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Introduction

In this thesis we study qualitative properties of some semilinear and
quasilinear elliptic equations. In particular we deal with weak solutions of

(0.0.1) — Apu = f(u) in Q,
where Q is any domain in RV, N > 2. Let u € C?(Q); we define the
p-Laplace operator as follows:
Apu = div(|VulP~2Vu)
(0.0.2) " Ou du  d*u
= p—4 2A -9 s 2

4,j=1

where (0.0.2) is defined in the set {x € Q : Vu(z) # 0} for every 1 < p < 2,
and in the whole domain 2 for every 2 < p < +00. The hypothesis on the
nonlinearity will be always specified in all the chapters, but the reader could
think that f is a locally Lipschitz continuous function. We have to remark
that the p-Laplace operator becomes that classical Laplacian when p = 2,
ie.

N, 524

P ox?

In this case, sometimes, we can consider classical solutions for equation
(0.0.1). When p # 2 the situation is completely different and it is well
known that, since the p-Laplace operator is singular or degenerate elliptic
(respectively if 1 < p < 2 or p > 2), solutions of (0.0.1) are generally of class
Che, with a < 1 (see [46, ]) and have to be considered only in the weak
sense. More precisely, we say that u € WHP(Q) solves (0.0.1) if and only if

(0.0.3) / \Vu|P~2(Vu, Vo) dr = / fwpdr VYo e C®(Q).
Q Q
We obtain (0.0.3) by applying divergence theorem to the following:
/ —div(|VulP~2Vu)p dr = / fu)pdx Vo e C°(Q).
Q Q

Now we consider the following problem with Dirichlet boundary conditions:

—Apu = f(u) in
u=20 on 0N

Aoy = div(Vu) = Au =

(0.0.4)

where Q is a bounded smooth domain of RY, with N > 2 as before, and
f is assumed to be locally Lipschitz continuous. A solution u to (0.0.4)
can be defined e.g. assuming that v € WO1 P(Q) in the weak distributional
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sense. This is also the space where it is natural to prove the existence of the
solutions under suitable assumptions.

Now it is important to observe that, in the weak formulation (0.0.3), the
test function ¢ belongs to CZ°(€2), but by density arguments it is possible
to show that also ¢ € VVO1 P(Q) it is enough. In fact by the definition of
W, (Q), for every ¢ € W&’p(Q) there exists {¢n,} € C2°(Q) such that

en —> @ in WyP(Q),

as n — +oo. Hence taking ¢, as test functions in (0.0.3), for every n, we
have

[Vl (0T do = [ fuonds Vo e C2(@),
Q Q
We want to show
/ \Vu|P~2(Vu, Ve,) dx —>/ |Vu|P~2(Vu, V) dz,
0 Q

as n goes to +00. Subtracting the left hand side of (0.0.3) and the left hand
side of (0.0.3) with ¢,, as test function, we obtain

/Q [[VulP~2(Vu, V(en — ¢))| dz

< /Q VPV (¢ — )| da

<(/ rwp)p;l ([ vt —0P)" "5

where in the last line we used Holder inequality and the Dominated Con-
vergence Theorem.
Let us denote g := |Vu[P~2. In the set of critical points

(0.0.5) Z,:={x € Q| Vu(x) =0},

the equation is degenerate for p > 2 (i.e. ¢ =~ 0) and singular for 1 < p < 2
(i.e. o=~ 400). If 0 < p(z) < C all the classical result are true (see e.g [70]),
hence u € C?(Q\ Z,). If p ~ 0 or ¢ ~ +0o classical results are not true. In
particular, in Chapter 1, we will prove the following result on the regularity
of the second derivatives of solutions to problem (0.0.4):

D=

PROPOSITION 0.0.1. Letu € CY(Q), u > 0, be a weak solution to problem
(0.0.4). Assume that f is locally Lipschitz continuous. Assume that Q is a
bounded and smooth domain of RN. Then

VulP~2 [V, |?
(0.0.6) / [Vul” | “5’ da < C,
O\fwi=0} [Y — [V |ui

where 0 < B <1,y < N—=2(y=0if N=2),1<p< +o00 and the positive
constant C does not depend on y. In particular, we have

p—2—p D2 2 5
(0.0.7) / [Vl D% 4 < &
Q\{Vu=0} ly — x|

for a positive constant C not depending on y.
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Thanks to the previous result, it is possible to show the following summa-
bility property of |Vu|, whose proof can be found in Chapter 1:

THEOREM 0.0.2. Let u € C1(Q), u > 0, be a weak solution of (0.0.4)
and assume, furthermore, that f(s) > 0 for any s > 0. Then, there exists a
positive constant C, independent of y, such that

1 1
0.0.8 de < C
(0.0.8) /Q Va7 [z — y[r T =

where 0 <r <1 andy < N =2 for N >3 (y=04if N =2). In particular
the critical set Z, has zero Lebesgue measure.

0.1. Qualitative properties of solutions and the moving planes
method

Qualitative properties of solutions to elliptic equations can be inter-
preted, in an extremely broad sense, to include every property of solutions.
In this section we are going to focus on geometric properties of solutions.
Boundary conditions play an important role in the qualitative behaviour
of solutions. Qualitative properties of solutions are closely related to the
existence of solution to elliptic PDEs; in fact, it seems obvious that exis-
tence of solutions provides the basis for the study of qualitative properties.
On the other hand, searching for solutions with particular properties could
provide clues for existence. Systematic studies of qualitative properties of
solutions to general nonlinear elliptic equations or systems essentially began
in the late 1970s, although some nonlinear elliptic equations (such as the
Lane-Emden equation) actually go back to the 19th century. It should be
noted, however, that earlier works in this direction on linear elliptic equa-
tions, such as symmetrization or nodal properties of eigenfunctions, have
had their consequences in nonlinear equations. Symmetry and monotoncity
remain an important topic in modern theory of nonlinear partial differential
equations.

The moving planes method is the most important technique that have
been used in recent years to establish some qualitative properties of positive
solutions of nonlinear elliptic equations like symmetry and monotonicity. For
instance, it is used to prove monotonicity in, say, the xi-direction of scalar
solutions of nonlinear second order elliptic equations in domains © in RY.
The essential ingredient is the maximum principle, that in the semilinear
case it is equivalent to the comparison principle. This method compares
values of the solution of the equation at two different points.

The moving planes method goes back to A. D. Alexandrov [1], in his
study of surfaces of constant mean curvature, and to J. Serrin [111] that
introduced the technique in the context of elliptic PDEs, in the study of
overdetermined problems. After some years, B. Gidas, W. N. Ni and L.
Nirenberg, in [68], adapted this method to prove monotonicity of positive
solutions vanishing on 92 and, as a corollary, symmetry; in [69] the authors
extended these techniques to equations in all RY. We refer also the reader
to some other relevant papers [9, 8, 10, 12, 21, 22, 33, 35, 36, 59, 60,

y , , ]. In all of these papers the maximum principle plays,
as we said, the crucial role, but the papers had to rely on many forms
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of the maximum principle. These included also the Hopf’s Lemma at the
boundary. The classical version of maximum and comparison principles and
of the Hopf’s Lemma will be presented in Chapter 1.

Now, we want just to use the moving planes method in order to state
the typical results that it is possible to show with this technique, in a very
simple framework; to do this, let us consider the following semilinear elliptic
problem

—Au = f(u) in
(0.1.1) u>0 in Q
u=0 on 0N

where € is a bounded Lipschitz domain of RY, with N > 2 and f is a locally
Lipschitz continuous function.
We need to fix some notations. For a real number \ we set

(0.1.2) Q/\:{£U€Q:$1 <)\}
(0.1.3) xy = Ra(z) = 2A —x1,22,...,2p)
which is the reflection through the hyperplane
(0.1.4) Ty = {x1 = A\}.
Also let

1. = inf 7.
(0.1.5) a = inf z;

Finally we set
(0.1.6) ux(z) = u(zy) .

We observe that, since problem (0.1.1) is invariant up to translations and
rotations, uy defined in (0.1.6) is also a solution to (0.1.1).
Let us now state the main result

THEOREM 0.1.1 ([12]). Let u € C*(2) N C(Q) be a solution to (0.1.1).
Assume that f is a locally Lipschitz contiunous function and that €2 is convex
in the x1-direction and symmetric with respect to the hyperplane {x1 = 0}.
Then it follows that u is symmetric with respect to the hyperplane {z1 = 0}
and increasing in the x1-direction in QN {x; < 0}, with

Uy, >0 in QN {x; <0}.
PROOF. Let us define
Ao ={a<A<0:u<wu in Q forall t € (a, \]}.

The aim of the moving planes procedure is to show that sup Ag = 0; once we
have this, we obtain automatically monotonicity for the solution v and after
that, performing the moving planes in the opposite direction, we obtain also
the symmetry for u. To start with the moving planes method, we have to
prove that A # ().

Step 1: Take a < A < a+ o with o > 0 small. In particular, we first assume
that o > 0 is sufficiently small so that [Q)] < 0, for some small § > 0.
Noticing that u = u) on Ty and u < uy on 92y \ T) by the Dirichlet datum,
i.e. u < uy on 0Dy, it follows, by the weak comparison principle in small
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domains (see Theorem 1.2.1), that u < uy in Qy, hence Ag # 0 (see Figure

1).

|2, <8

Ty

FI1GURE 1. Step 1 in the moving planes method.

Step 2: Now we can set

)\0 = Sup Ao.
As remarked above, to prove our result we have to show that Ag = 0. To do
this we assume that A\g < 0 and we reach a contradiction by proving that
U < Uy in Q) 4y for any 0 < v < ¥ for some small 7 > 0. By continuity
we know that u < uy, in Q,,. By the strong comparison principle, noticing
that v < uy, on 0€Q),, we deduce that v < uy, in 2),. Therefore, given a
compact set K C 1,, by uniform continuity we can ensure that u < uy,4,
in K for any 0 < v < v for ¥ > 0 small. So by construction it results that
u < Upg4p on O(Qyy4r \ K) for any 0 < v < v for v > 0 small. For K
large and v small by the weak comparison principle in small domains (see
Theorem 1.2.1) we have |Qy,4, \ K| is small and therefore u < wuy,4, in
Do+r \ K and so u < uy,yp in Q2,4+, But this is a contradiction with the
definition of A\g. Then \g = 0 (see Figure 2).

o

Qv

i

FIGURE 2. Step 2 in the moving planes method.
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Step 3: Since the moving planes procedure can be performed in the same way
but in the opposite direction, then this proves the desired symmetry result.
The fact that the solution is increasing in the xj-direction in {z; < 0} is
implicit in the moving planes procedure. This provides u,, > 0in {21 > 0}.
Then wu,, > 0 by the strong maximum principle.

a

As a consequence we have:

COROLLARY 0.1.2 ([12]). Under the assumption of Theorem 0.1.1 if
Q = Bg(0) for any R > 0, then u is radially symmetric and monotone
decreasing about the origin.

We just presented the classical version of the moving planes method for
semilinear elliptic equation. As we said before, in the case p = 2 several
results have been obtained starting by the celebrated paper of B. Gidas, W.
N. Ni and L. Nirenberg [68]. This paper had a big impact not only in virtue
of the several monotonicity and symmetry results that it contains, but also
because it brought to attention the moving planes method which, since then,
has been largely used in many different problems.

The situation is completely different when p # 2 and there are less
results about monotonicity and symmetry of solutions to quasilinear elliptic
problem. Let us consider

—Apu = f(u) in Q
(0.1.7) u>0 in Q
u =0 on Of)

where € is a bounded Lipschitz domain of RY, with N > 2, 1 < p < 400
and f is a locally Lipschitz continuous function.

In this case, as remarked before, the solutions can only be considered
in a weak sense. Anyway, this is not a difficulty because the moving planes
method can be adapted to weak solutions of strictly elliptic problems in
divergence form (see [32, 38]). The real difficulty with problem (0.1.7), is
that the p-Laplacian operator is degenerate in the critical points of the so-
lutions, so that comparison principles, which could substitute the maximum
principles in order to use the moving planes method when the operator is
not linear, are not available in the same form as for p = 2. Actually, coun-
terexamples both to the validity of comparison principles and to symmetry
results are available (see [73] and [18]).

A first step towards extending the moving planes method to solutions of
problems involving the p-Laplacian operator has been done by L. Damascelli
in [33]. In this paper the author mainly proves some weak and strong
comparison principles for solutions of differential inequalities involving the
p-Laplacian. Using these principles he adapts the moving planes method
to solutions of (0.1.7) getting some monotonicity and symmetry results in
the case 1 < p < 2. Although the comparison principles of [33] are quite
powerful in this situation, the symmetry result is not complete and relies on
the assumption that the set of the critical points of u does not disconnect
the caps which are constructed by the moving plane method. Hence, when
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p > 2, the results contained in [33] are not enough in order to adapt the
moving planes method. Some years later, L. Damascelli and B. Sciunzi
in [37, 36] proved general versions of the weak comparison principle (see
Theorem 1.2.5) and of the strong comparison principle (see Theorem 1.5.3)
for solution to (0.1.7), that it was sufficient to extend the technique to every
D.

The analogous result of Theorem 0.1.1, in the quasilinear setting, is given
by the following;:

THEOREM 0.1.3 ([36]). Let u € C*(2) N C(Q) be a weak solution to
(0.1.7), with 1 < p < +00. Assume that f is a locally Lipschitz contiunous
function such that f(s) > 0 for s > 0 and that € is convez in the x1-direction
and symmetric with respect to the hyperplane {x1 = 0}. Then it follows that
u s symmetric with respect to the hyperplane {x1 = 0} and increasing in
the x1-direction in QN {xy < 0}, with

Uy, >0 in QN{x; <0}.

Moreover, if Q@ = Bg(0), then u is radially symmetric and radially decreas-
mg.

The proof of Theorem 0.1.3 is similar to the semilinear case (see Theorem
0.1.1), but the classical maximum principles, that it is equivalent to the
comparison principle in the semilinear case, are replaced by comparison
principles by L. Damascelli and B. Sciunzi [36, 37] (see Theorem 1.2.5
and 1.5.3) and the classical Poincaré inequality is replaced by a weighted
Poincaré inequality (see Theorem 1.1.4).

The moving planes method is a technique very powerful that can be also
adapted for quasilinear elliptic equations in unbounded domains. In the case
of unbounded domains the main examples, arising from many applications,
are provided by the whole space RY and by the half-space Rf . For the case
of the whole space with p = 2, where radial symmetry of the solutions is
expected, we refer to [21, 68, 69]. We refer the readers to [8, 9, 10, 34, 38,

, 56] for results concerning monotonicity of the solutions in half-spaces,
in the non-degenerate case.

The case of p-Laplace equations in unbounded domains is really harder to
study. Let us only say that, the use of weighted Sobolev spaces is necessary in
the case p > 2 and it requires the use of a weighted Poincaré type inequality
with weight o = |Vu|P~2 (see Section 1.1). The latter involves constants that
may blow up when the solution approaches zero that may happen also for
positive solutions in unbounded domains. Hence, the lack of compactness
plays an important role.

When considering the case of the half-space Rﬂf , the application of the
moving planes technique is much more delicate, since weak comparison prin-
ciples in small domains have to be substituted by weak comparison principles
in narrow unbounded domains (see Theorem 1.3.1, Theorem 1.3.3 and The-
orem 1.3.4). Also the strong comparison principle does not apply in a simple
way as in the case when bounded domains are considered. In the semilin-
ear case p = 2 many arguments exploited in the literature are very much
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related to the linear and nondegenerate nature of the operator, so that it
is not possible to extend these arguments to the case of equations involving
nonlinear degenerate operators.

Considering the p-Laplace operator and problems in half-spaces, first
results have been obtained in the singular case 1 < p < 2 in [58, 59],
where positive locally Lipschitz continuous nonlinearities are considered. A
partial answer in the more difficult degenerate case p > 2 was obtained in
[61], where power-like nonlinearities are considered under the restriction
2 < p < 3. Some years later, the restriction 2 < p < 3 was removed in
[60] and, moreover, the authors considered a larger class of nonlinearities
(in particular positive nonlinearities that are superlinear at zero).

In the case of the entire space RV, for p = 2, the application of the
moving planes method is quite involved, since it is needed the behaviour of
the solution at infinity. In [21], L. Caffarelli, B. Gidas and J. Spruck proved,
thanks to the moving planes method and to the use of Kelvin transform, that
any positive solution of (0.1.1) with f(¢) =~ t%, is radially symmetric and
monotone decreasing about some point of RY. We refer also to the seminal
paper of B. Gidas, W. M. Ni and L. Nirenberg [69] for results concerning
symmetry and monotonicity of solutions in RY, but with extra-assumption
on the behaviour of solutions at infinity.

The situation for p # 2 and © = RY is much more complicated; the
operator is not linear and, as before, one needs of comparison principle in
unbounded domains (that are not equivalent to maximum principle). A first
result regarding qualitative properties of solutions for quasilinear elliptic
equations in the entire space is due to J. Serrin and H. Zou [112]. In this
paper the authors need of an extra assumption on the decay of the solution at

infinity and on the critical set. The nonlinear version of the result obtained
N(p=1)+p

by L. Caffarelli, B. Gidas and J. Spruck in [21], i.e. when f(t) = ¢ N—» ,
was not so easy to obtain since the Kelvin transform for p # 2 does not
work (see e.g. [87]) and also because it is not possible to start with the
moving planes procedure without any a priori assumption on the decay of
the solutions at infinity. This problem was solved by B. Sciunzi in [107];
the argument is based on some a priori estimates proved by J. Vetois [128&],
on a lower bound for the decay rate of |Vu|, the moving planes technique,
Hardy’s inequality and a weighted Poincaré-type inequality.

To the best of our knowledge all the symmetry results presented in this
section for equations involving the p-Laplace operator in RY or in Rf , with
p # 2, treated just the case of positive nonlinearity. In Chapter 7 it will be
purposed a nice variant of the moving planes method that works for a special
class of changing sign nonlinearities and will be very helpful in the solution of
the quasilinear version of Gibbons’ conjecture for (2N +2)/(N+2) <p < 2.

0.2. Ho6pf’s boundary lemma for singular elliptic equations

Starting from the seminal paper [31], singular semilinear elliptic equa-
tions have been studied from many point of view. We just quoted here the
pa‘pers [ 9 9 9 9 9 9 9 9 9 9 9 9 9 ] Wthh are

somehow related to the results contained in this thesis. A crucial topic in the
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study of singular semilinear elliptic equations is the study of the behaviour
of the solutions near the boundary, namely where the solutions actually ex-
hibit a lack of regularity. In particular, the fact that solutions are not C!
up to the boundary prevents the validity of the Hopf boundary lemma, see
[15, 76, |. We address this issue and provide a generalized version of the
Hopf boundary lemma, in Chapter 2 (see also [24]) for semilinear singular
elliptic equations. In particular let us consider the following problem:

1
—Au:a—i—f(u) in Q
(0.2.1) u >0 in
u=20 on 0f2,

where v > 1, Q is a C*>® bounded domain of RY with 0 < a < 1, N > 1 and
f:Q — R locally Lipschitz continuous.

It is well known that generally solutions to problem (0.2.1) are not
smooth up to the boundary. It was in fact proved in [82] that solutions
are not in Hg(Q) at least when v > 3. Therefore, having in mind the natu-
ral regularity behaviour of the solutions (see [31]) we let u € C?(Q) N C(Q).
The equation is well defined in the interior of the domain in the classical
sense and its weak distributional formulation is

(0.2.2) /(Vu, V) dz :/ L dx —i—/ fu)pdx Vo € C°(Q).
Q o uY Q
Now, let us define the concept of inward pointing normal

DEFINITION 0.2.1. Let Q@ C RY be a bounded C*® domain. Let I5(09) be
a neighborhood of 0Q) with the unique nearest point property (see e.g. [66]).
Hence for every x € I5(0N)) there exists a unique point & € O0S) such that
|x — 2| = dist(xz,00). We define the inward-pointing normal as

(0.2.3) n(x) ==

T — I

v — 2|

Having in mind these notations, we are now ready to state the main result
of Chapter 2 (see also [24]):

_THEOREM 0.2.2 (Hopf type boundary lemma, [24]). Let u € C**(2) N

C(§2) be a positive solution of problem (0.2.1). Then there exists a neigh-
borhood I5(0SY) of OQ such that

(0.2.4) 8V(w)u >0 Vo e L;(@Q)

provided that (v(z),n(x)) > 0 uniformly with respect to x € Is(0S2), namely
provided that (v(z),n(x)) > B> 0 for some 5> 0 for every x € I5(09).

The proof of this result is based on a scaling argument near the boundary;,
which leads to the study of a limiting problem in the half-space (see problem
(2.0.5)) and obeys to suitable a priori estimates. Moreover, for this limiting
problem, we provide a classification result that is crucial for our technique,
and may also have an independent interest (see Theorem 2.0.3).

The technique of E. Hopf [76] (see also [70]) has been already developed
and improved also in the quasilinear setting. We refer the readers to [103]
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and Chapter 1 (see also [127]). At some time, during the PhD experience,
it was a natural question to understand if it holds an analogous result to
Theorem 0.2.3 for problem (0.2.1) in the quasilinear setting. Hence, let us
consider:

—Apu = % + f(u) inQ

u=20 on 0f)

where p > 1, v > 1, Q is a C>® bounded domain of RY with N > 1 and
f: Q2 — R locally Lipschitz continuous.

Since the p-Laplace operator is degenerate or singular, a solution u €
C12(Q) N C(Q) of problem (0.2.5) has to be understood in the weak sense:
(0.2.6)

/ |Vu|P~2(Vu, Vo) dz = / L iz +/ f(u)pdx Vo € C°(Q).
Q Qu” Q
In collaboration with B. Sciunzi (see [52]), we obtained the following:

_THEOREM 0.2.3 (Hopf type boundary lemma, [52]). Let u € CH*(92) N

C(Q2) be a positive solution to (0.2.5). Then, for any B > 0, there exists a
neighborhood Is(0Y) of OS2, such that

(0.2.7) a,/($)u >0 Va e Ig(aQ)
whenever v(z) € RY with ||v(z)|| = 1 and (v(z),n(z)) > B.

The proof of this result is going to be presented in Chapter 3. Never-
theless the proof of Theorem 0.2.3, namely the proof of the Hopf lemma in
the case when it appears the singular term =7, cannot be carried out in
the standard way mainly because the solutions are not of class C! up to the
boundary. More precisely the proofs in [70, 76, , | has the common
feature of basing on the comparison of the solution with subsolutions that
have a known behaviour on the boundary. This approach, with some diffi-
culty to take into account, can be exploited also in the singular case since
t~7 has the right monotonicity behaviour. This actually leads to control the
behaviour of the solution near the boundary with a comparison based on the
distance function. This is, in fact, also behind Theorem 3.3.2 that gives a
Lazer and Mckenna type result [82]. Although some of the underlying ideas
in our approach have a common flavour with the ones exploited in [24] and
in Chapter 2, the proofs that we exploit in Chapter 3 are new and adapted
to the degenerate nonlinear nature of the p-laplacian.

0.3. Qualitative properties of singular solutions to some elliptic
problems

The aim of Chapter 4 is the study of the following singular semilinear
elliptic problem:
—Au = f(z,u) in Q\T
(0.3.1) u>0 in Q\T
u=20 on Of)
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where Q is a bounded smooth domain of RY with N > 2 which is convex
in the x1-direction and symmetric with respect to the hyperplane {x; = 0}.
The solution has a possible singularity on the critical set I' C 2 and thus is
understood in the following sense: u € H. (Q\T)NC(Q\T) and

(0.3.2) /Q(Vu, Vo)de = /Qf(x,u)cp dx Vo e CHOQ\T).

The source term f(x,u) is assumed to satisfy
(Ir) We say that f fulfills the condition (I7) if f: Q\T x (0, +00) = R
is a continuous function such that for 0 <t < s < M and for any
compact set K C 2\ T, it holds

f(z,s) — f(z,t) < C(K,M)(s —t) forany x € K,

where C(K, M) is a positive constant depending on K and M.
Furthermore f(-,s) is non-decreasing in the xj-direction in N
{z1 < 0} and symmetric with respect to the hyperplane {z; = 0}.

In particular, this allows us to consider equations involving Hardy-Leray
type potentials, see [122].
Now we state the first main result of Chapter 4:

THEOREM 0.3.1. Let Q) be a convexr domain which is symmetric with
respect to the hyperplane {x1 = 0} and let v € H. (Q\T)NC(Q\T) be
a solution to (0.3.1). Assume that f fulfills (If). Assume also that I" is a
point if N = 2 while T" is closed and such that

CapZ(F) = 07

RN
if N > 3. Then, if I C {x1 = 0}, it follows that u is symmetric with
respect to the hyperplane {x1 = 0} and increasing in the xi-direction in
QN {x; <0}. Furthermore

Ug, >0 in QN{x; <0}.

We want to remark that in the work of B. Sciunzi [110], the author
has been considered the singular set I' contained in a smooth (N — 2)-
dimensional sub-manifold of the hyperplane {z; = 0} if N > 2, while it is a
point in dimension two. With the same technique, developed in | |, more
general problems could be considered, e.g. cases when the critical set has
zero capacity. It is also clear that, if I' is not contained in any symmetry
hyperplane of the domain, then with our technique it could be possible in
any case to carry out the moving planes procedure until the hyperplane
touch the critical set. This is optimal somehow, since it is implicit in the
moving planes technique the monotonicity of the solution and solutions in
general change their slope near the critical set. This actually shows that
the moving planes procedure cannot go beyond the critical set. It is also
worth emphasizing that Theorem 0.3.1 for problem (0.3.1) is still true if the
Laplace operator Au is replaced by div(A(z)Vu) for some positive definite
matrix A(z) = A(xg,...,z,) with bounded continuous coefficients. In this
case all the proofs can be repeated verbatim and no Holder’s continuous
regularity of the coefficients is required also in dimension two.
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First results regarding the applicability of the moving planes procedure

to the case of singular solutions go back to [22] (see also [121]) where the
case when the singular set is a single point is considered. We follow and
improve here the technique in [110], where the case of a smooth (N —

2)-dimensional singular set was considered in the case of locally Lipschitz
continuous nonlinearity. Let us mention that the technique introduced in
[110] also works in the nonlocal context (see [91]).

On the other hand, in the case I' = (), symmetry and monotonicity properties
of solutions to semilinear elliptic problems involving singular nonlinearities,
have been studied in [25, 26]. Also in this direction our result is new
and more general. In fact, while in [25, 26] it is necessary to restrict the
attention to problems of the form (0.2.1), here we only need to consider
nonlinearities that are locally Lipschitz continuous from above. Actually,
all the nonlinearities of the form

f(z,8) = ai(z1)f1(s) + fa(s)

where f; is a decreasing continuous function in (0, +00) and non-negative,
fa() is locally Lipschitz continuous in [0, +00) and a; € C°(R), a; is non-
negative, even and non-decreasing for x1 < 0, satisfy our assumptions.

The technique, as shown in [110], can be applied to study singular so-
lutions to the following Sobolev critical equation in RN, N > 3,

0.3.3
(03.3) u>0 in RV\T.

{—Au =471 in RNV\T

In [110] it was considered the case of a closed critical set I' contained in a
compact smooth submanifold of dimension d < N — 2 and a summability
property of the solution at infinity was imposed (see also [121] for the special
case in which the singular set I' is reduced to a single point). In Chapter 4
we remove both these restrictions and we prove the following:

THEOREM 0.3.2. Let N > 3 and let u € H} (RN \T) be a solution to
(0.3.3). Assume that the solution u has a non-removable' singularity in the

singular set T, where I" is a closed and proper subset of {x1 = 0} such that

Cap,(I') = 0.
RN

Then, u is symmetric with respect to the hyperplane {x1 = 0}.
The same conclusion is true if the hyperplane {x; = 0} is replaced by any
affine hyperplane.

The results obtained in Chapter 4 in the semilinear case, in particular
the once involving bounded domains can be extended in a non trivial way to
the case of quasilinear elliptic equations; this is the main topic of Chapter

Here we mean that the solution u does not admit a smooth extension all over the
whole space. Namely it is not possible to find @ € Hj.(RY) with v = @ in RY \ T.
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5. Now, let us consider the problem

—Apu = f(u) inQ\T
(0.3.4) u>0 in Q\T
u=20 on 052,

in a bounded smooth domain Q C RY and p > 1. The solution « has a
possible singularity on the critical set I' and in fact we shall only assume
that u is of class C! far from the critical set. Therefore the equation is
understood as in the following:

DEFINITION 0.3.3. We say that u € C*(Q\T) is a solution to (0.3.4) if
u=0 on 0 and

(0.3.5) /Q \Vu|P~2(Vu, Vo) dr = /Qf(u)gpdx Yo e CHQ\T).

The purpose of Chapter 5 (see also [51]) is to investigate symmetry and
monotonicity properties of the solutions when the domain is assumed to
have symmetry properties. This issue is well understood in the semilinear
case p = 2 as explained before.

The moving planes procedure for quasilinear elliptic problems, as remarked
in Section 0.1, has been adapted when I' = (). However, the techniques devel-
oped in Chapter 4 and described above cannot be applied straightforwardly
manly for two reasons. First of all the technique developed in Chapter 4
(see also [50, ]), that works the case p = 2, is strongly based on a homo-
geneity argument that fails for p # 2. Furthermore, since the gradient of the
solution may blows up near the critical set, then the equation may exhibit
both a degenerate and a singular nature at the same time. This causes, in
particular, that it is no longer true that the case 1 < p < 2 allows to get
stronger results in a easier way, as it is in the case I' = ().

Now we list all the assumptions on the singular set I' and on the non-
linearity f in the different cases 1 < p < 2 and p > 2:

AL). For 1 < p < 2 we assume that f is locally Lipschitz continuous
f
so that, for any 0 < t,s < M, there exists a positive constant
Ky = K§(M) such that

[f(s) = FO)] < Kyls — 1.
Moreover f(s) >0 for s >0 and

o f@)
i S = 1€ (0.400).
for some q € R such that p—1 < q < p*—1, where p* = Np/(N —p).
(A?c) For p > 2 we only assume that f is locally Lipschitz continuous so
that, for 0 <t,s < M there exists a positive constant Ky = K¢(M)

such that
|f(s) = fF(O)] < Kyls —t].

Furthermore f(s) >0 for s > 0.
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(AL). For 1 < p < 2 and N = 2 we assume that I' = {0}, while for
1 <p<2andN >2 we assume that T C M for some compact C?
submanifold M of dimension m < N — k, with k > %

(A3). For2 <p< N and N > 2, we assume that T closed and such that

Cap,(T') = 0.

We prefer to start the presentation of our results, that we prove in Chap-
ter 5, with the case p > 2. We have the following:

THEOREM 0.3.4. Let p > 2 and let u € C1(Q\T) be a solution to (0.3.4)
and assume that f is locally Lipschitz continuous with f(s) > 0 for s > 0,
namely assume (A? ). If Q is conver and symmetric with respect to the

w1-direction, T' is closed with Cap,(T') = 0, namely let us assume (AZ), and
Frc{zreQ: x =0}

then it follows that u is symmetric with respect to the hyperplane {z1 = 0}
and increasing in the x1-direction in QN {x1 < 0}.

Although the technique that we are going to develop in the proof of
Theorem 0.3.4 works for any p > 2, the result is stated for 2 < p < N since
there are no sets of zero p-capacity when p > N.

Surprisingly the case 1 < p < 2 presents more difficulties related to the fact
that, as already remarked, the operator may degenerate near the critical set
even if p < 2. We will therefore need an accurate analysis on the behaviour
of the gradient of the solution near I'. We carry out such analysis exploiting
the results of [100] (therefore we shall require a growth assumption on the
nonlinearity) and a blow up argument. The result is the following:

THEOREM 0.3.5. Let 1 < p < 2 and let u € CY(Q\T) be a solution to
(0.3.4) and assume that f is locally Lipschitz continuous with f(s) > 0 for
s > 0 and has subcritical growth, namely let us assume (A}) Assume that
I is closed and that T' = {0} for N =2, while ' C M for some compact C*?
submanifold M of dimension m < N — k, with k > % for N > 2, see (AL).
Then, if Q is convex and symmetric with respect to the x1-direction and

Fc{zeQ: x =0},

it follows that u is symmetric with respect to the hyperplane {x; = 0} and
increasing in the x1-direction in QN {x; < 0}.

The aim of Chapter 6 is to generalize all the results obtained in Chapter
4 to the case of semilinear cooperative elliptic systems. In particular, we
investigate symmetry and monotonicity properties of singular solutions to
some semilinear elliptic systems in such a way to find a generalization of the
results presented in Chapter 4. In the first part we consider the following
semilinear elliptic system

—Au; = fi(ug, ... uy) in Q\T
(0.3.6) w >0 in Q\T
u; =0 on Of)
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where  is a bounded smooth domain of RY with N > 2 and i =1,....m
(m > 2). The technique which is mostly used in this chapter is the well
known moving planes method. For simplicity of exposition we assume di-
rectly in all the Chapter 6 that ) is a convex domain which is symmetric
with respect to the hyperplane {z1 = 0}. The solution has a possible sin-
gularity on the critical set I' C . When m = 1 system (6.0.2) reduces to
a scalar equations that was already studied in [50, | and in Chapter 4.
The moving planes procedure for semilinear elliptic system has been firstly
adapted by Troy in [123] where he considered the cooperative system (0.3.6)
with T' = ) (see also [41, 42, ]). This technique was also adapted in the
case of cooperative semilinear systems in half spaces by Dancer in [39] and
in the whole space by Busca and Sirakov in [19]. For the case of quasilinear
elliptic system in bounded domains we suggest [92].

Moreover, motivated by [83], through all the chapter, we assume that
the following hypotheses (denoted by (Sy,) in the sequel) hold:

(Sg,) (i) fi : RT — R are assumed to be C! functions for every i =
1,...,m.
(ii) The functions f; (1 <1 < m) are assumed to satisfy the mono-
tonicity (also known as cooperative) conditions
of; S .
(%ﬁ(tl,...,tj, voytm) >0 for 1#£7, 1<i,5<m.
j
Since we want to consider singular solutions, the natural assumption is
u; € HL (Q\T)NCQ\T) Vi=1,...m

and thus the system is understood in the weak sense:

(0.3.7) /(V%V%)d%:/fi(ul,u2,~--,um)¢z‘d9€ Vi € Co(Q\T)
0 0

for every i = 1,...,m.
Under the previous assumptions we can prove the following result:

THEOREM 0.3.6. Let Q) be a convexr domain which is symmetric with re-
spect to the hyperplane {x1 = 0} and let (uq, ..., un) be a solution to (0.3.6),
where u; € HE (Q\T)NC(Q\T) for every i = 1,...,m. Assume that each
fi fulfills (Sy,). Assume also that I is a point if N = 2 while I is closed and
such that

CapQ(F) = 07

RN
if N > 3. Then, if ' C {x1 = 0}, it follows that w; is symmetric with
respect to the hyperplane {x1 = 0} and increasing in the xi-direction in

QN{x1 <0}, for every i =1,...,m. Furthermore
8x1ui>0 m Qﬂ{$1<0},
for everyi=1,...,m.

The technique developed in the case of bounded domains (see [50, 51,
], and [91] for the nonlocal setting) is very powerful and can be adapted
to some cooperative systems in RY involving critical nonlinearity. Papers
on existence or qualitative properties of solutions to systems with critical
growth in RY are very few, due to the lack of compactness given by the
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Talenti bubbles and the difficulties arising from the lack of good variational
methods. We refer the reader to [19, 30, 71, 72, 74, 99] for this kind of
systems. Our aim is to study qualitative properties of singular solutions to
the following m x m system of equations

m
*— .
—Aui:E aiju§ L in RNV\T,
i=1

(0.3.8)

u; >0 in RV\T,
where ¢ = 1,...,m, m > 2, N > 3 and the matrix A := (aij)ij=1,..m is
symmetric and such that

m
(0.3.9) Z a;j = 1 for every i =1,...,m.

j=1
These kind of systems, with I' = (), was studied by Mitidieri in [89, 90|
considering the case m = 2, A = (1) é) and it is known in the literature

as nonlinearity belonging to the critical hyperbola.
If m =1, then (0.3.8) reduces to the classical critical Sobolev equation

—Au =u¥"! in RV\T
(0.3.10) v= oy \
u >0 in RY\T,
that can be found in [50, ]. If T reduces to a single point we find the

result contained in [121], while if I' = ) then system (0.3.10) reduces to
the classical Sobolev equation (see [21]). For existence results of radial and
nonradial solutions for (0.3.8), we refer to some interesting papers [71, 72].
We want to remark that in [71, 72] the authors treat the general case of a
matrix A in which its entries a;; are not necessarily positive and this fact
implies that it is not possible to apply the maximum principle. As remarked
above the natural assumption is

w; € HL RY\T) Vi=1,..,m

and, thus, the system is understood in the following sense:
m
(0.3.11) / (Vug, Vi) do = Zaij/ u? lojde Vo€ CHRV\T)
RN j:1 RN

for every 1 = 1,...,m.
What we are going to show in Chapter 6 is also the following result:

THEOREM 0.3.7. Let N > 3 and let (u1, ..., um) be a solution to (0.3.8),
where u; € HL (RN\T) for every i =1,...,m. Assume that the matriz A =
(@ij)ij=1,..,m, defined above, is symmetric, a;; > 0 for every i,j =1,....,m
and it satisfies (0.3.9). Moreover at least one of u; has a non-removable’

2Here we mean that the solution (u1, ..., um) does not admit a smooth extension all
over the whole space. Namely it is not possible to find a; € Hlloc(RN) with u; = 4; in
RN\ T, for some i = 1,...,m.
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singularity in the singular set I, where I' is a closed and proper subset of
{x1 = 0} such that

Cap,(I') = 0.

Then, all u; are symmetric with respect to the hyperplane {x1 = 0}. The
same conclusion is true if {x1 = 0} is replaced by any affine hyperplane.
If at least one of u; has only a non-removable singularity at the origin for
every ¢ = 1,...,m, then each u; is radially symmetric about the origin and
radially decreasing.

Another interesting elliptic system involving Sobolev critical exponents
is the following one:

21, Y a1 8 N
“Au =u + %*ua o7 in RY\T
(0.3.12) “Av =¥y gu%ﬁ—l in RV\T
u,v >0 in RNM\T,

where o, 3 > 1, a+ 5 = 2% := % (N >3)

The solutions to (0.3.12) are solitary waves for a system of coupled
Gross—Pitaevskii equations. This type of systems arises, e.g., in the Hartree—
Fock theory for double condensates, that is, Bose-Einstein condensates of
two different hyperfine states which overlap in space. Existence results for
this kind of system are very complicated and the existence of nontrivial so-
lutions is deeply related to the parameter «, 5 and N. This kind of systems
(0.3.12) with I' = () was studied in [2, 5, 6, 99, , ]. In particu-
lar, in [99] the authors show a uniqueness result for least energy solutions
under suitable assumptions on the parameters a, 8 and N, while, in [30]
the authors study also the competitive setting, showing that the system
admits infinitely many fully nontrivial solutions, which are not conformally
equivalent. Motivated by their physical applications, weakly coupled elliptic
systems have received much attention in recent years, and there are many
results for the cubic case where I' = (), @ = 8 = 2 and 2* is replaced by 4
in low dimensions N = 3,4, see e.g. [2, 5, 6, 84, 85, , ]. Since our
technique does not work when 1 < a < 2 or 1 < 8 < 2, here we study the
case o, > 2 and N = 3 or N =4, since we are assuming that a + g = 2*.

The last results that it is going to be proved in Chapter 6 is given by
the following:

THEOREM 0.3.8. Let N =3 or N =4 and let (u,v) € HL (RV\T) x
H! (RN\T) be a solution to (0.3.12). Assume that the solution (u,v) has
a non-removable’® singularity in the singular set T, where T' is a closed and

proper subset of {x1 = 0} such that

3As above, we mean that the solution (u,v) does not admit a smooth extension all
over the whole space. Namely it is not possible to find (@,7) € HL.(RY) x HL (RY) with
u=dorv=0in RV\T.



18 Introduction

Moreover let us assume that a, 8 > 2 and that holds o + g = 2*. Then,
u and v are symmetric with respect to the hyperplane {x1 = 0}. The same
conclusion is true if {x1 = 0} is replaced by any affine hyperplane. If at least
one between u and v has only a non-removable singularity at the origin, then
(u,v) is radially symmetric about the origin and radially decreasing.

All the results presented here, about systems, are contained in Chapter 6

and in [48]; when this paper was completed, we learned that the case of
bounded domains was also considered in [14] (see [13]), obtaining similar
results.

0.4. The Gibbons’ conjecture for quasilinear elliptic equations

Chapter 7 concerns the study of the qualitative properties of the follow-
ing quasilinear elliptic equation

(0.4.1) —Apu = f(u) inRY,

where we denote a generic point belonging to RN by (2,y) with 2/ =
(r1,22,...,on-1) and y = xy, p > 1 and N > 1. Morever, for suitable
functions, the p-Laplace operator is defined by —Apu := — div(|Vu[P~2Vu).
As well known, see [46, |, the solutions of equations involving the p-
Laplace operator are generally of class C*®. Therefore the equation (0.4.1)
has to be understood in the weak sense. We summarize the assumptions on
the nonlinearity f, denoted by (G¢), in the following:

(G¢): The nonlinearity f(-) belongs to C1([—1,1]), f(—1) =0, f(1) =0,

fi(—=1) <0, fL(1) <0 and the set

Ny = {t e [-1,1] | £(¢) = 0}
is finite.

The setting of our assumptions allows us to include Allen-Cahn type
nonlinearities and, in fact, the paper is motivated by some questions arising
from the following problem

(0.4.2) — Au=u(l —u? inRY,
see [65]. G.W. Gibbons [29] formulated the following
GIBBONS’ CONJECTURE [29]. — Assume N > 1 and consider a bounded

solution u of (0.4.2) in C?(RY), such that

. / -
xNh_{rleoou(a; ,xN) = £1,

uniformly with respect to /. Then, is it true that

u(z) = tanh (xN\/_i O‘) ,

for some o € R?

This conjecture is also known as the weaker version of the famous De Giorgi’s

conjecture [45]. We refer to [55] for a complete history on the argument.
The Gibbons’ conjecture in the semilinear case p = 2 is by now well

understood (see [11, 54, 55, 63]). Here we address the quasilinear case
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for a general class of nonlinearities f. To the best of our knowledge this is
the first result in this framework. This is motivated by the fact that, unlike
the semilinear case (0.4.2), working with the singular operator —A,(-) we
have to take into account that the nonlinearity f change sign and that all
the techniques involved in the study of the problem (0.4.1) are not standard
since we work in the whole RV,

Our proofs are based on the technique of the moving planes method which
goes back to the papers of Alexandrov [1] and Serrin [111] and subsequently
to the celebrated papers [12, 68] and on the use of maximum and comparison
principles for the —A,(-) operator, which are much more involved since we
have carefully take into account the critical set Zv, (see (7.2.5)) where
the gradient of the solution w vanishes. Moreover, when we consider the
case of unbounded domain as RY, the application of the moving planes
technique is much more delicate since weak comparison principles in small
domains have to be substituted by weak comparison principles in unbounded
domains. Actually, the strong comparison principle does not apply simply
as in the case when bounded domains are considered because of the lack
of compactness. When we work with the Laplacian operator, i.e. the case
p = 2, many arguments exploited in the literature are very much related
to the linear and nondegenerate nature of the operator. In Chapter 7 we
cannot take advantage of all the classical techniques used in the semilinear
case and, thus, we need to recover these arguments in the case of equations
involving nonlinear degenerate/singular operators.

The main result of Chapter 7 is given by the following;:

THEOREM 0.4.1. Let N > 1, 2N+2)/(N+2) < p < 2 and u €
CHY(RN)Y be a solution of (0.4.1), such that

loc

lul <1
and

(0.4.3) lim w(z’,y)=1 and lim u(z',y) = —1,

Yy—r—+00 Yy——00

uniformly with respect to ' € RN~ If f fulfills (Gy), then u depends only
on y and

(0.4.4) dyu>0 inRN.

To get our main result, we first recover a weak comparison principle
in a suitable half-space and then we exploit it to start the moving planes
procedure. The application of the moving planes method is not standard
since we have to recover compactness using some translation arguments,
(since we work on RN ) and, not least, we have to take into account the
fact that the nonlinearity f change sign which produces peculiar difficulties
in the case p # 2, already in the case of bounded domain. Finally, we get
the monotonicity in all the directions of the the upper hemi-sphere Sf 1=

{ve Sf 1| (v,en)} that will give us the desired 1-dimensional symmetry.
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0.5. Une présentation plus détaillée

Dans cette these, nous étudions les propriétés qualitatives des solutions
d’équations aux dérivées partielles (EDP) semilinéaires et quasilinéaires de
type elliptique. Nous traitons en particulier des solutions faibles de

(0.5.1) — Apu = f(u) dans Q,

ot  est un domaine de RY, N > 2. Soit u € C%(2); nous définissons le
operateur p-Laplacien comme suit:

Apu = div(|VulP~2Vu)

(0.5.2) b 9 " Ou ou  0%u
= [Vul"™" | [Vul"Au+ (p—2). > 9w; 0, 00, |
4,7=1
ou (0.5.2) est défini dans l'ensemble {x € Q : Vu(z) # 0} pour chaque
1 < p < 2, et dans le domaine entier €2 pour 2 < p < 4+o00. L’hypothese sur
la non-linéarité sera toujours spécifiée dans tous les chapitres, mais le lecteur
pourrait penser que f est une fonction continue et localement lipschitzienne.
Nous devons remarquer que l'opérateur p-Laplacien devient le Laplacien
classique quand p = 2, c’est-a-dire

N
d%u

Aoy = div(Vu) = Au = 2 8—%2

Dans ce cas, nous pouvons parfois envisager des solutions classiques pour
Péquation (0.5.1). Quand p # 2 la situation est complétement différente et
il est bien connue, puisque que 'opérateur p-Laplacien est singulier ou ellip-
tique dégénéré (respectivement si 1 < p < 2 ou p > 2), les solutions de (0.5.1)
sont généralement de classe C1®, avec a < 1 (voir [46, ]) et doivent
uniquement étre prises en compte dans le sens faible. Plus précisément, on
dit que u € WP(Q) résout (0.5.1) si et seulement si

(0.5.3) /Q]Vu\p_Q(Vu, Vy)de = /Qf(u)godac Vo € C™(Q).

Nous avons obtenu (0.5.3) en appliquant le théoreme de la divergence a:

/ —div(|Vul|P2Vu)p dz = / f(u)pdx Vo € C2°(Q).
Q Q

Nous considérons maintenant le probleme suivant avec les condition aux
limites de Dirichlet:

(0.5.4)

—Apu= f(u) in Q
u=0 on Of)

ot 2 est un domaine lisse et borné de RV, avec N > 2, et f est supposé étre
continue et localement lipschitzienne.

Une solution u a (0.5.4) peut étre définie, par exemple, en supposant que
u € WO1 P(Q)) dans le formulation faible. C’est aussi ’espace ot il est naturel
de prouver l'existence de solutions sous des hypotheses appropriées.

Il est important de noter que, dans la formulation faible (0.5.3), la fonction

test  appartient & C2°(2), mais par des arguments de densité, il est possible
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démontrer que aussi @ € VVO1 P(2) est une bonne fonction test. En réalité, par
la définition de W, (Q), pour chaque ¢ € W,P(Q) il existe {¢,} € C=(Q)
tel que
. 1
on — @ In WyP(Q)
pour n — +oo. Par conséquent, en prenant ¢, comme fonctions tests dans
(0.5.3), pour chaque n, nous avons

/ \Vu|p_2(Vu,Vg0n) dr = / flu)p, dx Vo, € C2(Q).
Q Q
Nous voulons montrer
/ |Vu|P~2(Vu, Ve,) dr —>/ |Vu|P~2(Vu, V) dz,
Q 9]

comme n — +00. En soustrayant le coté gauche de (0.5.3) et le co6té gauche
de (0.5.3) avec ¢, comme fonction test, on obtient

/Q [[VuP=2(Vu, V(en — ¢))| da

< / Vul |V (g — )| de
Q

<([ |Vup)p;1 ([ 196 =or)" =50,

ol,, dans la derniére ligne, nous avons utilisé l'inégalité de Holder et le
théoreme de convergence dominée.
Nous notons g := |Vu|P~2. Dans I’ensemble de points critiques

(0.5.5) Z,={z € Q| Vu(z) =0},

Péquation est dégénérée pour p > 2 (i.e. p =~ 0) et singulier pour 1 < p < 2
(i.e. o~ +00). Si 0 < o(x) < C tous les résultats classiques sont vrais (voir
par exemple [70]), par conséquent u € C?(Q\ Z,). Si o ~ 0 ou g ~ +cc
les résultats classiques ne sont pas vrai. En particulier, au chapitre 1, nous
prouverons le résultat suivant sur la régularité des dérivées secondes des
solutions du probleme (0.5.4):

Q=

PROPOSITION 0.5.1. Soit u € CY(Q), u > 0, un solution faible du
probléme (0.5.4). Supposons que f soit continue et localement lipschitzi-
enne. Supposons que Q est un domaine borné et lisse de RN . Donc

p—2 12
(0.5.6) / [Vul” |V“’ﬁ| da < C,
O\fui=0} [Y — [V [ui

0 0< <L, y<N=-2(y=0if N=2),1<p< +o0 et la constante
positive C' ne dépend pas de y. En particulier, nous avons

p=2=B| D242 ~
(0.5.7) / [Vl ID%I” 0 < 6
Q\{Vu=0} ly — x|

pour une constante positive C ne dépendant pas de y.

Grace au résultat précédent, il est possible démontrer la propriété de
sommabilité suivante de |Vu|, dont la preuve se trouve au chapitre 1:
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THEOREME 0.5.1. Soit u € CY(Q), u > 0, un solution faible du probléeme
(0.5.4) et supposons, en outre, que f(s) > 0 pour toute s > 0. Ensuite, il
existe une constante positive C, indépendante de y, telle que

1 1
0.5.8 de < C
(0.5.8) /Q Va7 [z — y[r T =

ot 0<r<lety<N-—2pour N>3 (y=0if N=2). En particulier,
l’ensemble critique Z,, a une mesure Lebesque nulle.

0.6. Propriétés qualitatives des solutions et méthode des
hyperplans mobiles

Les propriétés qualitatives des solutions d’équations aux dérivées par-
tielles (EDP) peuvent étre interprétées, en maniere extrémement large, comme
incluant toutes les propriétés des solutions. Dans cette section, nous allons
concentrer sur les propriétés géométriques des solutions. Les conditions aux
limites jouent un réle important dans le comportement qualitatif des so-
lutions. Les propriétés qualitatives des solutions sont étroitement liées a
I'existence d’une solution d’équation aux dérivées partielles elliptiques; En
fait, il semble évident que I'existence de solutions constitue la base de ’étude
des propriétés qualitatives. D’autre part, la recherche de solutions avec des
propriétés particulieres pourrait fournir des indices pour l'existence. Les
études systématiques des propriétés qualitatives des solutions aux équations
ou systemes elliptiques non linéaires généraux ont commencé essentiellement
a la fin des années 1970, bien que certaines équations elliptiques non linéaires
(telles que I’équation de Lane-Emden) remontent en réalité au XIX siecle.
Il convient toutefois de noter que les travaux antérieurs dans ce sens sur des
équations elliptiques linéaires, telles que la symétrisation ou les propriétés
nodales des fonctions propres, ont eu des conséquences dans les équations
non linéaires. La symétrie et la monotonie restent un sujet important dans
la théorie moderne des équations aux dérivées partielles non linéaires.

La méthode des hyperplans mobiles est la technique plus importante
utilisée ces dernieres années pour établir certaines propriétés qualitatives de
solutions positives d’équations elliptiques non linéaires telles que la symétrie
et la monotonie. Par exemple, elle est utilisée pour prouver la monotonie
dans la direction x1 des solutions scalaires d’équations elliptiques de second
ordre non linéaires dans les domaines © in RY. L’ingrédient essentiel est
le principe du maximum, qui dans le cas semi-linéaire est équivalent au
principe de comparaison. Cette méthode compare les valeurs de la solution
de I’équation en deux points différents.

