 and F−1
2 .

This shows that (19.6) is equivalent to a system of multivariate quadratic equations over K with O
(
n2
)

quadratic equations and O
(
n+D2

)
unknowns, the unknowns being the coefficients of F1, F

−1
2 and f2. This

system can be generated by reducing both sides of (19.6) modulo Xqn −X and identifying the coefficients of
the monomials in X. The problem of computing the decomposition of equation (19.6) is therefore reduced
to that of solving an overdetermined system of quadratic equations.

However, equation (19.6) admits many parasitic solutions (for example, F1 = f2 = 0, F−1
2 being arbi-

trary). To avoid these trivial solutions, we in fact consider an extended system:





F1 ◦ F−1
1 = Id

F2 ◦ F−1
2 = Id

g ◦ F1 = F−1
2 ◦ f2

(19.7)

This new system avoids the parasitic solutions by forcing F1 and F2 to be invertible. We now argue that (19.7)
is also equivalent to a system of quadratic equations, whose unknowns are the coefficients of F1, F

−1
1 , F2, F

−1
2

and f2. The third equation has already been shown to be translatable to multivariate quadratic equations.
Substituting the definitions of F1 and F−1

1 in F1 ◦ F−1
1 yields:

n−1∑

k=0

n−1∑

`=0

(xk · y`) ·Xq`+k = X

We observe that the coefficients of the left-hand side are quadratic in the xk’s and yk’s, therefore we obtain
n quadratic equations by reducing the LHS modulo Xqn −X and equating the coefficients on both sides of
the equation. The same goes for F2 ◦ F−1

2 = Id.
All in all, assuming that the degree of f is d = 2qD, this yields n(n+3)/2+1 equations in 4n+D(D+5)/2+4

variables, not counting eventual field equations (one per variable). The existence of at least one solution
is guaranteed, because of equation (19.4), as long as we picked the right power of the Frobenius matrix in
§19.3.1. In fact, even though we just need one, we know that many solutions exist: for instance because the
Frobenius commutes with everything in equation (19.6), we can take a particular solution, compose both
F−1

2 and F1 with the Frobenius, and obtain a new solution.

271

19. A Class of Weak Keys in HFE

0

10

20

30

40

50

0 100 200 300 400 500

D
eg

re
e

of
 R

eg
ul

ar
ity

n

D=log(n)
D=5*log(n)

D=10
D=20

Figure 19.4: Degree of regularity of semi-generic systems of n(n + 3)/2 + 1 quadratic equations in 4n +
D(D + 5)/2 + 4 variables.

It turns out that these equations can be solved efficiently, even though the number of variables is higher
than what is usually tractable, because it is very overdetermined: we have O

(
n2
)

equations in O
(
n+D2

)

variables, and D has to be small for decryption to be efficient (i.e., D = O (log n)). In this setting, computing
a Gröbner basis turns out to be feasible in practice.

Conjecture 19.1. The Gröbner basis of a system of random quadratic equations with the same number of
variable and polynomials as our equations can be computed by manipulating polynomials of degree at most
8. Thus, it can be computed in time at most O

(
n24
)

by the F5 algorithm. This is true if D is fixed, or even
if grows polynomially with log n.

Justification of the Conjecture. This conjecture is in fact equivalent to assuming that our system of
quadratic equations forms a semi-regular sequence. Under this assumption, we might make use of the results
on the complexity of solving very overdetermined systems stated in §10.6.1. We are indeed dealing with
n(n+ 3)/2 + 1 quadratic equations in 4n+D(D + 5)/2 + 4 variables, so we let

β =
n(n+ 3)/2 + 1

(4n+D(D + 5)/2 + 4)2
,

and we realize that we are dealing with β · n2 equations in n variables. When n grows to infinity, then β
converges to 1/32, even if D = log n. Thus, as soon as n gets big enough, the degree of regularity of the
corresponding equations should become close to its finite limit. Equation (10.3) and Figure 10.2 tells us
that this limit is 8. This shows that computing a Gröbner basis of n(n+ 3)/2 + 1 semi-regular equations in
4n + D(D + 5)/2 + 4 variables is (asymptotically) polynomial. The actual degrees of regularity, computed
using the Hilbert series, are shown in Figure 19.4 for various values of n and D.

Comments and Practical Results. While the above conjecture means that computing the polynomial
decomposition we are dealing with should be polynomial, some remarks are in order. First, our equations
are not random, not to mention semi-regular. This follows from the fact that they admit many solutions, while
a random overdetermined system has no solutions with overwhelming probability. Next, our experiments
(for various values of n and D) indicate that a Gröbner basis can be computed by manipulating polynomials
of degree at most 3, leading to an empirical complexity of O

(
n9
)
. Our equations are thus easier to solve

than random systems with the same parameters.

272

19.4. Applications and Experiments

Once the equations are solved, we recover an equivalent secret-key
(
T̃ · F−1

2 , f2, F
−1
1 · S̃

)
, which allows

us to decrypt with the same time complexity as the legitimate user, since f2 has essentially the same degree
as f .

19.4 Applications and Experiments

We have implemented the HFE key-generation and encryption, as well as the attack, in the MAGMA
computer-algebra system. In Table 19.1, we give five different sets of parameters. The first three sets A,
B and C show that HFE with weak keys can be broken for realistic choices of parameters when S, T are
linear. Parameter set D (resp. E) is the original parameter set of [Pat96c] (resp. twice the original). All the
experiments were run on one core of an Intel 2.3Ghz Xeon “Nehalem” computer with 74 Gbyte of RAM. We
tested our attack on several sets of parameters described below. We forged the solution of the IP instance
from the knowledge of the secret S and T .

19.4.1 Weak Keys

We first tested the attack on realistically-sized weak keys, corresponding to parameter sets A,B and C.
The chosen parameters allows the encryption or signature of 256, 134 and 97 bits respectively. We choose
the degree of the internal polynomial very conservatively (i.e., much higher than what was proposed for the
HFE challenges, and high enough to make decryption painfully slow). To make the QMLE part of the attack
feasible, we choose the secret bijections S and T to be linear (as opposed to affine). Then solving the QMLE
instance is a matter of seconds with the techniques presented chapter 17. We emphasize that none of the
existing attack can be close to being practical on parameter sets A and B. On the other hand, parameter
set C succumbs to the direct Gröbner basis attack (computing a Gröbner basis of the public key takes a bit
less than a day).

19.4.2 Patarin’s “Subfield” Variant of HFE

In order to reduce the size of the public key, Patarin suggested in [Pat96c] a “subfield” variant of HFE,
in which the coefficients of the quadratic equations of PK live in a subfield k of K. If K = F256 and k = F2,
this reduces the size of the public key by a factor of 8. To achieve this, the coefficients of S and T , the
coefficients of the defining polynomial of the extension field L, and the coefficients of the internal polynomial
f have to be chosen in k (instead of K or L for the latter). The linear masks S and T will be affine, so the
IQMLE algorithms do not apply in this case.

In order for the reduction of the public key size to be effective, K has to be relatively big and k relatively
small. The former implies that D cannot be very large, otherwise decryption is impractical, while the latter
means little entropy in the internal polynomial. This opens a possible way of attack, consisting in guessing
f and then solving the QMLE problem to recover S and T . We shall compare the attack presented in this
paper with this simple one.

Patarin’s “concrete proposal” is parameter set D in Table 19.1. For practical decryption, we have to
choose D = 2 (yielding an internal polynomial of degree at most 131072), and decryption can take at most 4
minutes on our machine. The internal polynomial has at most 10 terms with coefficients in F2. The simple
“guess-f -then-QMLE” key recovery attack therefore needs to solve 210 affine QMLE instances for which q = 2
and n = 29. Such instances are in fact tractable even with older techniques (though no one ever noticed it),
for instance using the “to-and-fro” algorithm of [PGC98b]. In that case, the “guess-then-QMLE” attack has
a workload of 268. With the new attack presented in this chapter, and the more advanced QMLE techniques
described chapter 18, solving the QMLE instance takes about one second, and our attack takes less than one
hour.

To show that the “subfield” variant is broken beyond repair, we show that it is possible to attack in
practice parameters twice as big as the concrete proposal. This is parameter set E. The internal polynomial
now has 21 terms, so the simple attack requires breaking 221 affine instances of QMLE with q = 2 and n = 59.
The exact workload required to break these instance is not precisely known, but we note that solving a system
of 59 quadratic equations over F2 using the techniques described in chapter 11 would take about one month
using inexpensive hardware. As was shown in §18.1, this is sometimes sufficient to solve a QMLE instance,
otherwise Algorithm 18.4 has a smaller asymptotic complexity, but probably a greater practical complexity
for such values of n. In any case, the “guess-then-QMLE” attack is here clearly impractical with a running-
time of at least 221 months. Our attack requires about one month to break the QMLE instance, plus about
4 hours for the remaining steps.

273

19. A Class of Weak Keys in HFE

Parameter set A B C D E

block size (bits) 256 134 97 232 236
q 256 4 2 256 16
n 32 67 97 29 59

deg f 131072 131072 128 131072 131072
coefficients of f in F256 F4 F2 F2 F2

S and T linear linear linear affine affine
coefficients of S, T in F256 F4 F2 F2 F2

Terms in f 10 54 29 10 21
size of PK (bits) 143’616 314’364 461’138 13’485 107’970

IP polynomial ≈ 1s ≈ 4 weeks
Interpolation of g (once) 79s 30 min 140 min 51s 23min

Gröbner 7h 1 day 1 week 45s 3h
Variables / Equations 136 / 593 322/4947 423/10028 124 / 494 253 / 1889

Memory required 2.1Gbyte 45Gbyte 180Gbyte 350Mbyte 13.9Gbyte
Order Change 15s 30 min 4h 0s 30s

Table 19.1: Timings for the Attack

274

Conclusion

We have studied in practice the hardness of the MQ problem over F2. Algorithmic improvement and
careful implementations on parallel platforms enables us to push further the boundary between intractable
and feasible computation. We have shown for instance that solving a quadratic system of 64 equations over
F2 would be possible in practice with a modest budget and readily available hardware. However, sightly
increasing the parameters would make any existing method intractable, thus making MQ an interesting
hardness assumption to build new schemes.

We have also studied in detail several relevant cases of the “Isomorphism of Polynomials” problem. In
two cases (QFSE and IQMLE) we could design very practical algorithms, leading to the practical break of an
identification scheme. Even in the hardest case, we have shown that it is possible to improve on exhaustive
search in some cases.

Challenging the hardness these problems requires a rather wide-spectrum toolbox, from Gröbner bases
to matrix pencils, finite vector spaces combinatorics, random trees and graph theory. This makes it a rather
difficult but fun problem to work on. In our experience, inventing new algorithms was not obvious, but
trying to understand their behavior and analyzing their running time and success probability was the most
challenging part. The analysis of previous algorithms was often sketchy or heuristic as well.

We believe that the existence of a generic algorithm (Algorithm 18.4) faster than exhaustive search
for the most difficult case of QMLE shows that constructing multivariate Trapdoor One-Way Function by
obfuscating an easily-invertible function with linear masks is an unsound approach. Moreover, in actual
schemes, the fact that one of the two polynomial maps is easily invertible is likely to give additional options
to the attacker. As an illustration, many schemes relying on the hardness of a structured variant of QMLE
have been broken. Random homogeneous instances of QMLE are hard to deal with, but it is difficult to build
efficient encryption and/or signature schemes out of the corresponding problem.

Comparatively, schemes such as HFE or UOV, where the internal (easily-invertible) map is kept secret,
seem to be in better shape, and no ad hoc QMLE algorithm applies (yet). It is noticeable that in the case of
HFE, keys from a weak class leak some information which can be retrieved by solving an instance of QMLE,
leading to a practical key-recovery attack.

Overall, it is still tempting to use the hardness of MQ to build new cryptographic schemes, but it is not
obvious to come up with constructions that are provably secure under the hardness of MQ. Some preliminary
proposals are appearing at the time of this writing, and this is an exciting research topic.

