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We obtain (0.0.3) by applying divergence theorem to the following:

Now we consider the following problem with Dirichlet boundary conditions:

where Ω is a bounded smooth domain of R N , with N ≥ 2 as before, and f is assumed to be locally Lipschitz continuous. A solution u to (0.0.4) can be defined e.g. assuming that u ∈ W 1,p 0 (Ω) in the weak distributional The moving planes method is the most important technique that have been used in recent years to establish some qualitative properties of positive solutions of nonlinear elliptic equations like symmetry and monotonicity. For instance, it is used to prove monotonicity in, say, the x 1 -direction of scalar solutions of nonlinear second order elliptic equations in domains Ω in R N . The essential ingredient is the maximum principle, that in the semilinear case it is equivalent to the comparison principle. This method compares values of the solution of the equation at two different points.

. In all of these papers the maximum principle plays, as we said, the crucial role, but the papers had to rely on many forms When considering the case of the half-space R N + , the application of the moving planes technique is much more delicate, since weak comparison principles in small domains have to be substituted by weak comparison principles in narrow unbounded domains (see Theorem 1.3.1, Theorem 1.3.3 and Theorem 1.3.4). Also the strong comparison principle does not apply in a simple way as in the case when bounded domains are considered. In the semilinear case p = 2 many arguments exploited in the literature are very much (0.2.4)

provided that (ν(x), η(x)) > 0 uniformly with respect to x ∈ I δ (∂Ω), namely provided that (ν(x), η(x)) ≥ β > 0 for some β > 0 for every x ∈ I δ (∂Ω).

The proof of this result is based on a scaling argument near the boundary, which leads to the study of a limiting problem in the half-space (see problem (2.0.5)) and obeys to suitable a priori estimates. Moreover, for this limiting problem, we provide a classification result that is crucial for our technique, and may also have an independent interest (see Theorem 2.0.3).

) has been already developed and improved also in the quasilinear setting. We refer the readers to [103] + := {ν ∈ S N -1 + | (ν, e N )} that will give us the desired 1-dimensional symmetry. Ω |∇u| p-2 (∇u, ∇ϕ) dx = Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C

Thèse de Doctorat en Cotutelle

Introduction

In this thesis we study qualitative properties of some semilinear and quasilinear elliptic equations. In particular we deal with weak solutions of (0.0.1)

-∆ p u = f (u) in Ω,
where Ω is any domain in R N , N ≥ 2. Let u ∈ C 2 (Ω); we define the p-Laplace operator as follows:

∆ p u = div(|∇u| p-2 ∇u) = |∇u| p-4   |∇u| 2 ∆u + (p -2) n i,j=1 ∂u ∂x i ∂u ∂x j ∂ 2 u ∂x i ∂x j   , (0.0.2)
where (0.0.2) is defined in the set {x ∈ Ω : ∇u(x) = 0} for every 1 < p < 2, and in the whole domain Ω for every 2 ≤ p < +∞. The hypothesis on the nonlinearity will be always specified in all the chapters, but the reader could think that f is a locally Lipschitz continuous function. We have to remark that the p-Laplace operator becomes that classical Laplacian when p = 2, i.e.

∆ 2 u = div(∇u) = ∆u = N i=1 ∂ 2 u ∂x 2 i .
In this case, sometimes, we can consider classical solutions for equation (0.0.1). When p = 2 the situation is completely different and it is well known that, since the p-Laplace operator is singular or degenerate elliptic (respectively if 1 < p < 2 or p > 2), solutions of (0.0.1) are generally of class C 1,α , with α < 1 (see [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF]) and have to be considered only in the weak sense. More precisely, we say that u ∈ W 1,p (Ω) solves (0.0.1) if and only if (0.0.3)

Ω |∇u| p-2 (∇u, ∇ϕ) dx = Ω f (u)ϕ dx ∀ϕ ∈ C ∞ (Ω).
sense. This is also the space where it is natural to prove the existence of the solutions under suitable assumptions. Now it is important to observe that, in the weak formulation (0.0.3), the test function ϕ belongs to C ∞ c (Ω), but by density arguments it is possible to show that also ϕ ∈ W 1,p 0 (Ω) it is enough. In fact by the definition of W 1,p 0 (Ω), for every ϕ ∈ W 1,p 0 (Ω) there exists {ϕ n } ∈ C ∞ c (Ω) such that ϕ n -→ ϕ in W 1,p 0 (Ω), as n → +∞. Hence taking ϕ n as test functions in (0.0.3), for every n, we have

Ω |∇u| p-2 (∇u, ∇ϕ n ) dx = Ω f (u)ϕ n dx ∀ϕ n ∈ C ∞ c (Ω).
We want to show

Ω |∇u| p-2 (∇u, ∇ϕ n ) dx -→ Ω |∇u| p-2 (∇u, ∇ϕ) dx,
as n goes to +∞. Subtracting the left hand side of (0.0.3) and the left hand side of (0.0.3) with ϕ n as test function, we obtain

Ω |∇u| p-2 (∇u, ∇(ϕ n -ϕ)) dx ≤ Ω |∇u| p-1 |∇(ϕ n -ϕ)| dx ≤ Ω |∇u| p p-1 p Ω |∇(ϕ n -ϕ)| p 1 p n→+∞ -→ 0,
where in the last line we used Hölder inequality and the Dominated Convergence Theorem.

Let us denote := |∇u| p-2 . In the set of critical points (0.0.5)

Z u := {x ∈ Ω | ∇u(x) = 0},
the equation is degenerate for p > 2 (i.e. ≈ 0) and singular for 1 < p < 2 (i.e. ≈ +∞). If 0 < (x) ≤ C all the classical result are true (see e.g [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), hence u ∈ C 2 (Ω \ Z u ). If ≈ 0 or ≈ +∞ classical results are not true. In particular, in Chapter 1, we will prove the following result on the regularity of the second derivatives of solutions to problem (0.0.4):

Proposition 0.0.1. Let u ∈ C 1 (Ω), u > 0, be a weak solution to problem (0.0.4). Assume that f is locally Lipschitz continuous. Assume that Ω is a bounded and smooth domain of R N . Then (0.0.6)

Ω\{u i =0} |∇u| p-2 |y -x| γ |∇u i | 2 |u i | β dx ≤ C,
where 0 ≤ β < 1, γ < N -2 (γ = 0 if N = 2), 1 < p < +∞ and the positive constant C does not depend on y. In particular, we have (0.0.7)

Ω\{∇u=0} |∇u| p-2-β D 2 u 2 |y -x| γ dx ≤ C,
for a positive constant C not depending on y.
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Thanks to the previous result, it is possible to show the following summability property of |∇u|, whose proof can be found in Chapter 1: Theorem 0.0.2. Let u ∈ C 1 (Ω), u > 0, be a weak solution of (0.0.4) and assume, furthermore, that f (s) > 0 for any s > 0. Then, there exists a positive constant C, independent of y, such that (0.0.8)

Ω 1 |∇u| (p-1)r 1 |x -y| γ dx ≤ C
where 0 < r < 1 and γ < N -2 for N ≥ 3 (γ = 0 if N = 2). In particular the critical set Z u has zero Lebesgue measure.

Qualitative properties of solutions and the moving planes method

Qualitative properties of solutions to elliptic equations can be interpreted, in an extremely broad sense, to include every property of solutions. In this section we are going to focus on geometric properties of solutions. Boundary conditions play an important role in the qualitative behaviour of solutions. Qualitative properties of solutions are closely related to the existence of solution to elliptic PDEs; in fact, it seems obvious that existence of solutions provides the basis for the study of qualitative properties. On the other hand, searching for solutions with particular properties could provide clues for existence. Systematic studies of qualitative properties of solutions to general nonlinear elliptic equations or systems essentially began in the late 1970s, although some nonlinear elliptic equations (such as the Lane-Emden equation) actually go back to the 19th century. It should be noted, however, that earlier works in this direction on linear elliptic equations, such as symmetrization or nodal properties of eigenfunctions, have had their consequences in nonlinear equations. Symmetry and monotoncity remain an important topic in modern theory of nonlinear partial differential equations.

of the maximum principle. These included also the Höpf's Lemma at the boundary. The classical version of maximum and comparison principles and of the Höpf's Lemma will be presented in Chapter 1. Now, we want just to use the moving planes method in order to state the typical results that it is possible to show with this technique, in a very simple framework; to do this, let us consider the following semilinear elliptic problem (0.1.1)

     -∆u = f (u) in Ω u > 0 in Ω u = 0 on ∂Ω
where Ω is a bounded Lipschitz domain of R N , with N ≥ 2 and f is a locally Lipschitz continuous function.

We need to fix some notations. For a real number λ we set (0.1.2) Ω λ = {x ∈ Ω : x 1 < λ} (0.1.3)

x λ = R λ (x) = (2λ -x 1 , x 2 , . . . , x n )
which is the reflection through the hyperplane (0.1.4)

T λ := {x 1 = λ}. Also let (0.1.5) a = inf x∈Ω x 1 .
Finally we set (0.1.6) u λ (x) = u(x λ ) .

We observe that, since problem (0.1.1) is invariant up to translations and rotations, u λ defined in (0.1.6) is also a solution to (0.1.1).

Let us now state the main result Theorem 0.1.1 ([12]). Let u ∈ C 2 (Ω) ∩ C(Ω) be a solution to (0.1.1). Assume that f is a locally Lipschitz contiunous function and that Ω is convex in the x 1 -direction and symmetric with respect to the hyperplane {x 1 = 0}. Then it follows that u is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the x 1 -direction in Ω ∩ {x 1 < 0}, with

u x 1 > 0 in Ω ∩ {x 1 < 0} .
Proof. Let us define Λ 0 = {a < λ < 0 : u ≤ u t in Ω t for all t ∈ (a, λ]}.

The aim of the moving planes procedure is to show that sup Λ 0 = 0; once we have this, we obtain automatically monotonicity for the solution u and after that, performing the moving planes in the opposite direction, we obtain also the symmetry for u. To start with the moving planes method, we have to prove that Λ = ∅.

Step 1: Take a < λ < a + σ with σ > 0 small. In particular, we first assume that σ > 0 is sufficiently small so that |Ω λ | < δ, for some small δ > 0.

Noticing that u ≡ u λ on T λ and u ≤ u λ on ∂Ω λ \ T λ by the Dirichlet datum, i.e. u ≤ u λ on ∂Ω λ , it follows, by the weak comparison principle in small domains (see Theorem 1.2.1), that u ≤ u λ in Ω λ , hence Λ 0 = ∅ (see Figure 1).

Figure 1.

Step 1 in the moving planes method.

Step 2: Now we can set λ 0 = sup Λ 0 . As remarked above, to prove our result we have to show that λ 0 = 0. To do this we assume that λ 0 < 0 and we reach a contradiction by proving that u ≤ u λ 0 +ν in Ω λ 0 +ν for any 0 < ν < ν for some small ν > 0. By continuity we know that u ≤ u λ 0 in Ω λ 0 . By the strong comparison principle, noticing that u < u λ 0 on ∂Ω λ 0 , we deduce that u < u λ 0 in Ω λ 0 . Therefore, given a compact set K ⊂ Ω λ 0 , by uniform continuity we can ensure that u < u λ 0 +ν in K for any 0 < ν < ν for ν > 0 small. So by construction it results that u ≤ u λ 0 +ν on ∂(Ω λ 0 +ν \ K) for any 0 < ν < ν for ν > 0 small. For K large and ν small by the weak comparison principle in small domains (see Theorem 1.2.1) we have |Ω λ 0 +ν \ K| is small and therefore u ≤ u λ 0 +ν in Ω λ 0 +ν \ K and so u ≤ u λ 0 +ν in Ω λ 0 +ν . But this is a contradiction with the definition of λ 0 . Then λ 0 = 0 (see Figure 2). Step 2 in the moving planes method.

Step 3: Since the moving planes procedure can be performed in the same way but in the opposite direction, then this proves the desired symmetry result. The fact that the solution is increasing in the x 1 -direction in {x 1 < 0} is implicit in the moving planes procedure. This provides u x 1 ≥ 0 in {x 1 ≥ 0}. Then u x 1 > 0 by the strong maximum principle.

As a consequence we have: Corollary 0.1.2 ( [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF]). Under the assumption of Theorem 0.1.1 if Ω = B R (0) for any R > 0, then u is radially symmetric and monotone decreasing about the origin.

We just presented the classical version of the moving planes method for semilinear elliptic equation. As we said before, in the case p = 2 several results have been obtained starting by the celebrated paper of B. Gidas, W. N. Ni and L. Nirenberg [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]. This paper had a big impact not only in virtue of the several monotonicity and symmetry results that it contains, but also because it brought to attention the moving planes method which, since then, has been largely used in many different problems.

The situation is completely different when p = 2 and there are less results about monotonicity and symmetry of solutions to quasilinear elliptic problem. Let us consider (0.1.7)

     -∆ p u = f (u) in Ω u > 0 in Ω u = 0 on ∂Ω
where Ω is a bounded Lipschitz domain of R N , with N ≥ 2, 1 < p < +∞ and f is a locally Lipschitz continuous function.

In this case, as remarked before, the solutions can only be considered in a weak sense. Anyway, this is not a difficulty because the moving planes method can be adapted to weak solutions of strictly elliptic problems in divergence form (see [START_REF] Damascelli | Some remarks on the method of moving planes[END_REF][START_REF] Dancer | Some notes on the method of moving planes[END_REF]). The real difficulty with problem (0.1.7), is that the p-Laplacian operator is degenerate in the critical points of the solutions, so that comparison principles, which could substitute the maximum principles in order to use the moving planes method when the operator is not linear, are not available in the same form as for p = 2. Actually, counterexamples both to the validity of comparison principles and to symmetry results are available (see [START_REF] Grossi | Symmetry of positive solutions of some nonlinear equations[END_REF] and [START_REF] Brock | Continuous rearrangement and symmetry of solutions of elliptic problems[END_REF]).

A first step towards extending the moving planes method to solutions of problems involving the p-Laplacian operator has been done by L. Damascelli in [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF]. In this paper the author mainly proves some weak and strong comparison principles for solutions of differential inequalities involving the p-Laplacian. Using these principles he adapts the moving planes method to solutions of (0.1.7) getting some monotonicity and symmetry results in the case 1 < p < 2. Although the comparison principles of [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF] are quite powerful in this situation, the symmetry result is not complete and relies on the assumption that the set of the critical points of u does not disconnect the caps which are constructed by the moving plane method. Hence, when p > 2, the results contained in [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF] are not enough in order to adapt the moving planes method. Some years later, L. Damascelli and B. Sciunzi in [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF][START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF] proved general versions of the weak comparison principle (see Theorem 1.2.5) and of the strong comparison principle (see Theorem 1.5.3) for solution to (0.1.7), that it was sufficient to extend the technique to every p.

The analogous result of Theorem 0.1.1, in the quasilinear setting, is given by the following: Theorem 0. 1.3 ([36]). Let u ∈ C 1,α (Ω) ∩ C(Ω) be a weak solution to (0.1.7), with 1 < p < +∞. Assume that f is a locally Lipschitz contiunous function such that f (s) > 0 for s > 0 and that Ω is convex in the x 1 -direction and symmetric with respect to the hyperplane {x 1 = 0}. Then it follows that u is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the x 1 -direction in Ω ∩ {x 1 < 0}, with

u x 1 > 0 in Ω ∩ {x 1 < 0} .
Moreover, if Ω = B R (0), then u is radially symmetric and radially decreasing.

The proof of Theorem 0.1.3 is similar to the semilinear case (see Theorem 0.1.1), but the classical maximum principles, that it is equivalent to the comparison principle in the semilinear case, are replaced by comparison principles by L. Damascelli and B. Sciunzi [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF][START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF] (see Theorem 1.2.5 and 1.5.3) and the classical Poincaré inequality is replaced by a weighted Poincaré inequality (see Theorem 1.1.4).

The moving planes method is a technique very powerful that can be also adapted for quasilinear elliptic equations in unbounded domains. In the case of unbounded domains the main examples, arising from many applications, are provided by the whole space R N and by the half-space R N + . For the case of the whole space with p = 2, where radial symmetry of the solutions is expected, we refer to [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF][START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R N Mathematical analysis and applications, Part A[END_REF]. We refer the readers to [START_REF] Berestycki | Inequalities for secondorder elliptic equations with applications to unbounded domains. I. A celebration of John F. Nash[END_REF][START_REF] Berestycki | Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains[END_REF][START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains. Dedicated to Ennio De Giorgi[END_REF][START_REF] Damascelli | Some nonexistence results for positive solutions of elliptic equations in unbounded domains[END_REF][START_REF] Dancer | Some notes on the method of moving planes[END_REF][START_REF] Dancer | Some remarks on half space problems[END_REF][START_REF] Farina | Rigidity and one-dimensional symmetry for semilinear elliptic equations in the whole of R N and in half spaces[END_REF] for results concerning monotonicity of the solutions in half-spaces, in the non-degenerate case.

The case of p-Laplace equations in unbounded domains is really harder to study. Let us only say that, the use of weighted Sobolev spaces is necessary in the case p > 2 and it requires the use of a weighted Poincaré type inequality with weight = |∇u| p-2 (see Section 1.1). The latter involves constants that may blow up when the solution approaches zero that may happen also for positive solutions in unbounded domains. Hence, the lack of compactness plays an important role.

Introduction related to the linear and nondegenerate nature of the operator, so that it is not possible to extend these arguments to the case of equations involving nonlinear degenerate operators.

Considering the p-Laplace operator and problems in half-spaces, first results have been obtained in the singular case 1 < p < 2 in [START_REF] Farina | Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces[END_REF][START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF], where positive locally Lipschitz continuous nonlinearities are considered. A partial answer in the more difficult degenerate case p > 2 was obtained in [START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF], where power-like nonlinearities are considered under the restriction 2 < p < 3. Some years later, the restriction 2 < p < 3 was removed in [START_REF] Farina | Monotonicity in half-spaces of positive solutions to -∆pu = f (u) in the case p > 2[END_REF] and, moreover, the authors considered a larger class of nonlinearities (in particular positive nonlinearities that are superlinear at zero).

In the case of the entire space R N , for p = 2, the application of the moving planes method is quite involved, since it is needed the behaviour of the solution at infinity. In [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], L. Caffarelli, B. Gidas and J. Spruck proved, thanks to the moving planes method and to the use of Kelvin transform, that any positive solution of (0.1.1) with f (t) ≈ t N +2 N -2 , is radially symmetric and monotone decreasing about some point of R N . We refer also to the seminal paper of B. Gidas, W. M. Ni and L. Nirenberg [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R N Mathematical analysis and applications, Part A[END_REF] for results concerning symmetry and monotonicity of solutions in R N , but with extra-assumption on the behaviour of solutions at infinity.

The situation for p = 2 and Ω = R N is much more complicated; the operator is not linear and, as before, one needs of comparison principle in unbounded domains (that are not equivalent to maximum principle). A first result regarding qualitative properties of solutions for quasilinear elliptic equations in the entire space is due to J. Serrin and H. Zou [START_REF] Serrin | Symmetry of ground states of quasilinear elliptic equations[END_REF]. In this paper the authors need of an extra assumption on the decay of the solution at infinity and on the critical set. The nonlinear version of the result obtained by L. Caffarelli, B. Gidas and J. Spruck in [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], i.e. when f (t) ≈ t N (p-1)+p N -p , was not so easy to obtain since the Kelvin transform for p = 2 does not work (see e.g. [START_REF] Lindqvist | A Remark on the Kelvin Transform for a Quasilinear Equation[END_REF]) and also because it is not possible to start with the moving planes procedure without any a priori assumption on the decay of the solutions at infinity. This problem was solved by B. Sciunzi in [START_REF] Sciunzi | Classification of positive D 1,p (R N )-solutions to the critical p-Laplace equation in R N[END_REF]; the argument is based on some a priori estimates proved by J. Vetois [START_REF] Vétois | A priori estimates and application to the symmetry of solutions for critical p-Laplace equations[END_REF], on a lower bound for the decay rate of |∇u|, the moving planes technique, Hardy's inequality and a weighted Poincaré-type inequality.

To the best of our knowledge all the symmetry results presented in this section for equations involving the p-Laplace operator in R N or in R N + , with p = 2, treated just the case of positive nonlinearity. In Chapter 7 it will be purposed a nice variant of the moving planes method that works for a special class of changing sign nonlinearities and will be very helpful in the solution of the quasilinear version of Gibbons' conjecture for (2N + 2)/(N + 2) < p < 2.

Höpf 's boundary lemma for singular elliptic equations

Starting from the seminal paper [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF], singular semilinear elliptic equations have been studied from many point of view. We just quoted here the papers [START_REF] Arcoya | Some elliptic problems with singular natural growth lower order terms[END_REF][START_REF] Boccardo | A Dirichlet problem with singular and supercritical nonlinearities[END_REF][START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | The moving planes method for singular semilinear elliptic problems Nonl[END_REF][START_REF] Canino | A uniqueness result for some singular semilinear elliptic equations Comm[END_REF][START_REF] Canino | Existence and uniqueness for p-Laplace equations involving singular nonlinearities[END_REF][START_REF] Giachetti | An elliptic problem with a lower order term having singular behaviour[END_REF][START_REF] Hirano | Multiple existence of positive solutions for singular elliptic problems with concave and convex nonlinearities[END_REF][START_REF] Kawohl | Progress in partial differential equations: elliptic and parabolic problems[END_REF][START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF][START_REF] Leoni | Explicit subsolutions and a Liouville theorem for fully nonlinear uniformly elliptic inequalities in halfspaces[END_REF][START_REF] Oliva | On singular elliptic equations with measure sources[END_REF][START_REF] Squassina | Boundary behavior for a singular quasi-linear elliptic equation[END_REF] which are somehow related to the results contained in this thesis. A crucial topic in the study of singular semilinear elliptic equations is the study of the behaviour of the solutions near the boundary, namely where the solutions actually exhibit a lack of regularity. In particular, the fact that solutions are not C 1 up to the boundary prevents the validity of the Höpf boundary lemma, see [START_REF] Birindelli | Höpf's lemma and anti-maximum principle in general domains[END_REF][START_REF] Höpf | Elementäre Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter[END_REF][START_REF] Pucci | The maximum principle[END_REF]. We address this issue and provide a generalized version of the Höpf boundary lemma, in Chapter 2 (see also [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF]) for semilinear singular elliptic equations. In particular let us consider the following problem: (0.2.1)

       -∆u = 1 u γ + f (u) in Ω u > 0 in Ω u = 0 on ∂Ω,
where γ > 1, Ω is a C 2,α bounded domain of R N with 0 < α < 1, N ≥ 1 and f : Ω → R locally Lipschitz continuous.

It is well known that generally solutions to problem (0.2.1) are not smooth up to the boundary. It was in fact proved in [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF] that solutions are not in H 1 0 (Ω) at least when γ > 3. Therefore, having in mind the natural regularity behaviour of the solutions (see [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF]) we let u ∈ C 2 (Ω) ∩ C(Ω). The equation is well defined in the interior of the domain in the classical sense and its weak distributional formulation is (0.2.2)

Ω (∇u, ∇ϕ) dx = Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω).
Now, let us define the concept of inward pointing normal Definition 0.2.1. Let Ω ⊂ R N be a bounded C 2,α domain. Let I δ (∂Ω) be a neighborhood of ∂Ω with the unique nearest point property (see e.g. [START_REF] Foote | Regularity of the distance function[END_REF]). Hence for every x ∈ I δ (∂Ω) there exists a unique point x ∈ ∂Ω such that |x -x| = dist(x, ∂Ω). We define the inward-pointing normal as

(0.2.3) η(x) := x - x |x -x| .
Having in mind these notations, we are now ready to state the main result of Chapter 2 (see also [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF]):

Theorem 0.2.2 (Höpf type boundary lemma, [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF]). Let u ∈ C 2,α (Ω) ∩ C(Ω) be a positive solution of problem (0.2.1). Then there exists a neighborhood I δ (∂Ω) of ∂Ω such that Introduction and Chapter 1 (see also [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF]). At some time, during the PhD experience, it was a natural question to understand if it holds an analogous result to Theorem 0.2.3 for problem (0.2.1) in the quasilinear setting. Hence, let us consider: (0.2.5)

       -∆ p u = 1 u γ + f (u) in Ω u > 0
in Ω u = 0 on ∂Ω where p > 1, γ > 1, Ω is a C 2,α bounded domain of R N with N ≥ 1 and f : Ω → R locally Lipschitz continuous. Since the p-Laplace operator is degenerate or singular, a solution u ∈ C 1,α (Ω) ∩ C(Ω) of problem (0.2.5) has to be understood in the weak sense: (0.2.6)

Ω |∇u| p-2 (∇u, ∇ϕ) dx = Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω).
In collaboration with B. Sciunzi (see [START_REF] Esposito | On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications[END_REF]), we obtained the following:

Theorem 0.2.3 (Höpf type boundary lemma, [START_REF] Esposito | On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications[END_REF]). Let u ∈ C 1,α (Ω) ∩ C(Ω) be a positive solution to (0.2.5). Then, for any β > 0, there exists a neighborhood I δ (∂Ω) of ∂Ω, such that (0.2.7)

∂ ν(x) u > 0 ∀ x ∈ I δ (∂Ω)
whenever ν(x) ∈ R N with ν(x) = 1 and (ν(x), η(x)) ≥ β.

The proof of this result is going to be presented in Chapter 3. Nevertheless the proof of Theorem 0.2.3, namely the proof of the Höpf lemma in the case when it appears the singular term u -γ , cannot be carried out in the standard way mainly because the solutions are not of class C 1 up to the boundary. More precisely the proofs in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Höpf | Elementäre Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter[END_REF][START_REF] Pucci | The maximum principle[END_REF][START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] has the common feature of basing on the comparison of the solution with subsolutions that have a known behaviour on the boundary. This approach, with some difficulty to take into account, can be exploited also in the singular case since t -γ has the right monotonicity behaviour. This actually leads to control the behaviour of the solution near the boundary with a comparison based on the distance function. This is, in fact, also behind Theorem 3.3.2 that gives a Lazer and Mckenna type result [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF]. Although some of the underlying ideas in our approach have a common flavour with the ones exploited in [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF] and in Chapter 2, the proofs that we exploit in Chapter 3 are new and adapted to the degenerate nonlinear nature of the p-laplacian.

Qualitative properties of singular solutions to some elliptic problems

The aim of Chapter 4 is the study of the following singular semilinear elliptic problem: (0.3.1)

     -∆u = f (x, u) in Ω \ Γ u > 0 in Ω \ Γ u = 0 on ∂Ω
where Ω is a bounded smooth domain of R N with N ≥ 2 which is convex in the x 1 -direction and symmetric with respect to the hyperplane {x 1 = 0}. The solution has a possible singularity on the critical set Γ ⊂ Ω and thus is understood in the following sense: u ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) and (0.3.2)

Ω (∇u, ∇ϕ) dx = Ω f (x, u)ϕ dx ∀ϕ ∈ C 1 c (Ω \ Γ) .
The source term f (x, u) is assumed to satisfy (I f ) We say that f fulfills the condition (I f ) if f : Ω \ Γ × (0, +∞) → R is a continuous function such that for 0 < t ≤ s ≤ M and for any compact set K ⊂ Ω \ Γ, it holds

f (x, s) -f (x, t) ≤ C(K, M )(s -t) for any x ∈ K ,
where C(K, M ) is a positive constant depending on K and M . Furthermore f (•, s) is non-decreasing in the x 1 -direction in Ω ∩ {x 1 < 0} and symmetric with respect to the hyperplane {x 1 = 0}. In particular, this allows us to consider equations involving Hardy-Leray type potentials, see [START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF]. Now we state the first main result of Chapter 4:

Theorem 0.3.1.
Let Ω be a convex domain which is symmetric with respect to the hyperplane {x 1 = 0} and let u ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) be a solution to (0.3.1). Assume that f fulfills (I f ). Assume also that Γ is a point if N = 2 while Γ is closed and such that

Cap 2 R N (Γ) = 0, if N ≥ 3.
Then, if Γ ⊂ {x 1 = 0}, it follows that u is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the x 1 -direction in Ω ∩ {x 1 < 0}. Furthermore

u x 1 > 0 in Ω ∩ {x 1 < 0} .
We want to remark that in the work of B. Sciunzi [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], the author has been considered the singular set Γ contained in a smooth (N -2)dimensional sub-manifold of the hyperplane {x 1 = 0} if N > 2, while it is a point in dimension two. With the same technique, developed in [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], more general problems could be considered, e.g. cases when the critical set has zero capacity. It is also clear that, if Γ is not contained in any symmetry hyperplane of the domain, then with our technique it could be possible in any case to carry out the moving planes procedure until the hyperplane touch the critical set. This is optimal somehow, since it is implicit in the moving planes technique the monotonicity of the solution and solutions in general change their slope near the critical set. This actually shows that the moving planes procedure cannot go beyond the critical set. It is also worth emphasizing that Theorem 0.3.1 for problem (0.3.1) is still true if the Laplace operator ∆u is replaced by div(A(x)∇u) for some positive definite matrix A(x) = A(x 2 , . . . , x n ) with bounded continuous coefficients. In this case all the proofs can be repeated verbatim and no Hölder's continuous regularity of the coefficients is required also in dimension two.

First results regarding the applicability of the moving planes procedure to the case of singular solutions go back to [START_REF] Caffarelli | Some remarks on singular solutions of nonlinear elliptic equations. II: Symmetry and monotonicity via moving planes[END_REF] (see also [START_REF] Terracini | On positive entire solutions to a class of equations with a singular coefficient and critical exponent[END_REF]) where the case when the singular set is a single point is considered. We follow and improve here the technique in [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], where the case of a smooth (N -2)-dimensional singular set was considered in the case of locally Lipschitz continuous nonlinearity. Let us mention that the technique introduced in [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF] also works in the nonlocal context (see [START_REF] Montoro | Qualitative properties of singular solutions to nonlocal problems[END_REF]). On the other hand, in the case Γ = ∅, symmetry and monotonicity properties of solutions to semilinear elliptic problems involving singular nonlinearities, have been studied in [START_REF] Canino | Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | The moving planes method for singular semilinear elliptic problems Nonl[END_REF]. Also in this direction our result is new and more general. In fact, while in [START_REF] Canino | Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | The moving planes method for singular semilinear elliptic problems Nonl[END_REF] it is necessary to restrict the attention to problems of the form (0.2.1), here we only need to consider nonlinearities that are locally Lipschitz continuous from above. Actually, all the nonlinearities of the form f (x, s) := a 1 (x 1 )f 1 (s) + f 2 (s) , where f 1 is a decreasing continuous function in (0, +∞) and non-negative, f 2 (•) is locally Lipschitz continuous in [0, +∞) and a 1 ∈ C 0 (R), a 1 is nonnegative, even and non-decreasing for x 1 < 0, satisfy our assumptions.

The technique, as shown in [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], can be applied to study singular solutions to the following Sobolev critical equation in R N , N ≥ 3, (0.3.3)

-∆u = u 2 * -1 in R N \ Γ u > 0 in R N \ Γ.
In [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF] it was considered the case of a closed critical set Γ contained in a compact smooth submanifold of dimension d ≤ N -2 and a summability property of the solution at infinity was imposed (see also [START_REF] Terracini | On positive entire solutions to a class of equations with a singular coefficient and critical exponent[END_REF] for the special case in which the singular set Γ is reduced to a single point). In Chapter 4 we remove both these restrictions and we prove the following:

Theorem 0.3.2. Let N ≥ 3 and let u ∈ H1 loc (R N \ Γ) be a solution to (0.3.3). Assume that the solution u has a non-removable 1 singularity in the singular set Γ, where Γ is a closed and proper subset of {x 1 = 0} such that

Cap 2 R N (Γ) = 0.
Then, u is symmetric with respect to the hyperplane {x 1 = 0}. The same conclusion is true if the hyperplane {x 1 = 0} is replaced by any affine hyperplane.

The results obtained in Chapter 4 in the semilinear case, in particular the once involving bounded domains can be extended in a non trivial way to the case of quasilinear elliptic equations; this is the main topic of Chapter 5. Now, let us consider the problem (0.3.4)

     -∆ p u = f (u) in Ω \ Γ u > 0 in Ω \ Γ u = 0 on ∂Ω,
in a bounded smooth domain Ω ⊂ R N and p > 1. The solution u has a possible singularity on the critical set Γ and in fact we shall only assume that u is of class C 1 far from the critical set. Therefore the equation is understood as in the following:

Definition 0.3.3. We say that u ∈ C 1 (Ω \ Γ) is a solution to (0.3.4) if u = 0 on ∂Ω and (0.3.5)

Ω |∇u| p-2 (∇u, ∇ϕ) dx = Ω f (u)ϕ dx ∀ϕ ∈ C 1 c (Ω \ Γ) .
The purpose of Chapter 5 (see also [START_REF] Esposito | Monotonicity and symmetry of singular solutions to quasilinear problems[END_REF]) is to investigate symmetry and monotonicity properties of the solutions when the domain is assumed to have symmetry properties. This issue is well understood in the semilinear case p = 2 as explained before.

The moving planes procedure for quasilinear elliptic problems, as remarked in Section 0.1, has been adapted when Γ = ∅. However, the techniques developed in Chapter 4 and described above cannot be applied straightforwardly manly for two reasons. First of all the technique developed in Chapter 4 (see also [START_REF] Esposito | Qualitative properties of singular solutions to semilinear elliptic problems[END_REF][START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF]), that works the case p = 2, is strongly based on a homogeneity argument that fails for p = 2. Furthermore, since the gradient of the solution may blows up near the critical set, then the equation may exhibit both a degenerate and a singular nature at the same time. This causes, in particular, that it is no longer true that the case 1 < p < 2 allows to get stronger results in a easier way, as it is in the case Γ = ∅.

Now we list all the assumptions on the singular set Γ and on the nonlinearity f in the different cases 1 < p < 2 and p > 2:

(A 1 f ). For 1 < p < 2 we assume that f is locally Lipschitz continuous so that, for any 0 ≤ t, s ≤ M , there exists a positive constant

K f = K f (M ) such that |f (s) -f (t)| ≤ K f |s -t|.
Moreover f (s) > 0 for s > 0 and lim t→+∞ f (t) t q = l ∈ (0, +∞).

for some q ∈ R such that p-1 < q < p * -1, where p * = N p/(N -p). (A 2 f ). For p ≥ 2 we only assume that f is locally Lipschitz continuous so that, for 0 ≤ t, s ≤ M there exists a positive constant

K f = K f (M ) such that |f (s) -f (t)| ≤ K f |s -t|.
Furthermore f (s) > 0 for s > 0.

Introduction (A 1 Γ ). For 1 < p < 2 and N = 2 we assume that Γ = {0}, while for 1 < p < 2 and N > 2 we assume that Γ ⊆ M for some compact

C 2 submanifold M of dimension m ≤ N -k, with k ≥ N 2 . (A 2 Γ
). For 2 < p < N and N ≥ 2, we assume that Γ closed and such that Cap p (Γ) = 0.

We prefer to start the presentation of our results, that we prove in Chapter 5, with the case p > 2. We have the following:

Theorem 0.3.4. Let p > 2 and let u ∈ C 1 (Ω \ Γ) be a solution to (0.3.4)
and assume that f is locally Lipschitz continuous with f (s) > 0 for s > 0, namely assume (A 2 f ). If Ω is convex and symmetric with respect to the x 1 -direction, Γ is closed with Cap p (Γ) = 0, namely let us assume (A 2 Γ ), and Γ ⊂ {x ∈ Ω : x 1 = 0}, then it follows that u is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the

x 1 -direction in Ω ∩ {x 1 < 0}.
Although the technique that we are going to develop in the proof of Theorem 0.3.4 works for any p > 2, the result is stated for 2 < p ≤ N since there are no sets of zero p-capacity when p > N .

Surprisingly the case 1 < p < 2 presents more difficulties related to the fact that, as already remarked, the operator may degenerate near the critical set even if p < 2. We will therefore need an accurate analysis on the behaviour of the gradient of the solution near Γ. We carry out such analysis exploiting the results of [START_REF] Polácik | Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems[END_REF] (therefore we shall require a growth assumption on the nonlinearity) and a blow up argument. The result is the following: Theorem 0.3.5. Let 1 < p < 2 and let u ∈ C 1 (Ω \ Γ) be a solution to (0.3.4) and assume that f is locally Lipschitz continuous with f (s) > 0 for s > 0 and has subcritical growth, namely let us assume (A 1 f ). Assume that Γ is closed and that Γ = {0} for N = 2, while Γ ⊆ M for some compact

C 2 submanifold M of dimension m ≤ N -k, with k ≥ N 2 for N > 2, see (A 1 Γ ).
Then, if Ω is convex and symmetric with respect to the x 1 -direction and

Γ ⊂ {x ∈ Ω : x 1 = 0},
it follows that u is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the

x 1 -direction in Ω ∩ {x 1 < 0}.
The aim of Chapter 6 is to generalize all the results obtained in Chapter 4 to the case of semilinear cooperative elliptic systems. In particular, we investigate symmetry and monotonicity properties of singular solutions to some semilinear elliptic systems in such a way to find a generalization of the results presented in Chapter 4. In the first part we consider the following semilinear elliptic system (0.3.6)

     -∆u i = f i (u 1 , . . . , u m ) in Ω \ Γ u i > 0 in Ω \ Γ u i = 0 on ∂Ω
where Ω is a bounded smooth domain of R N with N ≥ 2 and i = 1, ..., m (m ≥ 2). The technique which is mostly used in this chapter is the well known moving planes method. For simplicity of exposition we assume directly in all the Chapter 6 that Ω is a convex domain which is symmetric with respect to the hyperplane {x 1 = 0}. The solution has a possible singularity on the critical set Γ ⊂ Ω. When m = 1 system (6.0.2) reduces to a scalar equations that was already studied in [START_REF] Esposito | Qualitative properties of singular solutions to semilinear elliptic problems[END_REF][START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF] and in Chapter 4.

The moving planes procedure for semilinear elliptic system has been firstly adapted by Troy in [START_REF] Troy | Symmetry Properties in Systems of Semilinear Elliptic Equations[END_REF] where he considered the cooperative system (0.3.6) with Γ = ∅ (see also [START_REF] De Figueiredo | Monotonicity and symmetry of solutions of elliptic systems in general domains[END_REF][START_REF] De Figueiredo | Decay, symmetry and existence of solutions of semilinear elliptic systems[END_REF][START_REF] Reichel | Non-existence results for semilinear cooperative elliptic systems via moving spheres[END_REF]). This technique was also adapted in the case of cooperative semilinear systems in half spaces by Dancer in [START_REF] Dancer | Moving plane methods for systems on half spaces[END_REF] and in the whole space by Busca and Sirakov in [START_REF] Busca | Symmetry results for semilinear elliptic systems in the whole space[END_REF]. For the case of quasilinear elliptic system in bounded domains we suggest [START_REF] Montoro | Symmetry results for nonvariational quasi-linear elliptic systems[END_REF]. Moreover, motivated by [START_REF] Leoni | Explicit subsolutions and a Liouville theorem for fully nonlinear uniformly elliptic inequalities in halfspaces[END_REF], through all the chapter, we assume that the following hypotheses (denoted by (S f i ) in the sequel) hold:

(S f i ) (i) f i : R m + → R are assumed to be C 1 functions for every i = 1, ..., m. (ii) The functions f i (1 ≤ i ≤ m) are assumed to satisfy the monotonicity (also known as cooperative) conditions ∂f i ∂t j (t 1 , ..., t j , ..., t m ) ≥ 0 for i = j, 1 ≤ i, j ≤ m.

Since we want to consider singular solutions, the natural assumption is

u i ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) ∀i = 1, .
.., m and thus the system is understood in the weak sense:

(0.3.7) Ω (∇u i , ∇ϕ i ) dx = Ω f i (u 1 , u 2 , ..., u m )ϕ i dx ∀ϕ i ∈ C 1 c (Ω \ Γ)
for every i = 1, ..., m.

Under the previous assumptions we can prove the following result:

Theorem 0.3.6.
Let Ω be a convex domain which is symmetric with respect to the hyperplane {x 1 = 0} and let (u 1 , ..., u m ) be a solution to (0.3.6), where

u i ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) for every i = 1, ..., m. Assume that each f i fulfills (S f i ). Assume also that Γ is a point if N = 2 while Γ is closed and such that Cap 2 R N (Γ) = 0, if N ≥ 3. Then, if Γ ⊂ {x 1 = 0}, it
follows that u i is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the x 1 -direction in Ω ∩ {x 1 < 0}, for every i = 1, ..., m. Furthermore

∂ x 1 u i > 0 in Ω ∩ {x 1 < 0} ,
for every i = 1, ..., m.

The technique developed in the case of bounded domains (see [START_REF] Esposito | Qualitative properties of singular solutions to semilinear elliptic problems[END_REF][START_REF] Esposito | Monotonicity and symmetry of singular solutions to quasilinear problems[END_REF][START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], and [START_REF] Montoro | Qualitative properties of singular solutions to nonlocal problems[END_REF] for the nonlocal setting) is very powerful and can be adapted to some cooperative systems in R N involving critical nonlinearity. Papers on existence or qualitative properties of solutions to systems with critical growth in R N are very few, due to the lack of compactness given by the
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Talenti bubbles and the difficulties arising from the lack of good variational methods. We refer the reader to [START_REF] Busca | Symmetry results for semilinear elliptic systems in the whole space[END_REF][START_REF] Clapp | Existence and phase separation of entire solutions to a pure critical competitive elliptic system[END_REF][START_REF] Gladiali | A non-variational system involving the critical Sobolev exponent. The radial case[END_REF][START_REF] Gladiali | Entire radial and nonradial solutions for systems with critical growth[END_REF][START_REF] Guo | Liouville type theorems for positive solutions of elliptic system in R N[END_REF][START_REF] Peng | On elliptic systems with Sobolev critical growth[END_REF] for this kind of systems. Our aim is to study qualitative properties of singular solutions to the following m × m system of equations (0.3.8)

     -∆u i = m j=1 a ij u 2 * -1 j in R N \ Γ, u i > 0 in R N \ Γ,
where i = 1, ..., m, m ≥ 2, N ≥ 3 and the matrix A := (a ij ) i,j=1,...,m is symmetric and such that (0.3.9) m j=1 a ij = 1 for every i = 1, ..., m.

These kind of systems, with Γ = ∅, was studied by Mitidieri in [START_REF] Mitidieri | A Rellich type identity and applications[END_REF][START_REF] Mitidieri | Nonexistence of positive solutions of semilinear elliptic systems in R N[END_REF] considering the case m = 2, A = 0 1 1 0 and it is known in the literature as nonlinearity belonging to the critical hyperbola.

If m = 1, then (0.3.8) reduces to the classical critical Sobolev equation

(0.3.10) -∆u = u 2 * -1 in R N \ Γ u > 0 in R N \ Γ,
that can be found in [START_REF] Esposito | Qualitative properties of singular solutions to semilinear elliptic problems[END_REF][START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF]. If Γ reduces to a single point we find the result contained in [START_REF] Terracini | On positive entire solutions to a class of equations with a singular coefficient and critical exponent[END_REF], while if Γ = ∅ then system (0.3.10) reduces to the classical Sobolev equation (see [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF]). For existence results of radial and nonradial solutions for (0.3.8), we refer to some interesting papers [START_REF] Gladiali | A non-variational system involving the critical Sobolev exponent. The radial case[END_REF][START_REF] Gladiali | Entire radial and nonradial solutions for systems with critical growth[END_REF].

We want to remark that in [START_REF] Gladiali | A non-variational system involving the critical Sobolev exponent. The radial case[END_REF][START_REF] Gladiali | Entire radial and nonradial solutions for systems with critical growth[END_REF] the authors treat the general case of a matrix A in which its entries a ij are not necessarily positive and this fact implies that it is not possible to apply the maximum principle. As remarked above the natural assumption is

u i ∈ H 1 loc (R N \ Γ) ∀i = 1, .
.., m and, thus, the system is understood in the following sense:

(0.3.11) R N (∇u i , ∇ϕ i ) dx = m j=1 a ij R N u 2 * -1 j ϕ i dx ∀ϕ i ∈ C 1 c (R N \ Γ)
for every i = 1, ..., m. What we are going to show in Chapter 6 is also the following result:

Theorem 0.3.7. Let N ≥ 3 and let (u 1 , ..., u m ) be a solution to (0.3.8), where u i ∈ H 1 loc (R N \ Γ) for every i = 1, ..., m. Assume that the matrix A = (a ij ) i,j=1,...,m , defined above, is symmetric, a ij ≥ 0 for every i, j = 1, ..., m and it satisfies (0.3.9). Moreover at least one of u i has a non-removable 2 singularity in the singular set Γ, where Γ is a closed and proper subset of

{x 1 = 0} such that Cap 2 R N (Γ) = 0.
Then, all u i are symmetric with respect to the hyperplane {x 1 = 0}. The same conclusion is true if {x 1 = 0} is replaced by any affine hyperplane.

If at least one of u i has only a non-removable singularity at the origin for every i = 1, ..., m, then each u i is radially symmetric about the origin and radially decreasing.

Another interesting elliptic system involving Sobolev critical exponents is the following one:

(0.3.12)          -∆u = u 2 * -1 + α 2 * u α-1 v β in R N \ Γ -∆v = v 2 * -1 + β 2 * u α v β-1 in R N \ Γ u, v > 0 in R N \ Γ, where α, β > 1, α + β = 2 * := 2N N -2 (N ≥ 3)
The solutions to (0.3.12) are solitary waves for a system of coupled Gross-Pitaevskii equations. This type of systems arises, e.g., in the Hartree-Fock theory for double condensates, that is, Bose-Einstein condensates of two different hyperfine states which overlap in space. Existence results for this kind of system are very complicated and the existence of nontrivial solutions is deeply related to the parameter α, β and N . This kind of systems (0.3.12) with Γ = ∅ was studied in [START_REF] Ambrosetti | Standing waves of some coupled nonlinear Schrödinger equations[END_REF][START_REF] Bartsch | A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system[END_REF][START_REF] Bartsch | Bound states for a coupled Schrödinger system[END_REF][START_REF] Peng | On elliptic systems with Sobolev critical growth[END_REF][START_REF] Sirakov | Least energy solitary waves for a system of nonlinear Schrödinger equations in R N[END_REF][START_REF] Soave | New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms[END_REF]. In particular, in [START_REF] Peng | On elliptic systems with Sobolev critical growth[END_REF] the authors show a uniqueness result for least energy solutions under suitable assumptions on the parameters α, β and N , while, in [START_REF] Clapp | Existence and phase separation of entire solutions to a pure critical competitive elliptic system[END_REF] the authors study also the competitive setting, showing that the system admits infinitely many fully nontrivial solutions, which are not conformally equivalent. Motivated by their physical applications, weakly coupled elliptic systems have received much attention in recent years, and there are many results for the cubic case where Γ = ∅, α = β = 2 and 2 * is replaced by 4 in low dimensions N = 3, 4, see e.g. [START_REF] Ambrosetti | Standing waves of some coupled nonlinear Schrödinger equations[END_REF][START_REF] Bartsch | A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system[END_REF][START_REF] Bartsch | Bound states for a coupled Schrödinger system[END_REF][START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R N , N ≤ 3[END_REF][START_REF] Lin | Spikes in two coupled nonlinear Schrödinger equations[END_REF][START_REF] Soave | On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition[END_REF][START_REF] Soave | New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms[END_REF]. Since our technique does not work when 1 < α < 2 or 1 < β < 2, here we study the case α, β ≥ 2 and N = 3 or N = 4, since we are assuming that α + β = 2 * .

The last results that it is going to be proved in Chapter 6 is given by the following:

Theorem 0.3.8. Let N = 3 or N = 4 and let (u, v) ∈ H 1 loc (R N \ Γ) × H 1 loc (R N \ Γ)
be a solution to (0.3.12). Assume that the solution (u, v) has a non-removable3 singularity in the singular set Γ, where Γ is a closed and proper subset of

{x 1 = 0} such that Cap 2 R N (Γ) = 0.
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Moreover let us assume that α, β ≥ 2 and that holds α + β = 2 * . Then, u and v are symmetric with respect to the hyperplane {x 1 = 0}. The same conclusion is true if {x 1 = 0} is replaced by any affine hyperplane. If at least one between u and v has only a non-removable singularity at the origin, then (u, v) is radially symmetric about the origin and radially decreasing.

All the results presented here, about systems, are contained in Chapter 6 and in [START_REF] Esposito | Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearity[END_REF]; when this paper was completed, we learned that the case of bounded domains was also considered in [START_REF] Biagi | A symmetry result for cooperative elliptic systems with singularities[END_REF] (see [START_REF] Biagi | A symmetry result for elliptic systems in punctured domains[END_REF]), obtaining similar results.

The Gibbons' conjecture for quasilinear elliptic equations

Chapter 7 concerns the study of the qualitative properties of the following quasilinear elliptic equation (0.4.1)

-∆ p u = f (u) in R N ,
where we denote a generic point belonging to R N by (x , y) with x = (x 1 , x 2 , . . . , x N -1 ) and y = x N , p > 1 and N > 1. Morever, for suitable functions, the p-Laplace operator is defined by -∆ p u := -div(|∇u| p-2 ∇u).

As well known, see [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], the solutions of equations involving the p-Laplace operator are generally of class C 1,α . Therefore the equation (0.4.1) has to be understood in the weak sense. We summarize the assumptions on the nonlinearity f , denoted by (G f ), in the following:

(G f ): The nonlinearity f (•) belongs to C 1 ([-1, 1]), f (-1) = 0, f (1) = 0, f + (-1) < 0, f - (1 
) < 0 and the set

N f := {t ∈ [-1, 1] | f (t) = 0}
is finite. The setting of our assumptions allows us to include Allen-Cahn type nonlinearities and, in fact, the paper is motivated by some questions arising from the following problem (0.4.2)

-∆u = u(1 -u 2 ) in R N ,
see [START_REF] Farina | The state of the art for a conjecture of De Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions[END_REF]. G.W. Gibbons [START_REF] Carbou | Unicité et minimalité des solutions d'une équation de Ginzburg-Landau[END_REF] formulated the following Gibbons' conjecture [START_REF] Carbou | Unicité et minimalité des solutions d'une équation de Ginzburg-Landau[END_REF]. -Assume N > 1 and consider a bounded solution u of (0.4.2) in C 2 (R N ), such that lim

x N →±∞ u(x , x N ) = ±1, uniformly with respect to x . Then, is it true that u(x) = tanh x N -α √ 2 ,
for some α ∈ R?

This conjecture is also known as the weaker version of the famous De Giorgi's conjecture [START_REF] Giorgi | Convergence problems for functionals and operators[END_REF]. We refer to [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF] for a complete history on the argument. The Gibbons' conjecture in the semilinear case p = 2 is by now well understood (see [START_REF] Berestycki | One-dimensional symmetry of bounded entire solutions of some elliptic equations[END_REF][START_REF] Farina | Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in R k[END_REF][START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF][START_REF] Farina | Monotonicity and rigidity of solutions to some elliptic systems with uniforms limits[END_REF]). Here we address the quasilinear case 0.4 The Gibbons' conjecture for quasilinear elliptic equations 19 for a general class of nonlinearities f . To the best of our knowledge this is the first result in this framework. This is motivated by the fact that, unlike the semilinear case (0.4.2), working with the singular operator -∆ p (•) we have to take into account that the nonlinearity f change sign and that all the techniques involved in the study of the problem (0.4.1) are not standard since we work in the whole R N . Our proofs are based on the technique of the moving planes method which goes back to the papers of Alexandrov [START_REF] Alexandrov | A characteristic property of the spheres[END_REF] and Serrin [START_REF] Serrin | A symmetry problem in potential theory[END_REF] and subsequently to the celebrated papers [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] and on the use of maximum and comparison principles for the -∆ p (•) operator, which are much more involved since we have carefully take into account the critical set Z ∇u (see (7.2.5)) where the gradient of the solution u vanishes. Moreover, when we consider the case of unbounded domain as R N , the application of the moving planes technique is much more delicate since weak comparison principles in small domains have to be substituted by weak comparison principles in unbounded domains. Actually, the strong comparison principle does not apply simply as in the case when bounded domains are considered because of the lack of compactness. When we work with the Laplacian operator, i.e. the case p = 2, many arguments exploited in the literature are very much related to the linear and nondegenerate nature of the operator. In Chapter 7 we cannot take advantage of all the classical techniques used in the semilinear case and, thus, we need to recover these arguments in the case of equations involving nonlinear degenerate/singular operators. The main result of Chapter 7 is given by the following: 

∂ y u > 0 in R N .
To get our main result, we first recover a weak comparison principle in a suitable half-space and then we exploit it to start the moving planes procedure. The application of the moving planes method is not standard since we have to recover compactness using some translation arguments, (since we work on R N ) and, not least, we have to take into account the fact that the nonlinearity f change sign which produces peculiar difficulties in the case p = 2, already in the case of bounded domain. Finally, we get the monotonicity in all the directions of the the upper hemi-sphere S N -1 Introduction 0.5. Une présentation plus détaillée Dans cette thèse, nous étudions les propriétés qualitatives des solutions d'équations aux dérivées partielles (EDP) semilinéaires et quasilinéaires de type elliptique. Nous traitons en particulier des solutions faibles de (0.5.1)

-∆ p u = f (u) dans Ω,
où Ω est un domaine de R N , N ≥ 2. Soit u ∈ C 2 (Ω); nous définissons le operateur p-Laplacien comme suit:

∆ p u = div(|∇u| p-2 ∇u) = |∇u| p-4   |∇u| 2 ∆u + (p -2) n i,j=1 ∂u ∂x i ∂u ∂x j ∂ 2 u ∂x i ∂x j   , (0.5.2)
où (0.5.2) est défini dans l'ensemble {x ∈ Ω : ∇u(x) = 0} pour chaque 1 < p < 2, et dans le domaine entier Ω pour 2 ≤ p < +∞. L'hypothèse sur la non-linéarité sera toujours spécifiée dans tous les chapitres, mais le lecteur pourrait penser que f est une fonction continue et localement lipschitzienne. Nous devons remarquer que l'opérateur p-Laplacien devient le Laplacien classique quand p = 2, c'est-à-dire

∆ 2 u = div(∇u) = ∆u = N i=1 ∂ 2 u ∂x 2 i .
Dans ce cas, nous pouvons parfois envisager des solutions classiques pour l'équation (0.5.1). Quand p = 2 la situation est complètement différente et il est bien connue, puisque que l'opérateur p-Laplacien est singulier ou elliptique dégénéré (respectivement si 1 < p < 2 ou p > 2), les solutions de (0.5.1) sont généralement de classe C 1,α , avec α < 1 (voir [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF]) et doivent uniquement être prises en compte dans le sens faible. Plus précisément, on dit que u ∈ W 1,p (Ω) résout (0.5.1) si et seulement si (0.5.3)

Ω |∇u| p-2 (∇u, ∇ϕ) dx = Ω f (u)ϕ dx ∀ϕ ∈ C ∞ (Ω).
Nous avons obtenu (0.5.3) en appliquant le théorème de la divergence à:

Ω -div(|∇u| p-2 ∇u)ϕ dx = Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω).
Nous considérons maintenant le problème suivant avec les condition aux limites de Dirichlet:

(0.5.4) -∆ p u = f (u) in Ω u = 0 on ∂Ω
où Ω est un domaine lisse et borné de R N , avec N ≥ 2, et f est supposé être continue et localement lipschitzienne.

Une solution u à (0.5.4) peut être définie, par exemple, en supposant que u ∈ W 

(Ω), pour chaque ϕ ∈ W 1,p 0 (Ω) il existe {ϕ n } ∈ C ∞ c (Ω) tel que ϕ n -→ ϕ in W 1,p 0 (Ω) pour n → +∞.
Par conséquent, en prenant ϕ n comme fonctions tests dans (0.5.3), pour chaque n, nous avons

Ω |∇u| p-2 (∇u, ∇ϕ n ) dx = Ω f (u)ϕ n dx ∀ϕ n ∈ C ∞ c (Ω).
Nous voulons montrer

Ω |∇u| p-2 (∇u, ∇ϕ n ) dx -→ Ω |∇u| p-2 (∇u, ∇ϕ) dx,
comme n → +∞. En soustrayant le côté gauche de (0.5.3) et le côté gauche de (0.5.3) avec ϕ n comme fonction test, on obtient

Ω |∇u| p-2 (∇u, ∇(ϕ n -ϕ)) dx ≤ Ω |∇u| p-1 |∇(ϕ n -ϕ)| dx ≤ Ω |∇u| p p-1 p Ω |∇(ϕ n -ϕ)| p 1 p n→+∞ -→ 0,
où, dans la dernière ligne, nous avons utilisé l'inégalité de Hölder et le théorème de convergence dominée.

Nous notons := |∇u| p-2 . Dans l'ensemble de points critiques (0.5.5)

Z u := {x ∈ Ω | ∇u(x) = 0},
l'équation est dégénérée pour p > 2 (i.e. ≈ 0) et singulier pour 1 < p < 2 (i.e. ≈ +∞). Si 0 < (x) ≤ C tous les résultats classiques sont vrais (voir par exemple [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]), par conséquent u ∈ C 2 (Ω \ Z u ). Si ≈ 0 ou ≈ +∞ les résultats classiques ne sont pas vrai. En particulier, au chapitre 1, nous prouverons le résultat suivant sur la régularité des dérivées secondes des solutions du problème (0.5.4):

Proposition 0.5.1. Soit u ∈ C 1 (Ω), u > 0, un solution faible du probléme (0.5.4). Supposons que f soit continue et localement lipschitzienne. Supposons que Ω est un domaine borné et lisse de R N . Donc (0.5.6) Grâce au résultat précédent, il est possible démontrer la propriété de sommabilité suivante de |∇u|, dont la preuve se trouve au chapitre 1: Introduction Théorème 0.5.1. Soit u ∈ C 1 (Ω), u > 0, un solution faible du problème (0.5.4) et supposons, en outre, que f (s) > 0 pour toute s > 0. Ensuite, il existe une constante positive C, indépendante de y, telle que (0.5.8)

Ω\{u i =0} |∇u| p-2 |y -x| γ |∇u i | 2 |u i | β dx ≤ C, où 0 ≤ β < 1, γ < N -2 (γ = 0 if N = 2), 1 < p < +∞ et
Ω 1 |∇u| (p-1)r 1 |x -y| γ dx ≤ C où 0 < r < 1 et γ < N -2 pour N ≥ 3 (γ = 0 if N = 2).
En particulier, l'ensemble critique Z u a une mesure Lebesgue nulle.

Propriétés qualitatives des solutions et méthode des hyperplans mobiles

Les propriétés qualitatives des solutions d'équations aux dérivées partielles (EDP) peuvent être interprétées, en manière extrêmement large, comme incluant toutes les propriétés des solutions. Dans cette section, nous allons concentrer sur les propriétés géométriques des solutions. Les conditions aux limites jouent un rôle important dans le comportement qualitatif des solutions. Les propriétés qualitatives des solutions sont étroitement liées à l'existence d'une solution d'équation aux dérivées partielles elliptiques; En fait, il semble évident que l'existence de solutions constitue la base de l'étude des propriétés qualitatives. D'autre part, la recherche de solutions avec des propriétés particulières pourrait fournir des indices pour l'existence. Les études systématiques des propriétés qualitatives des solutions aux équations ou systèmes elliptiques non linéaires généraux ont commencé essentiellement à la fin des années 1970, bien que certaines équations elliptiques non linéaires (telles que l'équation de Lane-Emden) remontent en réalité au XIX siècle. Il convient toutefois de noter que les travaux antérieurs dans ce sens sur des équations elliptiques linéaires, telles que la symétrisation ou les propriétés nodales des fonctions propres, ont eu des conséquences dans les équations non linéaires. La symétrie et la monotonie restent un sujet important dans la théorie moderne des équations aux dérivées partielles non linéaires.

La méthode des hyperplans mobiles est la technique plus importante utilisée ces dernières années pour établir certaines propriétés qualitatives de solutions positives d'équations elliptiques non linéaires telles que la symétrie et la monotonie. Par exemple, elle est utilisée pour prouver la monotonie dans la direction x 1 des solutions scalaires d'équations elliptiques de second ordre non linéaires dans les domaines Ω in R N . L'ingrédient essentiel est le principe du maximum, qui dans le cas semi-linéaire est équivalent au principe de comparaison. Cette méthode compare les valeurs de la solution de l'équation en deux points différents.

La méthode des hyperplans mobiles remonte à A. D. Alexandrov [START_REF] Alexandrov | A characteristic property of the spheres[END_REF], dans son étude des surfaces à courbure moyenne constante, et à J. Serrin [START_REF] Serrin | A symmetry problem in potential theory[END_REF] qui a introduit la technique dans le contexte des EDP elliptiques, dans l'étude de problèmes surdéterminés. Après quelques années, B. Gidas, W.N. Ni et L. Nirenberg, dans [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF], ont adapté cette méthode pour prouver la monotonie des solutions positives qui s'annule sur ∂Ω et, donc, la symétrie; dans [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R N Mathematical analysis and applications, Part A[END_REF], les auteurs ont étendu ces techniques aux équations de tous les R N . Nous renvoyons également le lecteur à d'autres documents pertinents [START_REF] Berestycki | Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains[END_REF][START_REF] Berestycki | Inequalities for secondorder elliptic equations with applications to unbounded domains. I. A celebration of John F. Nash[END_REF][START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains. Dedicated to Ennio De Giorgi[END_REF][START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF][START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF][START_REF] Caffarelli | Some remarks on singular solutions of nonlinear elliptic equations. II: Symmetry and monotonicity via moving planes[END_REF][START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF][START_REF] Damascelli | Monotonicity and symmetry of solutions of p-Laplace equations, 1 < p < 2, via the moving planes method[END_REF][START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF][START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF][START_REF] Farina | Monotonicity in half-spaces of positive solutions to -∆pu = f (u) in the case p > 2[END_REF][START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF][START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF][START_REF] Serrin | Symmetry of ground states of quasilinear elliptic equations[END_REF][START_REF] Serrin | Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[END_REF]. Comme nous l'avons dit, le principe du maximum joue dans tous ces papiers le rôle crucial, mais il a fallu recourir à de nombreuses formes du principe du maximum. Celles-ci incluent également le lemme de Höpf à la frontière. La version classique des principes du maximum et de comparaison et du lemme de H öpf sera présentée au chapitre 1.

