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Introductory Summary                    

 

This thesis study is based on the recently developed semi-solid redox flow battery (SSRFB). It can 

simultaneously interest researchers in the field of redox flow batteries (RFBs) as well as lithium ion batteries 

(LIBs), since the SSRFBs represent a union of RFBs and LIBs. The SSRFB can be visualized as essentially a 

flowable LIB electrode within the architecture of a RFB.  

The model proposed studies particle suspension dynamics undergoing electrochemical phenomena from 

a mechanistic perspective. It was developed in-house in Python from scratch and it is described in Chapter 3. 

Insights on the method are provided in Chapter 4 and a case study to show it capabilities in providing physically 

relevant insight is provided in Chapter 5.  

The methodology proposed herein incorporates a wide variety of modeling tools from various disciplines. 

It is an agent-based model with a kinetic Monte Carlo engine, in a three-dimensional discrete space. The physics 

simulated has a significantly well-defined causal flow, which can further be elaborated upon using graph theory. 

Object oriented programming helps simulate evolution of properties of individual particles as they interact with 

one another during electrochemical discharge.  

The highly interconnected causal flow provides a holistic picture of the SSRFB, which comes with many 

checks and balances to handle differences in assumptions of various empirical equations used. Thus, this self-

correcting and adaptive approach provides a systematic means to test a variety of hypotheses in a rigorous way.  

A large amount of data is generated to perform local and global parameter sensitivity analyses, to identity 

parameters that are sensitive and important. This helps to standardize the model, a step which is known to be very 

challenging for all mechanistic models. It also helps perform studies where multiple parameters are simultaneously 

varied, something that is essential but very difficult to achieve experimentally. Simulating at the mesoscopic scale 
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further provides insights that are experimental difficult to capture and that traditional continuum models tend to 

miss. It provides a means to identify new kinds of metrics which can be instrumental in directing research to obtain 

optimization faster.  

Furthermore, this study provides quantitative means to demonstrate how SSRFBs are a complex system. 

In parallel, this work elaborates the nature of complexity itself in the context of materials for energy storage. 

Further discussions place existing modeling and experimental tools in the perspective of how they can aid or hinder 

the study of complexity of the SSRFB.  

A description of the context (Chapter 1), state of the art (Chapter 2) and complexity (Chapter 6) 

demonstrates how the journey to commercialization of the SSRFB will require significant collaborative effort from 

not only the RFB and LIB communities, but will also need the  involvement of experts of rheology, particle level 

mechanics. The SSRFB demands a new approach to experimental studies, since traditional studies used for LIBs, 

RFBs, rheology or imaging, do not provide enough information. New methods that simultaneously measure 

multiple types of outputs are essential, however a huge challenge lies in establishing such methods because their 

optimization is further based on such complex systems which are difficult to study.  

In conclusion, this work provides proof of concept of a work-flow for new genre of methodologies that 

are focused on integrating complex system intricacies with maximum transparency. The novelty of this work lies 

in viewing electrochemical systems through the lens of complex system studies. This helps provide exhaustive 

justifications for why systematic research and advancement in disciplines like SSRFBs and LIBs is incredibly 

challenging. It also aims to provide a perspective with which conflicting scientific discoveries and long standing 

debates can be resolved and put to rest.  
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1.1. Need for Battery Innovation 

Any technological change in society is contingent on short term economic advantages which tend to 

dictate market trends, and inevitably have political and social impacts. A 2019 global risk report by the world 

economic forum provides a thoroughly comprehensive look at critical forces that will influence the human race in 

the years to come.1 The study includes economic, technological, societal, geopolitical, and environmental risks 

which are highlighted in Figure 1.1. The interconnectedness of factors and interactions between forces in this 

schematic makes it difficult to collect data to provide predictions for clear decision making. Most technological 

changes in such an interdependent system have a potential to become disruptive for society, for better or for worse, 

and the energy sector would be no exception. With climate change mitigation policies demanding cleaner energy 

sources; renewable energy storage coupled with tailor-made energy storage devices are expected to cater to the 

market needs as fast as possible. The Kyoto Protocol of 2005, targeted to counter climate change causing 

emissions, was unable to bring about significant transformation in industry.2 Consequent climate talks have not 

been particularly successful in reaching global consensus, i.e. the 15th COP (Conference of Parties) in Copenhagen 

in 2009 was a significant failure, the effects of which spilled over to COPs in Cancun in 2010 and Durban in 2011.3 

Consequently, there has been a call for a more stringent and integrated approach to climate change policies and 

the introduction of polycentric climate governance so that local factors can be taken into account, building 

solutions that may be more complex but significantly more beneficial.4,5  

To make policy implementation easier, the technology transition has to be made smooth at multiple levels 

and requires coordinated efforts for innovation, planning, and deployment.4 Innovation, in terms of an invention 

or discovery that can be turned into a marketable prototype, is most relevant for laboratory scale research and will 

be addressed in this work. It can thus be very useful to look into the dynamics of innovation. Patent citation 

networks, for instance, can show how a collection of different inventions can lead to new ideas and patents.6  
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Figure 1.1: Global risk report for 2019 by World Economic Forum showing importance of various risks 

and their dependence on each other.1 
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It has been reported that an important driver of innovation is technological diversification and in turn 

innovation produces more diversification.7–9 The United Nation Framework Convention on Climate Change 

reports that technological diversification is even expected to build resilience in terms of both energy and 

economy.10 However, when a new technology interacts with industry, the changes tend to lead to technological 

turbulence.11 This phenomenon has been recently studied in the context of photovoltaic technology. It was 

demonstrated that in research and development (R&D), both collaboration and technological diversity can combat 

the negative impacts of technological turbulence.12 Under the right conditions, collaborative R&D that promotes 

exchange of knowledge and understanding of diverse technologies stimulates innovation for both applied industrial 

and fundamental public research.8,13,14 This shows how intra-disciplinary and cross-disciplinary knowledge and 

knowhow are a critical aid for innovation and commercialization of a new technology. A big challenge, however, 

lies in creating and managing cross-disciplinary information exchange and is thus the general context for the thesis. 

 

1.2. Technological Diversification in Battery Technology 

The first battery was put together by Volta two centuries ago,15 and large scale initiatives such as the 

Materials Project have predicted chemistry of 4401 intercalation electrodes and 16128 conversion electrodes.16 

Yet less than two dozen batteries are commercially available today, including both primary and secondary type. 

Even though intuitively expected, diversification at a lower level, i.e. the material level, does not automatically 

produce a diversity of usable battery systems. Thus a bottom-up approach to build a battery with certain target 

characteristics, like energy density and power, may not be practical. However, once a combination of electrode 

materials shows some potential to form a new type of battery, finding the right application for it is essential in 

determining whether it will be optimized as a device and reach commercialization.  

RFBs, which were described has suitably generic systems to study in the previous section, generally cater 

to grid support to manage load shifting and to buffer intermittency of solar energy. A device for such an application 
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should typically provide 100 kW-10 MW. Other types of devices, as shown in Figure 1.2, can be classified into 

applications based on discharge time at rated power as follows:  

(i) Discharge times of seconds is offered by devices like high power flywheels, high power 

supercapacitors, and superconducting magnetic energy storage. 

(ii) Discharge time of minutes is provided by a majority of batteries, for instance, lithium ion batteries 

(LIBs), lead acid batteries, and high energy supercapacitors.  

(iii) Discharge time of hours can be achieved with molten salt or redox flow batteries (RFBs)17. While 

pumped hydro and compressed air energy storage represent a substantial capital investment, they are 

used primarily for bulk power management.  

 

Figure 1.2. Power and energy ratings of various technologies for different applications.18 

From a general perspective, electrochemical devices offer significant potential for diversification in terms 

of functionality, redox chemistry, and physical properties of materials used. Additionally, as highlighted in 
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Figure 1.3,19 RFBs can offer high functional diversity amidst electrochemical devices because they can potentially 

revert to other devices under reduced conditions. Therefore, studying and understanding phenomena in RFBs can 

provide fundamental insight for its optimization and also give relevant guidelines for studying related devices.  

 

Figure 1.3. Functional adaptability of diverse electrochemical devices.19 

RFBs advantageously allow a flowable liquid containing active material and electrolyte, much like a fuel, 

can be stored in a large, external tank and pumped into the discharging battery unit when needed. The size of the 

tank determines the energy density and the architecture of the battery unit defines the power density the device 

can deliver. This makes RFBs ideal for building highly customizable grid storage solutions. This work is focused 

on a new family of RFBs, namely, semi-solid redox flow batteries (SSRFBs). The novelty of the SSRFBs lies in 

the multiphase electrode, wherein an electrolyte acts as a medium in which two kinds of solid particles are 

suspended, namely (i) electron conducting material and (ii) lithium storing electroactive material.20 Since SSRFB 

technology is derived from a combination of both LIBs and RFBs, it represents a perfect example of how 

innovation can result from technological diversification (Figure 1.4).  
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Figure 1.4. Schematic showing set-up of the flow system (left) with the battery unit (right) 

The concept of SSRFBs opened doors for a bounty of design possibilities at the level of redox chemistry, 

multiphase electrode, and cell architecture. This subject has been addressed in some reviews21–23 and the last ten 

years show diverse upcoming technologies like flow capacitors,24–33 water desalination,24,34–36 incorporation of 

redox mediators,37–45 carbon-free suspensions,46,47 polysulfide or metal-ion based carbon suspensions,48–58 and 

semi-solid metal-air flow batteries.59–61 The birth of the SSRFB and its interaction with other technologies, as 

reported in literature, at varying levels of system development, are represented pictorially as a technological 

trajectory in Figure 1.5. The red arrows point to emergent technologies that are said to emerge from interactions 

between two technologies. This schematic highlights the impact that technological diversification has on 

innovation and how inventions can be advantageous regardless of their developmental status.  

 

Figure 1.5. Schematic representation of technological trajectory of SSRFBs. 
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While moving from one breakthrough to another may be beneficial to acquire research grants, leaving 

questions unanswered along such a trajectory eventually becomes a hurdle for commercializing any emergent 

technology. For instance, within 10 years of the introduction of SSRFBs, its commercial value already appears to 

be dwindling and only in the last few months has there has been one report of a market-ready prototype by 24M 

in Cambridge.  

Historically, new electrochemical technologies have taken up to half a century to reach commercialization. 

For instance, optimizing the process for electrolysis of salt water took 60 years’ worth of intuition and trial-and-

error, along with knowhow accumulated from similar studies in other equally developed fields like electrolysis 

and metallurgy.62 This was achieved without any deep understanding of fundamental phenomena that drive 

performance.62 Since the electrochemistry in the SSRFB is derived from batteries, a brief look at their development 

is worthwhile. Between invention and commercialization, lead acid batteries took up to 70 years and Nickel-

Cadmium (Ni-Cd) batteries needed 60 years.63 Around the time the latter was commercialized, metal alloys that 

could absorb hydrogen were being studied and it took another 40 years for a Nickel Metal Hydride battery to 

appear on the market.64 High reversibility of these devices was easier to achieve since the dominant mechanisms 

and phenomena involved ion migration and electrodeposition. In hindsight, this appears less complex when 

compared to the interfacial phenomena that takes place in LIBs. Since none of the older battery technologies come 

close to the tailoring potential and diverse applicability that LIBs offer, LIBs occupy a huge research interest.  

The capability to have more parameters to tune, however, brings a high degree of complexity to LIBs and 

this is best shown by the history of this technology. The discovery of lithium metal in 1817 was immediately 

associated with electrochemical activity, however its high electromotive force was noticed only a 100 years later.15 

The discipline of electrodeposition, used to obtain pure lithium, was instrumental for research behind finding 

suitable electrolytes for LIBs, however after the first studies in 1897,65 the method took 60 years to perfect.66 

Another big hurdle was finding a suitable anode, because even though the first evidence of intercalation of cations 

into graphite was obtained in 1904,67 it was only 86 years later, in 1990, that electrolyte degradation could passivate 
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the graphite surface to form a solid electrolyte interface (SEI) and intercalation could proceed without gassing and 

exfoliation.68 It is fascinating to note that companies looking to manufacture batteries were searching for new types 

of carbons, while the solution lay in simply fine tuning electrochemical phenomena at the electrolyte-graphite 

interface. It is claimed that scientists continued to use propylene carbonate for decades based on the assumption 

that ethylene carbonate would behave similarly; this simple misconception is known to have delayed the successful 

intercalation of graphite by lithium ion and consequently commercialization of the LIB by about a staggering 20 

years.15 Today, while the types of materials and battery architectures under research have exploded in number, a 

new working battery is still referred to as an accidental or serendipitous discovery because phenomena inside a 

battery can still emerge unexpectedly.15 

 

1.3. Conclusions 

This chapter highlights the need for technological diversification as a means to ensure an economically 

and energetically stable future. SSRFBs, invented in the last decade, provide an excellent study of how 

diversification results in emergent technologies. SSRFBs not only provide a basis for the invention of newer 

technologies, they also show how the nature of parent technologies, RFBs and LIBs, manifest. This can provide 

new insight not only for RFBs and LIBs, but for all devices related to both the parent devices and the emergent 

device. The high potential for fundamental insight however is marred by the lack of a unifying platform on which 

to place existing state of the art to reveal gaps in knowledge so that there is context for any new information. As 

reflected in the history of the LIB, if the future lies in building technologies with high potential for adaptability 

and tailoring, the challenge is to find the optimal conditions for sustained functioning; this can be like looking for 

a needle in a haystack since such devices tend to show strong parallels to complex systems. The following chapters 

are aimed at discovering and elaborating the nature of this complexity and what kind of tools can be helpful.  
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2.1. Invention of the SSRFB 

The semi-solid redox flow battery (SSRFB) is essentially a flowable lithium-ion battery. It was first 

patented in 2009 by Chiang et al.69 As previously mentioned, it is a combination of the Redox Flow Battery (RFB) 

technology and Lithium Ion Battery (LIB). RFBs typically have ionic solutions soaked carbon foams as electrodes, 

these solutions can be stored in external tanks, thus enabling grid scale energy storage. LIBs have solid electrodes 

soaked in electrolyte and are typically used for portable applications. Although it is possible to use numerous LIB 

units for create large scale stationary applications. The SSRFB basically contains the same material as the LIB but 

with modified composition so as to function like a RFB. The mechanism of electrochemical reactions in the slurry 

electrode of the SSRFB is depicted in Figure 2.1.  

 

Figure 2.1. (a) Mesoscopic picture of particle suspension (b) Phenomena occurring during discharge.. 

As previously mentioned, the multiphase electrode contains two types of solid particles suspended in 

electrolyte: (i) an electron conductive additive, and (ii) active material responsible for storing energy.20 When 

compared to ionic solutions of RFBs, SSRFBs can accommodate a higher concentration of solid active material in 

the same volume, resulting in potentially 5-20 times greater volumetric energy density.20  Since the materials used 

for SSRFBs are taken from LIBs that are already known to function well, the main challenges lie with tuning 

phenomena to obtain a well-functioning SSRFB. Discussions linked to thermodynamic capabilities of materials 

used are, therefore, out of context of this work but the proposed paradigm is expected to take them into account in 

the future. 
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Figure 2.2. Taken from Duduta et al.20 (a) Schematic of flow cell (b) Typical viscosity of slurry, (c) Flow 

cell with lithium metal as reference electrode, (d–f) Galvanostatic charge/discharge curves. 

The first publication on SSRFBs in 201169 was based on the patent by Chiang et al.20 in 2009 and contained 

sufficiently generalized observations from an industrial point of view.  This study reports slurries based on: 

(i) different alkyl carbonate solvents containing LiPF6 salt, (ii) active materials like LiCoO2, LiFePO4, 

LiNi0.5Mn1.5O4, and graphite, and (iii) carbon-based conductive additives like Ketjen Black (KB). The 

electrochemical tendencies of these slurry electrodes have much in common with LIB electrodes fabricated with 

the same materials. Electronic conductivity of the conductive additive was shown to be a limiting factor. Further 

rheological investigation showed presence of shear thinning behavior and this suggested that electronic 

conductivity arises from networks of conductive additive particles and could thus be tailored (Figure 2.3). 

Additionally, different flow conditions like continuous and intermittent (i.e. stop-discharge-and-go) flows were 

studied. Intermittent flow showed less parasitic losses and it was suggested that round trip efficiencies could be 

improved by tuning flow rates.20  
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Figure 2.3. Taken from Duduta et al.20 (a) Viscosity versus shear rate for suspensions for Ketjen black 

and LiCoO2 (LCO) in alkyl carbonate electrolyte. (b) Nyquist plots for the different suspensions and their 

components (c) Wet-cell SEM images of Ketjen black in alkyl carbonate electrolyte, (d) a suspension of 22.4 

vol% LCO and 0.6 vol% Ketjen in electrolyte (e) a 3D reconstruction of a 10 vol% LCO and 0.6 vol% Ketjen 

suspension obtained using X-ray tomography. 

2.2. State of the Art of Experimental Developments  

Following the first publication, SSRFBs with different materials were demonstrated by various research 

groups: (i) a full-cell based on carbon coated LiTi2(PO4)3 and LiFePO4 with KB in aqueous electrolyte70; (ii) a 

half-cell with LiFePO4 with KB in commercial LP30 (EC:DMC:LiPF6) electrolyte71; (iii) a half-cell with silicon 

with KB in LP3072 and EC:DEC;73 (iv) a full-cell with P2-type NaxNi0.22Co0.11Mn0.66O2 and NaTi2(PO4)3 in 

EC:DMC:NaPF6 (0.5 M)74 and (v) half cells with LiTi2(PO4)3 or LiNi1/3Co1/3Mn1/3O2 with KB in LP30.75 These 

studies provide the proof of the great potential that SSRFBs have in terms of utilizing a variety of active materials, 

conductive additives, and electrolytes. However, as the following chapters will elaborate, these studies also 
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demonstrate that traditional electrochemical techniques that are used to study LIBs fail to provide systematic and 

quantitative explanations of trends observed for SSRFBs.  

 

 

Figure 2.4. (a) Standard solid electrode with particles held with binder, (b) slurry electrode under flow, 

(c) Proposed mechanism of switchable electrode.76 Extent of SEI formation on particle surface for a (d) standard 

solid electrode and (e) slurry electrode. The potential window available for (f) standard LIBs and (g) SSRFBs.77    

In addition to the studies mentioned above, engineering based and phenomenological studies are also 

found in literature. For instance, in a very recent study, an electrode capable of switching between flow and static 

modes in operando has been proposed; offering greater technical and operational flexibility.76 Transition velocities 

required to switch between modes are shown to be strongly influenced by aggregation and interaction forces 

between particles.76 Another study illustrates the deleterious impact of solid electrolyte interface (SEI).77 The SEI 

is an electronically insulating thin film formed when the active material is electroactive outside the stability 
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window of the electrolyte. When the SEI deposits on the entire surface area of the suspended active material 

particles, it can result in complete electrical insulation of a given particle and a consequent loss of capacity.77 

Evidently, as the SEI modifies the surface of active material particles, it may potentially impact aggregation and 

flow behavior as well. Given the various kinds of studies, two main approaches have been found in literature for 

SSRFBs; (i) the use of more sophisticated experimental tools to enhance fundamental understanding of 

mechanisms and (ii) the study of the response of SSRFBs to modifications induced by additives and different 

material combinations. 

 

Figure 2.5. Schematic proposing how the stages of the design process can be correlated to inefficiencies 

and visually mapping them to the various sources of losses for RFBs. This provides a bridge between diagnostic 

techniques and performance metrics.21 
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A recent review by Gandomi et al.21 on diagnostic and characterization tools for RFBs provides a 

comprehensive picture of important research goals. At the material chemistry level it is essential to decrease 

material cost while simultaneously improving power and energy density so that system cost consequently falls. 

For SSRFBs, this implies the added goal of optimizing material performance and reversibility specifically for 

multiphase electrodes. To ensure battery durability, capacity decay and parasitic losses need to be mitigated with 

appropriate system design. Furthermore, implementation of battery management systems on commercialization 

requires the development of rigorous mathematical models. In their review, Gandomi et al.21 show that optimized 

battery architecture is chemistry-dependent and that loss mechanisms can only be dealt with when the complexity 

of (i) electron and charge transfer on the surface and (ii) electrode reaction mechanisms, are fully understood.21  

Thus, the need to probe mechanistic details of electrochemical phenomena in suspension electrodes is critical if 

SSRFBs are to be optimized. 

Simultaneous rheo-electrical studies by Lestriez et al.78 provide a much needed window into the 

complexity of SSRFBs.78 Slurries with conductive additives, C45 and KB, in organic electrolyte propylene 

carbonate (PC) show that on increasing the concentration of the additive, three distinct regimes emerge: weak 

rheological gel, strong rheological gel, and electrical percolation (Figure 2.6). The viscoelastic nature of the 

suspension reveals a transition from shear thinning to a brief shear thickening regime, followed by shear thinning 

again. While electronic conductivity is shown to depend on the existence of particle networks, this is true only 

below percolation threshold. Above the threshold, it is suggested that conductivity follows a bell-shaped curve. It 

is reported that initially, on increasing shear rate, conductivity decreases because three-dimensional networks 

break down, but afterwards, conductivity increases due to probable electron tunneling mechanisms between 

particle aggregates. In terms of conductivity and viscosity, KB is shown to be superior to C45, owing to 

significantly higher surface area.78  
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Figure 2.6. Oscillatory frequency sweep (a and c) and steady shear rheology (b and d) at different carbon 

volume fractions for KB (squares) and C45 (circles) carbon black suspensions in 1 M LiTFSI in PC. The 

viscoelastic behavior is captured here by G’ (elastic/solid part, describing energy storage modulus) and G” 

(viscous/liquid part, providing energy dissipation modulus). For G’ > G” gel-like behavior is seen, while for 

G’< G”, liquid-like behavior dominates.78  

To the above data from literature, schematics for mechanistic details of shear thinning and shear 

thickening are provided at the bottom to explain the variation of viscosity (η) with increasing shear rate.  
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Parameter sensitivity analysis with multiple parameters are reported for studies based on Li4Ti5O12 (LTO) 

and KB in PC; it shows the impact of channel depth, active material concentration, and C-rate on discharge 

capacity.79 Interestingly, increasing LTO negatively influences both rheology and conductivity of the slurry in this 

study.79 When comparing suspensions of carbon black in aqueous and organic media, despite a higher percolation 

threshold seen in the former, its plateau modulus is lower and electrical conductivity is higher.80 Another study 

shows that the addition of non-ionic surfactant to slurries of LTO and KB in PC works to increase the inter-particle 

repulsion. This possibly stabilizes the slurry to promote good electronic connectivity even at large channel depths 

which would otherwise show poorer capacity.81 Carbon nanofibers (CNFs) as additives to suspensions containing 

carbon black have shown to provide additional elasticity and rigidity to the particle networks while maintaining 

conductivity.82 

A significant step towards tailoring interactions between particles was the creation of biphasic suspension, 

i.e. a mixture of attractive and repulsive particles, such an electrode showed high energy density and fast charge 

transport at low-dissipation flow.83 The interactions between LFP particles and those between KB-LFP are made 

repulsive by addition of non-ionic dispersant, to maintain good dispersion. On the other hand, interactions between 

KB particles are made attractive to enable formation of percolation networks. From shear viscosimetry and 

oscillatory measurements, it is evident that the addition of dispersant lowers stiffness of the percolating network, 

thereby offering a means to tune flow behavior, thus greatly reducing time-averaged pumping rate.83  

The use of Arabic gum as emulsifier and alginate as Newtonian viscosifier has been reported by 

Parant et al.84 to delay sedimentation by increasing viscosity of carbon suspensions in water; their impact has been 

studied with Zeta potential and XPS measurements. The same study reports a comparison between three types of 

carbons, namely compressed carbon acetylene black, ENSACO, and KB. These suspensions show good electronic 

conductivity even under flow conditions and this observation is attributed to formation of networks below 

percolation threshold.84 
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Figure 2.7. Proposed mechanism to explain the observed combined effect of (dis)charging to higher 

potentials and subsequent mechanical rejuvenation on the LFRI (Low frequency real impedance from the 

conductivity of the KB network). Red color indicates (in an exaggerated way) the presence of an SEI layer, 

which grows during charging, and shrinks during discharging. Particle contacts are less strongly affected by 

layer deposition or dissolution.85  

Duits et al.85 report a wide spectrum of information by coupling rheology and electrochemical impedance 

spectroscopy, where measurements are made alternatively between both techniques. Studies on suspensions of 

LTO and KB in LP30 suggest that electronic resistance and yield stress are a function of lithiation.85 A mechanistic 

picture based on temporally evolving SEI is provided to explain the changing nature of KB particle interactions 

that impact rheology (Figure 2.7). Other studies suggest that at higher voltages, SEI layer is sparse, less insulating, 

prone to dissolution, and predominantly organic; while SEI at lower potentials is thicker, denser, less soluble, more 

insulating, and comprised of inorganic compounds.85 To simplify the SSRFB system, choosing materials that do 

not form dynamic SEIs is highly recommended.  
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Figure 2.8. Proposed mechanism to justify viscosity and resistance trends of flowing slurries at different 

shear rates for long and short term shearing, in addition to impact of rest on resistance and yield stress.86  

Another study by the same group showed low frequency real impedance and viscosity responses to change 

in shear rate. It demonstrated that shearing history has an impact on rheo-impedance measurements and must be 

taken into account for all research conducted with viscoelastic suspension.86 The mechanistic description proposed 

suggests that a fast or immediate response arises from open agglomeration and that a slow response arises from 

densification of aggregates (Figure 2.8). The fast response exists under low shear rates and provides higher 

electronic conductivity and higher viscosity. The slow response emerges at high shear rates, resulting in lower 

hydrodynamic volume fraction, reduced viscosity, and also reduced electronic conductivity, due to less number of 

available pathways. These observations have been verified by a model based on the Krieger-Dougherty equation 
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to capture the hydrodynamic volume and the Potanin model to capture a relationship between agglomerate radius 

and fractal dimension.86 In a more recent publication, Duits et al.87 reported a rheometer capable of in situ 

impedance measurements. Significant correlations between low frequency real impedance and yield stress were 

observed for both half-cell and full-cell configurations.87  

In two recent studies, the combined use of small angle neutron scattering (SANS), ultra-small angle 

neutron scattering (USANS), dynamic light scattering (DLS), oscillatory rheology, and impedance spectroscopy 

offers the most elaborate synergistic experimental effort to connect structural, mechanical, and electrical behavior 

of carbon black suspensions.88,89 The most significant finding of the first study is that electron hopping is seen to 

be the dominant charge transport mechanism both below and above gel transitions; as opposed to particle networks 

or stress bearing chains which are generally regarded as the reason for electronic conductivity. It is shown that 

gelation does not arise from strong attractive forces between primary aggregates, but rather, a clustered fluid phase 

is created that forms system-spanning particle network when further concentrated. The means through which 

shearing impacts electronic conductivity is not by breaking up particle networks but rather by impacting cluster 

size that consequently affects the dominant hopping mechanism.88 While the exact nature of electron hopping 

mechanism in suspensions is worth further study, this clearly demonstrates how preconceived notions of the 

correlation between electronic conductivity and spatial arrangement of particles, as adopted from LIB field, led to 

the belief that particle networks are an important qualitative explanation of trends observed in SSRFBs. 

