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Introduction

In this thesis we study qualitative properties of some semilinear and
quasilinear elliptic equations. In particular we deal with weak solutions of

(0.0.1) −∆pu = f(u) in Ω,

where Ω is any domain in RN , N ≥ 2. Let u ∈ C2(Ω); we define the
p-Laplace operator as follows:

∆pu = div(|∇u|p−2∇u)

= |∇u|p−4

|∇u|2∆u+ (p− 2)

n∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

 ,(0.0.2)

where (0.0.2) is defined in the set {x ∈ Ω : ∇u(x) 6= 0} for every 1 < p < 2,
and in the whole domain Ω for every 2 ≤ p < +∞. The hypothesis on the
nonlinearity will be always specified in all the chapters, but the reader could
think that f is a locally Lipschitz continuous function. We have to remark
that the p-Laplace operator becomes that classical Laplacian when p = 2,
i.e.

∆2u = div(∇u) = ∆u =

N∑
i=1

∂2u

∂x2
i

.

In this case, sometimes, we can consider classical solutions for equation
(0.0.1). When p 6= 2 the situation is completely different and it is well
known that, since the p-Laplace operator is singular or degenerate elliptic
(respectively if 1 < p < 2 or p > 2), solutions of (0.0.1) are generally of class
C1,α, with α < 1 (see [46, 122]) and have to be considered only in the weak
sense. More precisely, we say that u ∈W 1,p(Ω) solves (0.0.1) if and only if

(0.0.3)

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx =

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞(Ω).

We obtain (0.0.3) by applying divergence theorem to the following:∫
Ω
−div(|∇u|p−2∇u)ϕdx =

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω).

Now we consider the following problem with Dirichlet boundary conditions:

(0.0.4)

{
−∆pu = f(u) in Ω

u = 0 on ∂Ω

where Ω is a bounded smooth domain of RN , with N ≥ 2 as before, and
f is assumed to be locally Lipschitz continuous. A solution u to (0.0.4)

can be defined e.g. assuming that u ∈ W 1,p
0 (Ω) in the weak distributional
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sense. This is also the space where it is natural to prove the existence of the
solutions under suitable assumptions.
Now it is important to observe that, in the weak formulation (0.0.3), the
test function ϕ belongs to C∞c (Ω), but by density arguments it is possible

to show that also ϕ ∈ W 1,p
0 (Ω) it is enough. In fact by the definition of

W 1,p
0 (Ω), for every ϕ ∈W 1,p

0 (Ω) there exists {ϕn} ∈ C∞c (Ω) such that

ϕn −→ ϕ in W 1,p
0 (Ω),

as n → +∞. Hence taking ϕn as test functions in (0.0.3), for every n, we
have ∫

Ω
|∇u|p−2(∇u,∇ϕn) dx =

∫
Ω
f(u)ϕn dx ∀ϕn ∈ C∞c (Ω).

We want to show∫
Ω
|∇u|p−2(∇u,∇ϕn) dx −→

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx,

as n goes to +∞. Subtracting the left hand side of (0.0.3) and the left hand
side of (0.0.3) with ϕn as test function, we obtain∫

Ω

∣∣|∇u|p−2(∇u,∇(ϕn − ϕ))
∣∣ dx

≤
∫

Ω
|∇u|p−1|∇(ϕn − ϕ)| dx

≤
(∫

Ω
|∇u|p

) p−1
p
(∫

Ω
|∇(ϕn − ϕ)|p

) 1
p n→+∞−→ 0,

where in the last line we used Hölder inequality and the Dominated Con-
vergence Theorem.
Let us denote % := |∇u|p−2. In the set of critical points

(0.0.5) Zu := {x ∈ Ω | ∇u(x) = 0},

the equation is degenerate for p > 2 (i.e. % ≈ 0) and singular for 1 < p < 2
(i.e. % ≈ +∞). If 0 < %(x) ≤ C all the classical result are true (see e.g [70]),
hence u ∈ C2(Ω \ Zu). If % ≈ 0 or % ≈ +∞ classical results are not true. In
particular, in Chapter 1, we will prove the following result on the regularity
of the second derivatives of solutions to problem (0.0.4):

Proposition 0.0.1. Let u ∈ C1(Ω), u > 0, be a weak solution to problem
(0.0.4). Assume that f is locally Lipschitz continuous. Assume that Ω is a
bounded and smooth domain of RN . Then

(0.0.6)

∫
Ω\{ui=0}

|∇u|p−2

|y − x|γ
|∇ui|2

|ui|β
dx ≤ C,

where 0 ≤ β < 1, γ < N − 2 (γ = 0 if N = 2), 1 < p < +∞ and the positive
constant C does not depend on y. In particular, we have

(0.0.7)

∫
Ω\{∇u=0}

|∇u|p−2−β‖D2u‖2

|y − x|γ
dx ≤ C̃,

for a positive constant C̃ not depending on y.
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Thanks to the previous result, it is possible to show the following summa-
bility property of |∇u|, whose proof can be found in Chapter 1:

Theorem 0.0.2. Let u ∈ C1(Ω), u > 0, be a weak solution of (0.0.4)
and assume, furthermore, that f(s) > 0 for any s > 0. Then, there exists a
positive constant C, independent of y, such that

(0.0.8)

∫
Ω

1

|∇u|(p−1)r

1

|x− y|γ
dx ≤ C

where 0 < r < 1 and γ < N − 2 for N ≥ 3 (γ = 0 if N = 2). In particular
the critical set Zu has zero Lebesgue measure.

0.1. Qualitative properties of solutions and the moving planes
method

Qualitative properties of solutions to elliptic equations can be inter-
preted, in an extremely broad sense, to include every property of solutions.
In this section we are going to focus on geometric properties of solutions.
Boundary conditions play an important role in the qualitative behaviour
of solutions. Qualitative properties of solutions are closely related to the
existence of solution to elliptic PDEs; in fact, it seems obvious that exis-
tence of solutions provides the basis for the study of qualitative properties.
On the other hand, searching for solutions with particular properties could
provide clues for existence. Systematic studies of qualitative properties of
solutions to general nonlinear elliptic equations or systems essentially began
in the late 1970s, although some nonlinear elliptic equations (such as the
Lane–Emden equation) actually go back to the 19th century. It should be
noted, however, that earlier works in this direction on linear elliptic equa-
tions, such as symmetrization or nodal properties of eigenfunctions, have
had their consequences in nonlinear equations. Symmetry and monotoncity
remain an important topic in modern theory of nonlinear partial differential
equations.

The moving planes method is the most important technique that have
been used in recent years to establish some qualitative properties of positive
solutions of nonlinear elliptic equations like symmetry and monotonicity. For
instance, it is used to prove monotonicity in, say, the x1-direction of scalar
solutions of nonlinear second order elliptic equations in domains Ω in RN .
The essential ingredient is the maximum principle, that in the semilinear
case it is equivalent to the comparison principle. This method compares
values of the solution of the equation at two different points.

The moving planes method goes back to A. D. Alexandrov [1], in his
study of surfaces of constant mean curvature, and to J. Serrin [111] that
introduced the technique in the context of elliptic PDEs, in the study of
overdetermined problems. After some years, B. Gidas, W. N. Ni and L.
Nirenberg, in [68], adapted this method to prove monotonicity of positive
solutions vanishing on ∂Ω and, as a corollary, symmetry; in [69] the authors
extended these techniques to equations in all RN . We refer also the reader
to some other relevant papers [9, 8, 10, 12, 21, 22, 33, 35, 36, 59, 60,
61, 110, 112, 113]. In all of these papers the maximum principle plays,
as we said, the crucial role, but the papers had to rely on many forms
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of the maximum principle. These included also the Höpf’s Lemma at the
boundary. The classical version of maximum and comparison principles and
of the Höpf’s Lemma will be presented in Chapter 1.

Now, we want just to use the moving planes method in order to state
the typical results that it is possible to show with this technique, in a very
simple framework; to do this, let us consider the following semilinear elliptic
problem

(0.1.1)


−∆u = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω

where Ω is a bounded Lipschitz domain of RN , with N ≥ 2 and f is a locally
Lipschitz continuous function.
We need to fix some notations. For a real number λ we set

(0.1.2) Ωλ = {x ∈ Ω : x1 < λ}

(0.1.3) xλ = Rλ(x) = (2λ− x1, x2, . . . , xn)

which is the reflection through the hyperplane

(0.1.4) Tλ := {x1 = λ}.
Also let

(0.1.5) a = inf
x∈Ω

x1.

Finally we set

(0.1.6) uλ(x) = u(xλ) .

We observe that, since problem (0.1.1) is invariant up to translations and
rotations, uλ defined in (0.1.6) is also a solution to (0.1.1).
Let us now state the main result

Theorem 0.1.1 ([12]). Let u ∈ C2(Ω) ∩ C(Ω) be a solution to (0.1.1).
Assume that f is a locally Lipschitz contiunous function and that Ω is convex
in the x1-direction and symmetric with respect to the hyperplane {x1 = 0}.
Then it follows that u is symmetric with respect to the hyperplane {x1 = 0}
and increasing in the x1-direction in Ω ∩ {x1 < 0}, with

ux1 > 0 in Ω ∩ {x1 < 0} .

Proof. Let us define

Λ0 = {a < λ < 0 : u ≤ ut in Ωt for all t ∈ (a, λ]}.
The aim of the moving planes procedure is to show that sup Λ0 = 0; once we
have this, we obtain automatically monotonicity for the solution u and after
that, performing the moving planes in the opposite direction, we obtain also
the symmetry for u. To start with the moving planes method, we have to
prove that Λ 6= ∅.
Step 1: Take a < λ < a+σ with σ > 0 small. In particular, we first assume
that σ > 0 is sufficiently small so that |Ωλ| < δ, for some small δ > 0.
Noticing that u ≡ uλ on Tλ and u ≤ uλ on ∂Ωλ \Tλ by the Dirichlet datum,
i.e. u ≤ uλ on ∂Ωλ, it follows, by the weak comparison principle in small
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domains (see Theorem 1.2.1), that u ≤ uλ in Ωλ, hence Λ0 6= ∅ (see Figure
1).

Figure 1. Step 1 in the moving planes method.

Step 2: Now we can set
λ0 = sup Λ0.

As remarked above, to prove our result we have to show that λ0 = 0. To do
this we assume that λ0 < 0 and we reach a contradiction by proving that
u ≤ uλ0+ν in Ωλ0+ν for any 0 < ν < ν̄ for some small ν̄ > 0. By continuity
we know that u ≤ uλ0 in Ωλ0 . By the strong comparison principle, noticing
that u < uλ0 on ∂Ωλ0 , we deduce that u < uλ0 in Ωλ0 . Therefore, given a
compact set K ⊂ Ωλ0 , by uniform continuity we can ensure that u < uλ0+ν

in K for any 0 < ν < ν̄ for ν̄ > 0 small. So by construction it results that
u ≤ uλ0+ν on ∂(Ωλ0+ν \ K) for any 0 < ν < ν̄ for ν̄ > 0 small. For K
large and ν̄ small by the weak comparison principle in small domains (see
Theorem 1.2.1) we have |Ωλ0+ν \ K| is small and therefore u ≤ uλ0+ν in
Ωλ0+ν \K and so u ≤ uλ0+ν in Ωλ0+ν . But this is a contradiction with the
definition of λ0. Then λ0 = 0 (see Figure 2).

Figure 2. Step 2 in the moving planes method.
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Step 3: Since the moving planes procedure can be performed in the same way
but in the opposite direction, then this proves the desired symmetry result.
The fact that the solution is increasing in the x1-direction in {x1 < 0} is
implicit in the moving planes procedure. This provides ux1 ≥ 0 in {x1 ≥ 0}.
Then ux1 > 0 by the strong maximum principle.

�

As a consequence we have:

Corollary 0.1.2 ([12]). Under the assumption of Theorem 0.1.1 if
Ω = BR(0) for any R > 0, then u is radially symmetric and monotone
decreasing about the origin.

We just presented the classical version of the moving planes method for
semilinear elliptic equation. As we said before, in the case p = 2 several
results have been obtained starting by the celebrated paper of B. Gidas, W.
N. Ni and L. Nirenberg [68]. This paper had a big impact not only in virtue
of the several monotonicity and symmetry results that it contains, but also
because it brought to attention the moving planes method which, since then,
has been largely used in many different problems.

The situation is completely different when p 6= 2 and there are less
results about monotonicity and symmetry of solutions to quasilinear elliptic
problem. Let us consider

(0.1.7)


−∆pu = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω

where Ω is a bounded Lipschitz domain of RN , with N ≥ 2, 1 < p < +∞
and f is a locally Lipschitz continuous function.

In this case, as remarked before, the solutions can only be considered
in a weak sense. Anyway, this is not a difficulty because the moving planes
method can be adapted to weak solutions of strictly elliptic problems in
divergence form (see [32, 38]). The real difficulty with problem (0.1.7), is
that the p-Laplacian operator is degenerate in the critical points of the so-
lutions, so that comparison principles, which could substitute the maximum
principles in order to use the moving planes method when the operator is
not linear, are not available in the same form as for p = 2. Actually, coun-
terexamples both to the validity of comparison principles and to symmetry
results are available (see [73] and [18]).

A first step towards extending the moving planes method to solutions of
problems involving the p-Laplacian operator has been done by L. Damascelli
in [33]. In this paper the author mainly proves some weak and strong
comparison principles for solutions of differential inequalities involving the
p-Laplacian. Using these principles he adapts the moving planes method
to solutions of (0.1.7) getting some monotonicity and symmetry results in
the case 1 < p < 2. Although the comparison principles of [33] are quite
powerful in this situation, the symmetry result is not complete and relies on
the assumption that the set of the critical points of u does not disconnect
the caps which are constructed by the moving plane method. Hence, when
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p > 2, the results contained in [33] are not enough in order to adapt the
moving planes method. Some years later, L. Damascelli and B. Sciunzi
in [37, 36] proved general versions of the weak comparison principle (see
Theorem 1.2.5) and of the strong comparison principle (see Theorem 1.5.3)
for solution to (0.1.7), that it was sufficient to extend the technique to every
p.

The analogous result of Theorem 0.1.1, in the quasilinear setting, is given
by the following:

Theorem 0.1.3 ([36]). Let u ∈ C1,α(Ω) ∩ C(Ω) be a weak solution to
(0.1.7), with 1 < p < +∞. Assume that f is a locally Lipschitz contiunous
function such that f(s) > 0 for s > 0 and that Ω is convex in the x1-direction
and symmetric with respect to the hyperplane {x1 = 0}. Then it follows that
u is symmetric with respect to the hyperplane {x1 = 0} and increasing in
the x1-direction in Ω ∩ {x1 < 0}, with

ux1 > 0 in Ω ∩ {x1 < 0} .
Moreover, if Ω = BR(0), then u is radially symmetric and radially decreas-
ing.

The proof of Theorem 0.1.3 is similar to the semilinear case (see Theorem
0.1.1), but the classical maximum principles, that it is equivalent to the
comparison principle in the semilinear case, are replaced by comparison
principles by L. Damascelli and B. Sciunzi [36, 37] (see Theorem 1.2.5
and 1.5.3) and the classical Poincaré inequality is replaced by a weighted
Poincaré inequality (see Theorem 1.1.4).

The moving planes method is a technique very powerful that can be also
adapted for quasilinear elliptic equations in unbounded domains. In the case
of unbounded domains the main examples, arising from many applications,
are provided by the whole space RN and by the half-space RN+ . For the case
of the whole space with p = 2, where radial symmetry of the solutions is
expected, we refer to [21, 68, 69]. We refer the readers to [8, 9, 10, 34, 38,
40, 56] for results concerning monotonicity of the solutions in half-spaces,
in the non-degenerate case.

The case of p-Laplace equations in unbounded domains is really harder to
study. Let us only say that, the use of weighted Sobolev spaces is necessary in
the case p > 2 and it requires the use of a weighted Poincaré type inequality
with weight % = |∇u|p−2 (see Section 1.1). The latter involves constants that
may blow up when the solution approaches zero that may happen also for
positive solutions in unbounded domains. Hence, the lack of compactness
plays an important role.

When considering the case of the half-space RN+ , the application of the
moving planes technique is much more delicate, since weak comparison prin-
ciples in small domains have to be substituted by weak comparison principles
in narrow unbounded domains (see Theorem 1.3.1, Theorem 1.3.3 and The-
orem 1.3.4). Also the strong comparison principle does not apply in a simple
way as in the case when bounded domains are considered. In the semilin-
ear case p = 2 many arguments exploited in the literature are very much
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related to the linear and nondegenerate nature of the operator, so that it
is not possible to extend these arguments to the case of equations involving
nonlinear degenerate operators.

Considering the p-Laplace operator and problems in half-spaces, first
results have been obtained in the singular case 1 < p < 2 in [58, 59],
where positive locally Lipschitz continuous nonlinearities are considered. A
partial answer in the more difficult degenerate case p > 2 was obtained in
[61], where power-like nonlinearities are considered under the restriction
2 < p < 3. Some years later, the restriction 2 < p < 3 was removed in
[60] and, moreover, the authors considered a larger class of nonlinearities
(in particular positive nonlinearities that are superlinear at zero).

In the case of the entire space RN , for p = 2, the application of the
moving planes method is quite involved, since it is needed the behaviour of
the solution at infinity. In [21], L. Caffarelli, B. Gidas and J. Spruck proved,
thanks to the moving planes method and to the use of Kelvin transform, that

any positive solution of (0.1.1) with f(t) ≈ t
N+2
N−2 , is radially symmetric and

monotone decreasing about some point of RN . We refer also to the seminal
paper of B. Gidas, W. M. Ni and L. Nirenberg [69] for results concerning
symmetry and monotonicity of solutions in RN , but with extra-assumption
on the behaviour of solutions at infinity.

The situation for p 6= 2 and Ω = RN is much more complicated; the
operator is not linear and, as before, one needs of comparison principle in
unbounded domains (that are not equivalent to maximum principle). A first
result regarding qualitative properties of solutions for quasilinear elliptic
equations in the entire space is due to J. Serrin and H. Zou [112]. In this
paper the authors need of an extra assumption on the decay of the solution at
infinity and on the critical set. The nonlinear version of the result obtained

by L. Caffarelli, B. Gidas and J. Spruck in [21], i.e. when f(t) ≈ t
N(p−1)+p
N−p ,

was not so easy to obtain since the Kelvin transform for p 6= 2 does not
work (see e.g. [87]) and also because it is not possible to start with the
moving planes procedure without any a priori assumption on the decay of
the solutions at infinity. This problem was solved by B. Sciunzi in [107];
the argument is based on some a priori estimates proved by J. Vetois [128],
on a lower bound for the decay rate of |∇u|, the moving planes technique,
Hardy’s inequality and a weighted Poincaré-type inequality.

To the best of our knowledge all the symmetry results presented in this
section for equations involving the p-Laplace operator in RN or in RN+ , with
p 6= 2, treated just the case of positive nonlinearity. In Chapter 7 it will be
purposed a nice variant of the moving planes method that works for a special
class of changing sign nonlinearities and will be very helpful in the solution of
the quasilinear version of Gibbons’ conjecture for (2N+2)/(N+2) < p < 2.

0.2. Höpf’s boundary lemma for singular elliptic equations

Starting from the seminal paper [31], singular semilinear elliptic equa-
tions have been studied from many point of view. We just quoted here the
papers [4, 16, 17, 25, 26, 27, 28, 67, 75, 79, 82, 83, 95, 116] which are
somehow related to the results contained in this thesis. A crucial topic in the
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study of singular semilinear elliptic equations is the study of the behaviour
of the solutions near the boundary, namely where the solutions actually ex-
hibit a lack of regularity. In particular, the fact that solutions are not C1

up to the boundary prevents the validity of the Höpf boundary lemma, see
[15, 76, 103]. We address this issue and provide a generalized version of the
Höpf boundary lemma, in Chapter 2 (see also [24]) for semilinear singular
elliptic equations. In particular let us consider the following problem:

(0.2.1)


−∆u =

1

uγ
+ f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where γ > 1, Ω is a C2,α bounded domain of RN with 0 < α < 1, N ≥ 1 and
f : Ω→ R locally Lipschitz continuous.

It is well known that generally solutions to problem (0.2.1) are not
smooth up to the boundary. It was in fact proved in [82] that solutions
are not in H1

0 (Ω) at least when γ > 3. Therefore, having in mind the natu-
ral regularity behaviour of the solutions (see [31]) we let u ∈ C2(Ω)∩C(Ω).
The equation is well defined in the interior of the domain in the classical
sense and its weak distributional formulation is

(0.2.2)

∫
Ω

(∇u,∇ϕ) dx =

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω).

Now, let us define the concept of inward pointing normal

Definition 0.2.1. Let Ω ⊂ RN be a bounded C2,α domain. Let Iδ(∂Ω) be
a neighborhood of ∂Ω with the unique nearest point property (see e.g. [66]).
Hence for every x ∈ Iδ(∂Ω) there exists a unique point x̂ ∈ ∂Ω such that
|x− x̂| = dist(x, ∂Ω). We define the inward-pointing normal as

(0.2.3) η(x) :=
x− x̂
|x− x̂|

.

Having in mind these notations, we are now ready to state the main result
of Chapter 2 (see also [24]):

Theorem 0.2.2 (Höpf type boundary lemma, [24]). Let u ∈ C2,α(Ω) ∩
C(Ω) be a positive solution of problem (0.2.1). Then there exists a neigh-
borhood Iδ(∂Ω) of ∂Ω such that

(0.2.4) ∂ν(x)u > 0 ∀x ∈ Iδ(∂Ω)

provided that (ν(x), η(x)) > 0 uniformly with respect to x ∈ Iδ(∂Ω), namely
provided that (ν(x), η(x)) ≥ β > 0 for some β > 0 for every x ∈ Iδ(∂Ω).

The proof of this result is based on a scaling argument near the boundary,
which leads to the study of a limiting problem in the half-space (see problem
(2.0.5)) and obeys to suitable a priori estimates. Moreover, for this limiting
problem, we provide a classification result that is crucial for our technique,
and may also have an independent interest (see Theorem 2.0.3).

The technique of E. Höpf [76] (see also [70]) has been already developed
and improved also in the quasilinear setting. We refer the readers to [103]
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and Chapter 1 (see also [127]). At some time, during the PhD experience,
it was a natural question to understand if it holds an analogous result to
Theorem 0.2.3 for problem (0.2.1) in the quasilinear setting. Hence, let us
consider:

(0.2.5)


−∆pu =

1

uγ
+ f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω

where p > 1, γ > 1, Ω is a C2,α bounded domain of RN with N ≥ 1 and
f : Ω→ R locally Lipschitz continuous.

Since the p-Laplace operator is degenerate or singular, a solution u ∈
C1,α(Ω) ∩ C(Ω) of problem (0.2.5) has to be understood in the weak sense:
(0.2.6)∫

Ω
|∇u|p−2(∇u,∇ϕ) dx =

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω).

In collaboration with B. Sciunzi (see [52]), we obtained the following:

Theorem 0.2.3 (Höpf type boundary lemma, [52]). Let u ∈ C1,α(Ω) ∩
C(Ω) be a positive solution to (0.2.5). Then, for any β > 0, there exists a
neighborhood Iδ(∂Ω) of ∂Ω, such that

(0.2.7) ∂ν(x)u > 0 ∀x ∈ Iδ(∂Ω)

whenever ν(x) ∈ RN with ‖ν(x)‖ = 1 and (ν(x), η(x)) ≥ β.

The proof of this result is going to be presented in Chapter 3. Never-
theless the proof of Theorem 0.2.3, namely the proof of the Höpf lemma in
the case when it appears the singular term u−γ , cannot be carried out in
the standard way mainly because the solutions are not of class C1 up to the
boundary. More precisely the proofs in [70, 76, 103, 127] has the common
feature of basing on the comparison of the solution with subsolutions that
have a known behaviour on the boundary. This approach, with some diffi-
culty to take into account, can be exploited also in the singular case since
t−γ has the right monotonicity behaviour. This actually leads to control the
behaviour of the solution near the boundary with a comparison based on the
distance function. This is, in fact, also behind Theorem 3.3.2 that gives a
Lazer and Mckenna type result [82]. Although some of the underlying ideas
in our approach have a common flavour with the ones exploited in [24] and
in Chapter 2, the proofs that we exploit in Chapter 3 are new and adapted
to the degenerate nonlinear nature of the p-laplacian.

0.3. Qualitative properties of singular solutions to some elliptic
problems

The aim of Chapter 4 is the study of the following singular semilinear
elliptic problem:

(0.3.1)


−∆u = f(x, u) in Ω \ Γ

u > 0 in Ω \ Γ

u = 0 on ∂Ω
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where Ω is a bounded smooth domain of RN with N ≥ 2 which is convex
in the x1-direction and symmetric with respect to the hyperplane {x1 = 0}.
The solution has a possible singularity on the critical set Γ ⊂ Ω and thus is
understood in the following sense: u ∈ H1

loc(Ω \ Γ) ∩ C(Ω \ Γ) and

(0.3.2)

∫
Ω

(∇u,∇ϕ) dx =

∫
Ω
f(x, u)ϕdx ∀ϕ ∈ C1

c (Ω \ Γ) .