La méthode des hyperplans mobiles remonte & A. D. Alexandrov [1],
dans son étude des surfaces a courbure moyenne constante, et a J. Serrin
[111] qui a introduit la technique dans le contexte des EDP elliptiques, dans
I’étude de problemes surdéterminés. Apres quelques années, B. Gidas, W.N.
Ni et L. Nirenberg, dans [68], ont adapté cette méthode pour prouver la
monotonie des solutions positives qui s’annule sur 0f) et, donc, la symétrie;
dans [69], les auteurs ont étendu ces techniques aux équations de tous les
RY. Nous renvoyons également le lecteur & d’autres documents pertinents
[ s O ’ ’ ) ’ 9 ’ ’ ’ ’ ’ ’ ’ ] Comme
nous l'avons dit, le principe du maximum joue dans tous ces papiers le
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role crucial, mais il a fallu recourir & de nombreuses formes du principe du
maximum. Celles-ci incluent également le lemme de Hopf a la frontiere. La
version classique des principes du maximum et de comparaison et du lemme
de H 6pf sera présentée au chapitre 1.

Maintenant, nous souhaitons simplement utiliser la méthode des hy-
perplans mobiles afin d’énoncer les résultats typiques qu’il est possible de
montrer avec cette technique, dans un cadre treés simple; pour ce faire, nous
considérons le probleme elliptique semi-linéaire suivant

—Au = f(u) dans €
(0.6.1) u>0 dans €
u=20 sur  0f)
ott © est un domaine borné lipschitzien de RY, avec N > 2 et f est une

fonction continue et localement lipschitzienne.
Pour un nombre réel \ nous fixons

(0.6.2) O\ = {JZ ez < )\}
(0.6.3) zy = Ra(x) = A —x1, 29, ..., 2p)
qui est le symétrique de x par rapport a I’hyperplan
(0.6.4) Ty = {x1 = A}
En outre

.6. = inf ;.
(0.6.5) a = inf z;

Enfin nous définissons
(0.6.6) ux(z) = u(zy) .

Nous observons que, puisque le probleme (0.6.1) est invariant par isométries,
uy, défini dans (0.6.6), est également une solution pour (0.6.1).
Enoncons maintenant le résultat principal

THEOREME 0.6.1 ([12]). Soitu € C*(Q)NC(Q) une solution au probléme
(0.6.1). Supposons que f est une fonction continue et localement lipschitzi-
enne et que ) est convexe dans la direction x1 et symétrique par rapport
a Uhyperplan {x1 = 0}. Il s’ensuit que u est symétrique par rapport a
Uhyperplan {x1 = 0} et monotone croissant dans la direction x1 dans N
{z1 <0}, avec

Ug, >0 dans QN {zx; <0}.

DEMONSTRATION. Soit
A ={a<A<0:u<wu in  forallt € (a,\}.

Le but de la méthode des hyperplans mobiles est de montrer que sup Ag = 0;
une fois que nous I'avons, nous obtenons automatiquement la monotonicité
pour la solution u et ensuite, en effectuant la méthode des hyperplans mo-
biles dans la direction opposée, nous obtenons également la symétrie pour u.
Pour commencer avec la méthode des plans mobiles, nous devons prouver

que A # 0.
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Step 1: Nous considérons a < A < a + o avec o > 0 petite. En particulier,
supposons d’abord que o > 0 est suffisamment petit pour que || < J, pour
quelques petites § > 0. Remarquant que u = uy sur Ty et u < uy on 9y \Th
par les conditions aux limites de Dirichlet, c¢’est-a-dire u < wuy on 082y, il
s’ensuit, par le principe de comparaison faible dans les petits domaines (voir
Théoreme 1.2.1), que u < u) dans 2y, par conséquent Ay # () (voir la Figure
3).

Qi <8

Ty

FI1GURE 3. Step 1 dans la méthode des hyperplans mobiles.

Step 2: Nous pouvons définir
Ao = sup Ayp.

Comme indiqué ci-dessus, pour prouver notre résultat, nous devons montrer
que Ag = 0. Pour cela, supposons que Ag < 0 et aboutissons & une contra-
diction en prouvant que u < uy,4, in Q,4, pour toute 0 < v < ¥ pour
certains petits 7 > 0. Par continuité nous savons que u < uy, in §),. Par
le principe de comparaison forte, remarquant que u < uy, sur 0{2y,, on en
déduit uv < uy, dans ,,. Par conséquent, étant donné un ensemble com-
pact K C (1),, par continuité uniforme, nous pouvons assurer que u < Uy,
dans K pour tout 0 < v < v pour petits > 0. Donc, par construction, il
en résulte que u < uy 4, sur (2,4, \ K) pour tout 0 < v < U pur petits
7 > 0. Pour K large et v petit selon le principe de comparaison faible dans
les petits domaines (voir Théoreme 1.2.1) nous avons que |y 4+, \ K| est
petit et donc u < wuy 4, dans Qy 4+, \ K et donc u < uy 4, dans Oy 4p.
Mais ceci est en contradiction avec la définition de \g. Donc Ag = 0 (voir
Figure 4).

Step 3: Etant donné que la méthode des hyperplans mobiles peut étre ef-
fectuée de la méme maniere mais dans le sens opposé, cela prouve le résultat
de symétrie souhaité. Le fait que la solution soit monotone croissante dans
la direction z1 dans {z1 < 0} est implicite dans la méthode des hyperplans
mobiles. Cela fournit u,, > 0 dans {1 > 0}. Donc u,, > 0 par le principe
du maximum fort.

g

En conséquence, nous avons:
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Qgtv

Q5

FIGURE 4. Step 2 dans la méthode des hyperplans mobiles.

COROLLAIRE 0.6.2 ([12]). Sous l’hypothése du Théoréme 0.6.1 si Q =
Br(0) pour tout R > 0, alors u est radialement symétrique et monotone
décroissant autour de l’origine.

Nous venons de présenter la version classique de la méthode des hy-
perplans mobiles pour les équations elliptiques semi-linéaires. Comme nous
I’avons déja dit, dans le cas p = 2, plusieurs résultats ont été obtenus, a
commencer par le célebre article de B. Gidas, W. N. Ni et L. Nirenberg
[68]. Ce papier a eu un grand impact non seulement en vertu des nombreux
résultats de monotonie et de symétrie qu’il contient, mais aussi parce qu’il
a attiré I’attention sur la méthode des hyperplans mobiles qui, depuis alors,
a été largement utilisée dans de nombreux problemes différents.

La situation est complétement différente lorsque p # 2 et il y a moins de
résultats concernant la monotonie et la symétrie des solutions au probleme
elliptique quasi linéaire. Considérons

—Apu = f(u) dans
(0.6.7) u>0 dans Q
u=20 sur  0f2

ou © est un domaine borné lipschitzien de RY, avec N > 2,1 < p < 400 et
f est une fonction continue et localement lipschitzienne.

Dans ce cas, comme indiqué précédemment, les solutions ne peuvent
étre envisagées que dans un sens faible. Quoi qu’il en soit, ce n’est pas
une difficulté, car la méthode des hyperplans mobiles peut étre adaptée
a des solutions faibles de problemes strictement elliptiques sous forme de
divergence (voir [32, 38]).

La vraie difficulté du probleme (0.6.7) est que lopérateur p-laplacien
dégénere dans les points critiques des solutions, de sorte que les principes
de comparaison, qui pourraient remplacer les principes du maximum a fin
d’utiliser la méthode des hyperplans mobiles I’opérateur, ne sont pas disponibles
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sous la méme forme que pour p = 2. En fait, des contre-exemples sont
disponibles pour la validité des principes de comparaison et pour les résultats
de symétrie (voir [73] et [18]).

L. Damascelli in [33] a fait un premier pas vers ’extension de la méthode
des hyperplans mobiles pour solutions des problemes impliquant I’opérateur
p-Laplacien. Dans cet article, 'auteur démontre principalement quelques
principes de comparaison faibles et forts pour la résolution des inégalités
différentielles impliquant le p-Laplacien. En utilisant ces principes, il adapte
la méthode des hyperplans mobiles pour solutions des équations aux dérivée
partielles elliptique quasi-linéaire, permettant d’obtenir des résultats de mono-
tonie et de symétrie dans le cas 1 < p < 2. Bien que les principes de com-
paraison de [33] soient trés puissants dans cette situation, le résultat de
la symétrie n’est pas complet et repose sur 'hypothese que ’ensemble des
points critiques de u ne déconnecte pas les ensembles obtenus par la méthode
des hyperplans mobiles. Ainsi, lorsque p > 2, les résultats contenus dans
[33] ne sont pas suffisants pour adapter la méthode des hyperplans mobiles.
Quelques années plus tard, L. Damascelli et B. Sciunzi dans [37, 36] ont
montré des versions générales du principe de comparaison faible (voir Theo-
rem 1.2.5) et du principe de comparaison forte (voir Theorem 1.5.3) pour la
solution & (0.1.7), qui étaient suffisante pour appliquer la technique & chaque
p.

Le résultat analogue de Theorem 0.6.1, dans le contexte quasi linéaire,
est donné par ce qui suit:

THEOREME 0.6.3 ([36]). Soitu € CH*(Q)NC(Q) une solution faible pour
(0.6.7), avec 1 < p < +o00. Supposons que f soit une fonction continue et
localement lipschitzienne telle que f(s) > 0 pour s > 0 et que € est conveze
dans la direction x1 et symétrique par rapport a Uhyperplan {x1 = 0}. Il
s’ensuit que u est symétrique par rapport a l'hyperplan {x1 = 0} et monotone
croissante dans la direction x1 dans QN {x; < 0}, avec

Uy, >0 dans QN {zr; <0}.

De plus, si Q = Bg(0), alors u est radialement symétrique et radialement
monotone décroissant.

La preuve du théoréeme 0.6.3 est semblable au cas semi-linéaire (voir
Théoréeme 0.6.1), mais les principes du maximum classiques, qui équivaut
au principes de comparaison dans le cas semi-linéaire, sont remplacés par
les principes de comparaison par L. Damascelli et B. Sciunzi [36, 37] (voir
Théoreme 1.2.5 et 1.5.3) et I'inégalité classique de Poincaré est remplacée
par une inégalité pondérée de Poincaré (voir le Théoreme 1.1.4).

La méthode des hyperplans mobiles est une technique tres puissante qui
peut également étre adaptée pour des équations elliptiques quasi linéaires
dans des domaines non bornés. Dans le cas de domaines non bornés les prin-
cipaux exemples, issus de nombreuses applications, sont fournis par ’espace
tout entier RN et par le demi-espace Rﬂy . Pour le cas de ’espace tout entier
avec p = 2, ou une symétrie radiale des solutions est attendue, nous référons
a [21, 68, 69]. Nous renvoyons les lecteurs a [8, 9, 10, 34, 38, 40, 56]
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pour les résultats concernant la monotonie des solutions en demi-espaces,
dans le cas non dégénéré.

Le cas des équations avec le p-Laplacien dans des domaines non bornés
est vraiment plus difficile a étudier. Disons seulement que l'utilisation
d’espaces de Sobolev pondérés est nécessaire dans le cas p > 2 et qu’elle
nécessite I'utilisation d’une inégalité de type Poincaré pondérée avec le poids
0 = |VulP~2 (voir la section 1.1). Cette derniere implique des constantes
qui peuvent exploser lorsque la solution approche de zéro, ce qui peut ar-
river aussi pour les solutions positives dans des domaines non bornés. Par
conséquent, le manque de compacité joue un role important.

Lorsqu’on considere le cas du demi-espace RY, 'application de la tech-
nique des hyperplans mobiles est beaucoup plus délicate, car les principes
de comparaison faibles dans les petits domaines doivent étre respectés sub-
stitués par des principes de comparaison faibles dans des domaines étroits
non bornés (voir Théoreme 1.3.1, Théoreme 1.3.3 et Théoreme 1.3.4).

De plus, le principe de comparaison fort ne s’applique pas de maniere
simple comme dans le cas ou le domaine est borné. Dans le cas semi-linéaire
p = 2, de nombreux arguments exploités dans la littérature sont tres liés a la
nature linéaire et non dégénérée de 'opérateur, de sorte qu’il n’est pas pos-
sible d’étendre ces arguments au cas d’équations impliquant des opérateurs
dégénérés non linéaires.

Compte tenu de 'opérateur p-Laplacien et des problemes rencontrés dans
les demi-espaces, les premiers résultats ont été obtenus au cas singulier 1 <
p < 21in [58, 59], ou des non-linéarités positives et localement lipschitziennes
considérées. Une réponse partielle dans le cas plus difficile dégénéré p > 2 a
été obtenue dans [61], ot non-linéarités de type puissance sont considérées
sous la restriction 2 < p < 3. Quelques années plus tard, la restriction
2 < p < 3 a été supprimée dans [60] et, de plus, les auteurs ont envisagé une
classe plus large de non-linéarités (en particulier des non-linéarités positives
super linéaires en zéro).

Dans le cas de Iespace tout entier RY, pour p = 2, I'application de la
méthode des hyperplans mobiles est tres compliquée, car il faut le comporte-
ment de la solution & U'infini. Dans [21], L. Caffarelli, B. Gidas et J. Spruck
ont prouvé, grace a la méthode des hyperplans mobiles et a l'utilisation
de la transformation de Kelvin, que toute solutions positive de (0.6.1) avec

flt) = t%, sont radialement symétrique et monotone décroissant par rap-
port & un point de RY. Nous renvoyons également & l’article phare de
B. Gidas, W. M. Ni et L. Nirenberg [69] pour des résultats concernant la
symétrie et la monotonicité des solutions dans R, mais avec une hypothese
supplémentaire sur le comportement des solutions a infini.

La situation pour p # 2 et Q = RY est beaucoup plus compliquée;
I'opérateur n’est pas linéaire et, comme auparavant, il faut un principe de
comparaison dans des domaines non bornés (qui ne sont pas équivalents au
principe maximum). Un premier résultat concernant les propriétés quali-
tatives des solutions pour les équations elliptiques quasi-linéaires dans tout
I'espace est da a J. Serrin et H. Zou [112]. Dans cet article, les auteurs
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ont besoin d’une hypothese supplémentaire sur la décroissance de la solu-
tion a l'infini et sur I’ensemble critique. La version non linéaire du résultat
obtenu par L. Caffarelli, B. Gidas et J. Spruck dans [21], ¢’est-a-dire lorsque

Np=1)+p
f(t) =t N n’était pas facile a obtenir car la transformation de Kelvin

pour p # 2 ne fonctionne pas (voir par exemple [87]) et aussi parce qu’il est
impossible de commencer par la méthode des hyperplans mobiles sans toute
hypothese a priori sur la décroissance des solutions a l'infini. Ce probleme
a été résolu par B. Sciunzi dans [107]; argument est basé sur des estima-
tions a priori prouvées par J. Vetois [128], sur une limite inférieure du taux
de décroissance de |Vul, la méthode des hyperplans mobiles, I'inégalité de
Hardy et un type pondéré de inégalité de Poincaré.

Au meilleur de notre connaissance, tous les résultats de symétrie présentés
dans cette section pour les équations impliquant 'opérateur p-Laplacien
dans RV ou dans Rf , avec p # 2, traités juste le cas de la non-linéarité
positive. Au chapitre 7, nous proposerons une variante intéressante de la
méthode des hyperplans mobiles qui fonctionne pour une classe spéciale de
non-linéarités de signe changeantes et sera tres utile pour résoudre la version
quasi-linéaire de la conjecture de Gibbons pour (2N +2)/(N +2) <p < 2.

0.7. Lemme de Ho6pf aux bord pour les équations elliptiques

singulieres
A partir de Particle [31], les équations elliptiques singulieres semilinéaires
ont été étudiées de nombreux points de vue. Voir par ex. [4, 16, 17, 25,
, 27, 28, 67, 75, 79, 82, 83, 95, | qui sont en quelque sorte liés

aux résultats contenus dans cette these. Un point crucial dans I’étude des
équations elliptiques semi-linéaires singulieres est le étude du comportement
des solutions pres de la frontiere, a savoir ou les solutions présentent en
réalité un manque de régularité. En particulier, le fait que les solutions ne
soient pas C! jusqu’au bord empéche la validité du lemme de Hépf, voir
[15, 76, ]. Nous abordons cette question et fournissons une version
générale du lemme de Hopf, au chapitre 2 (voir aussi [24]) pour les équations
elliptiques singulieres semi-linéaires. Considérons en particulier le probleme
suivant:

1
—Au=—+ f(u) dans Q

u”
(0.7.1) u>0 dans
u=20 sur 012,

ot v > 1, Q est un domaine borné C>® de RN avec 0 < v < 1, N > 1 et
f Q2 — R continue et localement lipschitzienne.

I1 est bien connu que les solutions au probleme (0.7.1) ne sont généralement
pas lisses jusqu’a la limite. Il a en fait été prouvé dans [82] que les solutions
ne sont pas dans H{(Q) au moins lorsque v > 3. Par conséquent, tenant
compte du comportement de régularité naturelle des solutions (voir [31]),
on laisse u € C%(Q) N C(). L’équation est bien définie & l'intérieur du
domaine au sens classique et sa formulation faible est

(0.7.2) /Q(Vu, V) dx :/Qqﬁdaf —|—/Qf(u)g0daf Vo € C2°(0Q).
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Définissons maintenant le concept de normale vers I'intérieur

DEFINITION 0.7.1. Soit Q@ € RY un domaine C*“ borné. Soit I5(0€)
un voisinage de 92 avec la propriété de point unique le plus proche (voir,

par exemple, [66]). Donc pour chaque x € I5(9f), il existe un unique point
z € 09 tel que |x — 2| = dist(z,0). Nous définissons la normale vers
lintérieur comme

T—2I
0.7.3 x) = :
073) ) =

Ayant ces remarques a l’esprit, nous sommes maintenant préts a énoncer le
résultat principal du chapitre 2 (voir aussi [24]):

_THEOREME 0.7.2 (Lemme de Hopf aux bord, [24]). Soit u € C**(2) N
C(§2) une solution positive du probléme (0.7.1). Donc il existe un voisinage

I5(0Q2) de 09 tel que
(0.7.4) 8l,(x)u >0 Vo e L;(@Q)

a condition que (v(x),n(xz)) > 0 uniformément par rapport ¢ x € I5(0N2),
c’est-a-dire a condition que (v(x),n(z)) > f > 0 pour certains f > 0 pour
chaque z € I5(09Q).

La preuve de ce résultat est basée sur un argument de changement
d’échelle pres de la bord, ce qui conduit a I’étude d’un probleme limitant
dans le demi-espace (voir probleme (2.0.5)) et obéit a des estimations a priori
appropriées. De plus, pour ce probleme limite, nous fournissons un résultat
de classification qui est crucial pour notre technique, et peut également avoir
un intérét indépendant (voir Theorem 2.0.3).

La technique de E. Hopf [76] (voir aussi [70]) a déja été développée et
améliorée également dans le cadre quasi linéaire. Nous renvoyons les lecteurs
a [103] et au chapitre 1 (voir aussi [127]). A un moment donné, au cours de

la these, il était naturel de savoir s’il existe un résultat analogue a celui du
théoreme 0.7.2 du probleme (0.7.1) dans le cas quasi linéaire, considérons
donc:

1 .
—Apuzﬁ+f(u) in Q
u=20 on 0f)

ol p>1,v > 1, Q est un domaine borné de classe C>* de RY avec N > 1
et f: € — R continue et localement lipschitzienne.

Puisque 'opérateur p-Laplacien est dégénéré ou singulier, une solution
u € CH*(Q)NC(Q) du probleme (0.7.5) doit étre compris dans le sens faible:
(0.7.6)

/\Vu]p_z(Vu,Vgo)dx :/ L dx —|—/f(u)<pdac Vo € C°(Q).
Q o u? Q

En collaboration avec B. Sciunzi (voir [52]), nous avons obtenu ce qui
suit:
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THEOREME 0.7.3 (Lemme de Hopf aux bord, [52]). Soit u € C1*(2) N
C(Q) une solution positive du probléeme (0.7.5). Done, pour chaque 3 > 0,
il existe une voisinage I5(0€Y) de 0N), tel que

(0.7.7) 8y($)u >0 Ve I(s(aQ)
chaque fois que v(x) € RN avec |[v(z)|| =1 et (v(z),n(x)) > B.

La preuve de ce résultat sera présentée au chapitre 3. Néanmoins, la
preuve de Theorem 0.7.3, a savoir la preuve du Lemme de Hopf dans le cas
ou il apparait le terme singulier ©~7, ne peut étre réalisée dans le maniere
standard principalement parce que les solutions ne sont pas de classe C!
jusqu’au bord. Plus précisément, les preuves dans [70, 76, , | ont
pour caractéristique commune de se baser sur la comparaison de la solution
avec des sous-solutions qui ont un comportement connu sur la frontiere.
Cette approche, avec quelques difficultés a prendre en compte, peut étre
exploitée également au cas singulier puisque t~7 a le bon comportement de
monotonie. Cela conduit en fait & controler le comportement de la solution
pres de la limite avec une comparaison basée sur la fonction de distance.
Ceci est aussi contenu dans le théoreme 3.3.2 qui donne un résultat de type
Lazer et Mckenna [82]. Bien que certaines des idées sous-jacentes de notre
approche aient une saveur commune 2 celles exploitées dans [24] et dans le
chapitre 2, les preuves que nous exploitons au chapitre 3 sont nouvelles et
adaptées a la nature non linéaire dégénérée du p-Laplacien.

0.8. Propriétés qualitatives de solutions singuliéres pour
problémes elliptiques

Le chapitre 4 a pour but d’étudier le probleme elliptique semi-linéaire
singulier suivant:

—Au = f(z,u) dans Q\T
(0.8.1) u>0 dans Q\T
u=20 sur OS2

ot © est un domaine lisse et borné RY avec N > 2 qui est convexe dans le
direction x1 et symétrique par rapport a ’hyperplan {x; = 0}. La solution a
une éventuelle singularité sur I’ensemble critique I' C €2 et est donc comprise
dans le sens suivant: v € H. (Q\T)NC(Q\T) et

(0.8.2) /Q(Vu, V)dx = /Qf(x,u)gp dx Yo e CHQ\T).

Le terme f(z,u) est supposé satisfaire

(If) Nous disons que f remplit la condition (If) si f : Q\I' x (0, +00) —
R est un fonction continue telle que pour 0 <t < s < M et pour
tout ensemble compact K C Q\ T, on a

f(z,s) — f(z,t) < C(K,M)(s — 1) pour chaque z € K,

ou C(K, M) est une constante positive en fonction de K et M. En
outre f(-,s) est non décroissante dans la direction x; en QN {x; <
0} et symétrique par rapport & ’hyperplan {x; = 0}.
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En particulier, cela nous permet notamment de considérer des équations
impliquant des potentiels de type Hardy-Leray, voir [122].
Maintenant, nous énoncons le premier résultat principal du chapitre 4:

THEOREME 0.8.1. Soit Q un domaine convexe symétrique par rapport a
Uhyperplan {z1 = 0} et soit uw € HL (Q\T)NCQ\T) une solution pour
(0.8.1). Supposons que f remplit (Ir). Supposons aussi que I' est un point
si N = 2 tandis que I' est fermé et tel que

CapQ(F) = 07
RN
st N > 3. FEnsuite, si I' C {x1 = 0}, il s’ensuit que u est symétrique

par rapport o Uhyperplan {x1 = 0} et croissante dans la direction x1 dans
QN {z1 <0}. En outre

Ug, >0 dans QN {r; <0}.

Nous voulons remarquer que, dans le travail de B. Sciunzi [110], Pauteur
a considéré I’ensemble singulier I" contenu dans une sous-variété lisse (N —2)-
dimensionnelle de I'hyperplan {z7 = 0} si N > 2, alors qu'il s’agit d'un
point dans la dimension deux. Avec la méme technique, développée dans
[110], des problemes plus généraux pourraient étre envisagés, par exemple
cas ou le ensemble critique a une capacité nulle. Il est également clair que,
si I n’est contenu dans aucun hyperplan de symétrie du domaine, puis avec
notre technique, il pourrait étre en tout cas possible de réaliser la méthode
des hyperplans mobiles jusqu’a ce que I’hyperplan touche ’ensemble cri-
tique. C’est optimal en quelque sorte, car il est implicite dans la méthode
des hyperplans mobiles que la solution est monotone et qu’elle peut changer
de pente pres de ’ensemble critique. Cela montre que la méthode des hy-
perplans mobiles ne peut aller au-dela de I’ensemble critique. Il convient
également de souligner que Théoreéme 0.8.1 pour le probleme (0.8.1) est tou-
jours vrai si I'opérateur Laplacien Au est remplacé par div(A(z)Vu) pour
une matrice définie positive A(x) = A(zo,...,x,) avec coefficients continus
bornés. Dans ce cas toutes les preuves peuvent étre répétée mot a mot et
sans régularité, la régularité continue des coefficients est également requise
en dimension deux.

Les premiers résultats concernant ’applicabilité de la méthode des hy-

perplans mobiles au cas de solutions singulieres remontent a [22] (voir aussi
[121]) ou le cas ou l’ensemble singulier est un point unique est considéré.
Nous suivons et améliorons ici la technique de [110], ou le cas d’un ensem-
ble singulier lisse (N — 2)-dimensionnel a été considéré dans le cas d’une
nonlinéarité Lipschitz. Mentionnons que la technique introduite dans [110)]
fonctionne aussi dans un contexte non local (voir [91]).
Par contre, dans le cas I = (), propriétés de symétrie et monotonicité des so-
lutions aux problémes elliptiques semi-linéaires impliquant des non-linéarités
singulieres, ont été étudiés dans [25, 26]. Aussi dans cette direction notre
résultat est nouveau et plus général. En fait, dans [25, 26] il est nécessaire
limiter Pattention aux problemes de forme (0.7.1), ici il suffit de considérer
des non-linéarités localement Lipschitz par dessus. En fait, toutes les non-
linéarités de la forme

f(z,8) = ai(z1) f1(s) + fa(s)
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ou fi est une fonction continue décroissante dans (0,+o00) et non négatif,
fa(-) est localement Lipschitz continue dans [0, 4+00) et a; € C°(R), a1 est
non négatif, pair et non décroissant pour z; < 0, satisfait notre hypotheses.
La technique, comme indiqué dans [110], peut étre appliqué pour étudier
solutions singulieres & I’équation critique de Sobolev suivante RN, N > 3,

—Au=u¥"! d RVA\T
(0.8.3) u=u ans N\
u>0 dans RYM\T.
Dans [110], on a considéré le cas d’un ensemble critique fermé I' contenu

dans une sous-variété lisse et compacte de dimension d < N — 2 et une pro-
priété de sommabilité de la solution a I'infini était imposée (voir aussi [121]
pour le cas particulier ou le ensemble singulier I' est réduit & un seul point).
Au chapitre 4, nous supprimons ces deux restrictions et nous prouvons ce
qui suit:

THEOREME 0.8.2. Soient N > 3 et u € H} (RY \T) une solution pour
(0.8.3). Supposons que la solution u a une singularité non éliminable * dans
l’ensemble singulier I', ou I' est un sous-ensemble fermé et approprié de
{x1 =0} tel que

Capy(I") = 0.
RN

Alors, u est symétrique par rapport a Uhyperplan {x1 = 0}.

La méme conclusion est vraie si Uhyperplan {x1 = 0} est remplacé par
un hyperplan affine.

Les résultats obtenus au chapitre 4 dans le cas semi-linéaire, en par-
ticulier les domaines jadis impliquant des domaines bornés, peuvent étre
étendus de maniere non triviale au cas des équations elliptiques quasi-linéaires;
c’est le sujet principal du chapitre 5. Considérons maintenant le probleme.

—Apu = f(u) dans Q\T
(0.8.4) u>0 dans Q\ T

u=20 sur 012,
dans un domaine lisse borné Q ¢ RY et p > 1. La solution v a une singularité
possible sur ’ensemble critique I' et, en fait, nous supposerons seulement

que u appartient & la classe C! loin de I’ensemble critique. Par conséquent,
I’équation est comprise comme suit:

DEFINITION 0.8.3. On dit que u € C*(Q\I') est une solution pour (0.8.4)
si w = 0 sur 0N et

(0.8.5) /Q VP2 (Vu, Vi) da — /Q Fwpds Yo e CHO\T).

Le but du chapitre 5 (voir aussi [51]) est d’étudier les propriétés de
symétrie et de monotonie des solutions lorsque le domaine est supposé avoir
des propriétés de symétrie. Cette question est bien comprise dans le cas

4Nous voulons dire ici que la solution u n’admet pas une prolongement lisse dans tout
'espace. A savoir il n’est pas possible de trouver @ € Hj.(RY) avec u = @ dans RY \ T
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semi-linéaire p = 2, comme expliqué précédemment.

Le méthode des hyperplans mobiles pour les problemes elliptiques quasi-
linéaires, comme indiqué dans la Section 0.1, a été adaptée lorsque I' =
(). Cependant, les techniques développées dans le chapitre 4 et décrites ci-
dessus ne peuvent pas étre appliquées directement pour deux raisons. Tout
d’abord, la technique développée au chapitre 4 (voir aussi cite EFS, Dino),
qui fonctionne dans le cas p = 2, est fortement basée sur un argument
d’homogénéité qui échoue pour p # 2. De plus, étant donné que le gradient
de la solution peut exploser prés de I'ensemble critique, ’équation peut
alors présenter a la fois une nature dégénérée et une nature singuliere. Ceci
a notamment pour conséquence qu’il n’est plus vrai que le cas 1 < p < 2
permette d’obtenir des résultats plus solides de maniere plus simple, comme
c’est le cas dans le cas I" = ().

Maintenant, nous énongons toutes les hypotheses sur ’ensemble singulier
I' et sur la non-linéarité f dans les différents cas 1 <p <2 et p > 2:

(A}) Pour 1 < p < 2 nous supposons que f est continue et localement

lipschitzienne, de sorte que, pour tout 0 < t,s < M, il existe une
constante positive Ky = Ky(M) tel que

[f(s) = f(t)] < Kyls —t].
De plus f(s) > 0 pour s >0 et

m @:le (0, 400).

t—+o0o t4
pour certains q € R tels quep—1 < g < p*—1, oup* = Np/(N—p).
(A?c) Pour p > 2 nous supposons seulement que f est continue et locale-

ment lipschitzienne de sorte que, pour 0 < t,s < M 1l existe une
constante positive Ky = Ky(M) tel que

[f(s) = F(O] < Kyls — 1.

En outre f(s) > 0 for s > 0.

(AL). Pour 1 <p <2 et N =2 nous supposons que I' = {0}, tandis que
pour 1 < p <2 et N> 2 nous supposons que I' T M pour certains
compact sous-variété M de classe C? et de dimension m < N —k,
avec k > %

(A%) Pour2 <p < N et N > 2, nous assumons I' fermé et tel que

Cap,,(I') = 0.

Nous préférons commencer la présentation de nos résultats, que nous
prouverons au chapitre 5, avec le cas p > 2. Nous avons le éléments suivants:

THEOREME 0.8.4. Soient p > 2 et u € CYQ\ ') une solution du
probléeme (0.8.4) et assumons que f est continue et localement lipschitzi-
enne, avec f(s) > 0 pour s > 0, a savoir assumons (A?c) Si Q est conveze
et symétrique par rapport a la direction x1, ' est fermé avec Cap,(I') = 0,
a savoir assumons (A%), et

Frc{zeQ: z =0},
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alors il s’ensuit que u est symétrique par rapport a l'hyperplan {z1 = 0} et
monotone croissante dans la direction x1 dans QN {x; < 0}.

Bien que la technique que nous allons développer dans la preuve de The-
orem 0.8.4 fonctionne pour tout p > 2, le résultat est énoncé pour 2 < p < N
puisqu’il n’y a pas d’ensembles de zéro p-capacité quand p > N.

Etonnammen‘c, le cas 1 < p < 2 présente plus de difficultés liées au fait
que, comme cela a déja été dit, 'opérateur peut dégénérer a proximité de
I’ensemble critique méme si p < 2. Nous aurons donc besoin d’une analyse
précise du comportement du gradient de la solution pres de I'. Nous réalisons
une telle analyse en exploitant les résultats de [100] (nous aurons donc
besoin d’une hypothese de croissance sur la non-linéarité) et d’un argument
de changement d’échelle. Le résultat est le suivant:

THEOREME 0.8.5. Soient 1 < p < 2 et u € CH(Q\T) solutions du
probléme (0.8.4) et assumons que f remplit (A}) Supposons que T' remplit

(A%) Alors, si Q) est convexe et par rapport a la variable x1 et
PC{CEEQ : 1’1:0},

alors il s’ensuit que u est symétrique par rapport a l'hyperplan {z1 = 0} et
monotone croissante dans la direction x1 dans QN {x1 < 0}.

Le chapitre 6 a pour objectif de généraliser tous les résultats du chapitre
4 au cas des systemes elliptiques coopératifs semi-linéaires. En particulier,
nous étudions la symétrie et la monotonie des solutions singulieres de cer-
tains systemes elliptique semilinéaires de maniére & trouver une généralisation
des résultats présentés au chapitre 4. Dans la premiere partie, nous exam-
inons le systeme elliptique semi-linéaire suivant:

—Au; = fi(u1,...,uy) dans Q\T
(0.8.6) u; >0 dans Q\T
u; =0 sur Of)

ot © est un domaine lisse borné de RY avec N > 2 et i=1,...m (m > 2).
La technique la plus utilisée dans ce chapitre est la méthode bien connue des
hyperplans mobiles. Pour simplifier I’'exposition, nous assumons directement
dans tous le Chapitre 6 que {2 est un domaine convexe qui est symétrique
par rapport a ’hyperplan {z; = 0}. La solution a une éventuelle singularité
sur ’ensemble critique I' C Q. Lorsque m = 1 le systeme (0.8.6) se réduit
a une équation scalaire déja étudiée dans [50, | et au chapitre 4. La
procédure de déplacement de plans pour le systeme elliptique semi-linéaire
a été adaptée pour la premiere fois par Troy in [123] ou il a considéré le
systéme coopératif (0.8.6) avec I' = ) (voir aussi [41, 42, ). Cette
technique a également été adaptée dans le cas de systémes coopératifs semi-
linéaires dans le demi-espaces par Dancer in [39] et dans tout I'espace par
Busca et Sirakov a [19]. Pour le cas d’un systeme elliptique quasi linéaire
dans des domaines bornés, nous suggérons [92].

De plus, motivés par [83], a travers tout le chapitre, nous supposons que
les hypotheses suivantes (notées (Sy,) dans la suite) sont vérifiées:
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(S,) (@) fi : R — R sont supposés étre de classe C! pour chaque
1=1,...,m.
(ii) Les fonctions f; (1 < i < m) sont supposées satisfaire les
conditions de monotonie (également appelées cooperative)
ofi . o
%(tl,...,tj,...,tm) >0 pour i#j, 1<i,j<m.
J
Puisque nous voulons considérer des solutions singulieres, I’hypothese
naturelle est:

w; € HL . (Q\T)NC@Q\T) Vi=1,...,m

et ainsi le systeme est compris dans le sens faible:

(0.8.7) /(Vuz'7V90i)d90_/fz‘(ul,u2,~--,um)<ﬂz‘d96 Vi € Co(Q\T)
0 0

pour chaque i =1,...,m.
Sous les hypotheses précédentes, nous pouvons prouver le résultat suivant:

THEOREME 0.8.6. Soit Q une domaine conveze et symétrique par rapport
a Uhyperplan {x1 = 0} et soit (u1, ..., um) une solution du probléeme (0.8.6),
ot u; € HL (Q\T)NC@Q\T) pour chaque i = 1,...,m. Supposons que
chaque f; remplit (Sy,). Supposons aussi que I' est un point si N = 2 tandis
que I' est fermé et tel que

CapQ (F) = 07

si N > 3. Donc, si I' C {x1 = 0}, il s’ensuit que u; est symétrique par
rapport a Uhyperplan {x1 = 0} et monotone croissante dans la direction x,
dans QN {z1 < 0}, pour chaque i =1,...,m. en outre

Oz, u; >0 in QN{x; <0},
pour chaque i =1,...,m.

La technique développée dans le cas des domaines bornés (voir [50, 51,

| et [91] pour le cas non local) est trés puissante et peut étre adaptée
A certains systémes coopératifs dans RY impliquant non-linéarité critique.
Les articles sur l'existence ou les propriétés qualitatives de solutions aux
systemes & croissance critique de RY sont trées peu nombreux, en raison
du manque de compacité due a la présence des bulles de de Talenti et des
difficultés résultant de I’absence de bonnes méthodes variationnelles. Nous
renvoyons le lecteur & [19, 30, 71, 72, 74, 99] pour ce genre de systemes.
Notre objectif est d’étudier les propriétés qualitatives de solutions singulieres
au systeme d’équations m x m suivant

m
—Au; =) ajur ™! dans RV\T,
(0.8.8) ; /

u; >0 dans RN\ T,
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oui=1,...m,m>2 N > 3etlamatrice A := (a;j)i j=1,..m est symétrique
et telle que

m
(0.8.9) Za’ij = 1 pour chaque i = 1, ..., m.
j=1

Ce type de systemes, avec I' = (), a été étudié par Mitidieri dans [89, 90]

(1) (1)) et il est connu dans la littérature
comme appartenant a 1’hyperbole critique.

Sim =1, alors (0.8.8) réduit a I’équation critique classique de Sobolev

compte tenu du cas m =2, A =

—Au =u*"! dans RV\T
(0.8.10) = e \

u>0 dans RY\T,
cela se trouve dans [50, ]. SiT se réduit & un seul point, nous trouvons
le résultat contenu dans [121], tandis que si I' = §), alors le systéeme (0.8.10)

se réduit a I’équation classique de Sobolev (voir [21]). Pour des résultats
d’existence de solutions radiales et non radiales pour (0.8.8), nous renvoyons
a des articles intéressants [71, ]. Nous voulons remarquer que, dans
[71, 72], les auteurs traitent le cas général d’une matrice A dans laquelle
ses coefficients a;; ne sont pas nécessairement positives et cela implique qu’il
est impossible d’appliquer le principe maximum. Comme indiqué ci-dessus,
I’hypothese naturelle est

ui € HL, (RV\T) Vi=1,...,m

et donc, le systeme est compris dans le sens suivant:
m
(0.8.11) / (Vui, Vi) dx = Zaij/ ujz**lgoi dx Vi € CHRN\T)
RN e RN

pour chaque i =1, ..., m.
Ce que nous allons montrer au chapitre 6 est également le résultat suiv-
ant:

THEOREME 0.8.7. Soient N > 3 et (uq, ..., Un) une solution du probléme
(0.8.8), ot u; € HL (RN \T) pour chaque i = 1,...,m. Nous supposons que
la matrice A = (a;j)ij=1,...m, définie ci-dessus, est symétrique, a;; > 0 pour
chaque i,j = 1,....,m et que (0.8.9) est satisfait. De plus, au moins un des
ui a une non amouvible ° singularité dans 'ensemble singulier T, ot T est un

sous-ensemble fermé et approprié de {x1 = 0} tel que

Capy(T') = 0.

RN
Ensuite, tous les u; sont symétriques par rapport a U’hyperplan {z1 = 0}.
La méme conclusion est vraie si {1 = 0} est remplacé par un hyperplan
affine. Si au moins un de u; a seulement une singularité non éliminable a

5nous voulons dire ici que la solution (u1,...,um) n’admet pas un prolongement

régulier a tout ’espace. A savoir il n’est pas possible de trouver ,; € Hlloc(RN) avec
u; = @; dans RY \ T, pour certains i = 1, ..., m.
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lorigine pour chaque © = 1,...,m, chaque u; présente une symétrie radiale
par rapport a l'origine et décroit radialement.

Un autre systeme elliptique intéressant impliquant des exposants cri-
tiques de Sobolev est le suivant:

“Au =u¥ 1+ Sy 18 dans RV \T

(0.8.12) Ay =¥ 4 §u%ﬁ*1 in RV\T
u,v >0 dans RM\T,

oua,B>1, a+p=2* ::]\Qf—g (N >3)
Les solutions & (0.8.12) sont des ondes solitaires pour un systeme d’équations
couplées de Gross-Pitaevskii. Ce type de systeme apparait, par exem-
ple, dans la théorie de Hartree-Fock pour les condensats doubles, c’est-
a-dire les condensats de Bose-Einstein de deux états hyperfins différents
qui coexistent dans l’espace. Les résultats d’existence pour ce type de
systeme sont tres compliqués et l'existence de solutions non triviales est
étroitement liée au parametres «, 5 et V. Ce type de systeme a été étudié
dans [2, 5, 6, 99, , |. En particulier, dans [99], les auteurs mon-
trent un résultat unique pour les solutions d’énergie minimale sous des hy-
potheéses appropriées des parametres «, 8 et N, tandis que, dans [30], les
auteurs étudient également les cas compétitif, ce qui montre que le systeme
admet une infinité de solutions non triviales, qui ne sont pas conformément
équivalentes. Motivés par leurs applications physiques, les systémes ellip-
tiques faiblement couplés ont regu beaucoup d’attention ces dernieres années,
et il y a beaucoup de résultats pour le cas cubique ou I' = 0, « = 3 = 2 et
2* est remplacé par 4 dans les petites dimensions N = 3,4, voir par exemple
[2, 5, 6, 84, 85, , ]. Puisque notre technique ne fonctionne pas
lorsque 1 < a < 2o0ul < B < 2, nous étudions ici le cas a, 3 >2et N =3
ou N = 4 , puisque nous supposons que « + 8 = 2*.

Les derniers résultats qui vont étre prouvés au chapitre 6 sont donnés
par ce qui suit:

THEOREME 0.8.8. Soit N = 3 ou N = 4 et soit (u,v) € H} (RN \
) x HL (RN\T) un solution au probléme (0.8.12). Nous supposons que la
solution (u,v) a un non-amovible ° singularité dans ’ensemble singulier T,
ot I' est un sous-ensemble fermé et approprié de {x1 = 0} tel que

Cap,(I') = 0.
RN

De plus, supposons que o, > 2 et que o+ § = 2*. Alors, u et v sont
symétriques par rapport a Uhyperplan {x1 = 0}. La méme conclusion est
vraie si {x1 = 0} est remplacé par un hyperplan affine. Si au moins une
des des composantes u et v n’a qu’une singularité non éliminable a l’origine,
alors (u,v) est radialement symétrique par rapport a lorigine et décroit
radialement.

6Comme ci-dessus, nous voulons dire que la solution (u,v) n’admet pas un pro-

longement régulier a tout l’espace. A savoir il n’est pas possible de trouver (@,7) €
HE (RY) x HL.(RY) avec u = @ ou v = ¥ in RV \ T.
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Tous les résultats présentés ici, concernant les systemes, figurent au chapitre
6 et au [48]; une fois cet article terminé, nous avons appris que le cas des
domaines bornés était également considéré dans [14] (voir [13]), ce qui a
donné des résultats similaires.

0.9. La conjecture de Gibbons pour les équations elliptiques
quasi-linéaires

Le chapitre 7 concerne I’étude des propriétés qualitatives des équation
elliptique quasi-linéaire de la forme suivante

(0.9.1) — Apu = f(u) dans RY,

ol on note un point générique appartenant & RY par (2/,y) avec 2/ =
(z1,22,...,2N-1) et y = xN, p > 1 et N > 1. De plus, pour des fonctions
appropriées, I'opérateur p-Laplacien est défini par —Apu := — div(|Vu[P~2Vu).
Comme on le sait, voir [46, ], les solutions d’équations impliquant
I'opérateur p-Laplacien sont généralement de classe C1®. Par conséquent,
I’équation (0.9.1) doit étre comprise dans le sens faible. Nous résumons les
hypotheses sur la non-linéarité f, notée (Gy), de la maniere suivante:

(Gy): la non-linéarité f(-) appartient & C1([—1,1]), f(—1) =0, f(1) =0,

fi(=1) <0, fL(1) < 0 et le ensemble

Np={te[-1,1]| f(t) =0}
est fini.

La définition de nos hypotheses nous permet d’inclure les non-linéarités
de type Allen-Cahn et, de fait, le document est motivé par certaines ques-
tions découlant du probléme suivant.

(0.9.2) — Au=u(l —u?) dans RY,
voir [65]. G.W. Gibbons [29] formulé ce qui suit
CONJECTURE DE GIBBONS [29]. — Nous assumons que N > 1 et con-

sidérons une solution u borné de I'équation (0.9.2) qui appartient & C2(RY),
telles que

. / -
mNh_}Hleoou(x ,xN) = £1,

uniformément par rapport a z’. Alors, est-ce vrai que

u(z) = tanh <""”N\[; a) ,

Cette conjecture est également connue comme la version faible de la célebre
conjecture de De Giorgi [45]. Nous référons a [55] pour un historique com-
plet de 'argument.

La conjecture de Gibbons dans le cas semi-linéaire p = 2 est maintenant
bien comprise (voir [11, 54, 55, 63]). Nous abordons ici le cas quasi linéaire

pour certains a € R?

d’une classe générale de non-linéarités f. A notre connaissance, il s’agit du
premier résultat dans ce cadre. Ceci est motivé par le fait que, contrairement
au cas semi-linéaire (0.9.2), en travaillant avec 'opérateur singulier —A(-),
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nous devons tenir compte du fait que la non-linéarité f change de signe et
que toutes les techniques impliquées dans ’étude du probleme (0.9.1) ne
sont pas standard lorsque nous travaillons dans ’ensemble RV,

Nos preuves sont basées sur la méthode des hyperplans mobiles qui remonte
aux papiers d’Alexandrov [1] et de Serrin [111], puis aux célébres papiers
[12, 68] et a 1’ utilisation des principes de maximum et de comparaison
pour l'opérateur —A,(-), qui est beaucoup plus compliqué car nous de-
vons soigneusement tenir en compte la présence de points critiques de u.
De plus, lorsque nous considérons le cas d’'un domaine non borné comme
RN T’application de la technique des hyperplans mobiles est beaucoup plus
délicate, car les principes de comparaison faibles dans les petits domaines
doivent étre remplacés par des principes de comparaison faibles dans les do-
maines non bornés. En réalité, le principe de comparaison forte ne s’applique
pas simplement comme dans le cas ou des domaines bornés sont pris en
compte en raison du manque de compacité. Lorsque nous travaillons avec
I'opérateur laplacien, c’est-a-dire le cas p = 2, de nombreux arguments ex-
ploités dans la littérature sont tres liés a la nature linéaire et non dégénérée
de l'opérateur. Au chapitre 7, nous ne pouvons pas tirer parti de toutes les
techniques classiques utilisées dans le cas semi-linéaire et nous devons donc
récupérer ces arguments dans le cas d’équations impliquant des opérateurs
non linéaires dégénérés/singuliers.

Le résultat principal du chapitre 7 est donné par ce qui suit:

THEOREME 0.9.1. Soient N > 1, 2N +2)/(N+2) < p <2 etu€
’ une solution de l’équation (0.9.1), telles que
CLo (RN lution de I'équation (0.9.1), tell

loc
lul <1
et
(0.9.3) lim u(z’,y) =1 and lim wu(z',y) = —1,

Y——+00 Y—r—00
uniformément par rapport ¢ ' € RN"Y. Si f remplit (Gy), alors u ne
dépend que de y et

(0.9.4) dyu >0 dans RY.

Pour obtenir notre résultat principal, nous démontrons tout d’abord
un principe de comparaison faible dans un demi-espace approprié, puis nous
I’exploitons pour initialiser la méthode des hyperplans mobiles. L’application
de la méthode des plans mobiles n’est pas standard car nous devons retrouver
la compacité en utilisant I'invariance par translations de I’équation (puisque
nous travaillons sur R™V) sans oublier que la non-linéarité f change de signe,
ce qui ajoute de nombreuses difficultés par rapport au cas semilinéaire. En-
fin, nous obtenons la monotonie dans toutes les directions de I’hémi-sphere
supérieure Sf = {v ¢ Sf 1 (v,en)} cela nous donnera la symétrie
souhaitée.
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The goal of this chapter is to resume some well known results about weak
and strong comparison and maximum principles involving some semilinear
and quasilinear elliptic equations.

In particular we study regularity and qualitative properties of positive
weak solutions of the following elliptic problem

—Apu = f(u) inQ
(1.0.1) u>0 inQ)
u=0 on 0f).

where (2 is a bounded smooth domain in RY, N > 2, Aj,u = div(|Vu[P~2Vu)
is the p-Laplace operator, 1 < p < +00. The hypothesis on the nonlinearity
f will be always specified. Anyway the reader may think that f(-) is a
locally Lipschitz continuous function and most of our results will hold in
this case. In general solutions to p-Laplace equations are of class C1® (see

e.g. [46, ).
In all the thesis we further use the following inequalities, whose proof
can be found for example in [33]: Vn,n’ € RY with |n|+|n’| > 0 there exists

positive constants C1, Cy, Cs, Cy depending on p such that

UnlP~2n — 10 P~*0'1ln — 0’1 = Cr(In| + [0’ )P~2|n — o',

InP=2n — |0/ [P=20'| < Caol|n| + [0')P~2n — '],
(1.0.2)
nlP=2n — |0 P201ln — 0] > Csln—n'|P if p>2,

InlP=2n — [0/ |P720| < Culp —7/P~Y if 1<p<2

1.1. Regularity of the solutions

In this section we deal with the regularity of the solutions to problem
(1.0.1). All the results contained in this section can be found in a paper by
L. Damascelli and B. Sciunzi [36], where the authors essentially proved the
weak maximum principle for quasilinear elliptic equations, i.e. for problem
(1.0.1), via the summability properties of the solutions and thanks to the
moving planes method of Alexandrov-Serrin, when p > 2 and f(s) > 0 for
s > 0 (the case 1 < p < 2 was well known). In all the thesis we will say that
u € C1(Q) is a weak solution to problem (1.0.1) if it satisfies the following
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equation

(1.1.1) / |VulP~2(Vu, V) dz = / fu)pdzx, Yo e CX(Q).
Q Q

We define, as usual, the critical set Z, of u by setting

(1.1.2) Z, ={z € Q:Vu(z) =0}

Note that the importance of the critical set Z, is due to the fact that it is
exactly the set where our operator is degenerate. By Hopf boundary lemma
(cf. [103] or Section 1.4), it follows that

(1.1.3) Z,N00 =0,

if £(0) > 0. We point out that, by standard regularity results, u € C?(Q\
Z,). For functions ¢ € C°(Q\ Z,), let us consider the test function p; =
Oz,p and denote also u; = Op,u, for all + = 1,...,N. With this choice
in (1.1.1), integrating by parts, we get

/ IVu|P~2(Vui, Vo) + (p — 2) / \Vu|P~(Vu, Vu) (Vu, Vo) dz
Q Q

(1.1.4)
- / f,(U)U'LSO =0,

Q
that is, in such a way, we have defined the linearized operator L, (u;, ) at
a fixed solution w of (1.1.1). Then we can write equation (1.1.4) as

(1.1.5) Lu(ui, ) =0, Vo€ CX(Q\ Z,).

1.1.1. Summability of second derivatives.

The aim of this subsection is to show some summability results on the
second derivatives of solutions to (1.0.1). The point of view of considering
|Vu|P~2 as a weight is particularly useful when studying qualitative proper-
ties of a fixed solution. In the following, we repeatedly use Young’s inequality
in the form ab < §a? + C(6)b? for all a,b € R and § > 0. We can now state
and prove the following;:

PROPOSITION 1.1.1. Letu € C1(Q) be a weak solution to problem (1.0.1).
Assume that f is locally Lipschitz continuous. Assume that  is a bounded
and smooth domain of R™Y. Then

p—2 12
(1.1.6) / Vel W“’ﬁ’ dr < C,
O\ =0} [Y — [V |ui

where 0 < B <1, y< N—=2(y=0if N=2),1<p< +o00 and the positive
constant C does not depend on y. In particular, we have

P—2=8| D2y 12 -
(1.1.7) / [Vl ID7I” 4 < 6,
O\{Vu=0} ly — x|

for a positive constant C not depending on y.
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ProOOF. For all € > 0, let us define the smooth function 7, : R — R by
setting
¢ if [t > 2,
2t —2e  if e <t < 2¢,
2t +2e¢ if —2e <t < —¢,
0 if [t] <e.