The second study uses the inverse Bingham number, which is a ratio of measured or applied shear stress 

to the yield stress, to distinguish between two distinctive flow regimes (Figure 2.9): (a) Open networks with 

relatively small agglomerates at Bi-1 > 1, and (b) shear driven, loosely connected, denser agglomerates which 

accompany steep decrease in both apparent viscosity and conductivity with shear time eventually leading to 

sedimentation at Bi-1 < 1.89 Such multipronged experimental studies are expected to provide groundbreaking 

discoveries of hidden mechanisms that govern electrochemical systems and may transform the black box of 

batteries into a system that can be tailored and optimized more effectively.    
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Figure 2.9: (a) Small, loosely held agglomerates forming electronically well connected, open aggregates 

at high inverse Bingham numbers and (b) small agglomerates densifying under shear to form aggregates with 

poorer electronic conductivity.89  

 

2.3. State of the Art of Models and Theory 

Along with experimental studies on SSRFBs, the first continuum models came out after 2012; these 

involve incorporation of fluid convection terms to Newman’s porous electrode model along with power law based 

hydrodynamic flow to capture non-Newtonian behavior of the suspension.90–93 The model first described by 

Brunini et al.90 assumes constant lithium concentration within the solid particles to circumvent solid state diffusion 

limitations and simplify the challenges of multiscale modeling, while ion diffusion in liquid is taken into 

consideration using a simple 3D diffusion model. Furthermore, the assumption of constant current density 

boundary conditions, which is typical in solid electrodes, is lifted.90 The main conclusions of these modeling 

studies (Figure 2.10) are that: (i) spatial uniformity of current extraction and stoichiometric flow depend on the 

voltage profile;90 (ii) intermittent or plug flow mode is beneficial for extracting maximum capacity from the slurry 

electrode;20,91 (iii) extended electroactive zones can exist, i.e. electrochemical activity can be observed in pipes 
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just outside the cell, and their impact can be minimized through appropriate design and operating conditions.92 In 

order to distinguish between flow batteries and flow capacitors, a capacitive Damköhler number has been 

introduced.93 This number is essentially a ratio between exchange current density and Peclet number, which in 

turn is the ratio of advection to diffusion. Based on the assumption that infinitely fast pulses during intermittent 

flow can help isolate electrochemical phenomena from fluid flow phenomena, the use of a discretized model using 

finite volume method is possible.91  Even without considering an explicit correlation between fluid and 

electrochemical behavior, this study shows that electrochemical efficiency can be improved through better flow 

volume control, tailored suspension rheology, and resistance to flow can be reduced by enhancing slip. However, 

these indications are qualitative guidelines and don’t necessarily provide specific information for more efficient 

experimental optimization of the system.  

   

Figure 2.10. (a) Inset showing the mesh used in the model (b) Comparison of the steady state current 

density and state of charge distributions along a flow channel, in stoichiometric flow mode at C/20 rate.90  

Models used for RFBs and SSRFBs have a basic structure in common, it is addressed in a review article 

by Xu et al.,52 summarized by Lacroix et al.75 and will be briefly mentioned here. Fluid flow is captured by Darcy’s 

law, which represents an empirical relationship between dynamic viscosity, porous electrode permeability, and 

fluid velocity to express fluid pressure. Navier Stokes equation is used to model the non-Newtonian fluid with a 

power law viscosity. Mass conservation equations are used to estimate ion transport and heat generation from flow 
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is also taken into account. Potential and current distribution in solid phase is governed by Ohm’s law, potential in 

electrolyte phase and salt concentration in liquid phase are also calculated.  

 

Figure 2.11. Velocity profile of LTO suspension in the channel where pressure drop can be noticed on the 

sides and corners and velocity is relatively homogenous in 80% of the channel.75  

Lacroix et al.75 used this modeling scheme to capture the behavior of two half-cells under flow; unlike the 

model by Brunini et al.,90 ionic transport in liquid phase was ignored. The model was developed to handle lithium 

concentration gradients in solid for intercalation type compounds, it was reported that it could, in the future, take 

into account other mechanisms of lithiation as well. Experiment and model showed consistency in rheological 

behavior of suspensions under flow. The overall pressure drop is low, low pressure is observed at the channel 

walls and corners (Figure 2.11), and changing flow rate shows little or no effect on pressure drop. Electrochemical 

behavior of the model shows correlation with experiment but with some significant deviations that are said to arise 

from inhomogeneity in potential due to rising internal cell resistance. Since the model does not take into account 

electro-rheological effects as a function of time under flowing conditions, the explicit impact of shearing at 

mesoscale cannot be captured, especially the way morphology of conductive particle agglomerates and clusters 

impact conductivity.75  

By expanding the number of phenomena taken into consideration, such studies can potentially unearth a 

multitude of emergent phenomena, making SSRFBs more intuitive to study. Recent theoretical developments 



Chapter 2  »   State of the Art   »   2.3. State of the Art of Models and Theory 

30 

Table of Contents 

relevant for SSRFBs also lean towards taking greater phenomenological intricacies into account. Advancement in 

theory for electrochemical impedance spectroscopy for in situ characterization has been proposed by Hoyt et al.94 

and it incorporates current induced by convection of surface charge on particles under flow. An impedance element 

that accounts for oscillatory behavior of surface charge boundary layers is added in series with contact resistance 

in the equivalent circuit. This study, performed in context to flow capacitors, provides a quantitative means to 

capture electronic diffusivity, slurry conductivity, and contact resistance as a function of flow rate.94  

Another study addresses how diffusion is hindered in confined spaces and while this effect is significant 

in some fields, like zeolites95 or drug delivery,96 it has only recently been applied to electrochemical particle 

systems.97 The theoretical framework proposed by Chan et al.,98 incorporates Nernst-Planck equation to capture 

mass transport by diffusion and migration, the Gouy-Chapman model for electrode-electrolyte interface, and a 

hindered diffusion model99 that takes into account modification of Brownian motion due to presence of the 

interface. Migration and hindered diffusion are shown to compete with one another and this competition 

determines the tendency of particles to accumulate at the interface; thus providing a means to tune mass transport.98  

Electronic percolation, vital for the functioning of SSRFBs, has also been elaborated theoretically. A 

recent study by Golovnev et al.101 proposes an analytical probabilistic framework, for particles with high aspect 

ratio which are expected to provide higher conductivity and better flowability at lower solid concentrations.84 It 

predicts percolation threshold more accurately than excluded volume theory and can provide a detailed mesoscale 

picture of particle networks above the threshold; it thus creates a basis for structure-property relationships. This 

generalized framework offers more opportunities like implicitly accounting for interaction potentials, influence of 

solid interfaces, and particle alignment due to electrolyte flow.101 

A recent modeling approach by Lohaus et al.100 reports coupling of Butler Volmer based electrochemical 

dynamics with Computational Fluid Dynamics (CFD) and colloidal physics based on Discrete Element Method 

(DEM). This approach simulates the dynamics of percolation networks as a function of solid volume fraction. 
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Fluctuations in current density are coherent with the discrete nature of DEM and the magnitude of current density 

and 3D visualization of state of charge of particles are used to ascertain extent of percolation.100  

 

Figure 2.13. (a) Visualization of the charge distribution on the slurry electrode particles at 50% state of 

charge and 10, 20, 27.5 and 35vol.% particle volume fraction. (b) Net currents at different states of charge 

varying as a function of time. (c) Impact of state of charge on the percolation threshold.100 
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2.4. Conclusions 

When looking deeper into the state of the art of SSRFBs, it becomes evident that rather than forming a 

clearer picture of underlying mechanisms, studies appear to provide phenomenological explanations based on 

conflicting assumptions. For instance, silicon and carbon based slurries are shown to maintain both good and bad 

inter-particle contact under cycling.72,73 The contribution of interface between current collector and slurry towards 

electrical resistance is shown to be both significant and insignificant.25,85 Two schools of thought explain the 

mechanism of electrical conductivity in slurries; one wherein particle networks are known to dominate and another 

wherein electron tunneling dominates such that distribution and size of particle clusters is more important 

(Figure 2.14).78,84,88,102 The zeta potential of conductive carbon suspensions in organic electrolyte also cannot be 

generalized to either always positive or always negative; furthermore, the size of the cation used in the electrolyte 

is shown to be significant.78,103 The impact of channel depth on electrical conductivity of slurry is shown to vary 

with multiple simultaneous parameters like flow rate, active material concentration, and C-rate.25,79  

 

Figure 2.14. Variation of the conductivity and viscosity with the shear rate for KB suspensions as a 

demonstration of complexity : (I) a 3D network of agglomerates; (II) breakup of the network into agglomerates; 

(III) formation of hydro-clusters or anisometric agglomerates; (IV) erosion into small agglomerates or even 

single aggregates.78 
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The experimental work attempted in this thesis work offered significant optimization challenges. A brief 

overview of various studies is mentioned in the Appendix A.2, difficulties faced can be linked to the nature and 

source of silicon particles plays a significant role in the stability and electrochemical nature of the slurry. While 

no conclusive results were obtained, this work helped provide a sound foundation for building the model and in 

general, provided evidence of the complex challenge that a researcher will confront when attempting to create a 

SSRFB with new material.  

The literature consists predominantly of continuum modeling approaches so that CFD can be intuitively 

incorporated to simulate flow conditions. However, from this reference point of continuum models, modeling 

studies attempt to relax certain assumptions, for instance the current density boundary condition90, to obtain more 

information. Readdressing assumptions of a model provide the grounds for computational efficiency, for instance 

how considering infinitely fast pulse in intermittent flow allows for continuum modeling.91 In a manner of 

speaking, modeling literature tends to negotiate between obtaining more detail and simplifying the problem. On 

one hand, swapping assumptions in and out of a modeling framework without concrete experimental backing may 

lead to creation of models that have poor prediction capability and on the other hand, the range of exploration of 

continuum models may not be sufficient. Particle interactions and electrochemical phenomena clearly play a 

dominant role in SSRFBs, thus a significantly high degree of discreteness in a model may be necessary.  

Additionally, when playing with assumptions that are challenging to prove, it becomes relevant to create 

models based on a holistic picture, in the form of an interconnected web, so that the theoretical framework is as 

self-correcting as possible. This can minimize the potential errors introduced from hypothesis which are not 

rigorously introduced. Building elaborate graphs to show interconnections between phenomena and using agent-

based models wherein particles have autonomy to experience phenomena, as described in this work, provide such 

a self-correcting nature. It is therefore vital to build mechanistic models where mechanisms and on-the-fly 

evolution of parameters drives simulations. Such approaches can also be categorized as complex adaptive models 

that follow the principles of complex adaptive and dynamic systems.104  
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While the approach and findings reported by Lohaus et al.,100 as shown in Figure 2.13, represents a first 

step in this direction, this thesis work addresses the numerous aforementioned challenges more rigorously. Our 

work also shows how establishing a reliable model and obtaining experimentally verifiable results from 

mechanistic models is not straightforward and what tools can be used to counter that.  

From the perspective of fields of research, it is clear that standard experiments and models developed to 

study either LIBs or RFBs are an insufficient means to achieve commercialization, and standard performance 

metrics do not appear to offer much insight.  There is a tendency in both experimental and modeling studies to 

incorporate more and more phenomena which were traditionally not studied in context to LIBs, showing the 

importance of considering more complexity. Due to the lack of concrete and generalized quantitative 

understanding, it can be concluded with certainty that SSRFBs are complex systems. Non-linearity and non-

intuitiveness are hallmarks of complexity and any emergent behavior is merely the appearance of unanticipated 

phenomena that tend to confound and polarize the scientific community. Therefore, this study provides a good 

basis to study a more abstract and fundamental phenomena, i.e. complexity in electrochemical systems, that is 

found in disciplines that are otherwise considered to have little in common.  
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3.1 Basis of Approach 

The previous chapter on the state of the art of SSRFBs shows that it is not straightforward to understand 

and predict SSRFB device behavior; therefore it becomes relevant to find reliable fundamentals to build upon. If 

multiple relationships exist between parameters and phenomena such a system can be termed as complex. This 

complexity can arise either from (i) a lack of understanding of the system, such that after sufficient trial-and-error, 

a set of simple relationships will emerge, or (ii) the nature of the system is such that simple relationships, 

mathematically speaking, may not exist. The latter makes it especially very hard to cross early stages of device 

development. Complexity in SSRFBs is expected to be a mix of both categories, (i) and (ii). While a lack of 

understanding can be overcome by extensive systematic studies, complexity arising from category (ii) is a result 

of the many-phenomena problem (with multiple competing forces), the many-body problem (where particle 

behavior at the mesoscale is non-trivial) and the many-scale problem (where interactions occur across length and 

time scales), which generally manifest simultaneously.  

The many-body problem at mesoscale is especially prevalent in suspension electrodes since rheological 

behavior and interaction between particles cannot be generalized and represented as analytical equations. Even in 

solid electrodes for LIBs, where particles of the electrode are not free to move, the presence of inhomogeneity at 

nanoscale and mesoscale is known to impact lithium ion transport experimentally.105  Thermodynamic studies on 

insertion materials show that voltage hysteresis also originates from collective particle behavior.106 This domino 

cascade effect, where particles are shown to sequentially undergo charging and discharging has also been 

experimentally observed.107 Battery models that treat electrodes as effective media, where discharge occurs 

simultaneously in all particles cannot capture this effect; it thus promotes interest in 2-D or 3-D models that 

consider multi-particle interactions.108 Typically, to address these challenges, models that were originally 

developed for microscale and computationally parallelized for efficiency are used for describing particle dynamics, 

such as Molecular Dynamics, Dissipative Particle Dynamics, Brownian Dynamics, or Stokesian Dynamics.109–114 

These established techniques are inhibitory for causal discovery because these are computationally programmed 
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in accordance to certain empirical and theoretical assumptions. If, in a given system, the physical phenomena are 

very poorly understood and the many-body problem is significant, it is imperative to allow an open theoretical 

framework for empirical equations. Additionally, based on the need, it can help to accommodate a spectrum 

between continuum and a discrete particle simulations.  The purpose of the study in this thesis is to explore the 

use of kinetic Monte Carlo (kMC) to create such an open, self-correcting modeling framework, designed especially 

for causal discovery.  

The electrochemical system chosen herein is based on studies previously conducted in our laboratory with 

slurries composed of silicon and carbon.72 When the galvanostatic behavior of the slurry electrode (Figure 3.1(a)) 

was compared with those of solid electrodes either with binder (Figure 3.1(b)) or without binder (Figure 3.1(c)), 

it was noted that reasonable retention of capacity and low polarization was obtained. The initial irreversibility of 

the electrode was ascribed to formation of thick solid electrolyte interface due to the large excess of electrolyte 

present in the SSRFB when compared to solid electrodes.72 It was proposed that the advantages arise from the 

breathable space silicon particles have, to experience volume expansions and contractions during electrochemical 

cycling. For the model considered in this study, the mechanical stresses and phase changes of silicon during cycling 

are simplified and single phase lithiation is assumed. This corresponds to the electrochemical behavior typically 

seen from the second cycle onwards, wherein all of the silicon can be assumed to be amorphous.115 It is also 

possible to take into account how electronic conductivity of silicon, a semi-conductor, increases after lithiation. 

An increase in density of state at the Fermi level is indeed reported by first principles simulations.116  

A mechanistic picture of coexistence of rheology and electrochemistry for a slurry in static, i.e. non-

flowing mode, is essential before fluid dynamics can be included. The particle size of battery materials falls within 

the range of the definition for a Brownian particle. Therefore, the particle motion here is random, or 

computationally pseudo-random, and not biased towards a direction to mimic flow. Studies have been done to find 

an appropriate algorithm to take flow into account within the event list of a kMC model, and can be taken into 

account in future generations of this algorithm.117,118 Furthermore, the assumption not to take fluid dynamics into 
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consideration also stems from the numerous studies which recommend intermittent flow mode for discharging 

batteries,20,91 thereby rendering the slurry essentially immobile during a consequent portion of the period of 

interest. 

 

Figure 3.1. Galvanostatic curves and capacity retention plots for discharge versus lithium metal for (a) 

suspension electrode, (b) Si/C/CMC composite electrode and (c) Si/C from pyrolyzed Si/PVC blend.72  

At this stage, only a simplified picture of rheology will be considered as a first approach to estimate 

effective viscosity of the suspension while still explicitly simulating particle motion. Once this framework is more 

established, models addressing phenomena at other scales can potentially be incorporated for more detail, in future 
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work. For instance, a mechanistic model can be created for interfaces to capture the nature of SEI. This can be 

used as a particle surface property at a higher scale, for instance to assess the degree of aggregation with particles 

of the same or different type. Such information, for example, can help predict conditions for clustering, network 

formation, or sedimentation. 

 

3.2. Description of Framework  

The following sections elaborate the tools used to build the in-house mechanistic model in Python 

programming language. A set of empirical expressions are first presented that establish the physical core of the 

framework. The evolution of the model in space and time is governed by kMC. The phenomena are captured 

through the simulation of particles as agents in a three-dimensional Agent-Based Model (ABM). The use of object 

oriented programming allows more structured handling of the simulation, especially to quantify and update 

properties associated to each agent or particle, thereby providing an insight at mesoscale. Given the high degree 

of flexibility and ongoing development of the model, only the essential aspects are described in this chapter. A 

more extensive explanation of the Python tools and algorithms used is mentioned in the Appendix, section A.1.1. 

Other modeling work attempted is also briefly mentioned in A.1.2.  

As highlighted in the conclusion of Chapter 2, this ensemble of methods, along with parameter sensitivity 

analysis and graph theory, as described in the following chapters, provides an example of how a mechanistic model 

with self-correcting and complex adaptive nature can provide important insights. Taking into account as many 

phenomena as possible within the theoretical framework can provide the checks and balances needed when many 

hypotheses are being made. 
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3.2.1 Equations governing physical phenomena 

The main physics included in this model pertains to particle motion and electrochemistry. Particles are 

chosen to move in random directions, with frequency of motion based on kinetic rates originating from diffusion 

coefficient, which in turn is influenced by particle size and slurry viscosity. The Stokes-Einstein equation 

(Eqn. 3.1) is used to express the diffusion coefficient (𝐷𝑖,𝑗) as a function of the viscosity of the slurry (𝜂𝑠𝑙) and 

particle radius (𝑟𝑖,𝑗),119 where subscript i refers to particle type (Si or C) and j refers to the identity of the specific 

particle, 𝑘𝐵 is the Boltzmann constant and 𝑇 is temperature: 

𝐷𝑖,𝑗 =
𝑘𝐵 . 𝑇

6 .  𝜋 .  𝜂𝑠𝑙 .  𝑟𝑖,𝑗
          (Eqn 3.1) 

The viscosity of the slurry (𝜂𝑠𝑙) is estimated as a product of pure liquid viscosity (𝜂𝑙) and relative solid 

viscosity (𝜂𝑟). The estimation of 𝜂𝑟 is done on-the-fly, based on solid volume fraction (𝜙𝑠𝑜𝑙) using the Thomas’ 

expression (Eqn. 3.2).120,121 Here, we assume that 𝜙𝑠𝑜𝑙 takes into account the additional volume occupied by 

volumetrically expanding silicon particles.  

