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Stratégies pour économiser la mémoire lors de l’apprentissage
dans les réseaux neuronaux profonds

Résumé : L’intelligence artificielle est un domaine qui a reçu beaucoup d’attention récemment. Son succès
est dû aux progrès du Deep Learning, un sous-domaine qui réunit des méthodes d’apprentissage automatique
basées sur les réseaux neuronaux. Ces réseaux neuronaux ont prouvé leur efficacité pour résoudre des
problèmes très complexes dans différents domaines. Cependant, leur efficacité pour résoudre des problèmes
dépend d’un certain nombre de facteurs : l’architecture du modèle, sa taille, comment et où l’entraînement a
été effectué. La plupart des études indiquent que les modèles les plus gros permettent d’obtenir une meilleure
précision, mais ils sont également plus coûteux à entraîner. Les principaux défis sont liés à la puissance de
calcul et à la mémoire restreinte des machines : si le modèle est trop grand, son apprentissage peut prendre
beaucoup de temps (des jours, voire des mois) ou, dans le pire des cas, il peut même ne pas tenir en mémoire.
Pendant l’apprentissage, il est nécessaire de stocker à la fois les poids (paramètres du modèle), les activations
(données calculées intermédiaires) et les états de l’optimiseur.

Cette situation offre plusieurs opportunités pour traiter les problèmes de mémoire, en fonction de leur
origine. L’apprentissage peut être distribué sur plusieurs ressources de la plate-forme de calcul, et différentes
techniques de parallélisation offrent différentes manières de distribuer la mémoire. En outre, les structures
de données qui restent inactives pendant une longue période peuvent être temporairement déchargées vers
un espace de stockage plus important, avec la possibilité de les récupérer ultérieurement (stratégies de
déchargement). Enfin, les activations qui sont calculées à chaque itération peuvent être supprimées et
recalculées plusieurs fois au cours de celle-ci (stratégies de rematérialisation). Les stratégies pour économiser
la mémoire induisent généralement un surcoût en temps par rapport à l’exécution directe, par conséquent
des problèmes d’optimisation doivent être considérés afin de choisir la meilleure approche pour chaque
stratégie. Dans ce manuscrit, nous formulons et analysons des problèmes d’optimisation en relation avec
diverses méthodes visant à réduire la consommation de mémoire pendant le processus d’apprentissage. En
particulier, nous nous concentrons sur les stratégies de rematérialisation, de déchargement d’activations et de
parallélisme de modèles pipelinés ; pour chacune d’entre elles, nous concevons les solutions optimales sous un
ensemble d’hypothèses. Enfin, nous proposons un outil entièrement fonctionnel appelé rotor qui combine
le déchargement d’activations et la rematérialisation et qui peut être utilisé pour l’entraînement de grands
modèles avec une surcharge minimale dans PyTorch, des modèles qui autrement ne tiendraient pas dans la
mémoire.
Mots-clés : Apprentissage profond, Rétropropagation, Rematérialisation, Déchargement, Parallélisme du
modèle en pipeline



Memory Saving Strategies for Deep Neural Network Training

Abstract: Artificial Intelligence is a field that has received a lot of attention recently. Its success is due
to advances in Deep Learning, a sub-field that groups together machine learning methods based on neural
networks. These neural networks have proven to be effective in solving very complex problems in different
domains. However, their effectiveness depends on a number of factors: the architecture of the model, its
size, how and where the training is performed... Most studies indicate that the large models are more likely
to achieve the smallest error, but they are also more difficult to train. The main challenges are related to
insufficient computational power and limited memory of the machines: if the model is too large then it can
take a long time to be trained (days or even months), or it cannot even fit in memory in the worst case.
During the training, it is necessary to store the weights (model parameters), the activations (intermediate
computed data) and the optimizer states.

This situation offers several opportunities to deal with memory problems, depending on their origin.
Training can be distributed across multiple resources of the computing platform, and different parallelization
techniques suggest different ways of dividing memory load. In addition, data structures that remain inactive
for a long period of time can be temporarily offloaded to a larger storage space with the possibility of retrieving
them later (offloading strategies). Furthermore, activations that are computed anew at each iteration can
be deleted and recomputed several times within it (rematerialization strategies). Memory saving strategies
usually induce a time overhead with respect to the direct execution, therefore optimization problems should
be considered to choose the best approach for each strategy. In this manuscript, we formulate and analyze
optimization problems in relation to various methods reducing memory consumption of the training process.
In particular, we focus on rematerialization, activation offloading and pipelined model parallelism strategies,
for each of them we design optimal solutions under a set of assumptions. Finally, we propose a fully functional
tool called rotor that combines activation offloading and rematerialization and that can be applied to
training in PyTorch, allowing to process big models that otherwise would not fit into memory.
Keywords: Deep Learning, Backpropagation, Rematerialization, Offloading, Pipelined Model Parallelism

Equipe-projet HiePACS
Inria Bordeaux - Sud-Ouest, 33405 Talence, FRANCE.
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Résumé long

L’intelligence artificielle (IA) est un domaine en plein essor qui aide à résoudre de
nombreux problèmes complexes comme la classification d’images, la génération de textes,
la traduction... Sa naissance remonte à 1956 lors de la tenue du Workshop de Darthmouth,
où son nom et les premiers objectifs du domaine ont été formulés. Depuis lors, le domaine
a connu des hauts et des bas : il y a eu quelques succès dans des domaines particuliers,
mais son développement a surtout été entravé par un certain nombre de problèmes, parmi
lesquels la puissance limitée des ordinateurs [16], le manque de données (informations
globales sur le monde) [93] et le caractère intractable [93] (il existe de nombreux problèmes
qui ne peuvent être résolus de manière optimale qu’en un temps exponentiel).

La situation a changé récemment avec l’émergence d’AlexNet [56] en 2012. Il
est basé sur un réseau de neurones convolutif entrâıné à l’aide de l’algorithme de
rétropropagation [92]. Pourtant, l’utilisation des réseaux de neurones n’était pas une
nouveauté [90, 65]. L’avancée est due à l’augmentation de la profondeur du réseau
neuronal, tandis que l’entrâınement d’un modèle aussi grand est devenu possible grâce
à l’amélioration des capacités des GPU. Ainsi, une fois entrâıné sur Imagenet [25] (la
grande base de données d’images), le modèle fait preuve d’une grande précision dans les
tâches de classification d’images, approchant la précision humaine.

Ainsi, la nouvelle force motrice de l’IA au cours des dernières années est le
développement des réseaux neuronaux profonds (DNN). Depuis la percée d’AlexNet, les
DNN sont devenus plus complexes et plus profonds : leurs graphes de calcul peuvent
être des graphes acycliques dirigés (DAG) qui comprennent de plus en plus d’opérations
(également appelées couches). Par exemple, AlexNet ne compte que 8 couches qui forment
une châıne, alors que ResNet [45], proposé en 2015, est représenté par une châıne avec
des connexions sautées composée de 152 couches ; tous deux ont environ 60 millions de
paramètres, mais il y a une différence d’environ 10% dans leur précision (ResNet surpasse
AlexNet). Par ailleurs, les modèles de transformers [97, 14] qui constituent aujourd’hui
l’état de l’art en matière de traitement du langage naturel (NLP) peuvent atteindre jusqu’à
175B paramètres (e.g. GPT-3 [14]), et sont à la fois profonds et larges.

Des modèles aussi lourds atteignent les limites des machines sur lesquelles ils sont
traités. Les problèmes de mémoire peuvent apparâıtre aussi bien lors de l’inférence que lors
de l’entrâınement. L’inférence et l’apprentissage sont deux étapes bien différentes lorsqu’on
travaille avec des DNN. L’inférence correspond à l’exécution du DNN afin d’obtenir des
prédictions et est souvent effectuée sur des appareils embarqués comme les smartphones,
qui ont une capacité de mémoire et une puissance de calcul très faibles [19]. En revanche,
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l’apprentissage est le processus itératif dont le but est de mettre à jour les paramètres du
modèle (également appelés poids), afin que le modèle puisse réaliser des prédictions de
qualité. Ce processus est encore plus coûteux en mémoire et en calcul, il est généralement
effectué sur des grappes de machines et peut prendre des heures, voire des jours, pour
être accompli [67]. Par conséquent, l’exploration de modèles plus profonds et plus grands
crée une demande pour de nouveaux matériels et de nouveaux algorithmes qui prennent
en compte les limitations de ressources [86].

Comme la recherche en IA se développe à un rythme effréné, de plus en plus
de sociétés technologiques investissent dans le développement de nouveaux types de
matériel, conçus spécifiquement pour les DNN. Les CPU, GPU et TPU conviennent à
l’entrâınement, tandis que les FPGA et ASIC sont préférables pour l’inférence sur les
dispositifs embarqués [17]. Les GPU et TPU sont devenus le principal outil de travail
en raison de leur grande efficacité dans les calculs parallèles, ce qui est très pratique
pour effectuer de grandes opérations matricielles (ou tensorielles). En outre, les GPU
les plus récents peuvent être jusqu’à 245 fois plus rapides que les CPU modernes [17].
Cependant, par rapport aux CPU, les GPU et les cœurs TPU ne disposent pas d’une
grande mémoire. Beaucoup de clusters contiennent des GPU avec 16 Go de mémoire, les
plus grands centres de données peuvent avoir des GPU NVIDIA V100 Tensor Core avec 32
Go de mémoire1. Récemment, NVIDIA a commencé à vendre de nouveaux GPU de la série
A100 dont la mémoire peut être de 40 Go et 80 Go2. Malgré tous les efforts déployés pour
fabriquer des GPU de grande capacité, ces derniers sont susceptibles d’échouer lors de
l’apprentissage d’un modèle comportant des milliards de paramètres [86], qui nécessitent
au moins 1 To de mémoire uniquement pour le stockage des poids. Un tel apprentissage
n’est réalisable que de manière distribuée, en utilisant plus de 1000 GPU [86]. Les cœurs
TPU sont encore moins à même de prendre en charge de grands modèles, car un cœur
TPU ne dispose que de 16 Go de mémoire au maximum [109]. D’autre part, même si un
modèle tient sur un seul GPU avec une grande capacité de mémoire (e.g. 80 GB), tout
le monde ne peut pas se permettre d’acheter ces GPU [101] : le coût d’un GPU V100 est
d’environ 7 500 euros et le coût d’un GPU A100 40 GB est d’environ 10 000 euros 3. En
outre, il a été démontré dans [44] que pour le matériel récemment produit, une nouvelle
tendance se dessine : leur impact carbone de fabrication dépasse leur impact carbone
opérationnel. Par exemple, alors que les centres de données de Facebook se tournent
vers les énergies renouvelables, leurs activités liées aux investissements (capex signifiant
dépenses d’investissement) représentent 82 % de la production de carbone, tandis que
42 % des émissions liées aux investissements proviennent de la fabrication du matériel et
des infrastructures. Cela implique que davantage d’années de service sont nécessaires pour
amortir le coût de production. En d’autres termes, même si l’argent n’est pas un goulot
d’étranglement, il convient de reconsidérer le remplacement de son ancien GPU par un
nouveau qui dispose de plus de mémoire, afin de soutenir les idées d’IA verte [95]. Tout
ce qui précède implique que les techniques d’optimisation de la mémoire logicielles sont

1https://www.nvidia.com/en-us/data-center/v100/
2https://www.nvidia.com/en-us/data-center/a100/
3Les prix sont basés sur eBay.
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essentielles.
Les dispositifs embarqués ont également une taille de mémoire limitée, qui est

nettement inférieure à celle dont dispose un GPU d’une machine parallèle. En général,
les GPU modernes utilisés dans les systèmes embarqués peuvent avoir plusieurs Go de
mémoire, mais ce n’est pas toujours suffisant pour effectuer l’apprentissage en Edge. Bien
que l’inférence soit une routine pour les nœuds Edge, l’apprentissage n’est pas encore
devenu une pratique courante. Récemment, plusieurs articles [59, 63, 105, 70, 87, 69]
ont fait valoir les avantages et les intérêts potentiels de procéder à un apprentissage
directement sur les appareils Edge. Parmi ceux-ci, on peut citer le renforcement de la
confidentialité et de la sécurité des informations [87, 69], la réduction de la charge de la
bande passante [69, 105, 70], une meilleure évolutivité [70] et une meilleure adaptation
du dispositif à son contexte d’utilisation [59]. Afin de permettre l’apprentissage direct
sur les dispositifs embarqués, il est nécessaire d’ajuster les modèles et les algorithmes
d’apprentissage pour que la mémoire et la puissance de calcul disponibles soient utilisées
de la manière la plus efficace.

Pour concevoir des stratégies efficaces en termes de mémoire pour traiter les DNN,
il est important de comprendre quelles sont les sources des problèmes de mémoire. Les
paramètres du modèle, également appelés poids, doivent être constamment conservés en
mémoire lors de l’inférence et de l’apprentissage. Il existe plusieurs techniques permettant
de compresser les poids d’un modèle formé pour l’inférence comme la factorisation
low-rank, la distillation des connaissances, la quantification et l’élagage [21]. Certaines
de ces stratégies ont inspiré les architectures de réseaux neuronaux économes en mémoire,
comme MobileNet et ShuffleNet, qui peuvent être facilement formés même sur des
systèmes à mémoire limitée.

Toutefois, d’autres facteurs influent sur la quantité de mémoire consommée lors de la
phase d’apprentissage. Pour comprendre la quantité de mémoire nécessaire pour effectuer
une itération d’apprentissage, il est nécessaire d’analyser les dépendances de données qui
se produisent au cours de l’exécution. Une itération consiste en deux passages sur le
graphe de calcul, appelés propagation vers l’avant (forward) et vers l’arrière (backward).
La propagation vers l’avant est le passage direct sur le graphe (du début à la fin), elle
calcule les prédictions et est suivie par l’évaluation de la fonction perte qui indique à quel
point les prédictions sont proches des vraies valeurs cibles. La propagation vers l’arrière est
le passage inverse sur le graphe (de la fin au début) pendant lequel les gradients de la perte
par rapport aux poids sont calculés et utilisés pour effectuer les mises à jour des poids. La
combinaison de la propagation vers l’avant et vers l’arrière entrâıne des dépendances de
données complexes : les entrées d’une couche i utilisées pendant la propagation vers l’avant
sont nécessaires à l’opération vers l’arrière correspondant à cette couche. Cela implique que
toutes les données intermédiaires générées par les opérations avant (nous appellerons par
la suite ces données des activations) sont nécessaires pour effectuer la rétropropagation.
En outre, lors de la mise à jour du modèle à l’aide des gradients, certains optimiseurs
(algorithmes responsables du calcul des mises à jour des poids) nécessitent de stocker
des états supplémentaires de l’optimiseur [86], dont les tailles sont proportionnelles aux
poids. Globalement, en plus des poids du modèle, la machine doit pendant l’apprentissage
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également stocker toutes ses activations, les gradients des poids et les états de l’optimiseur,
ce qui peut conduire à une explosion de la mémoire. Dans ce travail, notre objectif est
d’étudier les stratégies de réduction de la mémoire qui rendent l’apprentissage possible
dans la limite de la mémoire du matériel donné. En fonction de l’endroit où l’apprentissage
est effectué (soit sur une seule ressource informatique, soit de manière distribuée) les
besoins en mémoire peuvent être réduits en utilisant différentes techniques, inspirées
des approches du calcul haute performance (HPC), de l’ordonnancement et même de
la différenciation automatique (AD).

Apprentissage sur un seul noeud

Pendant l’apprentissage, les poids du modèle et les états de l’optimiseur doivent être
conservés en mémoire (soit dans la mémoire principale, soit dans la mémoire du dispositif)
tout le temps. Néanmoins, il n’est pas nécessaire que les activations soient présentes en
permanence. Elles sont générées pendant la propagation vers l’avant et, par conséquent,
elles peuvent être écartées et recalculées plus tard en réexécutant certaines étapes
vers l’avant. Cette approche est connue sous le nom de rematérialisation ou “gradient
checkpointing”. Une autre façon d’améliorer l’utilisation des ressources est de décharger les
données d’un GPU vers un CPU et de profiter ainsi d’un espace de stockage supplémentaire
(les CPU ont généralement une capacité de mémoire beaucoup plus importante que les
GPU). On peut décider de décharger les activations, les poids du modèle et les états
de l’optimiseur, à condition qu’ils soient rapatriés préalablement à leur utilisation. La
combinaison du déchargement et de la rematérialisation est prometteuse pour obtenir les
meilleures performances.

Dans ce travail, nous étudions soigneusement les problèmes liés à la rematérialisation
et au déchargement, et nous nous concentrons sur la réduction de la mémoire occupée par
les activations, tandis que les poids et les états de l’optimiseur sont supposés être stockés
en mémoire en permanence.

Rematérialisation

La rematérialisation consiste à sélectionner seulement quelques activations qui sont
sauvegardées en mémoire et utilisées pour recalculer les autres. Elle permet d’explorer un
compromis entre la mémoire et les calculs. C’est un problème classique de checkpointing
formulé pour les châınes adjointes étudiées en AD. Ce problème y est résolu par
programmation dynamique. Comme le graphe de calcul des châınes adjointes peut être
vu comme une version simplifiée des dépendances de données des DNNs, les solutions
d’AD peuvent être adaptées aux DNNs [20]. Cependant, les approches classiques en
AD considèrent des châınes homogènes (toutes les opérations ont les mêmes coûts de
calcul et de mémoire), l’application directe de leurs techniques aux DNNs conduit à
des performances sous-optimales. En revanche, les DNNs sont mieux modélisés par des
châınes hétérogènes, voire des structures générales de DAG (graphe orienté sans cycle).
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Les travaux récents [31, 60, 61, 52, 54] ont essayé de prendre en compte des modèles plus
réalistes, bien qu’aucun résultat d’optimalité général ne soit fourni.

Néanmoins, la méthode s’est avérée utile dans la pratique. Lors de l’entrâınement
de réseaux neuronaux très profonds sur des données énormes, ce qui est normalement
irréalisable, cette approche permet de dépasser la limite de mémoire de l’unité de calcul.
Les tailles d’activation sont proportionnelles à la taille de l’entrée (résolution de l’image,
longueur de la séquence de texte, ...) et à la taille du lot (nombre d’échantillons utilisés
pour une mise à jour du modèle). Ainsi, la rematérialisation peut être particulièrement
utile dans le cas où l’on souhaite augmenter la taille d’entrée ou la profondeur du réseau
neuronal ou lorsque la formation avec une taille de lot unitaire échoue [46]. Parfois, il
peut également être bénéfique d’augmenter la taille du lot, mais dans la plupart des cas,
cela entrâıne une baisse du débit. Par contre, il y a beaucoup de cas où une grande
taille de lot mène à une convergence plus rapide et meilleure [99]. Elle peut encore être
combinée avec la technique d’accumulation de gradient, où l’on augmente artificiellement
la taille du lot, en exécutant un nombre n d’itérations avec un lot plus petit sans mettre
à jour les poids, mais en accumulant (en faisant la somme) les gradients des poids de
différentes itérations ; où toutes les n iterations, on effectue la mise à jour avec le gradient
obtenu avant de recommencer à nouveau. Ainsi, la rematérialisation et l’accumulation
de gradient permettent d’augmenter la profondeur du modèle, la taille de l’entrée et la
taille du lot tout en maintenant un débit raisonnable [100]. Enfin, d’un point de vue
écologique, la rematérialisation peut avoir un impact carbone négligeable à condition que
les calculs soient effectués avec de l’énergie renouvelable [44], en comparaison avec l’achat
d’un nouveau GPU avec plus de mémoire.

Notre contribution Dans cette thèse, nous analysons le problème de la recherche des
stratégies optimales de rematérialisation pour les DNNs. Afin d’aborder le cas plus général
des DAGs, nous considérons d’abord, dans le chapitre 1, les solutions pour les structures
multi-châınes homogènes. Les graphes multi-châınes sont représentés par plusieurs châınes
de différentes longueurs qui sont rassemblées à la fin par la fonction de perte. Ces graphes
sont similaires aux graphes des réseaux neuronaux siamois et aux réseaux d’intégration
cross-modaux. Dans ce chapitre, nous étendons la programmation dynamique classique
pour les châınes adjointes afin de traiter les graphes multi-châınes plus généraux et nous
prouvons son optimalité.

Les graphes avec des coûts hétérogènes présentent un intérêt particulier. Dans le
chapitre 2, nous analysons les châınes hétérogènes, qui, bien que ne couvrant pas le
cas des DAGs, correspondent à de nombreux DNNs pratiques. Nous fournissons une
solution optimale ainsi qu’une heuristique moins coûteuse, qui sont toutes deux basées
sur la programmation dynamique. Les expériences confirment également la meilleure
performance de ces nouveaux algorithmes par rapport à l’état de l’art [20, 52]. Sur cette
base, nous avons également conçu un outil rotor4 compatible avec PyTorch qui réussit
à réduire de manière significative la quantité de mémoire au prix d’une augmentation

4https://gitlab.inria.fr/hiepacs/rotor
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marginale du temps d’exécution.

Déchargement (Offloading)

Le déchargement est l’autre choix populaire pour garder moins d’activations dans
la mémoire du GPU. Par rapport à la rematérialisation, il n’y a pas de recalculs,
donc le chemin critique est le même que dans l’exécution classique. Cependant,
les communications pour décharger (respectivement précharger) les activations vers
(respectivement depuis) la mémoire du CPU peuvent induire des temps morts. Par
exemple, la première approche näıve [88] consistant à décharger toutes les activations
et à se synchroniser après chaque opération peut entrâıner un énorme délai. Afin de
diminuer les temps morts, il faut choisir avec soin quelles activations décharger et quand,
tout en évitant les synchronisations inutiles. Différentes heuristiques ont été proposées
pour résoudre ce problème [7, 114, 64], cependant aucune d’entre elles ne propose une
analyse de son optimalité. Il existe également une possibilité de décharger les poids des
modèles et les états des optimiseurs [85] en plus. Dans toutes ces approches, le choix des
données à transférer est déterminé par les propriétés du réseau neuronal.

Comme la rematérialisation, le déchargement peut être utilisé pour augmenter
efficacement la profondeur du réseau neuronal et la taille des entrées. L’un des avantages
considérables du déchargement est la possibilité de produire un surcoût nul si les transferts
de données sont bien planifiés de sorte qu’ils recouvrent entièrement les opérations
de calcul. Par conséquent, le déchargement permet également de traiter des lots plus
importants. Cependant, les performances de cette technique dépendent fortement de la
bande passante du lien de communication. Si la bande passante est faible, le déchargement
perd de son attrait et ne peut guère concurrencer la rematérialisation. D’autre part, la
combinaison des deux techniques devrait être plus puissante que l’une ou l’autre, car elle
est suffisamment flexible pour s’adapter à tous les paramètres.

Notre contribution Dans le chapitre 3, nous introduisons formellement le problème
du déchargement pour les châınes hétérogènes. A notre connaissance, nous sommes les
premiers à formuler la minimisation du surcoût comme un problème d’optimisation,
dépendant du choix des activations à décharger et de l’ordonnancement des transferts
de données. En général, ce problème est NP-complet au sens fort, mais nous proposons
des relaxations de ce problème qui peuvent être résolues de manière optimale en temps
polynomial et pseudo-polynomial et dont les solutions sont efficaces en pratique. Sur la
base d’hypothèses réalistes, nos nouveaux algorithmes montrent une supériorité sur les
heuristiques näıves précédemment considérées.

Ensuite, nous intégrons la rematérialisation au déchargement dans le chapitre 4.
Plus précisément, nous montrons que sous un certain ensemble d’hypothèses, il est
possible de trouver l’ordonnancement optimal pour la combinaison, en utilisant un
nouveau programme dynamique. Nous ajoutons ce programme dynamique dans rotor
et les nouvelles expériences démontrent que les deux approches profitent de cette union,
atteignant des performances strictement meilleures dans la plupart des cas.
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Apprentissage sur plusieurs nœuds

Un entrâınement distribué est très courant en raison des exigences de calcul élevées
des DNN modernes. Tous les tenseurs (poids, états de l’optimiseur, activations) peuvent
être traités séparément et envoyés à différentes machines, atténuant ainsi la charge par
processeur.

Il existe plusieurs façons de diviser et de répartir le travail sur plusieurs processeurs :
par données, par tenseurs et par couches. Le choix le plus populaire est le parallélisme de
données [23, 116], qui consiste à répliquer le modèle sur plusieurs ressources puis à traiter
plusieurs mini-lots en parallèle, en communiquant les mises à jour uniquement à la fin de
chaque itération. Cela permet d’augmenter considérablement la taille totale des lots, ce qui
favorise la convergence [99]. Par conséquent, elle permet un bon passage à l’échelle, malgré
la synchronisation des poids qui peut être coûteuse avec des modèles lourds. Une autre
façon de répartir les données est d’utiliser la décomposition spatiale [26]. Par exemple, lors
du traitement d’images avec des réseaux de neurones convolutifs (CNNs), il est possible de
diviser chaque image et chaque activation en plusieurs zones, de sorte que chaque GPU
traite sa propre zone, en ne communiquant aux autres GPUs que des informations de
bordure appelées “halo”, ce qui suffit à préserver la validité des calculs. Cette approche
est pratique lorsqu’une taille de lot unitaire ne rentre pas dans la mémoire d’un GPU.

Les approches tensorielles connues sous le nom de Tensor Slicing parallélisent
l’exécution du noyau des couches dans les réseaux neuronaux. Par exemple, pour les
couches entièrement connectées qui effectuent une multiplication matrice-matrice (une
matrice est l’entrée, l’autre est la matrice de poids), la matrice de poids est répartie sur
plusieurs ressources de calcul, l’opération est effectuée en parallèle et, à la fin, les sorties
sont envoyées à toutes les ressources. Pour les couches convolutionnelles qui effectuent
des convolutions en utilisant différents filtres sur l’image constituée de plusieurs canaux,
il est possible de paralléliser à travers différentes dimensions : hauteur, largeur, canaux et
filtres [27].

Une autre méthode consiste à utiliser le parallélisme de modèle (MP) qui distribue la
charge par couches. Dans ce contexte, chaque processeur est affecté à une partie du graphe
(un sous-ensemble de couches) et ne conserve que les poids et les activations liés à cette
partie, tandis que les calculs sont effectués en séquence. Dans sa version originale, le MP
n’accélère pas l’exécution, mais il nécessite moins de mémoire par noeud. Récemment, il
a été suggéré de combiner cette méthode avec le Pipelining pour obtenir une meilleure
accélération dans [50, 33, 78]. Parmi elles, PipeDream [78] offre le meilleur débit et sur
cette base d’autres méthodes ont été proposées [113, 43, 106, 79]. PipeDream trouve un
bon équilibrage de la charge à l’aide de la programmation dynamique, montrant qu’avec un
équilibrage parfait de la charge et des communications négligeables, il est possible d’éviter
les temps morts pendant tout l’apprentissage. Cependant, comme dans le pipelining on
injecte plusieurs mini-batchs en même temps, chaque processeur doit stocker plusieurs
copies des poids et des activations pour assurer la validité de l’entrâınement, ce qui annule
presque les avantages offerts par la distribution.

Globalement, les différents types de parallélisme présentent des avantages et des
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inconvénients [110]. Le parallélisme des données présente le meilleur passage à l’échelle
puisque chaque processeur prend en charge des mini-lots de taille égale, atteignant ainsi
le meilleur équilibre de charge. Cependant, ses performances sont entravées par de grands
mouvements de données (une opération de réduction collective de tous les paramètres
du modèle à la fin de chaque itération). Le parallélisme asynchrone des données [115]
permet la meilleure utilisation des ressources en éliminant la synchronisation globale pour
mettre à jour les poids à la fin de chaque itération, mais il souffre d’une moins bonne
convergence à cause de la stagnation des poids [18]. Le parallélisme des données et la
décomposition spatiale aident à distribuer les données (entrée et activations), néanmoins,
ces deux méthodes ne peuvent pas pallier les problèmes de mémoire liés au modèle :
chaque noeud fonctionne de manière indépendante, ayant sa propre copie des poids. Le
découpage tensoriel permet de réduire la mémoire occupée par un modèle pour chaque
processeur, mais comme chaque couche requiert une entrée complète (même si la couche
elle-même est distribuée), il implique beaucoup de communications et de synchronisations
après chaque couche et ne permet pas de réduire la mémoire requise pour les activations.
Le parallélisme de modèle, similaire au découpage tensoriel, peut distribuer les poids du
modèle, mais aussi les activations sur différentes ressources. Son évolutivité dépend du
fait que les mises à jour sont effectuées de manière synchrone ou asynchrone. Le GPipe
synchrone [50] sous-utilise la puissance des GPU, les laissant inactifs une bonne partie du
temps. Le PipeDream [78] asynchrone peut atteindre un passage à l’échelle similaire à celui
du parallélisme des données, à condition qu’il atteigne un équilibrage de charge parfait : il
ne communique que les activations entre les couches placées sur des ressources différentes,
qui peuvent être entièrement recouvertes par des calculs. En revanche, PipeDream comme
le parallélisme de données asynchrone introduit une stagnation des poids qui affecte
négativement la convergence. De plus, comme il a été mentionné précédemment, plusieurs
versions de poids et d’activations doivent être conservées sur le GPU pendant un tel
apprentissage, ce qui rend les besoins en mémoire comparables à ceux du parallélisme de
données. Différents travaux ont également exploré diverses combinaisons de parallélismes :
parallélisme de données avec parallélisme de modèles [78], parallélisme de données avec
découpage tensoriel [55] et les trois types [24]. Les types de parallélisme hybrides réunissent
les points forts de chaque méthode, mais trouver un bon équilibre entre les différentes
approches est une tâche difficile.

Notre contribution Dans notre travail, nous nous concentrons sur le parallélisme
de modèles pipeliné, car il est le plus prometteur en termes de minimisation de
l’utilisation de la mémoire. Nous considérons les inconvénients de PipeDream dans le
chapitre 5. PipeDream préconise des solutions contiguës qui n’allouent les couches que de
manière séquentielle aux GPU (toutes les couches d’un GPU sont voisines) et utilise un
ordonnancement simpliste. Nous évaluons la qualité de telles solutions et montrons qu’il y
a beaucoup de marge d’amélioration. Dans le chapitre 6, nous étudions une formulation en
programmation linéaire en nombres entiers (ILP) qui permet de résoudre le problème de la
répartition de la charge et de la planification du pipelining. Contrairement à PipeDream,
cette méthode réussit à obtenir des allocations non contiguës avec le meilleur équilibrage
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de charge prenant en compte les limitations de mémoire des GPU et, en même temps, elle
planifie les opérations de manière optimale.

Même si l’ILP est capable de résoudre un problème difficile, son temps d’exécution
peut être extrêmement long. Ainsi, dans la pratique, nous avons besoin d’une heuristique
appropriée qui peut utiliser les points forts des allocations non contiguës, et qui est en
même temps facile à calculer. Nous proposons l’outil MadPipe, basé sur la programmation
dynamique, qui suppose qu’il existe un processeur qui héberge des couches non voisines,
tandis que les autres processeurs ne prennent que les couches connexes. Les opérations sont
ordonnancées avec l’ILP du chapitre 6. Nous fournissons la description complète de cette
heuristique dans le chapitre 7. Par des expériences, nous démontrons que MadPipe apporte
une amélioration significative par rapport à PipeDream, ce qui confirme l’importance des
allocations non contiguës.

Historique

Contexte

Cette thèse de doctorat fait partie du projet Inria IPL (plus tard DEFI) qui réunit
des chercheurs dans les domaines du HPC, du Big Data et de l’IA. Ce projet permet
aux personnes issues de ces différents domaines de partager leurs connaissances et
leur expertise pour trouver de nouvelles idées à leurs intersections. Les collaborations
nouvellement créées visent à pousser plus loin les progrès dans tous les domaines
susmentionnés.

En particulier, l’un des objectifs initiaux de ce travail était de lancer une collaboration
entre les équipes de HiePACS (HPC) et de Zenith (Big Data et IA) afin d’entrâıner
Pl@ntNet, un projet de science citoyenne pour l’identification automatique des plantes à
partir de photographies, basé sur l’apprentissage automatique [4]. Au cours de plusieurs
visites mutuelles entre les membres des équipes de recherche HiePACS et Zenith, plusieurs
problèmes ont été identifiés en matière d’apprentissage. Cependant, la mémoire a été
identifiée comme le principal goulot d’étranglement empêchant Pl@ntNet de passer à des
modèles plus grands et de considérer des images plus grandes et un ensemble plus riche
d’espèces. Par conséquent, nous avons décidé de nous attaquer à ce problème particulier.

Afin de résoudre les problèmes liés à la mémoire, la structure du graphe d’entrâınement
des réseaux de neurones et le flux de travail doivent être soigneusement analysés et
modélisés. Pl@ntNet s’appuie sur PyTorch pour effectuer la formation, donc son mode de
fonctionnement doit également être pris en compte. Suite à nos discussions, une collection
de méthodes pour économiser la mémoire a été proposée dans ce travail. Finalement,
Pl@ntNet a réussi à résoudre son problème initial de mémoire en considérant des clusters
avec des GPUs qui ont une plus grande capacité de mémoire. Malgré cela, nos avancées
permettent de faire face à de nouveaux défis : l’entrâınement de réseaux neuronaux
plus grands (e.g. dans le contexte de Pl@ntNet, c’est nécessaire pour une distillation
efficace des connaissances), l’entrâınement avec des données d’entrée plus grandes (e.g.
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des images à plus haute résolution) et l’utilisation d’une taille de lot plus grande pour une
convergence plus rapide. Nos méthodes sont utiles au-delà des applications de Pl@ntNet
: afin d’entrâıner de grands modèles de langage tels que GPT-3, la rematérialisation,
l’offloading et le parallélisme des modèles doivent être combinés afin de réduire les besoins
en mémoire d’apprentissage. Enfin, des techniques de gestion efficace de la mémoire
permettent de mieux exploiter le matériel disponible, de rendre les ressources de calculs
plus productivess, tout en prolongeant leur durée d’utilisation et en réduisant ainsi
l’impact carbone.

Contributions pratiques et théoriques

• Le chapitre 2 et la partie II contiennent des contributions à la fois théoriques et
pratiques : des solutions optimales qui prennent en compte les spécificités des réseaux
neuronaux séquentiels et des frameworks d’apprentissage sont proposées et sont
ensuite intégrées dans l’outil rotor 5 qui est entièrement fonctionnel, facile à utiliser
et compatible avec PyTorch. Ces chapitres comprennent les résultats des expériences
réelles menées avec rotor.
• Le chapitre 1 et la partie III sont plus théoriques par nature : ils fournissent

une nouvelle modélisation originale qui fournit des indications précieuses sur les
problèmes sous-jacents ainsi que des algorithmes optimaux, mais ils n’ont pas encore
été mis en œuvre dans un framework d’apprentissage. Les résultats présentés dans
ces chapitres reposent sur des simulations.

Publications

Certaines des contributions présentées dans ce travail ont été publiées : pour le chapitre 1
dans Philosophical Transactions of the Royal Society [10], pour le chapitre 3 dans
Proceedings of European Conference on Parallel Processing (Euro-Par) 2020 [8] et pour
le chapitre 5 dans European Conference on Parallel Processing 2021 [9]. Les résultats
du chapitre 4 sont acceptés pour publication dans la conférence Neural Information
Processing Systems (NeurIPS) 2021.

En dehors de cela, il existe d’autres travaux réalisés pendant ce doctorat, mais qui
ne sont pas inclus dans le manuscrit par souci de concision et de cohérence. Parmi
eux, il y a un travail conjoint en collaboration avec l’Imperial College London et
l’Argonne National Laboratory qui considère les avantages et les défis de l’apprentissage
sur l’Edge publié dans les Proceedings du Workshop on Parallel AI and Systems for
the Edge 2019 [59]. Un autre travail a été effectué en collaboration avec l’Université
du Colorado et l’Université Northeastern pour estimer la limite inférieure du temps
d’exécution pour l’ordonnancement de la factorisation de Cholesky en tuiles, et publié
dans Proceedings of European Conference on Parallel Processing 2020 [11].

5https://gitlab.inria.fr/hiepacs/rotor
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Introduction

Artificial Intelligence (AI) is an uprising field that helps to solve numerous complex
problems like image classification, text generation, translation... Its birth dates from 1956
when the Darthmouth Workshop took place and where its name and the first objectives of
the field were formulated. Since then the field encountered many ups and downs: there were
some successes in particular domains but mostly the further development was hindered
by a number of problems among which are the limited computer power [16], lack of
data (global information about the world) [93] and intractability [93] (there are a lot of
problems that can only be solved optimally in exponential time).

The situation has changed recently with the emergence of AlexNet [56] in 2012. It is
based on a convolutional neural network trained using backpropagation algorithm [92].
Though, using neural networks was not a novelty [90, 65]. The advance was due to
the increased depth of the neural network, while training such a big model became
possible thanks to improved GPU capability. Thus, when trained on Imagenet [25] (the
large dataset of images), the model exhibits high precision on image classification tasks,
approaching human-based precision.

Thus, the new driving force of AI in the recent years is the development of Deep Neural
Networks (DNNs). Since the breakthrough of AlexNet, DNNs have become more complex
and deeper: their computational graphs can be general Directed Acyclic Graphs (DAGs)
that comprise more and more operations (also called layers). For example, AlexNet has
only 8 layers arranged in a chain, while ResNet [45] proposed in 2015 is represented by
a chain with skip-connections consisting of 152 layers; both have about 60M parameters,
but there is about a 10% difference in their accuracy (ResNet outperfoms AlexNet).
Furthermore, the transformer models [97, 14] that are now the state-of-the-art in Natural
Language Processing (NLP) may reach up to 175B parameters (e.g. GPT-3 [14]), being
deep and wide at the same time.

Such heavy models reach the limits of machines on which they are processed. The
memory problems may appear during both inference and training. Inference and Training
are two distinguished stages when working with DNNs. On the one hand, inference is the
execution of DNNs in order to obtain predictions and is often performed on embedded
devices like smartphones, which have very low memory capacity and computational
power [19]. On the other hand, training is the iterative process whose goal is to update
the model parameters (also called weights), so that the model can perform qualitative
predictions. This process is even more memory and computationally expensive, it is
usually performed on clusters of machines and may take hours or sometimes days to
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complete [67]. Therefore, exploring further deeper and larger models creates the demand
for new hardware and new algorithms that take into account resource limitations [86].

As research in AI grows at a tremendous pace, more and more technology companies
invest in developing new types of hardware, designed specifically for the DNNs. CPUs,
GPUs and TPUs are suitable for training, while FPGA and ASIC are preferable for
inference on embedded devices [17]. GPUs and TPUs become now the main workhorse
due to its high efficiency in parallel computations, which is very handy when performing
large matrix (or tensor) operations. Furthermore, the most up-to-date GPU can be up
to 245 times faster than the modern CPU [17]. However, in comparison to CPUs, GPUs
and TPU cores do not have big memory. A lot of clusters contain GPUs with 16 GB of
memory, the biggest data centres may have GPUs NVIDIA V100 Tensor Core with 32
GB of memory6. Recently, NVIDIA has started to sell new GPUs from A100 series whose
memory can be 40 GB and 80 GB7. Despite all the efforts to make GPUs with large
capacity, they still may fail when training a model with trillion parameters [86], which
require at least 1 TB of memory just for storing the weights. Such training is only feasible
in a distributed manner, using over 1000 GPUs [86]. TPU cores are even less prone to
support large models, as one TPU core has at most 16 GB of memory [109]. Even if a model
fits onto a single GPU with high memory capacity (e.g. 80 GB), not everybody can afford
to buy those GPUs [101]: the cost of one GPU V100 is about 7 500 euros and the cost of
GPU A100 40 GB is around 10 000 euros8. Moreover, it has been shown in [44] that for the
recently produced hardware there is a new tendency: their manufacturing carbon impact
exceeds their operational carbon impact. For example, as Facebook’s data centers turn
to renewable energy, their capex-related activities (capex standing for capital expense)
account for 82% of carbon output, while 42% of capex emissions comes from hardware
and infrastructure manufacturing. This implies that more years of service are required
to amortize the production cost. In other words, even if money is not a bottleneck, one
should reconsider replacing his/her old GPU by the new one that has more memory, in
order to support green AI ideas [95]. All mentioned above imply that memory optimization
techniques based on software are more essential.

The embedded devices also have a limited memory size, which is significantly smaller
than the one that a GPU from a computer cluster has. Typically, the modern GPUs used
in embedded systems may have several GB of memory, still it may not be enough to
perform training on the Edge. Even though, the inference is a routine for Edge nodes, but
training has not become a common practice yet. Recently, several papers [59, 63, 105, 70,
87, 69] have advocated the potential benefits and interests of doing training directly on the
devices. Among them are the increased privacy and information security [87, 69], reduced
load of the bandwidth [69, 105, 70], better scalability [70] and better adaptation of the
device to its context of usage [59]. In order to enable direct learning on the embedded
devices, it is required to adjust the models and training algorithms so that the available
memory and computational power are used in the most efficient way.

6https://www.nvidia.com/en-us/data-center/v100/
7https://www.nvidia.com/en-us/data-center/a100/
8Prices are based on eBay
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Introduction

If we want to design memory efficient strategies to process DNNs, then it is important
to understand what are the sources of memory problems. Model parameters also called
weights should be kept constantly in the memory when performing both inference and
training. There are several techniques that are able to compress weights of a trained
model for inference: low-rank factorization, knowledge distillation, quantization and
pruning [21]. Some of these strategies have inspired the memory efficient architectures
of neural networks such as MobileNet, ShuffleNet that can be easily trained even on
memory constrained systems.

However, other factors also affect the level of memory consumption during the
training. To understand how much memory is needed to perform one iteration of the
training, it is necessary to analyze the data dependencies that occur in the runtime. One
iteration consists of two passes over the computational graph, called forward and backward
propagations. Forward propagation is the direct pass over the graph (from the beginning
to the end), it computes the predictions and is followed by the evaluation of the loss
function that shows how close the predictions are to the true target values. Backward
propagation is the reverse pass over the graph (from the end to the beginning) during
which the gradients of the loss with respect to the weights are calculated and used to
perform weight updates. The combination of forward and backward propagation results
in complex data dependencies: the inputs of some layer i used during the forward pass
are needed by the backward operation corresponding to this layer. This implies that all
intermediate data generated by the forward operations (further we refer to these data as
activations) is needed to complete backpropagation. Besides, when performing updates
of the model using gradients, depending on the optimizer (the algorithm responsible
for computing updates of the weights), one might need to store additionally optimizer
states [86], whose sizes are proportional to weights. Overall, apart from the model weights,
the machine during training should also store all its activations, gradients of weights
and optimizer states, which may lead to memory explosion. In this work, our target
is to study the memory saving strategies making training feasible under the memory
limit of the given hardware. Depending on where the training is performed (either on a
single computational resource or in the distributed way) memory needs can be reduced
using different techniques, inspired by the approaches from High Performance Computing
(HPC), Scheduling and even Automatic Differentiation (AD) domains.

Training on a Single Device

During the training, model weights and optimizer states should be kept in memory (either
in main memory or in device memory) the entire time. Nevertheless, activations do not
have to be there constantly. They are generated during the forward propagation and,
therefore, they could be discarded and recomputed later by rerunning some forward steps
again. This approach is known as Rematerialization or Gradient Checkpointing. Other way
to improve resource utilization is to offload the data from a GPU to a CPU and like this
profit from an additional storage space (CPUs have usually much larger memory capacity

13



Training on a Single Device

than GPUs). One can decide to offload the activations, model weights and optimizer
states, on condition that they are prefetched back once they are needed. The combination
of both Offloading and Rematerialization is promising to obtain the best performance.

In this work, we study carefully the problems related to Rematerialization and
Offloading, and we focus on reducing the memory occupied by activations, while weights
and optimizer states are assumed to be stored in memory all the time.

Rematerialization

Rematerialization consists in selecting only a few activations that are saved into memory
and used for recomputing the others. It helps to explore a tradeoff between memory
and computations. It is a classical problem of Checkpointing formulated for adjoint
chains studied in AD. This problem is solved there with a dynamic programming. As the
computational graph of adjoint chains can be seen as a simplified version of DNN data
dependencies, AD solutions can be adapted for DNNs [20]. However, classical approaches
in AD consider homogeneous chains (all operations have the same computational and
memory costs), the direct application of their techniques to DNNs results in sub-optimal
performance. In contrast, the DNNs are better approximated with heterogeneous chains
and even general DAG structures. The recent works [31, 60, 61, 52, 54] tried to take into
account more realistic models, though no general optimality results are provided.

Nevertheless, the method proved to be useful in practice. When training very deep
neural networks on huge data, which normally is unfeasible, this approach helps to surpass
memory limit of the computational unit. The activation sizes are proportional to the input
size (e.g. resolution of the image, length of the text sequence, ...) and batch-size (number
of samples that are used for one update of the model). Thus, Rematerialization can be
especially helpful in case one wants to increase the input size or the depth of the neural
network or when the training with batch-size of one fails [46]. Sometimes, it can be
beneficial to increase batch-size too, but in most cases it leads to the worse throughput.
Whereas, there are a lot of cases when a large batch-size leads to a faster and better
convergence [99]. It still can be combined with gradient accumulation technique, where
one artificially increases batch-size, by running a number n of iterations with a smaller
batch without updating the weights, but accumulating (by summing) the gradients of
the weights from different iterations and after each n-th iteration performing the update
with the obtained gradient and then restarting again. Like this, Rematerialization and
Gradient Accumulation together help to increase depth of the model, input size and batch
size while sustaining the reasonable throughput [100]. Finally, from ecological standpoint,
Rematerialization may have a negligible carbon impact provided that the computations
are done with renewable energy [44], in comparison with buying a new GPU with more
memory.

Our Contribution In this thesis, we analyse the problem of finding the optimal
rematerialization strategies for DNNs. In order to approach more general DAG case,
we first consider the solutions for homogeneous multi-chain structures in Chapter 1.

14



Introduction

Multi-chain graphs are represented by several chains of different lengths that are gathered
at the end by the loss function. These graphs are similar to the graphs of Siamese Neural
Networks and Cross Modal embedding networks. In this chapter, we extend classical
dynamic programming for adjoint chains to deal with the more general multi-chain graphs
and we prove its optimality.

Of particular interest are the graphs with heterogeneous costs. In Chapter 2, we
analyze heterogeneous chains, which despite not covering the DAG case, correspond
to many practical DNNs. We provide an optimal solution and also a cheaper heuristic,
which are both based on dynamic programming. The experiments also confirm the better
performance of these new algorithms with respect to the state-of-the-art [20, 52]. Based
on it, we also designed a tool rotor9 compatible with PyTorch that successfully reduce
a significant amount of memory at the price of a marginal rise in the running time.

Offloading

Offloading is the other popular choice to keep fewer activations in the device memory. In
comparison with Rematerialization, there are no recomputations, thus the critical path
is the same as in the classical execution. However, the communications to offload (resp.
prefetch) activations to (resp. from) CPU memory can induce some idle time. For example,
the first naive approach [88] to offload all activations and synchronize after each operation
may suffer from a huge delay. In order to diminish the idle times, one should carefully
choose which activations to offload and when, while avoiding excessive synchronizations.
Different heuristics were proposed to tackle this problem [7, 114, 64], however none of
them provided an analysis of their optimality. There is also a possibility to offload model
weights and optimizer states [85] additionally. In these approaches, the choice of which
data to transfer is determined by the properties of the neural network.