The source term f(x, u) is assumed to satisfy

(If ) We say that f fulfills the condition (If ) if f : Ω \Γ× (0,+∞)→ R
is a continuous function such that for 0 < t ≤ s ≤ M and for any
compact set K ⊂ Ω \ Γ, it holds

f(x, s)− f(x, t) ≤ C(K,M)(s− t) for any x ∈ K ,

where C(K,M) is a positive constant depending on K and M .
Furthermore f(·, s) is non-decreasing in the x1-direction in Ω ∩
{x1 < 0} and symmetric with respect to the hyperplane {x1 = 0}.

In particular, this allows us to consider equations involving Hardy-Leray
type potentials, see [122].

Now we state the first main result of Chapter 4:

Theorem 0.3.1. Let Ω be a convex domain which is symmetric with
respect to the hyperplane {x1 = 0} and let u ∈ H1

loc(Ω \ Γ) ∩ C(Ω \ Γ) be
a solution to (0.3.1). Assume that f fulfills (If ). Assume also that Γ is a
point if N = 2 while Γ is closed and such that

Cap2
RN

(Γ) = 0,

if N ≥ 3. Then, if Γ ⊂ {x1 = 0}, it follows that u is symmetric with
respect to the hyperplane {x1 = 0} and increasing in the x1-direction in
Ω ∩ {x1 < 0}. Furthermore

ux1 > 0 in Ω ∩ {x1 < 0} .

We want to remark that in the work of B. Sciunzi [110], the author
has been considered the singular set Γ contained in a smooth (N − 2)-
dimensional sub-manifold of the hyperplane {x1 = 0} if N > 2, while it is a
point in dimension two. With the same technique, developed in [110], more
general problems could be considered, e.g. cases when the critical set has
zero capacity. It is also clear that, if Γ is not contained in any symmetry
hyperplane of the domain, then with our technique it could be possible in
any case to carry out the moving planes procedure until the hyperplane
touch the critical set. This is optimal somehow, since it is implicit in the
moving planes technique the monotonicity of the solution and solutions in
general change their slope near the critical set. This actually shows that
the moving planes procedure cannot go beyond the critical set. It is also
worth emphasizing that Theorem 0.3.1 for problem (0.3.1) is still true if the
Laplace operator ∆u is replaced by div(A(x)∇u) for some positive definite
matrix A(x) = A(x2, . . . , xn) with bounded continuous coefficients. In this
case all the proofs can be repeated verbatim and no Hölder’s continuous
regularity of the coefficients is required also in dimension two.
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First results regarding the applicability of the moving planes procedure
to the case of singular solutions go back to [22] (see also [121]) where the
case when the singular set is a single point is considered. We follow and
improve here the technique in [110], where the case of a smooth (N −
2)-dimensional singular set was considered in the case of locally Lipschitz
continuous nonlinearity. Let us mention that the technique introduced in
[110] also works in the nonlocal context (see [91]).
On the other hand, in the case Γ = ∅, symmetry and monotonicity properties
of solutions to semilinear elliptic problems involving singular nonlinearities,
have been studied in [25, 26]. Also in this direction our result is new
and more general. In fact, while in [25, 26] it is necessary to restrict the
attention to problems of the form (0.2.1), here we only need to consider
nonlinearities that are locally Lipschitz continuous from above. Actually,
all the nonlinearities of the form

f(x, s) := a1(x1)f1(s) + f2(s) ,

where f1 is a decreasing continuous function in (0,+∞) and non-negative,
f2(·) is locally Lipschitz continuous in [0,+∞) and a1 ∈ C0(R), a1 is non-
negative, even and non-decreasing for x1 < 0, satisfy our assumptions.

The technique, as shown in [110], can be applied to study singular so-
lutions to the following Sobolev critical equation in RN , N ≥ 3,

(0.3.3)

{
−∆u = u2∗−1 in RN \ Γ

u > 0 in RN \ Γ.

In [110] it was considered the case of a closed critical set Γ contained in a
compact smooth submanifold of dimension d ≤ N − 2 and a summability
property of the solution at infinity was imposed (see also [121] for the special
case in which the singular set Γ is reduced to a single point). In Chapter 4
we remove both these restrictions and we prove the following:

Theorem 0.3.2. Let N ≥ 3 and let u ∈ H1
loc(RN \ Γ) be a solution to

(0.3.3). Assume that the solution u has a non-removable1 singularity in the
singular set Γ, where Γ is a closed and proper subset of {x1 = 0} such that

Cap2
RN

(Γ) = 0.

Then, u is symmetric with respect to the hyperplane {x1 = 0}.
The same conclusion is true if the hyperplane {x1 = 0} is replaced by any
affine hyperplane.

The results obtained in Chapter 4 in the semilinear case, in particular
the once involving bounded domains can be extended in a non trivial way to
the case of quasilinear elliptic equations; this is the main topic of Chapter

1Here we mean that the solution u does not admit a smooth extension all over the
whole space. Namely it is not possible to find ũ ∈ H1

loc(RN ) with u ≡ ũ in RN \ Γ.
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5. Now, let us consider the problem

(0.3.4)


−∆pu = f(u) in Ω \ Γ

u > 0 in Ω \ Γ

u = 0 on ∂Ω,

in a bounded smooth domain Ω ⊂ RN and p > 1. The solution u has a
possible singularity on the critical set Γ and in fact we shall only assume
that u is of class C1 far from the critical set. Therefore the equation is
understood as in the following:

Definition 0.3.3. We say that u ∈ C1(Ω \ Γ) is a solution to (0.3.4) if
u = 0 on ∂Ω and

(0.3.5)

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx =

∫
Ω
f(u)ϕdx ∀ϕ ∈ C1

c (Ω \ Γ) .

The purpose of Chapter 5 (see also [51]) is to investigate symmetry and
monotonicity properties of the solutions when the domain is assumed to
have symmetry properties. This issue is well understood in the semilinear
case p = 2 as explained before.

The moving planes procedure for quasilinear elliptic problems, as remarked
in Section 0.1, has been adapted when Γ = ∅. However, the techniques devel-
oped in Chapter 4 and described above cannot be applied straightforwardly
manly for two reasons. First of all the technique developed in Chapter 4
(see also [50, 110]), that works the case p = 2, is strongly based on a homo-
geneity argument that fails for p 6= 2. Furthermore, since the gradient of the
solution may blows up near the critical set, then the equation may exhibit
both a degenerate and a singular nature at the same time. This causes, in
particular, that it is no longer true that the case 1 < p < 2 allows to get
stronger results in a easier way, as it is in the case Γ = ∅.

Now we list all the assumptions on the singular set Γ and on the non-
linearity f in the different cases 1 < p < 2 and p > 2:

(A1
f). For 1 < p < 2 we assume that f is locally Lipschitz continuous

so that, for any 0 ≤ t, s ≤ M , there exists a positive constant
Kf = Kf (M) such that

|f(s)− f(t)| ≤ Kf |s− t|.

Moreover f(s) > 0 for s > 0 and

lim
t→+∞

f(t)

tq
= l ∈ (0,+∞).

for some q ∈ R such that p−1 < q < p∗−1, where p∗ = Np/(N−p).
(A2

f). For p ≥ 2 we only assume that f is locally Lipschitz continuous so

that, for 0 ≤ t, s ≤M there exists a positive constant Kf = Kf (M)
such that

|f(s)− f(t)| ≤ Kf |s− t|.
Furthermore f(s) > 0 for s > 0.
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(A1
Γ). For 1 < p < 2 and N = 2 we assume that Γ = {0}, while for

1 < p < 2 and N > 2 we assume that Γ ⊆M for some compact C2

submanifold M of dimension m ≤ N − k, with k ≥ N
2 .

(A2
Γ). For 2 < p < N and N ≥ 2, we assume that Γ closed and such that

Capp(Γ) = 0.

We prefer to start the presentation of our results, that we prove in Chap-
ter 5, with the case p > 2. We have the following:

Theorem 0.3.4. Let p > 2 and let u ∈ C1(Ω\Γ) be a solution to (0.3.4)
and assume that f is locally Lipschitz continuous with f(s) > 0 for s > 0,
namely assume (A2

f ). If Ω is convex and symmetric with respect to the

x1-direction, Γ is closed with Capp(Γ) = 0, namely let us assume (A2
Γ), and

Γ ⊂ {x ∈ Ω : x1 = 0},
then it follows that u is symmetric with respect to the hyperplane {x1 = 0}
and increasing in the x1-direction in Ω ∩ {x1 < 0}.

Although the technique that we are going to develop in the proof of
Theorem 0.3.4 works for any p > 2, the result is stated for 2 < p ≤ N since
there are no sets of zero p-capacity when p > N .

Surprisingly the case 1 < p < 2 presents more difficulties related to the fact
that, as already remarked, the operator may degenerate near the critical set
even if p < 2. We will therefore need an accurate analysis on the behaviour
of the gradient of the solution near Γ. We carry out such analysis exploiting
the results of [100] (therefore we shall require a growth assumption on the
nonlinearity) and a blow up argument. The result is the following:

Theorem 0.3.5. Let 1 < p < 2 and let u ∈ C1(Ω \ Γ) be a solution to
(0.3.4) and assume that f is locally Lipschitz continuous with f(s) > 0 for
s > 0 and has subcritical growth, namely let us assume (A1

f ). Assume that

Γ is closed and that Γ = {0} for N = 2, while Γ ⊆M for some compact C2

submanifold M of dimension m ≤ N − k, with k ≥ N
2 for N > 2, see (A1

Γ).
Then, if Ω is convex and symmetric with respect to the x1-direction and

Γ ⊂ {x ∈ Ω : x1 = 0},
it follows that u is symmetric with respect to the hyperplane {x1 = 0} and
increasing in the x1-direction in Ω ∩ {x1 < 0}.

The aim of Chapter 6 is to generalize all the results obtained in Chapter
4 to the case of semilinear cooperative elliptic systems. In particular, we
investigate symmetry and monotonicity properties of singular solutions to
some semilinear elliptic systems in such a way to find a generalization of the
results presented in Chapter 4. In the first part we consider the following
semilinear elliptic system

(0.3.6)


−∆ui = fi(u1, . . . , um) in Ω \ Γ

ui > 0 in Ω \ Γ

ui = 0 on ∂Ω
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where Ω is a bounded smooth domain of RN with N ≥ 2 and i = 1, ...,m
(m ≥ 2). The technique which is mostly used in this chapter is the well
known moving planes method. For simplicity of exposition we assume di-
rectly in all the Chapter 6 that Ω is a convex domain which is symmetric
with respect to the hyperplane {x1 = 0}. The solution has a possible sin-
gularity on the critical set Γ ⊂ Ω. When m = 1 system (6.0.2) reduces to
a scalar equations that was already studied in [50, 110] and in Chapter 4.
The moving planes procedure for semilinear elliptic system has been firstly
adapted by Troy in [123] where he considered the cooperative system (0.3.6)
with Γ = ∅ (see also [41, 42, 106]). This technique was also adapted in the
case of cooperative semilinear systems in half spaces by Dancer in [39] and
in the whole space by Busca and Sirakov in [19]. For the case of quasilinear
elliptic system in bounded domains we suggest [92].

Moreover, motivated by [83], through all the chapter, we assume that
the following hypotheses (denoted by (Sfi) in the sequel) hold:

(Sfi) (i) fi : Rm+ → R are assumed to be C1 functions for every i =
1, ...,m.

(ii) The functions fi (1 ≤ i ≤ m) are assumed to satisfy the mono-
tonicity (also known as cooperative) conditions

∂fi
∂tj

(t1, ..., tj , ..., tm) ≥ 0 for i 6= j, 1 ≤ i, j ≤ m.

Since we want to consider singular solutions, the natural assumption is

ui ∈ H1
loc(Ω \ Γ) ∩ C(Ω \ Γ) ∀i = 1, ...,m

and thus the system is understood in the weak sense:

(0.3.7)

∫
Ω

(∇ui,∇ϕi) dx =

∫
Ω
fi(u1, u2, ..., um)ϕi dx ∀ϕi ∈ C1

c (Ω \ Γ)

for every i = 1, ...,m.
Under the previous assumptions we can prove the following result:

Theorem 0.3.6. Let Ω be a convex domain which is symmetric with re-
spect to the hyperplane {x1 = 0} and let (u1, ..., um) be a solution to (0.3.6),
where ui ∈ H1

loc(Ω \ Γ) ∩ C(Ω \ Γ) for every i = 1, ...,m. Assume that each
fi fulfills (Sfi). Assume also that Γ is a point if N = 2 while Γ is closed and
such that

Cap2
RN

(Γ) = 0,

if N ≥ 3. Then, if Γ ⊂ {x1 = 0}, it follows that ui is symmetric with
respect to the hyperplane {x1 = 0} and increasing in the x1-direction in
Ω ∩ {x1 < 0}, for every i = 1, ...,m. Furthermore

∂x1ui > 0 in Ω ∩ {x1 < 0} ,
for every i = 1, ...,m.

The technique developed in the case of bounded domains (see [50, 51,
110], and [91] for the nonlocal setting) is very powerful and can be adapted
to some cooperative systems in RN involving critical nonlinearity. Papers
on existence or qualitative properties of solutions to systems with critical
growth in RN are very few, due to the lack of compactness given by the
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Talenti bubbles and the difficulties arising from the lack of good variational
methods. We refer the reader to [19, 30, 71, 72, 74, 99] for this kind of
systems. Our aim is to study qualitative properties of singular solutions to
the following m×m system of equations

(0.3.8)

−∆ui =
m∑
j=1

aiju
2∗−1
j in RN \ Γ,

ui > 0 in RN \ Γ,

where i = 1, ...,m, m ≥ 2, N ≥ 3 and the matrix A := (aij)i,j=1,...,m is
symmetric and such that

(0.3.9)

m∑
j=1

aij = 1 for every i = 1, ...,m.

These kind of systems, with Γ = ∅, was studied by Mitidieri in [89, 90]

considering the case m = 2, A =

(
0 1
1 0

)
and it is known in the literature

as nonlinearity belonging to the critical hyperbola.
If m = 1, then (0.3.8) reduces to the classical critical Sobolev equation

(0.3.10)

{
−∆u = u2∗−1 in RN \ Γ

u > 0 in RN \ Γ,

that can be found in [50, 110]. If Γ reduces to a single point we find the
result contained in [121], while if Γ = ∅ then system (0.3.10) reduces to
the classical Sobolev equation (see [21]). For existence results of radial and
nonradial solutions for (0.3.8), we refer to some interesting papers [71, 72].
We want to remark that in [71, 72] the authors treat the general case of a
matrix A in which its entries aij are not necessarily positive and this fact
implies that it is not possible to apply the maximum principle. As remarked
above the natural assumption is

ui ∈ H1
loc(RN \ Γ) ∀i = 1, ...,m

and, thus, the system is understood in the following sense:

(0.3.11)

∫
RN

(∇ui,∇ϕi) dx =
m∑
j=1

aij

∫
RN

u2∗−1
j ϕi dx ∀ϕi ∈ C1

c (RN \ Γ)

for every i = 1, ...,m.
What we are going to show in Chapter 6 is also the following result:

Theorem 0.3.7. Let N ≥ 3 and let (u1, ..., um) be a solution to (0.3.8),
where ui ∈ H1

loc(RN \Γ) for every i = 1, ...,m. Assume that the matrix A =
(aij)i,j=1,...,m, defined above, is symmetric, aij ≥ 0 for every i, j = 1, ...,m
and it satisfies (0.3.9). Moreover at least one of ui has a non-removable2

2Here we mean that the solution (u1, ..., um) does not admit a smooth extension all
over the whole space. Namely it is not possible to find ũi ∈ H1

loc(RN ) with ui ≡ ũi in
RN \ Γ, for some i = 1, ...,m.
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singularity in the singular set Γ, where Γ is a closed and proper subset of
{x1 = 0} such that

Cap2
RN

(Γ) = 0.

Then, all ui are symmetric with respect to the hyperplane {x1 = 0}. The
same conclusion is true if {x1 = 0} is replaced by any affine hyperplane.
If at least one of ui has only a non-removable singularity at the origin for
every i = 1, ...,m, then each ui is radially symmetric about the origin and
radially decreasing.

Another interesting elliptic system involving Sobolev critical exponents
is the following one:

(0.3.12)


−∆u = u2∗−1 +

α

2∗
uα−1vβ in RN \ Γ

−∆v = v2∗−1 +
β

2∗
uαvβ−1 in RN \ Γ

u, v > 0 in RN \ Γ,

where α, β > 1, α+ β = 2∗ := 2N
N−2 (N ≥ 3)

The solutions to (0.3.12) are solitary waves for a system of coupled
Gross–Pitaevskii equations. This type of systems arises, e.g., in the Hartree–
Fock theory for double condensates, that is, Bose-Einstein condensates of
two different hyperfine states which overlap in space. Existence results for
this kind of system are very complicated and the existence of nontrivial so-
lutions is deeply related to the parameter α, β and N . This kind of systems
(0.3.12) with Γ = ∅ was studied in [2, 5, 6, 99, 115, 118]. In particu-
lar, in [99] the authors show a uniqueness result for least energy solutions
under suitable assumptions on the parameters α, β and N , while, in [30]
the authors study also the competitive setting, showing that the system
admits infinitely many fully nontrivial solutions, which are not conformally
equivalent. Motivated by their physical applications, weakly coupled elliptic
systems have received much attention in recent years, and there are many
results for the cubic case where Γ = ∅, α = β = 2 and 2∗ is replaced by 4
in low dimensions N = 3, 4, see e.g. [2, 5, 6, 84, 85, 117, 118]. Since our
technique does not work when 1 < α < 2 or 1 < β < 2, here we study the
case α, β ≥ 2 and N = 3 or N = 4, since we are assuming that α+ β = 2∗.

The last results that it is going to be proved in Chapter 6 is given by
the following:

Theorem 0.3.8. Let N = 3 or N = 4 and let (u, v) ∈ H1
loc(RN \ Γ) ×

H1
loc(RN \ Γ) be a solution to (0.3.12). Assume that the solution (u, v) has

a non-removable3 singularity in the singular set Γ, where Γ is a closed and
proper subset of {x1 = 0} such that

Cap2
RN

(Γ) = 0.

3As above, we mean that the solution (u, v) does not admit a smooth extension all
over the whole space. Namely it is not possible to find (ũ, ṽ) ∈ H1

loc(RN )×H1
loc(RN ) with

u ≡ ũ or v ≡ ṽ in RN \ Γ.
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Moreover let us assume that α, β ≥ 2 and that holds α + β = 2∗. Then,
u and v are symmetric with respect to the hyperplane {x1 = 0}. The same
conclusion is true if {x1 = 0} is replaced by any affine hyperplane. If at least
one between u and v has only a non-removable singularity at the origin, then
(u, v) is radially symmetric about the origin and radially decreasing.

All the results presented here, about systems, are contained in Chapter 6
and in [48]; when this paper was completed, we learned that the case of
bounded domains was also considered in [14] (see [13]), obtaining similar
results.

0.4. The Gibbons’ conjecture for quasilinear elliptic equations

Chapter 7 concerns the study of the qualitative properties of the follow-
ing quasilinear elliptic equation

(0.4.1) −∆pu = f(u) in RN ,

where we denote a generic point belonging to RN by (x′, y) with x′ =
(x1, x2, . . . , xN−1) and y = xN , p > 1 and N > 1. Morever, for suitable
functions, the p-Laplace operator is defined by −∆pu := −div(|∇u|p−2∇u).
As well known, see [46, 122], the solutions of equations involving the p-
Laplace operator are generally of class C1,α. Therefore the equation (0.4.1)
has to be understood in the weak sense. We summarize the assumptions on
the nonlinearity f , denoted by (Gf), in the following:

(Gf): The nonlinearity f(·) belongs to C1([−1, 1]), f(−1) = 0, f(1) = 0,
f ′+(−1) < 0, f ′−(1) < 0 and the set

Nf := {t ∈ [−1, 1] | f(t) = 0}
is finite.

The setting of our assumptions allows us to include Allen-Cahn type
nonlinearities and, in fact, the paper is motivated by some questions arising
from the following problem

(0.4.2) −∆u = u(1− u2) in RN ,
see [65]. G.W. Gibbons [29] formulated the following

Gibbons’ conjecture [29]. – Assume N > 1 and consider a bounded
solution u of (0.4.2) in C2(RN ), such that

lim
xN→±∞

u(x′, xN ) = ±1,

uniformly with respect to x′. Then, is it true that

u(x) = tanh

(
xN − α√

2

)
,

for some α ∈ R?

This conjecture is also known as the weaker version of the famous De Giorgi’s
conjecture [45]. We refer to [55] for a complete history on the argument.

The Gibbons’ conjecture in the semilinear case p = 2 is by now well
understood (see [11, 54, 55, 63]). Here we address the quasilinear case
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for a general class of nonlinearities f . To the best of our knowledge this is
the first result in this framework. This is motivated by the fact that, unlike
the semilinear case (0.4.2), working with the singular operator −∆p(·) we
have to take into account that the nonlinearity f change sign and that all
the techniques involved in the study of the problem (0.4.1) are not standard
since we work in the whole RN .
Our proofs are based on the technique of the moving planes method which
goes back to the papers of Alexandrov [1] and Serrin [111] and subsequently
to the celebrated papers [12, 68] and on the use of maximum and comparison
principles for the −∆p(·) operator, which are much more involved since we
have carefully take into account the critical set Z∇u (see (7.2.5)) where
the gradient of the solution u vanishes. Moreover, when we consider the
case of unbounded domain as RN , the application of the moving planes
technique is much more delicate since weak comparison principles in small
domains have to be substituted by weak comparison principles in unbounded
domains. Actually, the strong comparison principle does not apply simply
as in the case when bounded domains are considered because of the lack
of compactness. When we work with the Laplacian operator, i.e. the case
p = 2, many arguments exploited in the literature are very much related
to the linear and nondegenerate nature of the operator. In Chapter 7 we
cannot take advantage of all the classical techniques used in the semilinear
case and, thus, we need to recover these arguments in the case of equations
involving nonlinear degenerate/singular operators.
The main result of Chapter 7 is given by the following:

Theorem 0.4.1. Let N > 1, (2N + 2)/(N + 2) < p < 2 and u ∈
C1,α
loc (RN ) be a solution of (0.4.1), such that

|u| ≤ 1

and

(0.4.3) lim
y→+∞

u(x′, y) = 1 and lim
y→−∞

u(x′, y) = −1,

uniformly with respect to x′ ∈ RN−1. If f fulfills (Gf), then u depends only
on y and

(0.4.4) ∂yu > 0 in RN .

To get our main result, we first recover a weak comparison principle
in a suitable half-space and then we exploit it to start the moving planes
procedure. The application of the moving planes method is not standard
since we have to recover compactness using some translation arguments,
(since we work on RN ) and, not least, we have to take into account the
fact that the nonlinearity f change sign which produces peculiar difficulties
in the case p 6= 2, already in the case of bounded domain. Finally, we get
the monotonicity in all the directions of the the upper hemi-sphere SN−1

+ :=

{ν ∈ SN−1
+ | (ν, eN )} that will give us the desired 1-dimensional symmetry.
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0.5. Une présentation plus détaillée

Dans cette thèse, nous étudions les propriétés qualitatives des solutions
d’équations aux dérivées partielles (EDP) semilinéaires et quasilinéaires de
type elliptique. Nous traitons en particulier des solutions faibles de

(0.5.1) −∆pu = f(u) dans Ω,

où Ω est un domaine de RN , N ≥ 2. Soit u ∈ C2(Ω); nous définissons le
operateur p-Laplacien comme suit:

∆pu = div(|∇u|p−2∇u)

= |∇u|p−4

|∇u|2∆u+ (p− 2)
n∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

 ,(0.5.2)

où (0.5.2) est défini dans l’ensemble {x ∈ Ω : ∇u(x) 6= 0} pour chaque
1 < p < 2, et dans le domaine entier Ω pour 2 ≤ p < +∞. L’hypothèse sur
la non-linéarité sera toujours spécifiée dans tous les chapitres, mais le lecteur
pourrait penser que f est une fonction continue et localement lipschitzienne.
Nous devons remarquer que l’opérateur p-Laplacien devient le Laplacien
classique quand p = 2, c’est-à-dire

∆2u = div(∇u) = ∆u =
N∑
i=1

∂2u

∂x2
i

.

Dans ce cas, nous pouvons parfois envisager des solutions classiques pour
l’équation (0.5.1). Quand p 6= 2 la situation est complètement différente et
il est bien connue, puisque que l’opérateur p-Laplacien est singulier ou ellip-
tique dégénéré (respectivement si 1 < p < 2 ou p > 2), les solutions de (0.5.1)
sont généralement de classe C1,α, avec α < 1 (voir [46, 122]) et doivent
uniquement être prises en compte dans le sens faible. Plus précisément, on
dit que u ∈W 1,p(Ω) résout (0.5.1) si et seulement si

(0.5.3)

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx =

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞(Ω).

Nous avons obtenu (0.5.3) en appliquant le théorème de la divergence à:∫
Ω
−div(|∇u|p−2∇u)ϕdx =

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω).