𝜂𝑟 = 1 + 2.5 ∙ 𝜙𝑠𝑜𝑙 + 10.05 ∙ 𝜙𝑠𝑜𝑙
2     (Eqn 3.2) 

The electrochemistry taken into consideration is based on Butler-Volmer kinetics for the redox couple 

shown as follows:  

𝐿𝑖 ⇄ 𝐿𝑖+ + 𝑒−      (Eqn 3.3) 

𝑆𝑖0.26 +  𝐿𝑖+ +    𝑒− ⇄   𝐿𝑖𝑆𝑖0.26      (Eqn 3.4) 

Eqn. 3.3 describes lithium metal oxidation at the anode and Eqn. 3.4 shows lithium insertion into silicon 

at the cathode. Although conventionally, the discharged silicon host is expressed as 𝐿𝑖15𝑆𝑖4, for simplicity 𝐿𝑖𝑆𝑖0.26 

(i.e. 𝐿𝑖𝑆𝑖4
15⁄ ) is chosen so that stoichiometry of lithium (𝑦 in 𝐿𝑖𝑦𝑆𝑖0.26) at any point of discharge is between 0 and 

1.72 Fully discharged silicon particles (𝐿𝑖𝑆𝑖0.26) reach an effective diameter 1.5 times greater on volume expansion. 
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The state of charge of the battery is obtained by tracking the potential difference between the electroactive 

silicon particles as cathode (𝐸𝑐) and the lithium metal anode (𝐸𝑎) as shown in Eqn. 3.5. Here, 𝐸𝑎 is set to zero and 

the kinetics for the lithium oxidation reaction are assumed to be fast enough to consider negligible contribution to 

the activation overpotential. Ec is calculated based on a standard Nernst potential (Eqn. 3.6) where 𝐸0.26
0  is the 

standard potential of silicon, y is the state of charge of silicon, 𝐹 is the Faraday’s constant, 𝑅 is the gas constant, 

𝑇 refers to temperature, and 𝑛 is the number of electrons involved. Here, the slope of the Nernst discharge is 

modified to correspond with experiments by Hamelet et al.72 by incorporating a thermodynamic term containing 

the Margules constant (𝐴):  

𝐸𝑐𝑒𝑙𝑙 = 𝐸𝑐 − 𝐸𝑎     (Eqn 3.5) 

𝐸𝑐 = 𝐸𝑆𝑖0.26

0 +
𝑅 ∙ 𝑇

𝑛 ∙ 𝐹
 𝑙𝑛 (

(1−𝑦)

𝑦
) +

𝑅 ∙ 𝑇

𝑛 ∙ 𝐹
∙ 𝐴 ∙ (2𝑦 − 1)  + 𝜂𝑐  (Eqn 3.6) 

The activation overpotential (𝜂𝑐) of lithium insertion reaction (Eqn. 3.4) is derived from the Butler-Volmer 

kinetic equation: 

𝑖𝑔 = 𝑖0 ∙ (𝑒𝑥𝑝 (
𝛼∙𝐹∙𝜂𝑐

𝑅∙𝑇
) − 𝑒𝑥𝑝 (−

(1−𝛼)∙𝐹∙𝜂𝑐

𝑅∙𝑇
))     (Eqn 3.7) 

where the transfer coefficient (α) is taken as 0.5 such that the expression can be simplified to :  

𝜂𝑐 =  − 
𝑅 ∙ 𝑇

0.5 ∙ 𝑛 ∙ 𝐹
∙ 𝑠𝑖𝑛ℎ−1 (

𝑖𝑔

2 ∙ 𝑖𝑜
)     (Eqn 3.8) 

The current density applied (𝑖𝑔) is estimated by dividing the galvanostatic current by the surface area of 

electroactive silicon (𝐴𝑎𝑐𝑡) obtained at a given time step. The surface area 𝐴𝑎𝑐𝑡, as shown in Eqn. 3.9, is an 

approximation of how much surface area of a given particle is exposed to the electrolyte. The particles, which are 

actually lower resolution spheres on the grid, are considered to have effective radius, 𝑟. Information from the 

environment of the particle on-the-fly is taken into account through 𝑘𝑓 (Eqn. 3.10) which is a weighted sum of the 
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facets of the particle 𝑗 that are blocked by other silicon particles (𝐴𝑏𝑆𝑖,𝑗 ) or other carbon particles (𝐴𝑏𝐶,𝑗) and the 

number of facets are freely exposed to the electrolyte (𝐴𝑓,𝑗). As an example, constants (𝑘1 = 0.2) and (𝑘2 = 0.5) 

are assumed to describe the extent of interaction between particle surfaces, such that silicon particles do not tend 

to stick together as much as they would stick to carbon aggregates. Here the range for these constants is between 

0 for no interaction and 1 for sticking. Surface roughness (𝑅𝐵𝐸𝑇), in Eqn. 3.11, is an important parameter to include 

experimental values of BET surface area (𝐴𝐵𝐸𝑇), which is made dimensionless by density (𝜌) and radius (𝑟):122  

𝐴𝑎𝑐𝑡 =  𝑘𝑓  ∙  𝑅𝐵𝐸𝑇  ∙ 4𝜋𝑟2         (Eqn 3.9) 

𝑘𝑓 = ∑ (
𝐴𝑓,𝑗+ 𝑘1∙𝐴𝑏𝑆𝑖,𝑗 +  𝑘2∙𝐴𝑏𝐶,𝑗

𝐴𝑡𝑜𝑡𝑎𝑙
) 

𝑛𝑎𝑐𝑡𝑆𝑖
𝑗=0     (Eqn 3.10) 

𝑅𝐵𝐸𝑇 =  
1

3
 ∙  𝐴𝐵𝐸𝑇 ∙  𝜌 ∙  𝑟       (Eqn 3.11) 

The exchange current density (𝑖𝑜) as seen in (Eqn. 7) can be expressed as follows: 

𝑖𝑜 = 𝐹 ∙ 𝐾 ∙ 𝑐𝐿𝑖,𝑒𝑙
𝛼 . 𝑐𝑆𝑖

𝛼 . 𝑐𝐿𝑖𝑥𝑆𝑖
1−𝛼    (Eqn 3.12) 

As a starting point, the reaction rate constant 𝐾 in Eqn 3.12, was obtained from literature for crystalline 

silicon.123 This equation takes into account concentration of lithium ion in the electrolyte (𝑐𝐿𝑖,𝑒𝑙) as 1mM. It further 

incorporates volume expansion such that the volume increases 2.75 times, based on the state of charge (𝑦). 

Concentration of silicon (𝑐𝑆𝑖 ) and lithium inserted silicon (𝑐𝐿𝑖𝑥𝑆𝑖) are expressed in terms of initial concentration 

of carbon (𝑐𝑆𝑖,𝑖𝑛 ): 

𝑐𝑆𝑖
𝛼  . 𝑐𝐿𝑖𝑥𝑆𝑖

1−𝛼 =  
𝑐𝑆𝑖,𝑖𝑛 ∙ (1−𝑦)1−𝛼 ∙ 𝑦𝛼

( 1+ 1.75  ∙ 𝑦)
    (Eqn 3.13) 

At this stage, it is assumed that no mechanisms for irreversible loss of capacity are present in the system, 

i.e. electrons and lithium ions are only consumed by the silicon insertion reaction. Any other contribution to the 

potential drop arising from capacitive effects of carbon, resistance across carbon particle contacts in the network, 
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parasitic effects such as electrolyte degradation and lithium uptake by carbon, as well as cracking of silicon 

particles is ignored but can be introduced in the future. Resistance arising from lithium ion transport in the 

electrolyte is neglected under the low c-rate conditions in which batteries containing silicon are usually operated. 

It is assumed that lithium ions are readily available at the silicon-electrolyte interface and do no limit the insertion 

reaction shown in Eqn. 3.4. 

 

3.2.2. Agent-Based Model Description 

In this study, the many-body problem of SSRFB systems is taken into account explicitly, through the 

implementation of an Agent-Based Model (ABM) to capture mechanistic details. These are typically used to track 

collective motion of many entities or agents in economics, social studies and biology.124–126 ABMs can also provide 

a platform for hybrid multiscale modeling and exploring different assumptions for a given theory.124,125 However, 

for mechanistic models, experimental validation of results is known to be a significant challenge. These models 

have been criticized for lack of standardization, and while some attempts have been made to build mathematical 

formalism,125,127 there is still no consensus as to how such models should be validated.126 Despite these challenges, 

mechanistic insight can be vital to explore phenomena that standard models or experiments cannot capture.  

For the SSRFB simulated in this study, the silicon and carbon particles are agents which are free to move 

around and possess properties like radius, volume, density, state of charge, electronic conductivity, lithium 

insertion capability, and information on the neighboring particles. Based on the particle dynamics, the number of 

events and time step can be scaled with a kMC engine described in the following section. The algorithm of this 

mechanistic model, summarized in Figure 3.2, is based on implementing the physics described in the previous 

section to the particles in discretized three dimensional space. The agents or particles are classified into two types, 

i.e. silicon and carbon, each having different sizes and electrochemical behavior. The empty cells on the grid, i.e. 

those between particles, are assumed to have lithium ion containing electrolyte necessary for discharge. Initially, 
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carbon and silicon particles occupy one and seven unit cells respectively, in order to generate a particle size 

difference which is computationally and experimentally viable. The silicon particles are designed by seven sub-

particles occupying positions: (x, y, z) , (x+1, y, z) , (x, y+1, z) , (x, y, z+1) , (x-1, y, z) , ( x, y-1, z) , (x, y, z-1). 

At the end of discharge, the silicon particle is expected to expand through the means of additional unit cells and 

become a cube. These shapes were chosen to obtain sphere-like symmetry at low resolution both before and after 

discharge. Particles with more intricate shapes or particle size distribution can potentially be included once 

computational speed and handling is enhanced. This initialization module is labeled as 1 in Figure 3.2, here, the 

user inputs like C-rate, temperature, electrolyte viscosity, lithium ion concentration, solid concentration, and 

surface area of materials, along with parameters relevant for the simulation like simulation box size, unit cell size, 

and particle shape.  

The position of all the particles is generated by randomly positioning carbon and silicon over the discrete 

grid wherein the particle density is estimated by the solid fraction. The next two modules, namely particle motion 

and electrochemistry are said to be implemented simultaneously in terms of physical time and are labeled as 2 in 

Figure 3.2. Once initiated, the module for particle motion finds and updates available free cells in the vicinity of 

each particle to ascertain which direction the particles can move in. Based on viscosity and diffusion coefficient, 

the kinetic rates for motion of a given particle in a given direction, are obtained. The kMC engine helps choose an 

event at random and provides the time step. During this time step, it is assumed that simultaneous electrochemical 

discharge takes place. Under conditions of galvanostatic discharge and constant current, the time step provides the 

charge transferred to the system. Apart from identifying neighboring cells of particles, another time consuming 

computational effort is to identify percolating carbon networks and find electrochemically active silicon particles. 

The electric charge is then used to update the state of charge of the silicon particles and implement volume 

expansion. This expansion is expected to be visible in terms of addition of new unit cells to the particle shape if 

the available charge crosses a certain threshold. Carbon particles are assumed to participate only as electronic 

conductors, ferrying electrons from the current collector to the active material. The role of silicon as both 

electroactive material and electronic conductor is explored in the following chapters. 
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Figure 3.2. Simulation workflow describing the three main modules: (a) Initialization of simulation box; 

(b) Brownian motion using kMC-VSSM; (c) electrochemical phenomena for silicon discharge. Modules 

(b) and (c) are implemented till the potential calculated in (c) reaches a cut-off potential. 
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3.2.3 Kinetic Monte Carlo engine 

Historically, spatial Monte Carlo (MC) techniques have been used for structure-property determination in 

condensed phases. For instance, to study a variety of phenomena at solid-liquid interfaces involving surfaces, 

defects and nanoparticles, and to study gas-phase-like transport, thermo-physics, magnetism, and mechanics.128–

136 MC methods were successfully applied beyond systems at equilibrium, to non-equilibrium systems in the 

1970s-1980s.137 However, since their predictive capabilities at that time were restricted by computational power 

and since they were not viewed as first principles method, their applicability was taken over by methods like 

Molecular Dynamics (MD) and atomic scale dynamic simulations. As computational power increased, so did the 

need to make even more accurate predictions, and it was realized that models like MD cannot handle phenomena 

across multiple time scales. With the added computational power, MC techniques became relevant again. Studies 

in biological systems, which have been a forerunner in application of complex system theory, also reported the 

use of MC methods to handle stochasticity in biological networks.138–142 Recently, mechanistic models based on 

kMC have been proposed for various battery applications like Li-air and Li-S batteries143–152. Algorithms like 

variable step size method (VSSM) in kMC are promising as they are capable of tuning simulation time step based 

on the possible number of events within a given state of the system, making it suitable to address multi-scale and 

multi-phenomena problems. In this work, VSSM is used to choose an event from a weighted list of all possible 

particle displacements occurring in the module for particle motion, here the weights are based on the diffusion 

rate. The particle most likely to be selected by VSSM is the one that has small size and many empty neighboring 

cells.  

Once the diffusion rates of all carbon (𝑛𝐶) and silicon (𝑛𝑆𝑖) particles have been calculated, the weighted 

cumulative list of particle displacements can be obtained. The total diffusion rate (𝐾𝑇 ), as shown in Eqn. 3.14, is 

taken as a sum of individual diffusion rates (𝑘𝑖,𝑗) of all particles where 𝑖 denotes silicon (𝑆𝑖) or carbon (𝐶) and 𝑗 

refers to the particle number: 
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𝐾𝑇 = ∑ (𝑘𝐶,𝑗) +   ∑ (𝑘𝑆𝑖,𝑗)
𝑗=𝑛𝑆𝑖
𝑗=1   

𝑗=𝑛𝐶
𝑗=1                                       (Eqn 3.14) 

The VSSM algorithm typically proceeds by generating a random number (𝜌1) to pick an event within this 

weighted list (Eqn. 3.15). The mth particle is chosen to move within a time step calculated as shown in Eqn. 3.16, 

based on another random number: 

∑ (𝑘𝑛) 𝑛=𝑚
𝑛=1   ≤   𝜌1 ∙ 𝐾𝑇 <   ∑ (𝑘𝑛) 𝑛=𝑚+1

𝑛=1       (Eqn 3.15) 

𝑑𝑡 =
𝑙𝑛(𝜌2)

𝐾𝑇
      (Eqn 3.16) 

3.3. Model Initialization 

The first studies were done based on as many experimentally relevant parameter values as possible, which 

are highlighted in Table 3.1. In correspondence with the publication by Hamelet et al.,72 the slurry composition is 

taken to be 9 vol% of carbon and 14 vol% of silicon suspended in electrolyte.  

Table 3.1. Parameters used in the simulations 

 

The simulation box is considered to have a depth of 10 unit cells and a square current collector top with 

an edge of 20 unit cells. The unit cell length is used to scale the simulation box without compromising on physically 

relevant parameters like volume fraction, therefore the unit cell is varied along the result sections and will be 
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specified. It is important to note that particle shapes for carbon and silicon are fixed to ensure the mesoscopic and 

mechanistic impact of particle size differences. For the results mentioned in this chapter, the unit cell is assumed 

to be 100 nm. The simulation box typically looks like Figure 3.3(a) where the blue particles represent silicon, red 

represent carbon, the empty void around the particles is assumed to consist of electrolyte containing lithium ions, 

and the top facet in brown represents the current collector providing electrons. This three dimensional visuals 

presented henceforth were generated using OVITO.153  

 

Figure 3.3. Simulation box containing slurry, (a) before and (b) after a silicon particle on the top right 

(in blue) experiences discharge. (c) An example showing particle size distribution of silicon along discharge. 

The volume expansion of silicon particles on discharge can be seen in Figure 3.3(b). The results presented 

henceforth will be shown without the top and bottom faces for maximum visibility of the slurry mesostructure. 

The effect of volume expansion on silicon particle size distribution can be presented along time normalized to 
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percentages of total discharge time, regardless of final capacity, as in Figure 3.3(c). This tool can also help: (i) 

visualize the landscape of state of the charge of silicon particles, (ii) show how well the particle networks are 

constructed based on the rate of change of particle size distribution, (iii) the portion of silicon particles that were 

not fully discharged, and (iv) provide a means to capture local viscosity effects in the future. The radius used here 

is effective radius which is calculated by assuming that the sum of the volume of all individual silicon sub-particles 

on the three-dimensional grid corresponds to the volume of a sphere. It can be highly advantageous to be able to 

track the behavior of every parameter used in the theoretical description of the model. This helps to form more 

accurate hypotheses to explain a simulated trend regardless of system complexity. 

 

Figure 3.4. Snapshots of three dimensional visualization of the slurry with at:  (a) beginning of 

simulation, (b) half discharge, and (c) full discharge; (d) average of three simulation runs (in black) and the 

final discharged curve obtained as a fitted cubic polynomial (in red). The current collector on the top has been 

removed for clarity.  
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To demonstrate how an electrochemical discharge curve is obtained, C-rate of C/20 was taken and for this 

particular case, the time steps obtained from VSSM were predominantly within the range of 10-1-10-3 seconds and 

the total physically relevant time of battery discharge was 12 h. The discharge can be visualized in 3D as shown 

in Figure 3.4 (a)-(c), where the electronically conducting carbon particles wired to the current collector are shown 

in yellow. The silicon particles in blue visibly increase in volume along the discharge. Typically, a single 

simulation run produces a discharge curve with fluctuations due to the discrete nature of kMC (Figure 3.4 (d)). In 

order to produce statistical trends for all parameters, for each case, three simulations are run, averaged, and the 

resultant discharge curve is fitted either with a cubic polynomial function or a power law, to show its mean 

characteristic.  

 

Figure 3.5 (a) Scatter plot for three sample simulations and (b) average for three runs is intrapolated to 

create an average curve to show its inherent stochasticity. 

Reaction constant and Margules constant are the only parameters fitted to obtain experimentally relevant 

results, additionally, the starting value for the reaction constant was taken from literature and adjusted. An 

experimental discharge curve from Hamelet et al.72 was used as reference but a good fit would only be possible if 

an extensive experimental parameter sensitivity study was available. All other parameters like the BET surface 
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area for silicon, viscosity of electrolyte, particle size, and standard potential of silicon were taken from 

experimental studies. This degree of pseudo-quantification is suitable for a first attempt where the priority is to 

study the features and the nature of the model itself. For this case, C-rate corresponding to the experimental data 

was chosen, i.e. C/4, the average of three simulation runs (Figure 3.5(a)) is taken and intrapolated (Figure 3.5(b)) 

in order to clearly show the stochasticity. While the curvature of the discharge curve is not accurately reproduced, 

such a simplified electrochemical model is not expected to provide a very precise fit. Over-fitting by introducing 

additional fitting parameters is not of interest for this mechanistic model.  

In line with more continuum methods, it can be possible to convert various metrics like electronic charge 

uptake of particles into heat maps, an example of which is shown in Figure 3.6. The heat map here is prepared by 

projecting all particles on to an x-z plane, clearly demonstrating how the particles close to the current collector are 

the most discharged. While this is just to show the capability of the results obtained from the model, such heat 

maps can be made more accurate with respect to the continuum assumption when larger slurry volumes are 

simulated in the future. 

 

Figure 3.6. An example to show how a simulation box shown in (a) can be represented as a heat map 

in (b), to demonstrate state of charge of silicon particles. 
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3.4. Summary  

This chapter begins with a discussion pertaining to sources of complexity in SSRFBs, which is said to 

arise from numerous competing phenomena across scales and especially due to many-body interactions and 

collective particle behavior at mesoscale. Popular modeling tools, like MD, do not allow the theoretical freedom 

necessary for causal discovery which is vital for SSRFBs. As an example to build this model, an experimental 

study based on a slurry containing silicon and carbon in organic electrolyte, is taken from literature. 

The mechanistic model, described in this chapter, is particularly designed to provide an open and adaptive 

theoretical framework. It consists of an ABM developed in-house in Python that simulates physically relevant time 

and implements particle motion through a kMC engine. It takes into account parameters like diffusion coefficient, 

viscosity, particle radius, volume fraction of solid, to generate kinetic rates for motion. The electrochemical 

discharge of silicon versus lithium metal anode is modeled using Butler-Volmer kinetics wherein the exchange 

current density is modified to take into account volume expansion of silicon. A schematic of the algorithm is 

provided to give an overall picture of how the simulation takes place on the three dimensional grid.   

Some basic results were produced with the objective of calibrating the algorithm and adjusting the input 

parameters to produce physically relevant results, in context to experimental literature. Stochasticity in the 

discharge curves was observed as an inherent output feature of the model. It was dealt with by running multiple 

simulations for the same conditions and considering the average. The volume expansion of silicon particles is 

evident from the three dimensional visualization of the results using the software OVITO.  

The next chapter is designed to provide insight on the method itself so that idea simulating conditions can 

be obtained. This following chapter provides physically relevant results that can provide qualitative explanations 

for various, seemingly contradictory studies in experiment.  
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Chapter 4                    

Insights on the Method 
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4.1. Introduction 

This chapter provides an assessment of the modeling method by highlighting its abilities and limitations. 

Since studies of this genre are rare, even more so in the discipline of materials for energy applications, significant 

effort was needed to establish sound basis and justification for the method. Furthermore, it was challenging to 

calibrate the model to obtain experimentally relevant results which will be presented in the following chapter.  

The following sections present parameter sensitivity analysis (PSA) performed to understand the evolution 

of parameters as well as effectiveness of the method. In a system dealing with multiple parameter 

interdependencies, having access to only a few simulation results fitted to experimental results is not enough.  PSA 

is instrumental for model configuration and finding suitable input parameters which may not be otherwise 

available.  

The use of on-lattice Agent Based Model (ABM) in conjunction to kinetic Monte Carlo (kMC) brings a 

stochastic nature to the output of the simulations. This is an added challenge for performing PSA, where 

perturbation are made to input values to see the impact on the output. Studies done in this context indicate that 

(i) large step sizes in input parameters are useful to counteract the deleterious effect of stochastic fluctuations and 

that (ii) statistically reliable sensitivity of output from large perturbations is more valuable than unreliable 

sensitivities arising from small perturbations.154 These aspects have been taken into account for data generation in 

the following sections. The use of graph theory to handle complexity is further proposed as a perspective. 

 

4.2. Local Parameter Sensitivity Analysis  

After the adjusting the input parameters to experimentally relevant values, as shown in the previous 

chapter, a local PSA was performed on the size of the simulation box, C-rate, and volume fraction of carbon 

particles, by adding small perturbations to these parameters. This is particularly important to see whether the results 
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are physically feasible and reasonable under these perturbations. In the presence of anomalies, it is necessary to 

either identify bugs in the code or modify the algorithm prior to a global, wider scale PSA.    

 

Figure 4.1. The impact of depth of simulation box on discharge capacity where (a) shows three example 

cases chosen from the trends shown in (b). The depth or Z is varied from 6 to 16 units in steps of 4 units. 

With the size of the current collector on top, fixed, the impact of simulation box depth on specific capacity, 

at the end of discharge, is shown in Figure 4.1, at a C-rate of C/20. The slurry in contact with the current collector 

is chosen as a representative system assuming that conditions needed to achieve good conductive networks in this 

region is essential for any conductivity to be seen in the bulk. Furthermore, the solid concentrations needed to 

form networks at this scale can be roughly representative of bulk behavior. The heights of simulation boxes or the 

depth, in direction Z, are varied from 6, 8, 10, 12, 14, to 16 unit cells and the capacities are shown in Figure 4.1(b). 

The cases for 6, 10, and 14 units are also visualized in Figure 4.1(b). The capacity is seen to decrease as the depth 

is increased. Regardless of how good the carbon networks are, it is evident that silicon particles closer to the 

current collector can easily discharge due to higher chances of encountering an electronically conducting carbon 



Chapter 4  »   Insights on the Method   »   4.2. Local Parameter Sensitivity Analysis 

56 

Table of Contents 

particle. Similarly, in smaller simulation boxes, it is easier for silicon particles at the bottom to discharge. The 

error bars in Figure 4.1(a) do not show a constant trend, suggesting that there may be more factors worth exploring. 

For a composition with 9 v% carbon, 14 v% silicon, in a simulation box of dimensions 20 × 20 × 10 units, 

the specific capacity is also studied as a function of C-rates, 2C, C, C/5, C/10, and C/20. Figure 4.2 shows how the 

capacity is seen to decline at higher or faster C-rates. This trend is expected to result from both, the physical time 

for which the discharge occurs and the applied current density which manifests in influencing the potential through 

the activation overpotential. Given that lithium ion transport is not calculated in this model, slower C-rates are 

preferable under both simulation and experimental conditions. 

 

Figure 4.2. The impact of C-rates 2C, C, C/5, C/10, and C/20, on specific capacity. 

With the aforementioned reference system, i.e. 14 v% silicon, in a box of dimensions 20 × 20 × 10 units, 

at C/20, a detailed study of the impact of carbon fraction on the specific capacity is presented in Figure 4.3. The 

carbon fractions considered range from 3 v% to 17 v% in steps of 2 v%. The 3D simulation boxes obtained at the 

end of discharge are shown in Figure 4.3 (a)-(h). The sensitivity of discharge capacity to carbon content is shown 

in Figure 4.3 (i). According to nomenclature from Medalia et al.,155 typically DC conductivity with carbon black 

is seen to vary as a sigmoid-like curve shown in Figure 4.3 (j), wherein the percolation threshold is known as the 
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starting point for the linear part labeled B i.e. the percolation region. To avoid confusion, the region labeled C is 

associated with conductive chains of carbon particles that span throughout the volume of the electrode and 

represents a threshold or saturation for conductivity of slurry.155  

 

Figure 4.3. Cases simulated to study sensitivity of discharge capacity to carbon content which is varied 

from 3 v% to 17 v% in steps of 2 v%. (a)-(h) show simulation boxes at the end of discharge, (i) shows the overall 

trend of capacity and (j) provides a reference from literature by Medalia et al.155 indicating the important 

features of a composition versus conductivity curve. 