Like Rematerialization, Offloading can be used to efficiently increase the depth of
the neural network and input size. One considerable advantage of Offloading is the
potential to produce zero overhead if data transfers are well scheduled so that they
overlap entirely the compute operations. Therefore, Offloading also helps to process larger
batches. However, the performance of this technique strongly depends on the bandwidth
of the communication link. If bandwidth is small, than Offloading loses its attractiveness
as it hardly competes with Rematerialization. Alternatively, the combination of both
techniques is expected to be more powerful than either of them, being flexible enough to
adjust to any settings.

Our Contribution In Chapter 3, we formally introduce the problem of Offloading for
heterogeneous chains. To the best of our knowledge, we are the first to formulate overhead
minimization as an optimization problem, depending on the choice of activations to be
offloaded and the schedule of data transfers. In general, this problem is NP-complete in
the strong sense, but we propose relaxations of this problem that can be solved optimally

9https://gitlab.inria.fr/hiepacs/rotor
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in polynomial and pseudo-polynomial times and whose solutions are efficient in practice.
Based on realistic assumptions, our new algorithms show superiority over the previously
considered naive heuristics.

After, we integrate Rematerialization with Offloading in Chapter 4. More specifically,
we show that under a certain set of assumptions, it is possible to find the optimal schedule
for the combination, using a new dynamic program. We add this dynamic program into
rotor and the new experiments demonstrate that both approaches profit from this union,
achieving strictly better performance in most cases.

Training on Multiple Nodes

Distributed training is very common due to high computational requirements of the
state-of-the-art DNNs. All tensors (weights, optimizer states, activations) may be treated
separately and sent to different machines, mitigating the load per processor.

There are various ways to split and distribute the work onto several processors:
data-wise, tensor-wise and layer-wise. The most popular choice is Data Parallelism [23,
116], which consists in replicating the model on multiple resources and then processing
several mini-batches in parallel, communicating updates only at the end of each iteration.
It helps to substantially expand the total batch-size, which helps the convergence [99].
Therefore, it achieves good scalability, despite the weight synchronization that can
be costly with heavy models. Another way to spread the data is to use Spatial
Decomposition [26]. For example, when processing images with Convolutional Neural
Networks (CNNs), it is possible to divide each image and each activation into several
areas and each GPU processes its own area, while communicating only border information
called halo to other GPUs, which is enough to preserve the validity of calculations. This
approach is practical when an input with batch size of one does not fit into the memory
of a GPU.

Tensor-wise approaches known as Tensor Slicing parallelize the kernel execution
of layers in neural networks. For example, for fully-connected layers that perform
matrix-matrix multiplication (one matrix is input, the other one is weight matrix), the
weight matrix is distributed across several computing resources, the operation is performed
in parallel and at the end the outputs are broadcast to all resources. For convolutional
layers that perform convolutions using different filters on the image consisting from several
channels it is possible to parallelize across different dimensions: height, width, channels
and filters [27].

Another way is to use Model Parallelism (MP) that distributes the load in a layer-wise
manner. In this context, each processor is assigned to a part of the graph (a subset of
layers) and keeps only weights and activations related to this part, while calculations are
performed in sequence. In its original form, MP does not speed up the execution, but it
requires less memory per worker. Recently, it has been suggested combining this method
with Pipelining to achieve some acceleration in [50, 33, 78]. Among them PipeDream [78]
offers the best throughput and based on it other methods have been proposed [113, 43,
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106, 79]. PipeDream finds a good load balancing with the help of dynamic programming,
showing that with the perfect load balancing and negligible communications it is possible
to avoid idle times throughout the entire training. Still, as in pipelining one injects several
mini-batches at the same time, each processor needs to store several copies of the weights
and activations to ensure the validity of the training, which almost cancels the benefits of
distributing them in the first place.

Overall, different types of parallelism have both pros and cons [110]. Data parallelism
has the best scalability as each processor takes care of mini-batches of equal size, reaching
the best load balance. However, its performance is hindered by large data movements
(a collective reduction operation for all model parameters at the end of each iteration).
Asynchronous Data Parallelism [115] allows the best resource utilization when cancelling
the global synchronization to update the weights at the end of each iteration, but it suffers
from worse convergence because of weight staleness [18]. Data Parallelism and Spatial
Decomposition help to distribute data (input and activations), nevertheless, both cannot
mitigate memory issues related to model: each worker operates independently, having its
own copy of weights. Tensor Slicing helps to reduce the memory occupied by a model
per processor, however, as every layer requires an entire input (even if the layer itself is
distributed), it involves a lot of communications and synchronizations after each layer
and it does not help to reduce memory required for the activations. Model Parallelism,
similarly to Tensor Slicing, can distribute the model weights, but also activations across
different resources. Its scalability depends if the updates are done synchronously or
asynchronously. Synchronous GPipe [50] underuse the GPU power, leaving them idle
a considerable amount of time. Asynchronous PipeDream [78] may achieve the similar
scalability as Data Parallelism provided that it reaches the perfect load balancing: it
communicates only activations between layers placed on different resources, which can be
entirely overlapped with computations. In contrast, PipeDream as Asynchronous Data
Parallelism introduces the weight staleness that affects negatively the convergence. In
addition, as it is mentioned earlier, several versions of weights and activations should be
kept on the device during such training, making memory needs comparable to those of
Data Parallelism. Different works explored also various combinations of parallelisms: Data
Parallelism with Model Parallelism [78], Data Parallelism with Tensor Slicing [55] and all
three types [24]. Hybrid types of parallelism unite the strong points of each method,
however finding a good balance between different approaches is a difficult task.

Our Contribution In our work, we concentrate on Pipelined Model Parallelism, as it
is the most promising in terms of minimizing memory usage. We address the downsides of
PipeDream in Chapter 5. PipeDream suggests the contiguous solutions that only allocate
layers sequentially to GPUs (all layers on one GPU are neighboring) and uses a very
simplistic schedule. We estimate the quality of such solutions and show that there is plenty
of room for improvement. In Chapter 6, we design the Integer Linear Programming (ILP)
that can solve the problem of finding a good load balancing and schedule for the pipelining.
Unlike PipeDream, this method succeeds in obtaining the non-contiguous allocations with
the best load balancing that takes into account memory limitations of GPUs and, at the
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same time, it schedules the operations optimally.
Even though the ILP is able to solve a difficult problem, its completion time can be

extremely large. Thus, in practice, we need a proper heuristic that can use the strong
points of non-contiguous allocations, and at the same time is easy to compute. We
propose a tool MadPipe based on dynamic programming, which assumes that there is one
processor that accommodate non-neighboring layers, whereas other processors take only
connected layers. The operations are scheduled with the ILP from Chapter 6. We provide
the full description of this heuristic in Chapter 7. Through experiments, we demonstrate
that MadPipe brings the significant improvement over PipeDream, which confirms the
importance of non-contiguous allocations.

Background

Context

This PhD thesis is a part of Inria project IPL (later DEFI) that unites researchers from the
fields of HPC, Big Data and AI. This project allows people from these different domains
to share their knowledge and expertise to find new ideas at the intersection. The newly
created collaborations aim at pushing further the progress in all aforementioned fields.

Particularly, one initial goal of this work was to launch a collaboration between
HiePACS (HPC) and Zenith (Big Data and AI) teams in order to train Pl@ntNet that is
a citizen science project for automatic plant identification through photographs based on
machine learning [4]. During several mutual visits between HiePACS and Zenith research
members, several problems were established with respect to training. However, memory
was identified as the main bottleneck preventing Pl@ntNet from moving to bigger models
and considering larger images and a richer set of species. Therefore, we have decided to
tackle this particular problem.

In order to solve issues related to memory, the structure of neural networks training
graph and workflow should be carefully analyzed and modelled. Pl@ntNet relies on
PyTorch to perform training, thus its way of functioning has to be taken into account as
well. As a result of our discussions, a collection of memory saving methods are proposed
in this work. Eventually, Pl@ntNet has managed to solve its original memory problem
by considering clusters with GPUs that have larger memory capacity. Nevertheless, our
advances help to deal with new challenges: training larger neural networks (e.g. in the
context of Pl@ntNet it is needed for efficient knowledge distillation), training with larger
input data (e.g. images with higher resolution) and using larger batch-size for a faster
convergence. Our methods are useful beyond Pl@ntNet applications: in order to train large
language models such as GPT-3, Rematerialization, Offloading and Model Parallelism
are combined together in an effort to cut training memory requirements. Finally, efficient
memory techniques help to better exploit the available hardware, make computations
more productive, while extending their utilization period and thus reducing the carbon
impact.
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Practical and Theoretical Contribution

• Chapter 2 and Part II contain both theoretical and practical contributions: optimal
solutions that encompass specificities of both sequential neural networks and
learning frameworks are proposed and further integrated in rotor tool 10, which is
fully-functional, easy-to-use and compatible with PyTorch. These chapters include
the results of the actual experiments with rotor.
• Chapter 1 and Part III are more theoretical in nature: they provide new original

modelling with valuable insights in underlying problems and optimal algorithms,
but they have not been implemented yet in a learning framework. Results presented
in these chapters rely on simulations.

Publications

Some of the contributions presented in this work have been published: Chapter 1
in Philosophical Transactions of the Royal Society [10], Chapter 3 in Proceedings
of European Conference on Parallel Processing 2020 [8] and Chapter 5 in European
Conference on Parallel Processing 2021 [9]. The results of Chapter 4 are accepted for
publication in Neural Information Processing Systems Conference 2021.

Apart from this, there are other works realized during this PhD, but not included
into the manuscript for the sake of conciseness and consistency. Among them there
is a joint work in collaboration with Imperial College London and Argonne National
Laboratory that considers the advantages and challenges of training on the Edge published
in Proceedings of Workshop on Parallel AI and Systems for the Edge 2019 [59]. The
other work is done in collaboration with University of Colorado and Northeastern
University that estimates lower bound on the execution time for schedules of the tiled
Cholevsky factorization published in Proceedings of European Conference on Parallel
Processing 2020 [11].

10https://gitlab.inria.fr/hiepacs/rotor
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Related Works

Rematerialization

Checkpointing for Automatic Differentiation

Adjoints computation is a numerical method for computing the gradient of a function,
which may be complex. This method is at the core of many scientific applications, from
climate and ocean modeling [3] to oil refinery [15]. In addition, the structure of the
underlying dependence graph is also at the basis of the backpropagation step of machine
learning [57], and thus the models considered in this manuscript are based on it.

Storage has been one of the key issue with the computation of adjoints: it is required
to keep all the intermediate data to compute the final gradient, but it is possible to
recompute them. Therefore, the computation of adjoints has always been a trade-off
between recomputations and memory requirements [38].

When one type of limited memory is available, authors of [41] showed the optimality
of a binomial approach that was later implemented under the name Revolve [39]. In
the latter paper, closed form formulas providing the exact position of saved data have
even been proposed for homogeneous chains (each operation has the same duration and
memory cost). When computation times are heterogeneous, but data sizes are identical,
an optimal checkpointing strategy can be obtained with Dynamic Programming [40]. The
problem of adjoint computations has received an increasing attention in the recent years
with the introduction of a second level of storage of infinite capacity but with access
(write and read) costs [102, 6, 5, 94, 84]. Indeed, with the increase in the problem size,
the memory was not sufficient anymore to solve the problems in a reasonnable time. Hence
solutions have started considering the usage of disks to store some of the intermediary
data. Several work have considered this problem. In [102], a first heuristic was presented
that applies the schedule provided by Revolve, where the checkpoints that stay idle the
longest are stored on disk (level 2 storage). Some implementations (for example [84]) are
based on a two level checkpointing strategy: the first pass (forward mode) of the adjoint
graph checkpoints periodicaly to disk (level 2), then the second pass (reverse mode) reads
those disk checkpoints one after the other and uses Revolve with only memory (level
1) checkpoints. The main parameter (period used for the forward checkpointing) can be
chosen by the user. The algorithm designed in [6] and denoted by Disk-Revolve is
able to solve this problem optimally. In a subsequent work, authors of [5] showed that the
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optimal solution returned by Disk-Revolve is weakly periodic, meaning that the number
of forward computations performed between two consecutive checkpoints into the second
level of storage is always the same except for a bounded number of them. More recently,
they extended this result for a hierarchical memory architecture with an arbitrary number
of storage levels [47].

In Chapter 1, we extend the classical results of [39] to meet the requirements of more
complex adjoint computations emerging in DNN graphs of Siamese Neural Networks [13,
28, 75] and Cross-Modal-Embeddings [74, 77]. They represent a class of graphs that has
a shape of multiple chains joint together at the end by the last operation, which in case
of Deep Learning is a loss function. Our work shows that dynamic programming is still
applicable for the new type of graph, but its complexity grows exponentially with a number
of chains.

Rematerialization for DNNs

When a DNN represents a single chain of layers, the computation of the gradients in the
training phase is similar to Automatic Differentiation (AD). The checkpointing strategies
used in AD to reduce memory consumption are known in AI as Rematerialization
or gradient checkpointing strategies. Rematerialization is the method that relies on
recomputations to reduce the memory footprint of a given fixed model or architecture,
while obtaining the exact same output of the training phase.

Recomputations can be applied to individual layers or modules of the neural network
that are known to be especially heavy. For example, the authors of [83] show, for a popular
neural network like DenseNet, that using shared memory storages and recomputing
concatenation and batch normalization operations during backpropagation help to go
from quadratic memory cost to linear memory cost for storing feature maps. Along the
same idea, reimplementations of some commonly used layers like batch normalization have
been proposed [91]. In the latter case, memory usage is reduced by rewriting the gradient
calculation for this layer so that it does not depend on certain activation values (so that
it is no longer necessary to store them).

A generic divide-and-conquer approach based on compiler techniques is able to perform
automatic differentiation for arbitrary programs [98].

The use of rematerialization strategies inspired by AD has recently been advocated
for DNNs in several papers [42, 20, 57, 60, 31, 52]. A direct adaptation of the results
on homogeneous chains was proposed for the case of Recurrent Neural Networks (RNNs)
in [42], but cannot be extended to other DNNs. Apart from this, for practical usage,
an implementation of rematerialization exists in PyTorch [1], based on a simple periodic
and single-pass rematerialization strategy that exploits the ideas presented in [20]. In this
strategy, the chain is divided in equal-length segments, and only the input of each segment
is materialized during the forward phase. This strategy provides non-optimal solutions in
terms of throughput and memory usage, because it does not benefit from the fact that
more memory is available when computing the backward phase of the first segment (since
values materialized for later segments have already been used). This implementation was
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nevertheless used to process significantly larger models [36].
Some researches attempted to adapt rematerialization strategies to Arbitrary

Computation Graphs (ACG). On the one hand, a polynomial algorithm is provided in [31]
that finds the rematerialization strategy for the forward propagation that minimizes
memory used to execute ACG, under the assumption that activation deletion is not
allowed during the backward phase (activations can be recomputed only once), which
is a very strong and restrictive assumption in practice, especially in the case of deep
networks. On the other hand, in the AD literature, the process is fully recursive, allowing
the full memory usage throughout the entire training, since the released memory can be
used later. In what follows, we refer to such solutions as single-pass rematerialization
strategies.

A similar problem is considered in [60], where activation deletion during backward
propagation are possible, though similarly the framework is restrictive on several points
that are crucial in terms of practical performance and applicability. First, the study
is limited to unit costs for data. More importantly, the approach described in [60] is
based on the computation of a tree-width decomposition of the graph and only derives
the minimum computational cost associated with the minimum memory footprint. The
minimum memory footprint then depends on the quality of the decomposition, which is
an NP-complete problem for which constant approximation algorithms exist. In practice,
the problem to be solved is rather to minimize the computational cost while meeting a
given memory constraint. Indeed, limiting the search to the smallest possible memory size
obviously leads to a significant additional computational cost.

Another closely related approach is Checkmate [52] in which an Integer Linear
Program is proposed to solve the rematerialization problem. This program can handle
arbitrary graphs by assuming a fixed ordering of the execution, and can provide a
solution of minimum runtime given a memory limit. However, solving this ILP is very
computationally expensive and does not converge in a reasonable time as soon as the
network exceeds a few dozen layers. Its rational approximation, however, can be easily
found, but may push memory usage above memory limits

At last, other approaches finely control the tradeoff between memory and computation.
In [61], the authors also consider a general ACG framework. Their work can be seen as a
generalization of [20] algorithm to ACGs. More specifically, their goal is to decompose the
ACG into groups of nodes and during the forward phase, only the boundaries between
groups are materialized. Then, during the backward phase, to perform the gradient
computations of a group, it is required to recompute all the activations of the group using
its input saved boundary, and then the backward phase is performed without additional
recomputing operations. On the one hand, the advantage of this approach is that it is
tractable for ACGs using dynamic programming. On the other hand, as in [20] and [31],
the search is restricted to single-pass rematerialization strategies. As we show in Chapter 2
in the case of chains, the fact of not using activation deletion during the backward phase
induces significant memory waste and additional computational costs.

In [54], the authors proposed Dynamic Tensor Rematerialization that dynamically
choose which activations should be discarded and then recomputed at runtime. Still,
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it is based on a heuristic approach that encourages to discard tensors that have large
memory and staleness costs and that can be easily recomputed while allowing cheap
recomputations of other tensors as well. This heuristic showed good results, though
optimal static rematerialization methods remain more reliable, taking into account that
execution times and memory costs of layers normally do not change much over iterations.

To the best of our knowledge, Chapter 2 is the first attempt to precisely model
heterogeneity and more importantly the ability, offered in DNN frameworks, to combine
two types of activation savings, by either storing only the layer inputs (as done in AD
literature), or by recording the complete history of operations that produced the outputs
(as available in autograd tools). For this model, we propose a static algorithm with an
optimality proof, based on dynamic programming. This algorithm manages to find the
best schedule in polynomial time.

Offloading

Offloading is a potentially complementary approach to Rematerialization that consists in
offloading some of the forward activations from the memory of the GPU to the memory
of the CPU, which is expected to be much larger [88, 7]. In [88], the authors propose a
simple and effective mechanism of Memory Virtualization, that nevertheless introduces
unnecessary idle time by enforcing some synchronization between data transfers and
computations of later forward activations. This approach has been later improved in [7] by
the design of techniques to deal with memory fragmentation. Nevertheless, in both papers,
the algorithmic strategies to decide which activations to offload into the main memory
are relatively straightforward. Proposed strategies consist in trying to offload either all
activations or only those that correspond to convolutional layers. Indeed, convolutional
layers are known to induce a large computational time with respect to their input size,
which make them good candidates to overlap offloading and processing.

Several follow-up works offer improvements over this first attempt. In order to
reduce the overhead incurred by the communications, some authors [89] recommend
to add compression to decrease the communication time, while others [62] design a
memory-centric architecture to help with data transfers. Memory Virtualization was
further considered in [76, 64, 49, 114]. In [76, 64, 49], the authors implement memory
virtualization by manipulating the computational graphs and inserting special operations
called swap in and swap out that send the activations in and out of the device memory.
Such an approach can be applied to any ACG that represent neural network training
graphs. The authors of [64] improve the candidate selection and prefetching mechanisms
by introducing thresholds to filter out different possibilities. Moreover, some works try
to combine Offloading with other memory optimizing techniques. Memory Swapping and
Memory Pooling are implemented together in [114], where candidates for swapping are
found by assigning priority scores to all activations.

As a complement to these practical approaches, in this work we perform the first
theoretical analysis of the underlying optimization problem: which data to offload and
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how to schedule transfers. We present both a complexity proof and optimal solutions to
two of its relaxations in Chapter 3.

Combination of Rematerialization and Offloading

The works, combining both approaches, are relatively recent, though the idea comes
naturally from the fact that they serve the same purpose, while they make use of different
resources. The speed-centric rematerialization from [20] enhanced with memory-centric
rematerialization (discards activations of every segment all the time) was combined with
the simple offloading approach from [88] in [108]. Then, the authors in [86] also used
rematerialization of [20] with a possibility of further offloading saved checkpoints to the
CPU if rematerialization only is not enough to perform training under memory constraint.

Another approach that combines recomputations and data offloading from GPU
memory to CPU memory was proposed in [85]. This approach is especially useful in
the case where the size of the activations is small compared to the size of the model,
which is the case in some NLP models. In this case, the network weights are offloaded to
the CPU memory, that serves as a parameter-server host.

The similar idea was considered in Automatic Differentiation as well and it is known
as Disk Checkpointing [6], which is discussed in more details above (see Checkpointing for
Automatic Differentiation). However, this model is not entirely appropriate for DNN, as
it is restricted to homogeneous chains, where the communication cost is constant without
possible overlap with computations.

Our goal is to find simultaneously optimal Rematerialization and Offloading strategies
that could take into account their joint impact on the makespan for DNNs represented
by heterogeneous complex chains. In Chapter 4, we analyse the corresponding problem.
We focus on the case where the model weights stay in GPU and the activations should be
moved to the CPUmemory. In that case, we demonstrate how these two dynamic programs
from Chapters 2 and 3 can be merged together to provide the optimal combination that
outperforms basic heuristics.

Pipelined Model Parallelism

When using Model Parallelism [24], the different layers of a network are spread over
different resources, so that the storage of DNN weights and activations is shared between
the resources. In Model Parallelism, only activations should be communicated and
transfers take place just between layers assigned to different processors, which adds up
to a low total amount of data movements with respect to other types of parallelisms.
Despite that, the scalability of the method is poor because of chain connections in DNN
computational graph that force a sequential execution of all the tasks.

The execution within Model Parallelism can be accelerated if several mini-batches are
pipelined, and thus several training iterations are active at the same time, helping to keep
computing resources busy most part of the time. The practical use of Pipelined Model
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Parallelism is nevertheless a delicate issue and the analysis of the induced memory needs
is complex. In [50], it is proposed to split the training batch into several mini-batches,
which are then pipelined through the layers of the network (and the different computing
resources). Once the forward and backward phases have been computed on all these
mini-batches, the weights are then updated. This approach is fairly simple to implement
but has the disadvantage of leaving the computational resources largely idle (e.g. after
the first resource has executed its forward operations on the pipelined mini-batches, it
has to wait until the corresponding backward operations become available to complete
the iteration). The PipeDream approach proposed in [78] improves this training process,
by only forcing that the forward and backward tasks use the same model weights for a
given mini-batch. Such a weakened constraint on the training process allows PipeDream
to achieve a much better utilization of the processing resources, but the asynchronous
updates affect badly the overall convergence of the training.

Despite its advantages, PipeDream has a number of issues: (i) degraded convergence
because of weight staleness that is non-uniform with respect to different stages, (ii) poor
memory management because of redundant weight and activation copies produced
by non-optimal schedule, (iii) inferior load balancing being restricted to contiguous
allocations, (iv) not suitable for heterogeneous GPUs.

The poor convergence of asynchronous methods has been addressed in several papers.
It is caused by weight staleness when the delayed gradients are used to perform
an update step. Some works [43, 18] propose to predict weights during forward and
backward propagation using the momentum of the gradient. Performing the updates less
regularly [43, 79] (in contrast in PipeDream they are done after each backward) helps
limiting weight staleness as well. Alternatively, PipeMare [111] proposes to reschedule
learning rate depending on the pipeline stage and adapt the model weights for backward
so that they are defined by the most recent version of weights and the accumulated
weighted difference between the model weights from successive iterations and the stage
number. The last method achieves the same convergence rate as GPipe, while having the
same resource utilization as PipeDream without storing multiple copies of the weights.

Another important issue related to PipeDream is the need to keep many copies of the
model parameters, which can potentially cancel the benefit of using Model Parallelism.
To address this issue, the same methods that help with weight staleness can be used:
in [79] the updates are done so that it is possible to keep only two versions of the weights;
in [18] two versions of the weights are needed too, but also one gradient and momentum
should be stored. The inefficient memory utilization by PipeDream has been also observed
in [51]. Unlike other works, they offer another version of pipelining different from GPipe
and PipeDream. Its principle of work can be described in the following way: once all
forward steps on one mini-batch are processed by all GPUs and the first backward of the
last stage is done, the same GPU can proceed to the first stage of the next mini-batch
by performing its forward and then the remaining forwards of the new mini-batch are
executed on the other processors in the reverse order just after the backwards of the
preceding mini-batch. This allows GPUs to use memory immediately after it is released
during backward steps. In general, it uses memory more efficiently, though memory itself
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is not considered as a constraint.
Contiguous allocations can be also a bottleneck that hinders a throughput. The authors

of [29] offer a method suitable for finetuning large models. They obtain non-contiguous
allocations, by coarsely building stages that have a high ratio of computation time with
respect to communication time. These stages can be further allocated to any device,
allowing more than one stage per processor. To find non-contiguous allocation for ACGs,
the authors of [106] propose two Integer Linear Programs (ILPs) (one minimizes latency,
the other one maximizes throughput for a steady state situation) and a dynamic program.
The obtained solutions are optimal for inference and can be adapted for training, though
those methods do not take into account pipelining nature of model parallelism and
scheduling, which have a significant influence on the peak memory usage.

Some researchers have worked on extending the results of PipeDream to heterogeneous
computing clusters and heterogeneous communication links [113, 81, 73]. Finding the
optimal load balance and schedule for heterogeneous settings is a difficult task, thus all
of them rely on some simplifications and heuristics. To solve issues in the case of high
communication costs and heterogeneous networking, the authors of [113] proposed an
updated dynamic programming strategy that assumes no overlap between computations
and communications. The HetPipe proposal [81] considers a different way of combining
Data and Model Parallelism, in which nodes may contain different GPUs. The idea
of HetPipe is to heuristically split the GPUs into virtual workers that may contain
heterogeneous GPUs and use Data Parallelism between virtual workers. Model Parallelism
is used inside the virtual workers, based on a simplified ILP that assumes no overlap
between computation and communication. Pipelined Model Parallelism in [73] is done
with a help of Deep Reinforcement Learning.

Other extensions of PipeDream explore different ways of combining Model Parallelism
with other types of parallelism [81, 30, 66, 68]. In the DAPPLE framework [30], Model
Parallelism is implemented alongside Data Parallelism. There, the focus is on the case
of several nodes, each equipped with several GPUs. DAPPLE extends PipeDream by
allowing more possibilities to map a stage of the DNN to GPUs located in several
nodes. The assignment problem is solved without taking memory constraints into
account. Furthermore, [66] does Hybrid Parallelism, using Tensor Slicing, Data and Model
Parallelism, finding job allocation with dynamic programming. However, this method does
not take into account the memory constraints.

Transformers offer a new dimension for pipelined parallelism. In [68], the pipelining
is not performed through micro-batching. Instead, they pipeline the tokens in the input
sequence. Such approach manages to significantly accelerate the training of GPT-3. Their
solution is based on dynamic programming without memory considerations.

Our work carefully investigates the limitations of PipeDream in Chapter 5. To the
best of our knowledge, we are the first to notice and estimate the effect of the chosen
schedule on the peak memory usage of the pipelining. We also evaluate to which
extent non-contiguous allocations can be advantageous with respect to contiguous ones.
Therefore, we propose an ILP in Chapter 6 that finds simultaneously the optimal load
balance based on non-contiguous allocations and the optimal schedule, taking into account
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all sources of memory consumption. In addition to the ILP, we also offer a heuristic
MadPipe described in Chapter 7. It is based on dynamic programming that also combines
non-contiguous allocations with scheduling considerations to find the best load balancing.
Our methods can be combined with [43, 18, 79, 111] to improve the training convergence.
Despite targeting only Model Parallelism, our solutions can be easily adapted for Hybrid
Parallelism, using some simple heuristics. As a future work, our approach should be
extended to heterogeneous systems as well.
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Introduction

Training Deep Neural Network (DNN) is a memory-intensive operation. Indeed, the
training algorithms of most DNNs require to store both the model weights and the
forward activations in order to perform backpropagation. In practice, training is performed
automatically and transparently to the user through autograd tools for backpropagation,
such as tf.GradientTape in TensorFlow or torch.autograd.backward in PyTorch.
Unfortunately, the memory limitation of current hardware often prevents data scientists
from considering larger models, larger image sizes or larger batch sizes [91, 83].

To alleviate the memory limits, we propose in this part to use a technique known
as Checkpointing in Automatic Differentiation or Rematerialization in Deep Learning. It
proposes solutions for the problem of scheduling a graph with a shared bounded memory.
This problem with homogeneous data is analogous to the Register Allocation problem or
Pebble Game. Given a bounded number of unit-size registers (or memory slots), can we
execute the graph while respecting the constraint that to execute a task, all its inputs
need to be in a register? Authors of [96] showed that this problem is NP-complete for
general task graphs. Further study showed that the problem is solvable in polynomial
graph for tree-shaped graphs [72], or recently Series-Parallel graphs [53].

In this part, we are interested in what we denote by backpropagation graphs: given a
directed acyclic graph with a single sink node, we construct a dual identical graph where
the edges are reversed, and where each node of the initial graph is connected to its dual
node. The source node of the dual graph and the sink node of the original graph are
merged into a single node called loss (see Figure 1.1 for the case of a chain of nodes).
These types of graphs have been widely studied in the context of Automatic Differentiation
(AD) [37]. For a given batch size and a given neural network model and even on a single
device without relying on model parallelism strategies, it enables to save memory at the
price of activation recomputations. In the context of AD, networks can be seen as (long)
homogeneous (i.e., all stages are identical) chains and the forward activation corresponding
to the i−th stage of the chain has to be kept into memory until the i−th backward stage.
Checkpointing techniques consist in determining in advance which forward checkpoints
should be kept into memory and which one should be recomputed from stored checkpoints
when performing the backward phase. Many studies have been performed to determine
optimal checkpointing strategies for AD in different contexts, depending on the presence of
a single or multi level memory [6]. In the case of homogeneous chains, closed form formulas
providing the exact position of checkpoints have even been proposed [39], although the
general algorithmic ingredient is to derive optimal checkpointing strategies using dynamic
programming [39].

The use of checkpointing strategies has been recently advocated for DNN in several
papers [42, 20] and a simple periodic checkpointing strategy, non optimal but still efficient
implementation is provided in PyTorch [82, 1] for the restricted case of homogeneous
chains, whereas DNN models are in general more complicated. While optimal scheduling
and checkpointing are still open in the general case, there are some solutions that in some
way benefit from the findings in AD checkpointing strategies [20] [42]. However, they
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are designed to deal with only sequential models, thus making it inappropriate for more
sophisticated cases.

In Chapter 1, we present the first attempt to find optimal checkpointing strategies
adapted to more general networks. We show how techniques developed in Automatic
Differentiation can be extended to DNN networks. More specifically, we concentrate on
the particular DNN consisting of several independent chains whose results are gathered
through the computation of the loss function. This case corresponds to the case of
Siamese and Cross Modal Networks. We show that this specific case, provided that
all computational and memory costs are homogeneous, is still solvable using dynamic
programming, but at the price of increased complexity and, hence, higher computational
cost. In Section 1.1, we present our general model and the notations that will be
used throughout the chapter and the part, and we present a few basic results of the
Automatic Differentiation literature. Then, properties of optimal solutions are proposed
in Section 1.2 and are later used in Section 1.3 to find the optimal checkpointing strategy
through dynamic programming in the case of multiple chains. At last, we present our
implementation and simulation results in Section 1.4, before providing concluding remarks
in Section 1.5.

In Chapter 2, we focus rather on more practical use of Checkpointing (or
Rematerialization). We carefully model the operations that are available in DNN
frameworks and analyze the specificity of computational graphs built by learning
frameworks. We show that autograd tools offer more general operations and thus more
optimization opportunities than those used in Automatic Differentiation. We assume that
a DNN is given as a linear sequence of modules, where internal modules can be arbitrarily
complex. In practice, this assumption does not hinder the class of models that can be
considered, and we propose implementations of classical networks (ResNet, Inception,
VGG, DenseNet) under this model. Moreover, we prove that models with heterogeneous
activation sizes (in addition to the heterogeneous computation times that was previously
considered in the literature) no longer satisfy the memory persistence property, contrary
to what is typically assumed in the literature on rematerialization strategies for DNNs.
We derive both an optimal algorithm that does not assume memory persistence and a
relaxation to obtain the optimal memory persistent solution. This relaxed solution may
not be optimal in the worst case, but in practice it shows the same performance as the
optimal one.

Another contribution of Chapter 2 is a complete and easy-to-use implementation
of the algorithm we propose in the PyTorch framework, called rotor [48]. This tool
automatically measures the characteristics (memory consumption, computation time) of
each layer of the DNN, and then computes the forward and the backward phases while
enforcing a memory limit, at the cost of a minimal amount of recomputations.

We start with model description and notations in Section 2.1. Then we show
in Section 2.2 that in case of heterogeneous chains the problem is NP-complete in
the weak sense. After we introduce two dynamic programming algorithms that solve
the rematerialization problem in pseudo-polynomial time in Section 2.3. Our PyTorch
implementation of the rematerialization algorithm is described in Section 2.4. We
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show through an extensive experimental evaluation in Section 2.4.5 that the additional
operations provided by autograd frameworks indeed enable to significantly increase the
throughput (the average number of processed images per second) when performing
training. Finally, we give a conclusion in Section 2.5.
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Глава 1

Multi-Chain Rematerialization

1.1 Framework

1.1.1 Introduction to Adjoint Chain

Figure 1.1 depicts the typical task graph that is considered in Automatic Differentiation.
The top line shows the calculation of some complex function, which can be composed of
several elementary operations, denoted by F` for 1 ≤ ` ≤ L. We denote the result of this
complex function FL(FL−1(. . . F2(F1(a0)))) as Loss. In order to compute the derivative
∂Loss(a0)

∂a0
, the simplest way is to use the chain rule, i.e. ∂Loss(a0)

∂a0
= ∂Loss(aL)

∂aL

∂FL(aL−1)

∂aL−1
·

. . . ∂F1(a0)
∂a0

, which can be computed iteratively starting from BL(aL−1) = ∂Loss(aL−1)

∂aL−1
=

∂Loss(aL)
∂aL

∂FL(aL−1)

aL−1
= δL−1 and finishing by finding B1(a0) = ∂Loss(a1)

∂a1
· ∂F1(a0)

∂a0
= B2(a1) ·

∂F1(a0)
∂a0

= δ1 · ∂F1(a0)
∂a0

= δ0. This iterative process is depicted in the bottom line of Figure 1.1.
Besides, evaluation of ∂F`(a`−1)

∂a`−1
for some arbitrary ` generally requires a`−1 as an argument

(e.g. if f(x) = x2 then ∂f(x)
∂x

= 2x and it depends on x), which creates these transversal
data dependencies between the output of F`−1 and the input of B`. These long term data
dependences may cause some memory issues. For instance, a1 has to be kept in memory
until the end of the whole process, since it will be used to compute δ1. Overall, the final
adjoint chain is assumed to be homogeneous, i.e. the time cost of any F` is uF ∈ R+, of
any B` is uB ∈ R+, of the Loss is uL ∈ R+ and all activations (intermediate data a` for
0 ≤ ` ≤ L) and gradients (δ` for 0 ≤ ` ≤ L) have unitary storage cost. For example, this
is the case if for any ` ≥ 0 : a` ∈ R+ (i.e. when working with scalars), then each data
occupy the same amount of memory, while elementary operations such as F` or B` have
a uniform duration.

Figure 1.1 corresponds as well to the training phase of a simple sequential DNN. The
general framework for the training phase is the following: we pass a global input a0 to the
chain of length L, which is propagated until Loss using F computations that are called
forward steps. F operations typically represent a sequence of linear functions (matrix or
tensor operations) followed by a non linear function (typically ReLU); such operations
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F1 F2 · · · FL−1 FL

B1 B2 B3 · · · BL Loss

a0 a1 a2 aL−2 aL−1

δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aL

Рис. 1.1: The data dependencies in the Adjoint Computation graph.

are called layers in the vocabulary of deep learning. Layer ` may be parametrized by
some matrix or tensor called weight W`. The choice of these weights affect Loss, which
measures the error of the neural network. To minimize this error, it is required to tune the
weights, by iteratively applying to them an update that depends on the gradients ∂Loss

∂W`
.

For that, after reaching the loss function, backpropagation is triggered, whose purpose
is to compute these gradients using again the chain rule like described in the previous
paragraph, since ∂Loss

∂W`
= ∂Loss

∂a`
· ∂F`(a`−1,W`)

∂w`
= B`+1(a`) · ∂F`(a`−1,W`)

∂W`
= δ` · ∂F`(a`−1,W`)

∂W`
.

Therefore, during this backward propagation phase, it is necessary to compute δ` for
1 ≤ ` ≤ L with B`+1 for weight updates and thus the same data dependencies hold
as in Automatic Differentiation procedure. Unlike the classical problems of Automatic
Differentiation, in general, the computational graphs for DNNs can be non-homogeneous
and can have a more complex structure than the one shown in Figure 1.1. However, for
simplicity, in this chapter we consider a subset of neural networks that satisfy homogeneity
property: i.e. all forward steps have the same execution cost uF ∈ R+, all the backward
steps have the same execution cost uB ∈ R+, the cost of Loss is uL ∈ R+, while all
input/output data have the same (unit) size; yet these neural networks should correspond
to a more general graph structure than the simple adjoint chain. We consider the case of
heterogeneous activation sizes and heterogeneous computing costs in Chapter 2.

1.1.2 Platform Model and Optimization Problem

In this chapter, we consider a platform consisting of a single compute element with a finite
memory M of size m. We use this memory to store the data (either input or output)
of operations. The parameters of parametrized operations are assumed to be stored in
advance outsideM. Further in the text, we refer to the stored data as checkpointed data
or checkpoints (meaning that we can redo a part of computations from them). Note that
we do not consider the memory required by the actual execution of the job. Indeed, we
assume in this chapter that there is some other level of memory that is always reserved
for this type of operation (a special buffer).

To execute a job on this platform, at the beginning of the execution, all its inputs
need to be stored in memory.

A job is represented as a Directed Acyclic Graph (DAG) G = (V,E), where each node
of v ∈ V represents a compute operation (with a given execution time), and each edge of
(v1, v2) ∈ E represents a data dependency where an output of v1 is an input of v2.
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In accordance to the scheduling literature, we use the term makespan to denote the
total execution time. Then given a graph G, the problems under consideration are (i) can
we execute it with a memory of size m (pebble game problem) and (ii) if we can, what is
the minimal execution time to execute G (makespan problem) with a memory of size m.

The core of the makespan problem is the following: while there can be enough memory
to execute the graph, the memory may not suffice to execute it in one go. Hence, we need
to choose which data to store and which nodes should be recomputed. For instance, after
having computed a2, we can remove a1 from the memory. Then, during the backward
propagation phase, at the time to compute δ1, a1 will be recomputed from a0 and
then used immediately to compute δ1. We can rely on checkpointing techniques known
from Automatic Differentiation to solve this problem and find a good schedule. In this
context, an optimal checkpointing strategy is a strategy that, given a chain and a memory
size (expressed in terms of free memory slots to hold activations a`), computes which
activations should be kept into memory and when, in order to minimize the number of
recomputations while fitting into the memory constraint.

Definition 1 (Adjoint Computation [39, 102]). An adjoint computation (AC) with L
time steps (or layer for DNNs) can be described by the following set of equations:

F`(a`−1) = a` for 1 ≤ ` ≤ L

B`(a`−1, δ`) = δ`−1 for 1 ≤ ` ≤ L

Loss(aL) = δL

The dependencies between these operations are represented by the graph G = (V,E)
depicted in Figure 1.1.

Intuitively, the core of the AC problem is the following: after the execution of a forward
step F`, its input is replaced by the corresponding output in the memory, then when it is
required to perform the backward step B`, if the value a`−1 is in the memory, then it can
be completed immediately, otherwise this value should be recomputed from the closest
available checkpointed value. Since F replaces its input value by the corresponding output
value, in order to checkpoint a value, it is necessary to duplicate it into the memory before
applying F.

Finally, our problem can be written like the following:

Problem 1 (Single(L,m)). Under a memory limitm we want to minimize the makespan
of the AC problem of computing δ0 from input a0, corresponding to the adjoint chain of
length L from Figure 1.1, where the costs of every forward step, backward step and loss
are uF , uB and uB respectively. It is summarized in the following table:

Initial state: Final state:
AC chain: size L

Steps: uF , uB , uL
Memory: m M = {a0} M = {δ0}
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1.1.3 Backpropagation Graphs

The task graph described in the previous section belongs to a more general class of
graphs: the backpropagation graphs. In general, backpropagation is a special sort of
transformation of a graph:

Definition 2 (Backpropagation transformation (BP-transform)). Given a DAG G with
a single sink node, the BP-transform of G is defined by the following procedure:

1. Build the dual graph G̃ defined as the same graph where all edges are inversed.
2. For a given node in G, connect its input edges to its dual node in G̃.
3. Finally, merge the sink node of G and the source node of G̃ as a single node Loss.

Note that the nodes of the initial graph are denoted as forward steps, while the nodes
of the dual graph are denoted as backward steps.

Note that the graph in Figure 1.1 is the BP-transform of a linear chain.
The key property of the backpropagation graph that justifies this study is:

Property 1 (Properties of the BP-graph). Given a DAG G with n nodes and a single
sink node, without recomputation of nodes, the minimal memory usage to go through the
backpropagation graph of G is O(n).

This property originates from the fact that all input edges of graph G are also connected
to dual nodes of G̃. Thus cutting the BP-transform graph after a sink node of G should
split it into G and G̃ with a cut-set (the set of edges connecting the separated parts) of
size O(n), which represents the highest memory demand of the graph.

Indeed, to scale these types of computations, we are interested by the question of the
overhead in computation when one uses much less memory space.

Another interesting property of backpropagation graphs is that, backward steps of
adjoint chains are not recomputed in optimal solutions. It is due to the fact that there is
only one outcoming edge from each backward operation to the next one, thus there is no
point in computing them more than once to complete the execution.

1.1.4 Multiple Adjoint Chains Computation Problem

Computational graphs of neural networks may vary a lot. Multi-Layer Perceptron has
a very sequential structure, therefore its BP-transform yields the graph structure of the
adjoint chain (depicted in Figure 1.1). However, more advanced neural networks may
contain fork-join parts, skip-connections and even grid structures in their graphs. In
order to generalize the results given for the adjoint chain, we consider in this chapter
transformation of join graphs or also called multi-adjoint chains (Figure 1.2). These join
graphs can be encountered, for example, in the fork-join elements of Inception [104]
or Inception-ResNet [103] networks. Furthermore, join graphs are used by several
deep learning models such as Siamese Neural Network [13, 28, 75] or Cross-modal
embeddings [74, 77].
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Рис. 1.2: A join graph with 3 branches of respective length 5, 4 and 6.
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Рис. 1.3: Data dependencies in the BP-transform of a K-Join problem with two chains.

Definition 3 (BP-transform of a K-Join). Given a join graph GK with K branches of
lengths L = (L1, . . . ,LK), its BP-transform can be described by the following set of
equations:

F
(j)
i (a

(j)
i−1) = a

(j)
i for 1 ≤ j ≤ K and 1 ≤ i ≤ Lj,

B
(j)
i (a

(j)
i−1, δ

(j)
i ) = δ

(j)
i−1 for 1 ≤ j ≤ K and 1 ≤ i ≤ Lj,

Loss(a
(1)
L1
, . . . , a

(K)
LK

) = (δ
(1)
L1
, . . . , δ

(K)
LK

).

The dependencies between these operations are represented by the graph G = (V,E)
depicted in Figure 1.3, in the case of K = 2 chains.

In the BP-transform of aK-Join model, the last forward value of each chain is required
to compute Loss and to start the backward propagation phase. Before the computation of
the loss (resp. after the computation of the loss), all forward (resp. backward) operations
on the different chains can be performed independently, except that all chains share the
same set of storage slots.

We can now present the optimization problem under consideration:
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Problem 2 (Multi-δ(L,m)). Under a memory limit m we want to minimize the
makespan of computing the BP-transform of a K-Join for some K ∈ N of computing
δ

(1)
0 , . . . , δ

(K)
0 from inputs a

(1)
0 , . . . , a

(K)
0 , corresponding to the join-graph with branch

lengths L = (L1, . . . ,LK), where the costs of every forward step, backward step and
loss are uF , uB and uB respectively. It is summarized in the following table:

Initial state Final state
Join size: L = (L1, . . . ,LK)
Steps: uF , uB , uL
Memory: m M = {a(1)

0 , . . . , a
(K)
0 } M = {δ(1)

0 , . . . , δ
(K)
0 }

In practice, once some branch j reaches its last backward B(j)
1 , i.e. the corresponding

backward propagation and weight updates are completed, δ(j)
0 is not required anymore,

therefore it can be discarded to have more memory for unfinished branches. Hence, we
also consider another variant of the above problem.

Problem 3 (Multi-∅(L,m)). We want to solve Problem 2, where, after the
backpropagation of some branch i, it is allowed to discard δ

(i)
0 to have more available

memory slots for other branches.

Initial state Final state
Join size: L = (L1, . . . ,LK)
Steps: uF , uB , uL
Memory: m M = {a(1)

0 , . . . , a
(K)
0 } M = ∅

Let us note that in the case of only one branch all optimal solutions of Multi-δ(L,m)
should be optimal for Multi-∅(L,m) as well.

In order to solve Multi-δ(L,m) and Multi-∅(L,m), we introduce the auxiliary
problem Multi-b(L,m, b) that takes as additional input a binary vector b such that,
∀i ∈ {1, . . . , K}:

bi =

{
1 if the result of the last backward step for the chain i, i.e. δ(0)

i , should be kept,
0 otherwise.

Problem 4 (Multi-b(L,m, b)). We want to solve Problem 2, where for all branches i
such that b[i] = 0, it is allowed to discard δ

(i)
0 to have more available memory slots for

other branches.

Initial state Final state
Join size: L = (L1, . . . ,LK)
Steps: uF , uB , uL
Memory: m M = {a(1)

0 , . . . , a
(K)
0 } M = {δ(i)

0 , ∀i s.t. bi = 1}

Let us note that Multi-δ(L,m) and Multi-∅(L,m) are special cases of
Multi-b(L,m, b) when b = ~1 and b = ~0 respectively.
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1.1.5 Previous Results for Single Adjoint Chain Computation
Problem

In this work, we use results from the literature for a slightly different version of
Single(L,m). We define AdjChain(`,m) the problem consisting of minimizing the
makespan of the adjoint chain of size ` depicted in in Figure 1.4 with m memory slots,
where a0 and δ`+1 are initially stored into the memory, and where at the end of the
computation δ0 should be stored in memory. In contrast with Figure 1.1, there is no more
Loss computation at the “turn” of the graph, but instead B`+1, which like other backward
operations takes as an input one activation computed during forward propagation a` and
one gradient δ`+1.

F1 F2 · · · F`−1 F`

B1 B2 B3 · · · B` B`+1

a0 a1 a2 a`−2 a`−1 a`

δ`+1δ`δ`−1δ3δ2δ1δ0

a0 a1 a2 a`−1 a`

Рис. 1.4: Data dependencies in the AC graph of size ` in AdjChain(`,m).

