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Introduction

Adam Smith asserts that balance in society emerges, not despite, but thanks to individual will-
ingnesses [Smith, 1776]. It can be summed up by the following statement: if we all maximize our
utility, we achieve optimality, that is, the best collective situation. This idea has been developed
by Léon Walras in his General Equilibrium Theory [Walras, 1874] (and later by Kenneth Ar-
row and Gérard Debreu [Arrow and Debreu, 1954] who have formalized the perfect competition
framework) which provides the powerful conceptualization considering price as the only infor-
mation needed by people to achieve the best outcome possible. As stated by Friedrich Hayek,
economic agents need not know why prices go up or go down: what matters to achieve optimality
is whether a good is more or less costly [Hayek, 1945]. In the wake of Walras, Vilfredo Pareto
defines optimality as a situation where no agent can be better off without hurting another agent’s
welfare [Pareto, 1894]. As Smith predicted, the Walras’ equilibrium is Pareto optimal [Arrow,
1951].

By contrast, the Nash equilibrium does not correspond to Pareto optimality while it relies only
on individual incentives like in the Smith’s view: the Nash equilibrium requires the agents to
be rational, i.e. they maximize their utility [Nash, 1950, 1951]. Generally, they differ because
agents are not atomistic in Game Theory as they are in perfect competition and thus they can
be strategic. The most famous example of such a discrepancy is the Prisoners’ dilemma where
the unique Nash equilibrium is the only outcome not being optimal in the sense of Pareto. As
well, the underlying mechanisms of pricing are still fiercely debated and despite Friedrich Hayek’s
assertion, prices do not convey all information.

Aiming to describe real-life phenomena, Economics has integrated additional elements within
its framework. These elements can be considered at a collective level or at an individual one.
As an example of such a collective concept, externalities are benefits (or costs) due to the
activity of an agent which influence other agents’ payoffs. If not taken into account, externalities
prevent optimality. Taxing externalities or creating property rights for externalities restores
optimality according to the celebrated Pigovian tax [Pigou, 1920] and Coase theorem [Coase,
1960]. As an example of an individual feature releasing the standard framework, John Maynard
Keynes considers the possibility that workers do not accept decreases in nominal wages while a
rational worker should only care about real wages. According to Keynes, such rigidities prevent
adjustments towards equilibrium and may explain unvolontary unemployment [Keynes, 1936].
The impact of this hypothesis goes beyond theories on macroeconomic aggregates since it is
clear that releasing the agents’ rationality assumption helps understanding phenomena which
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remain unexplained within the classical framework. In this perspective, Herbert Simon pledges
to reconciliate what occurs in reality and rationality in his paper originating literature about
limited rationality [Simon, 1955]. In a word, he states that:

The task is to replace the global rationality of economic man with a kind of rational
behavior that is compatible with the access to information and the computational
capacities that are actually possessed by organisms, including man, in the kinds of
environments in which such organisms exist.

The general idea of this thesis is to analyze economic problems where agents face or choose lim-
ited rationality. In Chapter 1, we introduce a new dominance relation between strict and weak
dominances, characterized by a notion of limited rationality. In Chapter 2, we discuss the incon-
sistent outcomes of standard rationality in infinite games and propose an alternative dominance
relation. In Chapter 3, we assume an investment game where agents have complementarities in
actions and where information is costly. We show it does not necessarily lead to complemen-
tarities in information acquisition: substitutabilities may exist, i.e., some agents may decide to
restrain their access to information when other agents increase their information purchase. In
Chapter 4, we state under which conditions information disclosure may be welfare improving or
damaging in a Cournot game.

In the following section, we discuss how economists have attempted to include real life features
in their analysis. Then, we point out that the goal of predictability has influenced Economics
and Game Theory. Afterwards, we turn on the meaning of consistency and remark a discrepancy
between this notion and the two previous ones. Next, we study the role of information. Finally,
we give a detailed outline of this thesis.

1 A realistic science

Turning back to Simon [1955], he clarifies what he means by this idea of limited rationality by
adding that:

The problem can be approached initially either by inquiring into the properties of
the choosing organism, or by inquiring into the environment of choice.

Economics has mainly focused on the first approach. It is also our choice in Chapter 3 to restrict
the agents’ ability to process information by adding a cost to information acquisition. The second
approach, less adopted in economics1 is the approach we adopt in Chapter 2. Specifically, we
do not model agents interacting with an environment. Rather, we restrict the possibility for
the agents to eliminate strategies if the dominating strategy is not “strong” enough to make
the elimination effective with respect to other strategies. This idea leads us to the definition of
the top condition (TD3). Briefly, a strategy cannot top dominate another strategy if there are
available strategies that may eliminate the dominating strategy. To the best of our knowledge,
no dominance relation has been defined in such a way that other available strategies (of the

1The reason we can imagine is that the first approach is more compatible with the view that in the end, only
individual choices are relevant whereas dealing with the so called environment may introduce other forms of agent
beyond individuals.
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same player) affect the dominance relation between two strategies. Let us take a detour: perfect
equilibria are affected by the addition of irrelevant alternatives, i.e. adding dominated strategies
to the game affects whether an equilibrium is perfect or not. Additionnally, Kohlberg and
Mertens [1986] argue that stability does not have to require such a criterion. Again, this idea
that “environment” may play a role is present here, and can be translated in Game Theory.
Yet, a distinction might be made. If a dominated strategy is added to the strategy set, it is
also reasonable to think that it should not change agents’ choices unless they have beliefs that
depend on strategy set. In this case, it could be admitted that only undominated strategies can
affect choices. However, this is still an open question.

Going back to Simon [1955]’s work, there may be a simple way to disentangle the problem raised
above: exogenizeing aspects assigned to the environment and endogenizing elements attributed
to individuals. However, Simon [1955] vigorously rejects this adaptation. Indeed, he argues that
there is a fine line between what is outside and inside an individual with this luminous example:

For example, the maximum speed at which an organism can move establishes a
boundary on the set of its available behavior alternatives.

Here, we see that not only what is called the environment influence individuals, but individuals
also impact the environment. In Chapter 4, we adopt a similar point of view, by allowing agents
to choose the information design by voting according to their preferences.

With the objective to make economic theory more realistic, Simon [1955] puts forward simplified
utility functions. It is the approach we use in Chapter 3, following the formalization of Szkup
and Trevino [2015]. This can be seen as the second aspect of limited rationality we insert in
our investment game. Utility functions are state dependent. However, even if the state is a
continuous variable, we assume that agents only value whether the investment is successful or
not.

Testing whether an action is good or not can be also a way of releasing the rationality assumption
of “direct” maximization. Paradoxically, our standard view that agents maximize their utility
according to their beliefs might be too simple. For example, Simon [1955] asserts that once
an agent has chosen an action, he then “explores”2 the opponent’s alternatives. Implicitly the
idea of trembles (see our discussion on perfectness below) is already present here. In a similar
way, we model in Chapter 1 an agent who does explore alternatives, but his own alternatives.
Additionally, when considering an alternative, the agent believes his opponent may detect it and
thus react optimally.

Simon [1955] explains also that order dependence and multiplicity are an issue when prediction
is required (see Chapters 1 and 2 for detailed discussions on this subject). However, Simon
[1955] remarks additionally that it might not be a problem when choices are sequential and that
a satisfaction threshold can be defined. It is a way to understand our discussion about strict
dominance and the standard view of rationality in Chapter 2. When a “top” strategy – in another
context we would say a focal point – does not exist, an agent may revise the level of rationality
he requires for himself. Therefore, rather than optimizing, he might “just” be satisfied with any

2Between “ ” in Simon [1955].

3
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level above the threshold he can consider. The opposition between satisficing and optimizing is
further developed in Simon [1956]. In this paper, the author frankly departs from the standard
model of rationality and shows how simple rules might better fit agents’ behavior.

Simon [1955]’s ideas have been well-known for decades. Yet, the literature applying his principles
is quite recent. For instance, Caplin et al. [2011] proposes a model of costly search where the
level of satisfaction can be endogenously determined. Choice literature is based on fundamental
axioms marking the consistency of the rational agent. For instance, the Weak Axiom of Revealed
Preference (WARP) of Samuelson [1938] which states that if an alternative x is chosen when y is
present in a given alternative set X, then y cannot be chosen from any alternatives set containing
x. It is immediate that such an axiom rejects any environment effect. An other complementary
axiom is the Independence of Irrelevant Alternatives (IIA). IIA states that removing the alter-
natives y from X does not affect the choice of the agent when facing X \{y}. That is, the choice
made by an agent when facing a given set of alternatives cannot be modified when only a subset
(containing the previous choice) of the previous set is considered. Again, here, environment is
disregarded.

Kalai et al. [2002]’s paper is motivated by the fact that IIA is violated in real life. They introduce
the idea of multiple rationales (rationalization by multiple rationales (RMR)). In their paper,
each alternatives set is endowed with one choice relation, which can differ with respect to the
alternative set considered. They explain that “the [decision maker] has in mind a partition [...]
and he applies one ordering to each cell in the partition.” In the perturbation we introduce in
Chapter 1, the agent also considers strategy subsets (of his complete strategy set) and applies
maximization of his utility considering only this subset. Our agent is cautious in the sense that he
considers all strategy subsets and checks whether his chosen strategy is optimal or not. Besides,
Kalai et al. [2002] exemplify RMR with the (u, v) procedure, where u and v are two functions
over the alternative set. This example goes further than the previous description in the sense
that the choice of the rationale used is partly endogenized. Indeed, the decision maker uses
(maximizes) the function u while u exceeds a certain given threshold v∗ and when u goes below
v∗, he maximizes with function v. Now, assume that function u is a standard utility function
and that instead of requiring an exogenous threshold v∗, we simply require that u is maximized.
Additionally, if u is not maximized, function v is maximized with any choice. Furthermore,
assume the following situation adapted from [Dufwenberg and Stegeman, 2002, Example 5]: let
an agent i facing the alternative X = (0, 1) and whose utility is Ui(x) = x. In this example,
the procedure (u, v) we have just described would choose any x. It is also the outcome of our
procedure in Chapter 2.

In this same literature, Manzini and Mariotti [2007] introduce the notion of Rational Shortlist
Method (RSM). Broadly speaking, RSM selects alternatives using several ordered rationales (i.e.
selection rule): the first rationale makes a first selection among the alternatives, the second one
makes a second selection among the previous selected subset and so on. Therefore, in contrast
with Kalai et al. [2002], the situation is not such that there are several possible rationales and
only one is picked to make the choice. Instead, several rationales are used in a given order to
make the choice. Interestingly, RSM cannot be characterized by WARP, but by a weak form of
WARP and by the Expansion property. This weak WARP is stated as follows: if an alternative
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x is preferred over alternative y in pairwise comparison and in a large set, then y is not preferred
over x in a subset of the large set. In other words we can say that the menu effects (when
they exist) are monotonic. Again, our procedure in Chapter 2 would verify such a property in
the situation adapted from [Dufwenberg and Stegeman, 2002, Example 5] (and the Expansion
property as well).

Tversky and Kahneman [1991] introduce the notion of reference point in decision theory. In-
terestingly, about this matter, industrial organization and game theory seem to have been in
advance with respect to decision theory. Indeed, if we think of conjectural variation theory (see
Section 1.8.3) and perfectness (see below), the idea of reference is quite old in Economics (ex-
plicitly in the former case and implicitly in the latter case). The basic point is to say that agents
compare what they can get to an initial point or a default option. In industrial organization,
this reference point can just be the current situation. In game theory, it can be an equilibrium
point. In decision theory, it can be either the initial situation (or decision) of the agent or the
first item of a search results. Beyond this first aspect, the reference also influences the agent’s
assessment. That is, an alternative will not be evaluated in the same way whether the reference
is the point A or the point B.

Salant and Rubinstein [2008] generalize the previous approach by introducing framing effects.
They define a frame as information unrelated to the alternatives choice but which influences the
choice. This definition seems contradictory in the sense that if the choice is influenced by some
information, then the choice is obviously related to this piece of information. What we have
to understand is that a frame is any object that would not alter a rational agent’s choices, but
which modifies those of an agent with limited rationality.

Masatlioglu et al. [2012] and Eliaz and Spiegler [2011] are interested in consumer choice subject
to limited attention. Again, these authors argue that it is not realistic to assume that consumers
are able to assess all the alternatives they face. Masatlioglu et al. [2012] extends the traditional
model of revealed preferences to limited agents, by introducing notably attention filters. Attention
filters applied to alternative sets limit the set of alternatives to which agents pay attention. In
the same vein, Eliaz and Spiegler [2011] show that firms can influence the consideration set –
i.e., the set of alternatives considered – consumers use when making their choice. By contrast,
Masatlioglu and Nakajima [2013] analyze the consumer side by including the notion of dynamic
search. That is, the consideration set can be modified after evaluating the alternatives (present
initially). Finally, Manzini and Mariotti [2014] model an agent who makes “choice errors” due
to the “agent’s failure to consider all feasible alternatives”. Thus, they define a random choice
rule which assigns to each alternative a probability to be chosen. In words, it represents for each
given alternative the probability that this given alternative is in the consideration set and that
alternatives which are strictly preferred to the given alternative are not in the consideration set.
Interestingly, one property characterizing random choice rules, namely the I-Asymmetry, states
that if removing an alternative a from the menu increases the probability that b is picked, then
the converse cannot occur. As argued by the authors, such a property exhibits “consideration
errors” and not “utility errors”. Then, it is clear that if a random choice rule is found, agents
can be said inattentive to their available alternatives. The message of this literature is positive.
Indeed, even if rationality assumptions are released, predictions are still possible and enable us
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to better understand agents’ behavior.

2 A predictive science

As stated above, the most famous example of the discrepancy between Pareto optimality and
Nash equilibrium is the Prisoners’ dilemma. Prisoners have a dominant strategy defect which
strictly dominates the other strategy cooperate. Consequently, the only Nash equilibrium is the
outcome where both agents play defect while both players would be better off if they both played
cooperate. In other words, the strategy cooperate is not “credible”, and Game Theory predicts
that only the Nash equilibrium can be played. Here, prediction is easy. However, in general, it is
not the case. Therefore, affirming that an equilibrium or playing a strategy is “credible” or not
is obviously at heart of debates in Economics and Game Theory, and often depends on the story
built around the game. Many solution concepts try to answer these questions. For instance, to
frame our discussion, let us recall that [Fudenberg and Tirole, 1991, p.49] state that:

The starting point of iterated strict dominance is the observation that a rational
player will never play a strictly dominated strategy. The starting point of rational-
izability is the complementary question: what are all the strategies that a rational
player could play? The answer is that a rational player will use only those strategies
that are best responses to some beliefs he might have about the strategies of his
opponents.

In two-player games, iterated elimination of strictly dominated strategies (IESDS) is equivalent
to the concept of rationalizability [Bernheim, 1984; Pearce, 1984]. Then, playing an iteratively
strictly undominated strategy is further justified by the fact that a rational player maximizes his
utility and only plays best responses. For instance, Tan and Werlang [1988] show that common
knowledge of Bayesian rationality (and two other assumptions) imply that agents play only
iteratively strictly undominated strategies. Common knowledge applied to rationality is in fact
the following reasoning applied ad infinitum: if i believes that j is rational and that i believes
that j believes that i is rational, then i believes that j plays only best responses and believes
that j believes that i plays only best responses and so on.

Though, IESDS never rules out any Nash equilibrium. Still, as stated above, some equilibria
seem unreasonable. Such examples could be equilibria which do not survive iterated elimination
of weakly dominated strategies (IEWDS). Like IESDS, IEWDS has been well-known for decades
[Luce and Raiffa, 1957]. The advantage of IEWDS with respect to IESDS is its more important
predictive power. As disavantages, IEWDS faces inconsistencies issues as order independence.
Furthermore, Samuelson [1992] notes that common knowledge of weak dominance is not related
to the outcome of IEWDS.

As an answer to the Samuelson [1992]’s remark, Brandenburger [1992]; Stahl [1995]; Branden-
burger et al. [2008] rationalize iterated admissibility (i.e., the elimination of all weakly dominated
strategies at each step of the elimination procedure). Their solutions can be summed up as fol-
lows: it is very likely that the inadmissible strategies will not be played. This result and the
way both papers formalize the knowledge and beliefs of players appear very reasonable. Bran-
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denburger [1992]; Stahl [1995]; Brandenburger et al. [2008]’s formalizations resolve the inclusion
exclusion challenge in an elegant way by assuming lexicographic beliefs. When a strategy is elimi-
nated, it is infinitely less likely to be played with respect to remaining strategies, but still infinitely
more likely to be played than previously eliminated strategies. By contrast, in Chapter 2 we will
work with memorylessness iterated elimination procedure. A procedure is said memoryless if it
does not keep in memory the eliminated strategies when eliminating further strategies and when
considering the final outcome of the process. As well, in Chapter 1, eliminated strategies play
no role in further eliminations.

Linking this discussion about iterated elimination procedures and equilibiria refinements, in
Chapter 1, we consider certain perturbations of the game occurring with probability ε > 0.
This is obviously in the spirit of the refinement literature started by Selten [1975] with the
idea of perfectness. Perfectness is a refinement of Nash equilibrium which considers that in an
extensive-form game, if an agent observes a deviation from the equilibrium, he should not respond
with a move which is not a best response. It gives the notion of subgame perfect equilbrium,
eliminating all Nash equilibria not fullfilling the criterion described above. In finite games,
it corresponds to the backward induction solution implemented by Kuhn [1953] (see [Osborne
and Rubinstein, 1994, p.98-99] for the equivalence and the existence results). In normal form
games, an equilibrium is said trembling-hand perfect if it is still an equilibrium when each agent
makes the hypothesis that opponents’ mistakes (when playing their strategy) can occur with
small probabilities3. Our notion of ε-local rationality points out the link between perfectness
and the conjectural variation theory. Conjectural variation theory assumes that each agent has
conjectures about his opponents’ reactions if he moves. Here, we assume that each agent can
have mind tremble, i.e. he considers other strategies with respect to his reference strategy. Player
i conjectures that j best responds to his mind trembles (i.e. i believes that j may observe his
mind tremble with probability ε). A strategy is locally rational if there is a rational conjecture
system such that no mind tremble can make it dominated.

Contrary to Selten [1975], we do not assume that some strategies are played by mistake. Rather,
we postulate a perturbation and the reaction of the agent observing the perturbation is “ratio-
nalized”. In a sense, in Chapter 1, we are closer to the idea of properness [Myerson, 1978]. In
perfectness notion of Selten [1975], any error can occur. By contrast, Myerson [1978] attempts
to “rationalize” mistakes (in the sense of minimizing the losses) by assuming that the likeliest
mistakes are the least costly.

Pursuing this literature, Hamilton and Slutsky [2005] point out that when the idea of trembling-
hand perfectness is made more consistent, the refinement vanishes except in one special case and
quite every Nash equilibrium becomes perfect. The authors assume that each agent does not only

3The interested reader will remark that both views are present in Section A.9. They can be grouped in the
perception game in the following sense: perception mistakes induce virtual subgames where the opponent j plays
optimally according to his perception. By contrast, in the deviation game, the notion of mistakes is less central.
That is, we use also a forward induction argument. Like the Simon [1955]’s idea and more recently the signaling
games literature [Cho and Kreps, 1987], the player “tests” deviations. The deviation is required to be credible.
If not, the observer of a deviation considers the deviation will not actually occur. Therefore, he may not best
respond. Instead, if the deviation is credible, he best responds because the deviation increases the deviator’s
payoff. Thus, the deviation occurs.
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consider the possibility that opponents may make mistakes (like in trembling-hand perfectness),
but that additionally he may make mistakes as well. Consequently, each agent has conjectures
about his own mistakes, and mistakes are naturally strategy dependent4. This opens the door
to many potential beliefs, which in fact will sustain even non perfect equilibria (in the Selten
[1975]’s sense). In Chapter 1, we do not consider i’s strategies when player i observes a deviation.
In fact, if i observes a deviation and “believes” what he sees, he will choose a best response to
the deviation (like in the notion of perfectness). It is exactly what we induce when we make our
Assumption R5 in Section 1.8.1. Thus, considering own observations is superficial and can be
easily skipped.

Importantly, we do not consider the case where the two agents observe the other’s deviation.
From a theoretical perspective, Wärneryd [2014] forcefully argues that reciprocal observations are
not technically formalizable. Indeed, Wärneryd [2014] shows that there is a logical inconsistency
if one believes that two players might observe each other’s strategies in a standard game where
strategies are just the action planned by each player before the observation of the opponent’s
strategy. Simply, the idea is that observing the opponent’s strategy adds information to each
player that has not been planned by the players since their strategy is composed of only one
element: what the player wishes to play in any case. Then, either observing the opponent’s
strategy does not change anything (i.e., strategies are played whatever the observation is) and
this new specification is useless, or it may change the final outcome of the game (i.e., the game
played after the observation), but this observation has to be specified in the strategies of the
players. In the latter case, it necessarily leads to strategies with an infinite number of elements.
Indeed, the player i should choose one strategy and strategies conditionally on what he observes.
Since j does the same, i should also specify what he does given what j may answer to his strategy.
Player j doing the same, we see that this process repeats itself ad infinitum.

In words of Wärneryd [2014], a strategy is the complete contingent plans of action the agent
schedules. If there is one observer, there is no need for too sophisticated complete contingent plans
of action with respect to the standard one. To be clear, we do have (implicitly) a more complete
contingent plan of actions, where the (classical) strategy is chosen, and additionally, where the
strategy is chosen for each strategy chosen by the opponents, once no strategic uncertainty is left
(the remaining uncertainty is due to randomization if mixed strategies are played). With two
observers, one strategy of an opponent is still uncertain and the game has not be played yet by
all the other opponents: it still requires to be strategic. That is why, only observation by one
opponent is compatible with our standard view of games.

4Simply, assume a player i whose strategy set is equal to Si = {s′i, s′′i }. If i considers his own mistakes, it is
obvious that when playing s′i, he can only assume that he will, by mistake, play s′′i and similarly when playing
s′′i . Then, mistakes are necessarily strategy dependent.

5If we have real-life situation in mind, we should consider continuous timing. That is, if agents deviate, the
probability that both deviate at the same time is near zero. Besides, once a player has deviated, he should not
consider further deviation except the optimal reaction of the opponent (see Section 1.8.3).
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3 A consistent science

In choice literature, consistency is defined essentially as binariness, i.e., there is a preference re-
lation comparing all alternatives two by two whose outcomes are seen as a maximizing solution.
According to Mas-Colell et al. [1995], binariness and rationality are merged into one since a pref-
erence relation is said rational if complete and transitive. Sen [1990] recognizes the consistency
and the maximizing self interest requirements as the two main approaches of rationality. Yet,
consistency “is much too permissive”. One criticism is that a behavior can be consistent if an
agent always does the opposite of what would require his self interest. Then, it is direct that
there is no correspondence between consistency and maximization. Still, in Economics, maximiz-
ing self interest has been “made [. . . ] clearly binary and more typically an ordering (and often
seen as being numerically representable)” [Sen, 1990]. Thus, it may explain why maximizing self
interest is no more than a special case of consistency. Sen [1990] sees WARP as reconciliating
both approaches, by requiring consistency of the choice and by assimilating revealed preference
to maximization. We also show in Chapters 1 and 2 that consistency issues are not necessarily
incompatible with the goal of predictability. However, as pointed out in the previous sections,
our approach might be nearer real life concerns.

Sen [1990] evokes Simon’s hypothesis that people do not “actually maximize any utility”. He
defines satisficing as the fact that an agent has a “target level of achievement” which, once it has
been reached will not lead to any further research: the agent is satisfied with the outcome he has
reached. This should implicitly reflect the fact that in real world, finding the optimal solution is
costly (it takes times, energy or even it requires acquiring skills). This is how economic theory
has interpreted bounded rationality. An other interpretation is that preferences are incomplete
in real world: satisficing would be then maximizing under a release of a rationality hypothesis.
Finally, Sen [1990] expresses another interpretation of Simon’s hypothesis: even if the preferences
are complete and the agent can discern at no cost which outcomes are the “best”, the agent
may still settle for a lower level of utility. Obviously, this interpretation is far different from
maximization. However there is still a problem of existence (if the target level is too high, no
outcome is retained). Then, we should pledge for the determination of endogenous target level,
as implied by our definition of our dominance relation in Chapter 2. If environment matters, we
should be interested in how agents perceive it and what they know about it. Now, let us see the
role played by information.

4 The role of information in Economics

One common outcome of our study is that information does not necessarily improve welfare.
Obviously, this is not new. From a general equilibrium point of view, information asymmetries
prevent from full appropriation. If a monopoly is able to perfectly scrutinize the consumers, all
the surplus is extracted. However, no one can say that an absence of information is like the
presence of (negative) externalities. A (negative) externality affects the payoff simply because
it exists. Information affects the payoff because it modifies the equilibrium. Therefore, we can
say that there is always over production at the equilibrium with negative externalities, while the
welfare is not necessarily improved when more information is acquired or when information be-
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comes public. It is only if there is perfect competition in other dimensions that more information
(or less asymmetry) is welfare improving.

Hayek [1945] states that price conveys information held by the individuals. However, Hayek
[1945] does not reject centralized processes from the outset. Indeed, he states that:

[This question] depends on whether we are more likely to succeed in putting at
the disposal of a single central authority all the knowledge [...] initially dispersed
among many different individuals, or in conveying to the individuals such additional
knowledge as they need in order to enable them to fit their plans in with those of
others.

Even if Hayek [1945]’s point is that it is difficult to provide feedback on information from the field,
he also clearly mentions that centralization might be superior to decentralization. Externalities
are a good example showing why markets may fail to reach the first best optimum. Uncertainty
might also imply such a consequence. In the concrete case of pollution, Weitzman [1974] shows
whether price setting or quantity setting by a central planner is the second-best optimum when
there is uncertainty on both supply and demand functions. In an investment problem with two
firms, Bolton and Farrell [1990] compare centralization and decentralization. The framework is
a natural monopoly where centralization can help mitigating delay and miscoordination (that
is, each firm has to pay a (privately known) sunk cost to enter into the market in a continuous
time setting). Results in Weitzman [1974] and Bolton and Farrell [1990] are driven by the cost
and the size of errors (with respect to the first-best optimum). Costly errors generally involve
that the best scheme is quantity setting in Weitzman [1974] and decentralization in Bolton and
Farrell [1990]. Intuitively, large errors entail that individual preferences are very uncertain.
Consequently, information should be transmitted from individual agents through the price (free
in the quantity setting scheme) or private information (from the firms) matters in the natural
monopoly game. In Chapter 3, our results in terms of information acquisition are also driven
by the (investment) cost. Intuitively, if information acquisition of some agents increases (or
decreases) the size of the most costly error6, then an individual increases (or decreases) his
information acquisition.

From Crawford and Sobel [1982] (cheap talk) to Kamenica and Gentzkow [2011] (Bayesian per-
suasion), many papers have treated the question of the influence of information disclosure at no
cost. This literature differs from the literature on signaling. Indeed, signaling implies a costly
information transmission whereas cheap talk literature assumes that information transmission
does not affect payoffs directly (but affects them only through equilibrium modifications). In the
simplest framework, in cheap talk, a sender who has private information can choose to disclose
it to a receiver who chooses an action (only the receiver chooses an action). Both agents have a
state and action dependent utility. The sender and the receiver have partially aligned interests,
in the sense that the ideal action (at a given state of the world) for both players is not the same.
In this case, information transmission is necessarily distorded at the equilibrium. Furthermore,
if the receiver does not take into account the information disclosed by the sender (and then plays

6There are only two errors: not investing when investment is profitable and investing when investment is not
profitable.
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according to his prior), the equilibrium is said babbling. There might be more informative equi-
libria, but in general, the babbling equilibrium cannot be eliminated. By contrast, in Bayesian
persuasion, the sender is allowed to commit to a disclosure rule. Therefore, it is more likely that
there is information transmission. Obviously, real-life situations where commitment is possible
are reduced. However, we can apply this framework to Capacity Remuneration Mechanisms
(CRMs) in Chapter 4. The public authority has information about the state of the world and
can choose to disclose or not, in order to maximize welfare.

As we saw above, literature about bounded rationality comes from the seminal paper of Simon
[1955] and has been emphasized more recently by Rubinstein [1998]; Sims [2003]; Woodford
[2009]. It has given a framework to situations where it is obvious that all information cannot be
obtained or processed or gathered by agents. This originates a literature on costly information
acquisition. To be precise, two kinds of model can be distinguished, those with a limited given
information available to agents (that they may pay or not) and those where agents pay for every
unit of information they wish to acquire. In the latter case, information becomes a good like
any other. However, this good is valuable because it can help agents to make better decision
in incomplete information settings. The way these problems are solved is generally the same,
agents can in a first stage, acquire information and in the second stage they act given the infor-
mation acquired. As usual, backward induction is used, second stage is solved given information
of the first stage and then first stage is solved, given Bayesian Nash Equilibria. Things are more
complex when agents know that other agents have acquired information as well and that actions
of others affect their payoff. The question of the influence of other agents’ information acqui-
sition is crucial but is not straightforward. We show in Chapter 3 that even when agents have
complementarities in actions, they may have substituabilities in information acquisition, which
reveals a miscoordination problem.

As stated above, the Prisoner’s Dilemma is an interesting situation to understand how the notions
of optimality and equilibrium differ. In a more prosaic way, the Prisoner’s Dilemma helps to
understand the fundamental notion of incentives. The idea that agents are able to commit or not
is central in Economics. If not taken into account, incentives can damage welfare7 and leads to
miscoordination. The idea is that even if players agree that the outcome (cooperate, cooperate) is
a better outcome than (defect, defect), incentives necessarily lead players to defect. Indeed, even
if the opponent plays cooperate, a player would be better off by defecting. Game theory adds the
view that agents should not care only about their own incentives (and the others’ incentives) but
also about the effect of their behavior on other agents’ incentives. By contrast, limited rationality
states that behaviors should be deemed as simple as possible. Reconciliating these two aspects
is not an easy task but this thesis tries to contribute with this respect.

5 Outline

In Chapter 1, we are interested in the problem of order dependence. Order dependence issues
are interesting because they precisely emphasize the relation between prediction and consistency.

7In the precise example of the Prisoners’ dilemma, incentives are well taken into account by the prosecutor
since he designs the game in the way his preferred outcome is generated.
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Indeed, when a solution concept exhibits multiplicity due to order dependence, the use of this
concept seems difficult from a practical point of view. Thus, order dependent concepts such
that IEWDS appear to be less legitimate than order independent ones like IESDS. Nevertheless,
IESDS has a weak predictive power. For instance, IESDS never eliminates any Nash equilibrium.
In this context, we introduce a new dominance relation called root dominance and the associated
iterated elimination of root dominated strategies (IERDS) whose outcome is more predictive than
IESDS and is order independent in finite games. The idea of root dominance is to require, in
addition to weak dominance, strict dominance on a specific profile set. We call this set the Best
Reply Set to the dominating strategy on each profile containing the dominating strategy where
opponents play a best response to the given profile. Order independence is in fact explained by the
following additional consistency requirement. We show that the procedure IERDS is immutable:
eliminated strategies remain dominated in the final outcomes of the procedure. The point is
quite simple: since strict dominance is required for each profile where a best response is played,
and that all best responses cannot be eliminated, the dominance relation remains through the
elimination path. Besides, we know that the question of rationality has been an important issue
for IEWDS. Finding which maximizing behavior corresponds to a given dominance relation can
also be seen as a consistency criterion. That is why we introduce a notion of ε-local rationality
which characterizes root undominance. This rationality concept is inspired, on the one hand
by the refinement literature initiated by Selten [1975], and, on the other hand by the idea that
real-life agents use consideration sets, i.e. they cannot compare all their available alternatives at
the same time. That is, we introduce a well known element of limited rationality to justify our
concept. Additionally, we argue that this approach can be linked to the conjectural variation
theory (see Section 1.8.3). Though, we add a rationality assumption that seems to be missing in
the conjectural variation framework.

In Chapter 2, we go further in releasing the standard rationality framework. In fact, we allow
players not to maximize their utility, but we obtain a consistent behavior. As we saw, consistency
and maximization may appear to be the two faces of the same coin but their relation is more
ambiguous. For instance, IESDS, implied by maximizing behavior, is order dependent in infinite
games (i.e. games where the number of strategies is infinite) [Dufwenberg and Stegeman, 2002].
In this perspective, we propose a new dominance relation called top dominance and the associated
iterated elimination of top dominated strategies (IETDS) whose outcome is IESDS and is order
independent. As expected, IETDS can be less predictive than IESDS. Yet, IETDS can also be
more predicive than IESDS according to the considered game. Top dominance relies on root
dominance. However, since we consider infinite games, two important changes operate: first, the
Best Reply Set is turned into a Better Reply Set to ensure its non emptiness when maximizing
utility is not possible. Second, we add the top condition to keep the order independence result.
The top condition requires that the dominating strategy does not only strictly dominate the
dominated strategy on the Better Reply Set, but also all other available strategies. Therefore,
the dominance relation between two strategies is affected by the composition of the strategy set.
That is, beyond the obvious dependence to strategy sets of opponents, even in one-player games,
the dominance relation is altered by the presence of other strategies. Therefore, we obtain a
concept that is order independent (then consistent) and which may depend on the environment
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of the players in the sense of Simon [1955]. An additional consistency requirement that we respect
is that IETDS does not generate spurious Nash equilibiria [Dufwenberg and Stegeman, 2002].
That is, a profile which is not a Nash equilibrium of a given initial game does not become a
Nash equilibrium once IETDS is applied to the given game. This result is an improvement with
respect to the procedure IESDS* developped by Chen et al. [2007], which is order independent
even in infinite games, but generates spurious Nash equilibria. Broadly speaking, IESDS* is
IESDS augmented with the additional feature that previously eliminated strategies at a given
step may eliminate other strategies at further steps. This explains why the order of elimination
does not matter since technically no dominance relation never disappears. In contrast, IETDS
is memoryless order independent, i.e. no eliminated strategy is needed to eliminate additional
strategies during the procedure.

In Chapter 3, we investigate another part of limited rationality by adding a cost to information
acquisition. In fact, our framework is near Szkup and Trevino [2015]’s one. In a word, Szkup
and Trevino [2015] introduces information acquisition in a global game. Global games are coor-
dination games (i.e., agent’s actions are complement) where two actions are available to players.
Utilities being state dependent, there are states where either one action or the other is a domi-
nant strategy. In Szkup and Trevino [2015] information is generated through a normal signal, i.e.
agents receive a signal which represents the true state of the world with a normally distributed
noise. As an essential difference with Szkup and Trevino [2015], we consider binary signals for
the sake of realism. That is, in our game, agents decide whether they should invest in an asset
profitable only if the state of the world and/or the number of agents investing is high enough.
Agents can acquire information about the state of the world through the binary signal at an
increasing and convex cost. A first intuition may lead to think that the complementary nature
of agents’ actions should lead them to adopt similar information acquisition behaviors, as in the
beauty contest of Hellwig and Veldkamp [2009]. Nonetheless, we find that complementarities in
actions do not necessarily translate into complementarities in information acquisition. This re-
sult is already present in Szkup and Trevino [2015]’s framework but out of the equilibrium. Here,
we find that susbstituabilities may emerge even at the equilibrium. Therefore, our framework
helps to generate a broader range of situation.

In Chapter 4, by contrast with Chapter 3, the problem we analyze is not about individual infor-
mation acquisition, but about public information disclosure. As established above, more informa-
tion is not necessarily better for society as a whole. Then, a public authority might strategically
choose to retain information in order to maximize welfare. Adapting the Roy et al. [2019]’s
framework, we propose to study an empirical application of the problem of public Bayesian per-
suasion [Kamenica and Gentzkow, 2011]. Bayesian persuasion models situations where an agent
(the sender) has private information about the state of the world and may reveal it to other
agents (the receivers) according to a disclosure rule that he can choose and to which he can
be committed. The utility of the sender depends on the state of the world and the receivers’
actions. Therefore, the disclosure rule depends on the actions played by the receiver at each
state of the world. In fact, in the simple setting of binary states of the world we use, the optimal
disclosure rule can be deduced from the utility of the sender when no information is disclosed,
that is, when receivers play according to their (common) prior about the state of the world.
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If this function is convex, then there is full disclosure. Instead, if it is concave, it is optimal
for the sender to retain all information. In the perspective of our application, we consider only
public disclosure, in contrast with Eliaz and Forges [2015]. We study the problem of a public
authority which has a superior information with respect to buyers in a capacity market. Capacity
Remuneration Mechanisms (CRMs) are mechanisms designed by electricity markets regulators
to value the contribution of existing capacities in terms of Security of Supply. Physics requires
instant supply and demand balance, and electricity is quite non storable. Black outs being very
costly, the role of any electricity plant can be understood as a positive externality. Indeed, by
their presence (and their capacity), the risk that consumption of electricity exceeds production
(and thus a black out occurs) is reduced. We consider a Cournot game in line with the existing
capacity markets which are quantity-based. Before the game is played, the authority sends a
signal about the state of the world, according to its optimal disclosure rule. We apply our results
to 2010 German data. We find that if Germany wanted to apply such a quantity-based CRM,
Germany would have chosen a full disclosure rule in order to maximize welfare. Besides, we con-
sider alternative disclosure rules based on buyers or sellers’ preferences. We analyze also the case
where sellers vote for their preferred design: it is a case where agents can influence institutions
and shape their environment. With respect to previous chapters, agents are not embedded with
limited rationality. However, they can voluntarily restrain their access to information.
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Chapter 1

Root Dominance

Abstract

Root dominance is an intermediate dominance relation between weak and strict domi-
nances. In addition to weak dominance, root dominance requires strict dominance on
all profiles where an opponent plays a best response to the dominating strategy. The
iterated elimination of root dominated strategies (IERDS) outcome refines the iterated
elimination of strictly dominated strategies (IESDS) outcome, and IERDS is an order
independent procedure in finite games, contrary to the iterated elimination of weakly
dominated strategies (IEWDS). In addition, IERDS does not face the inconsistency that
we call mutability. That is, IERDS does not alter the dominance relation between two
strategies like IEWDS does. Finally, we introduce a rationality concept which corresponds
to root undominated strategies. This rationality concept is induced by perturbations of
the game such that a player believes that the strategies he considers might be observable
by his opponent. We discuss the links between our concept and other concepts established
in various literatures such as the conjectural variations theory.

1.1 Introduction

1.1.1 Motivating example

Assume two agents who have coordination incentives but also have strong egocentric
biases. That is, each agent is indifferent between, on the one hand, coordinating on his
least preferred action with the other agent and, on the other hand, miscoordinating but
choosing his preferred action. This situation can be represented in the following game
which can be seen as a modified version of the battle of the sexes (BoS) where best
responses payoffs are underlined1:

1Remark that utility functions can be denoted: Ui(Ai) = 2 + 1Aj −1Oj , Ui(Bi) = 1 + 1Bj −1Oj , Ui(Oi) =

0+1Oj ; and in a symmetric way for player j: Uj(Bj) = 2+1Bi −1Oi , Uj(Aj) = 1+1Ai −1Oi , Uj(Oj) = 0+1Oi .
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j’s Strategy
i’s Strategy Aj Bj Oj

Ai (3,2) (2,2) (1,0)
Bi (1,1) (2,3) (0,0)
Oi (0,0) (0,1) (1,1)

Figure 1.1: Modified Version of the Battle of the Sexes

Remark first that no strategy is strictly dominated. Thus, the iterated elimination of
strictly dominated strategies (IESDS) does not eliminate any strategy. In contrast, both
outside options Oi and Oj are weakly dominated (respectively by Ai and Bj). As well,
Bi and Aj are weakly dominated2. However, as noted by Samuelson [1992]:

It is well known that the order in which dominated strategies are eliminated can
affect the outcome of the [iterated elimination of weakly dominated strategies
(IEWDS)].

In other words, IEWDS is order dependent (see also Marx and Swinkels [1997]; Hillas and
Samet [2020]). Here, it is the case since IEWDS always eliminates outside options Oi and
Oj but only sometimes Aj and/or Bi. It is striking that no iterated elimination procedure
based on a dominance relation3 can both provide a unique outcome when applied to
this game and still eliminate some strategies. Particularly, it is remarkable that even
the Nash equilibrium (Oi, Oj) cannot be ruled out while we could intuitively think that
players “should” try to coordinate on better outcomes. In this paper, we introduce a new
dominance relation named root dominance and an associated order independent iterated
elimination procedure the iterated elimination of root dominated strategies (IERDS) such
that IERDS eliminates both Oi and Oj and stops there. Root dominance requires weak
dominance and strict dominance on all the profiles where the opponent best responds to
the dominating strategy. In our version of the Battle of the Sexes, j best responds to Ai
by playing Aj or Bj. At these two profiles, Ai strictly payoff dominates Oi. Therefore,
Ai root dominates Oi. On the contrary, playing Ai does not yield a strictly higher payoff
than playing Bi when j plays Bj. Thus, Ai does not root dominate Bi and Bi is never
eliminated by IERDS.

1.1.2 Elimination procedures based on dominance relations

Iterated elimination of strictly dominated strategies (IESDS) is one of the most basic tools
of game theory. It is among the least vulnerable solution concepts when analysts eliminate
strategies to predict the outcome of a situation. Notably, it is equivalent to the concept
of rationalizability in two-player games (see Bernheim [1984]; Pearce [1984]) and when a

2In addition to the ouside options, this is the main difference with the standard BoS.
3See Definition 1 for the precise definition.
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game is dominance solvable4, it reinforces the use of the Nash equilibrium as a solution
concept, like in the Cournot duopoly. Remarkably, for instance, IESDS is essential to
understand why there is a unique equilibrium in global games (see Carlsson and van
Damme [1993]). However, the conceptual robustness of IESDS necessarily reduces its use
when precise predictions are required. Instead, iterated elimination of weakly dominated
strategies (IEWDS) outcome is a refinement of IESDS outcome. IEWDS has been largely
applied in different strands of the economic literature such that the voting literature (see
Moulin [1979]). Additionally, a certain order of IEWDS is equivalent to the backward
induction solution5 (see Moulin [1986, p.84]). Though, IEWDS may go sometimes “too
far” in the selection. As an example, it may eliminate the only Nash equilibrium in
certain games such that the Bertrand duopoly. Furthermore, inconsistencies of IEWDS
refrain its use as a solution concept. In particular, order dependence6 of IEWDS (and
therefore the multiplicity of final outcomes) prevents firm forecasts. However, attempts
to justify the use of IEWDS have been made. Among this literature, Marx and Swinkels
[1997] shows that IEWDS is payoffs order independent in games with transference of
decisionmaker indifference (TDI)7, and define in association, the nice weak domination8.
Nevertheless, the order independence result is limited to payoffs (and does not apply to
strategies)9, while in the context of decision theory, Kahneman and Tversky [1979] show
that payoffs may not determine entirely the preferences. Then, from both theoretical and
practical points of view, payoffs independence might not be considered as strong a result
as strategies order independence. Alternatively, we propose in this paper a dominance
relation and an associated procedure whose outcome refines the IESDS outcome and is
(payoff and strategies) order independent in every finite game.

1.1.3 Outline

We introduce in this paper a new kind of iterated elimination procedure based on a new
dominance relation called root dominance. Root dominance is a stronger relation than
weak dominance and weaker than strict dominance. That is, root dominance requires
weak dominance and the strict payoff dominance on a specific profile set: the best reply
set to the dominating strategy. Note that this last property depends essentially on the
dominating strategy, which is, to the best of our knowledge, a novelty. We introduce also

4Dominance solvability means that IESDS outcome is a unique profile.
5It is true in games where, if a player is indifferent between two terminal nodes, it implies that all players are

indifferent at these same terminal nodes. Moulin [1986]) calls this assumption the one-to-one assumption.
6It means that different applications of the procedure may lead to different final outcomes. See Section 1.2 for

definitions. The problem of order independence of procedures has given a rich literature (see for instance Gilboa
et al. [1990]; Apt [2005, 2011]; Luo et al. [2020]; Hillas and Samet [2020]).

7A game exhibits TDI when, if one agent is indifferent between two strategies at a given opponents’ profile,
every player is indifferent between the two profiles formed by either one or the other strategy of the first player,
and the given opponents’ profile.

8A strategy s′i of player i is said nicely weakly dominated by strategy s′′i if, in addition to weak dominance,
everywhere where i is indifferent between s′i and s′′i , i’s opponents are also indifferent between i playing s′i and
s′′i .

9See Section A.4 to distinguish our notion of order independence and the Marx and Swinkels [1997]’s one.
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a new iterated elimination procedure, whose order independence property is not limited
to payoffs, but concerns strategies as well.

In the next section, we establish a simplified framework with only pure strategies. In
Section 1.3, we define the notion of root dominance and our iterated elimination procedure
IERDS. Additionally, we illustrate them with some examples. In Section 1.4, we show the
technical lemmas and the order independence result. We make a succinct literature review
about iterated elimination procedures in Section 1.5. Then, in Section 1.6, we present
the mutability issue, notably faced by IEWDS, and show that IERDS is immutable. In
Section 1.7, we extend our concepts to a framework with mixed strategies and show
that our results hold true. We introduce our rationality concepts in Section 1.8 and
we compare them specifically to the concepts in conjectural variation theory concepts.
Finally, we conclude in Section 1.9.

1.2 Framework with pure strategies

We denote Γ = {I, S, U} a finite game with I the set of players, S = Π
i∈I
Si, Si being the

finite strategy set of player i ∈ I (we consider only pure strategies), and U the vector of
utility functions of each player i where Ui : S → R. We denote S−i = Π

j∈I\{i}
Sj the strategy

profiles set of i’s opponents. Finally, we denote s ∈ S a strategy profile, and s−i ∈ S−i
the strategy profile of the opponents of i ∈ I such that when i plays si, s = (si, s−i).

Here, we define the main notion that motivates this paper, namely order independence.
Before, we define a process associated with any dominance relation: A process iteratively
eliminates some dominated strategies at the step they are eliminated with a specific order,
and ends when there is no dominated strategy anymore. Then, a procedure associated
with a game is the class of all processes applied to the game.

Now, we can state what we mean by order independence when we study a precise game:

Definition 1. A procedure associated with a dominance relation and a game is said order
independent for this game if all processes have the same final (strategies) outcome.

Importantly, the final outcome of a process contains the payoffs and the strategies. Again,
this feature distinguishes ourselves fromMarx and Swinkels [1997] who look only at payoffs
to define order independence10. Finally, we define order independence for the class of
games we study, namely the finite games:

Definition 2. A procedure associated with a dominance relation is said order independent
if it is order independent for every finite game.

In the next section, we define formally the sequence of games11 associated with a process,
which further specifies the kind of order independence we consider. Importantly, except

10Obviously, both notions often coincide, but it is not always the case.
11See Definition 5 below for the formal definition.
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explicit mention, we consider that a procedure is order independent if and only if any
number (but zero) of strategies can be eliminated at each step of the processes run by the
procedure and all processes have the same final outcome.

1.3 Root dominance

In this section, we define our dominance relation as well as our iterated elimination pro-
cedure.

1.3.1 The dominance relation

To establish the dominance relations in this section, we first redefine a standard notion
of game theory, the Best Reply Set to a strategy :

Definition 3. The Best Reply Set to s′′i ∈ Si, denoted b(s′′i ), is the set of all strategy
profiles s∗ ∈ S such that:
s∗i = s′′i , and, if S−i 6= ∅:

∃j ∈ I \ {i}, s∗j ∈ arg max
sj∈Sj

Uj(sj, s
∗
−j) (OM)

The Best Reply Set is simply the set of all profiles which contain s′′i and where at least one
i’s opponent best responds to the profile (OM). If there is no opponent or their strategy
sets are empty, the Best Reply Set is simply the strategy s′′i .

Now, we define our dominance relation, namely root dominance:

Definition 4. A strategy s′i ∈ Si is said root dominated by the strategy s′′i ∈ Si, (denoted
s′′i � s′i), if:

∀s−i ∈ S−i : Ui(s
′′
i , s−i) ≥ Ui(s

′
i, s−i) (RD1)

∀s∗−i such that s∗ ∈ b(s′′i ) : Ui(s
′′
i , s
∗
−i) > Ui(s

′
i, s
∗
−i) (RD2)

RD1 and RD2 are inadmissibility conditions, i.e., they ensure that root dominated strate-
gies are weakly dominated. Precisely, RD1 states that s′i is very weakly dominated by s′′i .
There is very weak dominance if a strategy always pays off at least as much as another
strategy (see Marx and Swinkels [1997] for a formal definition). Therefore, either the
former strategy (weakly) dominates the latter, or they are equivalent. RD2 states that
s′′i is strictly preferred to s′i if the opponents play a profile in b(s′′i ). Additionally, we will
denote respectively the strict and the weak dominance relation:

s′′i �
S
s′i and s

′′
i �

W
s′i
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Chapter 1. Root Dominance

1.3.2 Finite sequence of games

Since we are interested in defining iterated elimination procedures and comparing them
to IEWDS and IESDS, we formally define the sequence of games that will be used in this
section, in association with the dominance relation we have defined above:

Definition 5. A sequence of games associated with a game Γ is:

{Γλ}λ≤Λ ≡ {Γ0 ≡ Γ, . . . ,Γλ, . . . ,ΓΛ}

with λ ∈ [[0,Λ]] such that:

• ∀λ ∈ [[0,Λ]], Γλ = {I, Sλ, U}, with Sλ = Π
i∈I
Sλi , Sλi being the strategy set of player

i ∈ I, I the unchanged set of players of Γ, and U the vector of utility functions of
each player i (whose domain is restricted), Ui : Sλ → R,

• ∀λ ∈ [[1,Λ]], Γλ is a restriction of Γλ−1, i.e., Sλ = Π
i∈I
Sλ−1
i \ Sλ−1

i where for each

player i, Sλ−1
i is an arbitrary (possibly empty) set of strategies in Sλ−1

i dominated
in Γλ−1, but such that for at least one player i ∈ I, Sλ−1

i is non empty.

• Sλ = Π
i∈I
∅ if and only if λ = Λ.

The sequence of games starts from the original game Γ, and then restricts the strategy set
by eliminating some (i.e. at least one but not necessarily all) dominated strategies at each
step of the sequence. The sequence ends if and only if no more strategy is dominated.
Then, we can define the iterated elimination of root dominated strategies (IERDS) as the
procedure that iteratively eliminates some root dominated strategies at the step they are
eliminated and ends when there is no root dominated strategy anymore. As explained
above, the procedure can lead to several processes, each one associated to a sequence of
games.

Let us study how root dominance and IERDS work in finite games through the next
example:

j’s Strategy
i’s Strategy L R

T (4,2) (1,1)
B (2,2) (4,2)
O (2,2) (2,2)

−→
IERDS

j’s S.
i’s S. L

T (4,2)

Figure 1.2: Game with a Unique Prediction

O is not root dominated by B nor by T . Even if O is (very) weakly dominated by
B (RD1 is thus respected), we see that both (B,L) and (B,R) are in b(B), and since
Ui(B,L) = Ui(Z,L), there is no root dominance since it requires strict dominance on all
profiles in b(B) (RD2). T does not either, because of RD1. Indeed, there is no (very)
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Chapter 1. Root Dominance

weak dominance since Ui(T,R) < Ui(Z,R). However RD2 is checked since b(T ) = (T, L)

and Ui(T, L) > Ui(Z,L). Concerning player j, L root dominates R. Actually, L (very)
weakly dominates R and Uj(T, L) > Uj(T,R) while b(L) = (T, L). After eliminating R,
we see that both B and O are root dominated since T strictly dominates them. Finally,
IERDS selects (T, L) like IEWDS.

Before focusing ourselves on the results, we make a semantical precision: we say that s′i
is eliminated by s′′i at step λ of a sequence of games if:

s′′i � s′i, and s′′i ∈ Sλ+1
i , and s′i ∈ Sλi \ Sλ+1

i .

Obviously, s′i is eliminated by s′′i only if it is root dominated by s′′i , but the converse is not
necessarily true in a given process. The reason is that both s′i and s′′i , or only s′′i or neither
of them might be eliminated at a given step. However, for the case of root dominance
and IERDS, the distinction between domination and elimination is only made to ease
the establishment of the next results. That is, a root dominated strategy always has
an undominated dominator in finite games, and then, for each root dominated strategy,
one can find a strategy that eliminates it. We formally prove this statement below in
Lemma 2.

1.4 Order independence result

1.4.1 Technical results

Lemma 1. ∀i ∈ I,∀si ∈ Si, b(si) 6= ∅

Proof. By Definition 3, it is straightforward that b(si) is never empty for any finite game.
Indeed, either there is no opponent (or equivalently opponents’ strategy sets are empty)
and then b(si) = si. Otherwise, since the game is finite, each player has (at least) a best
response to each strategy profiles of his opponents. �

Now, we state that root dominance forms a strict partial order:

Proposition 1. With respect to a fixed game, root dominance induces a strict partial
order on the strategy set of any player i ∈ I: it is a binary relation such that irreflexivity,
asymmetry and transitivity hold.

Proof. Root dominance is irreflexive: by Lemma 1, b(s′′i ) 6= ∅, and it is not possible to
have Ui(si, s−i) > Ui(si, s−i) for any profile s−i ∈ S−i. Then, RD2 cannot be respected.
Root dominance is transitive: assume s′′i � s′i and s′′′i � s′′i . Here, we have to prove that
s′′′i � s′i. First, it is straightforward that RD1 is respected. Second, since s′′′i � s′′i , we
know that Ui(s′′′i , s−i) > Ui(s

′′
i , s−i) for each strategy profile s−i contained in b(s′′′i ). Since

s′′i � s′i, Ui(s′′i , s−i) ≥ Ui(s
′
i, s−i) for each strategy profile s−i in S−i, and thus for each

strategy profile s−i contained in b(s′′′i ). Therefore, Ui(s′′′i , s−i) > Ui(s
′′
i , s−i) ≥ Ui(s

′
i, s−i)
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Chapter 1. Root Dominance

for each strategy profile s−i contained in b(s′′′i ) and RD2 is respected. Finally, irreflexivity
and transitivity together imply asymmetry. �

Lemma 2. If s′i ∈ Si is root dominated, there is (at least) one strategy s′′i ∈ Si that may
eliminate it, i.e., s′′i is not root dominated by any strategy in Si and s′′i root dominates s′i.

Proof. Since the number of strategies is finite, the number of strategies root dominating s′i
is necessarily finite. Let us denote it m and denote g(s′i) the set of these strategies. Then,
(at most) m− 1 of these strategies are root dominated. Otherwise, it means that the mth

strategy is root dominated by an other strategy outside g(s′i)
12. By transitivity of root

dominance, it means that the latter strategy also root dominates s′i, contradicting the fact
that the number of strategies root dominating s′i is m. If less than m − 1 strategies are
root dominated, we do have that there is (at least) one strategy that is not root dominated
by an other strategy and which root dominates s′i. �

The next lemma establishes that the set b(si) never expands as we progress through the
steps of IERDS:

Lemma 3. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ− 1]], , ∀i ∈ I, ∀si ∈ Sλ+1
i ,

bλ+1(si) ⊆ bλ(si).

Proof. Assume there exists a profile s′ ≡ Π
k∈I
s′k ∈ bλ+1(si) \ bλ(si). Since s′ /∈ bλ(si) but

s′ ∈ bλ+1(si), we know that there is no best response in s′ at λ but also that (at least)
one player j best responds with the strategy s′j to s′−j at λ + 1. Thus, we assume that
there is (at least) one player j 6= i with a best response s′′j ∈ Sλj to s′−j, eliminated at step
λ+ 1 such that:

Uj(s
′′
j , s
′
−j) > Uj(s

′
j, s
′
−j).

Since s′′j is root dominated, then by Lemma 2 s′′j is root dominated by (at least) an
uneliminated strategy s′′′j , present at step λ + 1. Since s′′j is a best response for j to the
profile s′−j, we necessarily have Uj(s′′j , s′−j) = Uj(s

′′′
j , s

′
−j) > Uj(s

′
j, s
′
−j). Therefore, at step

λ+ 1, player j still wants to deviate from s′j to s′′′j . It contradicts the hypothesis that s′j
is a best response for j at step λ+ 1 and finally it contradicts that s′ ⊆ bλ+1(si).

�

This property would not be true if, for instance, we considered only profiles where each
opponent plays a best response. Clearly, either these profiles could not exist, or they could
be eliminated (see Section A.3), inducing new profiles in b(si) where a “new” maximal
payoff would be obtained.

12By Proposition 1, root dominance is asymmetric and transitive. Then, there is at least one strategy (the mth

here) that is not root dominated by a strategy in g(s′i). Indeed, if each strategy is root dominated by a strategy
in g(s′i), one can find a contradiction with asymmetry and transitivity.
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Chapter 1. Root Dominance

Now we establish that the relation of root dominance between two strategies is maintained
through the steps of IERDS:

Lemma 4. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ − 2]], ∀i ∈ I, ∀s′i, s′′i ∈ Sλ+1
i , if s′′i � s′i in Γλ, then

s′′i � s′i in Γλ+1.

Proof. Assume s′′i � s′i in Γλ. It is straightforward that RD1 is still verified in Γλ+1. By
Lemma 3, we know that for any strategy si, bλ+1(si) ⊆ bλ(si). Therefore RD2, is still
verified as well. �

Note that bλ(s′′i ) being not empty for each λ by Lemma 1, there is still a profile such s′′i
strictly payoff dominates s′i. Besides, remark that we consider only λ ∈ [[0,Λ − 2]] for a
given sequence because in ΓΛ no strategy is root dominated.

Now, we define a notion introduced by Apt [2011], namely the hereditariness of a domi-
nance relation. Hereditariness is useful to establish order independence of the procedure
associated with the dominance relation which verifies it. Denote c(Γ), the Γ-choice, i.e.
the set of strategies in S which are not dominated in Γ (given a dominance relation).
Hereditariness means that no strategy previously dominated becomes non dominated af-
ter one step of a process:

Definition 6. A dominance relation is said to verify hereditariness if ∀{Γλ}λ≤Λ,∀λ ∈
[[0,Λ− 1]],

Γλ,Γλ+1 ∈ {Γλ}λ≤Λ ⇒ c(Γλ+1) ⊆ c(Γλ).