(1.1.8) To(t) =

To prove (1.1.6) we choose E CC 2 such that
Z,N(Q\ E)=0.
Since u is C? in  \ E, then we may reduce to prove that
p—2 12
/ [Vul \Vuzﬁ| de < C.
E\{ui=0} 1Y — 2|7 |u]

Let us consider the cut-off function ¢ € CZ°(R2), such that the support of
is compactly contained in €2, v > 0 in 2 and ¢ =1 in E. Hence we set

_Tg(ui(l‘)) 'QZ)(:L')
(1.1.9) (@) = lui(x)P |y — x|

where 0 < 8 <1,y < N =2 (y =0 for N =2). Since ¢, vanishes in a
neighborhood of each critical point, it follows that ¢., € C2(Q\ Z,) and
hence we can use it as a test function in (1.1.4), getting the following result:

_92 ]
/Q ! |v|:j|fﬁ <Ts/(ui) - 5Ti(;éz)> V|V do

‘y_l‘"y i

+ [ -2 T (120 - 57 (v, vt

ly — =" Juil? u;

o To(1)
e T g (T )

1 T.
+/<p—2>||7|v e

e (s ()

+/(p 2)|VulP~ 4T(“Z)w(v V) <vu,vx< ! >> dz

il ® ly — =7

y
/ AU w y—ap

Let us denote each term of the previous equation in a useful way for the
sequel, that is

p—2 .
= [ AV (g - 5T o o
Q Ju;|? : Ui

\y—xh 1

Ay = /Q(p— gL [Vul™ <Ta’(ui) _ ﬁTg(“)> b(Vu, Vi) 2da;

‘y_xh ’szﬁ i

1 _ T(ul)
A :/ VulP~2== Vu;, V) dx
= Jal—ai T T (V40 VY)

;) (Vu, Vu;)(Vu, Vi) dz
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1 T (u;)
Ay = —2 V[P~

B
tom [ (e, ()
Aﬁz/(p—z)\v P~ 41[(|B)¢(v , V) <Vu Ve (M)) dz;

¥
M = d
/f mm%m—MWx

Then we have rearranged the equation as

(Vu, Vu;)(Vu, Vi) dx

6
(1.1.10) > Ai=M.
=1

Notice that, since 0 < 8 < 1, for all t € R and € > 0 we have

- B0 50 (T() ﬁn@j)zl_ﬂl

e—0 t

From now on, we will denote

~ T,
T.(t) =Ti(t) - B Et(t)7 for allt € R and € > 0.
From equation (1.1.10) one has
6
Ay + Ay <) Al + M.
i=3

We shall distinguish the proof into two cases.
Case I: p > 2. This implies Ao > 0, and hence

6
(1.1.11) Ay < Ap+ Ay <A+ M)
i=3
Case II: 1 < p < 2. By Schwarz inequality, of course, it follows
\Vu|P~(Vu, Vug)? < |Vul|P~2 |V, .
In turn, since 1 < p < 2, this implies

T (u) Y| VulP~4(Vu, Vu;)? Te (u;) | VulP 2| V|2

T P R T A v
so that (p — 2)A; < Ag, yielding
1 1 [
(1.1.12) A < E(Al + 4y) < I > Al + | M|
=3

In both cases, in view of (1.1.11) and (1.1.12), we want to estimate the terms
in the sum

6
(1.1.13) > A+ | M.
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Let us start by estimating the terms A; in the sum (1.1.13). Concerning As,
we have

T:
sl < [ vt v wilae < i,

where
1 |VulP~ |T (u;)

|
L>®(Q
ol T g Y EETE)

since |Vu;| is bounded in a neighborhood of the boundary by Hépf Lemma,
v—2< N, 0 < <1 and the constant C'5 is independent of y. For the
same reason, we also have

Ip — 2| o | Te(u;)|
A </ p= Vu;|| VY| de < Cy,
‘ 4’— |y "y‘ ’ ‘ 7,|6 ’ H ’ 4

for some positive constants Cy independent of y.
Furthermore, for a positive constant C'5 independent of y, we have

1
(52|
ly — |7

<G5 [ 1vup JEECH NI B

il ly —z[*!
1 |[Vul” 2¢IT(
oly =z ful? |uil

T.(w) 1
Vul|P~ 1] d
/' Tl e

1 |Vulp™? T (u)|
aly—z] |ulf ||

P R

< Cs6 )||v |2 dx

< Cs6 0 V| dz + K5(0)

where we used Young’s inequality, v —2 < N and 0 < § < 1. In a similar

way,
T (u;) 1
Ag/p2vp2| Y|V, ( >‘dm
1 |VulP~ ( i)
< ; K
< Cgd S \uz\ﬁ w ]Vu\ dx + Kg(0)
and

|M\</|f Il % g o,

i~ |y — x|
where the last inequality holds true since f is locally Lipschitz continuous
and where Cg and C); are constants independent of y. Then, by these
estimates above and by equations (1.1.11), (1.1.12) and (1.1.13) we write

6
A <D > Al + M|
(1.1.14) i=3
1 p=2
§S5A1+M5/ qu|5 ( )|v J|2dx + Cs,
aly—z7 ful
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where we have set

D= max{l,pil}, S = DC?;?’, M= DmaX{C5,CG}

C5 = Dmax {K5(5),K6((5)703,C4,CM}.
Then by (1.1.14) one has

1 VulP~2 y T (u;
a-so | ,Zi’ﬂ <Ta<m>—ﬁfjﬁ‘)> B Vuf? do

‘y_xh %
1 VulP~2 T.(u;
=M 0 |ya:|7| |U'||B v 1(1 )\Vui|2dx+65,

namely
(1.1.15)

1 |VulP2[_, Mé T (u;) 2
1- T2 (ui) — i
(-s0) [ 2T I - (54 2 ) o wivuas

< Cs.
Let us choose § > 0 such that
1-86 >0,
(1.1.16) {1—(6+1A_4§;)>0-

Therefore, since as € — 0

[Té(ui) - <B+ (1@25» Ta(?”] > (1 5 uf{%) >0 in {u; # 0},

by Fatou’s Lemma we get
p—2 12
(1.1.17) / [Vl |V“lﬂ| bdz < C.
O\fui=0} [Y — [V |ui

The proof is now complete, in view of the choose of the cut-off function .
O

1.1.2. Gradients summability.
In this subsection we show the gradient summability of a solution u of
problem (1.0.1). We have the following:

THEOREM 1.1.2. Let u be a weak solution of (1.0.1) and assume, fur-
thermore, that f(s) > 0 for any s > 0. Then, there exists a positive constant
C, independent of y, such that

1 1
(1.1.18) / dz < C
Q ‘Vu’(l’—l)r ‘;c — y’“/
where 0 <r <1 andy < N —2 for N >3 (y=04if N =2). In particular
the critical set Z, has zero Lebesgue measure.

PROOF. Let E be a set with E CC Q and (2\ E)N 2, = 0. Recall
that 2, = {Vu = 0} and 2, N 9Q = 0, in view of Hopf boundary lemma

(see [103] or Section 1.4). It is easy to see that, to prove the result, we may
reduce to show that
1 1
(1.1.19) / : dz < C.
g [Vu|®P=Dr g —y[y
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To achieve this, let us consider the function

1 1
(Vul +)0 0" fo =y
where 0 <r <landy< N-—-2for N >3 (y=0if N =2). We also assume
that ¢ is a positive C2°(Q2) cut-off function such that ¢ =1 in E. Using ¥
as test function in (1.1.1), since f(u) > o for some o > 0 in the support of
U, we get

or/ \Ifdazg/f(u)\lfd:z::/ |VulP~2(Vu, V) dz
Q Q Q

1 1
(IVu| + &)p=Dr+l [z — y|7

< / IVl 2| (Y, V| V)|
Q
1 1
Vu,V, d
< ! |x—y|v) (IVal + &)= 7 ™

+ / |Vu[P~2
Q
1 1

VulP~2|(Vu, V dx.
+/Q| uf Ve S0)’(|Vu|+»s)(fﬁ’*1>7” e =y ™

(1.1.20) U(2) = V() =

pdx

Consequently, we have

1 1
Udr <C| [ |VulP | D?u dx
fyvas <] foar 10 e

+/ [Vl ! dz
o (IVu] + &) 0r [z — yp+17

Vupl |Vl
d
+/Q (Vul + o) 0r jo —yp

Then, denoting by C}, suitable positive constants independent of y and by
Cs a positive constant depending on &, we obtain

(1.1.21)
1 1

Udx < Cy | |VulP~!|D?ul| - : pd
A A e e e

1 1
+02/dx+03/d$
olr—yp+t alr =yl
1

<Cy | |VulP7Y D%l - : ~pdr+C
<O [ VPOt e o e+ C
1 1
< Cs6 . .od
= /Q<|Vu\+s><pl>r w—yp 7
+C(;/ V| (P2 = (Pr=1)+2=7) ) 2,12 . ~pdx + Cg
Q |z —y[7

< 055/ U dz + Cs.
Q

Here we have we used that u € C*(Q ), ¥ < N — 2 and we have exploited
the regularity result of Proposition 1.1.1, with 5 :=p(r — 1) + 2 — r. Then,
by (1.1.21), fixing ¢ sufficiently small, such that 1 — C36 > 0, one concludes

1 1
1.1.22 dr < K,
(1.1.22) /Q (Vul + o) Dr jz —yp ¥4 =
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for some positive constant K independent of y. Taking the limit for € going
to zero, the assertion immediately follows by Fatou’s Lemma. Moreover, as
a consequence, we have that

L(Z,) =0,
O

Theorem 1.1.2 provides in fact the right summability of the weight
o(x) = |Vu(x)[P~2 in order to obtain a weighted Poincaré inequality.

1.1.3. Weighted Sobolev and Poincaré inequality.

In this paragraph we shall prove some results about weighted Sobolev
and Poincaré inequality, that are essential tools in the proof of the weak
comparison principle in the case p > 2. Let us start stating the following;:

Condition (PE) We say that u(x) satisfies the Condition (PE) in 2, if
[Vu(y)|

(1.1.23) lu(z)| < C | ——Z—dy.

o lz—yN!
This condition is the same introduced in a paper by A. Farina, L. Montoro
and B. Sciunzi [61]. This generally follows by potential estimates, see [70,

Lemma 7.14, Lemma 7.16], that gives

T — i)
C/ ' 13?\; )dy a.e. in €,
[z -y

with
(i) C = 5= if ue Wy(Q),
where wN is the volume of the unit ball in RY;
(i) C = W if u e WH(Q) with / u =0 and Q convex,
where d = diam €2 and S any measurable subset of (2.

Moreover let p € (0, 1], we define

_ f)
It is well known that (see [70, pag.159])
(1.1.25) V1L, Q) (x) < p oy QM

Let us state the following:

LemMMA 1.1.1. Let us consider Q C Q and V,[f,Q(x) as in (1.1.24).
Then for any 1 < q < 0o one has

~ 1-4§ 1-6 B -
(1126)  [Vulr Q@)oo < <M> I o gy
whereOSézi—l<u.
m q

PROOF. The proof follows by [70, Lemma 7.12].
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Recall that, if o € L'(), 1 < ¢ < oo, the space Hy?(Q) is defined as

the completion of C°°(2) under the norm
(1.1.27) HU”H;ﬂ = |lvlle) + VUl La(0,0)
where

Vol = [ IVol'ode.

We also recall that H&’g is defined as the completion of C2°(Q)) under the
norm

(1.1.28) ol a0 = 11Vl La(0,0)-

THEOREM 1.1.3 (Weighted Sobolev inequality). Let o a weight function
such that

1
(1.1.29) / —— <O,
o o'z —y|
witht:%r, ;’%? <r<l,y<N-=2(y=0if N=2). Assume, in the
case N > 3, without no loss of generality that

=

v >N —2t,

which' implies Nt — 2N + 2t +~ > 0. Then, for any w € H(];:S(Q), there
exists a constant Cs, such that

1
2
(1.1:30) sy < eVl = C, ( [ avui?)”.
for any 1 < q < 2*(t) where
11 1 1/1
(1.1.31) 2¢(t) 2 N *y <2 2N>‘
with
~ _1
(1.1.32) Cy, = C(C*) 2 (Chpy) @

where C is as in (1.1.23), C* is as in (1.1.29) and in the statement of

Theorem 1.1.2, and
1—-6 1=0 1-& a
CM:<a 5) wn N QN
&

REMARK 1.1.2. Note that the largest value of 2*(¢) is obtained at the
limiting case t = ;‘;%;, and v = (~N —2),v=0 for N =2. We have therefore
that (1.1.30) holds for any ¢ < 2* where

1 1 1 -2 1

1.1 1.p-2 1
2 2 N p—1 N
Moreover one has 2* > 2.

INote that the condition v > N — 2t holds true for r & 1 and v &~ N — 2 that we
may assume with no loose of generality.
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PROOF. Without loss of generality we assume w belonging to C'*(Q) or
C3(Q) depending on the case (i) or (ii) of Condition (PE). Hence (1.1.23)
implies

[Vuw(y)|

1.1.33) w(z)| < C | ———Zdy.
( S A T
Then
5 [ [Vw(y)l
w(z)| <C | ———dy
S A
1
- 1 [Vw(y)|o2
= C/ 1 ol N—-1—-2X dy
Q p2|r — y| ‘m—y‘ 2t
1
1\ (28) @
cé 1 NE [ (Tewlet)

B </Q otz —y| y> /Q |z — y\(N_l_zlt @y Y 7
where in the last inequality we used Holder inequality with 2%, + ﬁ =1
Hence

2t)’ G

1 (
(131 (o) < GO /‘vawm)

d
o [z — y| 8-y Y
We point out that

I

G 2
(1.1.35) (Ivulo?) € LT (Q).

From (1.1.34), by using equation (1.1.24) with g =1— £(N —1— %)(2t),
we obtain

(1.1.36) |w@ﬂ§é&ﬂé(M{Owamﬁfmﬂﬂ<w)&”

Moreover we remark that the assumption v > N — 2¢ implies p > 0.
We shall use now Lemma 1.1.1 setting
1 (2t
m 2
see (1.1.35). In order to apply (1.1.26), since by assumption Nt —2N + 2t +
~v > 0, a direct calculation shows that it is possible to find a ¢ > 1 such that
1 1

— = = <
m.q

From (1.1.34) we have
(1.1.37)

_1
</qum“m7m>ﬂm < Oy
Q

1
@ty

v [(vatier) o) @

La(Q)
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From (1.1.37), by using Lemma 1.1.1 we get
(1.1.38

)
! /
([ o)™
Q
~ 1 1 - (5 1=0 1-& [e% (T;l %
< C(CM) w NIQIN o Vul? )
=4
N Q

that gives (1.1.31) with ¢(2t)" = 2*(¢) and (1.1.32) with

-5
Cu = < ; —(;> wn NIQIF,

Zle

g

As a natural consequence of the weighted Sobolev inequality, we obtain the
following:

COROLLARY 1.1.4 (Weighted Poincaré inequality). Let w be as in one
of the following cases

(i) w € Hy2(Q),

(i1) w e Hy*(Q) such that / w =0 and Q convex.
Q

Then, if the weight o fulfill (1.1.29), then
w? < Cy(QCHCH) T (Chp) B 2
— P M) Q|V’w| )
Q Q

where C,C*,Cyr are as in Theorem 1.1.3 and with Cp(2) — 0 if |Q| — 0.
In particular, given any 0 < v < 1, we can assume that

(1.1.39) C,(Q) < C QTN .

PROOF. Choose 2 < ¢ < 2*. By Holder inequality we get:

2
q —2
(1.1.40) /w2§ </ wq> |,
Q Q

and then using Theorem 1.1.3 one has
2 A2 ey L 7 2
w? < CQCACH)H ()T [ oVl
Q Q

By (1.1.40) and direct computation it follows (1.1.39).

1.2. Weak comparison principles in bounded domains

As remarked at the beginning of this chapter, our aim is to show some
results about comparison principles involving semilinear an quasilinear ellip-
tic equations in bounded and unbounded domains. In fact, the aim of this
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section is to show some results about weak comparison principles in small
domains. To do this, let us consider the following elliptic problem

{—Apu < f(u) inQ

(1.2.1) ~Ap > fv) i,

where Q ¢ RV, N > 2, is a bounded domain and 1 < p < 4o00. In all
the section we assume that f is a locally Lipschitz continuous function on
[0, +00). As remarked in the introduction, we just point out that it is well
known that, if p = 2, we have classical sub and super-solution u,v € C2(Q),
while if p # 2 problem (1.2.1) has to be understood in the weak distributional
meaning, since it is well known by regularity theory that u,v € C1*(Q), see
e.g. [46, ].

We just point out the fact that if p = 2 the situation is well known
in the literature, since, maximum principles and comparison principles are
equivalent. Inspired by classical results, that can be found for example in
[70], we exploit the following well known result whose proof can be found
in a paper by A. Farina and B. Sciunzi (see [62]):

THEOREM 1.2.1 (Weak comparison principle in small domains, p = 2).
Let us assume that p = 2 and u,v € C%(Q) satisfying (1.2.1). Then there
exists ¥ = ¥(Q, u,v, f) > 0 such that, if for any domain Q' C Q with u <wv
on Y and || < ¥ (where | - | denotes the Lebesque measure of a set) it
follows that

u <o in Y.

PROOF. Let us consider the weak formulation of problem (1.2.1) and
get

(1.2.2) //(Vu, V)dr — Q/f(u)gpdw < /Q/(VU,VQO) dx — o f(v)pdx

for every test function ¢ € C°(€Y), ¢ > 0 in . Taking (u —v)* € HI ()
as test function in (1.2.2), we obtain

V(- o)t de < 5 W[(“ —v)* P de

< C(Q,u,v, f) /Q/[(u — )2 dz

where the positive constant C(€Q,u,v, f) can be determined exploiting the
fact that u,v are bounded on  and f is locally Lipschitz continuous on
[0,00). An application of Poincaré inequality gives

(124) [ V=) P o < 0@ o NOXNT [ V() Pdo

(1.2.3)

where Cy > 0 is a constant depending only on the Euclidean dimension N.
2
For || sufficiently small such that C(Q,u,v, f)(Cn(|Q]))¥ < 1, we get
that (u —v)™ = 0 and the thesis.
O

The situation is completely different when p # 2. Since the p-Laplace
operator Ayu = div(|Vu[P"2Vu) is nonlinear, there is a deep difference
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between comparison and maximum principles. We have to remark that the
singular case, i.e. 1 < p < 2, is easier than the degenerate one, since when
p > 2 we need to apply weighted Sobolev and Poincaré inequalities proved
in Section 1.1, see Theorem 1.1.3 and Corollary 1.1.4 The weak comparison
principle for the quasilinear elliptic problem (1.2.1) appeared, in a very

general version, in a paper by L. Damascelli [33] when 1 < p < 2. First of
all let us recall the Poincaré inequality whose proof with A = Q and B = ()
can be found in [70]. Now we prove the variant proposed in [33].

LEMMA 1.2.2 (Poincaré inequality). Let us assume that Q is an open
bounded set such that Q@ = AU B with A, B measurable set of Q. If u €
W, () with 1 < g < +oo, then

_ 1 1 1 _1
(1.25)  Nullze(e) < wy™ 915 [JAIS [ Vul o) + [BIS [Vl o))

where ¢’ = q%'

PROOF. Let us define h(z,y) := |z —y|' =" and let us assume that C is
a measurable set of Q. If R > 0 is such that |C| = |B(x, R)| we have

/ he.y) dy = / W) dy + / W, y) dy
C CNB(z,R) C\B(z,R)

(1.2.6) < / h(z,y)dy +/ h(z,y) dy
CNB(z,R) B(z,R)\C
CI\~
= h(z,y)dy = NouyR = Nwy | — ,
B(z,R) WN

where wy is the misure of the N-dimensional ball B(0,1). If f € LI(C) by

Fubini’s Theorem for a.e. x € {2 we have that f(y)(h(m,y))% € LP(C). Let
us recall the definition of potential given in (1.1.24) with p = %

VyUClw) = [ Fwhley)dy,
C
Then by (1.2.6) and Holder inequality it follows that

vyl Cla) < [ 15wind ay

(/le(y)lqh(w,y)dy>; </Ch(x,y)dy>q
[Nw (fV')N ’ ([ st dy)‘ll.

Taking the g power and integrating in x over {2 we obtain, using again Fu-
bini’s Theorem and (1.2.7) with C' = Q and the role of = and y interchanged,

IN

(1.2.7)

IN

1 1
[CI\ N (1] Ve
128) Wy Cllane < Nox (5D (27 s
Now, if u € C2°(€Q2) then we have the representation (see Lemma 7.14 [70])

1

u(r) = NwN/Q\l‘ —y| N (Vu,x —y) dy
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so that if 2 = A U B we have that
1
u(e) < o [V [A[Tull) + Vi [B.[Tul)].

From (1.2.8) we obtain (1.2.5) for u € C¢°(€2) and the general case follows
by density argument.
O

Let us put, if u, v are functions in W1*°(Q) and 4 C
Ma = My(u,v) = sup(|Vu| + |Vvl).
A

REMARK 1.2.3. A function f : R — R is locally Lipschitz continuous if
and only if for all R > 0 there exists C1(R),C2(R) > 0 such that

(1) fi(s) = f(s) — C1s is non-increasing in [—R, R].
(2) fa(s) = f(s) — Cas is non-decreasing in [—R, R].
In view of Remark 1.2.3 we prove (see also [33]) the following version of
the weak comparison principles in the singular case:

THEOREM 1.2.4 (Weak comparison principle, 1 < p < 2). Let Q be
bounded and u,v € WH>°(Q) weakly satisfy
(1.2.9) —Apu+g(z,u) — Au < —Apv +g(z,v) —Av  inQ
where A > 0 and g € C(2 x R) is such that for each x € Q g(x,s) is non-

decreasing in s for |s| < max{||u||co, ||V||cc}. Let ' C Q be open and suppose
u<wv on 0.

(a) If A =0 then u <wv in ', for allp > 1.
(b) If 1 < p < 2 there exist §, M > 0, depending only on p,A,~,T, ||
and Mgq, such that the following holds:

?;fQ,:AlLJAQ, |A1ﬂA2| =0, |A1| < d and MA2 < M,
then u < v in €.

PROOF. (a) Let us assume that A = 0. We pass to the weak formulation
of (1.2.9)

(1.2.10)
/ (|VulP~2Vu — |[Vv|P~2Vv, V) da
Q/

+ [ oo~ gleolods <0, Vi€ CF(E).

Since by our assumptions u < v on 99 it follows that ¢ = (u —v)" €
I/VO1 P(€)). Using ¢ as test function in (1.2.10), the fact that ¢ is nondecreas-
ing and also by (1.0.2) we deduce that

(3'1/ (V] + |[Vo))P2|V (1 — v)2 da

(1.2.11) &

< / (|Vu|P~2Vu — |[VoP~2Vu, V(u — v) T dz < 0.
Q/

Hence by (1.2.11) it follows that (u—v)*™ = 0 in €’ and this gives the thesis.
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(b) As we did above by (1.2.9), we pass to the weak formulation
(1.2.12)

/ (|Vul[P~2Vu — |Vu|P~2Vv, V) dx
Q/

+ [l — gla o)l do
—A/ (u—v)pdr <0, Vo € C°(Q).

Since by our assumptions v < v on 9§ it follows that ¢ = (u —v)t €
I/VO1 P(QV). Using ¢ as test function in (1.2.10), the fact that g is nondecreas-
ing and also by (1.0.2) we deduce that

o / (V] + [Vo)P~2|V (u — o) da
Q/
(1.2.13) S/ (|Vu[P~2Vu — |Vu|P2Vo, V(u — v) ") dz
Q/

< A/ [(u—v)T?pda
Let us recall that ' = A; U Ag and 1 < p < 2, hence we rewrite (1.2.13)
(1.2.14)
C’lMS/Q/ IV(u—v)"?de + clng/ |V (u—v)* | dz
Aq A

2

gCl/ (V] + [Vo)P-2V (1 — v)* 2 da
Q/

<A | [(u—v)"Pdx
o

Now, by Lemma 1.2.2 with ¢ = ¢’ = 2 we have that

(1.2.15)
ClMS,_Q/ IV(u—v)*de + C’1M£;2/ V(u—v)*|*dz
A1 A2
_2
§2AwNN|Q’|% [|A1!1{’/ IV (u— )" > dzx +|Q’|Jb/ \V(u—v)"*dz| .
A1 A2

Now, we infer that if |[A;| and M4, are small we must have

/ V(= v)*H2da =0,
A;

for i = 1,2, so that (u —v)* =0 in Q" and hence the thesis.
O

As remarked at the beginning of this section, using regularity results
and weighted Sobolev and Poincaré inequalities proved in Section 1.1, an
application of previous results is given by the following:

THEOREM 1.2.5 (Weak comparison principle, p > 2). Let Q be a bounded
smooth domain such that Q@ C Q. Assume that u,v are solutions to the
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problem (1.0.1) and assume that u < v on Q. Then there exists a positive
constant 9 = 9(Q,u, v, f) such that, assuming

Q] <

then it holds ~
u<ov n .

PROOF. Let us recall the weak formulations for the solutions v and v to
problem (1.0.1)

(1.2.16) /Q \VulP~2(Vu, Vo) dr = /Qf(u)ap dx, Vo € C(9),

(1.2.17) / IVolP~2(Vu, Vo) dr = [ f(v)pdz, Vo € C°(Q).
Q Q
Then we assume by contradiction that the assertion is false, and consider
(u —v)T = max{u — v, 0},

that, consequently, is not identically equal to zero. Let us also set QO =
supp(u—v)+N€Q. Since by assumption v < v on 9, it follows that (u—v)* €
VVO1 P(Q). We can therefore choose it as admissible test function in (1.2.16)
and (1.2.17). Whence, subtracting the two, we get

/ (|VulP~2Vu — |Vu|P2Vu, V(u —v)) dzx
(1.2.18) o
= [ (7w = ) o) e

By (1.0.2), it follows that

C / (V] + [Vo)P~2(V (u — )| da
O+

S/ (IVu[P~2Vu — |V|P~2Vo, V(u — v)) dx,
O+
so that
cl/ (1Vul + |[Vo))P-2|V (1 — )2 da
+

<.
O+

Let us now evaluate the term on the right hand side of the above inequality.
By the Lipschitz continuity of f, it follows

/ fu) = f(v)
o+

uU—v
Concluding, exploiting the above estimates, we get

/ (V] + [Vo)P 2V (u — )| da
O+

(1.2.19) F(u) - f(v)

lu — v|* dz
u—v

|u—v|de‘§C/ lu —v|? dx
O+

< CCP(!W!)/ (IVul + Vo )P=2 |V (u — v)|* da
O+

< COp(Qt) / (V] + [Vu)P2|V (u - 0)[? da
Q+
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which gives a contradiction for C Cp(]Q*|)) < 1. Now, since |Q < ¢ by
assumption, it follows that if ¥ is sufficiently small, then we may assume
that Cp(|QT]) is also small, and that C Cp(|2T[)) < 3. Hence we have a

contradiction, and shows that actually (v —v)™ = 0 and the thesis.
O

1.3. Weak comparison principles in narrow unbounded domains

In this section we show some well known results about weak comparison
principles in narrow unbounded domains involving the p-Laplacian, that are
very useful tools in the proof of monotonicity results in the half-space. It is
well known that the first result for p = 2 is due to H. Berestycki, L. Caffarelli
and L. Nirenberg and can be found in the seminal papers [8, 9, 10]. We
just point out that the technique used in these papers works only in the
semilinear case, since the authors need to construct an explicit solution to
the problem. In a series of papers by A. Farina, .. Montoro and B. Sciunzi
[59, 60, 61] and also in a paper by A. Farina, L. Montoro, G. Riey and B.
Sciunzi [58] the authors used a new technique to prove monotonicity results
in the half-space that works also in the case of quasilinear elliptic equations
involving the p-Laplace operator. The singular case 1 < p < 2 (see [58, 59]),
is simpler than the degenerate one p > 2 (see [60, 61]), since we have in
force the classical Poincaré inequality (presented in the previous section),
that, used in a tricky way, it is one of the main tool in the proof of the
comparison principle in narrow strips. In the case p > 2, that we are going
to consider at the end of this section, the use of weighted Sobolev spaces is
naturally associated to the study of qualitative properties of the solutions, as
discussed in Section 1.1. This issue is more delicate in unbounded domains.
Let us only say that the use of weighted Sobolev spaces is necessary in the
case p > 2 and it requires the use of a weighted Poincaré type inequality
with weight o = |Vu[P~2 (see [37] and also Section 1.1). The latter involves
constants that may blow up when the solution approaches zero that may
happen also for positive solutions in unbounded domains. Namely once
again the lack of compactness plays an important role. In the same spirit
of the papers cited above, we start this section showing a result about the
weak comparison principle in strips when 1 < p < 2, whose proof, based on
an iterative argument, is also new in the semilinear case p = 2 and can be
found in [59].

THEOREM 1.3.1 ([59]). We suppose N > 2, 1 < p <2, A > 0 and
assume that f is locally Lipschitz continuous. Set

Vv

_ A A A
EAyO::Rle[y0—27Z/0+2], Yo = 5-

Consider respectively u,v € Cllo’ca(EAyO) a sub and super-solution to the fol-
lowing quasilinear elliptic equation

(1.3.1) — Apw = f(w) in Ty,
with u, Vu,v, Vv € LOO(EAyO). Ifu<wv on 82Ay0, then there exists
Ao = Ao(IN, p, [[Vulloos [[VOloo, [[tl[ocs [Vlocs £) > 0O
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such that if, 0 < A < Mg, it follows that
u<v mn E/\yo'

If uw and v are not assumed to be bounded, the same conclusion holds, if we
assume that the nonlinearity f is globally Lipschitz continuous.

We start proving a lemma that will be useful in the proof of Theorem
1.3.1:

LeEMMA 1.3.2 ([59]). Let 9 >0 and v > 0 such that 9 < 277. Moreover
let Rgp >0, ¢ >0 and
L: (Ro, —I—OO) —-R

a non-negative and non-decreasing function such that

(133 L(R) < 9L(2R) + g(R) VR > Ry,
i L(R) < CR VR > Ry,
where g : (Ry, +00) — RT is such that
Then
L(R) = 0.

ProOOF. It is sufficient to prove that

l:= lim L(R)=0.
R—4o00

By contradiction suppose that [ # 0 and choose 1 such that ¥ < ¢ < 277.
This implies the exixtence of R; = R1(1) > Ry such that

(0 —91)L(2R) + g(R) <0 VR > Ry,
and then
(1.3.3) L(R) <91 L(2R) YR> Ry.
By (1.3.3) we have: VI € N*, VR > R;
L(R) < 9. L(2'R)
(1.3.4) < oL (2'R)"
= C(2)'R,
where we have used that L(R) < CRY for R > Ry, by (1.3.2).
Since 0 < ¥; < 277, by (1.3.4) we obtain
L(R) < lim C(2791)'R"=0 VR> Ry,
l—4o00

getting the contradiction.
O

PROOF OF THEOREM 1.3.1. We therefore assume that N > 2, 1 <p <
2, A > 0 and that f is locally Lipschitz continuous. We consider u,v € Cllo’g
with u, Vu,v, Vv € L*(X,, ) such that u,v weakly solve (1.3.1).
We want to show that there exists Ag > 0 such that if 0 < A < Ag, then

u <o in EAyo'
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We carry out the proof in the case u,v € L*(X,, ).The same proof works

when u and v may be not bounded, but f is globally Lipschitz continuous.
First of all we remark that (u —v)™ € L>(X), ) since we assumed u,v

to be bounded in Z)\yo.

Let us now define

(1.3.5) U = [(u—v)T]%?,

where a > 1, and p(2',y) = p(2') € CC(RV 1), v > 0 such that
1, in B'(0,R) c RN-1,

0, in RN-1\ B'(0,2R),

Vol <&, in B'(0,2R)\ B'(0,R) c RN~L.

P
(1.3.6) ©

We note that ¥ € Wol’p(E/\yD) by (1.3.6) and since u < v on 0%, .
Let us define the cylinder

C(R) := {szo N{B(0, R) x R}} .

Then using ¥ as test function in both equations of problem (1.3.1) and
substracting we get

a/ (IVulP2Vu — |Vo[P 2V, V(u — v) ) [(u — v) T 1 da
C(2R)
+ / (IVuP~2Vu — |Vo[P2Vo, V¢?) [(u — v)T]* dz

C(2R)

- / () — F@) [ — v) )% da
C(2R)

Taking into account (1.0.2) and the fact that p < 2, we have
(1.3.7)
aCy / (IVul + Vo P72V (u = o) FP[(u — v)T]* 7 o da
C(2R)

< a/ (|Vu|p72Vu — |[Vu[P2V, V(u —v) ) [(u — v)T]* 1o do
C(2R)
= —/ (IVuP~2Vu — |Vu[P2 Vo, Ve?) [(u — v)T]* dz
C(2R)
[ G0 = PO =) e

< / |(IVulP*Vu — [VoP~2Vo, Ve?) | [(u — v) T]* dz
C(2R)

+ /C( |(f(w) = f@)] [(u—v)*]*¢? do

2R)
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Then, since u,v € C’llo’g have bounded gradient by assumption, one has
acr [V o) Pl o) ds
C(2R)

(138) -, / [(u— 0) oIV do + / Lyl — 0)*H g2 da
C(2R) C(2R)
= coly + Lf[g,

where
1 = (| Vullso + [[Vollo)P>C1,

c2 = ([[Vulloo + [[Volloo)P o
Ly is the Lipschitz constant of f in the interval

[= max{[Julco; [[v]lo0 }, max{[[uloo; [[0]]oc }-

We now evaluate the term
B[ [0 v
C(2R)

(1.3.9
I

~—

IN

2 / (u— v) | Vo] d = 2 / [(u— v) 1|V 3|Vl da
C(2R) C(2R)
a+1

_ ) Hatl 0 ot et
. [ (=)™ Vi wva | Vel
C(2R) o c(

y0+A [e7 2 o «@
<2 / ( / " ([ =0y dy> P [Vl 5 da’
RN-1 Y

0—

+2/ Vel
C(2R)

a+1)>2 a— atl atl
SO e N VRO N L XURROM Pl P e
C(2R)

a+1
+ 2/ V| 2 do
C(2R)

a+1)? a— a+l atl
O [0 T 0 R T

a+1
42 / Vol °F da.
C(2R)

1
In (1.3.9) we used Young’s inequality with conjugate exponents (OH_, o+ 1> ,
o

IN

Q>

1
2 dx

<C2(N)

2 2
sociated constant and the fact that ¢ = ¢(a').
We now evaluate the term

B[ -0 e
C(2R)

A A
a Poincaré inequality in the set [yg - —, Y% + ] , denoting with C), the as-
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-/ / " ([(u—v>+]“21)2dy> (p(a'))?da’

<o [ ( [ () ot v>+|2dy) S

Now we are going to choose the constants @ > 1 and A > 0 in such a way

a+1 2 acy
2 [
(1.3.11) Lfc;(A)( . ) <5
so that from (1.3.8) we have
oS [ V= o) Pl - 0) T da
2 Jeer)

(1.3.12)
< 02/ [(u—v)T]?|V?| dz = coIy.
C(2R)

From (1.3.23) one has that

al IV(u—v)" 2 (u—v)* " da
2 Jer)
<ol IV(u—v) 2 (u—v)* T p?de < coly.
2 Jeer)

Consequently we obtain
(1.3.13)

/ IV (u— ) P~ )7 de
C(R)

< 2@+ 17 [ (o) V- o) P Ve o

acy C(2R)
142 V| da.
act Je(2r)
From (1.3.13), setting a = 2N + 1, one has

(1.3.14)
/ IV(u—v)"*(u—v)* " da
C(R)

= 19/ IV (u—0)*P[(u—0)*]° de + 42 CARNLR-(VHD

= 19/ IV(u—v)"*[(u—v)T]*  de + c3R72,
C(2R)

where ‘
c3 = 42 C) e RY,
acy
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2

(0765}
In particular to do this, recalling that Cg()\) ~ A2, A > 0 will be taken such
that

—N
CHN(@RN +2)* =09 <27,

2 2 2 -N
1.3.1 —_— +1 27,
(1.3.15) aCICp(/\)(a ) <

Let us set

and
g(R) = c3R™2.
Then one has
L(R) <IL(2R)+ g(R) VR >0,
L(R) < CRN VR > 0,

and from Lemma 1.3.2 with v = N, since we assumed ¢ < 27V, we get
L(R) = 0 and consequently the thesis.
O

We just point out the fact that monotonicity results in the half-space
are generally based on weak comparison principles in narrow strips as it was
done in a series of papers, some of them mentioned before, by H. Beresticky,
L. Caffarelli and L. Nirenberg [8, 9, 10], E. N. Dancer [39], L. Damascelli
and F. Gladiali [34] and by A. Farina, L. Montoro and B. Sciunzi, see
[56, 58, 59, 60, 61]. In our case, the presence of the therm |Vu[P~2 gives
rise to a phenomenon that was first pointed out in [33, 35], in the case of
bounded domains. Namely, it is possible to prove monotonicity results via
a weak comparison principle in domains that can be decomposed into two
parts. A narrow part (w.r.t. the Lebesgue measure of the section) and a
part where the gradient of the solution is small.

We have the following:

THEOREM 1.3.3 ([58]). Let 1 <p <2, N > 2 and let us assume that f
1$ a locally Lipschitz continuous function. Fixz Ay > 0 and My > 0. Consider
A€ (0, N, 7, >0 and set

Y

A A A
. mN-1
(1.3.16) Yy, =R X (yo — 3% + 2) Y0z g

Let u,v € Clla’?(iAyo) such that ||u]|co + ||Vl o < Mo, [[v]loc+ [|VV|leo < Mo
and

—Apu < f(u), in Xy, ,
(1.3.17) —Apv > f(v), in Xy,
u <, on OSZ,
where the open set S2 C EAyo 1s such that
s= | 1r,

z’eRN-1
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and the open set I",° C {z'} x (yg - %, Yo + %) has the form

and, for &' fized, A, , BS, C (yo — %, Yo + %) are measurable sets such that
AT <7  and BS C{yeR: |Vu(a,y)| <e, |[Vo(@,y)| <e}.

Then there exist

70 = T0(N, p, Ao, M) >0
and

g0 = €o(N,p, Ao, Mo) >0
such that, if 0 <7 < 19 and 0 < € < &g, it follows that

u<v in  S:.

If the functions f is assumed to be globally Lipschitz continuous on Rf xR,
the same conclusion holds true without any assumption on the boundedness
of u and v.

Moreover, as a consequence of the previous theorem we have:

THEOREM 1.3.4 ([58]). Let 1 <p <2, N > 2 and let us assume that f
1$ a locally Lipschitz continuous function. Consider A > 0 and set

_ A A A
2o =RV % <y0—,y0+>, Yo

v

2 2 5
Fiz My > 0 and let u,v € C’llo’g(f)\yo) such that ||ulleo + ||Vulleo < Mo,
|v]|oo + IVV]|oo < Mo and
—Apu < f(u), in 2)‘90’
(1.3.19) —Apv > f(v), in DIV
u < v, on S,

where S C Xy, is an open subset.
Then there exists

A= X(N,p, My) >0
such that, if 0 < X\ < A, it follows that
u<wv in S.

If the functions f is assumed to be globally Lipschitz continuous on Rf xR,
the same conclusion holds true without any assumption on the boundedness
of u and v.

We provide now the proof of a generalized version of the Poincaré in-
equality in one dimension.

LEMMA 1.3.5 (Poincaré type inequality). Let I be an open bounded sub-
set of R and assume that I = AU B with |ANB| =0, A and B measurable
subsets of I. Let p: I — RU{oco} be measurable and such that

%rg o(t) > 0.
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Then for any w € HY(I) such that /g(t)\@thQ(t)dt is finite, the following
I

inequality holds:
(1.3.20)

1 1
w?(t)dt < 2|I max{Asup, B sup}
/1 (t)dt < 211 | ’teAQ(t) | ‘teBQ(t)

PROOF. Since w belongs to Hg (1), there exists a € I such that w(x) =
xT
/ Oyw(t)dt. Thus we have:
a

/ o(t) B 2 (t) .

1

(1.3.21)
w@ < [ ool < [1owla = [ ow@ia [ ool

< a12( [ 1o 0ar) e ([ 1o 0ar) v
< (\A|§1£ Q(lt))/ ( / g(t)yath(t)dt)l/Q

+ (18150 Q(1t)>/ (f g(t)\ath(t)dt)l/Q.

Finally, using (1.3.21) we obtain:

/ w2(1)dt < 1| supw?(t)
I tel

1 1
<2|I| [ |A|su / oww|?(t)dt + | Blsu / 8w2tdt),
| ‘<| ’te}:@(t) AQ‘ () | |te£@(t) BQ| ()

from which the thesis immediately follows.
O

Proof of Theorem 1.3.3: In the proof we denote by || - ||co, the L* norm
in ¥y, . We remark that (u —v)" belongs to L>(X), ) since u and v are
bounded in X Ay -

For a > 1 we define

(1.3.22) ¥ = [(u— )t
where p(z',y) = o(2') € C(RN~1) is such that

© >0, in RJIX
(1.3.23) =1, in B'(0,R) c RN,
- ©=0, in RV=1\ B'(0,2R),

Vel <&, in B'(0,2R)\ B'(0,R) c RN,

where B'(0,R) = {2/ € RN~ : [2/| < R}, R > 1 and C is a positive con-
stant.
Let C(R) be defined as

C(R) = {55 N {B'(0, R) x R}} .
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The assumptions in (1.3.23) and the inequality u < v on 9SZ imply that
P e Wol’p(C(2R)). This allows us to use 1 as test function in both equations
of problem (1.3.17) and to get (by subtracting):
(1.3.24)

(IVuP~2Vu — |VolP~2Vo, Vi) dz < / (F(u) — (o)) da,

C(2R) C(2R)

Using (1.3.22) we obtain:
a/ (|Vu|P~2Vu — |VoP2Vu, V(u — v) D) [(u — v) T2 1p? da
C(2R)
(13.25) < / (VP 2Vu — [VolP =2V, V) [(u — v)*]° da
C(2R)

+ Lf/ [(u— v) e 2 da.
C(2R)

Recalling (1.0.2), |Vu| and |Vv| are bounded and o > 1, from (1.3.25) we
obtain

Cr [ (Wl Vel 2V o) Pl =) R s
C(2R)
<Co [ V(o) P ) da
C(2R)
(1326)  +L / (1= v) 1122 da
C(2R)

< Cy(2Mp)! /

IVe?|[(u - 0)*]* da
C(2R)

+ Ly / [(u — v)T]* 2 da.
C(2R)

Let us define

Co(2Mp)P~1

1.3.2 = —

( 3 7) C1 Cl y
Ly
1.3.28 ==L
( ) C2 Clu

I = / |V(p2|[(u - ,U)Jr]a de, I:= / [(u _ v)+]a+1(‘02 dx
C(2R) C(2R)

and note that both ¢; and ¢y depend only on p and My, in particular they
are independent of o > 1.

Thus, with the definitions above, we now rewrite (1.3.26) as follows: for
every a > 1,

U NP2V (1 — )T 12w — )12 102 da
(1.3.29) /C(QR)(W |+ [VODP 2V (u = 0) T P[(u — )T % d

<cili + cealo.

We also observe that
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IVl + Vo))V (= 0) P = 0) ] ) dy? (2 da’
RN-1 :

:/ (V] + [Vo))P~2|¥ (1 — v) [2](1 — v) %02 da < +oo
C(2R)

since ¢ depends only on 2/ and the right-hand-side of (1.3.29) is finite.
Hence, for almost every 2/ € RV~! we have that

(1.3.30) / (|Vu| + |VU|)p_2]V(u — v)+|2[(u — v)+]o‘_1dy < 400,
IT;E

which also entails: for almost every 2/ € RV—1

(1.3.31) / (IVul + [Vu|)P~210, (u — v) T [(u — v)T)* T dy < +oo.
e
Estimate for I;. Let us recall the decomposition stated in (1.3.18)
which gives
U r  with I°=ALUBS.

z/eRn—1
We set

0w (1) = (|Vu(', )] + [Vo(a, £)] )P~
in order to apply Lemma 1.3.5 in each I)°, for which (1.3.31) holds true,
with o(t) = ow(t), A := AT,, B := B%, and w(t) = [(u—v)*(2/,1)] 2.
Note that the constant in (1.3.20) in this case is given by:

1 1
Cre(2') = 2X max < |AZ sup BZ/| sup :
<(a") {\ 2 o B s

Therefore, for almost every z/ € RY _1, we have
(1.3.32) Cre(2') < Crp = 2Xg max {7(2Mo)* 7P, A\o(2¢)*7 P},

so that, since 1 < p < 2, C;. can be chosen arbitrary small, for 7 and
¢ sufficiently small. Now, recalling that ¢ depends only on 2’ and using
Young’s inequality with conjugate exponents °‘+1 and a + 1, we get:

(1.3.33)
I <2 / (4 — v)"%| V| dx = 2 / [(u— v) 1| V|3Vl da
C(2R) C(2R)

_ +la+1 - =
/ [(u —v)*] aﬁ « |Vl da:+2/ V| 2 o
C(2R) o cer) a+1

(e}

IN
N
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and the application of Lemma 1.3.5 yields

(1.3.34)

1 2
L<c @tV

[ Q9+ 19072 = 0) 0y u = o) "5 (V| % do
C(2R)

+2/ Vel
C(2R)

(a+1)2
2

| (a4 190 2= o) V= o) P Vel do
C(2R)

a+1
vz (vl da,
C(2R)

where C; . has been defined in (1.3.32).

a+1
2 dx

< Cre

Estimate for I5. We use the same notations as in the evaluation of I
and we get:

(1.3.35)

</ (IVul + [Vo)P~2[(u — 0)F]*7 0y (u — v)+!2dy) prda’

N_l T,
R I

1\ 2
< Cre (a;— > / (|Vu| + |VU|)p_2[(u — v)+]o‘_1|V(u — )T 2p? d.
C(2R)
Let us fix

(1.3.36) a=2N+1>1

Recalling that C . tends to 0, as both 7 and € go to zero, we can take
7 > 0 and € > 0 small enough, such that

2
so that from (1.3.29) we have

a+1\* 1 0 N
(1.3.37) c2Cr ¢ < 2 aCre(a+1)* <2

(1.3.38) / (|Vu| 4+ |[Vo|)P72V (u — ) T2 [(u — v) ]2 p? do < 2¢114.
C(2R)
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By (1.3.23) we infer that

/ (V| + V)P~V (u — v)* [2(u — v)*~L do
(1.3.39)

< / (|Vu| + |[Vo|)P2V (u — ) T|?(u — v)* p? do < 2¢1 T
C(2R)

and, using (1.3.34), we obtain
(1.3.40)

| Q9+ 19l 29 =) Pl = o)) o
C(R)
< CICT,E(OZ + 1)2
/ (IVul + [Vol)P2[(u — v) ]2V (1 — o) P s |Vl 55 da
C(2R)

a+1
+4cy / V| 2 de.
C(2R)
Recalling (1.3.36) one has:
(1.3.41)

/ (IVal + [V P72V (u = o) P (u — v)* " da
C(R)

< 19/ (IVul + [Vo)P 2|V (u = )" P[(u — 0) 1] do + CR?,
C(2R)

where

¥ = c1Cr (a4 1)2,

G =4a\C*F >0
exploiting also (1.3.23). Notice that, in view of (1.3.37), we also have that
¥ < 27N In order to apply Lemma 1.3.2 we set

£R) = [ (Vul+ 9ol 29— o) Fl(u— o)) da,
C(R)

and R
g(R) = CR™2.
Then from (1.3.41) we have:

L(R) <VYL(2R)+g(R) VR >0,
L(R) < CRN VR > 0.
Applying Lemma 1.3.2 with 8 = N, we get £(R) = 0 and consequently
the thesis.
Il

Proof of Theorem 1.3.4.

The desired result is obtained with the same proof of that of Theorem 1.3.3
with the following slight (but necessary) modifications. Replace SE by S,
sebe=7=\ B, =0,1,=AT, =Sn{z'} x (yo — %,yo + %) and observe
that (1.3.32) becomes

(1.3.42) Ci(z') < Cy = 2X%(2Mp)* 77,
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and that (1.3.37) becomes

a+1\* 1 s N
(1.3.43) coCy 5 <5, 610,\(Oé+1) <27

The conclusion the follows by taking A small enough in the latter one.
O

Now we want to present a weak comparison principle in unbounded
strips that has a natural application in the study of monotonicity properties
of solutions in the half-space of the following degenerate quasilinear elliptic
problem:

—Apu = f(u) in RY
(1.3.44) u(z',y) >0 in RY

u(z’,0) =0 on ORY
where N > 2, p > 2 and f(-) satisfies:

(Ey) the nonlinearity f is positive i.e. f(t) > 0 fort > 0, locally Lipschitz
continuous in R™ U {0} and

t
tl_i>%1+;5f10(—2 = fo e RT U{0}.

We state the following;:

THEOREM 1.3.6. Let p > 2 and let u,v € C’llo’f (@) be two positive weak
solutions to (1.3.44) with |Vul,|Vv| € L®(RY). For A > 0 fized such that
0<a< B let B p) = RV x (a, B), Y = X(0,p) and assume that

(1.3.45) u<w on 0¥ -

Assume furthermore that, setting

I(J;) = {(m’,)\) : 2’ € P(Supp (u— v)+)},
it holds that
(1.3.46) u(z) >vy>0 on I(J;\).
Then, for A > 0 fized such that

A>22+1,

it follows that there exists ho = ho(f,p,7, N, [[Vullpeo(5,), VO Loo(5,)) suCh
that if B — a < hg then we have

u<v in XNpg)-

PrOOF. We remark that (u —v)* € L>(X, g)) since we assumed |Vul
and |Vv| are bounded. We put

(1.3.47) C(a,g)(R) =C(R) = Yap N {B'(0, R) x R}.
Let us now define

(1.3.48) U = (u—v)Tpk,
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where pr(z',y) = pr(z') € CP(RN 1), pr > 0 such that

Yr=1, in B'(0,R) c RN-1,
(1.3.49) or =0, in RN=1\ B'(0,2R),
Ver| <%, inB'(0,2R)\ B'(0,R) c RN,

where B'(0, R) denotes the ball in RN~! with center 0 and radius R > 0.
From now on, for the sake of simplicity, we set pgr(z’,y) := p(2/,y). By
(1.3.49) and by the fact that u < v on 825 (see (1.3.45)), it follows that

Ve Wy?(Clayp) (2R)-

Since u is a solution to problem (1.3.44), then it follows that u, v are solutions
to

—Apu = f(u) in E(a,ﬁ)a
(1.3.50) —Apv = f(v) in ¥ p),
u < v on 0¥, g)-

Then using ¥ as test function in both equations of problem (1.3.17) and
substracting we get

/ ([VulP2Vu — V[P 2V, V(u — v) ") p? do

C(2R)

(1.3.51) + / (IVuP~2Vu — |Vo[P~2Vo, Ve?) (u — v)t dz
C(2R)

— / (Fu) — £(0)) (u — v)* 62 da,
C(2R)

where C(-) denotes the cylinder defined in (1.3.47). By (1.0.2) and the fact
that p > 2, from (1.3.51) we deduce that

O/ (IVul + [Vo P72V (u — 0) " P? da
C(2R)
< / (|Vu|p_2Vu — |VoP~2Vu, V(u — v)+)c,02 dz
C(2R)
= _ / (]Vu|p_2Vu - |Vv|p_2Vv, chQ)(u —v)"dx
C(2R)

[ - S ) e
(1.3.52) 2R

< / ‘ (|Vu|p_2Vu — |Vo[P~2V, Vgpz)‘ (u—v)" do
C(2R)
+ /C o U0 = SO
< O/ (IVul + [Vo)P72|V (u — v) 7|V |(u — v) T da
C(2R)

T / (Fu) — f(0)) (u — v)* 2 d,
C(2R)
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where in the last line we used Schwarz inequality and (1.0.2). Setting
(1.3.53) I := C’/ (V| + |V )PV (u — v) || V2| (u — v) T da
C(2R)
and
(1.3.54) Iy = / (f(u) = f(v))(u— v)T? da,
C(2R)
(1.3.52) becomes

(1.3.55) C/ (V| + V)P 2V (u — v) 2% dz < I, + I,
C(2R)

In order to estimate the terms I; and I in (1.3.55) we will exploit the
weighted Poincaré type inequality (see Section 1.1, Corollary 1.1.4) and a
covering argument that goes back to [61]. Let us consider the hypercubes
Q; of RY defined by

Qi = Q; X [azﬁ])
where Q) C RN~1 are hypercubes of RV~!, with edge 8 — a and such that

Jai=r"

Moreover we assume that Q; N Q; = 0 for i # j and

=z

(1.3.56) Q; D C(2R).
i=1

(2

It follows as well, that each set (); has diameter

The covering in (1.3.56) will allow us to use in each @Q; the weighted Poincaré
type inequality and to take advantage of the constant C), in Corollary 1.1.4,
that turns to be not depending on the index i of (1.3.56). Later we will
recollect the estimates.