Maintenant, nous souhaitons simplement utiliser la méthode des hyperplans mobiles afin d'énoncer les résultats typiques qu'il est possible de montrer avec cette technique, dans un cadre très simple; pour ce faire, nous considérons le problème elliptique semi-linéaire suivant (0.6.1)

     -∆u = f (u) dans Ω u > 0 dans Ω u = 0 sur ∂Ω
où Ω est un domaine borné lipschitzien de R N , avec N ≥ 2 et f est une fonction continue et localement lipschitzienne.

Pour un nombre réel λ nous fixons (0.6.2)

Ω λ = {x ∈ Ω : x 1 < λ} (0.6.3) x λ = R λ (x) = (2λ -x 1 , x 2 , . . . , x n )
qui est le symétrique de x par rapport à l'hyperplan (0.6.4)

T λ := {x 1 = λ}.
En outre (0.6.5)

a = inf x∈Ω x 1 .
Enfin nous définissons (0.6.6)

u λ (x) = u(x λ ) .
Nous observons que, puisque le problème (0.6.1) est invariant par isométries, u λ , défini dans (0.6.6), est également une solution pour (0.6.1). Énonçons maintenant le résultat principal Théorème 0.6.1 ([12]). Soit u ∈ C 2 (Ω)∩C(Ω) une solution au problème (0.6.1). Supposons que f est une fonction continue et localement lipschitzienne et que Ω est convexe dans la direction x 1 et symétrique par rapport à l'hyperplan {x 1 = 0}. Il s'ensuit que u est symétrique par rapport à l'hyperplan {x 1 = 0} et monotone croissant dans la direction

x 1 dans Ω ∩ {x 1 < 0}, avec u x 1 > 0 dans Ω ∩ {x 1 < 0} . Démonstration. Soit Λ 0 = {a < λ < 0 : u ≤ u t in Ω t for all t ∈ (a, λ]}.
Le but de la méthode des hyperplans mobiles est de montrer que sup Λ 0 = 0; une fois que nous l'avons, nous obtenons automatiquement la monotonicité pour la solution u et ensuite, en effectuant la méthode des hyperplans mobiles dans la direction opposée, nous obtenons également la symétrie pour u.

Pour commencer avec la méthode des plans mobiles, nous devons prouver que Λ = ∅.

Introduction

Step 1: Nous considérons a < λ < a + σ avec σ > 0 petite. En particulier, supposons d'abord que σ > 0 est suffisamment petit pour que |Ω λ | < δ, pour quelques petites δ > 0. Remarquant que u ≡ u λ sur T λ et u ≤ u λ on ∂Ω λ \T λ par les conditions aux limites de Dirichlet, c'est-à-dire u ≤ u λ on ∂Ω λ , il s'ensuit, par le principe de comparaison faible dans les petits domaines (voir Théorème 1.2.1), que u ≤ u λ dans Ω λ , par conséquent Λ 0 = ∅ (voir la Figure 3).

Figure 3.

Step 1 dans la méthode des hyperplans mobiles.

Step 2: Nous pouvons définir

λ 0 = sup Λ 0 .
Comme indiqué ci-dessus, pour prouver notre résultat, nous devons montrer que λ 0 = 0. Pour cela, supposons que λ 0 < 0 et aboutissons à une contradiction en prouvant que u ≤ u λ 0 +ν in Ω λ 0 +ν pour toute 0 < ν < ν pour certains petits ν > 0. Par continuité nous savons que u ≤ u λ 0 in Ω λ 0 . Par le principe de comparaison forte, remarquant que u < u λ 0 sur ∂Ω λ 0 , on en déduit u < u λ 0 dans Ω λ 0 . Par conséquent, étant donné un ensemble compact K ⊂ Ω λ 0 , par continuité uniforme, nous pouvons assurer que u < u λ 0 +ν dans K pour tout 0 < ν < ν pour petits ν > 0. Donc, par construction, il en résulte que u ≤ u λ 0 +ν sur ∂(Ω λ 0 +ν \ K) pour tout 0 < ν < ν pur petits ν > 0. Pour K large et ν petit selon le principe de comparaison faible dans les petits domaines (voir Théorème 1.2.1) nous avons que

|Ω λ 0 +ν \ K| est petit et donc u ≤ u λ 0 +ν dans Ω λ 0 +ν \ K et donc u ≤ u λ 0 +ν dans Ω λ 0 +ν .
Mais ceci est en contradiction avec la définition de λ 0 . Donc λ 0 = 0 (voir Figure 4).

Step 3: Étant donné que la méthode des hyperplans mobiles peut être effectuée de la même manière mais dans le sens opposé, cela prouve le résultat de symétrie souhaité. Le fait que la solution soit monotone croissante dans la direction x 1 dans {x 1 < 0} est implicite dans la méthode des hyperplans mobiles. Cela fournit u x 1 ≥ 0 dans {x 1 ≥ 0}. Donc u x 1 > 0 par le principe du maximum fort.

En conséquence, nous avons: Nous venons de présenter la version classique de la méthode des hyperplans mobiles pour les équations elliptiques semi-linéaires. Comme nous l'avons déjà dit, dans le cas p = 2, plusieurs résultats ont été obtenus, à commencer par le célèbre article de B. Gidas, W. N. Ni et L. Nirenberg [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF]. Ce papier a eu un grand impact non seulement en vertu des nombreux résultats de monotonie et de symétrie qu'il contient, mais aussi parce qu'il a attiré l'attention sur la méthode des hyperplans mobiles qui, depuis alors, a été largement utilisée dans de nombreux problèmes différents.

La situation est complètement différente lorsque p = 2 et il y a moins de résultats concernant la monotonie et la symétrie des solutions au problème elliptique quasi linéaire. Considérons (0.6.7)

     -∆ p u = f (u) dans Ω u > 0 dans Ω u = 0 sur ∂Ω où Ω est un domaine borné lipschitzien de R N , avec N ≥ 2, 1 < p < +∞ et f est une fonction continue et localement lipschitzienne.
Dans ce cas, comme indiqué précédemment, les solutions ne peuvent être envisagées que dans un sens faible. Quoi qu'il en soit, ce n'est pas une difficulté, car la méthode des hyperplans mobiles peut être adaptée à des solutions faibles de problèmes strictement elliptiques sous forme de divergence (voir [START_REF] Damascelli | Some remarks on the method of moving planes[END_REF][START_REF] Dancer | Some notes on the method of moving planes[END_REF]).

La vraie difficulté du problème (0.6.7) est que l'opérateur p-laplacien dégénère dans les points critiques des solutions, de sorte que les principes de comparaison, qui pourraient remplacer les principes du maximum a fin d'utiliser la méthode des hyperplans mobiles l'opérateur, ne sont pas disponibles sous la même forme que pour p = 2. En fait, des contre-exemples sont disponibles pour la validité des principes de comparaison et pour les résultats de symétrie (voir [START_REF] Grossi | Symmetry of positive solutions of some nonlinear equations[END_REF] et [START_REF] Brock | Continuous rearrangement and symmetry of solutions of elliptic problems[END_REF]).

L. Damascelli in [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF] a fait un premier pas vers l'extension de la méthode des hyperplans mobiles pour solutions des problèmes impliquant l'opérateur p-Laplacien. Dans cet article, l'auteur démontre principalement quelques principes de comparaison faibles et forts pour la résolution des inégalités différentielles impliquant le p-Laplacien. En utilisant ces principes, il adapte la méthode des hyperplans mobiles pour solutions des équations aux dérivée partielles elliptique quasi-linéaire, permettant d'obtenir des résultats de monotonie et de symétrie dans le cas 1 < p < 2. Bien que les principes de comparaison de [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF] soient très puissants dans cette situation, le résultat de la symétrie n'est pas complet et repose sur l'hypothèse que l'ensemble des points critiques de u ne déconnecte pas les ensembles obtenus par la méthode des hyperplans mobiles. Ainsi, lorsque p > 2, les résultats contenus dans [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF] ne sont pas suffisants pour adapter la méthode des hyperplans mobiles. Quelques années plus tard, L. Damascelli et B. Sciunzi dans [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF][START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF] ont montré des versions générales du principe de comparaison faible (voir Theorem 1.2.5) et du principe de comparaison forte (voir Theorem 1.5.3) pour la solution à (0.1.7), qui étaient suffisante pour appliquer la technique à chaque p.

Le résultat analogue de Theorem 0.6.1, dans le contexte quasi linéaire, est donné par ce qui suit: Théorème 0.6.3 ([36]). Soit u ∈ C 1,α (Ω)∩C(Ω) une solution faible pour (0.6.7), avec 1 < p < +∞. Supposons que f soit une fonction continue et localement lipschitzienne telle que f (s) > 0 pour s > 0 et que Ω est convexe dans la direction x 1 et symétrique par rapport à l'hyperplan {x 1 = 0}. Il s'ensuit que u est symétrique par rapport à l'hyperplan {x 1 = 0} et monotone croissante dans la direction x 1 dans Ω ∩ {x 1 < 0}, avec

u x 1 > 0 dans Ω ∩ {x 1 < 0} .
De plus, si Ω = B R (0), alors u est radialement symétrique et radialement monotone décroissant.

La preuve du théorème 0.6.3 est semblable au cas semi-linéaire (voir Théorème 0.6.1), mais les principes du maximum classiques, qui équivaut au principes de comparaison dans le cas semi-linéaire, sont remplacés par les principes de comparaison par L. Damascelli et B. Sciunzi [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF][START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF] (voir Théorème 1.2.5 et 1.5.3) et l'inégalité classique de Poincaré est remplacée par une inégalité pondérée de Poincaré (voir le Théorème 1.1.4).

La méthode des hyperplans mobiles est une technique très puissante qui peut également être adaptée pour des équations elliptiques quasi linéaires dans des domaines non bornés. Dans le cas de domaines non bornés les principaux exemples, issus de nombreuses applications, sont fournis par l'espace tout entier R N et par le demi-espace R N + . Pour le cas de l'espace tout entier avec p = 2, où une symétrie radiale des solutions est attendue, nous référons à [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF][START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R N Mathematical analysis and applications, Part A[END_REF]. Nous renvoyons les lecteurs à [START_REF] Berestycki | Inequalities for secondorder elliptic equations with applications to unbounded domains. I. A celebration of John F. Nash[END_REF][START_REF] Berestycki | Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains[END_REF][START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains. Dedicated to Ennio De Giorgi[END_REF][START_REF] Damascelli | Some nonexistence results for positive solutions of elliptic equations in unbounded domains[END_REF][START_REF] Dancer | Some notes on the method of moving planes[END_REF][START_REF] Dancer | Some remarks on half space problems[END_REF][START_REF] Farina | Rigidity and one-dimensional symmetry for semilinear elliptic equations in the whole of R N and in half spaces[END_REF] pour les résultats concernant la monotonie des solutions en demi-espaces, dans le cas non dégénéré.

Le cas des équations avec le p-Laplacien dans des domaines non bornés est vraiment plus difficile à étudier. Disons seulement que l'utilisation d'espaces de Sobolev pondérés est nécessaire dans le cas p > 2 et qu'elle nécessite l'utilisation d'une inégalité de type Poincaré pondérée avec le poids = |∇u| p-2 (voir la section 1.1). Cette dernière implique des constantes qui peuvent exploser lorsque la solution approche de zéro, ce qui peut arriver aussi pour les solutions positives dans des domaines non bornés. Par conséquent, le manque de compacité joue un rôle important.

Lorsqu'on considère le cas du demi-espace R N + , l'application de la technique des hyperplans mobiles est beaucoup plus délicate, car les principes de comparaison faibles dans les petits domaines doivent être respectés substitués par des principes de comparaison faibles dans des domaines étroits non bornés (voir Théorème 1.3.1, Théorème 1.3.3 et Théorème 1.3.4).

De plus, le principe de comparaison fort ne s'applique pas de manière simple comme dans le cas où le domaine est borné. Dans le cas semi-linéaire p = 2, de nombreux arguments exploités dans la littérature sont très liés à la nature linéaire et non dégénérée de l'opérateur, de sorte qu'il n'est pas possible d'étendre ces arguments au cas d'équations impliquant des opérateurs dégénérés non linéaires.

Compte tenu de l'opérateur p-Laplacien et des problèmes rencontrés dans les demi-espaces, les premiers résultats ont été obtenus au cas singulier 1 < p < 2 in [START_REF] Farina | Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces[END_REF][START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF], où des non-linéarités positives et localement lipschitziennes considérées. Une réponse partielle dans le cas plus difficile dégénéré p > 2 a été obtenue dans [START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF], où non-linéarités de type puissance sont considérées sous la restriction 2 < p < 3. Quelques années plus tard, la restriction 2 < p < 3 a été supprimée dans [START_REF] Farina | Monotonicity in half-spaces of positive solutions to -∆pu = f (u) in the case p > 2[END_REF] et, de plus, les auteurs ont envisagé une classe plus large de non-linéarités (en particulier des non-linéarités positives super linéaires en zéro).

Dans le cas de l'espace tout entier R N , pour p = 2, l'application de la méthode des hyperplans mobiles est très compliquée, car il faut le comportement de la solution à l'infini. Dans [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], L. Caffarelli, B. Gidas et J. Spruck ont prouvé, grâce à la méthode des hyperplans mobiles et à l'utilisation de la transformation de Kelvin, que toute solutions positive de (0.6.1) avec

f (t) ≈ t N +2
N -2 , sont radialement symétrique et monotone décroissant par rapport à un point de R N . Nous renvoyons également à l'article phare de B. Gidas, W. M. Ni et L. Nirenberg [START_REF] Gidas | Symmetry of positive solutions of nonlinear elliptic equations in R N Mathematical analysis and applications, Part A[END_REF] pour des résultats concernant la symétrie et la monotonicité des solutions dans R N , mais avec une hypothèse supplémentaire sur le comportement des solutions à infini.

La situation pour p = 2 et Ω = R N est beaucoup plus compliquée; l'opérateur n'est pas linéaire et, comme auparavant, il faut un principe de comparaison dans des domaines non bornés (qui ne sont pas équivalents au principe maximum). Un premier résultat concernant les propriétés qualitatives des solutions pour les équations elliptiques quasi-linéaires dans tout l'espace est dû à J. Serrin et H. Zou [START_REF] Serrin | Symmetry of ground states of quasilinear elliptic equations[END_REF]. Dans cet article, les auteurs Introduction ont besoin d'une hypothèse supplémentaire sur la décroissance de la solution à l'infini et sur l'ensemble critique. La version non linéaire du résultat obtenu par L. Caffarelli, B. Gidas et J. Spruck dans [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], c'est-à-dire lorsque

f (t) ≈ t N (p-1)+p N p
n'était pas facile à obtenir car la transformation de Kelvin pour p = 2 ne fonctionne pas (voir par exemple [START_REF] Lindqvist | A Remark on the Kelvin Transform for a Quasilinear Equation[END_REF]) et aussi parce qu'il est impossible de commencer par la méthode des hyperplans mobiles sans toute hypothèse a priori sur la décroissance des solutions à l'infini. Ce problème a été résolu par B. Sciunzi dans [START_REF] Sciunzi | Classification of positive D 1,p (R N )-solutions to the critical p-Laplace equation in R N[END_REF]; l'argument est basé sur des estimations a priori prouvées par J. Vetois [START_REF] Vétois | A priori estimates and application to the symmetry of solutions for critical p-Laplace equations[END_REF], sur une limite inférieure du taux de décroissance de |∇u|, la méthode des hyperplans mobiles, l'inégalité de Hardy et un type pondéré de inégalité de Poincaré.

Au meilleur de notre connaissance, tous les résultats de symétrie présentés dans cette section pour les équations impliquant l'opérateur p-Laplacien dans R N ou dans R N + , avec p = 2, traités juste le cas de la non-linéarité positive. Au chapitre 7, nous proposerons une variante intéressante de la méthode des hyperplans mobiles qui fonctionne pour une classe spéciale de non-linéarités de signe changeantes et sera très utile pour résoudre la version quasi-linéaire de la conjecture de Gibbons pour (2N + 2)/(N + 2) < p < 2.

Lemme de Höpf aux bord pour les équations elliptiques singulières

À partir de l'article [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF], les équations elliptiques singulières semilinéaires ont été étudiées de nombreux points de vue. Voir par ex. [START_REF] Arcoya | Some elliptic problems with singular natural growth lower order terms[END_REF][START_REF] Boccardo | A Dirichlet problem with singular and supercritical nonlinearities[END_REF][START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | The moving planes method for singular semilinear elliptic problems Nonl[END_REF][START_REF] Canino | A uniqueness result for some singular semilinear elliptic equations Comm[END_REF][START_REF] Canino | Existence and uniqueness for p-Laplace equations involving singular nonlinearities[END_REF][START_REF] Giachetti | An elliptic problem with a lower order term having singular behaviour[END_REF][START_REF] Hirano | Multiple existence of positive solutions for singular elliptic problems with concave and convex nonlinearities[END_REF][START_REF] Kawohl | Progress in partial differential equations: elliptic and parabolic problems[END_REF][START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF][START_REF] Leoni | Explicit subsolutions and a Liouville theorem for fully nonlinear uniformly elliptic inequalities in halfspaces[END_REF][START_REF] Oliva | On singular elliptic equations with measure sources[END_REF][START_REF] Squassina | Boundary behavior for a singular quasi-linear elliptic equation[END_REF] qui sont en quelque sorte liés aux résultats contenus dans cette thèse. Un point crucial dans l'étude des équations elliptiques semi-linéaires singulières est le étude du comportement des solutions près de la frontière, à savoir où les solutions présentent en réalité un manque de régularité. En particulier, le fait que les solutions ne soient pas C 1 jusqu'au bord empêche la validité du lemme de Höpf, voir [START_REF] Birindelli | Höpf's lemma and anti-maximum principle in general domains[END_REF][START_REF] Höpf | Elementäre Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter[END_REF][START_REF] Pucci | The maximum principle[END_REF]. Nous abordons cette question et fournissons une version générale du lemme de Höpf, au chapitre 2 (voir aussi [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF]) pour les équations elliptiques singulières semi-linéaires. Considérons en particulier le problème suivant:

(0.7.1)

       -∆u = 1 u γ + f (u) dans Ω u > 0 dans Ω u = 0 sur ∂Ω, où γ > 1, Ω est un domaine borné C 2,α de R N avec 0 < α < 1, N ≥ 1 et f : Ω → R continue et localement lipschitzienne.
Il est bien connu que les solutions au problème (0.7.1) ne sont généralement pas lisses jusqu'à la limite. Il a en fait été prouvé dans [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF] que les solutions ne sont pas dans H 1 0 (Ω) au moins lorsque γ > 3. Par conséquent, tenant compte du comportement de régularité naturelle des solutions (voir [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF]), on laisse u ∈ C 2 (Ω) ∩ C(Ω). L'équation est bien définie à l'intérieur du domaine au sens classique et sa formulation faible est (0.7.2)

Ω (∇u, ∇ϕ) dx = Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω).
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Définissons maintenant le concept de normale vers l'intérieur Définition 0.7.1. Soit Ω ⊂ R N un domaine C 2,α borné. Soit I δ (∂Ω) un voisinage de ∂Ω avec la propriété de point unique le plus proche (voir, par exemple, [START_REF] Foote | Regularity of the distance function[END_REF]). Donc pour chaque x ∈ I δ (∂Ω), il existe un unique point x ∈ ∂Ω tel que |x -x| = dist(x, ∂Ω). Nous définissons la normale vers l'intérieur comme (0.7.3)

η(x) := x - x |x -x| .
Ayant ces remarques à l'esprit, nous sommes maintenant prêts à énoncer le résultat principal du chapitre 2 (voir aussi [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF]):

Théorème 0.7.2 (Lemme de Höpf aux bord, [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF]). Soit u ∈ C 2,α (Ω) ∩ C(Ω) une solution positive du problème (0.7.1). Donc il existe un voisinage I δ (∂Ω) de ∂Ω tel que (0.7.4)

∂ ν(x) u > 0 ∀ x ∈ I δ (∂Ω) à condition que (ν(x), η(x)) > 0 uniformément par rapport à x ∈ I δ (∂Ω), c'est-à-dire à condition que (ν(x), η(x)) ≥ β > 0 pour certains β > 0 pour chaque x ∈ I δ (∂Ω).
La preuve de ce résultat est basée sur un argument de changement d'échelle près de la bord, ce qui conduit à l'étude d'un problème limitant dans le demi-espace (voir problème (2.0.5)) et obéit à des estimations a priori appropriées. De plus, pour ce problème limite, nous fournissons un résultat de classification qui est crucial pour notre technique, et peut également avoir un intérêt indépendant (voir Theorem 2.0.3).

La technique de E. Höpf [START_REF] Höpf | Elementäre Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter[END_REF] (voir aussi [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) a déjà été développée et améliorée également dans le cadre quasi linéaire. Nous renvoyons les lecteurs à [START_REF] Pucci | The maximum principle[END_REF] et au chapitre 1 (voir aussi [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF]). À un moment donné, au cours de la thèse, il était naturel de savoir s'il existe un résultat analogue à celui du théorème 0.7.2 du problème (0.7.1) dans le cas quasi linéaire, considérons donc: (0.7.5)

       -∆ p u = 1 u γ + f (u) in Ω u > 0 in Ω u = 0 on ∂Ω où p > 1, γ > 1, Ω est un domaine borné de classe C 2,α de R N avec N ≥ 1 et f : Ω → R continue et localement lipschitzienne.
Puisque l'opérateur p-Laplacien est dégénéré ou singulier, une solution u ∈ C 1,α (Ω)∩C(Ω) du problème (0.7.5) doit être compris dans le sens faible: (0.7.6)
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Théorème 0.7.3 (Lemme de Höpf aux bord, [START_REF] Esposito | On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications[END_REF]). Soit u ∈ C 1,α (Ω) ∩ C(Ω) une solution positive du problème (0.7.5). Donc, pour chaque β > 0, il existe une voisinage I δ (∂Ω) de ∂Ω, tel que (0.7.7)

∂ ν(x) u > 0 ∀ x ∈ I δ (∂Ω) chaque fois que ν(x) ∈ R N avec ν(x) = 1 et (ν(x), η(x)) ≥ β.
La preuve de ce résultat sera présentée au chapitre 3. Néanmoins, la preuve de Theorem 0.7.3, à savoir la preuve du Lemme de Höpf dans le cas où il apparaît le terme singulier u -γ , ne peut être réalisée dans le manière standard principalement parce que les solutions ne sont pas de classe C 1 jusqu'au bord. Plus précisément, les preuves dans [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Höpf | Elementäre Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter[END_REF][START_REF] Pucci | The maximum principle[END_REF][START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] ont pour caractéristique commune de se baser sur la comparaison de la solution avec des sous-solutions qui ont un comportement connu sur la frontière. Cette approche, avec quelques difficultés à prendre en compte, peut être exploitée également au cas singulier puisque t -γ a le bon comportement de monotonie. Cela conduit en fait à contrôler le comportement de la solution près de la limite avec une comparaison basée sur la fonction de distance. Ceci est aussi contenu dans le théorème 3.3.2 qui donne un résultat de type Lazer et Mckenna [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF]. Bien que certaines des idées sous-jacentes de notre approche aient une saveur commune à celles exploitées dans [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF] et dans le chapitre 2, les preuves que nous exploitons au chapitre 3 sont nouvelles et adaptées à la nature non linéaire dégénérée du p-Laplacien.

Propriétés qualitatives de solutions singulières pour problèmes elliptiques

Le chapitre 4 a pour but d'étudier le problème elliptique semi-linéaire singulier suivant: (0.8.1)

     -∆u = f (x, u) dans Ω \ Γ u > 0 dans Ω \ Γ u = 0 sur ∂Ω
où Ω est un domaine lisse et borné R N avec N ≥ 2 qui est convexe dans le direction x 1 et symétrique par rapport à l'hyperplan {x 1 = 0}. La solution a une éventuelle singularité sur l'ensemble critique Γ ⊂ Ω et est donc comprise dans le sens suivant:

u ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) et (0.8.2) Ω (∇u, ∇ϕ) dx = Ω f (x, u)ϕ dx ∀ϕ ∈ C 1 c (Ω \ Γ) .
Le terme f (x, u) est supposé satisfaire (I f ) Nous disons que f remplit la condition (I f ) si f : Ω\Γ×(0, +∞) → R est un fonction continue telle que pour 0

< t ≤ s ≤ M et pour tout ensemble compact K ⊂ Ω \ Γ, on a f (x, s) -f (x, t) ≤ C(K, M )(s -t) pour chaque x ∈ K ,
où C(K, M ) est une constante positive en fonction de K et M . En outre f (•, s) est non décroissante dans la direction x 1 en Ω ∩ {x 1 < 0} et symétrique par rapport à l'hyperplan {x 1 = 0}.

En particulier, cela nous permet notamment de considérer des équations impliquant des potentiels de type Hardy-Leray, voir [START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF].

Maintenant, nous énonçons le premier résultat principal du chapitre 4:

Théorème 0.8.1. Soit Ω un domaine convexe symétrique par rapport à l'hyperplan {x 1 = 0} et soit u ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) une solution pour (0.8.1). Supposons que f remplit (I f ). Supposons aussi que Γ est un point si N = 2 tandis que Γ est fermé et tel que

Cap 2 R N (Γ) = 0, si N ≥ 3. Ensuite, si Γ ⊂ {x 1 = 0}, il s'ensuit que u est symétrique par rapport à l'hyperplan {x 1 = 0} et croissante dans la direction x 1 dans Ω ∩ {x 1 < 0}. En outre u x 1 > 0 dans Ω ∩ {x 1 < 0} .
Nous voulons remarquer que, dans le travail de B. Sciunzi [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], l'auteur a considéré l'ensemble singulier Γ contenu dans une sous-variété lisse (N -2)dimensionnelle de l'hyperplan {x 1 = 0} si N > 2, alors qu'il s'agit d'un point dans la dimension deux. Avec la même technique, développée dans [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], des problèmes plus généraux pourraient être envisagés, par exemple cas où le ensemble critique a une capacité nulle. Il est également clair que, si Γ n'est contenu dans aucun hyperplan de symétrie du domaine, puis avec notre technique, il pourrait être en tout cas possible de réaliser la méthode des hyperplans mobiles jusqu'à ce que l'hyperplan touche l'ensemble critique. C'est optimal en quelque sorte, car il est implicite dans la méthode des hyperplans mobiles que la solution est monotone et qu'elle peut changer de pente près de l'ensemble critique. Cela montre que la méthode des hyperplans mobiles ne peut aller au-delà de l'ensemble critique. Il convient également de souligner que Théorème 0.8.1 pour le problème (0.8.1) est toujours vrai si l'opérateur Laplacien ∆u est remplacé par div(A(x)∇u) pour une matrice définie positive A(x) = A(x 2 , . . . , x n ) avec coefficients continus bornés. Dans ce cas toutes les preuves peuvent être répétée mot à mot et sans régularité, la régularité continue des coefficients est également requise en dimension deux.

Les premiers résultats concernant l'applicabilité de la méthode des hyperplans mobiles au cas de solutions singulières remontent à [START_REF] Caffarelli | Some remarks on singular solutions of nonlinear elliptic equations. II: Symmetry and monotonicity via moving planes[END_REF] (voir aussi [START_REF] Terracini | On positive entire solutions to a class of equations with a singular coefficient and critical exponent[END_REF]) où le cas où l'ensemble singulier est un point unique est considéré. Nous suivons et améliorons ici la technique de [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], où le cas d'un ensemble singulier lisse (N -2)-dimensionnel a été considéré dans le cas d'une nonlinéarité Lipschitz. Mentionnons que la technique introduite dans [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF] fonctionne aussi dans un contexte non local (voir [START_REF] Montoro | Qualitative properties of singular solutions to nonlocal problems[END_REF]). Par contre, dans le cas Γ = ∅, propriétés de symétrie et monotonicité des solutions aux problèmes elliptiques semi-linéaires impliquant des non-linéarités singulières, ont été étudiés dans [START_REF] Canino | Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | The moving planes method for singular semilinear elliptic problems Nonl[END_REF]. Aussi dans cette direction notre résultat est nouveau et plus général. En fait, dans [START_REF] Canino | Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | The moving planes method for singular semilinear elliptic problems Nonl[END_REF] il est nécessaire limiter l'attention aux problèmes de forme (0.7.1), ici il suffit de considérer des non-linéarités localement Lipschitz par dessus. En fait, toutes les nonlinéarités de la forme f (x, s) := a 1 (x 1 )f 1 (s) + f 2 (s) , Introduction où f 1 est une fonction continue décroissante dans (0, +∞) et non négatif, f 2 (•) est localement Lipschitz continue dans [0, +∞) et a 1 ∈ C 0 (R), a 1 est non négatif, pair et non décroissant pour x 1 < 0, satisfait notre hypothèses. La technique, comme indiqué dans [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], peut être appliqué pour étudier solutions singulières à l'équation critique de Sobolev suivante R N , N ≥ 3, (0.8.3)

-∆u = u 2 * -1 dans R N \ Γ u > 0 dans R N \ Γ.
Dans [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF], on a considéré le cas d'un ensemble critique fermé Γ contenu dans une sous-variété lisse et compacte de dimension d ≤ N -2 et une propriété de sommabilité de la solution à l'infini était imposée (voir aussi [START_REF] Terracini | On positive entire solutions to a class of equations with a singular coefficient and critical exponent[END_REF] pour le cas particulier où le ensemble singulier Γ est réduit à un seul point). Au chapitre 4, nous supprimons ces deux restrictions et nous prouvons ce qui suit:

Théorème 0.8.2. Soient N ≥ 3 et u ∈ H 1 loc (R N \ Γ)
une solution pour (0.8.3). Supposons que la solution u a une singularité non éliminable4 dans l'ensemble singulier Γ, où Γ est un sous-ensemble fermé et approprié de

{x 1 = 0} tel que Cap 2 R N (Γ) = 0.
Alors, u est symétrique par rapport à l'hyperplan {x 1 = 0}.

La même conclusion est vraie si l'hyperplan {x 1 = 0} est remplacé par un hyperplan affine.

Les résultats obtenus au chapitre 4 dans le cas semi-linéaire, en particulier les domaines jadis impliquant des domaines bornés, peuvent être étendus de manière non triviale au cas des équations elliptiques quasi-linéaires; c'est le sujet principal du chapitre 5. Considérons maintenant le problème. (0.8.4) 

     -∆ p u = f (u) dans Ω \ Γ u > 0 dans Ω \ Γ u = 0 sur ∂Ω, dans un domaine lisse borné Ω ⊂ R N et p > 1.
Ω |∇u| p-2 (∇u, ∇ϕ) dx = Ω f (u)ϕ dx ∀ϕ ∈ C 1 c (Ω \ Γ) .
Le but du chapitre 5 (voir aussi [START_REF] Esposito | Monotonicity and symmetry of singular solutions to quasilinear problems[END_REF]) est d'étudier les propriétés de symétrie et de monotonie des solutions lorsque le domaine est supposé avoir des propriétés de symétrie. Cette question est bien comprise dans le cas semi-linéaire p = 2, comme expliqué précédemment.

Le méthode des hyperplans mobiles pour les problèmes elliptiques quasilinéaires, comme indiqué dans la Section 0.1, a été adaptée lorsque Γ = ∅. Cependant, les techniques développées dans le chapitre 4 et décrites cidessus ne peuvent pas être appliquées directement pour deux raisons. Tout d'abord, la technique développée au chapitre 4 (voir aussi cite EFS, Dino), qui fonctionne dans le cas p = 2, est fortement basée sur un argument d'homogénéité qui échoue pour p = 2. De plus, étant donné que le gradient de la solution peut exploser près de l'ensemble critique, l'équation peut alors présenter à la fois une nature dégénérée et une nature singulière. Ceci a notamment pour conséquence qu'il n'est plus vrai que le cas 1 < p < 2 permette d'obtenir des résultats plus solides de manière plus simple, comme c'est le cas dans le cas Γ = ∅.

Maintenant, nous énonçons toutes les hypothèses sur l'ensemble singulier Γ et sur la non-linéarité f dans les différents cas 1 < p < 2 et p > 2:

(A 1 f ). Pour 1 < p < 2 nous supposons que f est continue et localement lipschitzienne, de sorte que, pour tout 0 ≤ t, s ≤ M , il existe une constante positive

K f = K f (M ) tel que |f (s) -f (t)| ≤ K f |s -t|.
De plus f (s) > 0 pour s > 0 et lim t→+∞ f (t) t q = l ∈ (0, +∞).

pour certains q ∈ R tels que p-1 < q < p * -1, où p * = N p/(N -p). (A 2 f ). Pour p ≥ 2 nous supposons seulement que f est continue et localement lipschitzienne de sorte que, pour 0 ≤ t, s ≤ M il existe une constante positive

K f = K f (M ) tel que |f (s) -f (t)| ≤ K f |s -t|.
En outre f (s) > 0 for s > 0.

(A 1 Γ ). Pour 1 < p < 2 et N = 2 nous supposons que Γ = {0}, tandis que pour 1 < p < 2 et N > 2 nous supposons que Γ ⊆ M pour certains compact sous-variété M de classe C 2 et de dimension m ≤ N -k, avec k ≥ N 2 . (A 2 Γ ). Pour 2 < p < N et N ≥ 2, nous assumons Γ fermé et tel que Cap p (Γ) = 0.
Nous préférons commencer la présentation de nos résultats, que nous prouverons au chapitre 5, avec le cas p > 2. Nous avons le éléments suivants: Introduction alors il s'ensuit que u est symétrique par rapport à l'hyperplan {x 1 = 0} et monotone croissante dans la direction x 1 dans Ω ∩ {x 1 < 0}.

Bien que la technique que nous allons développer dans la preuve de Theorem 0.8.4 fonctionne pour tout p > 2, le résultat est énoncé pour 2 < p ≤ N puisqu'il n'y a pas d'ensembles de zéro p-capacité quand p > N .

Étonnamment, le cas 1 < p < 2 présente plus de difficultés liées au fait que, comme cela a déjà été dit, l'opérateur peut dégénérer à proximité de l'ensemble critique même si p < 2. Nous aurons donc besoin d'une analyse précise du comportement du gradient de la solution près de Γ. Nous réalisons une telle analyse en exploitant les résultats de [START_REF] Polácik | Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems[END_REF] Le chapitre 6 a pour objectif de généraliser tous les résultats du chapitre 4 au cas des systèmes elliptiques coopératifs semi-linéaires. En particulier, nous étudions la symétrie et la monotonie des solutions singulières de certains systèmes elliptique semilinéaires de manière à trouver une généralisation des résultats présentés au chapitre 4. Dans la première partie, nous examinons le système elliptique semi-linéaire suivant: (0.8.6) 

     -∆u i = f i (u 1 , . . . , u m ) dans Ω \ Γ u i > 0 dans Ω \ Γ u i = 0 sur ∂Ω où Ω est un domaine lisse borné de R N avec N ≥ 2 et i = 1, ...,
i = j, 1 ≤ i, j ≤ m.
Puisque nous voulons considérer des solutions singulières, l'hypothèse naturelle est:

u i ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) ∀i = 1, ..., m
et ainsi le système est compris dans le sens faible:

(0.8. 7)

Ω (∇u i , ∇ϕ i ) dx = Ω f i (u 1 , u 2 , ..., u m )ϕ i dx ∀ϕ i ∈ C 1 c (Ω \ Γ)
pour chaque i = 1, ..., m. Sous les hypothèses précédentes, nous pouvons prouver le résultat suivant:

Théorème 0.8.6. Soit Ω une domaine convexe et symétrique par rapport à l'hyperplan {x 1 = 0} et soit (u 1 , ..., u m ) une solution du problème (0.8.6),

où u i ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) pour chaque i = 1, ..., m. Supposons que chaque f i remplit (S f i ). Supposons aussi que Γ est un point si N = 2 tandis que Γ est fermé et tel que Cap 2 R N (Γ) = 0,
si N ≥ 3. Donc, si Γ ⊂ {x 1 = 0}, il s'ensuit que u i est symétrique par rapport à l'hyperplan {x 1 = 0} et monotone croissante dans la direction x 1 dans Ω ∩ {x 1 < 0}, pour chaque i = 1, ..., m. en outre

∂ x 1 u i > 0 in Ω ∩ {x 1 < 0} , pour chaque i = 1, ..., m.
La technique développée dans le cas des domaines bornés (voir [START_REF] Esposito | Qualitative properties of singular solutions to semilinear elliptic problems[END_REF][START_REF] Esposito | Monotonicity and symmetry of singular solutions to quasilinear problems[END_REF][START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF] et [START_REF] Montoro | Qualitative properties of singular solutions to nonlocal problems[END_REF] pour le cas non local) est très puissante et peut être adaptée à certains systèmes coopératifs dans R N impliquant non-linéarité critique. Les articles sur l'existence ou les propriétés qualitatives de solutions aux systèmes à croissance critique de R N sont très peu nombreux, en raison du manque de compacité due à la présence des bulles de de Talenti et des difficultés résultant de l'absence de bonnes méthodes variationnelles. Nous renvoyons le lecteur à [START_REF] Busca | Symmetry results for semilinear elliptic systems in the whole space[END_REF][START_REF] Clapp | Existence and phase separation of entire solutions to a pure critical competitive elliptic system[END_REF][START_REF] Gladiali | A non-variational system involving the critical Sobolev exponent. The radial case[END_REF][START_REF] Gladiali | Entire radial and nonradial solutions for systems with critical growth[END_REF][START_REF] Guo | Liouville type theorems for positive solutions of elliptic system in R N[END_REF][START_REF] Peng | On elliptic systems with Sobolev critical growth[END_REF] pour ce genre de systèmes. Notre objectif est d'étudier les propriétés qualitatives de solutions singulières au système d'équations m × m suivant (0.8.8) 

     -∆u i = m j=1 a ij u 2 * -1 j dans R N \ Γ, u i > 0 dans R N \ Γ, Introduction où i = 1, ...,
R N (∇u i , ∇ϕ i ) dx = m j=1 a ij R N u 2 * -1 j ϕ i dx ∀ϕ i ∈ C 1 c (R N \ Γ) pour chaque i = 1, ..., m.
Ce que nous allons montrer au chapitre 6 est également le résultat suivant:

Théorème 0.8.7. Soient N ≥ 3 et (u 1 , ..., u m ) une solution du problème (0.8.8), où u i ∈ H 1 loc (R N \ Γ) pour chaque i = 1, ..., m.
Nous supposons que la matrice A = (a ij ) i,j=1,...,m , définie ci-dessus, est symétrique, a ij ≥ 0 pour chaque i, j = 1, ..., m et que (0.8.9) est satisfait. De plus, au moins un des u i a une non amovible5 singularité dans l'ensemble singulier Γ, où Γ est un sous-ensemble fermé et approprié de {x 1 = 0} tel que

Cap 2 R N (Γ) = 0.
Ensuite, tous les u i sont symétriques par rapport à l'hyperplan {x 1 = 0}. La même conclusion est vraie si {x 1 = 0} est remplacé par un hyperplan affine. Si au moins un de u i a seulement une singularité non éliminable à l'origine pour chaque i = 1, ..., m, chaque u i présente une symétrie radiale par rapport à l'origine et décroît radialement.

Un autre système elliptique intéressant impliquant des exposants critiques de Sobolev est le suivant: (0.8.12)

         -∆u = u 2 * -1 + α 2 * u α-1 v β dans R N \ Γ -∆v = v 2 * -1 + β 2 * u α v β-1 in R N \ Γ u, v > 0 dans R N \ Γ, où α, β > 1, α + β = 2 * := 2N N -2 (N ≥ 3)
Les solutions à (0.8.12) sont des ondes solitaires pour un système d'équations couplées de Gross-Pitaevskii. Ce type de système apparaît, par exemple, dans la théorie de Hartree-Fock pour les condensats doubles, c'està-dire les condensats de Bose-Einstein de deux états hyperfins différents qui coexistent dans l'espace. Les résultats d'existence pour ce type de système sont très compliqués et l'existence de solutions non triviales est étroitement liée au paramètres α, β et N . Ce type de système a été étudié dans [START_REF] Ambrosetti | Standing waves of some coupled nonlinear Schrödinger equations[END_REF][START_REF] Bartsch | A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system[END_REF][START_REF] Bartsch | Bound states for a coupled Schrödinger system[END_REF][START_REF] Peng | On elliptic systems with Sobolev critical growth[END_REF][START_REF] Sirakov | Least energy solitary waves for a system of nonlinear Schrödinger equations in R N[END_REF][START_REF] Soave | New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms[END_REF]. En particulier, dans [START_REF] Peng | On elliptic systems with Sobolev critical growth[END_REF], les auteurs montrent un résultat unique pour les solutions d'énergie minimale sous des hypothèses appropriées des paramètres α, β et N , tandis que, dans [START_REF] Clapp | Existence and phase separation of entire solutions to a pure critical competitive elliptic system[END_REF], les auteurs étudient également les cas compétitif, ce qui montre que le système admet une infinité de solutions non triviales, qui ne sont pas conformément équivalentes. Motivés par leurs applications physiques, les systèmes elliptiques faiblement couplés ont reçu beaucoup d'attention ces dernières années, et il y a beaucoup de résultats pour le cas cubique où Γ = ∅, α = β = 2 et 2 * est remplacé par 4 dans les petites dimensions N = 3, 4, voir par exemple [START_REF] Ambrosetti | Standing waves of some coupled nonlinear Schrödinger equations[END_REF][START_REF] Bartsch | A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system[END_REF][START_REF] Bartsch | Bound states for a coupled Schrödinger system[END_REF][START_REF] Lin | Ground state of N coupled nonlinear Schrödinger equations in R N , N ≤ 3[END_REF][START_REF] Lin | Spikes in two coupled nonlinear Schrödinger equations[END_REF][START_REF] Soave | On existence and phase separation of solitary waves for nonlinear Schrödinger systems modelling simultaneous cooperation and competition[END_REF][START_REF] Soave | New existence and symmetry results for least energy positive solutions of Schrödinger systems with mixed competition and cooperation terms[END_REF]. Puisque notre technique ne fonctionne pas lorsque 1 < α < 2 ou 1 < β < 2, nous étudions ici le cas α, β ≥ 2 et N = 3 ou N = 4 , puisque nous supposons que α + β = 2 * .

Les derniers résultats qui vont être prouvés au chapitre 6 sont donnés par ce qui suit:

Théorème 0.8.8. Soit N = 3 ou N = 4 et soit (u, v) ∈ H 1 loc (R N \ Γ) × H 1 loc (R N \ Γ)
un solution au problème (0.8.12). Nous supposons que la solution (u, v) a un non-amovible6 singularité dans l'ensemble singulier Γ, où Γ est un sous-ensemble fermé et approprié de {x 1 = 0} tel que

Cap 2 R N (Γ) = 0.
De plus, supposons que α, β ≥ 2 et que α + β = 2 * . Alors, u et v sont symétriques par rapport à l'hyperplan {x 1 = 0}. La même conclusion est vraie si {x 1 = 0} est remplacé par un hyperplan affine. Si au moins une des des composantes u et v n'a qu'une singularité non éliminable à l'origine, alors (u, v) est radialement symétrique par rapport à l'origine et décroît radialement.

Introduction

Tous les résultats présentés ici, concernant les systèmes, figurent au chapitre 6 et au [START_REF] Esposito | Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearity[END_REF]; une fois cet article terminé, nous avons appris que le cas des domaines bornés était également considéré dans [START_REF] Biagi | A symmetry result for cooperative elliptic systems with singularities[END_REF] (voir [START_REF] Biagi | A symmetry result for elliptic systems in punctured domains[END_REF]), ce qui a donné des résultats similaires. 0.9. La conjecture de Gibbons pour les équations elliptiques quasi-linéaires Le chapitre 7 concerne l'étude des propriétés qualitatives des équation elliptique quasi-linéaire de la forme suivante (0.9.1)

-∆ p u = f (u) dans R N ,
où on note un point générique appartenant à R N par (x , y)

avec x = (x 1 , x 2 , . . . , x N -1 ) et y = x N , p > 1 et N > 1.
De plus, pour des fonctions appropriées, l'opérateur p-Laplacien est défini par -∆ p u := -div(|∇u| p-2 ∇u).

Comme on le sait, voir [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], les solutions d'équations impliquant l'opérateur p-Laplacien sont généralement de classe C 1,α . Par conséquent, l'équation (0.9.1) doit être comprise dans le sens faible. Nous résumons les hypothèses sur la non-linéarité f , notée (G f ), de la manière suivante:

(G f ): la non-linéarité f (•) appartient à C 1 ([-1, 1]), f (-1) = 0, f (1) = 0, f + (-1) < 0, f -(1) < 0 et le ensemble N f := {t ∈ [-1, 1] | f (t) = 0}
est fini. La définition de nos hypothèses nous permet d'inclure les non-linéarités de type Allen-Cahn et, de fait, le document est motivé par certaines questions découlant du problème suivant. (0.9.2)

-∆u = u(1 -u 2 ) dans R N ,
voir [START_REF] Farina | The state of the art for a conjecture of De Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions[END_REF]. G.W. Gibbons [START_REF] Carbou | Unicité et minimalité des solutions d'une équation de Ginzburg-Landau[END_REF] formulé ce qui suit Conjecture de Gibbons [START_REF] Carbou | Unicité et minimalité des solutions d'une équation de Ginzburg-Landau[END_REF]. -Nous assumons que N > 1 et considérons une solution u borné de l'équation (0.9.2) qui appartient à C 2 (R N ), telles que lim

x N →±∞ u(x , x N ) = ±1, uniformément par rapport à x . Alors, est-ce vrai que u(x) = tanh x N -α √ 2 , pour certains α ∈ R?
Cette conjecture est également connue comme la version faible de la célèbre conjecture de De Giorgi [START_REF] Giorgi | Convergence problems for functionals and operators[END_REF]. Nous référons à [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF] pour un historique complet de l'argument. La conjecture de Gibbons dans le cas semi-linéaire p = 2 est maintenant bien comprise (voir [START_REF] Berestycki | One-dimensional symmetry of bounded entire solutions of some elliptic equations[END_REF][START_REF] Farina | Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in R k[END_REF][START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF][START_REF] Farina | Monotonicity and rigidity of solutions to some elliptic systems with uniforms limits[END_REF]). Nous abordons ici le cas quasi linéaire d'une classe générale de non-linéarités f . À notre connaissance, il s'agit du premier résultat dans ce cadre. Ceci est motivé par le fait que, contrairement au cas semi-linéaire (0.9.2), en travaillant avec l'opérateur singulier -∆ p (•), 0.9 La conjecture de Gibbons nous devons tenir compte du fait que la non-linéarité f change de signe et que toutes les techniques impliquées dans l'étude du problème (0.9.1) ne sont pas standard lorsque nous travaillons dans l'ensemble R N . Nos preuves sont basées sur la méthode des hyperplans mobiles qui remonte aux papiers d'Alexandrov [START_REF] Alexandrov | A characteristic property of the spheres[END_REF] et de Serrin [START_REF] Serrin | A symmetry problem in potential theory[END_REF], puis aux célèbres papiers [START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] et à l' utilisation des principes de maximum et de comparaison pour l'opérateur -∆ p (•), qui est beaucoup plus compliqué car nous devons soigneusement tenir en compte la présence de points critiques de u. De plus, lorsque nous considérons le cas d'un domaine non borné comme R N , l'application de la technique des hyperplans mobiles est beaucoup plus délicate, car les principes de comparaison faibles dans les petits domaines doivent être remplacés par des principes de comparaison faibles dans les domaines non bornés. En réalité, le principe de comparaison forte ne s'applique pas simplement comme dans le cas où des domaines bornés sont pris en compte en raison du manque de compacité. Lorsque nous travaillons avec l'opérateur laplacien, c'est-à-dire le cas p = 2, de nombreux arguments exploités dans la littérature sont très liés à la nature linéaire et non dégénérée de l'opérateur. Au chapitre 7, nous ne pouvons pas tirer parti de toutes les techniques classiques utilisées dans le cas semi-linéaire et nous devons donc récupérer ces arguments dans le cas d'équations impliquant des opérateurs non linéaires dégénérés/singuliers. Le résultat principal du chapitre 7 est donné par ce qui suit:

Théorème 0.9.1. Soient N > 1, (2N + 2)/(N + 2) < p < 2 et u ∈ C 1,α
loc (R N ) une solution de l'équation (0.9.1), telles que

|u| ≤ 1 et (0.9.3) lim y→+∞ u(x , y) = 1 and lim y→-∞ u(x , y) = -1, uniformément par rapport à x ∈ R N -1 . Si f remplit (G f ), alors u ne dépend que de y et (0.9.4) ∂ y u > 0 dans R N .
Pour obtenir notre résultat principal, nous démontrons tout d'abord un principe de comparaison faible dans un demi-espace approprié, puis nous l'exploitons pour initialiser la méthode des hyperplans mobiles. L'application de la méthode des plans mobiles n'est pas standard car nous devons retrouver la compacité en utilisant l'invariance par translations de l'équation (puisque nous travaillons sur R N ) sans oublier que la non-linéarité f change de signe, ce qui ajoute de nombreuses difficultés par rapport au cas semilinéaire. Enfin, nous obtenons la monotonie dans toutes les directions de l'hémi-sphère supérieure S N -1

+ := {ν ∈ S N -1 + | (ν, e N )} cela nous donnera la symétrie souhaitée.

Preliminaries

The goal of this chapter is to resume some well known results about weak and strong comparison and maximum principles involving some semilinear and quasilinear elliptic equations.

In particular we study regularity and qualitative properties of positive weak solutions of the following elliptic problem (1.0.1)

     -∆ p u = f (u) in Ω u > 0 in Ω u = 0 on ∂Ω.
where Ω is a bounded smooth domain in

R N , N > 2, ∆ p u = div(|∇u| p-2 ∇u)
is the p-Laplace operator, 1 < p < +∞. The hypothesis on the nonlinearity f will be always specified. Anyway the reader may think that f (•) is a locally Lipschitz continuous function and most of our results will hold in this case. In general solutions to p-Laplace equations are of class C 1,α (see e.g. [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF]).

In all the thesis we further use the following inequalities, whose proof can be found for example in [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF]:

∀η, η ∈ R N with |η| + |η | > 0 there exists positive constants C 1 , C 2 , C 3 , C 4 depending on p such that [|η| p-2 η -|η | p-2 η ][η -η ] ≥ C 1 (|η| + |η |) p-2 |η -η | 2 , η| p-2 η -|η | p-2 η | ≤ C 2 (|η| + |η |) p-2 |η -η |, [|η| p-2 η -|η | p-2 η ][η -η ] ≥ C 3 |η -η | p if p ≥ 2, η| p-2 η -|η | p-2 η | ≤ C 4 |η -η | p-1 if 1 < p ≤ 2.
(1.0.2)

Regularity of the solutions

In this section we deal with the regularity of the solutions to problem (1.0.1). All the results contained in this section can be found in a paper by L. Damascelli and B. Sciunzi [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF], where the authors essentially proved the weak maximum principle for quasilinear elliptic equations, i.e. for problem (1.0.1), via the summability properties of the solutions and thanks to the moving planes method of Alexandrov-Serrin, when p > 2 and f (s) > 0 for s > 0 (the case 1 < p ≤ 2 was well known). In all the thesis we will say that u ∈ C 1 (Ω) is a weak solution to problem (1.0.1) if it satisfies the following equation (1.1.1)

Ω |∇u| p-2 (∇u, ∇ϕ) dx = Ω f (u)ϕ dx, ∀ϕ ∈ C ∞ c (Ω).
We define, as usual, the critical set Z u of u by setting

(1.1.2) Z u = x ∈ Ω : ∇u(x) = 0
Note that the importance of the critical set Z u is due to the fact that it is exactly the set where our operator is degenerate. By Höpf boundary lemma (cf. [START_REF] Pucci | The maximum principle[END_REF] or Section 1.4), it follows that

(1.1.3) Z u ∩ ∂Ω = ∅, if f (0) ≥ 0. We point out that, by standard regularity results, u ∈ C 2 (Ω \ Z u ). For functions ϕ ∈ C ∞ c (Ω \ Z u )
, let us consider the test function ϕ i = ∂ x i ϕ and denote also u i = ∂ x i u, for all i = 1, . . . , N . With this choice in (1.1.1), integrating by parts, we get

Ω |∇u| p-2 (∇u i , ∇ϕ) + (p -2) Ω |∇u| p-4 (∇u, ∇u i )(∇u, ∇ϕ) dx - Ω f (u)u i ϕ = 0, (1.1.4)
that is, in such a way, we have defined the linearized operator L u (u i , ϕ) at a fixed solution u of (1.1.1). Then we can write equation (1.1.4) as

(1.1.5) L u (u i , ϕ) = 0, ∀ϕ ∈ C ∞ c (Ω \ Z u ).
1.1.1. Summability of second derivatives. The aim of this subsection is to show some summability results on the second derivatives of solutions to (1.0.1). The point of view of considering |∇u| p-2 as a weight is particularly useful when studying qualitative properties of a fixed solution. In the following, we repeatedly use Young's inequality in the form ab ≤ δa 2 + C(δ)b 2 for all a, b ∈ R and δ > 0. We can now state and prove the following:

Proposition 1.1.1. Let u ∈ C 1 (Ω) be a weak solution to problem (1.0.1). Assume that f is locally Lipschitz continuous. Assume that Ω is a bounded and smooth domain of R N . Then (1.1.6) Ω\{u i =0} |∇u| p-2 |y -x| γ |∇u i | 2 |u i | β dx ≤ C, where 0 ≤ β < 1, γ < N -2 (γ = 0 if N = 2), 1 < p < +∞
and the positive constant C does not depend on y. In particular, we have

(1.1.7) Ω\{∇u=0} |∇u| p-2-β D 2 u 2 |y -x| γ dx ≤ C,
for a positive constant C not depending on y.

Regularity of the solutions

Proof. For all ε > 0, let us define the smooth function T ε : R → R by setting

(1.1.8) T ε (t) =          t if |t| ≥ 2ε, 2t -2ε if ε ≤ t ≤ 2ε, 2t + 2ε if -2ε ≤ t ≤ -ε, 0 if |t| ≤ ε.
To prove (1.1.6) we choose E ⊂⊂ Ω such that

Z u ∩ (Ω \ E) = ∅.
Since u is C 2 in Ω \ E, then we may reduce to prove that

E\{u i =0} |∇u| p-2 |y -x| γ |∇u i | 2 |u i | β dx ≤ C. Let us consider the cut-off function ψ ∈ C ∞ c (Ω), such that the support of ψ is compactly contained in Ω, ψ ≥ 0 in Ω and ψ ≡ 1 in E. Hence we set (1.1.9) ϕ ε,y (x) = T ε (u i (x)) |u i (x)| β ψ(x) |y -x| γ where 0 ≤ β < 1, γ < N -2 (γ = 0 for N = 2). Since ϕ ε,y vanishes in a neighborhood of each critical point, it follows that ϕ ε,y ∈ C 2 c (Ω \ Z u
) and hence we can use it as a test function in (1.1.4), getting the following result:

Ω 1 |y -x| γ |∇u| p-2 |u i | β T ε (u i ) -β T ε (u i ) u i ψ|∇u i | 2 dx + Ω (p -2) 1 |y -x| γ |∇u| p-4 |u i | β T ε (u i ) -β T ε (u i ) u i ψ(∇u, ∇u i ) 2 dx + Ω 1 |y -x| γ |∇u| p-2 T ε (u i ) |u i | β (∇u i , ∇ψ) dx + Ω (p -2) 1 |y -x| γ |∇u| p-4 T ε (u i ) |u i | β (∇u, ∇u i )(∇u, ∇ψ) dx + Ω |∇u| p-2 T ε (u i ) |u i | β ψ ∇u i , ∇ x 1 |y -x| γ dx + Ω (p -2)|∇u| p-4 T ε (u i ) |u i | β ψ(∇u, ∇u i ) ∇u, ∇ x 1 |y -x| γ dx = Ω f (u)u i T ε (u i ) |u i | β ψ |y -x| γ dx.
Let us denote each term of the previous equation in a useful way for the sequel, that is

A 1 = Ω 1 |y -x| γ |∇u| p-2 |u i | β T ε (u i ) -β T ε (u i ) u i ψ|∇u i | 2 dx; A 2 = Ω (p -2) 1 |y -x| γ |∇u| p-4 |u i | β T ε (u i ) -β T ε (u i ) u i ψ(∇u, ∇u i ) 2 dx; A 3 = Ω 1 |y -x| γ |∇u| p-2 T ε (u i ) |u i | β (∇u i , ∇ψ) dx; Preliminaries A 4 = Ω (p -2) 1 |y -x| γ |∇u| p-4 T ε (u i ) |u i | β (∇u, ∇u i )(∇u, ∇ψ) dx; A 5 = Ω |∇u| p-2 T ε (u i ) |u i | β ψ ∇u i , ∇ x 1 |y -x| γ dx; A 6 = Ω (p -2)|∇u| p-4 T ε (u i ) |u i | β ψ(∇u, ∇u i ) ∇u, ∇ x 1 |y -x| γ dx; M = Ω f (u)u i T ε (u i ) |u i | β ψ |y -x| γ dx.
Then we have rearranged the equation as (1.1.10)

6 i=1 A i = M.
Notice that, since 0 ≤ β < 1, for all t ∈ R and ε > 0 we have

T ε (t) - βT ε (t) t ≥ 0, lim ε→0 T ε (t) - βT ε (t) t = 1 -β.
From now on, we will denote

Tε (t) = T ε (t) -β T ε (t) t ,
for all t ∈ R and ε > 0.

From equation (1.1.10) one has

A 1 + A 2 ≤ 6 i=3 |A i | + |M |.
We shall distinguish the proof into two cases.

Case I: p ≥ 2. This implies A 2 ≥ 0, and hence (1.1.11)

A 1 ≤ A 1 + A 2 ≤ 6 i=3 |A i | + |M |.
Case II: 1 < p < 2. By Schwarz inequality, of course, it follows

|∇u| p-4 (∇u, ∇u i ) 2 ≤ |∇u| p-2 |∇u i | 2 .
In turn, since 1 < p < 2, this implies

(p -2) Tε (u i ) |u i | β ψ|∇u| p-4 (∇u, ∇u i ) 2 |y -x| γ ≥ (p -2) Tε (u i ) |u i | β ψ|∇u| p-2 |∇u i | 2 |y -x| γ , so that (p -2)A 1 ≤ A 2 , yielding (1.1.12) A 1 ≤ 1 p -1 (A 1 + A 2 ) ≤ 1 p -1 6 i=3 |A i | + |M | .
In both cases, in view of (1.1.11) and (1.1.12), we want to estimate the terms in the sum (1.1.13)

6 i=3 |A i | + |M |.
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Let us start by estimating the terms A i in the sum (1.1.13). Concerning A 3 , we have

|A 3 | ≤ Ω 1 |y -x| γ |∇u| p-2 |T ε (u i )| |u i | β |∇u i ||∇ψ|dx ≤ C 3 , where 1 |y -x| γ |∇u| p-2 |u i | β-1 |T ε (u i )| |u i | |∇u i ||∇ψ| ∈ L ∞ (Ω),
since |∇u i | is bounded in a neighborhood of the boundary by Höpf Lemma, γ -2 < N , 0 ≤ β < 1 and the constant C 3 is independent of y. For the same reason, we also have

|A 4 | ≤ Ω |p -2| |y -x| γ |∇u| p-2 |T ε (u i )| |u i | β |∇u i ||∇ψ| dx ≤ C 4 ,
for some positive constants C 4 independent of y. Furthermore, for a positive constant C 5 independent of y, we have

|A 5 | ≤ Ω |∇u| p-2 |T ε (u i )| |u i | β ψ|∇u i | ∇ x 1 |y -x| γ dx ≤ C 5 Ω |∇u| p-2 |T ε (u i )| |u i | β ψ|∇u i | 1 |y -x| γ+1 dx ≤ C 5 δ Ω 1 |y -x| γ |∇u| p-2 |u i | β ψ |T ε (u i )| |u i | |∇u i | 2 dx + C(δ) Ω |∇u| p-1 |T ε (u i )| |u i | 1 |y -x| γ+2 dx ≤ C 5 δ Ω 1 |y -x| γ |∇u| p-2 |u i | β ψ |T ε (u i )| |u i | |∇u i | 2 dx + K 5 (δ)
where we used Young's inequality, γ -2 < N and 0 ≤ β < 1. In a similar way,

|A 6 | ≤ Ω |p -2||∇u| p-2 |T ε (u i )| |u i | β ψ|∇u i | ∇ x 1 |y -x| γ dx ≤ C 6 δ Ω 1 |y -x| γ |∇u| p-2 |u i | β ψ T ε (u i ) u i |∇u i | 2 dx + K 6 (δ)
and

|M | ≤ Ω |f (u)| |T ε (u i )| |u i | β-1 ψ |y -x| γ dx ≤ C M ,
where the last inequality holds true since f is locally Lipschitz continuous and where C 6 and C M are constants independent of y. Then, by these estimates above and by equations (1.1.11), (1.1.12) and (1.1.13) we write

A 1 ≤ D 6 i=3 |A i | + |M | ≤ SδA 1 + Mδ Ω 1 |y -x| γ |∇u| p-2 |u i | β ψ T ε (u i ) u i |∇u i | 2 dx + C δ , (1.1.14) 
where we have set

D = max 1, 1 p -1 , S = D C 3 η , M = D max C 5 , C 6 C δ = D max K 5 (δ), K 6 (δ), C 3 , C 4 , C M .
Then by (1.1.14) one has

(1 -Sδ) Ω 1 |y -x| γ |∇u| p-2 |u i | β T ε (u i ) -β T ε (u i ) u i ψ|∇u i | 2 dx ≤ Mδ Ω 1 |y -x| γ |∇u| p-2 |u i | β ψ T ε (u i ) u i |∇u i | 2 dx + C δ , namely (1 -Sδ) Ω 1 |y -x| γ |∇u| p-2 |u i | β T ε (u i ) -β + Mδ (1 -Sδ) T ε (u i ) u i ψ|∇u i | 2 dx ≤ C δ . (1.1.15) Let us choose δ > 0 such that (1.1.16) 1 -Sδ > 0, 1 -β + Mδ 1-Sδ > 0. Therefore, since as ε → 0 T ε (u i ) -β + Mδ (1 -Sδ) T ε (u i ) u i → 1 -β - Mδ (1 -Sδ) > 0 in {u i = 0},
by Fatou's Lemma we get (1.1.17)

Ω\{u i =0} |∇u| p-2 |y -x| γ |∇u i | 2 |u i | β ψdx ≤ C.
The proof is now complete, in view of the choose of the cut-off function ψ.