Based such nomenclature, it can be said that in Figure 4.3 (i) the region below 11 v% carbon roughly 

corresponds to the percolation region and that at 11 v% and beyond, the conductivity is said to have saturated. It 
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can be said that beyond this composition, carbon networks are always available and the specific capacity is no 

longer a function of the number of carbon particles.  The error bar gradually decreases as carbon fraction is 

increased, this can be explained by: (i) small system size, (ii) decreasing sensitivity of kMC to the initial particle 

configuration in slurry, (iii) reduced diffusion rate, and (iv) decrease in importance of the role of each carbon 

particle in the carbon network. The mechanistic nature of the model provides more diagnostic tools as shown in 

Figure 4.4 and Figure 4.5, to analyze the impact of carbon fraction in greater detail, two of which are discussed.  

 

Figure 4.4 (a) The impact of carbon fraction (3-17 v%) on the evolution of average number of 

particle contacts within a conductive network, along normalized time of discharge and (b) raw data. 

The nature of the particle assembly (Figure 4.3 (a)-(h)) can be quantified based on the number of inter-

particle contacts in a carbon network, offering a means to visualize and analyze the extent of conductivity. It is 

evident that within the range 7-11 v% carbon, there is a significant jump in the number of conducting particle 

contacts, beyond which the number saturates. This observation clearly demonstrates the existence of a percolation 

region and conductivity saturation as reported by Medalia et al.155 and provides a more precise range than 

Figure 4.3 (i). The raw data shown in Figure 4.4 (b) provides additional insight, for instance, the amount of 

fluctuation is seen to increase with carbon fraction and then decrease beyond the plateau. The most significant data 

fluctuation is observed between 9-13 v% carbon, and corresponds to the transition between region B and C in 
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Figure 4.3 (j). The fluctuations can be said to arise from a number of competing effects: (i) increase in carbon 

content resulting in larger conductivity networks in the percolation region, (ii) larger particle populations 

suppressing particle diffusion, and (iii) higher dependence on initial configuration below conductivity saturation 

because each carbon particle plays an important role in maintaining conductive networks. Beyond 15 v% of carbon, 

the fluctuations are drastically reduced, indicating that the conductive carbon network is stable and that particle 

diffusion also slows down, suppressing stochasticity in the data. Exploring the evolution of the number of silicon 

particles in contact with conductive networks, as shown in Figure 4.5, can provide support for these claims.  

 

Figure 4.5 (a) The impact of carbon fraction (3-17 v%) on the fraction of silicon particles connected to 

conductive networks and its evolution in time. (b) Raw data for the same, showing the dispersion of each case. 

The transition seen in Figure 4.4 (a) over 7-11 v% is evident in Figure 4.5 (a). For carbon fractions at and 

below 7 v%, the power-law type trend has an upward slope and does not attain 100% silicon content, indicating 

that some silicon particles are out of reach. For carbon fractions at and above 11 v%, all the silicon particles are 

very rapidly connected to conductive networks and corroborates with the conductivity threshold previously 

observed. The raw data in Figure 4.5 (b) shows how the dispersion of data for each case decreases as the carbon 
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content approaches 11 v%. For lower carbon content, the large variation between the individual runs indicates the 

high sensitivity of the collective particle behavior to the initial configuration of particles in the slurry.  

4.3. Data Generation for Parameter Sensitivity Analysis 

 

Figure 4.6. Sensitivity to four parameters is simultaneously studied in these 288 cases where simulation 

box depth (Z) is varied from 6, 10 to 14 units, at C-rates C/5, C/10, and C/20, silicon is varied in increments of 

4 % between 6-18 v% and carbon in increments of 2 % between 3-17 v%.  

A larger sensitivity study with 288 cases was simulated by the first generation of the in-house Python code 

developed and the curves are shown in Figure 4.6. The simulation box size was varied over Z = 6 units, 10 units 
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and 14 units with the unit cell of length 100 nm. The C-rates C/5, C/10, and C/20 were chosen to avoid ionic 

transport limitations. In these simulations, since the size of the simulation box is fixed, it is difficult to isolate 

effects of solid-liquid ratio variation from silicon-carbon ratio variation. While this can be addressed in the future, 

worthwhile mechanistic information can still be obtained from this version of the model. Silicon volume fraction 

is varied between 6-18 v% with increments of 4 v% and carbon volume fraction between 3-17 v% in steps of 2 v%. 

Each case was simulated five times for reproducibility and averaged, amounting to a total of 1440 simulation runs. 

The nature of the trend is similar for all case, as it consists of a percolation region, a conductivity threshold, and a 

saturation region. Drop in capacity is observed for faster C-rates and for increase in silicon volume fraction.  

These results are further analyzed in the following subsections to highlight features of the model. This 

data also identifies the complexity that manifests within a system where numerous forces impact the final outcome. 

Thus parameter sensitivity analysis where multiple parameters are simultaneously varied, offers a useful means to 

study the system from many facets.  

 

4.3.1. Simultaneous Multi-Parameter Impact  

The data from the 288 cases is presented in terms of sensitivity of the conductivity threshold (𝐶𝑇) towards 

perturbations in Z, C-rate, silicon content, and carbon content. Since parameter sensitivity depends on the value 

of the parameter in question, sensitivity is reported in context of a nominal (reference) value. For instance, the 

nominal value for the simulation box depth Z is taken as 10 units with perturbations of ± 4 units, and for C-rate it 

is taken as C/10 with perturbations of ± C/10 to obtain C/5 and C/20. For silicon content, two nominal values were 

chosen, 10 v% and 14 v%, each with perturbations of ±4 v%. The sensitivity index (𝑆+ 𝑜𝑟 𝑆−) is calculated based 

on literature,156 where the function 𝑓 provides the output of the model, 𝑛 indicates the nominal value and ∆𝑝 

denotes the perturbation (Eqn. 2). In this study the sensitivities are is represented as a sum (𝑆) of both sensitivity 
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indices (𝑆+ 𝑜𝑟 𝑆−) as in Eqn. 1 to condense the amount of data, thereby the index is scaled to a maximum of 2. 

However it is important to keep in mind that the individual sensitivity indices may be different. 

𝑆(𝑛 ±  ∆𝑝) =  𝑆+(𝑛 + ∆𝑝) +  𝑆−(𝑛 − ∆𝑝)    (Eqn 1) 

𝑆(𝑛 ±  ∆𝑝) =  |
𝑓(𝑛+ ∆𝑝)−𝑓(𝑛)

∆𝑝
𝑛⁄

|  + |
𝑓(𝑛)−𝑓(𝑛 − ∆𝑝)

∆𝑝
𝑛⁄

|   (Eqn 2) 

 

Figure 4.7. Sensitivities of threshold of conductivity (CT) towards (a) simulation box depth at Z = 10 units 

with perturbations ±  4 units, (b) C-rate ( 𝐶 5⁄ , 𝐶 10⁄ , 𝐶 20⁄ ), and silicon content at (c) Si = 10 v% ±  4 v% 

and (d) Si = 14 v% ±  4 v% 
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The sensitivities are compiled and are presented in 3D plots in Figure 4.7 (a)-(d). The sensitivity for 

𝐶𝑇(𝑍 = 10 ± 4 𝑢𝑛𝑖𝑡𝑠) in Figure 4.7 (a) is shown to be most significant, i.e. perturbations in depth cause a big 

impact on the conductivity threshold for various C-rates and silicon fractions. Sensitivity for 𝐶𝑇(𝐶𝑟𝑎𝑡𝑒 =  𝐶 5⁄ ,

𝐶 10⁄ , 𝐶 20⁄ ) in Figure 4.7 (b) suggests that the impact of changing the C-rate is generally less and is seen at 

higher silicon content for all Z considered. When considering sensitivity of the threshold to silicon content, it is 

evident that the nominal value has an impact, i.e. sensitivity for 𝐶𝑇(𝑆𝑖 = 10 ± 4 𝑣% ) is less significant than 

for 𝐶𝑇(𝑆𝑖 14 ± 4 𝑣%). The results in Figure 4.7 provide a means to quantify the degree of non-intuitiveness of 

the system and provide a more tangible picture of complexity. 

 

4.3.2 Efficiency and Accuracy of the Model 

The data from the 288 cases can be processed in terms of the error bar and time taken for the simulations 

to run, to assess the accuracy and efficiency of the algorithm used. The trends are studied in terms of solid content 

to normalize the compositions but since each curve consists of a fixed silicon fraction, any changes in solid content 

indicate changes in carbon content. As an example, Figure 4.8 shows results for the simulations done at C/10. The 

accuracy of the model is studied in terms of the standard deviation of the capacity at the end of discharge for each 

of the 5 runs for reproducibility and is shown in Figure 4.8 (a). In general, increasing carbon content results in an 

overall increasing accuracy at all simulation depths studied, except for very high silicon content (18 v%) in a small 

simulation box (Z = 6 units). Furthermore, accuracy is shown to fluctuate more significantly for Z = 6 than Z = 10 

or Z = 14 units, suggesting large sensitivity to initial configuration and highly restricted particle motion. The 

presence of carbon particles is expected to increase reproducibility of the simulations since they are more mobile 

due to small size and do not experience any volume changes. The accuracy of this model can thus be dynamic and 

not only is worth identifying the conditions under which the results generated are more reliable, this analysis can 

also provide mechanistic information.  
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Figure 4.8. Studying the model algorithm in terms of (a) accuracy, by considering standard deviation of 

capacities attained for reproducibility runs and (b) efficiency, by considering the ratio of physical time simulated 

versus computational time taken by the simulation. 

The efficiency of the model is depicted in Figure 4.8 (b) in terms of the ratio of physical time taken for 

discharge in the simulation versus the computational time taken for the simulation to run. Here, larger is the time 

ratio, more efficient is the model. Increase in depth is shown to decrease efficiency regardless of silicon content, 

this may arise from the larger population of the particles and consequently increased computational load. It can be 

concluded that higher accuracy in results is obtained at the cost of lower efficiency of the model.  

 

4.3.3 Finite Size Effects 

The aforementioned observations lead to question whether discreteness can have degrees, i.e. the physical 

resolution in a simulation can lie on a spectrum between continuum and discrete. As observed in the state of the 

art for modeling work, the concept of degree of discreteness drives the creation of new models for SSRFBs.  
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In our study, the overall electrode capacity is obtained from individual capacities of every silicon particle. 

Consequently, silicon’s ability to discharge depends on carbon networks that have access to electrons. 

Furthermore, the finite package of electrons provided to the silicon is determined by the time step, which is 

estimated from total kinetic rate under the variable step size method (VSSM) of the kMC framework. The 

individual event rates arise from diffusion coefficients, which are calculated through the Stoke-Einstein equation 

and depend on particle radii and viscosity. Finally, viscosity, through the Thomas’ empirical expression, depends 

on volume fraction or total volume of particles, and eventually on particle radii again.119,121 Thus, it was found that 

time step and degree of discreteness of capacity depended heavily on the way particle radii were captured. A 

comprise was implemented to reduce the size of the error bar while still maintaining mechanistic detail on the 

three dimensional grid. For the sake of simplicity, at the initial stages of gauging the global and local behavior of 

the model in terms of physics, the degree of discreteness is minimized and only three runs for reproducibility are 

implemented instead of five. Additionally, the previously observed sensitivity of the conductivity threshold 

towards depth is expected to arise from two effects: (i) physically relevant phenomena and (ii) finite size effects 

from the discrete model. With the degree of discreteness minimized, the finite size effects can further be isolated 

in terms of total system size.  

Another study, highlighted in Figure  4.9 shows the impact of increasing the slurry depth. Here, the unit 

length taken is around 300 nm and depth is varied from 6 to 26 units in steps of 4 units, with only three runs for 

reproducibility; amounting to 120 simulations. Excluding the first case which may be too shallow for silicon 

particles, the nature of the capacity-composition trend does not change significantly on increasing depth. The 

sigmoid-like nature of the curve becomes more evident at Z above 10 units, the linear percolation region sharpens 

between carbon fractions 9-13 v%, and the different curves are nearly superimposable at 11 v% carbon. This 

suggests that the larger simulation boxes would provide a more uniform environment in terms of particle density 

throughout the depth and allow results to converge. For immediate purposes, a box depth of 20 units is suitable, 

thus rendering the simulation box a cuboid.  
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Figure 4.9. Sensitivity study with slurry depths varying from 6 units to 26 units in steps of 4 units, to 

minimize finite size effects.  

 

4.4. Perspective use of graph theory 

Based on the discussion in section 4.3.3 which shows how the intricacies of numerous parameters and 

their interdependence can ripple across the theoretical framework, and to ensure the adaptive, self-correcting nature 

of the model, it is relevant to create a causal flow systematically. For such a new and multidisciplinary battery 

system, significant challenges lie in building the first causal flow diagram157 which is formally referred to as model 

specification.158 Causal discovery is usually based on probabilistic methods employed in graphical modeling 

approaches like Bayesian Networks (BN) or Structural Equation Models (SEM). It is challenging to build a 

theoretical framework with very high degree of flexibility in a mathematically rigorous way. Typically, when there 

is confidence in the basic structure of a causal network, the Bayesian approach is applied to fine tune weightage 

between relationships and update knowledge in the light of new information. This approach belongs to one of the 

many schools of artificial intelligence, however, since there are many unknown relationships, both the 

relationships and the weights are subject to change, rendering the Bayesian network unrestricted and non-standard. 



Chapter 4  »   Insights on the Method   »   4.4. Perspective use of graph theory 

67 

Table of Contents 

While this raises the question of what can be achieved by an unrestricted causal network, it is evident that it is a 

necessary step at this juncture. This thesis work uses PSA156,159 to introduce rigor to studying an unrestricted 

network. After a causal flow is established with certainty, the Bayesian approach can be systematically applied. 

The present parameter sensitivities can lay the groundwork for application of more established graph theory 

methods wherein conditional probabilities, correlations, and covariance structures can be employed and backed 

up by appropriately obtained experimental datasets.  

 BNs and SEMs combine information of cause and effect with empirical data to provide a quantitative 

description of parameter relationships.160 However, for many complex systems like those seen in economic and 

social sciences, most of the established modeling frameworks and procedures are ruled out. For instance, BNs 

have highly advanced tools to generate new knowledge from prior knowledge, but necessitate working with 

Directed Acyclic Graphs (DAGs). The following paragraphs briefly describe some basics of graph theory used in 

this work. A node is considered as a parameter or entity which undergoes evolution during the simulation. Graphs 

contain edges, i.e. lines connecting two nodes, which are directed in nature, as depicted by the arrows in 

Figure 4.10 (a).  

 

Figure 4.10 Schematics to explain different types of graphs with 4 nodes (a) Direct Acyclic Graph, (b) 

Direct Cyclic Graph, and (c) Undirected Cyclic Markov network. 

Directionality indicates the existence of causal flow between two nodes, such that the second node is 

activated only after the first. In graph theory, this is referred to as topological ordering and usually implies 
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existence of causal flow that does not loop back to the first node to form a cycle. This chronological pathway with 

an end point, makes it possible to understand causation and create a model. Otherwise, it is impossible to identify 

a starting point; just as a chicken-egg problem. Typically, complex nature of a system can be attributed to strong 

parameter interdependencies, which bring strong feedback across different scales. Such systems can be best 

described as cyclic in nature, even if at a smaller scale causation is directed, as shown in Figure 4.10 (b). While 

there have been attempts to reduce Directed Cyclic Graphs (DCGs) to DAGs161, not all systems can be 

satisfactorily modeled as DAGs. Open questions at this juncture include whether causality can be discovered in a 

DCG at all162, if the DCG in question can be satisfactorily reduced to a DAG, and what kind of information would 

be lost or misinterpreted through this assumption. Cyclic systems, on the other hand, are better described by 

undirected Markov networks (Figure 4.10 (c)) than by BNs. Markov networks are those in which the probability 

of events occurring in a system depends only on the previous state of the system. This can be made possible with 

kMC: if the chain of events in a complex system can be converted to an event graph with topological ordering, 

then at the end of the chain, updated system parameters can be stored and used to describe a new state of the system 

for the next iteration. The kMC algorithm also provides scalability of time step based on how dynamic the system 

is, i.e. fast dynamics yields smaller time steps and slow dynamics gives longer time steps.  

Nodes in a directed graph can either be d-connected or d-separated, where d stands for directional. When 

two nodes are dependent on next each other by causation, a continuous path (i.e. an edge or consecutive edges 

regardless of direction) is said to connect the two nodes. For instance, in Figure 4.11, a continuous path can be 

found between nodes x-r, x-t or r-s on one side, and y-v, y-u or y-t on the other side of the collider node t. A 

collider node is one which receives two directed edges as input and does not transmit any information forward, 

therefore a continuous path should not contain a collider node. Nodes on either side of the collider node are d-

separated, i.e. they are independent and not connected by causality; for example, x-y, x-u, or r-u in Figure 4.11. 

Root nodes are defined as those which act only as inputs into the graph; in Figure 4.11, those are x and y. It is also 

possible to consider conditional d-connectedness between two nodes, as noted in the following section, this will 

allow conversion of a DCG to a DAG. 
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Figure 4.11.  Schematic showing a collider node and describing d-connected and d-separated nature of a 

pair of nodes in a graph. 

 

Figure 4.12. Schematic of a causal flow diagram: Root nodes are specified by boxes with dotted lines and 

include the starting values. The main cycle is highlighted in blue suggesting its DCG nature. Boxes with colors 

yellow, green, and orange indicate that the entity is a state descriptor, dynamics descriptor, and spatial 

descriptor, respectively.  
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The graph with reduced complexity (reduced compared to real, experimental conditions), is constructed 

based on the aforementioned discussions and is shown in Figure 4.12. It provides the flow of logic for the algorithm 

used in the ABM-kMC model and offers a means to quantify complexity. The kMC engine used to calculate time 

steps from system dynamics is highlighted in grey in Figure 4.12. The root nodes (in dotted line boxes), are namely 

temperature, simulation box dimensions, C-rates, initial values of particle radius and volume fraction, and other 

parameters used for estimation of electric potential. All the other nodes (in solid lined boxes) show a high degree 

of d-connectedness and parameter interdependence.  

Here, there are no true collider nodes because every node passes information forward to another node 

even if it receives multiple inputs. The main chain (in blue in Figure 4.12) represents the causal flow: particle 

radius  viscosity  diffusion coefficient  kinetic rate  total kinetic rate  time step  electronic charge  

state of charge  volume expansion  calculation of potential  particle radius, therefore, the graph can be 

categorized as a DCG. Here, the last edge is conditional, such that if the potential crosses the cut-off potential, the 

simulation stops. Additionally, the final directed edge: volume expansion  particle radius is separated between 

time steps and model iterations, breaking the DCG into a DAG.  

At the end of each model iteration, parameter updates along the traversed nodes are saved and the next 

iteration is implemented over the new state of the system, thus adopting the required Markov property. Different 

nodes in Figure 4.12 can be classified as state descriptors in yellow and dynamics in green. Of the state descriptors, 

viscosity, state of charge, and total electrode potential are observable while most others, especially at the single 

particle level, are latent parameters. The orange boxes are spatial descriptors which track arrangement of particles 

in three-dimensional space and can be elaborated by many other parameters which are not mentioned here for the 

sake of brevity. As evident from the graph, multiple smaller DCGs overlap with the main causal chain (in blue). 

Increments are only made one time to the parameters that fall along the main chain, while all side branches are 

implemented once and their impact is observed in the following cycle. For instance, the moving particle can be 
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excluded from the estimation of electronically percolating networks such that both particle diffusion and 

electrochemical discharge can be said to occur simultaneously, while still maintaining a degree of causation.  

It should be noted that nodes with multiple inputs, like viscosity, particle diffusion rate, mesostructure, 

and electric charge are important. The greater are the number of competing forces that influence the output from 

a node, more are the chances that its behavior will be non-intuitive. Thus, the prediction of these parameters is 

expected to be difficult to experimentally quantify in order to obtain an empirical relationship. The nature and 

population of such nodes are an important metric for complexity for a given system. These nodes are not only 

difficult to predict, they bring complexity to the entire graph. Such that non-intuitiveness ripples and cascades 

across the entire system. Thus, even experimentally observable parameters can show unexpected trends and 

emergent behavior.  

 

4.5. Summary and Conclusions  

This chapter explores the mechanistic model through parameter sensitivity analysis (PSA) to discover its 

features, strengths and weaknesses as a method. A local PSA is first performed with respect to the experimental 

conditions published in literature. The sensitivity of discharge capacity is studied in terms of (i) simulation box 

size with depth, Z = 6, 8, 10, 12, 14, 16 units, (ii) C-rate 2C, C, C/5, C/10, and C/20, and (iii) carbon content with 

3, 5, 7, 9, 11, 13, 15, 17 v%. The capacity is seen to decrease with increasing Z and C-rate. The impact of increasing 

carbon content consists of an increase in capacity followed by a saturation, which roughly resembles the sigmoidal 

curve experimentally obtained. More accurate distinction between the percolation and saturation region can be 

obtained by exploring the evolution of the size of the conductive network and the number of silicon particles in 

contact with the conductive network.  

A larger scale PSA is conducted over 288 cases where depth, C-rate and composition are simultaneously 

varied, with Z = 6, 10, 14 units, C-rates C/5, C/10, C/20, silicon content of 6, 10, 14, 18 v%, carbon content of 3, 
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5, 7, 9, 11, 13, 15, 17 v%. Each case was simulated 5 times and averaged for reproducibility. The evolution of 

error bar as well as the computational efficiency of the model were studied as a function of composition and 

simulation box size. This provides a useful tool to quantify the compromise between accuracy and efficiency for 

a given algorithm. Furthermore, this large amount of data provides a means to explore sensitivity of the transition 

between percolation and saturation region, called conductivity threshold for convenience. Sensitivity of this 

threshold depends not only on the parameter but also the value of the parameter, for instance, the threshold is more 

sensitive to silicon content at 14 v% rather than 10 v%. It was observed that depth was the most sensitive 

parameter, suggesting that finite size effects could overshadow physically relevant mechanistic details. After 

modifying an algorithmic detail that reduced the degree of discreteness of the model and made the particle radius 

vary in a more continuum-like fashion on volume expansion, the error bars of the results were significantly 

reduced. Additionally, a larger range of simulation box sizes were simulated, Z = 6, 10, 14, 18, 22, 26 units and it 

was observed that above Z = 18 units, convergence in behavior was observed and simulation box artefacts reduced.  

The complex origin of finite size effects in this discrete model unveils the complex parameter interactions 

that take place within the model. Graph theory was introduced as a perspective tool to characterize and quantify 

the interdependence of parameters to provide a clear causal flow chart. It was observed that complexity arises from 

a specific class of nodes, or parameters, which have a large number of inputs. This results in a competition between 

numerous effects resulting in potentially non-intuitive output from the given node, substantiating claims that 

complexity arises from the many-phenomena problem. This kind of behavior cannot be described by simple 

empirical relations, thus showing the importance of creating models with flexible theoretical frameworks with 

causal flow graphs.  
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5.1 Case Study 

Based on studies published from density functional theory studies, one can assume that fully delithiated 

silicon, whether crystalline or amorphous, is expected to be a poor electron conductor due to lack of density of 

states at the Fermi level, however this property changes in the presence of inserted lithium.116 From a mechanistic 

point of view, it can be interesting to study the impact of silicon participating in forming conductive networks. 

The following sections elaborate the power of a mechanistic model to offer insights for a SSRFB and showcase 

how, very much like in experiments, behavior can emerge from such models due to the many-body and many-

phenomena effects.  