Let us define
(“_”)+(w’,y) if (2',y) € Q;;
—(u - v)+(x’, 28 —y) if (+/,y) € Q;,

where (¢/,y) € Q; iff (/,28 — y) € Q;. We claim that

(1.3.58) w(z) =

(3

(1.3.59) / wde < C)(Q) / (V| + [Vo))P-2 | Vu|? d
where C(Q;) is given by Theorem 1.1.4 and has the property that it goes

to zero if the diameter of (); goes to zero. Actually, since p > 2, we will
deduce (1.3.59) by

(1.3.60) / w? dr < cp(Qi)/ IVoP~2|Vw|? d.
i Qi
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The fact that Corollary 1.1.4 can be applied to deduce (1.3.60) is somehow

technical and we describe the procedure here below.

We have / w(z)dx =0 and therefore, see [70, Lemma 7.14, Lemma
QiUQY

7.16], it follows that

(@i — 21) G2 (2)

=C
w(l') QiU0" |l‘ — Z|N

dz ae z€@Q;UQ;,

where C' = C’(dQ,N ), is a positive constant. Arguing as in the proof of
Lemma 1.2.2, then for almost every x € Q; we have

[V (2)]

lw(z)] < C dz
Q:UQT |z — Z|N !
_ o [Vw(z)| Qs+ ¢ [Vw(z)] "
0 |z — z|N-1 Qor |z — z|N-1

gzé/ Vw2
Q

e — N1
where in the last line we used the following standard changing of variables
(') =2 and zi =28-zn,

the fact that for x € Q;, it holds that (|z — z]) o < (lx -2 0 and
zel; zeQ);

that, by (1.3.58) it holds that |[Vw(z)| = [Vw(2?)|.

Hence (1.1.33) holds and, in order to prove (1.3.60), we need to show that
(1.1.29) holds with

0 = |VuP™2.

Note now that, if w vanishes identically in @);, then there is nothing to prove.
If not it is easy to see that by our assumptions (see (1.3.46)) and by the
classical Harnack inequality, it follows that there exists 4 > 0 such that

(1.3.61) w>7>0 in Qx[\2,4)]
where
Q! = {x e RN . dist(z,Q}) < 1}.
Let us consider sz* obtained by the reflection of (); with respect to the

hyperplane Ty = {(z',y) € RY : y = A}. Since QZR* is bounded away from
the boundary R, namely

dist (1, {y =0}) > A >0,

thanks to (1.3.61) and since a sufficient condition to the summability of o
holds, more precisely we can apply Proposition 2.4 [60], we obtain that

1 1 N R
/Q?* Va2 o =y dy < CY(B1, B2) for any =€ Q;,



1.3 Weak comparison principles in unbounded domains 73

where

f(t) and B2 = A

1= min
te[’;ﬂHuHLOO(EA)]

We deduce the same for v:

1 1 .
/Qi ‘Vv’p_Q |x _ y‘,y dy S Cl (61762) for any € Qi7

so that we can exploit Corollary 1.1.4 to deduce (1.3.60) and consequently
(1.3.59).

Let us now estimate the right hand side of (1.3.55). Recalling (1.3.53) we
get

L =20 / (IVul + Vo )2V (1 — ) || Vel (u — v) * da
C(2R)
—2C / (IVu] + Vo) "2 72 [V (1 — o) | | Vel (u — v)F dae
C(2R)

<5'C (IVul + [Vo|)P2|V (u — v) T 2¢* d
C(2R)
é p—2 2 +12
+ = (IVul + [Vu])P~= V| *[(u — v) 7] dz,
8" Jezr)

where in the last inequality we used weighted Young’s inequality, with ¢ to
be chosen later. Hence

(1.3.62) L<I¢4 1,

where

I = 5/0/ (IVul + [Vo))P7? |V (u — v) " P¢* da,
C(2R)

(1.3.63) o
== [ (Vul+ Vo) 2 Vel [(u — v) ] da.
o' Je2r)

Using the covering in (1.3.56), the properties of the cut-off function in
(1.3.48) and the fact that |Vu| and |[Vo| are bounded, by (1.3.59) we deduce
that

(1.3.64)

Noc
b
Iy < Z &' R2
=1

I O
C(2R)NQ;

N
C
< max Cp(Q; / Vu| + |Vo|)P72 |V (u — v)T|? da
ax Cp( );5,]%2 C(ZR)OQU | + V)P~V ( )7

i

C
< * p—2 o +12
< OP(S’RZ /C(QR)(|VU| + Vo] )P4 V(u —v)"|* de

where C} = max; Cp(Q;) and C = C(p, [|Vu| p=(x,))-
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Now we estimate the term I3 in (1.3.55). Being f locally Lipschitz continu-
ous form (1.3.54), arguing as in (1.3.64), we get that

f(u) = f(v) w— )12 da
Izs/m)u Y2

u—v
<Ch-C [ (Va4 [T T - o) P
C(2R)
where CF is as in (1.3.64) and C' = C(f, A, ||[Vul|peo(s,)). Actually the
constant C' will depend on the Lipschitz constant of f in the interval

[0, mac{||u]| oo (53,5 [10]] oo ()} -

By (1.3.55), (1.3.62), (1.3.63) and (1.3.64), up to redefining the constants,
we obtain

(1.3.65)
C [ (Tl + Ve V(= ) P ds
C(2R)

ga’/ (1Vul + Vo) P2|V (4 — v)* 2 da
C(2R)

Cp

"R

/ (V] + [Vo)P~2V (u — o) "2 da
C(2R)

+ c;s/ (1Vu] + Vo) )P=2|V (1 — v)* 2 da.
C2R)

Let us choose ¢’ small in (1.3.65) such that C — ¢ > C/2 and fix R > 1.
Then we obtain

[ (9l 9ol 29 (= 0) P da

(1.3.66) C‘”g*

§4P/ (V] + | Vo) )P~2|V (1 — v)* 2 da.
C Jeer)

To conclude we set now

(1.3.67) L(R) = /C(R)(|vu| + V)P 2V (0 — v)* 2 da.

We can fix ho = ho(f,p,7, A N, [|Vull Lo, [[VV| Lo (5,)) Positive, such
that if
B —a < ho,
(recall that C';, — 0 in this case since diam(Q;) — 0, see (1.3.57)) then
Cp _ 5N
4 C <277
Then, by (1.3.66) and (1.3.67), we have

L(R) <9L(2R) VR > 1,
L(R)

9

(R)<CRN  VR>1.

From Lemma 1.3.2 with v = N and 9 < 27V, we get
L(R)=0
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and consequently that (u —v)* = 0.
U

Finally, the last result that we present a weak comparison principle that
works in unbounded strips (we do not need to consider narrow parts). This
results works for a general class of changing-sign nonlinearities and to the
best of our knowledge this results is new since it is the first time that,
in the quasilinear case, these nonlinearities are considered in unbounded
domains. This results will be crucial in the proof of Gibbons conjecture
in the quasilinear case that will be presented in Chapter 7 and it is also
contained in a paper in collaboration with A. Farina, L. Montoro and B.
Sciunzi [49]. Let us consider the following quailinear elliptic problem:

—Apu < f(u) in E(a,b)
(1.3.68) —Apv > f(v)  in gy
u<wv on 9% (g p),

ordered on the boundary of some half-space ¥4 of RY | with p > 1 and
N < 1. More precisely

E(a,b) =RV x (a,b),

where either a = —oco and b € R, or a € R and b = +oc.
We summarize the assumptions on the nonlinearity f (denoted by (G)
in the following) as follows:

(Gy): The nonlinearity f(-) belongs to C'([-1,1]), f(-1) =0, f(1) = 0,
fi(=1) <0, f.(1) <0 and the set

Np o= {te [-1,1]| £(t) = 0)
is finite. We provide the following

THEOREM 1.3.7 ([49]). Letu,v € Cl’a(E(a’b)) satisfying problem (1.3.68),

loc
N > 1, p > 1, where X,y is some half-space of RY and f fulfils (Gy).
Moreover, let us assume that

’vu‘7 |V’U‘ S LOO(E(a,b))7
for some & sufficiently small
—1<u<-1496 mszO

and for some L >0

(1.3.69) f't) <=L in[-1,-1+4].
Then
(1.3.70) u<v in gy

The same result is true if

1-0<v<1 inXyy and f'(t)<—-L in[l-0,1].
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PROOF. We prove the result in the case —1 <u < —1+9.
We distinguish two cases:
Case 1: 1 <p < 2. We set

- +1
(1.3.71) Y = wreF,
where @ > 1, R > 0 large, w := (u—v)* and ¢p is a standard cutoff function
such that 0 < ¢p < 1 on RV, op = 1 in Bg, ¢r = 0 outside Byg, with
IVor| <2/R in Bag \ Br. Let us define C(2R) := X, ) N Bag N supp(w).
First of all we notice that ¢ € I/VO1 P(C(2R)). By density arguments we

can take 1 as test function in the weak formulation of (1.3.68), so that,
subtracting we obtain

a/ (‘Vu|p72Vu - |Vv|p72Vv, Vw)waflgo‘;‘%ﬂ dx
C(2R)
(1372) <-—(a+1) / (IVulP2Vu — [Vo[P~Vu, Vor)w® R da
C(2R)
1) = St d
C(2R)

From (1.3.72), using (1.0.2) and noticing that f is decreasing in [—1, —1+4],
we obtain

(1.3.73)
0‘01/ (IVu] + [Vo])P 72 |VwPw % do
C(2R)

< a/ (|Vu|P~2Vu — ]Vv|p*2Vv,Vw)wa*1g0aR+1 dx
C(2R)
< —(a+ 1)/ (IVu[P~2Vu — |V|P~2Vo, Vor)w® p% dx
C(2R)

4 / £(6) (u — v) g%t da
C(2R)

IN

(o + 1)03/ |Vw[P~HVor|w®p$ dr — L/ (u — v) TweEt! da,
C(2R) C(2R)

where £ is some point that belongs to (v,u). Hence, recalling also that
|Vul, Vo[ € L%(E(4)), we deduce

(1.3.74)
ozCl/ (IVu| + |Vv|)p72 |Vw\2wa_1g0%+l dx
C(2R)

< (OH—I)C':}/

|Vw[P~HVorlw® o} dr — L/ w %t da
C(2R)

C(2R)

< (a+ 1)0/ \Vor|lw*pE de — L/ wa+1<p%+1 dx
C(2R) C(2R)
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where C' = C(p, [|Vul| (s, ) ||VvHLoo(E(a b))). Exploiting the weighted
Young’s inequality with exponents a+1 and (o + 1) /avin (1.3.74), we obtain

aC1/ (|Vu| + |Vv\)p_2 |Vw\2w°‘_1g0%+1 dx
C(2R)
C

atl
= _at+1 ‘VﬁpR\aH dr + aCo a / wa+1¢%+1 d
g

C(2R) C(2R)

- L/ waﬂtp%H dz
C(2R)

= aL—H Vor|*“™ dz + (aCa“T“ _ L) / WLt dy
7 C(2R) C(2R)

< 9o+l ( o L) / o1t
_— aCo s — w T.
= gotlRa—(N-1) ceR) YR

Now taking o > N — 1, if we choose
o =0, L, N, ||Vul| (s, ) VU] 2o(5,,) >0
sufficiently small so that
aCo®a — L < 0,

we obtain

C
aootl Ra—(N-1)"

(1.3.75) / (V| + [Vo)P2 [Volw® do <
C(R)
Passing to the limit in (1.3.75) for R — +o00, by Fatou’s Lemma we have

/ (1Vu] + |[Vo))P~2 [Vl dz < 0.
>

Ayg

This implies that u < v in Y4 p).
Case 2: p > 2. We set

(1.3.76) V= wpk,

where R > 0, w := (u — v)" and ¢ is the standard cutoff function defined

above. First of all we notice that ¢ € W&’p(BgR). Let us define C(2R) :=
Y(a,p) N Bar Nsupp(w). By density arguments we can take v as test function
in the weak formulation of (1.3.68), so that, subtracting we obtain

/ (|Vu|P~2Vu — ]Vv|p_2Vv,Vw)<p%d:U

C(2R)

(1.3.77) / (|VulP~2Vu — |[Vo[P~2Vu, Vor)weg d
C(2

" /c ) wg dz.
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From (1.3.77), using (1.0.2) and that f'(u) < —L in [-1, —1 + §], we obtain

01/ (|IVu| + \VU]);'F2 \Vwﬁo% dx
C(2R)

< / (|VulP~2Vu — |[Vo|P~2Vv, Vw) % dx
C(2R)

< —2/ (|VulP~2Vu — |Vu|P~2Vu, Vor)wer dx

(1.3.78) M

b FOu - s
C(2R)

<20, / (IVul + |Vo)P2 [V [Viprlwpn do
C(2R)

- L/ (u —v) Twe% dr,
C(2R)

where ¢ is some point tha belongs to (v,u). Using in (1.3.78) the weighted
Young’s inequality (and the fact that [Vul,|Vv| € L>(X,4))), we obtain

(1.3.79)
G [Vl Vo) Tl da
C(2R)

p—

<20, / (IVul + Vo)) '7 [Vl (IVu] + [Vo)* 7 [Verlwor do
C(2R)

—L/ w?p% dx

C(2R)

5020/ (V| + Vo) )P~2 [Vl da
C(2R)

Cy
_|_ i
0 JC(2R)

— L/ w? % d.
C(2R)

5020/ (V| + [Vo)P2 [Vo|? da
C(2R)

C
+ | —= — L> / w2 de,
<UR2 C(2R) R

where C' = C(p, [|[Vul[ Lo (s, )5 VUl Lo (5, ) 18 @ positive constant. Hence,

(IVu| + |Vv\)p_2 |V¢R\2w2g0%% dx

up to redefine the constants, we have

(1.3.80)
/ (V| + Vo2 Vo2 dz < oa/ (V| + [Vo)P2 [Vol? dz
C(R) C2R)

1 C
+—(——-L / w2 dz.
Cy <0R2 ) C(2R) R
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Now we set

L(R) = /C(R) (V| + Vo P2 [V da.

By our assumption,|Vul, [Vv| € L%(X(,p)), it follows that L(R) < CRN for
every R > 0 and for some C' = C(p, ||VU||LOO(Z(a,b)), HV'U”LOO(EWJJ))). More-
over, in equation (1.3.80), we take o = o/(p, N, [|Vull 1o (s, ) [VVIlL (5, ) >
0 sufficiently small so that Co < 1/2V. Finally we fix Ry > 0 such that

C
——-L <0
oR? <
for every R > Ry. Therefore by (1.3.80) we deduce that
L(R) <ILE2R VR > R
(1.3.81) (R) <0 (N ) =10
L(R) <CR VR > Ry,

where ¥ := Co < 1/2V. By applying Lemma 1.3.2 it follows that £(R) = 0
for all R > Ry. Hence u <wvin X, ).
O

1.4. The Hopf boundary lemma and the strong maximum
principle

The aim of this section is to present two classical results: the Hopf
boundary lemma and the strong comparison principle for quasilinear elliptic
equations. It is well know that the Hopf boundary lemma always implies
the strong maximum principle. Here, borrowing the ideas of J. L. Vazquez
contained in the celebrated paper [127] we would like to present this well
known results for the following quasilinear elliptic problem: Let us consider
the following quasilinear elliptic problem

—Apu+ B(u) = f(x) inQ
(1.4.1) u>0 inQ
u =0 on 012,

where 1 < p < +o0, Q is any connected domain of RN, N > 2, §: R - R
is a nondecreasing function with (0) = 0 and f > 0 a.e. in . As already
mentioned, we now state the results by J. L. Vazquez in the celebrated paper
[127], but we have to remark that similar results for quasilinear elliptic
equations were obtained also by P. Pucci and J. Serrin, that considered a
more general class of operators and of nonlinearity (see e.g. [103]). Here we
prove the case p = 2 (as it was done by J.L. Vazquez in [127]) and we give
some ideas for the quasilinear case.

THEOREM 1.4.1 ([127]). Let p = 2 and u € L}, () be such that is a
solution to (1.4.1) such that Au € L} () in the sense of distribution in §
and Au < B(u) in {x € Q| 0 < u(x) < a}, where a is a positive constant
and B : [0,a] — R is a continuous nondecreasing function with 5(0) = 0.

Under the assumption that B(S) =0 for some S >0 or
31

o VSIS

(1.4.2)
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if B(S) >0 for S > 0, then either w = 0 a.e. in Q or u is strictly positive
in §2 in the sense that for every compact set k C § there exists a constant
v =7(K) > 0 such that

(1.4.3) u>7y a.e. in

In particular if u vanishes a.e. in a set of positive measure it must vanish
a.e. in §2.

In other words what we are going to prove is that, for a suitable class
of solutions of (1.4.1) for p = 2, the strong maximum principle holds if and
only if either 3(S5) = 0 for some S > 0 or 5(S) > 0 for S > 0 and

L |
(1.4.4) /0 5 dS = oo,

where j(S) = / B(t)dt. We just notice that for every S > 0 since 3 is

monotone nondecreasing then also j it is and we have

gﬁ (g) <j <§> < J(S) < B(9).

Hence condition (1.4.4) is equivalent to the following one

|
(1.4.5) /0 50 dS = oo

REMARK 1.4.1. We want just to observe that if 3(s) = s? with ¢ >
0 it follows that, by simple computations, condition (1.4.5) holds if and
only if ¢ > 1. When (1.4.5) does not hold, in particular for this kind of
nonlinearity when 0 < ¢ < 1, it follows that there exist the so called dead
core solutions, for more details we refer to the seminal paper [127].

In the proof of Theorem 1.4.1 we need of the following technical lemma
that will be useful to build a radial solution of problem (1.4.1), in order to
compare it with other solutions of problem (1.4.1) with p = 2:

LEMMA 1.4.2. For all ki, ke,r1,v1 > 0 and 8 : R — R continuous non-
decresing function with 3(0) = 0, there exists a unique v = v(r, k1, ko, 71, v1)
defined in [0,71] of class C? that is a solution of the following nonlinear
two-point boundary value problem

V" = ko' + koS (0) 0<r<m
v(0)=0 v(r;) =

and v,v";v" > 0. Moreover if 8 satisfies (1.4.5) then v'(0) = 0 and v; >
v>01n (0,r).

(1.4.6)

PROOF. For the existence and the uniqueness of the solution v to prob-
lem we refer to the works [7, 78]. The fact that v(r) > 0 for 0 < r < r; fol-
lows from comparison arguments between sub and super-solutions of (1.4.6)
as exploited in [7, 78]. Now we observe that by multiplying both sides of
the ordinary differntial equation of (1.4.6) for e 1" we obtain:

(/) = e300
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from this it follows that e *17¢/(r) is a nondecreasing function, hence by
simple computations v'(r) > 0 for 0 < r < ry. Since v"(r) = kiv'(r) +
koB(v(r)) for 0 < r < r; then also v"(r) >0 for 0 <r < ry.

Now let us consider rg the largest r for which v(r) = 0. Necessarily
0<ry<ry,v:[ro,r] — [0,v1] is bijective and

/Tl v’(r) g — /1 1
ro \/J(v(r)) 0 /B(S)
Now, if w = (v')? we have

koj'(v) = ke(v)v" = (V" — kyv')v'

dS = oo

(1.4.7)

and so
2]{:2672]’&17‘]4(”) — (672’{11",11}) .

Since v'(rg) = 0, by integrating the previous equation between ¢ and r we
have

ke K170 (u(r)) = 2k2e2k““y/m.ﬂ(v<r))dr

7o
T

> / 2kepe =217 5! (u(r)) drr = e 211 (r)
70

and hence we have
[
o VJ((r))
but this gives a contradiction with our assumption (1.4.5). Hence v/(r9) > 0

and this implies 79 = 0. It follows that v'(0) > 0 and v'(r) > 0 for o < r < 7.
0

dr < \/2k26k1(“_m)(r1 —19) < 00,

FirsT PROOF OF THEOREM 1.4.1. Let us prove the theorem in the
case u € C1(). Let us assume that u vanishes somewhere in Q but it
is not identically zero. Hence we can choose a point x¢p € ) and a ball
B = Bpg(z;) such that g € 0B and u(zp) = 0 and 0 < u(x) < a for each
x € B. It is sufficient to take x; € 2 such that u(z;) > 0 and for € > 0 suf-
ficiently small d(x1, N) < € and d(z,09Q) with N = {x € Q | u(x) = 0} and
R = sup,~o{Br(z1) C Q\ N}. Taking G = {z e RN | & < |z — 21 < R},
u>0in G, v; = inf, {|z — 21| = &} and using Lemma 1.4.2 we can con-
struct the function

R
(1.4.8) u(z) :==v <R— !x—xll,kl,l,Z,U1>

in the annulus G defined above. Now by Lemma 1.4.2 we have that
Al = ki|Va| + B(a).

Moreover, since @ is radial, by taking k1 > Q(Nipjl)

Al > B(a).

1 we have

Now by Kato inequality we have
Al —u)* > sign(i — w)A (i — u) = sign(i — u)(B(u) — A(@)) > 0.
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Then u > 4 and since v'(0) > 0 it follows that

i inf u(zo + h(z1 — z9)) — u(zo)
h—0 h
against the assumption that u € C1(Q), which implies that Vu(zg) = 0.
If u & C'(Q), assume that u # 0. Then there must exists a nall Br(Z) C
2, R > 0 such that the trace g of @ on the sphere Sr(Z) is not zero a.e. We
have to show that there exists a unique solution v € C*() to the following
semilinear problem

>0

(1.4.9)

—Av+B(v) =0 in Br(x)
v = min(g,a/2) on Sg().

This is a well known result in the literature and we refer the reader to
the celebrated papers [81, 97]. After that, the proof follows by the one

developed in the case of C! solutions.
O

Now we are ready to prove the following

THEOREM 1.4.2 (Hopf boundary lemma). Let Q, 3,p and u as in Theo-
rem 1.4.1 and let xo be a point on 0S) satisying the interior sphere condition.
Let B one such sphere and v the corresponding interior normal at xy. Then
there exists v > 0 such that

(1.4.10) ess lim inf _u@)
a—zo (r — x0,V)

In particular if u € CY(QU {x0}) and u(zo) = 0 we have

>y z€B.

ou
(1.4.11) 5(:1:0) > 7.

ProOF. Now we take the annulus G corresponding to the ball Br(x1)
that occurs in the definition of interior sphere condition at zg. Since G
touches 02 we replace x1 by 2] = x1 + ev for a small € > 0 and keep R
fixed. If € is sufficiently small the new annulus G, is such that G. C Q.
Arguing as in Theorem 1.4.1 we have

u(z) > u(x —e)
a.e. in G. Passing to the limit for ¢ — 0 and remembering that v'(0) > 0
we obtain (1.4.10) with v = v/(0).
O

Theorems 1.4.1 and 1.4.2 hold also in the quasilinear case, when the
classical Laplace operator is replaced by the p-Laplace operator Apu =
div(|Vu|P~2Vu) and conditions (1.4.4) and (1.4.5) are replaced respectively
by

L |
(1.4.12) /0 (j(S))% dS = oo,

and

|
(1.4.13) /OWdS:oo.
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In the case of quasilinear elliptic equations it will be different the ODE
analysis and also comparison arguments. All this details are not contained
in the work by J. L. Vazquez and so we refer the reader to the book of P.
Pucci and J. Serrin [103] for completeness.

We want to conclude this section saying that it is always possible to prove
that the strong comparison principle follows by Hopf boundary lemma. This
fact is quite natural in the case of semilinear equation, but for quasilinear op-
erator could be very useful in the proof of qualitative properties of solutions,
since it is well known that maximum principles and comparison principles
are not equivalent. Here we state another proof of Theorem 1.4.1 having in
force the Hopf lemma:

SECOND PROOF OF THEOREM 1.4.1. Let us assume that u € C1(Q) is
a solution to (1.4.1). Arguing by contradiction, let us assume that u vanishes
somewhere in ) but it is not identically zero. Hence we can choose a point
xg € Q and a ball B = Bg(x1) C Q such that 9 € 9B, u(xg) = 0 and
0 < u(z) < a for each x € B. We observe that

—Au < f(u) in B
u(zg) =0 xo € 0B.

Let us note that 0B satisfies the interior sphere condition at xg, hence by
the Hopf boundary lemma, i.e. Theorem 1.4.2, we have that

g:j(xo) = (Vu(xg),v) >0

where v is the interior normal at zg. But, since u(xp) =0, v > 0 in Q and
u € CH(Q) it follows that x¢ is a minimum point for u and this also implies
Vu(zp) = 0. This fact gives a contradiction with Hopf boundary lemma.

O

1.5. Strong comparison principles for p # 2

The aim of this section is just to recall two important result: the strong
comparison principle for quasilinear elliptic equations and the strong maxi-
mum principle for linearized equations. Both these principles are remarkable
consequences of Harnack type inequalities which give informations about the
critical set Z, of solutions to the following quasilinear elliptic problem

—Ayu = f(u) inQ
(1.5.1) u>0 inQ
u=20 on 0f),

where Q is any domain of RV, N > 1,1 < p < 400, f is positive and locally
Lipschitz continuous. As remarked above, the main tool in the proof of
strong comparison principles are results regarding Harnack type inequalities:

THEOREM 1.5.1 (Harnack Comparison Inequality). Letp > (2N+2)/(N+
2) and let u,v € C}_(Q) with u or v weak solution to (1.5.1) in Q. Suppose

loc

that B(x,68) C ' C Q for some 6 > 0 and that
u<wv in B(z,60).



84 Preliminaries

Then there exists C = C(p, q,0, L, ||v|| oo (o), [ VUl Loo (), [V oo (1)) > 0
such that

.. —u) < i —u).
(1.5.2) BS(liﬁ)s)(v u) < CB(lil,gé)(U u)

The iterative technique that is used to prove Theorem 1.5.1 is due to

J. K. Moser [93] and was first used to prove Holder continuity properties
of solutions of some strictly elliptic linear operators (this problem had been
previously studied by E. De Giorgi [43] and J. Nash [94] in their famous
papers).
In [124] and in [126] N. S. Trudinger considers the case of degenerate op-
erators which satisfy some a-priori assumptions on the matrix of the coeffi-
cients (see [124]). The works of N. S. Trudinger stemmed originally from the
paper of J. K. Moser, but it make no use of (a variant of) the famous John-
Nirenberg Lemma (see [93]), exploiting in the proof only weighted Sobolev
inequalities and a clever use of test-functions techniques. For the proof of
this result we refer the reader to the work of L. Damascelli and B. Sciunzi

[36].

REMARK 1.5.2. As in Remark 1.2.3, note that a function f : 1 — R is
locally Lipschitz continuous in the interval I if and only if, for each compact
subinterval [a,b] C I, there exist two positive costants C1 and Cy such that

i) fi(s) = f(s) — Cis is nonincreasing in [a,b].
ii) fa(s) = f(s) + Cas is nondecreasing in [a,b].
Therefore we get that, if

(1.5.3) — Apu — f(u) < —Apv — f(v) u<v in B(z,50)
then
(1.5.4) —Apu+Au < —Apv+ Av u<v in B(z,59)

for A € R sufficiently large, and the previous result works also in this case.
This implies in turn the following

THEOREM 1.5.3 (Strong Comparison Principle). Let u,v € C'(Q) where

Q is a bounded smooth connected domain of RN with %Vf; <p<2orp>2.

Suppose that either u or v is a weak solution of (1.5.1). Assume

(1.5.5) —Apu+Au < —Apv+ Av u<v in
where A € R. Then uw = v in Q unless
(1.5.6) u<wv in Q

The same result holds (see Remark 1.5.2) if u and v are weak solutions of
(1.5.1) or more generally if

(1.5.7) — Apu — f(u) < —Apv — f(v) u<v in Q
with w or v weakly solving (1.5.1).

PROOF. Let us define
(1.5.8) Ky ={z € Q|u(z) =v(z)}

By the continuity of v and v we have that K, is closed in ). Since, by
Theorem 1.5.1, for any = € K, there exists a ball B(z) centered in z all
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contained in K, then K, is also open in 2 and the thesis follows, since €2
is connected.

g

Theorem 1.5.3 improves previous similar results. In particular we refer
to [70] for the case of strictly elliptic operators or for the case of degenerate
operators with f = 0 (see also [47]).

In a similar way to the case of solutions to problem (1.5.1), we want to
prove a Strong Maximum Principle for the linearized equation. We recall
that any derivative u; 1= u,,;, 1 < ¢ < NN, satisfies the linearized equations
of (1.5.1), i.e.

/ |Vu|P~2(Vui, Vo) + (p — 2) / |VulP~4(Vu, V) (Vu, Vo) dx
(1.5.9) 7% @

— / f'(u)u;p = 0, Vo € C°(Q).
Q
Let us now state the result on the Harnack type inequality for (1.5.9):

THEOREM 1.5.4 (Harnack Inequality for the Linearized Operator). Let
u; € Hy*(Q)NL>®(Q) be a nonnegative weak solution of (1.5.9) in a bounded
smooth domain Q of RN, N > 2, with f positive and such that is a contin-
uous function which is locally Lipschitz continuous in (0,+00) and p > 2.

Suppose that B(x,50) C Q. Let us put

1 1 1 n 1 (m—2

2* 2 N N\m-1
(consequently 2 > 2 form > 2) and let 2* be any real number such that
2 <25 < 2" Then for every 0 < s < x, x = %, there exists C' > 0 such
that

(1.5.10) sup u; < C inf w;
B(x,6) B(x,26)

where C' is a constant depending on x,s, N,u,m, f.

If 21<,ij2 < p < 2 the same result holds with x replaced by x' =

2N ) 2 — 1 _ 1 p—1
3) Z=1—3 ands<p_m.

i—g where 24

is the classical Sobolev exponent (2F =

We prove now a remarkable consequence of weak Harnack inequality
which give information about the critical set Z,, of solutions of (1.5.1). This
is particularly interesting since Z,, is also the set of point where the operator
is degenerate elliptic.

THEOREM 1.5.5 (Strong Maximum Principle for the Linearized Opera-
tor). Let u; € Hy*(Q) N C%Q) be a weak solution of (1.5.9) in a bounded
smooth domain Q of RV, N > 2 with 2]<,V_:'22 < p<2orp>2 where f is pos-
itive and locally Lipschitz continuous in (0,400). Then, for any connected

domain ' C Q with u; > 0 in ', we have u; =0 in Q' oru; >0 in Q.

PROOF. Let us define K,,, = {z € Q' |u;(x) = 0}. By the continuity of

v, then K, is closed in €. Moreover by Theorem 1.5.4 K,, is also open in
(Y and the thesis follows.

O






The Hopf boundary lemma for singular semilinear
elliptic equations

In this chapter we deal with positive weak solutions to the singular
semilinear elliptic problem:

1
—Au = —+ f(u) inQ
u
(2.0.1) u>0 in 0
u=20 on 01},

where v > 1, Q is a C*>® bounded domain of RY with 0 < & < 1, N > 1 and
f: Q2 — R locally Lipschitz continuous.

As remarked in the introduction, it is well known that generally solutions
to problem (2.0.1) are not smooth up to the boundary. It was in fact proved
in [82] that solutions are not in H}(Q2) at least when v > 3. Therefore,
having in mind the natural regularity behaviour of the solutions (see [31])
we let u € C?(Q) N C(Q). The equation is well defined in the interior of the
domain in the classical meaning and its weak distributional formulations is

(2.0.2) /(Vu, V) dz :/ L dx +/ fu)pdx Vo € C°(Q).
Q o u’ Q
Now, let us define the concept of inward pointing normal

DEFINITION 2.0.1. Let Q C RN be a bounded C** domain. Let 15(0S2) be
a neighborhood of 0Y with the unique nearest point property (see e.g. [66]).
Hence for every x € I5(00) there exists a unique point & € 0 such that
| — &| = dist(x,00). We define the inward-pointing normal as

(2.0.3) n(z) :

T —x

e -l
Having in mind these notations, we are now ready to state the main result
of this chapter:

THEOREM 2.0.2 (Hopf type boundary lemma). Let u € C**(Q) N C(Q)
be a positive solution of problem (2.0.1). Then there exists a neighborhood
I5(09) of 09 such that

(2.0.4) 8V(x)u >0 Vo e Ig(@Q)

provided that (v(x),n(z)) > 0 uniformly with respect to x € I5(09), namely
provided that (v(x),n(z)) > 5 >0 for some B > 0 for every x € I5(02).

In cases when solutions are not smooth up to the boundary, the Hopf
lemma is generally replaced by comparison of the solutions with respect to
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the distance function. Exploiting also such a kind of arguments, our Theo-
rem 2.0.2 provides an information on the sign of the inward derivatives as
soon as we look at the solution in the interior of the domain.

Actually we exploit a scaling argument near the boundary which leads to
the study of a limiting problem in the half space:

1
—Au=— in Rf
u”
(2.0.5) u>0 in RY
u=20 on ORf,

where v > 1, N > 1, Rf = {z = (z1,...,zx) € RV | zy > 0} and
u € C?(RY) N C(RY). As above problem (2.0.5) has to be understood in

the weak distributional meaning with test functions with compact support
in RY, that is

(2.0.6) / (Vu, V) dx :/ L dx Yo € C°(RY).
RY RY U’

Our scaling argument leads to the study of a limiting profile which is a
solution to (2.0.5) and obeys to suitable a priori estimates. The following
classification result is therefore crucial for our technique, and may also have
an independent interest:

THEOREM 2.0.3. Let v > 1. Let u € C*(RY) N C’(@) be a solution to
problem (2.0.5) such that

(2.0.7) lu(z)| < Cxly Vo eRY
where t 1= i Then
1+~
(2.0.8) u(z) = u(rn) = Mzly
2\ 3
where M = <M> .
2(v—1)

We will prove Theorem 2.0.3 in Section 2.1 together with useful prelim-
inary results. Then in Section 2.2 we exploit Theorem 2.0.3 and a scaling
argument to prove Theorem 2.0.2.

2.1. Classification results for singular semilinear elliptic
problems in the half-space

Here we introduce some notations and preliminary results. We say that
u is a weak subsolution of problem (2.0.1) if
(2.1.1)

/(Vu,Vw)da: S/Sde —i—/f(u)goda: Vo e C°(Q), ¢ > 0.
Q o u’ Q

Similarly, we say that u is a weak supersolution of problem (2.0.1) if
(2.1.2)

/(Vu,Vw)d:r Z/Sod:): +/f(u)g0d:): Vo € C*(Q), ¢ > 0.
Q o u’ Q
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We shall prove a weak maximum principle in unbounded domain, bor-
rowing some ideas from [9] (see also [15]).

THEOREM 2.1.1. Lety > 1, u € C*(RY) ﬂC(@) be a weak subsolution

of problem (2.0.5), as in (2.1.1), and v € C*(RY) ﬂC(@) be a weak super-
solution of problem (2.0.5), as in (2.1.2). Let us assume that there ezists a
constant K > 0 such that

(2.1.3) lu(z)| + Jv(z)| < K2y Vo e RY
with t := and
1+

N

(2.1.4) u<v ondR].
Then
N

(2.1.5) u<v inR.

PRrRooOF. We set

(2.1.6) w=u-—u.
In the weak meaning, we have

. N
(2.1.7) — Aw < ¢(z)w in R,
where

1 1 1 N
c(x) = [m - v’Y] i <0 and c(x) € C(RY).

Now passing to spherical coordinates z = o, with o > 0 and £ € SV—1,
we obtain:

N
N -1
—Aw = — E Wiz = —Weo —
=1

1
——wp — 5 Asw < ¢()w,

Q
where Ag is the Laplace-Beltrami operator on the sphere SV, Now we
take an infinite open connected cone C such that its closure is disjoint from
]Rf . Hence we consider the following eigenvalue problem
{—Agw =\ inG

(2.1.8)
P =0 on 0G,

where G = SV=1\ C and X > 0.

It is well known (see for example [77, |) that the eigenvalues of
the Laplace-Beltrami operator —Ag on the (N-1)-sphere SN=1 are py =
k(k+ N —2) where k € N. Now we fix @ > 0 such that \; := a(a+ N —2) is
the principal eigenvalue of the problem (2.1.8) and v is the corresponding
eigenfunction. Since G ¢ SN~! it follows that (o + N —2) = A\ > py =
N — 1. As a consequence of this fact we have that a > 1. Using, as before,
spherical coordinates x = &, let us define the following

(2.1.9) g(x) = g(0, &) :== 0"1(§), €.

Then g is an harmonic function, hence

Ag+c(x)g <0.
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Since Rf lies outside the cone C, the function g is strictly positive on ]Rf .
Hence we can consider the function

w
o= —.
g
By the definition of o, we have
1
Vo=-Vw — %Vg,
g g

and

1 2
Ao =-Aw - —Vg-Vw — %Ag + 2%|Vg|2.
g g g 9
Finally it follows that

<0 inRY.

(21.10)  Lo:=— (AUJFQVU.VQJFAQJFC(C”)Q,,)
g g

Moreover o < 0 on BRf . Noticing that g < Sp® and by the growth hypoth-
esis (2.1.3) we have

2
bl o ¢ Ko K

g| = >~ >~
] g g Bo*

2 2
Recalling that —— < 1 and « > 1, it follows that —— — a < 0.
v+1 v+1
Hence we have

limsupo(z) < 0.

|z| =400

By the weak mazimum principle (see e.g. [70] or Theorem 1.2.1) it follows
now that ¢ <0 in RJX . Since g is strictly positive by construction, it follows
that

w <0 in]Rf.

PROOF OF THEOREM 2.0.3. Let

1
2\ 341
M (WH)) and f— 2

2(v—1) v+1
Setting
u(z) = Mzly,
a simple computation shows that:
0%*u ‘o 1 1. N

The uniqueness of the solution follows by Theorem 2.1.1.
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2.2. Local estimates for the solutions and proof of the Hopf
boundary lemma

Relying on technique of [82] we prove the following local estimates for
the solution u of problem (2.0.1):

THEOREM 2.2.1. Let u € C*%(Q)NC(Y) be a positive solution to problem
(2.0.1) and let ¢1 denote the first eigenfunction corresponding to the first
eigenvalue \1 of the problem

—Ap=Xp inS
(2.2.1) $»>0 in §
p=0 on 02 .

Then there exist two positive constants my, ms and there exists § > 0 suffi-
ciently small such that

(2.2.2) mign ()57 < u(z) < modn ()T Vo € I5(09).
PROOF. We rewrite the equation of problem (2.0.1) as
_ 1 _p)
(2.2.3) —Au = el + f(u) = e in Q
where p(x) := 1+ u” f(u(x)) and we fix d9 > 0 sufficiently small so that, for
every 0 < 6 < §p we have that
p(z) >0 Vo e I5(09).

Arguing as in [82], we consider the principal eigenfunction ¢; of problem
(2.2.1). It is well known that ¢; € C?(Q2) and, by Hopf boundary lemma

Voi(z) #0 Va e .

Let us consider t := and ¥(z) := s¢y(x)! with s > 0 . The function

U satisfies the following equation

A = 25 a0

where
(2.2.4) gz, s) :== s'Tt(1 — )|V ()| + thid1(z)?).

Since 0 < t < 1, by the definition of g in (2.2.4) we can choose two positive
constants s; and sy such that 0 < s; < s9 and

(2.2.5) g(z,s1) < p(x) < g(x, s2) Yz e I5(09).

Hence, setting u1 := s1¢1(2)" and ug := sa¢1(x)!, we have that
(2.2.6) —Auy < pZ(Lf) in Lg(aﬂ)
1
in the distributional meaning of (2.1.1), and
(2.2.7) — Aug > pz(ﬁ) in 15(082)
2
in the distributional meaning of (2.1.2).
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Now we consider ug := Bu and observe that ug satisfies the following
equation

—Aug(r) = —uz:M: +1M
Ausle) =SB =Py =7

By taking 81 > 0 sufficiently large it follows that ug, and u; satisfy the
following problem:

—Aug, > p(z) in I5(0Q)

u
B1
(2.2.8) “au < P2 gan)
Uy
ug, > u1 on 915(09).

Here we note that the boundary datum of problem (2.2.8) is fulfilled for 3,
sufficiently large. Now, we claim that

(2.2.9) ug, = fru(z) > ui(z) >0 in I5(0Q).
If this is not the case, then there would exists an xo in I5(0€) such that

0 < ug, (z9) < ui1(xo) and the minimum of ug, — uy on Is(0N) should be
assumed at xg. But according to the argument above, this would imply that

1 1
A — - 0
(uﬁl Ul) (x()) < p($0) U1($0)7 uﬂl (xo),7 < )
which is impossible by the mazimum principle (see e.g. [70]). This would

provide a contradiction showing that (2.2.9) holds.
Similarly, choosing B2 > 0 sufficiently small it follows that ug, and us
satisfy the following problem:

—Aug, < p(z) in I5(0Q)

u)
B2
(2.2.10) —Aug > pi(f) in I5(092)
U
ug, < U2 on 0I5(00).
Repeating verbatim all the arguments above, it follows that
(2.2.11) ug, = fou(x) < us(x) in I5(09).
Hence, taking m; := ;—1 and mgo = ;—2, we have (2.2.2) and the thesis is
1 2
proved.

O

PROOF OF THEOREM 2.0.2. Since the domain is of class C*“ we may
and do reduce to work in a neighborhood of the boundary I5(952) where the
unique nearest point property holds (see e.g. [66]). Arguing by contradiction,
let us assume that there exists a sequence of points {x,} in I5(99), such
that x, — zg € 99, as n — +0oo, and

(2.2.12) Op(@ny(xn) <0, with (v(2n),n(x,)) > 6> 0.

Without loss of generality, we can assume that zo = 0 € 9Q and n(z,) =
en. This follows by the fact that the Laplace operator is invariant under
isometries. More precisely, for each n € N, we can consider an isometry
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T, : RN — RY with the above mentioned properties just composing a
translation and a rotation of the axes. This procedure generates a new
sequence of points {y,}, where y, := T,xx, such that every y, € span{ey)
and y, — 0 as n — +oo. Setting u,(y) := u(T,; *(y)), it follows that

(2.2.13) — Au, = iv + f(up) in Q, =T,(0).
Un
Now we set
L Un(ény)
(2.2.14) wp(y) = M,

where 6, := dist(z,, Q) = dist(T,,z,,0) and M, := u,(dpen) = u(xy,). It
follows that 6, — 0 as n — +o00 and

- wy, is defined in Qj, where Q) := %

- wp(en) = 1.

- M, — 0, as n — +o0.

Moreover w,, satisfies
~ Ay = 5 (A (5,1))
62
i (e ()
(2.2.15)

<+ M (50)

2
= (o M)

2
n

y+1
borhood I5(9§2); this is a consequence of the Theorem 2.2.1.

In the following we shall deduce a limiting problem with a limiting so-
lution that will be denoted by us,. The reader should keep in mind that f
is bounded, the term M, f(u,(d,y)) vanishes and the limiting equation is
therefore:

Here it is important to observe that the term is bounded in a neigh-

. N
(2.2.16) — Aws = wl in R .
Let us provide the details needed to pass to the limit. We have that:
2,

- Wy, — W, a8 N — 400, in any compact set K of Rf.

- weo € C2(RY)NC(RY).

0 2
-Qf == C—>Rf, as n — +00.
On
To prove this let us consider a compact set K in I, (0€2},) such that dist(K, 0€2},) >
C > 0 for every n € N, for some tubular neighborhoods I, (0€2) such that
Theorem 2.2.1 holds.
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Claim 1. We claim that wy,(y) > 0 for all y € K and for all n € N.
Let y € K. Hence, by Theorem 2.2.1

2
U (0ny) (dist(dny, 02%)) 7T
= > .
wn(y) M, L M,

In particular, by the fact that dist(5,y, Q) > C6,, it follows that

(C5,)7T

(2.2.17) wp(y) > L A

> C(K,~v,m1,mq) >0

for every n € N.

2,a
Claim 2. We claim that wy, i Woo, &8 N — 400, in any compact set
K of RY.
Since dist(y, 09Q) < C for every y € K, by Theorem 2.2.1 it follows that

2
Uy (O, dist(d,y, 02, )] 7+1
ny) = 202 < g, OO0 D0 )
2 2
57" [dist(y, Q)] 751
(2.2.18) 2 M,
2 5%
< LmyCatt 2

n
S ngC#C(K, ml).

Hence

|wnll oo () < Ch

for any compact set K of RY. By applying regularity theory, see e.g.
+
[46], there exists a compact set K’ C K such that

(2.2.19) [wnllore ey < Co,

where C5 is a positive constant depending only upon N, M and dist(K, 0€2,,).
By standard elliptic estimates (see e.g. [70], Theorem 6.6, pp 98.) it follows
that

(2.2.20) lwnllc2.a(kry < Cs,

where (3 is a positive constant depending only upon N, K, [[ullct.a ks
and ||hp|[co.a(kr). Therefore, by Ascoli-Arzela Theorem, the sequence {w, }
admits a subsequence that we call {w, } such that converges on the compact
set K' C RY.

Now we consider an increasing sequence of compact sets {K,} of Rf ,
i.e.

KiCKyC- CKpcC---CRY.

Our aim is to use a diagonal procedure to construct the limit function. We
note that there exists a subsequence {wg)} of {wy,} such that

c? .
wg) — w; in Kj.
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In the same way there exists a subsequence {wg)} of {wg)} such that

2
wg) & w9 in K2
and
w2 = W1 in K 1.
In general we consider the compact set K,,, so that there exists a subse-
quence {wgm)} of {wgm_l)} such that
2
w,(Lm) < wy, in K,
and
W = Wm—1 in Kmfl.
Finally we found the limit function and it is such that
(2.2.21) Woo = Wy, 10 Ky,
for every m € N. Hence wy is a solution of the limit equation (2.2.16).

9] 2
Claim 3. We claim that 5—" < Rf, as n — +0oo.

n

Since the domain  is C*®, then there exists ¢ € C?(RV~1) such that
QN Br(0) :={z = («/,2n) € QN Br(0) | zx > g(z1,...,an-1) = g(2')}
for some R > 0. Arguing as above, we have to consider for every n € N the
function g,(y) := g(T,; ' (y)) and the domain €, := T,,(2). Without loss of
generality we can assume that ¢,(0) = 0 and Vin-19,(0) = 0. Moreover,
by hypothesis ||gnllcz = |lg9]lcz < C, where C is a positive constant. We
note that z € 6—” if and only if §,z € .

n

Q On’
Now, noticing that 6—” N Br(0) := {xN > gn(&nx)}, we want to show
n n

that

dpa’)
gn(0n'") Ziog

on,
as n goes to +0o. Let us consider the second order Taylor approximation of

the function g, centered at the point ' = 0 in a compact set K C RN~
with 0 € K:

(2.2.23) 9n(p) = gn(0) + (Vgn(0), p) + %(ngn(fp)p, D)

where £ € (0,1) for every n € N and for every p € K.
Noticing that g,(0) = 0 and Vg,(0) = 0 and recalling that g, is a C?
function, it follows that

gn((snx) i L
S | 26,

where C'i is a positive constant depending only by the compact set K. Hence
by (2.2.24) it follows that (2.2.22) holds and so we have the convergence of
the domain.

It remains to verify the Dirichlet datum for the limiting profile u,. More
precisely we have to show that ws, = 0 on 3]1%1 . By Theorem 2.2.1 it follows
that

(2.2.22)

(2.2.24)

<ngn(§5nx)5n$,5nx>\ < %6onH2 < Ckdy,
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2
- 2
< Limy [dist(0ny, 02,)] 7+
(2.2.25) M,
_2 2
5 [dist(y, 0Q%)]7+1

= LmQ

M,
< C(K, L,ma,my) [dist(y, 00577 in QF.

Since 2, — RY, as n goes to 400, by (2.2.25) and (2.2.17), passing to
the limit we have that

2
(2.2.26) 0 < weo(y) < C(K, L, ma,ma) [dist(y, ORY)] 777 .

Hence for any y € ORY we have that woo(y) = 0. Moreover, it is
important to observe that in (2.2.26), we satisfies the growth hypothesis
(2.1.3) of Theorem 2.1.1.

So we can pass to the limit in (2.2.15) to obtain equation (2.2.16). But,
by Theorem 2.0.3, we have that w is the unique solution of problem (2.0.5),
hence

Then, by (2.2.27), it follows that
Oy(z)Woo () >0 VI € RY

for every v € RY such that (v,7) > 0 and this provides a contradiction with
(2.2.12). Hence we have the thesis (2.0.4) and the result is proved.
O



The Hopf boundary lemma for quasilinear elliptic
problems involving singular nonlinearities and
applications

In this chapter, we deal with positive weak solutions to the singular
quasilinear elliptic problem:

1 .
—Apu = et + f(u) inQ
(3.0.1) w>0 in O
u =0 on 0f2

where p > 1, v > 1, Q is a C>* bounded domain of RY with N > 1 and
f+ Q — R locally Lipschitz continuous. A key point to have in mind in
the study of semilinear or quasilinear problems involving singular nonlin-
earities is the fact that the source term loses regularity at zero, namely the
problem is singular near the boundary, as pointed out in the previous chap-
ter. As a first consequence, solutions are not smooth up to the boundary
(see [82]) and the gradient generally blows up near the boundary in such
a way that u ¢ VVO1 P(Q). Therefore, here and in all the chapter, we mean
that u € C1*(Q) is a solution to (3.0.1) in the weak distributional meaning
according to Definition 3.1.1. Existence and uniqueness results regarding
problem (3.0.1) can be found e.g. in [4, 16, 17, 25, 26, 28, 67, 95, 96].

In this setting we prove a general version of a Hopf type boundary lemma
regarding the sign of the derivatives of the solution near the boundary and
in the interior of the domain, as we have done in the previous chapter in
the semilinear context. To state our result we need some notation; thus we
shall denote with I5(92) a neighborhood of the boundary with the unique
nearest point property (see e.g. [66]). We have to recall Definition 2.0.1 of
inward pointing normal defined by:

Tr— T

(3.0.2) n(z) :

T el
With this notation we have the following;:

THEOREM 3.0.1 (Hopf type boundary lemma). Let u € C*(Q) N C(Q)
be a positive solution to (3.0.1). Then, for any 5 > 0, there exists a neigh-
borhood 15(0€2) of 02, such that

(3.0.3) 8,,(m)u >0 Ve ]5(8Q)

whenever v(z) € RY with ||v(z)|| = 1 and (v(z),n(z)) > B.
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We are mainly concerned with the study of the sign of the derivatives near
the boundary. Such a control is generally deduced a posteriori, by contra-
diction, assuming that the solution is C! up to the boundary. In our setting
this is not a natural assumption and we develop a different technique that
in any case exploits very basic arguments of common use. In fact we carry
out a scaling argument near the boundary that leads to a limiting problem
in the half space.