Nous considérons maintenant le problème suivant avec les condition aux
limites de Dirichlet:

(0.5.4)

{
−∆pu = f(u) in Ω

u = 0 on ∂Ω

où Ω est un domaine lisse et borné de RN , avec N ≥ 2, et f est supposé être
continue et localement lipschitzienne.
Une solution u à (0.5.4) peut être définie, par exemple, en supposant que

u ∈W 1,p
0 (Ω) dans le formulation faible. C’est aussi l’espace où il est naturel

de prouver l’existence de solutions sous des hypothèses appropriées.
Il est important de noter que, dans la formulation faible (0.5.3), la fonction
test ϕ appartient à C∞c (Ω), mais par des arguments de densité, il est possible
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démontrer que aussi ϕ ∈W 1,p
0 (Ω) est une bonne fonction test. En réalité, par

la définition de W 1,p
0 (Ω), pour chaque ϕ ∈W 1,p

0 (Ω) il existe {ϕn} ∈ C∞c (Ω)
tel que

ϕn −→ ϕ in W 1,p
0 (Ω)

pour n→ +∞. Par conséquent, en prenant ϕn comme fonctions tests dans
(0.5.3), pour chaque n, nous avons∫

Ω
|∇u|p−2(∇u,∇ϕn) dx =

∫
Ω
f(u)ϕn dx ∀ϕn ∈ C∞c (Ω).

Nous voulons montrer∫
Ω
|∇u|p−2(∇u,∇ϕn) dx −→

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx,

comme n→ +∞. En soustrayant le côté gauche de (0.5.3) et le côté gauche
de (0.5.3) avec ϕn comme fonction test, on obtient∫

Ω

∣∣|∇u|p−2(∇u,∇(ϕn − ϕ))
∣∣ dx

≤
∫

Ω
|∇u|p−1|∇(ϕn − ϕ)| dx

≤
(∫

Ω
|∇u|p

) p−1
p
(∫

Ω
|∇(ϕn − ϕ)|p

) 1
p n→+∞−→ 0,

où, dans la dernière ligne, nous avons utilisé l’inégalité de Hölder et le
théorème de convergence dominée.
Nous notons % := |∇u|p−2. Dans l’ensemble de points critiques

(0.5.5) Zu := {x ∈ Ω | ∇u(x) = 0},

l’équation est dégénérée pour p > 2 (i.e. % ≈ 0) et singulier pour 1 < p < 2
(i.e. % ≈ +∞). Si 0 < %(x) ≤ C tous les résultats classiques sont vrais (voir
par exemple [70]), par conséquent u ∈ C2(Ω \ Zu). Si % ≈ 0 ou % ≈ +∞
les résultats classiques ne sont pas vrai. En particulier, au chapitre 1, nous
prouverons le résultat suivant sur la régularité des dérivées secondes des
solutions du problème (0.5.4):

Proposition 0.5.1. Soit u ∈ C1(Ω), u > 0, un solution faible du
probléme (0.5.4). Supposons que f soit continue et localement lipschitzi-
enne. Supposons que Ω est un domaine borné et lisse de RN . Donc

(0.5.6)

∫
Ω\{ui=0}

|∇u|p−2

|y − x|γ
|∇ui|2

|ui|β
dx ≤ C,

où 0 ≤ β < 1, γ < N − 2 (γ = 0 if N = 2), 1 < p < +∞ et la constante
positive C ne dépend pas de y. En particulier, nous avons

(0.5.7)

∫
Ω\{∇u=0}

|∇u|p−2−β‖D2u‖2

|y − x|γ
dx ≤ C̃,

pour une constante positive C̃ ne dépendant pas de y.

Grâce au résultat précédent, il est possible démontrer la propriété de
sommabilité suivante de |∇u|, dont la preuve se trouve au chapitre 1:
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Théorème 0.5.1. Soit u ∈ C1(Ω), u > 0, un solution faible du problème
(0.5.4) et supposons, en outre, que f(s) > 0 pour toute s > 0. Ensuite, il
existe une constante positive C, indépendante de y, telle que

(0.5.8)

∫
Ω

1

|∇u|(p−1)r

1

|x− y|γ
dx ≤ C

où 0 < r < 1 et γ < N − 2 pour N ≥ 3 (γ = 0 if N = 2). En particulier,
l’ensemble critique Zu a une mesure Lebesgue nulle.

0.6. Propriétés qualitatives des solutions et méthode des
hyperplans mobiles

Les propriétés qualitatives des solutions d’équations aux dérivées par-
tielles (EDP) peuvent être interprétées, en manière extrêmement large, comme
incluant toutes les propriétés des solutions. Dans cette section, nous allons
concentrer sur les propriétés géométriques des solutions. Les conditions aux
limites jouent un rôle important dans le comportement qualitatif des so-
lutions. Les propriétés qualitatives des solutions sont étroitement liées à
l’existence d’une solution d’équation aux dérivées partielles elliptiques; En
fait, il semble évident que l’existence de solutions constitue la base de l’étude
des propriétés qualitatives. D’autre part, la recherche de solutions avec des
propriétés particulières pourrait fournir des indices pour l’existence. Les
études systématiques des propriétés qualitatives des solutions aux équations
ou systèmes elliptiques non linéaires généraux ont commencé essentiellement
à la fin des années 1970, bien que certaines équations elliptiques non linéaires
(telles que l’équation de Lane–Emden) remontent en réalité au XIX siècle.
Il convient toutefois de noter que les travaux antérieurs dans ce sens sur des
équations elliptiques linéaires, telles que la symétrisation ou les propriétés
nodales des fonctions propres, ont eu des conséquences dans les équations
non linéaires. La symétrie et la monotonie restent un sujet important dans
la théorie moderne des équations aux dérivées partielles non linéaires.

La méthode des hyperplans mobiles est la technique plus importante
utilisée ces dernières années pour établir certaines propriétés qualitatives de
solutions positives d’équations elliptiques non linéaires telles que la symétrie
et la monotonie. Par exemple, elle est utilisée pour prouver la monotonie
dans la direction x1 des solutions scalaires d’équations elliptiques de second
ordre non linéaires dans les domaines Ω in RN . L’ingrédient essentiel est
le principe du maximum, qui dans le cas semi-linéaire est équivalent au
principe de comparaison. Cette méthode compare les valeurs de la solution
de l’équation en deux points différents.

La méthode des hyperplans mobiles remonte à A. D. Alexandrov [1],
dans son étude des surfaces à courbure moyenne constante, et à J. Serrin
[111] qui a introduit la technique dans le contexte des EDP elliptiques, dans
l’étude de problèmes surdéterminés. Après quelques années, B. Gidas, W.N.
Ni et L. Nirenberg, dans [68], ont adapté cette méthode pour prouver la
monotonie des solutions positives qui s’annule sur ∂Ω et, donc, la symétrie;
dans [69], les auteurs ont étendu ces techniques aux équations de tous les
RN . Nous renvoyons également le lecteur à d’autres documents pertinents
[9, 8, 10, 12, 21, 22, 33, 35, 36, 59, 60, 61, 110, 112, 113]. Comme
nous l’avons dit, le principe du maximum joue dans tous ces papiers le
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rôle crucial, mais il a fallu recourir à de nombreuses formes du principe du
maximum. Celles-ci incluent également le lemme de Höpf à la frontière. La
version classique des principes du maximum et de comparaison et du lemme
de H öpf sera présentée au chapitre 1.

Maintenant, nous souhaitons simplement utiliser la méthode des hy-
perplans mobiles afin d’énoncer les résultats typiques qu’il est possible de
montrer avec cette technique, dans un cadre très simple; pour ce faire, nous
considérons le problème elliptique semi-linéaire suivant

(0.6.1)


−∆u = f(u) dans Ω

u > 0 dans Ω

u = 0 sur ∂Ω

où Ω est un domaine borné lipschitzien de RN , avec N ≥ 2 et f est une
fonction continue et localement lipschitzienne.
Pour un nombre réel λ nous fixons

(0.6.2) Ωλ = {x ∈ Ω : x1 < λ}

(0.6.3) xλ = Rλ(x) = (2λ− x1, x2, . . . , xn)

qui est le symétrique de x par rapport à l’hyperplan

(0.6.4) Tλ := {x1 = λ}.
En outre

(0.6.5) a = inf
x∈Ω

x1.

Enfin nous définissons

(0.6.6) uλ(x) = u(xλ) .

Nous observons que, puisque le problème (0.6.1) est invariant par isométries,
uλ, défini dans (0.6.6), est également une solution pour (0.6.1).

Énonçons maintenant le résultat principal

Théorème 0.6.1 ([12]). Soit u ∈ C2(Ω)∩C(Ω) une solution au problème
(0.6.1). Supposons que f est une fonction continue et localement lipschitzi-
enne et que Ω est convexe dans la direction x1 et symétrique par rapport
à l’hyperplan {x1 = 0}. Il s’ensuit que u est symétrique par rapport à
l’hyperplan {x1 = 0} et monotone croissant dans la direction x1 dans Ω ∩
{x1 < 0}, avec

ux1 > 0 dans Ω ∩ {x1 < 0} .

Démonstration. Soit

Λ0 = {a < λ < 0 : u ≤ ut in Ωt for all t ∈ (a, λ]}.
Le but de la méthode des hyperplans mobiles est de montrer que sup Λ0 = 0;
une fois que nous l’avons, nous obtenons automatiquement la monotonicité
pour la solution u et ensuite, en effectuant la méthode des hyperplans mo-
biles dans la direction opposée, nous obtenons également la symétrie pour u.
Pour commencer avec la méthode des plans mobiles, nous devons prouver
que Λ 6= ∅.
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Step 1: Nous considérons a < λ < a + σ avec σ > 0 petite. En particulier,
supposons d’abord que σ > 0 est suffisamment petit pour que |Ωλ| < δ, pour
quelques petites δ > 0. Remarquant que u ≡ uλ sur Tλ et u ≤ uλ on ∂Ωλ\Tλ
par les conditions aux limites de Dirichlet, c’est-à-dire u ≤ uλ on ∂Ωλ, il
s’ensuit, par le principe de comparaison faible dans les petits domaines (voir
Théorème 1.2.1), que u ≤ uλ dans Ωλ, par conséquent Λ0 6= ∅ (voir la Figure
3).

Figure 3. Step 1 dans la méthode des hyperplans mobiles.

Step 2: Nous pouvons définir

λ0 = sup Λ0.

Comme indiqué ci-dessus, pour prouver notre résultat, nous devons montrer
que λ0 = 0. Pour cela, supposons que λ0 < 0 et aboutissons à une contra-
diction en prouvant que u ≤ uλ0+ν in Ωλ0+ν pour toute 0 < ν < ν̄ pour
certains petits ν̄ > 0. Par continuité nous savons que u ≤ uλ0 in Ωλ0 . Par
le principe de comparaison forte, remarquant que u < uλ0 sur ∂Ωλ0 , on en
déduit u < uλ0 dans Ωλ0 . Par conséquent, étant donné un ensemble com-
pact K ⊂ Ωλ0 , par continuité uniforme, nous pouvons assurer que u < uλ0+ν

dans K pour tout 0 < ν < ν̄ pour petits ν̄ > 0. Donc, par construction, il
en résulte que u ≤ uλ0+ν sur ∂(Ωλ0+ν \K) pour tout 0 < ν < ν̄ pur petits
ν̄ > 0. Pour K large et ν̄ petit selon le principe de comparaison faible dans
les petits domaines (voir Théorème 1.2.1) nous avons que |Ωλ0+ν \ K| est
petit et donc u ≤ uλ0+ν dans Ωλ0+ν \ K et donc u ≤ uλ0+ν dans Ωλ0+ν .
Mais ceci est en contradiction avec la définition de λ0. Donc λ0 = 0 (voir
Figure 4).

Step 3: Étant donné que la méthode des hyperplans mobiles peut être ef-
fectuée de la même manière mais dans le sens opposé, cela prouve le résultat
de symétrie souhaité. Le fait que la solution soit monotone croissante dans
la direction x1 dans {x1 < 0} est implicite dans la méthode des hyperplans
mobiles. Cela fournit ux1 ≥ 0 dans {x1 ≥ 0}. Donc ux1 > 0 par le principe
du maximum fort.

�

En conséquence, nous avons:
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Figure 4. Step 2 dans la méthode des hyperplans mobiles.

Corollaire 0.6.2 ([12]). Sous l’hypothèse du Théorème 0.6.1 si Ω =
BR(0) pour tout R > 0, alors u est radialement symétrique et monotone
décroissant autour de l’origine.

Nous venons de présenter la version classique de la méthode des hy-
perplans mobiles pour les équations elliptiques semi-linéaires. Comme nous
l’avons déjà dit, dans le cas p = 2, plusieurs résultats ont été obtenus, à
commencer par le célèbre article de B. Gidas, W. N. Ni et L. Nirenberg
[68]. Ce papier a eu un grand impact non seulement en vertu des nombreux
résultats de monotonie et de symétrie qu’il contient, mais aussi parce qu’il
a attiré l’attention sur la méthode des hyperplans mobiles qui, depuis alors,
a été largement utilisée dans de nombreux problèmes différents.

La situation est complètement différente lorsque p 6= 2 et il y a moins de
résultats concernant la monotonie et la symétrie des solutions au problème
elliptique quasi linéaire. Considérons

(0.6.7)


−∆pu = f(u) dans Ω

u > 0 dans Ω

u = 0 sur ∂Ω

où Ω est un domaine borné lipschitzien de RN , avec N ≥ 2, 1 < p < +∞ et
f est une fonction continue et localement lipschitzienne.

Dans ce cas, comme indiqué précédemment, les solutions ne peuvent
être envisagées que dans un sens faible. Quoi qu’il en soit, ce n’est pas
une difficulté, car la méthode des hyperplans mobiles peut être adaptée
à des solutions faibles de problèmes strictement elliptiques sous forme de
divergence (voir [32, 38]).

La vraie difficulté du problème (0.6.7) est que l’opérateur p-laplacien
dégénère dans les points critiques des solutions, de sorte que les principes
de comparaison, qui pourraient remplacer les principes du maximum a fin
d’utiliser la méthode des hyperplans mobiles l’opérateur, ne sont pas disponibles
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sous la même forme que pour p = 2. En fait, des contre-exemples sont
disponibles pour la validité des principes de comparaison et pour les résultats
de symétrie (voir [73] et [18]).

L. Damascelli in [33] a fait un premier pas vers l’extension de la méthode
des hyperplans mobiles pour solutions des problèmes impliquant l’opérateur
p-Laplacien. Dans cet article, l’auteur démontre principalement quelques
principes de comparaison faibles et forts pour la résolution des inégalités
différentielles impliquant le p-Laplacien. En utilisant ces principes, il adapte
la méthode des hyperplans mobiles pour solutions des équations aux dérivée
partielles elliptique quasi-linéaire, permettant d’obtenir des résultats de mono-
tonie et de symétrie dans le cas 1 < p < 2. Bien que les principes de com-
paraison de [33] soient très puissants dans cette situation, le résultat de
la symétrie n’est pas complet et repose sur l’hypothèse que l’ensemble des
points critiques de u ne déconnecte pas les ensembles obtenus par la méthode
des hyperplans mobiles. Ainsi, lorsque p > 2, les résultats contenus dans
[33] ne sont pas suffisants pour adapter la méthode des hyperplans mobiles.
Quelques années plus tard, L. Damascelli et B. Sciunzi dans [37, 36] ont
montré des versions générales du principe de comparaison faible (voir Theo-
rem 1.2.5) et du principe de comparaison forte (voir Theorem 1.5.3) pour la
solution à (0.1.7), qui étaient suffisante pour appliquer la technique à chaque
p.

Le résultat analogue de Theorem 0.6.1, dans le contexte quasi linéaire,
est donné par ce qui suit:

Théorème 0.6.3 ([36]). Soit u ∈ C1,α(Ω)∩C(Ω) une solution faible pour
(0.6.7), avec 1 < p < +∞. Supposons que f soit une fonction continue et
localement lipschitzienne telle que f(s) > 0 pour s > 0 et que Ω est convexe
dans la direction x1 et symétrique par rapport à l’hyperplan {x1 = 0}. Il
s’ensuit que u est symétrique par rapport à l’hyperplan {x1 = 0} et monotone
croissante dans la direction x1 dans Ω ∩ {x1 < 0}, avec

ux1 > 0 dans Ω ∩ {x1 < 0} .

De plus, si Ω = BR(0), alors u est radialement symétrique et radialement
monotone décroissant.

La preuve du théorème 0.6.3 est semblable au cas semi-linéaire (voir
Théorème 0.6.1), mais les principes du maximum classiques, qui équivaut
au principes de comparaison dans le cas semi-linéaire, sont remplacés par
les principes de comparaison par L. Damascelli et B. Sciunzi [36, 37] (voir
Théorème 1.2.5 et 1.5.3) et l’inégalité classique de Poincaré est remplacée
par une inégalité pondérée de Poincaré (voir le Théorème 1.1.4).

La méthode des hyperplans mobiles est une technique très puissante qui
peut également être adaptée pour des équations elliptiques quasi linéaires
dans des domaines non bornés. Dans le cas de domaines non bornés les prin-
cipaux exemples, issus de nombreuses applications, sont fournis par l’espace
tout entier RN et par le demi-espace RN+ . Pour le cas de l’espace tout entier
avec p = 2, où une symétrie radiale des solutions est attendue, nous référons
à [21, 68, 69]. Nous renvoyons les lecteurs à [8, 9, 10, 34, 38, 40, 56]
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pour les résultats concernant la monotonie des solutions en demi-espaces,
dans le cas non dégénéré.

Le cas des équations avec le p-Laplacien dans des domaines non bornés
est vraiment plus difficile à étudier. Disons seulement que l’utilisation
d’espaces de Sobolev pondérés est nécessaire dans le cas p > 2 et qu’elle
nécessite l’utilisation d’une inégalité de type Poincaré pondérée avec le poids
% = |∇u|p−2 (voir la section 1.1). Cette dernière implique des constantes
qui peuvent exploser lorsque la solution approche de zéro, ce qui peut ar-
river aussi pour les solutions positives dans des domaines non bornés. Par
conséquent, le manque de compacité joue un rôle important.

Lorsqu’on considère le cas du demi-espace RN+ , l’application de la tech-
nique des hyperplans mobiles est beaucoup plus délicate, car les principes
de comparaison faibles dans les petits domaines doivent être respectés sub-
stitués par des principes de comparaison faibles dans des domaines étroits
non bornés (voir Théorème 1.3.1, Théorème 1.3.3 et Théorème 1.3.4).

De plus, le principe de comparaison fort ne s’applique pas de manière
simple comme dans le cas où le domaine est borné. Dans le cas semi-linéaire
p = 2, de nombreux arguments exploités dans la littérature sont très liés à la
nature linéaire et non dégénérée de l’opérateur, de sorte qu’il n’est pas pos-
sible d’étendre ces arguments au cas d’équations impliquant des opérateurs
dégénérés non linéaires.

Compte tenu de l’opérateur p-Laplacien et des problèmes rencontrés dans
les demi-espaces, les premiers résultats ont été obtenus au cas singulier 1 <
p < 2 in [58, 59], où des non-linéarités positives et localement lipschitziennes
considérées. Une réponse partielle dans le cas plus difficile dégénéré p > 2 a
été obtenue dans [61], où non-linéarités de type puissance sont considérées
sous la restriction 2 < p < 3. Quelques années plus tard, la restriction
2 < p < 3 a été supprimée dans [60] et, de plus, les auteurs ont envisagé une
classe plus large de non-linéarités (en particulier des non-linéarités positives
super linéaires en zéro).

Dans le cas de l’espace tout entier RN , pour p = 2, l’application de la
méthode des hyperplans mobiles est très compliquée, car il faut le comporte-
ment de la solution à l’infini. Dans [21], L. Caffarelli, B. Gidas et J. Spruck
ont prouvé, grâce à la méthode des hyperplans mobiles et à l’utilisation
de la transformation de Kelvin, que toute solutions positive de (0.6.1) avec

f(t) ≈ t
N+2
N−2 , sont radialement symétrique et monotone décroissant par rap-

port à un point de RN . Nous renvoyons également à l’article phare de
B. Gidas, W. M. Ni et L. Nirenberg [69] pour des résultats concernant la
symétrie et la monotonicité des solutions dans RN , mais avec une hypothèse
supplémentaire sur le comportement des solutions à infini.

La situation pour p 6= 2 et Ω = RN est beaucoup plus compliquée;
l’opérateur n’est pas linéaire et, comme auparavant, il faut un principe de
comparaison dans des domaines non bornés (qui ne sont pas équivalents au
principe maximum). Un premier résultat concernant les propriétés quali-
tatives des solutions pour les équations elliptiques quasi-linéaires dans tout
l’espace est dû à J. Serrin et H. Zou [112]. Dans cet article, les auteurs
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ont besoin d’une hypothèse supplémentaire sur la décroissance de la solu-
tion à l’infini et sur l’ensemble critique. La version non linéaire du résultat
obtenu par L. Caffarelli, B. Gidas et J. Spruck dans [21], c’est-à-dire lorsque

f(t) ≈ t
N(p−1)+p

Np n’était pas facile à obtenir car la transformation de Kelvin
pour p 6= 2 ne fonctionne pas (voir par exemple [87]) et aussi parce qu’il est
impossible de commencer par la méthode des hyperplans mobiles sans toute
hypothèse a priori sur la décroissance des solutions à l’infini. Ce problème
a été résolu par B. Sciunzi dans [107]; l’argument est basé sur des estima-
tions a priori prouvées par J. Vetois [128], sur une limite inférieure du taux
de décroissance de |∇u|, la méthode des hyperplans mobiles, l’inégalité de
Hardy et un type pondéré de inégalité de Poincaré.

Au meilleur de notre connaissance, tous les résultats de symétrie présentés
dans cette section pour les équations impliquant l’opérateur p-Laplacien
dans RN ou dans RN+ , avec p 6= 2, traités juste le cas de la non-linéarité
positive. Au chapitre 7, nous proposerons une variante intéressante de la
méthode des hyperplans mobiles qui fonctionne pour une classe spéciale de
non-linéarités de signe changeantes et sera très utile pour résoudre la version
quasi-linéaire de la conjecture de Gibbons pour (2N + 2)/(N + 2) < p < 2.

0.7. Lemme de Höpf aux bord pour les équations elliptiques
singulières

À partir de l’article [31], les équations elliptiques singulières semilinéaires
ont été étudiées de nombreux points de vue. Voir par ex. [4, 16, 17, 25,
26, 27, 28, 67, 75, 79, 82, 83, 95, 116] qui sont en quelque sorte liés
aux résultats contenus dans cette thèse. Un point crucial dans l’étude des
équations elliptiques semi-linéaires singulières est le étude du comportement
des solutions près de la frontière, à savoir où les solutions présentent en
réalité un manque de régularité. En particulier, le fait que les solutions ne
soient pas C1 jusqu’au bord empêche la validité du lemme de Höpf, voir
[15, 76, 103]. Nous abordons cette question et fournissons une version
générale du lemme de Höpf, au chapitre 2 (voir aussi [24]) pour les équations
elliptiques singulières semi-linéaires. Considérons en particulier le problème
suivant:

(0.7.1)


−∆u =

1

uγ
+ f(u) dans Ω

u > 0 dans Ω

u = 0 sur ∂Ω,

où γ > 1, Ω est un domaine borné C2,α de RN avec 0 < α < 1, N ≥ 1 et
f : Ω→ R continue et localement lipschitzienne.
Il est bien connu que les solutions au problème (0.7.1) ne sont généralement
pas lisses jusqu’à la limite. Il a en fait été prouvé dans [82] que les solutions
ne sont pas dans H1

0 (Ω) au moins lorsque γ > 3. Par conséquent, tenant
compte du comportement de régularité naturelle des solutions (voir [31]),
on laisse u ∈ C2(Ω) ∩ C(Ω). L’équation est bien définie à l’intérieur du
domaine au sens classique et sa formulation faible est

(0.7.2)

∫
Ω

(∇u,∇ϕ) dx =

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω).
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Définissons maintenant le concept de normale vers l’intérieur

Définition 0.7.1. Soit Ω ⊂ RN un domaine C2,α borné. Soit Iδ(∂Ω)
un voisinage de ∂Ω avec la propriété de point unique le plus proche (voir,
par exemple, [66]). Donc pour chaque x ∈ Iδ(∂Ω), il existe un unique point
x̂ ∈ ∂Ω tel que |x − x̂| = dist(x, ∂Ω). Nous définissons la normale vers
l’intérieur comme

(0.7.3) η(x) :=
x− x̂
|x− x̂|

.

Ayant ces remarques à l’esprit, nous sommes maintenant prêts à énoncer le
résultat principal du chapitre 2 (voir aussi [24]):

Théorème 0.7.2 (Lemme de Höpf aux bord, [24]). Soit u ∈ C2,α(Ω) ∩
C(Ω) une solution positive du problème (0.7.1). Donc il existe un voisinage
Iδ(∂Ω) de ∂Ω tel que

(0.7.4) ∂ν(x)u > 0 ∀x ∈ Iδ(∂Ω)

à condition que (ν(x), η(x)) > 0 uniformément par rapport à x ∈ Iδ(∂Ω),
c’est-à-dire à condition que (ν(x), η(x)) ≥ β > 0 pour certains β > 0 pour
chaque x ∈ Iδ(∂Ω).