 

5.1.1 Conductivity Switch for Silicon 

The Python code used for this study was generation II, which offers more computational efficiency and is 

elaborated upon in the Appendix A.1.1. The algorithm described in Chapter 3 is modified in terms of: 

(a) conductivity switch (σ on/off) which controls the participation of silicon in networks, i.e. an inter-particle 

electronic conductivity, and (b) lithiation rate of silicon due to intra-particle electronic conductivity, for rigor. The 

latter condition is implemented by having charge uptake 100 times slower at the very beginning of lithiation, such 

that conductivity has two values or two steps. The study is performed in a cubic simulation box with a 20 unit cell 

of edge length 300 nm at C/20. Silicon content of 6 v% and 14 v% are chosen to study the behavior above (13 v%) 

and below (5 v%) the conductivity threshold, as observed in the previous chapter. Three distinct cases are 

considered for these four slurry compositions (Figure 5.1): (a) constant lithiation (CL) without silicon participating 

in networks (σ off), highlighted in black circles, (b) two-step lithiation (2SL) without silicon participating (σ off), 

highlighted in blue triangles, and (c) two-step lithiation (2SL) with silicon participating (σ on), shown in red 

squares. Each of the 12 cases was simulated three times and averaged in Figure 5.1 (a)-(d), which shows the 

distribution of particles in terms of state of discharge. The results show that introduction of the two-step lithiation 
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has little impact for cases (i) 6 v% Si + 5 v% C, (ii) 14 v% Si + 5 v% C, and (iii) 6 v% Si + 13 v% C, and a very 

marginal impact in (iv) 14 v% Si + 13 v% C. Since error bars in x-axis are case dependent and hard to display in 

the same plot, the raw data is classified based on four types of distributions summarized in Table 5.2 and assigned 

to the different cases in Table 5.1.  

 

Figure 5.1 : Constant lithiation (CL) without silicon participating in networks (σ off), highlighted in black 

circles, two-step lithiation (2SL) without silicon participating (σ off), highlighted in blue triangles, and two-step 

lithiation (2SL) with silicon participating (σ on), shown in red square for compositions  (a) 6 v% Si + 5 v% C, 

(b) 14 v% Si + 5 v% C, and (c) 6 v% Si + 13 v% C, (d) 14 v% Si + 13 v% C.  
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Table 5.1 Summary of capacity and particle size distribution (PSD) obtained for three cases studied to 

incorporate the conductivity switch for silicon, at different slurry compositions. 

 

 

Figure 5.2 Data from Table 5.1 presented in a 3D plot for three cases at different compositions 

 

Meanwhile, red curves in Figure 5.1, which correspond to the on-switch, show an unmistakable shift 

towards higher capacities, especially for carbon content below the conductivity threshold. This result is reasonable 

and intuitive since carbon, by itself at this volume fraction, is insufficient to form networks (as seen in Chapter 4). 

The overall capacity obtained at discharge for each case is shown in Figure 5.2 and summarized in Table 5.1. 

Capacity obtained at the end of discharge is normalized in terms of LiySi0.26 such that y goes from 0 to 1. The 

three-dimensional plot in Figure 5.2 is used particularly to collectively visualize the three cases at four different 

slurry compositions.  
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Table 5.2 Categorization of particle size distributions (PSDs) observed.  

 

 

The four dominating types of dispersions observed can be described in terms of modality, symmetry, 

spread, and reproducibility in different runs, as shown in Table 5.2. In terms of mechanistic details, it can be said 

that PSD#1 corresponds to simultaneous discharge of nearly all silicon particles, suggesting an extensive 

conducting network. This is confirmed by studying the corresponding conductive particle network, seen in 

Figure 5.3 (c) where the green, blue, and red curves show a consistently good network with little fluctuation.  
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Figure 5.3 Impact of slurry composition on the evolution of conductive particle networks with time for the 

three cases. 

The case for bimodal distribution, as in PSD#2, indicates that conductive network has limited reach, 

possibly only around the current collector since a small population of particles discharge completely while the rest 

remain unlithiated. The corresponding conductive particle network formation, seen as the black and red curves in 

Figure 5.3 (a) and (b), clearly corroborates this observation. The population of particles participating in the 

conductive network are significantly low and the discharge lasts for a much smaller time period when compared 

to PSD#1, which is further confirmed by the low capacity obtained. Case PSD#3 has a single sharp peak and an 

asymmetric distribution with small trailing peaks. This appears to suggest that most of the particles are well 

connected to a network while others receive charge sporadically. The case PSD#4 with a wide dispersion of peaks 
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and state of discharge, suggests that most particles receive charge intermittently, indicating that there can be large 

fluctuations in the nature of the conductive network and thus poor reproducibility among simulation runs. While 

it is not straightforward to assign PSD#3 or #4 to curves in Table 5.2, subtle differences in the highly fluctuating 

curves of Figure 5.3 provide some insight. Blue and green curves in Figure 5.3 (a) and (b) can be classified as pre-

dominantly PSD#3 as shown in Table 5.2, in that while there are large fluctuations, the nature of the conducting 

network does not undergo significant change in terms of size. The black curve in Figure 5.3 (c) shows less 

fluctuation but instead displays an upward slope, suggesting that the size of the network is increasing. The evolving 

nature of the network would eventually be highly dependent on where the particles are originally placed and result 

in chaotic, non-reproducible dispersions at the end of discharge and thus can be classified as PSD#4.  

The subtle differences in collective particle behavior for different cases which otherwise produce identical 

overall discharge capacities, is an important strength of this model. The impact of the two-step lithiation rate in 

the initial stages is eclipsed by consequent discharge steps, making it easy to draw conclusions for the impact of 

silicon particles participating in conducting networks. A system where lithiation rate of a material depends on its 

extent of lithiation, can be ascribed to have recursive interdependencies and would be represented by directed 

cyclic graphs, as discussed in Chapter 4. The advantage of defining a mesoscopic parameter like lithiation rate of 

a particle is that it allows a vast number of microscopic properties to be bundled together. Aside from conventional 

parameters like ion transport, lithiation rate is governed by a massive interconnection of other parameters. For 

instance, simple concepts like electronic and ionic conductivity of a particle arise from a myriad of interlinked 

physical and chemical aspects like crystal structure dynamics, existence of grain boundaries, and nature of solid 

electrolyte interface. Introduction of such a parameter which can be termed as emergent is a significant step 

towards handling complexity in this system. Without explicitly and individually quantifying the microscopic 

influences, significant understanding of complexity can be attained by studying the impact of lithiation rate as 

various mathematical functions which are assumed to be the resultant of all the microscopic influences. 
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5.1.2 Multi-Parameter Sensitivity Study 

 

Figure 5.4 Impact of silicon conductivity switch on slurries with composition: (a)-(b) Si 6 v% + C 5 v%, 

and (c)-(d) Si 6 v% + C 13 v%, studied at different simulation box depths and C-rates. 

When studying the impact of C-rate, simulation box depth, and carbon content simultaneously in context 

to the conductivity switch, silicon content 6 v% (Figure 5.4) and 14 v% (Figure 5.5) are studied and both show 

similar behavior. The simulation box depth was varied across values 20, 25, 30, 35, 40, and 45 units and for the 

two silicon fractions, carbon content was chosen to be above and below threshold, i.e. 5 v% and 13 v%, and C-

rates chosen were C/20 and 1C. In total, the 192 cases were run 3 times for reproducibility and the results were 
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averaged. Regardless of silicon content, the only case that showed very poor capacity were those with 5 v% carbon 

where silicon conductivity was switched off, while all the other cases showed the existence of conductive 

networks. The PSDs for both 6 v% and 14 v% are similar and Figure 5.6 shows only the latter as an example, 

specifically for the condition where the silicon conductivity switch is off. The cases with 5 v% carbon content at 

1C or C/20, both of which show very low discharge capacity, are shown in Figure 5.6 (a)-(b) and can be classified 

as PSD#2. Above the threshold, for 13 v% carbon content, PSD#3 is observed in Figure 5.6 (c)-(d), here the mode 

is shifted to a lower state of discharge for 1C. 

 

Figure 5.5 Impact of silicon conductivity switch on slurries with composition: (a)-(b) Si 14 v% + C 5 v%, 

and (c)-(d) Si 14 v% + C 13 v%, studied at different simulation box depths and C-rates. 
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Figure 5.6 Particle size distribution at the end of discharge for slurry with composition Si 14 v% with 

5 v% and 13 v% carbon at C and C/20. 

Intuitively, it can be said that increasing simulation box depth would result in a higher probability for 

some silicon particles that are farther away from the current collector, to experience difficulty finding suitable 

conductive networks. The impact of increasing simulation box depth resulted in a 13 % capacity decrease for 1C 

and 9 % decrease for C/20. Slower C-rates would allow more time for particles trapped at the bottom of the 

simulation box to move through the box and access conductive networks, thereby explaining why capacity falls 

faster at 1C than at C/20. The impact of higher silicon content is less intuitive, for instance increasing the silicon 

content from 6 v% to 14 v% at 13 v% carbon resulted in an 8.5 % decrease in capacity at Z = 20 and 9.5 % decrease 

at Z = 45, at C/20. On the other hand, at 1C, a 13.5 % decrease at Z = 20 and 16.7 % decrease at Z = 45 was seen. 
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Simultaneously increasing silicon content and switching off silicon conductivity is advantageous at Z = 20 at C/20 

and at Z = 45 at 1C but disadvantageous at Z = 20 at 1C and Z = 45 at C/20. This indicates that silicon can play 

both, a constructive and a disruptive role in the formation of conductive networks, even if it is electronically 

conducting. The non-intuitiveness observed within these 192 cases where 5 parameters are varied, clearly 

originates from numerous competing mechanistic effects. Therefore, complexity arising from such an interplay at 

the mesoscale where the many-body problem is significant, would be far more convoluted within an experimental 

study.  

Studies to observe the impact of active material without volume expansion, are underway. Here, even 

though silicon is assumed to experience significantly more volume expansion than typical LIB materials, the 

relative trends identified through large scale PSA can provide a generalized guideline for similar electrochemical 

systems. This is demonstrated in the following comparisons made amongst published research. Considering 

multiple variable parameters in experimental studies is gaining importance but is very challenging to accomplish 

within traditional approaches. A publication by Madec et al.79 which is most closely relevant to the simulations 

hereinabove, studies electrode capacity as a function of C-rate, channel depth, and active material concentration 

such as LTO. While the electrode capacity is seen to decrease at faster C-rate, the trend is non-linear and shows 

dependence on nominal values of channel depth and LTO concentration.79 Similarly, when increasing channel 

depth, capacity is seen to fall but its trend is highly dependent on LTO concentration and C-rate.79 Within the 

publication, this behavior is simply attributed to poor electrical contact but the nuances of individual trends are 

not explained. A study by Dennison et al.25 reports slurry conductivity as a function of salt concentration in 

electrolyte. Electrolytes with lower salt concentrations show sharp decline in conductivity while higher salt 

concentrations do not show a significant correlation.25 While no explicit evidence is given to support the following 

explanation, the phenomena is ascribed to the ability of ions to screen interparticle repulsive forces and promote 

aggregation sufficient for formation of carbon chains, but not enough to induce flocculation.25 This suggests that 

the non-linear sensitivity of LTO based slurries towards channel depth could result from insufficient salt 

concentration. While this is usually optimized for handling transport limitations in conventional lithium ion 
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batteries, it may not be enough to prevent flocculation in suspensions. There are no studies showing simultaneous 

impacts of carbon, C-rate, and channel depth on capacity. Given the high dependence of sensitivity of capacity on 

(i) C-rate and channel depth79 and (ii) carbon content84 reported separately in literature, our model predicts that 

their simultaneous impact on capacity will be highly competitive, system specific, and non-intuitive.  

 

5.1.3. Studying Slurry Compositions 

Various slurry compositions were simulated with both off and on switch for silicon conductivity. The data 

presented in Figure 5.7 shows a summary of 121 compositions with silicon conductivity switch off, each simulated 

thrice, with silicon content (3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15 v%) paired with carbon content (0, 2, 4, 6, 8, 10, 12, 

14, 16, 18, 20 v%). Since the trends obtained are fairly similar, two extreme cases for silicon content are chosen 

in Figure 5.7(a), to show the range of capacity values obtained.  

 

Figure 5.7 Out of 121 compositions simulated with silicon conductivity switch off, with silicon content (3, 

4, 5, 6, 7, 8, 9, 10, 11, 14, 15 v%) and carbon content (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 v%), two extreme cases 

are shown in (a) and the entire data set with error bars is shown as a scatter plot in (b) with a sigmoidal fit. 
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All the data points for the 121 cases are shown as scatter points in Figure 5.7(b), with a sigmoidal fitting 

shown in red. It is evident that silicon content does not significantly impact the salient features of the sigmoidal 

trend. Under the assumptions of the first and second generation Python code (described in Appendix A.1.1), which 

can take only a small population of carbon particles into account, the grid size was increased to accommodate two 

carbon particles in one grid unit space. Given these conditions, one may estimate that percolation region between 

6 v% - 14 v% obtained from Figure 5.7(b), would otherwise be attained between 3 v% - 7 v% for a spherical 

particle or an aggregate size of 150 nm. Based on the carbon entity and its size, whether considering an elementary 

particle, aggregate or cluster, this model is capable of capturing the network formation of that entity by adjusting 

the grid unit size. Simultaneously considering carbon entities at different scales can be computational challenging, 

but possible in a telescopic multiscale model, or with reduced, representative entities. Assuming that obtaining 

suitable electronic conductivity for battery operation and the condition for Brownian particle to obtain a stable 

suspension enforces submicron particle sizes, it is reasonable to simulate with a grid unit cell of around 300 nm, 

halfway between the size of an elementary carbon particle and an aggregate.  

Experimental work published by Parant et al.,84 shows two types of conductive carbons of significantly 

different bulk densities, Ketjenblack 600JD (AzkoNobel) and Ensaco (Timcal), whose conductivity varies roughly 

like a sigmoid. The study was conducted in aqueous medium with 1.5 wt% Arabic gum as emulsifier and 0.5 wt% 

alginate as thickner. The elementary particle size obtained through TEM images of raw powders was 23 nm ± 

14 nm for Ketjenblack and 61 nm ± 19 nm for Ensaco, while aggregate sizes are as large as a few microns. Optical 

microscopy of suspensions suggests particle aggregation can lead to clusters spanning 200 μm. Parant et al.84 

report estimated percolation thresholds starting at 3.6 v% for Ensaco and 8.1 v% for Ketjenblack and TEM images 

of dry powder clearly show complex networks and chains of elementary particles. In-situ TEM studies in wet 

mode performed in-house with silicon and carbon based slurries in organic electrolyte (LP30) were challenging 

due to air bubbles, blurry images, particles sticking to the cell window, and beam effects (see Appendix A.2.2).  
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Figure 5.8 Representation of data set plotted in Figure 5.7 in terms of capacity as a function of silicon 

content for the 121 cases. 
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Various rheological studies offer visualizations and mechanisms of complex particle arrangements, 

showing the importance and relevance of simulating with submicron particle entities.27,78,86,88 It is therefore, not 

trivial to estimate volume fraction of solid in a given experimental system. It is also challenging to find generic 

metrics that are relevant across carbon types and suspension mediums so as to provide a reliable theoretical 

prediction of conductivity.  

Data from Figure 5.7 can also be visualized in terms of increasing silicon content for a fixed carbon 

fraction, as shown in Figure 5.8. The resultant trends bear no resemblance to a sigmoidal curve, suggesting that 

increasing silicon content does not provide any mechanistic means to improve capacity and that carbon content is 

indeed the limiting factor. Stochasticity lends to high fluctuations within the threshold region at 10 v% carbon, 

and the PSD is multimodal with a large spread and low reproducibility. The error bar nearly disappears above the 

threshold, suggesting suitable conductive pathways to silicon particles. In general, an overall dip in capacity is 

observed as silicon content is increased. Considering the example of 14 v% carbon, while going from 3 v% to 

15 v% of silicon, a 30% decrease of conductive material in all solid material results in a 15% decrease in capacity. 

It is likely that increasing non-conductive material hinders conductive network formation, which has been 

suggested in literature.  

When electronic conductivity of silicon is taken into account, with the switch on, for the 121 slurry 

compositions studied in the previous section, the resulting trends are not sigmoidal, as intuitively expected. 

Discharge capacity as a function of carbon content and silicon content are shown in Figure 5.9 and Figure 5.10 

respectively. Figure 5.9(a) and (b), show trends for 3 v% and 4 v% silicon fraction, they most resemble sigmoidal 

behavior. The linear part of the s-curve i.e. the percolation region as defined in Chapter 4, is seen to diminish on 

increasing silicon content and above 6 v% of silicon, the percolation region entirely disappears. The behavior of 

capacity versus silicon content, as seen in Figure 5.10, shows a power-law type trend, i.e. a sharp percolation 

region followed by a saturation, instead of an s-curve and above 6 v%, this curve also reverts to a linear trend.  
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Figure 5.9 The 121 cases simulated with silicon conductivity switched on 
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Figure 5.10 Data set from Figure 5.9 represented in terms of capacity as a function on silicon content 
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A gentle decrease of capacity is observed on increasing silicon content as in Figure 5.10 and not when 

increasing carbon content, as in Figure 5.9. This possibly arises from the role that silicon plays in the formation of 

conductive networks. Therefore, for slurries with low carbon content, addition of silicon is shown to drastically 

improve discharge capacity but after a threshold has been reached, any additional silicon content tends to slightly 

decrease capacity. Interestingly, at high carbon content for both on and off switch for silicon conductivity, 

discharge capacities tend to slowly decrease on increasing silicon content.  

There is no notable difference between the sizes of the conductive network or percentage of active silicon 

at, for instance, 3 v% silicon or 15 v% silicon with 20 v% carbon. While this may be an artefact of having a fixed 

simulation box size where silicon particles are undergoing massive volume expansion, many strategies were used 

within the algorithm to suppress these effects. It is likely that the dip in capacity occurs due to an aggravated 

lithium ion transport limitation due to reduction in the number of facets of active material particles which are in 

contact with lithium ion containing electrolyte. This suggests that results obtained with this model can provide a 

global parameter sensitivity analysis, i.e. access all states of the system, especially those which may not be intuitive 

when performing experiments. 

Studying the sensitivity of discharge capacity towards simulation box depth can be interesting for 

compositions that lie at the linear part of either the sigmoidal curve or the second order exponential curve. A 

composition consisting of 3 v% silicon and 10 v% carbon was considered for a multi-parameter sensitivity study 

as shown in Figure 5.11. The capacity is clearly more sensitive to the simulation box depth when conductivity 

switch is turned off. A significant drop in capacity is observed as depth is increased when the conductivity switch 

is off, regardless of slow or fast C-rate, as seen in Figure 5.11(a). The PSDs observed at Z = 20, Z = 30 and Z = 40 

at 1C are shown in Figure 5.11(c), wherein a transition from scattered peaks in PSD#4 to bimodal PSD#2 is 

observed. The conductive network, as shown in Figure 5.11(d), corroborates the trends with PSDs because 

increasing Z results in decreasing network size. It is interesting to note that while the discharge time for Z = 30 
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and Z = 40 is similar, larger fluctuations in size of the conductive network are seen in the former. This possibly 

permits silicon particles to have more opportunity to discharge and result in PSD#4.  

 

 

Figure 5.11 Parameter sensitivity study of slurry of composition Si 3 v% + C 10 v% at C-rate C/20 and 

1C for different simulation box depths with switch (a) on and (b). Particle size distribution of silicon particles at 

end of discharge is shown in (c) and evolution of size of conductive network is shown in (d) for cases chosen 

from (a). 
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5.1.4. Identifying New Metrics  

The results discussed hereinabove can help provide insights for experimental studies that measure 

conductivity as a function of composition. For instance, two studies performed with LiFePO4 (LFP) material, 

which is usually carbon coated and thus electronically conducting, show increasing discharge capacity with 

increase in active material.71,163 According to the model, such behavior would be expected when carbon content is 

insufficient to form an extensive conductive network. Another study with Li4Ti5O12 (LTO) and Ketjen Black (KB) 

in organic electrolyte79 showed that for slurries with 15 wt% LTO and 20 wt% LTO with 3 wt% KB, the particle 

networks were perfectly percolating and the entire LTO mass was active. However, a poorer capacity was observed 

for 25 wt% LTO with 3 wt% KB and it was suggested that the particle network for this case could be fragmented 

and consist of isolated KB clusters, rendering only a fraction of LTO electroactive. In the modeling results shown 

hereinabove, any significant decrease in conductivity on addition of active material is only observed within the 

threshold region. While this can be ascribed to stochasticity, it appears less likely that conducting carbon networks 

would be disrupted by active material that is considered to be electronically conducting, unless the particle size 

difference between the carbon entities and the active material is of several orders of magnitude.  

With regard to the LTO-KB slurry, it may be reasonable to perform an even more comprehensive 

parameter sensitivity study to see how increasing LTO content impacts capacity at different carbon fractions. Li 

et al.70 report such a study in their supplementary information wherein various LFP and KB volume fractions are 

considered for conductivity measurements. The trends appear as exponential growth curves, which may be 

visualized as the lower half of an s-curve. As LFP content is increased, the threshold is seen at lower carbon 

content. When compared to Figure 5.7 however, there is no evidence of such a shifting of capacity to lower carbon 

content. The sigmoidal trends seen for both cases of silicon conductivity, on and off, at 3 v% silicon are compared 

in Figure 5.12(a). The s-curve is observed to have shifted or translated to lower carbon content with the 

conductivity switch on. However, when capacity is plotted against the total volume fraction of electronically 

conducting particles, as seen in Figure 5.12(b), the s-curves move closer together. It is safe to assume that if the 
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actual number of conducting particles were captured on-the-fly during the simulations, and normalized for the 

differences between carbon and silicon, the two curves would overlap even more. 

 

Figure 5.12 (a) Comparison between on and off switch for slurry with silicon content 3 v% on increasing 

carbon content, (b) data set from (a) replotted in terms of total electronically conductive solids. 

 

Figure 5.13 Data set for 121 cases with conductivity switch on represented as scatter plot in terms of 

total conductive solids with a two-term exponential fit. 
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Therefore, when both active material and carbon are expected to participate in conductive network 

formation, instead of plotting composition in terms of either silicon or carbon, it can be useful to consider a new 

parameter, i.e. volume fraction of total conductive solids. The entire data set for 121 cases with silicon conductivity 

switch on, is shown as a scatter plot in Figure 5.13 with a two term exponential (second order exponential fit). In 

order to account for decreasing capacity as silicon content is increased, it can be more useful to fit the data with a 

second order exponential rather than a power law. When considering a slurry without carbon as in Figure 5.10(a) 

or turning the conductivity of carbon off, as in Figure 5.14(b), the curve resembles the second order exponential.  

The previously mentioned study by Parant et al.84 also studies the sensitivity of acetylene black as a carbon 

additive which shows neither sigmoidal behavior nor a plateau in conductivity within the range studied.84 The 

conductivity of acetylene black is seen to increase linearly from 1 v% and is attributed to filamentous aggregates 

where the clusters are fractal-like, possibly arising from diffusion limited aggregation mechanism. Mathematically, 

this region represents the linear part of the exponential function, where growth is steady. As an analogy, it can be 

said that for a slurry where both active material and carbon participate in network formation, the conductivity of 

the slurry is observed to grow linearly at low solid concentrations, which is attributed to the percolation region. It 

then reaches a peak and the saturation curve has a downward slope, thus an optimal composition is expected since 

any further increase in solid content would not only result in poorer capacity but would also compromise the 

fluidity of the suspension. It can further be said that based on the population and electronic conductivities of active 

material and conductive carbon, there would be a competition between sigmoidal and second order exponential 

behavior for conductivity.  

At this junction, it is reasonable to assume that the behavior of capacity or conductivity as a function of 

composition reflects the mechanistic details of network formation. Very large differences in particle size, which 

are not captured in this model, may also lead to other nuanced behavior and require other types of mathematical 

fitting to conductivity trends. Within this model it is assumed that nanoparticles, with very large surface area, may 

aggregate and not play as significant role at the mesoscale. Other particle properties, like surface functional groups 
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would manifest as interparticle sticking coefficients which can result into the formation of new entities which are 

larger in diameter and can thus impact the kinetic rate of particle motion and network formation. New algorithms 

are being prepared in-house to take a sticking coefficient into account, however, in context to the results of this 

version of the model, it is assumed that all particles simulated are entities which are a result of aggregation and 

are only likely to hit-stick-and-go instead of remain attached to another entity.  

 

Figure 5.14 (a) The number of conductive network propagating faces (CNPFs) and volume expansion of 

a silicon particle as a function of state of charge (b) Behavior of slurry with carbon particles that do not 

participate in network formation. 