Note that hereditariness is called 1-Monotonicity* in Luo et al. [2020]. Here, we verify
that root dominance is hereditary:

Lemma 5. Root dominance verifies hereditariness. It is also equivalent to the following
statement: ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ − 2]], ∀i ∈ I, ∀s′i ∈ Sλ+1

i , if s′′i ∈ Sλi root dominates s′i
in Γλ, then s′i is still root dominated in Γλ+1.

Proof. First, if s′′i ∈ Sλ+1
i , by Lemma 4, the result is immediate, i.e. RD1 and RD2 are still

respected. Second, if s′′i /∈ Sλ+1
i , then by Lemma 2 there is (at least) a strategy s′′′i that

eliminates s′′i . By Proposition 1, each strategy that root dominates s′′i root dominates s′i as
well in Γλ. Thus, there is still (at least) one strategy that root dominates s′i in Γλ+1. �

By Apt [2011, Theorem 1], we know that hereditariness implies, in finite games, order
independence of the procedure associated with the dominance relation. The following
result, a corollary of Lemma 5, illustrates with another perspective why our elimination
procedure is order independent. In the words of Dufwenberg and Stegeman [2002]; Luo
et al. [2020], each root dominated strategy has an undominated root dominator, i.e. each
root dominated strategy at a point of a sequence of games will be deleted by the end of
the sequence:
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Proposition 2. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ− 1]], ∀i ∈ I, ∀si ∈ Sλi root dominated in Γλ ,

si /∈ ΓΛ.

Proof. The proof is made by applying an induction reasoning on Lemma 5. Assume a
process of IERDS applied to the game Γ, and the associated sequence of games {Γλ}λ≤Λ.
Assume si is root dominated at step λ−1. By the definition of the sequences of games, si
is eliminated, and si is not in ΓΛ. Now assume the property that a root dominated strategy
si at Λ−µ is not in ΓΛ for a given µ ∈ [[2,Λ− 1]] is true. Let us show it is true for µ+ 1.
Thus, assume that si is root dominated at Λ− (µ+ 1). Either si is eliminated at this step
and we have the result, or, it is not eliminated. In this latter case, by Lemma 5, si is root
dominated at Λ − µ, and therefore, we have the result by the induction hypothesis. We
have shown that a strategy root dominated at Λ− (µ+ 1) was deleted by the end of the
sequence. Thus, by induction, it is true for each µ ∈ [[2,Λ]]. Since we did not need any
assumption on the process used to construct our initial sequence, this result is true for
any process. �

1.4.2 Main result

Theorem 1. IERDS is order independent in finite games.

Proof. By Lemma 5 and Apt [2011, Theorem 1], the result is immediate. �

1.5 Related literature about other elimination procedures

In an unifying framework gathering weak and strict dominances, Hillas and Samet [2020]
eliminate flaws, i.e., strategy profiles rather than strategies. A flaw deletion occurs if
playing the given flaw implies that an agent plays a dominated strategy. If flaws elimina-
tion is used, then weak and strict dominance are order independent in finite games (Hillas
and Samet [2020, Proposition 1]). Therefore, weak dominance rationality seems to be as
legitimate as strict dominance rationality if iterated elimination of flaws is considered13.
Nevertheless, the purpose in Hillas and Samet [2020] is mainly to rationalize the use of
weak dominance. Moreover, the iterative elimination of flaws does not actually eliminate
the profiles or strategies from the original game that is considered. Rather, eliminated
profiles or strategies are seen as not playable by the agents, but they may be used in order
to justify further flaws deletions.

In the same vein, Asheim and Dufwenberg [2003] refine the notion of permissibility of
Dekel and Fudenberg [1990]14 with full permissibility sets and the associated iterated

13Interestingly, in finite games, the outcome of IEWDS is contained in the outcome of weak flaws elimination
and the outcome of IESDS is equal to the outcome of strict flaws elimination. Then, one may wonder whether the
order independence of IESDS in finite games may only be due to the fact that IESDS is incidentally equivalent
to strict flaws elimination.

14A strategy is permissible if, after one round of elimination of all the weakly dominated strategies, it survives
to the iterated elimination of strictly dominated strategies.
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elimination of choice sets under full admissible consistency (IECFA). IECFA considers
strategy subsets (and not strategies like in IESDS or IEWDS). Roughly speaking, IECFA
eliminates weakly dominated strategies, and then keeps a strategy subset of the first player
if there is at least a surviving opponent’s subset such that considering only the profiles
contained in this opponent’s subset, the strategies in the subset of the first player are
the only undominated strategies (i.e. not weakly dominated strategies). The outcome of
IECFA is made of subsets. All these subsets can correspond to a belief about a surviving
opponent’s subset, but the beliefs do not have to be consistent between players (like
in rationalizability and contrary to Nash equilibrium). IECFA is order independent by
definition. Indeed, like the Dekel-Fudenberg (DF) procedure of Dekel and Fudenberg
[1990], each eliminable strategy (subset) is eliminated at each step. Nevertheless, the
outcome still exhibits multiplicity.

An other procedure based on beliefs is the reasoning-based expected utility procedure
(RBEU) of Cubitt and Sugden [2011]. RBEU is an iterated procedure in which strategies
are accumulated15 if there is no belief such that another strategy gives a strictly higher
payoff to the player (the strategy is dominant). If a player’s strategy is accumulated, the
procedure allows only opponents’ beliefs which allocate a strictly positive probability to
the occurrence of this strategy. Strategies which are always strictly dominated for these
beliefs are deleted and so on. It is immediate by its definition that RBEU deletes (at least)
as many strategies as IESDS in finite games. Thus, RBEU refines IESDS. Moreover, it is
order independent in finite games, contrary to IEWDS. However, RBEU refines strictly
IESDS if and only if there is (at least) a dominant strategy, a quite huge requirement.

1.6 The mutability problem

Now, we define the second consistency requirement we are concerned with, namely im-
mutabilty. Note that we call mutability what Cubitt and Sugden [2011] call “undercutting
problems” and what Hillas and Samet [2020] call “inconsistency”. Samuelson [1992] con-
trasts iterated admissibility (i.e. IEWDS) and common knowledge of admissibility by
emphasizing this inconsistency with the following words:

The difference in these two outcomes reflects the fact that once a strategy [...]
is eliminated by iterated admissibility, it cannot return even if the reason for
its elimination has been purged.

First, we introduce the notion of virtual domination:

Definition 7. A strategy eliminated by a process is said virtually dominated if, added to
the final outcome of the process, it is a dominated strategy.

Definition 8. A procedure is immutable (for a given game) if in each process associated
to it (for this given game), all eliminated strategies are virtually dominated.

15Briefly, accumulated strategies are the undeletable strategies.
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Table 1.1 summarizes the inconsistencies associated to the procedures we have mentioned
above. Now, we study in details these “inconsistencies” of IEWDS through various versions

Inconsistencies Definitions Procedures

Dependence
Order

affects the final outcome
The order of elimination

IEWDS

Mutability

at a previous step
it is dominated

whereas
not dominated

A strategy may be virtually

IEWDS, IECFA, DF

Table 1.1: Inconsistencies of Elimination Procedures in Finite Games

of an example taken in Hillas and Samet [2020]. Note that such remarks had been already
formulated in Samuelson [1992] for instance. We compare IERDS to the solution of Hillas
and Samet [2020] to deal with these inconsistency problems, namely the flaws elimination
or also called deletion of inferior profiles16. Following Stalnaker [1994], Hillas and Samet
[2020] propose to eliminate profiles (rather than strategies) such that if they were played,
it would mean that a (weakly) dominated strategy is effectively played. We illustrate
mutability with the following example, such that −→

IEWDS
means that a process of IEWDS

is run (and gives the final outcome when cells color is blank), and the cells in blue indicates
eliminated strategies but which are non virtually dominated after the process has been
terminated:

j’s Strategy
i’s Strategy L R

T (2,1) (3,0)
B (2,0) (2,1)

−→
IEWDS

j’s Strat.
i’s Strat. L

T (2,1)
B (2,0)

Figure 1.3: Hillas and Samet [2020]’s Game with IEWDS Mutability

The game of Figure 1.3 has one pure Nash equilibrium (T, L). T weakly dominates B.
If B is eliminated, then R is strictly dominated and the surviving outcome is (T, L), the
pure Nash equilibrium. However, as mentioned by Hillas and Samet [2020], this iterated
deletion is inconsistent. Indeed, if R is eliminated, then B is not weakly dominated any-
more and then (T, L) should not be the only surviving outcome. Weak flaws elimination
of Hillas and Samet [2020] deletes profiles (B,R) (because if this profile is played, it means
that strategy R is played, implying that B is weakly dominated), and then (T,R) (after
eliminating (B,R), R is strictly dominated by L). Outcomes (T, L) and (B,L) are sur-

16See also Bonanno and Tsakas [2018] who study the properties of the so-called iterated deletion of inferior
profiles (IDIP) in a framework with ordinal utilities.
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viving. Thus, there is no mutability. IERDS deletes no strategy. Now, we slightly modify
the payoffs matrix in a way that yields order dependence of IEWDS outcome:

j’s Strategy
i’s Strategy L R

T (2,1) (3,1)
B (2,0) (2,1)

−→
IEWDS

j’s Strategy
i’s Strat. L R

T (2,1) (3,1)
or

j’s Strategy
i’s Strat. L R

T (2,1) (3,1)

Figure 1.4: Modified Game with IEWDS Order Dependence (and Mutability)

In this modified version of the game, a second pure Nash equilibrium appears: (T,R).
T weakly dominates B and R weakly dominates L. If B is eliminated, then L is not
dominated and both Nash equilibria survive. On the opposite, if L is eliminated, so is
B, and the only surviving outcome is (T,R) (note that only the outcome (T,R) can be
achieved as well by eliminating B and L at the same step). There, IEWDS is order
dependent. It may also generate mutability. Indeed, if the final outcome is (T,R), then
the strategy L is not virtually dominated. Hillas and Samet [2020]’s deletion procedure
eliminates both profiles (B,R) and (B,L), letting the two Nash equilibria survive. IERDS
deletes no strategy.

Now, we focus on the last example of this section:

j’s Strategy
i’s Strategy L R

T (2,0) (3,1)
B (2,1) (2,0)

−→
IEWDS

j’s Strat.
i’s Strat. R

T (3,1)

Figure 1.5: Modified Game with a Unique Prediction for IEWDS (and IERDS)

In this last version of the game, there are two Nash equilibria: (B,L) and (T,R). T

weakly dominates B. If B is eliminated, then, R dominates L and the only outcome is
(T,R). There, IEWDS is not mutable. Indeed, since R is played and thus uneliminated,
T does weakly dominate B. It is order independent as well. Moreover, it predicts a
unique outcome whereas the Hillas and Samet [2020]’s procedure eliminates only the
profile (B,R), letting the two Nash equilibria survive. To compare IERDS to another
procedure, notice that RBEU of Cubitt and Sugden [2011] accumulates the strategy T ,
but then stops17. IERDS deletes B, leading to the unique outcome (T,R).

To sum up, in these various examples, when weak dominance is mutable or order de-
pendent, our elimination procedure deletes less strategy than IEWDS. When IEWDS is

17Even if T is played with a strictly positive probability, for all j′s beliefs where B is played with a higher
probability, L is optimal and cannot be deleted.
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both non mutable and order independent, our elimination procedure predicts the same
outcome as IEWDS (see Section A.5 for an attempt to generalize this discussion in two-
player games), being more predictive than weak flaws elimination of Hillas and Samet
[2020] or RBEU of Cubitt and Sugden [2011].

Now, we state the result of this section, i.e., the immutability of IERDS. With the help
of sequences of games, we recall what is immutability: a procedure is immutable if there
is no process associated with it such that at the end of the sequence of game, there is
no strategy s′i ∈ S0

i \ SΛ which is not dominated in the game formed by ΓΛ and the
strategy s′i, i.e. the game Γ′ (with the same players and utilities as ΓΛ) and the strategy
set SΛ ∪ s′i. Now, we can state that there is no mutability in any sequence of games
generated by IERDS:

Theorem 2. IERDS is immutable in finite games.

Proof is relegated to Section A.1.

1.7 Mixed root dominance

Consider the mixed extension of a game Γ and denote Σ the set Π
i∈I

Σi ≡ Π
i∈I

∆(Si) the

set of all (mixed) strategies. Thus, σi ∈ Σi is a mixed strategy if it is a probability
distribution over the set Si of pure strategies. As in the pure strategy case, we denote
Σ−i the set Π

j∈I\{i}
Σj ≡ Π

j∈I\{i}
∆(Sj), the strategy profiles set of i’s opponents. Let σi(si)

be the probability that si is effectively used when σi is played and denote Rσi = {si ∈
Si|σi(si) > 0} the support of σi18. We apply the definition of a Best Reply Set to mixed
strategies in the same way as in the pure strategy case:

Definition 9. The Best Reply Set to σ′′i ∈ Σi, denoted b(σ′′i ), is the set of all strategy
profiles σ∗ ∈ Σ such that:
σ∗i = σ′′i , and, if S−i 6= ∅:

∃j ∈ I \ {i}, σ∗j ∈ arg max
σj∈Σj

Uj(σj, σ
∗
−j) (OM′)

Now, we extend the notion of Best Reply Set to strategy subsets:

Definition 10. For any strategy subset S̄i ⊂ Si, we denote b(S̄i) = ∪
σi∈∆S̄i

b(σi) the Best

Reply Set to the strategy subset S̄i.

Note that if the subset is a singleton, Definitions 3 and 10 obviously coincide. Importantly,
in order to define mixed root dominance, we will use the Best Reply Set to the strategy
subset formed by the support of the mixed strategy:

18Note that this definition of the support cannot be weakened by allowing e.g. a continuous distribution as a
support. We clarify this point below.
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Definition 11. A strategy s′i ∈ Si is said root dominated by the mixed strategy σ′′i ∈ Σi

whose support is Rσ′′i
, if:

∀s−i ∈ S−i: Ui(σ
′′
i , s−i) ≥ Ui(s

′
i, s−i) (RD1′)

∀σ∗−i such that σ∗ ∈ b(Rσ′′i
): Ui(σ′′i , σ

∗
−i) > Ui(s

′
i, σ
∗
−i) (RD2′)

Definition 11 is in fact a generalization of Definition 4. Besides, if the Best Reply Set to
σ′′i ∈ Σi was defined such that it contained only the best responses to σ′′i , root dominance
would lack hereditariness. Assume a mixed strategy σ′′i ∈ Σi composed of two pure strate-
gies in Si, s′′i and s′i such that σ′′i �

S
s′i. Then, it is immediate that s′′i strictly dominates s′i.

Here, the point is that the mixed strategy is not necessary to establish that s′i is strictly
dominated: that is, even if σ′′i is eliminated, s′′i still strictly dominates s′i19. Concerning
root dominance, the fact is that mixing does not affect only the payoffs, it affects also
the set of best responses. In order to keep hereditariness, all the best responses to strate-
gies contained in ∆(Rσ′′i

) have to be considered. We can see it with the next example,
where we use directly Definition 4 to define root dominance by mixed strategies and not
Definition 11:

j’s Strategy
i’s Strat. L C R

T (4,0) (4,0) (0,0)
M (4,0) (4,0) (4,0)
B (0,0) (4,2) (8,1)

with dominance relations:
R �L
σR �L,R
C � L,R

Figure 1.6: Order Dependence Issue with Definition 4 applied to Mixed Strategies

Strategy C weakly dominates both L and R. However, it does not root dominate them,
player i best responding to C with the three strategies T , M and B. Now, look at any
mixing σR of C and R. Then, i’s best response is only B. Instead, for any mixing σL of
C and L, i’s best responses are T and M .

Thus, if b(σR) = (σR, B), σR root dominates R. Besides, R root dominates L. On the
opposite, if b(σL) = {(σL, T ), (σL,M)}, σL does not root dominates L. Therefore, both L
and R are root dominated but only R root dominates L. Consequently, if R is eliminated
before L, L cannot be eliminated at any further step, showing that the procedure would
be order dependent. When we apply Definition 11, the dominance relation is modified
such that:

σR�R and σR�L

Then, order dependence disappears and only strategy L is eliminated.

The next result states that mixed strict dominance implies mixed root dominance:
19A different property but implying similar consequences is established for root dominance in Lemma 7.
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Lemma 6. σ′′i �
S
si ⇒ σ′′i � s′i.

The proof is straightforward since strict dominance implies trivially both RD1′ and RD2′.

The next example shows how mixed IERDS behaves with respect to pure IERDS. It
presents the final outcome associated to each procedure. Assume a Bertrand duopoly
where the marginal cost is zero, the market size equal to 1 and admit as classically that
when both firms set the same price, the market is equally shared. Then we have following
payoffs matrix:

j’s Strategy
i’s S. 0 1 2 3 4

0 (0,0) (0,0) (0,0) (0,0) (0,0)
1 (0,0) (0.5,0.5) (1,0) (1,0) (1,0)
2 (0,0) (0, 1) (1, 1) (2,0) (2,0)
3 (0,0) (0,1) (0, 2) (1.5,1.5) (3,0)
4 (0,0) (0,1) (0,2) (0,3) (2,2)

−→
pure IERDS

j’s Strategy
i’s S. 1 2 3 4

1 (0.5,0.5) (1,0) (1,0) (1,0)
2 (0, 1) (1, 1) (2,0) (2,0)
3 (0,1) (0, 2) (1.5,1.5) (3,0)
4 (0,1) (0,2) (0,3) (2,2)

Figure 1.7: Symmetric Discrete Bertrand Game after Pure IERDS

Once the strategies 0 are eliminated, no strategy is any longer root dominated by a pure
one. However, one can find a mixture of strategies 1, and 3 that root dominates the
strategy 4 (it is enough to have a weight higher than 2

3
for strategy 3 and a strictly

positive weight for 1). After elimination of the strategies 4, some mixtures of strategies 1

and 2 can strictly dominates the strategy 3 (it is enough to have a weight higher than 1
2

for strategy 2 and a strictly positive weight for 1). Once strategies 3 are eliminated, we
can show that strategies 2 are root dominated by 1.

j’s Strategy
i’s S. 0 1 2 3 4

0 (0,0) (0,0) (0,0) (0,0) (0,0)
1 (0,0) (0.5,0.5) (1,0) (1,0) (1,0)
2 (0,0) (0, 1) (1, 1) (2,0) (2,0)
3 (0,0) (0,1) (0, 2) (1.5,1.5) (3,0)
4 (0,0) (0,1) (0,2) (0,3) (2,2)

−→
mixed IERDS

j’s S.
i’s S. 1

1 (0.5,0.5)

Figure 1.8: Symmetric Discrete Bertrand Game after Mixed IERDS

The next result demonstrates that a strategy s′i ∈ Si root dominated by a mixed strategy
whose support contains s′i is also root dominated by another strategy whose support does
not contain s′i:

Lemma 7. If s′i ∈ Si is root dominated by σ′′i ∈ Σi such that Rσ′′i
= (Ši∪s′i) (with Ši ⊂ Si

which contains at least one strategy different from s′i), then s′i and σ′′i are root dominated
by σ′′′i ∈ Σi such that Rσ′′′i

= Ši.
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Proof. Assume s′i ∈ Si is root dominated by σ′′i ∈ Σi. Thus, σ′′i weakly dominates s′i.
Then, we can construct σ′′′i ∈ Σi such that the weight of each pure strategy forming σ′′′i
is proportionally the same as in σ′′i when s′i is removed from the support. It is clear
that σ′′′i weakly dominates σ′′i (and s′i). Indeed, the average payoff is (weakly) increased
when s′i is removed, since the payoff to i of s′i against any profile is below the average
payoff of σ′′i . Furthermore, we know that σ′′i strictly payoff dominates s′i on b(Rσ′′i

). For
the same reason, it is clear that σ′′′i strictly payoff dominates σ′′i (and s′i) on b(Rσ′′i

). By
construction, b(Rσ′′′i

) ⊂ b(Rσ′′i
). Therefore, σ′′i (and s′i) are root dominated by σ′′′i . �

This result allows us to keep the result of Lemma 2, and then to show order independence
of mixed IERDS:

Theorem 3. Mixed IERDS is order independent.

Proof. By adding Lemma 7, all results of Section 1.4 hold true when we apply the mixed
framework. See Section A.7 for more details. �

Finally, we can establish the next statement:

Theorem 4. Mixed IERDS refines mixed IESDS.

This result is a direct implication of Lemma 6 and Theorem 3.

To be clear this result means that in some games, mixed IERDS refines strictly mixed
IESDS and in other games, they have the same outcome.

In the next section, we will simply write IERDS for mixed IERDS.

1.8 Rationality concepts

First, we recall that in the standard framework, in a two-player game, a strategy s∗i is
rational if and only if there is a strategy for j such that σ∗i maximizes the utility of i:

Definition 12. A strategy s∗i is rational if:

∃σj ∈ Σj, such that ∀σi ∈ Σi,

Ui(s
∗
i , σj) ≥ Ui(σi, σj)

By Pearce [1984, Lemma 3], in a two-player game, a strategy is not rational if and only
if it is strictly dominated. In the remaining of the paper, we will restrict ourselves to
two-player games as well. Furthermore, Pearce [1984, Lemma 4] shows that a strategy is
weakly dominated if and only if it is not a best response to any totally mixed profile. That
is, beliefs are said cautious,i.e., players believes that opponents plays only full support
strategies). This cautiousness is justified by the fact that players may not exclude totally
the possibility that opponents can play any strategy. Yet, this view is apparently in
contradiction with the belief that weakly dominated strategies should not be played.
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Indeed, admissibility requires that agents consider possible that opponents play all their
strategies with positive probability. It means that each agent believes that his opponents
will play non admissible strategies. This is emphasized by Samuelson [1992] as the third
issue with IEWDS:

The process appears initially to call for agents to assume that opponents may
play any of their strategies but subsequently to assume that opponents will
certainly not play some strategies.

This problem is known as the inclusion-exclusion challenge (see Barelli and Galanis [2013])
and has opened a rich literature attempting to reconcile weak dominance rationality with
consistency.

Brandenburger [1992]; Stahl [1995]; Brandenburger et al. [2008] propose to use the lexi-
cographic probability system introduced in Blume et al. [1991] to characterize weak dom-
inance rationality. In a word, it is assumed players believe that when a strategy is elimi-
nated, it is infinitely less likely to be played with respect to remaining strategies, but still
infinitely more likely to be played than previously eliminated strategies. Therefore, the
inclusion-exclusion challenge is solved in an elegant way: a weakly dominated strategy
is unlikely to be played and at the same time not totally unlikely if “necessary”. In con-
trast with the view defended in Samuelson [1992], Brandenburger et al. [2008] state that:
“A player is rational if he optimizes and also rules nothing out.” Alternatively, Barelli
and Galanis [2013] introduce the notion of event-rationality which allows two levels of
beliefs. A first which is standard, and a second one used in case of equivalence between
two strategies. When there is equivalence, a player can break ties by using opponents’
strategies deemed unlikely. Therefore, again, even dominated strategies are never totally
excluded of the players’ “thoughts”. The rationality concepts we introduce do consider
thought experiments but contrasts with the option proposed in Barelli and Galanis [2013]:
our experiments assume a certain sense of rationality about the opponent’s play at the
second level of belief.

In the next subsection, we will assume that some perturbations of the game can occur with
probability ε > 0. Considering ruling out “unreasonable” Nash equilibria in extensive-form
games, Selten [1975] formalizes this idea with the notion of perfect equilibria, which are
Nash equilibria robust to the possibility that agents may deviate (by mistakes). Addi-
tionally, Fudenberg et al. [1988] introduce the idea that payoffs knowledge might not be
complete, i.e., agents are unsure about their own payoffs and others’ payoffs. Therefore,
the authors introduce forward induction in the reasoning: the deviation is not necessarily
a mistake but might be a “signal”. The DF procedure of Dekel and Fudenberg [1990]
is the outcome of such games where agents are uncertain about payoffs. Besides, Börg-
ers [1994] shows that the DF procedure can also be the result of approximate common
knowledge of weak dominance rationality (i.e. each player believes that his opponents
play strategies with full support). That is, Börgers [1994] assumes that weak dominance
rationality is common knowledge with probability p. When p converges to 1, agents plays
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only strategies which remain after the DF procedure.

The kind of perturbations we introduce does not consider such payoff uncertainties.
Rather, we are closer to Selten [1975]’s idea that a player may observe “mistakes” and
react optimally. We also relate to Hamilton and Slutsky [2005] who study the possibility
that an agent takes into account his own errors. More precisely, we consider simulta-
neous games where an agent can generate reactions by his own thoughts. We suppose
that despite having a “reference” strategy, a player may alternatively consider some strat-
egy subsets with probability ε. If so, the opponent reacts optimally (in a naive way) to
this strategy subset. Thus, the reference strategy is “tested” against such mind trembles.
“Mind trembles” can be seen as potential trembles which will be realized only if they are
profitable. For instance, assume a poker player who sets a reference strategy before the
game starts. However, he knows that during the play he may be tempted to adopt another
strategy with probability ε: this is a mind tremble. Now, if the reference strategy is not
optimal when he believes that the opponent can detect this tremble and react optimally,
the tremble should be realized and, in fact the reference strategy never played in such a
game.

Therefore, we assume a framework with conjectural variations (see our discussion below
in Section 1.8.3). Then, we introduce the concept of local ε-rationality which selects the
strategies maximizing i’s utility when i forms conjectures about j’s reactions to mind
trembles, those occurring with probability ε. With respect to the usual conjectural varia-
tion framework, two differences operate: (i) an actual deviation is not required but a mind
tremble is enough to generate the opponent’s reaction, and (ii) reaction is said rational,
i.e., agent i conjectures that j will play a best response to the mind tremble.

In Section A.9 we propose two others perturbations that lead to two additional charac-
terization of root undominance by rationality.

1.8.1 Characterization of root undominance by rationality

In order to characterize root undominance, we define in this subsection a new rationality
concept called local ε-rationality. For this purpose, we introduce first a conjectural system
Cij for player i about strategies of player j when a perturbation occurs (with probability
ε). We say that player i has a mind tremble when he thinks of a strategy subset Ši ⊂ Si
whereas he has a reference strategy σi ∈ Σi. Finally, for each strategy subset Ši ⊂ Si, i
believes that j will play a certain strategy sj with probability Cij

(
Ši, sj

)
if i has a mind

tremble towards Ši.

We define Cij as a mapping from the tuple formed by the product of the power set P(Si)
20

of Si and j’s strategy set Sj to [0, 1]. Our conjectural system is naturally reminiscent of
the conjectural variation theory (see our discussion below in Section 1.8.3), except that
we consider strategy subsets.

20The power set of Si is the set containing all the subsets of Si.
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Definition 13. A conjectural system Cij is the mapping Cij := P(Si)×Sj → [0, 1] which
associates any i’s strategy subset with a pure strategy for j to a probability, that is, it
satisfies: ∀Ši ∈ P(Si),

∑
sj∈Sj

Cij
(
Ši, sj

)
= 1.

According to i’s belief, Cij
(
Ši, sj

)
is the probability that j will play sj if he “observes”

that i thinks of a strategy whose support is Ši. We denote Cij the set of all conjectural
systems of i about j.

Before going further, we define an additional notion which will be useful below, namely,
the expected ε-perturbed utility :

Definition 14. The expected ε-perturbed utility of i from playing σi when j plays σj in
the game without perturbation and σ̂j in the game with perturbation is:

V ε
i (σi, σj, σ̂j) ≡ (1− ε)E[Ui(σi, σj)] + εE[Ui(σi, σ̂j)]

Simply, the ε-perturbed utility formalizes the expected utility when player i has the belief
that j plays σj with probability 1− ε and σ̂j with probability ε. In the remainder of the
paper, we will see σj as the “normal” or standard belief (the belief when no exogenous
event occurs), and we will assume that σ̂j is played when a perturbation occurs. We
emphasize that it does not mean that an extensive form game is played. Rather, the
thoughts of i (about his own play) influence his beliefs about j’s actions with probability
ε.

For a given mixed strategy σi ∈ Σi of player i, we recall that we denote σi(si) the
probability that si to be drawn when σi is chosen. Now, we introduce a new rationality
concept in association to a conjectural system:

Definition 15. A strategy si ∈ Si is locally ε-rational if:

∃σj ∈ Σj,∃Cij ∈ Cij, such that ∀σi ∈ Σi, if we set:

σ∗j with σ∗j (sj) ≡ Cij (Rσi , sj) then we have,

V ε
i (si, σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗
j )

From now, distinctly from the conjectural variation theory, we assume that the conjectures
are rational (see our discussion below in Section 1.8.3), i.e., Cij

(
Ši, sj

)
cannot be strictly

positive unless sj ∈ b(Ši):

Assumption R. Cij is a rational conjectural system (with Rij the set of such rational
conjectural systems), i.e.:

∀
(
Ši, sj

)
∈ P(Si)× Sj, Cij

(
Ši, sj

)
> 0⇒ sj ∈ b(Ši)

Now, we can re-write our definition:
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Definition 16. Under Assumption R, a strategy si ∈ Si is locally ε-rational if:

∃σj ∈ Σj,∃Cij ∈ Rij, such that ∀σi ∈ Σi, if we set:

σ∗j with σ∗j (sj) ≡ Cij (Rσi , sj) then we have:

V ε
i (si, σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗
j )

Under Assumption R, a strategy si ∈ Si is locally ε-rational if there is a belief σj and
a rational conjectural system Cij such that the expected utility of si is larger than any
tested σi ∈ Σi. That is, si is optimal if i believes that j plays σj with probability 1 − ε
and reacts optimally to the tested σi with probability ε.

Naturally, we can establish the following result that simplifies the previous definition:

Lemma 8. Under Assumption R, a strategy si ∈ Si is locally ε-rational if and only if it
verifies:

∃σj ∈ Σj, such that ∀σi ∈ Σi,∃σ∗j ⊂ b(Rσi), V ε
i (si, σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗
j ) (1.1)

Proof. Assume si is locally ε-rational. Then, there is σj ∈ Σj and a rational conjectural
system Cij against which si (weakly) payoff dominates all other strategies in Σi. That is,
if we compare si to any σi ∈ Σi, we use with probability 1 − ε the strategy σj and with
probability ε the strategy σ∗j such that σ∗j (sj) ≡ Cij (Rσi , sj). By Assumption R, we know
that all sj are in b(Rσi). Therefore, σ∗j is in b(Rσi). Finally, we can write that:

∃σ̃j ∈ Σj,∀σi ∈ Σi,∃σ∗j ⊂ b(Rσi) such that:

V ε
i (si, σ̃j, σ

∗
j ) ≥ V ε

i (σi, σ̃j, σ
∗
j ) (1.1)

Conversely, assume the above Equation (1.1). If this is true we can construct a rational
conjectural system Cij by using the hyperplane theorem. Assume a strategy subset Ši ∈
P(Si). Consider the vectors

−→
V ε
i (σi, Ši) = {V ε

i (σi, sj, s
∗
j)}sj∈Sj ,s∗j⊂b(Ši)

21 for each σi ∈ si ∪
∆(Ši). Simply, these vectors are such that each component l+m is the payoff i can obtain
when playing σi and when j plays the pure strategy slj ∈ Sj with probability 1− ε and the
pure strategy s∗mj ⊂ b(Ši) with probability ε. We denote Y (si, Ši) the set of such vectors.
Besides, we can construct the following set X. If k is equal to ](Sj) × ](b(Ši))

22, then
X is the set

{
x ∈ Rk |x >

−→
V ε
i (si)

}
, that is the set of all payoffs that strictly dominate si

payoffs. Both X and Y (si, Ši) are convex sets. By Equation (1.1), these sets are disjoint.
Then, we can apply the separating hyperplane theorem which states that there is a vector
in Rk, π ≥ 0 with π 6= 0 and such that:

∀y ∈ Y (si, Ši),∀x ∈ X, π · y ≤ π ·
−→
V ε
i (si) ≤ π · x

21Note that we make a slight abuse of notation here: we consider s∗j ⊂ b(Rσi) if ∃σj ⊂ b(Rσi) and sj ∈ Rσi .
For technical reasons, we consider only pure strategies but all mixed strategies in the Best Reply Set are well
present through the pure strategies that support them.

22We denote ](Si) the number of elements in the set Si. According to the above footnote, ](b(Ši)) is well finite.
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It directly implies that ∀σi ∈ si ∪∆(Ši), π ·
(−→
V ε
i (si)−

−→
V ε
i (σi)

)
≥ 0.

Especially, there is such a vector π̃ such that ∀l ∈ [[1, ](Sj)]], π̃(l) = (1− ε)× σ̃j(σlj), since
the hypothesis that Equation (1.1) is verified implies (by continuity of V ε

i in ε) that:

∀σi ∈ Σi, Ui(si, σ̃j) ≥ Ui(σi, σ̃j)

Thus we can have ∀σi ∈ si ∪∆(Ši), π̃ ·
(−→
V ε
i (si)−

−→
V ε
i (σi)

)
≥ 0 when ε→ 0+.

Now, we can start constructing the rational conjectural system Cij by setting

∀s∗mj ⊂ b(Ši), Cij(Ši, s
∗m
j ) ≡ π(](Sj) +m)

It is clear that it is rational since s∗mj ⊂ b(Ši) We can apply all the previous reasoning to
each Ši ∈ P(Si) with ∀Ši ∈ P(Si),∀l ∈ [[1, ](Sj)]], π̃(l) = (1 − ε) × σ̃j(σlj). Finally, we
obtain a full rational conjectural system and we can write that:

∃σ̃j ∈ Σj,∃Cij ∈ Rij, such that ∀σi ∈ Σi, if we set:

σ∗j with σ∗j (sj) ≡ Cij (Rσi , sj) then we have:

V ε
i (si, σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗
j )

�

Now, we can state the main result of this section, the characterization of root undominance
by local ε-rationality:

Theorem 5. Under Assumption R, a strategy si ∈ Si is locally ε-rational when ε → 0+

if and only if it is root undominated.

Proof. Assume Equation (1.1) for si and by contrapositive that si is root dominated.
Therefore ∃σ′′i ∈ Σi such that ∀σj ∈ Σj, Ui(σ

′′
i , σj) ≥ Ui(si, σj) (RD1′), and ∀σ∗j ∈

b(Rσ′′i
), Ui(σ

′′
i , σ

∗
j ) > Ui(si, σ

∗
j ) (RD2′). Then, clearly:

∀ε > 0, ∀σj ∈ Σj,∀σ∗j ⊂ b(Rσ′′i
)

V ε
i (σ′′i , σj, σ

∗
j ) > V ε

i (si, σj, σ
∗
j )

It is an immediate contradiction with Equation (1.1). By Lemma 8, si is not locally
ε-rational.

Conversely, assume by contrapositive that si is not locally ε-rational. Then, we can write
that there is (at least) a σ′′i ∈ Σi such that:

∀σj ∈ Σj,∀σ∗j ⊂ b(Rσ′′i
),

V ε
i (σ′′i , σj, σ

∗
j ) > V ε

i (si, σj, σ
∗
j )
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To see why RD2′ is respected, we can see that the previous expression implies that ∀σ∗j ∈
b(Rσi), then:

V ε
i (σi, σ

∗
j , σ

∗
j ) > V ε

i (si, σ
∗
j , σ

∗
j ) (⇔ Ui(σi, σ

∗
j ) > Ui(si, σ

∗
j ))

Now (with RD2′ being respected), when ε→ 0+, RD1′ is respected by continuity of V ε
i in ε.

Otherwise, we could find a σj ∈ Σj such that ∀σ∗j ⊂ b(Rσ′′i
), V ε

i (si, σj, σ
∗
j ) ≥ V ε

i (σ′′i , σj, σ
∗
j ).

�

Remark that the expression ε → 0+ implies that for a given game, ∃ε̄ > 0 such that
∀ε < ε̄, there is equivalence between root undominance and local ε-rationality.

1.8.2 Other notions of rationality

In this section we introduce different but close notions of rationality with respect to the
one introduced in the previous subsection. It will help us to understand what local ε-
rationality is and is not. As well, it will be useful in the following subsections. We
distinguish local ε-rationality from global ε-rationality and self-local ε-rationality. Global
ε-rationality induces the belief that the strategy support of the strategy actually played
is observed by the opponent with probability ε. Instead, self-local ε-rationality is such
that i believes that j observes the strategy support of the reference strategy. We can
summarize these differences in Table 1.2. Two main differences appear: first, what the

Rationality Type of Utility Maximization Observed Strategy
Global Ex-Ante (Conjectural Variation) Played Strategy

Self-local Ex-Post Reference Strategy
Local Projected Targeted Strategy

Table 1.2: Rationalities

agent conjectures his opponent may observe if he detects the agent’s thoughts. Second,
which kind of utility is maximized for each rationality concept. Self-local ε-rationality is
an ex post concept because once the opponent believes the agent is committed to a given
strategy, the agent can still decide to move ex post. By contrast, the global concept is ex
ante since the strategy since once the agent is committed to an action, he cannot move.
Finally, local ε-rationality correspond to a projected utility maximization. That is, even
if the agent might play his reference strategy, testing it against other strategies induces
beliefs such that this reference strategy was not available anymore. Alternatively, we can
remark that our three notions of rationality can be interpreted and distinguished with the
conjectures about the opponent’s speed of adjustment. Self-local rationality corresponds
to the case where the agent conjectures that his opponent his stickier and is not able to
adjust his strategies. Then, opponents best respond to the reference (considered initially)
strategy. Global rationality corresponds to the case where the opponent adjusts perfectly
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and then always best responds. Local rationality is such that the agent conjectures that
his opponent anticipates the adjustment, even if no move is finally made. That is why
the opponent only best responds to the targeted strategy.

Now, we define our two additional concepts:

Definition 17. A strategy si ∈ Si is globally ε-rational if and only if:

∃σj ∈ Σj,∃σ∗j ⊂ b(si),∀σi ∈ Σi,∃σ∗∗j ⊂ b(Rσi) such that:

V ε
i (si, σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗∗
j )

Global rationality of si means that si may maximize the ex-ante utility of i, given that
whatever the strategy chosen by i, j reacts optimally to it with probability ε.

Definition 18. A strategy si ∈ Si is self-local ε-rational if and only if:

∃σj ∈ Σj, ∃σ∗j ⊂ b(si), such that ∀σi ∈ Σi,

V ε
i (si, σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗
j )

Self-local rationality of si is the converse of local ε-rationality of si in terms of reference
point. That is, when i considers the strategy si, he believes that j reacts optimally to
si with probability ε. The strategy is self-local rational if there is a belief satisfying this
condition such that no move increases the i’s payoff. In other words, si may maximize i’s
ex post utility given that si is the reference point to which j best responds with probability
ε.

Besides, note that these three notions of rationality are obviously a refinement of the
classical one (see Definition 12) when ε→ 0+:

Fact 1. A strategy is globally/self-locally/locally ε-rational when ε → 0+ only if it is
rational.

1.8.3 Links with the conjectural variation theory

Since Bowley [1924, p.38] has introduced the idea of conjectural variations, the industrial
organization literature has largely been fueled by this theory23 which considers that a
market situation can remain stable if the conjectures all firms have on their opponents
refrain all of them from deviating. Contrary to the Cournot approach, the equilibrium
does not emerge from a tatônnement, but is postulated ex ante. The interest is to under-
stand why competitors may not deviate from a situation far from a Cournot equilibrium.
For instance, Sweezy [1939] introduces the kinked demand by arguing that firms react
differently when they face opponents’ downward or upward price moves. Nevertheless,
conjectures can be insane and consequently sustain an infinite number of conjectural

23See e.g. Figuières et al. [2004] for a review. Besides, for a recent contribution of this theory to public
economics, see McGinty [2021].
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variation equilibria. That is why several authors had tried to rationalize the agents’ con-
jectures. Notably, they stated that the conjectured reactions should be “optimal” in a
certain sense (see for example Hahn [1978]; Laitner [1980]; Ulph [1983]). Mainly, the con-
jecture of player i should be such that he expects that his opponent j maximizes his utility
given j’s conjectures (i.e. j anticipates the reaction of i after his own deviation respond-
ing to i’s deviation), once he has attained the new “statu quo”. Yet, these attempts have
been showed to miss their mark. Strikingly, Makowski [1987] notices two main problems
with the concepts developed in the papers cited above. The first one is that the reaction
of the opponent is optimal with respect to the new “statu quo”, and not from the initial
equilibrium. In other words, an agent does not conjecture that an opponent who faces his
deviation will best respond to the deviation, simply that once he has moved to the new
equilibrium, he does not wish to move (but the move is not rationalized). Alternatively,
Makowski [1987] proposes to consider this type of conjecture with best responses to the
deviation with the notion of only slightly more rational, rational conjecture equilibrium or
SMR-RCE. However, he points out himself another flaw: conjectures are not time con-
sistent. That is, when player i maximizes his utility, he considers his potential deviation
followed by the reaction of his opponent j. And j maximizes his utility by considering
also that his potential deviation will be followed by the reaction of his opponent i. In
words of Makowski [1987], i expects that the game ends at time t = 2 (after j’s response
to his deviation), but conjectures as well that j expects that the game ends at time t = 3

(after i’s response to j′s response). In fact, we can simply observe that there is no reason
that the process stops at any given time. Undeniably, with SMR-RCE, i does not con-
sider he can deviate from the new “statu quo” he will establish by deviating a first time
(whereas he may naturally want to deviate if he has a better response to the new “statu
quo”). This criticism might seem severe, since many concepts24 assume an end in the
reasoning process when a deviation is tested. However, this criticism generally vanishes
when the agents react by playing best responses, ending de facto the reasoning process
of the deviator once an equilibrium is reached (if it exists of course). If each reaction is
conjecture dependent, the next reaction is conjecture dependent as well. If a reaction is
not based on arbitrary conjectures, but solely on optimality, then the reasoning process
may terminate immediately.

Clearly, the beliefs assumed under global ε-rationality have the flavor of an “ε-rational
conjectural variation”. The previous discussion shows the trouble with two players “be-
having in the same way”25. That is, if the deviator i believes that j will react optimally,
there could be a difficulty if j believed that i will best respond in turn. This problem
is technically solved when ε converges to 0, since it becomes obvious that i should not
move (ex-ante) in reaction to the conjectured response of j which can only occur with a
small probability. The meaning of such a theory when ε moves away from zero is an open

24Simply, think of the ones introduced in this paper and other as the intuitive criterion of Cho and Kreps
[1987] (see our discussion below in Section 1.8.5).

25Assuming asymmetry seems justifiable since the deviatior decides alone to deviate and then, introduce
asymmetry de facto.
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question. We attempt to give some answers in Section A.10.

Before this, how to situate local ε-rationality in this framework? Local ε-rationality seems
to be the converse of a ε-rational conjectural variation theory. ε-Rational conjectural
variation could be stated (partially) as follows: if player i deviates, j will react optimally
with probability ε. Now, local ε-rationality states that: whether player i deviates or not,
j will react optimally to the deviation with probability ε. Thus, why would j reacts to
a deviation that may not appear? Why would it be more reasonable? We attempt to
answer these questions in the next subsections.

1.8.4 Observability of actions

Hamilton and Slutsky [1990] consider a duopoly where firms can choose the timing of their
action before playing the actual game. That is, a firm can decide to move at the first
period. In this case, if the competitor does not move first as well, the game is a Stackelberg
duopoly (i.e. the follower observes the action at the first period). Otherwise, the game
is simultaneous (e.g., it becomes a Cournot game if the considered variable is quantity).
Several types of equilibria appear according to the parameters and the considered variable:
either equilibria with a leader and a follower or simultaneous equilibria. In the second
configuration, there are cases where being a leader is suboptimal, and both firms wait the
second period to move, and by contrast, cases where being a follower is suboptimal, and
both firms plays at the first period. Let us focus on the latter case, the most classical
one.

In this context, the idea of global ε-rationality can be thought in the following way. Even
if, at the equilibrium, firms play simultaneously at the first period, one firm may tremble26

and become a follower. Then, if a firm has several Cournot strategies, it will choose the one
that maximizes its payoff taking into account that it might be a leader with probability ε.
Therefore, global ε-rationality can be thought as a trembling-hand refinement, motivated
by the ex-post rationality of the trembling agent. The link with local ε-rationality appears
when the situation is more constrained: assume an incumbent with a given strategy.
However, this incumbent fears an entry. Besides, it has another strategy that is strictly
better than his current strategy if a potential entrant best responds to this deviation and
is equivalent otherwise. It is clear that this deviation can be anticipated by the entrant,
making the deviation of the incumbent perfectly rational. It is what Hamilton and Slutsky
[1990] may mean when they state:

Of course, if the existing firms had sufficient postentry flexibility, then entrants
will not react to current choices but to their perception of postentry behavior.

This example shows in a simple way how a firm can be incentivized to change its strategy
if the entrant’s perception about the actual situation is accurate enough. Here, the entrant
reacts to the postentry behavior. Therefore, the “observed” strategy is not the reference

26In the context of a duopoly, the idea of tremble seems quite natural since real life contingencies often delay
decision making processes.
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strategy but the targeted one, since it is what the entrant anticipates. It does correspond
to our local ε-rationality concept.

1.8.5 Further ideas

Two remarks have to be made. The first one is that among the three notions of rationality
we have developed so far, only one leads to an order independent iterated elimination
procedure (the proof of this observation is left to the reader but we give some elements
of understanding below). How can we explain this lack of consistency?

With respect to signaling games, self-local rationality seems to be linked to the intuitive
criterion of Cho and Kreps [1987]. Indeed, under self-local rationality, a strategy is not
played when it is not a best response if a best response to this strategy is played with
probability ε. Then, the reference point is the potentially dominated strategy. In the
intuitive criterion, the reference point is the tested equilibrium. Broadly, in a signaling
game with two types of agents (the senders) and a principal (the receiver), an equilibrium
fails the intuitive test with respect to a deviation if (i) this deviation from the initial
equilibrium is never profitable for one type, and if (ii) the other type prefers the new
equilibrium when the receiver best responds to the deviation. Let us be clear: this
criterion might be said global in a sense since we first look at an equilibrium (where
everybody best responds) and check if a deviation is profitable (where only the receiver
best responds). Nevertheless, what interests us in this story is the response of the other
type. Indeed, the intuitive criterion forgets the optimal reaction of the type for who the
deviation is never profitable. That is, the intuitive criterion assumes this type still best
responds to the initial equilibrium whereas the deviation leads to another equilibrium.
In this sense, the intuitive criterion is self-local. This point had notably been made by
Mailath [1988] and led to the notion of undefeated equilibrium in Mailath et al. [1993]. In
fact, this logic is reminiscent of the E2 equilibrium in Wilson [1977]. Loosely speaking,
an equilibrium is said E2 if there is no profitable deviation for a player in the following
sense: after the opponents’ “optimal” reaction27 to the deviation, the deviation is still
profitable, with respect to the initial equilibrium. Since all actions were optimal at the
initial equilibrium, and are still optimal when the deviation is tested, we can see the E2

equilibrium as a global concept, while the intuitive criterion is well self-local.

In the pure strategy case, global rationality can be stated as follows: player i never wants
to play strategy si ∈ Si once j plays best response to i’s strategies with probability ε

and i can find another strategy that yields strictly more. However, if the strategy si is
deemed unplayable, the reason of the elimination may vanish immediately since i requires
a best response to si to be played28. This reasoning similar with self-local rationality.
When a player checks whether he should eliminate a strategy, he should not fear losing

27The paper is applied to insurances: thus, the “optimal” reaction is to withdraw insurance policies which
reward a negative profit.

28This directly shows why an iterated elimination procedure based on global and self-local rationality would
be order dependent: these rationality concepts lack hereditariness.
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the payoff if he plays the eliminated strategy, but rather see what he gets if he plays
the eliminating strategy. In a word, the situation at the deviation (i.e. by playing the
eliminating strategy) should be checked, not the others. In our view, the agent should
test a deviation such that this deviation works29 and not such that the reference point still
exists. Indeed, if a deviation is tested and works, it is not necessary anymore to keep in
mind the reference point30. Finally, when an agent tests a deviation, he should anticipate
that his opponent will also test it and react accordingly, whatever the true action of the
agent.

The second remark is that IERDS is not the only order independent procedure. Addition-
ally, it might not be the only procedure whose dominance is grounded on the existence of
a set of profiles which will survive each process (not all the profiles survive but at least
one profile does and the set does not expand, letting the required property on the set
untouched by each process). In the spirit of RBEU of Cubitt and Sugden [2011], one
may think for example that payoff domination on all the profiles where an opponent plays
a dominant strategy (if it exists) will survive to any reasonable elimination procedure,
and it would be enough. Then, our condition RD2 could be weakened by adding this
possibility. This question is still open and might be the object of further research.

1.9 Conclusion

In this paper, we introduce a new dominance relation named root dominance between weak
and strict dominances. It requires weak dominance and an additional condition based
on the Best Response Set to the dominating strategy. We associate to this dominance
relation an iterated elimination procedure named IERDS. The main result of this paper
is that IERDS is an order independent procedure in finite games and refines IESDS.
Additionally, we show that IERDS does not face the inconsistency named mutability.
Mutability concerns especially IEWDS but also other existing elimination procedure. In
a word, mutability means that an eliminated (and thus dominated) strategy in a process
is finally not dominated at the end of the process. Finally, we introduce new rationality
concepts such that our rational strategies correspond to root undominated strategies.
Furthermore, we establish a link between our rationality concepts and a rational kind of
conjectural variations theory, a framework well-known in industrial organization literature
and public economics.

29We mean by works that the agent gets a strictly higher payoff by deviating rather than playing the reference
strategy.

30This point is reminiscent of the idea of memorylessness developed in Chapter 2.
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Appendices to Root Dominance

A.1 Omitted proofs

Theorem 2. IERDS is immutable in finite games.

Proof. Assume there is a strategy s′i ∈ Si eliminated through IERDS. Assume a given
process of IERDS and the sequence of games associated {Γλ}λ≤Λ. Consider the game
formed by ΓΛ and the strategy s′i, i.e. the game Γ′ (with the same players and utilities as
ΓΛ) and the strategy set SΛ ∪ s′i. We reason by induction.

Stage 1: Assume s′i has been eliminated by s′′i at step Λ−1. Suppose also by contradiction
that s′i is not root dominated in Γ′. By Lemma 2, s′′i ∈ ΓΛ ⊂ Γ′. We repeat the same argu-
ments as in the proof of Lemma 4: comparing s′′i and s′i, it can be verified that RD1 is still
respected. By Lemma 3, we know that bΛ(s′′i ) ⊆ bΛ−1(s′′i ). Additionally, bΛ(s′′i ) cannot
be empty by Lemma 1. Therefore, RD2 is still satisfied and s′i is not root dominated in Γ′.

Stage µ+ 1: Now assume the property that a root dominated strategy s′i at Λ− µ is root
dominated in Γ′ for a given µ ∈ [[2,Λ−1]] is true. Let us show it is true for µ+1. Assume
the sequence of games {Γλ}λ≤Λ is such that the considered s′i is eliminated at Λ− (µ+ 1).

One can construct a sequence of games {Γ̃λ}λ≤Λ̃ identical to the previous one until step
Λ− (µ+1), but s′i is not eliminated at Λ− (µ+1). By Lemma 5, s′i is still root dominated
in the latter sequence {Γ̃λ}λ≤Λ̃ at the step Λ− µ.

There are two cases: either (i) the strategy s′′i which eliminates s′i in the first sequence
{Γλ}λ≤Λ is in SΛ(= S̃Λ̃ by Theorem 1), and thus is never eliminated; or (ii) the strategy
s′′i is eliminated at a further step of the sequence {Γλ}λ≤Λ.
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In the former case (i), it is straightforward to show that s′i is root dominated in Γ′ by
repeating the arguments used in the first stage of our induction reasoning.

In the latter case (ii), we know by the induction hypothesis that s′′i is root dominated in
the game Γ′′ (where Γ′′ is analogous to Γ′ with the same players and utilities as ΓΛ and
the strategy set SΛ ∪ s′′i ). Clearly, if s′′i is root dominated by a strategy s′′′i in Γ′′, since s′′i
always very weakly dominates s′i, s′i is also root dominated by s′′′i in Γ′ (since Γ′ and Γ′′

are the same games but either s′i or s′′i is added to ΓΛ = Γ̃Λ̃).

Conclusion: We have shown that a strategy eliminated at Λ− (µ+1) is still virtually root
dominated at the end of the sequence. Thus, by induction, it is true for each µ ∈ [[2,Λ]].
Since we did not need any assumption on the process used to construct our initial sequence,
this result is true for any process. �

A.2 Additional results

The next result states that no finite game becomes empty through IERDS:

Fact 2. S0 6= ∅ ⇒ ∀{Γλ}λ≤Λ, SΛ 6= ∅.

Proof. By Proposition 1 and by the finiteness of the games, it is clear that for each strategy
set, there is at least one undominated strategy that can never been eliminated. �

IERDS satisifies the Individual Independence of the Irrelevant Alternatives (IIIA) as
formulated by Gilboa et al. [1990], i.e. the addition of one i’s strategy does not affect the
dominance relation between i’s strategies:

Proposition 3. Assume Γ and Γ′ two games such that N = N ′, S−i = S ′−i, U = U ′, and
S ′i = Si ∪ s∗i .Then:

s′′i � s′i in Γ⇒ s′′i � s′i in Γ′.

Proof. Adding s∗i does not affect the payoff of i when playing s′i and s′′i . As well it does
not affect the profiles in b(s′′i ). Thus, if all conditions of Definition 4 are checked in Γ, it
is also the case in Γ′. �

Nevertheless, we cannot use the main result of Gilboa et al. [1990] that states the order
independence of hereditary dominance relations which are partial orders and respect IIIA.
Indeed, root dominance is not hereditary in their sense:

Definition 19. Assume Γ and Γ′ such that N = N ′, U = U ′, S ′ ⊂ S. If S ⊂ S ′, then the
well defined dominance relation � is said hereditary if:

∀s′′i , s′i ∈ Si, s′′i � s′i in Γ′ ⇒ s′′i � s′i in Γ′.
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The next example shows why � is not hereditary. We show in green the Nash equilibria.
In the game below, IERDS eliminates B, then K1 and finally L:

k’s Strategy
j’s Strategy

i L R

T (3, 1, 1) (3, 0, 1)

B (2, 1, 1) (3, 0, 1)

K1

j’s Strategy
i L R

T (3, 0, 2) (3, 1, 2)

B (2, 0, 0) (2, 0, 0)

K2

−→

k

j

i R

T (3, 1, 2)

K2

Table A.1: Games where hereditariness fails

However if we arbitrarily suppress the strategy L of the game, then no elimination can
be made with IETDS. Therefore, root dominance is not hereditary, since B is not root
dominated by T in the following “subgame”:

k’s Strategy

j

i R

T (3, 0, 1)

B (3, 0, 1)

K1

j

i R

T (3, 1, 2)

B (2, 0, 0)

K2

Table A.2: Subset of the previous Game with no Possible Elimination

A.3 Best reply set

Now we show with the next example (we show in green the Nash equilibria) why the
definition of the Best Reply Set requires to consider all profiles where (at least) one
opponent best responds and not only where all the opponents mutually best respond
(beyond the obvious problem of existence with more than two players):
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k’s Strategy

j’s Strategy
i L C R

T (3, 3, 1) (3, 3, 1) (3, 2, 1)

M (3, 2, 1) (3, 1, 0) (3, 1, 0)

B (3, 2, 1) (3, 1, 0) (3, 1, 2)

K1

j’s Strategy
i L C R

T (3, 3, 1) (3, 3, 1) (3, 2, 2)

M (3, 0, 2) (3, 2, 0) (4, 2, 1)

B (3, 0, 2) (3, 2, 0) (3, 2, 1)

K2

j’s Strategy
i L C R

T (3, 3, 1) (3, 3, 1) (3, 2, 1)

M (3, 2, 0) (3, 1, 2) (3, 0, 0)

B (3, 2, 0) (3, 1, 2) (3, 0, 0)

K3

Table A.3: Best Reply Set with a Three Players Game

In this game, if the Best Reply Set definition was modified,M would root dominate B and
T . Indeed, the only profile where j and k mutually best respond to M is (M,R,K2). At
this profile M is strictly better than the two other strategies. Since M weakly dominates
the two other strategies, it would be done. However, it can be easily seen that C would also
root dominate R (all mutual best responses to C are indeed parts of the Nash equilibria).
Then the order of elimination would matter. What is important here is that at (M,C,K2),
k strictly wants to deviate, making the profile unchecked with a modified version of the
Best Reply Set.

A.4 Are inadmissible strategies playable?