Gradients summability.

In this subsection we show the gradient summability of a solution u of problem (1.0.1). We have the following: Theorem 1.1.2. Let u be a weak solution of (1.0.1) and assume, furthermore, that f (s) > 0 for any s > 0. Then, there exists a positive constant C, independent of y, such that

(1.1.18) Ω 1 |∇u| (p-1)r 1 |x -y| γ dx ≤ C where 0 < r < 1 and γ < N -2 for N ≥ 3 (γ = 0 if N = 2).
In particular the critical set Z u has zero Lebesgue measure.

Proof. Let E be a set with E ⊂⊂ Ω and (Ω \ E) ∩ Z u = ∅. Recall that Z u = {∇u = 0} and Z u ∩ ∂Ω = ∅, in view of Höpf boundary lemma (see [START_REF] Pucci | The maximum principle[END_REF] or Section 1.4). It is easy to see that, to prove the result, we may reduce to show that

(1.1.19) E 1 |∇u| (p-1)r 1 |x -y| γ dx ≤ C.
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To achieve this, let us consider the function

(1.1.20) Ψ(x) = Ψ ε,y (x) = 1 (|∇u| + ε) (p-1)r 1 |x -y| γ ϕ, where 0 < r < 1 and γ < N -2 for N ≥ 3 (γ = 0 if N = 2). We also assume that ϕ is a positive C ∞ c (Ω) cut-off function such that ϕ ≡ 1 in E. Using Ψ as test function in (1.1.1), since f (u) ≥ σ for some σ > 0 in the support of Ψ, we get σ Ω Ψ dx ≤ Ω f (u)Ψ dx = Ω |∇u| p-2 (∇u, ∇Ψ) dx ≤ Ω |∇u| p-2 |(∇u, ∇|∇u|)| 1 (|∇u| + ε) (p-1)r+1 1 |x -y| γ ϕ dx + Ω |∇u| p-2 ∇u, ∇ x 1 |x -y| γ 1 (|∇u| + ε) (p-1)r ϕ dx + Ω |∇u| p-2 |(∇u, ∇ϕ)| 1 (|∇u| + ε) (p-1)r 1 |x -y| γ dx.

Consequently, we have

Ω Ψ dx ≤ C Ω |∇u| p-1 D 2 u 1 (|∇u| + ε) (p-1)r+1 1 |x -y| γ ϕ dx + Ω |∇u| p-1 (|∇u| + ε) (p-1)r 1 |x -y| γ+1 ϕ dx + Ω |∇u| p-1 (|∇u| + ε) (p-1)r |∇ϕ| |x -y| γ dx .
Then, denoting by C i , suitable positive constants independent of y and by C δ a positive constant depending on δ, we obtain

Ω Ψ dx ≤ C 1 Ω |∇u| p-1 D 2 u • 1 (|∇u| + ε) (p-1)r+1 • 1 |x -y| γ • ϕ dx + C 2 Ω 1 |x -y| γ+1 dx + C 3 Ω 1 |x -y| γ dx ≤ C 1 Ω |∇u| p-1 D 2 u • 1 (|∇u| + ε) (p-1)r+1 • 1 |x -y| γ • ϕ dx + C 4 ≤ C 5 δ Ω 1 (|∇u| + ε) (p-1)r • 1 |x -y| γ • ϕ dx + C δ Ω |∇u| (p-2)-(p(r-1)+2-r) D 2 u 2 • 1 |x -y| γ • ϕ dx + C 6 ≤ C 5 δ Ω Ψ dx + C δ . (1.1.21)
Here we have we used that u ∈ C 1 (Ω ), γ < N -2 and we have exploited the regularity result of Proposition 1.1.1, with β := p(r -1) + 2 -r. Then, by (1.1.21), fixing δ sufficiently small, such that 1 -C 5 δ > 0, one concludes (1.1.22)

Ω 1 (|∇u| + ε) (p-1)r 1 |x -y| γ ϕ dx ≤ K,
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for some positive constant K independent of y. Taking the limit for ε going to zero, the assertion immediately follows by Fatou's Lemma. Moreover, as a consequence, we have that In this paragraph we shall prove some results about weighted Sobolev and Poincaré inequality, that are essential tools in the proof of the weak comparison principle in the case p > 2. Let us start stating the following:

L(Z u ) = 0.
Condition (PE) We say that u(x) satisfies the Condition (PE) in Ω, if (1.1.23) |u(x)| ≤ Ĉ Ω |∇u(y)| |x -y| N -1 dy.
This condition is the same introduced in a paper by A. Farina, L. Montoro and B. Sciunzi [START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF]. This generally follows by potential estimates, see [70, Lemma 7.14, Lemma 7.16], that gives

u(x) = Ĉ Ω (x i -y i ) ∂u ∂x i (y) |x -y| N dy a.e. in Ω, with (i) Ĉ = 1 N ω N if u ∈ W 1,1 0 (Ω), where ω N is the volume of the unit ball in R N ; (ii) Ĉ = d N N |S| if u ∈ W 1,1 (Ω) with S u = 0 and Ω convex,
where d = diam Ω and S any measurable subset of Ω. Moreover let µ ∈ (0, 1], we define

(1.1.24) V µ [f, Ω](x) = Ω f (y) |x -y| N (1-µ) dy.
It is well known that (see [70, pag.159

]) (1.1.25) V µ [1, Ω](x) ≤ µ -1 ω 1-µ N |Ω| µ . Let us state the following: Lemma 1.1.1. Let us consider Ω ⊂ Ω and V µ [f, Ω](x) as in (1.1.24). Then for any 1 ≤ q ≤ ∞ one has (1.1.26) V µ [f, Ω](x) L q (Ω) ≤ 1 -δ µ -δ 1-δ ω 1-µ N |Ω| µ-δ f L m ( Ω) ,
where

0 ≤ δ = 1 m - 1 q < µ.
Proof. The proof follows by [70, Lemma 7.12].

Regularity of the solutions 49

Recall that, if ∈ L1 (Ω), 1 ≤ q < ∞, the space H 1,q (Ω) is defined as the completion of C ∞ (Ω) under the norm

(1.1.27) v H 1,q = v L q (Ω) + ∇v L q (Ω, )
where

∇v q L q (Ω, ) = Ω |∇v| q dx.
We also recall that H 1,q 0, is defined as the completion of

C ∞ c (Ω) under the norm (1.1.28) v H 1,q 0, = ∇v L q (Ω, ) .
Theorem 1.1.3 (Weighted Sobolev inequality). Let a weight function such that

(1.1.29) Ω 1 t |x -y| γ ≤ C * , with t = p-1 p-2 r, p-2 p-1 < r < 1, γ < N -2 (γ = 0 if N = 2). Assume, in the case N ≥ 3, without no loss of generality that γ > N -2t, which 1 implies N t -2N + 2t + γ > 0. Then, for any w ∈ H 1,2 0, (Ω), there exists a constant C s such that (1.1.30) w L q (Ω) ≤ C s ∇w L 2 (Ω, ) = C s Ω |∇w| 2 1 2
, for any 1 ≤ q < 2 * (t) where

(1.1.31) 1 2 * (t) = 1 2 - 1 N + 1 t 1 2 - γ 2N .
with

(1.1.32) C s = Ĉ(C * ) 1 2t (C M ) 1 (2t) ,
where Ĉ is as in (1.1.23), C * is as in (1.1.29) and in the statement of Theorem 1.1.2, and

C M = 1 -δ α N -δ 1-δ ω 1-α N n |Ω| α N -δ .
Remark 1.1.2. Note that the largest value of 2 * (t) is obtained at the limiting case t ≈ p-1 p-2 , and γ ≈ (N -2), γ = 0 for N = 2. We have therefore that (1.1.30) holds for any q < 2 * where

1 2 * = 1 2 - 1 N + p -2 p -1 • 1 N , Moreover one has 2 * > 2.
Proof. Without loss of generality we assume w belonging to C 1 (Ω) or C 1 0 (Ω) depending on the case (i) or (ii) of Condition (PE).

Hence (1.1.23) implies (1.1.33) |w(x)| ≤ Ĉ Ω |∇w(y)| |x -y| N -1 dy. Then |w(x)| ≤ Ĉ Ω |∇w(y)| |x -y| N -1 dy ≤ Ĉ Ω 1 1 2 |x -y| γ 2t |∇w(y)| 1 2 |x -y| N -1-γ 2t dy ≤ Ĉ Ω 1 t |x -y| γ dy 1 2t    Ω |∇w(y)| 1 2 (2t) |x -y| (N -1-γ 2t )(2t) dy    1 (2t)
, where in the last inequality we used Hölder inequality with

1 2t + 1 (2t) = 1. Hence (1.1.34) |w(x)| ≤ Ĉ(C * ) 1 2t    Ω |∇w(y)| 1 2 (2t) |x -y| (N -1-γ 2t )(2t) dy    1 (2t)
.

We point out that (1.1.35) |∇w|

1 2 (2t) ∈ L 2 (2t) (Ω).
From (1.1.34), by using equation (1.1.24

) with µ = 1 -1 N (N -1 -γ 2t )(2t) , we obtain (1.1.36) |w(x)| ≤ Ĉ(C * ) 1 2t V µ |∇w(y)| 1 2 (2t) 
, Ω (

.

Moreover we remark that the assumption γ > N -2t implies µ > 0. We shall use now Lemma 1.1.1 setting

1 m = (2t) 2 ,
see (1.1.35). In order to apply (1.1.26), since by assumption N t -2N + 2t + γ > 0, a direct calculation shows that it is possible to find a q > 1 such that

1 m - 1 q < µ.
From (1.1.34) we have

Ω |w(x)| q(2t) dx 1 q(2t) ≤ Ĉ(C * ) 1 2t V µ |∇w(y)| 1 2 (2t)
, Ω (x)

1 (2t) L q (Ω)
.

(1.1.37)
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From (1.1.37), by using Lemma 1.1.1 we get

Ω |w(x)| q(2t) 1 q(2t) ≤ Ĉ(C * ) 1 2t 1 -δ α N -δ 1-δ ω 1-α N n |Ω| α N -δ 1 (2t) Ω |∇w| 2 1 2 , (1.1.38) that gives (1.1.31) with q(2t) = 2 * (t) and (1.1.32) with C M = 1 -δ α N -δ 1-δ ω 1-α N n |Ω| α N -δ .
As a natural consequence of the weighted Sobolev inequality, we obtain the following:

Corollary 1.1.4 (Weighted Poincaré inequality). Let w be as in one of the following cases

(i) w ∈ H 1,2 0, (Ω), (ii) w ∈ H 1,2 (Ω) such that Ω w = 0 and Ω convex.
Then, if the weight fulfill (1.1.29), then

Ω w 2 ≤ C p (Ω) Ĉ2 (C * ) 1 t (C M ) 2 (2t) Ω |∇w| 2 ,
where Ĉ, C * , C M are as in Theorem 1.1.3 and with C p (Ω) → 0 if |Ω| → 0. In particular, given any 0 < ϑ < 1, we can assume that

(1.1.39) C p (Ω) ≤ C |Ω| 2 ϑ (p-1)N .
Proof. Choose 2 < q < 2 * . By Holder inequality we get:

(1.1.40)

Ω w 2 ≤ Ω w q 2 q |Ω| q-2 q ,
and then using Theorem 1.1.3 one has

Ω w 2 ≤ C p (Ω) Ĉ2 (C * ) 1 t (C M ) 2 (2t) Ω |∇w| 2 .
By (1.1.40) and direct computation it follows (1.1.39).

Weak comparison principles in bounded domains

As remarked at the beginning of this chapter, our aim is to show some results about comparison principles involving semilinear an quasilinear elliptic equations in bounded and unbounded domains. In fact, the aim of this section is to show some results about weak comparison principles in small domains. To do this, let us consider the following elliptic problem

(1.2.1) -∆ p u ≤ f (u) in Ω -∆ p v ≥ f (v) in Ω,
where Ω ⊂ R N , N ≥ 2, is a bounded domain and 1 < p < +∞. In all the section we assume that f is a locally Lipschitz continuous function on [0, +∞). As remarked in the introduction, we just point out that it is well known that, if p = 2, we have classical sub and super-solution u, v ∈ C 2 (Ω), while if p = 2 problem (1.2.1) has to be understood in the weak distributional meaning, since it is well known by regularity theory that u, v ∈ C 1,α (Ω), see e.g. [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF].

We just point out the fact that if p = 2 the situation is well known in the literature, since, maximum principles and comparison principles are equivalent. Inspired by classical results, that can be found for example in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], we exploit the following well known result whose proof can be found in a paper by A. Farina and B. Sciunzi (see [START_REF] Farina | Qualitative properties and classification of nonnegative solutions to -∆u = f (u) in unbounded domains when f (0) < 0[END_REF]):

Theorem 1.2.1 (Weak comparison principle in small domains, p = 2). Let us assume that p = 2 and u, v ∈ C 2 (Ω) satisfying (1.2.1). Then there exists ϑ = ϑ(Ω, u, v, f ) > 0 such that, if for any domain Ω ⊂ Ω with u ≤ v on ∂Ω and |Ω | ≤ ϑ (where | • | denotes the Lebesgue measure of a set) it follows that u ≤ v in Ω .
Proof. Let us consider the weak formulation of problem (1.2.1) and get

(1.2.2) Ω (∇u, ∇ϕ) dx - Ω f (u)ϕ dx ≤ Ω (∇v, ∇ϕ) dx - Ω f (v)ϕ dx for every test function ϕ ∈ C ∞ c (Ω ), ϕ ≥ 0 in Ω . Taking (u -v) + ∈ H 1 0 (Ω ) as test function in (1.2.2), we obtain Ω |∇(u -v) + | 2 dx ≤ Ω f (u) -f (v) u -v [(u -v) + ] 2 dx ≤ C(Ω, u, v, f ) Ω [(u -v) + ] 2 dx (1.2.3)
where the positive constant C(Ω, u, v, f ) can be determined exploiting the fact that u, v are bounded on Ω and f is locally Lipschitz continuous on [0, ∞). An application of Poincaré inequality gives

(1.2.4) Ω |∇(u -v) + | 2 dx ≤ C(Ω, u, v, f )(C N (|Ω |)) 2 N Ω |∇(u -v) + | 2 dx
where C N > 0 is a constant depending only on the Euclidean dimension N .

For |Ω | sufficiently small such that C(Ω, u, v, f )(C N (|Ω |)) 2 
N < 1, we get that (u -v) + ≡ 0 and the thesis.

The situation is completely different when p = 2. Since the p-Laplace operator ∆ p u := div(|∇u| p-2 ∇u) is nonlinear, there is a deep difference 1.2 Weak comparison principles in bounded domains 53 between comparison and maximum principles. We have to remark that the singular case, i.e. 1 < p < 2, is easier than the degenerate one, since when p > 2 we need to apply weighted Sobolev and Poincaré inequalities proved in Section 1.1, see Theorem 1.1.3 and Corollary 1.1.4 The weak comparison principle for the quasilinear elliptic problem (1.2.1) appeared, in a very general version, in a paper by L. Damascelli [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF] when 1 < p < 2. First of all let us recall the Poincaré inequality whose proof with A = Ω and B = ∅ can be found in [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. Now we prove the variant proposed in [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF].

Lemma 1.2.2 (Poincaré inequality). Let us assume that Ω is an open bounded set such that Ω = A ∪ B with A, B measurable set of Ω. If u ∈ W 1,q 0 (Ω) with 1 < q < +∞, then (1.2.5) u L ∞ (Ω) ≤ ω -1 N N |Ω| 1 N q |A| 1 N q ∇u L q (A) + |B| 1 N q ∇u L q (B)
,

where q = q q-1 . Proof. Let us define h(x, y) := |x -y| 1-N and let us assume that C is a measurable set of Ω. If R > 0 is such that |C| = |B(x, R)| we have C h(x, y) dy = C∩B(x,R) h(x, y) dy + C\B(x,R) h(x, y) dy ≤ C∩B(x,R) h(x, y) dy + B(x,R)\C h(x, y) dy = B(x,R) h(x, y) dy = N ω N R = N ω N |C| ω N 1 N , (1.2.6) 
where ω N is the misure of the N -dimensional ball B(0, 1). If f ∈ L q (C) by Fubini's Theorem for a.e. x ∈ Ω we have that f (y)(h(x, y))

1 q ∈ L p (C). Let us recall the definition of potential given in (1.1.24) with µ = 1 N V 1 N [f, C](x) := C f (y)h(x, y) dy.
Then by (1.2.6) and Hölder inequality it follows that

|V 1 N [f, C](x)| ≤ C |f |h 1 q h 1 q dy ≤ C |f (y)| q h(x, y) dy 1 q C h(x, y) dy 1 q ≤ N ω N |C| ω N 1 N 1 q C |f (y)| q h(x, y) dy 1 q
.

(1.2.7)

Taking the q power and integrating in x over Ω we obtain, using again Fubini's Theorem and (1.2.7) with C = Ω and the role of x and y interchanged,

(1.2.8) V 1 N [f, C] L q (Ω) ≤ N ω N |C| ω N 1 N q |Ω| ω N 1 N q f L q (C) . Now, if u ∈ C ∞ c
(Ω) then we have the representation (see Lemma 7.14 [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF])

u(x) = 1 N ω N Ω |x -y| -N (∇u, x -y) dy so that if Ω = A ∪ B we have that u(x) ≤ 1 N ω N V 1 N [A, |∇u|](x) + V 1 N [B, |∇u|](x) .
From (1.2.8) we obtain (1.2.5) for u ∈ C ∞ c (Ω) and the general case follows by density argument.

Let us put, if u, v are functions in W 1,∞ (Ω) and A ⊆ Ω M A = M A (u, v) = sup A (|∇u| + |∇v|). Remark 1.2.3. A function f : R → R is locally Lipschitz continuous if and only if for all R > 0 there exists C 1 (R), C 2 (R) ≥ 0 such that (1) f 1 (s) = f (s) -C 1 s is non-increasing in [-R, R]. (2) f 2 (s) = f (s) -C 2 s is non-decreasing in [-R, R].
In view of Remark 1.2.3 we prove (see also [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF]) the following version of the weak comparison principles in the singular case: if

Theorem 1.2.4 (Weak comparison principle, 1 < p < 2). Let Ω be bounded and u, v ∈ W 1,∞ (Ω) weakly satisfy (1.2.9) -∆ p u + g(x, u) -Λu ≤ -∆ p v + g(x, v) -Λv in Ω where Λ ≥ 0 and g ∈ C(Ω × R) is such that for each x ∈ Ω g(x, s) is non- decreasing in s for |s| ≤ max{ u ∞ , v ∞ }. Let Ω ⊆ Ω
Ω = A 1 ∪ A 2 , |A 1 ∩ A 2 | = 0, |A 1 | < δ and M A 2 < M, then u ≤ v in Ω .
Proof. (a) Let us assume that Λ = 0. We pass to the weak formulation of (1.2.9)

Ω (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ) dx + Ω [g(x, u) -g(x, v)]ϕ dx ≤ 0, ∀ϕ ∈ C ∞ c (Ω ).
(1.2.10)

Since by our assumptions u ≤ v on ∂Ω it follows that ϕ = (u -v) + ∈ W 1,p 0 (Ω ). Using ϕ as test function in (1.2.10), the fact that g is nondecreasing and also by (1.0.2) we deduce that

C 1 Ω (|∇u| + |∇v|) p-2 |∇(u -v)| 2 dx ≤ Ω (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇(u -v) + ) dx ≤ 0. (1.2.11)
Hence by (1.2.11) it follows that (u -v) + ≡ 0 in Ω and this gives the thesis.

(b) As we did above by (1.2.9), we pass to the weak formulation

Ω (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ) dx + Ω [g(x, u) -g(x, v)]ϕ dx -Λ Ω (u -v)ϕ dx ≤ 0, ∀ϕ ∈ C ∞ c (Ω ).
(1.2.12)

Since by our assumptions u ≤ v on ∂Ω it follows that ϕ = (u -v) + ∈ W 1,p 0 (Ω ). Using ϕ as test function in (1.2.10), the fact that g is nondecreasing and also by (1.0.2) we deduce that

C 1 Ω (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx ≤ Ω (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇(u -v) + ) dx ≤ Λ Ω [(u -v) + ] 2 ϕ dx (1.2.13) Let us recall that Ω = A 1 ∪ A 2 and 1 < p < 2, hence we rewrite (1.2.13) C 1 M p-2 Ω A 1 |∇(u -v) + | 2 dx + C 1 M p-2 A 2 A 2 |∇(u -v) + | 2 dx ≤ C 1 Ω (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx ≤ Λ Ω [(u -v) + ] 2 dx (1.2.14)
Now, by Lemma 1.2.2 with q = q = 2 we have that

C 1 M p-2 Ω A 1 |∇(u -v) + | 2 dx + C 1 M p-2 A 2 A 2 |∇(u -v) + | 2 dx ≤ 2Λω -2 N N |Ω | 1 N |A 1 | 1 N A 1 |∇(u -v) + | 2 dx + |Ω | 1 N A 2 |∇(u -v) + | 2 dx . (1.2.15)
Now, we infer that if |A 1 | and M A 2 are small we must have

A i |∇(u -v) + | 2 dx = 0, for i = 1, 2
, so that (u -v) + ≡ 0 in Ω and hence the thesis.

As remarked at the beginning of this section, using regularity results and weighted Sobolev and Poincaré inequalities proved in Section 1.1, an application of previous results is given by the following: Theorem 1.2.5 (Weak comparison principle, p > 2). Let Ω be a bounded smooth domain such that Ω ⊆ Ω. Assume that u, v are solutions to the problem (1.0.1) and assume that u ≤ v on ∂ Ω. Then there exists a positive constant ϑ = ϑ(Ω, u, v, f ) such that, assuming

| Ω| ≤ ϑ then it holds u ≤ v in Ω.
Proof. Let us recall the weak formulations for the solutions u and v to problem (1.0.1)

Ω |∇u| p-2 (∇u , ∇ϕ) dx = Ω f (u)ϕ dx, ∀ϕ ∈ C ∞ c ( Ω), (1.2.16) Ω |∇v| p-2 (∇v , ∇ϕ) dx = Ω f (v)ϕ dx, ∀ϕ ∈ C ∞ c ( Ω). (1.2.17)
Then we assume by contradiction that the assertion is false, and consider

(u -v) + = max{u -v, 0},
that, consequently, is not identically equal to zero. Let us also set

Ω + ≡ supp(u-v) + ∩ Ω. Since by assumption u ≤ v on ∂ Ω, it follows that (u-v) + ∈ W 1,p 0 ( Ω).
We can therefore choose it as admissible test function in (1.2.16) and (1.2.17). Whence, subtracting the two, we get

Ω + (|∇u| p-2 ∇u -|∇v| p-2 ∇v , ∇(u -v)) dx = Ω + (f (u) -f (v))(u -v) dx.
(1.2.18) By (1.0.2), it follows that

C 1 Ω + (|∇u| + |∇v|) p-2 |∇(u -v)| 2 dx ≤ Ω + (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇(u -v)) dx, so that C 1 Ω + (|∇u| + |∇v|) p-2 |∇(u -v)| 2 dx ≤ Ω + f (u) -f (v) u -v |u -v| 2 dx (1.2.19)
Let us now evaluate the term on the right hand side of the above inequality. By the Lipschitz continuity of f , it follows

Ω + f (u) -f (v) u -v |u -v| dx ≤ C Ω + |u -v| 2 dx ≤ C C P (|Ω + |) Ω + (|∇u| + |∇v|) p-2 |∇(u -v)| 2 dx
Concluding, exploiting the above estimates, we get 

Ω + (|∇u| + |∇v|) p-2 |∇(u -v)| 2 dx ≤ C C P (|Ω + |) Ω + (|∇u| + |∇v|) p-2 |∇(u -v)|
(|Ω + |)) < 1 2 .
Hence we have a contradiction, and shows that actually (u -v) + = 0 and the thesis.

Weak comparison principles in narrow unbounded domains

In this section we show some well known results about weak comparison principles in narrow unbounded domains involving the p-Laplacian, that are very useful tools in the proof of monotonicity results in the half-space. It is well known that the first result for p = 2 is due to H. Berestycki, L. Caffarelli and L. Nirenberg and can be found in the seminal papers [START_REF] Berestycki | Inequalities for secondorder elliptic equations with applications to unbounded domains. I. A celebration of John F. Nash[END_REF][START_REF] Berestycki | Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains[END_REF][START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains. Dedicated to Ennio De Giorgi[END_REF]. We just point out that the technique used in these papers works only in the semilinear case, since the authors need to construct an explicit solution to the problem. In a series of papers by A. Farina, L. Montoro and B. Sciunzi [START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF][START_REF] Farina | Monotonicity in half-spaces of positive solutions to -∆pu = f (u) in the case p > 2[END_REF][START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF] and also in a paper by A. Farina, L. Montoro, G. Riey and B. Sciunzi [START_REF] Farina | Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces[END_REF] the authors used a new technique to prove monotonicity results in the half-space that works also in the case of quasilinear elliptic equations involving the p-Laplace operator. The singular case 1 < p ≤ 2 (see [START_REF] Farina | Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces[END_REF][START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF]), is simpler than the degenerate one p > 2 (see [START_REF] Farina | Monotonicity in half-spaces of positive solutions to -∆pu = f (u) in the case p > 2[END_REF][START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF]), since we have in force the classical Poincaré inequality (presented in the previous section), that, used in a tricky way, it is one of the main tool in the proof of the comparison principle in narrow strips. In the case p > 2, that we are going to consider at the end of this section, the use of weighted Sobolev spaces is naturally associated to the study of qualitative properties of the solutions, as discussed in Section 1.1. This issue is more delicate in unbounded domains. Let us only say that the use of weighted Sobolev spaces is necessary in the case p > 2 and it requires the use of a weighted Poincaré type inequality with weight = |∇u| p-2 (see [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF] and also Section 1.1). The latter involves constants that may blow up when the solution approaches zero that may happen also for positive solutions in unbounded domains. Namely once again the lack of compactness plays an important role. In the same spirit of the papers cited above, we start this section showing a result about the weak comparison principle in strips when 1 < p ≤ 2, whose proof, based on an iterative argument, is also new in the semilinear case p = 2 and can be found in [START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF].

Theorem 1.3.1 ([59]). We suppose N ≥ 2, 1 < p ≤ 2, λ > 0 and assume that f is locally Lipschitz continuous. Set Σ λy 0 := R N -1 × y 0 - λ 2 , y 0 + λ 2 , y 0 ≥ λ 2 .
Consider respectively u, v ∈ C 1,α loc (Σ λy 0 ) a sub and super-solution to the following quasilinear elliptic equation

(1.3.1) -∆ p w = f (w) in Σ λy 0 with u, ∇u, v, ∇v ∈ L ∞ (Σ λy 0 ). If u ≤ v
on ∂Σ λy 0 , then there exists

λ 0 = λ 0 (N, p, ∇u ∞ , ∇v ∞ , u ∞ , v ∞ , f ) > 0 such that if, 0 < λ < λ 0 , it follows that u ≤ v in Σ λy 0 .
If u and v are not assumed to be bounded, the same conclusion holds, if we assume that the nonlinearity f is globally Lipschitz continuous.

We start proving a lemma that will be useful in the proof of Theorem 1.3.1:

Lemma 1.3.2 ([59]). Let ϑ > 0 and γ > 0 such that ϑ < 2 -γ . Moreover let R 0 > 0, c > 0 and
L : (R 0 , +∞) → R a non-negative and non-decreasing function such that

(1.3.2) L(R) ≤ ϑL(2R) + g(R) ∀R > R 0 , L(R) ≤ CR γ ∀R > R 0 , where g : (R 0 , +∞) → R + is such that lim R→+∞ g(R) = 0. Then L(R) = 0. Proof. It is sufficient to prove that l := lim R→+∞ L(R) = 0.
By contradiction suppose that l = 0 and choose ϑ 1 such that ϑ < ϑ 1 < 2 -γ . This implies the exixtence of

R 1 = R 1 (ϑ 1 ) ≥ R 0 such that (ϑ -ϑ 1 )L(2R) + g(R) < 0 ∀R ≥ R 1 ,
and then

(1.3.3) L(R) ≤ ϑ 1 L(2R) ∀R ≥ R 1 . By (1.3.3) we have: ∀l ∈ N * , ∀R ≥ R 1 L(R) ≤ ϑ l 1 L(2 l R) ≤ Cϑ l 1 (2 l R) γ = C(2 γ ϑ 1 ) l R γ , (1.3.4)
where we have used that

L(R) ≤ CR γ for R > R 0 , by (1.3.2). Since 0 < ϑ 1 < 2 -γ , by (1.3.4) we obtain L(R) ≤ lim l→+∞ C(2 γ ϑ 1 ) l R γ = 0 ∀R ≥ R 1 ,
getting the contradiction.

Proof of Theorem 1.3.1. We therefore assume that N ≥ 2, 1 < p ≤ 2, λ > 0 and that f is locally Lipschitz continuous. We consider u, v ∈ C 1,α loc with u, ∇u, v, ∇v ∈ L ∞ (Σ λy 0 ) such that u, v weakly solve (1.3.1). We want to show that there exists λ 0 > 0 such that if 0 < λ < λ 0 , then u ≤ v in Σ λy 0 .
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We carry out the proof in the case u, v ∈ L ∞ (Σ λy 0 ).The same proof works when u and v may be not bounded, but f is globally Lipschitz continuous.

First of all we remark that (u -v) + ∈ L ∞ (Σ λy 0 ) since we assumed u, v to be bounded in Σ λy 0 . Let us now define

(1.3.5) Ψ = [(u -v) + ] α ϕ 2 ,
where α > 1, and ϕ(x , y

) = ϕ(x ) ∈ C ∞ c (R N -1 ), ϕ ≥ 0 such that (1.3.6)      ϕ ≡ 1, in B (0, R) ⊂ R N -1 , ϕ ≡ 0, in R N -1 \ B (0, 2R), |∇ϕ| ≤ C R , in B (0, 2R) \ B (0, R) ⊂ R N -1 .
We note that Ψ ∈ W 1,p 0 (Σ λy 0 ) by (1.3.6) and since u ≤ v on ∂Σ λy 0 . Let us define the cylinder

C(R) := Σ λy 0 ∩ {B (0, R) × R} .
Then using Ψ as test function in both equations of problem (1.3.1) and substracting we get

α C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇(u -v) + [(u -v) + ] α-1 ϕ 2 dx + C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ 2 [(u -v) + ] α dx = C(2R) (f (u) -f (v))[(u -v) + ] α ϕ 2 dx.
Taking into account (1.0.2) and the fact that p ≤ 2, we have

αC 1 C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 ϕ 2 dx ≤ α C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇(u -v) + [(u -v) + ] α-1 ϕ 2 dx = - C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ 2 [(u -v) + ] α dx + C(2R) (f (u) -f (v))[(u -v) + ] α ϕ 2 dx ≤ C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ 2 [(u -v) + ] α dx + C(2R) |(f (u) -f (v))| [(u -v) + ] α ϕ 2 dx ≤ C 2 C(2R) |∇(u -v)| p-1 |∇ϕ 2 |[(u -v) + ] α dx + C(2R) (f (u) -f (v)) (u -v) [(u -v) + ] α+1 ϕ 2 dx. (1.3.7)
Then, since u, v ∈ C 1,α loc have bounded gradient by assumption, one has

αc 1 C(2R) |∇(u -v) + | 2 [(u -v) + ] α-1 ϕ 2 dx ≤ c 2 C(2R) [(u -v) + ] α |∇ϕ 2 | dx + C(2R) L f [(u -v) + ] α+1 ϕ 2 dx := c 2 I 1 + L f I 2 , (1.3.8) 
where

c 1 = ( ∇u ∞ + ∇v ∞ ) p-2 C 1 , c 2 = ( ∇u ∞ + ∇v ∞ ) p-1 C 2 . L f is the Lipschitz constant of f in the interval [-max{ u ∞ , v ∞ }, max{ u ∞ , v ∞ }].
We now evaluate the term

I 1 = C(2R) [(u -v) + ] α |∇ϕ 2 | dx. I 1 ≤ 2 C(2R) [(u -v) + ] α ϕ|∇ϕ| dx = 2 C(2R) [(u -v) + ] α ϕ|∇ϕ| 1 2 |∇ϕ| 1 2 dx ≤ 2 C(2R) [(u -v) + ] α+1 ϕ α+1 α |∇ϕ| α+1 2α α+1 α dx + 2 C(2R) |∇ϕ| α+1 2 α + 1 dx ≤ 2 R N -1 y 0 + λ 2 y 0 -λ 2 [(u -v) + ] α+1 2 2 dy ϕ α+1 α |∇ϕ| α+1 2α dx + 2 C(2R) |∇ϕ| α+1 2 dx ≤ C 2 p (λ) (α + 1) 2 2 C(2R) [(u -v) + ] α-1 |∂ y (u -v) + | 2 ϕ α+1 α |∇ϕ| α+1 2α dx + 2 C(2R) |∇ϕ| α+1 2 dx ≤ C 2 p (λ) (α + 1) 2 2 C(2R) [(u -v) + ] α-1 |∇(u -v) + | 2 ϕ α+1 α |∇ϕ| α+1 2α dx + 2 C(2R) |∇ϕ| α+1 2 dx.
(1.3.9)

In (1.3.9) we used Young's inequality with conjugate exponents

α + 1 α , α + 1 , a Poincaré inequality in the set y 0 - λ 2 , y 0 + λ 2
, denoting with C p the associated constant and the fact that ϕ = ϕ(x ). We now evaluate the term

I 2 = C(2R) [(u -v) + ] α+1 ϕ 2 dx.
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I 2 = C(2R) [(u -v) + ] α+1 2 2 ϕ 2 dx = R N -1 y 0 + λ 2 y 0 -λ 2 [(u -v) + ] α+1 2 2 dy (ϕ(x )) 2 dx ≤ C 2 p (λ) R N -1 y 0 + λ 2 y 0 -λ 2 α + 1 2 2 [(u -v) + ] α-1 |∂ y (u -v) + | 2 dy ϕ 2 dx = C 2 p (λ) α + 1 2 2 C(2R) [(u -v) + ] α-1 |∇(u -v) + | 2 ϕ 2 dx (1.3.10)
Now we are going to choose the constants α > 1 and λ > 0 in such a way

(1.3.11) L f C 2 p (λ) α + 1 2 2 < αc 1 2 so that from (1.3.8) we have α c 1 2 C(2R) |∇(u -v) + | 2 [(u -v) + ] α-1 ϕ 2 dx ≤ c 2 C(2R) [(u -v) + ] α |∇ϕ 2 | dx = c 2 I 1 .
(1.3.12)

From (1.3.23) one has that α c 1 2 C(R) |∇(u -v) + | 2 (u -v) α-1 dx ≤ α c 1 2 C(2R) |∇(u -v) + | 2 (u -v) α-1 ϕ 2 dx ≤ c 2 I 1 .
Consequently we obtain

C(R) |∇(u -v) + | 2 [(u -v) + ] α-1 dx ≤ c 2 αc 1 C 2 p (λ)(α + 1) 2 C(2R) [(u -v) + ] α-1 |∇(u -v) + | 2 ϕ α+1 α |∇ϕ| α+1 2α dx + 4 c 2 αc 1 C(2R) |∇ϕ| α+1 2 dx.
(1.3.13)

From (1.3.13), setting α = 2N + 1, one has

C(R) |∇(u -v) + | 2 (u -v) α-1 dx ≤ ϑ C(2R) |∇(u -v) + | 2 [(u -v) + ] α-1 dx + 4 c 2 αc 1 CλR N -1 R -(N +1) = ϑ C(2R) |∇(u -v) + | 2 [(u -v) + ] α-1 dx + c 3 R -2 , (1.3.14) 
where

c 3 = 4 c 2 αc 1 Cλ ∈ R + , Preliminaries c 2 αc 1 C 2 p (λ)(2N + 2) 2 = ϑ < 2 -N .
In particular to do this, recalling that C 2 p (λ) λ 2 , λ > 0 will be taken such that

(1.3.15) c 2 αc 1 C 2 p (λ)(α + 1) 2 < 2 -N .
Let us set

L(R) = C(R) |∇(u -v) + | 2 [(u -v) + ] α-1 dx, and 
g(R) = c 3 R -2 .
Then one has

L(R) ≤ ϑL(2R) + g(R) ∀R > 0, L(R) ≤ CR N ∀R > 0,
and from Lemma 1.3.2 with γ = N , since we assumed ϑ < 2 -N , we get L(R) = 0 and consequently the thesis.

We just point out the fact that monotonicity results in the half-space are generally based on weak comparison principles in narrow strips as it was done in a series of papers, some of them mentioned before, by H. Beresticky, L. Caffarelli and L. Nirenberg [START_REF] Berestycki | Inequalities for secondorder elliptic equations with applications to unbounded domains. I. A celebration of John F. Nash[END_REF][START_REF] Berestycki | Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains[END_REF][START_REF] Berestycki | Further qualitative properties for elliptic equations in unbounded domains. Dedicated to Ennio De Giorgi[END_REF], E. N. Dancer [START_REF] Dancer | Moving plane methods for systems on half spaces[END_REF], L. Damascelli and F. Gladiali [START_REF] Damascelli | Some nonexistence results for positive solutions of elliptic equations in unbounded domains[END_REF] and by A. Farina, L. Montoro and B. Sciunzi, see [START_REF] Farina | Rigidity and one-dimensional symmetry for semilinear elliptic equations in the whole of R N and in half spaces[END_REF][START_REF] Farina | Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces[END_REF][START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF][START_REF] Farina | Monotonicity in half-spaces of positive solutions to -∆pu = f (u) in the case p > 2[END_REF][START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF]. In our case, the presence of the therm |∇u| p-2 gives rise to a phenomenon that was first pointed out in [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF][START_REF] Damascelli | Monotonicity and symmetry of solutions of p-Laplace equations, 1 < p < 2, via the moving planes method[END_REF], in the case of bounded domains. Namely, it is possible to prove monotonicity results via a weak comparison principle in domains that can be decomposed into two parts. A narrow part (w.r.t. the Lebesgue measure of the section) and a part where the gradient of the solution is small.

We have the following: [START_REF] Farina | Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces[END_REF]). Let 1 < p < 2, N ≥ 2 and let us assume that f is a locally Lipschitz continuous function. Fix λ 0 > 0 and M 0 > 0. Consider λ ∈ (0, λ 0 ], τ, ε > 0 and set

Theorem 1.3.3 ([
(1.3.16) Σ λy 0 := R N -1 × y 0 - λ 2 , y 0 + λ 2 , y 0 ≥ λ 2 . Let u, v ∈ C 1,α loc (Σ λy 0 ) such that u ∞ + ∇u ∞ ≤ M 0 , v ∞ + ∇v ∞ ≤ M 0 and (1.3.17)      -∆ p u ≤ f (u), in Σ λy 0 , -∆ p v ≥ f (v), in Σ λy 0 , u ≤ v, on ∂S ε τ , where the open set S ε τ ⊆ Σ λy 0 is such that S ε τ = x ∈R N -1 I τ,ε x ,
and the open set

I τ,ε x ⊆ {x } × y 0 -λ 2 , y 0 + λ 2 has the form (1.3.18) I τ,ε x = A τ x ∪ B ε x with |A τ x ∩ B ε x | = 0 and, for x fixed, A τ x , B ε x ⊂ y 0 -λ 2 , y 0 + λ 2 are measurable sets such that |A τ x | ≤ τ and B ε x ⊆ {y ∈ R : |∇u(x , y)| < ε, |∇v(x , y)| < ε}. Then there exist τ 0 = τ 0 (N, p, λ 0 , M 0 ) > 0 and ε 0 = ε 0 (N, p, λ 0 , M 0 ) > 0 such that, if 0 < τ < τ 0 and 0 < ε < ε 0 , it follows that u ≤ v in S ε τ .
If the functions f is assumed to be globally Lipschitz continuous on R N + × R, the same conclusion holds true without any assumption on the boundedness of u and v.

Moreover, as a consequence of the previous theorem we have: [START_REF] Farina | Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces[END_REF]). Let 1 < p < 2, N ≥ 2 and let us assume that f is a locally Lipschitz continuous function. Consider λ > 0 and set

Theorem 1.3.4 ([
Σ λy 0 := R N -1 × y 0 - λ 2 , y 0 + λ 2 , y 0 ≥ λ 2 . Fix M 0 > 0 and let u, v ∈ C 1,α loc (Σ λy 0 ) such that u ∞ + ∇u ∞ ≤ M 0 , v ∞ + ∇v ∞ ≤ M 0 and (1.3.19)      -∆ p u ≤ f (u), in Σ λy 0 , -∆ p v ≥ f (v), in Σ λy 0 , u ≤ v, on ∂S ,
where S ⊆ Σ λy 0 is an open subset. Then there exists

λ = λ(N, p, M 0 ) > 0 such that, if 0 < λ < λ, it follows that u ≤ v in S.
If the functions f is assumed to be globally Lipschitz continuous on R N + × R, the same conclusion holds true without any assumption on the boundedness of u and v.

We provide now the proof of a generalized version of the Poincaré inequality in one dimension. Then for any w ∈ H Proof of Theorem 1.3.3: In the proof we denote by • ∞ , the L ∞ norm in Σ λy 0 . We remark that (u -v) + belongs to L ∞ (Σ λy 0 ) since u and v are bounded in Σ λy 0 .

For α > 1 we define

(1.3.22) ψ = [(u -v) + ] α ϕ 2 , where ϕ(x , y) = ϕ(x ) ∈ C ∞ c (R N -1 ) is such that (1.3.23)          ϕ ≥ 0, in R N + ϕ ≡ 1, in B (0, R) ⊂ R N -1 , ϕ ≡ 0, in R N -1 \ B (0, 2R), |∇ϕ| ≤ C R , in B (0, 2R) \ B (0, R) ⊂ R N -1 , where B (0, R) = x ∈ R N -1 : |x | < R , R > 1 and C is a positive con- stant.
Let C(R) be defined as

C(R) := S ε τ ∩ {B (0, R) × R} .
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The assumptions in (1.3.23) and the inequality u ≤ v on ∂S ε τ imply that ψ ∈ W 1,p 0 (C(2R)). This allows us to use ψ as test function in both equations of problem (1.3.17) and to get (by subtracting): (1.3.24)

C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ψ dx ≤ C(2R) (f (u) -f (v))ψ dx , Using (1.3.22) we obtain: α C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇(u -v) + )[(u -v) + ] α-1 ϕ 2 dx ≤ C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ 2 )[(u -v) + ] α dx + L f C(2R) [(u -v) + ] α+1 ϕ 2 dx. (1.3.25)
Recalling (1.0.2), |∇u| and |∇v| are bounded and α > 1, from (1.3.25) we obtain

C 1 C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 ϕ 2 dx ≤ C 2 C(2R) |∇(u -v) + | p-1 |∇ϕ 2 |[(u -v) + ] α dx + L f C(2R) [(u -v) + ] α+1 ϕ 2 dx ≤ C 2 (2M 0 ) p-1 C(2R) |∇ϕ 2 |[(u -v) + ] α dx + L f C(2R) [(u -v) + ] α+1 ϕ 2 dx. (1.3.26) Let us define (1.3.27) c 1 := C 2 (2M 0 ) p-1 C 1 , (1.3.28) c 2 := L f C 1 , I 1 := C(2R) |∇ϕ 2 |[(u -v) + ] α dx , I 2 := C(2R) [(u -v) + ] α+1 ϕ 2 dx
and note that both c 1 and c 2 depend only on p and M 0 , in particular they are independent of α > 1. Thus, with the definitions above, we now rewrite (1.3.26) as follows: for every α > 1,

C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 ϕ 2 dx ≤ c 1 I 1 + c 2 I 2 .
(1.3.29)

We also observe that

66 Preliminaries R N -1 I τ,ε x (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 dyϕ 2 (x )dx = C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 ϕ 2 dx < +∞
since ϕ depends only on x and the right-hand-side of (1.3.29) is finite. Hence, for almost every x ∈ R N -1 we have that

I τ,ε x (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 dy < +∞, (1.3.30)
which also entails: for almost every x ∈ R N -1

I τ,ε x (|∇u| + |∇v|) p-2 |∂ y (u -v) + | 2 [(u -v) + ] α-1 dy < +∞. (1.3.31)
Estimate for I 1 . Let us recall the decomposition stated in (1.3.18) which gives

S ε τ = x ∈R n-1 I τ,ε x with I τ,ε x = A τ x ∪ B ε x .
We set 2 . Note that the constant in (1.3.20) in this case is given by:

x (t) = (|∇u(x , t)| + |∇v(x , t)|) p
C τ,ε (x ) = 2λ max |A τ x | sup t∈A τ x 1 x (t) , |B ε x | sup t∈B ε x 1 x (t)
.

Therefore, for almost every x ∈ R N -1 , we have

(1.3.32) C τ,ε (x ) ≤ C τ,ε := 2λ 0 max τ (2M 0 ) 2-p , λ 0 (2ε) 2-p ,
so that, since 1 < p < 2, C τ,ε can be chosen arbitrary small, for τ and ε sufficiently small. Now, recalling that ϕ depends only on x and using Young's inequality with conjugate exponents α+1 α and α + 1, we get: 

I 1 ≤ 2 C(2R) [(u -v) + ] α ϕ|∇ϕ| dx = 2 C(2R) [(u -v) + ] α ϕ|∇ϕ| 1 2 |∇ϕ| 1 2 dx ≤ 2 C(2R) [(u -v) + ] α+1 ϕ α+1 α |∇ϕ| α+1 2α α+1 α dx + 2 C(2R) |∇ϕ| α+1 2 α + 1 dx ≤ 2 R N -1 I τ,ε x [(u -v) + ]
I 1 ≤ C τ,ε (α + 1) 2 2 C(2R) (|∇u| + |∇v|) p-2 [(u -v) + ] α-1 |∂ y (u -v) + | 2 ϕ α+1 α |∇ϕ| α+1 2α dx + 2 C(2R) |∇ϕ| α+1 2 dx ≤ C τ,ε (α + 1) 2 2 C(2R) (|∇u| + |∇v|) p-2 [(u -v) + ] α-1 |∇(u -v) + | 2 ϕ α+1 α |∇ϕ| α+1 2α dx + 2 C(2R) |∇ϕ| α+1 2 dx , (1.3.34) 
where C τ,ε has been defined in (1.3.32).

Estimate for I 2 . We use the same notations as in the evaluation of I 1 and we get:

I 2 = C(2R) [(u -v) + ] α+1 2 2 ϕ 2 dx = R N -1 I τ,ε x [(u -v) + ] α+1 2 2 dy (ϕ(x )) 2 dx ≤ C τ,ε α + 1 2 2 R N -1 I τ,ε x (|∇u| + |∇v|) p-2 [(u -v) + ] α-1 |∂ y (u -v) + | 2 dy ϕ 2 dx ≤ C τ,ε α + 1 2 2 C(2R) (|∇u| + |∇v|) p-2 [(u -v) + ] α-1 |∇(u -v) + | 2 ϕ 2 dx. (1.3.35) Let us fix (1.3.36) α = 2N + 1 > 1.
Recalling that C τ,ε tends to 0, as both τ and ε go to zero, we can take τ > 0 and ε > 0 small enough, such that

(1.3.37) c 2 C τ,ε α + 1 2 2 < 1 2 , c 1 C τ,ε (α + 1) 2 < 2 -N so that from (1.3.29) we have (1.3.38) C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 ϕ 2 dx ≤ 2c 1 I 1 .
Preliminaries By (1.3.23) we infer that

C(R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 (u -v) α-1 dx ≤ C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 (u -v) α-1 ϕ 2 dx ≤ 2c 1 I 1 (1.3.39)
and, using (1.3.34), we obtain

C(R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 dx ≤ c 1 C τ,ε (α + 1) 2 C(2R) (|∇u| + |∇v|) p-2 [(u -v) + ] α-1 |∇(u -v) + | 2 ϕ α+1 α |∇ϕ| α+1 2α dx + 4c 1 C(2R) |∇ϕ| α+1 2 dx.
(1.3.40)

Recalling (1.3.36) one has:

C(R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 (u -v) α-1 dx ≤ ϑ C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 dx + ĈR -2 , (1.3.41) 
where

ϑ = c 1 C τ,ε (α + 1) 2 , Ĉ = 4c 1 λC α+1 2
> 0 exploiting also (1.3.23). Notice that, in view of (1.3.37), we also have that ϑ < 2 -N . In order to apply Lemma 1.3.2 we set

L(R) = C(R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 [(u -v) + ] α-1 dx, and g(R) = ĈR -2 .
Then from (1.3.41) we have:

L(R) ≤ ϑL(2R) + g(R) ∀R > 0, L(R) ≤ CR N ∀R > 0.
Applying Lemma 1.3.2 with β = N , we get L(R) = 0 and consequently the thesis.

Proof of Theorem 1.3.4. The desired result is obtained with the same proof of that of Theorem 1.3.3 with the following slight (but necessary) modifications. Replace S ε τ by S, 

set ε = τ = λ, B ε x = ∅, I τ,ε x = A τ x = S ∩ {x } × y 0 -λ 2 , y 0 + λ 2 and observe that (1.3.32) becomes (1.3.42) C λ (x ) ≤ C λ := 2λ 2 (2M 0 )
c 2 C λ α + 1 2 2 < 1 2 , c 1 C λ (α + 1) 2 < 2 -N .
The conclusion the follows by taking λ small enough in the latter one.

Now we want to present a weak comparison principle in unbounded strips that has a natural application in the study of monotonicity properties of solutions in the half-space of the following degenerate quasilinear elliptic problem:

(1.3.44)      -∆ p u = f (u) in R N + u(x , y) ≥ 0 in R N + u(x , 0) = 0 on ∂R N + where N ≥ 2, p > 2 and f (•) satisfies: (E f ) the nonlinearity f is positive i.e. f (t) > 0 for t > 0, locally Lipschitz continuous in R + ∪ {0} and lim t→0 + f (t) t p-1 = f 0 ∈ R + ∪ {0}.
We state the following:

Theorem 1.3.6. Let p > 2 and let u, v ∈ C 1,α loc (R N + ) be two positive weak solutions to (1.3.44) with |∇u|, |∇v| ∈ L ∞ (R N + ). For λ > 0 fixed such that 0 ≤ α < β ≤ λ, let Σ (α,β) := R N -1 × (α, β), Σ β = Σ (0,β) and assume that (1.3.45) u ≤ v on ∂Σ (α,β) .
Assume furthermore that, setting

I + (λ) = (x , λ) : x ∈ P Supp (u -v) + , it holds that (1.3.46) u(x) ≥ γ > 0 on I + (λ) . Then, for Λ > 0 fixed such that Λ ≥ 2λ + 1 , it follows that there exists h 0 = h 0 (f, p, γ, N, ∇u L ∞ (Σ Λ ) , ∇v L ∞ (Σ Λ ) ) such that if β -α ≤ h 0 then we have u ≤ v in Σ (α,β) .
Proof. We remark that (u -v) + ∈ L ∞ (Σ (α,β) ) since we assumed |∇u| and |∇v| are bounded. We put

(1.3.47) C (α,β) (R) = C(R) = Σ (α,β) ∩ {B (0, R) × R}.
Let us now define

(1.3.48) Ψ = (u -v) + ϕ 2 R , where ϕ R (x , y) = ϕ R (x ) ∈ C ∞ c (R N -1 ), ϕ R ≥ 0 such that (1.3.49)      ϕ R ≡ 1, in B (0, R) ⊂ R N -1 , ϕ R ≡ 0, in R N -1 \ B (0, 2R), |∇ϕ R | ≤ C R , in B (0, 2R) \ B (0, R) ⊂ R N -1 ,
where B (0, R) denotes the ball in R N -1 with center 0 and radius R > 0.

From now on, for the sake of simplicity, we set ϕ R (x , y) := ϕ(x , y 

     -∆ p u = f (u) in Σ (α,β) , -∆ p v = f (v) in Σ (α,β) , u ≤ v on ∂Σ (α,β) .
Then using Ψ as test function in both equations of problem (1.3.17) and substracting we get 

C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇(u -v) + ϕ 2 dx + C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ 2 (u -v) + dx = C(2R) f (u) -f (v) (u -v) + ϕ 2 dx, (1.3 
(|∇u| + |∇v|) p-2 |∇(u -v) + | 2 ϕ 2 dx ≤ C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇(u -v) + ϕ 2 dx = - C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ 2 (u -v) + dx + C(2R) f (u) -f (v) (u -v) + ϕ 2 dx ≤ C(2R) |∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ 2 (u -v) + dx + C(2R) f (u) -f (v) (u -v) + ϕ 2 dx ≤ Č C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + ||∇ϕ 2 |(u -v) + dx + C(2R) f (u) -f (v) (u -v) + ϕ 2 dx, (1.3 
I 1 := Č C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + ||∇ϕ 2 |(u -v) + dx and (1.3.54) I 2 := C(2R) f (u) -f (v) (u -v) + ϕ 2 dx, (1.3.52) becomes (1.3.55) Ċ C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 ϕ 2 dx ≤ I 1 + I 2 .
In order to estimate the terms I 1 and I 2 in (1.3.55) we will exploit the weighted Poincaré type inequality (see Section 1.1, Corollary 1.1.4) and a covering argument that goes back to [START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF]. Let us consider the hypercubes

Q i of R N defined by Q i = Q i × [α, β],
where

Q i ⊂ R N -1 are hypercubes of R N -1 , with edge β -α and such that i Q i = R N -1 .

Moreover we assume that

Q i ∩ Q j = ∅ for i = j and (1.3.56) N i=1 Q i ⊃ C(2R).
It follows as well, that each set

Q i has diameter (1.3.57) diam(Q i ) = d Q = √ N (β -α), i = 1, • • • , N .
The covering in (1.3.56) will allow us to use in each Q i the weighted Poincaré type inequality and to take advantage of the constant C p in Corollary 1.1.4, that turns to be not depending on the index i of (1.3.56). Later we will recollect the estimates.

Let us define 

(1.3.58) w(x) :=    u -v + (x , y) if (x , y) ∈ Q i ; -u -v + (x , 2β -y) if (x , y) ∈ Q r i , where (x , y) ∈ Q r i iff (x , 2β -y) ∈ Q i . We claim that (1.3.59) Q i w 2 dx ≤ C p (Q i ) Q i (|∇u| + |∇v|) p-
Q i w 2 dx ≤ C p (Q i ) Q i |∇v| p-2 |∇w| 2 dx.
The fact that Corollary 1.1.4 can be applied to deduce (1.3.60) is somehow technical and we describe the procedure here below.

We have 

Q i ∪Q r i w(x) dx = 0
w(x) = Ĉ Q i ∪Q r i (x i -z i ) ∂w ∂x i (z) |x -z| N dz a.e. x ∈ Q i ∪ Q r i ,
where Ĉ = Ĉ(d Q , N ), is a positive constant. Arguing as in the proof of Lemma 1.2.2, then for almost every x ∈ Q i we have

|w(x)| ≤ Ĉ Q i ∪Q r i |∇w(z)| |x -z| N -1 dz = Ĉ Q i |∇w(z)| |x -z| N -1 dz + Ĉ Q r i |∇w(z)| |x -z| N -1 dz ≤ 2 Ĉ Q i |∇w(z)| |x -z| N -1 dz ,
where in the last line we used the following standard changing of variables

(z t ) = z and z t N = 2β -z N ,
the fact that for x ∈ Q i , it holds that (|x -z|) Note now that, if w vanishes identically in Q i , then there is nothing to prove.

z∈Q i ≤ (|x -z t |)
If not it is easy to see that by our assumptions (see (1.3.46)) and by the classical Harnack inequality, it follows that there exists γ > 0 such that (1.3.61) and since a sufficient condition to the summability of holds, more precisely we can apply Proposition 2.4 [START_REF] Farina | Monotonicity in half-spaces of positive solutions to -∆pu = f (u) in the case p > 2[END_REF], we obtain that

(1.3.61) u ≥ γ > 0 in Q i × [λ/2 , 4λ] where Q i := {x ∈ R N -1 : dist(x, Q i ) < 1} . Let us consider Q R λ i obtained by the reflection of Q i with respect to the hyperplane T λ = {(x , y) ∈ R N : y = λ}. Since Q R λ i is bounded away from the boundary R N , namely dist (Q R λ i , {y = 0}) ≥ λ > 0, thanks to
Q R λ i 1 |∇u| p-2 1 |x -y| γ dy ≤ C * 1 (β 1 , β 2 ) for any x ∈ Q R λ i ,
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where

β 1 = min t∈[γ, u L ∞ (Σ Λ ) ] f (t) and β 2 = λ.
We deduce the same for v: 

Q i 1 |∇v| p-2 1 |x -y| γ dy ≤ C * 1 (β 1 , β 2 ) for any x ∈ Q i ,
I 1 =2 Č C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + |ϕ|∇ϕ|(u -v) + dx =2 Č C(2R) (|∇u| + |∇v|) p-2 2 + p-2 2 |∇(u -v) + | ϕ|∇ϕ|(u -v) + dx ≤δ Č C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 ϕ 2 dx + Č δ C(2R) (|∇u| + |∇v|) p-2 |∇ϕ| 2 [(u -v) + ] 2 dx,
where in the last inequality we used weighted Young's inequality, with δ to be chosen later. Hence

(1.3.62)

I 1 ≤ I a 1 + I b 1 ,
where

I a 1 := δ Č C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 ϕ 2 dx, I b 1 := Č δ C(2R) (|∇u| + |∇v|) p-2 |∇ϕ| 2 [(u -v) + ] 2 dx.
( 

I b 1 ≤ N i=1 C δ R 2 C(2R)∩Q i [(u -v) + ] 2 dx ≤ max i C P (Q i ) N i=1 C δ R 2 C(2R)∩Q i (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx ≤ C * P C δ R 2 C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx (1.3.64)
where 

C * P = max i C P (Q i ) and C = C(p, ∇u L ∞ (Σ Λ ) ).
I 2 ≤ C(2R) f (u) -f (v) u -v [(u -v) + ] 2 dx ≤ C * P • C C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx,
where

C * P is as in (1.3.64) and C = C(f, λ, ∇u L ∞ (Σ Λ ) ). Actually the constant C will depend on the Lipschitz constant of f in the interval 0, max{ u L ∞ (Σ Λ ) , v L ∞ (Σ Λ ) } .
By (1.3.55) 

(|∇u| + |∇v|) p-2 |∇(u -v) + | 2 ϕ 2 dx ≤δ C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx + C * P R C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx + C * P C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx. (1.3.65)
Let us choose δ small in (1.3.65) such that C -δ > C/2 and fix R > 1.