275

List of Figures

2.1 Le mode opératoire de Merkle-Damg̊ard . 12
2.2 Illustration du “dithering” en infographie . 12
2.3 Merkle-Damg̊ard-Again. 13
2.4 Le mode opératoire Haifa. 14
2.5 Overview of part I . 29

3.1 The distinguishing games involved in the study of modes of operations 33
3.2 Joux’s multicollision attack. 37
3.3 The Herding Attack . 40
3.4 The “double-pipe” Merkle-Damg̊ard hash function. 44
3.5 Concatenated hashing. 44
3.6 Joux’s attack against concatenated hashes . 45
3.7 Merkle-Damg̊ard-Again. 47

4.1 A diamond built on top of a factor of the dithering sequence, connected to the message. 54
4.2 A “Multi-diamond” with 2 words. 55
4.3 A “Multi-diamond” with 4 words. 55
4.4 A suffix-friendly set of 32 factors of size 50 from the Keränen sequence. 57

5.1 Diamond Structure on two pipes . 62
5.2 The Online Phase of the Herding Attack for k = 2 . 63
5.3 Herding the Zipper Hash . 63
5.4 Herding Merkle-Damg̊ard-Again . 64
5.5 Second preimage attack on Merkle-Damg̊ard-Again . 65

6.1 A toy “Kite-Generator” with 16 nodes over a binary alphabet . 72
6.2 A “Kite” connected to and from the message . 73

8.1 An AES round . 100
8.2 Backtracking Tree of the Search Procedure one 1 AES round . 103

9.1 A 240 time attack on one round AES given one known plaintext 114
9.2 A 232 time attack on one round AES given one known plaintext 115
9.3 AES: a 2-round, 2KP attack . 118
9.4 AES: a 2-round, 2CP attack . 120
9.5 AES: a 2-round, 1KP attack . 122
9.6 AES: a 1.5-round, 2KP attack . 124
9.7 AES: Fault attack . 125
9.8 AES: a 3-round, 1KP attack . 127
9.9 The 3-Round Truncated Differential Used in the 6-round Differential Attack. 129
9.10 Truncated Differential characteristic used in the attack against Pelican-MAC 131
9.11 State Bytes which Compose the Output in Odd and Even Rounds of LEX 131
9.12 LEX: situation resulting from the collision . 132
9.13 LEX: second stage of the attack. 134
9.14 LEX: third phase of the attack. 134

10.1 Complexity of Gröbner basis computation on semi-regular sequences 159
10.2 Degree of regularity of very overdetermined semi-regular systems 160

13.1 Properties of corresponding semi-regular systems . 203
13.2 Iso-complexity lines of Algorithm 13.3 . 206

277

13.3 Expected improvement from replacing exhaustive search by Gröbner bases computations. 209

14.1 Probability to not be a cyclic matrix . 216

15.1 Distribution of dimV . 222
15.2 Probability of C being cyclic in algorithm 15.1 . 222
15.3 Time complexity of solving the QFSE problem for pairs of quadratic forms. 226

16.1 Comparison between the various possible methods . 228

17.1 Running time of Pencil-IQMLE (when the function does not abort). 240

18.1 A “large” connected component of Ga . 242
18.2 BFS exploration of the top part of the graph shown in Figure 18.1 243
18.3 A representation of {{∅, ∅ {{∅}} {{∅}} , {{∅, ∅, {{{{∅}}}}}}}}. 251
18.4 A Tree of height n log n with a spine decomposition up to height n

√
log n 252

18.5 A random Galton-Watson tree with distribution P . 255
18.6 Two distinct, but isomorphic trees . 256
18.7 Illustration of the spine decomposition . 256

19.1 Description of weak keys . 266
19.2 PK = T ◦ f ◦ S = T̃ ◦ g ◦ S̃ . 270
19.3 g = F−1

2 ◦ f2 ◦ F−1
1 . 271

19.4 Degree of regularity of corresponding semi-generic systems . 272

List of Tables

2.1 Mes publications scientifiques dans des conférences . 18
2.2 Mes publications scientifiques dans des journaux . 19

4.1 Comparison of Long Message Second Preimage Attacks . 50
4.2 Comparison of the long-message second preimage attacks on real hash functions 51
4.3 Comparison of the Time Complexity of Our Attacks on Shoup’s UOWHF 60

6.1 Comparison of Long Message Second Preimage Attacks on Dithered Hashing 74

9.1 Summary of our Proposed Attacks on AES-128 . 112
9.2 Summary of our Proposed Attacks on Primitives based on AES 113

11.1 First 8 numbers in our “usual” Gray Code. 171
11.2 Synchronous enumeration on several threads . 186
11.3 Performance and budget-efficiency results . 188
11.4 Efficiency comparison: cycles per (F2)

n
-vector tested on one core 189

12.1 Key sizes for several identification schemes . 194
12.2 Patarin’s PLE challenges . 197

13.1 Practical performance of the Gröbner basis algorithm, using MAGMA’s F4. 204
13.2 Parameters solved in practice in [GMS03] . 207
13.3 Projected complexity of the Columnwise Sieve on the challenges. 207
13.4 Parameters solved in practice in [dVP03] . 208
13.5 Parameters solved in practice in [Per05] . 211

15.1 Experimentally observed probability that dimV = 2n . 223
15.2 Number of linearly independent equations in Squad . 225

278

15.3 Complexity of computing a Gröbner basis of the ideal spanned by Squad and S ′quad. 225

17.1 Probability that the pencil-based algorithm succeeds on random instances. 236

18.1 Experimental results on Rank-QMLE. 250
18.2 Experimental results on Branching-QMLE . 261

19.1 Timings for the Attack . 274

List of Algorithms

3.1 The Merkle-Damg̊ard mode of operation. 34
3.2 Generic Brute-Force collision-finding algorithms . 36
3.3 Expandable messages: a multicollision between messages of different lengths. 39
3.4 The Kelsey-Schneier Second Preimage Attack. 39
3.5 The Haifa mode of operation. 41
3.6 Shoup’s Universal One-Way Hash Function . 43
3.7 Tree Hashing . 46
4.1 Summary of our new attack on the plain Merkle-Damg̊ard construction. 50
4.2 Second preimage attack on Dithered Hashing. 54
5.1 Trojan Message Attack, Collision Variant . 67
5.2 Trojan Message Attack, Herding Variant . 68
7.1 Formal definition of the hash process with an abstract mode of operation 78
7.2 A dummy random function simulator . 82
7.3 Pseudo-code of the Simulator S . 86
7.4 Patched simulator for Game 3 . 87
7.5 Patched simulator for Game 5 . 88
7.6 Pseudo-code of the Simulator S0 for the non-ideal case, with abort conditions 89
8.1 Pseudo-code of the Preliminary Tool. 104
8.2 Pruning Strategies for Algorithm 8.1. 105
8.3 Exhaustive Search for a good recursive solver . 109
8.4 Randomized Search for a good recursive solver . 109
9.1 Pseudo-code of the attack on 2 rounds using 2 chosen plaintexts. 121
10.1 Multivariate Polynomial Division. 151
11.1 Main loop common to all enumeration algorithms. 172
11.2 The Folklore differential enumeration algorithm. 173
11.3 Moebius Transform algorithm. 174
11.4 An optimized differential enumeration algorithm for quadratic polynomials. 175
11.5 The recursive differential enumeration algorithm for all degrees. 176
11.6 An equivalent version of Next. 178
11.7 Iterative algorithm for all degrees. 178
11.8 Parallel enumeration, assuming one processing unit capable of running 2T threads. 184
11.9 Parallel Iterative algorithm for all degrees. 185
12.1 Identification scheme based on Graph Isomorphism . 193
13.1 Bijective to-n-fro algorithm for QMLE. 200
13.2 General (non-bijective) to-n-fro algorithm for QMLE. 201
13.3 A simplified version of the columnwise-sieve algorithm. 204
15.1 Pseudo-code of the pencil-based QFSE algorithm. 220
17.1 A variant of the “To-and-Fro” algorithm without exponential inversions 234
17.2 Pencil-based algorithm for IQMLE. 235
18.1 Semi-trivial algorithm based on dehomogenization. 245
18.2 Rank/Birthday Based Algorithm . 248
18.3 Specialized function for Pencil-IQMLE. 249
18.4 Branching Process Based Algorithm. 251
19.1 Pseudo-code of the attack . 268

279

Bibliography

[AB10] Noga Alon and Eric Blais. Testing boolean function isomorphism. In Maria J. Serna, Ronen
Shaltiel, Klaus Jansen, and José D. P. Rolim, editors, APPROX-RANDOM, volume 6302 of
Lecture Notes in Computer Science, pages 394–405. Springer, 2010.

[ABD+10] Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, Pierre-Alain Fouque, Jonathan J. Hoch,
John Kelsey, Adi Shamir, and Sébastien Zimmer. New Second Preimage Attacks on Hash
Functions. Submitted to the Journal of Cryptology., 2010.

[ABDK09] Elena Andreeva, Charles Bouillaguet, Orr Dunkelman, and John Kelsey. Herding, second
preimage and trojan message attacks beyond merkle-damg̊ard. In Michael J. Jacobson Jr.,
Vincent Rijmen, and Reihaneh Safavi-Naini, editors, Selected Areas in Cryptography, volume
5867 of Lecture Notes in Computer Science, pages 393–414. Springer, 2009.

[Abe10] Masayuki Abe, editor. Advances in Cryptology - ASIACRYPT 2010 - 16th International Con-
ference on the Theory and Application of Cryptology and Information Security, Singapore,
December 5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science. Springer,
2010.

[ABF+08] Elena Andreeva, Charles Bouillaguet, Pierre-Alain Fouque, Jonathan J. Hoch, John Kelsey,
Adi Shamir, and Sébastien Zimmer. Second Preimage Attacks on Dithered Hash Functions. In
Smart [Sma08], pages 270–288.

[ABM+09] Jean-Philippe Aumasson, Eric Brier, Willi Meier, Maŕıa Naya-Plasencia, and Thomas Peyrin.
Inside the Hypercube. In Colin Boyd and Juan Manuel González Nieto, editors, ACISP, volume
5594 of Lecture Notes in Computer Science, pages 202–213. Springer, 2009.

[ADG+08] Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors. Automata, Languages and Programming, 35th International
Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B:
Logic, Semantics, and Theory of Programming & Track C: Security and Cryptography Founda-
tions, volume 5126 of Lecture Notes in Computer Science. Springer, 2008.

[AFI+04] Gwénolé Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and Makoto Sugita. Com-
parison Between XL and Gröbner Basis Algorithms. In Lee [Lee04], pages 338–353.

[AKS09] Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors. Selected Areas in Cryptog-
raphy, 15th International Workshop, SAC 2008, Sackville, New Brunswick, Canada, August
14-15, Revised Selected Papers, volume 5381 of Lecture Notes in Computer Science. Springer,
2009.

[Alb38] A. Adrian Albert. Symmetric and alternate matrices in an arbitrary field, i. Transactions of
the American Mathematical Society, 43(3):386–436, 1938.

[All94] J.-P. Allouche. Sur la complexité des suites infinies. Bull. Belg. Math. Soc., 1:133–143, 1994.

[AMM09] Jean-Philippe Aumasson, Atefeh Mashatan, and Willi Meier. More on Shabal’s permutation.
OFFICIAL COMMENT, 2009.

[AMW07] Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors. Selected Areas in Cryptogra-
phy, 14th International Workshop, SAC 2007, Ottawa, Canada, August 16-17, 2007, Revised
Selected Papers, volume 4876 of Lecture Notes in Computer Science. Springer, 2007.

[AN72] Krishna B. Athreya and Peter Ney. Branching processes. Springer-Verlag, Berlin, New York
”

1972.

[AP08] Elena Andreeva and Bart Preneel. A three-property-secure hash function. In Avanzi et al.
[AKS09], pages 228–244.

281

Bibliography

[Bar04] Magali Bardet. Étude des systèmes algébriques surdéterminés. Applications aux codes cor-
recteurs et à la cryptographie. PhD thesis, Université de Paris VI, 2004.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume 3027
of Lecture Notes in Computer Science, pages 223–238. Springer, 2004.

[BB06] Dan Boneh and Xavier Boyen. On the impossibility of efficiently combining collision resistant
hash functions. In Advances in Cryptology—CRYPTO 2006, volume 4117 of Lecture Notes in
Computer Science, pages 570–583. Berlin: Springer-Verlag, 2006. Available at http://www.

cs.stanford.edu/~xb/crypto06b/.

[BBAC+05] Come Berbain, Olivier Billet, Nicolas Courtois Anne Canteaut, Henri Gilbert, Louis Goubin,
Aline Gouget, Louis Granboulan, Cédric Lauradoux, Marine Minier, Thomas Pornin, , and
Hervé Sibert. Sosemanuk, a fast software-oriented stream cipher. Submission to eStream, 2005.