Despite the inconsistencies of IEWDS, one may still assert that weakly dominated strate-
gies should not be played. For instance, Kohlberg and Mertens [1986, p. 1014] justify
admissibility as a criterion of strategic stability with the following reasoning: assume a
pure strategy two-player game with player i having one strategy s′′i which weakly domi-
nates s′i and additionally, such that if i is indifferent between s′′i and s′i, j is also indifferent
at these profiles (it is the TDI condition of Marx and Swinkels [1997]). Now, the game has
the next extensive form (see Figure A.1): first, i is asked to choose between (s′i, s

′′
i ) and all

of his other strategies. Second, j chooses his strategy. Finally, there is a third stage only
if i has chosen (s′i, s

′′
i ) at the first step and if s′i and s′′i do not give the same payoffs (i.e.

if j has chosen a strategy among the strategies � where both players are not indifferent
with respect to the choice of i between s′i and s′′i ). Kohlberg and Mertens [1986] claim
that in this form of game, s′i is never played. It is true. However, Kohlberg and Mertens
[1986] do not consider the games with payoffs such that s′′i is never played either. Let us
see the behavior of j if i has chosen the couple (s′i, s

′′
i ) rather than another strategy at the

56



A. Appendices to Root Dominance

player i

player j

player i

s′i s′′i

strategies � strategies ∼

other strategies (s′i, s
′′
i )

Figure A.1: Extensive-Form Game: s′′i Weakly Dominates s′i but might Never be Played in the
third stage

first stage. Then, j necessarily plays a best response to s′i or s′′i . Assume j chooses a best
response s∗j to s′i. Then, either i is not indifferent and will necessarily choose s′′i (since
s′′i weakly dominates s′i, if i is not indifferent, he strictly prefers s′′i ), making the choice
of j suboptimal if it is not a best response to s′′i too, or i is indifferent. In this latter
case, by assumption (the TDI condition), j is also indifferent. However, if s∗j is not a best
response to s′′i , then j could have obtained a strictly higher payoff by deviating towards
a best response to s′′i . Therefore, in this part of the game, j always plays a best response
to s′′i . Then, i may play s′′i at the third stage only if players are not indifferent at (at
least) one profile where j best responds to s′′i . If there is (at least) one best response of j
to s′′i such that i and j are indifferent between s′i and s′′i , then s′′i might be never played.
The idea of Kohlberg and Mertens [1986] is that a strategy is inadmissible if it is never
played in such an extensive-form game. Nevertheless, this criterion cannot characterize
inadmissibility since an admissible strategy might never be played either (if j always plays
a strategy in ∼), according to the considered game. We claim that one possibility is to
choose a more cautious criterion: s′i is dominated by s′′i if and only if s′′i is always played
in this part of the game. Precisely, we should require that s′′i is played with probability
1 in the third stage when i chooses the couple (s′i, s

′′
i ) at the first stage. In this case, s′′i

should strictly payoff dominate s′i where j best responds to s′′i . It is exactly our second
condition of dominance. Note that the reasoning we have just made does require weak
dominance, like our notion of dominance does.

Besides, remark that root dominance differs from the notion of nice weak dominance
introduced by Marx and Swinkels [1997] since nice weak dominance is equivalent to weak
dominance in games where the TDI condition is respected. Thus, in all the games we have
considered, s′i is nicely weakly dominated by s′′i . One can see why the iterated elimination
of nicely weakly dominated strategies is payoff order independent in such games with the
two following examples:
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j’s Strategy
i’s Strategy L R

T (2,2) (3,1)
B (2,2) (2, 1)

−→
IEWDS

j’s Strat.
i’s Strat. L

T (2,2)
B (2,2)

or
j’s Strat.

i’s Strat. L

T (2,2)

j’s Strategy
i’s Strategy L R

T (2,2) (3,3)
B (2,2) (2,3)

−→
IEWDS

j’s Strat.
i’s Strat. R

T (3,3)

Figure A.2: IEWDS applied to Games with the TDI Condition

In the top game, j best responds to T by playing L. At this profile, i is indifferent
between T and B. With respect to our previous remarks, it might be problematic. In-
deed, here, the order of deletion of IEWDS matters: the outcome of IEWDS is either
(T, L) or (∆(T,B), L). Nevertheless, thanks to the TDI condition, it does not affect the
payoffs. Again, in this paper, we consider such an outcome of IEWDS as an example
of order dependence. Now, in the bottom game, j best responds to T by playing R.
There, i is not indifferent, and the order does not matter, the outcome of IEWDS always
being (T,R). One can remark that the TDI condition does not matter either in this
game. Indeed, whatever the payoff of j at the profile (B,L), IEWDS would still be order
independent. Naturally, we depart from the notion of nice weak dominance since root
dominance requires payoff dominance at the profiles where j best responds to T .

A.5 Weak dominance in 2× 2 games

Assume the following general form for a 2 × 2 game where T weakly dominates B (i.e.
a > c):

j’s Strategy
i’s Strategy L R

T (a, α) (a, β)

B (c, γ) (a, δ)

Table A.4: Game with Weak Dominance

With respect to the value of α, β, γ and δ, there are 9 possible configurations that we
gather in subsets according to their properties. The three configurations (i) where α > β

are order independent and immutable. The special configuration (i′) where α = β and
γ = δ is order independent and immutable as well. The configurations (ii) with α < β
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and γ > δ is order independent but is mutable1. Finally, other configurations (iii) are
order dependent and mutable (those either with α = β and γ 6= δ or α < β and γ ≤ δ).
Configurations (i) correspond to cases where T root dominates B. All other configurations
are such that (T,R) ∈ b(T ), and therefore T does not root dominate B. Note that (ii)

differs from (iii) also because j does not have (weakly) dominated strategy in (ii). In
this game, except for configuration (i′), both root dominance solvability and consistency
of IEWDS correspond to cases where the selected Nash equilibrium is strict (but not
necessarily Pareto-dominant), i.e. no player has a payoff-equivalent unilateral deviation.
Other cases are such that no Nash equilibrium is strict. The case (i′) is such that IERDS
eliminates no strategy. In contrast, IEWDS eliminates B and that is all. Again, the
configuration (i′) is special. However, it shows that IERDS fails to delete some strategies
which are virtually dominated in the IEWDS outcome. Thus, IERDS is not the “maximal”
immutable elimination procedure.

j’s Strategy
i’s Strategy L R

T (a, α) (a, α)

B (c, α) (a, α)

Table A.5: Game with configuration (i′): IEWDS eliminates B

A.6 Pareto dominance and pre-play communication

Note that our procedure does not lead to the selection of the Pareto dominant equilibrium.
Even if the Pareto dominant strictly dominates another equilibrium, the latter may still
be selected instead as it is shown with this example:

j’s Strategy
i’s Strategy L R

T (2, 1) (1, 2)

B (2, 3) (0, 0)

Table A.6: Game with a Pareto Dominated Unique Prediction

However, if we define a strict Nash equilibrium as an equilibrium where each player best
responds to the profile and this best response is unique (i.e. no strategy is payoff equivalent

1Note that it can be compared to Samuelson [1992, Example 8] which shows that common knowledge of
admissibility may not exist. Note that if in addition to these specifications, we assume that β = δ, this game
respects the transference of decisionmaker indifference (TDI) condition of Marx and Swinkels [1997] which ensures
the outcome order independence of IEWDS in finite games (i.e. any order of elimination leads to the same payoffs).
Therefore, it shows that nice weak dominance (which is equivalent to weak dominance in the class of finite TDI
games) may exhibit mutability.
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at this profile), we can easily show that IERDS never eliminates this kind of equilibrium:

Fact 3. IERDS does not eliminate strict Nash equilibria.

The proof is immediate since if a profile is a strict Nash equilibrium, then all strategies of
the profile cannot be iteratively weakly dominated. Note that IEWDS does not eliminate
strict Nash equilibria by the same argument.

Remark that if we invoke the notion of self signaling2, (T,R) is the only equilibrium such
that both agents play a self signaling action. Briefly, in a two-players game with pre-
play communication, an action is said self signaling if the action the sender announces
is a strict best response if his opponent plays a best response to this action; if he plays
another action, he strictly prefers that the opponent plays another strategy. Therefore
there should not be an incentive to deviate for the sender once he thinks his opponent
trusts him3. It is not surprising that a root dominating strategy enables a strongly believed
commitment since it is an undominated strategy4. At (B,L), only j can self signal, while
i cannot even self commit (self commitment requires only that the action announced is a
strict best response if the opponent plays a best response). Moreover, even if (B,L) is the
Pareto dominant profile, action L is not a Stackelberg action (i.e. the unique preferred
action if the opponent always plays a best response) because T is also a best response to
L, and at (T, L), j wants to deviate.

A.7 Proof of mixed IERDS order independence result

First, it is obvious that Lemma 1 still applies. Now, we state that mixed root dominance
forms also a strict partial order:

Proposition 4. Mixed root dominance is a strict partial order: it is a binary relation
such that irreflexivity, asymmetry and transitivity hold.

The proof is analogous to the pure strategy case:

Proof. Root dominance is irreflexive: by Lemma 1, ∀σi,∈ Σi b(Rσi) 6= ∅, and it is not
possible to have Ui(σi, σ−i) > Ui(σi, σ−i) for any profile σ−i ∈ Σ−i. Then, RD2′ cannot
be respected. Root dominance is transitive: assume σ′′i �σ′i and σ′′′i �σ′′i . Here, we have

2Self signaling is described in Farrell and Rabin [1996] for pre-play communication, see Baliga and Morris
[2002] for formal definitions

3In other words, if the sender announces something that he always wants to be believed (whatever it is true
or false), his commitment is weak, he cannot self signal. Here, conditions to have T and R self signaling are:
Ui(T,R) > Ui(B,R) and Ui(B,R) < Ui(B,L) for agent i (conditionally to j best responding at (T,R)) and
symmetrically Uj(T,R) > Uj(T,L) and Uj(T,L) < Uj(B,L) for agent i (conditionally to i best responding at
(T,R)).

4Note that if we modified the payoff of i such that i earns −1 when j plays L, there would still be root
dominance but T would not be self signaling. Then, there is obviously not equivalence between the two concepts.
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to prove that σ′′′i �σ′i. First, it is straightforward that RD1′ is respected. Second, since
σ′′′i �σ′′i , we know that Ui(σ′′′i , σ−i) > Ui(σ

′′
i , σ−i) for each strategy profile σ−i contained

in b(Rσ′′′i
). Since σ′′i �σ′i, Ui(σ′′i , σ−i) ≥ Ui(σ

′
i, σ−i) for each strategy profile σ−i in Σ−i,

and thus for each strategy profile σ−i contained in b(Rσ′′′i
). Therefore, Ui(σ′′′i , σ−i) >

Ui(σ
′′
i , σ−i) ≥ Ui(σ

′
i, σ−i) for each strategy profile σ−i contained in b(Rσ′′′i

) and RD2′ is
respected. Finally, irreflexivity and transitivity together imply asymmetry. �

Lemma 9. If s′i ∈ Si is root dominated, there is (at least) one strategy σ′′i ∈ Σi that may
eliminate it, i.e. a strategy σ′′i whose no strategy in the support is root dominated by an
other strategy and root dominates s′i.

Proof. Since the number of pure strategies is finite, the number of pure strategies con-
tained in all the supports containing (mixed) strategies root dominating s′i is necessarily
finite. Let us denote it m and denote g(s′i) the set of these strategies. Then, (at most)
m− 1 of these strategies are root dominated. Otherwise, it means that the mth strategy,
named s′′i , is root dominated by an other strategy whose support contains (at least) one
pure strategy outside g(s′i). By transitivity of root dominance, it means that the latter
strategy also root dominates s′i, contradicting the fact that the number of pure strategies
contained in all the supports containing (mixed) strategies root dominating s′i is m. Thus,
we have established that at least s′′i is not root dominated. Additionally, by Lemma 7, we
know that the m− 1 strategies root dominated are root dominated by strategies σ̃i ∈ Σi

whose supports do not contain them. Again, by transitivity, the support of these strategies
σ̃i is necessarily contained in g(s′i). Therefore, s′′i root dominates each of these strategies:
otherwise, either one of these strategies is not root dominated and there is a contradiction,
or it is dominated by a strategy whose support is outside g(s′i), a contradiction. Finally,
s′′i root dominates s′i. We can make the same reasoning when more than one pure strategy
is not root dominated and the proof is done.

�

It is straightforward to show that b(Rσi) never expands as we progress through the steps
of mixed IERDS thanks to the previous result. Finally, all remaining results are written
in the same until the hereditariness result, and we get the order independence result.

A.8 Burned money

Root dominance fails to be as predictive as IEWDS or Iterated Elimination of Choice
sets under Full Admissible consistency (IECFA) of Asheim and Dufwenberg [2003] if we
study the battle of sexes game with a burning option for one player (see for instance
Rubinstein [1991, p.920]). If payoffs are as described in the payoffs matrix of Table A.7,
we only delete one strategy for each agent, eliminating one Nash equilibrium. This result
is not completely satisfying since we preserve a strategy where money is burnt and the
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equilibrium deleted is the one where the second agent has the maximal payoff. With our
procedure, there is no mixed equilibrium anymore.

j’s Strategy
i’s Strat. LL LR RL RR

NU (3, 1) (3, 1) (0, 0) (0, 0)

ND (0, 0) (0, 0) (1, 3) (1, 3)

BU (2, 1) (−1, 0) (2, 1) (−1, 0)

BD (−1, 0) (0, 3) (−1, 0) (0, 3)

−→

j’s Strategy
i’s Strat. LL LR RL

NU (3, 1) (3, 1) (0, 0)

ND (0, 0) (0, 0) (1, 3)

BU (2, 1) (−1, 0) (2, 1)

Table A.7: Burned Money in Rubinstein [1991]

(BD) is root dominated by (NU). This deletion is necessary to eliminate (RR) (by (RL)).
No further elimination is possible. However, if we allow a mixed extension of the game,
mixed strategies where BU is more used than NU root dominate ND. Then LL root
dominates RL. Finally we end the procedure by eliminating BU , and we get the two
Nash equilibria favoring i:

j’s Strategy
i’s Strat. LL LR

NU (3, 1) (3, 1)

Table A.8: Final outcome of Burned Money after mixed IETDS

A.9 Additional concepts characterizing root dominance

In this part, we introduce two additional rationality concepts which can characterize root
dominance. For this purpose, we introduce two new types of games where the perception
of player j is perturbed with probability ε.

In the first configuration, the hesitation game, we suppose that despite having a “reference”
strategy (unobserved by the opponent), a player may alternatively consider some strategy
subsets. If so, the opponent reacts optimally (in a naive way) to this strategy subset. Thus,
the reference strategy is “tested” against such mind trembles. If the reference strategy
is not optimal when he believes that the opponent can detect this tremble and react
optimally, the tremble should be realized and, in fact the reference strategy never played
in such a game.

In the second configuration, named deviation game, the opponent observes both the ref-
erence strategy and the strategy subset from which a potential deviation is picked. Closer
to the spirit of Fudenberg et al. [1988], j analyses whether the deviation is sustainable
before reacting optimally. That is, we assume j plays a best response to the deviation if
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and only if it the deviation is deemed credible with respect to the reference strategy. We
summarize j’s beliefs in Figure A.3.

i

σri

strategies σj ∈ Σj

σi ∈ ∆(Ši) ⊂ Σi

j

i

σri

strategies σj ∈ Σj

σi ∈ ∆(Ši) ⊂ Σi

j

Figure A.3: Beliefs of j if a Perturbation occurs in Hesitation (left) and Deviation (right) Games

A.9.1 Hesitation games

Assume each player believes that with probability ε he may “hesitate”. That is, if he
has chosen a reference strategy σri ∈ Σi, he may think to choose other (mixed) strategies
supported by any strategy subset Ši ⊂ Si. Additionally, assume that this thought is
observable by the opponent j and that j believes that i will actually play a strategy
in ∆(Ši). At this point, i can substitute a strategy in ∆(Ši) for σri . If with such a
perturbation, σri does not maximize i’s utility, then σri should not be played.

First, we define two concepts which assume restrictions on the available strategies:

Definition 20. A restricted game Γ̂(σri , Ši) is a simultaneous game such that player i
chooses a strategy σi ∈ σri ∪∆(Ši) where Ši ⊂ Si, and such that it is common knowledge
that player j believes with probability 1 that Σi = ∆(Ši).

A restricted game Γ̂(σri , Ši) is a game where the strategy set is σri ∪∆(Ši)×Sj but player
j believes that the strategy set is ∆(Ši)× Σj. Now, we can define the ε-hesitation game,
whose name indicates that players might hesitate with probability ε:

Definition 21. An ε-hesitation game Γ̂ε(σri , Ši) for player i and strategy σri is a game
where:

1. Player i chooses the strategy σi ∈ Σi, and player j chooses a strategy in Σj with
probability 1− ε,

2. With probability ε, i and j play a restricted game Γ̂(σri , Ši).

That is, we assume the perception of the game by player j is restricted to ∆(Ši) × Σj

with probability ε. Clearly, the perception can be false since i is allowed to choose the
strategy σri . However, we assume that j almost guesses the thought of i with probability
ε, since j perceives (at least) partially where the attention of i is.
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Furthermore, we can make a link with the idea of deviation and its observation. Indeed,
an ε-hesitation game formalizes the reasoning process of player i when:

1. The “usual” strategy of player i is σri ,

2. Player i thinks about a deviation to any other strategy contained in ∆(Ši),

3. Opponent j observes with probability ε that i is thinking to choose a strategy in
∆(Ši).

The consequence of step 3 is that i believes that j will choose a best response to ∆(Ši)

with probability ε.

More concretely, the reasoning is the following. When i thinks about whether a strategy
σri is “playable”, he takes it as a reference point. Then, he wonders whether he may want to
deviate. For this purpose, he considers all strategy subsets Ši. For each one, he believes
that j will react optimally with probability ε. Finally, he checks if he would want to
deviate from σri in all cases verifying this belief. If there is a deviation that yields strictly
more, player i never chooses σri to avoid to pay the cost c when facing the restricted game.
One could remark that the behavior of j seems too “naive”. In the next subsection we
introduce a second kind of perturbation that tackles this issue.

Now, we define the best response of an ε-hesitation game:

Definition 22. Consider an ε-hesitation game Γ̂ε(σri , Ši). A strategy σ∗i ∈ σri ∪∆(Ši) is
a best response of the ε-hesitation game if:

∃σj ∈ Σj,∃σ∗j ⊂ b(Ši),∀σi ∈ σri ∪∆(Ši), V
ε
i (σ∗i , σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗
j ) (H-BR)

Finally, we introduce the concept of ε-hesitation dominance which formalizes the dom-
inance relation when we consider the expected ε-perturbed utility, and such that the
dominating strategy is “observed” by the opponent:

Definition 23. A strategy si ∈ Si is ε-hesitation dominated by σi ∈ Σi if:

∀σj ∈ Σj,∀σ∗j ⊂ b(Rσi),

V ε
i (σi, σj, σ

∗
j ) > V ε

i (si, σj, σ
∗
j )

In words, σi ε-hesitation dominates si when j reacts optimally to σi with probability ε.
Naturally, this concept seems similar to root dominance. Indeed, Lemma 12 shows their
equivalence when ε→ 0+.

Lemma 10. A strategy si ∈ Si is ε-hesitation dominated if and only if it is a never best
response of (at least) one ε-hesitation game Γ̂ε(si, Ši).

Proof. Assume a strategy si is ε-hesitation dominated by σi ∈ Σi. It means that if Rσi is
observed with probability ε, then the utility from playing σi is strictly higher than from
playing si. Therefore, si is never best response of the ε-hesitation game Γ̂ε(si, Rσi). Now,
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by contrapositive, assume that si is not ε-hesitation dominated by any σi ∈ Σi and let us
show it is a best response to a belief for i when i plays a given ε-hesitation game Γ̂ε(si, Ši).
Consider the vectors

−→
V ε
i (σi, Ši) = {V ε

i (σi, sj, s
∗
j)}sj∈Sj ,s∗j⊂b(Ši)

for each σi ∈ si ∪ ∆(Ši).
Simply, these vectors are such that each component l+m is the payoff i can obtain when
playing σi and when j plays the pure strategy slj ∈ Sj with probability 1 − ε and the
pure strategy s∗mj ⊂ b(Ši) with probability ε. We denote Y (si, Ši) the set of such vectors.
Besides, we can construct the following set X. If k is equal to ](Sj) × ](b(Ši))

5, then
X is the set

{
x ∈ Rk |x >

−→
V ε
i (si)

}
, that is the set of all payoffs that strictly dominate si

payoffs. Both X and Y (si, Ši) are convex sets. Since si is not ε-hesitation dominated,
these sets are disjoint. Then, we can apply the separating hyperplane theorem which
states that there is a vector in Rk, π ≥ 0 with π 6= 0 and such that:

∀y ∈ Y (si, Ši),∀x ∈ X, π · y ≤ π ·
−→
V ε
i (si) ≤ π · x

It directly implies that ∀σi ∈ si ∪∆(Ši), π ·
(−→
V ε
i (si)−

−→
V ε
i (σi)

)
≥ 0.

Now, remark that this is true for every hesitation game and finally we get the result.

�

Conversely, a strategy si ∈ Si being ε-hesitation undominated is a best response in all
ε-hesitation games Γ̂ε(si, Ši). Though, it does not mean that si necessarily verifies Equa-
tion (1.1):

∃σj ∈ Σj, such that ∀σi ∈ Σi,∃σ∗j ⊂ b(Rσi), V ε
i (si, σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗
j ) (1.1)

Here, we stress the fact that the strategy σj ∈ Σj is not necessarily the same for all the
hesitation games when it is stated that a strategy is a best response in all hesitation
games. The equivalence holds only when ε→ 0+:

Lemma 11. A strategy si ∈ Si is a best response to all ε-hesitation games Γ̂ε(si, Ši) when
ε→ 0+ if and only it verifies Equation (1.1) when ε→ 0+.

Proof. Set ε→ 0+. Assume that si is a best response in all ε-hesitation games Γ̂ε(si, Ši).
Then,

∀σi ∈ Σi,∃σj ∈ Σj,∃σ∗j ⊂ b(Rσi), such that V ε
i (si, σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗
j )

By continuity of V ε
i in parameter ε, it is immediate that we have:

∀σi ∈ Σi, ∃σj ∈ Σj such that E[Ui(si, σj)] ≥ E[Ui(σi, σj)]

By Pearce [1984, Lemma 3], the previous equation is equivalent to:

∃σj ∈ Σj such that ∀σi ∈ Σi, E[Ui(si, σj)] ≥ E[Ui(σi, σj)]

This last equation is well equivalent to Equation (1.1) when ε→ 0+. The same reasoning
as above can be applied to show the converse part of this result. �

5We denote ](Si) the number of elements in the set Si.
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Now, we state the equivalence between hesitation dominance when the perturbation occurs
with an infinitesimal probability and root dominance:

Lemma 12. A strategy is ε-hesitation dominated when ε → 0+ if and only if it is root
dominated.

Proof. The “if” part is straightforward. Indeed, assume that si ∈ Si is root dominated
by σi ∈ Σi. First, RD1′ and RD2′ imply that σi weakly dominates si. Thus, ∀σj ∈
Σj, Ui(σi, σj) ≥ Ui(si, σj). Second, RD2′ states that for each best response to a strategy
in the support of σi, the expected payoff from playing σi is strictly higher. Therefore,
∀σ∗j (σi) ⊂ b(Rσi), we have Ui(σi, σ∗j (σi)) > Ui(si, σ

∗
j (σi)). Then, for any ε > 0, and

∀σj ∈ Σj,∀σ∗j (σi) ⊂ b(Rσi):

V ε
i (σi, σj, σ

∗
j (σi)) > V ε

i (si, σj, σ
∗
j (σi))

For the “only if” part, assume that si is ε-hesitation dominated by σi but root un-
dominated by σi. Undomination means that either (i) there is a σj ∈ Σj such that
E[Ui(si, σj)] > E[Ui(σi, σj)] or (ii) there is a σ∗∗j ⊂ b(Rσi) such that E[Ui(si, σ

∗∗
j )] ≥

E[Ui(σi, σ
∗∗
j )]. About (i), we remark that V ε

i is continuous in the parameter ε. Then,
it is not possible to have simultaneously E[Ui(si, σj)] > E[Ui(σi, σj)] and ∀σ∗j (σi) ⊂
b(Rσi), V

ε
i (σi, σj, σ

∗
j (σi)) > V ε

i (si, σj, σ
∗
j (σi)) when ε → 0+. Besides, the hypothesis (ii)

directly implies that V ε
i (si, σ

∗∗
j , σ

∗∗
j ) ≥ V ε

i (σi, σ
∗∗
j , σ

∗∗
j ). In both cases, there is a contra-

diction with the hypothesis of 0+-perturbed dominance. �

Finally, we can state the first main result of this section, namely the equivalence between
root dominance of si and rationality when considering all the ε-hesitation games Γ̂ε(si, Ši)

associated to Γ:

Theorem 6. A strategy si ∈ Si is root dominated if and only if it is a never best response
of (at least) one ε-hesitation game Γ̂ε(si, Ši) when ε→ 0+.

Proof. The result is immediate by Lemmas 10 and 12. �

Thus, if player i believes that his opponent j may have his perception of the game altered
by the alternatives he considers when testing strategies, he never plays root dominated
strategies.

In the different context of ordinal preferences, Börgers [1993] characterizes non rationality
by weak dominance against every j’s strategy subset (but weak dominance is not required
to be made by the same strategy). Here, in contrast, player i does not restrict the
game with respect to j′s strategies, but with respect to his own strategies (and then j

reacts optimally to these restrictions with probability ε). Furthermore, it is the notion of
rationality that we test against strategy subsets and not the dominance relation since the
requirements of RD1′ and RD2′ are with respect to the whole game.

Besides, we can write the alternative characterization of root undominance:
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Corollary 1. A strategy si ∈ Si is root undominated if and only if it verifies Equa-
tion (1.1) when ε→ 0+.

Proof. The result is immediate by combining Lemma 11 and Theorem 6. �

A.9.2 Deviation games

Here, we introduce our second perturbation of the game. This perturbation is such that
each player believes that the opponent may observe both his “reference” strategy and the
support of strategies from which a deviation might be picked by the player contemplating
alternatives. In this case we will say the game is turned into a pseudo extensive form
game:

Definition 24. A pseudo extensive form game Γ̌(σri , Ši) is a game where i chooses a
strategy in σri ∪∆(Ši), where Ši is a subset of Si. Strategy σi is the reference strategy of i,
and Ši is the support of any strategy towards which i wants to deviate. Player j observes
this information perfectly, then forms beliefs, and plays accordingly.

Definition 25. An ε-deviation game Γ̌ε(σri , Ši) for strategy σri ∈ Σi is a game where:

1. Player i chooses the strategy σri ∈ Σi,

2. Player i chooses a deviation subset Ši ⊂ Si,

3. Player i plays any strategy in σri ∪∆(Ši),

4. With probability ε, the previous steps form the first stage of a pseudo extensive form
game,

5. Player j chooses a strategy in the second stage.

When player j faces a deviation, we assume that his only concern is whether the deviation
is credible according to all available information. If the deviation is credible, player j
should react optimally. Otherwise, he can have any belief. This last assumption does not
imply that j believes that i has lied, or the observation is not accurate (we assume it
is not possible), but rather than a non credible deviation is meaningless for j. In other
words, it is as if i said some thoughtless things that do not impact real decisions. In this
case, the deviation is disregarded. Now, what do we mean by credible? Following Baliga
and Morris [2002] and their notion of self signaling strategies for games with pre-play
communication (see Section A.6 for more details), we now introduce the notion of self
improving strategy subset:

Definition 26. A strategy subset Ši ⊂ Si is self improving with respect to σi ∈ Σi if
∀σ∗j ⊂ b(Ši),∃σ′′i with Rσ′′i

= Ši:

Ui(σ
′′
i , σ

∗
j ) > Ui(σi, σ

∗
j )

In words, Ši is self improving with respect to σi if for all best responses to Ši, there is a
strategy whose support is Ši which yields a strictly higher payoff than σi. Remark that
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if the subset Ši is reduced to a singleton {s′′i }, then we have the same condition as in
RD2. Furthermore, if it is the same strategy σ′′i which strictly dominates σi, then we have
the same condition as in RD2′. Since we only consider two-player games, this is always
verified thanks to Pearce [1984, Lemma 3]. Thus, we can equivalently write the following
definition:

Definition 27. A strategy σ′′i ∈ Σi is self improving with respect to σi ∈ Σi if ∀σ∗j ⊂
b(Rσ′′i

):
Ui(σ

′′
i , σ

∗
j ) > Ui(σi, σ

∗
j )

Instead, a strategy σ′′i is self signaling when it is a best response itself (to the best
response(s) played by j)6. Then, this requirement is stronger and seems to be more
attractive when j assesses the credibility of the deviation. However, we have to recall
that the chosen strategy matters both when no deviation is observed (with probability
1− ε) and when there is deviation (with probability ε). Therefore, it may be natural that
player j does not “expect” player i to maximize his utility when seeing the deviation, since
observation by j will be made unknown for i. Conversely, player j cannot expect that i
has played the deviation if whatever the optimal response he makes to this deviation, i’s
payoff is not increased. That is why we define credibility in the following way:

Definition 28. A deviation Ši ∈ Si from σri ∈ Σi in a pseudo extensive form game
Γ̌(σri , Ši) is credible if there is a strategy σ′′i ∈ Σi such that:

• Rσ′′i
= Ši,

• And, σ′′i is self improving with respect to σri .

Thus, the deviation is credible if there is a strategy σ′′i whose support is Ši, and if played
in the first stage of an extensive form game, pays off strictly more than σri (given that j
would react optimally to σ′′i ).

With the next assumption, we will restrict the beliefs of player j when facing a pseudo
extensive form game Γ̌(σi, Ši). We assume that when the deviation is credible, the belief
of j that i has played a strategy whose support is contained in Ši is 1. In any other case,
any belief is allowed. We note βji the vector which contains all the elements βji [Ši] and
that represents j’s assessment of the probability that i plays a strategy contained in Ši.
Now, we formalize the assumption described just above:

Assumption C. Player j, when observing a deviation Ši ∈ Si from σi ∈ Σi has the
following beliefs:

• Either Ši is credible in which case βji [Ši|Ši is “observed” ] = 1,

6Of course, we make a slight abuse here because there is no notion of Best Response Set in Baliga and Morris
[2002] and we take into account strategy subsets. However, since Baliga and Morris [2002] consider only pure
strategies, the comparison would be relevant in their framework.
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• Or Ši is not credible in which case cells in the vector βji [ |Ši is “observed” ] can take
any value.

Now, we define the best response of an ε-deviation game:

Definition 29. Consider an ε-deviation game Γ̌ε(σri , Ši). A strategy σ∗i ∈ si ∪∆(Ši) is a
best response of the ε-deviation game if:

∃σj ∈ Σj,∃σ̂j ∈ Σj,∀σi ∈ ∆(Ši): V ε
i (σ∗i , σj, σ̂j) ≥ V ε

i (σi, σj, σ̂j)

Naturally, a best response for i in the ε-deviation game is a strategy which maximizes i’s
utility when j plays σj with probability 1−ε, and σ̂j with probability ε. Obviously, without
further restriction, any standard best response is a best response of the ε-deviation game
(think simply to cases where σ̂j = σj). When using Assumption C, we can re-write the
above definition in the following way:

Lemma 13. Consider an ε-deviation game Γ̌ε(σri , Ši). Under Assumption C, a strategy
σ∗i ∈ σri ∪∆(Ši) is a best response of the ε-deviation game if and only if either:

• The deviation Ši from σi is credible,

• And,

∃σj ∈ Σj,∃σ∗j ⊂ b(Ši),∀σi ∈ σri ∪∆(Ši): V ε
i (σ∗i , σj, σ

∗
j ) ≥ V ε

i (σi, σj, σ
∗
j ) (cD-BR)

Or,

• The deviation Ši from σi is not credible,

• And, ∃σj ∈ Σj such that ∀σi ∈ σri ∪∆(Ši): Ui(σ
∗
i , σj) ≥ Ui(σi, σj).

In words, Lemma 13 means that if the deviation is credible, a best response of the ε-
deviation game Γ̌ε(si, Ši) is a best response to a game where j reacts optimally to Ši
with probability ε. Instead, if the deviation is not credible, a best response is simply a
best response according to the standard definition (see Definition 12 above) applied to
σri ∪ ∆(Ši). Remark that a best response response of a ε-hesitation game is also a best
response of the linked ε-deviation game when the deviation is credible:

Lemma 14. Consider an ε-deviation game Γ̌ε(σri , Ši). Under Assumption C, if the devi-
ation is credible, a strategy σ∗i ∈ σri ∪∆(Ši) is a best response of the ε-deviation game if
and only if it is a best response of the ε-hesitation game Γ̂ε(σri , Ši).

Proof. The proof is immediate since Equation (H-BR) and Equation (cD-BR) are equiv-
alent. �

Besides, notice that the deviation credibility does not imply that the reference strategy
σri is a never best response of the ε-deviation game if the deviation is credible. Now, we
can show that the previous result can be applied to the reference strategy even if the
deviation is not credible:
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Lemma 15. Under Assumption C, a strategy σri ∈ Σi is a best response of an ε-deviation
game Γ̌ε(σri , Ši) if and only if it is a best response of the associated ε-hesitation game
Γ̂ε(σri , Ši).

Proof. First, when the deviation is credible, Lemma 14 applies. Now assume the deviation
is not credible. The “if” part is straightforward. Indeed, a best response in the ε-hesitation
game is with respect to a belief with probability 1− ε and to a belief that a best response
to Ši is played with probability ε. Then, when the deviation Ši from si is not credible,
any belief can be sustained, among which the one inducing that σri is a best response
of the ε-hesitation game. Conversely, assume σri is a best response to the considered ε-
deviation game. If the deviation is not credible, it means that there is no strategy σ′′i
whose support is Ši and is self improving with respect to σri , i.e. checking ∀σ∗j ⊂ b(Ši),
Ui(σ

′′
i , σ

∗
j ) > Ui(σ

r
i , σ

∗
j ). Thus, no strategy strictly dominates σri when we restrict attention

to b(Ši). Therefore, since it is a two-player game, by Pearce [1984, Lemma 3], σri is a best
response to at least one strategy σ∗j ∈ b(Ši). Since σri is also a best response to another
strategy σj (potentially outside b(Ši)) by Lemma 13, σri is a best response to (σj, σ

∗
j ) in

the ε-hesitation game.

�

In fact, any best response of the ε-hesitation game is also a best response of the ε-deviation
game. However, the converse is not true and the result only holds for the reference strategy
σri or when the deviation is credible.

Now, we can state the second main result of this section, still considering only two-player
games:

Theorem 7. Under Assumption C, a strategy si ∈ Si is root dominated if and only if it
is a never best response in (at least) one ε-deviation game Γ̌ε(si, Ši) when ε→ 0+.

Proof. The result is immediate by Lemma 15 and Theorem 6. �

Theorem 7 establishes that a strategy si ∈ Si is root dominated if it is never optimal in
(at least) one 0+-deviation game. That is, if i thinks about deviations from a reference
strategy and believes that these thoughts can be observed with an infinitesimal probability,
he never plays root dominated strategies.

Root Undominated si ∈ Si is equivalent to be:
- Locally 0+-rational under Assumption R (Theorem 5)
- Best Response of all 0+-hesitation games (Theorem 6)
- Best Response of all 0+-deviation games under Assumption C (Theorem 7)

Figure A.4: Summary of the Results
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A.10 Rationality when ε moves away from 0

Now, let us examine the implications of such concepts on games outcomes when ε is far
from 0. By contrast with the statement of Fact 1, our concepts of rationality do not refine
the standard definition of rationality (see Definition 12) in this case: they are unnested.
This might be seen as theoretical weakness. However, it can still be of interest in situations
where experimental studies results differ from game theory predictions. The most famous
example is the discrepancy between them in the prisoners’ dilemma. In the dilemma, the
strictly dominated strategy “cooperate” would never be rational under our concepts. Thus,
the cooperation outcome would never emerge. Though, it is not because the strategy is
dominated, it is because the strategy “cooperate” of both players is dominated. When
ε is high enough, in the case where only one player has a strictly dominated strategy,
a strictly dominated strategy can be globally rational, and the dominant strategy not
globally rational as the following example shows. Global rationality may generate Pareto
improvement with respect to the Nash outcome:

j’s Strategy
i’s Strategy L R

T (4, 1) (2, 2)

B (3, 3) (1, 1)

Table A.9: Pareto efficiency of Global Rationality for intermediate values of ε

If ε is high enough, but not too high, T is not globally rational since the payoff of (T,R)

is below the payoff of (B,L) (both profiles where j best responds), and both j’s strategies
are globally rational. Then, an iterated elimination of non globally rational strategies
would generate the outcome (B,L). However, notice that if ε is very high, L is not
globally rational anymore. That is, a consistency problem appears when players falsely
firmly believe that the opponent best responds to his strategy. Additionally, it could lead
to the Pareto worst outcome (B,R).
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Chapter 2

Top Dominance

Abstract

To deal with issues of inconsistency faced by iterated elimination of weakly or strictly
dominated strategies (IEWDS or IESDS), we propose a new elimination procedure. Our
procedure, named iterated elimination of top dominated strategies (IETDS), is based on
the new notion of top dominance. It is more consistent than IESDS in a certain sense. Top
dominance is more stringent than weak dominance (and may be more stringent than strict
dominance in infinite games): it requires weak dominance and strict payoff domination
of the strategy on a specific profiles set. Furthermore, it requires that the dominating
strategy to be not weakly dominated. Contrary to IESDS, IETDS can reduce the set of
Nash equilibria (whilst never eliminating strict Nash equilibria) without the problems of
order dependence and spurious Nash equilibria encountered by IEWDS and IESDS.
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2.1 Introduction

It is often argued that iterated elimination of weakly dominated strategies (IEWDS) is not
an entirely satisfying procedure of strategies elimination because of problems such as the
order dependence of the final outcome of a game (see Samuelson [1992]; Hillas and Samet
[2020] and Figure 2.1 to summarize the inconsistencies of elimination procedures). In
contrast, iterated elimination of strictly dominated strategies (IESDS)1 is more restrictive,
yet more consistent (i.e. outcome order independent in finite games). However, we know
that IESDS fails to be consistent in infinite games2 (see Dufwenberg and Stegeman [2002]).
Solutions to deal with this problem have been twofold.

One is to keep IEWDS and IESDS and restrict the class of games in which it is consistent.
Luo et al. [2020] have defined the class of closed under dominance* (CD*) games for this
purpose3. However, the notion of CD* games has to be associated with a dominance
relation, i.e. a game may be CD* under strict dominance but not under weak dominance.
Roughly, CD* requires that every dominated strategy at every step of an elimination
procedure is dominated by a strategy at the end of the procedure (i.e. any dominated
strategy at a given step will necessarily be eliminated by the end of the procedure, or
in other words, dominance does not vanish). For instance, [Luo et al., 2020, Theorem 4]
establishes that compact and own-uppersemicontinuous (COUSC) games are CD* under
IESDS.

A second way has been paved by Milgrom and Roberts [1990] through their notion of
serially undominated strategies. Characterizing serially undominated strategies is similar
to IESDS but surviving strategies have to be undominated even in previous sequences
of deletion – in short in the original game. Procedures respecting this condition are
named global in Apt [2011].Apt [2005] studied the properties of rationalizability under
this specification (in the same idea as rationalizability in Bernheim [1984]), and found
an independent order result with weak assumptions. Symmetrically, Chen et al. [2007]
defined IESDS* as the elimination of strictly dominated strategies such that the number
of elimination steps may be uncountable4, and strategies may be eliminated even by

1We define an iterated elimination procedure as an elimination rule of strategies which have a certain property
at the step they are eliminated (see Dufwenberg and Stegeman [2002]; Hillas and Samet [2020] for equivalent
definitions). However, other kinds of iterated elimination procedures exist, as we see in the discussion on global
procedures below. Besides, we define strict dominance such that a strategy pays strictly less than another strategy
at each opponents’ profile. There is weak dominance if a strategy pays less than another strategy and pays strictly
less (at least) at one opponents’ profile.

2To the best of our knowledge, there is no precise definition of infinite games, the concept being generally
defined in a negative way. In this paper, we call infinite games, games whose strategy sets have an infinite number
of elements, in a similar way as [Myerson and Reny, 2020, p.495]. Besides, this paper is not about repeated games.

3Luo et al. [2020] refine the concept of games closed under dominance (CD) described in Dufwenberg and
Stegeman [2002] who formalized for game theory the notion of bounded mechanism defined by Jackson [1992]. In
CD games, each removed strategy is eliminated by an undominated strategy at the elimination step.

4Countable IESDS may not lead to a maximal reduction in the sense of Dufwenberg and Stegeman [2002]. Ad-
ditionally, Chen et al. [2007] epistemically justify this possibility by the fact that common knowlegde of rationality
may not be obtained by procedures with countable steps as established by Lipman [1994].
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already eliminated strategies. This last feature makes the procedure order independent
but does not prevent spurious Nash equilibria5, as well as final outcomes of games with
empty strategy sets. Furthermore if Apt [2005]; Chen et al. [2007] procedures are iterated,
they are not memoryless in the sense that a strategy may be undominated in the game
at the step it is eliminated6.

In this paper we propose an iterated procedure of strategies elimination that has the
property of being order independent, even in infinite games. Moreover, no spurious Nash
equilibrium is generated, even when best responses do not exist, in contrast to what
occurs in Apt [2005]; Chen et al. [2007]. We base our procedure on the new notion of
top dominance. Roughly, an agent’s strategy is top dominated by another if the latter
is undominated and (weakly) dominates the former and, at all the profiles contained in
the Better Reply Set to the dominating strategy (see Definition 30 below) – where either
(see Equation (OM) below) (at least) one agent’s opponent best responds to the profile,
or (see Equation (AS) below) all opponents do not have an available best response to the
profile – we have two conditions: the player plays a best response and the dominating
strategy is strictly better than the dominated one.

Figure 2.1 summarizes the inconsistencies associated with the three elimination procedures
we have mentioned above. We define them as well.

Inconsistencies Definitions Procedures

Dependence
Order

affects the final outcome
The order of elimination

in infinite Games
IESDS

in finite Games,
IEWDS

Spurious Nash

the final outcome
is a Nash of

Nash in the initial game
A profile which is not a

in infinite Games
IESDS and IESDS*

IEWDS,

Figure 2.1: Inconsistencies of Elimination Procedures

In the next section, we establish the framework of this paper and show with some examples
which issues we propose to solve. In Section 2.3, we define the notion of top dominance
and our iterated elimination procedure. Additionally we give insights about them with
some examples. In Section 2.4, we show the technical lemmas and the main results of this
paper. Section 2.5 explores in detail some questions about IESDS. Finally, we conclude
in Section 2.6.

5A spurious Nash equilibrium is created by a procedure when a profile which was not a Nash equilibrium at
the start of the procedure becomes a Nash equilibrium at the end. It means that the set of Nash equilibria may
expand.

6We propose a refinement of order independence named memoryless order independence (see below Sec-
tion 2.4.2) to distinguish the property of “usual” procedures with respect to these global procedures.
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2.2 Framework and illustrative examples

2.2.1 Framework

We denote Γ = {I, S, U} a game with I the set of players, S = Π
i∈I
Si, Si being the strategy

set of player i ∈ I (we consider first only pure strategies), and U the vector of utility
functions of each player i where Ui : S → R. We denote s ∈ S a strategy profile, and
s−i the strategy profile of the opponents of i ∈ I such that when i plays si, s = (si, s−i).
Finally we denote S−i = Π

j∈I\{i}
Sj the set of opponents’ strategy profiles.

For the sake of clarity, we define IESDS and IEWDS in the standard following way: given a
game, IESDS (IEWDS) is the procedure that iteratively eliminates some strictly (weakly)
dominated strategies at the step they are eliminated and ends when there is no (weakly)
dominated strategy anymore. A procedure associated to a game is a class of processes
which are all the applications of a procedure to the game with a specific order. Each
process leads to a sequence of games7 starting from the original game and representing
the game at each step of the process. If all sequences of games end with the same final
outcome (after applying the procedure to a given game), the procedure is said order inde-
pendent for this game. If it is true for all games, the procedure is said order independent.
Besides, the procedure creates spurious Nash equilibria if a Nash equilibrium at the end
of a sequence of games is not a Nash equilibrium of the original game.

2.2.2 Examples

Among other issues, we identify two polar cases with which IESDS fails to deal: namely,
on the one hand, the non-existence of a Nash equilibrium and, on the other hand, the
presence of all strategies in the Nash equilibria. For the former case, the point is that
IESDS may eliminate all strategies or create spurious Nash equilibria8. In the latter case,
by definition of IESDS, there is no deletion of strategies which belong to Nash equilibria,
and IESDS may seem too restrictive. Our goal is to create a consistent and predictive9

procedure in infinite games. Thus, we want ours to handle these problems differently from
the way IESDS deals with them.We illustrate this discussion with two simple examples.
The first is described in [Dufwenberg and Stegeman, 2002, Example 5] (with the Nash
equilibria showed in green):

Example 1. Let Γ = {I, S, U} be a game with I = {1}, S = (0, 1), U1(s1) = s1. Every
strategy s1 ∈ S1 is strictly dominated, and can be eliminated by IESDS, i.e. there are
processes of IESDS that end with an empty set10. Γ has no Nash equilibrium. However, if

7See Definition 32 below for the formal definition.
8Even if there is a Nash equilibrium, it may play no role in the procedure, leading to equivalent problems as

without Nash equilibrium, see for instance [Dufwenberg and Stegeman, 2002, Example 1].
9We call a procedure more predictive than another if the former deletes more strategies than the latter.

10Remark that rationalizability and cautiousness introduced by Pearce [1984]) may both lead to eliminate all
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a process of IESDS eliminates all strategies but one11, this strategy is a Nash equilibrium
(since it is the only remaining strategy).

Example 1 shows directly that IESDS may create order dependence and spurious Nash
equilibria.

j’s Strategy
i’s Strategy . . . (s+ 1)j sj (s− 1)j . . . 7j 6j 5j 4j 3j 2j 1j

...
...

...
...

...
...

...

(s+ 1)i s+ 1 s s− 1
...

...
...

...

si s− 1 s s− 1
...

...
...

...

(s− 1)i s− 1 s− 2 s− 1
...

...
...

...
...

. . .
...

...
...

...

4i . . . . . . . . . . . . . . . 1 2 3 4 3 2 1

3i . . . . . . . . . . . . . . . 1 1 1 2 3 2 1

2i . . . . . . . . . . . . . . . 1 1 1 1 1 2 1

1i . . . . . . . . . . . . . . . 1 1 1 1 1 1 1

Figure 2.2: Payoffs Matrix of Example 2

Example 2. Let Γ = {I, S, U} be a game with I = {i, j}. Players share common payoffs
presented in Figure 2.2.

Every strategy si ∈ Si is weakly dominated, and can be eliminated by IEWDS. Γ has an
infinity of Nash equilibria. However, if IEWDS eliminates all strategies but 1i, an infinity
of spurious Nash equilibria is created. IESDS does not meet these problems here, but it
does not eliminate any strategy.

Additionally, these two examples show that the transitivity of dominance relations (i.e.
if one strategy dominates another, the latter is also dominated by all strategies that
dominate the former) might be the heart of the problem. It appears that what seems to
be a desirable property in finite games creates issues in infinite games. Indeed, transitivity
of strict and weak dominance may let the procedure eliminate all the strategies if there is
no Nash equilibrium, leading to a lack of rationality (see Section 2.5 for further discussions
on IESDS.).

strategies as well.
11Since all strategies are strictly dominated, a process of IESDS may apply strict dominance to every strategy

but one. Indeed, since this strategy is the only remaining, it is not dominated anymore. However, note that it
would be eliminated by IESDS*.
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2.3 Top dominance and the procedure IETDS

2.3.1 Top dominance

In this section, we first define the Better Reply Set to a strategy, which is a profile set
checked for special purposes in the domination relation we establish below. Finally, we
propose a new procedure of elimination of strategies.

Definition 30. The Better Reply Set to s′′i ∈ Si, denoted B(s′′i ), is the set of all strategy
profiles such that: s∗i = s′′i , and,

either ∃j ∈ I \ {i}, s∗j ∈ arg max
sj∈Sj

Uj(sj, s
∗
−j) (OM)

or ∀j ∈ I \ {i}, arg max
sj∈Sj

Uj(sj, s
∗
−j) = {∅} (AS)

In words, the Better Reply Set to a given strategy s′′i of player i regroups all the profiles
containing s′′i such that either (at least) one agent (different from i) best replies to the
profile (OM) , or no opponent can best respond to the profile (AS). We see below with
Lemma 16 of Section 2.4.1 that B(s′′i ) cannot be empty.

Now, we can define top dominance:

Definition 31. A strategy s′i ∈ Si is said top dominated by the strategy s′′i ∈ Si, if:

∀s−i ∈ S−i : Ui(s
′′
i , s−i) ≥ Ui(s

′
i, s−i) (TD1)

∀s∗−i such that ∀s∗ ∈ B(s′′i ) : Ui(s
′′
i , s
∗
−i) > Ui(s

′
i, s
∗
−i) (TD2)

∀si ∈ Si,
either (i) ∀s−i ∈ S−i : Ui(s

′′
i , s−i) ≥ Ui(si, s−i),

or (ii) s∗−i such that ∀s∗ ∈ B(s′′i ) : Ui(s
′′
i , s
∗
−i) > Ui(si, s

∗
−i) (TD3)

TD1 and TD2 are inadmissibility conditions, i.e. they ensure that top dominated strate-
gies are weakly dominated. Precisely, TD1 states that s′i is very weakly dominated12 by
s′′i . TD2 states that s′i pays off strictly less than s′′i if the opponents play a profile of
B(s′′i ).

TD3 is the top condition. It states that any other strategy of i is either (i) very weakly
dominated by s′′i , or (ii) gives a strictly lower payoff than s′′i if the opponents play a profile
of B(s′′i ).

12There is very weak dominance if a strategy always pays off at least as another strategy (see Marx and Swinkels
[1997]). Therefore, either the former strategy (weakly) dominates the latter, either they are equivalent.
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2.3.2 Procedure IETDS

Now, we rely on the framework of Luo et al. [2020] whose iterated elimination procedures
are (transfinite) sequences of choice problems (see also Lipman [1994]; Apt [2005]), such
that each element is a restriction of its predecessors. Especially, the use of ordinal numbers
allows us to use uncountable sequences as it is necessary with infinite sets games. Ordinal
numbers are useful to deal with infinities issues. Ordinal are of three types: either 0, or
a successor, or a limit. Briefly, we start at 0, then, all natural numbers (except 0) are
successors, and right after all these natural numbers, there is ω, the first limit ordinal (in
short, ω is a limit ordinal because there is no ordinal λ such that ω = λ + 1, in contrast
with natural numbers). ω + 1 is the successor to ω and the same process continues until
reaching ω + ω and so on. Thus, by denoting 0, 1, . . . , λ, λ+ 1, . . .Λ ordinal numbers, we
define the sequence of games associated with a game:

Definition 32. A sequence of games associated with a game Γ is:

{Γλ}λ≤Λ ≡ {Γ0 ≡ Γ, . . . ,Γλ, . . . ,ΓΛ}

with λ ∈ [[0,Λ]] such that:

• ∀λ ∈ [[0,Λ]], Γλ = {I, Sλ, U}, with Sλ = Π
i∈I
Sλi , Sλi being the strategy set of player

i ∈ I, the unchanged set of players of Γ, and U the vector of utility functions of each
player i (whose domain is restricted), Ui : Sλ → R,

• ∀λ ∈ [[1,Λ]], Γλ is a restriction of Γλ−1, i.e. if λ is a successor ordinal, Sλ =

Sλ−1 \ Sλ−1 where Sλ−1 is an arbitrary set of strategies in Π
i∈I
Sλ−1
i top dominated in

Γλ−1, and if λ is a limit ordinal, Sλ = ∩
λ′<λ

Sλ
′,

• Sλ = Π
i∈I
∅ if and only if λ = Λ.

Finally, we call iterated elimination of top dominated strategies (IETDS ) the procedure
that iteratively eliminates top dominated strategies of a game Γ through a sequence of
games. A sequence of games associated with Γ and IETDS is a sequence that starts at Γ

and which at each step, deletes (at least) one top dominated strategy, and ends at step Λ

where no strategy is top dominated. At each step λ, Sλi is the set of all i’s strategies that
have survived all the previous steps of IETDS.

In Example 1, IETDS eliminates no strategy, “outperforming” all the previously mentioned
procedures. In Example 2, IETDS eliminates no strategy like IESDS, while IEWDS may
eliminate all strategies. The next example is a modified version of Example 2 that shows
how IETDS might be more flexible IESDS:

Example 3. Let Γ = {I, S, U} be a game with I = {i, j}, and the following common
payoffs matrix (compared to Example 2, we put 1 everywhere outside the diagonal of the
matrix):
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j’s Strategy
i’s Strategy . . . 7j 6j 5j 4j 3j 2j 1j

...
. . .

...
...

...
...

4i . . . 1 1 1 4 1 1 1

3i . . . 1 1 1 1 3 1 1

2i . . . 1 1 1 1 1 2 1

1i . . . 1 1 1 1 1 1 1

Figure 2.3: Payoffs Matrix of Example 3

Only 1i and 1j are weakly dominated and are always eliminated by IEWDS (and cau-
tiousness). IESDS (and rationalizability) eliminates no strategy. IETDS gives the same
outcome as IEWDS.

Let us study how top dominance and IETDS work in finite games with next examples
(with the best response underlined):

j’s Strategy
i’s Strategy L R

T (4,2) (3,1)
B (3,2) (4,2)
Z (2,2) (2,2)

Figure 2.4: Game with a Unique Prediction

Z is not top dominated by B. Even if Z is strictly dominated, we see that L and R

are in B(B), and since Ui(B,L) < Ui(T, L), there is no top dominance. However, T top
dominates Z, and L top dominates R. The remaining strategies are T and B for i and L
for j. Finally IETDS selects (T, L) as IEWDS.

However, this consistency may seem too restrictive since in a slightly modified version of
the previous game (see Figure 2.5), we have no prediction anymore and no elimination.

j’s Strategy
i’s Strategy L R

T (4,1) (3,1)
B (3,2) (4,2)
Z (2,2) (2,2)

Figure 2.5: Game with No Prediction

Besides, we would need a slight modification of the definition of top dominance to allow a
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mixed strategy to top dominate the strategy Z in the game of Figure 2.5. See Section B.3
for the definition of mixed top dominance and the results.

2.4 Results

2.4.1 Technical results

Denote by Bλ(si) the Best Reply Set to si when the step of a sequence is λ. The set B(si)

never becomes empty with IETDS:

Lemma 16. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ]], ∀i ∈ I, ∀si ∈ Sλi ,

Bλ(si) 6= ∅.

Proof. Assume Bλ(si) = ∅. By negating both conditions in Definition 30, it means that
all profiles s∗ containing s′′i verify the two following conditions:

@j ∈ I \ {i}, s∗j ∈ arg max
sj∈Sλj

Uj(sj, s
∗
−j)

and ∃j ∈ I \ {i}, ∃s∗∗j ∈ arg max
sj∈Sλj

Uj(sj, s
∗
−j)

However, if one profile containing s′′i verifies these two conditions, it is immediate that
another profile containing s′′i exists and does not verifies the first condition. �

The next lemma shows that a strategy s′j best response to a profile s∗−j containing a top
dominating strategy s′′i , cannot be top dominated if the profile s∗−j remains. The first
stage of the proof relies on the simple fact that if s′j is top dominated by s′′′j , then s′′′j is
also a best response to the same profile s∗−j. And symmetrically, if s′′i is a top dominating
strategy it is also a best response to both profiles with s∗−i,−j and respectively with s′j or
s′′′j . Then, if s′′′j was top dominating s′j, it should strictly pay off more than s′j on s∗−j.
However, it would immediately contradict the hypothesis that s′j is a best response to
s∗−j. The next stages are straightforward.

Lemma 17. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ − 1]], ∀µ ∈ [[1,Λ − λ]], ∀i ∈ I, ∀si ∈ Sλ+µ
i , if s′′i top

dominates s′i at step λ, and if s′j is a best response to a profile s∗−j containing s′′i at step
λ and s∗−j is still present at step λ+ µ, s′j is not top dominated at step λ+ µ.

Proof. We prove this statement by induction. At the first stage, the statement is equiva-
lent to the following one: If s′′i top dominates s′i, and if s′j is a best response to a profile
containing s′′i , s′j is not top dominated.

Stage 1: Assume s′j is a best response to a profile s∗−j with s∗i = s′′i (and we add s∗j = s′j).
Naturally, s∗ ∈ B(s′′i ). Furthermore, assume that s′′′j top dominates s′′j . It is immediate
by TD1 that the profile s∗∗ ≡ (s∗−j, s

′′′
j ) is also in B(s′′i ) (s′′′j is a best response, otherwise,
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s′′′j would not very weakly dominate s′j and TD1 would not be checked). Additionally,
assume that s′′i top dominates s′i. Then, by TD3 (it is true for either one or the other
condition required):

s′′i ∈ arg max
si∈Si

Ui(si, s
∗
−i) and s′′i ∈ arg max

si∈Si
Ui(si, s

∗∗
−i)

Thus, s∗∗ ∈ B(s′′′j ). However, since, s′j is a best response to s∗−j, it is also a best response
to s∗∗−j (since s∗−j = s∗∗−j) and we have Uj(s∗∗−j, s′′′j ) = Uj(s

∗∗
−j, s

′
j). Besides, the hypothesis

of top domination of s′j by s′′′j requires that Uj(s∗∗−j, s′′′j ) > Uj(s
∗∗
−j, s

′
j) (TD2). Therefore,

TD2 is not respected for j, and we cannot have simultaneously the domination of s′j and
s′i, if s′j is a best response to a profile containing s′′j .

Stage µ + 1: Assume the property is true for a given µ ∈ [[2,Λ − λ − 1]]. Thus, no best
response is top dominated and eliminated at step λ+ µ. Besides, while s∗−j is present, it
is still true that:

s′′i ∈ arg max
si∈Si

Ui(si, s
∗
−i) and s′′i ∈ arg max

si∈Si
Ui(si, s

∗∗
−i),

for all s∗∗ ≡ (s∗−j, s
′′′
j ) with s′′′j 6= s′′j a best response to s∗−j. Thus, ∀s′′′j , s∗∗ ∈ B(s′′′j ).

Again, s′j cannot be top dominated since no s′′′j strictly dominates it at s∗−j, and other
strategies of j rewards strictly less (and then do not very weakly dominates s′j). Finally
the property is true for µ+ 1 and by induction for any µ ∈ [[2,Λ− λ]]. �

In order to simplify notations, recall that for a given sequence of games and ∀µ ∈ [[0,Λ−λ]],
we have that Sλi ∩S

λ+µ
i = Sλ+µ

i . The next result shows that the set B(si) never expands
as we progress through the steps of IETDS:

Lemma 18. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ − 1]], ∀µ ∈ [[1,Λ − λ]], ∀i ∈ I, if si ∈ Sλ+µ top
dominates a strategy at step λ, then:

Bλ+µ(si) ⊆ Bλ(si).