Then we obtain

C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 ϕ 2 dx ≤ 4 C * P C C(2R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx.
(1.3.66)

To conclude we set now

(1.3.67) L(R) := C(R) (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx.
We can fix

h 0 = h 0 (f, p, γ, λ, N, ∇u L ∞ (Σ Λ ) , ∇v L ∞ (Σ Λ ) ) positive, such that if β -α ≤ h 0 , (recall that C * P → 0 in this case since diam(Q i ) → 0, see (1.3.57)) then ϑ := 4 C * P C < 2 -N .
Then, by (1.3.66) and (1.3.67), we have

L(R) ≤ ϑL(2R) ∀R > 1, L(R) ≤ CR N ∀R > 1.
From Lemma 1. Finally, the last result that we present a weak comparison principle that works in unbounded strips (we do not need to consider narrow parts). This results works for a general class of changing-sign nonlinearities and to the best of our knowledge this results is new since it is the first time that, in the quasilinear case, these nonlinearities are considered in unbounded domains. This results will be crucial in the proof of Gibbons conjecture in the quasilinear case that will be presented in Chapter 7 and it is also contained in a paper in collaboration with A. Farina, L. Montoro and B. Sciunzi [START_REF] Esposito | On the Gibbons conjecture for theequation involving the p-Laplace operator[END_REF]. Let us consider the following quailinear elliptic problem:

(1.3.68)      -∆ p u ≤ f (u) in Σ (a,b) -∆ p v ≥ f (v) in Σ (a,b) u ≤ v on ∂Σ (a,b) ,
ordered on the boundary of some half-space Σ (a,b) of R N , with p > 1 and

N < 1. More precisely Σ (a,b) := R N -1 × (a, b),
where either a = -∞ and b ∈ R, or a ∈ R and b = +∞. We summarize the assumptions on the nonlinearity f (denoted by (G f ) in the following) as follows:

(G f ): The nonlinearity f (•) belongs to C 1 ([-1, 1]), f (-1) = 0, f (1) = 0, f + (-1) < 0, f -(1) < 0 and the set N f := {t ∈ [-1, 1] | f (t) = 0}
is finite. We provide the following

Theorem 1.3.7 ([49]). Let u, v ∈ C 1,α loc (Σ (a,b) ) satisfying problem (1.3.68), N ≥ 1, p > 1, where Σ (a,b) is some half-space of R N and f fulfils (G f ). Moreover, let us assume that |∇u|, |∇v| ∈ L ∞ (Σ (a,b) ),
for some δ sufficiently small

-1 ≤ u ≤ -1 + δ in Σ λy 0 and for some L > 0 (1.3.69) f (t) < -L in [-1, -1 + δ].
Then

(1.3.70) u ≤ v in Σ (a,b) .
The same result is true if

1 -δ ≤ v ≤ 1 in Σ (a,b) and f (t) < -L in [1 -δ, 1].
Proof. We prove the result in the case -1 ≤ u ≤ -1 + δ. We distinguish two cases: Case 1: 1 < p < 2. We set (1.3.71) ψ := w α ϕ α+1 R ,

where α > 1, R > 0 large, w := (u-v) + and ϕ R is a standard cutoff function such that 0 ≤ ϕ R ≤ 1 on R N , ϕ R = 1 in B R , ϕ R = 0 outside B 2R , with |∇ϕ R | ≤ 2/R in B 2R \ B R . Let us define C(2R) := Σ (a,b) ∩ B 2R ∩ supp(ω).
First of all we notice that ψ ∈ W 1,p 0 (C(2R)). By density arguments we can take ψ as test function in the weak formulation of (1.3.68), so that, subtracting we obtain

α C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇w)w α-1 ϕ α+1 R dx ≤ -(α + 1) C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ R )w α ϕ α+1 R dx + C(2R) [f (u) -f (v)]w α ϕ α+1 R dx . (1.3.72)
From (1.3.72), using (1.0.2) and noticing that f is decreasing in [-1, -1+δ], we obtain

αC 1 C(2R) (|∇u| + |∇v|) p-2 |∇w| 2 w α-1 ϕ α+1 R dx ≤ α C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇w)w α-1 ϕ α+1 R dx ≤ -(α + 1) C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ R )w α ϕ α R dx + C(2R) f (ξ)(u -v) + w α ϕ α+1 R dx ≤ (α + 1)C 3 C(2R) |∇w| p-1 |∇ϕ R |w α ϕ α R dx -L C(2R) (u -v) + w α ϕ α+1 R dx, (1.3.73) 
where ξ is some point that belongs to (v, u). Hence, recalling also that |∇u|, |∇v| ∈ L ∞ (Σ (a,b) ), we deduce

αC 1 C(2R) (|∇u| + |∇v|) p-2 |∇w| 2 w α-1 ϕ α+1 R dx ≤ (α + 1)C 3 C(2R) |∇w| p-1 |∇ϕ R |w α ϕ α R dx -L C(2R) w α+1 ϕ α+1 R dx ≤ (α + 1)C C(2R) |∇ϕ R |w α ϕ α R dx -L C(2R) w α+1 ϕ α+1 R dx (1.3.74)
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where

C = C(p, ∇u L ∞ (Σ (a,b) ) , ∇v L ∞ (Σ (a,b) )
). Exploiting the weighted Young's inequality with exponents α+1 and (α + 1)/α in (1.3.74), we obtain

αC 1 C(2R) (|∇u| + |∇v|) p-2 |∇w| 2 w α-1 ϕ α+1 R dx ≤ C σ α+1 C(2R) |∇ϕ R | α+1 dx + αCσ α+1 α C(2R) w α+1 ϕ α+1 R dx -L C(2R) w α+1 ϕ α+1 R dx ≤ C σ α+1 C(2R) |∇ϕ R | α+1 dx + αCσ α+1 α -L C(2R) w α+1 ϕ α+1 R dx ≤ 2 α+1 C σ α+1 R α-(N -1) + αCσ α+1 α -L C(2R) w α+1 ϕ α+1 R dx. Now taking α > N -1, if we choose σ = σ(p, α, L, N, ∇u L ∞ (Σ (a,b) ) , ∇v L ∞ (Σ (a,b) ) ) > 0 sufficiently small so that αCσ α+1 α -L < 0, we obtain (1.3.75) C(R) (|∇u| + |∇v|) p-2 |∇w| 2 w α-1 dx ≤ C ασ α+1 R α-(N -1) .
Passing to the limit in (1.3.75) for R → +∞, by Fatou's Lemma we have

Σ λy 0 (|∇u| + |∇v|) p-2 |∇w| 2 w α-1 dx ≤ 0. This implies that u ≤ v in Σ (a,b) . Case 2: p ≥ 2. We set (1.3.76) ψ := wϕ 2 R ,
where R > 0, w := (u -v) + and ϕ R is the standard cutoff function defined above. First of all we notice that ψ ∈ W 1,p 0 (B 2R ). Let us define C(2R) := Σ (a,b) ∩ B 2R ∩ supp(ω). By density arguments we can take ψ as test function in the weak formulation of (1.3.68), so that, subtracting we obtain

C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇w)ϕ 2 R dx ≤ -2 C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ R )wϕ R dx + C(2R) [f (u) -f (v)]wϕ 2 R dx .
(1.3.77)

From (1.3.77), using (1.0.2) and that f (u) ≤ -L in [-1, -1 + δ], we obtain

C 1 C(2R) (|∇u| + |∇v|) p-2 |∇w| 2 ϕ 2 R dx ≤ C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇w)ϕ 2 R dx ≤ -2 C(2R) (|∇u| p-2 ∇u -|∇v| p-2 ∇v, ∇ϕ R )wϕ R dx + C(2R) f (ξ)(u -v) + wϕ 2 R dx ≤ 2C 2 C(2R) (|∇u| + |∇v|) p-2 |∇w| |∇ϕ R |wϕ R dx -L C(2R) (u -v) + wϕ 2 R dx, (1.3.78) 
where ξ is some point tha belongs to (v, u). Using in (1.3.78) the weighted Young's inequality (and the fact that |∇u|, |∇v| ∈ L ∞ (Σ (a,b) )), we obtain

C 1 C(2R) (|∇u| + |∇v|) p-2 |∇w| 2 ϕ 2 R dx ≤ 2C 2 C(2R) (|∇u| + |∇v|) p-2 2 |∇w| (|∇u| + |∇v|) p-2 2 |∇ϕ R |wϕ R dx -L C(2R) w 2 ϕ 2 R dx ≤ C 2 σ C(2R) (|∇u| + |∇v|) p-2 |∇w| 2 dx + C 2 σ C(2R) (|∇u| + |∇v|) p-2 |∇ϕ R | 2 w 2 ϕ 2 R dx -L C(2R) w 2 ϕ 2 R dx. ≤ C 2 σ C(2R) (|∇u| + |∇v|) p-2 |∇w| 2 dx + C σR 2 -L C(2R) w 2 ϕ 2 R dx, (1.3.79) 
where

C = C(p, ∇u L ∞ (Σ (a,b) ) , ∇v L ∞ (Σ (a,b) )
) is a positive constant. Hence, up to redefine the constants, we have

C(R) (|∇u| + |∇v|) p-2 |∇w| 2 dx ≤ Cσ C(2R) (|∇u| + |∇v|) p-2 |∇w| 2 dx + 1 C 1 C σR 2 -L C(2R)
w 2 ϕ 2 R dx. 

L(R) ≤ ϑL(2R) ∀R ≥ R 0 L(R) ≤ ĊR N ∀R ≥ R 0 ,
where ϑ := Cσ < 1/2 N . By applying Lemma 1.3.2 it follows that L(R) = 0 for all R ≥ R 0 . Hence u ≤ v in Σ (a,b) .

The Höpf boundary lemma and the strong maximum principle

The aim of this section is to present two classical results: the Höpf boundary lemma and the strong comparison principle for quasilinear elliptic equations. It is well know that the Höpf boundary lemma always implies the strong maximum principle. Here, borrowing the ideas of J. L. Vazquez contained in the celebrated paper [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] we would like to present this well known results for the following quasilinear elliptic problem: Let us consider the following quasilinear elliptic problem (1.4.1)

     -∆ p u + β(u) = f (x) in Ω u > 0 in Ω u = 0 on ∂Ω,
where 1 < p < +∞, Ω is any connected domain of R N , N ≥ 2, β : R → R is a nondecreasing function with β(0) = 0 and f ≥ 0 a.e. in Ω. As already mentioned, we now state the results by J. L. Vazquez in the celebrated paper [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF], but we have to remark that similar results for quasilinear elliptic equations were obtained also by P. Pucci and J. Serrin, that considered a more general class of operators and of nonlinearity (see e.g. [START_REF] Pucci | The maximum principle[END_REF]). Here we prove the case p = 2 (as it was done by J.L. Vazquez in [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF]) and we give some ideas for the quasilinear case. In particular if u vanishes a.e. in a set of positive measure it must vanish a.e. in Ω.

In other words what we are going to prove is that, for a suitable class of solutions of (1.4.1) for p = 2, the strong maximum principle holds if and only if either β(S) = 0 for some S > 0 or β(S) > 0 for S > 0 and

(1.4.4)

1 0 1 j(S) dS = ∞,
where j(S) = s 0 β(t) dt. We just notice that for every S > 0 since β is monotone nondecreasing then also j it is and we have

S 2 β S 2 ≤ j S 2 ≤ j(S) ≤ β(S).
Hence condition (1.4.4) is equivalent to the following one (1.4.5)

1 0 1 β(S) dS = ∞.
Remark 1.4.1. We want just to observe that if β(s) = s q with q > 0 it follows that, by simple computations, condition (1.4.5) holds if and only if q ≥ 1. When (1.4.5) does not hold, in particular for this kind of nonlinearity when 0 < q < 1, it follows that there exist the so called dead core solutions, for more details we refer to the seminal paper [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF].

In the proof of Theorem 1.4.1 we need of the following technical lemma that will be useful to build a radial solution of problem (1.4.1), in order to compare it with other solutions of problem (1.4.1) with p = 2:

Lemma 1.4.2. For all k 1 , k 2 , r 1 , v 1 > 0 and β : R → R continuous non- decresing function with β(0) = 0, there exists a unique v = v(r, k 1 , k 2 , r 1 , v 1 ) defined in [0, r 1 ] of class C 2 that
is a solution of the following nonlinear two-point boundary value problem

(1.4.6) v = k 1 v + k 2 β(v) 0 < r < r 1 v(0) = 0 v(r 1 ) = v 1 and v, v , v ≥ 0. Moreover if β satisfies (1.4.5) then v (0) = 0 and v 1 > v > 0 in (0, r 1 ).
Proof. For the existence and the uniqueness of the solution v to problem we refer to the works [START_REF] Bebernes | A subfunction approach to a boundary value problem for ordinary differential equations[END_REF][START_REF] Jackson | Comparison theorems for nonlinear differential equations[END_REF]. The fact that v(r) ≥ 0 for 0 ≤ r ≤ r 1 follows from comparison arguments between sub and super-solutions of (1.4.6) as exploited in [START_REF] Bebernes | A subfunction approach to a boundary value problem for ordinary differential equations[END_REF][START_REF] Jackson | Comparison theorems for nonlinear differential equations[END_REF]. Now we observe that by multiplying both sides of the ordinary differntial equation of (1.4.6) for e -k 1 r we obtain:

e -k 1 r v (r) = k 2 e -k 1 r β(v(r));
from this it follows that e -k 1 r v (r) is a nondecreasing function, hence by simple computations v (r) ≥ 0 for 0

≤ r ≤ r 1 . Since v (r) = k 1 v (r) + k 2 β(v(r)) for 0 ≤ r ≤ r 1 then also v (r) ≥ 0 for 0 ≤ r ≤ r 1 .
Now let us consider r 0 the largest r for which v(r

) = 0. Necessarily 0 ≤ r 0 < r 1 , v : [r 0 , r 1 ] → [0, v 1 ] is bijective and (1.4.7) r 1 r 0 v (r) j(v(r)) dr = 1 0 1 β(S) dS = ∞. Now, if w = (v ) 2 we have k 2 j (v) = k 2 β(v)v = (v -k 1 v )v
and so 2k 2 e -2k 1 r j (v) = e -2k 1 r w .

Since v (r 0 ) = 0, by integrating the previous equation between r 0 and r we have

2k 2 e -2k 1 r 0 j(v(r)) = 2k 2 e -2k 1 r 0 r r 0 j (v(r)) dr ≥ r r 0 2k 2 e -2k 1 r j (v(r)) dr = e -2k 1 r 1 w(r)
and hence we have

r 1 r 0 v (r) j(v(r)) dr ≤ 2k 2 e k 1 (r 1 -r 0 ) (r 1 -r 0 ) < +∞,
but this gives a contradiction with our assumption (1.4.5). Hence v (r 0 ) > 0 and this implies r 0 = 0. It follows that v (0) > 0 and v (r) > 0 for o < r < r 1 .

First Proof of Theorem 1.4.1. Let us prove the theorem in the case u ∈ C 1 (Ω). Let us assume that u vanishes somewhere in Ω but it is not identically zero. Hence we can choose a point x 0 ∈ Ω and a ball B = B R (x 1 ) such that x 0 ∈ ∂B and u(x 0 ) = 0 and 0 < u(x) < a for each x ∈ B. It is sufficient to take x 1 ∈ Ω such that u(x 1 ) > 0 and for ε > 0 sufficiently small d(x 1 , N ) < ε and d(x, ∂Ω) with 

N = {x ∈ Ω | u(x) = 0} and R = sup r>0 {B r (x 1 ) ⊂ Ω \ N }. Taking G = x ∈ R N | R 2 < |x -x 1 < R , u > 0 in G, v 1 = inf u |x -x 1 | = R
= v R -|x -x 1 |, k 1 , 1, R 2 , v 1
in the annulus G defined above. Now by Lemma 1.4.2 we have that

∆û = k 1 |∇û| + β(û).
Moreover, since û is radial, by taking

k 1 ≥ 2(N -1) R û we have ∆û ≥ β(û).
Now by Kato inequality we have

∆(û -u) + ≥ sign(û -u)∆(û -u) = sign(û -u)(β(u) -β(û)) ≥ 0.
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Then u ≥ û and since v (0) > 0 it follows that lim inf

h→0 u(x 0 + h(x 1 -x 0 )) -u(x 0 ) h > 0
against the assumption that u ∈ C 1 (Ω), which implies that ∇u(x 0 ) = 0. If u ∈ C 1 (Ω), assume that u ≡ 0. Then there must exists a nall B R (x) ⊂ Ω, R > 0 such that the trace g of û on the sphere S R (x) is not zero a.e. We have to show that there exists a unique solution v ∈ C 1 (Ω) to the following semilinear problem (1.4.9)

-∆v + β(v) = 0 in B R (x) v = min(g, a/2) on S R (x).
This is a well known result in the literature and we refer the reader to the celebrated papers [START_REF] Keller | On solutions of ∆u = f (u)[END_REF][START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF]. After that, the proof follows by the one developed in the case of C 1 solutions. Now we are ready to prove the following Theorem 1.4.2 (Höpf boundary lemma). Let Ω, β, p and u as in Theorem 1.4.1 and let x 0 be a point on ∂Ω satisying the interior sphere condition. Let B one such sphere and ν the corresponding interior normal at x 0 . Then there exists γ > 0 such that (1.4.10) ess lim inf

x→x 0 u(x) (x -x 0 , ν) ≥ γ x ∈ B.
In particular if u ∈ C 1 (Ω ∪ {x 0 }) and u(x 0 ) = 0 we have

(1.4.11) ∂u ∂ν (x 0 ) ≥ γ.
Proof. Now we take the annulus G corresponding to the ball B R (x 1 ) that occurs in the definition of interior sphere condition at x 0 . Since G touches ∂Ω we replace x 1 by x ε 1 = x 1 + εν for a small ε > 0 and keep R fixed. If ε is sufficiently small the new annulus G ε is such that G ε ⊂ Ω. Arguing as in Theorem 1.4.1 we have

u(x) ≥ û(x -ε)
a.e. in G. Passing to the limit for ε → 0 and remembering that v (0) > 0 we obtain (1.4.10) with γ = v (0). In the case of quasilinear elliptic equations it will be different the ODE analysis and also comparison arguments. All this details are not contained in the work by J. L. Vazquez and so we refer the reader to the book of P. Pucci and J. Serrin [START_REF] Pucci | The maximum principle[END_REF] for completeness.

We want to conclude this section saying that it is always possible to prove that the strong comparison principle follows by Höpf boundary lemma. This fact is quite natural in the case of semilinear equation, but for quasilinear operator could be very useful in the proof of qualitative properties of solutions, since it is well known that maximum principles and comparison principles are not equivalent. Here we state another proof of Theorem 1.4.1 having in force the Höpf lemma:

Second Proof of Theorem 1.4.1. Let us assume that u ∈ C 1 (Ω) is a solution to (1.4.1). Arguing by contradiction, let us assume that u vanishes somewhere in Ω but it is not identically zero. Hence we can choose a point x 0 ∈ Ω and a ball B = B R (x 1 ) ⊂ Ω such that x 0 ∈ ∂B, u(x 0 ) = 0 and 0 < u(x) < a for each x ∈ B. We observe that

-∆u ≤ β(u) in B u(x 0 ) = 0 x 0 ∈ ∂B.
Let us note that ∂B satisfies the interior sphere condition at x 0 , hence by the Höpf boundary lemma, i.e. Theorem 1.4.2, we have that

∂u ∂ν (x 0 ) = (∇u(x 0 ), ν) > 0
where ν is the interior normal at x 0 . But, since u(x 0 ) = 0, u ≥ 0 in Ω and u ∈ C 1 (Ω) it follows that x 0 is a minimum point for u and this also implies ∇u(x 0 ) = 0. This fact gives a contradiction with Höpf boundary lemma.

Strong comparison principles for p = 2

The aim of this section is just to recall two important result: the strong comparison principle for quasilinear elliptic equations and the strong maximum principle for linearized equations. Both these principles are remarkable consequences of Harnack type inequalities which give informations about the critical set Z u of solutions to the following quasilinear elliptic problem (1.5.1)

     -∆ p u = f (u) in Ω u > 0 in Ω u = 0 on ∂Ω,
where Ω is any domain of R N , N ≥ 1, 1 < p < +∞, f is positive and locally Lipschitz continuous. As remarked above, the main tool in the proof of strong comparison principles are results regarding Harnack type inequalities:

Theorem 1.5.1 (Harnack Comparison Inequality). Let p > (2N +2)/(N + 2) and let u, v ∈ C 1 loc (Ω) with u or v weak solution to (1.5.1) in Ω. Suppose that B(x, 6δ) ⊂ Ω ⊂ Ω for some δ > 0 and that u ≤ v in B(x, 6δ).

Then there exists

C = C(p, q, δ, L, v L ∞ (Ω ) , ∇u L ∞ (Ω ) , ∇v L ∞ (Ω ) ) > 0 such that (1.5.2) sup B(x,δ) (v -u) ≤ C inf B(x,2δ) (v -u).
The iterative technique that is used to prove Theorem 1.5.1 is due to J. K. Moser [START_REF] Moser | On Harnack's theorem for elliptic differential equations[END_REF] and was first used to prove Hölder continuity properties of solutions of some strictly elliptic linear operators (this problem had been previously studied by E. De Giorgi [START_REF] Giorgi | Sulla differenziabilità e l'analicità delle estremali degli integrali multipli regolari[END_REF] and J. Nash [START_REF] Nash | Continuity of solutions of elliptic and parabolic equations[END_REF] in their famous papers). In [START_REF] Trudinger | Linear elliptic operators with measurable coefficients[END_REF] and in [START_REF] Trudinger | On the regularity of generalized solutions of linear non-uniformly elliptic equations[END_REF] N. S. Trudinger considers the case of degenerate operators which satisfy some a-priori assumptions on the matrix of the coefficients (see [START_REF] Trudinger | Linear elliptic operators with measurable coefficients[END_REF]). The works of N. S. Trudinger stemmed originally from the paper of J. K. Moser, but it make no use of (a variant of) the famous John-Nirenberg Lemma (see [START_REF] Moser | On Harnack's theorem for elliptic differential equations[END_REF]), exploiting in the proof only weighted Sobolev inequalities and a clever use of test-functions techniques. For the proof of this result we refer the reader to the work of L. Damascelli and B. Sciunzi [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF]. 

2 such that i) f 1 (s) = f (s) -C 1 s is nonincreasing in [a, b]. ii) f 2 (s) = f (s) + C 2 s is nondecreasing in [a, b]. Therefore we get that, if (1.5.3) -∆ p u -f (u) -∆ p v -f (v) u v in B(x, 5δ) then (1.5.4) -∆ p u + Λu -∆ p v + Λv u v in B(x, 5δ)
for Λ ∈ R sufficiently large, and the previous result works also in this case.

This implies in turn the following

Theorem 1.5.3 (Strong Comparison Principle). Let u, v ∈ C 1 (Ω)
where Ω is a bounded smooth connected domain of R N with 2N +2 N +2 < p < 2 or p > 2. Suppose that either u or v is a weak solution of (1.5.1). Assume (1.5.5)

-∆ p u + Λu -∆ p v + Λv u v in Ω where Λ ∈ R. Then u ≡ v in Ω unless (1.5.6) u < v in Ω
The same result holds (see Remark 1.5.2) if u and v are weak solutions of (1.5.1) or more generally if

(1.5.7) -∆ p u -f (u) -∆ p v -f (v) u v in Ω
with u or v weakly solving (1.5.1).

Proof. Let us define (1.5.8)

K uv = {x ∈ Ω | u(x) = v(x)}
By the continuity of u and v we have that K uv is closed in Ω. Since, by Theorem 1.5.1, for any x ∈ K uv there exists a ball B(x) centered in x all contained in K uv , then K uv is also open in Ω and the thesis follows, since Ω is connected.

Theorem 1.5.3 improves previous similar results. In particular we refer to [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] for the case of strictly elliptic operators or for the case of degenerate operators with f = 0 (see also [START_REF] Douglas | Uniqueness and Comparison Theorems for nonlinear elliptic equations in divergence form[END_REF]).

In a similar way to the case of solutions to problem (1.5.1), we want to prove a Strong Maximum Principle for the linearized equation. We recall that any derivative u i := u x i , 1 ≤ i ≤ N , satisfies the linearized equations of (1.5.1), i.e.

Ω |∇u| p-2 (∇u i , ∇ϕ) + (p -2) Ω |∇u| p-4 (∇u, ∇u i )(∇u, ∇ϕ) dx - Ω f (u)u i ϕ = 0, ∀ϕ ∈ C ∞ c (Ω).
(1.5.9)

Let us now state the result on the Harnack type inequality for (1.5.9):

Theorem 1.5.4 (Harnack Inequality for the Linearized Operator). Let u i ∈ H 1,2 (Ω)∩L ∞ (Ω) be a nonnegative weak solution of (1.5.9) in a bounded smooth domain Ω of R N , N 2, with f positive and such that is a continuous function which is locally Lipschitz continuous in (0, +∞) and p > 2. Suppose that B(x, 5δ) ⊂ Ω. Let us put

1 2 * = 1 2 - 1 N + 1 N m -2 m -1 (consequently 2 * > 2 for m > 2)
and let 2 * be any real number such that 2 < 2 * < 2 * . Then for every 0 < s < χ, χ ≡ 2 * 2 , there exists C > 0 such that (1.5.10) sup

B(x,δ) u i ≤ C inf B(x,2δ) u i
where C is a constant depending on x, s, N, u, m, f . If 2N +2 N +2 < p < 2 the same result holds with χ replaced by χ ≡ 2 s where 2 is the classical Sobolev exponent (2

= 2N N -2 ), 2 s ≡ 1 -1 s and s < p-1 p-m .
We prove now a remarkable consequence of weak Harnack inequality which give information about the critical set Z u of solutions of (1.5.1). This is particularly interesting since Z u is also the set of point where the operator is degenerate elliptic. Theorem 1.5.5 (Strong Maximum Principle for the Linearized Operator). Let u i ∈ H 1,2 (Ω) ∩ C 0 (Ω) be a weak solution of (1.5.9) in a bounded smooth domain Ω of R N , N ≥ 2 with 2N +2 N +2 < p < 2 or p > 2 where f is positive and locally Lipschitz continuous in (0, +∞). Then, for any connected domain Ω ⊂ Ω with u i ≥ 0 in Ω , we have

u i ≡ 0 in Ω or u i > 0 in Ω . Proof. Let us define K u i = {x ∈ Ω | u i (x) = 0}
. By the continuity of v, then K u i is closed in Ω . Moreover by Theorem 1.5.4 K u i is also open in Ω and the thesis follows.

The Höpf boundary lemma for singular semilinear elliptic equations

In this chapter we deal with positive weak solutions to the singular semilinear elliptic problem:

(2.0.1)

       -∆u = 1 u γ + f (u) in Ω u > 0 in Ω u = 0 on ∂Ω, where γ > 1, Ω is a C 2,α bounded domain of R N with 0 < α < 1, N ≥ 1 and f : Ω → R locally Lipschitz continuous.
As remarked in the introduction, it is well known that generally solutions to problem (2.0.1) are not smooth up to the boundary. It was in fact proved in [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF] that solutions are not in H 1 0 (Ω) at least when γ > 3. Therefore, having in mind the natural regularity behaviour of the solutions (see [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF]) we let u ∈ C 2 (Ω) ∩ C(Ω). The equation is well defined in the interior of the domain in the classical meaning and its weak distributional formulations is (2.0.2)

Ω (∇u, ∇ϕ) dx = Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω).
Now, let us define the concept of inward pointing normal Definition 2.0.1. Let Ω ⊂ R N be a bounded C 2,α domain. Let I δ (∂Ω) be a neighborhood of ∂Ω with the unique nearest point property (see e.g. [START_REF] Foote | Regularity of the distance function[END_REF]). Hence for every x ∈ I δ (∂Ω) there exists a unique point x ∈ ∂Ω such that |x -x| = dist(x, ∂Ω). We define the inward-pointing normal as

(2.0.3) η(x) := x - x |x -x| .
Having in mind these notations, we are now ready to state the main result of this chapter:

Theorem 2.0.2 (Höpf type boundary lemma). Let u ∈ C 2,α (Ω) ∩ C(Ω) be a positive solution of problem (2.0.1). Then there exists a neighborhood

I δ (∂Ω) of ∂Ω such that (2.0.4) ∂ ν(x) u > 0 ∀ x ∈ I δ (∂Ω)
provided that (ν(x), η(x)) > 0 uniformly with respect to x ∈ I δ (∂Ω), namely provided that (ν(x), η(x)) ≥ β > 0 for some β > 0 for every x ∈ I δ (∂Ω).

In cases when solutions are not smooth up to the boundary, the Höpf lemma is generally replaced by comparison of the solutions with respect to The Höpf boundary lemma the distance function. Exploiting also such a kind of arguments, our Theorem 2.0.2 provides an information on the sign of the inward derivatives as soon as we look at the solution in the interior of the domain.

Actually we exploit a scaling argument near the boundary which leads to the study of a limiting problem in the half space:

(2.0.5)

       -∆u = 1 u γ in R N + u > 0 in R N + u = 0 on ∂R N + , where γ > 1, N ≥ 1, R N + := {x = (x 1 , ..., x N ) ∈ R N | x N > 0} and u ∈ C 2 (R N + ) ∩ C(R N + ).
As above problem (2.0.5) has to be understood in the weak distributional meaning with test functions with compact support in R N + , that is (2.0.6)

R N + (∇u, ∇ϕ) dx = R N + ϕ u γ dx ∀ϕ ∈ C ∞ c (R N + ).
Our scaling argument leads to the study of a limiting profile which is a solution to (2.0.5) and obeys to suitable a priori estimates. The following classification result is therefore crucial for our technique, and may also have an independent interest:

Theorem 2.0.3. Let γ > 1. Let u ∈ C 2 (R N + ) ∩ C(R N + ) be a solution to problem (2.0.5) such that (2.0.7) |u(x)| ≤ Cx t N ∀x ∈ R N + where t := 2 1 + γ . Then (2.0.8) u(x) = u(x N ) = M x t N where M := (γ + 1) 2 2(γ -1) t 2
.

We will prove Theorem 2.0.3 in Section 2.1 together with useful preliminary results. Then in Section 2.2 we exploit Theorem 2.0.3 and a scaling argument to prove Theorem 2.0.2.

Classification results for singular semilinear elliptic problems in the half-space

Here we introduce some notations and preliminary results. We say that u is a weak subsolution of problem (2.0.1) if (2.1.1)

Ω (∇u, ∇ϕ) dx ≤ Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω), ϕ ≥ 0.
Similarly, we say that u is a weak supersolution of problem (2.0.1) if (2.1.2)

Ω (∇u, ∇ϕ) dx ≥ Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω), ϕ ≥ 0.
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We shall prove a weak maximum principle in unbounded domain, borrowing some ideas from [START_REF] Berestycki | Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains[END_REF] (see also [START_REF] Birindelli | Höpf's lemma and anti-maximum principle in general domains[END_REF]).

Theorem 2.1.1. Let γ > 1, u ∈ C 2 (R N + ) ∩ C(R N + )
be a weak subsolution of problem (2.0.5), as in (2.1.1), and v ∈ C 2 (R N + ) ∩ C(R N + ) be a weak supersolution of problem (2.0.5), as in (2.1.2). Let us assume that there exists a constant K > 0 such that

(2.1.3) |u(x)| + |v(x)| ≤ Kx t N ∀x ∈ R N + with t := 2 1 + γ and (2.1.4) u ≤ v on ∂R N + . Then (2.1.5) u ≤ v in R N + .
Proof. We set

(2.1.6) w = u -v.
In the weak meaning, we have

(2.1.7) -∆w ≤ c(x)w in R N + , where c(x) = 1 u γ - 1 v γ 1 u -v ≤ 0 and c(x) ∈ C(R N + ).
Now passing to spherical coordinates x = ξ, with > 0 and ξ ∈ S N -1 , we obtain:

-∆w = - N i=1 w x i x i = -w - N -1 w - 1 2 ∆ S w ≤ c(•)w,
where ∆ S is the Laplace-Beltrami operator on the sphere S N -1 . Now we take an infinite open connected cone C such that its closure is disjoint from

R N + .
Hence we consider the following eigenvalue problem

(2.1.8) -∆ S ψ = λψ in G ψ = 0 on ∂G,
where G = S N -1 \ C and λ > 0.

It is well known (see for example [START_REF] Hörmander | The spectral function of an elliptic operator[END_REF][START_REF] Shubin | Pseudodifferential operators and spectral theory[END_REF]) that the eigenvalues of the Laplace-Beltrami operator -∆ S on the (N-1)-sphere

S N -1 are µ k = k(k + N -2)
where k ∈ N. Now we fix α > 0 such that λ 1 := α(α + N -2) is the principal eigenvalue of the problem (2.1.8) and ψ 1 is the corresponding eigenfunction. Since G ⊂ S N -1 it follows that α(α

+ N -2) = λ 1 ≥ µ 1 = N -1.
As a consequence of this fact we have that α ≥ 1. Using, as before, spherical coordinates x = ξ, let us define the following (2.1.9)

g(x) = g( , ξ) := α ψ 1 (ξ), ξ ∈ G.
Then g is an harmonic function, hence ∆g + c(x)g ≤ 0.

The Höpf boundary lemma

Since R N + lies outside the cone C, the function g is strictly positive on R N + . Hence we can consider the function

σ := w g .
By the definition of σ, we have

∇σ = 1 g ∇w - w g 2 ∇g,
and

∆σ = 1 g ∆w - 2 g 2 ∇g • ∇w - w g 2 ∆g + 2 w g 3 |∇g| 2 .
Finally it follows that (2.1.10)

L σ := -∆σ + 2 g ∇σ • ∇g + ∆g + c(x)g g σ ≤ 0 in R N + .
Moreover σ ≤ 0 on ∂R N + . Noticing that g ≤ β α and by the growth hypothesis (2.1.3) we have

|σ| = |w| g ≤ |u| + |v| g ≤ K(x N ) 2 γ+1 β α ≤ K β 2 γ+1 -α .
Recalling that 2 γ + 1 < 1 and α ≥ 1, it follows that 2 γ + 1 -α < 0.

Hence we have lim sup

|x|→+∞ σ(x) ≤ 0.
By the weak maximum principle (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] or Theorem 1.2.1) it follows now that σ ≤ 0 in R N + . Since g is strictly positive by construction, it follows that

w ≤ 0 in R N + .
Proof of Theorem 2.0.3.

Let M = (γ + 1) 2 2(γ -1) 1 γ+1 and t = 2 γ + 1 . Setting u(x) = M x t N , a simple computation shows that: (2.1.11) -∆u = - ∂ 2 u ∂x 2 N = -M t(t -1)x t-2 N = 1 (M x t N ) γ = 1 u γ in R N + .
The uniqueness of the solution follows by Theorem 2.1.1. 

     -∆φ = λφ in Ω φ > 0 in Ω φ = 0 on ∂Ω .
Then there exist two positive constants m 1 , m 2 and there exists δ > 0 sufficiently small such that

(2.2.2) m 1 φ 1 (x) 2 1+γ ≤ u(x) ≤ m 2 φ 1 (x) 2 1+γ ∀ x ∈ I δ (∂Ω).
Proof. We rewrite the equation of problem (2.0.1) as

(2.2.3) -∆u = 1 u γ + f (u) = p(x) u γ in Ω
where p(x) := 1 + u γ f (u(x)) and we fix δ 0 > 0 sufficiently small so that, for every 0 < δ < δ 0 we have that

p(x) > 0 ∀ x ∈ I δ (∂Ω).
Arguing as in [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF], we consider the principal eigenfunction φ 1 of problem (2.2.1). It is well known that φ 1 ∈ C 2 (Ω) and, by Höpf boundary lemma

∇φ 1 (x) = 0 ∀ x ∈ ∂Ω.
Let us consider t := 2 1 + γ and Ψ(x) := sφ 1 (x) t with s > 0 . The function Ψ satisfies the following equation

-∆Ψ(x) = g(x, s) Ψ(x) γ x ∈ I δ (∂Ω) where (2.2.4) g(x, s) := s 1+γ [t(1 -t)|∇φ 1 (x)| 2 + tλ 1 φ 1 (x) 2 ].
Since 0 < t < 1, by the definition of g in (2.2.4) we can choose two positive constants s 1 and s 2 such that 0 < s 1 < s 2 and

(2.2.5) g(x, s 1 ) < p(x) < g(x, s 2 ) ∀ x ∈ I δ (∂Ω).

Hence, setting u 1 := s 1 φ 1 (x) t and u 2 := s 2 φ 1 (x) t , we have that

(2.2.6) -∆u 1 < p(x) u γ 1 in I δ (∂Ω)
in the distributional meaning of (2.1.1), and

(2.2.7)

-∆u 2 > p(x) u γ 2 in I δ (∂Ω)
in the distributional meaning of (2.1.2).
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The Höpf boundary lemma Now we consider u β := βu and observe that u β satisfies the following equation

-∆u β (x) = β(-∆u(x)) = β p(x) u(x) γ = β γ+1 p(x) u β (x) γ .
By taking β 1 > 0 sufficiently large it follows that u β 1 and u 1 satisfy the following problem:

(2.2.8)

           -∆u β 1 ≥ p(x) u γ β 1 in I δ (∂Ω) -∆u 1 < p(x) u γ 1 in I δ (∂Ω) u β 1 ≥ u 1 on ∂I δ (∂Ω).
Here we note that the boundary datum of problem (2.2.8) is fulfilled for β 1 sufficiently large. Now, we claim that (2.2.9)

u β 1 = β 1 u(x) ≥ u 1 (x) > 0 in I δ (∂Ω).
If this is not the case, then there would exists an x 0 in I δ (∂Ω) such that 0 < u β 1 (x 0 ) < u 1 (x 0 ) and the minimum of u β 1 -u 1 on I δ (∂Ω) should be assumed at x 0 . But according to the argument above, this would imply that

∆ (u β 1 -u 1 ) (x 0 ) < p(x 0 ) 1 u 1 (x 0 ) γ - 1 u β 1 (x 0 ) γ < 0,
which is impossible by the maximum principle (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). This would provide a contradiction showing that (2.2.9) holds.

Similarly, choosing β 2 > 0 sufficiently small it follows that u β 2 and u 2 satisfy the following problem:

(2.2.10)

           -∆u β 2 ≤ p(x) u γ β 2 in I δ (∂Ω) -∆u 2 > p(x) u γ 2 in I δ (∂Ω) u β 2 ≤ u 2 on ∂I δ (∂Ω).
Repeating verbatim all the arguments above, it follows that (2.2.11)

u β 2 = β 2 u(x) ≤ u 2 (x) in I δ (∂Ω).
Hence, taking m 1 := s 1 β 1 and m 2 := s 2 β 2 , we have (2.2.2) and the thesis is proved.

Proof of Theorem 2.0.2. Since the domain is of class C 2,α we may and do reduce to work in a neighborhood of the boundary I δ (∂Ω) where the unique nearest point property holds (see e.g. [START_REF] Foote | Regularity of the distance function[END_REF]). Arguing by contradiction, let us assume that there exists a sequence of points {x n } in I δ (∂Ω), such that x n -→ x 0 ∈ ∂Ω, as n → +∞, and

(2.2.12)

∂ ν(xn) u(x n ) ≤ 0, with (ν(x n ), η(x n )) ≥ β > 0.
Without loss of generality, we can assume that x 0 = 0 ∈ ∂Ω and η(x n ) = e N . This follows by the fact that the Laplace operator is invariant under isometries. More precisely, for each n ∈ N, we can consider an isometry

T n : R N -→ R N with the above mentioned properties just composing a translation and a rotation of the axes. This procedure generates a new sequence of points {y n }, where y n := T n x N , such that every y n ∈ span e N and y n -→ 0 as n → +∞. Setting u n (y) := u(T -1 n (y)), it follows that (2.2.13)

-∆u n = 1 u γ n + f (u n ) in Ω n = T n (Ω). Now we set (2.2.14) w n (y) := u n (δ n y) M n where δ n := dist(x n , ∂Ω) = dist(T n x n , 0) and M n := u n (δ n e N ) = u(x n ). It follows that δ n → 0 as n → +∞ and -w n is defined in Ω * n , where Ω * n := Ω n δ n .
-w n (e N ) = 1.

-M n → 0, as n → +∞. Moreover w n satisfies

-∆w n = 1 M n [-∆(u n (δ n y))] = δ 2 n M n 1 u n (δ n y) γ + f (u n (δ n y)) = δ 2 n M γ+1 n M γ n u n (δ n y) γ + M γ n f (u n (δ n y)) = δ 2 n M γ+1 n 1 w n (y) γ + M γ n f (u n (δ n y)) in Ω * n .
(2.2.15)

Here it is important to observe that the term

δ 2 n M γ+1 n is bounded in a neigh- borhood I δ (∂Ω * n );
this is a consequence of the Theorem 2.2.1. In the following we shall deduce a limiting problem with a limiting solution that will be denoted by u ∞ . The reader should keep in mind that f is bounded, the term M γ n f (u n (δ n y)) vanishes and the limiting equation is therefore:

(2.2.16) -∆w ∞ = C w γ ∞ in R N + .
Let us provide the details needed to pass to the limit. We have that:

-

w n C 2,α -→ w ∞ , as n → +∞, in any compact set K of R N + . -w ∞ ∈ C 2,α (R N + ) ∩ C(R N + ).
-

Ω * n := Ω n δ n C 2 -→ R N + , as n → +∞.
To prove this let us consider a compact set K in I δn (∂Ω * n ) such that dist(K, ∂Ω * n ) ≥ C > 0 for every n ∈ N, for some tubular neighborhoods I δn (∂Ω * n ) such that Theorem 2.2.1 holds.
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Claim 1. We claim that w n (y) > 0 for all y ∈ K and for all n ∈ N. Let y ∈ K. Hence, by Theorem 2.2.1

w n (y) := u n (δ n y) M n ≥ L (dist(δ n y, ∂Ω * n )) 2 γ+1 M n .
In particular, by the fact that dist(δ n y, ∂Ω * n ) ≥ Cδ n , it follows that (2.2.17)

w n (y) ≥ L (Cδ n ) 2 γ+1 M n ≥ C(K, γ, m 1 , m 2 ) > 0 for every n ∈ N. Claim 2. We claim that w n C 2,α -→ w ∞ , as n → +∞, in any compact set K of R N + . Since dist(y, ∂Ω * n ) ≤ C for every y ∈ K, by Theorem 2.2.1 it follows that w n (y) = u n (δ n ) M n ≤ m 2 [dist(δ n y, ∂Ω n )] 2 γ+1 M n = Lm 2 δ 2 γ+1 n [dist(y, ∂Ω * n )] 2 γ+1 M n ≤ Lm 2 C 2 γ+1 δ 2 γ+1 n M n ≤ Lm 2 C 2 γ+1 C(K, m 1 ). (2.2.18) Hence w n L ∞ (K) ≤ C 1
for any compact set K of R N + . By applying regularity theory, see e.g. [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF], there exists a compact set K ⊂ K such that (2.2.19)

w n C 1,α (K ) ≤ C 2 ,
where C 2 is a positive constant depending only upon N, M and dist(K, ∂Ω n ). By standard elliptic estimates (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF], Theorem 6.6, pp 98.) it follows that

(2.2.20)

w n C 2,α (K ) ≤ C 3 ,
where C 3 is a positive constant depending only upon N , K , u C 1,α (K ) and h n C 0,α (K ) . Therefore, by Ascoli-Arzelà Theorem, the sequence {w n } admits a subsequence that we call {w n } such that converges on the compact set K ⊂ R N + . Now we consider an increasing sequence of compact sets

{K n } of R N + , i.e. K 1 ⊂ K 2 ⊂ • • • ⊂ K m ⊂ • • • ⊂ R N + .
Our aim is to use a diagonal procedure to construct the limit function. We note that there exists a subsequence {w

(1) n } of {w n } such that w (1) n C 2 -→ w 1 in K 1 .
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In the same way there exists a subsequence {w

(2) n } of {w (1) n } such that w (2) n C 2 -→ w 2 in K 2 and w 2 = w 1 in K 1 .
In general we consider the compact set K m , so that there exists a subsequence {w

(m) n } of {w (m-1) n } such that w (m) n C 2 -→ w m in K m and
w m = w m-1 in K m-1 . Finally we found the limit function and it is such that (2.2.21)

w ∞ = w m in K m ,
for every m ∈ N. Hence w ∞ is a solution of the limit equation (2.2.16).

Claim 3. We claim that Ω n δ n C 2 -→ R N + , as n → +∞. Since the domain Ω is C 2,α , then there exists g ∈ C 2 (R N -1 ) such that Ω ∩ B R (0) := {x = (x , x N ) ∈ Ω ∩ B R (0) | x N > g(x 1 , ..., x N -1 ) = g(x )}
for some R > 0. Arguing as above, we have to consider for every n ∈ N the function g n (y) := g(T -1 n (y)) and the domain Ω n := T n (Ω). Without loss of generality we can assume that g n (0) = 0 and ∇ R N -1 g n (0) = 0. Moreover, by hypothesis 

g n C 2 = g C 2 ≤ C,
g n (δ n x ) δ n C 0 loc -→ 0,
as n goes to +∞. Let us consider the second order Taylor approximation of the function g n centered at the point x = 0 in a compact set K ⊂ R N -1 , with 0 ∈ K:

(2.2.23)

g n (p) := g n (0) + ∇g n (0), p + 1 2 D 2 g n (ξp)p, p ,
where ξ ∈ (0, 1) for every n ∈ N and for every p ∈ K.

Noticing that g n (0) = 0 and ∇g n (0) = 0 and recalling that g n is a C 2 function, it follows that (2.2.24) 

g n (δ n x) δ n = 1 2δ n | D 2 g n (ξδ n x)δ n x, δ n x | ≤ C 2 δ n x 2 ≤ C K δ n ,
w n (y) = u n (δ n ) M n ≤ m 2 [(φ 1 ) n (δ n y)] 2 γ+1 M n ≤ Lm 2 [dist(δ n y, ∂Ω n )] 2 γ+1 M n = Lm 2 δ 2 γ+1 n [dist(y, ∂Ω * n )] 2 γ+1 M n ≤ C(K, L, m 2 , m 1 ) [dist(y, ∂Ω * n )] 2 γ+1
in Ω * n .

( 

(x) = w ∞ (x N ) = C 2 (γ + 1) 2 γ -1 1 γ+1 (x N ) 2 γ+1 .
Then, by (2.2.27), it follows that

∂ ν(x) w ∞ (x) > 0 ∀x ∈ R N +
for every ν ∈ R N such that (ν, η) > 0 and this provides a contradiction with (2.2.12). Hence we have the thesis (2.0.4) and the result is proved.

The Höpf boundary lemma for quasilinear elliptic problems involving singular nonlinearities and applications

In this chapter, we deal with positive weak solutions to the singular quasilinear elliptic problem:

(3.0.1)        -∆ p u = 1 u γ + f (u) in Ω u > 0 in Ω u = 0 on ∂Ω where p > 1, γ > 1, Ω is a C 2,α bounded domain of R N with N ≥ 1 and f : Ω → R locally Lipschitz continuous.
A key point to have in mind in the study of semilinear or quasilinear problems involving singular nonlinearities is the fact that the source term loses regularity at zero, namely the problem is singular near the boundary, as pointed out in the previous chapter. As a first consequence, solutions are not smooth up to the boundary (see [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF]) and the gradient generally blows up near the boundary in such a way that u / ∈ W 1,p 0 (Ω). Therefore, here and in all the chapter, we mean that u ∈ C 1,α (Ω) is a solution to (3.0.1) in the weak distributional meaning according to Definition 3.1.1. Existence and uniqueness results regarding problem (3.0.1) can be found e.g. in [START_REF] Arcoya | Some elliptic problems with singular natural growth lower order terms[END_REF][START_REF] Boccardo | A Dirichlet problem with singular and supercritical nonlinearities[END_REF][START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | The moving planes method for singular semilinear elliptic problems Nonl[END_REF][START_REF] Canino | Existence and uniqueness for p-Laplace equations involving singular nonlinearities[END_REF][START_REF] Giachetti | An elliptic problem with a lower order term having singular behaviour[END_REF][START_REF] Oliva | On singular elliptic equations with measure sources[END_REF][START_REF] Oliva | Finite and infinite energy solutions of singular elliptic problems: existence and uniqueness[END_REF].

In this setting we prove a general version of a Höpf type boundary lemma regarding the sign of the derivatives of the solution near the boundary and in the interior of the domain, as we have done in the previous chapter in the semilinear context. To state our result we need some notation; thus we shall denote with I δ (∂Ω) a neighborhood of the boundary with the unique nearest point property (see e.g. [START_REF] Foote | Regularity of the distance function[END_REF]). We have to recall Definition 2.0.1 of inward pointing normal defined by:

(3.0.2) η(x) := x - x |x -x| .
With this notation we have the following:

Theorem 3.0.1 (Höpf type boundary lemma). Let u ∈ C 1,α (Ω) ∩ C(Ω) be a positive solution to (3.0.1). Then, for any β > 0, there exists a neighborhood I δ (∂Ω) of ∂Ω, such that

(3.0.3) ∂ ν(x) u > 0 ∀ x ∈ I δ (∂Ω)
whenever ν(x) ∈ R N with ν(x) = 1 and (ν(x), η(x)) ≥ β.

We are mainly concerned with the study of the sign of the derivatives near the boundary. Such a control is generally deduced a posteriori, by contradiction, assuming that the solution is C 1 up to the boundary. In our setting this is not a natural assumption and we develop a different technique that in any case exploits very basic arguments of common use. In fact we carry out a scaling argument near the boundary that leads to a limiting problem in the half space.

(3.0.4)

       -∆ p u = 1 u γ in R N + u > 0 in R N + u = 0 on ∂R N + where p > 1, γ > 1, N ≥ 1, R N + := {x = (x 1 , ..., x N ) ∈ R N | x N > 0} and u ∈ C 1,α (R N + ) ∩ C(R N + )
. Our scaling argument leads in fact to the study of a limiting profile which is a solution to (3.0.4) and obeys to suitable decay assumptions. It is therefore crucial for our technique, and may also have an independent interest, the following classification result:

Theorem 3.0.2. Let γ > 1 and let u ∈ C 1,α (R N + ) ∩ C(R N + ) be a solution to problem (3.0.4) such that (3.0.5) cx β N ≤ u(x) ≤ Cx β N with β := p γ + p -1 and c, C ∈ R + . Then (3.0.6) u(x) = u(x N ) = M x β N with M := (γ + p -1) p p p-1 (p -1)(γ -1) 1 γ+p-1 .
The Höpf boundary lemma is a fundamental tool in many applications. We exploit it here to develop the moving planes method (see [START_REF] Alexandrov | A characteristic property of the spheres[END_REF][START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF][START_REF] Serrin | A symmetry problem in potential theory[END_REF]) for problem (3.0.1) obtaining the following: Theorem 3.0.3. Let Ω be a bounded smooth domain of R N which is strictly convex in the x 1 -direction and symmetric with respect to the hyperplane {x 1 = 0}. Let u ∈ C 1,α (Ω) ∩ C(Ω) be a positive solution of problem (3.0.1) with f (s) > 0 for s > 0 (f (0) ≥ 0). Then it follows that u is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the x 1 -direction in Ω ∩ {x 1 < 0}. In particular if the domain is a ball, then the solution is radial and radially decreasing.

For the reader's convenience we sketch the proofs here below.

-In Section 3.1 we prove 1D-symmetry result in half spaces for problem (3.0.4), see Theorem 3.1.2. Mainly we develop a comparison principle to compare the solution u and it's translation u τ := u(x -τ e 1 ). Even if the source term is decreasing, a quite technical approach is needed because the operator is nonlinear and we are reduced to work in unbounded domains. The 1D-symmetry result obtained leads us to the study of a one dimensional problem in R + . We carry out this analysis proving a uniqueness result (see Proposition 3.2.2) that provides, as a corollary, the proof of Theorem 3.0.2. -In Section 3.2 we prove Lemma 3.2.1, that is a very useful tool in the ODE analysis. Moreover we run through again, in the quasilinear setting, the technique of [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF] to provide asymptotic estimates for the solutions near the boundary in terms of the distance function, see Theorem 3.3.2. Finally we prove Lemma 3.3.1 that is a weak comparison principle in bounded domain that we used in the proof of Theorem 3.3.2. -Section 3.3 is the core of the chapter. We prove here Theorem 3.0.1 developing the scaling argument that leads to the problem in the half-space. To this aim we strongly exploit the asymptotic estimates deduced in Theorem 3.3.2. The proof follows by contradiction thanks to the classification result Theorem 3.0.2. -Finally, in Section 3.4, we apply our Höpf type boundary lemma to prove the symmetry and monotonicity result stated in Theorem 3.0.3. The proof is based on the joint use of the moving planes method and the monotonicity information near the boundary provided by Theorem 3.0.1 that allow to avoid the region where the problem is singular.

One dimensional symmetry in the half-space

The aim of this section is to show the first part of Theorem 3.0.2, in particular we are going to prove that each solution u to problem (3.0.4) satisfying (3.2.2) is one-dimensional. Solutions to p-Laplace equations are generally of class C 1,α , see [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF]. Therefore a solution to (3.0.1) has to be understood in the weak distributional meaning taking into account the singular nonlinearity. We state the following:

Definition 3.1.1. We say that u ∈ W 1,p loc (Ω) ∩ C(Ω), u > 0 in Ω, is a weak solution to problem (3.0.1) if (3.1.1) Ω |∇u| p-2 (∇u, ∇ϕ) dx = Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω). We say that u ∈ W 1,p loc (Ω) ∩ C(Ω), u > 0 in Ω, is a weak subsolution of problem (3.0.1) if (3.1.2) Ω |∇u| p-2 (∇u, ∇ϕ) dx ≤ Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω), ϕ ≥ 0.
Similarly, we say that u

∈ W 1,p loc (Ω) ∩ C(Ω), u > 0 in Ω, is a weak superso- lution of problem (3.0.1) if (3.1.3) Ω |∇u| p-2 (∇u, ∇ϕ) dx ≥ Ω ϕ u γ dx + Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω), ϕ ≥ 0. Theorem 3.1.2. Let γ > 1 and let u ∈ C 1,α (R N + ) ∩ C(R N + ) be a solution to problem (3.0.4) such that (3.1.4) cx β N ≤ u(x) ≤ Cx β N ∀x ∈ R N +
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with β := p γ + p -1 . Then (3.1.5) u x i ≡ 0 for every i = 1, . . . , N -1. Namely, u(x) = u(x N ).
Proof of Theorem 3.1.2. We start with a gradient estimate showing that

(3.1.6) |∇u(x)| ≤ C b x γ-1 γ+p-1 N .
To prove this fact we use the notation x = (x 1 , ..., x N ) = (x , x N ) ∈ R N and, with no loss of generality we consider a point P c := (0 , x c N ). Setting

w(x) := u(x c N • x) (x c N ) β it follows that (3.1.7) -∆ p w = 1 w γ in R N + .
We restrict our attention to the problem

(3.1.8)    -∆ p w = 1 w γ in B 1 2 (0 , 1) w > 0 in B 1 2 (0 , 1)
so that, by (3.1.4), it follows that w is bounded and

1 w γ ∈ L ∞ (B 1 2 (0 , 1)).
Therefore, by standard C 1,α estimates [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], we deduce that

w C 1 (B 1 4 (0 ,1)) ≤ C b .
Scaling back we get (3.1.6).

Arguing by contradiction, without loss of generality, we assume that there exists P 0 ∈ R N such that u x 1 (P 0 ) > 0. Hence there exists δ > 0 sufficiently small such that u x 1 (x) > 0 for all x ∈ B δ (P 0 ). Now we define 

R := ϕ R (x ) such that ϕ R = 1 in B R (0), ϕ R = 0 in (B 2R (0)) c and |∇ϕ R | ≤ 2 R in B 2R (0) \ B R (0)
, where B R (0) denotes the (N -1)-dimensional ball of center 0 and radius R.

We distinguish two cases:

Case 1: 1 < p < 2. We set (3.1.15) ψ := w α τ,ε ϕ 2 R
where α > 0, w τ,ε is defined in (3.1.13) and ϕ R is the cutoff function defined here above. First of all we notice that ψ belongs to W 1,p 0 (R N + ). By density argument we can take ψ as test function in the weak formulation of problem (3.0.4), see Definition 3.1.1, so that, subtracting the equation for u and u τ , we obtain α

R N + ∩supp(ψ) (|∇u| p-2 ∇u -|∇u τ | p-2 ∇u τ , ∇w τ,ε )w α-1 τ,ε ϕ 2 R dx = -2 R N + ∩supp(ψ) (|∇u| p-2 ∇u -|∇u τ | p-2 ∇u τ , ∇ϕ R )w α τ,ε ϕ R dx + R N + ∩supp(ψ) 1 u γ - 1 u γ τ w α τ,ε ϕ 2 R dx .
(3.1.16)

From (3.1.16), using (1.0.2) and the Mean Value Theorem, we obtain

αC 1 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 w α-1 τ,ε ϕ 2 R dx ≤α R N + ∩supp(ψ) (|∇u| p-2 ∇u -|∇u τ | p-2 ∇u τ , ∇w τ,ε )w α-1 τ,ε ϕ 2 R dx = -2 R N + ∩supp(ψ) (|∇u| p-2 ∇u -|∇u τ | p-2 ∇u τ , ∇ϕ R )w α τ,ε ϕ R dx + R N + ∩supp(ψ) 1 u γ - 1 u γ τ w α τ,ε ϕ 2 R dx ≤2C 4 R N + ∩supp(ψ) |∇(u -u τ )| p-1 |∇ϕ R |w α τ,ε ϕ R dx -γ R N + ∩supp(ψ) 1 ξ γ+1 (u -u τ )w α τ,ε ϕ 2 R dx (3.1.17)
where ξ belongs to ----→ (u, u τ ). Hence, recalling also (3.1.6), we deduce that

αC 1 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 w α-1 τ,ε ϕ 2 R dx ≤ 2C 4 R N + ∩supp(ψ) |∇(u -u τ )| p-1 |∇ϕ R |w α τ,ε ϕ R dx -γ R N + ∩supp(ψ) 1 ξ γ+1 w α+1 τ,ε ϕ 2 R dx ≤ Č R N + ∩supp(ψ) |∇ϕ R |w α τ,ε dx (3.1.18)
where Č :

= 2C 4 ∇(u -u τ )ϕ R p-1 L ∞ (R N + ∩supp(ψ))
. Exploiting the weighted Young's inequality with exponents α + 1 α , α + 1 we obtain

αC 1 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 w α-1 τ,ε ϕ 2 R dx ≤ Č R N + ∩supp(ψ) |∇ϕ R |w α τ,ε dx ≤ Č σ α+1 (α + 1) R N + ∩supp(ψ) |∇ϕ R | α+1 dx + Čα α + 1 σ α α+1 R N + ∩supp(ψ) w α+1 τ,ε dx ≤ Ċ R α-(N -2) + Čα α + 1 σ α α+1 R N + ∩supp(ψ) w α+1 2 τ,ε 2 dx. 
( 

(|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 w α-1 τ,ε ϕ 2 R dx ≤ Ċ R α-(N -2) + Čα α + 1 σ α α+1 B 2R (0) {y≤k} w α+1 2 τ,ε 2 dy dx ≤ Ċ R α-(N -2) + Čα α + 1 σ α α+1 C 2 P (k) α + 1 2 2 R N + ∩supp(ψ) |∇w τ,ε | 2 w α-1 τ,ε dx ≤ Čα α + 1 σ α α+1 C 2 P (k) α + 1 2 2 R N + ∩supp(ψ) (|∇u| + |∇u τ |) (2-p)+(p-2) |∇w τ,ε | 2 w α-1 τ,ε dx + Ċ R α-(N -2)
(3.1.20)
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where C P is the Poincaré constant. Let us point out that, by (3.1.4), (3.1.14) and standard regularity theory [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], it follows that

(3.1.21) |∇u| + |∇u τ | ≤ C in supp(w τ,ε ) ⊂⊂ { k ≤ x N ≤ K} .
Hence we have

C(R) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 w α-1 τ,ε dx ≤ ϑ C(2R) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 w α-1 τ,ε dx + Ċ R α-(N +2) (3.1.22)
where C(R)

:= R N + ∩ (B R (0) × R) and ϑ := Čα α+1 σ α α+1 C 2 P (k) α+1 2 2 (|∇u|+ |∇u τ |) 2-p ∞ . We set g(R) := Ċ R α-(N +2)
and

L(R) := C(R) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 w α-1 τ,ε dx so that L(R) ≤ ϑL(2R) + g(R) .
Now we fix α sufficiently large so that g(R) → 0 as R → +∞ and, consequently, we take σ small enough so that ϑ < 2 (α-γ)β+1 . This allows to exploit Lemma 2.1 of [START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF]: it follows that

L(R) = 0
for any R > 0. This proves that actually w τ,ε is constant and therefore w τ,ε = 0 since it vanishes near the boundary. This is a contradiction with (3.1.10) thus proving the result in the case 1 < p < 2 .

Case 2: p ≥ 2. We set

(3.1.23) ψ := w τ,ε ϕ 2 R
with w τ,ε and ϕ R defined as in the previous case 1 < p < 2 . Arguing exactly as in the case 1 < p < 2 we arrive to

R N + ∩supp(ψ) (|∇u| p-2 ∇u -|∇u τ | p-2 ∇u τ , ∇w τ,ε )ϕ 2 R dx = -2 R N + ∩supp(ψ) (|∇u| p-2 ∇u -|∇u τ | p-2 ∇u τ , ∇ϕ R )w τ,ε ϕ R dx + R N + ∩supp(ψ) 1 u γ - 1 u γ τ w τ,ε ϕ 2 R dx (3.1.24)
The Höpf boundary lemma From (3.1.24), using (1.0.2) and the Mean Value Theorem, we deduce that

C 1 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 ϕ 2 R dx ≤ R N + ∩supp(ψ) (|∇u| p-2 ∇u -|∇u τ | p-2 ∇u τ , ∇w τ,ε )ϕ 2 R dx = -2 R N + ∩supp(ψ) (|∇u| p-2 ∇u -|∇u τ | p-2 ∇u τ , ∇ϕ R )w τ,ε ϕ R dx + R N + ∩supp(ψ) 1 u γ - 1 u γ τ w τ,ε ϕ 2 R dx ≤2C 2 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε |w τ,ε |∇ϕ R |ϕ R dx -γ R N + ∩supp(ψ) 1 ξ γ+1 (u -u τ )w τ,ε ϕ 2 R dx (3.1.25)
where ξ belongs to ----→ (u, u τ ). Exploiting the Young's inequality to the right hand side we have

C 1 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 ϕ 2 R dx ≤2C 2 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | |∇ϕ R |w τ,ε ϕ R dx - R N + ∩supp(ψ) 1 ξ γ+1 (u -u τ )w τ,ε ϕ 2 R dx ≤σC 2 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 dx + C 2 σ R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇ϕ R | 2 w 2 τ,ε ϕ 2 R dx -γ R N + ∩supp(ψ) 1 ξ γ+1 (u -u τ )w τ,ε ϕ 2 R dx (3.1.26)
As above we shall exploit the fact that |∇u| and |∇u τ | are uniformly bounded in R N + ∩ supp(ψ), see (3.1.21). Therefore we get

C 1 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 ϕ 2 R dx ≤σC 2 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 dx + Č σR 2 -Ċ R N + ∩supp(ψ) w 2 τ,ε ϕ 2 R dx (3.1.27)
where Č e Ċ are positive constants. By taking R 0 > 0 sufficiently large it follows that Č σR 2 -Ċ < 0 for every R ≥ R 0 . Hence we have
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R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 ϕ 2 R dx ≤ σC 2 C 1 R N + ∩supp(ψ) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 dx.
(3.1.28)

As above, for C(R)

:= R N + ∩ (B R (0) × R) , we set L(R) := C(R) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 dx so that L(R) ≤ ϑL(2R) .
where ϑ := σC 2 C 1 > 0 is sufficiently small when σ > 0 is sufficiently small. Applying again Lemma 2.1 of [START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF] it follows that

C(R) (|∇u| + |∇u τ |) p-2 |∇w τ,ε | 2 dx = 0
for any R ≥ R 0 . This provides a contradiction exactly as in the case 1 < p < 2 so that the thesis follows also in the case p ≥ 2.