Another interesting property of silicon particles considered within this study is the growing particle size 

which may impact how networks evolve within the suspension. Considering the simplest case, where face-to-face 

contact between neighboring particles is needed for electronic conduction, a single carbon particle provides 

6 faces, while a silicon particle would provide a wide range of number of faces based on its state of charge, as 

shown in Figure 5.14. Here, the y-axis indicates the number of conductive network propagating faces (CNPFs) 

and how they evolve with the volume expansion during discharge, starting from 30 faces to 54, plateauing at 54 
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beyond 60% discharge. A 5 to 9 fold increase in potential nodes for branching is expected to significantly influence 

fractal dimension of conductive networks and can potentially influence the threshold for conductive networks. 

This suggests that based on the types of electronically conductive particles available, in terms of particle shape 

and particle size, the threshold for conductive networks will change. A constant growth in the number of faces 

available to propagate networks is also expected to contribute to overriding the initial slow growth seen in 

sigmoidal curves. This phenomena, mathematically, is reminiscent of the constant growth mechanism seen in 

diffusion limited aggregation of acetylene black, as reported by Parant et al.84 Additional studies can be conducted 

to verify the sensitivity of network propagation to rate of increase of CNPFs and by varying extent of volume 

expansion permissible. 

Table 5.3 Selected cases from the 242 simulated to create a global landscape. 

 

In light of the extensive parameter sensitivity study performed with 242 cases simulated in the previous 

section and the introduction of a new mesoscopic metric, volume fraction of total conductive solids (TCS), there 

is sound basis for creation of a global landscape, along the lines of a potential energy surface. Table 5.3 summarizes 

all the data points chosen to cover the entire range of TCSs, with multiple cases for the same TCS to incorporate 

a variety of cases with regard to silicon, carbon, and conductivity switch. The capacity obtained at the end of each 

simulation and the average size of the conductive network is also shown in Table 5.3.  
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Figure 5.15 (a) Global impact of conductive solid material on capacity, (b) actual conductive network 

obtained from a product of total conductive solids and percentage of particles forming network, (c) percentage 

of volume occupied by the conducting solids, and (d) percentage of total solids present in slurry which are 

conducting.  

Based on the parameters mentioned in this table, three new, emergent, mesoscopic metrics are calculated 

and plotted in Figure 5.15 with reference to capacity. All these figures may be obtained more accurately from the 

simulation on-the-fly, however, post analysis also provides a reasonable proof of concept. First of all, the global 

landscape can be seen in Figure 5.15(a) which plots TCS versus capacity. The first half of the behavior is sigmoid-

like, while the second half appears to loosely reflect a second order exponential. This clearly suggests that sigmoid 
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behavior is dominated by carbon particles since such low TCS fractions may not be achieved in the presence of 

large conductive silicon at this simulation scale. The next mesoscopic metric is the actual conductive network, 

shown in Figure 5.15(b) which is estimated by multiplying TCS with the percentage of particles participating in 

the conductive network, since not all particles can participate in the network. Actual conducting space is shown in 

Figure 5.15(c), a parameter that estimates how much of the total volume of the slurry or simulation box is occupied 

by the actual conductive network. Actual conducting solids, shown in Figure 5.15(d), is obtained by dividing TCS 

by the sum of all solid material regardless of whether or not it conducts and then multiplying it by the percentage 

of particles in the network.  

While actual conducting solids may appear similar to the actual conducting network, the former takes into 

account non-conductive solid material as well, providing a distinction between a slurry in which all the solid 

conducts and one in which only a part of it can conduct, even if their TCS and percentage of particles in network 

is identical. This allows for a certain amount of deconvolution between data points that are too close to each other 

in Figure 5.15(b) and (c). The concept of actual conducting solids can be visualized in yellow in Figure 5.16, 

(a) represents what is captured by the model, (b) how it is visualized at the particle level, and (c) at the slurry level.  

 

Figure 5.16 Representation of actual conducting solids as seen in (a) the model, and schematics for 

visualization at (b) particle level and (c) clustered fluid level.  
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The visualization of slurry as a clustered fluid phase was reported by Hipp et al.88,89 from simultaneous 

Rheo-uSANS (ultra-small angle neutron scattering) and spatiotemporally resolved Rheo-SANS (small angle 

neutron scattering) measurements.89 Furthermore, a study by the same group which combined SANS, oscillatory 

rheology, and impedance spectroscopy, reported that rather than conductive networks, cluster size is a far more 

significant parameter impacting conductivity.88  

Therefore, with the cluster identified as an important entity, finding a means to assign effective properties, 

can provide useful insight. The trends observed in Figure 5.15 (b)-(d) all fit to second order polynomial equations. 

The advantage of these metrics is that aside from a simple conductivity-carbon content plot, metrics like the actual 

conducting solids can help identify suitable slurry compositions faster by helping narrow down candidates. While 

it may not be intuitive to obtain these mesoscopic metrics directly from experiment, new simultaneous 

measurements that incorporate electrochemistry and rheology is a new domain which can provide numerous 

possibilities as mentioned in Chapter 2. A notable means to reconstruct clusters using synchrotron radiation X-ray 

tomographic microscopy has been reported by Hatzell et al.164  in the context of semi-solid flow capacitors.  

 

5.2. Conclusions 

This chapter provides a case study for a simple assumption, i.e. how the participation of silicon particles 

in formation of conductive network can impact SSRFB discharge behavior. For this purpose, an on-and-off switch 

for silicon conductivity was introduced to the algorithm. In addition to impacting the phenomena of network 

formation, it was assumed that electronic conductivity of silicon increases on lithiation, and it would also impact 

the rate of lithiation itself. Section 5.1.1 shows how to systematically add a new feature to the model, by studying 

its response for four different slurry compositions (silicon content 6 v%, 14 v% combined with carbon content 5 

v% and 13 v%). While the impact of an evolving lithiation rate remains to be further studied, it was observed that 

the impact of participation of silicon in conductive networks was most evident when carbon content is insufficient 
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to form networks by its own. While this result is intuitive, the evolution of conductive networks and the particle 

size distribution shows four distinct morphological behaviors in the slurry. These can be used as tools to 

characterize and explain other results as well as provide a qualitative picture of some experimental results in 

literature. Section 5.1.2 further explores the impact of the conductivity switch in context to perturbations in 

simulation box size and C-rate at different compositions. The parameters varied here are carbon content (5 v%, 

13 v%), silicon content (6 v%, 14 v%), C-rate (1C, C/20), simulation box depth (20, 25, 30, 40, 45, units). It was 

seen that regardless of C-rate, increasing depth resulted in a decrease in discharge capacity. However the role of 

silicon content, regardless of the conductivity switch, was less intuitive. Results suggested that it may play both, 

a constructive and disruptive role for the conductive networks. Multi-parameter sensitivity studies from 

experiments were discussed in this context and it was demonstrated how complexity and non-intuitiveness in 

experiments arise from competition between multiple phenomena. 

A large PSA study for exploring the impact of the conductivity switch on slurry compositions is reported 

in Section 5.1.3. The 121 compositions made from combinations between silicon content (3, 4, 5, 6, 7, 8, 9, 10, 

11, 14, 15 v%) and carbon content (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 v%). The nature of the capacity versus 

carbon content trend is sigmoidal when the conductivity switch is off and a second order exponential when the 

conductivity switch in on. This study provides a means to access several states of the system and is essentially a 

global parameter sensitivity study. This further offers the possibility of creating a global picture, along the lines of 

a potential energy surface, to explore how the capacity is influenced by solid content within a slurry, regardless of 

extent of participation in network formation. The results from this analysis show that it is possible to create a 

landscape taking multiple aspects like composition and operation conditions into account, to create a 

comprehensive toolkit to choose a system optimum. This has been made possible by the introduction of several 

new mesoscopic quantities which allow bundling of lower scale parameters into usable metrics, for instance, total 

conducting solids, actual conducting network, actual conducting space and actual conducting solids. These 

parameters provide means to categorize the clustered slurry phase based on the ratios between solid, liquid and 

electronically active and in active, simultaneously. While it may be challenging to obtain direct validation for such 
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metrics, recognizing their utility can help extract more from information from upcoming and new experimental 

techniques being used which study multiple phenomena simultaneously. Additionally, creation of new metrics for 

a given system or adoption of metrics from other disciplines to deepen understanding of a system, have proven to 

be useful, for instance, the introduction of capacitive Damköhler number as mentioned in the state of the art.93  
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 6.1. Perspectives on handling phenomenological complexity in SSRFBs 

A classification of the input parameters used in the mechanistic model described in this work are color 

coded to provide an indication of the kind of information they can provide in Table 6.1.  Here the grey color 

suggests which correlations can be incorporated more explicitly in the future.  

Table 6.1. List of parameters used and how they can capture different phenomena. Colors blue, orange, 

green depict parameters included in the model for electrochemistry, particle dynamics, and rheology, 

respectively. Grey color indicates which parameters can be incorporated in future work. 
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In light of the emergent mesoscopic parameters identified in Chapter 5, which play an important role in 

providing generalized concepts, it is relevant to explore fundamental knowledge pertaining to the disciplines to 

which the SSRFB belongs. The following sub-sections briefly discuss all possible phenomena that arise within 

electrochemically active particles suspensions in the context of lithium ion batteries, in order to create a mind-map 

as an aid to handle complexity and eventually apply rigorous tools like graph theory in the future.  

 

6.1.1. Relevant phenomena in particle suspensions  

SSRFBs, wherein the electrode is semi-solid, consist of high concentrations of solid particles in 

suspension. These high solid concentrations exacerbate the consequences of many-body interactions and 

complexity in SSRFBs and simple electrostatic repulsion may not always be enough to maintain a stable colloidal 

suspension. Additionally, the particle size distribution of active material and conductive carbon generally lies 

within nanometric range for maximizing electrochemical performance. Thus, the combined effect of high solid 

fraction and small particle size, in the absence of steric hindrance, can encourage particles to aggregate.13 Attractive 

colloidal forces can manifest at two levels; formation of clusters and mesoscopic particle networks.14 While 

particle contact is necessary for electronic conduction in the multiphase electrode, too much aggregation can result 

in sedimentation or flocculation and can render SSRFBs inactive. Flocculation of particles is probable if the liquid 

medium consists of ionic species which are usually present in high concentrations in battery electrolytes. DLVO 

theory for colloidal stability is typically used to capture particle interactions and their tendency to aggregate by 

considering van der Waals forces of attraction and electrostatic repulsive forces of double layers.13,15–17 The theory 

has shown to provide useful qualitative explanations of the effect of ionic strength on particle behavior of slurry 

electrodes.18 However, to rigorously use DLVO for SSRFBs, one may need to consider on-the-fly coupling with 

undergoing electrochemical dynamics that are known to significantly impact particle surfaces.  
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Table 6.2. Dimensionless hydrodynamic numbers for colloidal suspensions19 

 

Table 6.3. Time scales relevant for colloidal suspensions19
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An additional aspect to consider is Brownian motion, which can be significant because the size of particles 

relevant for battery applications would also satisfy the condition of a Brownian particle. In this case, parameters 

like solid concentration, slurry viscosity, temperature, diffusion coefficient of particle, Peclet number, or Reynolds 

number can impact the degree of Brownian motion of the particles.19 Tables 6.2 and 6.3 provide a list of 

dimensionless numbers and time scales relevant for colloidal suspensions.  

 

Figure 6.1. Non-equilibrium phase diagrams delineating observable shear-thickening regions in terms of 

the associated stress range. Stress range as a function of (a) applied electric field E and (b) packing fraction.20 

However, even suspensions containing non-Brownian particles show a variety of highly complex 

phenomena due to non-Newtonian and viscoelastic behavior. For instance, shear thinning behavior is a result of 

disintegration of pre-existing particle networks, allowing the suspension to flow more easily. This, however, can 

mask a shear thickening regime, wherein the suspension starts forming new particle networks and inhibits flow, 

which would eventually impact operation of SSRFBs. The shear thickening regime can be briefly revealed under 

a certain range of shear rate based on parameters like particle size distribution, particle aspect ratio, inter-particle 

interactions, and even electric or magnetic fields for systems susceptible to these forces (Figure 6.1).20,21 On 

increasing solid volume fraction, the suspension can also enter a jammed regime where the particle assembly leads 

to complete arrest; this would be highly disadvantageous for flowing electrodes.20 Regimes of shear thickening 

and jammed clusters have only recently been unraveled in SSRFBs.5,7 If the mesoscopic intricacies of such 
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electrochemically evolving suspensions are better understood, mechanical pumping losses associated with 

SSRFBs would be minimized and particle connectivity could be enhanced. 

 

6.1.2. Relevant phenomena in lithium ion batteries  

According to Aurbach et al.,22 the short lifetime of post-LIB systems lies in: (i) instability of 

crystallographic phase transition of active materials and (ii) uncontrollable reactions at the interface of active 

material and electrolyte leading to unstable solid electrolyte interfaces (SEI). Additionally, material optimization 

is specific for commercialization of a given battery; this means that the same material would have a tendency to 

behave poorly when used in a new type of battery. The general term, battery performance, is known to be 

influenced by mass transport limitations, kinetic limitations arising from electrochemical charge transfer, and 

ohmic or resistive contributions within the battery. Here, overpotential, quasi-static hysteresis, and rate capability 

limitations also play a role.23 Ageing of a battery is captured as the progressive capacity loss and an increase in 

internal resistance, eventually leading to voltage fade and power loss.24,25 To construct an overarching 

understanding, all these phenomena can be generalized under one umbrella, i.e. important aspects frequently 

encountered when studying new battery materials or systems. From a phenomenological point of view, it becomes 

convoluted to assign specific mechanisms to every performance metric because of cascade effects that can impact 

the entire battery (Figure 6.2).24 For instance, parasitic reactions on either electrode can manifest as increased 

thickness of SEI which leads to increased resistance, consumption of electrons and ions,  impact on coulombic 

efficiency, loss of lithium or even host site, and consequently loss of capacity.25–29 If the active material host lattice 

irreversibly transforms along cycling, lithium transport and lithium storage can be impacted, contributing to 

thermodynamic changes that may appear as hysteresis or voltage fade; furthermore, mechanical disintegration of 

particles can lead to capacity loss.23,29–36 The existence of these specific pathways is nearly impossible to isolate 

and prove experimentally even in highly optimized and commercialized LIBs;25,27 this inadvertently reveals the 

complexity of the battery system. 
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Figure 6.2. A simplified representation of cascading effects of side reactions in a battery across time and 

scale. Numerous feedback loops can exist between these phenomena. 

While it may seem reasonable to reduce the scale of a problem by eliminating insignificant mechanisms, 

this may not be possible in such interdependent systems. For instance, the presence of anionic redox activity was 

never established in conventional layered cathode materials and remained a source of confusion because numerous 

explanations were provided for side reactions involving host anions.31 However, when lithium rich cathodes 

showed a dominating presence of anionic redox activity, this phenomenon was systematically studied and 

controversies were put to rest across oxide based layered material families.37 Another instance is the nucleation of 

a new phase which is said to be determined by the surface to volume ratio of a particle, however, literature of 

phase changes on ion insertion is also quite complex.38 The model cathode material, LiFePO4, was initially touted 

as a material with low rate capability because of kinetic barriers to lithium diffusion originating from phase 

boundaries.39 It was soon demonstrated that decreasing the particle size had a more significant impact on the 

electrode resistance than introducing a carbon coating.40 Interfacial energy, surface energy, coherency strains, free 

energy of mixing, solubility limits of lithium, lithium transport in bulk and on the surface, and lithium insertion 

kinetics were shown to impact the miscibility gap; determining whether solid solution or phase separation 

mechanism takes place, and induces complex multi-particle effects like the domino cascade effect.39,41,42  
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Given the importance of surface transport mechanisms in phase changes, SEI and its evolving nature along 

cycling could also play a role. Many physical aspects influence SEI formation, such as surface catalytic sites, 

nucleation and growth mechanisms, disintegration, and regeneration.24,26,43–46 The nature of SEI and how particles 

interact with each other and with the solvent, is expected to have a direct impact on rheological properties of the 

suspension which will further be illustrated in the following schematic. 

 

Figure 6.3. Schematic showing a selection of generalized aspects that introduce complexity in 

batteries1,24–33,35–46,49–52,52,53,53–77  with reference to active material. 
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Figure 6.4. Schematic for phenomena linked to solid electrolyte interface (SEI) on the surface of active 

material. Feedback loops between categories shown here are difficult to visually demonstrate but are intended 

implicitly 1,24–33,35–46,49–52,52,53,53–77  
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Grain boundaries are another subject of complexity; they are known to possess higher crystallographic 

disorder and their ion migration barrier can either be low36 or high47. Even in the absence of grain boundaries, two-

way diffusion processes on cycling have shown evidence of lithium trapping in alloying electrodes and current 

collectors.48 Evidently, grain boundaries can significantly influence resistance regardless of whether they are 

present in polycrystalline active materials or within the SEI.36,44  

A collection of some parameters and phenomena linked to phase transitions and SEI are presented in 

Figure 6.3 and Figure 6.4. Viewing the phenomenological landscape as a collection of all mechanisms can help 

identify conditions when otherwise masked mechanisms begin to dominate. Organizing and summarizing this vast 

number of phenomena in literature is especially challenging with regard to nomenclature and significant effort has 

gone into providing an exhaustive yet generalized picture.  

 

6.2. Handling complexity in different stages of battery research 

Before a new battery technology can be considered for commercialization, its development can be sub-

divided into the following milestones (Figure 6.5): (i) An invention or discovery demonstrating proof of concept 

of new material or device, (ii) primary optimization to create a standardized prototype and gather empirical 

understanding, (iii) secondary optimization using models for fine tuning to create a bankable prototype. The 

investment and return at each step is significantly different and worth taking into account. Investment of time and 

resources is most undefined in step (i), followed by step (ii) and step (iii). While battery behavior is expected to 

become more and more predictable in successive steps, there is usually no guarantee that a device will be able to 

pass to the next level or survive the entire journey of innovation to be marketed. Additionally, unless novel 

techniques are developed for characterization and optimization at steps (i) and (ii), novelty tends to decrease along 

the steps.  
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Standardization is a significant bottleneck, because unless precedential state of the art is useful, it relies 

entirely on human intuition and trial-and-error. Only a few places in the world possess the man power and facilities 

to implement the high-throughput, brute force, trial-and-error approach, and such requirements hinder battery 

research globally. The perspective developed in this thesis is targeted towards getting the most out of failed 

experiments so as to reduce the trial-and-error iterations for the device in question and for all similar devices. 

Typically, standardization is accomplished by identifying which phenomena impact device performance and how 

they interact with each other. These relationships between parameters and phenomena allow scientists to fine tune 

device architecture and material composition. The aim is to create a symbiotic relationship between the 

phenomena, thus allowing the device to function for a reasonably long period of time, and to possess a quality of 

self-sustenance. If this state is achieved, it usually means that there are a handful of relationships or empirical 

equations available, making it elegant and easy to predict how the system will behave. The presence of empirical 

equations allows systematic optimization of device behavior in step (iii) and traditionally, models are used to assist 

experiments at this stage.  

 

Figure 6.5. Important milestones for battery innovation (i) invention/discovery, (ii) standardization, and 

(iii) optimization and relevant outcome and novelty of each stage. 



Chapter 6  »   Overview of Complexity   »   6.2. Handling complexity in different stages of battery research 

113 

Table of Contents 

6.2.1. Evolution of theory in the face of complexity 

Empirical equations are a powerful means to model and predict device behavior, but they may not always 

be applicable. One of the best examples of how empirical equations fall short, is the rheological behavior of particle 

suspensions. As seen from the state of the art of experiments for SSRFBs, the presence of shear thinning and shear 

thickening regimes implies that it is important to predict the equivalent dynamic viscosity for given flow and 

concertation conditions. Battery researchers are usually concerned with fabricating conventional solid electrode 

batteries with slurries that are made of active material, conductive carbon, polymeric binders and additives. 

However, none of these slurries experience electrochemical charging-discharging phenomena. There are, thus, 

hardly any rheological studies that would help understand SSRFBs better. The following discussion elaborates the 

manifestation of complexity in particle suspensions, the limitations of empirical equations to address complexity, 

and possible solutions.  

Table 6.4. Formulae for calculating the viscosities of suspensions of solids in liquids.3 

 

 The Herschel Bulkley model is commonly used to study rheology; it consists of a few parameters, namely, 

yield stress, consistency coefficient, degree of non-Newtonian behavior, and experimentally measured shear 

strain.2 While it provides a sufficiently rich description of rheology, it does not help identify specific phenomena 

or their mechanistic details. Previous research on viscosity or interaction potentials, that can explain colloidal 

stability, has been driven by the search for a unique equation. For instance, in line with Einstein’s relation wherein 
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viscosity is a function of volume fraction of solid in suspension, several expressions with different coefficients 

were proposed for different ranges of solid fractions (Table 6.4).3  

However, further studies showed the importance of considering additional aspects like maximum solid 

fraction within the fluidity limit, particle diameter, particle shape, particle size distribution, viscosity of medium, 

and shear rate.4 Interactions between particles or electro-viscous effects, Brownian motion, energy dissipation in 

gaps between particles, and local fluid flow around anisotropic particles were also identified as relevant 

phenomena and there are numerous diverging theories, none of which are able to universally capture viscosity.2 

Theoretical approaches based on Kirkwood’s molecular theory and molecular dynamics all show large deviations 

from measured viscosity data.3 Soon afterwards, it became clear that such empirical relations are oversimplified 

and cannot provide a generalized equation with wide applicability.4 This observation, however, is not to subdue 

the importance of empirical equations, insofar as the assumptions and conditions behind their validity are taken 

into consideration, such equations are very reliable.  

The theory of viscosity or any theory that describes interaction forces in a colloidal suspension, like 

DLVO, are known to only implicitly capture the vast underlying material complexity. A brief historical account 

of interaction potentials demonstrates how scientific advancement required theory to be adapted to take into 

account more explicit details.  By 1784, Newton’s gravitational law and Coulomb’s law of electrostatics had 

triggered a race to find a new fundamental force that governs material properties5 and Laplace postulated the first 

inverse power law in 1806.6 Decades later, in 1873, the van der Waals force was proposed and its two main 

assumptions were the presence of attractive forces between particles and that particle volume could not be 

neglected.7 Many of the physical phenomena which had been studied in the preceding century, like capillarity, 

sublimation, and adsorption, could be explained with this theory.  Research naturally turned towards predicting 

the attraction term theoretically along the lines of Laplace’s inverse power law. Sutherland generalized attraction 

to r-n in 1887 (Figure 6.5, Eq. 6.1, where 𝑈(𝑟) is the intermolecular pair potential, 𝜀 is the energy well depth, and 

𝑚 controls interaction range) and Gustave Mie, for the first time, included a repulsive term in addition to the 
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attractive van der Waals term; both of which were described generically as r-m and r-n, respectively.5,8 In the 

following years, many scientists tried to find a unique exponent for the repulsive term. In 1925, Lennard Jones 

found that at shorter distances, ions sized like Ar and Ne repelled with inverse power laws of r-9 and r-11 

respectively, while at a larger distance, a better approximation was given by r-15 (Figure 6.5, Eq.6.2, where 𝜀 is the 

energy well depth).9 This line of research appeared to provide scope for endless claims, none of which were proven 

to be universally applicable. Today, the Lennard Jones potential is often used in simulations when the objective is 

to model a general class of effects and the only requirement is to have a physically reasonable potential; thereby 

it is no longer material specific. 