Proof. Assume µ ∈ [[1,Λ − λ]] and by contradiction: Bλ+µ(si) * Bλ(si). Take a profile
s′ ≡ Π

k∈I
s′k ∈ Bλ+µ(si) \Bλ(si).

Since s′ /∈ Bλ(si) but s′ ∈ Bλ+µ(si), we know that (at least) one player j has an available
best response to s′−j at λ but not with s′j and either (Case a) best responds at λ+µ with
the strategy s′j, or (Case b) does not have a best response anymore at λ+ µ.

Case a: We assume that there is (at least) one player j 6= i with a strategy s′′j ∈ Sj
contained in a profile s′′ ∈ Bλ(si), eliminated at a step between λ and λ+ µ such that:

Uj(s
′′
j , s
′
−j) > Uj(s

′
j, s
′
−j) and s′′j ∈ arg max

sj∈Sλj

Uj(sj, s
′
−j)
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Since s′′j is a best response, it is not top dominated by Lemma 17 and thus, it cannot
be eliminated at any step. Therefore, either the profile disappears (one strategy s′k of a
player k 6= j can be eliminated if it is not a best response), or s′′j still dominates s′j on
this profile. In both cases, it contradicts the hypothesis that s′ ⊆ Bλ+µ(si).

Case b: Now assume there is a strategy s′l ∈ s′, such that l has an available best response
to s′−l at step λ (different from s′l). However, assume at step λ + µ, there is no best
response to s′−l anymore. Again, by Lemma 17, no such an elimination is possible.

Finally we have shown that Bλ+µ(si) ⊆ Bλ(si) for all µ ∈ [[2,Λ− λ]].

�

The following lemma states that a top dominating strategy is never eliminated with
IETDS:

Lemma 19. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ]], ∀µ ∈ [[0,Λ− λ]], ∀i ∈ I, ∀si ∈ Sλi , ∀s′′i , s′′′i ∈ S
λ+µ
i ,

s′′i top dominates s′i in Γλ ⇒ @s′′′i ∈ S
λ+µ
i , s′′′i top dominates s′′i in Γλ+µ.

Proof. By TD3 we know that either s′′i strictly dominates other strategies of Si if we
restrict attention to opponents’ profiles in Bλ(s′′i ), or if there is equality with an other
strategy (for at least one opponents’ profile), then s′′i weakly dominates or is equivalent to
the latter for all opponents’ profiles. By Lemma 16, we know that Bλ(s′′i ) is never reduced
to an empty set. Besides, by Lemma 18, Bλ+µ(si) ⊆ Bλ(si) for all µ ∈ [[2,Λ − λ − 1]].
Therefore, at every step of the sequence, either s′′i pays off strictly more than other
strategies in (at least) one profile of Bλ+µ(s′′i ), or if it pays off the same as another strategy
in one profile of Bλ+µ(s′′i ), the latter is equivalent or weakly dominated by s′′i . Thus, s′′i
is still undominated (i.e. not weakly dominated) at every step of the sequence. �

Now we establish that the relation of top dominance between two strategies is maintained
through IETDS:

Lemma 20. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ−1]], ∀µ ∈ [[0,Λ−λ−1]], ∀i ∈ I, ∀s′i ∈ S
λ+µ
i ,∀s′′i ∈ Sλi ,

if s′′i top dominates s′i in Γλ, then s′′i top dominates s′i in Γλ+µ.

Proof. First, note the result is immediate if µ = 0. Second, note that by Lemma 19, s′′i
is still in Γλ+µ and our statement always makes sense. Now, assume µ ∈ [[1,Λ − λ − 1]]

and assume s′′i top dominates s′i in Γλ. It is straightforward that TD1 is still verified at
each µ. By Lemma 18, we know that Bλ+µ(s′′i ) ⊆ Bλ(s′′i ). Additionally, B(s′′i ) cannot be
empty by Lemma 16. Therefore TD2, and TD3 are still verified as well. �

We end this section by linking top dominance to the property of Monotonicity* of Luo
et al. [2020] which ensures outcome order independence. Denote c(Γ), the Γ-choice, i.e.
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the set of strategies in S which are not top dominated in Γ. The following property states
that no strategy previously top dominated becomes non top dominated through IETDS:

Definition 33. A dominance relation is said to verify Monotonicity*, if ∀{Γλ}λ≤Λ,∀λ ∈
[[0,Λ− 1]], ∀µ ∈ [[0,Λ− λ− 1]],

Γλ,Γλ+µ ∈ {Γλ}λ≤Λ ⇒ c(Γλ+µ) ⊆ c(Γλ).

Lemma 21. Top dominance verifies Monotonicity*.

Proof. Assume ∃{Γλ}λ≤Λ such that ∃λ ∈ [[0,Λ− 1]], ∃si ∈ c(Γλ+1) \ c(Γλ). That is, si is
top dominated in Γλ but is not top dominated in Γλ+1. By combining Lemmas 19 and 20,
the contradiction is immediate. �

By [Luo et al., 2020, Theorem 2], we know that Monotonicity* implies outcome order
independence.

2.4.2 Main results

An iterated elimination of strategies is not order independent if starting by the elimination
of strategies of one given player rather than another (or by one strategy of a given player
rather than another strategy) modifies the final outcome of the elimination procedure.

Theorem 8. IETDS is order independent.

Proof. By Lemma 21 and [Luo et al., 2020, Theorem 2], the result is immediate. �

A spurious Nash equilibrium is created if a strategy profile s ∈ S is not a Nash equilibrium
of Γ but is a Nash equilibrium of ΓΛ. We denote N(Γ) the set of Nash equilibria of a
game Γ. We show that no spurious Nash equilibrium is created by IETDS:

Theorem 9. ∀s ∈ SΛ, s ∈ N(ΓΛ)⇒ s ∈ N(Γ)

Proof. Assume that IETDS leads to the selection of a spurious Nash equilibrium due to
a sequence of games. Then, we have a profile s∗ ∈ S ∩ SΛ such that:

∀k ∈ I, s∗k ∈ arg max
sk∈SΛ

k

Uk(sk, s
∗
−k)

∃i ∈ I, s∗i /∈ arg max
si∈Si

Ui(si, s
∗
−i)

Clearly, all strategies s′i ∈ Si such that Ui(s′i, s∗−i) > Ui(s
∗
i , s
∗
−i) have been eliminated (there

is necessarily (at least) one such strategy s′i, otherwise s∗i would be a best response in Γ).
However, for all of these strategies, there is (at least) a strategy s′′i that top dominates
them. By Lemma 19, this strategy is not eliminated. Then, by weak domination of
eliminated strategies, we have Ui(s′′i , s∗−i) > Ui(s

∗
i , s
∗
−i). It contradicts the hypothesis that

s∗ ∈ N(ΓΛ). �

84



Chapter 2. Top Dominance

The non existence of spurious Nash equilibria may seem of little matter. However, a
striking fact is that even global procedures cannot prevent their existence whereas all
strategies can still be used to eliminate strategies (see [Chen et al., 2007, Example 4]).
Therefore, it may seem surprising that a strategy can be used to eliminate another strategy
but not to effectively play the game and break the spurious equilibrium. Our procedure
does not exhibit such queries. We distinguish also IETDS from these global procedures
with the following notion:

Definition 34. A procedure is said memoryless order independent if starting the procedure
at every step of a sequence of games without knowing the previous steps of the sequence
does not change the outcome of the game.

Theorem 10. IETDS is memoryless order independent.

Proof. Once a strategy has been eliminated by IETDS, it is not used anymore in the
elimination procedure. Then by Theorem 8, the result is immediate. �

2.5 Discussion about strict dominance

Gilboa et al. [1990] gives sufficient conditions for the outcome order independence of a
dominance relation in finite games, and proved the outcome order independence of strict
dominance in finite games. Börgers [1993] refines the concept of strict dominance with
pure strategy dominance, applied to a framework with ordinal utility functions where the
eliminated strategy is not necessarily dominated by only one strategy. Loosely speaking,
a strategy is eliminated if for each strategy subset of the opponent there is a strategy (not
necessarily the same strategy at each profile as in strict dominance) that weakly dominates
the former. Iterated elimination of such dominated strategies would be more predictive
than IESDS (if IESDS was applied to the same framework), and still outcome order inde-
pendent in finite games. Marx and Swinkels [1997] refine IESDS by eliminating strategies
that are nicely weakly dominated. Nice weak dominance requires weak dominance and
if there is indifference at some profiles, it requires that all players are also indifferent
at these profiles. However, Marx and Swinkels [1997]’s procedure is only payoffs order
independent (and not strategies order independent). When we consider infinite games,
as pointed out by Dufwenberg and Stegeman [2002], IESDS (and consequently each pro-
cedure whose outcome refines IESDS outcome) fails to be order independent in infinite
games. Moreover, it may predict irrational outcomes. In Example 1, strict dominance
may predict that all strategies are dominated (we can always find a larger x in (0, 1) that
gives a strictly larger payoff), and then that the agent “should not play the game” (if it is
how we may understand the emptiness of the strategy set) while it gives to him a strictly
positive payoff for every strategy! Then, the problem with strict dominance is not only
order dependence, it may also be rationality13. Interestingly, this example highlights that

13Of course, we mean by rationality something different from the formal statement that a rational player should
maximize his utility, but rather as the more general economic assumption that agents “will choose ‘more’ rather
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IESDS is sensitive to addition of new strategies. The strategy 0.4 may not be eliminated
by IESDS in Example 1. However, if we add the strategy 1 to the previous game, 0.4

would surely be eliminated. Top dominance states that, for instance, 0.5 never dominates
0.4 except if all strategies above 0.5 are not in the game (like IESDS here). This leads
our procedure to select the same strategy as IESDS when it selects a strategy, and to
select all strategies when IESDS may eliminate all strategies. If we denote B = (0, 1] and
B′ = (0, 1), this discussion can be linked to the following concern raised by Herzberger
[1973]:

According to classical views of rationality, there will be a rational choice from
[...] set B, but no rational choice will be possible from its subset B′.

Even if we try to avoid order dependence with a more restrictive definition like in Fu-
denberg and Tirole [1991], where all dominated strategies at one round of elimination
are all deleted (or if IESDS is defined as a global procedure as in Chen et al. [2007]), we
still eliminate all the available strategies. Thus, order independence does not necessarily
prevent irrationality.

In another example of Dufwenberg and Stegeman [2002], where the agents 1 and 2 have
respectively strategies s1 and s2 in R+, and a common payoff ui = max{s1, (1 − s1 −
s2)}/(1 + s1), the elimination is not order independent with IESDS. In this game, the
unique Nash equilibrium is (0, 0). No strategy for 2 is strictly dominated but every
strategy s2 > 0 is weakly dominated by s2 = 0. On the contrary s1 = 0 does not
dominate any strategy. However, it can be seen that every s1 > 0 is strictly dominated by
a larger s1

14. The order of elimination matters since if only one strategy s1 > 0 remains,
no strategy can be eliminated anymore by IESDS. Worse, as pointed out by Dufwenberg
and Stegeman [2002], this elimination creates spurious equilibria. With IETDS, the player
2’s strategies may be reduced immediately to the singleton {0}. Then, the only best reply
of the player 1 is 0 leading to the unique Nash equilibrium.

2.6 Conclusion

In this paper, we propose a new dominance relation, top dominance, and its associated
elimination procedure, IETDS. The main idea behind top dominance is that players elim-
inate strategies only if there is a strategy that “dominates” them and which may not be
dominated as well. The Better Reply Set is constructed around this idea: each player con-
siders the moves of his opponents if they are either a best response, or if no best response is
available. We show that IETDS is outcome order independent in any game. Furthermore,
it does not generate spurious Nash equilibria and it is memoryless order independent. We
mainly compare IETDS with IEWDS and IESDS. Prediction with IEWDS seems to be

than ‘less’ ” (see [Buchanan and Tullock, 1962, p.17]).
14 s1

1+s1
converges to 1 as s1 goes to infinity and 1−s1

1+s1
< 1 for s1 > 0.
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a challenging task since the same game may generate several outcomes. IESDS does not
perform better in infinite games. We show through simple examples that IETDS can be
as predictive as IEWDS when IEWDS generates an order independent outcome (so when
IEWDS generates an understandable outcome in fact). We show also that IETDS can
predict a unique Nash equilibrium where IESDS generates spurious Nash equilibria.
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Appendix B

Appendices to Top Dominance

B.1 Additional results

The next result states that no game becomes empty through IETDS:

Proposition 5. S0 6= ∅ ⇒ ∀{Γλ}λ≤Λ, SΛ 6= ∅.

Proof. By Lemma 19, we know that if a strategy top dominates another, it is never top
dominated (thus never eliminated). If no strategy top dominates another, then Λ = 0

and by hypothesis S0 6= ∅. �

The following result may show why our elimination procedure is order independent. In
the words of Dufwenberg and Stegeman [2002]; Luo et al. [2020], each top dominated
strategy has an undominated top dominator, i.e. each top dominated strategy at a point
of a sequence of games will be deleted by the end of the sequence:

Proposition 6. ∀{Γλ}λ≤Λ, ∀λ ∈ [[0,Λ− 1]], ∀i ∈ I, ∀si ∈ Sλi top dominated in Γλ,

si /∈ ΓΛ

Proof. By combining Lemmas 19 and 20, the result is immediate. �

IETDS satisifies a weak form of the independence of irrelevant alternatives1, the irrele-
vance of weakly dominated acts2, i.e. the addition of weakly dominated strategies (by the
top dominating strategy studied) does not affect the dominance relation:

Proposition 7. Assume Γ and Γ′ such that N = N ′, S−i = S ′−i, U = U ′, Si = S ′i ∪ s∗i ,
Then, s′′i top dominates s′i in Γ ⇒ s′′i top dominates s′i in Γ′ if s∗i is weakly dominated by
s′′i .

1See Nash [1950]; Gilboa et al. [1990].
2See [Luce and Raiffa, 1957, p.288, Axiom 6].
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Proof. If s∗i is weakly dominated by s′′i , then ∀s−i ∈ Π
j∈I\{i}

Sj, Ui(s
′′
i , s−i) ≥ Ui(s

∗
i , s−i),

especially for profiles s ∈ B(s′′i ). Thus, if all conditions of Definition 31 are checked in Γ,
it is also the case in Γ′. �

B.2 Why is TD3 needed?

k’s Strategy

j’s Strategy
i’s Strategy . . . 7j 6j 5j 4j 3j 2j 1j

...

4i . . . 4 4 4 4 4 4 4

3i . . . 3 3 3 3 3 3 3

2i . . . 2 2 2 2 2 2 2

1i . . . 1 1 1 1 1 1 1

1k

j’s Strategy
i’s Strategy . . . 7j 6j 5j 4j 3j 2j 1j

...
. . .

...
...

...
...

4i . . . 1 1 1 4 1 1 1

3i . . . 1 1 1 1 3 1 1

2i . . . 1 1 1 1 1 2 1

1i . . . 1 1 1 1 1 1 1

0k

Figure B.1: TD3 with a Three-Player Game

In the above game, k has two strategies: 1k and 0k which always reward 1 and 0 respec-
tively. If k plays 0k, then i and j play as in the game of Example 3. If k plays 1k, then
only i’s choice matters and both i and j get U(si, sj) = si (si being the strategy chosen
by i). Here, only 0k is top dominated. Once it is eliminated, nothing else happens (as in
Example 1). Now, if we modify the definition of top dominance and we do not require that
the top dominating strategy rewards a (weakly) higher payoff than all other strategies on
the Better Reply Set (i.e. we release TD3) but only rewards a strictly higher payoff on
(at least) one profile of the Better Reply Set, 2i would top dominate 1i (consistently with
what happens in Example 3). So if we start by eliminating i’s strategies, 1i would be
eliminated. In contrast, if we start by eliminating k’s strategies, we would first eliminate
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0k, preventing 1i elimination. Therefore IETDS would not be order independent.

B.3 Mixed top dominance

Consider the mixed extension of a game Γ and denote Σ the set Π
i∈I

Σi ≡ Π
i∈I

∆(Si) the

set of all (mixed) strategies. Thus, σi ∈ Σi is a mixed strategy if it is a probability
distribution over the set Si of pure strategies. As in the pure strategy case, we denote
Σ−i the set Π

j∈I\{i}
Σj ≡ Π

j∈I\{i}
∆(Sj), the strategy profiles set of i’s opponents. Let σi(si)

be the probability that si is effectively used when σi is played and denote Rσi = {si ∈
Si|σi(si) > 0} the support of σi3. We apply the definition of a Better Reply Set to mixed
strategies in the same way as in the pure strategy case:

Definition 35. The Better Reply Set to σ′′i ∈ Σi, denoted B(σ′′i ), is the set of all strategy
profiles σ∗ ∈ Σ such that:
σ∗i = σ′′i , and, if S−i 6= ∅:

∃j ∈ I \ {i}, σ∗j ∈ arg max
σj∈Σj

Uj(σj, σ
∗
−j) (OM′)

or ∀j ∈ I \ {i}, arg max
σj∈Σj

Uj(σj, σ
∗
−j) = {∅} (AS′)

Now, we extend the notion of Better Reply Set to strategy subsets:

Definition 36. For any strategy subset S̄i ⊂ Si, we denote B(S̄i) = ∪
σi∈∆S̄i

B(σi) the

Better Reply Set to the strategy subset S̄i.

Note that if the subset is a singleton, Definitions 30 and 36 obviously coincide. Impor-
tantly, in order to define mixed top dominance, we will use the Better Reply Set to the
strategy subset formed by the support of the mixed strategy:

Definition 37. For any strategy subset S̄i ⊂ Si, we denote B(S̄i) = ∪
σi∈∆S̄i

B(σi) the

Better Reply Set to the strategy subset S̄i.

Note that if the subset is a singleton, both definitions of Better Reply Sets obviously
coincide. Remark also that we directly apply the definition of a Better Reply Set to a
pure strategies to mixed strategies. Besides, in order to define mixed top dominance, we
will use the Better Reply Set to the strategy subset formed by the support of the mixed
strategy:

Definition 38. A strategy s′i ∈ Si is said top dominated by the mixed strategy σ′′i ∈ Σi

whose support is Rσ′′i
, if:

3Note that this definition of the support cannot be weakened by allowing e.g. a continuous distribution as a
support. We clarify this point below.
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∀s−i ∈ S−i : Ui(σ
′′
i , s−i) ≥ Ui(s

′
i, s−i) (TD1′)

∀σ∗−i such that σ∗ ∈ B(Rσ′′i
) : Ui(σ

′′
i , σ

∗
−i) > Ui(s

′
i, σ
∗
−i) (TD2′)

∀si ∈ Si \Rσi ,

either (i) ∀s−i ∈ S−i : Ui(σ
′′
i , s−i) ≥ Ui(si, s−i)

or (ii) ∀σ∗−i such that σ∗ ∈ B(Rσ′′i
) : Ui(σ

′′
i , σ

∗
−i) > Ui(si, σ

∗
−i) (TD3′)

We use the same definition as the pure top dominance case except that we consider the
Better Reply Set of the support and that TD3 is checked only for strategies outside the
support of the mixed strategy. This definition is in fact a generalization of the pure
version, given that a strategy cannot be top dominated by itself, and given that TD3 is
verified if we compare a strategy to itself. Note that we require that the support of a
mixed strategy must be finite, since the probabilities are strictly positive.

The next result states that mixed top dominance refines strict dominance in finite games:

Theorem 11. σ′′i ∈ Σi strictly dominates s′i ∈ Si in a finite game:

⇒ ∃ σi ∈ Σi such that σi top dominates s′i.

Proof. Set card = ](Si), the cardinal of Si. If card = 2, set σi = σ′′i and the result is
straightforward. Now assume card > 2 (but still a finite number).

Set σi ∈ Σi such that Rσi = Si \ s′i. For each strategy si in Si \ s′i which does not very
weakly dominates σ′′i , set:

dσ′′i→si = max
s−i∈S−i

(Ui(σ
′′
i , s−i)− Ui(si, s−i)) > 0, and set:

dσ′′i→s′i = min
s−i∈S−i

(Ui(σ
′′
i , s−i)− Ui(s′i, s−i)) > 0

Denote σi the probabilities such that σi(si) <
dσ′′
i
→s′

i

card× dσ′′
i
→si

and any arbitrary positive

probability for strategies which very weakly dominate σ′′i . Therefore, the payoff difference
between the two strategies is such that:

Ui(σi)− Ui(s′i) = Ui(σi)− Ui(σ′′i ) + Ui(σ
′′
i )− Ui(s′i) >

−
∑

si∈Si\{s′i}

σi(si)× dσ′′i→si + dσ′′i→s′i > 0

It means we have constructed a mixed strategy that strictly dominates s′i. Consequently
TD1′ and TD2′ are verified. Since every strategy but s′i composed the mixed strategy,
TD3′ is trivially verified. �
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Chapter 3

Complementarities in Information
Acquisition

Co-authored with Sidartha Gordon
Abstract

In games with complementarities in actions, i.e. an increase in the action of a player
induces that other players should increase their actions as well, complementarities in in-
formation acquisition usually emerge. Hellwig and Veldkamp [2009] show that in this kind
of games, if an agent increases the precision of his information acquisition, other agents
do as well (the inheritance result). In a global game, Szkup and Trevino [2015] exhibit
that this inheritance result is not robust when an individual does not play the equilibrium
action. We introduce a coordination game with private information acquisition to show
that the inheritance result may fail in a symmetric equilibrium. Complementarities and
substituabilities emerge depending on the parameters of the game. The frontier between
these two areas corresponds to the situation where the strategy profile of the other players
does not affect the value of information.

3.1 Introduction

In games where actions can be ordered, actions are said complements, if the player i
should increase his action to get a higher utility, when a player j increases her action. If
the opposite mechanism appears, the actions of i and j are said substitutes.

Then, what happens when agents are allowed to acquire information? Do complemen-
tarities in information acquisition emerge when there are complementarities in action,
i.e. should players whose actions are complements acquire more information when their
opponents act this way? More precisely, if other agents acquire more information, is an
individual player always encouraged to acquire more information as well (what we call
the inheritance result).
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The inheritance result can be defined in other words as the transmission of complemen-
tarities from actions to information acquisition. It is a well known result established by
Hellwig and Veldkamp [2009] in a beauty contest with a continuum of players. In their
paper, the utility of each agent is represented by a quadratic loss1:

EL(ai, a, θ) = E[(1− r)(ai − θ)2 + r(ai − a)2]

Then, when agents exhibit complementarities in actions (i.e. r > 0) (and in the state,
i.e. r < 1), acquiring more information is always advantageous when the precision of the
others’ signals increase.

However, few changes to the original model may revert the result. In Jiménez-Martínez
[2014], a two-player case (more a strategic interaction between the other agent’s action
and the state in the player’s utility) shows that the inheritance result does not hold when
the atomicity vanishes. Especially, the variance of the other players’ action affects the
value of information and when the actions are said highly complements, substituabilities
in information acquisition may appear.

As well, Szkup and Trevino [2015] illustrate in a global game that even with a continuum of
agents, the inheritance result is shaky. In their paper, agents can make a risky investment.
Investment is successful if the state of the world and the proportion of agents investing
are high enough2. In Szkup and Trevino [2015], agents coordinate on a threshold θ∗ (a
state of the world) above which the investment is always successful after getting a costly
signal on the state of the world (and always unsuccessful otherwise). If all the players but
an individual i increase the precision of their signal, i may not be encouraged to increase
his precision as well. However, this counter example occurs in very specific cases. The
individual considered should have a very low precision while the other agents have a very
high precision. Nevertheless, this result show that even if there are complementarities in
actions, certain forces may reverse the incentive to mimic the action of other players in
terms of information3.

We propose to test if the result in Szkup and Trevino [2015] is due to technical assumptions
(e.g. the normal distribution of the state of the world and the signals) so to establish a
frontier between the games with and without inheritance. For this purpose, we introduce
an information game where the agents are able to know with a certain error if the state
of the world is above or below a certain threshold.

1ai, a, θ representing respectively the action of the individual i, the aggregate action and the state of the
world.

2Other configurations are possible in global games, see Morris and Shin [2003] for an extensive survey.
3Szkup and Trevino [2015] explain well the difference between beauty contest and global games. If other

players use more information in a beauty contest, they will be closer to the state of the world, which incentivizes
to acquire more information for any individual player. Since being closed to the fundamental and the others’
action matters, both forces work together. On the contrary, in global games, the actions of other players affect
the individual through the threshold θ∗. If the threshold is non monotonic in the aggregate precision, more
information for other players might result in less information for the individual one.
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Our model is close from the model proposed by Yang [2015] who studies a coordination
game under uncertainty with rationally inattentive agents. In that way, agents can reduce
uncertainty by acquiring costly information. The cost of information is linked to the
reduction of uncertainty (proportional to the reduction of entropy in his paper). The
information acquisition technology is said flexible, in opposition to noisy signals in global
games which are rigid structures (see Szkup and Trevino [2015]). Indeed, agents are
allowed to specify on each state of the world, the amount of information they want to
acquire. Each state of the world will imply a specific signal structure, what is flexible
with respect to global games, where the signal structure is designed for all the states of
the world. Thanks to this flexibility, agents can coordinate on more equilibria than in
global games (which exhibit uniqueness under certain conditions), and especially, they can
reach the Pareto best equilibrium when information becomes infinitely cheap. Because of
the entropic form of the cost function, the cost paid by an agent to acquire information
depends on the probability of success of the risky action. A change in the precision chosen
by the agents may affect this probability. In turn, an individual agent has to change the
level of his own precision. Furthermore, every equilibrium has different properties since
the ex ante uncertainty is modified for each of them. More certainty leads to more precise
signals because there are less costly, but this certainty comes from the strategy of the
agents, and not from the distribution of the states. Information should have value when
information make earn money, and information should be costly when there is uncertainty.
However, in Yang [2015] value and cost of information are similar, because uncertainty
is proportional to the probability of earning money. With entropy, it is not possible
to disentangle the information value problem and the information cost problem. Since
agents’ strategies shape this cost, information may be costed differently for the same
distribution of the states of the world. As we want to analyze the precision problem, we
do not use entropy to cost information. More recently, Yang [2018] seeks the same kind
of questions as ours in a general setting. However, information cost is fixed and the value
of information is set as the difference between the payoff when the individual acquires
information and when he does not (holding constant the acquisition of the other agents).
Thus, this framework does not answer to questions about the amount of information
agents acquire. In the next section, we introduce the model. Then we establish the
equilibria. In the fourth section, we make the analysis in terms of complementarities or
subtituabilities of information acquisition. And finally we conclude.

3.2 Model

In our model, as in Szkup and Trevino [2015], we assume a continuum of agents with
two possible actions: investing I and not investing NI. Investing costs 0 < T < 1 and
rewards 1 if it is successful (0 either). Not investing always rewards 0.
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Therefore, the payoff for any individual i can be written:

If I

{
Πi = 1− T if the investment is successful.

Πi = −T if the investment is unsuccessful.

If NI

{
Πi = 0 if the investment is unsuccessful.

Πi = 0 if the investment is successful.

However, the action NI when the investment is the good action is a mistake and the
opportunity cost (i.e. what would have been earned by playing the good action) of such
an action in this situation is 1− T . Then, we can define the two errors:

Definition 39. Errors are of two distinct types.

• Type-I error: Play the action Invest while the investment is not successful. The
associated loss is −T .

• Type-II error: Play the action Not Invest while investment is successful. The asso-
ciated loss is −(1− T ).

Whether the investment is successful depends positively on the state of the nature and
depends positively on the proportion of agents investing. We define the mass condition,
i.e. the condition such that the investment is successful:

θ + p ≥ 1

where θ is the state of the world which has a continuous proper cumulative distribution
function Fθ with a positive density fθ between 0 and 14, and, p is the proportion of agents
who have chosen to invest.

3.2.1 Signal

In order to maximize their profits, the agents may observe the realization of a binary
costly signal. Every individual i is allowed to choose a threshold ξi and observe if the
state of the world θ is greater than ξi. However, this signal is exact only with probability
(1− εi). The cost of the signal is Ci(εi) and is decreasing in εi, which is the error of the
signal chosen by the agent (i.e. the probability that the signal is untrue). To sum up, the

4The case in which the prior has an improper distribution, such that the uniform distribution on the real line
is in fact a limiting case where neither complementarities nor substituabilities may appear because the cumulative
distribution function is a constant. See below the analysis for further developments.
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agent i observes:

With probability (1− εi), Xi(ξi, εi) =

{
1 if θ ≥ ξi

0 if θ < ξi

With probability εi, Xi(ξi, εi) =

{
1 if θ < ξi

0 if θ ≥ ξi

There is no cost on the threshold chosen by the agent. In other words, choosing a threshold
or another does not affect the cost paid by the agent. In this sense, this cost function
is similar to the one displayed in Morris and Yang [2016]. However, their cost function
depends on the maximal slope of the agent’s action function. In our case, the slope of
the action function is infinite. It means that the agent has a discontinuous action around
the threshold, i.e. the probability to choose the action I shifts up or down radically. It
does correspond to the specific case where the cost is cheap in Morris and Yang [2016].
Indeed, in our framework, distinguishing nearby states is assumed to be costless. On
the contrary, and differently from Morris and Yang [2016], we assume that the level of
maximal precision is costly.

In order to answer our question, we formalize the definition of complementarities and
substituabilities in information acquisition:

Definition 40. Information acquisitions are said complements (substitutes) for an in-
dividual player with respect to his opponents at a given equilibrium if a slight change in
the information cost of the opponents lead the individual player to acquire less (more)
information when the opponents acquire less information.

3.2.2 Stages

The game is a two-stage game. The players first choose their precision (1− εi) and their
threshold ξi. Then, they observe a binary signal and choose whether to invest according
to their expected profit, given the signal. Thus, each agent i sets a decision rule ai(εi, ξi)
such that ai(εi, ξi|Xi) = P(I) for Xi = 0, 1, with P(I) the probability to play action I

when receiving each signal.

3.3 Equilibria characterization

Let Bi(εi, ξi, ai; Γ, a−i) the expected payoff by choosing an error εi, a threshold ξi and a
decision rule ai for a given distribution Γ of error choices and threshold choices made by
the opponents, and given the decision rules a−i chosen by the opponents, i.e.,

Bi(εi, ξi, ai; Γ, a−i) ≡ E(Πi|εi, ξi, ai; Γ, a−i)

We denote Bi(εi, ξi, ai; Γ, a−i|Xi) is the expected payoff conditional on the value of Xi.
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Let A∗i (εi, ξi) the set of decision rules a∗i (εi, ξi) such that each a∗i (εi, ξi|Xi) maximizes the
expected payoff of agent i when choosing εi, ξi and facing Xi, i.e., checking for Xi = 0, 1:

Bi(εi, ξi, a
∗
i (εi, ξi); Γ, a−i|Xi) ≥ Bi(εi, ξi, ai(εi, ξi); Γ, a−i|Xi)

Therefore, A∗i (εi, ξi) is the set of the i’s decision rules such that for each a∗i (εi, ξi) in
A∗i (εi, ξi), a∗i (εi, ξi|Xi) is optimal for each Xi = 0, 1.

Definition 41. A Perfect Bayesian Nash Equilibrium is a set of error choices {ε∗i , i ∈
[0, 1]}, with a set of threshold choices {ξ∗i , i ∈ [0, 1]} together with a set of optimal decision
rules for the second period {a∗i (ε∗i , ξ∗i ) ∈ A∗i (ε

∗
i , ξ
∗
i ), i ∈ [0, 1]}. The distribution of error

choices and threshold choices Γ = [Γε,Γξ] (with S the support of the error choices) is such
that the following holds :

Each investor i’s choice (ε∗i , ξ
∗
i ) is optimal, given Γ and a−i:

∀i, ∀εi ∈ S, ∀ξi ∈ R :

Bi(ε
∗
i , ξ
∗
i , a
∗
i (ε
∗
i , ξ
∗
i ); Γ, a−i)− Ci(ε∗i ) ≥ Bi(εi, ξi, a

∗
i (εi, ξi); Γ, a−i)− Ci(εi)

Proposition 8. Suppose that Fθ (0) >
(

(Fθ(0)+Fθ(1))
2

)2

holds. Then for any agent i, a
strategy (ξi, εi, ai) such that εi < 1/2 and ai (0) = I and ai (1) = NI is never a best
response regardless of what the other agents play.

Proof. Consider an arbitrary profile (ξ−i, ε−i, a−i) of strategies of all agents other than
agent i.

Let ξi ∈ R and εi ∈ (0, 1/2). Let p− be the fraction of agents (different from i) who play
I conditional on θ < ξi, and similarly let p+ be the fraction of agents (different from i)
who play I conditional on θ > ξi, according to the profile (ξ−i, ε−i, a−i) .

Note that if p− ≤ p+, it is clear that a strategy such that ai (0) = I and ai (1) = NI

cannot possibly be optimal for agent i, since Xi = 1 signals both a higher state and higher
agregate investment than Xi = 0. So let us restrict attention to the case where p+ < p−.

We distinguish three cases. If either ξi + p− ≤ 1 or ξi + p+ ≥ 1, we can easily show that
playing εi < 1/2, ai (0) = I and ai (1) = NI is not optimal

• Suppose first that ξ < ε∗(ξ). Then, investing is successful if and only if θ ≥ 1−ε∗(ξ).
Thus, conditional on observing the signal Xi = 0, investment is successful if and only
if the signal is in fact incorrect and this inequality holds, since θ + p < 1 when the
signal is correct. The expected payoff of playing I, conditional on Xi = 0 equals

ε(1− Fθ(1− ε∗(ξ)))
(1− ε∗(ξ))Fθ(ξ) + ε∗(ξ)(1− Fθ(ξ))

− T ≥ 0.

The inequality is an implication of the optimality of investing, upon receiving the
signal Xi = 0. But then, the expected payoff of playing I upon receiving Xi = 1

would be equal to:

102



Chapter 3. Complementarities in Information Acquisition

(1− ε)(1− Fθ(1− ε∗(ξ)))
ε∗(ξ))Fθ(ξ) + (1− ε∗(ξ))(1− Fθ(ξ))

− T =
(1− Fθ(1− ε∗(ξ)))

ε∗(ξ)
(1−ε) Fθ(ξ) + (1− Fθ(ξ))

− T

>
(1− Fθ(1− ε∗(ξ)))

1−ε∗(ξ)
ε

Fθ(ξ) + (1− Fθ(ξ))
− T

=
ε(1− Fθ(1− ε∗(ξ)))

(1− ε∗(ξ))Fθ(ξ) + ε∗(ξ)(1− Fθ(ξ))
− T

≥0.

This contradicts the optimality of not investing upon receiving the signal Xi = 1.
Thus, there is no equilibrium where ξ < ε(ξ) and agents invest when they receive
the signal Xi = 0 and do not invest when they receive Xi = 1.

• If 1− ε∗(ξ) < ξ, investing is unsuccessful if and only if θ ≤ ε∗(ξ). Thus, conditional
on observing the signal Xi = 1, playing I yields a payoff of −T if and only if the
signal is in fact incorrect and this inequality holds, since θ + p > 1 when the signal
is correct. The expected payoff of playing I, conditional on Xi = 1 equals

1− ε(Fθ(ε∗(ξ)))
ε∗(ξ))Fθ(ξ) + (1− ε∗(ξ))(1− Fθ(ξ))

− T ≤ 0.

The inequality is an implication of the optimality of not investing, upon receiving
the signal Xi = 1. But then, the expected payoff of playing I upon receiving Xi = 0

would equal to:

1− (1− ε)(Fθ(ε∗(ξ)))
(1− ε∗(ξ))Fθ(ξ) + ε∗(ξ)(1− Fθ(ξ))

− T

< 1− ε(Fθ(ε∗(ξ)))
ε∗(ξ))Fθ(ξ) + (1− ε∗(ξ))(1− Fθ(ξ))

− T ≤ 0

This contradicts the optimality of investing upon receiving the signal Xi = 0. Thus,
there is no equilibrium where 1− ε∗(ξ) < ξ, and agents invest when they receive the
signal Xi = 0 and do not invest when they receive Xi = 1.

Consider the last remaining cases where 1− p− < ξi < 1− p+.

Conditional on observing Xi = 0, the expected payoff of playing I equals
(1− εi) (Fθ (ξi)− Fθ (1− p−)) + εi (1− Fθ (1− p+))

(1− εi)Fθ (ξi) + εi (1− Fθ (ξi))
− T.

Conditional on observing Xi = 1, the expected payoff of playing I equals
εi (Fθ (ξi)− Fθ (1− p−)) + (1− εi) (1− Fθ (1− p+))

Fθ (ξi) + (1− εi) (1− Fθ (ξi))
− T.

The result we would like to prove is that if the first expression is positive, then the second
one is strictly positive. This requires showing that the function

G (x) =
(1− x) (Fθ (ξi)− Fθ (1− p−)) + x (1− Fθ (1− p+))

(1− x)Fθ (ξi) + x (1− Fθ (ξi))
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is strictly increasing. This is the case iff

(1− Fθ (1− p+)− Fθ)Fθ (1− p−)− (Fθ (1− p+)− Fθ (ξi)) (Fθ (ξi)− Fθ (1− p−)) > 0.

The smallest possible value of the left hand-side is reached when

Fθ (ξi) =
1

2
(Fθ (1− p−) + Fθ (1− p+)) .

A sufficient condition for the inequality to hold is then that:

Fθ (1− p−) >

(
(Fθ (1− p−) + Fθ (1− p+))

2

)2

.

Equivalently:
Fθ (1− p+) < 2

√
Fθ (1− p−)− Fθ (1− p−) .

The corresponding area is the area below the curve, with y = Fθ (1− p+) and x =

Fθ (1− p−).
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Figure 3.1: Set (in red) of the Fθ (1− p+) with respect to Fθ (1− p−) such that there is no
equilibrium with ai (0) = I and ai (1) = NI ∀i

Since 0 ≤ 1− p− ≤ 1− p+ ≤ 1, a sufficient condition for this to hold is that

Fθ (0) >

(
(Fθ (0) + Fθ (1))

2

)2

,

which is the desired conclusion.

�

Remark 1. The inequality says that in the above graph, the point (Fθ (0) ,Fθ (1)) lies
below the curve. Intuitively, it requires that not too much probability mass is concentrated
in the interval [0, 1] .
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Remark 2. The sufficient condition we state cannot be weakened, in the following sense.
Suppose that Fθ is uniform in the interval [−δ, 1 + δ] . If δ > 0 is small enough, it is
possible to find a value of T > 0 and a symmetric cost function C such that the profile
where all agents chose the same error ε ∈ (0, 1/2) , the same threshold ξ = 1/2 and play
ai (0) = I and ai (1) = NI is an equilibrium.

Proposition 8 shows under which conditions no equilibrium where the agents do the
opposite to what their signal indicates is possible. Therefore, there are three kind of
pure equilibria in incomplete information: the ones (i) where the agents always invest,
the ones (ii) where the agents never invest, and the ones (iii) where the agents follow
the signal. (i) may happen if 1 − Fθ(0) > T ⇔ Fθ(0) < 1 − T . (ii) may happen if
1− Fθ(1) < T ⇔ Fθ(1) > 1− T .

Possible equilibria:

1. (i) and (iii) if Fθ(1) < 1− T ⇔ T < 1− Fθ(1),

2. (i), (ii) and (iii) if Fθ(0) < 1− T < Fθ(1)⇔ 1− Fθ(1) < T < 1− Fθ(0),

3. (ii) and (iii) if 1− T < Fθ(0)⇔ 1− Fθ(0) < T .

Now, we make two assumptions to frame the role of information acquisition in this game,
with εm the minimal error such that the error cost is null:

Assumption A1. (i) if εm ≤ εi ≤ 1
2
, then Ci(εi) = 0, (ii) if 0 < εi < εm < 1

2
,

then C ′i(εi) < 0, C ′′i (εi) > 0 , and (iii) if εi = 0, then Ci(0) =∞ for every agent i

Assumption A1 is crucial to get a clear shift in the equilibrium when there is a change
in the mean error. Then, it ensures that substituability in information acquisition may
emerge. However, if the cost function is assumed to be concave, the opposite results would
emerge5.

Now, we can focus on equilibrium where there is only information acquisition. We give
an explicit value to εm:

Assumption A2. In the case where:

Fθ(1)− (1− T )

T
< Fθ(0) < 1− T < Fθ(1) <

Fθ(0)

1− T
(Information seeking cases)

Set ε00 = Fθ(0)−Fθ(1)(1−T )
Fθ(0)+((1−T )−2Fθ(1))(1−T )

, ε1 = (1−T )+T Fθ(0)−Fθ(1)
(1−T )+2T Fθ(0)−Fθ(1)

.

Assume εm = min(ε00, ε1), for every agent i

Assumption A2 is necessary to be sure that every agent is willing to get information
under certain conditions and to be sure that every solution is interior in terms of error.

5The linear case would give corner solutions in information acquisition (so no marginal complementarities
or substituabilities may appear) as well as mixed solutions. All of these mixed solutions would have the same
threshold (determined by the parameters of the game). Then, any complementarities or substituabilities would
be driven by the threshold, determined exogeneously.
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How ε00 and ε1 are established is let to Section 3.5. Assumption A2 ensures that without
need of coordination, investing when the signal indicates that the state of the world is
above 0 is dominant, and not investing is dominant when the signal indicates that the
state is below 1. In other words, there is never need for coordination to follow the signal
(or coordination can never be sufficient).

Lemma 22. ∀ ξl, ξh ∈ [1,+∞) × (1,+∞) ξl < ξh, any individual i prefers strictly ξl to
ξh. The opposite is true in (−∞, 0)× (−∞, 0]. Finally, if the thresholds choice is limited
to [1,+∞) (resp. (−∞, 0]) the equilibrium threshold is 1 (resp. 0).

Proof. Assume ξi > 1. If Fθ(ξ) <
Fθ(0)

1− T
, then the individual i follows his signal. Since he

earns money only when the state of the world is above the threshold, it is immediate that
by decreasing the threshold ξi, i increases the probability to invest and thus increases his
benefit. In other words, it reduces the area where the agent does not invest while it would
have been profitable (Type-II error). The same mechanism appears in the negative area.

Conversely, if Fθ(ξ) ≥
Fθ(0)

1− T
, there is no dominant action when the signal is low. Then,

in this case, the agent may always (or sometimes) invest when the state of the world
is below his threshold. However, what would happen if the threshold ξi was decreased?
Again, the space where the agent can invest without being mistaken would increase (in
the high signal case). In addition (and differently from above), the space where the agent
takes the risk to lose money (Type-I error) diminishes. It leads to the conclusion that 1
is preferred to greater thresholds, and 0 preferred to lower thresholds. �

Lemma 23. Under Assumptions A1 and A2, all equilibria are such that all agents (i)
acquire information, and (ii) choose a threshold belonging to the interval [0, 1].

Proof. Assumption A2 ensures agents are willing to acquire information and that follow-
ing the signal is a dominant action between 0 and 1. By Lemma 22, we know that 0 is
preferred to any lower threshold and that 1 is preferred to any higher threshold. Thus,
no information acquisition, nor choosing a threshold outside [0, 1] is profitable. �

Similarly as Yang [2015], the Pareto Best situation (i.e. the situation where all the agents
choose the threshold 0 is an equilibrium) when perfect information is available. In our
case, under imperfect information, the set of equilibrium’s thresholds is restricted:

Proposition 9. Under Assumption A2, for any set of pairs (ε, ξ) chosen by every agent i,
there is a state of the world θ∗ ∈ [E

i
(εi), 1−E

i
(εi)] above which the investment is successful,

and below which the investment is not successful.
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Proof. First note that the investment is always successful if θ > 1, and never successful if
θ ≤ 0. Then, set the following function:

p(θ, ξ, ε) = m(θ) + n(θ) =

∫ θ

0

(1− εi) dξi +

∫ 1

θ

εi dξi

p is the proportion of agents investing when the state of the world is θ for any given
vector (ε, ξ) composed of the choices made by the agents. m represents the agents whose
the threshold is below θ and who get a correct signal. n represents the agents whose the
threshold is above θ but who get an incorrect signal. By Assumptions A1 and A2, these
two types of agents will invest. Therefore, the investment is successful if p(θ) > 1−θ. Note
that, by Lemma 23, p(0, ξ, ε) = E

i
(εi) and p(1, ξ, ε) = 1−E

i
(εi). Indeed, by AssumptionA2,

agents invest when they receive a high signal and do not invest when they receive a low
signal if they have chosen a threshold in [0, 1]. Then, it is sufficient to show that p is non
decreasing in θ to prove the statement. By Assumption A2, εi < 1

2
, so for all i, 1−εi > εi.

Since the number of agents whose the threshold is below θ does not decrease with θ, it is
immediate that p is non decreasing as well. �

3.3.1 Determination of the error at equilibrium

Assume that θ∗ is fixed at a certain value such that no investment is successful below,
and all the investment are successful above. Then, all the agents choose the threshold θ∗:

Proposition 10. For every agent i with any error εi < 1
2
, ξi = θ∗.

Proof. Suppose ξi ≥ θ∗. Then three regions can be distinguished for each agent with
respect to the distribution of θ : −∞ < θ < θ∗, θ∗ < θ < ξi and ξi < θ < ∞. Then, the
signal drawn by the agent is correct with probability 1 − εi > 1

2
. In the first area, the

agent earns 0, and in the third area, he earns 1− T . However, he makes a Type-II error
in the second area, and thus loses 1 − T . When the signal is incorrect (it occurs with
probability εi < 1

2
), the opposite situation emerges : the agent loses −T in the first area

(Type-I error) and 1− T in the third one. In the second area, the signal wrongly tells to
invest but as θ∗ < θ, investing is actually successful.

θ −∞ < θ < θ∗ θ∗ < θ < ξi ξi < θ <∞

Signal is right [1− εi > 1
2
] 0 −(1− T ) (1− T )

Signal is wrong [εi <
1
2
] −T (1− T ) −(1− T )

As 1 − εi > εi it is then straightforward that ξi should be minimized at the equilibrium,
i.e. ξi = θ∗. The result is similar when it is assumed ξi ≤ θ∗ . Then, at the equilibrium
ξi = θ∗. �
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The set of the possible θ∗, and then the set of possible equilibria under incomplete infor-
mation depends dramatically on the value of the parameter T .

This is due to the fact that at any interior equilibrium (i.e. ε < 1
2
), the first-order condition

on the error ε is respected. Then the partial derivative of the equilibrium error ε∗ with
respect to the threshold θ∗ can be deduced. For any θ∗, we know that (giving that at
equilibrium, all the agents choose the threshold θ∗, and follow what their signal indicates):

∂Bi(εi, θ
∗)

∂ε
= −[(1− T )(1− Fθ(θ∗)) + T Fθ(θ∗)] = −[(1− T ) + (2T − 1)Fθ(θ∗)]

By the optimality of the investor’s choice, we get as the First Order Condition:

∂Bi(ε
∗
i , θ
∗)

∂ε
= C ′i(ε

∗
i ) (FOC)

Now, we determine all the equilibria where the agents acquire information. We use FOC
to build the error function with the threshold θ∗ as argument.

We note R0,i(θ, ε) 7→ −(1−T )+(1−2T )Fθ(θ)−C ′i(ε) a well-defined function of R×[0, 1
2
]→

R.

Then, any first-order condition respects: R0,i(θ
∗, ε∗i ) = −(1−T )+(1−2T )Fθ(θ∗)−C ′i(ε∗i ) =

0. Convexity of the cost function and implicit differentiation give:

d ε∗i
d θ∗

=
(1− 2T )fθ(θ

∗)

C ′′i (ε∗i )
> (<) 0 if T < (>)

1

2
(3.1)

To simplify, assume first that the agents have the same cost function.

We note R1,i(x) 7→ −(1 − T ) + (1 − 2T )Fθ(x) − C ′i(x) a function of [0, 1
2
] → R. By

Assumption A1, R1,i(0) = +∞ and R1,i(
1
2
) = −(1− T ) + (1− 2T )Fθ(1

2
) < 0.

To ensure that R1,i is a decreasing function and then, that there is a unique point e1 such
that R1,i(e1) = 0, we can assume that ∀ε ∈ [0, 1

2
), C ′′i (ε) > (1 − 2T )f̄θ where f̄θ is the

mode of the density function fθ. Note that it is already the case if T > 1
2
.

Assumption A3. C ′′i (εi) > (1− 2T )f̄θ if T < 1
2
.

Assumption A3 ensures that
d ε∗i
d θ∗

< 1 and then a single cross property of the thresholds
and the associated errors.

Under this hypothesis, by continuity of R1,i, there is a unique e1 such that R1,i(e1) = 0.
It is immediate that the point (e1, e1) is an equilibrium since the first order condition
is binding and that no deviation from the threshold e1 is profitable since above the in-
vestment is successful and below the investment is unsuccessful. Now, we can relax the
hypothesis of homogeneity, and set E1 = E

i
(e1).
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Lemma 24. At any equilibrium, no agent chooses a threshold below E1.

Proof. Assume all the agents choose a threshold ξu < E1. The optimal error is then
ε∗(ξu) < (>) E1 if T < (>)1

2
. To be an equilibrium, (ξu, ε

∗(ξu)) should be such that no
investment is successful below ξu, and all the investment are successful above ξu.

If T > 1
2
, we get ε∗(ξu) > E1 > ξu since ∂ε∗i

∂θ∗
< 0. There is a profitable deviation for any

agent i by setting ξi = ε∗, since under the state of the world θ = ε∗ the investment can
not be successful and then (ξu, ε

∗) is not an equilibrium.

If T < 1
2
, ε∗(ξu) is below E1. Then, we already know that

d ε∗i
d θ∗

< 1 because we assume

that ∀x ∈ [0, 1
2
], C ′′i (x) > (1 − 2T )f̄θ. Thus, ξu < ε∗(ξu). Again, there is a profitable

deviation for all the agents since investments are not successful between ξu and ε∗(ξu).

Then, no threshold under E1 is chosen at any equilibrium. �

We note R2,i(x) 7→ −(1 − T ) + (1 − 2T )Fθ(1 − x) − C ′i(x) a function of [0, 1
2
] → R. By

hypothesis, R2,i(0) = +∞ and R2,i(
1
2
) = −(1 − T ) + (1 − 2T )Fθ(1

2
) < 0. By assuming

that C ′′i (x) > (2T − 1)f̄θ, we get that the point e2 defined by R2,i(e2) = 0 is unique. We
note E2 = E

i
(e2)

Lemma 25. At any equilibrium, no agent chooses a threshold above 1− E2.

The proof is analogous to the proof of Lemma 24.

Proposition 11. Under Assumption A3, equilibria can be characterized as the ordered
pairs (θ∗, ε∗) such that E1 ≤ θ∗ ≤ 1− E2 and such that R0,i(θ

∗, ε∗) = 0 for all the agents
i ∈ [0, 1].

Proof. Lemmas 24 and 25 show that no threshold outside the area [E1, e2] can be chosen
at any equilibrium. Assumption A3 guarantees that | d θ∗d ε∗ | > 1. Thus, for any θ∗ > E1,
θ∗ > ε∗(θ∗). As well, for any θ∗ < 1 − e2, θ∗ < 1 − ε∗(θ∗) since even if ε∗(θ∗) increases
(so 1− ε∗(θ∗) decreases) when θ∗ decreases, θ∗ decreases faster. So, there is no individual
profitable deviation from these thresholds. Since R0,i(θ

∗, ε∗) = 0 for all of these pairs, it is
immediate by the convexity of error cost that the error is optimal for each θ∗ considered.
Therefore, these pairs are the only possible equilibria since no other threshold might
be considered by Lemmas 24 and 25, and since there is just one optimal error for each
equilibrium threshold. �

Assumption A3 ensures that all the thresholds in the interval are candidates to be part
of an equilibrium, but there would still be existence of several equilibria without this
assumption.
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Lemma 26. Assume that the cost function increases (decreases) for all error levels ε such
that 0 ≤ ε < εm for a non negligible part of the agents (and remains the same for the
others). Then, E1 and E2 increase (decrease), shifting up (down) the lowest threshold,
and shifting down (up) the highest threshold.

Proof. The increasing cost function implies that |C ′i(ε)| increases for all ε such that 0 ≤
ε < εm. For the agents concerned, it implies that e1 is modified. We recall that R1,i(x) 7→
−(1−T )+(1−2T )Fθ(x)−C ′i(x) is null at e1. If |C ′i(e1)| is shift up, then R1,i(e1) becomes
positive. Then, e1 has to be increased to decrease the cost derivative. If T ≥ 1

2
, it is clear

that e1 has to be increased to get again R1,i(e1) = 0, since the term (1−2T )Fθ(x) decreases
(or is null). However, if T < 1

2
, e1 increasing makes the term (1 − 2T )Fθ(x) increase.

Assumption A3 ensures that C ′′i (x) > (1 − 2T )fθ(x) if T < 1
2
. Thus, any increase of x

makes decrease more the cost derivative than the term (1 − 2T )Fθ(x). We have shown
that all e1 are shift up (or remain the same). It is straightforward that E1 increases as
well. The proof is analogous for E2. �

3.3.2 Representation of the equilibria

By 3.1, we can deduce the second derivative of ε∗(θ∗):

d ε∗i
d θ∗

=
(1− 2T )fθ(θ

∗)

C ′′i (ε∗i )
⇒ d2 ε∗i

d θ∗2
=

(1− 2T )f ′θ(θ
∗)

C ′′i (ε∗i )
(3.2)

For instance, if the states are distributed according to a normal law centered in 1
2
, if

T < 1
2
, the optimal error will be first convex and then concave. This is due to the fact

that the region where misinvesting is more costly diminishing fastly (due to the increase
of the density f), the incentive to have a high precision decreases more and more when the
threshold moves to the right. When the threshold is above 1

2
, the density f decreasing,

the error becomes concave, since the reduction of the region where misinvesting is more
costly becomes slower.

On the contrary, if T > 1
2
, as the error decreases, concavity reflects that the error should

first decrease fastly because the region where misinvesting is more costly grows up. Con-
vexity comes then symmetrically to what happens with T < 1

2
.

Figure 3.2 represents the best reply (the optimal error) of an individual given θ∗ and that
he chooses the threshold θ∗. The equilibria sets are the points on the thick part of ε∗(θ).
Note that in the situation where the agents are identical, the best replies function is a
straight line between E1 and E2.
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Equilibrium error when T < 1
2ε∗(θ) 1

2

θ
10

µθ
E1 1− E2

Equilibrium error when T > 1
2ε∗(θ) 1

2

θ
10

µθ
E1 1− E2

Figure 3.2: Graphical examples - Equilibrium error for given thresholds

Best reply when T < 1
2ε∗(θ)

ε̄
0

ε∗(0)

ε∗(1
2)

ε∗(1)

ε̄(1
2)

1
2

(A)

(B)

E1 E2

Best reply when T > 1
2ε∗(θ)

ε̄
0

ε∗(0)

ε∗(1
2)
ε∗(1)

ε̄(1
2)

1
2
E1

(C)

(D)

E2 1
2

Figure 3.3: Errors best replies for given overall errors

Figure 3.3 shows the set of best responses to the mean error chosen by the opponents.
Note that we indicate on the y-axis the error chosen by the individual with respect to
θ∗. The dark gray line represents ε∗(ε̄) and the light gray line represents ε∗(1 − ε̄), such
that ε̄ and 1 − ε̄ are the threshold θ∗. However, we do represent the correspondence
between a given overall error and the best reply of the individual. In the red area, we
find all the errors that the individual is willing to select given the overall error, between
min(E1, E2) and max(E1, E2). This interval represents the only possible overall errors
at the equilibrium. As we know, from Proposition 11, at the equilibrium, each agent
associates an error to a given threshold. As a consequence, each threshold is associated
to an overall error. Thus, for each agent we can associate on the thick dark line his error
and the overall error at the equilibrium. In fact, the red area represents all the best
replies if the threshold and the overall error are not compatible at the equilibrium (i.e.
there exists a non negligible part of the agents whose the error is not optimal). Out of
the interval [min(E1, E2),max(E1, E2)] (i.e. such that the overall error is not compatible
with the equilibrium), the individual would be willing to select any error in the yellow
area. Note that if the overall error is hypothetically set to 1

2
, and that all the agents

carry on following their signal, the only best reply is to choose ε∗(1
2
). On the contrary,

if the error is set to 0, i.e. all agents but the individual have a perfect information, the
set of possible errors chosen by the individual is comprised between min(ε∗(0), ε∗(1)) and
max(ε∗(0), ε∗(1)). Note that the points (E1, ε

∗(E1)) and (E2, ε
∗(1− E2)) are respectively

111



Chapter 3. Complementarities in Information Acquisition

the only intersection between ε∗(ε̄) and ε̄ (points A and D) and between ε∗(1 − ε̄) and ε̄
(points B and C).

For any game, we can set ε∗ = min(ε(θ∗))
θ∗∈(−∞,+∞)

=

 lim
θ∗→−∞

ε(θ∗) = C ′−1
ε (−(1− T )) if T < 1

2

lim
θ∗→+∞

ε(θ∗) = C ′−1
ε (−T ) if T > 1

2

3.3.3 Welfare ranking of the equilibria

The next result confirms the fact that the equilibria in complementarities games are
Pareto-ranked. The best equilibrium, i.e. the one with the largest payoff for the agents
is the left extremal equilibrium with θ∗ = E1:

Proposition 12. The profit of each agent decreases when θ∗ increases. Then, the Pareto
rank of the equilibria decreases with θ∗, the equilibrium with threshold E1 for all agents
being the Pareto best equilibrium and the equilibrium with threshold 1− E2 for all agents
being the Pareto worst equilibrium.

By using the envelope theorem, the proof is direct: dBi
d θ∗ = ∂Bi

∂θ∗
= −fθ(θ∗)[(1−T ) + (2T −

1)εi] < 0.