ODE analysis and classification result

The aim of this section is to show the second part of Theorem 3.0.2, in particular we are going to prove that each one dimensional solution u to problem (3.0.4) satisfying (3.2.2) is given by (3.0.6). The one dimensional symmetry result proved in Theorem 3.1.2 leads to the study of the one dimensional problem:

(3.2.1)        -|u | p-2 u = 1 u γ t ∈ R + u > 0 t ∈ R + u(0) = 0 where γ > 1 and u ∈ C 1,α (R + ) ∩ C(R + ∪ {0}).
As a consequence, we expect uniqueness for such a problem, since the source term is decreasing. By the way the proof is not straightforward since the source term is decreasing but singular at zero. Now we are ready to prove the following lemma:

Lemma 3.2.1. Let u ∈ C 1,α (R + ) ∩ C(R + ∪ {0}) be a solution to (3.2.

1).

Assume that there exists a positive constant C u such that

(3.2.2) t β C u ≤ u(t) ≤ C u t β
for t sufficiently large and β := p γ+p-1 . Then there exists a positive constant C u such that

(3.2.3) t β-1 C u ≤ u (t) ≤ C u t β-1
for t large enough.

Proof. We first claim that u (t) ≥ 0 for every t > 0. To prove this fact we argue by contradiction and assume that there exist t 0 ≥ 0 such that u (t 0 ) < 0. Setting w(t) := |u (t)| p-2 u (t) it follows by the equation in (3.2.1) that w is a strictly decreasing function. Therefore u (t) ≤ -C := u (t 0 ) < 0 for every t ≥ t 0 and

(3.2.4) u(t) = u(t 0 ) + t t 0 u (s) ds ≤ u(t 0 ) - t t 0 C ds = -Ct + Ct 0 + u(t 0 ).
This would force u to be negative for t large in contradiction with with the fact that u is positive by assumption. Therefore we deduce that u (t), w(t) ≥ 0 for t sufficiently large. Recalling that w is a strictly decreasing function, we deduce that actually u (t), w(t) > 0. Furthermore w(t) → M ≥ 0 as t goes to +∞. I is easy to show that M = 0. If M > 0 in fact, arguing as in ( 

u ∈ C 1,α (R + )∩ C(R + ∪ {0}) satisfying (3.2.2) given by (3.2.7) u(t) = M t β
where M := (γ + p -1) p p p-1 (p -1)(γ -1)

1 γ+p-1 and β := p γ + p -1 .
Proof. Arguing by contradiction we assume that there exist two positive solution u

, v ∈ C 1,α (R + ) ∩ C(R + ∪ {0}) to problem (3.2.1) such that u ≡ v. Let us consider the cutoff function ϕ R ∈ C ∞ c (R), R > 0, such that ϕ R (t) = 1 if t ∈ [-R, R], ϕ R (t) = 0 if t ∈ (-∞, -2R) ∪ (2R, +∞) and |ϕ (t)| < 2
R for every t ∈ (-2R, -R) ∪ (R, 2R). For ε > 0 (small) we set

w ε = (u -v -ε) + and ψ := [(u -v -ε) + ] α ϕ 2 R
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with α > 0 (large). Passing through the weak formulation of problem (3.2.1) for u and v, subtracting and using standard elliptic estimates and (1.0.2) we obtain

αC 1 2R 0 |u | + |v | p-2 |w ε | 2 w α-1 ε ϕ 2 R dt ≤ α 2R 0 (|u | p-2 u -|v | p-2 v , w ε )w α-1 ε ϕ 2 R dt = -2 2R R (|u | p-2 u -|v | p-2 v , ϕ R )w α ε ϕ R dt + 2R 0 1 u γ - 1 v γ w α ε ϕ 2 R dt ≤ 2C 2 2R R |u | + |v | p-2 |w ε |w α ε |ϕ R |ϕ R dt -γ 2R R 1 ξ γ+1 (u -v)w α ε ϕ 2 R dt (3.2.8)
with ξ ∈ ---→ (u, v). Exploiting the weighted Young's inequality in the right hand side we have

αC 1 2R 0 |u | + |v | p-2 |w ε | 2 w α-1 ε ϕ 2 R dt ≤LC 2 2R R |u | + |v | p-2 |w ε | 2 w α-1 ε dt + C 2 LR 2 2R R |u | + |v | p-2 w α+1 ε ϕ 2 R dt -γ 2R R 1 ξ γ+1 w α+1 ε ϕ 2 R dt (3.2.9) 
By Lemma 3.2.1 it follows that

αC 1 2R 0 |u | + |v | p-2 |w ε | 2 w α-1 ε ϕ 2 R dt ≤LC 2 2R R |u | + |v | p-2 |w ε | 2 w α-1 ε dt + Č L 2R R t (β-1)(p-2)-2 w α+1 ε ϕ 2 R dt -Ċ 2R R t -β(γ+1) w α+1 ε ϕ 2 R dt ≤LC 2 2R R |u | + |v | p-2 |w ε | 2 w α-1 ε dt + Č L -Ĉ 1 R β(γ+1) 2R R w α+1 ε ϕ 2 R dt (3.2.10)
where we also used the fact that t/2 ≤ R ≤ t when t ∈ [R, 2R]. Now we fix L sufficiently large such that Č L -Ĉ ≤ 0 so that

R 0 |u | + |v | p-2 |w ε | 2 w α-1 ε dt ≤ LC 2 αC 1 2R 0 |u | + |v | p-2 |w ε | 2 w α-1 ε dt.
(3.2.11)

The Höpf boundary lemma

Hence we define

L(R) := R 0 |u | + |v | p-2 |w ε | 2 w α-1 ε dt.
By Lemma 3.2.1 we deduce that L(•) has polynomial growth, namely

L(R) ≤ CR (β-1)(p-2) R 2(β-1) R β(α-1) R 0 dt = CR (β-1)p+β(α-1)+1 = CR σ
with σ := (α -γ)β + 1. We take α > 0 sufficiently large so that σ > 0 and ϑC 2 αC 1 < 2 -σ so that Lemma 2.1 of [START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF] apply and shows that L(R) = 0.

From this it follows that u ≤ v + ε for every ε > 0, hence u ≤ v. Arguing in the same way it follows that u ≥ v and this proves the uniqueness result.

To conclude the proof it is now sufficient to check that the function defined in (3.2.7) solves the problem.

Proof of Theorem 3.0.2. Once that Theorem 3.1.2 is in force, the proof of Theorem 3.0.2 is a consequence of Proposition 3.2.2.

Asymptotic analysis near the boundary and proof of the Höpf boundary lemma

We start this section considering the auxiliary problem:

(3.3.1)    -∆ p u = p(x) u γ in D u > 0 in D
where D is a bounded smooth domain of R N , where p ∈ L ∞ (D) and p(x) ≥ c > 0 a.e. in D, γ > 1 and u ∈ W 1,p loc (D) ∩ C 0 (D). For this kind of problems, generally, the weak comparison principle holds true. This is manly due to the monotonicity properties of the source term. In spite of this remark, the proof is not straightforward when considering sub/super solutions that are not smooth up the boundary. Therefore we provide here below a self contained proof of a comparison principle that we shall exploit later on. 

w ε := (u -v -ε) +
where ε > 0. We notice that w ε is suitable as test function since supp(w ε ) ⊂⊂ D and u, v ∈ W 1,p loc (D). Hence w ε ∈ W 

p(x) 1 u γ - 1 v γ w ε dx. (3.3.3)
Taking into account the fact that u -v ≥ u -v -ε, the fact that p(•) is positive and u -γ is decreasing, it follows that (3.3.4)

D∩supp(wε) (|∇u| + |∇v|) p-2 |∇w ε | 2 dx ≤ 0.
By Fatou's Lemma, as ε tends to zero, we deduce that

D (|∇u| + |∇v|) p-2 |∇(u -v) + | 2 dx ≤ 0
showing that (u -v) + is constant, and therefore zero by the boundary data. Thus we deduce that u ≤ v in D proving the thesis.

We exploit now Lemma 3.3.1 to study the boundary behaviour of the solutions to (3.0.1). The proof is actually the one in [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF]. Since we could not find an appropriate reference for the estimates that we need, we repeat the argument. We denote with φ 1 the first (positive) eigenfunction of the p-laplacian in Ω. Namely

(3.3.5) -∆ p φ 1 = λ 1 φ p-1 1 in Ω φ 1 = 0 on ∂Ω.
Having in mind Lemma 3.3.1 we can prove a similar result to the one in [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF], but in the quasilinear setting. Theorem 3.3.2. Let u ∈ C 1,α loc (Ω)∩C(Ω) be a positive solution to (3.0.1). Then there exist two positive constants m 1 , m 2 and there exists δ > 0 sufficiently small such that

(3.3.6) m 1 φ 1 (x) p γ+p-1 ≤ u(x) ≤ m 2 φ 1 (x) p γ+p-1 ∀ x ∈ I δ (∂Ω).
Proof. We rewrite the equation in (3.0.1) as

(3.3.7) -∆ p u = 1 u γ + f (u) = p(x) u γ in Ω
where p(x) := 1 + u(x) γ f (u(x)). In the following we assume that δ is small enough so that p(x) > 0 ∀ x ∈ I δ (∂Ω). Arguing as in [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF], we exploit the principal eigenfunction φ 1 of problem (3.3.5) and the fact that φ 1 ∈ C 1,α (Ω) (see e.g. [START_REF] Anane | Simplicité et isolation de la premiére valeur propre du p-Laplacien avec poids[END_REF][START_REF] Lindqvist | On the equation div(|∇u| p-2 ∇u) + λ|u| p-2 u = 0[END_REF][START_REF] Kawohl | Positive eigenfunctions for the p-Laplace operator revisited[END_REF]) and

∇φ 1 (x) = 0 ∀ x ∈ ∂Ω.
For t := p γ + p -1 we set Ψ := s φ t 1 , s > 0. It is easy to see that

-∆ p Ψ = g(x, s) Ψ γ in I δ (∂Ω)
where

(3.3.8) g(x, s) := s γ+p-1 t p-1 (γ -1)(p -1) γ + p -1 |∇φ 1 (x)| p + λ 1 φ 1 (x) p .
Since 0 < t < 1, we can choose two positive constants s 1 and s 2 such that 0 < s 1 < s 2 and

(3.3.9) g(x, s 1 ) < p(x) < g(x, s 2 ) ∀ x ∈ I δ (∂Ω).

Hence, setting u 1 := s 1 φ t 1 and u 2 := s 2 φ t 1 , we have that

(3.3.10) -∆ p u 1 < p(x) u γ 1 in I δ (∂Ω) and (3.3.11) -∆ p u 2 > p(x) u γ 2 in I δ (∂Ω)
In order to control the datum on the boundary of I δ (∂Ω) (in the interior of the domain), we need to switch from u to u β := βu observing that

-∆ p u β = β γ+p-1 p(x) u γ β .
For β 1 > 0 large it follows that u β 1 and u 1 satisfy the following problem:

(3.3.12)

           -∆ p u β 1 ≥ p(x) u γ β 1 in I δ (∂Ω) -∆ p u 1 < p(x) u γ 1 in I δ (∂Ω) u β 1 ≥ u 1 on ∂I δ (∂Ω).
By Lemma 3.3.1 it follows now that (3.3.13)

u β 1 = β 1 u ≥ u 1 in I δ (∂Ω).
Similarly, for β 2 > 0 small, it follows that u β 2 and u 2 satisfy the problem:

(3.3.14)            -∆ p u β 2 ≤ p(x) u γ β 2 in I δ (∂Ω) -∆ p u 2 > p(x) u γ 2 in I δ (∂Ω) u β 2 ≤ u 2 on ∂I δ (∂Ω). By Lemma 3.3.1 it follows that (3.3.15) u β 2 = β 2 u ≤ u 2 in I δ (∂Ω).
Hence the thesis is proved with m 1 := s 1 β 1 and m 2 := s 2 β 2 .

We are now ready to prove Theorem 3.0.1 exploiting the previous preliminary results.

Proof of Theorem 3.0.1. Since the domain is of class C 2,α we may and do reduce to work in a neighborhood of the boundary Iδ(∂Ω) where the unique nearest point property holds (see e.g. [START_REF] Foote | Regularity of the distance function[END_REF]). Arguing by contradiction, let us assume that there exists a sequence of points {x n } in Iδ(∂Ω), such that x n -→ x 0 ∈ ∂Ω, as n → +∞, and

(3.3.16) ∂ ν(xn) u(x n ) ≤ 0, with (ν(x n ), η(x n )) ≥ β > 0.
Without loss of generality, we can assume that x 0 = 0 ∈ ∂Ω and η(x n ) = e N . This follows by the fact that the p-Laplace operator is invariant under isometries. More precisely, for each n ∈ N, we can consider an isometry T n : R N -→ R N with the above mentioned properties just composing a translation and a rotation of the axes. This procedure generates a new sequence of points {y n }, where y n := T n x n , such that every y n ∈ span e N and y n -→ 0 as n → +∞. Setting u n (y) := u(T -1 n (y)), it follows that

(3.3.17) -∆ p u n = 1 u γ n + f (u n ) in Ω n = T n (Ω). Now we set (3.3.18) w n (y) := u n (δ n y) M n where δ n := dist(x N , ∂Ω) = dist(T n x N , 0) and M n := u n (δ n e N ) = u(x n ). It follows that δ n → 0 as n → +∞ and -w n is defined in Ω * n := Ω n δ n .
-w n (e N ) = 1.

-M n → 0, as n → +∞. It is easy to see that w n weakly satisfies

-∆ p w n = δ p n M γ+p-1 n 1 w n (y) γ + M γ n f (u n (δ n y)) in Ω * n . (3.3.19)
The key idea of the proof is to argue by contradiction exploiting a limiting profile, that we shall denote by u ∞ , which is a solution to a limiting problem in a half space. The contradiction will then follows applying the classification result in Theorem 3.0.2. Here below we develop this argument and we suggest to the reader to keep in mind that f is bounded, the term

M γ n f (u n (δ n y))
will vanish since M n goes to zero and

δ p n M γ+p-1 n
is bounded as a consequence of Theorem 3.3.2. Therefore the expected limiting equation is:

(3.3.20) -∆ p w ∞ = C w γ ∞ in R N + .
Let us provide the details needed to pass to the limit. We claim that:

-

w n C 1,α -→ w ∞ , as n → +∞, in any compact set K of R N + .
-

w ∞ ∈ C 1,α (R N + ) ∩ C(R N + ).

The Höpf boundary lemma

-w ∞ = 0 on ∂R N + .

To prove this let us consider a compact set K ⊂ R N + . For n ∈ N large we can assume that K ⊂ Iδ /δn (∂Ω * n ) so that Theorem 3.3.2 can be exploited. Claim 1. We claim that w n (y) > 0 for all y ∈ K and for n ∈ N large. Let y ∈ K. Hence, by Theorem 3.3.2

w n (y) := u n (δ n y) M n ≥ L (dist(δ n y, ∂Ω n )) p γ+p-1 M n .
In particular, by the fact that dist(δ n y, ∂Ω n ) ≥ Cδ n , it follows that

(3.3.21) w n (y) ≥ L (Cδ n ) p γ+p-1 M n ≥ C(K, γ, m 1 ) > 0 . Claim 2. We claim that w n C 1,α -→ w ∞ , as n → +∞, in any compact set K of R N + . Since dist(y, ∂Ω * n ) ≤ C for every y ∈ K, by Theorem 3.3.2 it follows that w n (y) = u n (δ n y) M n ≤ Lm 2 [dist(δ n y, ∂Ω n )] p γ+p-1 M n = Lm 2 δ p γ+p-1 n [dist(y, ∂Ω * n )] p γ+p-1 M n ≤ Lm 2 C p γ+p-1 δ p γ+p-1 n M n ≤ LC p γ+p-1 C(K, m 2 ). (3.3.22) Hence w n L ∞ (K) ≤ C(K)
for any compact set K of R N + . By standard regularity theory (see e.g. [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]) it follows that w n is uniformly bounded in C 1,α (K ) for any compact set K ⊂ K. Therefore, by Ascoli's Theorem, we can pass to the limit in any compact set and with C 1,α convergence. Exploiting a standard diagonal process, in the same spirit of the previous chapter, we can therefore define the limiting function w ∞ that turns out to be a solution to (3.3.20) in the half space. The fact that Ω n δ n leads to the limiting domain R N + as n → +∞ follows by standard arguments that we discussed in the previous chapter.

It remains to verify the Dirichlet datum for the limiting profile w ∞ . More precisely we have to show that w ∞ = 0 on ∂R N + . By Theorem 3.3.2 it follows that

w n (y) = u n (δ n y) M n ≤ Lm 2 [dist(δ n y, ∂Ω n )] p γ+p-1 M n = Lm 2 δ p γ+p-1 n [dist(y, ∂Ω * n )] p γ+p-1 M n ≤ C(K, L, m 2 , m 1 ) [dist(y, ∂Ω * n )] p γ+p-1 in Ω * n . (3.3.23)
Since Ω * n → R N + , as n goes to +∞, by (3.3.23) and (3.3.21), passing to the limit we have that

(3.3.24) 0 ≤ w ∞ (y) ≤ C(K, L, m 2 , m 1 ) dist(y, ∂R N + ) p γ+p-1 .
In a similar fashion, and exploiting again Theorem 3.3.2, we also deduce that

(3.3.25) w ∞ (y) ≥ C(K, L, m 2 , m 1 ) dist(y, ∂R N + ) p γ+p-1 .
By (3.3.24) it follows that w ∞ (y) = 0 as claimed. Furthermore, collecting (3.3.24) and (3.3.25), we deduce that w ∞ has the right asymptotic behaviour needed to apply Theorem 3.0.2, see (3.0.5). This shows that that w ∞ is the unique solution to (3.3.20) given by

(3.3.26) w ∞ (x) = w ∞ (x N ) = C p p-1 (γ + p -1) p (p -1)(γ -1) 1 γ+p-1 (x N ) p γ+p-1 .
On the other hand, passing to the limit in (3.3.16), it would follows that

∂ ν w ∞ (e N ) ≤ 0 for some ν ∈ R N with (ν, e N ) > 0.
Clearly this is a contradiction with (3.3.26) thus proving the result. Now using the Theorem 3.0.1 we want to prove the symmetry result.

Symmetry and monotonicity result

In this section we prove our symmetry (and monotonicity) result. Actually we provide the details needed for the application of the moving planes method. For the semilinear case see [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF][START_REF] Canino | Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | The moving planes method for singular semilinear elliptic problems Nonl[END_REF], in the quasilinear setting we use the technique developed in [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF].

We start with some notation: for a real number λ we set

(3.4.1) Ω λ = {x ∈ Ω : x 1 < λ} (3.4.2) x λ = R λ (x) = (2λ -x 1 , x 2 , . . . , x N )
which is the reflection through the hyperplane

T λ := {x ∈ R N : x 1 = λ}. Also let (3.4.3) a = inf x∈Ω x 1 . Now we set (3.4.4) u λ (x) = u(x λ ) .
Finally we define Λ 0 = {a < λ < 0 : u ≤ u t in Ω t for all t ∈ (a, λ]} .

In the following the critical set of u

Z u := {∇u = 0}
will play a crucial role. Let us first note that, as a consequence of Theorem 3.0.1, we know that Z u ⊂⊂ Ω .

This fact allows to exploit the results of [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF] since the solution is positive in the interior of the domain (and the nonlinearity is no more singular there). Therefore we conclude that

|Z u | = 0 and Ω \ Z u is connected.
Proof of Theorem 3.0.3. The proof follows via the moving planes technique. We start showing that:

Λ 0 = ∅ .
To prove this, let us consider λ > a with λ -a small. By Theorem 3.0.1 it follows that

∂u ∂x 1 > 0 in Ω λ ∪ R λ (Ω λ ),
and this immediately proves that u < u λ in Ω λ . Now we define λ 0 := sup Λ 0 .

We shall show that u ≤ u λ in Ω λ for every λ ∈ (a, 0], namely that:

λ 0 = 0 .
To prove this, we assume that λ 0 < 0 and we reach a contradiction by proving that u ≤ u λ 0 +τ in Ω λ 0 +τ for any 0 < τ < τ for some τ > 0 (small). By continuity we know that u ≤ u λ 0 in Ω λ 0 . The strong comparison principle (see e.g. [START_REF] Pucci | The maximum principle[END_REF][START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] or Chapter 1) holds true in Ω λ 0 \ Z u , providing that

u < u λ 0 in Ω λ 0 \ Z u .
Note in fact that, in each connected component C of Ω λ 0 \Z u , the strong comparison principle implies that u < u λ 0 in C unless u ≡ u λ 0 in C. Actually the latter case is not possible. In fact, if ∂C ∩ ∂Ω = ∅ this is not possible in view of the zero Dirichlet baundary datum since u is positive in the interior of the domain. If else ∂C ∩ ∂Ω = ∅ then we should have a local symmetry region causing Ω\Z u to be not connected, against what we already remarked above.

Therefore, given a compact set K ⊂ Ω λ 0 \ Z u , by uniform continuity we can ensure that u < u λ 0 +τ in K for any 0 < τ < τ for some small τ > 0. Moreover, by Theorem 3.0.1 and taking into account the zero Dirichlet boundary datum, it is easy to show that, for some δ > 0, we have that

(3.4.5) u < u λ 0 +τ in I δ (∂Ω) ∩ Ω λ 0 +τ
for any 0 < τ < τ . This is quite standard once that Theorem 3.0.1 is in force. The hardest part is the study in the region near ∂Ω ∩ T λ 0 +τ . Here we exploit the monotonicity properties of the solutions proved in Theorem 3.0.1 that works once we note that (e 1 , η(x)) > 0 in a neighborhood of ∂Ω ∩ T λ 0 +τ since the domain is smooth and strictly convex. Now we define w λ 0 +τ := (u -u λ 0 +τ ) + for any 0 < τ < τ . We already showed in (3.4.5) that supp(w λ 0 +τ ) ⊂⊂ Ω λ 0 +τ . Moreover w λ 0 +τ = 0 in K by construction.

For any τ > 0 fixed, we can choose τ small and K large so that

|Ω λ 0 +τ \ K| < τ .
Here we are also exploiting the fact that the critical set Z u has zero Lebesgue measure (see [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF]).

In particular we take τ sufficiently small so that the weak comparison principle in small domains (see [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF]) works, showing that w λ 0 +τ = 0 in Ω λ 0 +τ for any 0 < τ < τ for some small τ > 0. But this is in contradiction with the definition of λ 0 . Hence λ 0 = 0.

The desired symmetry (and monotonicity) result follows now performing the procedure in the same way but in the opposite direction.

Qualitative properties of singular solutions to semilinear elliptic problems

The aim of this chapter is to investigate symmetry and monotonicity properties of singular solutions to semilinear elliptic equations. We address the issue of problems involving singular nonlinearity. More precisely let us consider the problem (4.0.1)

     -∆u = f (x, u) in Ω \ Γ u > 0 in Ω \ Γ u = 0 on ∂Ω
where Ω is a bounded smooth domain of R N with N ≥ 2. Our results will be obtained by means of the moving planes technique, see [START_REF] Alexandrov | A characteristic property of the spheres[END_REF][START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF][START_REF] Serrin | A symmetry problem in potential theory[END_REF]. Such a technique can be performed in general domains providing partial monotonicity results near the boundary and symmetry when the domain is convex and symmetric. For semplicity of exposition we assume directly in all the chapter that Ω is a convex domain which is symmetric with respect to the hyperplane {x 1 = 0}. The solution has a possible singularity on the critical set Γ ⊂ Ω. Furthermore in all the chapter the nonlinearity f will be assumed to be uniformly locally Lipschitz continuous from above far from the singular set. More precisely we recall the following: Definition 4.0.1 (I f ). We say that f fulfills the condition

(I f ) if f : Ω \ Γ × (0, +∞) → R is a continuous function such that for 0 < t ≤ s ≤ M and for any compact set K ⊂ Ω \ Γ, it holds f (x, s) -f (x, t) ≤ C(K, M )(s -t) for any x ∈ K ,
where C(K, M ) is a positive constant depending on K and M . Furthermore f (•, s) is non-decreasing in the x 1 -direction in Ω ∩ {x 1 < 0} and symmetric with respect to the hyperplane {x 1 = 0}.

A typical example is provided by positive solutions to (4.0.2)

-∆u = 1 u α + g(u)
in Ω \ Γ where α > 0 and g is locally Lipschitz continuous. Such a problem, in the case Γ = ∅, as been widely investigated in the literature. We refer the readers to the pioneering work [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF] and to [START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | A variational approach to a class of singular semilinear elliptic equations[END_REF][START_REF] Canino | Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | A uniqueness result for some singular semilinear elliptic equations Comm[END_REF][START_REF] Canino | Existence and uniqueness for p-Laplace equations involving singular nonlinearities[END_REF][START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF][START_REF] Oliva | On singular elliptic equations with measure sources[END_REF][START_REF] Stuart | Existence and approximation of solutions of nonlinear elliptic equations[END_REF]. In particular, by [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF], it is known that solutions generally have no H 1 -regularity up to the boundary. Therefore, having this example in mind, the natural assumption in this chapter is

u ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ)
and thus the equation is understood in the following sense:

(4.0.3)

Ω (∇u, ∇ϕ) dx = Ω f (x, u)ϕ dx ∀ϕ ∈ C 1 c (Ω \ Γ) .
Remark 4.0.2. Note that, by the assumption (I f ), the right hand side of (4.0.1) is locally bounded. Therefore, by standard elliptic regularity theory, it follows that u ∈ C 1,α loc (Ω \ Γ), where 0 < α < 1.

Let us now state our main result Theorem 4.0.3. Let Ω be a convex domain which is symmetric with respect to the hyperplane {x 1 = 0} and let u ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) be a solution to (4.0.1). Assume that f fulfills (I f ) (see Definition 4.0.1). Assume also that Γ is a point if N = 2 while Γ is closed and such that

Cap 2 R N (Γ) = 0, if N ≥ 3. Then, if Γ ⊂ {x 1 = 0},
it follows that u is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the

x 1 -direction in Ω ∩ {x 1 < 0}. Furthermore u x 1 > 0 in Ω ∩ {x 1 < 0} .
Remark 4.0.4. Theorem 4.0.3 is proved for convex domains. It will be clear from the proofs that this is only used to prove that ∂Ω ∩ {x 1 = λ} is discrete in dimension two while ∂Ω ∩ {x 1 = λ} has zero capacity for N ≥ 3. Therefore the result holds true more generally once that such an information is available. In all this cases we could assume that Ω is convex only in the x 1 -direction.

The technique, as shown in [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF] and as discussed in the Introduction, can be applied to study singular solutions to the following Sobolev critical equation in R N , N ≥ 3, (4.0.4)

-∆u = u 2 * -1 in R N \ Γ u > 0 in R N \ Γ.
In [START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF] it was considered the case of a closed critical set Γ contained in a compact smooth submanifold of dimension d ≤ N -2 and a summability property of the solution at infinity was imposed (see also [START_REF] Terracini | On positive entire solutions to a class of equations with a singular coefficient and critical exponent[END_REF] for the special case in which the singular set Γ is reduced to a single point). Here we remove both these restrictions and we prove the following:

Theorem 4.0.5. Let N ≥ 3 and let u ∈ H 1 loc (R N \ Γ) be a solution to (4.0.4). Assume that the solution u has a non-removable 1 singularity in the singular set Γ, where Γ is a closed and proper subset of {x 1 = 0} such that

Cap 2 R N (Γ) = 0.
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Then, u is symmetric with respect to the hyperplane {x 1 = 0}. The same conclusion is true if the hyperplane {x 1 = 0} is replaced by any affine hyperplane. Some interesting consequences of the previous result are contained in the following Corollary 4.0.6. Let N ≥ 3 and let u ∈ H 1 loc (R N \ Γ) be a solution to (4.0.4) with a non-removable singularity in the singular set Γ. (i) If Γ = {x 0 }, then u is radially symmetric with respect to x 0 . (ii) If Γ = {x 0 , x 1 }, then u has cylindrical symmetry with respect to the axis passing through x 0 and x 1 . More generally we have : (iii) assume 1 ≤ k ≤ N -2 and suppose that Γ is a closed subset of an affine k-dimensional subspace of R N . Then, up to isometry, the solution u has the form u(x) = u(x 1 , ..., x k , |x |), where x := (x k+1 , ...x N ) and |x | :=

x 2 k+1 + ... + x 2 n .
The following example shows that Theorem 4.0.5 and item (iii) of Corollary 4.0.6 are sharp for N ≥ 5 and also that singular solutions exhibiting un unbounded critical set Γ exist. |) is a singular solution to (4.0.4) in R N \ Γ, with Γ given by the k-dimensional subspace

For N ≥ 5 and 1 ≤ k < N -2 2 , k integer, we set p = p(N ) = N +2 N -2 > 1 and A = A(N, k) = [( N 2 -k-1) N 2 ] N -2 4 > 0. Then, the function v(r) = Ar - 2 p(N )-1 is a singular positive radial solution of -∆v = v p(N ) in R N -k \ {0 }, which is smooth in R N -k \ {0 }. Hence u = u(x 1 , ..., x N ) := v(|x
{x 1 = ... = x k = 0} ⊂ R N , moreover u ∈ C ∞ (R N \ Γ).

Notations and preliminary results

For a real number λ we set (4.1.1)

Ω λ = {x ∈ Ω : x 1 < λ} (4.1.2) x λ = R λ (x) = (2λ -x 1 , x 2 , . . . , x N )
which is the reflection through the hyperplane

T λ := {x 1 = λ}. Also let (4.1.3) a = inf x∈Ω x 1 .
Since Γ is compact and of zero capacity, u is defined a.e. on Ω and Lebesgue measurable on Ω. Therefore the function (4.1.4)

u λ := u • R λ is Lebesgue measurable on R λ (Ω).
Similarly, ∇u and ∇u λ are Lebesgue measurable on Ω and R λ (Ω) respectively. It is easy to see that, if Cap 2

R N (Γ) = 0, then Cap 2 R N (R λ (Γ)) = 0. Another consequence of our assumptions is that Cap 2 B λ (R λ (Γ)) = 0 for any open neigh- borhood B λ of R λ (Γ). Indeed, recalling that Γ is a point if N = 2 while Γ Qualitative properties of singular solutions is closed with Cap 2 R N (Γ) = 0 if N ≥ 3 by assumption, it follows that Cap 2 B λ (R λ (Γ)) := inf B λ |∇ϕ| 2 dx < +∞ : ϕ ≥ 1 in B λ δ , ϕ ∈ C ∞ c (B λ ) = 0, for some neighborhood B λ δ ⊂ B λ ε of R λ (Γ)
. From this, it follows that there exists 1) that

ϕ ε ∈ C ∞ c (B λ ) such that ϕ ε ≥ 1 in B λ δ and B λ |∇ϕ ε | 2 dx < ε. Now we construct a function ψ ε ∈ C 0,1 (R N , [0, 1]) (see Figure
ψ ε = 1 outside B λ ε , ψ ε = 0 in B λ δ and R N |∇ψ ε | 2 dx = B λ |∇ψ ε | 2 dx < 4ε.
To this end we consider the following Lipschitz continuous function

T 1 (s) =      1 if s ≤ 0 -2s + 1 if 0 ≤ s ≤ 1 2 0 if s ≥ 1 2
and we set (4.1.5)

ψ ε := T 1 • ϕ ε
where we have extended ϕ ε by zero outside B λ ε . Clearly Now we set γ λ := ∂Ω ∩ T λ . Recalling that Ω is convex, it is easy to deduce that γ λ is made of two points in dimension two. If else N ≥ 3 then it follows that γ λ is a smooth manifold of dimension N -2. Note in fact that locally ∂Ω is the zero level set of a smooth function g(•) whose gradient is not 4.2 Symmetry and monotonicity result in bounded domains 121 parallel to the x 1 -direction since Ω is convex. Then it is sufficient to observe that locally ∂Ω ∩ T λ ≡ {g(λ, x ) = 0} and use the implicit function theorem exploiting the fact that ∇ x g(λ, x ) = 0. This implies that Cap 2 R N (γ λ ) = 0, see e.g. [START_REF] Evans | Measure theory and fine properties of functions[END_REF]. So, as before, Cap where we have extended ϕ τ by zero outside 2) and 

ψ ε ∈ C 0,1 (R N ), 0 ≤ ψ ε ≤ 1 and B λ |∇ψ ε | 2 dx ≤ 4 B λ |∇ϕ ε | 2 dx < 4ε.
I λ τ . Then, φ τ ∈ C 0,1 (R N ), 0 ≤ φ τ ≤ 1, φ τ = 1 outside I λ τ , φ τ = 0 in I λ σ (see Figure
R N |∇φ τ | 2 dx = I λ τ |∇φ τ | 2 dx ≤ 4 I λ τ |∇ϕ τ | 2 dx < 4τ.
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In the following we will exploit the fact that u λ is a solution to:

(4.2.1)

R λ (Ω) (∇u λ , ∇ϕ) dx = R λ (Ω) f (x λ , u λ )ϕ dx ∀ϕ ∈ C 1 c (R λ (Ω) \ R λ (Γ))
and we also observe that, for any a < λ < 0, the function w λ := u -u λ satisfies 0 ≤ w + λ ≤ u a.e. on Ω λ and so w + λ ∈ L 2 (Ω λ ), since u ∈ C 0 (Ω λ ). To proceed further, we need the following two results Lemma 4.2.1. Let λ ∈ (a, 0) be such that R λ (Γ) ∩ Ω = ∅ and consider the function

ϕ := w + λ φ 2 τ in Ω λ , 0 in R N \ Ω λ ,
where φ τ is as in (4.1.6). Then,

ϕ ∈ C 0,1 c (Ω) ∩ C 0,1 c (R λ (Ω)), ϕ has compact support contained in (Ω \ Γ) ∩ (R λ (Ω) \ R λ (Γ)) ∩ {x N ≤ λ} and (4.2.2) ∇ϕ = φ 2 τ (∇w λ χ supp(w + λ )∩supp(ϕ) )+2φ τ (w + λ χ supp(ϕ)
)∇φ τ a.e. on Ω∪R λ (Ω).

If λ ∈ (a, 0) is such that R λ (Γ) ∩ Ω = ∅, the same conclusions hold true for the function

ϕ := w + λ ψ 2 ε φ 2 τ in Ω λ , 0 in R N \ Ω λ ,
where ψ ε is defined as in (4.1.5) and φ τ as in (4.1.6). Furthermore, a.e. on

Ω ∪ R λ (Ω), (4.2.3) ∇ϕ = ψ 2 ε φ 2 τ (∇w λ χ supp(w + λ )∩supp(ϕ) ) + 2(w + λ χ supp(ϕ) )(ψ 2 ε φ τ ∇φ τ + ψ ε φ 2 τ ∇ψ ε ).
In particular, ϕ ∈ C 0,1 (Ω λ ), ϕ | ∂Ω λ = 0 and so ϕ ∈ H 1 0 (Ω λ ).

Proof. Let us consider the case when λ ∈ (a, 0) is such that R λ (Γ) ∩ Ω = ∅ (the other case being similar and easier). We first prove that for every x ∈ Ω there is an open ball B x centered at x, such that B x ⊂ Ω and ϕ ∈ C 0,1 (B x ), and then that there exists η > 0 such that supp(ϕ) is contained in the compact set {x ∈ Ω : dist(x, ∂Ω)

≥ η} ∩ {x N ≤ λ} ∩ (R N \ V ) ⊂ (Ω \ Γ) ∩ (R λ (Ω) \ R λ (Γ))
, where V is any open set contained in the neighborhood B λ δ appearing in the construction of ψ ε . If x ∈ Ω ∩ {x N > λ} then ϕ ≡ 0 in an open neighbourhood of x and so ϕ ∈ C 0,1 (B x ) for a suitable ball B x . If x ∈ Ω ∩ T λ then we can find a small open ball B x ⊂ Ω such that B x ∩ (∂Ω ∪ R λ (Γ)) = ∅. Therefore, both u and u λ belong to C 1 (B x ∩{x N ≤ λ}) and so, ϕ ∈ C 0,1 (B x ∩{x N ≤ λ}), thanks to the Lipschitz character of φ τ and ψ ε . On the other hand we also have that ϕ ≡ 0 on B x ∩ T λ , by definition of w λ . Thus ϕ ∈ C 0,1 (B x ) and we are done also in this case. If x ∈ R λ (Γ) ∩ Ω then ϕ ≡ 0 in an open neighbourhood of x by definition of ψ ε and so ϕ ∈ C 0,1 (B x ) for a suitable ball B x . Finally, if x ∈ Ω λ \ R λ (Γ) then, as before, we can find a small open ball B x such that B x ⊂ Ω λ \ R λ (Γ). In this case, both u and u λ belong to C 1 (B x ). This yields w λ ∈ C 0,1 (B) and so is ϕ, again thanks to the Lipschitz character of φ τ and ψ ε .

To prove the second part of the claim we observe that ϕ ≡ 0 on Ω \ Ω λ and that, for any point x of the compact set (∂Ω)∩{x N ≤ λ} there is a small open ball B x , centered at x, such that ϕ = 0 on B x ∩ Ω. The latter clearly holds for any point of γ λ , by definition of φ τ , and for any point of ∂Ω∩R λ (Γ), by definition of ψ ε . It is also true for any x ∈ (∂Ω)∩{x N < λ}, since u-u λ is well-defined, continuous and negative on the set [(∂Ω) ∩ {x N < λ}] \ R λ (Γ). The arguments above immediately yield that ϕ ∈ C 0,1 c (Ω) and the formula (4.2.3). A similar argument also shows that ϕ ∈ C 0,1 c (R λ (Ω)). To compute ∇ϕ we also took into consideration the Remark 4.0.2.
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Lemma 4.2.2. Under the assumptions of Theorem 4.0.3, let a < λ < 0. Then w + λ ∈ H 1 0 (Ω λ ) and

Ω λ |∇w + λ | 2 dx ≤ c(f, |Ω|, u L ∞ (Ω λ ) ),
where |Ω| denotes the n-dimensional Lebesgue measure of Ω.

Proof. We first prove that ∇w λ χ supp(w + λ ) ∈ L 2 (Ω λ ) and then that the distributional gradient of w + λ is given by ∇w λ χ supp(w + λ ) . We do this only for the case in which λ is such that R λ (Γ) ∩ Ω = ∅, the other case being similar and easier. For ψ ε as in (4.1.5) and φ τ as in (4.1.6), we consider the function ϕ defined in Lemma 4.2.1. In view of the properties of ϕ, stated in Lemma 4.2.1, and a standard density argument, we can use ϕ as test function in (4.0.3) and (4.2.1) so that, subtracting, we get

Ω λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε φ 2 τ dx = -2 Ω λ ∇w λ ∇ψ ε w + λ ψ ε φ 2 τ dx -2 Ω λ ∇w λ ∇φ τ w + λ ψ 2 ε φ τ dx + Ω λ (f (x, u) -f (x λ , u λ )) w + λ ψ 2 ε φ 2 τ dx ≤ -2 Ω λ ∇w λ ∇ψ ε w + λ ψ ε φ 2 τ dx -2 Ω λ ∇w λ ∇φ τ w + λ ψ 2 ε φ τ dx + Ω λ (f (x, u) -f (x, u λ ))w + λ ψ 2 ε φ 2 τ dx.
Here we also used the monotonicity properties of f (•, s), see (I f ). Exploiting Young's inequality we get that

Ω λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε φ 2 τ dx ≤ 1 4 Ω λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε φ 2 τ dx + 4 Ω λ |∇ψ ε | 2 (w + λ ) 2 φ 2 τ dx + 1 4 Ω λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε φ 2 τ dx + 4 Ω λ |∇φ τ | 2 (w + λ ) 2 ψ 2 ε dx + Ω λ (f (x, u) -f (x, u λ ))w + λ ψ 2 ε φ 2 τ dx. (4.2.4)
Now we observe that the last integral is actually computed on the set {x ∈ Ω λ \R λ (Γ) : u(x) > u λ (x) > 0} ⊂ Ω λ ⊂ Ω\Γ and so, we can apply condition (I f ) with the compact set K = Ω λ and M = u L ∞ (Ω λ ) . We get therefore that

Ω λ (f (x, u) -f (x, u λ ))w + λ ψ 2 ε φ 2 τ dx ≤ c(f, u L ∞ (Ω λ ) ) Ω λ (w + λ ) 2 ψ 2 ε φ 2 τ dx (4.2.5)
and so, from (4.2.4), we infer that

Ω λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε φ 2 τ dx ≤8 Ω λ |∇ψ ε | 2 (w + λ ) 2 φ 2 τ dx + 8 Ω λ |∇φ τ | 2 (w + λ ) 2 ψ 2 ε dx + 2c(f, u L ∞ (Ω λ ) ) Ω λ (w + λ ) 2 ψ 2 ε φ 2 τ dx. (4.2.6)
Taking into account the properties of ψ ε and φ τ , we see that (4.2.7)

Ω λ |∇ψ ε | 2 dx = Ω λ ∩(B λ ε \B λ δ ) |∇ψ ε | 2 dx < 4ε, (4.2.8 
)

Ω λ |∇φ τ | 2 dx = Ω λ ∩(I λ τ \I λ σ ) |∇φ τ | 2 dx < 4τ,
which combined with 0 ≤ w + λ ≤ u, immediately lead to

Ω λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε φ 2 τ dx ≤32(ε + τ ) u 2 L ∞ (Ω λ ) + 2c(f, u L ∞ (Ω λ ) ) u 2 L ∞ (Ω λ ) |Ω| .
By Fatou's Lemma, as ε and τ tend to zero, we deduce that ∇w λ χ supp(w + λ ) ∈ L 2 (Ω λ ). To conclude we note that ϕ → w + λ in L 2 (Ω), as ε and τ tend to zero, by definition of ϕ. Also, ∇ϕ → ∇w λ χ supp(w + λ ) in L 2 (Ω λ ), by (4.2.3). Therefore, ∇w λ χ supp(w + λ ) is the distributional gradient of ∇w + λ and w + λ in H 1 0 (Ω λ ), since ϕ ∈ H 1 0 (Ω λ ) again by Lemma 4.2.1. Which concludes the proof.

Proof of Theorem 4.0.3. We define

Λ 0 = {a < λ < 0 : u ≤ u t in Ω t \ R t (Γ) for all t ∈ (a, λ]}
and to start with the moving planes procedure, we have to prove that

Step 1 : Λ 0 = ∅ (See Figure 3). Fix a λ 0 ∈ (a, 0) such that R λ 0 (Γ) ⊂ Ω c , then for every a < λ < λ 0 , we also have that R λ (Γ) ⊂ Ω c . For any λ in this set we consider, on the domain Ω, the function ϕ := w + λ φ 2 τ χ Ω λ , where φ τ is as in (4.1.6) and we proceed as in the proof of Lemma 4.2.2. That is, by Lemma 4.2.1 and a density argument, we can use ϕ as test function in (4.0.3) and (4.2.1) so that, subtracting, we get 

Ω λ |∇w + λ | 2 φ 2 τ dx = -2 Ω λ ∇w + λ ∇φ τ w + λ φ τ dx + Ω λ (f (x, u) -f (x λ , u λ )) w + λ φ 2 τ dx ≤ -2 Ω λ ∇w + λ ∇φ τ w + λ φ τ dx + Ω λ (f (x, u) -f (x, u λ ))w + λ φ 2 τ dx.
Exploiting Young's inequality and the assumption (I f ), with K = Ω λ 0 and M = u 2 L ∞ (Ω λ 0 ) , we then get that

Ω λ |∇w + λ | 2 φ 2 τ dx ≤ 1 2 Ω λ |∇w + λ | 2 φ 2 τ dx + 2 Ω λ |∇φ τ | 2 (w + λ ) 2 dx + c(f, u L ∞ (Ω λ 0 ) ) Ω λ (w + λ ) 2 φ 2 τ dx.
Taking into account the properties of φ τ , we see that (4.2.9)

Ω λ |∇φ τ | 2 (w + λ ) 2 dx ≤ u 2 L ∞ (Ω λ ) Ω λ ∩(I λ τ \I λ σ ) |∇φ τ | 2 dx ≤ 4 u 2 L ∞ (Ω λ ) • τ.
We therefore deduce that

Ω λ |∇w + λ | 2 φ 2 τ dx ≤ 16 u L ∞ (Ω λ ) • τ + 2c(f, u L ∞ (Ω λ 0 ) ) Ω λ (w + λ ) 2 φ 2 τ dx.
By Fatou's Lemma, as τ tend to, zero we have 

Ω λ |∇w + λ | 2 dx ≤ 2c(f, u L ∞ (Ω λ 0 ) ) Ω λ (w + λ ) 2 dx ≤ 2c(f, u L ∞ (Ω λ 0 ) )c 2 p (Ω λ ) Ω λ |∇w + λ | 2 dx,
(Ω λ )). Since c 2 p (Ω λ ) → 0 as λ → a, we can find λ 1 ∈ (a, λ 0 ), such that ∀λ ∈ (a, λ 1 ) 2c(f, u L ∞ (Ω λ 0 ) )c 2 p (Ω λ ) < 1 2 ,
so that by (4.2.10), we deduce that ∀λ ∈ (a, λ 1 )

Ω λ |∇w + λ | 2 dx ≤ 0, proving that u ≤ u λ in Ω λ \ R λ (Γ)
for λ close to a, which implies the desired conclusion Λ 0 = ∅. Now we can set

λ 0 = sup Λ 0 .
Step 2: here we show that λ 0 = 0 (see Figure 4). To this end we assume Step 2 of the moving planes method: λ 0 = 0. that λ 0 < 0 and we reach a contradiction by proving that u ≤ u λ 0 +ν in Ω λ 0 +ν \ R λ 0 +ν (Γ) for any 0 < ν < ν for some small ν > 0. By continuity we know that u ≤ u λ 0 in Ω λ 0 \ R λ 0 (Γ). Since Ω is convex in the x 1 -direction and the set R λ 0 (Γ) lies in the hyperplane of equation { x 1 = -2λ 0 }, we see that Ω λ 0 \R λ 0 (Γ) is open and connected. Therefore, by the strong maximum principle we deduce that u < u λ 0 in Ω λ 0 \ R λ 0 (Γ) (here we have also used that u, u λ 0 ∈ C 1 (Ω λ 0 \ R λ 0 (Γ)) by Remark 4.0.2, as well as the assumption (I f )). Now, note that for K ⊂ Ω λ 0 \ R λ 0 (Γ), there is ν = ν(K, λ 0 ) > 0, sufficiently small, such that K ⊂ Ω λ \ R λ (Γ) for every λ ∈ [λ 0 , λ 0 + ν]. Consequently u and u λ are well defined on K for every λ ∈ [λ 0 , λ 0 +ν]. Hence, by the uniform continuity of the function g(x, λ) := u(x) -u(2λ -x 1 , x ) on the compact set K × [λ 0 , λ 0 + ν] we can ensure that K ⊂ Ω λ 0 +ν \ R λ 0 +ν (Γ) and u < u λ 0 +ν in K for any 0 ≤ ν < ν, for some ν = ν(K, λ 0 ) > 0 small. Clearly we can also assume that ν < |λ 0 | 4 . Let us consider ψ ε constructed in such a way that it vanishes in a neighborhood of R λ 0 +ν (Γ) and φ τ constructed in such a way it vanishes in a 4.2 Symmetry and monotonicity result in bounded domains 127 neighborhood of γ λ 0 +ν = ∂Ω ∩ T λ 0 +ν . As swown in the proof of lemma 4.2.2, the functions

ϕ := w + λ 0 +ν ψ 2 ε φ 2 τ in Ω λ 0 +ν 0 in R N \ Ω λ 0 +ν
are such that ϕ → w + λ 0 +ν in H 1 0 (Ω λ 0 +ν ), as ε and τ tend to zero. Moreover, ϕ ∈ C 0,1 (Ω λ 0 +ν ) and ϕ | ∂Ω λ 0 +ν = 0, by Lemma 4.2.1, and ϕ = 0 on an open neighborhood of K, by the above argument. Therefore, ϕ ∈ H 1 0 (Ω λ 0 +ν \ K) and thus, also w + λ 0 +ν belongs to H 1 0 (Ω λ 0 +ν \K). We also note that ∇w + λ 0 +ν = 0 on an open neighborhood of K. Now we argue as in Lemma 4.2.2 and we plug ϕ as test function in (4.0.3) and (4.2.1) so that, by subtracting, we get

Ω λ 0 +ν |∇w + λ 0 +ν | 2 ψ 2 ε φ 2 τ dx ≤ -2 Ω λ 0 +ν ∇w λ 0 +ν ∇ψ ε w + λ 0 +ν ψ ε φ 2 τ dx -2 Ω λ 0 +ν ∇w λ 0 +ν φ τ w + λ 0 +ν ψ 2 ε φ τ dx + Ω λ 0 +ν (f (x, u) -f (x, u λ ))w + λ 0 +ν ψ 2 ε φ 2 τ dx
where we also use the monotonicity of f (•, s) in the x 1 -direction. Therefore, taking into account the properties of w + λ 0 +ν and ∇w + λ 0 +ν we also have

Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 ψ 2 ε φ 2 τ dx ≤ -2 Ω λ 0 +ν \K ∇w + λ 0 +ν ∇ψ ε w + λ 0 +ν ψ ε φ 2 τ dx -2 Ω λ 0 +ν \K ∇w + λ 0 +ν ∇φ τ w + λ 0 +ν ψ 2 ε φ τ dx + Ω λ 0 +ν \K (f (x, u) -f (x, u λ ))w + λ 0 +ν ψ 2 ε φ 2 τ dx.
Furthermore, since f is locally uniformly Lipschitz continuous from above, we deduce that

Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 ψ 2 ε φ 2 τ dx ≤ 2 Ω λ 0 +ν \K |∇w + λ 0 +ν ||∇ψ ε |w + λ 0 +ν ψ ε φ 2 τ dx + 2 Ω λ 0 +ν \K |∇w + λ 0 +ν ||∇φ τ |w + λ 0 +ν ψ 2 ε φ τ dx + c(f, u L ∞ (Ω λ 0 + |λ 0 | 4 
)

)

Ω λ 0 +ν \K (w + λ 0 +ν ) 2 ψ 2 ε φ 2 τ dx. (4.2.11)
Now, as in the proof of Lemma 4.2.2, we use Young's inequality to deduce that

Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 ψ 2 ε φ 2 τ dx ≤ 8 Ω λ 0 +ν \K |∇ψ ε | 2 (w + λ 0 +ν ) 2 φ 2 τ dx + 8 Ω λ 0 +ν \K |∇φ τ | 2 (w + λ 0 +ν ) 2 ψ 2 ε dx + 2c(f, u L ∞ (Ω λ 0 + |λ 0 | 4 
)

)

Ω λ 0 +ν \K (w + λ ) 2 ψ 2 ε φ 2 τ dx, (4.2.12)
which in turns yields

Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 ψ 2 ε φ 2 τ dx ≤ 32 u 2 L ∞ (Ω λ 0 +ν ) ( + τ ) + 2c(f, u L ∞ (Ω λ 0 + |λ 0 | 4 
)

)

Ω λ 0 +ν \K (w + λ ) 2 ψ 2 ε φ 2 τ dx.
(4.2.13)

Passing to the limit, as ( , τ ) → (0, 0), in the latter we get

Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 dx ≤ 2c(f, u L ∞ (Ω λ 0 + |λ 0 | 4 
)

)

Ω λ 0 +ν \K (w + λ 0 +ν ) 2 dx ≤ 2c(f, u L ∞ (Ω λ 0 + |λ 0 | 4 
) )c 2 p (Ω λ 0 +ν \ K)

Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 dx , (4.2.14) 
where c p (•) is the Poincaré constant (in the Poincaré inequality in

H 1 0 (Ω λ 0 +ν \ K)). Now we recall that c 2 p (Ω λ 0 +ν \K) ≤ Q(n)|Ω λ 0 +ν \K| 2 N
, where Q = Q(n) is a positive constant depending only on the dimension n, and therefore, by summarizing, we have proved that for every compact set K ⊂ Ω λ 0 \ R λ 0 (Γ) there is a small ν = ν(K, λ 0 ) ∈ (0, |λ 0 | 4 ) such that for every 0 ≤ ν < ν we have

Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 dx ≤2c(f, u L ∞ (Ω λ 0 + |λ 0 | 4 
) )

Q(n)|Ω λ 0 +ν \ K| 2 N Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 dx. (4.2.15) Now we first fix a compact K ⊂ Ω λ 0 \ R λ 0 (Γ) such that |Ω λ 0 \ K| 2 N < [20c(f, u L ∞ (Ω λ 0 + |λ 0 | 4 ) )Q(n)] -1 ,
this is possible since |R λ 0 (Γ)| = 0 by the assumption on Γ, and then we take ν0 < ν such that for every 0 ≤ ν < ν0 we have

|Ω λ 0 +ν \ Ω λ 0 | 2 N < [20c(f, u L ∞ (Ω λ 0 + |λ 0 | 4 
) )Q(n)] -1 . Inserting those informations into (4.2.15)
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we immediately get that

Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 dx < 1 2 Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 dx (4.2.16)
and so ∇w + λ 0 +ν on Ω λ 0 +ν \ K for every 0 ≤ ν < ν0 . On the other hand, we recall that ∇w + λ 0 +ν on an open neighbourhood of K for every 0 ≤ ν < ν, thus ∇w + λ 0 +ν on Ω λ 0 +ν for every 0 ≤ ν < ν0 . The latter proves that u ≤ u λ 0 +ν in Ω λ 0 +ν \ R λ 0 +ν (Γ) for every 0 < ν < ν0 . Such a contradiction shows that λ 0 = 0 .

Step 3: conclusion. Since the moving planes procedure can be performed in the same way but in the opposite direction, then this proves the desired symmetry result. The fact that the solution is increasing in the x 1 -direction in {x 1 < 0} is implicit in the moving planes procedure. Since u has C 1 regularity, see Remark 4.0.2, the fact that u x 1 is positive for x 1 < 0 follows by the maximum principle, the Höpf lemma and the assumption (I f ).

Symmetry and monotonicity results in R N involving critical nonlinearities

In this section we prove Theorem 4.0.5. We first note that, thanks to a well-known result of Brezis and Kato [START_REF] Brezis | Remarks on the Schrodinger operator with singular complex potentials[END_REF] and standard elliptic estimates (see also [START_REF] Struwe | Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF]), the solution u is smooth in R N \ Γ. Furthermore we observe that it is enough to prove the theorem for the special case in which the origin does not belong to Γ. Indeed, if the result is true in this special case, then we can apply it to the function u z (x) := u(x + z), where z ∈ {x 1 = 0} \ Γ = ∅, which satisfies the equation (4.0.4) with Γ replaced by -z + Γ (note that -z + Γ is a closed and proper subset of {x 1 = 0} with Cap 2 R N (-z + Γ) = 0 and such that the origin does not belong to it). Under this assumption, we consider the map K : R N \ {0} -→ R N \ {0} defined by K = K(x) := x |x| 2 . Given u solution to (4.0.4), its Kelvin transform is given by

(4.3.1) v(x) := 1 |x| N -2 u x |x| 2 , x ∈ R N \ {Γ * ∪ {0}},
where Γ * = K(Γ). It follows that v weakly satisfies (4.0.4) in R N \{Γ * ∪{0}} and that Γ * ⊂ {x 1 = 0} since, by assumption, Γ ⊂ {x 1 = 0}. Furthermore, we also have that Γ * is bounded (not necessarily closed) since we assumed that 0 / ∈ Γ. To proceed further we need the following lemmata

Lemma 4.3.1. Let F : R N \ {0} -→ R N \ {0} be a C 1 -diffeomorphism and let A be a bounded open set of R N \ {0}. If C ⊂ A is a compact set such that (4.3.2) Cap 2 A (C) = 0, then (4.3.3) Cap 2 F (A) (F (C)) = 0.
Proof. By hypothesis (4.3.2) and by definition of 2-capacity, for every

ε > 0 let ϕ ε ∈ C ∞ c (A) such that (i) A |∇ϕ ε | 2 dx < ε (ii) ϕ ε ≥ 1 in a neighborhood B ε of C. Let ψ ε := ϕ ε • G, where G := F -1 . By definition of ψ ε , we immediately have that ψ ε ≥ 1 in a neighborhood B ε of the compact set F (C). Moreover F (A) |∇ψ ε (y)| 2 dy = F (A) |JG(y 1 , ..., y n ) • ∇ϕ ε (G 1 (y 1 ), ..., G N (y n ))| 2 dy 1 • • • dy n ≤ F (A) JG ∞,F (A) |∇ϕ ε (G 1 (y 1 ), ..., G N (y n ))| 2 dy 1 • • • dy n ≤ C(F, A) F (A) |∇ϕ ε (G 1 (y 1 ), ..., G N (y n ))| 2 dy 1 • • • dy n = C(F, A) A |∇ϕ ε (x 1 , ..., x N )| 2 | det(JF (x 1 , ..., x N ))|dx 1 • • • dx N ≤ C(F, A) A |∇ϕ ε | 2 dx < C(F, A)ε.
Since C(F, A) is independent of ε, the desired conclusion follows at once. Lemma 4.3.2. Let Γ be a closed subset of R N , with N ≥ 3. Also suppose that 0 ∈ Γ and

(4.3.4) Cap 2 R N (Γ) = 0. Then (4.3.5) Cap 2 R N (Γ * ) = 0.
Proof. Since 0 belongs to the open set R N \ Γ, there exists r 0 ∈ (0, 1)

such that B r 0 (0) ∩ Γ = ∅. Therefore, Γ = +∞ m=1 Γ ∩ (B m (0) \ B r 0 (0)) and so Cap 2 R N Γ ∩ (B m (0) \ B r 0 (0)) = 0, ∀m ∈ N, since (4.3.4
) is in force. The latter and N ≥ 3 imply that

Cap 2 Am Γ ∩ (B m (0) \ B r 0 (0)) = 0, ∀m ∈ N,
where

A m := B m+1 (0)\B r 0 2 (0)
) is an open and bounded set for every m ≥ 1. An application of lemma 4.3.1 with

F = K, the inversion x → x |x| 2 , A = A m and C = Γ ∩ (B m (0) \ B r 0 (0)) yields Cap 2 K(Am) K Γ ∩ (B m (0) \ B r 0 (0)) = 0, ∀m ∈ N and so Cap 2 R N K Γ ∩ (B m (0) \ B r 0 (0)) = 0, ∀m ∈ N. But Γ * = K(Γ) = K +∞ m=1 Γ ∩ (B m (0) \ B r 0 (0)) = +∞ m=1 K Γ ∩ (B m (0) \ B r 0 (0))
and the 2-capacity is an exterior measure (see e.g. [START_REF] Evans | Measure theory and fine properties of functions[END_REF]), so the desired conclusion (4.3.5) follows.

Let us now fix some notations. We set (

Σ λ = {x ∈ R N : x 1 < λ} . 4.3.6) 
As above x λ = (2λ -x 1 , x 2 , . . . , x N ) is the reflection of x through the hyperplane

T λ = {x = (x 1 , ..., x N ) ∈ R N | x 1 = λ}.
Finally we consider the Kelvin transform v of u defined in (4.3.1) and we set (4.3.7)

w λ (x) = v(x) -v λ (x) = v(x) -v(x λ ).
Note that v weakly solves

(4.3.8) R N (∇v, ∇ϕ) dx = R N v 2 * -1 ϕ dx ∀ϕ ∈ C 1 c (R N \ Γ * ∪ {0}) .
and v λ weakly solves (4.3.9)

R N (∇v λ , ∇ϕ) dx = R N v 2 * -1 λ ϕ dx ∀ϕ ∈ C 1 c (R N \ R λ (Γ * ∪ {0})) .
The properties of the Kelvin transform, the fact that 0 / ∈ Γ and the regularity of u imply that |v(x)| ≤ C|x| 2-N for every x ∈ R N such that |x| ≥ R, where C and R are positive constants (depending on u). In particular, for every λ < 0, we have

(4.3.10) v ∈ L 2 * (Σ λ ) ∩ L ∞ (Σ λ ) ∩ C 0 (Σ λ ) .
Lemma 4.3.3. Under the assumption of Theorem 4.0.5, for every λ < 0, we have that w

+ λ ∈ L 2 * (Σ λ ), ∇w + λ ∈ L 2 (Σ λ ) and (4.3.11) w + λ 2 L 2 * (Σ λ ) ≤ C 2 S Σ λ |∇w + λ | 2 dx ≤ 2C 2 S N + 2 N -2 v 2 * L 2 * (Σ λ ) ,
where C S denotes the best constant in Sobolev embedding.