La preuve de ce résultat est basée sur un argument de changement
d’échelle près de la bord, ce qui conduit à l’étude d’un problème limitant
dans le demi-espace (voir problème (2.0.5)) et obéit à des estimations a priori
appropriées. De plus, pour ce problème limite, nous fournissons un résultat
de classification qui est crucial pour notre technique, et peut également avoir
un intérêt indépendant (voir Theorem 2.0.3).

La technique de E. Höpf [76] (voir aussi [70]) a déjà été développée et
améliorée également dans le cadre quasi linéaire. Nous renvoyons les lecteurs
à [103] et au chapitre 1 (voir aussi [127]). À un moment donné, au cours de
la thèse, il était naturel de savoir s’il existe un résultat analogue à celui du
théorème 0.7.2 du problème (0.7.1) dans le cas quasi linéaire, considérons
donc:

(0.7.5)


−∆pu =

1

uγ
+ f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω

où p > 1, γ > 1, Ω est un domaine borné de classe C2,α de RN avec N ≥ 1
et f : Ω→ R continue et localement lipschitzienne.

Puisque l’opérateur p-Laplacien est dégénéré ou singulier, une solution
u ∈ C1,α(Ω)∩C(Ω) du problème (0.7.5) doit être compris dans le sens faible:
(0.7.6)∫

Ω
|∇u|p−2(∇u,∇ϕ) dx =

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω).

En collaboration avec B. Sciunzi (voir [52]), nous avons obtenu ce qui
suit:
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Théorème 0.7.3 (Lemme de Höpf aux bord, [52]). Soit u ∈ C1,α(Ω) ∩
C(Ω) une solution positive du problème (0.7.5). Donc, pour chaque β > 0,
il existe une voisinage Iδ(∂Ω) de ∂Ω, tel que

(0.7.7) ∂ν(x)u > 0 ∀x ∈ Iδ(∂Ω)

chaque fois que ν(x) ∈ RN avec ‖ν(x)‖ = 1 et (ν(x), η(x)) ≥ β.

La preuve de ce résultat sera présentée au chapitre 3. Néanmoins, la
preuve de Theorem 0.7.3, à savoir la preuve du Lemme de Höpf dans le cas
où il apparâıt le terme singulier u−γ , ne peut être réalisée dans le manière
standard principalement parce que les solutions ne sont pas de classe C1

jusqu’au bord. Plus précisément, les preuves dans [70, 76, 103, 127] ont
pour caractéristique commune de se baser sur la comparaison de la solution
avec des sous-solutions qui ont un comportement connu sur la frontière.
Cette approche, avec quelques difficultés à prendre en compte, peut être
exploitée également au cas singulier puisque t−γ a le bon comportement de
monotonie. Cela conduit en fait à contrôler le comportement de la solution
près de la limite avec une comparaison basée sur la fonction de distance.
Ceci est aussi contenu dans le théorème 3.3.2 qui donne un résultat de type
Lazer et Mckenna [82]. Bien que certaines des idées sous-jacentes de notre
approche aient une saveur commune à celles exploitées dans [24] et dans le
chapitre 2, les preuves que nous exploitons au chapitre 3 sont nouvelles et
adaptées à la nature non linéaire dégénérée du p-Laplacien.

0.8. Propriétés qualitatives de solutions singulières pour
problèmes elliptiques

Le chapitre 4 a pour but d’étudier le problème elliptique semi-linéaire
singulier suivant:

(0.8.1)


−∆u = f(x, u) dans Ω \ Γ

u > 0 dans Ω \ Γ

u = 0 sur ∂Ω

où Ω est un domaine lisse et borné RN avec N ≥ 2 qui est convexe dans le
direction x1 et symétrique par rapport à l’hyperplan {x1 = 0}. La solution a
une éventuelle singularité sur l’ensemble critique Γ ⊂ Ω et est donc comprise
dans le sens suivant: u ∈ H1

loc(Ω \ Γ) ∩ C(Ω \ Γ) et

(0.8.2)

∫
Ω

(∇u,∇ϕ) dx =

∫
Ω
f(x, u)ϕdx ∀ϕ ∈ C1

c (Ω \ Γ) .

Le terme f(x, u) est supposé satisfaire

(If ) Nous disons que f remplit la condition (If ) si f : Ω\Γ×(0,+∞)→
R est un fonction continue telle que pour 0 < t ≤ s ≤ M et pour
tout ensemble compact K ⊂ Ω \ Γ, on a

f(x, s)− f(x, t) ≤ C(K,M)(s− t) pour chaque x ∈ K ,

où C(K,M) est une constante positive en fonction de K et M . En
outre f(·, s) est non décroissante dans la direction x1 en Ω∩ {x1 <
0} et symétrique par rapport à l’hyperplan {x1 = 0}.
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En particulier, cela nous permet notamment de considérer des équations
impliquant des potentiels de type Hardy-Leray, voir [122].

Maintenant, nous énonçons le premier résultat principal du chapitre 4:

Théorème 0.8.1. Soit Ω un domaine convexe symétrique par rapport à
l’hyperplan {x1 = 0} et soit u ∈ H1

loc(Ω \ Γ) ∩ C(Ω \ Γ) une solution pour
(0.8.1). Supposons que f remplit (If ). Supposons aussi que Γ est un point
si N = 2 tandis que Γ est fermé et tel que

Cap2
RN

(Γ) = 0,

si N ≥ 3. Ensuite, si Γ ⊂ {x1 = 0}, il s’ensuit que u est symétrique
par rapport à l’hyperplan {x1 = 0} et croissante dans la direction x1 dans
Ω ∩ {x1 < 0}. En outre

ux1 > 0 dans Ω ∩ {x1 < 0} .
Nous voulons remarquer que, dans le travail de B. Sciunzi [110], l’auteur

a considéré l’ensemble singulier Γ contenu dans une sous-variété lisse (N−2)-
dimensionnelle de l’hyperplan {x1 = 0} si N > 2, alors qu’il s’agit d’un
point dans la dimension deux. Avec la même technique, développée dans
[110], des problèmes plus généraux pourraient être envisagés, par exemple
cas où le ensemble critique a une capacité nulle. Il est également clair que,
si Γ n’est contenu dans aucun hyperplan de symétrie du domaine, puis avec
notre technique, il pourrait être en tout cas possible de réaliser la méthode
des hyperplans mobiles jusqu’à ce que l’hyperplan touche l’ensemble cri-
tique. C’est optimal en quelque sorte, car il est implicite dans la méthode
des hyperplans mobiles que la solution est monotone et qu’elle peut changer
de pente près de l’ensemble critique. Cela montre que la méthode des hy-
perplans mobiles ne peut aller au-delà de l’ensemble critique. Il convient
également de souligner que Théorème 0.8.1 pour le problème (0.8.1) est tou-
jours vrai si l’opérateur Laplacien ∆u est remplacé par div(A(x)∇u) pour
une matrice définie positive A(x) = A(x2, . . . , xn) avec coefficients continus
bornés. Dans ce cas toutes les preuves peuvent être répétée mot à mot et
sans régularité, la régularité continue des coefficients est également requise
en dimension deux.

Les premiers résultats concernant l’applicabilité de la méthode des hy-
perplans mobiles au cas de solutions singulières remontent à [22] (voir aussi
[121]) où le cas où l’ensemble singulier est un point unique est considéré.
Nous suivons et améliorons ici la technique de [110], où le cas d’un ensem-
ble singulier lisse (N − 2)-dimensionnel a été considéré dans le cas d’une
nonlinéarité Lipschitz. Mentionnons que la technique introduite dans [110]
fonctionne aussi dans un contexte non local (voir [91]).
Par contre, dans le cas Γ = ∅, propriétés de symétrie et monotonicité des so-
lutions aux problèmes elliptiques semi-linéaires impliquant des non-linéarités
singulières, ont été étudiés dans [25, 26]. Aussi dans cette direction notre
résultat est nouveau et plus général. En fait, dans [25, 26] il est nécessaire
limiter l’attention aux problèmes de forme (0.7.1), ici il suffit de considérer
des non-linéarités localement Lipschitz par dessus. En fait, toutes les non-
linéarités de la forme

f(x, s) := a1(x1)f1(s) + f2(s) ,
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où f1 est une fonction continue décroissante dans (0,+∞) et non négatif,
f2(·) est localement Lipschitz continue dans [0,+∞) et a1 ∈ C0(R), a1 est
non négatif, pair et non décroissant pour x1 < 0, satisfait notre hypothèses.
La technique, comme indiqué dans [110], peut être appliqué pour étudier
solutions singulières à l’équation critique de Sobolev suivante RN , N ≥ 3,

(0.8.3)

{
−∆u = u2∗−1 dans RN \ Γ

u > 0 dans RN \ Γ.

Dans [110], on a considéré le cas d’un ensemble critique fermé Γ contenu
dans une sous-variété lisse et compacte de dimension d ≤ N − 2 et une pro-
priété de sommabilité de la solution à l’infini était imposée (voir aussi [121]
pour le cas particulier où le ensemble singulier Γ est réduit à un seul point).
Au chapitre 4, nous supprimons ces deux restrictions et nous prouvons ce
qui suit:

Théorème 0.8.2. Soient N ≥ 3 et u ∈ H1
loc(RN \ Γ) une solution pour

(0.8.3). Supposons que la solution u a une singularité non éliminable 4 dans
l’ensemble singulier Γ, où Γ est un sous-ensemble fermé et approprié de
{x1 = 0} tel que

Cap2
RN

(Γ) = 0.

Alors, u est symétrique par rapport à l’hyperplan {x1 = 0}.

La même conclusion est vraie si l’hyperplan {x1 = 0} est remplacé par
un hyperplan affine.

Les résultats obtenus au chapitre 4 dans le cas semi-linéaire, en par-
ticulier les domaines jadis impliquant des domaines bornés, peuvent être
étendus de manière non triviale au cas des équations elliptiques quasi-linéaires;
c’est le sujet principal du chapitre 5. Considérons maintenant le problème.

(0.8.4)


−∆pu = f(u) dans Ω \ Γ

u > 0 dans Ω \ Γ

u = 0 sur ∂Ω,

dans un domaine lisse borné Ω ⊂ RN et p > 1. La solution u a une singularité
possible sur l’ensemble critique Γ et, en fait, nous supposerons seulement
que u appartient à la classe C1 loin de l’ensemble critique. Par conséquent,
l’équation est comprise comme suit:

Définition 0.8.3. On dit que u ∈ C1(Ω\Γ) est une solution pour (0.8.4)
si u = 0 sur ∂Ω et

(0.8.5)

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx =

∫
Ω
f(u)ϕdx ∀ϕ ∈ C1

c (Ω \ Γ) .

Le but du chapitre 5 (voir aussi [51]) est d’étudier les propriétés de
symétrie et de monotonie des solutions lorsque le domaine est supposé avoir
des propriétés de symétrie. Cette question est bien comprise dans le cas

4Nous voulons dire ici que la solution u n’admet pas une prolongement lisse dans tout

l’espace. À savoir il n’est pas possible de trouver ũ ∈ H1
loc(RN ) avec u ≡ ũ dans RN \ Γ.
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semi-linéaire p = 2, comme expliqué précédemment.

Le méthode des hyperplans mobiles pour les problèmes elliptiques quasi-
linéaires, comme indiqué dans la Section 0.1, a été adaptée lorsque Γ =
∅. Cependant, les techniques développées dans le chapitre 4 et décrites ci-
dessus ne peuvent pas être appliquées directement pour deux raisons. Tout
d’abord, la technique développée au chapitre 4 (voir aussi cite EFS, Dino),
qui fonctionne dans le cas p = 2, est fortement basée sur un argument
d’homogénéité qui échoue pour p 6= 2. De plus, étant donné que le gradient
de la solution peut exploser près de l’ensemble critique, l’équation peut
alors présenter à la fois une nature dégénérée et une nature singulière. Ceci
a notamment pour conséquence qu’il n’est plus vrai que le cas 1 < p < 2
permette d’obtenir des résultats plus solides de manière plus simple, comme
c’est le cas dans le cas Γ = ∅.

Maintenant, nous énonçons toutes les hypothèses sur l’ensemble singulier
Γ et sur la non-linéarité f dans les différents cas 1 < p < 2 et p > 2:

(A1
f). Pour 1 < p < 2 nous supposons que f est continue et localement

lipschitzienne, de sorte que, pour tout 0 ≤ t, s ≤ M , il existe une
constante positive Kf = Kf (M) tel que

|f(s)− f(t)| ≤ Kf |s− t|.

De plus f(s) > 0 pour s > 0 et

lim
t→+∞

f(t)

tq
= l ∈ (0,+∞).

pour certains q ∈ R tels que p−1 < q < p∗−1, où p∗ = Np/(N−p).
(A2

f). Pour p ≥ 2 nous supposons seulement que f est continue et locale-
ment lipschitzienne de sorte que, pour 0 ≤ t, s ≤ M il existe une
constante positive Kf = Kf (M) tel que

|f(s)− f(t)| ≤ Kf |s− t|.

En outre f(s) > 0 for s > 0.
(A1

Γ). Pour 1 < p < 2 et N = 2 nous supposons que Γ = {0}, tandis que
pour 1 < p < 2 et N > 2 nous supposons que Γ ⊆M pour certains
compact sous-variété M de classe C2 et de dimension m ≤ N − k,
avec k ≥ N

2 .

(A2
Γ). Pour 2 < p < N et N ≥ 2, nous assumons Γ fermé et tel que

Capp(Γ) = 0.

Nous préférons commencer la présentation de nos résultats, que nous
prouverons au chapitre 5, avec le cas p > 2. Nous avons le éléments suivants:

Théorème 0.8.4. Soient p > 2 et u ∈ C1(Ω \ Γ) une solution du
problème (0.8.4) et assumons que f est continue et localement lipschitzi-
enne, avec f(s) > 0 pour s > 0, à savoir assumons (A2

f ). Si Ω est convexe

et symétrique par rapport à la direction x1, Γ est fermé avec Capp(Γ) = 0,

à savoir assumons (A2
Γ), et

Γ ⊂ {x ∈ Ω : x1 = 0},
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alors il s’ensuit que u est symétrique par rapport à l’hyperplan {x1 = 0} et
monotone croissante dans la direction x1 dans Ω ∩ {x1 < 0}.

Bien que la technique que nous allons développer dans la preuve de The-
orem 0.8.4 fonctionne pour tout p > 2, le résultat est énoncé pour 2 < p ≤ N
puisqu’il n’y a pas d’ensembles de zéro p-capacité quand p > N .

Étonnamment, le cas 1 < p < 2 présente plus de difficultés liées au fait
que, comme cela a déjà été dit, l’opérateur peut dégénérer à proximité de
l’ensemble critique même si p < 2. Nous aurons donc besoin d’une analyse
précise du comportement du gradient de la solution près de Γ. Nous réalisons
une telle analyse en exploitant les résultats de [100] (nous aurons donc
besoin d’une hypothèse de croissance sur la non-linéarité) et d’un argument
de changement d’échelle. Le résultat est le suivant:

Théorème 0.8.5. Soient 1 < p < 2 et u ∈ C1(Ω \ Γ) solutions du
problème (0.8.4) et assumons que f remplit (A1

f ). Supposons que Γ remplit

(A1
Γ). Alors, si Ω est convexe et par rapport à la variable x1 et

Γ ⊂ {x ∈ Ω : x1 = 0},
alors il s’ensuit que u est symétrique par rapport à l’hyperplan {x1 = 0} et
monotone croissante dans la direction x1 dans Ω ∩ {x1 < 0}.

Le chapitre 6 a pour objectif de généraliser tous les résultats du chapitre
4 au cas des systèmes elliptiques coopératifs semi-linéaires. En particulier,
nous étudions la symétrie et la monotonie des solutions singulières de cer-
tains systèmes elliptique semilinéaires de manière à trouver une généralisation
des résultats présentés au chapitre 4. Dans la première partie, nous exam-
inons le système elliptique semi-linéaire suivant:

(0.8.6)


−∆ui = fi(u1, . . . , um) dans Ω \ Γ

ui > 0 dans Ω \ Γ

ui = 0 sur ∂Ω

où Ω est un domaine lisse borné de RN avec N ≥ 2 et i = 1, ...,m (m ≥ 2).
La technique la plus utilisée dans ce chapitre est la méthode bien connue des
hyperplans mobiles. Pour simplifier l’exposition, nous assumons directement
dans tous le Chapitre 6 que Ω est un domaine convexe qui est symétrique
par rapport à l’hyperplan {x1 = 0}. La solution a une éventuelle singularité
sur l’ensemble critique Γ ⊂ Ω. Lorsque m = 1 le système (0.8.6) se réduit
à une équation scalaire déjà étudiée dans [50, 110] et au chapitre 4. La
procédure de déplacement de plans pour le système elliptique semi-linéaire
a été adaptée pour la première fois par Troy in [123] où il a considéré le
système coopératif (0.8.6) avec Γ = ∅ (voir aussi [41, 42, 106]). Cette
technique a également été adaptée dans le cas de systèmes coopératifs semi-
linéaires dans le demi-espaces par Dancer in [39] et dans tout l’espace par
Busca et Sirakov à [19]. Pour le cas d’un système elliptique quasi linéaire
dans des domaines bornés, nous suggérons [92].

De plus, motivés par [83], à travers tout le chapitre, nous supposons que
les hypothèses suivantes (notées (Sfi) dans la suite) sont vérifiées:
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(Sfi) (i) fi : Rm+ → R sont supposés être de classe C1 pour chaque
i = 1, ...,m.

(ii) Les fonctions fi (1 ≤ i ≤ m) sont supposées satisfaire les
conditions de monotonie (également appelées cooperative)

∂fi
∂tj

(t1, ..., tj , ..., tm) ≥ 0 pour i 6= j, 1 ≤ i, j ≤ m.

Puisque nous voulons considérer des solutions singulières, l’hypothèse
naturelle est:

ui ∈ H1
loc(Ω \ Γ) ∩ C(Ω \ Γ) ∀i = 1, ...,m

et ainsi le système est compris dans le sens faible:

(0.8.7)

∫
Ω

(∇ui,∇ϕi) dx =

∫
Ω
fi(u1, u2, ..., um)ϕi dx ∀ϕi ∈ C1

c (Ω \ Γ)

pour chaque i = 1, ...,m.
Sous les hypothèses précédentes, nous pouvons prouver le résultat suivant:

Théorème 0.8.6. Soit Ω une domaine convexe et symétrique par rapport
à l’hyperplan {x1 = 0} et soit (u1, ..., um) une solution du problème (0.8.6),
où ui ∈ H1

loc(Ω \ Γ) ∩ C(Ω \ Γ) pour chaque i = 1, ...,m. Supposons que
chaque fi remplit (Sfi). Supposons aussi que Γ est un point si N = 2 tandis
que Γ est fermé et tel que

Cap2
RN

(Γ) = 0,

si N ≥ 3. Donc, si Γ ⊂ {x1 = 0}, il s’ensuit que ui est symétrique par
rapport à l’hyperplan {x1 = 0} et monotone croissante dans la direction x1

dans Ω ∩ {x1 < 0}, pour chaque i = 1, ...,m. en outre

∂x1ui > 0 in Ω ∩ {x1 < 0} ,

pour chaque i = 1, ...,m.

La technique développée dans le cas des domaines bornés (voir [50, 51,
110] et [91] pour le cas non local) est très puissante et peut être adaptée
à certains systèmes coopératifs dans RN impliquant non-linéarité critique.
Les articles sur l’existence ou les propriétés qualitatives de solutions aux
systèmes à croissance critique de RN sont très peu nombreux, en raison
du manque de compacité due à la présence des bulles de de Talenti et des
difficultés résultant de l’absence de bonnes méthodes variationnelles. Nous
renvoyons le lecteur à [19, 30, 71, 72, 74, 99] pour ce genre de systèmes.
Notre objectif est d’étudier les propriétés qualitatives de solutions singulières
au système d’équations m×m suivant

(0.8.8)

−∆ui =
m∑
j=1

aiju
2∗−1
j dans RN \ Γ,

ui > 0 dans RN \ Γ,
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où i = 1, ...,m, m ≥ 2, N ≥ 3 et la matrice A := (aij)i,j=1,...,m est symétrique
et telle que

(0.8.9)
m∑
j=1

aij = 1 pour chaque i = 1, ...,m.

Ce type de systèmes, avec Γ = ∅, a été étudié par Mitidieri dans [89, 90]

compte tenu du cas m = 2, A =

(
0 1
1 0

)
et il est connu dans la littérature

comme appartenant à l’hyperbole critique.
Si m = 1, alors (0.8.8) réduit à l’équation critique classique de Sobolev

(0.8.10)

{
−∆u = u2∗−1 dans RN \ Γ

u > 0 dans RN \ Γ,

cela se trouve dans [50, 110]. Si Γ se réduit à un seul point, nous trouvons
le résultat contenu dans [121], tandis que si Γ = ∅, alors le système (0.8.10)
se réduit à l’équation classique de Sobolev (voir [21]). Pour des résultats
d’existence de solutions radiales et non radiales pour (0.8.8), nous renvoyons
à des articles intéressants [71, 72]. Nous voulons remarquer que, dans
[71, 72], les auteurs traitent le cas général d’une matrice A dans laquelle
ses coefficients aij ne sont pas nécessairement positives et cela implique qu’il
est impossible d’appliquer le principe maximum. Comme indiqué ci-dessus,
l’hypothèse naturelle est

ui ∈ H1
loc(RN \ Γ) ∀i = 1, ...,m

et donc, le système est compris dans le sens suivant:

(0.8.11)

∫
RN

(∇ui,∇ϕi) dx =

m∑
j=1

aij

∫
RN

u2∗−1
j ϕi dx ∀ϕi ∈ C1

c (RN \ Γ)

pour chaque i = 1, ...,m.
Ce que nous allons montrer au chapitre 6 est également le résultat suiv-

ant:

Théorème 0.8.7. Soient N ≥ 3 et (u1, ..., um) une solution du problème
(0.8.8), où ui ∈ H1

loc(RN \ Γ) pour chaque i = 1, ...,m. Nous supposons que
la matrice A = (aij)i,j=1,...,m, définie ci-dessus, est symétrique, aij ≥ 0 pour
chaque i, j = 1, ...,m et que (0.8.9) est satisfait. De plus, au moins un des
ui a une non amovible 5 singularité dans l’ensemble singulier Γ, où Γ est un
sous-ensemble fermé et approprié de {x1 = 0} tel que

Cap2
RN

(Γ) = 0.

Ensuite, tous les ui sont symétriques par rapport à l’hyperplan {x1 = 0}.
La même conclusion est vraie si {x1 = 0} est remplacé par un hyperplan
affine. Si au moins un de ui a seulement une singularité non éliminable à

5nous voulons dire ici que la solution (u1, ..., um) n’admet pas un prolongement

régulier a tout l’espace. À savoir il n’est pas possible de trouver ũi ∈ H1
loc(RN ) avec

ui ≡ ũi dans RN \ Γ, pour certains i = 1, ...,m.



0.8 Propriétés qualitatives de solutions singulières 37

l’origine pour chaque i = 1, ...,m, chaque ui présente une symétrie radiale
par rapport à l’origine et décrôıt radialement.

Un autre système elliptique intéressant impliquant des exposants cri-
tiques de Sobolev est le suivant:

(0.8.12)


−∆u = u2∗−1 +

α

2∗
uα−1vβ dans RN \ Γ

−∆v = v2∗−1 +
β

2∗
uαvβ−1 in RN \ Γ

u, v > 0 dans RN \ Γ,

où α, β > 1, α+ β = 2∗ := 2N
N−2 (N ≥ 3)

Les solutions à (0.8.12) sont des ondes solitaires pour un système d’équations
couplées de Gross-Pitaevskii. Ce type de système apparâıt, par exem-
ple, dans la théorie de Hartree-Fock pour les condensats doubles, c’est-
à-dire les condensats de Bose-Einstein de deux états hyperfins différents
qui coexistent dans l’espace. Les résultats d’existence pour ce type de
système sont très compliqués et l’existence de solutions non triviales est
étroitement liée au paramètres α, β et N . Ce type de système a été étudié
dans [2, 5, 6, 99, 115, 118]. En particulier, dans [99], les auteurs mon-
trent un résultat unique pour les solutions d’énergie minimale sous des hy-
pothèses appropriées des paramètres α, β et N , tandis que, dans [30], les
auteurs étudient également les cas compétitif, ce qui montre que le système
admet une infinité de solutions non triviales, qui ne sont pas conformément
équivalentes. Motivés par leurs applications physiques, les systèmes ellip-
tiques faiblement couplés ont reçu beaucoup d’attention ces dernières années,
et il y a beaucoup de résultats pour le cas cubique où Γ = ∅, α = β = 2 et
2∗ est remplacé par 4 dans les petites dimensions N = 3, 4, voir par exemple
[2, 5, 6, 84, 85, 117, 118]. Puisque notre technique ne fonctionne pas
lorsque 1 < α < 2 ou 1 < β < 2, nous étudions ici le cas α, β ≥ 2 et N = 3
ou N = 4 , puisque nous supposons que α+ β = 2∗.