3.4 Analysis of the inheritance result and the value of information

We study in this section the Pareto best (and worst) equilibria with the distribution of
errors and thresholds Γ∗ composed of vectors [εi = ε∗i (E1), ξi = E1] ∀i ([εi = ε∗i (1−E2), ξi =

1− E2] ∀i). We analyze the effect of the increase of the error of all but one agent j. We
recall that by FOC:(

∂Bj(εj, θ
∗)

∂ε
=

)
− [(1− T ) + (2T − 1)Fθ(θ∗)] = C ′j(ε

∗
j) (FOCj)

At the Pareto best equilibrium, we have E
i
(εi(θ

∗)) = θ∗ = E1 and at the Pareto worst
equilibrium, we have E

i
(ε∗(θ∗)) = 1− θ∗ = E2.

3.4.1 Equilibria with information acquisition

Under Assumptions A1 to A3, we already know also that d ε∗j
d θ∗ > (<)0 if T < (>)1

2
by

3.1.

We know by Lemma 26 that an increase of the overall error will shift up E1 and E2.
Therefore, at the Pareto best (worst) equilibrium, we can write: ∂θ∗

∂E
i
(εi)

> (<)0.

Combining these facts, we can sum up the effects of an increasing overall error on the
incentives of an individual j in Table 3.1. The value of information decreases when j is
incentivized to increase his error. From Table 3.1, we can deduce how evolves this value
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T < 1
2 T > 1

2

Pareto Best
Equilibria

d ε∗j
d θ∗ > 0 and ∂θ∗

∂E
i
(εi)

> 0
d ε∗j
d θ∗ < 0 and ∂θ∗

∂E
i
(εi)

> 0

Pareto
Worst
Equilibria

d ε∗j
d θ∗ > 0 and ∂θ∗

∂E
i
(εi)

< 0
d ε∗j
d θ∗ < 0 and ∂θ∗

∂E
i
(εi)

< 0

Table 3.1: Effect of an increasing overall error on the Value of Information for the Pareto Best
and Pareto Worst Equilibria

for j when the overall error is increasing, through the channel of θ∗. Indeed, at Pareto
best and worst equilibria, the overall error affects the threshold θ∗ (overall error effect on
θ∗). Then, the threshold affects the information acquisition of j (threshold effect on infor-
mation acquisition). If both effects are in the same direction, we get complementarities.
Otherwise, we obtain substituabilities. In the white cells, the global effect is positive (i.e.
there are complementarities in information acquisition) while in the grey cells, the global
effect is negative (i.e. there are substituabilities in information acquisition).

Pareto best equilibria

Suppose that we are at the equilibrium, and suppose that the error cost Ci(ε) increases
for all agents but j. By Lemma 26, we know that E1 increases (so θ∗ increases). Thus, all
the agents shift their error up and change their threshold as well for the new E1, higher
than the previous one6.

If T > 1
2
(which means that we have a Type-I error, i.e. investing when it should not

be is more costly), the term in Equation (FOCj), −(2T − 1)Fθ(θ∗) decreases7 and the
individual j is encouraged to increase its precision (acting unlike others). Indeed, the
absolute value of ∂Bj

∂εj
increases and by the convexity of the cost function, FOCj gives that

the optimal error has decreased. This is due to the increasing shift of the threshold: the
probability that investing is successful has decreased. Therefore, the most costly Type-I
error is more likely: the agent has to increase his precision to counterbalance this effect,
and we observe substituabilities in information acquisition.

If T < 1
2
, the opposite mechanism appears, i.e. the individual j’s information acquisition

will mimic the behavior of his opponents. Under Assumption A3, if the cost function in-
creases, E1 increases as well as in the previous case. However, now, the incentives of j have
changed, since the derivative’s sign of the optimal error is reversed. Complementarities
in information acquisition emerge.

Pareto worst equilibria

6It is possible that agents coordinate on a even higher threshold (but not on a lower threshold), but we focus
on the Pareto best equilibrium.

7The positive density between 0 and 1 of the distribution of θ ensures that the cumulative distribution function
is modified when θ∗ moves. If the density is not positive, the game is at the frontier.
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However, things are not so simple. Indeed, at the Pareto worst equilibria, where all the
agents choose the threshold 1 − E2, symmetric results appear: substituabilities emerge
when T < 1

2
and complementarities when T > 1

2
. It is clear that the Pareto worst

equilibrium has a different nature. Whereas in the Pareto best equilibrium, the individual
could bet that his opponent would maximize the probability of success, in the Pareto worst
equilibrium, the individual can bet that at least a fraction of his opponents will wrongly
invest. Paradoxically, more errors make the investment more likely to success. Thus, this
is not coordination that matters for the individual, but accounting on the other players’
errors. Therefore, the individual does not mind about coordination, but about how much
his opponents might be wrong. When T < 1

2
, the more the opponents are likely to make

a mistake, the more investing can be successful: there is an incentive to acquire more
information. When T > 1

2
, the agent does not want to invest wrongly. The fact that

the opponents increase their error ensures the individual that the investment is less likely
to fail and enables him to reduce his precision. In this equilibrium, increasing the error
makes decrease the threshold: (there is an incentive to coordinate on couples with a high
error and a low threshold to avoid the costly Type-I error.)

Finally, at the Pareto best and worst equilibria, when the mean precision and the likeli-
hood of the most costly error are increasing together, there are complementarities (and
otherwise substituabilities). Indeed, when the most costly error is more likely, the in-
dividual agent wants to increase his precision. De facto, if the mean precision and this
likelihood increase together, the individual should act as his opponents.

Frontier case

If T = 1
2
, we see that ∂Bj

∂εj
= −(1 − T ). In this case, the choice about the error made by

the individual j does not depend on the precision of the other agents since the marginal
benefit is a constant. This is clearly a frontier point between complementarities and
substitutabilities since whatever the information acquisition of the other player is, it does
not influence the one of the individual while their actions are complements. Here, the
two errors have the same cost. Therefore, the individual j knows, that in any case, if he
follows the available signal, making the incorrect decision will always cost the same. Then,
whatever the threshold is, nothing may change in the agent’s incentives for information
acquisition.

This case at the frontier between complementarity and substitutability shows how infor-
mation acquisition may not be influenced by the other players’ information acquisition,
even if the threshold is shift up or down. Since costs are equal, the size of the most costly
error is unchanged. That is why, no effect on an individual’s information acquisition is
possible.

Finally, in this game, the three cases emerge according to the parameter T . On one
hand, for the Pareto best (worst) equilibrium, when T > (<)1

2
, the second term in the

marginal benefit is positive. Then, if the mean error increases, the individual j should
counterbalance this effect by increasing his precision. On the other hand, when T < (>)1

2
,
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the second term becomes negative, and information acquisitions become complements. At
the frontier, neither complementarities nor substitutabilities may appear.

The value of information

The value of information in Szkup and Trevino [2015] is maximal when Type-I and Type-
II errors are equally likely ex ante. The intuition is that increasing precision is more
valuable when it enables players to reduce simultaneously the two errors that may happen.
Nevertheless, as the authors explain, the cost of both errors is not present in the value
of information as in our model, because of the equilibrium condition in global games and
because of the normality of the distribution. However, these costs affect the determination
of the equilibrium. Then, the value of T still has an indirect impact on the value of
information8. Finally, it results that information is more valuable when costs are equal
(i.e. T = 1

2
). On the contrary, in our setup, the information value is monotonic in θ∗ (see

Table 3.1), according to the value of T (increasing if T > 1
2
, decreasing if T < 1

2
, constant

if T = 1
2
by 3.1). Note that the determination of E1 is influenced by the parameter T

but also by the distribution of θ. In the case where the distribution is centered in 1
2
, E1

increases with T , but E2 decreases with T (see Section 3.5). Thus, information is not
always more valuable when the errors’ cost is equal or when errors are equally likely: for
a fixed distribution of θ, there is a monotonicity of the information value in T . In Szkup
and Trevino [2015], information has more value when the threshold θ∗ is close from the
mean of the distribution. Again, it is different in our model, and there is no monotonicity
in the distance between the threshold θ∗ and the mean.

The size of the errors (the likelihood of each error) drives our results. Contrary to Szkup
and Trevino [2015], where information is more valuable when the sizes are equal, infor-
mation has more value, here, when the most costly error is the most likely.

At the Pareto best equilibrium, agents coordinate on the most optimistic equilibrium:
likelihood of success is maximal. Thus, when T < 1

2
, Type-II error is costly: being

aligned with the state of the world matters less than being aligned with other agents since
the individual does not want to miss successful investments, what relies on coordination
with other agents. When T > 1

2
, Type-I error is costly. Being aligned with the state of

the world matters more than being aligned with other agents because what matters is not
being wrong when investment fails.

At the Pareto worst equilibrium, on the contrary, agents coordinate on the most pes-
simistic equilibrium. Taking into account the errors of their opponents, θ∗ is decreasing
when the overall error is increasing. Agents miscoordinate in information when Type-II
error is costly. Indeed, the objective still being not to miss successful investments, and the
errors of the opponents increasing this possibility, an individual is willing to decrease his
own error. This time, successful investments depend positively on the overall error. Sym-

8Furthermore, one can note that if the payoff function was different in Szkup and Trevino [2015], for example
investing successfully rewards 1− T and investing unsuccessfully costs αT with α > 0 (and not investing rewards
0), the parameter T would be present in the expression of the value of information.

115



Chapter 3. Complementarities in Information Acquisition

metrically, setting the Type-I error more costly, make emerge complementarities. Being
wrong when investments fail is less likely when more agents take incorrect decisions.

Interestingly, the results follow also this simple rule: when information has a high (low)
value, complementarities (substituabilities) in information may emerge. When informa-
tion has value, agents acquire a lot of information. It happens when the costly error
occurs for a large range of states of the world (so the agents are willing to avoid it by
acquiring a large amount of information).

In beauty contest games, it is valuable to be close from others’ action, and more valuable
when they acquire a lot of information since it makes them closer from the true state
of the world. Here, if the likelihood of the most costly error increases with the mean
precision, the willingness to avoid the most costly error increases with the mean precision
as well. Naturally, complementarities emerge. However, substituabilities can appear as
well, contrary to beauty contests.

Note that the Pareto best equilibrium maximizes the probability to receive an incorrect
signal Xi = 0 and the Pareto worst maximizes the probability to receive an incorrect
signal Xi = 1. If incorrect, these signals leads to make the most costly error respectively
when T < 1

2
and T > 1

2
. By coordinating on the Pareto best (worst) equilibrium when

T < 1
2
(T > 1

2
), the agents show that they are willing to have a high precision. Indeed, the

threshold decision makes the errors made by the agents the most costly. This choice makes
agents coordinate in information as well. In the opposite equilibria, this coordination
vanishes. It is remarkable in this game that Pareto optimality is not linked with high
information acquisition (see Table 3.2). It is not because information might be harmful,
but because information can be less valuable at this point than at others.

Coordination on high
information acquisition

Coordination on low in-
formation acquisition

Coordination
on low thresh-
old

Pareto Best (T<1
2) Pareto Best (T>1

2)

Coordination
on high thresh-
old

Pareto Worst (T>1
2) Pareto Worst (T<1

2)

Table 3.2: Complementarity and Substuability for the Pareto Best and Pareto Worst Equilibria
with respect to the Value of Information

Effects of the distribution of the states of the world

In Table 3.3, we summarize complementarities in information acquisition at the Pareto
best and worst equilibria, with respect to the distribution of the states of the world and
the value of T (i.e. T < (>)1

2
). We recall that if an increase of the overall error implies

a decrease in the size of the most costly error, then there are complementarities. In the
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(Good Quality Projects)
Fθ(1− E2) < 1

2

(Intermediate Quality Projects)
Fθ(E1) < 1

2 < Fθ(1− E2)

(Bad Quality Projects)

1
2 < Fθ(E1)

E2 ↗ ⇒ Type-II ↗
E1 ↗ ⇒ Type-II ↘

E2 ↗ ⇒ Type-I ↘
E1 ↗ ⇒ Type-II ↘

E2 ↗ ⇒ Type-I ↘
E1 ↗ ⇒ Type-I ↗

Type-II error is the most
likely: complementarities if
the Type-II error is the
most costly (i.e. T <
1
2) only at the Pareto best
equilibrium [and when the
Type-II error is the least
costly (i.e. T > 1

2) at the
Pareto worst equilibrium]

Complementarities if the
most likely error is also the
most costly at both equi-
libria (T < 1

2 at best and
T > 1

2 at worst equilibrium)

Type-I error is the most
likely: complementarities
if the Type-I is the most
costly (i.e. T > 1

2) only
at the Pareto worst equilib-
rium [and when the Type-I
error is the least costly (i.e.
T < 1

2) at the Pareto best
equilibrium]

Type-II error is the most
likely: substituabilities if
the Type-II error is the
more costly (i.e. T > 1

2)
at the Pareto worst equilib-
rium [and when the Type-II
error is the least costly (i.e.
T > 1

2) at the Pareto best
equilibrium]

Substituabilities if the most
likely error is the least
costly at both equilibria
(T > 1

2 at best and T < 1
2

at worst equilibrium)

Type-I error is the most
likely: substituabilities if
the Type-I is the more
costly (i.e. T < 1

2) at
the Pareto best equilibrium
[and when the Type-I er-
ror is the least costly (i.e.
T < 1

2) at the Pareto worst
equilibrium]

Table 3.3: Effect of a moving overall error on Complementarities in Information Acquisition for
the Pareto Best and Pareto Worst Equilibria with respect to the distribution of the states of the
world

case where many projects have intermediate quality, players exhibit complementarities if
the most likely error is also the most costly. In these cases, any increase of the overall
error reduce the likelihood of the most costly error. Thus, any individual j is incentivized
to increase his error as well. (At these equilibria, coordination matters more since incor-
rect decision in information acquisition is much more costly than in the other equilibria.)
On the contrary, substituabilities may appear if the most likely error is not the most
costly. (Indeed, in this case, coordination is less important since acquiring too much (or
not enough) information is less detrimental. Intuitively, if the other players’ information
acquisition affects less the profit of the individual j, substituabilities may emerge.) When
many projects are such that their value is out of intermediate values, things change.
Indeed, one error is always the most likely: Type-II for good projects, Type-I for bad
projects. Thus, results are similar with respect to the intermediate case, when the Type-
II is the most costly for the Pareto best equilibrium, and when the Type-I is the most
costly for the Pareto worst equilibrium. However, when the Type-II (Type-I) error is the
most costly for the good (bad) projects at the Pareto worst (best) equilibrium, there are
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substituabilities in information acquisition. This case seems special since it corresponds
to the most extreme behaviours. Certainly, coordinating on the Pareto worst equilibrium
when T < 1

2
, and when many projects are good, sounds unlikely. As well, when T > 1

2
,

and when many projects are bad, it is hard to imagine that agents may coordinate on the
Pareto best equilibrium. The first situation looks like over pessimism while fundamentals
are robust. The second one appears to be over optimism whereas fundamentals are weak.
Contrary to the other cases, these two special situations are such that the most costly
error is more avoided, i.e. the information value is minimal. At these poles, coordination
in information acquisition disappears. (Naturally, when there is over pessimism or opti-
mism, information acquisition matters less. Furthermore, if over pessimism or optimism
is seen as miscoordinating with the state of the world, it may explain why there is also
miscoordination with other players.) In Szkup and Trevino [2015], substituabilities may
emerge only in the two following cases such that: (i) T > 1

2
and θ∗ < µθ, and (ii) T < 1

2

and θ∗ > µθ, where µθ is the mean of the normal prior distribution of the states of the
world. In our model, substituabilities emerge when T > 1

2
and θ∗ is low (Pareto best

case), and when T < 1
2
and θ∗ is high (Pareto worst case). Thus, substituabilities emerge

in similar contexts but our results are independent of the value of µθ, the mean of the
distribution.

To sum up, information is valuable when the most costly error is very likely. If the
likelihood of this error is increasing with the mean precision, there are complementarities
in information acquisition. Similarly as in Szkup and Trevino [2015], the information
value may be affected in opposite manners by the mean precision: it makes possible the
emergence of substituabilities. As in their paper, the likelihood of the errors affects the
information acquisition of the individual. However, our setting shows clearly how it affects
the value of information since the parameter T is the key parameter, as we can observe
in Figure 3.4.

T
0 1

Complementarity

0.5

Substitutability

Figure 3.4: Complementarity and Substuability in Information Acquisition for the Pareto Best
Equilibrium

After analyzing the game where all the agents acquire valuable (but imperfect) infor-
mation, we release the assumptions that make the players coordinating only on these
equilibria.
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3.4.2 Equilibria without information acquisition

From now, the framework is modified: some (or all) agents may not acquire information.
Assume that we are at an equilibrium where all the agents invest but one (e.g. j)9.
Therefore, θ∗ = 0 and j choose the optimal error ε∗j(0) and there is no information
acquisition from the other agents (since signals would be useless since the investment
decision has already been made). The situation is optimal from a welfare point of view.
Obviously, players make incorrect decisions (only Type-I error) but they all have a positive
gain (since in this case 1 − Fθ(0) > T ). The agent j, benefits also from this equilibrium
since the probability of a successful investment is maximal. Nevertheless, j can increase
his profit by reducing the probability of a Type-I error (but has to make Type-II errors
as a counterpart).

In the case where T < 1
2
, the Type-II error is the most costly. Then, j acquires a large

amount of information since the size of the Type-II error is maximal. Now, if a non
negligible part of the players starts to acquire information, the equilibrium is changed (let
us say that the errors’ costs is reduced for at least a part of the players), and θ∗ is shift up.
The size of the (most costly) Type-II error is reduced, and j is incentivized to increase
his error, acting in the opposite way. In the case where T > 1

2
, the opposite situation

happens and complementarities in information acquisition emerge.

Assume now that we are at an equilibrium such that no agent invests but one, j, who
acquires information and invests when he receives a high signal10. Symmetrically to what
happens in the previous case, there are complementarities when T < 1

2
, and substituabil-

ities when T > 1
2
.

full information acquisition
Coordination on

no information acquisition
Coordination on

Coordination
on threshold 0 (T<1

2)
Pareto Best

(T>1
2)

Pareto Best
(T<1

2)
Pareto Best

(T>1
2)

Pareto Best

Coordination
on threshold 1 (T>1

2)
Pareto Worst

(T<1
2)

Pareto Worst
(T>1

2)
Pareto Worst

(T<1
2)

Pareto Worst

Table 3.4: Complementarity and Substuability for the Pareto Best and Pareto Worst Equilibria
at poles of information acquisition

Firstly, note that coordination on threshold 0 (or 1) is possible (it depends on the value
of Fθ(0),Fθ(1) and T ) when agents do (not) acquire information.

We remark that when the players do not acquire information, results are reversed in terms
of information complementarities with respect to the equilibria we have found previously
where all the agents acquired information. From 0, shifting up the threshold makes the

9We assume that Assumption A2 is relaxed. This equilibrium exists if Fθ(0) < 1− T and cost functions are
such that Assumption A2 is respected only for j.

10This equilibrium exists if 1 − T < Fθ(1) and cost functions are such that Assumption A2 is respected only
for j.
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information value decreasing (increasing) when T < 1
2
(T > 1

2
) while

∫
ε∗i (θ

∗) d i > θ∗,
i.e. the mean error is above θ∗ (and some agents still invest whatever the signal they may
receive). Nevertheless, there is still a kind of complementarities at these equilibria with
substituabilities. Indeed, when some agents start to acquire information, the mean error
is reduced. However, as illustrated in Figure 3.7 for the case where all the agents invest
but one, the error made when the investment is successful (Type-II error) is increasing. In
both cases, there are substituabilities when the size of the most costly error is decreasing.
But in both cases, agents make more often this error (because they did not make it
when they did not acquire information). Thus, while the error of the individual moves
in opposite direction to his opponents’ ones, they still increase simultaneously the level
of the error of the most costly one. That is why, there are still complementarities in the
sense that, considering the most costly error, the agents has the information acquisition
incentives.

Errors

Losses

−∞ ∞

−T (Type-I)

ε̄ = 1 ↘

θ∗ = 0

θ∗
′

III

−(1− T ) (Type-II)

ε̄ = 0 ↗

Figure 3.5: Effect of agents starting to acquire information on the equilibrium where all the
agents always invest

The fact that some agents do not invest blindly as they used to do is detrimental for an
individual j who was already acquiring information. Indeed, θ∗ increases, and so decreases
the likelihood of a successful investment. However, the individual was not benefiting from
the errors of the other players, only of their lack of access to a value for money information
and their optimism. Indeed, when θ > 0, they invested successfully. By not acquiring
information, they reduced the potential Type-II error likelihood at 0. Nevertheless, for j,
the size of Type-II error is maximal, and if T < 1

2
, information acquisition is maximal.

Thus, by increasing their precision, the other agents reduce the incentive j has to acquire
information. Contrary to what happens in 1 − E2, error of other players is not the key
element but their optimism (which can be seen as the guarantee that they will make
Type-I errors). When their optimism (or naivety) disappears, mechanisms are reversed
and j may start to benefit from the increased precision of his opponents. Symmetric
results are found when considering T > 1

2
.

On the contrary, when agents never invest (i.e. θ∗ = 1), an increasing precision results in
an increase of the investments’ likelihood. Agents who do not acquire information never
make Type-I error but make Type-II errors (pessimism). Paradoxically, the increased
precision enables more investments because information acquisition of other agents guar-
antees the existence of the Type-I errors. Thus, when T < 1

2
(T > 1

2
), the information

value is increasing (decreasing) in the other players’ precision and there are complemen-
tarities (substituabilities) in information acquisition. To sum up, firstly, precision shifts
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down the threshold (because more precision implies more Type-I errors) ; but secondly,
once all the agents have acquired information, only a reduced precision makes increase
the likelihood of Type-I errors.

Finally, coming from a situation where agents did not acquire information, the transition
to the situation where all the agents acquire information is such that, actually, agents
acquiring information makes one error (the one agents did not make by always choosing
the same action) more likely (whereas the overall error has been reduced). It explains why
the results are reversed with respect to what we found in Section 3.4.1. All the results
are summed up in the right hand side of Table 3.4.

3.4.3 Hypothetical full information equilibria

Assume now that agents can acquire perfect information at no cost (relaxing Assump-
tion A1). Then, any equilibrium where all the agents choose the same threshold (belong-
ing to [0, 1]) is possible. Let us focus on the case where θ∗ = 0, i.e. all the agents chooses
the threshold 0. An agent j with limited attention11, would acquire a large amount of
information if T < 1

2
and less if T > 1

2
. If information becomes costly for a non negligible

part of the players (other than j), θ∗ will be shift up. If T < 1
2
(T > 1

2
), the information

value is reduced (increased), and j has an incentive to reduce (increase) his precision and
there are complementarities (substituabilities) in information acquisition. Contrary to
what we found in Section 3.4.2, the effect of the increasing mean error is unambiguous: it
increases both errors simultaneously. Thus, only the size of the most costly error matters
(as in Section 3.4.1) and that is why we find again the same results. All the results are
summed up in the left hand side of Table 3.4.

The role of information acquisition is enlightened through these special cases (with no
information and with full information). Indeed, the fact that agents can acquire informa-
tion, or not, is rarely studied. However, it is clear that our main analysis (in Section 3.4.1)
depends on the fact that all the agents acquire information at the equilibrium.

3.5 Discussion and conclusion

Our paper is related to a literature that investigates the effect of information in risky
markets. With a market design approach, Bannier and Heinemann [2005] seeks the best
information disclosure policy from a central bank perspective in a currency attack model.
The public authority decides the optimal level of private information, according to the
prior distribution of the states of the world. Especially, the results depend on the fact
that the mean of the distribution is below (pessimism) or above (optimism) the regime
change cutoff (of the infinitely precise private information case). When there is prior
pessimism, the ex ante probability of a currency crisis is high and only precise information
can reverse the beliefs of the agents (when the fundamental is high). On the contrary,

11Such that Assumptions A1 and A2 are respected for j.
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when there is prior optimism, the public authority should commit to an intermediate
level of information disclosure. Indeed, agents coordinate on the currency attack if their
posterior is sufficiently bad (about the state of the world). Therefore, even in cases where
the fundamental is low, if information is not precise, the posterior can hardly diminish and
less attacks are made. Symmetrically, if the central authority could set the precision in our
model as in Bannier and Heinemann [2005], the public authority would be willing to make
θ∗ as low as possible. Thus, it would increase the precision as much as possible in case of
optimism (as we have described), and would decrease it as much as possible (limited by
the bound on precision that prevents equilibria without information acquisition) in case
of pessimism (they study only the case where T < 1

2
, see the left hand side of Figure 3.6

as comparison)12. Our notion of optimism is different from the one developed by Bannier
and Heinemann [2005], since we derive whether there is optimism or not, after seeing the
selected equilibrium. In their framework, optimism is defined ex ante by the parameters of
the game and the equilibrium is unique. Nevertheless, we show that the intuitions found
in their paper, are validated by the endogenous information acquisition we add. Private
agents act as would impose a public authority in a certain respect. These results remain
when T > 1

2
. However, if T takes a high value, decreasing precision might be dangerous

since if it decreases θ∗ (and reduces the size of the most costly error), it generates also
more errors made by the agents. Having a high level of error can be detrimental when
agents have a budget constraint (or equivalently have a limited access to credit). Thus,
the public authority may not be willing to have a too high level of error to avoid too much
bankruptcy.

Equilibrium error when T < 1
2ε∗j (θ

∗)
1
2

θ
10

µθ
E1 1− E2

E1 1− E2

Equilibrium error when T > 1
2ε∗j (θ

∗)
1
2

θ
10

µθ
E1 1− E2

E1 1− E2

Figure 3.6: Graphical examples - Equilibrium error for given thresholds: The effect of a decreased
variance on the equilibria (in red)

Bannier and Heinemann [2005] study the possibility for the public authority to decrease
or increase the variance of the distribution of the states of the world. As explained
above, when there is pessimism, the central bank is willing to reverse the agents’ view.
Thus, it should increase the variance of the distribution to reduce the probability of
an attack, because with a high variance, the fundamental may be sufficiently high to

12Note that our results are similar since our model is an investment game while theirs is an attack game and
the incentives of the public authority are reversed.
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prevent an attack. Conversely, when the attack is not likely, reducing the variance avoid
the possibility that agents get a bad posterior. In their paper, the public authority’s
objective is clear: minimizing the occurrence of an attack on the currency. However, in
this article, the public authority may have two objectives (that may be contradictory):
maximizing the likelihood of successful projects, or minimizing the errors made by agents
(see Figure 3.6). If our public authority is willing to maximize the likelihood of successful
projects, it faces also asymmetric incentives, either agents are optimistic or pessimistic.
As in Bannier and Heinemann [2005], if agents are optimistic, reducing the variance will
reduce the quantity of bad projects (such that θ < 0), and increase the probability of
successful projects. Furthermore, E1 is decreasing when the variance decreases (when
T < 1

2
), confirming that the public authority should reduce the variance as much as

possible. On the contrary, when T > 1
2
, E1 is increasing. However, from the first order

condition, one can see that if the absolute derivative of the cost function is decreasing,
then, Fθ(E1) has to decrease. If the agents are pessimistic, the effects are reversed.
Indeed, less variance is detrimental since it reduces the quantity of good projects. 1−E2

is decreasing with less variance when T < 1
2
, but as described above, the likelihood of

successful projects is diminished (since C ′(E2) is reduced, Fθ(1−E2) has to increase when
T < 1

2
from the first order condition). Now, if the public authority is willing to reduce the

errors chosen by the agents, it contradicts the objective of maximizing the likelihood of
success when T > 1

2
. Decreasing the variance leads to more successful projects but also to

a higher overall error when agents are optimistic. It reduces the probability of successful
projects and the errors when agents are pessimistic. Again, having a high level of error
can be detrimental and the public authority may prioritize a policy that would reduce the
error at the expense of the unconditional likelihood of success.

Iachan and Nenov [2015] explore the same kind of questions that we have analyzed.
However, in their article, there is no endogenous information acquisition. They mainly
analyze the effect of a decrease of the precision signal in a global game on the regime
change cutoff in a global game. In global games, agents receive a imprecise signal on the
value of the fundamental. The signal is composed of the value of the fundamental plus
an error term multiplied by a coefficient that gives the level of precision of the signal.
In their paper, there is no endogenous information acquisition as in Szkup and Trevino
[2015], but their results are more direct about how a change of precision influence the
equilibrium of a global game. Indeed, the threshold θ∗ is monotonic with respect to
the signal precision. Their payoff function is sensitive to the fundamental. If the payoff
function when the risky action is successful is more sensitive than when the risky action
fails, then the threshold decreases (increases) when the precision of the signal increases
(decreases). In this case, it follows that more precision leads to less successful attacks.
They confirm the result found in Heinemann and Illing [2002] who make a case for more
transparency in a situation with uniform distributions where the payoff was fundamental-
sensitive only in case of successful attack. Heinemann and Illing [2002] seek also the effect
of information precision on the equilibrium in a global game. In their specific example,
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the strategic and the regime change thresholds are increasing in the signal noise. It is
due to the fact that being more often wrong will be more costly when the signal is too
high (with respect to the true value of the fundamental) rather than too low (indeed the
payoff is more fundamental sensitive when the state of the world is low). Thus, agents
should increase their threshold (and attack more often) in order to not fall too often
in the situation where they do not attack while the attack is successful (Type-II error).
The cutoff moves naturally to equalize the incentive to attack and not to attack at this
point. Thus, it would be difficult to clearly understand what would be the incentives
of an individual player able to acquire information. However, it can be said that the
rewards of a successful attack around the threshold decrease when the threshold increase
(because the payoff of a successful attack decreases with the value of the fundamental).
Then, it can be inferred that the information value around the threshold has decreased
as well. In this case, there would be only complementarities in information acquisition.
Iachan and Nenov [2015] exhibit a frontier in the direction’s change of the regime change
cutoff, but around this frontier, there are complementarities in information acquisition.
Indeed, as a reaction to the increase of the noise, the threshold is shifted (up or down)
to lower the risk to face the error that is the most costly when the fundamental takes
extreme values. Since this risk is lowered, the information value decreases as well and
substituabilities in information acquisition can not emerge. Interestingly, when the payoff
is never sensitive to the fundamental (as in our model), the regime change threshold does
not move with the noise of the signal. Therefore, as in our case with T = 1

2
, there is

neither complementarities nor substituabilities in information acquisition.

The advantage we have on the global game approach is that the equilibrium threshold is
not determined by an indifference condition. Because of this payoff indifference condition,
agents facing a decrease in the precision always choose to lower the risk to have the worst
loss. Naturally, an individual acquiring information is incentivized to reduce his infor-
mation as well. Szkup and Trevino [2015] make emerge substituabilities in specific cases
where the monotonicity of the regime change cutoff with overall information precision
disappears.

In Szkup and Trevino [2015], the action cutoff is positioned such that the most costly
error is the most avoided13. In Figure 3.7, T > 1

2
and the regime change cutoff increases

with the precision of the players. However, for an individual j with a low initial precision,
this increase leads to a decrease in his own precision (substituabilities in information
acquisition). The authors explain that it is due to the fact that the (Type-I) error’s
likelihood (that is the most feared by j) has increased (θ∗ < θ∗

′). Thus, his strategic
cutoff increases more than the increase of the regime change cutoff (|x∗j−θ∗| < |x∗

′
j −θ∗

′|).
Figure 3.7 is helpful to understand the differences between our models. x∗j is positioned
far from θ∗ to avoid to receive signals higher than x∗j while the state of the world is below

13The action cutoff is such that, when receiving the signal with the value of the action cutoff, the agent should
be indifferent between investing and not investing. Thus, if an error is more costly, the action cutoff is positioned
away from the regime change cutoff to decrease the likelihood of the most costly error.
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θ∗. Thus, the agent makes Type-II errors when his error is small and when the state of
the world lies between θ∗ and x∗j . In the example described in Szkup and Trevino [2015],
the information value is said to be decreasing because the likelihood of Type-I error has
increased while it was already the error that was the most feared. The fact that the
size of two errors is more equalized should increase the value of information according to
what we have described above (information is more valuable when the two errors are more
equally likely14). However, in fact, we see that the crucial criterion for the individual is
that, since the size of the Type-II error due to the spread |x∗j − θ∗| is larger, he cares less
of this error.

θ

−∞ ∞

θ∗

θ∗
′

III
µθ

x∗j

x∗
′
j

IIII

|x∗j − θ∗|︸ ︷︷ ︸ <|x∗′j − θ∗′ |︸ ︷︷ ︸

(1− T ) < 1
2

(Type-II)

Figure 3.7: Strategic and regime change cutoffs in Szkup and Trevino [2015]: a case with substi-
tuabilities in information acquisition: overall precision increasing leads an individual to acquire
less information

In this case, the ex ante likelihood of making both type of errors is more equalized, but
the strategic cutoff is moved away from the regime change cutoff. The rigidity of the
equilibrium condition of the global games explains their results. We remark as well that
without assumption on the minimal endowment of information (which ensures the unicity
of the equilibrium), there would be more cases such that substituabilities appear.

One fundamental difference between our results is that substituabilities may only appear
when the most costly error’s size and the precision increase together in Szkup and Trevino
[2015], while in our case this always implies complementarities in information acquisition.
As a constant, when T = 1

2
, there are never substituabilities. In their setting, initial

information of the individual has to be very low while the initial information of other
players has to be high to make emerge subtituabilities. In our case, subtituabilities can
emerge in any symmetric or asymmetric situation. Our results are reversed when the
individual has a large amount of information and the other players have low information.
Indeed, substituabilities are generally associated with an individual acquiring few infor-
mation, both in our model and in Szkup and Trevino [2015]. Nevertheless, our special
case where the mean precision is low and where some agents can acquire information
show that subtituabilities can emerge even if agents are endowed with a large amount of

14Information value is maximal when the ex ante likelihoods of making both types of errors are equal, and the
action cutoff should be equal to the regime change cutoff.
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information.

We have showed with a simple setup that the inheritance result of Hellwig and Veldkamp
[2009] was shaky, without need of technical assumptions as normal distributions, and
in large regions of the games. Contrary to Szkup and Trevino [2015], we prove that
substitutability can emerge at a symmetric equilibrium (i.e. where all the agents have
the same cost function). This is due to the fact that an individual may be willing to
compensate an increase in the threshold, if this increase is due to an increase of the
mean error. Through the three kinds of equilibria we have studied, we have seen that
the game makes emerge complementarities and substituabilities at the Pareto best and
worst equilibria with respect to the parameter T . The choice of the individual is always
linked to the size of the most costly error. We have seen that complementarities emerge
in the case when there is relatively more information acquisition (for the individual j)
and where all the agents acquire (imperfect of perfect) information. When some agents
do not acquire information (and always play the same action), these results are reversed.
In fact, in these special cases, substituabilities are accompanied with complementarities
in the error’s level of the most costly error (i.e. agents makes together more (or less) the
most costly error).
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Appendix C

Appendices to Complementarities in
Information Acquisition

C.1 Determination of maximal errors

Suppose 0 < ξ ≤ 1, i.e. all the agents choose a threshold between 0 and 1. The payoff
from investing when the signal is high becomes:

P(θ + p > 1 ∩ θ > ξ|Xi = 1) + P(θ + p > 1 ∩ θ < ξ|Xi = 1)

=
P(θ > 1 ∩ θ > ξ ∩Xi = 1)

P(Xi = 1)
+
P(p > 1− θ ∩ θ > ξ ∩Xi = 1)

P(Xi = 1)
+
P(p > 1− θ ∩ θ < ξ ∩Xi = 1)

P(Xi = 1))

=
(1− ε)(1− Fθ(1))

P(Xi = 1)
+

(1− ε)
[∫ 1

ξ

∫ 1

1−θ gP,Θ(p, θ|θ < ξ)dpdθ
]

P(Xi = 1))
+
ε
[∫ ξ

0

∫ 1

1−θ gP,Θ(p, θ|θ < ξ)dpdθ
]

P(Xi = 1))

Then it is dominant to invest when:

(1− ε)(1− Fθ(1))

P(Xi = 1)
> T

And, it is dominant not to invest when:

(1− ε)(1− Fθ(ξ))
P(Xi = 1)

+
ε(Fθ(ξ)− Fθ(0))

P(Xi = 1))
< T

Few computations give that investing is dominant when:

Fθ(ξ) >
(1− ε)(Fθ(1)− (1− T ))

(1− 2ε)T

⇔


if Fθ(ξ) > 1− 1− Fθ(1)

T
= ξ1, ε <

(1− Fθ(ξ))(1− T )− (Fθ(1)− Fθ(ξ))
(1− 2Fθ(ξ))(1− T ) + Fθ(1)− 2(Fθ(1)− Fθ(ξ))

= ε1

if Fθ(ξ) ≤ 1− 1− Fθ(1)

T
, @ ε s.t. investing is dominant
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Similarly, not investing is dominant when:

Fθ(ξ) >
(1− ε)(1− T )− εFθ(0)

(1− 2ε)(1− T )

⇔


if Fθ(ξ) <

1

2
+

Fθ(0)

2(1− T )
= ξ0, ε >

(1− Fθ(ξ))(1− T )

(1− 2Fθ(ξ))(1− T ) + Fθ(0)
= ε0

if Fθ(ξ) ≥
1

2
+

Fθ(0)

2(1− T )
, @ ε s.t. not investing is dominant

Note that ε1 is decreasing in Fθ(1) − Fθ(ξ) when 1 − T < Fθ(1). Intuitively the error
should decrease when the threshold moves far from 1, since the area which depends on
the coordination becomes larger. However, this fact contradicts the intuition that when
the uncertainty decreases (since the threshold is closer from the middle of the distribution)
the error can increase. One can remark that when 1− T > Fθ(1), ξ1 < 0, ε1 >

1
2
, i.e. it is

still dominant to invest.

Again, ε1 < ε0. The relation between ξ0 and ξ1 is more ambiguous. In most distributions,
we should get that ξ1 < ξ0, but both cases are workable.

If the hypothesis (especially Fθ(0) < 1−T ) is respected we see that ε0 is strictly above 1
2
,

i.e. it is never dominant not to invest when the signal is high. Indeed, it can be checked
in this case that 2(1− Fθ(ξ))(1− T ) > (1− 2Fθ(ξ))(1− T ) + Fθ(0).

When the signal is low, we find the same result for the non-investment decision. We get
that it is dominant not to invest when:

Fθ(ξ) <
Fθ(0)(1− ε)− ε(1− T )

(1− 2ε)(1− T )

⇔


if Fθ(ξ) <

Fθ(0)

1− T
= ξ00, ε <

Fθ(0)− Fθ(ξ)(1− T )

(1− 2Fθ(ξ))(1− T ) + Fθ(0)
= ε00

if Fθ(ξ) ≥
Fθ(0)

1− T
, @ ε s.t. not investing is dominant

However there is a slight change and it is dominant to invest when:

Fθ(ξ) <
ε(1− T − Fθ(1))

(1− 2ε)T

⇔


if Fθ(ξ) >

Fθ(1)− (1− T )

2T
= ξ01, ε >

T Fθ(ξ)
2T Fθ(ξ) + (1− T )− Fθ(1)

= ε01

if Fθ(ξ) ≤
Fθ(1)− (1− T )

2T
, @ ε s.t. investing is dominant

One can check that ε01 > ε00 but again nothing can be said about the two cutoffs.

If the hypothesis (especially 1− T < Fθ(1)) is respected we see that ε01 is strictly above
1
2
, i.e. it is never dominant to invest when the signal is low.

We get that ξ1 < Fθ(0) and ξ00 > Fθ(1).
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Dominance regions when 0 < ξ ≤ 1:

Fθ(ξ)

Fθ(0) Fθ(1)

︷ ︸︸ ︷
Dominant not to invest if: ε < ε00

Dominant to invest if: ε < ε1︸ ︷︷ ︸

C.2 Effect of an increasing T on the equilibrium

Now, let us study the effect of T on the value of information. From Equation (FOCj),
we see that T will affect differently the determination of εj, whether the Type-I or the
Type-II error is the most likely, i.e. whether Fθ(θ∗) is below or above 1

2
. Indeed, the left

hand side of Equation (FOCj) derivative with respect with T is 1−2Fθ(θ∗). It is positive
(negative) if Fθ(θ∗) < (>)1

2
, i.e. if the Type-II (Type-I) error is the most likely. Thus,

the marginal benefit is less (more) negative when T is increasing and Fθ(θ∗) < (>)1
2
. It

means that ε∗j is decreasing (increasing) in T if the Type-II (Type-I) error is the most
likely. Intuitively, if the Type-II error is the most likely, T increasing makes the most
likely error relatively less costly with respect the other error. Therefore, at a fixed θ∗,
if T is increasing, being precise matters less since the expected cost of being wrong (i.e.
the cost of each error multiplied by their respective likelihood) is diminishing. On the
contrary, the value of information is increasing with T if the Type-I error is the most
likely.

As an illustration, if we assume that the distribution is centered at 1
2
, the Type-II error

is the most likely at the Pareto best equilibrium (since θ∗ < 1
2
), and the Type-I error is

the most likely at the Pareto worst equilibrium (since θ∗ > 1
2
).

Fθ(1− e2) < 1
2 Fθ(e1) < 1

2 < Fθ(1− e2) 1
2 < Fθ(e1)

d e1

dT
> 0 and

d e2

dT
> 0︸ ︷︷ ︸

d εj
dT >0 ∀θ∗∈[e1,1−e2]

d e1

dT
> 0 and

d e2

dT
< 0︸ ︷︷ ︸

d θ∗
dT >0 at θ∗=e1,1−e2

d e1

dT
< 0 and

d e2

dT
< 0︸ ︷︷ ︸

d εj
dT <0 ∀θ∗∈[e1,1−e2]

Table C.1: Effect of an increasing T on the Value of Information for the Pareto Best and Pareto
Worst Equilibria

On the left hand side of Table C.1, T increasing reduces the size of the possible thresh-
olds. If many projects are good, errors unambiguously increase. Agents want to avoid
mainly the Type-II error (i.e. not to miss successful investments). As its relative cost is
decreasing, agents are willing to acquire less information.

In the middle case, the possible thresholds are shifted up (increase or decrease of the size
of the possible thresholds). Intuitively, a higher T reduces the possibility to coordinate
on a good equilibrium because the willingness to pay for information is reduced (because
investments are less rewarding).

On the contrary, on the right hand side, this size increases. It means that when there
are lot of bad projects, an increase of cost T , there are more ways (lower and higher) to
coordinate because more information is acquired. Indeed, agents want to avoid mainly
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the Type-I error. As its relative cost is increasing, agents are willing to acquire more
information.

Fθ(1− e2) < 1
2 Fθ(e1) < 1

2 < Fθ(1− e2) 1
2 < Fθ(e1)

d e2
dT > 0⇒ Type-II ↗

d e1
dT > 0⇒ Type-II ↘

d e2
dT < 0⇒ Type-I ↗

d e1
dT > 0⇒ Type-II ↘

d e2
dT < 0⇒ Type-I ↗

d e1
dT < 0⇒ Type-I ↘

Table C.2: Effect of an increase of T on the most likely error for the Pareto Best and Pareto
Worst Equilibria

Naturally, the size of the interval of the possible thresholds has implications on the size
of the errors. If we assume that the increase of T affects only a fraction of the agents, it
will still affect the untouched agents, by moving down or up θ∗. Combining Tables C.1
and 3.3, we can write Table C.2. In the cases with complementarities, T increasing will
push all the errors up at the Pareto best equilibrium, and will push all the errors down at
the Pareto worst equilibrium. In the cases with substituabilities, the agents affected by
the increase see their incentives reversed. Their over optimism or pessimism is reinforced.
Since there are substituabilities, other agents still increase their error (or decrease at the
Pareto worst equilibrium).

In comparison with Proposition 6 in Yang [2018], we find opposite results about the
effect of a change of the investment cost. The result claims that, in a global game, when
the investment cost increases (decreases) and that no investing (investing) is a dominant
action, the information value decreases. The intuition is that when there is a default
action, increasing the value of this action with respect to any other (or decreasing the
value of any other action) will make the agents more willing to keep this default action.
In our case, the cost of the most costly error increases, making an individual more willing
to acquire information. As a result, information value increases in our game but the
information value decreases in the sense of Yang [2018]1.

1In Yang [2018], the value of information for an individual player is the payoff’s difference between the
equilibrium with information acquisition and without, holding constant the strategy of the opponents acquiring
information.
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Chapter 4

Bayesian Persuasion in Capacity
Market Designs

Co-authored with Charlotte Scouflaire
Abstract

In electricity markets, the public authority can design capacity markets (CMs) to bring
market outcomes in line with social optimality. By pricing capacity as a separate good
from electricity, CMs stabilize and complement the revenues of plants so to generate
sufficient security of supply (i.e., having enough capacity available to avoid rationing) at
potentially lower cost for end consumers.

In decentralized forward capacity markets, consumers and / or retailers are required to
secure capacity and information about likely capacity requirements is a crucial issue.
The –welfare optimizing– public authority thus decides whether to make this information
binding (ex ante requirements as in the PJM capacity market design of 1999) or to base ca-
pacity demand on realized market outcomes (ex post requirements as in the current French
CM design). Adapting a Cournot oligopoly model from Roy et al. [2019], we analyze a
capacity market where homogeneous buyers aim to comply with their capacity obligation
under uncertainty regarding future realized demand. We thus consider a Cournot oligop-
sony in which the capacity buyers (mainly load-serving entities) are profit-maximizing
agents engaging in strategic behavior. Heterogeneous capacity owners bid their valuation
of capacity. As information disclosure reduces uncertainty on the one hand, but may
also decrease precautionary capacity buying by load-serving entities on the other, we seek
the preferred level of information precision, i.e., ex ante or ex post disclosure of capacity
requirements. Counter-intuitively, the welfare-maximizing level can be lower than full pre-
cision of information. The model also highlights possible disagreements between capacity
buyers and capacity owners in terms of preferred design, considering that dissemination
of public information might affect their surpluses in different ways. In addition, when
public consultations are organized, capacity owners are able to individually express their
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preferences. This may lead to divergence between the result of majority voting and ag-
gregated profit maximization as not all agents are uniformly affected by different modes
of disclosure. The particular case where the public authority chooses majority-voting as
a decision rule is investigated in detail. Using German data from 2010, model parameters
are set to mimic several plausible capacity market designs. Results suggest that ex ante
requirements are empirically likely to be favored in the particular setting analyzed.

4.1 Introduction

The features which make electricity so peculiar compared to other goods are the non-
storability combined with demand inelasticity. Indeed, no economically viable solution
has yet emerged to store electricity on a large scale. It follows that demand and supply
require a continuous balance to avoid system failure (black-outs). Unfortunately, this task
is impaired by the low predictability of demand. End consumers are rarely informed of
the state of the wholesale market and thus do not receive any kind of price or scarcity
signal to adjust their consumption to real-time conditions1. In this framework, the peak
demand is binding, and available capacity units play a crucial role in keeping the system
up and running. In a free market, this means that those units need full cost recovery
- at least in expectations. If not, adequacy2 problems appear. Indeed, the Security of
Supply (SoS) is supposedly a byproduct of the energy market, but some stakeholders cast
doubt on the capacity of an energy-only remuneration to ensure a rate of return high
enough to trigger investments. Observers even mention plants being unable to cover their
fixed costs through the energy market [Joskow, 2006; Cramton and Stoft, 2006]. Such
early retirements could endanger the system stability. In that case, the most mainstream
option to make sure enough capacity will be available is to implement a capacity market
as a complement to the energy market –other designs exist but are not considered in this
chapter.

In reality, consumers have little incentive (or way for that matter) to disclose their willing-
ness to pay for SoS, mainly due to the non-excludability of SoS3. Therefore, they cannot
be discriminated against their willingness to pay for reliability. Their theoretical willing-
ness to pay for the SoS is thus estimated by the Value of Lost Load (VoLL)4. They are
commonly assumed to be willing to avoid black-outs in an equal manner, and retailers

1See Joskow and Tirole [2006] for a discussion about the causes of end consumers’ inelasticity.
2NERC [2017] defines adequacy as "the ability of the electric system to supply the aggregate electrical demand

and energy requirements of the end-use customers at all times, taking into account scheduled and reasonably
expected unscheduled outages of system elements". We will alternatively use the Security of supply (SoS) and
Reliability for similar meaning.

3Imbalance between supply and demand can provoke system failure and rationing independently of individual
preferences. Electricity rationing is seen here as the unplanned forced reduction of consumption.

4The Value of Lost Load is defined as the average value placed by end consumers on losing power in an average
rolling blackout by Cramton et al. [2013]. Besides, it should be noted that the VoLL is challenging to estimate
and probably non-linear as well. Security of supply is also valued at the margin by the cost of new capacity. At
equilibrium, willingness to pay for additional capacity and cost of new capacity are equal.
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are enjoined to get enough capacity to cover their aggregated peak demands on behalf of
their portfolios. The underlying reasoning is the following: the level of available capacity
has to surpass demand at any point in time to avoid rationing. This implies that a piece
of SoS is embedded in each capacity unit.

Thus, capacity markets standardize capacity with respect to the SoS through the notion
of "firm capacity"5 and then pay units for their insurance value (against black-out). This
involves a structural change in remuneration compared to Energy Only Markets (EOM).
Instead of solely depending on the volatile hourly energy prices, capacity owners6 can
additionally benefit from a (yearly7) fixed remuneration contingent on the size of their
unit. This covers at least part of the fixed costs, reducing the risk associated with the
participation in the energy market, simultaneously decreasing the required return on in-
vestment. The cost incurred by the contractual obligations such as availability and outage
management should remain low because they are already incentivized by the normal func-
tioning of the energy market [Stoft, 2002]. Thus, the capacity remuneration is often seen
as a complement to the energy revenues. Without strategic bidding, capacity owners
should be willing to recover at least their participation constraint to the energy market
(bi) being bi = max(−E(πi); 0). It is, however, complicated to know whether capacity
owners actually bid their competitive price on the capacity market8. Even if they do so,
the participation constraint highly depends on each owner’s expectations, costs, as well
as the cost of meeting the contractual requirements. In real-world conditions, the very
sensitive nature of the information embedded in each bid causes the order book to remain
undisclosed or anonymous. This chapter will thus empirically focus on competitive bid-
ding from the capacity owners, although the theoretical model allows for a wider variety
of strategies.

Under capacity remuneration, the demand-side (mainly load-serving entities - LSEs)9

benefits from additional SoS and, the supply-side gets extra revenues. This is Pareto-
improving as long as the marginal cost of procurement (cost of the marginal unit) is lower
than the marginal cost of a black-out. In this sense, capacity markets may make both
kinds of actors better off, but the market design affects them in different ways. More
specifically, this analysis focuses on decentralized capacity markets.

Where most existing capacity markets centrally procure capacity on behalf of the LSEs (or
end consumers) who pay for their own market share –e.g., the United Kingdom (the UK) or
the Eastern US systems–, decentralized capacity markets shift this burden directly on the

5Firm capacity is the share of the installed capacity that is expected to be available at peak.
6Capacity owners are generally, but not limited to, the electricity generators.
7Most common current capacity contract length for existing capacity.
8Indeed, great attention is granted to market power mitigation in all existing capacity markets: according to

Teirilä [2017], current strategies are quite effective.
9Load Serving Entities (LSEs) are generally the electricity retailers that supply the end consumers. More

formally, according to NERC [2017], an LSE is an entity that "secures energy and Transmission Service (and
related Interconnected Operations Services) to serve the electrical demand and energy requirements of its end-use
customers".
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LSEs – e.g. France or former MISO10–. As recent designs tend to procure capacity several
years ahead, the definition of capacity requirements becomes a key feature of decentralized
capacity markets. Again, two types arise: (i) ex ante requirements are determined by the
system operator11 and announced in advance to obliged parties (LSEs). This leaves no
uncertainty for them (former MISO, former PJM), except maybe if their market shares
change. In (ii) ex post requirements, the obligation depends directly on the realized market
conditions (France). Therefore, LSEs do not know the exact amount they should buy at
the moment the auction takes place: there is uncertainty not only on their market shares
but also on total volume to be acquired. If their level of procurement is not sufficient,
they may be penalized by the public authority for having endangered the SoS (i.e. their
peak demand has surpassed the amount of their capacity certificates). This leaves a high
uncertainty. Table 4.1 presents empirical examples of existing and past capacity market
designs with respect to the two features discussed above. For clarifications, Chapter J
provides a thorough discussion on design-related information precision and discusses the
demand-side specification in the respective capacity markets of the UK and France. This
chapter focuses on actors’ preferences with respect to this last design feature: requirement
definition.

Requirement
ex ante ex post

Centralized
Market

UK (2017) -

Decentralized
Former MISO (2009),Structure

Former PJM (1999)
France (2017)

Table 4.1: Market Structures and Requirements in CRMs

An institutional perspective on market-based CRMs illustrates the key role of uncertainty
in CRM designs over time. Along with the SoS objective, CRMs seek to replace scarcity
pricing12 when deemed inefficient. This is why the first CRMs were implemented on a
short term basis in the 1990s. In the England and Wales Pool, the payments resulted
from an ex post settlement based on the energy market clearing (half-hourly)13. In the
PJM14, the LSEs were obliged to secure their share of total capacity obligation on a
daily basis. Both types of markets (price-based and quantity-based) ended up with the
same flaws: high price volatility and confirmed market power expression. All short-term
mechanisms were abandoned by the end of 2000s to the profit of extended contract periods

10MISO (Midcontinent Independent System Operator) has a broad footprint that spreads from Canadian
provinces to southern US states such as Mississippi and Louisiana.

11The system operator is the public structure in charge of the operability and the distribution of electricity.
12Cramton et al. [2013] explain that scarcity periods are, in fact, market failures and prices during these periods

do not represent the meeting of supply and demand.
13Refer to Newbery [1998] for further details on the England and Wales Pool
14PJM (Pennsylvania, New Jersey, Maryland) ran a decentralized capacity market. Refer to Bowring [2008]

for further details on the former PJM capacity market.
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and forward procurement of capacity (PJM, ISO-NE, Colombia and later the UK). Both
changes aimed to reduce the uncertainty on the capacity market outcomes, but also on
the level of SoS achieved. The increased predictability of future profits was supposed to
improve the investment climate as well. On the demand-side, the shift of decentralised
markets to central procurement lowered more the risk borne by the LSEs as the main
cost of capacity would be known 3 to 4 years ahead. Only the split of such costs between
LSEs would keep a slight uncertainty for being based on their market shares at peak.
Until recently, the LSEs did not seem to be given an active role in capacity markets:
even decentralized markets such as the former PJM centrally determined the amount of
capacity to be procured15. LSEs’ liability was restricted to their market share irrespective
of the actual Loss of Load Probability (LoLP)16 achieved. The situation in MISO (2009-
2012) corresponded to a slightly different liability: LSEs did self-estimate their peak
demands, but as long as their good faith was not questioned ex ante, they did not face
penalties even if their forecasts were proven wrong ex post17. In this sense, the choices
made in France, with a decentralized market and ex post requirement settlement raise
questions around the role of the risk borne by LSEs. While ex ante requirements have
historically dominated implemented designs, the technical and economic improvements
of Demand Response (DR) give an opportunity for ex post requirements to demonstrate
their advantages. Indeed, in a decentralized CRM combined with ex post requirements,
LSEs have to procure capacity based on their realized peak demand (which implies that
no explicit capacity target is set). This is claimed to reduce over procurement [RTE,
2014] but also to foster DR, which is becoming an essential SoS levy. The main difference
with the previously described regulations (former PJM and MISO) is that the accuracy
of LSEs’ prediction matters since they fully benefit from their decisions18.

The importance of transparency is illustrated by continuous discussions about the level
of available information, raising concerns on the best information structure. For instance,
the European Federation for Energy Trading (EFET) advocates for more transparency
of the French mechanism [EFET, 2016], meaning that a remaining margin for additional
information disclosure has been identified. Elseways, the market monitoring of ISO-NE19

has been advising for reduced transparency under the belief that it increases the market
power of the supply-side [Patton et al., 2017]. This chapter focuses on the informational
value of peak demand forecasts for capacity procurement in decentralized capacity mar-
kets. To the best of our knowledge, it is the first study isolating the effect of requirements
in capacity markets with the buyers’ side taken as the strategic side. We ask questions
about the actors’ preferences in terms of design, focusing on the uncertainty aspect of the
problem, and, letting the market organization for further research.

15Each LSE had to procure its share of the centrally forecasted peak demand [Bowring, 2008].
16The LoLP measures the probability that demand out passes supply.
17As long as the error ranged within acceptable boundaries specific to the methodology used.
18When the capacity cost is dealt depending on LSEs market share at peak (and not realized demand at peak),

the individual actions of the LSEs are diluted which is more prone to free-riding.
19ISO-NE: Independent System Operator of New England.
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Figure 4.1: Graphical example - Uncertain linear marginal value curve with two possible states
h and l (two possible intercepts zh and zl), and a concave supply curve (left) or a convex supply
curve (right)

The chapter is organized as follow: Section 4.2 establishes a brief literature review. Sec-
tion 4.3 develops the theoretical model used to analyze the preferences in terms of in-
formation precision in capacity markets. We adapt the Cournot oligopoly model of Roy
et al. [2019] to a Cournot oligopsony20 under the hypothesis of atomicity on the supply-
side, i.e. all capacity owners are small agents, and capacity owners have heterogeneous
valuations of their good. On the demand-side, homogeneous LSEs have linear marginal
values21 (see Figure 4.1). We assume there are two states of the world, in which the level
of the capacity buyers’ marginal value differs (see Figure 4.1). The public authority can
reduce the uncertainty about the state of the world, by making the signal binding: with
ex ante requirements, the capacity buyers are unaffected by the uncertainty around the
states of the world. Indeed, the signal indicates to the capacity buyers what is their true
marginal value. Precision is the key element of the design: increased precision reduces the
uncertainty on the requirements (see Chapter J for the link between demand uncertainty
and capacity requirements). Thus, it impacts the quantities and the price of capacity
units traded in the market by affecting the beliefs of the capacity buyers (their posterior).
Results show that preferences about information disclosure depend on the shape of the
supply and marginal value curves and that they may diverge among market participants.
In a context where the public authority does not perfectly know the surpluses, it resorts
to a public consultation to aggregate the expressed preferences following its objective
function.