[BBG07] Côme Berbain, Olivier Billet, and Henri Gilbert. Efficient implementations of multivariate
quadratic systems. In Eli Biham and Amr Youssef, editors, Selected Areas in Cryptography,
volume 4356 of Lecture Notes in Computer Science, pages 174–187. Springer Berlin / Heidelberg,
2007.

[BCBP03] Alex Biryukov, Christophe De Cannière, An Braeken, and Bart Preneel. A toolbox for crypt-
analysis: Linear and affine equivalence algorithms. In EUROCRYPT, pages 33–50, 2003.

[BCC+09] Daniel J. Bernstein, Tien-Ren Chen, Chen-Mou Cheng, Tanja Lange, and Bo-Yin Yang. Ecm
on graphics cards. In Joux [Jou09a], pages 483–501.

[BCC+10] Charles Bouillaguet, Hsieh-Chung Chen, Chen-Mou Cheng, Tung Chou, Ruben Niederhagen,
Adi Shamir, and Bo-Yin Yang. Fast exhaustive search for polynomial systems in F2. In
Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of Lecture Notes
in Computer Science, pages 203–218. Springer, 2010.

[BCCG92] Thierry Baritaud, Mireille Campana, Pascal Chauvaud, and Henri Gilbert. On the security of
the permuted kernel identification scheme. In Ernest F. Brickell, editor, CRYPTO, volume 740
of Lecture Notes in Computer Science, pages 305–311. Springer, 1992.

[BCCM+09] Emmanuel Bresson, Anne Canteaut, Benoit Chevallier-Mames, Christophe Clavier, Thomas
Fuhr, Aline Gouget, Thomas Icart, Jean-Francois Misarsky, Maria Naya-Plasencia, Pascal Pail-
lier, Thomas Pornin, Jean-Rene Reinhard, Celine Thuillet, and Marion Videau. Indifferentia-
bility with Distinguishers: Why Shabal Does Not Require Ideal Ciphers. Cryptology ePrint
Archive, Report 2009/199, 2009. http://eprint.iacr.org/.

[BCD08] John Baena, Crystal Clough, and Jintai Ding. Square-vinegar signature scheme. In PQCrypto
’08: Proceedings of the 2nd International Workshop on Post-Quantum Cryptography, pages
17–30, Berlin, Heidelberg, 2008. Springer-Verlag.

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and William
Jalby. Collisions of SHA-0 and Reduced SHA-1. In Cramer [Cra05], pages 36–57.

[BCP97] Wieb Bosma, John J. Cannon, and Catherine Playoust. The Magma Algebra System I: The
User Language. J. Symb. Comput., 24(3/4):235–265, 1997.

[BCS05] John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility of highly-efficient
blockcipher-based hash functions. In Cramer [Cra05], pages 526–541.

[BD07] Eli Biham and Orr Dunkelman. A framework for iterative hash functions - haifa. Cryptology
ePrint Archive, Report 2007/278, 2007. http://eprint.iacr.org/.

[BDD+10] Charles Bouillaguet, Patrick Derbez, Orr Dunkelman, Nathan Keller, and Pierre-Alain Fouque.
Low Data Complexity Attacks on AES. Cryptology ePrint Archive, Report 2010/633, 2010.
Submitted to IEEE IT. Available at http://eprint.iacr.org/.

[BDF11] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic Search of Attacks
on Round-reduced AES and Applications. In Rogaway [Rog11], pages 169–187.

[BDFL10] Charles Bouillaguet, Orr Dunkelman, Pierre-Alain Fouque, and Gaëtan Leurent. Another Look
at the Complementation Property. In Seokhie Hong and Tetsu Iwata, editors, FSE ’10, Lecture
Notes in Computer Science. Springer, 2010.

[BDK07] Eli Biham, Orr Dunkelman, and Nathan Keller. Improved slide attacks. In Biryukov [Bir07],
pages 153–166.

282

http://www.cs.stanford.edu/~xb/crypto06b/
http://www.cs.stanford.edu/~xb/crypto06b/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

[BDK+10] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir. Key
recovery attacks of practical complexity on aes-256 variants with up to 10 rounds. In Gilbert
[Gil10], pages 299–319.

[BDLF10] Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and Pierre-Alain Fouque. Attacks
on hash functions based on generalized feistel: Application to reduced-round Lesamnta and
SHAvite-3512. In Biryukov et al. [BGS11], pages 18–35.

[BDLF11] Charles Bouillaguet, Orr Dunkelman, Gaëtan Leurent, and Pierre-Alain Fouque. New insights
on impossible differentials. In Selected Areas in Cryptography, August 2011.

[BDPA08] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indifferentiability
of the sponge construction. In Smart [Sma08], pages 181–197.

[BDPA09] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Sufficient conditions for
sound tree and sequential hashing modes. Cryptology ePrint Archive, Report 2009/210, 2009.
http://eprint.iacr.org/.

[Bel10] Jordan Bell. A summary of euler’s work on the pentagonal number theorem. Archive for History
of Exact Sciences, 64:301–373, 2010. 10.1007/s00407-010-0057-y.

[Ben19] A. A. Bennett. Products of skew-symmetric matrices. American M. S. Bull., 25:455–458, 1919.

[Ber08] Daniel J. Bernstein. Proving tight security for rabin-williams signatures. In Smart [Sma08],
pages 70–87.

[BF05] Alexandra Boldyreva and Marc Fischlin. Analysis of random oracle instantiation scenarios for
oaep and other practical schemes. In Shoup [Sho05], pages 412–429.

[BF08] Charles Bouillaguet and Pierre-Alain Fouque. Analysis of the collision resistance of radiogatún
using algebraic techniques. In Avanzi et al. [AKS09], pages 245–261.

[BFFP11] Charles Bouillaguet, Jean-Charles Faugère, Pierre-Alain Fouque, and Ludovic Perret. Practical
cryptanalysis of the identification scheme based on the isomorphism of polynomial with one
secret problem. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors,
Public Key Cryptography, volume 6571 of Lecture Notes in Computer Science, pages 473–493.
Springer, 2011.

[BFJT09] Charles Bouillaguet, Pierre-Alain Fouque, Antoine Joux, and Joana Treger. A family of weak
keys in hfe (and the corresponding practical key-recovery). Submitted to the Journal of Math-
ematical Cryptology., 2009. http://eprint.iacr.org/2009/619.

[BFL10] Charles Bouillaguet, Pierre-Alain Fouque, and Gaëtan Leurent. Security analysis of simd. In
Biryukov et al. [BGS11], pages 351–368.

[BFMR11] Charles Bouillaguet, Pierre-Alain Fouque, and Gilles Macario-Rat. Practical key-recovery for
all possible parameters of sflash. Submitted to Asiacrypt 2011., 2011. http://eprint.iacr.

org/2011/271.

[BFP08] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Cryptanalysis of the trms signature
scheme of pkc’05. In Serge Vaudenay, editor, AFRICACRYPT, volume 5023 of Lecture Notes
in Computer Science, pages 143–155. Springer, 2008.

[BFS99] Jonathan F. Buss, Gudmund Skovbjerg Frandsen, and Jeffrey Shallit. The Computational
Complexity of Some Problems of Linear Algebra. J. Comput. Syst. Sci., 58(3):572–596, 1999.

[BFSY05] Magali Bardet, Jean-Charles Faugère, Bruno Salvy, and Bo-Yin Yang. Asymptotic Behaviour
of the Degree of Regularity of Semi-Regular Polynomial Systems. In Proc. of MEGA 2005,
Eighth International Symposium on Effective Methods in Algebraic Geometry, 2005. Eighth
International Symposium on Effective Methods in Algebraic Geometry, Porto Conte, Alghero,
Sardinia (Italy), May 27th – June 1st.

[BFZ10] Charles Bouillaguet, Pierre-Alain Fouque, and Sébastien Zimmer. On the resistance of practical
hash functions constructions to generic second preimage attacks. Submitted to the Information
Processing Letters., 2010.

[BG75] E. A. Bender and J. R. Goldman. On the applications of mobius inversion in combinatorial
analysis. The American Mathematical Monthly, 82(8):pp. 789–803, 1975.

[BG03] Olivier Billet and Henri Gilbert. A traceable block cipher. In Chi-Sung Laih, editor, ASI-
ACRYPT, volume 2894 of Lecture Notes in Computer Science, pages 331–346. Springer, 2003.

283

http://eprint.iacr.org/
http://eprint.iacr.org/2009/619
http://eprint.iacr.org/2011/271
http://eprint.iacr.org/2011/271

Bibliography

[BGH07] Dan Boneh, Craig Gentry, and Michael Hamburg. Space-efficient identity based encryption
without pairings. In FOCS, pages 647–657. IEEE Computer Society, 2007.

[BGP06] Côme Berbain, Henri Gilbert, and Jacques Patarin. QUAD: A practical stream cipher with
provable security. In Dwork [Dwo06], pages 109–128.

[BGS11] Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors. Selected Areas in Cryptography
- 17th International Workshop, SAC 2010, Waterloo, Ontario, Canada, August 12-13, 2010,
Revised Selected Papers, volume 6544 of Lecture Notes in Computer Science. Springer, 2011.

[Bir05] Alex Biryukov. A New 128-bit Key Stream Cipher LEX. ECRYPT stream cipher project
report 2005/013, 2005. http://www.ecrypt.eu.org/stream.

[Bir06a] Alex Biryukov. The Design of a Stream Cipher LEX. In Biham and Youssef [BY07], pages
67–75.

[Bir06b] Alex Biryukov. The Tweak for LEX-128, LEX-192,LEX-256. ECRYPT stream cipher project
report 2006/037, 2006. http://www.ecrypt.eu.org/stream.

[Bir07] Alex Biryukov, editor. Fast Software Encryption, 14th International Workshop, FSE 2007,
Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers, volume 4593 of Lecture
Notes in Computer Science. Springer, 2007.

[BK07] Alex Biryukov and Dmitry Khovratovich. Two New Techniques of Side-Channel Cryptanalysis.
In Pascal Paillier and Ingrid Verbauwhede, editors, CHES, volume 4727 of Lecture Notes in
Computer Science, pages 195–208. Springer, 2007.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-Key Cryptanalysis of the Full AES-192 and
AES-256. In Matsui [Mat09], pages 1–18.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and Related-Key Attack
on the Full AES-256. In Halevi [Hal09], pages 231–249.

[BKW93] T. Becker, H. Kredel, and V. Weispfenning. Gröbner bases: a computational approach to
commutative algebra. Springer-Verlag, London, UK, 0 edition, 4 1993.

[BMR09] Olivier Billet and Gilles Macario-Rat. Cryptanalysis of the square cryptosystems. In Matsui
[Mat09], pages 451–468.

[BN10] Alex Biryukov and Ivica Nikolic. Automatic Search for Related-Key Differential Characteristics
in Byte-Oriented Block Ciphers: Application to AES, Camellia, Khazad and Others. In Gilbert
[Gil10], pages 322–344.

[Bon03] Dan Boneh, editor. Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume
2729 of Lecture Notes in Computer Science. Springer, 2003.

[BPW06] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Weinmann. A Zero-Dimensional Gröb-
ner Basis for AES-128. In Robshaw [Rob06], pages 78–88.

[BR93] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm for Designing
Efficient Protocols. In ACM Conference on Computer and Communications Security, pages
62–73, 1993.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryption. In Alfredo De Santis, ed-
itor, EUROCRYPT, volume 950 of Lecture Notes in Computer Science, pages 92–111. Springer,
1994.

[BR96] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures - How to Sign
with RSA and Rabin. In EUROCRYPT, pages 399–416, 1996.

[BR97] Mihir Bellare and Phillip Rogaway. Collision-Resistant Hashing: Towards Making UOWHFs
Practical. In Jr. [Jr.97], pages 470–484.

[Bra90] Gilles Brassard, editor. CRYPTO ’89, Santa Barbara, California, USA, August0-24, 1989,
Proceedings, volume 435 of Lecture Notes in Computer Science. Springer, 1990.