 

Sutherland Potential                   [Eq. 6.1] 

 

 

 

Lennard Jones Potential            [Eq. 6.2] 

 

 

   

Figure 6.5. Brief descriptions of Sutherland and Lennard Jones (LJ) potentials, the force of repulsion is 

the main difference, it is infinite for Sutherland, and defined by a power law for LJ.5  
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Quantum mechanics, which was getting popularized in 1920s, offered a more rigorous treatment for the 

origin of the repulsive term. In 1921, Debye gave a very exact description of molecular forces and showed that the 

energy of a molecule resulted from the existence of two simultaneous forces, that of attraction and repulsion.10 In 

1925, Pauli stated that two electrons can only exist in the same volume element of space if they have sufficiently 

different velocity. Thus, repulsion between atoms depended on the electron spin. For cases like unsaturated 

molecules where electrons can easily change their spin to overlap electron clouds, repulsions exist only for short 

distances, while for atoms which require very high energy to change their electron spins, repulsions are much 

stronger.11 Hence, repulsive forces depend on rather subtle details of the charge distribution of the molecules and 

it is consequently nearly impossible to connect them with simple constants of molecules, quite unlike attractive 

terms. Interaction potentials were hereafter expressed as a sum of a variety of attractive and repulsive terms of 

electrostatic origin, as described by London as follows (Eq. 6.3):12  

𝑈 =  𝑏𝑒
 
−𝑅

𝜌 −
𝑐

𝑅6
− 

𝑑

𝑅8
+ 

𝑒1𝑒2

𝑅
                                   [Eq. 6.3]              

Evidently, the search for a unique force was abandoned and replaced by an approach that took into account 

as many phenomenological details as possible, and as explicitly as possible.  

 

6.2.2. Exploring Modeling Tools  

Historically, the origin of modeling for batteries lies with the development of engineering science in the 

1960s, which allowed for mathematical frameworks to systematize the scattered knowledge obtained empirically.13 

A paper on ‘engineering design of electrochemical systems’ published by J. Newman in 1968 was one offshoot of 

the interdisciplinary union of chemical engineering and electrochemical science.14 While continuum models can 

provide a general guiding framework, they can also be misleading since they are not specifically designed for 

causal discovery that is needed for standardization of a device. This thesis is strictly directed towards building 
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modeling tools for standardization, which is an unconventional and new application for modeling. As previously 

mentioned, complexity is said to arise from a combination of a many-body, many-phenomena and many-scale 

problem. Examples of modeling tools that can most appropriately handle these problems are shown in Figure 6.6. 

 

Figure 6.6. When simple empirical relationships cannot be obtained for a system, it is considered to be 

complex either due to a (a) many-body problem, (b) many-phenomena problem or (c) many-scale problem.15 

Representative examples of modeling tools used for these respective challenges are mentioned. 

Challenges for the many-phenomena problem come with a combination of many-body and many-scale 

problem because bodies or entities such as electrons, ions, particles, aggregates, agglomerates, or clusters can 

interact with each other across scales, making it nearly impossible for a single model to capture and predict all the 

possible effects. The efforts presented in this thesis demonstrate that not only would a single scale model not 

suffice, neither would a traditional sequential model associated with multiscale modeling (Figure 6.6(c)). Instead, 

a variety of combinations of different scales can be incorporated into a collection of interdependent models, as 

schematically depicted in Figure 6.7. This approach is expected to facilitate the study of the many-phenomena 

problem. Furthermore, it would also make parameter estimation more reliable by providing a chain of parameter 

correlations, where some are verifiable explicitly, and others implicitly. 
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Figure 6.7. New paradigm with multiple, cross scale overlapping and tight multiscale feedback.  

 

 

Figure 6.8. (a) A means to classify parameters and their nature in an attempt to incorporate them into a 

single platform to encourage interdisciplinary interactions (b) Classification of phenomena discussed in Chapter 

4 and suggestions on how to categorize their dynamics. 
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An important premise of the proposed paradigm is that the behavior of a system is difficult to predict only 

when the understanding of its important parts is either poor or missing. Any system and the dynamics of its 

interacting parts can be described in terms of state descriptors. These descriptors can either be experimentally 

observable or latent (i.e. need to be inferred). Both these types of parameters can possess varying degrees of 

quantification (Figure 6.8(a)). Through the development of new experimental characterization tools, especially in-

situ and in-operando measurements, more parameters can be experimentally measured. The rest of the latent 

parameters constitute the reason behind the complex nature of a system. This work demonstrates how the important 

but often ignored latent parameters lie at the interphases of matter or in the gaps between disciplines and scales. 

Additionally, Figure 6.8(b) summarizes some of the relevant physical phenomena that are important for SSRFBs.  

 

Figure 6.9. Schematics showing how relationships between parameters (a) can be used to visualize 

system complexity in the form of an attractor (b) and how various tools can be used to approximate reality when 

experimental characterization data is either unavailable, unreliable or incomplete; which is especially the case 

for new and upcoming battery technologies. 

It is evident that the proposed paradigm, especially with reference to Bayesian networks, resembles 

artificial intelligence (AI). But while AI treats problems as a black box, the proposed paradigm brings a 

significantly more open quality. This makes it easy for human intervention since the validity of empirical 
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knowledge in the context of very new battery systems, like SSRFBs, is still questionable. Keeping some underlying 

AI principles in mind while developing this paradigm can prove very useful for navigating through the complexity. 

A recent patent showcases a fascinating unified approach, whereby through the use of non-equilibrium dynamics, 

it is possible to combine advantages of all five schools of artificial intelligence, namely, symbolist, collectionist, 

evolutionary, Bayesian, and analogizer.62  

Non-equilibrium dynamics allows any system to be visually represented as an attractor (as seen in 

Figure 6.6(b) and Figure 6.9(b)) by considering numerous relationships between parameters (like Figure 6.9(a)). 

Simply put, an attractor is a complex shape defined by different state values the system can take. If the attractor 

collapses into a point, the device can be said to be no longer functioning, however if the attractor maintains its 

shape, the device is said to be functioning and self-sustaining. The limitation of non-equilibrium dynamics is that 

it is based on the assumption of determinism, i.e. all relationships can be accurately captured. However, since the 

totality of reality is far from mathematically predictable; the attractor must be dynamically evolving due to a mix 

of deterministic and random forces, as highlighted by small arrows in Figure 6.9(b)), much like a complex adaptive 

system.63  

 

Figure 6.10. An example of how various disciplinary knowledge is needed to correctly model and 

understand the functioning of SSRFBs. 
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With the target description of complex reality in mind, this thesis focuses on uncovering relationships 

between parameters as shown in Figure 6.9(c), using the state of the art knowledge of empirical equations from 

various disciplines as highlighted in Figure 6.10.  

 

6.3. Conclusions 

As elaborated in Figure 6.11, a new paradigm is proposed as a result of this thesis work and it concerns 

itself with (i) model specification by establishing a basic causal network of a sample system with phenomena 

selected from a phenomenological master map (Figure 6.11(a)-(b)), (ii) running hypothetical experiments using 

an adaptive mechanistic model, based on ABM and a kMC engine, to study the behavior under conditions of 

reduced complexity (Figure 6.11(c)-(e)), and (iii) exploring evolution of standard and special metrics based on 

variations of simultaneous parameter values (Figure 6.11(f)). Through these steps, it is demonstrated how causal 

discovery, which is generally intuition based, can be made more rigorous. Furthermore, as established in Chapter 5, 

the paradigm will need to analyze multidimensional datasets to address complexity.  

 

Figure 6.11. Schematic describing workflow proposed for the SSRFB. 
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Creating a mechanistic model to run a hypothetical experiment, can be referred to as hypothesizing, but 

this is not a new approach, for instance, between, 1905 and 1908, the theory of Brownian motion was treated 

theoretically by Einstein, Smoluchowski, and Langevin since experimentalists did not know what to measure.64 

However, the difference here is that instead of a hypothesizing the behavior of a single phenomenon or set of 

phenomena in absolute terms, the objective is to explore what happens when there are multiple poorly understood 

phenomena competing with each other.  
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Chapter 7                    

Summary and Conclusions 

This thesis is targeted at providing a tool to aid the trial-and-error based experimental approach typically 

used for developing electrochemical systems for energy applications. As a device, the semi-solid redox flow 

battery (SSRFB) provides great potential for exploring how the coexistence of multiple phenomena from different 

disciplines like rheology, electrochemistry, particle dynamics, and fluid dynamics, manifest. State of the art 

demonstrates that SSRFBs are prone to showing non-intuitive and conflicting results, making it hard to achieve 

rapid progress needed for commercialization.  

Since literature reports the benefits of discharging the SSRFB under intermittent flow conditions, this 

work focuses on studying a silicon and carbon based slurry in static mode. While only the coexistence of particle 

dynamics and electrochemistry at mesoscale are explored in this work, it provides a significantly rich study to 

demonstrate how the SSRFB is a good example of a complex system. Through the use of a mechanistic model and 

parameter sensitivity analysis (PSA), and with graph theory as a perspective tool, a new methodology is 

established. It is used to simulate particles on a discrete three-dimensional grid such that they experience a pseudo-

Brownian motion as well as electrochemical discharge through the formation of conductive networks. The 

mechanistic model is based on kinetic Monte Carlo (kMC) using variable step size method and was developed in-

house using object oriented programming in Python. The physics behind the model is based on a selection of the 

most relevant phenomena at mesoscale, such as particle diffusion calculated from viscosity and particle size, and 

electrochemistry calculated using Butler-Volmer kinetics which takes into consideration the volume expansion of 

silicon particles on discharge. This mechanistic model can also be viewed as an agent-based model wherein 

particles act as free agents that can move through the three dimensional grid and interact with one another.  

Since such models are very challenging to standardize and validate, significant effort went into using PSA 

to explore the features, limitations, and strengths of the model. Implementing a stochastic modeling technique like 
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kMC and simulating the slurry on a discrete grid resulted in fluctuations in data which varied based on the input 

conditions. It was demonstrated that complex systems can be best studied by observing the response of the system 

to perturbations in many different input parameters. Obtaining physically relevant sensitivities through this method 

helped minimize artefacts coming from the nature of the model. Additionally, it was shown how in a complex 

system, sensitivity of a parameter p to perturbations in n1, can be influenced not only by the value of n1 considered, 

but also values of other parameters n2, n3, n4 and so on. Therefore, understanding the underlying dynamics between 

parameters and phenomena was seen to be as important as precisely quantifying the value of a single parameter. 

This provides an explanation for why experimental studies of complex systems yield non-intuitive results and 

reductionist approaches to studying the behavior of such a system are very challenging.  

To demonstrate the usefulness of this model, a simple assumption was tested, i.e. the comparison between 

a case where conductive networks are formed with carbon alone and a case where both silicon and carbon 

participate. Clear characteristics emerged from the two cases which were corroborated with experimental literature 

reporting conductivity versus carbon content behavior. Typically, a percolation threshold is followed by a linear 

percolation region and a saturation in conductivity. With the introduction of a new parameter, total conducting 

solids, that does not differentiate between silicon and carbon, it was possible to generate a global landscape of 

discharge behavior as a function of solid content. As a consequence, more metrics could be defined that can 

characterize a particle suspension based on factors like solid-liquid ratio and active-inactive solid ratio, where 

solid inactivity can be differentiated as either due to lack of electrical connectivity or due to its inability to conduct 

electrons. The trends of such metrics show an optimum value, thus providing other aspects that can help identify 

suitable conditions for obtaining good discharge capacities.  

Viewing the field of electrochemical energy storage through the lens of complexity theory further allowed 

the creation of a mind-map that compiles various phenomena that occur within a lithium ion battery. This is 

expected to provide an aid to hypothesizing when confronted with conflicting experimental observations. 
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A.1. Modeling Work 

A.1.1. Details of the code written for the mechanistic model 

The algorithm was coded in-house in the language Python and run on a PyCharm, an integrated 

development environment. The first generation (Gen I) of the code was based on functions which are treated as 

objects in Python and the package NumPy (Numerical Python) to implement the three-dimensional grid as an array 

object. This code was written by myself and optimized by Master student Diego del Olmo Diaz.  

Along with being an efficient multi-dimensional container for data, data manipulation and more advanced 

mathematical functions like random number capabilities and algebra are possible with NumPy. Another Python 

function used for Gen I was randint from random, which is an essential engine for choosing a kMC event at 

random for the Brownian motion behavior of particles. It is to be noted however that the numbers generated herein 

are pseudo-random. The library math was used to carry out calculations using log, asinh, sqrt, asin, 

exp and so on, while csv (comma separated values) for writing output files.  

The Python code Gen II was written in collaboration with Oscar Xavier Guerrero from Departamento de 

Química, CINVESTAV, Mexico, in a collaboration. This version of the code implemented more advanced 

functionalities like argparse (Parser for command-line options) to pass arguments and parameters to other 

functions more efficiently, configparser (configuration file parser) to manage reading data from the user input 

file, itertools (iteration tools) for efficient looping, functools (tools for higher order functions) to use a 

decorator like lru_cache for functions that are frequently called, collections to use deque for efficiently 

handling lists of data and Counter for convenient tallies, and plot from matplotlib with genfromtxt from 

NumPy for plotting purposes. 

OOP is implemented in Python code Gen II, where a generic class called Particle is created, of which 

silicon and carbon are instances. The class Particle has properties (declared as Particle.Property) such 

as material and electrochemical properties like conductivity, standard electrode potential, surface area, surface 
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roughness, mass, density, volume, radius, and state of charge, and properties relevant for the simulation, such as 

location coordinates on the three dimensional grid, particles in neighborhood, and electroactive surface facets. 

This generalized description can allow the use of other active materials and to capture more nuances of particle 

behavior at meso-scale new properties can be introduced to the class, like the impact of crystallographic changes 

to conductivity for intercalation compounds, or even degradation and ageing mechanisms that reduce accessible 

capacity or add resistance. While Gen I uses an array for the 3D grid called Board to store particle details and 

coordinates, it was found that dictionaries listing particles proved to be much faster and is thus implement in 

Gen II. For speed, a class Board was created in Gen II which imports most of the material properties from 

Particle to use for calculations pertaining to kinetic rates for particle motion and electrochemical reactions and 

incorporates the dictionary called grid that lists silicon and carbon objects.   

However, given that most experimental parameters are defined for systems studied at bulk scale, 

describing the same properties at the mesoscale within the confines of the model framework requires introduction 

of new parameters. For instance, the model includes, the number of facets of unit cells that compose an active 

material particle that are exposed to electrolyte, a means to track how particle density changes with state of charge 

and volume expansion, population of particles that participate in percolation networks or are electroactive, and a 

bank of charge accumulated by particles to implement volume expansion in discrete steps.  

 

A.1.2. Other modeling attempts made 

Introduction of fluid dynamics to algorithm was attempted by myself and by master student Kush Chadha, 

who also attempted to corroborate simulation results from computational fluid dynamics simulations of the slurries 

under flow conditions. However, due to the early stages of standardization of the model at the time, it was not 

possible to attain conclusive results. Master student Marouan Handa, attempted to build a Dissipative Particle 

Dynamics (DPD) model with LAMMPS.111,165–167  However it became evident that the difference in resolution of 
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time and space would make it impossible to compare with kMC results, rather it was decided that DPD could act 

as input for kMC. DPD simulations were run with walls composed of frozen particles (Figure A.1.1), and it was 

expected that the velocity vectors of the particles would offer velocity profiles. It was not the case, however, and 

further adjustment of interaction potentials between the particles or larger channel width could yield required 

results.  

 

Figure A.1.1. Dissipative Particle Dynamics simulations on LAMMPS, visualized on Ovito, were 

conducted for simulating flow of the slurry. The interaction potentials used between particles was a soft 

potential, as opposed to the Lennard Jones potential used in MD.  

 

Furthermore, it was challenging to simulate fluid flow of particles within the on-lattice limitations of kMC, 

due to development of artificial shockwaves arising from particles getting blocked. Fortunately, a study in 

literature indicated that artificial shockwaves were satisfactorily removed by an algorithm which passes the rates 

of the blocked particles to the one in the front of the blocked particle train to force it out of the way.117  

However, an additional problem was how to incorporate a majority of deterministic phenomena into 

VSSM, and yet maintain the fundamental role of kMC. At first, fluid flow was implemented simultaneously and 

independently of the VSSM, but in such a case the pass forward algorithm (PFA) could not be implemented. The 

envisioned solution is to implement a variety of different deterministic forces on particles so that their motion can 

be approximated to stochastic behavior, allowing them to be used with PFA within VSSM. This study provided 

an interesting opportunity to see the challenges faced by cross-disciplinary models. However, as justified within 
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the text, simulating the slurry in static mode is reasonable since experimental conditions show that intermittent 

flow mode is more suitable for obtaining high discharge capacities.  

 

A.2. Experimental Work 

The following sections briefly describe some of the experimental studies attempted. Since conclusive 

results were not obtained during the duration of this PhD study, exhaustive details are not provided. The purpose 

herein is to demonstrate the challenges faced when specialized experimental techniques are not available and 

procedures have not been optimized through extensive trial-and-error.  

Studies with silicon based slurries in organic electrolyte were first attempted by myself, and later, in 

collaboration with Dr. Emiliano Primo. The silicon particles used in the study were obtained from UMICORE 

some years prior to this study. Particle size analysis indicated mean particle size of 1.241 μm, specific surface area 

(BET) of 19.7 m2/g, oxygen content measured with the Leco method as 2.5 wt%, while TGA analysis indicated 

7 % SiO2 content. Different types of carbons were tested, Ketjenblack EC300J and Ketjenblack EC600JD (Lion), 

and C45 and C65 (Timcal). Commercial LP30 electrolyte was used with 10 v% FEC (fluoroethylene carbonate).  

Galvanostatic discharge of small amounts of slurries within modified Swagelok cells and a larger flow 

cell (as reported by Hamelet et al.71,72) was performed. Due to the missing cell parts and challenges with large 

volumes of slurry, it was planned that a new cell would have to be designed. While many existing designs were 

studied and a prototype in Teflon was made by Prof. Emmanuel Baudrin; it was challenging to implement a similar 

cell with compatible tubing for the organic electrolyte. Therefore it was decided that optimization should take 

place at a lower scale, i.e. with Swagelok cells. However, since we strongly suspect that the cell design was 

inadequate since the capacities obtained were generally below 40 mAh/g for various slurry compositions (in terms 

of silicon-carbon ratio as well as solid-liquid ratio), the results are not elaborated upon. Whatman fiberglass, 

Celgard or a combination of both was used in order to minimize the amount of electrolyte absorbed by the 
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separator. Few varieties of porous copper foams were tested to provide a volume to contain the slurry within the 

Swagelok cells, some were even compressed to further reduce porosity. Smaller pore size was deemed preferable, 

however the resulting electrode appeared to be more of a deposit of silicon and carbon on the copper foam, rather 

than a suspension. Swagelok cells with modified pistons, drilled with cylindrical holes to contain the slurry were 

also shown to be inadequate as well. It is evident that some breakthroughs could have been achieved with extensive 

experimental studies, however, due to the lack of standardized conditions available as a starting point, it was 

challenging to obtain results that could serve as direct support for the model being developed, which was the focus 

of the PhD grant.  

Studies with aqueous based slurries were performed in collaboration with master student Yih-Chyng Wu, 

under the supervision of Prof. Dominique Larcher. LiMn2O4 was prepared by grinding Li2CO3 and MnCO3 

together, heating to 800°C in air for 24h followed by slow cooling to achieve particles as shown in Figure A.2.1.168 

Carbon C45 was used after surface functionalization at 230°C with (NH4)2SO4 so as to achieve stable suspension 

with aqueous electrolyte consisting of LiNO3 (5M, 0.5M).  

 

Figure A.2.1. SEM images of the LiMn2O4 synthesized.  
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The interest to study slurries in aqueous media was mainly driven by the fact that these experiments could 

be conducted in open air, unlike slurries in organic media which were prepared inside a glove box. Performing 

acoustic zeta potential measurements was also of interest, since the instrument available was based on large 

suspension volumes open to air. However, the lack of standard information available to calibrate the settings for 

the given suspension made it challenging to obtain useful results.  

 

A.2.1. Slurry Preparation 

Various procedures were attempted, including magnetic stirring of solid material in electrolyte after the 

solids were hand ground with mortar and pestle. Finally, the following procedure was found to be suitable. The 

slurries were prepared using the set-up shown in Figure A.2.2.  

 

Figure A.2.2. Procedure for preparation of slurry in centrifuge tubes placed inside ball milling jars 
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Ball-milling was performed within micro-centrifuge tubes with stainless steel balls of 33 mm diameter. 

This method minimized of wastage of slurry since only small amounts were needed to run tests and ensured that 

impurities from the ball milling jars were not introduced to the slurry. The tubes containing powders or slurries 

were placed horizontally in a large ball milling jar and adjusted with packing foam to ensure the tube was held 

stationary. The jar was then placed in a planetary ball miller at 400 rpm for several minutes alternating direction 

ever few minutes. The solid content was first ball-milled, followed by the slurry, to ensure maximum homogeneity. 

Many ball-milling settings were tried and it was observed that 1h of milling produced the slurry that was stable 

for more than a week and showed smaller degree of aggregation, when visually examined. Ascertaining stability 

of the slurry for such black suspensions was particularly challenging, since visual stability was apparent but we 

could not ascertain whether or not both silicon and carbon were suspended uniformly.  

 

A.2.2. In-situ TEM  

With the objective to experimentally quantify the nature of the mesostructure of particles in the 

suspension, TEM studies were conducted by Dr. Arnaud Demortière. Some of the numerous open questions are 

as follows: How is Brownian motion and particle assembly impacted? How does the formation of SEI impact 

particle assembly? What conditions favour existence or particle aggregates? Are these particle aggregates 

homogenous or heterogeneous in composition?  What is the size of the aggregates? Can we verify the existence 

of a percolation networks at certain carbon volume fraction based on experimental and modeling papers already 

published particles? Do individual particles form percolation networks or aggregates? Do shear stresses from fluid 

flow and collisions break down aggregates or percolation networks? When we apply current to the system, does 

that significantly change the interaction potential between particles and impact particle self-assembly? Are there 

any conditions that would induce flocculation or sedimentation of the solid in the electrode? Can we observe and 

quantify the nature of Brownian motion particles exhibit? Can we watch the evolution of the system as it discharges 

by conducting in-situ discharging? 
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The TEM sample holder as shown in Figure A.2.3 is equipped with a specialized e-chip that can handle 

liquid samples in static or flow mode. The slurry was prepared by the procedure mentioned in the previous sections, 

in the glovebox, and then loaded into an air-tight syringe. While preparing the sample, the slurry was briefly 

exposed to air since the e-chip is very difficult to handle inside a glovebox. It was particularly difficult to have a 

perfectly sealed e-chip due to its small size and the need to assemble it under the microscope.  

 

 

Figure A.2.3. The specialized e-chip and sample holder capable of performing in-situ TEM experiments 

under static and flow conditions 

Attempts were made to study the slurry in static mode, in flow mode, and perform cyclic voltammetry. 

Figure A.2.4 (a) shows a standard TEM image of a sample slurry, where the larger spherical particles are silicon 

and the smaller particles are carbon C45. The composition of the slurry tested was 0.5:0.5:64 by mass for 

Si:C:electrolyte. Figure A.2.4. (b) – (d) show the quality of images obtained from the in-situ TEM mode. It is 

evident that the particles close to the cell window are clearer than those father away, in the bulk of the slurry. 

Plasma treatment of the cell window is expected to modify its hydrophobic nature thereby preventing particles 

from becoming immobile and sticking to the window. However the presence of liquid, in this case, inorganic 

liquid, hinders clarity of resolution deeper into the slurry, so the appropriate conditions need to be found. The 

blurred shadow of particles in the Figure A.2.4 (b) - (c) suggest presence of densely aggregated particle networks, 

however the poor resolution inhibits further assessment. 
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Figure A.2.4. In-situ TEM images of slurry 

Dark spots as in Figure A.2.5 (a)-(b), drifting of liquid as in Figure A.2.5 (c)-(d) could be resulting from 

the impact of the beam on the slurry. Air bubbles in the cell window were another problem as shown in  A.2.5 (e), 

these were observed when the cell was studied in flow mode, it was later found that the o-ring used to seal the cell 

was not resistant to organic solvents and the entire tubing was found to be blocked with the slurry. It is also possible 

that despite smaller particle size, aggregate size is large and blocks the piping system. Another phenomena 

observed was the blinking of particles, wherein they would become visible and then disappear in a span of new 

seconds, as shown in Figure A.2.6 (a)-(b). Extent of blinking was lower for particles associated with aggregates, 

while particles that appeared to be isolated showed optical effects and significant blinking. While lower density 

slurries could be studied, they could not mimic experimental conditions of slurry composition appropriate for 
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standard electrochemical studies. Furthermore, the particle blinking is expected to be a beam effect, affecting 

particles trapped within the energy well.169 Beam effects on liquid samples is a new and very poorly understood 

field,170–178 thus further studies are needed.  