Proof. We immediately see that

w + λ ∈ L 2 * (Σ λ ), since 0 ≤ w + λ ≤ v ∈ L 2 * (Σ λ ) .
The rest of the proof follows the lines of the one of lemma 4.2.2. Arguing as in section 2, for every ε > 0, we can find a function ψ ε ∈ C 0,1 (R N , [0, 1]) (see Figure 1) such that 5) and consider

Σ λ |∇ψ ε | 2 < 4ε and ψ ε = 0 in an open neighborhood B ε of R λ ({Γ * ∪ {0}}), with B ε ⊂ Σ λ . Fix R 0 > 0 such that R λ ({Γ * ∪ {0}) ⊂ B R 0 and, for every R > R 0 , let ϕ R be a standard cut off function such that 0 ≤ ϕ R ≤ 1 on R N , ϕ R = 1 in B R , ϕ R = 0 outside B 2R with |∇ϕ R | ≤ 2/R (see Figure
ϕ := w + λ ψ 2 ε ϕ 2 R in Σ λ , 0 in R N \ Σ λ . Now, as in Lemma 4.2.1 we see that ϕ ∈ C 0,1 c (R N ) with supp(ϕ) contained Figure 5. The cutoff function ϕ R . in Σ λ ∩ B 2R \ R λ ({Γ * ∪ {0}}) and (4.3.12) ∇ϕ = ψ 2 ε ϕ 2 R (∇w λ χ supp(w + λ )∩supp(ϕ) )+2(w + λ χ supp(ϕ) )(ψ 2 ε ϕ R ∇ϕ R +ψ ε ϕ 2 R ∇ψ ε ).
Therefore, by a standard density argument, we can use ϕ as test function in (4.3.8) and in (4.3.9) so that, subtracting we get

Σ λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε ϕ 2 R dx = -2 Σ λ ∇w λ ∇ψ ε w + λ ψ ε ϕ 2 R dx -2 Σ λ ∇w λ ∇ϕ R w + λ ϕ R ψ 2 ε dx + Σ λ (v 2 * -1 -v 2 * -1 λ )w + λ ψ 2 ε ϕ 2 R dx = : I 1 + I 2 + I 3 .
(4.3.13)
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Exploiting also Young's inequality and recalling that 0 ≤ w + λ ≤ v, we get that

|I 1 | ≤ 1 4 Σ λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ |∇ψ ε | 2 (w + λ ) 2 ϕ 2 R dx ≤ 1 4 Σ λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε ϕ 2 R dx + 16ε v 2 L ∞ (Σ λ ) . (4.3.14) 
Furthermore we have that

|I 2 | ≤ 1 4 Σ λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ ∩(B 2R \B R ) |∇ϕ R | 2 (w + λ ) 2 ψ 2 ε dx ≤ 1 4 Σ λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ ∩(B 2R \B R ) |∇ϕ R | n dx 2 N Σ λ ∩(B 2R \B R ) v 2 * dx N -2 N ≤ 1 4 Σ λ |∇w λ χ supp(w + λ ) | 2 ψ 2 ε ϕ 2 R dx + C(N ) Σ λ ∩(B 2R \B R ) v 2 * dx N -2 N (4.3.15)
where C(N ) is a positive constant depending only on the dimension N .

Let us now estimate I 3 . Since v(x), v λ (x) > 0, by the convexity of t → t 2 * -1 , for t > 0, we obtain

v 2 * -1 (x) -v 2 * -1 λ (x) ≤ N + 2 N -2 v 2 * -2 λ (x)(v(x) -v λ (x)),
for every x ∈ Σ λ . Thus, by making use of the monotonicity of t → t 2 * -2 , for t > 0 and the definition of w + λ we get

(v 2 * -1 -v 2 * -1 λ )w + λ ≤ N + 2 N -2 v 2 * -2 λ (v -v λ )w + λ ≤ N + 2 N -2 v 2 * -2 (w + λ ) 2 .
Therefore

I 3 ≤ N + 2 N -2 Σ λ v 2 * -2 (w + λ ) 2 ψ 2 ε ϕ 2 R dx ≤ N + 2 N -2 Σ λ v 2 * -2 v 2 dx = N + 2 N -2 Σ λ v 2 * dx = N + 2 N -2 v 2 * L 2 * (Σ λ ) (4.3.16) 
where we also used that 0 ≤ w + λ ≤ v. Taking into account the estimates on I 1 , I 2 and I 3 , by (4.3.13) we deduce that

Σ λ |∇w λ χ supp(w + λ ) | 2 ϕ 2 ε ϕ 2 R dx ≤32ε v 2 L ∞ (Σ λ ) + 2C(N ) Σ λ ∩(B 2R \B R ) v 2 * dx N -2 N + 2 N + 2 N -2 v 2 * L 2 * (Σ λ ) . (4.3.17) 
By Fatou's Lemma, as ε tends to zero and R tends to infinity, we deduce that ∇w λ χ supp(w + λ ) ∈ L 2 (Σ λ ). We also note that ϕ → w + λ in L 2 * (Σ λ ), by definition of ϕ, and that ∇ϕ → ∇w λ χ supp(w + λ ) in L 2 (Σ λ ), by (4.3.12) and the fact that w + λ ∈ L 2 * (Σ λ ). Therefore, ∇w λ χ supp(w + λ ) is the distributional gradient of ∇w + λ and so ∇w + λ in L 2 (Σ λ ) with (taking limit in (4.3.17))

Σ λ |∇w λ | 2 dx ≤ 2 N + 2 N -2 v 2 * L 2 * (Σ λ ) . (4.3.18) Since ϕ ∈ C 0,1 c (R N ) we also have Σ λ ϕ 2 * dx 2 2 * ≤ C 2 S Σ λ |∇ϕ| 2 dx (4.3.19)
where C S denotes de best constant in Sobolev embedding. Thus, passing to the limit in (4.3.19) and using the above convergence results, we get the desired conclusion (4.3.11).

Proof of Theorem 4.0.5. We can now complete the proof of Theorem 4.0.5. As for the proof of Theorem 4.0.3, we split the proof into three steps and we start with

Step 1: there exists M > 1 such that v ≤ v λ in Σ λ \ R λ (Γ * ∪ {0}), for all λ < -M .
Arguing as in the proof of Lemma 4.3.3 and using the same notations and the same construction for ψ ε , ϕ R and ϕ, we get

Σ λ |∇w + λ | 2 ϕ 2 ε ϕ 2 R dx = -2 Σ λ ∇w + λ ∇ϕ ε w + λ ϕ ε ϕ 2 R dx -2 Σ λ ∇w + λ ∇ϕ R w + λ ϕ R ϕ 2 ε dx + Σ λ (v 2 * -1 -v 2 * -1 λ )w + λ ϕ 2 ε ϕ 2 R dx =: I 1 + I 2 + I 3 , (4.3.20) 
where I 1 , I 2 and I 3 can be estimated exactly as in (4.3.14), (4.3.15) and (4.3.16). The latter yield

Σ λ |∇w + λ | 2 ϕ 2 ε ϕ 2 R dx ≤32ε v 2 L ∞ (Σ λ ) + 2C(N ) Σ λ ∩(B 2R \B R ) v 2 * dx N -2 N + 2 N + 2 N -2 Σ λ v 2 * -2 (w + λ ) 2 ψ 2 ε ϕ 2 R dx. (4.3.21) 
Taking the limit in the latter, as ε tends to zero and R tends to infinity, leads to

Σ λ |∇w + λ | 2 dx ≤ 2 N + 2 N -2 Σ λ v 2 * -2 (w + λ ) 2 dx < +∞ (4.3.22)
which combined with Lemma 4.3.3 gives

Σ λ |∇w + λ | 2 dx ≤ 2 N + 2 N -2 Σ λ v 2 * -2 (w + λ ) 2 dx ≤ 2 N + 2 N -2 Σ λ v 2 * dx 2 N Σ λ (w + λ ) 2 * dx 2 2 * ≤ 2 N + 2 N -2 C 2 S Σ λ v 2 * dx 2 N Σ λ |∇w + λ | 2 dx . (4.3.23) 
Recalling that v ∈ L 2 * (Σ λ ), we deduce the existence of M > 1 such that

2 N + 2 N -2 C 2 S Σ λ v 2 * dx 2 N < 1
for every λ < -M . The latter and (4.3.23) lead to

Σ λ |∇w + λ | 2 dx = 0 .
This implies that w + λ = 0 by Lemma 4.3.3 and the claim is proved.

To proceed further we define

Λ 0 = {λ < 0 : v ≤ v t in Σ t \ R t (Γ * ∪ {0}) for all t ∈ (-∞, λ]} and λ 0 = sup Λ 0 .
Step 2: we have that λ 0 = 0. We argue by contradiction and suppose that λ 0 < 0. By continuity we know that

v ≤ v λ 0 in Σ λ 0 \ R λ 0 (Γ * ∪ {0}). By the strong maximum principle we deduce that v < v λ 0 in Σ λ 0 \ R λ 0 (Γ * ∪ {0}). Indeed, v = v λ 0 in Σ λ 0 \R λ 0 (Γ * ∪{0})
) is not possible if λ 0 < 0, since in this case v would be singular somewhere on R λ 0 (Γ * ∪ {0}). Now, for some τ > 0, that will be fixed later on, and for any 0 < τ < τ we show that v ≤ v λ 0 +τ in Σ λ 0 +τ \ R λ 0 +τ (Γ * ∪ {0}) obtaining a contradiction with the definition of λ 0 and proving thus the claim. To this end we are going to show that, for every δ > 0 there are τ (δ, λ 0 ) > 0 and a compact set K (depending on δ and λ 0 ) such that

K ⊂ Σ λ \ R λ (Γ * ∪ {0}), Σ λ \K v 2 * dx < δ, ∀ λ ∈ [λ 0 , λ 0 + τ ].
To see this, we note that for every every δ > 0 there are τ 1 (δ, λ 0 ) > 0 and a compact set K (depending on δ and λ 0 ) such that

Σ λ 0 \K v 2 * dx < δ 2 and K ⊂ Σ λ \ R λ (Γ * ∪ {0}) for every λ ∈ [λ 0 , λ 0 + τ 1 ]
. Consequently u and u λ are well defined on K for every λ ∈ [λ 0 , λ 0 + τ 1 ]. Hence, by the uniform continuity of the function g(x, λ)

:= u(x) -u(2λ -x 1 , x ) on the compact set K × [λ 0 , λ 0 + τ 1 ] we can ensure that K ⊂ Σ λ 0 +τ \ R λ 0 +τ (Γ * ∪ {0}) and u < u λ 0 +τ in K for any 0 ≤ τ < τ 2 , for some τ 2 = τ (δ, λ 0 ) ∈ (0, τ 1 ).
Clearly we can also assume that

τ 2 < |λ 0 | 4 . Finally, since v 2 * ∈ L 1 (Σ λ 0 + |λ 0 | 4 )
and

Σ λ 0 \K v 2 * dx < δ 2
, we obtain the existence of τ ∈ (0, τ 2 ) such that

Σ λ \K v 2 * dx < δ for all λ ∈ [λ 0 , λ 0 + τ ].
Now we repeat verbatim the arguments used in the proof of Lemma 4.3.3 but using the test function

ϕ := w + λ 0 +τ ψ 2 ε ϕ 2 R in Σ λ 0 +τ 0 in R N \ Σ λ 0 +τ .
Thus we recover the first inequality in (4.3.23), which immediately gives, for any 0 ≤ τ < τ

Σ λ 0 +τ \K |∇w + λ 0 +τ | 2 dx ≤ 2 N + 2 N -2 Σ λ 0 +τ \K v 2 * -2 (w + λ 0 +τ ) 2 dx ≤ 2 N + 2 N -2 Σ λ 0 +τ \K v 2 * dx 2 N Σ λ 0 +τ \K (w + λ 0 +τ ) 2 * dx 2 2 * ≤ 2 N + 2 N -2 C 2 S Σ λ 0 +τ \K v 2 * dx 2 N Σ λ 0 +τ \K |∇w + λ 0 +τ | 2 dx (4.3.24)
since w + λ 0 +τ and ∇w + λ 0 +τ are zero in a neighbourhood of K, by the above

construction. Now we fix δ < 1 2 2 N +2 N -2 C 2 S -N
2 and we observe that with this choice we have

2 N + 2 N -2 C 2 S Σ λ 0 +τ \K v 2 * dx 2 N < 1 2 , ∀ 0 ≤ τ < τ
which plugged into (4.3.24) implies that

Σ λ 0 +τ \K |∇w + λ 0 +τ | 2 dx = 0 for every 0 ≤ τ < τ . Hence Σ λ 0 +τ |∇w + λ 0 +τ | 2 dx = 0 for every 0 ≤ τ < τ , since 4.
3 Symmetry and monotonicity results in R N 137 ∇w + λ 0 +τ is zero in a neighborhood of K. The latter and Lemma 4.3.3 imply that w + λ 0 +τ = 0 on Σ λ 0 +τ for every 0 ≤ τ < τ and thus v ≤ v λ 0 +τ in Σ λ 0 +τ \ R λ 0 +τ (Γ * ∪ {0}) for every 0 ≤ τ < τ . Which proves the claim of Step 2.

Step 3: conclusion. The symmetry of the Kelvin transform v follows now performing the moving planes method in the opposite direction. The fact that that v is symmetric w.r.t. the hyperplane {x 1 = 0} implies the symmetry of the solution u w.r.t. the hyperplane {x 1 = 0}. The last claim then follows by the invariance of the considered problem with respect to isometries (translations and rotations).

Proof of Corollary 4.0.6. The function v(x) = u(x + x 0 ) satisfies the assumptions of Theorem 4.0.5 with Γ = {0}. An application of Theorem 4.0.5 yields that v is symmetric with respect to every hyperplane through the origin and so the original solution u must be radially symmetric with respect to x 0 . This proves item (i). Since item (ii) is a special case of item (iii) with k = 1, we need only to prove item (iii). To this end we observe that, up to an isometry, we can suppose that the affine k-dimensional subspace is {x k+1 = ... = x N = 0}. Therefore, we can apply Theorem 4.0.5 to get that u is symmetric with respect to each hyperplane of R N containing {x k+1 = ... = x N = 0}; i.e., u is invariant with respect to every rotation of R N which leaves invariant the set {x k+1 = ... = x N = 0}. Note that we can apply Theorem 4.0.3 since any affine k-dimensional subspace of R N , with 1 ≤ k ≤ N -2, has zero 2-capacity in R N (and so Cap 2

R N (Γ) = 0).

Monotonicity and symmetry of singular solutions to quasilinear problems

In this chapter we consider the problem (5.0.1)

     -∆ p u = f (u) in Ω \ Γ u > 0 in Ω \ Γ u = 0 on ∂Ω,
in a bounded smooth domain Ω ⊂ R N and p > 1. The solution u has a possible singularity on the critical set Γ and in fact we shall only assume that u is of class C 1 far from the critical set. Therefore the equation is understood as in the following Definition 5.0.1. We say that u ∈ C 1 (Ω \ Γ) is a solution to (5.0.1) if u = 0 on ∂Ω and (5.0.2)

Ω |∇u| p-2 (∇u, ∇ϕ) dx = Ω f (u)ϕ dx ∀ϕ ∈ C 1 c (Ω \ Γ) .
The purpose of this chapter is to investigate symmetry and monotonicity properties of the solutions when the domain is assumed to have symmetry properties. This issue is well understood in the semilinear case p = 2 when Γ = ∅. The symmetry of the solutions in this case can be deduced by the celebrated moving planes method, see [START_REF] Alexandrov | A characteristic property of the spheres[END_REF][START_REF] Berestycki | On the method of moving planes and the sliding method[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF][START_REF] Serrin | A symmetry problem in potential theory[END_REF]. In [START_REF] Esposito | Qualitative properties of singular solutions to semilinear elliptic problems[END_REF][START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF] and in Chapter 4 the moving planes procedure has been adapted to the case when the singular set has zero capacity, in the semilinear setting p = 2.

As remarked in the introduction, here we extend the result obtained in Chapter 4 in bounded domains to singular solutions of problem (5.0.1). We prefer to start the presentation of our results with the case p > 2. We have the following: Theorem 5.0.2. Let p > 2 and let u ∈ C 1 (Ω \ Γ) be a solution to (5.0.1) and assume that f is locally Lipschitz continuous with f (s) > 0 for s > 0, namely assume (A 2 f ). If Ω is convex and symmetric with respect to the x 1 -direction, Γ is closed with Cap p (Γ) = 0, namely let us assume (A 2 Γ ), and Γ ⊂ {x ∈ Ω : x 1 = 0}, then it follows that u is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the x 1 -direction in Ω ∩ {x 1 < 0}.

Although the technique that we will develop to prove Theorem 5.0.2 works for any p > 2, the result is stated for 2 < p ≤ N since there are no sets of zero p-capacity when p > N .

Surprisingly, as we explained in the introduction, the case 1 < p < 2 presents more difficulties related to the fact that the operator may degenerate near the critical set even if p < 2. We will therefore need an accurate analysis on the behaviour of the gradient of the solution near Γ. We carry out such analysis exploiting the results of [START_REF] Polácik | Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems[END_REF] (therefore we shall require a growth assumption on the nonlinearity) and a blow up argument. The result is the following:

Theorem 5.0.3. Let 1 < p < 2 and let u ∈ C 1 (Ω \ Γ) be a solution to (5.0.1) and assume that f is locally Lipschitz continuous with f (s) > 0 for s > 0 and has subcritical growth, namely let us assume (A 1 f ). Assume that Γ is closed and that Γ = {0} for N = 2, while Γ ⊆ M for some compact

C 2 submanifold M of dimension m ≤ N -k, with k ≥ n 2 for N > 2, see (A 1 Γ ).
Then, if Ω is convex and symmetric with respect to the x 1 -direction and

Γ ⊂ {x ∈ Ω : x 1 = 0},
it follows that u is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the x 1 -direction in Ω ∩ {x 1 < 0}.

Notations and technical results

Notation. Generic fixed and numerical constants will be denoted by C (with subscript in some case) and they will be allowed to vary within a single line or formula. By |A| we will denote the Lebesgue measure of a measurable set A.

As we did in the previous chapter, we fix some standard notations in the moving planes method. For a real number λ we set (5.1.1)

Ω λ = {x ∈ Ω : x 1 < λ} (5.1.2) x λ = R λ (x) = (2λ -x 1 , x 2 , . . . , x N )
which is the reflection through the hyperplane

T λ := {x ∈ R N : x 1 = λ}. Also let (5.1.3) a = inf x∈Ω x 1 .
Finally we set (5.1.4)

u λ (x) = u(x λ ) .
We recall also the definition of p-capacity of a compact set A ⊂ R N . For 1 ≤ p ≤ N we define Cap p (A) as (5.1.5)

Cap p (A) := inf R N |∇ϕ| p dx < +∞ : ϕ ∈ C ∞ c (R N ) and ϕ ≥ χ A ,
where χ S denotes the characteristic function of a set S. By the invariance under reflections of (5.1.5), it follows that (5.1.6) Cap p (Γ) = Cap p (R λ (Γ)).
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Moreover it can be shown that, if Cap p (R λ (Γ)) = 0, then we have that (5.1.7) Cap D p (R λ (Γ)) = 0, where D ⊂ R N denotes a bounded subset and with Cap D p (A) (A ⊂ D a compact set of R N ) we mean

Cap D p (A) := inf D |∇ϕ| p dx < +∞ : ϕ ∈ C ∞ c (D) and ϕ ≥ χ A .
Let ε > 0 small and let B λ be a ε-neighborhood of R λ (Γ) . From (5.1.6) and (5.1.7) it follows that there exists

ϕ ε ∈ C ∞ c (B λ ) such that ϕ ε ≥ 1 on χ R λ (Γ) and B λ |∇ϕ ε | p dx < ε.
To carry on our analysis we need to construct a function ψ ε ∈ W 1,p (Ω) (see Figure 1) such that By the definitions (5.1.9), it follows that ψ ε satisfies (5.1.8). To simplify the presentation we summarize the assumptions of the main results as follows:

ψ ε = 1 in Ω \ B λ ε , ψ ε = 0 in a δ ε -neighborhood B λ δε of R λ (Γ) (with δ ε < ε) and such that (5.1.8) B λ |∇ψ ε | p dx ≤ Cε,
(A 1 f ). For 1 < p < 2 we assume that f is locally Lipschitz continuous so that, for any 0 ≤ t, s ≤ M , there exists a positive constant

K f = K f (M ) such that |f (s) -f (t)| ≤ K f |s -t|.
Moreover f (s) > 0 for s > 0 and

lim t→+∞ f (t) t q = l ∈ (0, +∞).
for some q ∈ R such that p -1 < q < p * -1, where p * = N p/(N -p).

(A 2 f ). For p ≥ 2 we only assume that f is locally Lipscitz continuous so that, for 0 ≤ t, s ≤ M there exists a positive constant

K f = K f (M ) such that |f (s) -f (t)| ≤ K f |s -t|.
Furthermore f (s) > 0 for s > 0.

(A 1 Γ ). For 1 < p < 2 and N = 2 we assume that Γ = {0}, while for 1 < p < 2 and N > 2 we assume that Γ ⊆ M for some compact

C 2 submanifold M of dimension m ≤ N -k, with k ≥ N 2 .
(A 2 Γ ). For 2 < p < N and N ≥ 2, we assume that Γ closed and such that Cap p (Γ) = 0.

Remark 5.1.1. We want just to remark that in the case 1 < p < 2 and N > 2 if Γ ⊆ M for some compact C 2 submanifold M of dimension m ≤ N -k then Cap p (Γ) = 0. In this case we consider B ε a tubular neighborhood of radius ε of M, i.e.

B ε := {x ∈ Ω : dist(x, M) < ε},
with ε > 0 sufficiently small so that M has the unique nearest point property in the neighborhood of M of radius ε. We may and do also assume that Fermi coordinates are well defined in such neighborhood, see e.g. [START_REF] Pacard | Solutions of semilinear elliptic equations in tubes[END_REF]. Therefore, using the defintion (5.1.5) above, it can be shown that Cap p (Γ) = 0.

In the following we will exploit the fact that u λ (in the sense of Definition 5.0.1) is a solution to (5.1.11)

R λ (Ω) |∇u λ | p-2 (∇u λ , ∇ϕ) dx = R λ (Ω) f (u λ )ϕ dx ∀ϕ ∈ C 1 c (R λ (Ω)\R λ (Γ)) .
We set (5.1.12)

w λ (x) := (u -u λ )(x), x ∈ Ω λ \ R λ (Γ).
Lemma 5.1.2. Let p > 1 and let u and u λ be solutions to (5.0.2) and (5.1.11) respectively and let f : R → R be a locally Lipschitz continuous function. Let us assume Γ ⊂ Ω closed and such that Cap p (Γ) = 0.

Notations and technical results 143

Let a be defined as in (5.1.3) and a < λ < 0. Then

Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 dx ≤ C(p, λ, u L ∞ (Ω λ ) ) .
Proof. In all the proof, according to our assumptions, we assume that 0 ≤ t, s ≤ M , there exists a positive constant

K f = K f (M ) such that |f (s) -f (t)| ≤ K f |s -t|.
For ψ ε defined as in (5.1.10), we consider

ϕ ε := w + λ ψ p ε χ Ω λ .
By standard arguments, since

w + λ ≤ u L ∞ (Ω λ ) (recall that in particular u ∈ C(Ω \ Γ)) and by construction 0 ≤ ψ ε ≤ 1, we have that ϕ ε ∈ W 1,p 0 (Ω λ )
. By a density argument we use ϕ ε as test function in (5.0.2) and (5.1.11). Subtracting we get

Ω λ (|∇u| p-2 ∇u -|∇u λ | p-2 ∇u λ , ∇w + λ )ψ p ε dx + p Ω λ (|∇u| p-2 ∇u -|∇u λ | p-2 ∇u λ , ∇ψ ε )ψ p-1 ε w + λ dx = Ω λ (f (u) -f (u λ ))w + λ ψ p ε dx (5.1.13) 
Now it is useful to split the set Ω λ as the union of two disjoint subsets A λ and B λ such that Ω λ = A λ ∪ B λ . In particular, for Ċ > 1 that will be fixed large, we set

A λ = {x ∈ Ω λ : |∇u λ (x)| < Ċ|∇u(x)|} and B λ = {x ∈ Ω λ : |∇u λ (x)| ≥ Ċ|∇u(x)|}.
Then it follows that -By the definition of A λ it follows that there exists Ĉ such that

(5.1.14) |∇u| + |∇u λ | < Ĉ|∇u|.
-By the definition of the set B λ and standard triangular inequalities, we can deduce the existence of a positive constant Č such that

(5.1.15) 1 Č |∇u λ | ≤ |∇u λ | -|∇u| ≤ |∇w λ | ≤ |∇u λ | + |∇u| ≤ Č|∇u λ |.
We distinguish two cases:

Case 1: 1 < p < 2. From (5.1.13), using (1.0.2) and (A 1 f ) we have

C 1 Ω λ (|∇u|+|∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx ≤ Ω λ (|∇u| p-2 ∇u -|∇u λ | p-2 ∇u λ , ∇w + λ )ψ p ε dx ≤ p Ω λ ∇u| p-2 ∇u -|∇u λ | p-2 ∇u λ |∇ψ ε |ψ p-1 ε w + λ dx + Ω λ f (u) -f (u λ ) u -u λ (w + λ ) 2 ψ p ε dx ≤ pC 4 Ω λ |∇w + λ | p-1 |∇ψ ε |ψ p-1 ε w + λ dx + K f Ω λ (w + λ ) 2 ψ p ε dx ≤ C I 1 + I 2 + C Ω λ ψ p ε dx, (5.1.16) 
where

I 1 := A λ |∇w + λ | p-1 |∇ψ ε |ψ p-1 ε w + λ dx and 
I 2 := B λ |∇w + λ | p-1 |∇ψ ε |ψ p-1 ε w + λ dx,
and

C = C(p, λ, u L ∞ (Ω λ ) ) is a positive constant.
Step 1: Evaluation of I 1 . Using Young's inequality and (5.1.14), we have

I 1 = A λ |∇w + λ | p-1 |∇ψ ε |ψ p-1 ε w + λ dx ≤ A λ |∇w + λ | p ψ p ε dx p-1 p A λ |∇ψ ε | p (w + λ ) p dx 1 p ≤ A λ (|∇u| + |∇u λ |) p ψ p ε dx p-1 p A λ |∇ψ ε | p (w + λ ) p dx 1 p ≤ Ĉ A λ |∇u| p ψ p ε dx p-1 p A λ |∇ψ ε | p (w + λ ) p dx 1 p ≤ C Ω λ |∇u| p dx p-1 p Ω λ |∇ψ ε | p dx 1 p , (5.1.17) 
where

C = C(p, λ, u L ∞ (Ω λ )
) is a positive constant.
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Step 2: Evaluation of I 2 . Using the weighted Young's inequality and (5.1.15) we get

I 2 = B λ |∇w + λ | p-1 |∇ψ ε |ψ p-1 ε w + λ dx ≤δ B λ |∇w + λ | p ψ p ε dx + 1 δ B λ |∇ψ ε | p (w + λ ) p dx ≤δ B λ (|∇u| + |∇u λ |) p-2 (|∇u| + |∇u λ |) 2 ψ p ε dx + 1 δ B λ |∇ψ ε | p (w + λ ) p dx ≤δ Č2 B λ (|∇u| + |∇u λ |) p-2 |∇u λ | 2 ψ p ε dx + 1 δ B λ |∇ψ ε | p (w + λ ) p dx ≤δ Č4 B λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + 1 δ B λ |∇ψ ε | p (w + λ ) p dx ≤δC Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + C δ Ω λ |∇ψ ε | p dx, (5.1.18) 
where

C = C(p, λ, u L ∞ (Ω λ )
) is a positive constant. Finally, using (5.1.16), (5.1.17) and (5.1.18), we obtain

Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx ≤ δC Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + C Ω λ |∇u| p dx p-1 p Ω λ |∇ψ ε | p dx 1 p + C δ Ω λ |∇ψ ε | p dx + C Ω λ ψ p ε dx, (5.1.19) 
for some positive constant

C = C(p, λ, u L ∞ (Ω λ ) ).
Case 2: p ≥ 2. From (5.1.13), using (1.0.2) and (A 2 f ) we have

C 1 Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx ≤ Ω λ (|∇u| p-2 ∇u -|∇u λ | p-2 ∇u λ , ∇w + λ )ψ p ε dx = -p Ω λ (|∇u| p-2 ∇u -|∇u λ | p-2 ∇u λ , ∇ψ ε )ψ p-1 ε w + λ dx + Ω λ (f (u) -f (u λ ))w + λ ψ p ε dx ≤ p Ω λ |∇u| p-2 ∇u -|∇u λ | p-2 ∇u λ |∇ψ ε |ψ p-1 ε w + λ dx + Ω λ f (u) -f (u λ ) u -u λ (w + λ ) 2 ψ p ε dx ≤ pC 2 Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | |∇ψ ε |ψ p-1 ε w + λ dx + K f Ω λ (w + λ ) 2 ψ p ε dx = pC 2 A λ (|∇u| + |∇u λ |) p-2 |∇w + λ | |∇ψ ε |ψ p-1 ε w + λ dx + pC 2 B λ (|∇u| + |∇u λ |) p-2 |∇w + λ | |∇ψ ε |ψ p-1 ε w + λ dx + K f Ω λ (w + λ ) 2 ψ p ε dx ≤ C I 1 + I 2 + C Ω λ ψ p ε dx, (5.1.20) 
where

I 1 := A λ (|∇u| + |∇u λ |) p-2 |∇w + λ | |∇ψ ε |ψ p-1 ε w + λ dx
and

I 2 := B λ (|∇u| + |∇u λ |) p-2 |∇w + λ | |∇ψ ε |ψ p-1 ε w + λ dx, and C = C(p, λ, u L ∞ (Ω λ ) ) is a positive constant.
Step 1: Evaluation of I 1 . Using the weighted Young's inequality we have

I 1 = A λ (|∇u| + |∇u λ |) p-2 |∇w + λ | |∇ψ ε |ψ p-1 ε w + λ dx ≤ δ A λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + 1 δ A λ (|∇u| + |∇u λ |) p-2 |∇ψ ε | 2 ψ p-2 ε (w + λ ) 2 dx.
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Using (5.1.14) and Hölder inequality, we obtain

I 1 ≤ δ A λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + Ĉp-2 δ A λ |∇u| p-2 |∇ψ ε | 2 ψ p-2 ε (w + λ ) 2 dx ≤ δ A λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + C δ A λ |∇u| p ψ p ε dx p-2 p A λ |∇ψ ε | p (w + λ ) p dx 2 p ≤ δ Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + C δ Ω λ |∇u| p dx p-2 p Ω λ |∇ψ ε | p dx 2 p , (5.1.21) 
with

C = C(p, λ, u L ∞ (Ω λ ) ) is a positive constant.
Step 2: Evaluation of I 2 . By the weighted Young's inequality

I 2 := B λ (|∇u| + |∇u λ |) p-2 |∇w + λ | |∇ψ ε |ψ p-1 ε w + λ dx ≤ δ B λ (|∇u| + |∇u λ |) p(p-2) p-1 |∇w + λ | p p-1 ψ p ε dx + 1 δ B λ |∇ψ ε | p (w + λ ) p dx = δ B λ (|∇u| + |∇u λ |) p(p-2) p-1 |∇w + λ | 2 |∇w + λ | p p-1 -2 ψ p ε dx + 1 δ B λ |∇ψ ε | p (w + λ ) p dx.
Using (5.1.15) and noticing that

p (p -1) -2 < 0,
we obtain the following estimate

I 2 ≤ δ Č (p-2)(p+1) p-1 B λ |∇u λ | p-2 |∇w + λ | 2 ψ p ε dx + 1 δ B λ |∇ψ ε | p (w + λ ) p dx ≤ δC B λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + C δ B λ |∇ψ ε | p dx ≤ δC Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + C δ Ω λ |∇ψ ε | p dx, (5.1.22) 
with C = C(p, u L ∞ (Ω λ ) ). In the second line of (5.1.22) we exploited the fact that, since p ≥ 2 then

|∇u λ | p-2 ≤ (|∇u| + |∇u λ |) p-2 .
Collecting (5.1.20), (5.1.21) and (5.1.22) we deduce that

Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx ≤ δC Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 ψ p ε dx + C δ Ω λ |∇u| p dx p-2 p Ω λ |∇ψ ε | p dx 2 p + C δ Ω λ |∇ψ ε | p dx + C Ω λ ψ p ε dx, (5.1.23) 
for some positive constant

C = C(p, λ, u L ∞ (Ω λ ) ).
For δ small, from (5.1.19) and (5.1.23), using (5.1.8) and the fact that for λ < 0 the solution u ∈ W 1,p (Ω λ ), letting ε → 0 by Fatou's Lemma we obtain

Ω λ (|∇u| + |∇u λ |) p-2 |∇w + λ | 2 dx ≤ C(p, λ, u L ∞ (Ω λ ) ),
concluding the proof.

Symmetry and monotonicity results in the singular and in the degenerate case

We recall the fact that u λ (in the sense of Definition 5.0.1) is a solution to (5.2.1)

R λ (Ω) |∇u λ | p-2 (∇u λ , ∇ϕ) dx = R λ (Ω) f (u λ )ϕ dx ∀ϕ ∈ C 1 c (R λ (Ω)\R λ (Γ)) .
We set

w λ (x) := (u -u λ )(x), x ∈ Ω \ (Γ ∪ R λ (Γ)).
Since in the following we will exploit weighted Sobolev inequalities, it is convenient to set weight (5.2.2)

ˆ := |∇u| p-2 1 ˆ := |∇u| 2-p .
We have the following Lemma 5.2.1. Let 1 < p < 2. Under the same assumption of Theorem 5.0.3, define

Ω + λ := Ω λ ∩ supp (w + λ ). Then (5.2.3) |∇u| 2-p ∈ L t (R λ (Ω + λ )), for some t > N 2 .
Proof. By definition of Ω + λ we have

u L ∞ (R λ (Ω + λ )) = u λ L ∞ (Ω + λ ) ≤ u L ∞ (Ω + λ ) ≤ C(λ, u L ∞ (Ω λ ) ).
Taking x 0 ∈ R λ (Ω + λ ) \ Γ, we set: (5.2.4) g(x) := u(dx

+ x 0 ) in B 1 2 (0),
where d := dist(x 0 , Γ). Since u is a solution (in the sense of Definition 5.0.1) to (5.0.1), we deduce that for any ϕ ∈ C 1 c (B 1/2 (0)) (5.2.5) g(x) (5.2.9)

B 1 2 (0) |∇g| p-2 (∇g, ∇ϕ) dx = d p-1 B 1 2 (0) |∇u(dx + x 0 )| p-2 (∇u(dx + x 0 ), ∇ϕ) dx = d p-n B d 2 (x 0 ) |∇u(x)| p-2 ∇u(x), ∇ ϕ x -x 0 d dx = d p-n B d 2 (x 0 ) f (u(x))ϕ x -x 0 d dx = d p B 1 2 (0) f (u(dx + x 0 ))ϕ(x) dx = B 1 2 (0) c(x)(g(x)) p-1 ϕ(x) dx,
≤ C H inf x∈B 1 4 (0) g(x) ≤ C H g(0) ≤ C
where C = C(f, l, N, p, q, K f , Ω) is a positive constant. Hence g is bounded in B 1/8 (0) and as consequence, see e.g. [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF] Using (A 1 Γ ), we can consider B ε a tubular neighborhood of radius ε of M, i.e.

B ε := {x ∈ Ω : dist(x, M) < ε}.

We now exploit an integration in Fermi coordinates,see e.g. [START_REF] Pacard | Solutions of semilinear elliptic equations in tubes[END_REF]. We indicate a point of B ε via the coordinate (σ, x) where σ is the variable describing the manifold M and x ∈ R k is the Euclidean variable on the normal section. For σ fixed, D σ will stand for the normal section at σ. By (5.2.10), and passing to polar coordinates we obtain

R λ (Ω + λ ) |∇u| 2-p t dx = R λ (Ω + λ )\Bε |∇u| 2-p t dx + Bε |∇u| 2-p t dx ≤ C + C M dσ Dσ |∇u| 2-p t dx ≤ C + C M dσ ε 0 1 r (2-p)t-(k-1) dr = C(N, p, λ, u L ∞ (Ω λ ) ) + CE 1 ,
(5.2.11) with (5.2.12)

E 1 := M dσ ε 0 1 r (2-p)t-(k-1) dr < +∞, if t < k/(2 -p), recalling that 1 < p < 2.
Hence, since k ≥ N/2, inequality (5.2.12) holds for some

t ∈ N 2 , k 2 -p ,
being 2k > N (2 -p) under our assumption.

Let us now set

Z λ := {x ∈ Ω λ \ R λ (Γ) | ∇u(x) = ∇u λ (x) = 0}.
We have the following Lemma 5.2.2. Let u be a solution to (5.0.2) with f : R → R be a locally Lipschitz function such that f (s) > 0 for s > 0. Let a < λ < 0.

If C λ ⊂ Ω λ \ (R λ (Γ) ∪ Z λ ) is a connected component of Ω λ \ (R λ (Γ) ∪ Z λ ) and u = u λ in C λ , then C λ = ∅. Proof. Let C := C λ ∪ R λ (C λ ).
Arguing by contradiction we assume C = ∅. Now for ε > 0, we define h ε (t) : R + 0 → R as

h ε (t) = Gε(t) t if t > 0 0 if t = 0, where G ε (t) = (2t -2ε)χ [ε , 2ε] (t) + tχ [2ε , ∞) (t) for t 0.
Moreover we consider the cut-off function ψ ε on the set Γ ∪ R λ (Γ) defined in a similar way as in (5.1.10). Hence we define the test function

ϕ ε := h ε (|∇u|)ψ 2 ε χ C .
We point out that the supp ϕ ε ⊂ C and therefore we can use it as test function in (5.0.2). We obtain

0 < C f (u)h ε (|∇u|)ψ 2 ε dx = C |∇u| p-2 (∇u, ∇|∇u|)h ε (|∇u|)ψ 2 ε dx + 2 C |∇u| p-2 (∇u, ∇ψ ε )h ε (|∇u|)ψ ε dx.
Using Schwarz inequality, observing that

h ε (t) ≤ 1 and h ε (t) ≤ 2/ε, we obtain 0 < C f (u) G ε (|∇u|) |∇u| ψ 2 ε dx ≤ 2 C∩{ε<|∇u|<2ε} |∇u| p-2 D 2 u ψ 2 ε |∇u| ε dx + 2 C |∇u| p-1 |∇ψ ε |ψ ε dx ≤ 4 C∩{ε<|∇u|<2ε} |∇u| p-2 D 2 u ψ 2 ε dx + 2 C |∇u| p-1 |∇ψ ε |ψ ε dx ≤ 4 C |∇u| p-2 D 2 u ψ 2 ε χ Aε dx + 2 C |∇u| p dx p-1 p C |∇ψ ε | p dx 1 p , (5.2.13) 
where A ε := C ∩ {ε < |∇u| < 2ε}. Now we note that by the definition of the region C and because u = u λ in C λ , then the solution u is bounded and C 1,α by classical regularity results. Moreover [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF] (see also [START_REF] Merchán | Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy-Leray potential[END_REF]Lemma 5] Proof of Theorem 5.0.3. Since the singular set Γ is contained in the hyperplane {x 1 = 0}, then the moving planes procedure can be started in the standard way (see e.g [START_REF] Damascelli | Monotonicity and symmetry of solutions of p-Laplace equations, 1 < p < 2, via the moving planes method[END_REF][START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF][START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF]) and, for a < λ < a + σ with σ > 0 small, we have that w λ ≤ 0 in Ω λ (see (5.1.12)) by the weak comparison principle in small domains. Note that the crucial point here is that w λ has a singularity at Γ and at R λ (Γ). For λ close to a the singularity does not play a role. To proceed further we define Λ 0 = {a < λ < 0 : u ≤ u t in Ω t \ R t (Γ) for all t ∈ (a, λ]} and λ 0 = sup Λ 0 , since we proved above that Λ 0 is not empty. To prove our result we have to show that λ 0 = 0. To do this we assume that λ 0 < 0 and we reach a contradiction by proving that u ≤ u λ 0 +τ in Ω λ 0 +τ \ R λ 0 +τ (Γ) for any 0 < τ < τ for some small τ > 0. We remark that |Z λ 0 | = 0, see [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF]. Let us take A λ 0 ⊂ Ω λ 0 be an open set such that Z λ 0 ∩ Ω λ 0 ⊂ A λ 0 ⊂⊂ Ω. Such set exists by Höpf lemma (see Chapter 1). Moreover note that, since |Z λ 0 | = 0, we can take A λ 0 of arbitrarily small measure. By continuity we know that u ≤ u λ 0 in Ω λ 0 \ R λ 0 (Γ). We can exploit the strong comparison principle, see e.g. [START_REF] Pucci | The maximum principle[END_REF]Theorem 2.5.2] or Chapter 1, to get that, in any connected component of Ω λ 0 \ Z λ 0 , we have

|∇u| p-2 D 2 u ψ 2 ε χ Aε ≤ |∇u| p-2 D 2 u and |∇u| p-2 D 2 u ∈ L 1 (C) by
u < u λ 0 or u ≡ u λ 0 .
The case u ≡ u λ 0 in some connected component C λ 0 of Ω λ 0 \ Z λ 0 is not possible, since by symmetry, it would imply the existence of a local symmetry phenomenon and consequently that Ω \ Z λ 0 would be not connected, in spite of what we proved in Lemma 5.2.2. Hence we deduce that u < u λ 0 in Ω λ 0 \ R λ 0 (Γ). Therefore, given a compact set K ⊂ Ω λ 0 \ (R λ 0 (Γ) ∪ A λ 0 ), by uniform continuity we can ensure that u < u λ 0 +τ in K for any 0 < τ < τ for some small τ > 0. Note that to do this we implicitly assume, with no loss of generality, that R λ 0 (Γ) remains bounded away from K. Arguing in a similar way as in Lemma 5.1.2, we consider (5.2.14) ϕ ε := w + λ 0 +τ ψ p ε χ Ω λ 0 +τ .

By density arguments as above, we plug ϕ ε as test function in (5.0.2) and (5.2.1) so that, subtracting, we get

Ω λ 0 +τ \K (|∇u| p-2 ∇u -|∇u λ 0 +τ | p-2 ∇u λ 0 +τ , ∇w + λ 0 +τ )ψ p ε dx + p Ω λ 0 +τ \K (|∇u| p-2 ∇u -|∇u λ 0 +τ | p-2 ∇u λ 0 +τ , ∇ψ ε )ψ p-1 ε w + λ 0 +τ dx = Ω λ 0 +τ \K (f (u) -f (u λ ))w + λ 0 +τ ψ p ε dx.
(5.2.15)

Now we split the set Ω λ 0 +τ \ K as the union of two disjoint subsets A λ 0 +τ and B λ 0 +τ such that Ω λ 0 +τ \ K = A λ 0 +τ ∪ B λ 0 +τ . In particular, for Ċ > 1, we set

A λ 0 +τ = {x ∈ Ω λ 0 +τ \ K : |∇u λ 0 +τ (x)| < Ċ|∇u(x)|}
and

B λ 0 +τ = {x ∈ Ω λ 0 +τ \ K : |∇u λ 0 +τ (x)| ≥ Ċ|∇u(x)|}.
From (5.2.15), using (1.0.2) and (A 1 f ), repeating verbatim arguments in (5.1.16), (5.1.17) and in (5.1.18) we have

Ω λ 0 +τ \K (|∇u| + |∇u λ 0 +τ |) p-2 |∇w + λ 0 +τ | 2 ψ p ε dx ≤ δC Ω λ 0 +τ \K (|∇u| + |∇u λ 0 +τ |) p-2 |∇w + λ 0 +τ | 2 ψ p ε dx + C Ω λ |∇u| p dx p-1 p Ω λ |∇ψ ε | p dx 1 p + C δ Ω λ 0 +τ \K |∇ψ ε | p dx + K f Ω λ 0 +τ \K (w + λ 0 +τ ) 2 ψ p ε dx,
for some positive constant C = C(p, λ, u L ∞ (Ω λ+τ ) ). Taking δ > 0 sufficiently small and using (A 1 Γ ), as we did above passing to the limit for ε → 0 we obtain (5.2.16)

Ω λ 0 +τ \K (|∇u| + |∇u λ 0 +τ |) p-2 |∇w + λ 0 +τ | 2 dx ≤ CK f Ω λ 0 +τ \K (w + λ 0 +τ ) 2 dx.

Now we set

:= 1 + |∇u| 2 + |∇u λ | 2 p-2 2 
in order to exploit the weighted Sobolev inequality from [START_REF] Trudinger | Linear elliptic operators with measurable coefficients[END_REF] (see also Chapter 1). The results of [START_REF] Trudinger | Linear elliptic operators with measurable coefficients[END_REF] apply if ∈ L 1 (Ω λ ) and

1 ∈ L t (Ω λ ),
for some t > n/2. In particular, H 1 0, (Ω ) (see [START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF][START_REF] Trudinger | Linear elliptic operators with measurable coefficients[END_REF]) coincides with the closure of C ∞ c (Ω ) with respect to the norm

w := ∇w L 2 (Ω , ) := Ω |∇w| 2 dx 1 2
and it holds that

w L 2 * (Ω ) ≤ C S |∇w| L 2 (Ω , )
for any w ∈ H 1 0, (Ω ) , where 1 2 * :=

1 2 1 + 1 t - 1 n .
Note that (5.2.17)

1 + |∇u| 2 + |∇u λ 0 +τ | 2 2-p 2 ≤ K 1 + K 2 |∇u λ 0 +τ | 2-p ,
in Ω + λ 0 +τ := Ω λ 0 +τ ∩ supp (w + λ 0 +τ ), where K 1 and K 2 are positive constants depending only on p and on u C 1 ( Ωλ 0 +τ ) . By Lemma 5.2.1 and (5.2.17), we deduce that

1 := 1 + |∇u| 2 + |∇u λ 0 +τ | 2 2-p 2 ∈ L t (Ω λ 0 +τ ),
for some t > n/2 and this allows us to use the above mentioned results of [START_REF] Trudinger | Linear elliptic operators with measurable coefficients[END_REF]. We shall use the fact that

(|∇u| + |∇u λ 0 +τ |) 2-p ≤ 2 2-p 2 |∇u| 2 + |∇u λ 0 +τ | 2 2-p 2 ≤ 2 2-p 2 1 + |∇u| 2 + |∇u λ 0 +τ | 2 2-p 2 .
(5.2.18)

In particular, by (5.2.18), Hölder inequality and weighted Sobolev inequality, in (5.2.16), we obtain

Ω λ 0 +τ \K |∇w + λ 0 +τ | 2 dx ≤ 2 2-p 2 Ω λ 0 +τ \K (|∇u| + |∇u λ 0 +τ |) p-2 |∇w + λ 0 +τ | 2 dx ≤ 2 2-p 2 CK f Ω λ 0 +τ \K (w + λ 0 +τ ) 2 dx ≤ 2 2-p 2 CK f |Ω λ 0 +τ \ K| 1 ( 2 2 * ) Ω λ 0 +τ \K (w + λ 0 +τ ) 2 * dx 2 2 * ≤ 2 2-p 2 CK f C p (|Ω λ 0 +τ \ K|) Ω λ 0 +τ \K |∇w + λ 0 +τ | 2 dx, (5.2.19) 
where C p (•) tends to zero if the measure of the domain tends to zero. For τ small and K large, we may assume that 2 2-p 2 CK f C p (|Ω λ 0 +τ \ K|) < 1 2 so that by (5.2.19), we deduce that

Ω λ 0 +τ |∇w + λ 0 +τ | 2 dx = Ω λ 0 +τ \K |∇w + λ 0 +τ | 2 dx ≤ 0,
proving that u ≤ u λ 0 +τ in Ω λ 0 +τ \ R λ 0 +τ (Γ) for any 0 < τ < τ for some small τ > 0. Such a contradiction shows that λ 0 = 0.

Since the moving planes procedure can be performed in the same way but in the opposite direction, then this proves the desired symmetry result. The fact that the solution is increasing in the x 1 -direction in {x 1 < 0} is implicit in the moving planes procedure.

Proof of Theorem 5.0.2. Arguing verbatim as in the previous case up to (5.2.14), we consider ϕ ε := w + λ 0 +τ ψ p ε χ Ω λ 0 +τ and by a density arguments, we plug it as test function in (5.0.2) and (5.1.11). Subtracting, we get

Ω λ 0 +τ \K (|∇u| p-2 ∇u -|∇u λ 0 +τ | p-2 ∇u λ 0 +τ , ∇w + λ 0 +τ )ψ p ε dx + p Ω λ 0 +τ \K (|∇u| p-2 ∇u -|∇u λ 0 +τ | p-2 ∇u λ 0 +τ , ∇ψ ε )ψ p-1 ε w + λ 0 +τ dx = Ω λ 0 +τ \K (f (u) -f (u λ ))w + λ 0 +τ ψ p ε dx.
(5.2.20)

Using the split

A λ 0 +τ = {x ∈ Ω λ 0 +τ \ K : |∇u λ 0 +τ (x)| < Ċ|∇u(x)|}, B λ 0 +τ = {x ∈ Ω λ 0 +τ \ K : |∇u λ 0 +τ (x)| ≥ Ċ|∇u(x)|}, from (5 
.2.20), using (1.0.2),(A 2 f ) and arguing as in Lemma 5.1.2, we obtain

Ω λ 0 +τ \K (|∇u| + |∇u λ 0 +τ |) p-2 |∇w + λ 0 +τ | 2 ψ p ε dx ≤ δC Ω λ 0 +τ \K (|∇u| + |∇u λ 0 +τ |) p-2 |∇w + λ 0 +τ | 2 ψ p ε dx + C δ Ω λ 0 +τ \K |∇u| p dx p-2 p Ω λ 0 +τ \K |∇ψ ε | p dx 2 p + K f Ω λ 0 +τ \K (w + λ 0 +τ ) 2 ψ p ε dx,
for some positive constant C = C(p, λ, u L ∞ (Ω λ +τ ) ). As we did above passing to the limit for ε → 0, by Fatou's Lemma we obtain (5.2.21)

Ω λ 0 +τ \K (|∇u| + |∇u λ 0 +τ |) p-2 |∇w + λ 0 +τ | 2 dx ≤ CK f Ω λ 0 +τ \K (w + λ 0 +τ ) 2 dx.
In this case we have |∇u| p-2 ≤ (|∇u|+|∇u λ 0 +τ |) p-2 since p > 2. Then we set := |∇u| p-2 and we see that is bounded in Ω λ 0 +τ , hence ∈ L 1 (Ω λ 0 +τ ).

By applying the weighted Poincaré inequality to (5.2.21), see [37, Theorem 1.2], we deduce that

Ω λ 0 +τ \K |∇w + λ 0 +τ | 2 dx ≤ Ω λ 0 +τ \K (|∇u| + |∇u λ 0 +τ |) p-2 |∇w + λ 0 +τ | 2 dx ≤ CK f Ω λ 0 +τ \K (w + λ 0 +τ ) 2 dx ≤ CK f C p (|Ω λ 0 +τ \ K|) Ω λ 0 +τ \K |∇w + λ 0 +τ | 2 dx (5.2.22)
where C p (•) tends to zero if the measure of the domain tends to zero. For τ small and K large, we may assume that

CK f C p (|Ω λ 0 +τ \ K|) <
1 2 so that by (5.2.22), we deduce that

Ω λ 0 +τ |∇w + λ 0 +τ | 2 dx = Ω λ 0 +τ \K |∇w + λ 0 +τ | 2 dx ≤ 0,
proving that u ≤ u λ 0 +τ in Ω λ 0 +τ \ R λ 0 +τ (Γ) for any 0 < τ < τ for some small τ > 0. Such a contradiction shows that λ 0 = 0.

Since the moving planes procedure can be performed in the same way but in the opposite direction, then this proves the desired symmetry result. The fact that the solution is increasing in the x 1 -direction in {x 1 < 0} is implicit in the moving planes procedure.

Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities

The aim of this chapter is to investigate symmetry and monotonicity properties of singular solutions to some semilinear elliptic systems in such a way to find a generalization of the results presented in Chapter 4. In the first part we consider the following semilinear elliptic system (6.0.1)

     -∆u i = f i (u 1 , . . . , u m ) in Ω \ Γ u i > 0 in Ω \ Γ u i = 0 on ∂Ω
where Ω is a bounded smooth domain of R N with N ≥ 2 and i = 1, ..., m (m ≥ 2).

Motivated by [START_REF] Leoni | Explicit subsolutions and a Liouville theorem for fully nonlinear uniformly elliptic inequalities in halfspaces[END_REF], through all the chapter, we assume that the following hypotheses (denoted by (S f i ) in the sequel) hold:

(S f i ) (i) f i : R m + → R are assumed to be C 1 functions for every i = 1, ..., m. (ii) The functions f i (1 ≤ i ≤ m) are assumed to satisfy the monotonicity (also known as cooperative) conditions ∂f i ∂t j (t 1 , ..., t j , ..., t m ) ≥ 0 for i = j, 1 ≤ i, j ≤ m.

In this chapter the case of singular nonlinearities for systems is not included, while it was considered in the case of scalar equations, see [START_REF] Esposito | Qualitative properties of singular solutions to semilinear elliptic problems[END_REF] or chapter 4; about these problems we have also to mention the pioneering work of Crandall, Rabinowitz and Tartar [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF] and also [START_REF] Boccardo | Semilinear elliptic equations with singular nonlinearities[END_REF][START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF][START_REF] Esposito | On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications[END_REF][START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF][START_REF] Stuart | Existence and approximation of solutions of nonlinear elliptic equations[END_REF] for the scalar case. It would be interesting to consider in future projects a more general class of nonlinearities. Since we want to consider singular solutions, the natural assumption is

u i ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) ∀i = 1, .
.., m and thus the system is understood in the following sense: (6.0.2)

Ω (∇u i , ∇ϕ i ) dx = Ω f i (u 1 , u 2 , ..., u m )ϕ i dx ∀ϕ i ∈ C 1 c (Ω \ Γ)
for every i = 1, ..., m.

Remark 6.0.1. Note that, by the assumption (S f i ), the right hand side in the system (6.0.2) is locally bounded. Therefore, by standard elliptic regularity theory, it follows that

u i ∈ C 1,α loc (Ω \ Γ),
where 0 < α < 1. We just remark that, in 1968, E. De Giorgi provided a counterexample showing that the scalar case is special and the regularity theory does not work in general for elliptic systems, see [START_REF] Giorgi | Un esempio di estremali discontinue per un problema variazionale di tipo ellittico[END_REF], but in the case of equations involving Laplace operator, Schauder theory is still applicable.

Under the previous assumptions we can prove the following result: Theorem 6.0.2. Let Ω be a convex domain which is symmetric with respect to the hyperplane {x 1 = 0} and let (u 1 , ..., u m ) be a solution to (6.0.1), where

u i ∈ H 1 loc (Ω \ Γ) ∩ C(Ω \ Γ) for every i = 1, ..., m. Assume that each f i fulfills (S f i ). Assume also that Γ is a point if N = 2 while Γ is closed and such that Cap 2 R N (Γ) = 0, if N ≥ 3.
Then, if Γ ⊂ {x 1 = 0}, it follows that u i is symmetric with respect to the hyperplane {x 1 = 0} and increasing in the x 1 -direction in Ω ∩ {x 1 < 0}, for every i = 1, ..., m. Furthermore

∂ x 1 u i > 0 in Ω ∩ {x 1 < 0} ,
for every i = 1, ..., m.

The technique developed in the case of bounded domains, see [START_REF] Esposito | Qualitative properties of singular solutions to semilinear elliptic problems[END_REF][START_REF] Esposito | Monotonicity and symmetry of singular solutions to quasilinear problems[END_REF][START_REF] Sciunzi | On the moving Plane Method for singular solutions to semilinear elliptic equations[END_REF] (see also [START_REF] Montoro | Qualitative properties of singular solutions to nonlocal problems[END_REF] for the nonlocal setting) is very powerful and can be adapted to some cooperative systems in R N involving critical nonlinearity. Our aim is to study qualitative properties of singular solutions to the following m × m system of equations (6.0.3)

     -∆u i = m j=1 a ij u 2 * -1 j in R N \ Γ, u i > 0 in R N \ Γ,
where i = 1, ..., m, m ≥ 2, N ≥ 3 and the matrix A := (a ij ) i,j=1,...,m is symmetric and such that (6.0.4)

m j=1 a ij = 1 for every i = 1, ..., m.
This kind of system, with Γ = ∅, was studied by Mitidieri in [START_REF] Mitidieri | A Rellich type identity and applications[END_REF][START_REF] Mitidieri | Nonexistence of positive solutions of semilinear elliptic systems in R N[END_REF] considering the case m = 2, A = 0 1 1 0 and it is known in the literature as nonlinearity belonging to the critical hyperbola.

As remarked above the natural assumption is

u i ∈ H 1 loc (R N \ Γ) ∀i = 1, .
.., m and thus the system is understood in the following sense: (6.0.5)

R N (∇u i , ∇ϕ i ) dx = m j=1 a ij R N u 2 * -1 j ϕ i dx ∀ϕ i ∈ C 1 c (R N \ Γ)
for every i = 1, ..., m. What we are going to show is the following result: Theorem 6.0.3. Let N ≥ 3 and let (u 1 , ..., u m ) be a solution to (6.0.3), where u i ∈ H1 loc (R N \ Γ) for every i = 1, ..., m. Assume that the matrix A = (a ij ) i,j=1,...,m , defined above, is symmetric, a ij ≥ 0 for every i, j = 1, ..., m and it satisfies (6.0.4). Moreover at least one of u i has a non-removable 1 singularity in the singular set Γ, where Γ is a closed and proper subset of

{x 1 = 0} such that Cap 2 R N (Γ) = 0.
Then, all u i are symmetric with respect to the hyperplane {x 1 = 0}. The same conclusion is true if {x 1 = 0} is replaced by any affine hyperplane.

If at least one of u i has only a non-removable singularity at the origin for every i = 1, ..., m, then each u i is radially symmetric about the origin and radially decreasing.

Another interesting elliptic system involving Sobolev critical exponents is the following one: (6.0.6)

         -∆u = u 2 * -1 + α 2 * u α-1 v β in R N \ Γ -∆v = v 2 * -1 + β 2 * u α v β-1 in R N \ Γ u, v > 0 in R N \ Γ, where α, β > 1, α + β = 2 * := 2N N -2 (N ≥
3) The solutions to (6.0.6) are solitary waves for a system of coupled Gross-Pitaevskii equations.

We prove the following: Theorem 6.0.4. Let N = 3 or N = 4 and let (u, v) ∈ H 1 loc (R N \ Γ) × H 1 loc (R N \ Γ) be a solution to (6.0.6). Assume that the solution (u, v) has a non-removable2 singularity in the singular set Γ, where Γ is a closed and proper subset of {x 1 = 0} such that

Cap 2 R N (Γ) = 0.
Moreover let us assume that α, β ≥ 2 and that holds α + β = 2 * . Then, u and v are symmetric with respect to the hyperplane {x 1 = 0}. The same conclusion is true if {x 1 = 0} is replaced by any affine hyperplane. If at least one between u and v have only a non-removable singularity at the origin, then (u, v) is radially symmetric about the origin and radially decreasing.

Notations

We need to fix some notations and since they are similar to the ones introduced in the previous chapters, we just recall someone of them for the reader's convenience. For a real number λ we set (6.1.1) Ω λ = {x ∈ Ω : x 1 < λ} (6.1.2)

x λ = R λ (x) = (2λ -x 1 , x 2 , . . . , x N )
which is the reflection through the hyperplane T λ := {x 1 = λ}. Also let

(6.1.3) a = inf x∈Ω x 1 .
We define the functions (6.1.4)

u i,λ := u i • R λ
and we recall that they are Lebesgue measurable on R λ (Ω). Similarly, ∇u i and ∇u i,λ are Lebesgue measurable on Ω and R λ (Ω) respectively.

Recalling that Γ is a point if N = 2 while Γ is closed with Cap 2 R N (Γ) = 0 if N ≥ 3 by assumption, it follows that Cap 2 B λ (R λ (Γ)) := inf B λ |∇ϕ| 2 dx < +∞ : ϕ ≥ 1 in B λ δ , ϕ ∈ C ∞ c (B λ ) = 0, for some neighborhood B λ δ ⊂ B λ ε of R λ (Γ). From this, it follows that there exists ϕ ε ∈ C ∞ c (B λ ) such that ϕ ε ≥ 1 in B λ δ and B λ |∇ϕ ε | 2 dx < ε. Now we construct a function ψ ε ∈ C 0,1 (R N , [0, 1]) such that ψ ε = 1 outside B λ ε , ψ ε = 0 in B λ δ and R N |∇ψ ε | 2 dx = B λ |∇ψ ε | 2 dx < 4ε.
To this end we consider the following Lipschitz continuous function

T 1 (s) =      1 if s ≤ 0 -2s + 1 if 0 ≤ s ≤ 1 2 0 if s ≥ 1 2
and we set (6.1.5)

ψ ε := T 1 • ϕ ε
where we have extended ϕ ε by zero outside B λ ε (see Figure 1). Clearly 

ψ ε ∈ C 0,1 (R N ), 0 ≤ ψ ε ≤ 1 and B λ |∇ψ ε | 2 dx ≤ 4 B λ |∇ϕ ε | 2 dx < 4ε.

Symmetry and monotonicity results in bounded domains

Let us set w + i,λ = (u i -u i,λ ) + where i = 1, ..., m. We will prove the result by showing that, actually, it holds w + i,λ ≡ 0 for i = 1, ..., m. To prove this, we have to perform the moving planes method.

In the following we will exploit the fact that (u 1,λ , ..., u 1,λ ) is a solution to (6.2.1)

Ω λ (∇u i,λ , ∇ϕ i ) dx = Ω λ f i (u 1,λ , u 2,λ , ..., u m,λ )ϕ i dx ∀ϕ i ∈ C 1 c (Ω λ \R λ (Γ))
for every i = 1, ..., m, where Ω λ := R λ (Ω). Now we are ready to prove an essential tool that we will use to start the moving planes procedure. Lemma 6.2.1. Under the assumptions of Theorem 6.0.2, let a < λ < 0. Then w + i,λ ∈ H 1 0 (Ω λ ) for every i = 1, ..., m and (6.2.2)

m i=1 Ω λ |∇w + i,λ | 2 dx ≤ m 2 m i=1 (1 + C 2 i ) u i 2 L ∞ (Ω λ ) |Ω| .
where |Ω| denotes the N -dimensional Lebesgue measure of Ω and C i is a positive constant only depending on f i .