Problem 5 (AdjChain(`,m)). We want to minimize under the memory limit m the
makespan of the AC problem of computing δ0 from input a0 and δ`+1, corresponding to
the adjoint chain of length ` from Figure 1.4, where the costs of every forward step and
backward step are uF , and uB respectively. It is summarized in the following table:

Initial state: Final state:
AC chain: size `

Steps: uF , uB
Memory: m M = {a0, δ`+1} M = {δ0}

This problem can be solved optimally with the dynamic program described below.

Definition 4 (Opt0 (`,m)). Given ` ∈ N, and m ∈ N, Opt0 (`,m) denotes the execution
time of an optimal solution to AdjChain(`,m).

Theorem 1 ([6]). Opt0 (`,m) can be computed with the following dynamic program

∀m ≥ 2, Opt0 (0,m) = ub (1.1)

∀` > 0, Opt0 (`, 3) =
`(`+ 1)

2
uf + (`+ 1)ub (1.2)

∀` > 0,m > 3, Opt0 (`,m) = min
1≤i<`

{iuf + Opt0 (`− i,m− 1) + Opt0 (i− 1,m)} (1.3)
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(a) The forward phase (b) The turn (c) The backward phase

Рис. 1.5: The three main phases of the algorithm. Green blocks correspond to the storage
of “forward” data, blue blocks to storage of “backward” data.

The minimal amount of memory slots required to reverse an AC graph of size larger
than 1 is equal to 3, in order to keep (i) the initial value a0, (ii) the current forward value
and (iii) the current backward value.

This problem has been heavily studied in the community of automatic differentiation.
Grimm et al. [41] showed the optimality of a binomial approach, which was later
implemented by Griewank and Walther [39] under the name Revolve. Revolve [39]
takes a length ` and a number of checkpoints m (memory limit) and returns an optimal
solution sequence to AdjChain(`,m).

The dynamic program Opt0 (`,m) can be as well used to solve optimally Single(L,m).
Indeed, AdjChain(`,m) solves optimally the part of Single(L,m) that is obtained by
removing the last forward and Loss computation. The optimal makespan of Single(L,m)
is therefore Opt0 (L− 1,m) + uF + uL.

1.2 Characterization of Optimal Solutions for
Multi-Adjoint Chains

In this section, we present the core idea to compute an optimal solution for BP-transform
of a K-Join. In particular, we define canonical solutions (Section 1.2.2), and show that
there always exists an optimal solution that is canonical. Then, in Section 1.3, we show
how to compute a canonical optimal solution with a dynamic program.

Let us first notice that an algorithm for Problems 2, 3 and 4 can be decomposed into
three different phases (see Figure 1.5):
• The Forward phase: we traverse all branches to write all inputs of the loss function

in memory. During this phase one cannot compute any backward operations, but
some of the input data can be stored.
• Loss: at the beginning of this phase, all input data of Loss are stored in memory,

and are replaced by all output data at the end in the same memory locations. Indeed,
the input data of the Loss will never be used anymore.
• The Backward phase: we read some input data that were stored earlier to

backpropagate a subset of the graph.
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1.2.1 Motivating Example

Let us start by presenting a toy example and its associated optimal solution in order to
introduce the main ingredients of our algorithm and the main lemmas and theorems that
prove its correctness. We will consider a network with 3 branches of respective lengths 4,
10 and 12 (L = (4, 10, 12)). An instance of Problem 3 is also characterized by the size
of the available memory m, expressed in terms of number of forward or backward values
that it can host. The other parameters that describe the problem are uF , uB , uL, that are
all set to 1 in the toy example.

Note that the above defined instance of Problem 3 can be transformed into an instance
of Multi-b(L,m, b), if we set b = (0, 0, 0). Finding the schedule that achieves minimum
makespan for 3 branches of lengths L = (4, 10, 12) and unitary computational costs while
using at most m = 9 memory slots therefore corresponds to solving the problem with
L = (4, 10, 12),m = 9, uF = 1, uB = 1, uL = 1, b = (0, 0, 0).

In order to solve this instance, we rely on dynamic programming and express
the solution of the problem as the minimum between the solutions for its “smaller”
sub-problems. The key ingredient to do this is Theorem 3 and more specifically Eq. (1.4).
Eq. (1.4) says that the optimal solution can be obtained by considering all possible
positions of the first checkpoint (denoted as i) taken during the forward phase (before
the computation of Loss) on the branch that will finish last its backward propagation
(denoted as k). To establish this result, we rely on the characterization of a class of optimal
schedules that is defined in Definition 8.

In our specific toy example, the optimal (i, k) pair is (9, 3) so that we checkpoint a(3)
9 .

The solution for the toy example is depicted on Figure 1.6. In this picture, time is depicted
on the y−axis and the position on the chain is depicted on the x−axis. The chains of
respective initial lengths 4, 10 and 12 are depicted using respectively colors blue, green and
red. The first 9 time units are used to perform the first 9 forward computations on the red
branch, and the red branch will end up the computation with operation Revolve(8, 9).

We are now left with two problems.
1. The first problem is an instance of Multi-b(L,m, b) with parameters (L =

(4, 10, 3),m = 8, uF = 1, uB = 1, uL = 1, b = (0, 0, 1)). Since one memory slot is
dedicated to store a(3)

9 , the number of available memory slots is now m = 9− 1 = 8.
At last, b also changed since it is now (0,0,1). This change expresses the fact that
the initial backward value on the last branch should now be kept in memory. Indeed,
since the last chain corresponds to the truncated chain, this value is needed in order
to continue the backward propagation on the red branch. This observation is the
key point to explain the introduction of Multi-b(L,m, b).

2. The second problem is an instance of the classical single chain problem as previously
described in the Automatic Differentiation literature and consists in processing the
first 9 elements of the red chain (9 last backward operations, restarting from the
beginning), with all available memory slots since it will be processed last after all
other branches. Its optimal time can be found with Revolve(8, 9).

In Eq. (1.4), we can recognize the different terms corresponding to the first i = 9

43



1.2. Characterization of Optimal Solutions for Multi-Adjoint Chains

LL1 L2 L3

time

9uF

2uF

uF

a
(3)
9

a
(3)
11 a

(3)
12

7uF

3uF
a

(2)
7

a
(2)
10

4uF

a
(1)
4

uL

uB

Revolve(1, 3)Opt0 (1, 3)

δ
(3)
9

Revolve(8, 9)Opt0 (8, 9)

Revolve(2, 4)Opt0 (2, 4)

δ
(2)
10

Revolve(3, 5)

δ
(1)
4

Opt0 (3, 5) δ
(2)
7

Revolve(6, 7)Opt0 (6, 7)

Forward
phase

Loss

Backward
phase

Te1

Te2

Te3

Рис. 1.6: Toy example, an optimal schedule for Multi-b(L = (4, 10, 12),m = 9, b =
(0, 0, 0))
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forward steps, to the first problem Multi-b(L,m, b) with parameters (L = (4, 10, 3),m =
8, uF = 1, uB = 1, uL = 1, b = (0, 0, 1)) (with k = 3) and to the second problem
Opt0

(
i− 1,m−

∑
j 6=k bj

)
(with all bj being 0 except on the checkpointed branch k = 3).

To solve Multi-b(L,m, b) with parameters (L = (4, 10, 3),m = 8, uF = 1, uB =
1, uL = 1, b = (0, 0, 1)), we again rely on Eq. (1.4), and we decide to checkpoint
the 7th forward value on the green branch. This again leaves us with two problems,
Multi-b(L,m, b) with parameters (L = (4, 3, 3),m = 7, uF = 1, uB = 1, uL = 1, b =
(0, 1, 1)) and Opt0 (6, 7 = 8− 1). For Opt0 (`,m), the number of available checkpoints is
7 and not 8, because we need to keep both the initial forward and one backward value for
the red chain, as expressed by the fact that its associated b value is 1.

To solve Multi-b(L,m, b) with parameters (L = (4, 3, 3),m = 7, uF = 1, uB = 1, uL =
1, b = (0, 1, 1)), we rely on a different strategy, based on the observation that 7 is the
minimal number of memory slots to process 3 chains. Indeed, immediately after Loss,
3 slots will be occupied by the initial values of the different chains and 3 slots will be
occupied by the backward values produced by Loss. Another slot is necessary to process
any forward value on any chain, that can be seen as a buffer for forward computations. In
general, Lemma 2 provides the general formula to find the minimum number of memory
slots necessary to process multiple chains defined by L and b.

In the case where the number of memory slots is minimal, we have less freedom (in
particular we cannot place any additional checkpoints). We can observe that we cannot
add checkpoints before Loss, so that the question becomes how to schedule during the
backward phase a set of single chains with different values of L and b. During the backward
phase, all single chains are independent, but they still share the memory slots. Once it
is processed, the initial value of the chain, that was stored in memory can always be
discarded. In addition, depending on the value of b, the last backward value has to be
kept into memory or not. In the case of the toy example, processing the blue chain, where
no intermediate forward value has been stored, releases 2 memory slots while the red and
green chains (both of length 3), release only one memory slot. On the toy example, the
blue-green-red ordering to finish the forward phase is optimal.

Overall, solving this toy example requires to use all the main results presented in this
chapter, and whose proofs can be found in the next sections. More specifically, Section 1.2.2
presents the characterization of the optimal solution that is later used in Theorem 3 proved
in Section 1.3.2 to build the general dynamic programming formulation.

1.2.2 Canonical Form of Optimal Solutions

In this section, we show that there exist optimal solutions to Multi-b(L,m, b) that follow
a canonical form. In Section 1.3, we later use this caracterization to compute an optimal
solution. We start by giving a formal description of a valid schedule, before showing our
result.
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Operation Input Output Cost
F

(j)
i Executes one forward step for i ∈

1, . . . , K and j ∈ {1, . . . ,Li}
{a(j)

i−1} {a(j)
i } uF

B
(j)
i Executes one backward step for

i ∈ {1, . . . , K} and j ∈
{1, . . . ,Li}

{δ(j)
i , a(j)

i−1} {δ(j)
i−1} uB

Loss Computation of the loss function
using the last forward value of
each chain

{a(1)
L1
, . . . , a

(K)
LK
} {δ(1)

L1
, . . . , δ

(K)
LK
} uL

S
(j)
i Replicates a(j)

i into the memory
as a checkpoint for i ∈ 1, . . . , K
and j ∈ 1, . . . ,Li

{a(j)
i } {a(j)

i , a
(j)
i } 0

D
(j)
i Discard a(j)

i from memory {a(j)
i } ∅ 0

D̄(j) Discard δ(j)
0 from memory, so after

that there are no element of j
chain in the memory

{δ(j)
0 } ∅ 0

Таблица 1.1: Operations performed by a schedule

1.2.2.1 Valid Schedule

Throughout the text, we represent a schedule by a sequence of operations, where the set
of operations (F (j)

i , B
(j)
i , Loss, S(j)

i , D
(j)
i , D̄(j)) is defined in Table 1.1. Table 1.1 defines

both the set of operations and the transformation of the memory made by each operation.
Initially, we assume that all a(j)

0 values are stored into memory slots.

Definition 5 (Valid Schedule). A schedule S is valid if for every operation from the
schedule its input is stored in the memory during its execution and this execution does not
violate the memory limit m. Moreover, each backward operation B(j)

i for any 1 ≤ i ≤ Lj

and j ∈ {1, . . . , K} should be present in S at least once.

Definition 6 (Makespan of a Schedule). We define the makespan of a valid schedule S
as

kFuF + kBuB + kTuL,

where kF denotes the number of F (j)
i operations in S, kB denotes the number of B(j)

i

operations in S and kT denotes the number of Loss in S (we prove in the remainder of
this section that in any optimal solution, kB =

∑K
i=1 Li and kT = 1).

Therefore, our model takes into account computational costs and limited memory
capacity, but it assumes that memory accesses, both for reading and writing are cheap
and can be neglected.

Finally, we introduce the specific makespan of optimal schedules:
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Definition 7 (Optb-multi (L,m, b)). Given L ∈ NK , m ∈ N, and b ∈ {0, 1}K , let
Optb-multi (L,m, b) denote the makespan of an optimal solution to Multi-b(L,m, b)

1.2.2.2 Canonical Solutions

Notation 1. Let us consider an arbitrary branch with index k ∈ {1, . . . , K}, which has
in total nk number of checkpoints before Loss whose indices are i1, . . . , ink

written in
increasing order. The positions of these checkpoints delimit nk − 1 segments s1, . . . , snk−1

corresponding to different parts of the execution.
• We denote as FS

(k)
sj for j ∈ {1, . . . , nk − 1} the j − th Forward Segment of

branch k, which represents the sequence of operations that take place between the
checkpointed values a(k)

ij
and a(k)

ij+1
:

FS(k)
sj

= Store a(k)
ij

; Forward Operations F (k)
ij+1, F

(k)
ij+2, . . . , F

(k)
ij+1−1, F

(k)
ij+1

• We denote as BS(k)
sj for j ∈ {1, . . . , nk − 1} the j − th Backward Segment of branch

k, which represents the sequence of operations performed on branch k after Loss
and BS(k)

sj+1 between the first time a(k)
ij

is reused and the computation of B(k)
ij

.

Properties 1. We search the solutions that satisfy the next set of properties.

C.1 For any branch k ∈ {1, . . . , K} the first checkpointed value is a(k)
0 , i.e. a(k)

i1
= a

(k)
0 .

Indeed, as it is impossible to retrieve a(k)
0 once discarded, thus it should be kept in

memory since the start of the execution until backward B(k)
1 .

C.2 Having fixed the positions of checkpoints in the forward phase, any permutation of
the forward segments, s.t. for all k, j: FS(k)

sj is executed before FS(k)
sj+1 yields a valid

forward phase and does not affect the final makespan.
C.3 (Memory Persistence) For all k and j, a(k)

ij
, which is the input of FS(k)

sj , is not
discarded from memory until the end of BS(k)

sj .
C.4 (Non-overlap of backward segments) No backward segment overlaps with the last

backward segment, i.e. if the backward segment BS(k)
s1 for some k is the last one

then all operations from BS
(k′)
s1 for any k′ 6= k (the last backward segment of another

branch) should finish before BS(k)
s1 .

Lemma 1. There always exists an optimal solution to Multi-b(L,m, b) that satisfies
Properties 1.

Доказательство. We prove that Properties 1 do not prevent from finding the optimal
solution, using basic transformations. We show that it is always possible to transform an
optimal solution into another optimal solution with stronger structural properties.

Property C.1 is obvious. Property C.2 is also straightforward. The condition that
for all k, j: FS(k)

sj is executed before FS(k)
sj+1 guarantees that such permutations preserve

validity, without changing the makespan or affecting feasibility of all operations scheduled
after Loss.
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We can show that all optimal solutions should comply with with Property C.3. Let
us consider an arbitrary non-persistent solution (violating Property C.3), where for some
branch k and position ij, its checkpointed value a(k)

ij
is discarded before the execution of

B
(k)
ij+1 (the end of BS(k)

sj ). This implies that at some moment during the backward phase
a

(k)
ij

is consumed by F
(k)
ij+1 just to obtain a

(k)
ij+1, replacing a

(k)
ij

in the memory. However,
storing a(k)

ij+1 instead of a(k)
ij

during the forward phase would have reduced the total number
of recomputations during the backward phase, while not increasing the memory usage
(storing any activation costs the same). Thus, the obtained solution is still valid and is
better than the initial one, implying that non-persistent solutions are not optimal.

Finally, we can prove by contradiction that Property C.4 is non-restrictive. Given an
optimal solution, assume that for some k the backward segment BS(k)

s1 finishes last and
overlaps with other segments. Let BS(k′)

s1 for some k′ 6= k (the last backward segment of
some other branch) be the backward segment that finishes one before the last one and
thus overlaps BS(k)

s1 . Note the case when k′ = k is not possible as the backward segments
of the same branches cannot overlap.

If we consider the almost identical solution where we move all operations from BS
(k)
s1

after the execution of B(k′)
1 , in the same order. Then one can verify that:

• No more segment overlaps with BS(k)
s1 ;

• The schedule after the transformation is still valid:
– Dependencies for backward segments are not violated, as after Loss all

branches are processed independently and the order of operations is preserved;
– Memory available for BS(k)

s1 can only increase, as the memory reserved for other
branches is released;

– Memory available for other branches should not decrease: before and after this
transformation a(k)

0 is in the memory during the previous segments, while after
it is the only activation from BS

(k)
s1 still kept in memory.

In the end, this shows that we can transform any solution into a new solution with identical
forward phase and Loss, but with strictly fewer backward segment overlapping.

Now we define Canonical Solutions, that have a structure that satisfy Properties 1.

Notation 2. Given L = (L1, . . . ,LK), we denote by L[i←x] the vector L where the i-th
element is replaced by the value x:

L[i←x] = (L1, . . . ,Li−1, x,Li+1, . . . ,LK)

Definition 8 (Canonical Solutions). We say that a solution S to Multi-b(L,m, b) is in
a canonical form if there exists j, k, S ′ a canonical solution to Multi-b(L[k←Lk−j],m −
1, b[k←1]), and S̃ a solution to AdjChain(j−1,m−

∑
j 6=k bj), such as S has the following

form:
1. Replicate the input a(k)

0 in the memory;
2. From the input a(k)

0 , j forward steps are performed on the branch k;

48



Глава 1. Multi-Chain Rematerialization

F
(1)
1 F

(1)
2 F

(1)
3 F

(1)
4 F

(1)
5

B
(1)
1 B

(1)
2 B

(1)
3 B

(1)
4 B

(1)
5

F
(2)
1

· · · F
(2)
L2

B
(2)
1

· · · B
(2)
L2

Loss

(a) The solution starts from
a state where all inputs are
stored; then it performs some
forward steps on one of the
branches.

F
(1)
1 F

(1)
2 F

(1)
3 F

(1)
4 F

(1)
5

B
(1)
1 B

(1)
2 B

(1)
3 B

(1)
4 B

(1)
5

F
(2)
1

· · · F
(2)
L2

B
(2)
1

· · · B
(2)
L2

Loss
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(c) Finally, some backward
data are stored (depending
on b), and an instance of
AdjChain(`,m) is solved.

Рис. 1.7: Graphical execution of a canonical solution

3. S ′ is performed (i.e. a canonical solution for the smaller problem where all sizes of
branches are the same except for branch k, which is now smaller by j forward steps
with m− 1 memory slots).

4. From the input a(k)
0 written on memory, S̃ is performed (the j subsequent steps on

branch k are backpropagated with all available checkpoints).
5. If bk = 0, δ(k)

0 is discarded.

The example provided in Figure 1.6 is in canonical form.

Theorem 2. There exists an optimal solution under canonical form.

Доказательство. The result can be shown by induction. The initialization when L = ~0
is trivial.

Let us assume, that for L > ~0, we are given an optimal solution S to Multi-b(L,m, b)

that satisfy Properties 1. Suppose that k′ ∈ {1, . . . , K} is the branch whose backward B(k′)
1

is the last in the execution. In addition, we know all values of this branch checkpointed
before Loss, given by the set of indices {i1, i2, . . . , ink′

} in increasing order. According
to C.4, sequence S is a solution where the last backward segment, BS(k′)

s1 for some k′ ∈
{1, . . . , K}, does not overlap with any other backward segment. Furthermore, according
to C.2, we can choose that its forward phase starts with FS(k′)

s1 .
Finally, it suffices to observe that:
• At the beginning of BS(k′)

s1 , the last backward data that has been computed so far
on chain k is exactly δ(k′)

i2
;

• During BS(k′)
s1 , there is no operations from other branches or operations on layers

after i2 (because of the no overlap property during BS(k′)
s1 ).

• At the beginning of BS(k′)
s1 exactly m−

∑
j 6=k′ bj memory slots are available.

Hence BS(k′)
s1 is exactly a schedule that solves AdjChain((i2 − 1,m−

∑
j 6=k′ bj)

We now have an optimal solution that has the following shape:
1. Replicate the input a(k′)

0 (the first operation of FS(k′)
s1 )

2. From the input a(k′)
0 written on memory, i2 forward steps are performed on the

branch k′;
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3. A schedule S ′ is performed.
4. From the input a(k′)

i1
= a

(k′)
0 written in memory, we perform BS

(k′)
s1 a solution to

AdjChain((i2 − 1,m−
∑

j 6=k′ bj).
5. If bk′ = 0, δ(k′)

0 is discarded.
Note that by construction, S ′ is an optimal solution to Multi-b(L[k′←Lk′−i2],m −
1, b[k′←1]), and by induction hypothesis, we can transform it into a canonical optimal
solution to the same problem. Setting k = k′ and j = i2 completes the proof.

1.3 Optimal Solution for Problem Multi-b(L,m, b)

1.3.1 Minimal Memory Requirement

In this section, we first establish in Lemma 2 the formula to compute the minimal number
of memory slots in order to complete multiple chains with parameters L and b. This result
is later used to solve Multi-b(L,m, b) in Theorem 3, since it is used to initialize the
dynamic program.

Lemma 2 (Minimal required memory). The minimal amount of memory slots to solve
Multi-b(L,m, b), is:

mmin(L) =

{
K̃ if (∃i : Li = 1) or (∃i : Li = 0 and bi = 0) or L = ~0,

K̃ + 1 otherwise.

where K̃ = K +
∑K

i=1 I[Li 6= 0].

Доказательство. The case where L = ~0 is trivial because we simply need to perform
Loss, which has a memory peak of K: its K inputs are transformed into K outputs.

For the general case, we decompose the memory peak as a function of the phase:
Forward phase: During the forward phase, all initial inputs of all branches need to

be stored (a(i)
0 values in Figure 1.3) because they are needed for the computation of B(i)

1 .
In addition, at the end of the forward phase, all inputs of Loss (a(i)

Li
values) are also

stored. Hence, the forward phase needs at least:

K̃ = K +
K∑
i=1

I[Li 6= 0]

as we use only one slot when a(i)
0 = a

(i)
Li
.

It can be verified that at any time in the forward phase we do not need more storage
space than this: during the execution of F (i)

j we can assume that its input uses the storage
slot of a(i)

Li
(unused at first) and replaces it by its output. Hence K̃ is enough for the forward

phase.
Loss function: The computation of Loss does not increase the storage needed from

what was used before, indeed it simply replaces each of its input values (already stored by
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hypothesis) by the corresponding output value. Finally at the end of Loss, we release the
checkpoints from branches that are finished, i.e. those where Li = 0 and bi = 0. Hence,
at the end we have K̂ = K̃ −

∑K
i=1 I[Li = 0 & bi = 0] available memory slots.

Backward phase: Finally, consider the solution that executes each branch one after
the other during the backward phase. In this case, we need to perform K independent
Revolve procedures on branches with lengths Li − 1 ≥ 0 for any i. The peak is when
we compute the first backward data: one uses K̂ − 2 checkpoints for all branches but the
current one, while the current one requires at least 3 memory slots (resp. 2 memory slots
if Li − 1 = 0) in addition to that (see Theorem 1). Hence, if K̂ < K̃ or ∃ i, Li = 1, the
peak is met during the forward phase with K̃ storage slots.

In the general case (K̂ = K̃ and for all i, Li > 1), it is not possible to free memory, and
as no backward steps can be performed because of lack of inputs, the minimal required
memory is K̃ + 1. Hence this shows the result.

1.3.2 Optimal Solution

Notation 3. We denote by ei the vector whose every element is null except the i-th one
that is equal to 1. Note that, with this notation, the size of ei is ambiguous but it will be
the same as the other vectors (L and b) in the rest of this chapter.

We are now able to establish the following theorem on the execution time of an optimal
solution of Multi-b(L,m, b) (and hence Multi-∅(L,m)):

Theorem 3 (Optimal execution time, Optb-multi (L,m, b)). Given a join DAG GK with
K branches of lengths L, given m memory slots and a vector b. The execution time
Optb-multi (L,m, b) of an optimal solution to Multi-b(L,m, b) is given by

Optb-multi (L,m, b) =∞ if m < mmin(L),

Optb-multi

(
~0,m, b

)
= uL if m ≥ K,

Optb-multi (ei,m, b) = uF + uL + uB ∀i, if m ≥ K + 1,

For other cases:

Optb-multi (L,m, b) =

min
1≤k≤K
1≤i≤Lk

[
iuf + Optb-multi

(
L[k←Lk−i],m− 1, b[k←1]

)
+ Opt0

(
i− 1,m−

∑
j 6=k

bj

)]
(1.4)

The complexity to compute Optb-multi (L,m, b) is O
(
mK(2L)K+1

)
where

L = maxi={1,...,K}Li.
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In practice, K is finite and small, e.g. the neural networks that we consider have K = 2
or 3.

Доказательство. We have shown in the previous section that the optimal canonical
solution is an optimal solution. Hence here it suffices to show:
• That there exists a solution with execution time Optb-multi (L,m, b);
• That Optb-multi (L,m, b) gives the best execution time among any canonical solution

for identical parameters.
We remind the recursive shape of a canonical solution S for Multi-b(L,m, b) provided

that some branch k ∈ {1, . . . , K} is the first branch to be processed and i forward steps for
some i ∈ {1, . . . ,Lk} are performed until the next data checkpointing (data replication):

1. Replicate the input data (done with a zero execution cost);
2. Execute i forward steps on branch k;
3. Execute a canonical solution S ′ for Multi-b(L[k←Lk−i],m− 1, b[k←1])
4. Find a sequence S ′′ for AdjChain(i− 1, m̃) on the last steps of branch k using all

available checkpoints m̃, execute S ′′.
If we denote by T (S) (resp. T (S ′) and T (S ′′)) the execution time of S (resp. S ′ and S ′′),
then we have:

T (S) = iuf + T (S ′) + T (S ′′)
Existence of a solution of time Optb-multi (L,m, b): Based on this, one can see

that we can indeed reconstruct recursively a solution based on Eq. (1.4). The initialization
when L = ~0 or L = ei is trivial.

For the fixed values of i and k, Eq. (1.4) transforms into the next expression:

Optb-multi (L,m, b) =

[
iuf + Optb-multi

(
L[k←Lk−i],m− 1, b[k←1]

)
+ Opt0

(
i− 1,m−

∑
j 6=k

bj

)]
.

By induction hypothesis, Optb-multi
(
L[k←Lk−i],m− 1, b[k←1]

)
is the execution time of

a solution S ′ to Multi-b(L[k←Lk−i],m − 1, b[k←1]), Opt0

(
i− 1,m−

∑
j 6=k bj

)
is the

execution time of Revolve for the last i steps on branch k, and Optb-multi (L,m, b)
corresponds to the execution time of the canonical schedule:
• Perform i steps on branch k;
• Perform S ′;
• Use Revolve to backpropagate optimally the last i− 1 steps of branch k.
Minimality of Optb-multi (L,m, b) amongst optimal solutions Similarly we show

this result by induction. We only consider valid solutions, hence where the memory
requirement is met.

The initialization is performed either for L = ~0 or L = ei. For both those cases there is
only one possible canonical solution and its execution time is exactly Optb-multi (L,m, b).
Assume now that for all b, and L < L′, m ≥ mmin(L) any canonical solution S to
Multi-b(L,m, b) is such that T (S) ≥ Optb-multi (L,m, b).

For any given b′, m′ ≥ mmin(L′), we study a canonical solution S ′
to Multi-b(L′,m′, b′). Then by definition there exists k, i′, S̃ a solution to
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Multi-b(L[k←L′k−i′]
,m′ − 1, b[k←1]) and Ŝ a solution to AdjChain(i′ − 1,m′ −

∑
j 6=k bj)

and

T (S ′) = i′uF + T (S̃) + T (Ŝ)

≥ i′uF + Optb-multi

(
L[k←L′k−i′]

,m′ − 1, b[k←1]

)
+ Opt0

(
i′ − 1,m′ −

∑
j 6=k

bj

)

≥ min
1≤k≤K
1≤i′≤Lk

[
i′uF + Optb-multi

(
L[k←L′k−i′]

,m′ − 1, b[k←1]

)
+ Opt0

(
i′ − 1,m′ −

∑
j 6=k

bj

)]
= Optb-multi (L

′,m′, b′) ,

which proves the result.

Remark. Note that for clarity we have used in this proof any vector b (which adds a
factor of O(2K) to the complexity). To reduce the complexity, we can permute in the
dynamic program the branch that has been chosen so that b is always sorted. Hence,
we simply need to solve O(K) different dynamic programs. The complexity would then
be O(mK2(L)K+1) with L = maxiLi. However, solving Multi-δ(L,m) does not need
b, as by default the output gradients of adjoint computation are not discarded, thus the
problem is even simpler, requiring only O(mKLK+1) number of steps.

In addition, this proof also provides a way to compute the optimal solution based on
the computation of its execution time.

1.4 Simulation Results

In this section, we depict the results of simulations on three graph structures inspired by
neural networks such as Cross-Modal embeddings (CM), Siamese networks with triplet
loss and Recurrent Neural Networks (RNNs). From these neural networks we take only
data dependencies, while we assume that all computational costs (uF = uB = uL = 1) and
storage costs are homogeneous, even if the actual neural networks can be heterogeneous.
In this context, a multi chain network is completely defined by the lengths of the different
branches and the size of the memory expressed in terms of storage slots.

We propose two observations:
1. The trade-off Makespan vs Memory usage;
2. For a fixed number of storage slots, an observation on the growth of the number of

recomputations needed as a function of the number of forward operations.
In order to compare the different types of networks in a normalized way, we consider

several models with analogous sizes and computational costs. For a length L, we consider
three graph structures:
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• Cross-Modal (CM) embedding networks with two chains of sizes (L, 5L). Those CM
process two different types of data (e.g. images and texts) and one of the chains
is much longer than the other because more layers are needed to extract useful
patterns (e.g. images that contain more information are usually processed with
deep neural networks while text can be efficiently encoded into vectors of smaller
dimensions with shallow neural networks instead). Thus, as soon as the memory
m is larger than MCM(L) = 6L + 2, then the makespan is minimal and equal to
Span∗CM(L) = 12L+ 1, which corresponds to the situation where all activations are
stored during the forward phase of the training.
• Siamese Neural Networks (SNN) with 3 chains of lengths (2L, 2L, 2L). Here also, L

can be large as these neural networks are usually applied to images, thus deep neural
networks are also possible as they are better in pattern retrieval. Analogously to the
case of CMs, as soon as m ≥ MSNN(L) = 6L + 3, all forward activations can be
stored and therefore the makespan is minimal and equal to Span∗SNN(L) = 12L+ 1.
• Finally, we also consider the case of a single chain of length 6L associated with

Recurrent Neural Networks (RNN). Analogously to the case of CMs of SNNs, as
soon as m ≥MRNN(L) = 6L+1, all forward activations can be stored and therefore
the makespan is minimal and equal to Span∗RNN(L) = 12L+ 1. This case also serves
as a lower bound on the makespan that can be reached by the previous models.

In the following, we denote by Span∗(L) = 12L+ 1 the minimal makespan for all models.
Trade-off Memory – Makespan
The first question that we consider is, given a fixed number of forward operations

(described by L for all scenarios), how does the makespan evolves as a function of the
number of memory slots available.

We run our experiments for L = 5, 10 and 15. The plots depicting the evolution of
makespan with the amount of memory are gathered in Figure 1.8. Specifically, the x-axis
represents the fraction of memory slots available with respect to the minimal numberMOpt

(which differs slightly depending on the model) to achieve minimal makespan, Span∗(L) .
The y-axis represents the ratio between the achieved makespan and Span∗(L). Thus, point
(x, y) on the CM plot means that for a CM network of length (5L,L), with x ×MCM

memory slots, the makespan is y × Span∗(L).
The plots related to CM (resp. SNN) start from memory size 5 (resp. 7), which is

exactly the value of mmin for two (resp. three) chains, as proved in Lemma 2. We can
notice that the makespan first significantly decreases with the first additional memory
slots. In addition, it seems that once it reaches a threshold k · Span∗ with k ' 1.5, the
makespan ratio linearly decreases to Span∗ with the number of additional memory slots.

Hence, this shows that this checkpointing strategy is very efficient in decreasing the
memory needs while only slightly increasing the makespan. For instance, consider the
point where m/MOpt = 0.5. This corresponds to halving the memory needs with respect
to what is needed to achieve minimal makespan. In all cases, halving memory needs only
induces an increase of approximatively 25% on the makespan. In addition, we can also
observe that even with a very small memory (say mmin + 2), the makespan is less than
doubled compared to Span∗.
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Makespan evolution for fixed memory
In Figure 1.9, we depict the dual situation, where the number of memory slots is

fixed on each plot (either 7, 9, 11 or 13) and the ratio of the achieved makespan over
Span∗ is depicted. Several observations can be made. The first one is that the gap
to the lower-bound (RNN) is rather small and decreases with the number of available
checkpoints. This gap increases slowly with the size of the model. The exception is
when the number of available checkpoints is exactly the minimum number of memory
checkpoints (m = 7, SNN). This exception is not surprising given the observations of the
previous paragraph and the important improvements in performance when the number of
available checkpoint is slightly greater than mmin. In addition, it is interesting to observe
that for SNN and CNN the ratio follows a pattern similar to that of RNN: each curve
contains different thresholds, and between those thresholds there is a performance shaped
as α − β/L. Indeed, for the case of RNN those performance have been proven via a
closed-form formula [39]. This can motivate the search for a similar closed-form formula
for the problem of chains, and with this an algorithm whose complexity is polynomial
in the number of branches. Finally, another observation is that the overall growth for a
fixed number of checkpoints is quite slow even with few checkpoints, hence encouraging
the use of these strategies. Indeed, we can observe that for a relatively small number of
checkpoints such asm = 11, the ratio to the optimal makespan consistently remains below
2.

1.5 Conclusion

Being able to perform learning in deep neural networks is a crucial operation, which
requires important memory needs in the feed-forward model, because of the storage of
activations. These memory constraints often limit the size and therefore the accuracy of
used models. The Automatic Differentiation community has implemented checkpointing
strategies, which make it possible to significantly reduce memory requirements at the cost
of a moderate increase in computing time. Backpropagation schemes are very similar in the
cases of Automatic Differentiation and Deep Learning. Nevertheless, the diversity of task
graphs (ResNet, Inception and their combinations) is much more important in the context
of DNNs. It is therefore crucial to design checkpointing strategies for backpropagation on
a much broader class of graphs than the homogeneous chains on which the literature on
Automatic Differentiation has focused.

The goal of the chapter is to extend the graph class, by considering multiple parallel
chains that meet when calculating the loss function. This class of graphs corresponds
to more realistic neural networks such as Cross Modal networks and Siamese Neural
Networks. In the case of multi-chain, we were able to build a dynamic program that allows
us to compute the optimal strategy given a constraint on the size of the memory, i.e. a
strategy that fulfills the memory constraint while minimizing the number of recalculations.
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Рис. 1.8: Makespan evolution with respect to different amount of total memory.
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Рис. 1.9: Makespan evolution with respect to different l for fixed memory size c.
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Глава 2

Rematerialization for Heterogeneous
Chains

2.1 Modeling and Problem Formulation

In the previous chapter, we introduced various problems with the objective to find optimal
checkpointing strategies for different types of adjoint computations. Within the context of
Automatic Differentiation, the studies mostly focused on simple homogeneous chains [37,
39]. As it was observed in [20, 42], such checkpointing techniques can be applied as well
to decrease memory consumption when training neural networks. Checkpointing in the
learning community is usually denoted as Rematerialization or Gradient Checkpointing,
which is done to avoid confusion since checkpointing in Deep Learning is similar to the
notion of checkpointing in HPC, where one saves the current state of the computation to
be able to restore it later.

Alternatively, neural networks are in general characterized with more complex
computational graphs and heterogeneous costs of operations. Problems Multi-δ(L,m),
Multi-∅(L,m) and Multi-b(L,m, b), discussed in the previous chapter, attempted
to go towards more general DAGs by targeting K-Join chains, which represent data
dependencies of specific neural networks such as SNN or CM. However, these problems still
considered homogeneous costs. Going to heterogeneous costs may significantly increase
the complexity of the algorithm, but it may be necessary for finding optimal schedules in
the context of the DNNs.

In this chapter, we analyze the impact of having heterogeneous costs in the model,
while considering simple adjoint chain structure. Our contribution generalizes the
previously known results for homogeneous adjoint chains. In addition, we propose a new
model that provides a better description of operations and data dependencies imposed by
learning frameworks like PyTorch [82] or TensorFlow [2].
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2.1. Modeling and Problem Formulation

2.1.1 Adjoint Computation Graphs for Deep Neural Networks

We begin with a presentation of the computation model used throughout the chapter to
describe different rematerialization strategies that can be used during an iteration of the
backpropagation algorithm. Let us consider a chain of L stages (i.e. layers or blocks of
layers), numbered from 1 to L. Each stage ` is associated both to a forward operation
F` and a backward operation B` (see Figure 2.1a). We denote by a` the activation
tensor output of F` and by δ` = ∂Loss

∂a`
the backpropagated intermediate value provided

as input of the backward operation B`. In the previous chapter, the switch between
forward propagation and backward propagation happened during Loss computation.
For notational convenience in this chapter we decompose Loss into FL+1 (computing
Loss(aL)) and BL+1 (computing ∂Loss

∂aL
).

To provide a better intuition, let us consider Multi-Layer Perceptron. It consists of
several Fully Connected (FC) layers, each FC layer is followed with some non-linear
activation function σ. In addition, FC layer ` is parametrized with weights W` (matrix
kernel) and b` (bias) and it operates in accordance with the following forward and
backpropagation equations:

F` : a` = σ(z`) = σ(W`a`−1 + b`)

B` : δ`−1 = (W`)
T (δ` � σ′(z`))

∂Loss
∂W`

= a`−1(δ` � σ′(z`))

∂Loss
∂b`

= δ` � σ′(z`)

where z` is the pre-activation vector (i.e. a` = σ(z`)). For complex blocks of layers (e.g.
Inception modules or residual blocks), F` and B` are more complex functions that can be
expressed as

F` : a` = f`(θ`, a`−1)

B` : δ`−1 = f̄`(θ`, δ`, ā`, a`−1)

∂Loss
∂θ`

= ḡ`(δ`, ā`, a`−1),

where θ` is the whole set of parameters of the block and ā` is the set of all intermediate
activation values that are required to perform the backward of the block, including a`
but excluding a`−1 (in the simple case of the FC layer we have ā` = {a`, z`}). In classical
implementations of the backpropagation algorithm in learning frameworks, all activation
values are stored in memory during the forward step F` until the backward step B` is
completed. In PyTorch, for example, the whole computational graph leading to a` is
stored (this allows the autograd mechanism to build the graph for gradient computation).

The model described in Figure 2.1a corresponds well to what autograd frameworks
such as PyTorch and TensorFlow provide. There are additional down paths in Figure 2.1a
that are not present in the classical problems of Automatic Differentiation literature (see
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F1 F2 · · · FL−1 FL FL+1

B1 B2 B3 · · · BL BL+1

a0 a1 a2 aL−2 aL−1 aL aL+1 = Loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL Loss

(a) Graph for a general sequential deep neural network.

F1 F2 · · · FL−1 FL FL+1

B1 B2 B3 · · · BL BL+1

a0 a1 a2 aL−2 aL−1 aL Loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aL Loss

(b) Graph for an automatic differentiation application.

Рис. 2.1: Graphs of a general sequential Deep Neural Network and an Automatic
Differentiation application.

Figure 2.1b). Hence, adjoint computations for DNNs are obtained with another type of
BP-transform.

Definition 9 (Backpropagation transformation for complex nodes (Complex
BP-transform)). Given a DAG G with a single sink node. The Complex BP-transform
of G is defined as follows:

1. Build the dual graph G̃ defined as the same graph where all edges are inversed.
2. For a given node in G, connect its input edges to its dual node in G̃.
3. Add output edges between the nodes of G and their corresponding dual nodes in G̃

Let us notice that Complex BP-transform is able to describe any kind of a neural
network that can be approximated with a sequential chain, the nodes of which may be
arbitrarily complex (a node of such a chain could be a DAG). In this case, if F` corresponds
to a complex operation that consists of several elementary operations, then ā` contains the
output of F` and all the hidden activations produced by the internal elementary operations
of layer `.

2.1.2 Rematerialization Operations and Memory Usage

The basic principle of Rematerialization is to trade memory for computing time by saving
only certain activations in memory and then “rematerializing” the others from the stored
ones when the backward steps require them. For example, to implement this strategy in
PyTorch, it is required to use three different types of forward operations.
• F∅

` computes F` without saving any data in memory. It is equivalent to calling a
forward operation under no_grad() in PyTorch:
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with torch.no_grad ():
x = F[i](x)

• F ck
` computes F` while saving the input a`−1 of the block of layers `. Similarly to

the previous case, it can be implemented in PyTorch by calling a forward under
no_grad(), while saving in a separate tensor the input:
with torch.no_grad ():

y = F[i](x)

• F all
` computes F` while saving all the intermediate data ā` required by the

backward step (i.e. saving all). This involves executing a forward operation under
enable_grad() context, which tells to PyTorch to record this operation, keeping
track of each elemental computational step and all intermediate outputs:
with torch.enable_grad ():

y = F[i](x)

Let us notice that the cheapest operation in terms of memory is F∅
` , but it does not save

anything, thus no backward or recomputation can be performed from a`−1. F ck
` is more

costly in terms of memory and it allows forward recomputations from a`−1, but not B`.
F all
` is the most memory expensive operation, however it is the only one that generates

the proper output necessary for performing B`. As F all
` is consuming a lot of memory, it

may be more efficient to compute F ck
` first and then compute F all

` from a`−1 later in the
sequence of instructions. The summary of all operations is provided in Table 2.1.

In the following, we assume that the memory needed to store each data item is known
(Section 2.4 describes how this information can be automatically measured before starting
the actual training of the model). For convenience, we use a` to denote both a tensor
produced by F` and its respective data size, the same applies also to ā` and δ`. In practice,
the activation size of layer ` is equal to its corresponding gradient size, i.e. δ` = a`. Since
each stage of the chain can be arbitrarily complex, temporary data may induce a memory
peak higher than the size of the sum of its input and output data. Therefore, we also
introduce a memory overhead for each operation: we assume that the memory required to
compute an operation is the sum of its input and output data plus a memory overhead.

Note that we focus here on reducing the memory used by activations. We assume
that the memory required to store model weights, model states (optimizer states) and its
gradients of the weights has already been allocated and removed from the initial available
memory. This gives the final available memoryMGPU that we consider further as a memory
limit in all our optimization problems.

We consider that, at the beginning, the memory contains a0, i.e. the input data. The
goal is to perform all backward steps until obtaining δ0. We look for solutions in the
form of sequences of operations. The processing of a sequence consists in executing all the
operations one after the other, replacing the input of each operation by its output in the
memory. The sequence is said valid if
• for any operation, its input is present in the memory when processed
• at any moment the memory limit is not violated.
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Operation Input Output Time Memory
overhead

F all
` Forward and save all {a`−1} {a`−1, ā`} uF`

oF`{ā`−1} {ā`−1, ā`}

F ck
` Forward and materialize input {a`−1} {a`−1, a`} uF`

oF`{ā`−1} {ā`−1, a`}
F∅
` Forward without saving {a`−1} {a`} uF`

oF`

B` Backward step {δ`, ā`, a`−1} {δ`−1} uB`
oB`{δ`, ā`, ā`−1} {δ`−1, ā`−1}

Таблица 2.1: Generic operations available in DL frameworks.

For example, for L = 4 and large enough memory limit (e.g. if memory is enough to run
forward and backward phases without recomputations), these sequences of operations are
valid:

F ck
1 , F∅

2 , F
ck
3 , F all

4 , F all
5 , B5, B4, F

all
3 , B3, F

all
1 , F all

2 , B2, B1 (2.1)
F ck

1 , F∅
2 , F

ck
3 , F ck

4 , F all
5 , B5, F

all
4 , B4, F

all
3 , B3, F

ck
1 , F all

2 , B2, F
all
1 , B1 (2.2)

F ck
1 , F∅

2 , F
all
3 , F ck

4 , F all
5 , B5, F

all
4 , B4, B3, F

all
1 , F all

2 , B2, B1 (2.3)

The maximummemory usage of a valid sequence is defined as the peak memory reached
at some moment composed of stored data plus the overhead induced by the operation in
progress. The computation time of a sequence is the sum of the durations of its operations.
The optimization problem is thus, given a memory limit MGPU, to find a valid sequence
whose memory usage does not exceed MGPU and whose computation time is minimal.

Problem 6 (Remat(L, MGPU)). We want to minimize under a given memory
limit MGPU the makespan of the adjoint computation corresponding to the Complex
BP-transform of a chain with L layers, i.e. minimize time of computing δ0 from input a0

given a computational graph in Figure 2.1a and operations in Table 2.1.

Previous approaches The most popular way of doing Rematerialization is based
on [20] and it is implemented in PyTorch [1]. It considers only single-pass rematerialization
sequences: such sequences may recompute each operation only once. Typically, they divide
the computational graph of a DNN into n ∈ N sequential segments and during the first
forward pass only the inputs of the segments are saved so that to use them during the
backward propagation to recompute the activations of this segment and execute all its
backward steps at once. For example, Sequence (2.1) represents an example of such a
strategy, where the neural network of length L = 4 is divided into 3 segments: the first
segment includes layers 1 and 2, the second segment comprises just layer 3 and the last
segment consists of layer 4 and the loss. In [20], the case of homogeneous chains was
considered and they showed that for this case the optimal approach is to consider n =

√
L

segments of equal size.
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In contrast, the methods used in AD can perform as much recomputations as needed,
exploiting available memory in a more efficient way. This approach is more flexible
than single-pass rematerialization, but the solution is more difficult to find. The optimal
schedules for homogeneous chains can be found by solving the dynamic program described
in Theorem 1 (see Chapter 1 Section 1.1.5). This dynamic programming has been extended
to heterogeneous computing costs [40] as well. However, the solutions from AD cannot be
directly used for DNN training as they correspond to different types of data dependencies
(see Figure 2.1). Moreover, F all operation type is not used in AD modelling, therefore the
sequences generated in the context of AD should be modified to include them. To obtain
the valid sequences for DNN, one need to add F all

` before B` for all `, which does not
increase the memory consumption, but the recomputation time grows significantly. This
transformation yields the sequences like Sequence 2.2.

Sequence 2.3 is different from the others. It includes F all type of forward operations
in the middle of the forward propagation that is not directly followed by corresponding
backward operations. This type of sequence is the most flexible one and suited for training
with learning frameworks such as PyTorch. The previous approaches were not designed
to produce this kind of sequences, but we show in Section 2.3 how to obtain them.

2.2 Complexity

Theorem 4. The associated decision problem of Remat(L, MGPU), i.e. if there exists
a solution to Remat(L, MGPU) whose makespan is not more than T , is NP-complete in
the weak sense.

Доказательство. It is obvious that Remat(L, MGPU) belongs to NP: for a fixed
sequence it is easy to simulate its execution (in linear time) and to check if it executes
the chain within time T under the memory limit MGPU.