[BRP07] Olivier Billet, Matthew J. B. Robshaw, and Thomas Peyrin. On building hash functions from
multivariate quadratic equations. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors,
ACISP, volume 4586 of Lecture Notes in Computer Science, pages 82–95. Springer, 2007.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of the Block-Cipher-
Based Hash-Function Constructions from PGV. In Yung [Yun02], pages 320–335.

284

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

Bibliography

[BRSS10] John Black, Phillip Rogaway, Thomas Shrimpton, and Martijn Stam. An analysis of the
blockcipher-based hash functions from pgv. J. Cryptology, 23(4):519–545, 2010.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ci-
phers. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976 of Lecture Notes in Computer
Science, pages 1–13. Springer, 2000.

[BSU11] Simon Blackburn, Douglas Stinson, and Jalaj Upadhyay. On the complexity of the herding
attack and some related attacks on hash functions. Designs, Codes and Cryptography, pages
1–23, 2011. 10.1007/s10623-010-9481-x.

[Buc65] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes
nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.

[BW99] Alex Biryukov and David Wagner. Slide attacks. In Lars R. Knudsen, editor, FSE, volume
1636 of Lecture Notes in Computer Science, pages 245–259. Springer, 1999.

[BW00] Alex Biryukov and David Wagner. Advanced slide attacks. In Preneel [Pre00], pages 589–606.

[BWP05] An Braeken, Christopher Wolf, and Bart Preneel. A Study of the Security of Unbalanced Oil
and Vinegar Signature Schemes. In Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture
Notes in Computer Science, pages 29–43. Springer, 2005.

[BY07] Eli Biham and Amr M. Youssef, editors. Selected Areas in Cryptography, 13th International
Workshop, SAC 2006, Montreal, Canada, August 17-18, 2006 Revised Selected Papers, volume
4356 of Lecture Notes in Computer Science. Springer, 2007.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial informa-
tion. In Jr. [Jr.97], pages 455–469.

[CB07] Nicolas Courtois and Gregory V. Bard. Algebraic cryptanalysis of the data encryption standard.
In Steven D. Galbraith, editor, IMA Int. Conf., volume 4887 of Lecture Notes in Computer
Science, pages 152–169. Springer, 2007.

[CBD+09] Crystal Clough, John Baena, Jintai Ding, Bo-Yin Yang, and Ming-Shing Chen. Square, a new
multivariate encryption scheme. In Fischlin [Fis09], pages 252–264.

[CBW08] Nicolas Courtois, Gregory V. Bard, and David Wagner. Algebraic and slide attacks on keeloq.
In Nyberg [Nyb08], pages 97–115.

[CDMP05] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damg̊ard Revisited: How to Construct a Hash Function. In CRYPTO’05, pages 430–448,
2005.

[CFPZ09] Céline Chevalier, Pierre-Alain Fouque, David Pointcheval, and Sébastien Zimmer. Optimal
randomness extraction from a diffie-hellman element. In Joux [Jou09a], pages 572–589.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology, revisited. J.
ACM, 51(4):557–594, 2004.

[Che35] Claude Chevalley. Démonstration d’une hypothèse de M. Artin. Abh. Math. Semin. Hamb.
Univ., 11:73–75, 1935.

[Cid04] Carlos Cid. Some Algebraic Aspects of the Advanced Encryption Standard. In Dobbertin et al.
[DRS05], pages 58–66.

[CJ98] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Krawczyk [Kra98],
pages 56–71.

[CKK+01] Jung Hee Cheon, MunJu Kim, Kwangjo Kim, Jung-Yeun Lee, and SungWoo Kang. Improved
impossible differential cryptanalysis of rijndael and crypton. In Kim [Kim02], pages 39–49.

[CKM97] Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Converting bases with the gröbner
walk. J. Symb. Comput., 24(3/4):465–469, 1997.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient Algorithms for
Solving Overdefined Systems of Multivariate Polynomial Equations. In EUROCRYPT, pages
392–407, 2000.

[CL05] Carlos Cid and Gaëtan Leurent. An analysis of the xsl algorithm. In Roy [Roy05], pages
333–352.

285

Bibliography

[CLO91] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduc-
tion to Computational Algebraic Geometry and Commutative Algebra, (Undergraduate Texts in
Mathematics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1991.

[CM03] Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear feedback. In
Eli Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages
345–359. Springer, 2003.

[CN08] Donghoon Chang and Mridul Nandi. Improved Indifferentiability Security Analysis of chopMD
Hash Function. In Nyberg [Nyb08], pages 429–443.

[Cob72] Alan Cobham. Uniform Tag Seqences. Mathematical Systems Theory, 6(3):164–192, 1972.

[Coo00] C. Cooper. On the distribution of rank of a random matrix over a finite field. In Proceedings
of the ninth international conference on on Random structures and algorithms, pages 197–212,
New York, NY, USA, 2000. John Wiley & Sons, Inc.

[COQ09] Nicolas Courtois, Sean O’Neil, and Jean-Jacques Quisquater. Practical algebraic attacks on
the hitag2 stream cipher. In Pierangela Samarati, Moti Yung, Fabio Martinelli, and Clau-
dio Agostino Ardagna, editors, ISC, volume 5735 of Lecture Notes in Computer Science, pages
167–176. Springer, 2009.

[Cor02a] Jean-Sébastien Coron. Optimal security proofs for pss and other signature schemes. In Knudsen
[Knu02], pages 272–287.

[Cor02b] Jean-Sébastien Coron. Security proof for partial-domain hash signature schemes. In Yung
[Yun02], pages 613–626.

[Cou01] Nicolas Courtois. Efficient zero-knowledge authentication based on a linear algebra problem
minrank. In Colin Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in Computer
Science, pages 402–421. Springer, 2001.

[Cou02] Nicolas Courtois. Higher order correlation attacks, xl algorithm and cryptanalysis of toyocrypt.
In Pil Joong Lee and Chae Hoon Lim, editors, ICISC, volume 2587 of Lecture Notes in Computer
Science, pages 182–199. Springer, 2002.

[Cou03] Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Boneh
[Bon03], pages 176–194.

[Cou04] Nicolas Courtois. General principles of algebraic attacks and new design criteria for cipher
components. In Dobbertin et al. [DRS05], pages 67–83.

[CP02] Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of block ciphers with overdefined systems
of equations. In Zheng [Zhe02], pages 267–287.

[CR92] William Y. C. Chen and Gian-Carlo Rota. q-analogs of the inclusion- exclusion principle and
permutations with restricted position. Discrete Mathematics, 104(1):7 – 22, 1992.

[CR06] Christophe De Cannière and Christian Rechberger. Finding sha-1 characteristics: General
results and applications. In Lai and Chen [LC06], pages 1–20.

[Cra05] Ronald Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lecture Notes in Computer Science.
Springer, 2005.

[Cra08] Ronald Cramer, editor. Public Key Cryptography - PKC 2008, 11th International Workshop
on Practice and Theory in Public-Key Cryptography, Barcelona, Spain, March 9-12, 2008.
Proceedings, volume 4939 of Lecture Notes in Computer Science. Springer, 2008.

[DA99] T. Dierks and C. Allen. The MD5 message-digest algorithm. RFC2246, Januaryl 1999.

[Dam89] Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard [Bra90], pages 416–427.

[Dav06] Timothy A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2).
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2006.

[dB61] N.G. de Bruijn. Asymptotic methods in analysis. 2nd edition. Bibliotheca Mathematica. Vol.
4. Groningen: P. Noordhoff Ltd. XII, 200 p. , 1961.

[dBB93] Bert den Boer and Antoon Bosselaers. Collisions for the Compression Function of MD5. In
EUROCRYPT, pages 293–304, 1993.

286

Bibliography

[dCMR07] Christophe de Cannière, Florian Mendel, and Christian Rechberger. Collisions for 70-Step
SHA-1: On the Full Cost of Collision Search. In Adams et al. [AMW07], pages 56–73.

[dCR06] Christophe de Cannière and Christian Rechberger. Finding SHA-1 Characteristics: General
Results and Applications. In Lai and Chen [LC06], pages 1–20.

[dCR08] Christophe de Cannière and Christian Rechberger. Preimages for Reduced SHA-0 and SHA-1.
In David Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages
179–202. Springer, 2008.

[DDA11] Joan Daemen, Tony Dusenge, and Gilles Van Assche. Sufficient conditions for sound hashing
using a truncated permutation. Cryptology ePrint Archive, Report 2011/459, 2011. http:

//eprint.iacr.org/.

[Dea99] Richard Drews Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton Univer-
sity, January 1999.

[Der10] Patrick Derbez. Rapport de Stage. Technical report, Ecole Normale Supérieure, Paris, Septem-
ber 2010.

[DFS07] Vivien Dubois, Pierre-Alain Fouque, and Jacques Stern. Cryptanalysis of SFLASH with Slightly
Modified Parameters. In EUROCRYPT, volume 4515, pages 264–275. Springer, 2007.

[DFSS07] Vivien Dubois, Pierre-Alain Fouque, Adi Shamir, and Jacques Stern. Practical Cryptanalysis
of SFLASH. In CRYPTO, volume 4622, pages 1–12. Springer, 2007.

[DG10a] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Commun.
ACM, 53(1):72–77, 2010.

[DG10b] Vivien Dubois and Nicolas Gama. The degree of regularity of hfe systems. In Abe [Abe10],
pages 557–576.

[DGS06] Vivien Dubois, Louis Granboulan, and Jacques Stern. An efficient provable distinguisher for
hfe. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, ICALP
(2), volume 4052 of Lecture Notes in Computer Science, pages 156–167. Springer, 2006.

[Die04] Claus Diem. The xl-algorithm and a conjecture from commutative algebra. In Lee [Lee04],
pages 323–337.

[DK08] Orr Dunkelman and Nathan Keller. A New Attack on the LEX Stream Cipher. In Pieprzyk
[Pie08], pages 539–556.

[DK10a] Orr Dunkelman and Nathan Keller. Cryptanalysis of the Stream Cipher LEX, 2010. Available
at http://www.ma.huji.ac.il/~nkeller/Crypt-jour-LEX.pdf.

[DK10b] Orr Dunkelman and Nathan Keller. The effects of the omission of last round’s mixcolumns on
aes. Inf. Process. Lett., 110(8-9):304–308, 2010.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher square. In Eli Biham,
editor, FSE, volume 1267 of Lecture Notes in Computer Science, pages 149–165. Springer, 1997.

[DKS10a] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks on 8-round
aes-192 and aes-256. In Abe [Abe10], pages 158–176.

[DKS10b] Orr Dunkelman, Nathan Keller, and Adi Shamir. A practical-time related-key attack on the
kasumi cryptosystem used in gsm and 3g telephony. In Tal Rabin, editor, CRYPTO, volume
6223 of Lecture Notes in Computer Science, pages 393–410. Springer, 2010.

[DKS11] Orr Dunkelman, Nathan Keller, and Adi Shamir. Alred blues: New attacks on aes-based mac’s.
Cryptology ePrint Archive, Report 2011/095, 2011. http://eprint.iacr.org/.

[DO68] Peter Dembowski and T. G. Ostrom. Planes of Order n with Collineation Groups of Order n2.
Mathematische Zeitschrift, 103(3):239–258, 1968.

[Dob96] Hand Dobbertin. Collision on the MD5 Compression Function. Rump Session of EURO-
CRYPT’96, 1996. http://www-cse.ucsd.edu/users/bsy/dobbertin.ps.

[Dob98] Hans Dobbertin. Cryptanalysis of MD4. J. Cryptology, 11(4):253–271, 1998.

[DOP05] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On the generic insecurity of the full
domain hash. In Shoup [Sho05], pages 449–466.

287

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.ma.huji.ac.il/~nkeller/Crypt-jour-LEX.pdf
http://eprint.iacr.org/
http://www-cse.ucsd.edu/users/bsy/dobbertin.ps

Bibliography

[DR05a] Joan Daemen and Vincent Rijmen. A New MAC Construction ALRED and a Specific Instance
ALPHA-MAC. In Henri Gilbert and Helena Handschuh, editors, FSE, volume 3557 of Lecture
Notes in Computer Science, pages 1–17. Springer, 2005.

[DR05b] Joan Daemen and Vincent Rijmen. The Pelican MAC Function. Cryptology ePrint Archive,
Report 2005/088, 2005. http://eprint.iacr.org/.