Proof. For ψ ε as in (6.1.5) and φ τ as in (6.1.6), we consider the functions

ϕ i := w + i,λ ψ 2 ε φ 2 τ in Ω λ , 0 in R N \ Ω λ ,
In view of the properties of ϕ i , stated in Lemma 4.2.1, and a standard density argument, we can use ϕ i as test function in (6.0.2) and (6.2.1) so that, subtracting, we get

Ω λ |∇w + i,λ | 2 ψ 2 ε φ 2 τ dx = -2 Ω λ (∇w + i,λ , ∇ψ ε )w + i,λ ψ ε φ 2 τ dx -2 Ω λ (∇w + i,λ , ∇φ τ w + i,λ )ψ 2 ε φ τ dx + Ω λ [f i (u 1 , u 2 , ..., u m ) -f i (u 1,λ , u 2,λ , ..., u m,λ )]w + i,λ ψ 2 ε φ 2 τ dx. (6.2.3) 
Exploiting Young's inequality in the right hand side of (6.2.3), we get that

Ω λ |∇w + i,λ | 2 ψ 2 ε φ 2 τ dx ≤ 1 4 Ω λ |∇w + i,λ | 2 ψ 2 ε φ 2 τ dx + 4 Ω λ |∇ψ ε | 2 (w + i,λ ) 2 φ 2 τ dx + 1 4 Ω λ |∇w + i,λ | 2 ψ 2 ε φ 2 τ dx + 4 Ω λ |∇φ τ | 2 (w + i,λ ) 2 ψ 2 ε dx + Ω λ [f i (u 1 , u 2 , ..., u m ) -f i (u 1,λ , u 2,λ , ..., u m,λ )]w + i,λ ψ 2 ε φ 2 τ dx.
(6.2.4)
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The last term of the right hand side of (6.2.4) can be rewritten as follows

Ω λ [f i (u 1 , u 2 , ..., u m ) -f i (u 1,λ , u 2,λ , ..., u m,λ )]w + i,λ ψ 2 ε φ 2 τ dx = Ω λ [f i (u 1 , u 2 , ..., u m ) -f i (u 1,λ , u 2 , ..., u m ) + f i (u 1,λ , u 2 , ..., u m ) -f i (u 1,λ , u 2,λ , ..., u m,λ )]w + i,λ ψ 2 ε φ 2 τ dx = Ω λ [f i (u 1 , u 2 , ..., u m ) -f i (u 1,λ , u 2 , ..., u m ) + f i (u 1,λ , u 2 , ..., u m ) -f i (u 1,λ , u 2,λ , u 3 , ..., u m ) + f i (u 1,λ , u 2,λ , u 3 , ..., u m ) -• • • -f i (u 1,λ , u 2,λ , ..., u m,λ )]w + i,λ ψ 2 ε φ 2 τ dx. (6.2.5)
Using the fact that f i are C 1 functions (S f i )-(i) and they satisfy (S f i )-(ii), by (6.2.5) we have

Ω λ [f i (u 1 , u 2 , ..., u m ) -f i (u 1,λ ,u 2,λ , ..., u m,λ )]w + i,λ ψ 2 ε φ 2 τ dx ≤ m j=1 C j (f j ) Ω λ w + j,λ w + i,λ ψ 2 ε φ 2 τ dx. (6.2.6) 
Now compiling all the previous estimates and exploiting Young's inequality in the right hand side of 6.2.6 we obtain

Ω λ |∇w + i,λ | 2 ψ 2 ε φ 2 τ dx ≤ 8 Ω λ |∇ψ ε | 2 (w + i,λ ) 2 φ 2 τ dx + 8 Ω λ |∇φ τ | 2 (w + i,λ ) 2 ψ 2 ε dx + m Ω λ (w + i,λ ) 2 ψ 2 ε φ 2 τ dx + m j=1 C 2 j Ω λ (w + j,λ ) 2 ψ 2 ε φ 2 τ dx. (6.2.7)
Adding all the equations of (6.0.3) we get

m i=1 Ω λ |∇w + i,λ | 2 ψ 2 ε φ 2 τ dx ≤ 8 m i=1 Ω λ |∇ψ ε | 2 (w + i,λ ) 2 φ 2 τ dx + Ω λ |∇φ τ | 2 (w + i,λ ) 2 ψ 2 ε dx + m 2 m i=1 (1 + C 2 i ) Ω λ (w + i,λ ) 2 ψ 2 ε φ 2 τ dx. (6.2.8)
Taking into account the properties of ψ ε and φ τ , we see that (6.2.9)

Ω λ |∇ψ ε | 2 dx = Ω λ ∩(B λ ε \B λ δ ) |∇ψ ε | 2 dx < 4ε, (6.2.10 
)

Ω λ |∇φ τ | 2 dx = Ω λ ∩(I λ τ \I λ σ ) |∇φ τ | 2 dx < 4τ,
which combined with 0 ≤ w + i,λ ≤ u i , for every i = 1, ..., m, immediately lead to

m i=1 Ω λ |∇w + i,λ | 2 ψ 2 ε φ 2 τ dx ≤32(ε + τ ) m i=1 u i 2 L ∞ (Ω λ ) + m 2 m i=1 (1 + C 2 i ) u i 2 L ∞ (Ω λ ) |Ω| .
By Fatou's Lemma, as ε and τ tend to zero, we have (6.2.2). To conclude we note that ϕ i → w + i,λ in L 2 (Ω), as ε and τ tend to zero, by definition of ϕ i for every i = 1, ..., m. Also, ∇ϕ → ∇w + i,λ in L 2 (Ω λ ), by (4.2.3). Therefore,

w + i,λ
in H 1 0 (Ω λ ), since ϕ i ∈ H 1 0 (Ω λ ) again by Lemma 4.2.1, for every i = 1, ..., m, which concludes the proof.

Proof of Theorem 6.0.2. We define Λ 0 = {a < λ < 0 : u i ≤ u i,t in Ω t \ R t (Γ) for all t ∈ (a, λ] and i=1,...,m} and to start with the moving planes procedure, we have to prove that

Step 1 : Λ 0 = ∅. Fix λ 0 ∈ (a, 0) such that R λ 0 (Γ) ⊂ Ω c , then for every a < λ < λ 0 , we also have that R λ (Γ) ⊂ Ω c . For any λ in this set we consider, on the domain Ω, the function ϕ i := w + i,λ φ 2 τ χ Ω λ , where φ τ is as in (6.1.6) and we proceed as in the proof of Lemma 6.2.1. That is, by Lemma 4.2.1 and a density argument, we can use ϕ i as test function in (6.0.2) and (6.2.1) so that, subtracting, we get

Ω λ |∇w + i,λ | 2 φ 2 τ dx = -2 Ω λ ∇w + i,λ ∇φ τ w + i,λ φ τ dx + Ω λ [f i (u 1 , u 2 , ..., u m ) -f i (u 1,λ , u 2,λ , ..., u m,λ )]w + i,λ φ 2 τ dx.
(6.2.11) Exploiting Young's inequality and the assumption (S f i ), then we get that

Ω λ |∇w + i,λ | 2 φ 2 τ dx ≤ 1 2 Ω λ |∇w + i,λ | 2 φ 2 τ dx + 2 Ω λ |∇φ τ | 2 (w + i,λ ) 2 dx + m i=1 C j Ω λ w + j,λ w + i,λ φ 2 τ dx.
Taking into account the properties of φ τ , we see that (6.2.12)

Ω λ |∇φ τ | 2 (w + i,λ ) 2 dx ≤ u 2 L ∞ (Ω λ ) Ω λ ∩(I λ τ \I λ σ ) |∇φ τ | 2 dx ≤ 4 u 2 L ∞ (Ω λ ) • τ.
We therefore deduce that

m i=1 Ω λ |∇w + i,λ | 2 φ 2 τ dx ≤16τ m i=1 u i L ∞ (Ω λ ) + m 2 m i=1 (1 + C 2 i ) Ω λ (w + i,λ ) 2 φ 2 τ dx.
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By Fatou's Lemma, as τ tends to zero, we have

m i=1 Ω λ |∇w + i,λ | 2 dx ≤ m 2 m i=1 (1 + C 2 i ) Ω λ (w + i,λ ) 2 dx ≤ m 2 m i=1 (1 + C 2 i )C 2 i,p (Ω λ ) Ω λ |∇w + i,λ | 2 dx, (6.2.13) 
where C i,p (•) is the Poincaré constant (in the Poincaré inequality in H 1 0 (Ω λ )). Since C i,p (Ω λ ) → 0 as λ → a, we can find λ 1 ∈ (a, λ 0 ), such that

C i,p (Ω λ ) < 1 m(1 + C 2 i )
∀λ ∈ (a, λ 1 ) and for every i = 1, ..., m, so that by (6.2.13), we deduce that

Ω λ |∇w + i,λ | 2 dx ≤ 0 ∀λ ∈ (a, λ 1
) and for every i = 1, ..., m, proving that u i ≤ u i,λ in Ω λ \ R λ (Γ) for λ close to a, which implies the desired conclusion Λ 0 = ∅. Now we can set λ 0 = sup Λ 0 .

Step 2: here we show that λ 0 = 0. To this end we assume that λ 0 < 0 and we reach a contradiction by proving that u i ≤ u i,λ 0 +ν in Ω λ 0 +ν \R λ 0 +ν (Γ) for any 0 < ν < ν for some small ν > 0 and for every i = 1, ..., m. By continuity we know that u i ≤ u i,λ 0 in Ω λ 0 \ R λ 0 (Γ) for every i = 1, ..., m. Since Ω is convex in the x 1 -direction and the set R λ 0 (Γ) lies in the hyperplane of equation { x 1 = -2λ 0 }, we see that Ω λ 0 \ R λ 0 (Γ) is open and connected. Moreover, using (S f i ) -(ii) we have that

-∆(u i -u i,λ 0 ) = f (u 1 , ..., u m ) -f (u 1,λ 0 , ..., u m,λ 0 ) = [f (u 1 , ..., u m ) -f (u 1,λ 0 , ..., u m )] + • • • • • • + [f (u 1,λ 0 , ..., u m ) -f (u 1,λ 0 , ..., u m,λ 0 )] ≤ 0.
Therefore, by the strong maximum principle we deduce that u i < u i,λ 0 in Ω λ 0 \ R λ 0 (Γ) and for every i = 1, ..., m. Now, note that for

K ⊂ Ω λ 0 \ R λ 0 (Γ), there is ν = ν(K, λ 0 ) > 0, sufficiently small, such that K ⊂ Ω λ \ R λ (Γ) for every λ ∈ [λ 0 , λ 0 + ν].
Consequently u i and u i,λ are well defined on K for every λ ∈ [λ 0 , λ 0 + ν] and for every i = 1, ..., m. Hence, by the uniform continuity of the functions g i (x, λ) := u i (x) -u i (2λ -x 1 , x ) on the compact set K × [λ 0 , λ 0 + ν] we can ensure that K ⊂ Ω λ 0 +ν \ R λ 0 +ν (Γ) and u i < u i,λ 0 +ν in K for any 0 ≤ ν < ν, for some ν = ν(K, λ 0 ) > 0 small. Clearly we can also assume that ν < |λ 0 | 4 . Let us consider ψ ε constructed in such a way that it vanishes in a neighborhood of R λ 0 +ν (Γ) and φ τ constructed in such a way it vanishes in a neighborhood of γ λ 0 +ν = ∂Ω ∩ T λ 0 +ν . As shown in the proof of Lemma 6.2.1, the functions

ϕ i := w + i,λ 0 +ν ψ 2 ε φ 2 τ in Ω λ 0 +ν 0 in R N \ Ω λ 0 +ν
are such that ϕ i → w + i,λ 0 +ν in H 1 0 (Ω λ 0 +ν ), as ε and τ tend to zero. Moreover, ϕ i ∈ C 0,1 (Ω λ 0 +ν ) and ϕ i| ∂Ω λ 0 +ν = 0, by Lemma 4.2.1, and ϕ i = 0 on an open neighborhood of K, by the above argument. Therefore, ϕ i ∈ H 1 0 (Ω λ 0 +ν \ K) and thus, also w + i,λ 0 +ν belongs to H 1 0 (Ω λ 0 +ν \ K). We also note that ∇w + i,λ 0 +ν = 0 on an open neighborhood of K. Now we argue as in Lemma 6.2.1 and we plug ϕ i as test function in (6.0.2) and (6.2.1) so that, by subtracting, we get

Ω λ 0 +ν |∇w + i,λ 0 +ν | 2 ψ 2 ε φ 2 τ dx = -2 Ω λ 0 +ν (∇w + i,λ 0 +ν , ∇ψ ε )w + i,λ 0 +ν ψ ε φ 2 τ dx -2 Ω λ 0 +ν (∇w + i,λ 0 +ν , ∇φ τ )w + i,λ 0 +ν ψ 2 ε φ τ dx + Ω λ 0 +ν [f i (u 1 , u 2 , ..., u m ) -f i (u 1,λ 0 +ν , u 2,λ 0 +ν , ..., u m,λ 0 +ν )] w + i,λ 0 +ν ψ 2 ε φ 2 τ dx. (6.2.14)
Therefore, taking into account the properties of w + λ 0 +ν and ∇w + λ 0 +ν we also have

Ω λ 0 +ν \K |∇w + i,λ 0 +ν | 2 ψ 2 ε φ 2 τ dx ≤ -2 Ω λ 0 +ν \K (∇w + i,λ 0 +ν , ∇ψ ε )w + i,λ 0 +ν ψ ε φ 2 τ dx -2 Ω λ 0 +ν \K (∇w + i,λ 0 +ν , ∇φ τ )w + i,λ 0 +ν ψ 2 ε φ τ dx + Ω λ 0 +ν \K [f i (u 1 , u 2 , ..., u m )- -f i (u 1,λ 0 +ν , u 2,λ 0 +ν , ..., u m,λ 0 +ν )]w + i,λ 0 +ν ψ 2 ε φ 2 τ dx.
Furthermore, since f i are C 1 functions, we deduce that

Ω λ 0 +ν \K |∇w + i,λ 0 +ν | 2 ψ 2 ε φ 2 τ dx ≤ 2 Ω λ 0 +ν \K |∇w + i,λ 0 +ν ||∇ψ ε |w + i,λ 0 +ν ψ ε φ 2 τ dx + 2 Ω λ 0 +ν \K |∇w + i,λ 0 +ν ||∇φ τ |w + i,λ 0 +ν ψ 2 ε φ τ dx + m j=1 C j (f i ) Ω λ 0 +ν \K w + j,λ 0 +ν w + i,λ 0 +ν ψ 2 ε φ 2 τ dx.
(6.2.15)
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Now, as in the proof of Lemma 6.2.1, we use Young's inequality to deduce that

Ω λ 0 +ν \K |∇w + i,λ 0 +ν | 2 ψ 2 ε φ 2 τ dx ≤ 8 Ω λ 0 +ν \K |∇ψ ε | 2 (w + i,λ 0 +ν ) 2 φ 2 τ dx + 8 Ω λ 0 +ν \K |∇φ τ | 2 (w + i,λ 0 +ν ) 2 ψ 2 ε dx + m j=1 C j Ω λ 0 +ν \K w + j,λ 0 +ν w + i,λ 0 +ν ψ 2 ε φ 2 τ dx, (6.2.16) 
which in turns yields

m i=1 Ω λ 0 +ν \K |∇w + i,λ 0 +ν | 2 ψ 2 ε φ 2 τ dx ≤ 32( + τ ) m i=1 u 2 L ∞ (Ω λ 0 +ν ) + m 2 m i=1 (1 + C 2 i ) Ω λ 0 +ν \K (w + i,λ 0 +ν ) 2 ψ 2 ε φ 2 τ dx.
(6.2.17)

Passing to the limit, as ( , τ ) → (0, 0), in the latter we get

m i=1 Ω λ 0 +ν \K |∇w + i,λ 0 +ν | 2 dx ≤ m 2 m i=1 (1 + C 2 i ) Ω λ 0 +ν \K (w + i,λ 0 +ν ) 2 dx. ≤ m 2 m i=1 (1 + C 2 i )C 2 i,p (Ω λ 0 +ν \ K) Ω λ 0 +ν \K |∇w + i,λ 0 +ν | 2 dx , (6.2.18) 
where C i,p (•) are the Poincaré constants (in the Poincaré inequalities in

H 1 0 (Ω λ 0 +ν \ K)). Now we recall that C 2 i,p (Ω λ 0 +ν \ K) ≤ Q(n)|Ω λ 0 +ν \ K| 2 N
for every i = 1, ..., m, where Q = Q(n) is a positive constant depending only on the dimension N , and therefore, by summarizing, we have proved that for every compact set

K ⊂ Ω λ 0 \ R λ 0 (Γ) there is a small ν = ν(K, λ 0 ) ∈ (0, |λ 0 | 4 ) such that for every 0 ≤ ν < ν we have m i=1 Ω λ 0 +ν \K |∇w + i,λ 0 +ν | 2 dx ≤ m 2 m i=1 (1 + C 2 i )Q(n)|Ω λ 0 +ν \ K| 2 N Ω λ 0 +ν \K |∇w + λ 0 +ν | 2 dx. (6.2.19) Now we first fix a compact K ⊂ Ω λ 0 \ R λ 0 (Γ) such that |Ω λ 0 \ K| 2 N < [m(1 + C 2 i )Q(n)] -1 for every i = 1, ..., m,
this is possible since |R λ 0 (Γ)| = 0 by the assumption on Γ, and then we take ν0 < ν such that for every 0 ≤ ν < ν0 we have

|Ω λ 0 +ν \ Ω λ 0 | 2 N < [4m(1 + C 2 i )Q(n)] -1 .
Inserting those informations into (6.2.19) we immediately get that

Ω λ 0 +ν \K |∇w + i,λ 0 +ν | 2 dx < 1 2 Ω λ 0 +ν \K |∇w + i,λ 0 +ν | 2 dx for every i = 1, ..., m (6.2.20) 
and so ∇w + i,λ 0 +ν = 0 on Ω λ 0 +ν \ K for every 0 ≤ ν < ν0 and i = 1, ..., m. On the other hand, we recall that ∇w + i,λ 0 +ν = 0 on an open neighborhood of K for every 0 ≤ ν < ν and i = 1, ..., m, thus ∇w + i,λ 0 +ν = 0 on Ω λ 0 +ν for every 0 ≤ ν < ν0 and i = 1, ..., m. The latter proves that u i ≤ u i,λ 0 +ν in Ω λ 0 +ν \R λ 0 +ν (Γ) for every 0 < ν < ν0 and i = 1, ..., m. Such a contradiction shows that λ 0 = 0 .

Step 3: conclusion. Since the moving planes procedure can be performed in the same way but in the opposite direction, then this proves the desired symmetry result. The fact that the solution is increasing in the x 1 -direction in {x 1 < 0} is implicit in the moving planes procedure. Since u has C 1 regularity, the fact that ∂ x 1 u i is positive for x 1 < 0 follows by the maximum principle, the Höpf lemma and the assumption (S f i ).

Moving plane method for systems involving the critical hyperbola in the whole space

Proof of Theorem 6.0.3. We first note that, thanks to a well-known result of Brezis and Kato [START_REF] Brezis | Remarks on the Schrodinger operator with singular complex potentials[END_REF] and standard elliptic estimates (see also [START_REF] Struwe | Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF]), the solution (u 1 , ..., u m ) to (6.0.3) is smooth in R N \ Γ. Furthermore we observe that it is enough to prove the theorem for the special case in which the origin does not belong to Γ. Indeed, if the result is true in this special case, then we can apply it to the functions u (i) z (x) := u i (x + z) for every i = 1, ..., m, where z ∈ {x 1 = 0} \ Γ = ∅, which satisfies the system (6.0.3) with Γ replaced by -z + Γ (note that -z + Γ is a closed and proper subset of {x 1 = 0} with Cap 2 R N (-z + Γ) = 0 and such that the origin does not belong to it). Under this assumption, we consider the map K : R N \ {0} -→ R N \ {0} defined by K(x) := x |x| 2 . Given (u 1 , ..., u m ) solution to (6.0.3), the Kelvin transform of u i is given by (

6.3.1) ûi (x) := 1 |x| N -2 u i x |x| 2 x ∈ R N \ {Γ * ∪ {0}},
where Γ * = K(Γ) and i = 1, ..., m. It follows that (û 1 , ..., ûm ) weakly satisfies (6.0.3) in R N \ {Γ * ∪ {0}} and that Γ * ⊂ {x 1 = 0} since, by assumption, Γ ⊂ {x 1 = 0}. Furthermore, we also have that Γ * is bounded (not necessarily closed) since we assumed that 0 / ∈ Γ. Let us now fix some notations. We set (6.3.2) Σ λ = {x ∈ R N : x 1 < λ} .

As above x λ = (2λ -x 1 , x 2 , . . . , x N ) is the reflection of x through the hyperplane T λ = {x = (x 1 , ..., x N ) ∈ R N | x 1 = λ}. Finally we consider the Kelvin transform (û 1 , ..., ûm ) of (u 1 , ..., u m ) defined in (6.3.1) and we set (6.3.3) w + i,λ = (û i -ûi,λ ) + where i = 1, ..., m. Note that (û 1 , ..., ûm ) weakly solves (6.3.4)

R N (∇û i , ∇ϕ i ) dx = m j=1 a ij R N û2 * -1 j ϕ i dx ∀ϕ i ∈ C 1 c (R N \ Γ * ∪ {0}) .
and (û 1,λ , ..., ûm,λ ) weakly solves (6.3.5)

R N (∇û i,λ , ∇ϕ i ) dx = m j=1 a ij R N û2 * -1 j,λ ϕ i dx ∀ϕ i ∈ C 1 c (R N \R λ (Γ * ∪{0})) .
where i = 1, ..., m. The properties of the Kelvin transform, the fact that 0 / ∈ Γ and the regularity of u i imply that |û i (x)| ≤ C|x| 2-N for every x ∈ R N and i = 1, ..., m such that |x| ≥ R, where C and R are positive constants (depending on u i ). In particular, for every λ < 0, we have

(6.3.6) ûi ∈ L 2 * (Σ λ ) ∩ L ∞ (Σ λ ) ∩ C 0 (Σ λ )
for every i = 1, ..., m. We will prove the result by showing that, actually, it holds ŵ+ i,λ ≡ 0 for every i = 1, ..., m. To prove this, we have to perform the moving planes method. Lemma 6.3.1. Under the assumption of Theorem 6.0.3, for every λ < 0, we have that ŵ+

i,λ ∈ L 2 * (Σ λ ), ∇ ŵ+ i,λ ∈ L 2 (Σ λ ) and m i=1 w + i,λ 2 
L 2 * (Σ λ ) ≤ m i=1 C 2 i,S Σ λ |∇ ŵ+ i,λ | 2 dx ≤ 2 N + 2 N -2 m i,j=1 a ij C 2 i,S ûj 2 * -1 L 2 * (Σ λ ) ûi L 2 * (Σ λ ) . (6.3.7) 
where C i,S are the best constants in Sobolev embeddings.

Proof. We immediately see that

w + i,λ ∈ L 2 * (Σ λ ), since 0 ≤ w + i,λ ≤ ûi ∈ L 2 * (Σ λ ) for every i = 1, ..., m.
The rest of the proof follows the lines of the one of Lemma 6.2.1. Arguing as in section 2, for every ε > 0, we can find a function for every i = 1, ..., m. Now, as in Lemma 4.2.1 we see that

ψ ε ∈ C 0,1 (R N , [0, 1]) such that Σ λ |∇ψ ε | 2 < 4ε and ψ ε = 0 in an open neighborhood B ε of R λ ({Γ * ∪ {0}}), with B ε ⊂ Σ λ . Fix R 0 > 0 such that R λ ({Γ * ∪ {0}) ⊂ B R 0 and, for every R > R 0 , let ϕ R be a standard cut off function such that 0 ≤ ϕ R ≤ 1 on R N , ϕ R = 1 in B R , ϕ R = 0 outside B 2R with |∇ϕ R | ≤ 2/R,

and consider

ϕ i := w + i,λ ψ 2 ε ϕ 2 R in Σ λ , 0 in R N \ Σ λ
ϕ i ∈ C 0,1 c (R N ) with supp(ϕ i ) con- tained in Σ λ ∩ B 2R \ R λ ({Γ * ∪ {0}}) and (6.3.8) ∇ϕ i = ψ 2 ε ϕ 2 R ∇w + i,λ + 2w + i,λ (ψ 2 ε ϕ R ∇ϕ R + ψ ε ϕ 2 R ∇ψ ε ).
Therefore, by a standard density argument, we can use ϕ i as test functions respectively in (6.3.4) and in (6.3.5) so that, subtracting we get

Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx = -2 Σ λ (∇w + i,λ , ∇ψ ε )w + i,λ ψ ε ϕ 2 R dx -2 Σ λ (∇w + i,λ , ∇ϕ R )w + i,λ ϕ R ψ 2 ε dx + m i=1 a ij Σ λ (û 2 * -1 j -û2 * -1 j,λ )w + i,λ ψ 2 ε ϕ 2 R dx =: I 1 + I 2 + I 3 . (6.3.9)
Exploiting also Young's inequality and recalling that 0 ≤ w + i,λ ≤ ûi , we get that

|I 1 | ≤ 1 4 Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ |∇ψ ε | 2 (w + i,λ ) 2 ϕ 2 R dx ≤ 1 4 Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx + 16ε ûi 2 L ∞ (Σ λ ) .
(6.3.10) Furthermore we have that

|I 2 | ≤ 1 4 Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ ∩(B 2R \B R ) |∇ϕ R | 2 (w + i,λ ) 2 ψ 2 ε dx ≤ 1 4 Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ ∩(B 2R \B R ) |∇ϕ R | n dx 2 N Σ λ ∩(B 2R \B R ) û2 * i dx N -2 N ≤ 1 4 Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx + C(N ) Σ λ ∩(B 2R \B R ) û2 * i dx N -2 N (6.3.11)
where C(N ) is a positive constant depending only on the dimension N . Let us now estimate I 3 . Since ûi (x), ûi,λ (x) > 0, by the convexity of t → t 2 * -1 , for t > 0, we obtain

û2 * -1 i (x) -û2 * -1 i,λ (x) ≤ N + 2 N -2 û2 * -2 i,λ (x)(û i (x) -ûi,λ (x)),
for every x ∈ Σ λ and i = 1, ..., m. Thus, by making use of the monotonicity of t → t 2 * -2 , for t > 0 and the definition of w + i,λ we get

(û 2 * -1 i -û2 * -1 i,λ )w + i,λ ≤ N + 2 N -2 û2 * -2 i,λ (û i -ûi,λ )w + i,λ ≤ N + 2 N -2 û2 * -2 i (w + i,λ ) 2
for every i = 1, ..., m. Therefore

|I 3 | ≤ N + 2 N -2 m j=1 a ij Σ λ û2 * -2 j w + j,λ w + i,λ ψ 2 ε ϕ 2 R dx ≤ N + 2 N -2 m j=1 a ij Σ λ û2 * -2 j ûj ûi dx = N + 2 N -2 m j=1 a ij Σ λ û2 * -1 j u i dx = N + 2 N -2     a ii ûi 2 * L 2 * (Σ λ ) + m j=1 j =i a ij Σ λ û2 * -1 j u i dx     ≤ N + 2 N -2     a ii ûi 2 * L 2 * (Σ λ ) + m j=1 j =i a ij Σ λ û2 * j N +2 2N Σ λ u 2 * i 1 2 * dx     = N + 2 N -2 m j=1 a ij ûj 2 * -1 L 2 * (Σ λ ) ûi L 2 * (Σ λ ) (6.3.12)
where we also used that 0 ≤ w + i,λ ≤ ûi for every i = 1, ..., m and Hölder inequality.

Taking into account the estimates on I 1 , I 2 and I 3 , by (6.3.9) we deduce that

Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx ≤ 32ε ûi 2 L ∞ (Σ λ ) + 2C(N ) Σ λ ∩(B 2R \B R ) û2 * i dx N -2 N + 2 N + 2 N -2 m j=1 a ij ûj 2 * -1 L 2 * (Σ λ ) ûi L 2 * (Σ λ ) (6.3.13)
which in turns yields

m i=1 Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx ≤ 32ε m i=1 ûi 2 L ∞ (Σ λ ) + 2C(N ) m i=1 ûi 2 Σ λ ∩(B 2R \B R ) + 2 N + 2 N -2 m i=1 m j=1 a ij ûj 2 * -1 L 2 * (Σ λ ) ûi L 2 * (Σ λ ) . (6.3.14)
By Fatou's Lemma, as ε tends to zero and R tends to infinity, we deduce that ∇w + i,λ ∈ L 2 (Σ λ ) for every i = 1, ..., m. We also note that ϕ i → w + i,λ in L 2 * (Σ λ ), by definition of ϕ i , and that ∇ϕ i → ∇w i,λ in L 2 (Σ λ ), by (6.3.8) and the fact that w + i,λ ∈ L 2 * (Σ λ ) for every i = 1, ..., m. Therefore by (6.3.14) we have (6.3.15) 

m i=1 Σ λ |∇w + i,λ | 2 dx ≤ 2 N + 2 N -2 m i,j=1 a ij ûj 2 * -1 L 2 * (Σ λ ) ûi L 2 * (Σ λ ) . Since ϕ i ∈ C 0,1 c (R N ) we also have Σ λ ϕ 2 * i dx 2 2 * ≤ C 2 i,S Σ λ |∇ϕ i | 2 dx (6.3.16)
where C i,S are the best constants in Sobolev embeddings. Thus, passing to the limit in (6.3.16) and using the above convergence results, we get the desired conclusion (6.3.7).

We can now complete the proof of Theorem 6.0.3. As for the proof of Theorem 6.0.2, we split the proof into three steps and we start with

Step 1: there exists M > 1 such that ûi ≤ ûi,λ in Σ λ \ R λ (Γ * ∪ {0}), for all λ < -M and i = 1, ..., m.

Arguing as in the proof of Lemma 6.3.1 and using the same notations and the same construction for ψ ε , ϕ R and ϕ i , we get

Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx = -2 Σ λ ∇w + i,λ ∇ψ ε w + i,λ ψ ε ϕ 2 R dx -2 Σ λ ∇w + i,λ ∇ϕ R w + i,λ ϕ R ψ 2 ε dx + m i=1 a ij Σ λ (û 2 * -1 j -û2 * -1 j,λ )w + i,λ ψ 2 ε ϕ 2 R dx =: I 1 + I 2 + I 3 .
(6.3.17)

where I 1 , I 2 and I 3 can be estimated exactly as in (6.3.10), (6.3.11) and (6.3.12). The latter yield

m i=1 Σ λ |∇w + i,λ | 2 ψ 2 ε ϕ 2 R dx ≤ 32ε m i=1 ûi 2 L ∞ (Σ λ ) + 2C(N ) m i=1 ûi 2 Σ λ ∩(B 2R \B R ) + 2 N + 2 N -2 m i,j=1 a ij Σ λ û2 * -2 j w + j,λ w + i,λ ψ 2 ε ϕ 2 R dx.
(6.3.18)

Taking the limit in the latter, as ε tends to zero and R tends to infinity, leads to

m i=1 Σ λ |∇w + i,λ | 2 dx ≤ 2 N + 2 N -2 m i,j=1 a ij Σ λ û2 * -2 j w + j,λ w + i,λ dx < +∞ (6.3.19)
which combined with Lemma 6.3.1 gives

m i=1 Σ λ |∇w + i,λ | 2 ≤ 2 N + 2 N -2 m i,j=1 a ij Σ λ û2 * -2 j w + j,λ w + i,λ dx ≤ N + 2 N -2 m i,j=1 a ij Σ λ û2 * -2 j (w + j,λ ) 2 dx + Σ λ û2 * -2 j (w + i,λ ) 2 dx ≤ N + 2 N -2 m i,j=1 a ij Σ λ û2 * j dx 2 N Σ λ (w + j,λ ) 2 * dx 2 2 * + Σ λ û2 * j dx 2 N Σ λ (w + i,λ ) 2 * dx 2 2 * ≤ N + 2 N -2 m i=1 m j=1 a ij ûj 2 * -2 L 2 * (Σ λ ) C 2 j,S Σ λ |∇w + j,λ | 2 dx + C 2 i,S Σ λ |∇w + i,λ | 2 dx = N + 2 N -2 m i,j=1 a ij 2δ ij C 2 i,S ûi
Recalling that ûi , ûj ∈ L 2 * (Σ λ ) for every i, j = 1, ..., m, we deduce the existence of M > 1 such that

N + 2 N -2 m j=1 a ij 2δ ij C 2 i,S ûi 2 * -2 L 2 * (Σ λ ) + (1 -δ ij )C 2 j,S ûj 2 * -2 L 2 * (Σ λ ) < 1
for every λ < -M and i = 1, ...., m. The latter and (6.4.27) lead to

Σ λ |∇w + i,λ | 2 dx = 0 .
This implies that for every i = 1, ..., m we have w + i,λ = 0 by Lemma 6.3.1 and the claim is proved.

To proceed further we define Λ 0 := {λ < 0 : ûi ≤ ûi,t in Σ t \ R t (Γ * ∪ {0}) for all t ∈ (a, λ] and i=1,...,m} and λ 0 := sup Λ 0 .

Step 2: we have that λ 0 = 0. We argue by contradiction and suppose that λ 0 < 0. By continuity we know that ûi ≤ ûi,λ 0 in Σ λ 0 \ R λ 0 (Γ * ∪ {0}) for every i = 1, ..., m. By the strong maximum principle we deduce that ûi < ûi,λ 0 in Σ λ 0 \ R λ 0 (Γ * ∪ {0}) for every i = 1, ..., m. Indeed, ûi = ûi,λ 0 in Σ λ 0 \ R λ 0 (Γ * ∪ {0})) is not possible if λ 0 < 0, since in this case each ûi would be singular somewhere on R λ 0 (Γ * ∪ {0}). Now, for some τ > 0, that will be fixed later on, and for any 0 < τ < τ we show that ûi ≤ ûi,λ 0 +τ in Σ λ 0 +τ \ R λ 0 +τ (Γ * ∪ {0}) obtaining a contradiction with the definition of λ 0 and proving thus the claim. To this end we are going to show that, for every δ > 0 there are τ (δ, λ 0 ) > 0 and a compact set K (depending on δ and λ 0 ) such that

K ⊂ Σ λ \R λ (Γ * ∪{0}), Σ λ \K û2 * i dx < δ, ∀ λ ∈ [λ 0 , λ 0 
+τ ] and i = 1, ..., m.

To see this, we note that for every every δ > 0 there are τ 1 (δ, λ 0 ) > 0 and a compact set K (depending on δ and λ 0 ) such that

Σ λ 0 \K û2 * i dx < δ 2 for every i = 1, ..., m and K ⊂ Σ λ \ R λ (Γ * ∪ {0}) for every λ ∈ [λ 0 , λ 0 + τ 1 ].
Consequently ûi and ûi,λ are well defined on K for every λ ∈ [λ 0 , λ 0 + τ 1 ]. Hence, by the uniform continuity of the functions g i (x, λ) := ûi (x) -ûi (2λx 1 , x ) on the compact set K × [λ 0 , λ 0 + τ 1 ] we can ensure that K ⊂ Σ λ 0 +τ \ R λ 0 +τ (Γ * ∪ {0}) and ûi < ûi,λ 0 +τ in K for any 0 ≤ τ < τ 2 , for some τ 2 = τ (δ, λ 0 ) ∈ (0, τ 1 ). Clearly we can also assume that τ

2 < |λ 0 | 4 . Finally, since û2 * i ∈ L 1 (Σ λ 0 + |λ 0 | 4 
) and

Σ λ 0 \K û2 * i dx < δ 2 
for each i = 1, ..., m, we obtain the existence of τ ∈ (0, τ 2 ) such that Σ λ \K û2 * i dx < δ for all λ ∈ [λ 0 , λ 0 + τ ] and i = 1, ..., m. Now we repeat verbatim the arguments used in the proof of Lemma 6.3.1 but using the test functions

ϕ i := w + i,λ 0 +τ ψ 2 ε ϕ 2 R in Σ λ 0 +τ 0 in R N \ Σ λ 0 +τ .
Thus we recover the last inequality in (6.3.20), which immediately gives, for any 0

≤ τ < τ m i=1 Σ λ 0 +τ \K |∇w + i,λ 0 +ν | 2 ≤ N + 2 N -2 m i,j=1 a ij 2δ ij C 2 i,S ûi 2 * -2 L 2 * (Σ λ 0 +τ \K) +(1 -δ ij )C 2 j,S ûj 2 * -2 L 2 * (Σ λ 0 +τ \K) Σ λ 0 +τ \K |∇w + i,λ | 2 dx (6.3.21)
since w + i,λ 0 +τ and ∇w + i,λ 0 +τ are zero in a neighborhood of K, by the above construction for every i = 1, ..., m. Now we fix δ > 0 such that for every i = 1, ..., m we have

N + 2 N -2 m j=1 a ij 2δ ij C 2 i,S ûi 2 * -2 L 2 * (Σ λ 0 +τ \K) + (1 -δ ij )C 2 j,S ûj 2 * -2 L 2 * (Σ λ 0 +τ \K) < 1 2 ,
for all 0 ≤ τ < τ , which plugged into (6.3.21) implies that

Σ λ 0 +τ \K |∇w + i,λ 0 +τ | 2 dx = 0
for every 0 ≤ τ < τ and i = 1, ..., m. Hence Σ λ 0 +τ |∇w + i,λ 0 +τ | 2 dx = 0 for every 0 ≤ τ < τ , since ∇w + i,λ 0 +τ are zero in a neighborhood of K. The latter and Lemma 6.3.1 imply that w + i,λ 0 +τ = 0 on Σ λ 0 +τ for every 0 ≤ τ < τ and i = 1, ..., m, thus ûi ≤ ûi,λ 0 +τ in Σ λ 0 +τ \ R λ 0 +τ (Γ * ∪ {0}) for every 0 ≤ τ < τ and i = 1, ..., m. Which proves the claim of Step 2.

Step 3: conclusion. The symmetry of the Kelvin transform (û 1 , ..., ûm ) follows now performing the moving planes method in the opposite direction. The fact that every ûi is symmetric w.r.t. the hyperplane {x 1 = 0} implies the symmetry of the solution (u 1 , ..., u m ) w.r.t. the hyperplane {x 1 = 0}. The last claim then follows by the invariance of the considered problem with respect to isometries (translations and rotations).

Moving plane method for a cooperative Gross-Pitaevskii type system in low dimension

Proof of Theorem 6.0.4. As we observed in the proof of Theorem 6.0.3, thanks to a well-known result of Brezis and Kato [START_REF] Brezis | Remarks on the Schrodinger operator with singular complex potentials[END_REF] and standard elliptic estimates (see also [START_REF] Struwe | Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems[END_REF]), the solution (u, v) is smooth in R N \ Γ.

Furthermore we recall that it is enough to prove the theorem for the special case in which the origin does not belong to Γ. Under this assumption, we consider the map K : R N \ {0} -→ R N \ {0} defined by K = K(x) := x |x| 2 . Given (u, v) solution to (6.0.6), its Kelvin transform is given by (6.4.1)

(û(x), v(x)) := 1 |x| N -2 u x |x| 2 , 1 |x| N -2 v x |x| 2 x ∈ R N \ {Γ * ∪ {0}},
where Γ * = K(Γ). It follows that (û, v) weakly satisfies (6.0.6) in R N \ {Γ * ∪ {0}} and that Γ * ⊂ {x 1 = 0} since, by assumption, Γ ⊂ {x 1 = 0}. Furthermore, we also have that Γ * is bounded (not necessarily closed) since we assumed that 0 / ∈ Γ. Let us now fix some notations. We set (6.4.2) Σ λ = {x ∈ R N : x 1 < λ} .

As above x λ = (2λ -x 1 , x 2 , . . . , x N ) is the reflection of x through the hyperplane

T λ = {x = (x 1 , ..., x N ) ∈ R N | x 1 = λ}.
Finally we consider the Kelvin transform (û, v) of (u, v) defined in (6.4.1) and we set

ξ λ (x) = û(x) -ûλ (x) = û(x) -û(x λ ), ζ λ (x) = v(x) -vλ (x) = v(x) -v(x λ ). (6.4.3) Note that (û, v) weakly solves R N (∇û, ∇ϕ) dx = R N û2 * -1 ϕ dx + α 2 * R N ûα-1 vβ ϕ dx , R N (∇v, ∇ψ) dx = R N v2 * -1 ψ dx + β 2 * R N ûα vβ-1 ψ dx , (6.4.4) for all ϕ ∈ C 1 c (R N \ Γ * ∪ {0}) and (û λ , vλ ) weakly solves R N (∇û λ , ∇ϕ) dx = R N û2 * -1 λ ϕ dx + α 2 * R N ûα-1 λ vβ λ ϕ dx , R N (∇v λ , ∇ψ) dx = R N v2 * -1 λ ψ dx + β 2 * R N ûα λ vβ-1 λ ψ dx , (6.4.5) 
for all ϕ ∈ C 1 c (R N \ Γ * ∪ {0}). The properties of the Kelvin transform, the fact that 0 / ∈ Γ and the regularity of u, v imply that |û(x)| ≤ C u |x| 2-N and |v(x)| ≤ C v |x| 2-N and for every x ∈ R N such that |x| ≥ R, where C u , C v and R are positive constants (depending on u and v). In particular, for every λ < 0, we have (

6.4.6) û, v ∈ L 2 * (Σ λ ) ∩ L ∞ (Σ λ ) ∩ C 0 (Σ λ ) .
Lemma 6.4.1. Under the assumption of Theorem 6.0.3, for every λ < 0, we have that ξ

+ λ , ζ + λ ∈ L 2 * (Σ λ ), ∇ξ + λ , ∇ζ + λ ∈ L 2 (Σ λ ) and Σ λ |∇ξ + λ | 2 dx + Σ λ |∇ζ + λ | 2 dx ≤ 2 N + 2 N -2 (1 + α) û 2 * L 2 * (Σ λ ) + (1 + β) v 2 * L 2 * (Σ λ ) .
(6.4.7)

Proof. We immediately see that ξ

+ λ , ζ + λ ∈ L 2 * (Σ λ ), since 0 ≤ ξ + λ ≤ û ∈ L 2 * (Σ λ ) and 0 ≤ ζ + λ ≤ v ∈ L 2 * (Σ λ ).
The rest of the proof follows the lines of the one of Lemma 6.2.1. Arguing as in section 2, for every ε > 0, we can find a function 

ψ ε ∈ C 0,1 (R N , [0, 1]) such that Σ λ |∇ψ ε | 2 < 4ε and ψ ε = 0 in an open neighborhood B ε of R λ ({Γ * ∪ {0}}), with B ε ⊂ Σ λ . Fix R 0 > 0 such that R λ ({Γ * ∪ {0}) ⊂ B R 0 and, for every R > R 0 , let ϕ R (see Figure 4) be a standard cut off function such that 0 ≤ ϕ R ≤ 1 on R N , ϕ R = 1 in B R , ϕ R = 0 outside B 2R with |∇ϕ R | ≤ 2/R, and consider ϕ := ξ + λ ψ 2 ε ϕ 2 R in Σ λ , 0 in R N \ Σ λ and ψ := ζ + λ ψ 2 ε ϕ 2 R in Σ λ , 0 in R N \ Σ λ .
= ψ 2 ε ϕ 2 R ∇ξ + λ + 2ξ + λ (ψ 2 ε ϕ R ∇ϕ R + ψ ε ϕ 2 R ∇ψ ε ). (6.4.9) ∇ψ = ψ 2 ε ϕ 2 R ∇ζ + λ + 2ζ + λ (ψ 2 ε ϕ R ∇ϕ R + ψ ε ϕ 2 R ∇ψ ε ).
Therefore, by a standard density argument, we can use ϕ and ψ as test functions respectively in (6.4.4) and in (6.4.5) so that, subtracting we get

Σ λ |∇ξ + λ | 2 ψ 2 ε ϕ 2 R dx = -2 Σ λ (∇ξ + λ , ∇ψ ε )ξ + λ ψ ε ϕ 2 R dx -2 Σ λ (∇ξ + λ , ∇ϕ R )ξ + λ ϕ R ψ 2 ε dx + Σ λ (û 2 * -1 -û2 * -1 λ )ξ + λ ψ 2 ε ϕ 2 R dx + α 2 * Σ λ (û α-1 vβ -ûα-1 λ vβ λ )ξ + λ ψ 2 ε ϕ 2 R dx =: I 1 + I 2 + I 3 + I 4 .
(6.4.10)

Σ λ |∇ζ + λ | 2 ψ 2 ε ϕ 2 R dx = -2 Σ λ (∇ζ + λ , ∇ψ ε )ζ + λ ψ ε ϕ 2 R dx -2 Σ λ (∇ζ + λ , ∇ϕ R )ζ + λ ϕ R ψ 2 ε dx + Σ λ (v 2 * -1 -v2 * -1 λ )ζ + λ ψ 2 ε ϕ 2 R dx + β 2 * Σ λ (û α vβ-1 -ûα λ vβ-1 λ )ζ + λ ψ 2 ε ϕ 2 R dx =: E 1 + E 2 + E 3 + E 4 . (6.4.11) 
Exploiting also Young's inequality and recalling that 0 ≤ ξ + λ ≤ û and 0 ≤ ζ + λ ≤ v, we get that

|I 1 | ≤ 1 4 Σ λ |∇ξ + λ | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ |∇ψ ε | 2 (ξ + λ ) 2 ϕ 2 R dx ≤ 1 4 Σ λ |∇ξ + λ | 2 ψ 2 ε ϕ 2 R dx + 16ε û 2 L ∞ (Σ λ ) .
(6.4.12)

|E 1 | ≤ 1 4 Σ λ |∇ζ + λ | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ |∇ψ ε | 2 (ζ + λ ) 2 ϕ 2 R dx ≤ 1 4 Σ λ |∇ζ + λ | 2 ψ 2 ε ϕ 2 R dx + 16ε v 2 L ∞ (Σ λ ) .
(6.4.13)

Furthermore we have that

|I 2 | ≤ 1 4 Σ λ |∇ξ + λ | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ ∩(B 2R \B R ) |∇ϕ R | 2 (ξ + λ ) 2 ψ 2 ε dx ≤ 1 4 Σ λ |∇ξ + λ | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ ∩(B 2R \B R ) |∇ϕ R | n dx 2 N Σ λ ∩(B 2R \B R ) û2 * dx N -2 N ≤ 1 4 Σ λ |∇ξ + λ | 2 ψ 2 ε ϕ 2 R dx + c(N ) Σ λ ∩(B 2R \B R ) û2 * dx N -2 N . (6.4.14) |E 2 | ≤ 1 4 Σ λ |∇ζ + λ | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ ∩(B 2R \B R ) |∇ϕ R | 2 (ζ + λ ) 2 ψ 2 ε dx ≤ 1 4 Σ λ |∇ζ + λ | 2 ψ 2 ε ϕ 2 R dx + 4 Σ λ ∩(B 2R \B R ) |∇ϕ R | N dx 2 N Σ λ ∩(B 2R \B R ) v2 * dx N -2 N ≤ 1 4 Σ λ |∇ζ + λ | 2 ψ 2 ε ϕ 2 R dx + c(N ) Σ λ ∩(B 2R \B R ) v2 * dx N -2 N (6.4.15)
where c(N ) is a positive constant depending only on the dimension N .

Let us now estimate I 3 and E 3 . Since û(x), ûλ (x), v(x), vλ (x) > 0, by the convexity of t → t 2 * -1 , for t > 0, we obtain

û2 * -1 (x) -û2 * -1 λ (x) ≤ N + 2 N -2 û2 * -2 λ (x)(û(x) -ûλ (x)) and v2 * -1 (x) -v2 * -1 λ (x) ≤ N + 2 N -2 v2 * -2 λ (x)(v(x) -vλ (x)),
for every x ∈ Σ λ . Thus, by making use of the monotonicity of t → t 2 * -2 , for t > 0 and the definition of ξ + λ and ζ + λ we get

(û 2 * -1 -û2 * -1 λ )ξ + λ ≤ N + 2 N -2 û2 * -2 λ (û -ûλ )ξ + λ ≤ N + 2 N -2 û2 * -2 (ξ + λ ) 2 and (v 2 * -1 -v2 * -1 λ )ζ + λ ≤ N + 2 N -2 v2 * -2 λ (v -vλ )ζ + λ ≤ N + 2 N -2 v2 * -2 (ζ + λ ) 2 .
Therefore

|I 3 | ≤ N + 2 N -2 Σ λ û2 * -2 (ξ + λ ) 2 ψ 2 ε ϕ 2 R dx ≤ N + 2 N -2 Σ λ û2 * -2 û2 dx = N + 2 N -2 Σ λ û2 * dx = N + 2 N -2 û 2 * L 2 * (Σ λ ) (6.4.16) |E 3 | ≤ N + 2 N -2 Σ λ v2 * -2 (ζ + λ ) 2 ψ 2 ε ϕ 2 R dx ≤ N + 2 N -2 Σ λ v2 * -2 v2 dx = N + 2 N -2 Σ λ v2 * dx = N + 2 N -2 v 2 * L 2 * (Σ λ ) (6.4.17)
where we also used that 0 ≤ ξ + λ ≤ û and 0 ≤ ζ + λ ≤ v. Finally we have to estimate I 4 and E 4 . Since û(x), ûλ (x), v(x), vλ (x) > 0, by the convexity of the functions t → t α , t → t α-1 , t → t β , t → t β-1 for t > 0, we obtain ûα

(x) -ûα λ (x) ≤ αû α-1 λ (x)(û(x) -ûλ (x)), ûα-1 (x) -ûα-1 λ (x) ≤ (α -1)û α-2 λ (x)(û(x) -ûλ (x)), vβ (x) -vβ λ (x) ≤ βv β-1 λ (x)(v(x) -vλ (x)), vβ-1 (x) -vβ-1 λ (x) ≤ (β -1)v β-2 λ (x)(v(x) -vλ (x)),
for every x ∈ Σ λ . By the monotonicity of t → t α , t → t α-1 , t → t β , t → t β-1 for t > 0 and the definition of ξ + λ and ζ + λ we get

(û α (x) -ûα λ (x))ξ + λ ≤ αû α-2 λ (û -ûλ )ξ + λ ≤ αû α-2 (ξ + λ ) 2 , (û α-1 (x) -ûα-1 λ (x))ξ + λ ≤ (α -1)û α-2 λ (û -ûλ )ξ + λ ≤ (α -1)û α-2 (ξ + λ ) 2 , (v β -vβ λ )ζ + λ ≤ βv β-2 λ (v -vλ )ζ + λ ≤ βv β-2 (ζ + λ ) 2 , (v β-1 -vβ-1 λ )ζ + λ ≤ (β -1)v β-2 λ (v -vλ )ζ + λ ≤ (β -1)v β-2 (ζ + λ ) 2 .
Now, having in mind all these estimates, we need a fine analysis in view of the cooperativity of the system. Since α + β = 2 * = 2N N -2 and α, β ≥ 2 we have to split

|I 4 | ≤ α 2 * Σ λ |û α-1 vβ -ûα-1 vβ λ |ξ + λ ψ 2 ε ϕ 2 R dx + α 2 * Σ λ |û α-1 vβ λ -ûα-1 λ vβ λ |ξ + λ ψ 2 ε ϕ 2 R dx ≤ αβ 2 * Σ λ ûα-1 vβ-1 λ ξ + λ ζ + λ ψ 2 ε ϕ 2 R dx + α(α -1) 2 * Σ λ ûα-2 λ vβ λ (ξ + λ ) 2 ψ 2 ε ϕ 2 R dx ≤ αβ 2 * Σ λ ûα-1 vβ-1 ûvψ 2 ε ϕ 2 R dx + α(α -1) 2 * Σ λ ûα-2 vβ û2 ψ 2 ε ϕ 2 R dx ≤ αβ 2 * Σ λ ûα vβ dx + α(α -1) 2 * Σ λ ûα vβ dx = α(2 * -1) 2 * Σ λ ûα vβ dx (6.4.18)
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|E 4 | ≤ β 2 * Σ λ |û α vβ-1 -ûα vβ-1 λ |ζ + λ ψ 2 ε ϕ 2 R dx + β 2 * Σ λ |û α vβ-1 λ -ûα λ vβ-1 λ |ζ + λ ψ 2 ε ϕ 2 R dx ≤ αβ 2 * Σ λ ûα-1 λ vβ-1 ξ + λ ζ + λ ψ 2 ε ϕ 2 R dx + β(β -1) 2 * Σ λ ûα λ vβ-2 λ (ζ + λ ) 2 ψ 2 ε ϕ 2 R dx ≤ αβ 2 * Σ λ ûα-1 vβ-1 ûvψ 2 ε ϕ 2 R dx + β(β -1) 2 * Σ λ ûα vβ-2 v2 ψ 2 ε ϕ 2 R dx ≤ αβ 2 * Σ λ ûα vβ dx + α(α -1) 2 * Σ λ ûα vβ dx = β(2 * -
| + |E 4 | ≤ (2 * -1) Σ λ ûα vβ dx ≤ (2 * -1) û α L 2 * (Σ λ ) v β L 2 * (Σ λ )
Taking into account the estimates on I 1 , I 2 , I 3 , I 4 , E 1 , E 2 , E 3 and E 4 , by adding (6.4.10) and (6.4.11), we deduce that

Σ λ |∇ξ + λ | 2 ψ 2 ε ϕ 2 R dx + Σ λ |∇ζ + λ | 2 ψ 2 ε ϕ 2 R dx ≤ 32ε û 2 L ∞ (Σ λ ) + v 2 L ∞ (Σ λ ) + 2C(N ) Σ λ ∩(B 2R \B R ) û2 * dx N -2 N + 2C(N ) Σ λ ∩(B 2R \B R ) v2 * dx N -2 N + 2 N + 2 N -2 û 2 * L 2 * (Σ λ ) + v 2 * L 2 * (Σ λ ) + 2(2 * -1) û α L 2 * (Σ λ ) v β L 2 * (Σ λ ) (6.4.21)
By Fatou's Lemma, as ε tends to zero and R tends to infinity, we deduce that ∇ξ + λ , ∇ζ + λ ∈ L 2 (Σ λ ). We also note that ϕ → ξ + λ and ψ → ζ + λ in L 2 * (Σ λ ), by definition of ϕ and ψ, and that ∇ϕ → ∇ξ + λ and ∇ψ → ∇ζ + λ in L 2 (Σ λ ), by (6.4.8), (6.4.9) and the fact that ξ We can now complete the proof of Theorem 6.0.4. As for the proof of Theorem 6.0.2 and Theorem 6.0.3, we split the proof into three steps and we start with

+ λ , ζ + λ ∈ L 2 * (Σ λ ). Therefore Σ λ |∇ξ + λ | 2 dx + Σ λ |∇ζ + λ | 2 dx ≤2 N + 2 N -2 û 2 * L 2 * (Σ λ ) + v 2 * L 2 * (Σ λ ) + 2(2 * -1) û α L 2 * (Σ λ ) v β L 2 * (Σ λ ) (6 
Step 1: there exists M > 1 such that û ≤ ûλ and v ≤ vλ in Σ λ \R λ (Γ * ∪{0}), for all λ < -M .

Arguing as in the proof of Lemma 6.4.1 and using the same notations and the same construction for ψ ε , ϕ R , ϕ and ψ, we get

Σ λ |∇ξ + λ | 2 ψ 2 ε ϕ 2 R dx = -2 Σ λ (∇ξ + λ , ∇ψ ε )ξ + λ ψ ε ϕ 2 R dx -2 Σ λ (∇ξ + λ , ∇ϕ R )ξ + λ ϕ R ψ 2 ε dx + Σ λ (û 2 * -1 -û2 * -1 λ )ξ + λ ψ 2 ε ϕ 2 R dx + α 2 * Σ λ (û α-1 vβ -ûα-1 λ vβ λ )ξ + λ ψ 2 ε ϕ 2 R dx = : I 1 + I 2 + I 3 + I 4 .
(6.4.23) .4.24) where I 1 , E 1 , I 2 , E 2 , I 3 , E 3 , I 4 and E 4 can be estimated exactly as in (6.4.12), (6.4.13), (6.4.14), (6.4.15), (6.4.16), (6.4.17), (6.4.18) and (6.4.19).

Σ λ |∇ζ + λ | 2 ψ 2 ε ϕ 2 R dx = -2 Σ λ (∇ζ + λ , ∇ψ ε )ζ + λ ψ ε ϕ 2 R dx -2 Σ λ (∇ζ + λ , ∇ϕ R )ζ + λ ϕ R ψ 2 ε dx + Σ λ (v 2 * -1 -v2 * -1 λ )ζ + λ ψ 2 ε ϕ 2 R dx + β 2 * Σ λ (û α vβ-1 -ûα λ vβ-1 λ )ζ + λ ψ 2 ε ϕ 2 R dx = : E 1 + E 2 + E 3 + E 4 . ( 6 
The latter yield

Σ λ |∇ξ + λ | 2 + |∇ζ + λ | 2 ψ 2 ε ϕ 2 R dx ≤32ε û 2 L ∞ (Σ λ ) + v 2 L ∞ (Σ λ ) + 2C(N ) Σ λ ∩(B 2R \B R ) û2 * dx 2 2 * + 2C(N ) Σ λ ∩(B 2R \B R ) v2 * dx 2 2 * + 2 N + 2 N -2 Σ λ û2 * -2 (ξ + λ ) 2 ψ 2 ε ϕ 2 R dx + 2 N + 2 N -2 Σ λ v2 * -2 (ζ + λ ) 2 ψ 2 ε ϕ 2 R dx + 4 αβ 2 * Σ λ ûα-1 vβ-1 ξ + λ ζ + λ ψ 2 ε ϕ 2 R dx + α(α -1) 2 * Σ λ ûα-2 vβ (ξ + λ ) 2 ψ 2 ε ϕ 2 R dx + β(β -1) 2 * Σ λ ûα vβ-2 (ζ + λ ) 2 ψ 2 ε ϕ 2 R dx .
(6.4.25)

Passing to the limit in the latter, as ε tends to zero and R tends to infinity, we obtain

Σ λ |∇ξ + λ | 2 dx + Σ λ |∇ζ + λ | 2 dx ≤2 N + 2 N -2 Σ λ û2 * -2 (ξ + λ ) 2 dx + Σ λ v2 * -2 (ζ + λ ) 2 dx + 4 αβ 2 * Σ λ ûα-1 vβ-1 ξ + λ ζ + λ dx + α(α -1) 2 * Σ λ ûα-2 vβ (ξ + λ ) 2 dx + β(β -1) 2 * Σ λ ûα vβ-2 (ζ + λ ) 2 dx < +∞ (6.4.26)
which combined with Young's inequality gives where

Σ λ |∇ξ + λ | 2 dx + Σ λ |∇ζ + λ | 2 dx ≤2 N + 2 N -2 Σ λ û2 * -2 (ξ + λ ) 2 dx + Σ λ v2 * -2 (ζ + λ ) 2 dx + α(2 * + β -1) 2 * Σ λ ûα-2 vβ (ξ + λ ) 2 dx + β(2 * + β -1) 2 * Σ λ ûα vβ-2 (ζ + λ ) 2 dx = : A 1 + A 2 + A 3 . ( 6 
|A 1 | ≤ 2 N + 2 N -2 Σ λ û2 * dx 2 N Σ λ (ξ + λ ) 2 * dx 2 2 * + Σ λ v2 * dx 2 N Σ λ (ζ + λ ) 2 * dx 2 2 * . ( 6 
C 1 := 2 N +2 N -2 û β L 2 * (Σ λ ) + α(2 * +β-1) 2 * v β L 2 * (Σ λ ) C 2 u,S û α-2 L 2 * (Σ λ ) , C 2 := 2 N +2 N -2 v α L 2 * (Σ λ ) + β(2 * +β-1) 2 * û α L 2 * (Σ λ ) C 2 v,S v β-2 L 2 * (Σ λ )
, C u,S and C v,S are the Sobolev constants. Recalling that û, v ∈ L 2 * (Σ λ ), we deduce the existence of M > 1 such that

C 1 := 2 N + 2 N -2 û β L 2 * (Σ λ ) + α(2 * + β -1) 2 * v β L 2 * (Σ λ ) C 2 u,S û α-2 L 2 * (Σ λ ) < 1
and

C 2 := 2 N + 2 N -2 v α L 2 * (Σ λ ) + β(2 * + β -1) 2 * û α L 2 * (Σ λ ) C 2 v,S v β-2 L 2 * (Σ λ ) < 1
for every λ < -M . The latter and (6. This implies that ξ + λ = ζ + λ = 0 by Lemma 6.4.1 and the claim is proved.

To proceed further we define Λ 0 = {λ < 0 : û ≤ ût and v ≤ vt in Σ t \ R t (Γ * ∪ {0}) for all t ∈ (-∞, λ]} and λ 0 = sup Λ 0 .

Step 2: we have that λ 0 = 0. We argue by contradiction and suppose that λ 0 < 0. By continuity we know that û ≤ ûλ 0 and v ≤ vλ 0 in Σ λ 0 \ R λ 0 (Γ * ∪ {0}). By the strong maximum principle we deduce that û < ûλ 0 and v < vλ 0 in Σ λ 0 \ R λ 0 (Γ * ∪ {0}). Indeed, û = ûλ 0 and v = vλ 0 in Σ λ 0 \ R λ 0 (Γ * ∪ {0})) is not possible if λ 0 < 0, since in this case û and v would be singular somewhere on R λ 0 (Γ * ∪ {0}). Now, for some τ > 0, that will be fixed later on, and for any 0 < τ < τ we show that û ≤ ûλ 0 +τ and v ≤ vλ 0 +τ in Σ λ 0 +τ \ R λ 0 +τ (Γ * ∪ {0}) obtaining a contradiction with the definition of λ 0 and proving thus the claim. To this end we recall that, repeating verbatim the argument used in the roof of Theorem 6.0.3, it is possible to prove that for every δ > 0 there are τ (δ, λ 0 ) > 0 and a compact set K (depending on δ and λ 0 ) such that for every 0 ≤ τ < τ , since ∇ξ + λ 0 +τ and ∇ζ + λ 0 +τ are zero in a neighbourhood of K. The latter and Lemma 6.4.1 imply that ξ + λ 0 +τ = 0 and ζ + λ 0 +τ = 0 on Σ λ 0 +τ for every 0 ≤ τ < τ and thus û ≤ ûλ 0 +τ and v ≤ vλ 0 +τ in Σ λ 0 +τ \ R λ 0 +τ (Γ * ∪ {0}) for every 0 ≤ τ < τ . Which proves the claim of Step 2.