Let us show that Remat(L, MGPU) is NP-hard by reduction from 2-Partition
problem [32]. We formulate the 2-Partition problem in the following way: for a set of
values S = {xi ∈ N|1 ≤ i ≤ n}, such that

∑n
i=1 xi = 2V , does there exist two disjoint

subsets S1 and S2: S1 ∪ S2 = S and S1 ∩ S2 = ∅, such that
∑

i∈S1
xi =

∑
i∈S2

xi = V ?
From an instance of 2-Partition, we build a neural network whose forward phase is

shown in Figure 2.2. The memory occupied by weights is considered to be negligible.
Overall, the associated instance of Remat(L, MGPU) can be summarized as follows:
• L+ 1 = 2n+ 2, MGPU = 3V , UB =

∑L+1
i=1 uBi

, T = 4V + UB;
• uF2k−1

= xk and a2k−1 = xk for 1 ≤ k ≤ n;
• uF2k

= 0 and a2k = 0 for 1 ≤ k ≤ n+ 1;
• uF2n+1 = V and a2n+1 = V ;
• Input a0 = 0;
• uBi

for any i ≤ L can be any positive value (this proof is valid for any backward
durations);
• āi = δi = ai for all 0 ≤ i ≤ L+ 1.
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F1 F2 F2n−2 F2n−1 F2n F2n+1 F2n+2

x1 · · · xn V
0 x1 0 xn−1 0 xn 0 V Loss

Рис. 2.2: A instance of Remat(L, MGPU), where the values inside the nodes indicate the
durations of the task, and the values above the arrows show the data sizes of the output
tensors.

We first show that this neural network has a solution with makespan at most T =
4V + UB if there exists a solution to the 2-Partition problem. Indeed, given a solution
(S1, S2) to the 2-Partition instance, if we store only the activations with indices a2k−1

with k ∈ S1, then there is enough memory to process B2n+1, which requires at least
δ2n+1 + ā2n+1 + a2n + δ2n = 2V amount of memory. During the backward phase it is
necessary to recompute F2k−1 for all k ∈ S2, thus the total duration of the recomputations
is
∑

k∈S2
uF2k−1

=
∑

k∈S2
xk = V . As the forward phase lasts

∑n
k=1 uF2k−1

+ V = 3V , it
results in total execution time T = 4V + UB.

However, if there is a schedule with a makespan at most 4V +UB for this problem, then
let us show that there exists a solution to the 2-Partition problem. For any schedule, the
forward execution time is exactly 3V , the backward execution is UB, leaving only time V
for recomputations. Let us denote S2 the subset of activations of non-zero cost such that
a2k−1 for k ∈ S2 are discarded during the forward phase and should be recomputed during
the backward phase (only the activations with odd indices 2k−1 for some 1 ≤ k ≤ n can be
discarded). Since the recomputation time is at most V , then

∑
k∈S2

uF2k−1
=
∑

k∈S2
xk ≤

V .
We now demonstrate that

∑
k∈S2

xk ≥ V . Indeed, it is not possible to store all
activations, otherwise the occupied memory during B2n+1 will be

∑2n+1
i=0 ai+δ2n+δ2n+1 =

4V > 3V = MGPU. The minimal memory requirement for B2n+1 is at least 2V therefore
one should discard not less than V amount of data to complete the execution. This implies∑

k∈S2
a2k−1 =

∑
k∈S2

xk ≥ V . Combining both inequalities gives
∑

k∈S2
xk = V . Finally,

by setting S1 = S \ S2, we obtain a solution to the 2-Partition problem, which completes
the proof.

2.3 Optimal Rematerialization Algorithm

In this section, we carefully analyze Remat(L, MGPU) and the structure of its optimal
solutions. Optimality proofs for the homogeneous case (as in AD literature) start by
showing that all optimal schedules satisfy a particular property called memory persistence.
We introduce this property in Section 2.3.1 and we prove by providing a counter example
that there exist some instances of Remat(L, MGPU) that do not have optimal memory
persistent solutions.
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This remark applies in particular to the model described in Figure 2.1a, but also
to the AD model depicted in Figure 2.1b and used in [42], where memory persistence
is implicitly used when deriving the dynamic programming solution. Nevertheless, we
define in Section 2.3.2 a weaker version of memory persistence called floating memory
persistence and we prove that this property holds true in the heterogeneous case (there
always exists an optimal schedule for Remat(L, MGPU) that satisfy this property). We
demonstrate in Section 2.3.3 that floating memory persistence can be used to derive a
dynamic programming algorithm providing the optimal solution for Remat(L, MGPU),
which can be applied to both models of Figure 2.1. We also describe in Section 2.3.4
how to compute the optimal solution when assuming that memory persistence holds. The
resulting algorithm, although not theoretically optimal, is of crucial practical interest.
Indeed, in Section 2.4, we compare the practical performance of algorithms based on the
memory persistence and floating memory persistence assumptions. We demonstrate that
for a large class of DNN graphs, there is no difference between the quality of the results
obtained under the two assumptions. This shows that in practice, although we prove that
the memory persistence hypothesis is wrong in general, it can nevertheless be used to
generate efficient rematerialization sequences, as we propose in rotor (see Section 2.4).

2.3.1 Considerations on Memory Persistence

Properties 2. The following property is common for adjoint computation problems.
R.1 (Memory Persistence) For any ` if a` is saved in memory (by F ck

`+1 or F all
`+1), then

it is not discarded until B`+1.

If a schedule satisfies Property R.1 then the schedule is called memory persistent
or just persistent for short. Adjoint computation problems are often restricted to
persistent schedules, because it can be proven [107] (there checkpoint persistence) that
for homogeneous chains, there always exists an optimal schedule that is persistent. The
similar result holds for Multi-Adjoint Chains introduced in Chapter 1. In a persistent
schedule, between the moment when some activation a` is saved into memory and the
moment when it is used for B`+1, there is no operation on the previous layers `′ ≤ `. It
is an important property for adjoint computation problems that facilitates the search of
optimal schedules as it allows us to apply checkpointing techniques on the chain in the
piecewise manner. A key observation for homogeneous activation sizes is that all optimal
schedules are memory persistent: if an activation a` is stored, but deleted before being
used for B`+1, then it will be actually more efficient to store a`+1 instead since it avoids
to recompute F`+1, with the exact same memory cost.

However, when activation sizes are heterogeneous, i.e. ∃`, `′ ∈ {0, . . . , L + 1}, s.t.
a` 6= a`′ , this property no longer holds. We show an example on Figure 2.3 with a chain
of length is L = n + 2 for any n ∈ N, where all backward computational costs uB`

are 0,
as well as most of the forward computational costs, except uF1 = k ∈ N (we further set
k = n − 2) and uF2 = 2. In addition, a0 = aL+1 = 0, a1 = 1 and aL = 4, whereas for all
other ` 6= 0, 1, L, L + 1 we have a` = 3. Moreover, for any `, a` = ā` = δ`. The memory
limit is MGPU = 15.
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Рис. 2.3: Counter example where no memory persistent solution is optimal. Values on the
edges represent the size of the activations, values inside nodes represent the computing
time of the layers. The memory limit is MGPU = 15.

Since computing BL requires a memory of aL−1 + āL + δL + δL−1 = 3 + 4 + 4 + 3 = 14,
it is not possible to store a2 = 3 during the forward phase, as our memory budget is
only MGPU = 15. We can thus identify two valid memory persistent schedules, which are
candidates for optimality: either storing both a0 and a1 during the forward phase or storing
only a0. In the first case, a2 is never stored before B3, and thus F2 is processed n times
(to perform any other backward step we require memory of size 3 × 4 = 12, therefore
storing a1 and a2 at the same time is still not possible). This results in a makespan
T1 = k + 2n = 3n − 2. In the second case, the forward phase is performed with only a0

saved in memory during the forward propagation. Then, the computation starts from the
beginning, and this time it is possible to store a2, which allows us to compute all Fi with
zero cost without recomputing F2. At the end, it is necessary to recompute F1, which
results in a makespan T2 = 2(k + 2) + k = 3k + 4 = 3n− 2.

It is also possible to build the following valid but non-persistent schedule: a1 is saved
during the forward phase, and kept in memory until the second time that F2 is computed.
Indeed, at that time, FL has already been computed, and it is thus possible to store a2

instead of a1 (but not both at the same time since computing FL−1 requires a memory
of 12). At the end it is necessary to recompute F1, and this results in a makespan T0 =
k + 2× 2 + k = 2k + 4 = 2n.

Thus, the makespan of the non-persistent schedule is lower (by a factor ∼ 3
2
) than

the makespan of any memory persistent schedule. Nevertheless, such a counter example
is not really likely to happen in practice and we show it experimentally in Section 2.4: for
all classical DNNs we considered, the optimal persistent and the optimal non-persistent
schedules are exactly the same, even if we do not provide a characterization of the class
of graphs on which this property holds.

2.3.2 Properties of Heterogeneous Problem

To find the optimal schedule for Remat(L, MGPU), we introduce a slightly weaker version
of memory persistence. Further in the text, specifically for the proofs, we use the notion
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of the Backward Phase given below.

Definition 10 (Backward Phase BP). For a given ` ∈ {1, . . . , L+1}, we denote as phase
BP` the subsequence of operations of schedule S that takes place between two backward
operations B`+1 and B`. Backward Phase BPL+1 corresponds to all operations in S before
BL+1, being the first backward after Loss (thus to the entire forward propagation).

Let us notice that such phases are ordered by decreasing indices, i.e. for any 1 ≤ ` ≤
L+ 1, BP` precedes BP`−1. Thus, phase BP1 is the last phase in the execution.

Properties 3. We propose a more general version of memory persistence:
R.1’ (Floating Memory Persistence) For any `, if activation a`−1 is stored with F ck

` or
F all
` then until a`−1 is discarded with B` or F∅

` , no recomputations Fi are possible
for any i s.t. i < `.

Lemma 3. There always exists an optimal solution for Remat(L, MGPU) that satisfies
Property R.1’

Доказательство. Consider an optimal solution S that does not satisfy Property R.1’.
Thus there exists `, `′ ∈ {1, . . . , L+ 1}, `′ ≥ `, s.t. a`−1 is saved in memory and is deleted
during BP`′ and, simultaneously, there exists h ≥ `′ so that during BPh a sequence
Fi, . . . , Fj is executed for i, j < ` i.e. we perform operations on the preceding layers, while
a`−1 still remains in the memory.

Obviously, Fi, . . . , Fj is performed to store a new activation aj for some j : i < j < `−1.
Otherwise, computing activations that come after layer ` would be faster starting from
a`−1. Let us show that S can be transformed into a schedule S ′ with the same makespan,
but where the sequence of operations from Fi till Fj takes place in the next phase BPh−1.

Before executing Fi the memory of GPU should contain at least {ai−1, a`−1} ⊂ M.
After execution of Fi, . . . , Fj, several cases are possible.

1. We store both ai−1 and aj ({ai−1, aj, a`−1} ⊂ M). If Fi, . . . , Fj are moved to the
next phase BPh−1, then we obtain a schedule S ′ where all phases except BPh and
BPh−1 are equivalent to those of S, while the total memory consumption of S ′ is
smaller (aj /∈M during BPh). Therefore, this schedule does not exceed the memory
limit (thus valid), and preserves the makespan.

2. We store aj, but discard ai ({aj, a`−1} ⊂ M).
(a) If aj ≥ ai−1, then, similarly, Fi, . . . , Fj can be moved to the next phase BPh−1,

yielding S ′ with the same makespan and lower memory consumption, thus S ′
is valid.

(b) If aj < ai−1, then S cannot be optimal. Indeed, if aj is stored instead of ai−1

in the first place (which should be feasible since aj < ai−1), then computing
Fi, . . . , Fj in BPh would have been unnecessary and removing these operations
from S diminishes the makespan, meaning that S is not optimal.

Finally, we have shown that the optimal schedule S where recomputation takes place
at phase BPh can be transformed into a schedule S ′ preserving the optimality and where
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the recomputation takes place at phase BPh−1. The same transformation can be applied
to S ′ repeatedly until Fi, . . . , Fj is moved to phase BP`′−1.

In what follows, we denote as canonical solutions the schedules that satisfy floating
memory persistence and using Lemma 3, we restrict the search to optimal canonical
solutions.

Corollary 1. In any optimal canonical solution, at any instant, only the rightmost (with
the largest index) stored activation can be replaced by a new saved activation in memory,
and this new activation has a larger index and a larger memory size.

Definition 11 (Floating Materialized Activation). We call the rightmost activation
described in Corollary 1 as Floating Materialized Activation

Lemma 4 (Memory persistence for ā). There exists an optimal solution, where for any
activation `, no saved activation ā` is deleted before the corresponding backward step B`.

Доказательство. We assume that there exists an optimal solution where for some ` ∈
{1, . . . , L+1}, ā` is saved and then deleted before the execution of B`. Then, let us consider
the solution where a` is saved instead of ā`. It is possible to perform all recomputations
using a` and since a` ≤ ā` (ā` includes a`), it also helps to reduce memory consumption,
thus producing a solution that is both valid and optimal in terms of makespan. This
achieves the proof of the lemma.

2.3.3 Dynamic Programming with Floating Materialized
Activations

In this Section, we prove that it is possible to compute the optimal rematerialization
sequence to solve Remat(L, MGPU), based on the results proved in Section 2.3.2.
Theorem 4 showed that Remat(L, MGPU) is NP-complete in the weak sense, implying
that it is necessary to discretize memory sizes to find a solution in polynomial time. After
discretization, the memory limit MGPU shows the total number of memory slots available
on the GPU, while activation and gradient sizes (ā`, a` and δ`) and memory overheads of
operations (oF`

and oB`
) are expressed in the number of memory slots they occupy. Then,

we rely on the dynamic programming algorithm to obtain the best schedule.
For a chain of length L, let us denote by CFL (s, t, `,m) the optimal execution time to

perform backward steps from Bt until B` of the chain, starting from Fs, where
• as−1 and δt are the only stored values before the execution,
• δ`−1 is the only tensor still kept in memory after the execution,
• m is the maximal available memory, without taking into account the memory

occupied by as−1.
In order to proceed, one should know the minimal memory requirements for each

operation. Given the chain that starts at s and finishes at t (its first backward is Bt),
taking into account the data dependencies from Table 2.1 and the fact that the global
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input of the chain, which is either as−1 or ās−1, is already stored in the memory (and
counted separately in all equations) and the current gradient value should be stored at
any time, then
• Ms,t,`

F∅
s

= δt + as + oFs ;
• ∀h 6= s :Ms,t,`

F∅
h

= δt + ah−1 + ah + oFh
;

• Ms,t,`
Fall
s

= δt + ās + oFs ;
• ∀h 6= s :Ms,t,`

Fall
h

= δt + ah−1 + āh + oFh
;

• Ms,t,`
Bs

= ās + δs + δs−1 + oBs ;
• ∀h 6= s, h ≥ ` :Ms,t,`

Bh
= ah−1 + āh + δh + δh−1 + oBh

.
As only δ`−1 stays in memory at the end, the floating materialized activation as−1

should be fully exploited and deleted by the end of the execution. Let us introduce the
following notations

ms,t,`
∅ = max

s≤h≤t
Ms,t,`

F∅
h

,

ms,t,`
all = max

{
Ms,t,`

Fall
s
,Ms,t,`

Bs

}
.

Thus, ms,t,`
∅ for 1 ≤ s ≤ ` < t ≤ L + 1 denotes the memory required to compute all

F∅ steps from s to t, and ms,t,`
all for 1 ≤ s ≤ ` ≤ L + 1 denotes the memory required to

compute F all
s and Bs.

Theorem 5. CFL (s, t, `,m), the optimal makespan of a sequence that respects floating
memory persistence to process the chain from layer s with backward steps from Bt until
B` with available memory m, is given by:

CFL (s, s, s,m) =

{
uFs + uBs m ≥ ms,s,s

all

∞ m < ms,s,s
all

, (2.4)

CFL (s, t, `,m) = min (C1(s, t, `,m), C2(s, t, `,m)) , (2.5)

C1(s, t, `,m) =

{
C
Fall

FL (s, t,m) m ≥ ms,t,`
all and s = `

∞ m < ms,t,`
all or s 6= `

,

C2(s, t, `,m) =


min
s′,r,t′

s≤r≤s′<t′
as−1≤ar−1

`<t′≤t

C
F ck

FL (s, r, s′, t, t′, `,m) m ≥ ms,t,`
∅ and t 6= `

∞ m < ms,t,`
∅ or t = `

,

(2.6)

70



Глава 2. Rematerialization for Heterogeneous Chains

where

C
F ck

FL (s, r, s′, t, t′, `,m) =
s′∑
k=s

uFk
+ CFL (s′ + 1, t, t′,m− as′ − ar−1 + as−1)

+ CFL (r, t′ − 1, `,m− ar−1 + as−1) , (2.7)

C
Fall

FL (s, t,m) = uFs + CFL (s+ 1, t, s+ 1,m− ās) + uBs . (2.8)

We can interpret these values as follows: CFall

FL (s, t,m) denotes the makespan for the
chain from s to t, which starts by processing F all

s . CF ck

FL (s, r, s′, t, t′, `,m) denotes the
makespan for the chain from s with backward steps from Bt to B`, where
(i) forward operations from s to s′ are processed with F∅ except Fr (i.e.

F∅
s , . . . F

∅
r−1F

ck
r F

∅
r+1, . . . F

∅
s′ ), during which the materialized activation moves from

the position s to r, i.e. as−1 is deleted and replaced by ar−1;
(ii) after F∅

s′ activation as′ is stored, thus creating another floating materialized
activation;

(iii) backward phases BPt, . . . , BPt′ are performed with a floating materialized activation
initialized by as′ , while ar−1 is stored in the memory and not moving;

(iv) backward phases BPt′−1, . . . , BP` are performed with a floating materialized
activation ar−1, which is the rightmost saved activation after BPt′ (no ai for i ≥ r
is stored, including as′).

Доказательство. We prove that by induction. Let us assume that CFL (s′, t′, `′,m)
provides the optimal makespan when executing the chain starting at position s′ and
ending at t′ to perform the backward steps from Bt′ till B`′ for any s′, t′, `′, s.t. s′ ≥ s,
t′ ≤ t and `′ ≥ s′, except for the case {s′ = s, t′ = t, `′ = `,m}.

Let us show that CFL (s, t, `,m) provides the optimal solution for the corresponding
problem. Having only as−1 and δ` stored in the memory with as−1 not accounted in m,
there are three different possible operations to start the execution: F all

s , F ck
s or F∅

s .
Case 1: F all

s is the first operation
In this case, both the input, which is either as−1 or ās−1, and ās will be saved. As memory
persistence holds for ās (see Lemma 4), then ` should be equal to s, otherwise according to
the definition of CFL (s, t, `,m), starting from F all

s makes the schedule invalid. Moreover,
due to floating memory persistence, no other value ak or āk for 0 ≤ k ≤ s − 1 is needed
until Bs+1, thus computing δs can be done with makespan CFL (s+ 1, t, s+ 1,m− ās),
where the decrease in memory corresponds to the memory needed to store ās. After the
completion of this chain, it is possible to perform the last backward step Bs as both ās
and as−1 (or ās−1) are in memory. At last, ms,t,`

all ≤ m states that processing the chain
from s to t starting with F all

s requires enough memory to perform the first forward and
enough memory to perform the last backward Bs. Provided that the memory limit is not
violated, we obtain the equation for C1(s, t, `,m).

Case 2: F ck
s is the first operation

If the first operation is F ck
s , then let us denote by as′ the first stored activation after as−1
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(since some F all operation needs to be performed before the first backward, as′ necessarily
exists). Due to Lemma 3 and Corollary 1, while a floating materialized activation that
first appears at position s′ is present in memory, there is no need to consider any ak or
āk for k < s′. We denote t′ : ` < t′ ≤ t such that as′ is discarded not later than in
the backward phase BPt′ .Thus, computing δt′−1 from the input as′ can be done in time
CFL (s′ + 1, t, t′,m− as′), where s′ < t′ (floating materialized activations can only move to
the right). Since as′ is to be stored in memory, then its memory usage should be counted
outside the limit, thus m− as′ is the maximal available memory for this execution. Once
Bt′ is processed, it remains to execute another chain that starts at position s and ends at
position t′ − 1, where the new currently stored gradient is δt′−1, whereas activation as′ is
not needed anymore and is finally removed. Putting all this together, we get the following
makespan

s′∑
k=s

uFk
+ CFL (s′ + 1, t, t′,m− as′) + CFL (s, t′ − 1, `,m) ,

which is equivalent to Eq. (2.7) when r = s.
Case 3: F∅

s is the first operation
Finally, if the first operation is F∅

s then the materialized activation as−1 (not ās−1 as F∅
s

does not take it as an input) will move to the next position ar−1 for some r and according
to Corollary 1, it must satisfy ar−1 > as−1. Then, after the materialized value has moved
to the next position, we use a similar reasoning as in Case 2, where the memory usage
is fixed by subtracting from the memory the difference ar−1 − as−1, which leads to the
Eq. (2.7).

In the end,ms,t,`
∅ ≤ m checks the memory validity as it states that processing the chain

from s to t requires at least enough memory to execute all the forward steps without saving
any activation. Thus, combining Cases 2 and 3 provided that memory constraint is fulfilled
brings us to C2(s, t, `,m).

Initialization
In order to backpropagate one layer, F all

s must be executed to be able to process
Bs afterwards. This requires a memory size of ms,s,s

all . As stated in the definition of
CFL (s, t, `,m), we assume that the input size (either as−1 or ās−1) is not accounted in
the memory limit m, and ms,s,s

all represents the highest value of the peak memory usage
between forward and backward operations corresponding to layer s.

As Eq. (2.4) gives an optimal initialization, then, by induction, finding the minimal
makespan among Cases 1,2 and 3 (which corresponds to computing Eq. (2.5)) yields the
optimal solution.

Theorem 5 establishes the correctness of Algorithm 1 and Algorithm 2 to compute an
optimal sequence for Remat(L, MGPU), whose makespan is CFL (1, L+ 1, 1,MGPU − a0)
(the input of the chain is counted outside).

Let us notice that the output of such dynamic program is a table of size O(MGPUL
3)

and to compute any element of this table takes O(L3). Thus, the worst case complexity of

72



Глава 2. Rematerialization for Heterogeneous Chains

this method to obtain CFL (1, L+ 1, 1,MGPU) is O(MGPUL
6). Therefore, for deep networks

(large L values), this method can take significant time (see Figure 2.4 Section 2.4.3).
Even if it has to be performed only once for the whole training process, we introduce
in Section 2.3.4 an algorithm with much smaller complexity that returns the optimal
solution among memory persistent valid schedules. As already noticed, even if we prove
that such schedules can be in theory significantly sub-optimal in Section 2.3.1, in all
the experiments that we performed in Section 2.4.5, we did not observe in practice any
difference in resulting sequences, what makes the algorithm presented in Section 2.3.4 a
good candidate to be used in practice.

2.3.4 Optimal Memory Persistent Solution

Let us now relax the problem, and instead of looking for general solutions we want to find
the best solution among memory persistent sequences, satisfying Property R.1. Similarly
to the general case, the problem can be solved with dynamic programming. This extends
the result of [39] to the case of heterogeneous memory costs, and at the same time it is
also adapted for the neural network data dependencies shown in Figure 2.1a. Similarly to
the general case, we apply discretization with respect to memory sizes so that data sizes
(a`, ā`, and δ`) and operation overheads (oF`

and oB`
) are expressed in terms of memory

slots and MGPU shows the total number of memory slots on the GPU.
Let us prove that it is possible to compute the optimal memory persistent

rematerialization sequence in the fully heterogeneous case corresponding to
Remat(L, MGPU). For a chain of length L, let us denote by CMP (s, t,m) the
optimal execution time to perform backward steps from Bt till Bs of the chain starting
from position s, where
• input tensors as−1 and δt are the only stored values before the processing of the

chain,
• the maximal available memory is at most m, without taking into account the

memory occupied by as−1.

Algorithm 1 Computation of an optimal schedule for Remat(L, MGPU)

1: Initialize table C of size (L+ 1)× (L+ 1)× (L+ 1)×MGPU

2: for 1 ≤ s ≤ L+ 1 and 1 ≤ m ≤MGPU do
3: Initialize C[s, s, s,m] with Eq. (2.4)
4: for m = 1, . . . ,MGPU do
5: for d = 1, . . . , L do
6: for s = 1, . . . , L+ 1− d do
7: t = s+ d
8: for ` = s, . . . , t do
9: Compute C[s, t, `,m] with Eq. (2.5)
10: return OptRecFL(C, 1, L+ 1, 1,MGPU − a0) . Alg. 2
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Algorithm 2 OptRecFL(C, s, t, `,m) – Obtain optimal sequence from the table C
if C[s, t, `,m] =∞ then

return Infeasible
else if s = t = ` then

return (F all
s , Bs)

else if C[s, t, `,m] = C
F ck

FL (s, s, s′, t, t′, `,m) then
S ← (F ck

s , F
∅
s+1, . . . , F

∅
s′ )

S ← (S,OptRecFL(C, s′ + 1, t, t′,m− as′))
return (S,OptRecFL(C, s, t′ − 1, `,m))

else if C[s, t, `,m] = C
F ck

FL (s, r, s′, t, t′, `,m) then
S ← (F∅

s , F
∅
s+1, . . . , F

∅
r−1, F

ck
r , F

∅
r+1, . . . F

∅
s′ )

return (S,OptRecFL(C, s′+1, t, t′,m−as′−ar−1+as−1),OptRecFL(C, r, t′−1, `,m))
else

return (F all
s ,OptRecFL(C, s+ 1, t, s+ 1,m− ās), Bs)

The memory limits are modified in the following way:

ms,t
∅ = max

s≤h≤t
Ms,t

F∅
h

,

ms,t
all = max

{
Ms,t

Fall
s
,Ms,t

Bs

}
.

ms,t
∅ for 1 ≤ s < t ≤ L + 1 denotes the memory peak to compute all F∅ steps from s to

t, and ms,t
all for 1 ≤ s ≤ t ≤ L+ 1 denotes the memory peak to run F all

s and Bs.

Theorem 6. CMP (s, t,m), the optimal time for any valid persistent sequence (following
Property R.1) to process the chain from layer s to layer t ≥ s with available memory m,
is given by

CMP (s, s,m) =

{
uFs + uBs m ≥ ms,s

all

∞ m < ms,s
all

, (2.9)

CMP (s, t,m) = min (C1(s, t,m), C2(s, t,m)) , (2.10)

C1(s, t,m) =

{
C
Fall

MP (s, t,m) m ≥ ms,t
all

∞ m < ms,t
all

,

C2(s, t,m) =

 min
s′=s,...,t−1

C
F ck

MP (s, s′, t,m) m ≥ ms,t
∅

∞ m < ms,t
∅

,
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where

C
Fall

MP (s, t,m) = uFs + CMP (s+ 1, t,m− ās) + uBs ,

C
F ck

MP (s, s′, t,m) =
s′∑
k=s

uFk
+ CMP (s′ + 1, t,m− as′) + CMP (s, s′,m) .

We can interpret these values as follows: CFall

MP (s, t,m) is the computing time for the
chain from s to t if F all

s is the first operation. CF ck

MP (s, s′, t,m) denotes the computing time
for the chain from s to t if forward operations from s to s′ − 1 are processed with F∅,
whereas as−1 is stored in memory by F ck

s .
The proof is based on the same arguments as provided in Theorem 5 with the difference

that once stored, an activation is not deleted until the corresponding backward step, so
that this saved value naturally divides the chain into two subchains, that can be processed
one after the other. Therefore, CF ck

MP (s, s′, t,m) is now defined with only four arguments:
s that determines the start of the chain, t for the end of the chain, s′ for the separation
point between two subchains and m, the memory limit.

Доказательство. Analogously to the proof of Theorem 5, we prove it by induction. We
assume that CMP (s′, t′,m) gives an optimal makespan for chains from s′ to t′, having m
available memory for any m, s′ and t′ such that t′ − s′ < t − s. Let us now show that
CMP (s, t,m) gives an optimal makespan for a chain from s and t as well. Since we are
looking for a persistent schedule, and the input tensor as−1 is in memory, the optimal
sequence has only two possible ways to start: either with F ck

s to store as−1 and compute
as, or with F all

s to compute ās and save the input as−1 in the memory at the same time
(see Table 2.1).

Case 1: F all
s is the first operation

If the first operation is F all
s then by definition the value ās should be saved together with

as−1. As memory persistence holds and no other value ai or āi for 0 ≤ i ≤ s− 1 is needed
until Bs+1, computing δs can be done in time CMP (s+ 1, t,m− ās), where the decrease
in memory corresponds to the memory needed to store ās. After the completion of this
chain, it is possible to perform the last backward step Bs as both ās and as−1 are in
GPU memory. Provided that the memory constraint is fulfilled, we get the equation for
C
Fall

MP (s, t,m). In this case, the memory constraint ensures that when executing the chain
from s to t there is enough memory to perform F all

s and Bs, while the rest of the sequence
is valid if CMP (s+ 1, t,m− ās) gives a finite value.

Case 2: F ck
s is the first operation

If the first operation is F ck
s , then we can denote as′ the first activation stored in memory

after as−1 (since some F all operation has to be performed before the first backward, as′
necessarily exists). Due to memory persistence, while as′ is present in memory there is
no need to consider any ai or āi for s ≤ i < s′, so computing δs′ from the input as′ can
be done optimally in time CMP (s′, t,m− as′). Indeed, we assume that as′ is materialized
in memory, but we count its memory usage outside the limit m− as′ . Once this chain is
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processed, the remaining part of the chain represents another chain that starts at position
s and finishes at s′, where the new currently stored gradient is δs′ and as′ is not needed
anymore and thus is finally removed. Bringing everything together yields the equation for
C
F ck

MP (s, s′, t,m). Choosing s′ so that CF ck

MP (s, s′, t,m) is minimal guarantees the smallest
possible makespan, yielding C2(s, t,m), when memory constraint is not violated. Here the
memory constraint ensures that enough memory is available to execute the chain from s
to t by performing all the forward steps without saving any activation.

Initialization
Finally, Eq. (2.9) is a valid initialization of the dynamic program. Indeed, in order to
backpropagate one layer, F all

s must be performed to be able to execute Bs afterwards.
This requires a memory of size ms,s

all , which represents the memory peak between forward
and backward operations corresponding to layer s.

As Eq. (2.9) provides an optimal initialization, then, by induction, finding the minimal
makespan among Cases 1 and 2, i.e. computing Eq. (2.5), provides the optimal solution.

This theorem proves that Algorithm 3 and Algorithm 4 compute an optimal persistent
sequence, for all input parameters, i.e. find an optimal solution for Remat(L, MGPU)
under Property R.1. Indeed, the computing time of the returned sequence is exactly
CMP (1, L+ 1,MGPU). In contrast with Algorithm 1, Algorithm 3 requires at most
O(MGPUL

3) operations (instead of O(MGPUL
6)).

Algorithm 3 Optimal persistent schedule for a chain of length L with memory MGPU.
1: Initialize table C of size (L+ 1)× (L+ 1)×MGPU

2: for 1 ≤ s ≤ L+ 1 and 1 ≤ m ≤MGPU do
3: Initialize C[s, s,m] with Eq. (2.9)
4: for m = 1, . . . ,MGPU do
5: for d = 1, . . . , L do
6: for s = 1, . . . , L+ 1− d do
7: Compute C[s, s+ d,m] with Equation (2.10)
8: return OptRecP(C, 1, L+ 1,MGPU − a0) . Alg. 4

2.4 Implementation and Validation

We demonstrate the applicability of our approach by presenting rotor [48], a tool
that allows the above algorithms to be used with any Pytorch DNN based on the
nn.Sequential container. rotor is used in a very similar fashion to the existing
checkpoint_sequential tool already available in PyTorch [1], but offers a much more
optimized materialization scheme. Our tool works in three phases: parameter estimation,
optimal sequence computation and sequence processing. It is expected that the first two
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Algorithm 4 OptRecP(C, s, t,m) – Computation of the optimal persistent sequence from
table C
if C[s, t,m] =∞ then

return Infeasible
else if s = t then

return (F all
s , Bs)

else if C[s, t,m] = C
F ck

MP (s, s′, t,m) then
return (F ck

s , F
∅
s+1, . . . , F

∅
s′ ,OptRecP(C, s′ + 1, t,m− as′),OptRecP(C, s, s′,m))

else
return (F all

s ,OptRecP(C, s+ 1, t,m− ās), Bs)

phases are performed only once, before the start of the training, while the sequence is
used throughout the whole training process.

2.4.1 Parameter Estimation

In the parameter estimation phase, the goal is to measure the quantities (time and memory
sizes) associated to the input DNN, in order to instantiate the parameters of the model
described in Figure 2.1a used as input values for both Algorithm 1 and Algorithm 3. These
quantities are the memory sizes a`, ā`, and δ`, the memory overheads oF`

, oB`
, and the

execution time of each operation in the sequence uF`
, uB`

for all layers ` : 1 ≤ ` ≤ L+ 1.
Parameter estimation is done in the following way: given a chain and a fixed sample

input data a0, forward and backward operations of each stage are processed one after the
other. From a`−1 the forward operation F all

` is processed to obtain ā`, and the backward
operation with an arbitrary tensor for δ` (generated randomly with the same shape and
size as a tensor a`). The execution time of each operation is measured, and the memory
management interface of PyTorch is used to obtain the memory usage of ā` and the
peak memory usage of both forward and backward operations. The memory size of a` is
found by extracting the tensor a` from ā` and taking the number of elements in a` and
multiplying it by the size of one element.

This parameter estimation assumes that the computations performed by the neural
network do not depend on the input data (a very similar assumption is made for the
jit.trace() function of PyTorch), so that the measurement on a sample input x̃ is
representative of the actual execution on the training data x. Adapting the approach
presented in this paper to a data-dependent network would require both to be able to
correctly predict the execution times for each given input and to recompute the optimal
sequence for each new input, and is thus out of the scope of our work.

2.4.2 Computation of the Optimal Sequence

Once all measurements have been performed, for any given memory limit MGPU, the
optimal floating persistent and persistent sequences can be computed using respectively
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Algorithm 1 and Algorithm 3, and stored for the processing phase. As mentioned
previously, in order to limit the computational cost of this phase, all measured memory
sizes are discretized. We divide the memory of size MGPU (expressed in bytes) into S
memory slots (S = 500 is a reasonable value that provides a good trade-off between
computing time and solution quality; we used this value for all experiments in this
chapter), each of size MGPU

S
, and all memory sizes are expressed as an integer number

of slots, rounded up if necessary. Thus, MGPU is now limited and expressed in number
of slots and is equal to S = 500. The complexity of the resulting algorithm is thus
independent of the actual memory limit, at the cost of at most 1 + 1

S
overestimation of

memory sizes.

2.4.3 Comparison between Algorithm 1 and Algorithm 3

We provide in rotor a C implementation of both dynamic programming algorithms
(Algorithm 1 and Algorithm 3). The running time of Algorithm 3 on most of the networks
in our experiments is below 1 second. The longest execution time was obtained with
ResNet-1001 [46], which results in a chain of length 339, and an execution time below
20 seconds. Since this computation is performed only once for the whole training phase,
such an execution time is completely acceptable. A comparison with the computing time
of Algorithm 1 is shown in Figure 2.4.

For each considered neural network and for each set of parameters, we compute the
optimal sequences produced by Algorithm 1 and Algorithm 3. Although we show in
Section 2.3.1 that the ratio between the makespan produced by both algorithms can
be as high as 3

2
, in practice the computed solutions for all test cases turned out to be

exactly the same. Since the running time of Algorithm 1 is significantly higher than the
one of Algorithm 3 as depicted in Figure 2.4, a reasonable strategy is to use Algorithm 3
to compute the optimal solution.

2.4.4 Experimental Setting

All experiments presented in this chapter have been performed with Python 3.5.9 and
PyTorch 1.3.0. The computing node contains 40 Intel Xeon Gold 6148 cores at 2.4GHz,
with a Nvidia Tesla V100-PCIE GPU card with 15.75GB of memory. We experiment with
three different kinds on networks, whose implementation is available in the torchvision
package of PyTorch: ResNet, DenseNet, and Inception v3. All three types of networks have
been slightly adapted to be able to use rotor [48], by using a nn.Sequential module
where applicable. We use all available depths for ResNet: 18, 34, 50, 101, 152, which are
available in torchvision, and we also use versions with depth 200 and 1001 proposed in
previous work [46]. Similarly, for DenseNet, we use depths 121, 161, 169 and 201.

We use three different image sizes: small images of shape 224 × 224 (which is the
default and minimal image size for all models of torchvision), medium images of shape
500 × 500, and large images of shape 1000 × 1000. For each model and image size, we
consider different batch sizes that are powers of 2, starting from the smallest batch size
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Рис. 2.4: Running times of Algorithm 1 and Algorithm 3 for different network sizes.

that ensures a reasonable throughput1.
We compare five strategies to perform a training iteration on those models.
• The PyTorch strategy consists in the standard way of computing the forward and

backward operations, where all intermediate activations are materialized.
• The sequential strategy relies on the checkpoint_sequential tool of PyTorch [1].

This strategy splits the chain into a given number of segments s and, during the
forward phase only, stores activations at the beginning of each segment. Each
forward computation is thus performed twice, except those of the last segment.
We use 10 different number of segments, from 2 (always included) to 2

√
L, where

L is the length of the chain2. The same strategy is used in [36], but the number of
segments has to be hand-tuned.
• The revolve strategy uses the optimal algorithm adapted to heterogeneous chains

of the Automatic Differentiation model [40], and converts it to a valid solution
by saving only activations a to memory, and performing a F all step before each
backward step to enforce validity. This is the same strategy as advocated in
Appendix C of [42].
• The optimal strategy corresponds to rotor [48] and uses Algorithm 3 (or

equivalently Algorithm 1 since they provide the same results for all experiments)
for 10 different memory limits, equally spaced between 0 and the memory usage of
the PyTorch strategy.
• The checkmate strategy is a reimplementation in our PyTorch framework of

the linear programming approach presented in [52]. Since we are interested in
significantly large networks, we use the approximate version, based on two-phase

1With small batch sizes, we observe that doubling the batch size effectively doubles the throughput,
which shows that the GPU is not used efficiently in the former case.

2Note that
√
L is the optimal number of segments for this strategy when the chain is homogeneous.
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rounding of the best fractional solution. This approach does not differentiate between
a and ā values; so for validity we have included a conversion step that uses F all

operations when necessary. The linear programs are solved with CPLEX version
12.10, with a one hour time limit. Due to the high computational cost, this strategy
is only shown in a selection of plots.

For each model, image size and batch size, we perform enough iterations to ensure
that the PyTorch strategy lasts at least 500ms, and we measure the actual memory
peak and duration over 5 runs. The obtained measurements are very stable, so all plots
in the next section present the median duration over the 5 runs for each experiment (on
average, the difference between the highest and lowest measured throughputs are within
1% of the median). For each run, the memory peak consumption and the throughput of
the experiments have been carefully measured, using the same mechanism as the one used
to perform the measurement phase.

2.4.5 Experimental Results

For the sake of conciseness, we analyze carefully only a representative selection of the
results; the behavior on other experiments is very similar and can be found in Section 2.6.
All plots have the same structure: for a given set of parameters (network, depth, image
size and batch size), we plot for each strategy the achieved throughput (in terms of
images per second) against the peak memory usage. The square red dot represents the
performance obtained by the standard PyTorch strategy, and its absence from the graph
means that a memory overflow error was encountered when attempting to execute it.
Purple crosses represent the results obtained with the sequential strategy for different
number of segments. The blue line with triangles shows the result obtained with our
optimal strategy. The green line with circles shows the result obtained with the revolve
algorithm. When available, the orange line with crossed squares shows the performance
achieved with our checkmate implementation3. We draw lines to emphasize the fact that
these strategies can be given any memory limit as input, whereas the result of sequential
is inherently tied to a discrete number of segments. We provide a representative selection
of results in Figures 2.5 to 2.7, and the complete results can be found in Figures 2.8
to 2.15.

Figure 2.5 depicts the results for the ResNet neural network with depth of 101, with
image size 1000× 1000 and batch size 1, 2, 4, and 8. For a batch size of 1, the PyTorch
strategy has a memory peak consumption of 2.83 GiB, which is enough to fit on this
GPU. However, when the batch size is 8, the PyTorch strategy fails to compute the
backpropagation due to memory limitations. The sequential strategy offers a discrete
alternative by dividing the chain into a given number of segments (in this case from 2 to
11). For every batch size, the best throughput is reached when the number of segments
is equal to 2. For instance, when the batch size is 8, the throughput of the sequential

3The structure of the Inception network makes it more challenging to adapt to the checkmate
algorithm. Since the performance of checkmate on the other networks is not satisfactory, we did not
perform the experiments on the Inception network with checkmate
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Рис. 2.5: Experimental results for the ResNet network with depth 101 and image size
1000.
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Рис. 2.6: Experimental results for the ResNet network with depth 1001 and image size
224.

81



2.4. Implementation and Validation

strategy with 2 segments is on average 8.67 images/s with a memory peak consumption
of 13.91 GiB. The optimal strategy offers a continuous alternative by implementing
the best rematerialization strategy for any given memory bound. We can see that for
a given memory peak, the optimal strategy outperforms the sequential strategy by
up to 15%. For instance, when the batch size is 8, the maximum throughput achieved
by the optimal strategy is 9.77 images/s. The previous revolve algorithm provides a
continuous approach as well. However, it requires to compute each forward operation at
least twice (once in the forward phase, once before the backward operation), which incurs a
much lower throughput than both other solutions. Furthermore, since this algorithm does
not consider saving the larger ā values, it is unable to make use of larger memory sizes.
Finally, the checkmate strategy has significant difficulty to optimize these deep networks
because of two issues. The first issue is that the resulting linear programs are very large
and cannot be solved exactly in reasonable time; we thus use the fractional relaxation
proposed in [52], which does not correctly estimate the memory usage: the memory used
by the solutions of checkmate is consistently higher than the limit provided to the linear
program. The second issue is that in checkmate, authors do not consider the difference
between a and ā values: given a solution produced by the linear program, producing a
correct execution sequence for the PyTorch framework requires to convert the solution
using F all operations, which in some cases means inserting additional recomputations,
lowering the obtained throughput.

Figure 2.6 displays the same results for the ResNet with depth of 1001 and image size
of 224 × 224. This setup requires much more memory and the PyTorch strategy fails
even when the batch size is 1. The sequential strategy requires at least 6 segments for
batch size 1, 10 segments for batch size 2, and 18 segments for batch size 4, and cannot
perform the backpropagation when the batch size is 8. Not only does the optimal strategy
outperform the sequential strategy when it does not fail but it offers a stable solution
to train the neural network even with a larger batch size, which allows us to increase the
achieved throughput thanks to a better GPU efficiency (0.91 for optimal whereas the
highest throughput achieved by sequential is 0.86). It is interesting to note that based
on the parameters estimated by rotor, running the setting with batch size 8 with the
PyTorch strategy would require 225 GiB of memory, and achieve a throughput of 1.18
images/s. Additional results in Figure 2.15 also show that rotor is able to run this large
network even with medium and large image sizes.

All these conclusions hold for every tested neural network and parameters. Figure 2.7
displays some of them and shows that the behavior of the rotor strategy is stable on
various network sizes and image sizes. To summarize, we also compute the ratio between
the highest throughput obtained by sequential and the throughput achieved by rotor
with the corresponding memory usage. On average over all tested sets of parameters,
optimal achieves 12.8% higher throughput.
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Рис. 2.7: Experimental results for several situations.

2.5 Conclusion

This chapter describes a new rematerialization strategy that leverages operations available
in DNN frameworks with the capabilities of autograd functions. We carefully model
backpropagation and we propose a dynamic program that computes the optimal persistent
schedule for any sequentialized network. We also present rotor [48], which can apply
this dynamic program for any sequential PyTorch module. On the theoretical side,
we prove that the memory persistence property used by Automatic Differentiation
community to derive dynamic programming optimal solutions no longer holds in presence
of heterogeneous activation sizes. We propose a weaker version of memory persistence,
called floating memory persistence, and we prove that it can be used to find optimal
rematerialization strategies in the fully heterogeneous case. On the practical side, using
in-depth experiments, we compare achieved results with rotor against (i) a periodic
checkpointing strategy available in PyTorch, (ii) an optimal persistent strategy adapted
from the Automatic Differentiation literature to a fully heterogeneous setting, but which
does not use all the capabilities available in DNN frameworks and (iii) a rematerialization
strategy based on Linear Programming (Checkmate). We show that rotor consistently
outperforms these rematerialization strategies, for a large class of networks, image sizes
and batch sizes. Our fully automatic tool rotor increases throughput by an average of
13% compared to its best competitor, with better flexibility since it offers the ability to
specify an arbitrary memory limit. rotor therefore allows us to use larger models, larger
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batches or larger images while automatically adapting to the memory of the training
device.

2.6 Additional Plots

In this section, we provide the results (Figures 2.8-2.15) for all tested neural networks
for different batch-sizes and image sizes. They consistently demonstrate the advantage of
rotor over other rematerialization methods.
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Рис. 2.8: Results for ResNet with image size 224, for different depths and batch sizes.
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Рис. 2.9: Results for ResNet with image size 500, for different depths and batch sizes.
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Рис. 2.10: Results for ResNet with image size 1000, for different depths and batch sizes.
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Рис. 2.11: Results for DenseNet with image size 224, for different depths and batch sizes.
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Рис. 2.12: Results for DenseNet with image size 500, for different depths and batch sizes.
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Рис. 2.13: Results for DenseNet with image size 1000, for different depths and batch sizes.
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Рис. 2.14: Results for Inception v3 for different image sizes and batch sizes.
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Рис. 2.15: Results for ResNet 1001, for different image sizes and batch sizes.
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Introduction

In this part, we focus on Offloading, which is also known as Memory Virtualization or
Memory Swapping. It consists in reducing memory usage on the GPU (device memory) by
transferring some activations to the CPU (main memory), which is expected to be at least
one order of magnitude larger. The corresponding algorithmic question is to determine
which activations should be sent (offloaded) to the main memory and when, and also
when offloaded activations should be brought back (prefetched) from the main memory
to the device memory. This approach has been recently considered in [88, 7], where the
authors advocate the general idea and propose several static and dynamic heuristics to
decide which activations should be offloaded.

More formally, the objective of Offloading is to produce a sequence of operations
satisfying a given memory constraint and consisting of elementary forward, backward,
offload and prefetch operations. Transfers on the PCI bus between the CPU and the GPU
might slow down the final execution, when introducing idle times, which can be especially
large when bandwidth is small. This problem will be solved in Chapter 3.

As discussed in Chapter 2, Rematerialization computes a sequence of valid operations
consisting of elementary forward, backward and delete operations and that has a minimum
execution time among all sequences that satisfy a given memory constraint. This technique
works well if computations are cheap, however, it creates a non-zero overhead. As
Offloading and Rematerialization both help to reduce memory usage by modifying the
original schedule, by inserting additional operations, combining both approaches in the
same framework can improve the final performance by mutually compensating their
disadvantages. This approach will be considered in Chapter 4.