The public authority can be mistaken by collecting preferences if she uses the majority-
winning criterion as a proxy for the profit-maximizing one. When capacity owners are
heterogeneous, the majority-winning criterion can differ from the profit-maximizing one.

20An oligopsony is equivalent to an oligopoly where buyers represent the strategic side.
21The marginal value is analogous to the marginal cost for an oligopsony i.e., it is the willingness to pay an

additional unity for the good (capacity unit). In oligopsonies, the price is lower than the marginal value for a
given quantity, since the buyers can exert market power.
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However, Section 4.4 shows that this situation is empirically unlikely to occur. Indeed, the
fourth section illustrates the implications through a case study. The model is parametrized
according to the former German situation (2010) as well as possible capacity market de-
signs. In this case, disagreement between the majority-winning criterion and the profit-
maximizing one is quite unlikely. Indeed, it only appears locally when the shape of the
supply curve (all other things being equal) changes such that a lower information preci-
sion starts being preferred by capacity owners: it only represents a transition where the
preference of the majority changes before the profit-maximizing one. Similarly, extrap-
olating the case study results to real-life situations indicates that reduced information
precision would not be welfare-maximizing in an adequate market. However, the need
for new entrants, who bid significantly higher than existing units, might generate such a
situation. The last section concludes the analysis.

As simplifications are inherent to modeling, we do not consider some important elements
of the design. For example, the timing aspects of a capacity market do not enter in the
framework of our static model. For instance, a more complete setting may be needed
when considering questions about the degree of forwardness and contract duration. Be-
sides, performance obligation and assessment or even the market eligibility of different
technologies are considered to be directly accounted for in the bidding behavior of the ca-
pacity owners: the supply-side behavior is only restricted by the hypothesis of continuity.
Similarly, all SoS considerations (cost of black-out, VoLL etc.) are implicitly embedded
in the model parameters and thus little discussed.

All in all, we use a simple oligopsony model to investigate the design process of CRMs
and the informativeness of public consultations for the public authority. We focus on
decentralized capacity markets and investigate the actors’ preferences with respect to
requirement definitions as if it was the only design question left unanswered. Alternative
forms of CRMs are disregarded.

4.2 Literature review

4.2.1 Electricity markets: Relevant literature

As discussed in Section 4.1, potential market failures endangering SoS have been iden-
tified and thoroughly discussed in the literature for some time. A good synthesis of the
discussion can be found in Cramton et al. [2013]. While the usual taxonomy does discrim-
inate for the degree of centralization [Henriot and Glachant, 2013; Meulman and Méray,
2012], the timing of requirement assessment (ex ante vs. ex post) is often blended in the
definition. Indeed, Woodhouse [2016] rightfully argues that decentralized CRMs reduce
the risk of over procurement and generate a more flexible framework for new SoS prod-
ucts. In this discussion, it is, however, implicitly assumed that ex post requirements are
inherent to decentralization. In turn, Parsons and De Sisternes [2016] note that uncer-
tainty about extreme events (which are hard to apprehend since they are rare) leads to
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ex ante disagreements between LSEs and generators. Naturally, ex post disagreements
about the underlying causes of scarcity during these events subsist. Therefore, conflicts
emerge about the responsibilities of each actor during rare events. Finally, the question
of the optimal level of SoS is left unsolved. However, when designing a CRM, the public
authority brings out the debate, and forces market actors to solve this conflict ex ante,
justifying the existence of the CRM. Parsons and De Sisternes [2016] conclude that a
CRM should help reducing the ex ante uncertainty. Through this channel, the risk is
reduced for both LSEs and generators. The link with ex ante requirements is obvious:
actors settle their disagreement on the SoS and agree on a given level of capacity. With
respect to ex post requirements, CRMs leave part of the disagreement unsettled because
they only set the liabilities, not firm objectives.

A broad strand of theoretical literature investigates the relationship between the optimal
level of SoS and demand characteristics (uncertainty, elasticity). It reveals that full de-
mand coverage is socially inefficient. For instance, Chao [1983] considers an electricity
market under supply and demand uncertainties. The stochastic demand leads the utility
(the vertically integrated electricity supplier) to adopt a technology mix to minimize its
costs. Then, the paper establishes an optimal capacity structure and discusses reliability
criteria, giving the best level of SoS from a welfare point of view. In the case of a convex
outage cost22, the optimal mix depends naturally on the probability and the expected
amplitude of a blackout (demand-side), and the cost and the availability of each technol-
ogy (supply-side). Chao and Wilson [1987] are interested in how the SoS can be ensured
by reducing the end demand during scarcity periods. For this purpose, they set a similar
framework, but they add priority service (i.e. the fact to discriminate end consumers, by
selling different levels of reliability to the different types of end consumers who self-select
with menus). Priority service transmits information about the distribution of the will-
ingness to pay to the utility. Therefore, the optimal level of capacity can be measured
directly with the optimal priority charges. They show that reducing the demand of the
less willing to pay end consumers in times of scarcity and spot prices are equivalent from
an optimality point of view. Chao et al. [1988] look at the market structure impact on
surpluses. They note that most of the efficiency gains are realized with few priority service
classes (i.e. end consumers are pooled in two or three categories), end consumer surplus
and welfare then keeping on increasing with the number of classes.

The role of consumption choices (consumption patterns) in the SoS problem has thus long
been identified. The literature also highlights the optimality of respecting demand-side
preferences in terms of reliability. However, the proposed solutions to approach optimality
have long been little applicable in reality. Only recent technical evolutions (smart meters)
open the way for accurate market segmentation based on reliability preferences. In the
meanwhile, public authorities often exogenously set a reliability target as a proxy for the
optimal level of SoS, which can be further enforced via a CRM. The motivations and
consequences of such a choice have been investigated in the literature.

22Outage cost is the sum of the rationing cost and the foregone consumers’ surplus.
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In the same strand of the literature, Joskow and Tirole [2006, 2007] set a more realistic
framework with price-insensitive and price-sensitive end consumers. Interested in retail-
ers’ behaviors, Joskow and Tirole [2006] study the competition between LSEs for end
consumers. Assuming competitive markets, they focus on potential suboptimality be-
cause of information withholding about the profile of end consumers (due to the presence
of several LSEs). With this paper, they open interesting debates on the regulation of the
LSEs and the demand of end consumers that are still unsolved. Expending this analysis
in Joskow and Tirole [2007], they study the effect of the price cap and capacity payment
together. They argue that setting a price cap is useful to decrease the market power of the
supply-side but creates a missing money problem. In line with Chao and Wilson [1987],
Joskow and Tirole [2007] find that rationing price-insensitive consumers may be optimal.
The authors show that the Ramsay optimum may be attained with capacity payments
when all consumers pay for capacity. However, the market power of the supply-side in
the electricity market can undermine this result.

Considering two interconnected areas, Crampes and Salant [2018] investigate the social
gains from trading between the two regions and further regard the case of capacity credits.
They assume that only a reduction in the occurrence probability of blackouts matters in
the optimal capacity programs resolution (and that is why some plants are only built to
deal with capacity problems). Crampes and Salant [2018] explain that financial incentives
for peak supply or installed capacity may generally solve missing money problems.

As highlighted in the aforementioned papers, the elasticity of the demand for electricity
plays a key role in determining the optimal level of SoS. The increasing technical and eco-
nomic feasibility of Demand Response (DR) asserts voluntary rationing as a levy towards
a better understanding of end consumers’ preferences with respect to SoS and increased
demand elasticity. For instance, Lambin [2018] analyses the effects of heterogeneous DR
units (ordered with respect to the opportunity cost) on an electricity market with a price
cap. DR units ranged below, and above the price cap are found to have distinct effects.
Then, an optimal payment structure for DR units in a CRM can be derived, where dis-
tinct payments are recommended: DR units below the price cap should receive a more
advantageous remuneration.

Finally, the complementarities of the electricity and capacity markets are repeatedly high-
lighted by different stakeholders either to discuss the need for CRM or even to caution
against the risk of complex strategic behavior. This is why scholarship often analyses
capacity markets jointly with electricity markets [Joskow and Tirole, 2007; Teirilä, 2017;
Astier and Lambin, 2019]. A step further, Teirilä [2017] specifically focuses on the bid-
ding strategies that can emerge in both markets when capacity owners acknowledge the
complementarities between them. The present analysis will, however, consider the ca-
pacity market in isolation from the electricity market to favor intuition. Some strategic
interactions between the two markets are implicitly accounted for thanks to the reduced
assumptions on the bidding behavior of the supply-side.
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While CRMs are broadly discussed in the literature, decentralized capacity markets have
received limited attention, although the strategic dynamics might significantly differ. The
uncertainty on capacity requirements is often discussed, but rarely investigated because
most CRMs rely on ex ante requirements. In the continuity of this literature, we specifi-
cally focus on requirements uncertainty. With the implementation of ex post requirements,
the risk associated with the peak consumption unpredictability is partially shifted onto
the demand-side. In a context where capacity markets may be increasingly decentralized
in the near future to further involve the demand-side (and other new products) [Wood-
house, 2016], the question of design-related risk shifting and actors preferences with this
respect deserves reflection.

4.2.2 An adaptation of Roy et al. [2019]

The majority-winning procedure used in Roy et al. [2019] is an interesting way to ma-
terialize the discussions between market participants and the public authority about the
design-related information precision (ex ante or ex post requirements). Indeed, in the
context of implementing a brand new capacity market or redesigning one, having a view
on the interests of the different stakeholders is essential. Both groups, LSEs, and gener-
ators, are usually consulted in the process and are probably to defend their own interest
rather than the welfare-maximizing design. In the electricity sector, the heterogeneity
of production technologies makes the discussion on the individual preferences of capacity
owners highly relevant. Thus, only looking at the profit-maximizing design may not be
sufficient to fully understand the preferences of the capacity owners. On the contrary, re-
tailers can be seen rather homogeneous actors competing on quantity in a (decentralized)
capacity market.

To match our interest in the demand-side strategic behavior under uncertainty and actors’
preferences in terms of information, we adapt an existing model from Roy et al. [2019].
They are interested in the preferred information disclosure when homogeneous producers
competing à la Cournot face uncertainty about the state of the world (their constant
marginal cost can take two equiprobable values, high or low). The non-linear demand
is made of a continuum of heterogeneous consumers with different willingnesses to pay.
An omniscient central authority sends a public signal (with value high or low) on this
marginal cost with perfect or imperfect precision. Perfect precision means that producers
are certain that the marginal cost is the one that the signal indicates. Consumers’ and
producers’ preference about the precision of the signal is characterized by the shape of the
demand curve. The notion of majority-winning precision is introduced in this context, and
represents the precision preferred by most of the consumers, in contrast to the surplus,
which is the traditional criterion. Majority-winning notion enables the authors to show
under which conditions there is a disagreement amongst consumers and gives a way to
select the best precision when consumers are considered. Consumers can be divided into
three groups: (a) the ones who will always consume (because their willingness to pay
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is high enough)23, (b) the ones who may consume, according to the level of production
(because their willingness to pay is intermediary), (c) the ones who will never consume
(because their willingness to pay is too low). Consumers in group (a) are only concerned
by the effect of precision on the mean price of the good (the utility being higher if the
price is lower). On the contrary, consumers in group (b) are also affected by the fact
that they may not consume the good if the level of production is too low. Therefore, a
disagreement between consumers may appear if the precision minimizing the mean price
reduces the ability to consume for the group (b). On the other side, precision may be
detrimental to producers when the competition effect (i.e. the effect of information used
by competitors on profit) is too high with respect to the alignment effect (i.e. the effect
of knowing better the state of the world on the profit).

In this chapter, we try to understand the consequences of the various designs by investi-
gating how different groups of interest might benefit from one or the other structure of
information. Adapting the model from Roy et al. [2019], we explore the preferences of
each actor in terms of design in a framework of Cournot competition and uncertainty on
the level of demand with varying numbers of LSEs. We generalize the approach of Roy
et al. [2019] by considering that the ex ante probability of the states of the world can take
any value. Considering an oligopsony, our marginal value (the equivalent of the marginal
cost) is sloped, enabling the demand-side parametrization to influence the results.

4.3 Model

4.3.1 Description of the model

We adapt the model from Roy et al. [2019] to CRMs, by switching the role of buyers and
sellers, buyers becoming the strategic side:

The game is composed of:

• Two States of the World (SoW ) ∈ {l, h} affecting the buyers’ side, changing the
value of: Z ∈ {zl, zh} , with zl < zh, and we note µ0 the common prior belief
about the value of P(Z = zh);

• n homogeneous buyers, giving the aggregated state-contingent marginal value:
D−1
SoW (Q) = zSoW − aQ;

• Heterogeneous owners, each owner i bidding its capacity unita at level bi, giving
the following continuous increasing price function: F (k) = bk;

• A signal about Z, sent by the public authority, observed by all the buyers:
S ∈ {sl, sh}, of precision λ ∈ [1

2
, 1]. The signal formed by the authority is

23In Roy et al. [2019], the equilibrium is unique for each level of precision. Thus, the minimal and maximal
levels of production are known and allow to define these three groups.
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correct with probability λ, i.e.: P(Z = zSoW ∩ S = sSoW ) = λP(Z = zSoW ).

• We note µh(S) = P(Z = zh|S), the posterior belief after receiving a signal.
aThe size of the unit can be considered as small enough to give a continuous approximation. For

instance, Joskow and Tirole [2007] considers the supply-side of plants’ building as "a continuum of investment
opportunities".

Thus, P(zh ∩ sh) = λµ0 and P(zh ∩ sl) = (1− λ)µ0.

Consequently, the buyers have the following beliefs when the signal is high or low:

µh(sh) = P(zh|sh) =
λµ0

λµ0 + (1− λ)(1− µ0)
, µh(sl) = P(zh|sl) =

(1− λ)µ0

(1− λ)µ0 + λ(1− µ0)

Thus, the buyers have the following conditional expectations about Z:

∀λ, E(Z|sh;λ) = µh(sh)zh + (1− µh(sl))zl
≥ E(Z|sl;λ) = µh(sl)zh + (1− µh(sl))zl

signal preciseness expected state of the world requirements
zh if sh

λ = 1
zl if sl

Fully regulated ex ante requirements

zh > E(Z|sh;λ) > zl if sh
1 > λ > 1

2 zh > E(Z|sl;λ) > zl if sl
Partial hedging

λ = 1
2 µ0zh + (1− µ0)zl in any case ex post requirements without hedging

Table 4.2: How requirements are stylized in the model

Table 4.2 interprets the precision of the signal as the type of requirement in place in
CRMs. In the case of ex ante requirements definition, λ naturally equals one as the
forecast is fully informative (binding): if the central authority indicates that the state of
the world will be high, then the buyers know they do have to procure accordingly. With
ex post requirements definition, however, the signal precision is reduced. Even though
the central authority expects the state of the world to be high, it can still be wrong with
probability 1− λ.

Preferences

The public authority can stand on the four following criteria to select the precision:
either maximize the buyers’ surplus, or maximize the owners’ profit, or maximize the
sum of them, or follow a separate objective function:

• Buyers’ surplus: max
λ

S(Q) = max
λ

∫ Q
0
D−1(x)− F (Q) dx.

• Owners’ surplus: max
λ

Π(Q) = max
λ

∫ Q
0
F (Q)− F (x) dx.
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• Welfare: max
λ

W (Q) = max
λ

(S(Q) + Π(Q)).

• An example of public authorities’ objective function: the owners’ Majority rule.

The solution concept of the game is a Bayesian Cournot equilibrium: after receiving
the signal, all the buyers equalize their expected marginal value with their marginal
expenditure (see Pindyck and Rubbinfield [2013], pp. 382-4), giving the expected price
and quantities at the equilibrium.

In a context of uncertainty with respect to the level of future peak demand of electricity
–that conditions the need for capacity–, the public authority can design the capacity
market so that the capacity buyers face the consequences of their own electricity demand
uncertainty (ex post requirements λ = 1

2
) or make the adequacy forecast binding (ex ante

requirements λ = 1). For having a limited knowledge on the market, the public authority
seeks to know market actors’ preferences in terms of requirements (λ) through a public
consultation. To do so, she first defines other features of the capacity market such as the
level of non compliance penalty (affecting the slope a of the marginal value), and the two
possible states of the world (zl and zh) so market actors can built their preferences in
terms of requirements. Such preferences are then collected through a public consultation
so the final design can be chosen:

Stages
Choice of the design

Imperfect view
on the future

Consultation processDefinition ofthe other parameters

Formation of
the preferences

In this chapter, we focus on the formation of the preferences and the consultation process,
the parameters being given. However, Section 4.4 allows to test the influence of the level
of the different parameters empirically, and we establish in this section several results
about the sensitivity of preferences to the level of parameter a.

4.3.2 Empirical ground and model hypotheses

This section seeks to link the model assumptions to their empirical meaning. The following
considerations are not necessary to understand the model resolution and the main results
that are developed in the next section. However, they will be useful in understanding the
empirical interpretations provided.

In terms of general hypotheses, the good is homogeneous –as in real life–: each unit of
certified capacity confers the same amount of SoS. Therefore, all units of capacity are
equivalent in the remainder of the chapter. In addition, the market participants are
considered as risk-neutral, meaning that they seek to maximize their surpluses on the
capacity market. This is a common hypothesis in the literature (see Scouflaire [2019]).
If those two assumptions are rather standard in this class of models, the remainder of
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the section will further discuss the advantages and limits of the choices made in terms of
hypothesis compared to actual market conditions.

The supply-side is parsimoniously described in the model. Two main simplifications are
made: the heterogeneous capacity owners are (i) atomic and (ii) unaffected by the signal.
They thus bid their valuation of capacity in a continuous supply curve where real-life
conditions rather lead to step-wise supply curves in capacity markets due to the lumpiness
of power plants. The underlying assumption is that the size of the steps is considered
small enough to defend continuous approximation. This approach is discussed by Chao
[1983], who mentions that continuity simplifies but also approximates well the discrete
analysis of the optimal capacity structure problem. Similarly, Joskow and Tirole [2007];
Crampes and Salant [2018] explicitly consider continuous capacity supply curves. In
addition, capacity owners’ bids can be strategic to the limit that the strategy does not
account for the signal produced by the public authority. Although this already embeds a
broad range of market power expressions, it obviously excludes others that are likely to
be observed in practice (e.g., pivotal buyers). In sum, the two simplifications reduce the
complexity of the resolution without losing too much in accuracy.

The buyers’ side is portrayed through a linear and price elastic aggregated marginal value
of capacity units. In practice, the marginal value of capacity is effectively considered
as decreasing [Cramton and Stoft, 2007] as the probability of shortage decreases with
the amount of quantity procured. Empirically, these considerations translate into the
construction of centralized demand curves in capacity markets. Although they are often
piece-wise linear (kinked)24, assuming a linear marginal value of capacity in our framework
should not affect equilibrium conditions since they are locally defined. The comparison
with centralized mechanisms is facilitated by the assumption that capacity buyers are ho-
mogeneous. They thus all have the same marginal value, which is a share of the aggregated
one. When their number is high enough, perfect competition arises, which should yield
similar outcomes (optimality) than a centralized mechanism run by a benevolent central
authority. Any reference to centralized mechanisms in the interpretation of results will
refer to this parallel.

The constant slope of the marginal value curve a is assumed exogenous and unaffected
by the realization of the state of the world. a is the decrease (respectively increase) of
the marginal utility an LSE derives from an additional (resp. less) unit of capacity. It
thus embeds the opportunity cost of not buying the additional capacity unit. This can
include the non-compliance penalty as defined by the regulator (explicit penalty), the cost
of voluntary rationing (Demand Response (DR)) or any direct or indirect costs an LSE
can suffer from not buying enough capacity. The unitary implicit penalty resulting from

24In systems with a centralized mechanism, the aggregated inverse demand curves are piecewise linear and
decreasing on R+. See Chapter J for a description of requirements in the UK and France and https://www.aeso.
ca/assets/Uploads/Working-Group-Demand-Curve-Presentation-Final-07282017.pdf accessed on April 5th,
2019, for a discussion on centralized demand curves considerations in capacity markets.
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a linear marginal value is increasing in quantity25. Reasoning locally, a will represent the
slope of least-cost solution between the explicit penalty and DR. When drawing a parallel
with Chao et al. [1988], a low a would suggest that the retailer is able to discriminate
its end consumers according to their willingness to pay either via priority service classes
or real-time pricing. This interpretation relates to the discussion on the advantages of ex
post requirements in terms of end consumers’ involvement.

Besides, price elasticity being decreasing in a, the larger a is, the more constrained the
buyers are to be close from a certain target26.

For instance, one can define the under procurement as the fact to buy too few quantities
with respect to the certainty case. If the slope a is high, the surplus loss is large. Indeed,
for a given interval of quantity, the corresponding price interval will spread out when a
is increased. In a word, the higher the a is, the higher the cost of under procurement
is. About the over procurement (the fact to buy too many quantities with respect to
the certainty case), the reasoning is the same. A high a implies that the extra capacities
bought may be very expensive with respect to their true marginal value. However, if
under and over procurement costs increase with a, they are not equal. For instance,
the over procurement cost is bounded by the marginal value of each extra capacity unit
(which is at least non-negative), while the under procurement cost can be infinite in
theory (e.g. when a is infinite). Then, the adequate choice of the penalty is driven by the
public authority’s priority that might either be to limit the cost of the mechanism, or to
maximize the amount of capacity procured or more probably a mix of the two, meaning
that the a should take intermediate values in reality. This is why discussions on capacity
market designs insist on the importance of a well-designed penalty [Mastropietro et al.,
2016].

As discussed in Section 4.2, the issue of optimal SoS emanates from the stochastic nature
of the electrical demand. The public authority naturally resorts to forecasting to estimate
the optimal level of capacity needed so to meet a given reliability criterion. This is
common to all power systems. However, in ex ante requirements, this forecast is binding,
and its accuracy does not matter for the buyers. On the contrary, it is only indicative
in the ex post case. In other words, the forecasts cannot be accurate in real life, and
the public authority is likely to do her best to send a signal as close to the state of
the world as possible. However, it can limit the exposure of the capacity buyers to the
forecast errors through the capacity market design. In this sense, the model considers
the capacity forecast as a signal with respect to the capacity requirements, not the actual
level of capacity needs during the delivery year. The precision of the signal, λ reflects the

25For instance, in France, over procurement might be rewarded through ex post trading, meaning that over
procurement is valued. In addition, the penalty is piece-wise linear, while a linear marginal value implies that
deviations from optimal quantities have a convex cost.

26The demand depending on Z as well, increasing a does not make the buyers necessarily buy more quantities
in the model. However, the decision to buy more or fewer quantities will affect more their surplus than before.
Thus, a may have a key role in the buyers’ preferences in terms of information design.
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market design that makes capacity requirements forecasts more or less informative for the
capacity buyers. All market participants will form preferences with this respect, knowing
all other parameters. In other words, a is known, meaning that the cost of DR is known,
and/or the level of the penalty has already been decided. Similarly, the two possible SoW
have been announced, and the supply curve is known since it is unaffected by the SoW
nor the signal. This last point is the most difficult to verify empirically.

In the model, the uncertainty on future capacity needs is represented via two states of the
world affecting the intercept of the marginal value curve. Thus, we assume that the state
of the world does change the aggregated demand (and consequently the demand of each
buyer) but that it does not affect the willingness to pay for an additional unit27. This
formalization is similar to Crampes and Salant [2018] who assume a stochastic demand and
a welfare loss function, which is convex in the spread between the realized consumption
and the installed capacity28.

Ultimately, the majority-winning rule implies that each unit (or even fraction of unit) can
build a separate preference. This assumption does not seem too far from reality in the
current market challenges. Each technology participates in the capacity market under
different rationales, and the increasingly local nature of SoS needs further shifts the focus
on unit-based remuneration. Indeed, competition has lead to a decrease in cross-subsidies
between the units of a given operator. In other words, profit maximization is increasingly
sought at the unit level rather than at the utility or plant level. For instance, the Drax
power station in the UK has been abandoning coal-fired generation for profitability –
and regulatory– reasons. It has converted from coal firing to biomass firing several (but
not all) of its units. It is also proposing to convert up to two of them into gas-fired
generating units29. In addition, utilities tend to separate the operation of the different
technologies30. While plant operators used to speak on behalf of their generation portfolio,
it seems coherent to develop an individual approach where the individual preferences of
capacity owners matter and are expressed through public consultations. The objective of
the public authority with this respect will be further discussed in Section 4.3.7.

4.3.3 Equilibrium

Let qj be the capacity demanded by the buyer j and Q =
∑n

i=1 qi the total bought
capacity. We consider only the symmetric equilibria. Let Q∗(µh) and q∗(µh) be the
equilibrium quantities when the buyers have the belief that P(Z = zh) = µh. Since we
only consider symmetric equilibria: Q∗(µh) =

∑n
j=1 q

∗(µh) = nq∗(µh). If there is no

27Equivalently, it implies that the state of the world does not impact how buyers can reduce their electricity
peak demand.

28The loss function considered in this chapter would be convex as well since we assume a linear marginal value,
with a the constant degree of convexity.

29See http://repower.drax.com/ accessed on September 25th, 2019.
30For instance, German utilities, E.On and RWE have announced their split-up with renewables and grid

operations on the one hand and conventional (thermal) generation on the other. See https://www.group.rwe/
en/the-group/history accessed on September 25th, 2019.
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ambiguity, we note for the sake of simplicity Q∗ = Q∗(µh) and q∗ = q∗(µh). The buyers
maximize their surplus:

maxS(qj) = max
qj

∫ qj

0

D−1
j (x)− F (Q)dx = max

qj

∫ qj

0

E(Z|s)− nax− F (Q)dx

Few computations available in Chapter D give the following symmetric First Order Con-
dition sFOC:

E(Z|s)− na× q∗︸ ︷︷ ︸
Marginal Value (V (q∗,n))

=

(
∂F (nq∗)

∂q
q∗ + F (nq∗)

)
︸ ︷︷ ︸

Marginal Cost (C(q∗,n))

(sFOC)

With few additional computations (available in Chapter D), we obtain the next equilib-
rium condition with respect to µh, with ζ = zh − zl:

d q∗

dµh
=

ζ

L′(Q∗)

With Li(q∗, n) = ∂F (nq∗)
∂q

q∗+F (nq∗)+na×q∗ and L′(Q∗) = Q∗F ′′(Q∗)+(n+1)F ′(Q∗)+na31.

Finally, relations between aggregated quantities and precision are written:

dQ∗

dµh
=

nζ

L′(Q∗)
(Quantity Derivative)

To ensure that the previous expressions are well-defined and that higher believes lead to
buy a higher amount of quantities (i.e. dQ∗

dµh
> 0), we make the Assumption A4:

Assumption A4. L′(Q) > 0.

Note that Assumption A4 is respected for any convex increasing function F .

Based on the contraction approach used in Gaudet and Salant [1991], the existence of a
unique equilibrium in a Cournot oligopsony may be established. Assumption A4 ensures
both that the buyers’ surplus is strictly concave32 in the quantity (then strictly quasi-
concave) and the uniqueness of the symmetric equilibrium:

Theorem 12. Under Assumption A4, there exists a unique symmetric equilibrium to the
Cournot oligopsony with n buyers.

The interested reader can refer to Chapter E for all the proofs. We begin by stating some
properties of the equilibrium:

31Note that Q∗F ′′(Q∗) + (n+ 1)F ′(Q∗) + na = nq∗F ′′(nq∗) + (n+ 1)F ′(nq∗) + na = ∂ E(Li(q
∗,n))

∂q
.

32Concavity is in fact implied by F ′(Q) > −QF
′′(Q)+na

2n
which is not binding. Note that this is always true

under Assumption A4.
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Lemma 27. Under Assumption A4, for s = sh (resp. s = sl), the equilibrium quantities
increase (resp. decrease) with the belief µh. Furthermore, E(Q∗) is increasing (resp.
decreasing) with respect to λ if L(Q) is concave (resp. L(Q) is convex). Equivalently,
E(Q∗) is increasing (resp. decreasing) if QF ′′′(Q) + (n+ 2)F ′′(Q) < 0 (resp. QF ′′′(Q) +

(n+ 2)F ′′(Q) < 0).

It is a well-known result in persuasion’s literature (see Kamenica and Gentzkow [2011])
that if the public authority’s objective function is convex (resp. concave) in the belief µh,
then the public authority should disclose the maximal (minimal) amount of information.
The intuition behind this result is that if the objective function is convex in the belief, the
fact that the agents have extreme beliefs will maximize this objective function. Thus, the
public authority should disclose information to polarize these beliefs. On the contrary, if
the objective function is concave, it is better that the agents have intermediate beliefs, so
the public authority limits its information disclosure. In our case, if the public authority
is willing to maximize the mean quantity, she should disclose information if and only if
her utility is convex in µh, i.e. if ∂2Q∗

∂µ2
h
> 0. Then, it corresponds to the case where(

dQ∗
dµh

)′
> 0⇔ L′′(Q∗) < 0.

The proof of Lemma 27 can be applied to any other function of µh: price, surplus, profit
and welfare. It means that for any criterion, we just need to show that this criterion is
either convex or concave in µh to determine the optimal information disclosure according
to this criterion.

A critical feature of Lemma 27 is that the parameter a does not influence the impact of
information on quantities. It does affect the quantities at the equilibrium, but because
of the linearity of the marginal value, any change in the demand does not change how
average quantities evolve with information.

Now, we can study how precision influences the mean price. Using Quantity Derivative:
∂P ∗(µh)

∂µh
=
∂F (Q∗(µh))

∂Q∗(µh)

dQ∗(µh)
dµh

= F ′(Q∗)× nζ

L′(Q∗)
(Price Derivative)

As for the quantities, the price is increasing in information if the partial derivative of the
price with respect to the belief µh is increasing. Then, ∂ E(P )

∂λ
> 0 if F ′(Q)

L′(Q)
is increasing.

To characterize the influence of information on prices, it is useful to note η(Q, n) =
QF ′(Q)

n
= F (Q)

ne(Q)
. η is the price divided by the product of the number of buyers and the

elasticity of the price function (e(Q) = ∆Q
∆F (Q)

× F (Q)
Q

= F (Q)
QF ′(Q)

). At the equilibrium, η is
simply the markdown (the ability of the oligopsonists to obtain a price below the compet-
itive one). In other words, η represents the degree of market power of the competitors. Its
shape (with respect to the supply function) around the equilibrium affects the preferences
of both kinds of agents.

Aditionnaly, we note the first and second derivative:

η′(Q) = QF ′′(Q) + F ′(Q) = L′(Q)− nF ′(Q)− an
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η′′(Q) = QF ′′′(Q) + 2F ′′(Q) = L′′(Q)− nF ′′(Q)

We state the results with expressions containing L and η. L allows us to derive quite
direct results and make links with the paper of Roy et al. [2019]. However, η is helpful
to disentangle how the equilibrium and the preferences in terms of information disclosure
are affected by market power on the one hand, and the implicit penalty represented by
the parameter a on the other hand. To complete the analysis, we provide expressions
with respect to the parameter a.

We can now state express the precision effect on the mean price at the equilibrium:

Lemma 28. E(P ∗) is increasing (resp. decreasing) with respect to λ if the price is convex
in the belief µh, i.e. if F ′′(Q)

F ′(Q)
> L′′(Q)

L′(Q)
(resp. F ′′(Q)

F ′(Q)
< L′′(Q)

L′(Q)
).

E(P ) is increasing (resp. decreasing) if:

η′′(Q) < (>)
F ′′(Q)

F ′(Q)
(η′(Q) + an) ≡ ρ

The parameter a impacts the result. When a is high, the situation becomes close from
perfect competition (so the markdown has less weight in sFOC), and only the convexity
of the price function matters in this case (see below Proposition 18).

Corollary 2. E(P ∗) is increasing (resp. decreasing) when:{
if F ′′ > 0, a > (<)F

′(Q)η′′(Q)
nF ′′(Q)

− η′(Q)
n

if F ′′ < 0, a < (>)F
′(Q)η′′(Q)
nF ′′(Q)

− η′(Q)
n

When the supply curve F is convex, increasing (decreasing) parameter a increases (de-
creases) unambiguously the span (of functions F ) where the mean price increases with
information. Conversely, when the supply curve F is concave, increasing (decreasing) pa-
rameter a decreases (increases) unambiguously the span where the mean price increases
with information.

In other words, it is more likely that the mean price increases (decreases) with the (explicit
or implicit) penalty if F is convex (concave).

For capacity owners, higher expected prices imply higher individual profits and then higher
aggregated profit, as we state in Lemma 29:

Lemma 29. If ∂ E(P ∗)
∂λ

> 0, then individual profits are non decreasing and aggregated profit
increases with the precision λ of the signal.
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This result drives the discussion about the preferences –the profit-maximizing precision
and the majority-winning precision (Sections 4.3.5 and 4.3.7). The proof enlightens about
the conditions under which a consensus will be established amongst capacity owners.

Now, we have all the tools to derive the preferences of the actors in terms of information
design. We start by using the traditional criteria and end with the majority-winning
precision.

4.3.4 Buyers’ surplus maximization

The theoretical monopsony case helps to emphasize the existence of detrimental effects of
competition on the preference for information.

4.3.4.1 Monopsony

For any total demanded quantity Q, the buyers’ surplus is:

S(Q) =

∫ Q

0

D−1(x)− P (Q)dx =

∫ Q

0

E(Z|S)− ax− F (Q)dx

Few computations give that the derivative with respect to µh when there is just one buyer
is:
∂S(Q∗(µh))

∂µh
=

dQ∗(µh)
dµh

(µhζ + zl − aQ∗(µh)− F (Q∗(µh))− F ′(Q∗(µh))Q∗(µh))︸ ︷︷ ︸
=0 if sFOC

+Q∗(µh)ζ

⇒ ∂S(Q∗(µh))

∂µh
= Q∗h(µh)ζ (Monopsony’s Surplus Derivative)

Then, ∂
2S(Q∗(µh))

∂µ2
h

= nζ2

L′(Q∗h(µh))
> 0 and the following result is straightforward:

Proposition 13. With a monopsony, i.e. n = 1, the buyer’s surplus increases with
information precision (increases in λ). The monopsony shall always prefer λ = 1.

As expected, when the market is unified (i.e. one buyer strategically chooses how to
bid with respect to its own marginal value), the buyer’s side sees its surplus increase
with precision. In this case, information can not hurt: in the absence of competition,
additional information always makes profit surplus more effective. This result shows that
however the markdown evolves, the monopsony will always be able to use its market power
more efficiently with additional information. Nevertheless, this result vanishes for several
buyers: in this case, more information can dramatically alter the cost of buying capacity
units.

4.3.4.2 Oligopsony

The presence of other buyers reduces the benefits of increased signal precision on the
surplus. It also generates an ambiguity on the sign of the derivative of the surplus with
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respect to the precision. The Monopsony’s Surplus Derivative simplifies thanks to sFOC
for one buyer (for each signal). However, with several buyers (n > 1): µhζ+zl−aQ∗(µh)−
F (Q∗(µh))− F ′(Q∗(µh))Q∗(µh) < 0 . By dividing the total surplus by n, and by writing
the surplus as a function of individual quantities

(
q∗ = q∗(µh) = Q∗(µh)

n

)
: the expected

surplus for any buyer j at the equilibrium is:

Sj(q
∗) = q∗

(
µhζ + zl −

1

2
anq∗ − F (nq∗)

)
By differentiating with respect to µh :

∂Sj(q
∗))

∂µh
=

d q∗

dµh
(µhζ + zl − anq∗ − F (nq∗)− nq∗F ′(nq∗)) + q∗ζ

=− ∂q∗

∂µh
((n− 1)q∗F ′(nq∗)) + q∗ζ

=q∗ζ

(
1− (n− 1)

F ′(nq∗)

L′(nq∗)

)
Proposition 14. If n > 1, E(S(Q∗)) is increasing (resp. decreasing) with respect to
λ if the surplus is convex in the belief µh, i.e. if (1 − (n−1)F ′(Q)

L′(Q)
)Q is increasing (resp.

decreasing). Then, in the first case, the surplus maximizer precision is λS = 1, and in the
second case λS = 1

2
. As well, the surplus is increasing (resp. decreasing) with information

precision if:

η′′(Q) > (<)ρ− L′(Q)(L′(Q)− (n− 1)F ′(Q))

(n− 1)QF ′(Q)
≡ ρ

Corollary 3. When (i) (n − 1)η′(Q)2 − 4QF ′(Q)L′′(Q) ≤ 0 the surplus is always in-
creasing with information precision.

Now, note:

a1s = −
√

(n− 1)
√

(n− 1)η′(Q)2 − 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)−QF ′′(Q)

2

and

a2s =

√
(n− 1)

√
(n− 1)η′(Q)2 − 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)−QF ′′(Q)

2

When (ii) (n−1)η′(Q)2−4QF ′(Q)L′′(Q) > 0, the surplus is increasing (resp. decreasing)
with information precision if:

in case where a2s < 0

in case where a2s > 0 and a1s < 0, if a > (<)a2s

in case where a1s > 0, if a < a1s or a > a2s, ( if a1s < a < a2s)

Increasing parameter a increases unambiguously the span (of η′′) where the surplus is
increasing with information when n = 2 and F ′′(Q) > 0, or when n > 3 and F ′′(Q) < 0.
When n = 3, increasing a increases the preference for information.
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In Proposition 14, η is linked to the price function and the penalty represented by the
parameter a. If η′ increases faster than the price derivative, and that a is high, information
is preferred to enjoy η and to avoid the (implicit or explicit) penalty. On the contrary, if
buying capacities at the high state is expensive, and that the penalty is low, being aligned
with the state of the world matters less. Naturally, increasing the penalty (i.e. fixing a
higher a in the model) can reverse the result.

According to Corollary 3, whatever the impact of precision on mean prices, an increase
in the implicit penalty a does not always lead to an increased preference for precision.
Naturally, Corollary 3 shows that an infinite penalty would make the buyers willing to have
the maximal precision, whatever the supply curve is (a > a2s is a sufficient condition).
This corresponds to the inelastic marginal value case, where capacity buyers have to
procure the required amount. On the contrary, when a1s > 0 if a is between a1s and a2s,
an increase of a may lead to a preference for no information. To form an intuition on this
case, take the case of perfect competition with µ0 = 1

2
. If the slope is horizontal (a = 0),

the buyers prefer full information. Indeed, without information, the gain in the high state
(price is lowered) is equal to the loss in the low state. However, there is a cost of under
procurement (because valuable capacities in the high states are not bought) that is never
compensated. If the slope is increased, now, the price is not equal to E(Z) anymore.
Especially, if the supply curve is increasingly convex, the expected price may grow with
information in a dramatic way, leading to less preference for information.

Note that ρ will always be lower than ρ when L′(Q) > 0, ∀n ≥ 233. Thus, a situation
where buyers prefer full information while the expected price increases with information
can emerge (when ρ < η′′ < ρ). By being better aligned with the states of the world,
buyers gain enough surplus compared to the increase of the mean price.

4.3.5 Profit maximization

After studying the buyers’ side, we look at the usual preferences criterion for owners: the
profit maximization. Let λP be the signal precision that maximizes the owners’ surplus
E(Π(Q)|λ). When the price increases, every (price-taker) owner prefers the maximal
precision as stated by Lemma 29. It then maximizes the profit for all of them individually
and it is natural to expect that λP = 1 at the aggregate level as well. In addition, the
profit may also increase if the mean price decreases but the quantities purchased increase.
Then, we need to characterize the profit maximization precision. The profit is expressed

33However, for the resolution of the model, Assumption A4 does not need to be verified for all n ≥ 2, but only
for the given level of competition, i.e. the number of buyers n. If L′(Q,n = 2) < 0, the second term in ρ may
be negative for n > 3. If F is convex, it can not be negative, so ρ < ρ. On the contrary, if F is concave, there
are cases where ρ > ρ. Then, buyers may prefer no information while prices are maximal with no information. It
might correspond to a situation where η decreases and where buying in the high state is too costly with respect
to the marginal value.
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as follow (with Q the aggregate quantities sold to the buyers):

Π(Q) =

∫ Q

0

F (Q)− F (x)dx

The derivative of the expected profit can be written34:

∂ E(Π(Q∗(µh)))

∂µh
=
nζQ∗(µh)F

′(Q∗(µh))

L′(Q∗(µh))

We now characterize the necessary condition to an increasing profit with respect to the
precision:

Lemma 30. E(Π(Q)|λ) is increasing (resp. decreasing) in λ if the profit is convex in
the belief µh, i.e. if QF ′(Q)

L′(Q)
is an increasing (resp. decreasing) function. Then in the first

case, the profit maximizing precision is λP = 1, and in the second case λP = 1
2
. As well,

the profit is increasing (resp. decreasing) with information precision if:

η′′(Q) < (>)ρ(Q) +
L′(Q)

Q︸ ︷︷ ︸
>0

≡ ρ̄

Note also that the sufficient condition in Lemma 27 to observe an increase in quantities
with respect to precision is sufficient as well to observe an increase in profit. Indeed, few
computations show that the previous equation is equivalent to:

η′′(Q) < (>)− nF ′′(Q) +
η′(Q)L′(Q)

QF ′(Q)︸ ︷︷ ︸
>0

We also confirm the result of Lemma 29: higher expected price unambiguously increases
the aggregated profit. However, it is not a necessary condition.

Similarly as the buyers’s point of view, owners do not systematically increase their prefer-
ence for information with the slope of the marginal value. However increasing the penalty
(i.e. increasing a) favors preference for information for the owners for all increasing power
function:

Corollary 4. Note aP = QF ′(Q)L′′(Q)
nη′(Q)

− η′(Q)
n
− F ′(Q). The profit is increasing (resp.

decreasing) with information precision if:{
In case where η′(Q) > 0, if a > (<) aP

In case where η′(Q) < 0, if a < (>) aP

34Cf. proof of Lemma 30.
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When the supply curve F is convex, increasing parameter a increases unambiguously the
span (of η′′) where the owners prefer information. Otherwise, increasing parameter a
decreases the span (of η′′) where the owners prefer information if η′(Q) = QF ′′(Q) +

F ′(Q) < 035.

It seems straightforward since any increase in the penalty decreases the relative weight
of the markdown in the decision of the buyers. However, we show with Corollary 2 that
the mean price may decrease when the penalty increases for a concave price function.
Moreover, as we see below in Section 4.3.9, perfect competition does not imply that
owners prefer precision. Thus, it should be noticed that even if the mean price may
decrease, the better alignment of the demand with the state of the world (implied by
information and by the higher penalty) will increase the aggregated profit for high a in
most of the cases.

Now, after studying the preferences from separated buyers and owners sides, we turn on
the characterization of the preferred precision from a welfare point of view.

4.3.6 Economic welfare

The economic welfare is the sum of the buyers’ surplus and the owners’ profit:

E(W ) =

∫ Q

0

D−1(x)− F (x)dx =

∫ Q

0

E(Z|S)− ax− F (x)dx

The derivative with respect to µh can be found:

∂ E(W (Q∗(µh)))

∂µh
= nζQ∗(µh)

(
1 +

F ′(Q∗(µh))

L′(Q∗(µh))

)
Consequently, the economic welfare is increasing in the precision if x 7→ x

(
1 + F ′(x)

L′(x)

)
is

an increasing function.

Proposition 15. Whenever n ≥ 1, if Q
(

1 + F ′(Q)
L′(Q)

)
is increasing (resp. decreasing),

then the welfare is increasing (resp. decreasing) with information precision. As well, the
welfare is increasing (resp. decreasing) with information precision if:

η′′(Q) < (>)ρ(Q) +
L′(Q)(L′(Q) + F ′(Q))

QF ′(Q)︸ ︷︷ ︸
>0

≡ ¯̄ρ

Lemma 28 and Proposition 15 imply that if the mean price increases with the precision, the
welfare increases as well. By Lemma 29, when the mean price increases with information,
the profit increases as well. Due to the non-strategic role of the supply-side, the welfare

35This condition is not verified for any increasing power functions. Note that QF ′′(Q) + F ′(Q) = 0 for the
function F (Q) = log(Q).
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becomes naturally higher as well. Even if the mean price decreases, a better alignment of
the demand with the state of the world may also increase the welfare.

Besides, information also can reduce the welfare. In this case, profit is also reduced with
information (∂W

∂λ
< 0 ⇒ ∂Π

∂λ
< 0). What buyers earn (thanks to the average increase of

markdown) does not compensate for the losses of the owners’ side.

Concerning the parameter a, similar qualitative results as in Corollary 4 appear. Indeed,
an increase of a may result in preference for information from a welfare point of view:

Corollary 5. When (i) η′(Q)2 + 4QF ′(Q)L′′(Q) ≤ 0, the welfare is always increasing
with information precision

Now, note

a1w = −
√
η′(Q)2 + 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)

and

a2w =

√
η′(Q)2 + 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)

When (ii) η′(Q)2 + 4QF ′(Q)L′′(Q) > 0 the welfare is increasing (resp. decreasing) if:
in case where a2w < 0

in case where a2w > 0 and a1w < 0, if a > (<)a2w

in case where a1w > 0, if a > a2w or a < a1w, ( if a1w < a < a2w)

When the supply curve F is convex, increasing parameter a increases unambiguously
the span (of η′′) where the welfare increases with information. Otherwise, increasing
parameter a decreases the span (of η′′) where the welfare increases with information if
η′(Q) = QF ′′(Q) + F ′(Q) < 0.

We see that if a is set high enough, the welfare criterion will favor information precision.
Generally, a preference for a low level of information from a welfare perspective is a way
to limit the (buyers’) market power. Indeed, if the supply curve is (convex and) increasing
enough, we can see that precision does not affect much the level of quantity bought, but
that the price can be moved dramatically. In this case, limiting market power is done
via limiting information precision. Naturally, it implies that taking the risk of not being
aligned with the state of the world and increasing the probability of rationing if the state
of the world is high. However, according to Corollary 5, resorting to a lower degree of
information might not be necessary if the penalty is set high enough. 36

36If the parameter a remains low despite a high explicit penalty, resorting to DR might be cheaper than
paying the penalty. In this situation, the CM might be able to unleash significant amounts of untapped DR. This
explanation directly relates to the discussion about the advantages to make bear (to create) the risk on buyers
by setting ex post requirements.
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Finally, we can order the different thresholds which shape the preferences considering the
different surpluses:

ρ < ρ < ρ̄ < ¯̄ρ

Note that there is an agreement between buyers and owners for maximal precision in the
interval (ρ, ρ̄).

Nevertheless, we consider heterogeneous capacity owners in this model (as it is the case
in real-life). Therefore, preferences exhibited by the aggregate profit criterion may not
reflect the preferences of all the individual owners37. In the next section, we determine
under which conditions such a disagreement emerges and propose an alternative to the
profit maximization criterion.

4.3.7 Public authority’s objective functions

In the economic literature, the public authority is often described as seeking welfare
maximization. This approach is nuanced by institutional economists who argue that a
wide range of factors such as history and culture affects the objective function of the
public authority, which can then differ from welfare maximization. In the context of
capacity markets, Newbery [2016] warns against a tendency of the central authority to
over procure capacity, as a way to avoid the political consequences of a black-out. This
is one example among many that welfare maximization might not be its only objective.
In this sense, when a public authority is willing to create a capacity market, it has to
define the aims of this capacity market, accounting for the characteristics of the country,
its historical background, as well as its own view about the future.

These various aims can be summarized in an objective function of the public authority.
Here, we present simplified examples of objective functions:

• Quota rule: it is the decision process based on the approval of a given proportion
(50%, 66%, 90%... for example) of voters. For instance, Nitzan and Paroush [1984]
determine the optimal number of voters needed to approve a proposition for each
situation. In their framework, the voters are homogeneous and have a given prob-
ability to vote for the incorrect decision and there is a bias in favor of statu quo.
In our case, the capacity owners are heterogeneous and know their favorite preci-
sion. The statu quo may be to give perfect information. Then, the public authority
may choose the minimal necessary proportion of capacity owners choosing the same
λC 6= 1 to modify the design. For instance, a stringent quota rule could require a
share close to unanimity to choose ex post requirements as a design. This would give
greater weight to peak generators which might be more concerned about their own
survival than aggregate profit maximization if the capacity price hardly covers their

37The assumption of homogeneity of the buyers’ side makes that no disagreement can emerge among buyers.
However, it seems that differences in the buyers’ side matter less than differences between capacity owners, due
to the structural heterogeneity of the generators that rely on different technologies.

160



Chapter 4. Bayesian Persuasion in Capacity Market Designs

profitability gap.We know that the mean price can be decreasing in information
precision. Naturally, in this case, profit-maximizing owners would prefer ex post
requirements. Nevertheless, ex ante requirements enable more owners to sell and
generates more certainty (since the level of required quantities is known ex ante).
These two elements may result in a higher level of SoS. Paradoxically, the peak gen-
erators’ profits may still be larger with ex ante requirements (see below the frame
majority-winning criterion). These considerations may lead the public authority to
overweight the peak generators’ (dis-)agreement with ex ante requirements in the
decision process.

• Technologies: the objective of the public authority might be biased towards given
technologies. This is a recurrent criticism made to CMs. In this case, the public
authority might only account for the preferences of the subset of actors operating
such technology(ies). For instance, some authors argue that capacity markets should
favor flexible technologies [Buck et al., 2015]. Indeed, those are direly needed to meet
the SoS objective on a shorter timescale. Similarly, the capacity market could be
designed with the side objective to meet the emission targets. The public authority
could then favor green technologies.

• Maximize Quantities: this objective is coherent with a public authority that would
fear the political consequences of a black-out more than the welfare consequences of
such a choice. Alternatively, it is also a way to favor capacity owners.

• Minimize Prices: this objective function would be in line with greater importance
of the retailers’ surplus in the public authority’s considerations. Limiting the cost
of the measure is also a way to protect end consumers.

Among those examples, some objective functions clearly require further knowledge about
individual actors’ preferences. The most common tool to uncover those is public con-
sultations. The preferences expressed during the consultation can then be aggregated in
different ways to match the public authority’s objective.

As an illustration, we study a particular case of the quota rule: the majority rule (i.e.
the proportion of voters needed to change the design should be at least 50%). However,
we discuss as well the implications of a more binding quota rule (i.e. with a quota higher
than 50%). We make the analysis for the special case where µ0 = 1

2
. We consider in the

rest of the chapter that each capacity owner has the same weight in the selection process.

Majority-winning criterion

In a discrete world, the majority-winning precision λC can be defined as the precision
of public information that maximizes the number of capacity owners satisfied with
respect to their bid. By contrast to the previous condition of maximizing the owners’
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surplus, this equates satisfying the greater number of them. The majority-winning
procedure gives new insights about the preference of capacity owners with respect to
the market design.

In the simplified framework, where each owner bids one unit, each owner has the
same weight in the preference of the majority. As stated below, when the mean price
increases with information (so the profit increases for each owner by Lemma 29), they
all agree, and the majority-winning precision will be 1.

Though, if the mean price decreases with information precision (i.e. F ′(Q)
L′(Q)

decreases
or η′′(Q) > ρ(Q)), owners may disagree about the optimal precision. In this case, the
majority-winning precision depends on the distribution of the bids.

When µ0 = 1
2
consider λ = 1 and λ = 1

2
when η′′(Q) > ρ(Q). First, recall that:

F (Q∗(0)) < F (Q∗(µ0)) < F (Q∗(1))

Let b̂ ∈ [F (Q∗(0));F (Q∗(µ0))] be the bid for which a owner is indifferent between the
two information structures:

F (Q∗(µ0))− b̂︸ ︷︷ ︸
Individual profit when λ= 1

2

= µ0(F (Q∗(1))− b̂)︸ ︷︷ ︸
Individual profit when λ=1

⇒ b̂ =
F (Q∗(µ0))− µ0F (Q∗(1))

1− µ0

On the one hand, owners (i) with a bid below than b̂ will prefer the lowest precision
since their expected profit is higher when λ = 1

2
. Indeed, as mentioned in the proof of

Lemma 29, the ones with a bid below F (Q∗(0)) always sell in both states of the world.
Thus, they want to maximize the mean price. The ones whose the bid is higher than
F (Q∗(0)) will sell, by definition, only if the price is higher than F (Q∗(0)). Their bid
is such that:

F (Q∗(µ0))− b̂ > µ0(F (Q∗(1))− b̂)

On the other hand, owners (ii) bidding higher than b̂ (but below F (Q∗(1))) are such
that their bids respect:

F (Q∗(µ0))− b̂ < µ0(F (Q∗(1))− b̂)

Thus, even if they do not sell their capacities in both states of the world, these owners
prefer the highest precision.

Note that if µ0 ≥ 1
2
, the owners prefer either λ = 1

2
, either λ = 1. The reason is that

λ = 1 maximizes: P(s = Sh) × (F (µh(sh)) − b), since P(s = Sh) increases with λ in
this case (∂ P(s=Sh)

∂λ
= 2µ0 − 1 > 0).

In our context, Q is the number of owners that are able to sell their capacity (bid
under the clearing price). Thus, if we define m(Q) as the difference between the size
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of these two groups of owners (i) and (ii), we get the λC that corresponds to the
majority rule, with respect to the positivity of L. Let:

m(Q) =

∫ F (Q∗(1))

b̂

F−1′(bi)dbi︸ ︷︷ ︸
Preference for λ=1

−
∫ b̂

0

F−1′(bi)dbi︸ ︷︷ ︸
Preference for λ = 1

2

= Q∗(1)− 2F−1(b̂)

Here, if m(Q) > 0 (resp. m(Q) < 0), the preferred precision is 1 (resp. 1
2
).

This result can be extrapolated to any value of µ0 ≥ 1
2
. However, if µ0 < 1

2
, the

probability of getting a high signal decreases when the precision increases. It means
that a part of the owners who prefer 1 to 1

2
will prefer another λ. As well for a part

of the owners who prefer 1
2
to 1 (see Chapter E).

We can now state the next result:

Lemma 31. When µ0 = 1
2
, whenever n ≥ 1, if (1) F ′(Q)

L′(Q)
increases, λC = 1. If (2) F ′(Q)

L′(Q)

decreases, λC = 1 when (2i) m(Q) > 0 and λC = 1
2
when (2ii) m(Q) < 0.

Owners’ preferences can be summed up in the next proposition derived directly from
Lemma 30 and from Lemma 31 since

(
F ′(Q)
L′(Q)

)′
<
(
QF ′(Q)
L′(Q)

)′
:

Proposition 16. When µ0 = 1
2
, whenever n ≥ 1, if (1) F ′(Q)

L′(Q)
increases (η′′(Q) < ρ(Q)),

λC = λP = 1. If (2) F ′(Q)
L′(Q)

decreases but QF ′(Q)
L′(Q)

increases (ρ(Q) < η′′(Q) < ρ(Q)),

λC = λP = 1 if L(Q) > 0 and λP = 1 > λC = 1
2
if L(Q) < 0. If (3) QF ′(Q)

L′(Q)
decreases

(ρ̄(Q) < η′′(Q)), λC = 1 > λP = 1
2
if m(Q) > 0 and λP = λC = 1

2
if m(Q) < 0.

In other words, if the price increases with information precision, all the owners will prefer
full information: both the profit-maximizing and the majority-winning criteria are require
the maximal precision. When the price decreases with information precision (F

′(Q)
L′(Q)

de-
creases), but the profit is nonetheless increasing in λ then again, the majority and profit
maximization criteria agree towards full information if m(Q) > 0. They would however
disagree if m(Q) < 0 (λP = 1 > λC = 1

2
). When the profit decreases with information

precision, i.e. η′′ is relatively high enough, the lowest precision will always maximize the
profit (λP = 1

2
) while the majority-winning criterion will depend on the relative size of

the owner groups preferring each level of information: λC = 1 if m(Q) > 0 or λC = 1
2
if

m(Q) < 0.

4.3.8 Model results

As highlighted by the previous sections, preferences in terms of information precision de-
pend very much on the curvature of the supply curve. Summarizing Lemmas 27 and 28,
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there are six distinct cases concerning the impact of information on equilibrium prices
and quantities.

Proposition 17. We note six different cases such that:

If (a) F ′′ > 0 If (b) F ′′ < 0

(a1) ∂ E(Q∗)
∂λ

> 0 and ∂ E(P ∗)
∂λ

> 0. (b1i) ∂ E(Q∗)
∂λ

> 0 and ∂ E(P ∗)
∂λ

> 0.

(a2i) ∂ E(Q∗)
∂λ

< 0 and ∂ E(P ∗)
∂λ

> 0. (b1ii) ∂ E(Q∗)
∂λ

> 0 and ∂ E(P ∗)
∂λ

< 0.

(a2ii) ∂ E(Q∗)
∂λ

< 0 and ∂ E(P ∗)
∂λ

< 0. (b2) ∂ E(Q∗)
∂λ

< 0 and ∂ E(P ∗)
∂λ

< 0.

η′′ −nF ′′ ρ

∂Q > 0 ∂Q < 0 ∂Q < 0
if F ′′ > 0

∂P > 0 ∂P > 0 ∂P < 0

(a1) (a2i) (a2ii)

η′′ ρ −nF ′′

∂Q > 0 ∂Q > 0 ∂Q < 0
if F ′′ < 0

∂P > 0 ∂P < 0 ∂P < 0

(b1i) (b1ii) (b2)

Output Derivatives w.r.t. λ

We make the following statements:

If (a) F ′′ > 0, then ∂ E(Q∗)
∂λ

> 0⇒ ∂ E(P ∗)
∂λ

> 0 and ∂ E(P ∗)
∂λ

< 0⇒ ∂ E(Q∗)
∂λ

< 0.

If (b) F ′′ < 0, then ∂ E(P ∗)
∂λ

> 0⇒ ∂ E(Q∗)
∂λ

> 0 and ∂ E(Q∗)
∂λ

< 0⇒ ∂ E(P ∗)
∂λ

< 0.