[DRS05] Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors. Advanced Encryption Standard
- AES, 4th International Conference, AES 2004, Bonn, Germany, May 10-12, 2004, Revised
Selected and Invited Papers, volume 3373 of Lecture Notes in Computer Science. Springer, 2005.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on 8-round aes. In Nyberg
[Nyb08], pages 116–126.

[DS09] Itai Dinur and Adi Shamir. Side channel cube attacks on block ciphers. Cryptology ePrint
Archive, Report 2009/127, 2009. http://eprint.iacr.org/.

[DS10] Itai Dinur and Adi Shamir. An improved algebraic attack on hamsi-256. Cryptology ePrint
Archive, Report 2010/602, 2010. http://eprint.iacr.org/, to appear at FSE’11.

[Dub07] Vivien Dubois. Cryptanalyse de Schémas Multivariés. PhD thesis, Ecole Normale Supérieure,
Paris, France, 2007.

[Dun09] Orr Dunkelman, editor. Fast Software Encryption, 16th International Workshop, FSE 2009,
Leuven, Belgium, February 22-25, 2009, Revised Selected Papers, volume 5665 of Lecture Notes
in Computer Science. Springer, 2009.

[dVP03] Françoise Levy dit Vehel and Ludovic Perret. Polynomial Equivalence Problems and Appli-
cations to Multivariate Cryptosystems. In Thomas Johansson and Subhamoy Maitra, editors,
INDOCRYPT, volume 2904 of Lecture Notes in Computer Science, pages 235–251. Springer,
2003.

[Dwo06] Cynthia Dwork, editor. Advances in Cryptology - CRYPTO 2006, 26th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings, vol-
ume 4117 of Lecture Notes in Computer Science. Springer, 2006.

[DWY07] Jintai Ding, Christopher Wolf, and Bo-Yin Yang. -invertible cycles for multivariate quadratic
public key cryptography`. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public Key Cryp-
tography, volume 4450 of Lecture Notes in Computer Science, pages 266–281. Springer, 2007.

[Eli06] Orr Dunkelman Eli Biham. A Framework for Iterative Hash Functions — HAIFA. Presented
at the second NIST hash workshop, August 24–25 2006.

[ELR75] Andrzej Ehrenfeucht, K. P. Lee, and Grzegorz Rozenberg. Subword Complexities of Various
Classes of Deterministic Developmental Languages without Interactions. Theor. Comput. Sci.,
1(1):59–75, 1975.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra, 139(1-3):61–88, June 1999.

[Fau02] Jean-Charles Faugère. A New Efficient Algorithm for Computing Gröbner Bases Without
Reduction to Zero (F5). In T. Mora, editor, ISSAC ’02: Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, pages 75–83, New York, NY, USA, July
2002. ACM Press. isbn: 1-58113-484-3.

[FD85] Harriet J. Fell and Whitfield Diffie. Analysis of a public key approach based on polynomial
substitution. In Hugh C. Williams, editor, CRYPTO, volume 218 of Lecture Notes in Computer
Science, pages 340–349. Springer, 1985.

[FDS11] Jean-Charles Faugère, Mohab Safey El Din, and Pierre-Jean Spaenlehauer. Gröbner bases of
bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity.
J. Symb. Comput., 46(4):406–437, 2011.

[Fel71] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1, chapter 12.
John Wiley & Sons, 1971.

[FGLM93] Jean-Charles Faugère, Patrizia M. Gianni, Daniel Lazard, and Teo Mora. Efficient Computation
of Zero-Dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic Computation,
16(4):329–344, 1993.

288

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Bibliography

[Fis09] Marc Fischlin, editor. Topics in Cryptology - CT-RSA 2009, The Cryptographers’ Track at the
RSA Conference 2009, San Francisco, CA, USA, April 20-24, 2009. Proceedings, volume 5473
of Lecture Notes in Computer Science. Springer, 2009.

[FJ03] Jean-Charles Faugère and Antoine Joux. Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Gröbner Bases. In Boneh [Bon03], pages 44–60.

[FJPT10] Jean-Charles Faugère, Antoine Joux, Ludovic Perret, and Joana Treger. Cryptanalysis of
the hidden matrix cryptosystem. In Michel Abdalla and Paulo S. L. M. Barreto, editors,
LATINCRYPT, volume 6212 of Lecture Notes in Computer Science, pages 241–254. Springer,
2010.

[FK11] Jean-Christophe Filliâtre and K. Kalyanasundaram. Functory: A Distributed Computing Li-
braryfor Objective Caml. In Trends in Functional Programming, Madrid, Spain, May 2011.

[FKL+00] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay, David Wagner, and
Doug Whiting. Improved cryptanalysis of rijndael. In Bruce Schneier, editor, FSE, volume
1978 of Lecture Notes in Computer Science, pages 213–230. Springer, 2000.

[FL07] Marc Fischlin and Anja Lehmann. Security-amplifying combiners for collision-resistant hash
functions. In Menezes [Men07], pages 224–243.

[FLM10] Niels Ferguson, Stefan Lucks, and Kerry A. McKay. Symmetric States and their Structure:
Improved Analysis of CubeHash. Cryptology ePrint Archive, Report 2010/273, 2010. http:

//eprint.iacr.org/.

[FLN07] Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. Full key-recovery attacks on
hmac/nmac-md4 and nmac-md5. In Menezes [Men07], pages 13–30.

[FLPR99] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In FOCS, pages 285–298, 1999.

[FMRPS08] Pierre-Alain Fouque, Gilles Macario-Rat, Ludovic Perret, and Jacques Stern. Total break of
the `-ic signature scheme. In Cramer [Cra08], pages 1–17.

[FMRS08] Pierre-Alain Fouque, Gilles Macario-Rat, and Jacques Stern. Key Recovery on Hidden Mono-
mial Multivariate Schemes. In Smart [Sma08], pages 19–30.

[Fog10] Agner Fog. Instruction Tables. Copenhagen University, College of Engineering, Feb 2010. Lists
of Instruction Latencies, Throughputs and micro-operation breakdowns for Intel, AMD, and
VIA CPUs, http://www.agner.org/optimize/instruction_tables.pdf.

[For96] Scott Fortin. The graph isomorphism problem. Technical report, University of Alberta, 1996.

[FP06] Jean-Charles Faugère and Ludovic Perret. Polynomial Equivalence Problems: Algorithmic and
Theoretical Aspects. In Vaudenay [Vau06], pages 30–47.

[FP09] Thomas Fuhr and Thomas Peyrin. Cryptanalysis of radiogatún. In Dunkelman [Dun09], pages
122–138.

[Frö85] Ralf Fröberg. An inequality for hilbert series of graded algebras. Math. Scand., 56:117–144,
1985.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, 1986.

[Ful01] Jason Fulman. Random matrix theory over finite fields. Bull. Amer. Math. Soc. (N.S, 39:51–85,
2001.

[Fur01] Soichi Furuya. Slide attacks with a known-plaintext cryptanalysis. In Kim [Kim02], pages
214–225.

[Gam84] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. In CRYPTO, pages 10–18, 1984.

[Gan59] F. R. Gantmacher. The Theory of Matrices. Chelsea Publishing Company, New York, NY,
USA, 1959.

[Gei99] Jochen Geiger. Elementary new proofs of classical limit theorems for Galton-Watson processes.
J. Appl. Probab., 36(2):301–309, 1999.

289

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.agner.org/optimize/instruction_tables.pdf

Bibliography

[Geo92] J. Georgiades. Some remarks on the security of the identification scheme based on permuted
kernels. J. Cryptology, 5(2):133–137, 1992.

[Gil10] Henri Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, May
30 - June 3, 2010. Proceedings, volume 6110 of Lecture Notes in Computer Science. Springer,
2010.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of
NP-Completeness. Freeman, New-York, 1979.

[GJS06] Louis Granboulan, Antoine Joux, and Jacques Stern. Inverting HFE Is Quasipolynomial. In
Dwork [Dwo06], pages 345–356.

[GM02] Henri Gilbert and Marine Minier. Cryptanalysis of SFLASH. In Knudsen [Knu02], pages
288–298.

[GMK08] Danilo Gligoroski, Smile Markovski, and Svein Johan Knapskog. Multivariate quadratic trap-
door functions based on multivariate quadratic quasigroups. In Proceedings of the American
Conference on Applied Mathematics, pages 44–49, Stevens Point, Wisconsin, USA, 2008. World
Scientific and Engineering Academy and Society (WSEAS).

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In STOC, pages 291–304. ACM, 1985.

[GMS03] Willi Geiselmann, Willi Meier, and Rainer Steinwandt. An Attack on the Isomorphisms of
Polynomials Problem with One Secret. Int. J. Inf. Sec., 2(1):59–64, 2003.

[GMW86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design (extended abstract). In FOCS, pages
174–187. IEEE, 1986.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Cynthia Dwork, editor, STOC, pages 197–206. ACM, 2008.

[GR69] J Goldman and G-C Rota. The number of subspaces of a vector space. In in ”Recent Progress
in Combinatorics” (W. T. Tutte Ed, pages 75–84. Academic Press, 1969.

[GSB01] Willi Geiselmann, Rainer Steinwandt, and Thomas Beth. Attacking the Affine Parts of
SFLASH. In Bahram Honary, editor, IMA Int. Conf., volume 2260 of Lecture Notes in Com-
puter Science, pages 355–359. Springer, 2001.

[Hal09] Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of
Lecture Notes in Computer Science. Springer, 2009.

[Hel80] Martin E. Hellman. A cryptanalytic time-memory trade off. In IEEE Transactions on Infor-
mation Theory, volume IT-26, pages 401–406, 1980.

[HJ11] Martin Hell and Thomas Johansson. Breaking the stream ciphers f-fcsr-h and f-fcsr-16 in real
time. J. Cryptology, 24(3):427–445, 2011.

[HS06] Jonathan J. Hoch and Adi Shamir. Breaking the ice - finding multicollisions in iterated con-
catenated and expanded (ice) hash functions. In Robshaw [Rob06], pages 179–194.

[HS08] Jonathan J. Hoch and Adi Shamir. On the Strength of the Concatenated Hash Combiner When
All the Hash Functions Are Weak. In Aceto et al. [ADG+08], pages 616–630.

[Huy86] Dung T. Huynh. A superexponential lower bound for gröbner bases and church-rosser commu-
tative thue systems. Information and Control, 68(1-3):196 – 206, 1986.

[IF09] Kh. Ikramov and H. Fassbender. On the product of two skew-hamiltonian or two skew-
symmetric matrices. Journal of Mathematical Sciences, 157:697–700, 2009. 10.1007/s10958-
009-9352-z.

[Iso11] Takanori Isobe. A single-key attack on the full gost block cipher. In Antoine Joux, editor, FSE,
volume 19?? of Lecture Notes in Computer Science. Springer, 2011.

[JKJMR05] Antoine Joux, Sébastien Kunz-Jacques, Frédéric Muller, and Pierre-Michel Ricordel. Crypt-
analysis of the tractable rational map cryptosystem. In Vaudenay [Vau05b], pages 258–274.

[JL09] Antoine Joux and Stefan Lucks. Improved Generic Algorithms for 3-Collisions. In Matsui
[Mat09], pages 347–363.

290

Bibliography

[JLS04] Svante Janson, Stefano Lonardi, and Wojciech Szpankowski. On average sequence complexity.
Theor. Comput. Sci., 326(1-3):213–227, 2004.

[Jou04] Antoine Joux. Multicollisions in Iterated Hash Functions. Application to Cascaded Construc-
tions. In Matthew K. Franklin, editor, CRYPTO’04, volume 3152 of Lecture Notes in Computer
Science, pages 306–316. Springer, 2004.

[Jou09a] Antoine Joux, editor. Advances in Cryptology - EUROCRYPT 2009, 28th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany,
April 26-30, 2009. Proceedings, volume 5479 of Lecture Notes in Computer Science. Springer,
2009.

[Jou09b] Antoine Joux. Algorithmic Cryptanalysis. Chapman & Hall/CRC, 2009.

[JP07] Antoine Joux and Thomas Peyrin. Hash Functions and the (Amplified) Boomerang Attack. In
Menezes [Men07], pages 244–263.

[Jr.97] Burton S. Kaliski Jr., editor. Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997, Proceedings, vol-
ume 1294 of Lecture Notes in Computer Science. Springer, 1997.

[KBC97] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Message Authen-
tication. RFC2104, February 1997.