Model and Main Notations

Similarly to the previous part, we consider the training phase of sequential DNNs, as
depicted on Figure 2.16. This training phase consists of two types of computations: forward
operations (F`)1≤`≤L and backward operations (B`)1≤`≤L. The forward step F` requires
a`−1 (or ā`−1) as input, and computes a` or ā`. The backward step B` requires ā`, a`−1

(or ā`−1) and δ` as inputs, and computes δ`−1 (see Table 2.2). The distinction between a`
and ā` is crucial in practice, since it allows us to consider computation graphs that have
a sequential structure, but are not purely sequential. In this setting, it is indeed possible
for F` to represent a complex operation (any Direct Acyclic Graph of layers), and thus ā`
contains all the intermediate activations produced by F` including a` that are necessary
to compute B`, whereas a` only contains the output activation of F`, that will be used by
F`+1. In general, a` can therefore be much smaller than ā`. Finally, for convenience let us
set that data sizes ā0 = a0 (normally the input of the chain is not produced by some other
network and therefore this data does not contain something else than the input tensor)
and also the gradient size δL+1 = 0 (the initial gradient of the backward propagation is
just a scalar equal to 1, see Figure 2.16).
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F1 F2 · · · FL−1 FL FLoss

B1 B2 B3 · · · BL BLoss

a0 a1 a2 aL−2 aL−1 aL aL+1

1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aL
ā1 ā2 ā3 āL−1 āL āL+1

Рис. 2.16: Data dependencies induced the training phase of Sequential Deep Neural
Networks.

Before the execution starts, only the input sample a0 is present in the memory. The
objective of the elementary training phase is to perform the whole computation and to
obtain δ0 from a0 in the smallest possible time. This computation is performed on a
processing device (typically a GPU or TPU) with limited memory MGPU. We denote uF`

the time to process F`, and uB`
the time to process B`, which are definite for a fixed

input size (i.e. fixed batch size and image size). As mentioned before, the training phase
is very memory intensive: since activations ā` are needed for the backward phase, all ā`
values should be stored during the forward phase, and they can only be freed once their
corresponding B` operation has been performed.

Operation Input Output Time Memory
overhead

F all
` Forward and save all {a`−1} {a`−1, ā`} uF`

oF`{ā`−1} {ā`−1, ā`}

F ck
` Forward and materialize input {a`−1} {a`−1, a`} uF`

oF`{ā`−1} {ā`−1, a`}
F∅
` Forward without saving {a`−1} {a`} uF`

oF`

B` Backward step {δ`, ā`, a`−1} {δ`−1} uB`
oB`{δ`, ā`, ā`−1} {δ`−1, ā`−1}

Таблица 2.2: Generic operations available in DL frameworks.

We further associate the notations used for activations a`, ā` and gradients δ` with
their respective memory sizes, i.e. we use ā` to denote both a tensor representing an
activation of layer ` and also its data size. To perform an operation (either F` or B`), it is
necessary to have all inputs stored into memory, to reserve the memory space to store the
output, and to reserve additional space for the temporary memory usage of the operation,
denoted with oF`

for F` and oB`
for B`.

One way to decrease memory usage is to use Rematerialization, which has been
discussed in the previous part. The alternative way is to use Offloading. We assume
that it is possible to offload some of the data to another memory storage (typically the
main memory of the machine). The size of this memory is assumed to be large enough to
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store all the results and thus is not a constraint; but the speed of data transfers is limited
by bandwidth β. The offloaded data can then be prefetched during the backward phase,
so that it is available when needed to perform the corresponding backward operation. A
similar 2-level memory hierarchy has been considered by [88, 7] as well. More complex
architectures (e.g. k-level memory hierarchy for an arbitrary k or multiple GPUs and one
CPU) are out of scope of this work and they will be left for future work.

In order to express this mechanism formally, we introduce two additional operations O`

and P` that correspond respectively to offloading to and prefetching from CPU memory.
These operations O` and P` can be applied both to a`−1 and ā`−1, depending on which
type of activation has been produced. Their implementation is feasible, by using CUDA
streams, which asynchronously offload and prefetch activations from and to the CPU
memory, while independent computations are performed.

In this part, we consider two problems. We start with a simpler problem of minimizing
the execution time with the limited memory MGPU using Offloading to deal with the
memory limit, but without recomputations. When no recomputations are allowed, only
F all
` are possible during forward propagation, so that after loss computation the backward

operations can have all the necessary input. In this case, all forward operations generate
only activations of type ā`, therefore only these activations can be sent to the CPU (and
ā0 = a0, which is a chain input). In addition, we make the following assumptions:

Assumptions 1. Common Offloading assumptions are the following:
Assumptions on communications:

O.1 Only one transfer can occur at a time (indeed, transferring more than one object at
a time would not help to release memory faster);

O.2 Transferring x units of data takes x/β amount of time, i.e. bandwidth is fully used;

O.3 Transfers and computations can be completely overlapped except for synchronizations
that take place either when the GPU needs to wait for memory releases to resume
computations or when some backward B` waits for ā`−1 to be prefetched);

O.4 Transfers do not affect computation costs uF`
and uB`

for all layers 1 ≤ ` ≤ L+ 1.
Basic properties:

O.5 δ` are not transferred: without recomputations after being produced with B`+1 they
are immediately consumed with B`, thus there is no interest in sending them from
the GPU;

Simplifying assumptions:
O.6 Weights are not transferred. Though it creates an additional opportunity to reduce

memory peaks, we concentrate in our work primarily on activations. Adding this
option into an optimization problem can be done in future works.

Implementation limitation:
O.7 ā` needs to be stored in memory in its entirety throughout the transfer: during

offloading, the memory is only released after the transfer completes, and during
prefetching, the memory is reserved as soon as the transfer begins.
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We can now state the decision problem associated to Offloading, considered in
Chapter 3.

Problem 7 (Offloading Offint(L,MGPU, β)). Consider a training phase with L
operations, corresponding to a chain as depicted on Figure 2.16 with processing times and
memory usage described in Table 2.2. Using F all

` , B`, O` and P` and under Assumptions 1,
is it possible to perform this computation on a processing device with memory MGPU and
bandwidth β between processing device and main memory, with an execution time at
most T ?

The second problem that we are going to consider in Chapter 4 is to solve
the minimization problem under memory limit MGPU using both recomputations and
offloading techniques. Consequently, our goal is to find an optimal sequence that can
consist of F all

` , B`, F ck
` , F∅

` , O` and P` operations to compute δ0 from a0.

Problem 8 (Combination of Offloading and Rematerialization
OffRematint(L,MGPU, β)). Consider a training phase with L operations, corresponding
to a chain, depicted on Figure 2.16 with processing times and memory usage described
in Table 2.2. Using all operations from Table 2.2 together with O` and P` and under
Assumptions 1, is it possible to perform this computation on a processing device with
memory MGPU and bandwidth β between processing device and main memory, with an
execution time at most T ?

Problems 7 and 8 are stated as decision problems. Both problems can be reformulated
as optimization problems, where it is required to find a schedule with a minimal T
satisfying constraints. Further, Offint(L,MGPU, β) and OffRematint(L,MGPU, β) can
refer to both decision and optimization problems.
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Offloading for Heterogeneous Chains

In this chapter, we analyse Offint(L,MGPU, β), which consists in finding a way to process
a chain from Figure 2.16 with high memory demand using Offloading. First, we introduce
the general properties of optimal solutions for this problem in Section 3.1.1. We prove
that this problem is NP-complete in the strong sense in Section 3.1.2. We further present
different relaxations of this problem and provide the optimal solutions for each of them
(see Sections 3.2 and 3.3). At the same time, being able to solve the relaxed problems
allows us to construct efficient heuristics for Offint(L,MGPU, β), which is demonstrated
experimentally in Section 3.4.

3.1 Preliminary Analysis

3.1.1 Preliminary Results and Lower Bound

To begin with, we establish several properties of the optimal offloading schedules. The
first one is no-wait policy, or performing offloading as early as possible (or as late as
possible for prefetching). In this context, for example, as early as possible means that the
offloading should start immediately after the data is produced and the communication
link is available, while as late as possible means that the prefetching should be scheduled
in the way that its completion coincides with the start of the backward operation that
uses the prefetched data. This strategy sustains low memory consumption in the middle
of the execution, when the memory peak usually takes place, consequently prevents from
unnecessary idle times caused by late memory releases (or early memory allocations).

Proposition 1. For fixed decisions of which data to offload, and in which order
transfers should be performed, the best schedule is obtained with a no-wait policy, where
each computation and data offloading is performed as early as possible, and each data
prefetching as late as possible.

Доказательство. If activation a` is chosen for offloading, then postponing its offloading
start can result in the higher memory usage on the GPU within the introduced transfer
delay. This in turn can limit the number of feasible solutions because of higher memory
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charge, while it does not help to reduce the total execution time, as idle times occur only
when the memory releases are performed after the end of transfers. The symmetrical
situation is with prefetching. Putting prefetching earlier inflicts the higher memory
consumption, because prefetching makes GPU memory occupation increase. Therefore,
there are less feasible solutions, whereas the total execution time does not decrease
(making sure that prefetching should end before the start of the corresponding backward
is enough to guarantee that the backward task is executed as early as possible).

In the context of Offint(L,MGPU, β), we apply only F all
` , saving all the previous

activations. Given the information from Table 2.2, it is easy to compute the total amount
of used memory during the execution of each operation. We denote by MF`

or MB`

the minimal amount of data required to be stored on the GPU to perform F all
` or

B` respectively, which is composed of its input size (except for ā`−1 that we consider
separately), its output size, its temporary memory usage and additionally a currently
stored gradient. Let us additionally denote as Mpeak the memory peak that is achieved
when executing F all

1 . . . F all
L F all

L+1BL+1 . . . B1 if nothing is offloaded:

MF`
= oF`

+ ā` + δL+1 = oF`
+ ā`, (3.1)

MB`
= oB`

+ ā` + δ` + δ`−1, (3.2)

Mpeak = max
1≤`≤L+1

{
max (MB`

,MF`
) +

∑
k<`

āk

}
. (3.3)

Proposition 2. The amount of data offloaded by any valid schedule is at least Mpeak −
MGPU.

Доказательство. The proof is trivial, since any valid schedule must process the
operation that achieves the memory peak while using at most MGPU memory on the
computing device.

Finally, we give the result on the general lower bound for Offint(L,MGPU, β).

Proposition 3. The value LB = max(
∑

`(uF`
+ uB`

), 2
Mpeak−MGPU

β
) is a lower bound on

the optimal makespan.

Доказательство. Since any valid schedule must perform all computations, and must
transfer at least this amount of data twice (for offloading and prefetching), the lower
bound LB on the optimal makespan holds true.

3.1.2 Complexity Results

Theorem 7. Offint(L,MGPU, β) is strongly NP-complete.

Доказательство. Offint(L,MGPU, β) clearly belongs to NP: given the start time of all
forward and backward operations, and the set of offloaded data with the corresponding
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F1 F2
· · ·

F3n
1

F3n+1 F3n+2

· · · 1

F5n−1 F5n F5n+1

B1 B2

· · ·
B3n

n

B3n+1

B3n+2

· · ·
B5n−1 B5n B5n+1

x1 x2 x3 x3n 0 0 V 0 0 V 0

00000000000

x1 x2
x3 x3n

0 0 V 0 0 Vx2 x3 0 0 V 0 V 0

Рис. 3.1: The instance of Offint(L,MGPU, β) used in the reduction from 3-Partition.
Activation sizes are indicated on the edges and non-zero execution times of operations are
written inside the corresponding nodes.

start time of transfers, checking that the schedule satisfies all constraints can be done in
linear time.

We prove that this problem is strongly NP-hard and therefore strongly NP-complete
by a reduction from the 3-Partition problem: given a set of integers {x1, x2, . . . , x3n} such
that

∑
i xi = nV and V/4 < xi < V/2, ∀i, is it possible to partition it into n parts

{S1, . . . , Sn} so that for any j ≤ n, |Sj| = 3 and
∑

i∈Sj
xi = V . This problem is known to

be NP-complete in the strong sense.
Given an instance of 3-Partition, we consider the following instance of

Offint(L,MGPU, β), depicted on Figure 3.1:
• L+ 1 = 5n+ 1, β = V , MGPU = nV , T = 2n;
• uFi

= 0 and āi−1 = xi for 1 ≤ i ≤ 3n;
• ā3n = 0;
• uFi

= 1 and āi = 0 for i = 3n+ 2k − 1, 1 ≤ k ≤ n;
• uFi

= 0 and āi = V for i = 3n+ 2k, 1 ≤ k ≤ n;
• uF5n+1 = 0 and ā5n+1 = 0;
• uBi

= 0 and δi = 0 for all i, except uB3n+1 = n.
We claim that this instance can be scheduled in time T = 2n if and only if the 3-Partition
instance has a solution.

Let us first assume that there exists a solution to the 3-Partition instance, i.e. sets
(Sj)1≤j≤n such that

∑
i∈Sj

xi = V . We can build a schedule that starts F3n+2k−1 at time
k − 1 for 1 ≤ k ≤ n, and executes B3n+1 from time n to time 2n. At time 0, before the
execution of F3n+1, the memory usage is exactly nV =

∑
i xi. During the execution of

F3n+2k−1, activations xi for i ∈ Sk are transferred. Since β = V , this takes time exactly 1.
The memory used at the end of F3n+2k−1 is thus (n − 1)V , which allows F3n+2k to start
without delay. At the end of the forward phase, the memory is filled with n activations
of size V . At the beginning of B3n+1, the memory is empty: all activations of size xi can
be prefetched during the execution of B3n, allowing the backward phase to finish without
idle time. This schedule induces no idle time, and finishes in time exactly T = 2n.

Let us now assume that there exists a valid schedule of duration T = 2n, i.e. without
any idle time on the processing device. For j ≤ n, let us define the set Sj as the indices
of the activations whose transfers are included in the execution of F3n+2j−1. Since F3n+2

starts immediately after the end of F3n+1, and since memory is only released once the
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transfer is completed, the amount of data sent during F3n+1 is at least V . Since β = V
and uF3n+1 = 1, the amount of data is exactly V , thus

∑
i∈S1

xi = V . The same argument
applies for all j ≤ n, which shows that the sets Sj are a valid solution for the 3-Partition
instance, and completes the proof.

From the proof of Theorem 7, it follows that even when we know which activations
should be offloaded, it is difficult to decide the order in which the transfers should be done.
Indeed, it is clear in the instances used in the proof that the first 3n activations need to be
offloaded, but finding the optimal ordering is hard. Because of this negative complexity
result, we study two different relaxations of Offint(L,MGPU, β) in the next sections, by
relaxing the constraints stating that activations should be sent in entirety before the
corresponding memory can be released. In such scenarios, all activations should be sent
as soon as they are computed, i.e. in increasing order of their indices. This allows us to
compute optimal solutions in reasonable time, and the resulting algorithms can then be
used as heuristic solutions for Offint(L,MGPU, β).

3.2 Fractional Relaxation

In a first relaxation, let us assume that it is possible to perform partial offloading: any
communication can be stopped at any time, and the data that has been transferred up to
that time can be released from memory, even if the rest of the activation is still present
on the computing device.

Assumptions 2. For the following problem we consider Assumptions 1(O.1-O.6).
Moreover we relax Assumption O.7 as follows:
O.7’ ā` can be offloaded partially to the CPU, and partial discards on the GPU are allowed

and can be performed as soon as the memory needs to be freed.

Problem 9 (Fractional Relaxation Offfrac(L,MGPU, β)). Consider a training phase with
L operations, corresponding to a chain, depicted on Figure 2.16 with processing times and
memory usage described in Table 2.2. Using F all

` , B`, O` and P` and under Assumptions 2,
is it possible to perform this computation on a processing device with memory MGPU and
bandwidth β between processing device and main memory, with an execution time at
most T ?

With this model, it is possible to compute an optimal solution with a greedy algorithm.
Let us first prove results about the structure of optimal solutions, and then use that
structure to design an optimal greedy algorithm.

3.2.1 Structure of Optimal Solutions

In this section, let us analyze special eager schedules.
• A schedule is said eager if it offloads the first k activations ā0, ā1, . . . , āk (where the

last one can be partially offloaded) for some value k ≥ 0.
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• A schedule is said ordered if the data is offloaded in order of increasing indices, and
prefetched in order of decreasing indices.

Lemma 5. Under Assumptions 2 any valid solution S can be transformed into an eager
and ordered solution S ′ with the same makespan.

Доказательство. Let us denote by Moff the amount of activation data offloaded by the
schedule S, and let us consider in S the time intervals Ioff spent offloading data, and the
time intervals Ifetch spent prefetching data. Let us consider the schedule S ′ in which all
operations and data transfers are performed at the same instants as in S, only changing
which data is transferred. The first intervals of Ioff are used to transfer ā0 (since it is
possible to stop any communication at any time, using several intervals to transfer ā0 is
not a problem), the next ones are used to offload ā1, and so on, until the amount Moff is
reached, and similarly for the prefetched data, in reverse order. Clearly S ′ is eager and
ordered.

Since the ā` values become available in the forward phase by order of increasing indices,
and are consumed in the backward phase by order of decreasing indices, it is clear that
transfers in S ′ are valid: an activation is offloaded only after having been produced, and
in the backward phase an activation is prefetched before being used. Furthermore, since
transfers occur at the same instants and at the same speed as in S, the memory usage of
S ′ is exactly the same as the memory usage of S at any instant. The modified S ′ schedule
is thus valid, which completes the proof.

3.2.2 Greedy Algorithm

According to this result, we restrict the search to eager and ordered schedules. It is thus
sufficient to find the amount of offloaded data that results in the smallest makespan. The
next result shows that it is best to offload the least possible amount of data.

Lemma 6. Let S and S ′ be no-wait, ordered and eager schedules that offload a quantity
of data Q and Q′ respectively, with Q < Q′. Then, under Assumptions 2 the makespan of
S is not larger than the makespan of S ′.
Доказательство. Let us consider the schedule S ′′ obtained from S ′ by removing all
transfers (offload and prefetch) corresponding to data between Q and Q′ in the eager
order. Since S ′ is valid, all data dependencies are satisfied in S ′′. Let us now prove that
S ′′ also fulfills the memory constraint.

Consider any time instant t in schedule S ′, and let us denote by m′CPU(t) and m′GPU(t)
the amount of data stored on the CPU and GPU by S ′. If m′CPU(t) ≤ Q, then the data
stored on GPU in S ′ and S ′′ are the same, so S ′′ is valid at instant t. If m′CPU(t) > Q, then
the amount of data stored on the GPU in schedule S ′′ ism′′GPU(t) = m′GPU(t)+m′CPU(t)−Q.

Since S is valid, Q ≥Mpeak −MGPU. Furthermore, by definition of Mpeak, m′GPU(t) +
m′CPU(t) ≤Mpeak. Thus,

m′′GPU(t) ≤ m′GPU(t) +m′CPU(t) +MGPU −Mpeak

≤MGPU.
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The schedule S ′′ is thus a valid, eager and ordered schedule that offloads a quantity
of data Q (S ′′ is not necessarily no-wait). The schedule S offloads the same data in the
same order; since S is no-wait, by Proposition 1 the makespan of S is not larger than the
makespan of S ′′, which is equal to the makespan of S ′.

With these two lemmas, since Mpeak −MGPU is a lower bound on the amount of data
that any schedule has to offload, we can characterize an optimal schedule for this relaxed
problem.

Theorem 8. For a given instance, the no-wait, eager, ordered schedule that offloads a
quantity Mpeak −MGPU of data is optimal for Offfrac(L,MGPU, β).

By rounding up the number of offloaded activations, this result provides a heuristic for
the original integral Offint(L,MGPU, β), that we call Greedy. The Greedy heuristic
returns the no-wait, eager, ordered schedule that offloads (entirely) the first k activations,
where k is the smallest index such that

∑
`≤k ā` ≥Mpeak −MGPU.

However, it may happen that this Greedy schedule offloads too much data because
of the rounding procedure, which is reflected on its performance shown in Section 3.4.
In the next section, we thus analyze a more sophisticated relaxation in order to obtain a
more precise algorithm.

3.3 Fractional Communications

Let us now consider another relaxation of Offint(L,MGPU, β), in which an activation
must be either entirely offloaded or not offloaded at all. However, it is still allowed to do
partial discards: at any time the already offloaded part can be deleted from GPU memory
and memory for prefetched data can be allocated in several steps.

Assumptions 3. For the following problem we consider Assumptions 1(O.1-O.6) and
we relax Assumption O.7 as follows:
O.7” ā` can only be offloaded in its entirety to the CPU, but partial discards on the GPU

are allowed and can be performed as soon as the memory needs to be freed.

Problem 10 (Fractional Communications Offcomm(L,MGPU, β)). Consider a training
phase with L operations, corresponding to a chain, depicted on Figure 2.16 with processing
times and memory usage described in Table 2.2. Using F all

` , B`, O` and P` and under
Assumptions 3, is it possible to perform this computation on a processing device with
memory MGPU and bandwidth β between processing device and main memory, with an
execution time at most T ?

In this section, we first prove that this problem is NP-complete in the weak sense, and
then propose a pseudo-polynomial optimal algorithm based on dynamic programming.
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Рис. 3.2: The instance of Offcomm(L,MGPU, β) that corresponds to the 2-Partition
problem with values xi.

3.3.1 Complexity

Let us first note that Proposition 1 also holds for this problem (it is always better to
schedule with a no-wait policy). We can also state a result similar to the one of the fully
fractional case.

Lemma 7. Under Assumptions 3, any valid solution S can be transformed into an ordered
solution S ′ with the same makespan.

The proof is the same as the one of Lemma 5: transforming S using the correct order
provides a valid schedule. The result is weaker, because an eager schedule that offloads
the same data might not be valid for Offcomm(L,MGPU, β) (the last activation might not
be fully offloaded).

Theorem 9. Offcomm(L,MGPU, β) is NP-complete in the weak sense.

Доказательство. Offcomm(L,MGPU, β) clearly belongs to NP, in the same way as
Offint(L,MGPU, β).

Let us prove that it is NP-hard by reduction for the 2-Partition problem, which can
be stated as: given n positive integers x1, x2, . . . , xn such that

∑
i xi = 2V , is is possible

to partition them in two subsets S1 and S2 such that
∑

i∈S1
xi =

∑
i∈S2

xi = V ?
Given an instance of 2-Partition, let us consider an instance I of Offcomm(L,MGPU, β),

depicted on Figure 3.2:
• L+ 1 = n+ 3, β = V , MGPU = 2V , T = 2;
• δi = 0 for all i;
• uFi

= uBi
= 0 and āi−1 = xi for 1 ≤ i ≤ n;

• uFn+1 = uBn+1 = 1 and ān = 0;
• uFn+2 = uBn+2 = 0 and ān+1 = 0;
• uFn+3 = uBn+3 = 0 and ān+2 = V .
Note that I can be computed in polynomial time. We claim that I admits a valid

schedule of length T = 2 if and only if the instance of 2-Partition has a solution.
If the 2-Partition problem has a solution, then there exist subsets S1 and S2 = S \ S1

such that
∑

i∈S1
xi = V . It is thus possible to offload all the corresponding activations xi

during operation Fn+1 (since β = V ), and then to prefetch them during operation Bn+1.
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This allows us to perform Fn+2, Fn+3, Bn+3, Bn+2 immediately after Fn+1, since only a
quantity V of data from the first activations is stored. Once Bn has been performed, all
other B` can be performed as well, which results in a schedule of length 2.

Conversely, let us assume that there exists a schedule of length 2. Let us denote as
S1 the set of indices corresponding to activations that are offloaded in that schedule
(remember that each activation is either offloaded completely or not at all), and let Q =∑

i∈S1
xi. Since Mpeak = 3V , it is clear that Q ≥ V . Since β = V , the makespan of

the schedule is at least 2Q
V

(this is the time it takes to offload and prefetch S1), thus
Q ≤ V . This implies that S1 is a solution of the 2-Partition instance, which completes
the proof.

3.3.2 Structure of Optimal Solutions

According to Lemma 7, our objective is now to find the best ordered schedule. In this
section, we derive a dynamic program that explores all possible ordered and no-wait
schedules and computes makespans for each covered case.

The principal idea of our dynamic program is to move across layers in increasing order
and, for each layer `, it needs to decide whether its input should be offloaded or not. This
decision has several impacts:
• it may impose some idle time during the forward phase and the backward phase

when overlapping the communications with computations;
• it can also contribute to an idle time between the phases, when loss is computed;
• it affects the feasibility of processing the next operations.

Consequently, different choices of offloaded activations may lead to different makespans.
The goal of the dynamic program is to detect the schedule with the minimal makespan
out of all available schedules.

To take into account the effects caused by the previous decisions, we need to define a
set of variables that describes the state of the system at any instant. On the one hand, this
set of variables should be as small as possible, since it has a direct influence on the size of
the data structure and on the computing time to solve the dynamic program. On the other
hand, these variables must be chosen wisely and they must contain enough information
to make decisions for subsequent layers and be updated according to these decisions. To
evaluate correctly memory constraints and to compute idle times, it is important to know
how memory may vary between layers i and i + 1 during communications: from some
minimal memory occupation till maximal memory occupation. Both can be described for
the forward and the backward phases using only three state variables: in addition of the
index i of the currently considered layer we use Ai,∆Fi

and ∆Bi
.

• Ai denotes the total GPU memory occupied by the saved values among ā0, . . . , āi−2

that are not transferred to the CPU;
• ∆Fi

denotes the amount of data from ā0, . . . , āi−2 that the schedule still needs to
offload after Fi−1, if there is no data ready for offloading then it takes a negative
value that indicates how long the communication link was idle since the last offload;
• ∆Bi

denotes the amount of data ā0, . . . , āi−2 that the schedule should prefetch before
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starting Bi−1, if there is no data ready for prefetching then it takes a negative value
that indicates how long the communication link stays idle until the next prefetch.

The negative values of ∆Fi
and ∆Bi

are necessary for computing the idle time that
take place at loss calculation when connecting offloading and prefetching. For example,
knowing how much time the communication link is idle after loss can help with overlapping
of the remaining offloading with some backward steps, thus avoiding an unnecessary
synchronization of offloading with the end of forward propagation. We provide more
detailed analysis of this idle time and how it depends on the values of ∆FL+2

and ∆BL+2

in Section 3.3.2.2.
With these state variables, we can compute MFi

, the memory on the GPU after
executing Fi−1, and MBi

, the memory on the GPU before executing Bi−1 (excluding
δi−1) that are given by

MFi
= Ai + ∆+

Fi
+ āi−1, (3.4)

MBi
= Ai + ∆+

Bi
+ āi−1, (3.5)

where we use the convention:
x+ = max{x, 0}.

These memory values represent the maximal memory occupation between layers i
and i + 1 for the forward and backward phases respectively, and are used for computing
idle times when overlapping communications with computations, according to Lemma 8.
However, to estimate the feasibility of the scheduled operations, we also need to know the
memory after everything has been offloaded, which is either Ai + āi−1 (when āi−1 stays
on the GPU) or Ai (when āi−1 is sent to the CPU), which we use to obtain the maximal
memory available on the GPU.

The updates of the state variables follow simple rules:
• if no new data is offloaded (resp. prefetched), then ∆Fi

(resp. ∆Bi
) is constantly

decreasing from index i to index j, j > i at speed β;
• if new data has to be offloaded (resp. prefetched), then the data size is added into

∆+
Fi

(resp. ∆+
Bi
), i.e. if ∆Fi

(resp. ∆Bi
) is negative before the update, then it should

be first reset to zero and then updated by the new data size;
• Ai is updated if new data is saved on the GPU (without being later offloaded to the

CPU).
The next lemma describes the general scheme for optimally overlapping the

communications with any sequence of operations. Lemma 8 is valid for both prefetching
and offloading, as their behavior is symmetrical. Offloading takes place at the beginning
of the sequence, making available memory increase at a speed of β from its initial value
mmin. On the contrary, prefetching is done at the end of the sequence, making available
memory decrease at the speed β until reaching mmin. Performing offloading as soon as
possible and prefetching as late as possible allows us to have more available memory
for the middle of the execution. Note that mmin could be equivalently replaced with
MGPU − Mmax, where Mmax denotes the maximal memory occupation (either MFi

or
MBi

). We apply this lemma to compute the idle time when overlapping communications
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with just one operation at a time and also the idle time when overlapping a group of
operations with communications. The last case is especially helpful when evaluating the
idle time at the junction of offloading and prefetching and when considering more complex
case of combined Offloading and Rematerialization.

Lemma 8. Let us consider a fixed sequence of operations, for which the available memory
increases (resp. decreases) during execution because of data offloading (resp. prefetching),
with its minimum at mmin. Let us denote byMS

o the memory required to process operation
o ∈ S, and do the distance between o and the beginning (resp. end) of sequence S, i.e. the
cumulative duration of operations taking place before (resp. after) operation o. Then, the
execution of S needs to be delayed by some idle time

ε = max

(
maxo∈S(MS

o − βdo)−mmin

β
, 0

)
.

Доказательство. In this proof, we concentrate on offloading, since the case of prefetching
is done analogously. The idle time is not zero when it is not possible to overlap entirely
communications and computations because of the memory limit. During offloading, the
available memory (excluding the memory needed for operations of S) is increasing starting
from mmin, and its current value can be found with m(d) = mmin + βd, where d shows
the time distance to the beginning of the sequence. If these values are higher than
the memory required for every operation, then no idle time takes place. However, if
the memory is not large enough, then it is necessary to add more waiting time at the
beginning of the execution to increase the memory at the moment when more memory
is needed. Such increase is minimal when it is equal to maxo∈S(Mo − m(do))/β, with
o∗ = arg maxo∈S(Mo−m(do)) corresponding to the point when the memory needs exceed
the most the available memory.

3.3.2.1 Forward and Backward Phases

Let us consider any ordered, no-wait schedule S that processes the chain from layer i and
memory state described with some arbitrary Ai, ∆Fi

and ∆Bi
. Using Lemma 8, we find

the idle times that occur during Fi and Bi executions:

εFi
= max

(
MFi

−MGPU +MFi

β
, 0

)
(3.6)

and

εBi
= max

(
MBi

−MGPU +MBi

β
, 0

)
. (3.7)

The values for these equations can be obtained from the state variables and general
information on the chain.

Let us first remark that for S to be a valid schedule, there should be enough memory
to process Fi and Bi at least when data ∆Fi

and ∆Bi
reside entirely in the CPU. Thus,
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Рис. 3.3: Notations used in the Forward phase, assuming āi−1 is offloaded.
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Рис. 3.4: Notations used in the Backward phase. Case when prefetching ∆Bi
cannot start

because of memory requirement for Bi.
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all valid schedules should satisfy the next constraints:

MFi
≤MGPU − Ai − āi−1, (3.8)

MBi
≤MGPU − Ai − āi−1. (3.9)

Let us now derive recursive equations to obtain Ai+1, ∆Fi+1
and ∆Bi+1

. These equations
depend on whether āi−1 is offloaded in S or not.

If āi−1 is offloaded, then the amount of data ready to be offloaded after Fi−1 is ∆+
Fi

+
āi−1, whereas the amount of data that should be prefetched before Bi−1 is at least āi−1.
Until the end of Fi, the amount of data that can be offloaded is at most (εFi

+ uFi
)β,

while within the execution of Bi the amount of data that can be prefetched is (εBi
+uBi

)β
Hence, we obtain

∆Fi+1
= ∆+

Fi
+ āi−1 − (εFi

+ uFi
)β, (3.10)

∆Bi+1
= max (∆Bi

− (εBi
+ uBi

)β, 0) + āi−1, (3.11)
Ai+1 = Ai. (3.12)

If āi−1 is not offloaded, we can write similar equations, except that āi−1 is not added
to the amount of data to be offloaded or prefetched, thus ∆Fi+1

and ∆Bi+1
will simply

decrease. This yields

∆Fi+1
= ∆Fi

− (εFi
+ uFi

)β, (3.13)
∆Bi+1

= ∆Bi
− (εBi

+ uBi
)β, (3.14)

Ai+1 = Ai + āi−1. (3.15)

3.3.2.2 Idle Time between Phases

With these derivations, we have accounted for all idle times in schedule S, except for a
possible idle time εG between the end of FL+1 and the start of BL+1. Several situations
are possible. If S performs no offloading after FL+1, and no prefetching before BL+1 (i.e.
∆FL+2

and ∆BL+2
≤ 0), then no idle time occurs and εG = 0. If S performs both kind

of transfers (i.e. both ∆FL+2
and ∆BL+2

are positive), then the idle time corresponds to
transferring the total data, εG =

∆FL+2
+∆BL+2

β
.

Otherwise, if for example ∆FL+2
> 0 and ∆BL+2

≤ 0, the schedule S can continue
offloading during the first backward operations. This is possible only if enough memory
is available to perform the operations, so it may result in some idle time if it is necessary
to wait until enough data has been offloaded. Let us denote by AvB = −∆BL+2

β
the time

between the start of BL+1 and the start of the first prefetch operation, and let us set
UB
j =

∑L+1
i=j+1 uBi

. According to above derivations, since no prefetching occurs, all the
operations performed during this time have no idle time between them. These operations
are thus all the Bj such that UB

j < AvB. Moreover, starting Bj requires to have at least
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RBj
= δj−1 + δj + oBj

−
∑

i≥j+1 āi available memory, where we account for the removal of
āi. Thus, applying Lemma 8, we get

εG ≥ max


max j≤L+1

UB
j <AvB

{RBj
− UB

j β} −MGPU +MFL+2

β
, 0

 .

Another lower bound on εG is given by the fact that the offloading must finish before
the prefetching starts, εG ≥

∆FL+2

β
−AvB. These are the only constraints on εG, hence we

have

εG = max

∆FL+2

β
− AvB, max

j≤L+1

UB
j <AvB

RBj
−MGPU +MFL+2

β
− UB

j , 0

 . (3.16)

Finally, if ∆BL+1
> 0 and ∆FL+1

≤ 0, schedule S can perform prefetching during the last
forward operations. Let us denote by AvF = −∆FL+2

β
the time between the end of the last

offload and the end of FL+1, UF
j =

∑L+1
i=j+1 uFi

, and RFj
= oFj

−
∑

i≥j+1 āi.

Algorithm 5 Dynamic Programming Algorithm for Fractional Communications
Oi ← HashTable() for 1 ≤ i ≤ L+ 1
O1(0, 0, 0) = 0
for i ∈ {1, . . . , L+ 1} do

for Ai,∆Fi
,∆Bi

∈ Oi do
Compute MBi

and MFi
with Eq. (3.4) and (3.5)

if Constraints (3.8) and (3.9) are satisfied then
Compute εFi

, εBi
from equations (3.6) and (3.7)

Compute A,∆F ,∆B if āi−1 is offloaded (equations (3.10), (3.11) and(3.12))
Oi+1(A,∆F ,∆B)← min (Oi+1(A,∆F ,∆B), Oi(Ai,∆Fi

,∆Bi
) + uFi

+ εFi
+ uBi

εBi
)

Compute A′,∆′F ,∆
′
B if āi−1 is not offloaded (equations (3.13), (3.14)

and (3.15))
Oi+1(A′,∆′F ,∆

′
B)← min

(
Oi+1(A′,∆′F ,∆

′
B), Oi(Ai,∆Fi

,∆Bi
) + uFi

+ εFi
+ uBi

+ εBi

)
for A,∆F ,∆B ∈ OL+2 do

Compute εG according to equations (3.17) and (3.16)
Otot(A,∆F ,∆B)← OL+2(A,∆F ,∆B) + εG

Get A∗,∆∗F ,∆∗B that minimizes Otot(A,∆F ,∆B)
Backtrack in OL+2, . . . , O1 to obtain optimal offload decisions

With considerations similar as above, we obtain
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εG = max

∆BL+2

β
− AvF , max

j≤L+1

UF
j <AvF

RFj
−MGPU +MBL+2

β
− UF

j , 0

 . (3.17)

The results obtained in this section show that in order to compute how future
offloading decisions affect the idle time of a schedule, one only needs to know the values
of Ai,∆Fi

,∆Bi
. The exact decisions of which data from ā0, . . . , āi−2 has actually been

offloaded is not required. This allows us to design dynamic programming algorithm to
identify the offloading decisions that induce the smallest idle time.

3.3.3 Resulting Algorithm

3.3.3.1 Dynamic Programming Algorithm

To formalize the dynamic programming algorithm, let us define O(i, A,∆F ,∆B) as the
smallest possible execution time between (i) the start of the schedule and the end of Fi−1

and (ii) the start of Bi−1 and the end of the schedule, for all schedules S such that Ai = A,
∆Fi

= ∆F , ∆Bi
= ∆B.

Any schedule starts with nothing stored on the GPU without any scheduled offloads
or prefetches and no idle time takes place before F1 and after B1, so we can define
O(1, 0, 0, 0) = 0, and O(1, A,∆F ,∆B) =∞ for all other values of A,∆F ,∆B. In order to
compute O(i, A,∆F ,∆B) for all i and all relevant values of A,∆F ,∆B, we use hash tables
Oi indexed with (A,∆F ,∆B), with the understanding that if (A,∆F ,∆B) is not stored
in Oi, then O(i, A,∆F ,∆B) =∞. This leads to Algorithm 5, where Oi values are used to
update Oi+1 values, with two possible cases, either with a schedule that offloads āi−1, or
with a schedule that does not.

Once OL+2 is computed, Otot can be found by adding the corresponding idle time εG
between the forward and backward phases. Then, the smallest value in Otot is the smallest
possible execution time for any ordered, no-wait schedule. Finally, we can identify which
offload decisions led to this solution, and then obtain the description of the corresponding
schedule.

The number of values kept in the hash table can be bounded in the following way: A is
between 0 and MGPU, ∆F and ∆B may vary from −

∑
i(uFi

)β for ∆F and −
∑

i(uBi
)β for

∆B to MGPU. The number of possible values is thus O(MGPU(MGPU +
∑

i uFi
β)(MGPU +∑

i uBi
β)), and the complexity of Algorithm 5 is O(LMGPU(MGPU +

∑
i uFi

β)(MGPU +∑
i uBi

β)), which is indeed pseudo-polynomial.

Theorem 10. Under Assumptions 3, the problem of finding the minimal processing time
for the chain from Figure 2.16, using operations F all

` , B`, O` and P`, under memory limit
MGPU and bandwidth β, can be solved optimally with a dynamic programming algorithm
whose complexity is O(LMGPU(MGPU +

∑
i uFi

β)(MGPU +
∑

i uBi
β)). If A, ∆F and ∆B

are discretized using N values, then we can find an approximate solution after O(LN3)
number of operations.
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Доказательство. Algorithm 5 explores all possible states, generated by different
offloading choices made for each layer of the neural network. For each explored state it
computes the minimal execution time associated state, therefore backtracking the solution
with a global minimal makespan returns an optimal solution.

There is a simpler way to calculate idle time between phases, by setting εG =
∆+

F +∆+
B

β
.

There is no guarantee that it provides an optimal value, as it corresponds to the situation
when we synchronize the end of the forward phase with the end of offloading. Despite
being sub-optimal, this estimation is cheaper to calculate, as it does not require negative
values of ∆Fi

and ∆Bi
. Thus in the dynamic programming where this simple estimation

is applied, ∆Fi
and ∆Bi

, having smaller range of possible values, can be discretized with
a better precision, which potentially can improve the final result of the algorithm.

This optimal algorithm for the fractional communications model can be turned into
a heuristic for the original Offint(L,MGPU, β), which we call DynProg. DynProg
computes the optimal set of activations for the fractional communications model with
Algorithm 5, and outputs the no-wait, ordered schedule that offloads exactly these
activations.

3.3.3.2 Discretization Scheme

To keep its computing time reasonable, we also include in DynProg a discretization
scheme by fixing a number N of memory slots, where each slot has size M

N
. All memory

sizes are then expressed as an integer number of slots, by rounding up if necessary, setting
for example õFi

=
⌈
oFi
· N
M

⌉
. The values oFi

, oBi
, and δi are rounded up in this way.

It is also necessary to discretize the values of uFi
β and uBi

β, but these values need to
be rounded down to ensure the feasibility of the produced solution in the original problem.
However, since these values are always used as partial sums

∑i
j=1 uFj

β, we can perform

a more precise rounding procedure: the partial sums are discretized by setting σ̃Fj =⌊
N
M
·
∑i

j=1 uFj
β
⌋
, and then the individual values can be recovered by ũFi

β = σ̃Fi+1 − σ̃Fi .

The same procedure is applied to obtain ũBi
β.

Finally, we take special care of the discretization of the āi values. It is indeed crucial
to obtain values as close as possible to the original values: rounding up directly the
values in the same way as we did for the δi values ensures that the resulting solution is
always feasible, but may require to offload significantly more data to ensure that all the
non-offloaded activations fit into memory. However, rounding down some of the values
may result in an unfeasible selection of non-offloaded data. We thus adopt an iterative
scheme: we start with an optimistic rounding of the values, and if the resulting solution
is not feasible, we choose among all discretized values that were rounded down the value˜̄ai that is the closest to its continuous version āi. Since optimal solutions of the dynamic
program often choose to offload the first activations, the optimistic rounding is obtained
by rounding up the partial sums

∑i
j=0 āj, in a similar way as for uFj

β values.
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Further, we set N = 500, which allows us to obtain an approximate solution of a good
precision. This helps to compute the dynamic programming over a reasonable amount of
time, which for all practical cases is not higher than 1 minute. Since it is done only once
whereas the neural network training may take days, this time is acceptable in practice.

3.4 Experimental Analysis

This section presents experimental results obtained on three different kinds of networks,
whose implementation is available in the torchvision package of PyTorch: ResNet,
DenseNet, and Inception v3.

3.4.1 Experimental Setting

We have slightly modified these networks to represent them as linear chains, by grouping
each non-linear part of the graph in a virtual layer. We have obtained the values of uF ,
uB , oF , oB , and the sizes of āi and δi by performing measures on sample data. These
measurements were performed on a node equipped with a Nvidia Tesla V100-PCIE GPU
card with 15.75GB of memory. We also measured the bandwidth β to transfer data using
PyTorch from the GPU to the RAM, and obtained around 12.2GB/s.

We use all available depths for ResNet (18, 34, 50, 101, 152) and DenseNet (121, 161,
169 and 201). We use three different image sizes: small images of shape 224× 224 (which
is the default and minimal image size for all models of torchvision), medium images
of shape 500 × 500, and large images of shape 1000 × 1000. During the training phase,
for higher efficiency, it is classical to process images in batches, where several images
are processed independently. For each model and image size, we consider different batch
sizes that are powers of 2, starting from the smallest batch size that ensures a reasonable
throughput. For each case, we compute schedules with five different algorithms: Greedy
(Section 3.2), DynProg (based on Algorithm 5, see Section 3.3.3), AutoSwap, TFLMS
and Vdnn, where the last three approaches are based on the state-of-the-art methods used
in the previous works. AutoSwap [114] is a score-based heuristic that uses a weighted
average of 4 priority scores to decide which activations should be offloaded in priority,
where the best weight combination is obtained with Bayesian Optimization. TFLMS [64]
is a heuristic designed for general graphs (not necessarily sequential) in high bandwidth
settings, but it does not use any profiling information and thus cannot adapt to the
available memory. TFLMS is parameterized with the number of tensors to be offloaded
and how many layers in advance the data should be prefetched. We present TFLMS
results on activation offloading obtained with the hyperparameters that achieve the lowest
makespan among all possible values for a given memory size.

Our Vdnn is a heuristic based on ideas from VDNN++ [7]. The original
VDNN++ offloads only the input of convolutions, because "CONV layers have a
much longer computation latency, being more likely to effectively hide the latency
of offload/prefetch and explores two possibilities: either offload the input of every
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Рис. 3.5: Relative makespan (with respect to the lower bound) obtained by different
algorithms for different memory limits. Experimental results are provided for image size
224 and batch size 32 (top), image size 500 and batch size 16 (bottom).
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convolution, or of every other convolution. However, in our setting the layers are not
annotated to know which ones corresponds to convolutions. Hence, in Vdnn, we first
compute the ratio uFi

āi−1
for all operations, and then for all possible thresholds, we compute

the no-wait, ordered schedule that offloads all the activations whose ratio is above the
threshold, and the one that offloads half of them. Vdnn outputs the best schedule out of
all these choices.

Note that these experiments cover real scenarios obtained from measurements
performed on the plaform described above; however the results presented here are obtained
by simulation, in which we compute the schedules for the different heuristics, and
estimate their expected duration (and thus the corresponding throughput) based on the
measurements. In particular, this allows us to consider cases where the memory limit is
higher than the available memory on our GPU.

3.4.2 Representative Results

A representative selection of obtained results is depicted in Figure 3.5, where different
types of network of different length are considered with a given image and batch sizes.
For each network, we run all algorithms with a memory limit varying from the minimum
amount of memory required to run the network to Mpeak, which is necessary to process
the network with no offloading. In each case, we also compute the lower bound LB
(Proposition 3), and the plots show the ratio of the makespan obtained by each algorithm
to the lower bound. Thus, points where the ratio is 1 correspond to optimal solutions. We
observe that both Greedy and DynProg outperform the Vdnn heuristic in all cases,
especially in low memory scenarios. Once correctly parameterized, TFLMS is able to
obtain optimal makespan for the highest memory limit values. But it is unable to delay
forward computations until enough memory is made available through offloading, and
thus it can not adapt to low memory settings when bandwidth is scarce. AutoSwap often
produces the same solution as the Greedy algorithm (for a much higher computational
cost), but its performance depends on the random procedure of Bayesian Optimization
and is thus very inconsistent. The DynProg approach obtains significantly better
performance than Greedy. The difference is small in many cases, except for the DenseNet
networks where DynProg is able to consistently obtain almost optimal solutions. The
spike that can be observed on these graphs for Greedy and Vdnn correspond to the
memory limit MGPU for which both terms of the lower bound LB are almost equal (i.e.,
the total execution time is very close to the time to transferMpeak−MGPU). Such cases are
significantly more difficult to solve because both criteria need to be optimized carefully.

Overall, DynProg obtains much more stable performance than Vdnn and
AutoSwap, and produces solutions over a much wider range than TFLMS. Furthermore,
DynProg is able to consistently achieve a ratio below 1.2, which means that its
throughput is at least 83% of the highest possible throughput.
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Рис. 3.6: Comparison to Rematerialization for various bandwidth values, with image size
224 and batch size 32 (top), with image size 500 and batch size 16 (bottom).
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3.4.3 Comparison to Rematerialization

An alternative to Offloading is Rematerialization that we considered in Chapter 2, in which
memory savings are achieved by discarding activations and recomputing them later. In
Figure 3.6, we compare the throughput (in terms of processed images per second) obtained
by the offloading algorithms and by an optimal rematerialization strategy from Chapter 2.
We observe that for the bandwidth measured on our hardware, Rematerialization is
significantly more interesting, except for the higher memory limits. However, if the
bandwidth is two or three times larger, the interest of Offloading becomes significant,
achieving optimal throughput over a wide range of memory limits.

We next present the complete set of results, with two different presentations: we
first show relative makespan like in the previous plot, which helps in comparing the
performance of heuristics. Then we show the throughput (number of images processed by
second) obtained for each case, which is the metric of interest when training DNNs.