1
—Apu=— in Rf
u”
(3.0.4) u>0 in RY
u=20 on 8Rf

where p > 1,v> 1, N > 1, ]Rf = {r = (21,...,25) € RY | 2y > 0} and
u e CHRY)N C(Rﬁ).

Our scaling argument leads in fact to the study of a limiting profile
which is a solution to (3.0.4) and obeys to suitable decay assumptions. It
is therefore crucial for our technique, and may also have an independent
interest, the following classification result:

THEOREM 3.0.2. Let v > 1 and let u € CH*(RY)NC(RY) be a solution
to problem (3.0.4) such that

p

B Ié; .

3.0.5 cthv <ulz) < Cx with [T —
( ) cry <u(z) < Cry B R
and ¢,C € RT. Then

(3.0.6)

(y+p—1P |7
pPip—1)(v-1)
The Hopf boundary lemma is a fundamental tool in many applications.

We exploit it here to develop the moving planes method (see [1, 12, 68,
]) for problem (3.0.1) obtaining the following:

THEOREM 3.0.3. Let Q be a bounded smooth domain of RN which is
strictly convex in the x1-direction and symmetric with respect to the hyper-
plane {x1 = 0}. Let u € CH*(Q) N C(Q) be a positive solution of problem
(3.0.1) with f(s) >0 fors >0 (f(0) >0). Then it follows that u is symmet-
ric with respect to the hyperplane {z1 = 0} and increasing in the x1-direction
in QN {zx; <0}.

In particular if the domain is a ball, then the solution is radial and radially
decreasing.

u(x) =u(zy) = Ma:ﬁ, with M :=

For the reader’s convenience we sketch the proofs here below.

- In Section 3.1 we prove 1D-symmetry result in half spaces for
problem (3.0.4), see Theorem 3.1.2. Mainly we develop a com-
parison principle to compare the solution u and it’s translation
ur := u(x — 7e1). Even if the source term is decreasing, a quite
technical approach is needed because the operator is nonlinear and
we are reduced to work in unbounded domains. The 1D-symmetry
result obtained leads us to the study of a one dimensional prob-
lem in R*. We carry out this analysis proving a uniqueness result
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(see Proposition 3.2.2) that provides, as a corollary, the proof of
Theorem 3.0.2.

- In Section 3.2 we prove Lemma 3.2.1, that is a very useful tool in the
ODE analysis. Moreover we run through again, in the quasilinear
setting, the technique of [82] to provide asymptotic estimates for
the solutions near the boundary in terms of the distance function,
see Theorem 3.3.2. Finally we prove Lemma 3.3.1 that is a weak
comparison principle in bounded domain that we used in the proof
of Theorem 3.3.2.

- Section 3.3 is the core of the chapter. We prove here Theorem
3.0.1 developing the scaling argument that leads to the problem
in the half-space. To this aim we strongly exploit the asymptotic
estimates deduced in Theorem 3.3.2. The proof follows by contra-
diction thanks to the classification result Theorem 3.0.2.

- Finally, in Section 3.4, we apply our Hopf type boundary lemma
to prove the symmetry and monotonicity result stated in Theorem
3.0.3. The proof is based on the joint use of the moving planes
method and the monotonicity information near the boundary pro-
vided by Theorem 3.0.1 that allow to avoid the region where the
problem is singular.

3.1. One dimensional symmetry in the half-space

The aim of this section is to show the first part of Theorem 3.0.2, in
particular we are going to prove that each solution u to problem (3.0.4)
satisfying (3.2.2) is one-dimensional. Solutions to p-Laplace equations are
generally of class 1, see [46, ]. Therefore a solution to (3.0.1) has to
be understood in the weak distributional meaning taking into account the
singular nonlinearity. We state the following:

DEeFINITION 3.1.1. We say that u € I/Vllof(Q) NCQ), u>0inQ,isa
weak solution to problem (3.0.1) if
(3.1.1)

/\Vu]p_z(Vu,Vgp)dx :/ L dx —|—/f(u)<pdac Vo € C°(Q).
Q o u? Q

We say that u € VVllof(Q) NC(Q), u > 0 in Q, is a weak subsolution of
problem (3.0.1) if
(3.1.2)

/ |VulP~2(Vu, Vo) dz < / L iz +/ f(u)pdx Vo € C°(Q), ¢ > 0.
Q ou! Q

Similarly, we say that u € VVllo’f(Q) NC(Q), u> 0 in Q, is a weak superso-
lution of problem (3.0.1) if
(3.1.3)

/ \Vu|p_2(Vu,Vg0) dx > / £dac +/ f(u)pdx Vo € C°(Q), ¢ > 0.
Q Q u’ Q

THEOREM 3.1.2. Let v > 1 and let u € CY*(RY)NC(RY) be a solution
to problem (3.0.4) such that

(3.1.4) ngﬁv <u(x) < Ux]% vz € RY
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_pr
y+p—1
(3.1.5) Up, =0

with § := Then

for everyi=1,...,N — 1. Namely, u(x) = u(zy).

PROOF OF THEOREM 3.1.2. We start with a gradient estimate showing
that

C
(3.1.6) V() < —4
x7+p71
N
To prove this fact we use the notation z = (21, ..., 7x) = (2/,7x5) € RY and,
with no loss of generality we consider a point P := (0',z5;). Setting
c .
w(z) = 7u(azg Bx)
(@F)
it follows that
.
(3.1.7) - Ayw = e in Ry .

We restrict our attention to the problem

1 ,
(3.18) —Ayw = e B%(O ,1)
w>0 in By (0',1)

so that, by (3.1.4), it follows that w is bounded and -% € L*(B

Therefore, by standard Ch* estimates [46, |, we deduce that

(0,1)).

1
2

lwllers, ©0,1)) < Cb-

S

Scaling back we get (3.1.6).

Arguing by contradiction, without loss of generality, we assume that
there exists Py € RY such that wu,, (Py) > 0. Hence there exists § > 0
sufficiently small such that ug, (z) > 0 for all z € Bs(Py). Now we define

(3.1.9) ur(z) == u(x — Tey)
where 0 < 7 < §. Hence by the Mean Value Theorem it follows that
(3.1.10) w(Py) — ur(Po) = g, (6)7 > C1 >0

where £ € {tPy+ (1 —t)(Po — 7e1),t € [0,1]}. Moreover, there exists k > 0
sufficiently large such that, by the Mean Value Theorem and (3.1.6), we
have

(3.1.11) u— ur| < (z; in RY N {zy > k}.

Y+p—1
TN

Now we set

(3.1.12) S = sup (u—wu;) > 0.
wERf

We also note that S < 400 by (3.1.4) and (3.1.11). Let us consider
(3.1.13) Wre(x) = [u—u, — (S —¢)|"



3.1 One dimensional symmetry in the half-space 101

for every € > 0 small enough. We notice that, by (3.1.4) and (3.1.11),
(3.1.14) supp(wrc) CC {k < zy < K}

for some lAf:,IA( > 0. We consider a standard cutoff function pr = @gr(z’)
such that ¢ = 1in By(0), ¢r = 0 in (B)(0))¢ and [Veg| < 2 in B 4(0)\
B'R(0), where B(0) denotes the (N — 1)-dimensional ball of center 0 and
radius R.

We distinguish two cases:

Case 1: 1 < p < 2. We set
(3.1.15) V= wl ok

where a > 0, w, . is defined in (3.1.13) and ¢p is the cutoff function defined
here above. First of all we notice that v belongs to T/VO1 P(RY). By density
argument we can take 1) as test function in the weak formulation of problem
(3.0.4), see Definition 3.1.1, so that, subtracting the equation for v and w,,
we obtain

a/ (|IVu[P~2Vu — |Vu, [P"*Vu,, Vw.rys)wf.‘glcp%% dx
R Nsupp(+)

(3.1.16) =—2 / (IVulP?Vu — |[Vur [P Vur, Vor)ws . pr da
RN Nsupp(y)

1 1
—i—/ <—>waap2dx.
RY nsupp(y) \ U7 ut) T

From (3.1.16), using (1.0.2) and the Mean Value Theorem, we obtain

aCh / (V| + [Vur )2 [Ver o200 0% da
R nsupp(+) 7
<a (IVulP2Vu — [Vur [P~ Vur, Vwr ws o do
RY Nsupp() 7 ’
_ o / ) (IVulP~2Vu — [Vur P2V, Vor)ul o do
RY Nsupp (%)

1 1
+/ <—>w°‘ % dx
RY Nsupp(y) \ U ur ) 7

<20, / IV (1 — ) P~ [ Vopplu o da
RY nsupp()

(3.1.17)

1 2
—7/ —(u — u)w? ph dx
RY nsupp(y) &7 e
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where ¢ belongs to (u, u, . Hence, recalling also (3.1.6), we deduce that

QCI/ (IVul + [Vur )72 [Vwr [Pwe o da
R Nsupp(¢) 7

<20, / V(= ) [PV pplw? op do
R¥Nsu
(3.1.18) +upp(Y)

1
+1, 2
RY nsupp(w) £

< C’/ IVorlws, dx
RY nsupp(4))

where C' := 2C4||V(u — u,) Exploiting the weighted

p—1
PR Lo @ nsupp())

a+1
Young’s inequality with exponents i, o+ 1) we obtain
& @

aC [ (VU [Tl [V P o da
RY Nsupp(4))

< C |V80R|wg,e dx
RY Nsupp ()
C / 1

< v [Vor|*™ dx

(3.1.19) oot (o + 1) RY Nsupp(t))
Ca i / w2t da

a+1 RY Nsupp(y))
C Ca

< oo [
Ra—(N=2) = 11 RY Nsupp(t)

_l’_

a+l 2
wr 2 dz.

From (3.1.19) and exploiting the Poincaré inequality in the x y-direction
it follows that

(3.1.20)
oG [ (VU Tl [V Pus o da
R Nsupp (1)

: 5 o at1]2
< CN 2 T g / [wﬂg ] W &
Ro-(N=2) a1 Byn(0) \J{y<k}

c Ca _a a+1 2
< - o1 O3 (k ( > / YV, 2wt da
Ro—(N-2) a+1 P ) 2 R¥ Nsupp (1)) ‘ €| 7

Ca _ao a+1 2
saHaaHC?a(k)( )

/ (V] + [Var Y202 |0, 2o
R nsupp(+)
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where Cp is the Poincaré constant. Let us point out that, by (3.1.4), (3.1.14)
and standard regularity theory [46, ], it follows that

(3.1.21) |[Vu|+ |Vu,| < C in supp(w,.) cC {k <zy < K}.

Hence we have

/ (IVul + [Vur )"~ Ve P da
o
3.1.22 .

R)
—2 2 a—1
< '19/0(21%) (‘VU| + |VUT|)p |V'LUT’5| ’UJT’a dr + W

where C(R) := (RY N (Bj(0) x R)) and @ := L2 oat1 0% (k) (242)* ||(|Vul+
|V, )27 0. We set

9(R> = Ra_((J]VJrQ)
and
L) = [ (9ul+ [Fup 2 VP do
C(R)
so that

L(R) < 9L(2R) + g(R).

Now we fix « sufficiently large so that g(R) — 0 as R — +oo and, con-
sequently, we take o small enough so that ¥ < 2(@=5+1  This allows to
exploit Lemma 2.1 of [59]: it follows that

L(R)=0
for any R > 0. This proves that actually w;. is constant and therefore
wre = 0 since it vanishes near the boundary. This is a contradiction with
(3.1.10) thus proving the result in the case 1 < p < 2.
Case 2: p > 2. We set
(3.1.23) )= wr ek

with w; . and ¢ defined as in the previous case 1 < p < 2. Arguing exactly
as in the case 1 < p < 2 we arrive to

/ (|IVuP2Vu — |Vu, [PVu,, Vw, )% de
R nsupp(+)

(3.1.24) =—2 / (IVulP?Vu — |[Vur [P*Vur, Vor)wr cpp da
RN Nsupp(y)

1 1 9
+ 7 T WrePR dzx
RY nsupp(y) \ U Ur
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From (3.1.24), using (1.0.2) and the Mean Value Theorem, we deduce that
a [ (IVul + [Vur )2 [V o203, do
R Nsupp(t)
</ (IVulP2Vu — |Vu, [PVu,, Vw, )% de
RY Nsupp ()
=— 2/ (IVuP2Vu — |Vu, [P2Vu,, Vor)w, cpp da
RY Nsupp(v)

11 ,
+ — — % | Wreprdx
RN nsupp(y) \U'  Ur

<20, / (V| + Vs )72 [Vwr o[V liom da
RY Nsupp ()

(3.1.25)

1 2
I I
BY nsupp() &7 v

where & belongs to (u,uT;. Exploiting the Young’s inequality to the right
hand side we have

o / (IVul + ‘VUTDP_Q ‘VwT,EPSO%% dx
R Nsupp ()

<20, / (V| + [Var P2 Vs | [Veorlwroor d
RY nsupp(4))

1
—/ —(u—uT)wmnp%dx
RY Nsu €’Y+1 '
(3.1.26) +(eupp(¥)
ga@/ (V| + [Vus P2 Vo, |? da
RY Nsupp()

C _
+ =2 (V] + [Vur )2 |Vor|*w? o3 da
o JRYnsupp(v)

]' 2
—7/ (= wr e d
Y rsupp(y) &7 i

As above we shall exploit the fact that |Vu| and |Vu,| are uniformly bounded
in Rf N supp(v)), see (3.1.21). Therefore we get

o / (V] + (Ve )P~ [V, o 2% da
RY Nsupp(¢)
(3.1.27) e / (V] + [Var )2 [Vawpe ? da
R nsupp(4)

C A
+ = — C>/ w? % da
<0R2 Rﬁﬂsupp(zﬁ) St

where C' e C are positive constants. By taking Ry > 0 sufficiently large it

a .
follows that pyoie C < 0 for every R > Ry. Hence we have
o
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/ (V] + [Vur P2 [V o 2% da

RYNsu

(3.1.28) +Nsupp(v)

< / (V| + [V, )72 [V, . | da.
RN nsupp()

As above, for C(R) := (RY N (B%(0) x R)), we set
L(R) = / (IV] + [Vatr )72 | Vior o2
C(R)

so that

L(R) <YL(2R).
where v = UC—CIQ > 0 is sufficiently small when o > 0 is sufficiently small.
Applying again Lemma 2.1 of [59] it follows that

/ (IVu| + |V, )P~ 2 |V, > dz = 0
C(R)

for any R > Ry. This provides a contradiction exactly as in the case 1 <
p < 2 so that the thesis follows also in the case p > 2.
O

3.2. ODE analysis and classification result

The aim of this section is to show the second part of Theorem 3.0.2,
in particular we are going to prove that each one dimensional solution u to
problem (3.0.4) satisfying (3.2.2) is given by (3.0.6). The one dimensional
symmetry result proved in Theorem 3.1.2 leads to the study of the one
dimensional problem:

1
— (|u'\p*2u’)/ =— teR"
uY
(3.2.1) u>0 t e Rt
u(0) =0
where v > 1 and u € CH*(RT)NC (R U{0}). As a consequence, we expect
uniqueness for such a problem, since the source term is decreasing. By the

way the proof is not straightforward since the source term is decreasing but
singular at zero. Now we are ready to prove the following lemma:

LEMMA 3.2.1. Let u € CH*(RT)NC(RT U{0}) be a solution to (3.2.1).
Assume that there exists a positive constant C,, such that

B
(3.2.2) — <ut) <O P
u
for t sufficiently large and [ := ﬁ. Then there exists a positive constant
C!, such that
to-! / 1,81
(3.2.3) o Sv®)< C! P~
u

for t large enough.
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PROOF. We first claim that «/(t) > 0 for every ¢t > 0. To prove this
fact we argue by contradiction and assume that there exist ty > 0 such that
u'(tg) < 0. Setting

w(t) = |u' ()P~ (t)
it follows by the equation in (3.2.1) that w is a strictly decreasing function.
Therefore u'(t) < —C := u/(ty) < 0 for every ¢t > to and
t t

(3.2.4) u(t) = u(ty) —i—/ u'(s)ds < u(tg) — [ Cds=—Ct+ Cty+ u(to).

to to
This would force u to be negative for ¢ large in contradiction with with the
fact that u is positive by assumption. Therefore we deduce that u'(t), w(t) >
0 for t sufficiently large. Recalling that w is a strictly decreasing function,
we deduce that actually «/(¢),w(t) > 0. Furthermore w(t) — M > 0 as t
goes to +o00. I is easy to show that M = 0. If M > 0 in fact, arguing as in
(3.2.4), we would have

u(t) > Mt + ¢

for ¢ sufficiently large. This gives a contradiction with our initial assumption
(3.2.2), hence M = 0.

Let us now set
h) t=Br+1
S By
By Cauchy’s Theorem we have that for ¢ large enough and k > ¢ fixed there
exists & € (t,t + k) such that
w(t) —w(t+k)  w(&)

(3.2.5) ) —h(t+k)  HWE)

Letting k — +o00 in (3.2.5) we obtain
(t) _ (Pt ™

(t) (&)=F u?’

for ¢ large enough. By (3.2.2) and (3.2.6) we deduce that % is bounded at

(3.2.6)

> g

infinity, thus proving (3.2.3).
O

Now we are ready to prove our uniqueness result:

PROPOSITION 3.2.2. Problem (3.2.1) admits a unique solution u € CH*(R*)N
C(RT U{0}) satisfying (3.2.2) given by

(3.2.7) u(t) = Mt?

(y+p—1p 701 , p
pPip =1y —1) S oytp—1

PrOOF. Arguing by contradiction we assume that there exist two pos-
itive solution u,v € CH*(R*) N C(R*T U {0}) to problem (3.2.1) such that
u # v. Let us consider the cutoff function pr € C°(R), R > 0, such that
er(t) = 1ift € [-R,R], ¢r(t) = 0if t € (—o0,—2R) U (2R, +00) and
l¢'(t)] < % for every t € (—2R,—R) U (R,2R). For £ > 0 (small) we set

toand = [(u—v—e)ogh

where M =

we = (u—v—e¢)
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with a > 0 (large). Passing through the weak formulation of problem (3.2.1)
for u and v, subtracting and using standard elliptic estimates and (1.0.2) we
obtain

(3.2.8)
2R 9

aCy [ (| )" ol P e
0

2R
Sa/ (| P~20 — | [P~ 20wl ) we L% dt
0

2R 2R 1 1
. / (P2 — o P2, ) dt + / (—) W dt
R 0

u” VY
2R / IN\P—=2 / S| 2
<20y [ ()" g lehlondt = [ iplu—vjutch

with ¢ € (u,v;. Exploiting the weighted Young’s inequality in the right
hand side we have

2R
aCy / (/] + [0/]) 2 P B,
0

2R
<LCy / (o] + [o'])P~ o PP it
R

(3.2.9) o en
+Tm (|u/|+|vl|) a+1 2 dt
2R
— : év—i—lwa—H 2 dt

By Lemma 3.2.1 it follows that
2R 9
oy [ (1 W) P
2R 9
chz/ (1] + [o/))P el Pl dit
R
S 2R
+C/ HB-DE-2)-2 041 2 gy
L Jr

(3.2.10) i
e /R B0 012 gy

2R
<10y / (o] + [o')P 2 e Pt
R

CoG\ [
+ (L_C> RB(vH)/R rdl

where we also used the fact that t/2 < R <t when t € [R,2R]. Now we fix
L sufficiently large such that % — (C <0 so that

(3.2.11)

R p—2 2 a1 LCs / INP—2 | 7112, a—1
(\u | + |/ ]) lwl [fwd ™t dt < —= (\u | + |v ]) |wL|*wd ™ dt.
0 OfCl 0
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Hence we define
cmyi= [ () )2 o
By Lemma 3.2.1 we deduce that £(-) has polynomial growth, namely
L(R) < O RB-D»-2) R2(8-1) phla-1) /R dt — CRB-Dp+Bla=1)+1 _ 1po
0

with 0 := (o — )8 + 1. We take a > 0 sufficiently large so that ¢ > 0 and
g—gﬁ < 277 so that Lemma 2.1 of [59] apply and shows that

L(R) = 0.

From this it follows that v < v 4 ¢ for every € > 0, hence u < v. Arguing
in the same way it follows that u > v and this proves the uniqueness result.
To conclude the proof it is now sufficient to check that the function defined
in (3.2.7) solves the problem.

O

PrROOF OF THEOREM 3.0.2. Once that Theorem 3.1.2 is in force, the

proof of Theorem 3.0.2 is a consequence of Proposition 3.2.2.
O

3.3. Asymptotic analysis near the boundary and proof of the
Hopf boundary lemma

We start this section considering the auxiliary problem:

—Apu = ]Lx) in D
u”Y

u>0 in D

(3.3.1)

where D is a bounded smooth domain of RY, where p € L>(D) and p(x) >
c>0ae inD,y>1landue€ VV;?(D) NCO(D). For this kind of problems,
generally, the weak comparison principle holds true. This is manly due to
the monotonicity properties of the source term. In spite of this remark,
the proof is not straightforward when considering sub/super solutions that
are not smooth up the boundary. Therefore we provide here below a self
contained proof of a comparison principle that we shall exploit later on.

LeEMMA 3.3.1. Let u € WP(D) N COD) be a subsolution of problem

(3.3.1) in the sense of (3.1.2) and letv € VV;’?(D)HCO(@) be a supersolution
of problem (3.3.1) in the sense of (3.1.3). Then, if u < v on dD it follows
that w < v in D.

PROOF. Let us set:
(3.3.2) we = (u—v—e)"

where ¢ > 0. We notice that w; is suitable as test function since supp(w:) CC
D and u,v € VVllof (D). Hence w, € VVO1 P(D) and, by density arguments, we
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can plug w. as test function in (3.1.2) and (3.1.3) and by subtracting we
obtain

/ (|Vu|p_2Vu — | V[PV, V) dx
DNsupp(we)

< / p(z) <1 - 1) we dz.
DNsupp(we) u’ v

Taking into account the fact that w — v > uw — v — ¢, the fact that p(-) is
positive and ©~7 is decreasing, it follows that

(3.3.3)

(3.3.4) / (V| + |V P2 |V | dz < 0.
DNsupp(we)

By Fatou’s Lemma, as € tends to zero, we deduce that

/ (IVul + Vo)’ [V (u— v) " Pde < 0
D

showing that (u—wv)™T is constant, and therefore zero by the boundary data.
Thus we deduce that u < v in D proving the thesis.
O

We exploit now Lemma 3.3.1 to study the boundary behaviour of the so-
lutions to (3.0.1). The proof is actually the one in [82]. Since we could
not find an appropriate reference for the estimates that we need, we repeat
the argument. We denote with ¢; the first (positive) eigenfunction of the
p-laplacian in 2. Namely

—Apd1 =M in Q
¢1 =0 on Of).

Having in mind Lemma 3.3.1 we can prove a similar result to the one in
[82], but in the quasilinear setting.

THEOREM 3.3.2. Letu € C’llo’g(Q)ﬂC(ﬁ) be a positive solution to (3.0.1).
Then there exist two positive constants my, ms and there exists § > 0 suffi-
ctently small such that

(3.3.5)

b2

(3.3.6) My ()70 T < u(z) < mad(z) 7T Yz € I;(09).

PROOF. We rewrite the equation in (3.0.1) as

(3.3.7) ~Apu= 4 fw) = pl(ﬁ) in 0

where p(x) := 1+ u(x)? f(u(x)). In the following we assume that ¢ is small
enough so that

p(z) >0 Vo e Is(00).
Arguing as in [82], we exploit the principal eigenfunction ¢; of problem
(3.3.5) and the fact that ¢1 € C1*(Q) (see e.g. [3, 86, 80]) and

Voi(x) #0 Ve 00

p

FOI‘t:: —_—
y+p—1

we set W :=s¢!, s > 0. It is easy to see that

g\, s .
AU = (\Iﬂ ) in I5(0Q)
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where
(3.3.8)  g(x,s5) = s 1! wvmwpmm(m)ﬁ :

Since 0 < t < 1, we can choose two positive constants s; and so such that
0 < s1 < s9 and

(3.3.9) g(x,s1) < px) < g(x,s2) vV x e I5(09).
Hence, setting u; := s1¢} and uy := s3¢!, we have that
x .
(3.3.10) - Apul < p?(LY) n L;(@Q)
and
X .
(3.3.11) — AP'UQ > p’l(L’Zy) n L;(&Q)

In order to control the datum on the boundary of I5(912) (in the interior of
the domain), we need to switch from u to ug := Bu observing that

_1p(x)
—Ayug = pITP T
B

For 31 > 0 large it follows that ug, and u; satisfy the following problem:

—Apug, > p(z) in I5(0Q)

up

1

(3.3.12) Ay < pi? in 1;(0)
ug, > uy on 015(0%0).

By Lemma 3.3.1 it follows now that
(3.3.13) ug, = fru > ug in I5(09).

Similarly, for 82 > 0 small, it follows that ug, and us satisfy the problem:

3
p(x)

—APUQ > — in L;(&Q)
Uz

—Apug, < p(z) in I5(0Q)
u
(3.3.14)

ug, < U2 on 0I5(00).
By Lemma 3.3.1 it follows that
(3.3.15) ug, = fou < ug in I5(0Q).

S S
Hence the thesis is proved with m; := °l and mo 1= 22
b1 B2 o

We are now ready to prove Theorem 3.0.1 exploiting the previous pre-
liminary results.
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PROOF OF THEOREM 3.0.1. Since the domain is of class C*“ we may
and do reduce to work in a neighborhood of the boundary I3(0f2) where the
unique nearest point property holds (see e.g. [66]). Arguing by contradiction,
let us assume that there exists a sequence of points {x,} in I5(99), such
that x, — zg € 99, as n — +0oo, and

(3.3.16) Gy(xn)u(xn) <0, with (V(xn)777(xn)) > B >0.

Without loss of generality, we can assume that o = 0 € 9Q and n(z,) =
en. This follows by the fact that the p-Laplace operator is invariant under
isometries. More precisely, for each n € N, we can consider an isometry
T, : RY — RY with the above mentioned properties just composing a
translation and a rotation of the axes. This procedure generates a new
sequence of points {yy}, where y,, := T,,x,, such that every y, € span{ey)
and y, — 0 as n — +o0. Setting u,(y) := u(T,, (y)), it follows that

1
(3.3.17) — Apuy, = i + f(un) in Q,, = T,(9).
Now we set
Un(ény)
. ]. n = =
(33.18) waly) i= 5

where ¢, := dist(xy, 9Q) = dist(T,xn,0) and M,, := uy,(dnen) = u(xy,). It
follows that §,, — 0 as n — 4+oo and
Q,

- wy, is defined in Q) = 5

- wn(eN) =1.

- M, — 0, as n — +o0.
It is easy to see that w, weakly satisfies

on 1
v in OF
Mg-{-p—l <wn(y)7 + M, f(un((sny))> in €2,.
The key idea of the proof is to argue by contradiction exploiting a lim-
iting profile, that we shall denote by uso, which is a solution to a limiting
problem in a half space. The contradiction will then follows applying the
classification result in Theorem 3.0.2. Here below we develop this argument

and we suggest to the reader to keep in mind that f is bounded, the term
v

(3.3.19) —Apwy, =

My f(un(0ny)) will vanish since M, goes to zero and is bounded as

_n
MT’Z‘Fp*l
a consequence of Theorem 3.3.2. Therefore the expected limiting equation
is:

(3.3.20) ~ Ay = -5~ in RY .

Let us provide the details needed to pass to the limit. We claim that:

che .
- Wy — Weo, S N — +00, in any compact set K of Rf.

- weo € CL(RY) N C(RY),
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—wm:OOHGRf.

To prove this let us consider a compact set K C Rf . For n € N large we
can assume that K C I5,5 (05);,) so that Theorem 3.3.2 can be exploited.

Claim 1. We claim that w,(y) > 0 for all y € K and for n € N large.
Let y € K. Hence, by Theorem 3.3.2

n(0ny) - L(dist(ény,agn))ﬁ.
M, — M,
In particular, by the fact that dist(d,y, dQ,) > Cdy, it follows that

P

(65,1) Y ¥p—1

n

wy(y) = .

(3.3.21) wp(y) > L > C(K,vy,m1) >0.

1,a
Claim 2. We claim that w, AN Weo, a8 N — +00, in any compact set
K of RY.
Since dist(y, 9Q) < C for every y € K, by Theorem 3.3.2 it follows that

(9 ) [dist(3,y, 9] 71
Un\On 1SL{0nY, n)| TP
wn(y) = Tny < Lmg yMn
p
L 00 [dist(y, 99)] T
=Lm

(3.3.22) 2 M,

ST

—L2— On
< LmoCrtr—1

< LC7 1O (K, my).

Hence
| wn | oo (r) < C(K)

for any compact set K of RY. By standard regularity theory (see e.g. [70])
it follows that w, is uniformly bounded in C1®(K’) for any compact set
K’ ¢ K. Therefore, by Ascoli’s Theorem, we can pass to the limit in any
compact set and with C%® convergence. Exploiting a standard diagonal
process, in the same spirit of the previous chapter, we can therefore define
the limiting function ws that turns out to be a solution to (3.3.20) in the

Q
half space. The fact that 5—" leads to the limiting domain RJX as n — +00

follows by standard argume?lts that we discussed in the previous chapter.

It remains to verify the Dirichlet datum for the limiting profile weo.
More precisely we have to show that ws, = 0 on aRf . By Theorem 3.3.2 it
follows that

p
n(Sn d.té‘naQn p-t
wn(y) :u](\/.@y) Sng[ ist( y]\in )]+
_p
(3.3.23) 577" [dist(y, 995)] 771

=L
ma M,

< C(K, L,my,mq) [dist(y, 005)]77»T in Q7.
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Since 2, — RY, as n goes to 400, by (3.3.23) and (3.3.21), passing to
the limit we have that

(3.3.24) 0 < weo(y) < C(K, Ly ma,my) [dist(y, ORY)] T

In a similar fashion, and exploiting again Theorem 3.3.2, we also deduce
that

(3.3.25) Woo(y) > C(K, L, mg, my) [dist(y, ORY )] 7T |

By (3.3.24) it follows that ws(y) = 0 as claimed. Furthermore, collecting
(3.3.24) and (3.3.25), we deduce that w has the right asymptotic behaviour
needed to apply Theorem 3.0.2, see (3.0.5). This shows that that we, is the
unique solution to (3.3.20) given by

C (y+p—1p
prtp—Dy—1
On the other hand, passing to the limit in (3.3.16), it would follows that

Orweo(en) <0

(3.3.26)  Woo(2) = weo(wN) =

)] Y+p—1 (xN)’Y_:ﬁ .

for some 7 € RV with (7,ey) > 0. Clearly this is a contradiction with
(3.3.26) thus proving the result.
O

Now using the Theorem 3.0.1 we want to prove the symmetry result.

3.4. Symmetry and monotonicity result

In this section we prove our symmetry (and monotonicity) result. Actu-
ally we provide the details needed for the application of the mowving planes
method. For the semilinear case see [24, 25, 26], in the quasilinear setting
we use the technique developed in [37].

We start with some notation: for a real number \ we set

(3.4.1) Oy = {:L’ €eQ:x < )\}

(3.4.2) xy = Ry(x) = 2\ —z1,22,...,2N)

which is the reflection through the hyperplane Ty := {z € RY : z; = A}
Also let

3.4.3 = inf z;.
(343 T

Now we set
(3.4.4) ux(z) = u(zy) .
Finally we define
A={a<A<0:u<wu in Q forall t € (a,\}.
In the following the critical set of u

Z,:={Vu=0}
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will play a crucial role. Let us first note that, as a consequence of Theorem
3.0.1, we know that
Z, CC .

This fact allows to exploit the results of [37] since the solution is positive in
the interior of the domain (and the nonlinearity is no more singular there).
Therefore we conclude that

|Zul =0 and Q\ Z, is connected.

PRrROOF OF THEOREM 3.0.3. The proof follows via the moving planes
technique. We start showing that:

Ao #D.

To prove this, let us consider A > a with A — a small. By Theorem 3.0.1 it

follows that
ou

87.%'1 >0 in Q)U R)\(Q/\),
and this immediately proves that u < uy in Q.
Now we define
Ap := sup Ap.
We shall show that u < uy in Q) for every A € (a, 0], namely that:
Ao =0.

To prove this, we assume that A\g < 0 and we reach a contradiction by
proving that u < uy,4, in Q4+, for any 0 < 7 < 7 for some 7 > 0 (small).
By continuity we know that u < uy, in 2,. The strong comparison principle
(see e.g. [103, | or Chapter 1) holds true in Q, \ Z,, providing that

u < Uy, in Qy \ Zy.

Note in fact that, in each connected component C of Q,\ Z,,, the strong com-
parison principle implies that v < uy, in C unless u = uy, in C. Actually the
latter case is not possible. In fact, if 9C NI # () this is not possible in view
of the zero Dirichlet baundary datum since wu is positive in the interior of the
domain. If else 9C N 9N = @ then we should have a local symmetry region
causing 2\ Z,, to be not connected, against what we already remarked above.

Therefore, given a compact set K C Qy, \ Zy, by uniform continuity we
can ensure that v < uy,4, in K for any 0 < 7 < 7 for some small 7 >
0. Moreover, by Theorem 3.0.1 and taking into account the zero Dirichlet
boundary datum, it is easy to show that, for some 6 > 0, we have that

(3.4.5) U< Upg4r 1D L;(@Q) N Q)\O+T

for any 0 < 7 < 7. This is quite standard once that Theorem 3.0.1 is in
force. The hardest part is the study in the region near 9Q2 NT),+,. Here we
exploit the monotonicity properties of the solutions proved in Theorem 3.0.1
that works once we note that (e1,n(z)) > 0 in a neighborhood of 9QNT) 4+
since the domain is smooth and strictly convex.

Now we define

Wxo+7 -= (u— u>\0+7')+
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for any 0 < 7 < 7. We already showed in (3.4.5) that supp(wy,4+-) CC
Qx,+r- Moreover wy,+, = 0 in K by construction.
For any 7 > 0 fixed, we can choose 7 small and K large so that

gsr \ K| < 7.

Here we are also exploiting the fact that the critical set Z,, has zero Lebesgue
measure (see [37]).

In particular we take 7 sufficiently small so that the weak comparison
principle in small domains (see [37]) works, showing that

w,\0+7- =0 1in Q)\0+T
for any 0 < 7 < T for some small 7 > 0. But this is in contradiction with
the definition of Ag. Hence Ay = 0.
The desired symmetry (and monotonicity) result follows now performing

the procedure in the same way but in the opposite direction.
O






Qualitative properties of singular solutions to
semilinear elliptic problems

The aim of this chapter is to investigate symmetry and monotonicity
properties of singular solutions to semilinear elliptic equations. We address
the issue of problems involving singular nonlinearity. More precisely let us
consider the problem

—Au = f(z,u) in Q\T
(4.0.1) u>0 in Q\T
u=20 on 0f}

where € is a bounded smooth domain of RY with N > 2. Our results will
be obtained by means of the moving planes technique, see [1, 12, 68, ].
Such a technique can be performed in general domains providing partial
monotonicity results near the boundary and symmetry when the domain is
convex and symmetric. For semplicity of exposition we assume directly in
all the chapter that €2 is a convex domain which is symmetric with respect
to the hyperplane {x; = 0}. The solution has a possible singularity on the
critical set I' C 2. Furthermore in all the chapter the nonlinearity f will be
assumed to be uniformly locally Lipschitz continuous from above far from
the singular set. More precisely we recall the following:

DEFINITION 4.0.1 (Iy). We say that f fulfills the condition (1) if f :
Q\T x (0,400) =R is a continuous function such that for 0 <t <s <M
and for any compact set K C Q\ T, it holds

f(z,s) — f(z,t) < C(K,M)(s —t) forany z e K,
where C(K, M) is a positive constant depending on K and M. Furthermore

f(,8) is non-decreasing in the xi-direction in QN {x1 < 0} and symmetric
with respect to the hyperplane {x1 = 0}.

A typical example is provided by positive solutions to
1 .
(4.0.2) —Au = o +g(u) in Q\T

where o > 0 and g¢ is locally Lipschitz continuous. Such a problem, in the
case I' = (), as been widely investigated in the literature. We refer the readers
to the pioneering work [31] and to [17, 23, 25, 27, 28, 82, 95, . In
particular, by [82], it is known that solutions generally have no H!-regularity
up to the boundary. Therefore, having this example in mind, the natural
assumption in this chapter is

we HL(Q\D)NC@\T)
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and thus the equation is understood in the following sense:
(4.0.3) /(Vu, Vo)dr = /f(a:,u)godx Vo € CLH(Q\T).
Q Q

REMARK 4.0.2. Note that, by the assumption (I5), the right hand side of
(4.0.1) is locally bounded. Therefore, by standard elliptic regularity theory,
it follows that

ue Opt(Q\T),

where 0 < o < 1.
Let us now state our main result

THEOREM 4.0.3. Let 2 be a convexr domain which is symmetric with
respect to the hyperplane {z1 = 0} and let w € H. (Q\T)NCEKQ\T)
be a solution to (4.0.1). Assume that f fulfills (I;) (see Definition 4.0.1).
Assume also that I' is a point if N = 2 while I is closed and such that

Cap?(l—‘) = 07

RN
if N > 3. Then, if I' C {x1 = 0}, it follows that u is symmetric with
respect to the hyperplane {x1 = 0} and increasing in the xi-direction in
QN {x; <0}. Furthermore

Uy, >0 in QN{x; <0}.

REMARK 4.0.4. Theorem 4.0.3 is proved for convexr domains. It will be
clear from the proofs that this is only used to prove that 90 N {x; = A} is
discrete in dimension two while 02N {x1 = A} has zero capacity for N > 3.
Therefore the result holds true more generally once that such an information
is available. In all this cases we could assume that Q is convex only in the
x1-direction.

The technique, as shown in [110] and as discussed in the Introduction,
can be applied to study singular solutions to the following Sobolev critical
equation in RN, N > 3,

{—Au =u¥~! in RN\T

4.0.4
(4.0.4) u>0 in RV\T.

In [110] it was considered the case of a closed critical set I' contained in a
compact smooth submanifold of dimension d < N — 2 and a summability
property of the solution at infinity was imposed (see also [121] for the special
case in which the singular set I is reduced to a single point). Here we remove
both these restrictions and we prove the following:

THEOREM 4.0.5. Let N > 3 and let u € H} (RN \T) be a solution to
(4.0.4). Assume that the solution u has a non-removable' singularity in the
singular set T, where I" is a closed and proper subset of {x1 = 0} such that
Cap,(I') = 0.
RN

Here we mean that the solution u does not admit a smooth extension all over the
whole space. Namely it is not possible to find @ € H}.(RY) with v = @ in RV \ T,
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Then, u is symmetric with respect to the hyperplane {x1 = 0}.
The same conclusion is true if the hyperplane {x1 = 0} is replaced by any
affine hyperplane.

Some interesting consequences of the previous result are contained in
the following

COROLLARY 4.0.6. Let N >3 and let u € H. (RV \T) be a solution to
(4.0.4) with a non-removable singularity in the singular set I.
(i) If T' = {x0}, then u is radially symmetric with respect to xg.
(i1) If T = {xo, 21}, then u has cylindrical symmetry with respect to the axis
passing through xg and x1.
More generally we have :
(iii) assume 1 < k < N — 2 and suppose that I is a closed subset of an
affine k—dimensional subspace of RN. Then, up to isometry, the solution u
has the form u(x) = u(xy, ..., v, ]x/]), where & := (41, ..xy) and ]ac/] =

AR S
The following example shows that Theorem 4.0.5 and item (iii) of Corol-

lary 4.0.6 are sharp for NV > 5 and also that singular solutions exhibiting un
unbounded critical set I" exist.

ForN25and1§k<%,kinteger,wesetp:p(N):%>1and

A=A(N,k) = [(%—k—l)%]¥ > 0. Then, the function v(r) = Ar~ 51
is a singular positive radial solution of —Awv = v*™) in RN=*\ {0}, which
is smooth in RVN=%\ {0'}. Hence u = u(x1,...,xx) := v(|2|) is a singular
solution to (4.0.4) in RV \ T, with I" given by the k—dimensional subspace
{1 = ... =2 = 0} C RN, moreover u € C°(RVN \ T).

4.1. Notations and preliminary results

For a real number )\ we set

(4.1.1) Q)\:{$€Q:x1 <>\}

(4.1.2) zy = Ry(x) = 2\ —z1,22,...,2N)

which is the reflection through the hyperplane T) := {x; = A}. Also let
4.1.3 = inf x7.

B ‘T

Since I' is compact and of zero capacity, u is defined a.e. on  and
Lebesgue measurable on ). Therefore the function

(4.1.4) uy = uo Ry

is Lebesgue measurable on R)(Q2). Similarly, Vu and Vu, are Lebesgue
measurable on  and Ry (£2) respectively.
It is easy to see that, if Capy(I') = 0, then Capy(RA(I')) = 0. Another
RN RN
consequence of our assumptions is that Capy (R (I")) = 0 for any open neigh-
B2
borhood B2 of Ry(T"). Indeed, recalling that T is a point if N = 2 while T
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is closed with Cap,(I") = 0 if N > 3 by assumption, it follows that
RN

Capy(RA(T")) := inf {/ |Vol?dz < +o00 : ¢ >11in B}, ¢ € C’EO(B?)} =0,
B 2

€

for some neighborhood B} C B2 of Ry(I"). From this, it follows that there
exists p. € C°(BY) such that ¢, > 1 in B} and / |V |2dr < e.
BX

Now we construct a function . € C%1(RN [0,1]) (see Figure 1) that
e = 1 outside B2, ¥ = 0 in Bg‘ and

/ |V |*dx :/ (Ve |?dx < 4e.
RN B>

To this end we consider the following Lipschitz continuous function

1 if s<0
Ti(s)=< —2s+1 if 0<s<1i
0 if 32%
and we set
(4.1.5) Ve :=T1 0

where we have extended . by zero outside B2. Clearly ¢. € C%(RY),0 <
P <1 and

/ |V |2da < 4/ Ve |2dx < 4e.
BA A

€ €

Ty

FIGURE 1. The cutoff function ..

Now we set vy := 9Q N Ty. Recalling that Q) is convex, it is easy to
deduce that 7y is made of two points in dimension two. If else N > 3 then it
follows that v, is a smooth manifold of dimension N — 2. Note in fact that
locally 0f2 is the zero level set of a smooth function g(-) whose gradient is not
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parallel to the x1-direction since 2 is convex. Then it is sufficient to observe

that locally 92 NTy = {g(\,2’) = 0} and use the implicit function theorem

exploiting the fact that V. g(\,2') # 0. This implies that Capy(vyy) = 0,
RN

see e.g. [53]. So, as before, Cap,y(yx) = 0 for any open neighborhood of ~,
TA

4

and then there exists ¢, € C°(Z2) such that ¢, > 1 in a neighborhood 72
with y C Z) C I). As above, we set

(4.1.6) ¢r:=T10p,

where we have extended ¢, by zero outside Z). Then, ¢, € CO1(RV),0 <
ér < 1,¢, = 1 outside I, ¢, = 0 in 7. (see Figure 2) and

/ Vo, |?dx :/ Vo, |?dz < 4/ |V, |?de < 4.
RN > >

FIGURE 2. The cutoff function ¢..

4.2. Symmetry and monotonicity result in bounded domains

In the following we will exploit the fact that u)y is a solution to:

(4.2.1)

/ (Vuy, Vo) dx = / f(zx, upn)pde Yo € CHRA(Q) \ R\(T))
RA () RA(Q)

and we also observe that, for any a < A < 0, the function wy = u — uy

satisfies 0 < w) < w a.e. on Q) and so wy” € L?(Q), since u € C°(2y). To
proceed further, we need the following two results

LEMMA 4.2.1. Let X € (a,0) be such that Ry(T') N Q = 0 and consider
the function

_ Jwler in Q,
7o in RN\ Q,,
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where ¢y is as in (4.1.6). Then, ¢ € Co'(Q) N CIHRA(Q)), ¢ has compact
support contained in (Q\T') N (RA(2)\ RA(I)) N{zny < A} and

(4.2.2)

Vo= ¢3‘(vaXsupp(w;\r)ﬂsupp(go))+2¢7—(w;\_XSUPp(SO))V(bT a.e. on QURN(Q).

If X € (a,0) is such that R\(T') N Q # 0, the same conclusions hold true for
the function

. w;\"1/1§¢>3 m )y,
"o in RN\ Q,

where . is defined as in (4.1.5) and ¢ as in (4.1.6). Furthermore, a.e. on
QU R/\(Q)7
(4.2.3)

Vo = D22 (VA gt yrsupp(e) T 2005 Xoupp()) (W20 V br + 107 V)e).
In particular, ¢ € C%1(€y), Plog, = 0 and so ¢ € HE(Qy).

PROOF. Let us consider the case when A € (a,0) is such that Ry(I') N
Q # ( (the other case being similar and easier). We first prove that for
every x € () there is an open ball B, centered at x, such that B, C Q
and ¢ € C%!(B,), and then that there exists 7 > 0 such that supp(y) is
contained in the compact set {x € Q : dist(xz,0Q) > n} N {zy <A} N RNV
V) (Q\T)N(RA(Q) \ RA(T")), where V is any open set contained in the
neighborhood Bg\ appearing in the construction of ..

If x € QN {xny > A} then ¢ = 0 in an open neighbourhood of = and so
¢ € C%(B,) for a suitable ball B,. If x € QN T) then we can find a small
open ball B, C 2 such that B, N (92U Ry(T")) = (. Therefore, both v and
uy belong to C1(B,N{xx < A}) and so, p € CO1(B,N{xx < A}), thanks to
the Lipschitz character of ¢, and ¥.. On the other hand we also have that
¢ =0 on B, NT), by definition of wy. Thus ¢ € C%!(B,) and we are done
also in this case. If z € R)(I') N2 then ¢ = 0 in an open neighbourhood of
x by definition of 1. and so ¢ € C%!(B,) for a suitable ball B,. Finally, if
x € Q) \ R\(T') then, as before, we can find a small open ball B, such that
B, C Q) \ Rx\(T). In this case, both u and u) belong to C'(B,). This yields
wy € C%(B) and so is ¢, again thanks to the Lipschitz character of ¢, and
(2

To prove the second part of the claim we observe that ¢ =0 on Q\ Q)
and that, for any point z of the compact set (0Q)N{zy < A} there is a small
open ball B, centered at x, such that ¢ =0 on B, N ). The latter clearly
holds for any point of vy, by definition of ¢,, and for any point of 9QN R (T),
by definition of 1. It is also true for any = € (0Q)N{zny < A}, since u—wu) is
well-defined, continuous and negative on the set [(0Q) N {zx < A} \ RA(T).
The arguments above immediately yield that ¢ € c? 1(Q) and the formula
(4.2.3). A similar argument also shows that ¢ € CO (R (€2)).

To compute Vi we also took into consideration the Remark 4.0.2.

[
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LEMMA 4.2.2. Under the assumptions of Theorem 4.0.3, let a < A < 0.
Then wy € H}(Q)) and

/ Vi 2 de < e(£,19, [lull Lo o)),

Qx

where || denotes the n—dimensional Lebesgue measure of ).

PRrROOF. We first prove that Vw,\xsupp(wi) € L?(Q)) and then that the
supp(wi)* We do this only for

the case in which X is such that Ry (T') N Q) # (), the other case being similar
and easier. For ¢ as in (4.1.5) and ¢, as in (4.1.6), we consider the function
o defined in Lemma 4.2.1. In view of the properties of ¢, stated in Lemma
4.2.1, and a standard density argument, we can use @ as test function in
(4.0.3) and (4.2.1) so that, subtracting, we get

distributional gradient of w;\r is given by Vw)yx

| V0 P2 de = =2 [ VunTiafv.s? da
A A

-2 [ VuaVé,wivie,ds
Qx

+ / (2 0) — Flan un)) w262 do
Qx

<-2 wavlbaijafﬁ dx
Qx

-2 [ VuaVe,wivie, dx
Qx

+ [ () = s 26 o
Qx

Here we also used the monotonicity properties of f(-,s), see (/). Exploiting
Young’s inequality we get that

(4.2.4)
1
| 1T P2 e <5 [ 1T 000 P2 o
A A
b [Tl ds
Qx
1
+ 1 /m ’vaXsupp(w;)ngqﬁ?r dux
w90 P do
Qx
+ [ () = fou)of v2ed de
A
Now we observe that the last integral is actually computed on the set {z €

N\ RA(D) = u(z) > up(x) > 0} € Qy € Q\T and so, we can apply condition
(Iy) with the compact set K = Qy and M = ||lul| o (q,). We get therefore
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that
(4.2.5)
/Q () — fu) w9262 de < e(f, [ull (o)) /Q (w2242 da

and so, from (4.2.4), we infer that
(4.2.6)
| 190 gy P62 i <8 [ V0P (] P o
Q) Qx
48 [ (9o w])?02 da
Qx
26l Jullieioy) [ ()Pl do

Qx

Taking into account the properties of 1. and ¢, we see that

(4.2.7) / \Vpe|? da = / Ve |? da < 4e,
Qx QAH(B?\BQ)

(4.2.8) / Vo, |*dr = / IV, |*dr < 4T,
Q5 OAN(INIZ)

which combined with 0 < wj\r < u, immediately lead to

/ Xty 0202 <326 + )l

+ 2¢(f, HUHLOO(QA))||UHi°°(Q,\)’Q| .

S

L2(€,). To conclude we note that ¢ — w) in L*(2), as € and 7 tend to
zero, by definition of ¢. Also, Vo — Vwasupp(wi) in L2(Q)), by (4.2.3).
Therefore, Vwyx supp(w) is the distributional gradient of Vw:\F and wj\L in

H (), since p € HE(Q)) again by Lemma 4.2.1. Which concludes the
proof.

By Fatou’s Lemma, as € and 7 tend to zero, we deduce that Vw,\xsupp(w;r)

O

PROOF OF THEOREM 4.0.3. We define
A ={a<A<0:u<wu in U\ R(T) for all t € (a, A]}

and to start with the moving planes procedure, we have to prove that

Step 1 : Ao # 0 (See Figure 3). Fix a A\g € (a,0) such that Ry, (I") C Q°,
then for every a < A < Ao, we also have that R\(I') C Q¢. For any A in
this set we consider, on the domain 2, the function ¢ := w;\rgbzxgp where
¢r is as in (4.1.6) and we proceed as in the proof of Lemma 4.2.2. That is,
by Lemma 4.2.1 and a density argument, we can use ¢ as test function in
(4.0.3) and (4.2.1) so that, subtracting, we get
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25
//_z
15

FIGURE 3. Step 1 of the moving planes method: A # 0.

/ |Vw§|2¢3 de = — 2/ vw;v¢rw;¢7 dx
Q) Oy
+ / (f(z,u) = f(zx,un)) wigﬁ?_ dx
Q0

<-2 ijquTw;\“qu dx
Qx

+ /Q () = fGa ) o2

Exploiting Young’s inequality and the assumption (I7), with K = Q,
and M = ||u|]%c,o(QA )» we then get that
0

1
| vutPetar <g [ wuiPatare2 [ Ve Py
Qy Q0 £

+ e(f. Jull ey, ) /Q (w})262 da.

A

Taking into account the properties of ¢,, we see that
(4.2.9)

196 R P <l o, |

Vo[ dz < 4lju|[Foo ) - T-
QNN(IN\T2)

We therefore deduce that

| IVt de <16l 7+ 2601 Rellmian,) | (0062 da.