[KBN09] Dmitry Khovratovich, Alex Biryukov, and Ivica Nikolić. Speeding up Collision Search for
Byte-Oriented Hash Functions. In Fischlin [Fis09], pages 164–181.

[Kel04] Liam Keliher. Refined Analysis of Bounds Related to Linear and Differential Cryptanalysis for
the AES. In Dobbertin et al. [DRS05], pages 42–57.

[Ker92] Veikko Keränen. Abelian Squares are Avoidable on 4 Letters. In Werner Kuich, editor, ICALP,
volume 623 of Lecture Notes in Computer Science, pages 41–52. Springer, 1992.

[Kim02] Kwangjo Kim, editor. Information Security and Cryptology - ICISC 2001, 4th International
Conference Seoul, Korea, December 6-7, 2001, Proceedings, volume 2288 of Lecture Notes in
Computer Science. Springer, 2002.

[KJ07] Sébastien Kunz-Jacques. Preuves de sécurité et problèmes diffciles en cryptologie : études de
cas. PhD thesis, Université de Paris VII, 2007.

[KK06] John Kelsey and Tadayoshi Kohno. Herding Hash Functions and the Nostradamus Attack. In
Vaudenay [Vau06], pages 183–200.

[Kli06] Vlastimil Klima. Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology
ePrint Archive, Report 2006/105, 2006. http://eprint.iacr.org/.

[KM96] Klaus Kühnle and Ernst W. Mayr. Exponential space computation of gröbner bases. In ISSAC,
pages 63–71, 1996.

[KM99] Lars R. Knudsen and Willi Meier. Cryptanalysis of an identification scheme based on the
permuted perceptron problem. In EUROCRYPT, pages 363–374, 1999.

[KMNP11] Simon Knellwolf, Willi Meier, and Maŕıa Naya-Plasencia. Conditional differential cryptanalysis
of trivium and katan. In Selected Areas in Cryptography, August 2011.

[KMT01a] Liam Keliher, Henk Meijer, and Stafford E. Tavares. Improving the Upper Bound on the
Maximum Average Linear Hull Probability for Rijndael. In Serge Vaudenay and Amr M.
Youssef, editors, Selected Areas in Cryptography, volume 2259 of Lecture Notes in Computer
Science, pages 112–128. Springer, 2001.

[KMT01b] Liam Keliher, Henk Meijer, and Stafford E. Tavares. New Method for Upper Bounding the
Maximum Average Linear Hull Probability for SPNs. In Pfitzmann [Pfi01], pages 420–436.

[Knu02] Lars R. Knudsen, editor. Advances in Cryptology - EUROCRYPT 2002, International Con-
ference on the Theory and Applications of Cryptographic Techniques, Amsterdam, The Nether-
lands, April 28 - May 2, 2002, Proceedings, volume 2332 of Lecture Notes in Computer Science.
Springer, 2002.

[KP09] Eike Kiltz and Krzysztof Pietrzak. On the security of padding-based encryption schemes - or -
why we cannot prove oaep secure in the standard model. In Joux [Jou09a], pages 389–406.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar Signature
Schemes. In EUROCRYPT, pages 206–222, 1999.

291

http://eprint.iacr.org/

Bibliography

[KR07] Lars R. Knudsen and Vincent Rijmen. Known-key distinguishers for some block ciphers. In
Kurosawa [Kur07], pages 315–324.

[Kra98] Hugo Krawczyk, editor. Advances in Cryptology - CRYPTO ’98, 18th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings, vol-
ume 1462 of Lecture Notes in Computer Science. Springer, 1998.

[KS98] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil & vinegar signature scheme. In Krawczyk
[Kra98], pages 257–266.

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE Public Key Cryptosystem by Relin-
earization. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture Notes in Computer
Science, pages 19–30. Springer, 1999.

[KS05] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In Cramer [Cra05], pages 474–490.

[Kur07] Kaoru Kurosawa, editor. Advances in Cryptology - ASIACRYPT 2007, 13th International
Conference on the Theory and Application of Cryptology and Information Security, Kuching,
Malaysia, December 2-6, 2007, Proceedings, volume 4833 of Lecture Notes in Computer Science.
Springer, 2007.

[KW03] Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight
security reductions. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger, editors, ACM
Conference on Computer and Communications Security, pages 155–164. ACM, 2003.

[Laz83] Daniel Lazard. Gröbner-bases, gaussian elimination and resolution of systems of algebraic
equations. In J. A. van Hulzen, editor, EUROCAL, volume 162 of Lecture Notes in Computer
Science, pages 146–156. Springer, 1983.

[LBF08] Gaëtan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. SIMD Is a Message Digest.
Submission to NIST, 2008.

[LC06] Xuejia Lai and Kefei Chen, editors. Advances in Cryptology - ASIACRYPT 2006, 12th Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
Shanghai, China, December 3-7, 2006, Proceedings, volume 4284 of Lecture Notes in Computer
Science. Springer, 2006.

[LDKK08] Jiqiang Lu, Orr Dunkelman, Nathan Keller, and Jongsung Kim. New impossible differential
attacks on aes. In Dipanwita Roy Chowdhury, Vincent Rijmen, and Abhijit Das, editors,
INDOCRYPT, volume 5365 of Lecture Notes in Computer Science, pages 279–293. Springer,
2008.

[Lee04] Pil Joong Lee, editor. Advances in Cryptology - ASIACRYPT 2004, 10th International Con-
ference on the Theory and Application of Cryptology and Information Security, Jeju Island,
Korea, December 5-9, 2004, Proceedings, volume 3329 of Lecture Notes in Computer Science.
Springer, 2004.

[Leu08a] Gaëtan Leurent. Md4 is not one-way. In Nyberg [Nyb08], pages 412–428.

[Leu08b] Gaëtan Leurent. Practical key-recovery attack against APOP, an MD5-based challenge-response
authentication. IJACT, 1(1):32–46, 2008.

[Lis06] Moses Liskov. Constructing an ideal hash function from weak ideal compression functions. In
Biham and Youssef [BY07], pages 358–375.

[LLMP93] A. Lenstra, H. Lenstra, M. Manasse, and J. Pollard. The number field sieve. In Arjen Lenstra
and Hendrik Lenstra, editors, The development of the number field sieve, volume 1554 of Lecture
Notes in Mathematics, pages 11–42. Springer Berlin / Heidelberg, 1993.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite fields. Cambridge University Press, New York, NY,
USA, 1997.

[LN09] Gaëtan Leurent and Phong Q. Nguyen. How risky is the random-oracle model? In Halevi
[Hal09], pages 445–464.

[Luc05] Stefan Lucks. A Failure-Friendly Design Principle for Hash Functions. In Roy [Roy05], pages
474–494.

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks. In
Cramer [Cra08], pages 162–179.

292

Bibliography

[Mac69] Jessie MacWilliams. Orthogonal matrices over finite fields. The American Mathematical
Monthly, 76(2):152–164, 1969.

[Mat93] Mitsuru Matsui. Linear cryptoanalysis method for des cipher. In EUROCRYPT, pages 386–397,
1993.

[Mat09] Mitsuru Matsui, editor. Advances in Cryptology - ASIACRYPT 2009, 15th International Con-
ference on the Theory and Application of Cryptology and Information Security, Tokyo, Japan,
December 6-10, 2009. Proceedings, volume 5912 of Lecture Notes in Computer Science. Springer,
2009.

[May89] Ernst W. Mayr. Membership in plynomial ideals over q is exponential space complete. In
Burkhard Monien and Robert Cori, editors, STACS, volume 349 of Lecture Notes in Computer
Science, pages 400–406. Springer, 1989.

[May95] Ernst W. Mayr. On polynomial ideals, their complexity, and applications. In Horst Reichel,
editor, FCT, volume 965 of Lecture Notes in Computer Science, pages 89–105. Springer, 1995.

[McE78] Robert McEliece. A Public-Key Cryptosystem Based on Algebraic Coding Theory, 1978. DSN
Progress Report 42-44.

[MDBW09] Mohamed Mohamed, Jintai Ding, Johannes Buchmann, and Fabian Werner. Algebraic attack
on the mqq public key cryptosystem. In Juan Garay, Atsuko Miyaji, and Akira Otsuka, editors,
Cryptology and Network Security, volume 5888 of Lecture Notes in Computer Science, pages
392–401. Springer Berlin / Heidelberg, 2009.

[Men07] Alfred Menezes, editor. Advances in Cryptology - CRYPTO 2007, 27th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007, Proceedings, volume
4622 of Lecture Notes in Computer Science. Springer, 2007.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [Bra90], pages 428–446.

[MGH+05] Michael B. Monagan, Keith O. Geddes, K. Michael Heal, George Labahn, Stefan M. Vorkoetter,
James McCarron, and Paul DeMarco. Maple 10 Programming Guide. Maplesoft, Waterloo ON,
Canada, 2005.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public Quadratic Polynominal-Tuples for Efficient
Signature-Verification and Message-Encryption. In EUROCRYPT, pages 419–453, 1988.

[Mir01] Ilya Mironov. Hash functions: From merkle-damg̊ard to shoup. In Pfitzmann [Pfi01], pages
166–181.

[MM82] Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in Mathematics, 46(3):305 – 329, 1982.

[MP08] Stéphane Manuel and Thomas Peyrin. Collisions on sha-0 in one hour. In Nyberg [Nyb08],
pages 16–35.

[MR02] Sean Murphy and Matthew J. B. Robshaw. Essential Algebraic Structure within the AES. In
Yung [Yun02], pages 1–16.

[MR10] Gilles Macario-Rat. Cryptanalyse de schémas multivariés et résolution du problème Isomor-
phisme de Polynômes. PhD thesis, Université Paris Diderot — Paris 7, June 2010.

[MRH04] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, Impossibility
Results on Reductions, and Applications to the Random Oracle Methodology. In Moni Naor,
editor, TCC, volume 2951 of Lecture Notes in Computer Science, pages 21–39. Springer, 2004.

[MRV99] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In FOCS,
pages 120–130, 1999.

[MV04] Jean Monnerat and Serge Vaudenay. On Some Weak Extensions of AES and BES. In Javier
Lopez, Sihan Qing, and Eiji Okamoto, editors, ICICS, volume 3269 of Lecture Notes in Com-
puter Science, pages 414–426. Springer, 2004.

[MvOV] A. Menezes, P van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.

[Nac01] David Naccache, editor. Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at
RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings, volume 2020
of Lecture Notes in Computer Science. Springer, 2001.

293

Bibliography

[Nao07] Moni Naor, editor. Advances in Cryptology - EUROCRYPT 2007, 26th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain,
May 20-24, 2007, Proceedings, volume 4515 of Lecture Notes in Computer Science. Springer,
2007.

[Nie02] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The
non-committing encryption case. In Yung [Yun02], pages 111–126.

[NIS01] NIST. Advanced Encryption Standard (AES), FIPS 197. Technical report, NIST, November
2001.

[Niv04] Gabriel Nivasch. Cycle detection using a stack. Inf. Process. Lett., 90(3):135–140, 2004.

[NS07] Mridul Nandi and Douglas R. Stinson. Multicollision attacks on some generalized sequential
hash functions. IEEE Transactions on Information Theory, 53(2):759–767, 2007.

[NY89] Moni Naor and Moti Yung. Universal One-Way Hash Functions and their Cryptographic Ap-
plications. In STOC, pages 33–43. ACM, 1989.

[Nyb08] Kaisa Nyberg, editor. Fast Software Encryption, 15th International Workshop, FSE 2008,
Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, volume 5086 of Lecture
Notes in Computer Science. Springer, 2008.

[OK09] Özgul Küçük. The Hash Function Hamsi. Submission to NIST, 2009.

[Ore34] O. Ore. Contributions to The Theory of Finite Fields. Transactions A. M. S., 36:243–274,
1934.

[OSS84a] H. Ong, Claus-Peter Schnorr, and Adi Shamir. An efficient signature scheme based on quadratic
equations. In STOC, pages 208–216. ACM, 1984.

[OSS84b] H. Ong, Claus-Peter Schnorr, and Adi Shamir. Efficient signature schemes based on polynomial
equations. In CRYPTO, pages 37–46, 1984.

[Pak71] A. G. Pakes. Some limit theorems for the total progeny of a branching process. Advances in
Applied Probability, 3(1):176–192, 1971.