3.4.4 Complete Results – Ratios

To allow for a better view of the results, the memory limits on the next plots are scaled: 0%
corresponds to the amount of memory required to process the chain, and 100% corresponds
to the memory peak Mpeak. The results are shown on Figures 3.7-3.13. They consistently
demonstrate the advantage of using DynProg over other offloading methods.

3.4.5 Complete Results – Througphut

On the next plots, we show raw results, without normalizing with the lower bound. The y
axis shows the throughput obtained, which is the number of images processed by seconds:
T = batch size

makespan . The results are shown on Figures 3.14-3.20. These plots also include the
performance of the rematerialization strategy. Since this strategy was tested in an actual
environment, the rematerialization results are unavailable for all cases where memory
usage is larger than what is available on the GPU. They confirm that Rematerialization
is preferable to Offloading in case of low memory, while in case when the memory limit is
close to Mpeak Offloading may demonstrate a better performance.

Conclusions

In this chapter, we have addressed the problem of applying offloading techniques for
memory saving on the GPU during the training phase of Deep Neural Networks. Previous
works [88, 7, 76, 64, 114, 108] advocated to offload some of the data onto the main memory,
and to prefetch them back when needed. We have proposed a formal algorithmic model
of the corresponding scheduling problem, where the goal is to identify which activations
should be offloaded so as to minimize the total execution time. We have proved that
this problem is NP-Complete in the strong sense, and proposed two heuristics based on
relaxations of the problem. The Greedy heuristic always offloads the first activations
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Рис. 3.7: Relative Makespan results for ResNet with small images (224x224).
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Рис. 3.8: Relative Makespan results for ResNet with medium images (500x500).
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Рис. 3.9: Relative Makespan results for ResNet with large images (1000x1000).
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Рис. 3.10: Relative Makespan results for DenseNet with small images (224x224).
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Рис. 3.11: Relative Makespan results for DenseNet with medium images (500x500).
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Рис. 3.12: Relative Makespan results for DenseNet with large images (1000x1000).
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Рис. 3.13: Relative Makespan results for Inception.
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Рис. 3.14: Throughput results for ResNet with small images (224x224).

126



Глава 3. Offloading for Heterogeneous Chains

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Batch_Size: 4 Batch_Size: 8 Batch_Size: 16 Batch_Size: 32 Batch_Size: 64

D
epth: 18

D
epth: 34

D
epth: 50

D
epth: 101

D
epth: 152

1 2 3 4 2 4 6 5 10 10 20 10 20 30 40 50

100

150

200

60

90

120

20

30

40

50

60

10

20

30

40

10

15

20

25

30

Peak Memory Usage (GiB)

T
hr

ou
gh

pu
t (

Im
ag

es
 / 

s)

Algorithm
●

●

●

●

●

●

●AutoSwap

DynProg

Greedy

LowerBound

Rematerialization

TFLMS

VDNN

Рис. 3.15: Throughput results for ResNet with medium images (500x500).
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Рис. 3.16: Throughput results for ResNet with large images (1000x1000).
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Рис. 3.17: Throughput results for DenseNet with small images (224x224).
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Рис. 3.18: Throughput results for DenseNet with medium images (500x500).
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Рис. 3.19: Throughput results for DenseNet with large images (1000x1000).
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Рис. 3.20: Throughput results for Inception.
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in the network. This very simple technique nevertheless achieved good results in our
experimental evaluation. The DynProg algorithm is a more sophisticated approach that
takes into account the fact that activations cannot be partially transferred, which leads
to mostly better solutions. In any case, both algorithms provide significant improvements
over the previous approaches.

When compared to Rematerialization, Offloading performs better if memory limit
is high enough and close to Mpeak. Whereas, if memory limit is low, then Offloading
significantly drops in performance, becoming worse than Rematerialization. The
limitations of both approaches can be mitigated if they are combined together. Therefore,
in the next chapter we consider how to find an optimal combination of these methods.
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Combination of Offloading and
Rematerialization

As shown in the previous chapter offloading techniques can be very efficient when the
memory peak of the execution just slightly exceeds the memory available on the device or
if there is a fast communication link to the larger memory. However, as it can be observed
in the simulation plots, it is less competitive when memory consumption should be
significantly reduced and it gives in to rematerialization approach. As there are situations
where each method performs significantly better than the other, the combination of both
methods might profit from both sides and, eventually, outperform each individual method.

Hence, in this chapter we discuss OffRematint(L,MGPU, β). We start with the
description of the dynamic program called pofo in Section 4.1, which combines
the elements of the solutions for Rematerialization (Algorithm 3) and Offloading
(Algorithm 5). Indeed, for each individual problem there exists a dynamic program
providing an optimal solution under some assumptions. We also prove in Section 4.2
that the final dynamic program optimally solves OffRematcomm(L,MGPU, β), which
is a relaxed version of OffRematint(L,MGPU, β) with some additional assumptions.
Furthermore, we supplement our contribution with a few heuristics in Section 4.3, which
are cheaper than pofo. In Section 4.4 the results of our experiments are presented and
we compare all techniques and evaluate the potential improvement of pofo over the pure
Rematerialization or pure Offloading.

4.1 Combination of Offloading and Rematerialization

4.1.1 Complexity

Similarly to Offint(L,MGPU, β), the requirement of offloading activations entirely and do
discards on the GPU only when the transfer is completed makes the problem NP-complete
in the strong sense.

Theorem 11. OffRematint(L,MGPU, β) is strongly NP-complete.
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Рис. 4.1: The instance of OffRematint(L,MGPU, β) used in the reduction from
3-Partition. Activation sizes are indicated on the edges and non-zero execution times of
operations are written inside the corresponding nodes or on the right from the operation
names.

Доказательство. Analogously to the proof of Theorem 7, we show it by reducing this
problem to 3-Partition problem and for that we take the example from the proof of
Theorem 7 and modify it. Instead of having uFi

= 0 for 1 ≤ i ≤ 3n and uFj
= 0 for

j = 3n+ 2k, 1 ≤ k ≤ n, we set uFi
= ε/3n and uFj

= ε respectively (see Figure 4.1). The
choice of ε can be arbitrary as long as the next inequality is fulfilled

0 < ε < min
1≤i<j<k≤3n
xi+xj+xk>V

xi + xj + xk
V

− 1.

Then for the chain from Figure 4.1, the decision problem should be formulated in the
following way: is there a schedule that can execute the chain in time T = 2n+ 3n ε

3n
+ nε

with GPU memory nV and bandwidth V ?
This problem belongs to NP-class: given the schedule it is easy to estimate if the chain

is executed within time limit T . The value ε can be also found in O(n3) number of steps,
applying straightforward linear search over all possible triplets.

On the one hand, the same reasoning as in Theorem 7 can be used to show that if there
exists the solution to a 3-Partition problem, then we can build a schedule that inserts no
delays in the execution of the chain, thus yielding the final makespan 2n +

∑3n
i=1 uFi

+∑n
k=1 uF3n+2k

= 2n+ 3n ε
3n

+ nε.
On the other hand, let us assume that there exists the schedule for the given chain that

executes it without any idle time, thus without recomputing any forward step. Now let
us show that it leads to the solution of 3-Partition problem. Indeed, ε is chosen carefully
and depends on all xi: it is small enough, so that for any triplet of 1 ≤ i < j < k ≤ 3n
that satisfy xi + xj + xk > V , it also holds xi + xj + xk > V (1 + ε). The latter condition
ensures that during the first 3n + 1 forward steps it is impossible to offload a triplet of
xi, xj, xk, unless their sum is less or equal than V . The same holds also for each pair of
forwards F3n+2k and F3n+2k+1 for 1 ≤ k < n. As we need to offload at least nV amount
of data to avoid idle times, there should exist at least n triplets of xi, xj and xk such as
xi + xj + xk = V , which completes the proof.
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4.1.2 Additional Assumptions

Because of the NP-completeness in the strong sense of OffRematint(L,MGPU, β), we
introduce some additional assumptions in order to make the problem tractable.

Assumptions 4. For the following problem we consider Assumptions 1(O.1-O.6) and
the following assumptions.
Simplifying Assumptions:

OR.1 Memory persistence holds: if for some layer ` activation ā` is computed, then no
operations related to layers `′ with `′ < ` take place until B`. As it was shown
in Chapter 2, that in general the optimal solutions are not bound to follow this
assumption. On the one hand, even without this assumption the problem of pure
Rematerialization can be solved using dynamic programming, but at the cost of
a higher computational cost. On the other hand, our experiments showed that
this restriction did not hinder the performance for all practical vision networks.
Therefore, to simplify the formulas and the final complexity of the dynamic program,
we impose this constraint.

OR.2 Offloading decisions before loss: we offload only the activations computed before the
loss. This is a reasonable assumption since Offloading introduces delays and therefore
should be performed as early as possible.

OR.3 Synchronization at the loss: all offloading operations must complete before the
computation of the loss and prefetching operations (each prefetching operation being
performed only once) start only after the computation of the loss. As it was discussed
in Chapter 3 Section 3.3.2.2, in general, it can be beneficial to allow offloading to
continue in the beginning of the backward phase and the same for prefetching during
the forward phase. However, it increases the complexity of the resulting dynamic
program, since state variables ∆F`

and ∆B`
should take negative values as well,

increasing their range. Besides, the approach used in the previous chapter to compute
εG (like in Eq. (3.16) or (3.17)) cannot be applied in a straightforward way to this
model. Because of recomputations it is not anymore possible to reconstruct memory
profile of other operations at the last level of the dynamic program recursion.

OR.4 Prefetching only once: if the value a` or ā` is prefetched, then it should be discarded
only after the backward B`. Similarly to OR.2, it helps to limit the number of delays
caused by data transfers.

OR.5 Asynchronous and continuous offloading: Activations should be offloaded/prefetched
entirely, but memory allocation and release can be performed in several steps during
the communication. This is the same as the clause O.7” of Assumptions 3. It proved
to be efficient in the case of pure Offloading and helped to provide a tractable context
without degrading the solution quality.

Problem 11 (Combination of Offloading and Rematerialization
OffRematcomm(L,MGPU, β)). Consider a training phase with L operations,
corresponding to a chain, depicted on Figure 2.16 with processing times and memory
usage described in Table 2.2. Using all operations from Table 2.2 together with O` and
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P` and under Assumptions 4, is it possible to perform this computation on a processing
device with memory MGPU and bandwidth β between processing device and main
memory, with an execution time at most T ?

We propose a dynamic program to optimally solve OffRematcomm(L,MGPU, β). We
further denote this algorithm as pofo, for "Persistent with Offloading during Forward
Only".

4.1.3 Rationale of the Different Operations

The pofo algorithm is based on a sequence of choices, that consist in deciding, for each
1 ≤ ` ≤ L:
(i) which type of operation F` we are going to use and whether we are going to compute

a` or ā`,
(ii) whether we are going to keep the input value, which is either a`−1 or ā`−1, in the

memory of the GPU, offload it in the memory of the CPU or completely delete it
from the memory,

(iii) how to compute B`.
Concerning (i), the size of ā` is in general larger than a`, especially in the case of

grouped layers. Both can be used to compute F`+1 and B`+1, but if a` only is kept in
memory (either CPU or GPU), then F` will have to be recomputed during the backward
phase before B`. Concerning (ii), if we delete a`−1 or ā`−1 from memory, then it will
be necessary to recompute F`−1 before processing B`, but it will save memory for the
whole subsequent sequence F`+1 . . . FLBL . . . B`+1. If a`−1 or ā`−1 is offloaded on CPU
memory (which may take some time), the memory will be available for the subsequent
sequence, though a`−1 or ā`−1 will have to be prefetched before computing B`. The
interest of Offloading obviously depends on the bandwidth β of the communication link.
Concerning (iii), if the input activation (a`−1 or ā`−1) has been deleted from memory,
we will have to recompute it, starting from the last kept activation (either ak or āk for
some k < ` − 1). Several rematerialization sequences are possible to do this operation
that have potentially different durations and that offer different prefetching possibilities,
depending on their memory profile, and the choice of the optimal sequence will depend
on the memory state before computing B`, as detailed in Section 4.2.

4.1.4 Intuition of the Overall Scheme and State Variables

The dynamic programming solution is built in several steps. We consider separately
the forward propagation within which the offloading of activations can be done. The
forward propagation is followed then with the loss calculation synchronized with the end
of offloading operations. After loss computation, the backward propagation interleaved
with the prefetching starts.

The general principle of pofo is the following. During the forward phase (before the
computation of the loss), we consider the layers in an increasing order (from 1 to L). At
each step, we have to decide which operation to implement among F all

` , F ck
` , F∅

` and in
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the case where the input activation is kept, we have to decide if we add O`. Inspired by the
ideas of Automatic Differentiation [39], our dynamic programming relies on the following
remark: any solution can be decomposed into parts, where each part computes layers s to
t (t ≥ s), and only the input of layer s is stored in memory. Starting from a layer s, pofo
needs to decide whether the input will be saved with F ck

s or F all
s . It also needs to decide

the index t of the end of the corresponding part in the solution, so that t + 1 starts the
next part of the sequence, and its input will be the first activation kept in memory after
s. A recursive call to the sub-chain starting from t+ 1 allows to obtain the corresponding
running time. Between the two saved inputs of layers s and t+ 1, a sequence of F∅

k takes
place. As forwards F ck

s and F all
s correspond to two different behaviors, they generate two

different cases of the dynamic program that are considered in Section 4.2.1. In addition,
an offloading decision needs to be made for the input of layer s, either store it in the
memory of the GPU or offload it to the CPU; this decision impacts the memory available
for the rest of the chain and idle times due to communications.

In order to use dynamic programming, we need to define a set of variables that
describes the state of the system at any instant. The state variables presented in the
previous chapter are suitable for this problem as well, though in this case it is also
important to know which type of the input the algorithm is working on:
• As denotes the total GPU memory occupied by the saved values among a0, . . . , as−2

and ā1, . . . , ās−2 that are not transferred to the CPU.
• ∆Fs denotes the amount of data from a0, . . . , as−2 and ā1, . . . , ās−2 that the schedule

still needs to offload after Fs−1.
• ∆Bs denotes the amount of data from a0, a1, . . . , as−2 and ā1, . . . , ās−2 that the

schedule should prefetch before starting Bs−1.
• x is a boolean specifying whether the input of layer s is as−1 (if x = 0) or ās−1 (if
x = 1).

Let us notice that ∆Fs and ∆Bs stay positive in this dynamic programming, due to
Assumptions 4 (in particular OR.3).

We denote as Ixs = (1 − x)as−1 + xās−1 the size of the input activation for layer s.
With these state variables, we can computeMx

Fs
, the memory on the GPU after executing

Fs−1, and Mx
Bs
, the memory on the GPU before executing Bs−1 (excluding δs−1) are given

by

Mx
Fs

= As + ∆Fs + Ixs , (4.1)
Mx

Bs
= As + ∆Bs + Ixs . (4.2)

These memory values represent the maximal memory occupation between layers s and t
for the forward and backward phases respectively, and are used for computing idle times
when overlapping communications with computations, according to Lemma 8, proven in
Chapter 3 Section 3.3.2. On the other hand, to estimate the feasibility of the scheduled
operations, we also need to know the memory after everything has been offloaded, which
is either As + Ixs (when Ixs stays on the GPU) or As (when Ixs is sent to the CPU), which
we use to obtain the maximal memory available on the GPU.

The updates of the state variables follow simple rules described below
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• if no new data is offloaded (prefetched), then ∆Fs (∆Bs) is constantly decreasing
from index s to index t at speed β, until reaching zero;
• if new data has to be offloaded (prefetched), then the data size is added into ∆Fs

(∆Bs);
• As is updated if new data is saved on the GPU (without being later offloaded to the

CPU).
Our goal is to find the sequence of operations that minimizes the overall execution

time. However, both Rematerialization and Offloading can induce extra time with respect
to the execution of the sequence F1 . . . FLBL . . . B1 which can be computed given infinite
memory on the GPU:
• During the forward phase, Offloading helps to keep GPU memory low, but, if

the transfers to the CPU are not fast enough due to limited bandwidth, some idle
time might occur, waiting for enough memory to be freed by offloading. This is
analyzed in details in Section 4.2.1.
• At the interface between the forward and the backward phase, we need to

enforce that offloading and prefetching are well synchronized at the loss computation
respecting Assumption OR.3. This can in turn introduce some idle time on the
GPU, which will be analyzed in Section 4.2.2.
• During the backward phase (after the computation of the loss), there might be

two sources of delays: recomputations of discarded activations and idle times induced
by prefetching. Indeed, some prefetching operations may not be completed by the
time the activation is needed, if they are delayed because of memory constraints.
In fact, these two sources of extra delays are not independent, since a longer
rematerialization sequence with lower memory needs might allow more overlapping
of prefetching with computations and thus avoid idle time later. We propose an
auxiliary dynamic program that includes the computation of intermediate idle times
in each recursive call to find the best schedule under prefetching. The idle times for
prefetching are found using Lemma 8. This is analyzed in Section 4.2.3.

The above mentioned ingredients can be used to build the dynamic programming
algorithm pofo, solving optimally the problem in pseudo-polynomial time. Theorem 12
states this result, while the complete description of the dynamic program and the proof
of the theorem can be found in Section 4.2. The algorithm is pseudo-polynomial in the
memory limit and it relies on discretization of the memory values. In the experiments
of Section 4.4, we systematically use 50 discretization steps (scaling so that N = 50).
Compared to pure Offloading or pure Rematerialization, the quality of discretization is
degraded (N = 500 against N = 50) because of more computationally expensive dynamic
programming, however our experiments showed that N = 50 has no discretization effect
(we tried more steps to confirm this) and a reasonable execution time below 4 minutes in
the worst cases. Since optimization is performed only once before the training starts, we
argue that this is fully acceptable.

Theorem 12. Under Assumptions 4, the problem of finding the minimal processing time
for the chain from Figure 2.16, using operations from Table 2.2 together with offloading O`

and prefetching P`, under memory limit MGPU discretized with N values and bandwidth
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β, can be solved optimally with a dynamic program with a complexity of O(L2N3 +L3N2)
up to discretization effects.

4.2 Dynamic Programming to Compute the Optimal
Sequence

In this section, we detail the dynamic programming equations whose intuition has been
given in Section 4.1.

In order to proceed, one should know the minimal memory requirements for each
operation. Given the chain between s and t, taking into account the data dependencies
from Table 2.2 and the fact that the global input of the chain Ixs = (1 − x)as−1 + xās−1

(it is equal to as−1 when x = 0 and ās−1 when x = 1) is already stored in the memory
(and counted separately in all equations) and the current gradient value should be stored
at any time, then
• Ms,t

F∅
s

= δt + as + oFs ;
• ∀h 6= s :Ms,t

F∅
h

= δt + ah−1 + ah + oFh
;

• Ms,t
Fall
s

= δt + ās + oFs ;
• ∀h 6= s :Ms,t

Fall
h

= δt + ah−1 + āh + oFh
;

• Ms,t
Bs

= ās + δs + δs−1 + oBs ;
• ∀h 6= s :Ms,t

Bh
= ah−1 + āh + δh + δh−1 + oBh

.

4.2.1 Forward Phase

In this section, we provide the analysis of the forward phase, i.e. for all operations that
take place before the computation of the loss. We consider the subchain that starts from
layer s and assume that its input Ixs is saved by F ck

s or F all
s . To denote the total duration

of the execution from Fs to Bs, we use OCx(s, As,∆Fs ,∆Bs). We also distinguish between
OCFall

x (resp. OCF ck

x ) that represents the duration of the chain execution when the first
operation is constrained to be F all

s (resp. F ck
s ). By construction, the first operation cannot

be F∅
s since we assume that the input of the chain must not be discarded.
Case 1: F all

s is the first operation
If the first operation is F all

s , then in the optimal schedule the next operation cannot be
F∅
s+1. Indeed, as F all

s stores ās together with the input Ixs , then this ās should stay in the
memory until the backward operation Bs. At the same time, as F∅

s+1 discards its input
after its execution, then each time when we need to recompute as we need to recompute
Fs. Therefore, if the next operation is F∅

s+1, the overall duration does not change if the
first instance of F all

s is replaced by F ck
s , while F all

s replaces the last Fs that computes as
in the sequence. Simultaneously, this transformed sequence keeps less data in memory,
which contradicts the optimality of F all

s being followed by F∅
s+1.

Since we assume memory persistence (see OR.1),i.e. ās stays in the memory until
the backward operation Bs, the sequence after F all

s and before Bs can be computed
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offload input no offload
v = 1 v = 2

new Av As As + Ixs
new ∆v

F max{∆Fs + Ixs −DF , 0} max{∆Fs −DF , 0}
new ∆v

B max{∆Bs −DB, 0}+ Ixs max{∆Bs −DB, 0}

Таблица 4.1: Values for the new state

with a recursive call to the dynamic program. After this sequence, Bs can be directly
executed, having all the necessary input already stored in device memory. This shows
that OCFall

x (s, As,∆Fs ,∆Bs) can be computed as

OCFall

x (s, As,∆Fs ,∆Bs) = uFs + uBs + min
v=1,2

OCx=1(s+ 1, Avs+1,∆
v
Fs+1

,∆v
Bs+1

) + εF + εB ,

where the values εF and εB represent the idle time required for communications in the
forward and backward respectively, and can be determined using Lemma 8. Taking into
account that the maximal memory occupation for F all

s and Bs are given by Mx
Fs

and Mx
Bs

respectively, we obtain

εF = max

(
Ms,L

Fall
s
−MGPU +Mx

Fs

β
, 0

)
and εB = max

(
Ms,L

Bs
−MGPU +Mx

Bs

β
, 0

)
.

We also need to compute the new state variables Avs+1,∆
v
Fs+1

,∆v
Bs+1

, where the value
of v indicates whether the input Ixs is offloaded or not. During the forward step, the
communication link is able to offload a quantity of data given by DF = (uFs + εF)β;
similarly, the data that can be prefetched during the backward step is given by DB =
(uBs + εB)β. These values can be used to obtain the new state variables, as described in
Table 4.1.

The final sequence is valid if memory limit is not violated. More specifically, ifMs,L
Fall
s

+

Ixs > MGPU − As orMs,L
Bs

+ Ixs > MGPU − As then we set OCFall

x (s, As,∆Fs ,∆Bs) =∞.
Case 2: F ck

s is the first operation
After an F ck

s operation, any forward operation or offload operation is possible. Let us
assume that the next saved activation is at for some t ≥ s, which implies that after F ck

s

there is a sequence of F∅
k for s < k ≤ t. Due to memory persistence, it also implies that

the sequence processing layers from t + 1 till L can be obtained recursively, looking at
OCx=0(t+ 1, Avt+1,∆

v
Ft+1

,∆v
Bt+1

) (once again, v denotes whether the input Ixs is offloaded
or not). Afterwards, processing Bk for s < k ≤ t requires recomputing forward operations
from as−1 (or ās−1). Since no offloading operation can be performed after the computation
of the loss, this corresponds to computing a rematerialization sequence between layers s
and t that should have ∆Bs prefetched by the end. C∆(s, t, As + Ixs ,∆Bs) is used to
compute the optimal duration to process layers from s to t, having As+Ixs as a cumulative
storage of all activations at the GPU, and ∆Bs that corresponds to the data that has to
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be prefetched. We show in Section 4.2.3 how to compute C∆(s, t, A,∆). This yields the
formula for OCF ck

x (s, As,∆Fs ,∆Bs)

OCF ck

x (s, As,∆Fs ,∆Bs) =

min
s≤t≤L−1

(
t∑

k=s

uFk
+ min

v=1,2
OCx=0(t+ 1, Avt+1,∆

v
Ft+1

,∆v
Bt+1

)

+ C∆(s, t, As + Ixs ,∆Bs) + εF

)
,

where εF is computed with the help of Lemma 8

εF = max

maxk=s,...,t(Ms,L

F∅
k

− β
∑k−1

h=s uFh
)−MGPU +Mx

Fs

β
, 0

 .

Similarly to the Case 1, the values of the new state variables Av, ∆v
F and ∆v

B can be
updated using the formulas in Table 4.1. The only difference is the possible amount of
offloaded data and prefetched data. In this case DF = (

∑t
k=s uFk

+ εF)β and DB =
C∆(s, t, A,∆Bs)β.

The final sequence is valid if memory limit is not violated. Thus, if for some k ≥ s
we haveMs,L

F∅
k

+ Ixs > MGPU − As when Ixs is not offloaded (or when k = s) orMs,L

F∅
k

>

MGPU − As when Ixs is offloaded, then we set OCF ck

x (s, As,∆Fs ,∆Bs) =∞.
Combining everything together
Therefore, OCx(s, As,∆Fs ,∆Bs) can be computed as

OCx(s, As,∆Fs ,∆Bs) = min

{
OCFall

x (s, As,∆Fs ,∆Bs)

OCF ck

x (s, As,∆Fs ,∆Bs)
(4.3)

4.2.2 Loss: How to Concatenate Forward and Backward Phases

In Section 4.2.1, we have shown how to compute the optimal duration of the sequence,
using dynamic programming with OCx(s, As,∆Fs ,∆Bs). This dynamic program finds
the solution through recursive calls to smaller sub-chains, until reaching the subchain
consisting of only loss computation. We further represent the loss computation with FL+1

and BL+1 operations. The loss should be computed with F all
L+1 and BL+1, so that this case

is similar to OCFall

x and

OCx(L+ 1, AL+1,∆FL+1
,∆BL+1

) = uFL+1
+ uBL+1

+ εF + εB + εG,

where εF and εB are found with the same expressions as the idle times for Case 1 of
Forward phase (see Section 4.2.1).

143



4.2. Dynamic Programming to Compute the Optimal Sequence

As no offloading is possible during backward propagation and no prefetching is possible
during forward propagation (see OR.3), the idle time between the phases comes from the
completion of both communication tasks, i.e.

εG = (∆FL+2
+ ∆BL+2

)/β,

where ∆FL+2
and ∆BL+2

can be computed from ∆FL+1
and ∆BL+1

, using formulas from
Table 4.1 when the input is not offloaded, given DF = (uFL+1

+ εF)β and DB = (uBL+1
+

εB)β.

4.2.3 Backward Phase

The situation in the case of backward is a bit more complex. We must indeed perform all
the operations Bt, . . . , Bs+1, with only Ixs and δt into memory. This is nevertheless enough
since we can execute the whole forward chain Fs+1, . . . , Ft from as and then the whole
chain Bt, . . . , Bs+1 using the values computed during the processing of the forward chain.

In general, due to memory constraints, it is not possible to perform
Fs+1, . . . , FtBt, . . . , Bs+1 in sequence. Since we assume that offloading cannot take place
in the backward phase (see OR.2), we rely on Rematerialization in order to save memory
if needed. Our goal is to find a valid schedule, that satisfies memory constraints and
whose duration is minimal. One additional difficulty comes from prefetched data. Indeed,
several valid rematerialization sequences for computing the backward steps will differ both
by their duration and by the amount of data that can be prefetched during the sequence.
Indeed, for a given ∆Bs , the sequences that enable to prefetch a lot of data are preferable
since they can induce a lower idle times for backwards Bk, k > t.

Let C∆(s, t, A,∆) denotes the optimal duration to execute the chain between layers
s and t with A denoting the cumulative size of all activations already stored in GPU,
including input Ixs , and given minimal available memoryMGPU−A−∆. In the beginning
of the execution Ixs and δt are stored in the device memory. Moreover, Ixs must stay in the
memory until the end of the execution. Therefore, the first operation should be F all

s or
F ck
s . Depending on the first operation, the optimal duration can be read in CFall

∆ (s, t, A,∆)

or CF ck

∆ (s, t, A,∆) respectively.
Case 1: F all

s is the first operation
Let us first notice that after F all

s the activation ās must be kept in the memory until
its associated backward operation (due to memory persistence OR.1). We must solve the
subproblem of finding the optimal duration for the chain between layers s+1 and t, which
can be scheduled optimally with C∆(s + 1, t, A + ās,∆1), according to our assumption.
Once Bs+1 is performed, then Bs can be directly executed, as all necessary input are
already in the device memory. Therefore, CFall

∆ (s, t, A,∆) is given by

C
Fall

∆ (s, t, A,∆) = uFs + C∆(s+ 1, t, A+ ās,∆1) + uBs + εFall
s

+ εBs ,

where ∆1 is defined by
∆1 = max{∆− (uBs + εBs)β, 0}.
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We can also estimate the minimal available memory when F all
s is executed, which is given

by MGPU − A−∆2 where

∆2 = max{∆1 − C∆(s+ 1, t, A+ ās,∆1)β, 0}.

The idle times caused by prefetching can in turn be computed with the help of Lemma 8
as

εBs = max

(
Ms,t

Bs
−MGPU + A+ ∆

β
, 0

)
and εFall

s
= max

(
Ms,t

Fall
s
−MGPU + A+ ∆2

β
, 0

)
.

Ms,t
Fall
s

> MGPU − A or Ms,t
Bs

> MGPU − A shows that there is not enough memory
to perform this sequence, and as previously the dynamic programming cost should be set
to ∞.

Case 2: F ck
s is the first operation

Let us suppose that F ck
s is used to save Ixs and consider the next value as′ to be kept in

memory. To compute this value, a sequence of F∅ operations from layer s+ 1 till layer s′
is performed. Due to memory persistence, after checkpointing as′ we can find the optimal
sequence from s′ + 1 to t by reading C∆(s′ + 1, t, A + as′ ,∆2). Once Bs′+1 is performed,
the chain from s to s′ can be scheduled using C∆(s, s′, A,∆1). Thus, CF ck

∆ (s, t, A,∆) is
given by

C
F ck

∆ (s, t, A,∆) = min
s≤s′<t

s′∑
k=s

uFk
+ C∆(s′ + 1, t, A+ as′ ,∆2) + C∆(s, s′, A,∆1) + εF

The parameters for the recursive call of the dynamic program can be found using

∆1 = ∆ and ∆2 = max{∆1 − C∆(s, s′, A,∆1)β, 0}.

Similarly to the previous case, we can estimate the minimal available memory when
forwards from s to s′ are performed for the first time. This minimal memory is given
by MGPU − A−∆3, where

∆3 = max{∆2 − C∆(s′ + 1, t, A+ as′ ,∆2)β, 0}.

The idle time caused by prefetching can be computed with the help of Lemma 8 as

εF = max

maxk=s,...,s′(Ms,t

F∅
k

− β(
∑s′

h=k+1 uFh
))−MGPU + A+ ∆3

β
, 0

 .

Ms,t

F∅
k

> MGPU − A for some k, s ≤ k < t shows that there is not enough memory to
perform this sequence, and as previously the dynamic programming cost should be set to
∞.
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Initialization: solution for a single layer Each recursive call to the dynamic
program is solving the problem for strictly smaller sub-chains. The recursion stops when
reaching the sub-chain consisting of only one layer. The schedule for one layer s is
straightforward: perform F all

s and Bs, i.e.

C∆(s, s, A,∆) = uFs + uBs + ε

where, according to Lemma 8

ε = max

(
Ms,s

Fall
s
− βuBs −MGPU + A+ ∆

β
,
Ms,s

Bs
−MGPU + A+ ∆

β
, 0

)
.

Again, this solution will be infeasible if there is not enough memory to perform any
operation, i.e. if Ms,s

Fall
s

> MGPU − A or Ms,s
Bs

> MGPU − A. In this case, the dynamic
programming cost should be set to ∞.

Combining everything together:
Therefore, C∆(s, t, A,∆) can be computed as

C∆(s, t, A,∆) = min

{
C
Fall

∆ (s, t, A,∆)

C
F ck

∆ (s, t, A,∆)
(4.4)

4.2.4 Complexity

Finally, finding the optimal duration schedule for a chain of length L corresponds to
computing OCx=0(1, 0, 0, 0) using the dynamic program presented above. The analysis
of the complexity of the above dynamic program can be decomposed in two parts. Let
N denote the number of discretized values for the memory MGPU. During the backward
phase, the size of the state space is O(L2N2), and for Case 2, computing a new value
requires O(L) operations, which leads to O(L3N2) operations. In the forward phase,
the size of the state space is O(LN3), and again computing a new value requires O(L)
operations. This results in O(L2N3) operations for the forward phase. Therefore, the
overall complexity is given by O(L2N3 + L3N2). In practice, we observe that for all
the experiments presented in Section 4.4, discretizing the memory with N = 50 values is
enough since considering a finer discretization does not lead to any practical improvement.

4.3 Heuristics

We have implemented two other sophisticated heuristics for comparison purposes. These
heuristics are not bound with the Assumptions 4, but come without any optimality
guarantee for the produced sequences.

In the first heuristic, called opportunist, the objective is to use the communication
medium as much as possible. We compute the first layer with F all and offload its input
and output, ensuring that the memory will remain fully available for the rest of the
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computation. The next layers are computed with F∅ until the end of communications.
We then start a new communication by performing the next layer with F all and offloading
its input and output, and so on until the end of the sequence can be entirely performed in
memory. This process thus builds groups of layers between two F all operations. We then
compute the backward phase for each group using the rematerialization algorithm (see
Chapter 2 Section 2.3.4), and concatenate them (with the necessary prefetches) to obtain
the final sequence. Note that opportunist is conceptually close to the implementation
from Superneurons [108].

The second heuristic is called autocapper. It relies on an internal capper algorithm,
that uses an increased memory limitM ′ > MGPU as an additional input. capper computes
a pure rematerialization sequence with the limit M ′, finds the peak memory usage in the
sequence and offloads the lowest indexed activation present in GPU memory at that time.
This process is repeated until the sequence fits in the memory limit MGPU. autocapper
calls capper with 40 values of M ′, evenly spaced between the target MGPU and Mhigh,
the memory required without Rematerialization or Offloading. For each value M ′, the
resulting sequence from capper is simulated and the best one is kept.

Note that, when autocapper does not perform recomputations, it behaves as the
Greedy heuristic from Chapter 3 Section 3.2.

4.4 Experiments

4.4.1 Simulation Results

We measured running times and memory occupation of several networks from PyTorch
torchvision package: ResNet, DenseNet and Inception, with a batch size of 16 and images
of 500×500 pixels. We also experimented with other batch and image sizes, and obtained
very similar results. Time measurements were performed on a NVidia Tesla V100 GPU
with 16GB of memory. We also measured the bandwidth obtained when transferring
PyTorch tensors from and to the GPU and obtained 12GB/s. The simulation results
presented here were obtained using 4 cores of a 24-core Haswell Intel R© Xeon R© E5-2680
v3 at 2,5 GHz, with 128GB of memory, and used about one hour of total computation.

We consider 5 algorithms in total: our dynamic program pofo, the optimal
rematerialization-only algorithm from Chapter 2 Section 2.3.4, the optimal
offload-only approach (DynProg heuristic from Chapter 3 Section 3.3), and both
heuristics autocapper and opportunist. We use the sequential time as a reference:
it is the time that it would take to process the forward and backward phases with infinite
memory, equal to the sum of forward and backward times of all operations. For each
network, we compute the highest and lowest memory requirements (denoted respectively
Mhigh andM low):Mhigh is obtained with the sequential approach, whileM low is obtained
by recomputing everything from the beginning at each step of the backward phase. We can
thus explore the whole range of achievable memory sizes for this network, by considering
values within the interval [M low,Mhigh]: for a given ratio α ∈ [0, 1], the memory limit
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Рис. 4.2: Simulation results for fixed bandwidth β = 12GB/s and varying memory ratio
α.

MGPU is set to (1 − α)M low + αMhigh. For the algorithms which perform Offloading, we
also vary the bandwidth value β, from 12GB/s (corresponding to a realistic scenario) to
36GB/s (corresponding to possible future improvements in communication capabilities).

The results are shown on four plots: Figure 4.2 presents the behavior of the algorithms
for fixed bandwidth and varying memory constraint, Figure 4.3 explores the effects of
increasing the bandwidth for a given memory limit, Figure 4.4 shows what is the portion
of the total activation data that is transferred to the CPU for different memory limits,
while Figure 4.5 depicts how this value changes with varying bandwidth for α = 0.2.

We draw the following conclusions:
• When memory is large (α = 0.75), Offloading is more effective than

Rematerialization: with β = 12GB/s, there is time to offload and prefetch enough
data to run the whole chain. However, for smaller memory limits, the offload-only
policy exhibits much worse performance than rematerialization (unless more
bandwidth is available, see Figure 4.3).
• Unless in some cases with small memory, the opportunist policy achieves slightly

better performance than pure rematerialization, but is sometimes unable to
produce a solution when the memory limit is too low. On the other hand, the more
sophisticated autocapper algorithm obtains very good performance for memory
ratios above 0.5.
• The pofo algorithm successfully combines the advantages of both Rematerialization

and Offloading, and consistently outperforms both of them. When the memory limit
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Рис. 4.3: Simulation results for fixed memory ratio α = 0.2 and varying bandwidth.
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Рис. 4.4: Relative size of data transferred to the CPU w.r.t. the total activation size for
a fixed bandwidth β = 12GB/s.
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Рис. 4.5: Relative size of data transferred to the CPU w.r.t. the total activation size for
varying bandwidth and fixed memory ratio α = 0.2

is high enough, the optimization problem is relatively easy, and autocapper and
pofo achieve similar performance. In some cases autocapper is marginally better
than pofo, as pofo produces solutions under Assumptions 4, while partial memory
releases (assumptionOR.5) are difficult to implement in practice. For lower memory
limits, the more optimized pofo algorithm is able to produce much better sequences.
• As can be seen on Figure 4.3, the offload-only approach works perfectly when the

bandwidth is high. Indeed, if there is enough communication capability to offload all
the data while it is produced, it is possible to avoid recomputations without inducing
idle time. Compared to pure offloading techniques, our pofo solution allows to train
models with large activations with cheaper communication links.
• From Figure 4.4, for β = 12GB/s and a given neural network, pofo tends to offload

the same amount of data for different memory limits, while autocapper keeps the
same rate when memory limit is high and then it drops to zero when memory limit
is near M low. Possible explanation for pofo offloading a constant amount of data
might be the fact that pofo does offloading non-stop throughout the entire forward
propagation. Since pofo does not offload during the backward phase and the forward
phase duration is constant, pofo always offloads roughly the same quantity of data.
This difference in the behavior of pofo and autocapper may explain the advantage
of pofo when available memory is scarce.
• From Figure 4.5, it can be observed that the amount of offloaded data grows almost

linearly with bandwidth for pofo and opportunist (larger bandwidth implies that
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proportionally more communications can be overlapped with forward propagation).
• Compared to the sequential sequences, our pofo algorithm allows to divide the

memory used by the activations by a factor 4 to 6, with an overhead below 20%.

4.4.2 Experimental Results with rotor

Due to efficiency of pofo and autocapper, they can be integrated into rotor to
improve its performance. It is possible to offload data in PyTorch (preview version at the
moment) using the function saved_tensors_hooks(pack_hook, unpack_hook), which
will be available in the future version PyTorch 1.10. This function allows to register a hook
that can capture all tensors generated by an operation and then “pack” them (compress or
offload) during the forward propagation and “unpack” them (extract or prefetch) during
the backward propagation. We have implemented a preliminary version of algorithms pofo
and autocapper and made them available in rotor [48]. We further present the current
results in Figure 4.6 obtained by testing these new extensions of rotor on the same
neural networks as in Section 4.4.1.

Overall, these preliminary experiments confirm that combining Offloading with
Rematerialization allows to significantly improve over pure Rematerialization in most
scenarios. In particular, pofo is still the best algorithm for memory optimization among
the ones considered in the plot. For most cases, it either shows the smallest overhead or it
behaves in the same way as other methods. However, DenseNet-169 is the exception to this
trend, where rematerialization-only is strictly better than pofo or autocapper, but
even in this case pofo outperforms autocapper. On the other hand, the case of ResNet-101
demonstrates the significant improvement of pofo over other strategies, suggesting that
there exist cases for which the benefit is important.

This discrepancy in the simulation results and rotor results comes from the fact that
the current implementation of pofo and autocapper in rotor uses more memory than
it is expected. We believe that further optimization of this preliminary implementation
should allow to obtain even better performance.

4.5 Conclusion

In this chapter, we have formalized the problem of the optimal combination of
Rematerialization and Offloading, which are two classical strategies for coping with
memory limitations on a GPU. We have shown that the optimal solution can be
computed using dynamic programming, in a few seconds or a few minutes for very deep
networks. From experiments, we have shown that the combination of Offloading and
Rematerialization is very efficient and allows, in many cases, to transparently perform
training with 4 to 6 times less memory, at the cost of a 10-20% time overhead.
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rematerialization-only methods for a fixed bandwidth β = 12GB/s. The results are
obtained by performing actual runs of neural network training loops with rotor
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Introduction

In the previous chapters, we considered memory saving techniques for training on a
single device. In practice, neural networks are often trained in parallel. Moreover, both
small groups of GPU machines and large HPC infrastructures [112] are commonly used,
especially when HPC machines offer high-bandwidth and low-latency networks [71, 22].
Parallelism is very efficient in distributing the load and it can be done in several different
ways.

The first approach is to use parallelism at the level of the node, which makes the
best use of the available multi-core by optimizing the individual compute kernels, which
usually consist of tensor computations. This approach has been widely used in the context
of GPUs and TPUs and has made the success of frameworks such as TensorFlow [2] or
PyTorch [82].

At a larger scale, the best known approach to parallel DNN training is the so-called
data parallel approach. Using Data Parallelism [116], the model weights are replicated on
all participating nodes. Then, different mini-batches are trained in parallel on different
nodes: all participating nodes execute forward and backward phases in parallel, and thus
all of them compute gradients for all weights in the network. Synchronization between
the nodes takes place at the end of the backward step, and all gradients are collected and
aggregated through collective communications. The above approach is possible as long as
two conditions are fulfilled: (i) the communication network infrastructure must be able
to support the collective communications of the weights without inducing too much idle
time and (ii) each participating node must be able to store all network (model) weights
and activations corresponding to the processing of a mini-batch.

In many cases, deep and heavy models bring better prediction quality, but they may
have large memory requirements, which makes the training impossible. As it was discussed
above, the memory consumption during the training phase is composed of two main
parts [34]: the storage of forward activations until the associated backward operation and
the storage of the DNN weights. To limit the memory requirements resulting from the
storage of network weights, a natural approach is to distribute the layers of the DNN over
several computation resources. This approach, known as Model Parallelism, has been
advocated in many papers [24, 50, 78, 113]. Each batch is processed by a sequence of
processors, and only activations are communicated between processors. This approach is
orthogonal to Data Parallelism and can naturally be combined with it (a batch is divided
into several mini-batches that are processed at the same time, while Model Parallelism
is used to execute one mini-batch). Even though, Model Parallelism can actually reduce
memory requirements, it cannot accelerate computations because of the sequential nature
of the training: operations of forward and backward propagation cannot be executed
independently (see Figure 4.7). To obtain some speedup using this approach, it is necessary
to process several mini-batches in parallel, using a pipelined approach. However, in turn,
processing several mini-batches simultaneously induces extra memory requirements as it
was shown in [78].

All known solutions for Pipelined Model Parallelism [78, 79] rely on a certain number
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of assumptions, that make the problem tractable and allow to derive practical solutions. In
particular, these solutions only consider (i) contiguous allocations, where each processor is
assigned a contiguous set of layers from the network and (ii) simplistic periodic schedules,
where all processors alternate between one forward and one backward computations.

In Chapter 5, we establish the complexity of both resource allocation and scheduling
problems in Section 5.1. We also show that from a theoretical perspective, allowing
more general solutions provides significant improvement in terms of throughput. Indeed,
k-periodic complex schedules with k > 1 (Section 5.2) help to improve a throughput when
memory is a constraint. Furthermore, non-contiguous allocations (Section 5.3) are more
flexible and can significantly improve load balancing.

In Chapter 6, we continue to study the advantages of the non-contiguous allocations.
Despite the NP-completeness of the problem, we can express the optimization problem as
an Integer Linear Programming. In Section 6.4, we carefully model the set of rules for the
valid allocations and schedules, taking into account all sources of memory consumption.
The performance of the ILP-based solution, both in terms of solution quality and running
time are analyzed in Section 6.5.

The ILP from Chapter 6 provides optimal non-contiguous allocations for 1-periodic
schedules. On the other hand, its computation cost is very high and time-consuming,
making its usage difficult in practice. In Chapter 7, we propose an heuristic algorithm,
called MadPipe (for Memory Aware Dynamic programming for PIPElining). This heuristic
is presented in Section 7.1. It is based on the combination of dynamic programming and
linear programming, with two main contributions: (i) a more precise estimation of the
memory requirements than in PipeDream, which results in allocations that can be more
efficiently scheduled, and (ii) the possibility to use non-contiguous allocations of layers
of the DNN to processors, which provides a better load-balancing. The scheduling is
performed with a modified ILP given in Section 7.2. The running time of MadPipe is
acceptable in practice, and it significantly improves the resulting training performance
with respect to PipeDream, which is demonstrated in Section 7.3.

Model and Notations

Notations

Like in the previous chapters, we consider linear DNNs, in which each forward operation
depends only on the result of the previous operation, so that the network is a chain
of L layers with the computation of FL+1 = FLoss at the end. Each layer `, 1 ≤ ` ≤
L + 1 is associated both to a forward operation F` and a backward operation B` (see
Figure 4.7). During training, the input activation a0 goes through all forward operations
to compute a prediction whose the quality is estimated by a Loss. Then, the parameter
weights of all layers have to be updated according to their effect on the loss, given by the
partial derivative ∂Loss

∂a`
, where the updates are performed by an optimizer, following some

predefined strategy.
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F1 F2 · · · FL−1 FL FLoss

B1 B2 B3 · · · BL BLoss
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δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aL

Рис. 4.7: Data dependencies induced the training phase of Linear Deep Neural Networks.

Unlike the previous chapters, we focus here only on the case of linear heterogeneous
chains, whose nodes represent simple elementary functions that do not generate
intermediate data. Therefore, the chain from Figure 4.7 does not have the downward paths
from forward tasks to backward tasks. Only the diagonal paths still remain that connect
the input of a forward task with its corresponding backward task. Thus, we consider just
a simple BP-transform from Definition 2, where ā tensors are not needed to perform the
backward operations. This implies that the solutions provided in Chapters 5, 6 and 7
are not directly applicable to learning frameworks (see the discussion in Chapter 2),
though their results can be easily extended to the more general linearized chains (Complex
BP-transform from Definition 9, corresponding to Figure 2.16), but it is omitted here to
ease the presentation of the main results of this part.

Further, we use the following notations:
• P indicates the number of computing resources, with memory M ;
• β denotes the bandwidth between any two resources;
• uF`

denotes the duration of the forward task on the layer `;
• uB`

denotes the duration of the backward task on the layer `;
• W` denotes the memory occupation of the parameter weights for layer `;
• a` refers to both the tensor and its memory occupation of the activation produced

by F`;
• δ` refers to both the tensor and its memory occupation of the gradient produced by
B`+1; in practice, each gradient has the same memory size as the activation with
respect to which it is calculated, i.e. δ` = a`;

Most of these notations are not new and used as well in other chapters, except for W`

that we now take into account when distributing the load onto processors. In this part,
we assume that we have P identical processors (typically GPUs) with memory M and
they are all interconnected with communication links of bandwidth β.