Les derniers résultats qui vont être prouvés au chapitre 6 sont donnés
par ce qui suit:

Théorème 0.8.8. Soit N = 3 ou N = 4 et soit (u, v) ∈ H1
loc(RN \

Γ)×H1
loc(RN \ Γ) un solution au problème (0.8.12). Nous supposons que la

solution (u, v) a un non-amovible 6 singularité dans l’ensemble singulier Γ,
où Γ est un sous-ensemble fermé et approprié de {x1 = 0} tel que

Cap2
RN

(Γ) = 0.

De plus, supposons que α, β ≥ 2 et que α + β = 2∗. Alors, u et v sont
symétriques par rapport à l’hyperplan {x1 = 0}. La même conclusion est
vraie si {x1 = 0} est remplacé par un hyperplan affine. Si au moins une
des des composantes u et v n’a qu’une singularité non éliminable à l’origine,
alors (u, v) est radialement symétrique par rapport à l’origine et décrôıt
radialement.

6Comme ci-dessus, nous voulons dire que la solution (u, v) n’admet pas un pro-

longement régulier a tout l’espace. À savoir il n’est pas possible de trouver (ũ, ṽ) ∈
H1
loc(RN )×H1

loc(RN ) avec u ≡ ũ ou v ≡ ṽ in RN \ Γ.
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Tous les résultats présentés ici, concernant les systèmes, figurent au chapitre
6 et au [48]; une fois cet article terminé, nous avons appris que le cas des
domaines bornés était également considéré dans [14] (voir [13]), ce qui a
donné des résultats similaires.

0.9. La conjecture de Gibbons pour les équations elliptiques
quasi-linéaires

Le chapitre 7 concerne l’étude des propriétés qualitatives des équation
elliptique quasi-linéaire de la forme suivante

(0.9.1) −∆pu = f(u) dans RN ,

où on note un point générique appartenant à RN par (x′, y) avec x′ =
(x1, x2, . . . , xN−1) et y = xN , p > 1 et N > 1. De plus, pour des fonctions
appropriées, l’opérateur p-Laplacien est défini par−∆pu := −div(|∇u|p−2∇u).
Comme on le sait, voir [46, 122], les solutions d’équations impliquant
l’opérateur p-Laplacien sont généralement de classe C1,α. Par conséquent,
l’équation (0.9.1) doit être comprise dans le sens faible. Nous résumons les
hypothèses sur la non-linéarité f , notée (Gf), de la manière suivante:

(Gf): la non-linéarité f(·) appartient à C1([−1, 1]), f(−1) = 0, f(1) = 0,
f ′+(−1) < 0, f ′−(1) < 0 et le ensemble

Nf := {t ∈ [−1, 1] | f(t) = 0}
est fini.

La définition de nos hypothèses nous permet d’inclure les non-linéarités
de type Allen-Cahn et, de fait, le document est motivé par certaines ques-
tions découlant du problème suivant.

(0.9.2) −∆u = u(1− u2) dans RN ,
voir [65]. G.W. Gibbons [29] formulé ce qui suit

Conjecture de Gibbons [29]. – Nous assumons que N > 1 et con-
sidérons une solution u borné de l’équation (0.9.2) qui appartient à C2(RN ),
telles que

lim
xN→±∞

u(x′, xN ) = ±1,

uniformément par rapport à x′. Alors, est-ce vrai que

u(x) = tanh

(
xN − α√

2

)
,

pour certains α ∈ R?

Cette conjecture est également connue comme la version faible de la célèbre
conjecture de De Giorgi [45]. Nous référons à [55] pour un historique com-
plet de l’argument.

La conjecture de Gibbons dans le cas semi-linéaire p = 2 est maintenant
bien comprise (voir [11, 54, 55, 63]). Nous abordons ici le cas quasi linéaire

d’une classe générale de non-linéarités f . À notre connaissance, il s’agit du
premier résultat dans ce cadre. Ceci est motivé par le fait que, contrairement
au cas semi-linéaire (0.9.2), en travaillant avec l’opérateur singulier −∆p(·),
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nous devons tenir compte du fait que la non-linéarité f change de signe et
que toutes les techniques impliquées dans l’étude du problème (0.9.1) ne
sont pas standard lorsque nous travaillons dans l’ensemble RN .
Nos preuves sont basées sur la méthode des hyperplans mobiles qui remonte
aux papiers d’Alexandrov [1] et de Serrin [111], puis aux célèbres papiers
[12, 68] et à l’ utilisation des principes de maximum et de comparaison
pour l’opérateur −∆p(·), qui est beaucoup plus compliqué car nous de-
vons soigneusement tenir en compte la présence de points critiques de u.
De plus, lorsque nous considérons le cas d’un domaine non borné comme
RN , l’application de la technique des hyperplans mobiles est beaucoup plus
délicate, car les principes de comparaison faibles dans les petits domaines
doivent être remplacés par des principes de comparaison faibles dans les do-
maines non bornés. En réalité, le principe de comparaison forte ne s’applique
pas simplement comme dans le cas où des domaines bornés sont pris en
compte en raison du manque de compacité. Lorsque nous travaillons avec
l’opérateur laplacien, c’est-à-dire le cas p = 2, de nombreux arguments ex-
ploités dans la littérature sont très liés à la nature linéaire et non dégénérée
de l’opérateur. Au chapitre 7, nous ne pouvons pas tirer parti de toutes les
techniques classiques utilisées dans le cas semi-linéaire et nous devons donc
récupérer ces arguments dans le cas d’équations impliquant des opérateurs
non linéaires dégénérés/singuliers.
Le résultat principal du chapitre 7 est donné par ce qui suit:

Théorème 0.9.1. Soient N > 1, (2N + 2)/(N + 2) < p < 2 et u ∈
C1,α
loc (RN ) une solution de l’équation (0.9.1), telles que

|u| ≤ 1

et

(0.9.3) lim
y→+∞

u(x′, y) = 1 and lim
y→−∞

u(x′, y) = −1,

uniformément par rapport à x′ ∈ RN−1. Si f remplit (Gf), alors u ne
dépend que de y et

(0.9.4) ∂yu > 0 dans RN .

Pour obtenir notre résultat principal, nous démontrons tout d’abord
un principe de comparaison faible dans un demi-espace approprié, puis nous
l’exploitons pour initialiser la méthode des hyperplans mobiles. L’application
de la méthode des plans mobiles n’est pas standard car nous devons retrouver
la compacité en utilisant l’invariance par translations de l’équation (puisque
nous travaillons sur RN ) sans oublier que la non-linéarité f change de signe,
ce qui ajoute de nombreuses difficultés par rapport au cas semilinéaire. En-
fin, nous obtenons la monotonie dans toutes les directions de l’hémi-sphère
supérieure SN−1

+ := {ν ∈ SN−1
+ | (ν, eN )} cela nous donnera la symétrie

souhaitée.
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Preliminaries

The goal of this chapter is to resume some well known results about weak
and strong comparison and maximum principles involving some semilinear
and quasilinear elliptic equations.

In particular we study regularity and qualitative properties of positive
weak solutions of the following elliptic problem

(1.0.1)


−∆pu = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω.

where Ω is a bounded smooth domain in RN , N > 2, ∆pu = div(|∇u|p−2∇u)
is the p-Laplace operator, 1 < p < +∞. The hypothesis on the nonlinearity
f will be always specified. Anyway the reader may think that f(·) is a
locally Lipschitz continuous function and most of our results will hold in
this case. In general solutions to p-Laplace equations are of class C1,α (see
e.g. [46, 122]).

In all the thesis we further use the following inequalities, whose proof
can be found for example in [33]: ∀η, η′ ∈ RN with |η|+ |η′| > 0 there exists
positive constants C1, C2, C3, C4 depending on p such that

[|η|p−2η − |η′|p−2η′][η − η′] ≥ C1(|η|+ |η′|)p−2|η − η′|2,

‖η|p−2η − |η′|p−2η′| ≤ C2(|η|+ |η′|)p−2|η − η′|,

[|η|p−2η − |η′|p−2η′][η − η′] ≥ C3|η − η′|p if p ≥ 2,

‖η|p−2η − |η′|p−2η′| ≤ C4|η − η′|p−1 if 1 < p ≤ 2.

(1.0.2)

1.1. Regularity of the solutions

In this section we deal with the regularity of the solutions to problem
(1.0.1). All the results contained in this section can be found in a paper by
L. Damascelli and B. Sciunzi [36], where the authors essentially proved the
weak maximum principle for quasilinear elliptic equations, i.e. for problem
(1.0.1), via the summability properties of the solutions and thanks to the
moving planes method of Alexandrov-Serrin, when p > 2 and f(s) > 0 for
s > 0 (the case 1 < p ≤ 2 was well known). In all the thesis we will say that
u ∈ C1(Ω) is a weak solution to problem (1.0.1) if it satisfies the following
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equation

(1.1.1)

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx =

∫
Ω
f(u)ϕdx, ∀ϕ ∈ C∞c (Ω).

We define, as usual, the critical set Zu of u by setting

(1.1.2) Zu =
{
x ∈ Ω : ∇u(x) = 0

}
Note that the importance of the critical set Zu is due to the fact that it is
exactly the set where our operator is degenerate. By Höpf boundary lemma
(cf. [103] or Section 1.4), it follows that

(1.1.3) Zu ∩ ∂Ω = ∅,

if f(0) ≥ 0. We point out that, by standard regularity results, u ∈ C2(Ω \
Zu). For functions ϕ ∈ C∞c (Ω \ Zu), let us consider the test function ϕi =
∂xiϕ and denote also ui = ∂xiu, for all i = 1, . . . , N . With this choice
in (1.1.1), integrating by parts, we get∫

Ω
|∇u|p−2(∇ui,∇ϕ) + (p− 2)

∫
Ω
|∇u|p−4(∇u,∇ui)(∇u,∇ϕ) dx

−
∫

Ω
f ′(u)uiϕ = 0,

(1.1.4)

that is, in such a way, we have defined the linearized operator Lu(ui, ϕ) at
a fixed solution u of (1.1.1). Then we can write equation (1.1.4) as

(1.1.5) Lu(ui, ϕ) = 0, ∀ϕ ∈ C∞c (Ω \ Zu).

1.1.1. Summability of second derivatives.
The aim of this subsection is to show some summability results on the

second derivatives of solutions to (1.0.1). The point of view of considering
|∇u|p−2 as a weight is particularly useful when studying qualitative proper-
ties of a fixed solution. In the following, we repeatedly use Young’s inequality
in the form ab ≤ δa2 + C(δ)b2 for all a, b ∈ R and δ > 0. We can now state
and prove the following:

Proposition 1.1.1. Let u ∈ C1(Ω) be a weak solution to problem (1.0.1).
Assume that f is locally Lipschitz continuous. Assume that Ω is a bounded
and smooth domain of RN . Then

(1.1.6)

∫
Ω\{ui=0}

|∇u|p−2

|y − x|γ
|∇ui|2

|ui|β
dx ≤ C,

where 0 ≤ β < 1, γ < N − 2 (γ = 0 if N = 2), 1 < p < +∞ and the positive
constant C does not depend on y. In particular, we have

(1.1.7)

∫
Ω\{∇u=0}

|∇u|p−2−β‖D2u‖2

|y − x|γ
dx ≤ C̃,

for a positive constant C̃ not depending on y.
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Proof. For all ε > 0, let us define the smooth function Tε : R→ R by
setting

(1.1.8) Tε(t) =


t if |t| ≥ 2ε,

2t− 2ε if ε ≤ t ≤ 2ε,

2t+ 2ε if −2ε ≤ t ≤ −ε,
0 if |t| ≤ ε.

To prove (1.1.6) we choose E ⊂⊂ Ω such that

Zu ∩ (Ω \ E) = ∅.

Since u is C2 in Ω \ E, then we may reduce to prove that∫
E\{ui=0}

|∇u|p−2

|y − x|γ
|∇ui|2

|ui|β
dx ≤ C.

Let us consider the cut-off function ψ ∈ C∞c (Ω), such that the support of ψ
is compactly contained in Ω, ψ ≥ 0 in Ω and ψ ≡ 1 in E. Hence we set

(1.1.9) ϕε,y(x) =
Tε(ui(x))

|ui(x)|β
ψ(x)

|y − x|γ

where 0 ≤ β < 1, γ < N − 2 (γ = 0 for N = 2). Since ϕε,y vanishes in a
neighborhood of each critical point, it follows that ϕε,y ∈ C2

c (Ω \ Zu) and
hence we can use it as a test function in (1.1.4), getting the following result:∫

Ω

1

|y − x|γ
|∇u|p−2

|ui|β

(
T ′ε(ui)− β

Tε(ui)

ui

)
ψ|∇ui|2 dx

+

∫
Ω

(p− 2)
1

|y − x|γ
|∇u|p−4

|ui|β

(
T ′ε(ui)− β

Tε(ui)

ui

)
ψ(∇u,∇ui)2dx

+

∫
Ω

1

|y − x|γ
|∇u|p−2Tε(ui)

|ui|β
(∇ui,∇ψ) dx

+

∫
Ω

(p− 2)
1

|y − x|γ
|∇u|p−4Tε(ui)

|ui|β
(∇u,∇ui)(∇u,∇ψ) dx

+

∫
Ω
|∇u|p−2Tε(ui)

|ui|β
ψ

(
∇ui,∇x

(
1

|y − x|γ

))
dx

+

∫
Ω

(p− 2)|∇u|p−4Tε(ui)

|ui|β
ψ(∇u,∇ui)

(
∇u,∇x

(
1

|y − x|γ

))
dx

=

∫
Ω
f ′(u)ui

Tε(ui)

|ui|β
ψ

|y − x|γ
dx.

Let us denote each term of the previous equation in a useful way for the
sequel, that is

A1 =

∫
Ω

1

|y − x|γ
|∇u|p−2

|ui|β

(
T ′ε(ui)− β

Tε(ui)

ui

)
ψ|∇ui|2 dx;

A2 =

∫
Ω

(p− 2)
1

|y − x|γ
|∇u|p−4

|ui|β

(
T ′ε(ui)− β

Tε(ui)

ui

)
ψ(∇u,∇ui)2dx;

A3 =

∫
Ω

1

|y − x|γ
|∇u|p−2Tε(ui)

|ui|β
(∇ui,∇ψ) dx;
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A4 =

∫
Ω

(p− 2)
1

|y − x|γ
|∇u|p−4Tε(ui)

|ui|β
(∇u,∇ui)(∇u,∇ψ) dx;

A5 =

∫
Ω
|∇u|p−2Tε(ui)

|ui|β
ψ

(
∇ui,∇x

(
1

|y − x|γ

))
dx;

A6 =

∫
Ω

(p− 2)|∇u|p−4Tε(ui)

|ui|β
ψ(∇u,∇ui)

(
∇u,∇x

(
1

|y − x|γ

))
dx;

M =

∫
Ω
f ′(u)ui

Tε(ui)

|ui|β
ψ

|y − x|γ
dx.

Then we have rearranged the equation as

(1.1.10)
6∑
i=1

Ai = M.

Notice that, since 0 ≤ β < 1, for all t ∈ R and ε > 0 we have

T ′ε(t)−
βTε(t)

t
≥ 0, lim

ε→0

(
T ′ε(t)−

βTε(t)

t

)
= 1− β.

From now on, we will denote

T̃ε(t) = T ′ε(t)− β
Tε(t)

t
, for all t ∈ R and ε > 0.

From equation (1.1.10) one has

A1 +A2 ≤
6∑
i=3

|Ai|+ |M |.

We shall distinguish the proof into two cases.

Case I: p ≥ 2. This implies A2 ≥ 0, and hence

(1.1.11) A1 ≤ A1 +A2 ≤
6∑
i=3

|Ai|+ |M |.

Case II: 1 < p < 2. By Schwarz inequality, of course, it follows

|∇u|p−4(∇u,∇ui)2 ≤ |∇u|p−2|∇ui|2.

In turn, since 1 < p < 2, this implies

(p− 2)
T̃ε(ui)

|ui|β
ψ|∇u|p−4(∇u,∇ui)2

|y − x|γ
≥ (p− 2)

T̃ε(ui)

|ui|β
ψ|∇u|p−2|∇ui|2

|y − x|γ
,

so that (p− 2)A1 ≤ A2, yielding

(1.1.12) A1 ≤
1

p− 1
(A1 +A2) ≤ 1

p− 1

[
6∑
i=3

|Ai|+ |M |

]
.

In both cases, in view of (1.1.11) and (1.1.12), we want to estimate the terms
in the sum

(1.1.13)

6∑
i=3

|Ai|+ |M |.
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Let us start by estimating the terms Ai in the sum (1.1.13). Concerning A3,
we have

|A3| ≤
∫

Ω

1

|y − x|γ
|∇u|p−2 |Tε(ui)|

|ui|β
|∇ui||∇ψ|dx ≤ C3,

where
1

|y − x|γ
|∇u|p−2

|ui|β−1

|Tε(ui)|
|ui|

|∇ui||∇ψ| ∈ L∞(Ω),

since |∇ui| is bounded in a neighborhood of the boundary by Höpf Lemma,
γ − 2 < N , 0 ≤ β < 1 and the constant C3 is independent of y. For the
same reason, we also have

|A4| ≤
∫

Ω

|p− 2|
|y − x|γ

|∇u|p−2 |Tε(ui)|
|ui|β

|∇ui||∇ψ| dx ≤ C4,

for some positive constants C4 independent of y.
Furthermore, for a positive constant C5 independent of y, we have

|A5| ≤
∫

Ω
|∇u|p−2 |Tε(ui)|

|ui|β
ψ|∇ui|

∣∣∣∣∇x( 1

|y − x|γ

)∣∣∣∣ dx
≤ C5

∫
Ω
|∇u|p−2 |Tε(ui)|

|ui|β
ψ|∇ui|

1

|y − x|γ+1
dx

≤ C5δ

∫
Ω

1

|y − x|γ
|∇u|p−2

|ui|β
ψ
|Tε(ui)|
|ui|

|∇ui|2 dx

+ C(δ)

∫
Ω
|∇u|p−1 |Tε(ui)|

|ui|
1

|y − x|γ+2
dx

≤ C5δ

∫
Ω

1

|y − x|γ
|∇u|p−2

|ui|β
ψ
|Tε(ui)|
|ui|

|∇ui|2 dx+K5(δ)

where we used Young’s inequality, γ − 2 < N and 0 ≤ β < 1. In a similar
way,

|A6| ≤
∫

Ω
|p− 2||∇u|p−2 |Tε(ui)|

|ui|β
ψ|∇ui|

∣∣∣∣∇x( 1

|y − x|γ

)∣∣∣∣ dx
≤ C6δ

∫
Ω

1

|y − x|γ
|∇u|p−2

|ui|β
ψ
Tε(ui)

ui
|∇ui|2dx+K6(δ)

and

|M | ≤
∫

Ω
|f ′(u)| |Tε(ui)|

|ui|β−1

ψ

|y − x|γ
dx ≤ CM ,

where the last inequality holds true since f is locally Lipschitz continuous
and where C6 and CM are constants independent of y. Then, by these
estimates above and by equations (1.1.11), (1.1.12) and (1.1.13) we write

A1 ≤ D

[
6∑
i=3

|Ai|+ |M |

]

≤ SδA1 +Mδ

∫
Ω

1

|y − x|γ
|∇u|p−2

|ui|β
ψ
Tε(ui)

ui
|∇ui|2dx+ Cδ,

(1.1.14)
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where we have set

D = max
{

1,
1

p− 1

}
, S = DC3

η
, M = Dmax

{
C5, C6

}
Cδ = Dmax

{
K5(δ),K6(δ), C3, C4, CM

}
.

Then by (1.1.14) one has

(1− Sδ)
∫

Ω

1

|y − x|γ
|∇u|p−2

|ui|β

(
T ′ε(ui)− β

Tε(ui)

ui

)
ψ|∇ui|2 dx

≤Mδ

∫
Ω

1

|y − x|γ
|∇u|p−2

|ui|β
ψ
Tε(ui)

ui
|∇ui|2dx+ Cδ,

namely

(1− Sδ)
∫

Ω

1

|y − x|γ
|∇u|p−2

|ui|β

[
T ′ε(ui)−

(
β +

Mδ

(1− Sδ)

)
Tε(ui)

ui

]
ψ|∇ui|2 dx

≤ Cδ.

(1.1.15)

Let us choose δ > 0 such that

(1.1.16)

{
1− Sδ > 0,

1−
(
β + Mδ

1−Sδ

)
> 0.

Therefore, since as ε→ 0[
T ′ε(ui)−

(
β +

Mδ

(1− Sδ)

)
Tε(ui)

ui

]
→
(

1− β − Mδ

(1− Sδ)

)
> 0 in {ui 6= 0},

by Fatou’s Lemma we get

(1.1.17)

∫
Ω\{ui=0}

|∇u|p−2

|y − x|γ
|∇ui|2

|ui|β
ψdx ≤ C.

The proof is now complete, in view of the choose of the cut-off function ψ.
�

1.1.2. Gradients summability.
In this subsection we show the gradient summability of a solution u of

problem (1.0.1). We have the following:

Theorem 1.1.2. Let u be a weak solution of (1.0.1) and assume, fur-
thermore, that f(s) > 0 for any s > 0. Then, there exists a positive constant
C, independent of y, such that

(1.1.18)

∫
Ω

1

|∇u|(p−1)r

1

|x− y|γ
dx ≤ C

where 0 < r < 1 and γ < N − 2 for N ≥ 3 (γ = 0 if N = 2). In particular
the critical set Zu has zero Lebesgue measure.

Proof. Let E be a set with E ⊂⊂ Ω and (Ω \ E) ∩ Zu = ∅. Recall
that Zu = {∇u = 0} and Zu ∩ ∂Ω = ∅, in view of Höpf boundary lemma
(see [103] or Section 1.4). It is easy to see that, to prove the result, we may
reduce to show that

(1.1.19)

∫
E

1

|∇u|(p−1)r

1

|x− y|γ
dx ≤ C.
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To achieve this, let us consider the function

(1.1.20) Ψ(x) = Ψε,y(x) =
1

(|∇u|+ ε)(p−1)r

1

|x− y|γ
ϕ,

where 0 < r < 1 and γ < N −2 for N ≥ 3 (γ = 0 if N = 2). We also assume
that ϕ is a positive C∞c (Ω) cut-off function such that ϕ ≡ 1 in E. Using Ψ
as test function in (1.1.1), since f(u) ≥ σ for some σ > 0 in the support of
Ψ, we get

σ

∫
Ω

Ψ dx ≤
∫

Ω
f(u)Ψ dx =

∫
Ω
|∇u|p−2(∇u,∇Ψ) dx

≤
∫

Ω
|∇u|p−2|(∇u,∇|∇u|)| 1

(|∇u|+ ε)(p−1)r+1

1

|x− y|γ
ϕdx

+

∫
Ω
|∇u|p−2

∣∣∣∣(∇u,∇x 1

|x− y|γ

)∣∣∣∣ 1

(|∇u|+ ε)(p−1)r
ϕdx

+

∫
Ω
|∇u|p−2|(∇u,∇ϕ)| 1

(|∇u|+ ε)(p−1)r

1

|x− y|γ
dx.

Consequently, we have∫
Ω

Ψ dx ≤ C
[ ∫

Ω
|∇u|p−1‖D2u‖ 1

(|∇u|+ ε)(p−1)r+1

1

|x− y|γ
ϕdx

+

∫
Ω

|∇u|p−1

(|∇u|+ ε)(p−1)r

1

|x− y|γ+1
ϕdx

+

∫
Ω

|∇u|p−1

(|∇u|+ ε)(p−1)r

|∇ϕ|
|x− y|γ

dx

]
.

Then, denoting by Ci, suitable positive constants independent of y and by
Cδ a positive constant depending on δ, we obtain

∫
Ω

Ψ dx ≤ C1

∫
Ω
|∇u|p−1‖D2u‖ · 1

(|∇u|+ ε)(p−1)r+1
· 1

|x− y|γ
· ϕdx

+ C2

∫
Ω

1

|x− y|γ+1
dx+ C3

∫
Ω

1

|x− y|γ
dx

≤ C1

∫
Ω
|∇u|p−1‖D2u‖ · 1

(|∇u|+ ε)(p−1)r+1
· 1

|x− y|γ
· ϕdx+ C4

≤ C5δ

∫
Ω

1

(|∇u|+ ε)(p−1)r
· 1

|x− y|γ
· ϕdx

+ Cδ

∫
Ω
|∇u|(p−2)−(p(r−1)+2−r)‖D2u‖2 · 1

|x− y|γ
· ϕdx+ C6

≤ C5δ

∫
Ω

Ψ dx+ Cδ.