[Pan84] J.-J. Pansiot. Complexité des facteurs des mots infinis engendrés par morphismes itérés. In
Jan Paredaens, editor, 11th ICALP, Antwerpen, volume 172 of LNCS, pages 380–389. Springer,
july 1984.

[Pat95] Jacques Patarin. Cryptoanalysis of the Matsumoto and Imai Public Key Scheme of Euro-
crypt’88. In Don Coppersmith, editor, CRYPTO, volume 963 of Lecture Notes in Computer
Science, pages 248–261. Springer, 1995.

[Pat96a] Jacques Patarin. Asymmetric cryptography with a hidden monomial. In Neal Koblitz, editor,
CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 45–60. Springer, 1996.

[Pat96b] Jacques Patarin. Hidden fields equations (hfe) and isomorphisms of polynomials (ip): Two new
families of asymmetric algorithms. In EUROCRYPT, pages 33–48, 1996.

[Pat96c] Jacques Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two
New Families of Asymmetric Algorithms. In EUROCRYPT, pages 33–48, 1996. Etended version
available on http://www.minrank.org/hfe.pdf.

[Pat97] Jacques Patarin. The Oil and Vinegar signature scheme. presented at the Dagstuhl Workshop
on Cryptography, 1997.

[PC93] Jacques Patarin and Pascal Chauvaud. Improved algorithms for the permuted kernel problem.
In Stinson [Sti94], pages 391–402.

[PCG01a] Jacques Patarin, Nicolas Courtois, and Louis Goubin. Flash, a fast multivariate signature
algorithm. In Naccache [Nac01], pages 298–307.

[PCG01b] Jacques Patarin, Nicolas Courtois, and Louis Goubin. QUARTZ, 128-Bit Long Digital Signa-
tures. In Naccache [Nac01], pages 282–297.

[Per05] Ludovic Perret. A Fast Cryptanalysis of the Isomorphism of Polynomials with One Secret
Problem. In Cramer [Cra05], pages 354–370.

[Pey07] Thomas Peyrin. Cryptanalysis of grindahl. In Kurosawa [Kur07], pages 551–567.

294

http://www.minrank.org/hfe.pdf

Bibliography

[Pfi01] Birgit Pfitzmann, editor. Advances in Cryptology - EUROCRYPT 2001, International Con-
ference on the Theory and Application of Cryptographic Techniques, Innsbruck, Austria, May
6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer Science. Springer, 2001.

[PG97] Jacques Patarin and Louis Goubin. Asymmetric cryptography with s-boxes. In Yongfei Han,
Tatsuaki Okamoto, and Sihan Qing, editors, ICICS, volume 1334 of Lecture Notes in Computer
Science, pages 369–380. Springer, 1997.

[PGC98a] Jacques Patarin, Louis Goubin, and Nicolas Courtois. c* -+ and hm: Variations around two
schemes of t. matsumoto and h. imai. In Kazuo Ohta and Dingyi Pei, editors, ASIACRYPT,
volume 1514 of Lecture Notes in Computer Science, pages 35–49. Springer, 1998.

[PGC98b] Jacques Patarin, Louis Goubin, and Nicolas Courtois. Improved Algorithms for Isomorphisms
of Polynomials. In EUROCRYPT, pages 184–200, 1998.

[PGV93] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers: A
synthetic approach. In Stinson [Sti94], pages 368–378.

[Pie07] Krzysztof Pietrzak. Non-trivial black-box combiners for collision-resistant hash-functions don’t
exist. In Naor [Nao07], pages 23–33.

[Pie08] Josef Pieprzyk, editor. Advances in Cryptology - ASIACRYPT 2008, 14th International Con-
ference on the Theory and Application of Cryptology and Information Security, Melbourne,
Australia, December 7-11, 2008. Proceedings, volume 5350 of Lecture Notes in Computer Sci-
ence. Springer, 2008.

[Ple70] P. A. Pleasants. Non-repetitive sequences. Mat. Proc. Camb. Phil. Soc., 68:267–274, 1970.

[Poi95] David Pointcheval. A new identification scheme based on the perceptrons problem. In EURO-
CRYPT, pages 319–328, 1995.

[PQ03] Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD. In Colin D. Walter, Çetin Kaya Koç,
and Christof Paar, editors, CHES, volume 2779 of Lecture Notes in Computer Science, pages
77–88. Springer, 2003.

[Pre93] B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis, Katholieke Uni-
versiteit Leuven, 1993.

[Pre00] Bart Preneel, editor. Advances in Cryptology - EUROCRYPT 2000, International Conference
on the Theory and Application of Cryptographic Techniques, Bruges, Belgium, May 14-18,
2000, Proceeding, volume 1807 of Lecture Notes in Computer Science. Springer, 2000.

[PSC+02] Sangwoo Park, Soo Hak Sung, Seongtaek Chee, E-Joong Yoon, and Jongin Lim. On the security
of rijndael-like structures against differential and linear cryptanalysis. In Zheng [Zhe02], pages
176–191.

[PSLL03] Sangwoo Park, Soo Hak Sung, Sangjin Lee, and Jongin Lim. Improving the Upper Bound on
the Maximum Differential and the Maximum Linear Hull Probability for SPN Structures and
AES. In Thomas Johansson, editor, FSE, volume 2887 of Lecture Notes in Computer Science,
pages 247–260. Springer, 2003.

[PV05] Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent to
discrete log. In Roy [Roy05], pages 1–20.

[Rab78] Michael O. Rabin. Digitalized signatures. In Richard A. DeMillo, Richard J. Lipton, David P.
Dobkin, and Anita K. Jones, editors, Foundations of Secure Computation, pages 155–168, New
York, USA, 1978. Academic Press, Inc.

[Rad07] H̊avard Raddum. Mrhs equation systems. In Adams et al. [AMW07], pages 232–245.

[Rit22] J. F. Ritt. Prime and Composite Polynomials. American M. S. Trans., 23:51–66, 1922.

[Riv05] Ronald L. Rivest. Abelian Square-Free Dithering for Iterated Hash Functions. Presented at
ECrypt Hash Function Workshop, June 21, 2005, Cracow, and at the Cryptographic Hash
workshop, November 1, 2005, Gaithersburg, Maryland, August 2005.

[Rob06] Matthew J. B. Robshaw, editor. Fast Software Encryption, 13th International Workshop, FSE
2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers, volume 4047 of Lecture Notes
in Computer Science. Springer, 2006.

295

Bibliography

[Rog06] Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor, VIETCRYPT,
volume 4341 of Lecture Notes in Computer Science, pages 211–228. Springer, 2006.

[Rog11] Phillip Rogaway, editor. Advances in Cryptology - CRYPTO 2011, 31th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture
Notes in Computer Science. Springer, 2011.

[Roy05] Bimal K. Roy, editor. Advances in Cryptology - ASIACRYPT 2005, 11th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Chennai, India,
December 4-8, 2005, Proceedings, volume 3788 of Lecture Notes in Computer Science. Springer,
2005.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Basics: Definitions,
Implications, and Separations for Preimage Resistance, Second-Preimage Resistance, and Col-
lision Resistance. In Bimal K. Roy and Willi Meier, editors, FSE, volume 3017 of Lecture Notes
in Computer Science, pages 371–388. Springer, 2004.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[RSS11] Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with composition: Lim-
itations of the indifferentiability framework. In Kenneth G. Paterson, editor, EUROCRYPT,
volume 6632 of Lecture Notes in Computer Science, pages 487–506. Springer, 2011.

[SA09] Yu Sasaki and Kazumaro Aoki. Finding preimages in full md5 faster than exhaustive search.
In Joux [Jou09a], pages 134–152.

[Sem07] Igor Semaev. On solving sparse algebraic equations over finite fields (part ii). Cryptology ePrint
Archive, Report 2007/280, 2007. http://eprint.iacr.org/.

[SG03] Andrey V. Sidorenko and Ernst M. Gabidulin. The Weak Keys For HFE. In 7th International
Symposium on Communication Theory and Applications, pages 239–244, 2003.

[Sha49] Claude E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal,
28:656–715, 1949.

[Sha89] Adi Shamir. An efficient identification scheme based on permuted kernels (extended abstract).
In Brassard [Bra90], pages 606–609.

[SHJ09] Paul Stankovski, Martin Hell, and Thomas Johansson. An efficient state recovery attack on
x-fcsr-256. In Dunkelman [Dun09], pages 23–37.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM J. Comput., 26(5):1484–1509, 1997.

[Sho00a] Victor Shoup. A Composition Theorem for Universal One-Way Hash Functions. In Preneel
[Pre00], pages 445–452.

[Sho00b] Victor Shoup. Using hash functions as a hedge against chosen ciphertext attack. In Preneel
[Pre00], pages 275–288.

[Sho05] Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005: 25th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, vol-
ume 3621 of Lecture Notes in Computer Science. Springer, 2005.

[Sho09] Victor Shoup. A Computational Introduction to Number Theory and Algebra. Cambridge
University Press, New York, NY, USA, 2009.

[SKPI07] Makoto Sugita, Mitsuru Kawazoe, Ludovic Perret, and Hideki Imai. Algebraic cryptanalysis of
58-round sha-1. In Biryukov [Bir07], pages 349–365.

[SLdW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-Prefix Collisions for MD5 and
Colliding X.509 Certificates for Different Identities. In Naor [Nao07], pages 1–22.

[Sma08] Nigel P. Smart, editor. Advances in Cryptology - EUROCRYPT 2008, 27th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Istanbul,
Turkey, April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes in Computer Science.
Springer, 2008.

[SS08] Thomas Shrimpton and Martijn Stam. Building a collision-resistant compression function from
non-compressing primitives. In Aceto et al. [ADG+08], pages 643–654.

296

http://eprint.iacr.org/

Bibliography

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra, David Molnar,
Dag Arne Osvik, and Benne de Weger. Short chosen-prefix collisions for md5 and the cre-
ation of a rogue ca certificate. In Halevi [Hal09], pages 55–69.

[SSH11] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. Public-key identification schemes based
on multivariate quadratic polynomials. In Rogaway [Rog11], pages 706–723.

[Sta86] R P Stanley. Enumerative combinatorics. Wadsworth Publ. Co., Belmont, CA, USA, 1986.

[Ste22] H. Stenzen. Über die darstellbarkeit einer matrix als produkt von zwei symmetrischer matrizen,
als produkt von zwei alternierenden matrizen und als produkt von einer symmetrischen und
einer alternierenden matrix. Math. Z., 15:1–25, 1922.

[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding. In Stinson [Sti94],
pages 13–21.

[Ste94] Jacques Stern. Designing identification schemes with keys of short size. In Yvo Desmedt, editor,
CRYPTO, volume 839 of Lecture Notes in Computer Science, pages 164–173. Springer, 1994.

[Sti94] Douglas R. Stinson, editor. Advances in Cryptology - CRYPTO ’93, 13th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, vol-
ume 773 of Lecture Notes in Computer Science. Springer, 1994.

[TC86] Ren Ji Tao and Shi Hua Chen. Two varieties of finite automaton public key cryptosystem and
digital signatures. Journal of computer science and technology, 1(1):9–18, 1986.

[TCHP08] Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. Simpler linear-time
modular decomposition via recursive factorizing permutations. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, edi-
tors, ICALP (1), volume 5125 of Lecture Notes in Computer Science, pages 634–645. Springer,
2008.

[Vau05a] Serge Vaudenay. A Classical Introduction to Cryptography: Applications for Communications
Security. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[Vau05b] Serge Vaudenay, editor. Public Key Cryptography - PKC 2005, 8th International Workshop on
Theory and Practice in Public Key Cryptography, Les Diablerets, Switzerland, January 23-26,
2005, Proceedings, volume 3386 of Lecture Notes in Computer Science. Springer, 2005.

[Vau06] Serge Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006, 25th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg,
Russia, May 28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science.
Springer, 2006.

[vL00] Charles F. van Loan. The ubiquitous kronecker product. J. Comput. Appl. Math., 123:85–100,
November 2000.

[vRS06] H̊avard Raddum and Igor Semaev. New technique for solving sparse equation systems. Cryp-
tology ePrint Archive, Report 2006/475, 2006. http://eprint.iacr.org/.

[vzG90a] Joachim von zur Gathen. Functional Decomposition of Polynomials: The Tame Case. J. Symb.
Comput., 9(3):281–299, 1990.

[vzG90b] Joachim von zur Gathen. Functional Decomposition of Polynomials: The Wild Case. J. Symb.
Comput., 10(5):437–452, 1990.