The goal of Model Parallelism is to distribute the layers of the DNN onto P computing
resources with limited memory, so that each processor is in charge of a subset of the
layers. The input activation thus goes through all processors to compute Loss, and is
then backpropagated through all layers in reverse order to compute the corresponding
gradients and update the weights. To avoid idle times, these computations are performed
in a pipelined way (see Figure 4.8): the GPU in charge of layer ` may compute several
forward operations F` before processing the first backward B`, so that it could stay busy
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Рис. 4.8: Pipelined schedule for 3 layers and 3 processors. The superscripts indicate
iteration numbers. Period is highlighted with dashed lines.

even while waiting for δ` to be computed by the other GPUs.
Throughout this chapter, we are interested in finding efficient task allocations and

schedules. To help navigate the different concepts that we use, we introduce some
terminology. We define the input DNN as a chain of layers (typically convolutional or
dense layers), which are the basic operations that need to be computed, and a partitioning
P of this chain is a collection of stages, where each stage contains a contiguous set of layers.
An allocation A is an assignment of stages to the processors. An allocation is said to be
contiguous if each processor is assigned a single stage, and by extension a partitioning
is contiguous if it contains at most P stages. We use AC to denote the set of contiguous
allocations, while the set of more general non-contiguous allocations is denoted as AnC.
To estimate memory requirements we also introduce groups of stages, where each group is
a set of stages which are contiguous with respect to the ordering of the chain. A schedule
S of a given allocation specifies the timings of all compute operations.

When assigning layers to the resources, it is important to take into account the
communication time between them. Even though, once the allocation is fixed, each
communication between layer ` on processor p and layer ` + 1 on processor p′ can be
represented as an additional pseudo-computation layer. It involves sending some activation
a` between F` on p and F`+1 on p′, and a gradient δ` between B`+1 on p′ and B` on p,
for a total time of a`+δ`

β
, where β is the bandwidth of the corresponding link used in

exclusive mode. Therefore, an allocation on P processors with communication costs is
equivalent to an allocation on 2P − 1 resources, without communication costs. Thanks to
this transformation, we can ignore the communications between the tasks, when solving
a scheduling problem for a fixed allocation.

In order to keep the description of schedules compact, we actually focus on periodic
schedules. A schedule is periodic if it consists in the repetition of a pattern, and more
precisely k-periodic if the pattern contains each computation task exactly k times. A
k-periodic pattern of period T specifies for each operation (forward and backward): the
processor in charge of it, a starting time t, and an index shift h. This pattern is to be
repeated indefinitely: in the j-th period, this operation starts at time jT + t and processes
the mini-batch number jk + h. By convention the shift of the first B1 operation of the
pattern is always 0, so that if in some period this B1 processes mini-batch index i, an
operation with shift h processes mini-batch index i+ h. A pattern is valid if the schedule
obtained in this way is valid, i.e. fulfills the dependencies of Figure 4.7. Figure 4.9a
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Рис. 4.9: Examples of periodic patterns. The superscripts indicate shift values.

shows an example of the 1-periodic pattern associated with the schedule of Figure 4.8,
and Figure 4.9b shows a 2-periodic pattern. We use Sk to denote the set of k-periodic
schedules.

Memory Constraints

In addition to enforcing data dependencies, we need to ensure that the schedules fit into
the memory capacity M of the processors. As already noted, during the training phase,
there are two main sources of memory usage: parameter weights, and forward activations.
As discussed in [79], it is sufficient to keep two versions of the parameter weights. Moreover,
as discussed in [86], a certain number of additional copies of the model, for gradients and
optimizer states, are required. Their number only depends on the choice of the optimizer
and not on the allocation or on the schedule. Overall, we denote with W` the memory
occupied by model weights of some layer ` and C the overall number of model copies.
On the other hand, with pipelined executions, several forward activations a`−1 for a given
layer ` need to be stored in memory at the same time, and this depends on the particular
schedule. For instance, in the case of Figure 4.8, F 2

1 , F
3
1 and F 4

1 simultaneously reside in
memory before B2

1 releases F 2
1 .

To estimate memory needs, for a schedule S, we define the number of concurrent
activations (NCA) of layer ` as the maximum number of activations a`−1 that are stored at
any point in time. For a general schedule, this can be expressed as nca` = maxt #F`(t

′ <
t) −#B`(t

′ < t), where #F`(t
′ < t) counts the number of F` operations performed until

time t. For a k-periodic schedule S, nca` can be computed from the values of the shifts:
for any F` whose shift is h, if the preceding B` has shift h′, then the number of concurrent
activations just after this forward operation is h− h′. The value of nca` for S is thus the
maximum value of h − h′ over all forward operations F`. As an example, in the pattern
of Figure 4.9a, nca1 = 3 and nca2 = 2 (here it is necessary to duplicate the pattern to
find the preceding B2), while for the pattern of Figure 4.9b, nca1 = nca2 = 2. Let us use
MS(p) to denote the memory peak achieved on processor p when schedule S is applied.
Then, if a processor p processes a set of layers Lp, its memory usage can be approximated
with MS(p) '

∑
`∈Lp

CW` + nca`a`−1 (temporary memory usage of each operations and
communicated data is not accounted).
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We can now formally define the scheduling problem for model parallelism.

Problem 12 (PipeS&A(L,M,P, β)). Given P processors with memoryM and bandwidth
β between them and L layers with forward and backward computation times uF`

and uB`
,

parameter occupation W` and activation sizes a` (see Figure 4.7), we want to find an
allocation A and a corresponding valid k-periodic schedule Sk for some k ∈ N with a
period T , so that for all processors p, MS(p) ≤ M , and which minimizes the normalized
period T/k.

Sometimes, we are interested in finding the best schedule S for a fixed allocation
scheme A. Then problem PipeS&A(L,M,P, β) becomes the following.

Problem 13 (PipeS|A(A,M, P )). Given an instance of problem PipeS&A(L,M,P, β)
and for a fixed allocation A, we want to find a valid k-periodic schedule S for some k ∈ N
with a period T (so that for all processors 1 ≤ p ≤ P , MS(p) ≤M), which minimizes the
normalized period T/k.

In the following chapters, we analyze both problems and propose solutions to them.
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Глава 5

Pipelined Model Parallelism.
Complexity

This chapter covers some main theoretical results concerning problems
PipeS&A(L,M,P, β) and PipeS|A(A,M, P ). We start with introducing the complexity
results. After, we analyze the limitations of the state-of-the-art pipelining frameworks
such as [78]. We distinguish two main limitations: the use of 1-periodic schedules
and contiguous allocations. Both can be significantly outperformed by more general
approaches and we explore the potential benefits of moving towards k-periodic schedules
and non-contiguous allocations.

However, we do not propose solutions in this chapter and we leave it for the
next chapters. The results of this chapter are purely theoretical and are obtained
with assumption of zero communication costs, though they remain true even when
communications are non-negligible.

5.1 Complexity Results

In this section, we analyze the complexity of PipeS&A(L,M,P, β). We first show that even
without memory constraints, finding an optimal allocation is NP-complete problem. Then
we consider the problem of finding a pattern for a fixed allocation PipeS|A(A,M, P ), and
show that this problem is NP-complete because of memory constraints.

In both cases, we use a reduction from the 3-Partition problem [32]: given a set of
integers {x1, x2, . . . , x3n} such that

∑
i xi = nV , is it possible to partition it into n parts

{S1, . . . , Sn} so that for any j ≤ n, |Sj| = 3 and
∑

i∈Sj
xi = V . This problem is known to

be NP-complete in the strong sense.

5.1.1 General Problem

Proving the complexity of the general problem does not require to take memory constraints
into account, and only relies on the basic underlying allocation problem.
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Theorem 13. The decision problem PipeS&A(L,M,P, β) of determining if there exists
an allocation and a periodic pattern whose normalized period is at most T is strongly
NP-Complete for any M .

Доказательство. Given an instance of 3-Partition, we consider the following instance of
our problem PipeS&A(L,M,P, β):
• L = 3n, P = n;
• ∀`, a` = W` = 0, so that memory constraints are not a concern;
• ∀` ≤ L, uF`

= x` and uB`
= 0 (actually we can use any choice of values such that

uF`
+ uB`

= x`).
and the decision problem is to determine if there exists a periodic schedule with period
T = V .

Let us assume that there exists a solution to the 3-Partition instance. Then, we build
a pattern where each group Si is scheduled (in any order) on a different processor. There
always exists a shift assignment such that the schedule is valid. Since there is no memory
issues (all sizes are set to 0), we obtain a valid 1-periodic schedule.

Let us now assume that there exists a pattern of a normalized period T . Then, since
one layer cannot be split between two processors, then each processor is allocated to
different layers for a total duration at most T . Since the overall load is nT , the load on
each GPU must be exactly T .

5.1.2 Fixed Allocation Problem

In what follows, we prove in Theorem 14 that even when the allocation A is given, i.e. if we
know which layer is assigned to which processor, the problem PipeS|A(A,M, P ) remains
strongly NP-Complete. This demonstrates that both scheduling and resource allocation
are difficult.

Theorem 14. The allocation of layers A being fixed, the decision problem
PipeS|A(A,M, P ) of determining if there exists a periodic schedule of normalized period
at most T is NP-Complete in the strong sense.
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Глава 5. Pipelined Model Parallelism. Complexity

Доказательство. Given an instance of 3-Partition, we consider the following instance
of our problem PipeS|A(A,M, P ), where the network is depicted in Figure 5.1 and the
processing resources are defined as follows:
• L+ 1 = 6n, P = 2, M = n, β = 0, the target period is T = 2nV ;
• a`−1 = 0 for 1 ≤ ` ≤ 4n, and a`−1 = 1 for 4n+ 1 ≤ ` ≤ 6n, while W` = 0 for all `;
• uF`

= V for 1 ≤ ` ≤ n or ` ≥ 4n+ 1, and uF`
= x`−n for n+ 1 ≤ ` ≤ 4n;

• uB`
= 0 for all `;

• P1 is assigned to all layers ` for n + 1 ≤ ` ≤ 4n, and to even layers 4n + 2, 4n +
4, . . . , 6n;
• P2 is assigned to all layers ` for 1 ≤ ` ≤ n, and to odd layers 4n+1, 4n+3, . . . , 6n−1.
Let us assume that there exists a solution to the 3-Partition instance. Then, we build

a pattern where each group Si is scheduled as depicted in Figure 5.2. Since W` = 0
for all `, the memory costs come from storing the activations. Moreover, all operations
F`, ` ≥ 4n+ 1 can use the same shift value. Since activation sizes a` are zero for ` ≤ 4n,
the shift values of the other forward operations have no effect on the memory usage and
can thus be chosen in a way that makes the pattern valid. Therefore, each layer ` ≥ 4n+1
has nca` = 1, so the memory usage on each processor is exactly n. This shows that there
exists a valid pattern of throughput T where all constraints are satisfied.

Let us now assume that there exists a valid schedule S of period T . For simplicity,
we assume that S is 1-periodic; however all the arguments can be generalized to a
k-periodic schedule. We first prove that operation F4n+1, . . . , F6n are scheduled as depicted
in Figure 5.2. Since nca values are at least 1 and the memory capacity is n, the pattern
must satisfy nca` = 1 for these layers. Denote by h the shift of F6n; it is easy to see that
it is best for all B` operations (whose durations are negligible) to be performed just after
F6n with the same shift h. Hence, the only way to obtain nca` = 1 for ` ≥ 4n + 1 is to
process F` just before F`+1 with the same shift value h. Since S has period T = 2nV ,
there can be no idle time between these operations. Therefore, operations F4n+1, . . . , F6n

are scheduled as depicted in Figure 5.2.
Then, the operations Fn+1, . . . , F4n with durations xi need to be scheduled on P1,

where there are exactly n holes of size V . Hence, the packing on these tasks into the holes
creates a solution to the initial 3-Partition instance, what completes the NP-Completeness
proof.

5.2 General Periodic Schedules for Contiguous
Allocations

In this section, we analyze in more details the scheduling aspect of our problem. In the
following, we thus consider that the allocation AC is fixed and contiguous and scheduling
is done at the stage level (sets of consecutive layers), as scheduling inside stages is
straightforward, which is equivalent to the special case of a network of length P to be
processed on P processors. Hence, we focus here on problem PipeS|A(AC,M, P ). We
present two results in this context: we first show how to compute, for a given period T , a

163
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1-periodic pattern S1 which minimizes the memory usage, which gives an insight on how
to solve problem PipeS1|A(AC,M, P ) optimally; then we provide examples showing the
benefit of using k-periodic schedules Sk for k > 1.

To simplify the presentation, we use the notations bound to stages. For example, for
stage si we compose all forward operations and backward operations inside a stage into
one forward step Fsi and one backward step Bsi . We also denote U(si) as the total sum
of all computational costs of some stage si.

5.2.1 Optimal 1-periodic Schedule

The authors of [78] propose a 1F1B schedule, which is a particular case of greedy,
1-periodic schedule S1 where the number of concurrent activations of the first stage
is nca1 = P . For unbalanced allocations, especially when taking communications into
account, this can be too conservative. To reduce the number of concurrent activations, we
propose the 1F1B∗(T ) algorithm to compute a pattern for some fixed contiguous allocation
P and a given period T . This algorithm works in three phases, described in Algorithm 6.

Algorithm 6 Summary of Algorithm 1F1B∗ for a given period T .
Build G groups greedily such that

∑
s∈g U(s) ≤ T , starting from sP

Schedule operations within group g as an Equal Shift Pattern
Connect the groups with no idle time between the forward operations

Phase 1: Groups are built such that each group g satisfies the condition
∑

s∈g U(s) ≤ T .
This is done iteratively: start from the last stage sP , add stages sP−1, sP−2, . . . as long as
the condition is fulfilled, then start a new group with the last stage that was not added.
This leads to G groups; for simplicity, groups are numbered in the order of their creation,
so that group 1 contains sP and group G contains s1.
Phase 2: Operations inside a given group g are scheduled with an Equal Shift Pattern
where backward operations have a fixed shift h, and forward operations have shift h+g−1.

Definition 12 (Equal Shift Pattern). An Equal Shift Pattern (V-shape) is a part of a
schedule in which consecutive forward operations are performed one after the other on
their respective processors with the same shift h, followed by the sequence of corresponding
backward operations, all having the same index shift h′. Between the forward operation
and the corresponding backward, each processor remains idle (as in Figure 5.3a).

Phase 3: All these group schedules are then connected: to connect group g = (si, . . . , sj)
and group g − 1 = (sj+1, . . . , sk), the schedule starts Fsj+1

just after Fsj , with the same
index shift. After this connection, if any operation starts later than T , its starting time is
lowered by T and its index shift is decreased by 1. For example, in Figure 5.3b, group 2
and group 3 are connected in such a way that all forwards start before T , therefore they
have the same index shift, but the backwards of group 2, which should have index shift
1 (according to Phase 2), are scheduled after the pattern limit T , thus, in order to fit
them correctly in the pattern, their starting times are lowered by T and their index shifts
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become 0. In contrast, when connecting group 2 and 1, forwards of group 1 cannot be
scheduled just after forwards of group 2 inside the pattern, therefore, their starting times
are decreased by T and their index shifts are set to 1, while backwards are scheduled
according to Phase 2, without going beyond the pattern limit.

It is easy to see that this algorithm produces a valid pattern. In the following, we prove
that for a given period T , the 1F1B∗ pattern minimizes the NCA of all layers, among all
1-periodic patterns S1. For this purpose, we start by showing that the Equal Shift Pattern
is necessary to avoid increasing the NCA between two stages1

Lemma 9. Consider any schedule S for a contiguous allocation AC. If successive stages
verify ncasj = · · · = ncasj+p

, then S contains Equal Shift Pattern for these stages.

Доказательство. Since S fulfills the dependencies described in Figure 4.7, the following
holds for any stage s

∀t, (#Fs(t′ < t)−#Fs−1(t′ < t)) ≤ 0 ≤ (#Bs(t
′ < t)−#Bs−1(t′ < t)) ,

so that ∀t, (#Fs(t′ < t)−#Bs(t
′ < t)) ≤ (#Fs−1(t′ < t)−#Bs−1(t′ < t)) and ncaSs ≤

ncaSs−1. Let us consider stage sj, s.t. ncasj = ncasj+1
. Therefore, there exists a time τ

in S when the memory peak is reached for both stage sj+1 and stage sj, which is only
possible if #Fsj+1

(t′ < τ) = #Fsj(t
′ < τ) and #Bsj+1

(t′ < τ) = #Bsj(t
′ < τ). This

shows that Fsj and Fsj+1
process the same mini-batch (and similarly for Bsj and Bsj+1

).
Furthermore, since memory peaks always take place after forward operations, no operation
can take place for stage sj between the end of Fsj and the start of Bsj : the input data for
Bsj needs to be produced by Bsj+1

, and processing another forward operation Fsj would
increase ncasj . Recursively, for any k ≤ p, all forward operations Fsj+k

process the same
mini-batch, and no operation can take place for stage sj+k between the end of Fsj+k

and
the start of Bsj+k

, which concludes the proof.

Theorem 15. Consider a contiguous allocation AC and any 1-periodic schedule S1 of
period T . For any layer `, the schedule S1 does not use fewer concurrent activations than
the schedule 1F1B∗(T ), i.e. ∀`, nca1F1B∗

` ≤ ncaS
1

` .
1all layers of the same stage have the same NCA
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Доказательство. It is easy to see that in 1F1B∗, a layer ` of group g has nca1F1B∗
` = g.

Assume that in S1, ncasj = ncasj+1
= · · · = ncasj+p

for some j and p. By Lemma 9, there
is an Equal Shift Pattern for stages sj to sj+p, so if we denote by δj the delay between
Fsj and the next Bsj (see Figure 5.3a), we have δj ≥ δj+1 + U(sj+1), and recursively,
δj ≥

∑j+p
k=j+1 U(sk). Since the period T is the time between two executions of Fsj in

S1, it is clear that T ≥ U(sj) + δj, which yields: if ncasj = · · · = ncasj+p
, then T ≥∑j+p

k=j U(sk). By contradiction, assume now that for some stage si, the schedule S1 uses
fewer concurrent activations than the 1F1B∗ schedule, i.e. ncasi < gi, where gi is the
group number of stage si, and consider the largest such index i (for larger indices j > i,
we thus have ncasj = gj). Denote by si+1, . . . , si+p the group of stage si+1, so that
ncasi = ncasi+1

= · · · = ncasi+p
= gi+1 < gi. By the previous result, T ≥

∑i+p
k=i U(sk).

However, according to the 1F1B∗ procedure, gi > gi+1 means that stage si could not
fit in the group of si+1, which can only happen if T <

∑i+p
k=i U(sk). This results in a

contradiction and completes the proof.

For a fixed partitioning, all other memory requirements are constant and do not depend
on the schedule, so that 1F1B∗ schedule is optimal with respect to memory usage among
all valid 1-periodic patterns S1. Note that in case when each group consists of only one
stage, 1F1B∗ behaves as 1F1B schedule used in [78].

As it was mentioned before, this result also holds true when taking communications
into account: we can consider each communication as if it was a computation layer: the
communication between stage si on processor p and si+1 on processor p′ involves sending
some activation a` between F`, ` ∈ si on p and F`+1 `+ 1 ∈ si+1 on p′, and a gradient δ`
between B`+1 on p′ and B` on p, for a total time of a`+δ`

β
, with the same dependencies as

for a normal computation layer. Therefore, we can transform a partitioning on P resources
with communication costs into a partitioning on 2P−1 resources, without communications
costs, and apply the 1F1B∗ algorithm on this transformed partitioning.

Finally, Theorem 15 demonstrated that 1F1B∗ minimizes memory consumption for a
fixed period T . Moreover, it is clear from the description of Algorithm 6 that if T increases
then the number of groups G decreases, hence nca` for any ` decreases as well. Therefore,
we can obtain the optimal schedule with a period T ∗ for PipeS|A(A,M, P ) with the help
of binary search (see Algorithm 7).

5.2.2 k-periodic Schedules

Theorem 16. ∀k, k-periodic schedules are sometimes necessary to reach optimal
throughput, i.e. there are examples where no j-periodic schedule with j < k is able to
provide the same throughput as a k-periodic schedule.

Доказательство. For a given k, let us consider an instance where P = L+1 = k+1, and
M = k+1. All layers ` have the same durations2 uF`

= uB`
= 1 and activation sizes a` = 1,

and different weights: W1 = 1, W`+1 = ` for ` ≥ 1. For such an instance, the memory
2Our arguments actually apply to any homogeneous case where uF`

+uB`
is constant over all layers `.
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Algorithm 7 Optimal solution of PipeS|A(A,M, P )

Require: K (number of iterations)
1: lb← U(1, L)/P
2: ub← U(1, L)
3: for i = 1, . . . , K do
4: Ti ← (lb + ub)/2
5: Find peak memory consumption Mpeak = maxp≤P M

1F1B∗(Ti)(p)
6: if Mpeak > M then
7: lb← Ti
8: else
9: ub← Ti

return 1F1B∗(ub)

k + 1 layers

T = 2(k + 1)

Рис. 5.4: k-periodic pattern for an homogeneous instance. The Equal Shift Pattern is
highlighted in thick red.

constraints imply that any valid schedule should satisfy nca1 ≤ k, and nca`+1 ≤ k+1−`
for 1 ≤ ` ≤ k.

Let us consider the k-periodic schedule Sk obtained by unrolling the standard
1-periodic pattern with no idle times, and removing all operations related to every
(k + 1)-th mini-batch. The resulting pattern has period 2(k + 1) and normalized period
2(1 + 1

k
). It is depicted in Figure 5.4 for k = 3. The highlighted Equal Shift Pattern

shows how this pattern ensures nca1 = k. On the other hand, consider any j-periodic
schedule Sj which satisfies the memory constraints. Since ncaS

j

1 ≤ k, nca` ≥ 1 for all
`, and since nca` values are non-increasing with `, there must exist a layer ` such that
ncaS

j

` = ncaS
j

`+1. From Lemma 9, there should be a Equal Shift Pattern between these
layers, during which layer ` is idle for at least uF + uB = 2 units of time. The period T Sj

of Sj is thus at least 2j + 2, leading to a normalized period at least 2(1 + 1
j
). If j < k,

this is always higher than the normalized period of Sk described above.

This example shows the benefit of considering more general schedules than the
1-periodic patterns usually explored in the literature [78]. Furthermore, the simple
k-periodic pattern used in this proof can easily be applied to many practical cases where
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memory capacity is limited. For example, if we cancel in 1F1B∗ each k + 1-th iteration
then we can obtain a k-periodic schedule based on 1F1B∗ with smaller nca` for all `
from groups g ≥ k + 1. Thus, for a given contiguous allocation with P stages, all such
k-periodic patterns for k < P explore a tradeoff between throughput and memory usage:
lower values of k have higher normalized period, but lower values of nca`.

5.3 Contiguous vs General Allocations

Despite being widely used in practice, contiguous allocations AC can significantly limit
the performance. In this section we compare the non-contiguous allocations AnC with the
contiguous ones AC, and we show that in general AnC can reach a throughput which can be
up to two times larger than the one of AC, when memory is not a bottleneck. While under
memory constraints, the improvement in the performance can be arbitrarily high. At the
same time, as the non-contiguous allocations are more flexible, they could be the only
possible option to execute some large models. Unlike the previous section, any resource
can now accommodate an arbitrary set of layers (that can be non-consecutive), thus we
do not use the notions of stages and groups anymore. Moreover, we talk about processing
costs of layers as their combined computing times of forward and backward operations.

5.3.1 Without Memory Constraints

As a simple starting example, let us consider a chain with 3 layers to be processed on 2
processors, where the processing costs of the layers are 1, 2 and 1 respectively. It is clear
that the smallest period achieved by a contiguous allocation is 3: the second layer is sharing
resource either with the first or the last layers. On the other hand, a non-contiguous
allocation allows to run the first and last layers on one processor, and the layer of cost 2
on the other processor, resulting in a period of 2 and no idle time on any processor. The
overhead of the contiguous constraint is thus 3

2
in this case. The following theorem shows

that the ratio is asymptotically close to 2 in the worst case.

Theorem 17. On any chain, the period of the best contiguous allocation AC is at most
twice the period of the best non contiguous allocation AnC. Furthermore, for any k ≥ 1,
there exists a chain for which the period of AC is 2− 1

k
times larger than AnC.

Доказательство. To prove the first result, consider any chain C, and denote by T ∗ the
period of AnC for this chain. Clearly T ∗ ≥

∑
l uF`

+uB`

P
, and T ∗ ≥ maxl(uF`

+ uB`
). We

can build a contiguous allocation AC with period at most 2T ∗ with a greedy Next Fit
procedure: add layers to the first processor as long as the total load is below 2T ∗, move
to the next processor and repeat. Since no layer has cost more than T ∗, each processor
except maybe the last one has load at least T ∗. This shows that this procedure ends before
running out of processors.

Let us now prove the second statement, with an example inspired from [12]. For any
k ≥ 1, let us set ε = 1

2k+1
. Let P = 2k+ 1, and let us build the chain Ck with k+ 1 parts:
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the first k parts contain 4 layers with computation costs (k, ε, k − 1, ε) ; the last part
contains one layer of cost k, (k − 2)(2k + 1) + 1 layers of cost ε, and one layer of cost 1.
Note that the total number of layers of cost ε is 2k+ (k−2)(2k+ 1) + 1 = (k−1)(2k+ 1).

There exists an allocation AnC with period T ∗ = k for chain Ck: k + 1 processors
process a layer of cost k, 1 processor processes a layer of cost k − 1 and the layer of cost
1, and k − 1 processors process a layer of cost k − 1 and 2k + 1 layers of cost ε. In this
allocation, no processor has any idle time.

Chain Ck contains 2k+ 2 layers with cost at least 1. On any contiguous allocation AC
on 2k + 1 processors, at least one processor p processes two such layers. If it processes
one layer of cost k and one of cost k − 1, it also processes the layer of cost ε between
them, and thus its load is at least as 2k − 1 + ε. If it processes the layer of cost 1 and
the last layer of cost k, it also processes all layers of cost ε in between, for a total load at
least k + ((k − 2)(2k + 1) + 1) ε+ 1 = 2k − 1 + ε. This shows that there is no contiguous
allocation with period 2k − 1 or less, which concludes the proof.

5.3.2 With Memory Constraints

The situation is worse when we explicitly take memory into account. Further, for the sake
of simplicity, we do not consider activation sizes but model weights only.

Lemma 10. Non contiguous allocations are sometimes required in order to process
training under memory constraints.

Доказательство. It is easy to see on the following example. Let us consider the chain
with 3 layers, whose weights W` are respectively 1, 2 and 1 to be executed on 2 processors
with memory limit M equal to 2. In such case, contiguous allocations are not possible,
as they demand at least a memory of size 3. On the other hand, with non-contiguous
allocations allowed, first and the third layers can be placed on one device, leaving the
second layer alone on the other device, which provides a valid allocation.

Theorem 18. If there exist both a valid contiguous allocation AC and a valid
non-contiguous allocation AnC given a memory constraint, then the ratio between achieved
throughputs of AnC and AC can be arbitrarily large.

Доказательство. Let us consider the chain depicted in Figure 5.5. For an arbitrarily
chosen k, this chain consists of a sequence of k layers with processing cost 1 and model
weightM−1, followed by a layer with processing cost k and model weightM and followed
by k layers with processing cost k− 1 and model weight 1. We want to execute this chain
on P = k + 2 resources with memory limit M ≥ k.

Then, a valid solution consists in grouping, ∀i ≤ P layer i and layer k + i + 1 on
processor i, to dedicate processor k + 1 to layer k + 1 and to leave processor k + 2 idle.
The required memory M − 1 + 1 can fit into the memory and the processing time on each
ressource is k + 1. This yields a non-contiguous allocation AnC with a period T ∗ = k.

If we use contiguous allocation AC, the first k+1 layers must be on separate processors,
because of the memory contraint. Then, the last k layers must be on the last remaining
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Рис. 5.5: Bad Ratio for Contiguous Allocations and Memory Constraint

processor, that should be feasible due toM ≥ k. In such scenario, the period is at least as
k(k− 1), which is k− 1 times larger than the one of AnC, which concludes the proof.

5.4 Conclusion

In this chapter, we consider the possibility of applying model parallelism. It is an attractive
parallelization strategy that allows in particular not to replicate all weights of a DNN on
all the computation resources. In addition, this parallelism can be combined with other
parallel strategies for better scalability. Following the ideas proposed in PipeDream [78]
we consider the combination of Pipelining and Model Parallelism, which allows to obtain
a better resource utilization.

Nevertheless, the combination of Pipelining and Model Parallelism requires to store
more activations at the nodes, which in turn causes memory consumption problems. The
practical solutions proposed in the literature rely on a number of hypotheses and limit the
search to greedy 1-periodic schedules S1 and contiguous allocations AC. On the contrary,
we analyze in detail the complexity of the underlying scheduling and resource allocation
problems, and prove that these hypotheses prevent, in the general case, to find optimal
solutions, which reinforces the interest of the search for more general strategies. Therefore,
Chapter 6 and Chapter 7 further analyze the case of non-contiguous allocations and
propose the solutions in that context.
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Глава 6

Integer Linear Programming Approach

In the previous chapter, we identified the main challenges with respect to Pipelined
Model Parallelism. It was shown that in order to solve PipeS&A(L,M,P, β) optimally
it is important to consider non-contiguous allocations and k-periodic schedules for k > 1.
However, PipeS&A(L,M,P, β) is NP-complete in the strong sense, thus finding a solution
to it is non trivial.

In this chapter, we propose an Integer Linear Programming (ILP) to tackle the above
problem. The primary goal is to generate the solutions with non-contiguous allocations
AnC as they are expected to bring the significant improvement in the memory constrained
setting (see Theorem 18). However, representing general k-periodic schedules requires
specifying starting times for each operation k times in the pattern, which results in a
huge number of variables. Therefore, we restrict our search to 1-periodic schedules S1 to
limit the complexity of the final algorithm. In Section 6.4, we present the main equations
that constitute the ILP and we show that its solution corresponds to the optimal solution
of PipeS1&A(L,M,P, β).

6.1 Notations

Let us denote by P the total number of available GPUs and let us assume (as in
PipeDream) that all pairs of GPUs are connected through a direct link of capacity β
(the devices do not compete for bandwidth). Moreover, we assume that each GPU is
equipped with an available memory of size M .

Similarly to Chapter 5, we represent each DNN as a chain so that the task graph
corresponding to forward and backward propagation is depicted in Figure 4.7 (we keep
the same model to describe DNN training loop and its data dependencies).

To represent operations in the ILP, we consider F` and B` as computational tasks
T`, where if ` ≤ L + 1 then T` = F` and if ` > L + 1 then T` = B2L−`+3 (in
total there are 2L + 2 tasks). However, unlike the previous chapter, in order to provide
solutions to PipeS1&A(L,M,P, β) we need to take communications between the devices
into account. Thus, we also introduce communication tasks T c` . These communication
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tasks correspond to sending forward activations or gradients from one computation
resource to another, and their cost is 0 between two successive layers allocated to the
same computing resource (in total there are 2L + 1 possible communications). The
sequence of tasks associated with the processing of a mini-batch is therefore given by
T1, T

c
1 , T2 . . . , T

c
L−1, TL, TL+1, T

c
L+1, TL+2, . . . , T

c
2L+1, T2L+2.

We denote by a` the activation tensor produced by T`, ` ≤ L+1 and by a2L−`+2 = δ` =
∂Loss
∂a`

the backpropagated intermediate gradient value provided as input of the backward
operation T2L−`+3 = B`. Moreover, we define the durations of tasks and the sizes of output
data for each respective task:
• a` the size (in bytes) of the tensor a` produced by T`, ` ≤ L+ 1;
• a`′ the size (in bytes) of the tensor a`′ = δ2L−`′+2 produced by T`′ , `′ > L + 1, in

general, we assume that tensors a` and δ` have the same size, i.e. ∀` ≤ L, a2L−`+2 =
a`;
• d` = uF`

the duration of the forward task on the layer 1 ≤ ` ≤ L+ 1;
• d2L−`+3 = uB`

the duration of the backward task on the layer 1 ≤ ` ≤ L+ 1;
• d̃` = a`

β
the duration of communication task 1 ≤ ` ≤ 2L+ 1;

Each GPU has limited memory of size M . This memory is used to store all data
required to perform the training operation. More precisely, these memory requirements
can have different origins:
• Model weights. Since we are considering Model Parallelism, we assume that the
L+ 1 layers of the network are split across the P GPUs. If processor k is in charge
of layer `, then it has to store the corresponding weight denoted as W`. As we will
see, in order to update the weights and to use consistent weights during both the
forward and the backward phases, processor k in practice stores several copies C of
the weights. In what follows, in order not to add more weight and activation copies,
we assume that the processor in charge of a layer is in charge of processing both the
forward and backward tasks associated to this layer.
• Activations. Let us now concentrate on activations. As depicted in Figure 4.7,

activation a`−1 (the input of task T`) must be kept in memory until task T2L−`+3

consumes it to produce δ`−1. Therefore, a memory of size a`−1 must be reserved to
store an activation between tasks T` and task T2L−`+3. As it was discussed in the
previous chapter, due to pipelining each processor may keep several copies of a`−1

at the same time, i.e. nca` ≥ 1 for all `.
• Gradients. Let us now concentrate on gradients δ`. As depicted in Figure 4.7, the

gradient δ` produced by task T2L−`+2 is consumed by T2L−`+3 to produce δ`−1.
Therefore, a memory of size a2L−`+2(= a`) must be reserved to store an activation
between tasks T2L−`+2 and T2L−`+3 to produce δ`−1. Thus, gradients are kept in
memory for a much shorter time than activations.
• Communication buffers. When tasks T` and T`+1 are assigned to different GPUs, a

communication takes place, and we assume for convenience that some memory is
reserved as a buffer to store a` while it is sent or received. This buffer is permanently
present throughout the entire execution and requires a storage of size a` on both
GPUs.
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In this chapter, we search for optimal solutions with non-contiguous allocations AnC
and 1-periodic schedules S1 discussed in the previous chapter. The example of possible
solutions is shown on Figure 6.1.

t
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T = 10

T 4
1

T c1

T 4
2
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T 3
3
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4T 2

5
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T 0
7

T c7

T 0
8

Рис. 6.1: Example of valid pattern. The index shifts are in the superscipts near task names

6.2 Communication and Computation Constraints

We present in this section an Integer Linear Program to find a valid pattern with
minimum period length. We concentrate on scheduling issues on both computational
and communication resources in Section 6.2, then we consider memory related issues
in Section 6.3.

We first present the main variables used in this ILP (other variables are introduced
later):
• T denotes the period considered in the 1-periodic schedule S1;
• z`,`′ is equal to 1 if task T` and task T`′ are processed on the same resource, and 0

otherwise (it is implied that z`,` = 1 and z`,`′ = z`′,`);
• τ` is the starting time of task T` in the pattern ;
• τ̃` is the starting time in the considered period of the communication of the output

of T`.
In several places, we use a large constant K that needs to be larger than the period,

for example, we can use K =
∑

` d` +
∑

`′ d̃`′ , which corresponds to the worst possible
period.

6.2.1 Limit on the Number of Resources

In order to provide a limit on the number of resources used, we introduce variable f` that
is equal to 1 if and only if task T` is the lowest-index task processed on its resource. To
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this end, we consider the following set of constraints:

∀` < `′ < `′′, z`′,`′′ ≥ z`,`′ + z`,`′′ − 1 (6.1)

∀`, f` ≥ 1−
∑
`′<`

z`,`′ (6.2)∑
`

f` ≤ P, (6.3)

and we show that they are enough to obtain the following:

Lemma 11. Constraints (6.1)-(6.3) ensure that at most P resources are used in the
schedule.

Доказательство. Constraint (6.1) ensures the consistency of the z`,`′ variables: for any
`, `′, `′′, if z`,` = 1 and z`,`′′ = 1, then z`′,`′′ = 1. They can thus be used to define an
equivalence relation between tasks, where each class contains tasks that are processed
on the same resource. Then, Constraint (6.2) ensures that f` is exactly 1 for the task
with the smallest index among all the tasks processed on a given resource, and is trivially
satisfied for all other tasks. Therefore, the sum of f` provides the total number of allocated
resources, and constraint (6.3) enforces that no more than P resources are used in the
schedule. Reciprocally, in any valid solution that uses no more than P resources, there
exists an assignment of f` variables such that

∑
` f` ≤ P , i.e. the assignment where f` = 1

for the task with the smallest index processed on the resource and 0 for all other tasks.

In addition, we consider only schedules where forward tasks TL+2−` for ` ≤ L + 1 are
placed on the same resource as their respective backward tasks TL+`+1, so we add the
following equation to the Linear Program

∀` ≤ L+ 1, zL+2−`,L+`+1 = 1. (6.4)

6.2.2 Ordering of Computational Tasks

Let us now consider tasks that are processed on the same resource. In order to enforce that
two tasks processed on the same resource cannot overlap, we introduce a set of variables
w`,`′ and the following equations, valid for all ` 6= `′:

τ` − τ`′ +K(1− z`,`′ + w`,`′) ≥ d`′ , (6.5)
τ`′ − τ` +K(2− z`,`′ − w`,`′) ≥ d`, (6.6)
w`,`′ ≤ z`,`′ . (6.7)

As explained above, we use K throughout the proofs, in order to define a condition
that should be valid as soon as a boolean variable x is equal to 1. The general idea is to
use (1− x)K in the equation as follows: if x = 1, then (1− x)K = 0 and the rest of the
condition must be satisfied. Conversely, if x = 0 then (1−x)K is significantly larger than
the other terms and the condition is automatically satisfied, regardless of the value of the
other variables. An example of the use of this technique can be found below in Lemma 12.
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Lemma 12. Constraints (6.5)-(6.7) ensure the following:
• If T` and T`′ are assigned to the same resource, then either T`′ starts after the end
of T` (and w`,`′ = 1), or T` starts after the end of T`′ (and w`,`′ = 0).
• If T` and T`′ are not assigned to the same resource, then w`,`′ = 0.

Доказательство. Let us assume that T` and T`′ are assigned to the same resource. Then,
by definition, z`,`′ = 1 and we obtain

τ` − τ`′ +Kw`,`′ ≥ d`′ ,

τ`′ − τ` +K(1− w`,`′) ≥ d`

and w`,`′ ≤ 1.

In turn, w`,`′ = 1 implies τ`− τ`′ +K ≥ d`′ and τ`′ ≥ τ` + d`. The first constraint is always
true since K is large and the second constraint implies that T`′ starts after the end of T`.
The proof for w`,`′ = 0 is symmetric and is omitted here.

Then, let us assume that T` and T`′ are not assigned to the same resource. Then, by
definition, z`,`′ = 0 and we obtain

τ` − τ`′ +K(1 + w`,`′) ≥ d`′ ,

τ`′ − τ` +K(2− w`,`′) ≥ d`

and w`,`′ ≤ 0.

These three constraints are compatible since the first two are always true independently
of the value of w`,`′ , by definition of K, and the last one enforces w`,`′ = 0.

6.2.3 Ordering of Communication Tasks

If tasks T` and T`+1 are not processed on the same resource, a communication should take
place for the output of T`. We recall that a` denotes the data (either an activation or a
gradient) computed by T` and needed by T`+1. In order to schedule these communications,
we define a new set of variables z̃`,`′ , which play an analogous role to z`,`′ for communication
tasks. More precisely, we want z̃`,`′ = 1 if the communications of a` and a`′ share the same
communication link, and z̃`,`′ = 0 otherwise. We prove that this property is enforced by
the following equations, for all ` 6= `′.

Lemma 13. The following equations define z̃`,`′ through z`,`′, so that z̃`,`′ = 1 if and only
if T c` and T c`′ occupy the same communication link and, therefore, there exist exactly two
distinct processors that execute T`, T`+1, T`′ and T`′+1, so that tasks T` and T`+1 are placed
on the different resources and the same for T`′ and T`′+1:

z̃`,`′ ≥ z`,`′ + z`+1,`′+1 − z`,`+1 − 1 (6.8)
z̃`,`′ ≥ z`,`′+1 + z`+1,`′ − z`,`+1 − 1, (6.9)
z̃`,`′ ≤ 1− z`,`+1 (6.10)
z̃`,`′ ≤ 1− z`′,`′+1 (6.11)
z̃`,`′ ≤ z`,`′ + z`+1,`′ (6.12)
z̃`,`′ ≤ z`,`′+1 + z`+1,`′+1 (6.13)
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Доказательство. Constraints (6.10) and (6.11) ensure that z̃`,`′ = 0 if any of a` or a`′
does not require a communication (because the corresponding tasks are processed on the
same resource). In the following, we assume that both z`,`+1 and z`′,`′+1 are 0 (we need to
communicate both a` and a`′), and we denote by Pi the processor that runs T` and by Pj
the processor that runs T`+1. We consider several cases:
First case: a` and a`′ share the same communication link.

In that case, T`′ must be processed either on Pi or Pj, otherwise the communication
of a`′ occupies another link than (Pi, Pj). Therefore, constraint (6.12) simply becomes
z̃`,`′ ≤ 1. Similarly, T`′+1 must be processed either on Pi or on Pj, so that constraint (6.13)
simply becomes z̃`,`′ ≤ 1.

Since z`,`+1 = 0, constraints (6.8) and (6.9) become

z̃`,`′ ≥ z`,`′ + z`+1,`′+1 − 1,

z̃`,`′ ≥ z`,`′+1 + z`+1,`′ − 1.

Since the communication of a`′ use the link between Pi and Pj, T`′ and T`′+1 must be
processed on these processors. Hence, either T`′ is on Pi (and T`′+1 is on Pj) or T`′ is on
Pj (and T`′+1 is on Pi) and therefore, one of the conditions above enforces z̃`,`′ = 1.
Second case: a` and a`′ do not share the same communication link.

Let us first focus on constraint (6.8). We claim that both z`,`′ and z`+1,`′+1 can not be
1 at the same time. Indeed, this would imply that T` and T`′ are processed on Pi, and
also that T`+1 and T`′+1 are processed on Pj, and thus that a` and a`′ share the same
communication link. Since z`,`+1 = 0, the right hand side of constraint (6.8) is at most
0. Using the same analysis for constraint (6.9), we prove that the first two constraints
simply become z̃`,`′ ≥ 0.

We now prove by contradiction that at least one among constraints (6.12) and (6.13)
enforces z̃`,`′ = 0. Indeed, z`,`′ + z`+1,`′ ≥ 1 implies that T`′ is processed either on Pi or
Pj, and similarly z`,`′+1 + z`+1,`′+1 ≥ 1 implies that T`′+1 is processed either on Pi or Pj.
Since we assume that z`′,`′+1 = 0, having both z`,`′ + z`+1,`′ ≥ 1 and z`,`′+1 + z`+1,`′+1 ≥ 1
is in contradiction with the fact that a` and a`′ do not use the same link.

Therefore, in this second case, the system of constraints enforces z̃`,`′ = 0.

Finally, we can ensure a correct ordering of the communications without overlap in a
way similar to Lemma 12. We introduce binary variables w̃`,`′ together with the following
equations, for all ` 6= `′:

τ̃` − τ̃`′ +K(1− z̃`,`′ + w̃`,`′) ≥ d̃`′ (6.14)

τ̃`′ − τ̃` +K(2− z̃`,`′ − w̃`,`′) ≥ d̃` (6.15)
w̃`,`′ ≤ z̃`,`′ (6.16)

Lemma 14. Constraints (6.8)-(6.16) ensure that:
• z̃`,`′ = 1 if and only if both a` and a`′ need to be communicated and their
communications are assigned to the same link.
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• In that case, either the communication of a`′ starts after the end of the
communication of a` (and w̃`,`′ = 1), or the communication of a` starts after the
end of the communication of a`′ (and w̃`,`′ = 0).
• In the opposite case, w̃`,`′ = 0.

Доказательство. The proof is similar to the proof of Lemma 12, replacing w`,`′ by w̃`,`′
and z`,`′ by z̃`,`′ , and is therefore omitted here.

6.2.4 Period Length

In order to obtain a valid pattern from the variables defined so far, we use without loss
of generality the following conventions: the ending times of all tasks and communications
are between 0 and T , and task T1 starts at time 0:

∀`, 0 ≤ τ` + d` ≤ T (6.17)

∀`, 0 ≤ τ̃` + d̃` ≤ T (6.18)
τ1 = 0 (6.19)

We cannot specify that all starting times should be non-negative: as can be seen on
Figure 6.1, in general the patterns on different processors are not aligned to start at the
same time. So in order to ensure that each resource is occupied for a duration at most T ,
we include the following constraints that state that the distance between the ending time
and starting time of two tasks assigned to the same resource is at most T :

∀` 6= `′, T ≥ τ` + d` − τ`′ −K(1− z`,`′) (6.20)

∀` 6= `′, T ≥ τ̃` + d̃` − τ̃`′ −K(1− z̃`,`′) (6.21)

Lemma 15. Without considering memory constraints, from any valid 1-periodic pattern
S1, we can obtain values for all variables T , τ`, z`,`′, f`, τ̃`, z̃`,`′, w`,′ and w̃`,`′ that respect
equations (6.1)-(6.21), and vice-versa.

Доказательство. If all variables fulfill the constraints (6.1)-(6.21), then Lemmas 11, 12
and 14 ensure that the pattern built from the values of τ` and z`,`′ is a valid pattern.
Furthermore, constraint (6.20) ensures that for any ` and `′ such that z`,`′ = 1, T is no
smaller than τ` + d` − τ`′ and τ`′ + d`′ − τ`, depending on which task starts first. Since
a forward task is always allocated to the same resource as the respective backward task
(Constraint (6.4)), all used resources process at least two tasks. The same can be said for
communication tasks, which ensures that T is a valid period for the constructed pattern.

Reciprocally, let us consider any valid pattern, and assign values to all the variables
according to this pattern. As discussed above, this can be done in a way that respects
constraints (6.17)-(6.19) without loss of generality. The above lemmas ensure that
constraints (6.1)-(6.16) are satisfied. Since T is a valid period, constraints (6.20), (6.21)
and (6.18) are satisfied for any ` and `′ such that z`,`′ = 1. Finally, if z`,`′ = 0, these
constraints are automatically satisfied since K is large.
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6.3 Memory Constraints

In this section, we focus on the memory usage induced by the pattern described in previous
section. The memory needs have different origins:
• If two successive tasks T` and T`+1 are processed on the same resource, the output

of T` needs to be stored in memory until it is processed by T`+1. This is addressed
in Section 6.3.1.
• The main point of pipelining is that during one period, the forward task TL−`+2

and its associated backward task TL+`+1 for 1 ≥ ` ≥ L + 1 do not operate on the
same mini-batch. This implies that the processor in charge of these operations must
store several activations produced by the forward task and not yet consumed by the
corresponding backward task. This will be addressed in Section 6.3.2.
• Processors need to store the weights of the layers that they process. This will be

addressed in Section 6.3.3.
• When T`′−1 and T`′ are not processed on the same resource, a`′−1 is received by

the resource in charge of T`′ and is kept in memory until the next T`′ is performed.
Similarly, when T`′ and T`′+1 are not processed on the same resource, a`′ must be
sent by the resource in charge of T`′ and is kept in memory until the end of associated
communication. This will be addressed in Section 6.3.4.