(1.1.21)

Here we have we used that u ∈ C1(Ω ), γ < N − 2 and we have exploited
the regularity result of Proposition 1.1.1, with β := p(r − 1) + 2− r. Then,
by (1.1.21), fixing δ sufficiently small, such that 1−C5δ > 0, one concludes

(1.1.22)

∫
Ω

1

(|∇u|+ ε)(p−1)r

1

|x− y|γ
ϕdx ≤ K,
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for some positive constant K independent of y. Taking the limit for ε going
to zero, the assertion immediately follows by Fatou’s Lemma. Moreover, as
a consequence, we have that

L(Zu) = 0.

�

Theorem 1.1.2 provides in fact the right summability of the weight
%(x) = |∇u(x)|p−2 in order to obtain a weighted Poincaré inequality.

1.1.3. Weighted Sobolev and Poincaré inequality.
In this paragraph we shall prove some results about weighted Sobolev

and Poincaré inequality, that are essential tools in the proof of the weak
comparison principle in the case p > 2. Let us start stating the following:

Condition (PE) We say that u(x) satisfies the Condition (PE) in Ω, if

(1.1.23) |u(x)| ≤ Ĉ
∫

Ω

|∇u(y)|
|x− y|N−1

dy.

This condition is the same introduced in a paper by A. Farina, L. Montoro
and B. Sciunzi [61]. This generally follows by potential estimates, see [70,
Lemma 7.14, Lemma 7.16], that gives

u(x) = Ĉ

∫
Ω

(xi − yi) ∂u∂xi (y)

|x− y|N
dy a.e. in Ω,

with

(i) Ĉ = 1
NωN

if u ∈W 1,1
0 (Ω),

where ωN is the volume of the unit ball in RN ;

(ii) Ĉ = dN

N |S| if u ∈W 1,1(Ω) with

∫
S
u = 0 and Ω convex,

where d = diam Ω and S any measurable subset of Ω.

Moreover let µ ∈ (0, 1], we define

(1.1.24) Vµ[f,Ω](x) =

∫
Ω

f(y)

|x− y|N(1−µ)
dy.

It is well known that (see [70, pag.159])

(1.1.25) Vµ[1,Ω](x) ≤ µ−1ω1−µ
N |Ω|µ.

Let us state the following:

Lemma 1.1.1. Let us consider Ω̃ ⊂ Ω and Vµ[f,Ω](x) as in (1.1.24).
Then for any 1 ≤ q ≤ ∞ one has

(1.1.26) ‖Vµ[f, Ω̃](x)‖Lq(Ω) ≤
(

1− δ
µ− δ

)1−δ
ω1−µ
N |Ω|µ−δ‖f‖Lm(Ω̃),

where 0 ≤ δ =
1

m
− 1

q
< µ.

Proof. The proof follows by [70, Lemma 7.12].
�
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Recall that, if % ∈ L1(Ω), 1 ≤ q < ∞, the space H1,q
% (Ω) is defined as

the completion of C∞(Ω) under the norm

(1.1.27) ‖v‖
H1,q
%

= ‖v‖Lq(Ω) + ‖∇v‖Lq(Ω,%)

where

‖∇v‖qLq(Ω,%) =

∫
Ω
|∇v|q% dx.

We also recall that H1,q
0,% is defined as the completion of C∞c (Ω) under the

norm

(1.1.28) ‖v‖
H1,q

0,%
= ‖∇v‖Lq(Ω,%).

Theorem 1.1.3 (Weighted Sobolev inequality). Let % a weight function
such that

(1.1.29)

∫
Ω

1

%t|x− y|γ
≤ C∗,

with t = p−1
p−2r,

p−2
p−1 < r < 1, γ < N − 2 (γ = 0 if N = 2). Assume, in the

case N ≥ 3, without no loss of generality that

γ > N − 2t,

which1 implies Nt − 2N + 2t + γ > 0. Then, for any w ∈ H1,2
0,% (Ω), there

exists a constant Cs% such that

(1.1.30) ‖w‖Lq(Ω) ≤ Cs%‖∇w‖L2(Ω,%) = Cs%

(∫
Ω
%|∇w|2

) 1
2

,

for any 1 ≤ q < 2∗(t) where

(1.1.31)
1

2∗(t)
=

1

2
− 1

N
+

1

t

(
1

2
− γ

2N

)
.

with

(1.1.32) Cs% = Ĉ(C∗)
1
2t (CM )

1
(2t)′ ,

where Ĉ is as in (1.1.23), C∗ is as in (1.1.29) and in the statement of
Theorem 1.1.2, and

CM =

(
1− δ
α
N − δ

)1−δ
ω

1− α
N

n |Ω|
α
N
−δ.

Remark 1.1.2. Note that the largest value of 2∗(t) is obtained at the

limiting case t ≈ p−1
p−2 , and γ ≈ (N − 2), γ = 0 for N = 2. We have therefore

that (1.1.30) holds for any q < 2̃∗ where

1

2̃∗
=

1

2
− 1

N
+
p− 2

p− 1
· 1

N
,

Moreover one has 2̃∗ > 2.

1Note that the condition γ > N − 2t holds true for r ≈ 1 and γ ≈ N − 2 that we
may assume with no loose of generality.
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Proof. Without loss of generality we assume w belonging to C1(Ω) or
C1

0 (Ω) depending on the case (i) or (ii) of Condition (PE). Hence (1.1.23)
implies

(1.1.33) |w(x)| ≤ Ĉ
∫

Ω

|∇w(y)|
|x− y|N−1

dy.

Then

|w(x)| ≤ Ĉ
∫

Ω

|∇w(y)|
|x− y|N−1

dy

≤ Ĉ
∫

Ω

1

%
1
2 |x− y|

γ
2t

|∇w(y)|%
1
2

|x− y|N−1− γ
2t

dy

≤ Ĉ
(∫

Ω

1

%t|x− y|γ
dy

) 1
2t

∫
Ω

(
|∇w(y)|%

1
2

)(2t)′

|x− y|(N−1− γ
2t

)(2t)′
dy


1

(2t)′

,

where in the last inequality we used Hölder inequality with 1
2t + 1

(2t)′ = 1.

Hence

(1.1.34) |w(x)| ≤ Ĉ(C∗)
1
2t

∫
Ω

(
|∇w(y)|%

1
2

)(2t)′

|x− y|(N−1− γ
2t

)(2t)′
dy


1

(2t)′

.

We point out that

(1.1.35)
(
|∇w|%

1
2

)(2t)′

∈ L
2

(2t)′ (Ω).

From (1.1.34), by using equation (1.1.24) with µ = 1− 1
N (N − 1− γ

2t)(2t)
′,

we obtain

(1.1.36) |w(x)| ≤ Ĉ(C∗)
1
2t

(
Vµ

[(
|∇w(y)|%

1
2

)(2t)′

,Ω

]
(x)

) 1
(2t)′

.

Moreover we remark that the assumption γ > N − 2t implies µ > 0.
We shall use now Lemma 1.1.1 setting

1

m
=

(2t)′

2
,

see (1.1.35). In order to apply (1.1.26), since by assumption Nt−2N + 2t+
γ > 0, a direct calculation shows that it is possible to find a q > 1 such that

1

m
− 1

q
< µ.

From (1.1.34) we have

(∫
Ω
|w(x)|q(2t)′ dx

) 1
q(2t)′

≤ Ĉ(C∗)
1
2t

∥∥∥∥∥Vµ
[(
|∇w(y)|%

1
2

)(2t)′

,Ω

]
(x)

∥∥∥∥∥
1

(2t)′

Lq(Ω)

.

(1.1.37)



1.2 Weak comparison principles in bounded domains 51

From (1.1.37), by using Lemma 1.1.1 we get

(∫
Ω
|w(x)|q(2t)′

) 1
q(2t)′

≤ Ĉ(C∗)
1
2t

((
1− δ
α
N − δ

)1−δ
ω

1− α
N

n |Ω|
α
N
−δ

) 1
(2t)′ (∫

Ω
%|∇w|2

) 1
2

,

(1.1.38)

that gives (1.1.31) with q(2t)′ = 2∗(t) and (1.1.32) with

CM =

(
1− δ
α
N − δ

)1−δ
ω

1− α
N

n |Ω|
α
N
−δ.

�

As a natural consequence of the weighted Sobolev inequality, we obtain the
following:

Corollary 1.1.4 (Weighted Poincaré inequality). Let w be as in one
of the following cases

(i) w ∈ H1,2
0,% (Ω),

(ii) w ∈ H1,2
% (Ω) such that

∫
Ω
w = 0 and Ω convex.

Then, if the weight % fulfill (1.1.29), then∫
Ω
w2 ≤ Cp(Ω)Ĉ2(C∗)

1
t (CM )

2
(2t)′

∫
Ω
%|∇w|2,

where Ĉ, C∗, CM are as in Theorem 1.1.3 and with Cp(Ω)→ 0 if |Ω| → 0.
In particular, given any 0 < ϑ < 1, we can assume that

(1.1.39) Cp(Ω) ≤ C |Ω|
2ϑ

(p−1)N .

Proof. Choose 2 < q < 2̃∗. By Holder inequality we get:

(1.1.40)

∫
Ω
w2 ≤

(∫
Ω
wq
) 2
q

|Ω|
q−2
q ,

and then using Theorem 1.1.3 one has∫
Ω
w2 ≤ Cp(Ω)Ĉ2(C∗)

1
t (CM )

2
(2t)′

∫
Ω
%|∇w|2.

By (1.1.40) and direct computation it follows (1.1.39).
�

1.2. Weak comparison principles in bounded domains

As remarked at the beginning of this chapter, our aim is to show some
results about comparison principles involving semilinear an quasilinear ellip-
tic equations in bounded and unbounded domains. In fact, the aim of this
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section is to show some results about weak comparison principles in small
domains. To do this, let us consider the following elliptic problem

(1.2.1)

{
−∆pu ≤ f(u) in Ω

−∆pv ≥ f(v) in Ω,

where Ω ⊂ RN , N ≥ 2, is a bounded domain and 1 < p < +∞. In all
the section we assume that f is a locally Lipschitz continuous function on
[0,+∞). As remarked in the introduction, we just point out that it is well
known that, if p = 2, we have classical sub and super-solution u, v ∈ C2(Ω),
while if p 6= 2 problem (1.2.1) has to be understood in the weak distributional
meaning, since it is well known by regularity theory that u, v ∈ C1,α(Ω), see
e.g. [46, 122].

We just point out the fact that if p = 2 the situation is well known
in the literature, since, maximum principles and comparison principles are
equivalent. Inspired by classical results, that can be found for example in
[70], we exploit the following well known result whose proof can be found
in a paper by A. Farina and B. Sciunzi (see [62]):

Theorem 1.2.1 (Weak comparison principle in small domains, p = 2).
Let us assume that p = 2 and u, v ∈ C2(Ω) satisfying (1.2.1). Then there
exists ϑ = ϑ(Ω, u, v, f) > 0 such that, if for any domain Ω′ ⊂ Ω with u ≤ v
on ∂Ω′ and |Ω′| ≤ ϑ (where | · | denotes the Lebesgue measure of a set) it
follows that

u ≤ v in Ω′.

Proof. Let us consider the weak formulation of problem (1.2.1) and
get

(1.2.2)

∫
Ω′

(∇u,∇ϕ) dx−
∫

Ω′
f(u)ϕdx ≤

∫
Ω′

(∇v,∇ϕ) dx−
∫

Ω′
f(v)ϕdx

for every test function ϕ ∈ C∞c (Ω′), ϕ ≥ 0 in Ω′. Taking (u− v)+ ∈ H1
0 (Ω′)

as test function in (1.2.2), we obtain∫
Ω′
|∇(u− v)+|2 dx ≤

∫
Ω′

f(u)− f(v)

u− v
[(u− v)+]2 dx

≤ C(Ω, u, v, f)

∫
Ω′

[(u− v)+]2 dx

(1.2.3)

where the positive constant C(Ω, u, v, f) can be determined exploiting the
fact that u, v are bounded on Ω and f is locally Lipschitz continuous on
[0,∞). An application of Poincaré inequality gives

(1.2.4)

∫
Ω′
|∇(u− v)+|2 dx ≤ C(Ω, u, v, f)(CN (|Ω′|))

2
N

∫
Ω′
|∇(u− v)+|2 dx

where CN > 0 is a constant depending only on the Euclidean dimension N .

For |Ω′| sufficiently small such that C(Ω, u, v, f)(CN (|Ω′|))
2
N < 1, we get

that (u− v)+ ≡ 0 and the thesis.
�

The situation is completely different when p 6= 2. Since the p-Laplace
operator ∆pu := div(|∇u|p−2∇u) is nonlinear, there is a deep difference
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between comparison and maximum principles. We have to remark that the
singular case, i.e. 1 < p < 2, is easier than the degenerate one, since when
p > 2 we need to apply weighted Sobolev and Poincaré inequalities proved
in Section 1.1, see Theorem 1.1.3 and Corollary 1.1.4 The weak comparison
principle for the quasilinear elliptic problem (1.2.1) appeared, in a very
general version, in a paper by L. Damascelli [33] when 1 < p < 2. First of
all let us recall the Poincaré inequality whose proof with A = Ω and B = ∅
can be found in [70]. Now we prove the variant proposed in [33].

Lemma 1.2.2 (Poincaré inequality). Let us assume that Ω is an open
bounded set such that Ω = A ∪ B with A,B measurable set of Ω. If u ∈
W 1,q

0 (Ω) with 1 < q < +∞, then

(1.2.5) ‖u‖L∞(Ω) ≤ ω
− 1
N

N |Ω|
1
Nq

[
|A|

1
Nq′ ‖∇u‖Lq(A) + |B|

1
Nq′ ‖∇u‖Lq(B)

]
,

where q′ = q
q−1 .

Proof. Let us define h(x, y) := |x− y|1−N and let us assume that C is
a measurable set of Ω. If R > 0 is such that |C| = |B(x,R)| we have∫

C
h(x, y) dy =

∫
C∩B(x,R)

h(x, y) dy +

∫
C\B(x,R)

h(x, y) dy

≤
∫
C∩B(x,R)

h(x, y) dy +

∫
B(x,R)\C

h(x, y) dy

=

∫
B(x,R)

h(x, y) dy = NωNR = NωN

(
|C|
ωN

) 1
N

,

(1.2.6)

where ωN is the misure of the N -dimensional ball B(0, 1). If f ∈ Lq(C) by

Fubini’s Theorem for a.e. x ∈ Ω we have that f(y)(h(x, y))
1
q ∈ Lp(C). Let

us recall the definition of potential given in (1.1.24) with µ = 1
N

V 1
N

[f, C](x) :=

∫
C
f(y)h(x, y) dy.

Then by (1.2.6) and Hölder inequality it follows that

|V 1
N

[f, C](x)| ≤
∫
C
|f |h

1
q h

1
q′ dy

≤
(∫

C
|f(y)|qh(x, y) dy

) 1
q
(∫

C
h(x, y) dy

) 1
q′

≤

[
NωN

(
|C|
ωN

) 1
N

] 1
q′ (∫

C
|f(y)|qh(x, y) dy

) 1
q

.

(1.2.7)

Taking the q power and integrating in x over Ω we obtain, using again Fu-
bini’s Theorem and (1.2.7) with C = Ω and the role of x and y interchanged,

(1.2.8) ‖V 1
N

[f, C]‖Lq(Ω) ≤ NωN
(
|C|
ωN

) 1
Nq′
(
|Ω|
ωN

) 1
Nq

‖f‖Lq(C).

Now, if u ∈ C∞c (Ω) then we have the representation (see Lemma 7.14 [70])

u(x) =
1

NωN

∫
Ω
|x− y|−N (∇u, x− y) dy
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so that if Ω = A ∪B we have that

u(x) ≤ 1

NωN

[
V 1
N

[A, |∇u|](x) + V 1
N

[B, |∇u|](x)
]
.

From (1.2.8) we obtain (1.2.5) for u ∈ C∞c (Ω) and the general case follows
by density argument.

�

Let us put, if u, v are functions in W 1,∞(Ω) and A ⊆ Ω

MA = MA(u, v) = sup
A

(|∇u|+ |∇v|).

Remark 1.2.3. A function f : R → R is locally Lipschitz continuous if
and only if for all R > 0 there exists C1(R), C2(R) ≥ 0 such that

(1) f1(s) = f(s)− C1s is non-increasing in [−R,R].
(2) f2(s) = f(s)− C2s is non-decreasing in [−R,R].

In view of Remark 1.2.3 we prove (see also [33]) the following version of
the weak comparison principles in the singular case:

Theorem 1.2.4 (Weak comparison principle, 1 < p < 2). Let Ω be
bounded and u, v ∈W 1,∞(Ω) weakly satisfy

(1.2.9) −∆pu+ g(x, u)− Λu ≤ −∆pv + g(x, v)− Λv in Ω

where Λ ≥ 0 and g ∈ C(Ω × R) is such that for each x ∈ Ω g(x, s) is non-
decreasing in s for |s| ≤ max{‖u‖∞, ‖v‖∞}. Let Ω′ ⊆ Ω be open and suppose
u ≤ v on ∂Ω′.

(a) If Λ = 0 then u ≤ v in Ω′, for all p > 1.
(b) If 1 < p < 2 there exist δ,M > 0, depending only on p,Λ, γ,Γ, |Ω|

and MΩ, such that the following holds:

if Ω′ = A1 ∪A2, |A1 ∩A2| = 0, |A1| < δ and MA2 < M,

then u ≤ v in Ω′.

Proof. (a) Let us assume that Λ = 0. We pass to the weak formulation
of (1.2.9)

∫
Ω′

(|∇u|p−2∇u− |∇v|p−2∇v,∇ϕ) dx

+

∫
Ω′

[g(x, u)− g(x, v)]ϕdx ≤ 0, ∀ϕ ∈ C∞c (Ω′).

(1.2.10)

Since by our assumptions u ≤ v on ∂Ω′ it follows that ϕ = (u − v)+ ∈
W 1,p

0 (Ω′). Using ϕ as test function in (1.2.10), the fact that g is nondecreas-
ing and also by (1.0.2) we deduce that

C1

∫
Ω′

(|∇u|+ |∇v|)p−2|∇(u− v)|2 dx

≤
∫

Ω′
(|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)+) dx ≤ 0.

(1.2.11)

Hence by (1.2.11) it follows that (u−v)+ ≡ 0 in Ω′ and this gives the thesis.



1.2 Weak comparison principles in bounded domains 55

(b) As we did above by (1.2.9), we pass to the weak formulation

∫
Ω′

(|∇u|p−2∇u− |∇v|p−2∇v,∇ϕ) dx

+

∫
Ω′

[g(x, u)− g(x, v)]ϕdx

− Λ

∫
Ω′

(u− v)ϕdx ≤ 0, ∀ϕ ∈ C∞c (Ω′).

(1.2.12)

Since by our assumptions u ≤ v on ∂Ω′ it follows that ϕ = (u − v)+ ∈
W 1,p

0 (Ω′). Using ϕ as test function in (1.2.10), the fact that g is nondecreas-
ing and also by (1.0.2) we deduce that

C1

∫
Ω′

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx

≤
∫

Ω′
(|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)+) dx

≤ Λ

∫
Ω′

[(u− v)+]2ϕdx

(1.2.13)

Let us recall that Ω′ = A1 ∪A2 and 1 < p < 2, hence we rewrite (1.2.13)

C1M
p−2
Ω′

∫
A1

|∇(u− v)+|2 dx + C1M
p−2
A2

∫
A2

|∇(u− v)+|2 dx

≤ C1

∫
Ω′

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx

≤ Λ

∫
Ω′

[(u− v)+]2 dx

(1.2.14)

Now, by Lemma 1.2.2 with q = q′ = 2 we have that

C1M
p−2
Ω′

∫
A1

|∇(u− v)+|2 dx + C1M
p−2
A2

∫
A2

|∇(u− v)+|2 dx

≤ 2Λω
− 2
N

N |Ω′|
1
N

[
|A1|

1
N

∫
A1

|∇(u− v)+|2 dx + |Ω′|
1
N

∫
A2

|∇(u− v)+|2 dx
]
.

(1.2.15)

Now, we infer that if |A1| and MA2 are small we must have∫
Ai

|∇(u− v)+|2 dx = 0,

for i = 1, 2, so that (u− v)+ ≡ 0 in Ω′ and hence the thesis.
�

As remarked at the beginning of this section, using regularity results
and weighted Sobolev and Poincaré inequalities proved in Section 1.1, an
application of previous results is given by the following:

Theorem 1.2.5 (Weak comparison principle, p > 2). Let Ω̃ be a bounded

smooth domain such that Ω̃ ⊆ Ω. Assume that u, v are solutions to the
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problem (1.0.1) and assume that u ≤ v on ∂Ω̃. Then there exists a positive
constant ϑ = ϑ(Ω, u, v, f) such that, assuming

|Ω̃| ≤ ϑ
then it holds

u ≤ v in Ω̃.

Proof. Let us recall the weak formulations for the solutions u and v to
problem (1.0.1)∫

Ω̃
|∇u|p−2(∇u , ∇ϕ) dx =

∫
Ω̃
f(u)ϕdx, ∀ϕ ∈ C∞c (Ω̃),(1.2.16) ∫

Ω̃
|∇v|p−2(∇v , ∇ϕ) dx =

∫
Ω̃
f(v)ϕdx, ∀ϕ ∈ C∞c (Ω̃).(1.2.17)

Then we assume by contradiction that the assertion is false, and consider

(u− v)+ = max{u− v, 0},
that, consequently, is not identically equal to zero. Let us also set Ω+ ≡
supp(u−v)+∩Ω̃. Since by assumption u ≤ v on ∂Ω̃, it follows that (u−v)+ ∈
W 1,p

0 (Ω̃). We can therefore choose it as admissible test function in (1.2.16)
and (1.2.17). Whence, subtracting the two, we get∫

Ω+

(|∇u|p−2∇u− |∇v|p−2∇v , ∇(u− v)) dx

=

∫
Ω+

(f(u)− f(v))(u− v) dx.

(1.2.18)

By (1.0.2), it follows that

C1

∫
Ω+

(|∇u|+ |∇v|)p−2|∇(u− v)|2 dx

≤
∫

Ω+

(|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)) dx,

so that

C1

∫
Ω+

(|∇u|+ |∇v|)p−2|∇(u− v)|2 dx

≤
∫

Ω+

∣∣∣∣f(u)− f(v)

u− v

∣∣∣∣ |u− v|2 dx(1.2.19)

Let us now evaluate the term on the right hand side of the above inequality.
By the Lipschitz continuity of f , it follows∫

Ω+

∣∣∣∣f(u)− f(v)

u− v

∣∣∣∣|u− v| dx ≤ C ∫
Ω+

|u− v|2 dx

≤ C CP (|Ω+|)
∫

Ω+

(|∇u|+ |∇v|)p−2|∇(u− v)|2 dx

Concluding, exploiting the above estimates, we get∫
Ω+

(|∇u|+ |∇v|)p−2|∇(u− v)|2 dx

≤ C̃ CP (|Ω+|)
∫

Ω+

(|∇u|+ |∇v|)p−2|∇(u− v)|2 dx
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which gives a contradiction for C̃ CP (|Ω+|)) < 1. Now, since |Ω̃| ≤ ϑ by
assumption, it follows that if ϑ is sufficiently small, then we may assume
that CP (|Ω+|) is also small, and that C̃ CP (|Ω+|)) < 1

2 . Hence we have a
contradiction, and shows that actually (u− v)+ = 0 and the thesis.

�

1.3. Weak comparison principles in narrow unbounded domains

In this section we show some well known results about weak comparison
principles in narrow unbounded domains involving the p-Laplacian, that are
very useful tools in the proof of monotonicity results in the half-space. It is
well known that the first result for p = 2 is due to H. Berestycki, L. Caffarelli
and L. Nirenberg and can be found in the seminal papers [8, 9, 10]. We
just point out that the technique used in these papers works only in the
semilinear case, since the authors need to construct an explicit solution to
the problem. In a series of papers by A. Farina, L. Montoro and B. Sciunzi
[59, 60, 61] and also in a paper by A. Farina, L. Montoro, G. Riey and B.
Sciunzi [58] the authors used a new technique to prove monotonicity results
in the half-space that works also in the case of quasilinear elliptic equations
involving the p-Laplace operator. The singular case 1 < p ≤ 2 (see [58, 59]),
is simpler than the degenerate one p > 2 (see [60, 61]), since we have in
force the classical Poincaré inequality (presented in the previous section),
that, used in a tricky way, it is one of the main tool in the proof of the
comparison principle in narrow strips. In the case p > 2, that we are going
to consider at the end of this section, the use of weighted Sobolev spaces is
naturally associated to the study of qualitative properties of the solutions, as
discussed in Section 1.1. This issue is more delicate in unbounded domains.
Let us only say that the use of weighted Sobolev spaces is necessary in the
case p > 2 and it requires the use of a weighted Poincaré type inequality
with weight % = |∇u|p−2 (see [37] and also Section 1.1). The latter involves
constants that may blow up when the solution approaches zero that may
happen also for positive solutions in unbounded domains. Namely once
again the lack of compactness plays an important role. In the same spirit
of the papers cited above, we start this section showing a result about the
weak comparison principle in strips when 1 < p ≤ 2, whose proof, based on
an iterative argument, is also new in the semilinear case p = 2 and can be
found in [59].