Unambiguous satisfaction of owners with precision (a1, b1i)
When the mean price and the mean quantities are both increasing with precision
(a1, b1i), the profit-maximizing and the majority-winning preferences will be aligned.
Intuitively, a higher price boosts the profit of owners already selling and higher quan-
tities enables new owners to enter the market. When F is convex, the case (a1) will
correspond to intervals where the curve becomes increasingly linear (F ′′ → 0+). The
situation (b1i) is, however, unlikely for a concave supply curve because it would re-
quire F ′′ to strongly decrease. Indeed, under the model assumption, F is increasing
so F ′′ cannot strongly decrease on a large interval. For instance, the square root or
logarithm function would never lead to (b1i).

Unambiguous satisfaction of buyers with precision (a2ii, b2)
Buyers gain surplus when both quantities and prices decrease with precision (accord-
ing to Proposition 14 since ρ < ρ). This may be at the expense of the aggregated
profits (and the welfare) since capacity owners would then sell fewer quantities at a
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lower mean price. When F is convex, this corresponds to a strong increase in F ′′

while if it is concave, such a situation would appear when F becomes flat (F ′′ → 0−).

Ambiguous preferences (a2i, b1ii)
In (a2i, b1ii), equilibrium outputs (price and quantities) move in opposite directions
when precision increases: the preferences will then depend on the relative weight of
the two effects. For example, when buyers are better informed, the concavity of the
supply curve may result in a large decrease of the price when the state of the world is
low and in a large increase of the quantities sold when the state of the world is high:
the aggregated profit may increase when mean quantities increase enough. These
cases correspond to situations where F ′′ does not move sharply.

After giving some intuition about the preferences by distinguishing convex and concave
cases, we characterize the preferences. Investigating four different criteria of optimal
information disclosure, we highlight the existence of four distinct thresholds for the second
derivative of η:

ρ = F ′′

F ′
(η′ + an) ρ̄ = ρ+ L′

Q
ρ = ρ̄− L′(L′−(n−1)F ′)

(n−1)QF ′
¯̄ρ = ρ̄+ L′(L′+F ′)

QF ′

As noted above, few computations show that ρ < ρ under Assumption A4 for all n.

η′′(Q) ρ ρ ρ̄ ¯̄ρ

Welfare λW = 1 λW = 1 λW = 1 λW = 1 λW = 1
2

Buyers’ Surplus λS = 1
2 λS = 1 λS = 1 λS = 1 λS = 1

Owners’ Profit λP = 1 λP = 1 λP = 1 λP = 1
2 λP = 1

2

if m(Q) > 0 λC = 1 λC = 1 λC = 1
Majority-Winning

if m(Q) < 0
λC = 1 λC = 1

λC = 1
2 λC = 1

2 λC = 1
2

Table 4.3: Maximizing precision for n > 1

Table 4.3 sums up the previous results and gives an insight about the disagreement be-
tween buyers and owners and, amongst heterogeneous owners. It only represents the
buyers’ surplus for n>1 since the monopsony always prefers full information. Full infor-
mation is preferred by both the buyers’ side and the owners’ side (in terms of surplus)
when the relative increase of η derivative is approximately the same as the relative in-
crease of the price derivative (i.e. η′′(Q)

η′(Q)
' F ′′(Q)

F ′(Q)
). When Q is large enough, it becomes

F ′′′(Q)
F ′′(Q)

' F ′′(Q)
F ′(Q)

38. Then the supply curve should be such that derivatives have relatively
the same behavior until the order 3. However, conflicts arise between buyers and owners
when this is not true anymore. For a rather slowly increasing (or decreasing) η (η′′(Q)

small) with respect to the supply function, no information will maximize the buyers’ sur-
plus while the welfare, as well as all owners’ preference criteria, will be higher under full
information. Recalling that the mean quantities increase with λ when η′′ < −nF ′′, we
deduce in this case that Qh increases faster than Ql decreases. Recalling also that the

38It implies that the price function is K-bilipschitz with K around 1 up to the order 3.
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marginal gain to increase the quantity is everywhere the same, the gain from getting more
quantities in the high state (and getting less in the low state) is offset by paying more
in the high state (with a price decrease in the low state not large enough). Because of
the presence of competitors, when η does not increase rapidly enough, the buyers are
worse off with information39. Unsurprisingly, we find the owners’ profit on the other side
of the spectrum. Indeed, in this example, an increase in the mean quantities makes the
profit higher. η′′ < ρ correspond to cases (a1), (a2i) and (b1i). As noted above, (b1i) is
unrealistic. It means that in the concave case, we do not expect disagreement from the
buyers’ side (cases (b1ii) and (b2) are such that buyers prefer information). In addition,
we do not expect that all the criteria will be in favor of information. From what we have
described above, we deduce that, in the convex case, disagreement from the buyers is
likely when the supply curve becomes linear rapidly (roughly case (a1)).

On the contrary, when η is increasing quickly (with respect to the supply function), no
information is chosen by owners as a whole. Thus, the more F ′′ increases, the more
the owners might be disadvantaged by precision. It corresponds to situations where the
supply curve increases rapidly (and is convex) (roughly case (a2ii)) or where the supply
curve becomes rapidly flat (and is concave) (roughly case (b2)).

For the welfare-maximizing criterion to choose no information, an even steeper change
is needed. The welfare is more influenced by the owners than the buyers because of
the strategic behavior of the latter. However, at the moment of designing the capacity
remuneration scheme, the supply curve is not known yet and the system operator has to
decide for the precision of information. The welfare cannot be deduced either, and the
solution found is often to ask the stakeholders about their preferences directly. This is
where the majority-winning criterion takes all its purpose.

When considering the majority-winning criterion, conflicts can arise more often than in
the surplus cases. In practice, in CRMs, the uncertainty on the intercept is unlikely to
be big enough for the group of owners preferring full information to overweight the group
of owners, which are certain to sell under both states of the world. In other words, if the
public authority puts all the owners in a room and makes them vote for their preferred
level of information, it is more likely to be "no information" than under the usual profit-
maximizing criterion. It follows that, alone, a public consultation might not be fully
trustworthy and need to be completed by a good knowledge of both the economics at
stake and the system specificities in order to knowingly weight each actor’s view and
advice.

Interestingly, buyers and owners can agree when profits are considered, but they may
disagree when majority-winning is the decision-making process and vice versa.

39To understand why, imagine the same equilibrium with a high signal (i.e. the same couple (price, quantity))
with two different supply curves and assume an increase in the precision: sFOC indicates that quantities will
increase more in the case of the softest curve since the price derivative is lower. Under competition, this increase
may be high enough (because all the buyers increase their demand together) to offset the fact that the supply
curve increases at a lower rate and may lead to a higher price with the softest curve.
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4.3.9 Large number of buyers

When we move away from an oligopsony with few buyers (as n increases), results simplify.
First, let us study the effect of n on the equilibria quantities:

Lemma 32. Total quantities at the high and low equilibria are increasing concave func-
tions with respect to n.

The fact that quantities increase with the number of buyers is in line with the existing
literature on oligopsonies (see Okuguchi [2000]). The proof uses sFOC with Q = nq.

Individual markdown decreases with respect to n. When n increases, the share of each
individual buyer decreases and an increase of the market price (by increasing marginally
an individual consumption) affects less the buyers than if they buy individually large
amounts of quantities. One can notice that the derivative goes to zero when n becomes
large enough, meaning that in a competitive state, additional buyers stop increasing the
aggregated demand. Indeed, concavity emerges naturally since even if a new buyer has
the same incentives to meet the needed demand as any previous entering agent, price
increasing (and then the net incentives decrease), the new equilibria shift upward more
slowly when n increases.

This may seem coherent with the fact that buyers are more incentivized to get capacities
when they are numerous. Indeed, the decreasing marginal value curve represents the
decreasing willingness to pay for additional units of capacity. The fact that all buyers
highly value the first capacity units means that buyers are individually ready to get more
capacities (relative to their market share) for a large n. In this case, more aggregated
capacities are sold.

When n is large enough, the effect of information on equilibria outputs simplifies:

Lemma 33. For any thrice differentiable supply curve, it exists N ∈ N such that ∀n > N :
If (a) F ′′ > 0, then (a2i): ∂ E(P ∗)

∂λ
> 0 and ∂ E(Q∗)

∂λ
< 0. If (b) F ′′ < 0, then (b1ii):

∂ E(P ∗)
∂λ

< 0 and ∂ E(Q∗)
∂λ

> 0.

When n is large enough, with respect to the curvature of the bid function, outputs can
move only in one direction. Results become more intuitive: mean prices and mean quan-
tities move in opposite ways with information precision. If the supply curve is concave,
more information increases the quantities dramatically in the high state (with limited
prices increase) and slightly lowers the quantities when the state of the world is low (with
prices dropping a lot). The reverse mechanism appears when the supply curve is convex.

Following Lemma 33 and the results of the previous subsections, we can derive the pref-
erences of the agents when n is large enough as well as the optimal precision when con-
sidering welfare:
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Proposition 18. When n is large enough, preferences can be characterized with respect
to the convexity of the bid function:

F ′′ −F ′(F ′+a)
aQ 0 F ′+a

Q

Buyers’ Surplus λS = 1 λS = 1 λS = 1 λS = 1
2

Owners’ Profit λP = 1
2 λP = 1 λP = 1 λP = 1

if m(Q) > 0 λC = 1 λC = 1 λC = 1 λC = 1
Majority-Winning

if m(Q) < 0 λC = 1
2 λC = 1

2 λC = 1 λC = 1

Welfare λW = 1

Table 4.4: Maximizing precision under perfect competition

When the market power vanishes, information can not hurt the welfare when this compe-
tition effect is null. Then, decreasing the precision of information reveals that the policy
maker favors one side or that the market is not competitive enough.

As discussed in Section 4.1, it is decentralization that introduces the issue of competition
in this market. In this sense, the perfect competition case is of special interest when
considering capacity markets. For not having strategic behaviors on the buyer-side, there
is an obvious relationship between the perfection competition case and the centralized
capacity market case where a benevolent central planner directly procures the capacity.
If her objective function is the welfare and there is no asymmetry of information, then
the two situations are equivalent.

4.4 Case study: model parametrization

In a simple framework, we have shown that the welfare-maximizing design can be difficult
to derive from public consultations. Indeed, it might be aligned with the profit-maximizing
design but due to capacity owners’ heterogeneity, the majority-winning design might not
even be profit-maximizing. In addition, ex post requirements are never consensual: their
implementation is equivalent to favoring one or the other type of actors. The model
results are sensitive to the level of parameters, meaning that generalizing the results to
actual situations is not straightforward. Apprehending the empirical likelihood of each
situation requires to investigate plausible situations. Indeed, the theoretical model has
been kept rather general, with limited assumptions on the parameters. Such implicit
consideration of market characteristics makes the model handy and adaptable but limits
the intuitiveness of the results.

With this respect, German data from 2010 is used to parametrize the model and un-
derstand to what extent specific assumptions on parameters might affect preferences on
information precision. Using data from 2010 presents a double advantage: (i) it sets aside
discussions on the interactions between renewables integration and security of supply, (ii)
it also prevents from over-interpreting the results in terms of policy recommendations.
Indeed, reasoning in a hypothetical framework -Germany never did implement a capacity
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market- allows testing a broader scope of hypotheses than would a real-life capacity mar-
ket allow. Mainly, the data derived from existing markets would already account for the
implemented design, be it with ex ante or ex post requirements, and, as such, be biased
in some way. We thus build up a hypothetical consultation process where preferences are
assessed under different levels of demand, penalty (or cost of voluntary peak shaving), and
competition. Plants are assumed to have only two sources of income: energy and capac-
ity revenues. Thus, they bid their profit gap on the capacity market as in a competitive
environment [Keles et al., 2016; Iychettira et al., 2014; Hach and Spinler, 2016]. Capacity
buyers being the strategic side of the model, we test different values for the slope, the
intercept, or the degree of competition. As in the majority-winning case, we restrict the
prior to an equiprobability of the states of the world (µ0 = 1

2
). The objective is to mimic

different market conditions, in a way different designs proposed in a public would, to bring
out how the actors preferences in terms of requirement definition are affected. The reader
uninterested on the assumptions around parametrization can go directly to the results in
Section 4.4.3.

4.4.1 Supply-side assumptions

The model allows for all types of supply-side behavior as long as the supply curve is
continuous and unaffected by the signal. For tractability purposes, this case study will
consider a competitive situation on the supply-side40.

In this context, capacity owners bid their participation constraint, which can be approx-
imated by the profitability gap in a market that already provides the right availability
incentives. This complies with the zero profit competitive paradigm and allows building
a supply curve with transparent assumptions. In an exercise similar to Joskow [2007], we
build up an estimation of the profit gap. However, two main elements differ from Joskow’s
methodology. First, capacity owners are assumed to be remunerated only for their energy
produced and capacity, disregarding ancillary, and balancing revenues. Second, the use
of representative units (base, intermediate, and peaking units) is too restrictive for our
purpose. We thus use He et al. [2013]’s "Dual Exponential" estimation of the merit or-
der41 to generate a continuous merit order. The day-ahead market revenues are computed
based on 2010 hourly price data from EPEX Spot and abstracting from non-linearities:
ramping costs are disregarded. A unit is considered as producing and earning money
each time the price is higher than its marginal cost. To account for fixed operation and
maintenance costs (O&M), the producers as represented by the "Dual Exponential" are

40Although CRMs commonly mitigate supply-side market power, the absence of strategic behavior from ca-
pacity owners remains a strong assumption (which is not required by the theoretical model).

41Based on publicly available data such as EEX (European Energy Exchange) hourly prices for 2010, available
generation capacity, outages, historical production, wind and solar production, vertical load, consumption, and
exports, they empirically estimate the German merit order from 2010 considering that prices are function of a
normalized load. The vertical load is increased with exports and nuclear and lignite unavailabilities. The maximum
value of the resulting "equivalent transmission grid load" is then used to normalize the data set. Comparing three
specifications, they find the "Dual Exponential" to perform better. See He et al. [2013] for further details.

169



Chapter 4. Bayesian Persuasion in Capacity Market Designs

assigned a technology based on installed capacity in Germany ordered according to their
merit. Figure G.1 summarizes the main computations. For instance, the first 26% of the
merit order are assumed to reflect renewable units bidding. This is because geothermal,
wind and solar made up to 26% of installed capacity in 2010 according to the German
Federal Ministry for Economic Affairs and Energy - BMWi. Then follows hydropower,
nuclear, coal, biomass, gas and oil-fired power plants. Once each unit corresponds to a
category, fixed O&M are assigned and deduced from the revenues to derive a net rent
(see Table 4.5). Renewables are assumed to bear no fixed costs because subsidies ensure
their profitability. Similarly, hydropower is known to bid at opportunity cost and will
effectively recover its full costs: a zero fixed cost is assumed for those two technologies by
simplification. The resulting net rent for each unit (fixed costs being allocated on a fuel
basis) is represented in Figure G.1. When considering the day-ahead market as the only
source of revenues, more than 20% of the installed capacity is not profitable42.

Considering that the market participants bid their profit gap on the capacity market,
their bid is deducted from the net rent: it is the maximum between zero and the opposite
of the net rent. Those bids are then ordered from the lowest to the highest, and the corre-
sponding capacity is derated43 with a fuel-specific coefficient (see Table G.1). Abstracting
from already profitable units as well as possible new entrants (investments), the result-
ing distribution is approximated on three intervals with a cubic spline function to obtain
a thrice differentiable monotonic supply curve44. The resulting spline approximation is
represented along the estimated bidding curve in Figure 4.2.

Fuel Derating Fixed O&M (e/kW)
Nuclear 0.8524 82.1
Coal 0.8758 30
Gas 0.9293 20
Oil 0.8804 15

Table 4.5: Cost assumptions for Germany in 2010 based on Villavicencio [2017] and the EMR
delivery body

4.4.2 Demand-side assumptions

In the model, the behavior of the demand-side embedded in the linear marginal value
results from 5 parameters: the slope (a), the signal (sh or sl), the precision of the signal
(λ), the uncertainty (zh−zl) and the level of competition on the market (n). As discussed,
model parameters are exogenous as they are affected by the capacity market design.
Mainly, the level of the intercept depends on the capacity target. In addition, the higher

42It is noticeable that the alternative specifications proposed by He et al. [2013] would lead to similar results.
43Using the UK capacity market deratings as in https://www.emrdeliverybody.com/Lists/Latest%

20News/Attachments/114/Capacity%20Market%20Auction%20Guidelines%20July%207%202017.pdf last accessed
on February 4th, 2019.

44The spline coefficients are summed up in Table G.1.
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the non-compliance penalty, the greater the slope (a) of the marginal value. In the absence
of a capacity market, or even a reliability target –as in Germany–, none of the parameters
are straightforward so several cases will be discussed. Several capacity market designs are
compared to assess the sensitivity of preferences regarding requirement definition. They
differ in terms of non-compliance penalty level, competition level, quantity target, and
degree of uncertainty. Some of those elements are calibrated –to some extend– to the
German situation in 2010, others are extrapolated from existing CRMs.

Various sources are used to select possible capacity targets and thus derive the corre-
sponding intercepts. Indeed, the use of past data provides the advantage of knowing the
risk realization (peak demand) and eases the estimation of potential targets in the ab-
sence of official reliability criterion. For instance, the European Network of Transmission
System Operators’s (ENTSO-e) transparency platform provides hourly demand for Ger-
many with a 91% coverage: the maximum hourly demand over 2010 (around 79.9 GW) is
used as a minimum capacity requirement in this case study. Scaling it up to cover 100%
of the German demand leads to a peak demand of roughly 87.1 GW. This lends in the
second interval. In turn, the IEA considers that a reasonable reserve margin45 is between
15 to 20% (see Figure G.2 from International Energy Agency [2010]). The two extremes
of what the IEA considers a "reasonable" interval provides the two additional points46

to test the sensitivity of the preferences to the level of procurement (i.e., the local shape
of the supply curve). The set of capacity targets considered are Qt

1 = 79.9, Qt
2 = 87.1,

Qt
3 = 100.1 and Qt

4 = 104.5 as displayed in Figure 4.2.

With respect to uncertainty, we consider three situations: (i) no uncertainty, meaning
that zh = zl = aQt

i + F (Qt
i), (ii) 1% uncertainty where zh = F (1.01Qt

i) − 1.01aQt
i and

zl = F (0.99Qt
i) − 0.99aQt

i, (iii) 2% uncertainty with zh = F (1.02Qt
i) − 1.02aQt

i and
zl = F (0.98Qt

i) − 0.98aQt
i. As a benchmark for such levels, RTE [2015] presents the

official forecasts of total obligation for delivery years 2016 to 2020. The high and low
scenarios deviate from the baseline by less than 3% (see Figure G.3). This is considered
as an upper bound bearing. For the sake of simplicity, the corresponding situations will
always be called through the corresponding target (Qt

i).

With respect to the slope (a), centralized demand curves do provide a useful benchmark
although they lie on a different rationale. Indeed, in a centralized market, a sloped demand
curve reflects the decreasing probability of black-out as the reserve margin increases. In
decentralized capacity markets, LSEs will confront the cost of capacity to their alternative
options. Those differ very much from one design to the other: paying the non compliance
penalty is commonly considered as the cost of the option, alternatively, one can incentivize
changes in load pattern to reduce its portfolio’s peak demand as it has been experienced

45According to the Energy Information Administration (EIA), the "reserve margin is Capacity−Demand
Demand

, where
"capacity" is the expected maximum available supply and "demand" is expected peak demand" https://www.
eia.gov/.

4687.1 GW increased by respectively 15% and 20% leads to capacity targets of 100.1 GW and 104.5 GW.
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Figure 4.2: Estimated supply and demand curves (no uncertainty) for Germany 2010

in France47. However, the continuous discussions with respect to the careful definition
of penalties48 suggest that they would indeed be designed so private opportunity costs
converge towards social opportunity costs. In this case, the aggregated demand curve of
a decentralized mechanism could equate a centrally built linear demand curve. We thus
turn towards existing centralized mechanisms to get an idea of what could be considered
as credible slopes for the aggregated demand. The 2022-2023 demand curve for the UK is
piecewise linear, the first segment decreases by around 17£/MW/Year for each additional
megawatt procured [DECC, 2014]. On the second segment, the slope is almost twice
as steep. Similarly, the NYISO demand curve for the New York Control Area also has
a slope around -30$/MW/Year once converted to comparable values. More constrained
areas such as New York City, Long Island, and the "Lower Hudson Valley Zone" (G-J
Locality) have much steeper slopes to reflect the high opportunity cost [NYISO, 2018].
Increasing the range to account for possible changes in load pattern, a range of slopes
between 5 and 50e/MW/Year decrease in price for each additional megawatt procured is
considered. As an example, Figure 4.2 represents the various targets considered.

As for the degree of competition, European Commission [2014] states that four major
retailers supply the German electricity consumers but households were able to choose

47For instance: Grand Lyon (metropolitan area) has investigated process changes in water treatment plants to
locate electricity-intensive tasks out of peak hours.

48For instance, setting a penalty high enough would increase the slope and reduce the market power problem,
however, setting the penalty too high can result too risky, and lead to buyers exiting the market which reduces
the competition.
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between no less than 65 different retailers in 2011 while the number of retailers operating
in the German market was above a thousand (all categories of consumers included). For
the sake of the exercise, we will test the preferences of the buyers for respectively four
and sixty-five capacity buyers as well as the competitive state.

In the process of designing a capacity market, it is common to organize public consul-
tations to gather insights from the actors. The different combinations of the previously
defined parameters can describe distinct market structures, providing the stakeholders
with some context to build their preferences. For instance, a steep slope (a = 50) sug-
gests either a high penalty for under procurement (capacity market characteristic), or
expensive demand response (system characteristics). Similarly, perfect competition is a
proxy for a centralized procurement from a benevolent public authority (minimization of
the deadweight loss). The intercept reflects the preferred level of reliability. In turn, this
determines which owners will be affected by the uncertainty.

4.4.3 Results

The previously defined parameters can be combined to mimic market designs with dif-
ferent features and system specifics: they provide a realistic set up to the model. Each
of the twelve resulting designs (three levels of competition and four levels of opportunity
cost) represents a credible situation to put into public consultation so to collect prefer-
ences with respect to requirement definition. For instance, perfect competition is highly
unlikely in the electricity sector, but centralized capacity markets act on behalf of the
consumer in a non-strategic way -as if perfectly competitive-. It is thus a good proxy
for a centralized mechanism. As discussed in Section 4.3.9, perfect information is always
welfare-maximizing in perfect competition: a centralized mechanism with ex post pro-
curement would not make sense unless the public authority’s objective function is not
welfare. The preferences under perfect competition are thus displayed as a benchmark so
to measure how market power affects preferences as well.

To analyze the actors’ preferences, we name the possible sets of preferences with respect
to the actors disagreeing with perfect information –ex ante requirements (see Table 4.649).
Consequently, the set of preferences called "Buyer-side" is characterized by all actors but
the demand-side preferring full information. "-" pictures the absence of disagreement: all
actors prefer full information. Similarly, the "Majority" sees individual capacity owners
preferring low information while all aggregated surpluses are all maximized by full infor-
mation. With this respect, remind that in the capacity market, the size of uncertainty is
relatively small compared to the size of the market. It follows that the preferences of the
capacity buyers who are certain to sell in any case will dominate the majority-winning
case. In the "Owner-side" set, only capacity owners do disagree with full information
while in the "Owner and welfare" set, only capacity buyers prefer additional information.

49Note that only the thresholds differ in perfect information, but the sets of preferences are the same: we thus
use the same name.
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η′′(Q) ρ ρ ρ̄ ¯̄ρ

Welfare λW = 1 λW = 1 λW = 1 λW = 1 λW = 1
2

Buyers’ Surplus λS = 1
2 λS = 1 λS = 1 λS = 1 λS = 1

Owners’ Profit λP = 1 λP = 1 λP = 1 λP = 1
2 λP = 1

2

Majority-Winning m(Q) < 0 λC = 1 λC = 1 λC = 1
2 λC = 1

2 λC = 1
2

Buyer-side - Majority Owner-side Owners and
Naming: sets of preferences welfare

Disagree with information

Table 4.6: Maximizing precision for n > 1 and m(Q) < 0: Naming the sets of preferences

The size of the uncertainty (zh − zl) does not affect much preferences since information
becomes increasingly valuable for all parties as it increases. It only affects the equilibrium
outcomes (see the frame Accounting for uncertainty and Chapter H for a discussion on
the effects of uncertainty). For the sake of simplicity, Table 4.7 abstracts from uncertainty
(zh = zl) to depict the preferences of the actors under each of the predefined settings. Syn-
thetizing the information in Table 4.7, it is clear that ex ante requirements would probably
emerge from a "global" consultation. Indeed, public consultations are often conducted for
all design features at once i.e. stakeholder are to be consulted on requirement definition
at the same time as on other design features such as the non-compliance penalty of the
buyers (a), the level of requirement and sometimes even the obligated actors. In this
sense, the buyer-side prefers information unless the implicit penalty (a) is low enough.
Similarly, the supply-side only prefers ex post payments in the limited situation where the
supply curve becomes flat50 (Qt

3). If the capacity target has not been announced, they
would not take the chance to formulate such preference. The same reasoning applies to
the capacity buyers, who are even less likely to benefit from reduced information.

On the contrary, if the bulk of the capacity market has already been defined, as in the
model framework, meaning that the opportunity cost and the level of centralization are
known as well as the reliability targets, actors can build firm preferences with respect to
the requirement definition.

When competition decreases (lower n), capacity buyers are able to use their market power
and information becomes more and more valuable as the size of the capacity buyers
increases (n decreases). This implies that their preference for a lower degree of information
(λ = 1

2
) becomes increasingly constrained all things equal: situations where all actors

prefer additional information become more probable as n decreases (Table 4.7). Namely,
a plays a role in preferences: a high slope makes the buyers willing to acquire information.
The reason is that when the markdown is low, and when the penalty is high, being aligned
with the state of the world matters. On the contrary, when a decreases, the implicit
penalty decreases as well, so for a reduced market power (high n), the convexity of the
price dominates any other effect in the buyers’ preferences similarly as in the perfect

50Or alternatively when it increases rapidly, which is not the case here.
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Qt1 = 79.9 GW Qt2 = 87.1 GW Qt3 = 100.1 GW Qt4 = 104.5 GW
n =∞ a = 50 - - Owner-side -

a = 20 - - Owner-side -
a = 10 Buyer-side - Owner-side -
a = 5 Buyer-side - Owner-side -

n = 65 a = 50 - - Owner-side -
a = 20 - - Owner-side -
a = 10 Buyer-side - Owner-side -
a = 5 Buyer-side - Owner-side -

n = 4 a = 50 - - Owner-side -
a = 20 - - Owner-side -
a = 10 - - Owner-side -
a = 5 - - Owner-side -

Table 4.7: Sensitivity of the form of disagreement to the slope, the competitive equilibrium and
the competition

competition case. This explains the antagonism of preferences for the high competition
case with a gentle slope in Qt

1.

In this framework, the role of the implicit penalty and competition appears limited in
terms of preference. However, both have a significant effect on surplus allocation and
welfare. As the implicit penalty increases, deviations from the competitive equilibrium
become more and more costly, reducing the structural under procurement (see Chapter H
for a discussion on structural under procurement due to the imperfect competition). As
well, the higher the number of buyers, the lower the quantities bought by each of them
are, and finally, the lower their individual market power is. In this sense, the total welfare
increases with both n and a by way of a reduction of the deadweight loss.

Accounting for uncertainty

Figure I.1 to Figure I.16 give further insights on the preferences in Table 4.7 by
representing the differences in mean quantities and mean prices in full information
compared to the no information case (λ = 1

2
). When the represented difference is

positive, the mean price (resp. quantity) increases with information.

Figure I.1 and Figure I.2 illustrate the demand-side disagreement at Qt
1: capacity

buyers use information to reduce the mean quantities procured. However, information
leads to an increase in mean prices as in the situation (a2i). Unsurprisingly, when
the penalty is low, additional information becomes detrimental to their surplus –as
the mean price increases with information anyways.
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In comparison, when n = 4 (always at Qt
1, see Figures I.9 and I.10), the mean price

still increases with information. The effect of information on the mean quantity highly
depends on demand parameters: when a is high, situation (a1) arises, but a low (a)

leads to (a2i). Table 4.7 indicates that information improves the situation of capacity
buyers even though the mean quantity might slightly increase in information (when
the penalty (a) is high enough). Compared to the case where n = 65, the increase of
the mean price in information is decreasing more when (a) decreases. It means that
when (a) decreases, the market power in the case with information do increase. It
is sufficient to make buyers prefer information (with respect to the situation where
n = 65). Thus, the penalty may have a different impact on the equilibrium outcomes
(and the preferences), according to the market structure (i.e. level of competition).
As the mean price increases in precision with both market structures, capacity owners
prefer information.

At Qt
2 however (Figures I.3, I.4, I.11 and I.12), both the mean price and the mean

quantity increase with information (case (a1)) whatever the level of competition.
Again, capacity owners always prefer information in this situation. With respect
to capacity buyers, they prefer information. Contrary to Qt

1, the increase of the
mean price in information increases when (a) decreases. Thus, the effect of more
information does not always multiply the negative effect of a lower penalty on the
mean prices and quantities (as the structural under procurement increases when (a)

decreases).

At Qt
3, capacity buyers prefer information as it allows an important decrease in the

mean price while the mean quantity decreases (n = 4, Figures I.13 and I.14) (case
(b2)) or even increases slightly (n = 65, Figures I.5 and I.6) (case (b1ii)). This
situation creates a clear loss for capacity owners who then prefer no information.

At Qt
4 (Figures I.7, I.8, I.15 and I.16), the mean quantities are decreasing in infor-

mation while prices do increase (case (a2i)). Better alignment with the state of the
world is enough to make capacity buyers gain from information in this situation.
Naturally, capacity owners are satisfied with the resulting increase of the mean price.

4.4.4 Discussion

In our framework, disagreement between profit-maximizing and majority-winning criteria
is improbable. Indeed, if the price increases with information precision (so the majority
criterion selects full information), then the profit is likely to increase as well since the
marginal effect on quantity is much lower than the marginal increase price. When such
a disagreement exists locally, it corresponds to an unstable situation, given the uncer-
tainty. Indeed, the "Majority" type of disagreement is characterized by a price decreasing
in information precision while the profit is still increasing. However, it is only natural
that the variation of profit closely follows the variation of price when information pre-
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cision increases. It follows that between the situation where no party disagrees (profit
and price increasing in information) and the "Owner-side" type of disagreement, only a
small interval will allow price and profits to evolve in opposite directions when informa-
tion increases. For instance, when n = 65 and a = 5, disagreement between capacity
owners appears when the demand curve crosses the supply curve in the rather small in-
terval Qt ∈ [101940, 101960]. This represents less than 0.2% of the total capacity to be
procured at this point. In comparison, the French TSO, RTE, considers a 2% uncer-
tainty between its high and low scenario [RTE, 2015]. Consequently, the "Majority" type
of disagreement is empirically more of a buffer zone between capacity owners preferring
full information towards a preference for reduced information as the markdown becomes
increasingly convex ( or less concave) –compared to the convexity of the supply function–.

Finally, the "Owner and welfare" type of disagreement does not appear in the case study.
It is also an intriguing result from the model: how could a central planner prefer low
information as a design? Once again, the answer lies in the market power. From a
welfare perspective, it might be preferable to have lower information in order to prevent
the oligopsony from abusing its market power by buying too little capacity even from
a welfare perspective. More precisely, for a central (welfare-maximizing) authority to
prefer a lower precision, the supply curve behavior needs to be radically changed. In the
convex case, the supply function should be increasing more than exponentially. In this
situation, a small change in quantities allows for great variations in prices, which greatly
benefits the oligopsony under perfect information: the informational gains of the capacity
buyers are lower than the respective losses of the capacity owners. However, this situation
is unlikely to happen with a competitive behavior from the existing capacity owners as
pictured here. Indeed, the curve of stacked profit gaps is rather smooth because they
already recover at least their marginal cost from the energy market. Nevertheless, the
supply curve estimated in Section 4.4.1 abstracts from possible new entrants who would
need to recover their investment costs in addition to fixed ones: if investments were to be
necessary to comply with the reliability target, the end of the competitive supply curve
might become very steep since those units would also need to recover investment annuity
costs. Only in this case, or in a market with specific supply-side strategic behavior could
the "Owner and welfare" type of disagreement emerge.

However, those results remain indicative as not all the assumptions are empirically verified
(or verifiable). Mainly, the shape of the supply curve is deemed independent of the
signal, which reduces the range of possible strategic behaviors. In addition, the only
uncertainty in the model regards the level of required capacity, meaning that all remaining
information is public and common to all actors (shape of the supply curve, the elasticity
of the marginal value and the number of market participants). Those assumptions are
obviously little realistic: when a public authority wants to design a capacity market, she
does not benefit from such information yet. Only the first market clearings will convey
accurate information on the supply and demand. In the meanwhile, it still needs to decide
what design to implement. For all those reasons, a theoretical case study is preferred to
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an actual empirical application based on publicly available auction data. This chapter
provides insights on actors’ preferences in terms of requirement definition under different
options with respect to the other design features. This echoes the stakeholders’ response
to the British public consultation on the electricity market reform in 2011 [DECC, 2011]:
it is complex to discuss implementation features without a view on the global design.

4.5 Conclusion

In this chapter, we investigate information disclosure in capacity remuneration mecha-
nisms (CRMs). We argue that the precision of the available information is embedded
in the design itself. By tailoring CRMs in different ways, the public authority controls
the amount and accuracy of the information revealed by the market and consequently
affects the agents’ forecast errors on their optimal level of capacity needed. By mostly
choosing forward capacity markets, public authorities around the world limit the ability
of LSEs to predict their future capacity demand efficiently. To hedge for the lead time
related uncertainties, the capacity requirements are more or less precisely stated at the
moment of procurement. The UK or eastern US type of centralized procurement leaves
no doubt on the aggregated level of demand: the demand curve presented at the auction
is the legal capacity requirement. The state of the world is known, the requirements -and
thus procurements- are either high or low. On the contrary, the former MISO or former
PJM as well as the French mechanism leave the LSEs estimate and secure their load in
a decentralized way. Where ex ante requirements in a perfect competition framework
would resume to a centralized procurement, ex post requirements penalize forecast errors.
This represents an uncertainty around the state of the world that cannot be fully hedged.
In other words, the French mechanism does not allow full information disclosure as its
counterparts do. If the centralized versus decentralized discussion is recurrent in the lit-
erature, this CRM feature is rarely disentangled from the timing of requirements (ex ante
vs. ex post) which does affect risk sharing and incentives [CIGRE, 2016].

Symmetrically to Roy et al. [2019], we model heterogeneous price taker capacity owners
and homogeneous buyers competing a la Cournot under uncertainty on their level of ca-
pacity obligation. We investigate both the effect of a decentralized capacity mechanism
under imperfect competition on the equilibrium and the actors preferences in terms of
information disclosure (requirement definition). The reference model is adapted to ca-
pacity markets by considering an oligopsony – instead of an oligopoly. By introducing
a decreasing slope for the buyers’ marginal value –instead of a constant marginal cost–,
we can analyze the slope of the marginal value curve in terms of implicit penalty. It
represents the cost of not procuring enough capacity like the legal penalty or the ability
to release Demand Response (DR) in the short term. Whereas Roy et al. [2019] was
focused on preferences, we add results that deal with the industrial organization. For this
purpose, we use the function η(Q, n) introduced to enhance the influence of the market
structure and asymmetric incentives on the equilibrium outcomes. It is equivalent to the
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markdown at the equilibrium. Naturally, results indicate that the aggregated quantities
procured increase with the number of buyers. As a consequence, the decentralized ca-
pacity mechanism will tend to under procure capacity compared to a benevolent central
planner (perfect competition case). In practice, this means that if the parameters of the
market (i.e. the penalty and the reward) are not adjusted accordingly, both price and
quantities will be unnecessarily low compared to the optimal situation from the welfare
point of view.

In line with Roy et al. [2019], we consider 3 decision criteria: the capacity buyers’ surplus
and capacity owners’ profit as well as the majority criterion. We add the welfare criterion
since it is usually the objective of the public authority to maximize the welfare. The
majority criterion mimics the preferences that could be expressed by market participants
during the consultations organized previous to the regulation change. Indeed, regulation
should seek welfare maximization, and real-life imperfect information makes actors’ pref-
erences a good proxy. For homogeneous buyers, their individual preference will always
be aligned with the surplus maximizing criterion. However, heterogeneous capacity own-
ers’ preferences might differ at the individual level expressed in a consultation process.
The latter indeed gains relevance with the growing competition in electricity markets and
the raising concern about plants’ profitability: each plant is now individually required to
be profitable and cross-unit subsidies abandoned. In this context, reasoning in survival
terms brings out interesting considerations. Consistently with the diversity of capacity
market designs in terms of requirement definition, the model introduces cases where buy-
ers and owners agree as well as the reverse. As in the reference model, we have found
that the preferences about the information disclosure depend mainly on the supply curve.
Following the economic intuition, results show that full information is mostly preferred.
Nonetheless, conflicts between the categories of agents may emerge. We highlight the
preferences in terms of precision for each group under the assumption that the public
authority might be influenced by one or the other depending on its utility (mission of
public interest) as much as the efficiency with which they make their preferences heard.
Antagonism amongst capacity owners might emerge when the interests of the owners
guaranteed to sell in any case differ from the interest of the owners affected by the uncer-
tainty. When the sum of people in the first group is much higher than the sum of people
in the second group, the aggregation of private preferences may not be profit-maximizing
in theory. Besides, even without considering market power abuse from the supply-side,
we have found that information can be detrimental to the welfare. In addition, letting the
owners strategically use information would probably increase the number of cases where
the welfare decreases with precision.

In terms of CRMs, this chapter sheds light on the market power of the demand-side. In
this simple framework, without risk aversion, we show that ex post requirements might be
preferred, even by the buyers’ side (whose the surplus is state-contingent). However, in
this model, a consensus for no information is never generated. Thus, retaining information
is always detrimental to at least one side. We show that no information can be welfare
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improving when the markdown increases quickly with information (relative to the price
function). A case study is built based on German data (2010) to develop a better under-
standing of the model implications. For tractability reasons, capacity owners are assumed
to bid competitively their profitability gap. Then, various market structures in terms of
demand level, slope or competition are applied against the supply curve to determine the
actors’ preferences under different circumstances. Results show that information becomes
more valuable for LSEs as their number decreases. Indeed, as the number of capacity
buyers and the implicit penalty decrease, the markdown mostly drives the equilibrium
decisions and consensus towards full information becomes more probable. Naturally, with
respect to equilibrium quantities, under procurement tends to increase as the number of
capacity buyers decreases. A reduction in the implicit penalty further increases market
power. When the market power is important, the level of under procurement can be such
that SoS would be endangered under any structure of information. This result sheds light
on the importance of setting an adequate penalty. Indeed, the implicit penalty drives not
only the preferences, but also the market power and the optimality of market outcomes
from a welfare perspective.

Fortunately for policy makers, results suggest the efficiency of consultations as a way to
uncover actors’ preferences: the majority type disagreement appears empirically unlikely.
In addition, the welfare type of disagreement would not naturally occur in real capacity
markets. Indeed, for information to be detrimental to welfare, the curvature of the supply
function has to be radically modified. This situation is improbable in capacity markets if
only existing units compete. However when new units are needed, the supply curve can
be quickly increasing at its end. Indeed, they might need to recover much more from the
capacity market.

Setting aside the risks related to market power abuse from the demand-side, decentralizing
markets with ex post requirements are often presented as a way to increase system reliabil-
ity at a limited cost due to the accurate capacity cost allocation [RTE, 2014; Woodhouse,
2016]. By making capacity buyers accountable for what they buy, the classical "skin in
the game" argument may play an important role. This argument is empirically nuanced
by the actual hedging LSEs benefit from: demand uncertainty is known to average out
with aggregation, but end consumers have their hands on their load pattern. If LSEs are
not able to better forecast their peak demand than the central authority, then shifting
uncertainty on LSEs becomes only risk sharing, especially if their load management pos-
sibilities are limited. In this framework, further research on LSEs risk aversion is needed.
Mainly, two types of risk aversion can be identified: (i) the probability of being wrong
is indeed accounted for in this model as it relates to the value of information. It only
affects E(Z|S). On the contrary, (ii) the relative cost of being wrong does affect the slope
of the marginal value a that is considered as exogenous in our framework. If LSEs are
able to accurately forecast their peak demand by way of DR, then accurate cost alloca-
tion as in ex post decentralized mechanisms does provide accurate incentive to lower peak
consumption. This discussion relates to Crew and Kleidorfer [1976] consideration:
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Rationing costs occur with stochastic demand whenever capacity is exceeded.
These occur because it is not possible costlessly to rank consumers according
to their willingness to pay and because there are added costs to the utility
in actually performing the operation of rationing. In addition, there may be
added production costs [...] of running to the limit of total capacity. There
is no reason to suppose that such costs will on the average decrease as the
amount by which demand exceeds capacity increases. Indeed, it is likely that
such costs will increase at an increasing rate, because as the deficit of capacity
increases the utility is more likely to cut off consumers with higher valuation.

Until recently, this statement was true and counting on DR was for dreamers. This is why
former decentralized mechanisms as MISO or PJM relied on ex ante requirements (second-
best capacity cost allocation). However, technological improvements allow DR units to
be valued as SoS tools. Implementing real time metering at large scale would partially
solve the two problems mentioned by Crew and Kleidorfer [1976] as it means inexpensive
ranking of consumers and reduced costs of performing the operation of rationing. In
decentralized mechanisms with ex post requirements, DR can be valued for what it is in
the demand-side. However, this requires that each actor is accountable for its consumption
pattern with respect to SoS objective (accurate cost allocation and real-time metering).
A critical limit to this incentive is that it represents a rather short term solution: because
of the interrelations with the electricity markets, peak shaving tends to push units out
of the market in the long run, which only delays SoS concerns (until the residual load is
rather flat).

181



Chapter 4. Bayesian Persuasion in Capacity Market Designs

Bibliography

Astier, N. and X. Lambin (2019). Ensuring Capacity Adequacy in Liberalised Electricity
Markets. The Energy Journal 40 (3), 227–242.

Bowring, J. E. (2008). The Evolution of PJM’s Capacity Market. In Competitive Elec-
tricity Markets, pp. 363–386. Elsevier.

Buck, M., M. Hogan, and C. Redl (2015). The Market Design Initiative and Path Depen-
dency: Smart Retirement of Old, High-Carbon, Inflexible Capacity as a Prerequisite
for a Succesful Market Design.

Chao, H.-p. (1983). Peak Load Pricing and Capacity Planning with Demand and Supply
Uncertainty. The Bell Journal of Economics 14 (1), 179–190.

Chao, H.-p., S. Oren, S. Smith, and R. Wilson (1988). Priority Service: Market Structure
and Competition. The Energy Journal 9, 77–104.

Chao, H.-p. and R. Wilson (1987). Priority Service: Pricing, Investment, and Market
Organization. The American Economic Review 77 (5), 899–916.

Chen, B. (2017). Modelling Electricity Demand in Smart Grids: Data, Trends and Use
Cases. In Individual Electricity Consumers, Data, Packages and Methods.

CIGRE (2016). Capacity Mechanisms: Needs, Solutions and State of Affairs. Technical
Report February.

Crampes, C. and D. Salant (2018). A Multi-Regional Model of Electric Resource Ade-
quacy. TSE Working Paper 18-877 (January).

Cramton, P., A. Ockenfels, and S. Stoft (2013). Capacity Market Fundamentals. Eco-
nomics of Energy & Environmental Policy 2 (2).

Cramton, P. and S. Stoft (2006). The Convergence of Market Designs for Adequate Gen-
erating Capacity with Special Attention to the CAISO’s Resource Adequacy Problem.

Cramton, P. and S. Stoft (2007). Colombia Firm Energy Market. In System Sciences,
2007. HICSS 2007. 40th Annual Hawaii International Conference on Systems Science
(HICSS-40 2007).

Crew, M. A. and P. Kleidorfer (1976). Peak Load Pricing with a Diverse Technology. The
Bell Journal of Economics 7 (1), 207–231.

DECC (2011). Planning our Electric Future: a White Paper for Secure, Affordable and
Low-Carbon Electricity. Technical report.

DECC (2014). Background on Setting Capacity Market Parameters. Technical report.

EFET (2016). RTE consultation on the evolution of the Capacity Mechanism rules.
Technical report.

182



Chapter 4. Bayesian Persuasion in Capacity Market Designs

European Commission (2014). Germany - 2014 Country Report. Technical report.

Gaudet, G. and S. W. Salant (1991). Uniqueness of Cournot Equilibrium: New Results
from Old Methods. Review of Economic Studies 58214160 (2), 399–404.

Hach, D. and S. Spinler (2016). Capacity Payment Impact on Gas-Fired Generation
Investments under Rising Renewable Feed-In — A Real Options Analysis. Energy
Economics 53, 270–280.

He, Y., M. Hildmann, F. Herzog, and G. Andersson (2013, aug). Modeling the Merit
Order Curve of the European Energy Exchange Power Market in Germany. IEEE
Transactions on Power Systems 28 (3), 3155–3164.

Henriot, A. and J.-M. Glachant (2013). Melting-Pots and Salad Bowls: The Current
Debate on Electricity Market Design for Integration of Intermittent RES. Utilities
Policy 27, 57–64.

International Energy Agency (2010). Challenges in Electricity – a Focus on Europe.

Iychettira, K. K., P. C. Bhagwat, J. C. Richstein, and L. De Vries (2014). Interaction
between Security of Supply and Investment into Renewable Energy in the Netherlands
and Germany. In USAEE.

Joskow, P. L. (2006). Markets for Power in the United States: An Interim Assessment.
The Energy Journal 27 (1).

Joskow, P. L. (2007). Competitive Electricity Markets and Investment in New Generating
Capacity. In D. Helm (Ed.), The New Energy Paradigm, Chapter 4. Oxford University
Press.

Joskow, P. L. and J. Tirole (2006). Retail Electricity Competition. The RAND Journal
of Economics 37 (4), 799–815.

Joskow, P. L. and J. Tirole (2007). Reliability and Competitive Electricity Markets. The
RAND Journal of Economics 38 (1), 60–84.

Kamenica, E. and M. Gentzkow (2011). Bayesian Persuasion. American Economic Re-
view 101 (6), 2590–2615.

Keles, D., A. Bublitz, F. Zimmermann, M. Genoese, and W. Fichtner (2016). Analysis
of Design Options for the Electricity Market: The German Case. Applied Energy 183,
884–901.

Lambin, X. (2018). The Integration of Demand Response in Capacity Mechanisms.

Mastropietro, P., I. Herrero, P. Rodilla, and C. Batlle (2016). A Model-Based Analysis on
the Impact of Explicit Penalty Schemes in Capacity Mechanisms. Applied Energy (168).

Meulman, L. and N. Méray (2012). Capacity Mechanisms in Northwest Europe.

183



Chapter 4. Bayesian Persuasion in Capacity Market Designs

NERC (2017). Glossary of Terms Used in NERC Reliability Standards. Technical report.

Newbery, D. (1998). The Regulator’s Review of the English Electricity Pool. Utilities
Policy 7, 129–141.

Newbery, D. (2016). Missing Money and Missing Markets: Reliability, Capacity Auctions
and Interconnectors. Energy Policy 94, 401–410.

Nitzan, S. and J. Paroush (1984). Are Qualified Majority Rules Special? Public
Choice 42 (3), 257–272.

NYISO (2018). ICAP / UCAP Translation of Demand Curve - Summer 2018 Capability
Period. Technical report.

Okuguchi, K. (2000). Comparative Statics for Oligopoly, Oligopsony and Oligopsonistic
Oligopoly. Journal of Economic Research 5, 173–187.

Parsons, J. E. and F. J. De Sisternes (2016). The Impact of Uncertainty on the Need and
Design of Capacity Remuneration Mechanisms in Low-Carbon Power Systems. MIT
Center for Energy and Environmental Policy Research CEEPR Working Paper Series
WP-2016-004 (February).

Patton, D. B., P. LeeVanSchaick, and J. Chen (2017). 2016 Assessment of the ISO New
England Electricity Markets: External Market Monitor for ISO-NE. Technical report.

Pindyck, R. S. and D. L. Rubbinfield (2013). Microeconomics Eight Edition (Pearson
ed.).

Roy, J., R. Silvers, and C.-J. Sun (2019). Majoritarian Preference, Utilitarian Welfare
and Public Information in Cournot Oligopoly. Games and Economic Behavior 116,
269–288.

RTE (2014). French Capacity Market: Report Accompanying the Draft Rules. Technical
report.

RTE (2015). Generation Adequacy Report on the Electricity Supply-Demand Balance in
France. Technical report.

Scouflaire, C. (2019). Capacity Remuneration Mechanisms: An Assessment of their Per-
formance and Implications for Market Design. Ph. D. thesis, Paris Sciences et Lettres.

Stoft, S. (2002). Power System Economics: Designing Markets for Electricity.

Teirilä, J. (2017). Market Power in the Capacity Market? The Case of Ireland. Cambridge
University EPRG Working Paper 1712 (July).

Villavicencio, M. (2017). Analyzing the Optimal Development of Electricity Storage in
Electricity Markets. Ph. D. thesis, Paris Sciences et Lettres.

184



Chapter 4. Bayesian Persuasion in Capacity Market Designs

Woodhouse, S. (2016). Decentralized Reliability Options: Market Based Capacity Ar-
rangements. In Future of Utilities - Utilities of the Future: How Technological Inno-
vations in Distributed Energy Resources Will Reshape the Electric Power Sector, pp.
231–246. Elsevier Inc.

185





Appendices





Appendix D

Equilibrium Conditions

Let qj be the capacity demanded by the buyer j and Q =
∑n

i=1 qi the total bought
capacity. The individual buyers’ surplus is naturally defined as the surface between
their individual demand curve and the price: S(qj) =

∫ qj
0
D−1
j (x) − F (Q)dx =∫ qj

0
E(Z|s)− nax− F (Q)dx.

Maximizing with respect to qi, with Q being the quantity bought by all the other
buyers (Q = Q+ qj), we derive the First Order Conditions FOC:

∂S(qj)

∂qj
= 0⇔ E(Z|s)− na× qj −

∂F (qj +Q)

∂qj
qj − F (qj +Q) = 0

⇔ E(Z|s) =

(
∂F (qj +Q)

∂qj
qj + F (qj +Q) + na× qj

)
(FOC)

Let Q∗(µh) and q∗(µh) be the equilibrium quantities when the buyers have the belief
that P(Z = zh) = µh. Since we only consider symmetric equilibria: Q∗(µh) =∑n

j=1 q
∗(µh) = nq∗(µh). If there is no ambiguity, we note for the sake of simplicity

Q∗ = Q∗(µh) and q∗ = q∗(µh). FOC becomes:

E(Z|s)− na× q∗︸ ︷︷ ︸
Marginal Value (V (q∗,n))

=

(
∂F (nq∗)

∂q
q∗ + F (nq∗)

)
︸ ︷︷ ︸

Marginal Cost (C(q∗,n))

(sFOC)

We implicitly differentiate sFOC with respect to the precision λ:

d q∗

dµh
=

∂ E(Z|s)
∂µh

∂(
∂F (nq∗)

∂q
q∗+F (nq∗)+na)

∂q∗



D. Equilibrium Conditions

And we note the following function:

Li(q
∗, n) =

∂F (nq∗)

∂q
q∗ + F (nq∗) + na× q∗

We obtain the next equilibrium condition with respect to µh, with ζ = zh − zl:

d q∗

dµh
=

ζ

L′(Q∗)
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Appendix E

Proofs

Theorem 12. Under Assumption A4, there exists a unique symmetric equilibrium to the
Cournot Oligopsony with n buyers.

Proof. The First Order Condition FOC for any buyer j gives:

∂S(qj)

∂qj
= 0⇔ E(Z|S)− an× qj − F (Q)− ∂F (Q)

∂qj
qj = 0

Assume a function g(xi, X) = E(Z|S) − anxi − F (X) − F ′(X)xi, defined in R × [0, ξ]

where the bound ξ is such that F (ξ) = zh + ε with ε > 0 and bounded.

Then a Cournot equilibrium must satisfy:

g(qi, X) ≤ 0, qi ≥ 0, gi(qi, X)qi = 0 ∀i = 1 · · ·n (Optimality)

X =
n∑
i=1

qi (Feasibility)

Note that g is continuous and twice-continuously differentiable. Furthermore g is de-
creasing in xi, since the partial derivative in xi is bounded away from 0: ∂g(xi,X)

∂xi
=

−(an + F ′(X)) < 0. Then, there exists a unique xi(X) such that g(xi(X), X) = 0. The
implicit function theorem is then applicable and xi(X) must be unique for each X ∈ [0, ξ].
Since this is true for a neighborhood of each X, xi(X) must be a continuous function.
Finally, the Optimality condition has a unique solution:

qi(X) = max[0, xi(X)] ∀X ∈ [0, ξ]

We must show that the Feasibility condition has at least one solution. One can check
that qi(X) and then Q(X) =

∑n
i=1 qi(X) are continuous on [0, ξ]. By definition, qi(X) ≥

0 ∀X ∈ [0, ξ] and qi(ξ) = 0. Then, by continuity, and since Q(0) ≥ 0 and Q(ξ) = 0, there
is at least one X ∈ [0, ξ] such that the Feasibility condition is met: X = Q(X). Then a
solution to both conditions is such that: X = Q(X) with Q(X) =

∑n
i=1 qi(X) .



E. Proofs

Set qi = max[0, ϕ(Q)]. By the implicit function theorem on g(qi, Q) = 0, we can write
when qi > 01:

d qi
dQ

= −F
′′(Q)qi + F ′(Q)

an+ F ′(Q)

Since Q =
∑n

i=1 qi,

Q′ =
n∑
i=1

qi
dQ

Q′ = −F
′′(Q)Q+ nF ′(Q)

an+ F ′(Q)
< 1 if and only if F ′′(Q)Q > −[(n+ 1)F ′(Q) + an]

As already stated, Q ≥ 0, and there is exactly one Cournot equilibrium such that X =

Q(X) under Assumption A4. �

Lemma 27. Under Assumption A4, for s = sh (resp. s = sl), the equilibrium quantities
increase (resp. decrease) with the belief µh. Furthermore, E(Q∗) is increasing (resp.
decreasing) with respect to λ if L(Q) is concave (resp. L(Q) is convex). Equivalently,
E(Q∗) is increasing (resp. decreasing) if QF ′′′(Q) + (n + 2)F ′′(Q) < 0 (resp. QF ′′′(Q) +

(n+ 2)F ′′(Q) < 0).

Proof. Assume the objective function of the public authority is the mean quantity. Under
which condition should the public authority disclose information to maximize its objective
function? We want to establish that if (Q∗(µh) is convex, E(Q∗) is maximal when λ = 1.
When λ = 1, information being perfect, buyers believes with probability 1 that the state of
the world is either h, either l. We want to show that ∀(µh(sl), µh(sh)) with µh(sh) ∈ [µ0, 1),
and µh(sl) ∈ (0, µ0] (with λ̄ < 1 the precision giving µh(sl), µh(sh)):

P(S = sh|λ = 1)Q∗(1) + P(S = sl|λ = 1)Q∗(0) > P(S = sh|λ = λ̄)Q∗(µh(sh))

+ P(S = sl|λ = λ̄)Q∗(µh(sl))

⇔ µ0Q
∗(1) + (1− µ0)Q∗(0) >

λ̄µ0

µh(sh)
Q∗(µh(sh)) +

(1− λ̄)µ0

µh(sl)
Q∗(µh(sl))

We know, by convexity of Q∗(µh), that:

Q∗(1)−Q∗(0) >
Q∗(µh(sh))−Q∗(0)

µh(sh)
>
Q∗(µh(sl))−Q∗(0)

µh(sl)

Then, ∀α ∈ [0, 1],

Q∗(1)−Q∗(0) > α
Q∗(µh(sh))−Q∗(0)

µh(sh)
+ (1− α)

Q∗(µh(sl))−Q∗(0)

µh(sl)

1One can easily remark that for any zh, zl > 0, if Q = 0, then xi(Q) > 0, which shows that 0 is not an
equilibrium quantity.
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Recalling that λ̄ µ0

µh(sh)
+ (1− λ̄) µ0

µh(sl)
= 1, we can write:

µ0(Q∗(1)−Q∗(0)) > α
µ0

µh(sh)
(Q∗(µh(sh))−Q∗(0)) +

(1− α)
µ0

µh(sl)
(Q∗(µh(sl))−Q∗(0))

⇔ µ0(Q∗(1)−Q∗(0)) > λ̄
µ0

µh(sh)
Q∗(µh(sh)) + (1− λ̄)

µ0

µh(sl)
Q∗(µh(sl))−Q∗(0)

⇔ µ0Q
∗(1) + (1− µ0)Q∗(0)) > λ̄

µ0

µh(sh)
Q∗(µh(sh)) + (1− λ̄)

µ0

µh(sl)
Q∗(µh(sl))

If the function Q∗(µh) is concave, analog computations show that the mean quantity is
maximal when λ = 1

2
. �

Lemma 28. E(P ∗) is increasing (resp. decreasing) with respect to λ if the price is convex
in the belief µh, i.e. if F ′′(Q)

F ′(Q)
> L′′(Q)

L′(Q)
(resp. F ′′(Q)

F ′(Q)
< L′′(Q)

L′(Q)
).