 

Figure A.2.5 In-situ TEM images of challenges faced 
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Figure A.2.6 In-situ TEM images showing particle appearing and disappearing, as though bouncing 

under the impact of the beam 
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Résumé de la Thèse                 

  

 

Ce travail identifie les défis auxquels sont confrontés les SSRFB. Ils sont attribués au problème des corps 

multiples où de nombreux phénomènes se font concurrence, à différentes échelles conduisant à un degré élevé de 

complexité, rendant ainsi les résultats expérimentaux non intuitifs. Ce travail explore l'applicabilité de modèles 

mécanistes pour gérer ce type de complexité. Le modèle est un modèle tridimensionnel à base d'agents sur réseau 

comportant un moteur Monte Carlo cinétique. Étant donné que ces modèles sont difficiles à valider, il est proposé 

d’utiliser une analyse de sensibilité globale des paramètres (PSA). Il a été démontré que l'utilisation de PSA sur 

de grandes quantités de résultats simulés peut fournir des tendances permettant d'identifier les métriques 

mésoscopiques émergentes afin de rationaliser la complexité des SSRFB, de telles idées ne ressortent ni des 

expériences ni des modèles traditionnels. Les perspectives et les outils développés ici peuvent fournir un cadre 

plus rigoureux pour d'autres types de systèmes électrochimiques situés à l'intersection de disciplines. Un résumé 

bibliographique des SSRFB du chapitre 2 constitue la base de la complexité du système. Le chapitre 3 décrit le 

cadre du modèle et une simple calibration pour obtenir des résultats physiquement pertinents. Les chapitres 4 et 5 

utilisent une analyse de sensibilité des paramètres pour explorer les caractéristiques du modèle et étudient la 

sensibilité de la capacité de décharge à la participation d'un matériau actif à la formation d'un réseau conducteur, 

respectivement. Le chapitre 6 donne un aperçu de la complexité des SSRFB et de ses implications pour proposer 

des méthodes de travail en perspective. Ceci est suivi d’une conclusion résumant les conclusions de chaque 

chapitre. 

En approfondissant l'état de la technique des SSRFB, il devient évident que plutôt que de brosser un 

tableau plus clair des mécanismes sous-jacents, les études semblent fournir des explications phénoménologiques 

basées sur des hypothèses contradictoires. Par exemple, les suspensions à base de silicium et de carbone 
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maintiennent à la fois un bon et un mauvais contact entre particules lors du cyclage.72,73 La contribution de 

l'interface entre le collecteur de courant et la suspension vers la résistance électrique s'avère être à la fois 

significative et insignifiante.25,85 Deux écoles de pensée expliquent le mécanisme de conductivité électrique dans 

les boues; l'un dans lequel on sait que les réseaux de particules dominent et l'autre dans lequel le tunneling 

d'électrons est dominant, de sorte que la distribution et la taille des grappes de particules sont plus 

importantes.78,84,88,102 

 Le potentiel zêta des suspensions de carbone conducteur dans l'électrolyte organique ne peut pas non plus 

être généralisé à toujours positif ou toujours négatif; en outre, il apparaît que la taille du cation utilisé dans 

l'électrolyte est significative.78,103 L'impact de la profondeur du canal sur la conductivité électrique de la suspension 

varie avec plusieurs paramètres simultanés tels que le débit, la concentration en matériau actif et le taux de C.25,79 

Dans la littérature, il n'y a pas d'approches de modélisation montrant une concurrence suffisamment fiable avec 

les expériences, ce qui indique que leurs capacités de prédiction sont faibles. En outre, les études expérimentales 

et les études de modélisation ont tendance à incorporer de plus en plus de phénomènes qui n’étaient 

traditionnellement pas étudiés dans le contexte des LIB. 

Il est donc clair que les expériences et les modèles standard développés pour étudier les LIB ou les RFB 

ne constituent pas un moyen suffisant pour parvenir à la commercialisation, et les indicateurs de performance 

standard ne semblent pas offrir beaucoup d’éclairages. En raison du manque de compréhension quantitative 

concrète et généralisée, on peut conclure avec certitude que les SSRFB sont des systèmes complexes. La non-

linéarité et la non-intuitivité sont les marques de la complexité et tout comportement émergent n'est que l'apparition 

de phénomènes imprévus qui tendent à confondre et à polariser la communauté scientifique. 

Le chapitre 3 commence par une discussion sur les sources de complexité dans les SSRFB, qui 

découleraient de nombreux phénomènes concurrents à différentes échelles et en particulier du fait des interactions 

multi-corps et du comportement collectif des particules à moyenne échelle. Les outils de modélisation populaires, 

tels que MD, ne permettent pas la liberté théorique nécessaire à la découverte causale, ce qui est vital pour les 
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SSRFB. Comme exemple pour construire ce modèle, une étude expérimentale basée sur une suspension contenant 

du silicium et du carbone dans un électrolyte organique est tirée de la littérature. 

Le modèle mécaniste, décrit dans ce chapitre, est particulièrement conçu pour fournir un cadre flexible. Il 

s'agit d'un modèle basé sur les agents développé en interne en Python qui simule le temps physiquement pertinent 

et met en œuvre le mouvement de particules via un moteur kMC. Il prend en compte des paramètres tels que le 

coefficient de diffusion, la viscosité, le rayon de la particule, la fraction volumique du solide, pour générer des 

vitesses cinétiques de mouvement. La décharge électrochimique de silicium par rapport à une anode de lithium 

métallique est modélisée en utilisant la cinétique de Butler-Volmer dans laquelle la densité de courant d'échange 

est modifiée pour prendre en compte la dilatation en volume du silicium. Un schéma de l'algorithme est fourni 

pour donner une image globale de la manière dont la simulation se déroule sur la grille tridimensionnelle. 

Certains résultats de base ont été produits dans l'objectif de calibrer l'algorithme et d'ajuster les paramètres 

d'entrée pour produire des résultats physiquement pertinents, dans le contexte de la littérature expérimentale. La 

stochasticité dans les courbes de décharge a été observée en tant que caractéristique de sortie inhérente au modèle. 

Il a été traité en exécutant plusieurs simulations pour les mêmes conditions et en prenant en compte la moyenne. 

L'expansion en volume des particules de silicium est évidente grâce à la visualisation tridimensionnelle des 

résultats à l'aide du logiciel OVITO. Le chapitre suivant est conçu pour donner un aperçu de la méthode elle-

même, afin de pouvoir obtenir une idée de conditions de simulation. Le chapitre suivant fournit des résultats 

physiquement pertinents pouvant fournir des explications qualitatives pour diverses études expérimentales 

apparemment contradictoires. 

Le chapitre 4 explore le modèle mécaniste à travers PSA pour découvrir ses caractéristiques, forces et 

faiblesses en tant que méthode. Un PSA local est d'abord effectué en respectant les conditions expérimentales 

publiées dans la littérature. La sensibilité de la capacité de décharge est étudiée en termes de (i) taille de la boîte 

de simulation avec la profondeur, Z = 6, 8, 10, 12, 14, 16 unités, (ii) taux C, 2C, C, C / 5, C / 10 et C / 20, et (iii) 

une teneur en carbone de 3, 5, 7, 9, 11, 13, 15, 17 v%. On constate que la capacité diminue avec l'augmentation 
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des taux de C et de Z. L’augmentation de la teneur en carbone se traduit par une augmentation de la capacité suivie 

par une saturation, qui ressemble à peu près à la courbe sigmoïdale obtenue expérimentalement. Une distinction 

plus précise entre les régions de percolation et de saturation peut être obtenue en explorant l'évolution de la taille 

du réseau conducteur et du nombre de particules de silicium en contact avec le réseau conducteur. 

Un PSA à plus grande échelle est réalisé sur 288 cas où la profondeur, le taux de C et la composition 

varient simultanément, avec Z = 6, 10, 14 unités, les taux de C C/5, C/10, C/20, une teneur en silicium de 6, 10, 

14, 18 v%, teneur en carbone de 3, 5, 7, 9, 11, 13, 15, 17 v%. Chaque cas a été simulé 5 fois et une moyenne de 

reproductibilité a été établie. L'évolution de la barre d'erreur ainsi que l'efficacité du calcul du modèle ont été 

étudiés en fonction de la composition et de la taille de la boîte de simulation. Ceci fournit un outil utile pour 

quantifier le compromis entre précision et efficacité pour un algorithme donné. En outre, cette grande quantité de 

données fournit un moyen d'explorer la sensibilité de la transition entre la région de percolation et de saturation, 

appelée seuil de conductivité par commodité. La sensibilité de ce seuil dépend non seulement du paramètre, mais 

également de la valeur du paramètre. Par exemple, le seuil est plus sensible au contenu en silicium à 14 v% au lieu 

de 10 v%. Il a été observé que la profondeur était le paramètre le plus sensible, ce qui suggère que les effets de 

taille finie pourraient éclipser les détails mécanistiques pertinents sur le plan physique. Après avoir modifié un 

détail algorithmique réduisant le degré de discrétion du modèle et faisant varier le rayon de la particule de manière 

plus continue, les barres de résultats ont été considérablement réduites. En outre, une plus grande gamme de tailles 

de boîtes de simulation ont été simulées, Z = 6, 10, 14, 18, 22, 26 unités et il a été observé qu'au-dessus de Z = 18 

unités, une convergence du comportement était observée. 

L'origine complexe des effets de taille finie dans ce modèle discret dévoile les interactions de paramètres 

complexes qui ont lieu dans le modèle. La théorie des graphes a été introduite en tant qu'outil de perspective pour 

caractériser et quantifier l'interdépendance des paramètres et fournir un organigramme de causalité clair. Il a été 

observé que la complexité provient d'une classe spécifique de nœuds, ou paramètres, qui ont un grand nombre 

d'entrées. Il en résulte une compétition entre de nombreux effets, ce qui entraîne une sortie potentiellement non 
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intuitive du nœud donné, ce qui confirme les affirmations selon lesquelles la complexité découle du problème des 

phénomènes multiples. Ce type de comportement ne peut pas être décrit par de simples relations empiriques, 

montrant ainsi l'importance de créer des modèles avec des cadres théoriques flexibles avec des graphes de flux 

causaux. 

Le chapitre 5 propose une étude de cas pour une hypothèse simple, à savoir comment la participation de 

particules de silicium à la formation d’un réseau conducteur peut avoir une incidence sur le comportement de 

décharge du SSRFB. À cette fin, un interrupteur pour la conductivité du silicium a été introduit dans l'algorithme. 

En plus d'avoir un impact sur les phénomènes de formation de réseau, il a été considéré que supposer que la 

conductivité électronique du silicium augmente lors de la lithiation aurait également une incidence sur le taux de 

lithiation lui-même. La section 5.1.1 montre comment ajouter systématiquement une nouvelle fonctionnalité au 

modèle en étudiant sa réponse pour quatre compositions de suspension différentes (teneur en silicium de 6 v%, 

14% combinée à une teneur en carbone de 5% et 13%). Bien que l'impact d'un taux de lithiation en évolution reste 

à étudier, il a été observé que l'impact de la participation du silicium dans les réseaux conducteurs était plus évident 

lorsque le contenu en carbone était insuffisant pour former des réseaux par lui-même. Bien que ce résultat soit 

intuitif, l'évolution des réseaux conducteurs et la distribution granulométrique montrent quatre comportements 

morphologiques distincts dans le slurry. Ceux-ci peuvent être utilisés comme outils pour caractériser et expliquer 

d'autres résultats, ainsi que pour fournir une image qualitative de certains résultats expérimentaux dans la 

littérature. La section 5.1.2 explore plus en détail l'impact du commutateur de conductivité dans le contexte des 

perturbations de la taille de la boîte de simulation et du taux de carbone pour différentes compositions. Les 

paramètres modifiés ici sont la teneur en carbone (5%, 13%), la teneur en silicium (6%, 14%), le taux C (1C, 

C/20), la profondeur de la boîte de simulation (20, 25, 30, 40, 45 unités). Il a été constaté que quel que soit le taux 

de C, l’augmentation de la profondeur entraînait une diminution de la capacité de décharge. Cependant, le rôle du 

contenu en silicium, quel que soit le commutateur de conductivité, était moins intuitif, car les résultats suggéraient 

qu’il pouvait jouer un rôle à la fois constructif et perturbateur pour les réseaux conducteurs. Les études de 
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sensibilité multiparamètres à partir d'expériences ont été discutées dans ce contexte et il a été démontré comment 

la complexité et la non-intuitivité dans les expériences découlent de la compétition entre plusieurs phénomènes. 

La section 5.1.3 présente une vaste étude sur l'impact du commutateur de conductivité sur la composition 

du lisier. Les 121 compositions constituées de combinaisons entre la teneur en silicium (3, 4, 5, 6, 7, 8, 9, 10, 11, 

14, 15 v%) et la teneur en carbone (0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 v%). La nature de la tendance de la capacité 

par rapport au contenu en carbone est sigmoïdale lorsque le commutateur de conductivité est désactivé et de second 

ordre exponentielle lorsque le commutateur de conductivité est activé. Cette étude fournit un moyen d'accéder à 

plusieurs états du système et constitue essentiellement une étude de sensibilité globale aux paramètres. Cela offre 

en outre la possibilité de créer une image globale, à l'image d'une surface d'énergie potentielle, afin d'explorer 

comment la capacité est influencée par le contenu solide d'un lisier, quelle que soit l'étendue de la participation à 

la formation d'un réseau. Les résultats de cette analyse montrent qu’il est possible de créer un paysage prenant en 

compte de multiples aspects, tels que la composition et les conditions de fonctionnement, pour créer un ensemble 

complet d’outils permettant de choisir un système optimal. Cela a été rendu possible par l’introduction de plusieurs 

nouvelles quantités mésoscopiques qui permettent de regrouper des paramètres d’échelle inférieure en métriques 

utilisables, par exemple, le total des solides conducteurs, le réseau conducteur réel, l’espace conducteur réel et les 

solides conducteurs réels. Ces paramètres permettent de classer la phase de suspension en grappes sur la base des 

rapports entre solide, liquide et électroniquement actif et actif, simultanément. Bien qu'il puisse être difficile 

d'obtenir une validation directe pour de tels métriques, reconnaître leur utilité peut aider à extraire davantage 

d'informations des techniques expérimentales à venir et nouvelles utilisées pour étudier simultanément plusieurs 

phénomènes. 

Comme le montre la figure R.1, un nouveau paradigme est proposé à la suite de ce travail de thèse. Il 

concerne la spécification de modèle en établissant un réseau causal de base d’un système d’échantillon avec des 

phénomènes choisis dans une carte maîtresse phénoménologique (Figure R.1 (a) - (b)), (ii) mener des expériences 

hypothétiques utilisant un ABM avec un moteur kMC pour étudier le comportement dans des conditions de 
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complexité réduite (Figure R.1 (c) - (e)), et ( iii) explorer l'évolution des métriques standard et spéciales en fonction 

des variations de valeurs de paramètres simultanées (Figure R.1 (f)). À travers ces étapes, il est démontré comment 

la découverte causale, généralement basée sur l’intuition, peut être rendue plus rigoureuse. En outre, comme 

indiqué au chapitre 5, le paradigme devra analyser des ensembles de données multidimensionnels pour traiter la 

complexité. 

 

Figure R.1. Schéma décrivant le flux de travail proposé pour le SSRFB. 

Créer un modèle mécaniste pour exécuter une expérience hypothétique peut être appelé «hypothèse», mais 

il ne s’agit pas d’une approche nouvelle. Par exemple, entre 1905 et 1908, la théorie du mouvement brownien a 

été traitée de manière théorique par Einstein, Smoluchowski et Langevin étant donné que les expérimentateurs ne 

savaient pas quoi mesurer.64  Cependant, la différence est qu'au lieu d'imaginer le comportement d'un seul 

phénomène ou d'un ensemble de phénomènes en termes absolus, l'objectif est d'explorer ce qui se passe lorsqu'il 

y a de multiples phénomènes mal compris en concurrence les uns avec les autres. 

En conclusion, cette thèse vise à fournir un outil d'aide à l'approche expérimentale basée sur les essais et 

erreurs, généralement utilisée pour développer des systèmes électrochimiques destinés aux applications 

énergétiques. En tant que dispositif, la batterie à flux redox semi-solide (SSRFB) offre un grand potentiel pour 
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explorer la manifestation de la coexistence de multiples phénomènes de disciplines différentes telles que la 

rhéologie, l’électrochimie, la dynamique des particules et la dynamique des fluides. L’état de la technique 

démontre que les SSRFB ont tendance à montrer des résultats contradictoires et non intuitifs, ce qui rend difficile 

l’obtention des progrès rapides nécessaires à la commercialisation. 

Puisque la littérature rapporte les avantages de décharger le SSRFB dans des conditions d'écoulement 

intermittent, ce travail se concentre sur l'étude d'une suspension à base de silicium et de carbone en mode statique. 

Bien que seules la coexistence de la dynamique des particules et de l’électrochimie à l’échelle moyenne soient 

explorées dans ce travail, il s’agit d’une étude très riche qui montre en quoi le SSRFB est un bon exemple de 

système complexe. En utilisant un modèle mécaniste et une analyse de sensibilité des paramètres (PSA), et avec 

la théorie des graphes comme outil de perspective, une nouvelle méthodologie est établie. Il est utilisé pour simuler 

des particules sur une grille tridimensionnelle discrète, de sorte qu'elles subissent un mouvement pseudo-brownien 

ainsi qu'une décharge électrochimique par la formation de réseaux conducteurs. Le modèle mécanistique est basé 

sur la méthode cinétique Monte Carlo utilisant la méthode de la taille de pas variable et a été développé en interne 

à l'aide de la programmation orientée objet en Python. La physique sous-jacente au modèle repose sur une sélection 

des phénomènes les plus pertinents à l’échelle moyenne, tels que la diffusion de particules calculée à partir de la 

viscosité et de la taille des particules, et l’électrochimie calculée à l’aide de la cinétique de Butler Volmer qui 

prend en compte la dilatation en volume des particules de silicium à la décharge. Ce modèle mécaniste peut 

également être considéré comme un modèle à base d'agents dans lequel les particules agissent comme des agents 

libres pouvant se déplacer à travers la grille tridimensionnelle et interagir les unes avec les autres. 

Comme ces modèles sont très difficiles à normaliser et à valider, PSA a déployé des efforts considérables 

pour explorer ses caractéristiques, ses limites et ses atouts. La mise en œuvre d'une technique de modélisation 

stochastique telle que kMC et la simulation de la suspension sur une grille discrète ont entraîné des fluctuations 

dans les données qui variaient en fonction des conditions d'entrée. Il a été démontré que les systèmes complexes 

peuvent être mieux étudiés en observant la réponse du système à des perturbations dans de nombreux paramètres 
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d'entrée différents. L'obtention de sensibilités physiquement pertinentes grâce à cette méthode a permis de 

minimiser les artefacts provenant de la nature du modèle. De plus, il a été montré comment, dans un système 

complexe, la sensibilité d’un paramètre p à des perturbations dans n1 peut être influencée non seulement par la 

valeur de n1 considérée, mais également par celle d’autres paramètres n2, n3, n4, etc. Par conséquent, la 

compréhension de la dynamique sous-jacente entre les paramètres et les phénomènes a été jugée aussi importante 

que la quantification précise de la valeur d’un paramètre unique. Cela explique pourquoi les études expérimentales 

sur des systèmes complexes donnent des résultats non intuitifs et que les approches réductionnistes visant à étudier 

le comportement d'un tel système sont très difficiles. 

Pour démontrer l’utilité de ce modèle, une hypothèse simple a été testée, à savoir la comparaison entre un 

cas où des réseaux conducteurs sont formés avec du carbone seul et un cas où le silicium et le carbone participent 

à la fois. Des caractéristiques claires sont ressorties des deux cas, corroborées par la littérature expérimentale 

rapportant un comportement de la conductivité par rapport à la teneur en carbone. Typiquement, un seuil de 

percolation est suivi d'une région de percolation linéaire et d'une saturation en conductivité. Avec l'introduction 

d'un nouveau paramètre, le total des solides conducteurs, qui ne différencie pas le silicium du carbone, il a été 

possible de générer un paysage global du comportement de décharge en fonction du contenu solide. Par 

conséquent, il est possible de définir davantage de paramètres permettant de caractériser une suspension de 

particules sur la base de facteurs tels que le ratio solide / liquide et le ratio solide inactif actif, où l'inactivité solide 

peut être différenciée soit en raison d'un manque de connectivité électrique, soit en raison de son incapacité à 

fonctionner conduire des électrons. Les tendances de ces mesures montrent une valeur optimale, fournissant ainsi 

d'autres aspects pouvant aider à identifier les conditions appropriées pour obtenir de bonnes capacités de décharge. 

Examiner le domaine du stockage d'énergie électrochimique à travers l'objectif de la théorie de la 

complexité a également permis la création d'une carte mentale compilant divers phénomènes se produisant au sein 

d'une batterie lithium-ion. Cela devrait aider à formuler des hypothèses lorsque confronté à des observations 

expérimentales contradictoires. 
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Résumé 

Cette thèse est basée sur un dispositif de stockage d'énergie développé récemment, appelé la batterie à circulation 

de type semi-solide (BCSS), qui représente un croisement technologique entre deux systèmes déjà 

commercialisés, la batterie lithium-ion et la batterie à circulation. La BCSS possède des particules en suspension 

comme électrodes qui peuvent être stockées à l'extérieur de la batterie à décharge, dans des réservoirs pour des 

applications énergétiques à grande échelle. Les défis auxquels sont confrontés les BCSS sont identifiés dans cette 

thèse. Ils sont attribués au système multi-corps dans lequel se produisent de nombreux phénomènes à différentes 

échelles, ce qui rend les résultats expérimentaux non intuitifs. Ce travail explore l'applicabilité d'un modèle 

mécaniste pour gérer ce type de complexité. Un modèle tridimensionnel à base d’agent est développé autour d’un 

moteur Monte Carlo cinétique. Comme il est difficile de valider ce type de modèle, il est proposé d’utiliser une 

analyse de sensibilité globale. Il a été démontré que l'utilisation sur de grandes quantités de résultats simulés peut 

fournir des tendances qui permettent d'identifier les métriques mésoscopiques et émergentes afin de rationaliser 

la complexité des BCSS. De telles idées ne ressortent ni des expériences ni des modèles traditionnels. Les 

perspectives et les outils développés ici peuvent fournir un cadre plus rigoureux pour d'autres types de systèmes 

électrochimiques situés à l'intersection de disciplines. 

Mots-clés : Batterie à circulation de type semi-solide, modèle mécaniste, système complexe, modèle à base 

d'agents, Monte Carlo cinétique, suspension de particules, anode en silicium, modèle discret, analyse de 

sensibilité des paramètres, python 
 

Abstract 

This thesis is based on a recently developed energy storage device called the semi-solid redox flow battery 

(SSRFB) which represents a technological crossover between two already commercialized systems, namely, 

lithium ion batteries (LIBs) and redox flow batteries (RFBs). The SSRFB has particle suspensions as electrodes 

which can be stored outside the discharging battery unit, in tanks, for large scale energy applications. The 

challenges that plague the SSRFBs are identified in this work. They are assigned to the many-body problem 

where many phenomena, across scales, compete with one another, leading to a high degree of complexity, which 

makes experimental results non-intuitive. This work explores the applicability of mechanistic models to handle 

this type of complexity. The model is an on-lattice, three-dimensional, agent-based model with a kinetic Monte 

Carlo engine. Since such models are challenging to validate, the use of a global parameter sensitivity analysis 

(PSA) is proposed. It is demonstrated that using PSA over large amounts of simulated results can provide trends 

that help identify emergent mesoscopic metrics to rationalize the complexity of SSRFBs; such insights are not 

apparent from either experiments or traditional models. The perspectives and tools developed herein can provide 

a more rigorous framework for other types of electrochemical systems that lie at intersections of disciplines.  

Key-Words : Semi-solid redox flow battery, mechanistic model, complex system, agent-based model, kinetic 

Monte Carlo, particle suspension, silicon anode, discrete model, parameter sensitivity analysis, python 
 

 