Theorem 1.3.1 ([59]). We suppose N ≥ 2, 1 < p ≤ 2, λ > 0 and
assume that f is locally Lipschitz continuous. Set

Σλy0
:= RN−1 ×

[
y0 −

λ

2
, y0 +

λ

2

]
, y0 ≥

λ

2
.

Consider respectively u, v ∈ C1,α
loc (Σλy0

) a sub and super-solution to the fol-
lowing quasilinear elliptic equation

(1.3.1) −∆pw = f(w) in Σλy0

with u,∇u, v,∇v ∈ L∞(Σλy0
). If u ≤ v on ∂Σλy0

, then there exists

λ0 = λ0(N, p, ‖∇u‖∞, ‖∇v‖∞, ‖u‖∞, ‖v‖∞, f) > 0
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such that if, 0 < λ < λ0, it follows that

u ≤ v in Σλy0
.

If u and v are not assumed to be bounded, the same conclusion holds, if we
assume that the nonlinearity f is globally Lipschitz continuous.

We start proving a lemma that will be useful in the proof of Theorem
1.3.1:

Lemma 1.3.2 ([59]). Let ϑ > 0 and γ > 0 such that ϑ < 2−γ. Moreover
let R0 > 0, c > 0 and

L : (R0,+∞)→ R
a non-negative and non-decreasing function such that

(1.3.2)

{
L(R) ≤ ϑL(2R) + g(R) ∀R > R0,

L(R) ≤ CRγ ∀R > R0,

where g : (R0,+∞)→ R+ is such that

lim
R→+∞

g(R) = 0.

Then
L(R) = 0.

Proof. It is sufficient to prove that

l := lim
R→+∞

L(R) = 0.

By contradiction suppose that l 6= 0 and choose ϑ1 such that ϑ < ϑ1 < 2−γ .
This implies the exixtence of R1 = R1(ϑ1) ≥ R0 such that

(ϑ− ϑ1)L(2R) + g(R) < 0 ∀R ≥ R1,

and then

(1.3.3) L(R) ≤ ϑ1L(2R) ∀R ≥ R1.

By (1.3.3) we have: ∀l ∈ N∗, ∀R ≥ R1

L(R) ≤ ϑl1L(2lR)

≤ Cϑl1(2lR)γ

= C(2γϑ1)lRγ ,

(1.3.4)

where we have used that L(R) ≤ CRγ for R > R0, by (1.3.2).
Since 0 < ϑ1 < 2−γ , by (1.3.4) we obtain

L(R) ≤ lim
l→+∞

C(2γϑ1)lRγ = 0 ∀R ≥ R1,

getting the contradiction.
�

Proof of Theorem 1.3.1. We therefore assume that N ≥ 2, 1 < p ≤
2, λ > 0 and that f is locally Lipschitz continuous. We consider u, v ∈ C1,α

loc
with u,∇u, v,∇v ∈ L∞(Σλy0

) such that u, v weakly solve (1.3.1).
We want to show that there exists λ0 > 0 such that if 0 < λ < λ0, then

u ≤ v in Σλy0
.
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We carry out the proof in the case u, v ∈ L∞(Σλy0
).The same proof works

when u and v may be not bounded, but f is globally Lipschitz continuous.
First of all we remark that (u− v)+ ∈ L∞(Σλy0

) since we assumed u, v
to be bounded in Σλy0

.
Let us now define

(1.3.5) Ψ = [(u− v)+]αϕ2,

where α > 1, and ϕ(x′, y) = ϕ(x′) ∈ C∞c (RN−1), ϕ ≥ 0 such that

(1.3.6)


ϕ ≡ 1, in B

′
(0, R) ⊂ RN−1,

ϕ ≡ 0, in RN−1 \B′(0, 2R),

|∇ϕ| ≤ C
R , in B

′
(0, 2R) \B′(0, R) ⊂ RN−1.

We note that Ψ ∈W 1,p
0 (Σλy0

) by (1.3.6) and since u ≤ v on ∂Σλy0
.

Let us define the cylinder

C(R) :=
{

Σλy0
∩ {B′(0, R)× R}

}
.

Then using Ψ as test function in both equations of problem (1.3.1) and
substracting we get

α

∫
C(2R)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)+

)
[(u− v)+]α−1ϕ2 dx

+

∫
C(2R)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇ϕ2

)
[(u− v)+]α dx

=

∫
C(2R)

(f(u)− f(v))[(u− v)+]αϕ2 dx.

Taking into account (1.0.2) and the fact that p ≤ 2, we have

αC1

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1ϕ2 dx

≤ α
∫
C(2R)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)+

)
[(u− v)+]α−1ϕ2 dx

= −
∫
C(2R)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇ϕ2

)
[(u− v)+]α dx

+

∫
C(2R)

(f(u)− f(v))[(u− v)+]αϕ2 dx

≤
∫
C(2R)

∣∣(|∇u|p−2∇u− |∇v|p−2∇v,∇ϕ2
)∣∣ [(u− v)+]α dx

+

∫
C(2R)

|(f(u)− f(v))| [(u− v)+]αϕ2 dx

≤ C2

∫
C(2R)

|∇(u− v)|p−1|∇ϕ2|[(u− v)+]α dx

+

∫
C(2R)

∣∣∣∣(f(u)− f(v))

(u− v)

∣∣∣∣ [(u− v)+]α+1ϕ2 dx.

(1.3.7)
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Then, since u, v ∈ C1,α
loc have bounded gradient by assumption, one has

αc1

∫
C(2R)

|∇(u− v)+|2[(u− v)+]α−1ϕ2 dx

≤ c2

∫
C(2R)

[(u− v)+]α|∇ϕ2| dx+

∫
C(2R)

Lf [(u− v)+]α+1ϕ2 dx

:= c2I1 + LfI2,

(1.3.8)

where

c1 = (‖∇u‖∞ + ‖∇v‖∞)p−2C1,

c2 = (‖∇u‖∞ + ‖∇v‖∞)p−1C2.

Lf is the Lipschitz constant of f in the interval

[−max{‖u‖∞, ‖v‖∞},max{‖u‖∞, ‖v‖∞}].

We now evaluate the term

I1 =

∫
C(2R)

[(u− v)+]α|∇ϕ2| dx.

I1 ≤ 2

∫
C(2R)

[(u− v)+]αϕ|∇ϕ| dx = 2

∫
C(2R)

[(u− v)+]αϕ|∇ϕ|
1
2 |∇ϕ|

1
2 dx

≤ 2

∫
C(2R)

[(u− v)+]α+1ϕ
α+1
α |∇ϕ|

α+1
2α

α+1
α

dx+ 2

∫
C(2R)

|∇ϕ|
α+1

2

α+ 1
dx

≤ 2

∫
RN−1

(∫ y0+λ
2

y0−λ2

(
[(u− v)+]

α+1
2

)2
dy

)
ϕ
α+1
α |∇ϕ|

α+1
2α dx′

+ 2

∫
C(2R)

|∇ϕ|
α+1

2 dx

≤ C2
p(λ)

(α+ 1)2

2

∫
C(2R)

[(u− v)+]α−1|∂y(u− v)+|2ϕ
α+1
α |∇ϕ|

α+1
2α dx

+ 2

∫
C(2R)

|∇ϕ|
α+1

2 dx

≤ C2
p(λ)

(α+ 1)2

2

∫
C(2R)

[(u− v)+]α−1|∇(u− v)+|2ϕ
α+1
α |∇ϕ|

α+1
2α dx

+ 2

∫
C(2R)

|∇ϕ|
α+1

2 dx.

(1.3.9)

In (1.3.9) we used Young’s inequality with conjugate exponents

(
α+ 1

α
, α+ 1

)
,

a Poincaré inequality in the set

[
y0 −

λ

2
, y0 +

λ

2

]
, denoting with Cp the as-

sociated constant and the fact that ϕ = ϕ(x′).
We now evaluate the term

I2 =

∫
C(2R)

[(u− v)+]α+1ϕ2 dx.



1.3 Weak comparison principles in unbounded domains 61

I2 =

∫
C(2R)

(
[(u− v)+]

α+1
2

)2
ϕ2 dx

=

∫
RN−1

(∫ y0+λ
2

y0−λ2

(
[(u− v)+]

α+1
2

)2
dy

)
(ϕ(x′))2dx′

≤ C2
p(λ)

∫
RN−1

(∫ y0+λ
2

y0−λ2

(
α+ 1

2

)2

[(u− v)+]α−1|∂y(u− v)+|2dy

)
ϕ2dx′

= C2
p(λ)

(
α+ 1

2

)2 ∫
C(2R)

[(u− v)+]α−1|∇(u− v)+|2ϕ2 dx

(1.3.10)

Now we are going to choose the constants α > 1 and λ > 0 in such a way

(1.3.11) LfC
2
p(λ)

(
α+ 1

2

)2

<
αc1

2

so that from (1.3.8) we have

α
c1

2

∫
C(2R)

|∇(u− v)+|2[(u− v)+]α−1ϕ2 dx

≤ c2

∫
C(2R)

[(u− v)+]α|∇ϕ2| dx = c2I1.

(1.3.12)

From (1.3.23) one has that

α
c1

2

∫
C(R)
|∇(u− v)+|2(u− v)α−1 dx

≤ αc1

2

∫
C(2R)

|∇(u− v)+|2(u− v)α−1ϕ2 dx ≤ c2I1.

Consequently we obtain

∫
C(R)
|∇(u− v)+|2[(u− v)+]α−1 dx

≤ c2

αc1
C2
p(λ)(α+ 1)2

∫
C(2R)

[(u− v)+]α−1|∇(u− v)+|2ϕ
α+1
α |∇ϕ|

α+1
2α dx

+ 4
c2

αc1

∫
C(2R)

|∇ϕ|
α+1

2 dx.

(1.3.13)

From (1.3.13), setting α = 2N + 1, one has

∫
C(R)
|∇(u− v)+|2(u− v)α−1 dx

≤ ϑ
∫
C(2R)

|∇(u− v)+|2[(u− v)+]α−1 dx+ 4
c2

αc1
CλRN−1R−(N+1)

= ϑ

∫
C(2R)

|∇(u− v)+|2[(u− v)+]α−1 dx+ c3R
−2,

(1.3.14)

where
c3 = 4

c2

αc1
Cλ ∈ R+,
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c2

αc1
C2
p(λ)(2N + 2)2 = ϑ < 2−N .

In particular to do this, recalling that C2
p(λ) ' λ2, λ > 0 will be taken such

that

(1.3.15)
c2

αc1
C2
p(λ)(α+ 1)2 < 2−N .

Let us set

L(R) =

∫
C(R)
|∇(u− v)+|2[(u− v)+]α−1 dx,

and

g(R) = c3R
−2.

Then one has {
L(R) ≤ ϑL(2R) + g(R) ∀R > 0,

L(R) ≤ CRN ∀R > 0,

and from Lemma 1.3.2 with γ = N , since we assumed ϑ < 2−N , we get
L(R) = 0 and consequently the thesis.

�

We just point out the fact that monotonicity results in the half-space
are generally based on weak comparison principles in narrow strips as it was
done in a series of papers, some of them mentioned before, by H. Beresticky,
L. Caffarelli and L. Nirenberg [8, 9, 10], E. N. Dancer [39], L. Damascelli
and F. Gladiali [34] and by A. Farina, L. Montoro and B. Sciunzi, see
[56, 58, 59, 60, 61]. In our case, the presence of the therm |∇u|p−2 gives
rise to a phenomenon that was first pointed out in [33, 35], in the case of
bounded domains. Namely, it is possible to prove monotonicity results via
a weak comparison principle in domains that can be decomposed into two
parts. A narrow part (w.r.t. the Lebesgue measure of the section) and a
part where the gradient of the solution is small.

We have the following:

Theorem 1.3.3 ([58]). Let 1 < p < 2, N ≥ 2 and let us assume that f
is a locally Lipschitz continuous function. Fix λ0 > 0 and M0 > 0. Consider
λ ∈ (0, λ0], τ, ε > 0 and set

(1.3.16) Σλy0
:= RN−1 ×

(
y0 −

λ

2
, y0 +

λ

2

)
, y0 ≥

λ

2
.

Let u, v ∈ C1,α
loc (Σλy0

) such that ‖u‖∞+‖∇u‖∞ ≤M0, ‖v‖∞+‖∇v‖∞ ≤M0

and

(1.3.17)


−∆pu ≤ f(u), in Σλy0

,

−∆pv ≥ f(v), in Σλy0
,

u ≤ v, on ∂Sετ ,

where the open set Sετ ⊆ Σλy0
is such that

Sετ =
⋃

x′∈RN−1

Iτ,εx′ ,
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and the open set Iτ,εx′ ⊆ {x
′} ×

(
y0 − λ

2 , y0 + λ
2

)
has the form

(1.3.18) Iτ,εx′ = Aτx′ ∪Bε
x′ with |Aτx′ ∩Bε

x′ | = 0

and, for x′ fixed, Aτx′ , B
ε
x′ ⊂

(
y0 − λ

2 , y0 + λ
2

)
are measurable sets such that

|Aτx′ | ≤ τ and Bε
x′ ⊆ {y ∈ R : |∇u(x′, y)| < ε, |∇v(x′, y)| < ε}.

Then there exist

τ0 = τ0(N, p, λ0,M0) > 0

and

ε0 = ε0(N, p, λ0,M0) > 0

such that, if 0 < τ < τ0 and 0 < ε < ε0, it follows that

u ≤ v in Sετ .

If the functions f is assumed to be globally Lipschitz continuous on RN+ ×R,
the same conclusion holds true without any assumption on the boundedness
of u and v.

Moreover, as a consequence of the previous theorem we have:

Theorem 1.3.4 ([58]). Let 1 < p < 2, N ≥ 2 and let us assume that f
is a locally Lipschitz continuous function. Consider λ > 0 and set

Σλy0
:= RN−1 ×

(
y0 −

λ

2
, y0 +

λ

2

)
, y0 ≥

λ

2
.

Fix M0 > 0 and let u, v ∈ C1,α
loc (Σλy0

) such that ‖u‖∞ + ‖∇u‖∞ ≤ M0,

‖v‖∞ + ‖∇v‖∞ ≤M0 and

(1.3.19)


−∆pu ≤ f(u), in Σλy0

,

−∆pv ≥ f(v), in Σλy0
,

u ≤ v, on ∂S ,

where S ⊆ Σλy0
is an open subset.

Then there exists

λ = λ(N, p,M0) > 0

such that, if 0 < λ < λ, it follows that

u ≤ v in S.

If the functions f is assumed to be globally Lipschitz continuous on RN+ ×R,
the same conclusion holds true without any assumption on the boundedness
of u and v.

We provide now the proof of a generalized version of the Poincaré in-
equality in one dimension.

Lemma 1.3.5 (Poincaré type inequality). Let I be an open bounded sub-
set of R and assume that I = A ∪B with |A ∩B| = 0, A and B measurable
subsets of I. Let % : I → R ∪ {∞} be measurable and such that

inf
t∈I

%(t) > 0 .
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Then for any w ∈ H1
0 (I) such that

∫
I
%(t)|∂tw|2(t)dt is finite, the following

inequality holds:
(1.3.20)∫

I
w2(t)dt ≤ 2|I|max

{
|A| sup

t∈A

1

%(t)
, |B| sup

t∈B

1

%(t)

}∫
I
%(t)|∂tw|2(t)dt.

Proof. Since w belongs to H1
0 (I), there exists a ∈ I such that w(x) =∫ x

a
∂tw(t)dt. Thus we have:

|w(x)| ≤
∫ x

a
|∂tw(t)|dt ≤

∫
I
|∂tw(t)|dt =

∫
A
|∂tw(t)|dt+

∫
B
|∂tw(t)|dt

≤ |A|1/2
(∫

A
|∂tw|2(t)dt

)1/2

+ |B|1/2
(∫

B
|∂tw|2(t)dt

)1/2

≤
(
|A| sup

t∈A

1

%(t)

)1/2(∫
A
%(t)|∂tw|2(t)dt

)1/2

+

(
|B| sup

t∈B

1

%(t)

)1/2(∫
B
%(t)|∂tw|2(t)dt

)1/2

.

(1.3.21)

Finally, using (1.3.21) we obtain:∫
I
w2(t)dt ≤ |I| sup

t∈I
w2(t)

≤ 2|I|
(
|A| sup

t∈A

1

%(t)

∫
A
% |∂tw|2(t)dt+ |B|sup

t∈B

1

%(t)

∫
B
% |∂tw|2(t)dt

)
,

from which the thesis immediately follows.
�

Proof of Theorem 1.3.3: In the proof we denote by ‖ · ‖∞, the L∞ norm
in Σλy0

. We remark that (u − v)+ belongs to L∞(Σλy0
) since u and v are

bounded in Σλy0
.

For α > 1 we define

(1.3.22) ψ = [(u− v)+]αϕ2,

where ϕ(x′, y) = ϕ(x′) ∈ C∞c (RN−1) is such that

(1.3.23)


ϕ ≥ 0, in RN+
ϕ ≡ 1, in B

′
(0, R) ⊂ RN−1,

ϕ ≡ 0, in RN−1 \B′(0, 2R),

|∇ϕ| ≤ C
R , in B

′
(0, 2R) \B′(0, R) ⊂ RN−1,

where B
′
(0, R) =

{
x′ ∈ RN−1 : |x′| < R

}
, R > 1 and C is a positive con-

stant.
Let C(R) be defined as

C(R) :=
{
Sετ ∩ {B

′
(0, R)× R}

}
.
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The assumptions in (1.3.23) and the inequality u ≤ v on ∂Sετ imply that

ψ ∈W 1,p
0 (C(2R)). This allows us to use ψ as test function in both equations

of problem (1.3.17) and to get (by subtracting):
(1.3.24)∫

C(2R)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇ψ

)
dx ≤

∫
C(2R)

(f(u)− f(v))ψ dx ,

Using (1.3.22) we obtain:

α

∫
C(2R)

(|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)+)[(u− v)+]α−1ϕ2 dx

≤
∫
C(2R)

(|∇u|p−2∇u− |∇v|p−2∇v,∇ϕ2)[(u− v)+]α dx

+ Lf

∫
C(2R)

[(u− v)+]α+1ϕ2 dx.

(1.3.25)

Recalling (1.0.2), |∇u| and |∇v| are bounded and α > 1, from (1.3.25) we
obtain

C1

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1ϕ2 dx

≤ C2

∫
C(2R)

|∇(u− v)+|p−1|∇ϕ2|[(u− v)+]α dx

+ Lf

∫
C(2R)

[(u− v)+]α+1ϕ2 dx

≤ C2(2M0)p−1

∫
C(2R)

|∇ϕ2|[(u− v)+]α dx

+ Lf

∫
C(2R)

[(u− v)+]α+1ϕ2 dx.

(1.3.26)

Let us define

(1.3.27) c1 :=
C2(2M0)p−1

C1
,

(1.3.28) c2 :=
Lf
C1
,

I1 :=

∫
C(2R)

|∇ϕ2|[(u− v)+]α dx , I2 :=

∫
C(2R)

[(u− v)+]α+1ϕ2 dx

and note that both c1 and c2 depend only on p and M0, in particular they
are independent of α > 1.
Thus, with the definitions above, we now rewrite (1.3.26) as follows: for
every α > 1, ∫

C(2R)
(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1ϕ2 dx

≤ c1I1 + c2I2.

(1.3.29)

We also observe that
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∫
RN−1

(∫
Iτ,ε
x′

(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1
)
dyϕ2(x′)dx′

=

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1ϕ2 dx < +∞

since ϕ depends only on x′ and the right-hand-side of (1.3.29) is finite.
Hence, for almost every x′ ∈ RN−1 we have that∫

Iτ,ε
x′

(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1dy < +∞,(1.3.30)

which also entails: for almost every x′ ∈ RN−1

∫
Iτ,ε
x′

(|∇u|+ |∇v|)p−2|∂y(u− v)+|2[(u− v)+]α−1dy < +∞.(1.3.31)

Estimate for I1. Let us recall the decomposition stated in (1.3.18)
which gives

Sετ =
⋃

x′∈Rn−1

Iτ,εx′ with Iτ,εx′ = Aτx′ ∪Bε
x′ .

We set
%x′(t) = (|∇u(x′, t)|+ |∇v(x′, t)|)p−2

in order to apply Lemma 1.3.5 in each Iτ,εx′ , for which (1.3.31) holds true,

with %(t) := %x′(t), A := Aτx′ , B := Bε
x′ and w(t) = [(u − v)+(x′, t)]

α+1
2 .

Note that the constant in (1.3.20) in this case is given by:

Cτ,ε(x
′) = 2λ max

{
|Aτx′ | sup

t∈Aτ
x′

1

%x′(t)
, |Bε

x′ | sup
t∈Bε

x′

1

%x′(t)

}
.

Therefore, for almost every x′ ∈ RN−1, we have

(1.3.32) Cτ,ε(x
′) ≤ Cτ,ε := 2λ0 max

{
τ(2M0)2−p , λ0(2ε)2−p} ,

so that, since 1 < p < 2, Cτ,ε can be chosen arbitrary small, for τ and
ε sufficiently small. Now, recalling that ϕ depends only on x′ and using
Young’s inequality with conjugate exponents α+1

α and α+ 1, we get:

I1 ≤ 2

∫
C(2R)

[(u− v)+]αϕ|∇ϕ| dx = 2

∫
C(2R)

[(u− v)+]αϕ|∇ϕ|
1
2 |∇ϕ|

1
2 dx

≤ 2

∫
C(2R)

[(u− v)+]α+1ϕ
α+1
α |∇ϕ|

α+1
2α

α+1
α

dx+ 2

∫
C(2R)

|∇ϕ|
α+1

2

α+ 1
dx

≤ 2

∫
RN−1

(∫
Iτ,ε
x′

(
[(u− v)+]

α+1
2

)2
dy

)
ϕ
α+1
α |∇ϕ|

α+1
2α dx′

+ 2

∫
C(2R)

|∇ϕ|
α+1

2 dx

(1.3.33)
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and the application of Lemma 1.3.5 yields

I1 ≤ Cτ,ε
(α+ 1)2

2∫
C(2R)

(|∇u|+ |∇v|)p−2[(u− v)+]α−1|∂y(u− v)+|2ϕ
α+1
α |∇ϕ|

α+1
2α dx

+ 2

∫
C(2R)

|∇ϕ|
α+1

2 dx

≤ Cτ,ε
(α+ 1)2

2∫
C(2R)

(|∇u|+ |∇v|)p−2[(u− v)+]α−1|∇(u− v)+|2ϕ
α+1
α |∇ϕ|

α+1
2α dx

+ 2

∫
C(2R)

|∇ϕ|
α+1

2 dx ,

(1.3.34)

where Cτ,ε has been defined in (1.3.32).

Estimate for I2. We use the same notations as in the evaluation of I1

and we get:

I2 =

∫
C(2R)

(
[(u− v)+]

α+1
2

)2
ϕ2 dx

=

∫
RN−1

(∫
Iτ,ε
x′

(
[(u− v)+]

α+1
2

)2
dy

)
(ϕ(x′))2dx′

≤ Cτ,ε
(
α+ 1

2

)2

∫
RN−1

(∫
Iτ,ε
x′

(|∇u|+ |∇v|)p−2[(u− v)+]α−1|∂y(u− v)+|2dy

)
ϕ2dx′

≤ Cτ,ε
(
α+ 1

2

)2 ∫
C(2R)

(|∇u|+ |∇v|)p−2[(u− v)+]α−1|∇(u− v)+|2ϕ2 dx.

(1.3.35)

Let us fix

(1.3.36) α = 2N + 1 > 1.

Recalling that Cτ,ε tends to 0, as both τ and ε go to zero, we can take
τ > 0 and ε > 0 small enough, such that

(1.3.37) c2Cτ,ε

(
α+ 1

2

)2

<
1

2
, c1Cτ,ε(α+ 1)2 < 2−N

so that from (1.3.29) we have

(1.3.38)

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1ϕ2 dx ≤ 2c1I1.
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By (1.3.23) we infer that∫
C(R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2(u− v)α−1 dx

≤
∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2(u− v)α−1ϕ2 dx ≤ 2c1I1

(1.3.39)

and, using (1.3.34), we obtain

∫
C(R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1 dx

≤ c1Cτ,ε(α+ 1)2∫
C(2R)

(|∇u|+ |∇v|)p−2[(u− v)+]α−1|∇(u− v)+|2ϕ
α+1
α |∇ϕ|

α+1
2α dx

+ 4c1

∫
C(2R)

|∇ϕ|
α+1

2 dx.

(1.3.40)

Recalling (1.3.36) one has:

∫
C(R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2(u− v)α−1 dx

≤ ϑ
∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1 dx+ ĈR−2,

(1.3.41)

where
ϑ = c1Cτ,ε(α+ 1)2,

Ĉ = 4c1λC
α+1

2 > 0

exploiting also (1.3.23). Notice that, in view of (1.3.37), we also have that
ϑ < 2−N . In order to apply Lemma 1.3.2 we set

L(R) =

∫
C(R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2[(u− v)+]α−1 dx,

and
g(R) = ĈR−2.

Then from (1.3.41) we have:{
L(R) ≤ ϑL(2R) + g(R) ∀R > 0,

L(R) ≤ CRN ∀R > 0.