Qy A

By Fatou’s Lemma, as 7 tend to, zero we have

| IvutPde < 2l fullm o) [ P
A

A

(4.2.10)
< 20l ullm(n, )R@) | [V

A
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where ¢, (-) is the Poincaré constant (in the Poincaré inequality in H3(€2y)).
Since c%(QA) — 0 as A = a, we can find A\; € (a, \g), such that

9

N | —

VAE (a, 1) 2¢e(f, HUHLOO(Q,\O))C;%(Q)\) <

so that by (4.2.10), we deduce that

YA € (a, M) / Vi [>dz <0,

Qx

proving that v < uy in Q) \ R\(T") for A close to a, which implies the desired
conclusion Ag # 0.
Now we can set

Ao = sup Ayp.
Step 2: here we show that A\g = 0 (see Figure 4). To this end we assume

R (T) r

FIGURE 4. Step 2 of the moving planes method: Ay = 0.

that A\g < 0 and we reach a contradiction by proving that u < uy,4, in
Dotv \ Rag+v(T) for any 0 < v < v for some small 7 > 0. By continuity we
know that u < uy, in Qy, \ Ry, (I'). Since Q is convex in the x;—direction
and the set Ry, (I") lies in the hyperplane of equation { z; = —2X¢ }, we see
that Qy, \ R, (') is open and connected. Therefore, by the strong maximum
principle we deduce that v < uy, in Qy, \ Ry,(I") (here we have also used
that u,uy, € CH(Q, \ Ry (I')) by Remark 4.0.2, as well as the assumption
(I5))-

Now, note that for K C Qy, \ Ry, ('), there is v = v(K, ) > 0,
sufficiently small, such that K C Q) \ R\(T") for every A € [Ag, \o + V]
Consequently u and u), are well defined on K for every A € [Ag, A\o+v]. Hence,
by the uniform continuity of the function g(z, A) := u(z) — u(2A — 21,z ) on
the compact set K x [\, Ao + ] we can ensure that K C Qx 4, \ Rag+0(T)
and u < uyy4p in K for any 0 < v < v, for some v = v(K, A\g) > 0 small.
Clearly we can also assume that v < %.

Let us consider 9. constructed in such a way that it vanishes in a neigh-
borhood of Ry,+,(I') and ¢, constructed in such a way it vanishes in a
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neighborhood of vy,1, = 0Q N Ty, 4,. As swown in the proof of lemma
4.2.2, the functions

+
Ao+v

pe 00,1(QA0+V) and ¢|89A0+V =0, by Lemma 4.2.1, and ¢ = 0 on an open

are such that ¢ = w in H}(Qx,+v), as € and 7 tend to zero. Moreover,

neighborhood of K, by the above argument. Therefore, ¢ € H}(Qxg4v \ K)
and thus, also wj\rO_W belongs to H (Q,+,\K). We also note that Vw;fm_y =
0 on an open neighborhood of K.

Now we argue as in Lemma 4.2.2 and we plug ¢ as test function in (4.0.3)
and (4.2.1) so that, by subtracting, we get

2,12 42 2
/ ‘ij\ro+1/| 7’Z)5 ¢T dv < - 2/ vwk0+va€w;\ro+v¢5¢7 dx
Qxng+v Qxg+v

2
_ 2/ Vw,\0+,,<bfw;ro+y¢g¢f dr
Q>\0+u

+ /Q IR CANIE AR

where we also use the monotonicity of f(-,s) in the x;-direction. Therefore,
taking into account the properties of wj\ro 4, and Vw)fo 4, We also have

/ ]Vw;\ro+V’2¢£2¢z dr < —2/ VinJrVV%w;fowws(bz dx
Q/\()-H/ K Q)\0+U\K
—9 / Vuwi | Vérw! | Wler do
Q)\0+V\K

+ /QAO+V\K(.]C($, U) - f(-T,U)\))wj\'o_i_ng(bZ dz.

Furthermore, since f is locally uniformly Lipschitz continuous from above,
we deduce that

(4.2.11)
/| Vs PuRgar <2 [ Vel IV, et de
Ao+v

Q)\0+V\K

+2 / Vwl | IVorw) 02, do
Q)\0+V

o + 2.2 2d )
Felf bl ) [ (e



128 Qualitative properties of singular solutions

Now, as in the proof of Lemma 4.2.2, we use Young’s inequality to deduce
that

(4.2.12)
/ Vsl P22 dr < 8 / Ve P (wf ,,)20% da
QA0+V K Q)\OJrV\K

+ 8/ Vo, [ (w )02 da
Qg+ \K

2l ) [ (e da,
Aot+g— Q)\0+V\K

which in turns yields

(4.2.13)

/QA . \Vw;‘\‘0+y‘2¢3¢_2r dr < 32HUH%OO(QAO+D)(€ +7)
O v

2l ) [ (e da,
Ao+ Q)\0+V\K

Passing to the limit, as (e,7) — (0,0), in the latter we get

(4.2.14)

Vi | [2dz < 2e(f, |ull e / ot V2
/Q)\ovLV\K’ )\O—HI‘ ( H H ( >\0+%)) Q>\0+V\K( )‘0+V)

)cf,(Q,\(H_V\K)/ \ij\ro+y‘2 dr ,

< 2¢(f, lull Lo
Ao Qrg+0\K

)
where ¢, (+) is the Poincaré constant (in the Poincaré inequality in Hg (2,41

K)). Now we recall that ¢ (24, \K) < Q(n)\QAOJr,,\K]%, where @ = Q(n)
is a positive constant depending only on the dimension n, and therefore, by
summarizing, we have proved that for every compact set K C Qy, \ Ry, (")
there is a small 7 = (K, )\g) € (0, %) such that for every 0 < v < U we
have

(4.2.15)

Vw? | |?de <2¢(f, ||ul o
Jo Vsl <26l i, )

2
Q)| \ K7 / Vo, dx.

Qg+ \K

Now we first fix a compact K C Qy, \ Ry, (I") such that

20 \ K|¥ < [206(f. [ullpei@ )@

+ L2l
this is possible since |Ry,(I')] = 0 by the assumption on I', and then we

take Uy < v such that for every 0 < v < 7y we have |Qy 4, \ Q,\O\% <
[20e(f, [[ull oo (0 IAOI))Q(H)]_I' Inserting those informations into (4.2.15)
X+ 1500
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we immediately get that

1
4.2.16 / Vwi  Pdr < / IV |?dz
( ) QX0+V\K >\0+l/ 2 Q>\0+V\K )\O+V

and so ijﬁy on Q)4+, \ K for every 0 < v < 1. On the other hand, we
recall that ij{o 4, on an open neighbourhood of K for every 0 < v < v, thus
Vw;fow on ),4, for every 0 < v < 5. The latter proves that v < uy,1,
in Qx40 \ Rrg+r(I) for every 0 < v < 5. Such a contradiction shows that

Ao =0.

Step 3: conclusion. Since the moving planes procedure can be performed
in the same way but in the opposite direction, then this proves the desired
symmetry result. The fact that the solution is increasing in the x1-direction
in {z; < 0} is implicit in the moving planes procedure. Since u has C*
regularity, see Remark 4.0.2, the fact that uy, is positive for 27 < 0 follows
by the maximum principle, the Hopf lemma and the assumption (I¢).

d

4.3. Symmetry and monotonicity results in RY involving critical
nonlinearities

In this section we prove Theorem 4.0.5. We first note that, thanks to
a well-known result of Brezis and Kato [20] and standard elliptic estimates
(see also [119]), the solution u is smooth in RV \ T'. Furthermore we observe
that it is enough to prove the theorem for the special case in which the origin
does not belong to I'. Indeed, if the result is true in this special case, then we
can apply it to the function u.(x) := u(z 4 z), where z € {x; =0} \ T # 0,
which satisfies the equation (4.0.4) with ' replaced by —z + I' (note that

—z+ T is a closed and proper subset of {z1 = 0} with Capy(—2z+T) =0
RN

and such that the origin does not belong to it).

Under this assumption, we consider the map K : RV \ {0} — RM\ {0} de-

fined by K = K(x) := . Given u solution to (4.0.4), its Kelvin transform

T el
is given by
1 T "

where I'* = K (T'). It follows that v weakly satisfies (4.0.4) in RV \{I"™*U{0}}
and that I'* C {z; = 0} since, by assumption, I' C {z; = 0}. Furthermore,
we also have that I'* is bounded (not necessarily closed) since we assumed
that 0 ¢ T

To proceed further we need the following lemmata

LEMMA 4.3.1. Let F: RN\ {0} — RN\ {0} be a C'—diffeomorphism
and let A be a bounded open set of RN\ {0}. If C C A is a compact set such
that

(4.3.2) Capy(C) =0,
A
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then

(4.3.3) Cap,(F(C)) = 0.
F(A)

PRrOOF. By hypothesis (4.3.2) and by definition of 2-capacity, for every
e >0 let p. € C°(A) such that

(i) / Ve |?de < e
A

(ii) ¢- > 1 in a neighborhood B; of C.

Let ¥, := ¢. o G, where G := F~!. By definition of 1., we immediately
have that ¥, > 1 in a neighborhood B; of the compact set F(C'). Moreover

| vty
F(A)
F(A)
< /F TG T Gan), o G i -y

<C(F,A) /F(A) Vo (G1(y1), -y G (yn)) | dyy - - - dyn,

=C(F,A) /A Ve (z1, ...,xN)|2| det(JF(x1,...,xn))|dz1 - - dxy
< C’(F,A)/ |V |?de < C(F, Ae.
A

Since C(F, A) is independent of ¢, the desired conclusion follows at once.
O

LEMMA 4.3.2. Let T be a closed subset of R, with N > 3. Also suppose
that 0 ¢ T and

(4.3.4) Cap,(I') = 0.
RN

Then

(4.3.5) Cap,(I'™) = 0.
RN

PROOF. Since 0 belongs to the open set RY \ T, there exists ro € (0,1)

+oo
such that B, (0) NT = (). Therefore, I' = U [F N (B (0) \ B,,(0))| and
SO m
Capy [T 1 (Br(0)\ Byy(0)] =0, ¥m € N,

RN
since (4.3.4) is in force. The latter and N > 3 imply that

Capy [1'0 (Ba0) \ Bro(0))] =0, ¥im € N,

where A,, := Bp,+1(0) \B%o (0)) is an open and bounded set for every m > 1.

An application of lemma 4.3.1 with F' = K, the inversion x — ‘2, A=A,

|z



4.3 Symmetry and monotonicity results in R 131

and C =T'N (B,,(0) \ By, (0)) yields

Capy K (rm( ()\BTO())):Q Vm e N

K(Am)
and so
Cap,K (11 (Bra(0) \ By, (0))) =0, ¥m € N.
RN
But
400 o
I = K(I) = K ( U [T 0B\ Bry (0))})
m=1
+oo
— U K (0N (Bul0)\ B, (0)))
m=1
and the 2-capacity is an exterior measure (see e.g. [53]), so the desired

conclusion (4.3.5) follows.
U

Let us now fix some notations. We set
(4.3.6) Sa={zcRY : 2 <)},

As above z) = (2\ — x1,x9,...,2zN) is the reflection of z through the hy-
perplane Ty = {z = (21,...,2x) € RY | 1 = A\}. Finally we consider the
Kelvin transform v of u defined in (4.3.1) and we set

(4.3.7) wy(x) = v(z) —or(z) =v(x) —V(TY).

Note that v weakly solves

(4.3.8) / (Vu,Vo)dz = / v lodr Yo e CHRN\T*U{0}).
RN RN

and vy weakly solves
(4.3.9)

/ (Voy, Voo dar = / W lode Ve e CHRY\ Ry(I* U {0}).
RN RN

The properties of the Kelvin transform, the fact that 0 ¢ I' and the
regularity of u imply that |v(z)| < C|z|>~V for every x € RY such that |z| >
R, where C' and R are positive constants (depending on u). In particular,
for every A < 0, we have

(4.3.10) ve LT (3)\)NL2(EN)NCOEy).
LEMMA 4.3.3. Under the assumption of Theorem 4.0.5, for every A <0,
we have that wy € L* (X)), Vw) € L*(X,) and

N 42
(4311)  Jlwf|Pe ) gcg/z Vst de < 205N
A

where C's denotes the best constant in Sobolev embedding.
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ProOOF. We immediately see that w;\r € L¥ (%)), since 0 < w)\ <wve
L% (£)) . The rest of the proof follows the lines of the one of lemma 4.2.2.

Arguing as in section 2, for every ¢ > 0, we can find a function 3. €
COL(RN[0,1]) (see Figure 1) such that

/ Vi ? < e
P>

and 1. = 0 in an open neighborhood B; of R\({I'* U {0}}), with B. C Xj.
Fix Ry > 0 such that R)({T'* U {0}) C Bpg, and, for every R > Ry, let

pr be a standard cut off function such that 0 < ¢p <1 on RN, pr=11in

Br, ¢r = 0 outside Bar with [Vppr| < 2/R (see Figure 5) and consider

o = wiieh in Xy,
"o in RV \X,.

Now, as in Lemma 4.2.1 we see that ¢ € Co''(RY) with supp(p) contained

FIGURE 5. The cutoff function ¢g.

in Xy N Bsg \ R)\({F* U {0}}) and
(4.3.12)
VSO % @R(waxsupp(% )ﬂsupp((p))+2(w)\ Xsupp )(¢2¢RV¢R+¢E¢%{V'¢E)'

Therefore, by a standard density argument, we can use ¢ as test function
in (4.3.8) and in (4.3.9) so that, subtracting we get

/E \Vwkxsupp | Yiohde = —2 . Vwy Vw0 da
A A

-2 Vw)Vorwy 2 da
(4.3.13) /ZA A\Vorpwy ¢rY

+/ (’02*_1 - ) %‘PR
Za
=:h+L+1;.
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Exploiting also Young’s inequality and recalling that 0 < w/\ < v, we get
that

1
1< 7 [ 1900 P02 dn 4 [ [T0P (P da
A

A

(4.3.14)
< 4/2 \Vw/\xsupp ol ¢590Rd93+165||v||%oo(zk)-
A

Furthermore we have that
(4.3.15)
1
|12 SZL/EA [ VOAX gupp(ust o P2k da

a Veorl (w202 da
YAN(B2r\BR)

1
SZL/EA \Vw/\Xsupp | V2% da
N—-2

~
+4 (/ \V@R”dm‘> (/ v? da:)
ZxN(B2r\BR) ZAN(B2r\BR)
N-2

1 . N
L / VXt 220 o + CV) / o da
4 N 3SAN(B2r\BR)

where C'(N) is a positive constant depending only on the dimension N.
Let us now estimate I3. Since v(z),vy(z) > 0, by the convexity of
t — t2 1 for t > 0, we obtain

2z

V) - o T w) < Sl @) () — uao))

for every x € ¥. Thus, by making use of the monotonicity of ¢t — 2" ~2,

for t > 0 and the definition of w;f we get

(v? 1—1}§ 1)wj\'§N_2v§ 2v—w A)w:\'r_N 5Y v 72 (w ;‘)2
Therefore
(4.3.16)

N 42 .
sy 2/sz2 e de

< _Q/EA'U Udl’—m EA'U dx_N_2||v||L2*Z/\)

=

where we also used that 0 < wj\r < v. Taking into account the estimates on
I, I and I3, by (4.3.13) we deduce that
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(4.3.17)

2 2 2 2
/ Vg e <322,

+2C(N) (/ v d:c)
EAN(B2r\BRr)

+ 2@“14 LQ*(E)\)‘

N-2
N

By Fatou’s Lemma, as € tends to zero and R tends to infinity, we deduce
that Vwasupp(w;r) € L?(X,). We also note that ¢ — w in L?' (X)), by

definition of ¢, and that Vi — Vwasupp(wi) in L3(X,), by (4.3.12) and
+ 2+

the fact that wy € L° (X)). Therefore, Vw,\xsupp(w;r)

gradient of Vw,™ and so Vwy in L?(X,) with (taking limit in (4.3.17))

is the distributional

N+2 2%

2
(4318) /EA ]Vwﬂ dflf S 2m‘|’(}||L2*(E>\).

Since ¢ € COH(RN) we also have

2
(4.3.19) (/ ©? dm)2 < C’gv/ |V|? da
DN D3N

where Cg denotes de best constant in Sobolev embedding. Thus, passing
to the limit in (4.3.19) and using the above convergence results, we get the

desired conclusion (4.3.11).
|

PROOF OF THEOREM 4.0.5. We can now complete the proof of Theo-
rem 4.0.5. As for the proof of Theorem 4.0.3, we split the proof into three
steps and we start with
Step 1: there exists M > 1 such that v < vy in Xy \ Rx(T* U {0}), for all
A< —M.

Arguing as in the proof of Lemma 4.3.3 and using the same notations
and the same construction for 1., pr and ¢, we get

| VutPeichds =2 [ VuiVeasphds
A A

-2 Vwi Vorpw! 2 dx
(4320) /ZA \ VPRW, PR,

+/E (W =0} Tl ek da
A

=1+ I+ I3,
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where I7,I5 and I3 can be estimated exactly as in (4.3.14), (4.3.15) and
(4.3.16). The latter yield

/E T P de <822 e,

N—2
N
(4.3.21) +2C(N) (/ v? dm)
YAN(B2r\BR)

QM/EA’U ('UJ)\) SORdx

Taking the limit in the latter, as € tends to zero and R tends to infinity,
leads to

N +2 .
(4.3.22) / IV [>de < 2+/ 0¥ " (w) ) dr < o0
oy N -2 )5,
which combined with Lemma 4.3.3 gives

N 2 *
/ Vwi | de < 2+/ 0¥ 2w )dx
- N-2

2

2

N +2 - N . 2%

(4.3.23) 2N% </ v? dx) (/ (wy)? dac)

DN DI
2
x5 ([ ) (vt )
C? v dx Vw 2dz ).
2N oS 5, EA’

Recalling that v € L2 (2)), we deduce the existence of M > 1 such that

2

N—|—2 X N
C ¥ dq 1
N 25(/2)\’0 .’E) <

for every A < —M. The latter and (4.3.23) lead to

/ IVwi[?dx=0.
Za

This implies that wj\' = 0 by Lemma 4.3.3 and the claim is proved.

To proceed further we define
A={A<0:v<w in 3\ R(T""U{0}) for all t € (—o0, \|}

and
Ao = sup Ap.

Step 2: we have that \g = 0. We argue by contradiction and suppose that
Ao < 0. By continuity we know that v < vy, in 3y, \ Ry, (I'* U{0}). By the
strong maximum principle we deduce that v < vy, in Xy, \ Ry, (I'" U {0}).
Indeed, v = vy, in ), \ Ry, (I’ U{0}) ) is not possible if Ay < 0, since in this
case v would be singular somewhere on Ry, (I'*U{0}). Now, for some 7 > 0,
that will be fixed later on, and for any 0 < 7 < 7 we show that v < vy 4,
in ¥y +r \ Rag+r (I U{0}) obtaining a contradiction with the definition of
Ao and proving thus the claim. To this end we are going to show that, for
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every 0 > 0 there are 7(d, A\g) > 0 and a compact set K (depending on §
and A\g) such that

K © Sy \ Ra(T* U {0}), / Wz <5 YA€ oy do 47,
SO\

To see this, we note that for every every § > 0 there are 71(d, A\g) > 0 and a

compact set K (depending on 0 and Ag) such that / v? dx < g and
g \K

K C ¥\ \ R\(I'" U {0}) for every A € [Ao, Ao + 71]. Corfsequently u and uy

are well defined on K for every A € [Ag, Ao + 71]. Hence, by the uniform

continuity of the function g(z,A) := u(x) — u(2\ — 1, ) on the compact

set K x [Ao, Ao + 71] we can ensure that K C 3y 4, \ Ry (I U {0}) and

u < uUpgpr in K for any 0 < 7 < 7o, for some 1 = 7(0,A9) € (0,71).

Clearly we can also assume that ™ < l/\T?" Finally, since v¥ e Ll(E N +|>\O|)
ot

* 5
and / v de < 0 We obtain the existence of 7 € (0,72) such that
S \K

/ v2 dx < § for all A € [Ag, Ao + 7).
EA\K

Now we repeat verbatim the arguments used in the proof of Lemma 4.3.3
but using the test function

Q= w;\i_o—i-Tq/}sQSO%% in 2>\0+7'
0 in RV \ Xy 4
Thus we recover the first inequality in (4.3.23), which immediately gives,
forany 0<7<7T
(4.3.24)

N +2 2% 2 2
|Vw |2dx§2/ v A (w! ) dx
/ZAO+T\K AotT N =2 Eag+r\K Aot
2

2
N +2 . N . :
< 27—’_ (/ ’U2 dm) (/ (w;\i_o+7)2 dm)
N2 E>\0+T\K Z)\()-O-T\K
x
N 2 *
< 27_’_0% / v? dx / \Vw;\rO_H\Q dx
N =2 Exg+r\K Bxg+r\K

T and Vw;ro 4 are zero in a neighbourhood of K, by the above

since U)/\O_‘_T

N
2

construction. Now we fix § < % [2%0@} - and we observe that with this

choice we have

2
N+2 . R |
27+c§ / vdr| <=, VO0<7t<7T
N_ E>\0+‘r\[< 2

which plugged into (4.3.24) implies that / ]Vw;\ro +T]2 dx = 0 for every
Zxg+r \K

0 < 7 < 7. Hence / |Vw;0+7_|2d:6 = 0 for every 0 < 7 < 7, since
E/\0+‘r
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ijo 4 is zero in a neighborhood of K. The latter and Lemma 4.3.3 imply
that wj\rOJrT = 0 on Xy, 4, for every 0 < 7 < 7 and thus v < v),4, in
Yagtr \ Rag+r (I U {0}) for every 0 < 7 < 7. Which proves the claim of
Step 2.

Step 3: conclusion. The symmetry of the Kelvin transform v follows now
performing the moving planes method in the opposite direction. The fact
that that v is symmetric w.r.t. the hyperplane {x1 = 0} implies the sym-
metry of the solution u w.r.t. the hyperplane {z; = 0}. The last claim
then follows by the invariance of the considered problem with respect to
isometries (translations and rotations).

O

PROOF OF COROLLARY 4.0.6. The function v(z) = u(xz + zp) satisfies
the assumptions of Theorem 4.0.5 with I' = {0}. An application of Theorem
4.0.5 yields that v is symmetric with respect to every hyperplane through
the origin and so the original solution u must be radially symmetric with
respect to xg. This proves item (i). Since item (ii) is a special case of item
(iii) with k£ = 1, we need only to prove item (iii). To this end we observe that,
up to an isometry, we can suppose that the affine k—dimensional subspace
is {zx41 = ... = xy = 0}. Therefore, we can apply Theorem 4.0.5 to
get that u is symmetric with respect to each hyperplane of RV containing
{zps1 = ... = xy = 0}; i.e., u is invariant with respect to every rotation of
RYN which leaves invariant the set {1 = ... = zy = 0}. Note that we can
apply Theorem 4.0.3 since any affine k—dimensional subspace of RY, with
1 <k < N —2, has zero 2-capacity in RV (and so Cap, (') = 0).

RN

O






Monotonicity and symmetry of singular solutions
to quasilinear problems

In this chapter we consider the problem

—Apu = f(u) inQ\T
(5.0.1) u>0 in Q\T
u=20 on 052,

in a bounded smooth domain Q C RY and p > 1. The solution « has a
possible singularity on the critical set I' and in fact we shall only assume
that w is of class C' far from the critical set. Therefore the equation is
understood as in the following

DEFINITION 5.0.1. We say that u € C*(Q\T) is a solution to (5.0.1) if
u=0 on 0Q and

(5.0.2) /vauv’?(vu, Vo)dz = /Qf(u)godx Vo € CHQ\T).

The purpose of this chapter is to investigate symmetry and monotonicity
properties of the solutions when the domain is assumed to have symmetry
properties. This issue is well understood in the semilinear case p = 2 when
I' = (). The symmetry of the solutions in this case can be deduced by the
celebrated moving planes method, see [1, 12, 68, |. In [50, | and in
Chapter 4 the moving planes procedure has been adapted to the case when
the singular set has zero capacity, in the semilinear setting p = 2.

As remarked in the introduction, here we extend the result obtained in
Chapter 4 in bounded domains to singular solutions of problem (5.0.1). We
prefer to start the presentation of our results with the case p > 2. We have
the following:

THEOREM 5.0.2. Let p > 2 and let u € C1(Q\T) be a solution to (5.0.1)
and assume that f is locally Lipschitz continuous with f(s) > 0 for s > 0,
namely assume (A?c) If Q is conver and symmetric with respect to the

x1-direction, T is closed with Cap,(T') = 0, namely let us assume (A}), and
Frc{reQ: x =0},

then it follows that u is symmetric with respect to the hyperplane {z1 = 0}
and increasing in the x1-direction in QN {x; < 0}.

Although the technique that we will develop to prove Theorem 5.0.2
works for any p > 2, the result is stated for 2 < p < N since there are no
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sets of zero p-capacity when p > N.

Surprisingly, as we explained in the introduction, the case 1 < p < 2 presents
more difficulties related to the fact that the operator may degenerate near
the critical set even if p < 2. We will therefore need an accurate analysis
on the behaviour of the gradient of the solution near I'. We carry out such
analysis exploiting the results of [100] (therefore we shall require a growth
assumption on the nonlinearity) and a blow up argument. The result is the
following:

THEOREM 5.0.3. Let 1 < p < 2 and let u € C*(Q\T) be a solution to
(5.0.1) and assume that f is locally Lipschitz continuous with f(s) > 0 for
s > 0 and has subcritical growth, namely let us assume (A}) Assume that

T is closed and that T' = {0} for N =2, while ' C M for some compact C*?

submanifold M of dimension m < N —k, with k > § for N > 2, see (AL).

Then, if Q is convexr and symmetric with respect to the x1-direction and
rc{zeQ: xz =0},

it follows that u is symmetric with respect to the hyperplane {x; = 0} and
increasing in the xi-direction in QN {z1 < 0}.

5.1. Notations and technical results

Notation. Generic fixed and numerical constants will be denoted by C
(with subscript in some case) and they will be allowed to vary within a
single line or formula. By |A| we will denote the Lebesgue measure of a
measurable set A.

As we did in the previous chapter, we fix some standard notations in the
moving planes method. For a real number A we set

(5.1.1) M ={zeQ:2; <A}

(5.1.2) xy = Ry(x) = 2\ — z1,22,...,2N)

which is the reflection through the hyperplane Ty := {z € RY : z; = A}.
Also let

5.1.3 = inf z7.
(13 “

Finally we set
(5.1.4) ux(z) = u(zy) .

We recall also the definition of p-capacity of a compact set A C RN, For
1 <p < N we define Cap,(A) as
(5.1.5)

Cap,(A) := inf {/ |VolPdr < 400 : ¢ € CC(RY) and ¢ > XA} ,
RN

where ys denotes the characteristic function of a set S. By the invariance
under reflections of (5.1.5), it follows that

(5.1.6) Cap,(I') = Cap,(RA(T")).
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Moreover it can be shown that, if Cap,(Rx(I')) = 0, then we have that
(5.1.7) Capl (Ra(T)) =0,

where D C RV denotes a bounded subset and with Cap)’(A) (4 C D a
compact set of RY) we mean

Capf(.A) = inf{/ IVolPde < +00 @ p € C(D) and SOZXA}~
D

Let ¢ > 0 small and let B2 be a e-neighborhood of Ry(I') . From (5.1.6)
and (5.1.7) it follows that there exists ¢. € C°(B2) such that ¢. > 1 on

XR(T) and

/ [V |Pdr < e.
BX

To carry on our analysis we need to construct a function 1. € W1P(Q) (see
Figure 1) such that ¢ = 1in Q\ B2, . = 0 in a §.-neighborhood Bg‘e of
R\ (") (with . < €) and such that

(5.1.8) / V. Pz < Ce,
5

for some positive constant C' that does not depend on €. To construct such
a test function we consider the real functions 7' : R — Rar and g : Rg — Rar
defined by

(5.1.9)

T(s) :== max{0;min{s;1}}, s € R and g¢(s) := max{0; —2s + 1}, s € R{.

Finally we set

(5.1.10) Ye(z) = g(T(pe())).
By the definitions (5.1.9), it follows that ). satisfies (5.1.8).

Ty

F1GURE 1. The cutoff function ..

To simplify the presentation we summarize the assumptions of the main
results as follows:
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(A}) For 1 < p < 2 we assume that f is locally Lipschitz continuous so
that, for any 0 < t,s < M, there exists a positive constant Ky = Kyp(M)
such that

[f(s) = F(O)] < Kyls —1].
Moreover f(s) >0 for s >0 and
m ) =€ (0,4+00).

t—+oo t4

for some q € R such that p—1 < q < p* — 1, where p* = Np/(N — p).

(Afc) For p > 2 we only assume that f is locally Lipscitz continuous so
that, for 0 < t,s < M there exists a positive constant Ky = K¢(M) such
that

[f(s) = F(B)] < Kyls —1].
Furthermore f(s) > 0 for s > 0.

(AL). For1 <p <2 and N = 2 we assume that ' = {0}, while for 1 < p < 2
and N > 2 we assume that T C M for some compact C? submanifold M of
dimension m < N — k, with k > %

(A%) For2 <p < N and N > 2, we assume that I" closed and such that
Cap,(I') = 0.

REMARK 5.1.1. We want just to remark that in the case 1 < p < 2 and
N > 2 if T C M for some compact C? submanifold M of dimension m <
N —Fk then Cap,(T') = 0. In this case we consider Be a tubular neighborhood
of radius € of M, i.e.

B.:={xe€Q : dist(x, M) < e},

with € > 0 sufficiently small so that M has the unique nearest point prop-
erty in the neighborhood of M of radius €. We may and do also assume
that Fermi coordinates are well defined in such neighborhood, see e.g. [98].
Therefore, using the defintion (5.1.5) above, it can be shown that Cap,(T') =
0.

In the following we will exploit the fact that uy (in the sense of Definition
5.0.1) is a solution to

(5.1.11)

[PV Vede = [ fnleds Vo€ CHRA@\RAD)).
R () RA(Q)

We set

(5.1.12) wy(r) = (u—uy)(x), x€Q\R\().

LEMMA 5.1.2. Let p > 1 and let u and uy be solutions to (5.0.2) and
(5.1.11) respectively and let f : R — R be a locally Lipschitz continuous
function. Let us assume I' C Q closed and such that

Cap,(T") = 0.
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Let a be defined as in (5.1.3) and a < A < 0. Then
[ (9l 1929t P de < Co ulo,)-
A

PROOF. In all the proof, according to our assumptions, we assume that
0 <t,s < M, there exists a positive constant Ky = K¢(M) such that

[f(s) = f(B)] < Kyls —t].

For 1), defined as in (5.1.10), we consider

Pe 1= w;\i_l/)gxﬂx

By standard arguments, since wy < |[u|z=(q,) (recall that in particular

u € C(Q\I)) and by construction 0 < v. < 1, we have that ¢, € Wol’p(Q)\).
By a density argument we use ¢, as test function in (5.0.2) and (5.1.11).
Subtracting we get

/ (|VulP2Vu — |[Vuy [P~ 2Vuy, Vwi)wé” dx

Qx

(5.1.13) er/Q (IVul[P~2Vu — [Vuy [P~ 2Vuy, Vi )y~ tw do
= [ () = st vt da

Now it is useful to split the set 2\ as the union of two disjoint subsets Ay
and B) such that Q) = Ay U B). In particular, for C > 1 that will be fixed
large, we set

A)\ = {JI € Q)\ : |V’U,)\(£ZZ)‘ < C‘VU(CE)‘}
and
By ={z € Qy : |[Vur(z)| > C|Vu(z)|}.

Then it follows that
- By the definition of A it follows that there exists C' such that

(5.1.14) |Vu| + [Vuy| < C|Val.

- By the definition of the set By and standard triangular inequalities,
we can deduce the existence of a positive constant C such that

1 .
(5.1.15) E\Vu)\\ < |Vur| = [Vu| < [Vwy| < [Vuy| + |[Vu| < CVuy.

We distinguish two cases:
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Case 1: 1 < p < 2. From (5.1.13), using (1.0.2) and (A}) we have

(5.1.16)
01/ (IVul+[Vur P2 Vet P42 da
Qx

< / (VP 2V — [Var [Py, Vet o da
Qx

< p/ |VulP2Vu — [Vur P2 Vuy | [Vipe|? w) da
Q)

v [ T 0 e

< pCy /Q Vet P (Ve le? wl de + K; /Q (w2 da
A

A

§C<I1+I2>+C kagdx,

where
I ;:/ Vwi [P Ve [Pt da
Ax
and

I = / Vet P [Vt da,
B

and C = C(p, A, [[ul|L=(q,)) is a positive constant.
Step 1: Evaluation of I;. Using Young’s inequality and (5.1.14), we have

(5.1.17)
11_/ Vi [P Vape [P w) da
Ax

P

(] o) (], o)

p—1

< ( / (9l [9]e? dm) B ( / V6P d:c) ’

p

< (¢ 1vuuzas) " ([ wepttra)
Ay Ax

p

p—1 1
§C</ |Vu]pdm> ! </ |V¢E|de)p,
Q)\ Q)\

where C' = C(p, A, ||ul|=(q,)) is a positive constant.



5.1 Notations and technical results 145

Step 2: FEwaluation of Iy. Using the weighted Young’s inequality and
(5.1.15) we get

- / Vet [P Vet da
B

V) [Py? da
Bx

1
#5196y i
<5/ (|Vu\ +IVuA)P2 (V] + |Vun|)? 42 da
B\
1

+ = 5 |Vw5]p(w/\ P dx
(5.1.18) g(sc?/ (\Vu!+|Vu>\\)p_2\Vu,\]2w§dm
By
+5 [ oy

§5C4/ (IVu| + |Vur )P 72| Vwy [*¢P da
By
1
5 |V¢5]p(w/\ P dx
550/ (\vu| Va2 Vet 20 de

C
+ — |Vi)e|P dx,
1) O,

where C' = C(p, A, ||[ul| < (q,)) is a positive constant. Finally, using (5.1.16),
(5.1.17) and (5.1.18), we obtain

| (9l + Va2 Fut Pz ds

Qx

<60 [ (Vul + [Vur) 2| Vu o2 do
Qx

p—1 1
+C</ \vuv’dx) ’ </ |V¢E]pd:c>p
Q)\ Q)\

+ ¢ |Vie|P dox + C PP dx,
5 Qy Qx

(5.1.19)

for some positive constant C' = C(p, A, ||u| = (q,))-



146 Monotonicity and symmetry of singular solutions

Case 2: p > 2. From (5.1.13), using (1.0.2) and (A?c) we have

¢ [ (9ul + [Fusl v Poz do
A

< /Q (IVulP~2Vu — [Vupr [P 2Vuy, V) )yP do
A

— —p/Q (|Vu|p_2Vu — |Vu,\|p_2Vu,\,Vw5)1j)§_1w;\r dx

A
+ [ () st e

<p/ [|[VuP2Vu — [Vup P2 Vus | [Vl wy da
Qx

Q U — uUx
(5.1.20) g
<pCo [ (Vul+ (Va2 Vu| (Vo uf da
Qx
+Ep [ wi)erde
Qx
—5Ca [ (Vul + Va2 V| Vol w do
Ay
PGy / (V] + [Vus P2V | [Vapelp?~ o dac
By
+Ep [ wi)urde
Qx
§C<11+I2>+C YL dx,
Qx
where
I = / (V] + [Vua )P 2V | [Vepelp? L} da
Ax
and

b= [ (94 DP9 Vet~ s
Bx

and C = C(p, A, [|ul|L=(q,)) is a positive constant.
Step 1: Evaluation of I;. Using the weighted Young’s inequality we have

L= / (V] + [Vur))P 2 Ve | [Vagel? ™t da
Ax

<5 / (V] + [Vua)P2 Ve 292 da
Ay

1
w5 [Vl + T2V e P da
Ax
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Using (5.1.14) and Holder inequality, we obtain

I < 5/ (V| + [Vaun|)P~2 Vet P2 da
Ax

cr—2

5 |VulP 2 Ve Pyl (wy)? do

Ax

ga/ (V| + [Vaun|)P~2 Vet P2 da
A

A
A

_'_

p—2

£ s ([ o)
<5 /Q (
C e :
+ 5 (/QA ]Vu|pdx> </QA |V1/)€|pdx> ,

with C' = C(p, A, [|ul| e (q,)) 18 a positive constant.
Step 2: Evaluation of Is. By the weighted Young’s inequality

(5.1.21)

V| + [Vur| P72 | Vwy [Py do

o= [ (Vul+ Va2 ] [Velo2 s de
A

p(p—2) P 1
<5 / (V] + [Vur)) 5 |V |72 02 e + & / Vel (w )P de
B 5 B
p(p—2) _
=0 [ (Vul+ |Vua)) > |V PV |77 20 da
Ba

1
+/ Ve |P(w) )P d.
§ /g,

Using (5.1.15) and noticing that

p
(p—1)

we obtain the following estimate

-2 <0,

(5.1.22)
. (p=2)(p+1) 1
I, < 6C / Vur P72V [P do + < / Ve [P (w) )P da
B 5 By

C
<0C [ (|Vu| + |[Vur )P 2|Vl PP dr + — |Vepe|P dx
B 5 Bx

C
<50 [ (IVul + [Vual)P 2 Vi P2 da + & / Ve d,
Q, 5 Ja,

with C' = C(p, [|ul[z~(q,)). In the second line of (5.1.22) we exploited the
fact that, since p > 2 then

[Vur [P~ < (|Vu] + [Vun P72
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Collecting (5.1.20), (5.1.21) and (5.1.22) we deduce that

/Q (V] + [Vur )2 Vs 242 da
A

<6C [ (|Vu| + |[Vuy|)P=2|Vwy [*yF da
Q
(5.1.23) ’ .

2 2
C P P
+ = </ |VulP d:v) (/ |V)e|P daz)
o Qx Qx
C
+ — |Ve|P dax + C YPdx,
0 Qx Qx

for some positive constant C' = C(p, A, [|ul| L (q,))-

For § small, from (5.1.19) and (5.1.23), using (5.1.8) and the fact that
for A < 0 the solution u € W'P(Q,), letting ¢ — 0 by Fatou’s Lemma we
obtain

/ (V] + [Var P2Vt 2 da < Cp, Al ),

Qx

concluding the proof.
O

5.2. Symmetry and monotonicity results in the singular and in
the degenerate case

We recall the fact that uy (in the sense of Definition 5.0.1) is a solution to
(5.2.1)

|Vu>\|p72(VuA,Vg0) dr = / flun)pdz Vo€ CCI(RA(Q)\R)\(F)).
RA(®)

RA ()
We set
(@) = (w—uy)(@), @0\ (TUR\T)).

Since in the following we will exploit weighted Sobolev inequalities, it is

convenient to set weight

(5.2.2) 0:= |VulP~2 = |Vul*P.

Ry | =

We have the following

LEMMA 5.2.1. Let 1 < p < 2. Under the same assumption of Theorem
5.0.3, define
Q;\r = Q) N supp (w;\r)
Then
(5.2.3) [Vul>"? € L'(RA()),
N
for some t > 3.

PRrROOF. By definition of Qj\L we have

HUHLOO(RA(Q;\L)) = Hu)\”LOO(Q;F) < HUHLOO(Q;r) < O full oo ay))-
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Taking zo € R\(2}) \ T, we set:
(5.2.4) g(z) == u(dr + z9) in B% (0),

where d := dist(zo,'). Since u is a solution (in the sense of Definition 5.0.1)
to (5.0.1), we deduce that for any ¢ € Ccl(Bl/Q(O))

(5.2.5)

/ VglP2(Vg, Vo) do
B%(O)

[ Va4 )P A(Tulde + 20), V) de
B1(0)
3

o e (s (55)

:d{éymf@@x+%»¢mdx

= / c(z)(g(z))PLo(z) dz,
B%(O)

with

_ pf(uldz + x0))
(5.2.6) c(x) == dpupfl(dg; o)

From (5.2.5) we deduce that in distributional sense
~Apg = c(z)g? ' in Bi(0).
2

On the other hand u as well (in distributional sense) is a positive solution
to —Apu = f(u) in Bg(xg). Therefore using [100, Theorem 3.1] we have

(5.2.7) O0<u(z)<C(l+d qﬁ*?),
where C = C(f,n,p) > 0. By (5.2.6), using (A}) we have
(5.2.8) c(x) = CdP(1 + udt1™P),

with C' = C(I,p, Ky) is a positive constant. Finally, collecting (5.2.7) and
(5.2.8) we deduce

clx) <CdP(14+d7P) <C,

with C = C(f,l, N,p,q, Ky,?). Hence c(x) € L>(By/2(0)). By [103, The-
orem 7.2.1], recalling (5.2.4), for every = € By /g(0) it follows
(5.2.9) g(x) < sup g(z)

xGleI (0)

< Cy inf < Cyg(0) < C
< Hme%(o)g(w)_ 19(0) <
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where C'= C(f,l,N,p,q, K7,) is a positive constant. Hence g is bounded
in B;/3(0) and as consequence, see e.g. [46, ]

g€ Ch(BL(0)).
Then there exists a positive constant C' = C(N, p, A, ||u|| .~ (q,)) such that
Vg(z)| < C Vzxe B%(O).
By (5.2.4) it follows
d|Vu(dz + z9)| < C Vz € B%(O),

namely

(5.2.10) IVu| <

&\Q

in Ba ().
16

Using (AL), we can consider B. a tubular neighborhood of radius ¢ of M,
ie.

Be:={z € Q : dist(z, M) < e}.

We now exploit an integration in Fermi coordinates,see e.g. [98]. We indi-
cate a point of B via the coordinate (o, z)" where o is the variable describing
the manifold M and 2z’ € RF is the Euclidean variable on the normal sec-
tion. For o fixed, D, will stand for the normal section at o. By (5.2.10),
and passing to polar coordinates we obtain

(5.2.11)
/ (|Vu|2*p)t dx —/ (|Vu|27p)t dx +/ (|Vu|2*p)t dx
RA(Q) Ra(0)\Be Be

<C—|—C/ da/ \Vu]2p

= C(N7p7 A, Hu”LO"(QA)) + CFEr,
with
¢ 1

if t < k/(2 —p), recalling that 1 < p < 2. Hence, since k > N/2, inequality

(5.2.12) holds for some
‘e N k
2'2-p P

being 2k > N (2 — p) under our assumption. O

Let us now set
Zy i ={z € Q\\ R\(I) | Vu(x) = Vuy(z) = 0}.
We have the following
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LEMMA 5.2.2. Let u be a solution to (5.0.2) with f:R — R be a locally
Lipschitz function such that f(s) > 0 for s > 0. Leta < XA < 0. If
Cyx C O\ (RA(T) U Zy) is a connected component of Qy \ (RA(I') U Zy)
and u = uy in C), then

Cy = 0.
Proor. Let
c.=C\UJ RA(CA).
Arguing by contradiction we assume C # (). Now for e > 0, we define
he(t) : R{ — R as
{GE“) it >0

t
0 ift =0,

where Ge(t) = (2t — 28)X[c, 2] (t) + tX[2¢,00)(t) for £ = 0. Moreover we
consider the cut-off function 1. on the set I' U Ry(I') defined in a similar
way as in (5.1.10). Hence we define the test function

Pe 1= h6(|vu’)w52XC-

We point out that the suppy. C C and therefore we can use it as test
function in (5.0.2). We obtain

he (t) =

0< / ) he(IVul 2 dr = / VulP2(Vu, V|Vl KL(Val 2 da
C

2/ |VulP~2(Vu, Vb ) he (|Vu| ). de.
C

Using Schwarz inequality, observing that

he(t) <1 and hL(t) <2/e,

we obtain
(5.2.13)
(IVul) 5
0</f o Vi de
!V |
_ Vu B
< /C{ o 2}!vu|p 2HD2UH¢2| |d +2/ VP V| da
N{e<|Vu|<2e

< 4/ |Vu|P~2|| D?ul|)? da:+2/ VP~ V. |1, d
Cn{e<|Vu|<2e} C

p—1 1
<a [ a2t dov2 ([ vopas) " ([ vora)”
C C C

where A; := C N {e < |Vu| < 2¢}. Now we note that by the definition of
the region C' and because u = u) in C), then the solution u is bounded and
C1H@ by classical regularity results. Moreover

VP2 D2ullyZxa. < [VulP~2||D?ul|
and |VulP~2||D%u|| € L'(C) by [37] (see also [88, Lemma 5] for details). It is

important to note that the regularity of the solution in R)(C)) is induced by
symmetry by the regularity in Cy. Noticing that |VulP~2|| D*ul|?x 4. — 0
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as ¢ goes to 0, then letting ¢ — 0 in (5.2.13), by Dominated Convergence
Theorem and (5.1.8) it follows

O</f(u)d:v§0,
C

and this gives a contradiction. Hence C' = ().
Ol

PROOF OF THEOREM 5.0.3. Since the singular set I' is contained in the
hyperplane {z; = 0}, then the moving planes procedure can be started in
the standard way (see e.g [35, 36, 37]) and, for a < A < a+ o with ¢ > 0
small, we have that wy < 0 in Q) (see (5.1.12)) by the weak comparison
principle in small domains. Note that the crucial point here is that w) has
a singularity at I' and at Ry(I"). For A close to a the singularity does not
play a role. To proceed further we define

A ={a<A<0:u<wu in U\ R(T") for all t € (a, A]}

and A\g = sup Ay, since we proved above that Ag is not empty. To prove our
result we have to show that \g = 0. To do this we assume that \g < 0 and
we reach a contradiction by proving that u < uy,4r in Qx 17 \ Ray4-(T) for
any 0 < 7 < 7 for some small 7 > 0. We remark that |Z),| = 0, see [37].
Let us take Ay, C ), be an open set such that Z,, Ny, C Ay, CC Q.
Such set exists by Hopf lemma (see Chapter 1). Moreover note that, since
|Z),] = 0, we can take A), of arbitrarily small measure. By continuity we
know that u < uy, in Qy, \ Ry, (I"). We can exploit the strong comparison
principle, see e.g. | , Theorem 2.5.2] or Chapter 1, to get that, in any
connected component of Q) \ Z,,, we have

U < Uy, or U= Uy,

The case u = u), in some connected component Cy, of Qy, \ Z,, is not
possible, since by symmetry, it would imply the existence of a local symmetry
phenomenon and consequently that © \ Z,, would be not connected, in
spite of what we proved in Lemma 5.2.2. Hence we deduce that v < uy, in
Qy, \ Ry, (I"). Therefore, given a compact set K C Qy, \ (R, (') UAy,), by
uniform continuity we can ensure that u < uy,+, in K forany 0 < 7 < 7T
for some small 7 > 0. Note that to do this we implicitly assume, with no
loss of generality, that R),(I') remains bounded away from K. Arguing in a
similar way as in Lemma 5.1.2; we consider

(5.2.14) Pe 1= w;0+7¢§XQAO+T~

By density arguments as above, we plug . as test function in (5.0.2) and

(5.2.1) so that, subtracting, we get
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(5.2.15)
/Q \K(]Vu|p_2Vu — |Vurg - P2V 41, ij\rOJrT)@ZJé’ dx
Ao+T

+p/ (|VulP~2Vu — \Vu,\o+7|p_2Vu,\o+T, V¢E)w§_1w;\ro+T dz
Q)\0+T\K

— [ - fwd, e i,
Qg7 \K

Now we split the set Q2,4+, \ K as the union of two disjoint subsets Ay 4,
and By, such that Qy 4 \ K = Ay 4+ U By,+-. In particular, for C' > 1,
we set

Argtr = {2 € Dpgir \ K ¢ [Vargar(@)] < C|Vu(2)]}

and

Brgsr = {2 € Duir \K ¢ [Vargsr ()] 2 C|Vu(a)]}.

From (5.2.15), using (1.0.2) and (A}c)7 repeating verbatim arguments in
(5.1.16), (5.1.17) and in (5.1.18) we have

/Q Tl P 2P, P e
)\O+‘r

<oC (IVul + [Vurg - )P 2 Vf, [Py da
Qg+ \K
p—1

+c(/ |Vu|pdx>p</ |v¢€pdx>p
Qy Qx

C
Ve |P dx + K / (w}, +T)2¢§ dz,

T3
Q/\0+T\K Q/\O+‘r

for some positive constant C' = C(p, A, [|ul[L~(q,,,))- Taking 6 > 0 suffi-
ciently small and using (AIL), as we did above passing to the limit for ¢ — 0

we obtain
(5.2.16)

(Vul + Vs o P20 P < OKy [ (wf, ) da,
Qg+ \K Qrg+r\K
Now we set
p—2
0= (1+|Vu> + [Vuy|?) 2

in order to exploit the weighted Sobolev inequality from [124] (see also
Chapter 1). The results of [124] apply if o € L}(Q)) and

1
— e LY),
. ()
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for some t > n/2. In particular, H& o) (see [37, ]) coincides with the
closure of C2°(€) with respect to the norm

1
2
July = IVl = [ olTulds)

and it holds that

||wHL2;(Q,) < CS|VUJ|HL2(Q/MQ) for any w € H&,Q(Q'),
where
1 1 1

= 1 + — _

2% 2 t n
Note that

2-p

(5.2.17) (14 [Vul® + [Vurg-?) 7 < Ky + KoV 77,
in QXOJFT = Q)4+ N supp (w)TOJFT), where K7 and Ky are positive constants

depending only on p and on ”u“cl(QA0+?). By Lemma 5.2.1 and (5.2.17), we
deduce that

2—p

1
0 = (L4 [Vul? + [Vurg4-?) T € LY Qg4r),

for some ¢t > n/2 and this allows us to use the above mentioned results of
[124]. We shall use the fact that
2—p 2-p
Vul + [Vurgr)* 7 <272 (|Vul? + [Vurgir[?) 2
o (VU V) (Il + [T+ )

2—p
2

2—
< 272" (1+|Vul® + [Vugi )

In particular, by (5.2.18), Holder inequality and weighted Sobolev inequality,
in (5.2.16), we obtain

(5.2.19)

2-p _
[ dvel Par<2® [ (Tul [Tuge 2T, P de
Qg+ \K Qxg+r\K

22%01(]« (w;\rOJrT)de
Qg+ \K

1 2
_ 2 . %
2°3" OF 4l \ K] / (], )% da
Qrg+r\K

IA

IN

2—p
<2 ORI \KD [ olVud,, P

Qrg+r\K

where C)(+) tends to zero if the measure of the domain tends to zero. For 7
small and K large, we may assume that

2
272 CKCy(|Q4r \ K1) <

N | =

so that by (5.2.19), we deduce that

/ Q|Vw>fo+7_|2 dr = / Q|Vwio+7_|2 dx <0,
Q)\0+T Ao+T K
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proving that u < uy 4, in Qxg4r \ Rag4r(I') for any 0 < 7 < 7 for some
small 7 > 0. Such a contradiction shows that

Ao = 0.

Since the moving planes procedure can be performed in the same way but
in the opposite direction, then this proves the desired symmetry result. The
fact that the solution is increasing in the x;-direction in {z; < 0} is implicit
in the moving planes procedure.

O

PRrROOF OF THEOREM 5.0.2. Arguing verbatim as in the previous case
up to (5.2.14), we consider

e T y2
Pe -= w)\o—‘rTwé’XQ/\O-H'
.

and by a density arguments, we plug it as test function in (5.0.2) and
(5.1.11). Subtracting, we get

(5.2.20)
/Q \K(’VUPD*QVU - |VUA0+T‘p72vu)\0+77 vw;\_0+7)1/]§ dx
Ao+

+p/ (|VulP~2Vu — |[Vury [P 2 Vurg 1 v¢a)1/1§71w;\_0+7_ dx
Q>\0+T\K

- / (f(u) = Flur)wh, 42 d.
Q/\OJr‘r\K

Using the split
Aygir = {2 € Wgyr \ K |Vup,r(z)] < C|Vu(z)|},
Byyer = 1€ Qs \ K ¢ [Vingar(2)] = CVu(@)]},
from (5.2.20), using (1.0.2),(14?) and arguing as in Lemma 5.1.2, we obtain

/Q Tl P 20, o e
Ao+T

<é6C (IVul + [Vury )PVt | [Py2 da
Q>\O+T\K
p—2

+ ¢ / |VulP dz / |V [P dx
0 Qg+ \K Qrg+r\K

+ Kf/ (wi, )P da,
Qg+ \K

for some positive constant C' = C(p, A, |ul[ze(,+7)). As we did above
passing to the limit for ¢ — 0, by Fatou’s Lemma we obtain
(5.2.21)

(IVul + |VU>\O+T|)P—2‘VM;\FO+T|2 dx < C’Kf/ (wj\ro+7)2 dx.
Qrgar\K Qrg+r\K

In this case we have |Vu|P~2 < (|Vu|+|Vuyy - |)P~2 since p > 2. Then we set
0 := |Vu|P~2 and we see that g is bounded in €2, hence o € L' (2 1)-
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By applying the weighted Poincaré inequality to (5.2.21), see [37, Theorem
1.2], we deduce that

(5.2.22)
[ vl Paes [ (Vul Fun )V, e
Q)\O+T Ao+T

< CKf/ (wj\'O+T)2d$
Qg+ \K

< CK G0 KD [ ol P de

Qg+ \K
where Cp(+) tends to zero if the measure of the domain tends to zero. For 7
small and K large, we may assume that

OK (G| 47 \ K]) <

DN | =

so that by (5.2.22), we deduce that

/ Q|Vw)t)+,r|2 dr = / Q|Vw;0_‘_,r|2 dx <0,
Q)\0+T

Q)\OJr‘r\K

proving that v < uy 4 in Qyy4r \ Rag+r(I) for any 0 < 7 < 7 for some
small 7 > 0. Such a contradiction shows that

Ao = 0.