E(P ) is increasing (resp. decreasing) if:

η′′(Q) < (>)
F ′′(Q)

F ′(Q)
(η′(Q) + an) ≡ ρ

Proof. We want to show that F ′′(Q)
F ′(Q)

> (<)L
′′(Q)
L′(Q)

⇔ η′′(Q) < (>)ρ. Note that:

F ′′(Q)

F ′(Q)
>
L′′(Q)

L′(Q)

⇔ QF ′′′(Q) + (n+ 2)F ′′(Q) < (QF ′′(Q) + (n+ 1)F ′(Q) + an)
F ′′(Q)

F ′(Q)

⇔ QF ′′′(Q) + 2F ′′(Q) < (QF ′′(Q) + F ′(Q) + an)
F ′′(Q)

F ′(Q)

⇔ η′′(Q) <
F ′′(Q)

F ′(Q)
(η′(Q) + an)

�

Corollary 2. E(P ∗) is increasing (resp. decreasing) if:{
if F ′′ > 0, a > (<)F

′(Q)η′′(Q)
nF ′′(Q)

− η′(Q)
n

if F ′′ < 0, a < (>)F
′(Q)η′′(Q)
nF ′′(Q)

− η′(Q))
n

Proof. From Lemma 28, E(P ∗) is increasing if:

η′′(Q) <
F ′′(Q)

F ′(Q)
(η′(Q) + an)

⇔ anF ′′(Q) > F ′(Q)η′′(Q) + η′(Q)F ′′(Q)

⇔

{
if F ′′ > 0, a > F ′(Q)η′′(Q)

nF ′′(Q)
− η′(Q)

n

if F ′′ < 0, a < F ′(Q)η′′(Q)
nF ′′(Q)

− η′(Q))
n

�
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Lemma 29. If ∂ E(P ∗)
∂λ

> 0, then individual profits are non decreasing and aggregated profit
increases with the precision λ of the signal.

Proof. We note Q = Q∗ for simplicity. Assume ∂ E(P ∗)
∂λ

> 0. For owners with bid under
F (Q(µh = 0)), i.e. the ones that always sell, the expected profit naturally increases as
well with respect to λ. Thus, they prefer λ = 1. Note also that owners with bids above
F (Q(µh = 1)), i.e. the ones that never sell, do not see their situation evolve.

Consider now that the precision is set to a given λ̃ ∈ [1
2
, 1), giving two beliefs according to

the signal received: µh(sh) and µh(sl). Owners with bids above F (Q(µh(sh))) but below
F (Q(1)), do not sell when the precision is set at λ̃ whilst they would sell if λ was set to
1 when the state of the world is high. All of them see their expected profit increase with
respect to λ.

It is still true for owners whose bid is above F (Q(µh(sl))) (but below F (Q(µh(sh)))).
They sell only if the signal is high. Then, if there is an increase in F (Q(µh(sh))) their
individual profits increase. We show in the next step why they do not prefer a decrease
in λ (i.e. the possibility to sell in both cases).

As well, for owners with bids included in [F (Q(µh = 0)), F (Q(µh(sl)))], an ambiguity may
arise because their quantity sold may be reduced when λ increases. Initially, they sell in
both cases. However, if λ = 1, they do not sell anymore when the signal is low. Their
expected profit with bid bi in first case is:

Π(λ̃) = P(S = sh|λ = λ̃)F (Q(µh(sh))) + P(S = sl|λ = λ̃)F (Q(µh(sl)))− bi

=
λ̃µ0

µh(sh)
F (Q(µh(sh))) +

(1− λ̃)µ0

µh(sl)
F (Q(µh(sl)))− bi

Their expected profit in second case is:

Π(λ = 1) = µ0[F (Q(1))− bi]

By assumption, we know that E(P (λ̃)) < E(P (λ = 1)) for any λ̃ ∈ [1
2
, 1).

Then, since F (Q(0)) < bi for any owner i considered here:

E(P (λ̃)) < E(P (λ = 1))

⇔ λ̃µ0

µh(sh)
F (Q(µh(sh))) +

(1− λ̃)µ0

µh(sl)
F (Q(µh(sl))) < µ0F (Q(1)) + (1− µ0)F (Q(0))

⇔ λ̃µ0

µh(sh)
F (Q(µh(sh))) +

(1− λ̃)µ0

µh(sl)
F (Q(µh(sl)))− (1− µ0)F (Q(0))− µ0bi <

µ0F (Q(1))− µ0bi

⇒ λ̃µ0

µh(sh)
F (Q(µh(sh))) +

(1− λ̃)µ0

µh(sl)
F (Q(µh(sl)))− bi < µ0[F (Q(1))− bi]

⇔ Π(λ̃) < Π(λ = 1)
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Therefore, each individual profit increases or stays null when information gains precision.
Immediately, the aggregated profit increases with the precision since it is the sum of the
individual profits and since there are more owners selling their capacity even if the mean
quantities may decrease with precision. �

Proposition 13. With a monopsony, i.e. n = 1, the buyers’ surplus increases with infor-
mation precision (increases in λ). The monopsony shall always prefer λ = 1.

Proof. We first write the expected surplus:

S(QS) =

∫ QS

0

E(Z|S)− ax− F (QS)dx

⇒ S(Q∗(µh)) = Q∗(µh)

(
µhζ + zl −

1

2
aQ∗(µh)− F (Q∗(µh))

)
Since E(Z|S) = µhzh + (1− µh)zl = µhζ + zl and the derivative of −1

2
ax2 is −ax.

Then, we can deduce the derivative with respect to µh when there is just one buyer:

∂S(Q∗(µh))

∂µh
=
∂Q∗(µh)

∂µh
(µhζ + zl − aQ∗(µh)− F (Q∗(µh))− F ′(Q∗(µh))Q∗(µh))︸ ︷︷ ︸

=0 if sFOC

+ Q∗(µh)ζ

⇒∂S(Q∗(µh))

∂µh
= Q∗h(µh)ζ (Monopsony’s Surplus Derivative)

Then, ∂
2S(Q∗(µh))

∂µ2
h

= nζ2

L′(Q∗h(µh))
> 0

�

Proposition 14. If n > 1, E(S(Q∗)) is increasing (resp. decreasing) with respect to λ if the
surplus is convex in the belief µh, i.e. if (1− (n−1)F ′(Q)

L′(Q)
)Q is increasing (resp. decreasing).

Then, in the first case, the surplus maximizer precision is λS = 1, and in the second case
λS = 1

2
. As well, the surplus is increasing (resp. decreasing) with information precision

if:

η′′(Q) > (<)ρ− L′(Q)(L′(Q)− (n− 1)F ′(Q))

(n− 1)QF ′(Q)
≡ ρ

Proof. By dividing the total surplus (see the proof of Proposition 13) by n, and by writing
the surplus as a function of individual quantities

(
q = q∗(µh) = Q∗(µh)

n

)
: the expected

surplus for any buyer j at the equilibrium is:

Sj(q) = q

(
µhζ + zl −

1

2
anq − F (nq)

)
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By differentiating with respect to µh :

∂Sj(q))

∂µh
=

d q
dµh

(µhζ + zl − anq − F (nq)− nqF ′(nq)) + qζ

=− d q
dµh

((n− 1)qF ′(nq)) + qζ

=qζ

(
1− (n− 1)

F ′(nq)

L′(nq)

)
Differentiating up to the order two:

∂2Sj(q))

∂µ2
h

=
ζ d q
dµh

((
1− (n− 1)

F ′(nq)

L′(nq)

)
− (n− 1)nq

(
F ′′(nq)L′(nq)− F ′(nq)L′′(nq)

L′(nq)2

))
=

ζ

L′(Q)3
(L′(Q)(L′(Q)− (n− 1)F ′(Q))− (n− 1)Q(F ′′(Q)L′(Q)− F ′(Q)L′′(Q)))

This second derivative is positive if and only if, ∀Q = Q∗(µh) with µh ∈ [0, 1]:

F ′(Q)L′′(Q) +
L′(Q)(L′(Q)− (n− 1)F ′(Q))

(n− 1)Q
> F ′′(Q)L′(Q)

⇔ QF ′′′(Q) + 2F ′′(Q) + nF ′′(Q) > F ′′(Q)L′(Q)− L′(Q)(L′(Q)− (n− 1)F ′(Q))

(n− 1)QF ′(Q)

⇔ η′′(Q) >
F ′′(Q)(QF ′′(Q) + (n+ 1− n)F ′(Q) + an)

F ′(Q)
− L′(Q)(L′(Q)− (n− 1)F ′(Q))

(n− 1)QF ′(Q)

⇔ η′′(Q) > ρ− L′(Q)(L′(Q)− (n− 1)F ′(Q))

(n− 1)QF ′(Q)

�

Corollary 3. When (n − 1)(QF ′′(Q) + F ′(Q))2 − 4QF ′(Q)(QF ′′′(Q) + (n + 2)F ′′(Q)) =

(n− 1)η′(Q)2 − 4QF ′(Q)L′′(Q) ≤ 0 the surplus is increasing with information precision.
Note

a1s = −
√

(n− 1)
√

(n− 1)η′(Q)2 − 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)−QF ′′(Q)

2

and

a2s =

√
(n− 1)

√
(n− 1)η′(Q)2 − 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)−QF ′′(Q)

2

When (n − 1)η′(Q)2 − 4QF ′(Q)L′′(Q) > 0 the surplus is increasing (resp. decreasing)
with information precision if:

in case where a2s < 0

in case where a2s > 0 and a1s < 0, if a > (<)a2s

in case where a1s > 0, if a > a2s or a < a1s, ( if a1s < a < a2s)
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Proof. By the proof of Proposition 14, we know that the surplus is increasing with infor-
mation precision if:

F ′(Q)L′′(Q) +
L′(Q)(L′(Q)− (n− 1)F ′(Q))

(n− 1)Q
− F ′′(Q)L′(Q) > 0

⇔
(
F ′(Q)L′′(Q) +

L′(Q)(L′(Q)− (n− 1)η′(Q))

(n− 1)Q
> 0

)
Assume (n− 1)η′(Q)2 − 4QF ′(Q)L′′(Q) ≤ 0. Then,

F ′(Q)L′′(Q) ≥ (n− 1)η′(Q)2

4Q

Thus,

F ′(Q)L′′(Q) +
L′(Q)(L′(Q)− (n− 1)η′(Q))

(n− 1)Q

>
(n− 1)η′(Q)2

4Q
+
L′(Q)(L′(Q)− (n− 1)η′(Q))

(n− 1)Q

=
(n− 1)2η′(Q)2 + 4L′(Q)2 − 4L′(Q)(n− 1)η′(Q))

4(n− 1)Q

=
((n− 1)η′(Q)− 2L′(Q))2

4(n− 1)Q
> 0

So, if (n−1)η′(Q)2−4QF ′(Q)L′′(Q) ≤ 0, the surplus is maximized with full information,
whatever the value of a.

Now, assume that (n− 1)η′(Q)2 − 4QF ′(Q)L′′(Q) > 0.

F ′(Q)L′′(Q) + L′(Q)(L′(Q)−(n−1)η′(Q))
(n−1)Q

= 0 is equivalent to the following polynomial:

L′(Q)2 − (n− 1)η′(Q)L′(Q) + (n− 1)QF ′(Q)L′′(Q) = 0

It is equivalent with respect to a to:

(QF ′′(Q) + (n+ 1)F ′(Q) + an)2 − (n− 1)η′(Q)(QF ′′(Q) + (n+ 1)F ′(Q) + an)

+ (n− 1)QF ′(Q)L′′(Q) = 0

⇔ a2n2 + ((n+ 3)F ′(Q)− (n− 3)QF ′′(Q))an

+ (QF ′′(Q) + (n+ 1)F ′(Q))(2F ′(Q)− (n− 2)QF ′′(Q)) + (n− 1)QF ′(Q)L′′(Q) = 0

One can check that the solutions to this polynomial with respect to a are:

a1s = −
√

(n− 1)
√

(n− 1)η′(Q)2 − 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)−QF ′′(Q)

2

and

a2s =

√
(n− 1)

√
(n− 1)η′(Q)2 − 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)−QF ′′(Q)

2
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It is direct that this polynomial is convex since the only term of order 2 is a2n2 > 0. Thus
the polynomial is negative between the roots and positive elsewhere.

�

Lemma 30. E(Π(Q)|λ) is increasing (resp. decreasing) in λ if the profit is convex in the
belief µh, i.e. if QF

′(Q)
L′(Q)

is an increasing (resp. decreasing) function. Then in the first case,
the profit maximizer precision is λP = 1, and in the second case λP = 1

2
. As well, the

profit is increasing (resp. decreasing) with information precision if:

η′′(Q) < (>)ρ(Q) +
L′(Q)

Q︸ ︷︷ ︸
>0

≡ ρ̄

Proof. Note Q = Q∗(µh).

Π(Q) = QF (Q)−
∫ Q

0

F (x)dx

Then, by differentiating the profit with respect to µh:
∂Π(Q)

∂µh
=
∂Q

∂µh
[QF (Q) + F (Q)]− ∂Q

∂µh
F (Q)

∂Π(Q)

∂µh
=
∂Q

∂µh
QF (Q)

∂Π(Q)

∂µh
=
nζQF ′(Q)

L′(Q)

Thus, the expected profit is increasing if QF ′(Q)
L′(Q)

is increasing in Q. The decreasing profit
case works as well.

To conclude: (
QF ′(Q)

L′(Q)

)′
> 0

⇔ L′(Q)F ′(Q)

L′(Q)2
+
QL′(Q)F ′′(Q)

L′(Q)2
>
QL′′(Q)F ′(Q)

L′(Q)2

⇔ L′(Q)(F ′(Q) +QF ′′(Q)) > QL′′(Q)F ′(Q)

⇔ Qη′′(Q) + nQF ′′(Q) <
L′(Q)(F ′(Q) +QF ′′(Q))

F ′(Q)

⇔ η′′(Q) + nF ′′(Q) <
L′(Q)

Q
+

(η′(Q) + an+ nF ′(Q))F ′′(Q)

F ′(Q)

⇔ η′′(Q) + nF ′′(Q) <
L′(Q)

Q
+ ρ+ nF ′′(Q)

⇔ η′′(Q) < ρ(Q) +
L′(Q)

Q︸ ︷︷ ︸
>0

≡ ρ̄

�
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Corollary 4. Note aP = QF ′(Q)L′′(Q)
nη′(Q)

− η′(Q)
n
− F ′(Q). The profit is increasing (resp.

decreasing) with information precision if:{
In case where η′(Q) < 0, if a > (<)aP

In case where η′(Q) < 0, if a < (>) aP

When the supply curve F is convex, increasing parameter a increases unambiguously
the span (of η′′) where the owners prefer information. Otherwise, increasing parameter
a decreases the span (of η′′) where the owners prefer information if η′(Q) = QF ′′(Q) +

F ′(Q) < 0.

Proof. By Lemma 30, the profit is increasing with information precision if:

η′′(Q) < ρ(Q) +
L′(Q)

Q︸ ︷︷ ︸
>0

≡ ρ̄

Re-writing the expression and assuming that η′(Q) > 0, we get:

an
η′(Q)

QF ′(Q)
> η′′(Q)− F ′′(Q)η′(Q)

F ′(Q)
− η′(Q) + nF ′(Q)

Q

⇔ a >
QF ′(Q)η′′(Q)

nη′(Q)
− QF ′′(Q)

n
− F ′(Q)(η′(Q) + nF ′(Q))

nη′(Q)

⇔ a >
QF ′(Q)η′′(Q)

nη′(Q)
− η′(Q)

n
− F ′(Q)2

η′(Q)

⇔ a >
QF ′(Q)L′′(Q)

nη′(Q)
− QF ′(Q)nF ′′(Q)

nη′(Q)
− η′(Q)

n
− nF ′(Q)2

nη′(Q)

⇔ a >
QF ′(Q)L′′(Q)

nη′(Q)
− F ′(Q)n(QF ′′(Q) + F ′(Q))

nη′(Q)
− η′(Q)

n

⇔ a >
QF ′(Q)L′′(Q)

nη′(Q)
− η′(Q)

n
− F ′(Q)

We solve by analogy the case with η′(Q) < 0.

�

Proposition 15. Whenever n ≥ 1, if Q
(

1 + F ′(Q)
L′(Q)

)
is increasing (resp. decreasing), then

the welfare is increasing (resp. decreasing) with information precision. As well, the welfare
is increasing (resp. decreasing) with information precision if:

η′′(Q) < (>)ρ(Q) +
L′(Q)(L′(Q) + F ′(Q))

QF ′(Q)︸ ︷︷ ︸
>0

≡ ¯̄ρ
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Proof. The economic welfare is the sum of the buyers’ surplus and the owners’ profit.
Then, we can write:

W (Q) =

∫ Q

0

D−1(x)− P (x)dx =

∫ Q

0

E(Z|S)− ax− F (x)dx

Therefore, the expected economic welfare at equilibrium can be written (with Q =

Q∗(µh)):

W (Q) = Q

(
µhζ + zl −

1

2
aQ

)
−
∫ Q

0

F (q)dq

We can then deduce the derivative with respect to λ:

∂W (Q)

∂µh
=
∂Q

∂µh
(µhζ + zl − aQ− F (Q)) +Qζ

From sFOC we know that µhζ + zl − aQ− F (Q) = Q
n
F ′(Q). It follows:

∂W (Q)

∂µh
=

nζ

L′(Q)

QF ′(Q)

n
+Qζ

=ζ ×Q
(

1 +
F ′(Q)

L′(Q)

)

Consequently, the economic welfare is increasing in the precision if x 7→ x
(

1 + F ′(x)
L′(x)

)
is

an increasing function.

To conclude:(
Q

(
1 +

F ′(Q)

L′(Q)

))′
> 0

⇔ QL′′(Q)F ′(Q)

L′(Q)2
<
L′(Q)2 + L′(Q)F ′(Q)

L′(Q)2
+
QL′(Q)F ′′(Q)

L′(Q)2

⇔ QL′′(Q)F ′(Q) < L′(Q)(L′(Q) + F ′(Q) +QF ′′(Q))

⇔ Qη′′(Q) + nQF ′′(Q) <
L′(Q)(L′(Q) + F ′(Q) +QF ′′(Q))

F ′(Q)

⇔ η′′(Q) + nF ′′(Q) <
L′(Q)(L′(Q) + F ′(Q))

Q
+

(η′(Q) + an+ nF ′(Q))F ′′(Q)

F ′(Q)

⇔ η′′(Q) + nF ′′(Q) <
L′(Q)(L′(Q) + F ′(Q))

Q
+ ρ+ nF ′′(Q)

⇔ η′′(Q) < (>)ρ(Q) +
L′(Q)(L′(Q) + F ′(Q))

QF ′(Q)︸ ︷︷ ︸
>0

�
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Corollary 5. The welfare is increasing with information precision when:

(QF ′′(Q) +F ′(Q))2 + 4QF ′(Q)(QF ′′′(Q) + (n+ 2)F ′′(Q)) = η′(Q)2 + 4QF ′(Q)L′′(Q) ≤ 0

Note

a1w = −
√
η′(Q)2 + 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)

and

a2w =

√
η′(Q)2 + 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)

And, the welfare is increasing (resp. decreasing) when η′(Q)2 + 4QF ′(Q)L′′(Q) > 0 if:
in case where a2w < 0

in case where a2w > 0 and a1w < 0, if a > (<)a2w

in case where a1w > 0, if a > a2w or a < a1w, ( if a1w < a < a2w)

When the supply curve F is convex, increasing parameter a increases unambiguously
the span (of η′′) where the welfare increases with information. Otherwise, increasing
parameter a decreases the span (of η′′) where the welfare increases with information if
η′(Q) = QF ′′(Q) + F ′(Q) < 0.

Proof. By the proof of Proposition 15, the welfare is increasing with information precision
if:

QL′′(Q)F ′(Q) < L′(Q)(L′(Q) + F ′(Q) +QF ′′(Q))

(⇔ QL′′(Q)F ′(Q)− L′(Q)(L′(Q) + η′(Q)) < 0)

Assume η′(Q)2 + 4QF ′(Q)L′′(Q) ≤ 0. Then,

QL′′(Q)F ′(Q) ≤ − η′(Q)2

4

Thus,

QF ′(Q)L′′(Q)− L′(Q)(L′(Q) + η′(Q)) < −η
′(Q)2

4
− L′(Q)(L′(Q) + η′(Q))

= −η
′(Q)2

4
− L′(Q)2 − L′(Q)η′(Q))

= −(η′(Q)− 2L′(Q))2

4
< 0

So, if η′(Q)2 + 4QF ′(Q)L′′(Q) ≤ 0, the welfare is maximized with full information,
whatever the value of a.

Now, assume that η′(Q)2 + 4QF ′(Q)L′′(Q) > 0.
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QL′′(Q)F ′(Q)− L′(Q)(L′(Q) + η′(Q)) = 0 is equivalent to the following polynomial:

(QF ′′(Q)+(n+1)F ′(Q)+an)2 +η′(Q)(QF ′′(Q)+(n+1)F ′(Q)+an)−QL′′(Q)F ′(Q) = 0

It is equivalent with respect to a to:

a2n2 + ((2n+ 3)F ′(Q) + 3QF ′′(Q))an

+(QF ′′(Q) + (n+ 1)F ′(Q))((n+ 2)F ′(Q) + 2QF ′′(Q)) +QL′′(Q)F ′(Q) = 0

One can check that the solutions to this polynomial with respect to a are:

a1w = −
√
η′(Q)2 + 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)

and

a2w =

√
η′(Q)2 + 4QF ′(Q)L′′(Q)

2n
− 3η′(Q)

2n
− F ′(Q)

It is direct that this polynomial is convex since the only term of order 2 is a2n2 > 0. Thus
the polynomial is negative between the roots and positive elsewhere.

�

Lemma 31. When µ0 = 1
2
, whenever n ≥ 1 and (1) F ′(Q)

L′(Q)
increases, λC = 1. If (2) F ′(Q)

L′(Q)

decreases, λC = 1 when (2i) m(Q) > 0 and λC = 1
2
when (2ii) m(Q) < 0.

Proof. First note that if (1) F ′(Q)
L′(Q)

increases, by Lemma 28, the ex ante mean price increases
with respect to λ. Then, by Lemma 29, all owners prefer the maximal precision (strictly
for the ones who sell their capacity unit).

Now, assume F ′(Q)
L′(Q)

decreases. Owners that always produce prefers λC = 1
2
since their

profit increase with the expected price, which is maximal when λ = 1
2
.

Owners with bids included in [F (Q(µh = 0)), b̂] prefers λC = 1
2
as well. Recalling that for

them: F (Q∗(µ0)) − bi > µh(F (Q∗(1)) − bi), one can find that for any λ̃ ∈ (1
2
, 1], Π(λ̃) <

Π(λ = 1
2
). Indeed, we know that: E(F (Q∗|λ̃)) < F (Q∗|λ = 1

2
), then E(F (Q∗|λ̃)) − b <

F (Q∗|λ = 1
2
)− b. And the owner prefers to always produce since if he does not produce

in the low signal case, he gets at most Π(λ = 1)(= 1
2
[F (Q∗(µh)(λ = 1))− b]) which is less

than Π(λ = 1
2
) by hypothesis.

Thus, if m(Q) < 0, a majority prefers the lowest precision and λc = 1
2
.

To see why m(Q) > 0 implies that a majority prefers λC = 1, note that owners that
produce only in the high signal case choose λC = 1 to maximize F (Q∗h(λ)). Then, we just
have to show that each owner with b > b̂ wants to produce only with the high signal.

We recall that for them: E(F (Q∗(λ = 1
2
))− b(Q) < 1

2
(F (Q∗h(λ = 1))− b(Q)).

For owners whose the bid is included in (b̂, F (Q∗(λ = 1
2
))], if they want to produce

both when sh and sl, they should prefer λC = 1
2
to maximize their profit. However
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Π(λ = 1) > Π(λ = 1
2
) for them, since b > b̂. Finally they should only produce in high

signal case.

For owners whose the bid is included in (F (Q∗(λ = 1
2
)), F (Q∗h(λ = 1)], they prefer λc = 1,

because they never sell their capacity when λ = 1
2
while they do produce in the high signal

case.

Finally, if m(Q) > 0, a majority prefers the highest precision and λc = 1.

�

Lemma 32. Total quantities at the high and low equilibria are increasing concave functions
with respect to n.

Proof. By transforming sFOC, we get E(Z|s)−
(
∂F (Q∗)
∂q

Q∗

n
+ F (Q∗) + a×Q∗

)
= 0. The

implicit differentiation with respect to n gives:

∂Q

∂n
=

F ′(Q∗)Q∗

n2

(F
′′(Q∗)Q∗

n
+ F ′(Q∗)

n
+ F ′(Q∗) + a)

=
F ′(Q∗)Q∗

n(F ′′(Q∗)Q∗ + (n+ 1)F ′(Q∗) + an)
> 0

∂2Q

∂n2
= = −F

′(Q∗)Q∗(F ′′(Q∗)Q∗ + (2n+ 1)F ′(Q∗) + 2an)

n2(F ′′(Q∗)Q∗ + (n+ 1)F ′(Q∗) + an)2
< 0

�

Lemma 33. For any thrice differentiable supply curve, it exists N ∈ N such that ∀n > N :
If (a) F ′′ < 0, then (a2i) ∂ E(P ∗)

∂λ
< 0 and ∂ E(Q∗)

∂λ
> 0. If (b) F ′′ > 0, then (b2i) ∂ E(P ∗)

∂λ
> 0

and ∂ E(Q∗)
∂λ

< 0 .

Proof. When buyers behave in a competitive way (i.e. n → ∞), previous computations
simplify since in equilibrium, the marginal value is equalized with the price. Essentially,
L′(Q∗) becomes L′(Q∗) ≡ F ′(Q) + a, since we have the next competitive equilibrium
condition:

E(Z|s)− aQ∗ = F (Q∗) (CEC)

Again, by implicit differentiation, we can write:

dQ∗

dµh
=

ζ

L′(Q∗)
=

ζ

F ′(Q∗) + a
> 0⇒ ∂2Q∗

∂µ2
h

= − ζF ′′(Q∗)

(F ′(Q∗) + a)2
(E.1)

The price’s second derivative with respect to µh is:

∂P ∗(µh)

∂µh
=
∂F (Q∗(µh))

∂Q∗(µh)

∂Q∗(µh)

∂µh
= F ′(Q∗)× ζ

F ′(Q∗) + a
⇒ ∂2P ∗(µh)

∂µ2
h

=
aζF ′′(Q)

(F ′(Q∗) + a)2

(E.2)
The result is direct. �

Proposition 17. If (a) F ′′ > 0, then ∂ E(P ∗)
∂λ

< 0⇒ ∂ E(Q∗)
∂λ

< 0.

If (b) F ′′ < 0, then ∂ E(P ∗)
∂λ

> 0⇒ ∂ E(Q∗)
∂λ

> 0.

203



E. Proofs

Proof. First recall that L′ and F ′ are both positive by hypothesis. We know that L′′(Q) <

0 ⇔ ∂ E(Q∗)
∂λ

> 0. As well, we know that F ′′(Q)L′(Q) − F ′(Q)L′′(Q) > 0 ⇔ ∂ E(P ∗)
∂λ

> 0.
It is directly seen that if (b), L′′(Q) > 0 ⇔ ∂ E(Q∗)

∂λ
< 0 implies that F ′′(Q)L′(Q) −

F ′(Q)L′′(Q) < 0 ⇔ ∂ E(P ∗)
∂λ

< 0. Similarly, if (a), L′′(Q) < 0 ⇔ ∂ E(Q∗)
∂λ

> 0 implies that
F ′′(Q)L′(Q) − F ′(Q)L′′(Q) > 0 ⇔ ∂ E(P ∗)

∂λ
> 0. By contrapositive, we can deduce both

statements. �

Proposition 18. When n is large enough, preferences can be characterized with respect to
the curvature of the bid function:

F ′′ −F ′(F ′+a)
aQ 0 F ′+a

Q

Buyers’ Surplus λS = 1 λS = 1 λS = 1 λS = 1
2

Owners’ Profit λP = 1
2 λP = 1 λP = 1 λP = 1

if m(Q) > 0 λC = 1 λC = 1 λC = 1 λC = 1
Majority Winning

if m(Q) < 0 λC = 1
2 λC = 1

2 λC = 1 λC = 1

Welfare λW = 1

Table E.1: Maximizing precision under perfect competition

Proof. Combining Lemma 33 and Lemma 31, we deduce directly the statements on the
Majority Winning precision.

For any total demanded quantity Q, the buyers’ surplus is:

S(Q) =

∫ Q

0

D−1(x)− P (Q)dx =

∫ Q

0

E(Z|S)− ax− F (Q)dx

Therefore, the expected buyers’ surplus at equilibrium can be written2:

E(S(Q∗(µh))) = Q∗(µh)

(
µhζ + zl −

1

2
aQ∗(µh)− F (Q∗(µh))

)
Then, we can deduce the derivative with respect to µh in the competititve case:

∂ E(S(Q∗))

∂µh
=
∂Q∗

∂µh
(µhζ + zl − aQ∗ − F (Q∗)− F ′(Q∗)Q∗)︸ ︷︷ ︸

=−Q∗F ′(Q∗) by CEC

+Q∗ζ

⇒ ∂ E(S(Q∗))

∂µh
=− ζQ∗F ′(Q∗)

F ′(Q∗) + a
+Q∗ζ =

aζQ∗

F ′(Q∗) + a

⇒ ∂2 E(S(Q∗))

∂µ2
h

=
∂Q∗

∂µh

aζ(F ′(Q∗) + a)− aζQ∗F ′′(Q∗)
(F ′(Q∗) + a)2

⇒ ∂2 E(S(Q∗))

∂µ2
h

=
aζ2

(F ′(Q∗) + a)3
× (F ′(Q∗) + a−Q∗F ′′(Q∗)) (E.3)

2Cf. proof of Proposition 13.
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The profit is expressed as follow (with Q is the aggregate quantities sold to the buyers):

Π(Q) =

∫ Q

0

F (Q)− F (x)dx

The derivative of the expected profit can be written3:

∂ E(Π(Q∗)

∂µh
=

dQ∗

dµh
×Q∗F ′(Q∗) =

ζQ∗F ′(Q∗)

F ′(Q∗) + a

⇒∂2 E(Π(Q∗))

∂µ2
h

= ζ
dQ∗

dµh
× (Q∗F ′′(Q∗) + F ′(Q∗))(F ′(Q∗) + a)− F ′′(Q∗)Q∗F ′(Q∗)

(F ′(Q∗) + a)2

⇒∂2 E(Π(Q∗))

∂µ2
h

=
ζ2

(F ′(Q∗) + a)3
× (aQ∗F ′′(Q∗) + aF ′(Q∗) + F ′(Q∗)2) (E.4)

Finally,

∂2 E(W (Q∗))

∂µ2
h

=
∂2 E(S(Q∗))

∂µ2
h

+
∂2 E(Π(Q∗))

∂µ2
h

⇒ ∂2 E(W (Q∗))

∂µ2
h

=
ζ2

(F ′(Q∗) + a)3
× (aF ′(Q∗) + a2 − aQ∗F ′′(Q∗)) +

ζ2

(F ′(Q∗) + a)3
× (aQ∗F ′′(Q∗) + aF ′(Q∗) + F ′(Q∗)2)

⇒ ∂2 E(W (Q∗))

∂µ2
h

=
ζ2

(F ′(Q∗) + a)
> 0 (E.5)

The result is direct. �

3Cf. proof of Lemma 30.
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Appendix F

Majority-winning with a low
probability of having a high state of the
world

if µ0 < 1
2
, the probability to get a high signal decreases when the precision increases. It

means that a part of the owners who prefer 1 to 1
2
will prefer an other λ. As well for a

part of the owners who prefer 1
2
to 1. We show that there is a set of λ such that each λ

maximizes the profit of an owner i. Note:

Precision Bid

λ = 1−µ0

1−2µ0
− P ∗(µ0)−bo

(1−2µ0)2(P ∗(µh)−bo) bo = P ∗(µ0)− (1−µ0)µ0P ∗
′
(µh)

1−2µ0

λ = 1 bo = P ∗(1)− (1−µ0)P ∗
′
(1)

1−2µ0

Table F.1: Bounds on the interior precisions and their associated bids

Lemma 34. If µ0 <
1
2
, a non negligible part of owners prefer a precision different from

1
2
and 1. All the owners bidding in the interval [bo, bo] prefer a different precision between

λ and 1

Proof. Considering the profit ΠSh(λ, b) = P(s = Sh)(P
∗(µh) − b) of owners selling their

capacity only when the high signal is displayed, the set of the interior precisions maxi-
mizing the profit of at least (in fact at most as well) one owner is the set of precisions
such that the first order condition is null and such that the profit exceeds the profit with
λ = 1

2
, i.e.:

λM ∈ ]
1

2
, 1[ such that (i) λM maximizes ΠSh(λ, b)

and such that (ii) P(s = Sh|λM)(P ∗(µh|λM)− b) ≥ P ∗(µ0)− b



F. Majority-winning with a low probability of having a high state of the world

For (i), we characterize the set of precisions such that the first order condition of ΠSh(λ, b)

is null. For each bid b, one can find the precision λm that maximizes the profit (condi-
tionally on selling only when the signal is high):

arg max
λ

P(s = Sh)(P
∗(µh)− b)

⇔ ∂ P(s = Sh)

∂λ
× (P ∗(µh)− b) + P(s = Sh)× P ∗

′
(µh) = 0

⇔ λm =
(1− µ0)((1− 2µ0)(P ∗(µh)− b)− µ0P

∗′(µh))

(1− 2µ0)2(P ∗(µh)− b)

⇔ λm =
1− µ0

1− 2µ0

− (1− µ0)µ0P
∗′(µh)

(1− 2µ0)2(P ∗(µh)− b)

For (ii), we need to define bo(λ) such that the owner who bids bo is indifferent between
λ = 1

2
and a certain λ ∈ (1

2
, 1] that induces µh when the high signal is sent, i.e. (with

P ∗(µh) the price when the precision λ and the high signal Sh induce µh):

P(s = Sh)(P
∗(µh)− bo) = P ∗(µ0)− bo ⇔ bo(1− P(s = Sh)) = P ∗(µ0)− P(s = Sh)P

∗(µh)

Note that ∀b > bo(λ), ΠSh(λ, b) > P ∗(µ0)− b, since:

P(s = Sh)(P
∗(µh)− b) > P ∗(µ0)− b⇔ b > bo(λ) =

P ∗(µ0)− P(s = Sh)P
∗(µh)

1− P(s = Sh)

Thus, the set of λM is the set:

λ ∈ ]
1

2
, 1[ such that: ∃i such that λ = λm(bi)

and such that bi > bo(λm)

Now, we establish the bounds of the sets of λM and the associated bids bi.

By implicit differentiation of the first order condition on λm, we find:

dλm

d b
= −(1− 2µ0)× P(s = Sh)

3

P ∗′′(µh)× µ2
0(1− µ0)2

> 0

We find by implicit differentiation of bo:

d bo

dλ
= −

∂Π
∂λ

1− P(s = Sh)
and

d2 bo

dλ2
=

(1− 2µ0)∂Π
∂λ
− (1− P(s = Sh))

∂2Π
∂λ2

(1− P(s = Sh))2

d bo
dλ is negative if ∂Π

∂λ
is positive and vice versa.

∂Π
∂λ

being decreasing everywhere, bo is decreasing in λ for λ < λ, with λ being the precision
such that d bo

dλ = 0. Conversely, bo is increasing in λ for λ > λ, making bo = bo(λ) the
minimal bid such that an owner is indifferent between 1

2
and a certain λ > 1

2
. However,
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this certain λ, that we noted λ is not the lowest precision such that an owner is indifferent
between 1

2
and the said precision. Nevertheless, as we will see below, it is the lowest

precision (but 1
2
) that can be selected by an owner.

Since λm is increasing in b, there is an unique λ∗ = λ that maximizes the profit of the
owner who bids bo, and there is an unique bid bo such that λ∗ = 1.

For bo, since bo is defined as ∂Π
∂λ

= 0, λm = λo. For b, it is sufficient to replace λ∗ by 1 in
the first order condition.

Then, for each bid b > b > b, a different λm(b) > 1
2
maximizes the profit of the owner who

bids b. λm being strictly increasing, it means that between bo and bo, all owners choose a
different λ.

Precision Bid

λ = 1−µ0

1−2µ0
− P ∗(µ0)−bo

(1−2µ0)2(P ∗(µh)−bo) bo = P ∗(µ0)− (1−µ0)µ0P ∗
′
(µh)

1−2µ0

λ = 1 bo = P ∗(1)− (1−µ0)P ∗
′
(1)

1−2µ0

Since µh maximizes the profit for the bid bo, and since dλ∗
d b > 0, for all the owners with

b > bo, they prefer λ∗ > λ.

λW (b)
λo(b)
λm(b)

λ(b)
1

b
0

1
2

λ

b

b(λW )
bo(λ)
b(λm)

P ∗(1)

b(λ)

λ
1
2 1λ

Figure F.1: Graphical example - Profit maximizing and indifference precisions (left-hand side),
profit maximized and indifference bids (right-hand side)

On the left-hand side of Figure F.1, we consider for each bid the precision that maximizes
the profit (in red), and the precisions such that the owner is indifferent between 1

2
and

the said precisions (in black). Reciprocally, on the right-hand side, we draw the set of
bids such that the owners maximize their profit with the given precision (in red) while the
bids such that the owners are indifferent between 1

2
and the said precision are in black. In

both graphs, the grey line corresponds to the precisions that maximize the profit of the
owner who sells only in the high signal case.

�

Few computations give:
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∂b̂
∂µ0

= (1− µ0)P ∗
′
(µ0)− (P ∗(1)− P ∗(µ0)) > 0 since P ∗(µh) is concave,

∂b
∂µ0

= (1−2µ0)2(P ∗
′
(µ0)−P ∗′(µh))+(1−µ0)µ0(2P ∗

′
(µh)−(1−2µ0)(1−λ)λ P ∗

′′
(µh)

P(s=Sh)2 ) > 0,

∂b
∂µ0

= − P ∗
′
(1)

(1−2µ0)2 < 0

Therefore, b̂ is increasing in µ0. Thus, if µ0 >
1
2
, there are more and more owners preferring

1
2
as µ0 increases –and less preferring 1.

If µ0 <
1
2
, there are also more owners preferring 1

2
to 1 when µ0 increases. As well, there

are more owners preferring 1
2
to any other precision when µ0 increases because P ∗(µ0)

increases. And, when µ0 increases, more owners prefer 1 to the interior precisions, because
the probability of receiving a high signal has increased. In other words, the preferences
are more and more polarized, and both 1

2
and 1 gain voters. At the limit µ0 = 1

2
, we have

b = b̂ = b: 1
2
and 1 are the only selected precisions.

If the owners are strategic in their choice, they all choose either 1
2
or 1. Indeed, since

λm(b) is an increasing function, interior precisions can not be supported by more than
one owners. Then, results remain unchanged:

Lemma 35. ∀µ0, whenever n ≥ 1 and (1) F ′(Q)
L′(Q)

increases, λC = 1. If (2) F ′(Q)
L′(Q)

decreases
and µ0 ≥ 1

2
, λC = 1 when (2i) m(Q) > 0 and λC = 1

2
when (2ii) m(Q) < 0.
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Appendix G

Figures

Figure G.1: Merit orders (He et al. [2013]) and net rent estimation (own calculations)

Interval Interval (MW) α β γ δ

Quantile 1 [72000; 80000] -2717529,46 108,35 -0,0014 6, 39 ∗ 10−9

Quantile 2 (80000; 95000] 1895652,64 -66,68 0,0008 −2, 94 ∗ 10−9

Quantile 3 (95000; 101000] -3016576,63 89,09 -0,0008 2, 86E − 09 ∗ 10−9

Table G.1: Coefficients of the Spline fit for the supply curve of Germany in 2010



G. Figures

Figure G.2: Expected reserve margin evolution from IEA International Energy Agency [2010]

Figure G.3: Forecast total obligation for France under different demand variants (in GW) RTE
[2015]
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Appendix H

Structural under procurement

zh = zl Qt1 = 79.9 GW Qt2 = 87.1 GW Qt3 = 100.1 GW Qt4 = 104.5 GW
n =∞ ∀a - - - -
n = 65 a = 50 -12 -26 -2 -3

a = 20 -29 -62 -6 -8
a = 10 -55 -119 -12 -17
a = 5 -104 -218 -24 -33

n = 4 a = 50 -178 -414 -40 -53
a = 20 -401 -988 -102 -128
a = 10 -694 -1 819 -213 -244
a = 5 -1 112 -3 081 -467 -444

Table H.1: Differentials in capacity procurement (MW)

In terms of procurement (Table H.1), under procurements structurally increase as the
level of competition (n) decreases. However, the size of market power is limited by the
slope of the demand curve (implicit penalty). Indeed, it works as a retracting force since
deviations from the competitive equilibrium are increasingly costly as a increases. Now,
the slope of the supply curve also matters in terms of market power expression: the
steeper it is, the more expensive it is to buy additional capacity. For instance, the Qt

2

case is characterized both by a greater F ′ and a much greater level of under procurement
than the three other cases. Interestingly, we can observe that the effect of a on under
procurement is not linear, and is modified with respect to the considered target. This
effect obviously depends on the supply curve. When F ′, is low (as in the third and fourth
cases), the second derivative has a role to play. Indeed, when F ′′ is negative (as in the
third case), the market power is decreasing in quantities: as a decreases, less and less
quantities are procured. Under procurement is not only a way to decrease prices, but
it also allows for more market power expression. On the contrary, F ′′ is positive at Qt

4

meaning that the marginal effect of reducing procurement on prices is decreasing. This
somehow bounds the expression of market power and explains why under procurement is



H. Structural under procurement

relatively more important in the Qt
3 case than with Qt

4 (for a = 5) although the slope of
the supply curve is locally more gentle.

Taking the most extreme case of under procurement, Qt
2 with a low slope, the effect of

competition on procured quantities is represented graphically. The market power induced
by 65 capacity homogeneous buyers with respect to perfect competition reduces procure-
ment by 0.25% from 87100 MW to 86882 MW. If only 4 LSEs compete in the market, the
capacity bought is further decreased to 84019 MW: the expression of market power allows
capacity buyers to reduce their actual demand by 3.54% compared to the competitive
state. As illustrated by Figure H.1, market power is not linearly decreasing in n. The
purple curves represent L: as F ′ increases, the difference between the light curve (n = 4)
and the dark curve (n = ∞) increases which means that the first one will equal E(Z)

(first order condition) sooner than the other. It is also noticeable from the figure that
high competition (n = 65) results in an almost linear L contrary to the low competition
case (n = 4). This is only natural since the smaller the oligopsony, the more self conscious
they are of the steepness of the supply curve. A steep supply curve means that additional
capacity is increasingly costly, and the less numerous they are, the greater their impact
on price. Consequently, they benefit more from their own decision of buying less. All in
all, L in the low competition case and the medium one tend to diverge when the supply
curve changes shape. It is coherent with what we found in the previous section: when the
supply curve shape is modified, the relative increases of both the markdown derivative
and the supply curve derivative are modified in different ways. When the markdown has
a large weight in sFOC, it may affect the preferences for precision.

Figure H.1: Effect of competition on procured quantities for a = 5, Z ≈ 442382, 41
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Appendix I

Sensitivity on uncertainty

Figure I.1: Difference in mean quantities be-
tween the information (λ = 1) equilibrium
(Qt1 = 79900 MW) and the no information
(λ = 1

2) equilibrium at (n = 65)

Figure I.2: Difference in mean prices be-
tween the information (λ = 1) equilibrium
(Qt1 = 79900 MW) and the no information
(λ = 1

2) equilibrium at (n = 65)

Figure I.3: Difference in mean quantities be-
tween the information (λ = 1) equilibrium
(Qt2 = 87100 MW) and the no information
(λ = 1

2) equilibrium at (n = 65)

Figure I.4: Difference in mean prices be-
tween the information (λ = 1) equilibrium
(Qt2 = 87100 MW) and the no information
(λ = 1

2) equilibrium at (n = 65)



I. Sensitivity on uncertainty

Figure I.5: Difference in mean quantities be-
tween the information (λ = 1) equilibrium
(Qt3 = 100100 MW) and the no information
(λ = 1

2) equilibrium at (n = 65)

Figure I.6: Difference in mean prices be-
tween the information (λ = 1) equilibrium
(Qt3 = 100100 MW) and the no information
(λ = 1

2) equilibrium at (n = 65)

Figure I.7: Difference in mean quantities be-
tween the information (λ = 1) equilibrium
(Qt4 = 104500 MW) and the no information
(λ = 1

2) equilibrium at (n = 65)

Figure I.8: Difference in mean prices be-
tween the information (λ = 1) equilibrium
(Qt4 = 104500 MW) and the no information
(λ = 1

2) equilibrium at (n = 65)
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I. Sensitivity on uncertainty

Figure I.9: Difference in mean quantities be-
tween the information (λ = 1) equilibrium
(Qt1 = 79900 MW) and the no information
(λ = 1

2) equilibrium at (n = 4)

Figure I.10: Difference in mean prices be-
tween the information (λ = 1) equilibrium
(Qt1 = 79900 MW) and the no information
(λ = 1

2) equilibrium at (n = 4)

Figure I.11: Difference in mean quantities
between the information (λ = 1) equilibrium
(Qt2 = 87100 MW) and the no information
(λ = 1

2) equilibrium at (n = 4)

Figure I.12: Difference in mean prices be-
tween the information (λ = 1) equilibrium
(Qt2 = 87100 MW) and the no information
(λ = 1

2) equilibrium at (n = 4)

Figure I.13: Difference in mean quantities
between the information (λ = 1) equilibrium
(Qt3 = 100100 MW) and the no information
(λ = 1

2) equilibrium at (n = 4)

Figure I.14: Difference in mean prices be-
tween the information (λ = 1) equilibrium
(Qt3 = 100100 MW) and the no information
(λ = 1

2) equilibrium at (n = 4)
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I. Sensitivity on uncertainty

Figure I.15: Difference in mean quantities
between the information (λ = 1) equilibrium
(Qt4 = 104500 MW) and the no information
(λ = 1

2) equilibrium at (n = 4)

Figure I.16: Difference in mean prices be-
tween the information (λ = 1) equilibrium
(Qt4 = 104500 MW) and the no information
(λ = 1

2) equilibrium at (n = 4)

Figure I.17: Representation of the Q1 case with both no uncertainty and 2% uncertainty with
and without information (a = 5)
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Appendix J

Demand-side design in capacity
markets

J.1 Design related Information Precision in Capacity Markets

In a framework where the SoS depends on the ability of LSEs to collectively cover the
aggregated peak demand to avoid rationing: the uncertainty is endemic and the forecast
error can be costly. This is one of the difficulties in designing capacity markets: what is
the fair risk that retailers/consumers should bear with respect forecasting and securing
their future demand? With price insensitive end consumers - for technical reasons -, it is
a complex trade off. As forward periods of 3 to 4 years are increasingly implemented, the
risks related to forecast errors need to be tackled through the capacity market design itself.
In addition to the well discussed degree of centralization, two approaches are observed in
existing CRMs: (a) ex ante requirements hedge market actors against the forecast error
while (b) the ex post requirements makes them accountable for it (see Table 4.1). As a
consequence, the official peak demand forecast is unevenly informative depending on the
capacity market design.

Indeed, in a mechanism that defines the capacity requirements ex ante like in Great
Britain, any forecast error would only affect the end-users through the cost of capacity
(over procurement) or eventual black-outs (under procurements). In case of discontent-
ment, they might turn against the central authority, but the actual electricity market
actors are not accountable for reliability: capacity owners receive what they deserve and
LSEs pay what they are told to. This solution is broadly implemented in the US as well.
The amount of capacity to be procured is fully known ex ante either for each LSE (former
MISO) or for the whole system (ISO-NE, PJM) which is the central planner case1. Full
regulation equates perfect information: the forecast requirement of the central authority
is fully instructive for them and this is true irrespective of actual scarcity in the market

1Capacity market reality can also lie in between with a mix of bilateral trade, two sided auctions and/or one
sided auction with an administrative demand curve (NYISO).
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at a given delivery year.

On the contrary, the French mechanism makes the LSEs directly accountable for their
reliability. They have to forecast their own requirements (based on peak demand) and
procure its capacity equivalent. Regulatory parameters are set to hedge against temper-
ature related forecast errors and normalize requirements to the SoS objective, but the
actual requirements still depend on realized demand. This naturally shifts part of the
cost of forecast error towards the LSEs: they have to procure capacity under uncertainty
on the future realization of demand levels. The central authority’s forecast gives a clue on
the expected aggregated level of capacity, but this information is only partially instructive
because of the myopic nature of the central authority. Because forecast errors decrease
with aggregation, the central authority’s forecast is likely to be more accurate than the
LSE’s one all things equal [Chen, 2017], but it remains imprecise. Accounting for the
informational value of the forecast published as well as the uncertainty around their own
realization, the LSEs procure the capacity they expect to need.

All in all, three main points make the French mechanism different from the most contem-
porary CRMs such as the British capacity market: (i) the procurement is decentralized
and (ii) the risk related to demand unpredictability is left to the capacity buyers. The
first point creates Cournot competition between LSEs because each of them receives the
obligation to procure its share of capacity. The second point introduces uncertainty on the
future level of capacity demand. Indeed, where the forecast is binding in Great Britain,
it is rather the demand realization that is in France. In other words, ex ante requirement
definition makes the aggregated requirement forecast fully informative to the market par-
ticipants in Great Britain. It will only be partly informative in the French design because
actual requirements (ex post) are based on peak demand realization rather than a fore-
cast. Thus, the cost allocation of the mechanism (based on current or future peak share
or even peak realization) does affect the uncertainty faced by the LSEs.

J.2 Designs of capacity markets: The British capacity market

The British capacity market was implemented as part of the Electricity Market Reform
(EMR) which deals with sustainability, reliability and affordability in the system. The
former seeks to comply with the 20-20-20 from the climate and energy package of the
European commission2 while the second one seeks to meet a reliability standard of 3
hours of expected loss of load per capacity year3. The latter states that price inflation
should be limited to ensure an access as universal as possible. In the Electricity Market
Reform (EMR), the two first targets are set by the public authority and procured sep-
arately under the assumption that their public good attribute prevents efficient market
outcomes. These two targets have been thought as complements in order to also achieve

220% cut in greenhouse gas emissions (from 1990 levels), 20% of EU energy from renewables, 20% improvement
in energy efficiency.

3Loss of Load is defined, in the UK, as the time during which an instruction of brown out is issued or emergency
options are activated in order to prevent a brown out.
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the affordability goal. Otherwise subsidized capacity, as tendered renewables, cannot be
eligible for capacity payments. Yet, its inner reliability at peak is considered as secured by
the central authority. However, this only represents a small share of the capacity required
to cover the peak demand with a loss of load probability (LOLP) lower than 3 hours per
year. The rest still needs to be procured through the capacity market. National Grid, the
system operator, is mandated by the ministry on behalf of the end consumers to secure
the capacity required to meet the reliability target four years in advance. In order to avoid
the emergence of pivotal buyer, a slope is built through the definition of a "minimum"
capacity where the price cap is reached and a "maximum" one where the price reaches
zero. The resulting demand curve is built as follow:

• The capacity target: 46.3 GW for DY 2022-2023

• The net Cost Of New Entry (CONE)4 as estimated by the ministry: £49/kW/year
for DY 2022-2023

• The price cap at 1.5 Net CONE at: £75/kW/year for DY 2022-2023

• The minimum and maximum capacity at: ± 1.5 GW

On the supply-side, a price taker threshold is defined at 0.5 Net CONE to force price
competition between the existing capacity. The existing capacity cannot exit the auction5

before the price drops under £25/kW/year. From those characteristics, it results not only
a steep demand curve, but also numerous low bids. The choice of the parameters reveals
several elements that are key to understanding capacity markets. Firstly, the capacity
target is not firm. What is called "target tolerances" reflects the myopic view of the public
authority. Indeed, there is no technical way for the end consumer to express its precise
preferences in terms of SoS, and when it comes to set a target several years ahead of peak
demand realization, the level of procurement can only be an educated guess. For the
defenders of capacity markets, its outcomes in terms of SoS are considered more desirable
than the energy-only market outcomes. This is because the cost of a black-out is often
higher than the cost of additional SoS. From the end consumers’ perspective, whatever
the reliability target set and reached, the captive consumers still pay for their capacity
requirements: a "CM operational levy" and a "CM obligation levy" are charged to LSEs
in proportion of their market share at peak6. End consumers also still face the cost of
any black-out that would come to happen. In this framework, obtaining the least cost
solution remains a recurrent discussion among public authorities.

J.3 Designs of capacity markets: The French capacity market

Hoping to minimize the deviation of the procurement from actual needs, France chose a

4Cost of a new entrant (CCGT in 2014 and 2015 auctions) after accounting for wholesale and ancillary market
revenues.

5Descending clock auction.
64pm to 7pm, Monday to Friday during November to February.
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decentralized design where the realized peak demand is binding instead of the forecasted
peak demand. This design echoes the central authority’s myopia with respect to future
demand.

As in the UK, the reliability target is centrally defined by the public authority to cope
with the non excludability of SoS. However, instead of procuring the capacity itself, the
mandate is given to the LSEs that are then in charge of both the electricity and the SoS
provided to the end consumers. Three years in advance, LSEs and network operators
have to cover their future peak demand either through the auctions organized by EPEX
Spot, or over-the-counter. When the delivery year is over, and peak demand have been
quantified, the settlement process requires the agents either to adjust their positions, or to
pay a non compliance penalty if they remain short. This is a two-edged sword since LSEs
have a finer knowledge of their own demand and might even be able to reduce their peak
demand if they have to pay for it. Nevertheless, demand forecasts are known to be more
accurate when markets are centralized Chen [2017]. Indeed, demand tends to average
out with the size of the market. That being said, the reliability target is translated into
regulation through requirement parameters very different from those of the British design.
The two following are published 4 years ahead, but individual targets remain uncertain:

• Thermo sensitivity coefficients: the weather normalization forces the LSEs to pro-
cure capacity as if extreme temperatures were reached (between -1.6◦C and -4◦C
depending on the time of the day).

• The security factor scales the weather normalized peak with capacity needs: 0.93.

The weather correction aims both at SoS objectives since demand is highly correlated with
temperatures, but also at hedging LSEs against the effect of weather uncertainty on peak
demand. As a matter of fact, the LSEs are free to build their expectations individually
based on predefined scaling parameter for their future peak demand:

Obligation = security coefficient(realized consumption+ weather correction)

On the supply-side, capacity is normalized into certificates with compulsory offer on the
market. Bids are only constrained by a price cap and the regulator closely monitors the
main integrated actors’ trades. A capacity register is hold by RTE to keep track of every
transaction. Quantities and prices are publicly available for transparency reasons, but
not the identity of the agents involved.
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RÉSUMÉ

L’économie modélise des agents rationnels. Cette hypothèse de rationalité est à la fois un cadre qui permet de faire des
prédictions, et un carcan qui peut parfois sembler trop éloigné de la réalité. Cette thèse explore différents pans de la
rationalité. D’abord, nous nous intéressons à la cohérence de deux des concepts de théorie des jeux les plus connus,
c’est-à-dire l’élimination itérée des stratégies faiblement dominées (IEWDS), et l’élimination itérée des stratégies stricte-
ment dominées (IESDS). Nous introduisons deux nouvelles relations de dominance entre stratégies et deux nouvelles
procédures d’élimination de stratégies qui apparaissent plus cohérentes que les procédures existantes. En effet, les so-
lutions des procédures que nous proposons sont indépendantes de l’ordre d’élimination, donnant une prédiction unique
contrairement aux solutions de IEWDS et IESDS. Par ailleurs, nos concepts correspondent à des relaxations de cer-
taines hypothèses de rationalité que nous identifions. Ensuite, nous relâchons l’hypothèse que les agents économiques
sont capables d’utiliser toute l’information disponible. Nous intéressons à un jeu d’investissement où les actions sont
complémentaires et où les agents paient un coût pour obtenir de l’information. Nous caractérisons les équilibres et mon-
trons quelle est l’influence réciproque de l’acquisition de l’information par les différents agents qui composent l’économie.
Finalement, nous adaptons la théorie de la persuasion Bayésienne aux marchés de capacités en électricité. La persua-
sion Bayésienne permet de définir simplement la quantité d’information optimale qu’un agent peut transmettre à d’autres
agents. Nous montrons qu’un régulateur de marchés d’électricité peut avoir intérêt à garder l’information dont il dispose
sous des conditions que nous déterminons. Nous appliquons notre modèle à des données sur le marché d’électricité
allemand.

MOTS CLÉS

Rationalité, Information, Procédures d’Elimination de Strategies, Inattention Rationnelle, Complémentarités,
Persuasion

ABSTRACT

Economics models rational agents. This assumption of rationality is both a framework for making predictions and a strait-

jacket that can sometimes seem too far removed from reality. This thesis explores different aspects of rationality. First,

we focus on the consistency of two of the best-known game theory concepts, i.e., the iterated elimination of weakly domi-

nated strategies (IEWDS), and the elimination of strictly dominated strategies (IESDS). We introduce two new dominance

relations between strategies and two new strategy elimination procedures that appear more consistent than the existing

procedures. Indeed, the solutions of our proposed procedures are independent of the order of elimination, giving a unique

prediction contrary to the solutions of IEWDS (in finite games) and IESDS (in infinite games). Moreover, our concepts

correspond to relaxations of some rationality assumptions that we identify. That is, we assume that players may explore

their available strategies, inducing perturbed beliefs. Second, we relax the assumption that economic agents are able to

use all available information. We focus on an investment game where actions are complementary and agents pay a cost

to obtain information. We characterize the equilibria and show the reciprocal influence of the acquisition of information by

the different agents that compose the economy. Finally, we adapt the theory of Bayesian persuasion to electricity capacity

markets. Bayesian persuasion allows us to simply define the optimal amount of information that an agent can transmit to

other agents. We show that a regulator of electricity markets may have an incentive to keep the information at his disposal

under conditions that we determine. We apply our model to data on the German electricity market.

KEYWORDS

Rationality, Information, Strategies Elimination Procedures, Rational Inattention, Complementarities, Persua-
sion
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