In order to avoid symmetries in the formulation of the Integer Linear Program, we
provide a formulation based on tasks and task collocations rather than on processing
resources. We therefore compute, for each task T`, the amount of memory required at
the instant when T` is performed respectively by the storage of models M(mod)

` , by direct
dependencies M(dir)

` , by local activations M(act)
` and by external activations and gradients

M(ext)
` .

6.3.1 Memory for Direct Dependencies

As depicted on Figure 6.1, the output a`′ of a forward task T`′ is used twice: first by
the next forward task T`′+1, then by the corresponding backward task T2L−`′+2. In this
section, we account for the memory consumption of a`′ from T`′ until T`′+1; the memory
consumption until the backward task will be accounted for in Section 6.3.2.

To evaluate M(dir)
` , let us assume that tasks `, `′ and `′+ 1 are processed on the same

resource. We are interested in the following event: the output produced by T`′ occupies
the memory of the resource when task T` is performed. This event occurs in three possible
situations (see Figure 6.2):
• T`′ is processed before T`, and T` before T`′+1;
• T` is processed before T`′+1, and T`′+1 before T`′ ;
• T`′+1 is processed before T`′ , and T`′ before T`.
We therefore need to consider three variables: w`′,`, w`,`′+1 and w`′+1,`′ . Obviously, all

three variables cannot be equal to one within a pattern, and the list above shows that
the event occurs if and only if exactly two of these variables are equal to one. We thus
introduce a binary variable o`,`′ for all ` and `′ with ` 6= `′ and ` 6= `′+1, with the following
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t

Case 1 T`′ T` T`′+1

t

Case 2 T` T`′+1 T`′

t

Case 3 T`′+1 T`′ T`

Рис. 6.2: Different Cases for direct dependencies, where T`, T`′ and T`′+1 are on the same
processor.

constraint:
o`,`′ ≥ w`′,` + w`,`′+1 + w`′+1,`′ − 1 (6.22)

We obtain the following lemma:

Lemma 16. Consider any valid pattern according to Lemma 15, and assume that variables
o`,`′ satisfy Constraint (6.22).

If the output produced by T`′ is present in memory as a direct dependency when task
T` is performed, then o`,`′ ≥ 1. The total amount of memory that is occupied by direct
dependencies is at most M(dir)

` =
∑2L+2

`′=1 o`,`′a`′.

6.3.2 Memory Required for Local Activations

Let us now consider the memory required by the storage of local activations, between
the instant when they are computed by a forward task and the instant when they are
consumed by the associated backward task. To achieve this, we need to analyze precisely
the shifts in indices of the mini-batches that are processed during the same period.

We observe that two consecutive tasks in the task graph, either (T`, T c` ) or (T c` ,T`+1),
can operate on the same mini-batch during a given period if they appear in the proper
order, i.e. T` before T c` or T c` before T`+1. Otherwise, they must operate on different
mini-batches. An example showing the path of different mini-batches for a simple case of
two processors and no communication is shown on Figure 6.3.

When two successive tasks are too far apart in the pattern, it can even happen (in
rare cases) that they have to process mini-batches with an index shift of two. Figure 6.4
shows such a case, which happens if and only if the difference between the end time of T`
and the start time of T`+1 is more than T .

To evaluate the shifts of indices in the pattern, we introduce new boolean variables
associated to task `: v` and v′` are used to determine the shift between T` and T c` , where
v` is 1 if the shift is at least 1, and v′` is 1 if the shift is 2. Variables ṽ` and ṽ′` have the
same meaning for the shift between T c` and T`+1. For all 1 ≤ ` ≤ 2L + 2, we include the
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Рис. 6.3: Example schedule (without communications) with paths of different
mini-batches. The superscripts indicate the batch indices. Black arrows point from the
end of a task T` to the start of T`+1, and show the value of the associated v` variable.
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Рис. 6.4: Example schedule where if task T` processes mini-batch i during the period, T`+1

needs to process mini-batch i − 2. Tasks indicated with dashed lines belong to different
periods (the previous one for T`, the next one for T`+1).
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following constraints:

τ` + d` − τ̃` +K(1− v`) ≥ 0 (6.23)
τ̃` − (τ` + d`) +Kv` ≥ 0 (6.24)

τ̃` + d̃` − τ`+1 +K(1− ṽ`) ≥ 0 (6.25)

τ`+1 − (τ̃` + d̃`) +Kṽ` ≥ 0 (6.26)
τ` + d` − (τ̃` + T ) + 2K(1− v′`) ≥ 0 (6.27)

τ̃` + T − (τ` + d`) + 2Kv′` ≥ 0 (6.28)

τ̃` + d̃` − (τ`+1 + T ) + 2K(1− ṽ′`) ≥ 0 (6.29)

τ`+1 + T − (τ̃` + d̃`) + 2Kṽ′` ≥ 0 (6.30)

Lemma 17. Consider any valid pattern according to Lemma 15, and assume that variables
v`, v′`, ṽ` and ṽ′` satisfy Constraints (6.23)-(6.30).

If i denotes the mini-batch performed by TL+1, then for any 1 ≤ ` ≤ L + 1, the index
of the mini-batch performed by T` is at least i+

∑L
m=`(vm + ṽm + v′m + ṽ′m), and the index

of the mini-batch performed by T2L+3−` is at most i−
∑2L+2−`

m=L+1(vm + ṽm + v′m + ṽ′m).
Hence, the number of activations of type a`−1 that needs to be stored at the beginning

of the period of this processor is
∑2L+2−`

m=` vm + ṽm + v′m + ṽ′m.

Доказательство. Similarly to Lemma 12, we can show using the definition ofK proposed
above that constraints (6.23)-(6.26) ensure that for any `, v` = 1 if τ̃` < τ` + d`, and
v` = 0 otherwise; likewise, ṽ` = 1 if τ`+1 < τ̃` + d̃`, and ṽ` = 0 otherwise. Additionally,
constraints (6.27)-(6.30) ensure that if τ̃`+T < τ`+d`, then v′` = 1, and v′` = 0 otherwise;
if τ`+1 + T < τ̃` + d̃`, then ṽ′` = 1, and ṽ′` = 0 otherwise.

The claimed result can be proved by induction. For any 1 ≤ ` ≤ L+ 1, let us assume
that the index of the mini-batch performed by T`+1 is at least I = i+

∑L
m=`+1 vm + ṽm +

v′m + ṽ′m.
The ordering of τ̃` and τ`+1 can yield three possible cases:
• If τ̃` + d̃` ≤ τ`+1, then ṽ` = ṽ′` = 0 and both computation T`+1 and communication
T c` can process the same mini-batch in the same period: T c` can process mini-batch
I.
• If τ̃`+ d̃` > τ`+1 and τ̃`+ d̃` ≤ τ`+1 +T , then ṽ` = 1 and ṽ′` = 0. In this case, similar to

the one shown on Figure 6.3 with tasks T1 and T2, T c` cannot process mini-batch I:
if it does, the result arrives too late and task T`+1 is not able to process mini-batch
I. However the T c` can process mini-batch I + 1.
• If τ̃` + d̃` > τ`+1 + T , then ṽ` = 1 and ṽ′` = 1. In that case, similar to the one shown

on Figure 6.4, T c` can only process mini-batch I + 2.
Therefore, in all cases the index of the mini-batch processed by T c` is I + ṽ` + ṽ′`.
The same reasoning can be applied to the possible index shift between T` and T c` , this

time involving v` and v′`. We thus prove that the index of the mini-batch performed by T`
during the current period is at least I + ṽ` + ṽ′` + v` + v′` = i+

∑L
m=`(vm + ṽm + v′m + ṽ′m),

which achieves the proof for forward tasks.
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The proof for backward tasks is similar and is omitted here.

As mentioned above, we are interested in M(act)
` , which is the memory consumed by the

set of activations at the time when task T` is performed, on the processor that computes
T`. We thus introduce integer variables σ`,′`, equal to the number of activations of type
a`′−1 stored on the processor that computes T`, which satisfy the following constraints:

∀`′, ` σ`,`′ ≤ 8(L+ 1)z`,`′ (6.31)

∀`′, ` σ`,`′ ≥
2L+2−`′∑
m=`′

(vm + v′m + ṽm + ṽ′m)− 8(L+ 1)(1− z`,`′) (6.32)

We use 8(L + 1) as an upper bound on σ`,`′ for any `, `′. It roughly corresponds to the
situation when all vm, v′m, ṽm, ṽ′m are equal to 1 for all m : 1 ≤ m ≤ 2L+ 1.

Since Lemma 17 only provides the number of activations at the beginning of the
period, we also need to account for the following events that may take place between the
beginning of the period and instant τ` (i) a forward task T`′ , `

′ ≤ L + 1 is computed,
inducing an extra activation a`′−1 in memory, and (ii) a backward task T2L−`′+1, `

′ ≤ L
is computed, removing an activation a`′−1 from memory.

Lemma 18. Consider any valid pattern according to Lemma 15, satisfying
Constraints (6.23)-(6.32).

The amount of memory occupied when task T` is performed by activations required by
future backward tasks is M(act)

` :

M(act)
` = a`−1 + a` +

L+1∑
`′=1

(σ`,`′ + w`′,` − w2L+3−`′,`)a`′−1.

Доказательство. On the one hand, if `′ is on the same processor as `, then σ`,`′ is at
least the number of replicas for a layer `′ derived in Lemma 17, otherwise σ`,`′ = 0. Indeed,
if T` and T`′ share the same resource then z`′,` = 1 and since the number of replicas is less
than 8(L + 1) for any layer, σ`,`′ ≥

∑2L+2−`′
m=`′ (vm + v′m + ṽm + ṽ′m). On the other hand,

when T` and T`′ are on different resources z`′,` = 0 and σ`′,` ≤ 0.
According to Lemma 17 the value

∑2L+2−`′
m=`′ (vm+v′m+ ṽm+ ṽ′m) represents the number

of activations a`′−1 stored in the beginning of the period, but this number may vary
within the period: it increases by one after each task T`′ (F`′) and it decreases by one
after task T2L+3−`′ (B`′). Thus, the last term in the equation for M(act)

` corresponds to
all activations that have been stored before task T` and the rest represents the memory
needed to perform task T`.

6.3.3 Memory Required for the Models

If there are more than one active mini-batch in the pipeline then it is required to store
several copies of the model to compute valid gradients (in order to process one mini-batch,
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forward F` and backward B` for any layer ` should use the same weights). In PipeDream,
for instance, they suggest using as much copies of the weights as there are concurrent
mini-batches in pipeline. As it was shown in [79], having just two models stored is enough
to perform training. Indeed, we need one model to execute forward propagation and one
model to be updated. These two models should constantly exchange their "roles"to make
training feasible. For example, for the case illustrated in Figure 4.8, one may use two
versions of model weights W 1 and W 2 in the following way: mini-batches 0, 1, 2 are
performed with W 1 (W 1 is active and W 2 is passive), mini-batches 3, 4, 5 are performed
withW 2 (nowW 2 is active andW 1 is passive), mini-batches 6, 7, 8 are performed withW 1

and so on. The gradients from mini-batches 0, 1, 2 are accumulated, W 1 is updated after
the backward pass on mini-batch 2 by applying the aggregated gradient to W 2; next, the
gradients from mini-batches 3, 4, 5 are accumulated, W 2 is updated after the backward
pass on mini-batch 5 by applying the aggregated gradient to W 1... For the general case, if
nca1 = n, two weight versions switch their modes (from active to passive and vice versa)
after each n-th iteration, furthermore, at the end of each n-th backward the active weight
version is updated by applying its gradients to the passive weight version.

Since the computed gradients have the same shape as model weights, they require the
same amount of memory. Furthermore, as it was observed also in [86], depending on the
optimizer and if mixed precision is used in the training, the equivalent of C model copies
should be stored in the memory. The minimal number of copies is C = 3 (2 slots for
models in pipelining and 1 slot for gradients), though it may be higher than 10 (in [86]
without pipelining C = 16). Thus,

M(mod)
` = C

∑
`,`′≤L+1

z`,`′W`′ . (6.33)

Further in Section 6.5, we fix C = 3, which corresponds to the minimal required
storage space.

6.3.4 Memory Buffer for Communications

Another type of memory usage on a processor Pi is the buffer memory to store activations
or gradients: incoming ones, that were computed by another processor and then sent to
Pi, or outgoing ones, that were computed on Pi and need to be sent away.

Assumptions 5. We assume that a buffer is allocated for each incoming and outgoing
data for the whole duration of the execution and they are not shared between different
data.

We introduce binary variables b`,`′ for all ` and `′, together with the following
constraints:

b`,`′ ≥ z`,`′ − z`,`′+1 (6.34)
b`,`′ ≥ z`,`′+1 − z`,`′ (6.35)

183



6.4. Final Integer Linear Program

Lemma 19. Consider any valid pattern according to Lemma 15, satisfying
Constraints (6.34) and (6.35). If a buffer is required for a`′ on the processor that computes
T`, then b`,`′ = 1. Hence, the memory reserved for buffers at the start of task T` is at most
M(buf)

` =
∑2L+2

`′=1 b`,`′a`′.

Доказательство. Constraint (6.34) ensures that b`,`′ ≥ 1 if there exists a buffer for a`′ ,
when it is sent out from processor Pi, while constraint (6.35) checks if we need a buffer
for a`′ for processor Pi to receive it. Thus, total memory reserved for buffers on processor
Pi with T` can be found by summing b`,`′a`′ for all `′, which completes the proof.

6.4 Final Integer Linear Program

We can now define the complete Linear Program for our problem: the objective is to
minimize T , subject to Contraints (6.1)-(6.35), together with

∀`, M(mod)
` + M(act)

` + M(dir)
` + M(buf)

` ≤M (6.36)
∀`, T, τ`, τ̃` ∈ R
∀`, `′ σ`,`′ ∈ Z
∀`, f`, v`, v

′
`, ṽ`, ṽ

′
` ∈ {0, 1}

∀`, `′, z`,`′ , w`,`′ , z̃`,`′ , w̃`,`′ , o`,`′ , b`,`′ ∈ {0, 1}

Theorem 19. The solution of the above Integer Linear Program provides an optimal
solution to PipeS1&A(L,M,P, β) under Assumptions 5

Доказательство. Lemma 15 shows that with the help of the ILP we can find a
1-periodic schedule with a minimal period T when memory is not limited (M → ∞),
while Lemmas 16-19 introduce the variables that describe memory consumption on each
processor at any moment. Therefore, adding Constraint (6.36) guarantees that the ILP
finds solutions that satisfy memory limit. Bringing everything together leads to the result
of the theorem.

6.5 Experimental Results

In this section, we present simulation results obtained for different state-of-the-art ResNet
neural networks of size 18, 34 and 50, which are widely used for a large range of tasks. In
order to perform these simulations, we first perform the profiling of the neural networks to
measure the durations and memory costs of different operations involved in the training.
As mentioned in Section 6.1, this work only considers networks in the shape of adjoint
chains as depicted in Figure 4.7. In the case of ResNet networks, a simple linearization
approach is enough to transform the neural network computational graphs into chains. It
was previously discussed in Chapter 2
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We implemented the ILP from Section 6.4 using the CPLEX solver [80]. In all our
experiments, the execution time was limited to one hour. In case there is still a gap after
one hour, we keep the best current solution computed by the solver. For ResNet-18 up to
ResNet-50, the solutions produced were of very good quality (see the discussion below),
though the solver was unable to prove its optimality. The results obtained are therefore
heuristic in nature.

This time limit is reasonable, because the computed solution can be used during
the entire training phase associated with a given image and mini-batch sizes, a given
computing platform and a given network. It is common for the training to last several
hours/days on a parallel platform, which makes this approach acceptable.

To evaluate the quality of the solutions produced by the integer linear program, we
compare the results obtained with those of PipeDream [78], which is the state of the
art solution for Pipelined Model Parallelism. In practice, PipeDream takes as input
the memory limit and the characteristics of the platform, computes the number of
mini-batches to be inserted in the pipeline, called NOAM, and finds a partitioning of
the network that is used for model parallelism. PipeDream then uses a greedy 1F1B
strategy to schedule tasks. More details about PipeDream limitations can be found in
Chapter 5.

Despite these limitations, PipeDream can be used to produce a large number of
solutions that can be used to build valid solutions that fulfill the memory constraints. We
use this approach in the following experiments. For a large number of possible memory
targets and possible NOAM values, we produce the allocations computed by PipeDream,
simulate the execution of the eager scheduling strategy for 500 mini-batches, and we
evaluate a posteriori the actual memory consumption and the average length of the period
that can be obtained. We thus obtain a set of (memory, period) pairs that correspond
to feasible solutions. Our observations indicate that the solution produced by PipeDream
generally consumes much more memory than the target value. Nevertheless, since the
execution time of PipeDream is small, obtaining a set of good valid solutions through
this “exhaustive” approach is still practical. In Figures 6.5 to 6.11, blue dots correspond
to the actual memory consumption and observed period of solutions computed with this
approach. The red dots correspond to the best solutions found by CPLEX for our ILP
after one hour, for different values of the memory limit.

First of all, it can be observed that in case of small networks the solutions returned by
our ILP are almost always better than the solutions returned by the exhaustive approach
based on PipeDream, even if optimality cannot be guaranteed. It can be observed that
the ILP is able to find better solutions both in cases where memory is scarce (Figures 6.6
and 6.10) and where memory is abundant (Figures 6.5 and 6.8). When memory is
abundant, the ability of the ILP to use non-contiguous allocations helps to achieve better
load-balancing. When memory is scarce, the precise scheduling formulation of the ILP
leads to better solutions by reducing memory costs. The solutions produced by the ILP
are therefore of very high quality when the size of the neural network is not too large.

There are two examples where the ILP gives worse results than PipeDream. The first
example is Figure 6.7, where in the case of a memory size of 1 GB, PipeDream finds
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Рис. 6.5: Results with ResNet-18 and 4 processors
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Рис. 6.6: Results with ResNet-18 and 8 processors

solutions that strictly dominate those of the ILP. The second example is Figure 6.11,
where the neural network is too large and heavy and the ILP fails to find a better solution
than PipeDream within the time limit. Despite that, the ILP still succeeds to find some
solutions when memory is low, while PipeDream cannot train if available memory is less
than 6 GB. On larger neural networks such as ResNet-101 or DenseNet-121 (of respective
depths 101 and 121), one hour of execution is sometimes not enough to find integral
solutions of good quality. In this case, it is necessary to consider approximate approaches
that could find a good valid solution in a reasonable time. To address the large DNNs, we
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Рис. 6.7: Results with ResNet-34 and 4 processors

Рис. 6.8: Results with ResNet-34 and 8 processors

therefore propose MadPipe, a tool based on dynamic programming, in Chapter 7.

6.6 Conclusion

In this chapter, we consider the problem of pipelined model parallelism. Following the ideas
of the previous chapter (Chapter 5), where we observed that non-contiguous allocations
may significantly improve the throughput of the training, we want to find the solutions
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Рис. 6.9: Results with ResNet-50 and 4 processors
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Рис. 6.10: Results with ResNet-50 and 8 processors

that exploit this idea. Nevertheless, the combination of Pipelining and Model Parallelism
requires to store more activations at the nodes, which in turn causes memory problems.
We propose a very fine analysis of the memory costs induced by this combination. We
integrate these memory considerations together with non-contiguous allocations in the
ILP. Thus, our ILP helps to find a general allocation of layers that explicitly takes actual
memory costs into account, contrary to what is done in PipeDream.

Through experiments on medium size networks (ResNet-18 to ResNet-50), we show
that the ILP is able to compute in reasonable time solutions that are better than
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Рис. 6.11: Results with ResNet-50 and 8 processors

those computed by PipeDream, by both providing good non-contiguous allocations and
good scheduling strategies. Nevertheless, the computing cost induced by the integer
programming approach becomes too large for very deep neural networks, and therefore,
new heuristic solutions are required in this case. We consider one of such heuristics in
Chapter 7.
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MadPipe

We showed in the previous chapter that problem PipeS1&A(L,M,P, β) can be solved
optimally with Integer Linear Programming. However, solving the ILP may take
exponential time, therefore it may require hours of execution to achieve the optimal
solutions even for small size problems. Therefore, it is important to set a time limit
for the ILP execution in order to obtain the solutions in the reasonable time. Indeed, the
experiments (see Section 6.5) were done only for small or medium size neural networks
and some results are heuristic in nature as the optimal solutions are not always reached
by the solver within the time limit.

In this chapter, we propose a heuristic MadPipe that is able to find solutions for large
neural networks in polynomial time. This heuristic is based on dynamic programming for
finding non-contiguous allocations under assumption that there is one processor working
with several stages, while the remaining processors process only one stage. Section 7.1
presents the equations for the dynamic program, whereas Section 7.2 describes how to use
the ILP to schedule MadPipe produced allocation. Finally, we demonstrate that MadPipe
allocations can significantly outperform PipeDream allocations even when PipeDream
solutions are scheduled with the optimal 1-periodic schedule 1F1B∗.

7.1 Building a Non-Contiguous Allocation

In this section, we present the first part of the MadPipe algorithm: a dynamic
programming algorithm to build a non-contiguous allocation. However, we do not consider
general allocations, because solving the corresponding problem (as is done with an
Integer Linear Program in Chapter 6) is proved to be NP-complete in the strong sense
(Theorem 13 in Chapter 5 Section 5.1). Instead, we focus on a specific case: we look for
allocations in which every processor is allocated for only one stage (like in a contiguous
allocation, we call these processors normal), except for one special processor that may
receive any number of stages. As shown in Section 7.3, this is enough to significantly
improve load balancing.

A non-contiguous allocation AnC is a partition of the layers into more than P stages:
some processors (in our case, the special processor) can be designated for several stages.
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AnC also specifies an assignment of stages to processors. We associate the period to each
such allocation that can be achieve if memory constraints were ignored. Thus, it can be
computed as the total load of the most loaded resource (either a GPU or a communication
link).

In the following, we denote U(i, j) =
∑j

`=i uF`
+ uB`

the total computational cost
of a stage s(i, j) that starts at the layer i and ends at the layer j, and C(j) =

aj+δj
β

the communication time of its output (stage s(i, j) communicates the output of Fj
and the input of Bj with the next stage). Further, we use the discussion about 1F1B∗

(see Chapter 5 Section 5.2.1) to accurately estimate the memory usage for all normal
processors, based on the total computation time of layers further down the chain. The
1F1B∗ algorithm requires a target period, so our dynamic programming method uses
a target T̂ as input, and computes the best possible period for an allocation in which
memory needs are computed assuming a period T̂ .

7.1.1 Estimating Memory Usage

Let us assume that layers i to j are assigned to a normal processor, while nca` = g for
any ` : i ≤ ` ≤ j. The memory usage on this processor isM(i, j, g) =

∑j
`=i(CW`+ga`−1)+

ai−1 + aj + δi−1 + δj, where CW` represents the memory usage of the model parameters
(we set C = 3 as in Chapter 6 Section 6.3 ), ga`−1 corresponds to the activations, and
ai−1 + aj + δi−1 + δj accounts for the communication buffers (if i = 1 or j = L, the
corresponding term should be removed since no communication takes place). To compute
the value g, assume that we are given a lower bound V on the delay between the execution
of Fj on some mini-batch and the execution of Bj on the same mini-batch. Then these
layers can be scheduled with g activations in memory if and only if V + U(i, j) ≤ g · T̂ .
Hence, we can compute the number of activations to be kept in memory for layers i to
j as g(i, j, V ) =

⌈
V+U(i,j)

T̂

⌉
, and the memory usage is given by M(i, j, g(i, j, V )). Note

that this estimation of g corresponds to computing the group number in 1F1B∗ (see
Algortithm 6 in Chapter 5 Section 5.2) and it is based on the fact that a layer ` of group
g has nca1F1B∗

` = g.
For the special processor however, estimating the memory usage is more difficult. We

can use the same formula g(i, j, V ) to compute the number of activations to be kept in
memory for each stage assigned to the special processor. However, as can be seen on
Figure 7.1, for a given allocation on this processor, the memory peak depends on how
the different stages are scheduled. Specifically, assume that several stages are assigned to
the special processor, where stage sk is part of group g(sk) (in this context function g(·)
returns a group number of a stage). If all forwards of stages are performed in sequence
followed by all backwards, then after the end of the last forward operation, each stage sk
on a special processor (without loss of generality, let us assume that it is processor P )
stores g(sk) activations, for a total memory peak of

M(act)
worst =

∑
sk on P

g(sk)
∑
`∈sk

a`−1.

192



Глава 7. MadPipe

It corresponds to the case illustrated in Figure 7.1a.
Alternatively, if the backward operation of each stage is performed just after its

forward operation, then after any backward the memory occupied by activations measures∑
sk on P (g(sk) − 1)

∑
`∈sk a`−1. Executing forward Fsk′ of some stage sk′ should increase

the number of activations stored for stage sk′ up to g(sk′). Thus, the overall memory peak
can be found by taking the maximum value among all sk′ on processor P :

M(act)
best = max

sk′ on P

g(sk′)
∑
`∈sk′

a`−1 +
∑
sk 6=sk′
sk on P

(g(sk)− 1)
∑
`∈sk

a`−1

 .

This situation is depicted in Figure 7.1b.
Many more ways of interleaving the operations can take place, and determining which

ones are compatible with the schedule of the other processors is difficult. The true value
ofM(act) lies betweenM(act)

best andM(act)
worst . In any case, at least g(sk)− 1 activations for

each stage sk need to be stored at all times. For this reason, in this first part of MadPipe,
we underestimate the memory requirement of the special processor by considering that
it requires M(i, j, g − 1), and rely on a modified version of the ILP given in Chapter 6
Section 6.4 to compute a feasible schedule that satisfies the memory constraints in the
second part of MadPipe (see Section 7.2).

F h`
` F

h`′
`′ B

h`′−g`′+1
`′ Bh`−g`+1

`P

(a) Worst case. Memory needed to store the activations: g`a`−1 + g`′a`′−1 (reached
between F`′ and B`′).

F h`
` Bh`−g`+1

` F
h`′
`′ B

h`′−g`′+1
`′P

(b) Best case. Memory needed to store the activations:
max{g`a`−1 + (g`′ − 1)a`′−1, (g` − 1)a`−1 + g`′a`′−1} (reached either after F` or after F`′).

Рис. 7.1: Two schedules with different memory peaks with two layers assigned on the
special processor: layer ` with index shift h` and group g`, layer `′ with index shift h`′ and
group g`′ .

7.1.2 Dynamic Programming Derivations

To specify our dynamic programming algorithm, we fix a target value T̂ , and we define
T (j, p, tP ,mP , V ) as the smallest period of an allocation of the first j layers on p normal
processors that fulfills the above memory constraints, where (i) the delay between the end
of Fj and the start of the corresponding Bj on the same mini-batch is at least V , and
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(ii) assuming that the special processor has already been allocated for some layers that
induce a computational time tP and memory usage mP .

Consider any such allocation of the first j layers. The last layer j is part of some stage
starting at layer i, with i ≤ j. From i, j and V we can compute a lower bound V ′ on
the time between the end of Fi−1 and the start of Bi−1, by mimicking the group-making
process of the 1F1B∗ procedure (Algorithm 6 of Chapter 5). Denote by g0 =

⌈
V

T̂

⌉
the

group number of the previously considered stage. Layers i to j can use the same group if⌈
V+U(i,j)

T̂

⌉
= g0, in which case the delay between the end of the communication of ai−1 and

the start of the communication of δi−1 is V + U(i, j). Otherwise, it is necessary to start
a new group g0 + 1, which implies that this delay is g0 · T̂ + U(i, j). The same reasoning
applies to the group number of the communication of ai−1 and δi−1. By introducing the
notation

x⊕ y =

x+ y if
⌈
x

T̂

⌉
=
⌈
x+y

T̂

⌉
T̂ ·
⌈
x

T̂

⌉
+ y otherwise,

we obtain V ′ = (V ⊕ U(i, j))⊕ C(i− 1).
The resulting stage made of layers i, . . . , j can then be assigned either to a normal

processor, or to the special one. On the one hand, assigning it to a normal processor is
only feasible if M(i, j, g(i, j, V )) ≤ M , and it means one less processor is available to
allocate all layers from 0 to i− 1. Hence this yields a period

TN(i) = max(U(i, j), C(i− 1), T (i− 1, p− 1, tP ,mP , V
′)).

On the other hand, assigning this stage to the special processor induces a load t′P =
tP +U(i, j), and a lower bound on the memory usage of m′P = mP +M(i, j, g(i, j, V )−1).
This is only feasible if m′P ≤M , and yields a period of

TS(i) = max(t′P , C(i− 1), T (i− 1, p, t′P ,m
′
P , V

′)).

Putting it all together, the value of T (j, p, tP ,mP , V ) can be determined as the best
possible choice:

T (j, p, tP ,mP , V ) = min

(
min
i≤j

TN(i),min
i≤j

TS(i)

)
,

where for each case we only consider the feasible values of i as defined above. This allows
us to recursively compute all values of T (·). Indeed, we can easily compute the values
of T corresponding to j = 0 or p = 0: if there are no more layers to allocate, then
T (0, p, tP ,mP , V ) = tP ; if no normal processor is available, then all layers must be assigned
to the special processor, which is feasible if mP +M(1, j, g(1, j, V )− 1) ≤ M and yields
T (j, 0, tP ,mP , V ) = U(1, j) + tP .

We thus obtain the following allocation algorithm, called MadPipe-DP : recursively
compute all possible values for T (j, p, tP ,mP , V ) to obtain T (L, P − 1, 0, 0, 0), which is
equal to the period of the resulting allocation. Then, the decisions along the path that
leads to this result (the values i and the choices between TN and TS) provide a partitioning
of the layers into stages, and an assignment of each stage either to a normal or to the
special processor.
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7.1.3 Find the Correct Value for T̂

The above MadPipe-DP has two interesting properties: first, the resulting period T =
MadPipe-DP(T̂ ) is a non-increasing function of T̂ , since a higher value of T̂ helps to store
fewer activations and thus makes the memory constraints less restrictive. Second, for all
T̂ , scheduling the allocation produced by MadPipe-DP requires a period at least T for the
load balance, and at least T̂ to ensure that the memory constraints are fulfilled. Hence,
we want to find the value T̂ ∗ = arg minT̂ max(MadPipe-DP(T̂ ), T̂ ).

Both arguments are monotonic in opposite directions, and we can therefore use a
modified binary search algorithm to find T̂ ∗ (see Algorithm 8). At each step, if T =

MadPipe-DP(T̂ ), we know that min(T, T̂ ) is a lower bound for T̂ ∗, and max(T, T̂ ) is an
upper bound. We perform this algorithm for a fixed number of iterations. In practice,
K = 10 iterations are enough to obtain a good solution.

Algorithm 8 First phase of MadPipe: build an allocation
Require: K (number of iterations)
1: lb← U(1, L)/P
2: ub← U(1, L) +

∑L
i=1C(i)

3: T̂1 ← lb
4: for i = 1, . . . , K do
5: Ti ← MadPipe-DP(T̂i)

6: T̃i ← max{Ti, T̂i}
7: lb← max{lb,min(Ti, T̂i)}
8: ub← min{ub, T̃i}
9: T̂i+1 ← (lb + ub)/2

return mini T̃i and the associated allocation

7.2 Scheduling with ILP

As discussed above, it might not be possible to schedule the allocation returned by
Algorithm 8 within the expected period because of the approximation used to estimate the
memory usage of the special processor. In order to obtain a valid schedule, the second step
of the MadPipe algorithm makes use of the ILP formulation from Chapter 6 Section 6.4
to compute an efficient valid schedule that uses the same partitioning.

Assume that Algorithm 8 returns a solution where the layers are partitioned into
N stages (s1, . . . , sN). Scheduling this partitioning is almost equivalent to scheduling a
(shorter) chain network of length N , where each stage of the partition is considered as a
layer of the transformed chain. Each layer of this new chain is thus more computationally
expensive, with u′Fsk

= U(sk). The equivalence is however not perfect since data
dependencies are different. Indeed, if stage sk contains layers (i, . . . , j), the output of
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its forward operation Fsk is the activation aj produced by layer j. However, the backward
operation Bsk requires (ai−1, . . . , aj−1), and not only aj−1.

We thus define, for each stage sk, the stored activation cost as āsk =
∑

`∈sk a`−1. Our
final algorithm MadPipe uses a modified version of the ILP that uses ask = aj for the
communication between stages and āsk for the memory storage constraints. Since the
number N of stages in the partition returned by the first step is much lower than the
length L of the original chain, the processing time of the ILP on this modified instance is
reasonable in all cases.

7.3 Experimental Results

7.3.1 Simulation Settings

In this section, we present the simulation results obtained for different state-of-the-art
and widely used neural networks. The data necessary to perform the simulations were
obtained by profiling the neural networks to measure the durations and memory costs of
the different operations involved in the training. As mentioned before, all the networks are
considered as adjoint chains as depicted in Figure 4.7. A classic linearization approach,
also used for PipeDream [78], is used to transform the computational graphs of these
neural networks into chains, by greedily grouping layers as necessary (see Chapter 2).

The formulation of MadPipe-DP involves continuous variables tP , mP and V , which
need to be discretized for the implementation. The choice of the granularity for this
discretization is a tradeoff between the precision of the solution and the computational
effort required to obtain it. In these experiments, 11 equally distributed values between 0
andM are used for representingmP , 51 equally distributed values between 0 and U(1, L)+∑L

i=2C(i) for V and 101 values between 0 and U(1, L) for tP . Such a discretization scheme
helps to achieve good results in reasonable time. Overall, the first step of MadPipe takes
several seconds for the smaller networks, and up to 15 minutes for the large networks.
For the second step, the ILP is executed with a one-minute time limit, but finishes earlier
with an optimal solution in most cases. Even though this is significantly slower than the
dynamic program of PipeDream, the improved partitionings lead to an increase in the
overall throughput of the training phase. Indeed, this optimization process is expected
to be executed once for a given network and a given computing platform, whereas the
training phase may involve many runs with the same stages, with an expected runtime of
several hours or even days.

We consider a wide variety of situations. The measurements were performed on the
ResNet-50, ResNet-101, Inception, and DenseNet-121 networks, with large image sizes of
1000×1000 and mini-batch size of 8. Such a setting with large activations makes it difficult
to train these neural networks on a single GPU. The number of GPUs varies from 2 to 8,
and the available memory per GPU varies from M = 3 GB to M = 16 GB. Even though
GPUs have a fixed memory size (usually 16GB), exploring lower memory values helps
to assess the sensitivity of the algorithms to more constrained scenarios. These scenarios
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can be seen as representative of cases with larger batch size or larger image sizes. The
bandwidth measured on our platform is β = 12 GB/s, and we also performed experiments
with β = 24 GB/s to explore the possibilities offered by better networking capabilities.

7.3.2 Comparison with ILP

MadPipe is designed as a heuristic, so, obviously, it cannot find the optimal solution.
However, due to discretization, it is able to find a good load balancing in a polynomial
time, thus it can process large neural networks when the ILP cannot. Here, we compare
the ILP presented in the previous chapter Section 6.4, PipeDream whose behavior is
simulated in the same way as in Chapter 6 Section 6.4 and MadPipe executed as described
in Section 7.3.1.

Figure 7.2 shows the period lengths for a simple neural network ResNet-34. It can
be easily seen that MadPipe behaves as PipeDream for high memory limits and has
higher period than the ILP-based solutions. However, in case of low memory limit (1
GB), MadPipe outperforms the ILP solution. Indeed, it is harder for the ILP to converge
to the optimal solution when memory constraint is too tight.

Figure 7.3 demonstrates another situation. As it was previously observed in Chapter 6
Section 6.5, ResNet-50 with a large image size becomes a hard problem for the ILP to solve,
showing worse performance than PipeDream (due to lack of convergence). Alternatively,
MadPipe reduces the period by 1.5 times with respect to PipeDream, proving that this
heuristic can be an interesting alternative. Further comparison between PipeDream and
MadPipe is provided in the next section for the larger networks that the ILP fails to
process.

7.3.3 Simulation Results

Now, we compare only two scheduling algorithms: PipeDream and MadPipe. PipeDream
does not use the optimal 1-periodic schedule (see Section 5.2.1). In the previous section,
the best period of PipeDream is found by simulating a lot of runs for different NOAM
values. Instead, we can use 1F1B∗ schedule (Chapter 5 Section 5.2.1), which is proved to
be optimal for a fixed allocation (thus we can as well take the one returned by PipeDream).
This allows a fairer comparison between these two approaches and to assess the advantage
of using non-contiguous allocations.

Figures 7.4-7.7 show the simulation results for the ResNet-50, ResNet-101, Inception
and DenseNet-121, representing how period lengths of solutions are affected by different
memory limits. For both PipeDream and MadPipe, the dashed lines represent the period
of the allocations obtained in the first phase by the respective dynamic programs, and
the period of the valid schedule is depicted with a solid line. This figure presents results
in terms of period duration, hence lower is better (the throughput, in terms of images
processed by second, is proportional to the inverse of the period).

These plots highlight the fact that MadPipe helps to obtain significantly more efficient
schedules in most cases, especially when the memory is more constrained, and for P > 2.
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Рис. 7.2: Comparison of the ILP, MadPipe and PipeDream for ResNet-34 with image size
224, mini-batch size 32 and P = 8.

The period achieved by PipeDream is routinely 20% larger than what MadPipe can
provide, and in some cases the solution of PipeDream is up to two or even three times
slower. On the one hand, the dashed lines show that the partitioning produced by
PipeDream is very optimistic and expects to achieve a very small period, but then turns
out infeasible, resulting in a very high overhead. On the other hand, the partitioning
obtained by the first step of MadPipe has a higher period because it considers more
memory constraints, but it generally results in a more efficient solution.

We can also observe the behavior of all these algorithms when M increases. As
expected, the period of the allocations (the dashed lines) are non-increasing with M ,
and reach a lower bound when the memory limit is high enough to no longer be a
constraint. However, the period of the schedules produced by 1F1B∗ (and even by MadPipe
sometimes) is not monotonic: since the memory is not estimated perfectly, it may happen
that with more memory available, the dynamic program finds a solution that ends up
being unfeasible, and requires a higher period to be able to run. This erratic behavior is
nevertheless much more visible for PipeDream.

On Figure 7.8, we display the results of the same simulations for all networks,
normalized with respect to the MadPipe algorithm. For each case, we compute the ratio
of the period obtained by a solution to the period obtained by MadPipe. The plots show,
for each value of the memory limit M and for several neural networks, the geometric
mean of these ratios over all values of P and β. For the solid red line that corresponds
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Рис. 7.3: Comparison of the ILP, MadPipe and PipeDream for ResNet-50 with image size
1000, mini-batch size 8 and P = 8.

to PipeDream (DP+1F1B∗) solution, a value below 1 means that PipeDream is more
efficient, and a value above 1 means that our solution is more efficient than PipeDream.
This shows that the performance improvement offered by MadPipe is valid in a wide range
of scenarios, especially for lower values of memory. Indeed, the overhead of PipeDream
over MadPipe is consistently over 20% when the available memory is below 10GB.

Finally, we present on Figure 7.9 another visualisation of the same results that aims
at highlighting the scalability of the produced schedules when the number of processors
increases. On this figure, the plots provide the speedup of the produced schedules
compared to the sequential execution of the network, i.e. U(1, L). We can observe that
the pipelined model parallelism achieves a good scalability for settings with large memory
like M = 12 or 16, and that MadPipe exhibits better scalability than PipeDream. When
less memory is available, it is more difficult to use all the computing resources efficiently
and the speedup gets worse.

Increasing the bandwidth shows only a marginal improvement in speedup, which
implies that communications do not significantly hinder the performance. This reduced
scalability when memory is tight comes from the heterogeneity between layers and from
the increased memory pressure. Indeed, when the number of GPUs increases, the number
of activations to be stored also increases, in particular for the first layers of the network,
which generally handle the larger activations. Therefore, the memory becomes the main
bottleneck and idle times have to be added to fit into the memory limit. This explains why
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Рис. 7.4: Comparison of periods for ResNet-50 with image size 1000 and mini-batch size
8.

the scalability of MadPipe is much better than what can be achieved with PipeDream.

7.4 Conclusion

In this chapter, we propose a sophisticated two-phase scheduling strategy that produces
non-contiguous schedules, based on a dynamic program to group neural network layers into
stages. We show, using a large set of simulations on a variety of computing platforms and
neural networks, that our solution MadPipe achieves a significant increase in throughput
compared to PipeDream, especially when the memory is a strong constraint.
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Рис. 7.5: Comparison of periods for ResNet-101 with image size 1000 and mini-batch size
8.
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Рис. 7.6: Comparison of periods for Inception with image size 1000 and mini-batch size
8.
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Рис. 7.7: Comparison of periods for DenseNet-121 with image size 1000 and mini-batch
size 8.
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Рис. 7.8: Geometric mean of ratios over different values of P and β, for all networks.
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Conclusion

This work has addressed three different ways of reducing memory consumption during
the training of neural networks: Rematerialization, Offloading and Pipelined Model
Parallelism. Rematerialization and Offloading focus on lowering the memory usage of
activations, while Pipelined Model Parallelism tackles all sources of memory problems.

Rematerialization as discussed in Part I is based on the checkpointing method
from Automatic Differentiation community and solves the problem of executing
forward-backward propagation graph while keeping only a limited number of activations in
memory. It achieves memory reduction by recomputing the missing activations during the
backward phase. The previous works on AD cover only simple homogeneous adjoint chain
computations, yet neural networks require a more general approach adapted for DAGs
and heterogeneous costs. We have offered two new extensions of classical approaches.
Chapter 1 considers a multi-chain graph that appears in some neural networks, but the
case is simplified by assuming homogeneous costs of operations. Chapter 2, alternatively,
concentrates on heterogeneous costs for a simple chain structure. Nevertheless, the
contribution of Chapter 2 is more general, since a large class of neural networks can be
approximated with heterogeneous chains whose nodes can be arbitrarily complex. Both
cases are expressed as optimization problems, to which optimal solutions are proposed.
Furthermore, to meet the requirements of the learning frameworks such as PyTorch, the
model of Chapter 2 reflects the additional dependencies imposed by autograd mechanism
from PyTorch. It allows us to integrate the solutions from this chapter into a tool named
rotor that can be directly used when training models in PyTorch. Our experimental
evaluation on standard vision networks have shown that rotor finds significantly better
solutions than its competitors in a reasonable time.

A further research direction for our rematerialization algorithms could be to extend
them to general heterogeneous DAGs. Finding optimal solutions is complicated in this
case. Indeed, it can be seen from the multi-chain case of Chapter 1 where the complexity
of the problem grows exponentially with the number of branches. It is still possible to
simplify the problem by narrowing it to a special sub-class of graphs that most neural
network graphs belong to. For example, chains with skip-connections are common in vision
networks, and thus finding the optimal solutions in this case could further increase the
performance of rotor. Alternatively, proposing the best way of linearizing the graphs
(representing DAGs in a sequential form) can profit from already implemented methods
in rotor that are designed for heterogeneous chains.

Among other potential improvements is combining rematerialization approaches with
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activation compression. This was done in Automatic Differentiation [58], but it should
be applied carefully, as lossy compression risks degrading convergence. One interesting
alternative to Rematerialization is to design neural networks in a reversible manner (e.g.
RevNet [35]). Thus, if one has an activation of some layer `, then it is possible to
obtain activation of layer ` − 1 by applying the inverse of its forward. This contrasts
with classical rematerialization methods as the recomputations are now done in the
reverse order that coincides with the direction of the backward pass, allowing us to keep
only one activation all the time. If a neural network contains reversible blocks, then
rematerialization algorithms can be adjusted to take them into account to perform the
bi-directional recomputations making the approach even more flexible. Let us also note
that the idea of trading computations with memory can be useful for other applications
than DNN training and thus should be considered for other typical problems from HPC.

Offloading, which is covered in Part II, reduces memory usage in a different way.
It sends part of the data to an external storage (usually a GPU transfers data to a
CPU). In Chapter 3, the pure Offloading problem is considered, whereas in Chapter 4 its
combination with Rematerialization is proposed. We have shown that the general problem
of Offloading is NP-complete in the strong sense, though there exist some tractable
relaxations, which can be solved optimally. We have proposed the optimal solutions based
on dynamic programming, which have been integrated into rotor. New experiments have
demonstrated that our solutions manage to bring together the best of both worlds and
beat the previous state-of-the-art approaches.

Similarly to Rematerialization, our offloading solutions are limited to heterogeneous
chains. Thus, further works to extend our results to general DAGs might be very beneficial,
and it can be done following the same directions as proposed for Rematerialization above.
In addition, Integer Linear Programming can be devised to take into account all underlying
complex dependencies and constraints. Finally, applying offloading not only to activations,
but also to weights and optimizer states can significantly increase the performance of the
methods and their applicability. Thus, it should be also considered in a future work.

The final approach is Pipelined Model Parallelism studied in Part III. We have
discovered a couple of limitations of the current state-of-the-art method PipeDream:
contiguous allocations and 1-periodic schedules (see Chapter 5). For each limitation,
we have also evaluated its potential impact on the throughput and memory usagee. As
non-contiguous allocations can be arbitrarily better than contiguous allocations, finding
optimal non-contiguous allocations is especially attractive. Thus, we have presented a
way of solving optimally the load balancing and scheduling problem in the context
of non-contiguous allocations based on an ILP in Chapter 6. In addition, we have
proposed a relatively cheap heuristic called MadPipe relying on dynamic programming in
Chapter 7. Both ILP and MadPipe appear to be more adaptive to tight memory limits
and demonstrate twice better throughput than PipeDream allocations with an optimal
1-periodic schedule.

There are opportunities for further enhancement. Firstly, both ILP and MadPipe
are not adapted for general DAGs and thus should be changed to take general data
dependencies into account. Secondly, despite non-optimality of 1-periodic schedules,
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they continue to dominate in the applications. Whereas, as it has been shown in
this manuscript, schedules have a direct control over peak memory consumption.
Therefore, designing optimal k-periodic schedules can be important in pursuit of further
reduction in memory. Another promising direction is to combine Model Parallelism with
Rematerialization and Offloading. It is already partially implemented in some methods
like GPipe, but it is done in a straightforward way without solving the corresponding
optimization problems. Furthermore, it is worth considering the optimization problems of
combining different types of parallelisms such as Data Parallelism, Model Parallelism and
Tensor Slicing together.

Overall, the global direction is to extend all the approaches mentioned before to deal
with general DAGs and, eventually, combine everything in one unified framework. In order
to do it efficiently, the optimization problems should be formulated and analyzed in order
to find the best strategies. Finally, sometimes it is beneficial to consider unconventional
ways of doing training as RevNet [35], for example, which stores only one activation at a
time thanks to reversible blocks of neural networks. Going beyond the established methods
might help to discover new ground-breaking approaches to deal with memory issues, and
therefore enable data scientists, the end-users of these strategies, to train bigger, deeper
and more accurate networks, without having to buy new computational resources that
are expensive both in terms of money and carbon impact.
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