Since the moving planes procedure can be performed in the same way but
in the opposite direction, then this proves the desired symmetry result. The
fact that the solution is increasing in the x;-direction in {z; < 0} is implicit

in the moving planes procedure.
O



Symmetry and monotonicity properties of singular
solutions to some cooperative semilinear elliptic
systems involving critical nonlinearities

The aim of this chapter is to investigate symmetry and monotonicity
properties of singular solutions to some semilinear elliptic systems in such
a way to find a generalization of the results presented in Chapter 4. In the
first part we consider the following semilinear elliptic system

—Au; = fi(ug, ... upy) in Q\T

(6.0.1) u; >0 in Q\TI
u; =0 on Of)
where  is a bounded smooth domain of RY with N > 2 and i = 1,...,m
(m > 2).
Motivated by [83], through all the chapter, we assume that the following

hypotheses (denoted by (Sy,) in the sequel) hold:

(Sg,) (i) fi : R? — R are assumed to be C' functions for every i =
1,...,m.
(ii) The functions f; (1 <1 < m) are assumed to satisfy the mono-
tonicity (also known as cooperative) conditions

af; L, .
8—;(251, v tjyentm) >0 for i#£7, 1<4,j<m.
J
In this chapter the case of singular nonlinearities for systems is not
included, while it was considered in the case of scalar equations, see [50] or
chapter 4; about these problems we have also to mention the pioneering work
of Crandall, Rabinowitz and Tartar [31] and also [17, 24, 52, 82, | for

the scalar case. It would be interesting to consider in future projects a more
general class of nonlinearities. Since we want to consider singular solutions,
the natural assumption is

w; € HL (Q\T)NC@Q\T) Vi=1,..,m

and thus the system is understood in the following sense:

(6.0.2) /(Vui,Vgoi) dr = / fi(ur, ug, ..., um) i dz Y, € CHOQ\T)
Q Q
for every i = 1,...,m.

REMARK 6.0.1. Note that, by the assumption (Sy,), the right hand side
in the system (6.0.2) is locally bounded. Therefore, by standard elliptic reg-
ularity theory, it follows that

ui € CHY(Q\T),

loc
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where 0 < a < 1. We just remark that, in 1968, E. De Giorgi provided
a counterexample showing that the scalar case is special and the regularity
theory does not work in general for elliptic systems, see [44], but in the case
of equations involving Laplace operator, Schauder theory is still applicable.

Under the previous assumptions we can prove the following result:

THEOREM 6.0.2. Let Q) be a convexr domain which is symmetric with re-
spect to the hyperplane {x1 = 0} and let (u1, ..., um) be a solution to (6.0.1),
where u; € HE (Q\T)NC(Q\T) for every i =1,...,m. Assume that each
fi fulfills (Sy,). Assume also that T is a point if N = 2 while T is closed and
such that

CapQ(F) - 07

RN
if N > 3. Then, if I' C {x1 = 0}, it follows that w; is symmetric with
respect to the hyperplane {x1 = 0} and increasing in the xi-direction in

QN{x; <0}, for every i =1,...,m. Furthermore
8x1ui>0 m Qﬂ{$1<0},
for everyi=1,...,m.
The technique developed in the case of bounded domains, see [50, 51,
| (see also [91] for the nonlocal setting) is very powerful and can be
adapted to some cooperative systems in RY involving critical nonlinearity.

Our aim is to study qualitative properties of singular solutions to the fol-
lowing m x m system of equations

m
—Au; = aijuz*_l in RV\T,
(6.0.3) ; I

u; >0 in RV\T,

where ¢ = 1,...,m, m > 2, N > 3 and the matrix A := (ai;)ij=1,..m is
symmetric and such that

m
(6.0.4) Z a;j =1 for every i =1,...,m.

j=1
This kind of system, with T' = ), was studied by Mitidieri in [89, 90]
considering the case m = 2, A = 2 (1)> and it is known in the literature

as nonlinearity belonging to the critical hyperbola.
As remarked above the natural assumption is

ui € HL, (RV\T) Vi=1,...,m

and thus the system is understood in the following sense:
(6.0.5) / (Vui, Vi) de = Zaij/ u?*_lwi dx Vo; € CHRN\T)
RN j:l RN

for every i =1, ..., m.
What we are going to show is the following result:
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THEOREM 6.0.3. Let N > 3 and let (u1, ..., um) be a solution to (6.0.3),
where u; € HL (RN\T) for every i = 1,...,m. Assume that the matriz A =
(@ij)ij=1,..m, defined above, is symmetric, a;; > 0 for every i,j = 1,....,m
and it satisfies (6.0.4). Moreover at least one of u; has a non-removable’
singularity in the singular set I', where I' is a closed and proper subset of
{z1 = 0} such that

Capy(T") = 0.

Then, all u; are symmetric with respect to the hyperplane {x1 = 0}. The
same conclusion is true if {x1 = 0} is replaced by any affine hyperplane.
If at least one of u; has only a non-removable singularity at the origin for
every i = 1,...,m, then each u; is radially symmetric about the origin and
radially decreasing.

Another interesting elliptic system involving Sobolev critical exponents
is the following one:

—Au =u? 1+ %ualv’@ in RV\T
(6.0.6) Ay =02 14 guavﬁ_l in RV\T
u,v >0 in RY \T,

where o, 3 > 1, a+ 5 =2* .= % (N >3)

The solutions to (6.0.6) are solitary waves for a system of coupled Gross—
Pitaevskii equations.

We prove the following:

THEOREM 6.0.4. Let N =3 or N = 4 and let (u,v) € HL (RN \T) x
H} (RN \T) be a solution to (6.0.6). Assume that the solution (u,v) has
a non-removable’ singularity in the singular set T, where T is a closed and
proper subset of {x1 = 0} such that

Moreover let us assume that o, 8 > 2 and that holds o + 8 = 2*. Then,
u and v are symmetric with respect to the hyperplane {x; = 0}. The same
conclusion is true if {x1 = 0} is replaced by any affine hyperplane. If at least
one between u and v have only a non-removable singularity at the origin,
then (u,v) is radially symmetric about the origin and radially decreasing.

6.1. Notations

We need to fix some notations and since they are similar to the ones
introduced in the previous chapters, we just recall someone of them for the

1Here we mean that the solution (u1, ..., um ) does not admit a smooth extension all
over the whole space. Namely it is not possible to find @; € H} . (RY) with u; = @; in
RN\ T, for some i = 1,...,m.

2As above, we mean that the solution (u,v) does not admit a smooth extension all
over the whole space. Namely it is not possible to find (@, %) € HL.(RY) x HL . (RY) with
u=adorv=0in RV\T.
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reader’s convenience. For a real number A we set

(6.1.1) Q)\:{$€lel </\}
(6.1.2) xy = Ry(x) = 2\ — z1,22,...,2N)
which is the reflection through the hyperplane T} := {1 = A}. Also let
(6.1.3) a = inf z;.
e

We define the functions
(6.1.4) ui ) = Uu; 0 Ry

and we recall that they are Lebesgue measurable on Ry(€2). Similarly, Vu;
and Vu; ) are Lebesgue measurable on Q and R)(2) respectively.

Recalling that I' is a point if N = 2 while I is closed with Cap,(I') =0
RN
if N > 3 by assumption, it follows that

Capy(R)(T)) := inf {/ IVol?dz < +o00 : ¢ >11in B}, ¢ € CCOO(B?)} =0,
B2 B2

€

for some neighborhood B} C B2 of R)(I'). From this, it follows that there
exists p. € C°(BY) such that ¢, > 1 in B} and / |V |2d < e.
B2

Now we construct a function . € C%'(R¥,[0,1]) such that ¢. = 1
outside B2, 1. = 0 in Bg and

/ |V |2da :/ |V |2da < 4e.
RN B>

To this end we consider the following Lipschitz continuous function

1 if <0
Ti(s)=q—-2s+1 if 0<s<1i
0 if 32%
and we set
(6.1.5) e =T 0 ¢

where we have extended ¢. by zero outside B2 (see Figure 1). Clearly
e € COLRN), 0 <. <1 and

/ |V |2da < 4/ Ve |2dx < 4e.
BA A

€ €

Now we set vy = 0Q NTy. Hence Capy(yy) = 0, see e.g. [53] and
RN
Chapter 4. So, as in Chapter 4, Cap,(,) = 0 for any open neighborhood of
A

¥

7 and then there exists ¢, € C2°(Z) such that ¢, > 1 in a neighborhood
T} with y, C I} C Z). As above, we set

(6.1.6) ¢r =T oo,

where we have extended ¢, by zero outside Z) (see Figure 2). Then, ¢, €
COLYRN),0 < ¢, <1,¢, = 1 outside 72, ¢, = 0 in T and
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T

FIGURE 1. The cutoff function ..

[ vorPiz= [ Voldr<a [ ([Vodr <
RN > >

FiGURE 2. The cutoff function ¢..

6.2. Symmetry and monotonicity results in bounded domains

Let us set

wiy = (ui — ;)

where ¢ = 1,...,m. We will prove the result by showing that, actually, it
holds w;f)\ =0fori=1,...,m. To prove this, we have to perform the moving
planes method.

In the following we will exploit the fact that (uj y,...,u;1 ) is a solution

+

to
(6.2.1)

/Q(Vui,hv%')dfc: A Fiurn, ug ny ooy Um 2 )i dz Yo € CHO\RA(T))
A A
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for every i = 1,...,m, where Q) := R)(Q2).
Now we are ready to prove an essential tool that we will use to start the
moving planes procedure.

LEMMA 6.2.1. Under the assumptions of Theorem 6.0.2, let a < A < 0.
Then w;r/\ € HY(Q) for everyi=1,...,m and

m

m m
(6.2.2) Z/Q VP de < 2> (1 + C)usl o 0, |-
=1 A

i=1

where || denotes the N—dimensional Lebesque measure of Q0 and C; is a
positive constant only depending on f;.

PROOF. For 1), as in (6.1.5) and ¢, as in (6.1.6), we consider the func-
tions

oy o [whEet im0y
"o in RN\ Q,,

In view of the properties of ¢;, stated in Lemma 4.2.1, and a standard
density argument, we can use ¢; as test function in (6.0.2) and (6.2.1) so
that, subtracting, we get

(6.2.3)
| et Puzetae = <2 | (Tut, V.ot da
A

Qx

—2 [ (Vuh Vol udor do
Qx ’ '

+ / [fi(Ul,UQ, 7um) - fi(ul,/\)ul)n 7um,>\)]wz+’)\¢}g¢3- dx.
Qx

Exploiting Young’s inequality in the right hand side of (6.2.3), we get that

(6.2.4)

1
| IvubPetetar < g [ Vel Putetde v |90l ds
Qs o o
1
by [ vunPRetds 4 | V6P da
4 Q)\ b QA b

+/ [fi(ut, ug, ooy um) — fi(un, uz x, --~,um,A)]w{f,\¢52¢3 dr.
Qx
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The last term of the right hand side of (6.2.4) can be rewritten as follows
(6.2.5)

/ [filur, ug, ..y tp) — fl-(uL)\,uZ)\,...,um)\)]wx)\wgqbz dx
Qx
:/ [fi(ur, uz, ..oy um) — fi(urn, u2, ..p Um)
Qx
+ f’i(ul,)\v U2, ..oy Um) - fi(ul)\v ’LLQ,)\, ceey Um,A)]w:Awgﬁﬁ dx

:/ [fi(ul,uQ,...,um) —fi(uL)\,uQ,...,um)
Qx

+ fi(ul,/\7u27 7um) - fi(ul,)an,)\a U3,y «eey um)
+ fi(ul,)\a U2\, U3, -y um) - fi(ul,)w U2 Ny +ees Um,A)]w;;ﬂ/fg¢Z dx.

Using the fact that f; are C* functions (Sy,) — (i) and they satisfy (Sy,) — (i),
by (6.2.5) we have

/ [fi(ur, g, ooy um) = filuraugn, -y tm ) w297 da
Qx

<SG [ whuhvied
i=1 x

Now compiling all the previous estimates and exploiting Young’s inequality
in the right hand side of 6.2.6 we obtain

(6.2.6)

(6.2.7)
| vt Pezeas <8 / VoL P e dn 8 [ V6,02 da

Qx

e [ (PRt Y C [ (et d.
j=1

Q)\ A

Adding all the equations of (6.0.3) we get
Z/ V], Py2e? de < 82 </ IV (w]hy)? 62 da
(6.2.8) + /Q VP dw)
+2 Zml(l w0 [ winetet e

Taking into account the properties of ¢ and ¢,, we see that

(6.2.9) / (V| da = / IV | da < 4e,
Qx

QAN(B2\B3)

(6.2.10) / Vo, |*de = / IV, |*dx < 4,
Qx QAN(INIR)
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which combined with 0 < wj)\ < uy, for every ¢ = 1,...,m, immediately lead
to

Z/m [V [PY2e% dr <32(e +7) Y lluill F oy
1=1 i=1

+ 5 D1+ C)wilF e eyl
i=1

By Fatou’s Lemma, as ¢ and 7 tend to zero, we have (6.2.2). To conclude we
note that ¢; — w;;\ in L?(12), as € and 7 tend to zero, by definition of ¢; for
every i = 1,....,m. Also, Vi — Vw;r/\ in L2(€2y), by (4.2.3). Therefore, w:)\
in H} (), since ¢; € H}(2)) again by Lemma 4.2.1, for every i = 1,...,m,
which concludes the proof.

O

PRrROOF OF THEOREM 6.0.2. We define
A ={a<A<0:u; <wujp in Q4 \ Re(T) for all t € (a, ] and i=1,...,m}
and to start with the moving planes procedure, we have to prove that
Step 1 : Ay # 0. Fix \g € (a,0) such that Ry, (I") C Q°, then for every
a < A < Ao, we also have that Ry (T") C Q°¢. For any X in this set we consider,
on the domain €2, the function ¢; := wit\qbzxgw where ¢, is as in (6.1.6)
and we proceed as in the proof of Lemma 6.2.1. That is, by Lemma 4.2.1

and a density argument, we can use ¢; as test function in (6.0.2) and (6.2.1)
so that, subtracting, we get

(6.2.11)
/ |Vw:>\\2¢)3 dr = —2/ Vw:/\v¢7w;;¢7 dx
Qy Qx

+/ [fi(ur, ug, ..., tm) —fi(ul)\,ul,\,...,um,A)]wx)\qﬁzdx.
Qy

Exploiting Young’s inequality and the assumption (Sy,), then we get that

1
/ |Vwi+/\|2gb3d:c§/ Vw;r)\|2¢3d:r—|—2/ Vo2 (w,)2de
Q, : 2 Ja, ’ Q :

A
m
. + ot A2
—i—ZC]/ wiw; @7 da.
i=1 25

Taking into account the properties of ¢, we see that
(6.2.12)

/ Vo (wihy)de < HUHZLOO(Q,\)/ Vo |* do < 4dlju]|Foo ) - T
Qx QAN(INI2)

We therefore deduce that

m m
S [ Vel Petds <167 fuilieioy)
i=1 70 i=1

23y 03)/ (wi)262 da.
i=1 25
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By Fatou’s Lemma, as 7 tends to zero, we have
b K

Z/ Vi |?dz < mZ(Hcf)/ (w})? dw
(6.213) 2 ’ 24 o
< ’;lz(ucf)ogp(m)/g Vw2 dz,
=1 A

where C; ,(+) is the Poincaré constant (in the Poincaré inequality in H3(€2y)).
Since Cj ,(2\) = 0 as A — a, we can find A\; € (a, Ag), such that

1
Cip(h) < —/———— VA € (a, A1) and for every i = 1,...,m,

m(1+ C?)
so that by (6.2.13), we deduce that

/ \Vw;’rﬂzdx <0 VA € (a, A1) and for every i = 1,...,m,
Qx
proving that u; < wu;y in Q) \ RA\(I') for A close to a, which implies the
desired conclusion Ag # 0.
Now we can set
Ag = sup Ap.

Step 2: here we show that Ag = 0. To this end we assume that \y < 0 and
we reach a contradiction by proving that u; < w; xj+v in Qx40 \ Rag40(I) for
any 0 < v < v for some small ¥ > 0 and for every ¢ = 1,...,m. By continuity
we know that u; < u;y, in Qy, \ Ry, (') for every ¢ = 1,...,m. Since  is
convex in the x;—direction and the set Rj,(I') lies in the hyperplane of
equation {x; = —2X\g }, we see that Q), \ Ry,(I') is open and connected.
Moreover, using (Sy,) — (i7) we have that

—Aui — uing) = fF(ut, oo, m) — F(Uirgs o) Umhg)
= [f(uh ey Upy) — f<u1,>\07 ...,um)] 4+ ..
A [f(Urngs oo tm) = F(U1 gy <os Umng)] < 0.

Therefore, by the strong maximum principle we deduce that u; < u; ), in
2y, \ Ry, (') and for every i =1,...,m.

Now, note that for K C Qy, \ Ry, (I'), there is v = v(K,\g) > 0,
sufficiently small, such that K C Q) \ R\(I') for every A € [Xo, Ao + V.
Consequently u; and u; y are well defined on K for every A € [Ag, Ao + V]
and for every ¢ = 1, ..., m. Hence, by the uniform continuity of the functions
gi(z, A) = ui(x) —u;(2A — 1, 2') on the compact set K x [\g, \g + /] we can
ensure that K C Q) 4, \ Ryg+v(I') and u; < u; zo4, in K for any 0 <v < v,
for some v = v(K, \g) > 0 small. Clearly we can also assume that v < %.

Let us consider 9. constructed in such a way that it vanishes in a neigh-
borhood of Ry,+,(I') and ¢, constructed in such a way it vanishes in a
neighborhood of vy,+, = 992 N T),4,. As shown in the proof of Lemma
6.2.1, the functions

i = U}:/\O+V?/Jg¢g n Q>\O+V
' 0 in RV \ Q10
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are such that ¢; — w;r)\ﬁy in Hi(Qxg+v), as € and 7 tend to zero. Moreover,

@i € COY(Qyy1v) and =0, by Lemma 4.2.1, and ¢; = 0 on an open

0931
neighborhood of K, by the above argument. Therefore, p; € Hg(Qx+v \

K) and thus, also w;r/\0+y belongs to H} (2,4, \ K). We also note that

Vw:'AOJrV = 0 on an open neighborhood of K.

Now we argue as in Lemma 6.2.1 and we plug ¢; as test function in (6.0.2)
and (6.2.1) so that, by subtracting, we get

(6.2.14)
| Vet Petae = =2 [ (Vi Voot 0? da
Ao+v

Q>\0 +v

—9 /Q (Vw)s i VO Wity L 026, da

Ag+v
+/ [fi(u17u27"'7um)
Q/\0+u

2,2
_fl (ul,)\o—l-l/) uQ,)\U—f—IM ceey um,)\o-l-l/)] wZAo+V¢€ ¢T dzx.

Therefore, taking into account the properties of wj\ro 4, and Vw)fo 4, We also
have

+ 2,12 42 + + 2
/ |Vwi7>\0+l,’ Yrprdr < _2/ (Vwi7)\0+l,7 vwe)wi7)\0+l,¢e¢r dx
Q)\0+V Q/\O+V\K

—2 / Vuwly, . Vérwih . Y2 dr
Q)\O+V\K( ot ) Aot

+/ [fi(ur,ug,...; ) —
Qg+ \K

2,2
- fl (ul,)\o-i-l/? U2 Ng+vy +es um,)\0+u)]w:)\o+ng ¢7— dx.

Furthermore, since f; are C' functions, we deduce that

(6.2.15)
/ Vo Pe2ed de <2 / Vwby N Vielw)y , $e0? da
Qg+ \K Ag+r \K

2
+ 2/ |Vw;f>\0+y| |V¢T|wit\0+l/w€ ¢r dz
Q)\0+u

m
2,2
+ Z Cj(fi) /Q w;Ao+Vw:A0+V¢E ¢T dx.
j=1

PRNEAV ¢
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Now, as in the proof of Lemma 6.2.1, we use Young’s inequality to deduce
that

(6.2.16)
/ IV, 2026 dr < 8 / V2w, )R d
Qrg+0 \K PYNTAV ¢

8 / Ve 2wy, )20 do
QAOJrV\K

m
2300 [ wh e
j=1 Drg+0 \K
which in turns yields
(6:217)
m
Z /Q Vb PRt de <3+ D) Y il
A0+V =1
m m
FEY e [, e
i=1 Dag+v\

Passing to the limit, as (e,7) — (0,0), in the latter we get

(6.2. 18)
m m
§ j Vol fde< T30 ch) [ W) e
/Q)\OJru\ Aot 2 =1 Q)\0+V\K Aot
< SO O\K) [ [T, e,
=1 Q/\O+V\K

where Cj,(-) are the Poincaré constants (in the Poincaré inequalities in
H (10 \ K)). Now we recall that C?,(Qg4y \ K) < Q(n)[ Qg4 \ K|¥
for every i = 1,...,m, where @Q = Q(n) is a positive constant depending only
on the dimension IV, and therefore, by summarizing, we have proved that for
every compact set K C Qy, \ Ry, (") there is a small v = v(K, \g) € (0, %)
such that for every 0 < v < v we have

m

m 2
S Ve <D0 QI KT

(6.2.19) =17 Mo\ i=1
+ 2
/Q \K|Vw/\o+y| dx.
Ao+v

Now we first fix a compact K C Qy, \ Ry, (I") such that
I, \K|% < [m(1+CHQN)] ! for every i = 1,...,m,

this is possible since |Ry,(I')| = 0 by the assumption on I', and then we take

79 < v such that for every 0 < v < 7y we have [Qy,4+, \ Q,\O]% < [4m(1 +
C?)Q(n)]~!. Inserting those informations into (6.2.19) we immediately get
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that
(6.2.20)
1
|Vwi+/\ V|2d96< = |Vw¢+,\ V‘Zdﬂf forevery i =1,....m
Ao+ 2 A0+
Q)\0+V\K Q)\0+u K

and so Vw;’r/\ow =0on D4, \ K forevery 0 <v < pgandi=1,..,m.
On the other hand, we recall that ijAO 4+, = 0 on an open neighborhood
of K for every 0 <v < v andi=1,..,m, thus Vw;,erJru =0 on Q),4, for

every 0 < v < g and ¢ = 1,...,m. The latter proves that u; < u; )\ 4, in
Drgtrv \ Ry (T) for every 0 < v < pp and i = 1,...,m. Such a contradiction
shows that

Ao =0.

Step 3: conclusion. Since the moving planes procedure can be performed
in the same way but in the opposite direction, then this proves the desired
symmetry result. The fact that the solution is increasing in the x1-direction
in {1 < 0} is implicit in the moving planes procedure. Since u has C!
regularity, the fact that 0, u; is positive for z; < 0 follows by the maximum
principle, the Hopf lemma and the assumption (Sy,).

d

6.3. Moving plane method for systems involving the critical
hyperbola in the whole space

PROOF OF THEOREM 6.0.3. We first note that, thanks to a well-known
result of Brezis and Kato [20] and standard elliptic estimates (see also [119]),
the solution (up,...,uy) to (6.0.3) is smooth in RN \ . Furthermore we
observe that it is enough to prove the theorem for the special case in which
the origin does not belong to I'. Indeed, if the result is true in this special
case, then we can apply it to the functions ud) () == ui(z + z) for every
i=1,....,m, where z € {1 = 0} \ " # ), which satisfies the system (6.0.3)
with I' replaced by —z+1" (note that —z+1I" is a closed and proper subset of
{z1 = 0} with Capy(—2z +I') = 0 and such that the origin does not belong

RN

to it).
Under this assumption, we consider the map K : RV \ {0} — R\ {0}
defined by K(z) := %5. Given (ug, ..., Uy, ) solution to (6.0.3), the Kelvin

R
transform of wu; is given by
R 1 x N *

where I'* = K(I') and i = 1, ..., m. It follows that (4y, ..., U, ) weakly satisfies
(6.0.3) in RNV \ {T"* U {0}} and that I'* C {x; = 0} since, by assumption,
I' C {z1 = 0}. Furthermore, we also have that I'* is bounded (not necessarily
closed) since we assumed that 0 ¢ I

Let us now fix some notations. We set

(6.3.2) Sy={zecRY : 2z <)\}.
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As above z) = (2\ — x1,x9,...,2zN) is the reflection of z through the hy-
perplane Ty = {z = (21,...,2x) € RY | 1 = A\}. Finally we consider the
Kelvin transform (41, ..., Uy,) of (u1, ..., uy,) defined in (6.3.1) and we set

(6.3.3) wZA = (4; — ;)"
where i = 1, ..., m. Note that (aq, ..., Uy, ) weakly solves
(6.3.4)

(Viy, Vi) de =Y ayy | 4 ‘goids Ve € CHRY\T*U{0}).
RN j:l RN

and (U1 x, ..., Um,) Weakly solves
(6.3.5)

m
/ (Vi \, Vi) dx = Zaij/ ﬂ?:‘,\_lw dr Vi € C;(RM\R\(TU{0})) .
RN j=1 RN
where ¢ = 1, ..., m. The properties of the Kelvin transform, the fact that
0 ¢ T and the regularity of u; imply that |@;(z)| < C|z|>~V for every » € RV
and i = 1,...,m such that |z| > R, where C' and R are positive constants
(depending on u;). In particular, for every A < 0, we have

(6.3.6) G € L? (2)) N L®(2y) N CO(Zy)

for every i = 1, ..., m. We will prove the result by showing that, actually, it
holds wf)\ = 0 for every i = 1,...,m. To prove this, we have to perform the
moving planes method.

LEMMA 6.3.1. Under the assumption of Theorem 6.0.3, for every A < 0,
we have that v}, € L* (X)), Vw;, € L*(Z)) and

S w2 gy < S :035/2 Vit d

i= 1= A

637 L
N 42

N -2 £
i,7=1

2% —

<2 0525127, 1l 2 s,

where C; 5 are the best constants in Sobolev embeddings.

PRrROOF. We immediately see that w;’, € L?"(,), since 0 < w}, < 4; €

L% () for every i = 1,...,m. The rest of the proof follows the lines of the
one of Lemma 6.2.1. Arguing as in section 2, for every £ > 0, we can find a
function 1. € C®H(RY,[0,1]) such that

/ |Vipe|? < 4e
Za

and 1. = 0 in an open neighborhood B of Ry({I'* U {0}}), with B, C X,.

Fix Ry > 0 such that Ry({I"™* U {0}) C Bpg, and, for every R > Ry, let
©r be a standard cut off function such that 0 < ¢op <1 on RV, op =1 in
Bgr, vr = 0 outside Bar with [Vopr| < 2/R, and consider

o e wi 2ok in By,
' 0 in RV \ X,
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F1GURE 3. The cutoff function ¢g.

for every i = 1,...,m.
Now, as in Lemma 4.2.1 we see that ¢; € C2'(RY) with supp(p;) con-
tained in ¥y N Bag \ Ry({T* U {0}}) and

(6.3.8) Vi = p2eRVwl, + 2w, (V2orVer + -0k V).

Therefore, by a standard density argument, we can use ¢; as test functions
respectively in (6.3.4) and in (6.3.5) so that, subtracting we get

/E ’le /\| ¢5@R dx = _2/; (V’LU:)\,V’(ﬁE)w:)\l/}EQO% dx
A A

- 2/ (szff/\,chR)w;;\wag dx
PN

m
A BN L |
+Zaij/ (Uj — U Jw ,,\1/’590}2
i=1 2

= L+1L+1;.

(6.3.9)

Exploiting also Young’s inequality and recalling that 0 < w;rA < 1;, we
get that

1
0 < g I PEehde 4 |90 hds
(6.3.10) R
<7 g Nwz,\‘ wa‘PRdQC"‘lGE”Uz”Loo
A
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Furthermore we have that
(6.3.11)

1
Bi< g [ vuhPetchdata | Veonf (w02 da
DN EAN(B2r\BR)

N—-2

1
4/ ‘vwz )\’ wESOR
i
N
+4 (/ ywmndx) (/ u? dx)
YAN(B2r\Br) YAN(B2r\Br)
N-—-2

N
< 1/ Vi, P20k de + C(N) (/ a? dx)
4 Js, EAN(B2r\BR)

where C'(N) is a positive constant depending only on the dimension N. Let
us now estimate I3. Since @;(z), @; \(z) > 0, by the convexity of ¢ — ¢2" 1,
for t > 0, we obtain

Z|w

Ak AOF_ N+2A * _ A A~
i N w) =iy (@) < iy (@) (@) — (@),

for every x € ¥ and i = 1,...,m. Thus, by making use of the monotonicity
of t = t>*=2 for t > 0 and the definition of w% we get

Ok Ak N+2A* N N+2A*
(UZQ t— 12>\ 1)w:7r>\§ 4N B 12,\ 2(“ _Ui,A)w;,r)\S N 9 12 2(wi+,)\)2
for every i = 1,...,m. Therefore
(6.3.12)
N +2 o
JERS NQZ%/ @ Pwlwl 2ok da
-2 5,
N+2 & o N+2& g
SN_QZaij/Z u? 00 dx —N_2Zaij/2 u? Yu; dz
j=1 A =1 A
N +2 g = o
= N _3 aii”uiH%Q*(Z)\) +Zaij/2 u? 1’U,Z' dx
=1 A
J#
N +2 w g
<N [l S ([ #) ([ ) e
J#%
N+2
=~ 5 EE%HUJHW(EA il 2 (5,
J

where we also used that 0 < wiﬂ\ < 4; for every ¢ = 1,...,m and Holder
inequality.

Taking into account the estimates on I, I and I3, by (6.3.9) we deduce
that
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(6.3.13)

N
/E Vi, P2k de < 32¢|di]| 7o s, ) + 2C(N) (/E a2 dx)

AN(B2r\BR)

N+2N o
+2M21aij||uy|L2* il 2 s,
]:
which in turns yields

(6.3.14)

Z/ \szﬂ 1/15903 dx < 3262 HUzHLw = T 20( )Z ”aiHsz(BzR\BR)

i=1 =1

N + 2 " .
ZZamnuJHiy ool 2 -
i=1 j=1

By Fatou’s Lemma, as € tends to zero and R tends to infinity, we deduce
that ij,)\ € L%(%)) for every i = 1,...,m. We also note that o; — w;r)\ in
L? (%)), by definition of ¢;, and that Vi; — Vw, , in L*(,), by (6.3.8)
and the fact that w;& € L? (%) for every i = 1,...,m. Therefore by (6.3.14)
we have

N+2
(6.3.15) Z/ Vuh|*dz < 25— Z aigll ;|75 i, il 2+ s,

1,7=1

Since ¢; € C2'(RY) we also have

(6.3.16) (/ @?*d:c)g gczs/ Veil? da
2)\ E)\

where C; g are the best constants in Sobolev embeddings. Thus, passing
to the limit in (6.3.16) and using the above convergence results, we get the
desired conclusion (6.3.7).

O

We can now complete the proof of Theorem 6.0.3. As for the proof of
Theorem 6.0.2, we split the proof into three steps and we start with
Step 1: there exists M > 1 such that u; < 4; 5 in Xy \ Ry(I' U {0}), for all
A< —-Mandi=1,...m

Arguing as in the proof of Lemma 6.3.1 and using the same notations
and the same construction for ., pr and ¢;, we get
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/ Vwly ook dr = =2 / Vi Vibew ek dv
DI DN
- 2/2 vw:AVWRw:ASORIbg dx
A

m
~2*—1 ~2% 1 + .2, 2
+E aij/ (Uj — Ui )wi,A@ZJa‘PRd"L‘
i=1 25

= hL+L+1;.

(6.3.17)

where I1,I, and I3 can be estimated exactly as in (6.3.10), (6.3.11) and
(6.3.12). The latter yield

(6.3.18)

Z/ ‘le >\| ¢590R dx < 3252 ”ulHLOO(EA) +2C(N Z ||u2”2m(BzR\BR)
= i=1

1

N+2 9
Z aw/ ;r,\wj,\ 2ok da.
i,j=1

Taking the limit in the latter, as € tends to zero and R tends to infinity,
leads to

= N+2
(6.3.19) Z/z |Vw:)\\2dx < 27 Z a,]/ T ]/\wl/\daz < +0o0
i=1 2

N—I—2 L%
ZCLU/ A +wz>\dm

1,j=1

N+2 < n25=20 + 2 / A2* 20+ \2
< > ] ] - )
<X (/Ekuj i+ [ i

m 2
N +2 g% N . 2
< y " )2 d
YL e) (Lere)

()’ (L e
DN D3N
N +2 " o
< v S alusl, (s [ 1vup P e [ vul )
A A

N
N+2 & .
3 (25 Clsllail g,

+(1 = 6;5)CF sllay 1*2:(2&0/2 V| da
A
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Recalling that i;,4; € L¥ (X)) for every 4,5 = 1,...,m, we deduce the
existence of M > 1 such that

N +2 & 2 1A 12%—2 2 qn 1252
g Do (205 Cslull T ) + (1= 0)Chs g% ) < 1
j=1

for every A < —M and i = 1,....,m. The latter and (6.4.27) lead to

/ IVwh[?dz = 0.
DN ’

This implies that for every i = 1,...,m we have wf)\ = 0 by Lemma 6.3.1
and the claim is proved.

To proceed further we define
Ao :={A<0:70; <13 in X\ R(I'"U{0}) for all t € (a, \] and i=1,...,m}

and
Ao :=sup Ap.

Step 2: we have that Ao = 0. We argue by contradiction and suppose that
Ao < 0. By continuity we know that 4; < 4;, in Xy, \ Ry, (I'" U {0})
for every i = 1,...,m. By the strong maximum principle we deduce that
U < Uiy, in Xy, \ Ry (I U {0}) for every i = 1,...,m. Indeed, 1; = 1,
in ¥y, \ Ry, (I'" U {0})) is not possible if \g < 0, since in this case each ;
would be singular somewhere on Ry, (I U {0}). Now, for some 7 > 0, that
will be fixed later on, and for any 0 < 7 < 7 we show that @; < @; \,4r in
Yao+r \ Bag+r (I U{0}) obtaining a contradiction with the definition of Ao
and proving thus the claim. To this end we are going to show that, for every
d > 0 there are 7(d, \p) > 0 and a compact set K (depending on ¢ and Ag)
such that

K © S\ Ry (T*U{0)), / 02 dz < 6, ¥ € [Aoy A7) and i = 1,..., m.
SA\K

To see this, we note that for every every § > 0 there are 71(d, A\g) > 0 and

. )
a compact set K (depending on § and Ag) such that / a? dr < B for
S \K
every i = 1,...,m and K C X, \ R\(I'" U {0}) for every A € [Ag, Ao + 71].
Consequently @; and 1, y are well defined on K for every A € [Ag, \g + 71].
Hence, by the uniform continuity of the functions g;(z, ) := 4;(x) — 4;(2\ —
z1,2) on the compact set K x [Ag, Ao+ 71] we can ensure that K C Xy 4\
Ry,+-(T*U{0}) and 4; < 1 \,4- in K for any 0 < 7 < 79, for some 1 =
7(d, Ao) € (0,71). Clearly we can also assume that 7o < %. Finally, since
e L'

x J
; ) and af dr < 2 for each 7 = 1,...,m, we obtain

Sag \K

the existence of 7 € (0, 72) such that / 42 dx < & for all X € [Ag, Ao +7]
SA\K

andi=1,...,m.
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Now we repeat verbatim the arguments used in the proof of Lemma 6.3.1
but using the test functions

0; = w;:)\0+7¢g§0%% in E)\0+T
’ 0 in RV \ 2y, 4r

Thus we recover the last inequality in (6.3.20), which immediately gives,
forany 0 <7< T

(6.3.21)

m

Z [V A ‘2
/EA0+T\ 1,A0+V

N+2 - .
Z 2052l 22

L2 (Sxg4\K)

+(| (; ) SHU H **§ 47 i|/§ ’Cw | (il?
7s g2 Ao \K) % \ B
SIHCG w,

i ot and sz Mo+ are zero in a neighborhood of K, by the above
construction for every ¢ = 1,...,m. Now we fix § > 0 such that for every
i=1,...,m we have

Zam [25 C? "ol r2

* 1
2% -2
L2 (Sxg 4+ \K) +(1—0y) JS”“J| L (Sxg4r \K)] <3

for all 0 < 7 < 7, which plugged into (6.3.21) implies that

2
/Z \K‘vwz)\ +T‘ dr =0
Ao+T

for every 0 < 7 < 7 and i = 1,...,m. Hence / |Vw; )\O+T]2da; = 0 for
E/\Q«FT

every 0 < 7 < 7, since Vw;" are zero in a neighborhood of K. The latter

i >\0+T
and Lemma 6.3.1 imply that wZ Nor = 0on Yxo+r for every 0 <7 < 7 and
i=1,...,m, thus 4; < U; yj4r in Z)\O+T\R,\O+T(F*U{O}) forevery 0 <7< 7T
and 7 = 1,...,m. Which proves the claim of Step 2.

Step 3: conclusion. The symmetry of the Kelvin transform (i, ..., )
follows now performing the moving planes method in the opposite direction.
The fact that every 4; is symmetric w.r.t. the hyperplane {z; = 0} implies
the symmetry of the solution (ug,...,u,,) w.r.t. the hyperplane {x; = 0}.
The last claim then follows by the invariance of the considered problem with
respect to isometries (translations and rotations).

g

6.4. Moving plane method for a cooperative Gross-Pitaevskii
type system in low dimension

PROOF OF THEOREM 6.0.4. As we observed in the proof of Theorem
6.0.3, thanks to a well-known result of Brezis and Kato [20] and standard
elliptic estimates (see also [119]), the solution (u,v) is smooth in RY \ T
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Furthermore we recall that it is enough to prove the theorem for the special
case in which the origin does not belong to I'.
Under this assumption, we consider the map K : RV \ {0} — RN\ {0}

defined by K = K(x) := ﬁ Given (u,v) solution to (6.0.6), its Kelvin

transform is given by

(6.4.1)
(a(x), 5(z)) == <le_2u <‘§2> ’le_w <‘;’2)> 2 € RN\ {T*U{0}},

where I'* = K(T'). It follows that (7,9) weakly satisfies (6.0.6) in RV \
{I'" U {0}} and that I"* C {z; = 0} since, by assumption, I' C {z; = 0}.
Furthermore, we also have that I'* is bounded (not necessarily closed) since
we assumed that 0 ¢ I

Let us now fix some notations. We set

(6.4.2) Yya={zcRY : 2 < )\}.

As above z) = (2\ — z1,22,...,2y) is the reflection of = through the hy-
perplane Ty = {z = (z1,...,2x) € RY | 21 = A}. Finally we consider the
Kelvin transform (@, 0) of (u,v) defined in (6.4.1) and we set

En(z) = a(x) —ar(x) = a(z) — a(zy),
O(x) = 0(z) — 0a(x) = B(x) — D(2N).

Note that (u,0) weakly solves

/RN(VQ,V@)dw:/RNﬂQ gpd:x+2*/ w ol d,

/ (Vo, Vo)) de = / % "l da + / WP\ de
RN RN 2* RN
for all o € CL(RYN \ T* U {0}) and (@, D)) weakly solves

/RN(VQA,VQO)dx :/R u)\ “lodr + — / s 1v)\<pdx

N
/RN(Vﬁ,\,Vw)dx :/R 52" _lwdx—i—/ agol My de

for all ¢ € CL(RY \ T* U {0}). The properties of the Kelvin transform, the
fact that 0 ¢ I' and the regularity of u,v imply that |a(z)| < Cy|z>~" and
|o(x)| < Cylz[>N and for every x € RY such that |z| > R, where C,,C,
and R are positive constants (depending on w and v). In particular, for
every A < 0, we have

(6.4.6) 4,0 € L¥ (8)) N L®(X)) NC(Zy).

(6.4.3)

(6.4.4)

(6.4.5)

LEMMA 6.4.1. Under the assumption of Theorem 0.0.3, for every A <0,
we have that &, ¢ € L¥ (X)), V&L, V(T € LA(2)) and

[ weras [ vePa
R N

N +2
<27[1
<255 (1+a)||a

(6.4.7)
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PROOF. We immediately see that &, (" € L?7(3)), since 0 < ¢f < €
L? (%)) and 0 < ¢} <9 € L¥ (X,). The rest of the proof follows the lines

of the one of Lemma 6.2.1. Arguing as in section 2, for every ¢ > 0, we can
find a function . € C%1(RY [0, 1]) such that

/ |Vape|? < 4e
PPN

and 1. = 0 in an open neighborhood B of Ry({I'* U {0}}), with B. C X,.
Fix Ry > 0 such that Ry({I'* U {0}) C Bpg, and, for every R > Ry, let

©r (see Figure 4) be a standard cut off function such that 0 < pr < 1 on

RN, op = 1in Bg, ¢r = 0 outside Byp with |Vyg| < 2/R, and consider

o = E\VEigh i EJAV, and (\YEeh i E,]\V,
0 in R™\ 3, 0 in RY\ X,.

FI1GURE 4. The cutoff function ¢g.

Now, as in Lemma 4.2.1 we see that ¢, € C’g’l(RN) with supp(y) and
supp()) contained in 3y N Bop \ Ra({T™* U{0}}) and

(6.4.8) Voo = 2eRVES + 26 (V2orRVoR + Ve 0R V).

(6.4.9) Vip = 2RV + 20F (W2orV R + YR V).
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Therefore, by a standard density argument, we can use ¢ and v as test
functions respectively in (6.4.4) and in (6.4.5) so that, subtracting we get

/ Ve P2k de = —2 / (Ve V)€ ey da
. / (VeS Vor)ehoni? de
PN

6.4.10 ox_ ox_
(6.4.10) T /Z (@1 — a2 Ve 2ok do
A

« Ao—1 N
o [ @0 —ag Tt o0)ef w2, da

= h+DL+1I3+1.
/E VG P2 de = —2 /E (VG V)G e da
A A

_2/2 (V¢ Vor)CY ory? da
(6.4.11) +/ (0% =0} ¢ Ylek da
DI

g X X
g [ @0 asd gl uh
=: E1+E2+E3+E4-
Exploiting also Young’s inequality and recalling that 0 < f;r <aand 0 <
/J\r < 0, we get that

< g [ Ve etk v [ 1VnEl e
(6.4.12) Z

< L IVER Pk 4 16l s,

B < [ VG Ephdr 4 [ 90 e

A

(6.4.13)
/ VG P020% do + 16662 s, -

Furthermore we have that

< / Ve [2020% d 4 4 / VorP (6202 du

EAN(B2r\BR)

/ VEHPY20% d

2 N_2
N N
+4 / IVor|" dx / % dx
ZAN(B2r\BR) YAN(B2r\Br)
—2

N
N
<3 / Ve PU2oh da + (V) ( / a da:> .
YAN(B2r\BR)

(6.4.14)
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(6.4.15)
By < / N / Veorl2(GF )2 de
YAN(B2r\Br)

/ VP02 da

% N
+4 </ |V<pR\Ndx> (/ 0 da
EAN(B2r\BRr) EAN(B2r\BRr)

N-2

N
< g [ IV6H Pudghds + o) ( / o dw)
EAN(B2r\Br)

where ¢(NV) is a positive constant depending only on the dimension N.
Let us now estimate I3 and Fs5. Since 4(x), ) (x), 0(x),0x(x) > 0, by
the convexity of t — t¥ ~1, for t > 0, we obtain

)~ e < T A() i)
and
)~ ) < R W) i),

for every € ¥,. Thus, by making use of the monotonicity of ¢t — t2 ~2,
for ¢t > 0 and the definition of éj\r and C;\r we get

(@1 =i et < i - el < gt D
and

(@ ek < %@iq(@ — )G < %Q*‘Q(Cif
Therefore
(6.4.16)

Bl < 3 [ e da
A

N+2 ) N+2 N+2
<7 / @2 202dy = +/ Ndr = +
2)\ E)\

N -2 N -2 (2
(6.4.17)
|E3| < xi_;/& 0P
< ]]zf;/& 0% 2p%dx = szj/ % dr = %Hv!\ “(£)

where we also used that 0 < f;r <@ and 0 < C;r < 9.
Finally we have to estimate I4 and Ey. Since u(x), ux(x), 0(z),0x(z) > 0,
by the convexity of the functions t — t*, ¢t — t* 1, t — t8,t — t8~1 for t > 0,
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we obtain
W% (x) — af(z) < aaf” (z)(a(z) — ax(@)),
Y (z) — a7 (z) < (o — D)as 2 (z) (a(z) — ax(z))
0% (x) — o) (z) < By (x)(0(x) — Ox(x)),
0P (x) — o) (@) < (B — 1) (@) (8(x) — or())

for every & € ¥5. By the monotonicity of t — t*,t — t* 1t — 9, t — tP~1
for ¢t > 0 and the definition of §;f and C/J\r we get

Now, having in mind all these estimates, we need a fine analysis in view of
the cooperativity of the system. Since o + 8 = 2* = % and o, 5 > 2 we
have to split

(6.4.18)
a A — A A~
Ll < 2*/ 627198 — a1 of g w2 d
o ), o g vk
a,B ) ala—1) R
< ? a4 1o S;FC;”/JESDRM +2*/ $7%0 5(@) 2% dx
Zx
-1
= %ﬂ ﬁo‘_lﬁﬁ “avy2eh dr + a(az* : / R TR
A DI

1
< OB GesB e 2@ / a8 da
2% Js, 2% N

G / @08 da
2 s,
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(6.4.19)
B <2 / %671 — a5l | p2 el da
2* Jy,
5 canfol  anB
w2 [ el — aged vtk
3
af A B(B—1 e
< = | Ay et o da +()/ a5 0y (G 2%, da
2 2)\ 2 2)\
-1
< O[iﬁ Aa_lA'B_l'EL'lA)wESORd.TJ + 6(6 )/ —2 21/)2 2 dx
2% 2% o
1
< % a%ﬂ dr + 22~ / @*0? da
2 PN 2 PN
2% — 1
) . )/ 40P dx
2 5,

Hence, by applying Hélder inequality with exponents ( « ﬁ) it follows

PARDL
that
(6.4.20) |Ia| + |Ea| < (2° — 1) /ZA 00 dw < (2~ D)2, 1011

Taking into account the estimates on Iy, Io, I3, 14, E1, E2, E53 and FEy,
by adding (6.4.10) and (6.4.11), we deduce that

(6.4.21)
/ VX P2k do + / VG P2k do < 82 (il s, + 16035, )
DN PN
N-2
N
+2C(N) ( / ? dm)
YAN(B2r\BRr)
N—-2
N
+2C(N) / %" dx
YAN(B2r\BR)
N+2 2*
+ 2 (il o,y + 1l 5,))

202" = Dlfalgar g 191520 5,

By Fatou’s Lemma, as ¢ tends to zero and R tends to infinity, we deduce that
VET, V(T € L2(S)). We also note that ¢ — & and ¢ — ¢ in L2 (Z)),
by definition of ¢ and v, and that Vo — ij\L and V¢ — VC;\L in L2(X)),
by (6.4.8), (6.4.9) and the fact that £, (} € L¥ (X,). Therefore

(6.4.22)
N
[ wetran s [ 196 R <25 (1l + s, )
A

202 = 1)) i 100220

+2
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Exploiting Young’s inequality in the right hand side of (6.4.22), with con-

5), we obtain (6.4.7).

@
jugate exponents > o

0

We can now complete the proof of Theorem 6.0.4. As for the proof of
Theorem 6.0.2 and Theorem 6.0.3, we split the proof into three steps and
we start with
Step 1: there exists M > 1 such that i < Gy and v < 0y in Xy \ R\(I'*U{0}),
for all A\ < —M.

Arguing as in the proof of Lemma 6.4.1 and using the same notations
and the same construction for ., @R, ¢ and 9, we get

/ Ve Pe2 % dr = — 2 /E (VEF, Vo) e da

9 /E (VS Vor)etoni? de
A
6.4.23 9% o
(6.4.23) +/ (@21 — a2 et g2l da
PN
(&% aev—T1 ~ R ~
+ o [ (@7 — g o0)E vEeR da
=:h+DL+13+1.

/E VG P2 de = — 2 /E (V& Vo) e do
A A

—2 /E (V& Vor)( orip? do
A

6.4.24 9% 9%
( ) +/E e A TR ey ¥
A

B carBo1l  ~anf—1
+? (a0t ui‘vf )T do
DI
=: 1 +FEy+ E3+ Ey.

where Iy, E1, I», E3, I3, E3, I, and E4 can be estimated exactly as in
(6.4.12), (6.4.13), (6.4.14), (6.4.15), (6.4.16), (6.4.17), (6.4.18) and (6.4.19).
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The latter yield
(6.4.25)

/ (IVEL + 196 ) w2 dar <32 (il m s, + 1003 (s,) )

DN
2
+2C(N) / % da
YAN(B2r\BR)

2
2*
+2C(N) ( / v da:)
EAN(B2r\BRr)

N +2 on_
+2NQ/ @) W da

PR / 022 (¢F )220 da
PN

af SN
+4? (T ! /B 16;_4;’_1/}5901%
PPN
ala—1 OV
* (2* )/ W20 (&) W2 do
PN

BB—1) [ .a.p

+ = | AP R d
2 R

Passing to the limit in the latter, as € tends to zero and R tends to infinity,

we obtain

[ vetras [ vGa
R R

N . .
< sz </EA a* 2 (E5)? dr +/ZA 02 4@)%)

a A _ A —
(6.4.26) +42—f a* 1P da
>\

1
+LO‘* ) / 4208 (¢ )2 da
> s,

+ ﬂ(ﬁz: 1*) /Ekﬁ o9~ (C,\) dr < 400

which combined with Young’s inequality gives
[ wetrars [ veiPas
T Ta
N 2 * *
<ot T </ o () dw +/ ¥? —2(41)2dx>
N -2 \Js, N

(6.4.27) L J;*ﬁ — /ZA 250 2
REICIR eA J;B_ D /EA W97 2(¢)? da

=: A+ Ay + As.
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2x —27 2

(foae) (o)
+ </EA o dx)IQV </Ek(g;)2* d:c> 22] :

2% 2% 2%
Exploiting Holder inequality with conjugate exponents (2, E, 2> (We
a —_—
note that if @« = 2 we have § = 2 and the conjugate exponents would be
(%, %)) we obtain

(6.4.29)
2

a—2 B
0@ 481 ([ o NT ([ o NF ([ jerrr )
|Ag| < 5 </2Au dm) </EAU da:) (/Ex(g) dx :

2% 2* 2%
Exploiting Holder inequality with conjugate exponents (, ﬁ, 2>

( note that if 5 = 2 we have o = 2 and the conjugate exponents would
be ( z ))We obtain
(6.4

) 2

a B=2
B2*+a—1) o 2% o B 2 > 2
\A3|§—2* </2Au daz> (/E)\U daz) </EA(C/\) dz :

Combining (6.4.28), (6.4.29) and (6.4.30) and applying Sobolev inequal-
ity

2* *
Exploiting Holder inequality with conjugate exponents < ) we ob-

tain

N +2
A < 2——
| A N3

(6.4.28)

(6.4.31)
/ \vgj\de+/ \vqy?dmgcl/ \vgjﬁdwr@/ V¢ da,
b b b b3

where C1 = 2822 a2 o + SZHE0 o), ] G2 gllalgs

2*+5-1)
Cy = [ 282201, EA)ﬂ—MwHLQWEU] C2 18] 727, )+ Cus and Cis

are the Sobolev constants. Recalling that 4,9 € L?" (X)), we deduce the ex-
istence of M > 1 such that

N +2 a2*+p-1)
Cr = |2 gl 5y + “E G o0 5, | sl <
and

N+2 B2+ B8 —1)
Co = |2 g0l + 2l | s, <1

for every A < —M. The latter and (6.4.27) lead to

/ IVEF|?dr =0 and / V¢ de = 0.
2 DI
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This implies that f;\r = C;\r = 0 by Lemma 6.4.1 and the claim is proved.