K ⊂ Σ λ \R λ (Γ * ∪{0}),
Step 3: conclusion. The symmetry of the Kelvin transform v follows now performing the moving planes method in the opposite direction. The fact that û and v are symmetric w.r.t. the hyperplane {x 1 = 0} implies the symmetry of the solution (u, v) w.r.t. the hyperplane {x 1 = 0}. The last claim then follows by the invariance of the considered problem with respect to isometries (translations and rotations).

Gibbons' Conjecture for equations involving the p-Laplacian

This Chapter concerns the study of the qualitative properties of the following quasilinear elliptic equation (7.0.1)

-∆ p u = f (u) in R N ,
where we denote a generic point belonging to R N by (x , y) with x = (x 1 , x 2 , . . . , x N -1 ) and y = x N , p > 1 and N > 1. Morever, for suitable functions, the p-Laplace operator is defined by -∆ p u := -div(|∇u| p-2 ∇u).

As well known, see [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], the solutions of equations involving the p-Laplace operator are generally of class C 1,α . Therefore the equation (7.0.1) has to be understood in the weak sense, see Definition 7.1.6 below. We summarize the assumptions on the nonlinearity f (denoted by (G f ) in the following) as follows:

(G f ): The nonlinearity f (•) belongs to C 1 ([-1, 1]), f (-1) = 0, f (1) = 0, f + (-1) < 0, f -(1) < 0 and the set

N f := {t ∈ [-1, 1] | f (t) = 0}
is finite.

As remarked in the Introduction, the setting of our assumptions allows us to include Allen-Cahn type nonlinearities and in fact the paper is motivated by some questions arising from the following problem (7.0.2) -∆u = u(1 -u 2 ) in R N , see [START_REF] Farina | The state of the art for a conjecture of De Giorgi and related problems. Recent progress on reaction-diffusion systems and viscosity solutions[END_REF]. G.W. Gibbons [START_REF] Carbou | Unicité et minimalité des solutions d'une équation de Ginzburg-Landau[END_REF] formulated the following Gibbons' conjecture [START_REF] Carbou | Unicité et minimalité des solutions d'une équation de Ginzburg-Landau[END_REF]. -Assume N > 1 and consider a bounded solution u of (7.0.2) in C 2 (R N ), such that lim x N →±∞ u(x , x N ) = ±1, uniformly with respect to x . Then, is it true that

u(x) = tanh x N -α √ 2 ,
for some α ∈ R?

This conjecture is also known as the weaker version of the famous De Giorgi's conjecture [START_REF] Giorgi | Convergence problems for functionals and operators[END_REF]. We refer to [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF] for a complete history on the argument. Our main result is the following Remark 7.0.2. We want to point out that, by the strong maximum principle [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF], see also Theorem 7.1.1, applied to (7.0.1), we deduce that a solution to (7.0.1) under the assumptions of Theorem 7.0.1, actually satisfies |u| < 1 otherwise u ≡ ±1 in all R N . We will use this information several times throughout the paper. Moreover by classical regularity results [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF], since f (u) L ∞ (R N ) ≤ C, with C a positive constant that does not depend on u, we also deduce that

∇u L ∞ (R N ) ≤ C.
To get our main result, we first recover a weak comparison principle in a suitable half-space and then we exploit it to start the moving planes procedure. The application of the moving planes method is not standard since we have to recover compactness using some translation arguments, (since we work on R N ) and, not least, we have to take into account the fact that the nonlinearity f change sign which produces peculiar difficulties in the case p = 2, already in the case of bounded domain. Finally we get the monotonicity in all the directions of the the upper hemi-sphere S N -1 + := {ν ∈ S N -1 + | (ν, e N )} that will give us the desired 1-dimensional symmetry. This chapter is organized as follows: In Section 7.1 we recall some results about strong maximum and comparison principles just for the reader's convenience, already presented in Chapter 1. In Section 7.2 we prove the monotonicity of the solution in the x N -direction, exploiting the moving planes procedure. In Section 7.3 we prove the 1-dimensional symmetry and finally we prove our main result.

Preliminary results

The aim of this section is to recall, just for the reader's convenience, some well known results about strong comparison principles and strong maximum principles for quasilinear elliptic equations that will be used several times in the proof of our main theorem. Lots of this results are proved in Chapter 1. Let us consider the following quasilinear elliptic equation The first result that we recall the classical strong maximum principle due to J. L. Vazquez [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF] (see also P. Pucci and J. Serrin book [START_REF] Pucci | The maximum principle[END_REF] and Theorem 1.4.1): Theorem 7.1.1 (Strong Maximum Principle and Höpf's Lemma, [START_REF] Pucci | The maximum principle[END_REF][START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF]). Let u ∈ C 1 (Ω) be a non-negative weak solution to -∆ p u + cu q = g ≥ 0 in Ω with 1 < p < +∞, q ≥ p -1, c ≥ 0 and g ∈ L ∞ loc (Ω). If u = 0, then u > 0 in Ω. Moreover for any point x 0 ∈ ∂Ω where the interior sphere condition is satisfied, and such that u ∈ C 1 (Ω)∪{x 0 } and u(x 0 ) = 0 we have that ∂ ν u > 0 for any inward directional derivative (this means that if y approaches x 0 in a ball B ⊆ Ω that has x 0 on its boundary, then lim y→x 0 u(y)-u(x 0 )

|y-x 0 | > 0).

It is very simple to guess that in the quasilinear case, maximum and comparison principles are not equivalent; for this reason we need also to recall the classical version of the strong comparison principle for quasilinear elliptic equations: For the proof of this result we suggest [START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF][START_REF] Pucci | The maximum principle[END_REF]. The main feature of Theorem 7.1.2 is that holds far from the critical set. Now we present a result which holds, under stronger assumptions, all over the critical set and generalizes Theorem 1.5.3: Theorem 7.1.3 (Strong Comparison Principle, [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF]). Let u, v ∈ C 1 (Ω) be two solutions to (7.1.1), where Ω is a bounded smooth connected domain of R N and 2N +2 N +2 < p < +∞. Assume that at least one of the following two conditions (f u ),(f v ) holds:

(f u ): either Proof. The proof of this result follows by the same arguments in [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF][START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF][START_REF] Sciunzi | Some results on the qualitative properties of positive solutions of quasilinear elliptic equations[END_REF][START_REF] Sciunzi | Regularity and comparison principles for p-Laplace equations with vanishing source term[END_REF]. Note in fact that under the assumption (f u ) or (f v ), it follows that |∇u| -1 or |∇v| -1 has the summability properties exposed by Theorem 3.1 in [START_REF] Sciunzi | Regularity and comparison principles for p-Laplace equations with vanishing source term[END_REF] (see also Theorem 1.1.2). Then the weighted Sobolev inequality is in force, see e.g. Theorem 8 in [START_REF] Farina | Monotonicity of solutions of quasilinear degenerate elliptic equations in half-spaces[END_REF] (see also Theorem 1.1.3). Now, it is sufficient to note that the Harnack comparison inequality given by Corollary 3.2 in [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF] holds true (see also Theorem 1.5.2), since the proof it is only based on the weighted Sobolev inequality.

Finally it is standard to see that the Strong Comparison Principle follows by the weak comparison Harnack inequality, see Theorem 1.4 in [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF] (see also Theorem 1.5.3).

Let us now recall that the linearized operator at a fixed solution w of (7. Let us recall now a more general result which holds all over the critical set Z and that generalizes Theorem 1.5.5 of Chapter 1: Theorem 7.1.5 (Strong Maximum Principle for the Linearized Operator, [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF]). Let u ∈ C 1 (Ω) be a solution to problem (7.1.1), with 2N +2 N +2 < p < +∞. Assume that either (7.1.12) f (u(x)) > 0 in Ω or (7.1.13) f (u(x)) < 0 in Ω.

If ∂ η ≥ 0 in Ω, for some η ∈ S N -1 , then either ∂ η u ≡ 0 in Ω or ∂ η u > 0 in Ω.

A solution to (7.0.1) has to be understood in the weak distributional sense. We start giving the following Definition 7.1.6. Let Ω ⊆ R N an open set. We say that u ∈ C 1,α loc (Ω) is a weak subsolution to Let us recall another weak comparison principle in narrow domains that will be an essential tool in the proof of Theorem 7.0.1, whose proof is also included in Chapter 1 (see Theorem 1.3.3). ) > 0 such that, if 0 < τ < τ 0 and 0 < < 0 , it follows that u ≤ v in S (τ, ) .

Monotonicity with respect to x N

The purpose of this section consists in showing that all the non-trivial solutions u to (7.0.1) that satisfies (7.0.3) are increasing in the x N direction. Since in our problem the right hand side depends only on u, it is possible to define the following set

Z f (u) := {x ∈ R N | u(x) ∈ N f }.
Without any apriori assumption on the behaviour of ∇u, the set Z f (u) may be very wild, see Figure 1.

We start proving a lemma that we will use repeatedly in the sequel of the work.

Let us define the upper hemisphere We note that the infimum in (7.2.2) is well defined, since by definition the connected component U is an open set. We deduce that either t 0 = -∞ or t 0 > -∞.

In the case t 0 = -∞, we deduce that u(P 0 ) = -1. Indeed u should be constant (recall that ∂ η u ≡ 0 in U) on r(t) for t ∈ (-∞, 0] and (7.0.3) holds. This would be a contradiction, see Remark 7.0.2.

In the case t 0 > -∞, we deduce that r(t 0 ) ∈ Z f (u) and therefore f (u(r(t 0 ))) = f (u(P 0 + t 0 η)) = 0. But u should be constant on r(t) for t 0 ≤ t ≤ 0, implying f (u(P 0 )) = f (u(P 0 + t 0 η)) = 0, namely P 0 ∈ Z f (u) against the assumption. Proposition 7.2.2. Under the assumptions of Theorem 7.0.1, we have that (7.2.3)

∂ x N u > 0 in R N \ Z f (u) .
The proof is based on a nontrivial modification of the moving planes method. Let us recall some notations. We define the half-space Σ λ and the hyperplane T λ by We can slide B 0 in U 0 , towards to -∞ in the y-direction and keeping its centre on the line {x = x 0 } (see Figure 2), until it touches for the first time ∂U 0 at some point z 0 ∈ Z f (u) . In Figure 3, we show some possible examples of first contact point with the set Z f (u) . and we observe that w 0 (x) = 0 for every x ∈ B 0 ( P0 ), where P0 is the new centre of the slided ball. In fact, if this is not the case there would exist a point z ∈ B 0 ( P0 ) such that w 0 (z) = 0, but this is in contradiction with the fact that U 0 ∩ Z f (u) = ∅. We have to distinguish two cases. Since p < 2 and f is locally Lipschitz, we have that Using the Implicit Function Theorem we deduce that the set {u = u(z 0 )} is a smooth manifold near z 0 . Now we want to prove that u x N (z 0 ) > 0 To prove Proposition 7.2.2 we need of the following result: Lemma 7.2.4. Under the assumption of Theorem 7.0.1, let u be a solution to (7.0.1). Then there exist M 0 = M 0 (p, f, N, ∇u L ∞ (R N ) ) > 0 sufficiently large such that for every M ≥ M 0 there exits a constant C * = C * (M ) > 0 such that (7.2.10)

|∇u| ≥ ∂ x N u ≥ C * > 0 in {-M -1 < x N < -M + 1}.
Proof. Performing the moving planes procedure, using (7.0.3) and (G f ), by the Proposition 7.1.7 with v = u λ and Σ = Σ λ , we infer that there exists a constant M 0 = M 0 (p, f, N, ∇u L ∞ (R N ) ) > 0 such that ∂ x N u ≥ 0 in {x N < -M 0 + 1}. Now we can assume Z f (u) ∩ {x N < -M 0 + 1} = ∅, then by Theorem 7.1.5 it follows that ∂ x N u > 0 in {x N < -M 0 + 1}, since the case ∂ x N u = 0 would imply a contradiction, i.e. u(x) = -1 in {x N < -M 0 + 1} . We observe that in particular it holds |∇u| ≥ ∂ x N u > 0 in {-M 0 -1 < x N < -M 0 + 1}. We want to prove that for all M ≥ M 0 , there exists C * = C * (M ) > 0 such that ∂ x N u ≥ C * > 0 in {-M -1 < x N < -M + 1}.

Arguing by contradiction let us assume that there exists a sequence of point P n = (x n , x N,n ), with -M -1 < x N,n < -M + 1 for every n ∈ N, such that ∂ x N u(P n ) → 0 as n → +∞ in {-M -1 < x N < -M + 1}. Up to subsequences, let us assume that x N,n → xN with -M -1 ≤ xN ≤ -M + 1.

Let us now define ũn (x , x N ) := u(x + x n , x N ) so that ũn ∞ = u ∞ ≤ 1. By standard regularity theory, see [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], we have that ũn C 1,α loc (R N ) ≤ C for some 0 < α < 1. By Ascoli's Theorem we have ũn Note that, by Proposition 7.1.7 (with v = u t ), it follows that Λ = ∅, hence we can define (7.2.12) λ := sup Λ.

Moreover it is important to say that by the continuity of u and u λ , it follows that u ≤ uλ in Σλ. The proof of the fact that u(x , x N ) is monotone increasing in the x Ndirection in the entire space R N is done once show that λ = +∞. To do this we assume by contradiction that λ < +∞, and we prove a crucial result, which allows us to localize the support of (u-uλ) + . This localization, that we are going to obtain, will be useful to apply the weak comparison principle given by Proposition 7.1.7 and Theorem 7.1.8. Proposition 7.2.5. Under the assumption of Theorem 7.0.1, let u be a solution to (7.0.1). Assume that λ < +∞ (see (7.2.12)) and set

W ε := (u -uλ +ε )χ {x N ≤ λ+ε} .
Let M, κ > 0 be such that M > 2| λ|. Then for all µ ∈ (0, ( λ + M )/2) there exists ε > 0 such that for every 0 < ε < ε (7.2.13) supp W + ε ⊂ {x N ≤ -M } ∪ { λ -µ ≤ x N ≤ λ + ε} ∪ {|∇u| ≤ κ}.

Proof. Assume by contradiction that (7.2.13) is false, so that there exists µ > 0 in such a way that, given any ε > 0, we find 0 < ε ≤ ε so that there exists a corresponding x ε = (x ε , x N,ε ) such that u(x ε , x N,ε ) ≥ uλ +ε (x ε , x N,ε ), 200 Gibbons' Conjecture for equations involving the p-Laplacian with x ε = (x ε , x N,ε ) belonging to the set {(x , x N ) ∈ R N : M < x N,ε < λ -µ} and such that |∇u(x ε )| ≥ κ.

Taking ε = 1/n, then there exists ε n ≤ 1/n going to zero, and a corresponding sequence

x n = (x n , x N,n ) = (x εn , x N,εn ) such that u(x n , x N,n ) ≥ uλ +εn (x n , x N,n ) with -M < x N,n < λ -µ. Up to subsequences, let us assume that

x N,n → xN with -M ≤ xN ≤ λ -µ.

Let us define ũn (x , x N ) := u(x + x n , x N ) so that ũn ∞ = u ∞ ≤ 1. By standard regularity theory, see [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], we have that ũn C 1,α loc (R N ) ≤ C for some 0 < α < 1. By Ascoli's Theorem we have ũn This gives a contradiction with (7.2.14). Hence we have (7.2.13).

Proof of Proposition 7.2.2. Let us assume by contradiction that λ < +∞, see (7.2.12). Let M > 0 be such that Proposition 7.1.7 and Lemma 7.2.4 apply. Let C * = C * ( M ) be the constant given in Lemma 7.2.4. By Proposition 7.2.5 (choose M = 4 M + 1 there, redefining M if necessary) we have that (7.2.15) supp W + ε ⊂ {x N ≤ -4 M -1} ∪ {-4 M + 1 ≤ x N ≤ λ + ε}, where W ε := (u -uλ +ε )χ {x N ≤ λ+ε} . In particular, to get (7.2.15), we choose κ in Proposition 7.2.5 such that 2κ = C * . Then we deduce that (7.2.16) u ≤ uλ +ε in {(x, x N ) ∈ R N : -4 M -1 < x N < -4 M + 1}. 

A := { λ -µ ≤ x N ≤ λ + ε} ∪ {|∇u| ≤ κ} ∩ x N ≥ -4 M + 1 .
We now apply Theorem 7.1.8 in the set A. Let us choose (in Theorem 7.1.8)

L 0 = 1 + ∇u L ∞ (R N )
and take τ 0 = τ 0 (p, λ, M , N, L 0 ) > 0 and 0 = 0 (p, λ, M , N, L 0 ) > 0 as in Theorem 7.1.8. Let µ, ε in Proposition 7.2.5 such that 2(µ + ε) < τ 0 and let us redefine κ eventually such that κ := min{C * /2, 0 }. We finally apply Theorem 7.1.8 concluding that actually W + ε = 0 in the set A. This gives a contradiction, in view of the definition (7.2.12) of λ. Consequently we deduce that λ = +∞. This implies the monotonicity of u, that is ∂ x N u ≥ 0 in R N . By Theorem 7.1.5, it follows that

∂ x N u > 0 in R N \ Z f (u) ,
since by Lemma 7.2.1, the case ∂ x N u ≡ 0 in some connected component, say U, of R N \ Z f (u) can not hold.

1-Dimensional Symmetry

In this section we pass from the monotonicity in x N to the monotonicity in all the directions of the upper hemisphere S N -1 + defined in (7.2.1). We refer to [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF] for the case of the Laplacian operator, where in the proof the linearity of the operator was crucial. Here we have to take into account the singular nature and the nonlinearity of the operator p-Laplacian. Abstract. In this manuscript we study qualitative properties of solutions of some semilinear and quasilinear elliptic equations. Symmetry and monotonicity remain an important topic in modern theory of nonlinear partial differential equations. The moving planes method is the most important technique that have been used in recent years to establish some qualitative properties of positive solutions of nonlinear elliptic equations as symmetry and monotonicity; in particular, it goes back to the seminal papers of A. D. Alexandrov [START_REF] Alexandrov | A characteristic property of the spheres[END_REF] and J. Serrin [START_REF] Serrin | A symmetry problem in potential theory[END_REF]. In this technique maximum and comparison principles play a crucial role. Lots of well-known results about classical and more recent version of maximum and comparison principles and of the Höpf's Lemma will be presented in Chapter 1.

In Chapter 2 (see also [START_REF] Canino | On the Höpf boundary lemma for singular semilinear elliptic equations[END_REF]), we consider positive solutions to semilinear elliptic problems with singular nonlinearity and we provide a Höpf type boundary lemma via a suitable scaling argument that allows to deal with the lack of regularity of the solutions up to the boundary.

In Chapter 3 (see also [START_REF] Esposito | On the Höpf boundary lemma for quasilinear problems involving singular nonlinearities and applications[END_REF]), we consider the quasilinear version of the problem studied in Chapter 2, that is more involved and technical.

In Chapter 4 (see also [START_REF] Esposito | Qualitative properties of singular solutions to semilinear elliptic problems[END_REF]), we consider positive singular solutions to semilinear elliptic problems with possibly singular nonlinearity and we deduce symmetry and monotonicity properties of the solutions via the moving planes procedure in bounded or unbounded domains.

In Chapter 5 (see also [START_REF] Esposito | Monotonicity and symmetry of singular solutions to quasilinear problems[END_REF]), we consider singular solutions to quasilinear elliptic equations under zero Dirichlet boundary condition. Under suitable assumptions on the nonlinearity we deduce symmetry and monotonicity properties of positive solutions via an improved moving planes procedure, only in bounded domains.

In Chapter 6 (see also [START_REF] Esposito | Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearity[END_REF]), we investigate qualitative properties of positive singular solutions of some elliptic systems in bounded and unbounded domains, i.e. we prove a generalization of the results obtained in Chapter 4.

In Chapter 7 (see also [START_REF] Esposito | On the Gibbons conjecture for theequation involving the p-Laplace operator[END_REF]), we prove the validity of Gibbons' conjecture for a quasilinear elliptic equation. The result holds for every (2N + 2)/(N + 2) < p < 2 and for a very general class of nonlinearity f .
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 2 Figure 2. Step 2 in the moving planes method.
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 41 Let N > 1, (2N + 2)/(N + 2) < p < 2 and u ∈ C 1,α loc (R N ) be a solution of (0.4.1), such that |u| ≤ 1 and (0.4.3) lim y→+∞ u(x , y) = 1 and lim y→-∞ u(x , y) = -1, uniformly with respect to x ∈ R N -1 . If f fulfills (G f ), then u depends only on y and (0.4.4)

  la constante positive C ne dépend pas de y. En particulier, nous avons (0.5.7)Ω\{∇u=0} |∇u| p-2-β D 2 u 2 |y -x| γ dx ≤ C,pour une constante positive C ne dépendant pas de y.

Figure 4 .

 4 Figure 4. Step 2 dans la méthode des hyperplans mobiles.

Theorem 1 .

 1 1.2 provides in fact the right summability of the weight (x) = |∇u(x)| p-2 in order to obtain a weighted Poincaré inequality. 1.1.3. Weighted Sobolev and Poincaré inequality.

  be open and suppose u ≤ v on ∂Ω . (a) If Λ = 0 then u ≤ v in Ω , for all p > 1. (b) If 1 < p < 2 there exist δ, M > 0, depending only on p, Λ, γ, Γ, |Ω| and M Ω , such that the following holds:

  Lemma 1.3.5 (Poincaré type inequality). Let I be an open bounded subset of R and assume that I = A ∪ B with |A ∩ B| = 0, A and B measurable subsets of I. Let : I → R ∪ {∞} be measurable and such that inf t∈I (t) > 0 .

  -2 in order to apply Lemma 1.3.5 in each I τ,εx , for which (1.3.31) holds true, with (t) := x (t), A := A τ x , B := B ε x and w(t) = [(u -v) + (x , t)]

  α+1

1 . 3

 13 Weak comparison principles in unbounded domains 67 and the application of Lemma 1.3.5 yields

  (1.3.58) it holds that |∇w(z)| = |∇w(z t )|. Hence (1.1.33) holds and, in order to prove (1.3.60), we need to show that (1.1.29) holds with := |∇u| p-2 .

  3.2 with ν = N and ϑ < 2 -N , we get L(R) ≡ 0 1.3 Weak comparison principles in unbounded domains 75 and consequently that (u -v) + ≡ 0.

  |∇v|) p-2 |∇w| 2 dx. By our assumption,|∇u|, |∇v| ∈ L ∞ (Σ (a,b) ), it follows that L(R) ≤ ĊR N for every R > 0 and for some Ċ= Ċ(p, ∇u L ∞ (Σ (a,b) ) , ∇v L ∞ (Σ (a,b) ) ). Moreover, in equation (1.3.80), we take σ = σ(p, N, ∇u L ∞ (Σ (a,b) ) , ∇v L ∞ (Σ (a,b)) ) > 0 sufficiently small so that Cσ < 1/2 N . Finally we fix R 0 > 0 such that C σR 2 -L < 0 for every R ≥ R 0 . Therefore by(1.3.80) we deduce that(1.3.81) 

Theorem 1 . 4 . 1 ( 2 0 1 β

 14121 [START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF]). Let p = 2 and u ∈ L 1 loc (Ω) be such that is a solution to (1.4.1) such that ∆u ∈ L 1 loc (Ω) in the sense of distribution in Ω and ∆u ≤ β(u) in {x ∈ Ω | 0 < u(x) < a}, where a is a positive constant and β : [0, a] → R is a continuous nondecreasing function with β(0) = 0. Under the assumption that β(S) = 0 for some S > 0 or (1.4.2) a (S)S dS = ∞ if β(S) > 0 for S > 0, then either u ≡ 0 a.e. in Ω or u is strictly positive in Ω in the sense that for every compact set k ⊂ Ω there exists a constant γ = γ(K) > 0 such that (1.4.3) u ≥ γ a.e. in Ω.

Theorems 1 . 1 . 5

 115 4.1 and 1.4.2 hold also in the quasilinear case, when the classical Laplace operator is replaced by the p-Laplace operator ∆ p u = div(|∇u| p-2 ∇u) and conditions (1.4.4) and (1.4.5) are replaced respectively by Strong comparison principles for p = 2 83

Remark 1 . 5 . 2 .

 152 As in Remark 1.2.3, note that a function f : I -→ R is locally Lipschitz continuous in the interval I if and only if, for each compact subinterval [a, b] ⊂ I, there exist two positive costants C 1 and C

2. 2 91 2. 2 .

 2912 Local estimates for the solutions Local estimates for the solutions and proof of the Höpf boundary lemma Relying on technique of [82] we prove the following local estimates for the solution u of problem (2.0.1): Theorem 2.2.1. Let u ∈ C 2,α (Ω)∩C(Ω) be a positive solution to problem (2.0.1) and let φ 1 denote the first eigenfunction corresponding to the first eigenvalue λ 1 of the problem (2.2.1)

( 3 . 1 N

 31 1.9) u τ (x) := u(x -τ e 1 ) where 0 < τ < δ. Hence by the Mean Value Theorem it follows that (3.1.10)u(P 0 ) -u τ (P 0 ) = u x 1 (ξ)τ > Ĉτ > 0 where ξ ∈ {tP 0 + (1 -t)(P 0 -τ e 1 ), t ∈ [0, 1]}. Moreover,there exists k > 0 sufficiently large such that, by the Mean Value Theorem and (3in R N + ∩ {x N ≥ k}. Now we set (3.1.12) S := sup x∈R N + (u -u τ ) > 0. We also note that S < +∞ by (3.1.4) and (3.1.11). Let us consider (3.1.13) w τ,ε (x) := [u -u τ -(S -ε)] + for every ε > 0 small enough. We notice that, by (3.1.4) and (3.1.11), (3.1.14) supp(w τ,ε ) ⊂⊂ { k ≤ x N ≤ K} for some k, K > 0. We consider a standard cutoff function ϕ

Lemma 3 . 3 . 1 .

 331 Let u ∈ W 1,p loc (D) ∩ C 0 (D) be a subsolution of problem (3.3.1) in the sense of (3.1.2) and let v ∈ W 1,p loc (D)∩C 0 (D) be a supersolution of problem (3.3.1) in the sense of (3.1.3). Then, if u ≤ v on ∂D it follows that u ≤ v in D. Proof. Let us set: (3.3.2)

Figure 1 .

 1 Figure 1. The cutoff function ψ ε .

  ) = 0 for any open neighborhood of γ λ and then there exists ϕ τ ∈ C ∞ c (I λ τ ) such that ϕ τ ≥ 1 in a neighborhood I λ σ with γ λ ⊂ I λ σ ⊂ I λ τ . As above, we set (4.1.6) φ τ := T 1 • ϕ τ

Figure 2 .

 2 Figure 2. The cutoff function φ τ .

4. 2 Figure 3 .

 23 Figure 3. Step 1 of the moving planes method: Λ 0 = ∅.

( 4 .

 4 2.10) where c p (•) is the Poincaré constant (in the Poincaré inequality in H 1 0

Figure 4 .

 4 Figure 4. Step 2 of the moving planes method: λ 0 = 0.

  for some positive constant C that does not depend on ε. To construct such a test function we consider the real functions T : R → R + 0 and g : R + 0 → R + 0 defined by (5.1.9) T (s) := max{0; min{s; 1}}, s ∈ R and g(s) := max{0; -2s + 1}, s ∈ R + 0 . Finally we set (5.1.10) ψ ε (x) := g(T (ϕ ε (x))).

Figure 1 .

 1 Figure 1. The cutoff function ψ ε .

with ( 5 2 ( 1 4

 521 .2.6) c(x) := d p f (u(dx + x 0 )) u p-1 (dx + x 0 ) .From (5.2.5) we deduce that in distributional sense-∆ p g = c(x)g p-1 in B 1 0).On the other hand u as well (in distributional sense) is a positive solution to -∆ p u = f (u) in B d (x 0 ). Therefore using [100, Theorem 3.1] we have(5.2.7) 0 < u(x) ≤ C(1 + d -p q+1-p ),where C = C(f, n, p) > 0. By (5.2.6), using(A 1 f ) we have (5.2.8) c(x) = Cd p (1 + u q+1-p ),with C = C(l, p, K f ) is a positive constant. Finally, collecting (5.2.7) and (5.2.8) we deducec(x) ≤ Cd p (1 + d -p ) ≤ C, with C = C(f, l, N, p, q, K f , Ω). Hence c(x) ∈ L ∞ (B 1/2 (0)). By [103, Theorem 7.2.1], recalling (5.2.4), for every x ∈ B 1/8 (0) it follows g(x) ≤ sup x∈B

g ∈ C 1 16 ( 16 (

 11616 a positive constant C = C(N, p, λ, u L ∞ (Ω λ ) ) such that |∇g(x)| ≤ C ∀x ∈ B 1 d|∇u(dx + x 0 )| ≤ C ∀x ∈ B 1

  for details). It is important to note that the regularity of the solution in R λ (C λ ) is induced by symmetry by the regularity in C λ . Noticing that |∇u| p-2 D 2 u ψ 2 ε χ Aε → 0 as ε goes to 0, then letting ε → 0 in (5.2.13), by Dominated Convergence Theorem and (5.1.8) it follows 0 < C f (u) dx ≤ 0, and this gives a contradiction. Hence C = ∅.

Figure 1 .

 1 Figure 1. The cutoff function ψ ε .

Figure 2 .

 2 Figure 2. The cutoff function φ τ .

Figure 3 .

 3 Figure 3. The cutoff function ϕ R .

Figure 4 .

 4 Figure 4. The cutoff function ϕ R .

  4.27) lead toΣ λ |∇ξ + λ | 2 dx = 0 and Σ λ |∇ζ + λ | 2 dx = 0.

+ λ 0 +τ ψ 2 ε ϕ 2 Rλ 0 +τ ψ 2 ε ϕ 2 R 2 L 2 * 2 L 2 * 2 * 2 L 2 *

 222222222 Σ λ \K û2 * < δ andΣ λ \K v2 * < δ, ∀ λ ∈ [λ 0 , λ 0 +τ ].Now we repeat verbatim the arguments used in the proof of Lemma 6.4.1 but using the test functionϕ := ξ in Σ λ 0 +τ 0 in R N \ Σ λ 0 +τ .andψ := ζ + in Σ λ 0 +τ 0 in R N \ Σ λ 0 +τ .Thus we recover the first inequality in(6.4.27), and repeating verbatim the arguments used in (6.4.28), (6.4.29) and (6.4.30) which immediately gives, for any 0 ≤ τ < τΣ λ 0 +τ \K |∇ξ + λ 0 +τ | 2 dx + Σ λ 0 +τ \K |∇ζ + λ 0 +τ | 2 dx ≤ C 1 C 2 u,S û α-(Σ λ 0 +τ \K) Σ λ 0 +τ \K |∇ξ + λ 0 +τ | 2 dx + C 2 C 2 v,S v β-(Σ λ 0 +τ \K) Σ λ 0 +τ \K |∇ζ + λ 0 +τ | 2 dx, (Σ λ 0 +τ \K) + α(2 * + β -1) 2 * v β L 2 * (Σ λ 0 +τ \K) , C 2 := 2 N + 2 N -2 v α L 2 * (Σ λ 0 +τ \K) + β(2 * + β -1) 2 * û α L 2 * (Σ λ 0 +τ \K) ,C u,S and C v,S are the Sobolev constants. Now we fixδ < min C 1 C 2 u,S û α-2 L 2 * (Σ λ 0 +τ \K) , C 2 C 2 v,S v β-(Σ λ 0 +τ \K)and we observe that with this choice we haveC 1 C 2 u,S û α-2 L 2 * (Σ λ 0 +τ \K) < 1 and C 2 C 2 v,S v β-2L 2 * (Σ λ 0 +τ \K) < 1, for all 0 ≤ τ < τ , which plugged into (6.4.32) implies thatΣ λ 0 +τ \K |∇ξ + λ 0 +τ | 2 dx = Σ λ 0 +τ \K |∇ζ + λ 0 +τ | 2 dx = 0for every 0 ≤ τ < τ . HenceΣ λ 0 +τ |∇ξ + λ 0 +τ | 2 dx = Σ λ 0 +τ |∇ζ + λ 0 +τ | 2 dx = 0

Theorem 7 .0. 1 . 1 and- 1 ,

 7111 Let N > 1, (2N + 2)/(N + 2) < p < 2 and u ∈ C 1,α loc (R N ) be a solution of (7.0.1), such that |u| ≤ uniformly with respect to x ∈ R N -1 . If f fulfills (G f ), then u depends only on y and (7.0.4) ∂ y u > 0 in R N .

( 7 .

 7 1.1) -∆ p w = f (w)in Ωwhere Ω is any domain of R N and f is a locally Lipschitz continuous function.Any solution w to (7.1.1) has to be understood in the weak distributional sense (see Definition 7.1.6) and generally is of class C 1,α .

Theorem 7 . 1 . 2 (

 712 Classical Strong Comparison Principle,[START_REF] Damascelli | Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results[END_REF][START_REF] Pucci | The maximum principle[END_REF]). Let u, v ∈ C 1 (Ω) be two solutions to(7.1.1) such that u ≤ v in Ω, with 1 < p < +∞ and let Z = {x ∈ Ω | |∇u(x)| + |∇v(x)| = 0}. If x 0 ∈ Ω \ Z and u(x 0 ) = v(x 0 ), then u = v in the connected component of Ω \ Z containing x 0 .

( 7 .

 7 1.2) f (u(x)) > 0 in Ω or (7.1.3) f (u(x)) < 0 in Ω; (f v ): either (7.1.4) f (v(x)) > 0 in Ω or (7.1.5) f (v(x)) < 0 in Ω.Moreover, if(7.1.6) u ≤ v in Ω.Then u ≡ v in Ω unless (7.1.7) u < v in Ω.

  1.1) (see also equation (1.1.4)), L w (v, ϕ), is well defined, for every v and ϕ in the weighted Sobolev space H 1,2 (Ω) with = |∇w| p-2 , byL w (v, ϕ) ≡ Ω |∇w| p-2 (∇v, ∇ϕ) + (p -2) Ω |∇w| p-4 (∇w, ∇v)(∇w, ∇ϕ) dx -Ω f (w)vϕ dx, ∀ϕ ∈ C ∞ c (Ω).

( 7 . 1 . 8 )

 718 Moreover v ∈ H1,2 (Ω) is a weak solution of the linearized operator if (7.1.9)L w (v, ϕ) = 0.As in the case of equation (7.1.1), also for the linearized equation (7.1.9) a classical version of the strong maximum principle holds:Theorem 7.1.4 (Classical Strong Maximum Principle for the Linearized Operator,[START_REF] Pucci | The maximum principle[END_REF]). Let u ∈ C 1 (Ω) be a solution to problem (7.1.1), with 1 < p < +∞. Let η ∈ S N -1 and let us assume that for any connected domainΩ ⊂ Ω \ Z (7.1.10) ∂ η u ≥ 0 in Ω .Then ∂ η u ≡ 0 in Ω unless (7.1.11) ∂ η u > 0 in Ω .

( 7 . 1 . 7 . 1 . 7 .

 71717 1.14) -∆ p u = f (u) in Ω, if (7.1.15) Ω |∇u| p-2 (∇u, ∇ϕ) dx ≤ Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω), ϕ ≥ 0.Similarly, we say that u ∈ C 1,α loc (Ω) is a weak supersolution to (7.0.1) if (7.1.16)Ω |∇u| p-2 (∇u, ∇ϕ) dx ≥ Ω f (u)ϕ dx ∀ϕ ∈ C ∞ c (Ω), ϕ ≥ 0.Finally, we say that u ∈ C 1,α loc (Ω) is a weak solution of equation (7.1.14), if (7.1.15) and (7.1.16) hold.Moreover we need to recall the weak comparison principle (see Theorem 1.3.7) between a subsolution and a supersolution to (7.0.1) ordered on the boundary of some open half-space Σ of R N , whose proof is included in ChapterTheorem Let u, v ∈ C 1,α loc (Σ), N > 1, p > 1, a ∈ R such that u ≤ f (u) in Σ -∆ p v ≥ f (v) in Σ u ≤ v on ∂Σ,where Σ is some open half-space of R N and f ∈ C 1 (R). Moreover, let us assume that |∇u|, |∇v| ∈ L ∞ (Σ),for some δ sufficiently small-1 ≤ u ≤ -1 + δ in Σ := (-∞, a)and for some L > 0(7.1.18) f (t) < -L in [-1, -1 + δ]. Then (7.1.19) u ≤ v in Σ.The same result is true if1 -δ ≤ v ≤1 in Σ := (a, +∞) and f (t) < -L in [1 -δ, 1].

Theorem 7 . 1 . 8 (

 718 [START_REF] Farina | Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces[END_REF]). Let 1 < p < 2 and N > 1. Fix λ 0 > 0 and L 0 > 0. Consider a, b ∈ R, with a < b, τ, > 0 and setΣ (a,b) := R N -1 × (a, b) . Let u, v ∈ C 1,α loc (Σ (a,b) ) such that u ∞ + ∇u ∞ ≤ L 0 , v ∞ + ∇v ∞ ≤ L 0 , f fulfills (h f ) and u ≤ f (u) in Σ (a,b) -∆ p v ≥ f (v) in Σ (a,b) u ≤ v on ∂S (τ, ) ,where the open set S (τ, ) ⊆ Σ (a,b) is such thatS (τ, ) = x ∈R N -1 I τ, x ,and the open setI τ, x ⊆ {x } × (a, b) has the form I τ, x = A τ x ∪ B x , with |A τ x ∩ B x | = ∅ and, for x fixed, A τ x , B x ⊂ (a, b) are measurable sets such that |A τ x | ≤ τ and B x ⊆ {x N ∈ R | |∇u(x , x N )| < , |∇v(x , x N )| < }.Then there exist τ 0 = τ 0 (N, p, a, b, L 0 ) > 0 and 0 = 0 (N, p, a, b, L 0

( 7 . 2 . 1 ) S N - 1 +: 1 +

 72111 = {ν ∈ S N -1 | (ν, e N ) > 0}. Lemma 7.2.1. Let U a connected component of R N \ Z f (u) , η ∈ S N -and let us assume that ∂ η u ≥ 0 in U. Then ∂ η u > 0 in U.

Figure 1 .

 1 Figure 1. The set Z f (u)

Σ

  λ := {x ∈ R N | x N < λ}, T λ := ∂Σ λ = {x ∈ R N | x N = λ} (7.2.4)and the reflected function u λ (x) byu λ (x) = u λ (x , x N ) := u(x , 2λ -x N ) in R N .

Figure 3 .

 3 Figure 3. The first contact point z 0

Case 1 :∆ p v 0 ≤ Cv p- 1 0

 11 If w 0 (x) > 0 in B 0 ( P0 ), then     ∆ p w 0 ≤ Cw p-1 0 in B 0 ( P0 ) w 0 > 0 in B 0 ( P0 ) w(z 0 ) = 0 z 0 ∈ ∂B 0 ( P0 ),whereC is a positive constant. Case 2: If w 0 (x) < 0 in B 0 ( P0 ), setting v 0 = -w 0 we have in B 0 ( P0 ) v 0 > 0 in B 0 ( P0 ) v 0 (z 0 ) = 0 z 0 ∈ ∂B 0 ( P0 ),where C is a positive constant. In both cases, by the Höpf boundary lemma (see e.g.[START_REF] Pucci | The maximum principle[END_REF][START_REF] Vazquez | A strong maximum principle for some quasilinear elliptic equations[END_REF]), it follows that |∇w(z 0 )| = |∇u(z 0 )| = 0.

Figure 5 .

 5 Figure 5. Case 2: u(z 0 ) > min N f \ {-1}

C 1

 1 ,α loc (R N ) -→ ũ up to subsequences, for α < α. By construction ∂ x N ũ ≥ 0 and ∂ x N ũ(0, xN ) = 0, hence by Theorem 7.1.4 it follows that∂ x N ũ = 0 in {-M -1 < x N < -M + 1} and therefore ∂ x N ũ = 0 in all {(x , x n ) : x N < -M + 1} by Theorem 7.1.5, since Z f (u) ∩ {x N < -M 0 + 1} = ∅.This gives a contradiction (by Theorem 7.1.4) with the fact that limx N →-∞ u(x , x N ) = -1 (this implies that lim x N →-∞ ũ(x , x N ) = -1 ), see Remark 7.0.2.With the notation introduced above, we set (7.2.11) Λ := {λ ∈ R | u ≤ u t in Σ t ∀t < λ}.

  , for α < α. By construction it follows that • ũ ≤ ũλ in Σλ; • ũ(0, xN ) = ũλ(0, xN ); • |∇ũ(0, xN )| ≥ κ. Since |∇ũ(0, xN )| ≥ κ there exists > 0 and a ball B (0, xN ) ⊂ Σλ such that |∇u(x)| = 0 for every x ∈ B (0, xN ). Now, if ũ(0, xN ) ∈ Z f (u) , since ũ is non constant in B (0, xN ), there exists P 0 ∈ B (0, xN ) such that u(P 0 ) ∈ Z f (u) . By Theorem 7.1.2 it follows that (7.2.14) ũ ≡ ũλ in B (0, xN ).On the other hand, by Proposition 7.2.3 it follows that ũ < ũλ in Σλ \ Z f (u) .

Lemma 7 . 3 . 1 . 1 + 1 + 1 +

 731111 Under the same assumption of Theorem 7.0.1, given > 0 and k > 0, we defineΣ k := {x ∈ R N | -k < x N < k} ∩ {|∇u| > }.Assume η ∈ S N -and suppose that(7.3.1) ∂ η u ≥ 0 in R N and ∂ η u > 0 in R N \ Z f (u) .Then, there exists an open neighbourhoodO η of η in S N -∂ ν u = (∇u, ν) > 0 in Σ k , for every ν ∈ O η .Proof. Arguing by contradiction let us assume that there exist two sequences {P m } ∈ R N and {ν m } ∈ S N -such that, for every m ∈ N we have thatP m = (x m , x N,m ) ∈ Σ k , |(ν m , η) -1| < 1/m and ∂ νm u(P m ) ≤ 0. Since -k < x N,m < k for every m ∈ N, then up to subsequences x N,m → xN . Now, let us define ũm (x , x N ) := u(x + x m , x N )Resumé. La thèse est consacrée à l'étude des propriétés qualitatives des solutions d'équations aux dérivées partielles (EDP) semi-linéaires et quasilinéaires de type elliptique. La méthode des hyperplans mobiles de A.D.
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  m, m ≥ 2, N ≥ 3 et la matrice A := (a ij ) i,j=1,...,m est symétrique

	et telle que		
	m		
	(0.8.9)	a ij = 1 pour chaque i = 1, ..., m.
	j=1		
	Ce type de systèmes, avec Γ = ∅, a été étudié par Mitidieri dans [89, 90]
	compte tenu du cas m = 2, A =	0 1 1 0	et il est connu dans la littérature
	comme appartenant à l'hyperbole critique.
	Si m = 1, alors (0.8.8) réduit à l'équation critique classique de Sobolev
	(0.8.10)	-∆u = u 2 * -1 dans R N \ Γ u > 0 dans R N \ Γ,
	cela se trouve dans [50, 110]. Si Γ se réduit à un seul point, nous trouvons
	le résultat contenu dans [121], tandis que si Γ = ∅, alors le système (0.8.10)
	se réduit à l'équation classique de Sobolev (voir [21]). Pour des résultats
	d'existence de solutions radiales et non radiales pour (0.8.8), nous renvoyons
	à des articles intéressants [71, 72]. Nous voulons remarquer que, dans
	[71, 72], les auteurs traitent le cas général d'une matrice A dans laquelle
	ses coefficients a ij ne sont pas nécessairement positives et cela implique qu'il
	est impossible d'appliquer le principe maximum. Comme indiqué ci-dessus,
	l'hypothèse naturelle est	
	u i ∈ H 1 loc (R N \ Γ) ∀i = 1, ..., m
	et donc, le système est compris dans le sens suivant:
	(0.8.11)		

  2 dx 1.3 Weak comparison principles in unbounded domains 57 which gives a contradiction for C C P (|Ω + |)) < 1. Now, since | Ω| ≤ ϑ by assumption, it follows that if ϑ is sufficiently small, then we may assume that C P (|Ω + |) is also small, and that C C P

  PreliminariesNow we estimate the term I 2 in (1.3.55). Being f locally Lipschitz continuous form(1.3.54), arguing as in(1.3.64), we get that

  , (1.3.62), (1.3.63) and (1.3.64), up to redefining the constants, we obtain

	C
	C(2R)

  where C is a positive constant. We

	note that z ∈	Ω n δ n	if and only if δ n z ∈ Ω n .
	Now, noticing that	Ω n δ n	∩ B R (0) := x N >	g n (δ n x ) δ n	, we want to show
	that				
	(2.2.22)				

  = 2 we have β = 2 and the conjugate exponents would be 2 we note that if β = 2 we have α = 2 and the conjugate exponents would be 2 * 2 , 2 *

	.4.28)										
	Exploiting Hölder inequality with conjugate exponents	2 * α -2	,	2 * β	,	2 * 2	we
	note that if α 2 * 2 , 2 * 2 we obtain									
	(6.4.29)										
	|A 2 | ≤	α(2 * + β -1) 2 *	Σ λ	û2 * dx	α-2 2 *	Σ λ	v2 * dx	β 2 *	Σ λ	(ξ + λ ) 2 * dx	2 2 *	.
	Exploiting Hölder inequality with conjugate exponents 2 2 2 * α , 2 * β -2 , we obtain
	(6.4.30)										
	|A 3 | ≤	β(2 * + α -1) 2 *	Σ λ	û2 * dx	α 2 *	Σ λ	v2 * dx	β-2 2 *	Σ λ	(ζ + λ ) 2 * dx	2 2 *	.
	Combining (6.4.28), (6.4.29) and (6.4.30) and applying Sobolev inequal-
	ity											
	(6.4.31)										
	Σ λ	|∇ξ + λ | 2 dx +	Σ λ	|∇ζ + λ | 2 dx ≤ C 1	Σ λ	|∇ξ + λ | 2 dx + C 2	Σ λ	|∇ζ + λ | 2 dx,

* 

  Using(7.2.16), we can apply Proposition 7.1.7 in {x N < -4 M -1} and therefore, together Lemma 7.2.4 and Proposition 7.2.5, we actually deducesupp W + ε ⊂ {-4 M + 1 ≤ x N ≤ λ + ε}.In particular, if we look to (7.2.13), we deduce that supp W + ε must belong to the set
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  Alexandrov et J.B. Serrin est le plus important des outils utilisés pour étudier les propriétés qualitatives des solutions d'EDP non-linéaires comme la symétrie et la monotonie. Le chapitre 1 porte sur les principes du maximum, les principes de comparaison et le lemme de Hopf qui jouent un rôle crucial dans la méthode des hyperplans mobiles. L'état de l'art dans le cadre semilinéaire et quasilinéaire y est présenté. Dans le chapitre 2 on considère les solutions positives d'EDP elliptiques semilinéaires faisant intervenir une nonlinéarité singulière. Dans ce contexte, à l'aide d'un argument de "scaling", on démontre un nouveau lemme de Hopf qui permet de contourner la perte de régularité des solutions près du bord. Le chapitre 3 concerne la version quasilinéaire du problème étudié dans le chapitre 2. Après avoir obtenu un lemme de Hopf pour ce type d'équations, nous démontrons la symétrie et la monotonie des solutions positives dans le demi-espace et dans les domaines bornés et convexe. Dans le chapitre 4, à l'aide des la méthode des hyperplans mobiles, nous démontrons la symétrie et la monotonie des solutions positives et singulières d'EDP semilinéaires (éventuellement singulières) dans des domaines bornés et non-bornés. Le cas quasilinéaire, qui est beaucoup plus délicat et technique, est traité dans le chapitre 5. Le chapitre 6 est consacré aux propriétés qualitatives des solutions positives singulières de systèmes elliptiques. On montre que les résultats obtenus au chapitre 4 sont encore vrais dans ce contexte. Dans le dernier chapitre (chapitre 7) nous démontrons la conjecture de Gibbons pour les solutions entières des EDP quasilinéaires singulières.

Here we mean that the solution u does not admit a smooth extension all over the whole space. Namely it is not possible to find ũ ∈ H 1 loc (R N ) with u ≡ ũ in R N \ Γ.

Here we mean that the solution (u1, ..., um) does not admit a smooth extension all over the whole space. Namely it is not possible to find ũi ∈ H 1 loc (R N ) with ui ≡ ũi in R N \ Γ, for some i = 1, ..., m.

As above, we mean that the solution (u, v) does not admit a smooth extension all over the whole space. Namely it is not possible to find (ũ, ṽ)∈ H 1 loc (R N ) × H 1 loc (R N ) with u ≡ ũ or v ≡ ṽ in R N \ Γ.

Nous voulons dire ici que la solution u n'admet pas une prolongement lisse dans tout l'espace. À savoir il n'est pas possible de trouver ũ ∈ H 1 loc (R N ) avec u ≡ ũ dans R N \ Γ.

Théorème 0.8.4. Soient p > 2 et u ∈ C 1 (Ω \ Γ) une solution du problème (0.8.4) et assumons que f est continue et localement lipschitzienne, avec f (s) > 0 pour s > 0, à savoir assumons (A 2 f ). Si Ω est convexe et symétrique par rapport à la direction x 1 , Γ est fermé avec Cap p (Γ) = 0, à savoir assumons (A 2 Γ ), et Γ ⊂ {x ∈ Ω :x 1 = 0},

nous voulons dire ici que la solution (u1, ..., um) n'admet pas un prolongement régulier a tout l'espace. À savoir il n'est pas possible de trouver ũi ∈ H 1 loc (R N ) avec ui ≡ ũi dans R N \ Γ, pour certains i = 1, ..., m.

Comme ci-dessus, nous voulons dire que la solution (u, v) n'admet pas un prolongement régulier a tout l'espace. À savoir il n'est pas possible de trouver (ũ, ṽ) ∈H 1 loc (R N ) × H 1 loc (R N ) avec u ≡ ũ ou v ≡ ṽ in R N \ Γ.

Note that the condition γ > N -2t holds true for r ≈ 1 and γ ≈ N -2 that we may assume with no loose of generality.

Here we mean that the solution (u1, ..., um) does not admit a smooth extension all over the whole space. Namely it is not possible to find ũi ∈ H 1 loc (R N ) with ui ≡ ũi in R N \ Γ, for some i = 1, ..., m.

As above, we mean that the solution (u, v) does not admit a smooth extension all over the whole space. Namely it is not possible to find (ũ, ṽ)∈ H 1 loc (R N ) × H 1 loc (R N ) with u ≡ ũ or v ≡ ṽ in R N \ Γ.

* -2 L 2 * (Σ λ ) +(1 -δ ij )C 2 j,S ûj 2 * -2 L 2 * (Σ λ ) Σ λ |∇w + i,λ | 2 dx(6.3.20) 

We also define the critical set Z ∇u by (7.2.5)

The first step in the proof of the monotonicity is to get a property concerning the local symmetry regions of the solution, namely any C ⊆ Σ λ such that u ≡ u λ in C.

Having in mind these notations we are able to prove the following:

Proposition 7.2.3. Under the assumption of Theorem 7.0.1, let us assume that u is a solution to (7.0.1) satisfying (7.0.3), such that (i) u is monotone non-decreasing in Σ λ and

Proof. By (7.0.3), given 0 < δ 0 < 1 there exists M 0 = M 0 (δ 0 ) > 0, with λ > -M 0 , such that u(x) = u(x , x N ) < -1 + δ 0 in {x N < -M 0 } and u λ (x) = u(x , 2λ -x N ) > 1 -δ 0 in {x N < -M 0 }. We fix δ 0 sufficiently small such that f (u) < -L in {x N < -M 0 }, for some L > 0. Arguing by contradiction, let us assume that there exists P 0 = (x 0 , x N,0 ) ∈ Σ λ \ Z f (u) such that u(P 0 ) = u λ (P 0 ). Let U 0 the connected component of Σ λ \ Z f (u) containing P 0 . By Theorem 7.1.3, since u(P 0 ) = u λ (P 0 ), we deduce that U 0 is a local symmetry region, i.e. u ≡ u λ in U 0 .

We notice that, by construction, u < u λ in Σ -M 0 , since u(x) < -1 + δ 0 and u λ (x) = u(x , 2λ -x N ) > 1 -δ 0 in Σ -M 0 . Since U 0 is an open set of Σ λ \ Z f (u) (and also of R N ) there exists 0 = 0 (P 0 ) > 0 such that (7.2.6) B 0 (P 0 ) ⊂ U 0 . and actually that the set {u = u(z 0 )} is a graph in the y-direction near the point z 0 . By our assumption we know that u x N (z 0 ) := u y (z 0 ) ≥ 0.

According to [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF][START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF] and (7.1.8), the linearized operator of (7.0.1) is well defined

for every ϕ ∈ C 1 c (Σ λ ). Moreover u y satisfies the linearized equation (7.1.9), i.e. (7.2.8) L u (u y , ϕ) = 0 ∀ϕ ∈ C 1 c (Σ λ ). Let us set z 0 = (z 0 , y 0 ). We have two possibilities: u y (z 0 ) = 0 or u y (z 0 ) > 0.

Claim: We show that the case u y (z 0 ) = 0 is not possible. If u y (z 0 ) = 0, then u y (x) ≡ 0 in all B ˆ (z 0 ) for some positive ˆ ; to prove this we use the fact that |∇u(z 0 )| = 0, u ∈ C 1,α and that Theorem 7.1.4 holds.

By construction of z 0 there exists ε 1 > 0 such that every point z ∈ S 1 := {(z 0 , t) ∈ U 0 : y 0 < t < y 0 + ε 1 } has the following properties:

(1) z ∈ U 0 , since the ball is sliding along the segment S 1 ;

(2) z ∈ ∂U 0 , since z 0 is the first contact point with ∂U 0 .

In particular, for every z ∈ S 1 we have (7.2.9)

Since |∇u(z 0 )| = 0 and u ∈ C 1,α , by Theorem 7.1.4 it follows that there exists 0 < ε 2 < ε 1 such that

Let us consider S 2 := {(z 0 , t) ∈ U 0 : y 0 < t < y 0 + ε 2 }; by definition S 2 ⊂ S 1 and every point of S 2 belongs also to Z f (u) , since u(z) = u(z 0 ) for every z ∈ S 2 and z 0 ∈ Z f (u) by our assumptions. But this gives a contradiction with (7.2.9).

From what we have seen above, we have |∇u(z 0 )| = 0 and hence there exists a ball B r (z 0 ) where |∇u(x)| = 0 for every x ∈ B r (z 0 ). By Theorem 7.1.2 it follows that u ≡ u λ in B r (z 0 ) namely u ≡ u λ in a neighborhood of the point z 0 ∈ ∂U 0 . Since u y (z 0 ) > 0 and N f is finite

and u y (x) > 0 in B r (z 0 ), as consequence, the set {u = u(z 0 )} is a graph in the y-direction in a neighborhood of the point z 0 . Now we have to distinguish two cases:

Define the sets

We observe that C is an open unbounded path-connected set (actually a deformed cylinder), see Figure 4. Since f (u(z 0 )) has the right sign, by Theorem 7.1.3 it follows that u ≡ u λ in C and this in contradiction with the uniform limit conditions (7.0.3). 

In this case the open ball B r (z 0 ) must intersect another connected component (i.e. ≡ U 0 ) of Σ λ \ Z f (u) , such that u ≡ u λ in a such component, see Figure 5. Here we used the fact that near the (new) first contact point, the corresponding level set is a graph in the ydirection. Now, it is clear that repeating a finite number of times the argument leading to the existence of the touching point z 0 , we can find a touching point z m such that

The contradiction then follows exactly as in Case 1.

so that ũm ∞ = u ∞ ≤ 1. By standard regularity theory, see [START_REF] Benedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF][START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], we have that ũm C 1,α loc (R N ) ≤ C. By Ascoli's Theorem, via a standard diagonal process, we have, up to subsequences ũm

for some 0 < α < α.

By uniform convergence and (7.3.1) it follows that

, since |∇ũ(0, xN )| ≥ , then there exists a ball B r (P 0 ) such that |∇ũ(x)| = 0 for every x ∈ B r (P 0 ). By Theorem 7.1.4, applied having in mind that |∇ũ(x)| = 0 in B r (P 0 ), it follows that ∂ η ũ(x) = 0 for every x ∈ B r (P 0 ). In particular

containing P 0 can not hold since Lemma 7.2.1. Hence we deduce (7.3.2).

Having in mind the previous lemma, now we are able to prove the monotonicity in a small cone of direction around η in the entire space.

Proposition 7.3.2. Under the assumption of Theorem 7.0.1, assume η ∈ S N -1

for every ν ∈ O η .

Proof. We fix δ > 0 and let

For simplicity of exposition we set

Our claim is to show that u - ν = 0 in A ∪ D. In order to do this we split the proof in two part.

Step 1. We show that u - ν = 0 in A. We set (7.3.4)

First of all we notice that ϕ belongs to W 1,p 0 (A(2R)). To see this, use the definition of ϕ R and note that by Lemma 7.2.4 and Lemma 7.3.1, it follows that u - ν = 0 on the hyperplanes |x N | = k, namely on ∂A.

According to [START_REF] Damascelli | Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations[END_REF][START_REF] Damascelli | Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations[END_REF], the linearized operator is well defined

for every ϕ ∈ C 1 c (R N ). Moreover it satisfies the following equation

Taking ϕ defined in (7.3.4) in the previous equation, we obtain

204 Gibbons' Conjecture for equations involving the p-Laplacian

Making some computations we obtain

Now it is possible to rewrite (7.3.8) as follows α(p -1)

(7.3.9)

Exploiting the weighted Young inequality we obtain α(p -1)

(7.3.10)
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Since u ν = (∇u, ν), where ν = 1, we have

where we used (7.1.18) and where Ĉ := 3 -p/σ ∇u p-1 ∞ . Exploiting the Young inequality with exponents (α + 1)/α and α + 1 we obtain α(p -1) 7.3.13) where ϑ := σ(3 -p)/α(p -1) and C := 2 Ĉ/α(α + 1)(p -1). Now we fix α > 0 such that α > N -1, σ > 0 sufficiently small such that ϑ < 2 -N and 206 Gibbons' Conjecture for equations involving the p-Laplacian finally R 0 > 0 such that Ĉ(α + 1)/αR α+1 α -L < 0. Having in mind all these fixed parameters let us define

It is easy to see that L(R) ≤ CR N . By (7.3.13) we deduce that holds

for every R ≥ R 0 . By applying Lemma 2.1 in [START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF] it follows that L(R) = 0 for all R ≥ R 0 . Hence passing to the limit we obtain that

Let us define the cylinder

We set (7.3.15)

where β > 1. First of all we notice that ψ belongs to W 1,p 0 (C(2R)) by (7.3.14) and since u - ν = 0 on ∂A (as above, see Lemma 7.2.4 and Lemma 7.3.1). Recalling (7.3.5) we have also in this case that (7.3.16)

Taking ψ defined in (7.3.15) in the previous equation, we obtain

(7.3.17)
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Repeating verbatim the same argument of (7.3.8), (7.3.9) and (7.3.10), starting by (7.3.17) we obtain

Since u ν = (∇u, ν) and |∇u| ≤ in C(2R) we have

where ϑ := σ(3 -p)/β(p -1), Ĉ := (3 -p)/σβ(p -1) and

Exploiting the Young inequality with exponents (β + 1)/β and β + 1 we obtain .3.20) 208 Gibbons' Conjecture for equations involving the p-Laplacian (7.3.21) with CR := Ĉ p-1 (β + 1)/βR β+1 β + C. We point out that in (7.3.21) we used a Poincaré inequality in the set [-k, k] (denoting with C p the associated constant) together with the fact that ψ R = ψ R (x ). By (7.3.21) we obtain

Finally we choose β > 0 such that β > N -2, ϑ > 0 sufficiently small such that ϑ < 2 -N +1 and > 0 sufficently small such that

Having in mind all these fixed parameters let us define
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It is easy to see that L(R) ≤ CR N -1 . By (7.3.22) (up to a redefining of the constant involved) we deduce that

holds for every R > 0. By applying Lemma 2.1 in [START_REF] Farina | Monotonicity and one-dimensional symmetry for solutions of -∆pu = f (u) in half-spaces[END_REF] it follows that L(R) = 0 for all R > 0. Since p < 2, passing to the limit in (7.3.23), we deduce that for a.e. x ∈ D (7.3.24) either u - ν (x) = 0, or |∇u - ν (x)| = 0. This actually implies that u - ν (x) = 0 in D. Indeed let us suppose that would exist a point P ∈ D such that u - ν (P ) = 0. Let us consider the connected component U of D \ {x ∈ D : u - ν (x) = 0} containing P . By the continuity of u - ν , it follows that u - ν = 0 on the boundary ∂U. On the other hand u - ν must be constant in U (since by (7.3.24) |∇u - ν | = 0 there) .This is a contradiction.

By this two step we deduce that u ν ≥ 0 in R N . Finally by Lemma 7.2.1 we get (7.3.3).

Proof of Theorem 7.0.1. Using Proposition 7.2.2 we get that the solution is monotone increasing in the y-direction and this implies that ∂ y u ≥ 0 in R N . In particular we have ∂ y u > 0 in R N \ Z f (u) by (7.2.3). By Proposition 7.3.2, actually we obtain that the solution is increasing in a cone of directions close to the y-direction. This allows us to show that in fact, for i = 1, 2, • • • , N -1, ∂ x i u = 0 in R N , just exploiting the arguments in [START_REF] Farina | Symmetry for solutions of semilinear elliptic equations in R N and related conjectures[END_REF][START_REF] Farina | Monotonicity and rigidity of solutions to some elliptic systems with uniforms limits[END_REF][START_REF] Farina | Monotonicity and 1-dimensional symmetry for solutions of an elliptic system arising in Bose-Einstein condensation[END_REF]. We provide the details for the sake completeness. Let Ω be the set of the directions η ∈ S N -1 By Höpf's Lemma we have u (β) > 0, but this implies that {u = u(b)} = {b} and so u (b) > 0, that is in contradiction with our initial assumption. Hence we deduce that ∂ y u > 0 in R N , concluding the proof.