[War35] Ewald Warning. Bemerkung zur vorstehenden Arbeit von Herrn Chevalley. Abh. Math. Semin.
Hamb. Univ., 11:76–83, 1935.

[Wei] Eric W. Weisstein. ”q-analog”. From MathWorld–A Wolfram Web Resource. ”http:
//mathworld.wolfram.com/q-Analog.html”.

[WHL+05] Lih-Chung Wang, Yuh-Hua Hu, Feipei Lai, Chun yen Chou, and Bo-Yin Yang. Tractable
rational map signature. In Vaudenay [Vau05b], pages 244–257.

[Wik11] Wikipedia. Hash function — wikipedia, the free encyclopedia, 2011. [Online; accessed 20-May-
2011].

[Wil80] Hugh C. Williams. A modification of the rsa public-key encryption procedure. IEEE Transac-
tions on Information Theory, 26:726–729, 1980.

[Win84] Robert S. Winternitz. A Secure One-Way Hash Function Built from DES. In IEEE Symposium
on Security and Privacy, pages 88–90, 1984.

297

http://eprint.iacr.org/
http://mathworld.wolfram.com/q-Analog.html
http://mathworld.wolfram.com/q-Analog.html

Bibliography

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Cryptanalysis of the
Hash Functions MD4 and RIPEMD. In Cramer [Cra05], pages 1–18.

[WM97] David Wolpert and William G. Macready. No Free Lunch Theorems for Optimization. IEEE
Trans. Evolutionary Computation, 1(1):67–82, 1997.

[WP05a] Christopher Wolf and Bart Preneel. Large Superfluous Keys in Multivariate Quadratic Asym-
metric Systems. In Vaudenay [Vau05b], pages 275–287.

[WP05b] Christopher Wolf and Bart Preneel. Taxonomy of Public Key Schemes Based on the Problem
of Multivariate Quadratic Equations. Cryptology ePrint Archive, Report 2005/077, 2005.

[WY05] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Functions. In Cramer
[Cra05], pages 19–35.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full SHA-1. In
Shoup [Sho05], pages 17–36.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient Collision Search Attacks on SHA-0.
In Shoup [Sho05], pages 1–16.

[WZ92] Herbert Wilf and Doron Zeilberger. An algorithmic proof theory for hypergeometric (ordi-
nary and ”q”) multisum/integral identities. Inventiones Mathematicae, 108:575–633, 1992.
10.1007/BF02100618.

[Yas08] Kan Yasuda. How to fill up merkle-damg̊ard hash functions. In Pieprzyk [Pie08], pages 272–289.

[Yun02] Moti Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings, volume
2442 of Lecture Notes in Computer Science. Springer, 2002.

[YWJ+09] Zheng Yuan, Wei Wang, Keting Jia, Guangwu Xu, and Xiaoyun Wang. New Birthday Attacks
on Some MACs Based on Block Ciphers. In Halevi [Hal09], pages 209–230.

[Zhe02] Yuliang Zheng, editor. Advances in Cryptology - ASIACRYPT 2002, 8th International Confer-
ence on the Theory and Application of Cryptology and Information Security, Queenstown, New
Zealand, December 1-5, 2002, Proceedings, volume 2501 of Lecture Notes in Computer Science.
Springer, 2002.

298

Résumé

La cryptanalyse, anciennement l’art de déchiffrer les codes secrets, est aujourd’hui comprise dans un
sens plus large, qui consiste à trouver toute sorte de défauts, des plus légers jusqu’au plus graves, dans des
constructions cryptographiques. Cette thèse s’articule en trois partie, chacune consacrée à une famille de
primitives cryptographiques.

Les fonctions de hachage sont généralement des constructions itérées, où une brique de base est utilisée de
façon répétée, conformément à mode opératoire. En 2004, 2005 et 2006, l’apparition d’attaques génériques,
visant spécialement le mode opératoire de Merkle-Damg̊ard, le plus répandu, a suscité des propositions de
modes opératoires alternatifs. Les attaques génériques exploitent principalement le fait que l’état interne des
fonctions de hachage a la même taille que leur sortie, ce qui permet de trouver et d’exploiter des collisions
internes. Nos résultats tendent à montrer que cette difficulté est difficile à lever, car nous parvenons à monter
des attaques en seconde préimage contre des tentatives, parfois exotiques, de “réparer” la construction de
Merkle-Damg̊ard.

Dans une deuxième partie, nous nous intéressons à la cryptanalyse du système de chiffrement par bloc le
plus répandu (l’AES). Nous nous plaçons dans un modèle assez restrictif où la quantité de paires clair/chiffré
disponible pour l’attaquant est très faible. Cela nous condamne à étudier des versions fortement réduites de
l’AES, mais cela rend les attaques obtenues plus facilement réutilisables dans d’autres contextes. Nous avons
construit des outils automatiques pour nous assister dans la recherche d’attaques par test d’hypothèses
partielles et d’attaques par le milieu. Ces outils ont découverts des attaques surprenantes, qui sont plus
efficaces que celles qui avaient été trouvées manuellement par d’autres chercheurs. Nous obtenons ainsi la
meilleure attaque connue contre la fonction d’authentification Pelican-MAC et contre le système de chiffrement
par flot LEX.

La dernière partie de cette thèse est consacrée à la cryptanalyse de schémas multivariés, c’est-à-dire
reposant explicitement sur la difficulté de résoudre des systèmes polynomiaux en plusieurs variables. Certains
de ces schémas reposent aussi sur une autre hypothèse algorithmiques, la difficulté problème de l’Equivalence
Linéaire de Polynômes (PLE). En combinant des outils de l’algèbre linéaire et de la géométrie algébrique avec
des techniques statistiques et combinatoires, nous construisons de nouveaux algorithmes plus efficace pour
PLE. Ceci montre qu’un schéma dont la sécurité reposerait sur PLE ne peut pas exhiber un niveau de sécurité
optimal. Ces algorithmes permettent également de casser en pratique la variante “sous-corps” de HFE.

Abstract

Cryptanalysis, formerly known as the art of deciphering secret codes, is now understood in a broader
sense: it consists in finding flaws of all kinds, either harmless or severe, in cryptographic constructions. This
thesis is made of three parts, devoted to the study of different families of cryptographic primitives.

Hash functions are usually iterated constructions, where a building block is used in a repeated way, as
specified by a mode of operation. In 2004, 2005 and 2006, the discovery of several generic attacks, targeting
the ubiquitous Merkle-Damg̊ard mode of operation, prompted researchers to design alternative modes of
operations. Generic attacks exploit the fact that the internal state of the hash functions has the same size as
the digests. This allows the attackers to find internal collisions and exploit them. Our results tend to show
that this problem is difficult to avoid in general: in the first part of this thesis, we describe several generic
second preimage attacks against proposals to repair or patch the Merkle-Damg̊ard construction in order to
precisely avoid generic attacks.

In the second part, we focus on the cryptanalysis of the AES, the most popular block cipher. We consider
a somewhat restrictive attack model where the attacker only has access to very few plaintext/ciphertext
pairs. We are thus condemned to attack only highly reduced version of the full cipher, but the attacks we
find in this model can sometimes be reused in other contexts. We have built software tools to assist us in
finding guess-and-determine as well as meet-in-the-middle attacks. These tools found surprising attacks that
are more efficient than those found manually by other cryptanalysts. For instance, we find the best known
attacks against the Message Authentication Code Pelican-MAC, and against the stream cipher LEX.

The last part of this thesis is devoted to the cryptanalysis of multivariate schemes. This label covers all
the schemes whose security explicitly relies on the hardness of solving systems of polynomial equations in
several unknowns. Some multivariate scheme also rely on another hardness assumption, namely the hardness
of the Polynomial Linear Equivalence (PLE) problem. We build new algorithms to solve PLE problems by
combining tools from linear algebra and algebraic geometry with combinatorial and statistical techniques.
Our algorithms show that a multivariate scheme relying on the hardness of PLE cannot exhibit an optimal
security level. These algorithms also allow to break in practice the “subfield” variant of HFE.

	Sommaire
	Table des Matières
	Introduction
	Présentation de mes Travaux
	Etude de modes opératoires pour les fonctions de hachage
	Recherche automatiques d'attaques sur des versions réduites de l'AES
	Étude de problèmes difficiles en cryptographie multivariée
	Mes publications

	Modes of Operations of Hash Functions
	Introduction
	Modes of Operations and Generic Attacks
	Generalities
	The Merkle-Damgård construction and its Security
	Generic Attacks Against Merkle-Damgård
	Close Relatives of the Merkle-Damgård Construction
	Other Hash Function Modes of Operation

	New Generic Second Preimage Attacks
	A New Generic Second Preimage Attack Against Merkle-Damgård
	Application to Dithered Hashing
	Application to Shoup's UOWHF

	Other Generic Attacks on Other Constructions
	Herding Concatenated Hashes
	Herding Some Non-Streamable Modes of Operations
	A Generic Second Preimage Attack on Merkle-Damgård-Again
	The Trojan Message Attack

	Time-Memory Tradeoffs for Second Preimage Attacks
	Hellman's Time-Memory Tradeoff Attack
	Time-Memory-Data Tradeoffs For Second Preimage Attacks
	Dealing with High Complexity Dithering Sequences

	Provable Security for Modes of Operations
	Second-Preimage Resistance in the Random Oracle Model
	Unavoidable Security Loss in Black-Box Reductions
	Indifferentiability in the Presence of Distinguishers

	Computer-Aided Cryptanalysis of Byte-Oriented Primitives
	Automated Tools For Low Data Complexity Attacks on AES Derivatives
	Description of the AES
	A preliminary Tool for Simple Guess-And-Determine Attacks
	An Improved Tool for Meet-In-The-Middle Attacks

	A Collection of Low Data Complexity Attacks on AES-Derivatives
	Observations on the Structure of AES
	Attacks on One-Round AES
	Attacks on Two-Round AES
	Attacks on Three-Round AES
	Attacks on Four-Round AES
	Differential Attack on 6-Round AES
	A Forgery Attack Against Pelican-MAC
	A Key-Recovery Attack Against LEX
	Implementations

	Analysis of Hardness Assumptions in Multivariate Cryptography
	A Toolbox for Multivariate Cryptanalysis
	Finite Fields and Vector Spaces
	Multivariate Polynomials
	Gröbner Bases
	Solving Polynomial Systems Using Gröbner Bases
	Regular and Semi-Regular Sequences
	Complexity of Gröbner Bases Computation
	Finite Vector Spaces Combinatorics

	Exhaustive Search for Boolean Equations
	Generalities
	Known Techniques for Quadratic Polynomials
	A Faster Enumeration Algorithm
	Finding the Common Zeroes of Several Multivariate Polynomials
	Spatial and Temporal Proximity
	Parallelization-Related Issues
	Implementations

	``Isomorphism of Polynomials'' problems
	Cryptographic Usage
	Taxonomy
	Challenges

	Revisiting Prior Algorithms for PLE
	Going To-and-Fro
	The Gröbner-Basis Algorithm
	The ``Columnwise Sieve'' Algorithm
	The ``Algebraic Columnwise Sieve'' Algorithm
	A Revolution in the QFSE World : the Jacobian Algorithm

	A General Method for Quadratic PLE: Matrix Pencils
	More Linear Algebra Background
	Dimension of Matrix Pencils Solution Spaces.
	Expected Dimension of V.
	Computational Cost of Determining V
	Complexity of Generating The Resulting Polynomial Equations

	Simultaneous Equivalence of Quadratic Forms
	Specializing the Pencil Strategy
	Complexity Analysis for Odd q
	Analysis for even q
	Solving the Quadratic Equations
	Implementation and Practical Results

	Equivalence of Cubic Forms
	Proof of the Theorem

	Linear Equivalence of Inhomogeneous Quadratic Maps
	To-and-Fro Without Exponentially-Expensive Inversions
	A Pencil-Based Approach
	An IQMLE Library in MAGMA

	Linear Equivalence of Homogeneous Quadratic Maps
	The Global Strategy: Dehomogenization
	Distribution of the Rank of the Differential
	Sieving With Adjacent Vertices
	Sieving Using Whole Neighborhoods

	A Class of Weak Keys in HFE
	Hidden Field Equations
	A Specific Family of HFE Secret Polynomials
	The Key-Recovery
	Applications and Experiments

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