To proceed further we define
Ay = {)\ <0:u<1; and v <7 in Zt\Rt(F* U {0}) for all t € (—OO,)\]}

and
Ao = sup Ay.

Step 2: we have that \g = 0. We argue by contradiction and suppose that
Ao < 0. By continuity we know that @ < @y, and 0 < vy, in Xy, \ Ry, (I'* U
{0}). By the strong maximum principle we deduce that @ < @y, and ¥ < 0y,
in ¥y, \ Ry, (I'"U{0}). Indeed, & = 0y, and & = 0y, in Xy, \ Ry, (I’ U{0}))
is not possible if A\g < 0, since in this case 4 and © would be singular
somewhere on Ry, (I'* U {0}). Now, for some 7 > 0, that will be fixed later
on, and for any 0 < 7 < 7 we show that @ < @y,4, and © < Uy 4, in
Yao+r \ Rag+r (I U{0}) obtaining a contradiction with the definition of Ao
and proving thus the claim. To this end we recall that, repeating verbatim
the argument used in the roof of Theorem 6.0.3, it is possible to prove that
for every § > 0 there are 7(d, \gp) > 0 and a compact set K (depending on ¢
and \g) such that

K C Z)\Rx(I*U{0}), / w¥ <4 and / 02" < 6, VX € Ao, \o+7).
SA\K SA\K

Now we repeat verbatim the arguments used in the proof of Lemma 6.4.1
but using the test function

D S
0 in RV \ Xy, 40

and

V= C)tJJrTQzZ)EQQDQR in E)\o-i—r
0 in RV \ 2y, 4r

Thus we recover the first inequality in (6.4.27), and repeating verbatim the
arguments used in (6.4.28), (6.4.29) and (6.4.30) which immediately gives,
forany 0 <7 <7T

/ |vg§0+7|2dx+/ V(T P d
Erg+r\K Exg+r\K
2 _lale=2 + 2
(6.4.32) <Oty e | I s
0 T
2 q1n118— + 2
+ CZCU,SHU|’L2*(Z)\O+T\K) /E)\ K ‘VC)\OJM—’ d.ilf,
0 T
where
L N+2A5 Oé(2*+ﬂ—1)A5
Ch:= zmHuHLQ*(EAOH\K) + THUHLQ*(EA()‘FT\K)’
N+2 B2 +pB-1) .
Co = zmHUH%Q*(E,\O+T\K) + THUH%Q*(ZAO+T\KV
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Cu,s and C, g are the Sobolev constants. Now we fix

5 < min {C1C2 gl CoC2 s|ol17

a—2 -
L¥ (Sxg+r\K)’ LQ*(ZA0+T\K)}

and we observe that with this choice we have

C1C; sllal <1 and GO glloll}57

. 1
L2 (Shg i \K) S

a—2
L2 (Sxg4r\K)

for all 0 < 7 < 7, which plugged into (6.4.32) implies that

A43y T|2dx:/ IV¢E, |Pde =0
/EAO+T\K ot PREEAV ¢ ot

for every 0 < 7 < 7. Hence
2 2
[ g r= [ G =0
2)‘O‘F"' Ao+

for every 0 < 7 < 7, since Vf;fo 4, and VC;:) 4, are zero in a neighbourhood
of K. The latter and Lemma 6.4.1 imply that 5;\“0+T = 0 and (;:)JFT =0
on Yy 4r for every 0 < 7 < 7 and thus @& < Uy,4r and 0 < Oy 4, in
Yagtr \ Rag+r(I* U {0}) for every 0 < 7 < 7. Which proves the claim of
Step 2.

Step 3: conclusion. The symmetry of the Kelvin transform v follows now
performing the moving planes method in the opposite direction. The fact
that & and ¢ are symmetric w.r.t. the hyperplane {x; = 0} implies the
symmetry of the solution (u,v) w.r.t. the hyperplane {z; = 0}. The last
claim then follows by the invariance of the considered problem with respect
to isometries (translations and rotations).

O



Gibbons’ Conjecture for equations involving the
p-Laplacian

This Chapter concerns the study of the qualitative properties of the
following quasilinear elliptic equation

(7.0.1) —Apu = f(u) inRY,

where we denote a generic point belonging to RN by (2/,y) with 2/ =
(x1,29,...,xn-1) and y = zn, p > 1 and N > 1. Morever, for suitable
functions, the p-Laplace operator is defined by —Ayu := — div(|Vu[P72Vu).
As well known, see [46, ], the solutions of equations involving the p-
Laplace operator are generally of class C%®. Therefore the equation (7.0.1)
has to be understood in the weak sense, see Definition 7.1.6 below. We
summarize the assumptions on the nonlinearity f (denoted by (Gy) in the
following) as follows:

(Gy): The nonlinearity f(-) belongs to C([-1,1]), f(—=1) =0, f(1) =0,
fi(—=1) <0, fL(1) <0 and the set

Ny = {te 11| f(t) = 0}
is finite.
As remarked in the Introduction, the setting of our assumptions allows us

to include Allen-Cahn type nonlinearities and in fact the paper is motivated
by some questions arising from the following problem

(7.0.2) — Au=u(l —u? inRY,
see [65]. G.W. Gibbons [29] formulated the following
GIBBONS’ CONJECTURE [29]. — Assume N > 1 and consider a bounded

solution v of (7.0.2) in C?(RY), such that

. / o
mNh_EIioou(a: ,xN) = £1,

uniformly with respect to 2’. Then, is it true that

u(z) = tanh ("““N\/; O‘) :

for some o € R?

This conjecture is also known as the weaker version of the famous De Giorgi’s
conjecture [45]. We refer to [55] for a complete history on the argument.
Our main result is the following
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THEOREM 7.0.1. Let N > 1, 2N +2)/(N+2) < p < 2 and u €
CH*(RN)Y be a solution of (7.0.1), such that

loc

lul <1
and

.0. li ! =1 li ! =—-1

(7.0.3) m u(@,y) and  lim u(z',y) :

uniformly with respect to ¥’ € RN=LIf f fulfills (Gy), then u depends only
on y and

(7.0.4) Oyu>0 inRY.

REMARK 7.0.2. We want to point out that, by the strong maximum prin-
ciple [127], see also Theorem 7.1.1, applied to (7.0.1), we deduce that a so-
lution to (7.0.1) under the assumptions of Theorem 7.0.1, actually satisfies
|u| < 1 otherwise u = £1 in all RN. We will use this information several
times throughout the paper. Moreover by classical regularity results [46],
since ||f(u)||peomny < C, with C a positive constant that does not depend
on u, we also deduce that

HVuHLoo(RN) < C.

To get our main result, we first recover a weak comparison principle
in a suitable half-space and then we exploit it to start the moving planes
procedure. The application of the moving planes method is not standard
since we have to recover compactness using some translation arguments,
(since we work on R™) and, not least, we have to take into account the
fact that the nonlinearity f change sign which produces peculiar difficulties
in the case p # 2, already in the case of bounded domain. Finally we get
the monotonicity in all the directions of the the upper hemi-sphere Sf 1=
{ves¥™ | (v,en)} that will give us the desired 1-dimensional symmetry.
This chapter is organized as follows: In Section 7.1 we recall some results
about strong maximum and comparison principles just for the reader’s con-
venience, already presented in Chapter 1. In Section 7.2 we prove the mono-
tonicity of the solution in the zy-direction, exploiting the moving planes
procedure. In Section 7.3 we prove the 1-dimensional symmetry and finally
we prove our main result.

7.1. Preliminary results

The aim of this section is to recall, just for the reader’s convenience, some
well known results about strong comparison principles and strong maximum
principles for quasilinear elliptic equations that will be used several times in
the proof of our main theorem. Lots of this results are proved in Chapter 1.
Let us consider the following quasilinear elliptic equation

(7.1.1) - Apw = f(w) in Q

where Q is any domain of RY and f is a locally Lipschitz continuous function.
Any solution w to (7.1.1) has to be understood in the weak distributional
sense (see Definition 7.1.6) and generally is of class C1%.
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The first result that we recall the classical strong maximum principle
due to J. L. Vazquez [127] (see also P. Pucci and J. Serrin book [103] and
Theorem 1.4.1):

THEOREM 7.1.1 (Strong Maximum Principle and Hopf’s Lemma, [103,
). Let u € CY() be a non-negative weak solution to

-Apu+cu!=g>0 in Q
withl <p<4o0,¢q>p—1,¢>0and g€ L2(Q). Ifu+#0, thenu >0 in

loc
Q. Moreover for any point xqg € 02 where the interior sphere condition is
satisfied, and such that u € C1(Q)U{zo} and u(xg) = 0 we have that d,u > 0

for any inward directional derivative (this means that if y approaches xg in
uy)—u(wo) - 0).

a ball B C Q that has xo on its boundary, then lim, ., ly=zo]

It is very simple to guess that in the quasilinear case, maximum and
comparison principles are not equivalent; for this reason we need also to
recall the classical version of the strong comparison principle for quasilinear
elliptic equations:

THEOREM 7.1.2 (Classical Strong Comparison Principle, [33, ). Let
u,v € CH(Q) be two solutions to (7.1.1) such that u < v in Q, with 1 < p <
+oo and let Z2 = {z € Q| |Vu(x)| + |Vv(x)| # 0}. Ifxzg € Q\ Z and
u(zg) = v(xp), then uw = v in the connected component of Q\ Z containing
Q.

For the proof of this result we suggest [33, ]. The main feature of
Theorem 7.1.2 is that holds far from the critical set. Now we present a
result which holds, under stronger assumptions, all over the critical set and
generalizes Theorem 1.5.3:

THEOREM 7.1.3 (Strong Comparison Principle, [36]). Let u,v € C1(Q)
be two solutions to (7.1.1), where Q is a bounded smooth connected domain
of RN and 2]<,Vj22 < p < 4oo. Assume that at least one of the following two
conditions (fy),(fv) holds:

(fu): either

(7.1.2) flu(z)) >0 in Q

(7.1.3) flu(x)) <0 in Q;
(fv): either

(7.1.4) flo(z)) >0 in Q

(7.1.5) flo(x)) <0 in Q.

Moreover, if

(7.1.6) u<v in .

Then u = v in  unless

(7.1.7) u<v in Q.
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PROOF. The proof of this result follows by the same arguments in [36,
, |. Note in fact that under the assumption (f,) or (f,), i
follows that |[Vu|™' or |[Vv|™! has the summability properties exposed by
Theorem 3.1 in [109] (see also Theorem 1.1.2). Then the weighted Sobolev
inequality is in force, see e.g. Theorem 8 in [61] (see also Theorem 1.1.3).

Now, it is sufficient to note that the Harnack comparison inequality given
by Corollary 3.2 in [36] holds true (see also Theorem 1.5.2), since the proof
it is only based on the weighted Sobolev inequality.

Finally it is standard to see that the Strong Comparison Principle follows
by the weak comparison Harnack inequality, see Theorem 1.4 in [36] (see
also Theorem 1.5.3).

O

Let us now recall that the linearized operator at a fixed solution w of
(7.1.1) (see also equation (1.1.4)), Ly (v, ¢), is well defined, for every v and
¢ in the weighted Sobolev space H;’2(Q) with ¢ = |Vw[P~2, by

(7.1.8)
Ly (v, ) :/Q |Vw|P~2(Vo, Vo) + (p — 2)/Q IVw|P~4(Vw, Vo) (Vw, Vo) dz

- / f(w)vp dz, Yo € C°(Q).
Q

Moreover v € Hy?(Q) is a weak solution of the linearized operator if
(7.1.9) Ly(v,¢) =0.

As in the case of equation (7.1.1), also for the linearized equation (7.1.9) a
classical version of the strong maximum principle holds:

THEOREM 7.1.4 (Classical Strong Maximum Principle for the Linearized
Operator, [103]). Let u € CY(Q) be a solution to problem (7.1.1), with

1 <p< 4oo. Letn € SN71 and let us assume that for any connected
domain Q' C Q\ 2

(7.1.10) Oyu>0 in Q.
Then Oyu = 0 in Q' unless
(7.1.11) Ou>0 in €.

Let us recall now a more general result which holds all over the critical
set Z and that generalizes Theorem 1.5.5 of Chapter 1:

THEOREM 7.1.5 (Strong Maximum Principle for the Linearized Opera-
tor, [36]). Let u € C1(Q) be a solution to problem (7.1.1), with jSfvj; <p<
+00. Assume that either

(7.1.12) flu(x)) >0 in Q
(7.1.13) flu(z)) <0 in Q.

If 0, > 0 in Q, for some n € SN~L, then either Oyu =0 in Q or dyu > 0 in
Q.
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A solution to (7.0.1) has to be understood in the weak distributional sense.
We start giving the following

DEFINITION 7.1.6. Let Q C RY an open set. We say that u € Clloca(ﬂ)
s a weak subsolution to

(7.1.14) —Apu= f(u) inQ,

if

(7.1.15) / |VulP~2(Vu, V) dr < / fu)pdx Vi € C°(2), ¢ > 0.
Q Q

Similarly, we say that u € Cllog(Q) is a weak supersolution to (7.0.1) if

(7.1.16) / |VulP~2(Vu, Vo) dx > / f(u)pdx Vo e C°(Q), ¢ > 0.
Q Q

Finally, we say that u € Cllof(Q) is a weak solution of equation (7.1.14), if
(7.1.15) and (7.1.16) hold.

Moreover we need to recall the weak comparison principle (see Theorem
1.3.7) between a subsolution and a supersolution to (7.0.1) ordered on the
boundary of some open half-space ¥ of RV, whose proof is included in
Chapter 1.

THEOREM 7.1.7. Let u,v € C1%(), N> 1, p>1, a € R such that

loc
—Apu < f(u) X
(7.1.17) —Apv > f(v) in X
u<v on 0%,

where ¥ is some open half-space of RN and f € CY(R). Moreover, let us
assume that

[Vul, [Vv] € L=(X),
for some & sufficiently small
—1<u<—-144¢ inX:=(—00,a)

and for some L >0

(7.1.18) f't) <=L in[-1,—-1+4].
Then
(7.1.19) u<wv inX.

The same result is true if
1-6<v<1 in¥:=(a,+0) and f'(t)<—-L in[l—41].

Let us recall another weak comparison principle in narrow domains that
will be an essential tool in the proof of Theorem 7.0.1, whose proof is also
included in Chapter 1 (see Theorem 1.3.3).
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THEOREM 7.1.8 ([58]). Let 1 < p <2 and N > 1. Fiz \g > 0 and
Lo > 0. Consider a,b € R, with a < b, 7,¢ > 0 and set

Stap = {RY ' x (a,b)}.
Let u,v € Cllo’?(i((l’b)) such that ||u]|so + || Vt|loo < Lo, [|V]|cc +|VV]leo < Lo,
[ fulfills (hy) and

—Apu < f(u) m Z(%b)
(7.1.20) —Apv > f(v) in S

u<wv on 98 (; ¢,
where the open set S(;. o C X(4p) is such that

8(7—76) = U I;'—;E’
z/eRN-1
and the open set 17, C {2’} x (a,b) has the form
and, for &' fized, A7,, BS, C (a,b) are measurable sets such that
|AZ| <71 and B C{zy €R | |Vu(@, zy)| <e, |[Vo(@',zn)| <€}

Then there exist

0 = 7—0(va7 a, bu LO) >0
and

€0 = 60(N7p7 a, b7 LO) >0
such that, if 0 < 7 < 719 and 0 < € < €, it follows that

u<v n S

7.2. Monotonicity with respect to =y

The purpose of this section consists in showing that all the non-trivial
solutions u to (7.0.1) that satisfies (7.0.3) are increasing in the zx direction.
Since in our problem the right hand side depends only on w, it is possible to
define the following set

Ziwy = {z € RY | u(z) € Ny}

Without any apriori assumption on the behaviour of Vu, the set Zy(,) may
be very wild, see Figure 1.

We start proving a lemma that we will use repeatedly in the sequel of
the work.

Let us define the upper hemisphere

(7.2.1) sVt i={vesV | (ven) > 0}.

LEMMA 7.2.1. Let U a connected component of RN \ Ziw), M E Sﬁfl
and let us assume that Oyu > 0 in U. Then

Opu>0 inlU.
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RN

Z ()

Zpw T

FIGURE 1. The set Zg(,

Proor. Using Theorem 7.1.5 we deduce that either d,u > 0 in U or
Opu = 0 in U. Let us suppose that d,u = 0 in Y. Let Py € U and let us
define

r(t)=Fy+tn teR.
Let us set
(7.2.2) to = inf {t eR:r(d)el, VI e (t,O]}.

We note that the infimum in (7.2.2) is well defined, since by definition the
connected component I/ is an open set. We deduce that either
to = —00 or tg> —o0.

In the case tg = —oo, we deduce that u(FPy) = —1. Indeed u should be
constant (recall that d,u = 0 in ) on r(t) for t € (—o0,0] and (7.0.3) holds.
This would be a contradiction, see Remark 7.0.2.

In the case tg > —oo, we deduce that r(ty) € Zy,) and therefore
flu(r(to))) = f(u(Po+ tom)) = 0. But u should be constant on r(t) for
to <t < 0, implying f(u(F)) = f(u(Fo + ton)) = 0, namely Py € Zp(y)
against the assumption.

O

PRrROPOSITION 7.2.2. Under the assumptions of Theorem 7.0.1, we have
that

(7.2.3) Ouyu>0 inRY\ Zp,).

The proof is based on a nontrivial modification of the moving planes
method. Let us recall some notations. We define the half-space X and the
hyperplane Ty by

(7.2.4) Y= {JZERN ‘ .%’N</\}, T\ = az)\:{IERN | l‘N:)\}
and the reflected function uy(x) by

un(x) = up(z', zy) == u(@’, 2\ — zy) in RV,



194 Gibbons’ Conjecture for equations involving the p-Laplacian

We also define the critical set Zy, by
(7.2.5) Zyy = {z € RY | Vu(z) = 0}.

The first step in the proof of the monotonicity is to get a property concerning
the local symmetry regions of the solution, namely any C' C ¥, such that
u=uy in C.

Having in mind these notations we are able to prove the following:

PRoOPOSITION 7.2.3. Under the assumption of Theorem 7.0.1, let us as-
sume that u is a solution to (7.0.1) satisfying (7.0.3), such that

(i) u is monotone non-decreasing in ¥y
and

(il) u < wuy in y.
Then u < wuy in Xx\ Zfy)-

PrOOF. By (7.0.3), given 0 < dp < 1 there exists My = My(do) > 0,
with A > — M, such that u(z) = u(2/,zn) < =1+ 8y in {zxy < —Mp} and
ux(z) = u(@’,2\ —zn) > 1= in {ay < —Mp}. We fix §y sufficiently
small such that f/(u) < —L in {zny < —Mp}, for some L > 0. Arguing by
contradiction, let us assume that there exists Py = (2, zn,0) € 2 \ Zf(u)
such that u(Fy) = ux(Fy). Let Uy the connected component of ¥\ \ Z(y)
containing Py. By Theorem 7.1.3, since u(Py) = ux(FP), we deduce that Uy
is a local symmetry region, i.e. © = u) in Uy.

We notice that, by construction, u < uy in X_jy,, since u(x) < —1+ dp
and uy(x) = u(a’, 2\ —xy) > 1 — §p in X_py,. Since Uy is an open set of
Sx\ Zf(w (and also of RY) there exists 09 = go(Fo) > 0 such that

(7.2.6) BQO(P()) C Up.

B, (Po)

)

b

9T _3n,

FIGURE 2. The slided ball By, (Fp)
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We can slide B, in Uy, towards to —oo in the y-direction and keeping
its centre on the line {2’ = z(} (see Figure 2), until it touches for the first
time OUy at some point z9 € Zy,). In Figure 3, we show some possible
examples of first contact point with the set Zy(,).

P3N

Ficure 3. The first contact point zg

Now we consider the function
wo(z) = u(x) — u(20)

and we observe that wg(z) # 0 for every = € B,y (Fy), where Py is the new
centre of the slided ball. In fact, if this is not the case there would exist a
point Z € By, (Pp) such that wo(Z) = 0, but this is in contradiction with the
fact that Uy N Zy(,) = (). We have to distinguish two cases. Since p < 2 and
f is locally Lipschitz, we have that

Case 1: If wo(x) > 0 in By, (Pp), then

~

Apwy < ng_l in By, ()

wo >0 in By, (Pp)
w(Z()) =0 20 € 8Bg0 (Po),

where C' is a positive constant.
Case 2: If wo(z) < 0 in B,,(F), setting vy = —wp we have

Apug < COE™1in B,y (By)

vy >0 in By, (Pp)
’U()(Zo) =0 20 € OBQO (Po),

where C' is a positive constant.
In both cases, by the Hopf boundary lemma (see e.g. [103, D, it
follows that |Vw(zo)| = |Vu(zo)| # 0.

Using the Implicit Function Theorem we deduce that the set {u = u(zg)}
is a smooth manifold near zy. Now we want to prove that

Ugy (20) >0
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and actually that the set {u = u(zp)} is a graph in the y-direction near
the point zp. By our assumption we know that wu,, (z0) = uy(z0) > 0.
According to [36, 37] and (7.1.8), the linearized operator of (7.0.1) is well
defined

Ly(uy, ) =
o [ VAT, 96) + (b= 2 ITup = (T, V) (V. Vi) d+

- f/(u)UySO dx
DI

for every ¢ € C}(Z)). Moreover u, satisfies the linearized equation (7.1.9),
ie.

(7.2.8) Lu(uy,0) =0 Vo € Ci(Ty).

Let us set zo = (g, yo). We have two possibilities: u,(z0) = 0 or uy(z9) > 0.

Claim: We show that the case u,(29) = 0 is not possible.

If uy(20) = 0, then uy(x) = 0 in all Bs(zo) for some positive g; to prove
this we use the fact that |Vu(zg)| # 0, u € C1® and that Theorem 7.1.4
holds.

By construction of zy there exists €1 > 0 such that every point z € &1 :=
{(2),t) € Uy : yo <t < yo + €1} has the following properties:

(1) z € Uy, since the ball is sliding along the segment S;
(2) z & OUy, since zy is the first contact point with olf.

In particular, for every z € §; we have
(7.2.9) 2 € Uy \ OUy = Up.

Since |Vu(zo)| # 0 and u € CH®, by Theorem 7.1.4 it follows that there
exists 0 < g9 < &1 such that

uy(z) =0 Vo € B.,(20).

Let us consider Sy := {(2(,,t) € Uy : yo < t < yo +e2}; by definition Sy C S;
and every point of Sy belongs also to Zy(,), since u(z) = u(zo) for every
z € &y and zp € Zj(,) by our assumptions. But this gives a contradiction
with (7.2.9).

From what we have seen above, we have |Vu(zp)| # 0 and hence there
exists a ball B, (zp) where |Vu(z)| # 0 for every = € B,(zp). By Theorem
7.1.2 it follows that u = u) in B,(zp) namely u = uy in a neighborhood of
the point zg € OUy. Since uy(z9) > 0 and N7 is finite

Br(20) N ((E2\ Zy) \to) # 0

and wu,(z) > 0 in By (20), as consequence, the set {u = u(z)} is a graph in
the y-direction in a neighborhood of the point z5. Now we have to distinguish
two cases:

Case 1: u(zp) = min {Nf \ {—1}].
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C1

Define the sets

= {ZL‘ eRY : 2/ € (Bo(20) N {y:=wo}) and wu(z)< u(zo)}

Co := By(z0) U ((Br(zo) N{y :=yo}) x (—o0, yo))
and
C=CnNCs.
We observe that C is an open unbounded path-connected set (ac-
tually a deformed cylinder), see Figure 4. Since f(u(zp)) has the
right sign, by Theorem 7.1.3 it follows that u = u) in C and this in
contradiction with the uniform limit conditions (7.0.3).

Yy

Z5w) N

rrrrr

z0= (20, %0

FIGURE 4. Case 1: u(zp) = min [./\/f \ {—1}}

Case 2: u(zp) > min [/\/'f \ {—1}].

In this case the open ball B,.(zp) must intersect another connected
component (i.e. # Up) of X\ \ Z¢(,), such that u = uy in a such
component, see Figure 5. Here we used the fact that near the (new)
first contact point, the corresponding level set is a graph in the y-
direction. Now, it is clear that repeating a finite number of times
the argument leading to the existence of the touching point zg, we
can find a touching point z,, such that

u(2my,) = min [Nf \ {—1}}.

The contradiction then follows exactly as in Case 1.
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P

FIGURE 5. Case 2: u(zp) > min [/\/'f \ {—1}}
Hence u < uy in ¥y \ Zy(y).

To prove Proposition 7.2.2 we need of the following result:

LEMMA 7.2.4. Under the assumption of Theorem 7.0.1, let u be a so-
lution to (7.0.1). Then there exist Mo = Mo(p, f, N, |Vl poo ) > 0 suf-
ficiently large such that for every M > My there exits a constant C* =
C*(M) > 0 such that

(7.2.10) Vu| > 0ppyu>C*">0 in{-M—-1<zy<-—-M+1}.

PROOF. Performing the moving planes procedure, using (7.0.3) and (G¢),
by the Proposition 7.1.7 with v = u) and ¥ = X, we infer that there ex-
ists a constant Mo = Mo(p, f, N, | Vul geomny) > 0 such that d;yu > 0 in
{xn < —Mp+ 1}. Now we can assume

Zf(u) N {IﬁN < =My + 1} = @,

then by Theorem 7.1.5 it follows that Oy,u > 0 in {ay < —My + 1},
since the case 0;yu = 0 would imply a contradiction, i.e. u(z) = —1 in
{zny < —Mp+ 1} . We observe that in particular it holds |Vu| > d,,u > 0
in {—My—1<zy < —My+ 1}. We want to prove that for all M > M,
there exists C* = C*(M) > 0 such that O, u > C* >0in {-M -1 <zy <
—M +1}.

Arguing by contradiction let us assume that there exists a sequence of
point P, = (z},,xn,y), with —M — 1 < zn, < —M + 1 for every n € N,
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such that 0y u(P,) > 0asn — +ooin {—-M —1<zy < —-M+1}. Up to
subsequences, let us assume that

TNg — Ty with — M — 1< 3y < —M + 1.
Let us now define
(2, 2N) = w2’ + 2, 2N)
so that ||tn|lco = [|u]lcc < 1. By standard regularity theory, see [46, I,
we have that
||fanHCl1(;g(RN) <C

for some 0 < a < 1. By Ascoli’s Theorem we have

up to subsequences, for o/ < a.. By construction 9, , @ > 0 and 9, 4(0,Zy) =
0, hence by Theorem 7.1.4 it follows that 0;,@ = 0in {-M — 1 < zy <
—M + 1} and therefore 0, u = 0 in all {(2/,z,) : a5y < —M + 1} by The-
orem 7.1.5, since Zyq,) N {xy < —Mo + 1} = . This gives a contradiction
(by Theorem 7.1.4) with the fact that lim w(a2/,2y) = —1 (this implies

TN——00

that lim a(z’,zy) = —1), see Remark 7.0.2. O

TN ——00
With the notation introduced above, we set
(7.2.11) A={rAeR |u<uin 3 Vi < A}
Note that, by Proposition 7.1.7 (with v = w;), it follows that A # 0,
hence we can define
(7.2.12) A= supA.

Moreover it is important to say that by the continuity of u and wuy, it follows
that
u<uy inXy.

The proof of the fact that u(a’,xy) is monotone increasing in the zy-
direction in the entire space RV is done once show that A\ = +o0o. To
do this we assume by contradiction that A < 400, and we prove a crucial
result, which allows us to localize the support of (u—uy)™. This localization,
that we are going to obtain, will be useful to apply the weak comparison
principle given by Proposition 7.1.7 and Theorem 7.1.8.

PROPOSITION 7.2.5. Under the assumption of Theorem 7.0.1, let u be a
solution to (7.0.1). Assume that X\ < +oo (see (7.2.12)) and set
WE = (u - uX—l-s)X{g:NS;\—l—e}‘

Let M,k > 0 be such that M > 2|\|. Then for all p € (0,(A\+ M)/2) there
exists € > 0 such that for every 0 < e < &

(7.2.13) supp W, C {ay < —~M}PU{A—p<ay < A+ebU{|[Vul <k}

PROOF. Assume by contradiction that (7.2.13) is false, so that there
exists p > 0 in such a way that, given any £ > 0, we find 0 < € < & so that
there exists a corresponding z. = (2L, zn,) such that

U(.’E;, xN,E) Z US\+5($¢/5) xN,E)a
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with . = (2, xn ) belonging to the set
{(@/,2y) eRYN : M <ay. <X —pu}
and such that |Vu(z.)| > k.
Taking & = 1/n, then there exists &, < 1/n going to zero, and a corre-
sponding sequence
Ln = ($;wa,n) = (xlaM:BNﬁn)
such that
u(l‘%, xN,n) > UNte, (CC%, xN,n)
with —M < zn, < X — p. Up to subsequences, let us assume that
xN7n—>fNWith —MS.%NSS\—,M.
Let us define
Un (2, xN) = u(a + 2, 2N)
so that ||, |lec = ||u|lec < 1. By standard regularity theory, see [46, ],
we have that
Ha”HCllc;g(RN) <C
for some 0 < o < 1. By Ascoli’s Theorem we have

!
Cpd (RN)

Up —— U
up to subsequences, for o’ < a. By construction it follows that
e u<uy in Xy;
° ﬁ(O,j;N) = fL;\(O,fN);
e [Va(0,zn)| > k.

Since |Va(0,Zn)| > & there exists o > 0 and a ball By(0,zy) C X5
such that [Vu(x)| # 0 for every z € B,(0,Zn). Now, if 4(0,Zn) € Z¢(y),
since 4 is non constant in B,(0,Zy), there exists Py € B,y(0,Zy) such that
u(Py) € Zf(u)- By Theorem 7.1.2 it follows that
(7.2.14) i=i5 in B,(0,Zy).

On the other hand, by Proposition 7.2.3 it follows that
1~L<ﬂ;\ in E;\\Zf(u).

This gives a contradiction with (7.2.14). Hence we have (7.2.13).
O

PROOF OF PROPOSITION 7.2.2. Let us assume by contradiction that
A < 400, see (7.2.12). Let M > 0 be such that Proposition 7.1.7 and
Lemma 7.2.4 apply. Let C* = C*(M) be the constant given in Lemma
7.2.4. By Proposition 7.2.5 (choose M = AM + 1 there, redefining M if
necessary) we have that

(7.215)  supp W C {on < —4M —1}U{—4M +1<zy < A +e},

where We := (u — U5 )X{sy<rte}- In particular, to get (7.2.15), we choose
% in Proposition 7.2.5 such that 2k = C*. Then we deduce that

(7.2.16)  u<wuy,, in {(z,on) ERY © —AM —1 < xy < —4M + 1},
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Using (7.2.16), we can apply Proposition 7.1.7 in {zy < —4M — 1} and
therefore, together Lemma 7.2.4 and Proposition 7.2.5, we actually deduce

supp W C {—4M +1<zy < X+e).
In particular, if we look to (7.2.13), we deduce that supp W must belong
to the set
A={{A-—p<ay <A+e}U{|Vu|<r}}n{ay > —4M—I—1}.
We now apply Theorem 7.1.8 in the set A. Let us choose (in Theorem 7.1.8)
Lo =1+ |[Vu| poomn)

and take 79 = To(p,j\,M,N,Lo) > 0 and €y = €y(p, \,M,N, Lo) > 0 as in
Theorem 7.1.8. Let u,e in Proposition 7.2.5 such that 2(u + ¢) < 79 and
let us redefine k eventually such that x := min{C*/2,¢ey}. We finally apply
Theorem 7.1.8 concluding that actually W& = 0 in the set A. This gives
a contradiction, in view of the definition (7.2.12) of X\. Consequently we
deduce that A = +o00. This implies the monotonicity of u, that is 9, Nu >0
in RY. By Theorem 7.1.5, it follows that

Oyt >0 inRYV\ Zy0,),

since by Lemma 7.2.1, the case 0,,u = 0 in some connected component, say
U, of RN\ Zf(u) can not hold.
O

7.3. 1-Dimensional Symmetry

In this section we pass from the monotonicity in xy to the monotonicity
in all the directions of the upper hemisphere Sﬁ ~1 defined in (7.2.1). We
refer to [55] for the case of the Laplacian operator, where in the proof the
linearity of the operator was crucial. Here we have to take into account the
singular nature and the nonlinearity of the operator p-Laplacian.

LEMMA 7.3.1. Under the same assumption of Theorem 7.0.1, given o > 0
and k > 0, we define

¥i={z eRY |-k <ay <k}n{|Vu| > o}.
Assume n € Sﬁfl and suppose that
(7.3.1) Opu>0 inRY and Ou>0 inRY\ Zp.
Then, there exists an open neighbourhood O, of n in Sf_l, such that
(7.3.2) du=(Vu,v) >0 inXf,
for every v € O,,.

PRrROOF. Arguing by contradiction let us assume that there exist two
sequences {P,,} € RY and {v,,} € Sf ~1 such that, for every m € N we
have that P, = (2],,2nm) € X3, |(Vm,n) — 1| < 1/m and 8,,,u(P,) < 0.
Since —k < x N, < k for every m € N, then up to subsequences zn ., — Tn.
Now, let us define

tm (2 2N) = u(d’ + 2, oN)
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so that ||tm|lco = ||ul|lcc < 1. By standard regularity theory, see [46, ,
we have that

||ﬂm||cllo’§(]RN) <C.
By Ascoli’s Theorem, via a standard diagonal process, we have, up to sub-
sequences

loc
m u?

Ol @)
<

for some 0 < o/ < a.
By uniform convergence and (7.3.1) it follows that

0,ii(0,zy) =0 and |Vi(0,zy)| > o.

o If Py = (0,Zn) € Zp(y), since |[Va(0,Zy)| > o, then there exists
a ball B,(Py) such that |Vi(z)| # 0 for every x € B,(F). By
Theorem 7.1.4, applied having in mind that |Va(z)| # 0 in B, (Fp),
it follows that Oju(z) = 0 for every & € B,(P). In particular
Oyu(z) = 0 for every x € B.(Po) N (X7 \ Z4(s)), hence by Theorem
7.1.5 we deduce that 9,4 = 0 in the connected component ¢/ of
¥\ 25w containing B,.(Fy) (possibly redefining ), but this is in
contradiction with Lemma 7.2.1.

o If Py € X} \ Z(s) by Theorem 7.1.5 it follows that d,u > 0 in

the connected component of RV \ Zp(y) containing the point Fp.

Indeed the case 9,@ = 0 in the connected component of RV \ Z (@)
containing Py can not hold since Lemma 7.2.1.

Hence we deduce (7.3.2). O

Having in mind the previous lemma, now we are able to prove the mono-
tonicity in a small cone of direction around 7 in the entire space.

PRrROPOSITION 7.3.2. Under the assumption of Theorem 7.0.1, assume
n e Sf_l such that Opu > 0 in RN \ Zfy- Then, there exists an open

neighbourhood Oy, of n in Sﬁfl, such that
(7.3.3) u=1u,>0 nRY and Ou=u, >0 inRY \ Zf(u)s
for every v € O,,.

PrROOF. We fix & >0 and let k = k(5) > 0 be such that v < —1 + 0 in
{zy < =k}, u>1—0¢in {zy > k} and (7.1.18) holds in {|zx| > k}. By
Lemma 7.3.1 it follows that for all o > 0 one has

supp (1) € ({law| = k} U ({—k < 2 <k} N{|Vul < o}) ).
For simplicity of exposition we set
A:={lzn| >k} and D:=({-k<azy <k}n{|Vul <o}).

Our claim is to show that v, = 0in AU D. In order to do this we split the
proof in two part.

Step 1. We show that u,, =0 in A.
We set

(7.3.4) ¢ = (u,)*PRX A@2R)
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where o > 1, R > 0 large, A(2R) := AN Byg and @R is a standard cutoff
function such that 0 < ¢p <1 on RN, wr =1 in Br, or = 0 outside Bap,
with [Vor| < 2/R in By \ Bg. First of all we notice that ¢ belongs to
W, P(A(2R)). To see this, use the definition of ¢ and note that by Lemma
7.2.4 and Lemma 7.3.1, it follows that u;, = 0 on the hyperplanes |zy| = k,
namely on 0A.

According to [36, 37], the linearized operator is well defined

Ly(uy, @) =
(7.3.5) /RN IVulP™*(Vuy, V) + (p = 2)|VulP* (Vu, Vuy ) (Vu, V)] da+

— [ fwede
RN

for every ¢ € C}(RY). Moreover it satisfies the following equation
(7.3.6) Ly(uy, ) =0 Yo € CHRM).

Taking ¢ defined in (7.3.4) in the previous equation, we obtain

o / IVl 2(Vuy, Vi ) () o
A(2R)
+2 / IVl (Va, Voor) () ) o
A(2R)
(737 +alp-2) / VPV, V) (Va, Vi ) () o de

A(2R)

+2(p—2)/ |Vu|p_4(Vu, Vu,)(Vu, Vor)(u, )*pr dx
A(2R)

— / £ () 0} B
A(2R)
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Making some computations we obtain

a / Va2V 2 da

A(2R)
. / VP 2(Vuy, Ver) () on de
A(2R)
+a(2—p)/ VP~ (Va, Vi )2 (g ) o da
A(2R)

L 22 p) / Vul?4(Vu, Vi ) (Va, Vor) () ) or da
(7.3.8) ARR)
4 / £ () ()™ o da

A(2R)

<a(2—p) / Va2V 2y ) g di

A(2R)

+2(3 - p) / V2|V | [Ver|(u) ) er d
A(2R)
+ / £ () (g )+ g3, da
A(2R)
Now it is possible to rewrite (7.3.8) as follows
a(p—1) / Va2V () da
A(2R)
(7.3.9) <2(3 - p) / VP2 Vug | [Ver|(uy) o de
A(2R)
T / £ () (g )+ g3, d
A(2R)

Exploiting the weighted Young inequality we obtain

(7.3.10)
a(p— 1) / Va2V [P (uy ) o da
A(2R)

p=2 atl
2<3—p>/ Va2 1V | ()5 Va2 [Vor| (u)) 5 o da
A(2R)
4 / £ (w) ()7 o da
A(2R)
<o(3—p) / Va2V [P (uy )2 de
A(2R)
SJ YulP ZV a+1 2 d
+ 2 Va2Vl (up ) da

A(2R)
4 / £ (w) ()2 der.
A(2R)
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Since u, = (Vu,v), where ||v|| = 1, we have
alp— 1) / Va2V P (u))2 % da
A(2R)
<o(3 —p>/ VulP 2|V P (u; ) da
A(2R)
I N L
R)
(73.11) + / £/ () ()2 L2, da
A(2R)
<o(3 —p>/ Va2V [P (u; )2 da
A(2R)

+C IVor|(u,) ¢k Vor| dz
A(2R)

—L/ (U )OH-I 2 diE
A(2R)

where we used (7.1.18) and where C' := 3 — p/o||Vu|%"'. Exploiting the
Young inequality with exponents (o + 1)/« and « + 1 we obtain

alp— 1) / Va2V P (u))° R da
A(2R)

o<3—p>/ Va2V P (u; ) da
A(2R)

C / .
+ Vor|*t dx
a+1Jaer) | |

+CA’(oz—l—l)/ atl, _ gatl
A(

(7.3.12)

(uy ) o da

Since |Vpr| < 2/Rin Bor \ Bg, 0 < ¢or < 1in RY and pr = 1 in Bg, we
obtain

/ Va2 Vg 2 ) da
A(R)

<z9/ Va2 Vg 2 ) da

1 Cla+1) / —yat1, 2
+ — —L u, )R dr,
a(p—1) ( aR% > A(ZR)( ) R
_Cc
Ro—(N—1)

where 9 := o(3 —p)/a(p —1) and C := 2C/a(a+1)(p —1). Now we fix
a > 0 such that « > N — 1, ¢ > 0 sufficiently small such that ¥ < 2~ and

(7.3.13)
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finally Ry > 0 such that C'(o + 1)/0zRaT+1 — L < 0. Having in mind all these
fixed parameters let us define

L(R) = /A o Tl )

It is easy to see that L(R) < CRN. By (7.3.13) we deduce that holds

C

ﬁ(R) < 19£(2R) + W

for every R > Ry. By applying Lemma 2.1 in [59] it follows that L(R) =0

for all R > Ry. Hence passing to the limit we obtain that u,, = 0 in A.
Step 2. u,, =01in D.

Let us denote by B’ the (N —1) dimensional ball in RN=! and (', zn) =

Yr(z') € C(RN71) is a standard cutoff function such that

Yvp=1, in B'(0,R) c RN-1,
(7.3.14) YR =0, in RN-1\ B'(0,2R),
VY| < %, in B'(0,2R)\ B'(0,R) c RN-L.

Let us define the cylinder
C(R) := {(x/,xN) eRY : {zeRY |—k<ay< k}ﬂm}.
We set
(7.3.15) v = () Vhxeen)
where 8 > 1. First of all we notice that 1) belongs to I/VO1 P(C(2R)) by

(7.3.14) and since u,, = 0 on JA (as above, see Lemma 7.2.4 and Lemma
7.3.1). Recalling (7.3.5) we have also in this case that

(7.3.16) Lu(uy,, ) =0 Yo € CHRY).
Taking 1 defined in (7.3.15) in the previous equation, we obtain

5[ TPV, V() s

C(2R)
+2 / IVulP~2(Vu,, Viog) (u,, ) g da
C(2R)
(37 82 [ [TV, V) (Y Vi) ) d
C(2R)

Lop—2) / VP4 (Vu, V) (Vot, Vior) (uy )t da
C(2R)

- / £ (u) ()R, d
C(2R)
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Repeating verbatim the same argument of (7.3.8), (7.3.9) and (7.3.10), start-
ing by (7.3.17) we obtain

Bp—1) / Va2V P (ug )P 0% da
C(2R)
< o(3-p) / Va2 Vg () da
C(2R)

(3—p)

(7.3.18)
FECP | oaf? ) v do
g C(2R)

[ f)) v da,
C(2R)
Since u, = (Vu,v) and |Vu| < p in C(2R) we have

/ Va2V P (u )P R da

C(2R)

< 19/ Va2V 2 ()P da

(7.3.19) @R

L / VR ()0 da
C(2R)

+ C’k/ (uy, )P g% da.
C(2R)

where ¥ := 0(3 —p)/B(p—1), C:= (3—p)/oB(p—1) and
C = ||l Lo ((—1,1)B — 1)

Exploiting the Young inequality with exponents (5 +1)/8 and § + 1 we
obtain

C u p—2 C u 2 u A-1 2R dl’
| | 14 v w
C(2R)

<9 |Vu|p_2|Vu;|2 (u;)ﬁ_1 dx
)

C(2R
éprl 1
7.3.20 + Vir/ftt dx
( ) B+1 Jeer) IVebrl
Cor~! 1 B+1 9841
_|_Qp(6+)/ ’V¢R’ B (u;)m—ld}Rﬂ dx
B C(2R)

+C [ ) vk
C(2R)
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Since |Vipg| < 2/R in By \ By, 0 < ¢p < 1in RY and ¢ = 1 in B, we
obtain

(7.3.21)
/ VUl Ty (g )P da
C(2R)

<0 / Va2 Vg 2 ()P dz + Cr / (uy )R do
C(2R) C(2R)

54—10@17—
MCEREE

<19/ VP2V 2 ()P da

e ([0 )i

25+ICQp 1

EESEE

<0 / Va2 Vug 2 ()P da
_ +1 _ N
+cRop<k>2(5 )y [ e P o
C(2R)

26+1Cf@p71

(B+1)RA-(N=2)”

_ R B+l

with Cg := CoP~1(8+1)/BR 7 +C. We point out that in (7.3.21) we used
a Poincaré inequality in the set [—k, k] (denoting with C), the associated
constant) together with the fact that ¢g = 1r(2’). By (7.3.21) we obtain

(7.3.22)
/ Va2 (Vg 2y )% da
C(2R)

<o / Va2V 2 (u)P da
C(2R)

+ CRCp(k)

O s [ a9 ) e
4 C(2R)
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T DR

Finally we choose 8 > 0 such that 8 > N — 2, 9 > 0 sufficiently small
such that ¥ < 27N+ and ¢ > 0 sufficently small such that

_ 1)2
Gy P P Vv <1
Having in mind all these fixed parameters let us define

L(R) := /C(R) |VulP~ 2|Vul,| (u )ﬁ Lda.
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It is easy to see that L(R) < CRN~1. By (7.3.22) (up to a redefining of the
constant involved) we deduce that

C
(7.3.23) L(R) <IL(2R) + (N2
holds for every R > 0. By applying Lemma 2.1 in [59] it follows that

L(R) = 0 for all R > 0. Since p < 2, passing to the limit in (7.3.23), we
deduce that for a.e. x € D
(7.3.24) either u,, () =0, or |Vu, (z)| = 0.
This actually implies that v, (z) = 0 in D. Indeed let us suppose that would
exist a point P € D such that u, (P) # 0. Let us consider the connected
component Y of D\ {z € D : wu, (x) =0} containing P. By the continuity
of u, , it follows that u, = 0 on the boundary dU. On the other hand
u,;, must be constant in U (since by (7.3.24) |Vu, | = 0 there) .This is a
contradiction.

By this two step we deduce that u, > 0 in RY. Finally by Lemma 7.2.1
we get (7.3.3).

O

PrROOF OF THEOREM 7.0.1. Using Proposition 7.2.2 we get that the
solution is monotone increasing in the y-direction and this implies that d,u >
0 in RY. In particular we have dyu > 0 in RV \ Zyw) by (7.2.3). By
Proposition 7.3.2, actually we obtain that the solution is increasing in a
cone of directions close to the y-direction. This allows us to show that in
fact, for i = 1,2,--- , N—1, 0;,u = 0in RY just exploiting the arguments in
[55, 63, 64]. We provide the details for the sake completeness. Let €2 be the
set of the directions n € Siv ~1 for which there exists an open neighborhood
0, C Sf_l such that

du=u,>0 inRY and du=u, >0 inRN\Zf(u),

for every v € O,. The set Q is non-empty, since ey € €2, and it is also
open by Proposition 7.3.2. Now we want to show that it is also closed. Let
kS Sﬁ ~1 and let us consider the sequence {nn} in Q such that n, — 7 as
n — +oo in the topology of Sf_l. Since by our assumptions 9, ,u > 0 in
RY, passing to the limit we obtain that Oju > 0 in RY. By Lemma 7.2.1
it follows that dzu > 0 in RN \ Zf(w)- By Proposition 7.3.2 there exists
an open neighborhood Oy such that (7.3.3) is true for every v € Op; hence
7 €  and this implies that €2 is also closed. Now, since Sﬁ ~1is a path-
connected set, we have that Q = Sf ~1. Then there exists v € Cllo’f (R) such
that u(2’,y) = v(y). Now, let us assume that there exists b € Zj(,) such
that u/(b) = 0. Then the level set {u = u(b)} is a closed interval, i.e. there
exist «, 8 € R with a < § such that

{u=wu(®)} = [, 5.
By Hopf’s Lemma we have «/(5) > 0, but this implies that {u = w(b)} = {b}
and so u/(b) > 0, that is in contradiction with our initial assumption. Hence

we deduce that dyu > 0 in RY, concluding the proof.
O
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RESUME. La these est consacrée a 1’étude des propriétés qualitatives
des solutions d’équations aux dérivées partielles (EDP) semi- linéaires
et quasilinéaires de type elliptique. La méthode des hyperplans mo-
biles de A.D. Alexandrov et J.B. Serrin est le plus important des out-
ils utilisés pour étudier les propriétés qualitatives des solutions d’EDP
non-linéaires comme la symétrie et la monotonie. Le chapitre 1 porte
sur les principes du maximum, les principes de comparaison et le lemme
de Hopf qui jouent un réle crucial dans la méthode des hyperplans mo-
biles. L’état de l'art dans le cadre semilinéaire et quasilinéaire y est
présenté. Dans le chapitre 2 on considere les solutions positives d’EDP el-
liptiques semilinéaires faisant intervenir une nonlinéarité singuliere. Dans
ce contexte, a ’aide d’'un argument de “scaling”, on démontre un nou-
veau lemme de Hopf qui permet de contourner la perte de régularité des
solutions pres du bord. Le chapitre 3 concerne la version quasilinéaire du
probleme étudié dans le chapitre 2. Apres avoir obtenu un lemme de Hopf
pour ce type d’équations, nous démontrons la symétrie et la monotonie
des solutions positives dans le demi-espace et dans les domaines bornés et
convexe. Dans le chapitre 4, a ’aide des la méthode des hyperplans mo-
biles, nous démontrons la symétrie et la monotonie des solutions positives
et singulieres I’EDP semilinéaires (éventuellement singulieres) dans des
domaines bornés et non-bornés. Le cas quasilinéaire, qui est beaucoup
plus délicat et technique, est traité dans le chapitre 5. Le chapitre 6 est
consacré aux propriétés qualitatives des solutions positives singulieres de
systemes elliptiques. On montre que les résultats obtenus au chapitre 4
sont encore vrais dans ce contexte. Dans le dernier chapitre (chapitre 7)
nous démontrons la conjecture de Gibbons pour les solutions entieres des
EDP quasilinéaires singulieres.

ABSTRACT. In this manuscript we study qualitative properties of solu-
tions of some semilinear and quasilinear elliptic equations. Symmetry
and monotonicity remain an important topic in modern theory of non-
linear partial differential equations. The moving planes method is the
most important technique that have been used in recent years to estab-
lish some qualitative properties of positive solutions of nonlinear elliptic
equations as symmetry and monotonicity; in particular, it goes back to
the seminal papers of A. D. Alexandrov [1] and J. Serrin [111]. In this
technique maximum and comparison principles play a crucial role. Lots
of well-known results about classical and more recent version of maximum
and comparison principles and of the Hopf’s Lemma will be presented in
Chapter 1.

In Chapter 2 (see also [24]), we consider positive solutions to semi-
linear elliptic problems with singular nonlinearity and we provide a Hopf
type boundary lemma via a suitable scaling argument that allows to deal
with the lack of regularity of the solutions up to the boundary.

In Chapter 3 (see also [52]), we consider the quasilinear version of
the problem studied in Chapter 2, that is more involved and technical.
In Chapter 4 (see also [50]), we consider positive singular solutions

to semilinear elliptic problems with possibly singular nonlinearity and we
deduce symmetry and monotonicity properties of the solutions via the
moving planes procedure in bounded or unbounded domains.

In Chapter 5 (see also [51]), we consider singular solutions to quasi-
linear elliptic equations under zero Dirichlet boundary condition. Under



suitable assumptions on the nonlinearity we deduce symmetry and mono-
tonicity properties of positive solutions via an improved moving planes
procedure, only in bounded domains.

In Chapter 6 (see also [48]), we investigate qualitative properties
of positive singular solutions of some elliptic systems in bounded and
unbounded domains, i.e. we prove a generalization of the results obtained
in Chapter 4.

In Chapter 7 (see also [49]), we prove the validity of Gibbons’ con-
jecture for a quasilinear elliptic equation. The result holds for every
(2N +2)/(N +2) < p < 2 and for a very general class of nonlinearity f.
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