Applying Lemma 1.3.2 with β = N , we get L(R) = 0 and consequently
the thesis.

�

Proof of Theorem 1.3.4.
The desired result is obtained with the same proof of that of Theorem 1.3.3
with the following slight (but necessary) modifications. Replace Sετ by S,
set ε = τ = λ, Bε

x′ = ∅, Iτ,εx′ = Aτx′ = S ∩{x′}×
(
y0 − λ

2 , y0 + λ
2

)
and observe

that (1.3.32) becomes

(1.3.42) Cλ(x′) ≤ Cλ := 2λ2(2M0)2−p,
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and that (1.3.37) becomes

(1.3.43) c2Cλ

(
α+ 1

2

)2

<
1

2
, c1Cλ(α+ 1)2 < 2−N .

The conclusion the follows by taking λ small enough in the latter one.

�

Now we want to present a weak comparison principle in unbounded
strips that has a natural application in the study of monotonicity properties
of solutions in the half-space of the following degenerate quasilinear elliptic
problem:

(1.3.44)


−∆pu = f(u) in RN+
u(x′, y) ≥ 0 in RN+
u(x′, 0) = 0 on ∂RN+

where N ≥ 2, p > 2 and f(·) satisfies:

(Ef ) the nonlinearity f is positive i.e. f(t) > 0 for t > 0, locally Lipschitz
continuous in R+ ∪ {0} and

lim
t→0+

f(t)

tp−1
= f0 ∈ R+ ∪ {0}.

We state the following:

Theorem 1.3.6. Let p > 2 and let u, v ∈ C1,α
loc (RN+ ) be two positive weak

solutions to (1.3.44) with |∇u|, |∇v| ∈ L∞(RN+ ). For λ > 0 fixed such that

0 ≤ α < β ≤ λ, let Σ(α,β) := RN−1 × (α, β), Σβ = Σ(0,β) and assume that

(1.3.45) u ≤ v on ∂Σ(α,β) .

Assume furthermore that, setting

I+
(λ) =

{
(x′, λ) : x′ ∈ P

(
Supp (u− v)+

)}
,

it holds that

(1.3.46) u(x) ≥ γ > 0 on I+
(λ).

Then, for Λ > 0 fixed such that

Λ ≥ 2λ+ 1 ,

it follows that there exists h0 = h0(f, p, γ,N, ‖∇u‖L∞(ΣΛ), ‖∇v‖L∞(ΣΛ)) such
that if β − α ≤ h0 then we have

u ≤ v in Σ(α,β).

Proof. We remark that (u− v)+ ∈ L∞(Σ(α,β)) since we assumed |∇u|
and |∇v| are bounded. We put

(1.3.47) C(α,β)(R) = C(R) = Σ(α,β) ∩ {B′(0, R)× R}.

Let us now define

(1.3.48) Ψ = (u− v)+ϕ2
R,
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where ϕR(x′, y) = ϕR(x′) ∈ C∞c (RN−1), ϕR ≥ 0 such that

(1.3.49)


ϕR ≡ 1, in B

′
(0, R) ⊂ RN−1,

ϕR ≡ 0, in RN−1 \B′(0, 2R),

|∇ϕR| ≤ C
R , in B

′
(0, 2R) \B′(0, R) ⊂ RN−1,

where B
′
(0, R) denotes the ball in RN−1 with center 0 and radius R > 0.

From now on, for the sake of simplicity, we set ϕR(x′, y) := ϕ(x′, y). By

(1.3.49) and by the fact that u ≤ v on ∂Σβ
λ (see (1.3.45)), it follows that

Ψ ∈W 1,p
0 (C(α,β)(2R)).

Since u is a solution to problem (1.3.44), then it follows that u, v are solutions
to

(1.3.50)


−∆pu = f(u) in Σ(α,β),

−∆pv = f(v) in Σ(α,β),

u ≤ v on ∂Σ(α,β).

Then using Ψ as test function in both equations of problem (1.3.17) and
substracting we get∫

C(2R)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)+

)
ϕ2 dx

+

∫
C(2R)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇ϕ2

)
(u− v)+ dx

=

∫
C(2R)

(
f(u)− f(v)

)
(u− v)+ϕ2 dx,

(1.3.51)

where C(·) denotes the cylinder defined in (1.3.47). By (1.0.2) and the fact
that p ≥ 2, from (1.3.51) we deduce that

Ċ

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2ϕ2 dx

≤
∫
C(2R)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇(u− v)+

)
ϕ2 dx

= −
∫
C(2R)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇ϕ2

)
(u− v)+ dx

+

∫
C(2R)

(
f(u)− f(v)

)
(u− v)+ϕ2 dx

≤
∫
C(2R)

∣∣(|∇u|p−2∇u− |∇v|p−2∇v,∇ϕ2
)∣∣ (u− v)+ dx

+

∫
C(2R)

(
f(u)− f(v)

)
(u− v)+ϕ2 dx

≤ Č
∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+||∇ϕ2|(u− v)+ dx

+

∫
C(2R)

(
f(u)− f(v)

)
(u− v)+ϕ2 dx,

(1.3.52)
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where in the last line we used Schwarz inequality and (1.0.2). Setting

(1.3.53) I1 := Č

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+||∇ϕ2|(u− v)+ dx

and

(1.3.54) I2 :=

∫
C(2R)

(
f(u)− f(v)

)
(u− v)+ϕ2 dx,

(1.3.52) becomes

(1.3.55) Ċ

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2ϕ2 dx ≤ I1 + I2.

In order to estimate the terms I1 and I2 in (1.3.55) we will exploit the
weighted Poincaré type inequality (see Section 1.1, Corollary 1.1.4) and a
covering argument that goes back to [61]. Let us consider the hypercubes
Qi of RN defined by

Qi = Q′i × [α, β],

where Q′i ⊂ RN−1 are hypercubes of RN−1, with edge β − α and such that⋃
i

Q′i = RN−1.

Moreover we assume that Qi ∩Qj = ∅ for i 6= j and

(1.3.56)

N⋃
i=1

Qi ⊃ C(2R).

It follows as well, that each set Qi has diameter

(1.3.57) diam(Qi) = dQ =
√
N(β − α), i = 1, · · · , N.

The covering in (1.3.56) will allow us to use in each Qi the weighted Poincaré
type inequality and to take advantage of the constant Cp in Corollary 1.1.4,
that turns to be not depending on the index i of (1.3.56). Later we will
recollect the estimates.

Let us define

(1.3.58) w(x) :=


(
u− v

)+
(x′, y) if (x′, y) ∈ Qi;

−
(
u− v

)+
(x′, 2β − y) if (x′, y) ∈ Qri ,

where (x′, y) ∈ Qri iff (x′, 2β − y) ∈ Qi. We claim that

(1.3.59)

∫
Qi

w2 dx ≤ Cp(Qi)

∫
Qi

(|∇u|+ |∇v|)p−2|∇w|2 dx

where Cp(Qi) is given by Theorem 1.1.4 and has the property that it goes
to zero if the diameter of Qi goes to zero. Actually, since p ≥ 2, we will
deduce (1.3.59) by

(1.3.60)

∫
Qi

w2 dx ≤ Cp(Qi)

∫
Qi

|∇v|p−2|∇w|2 dx.
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The fact that Corollary 1.1.4 can be applied to deduce (1.3.60) is somehow
technical and we describe the procedure here below.

We have

∫
Qi∪Qri

w(x) dx = 0 and therefore, see [70, Lemma 7.14, Lemma

7.16], it follows that

w(x) = Ĉ

∫
Qi∪Qri

(xi − zi) ∂w∂xi (z)
|x− z|N

dz a.e. x ∈ Qi ∪Qri ,

where Ĉ = Ĉ(dQ, N), is a positive constant. Arguing as in the proof of
Lemma 1.2.2, then for almost every x ∈ Qi we have

|w(x)| ≤ Ĉ
∫
Qi∪Qri

|∇w(z)|
|x− z|N−1

dz

= Ĉ

∫
Qi

|∇w(z)|
|x− z|N−1

dz + Ĉ

∫
Qri

|∇w(z)|
|x− z|N−1

dz

≤ 2Ĉ

∫
Qi

|∇w(z)|
|x− z|N−1

dz ,

where in the last line we used the following standard changing of variables

(zt)′ = z′ and ztN = 2β − zN ,

the fact that for x ∈ Qi, it holds that (|x − z|)
∣∣∣
z∈Qi

≤ (|x − zt|)
∣∣∣
z∈Qi

and

that, by (1.3.58) it holds that |∇w(z)| = |∇w(zt)|.

Hence (1.1.33) holds and, in order to prove (1.3.60), we need to show that
(1.1.29) holds with

% := |∇u|p−2 .

Note now that, if w vanishes identically in Qi, then there is nothing to prove.
If not it is easy to see that by our assumptions (see (1.3.46)) and by the
classical Harnack inequality, it follows that there exists γ̄ > 0 such that

(1.3.61) u ≥ γ̄ > 0 in Q̃′i × [λ/2 , 4λ]

where

Q̃′i := {x ∈ RN−1 : dist(x,Q′i) < 1} .
Let us consider QRλi obtained by the reflection of Qi with respect to the

hyperplane Tλ = {(x′, y) ∈ RN : y = λ}. Since QRλi is bounded away from

the boundary RN , namely

dist (QRλi , {y = 0}) ≥ λ > 0,

thanks to (1.3.61) and since a sufficient condition to the summability of %
holds, more precisely we can apply Proposition 2.4 [60], we obtain that∫

Q
Rλ
i

1

|∇u|p−2

1

|x− y|γ
dy ≤ C∗1 (β1, β2) for any x ∈ QRλi ,
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where

β1 = min
t∈[γ̄,‖u‖L∞(ΣΛ)]

f(t) and β2 = λ.

We deduce the same for v:∫
Qi

1

|∇v|p−2

1

|x− y|γ
dy ≤ C∗1 (β1, β2) for any x ∈ Qi,

so that we can exploit Corollary 1.1.4 to deduce (1.3.60) and consequently
(1.3.59).
Let us now estimate the right hand side of (1.3.55). Recalling (1.3.53) we
get

I1 =2Č

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|ϕ|∇ϕ|(u− v)+ dx

=2Č

∫
C(2R)

(|∇u|+ |∇v|)
p−2

2
+ p−2

2 |∇(u− v)+|ϕ|∇ϕ|(u− v)+ dx

≤δ′Č
∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2ϕ2 dx

+
Č

δ′

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇ϕ|2[(u− v)+]2 dx,

where in the last inequality we used weighted Young’s inequality, with δ′ to
be chosen later. Hence

(1.3.62) I1 ≤ Ia1 + Ib1,

where

Ia1 := δ′Č

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2ϕ2 dx,

Ib1 :=
Č

δ′

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇ϕ|2[(u− v)+]2 dx.

(1.3.63)

Using the covering in (1.3.56), the properties of the cut-off function in
(1.3.48) and the fact that |∇u| and |∇v| are bounded, by (1.3.59) we deduce
that

Ib1 ≤
N∑
i=1

C

δ′R2

∫
C(2R)∩Qi

[(u− v)+]2 dx

≤ max
i
CP (Qi)

N∑
i=1

C

δ′R2

∫
C(2R)∩Qi

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx

≤ C∗P
C

δ′R2

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx

(1.3.64)

where C∗P = maxiCP (Qi) and C = C(p, ‖∇u‖L∞(ΣΛ)).
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Now we estimate the term I2 in (1.3.55). Being f locally Lipschitz continu-
ous form (1.3.54), arguing as in (1.3.64), we get that

I2 ≤
∫
C(2R)

f(u)− f(v)

u− v
[(u− v)+]2 dx

≤ C∗P · C
∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx,

where C∗P is as in (1.3.64) and C = C(f, λ, ‖∇u‖L∞(ΣΛ)). Actually the
constant C will depend on the Lipschitz constant of f in the interval[

0,max{‖u‖L∞(ΣΛ), ‖v‖L∞(ΣΛ)}
]
.

By (1.3.55), (1.3.62), (1.3.63) and (1.3.64), up to redefining the constants,
we obtain

C

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2ϕ2 dx

≤δ′
∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx

+
C∗P
R

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx

+ C∗P

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx.

(1.3.65)

Let us choose δ′ small in (1.3.65) such that C − δ′ > C/2 and fix R > 1.
Then we obtain ∫

C(2R)
(|∇u|+ |∇v|)p−2|∇(u− v)+|2ϕ2 dx

≤ 4
C∗P
C

∫
C(2R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx.
(1.3.66)

To conclude we set now

(1.3.67) L(R) :=

∫
C(R)

(|∇u|+ |∇v|)p−2|∇(u− v)+|2 dx.

We can fix h0 = h0(f, p, γ, λ,N, ‖∇u‖L∞(ΣΛ), ‖∇v‖L∞(ΣΛ)) positive, such
that if

β − α ≤ h0,

(recall that C∗P → 0 in this case since diam(Qi)→ 0, see (1.3.57)) then

ϑ := 4
C∗P
C

< 2−N .

Then, by (1.3.66) and (1.3.67), we have{
L(R) ≤ ϑL(2R) ∀R > 1,

L(R) ≤ CRN ∀R > 1.

From Lemma 1.3.2 with ν = N and ϑ < 2−N , we get

L(R) ≡ 0
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and consequently that (u− v)+ ≡ 0.
�

Finally, the last result that we present a weak comparison principle that
works in unbounded strips (we do not need to consider narrow parts). This
results works for a general class of changing-sign nonlinearities and to the
best of our knowledge this results is new since it is the first time that,
in the quasilinear case, these nonlinearities are considered in unbounded
domains. This results will be crucial in the proof of Gibbons conjecture
in the quasilinear case that will be presented in Chapter 7 and it is also
contained in a paper in collaboration with A. Farina, L. Montoro and B.
Sciunzi [49]. Let us consider the following quailinear elliptic problem:

(1.3.68)


−∆pu ≤ f(u) in Σ(a,b)

−∆pv ≥ f(v) in Σ(a,b)

u ≤ v on ∂Σ(a,b),

ordered on the boundary of some half-space Σ(a,b) of RN , with p > 1 and
N < 1. More precisely

Σ(a,b) := RN−1 × (a, b),

where either a = −∞ and b ∈ R, or a ∈ R and b = +∞.
We summarize the assumptions on the nonlinearity f (denoted by (Gf)

in the following) as follows:

(Gf): The nonlinearity f(·) belongs to C1([−1, 1]), f(−1) = 0, f(1) = 0,
f ′+(−1) < 0, f ′−(1) < 0 and the set

Nf := {t ∈ [−1, 1] | f(t) = 0}

is finite. We provide the following

Theorem 1.3.7 ([49]). Let u, v ∈ C1,α
loc (Σ(a,b)) satisfying problem (1.3.68),

N ≥ 1, p > 1, where Σ(a,b) is some half-space of RN and f fulfils (Gf).
Moreover, let us assume that

|∇u|, |∇v| ∈ L∞(Σ(a,b)),

for some δ sufficiently small

−1 ≤ u ≤ −1 + δ in Σλy0

and for some L > 0

(1.3.69) f ′(t) < −L in [−1,−1 + δ].

Then

(1.3.70) u ≤ v in Σ(a,b).

The same result is true if

1− δ ≤ v ≤ 1 in Σ(a,b) and f ′(t) < −L in [1− δ, 1].
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Proof. We prove the result in the case −1 ≤ u ≤ −1 + δ.
We distinguish two cases:
Case 1: 1 < p < 2. We set

(1.3.71) ψ := wαϕα+1
R ,

where α > 1, R > 0 large, w := (u−v)+ and ϕR is a standard cutoff function
such that 0 ≤ ϕR ≤ 1 on RN , ϕR = 1 in BR, ϕR = 0 outside B2R, with
|∇ϕR| ≤ 2/R in B2R \ BR. Let us define C(2R) := Σ(a,b) ∩ B2R ∩ supp(ω).

First of all we notice that ψ ∈ W 1,p
0 (C(2R)). By density arguments we

can take ψ as test function in the weak formulation of (1.3.68), so that,
subtracting we obtain

α

∫
C(2R)

(|∇u|p−2∇u− |∇v|p−2∇v,∇w)wα−1ϕα+1
R dx

≤ −(α+ 1)

∫
C(2R)

(|∇u|p−2∇u− |∇v|p−2∇v,∇ϕR)wαϕα+1
R dx

+

∫
C(2R)

[f(u)− f(v)]wαϕα+1
R dx .

(1.3.72)

From (1.3.72), using (1.0.2) and noticing that f is decreasing in [−1,−1+δ],
we obtain

αC1

∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇w|2wα−1ϕα+1
R dx

≤ α
∫
C(2R)

(|∇u|p−2∇u− |∇v|p−2∇v,∇w)wα−1ϕα+1
R dx

≤ −(α+ 1)

∫
C(2R)

(|∇u|p−2∇u− |∇v|p−2∇v,∇ϕR)wαϕαR dx

+

∫
C(2R)

f ′(ξ)(u− v)+wαϕα+1
R dx

≤ (α+ 1)C3

∫
C(2R)

|∇w|p−1|∇ϕR|wαϕαR dx− L
∫
C(2R)

(u− v)+wαϕα+1
R dx,

(1.3.73)

where ξ is some point that belongs to (v, u). Hence, recalling also that
|∇u|, |∇v| ∈ L∞(Σ(a,b)), we deduce

αC1

∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇w|2wα−1ϕα+1
R dx

≤ (α+ 1)C3

∫
C(2R)

|∇w|p−1|∇ϕR|wαϕαR dx− L
∫
C(2R)

wα+1ϕα+1
R dx

≤ (α+ 1)C

∫
C(2R)

|∇ϕR|wαϕαR dx− L
∫
C(2R)

wα+1ϕα+1
R dx

(1.3.74)
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where C = C(p, ‖∇u‖L∞(Σ(a,b)), ‖∇v‖L∞(Σ(a,b))). Exploiting the weighted

Young’s inequality with exponents α+1 and (α+ 1)/α in (1.3.74), we obtain

αC1

∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇w|2wα−1ϕα+1
R dx

≤ C

σα+1

∫
C(2R)

|∇ϕR|α+1 dx+ αCσ
α+1
α

∫
C(2R)

wα+1ϕα+1
R dx

− L
∫
C(2R)

wα+1ϕα+1
R dx

≤ C

σα+1

∫
C(2R)

|∇ϕR|α+1 dx+
(
αCσ

α+1
α − L

)∫
C(2R)

wα+1ϕα+1
R dx

≤ 2α+1C

σα+1Rα−(N−1)
+
(
αCσ

α+1
α − L

)∫
C(2R)

wα+1ϕα+1
R dx.

Now taking α > N − 1, if we choose

σ = σ(p, α, L,N, ‖∇u‖L∞(Σ(a,b)), ‖∇v‖L∞(Σ(a,b))) > 0

sufficiently small so that

αCσ
α+1
α − L < 0,

we obtain

(1.3.75)

∫
C(R)

(|∇u|+ |∇v|)p−2 |∇w|2wα−1 dx ≤ C̃

ασα+1Rα−(N−1)
.

Passing to the limit in (1.3.75) for R→ +∞, by Fatou’s Lemma we have∫
Σλy0

(|∇u|+ |∇v|)p−2 |∇w|2wα−1 dx ≤ 0.

This implies that u ≤ v in Σ(a,b).
Case 2: p ≥ 2. We set

(1.3.76) ψ := wϕ2
R,

where R > 0, w := (u− v)+ and ϕR is the standard cutoff function defined

above. First of all we notice that ψ ∈ W 1,p
0 (B2R). Let us define C(2R) :=

Σ(a,b)∩B2R∩ supp(ω). By density arguments we can take ψ as test function
in the weak formulation of (1.3.68), so that, subtracting we obtain∫

C(2R)
(|∇u|p−2∇u− |∇v|p−2∇v,∇w)ϕ2

R dx

≤ −2

∫
C(2R)

(|∇u|p−2∇u− |∇v|p−2∇v,∇ϕR)wϕR dx

+

∫
C(2R)

[f(u)− f(v)]wϕ2
R dx .

(1.3.77)
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From (1.3.77), using (1.0.2) and that f ′(u) ≤ −L in [−1,−1 + δ], we obtain

C1

∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇w|2ϕ2
R dx

≤
∫
C(2R)

(|∇u|p−2∇u− |∇v|p−2∇v,∇w)ϕ2
R dx

≤ −2

∫
C(2R)

(|∇u|p−2∇u− |∇v|p−2∇v,∇ϕR)wϕR dx

+

∫
C(2R)

f ′(ξ)(u− v)+wϕ2
R dx

≤ 2C2

∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇w| |∇ϕR|wϕR dx

− L
∫
C(2R)

(u− v)+wϕ2
R dx,

(1.3.78)

where ξ is some point tha belongs to (v, u). Using in (1.3.78) the weighted
Young’s inequality (and the fact that |∇u|, |∇v| ∈ L∞(Σ(a,b))), we obtain

C1

∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇w|2ϕ2
R dx

≤ 2C2

∫
C(2R)

(|∇u|+ |∇v|)
p−2

2 |∇w| (|∇u|+ |∇v|)
p−2

2 |∇ϕR|wϕR dx

− L
∫
C(2R)

w2ϕ2
R dx

≤ C2σ

∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇w|2 dx

+
C2

σ

∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇ϕR|2w2ϕ2
R dx

− L
∫
C(2R)

w2ϕ2
R dx.

≤ C2σ

∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇w|2 dx

+

(
C

σR2
− L

)∫
C(2R)

w2ϕ2
R dx,

(1.3.79)

where C = C(p, ‖∇u‖L∞(Σ(a,b)), ‖∇v‖L∞(Σ(a,b))) is a positive constant. Hence,

up to redefine the constants, we have

∫
C(R)

(|∇u|+ |∇v|)p−2 |∇w|2 dx ≤ Cσ
∫
C(2R)

(|∇u|+ |∇v|)p−2 |∇w|2 dx

+
1

C1

(
C

σR2
− L

)∫
C(2R)

w2ϕ2
R dx.

(1.3.80)
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Now we set

L(R) :=

∫
C(R)

(|∇u|+ |∇v|)p−2 |∇w|2 dx.

By our assumption,|∇u|, |∇v| ∈ L∞(Σ(a,b)), it follows that L(R) ≤ ĊRN for

every R > 0 and for some Ċ = Ċ(p, ‖∇u‖L∞(Σ(a,b)), ‖∇v‖L∞(Σ(a,b))). More-

over, in equation (1.3.80), we take σ = σ(p,N, ‖∇u‖L∞(Σ(a,b)), ‖∇v‖L∞(Σ(a,b))) >

0 sufficiently small so that Cσ < 1/2N . Finally we fix R0 > 0 such that

C

σR2
− L < 0

for every R ≥ R0. Therefore by (1.3.80) we deduce that

(1.3.81)

{
L(R) ≤ ϑL(2R) ∀R ≥ R0

L(R) ≤ ĊRN ∀R ≥ R0,

where ϑ := Cσ < 1/2N . By applying Lemma 1.3.2 it follows that L(R) = 0
for all R ≥ R0. Hence u ≤ v in Σ(a,b).

�

1.4. The Höpf boundary lemma and the strong maximum
principle

The aim of this section is to present two classical results: the Höpf
boundary lemma and the strong comparison principle for quasilinear elliptic
equations. It is well know that the Höpf boundary lemma always implies
the strong maximum principle. Here, borrowing the ideas of J. L. Vazquez
contained in the celebrated paper [127] we would like to present this well
known results for the following quasilinear elliptic problem: Let us consider
the following quasilinear elliptic problem

(1.4.1)


−∆pu+ β(u) = f(x) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where 1 < p < +∞, Ω is any connected domain of RN , N ≥ 2, β : R → R
is a nondecreasing function with β(0) = 0 and f ≥ 0 a.e. in Ω. As already
mentioned, we now state the results by J. L. Vazquez in the celebrated paper
[127], but we have to remark that similar results for quasilinear elliptic
equations were obtained also by P. Pucci and J. Serrin, that considered a
more general class of operators and of nonlinearity (see e.g. [103]). Here we
prove the case p = 2 (as it was done by J.L. Vazquez in [127]) and we give
some ideas for the quasilinear case.

Theorem 1.4.1 ([127]). Let p = 2 and u ∈ L1
loc(Ω) be such that is a

solution to (1.4.1) such that ∆u ∈ L1
loc(Ω) in the sense of distribution in Ω

and ∆u ≤ β(u) in {x ∈ Ω | 0 < u(x) < a}, where a is a positive constant
and β : [0, a] → R is a continuous nondecreasing function with β(0) = 0.
Under the assumption that β(S) = 0 for some S > 0 or

(1.4.2)

∫ a
2

0

1√
β(S)S

dS =∞
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if β(S) > 0 for S > 0, then either u ≡ 0 a.e. in Ω or u is strictly positive
in Ω in the sense that for every compact set k ⊂ Ω there exists a constant
γ = γ(K) > 0 such that

(1.4.3) u ≥ γ a.e. in Ω.

In particular if u vanishes a.e. in a set of positive measure it must vanish
a.e. in Ω.

In other words what we are going to prove is that, for a suitable class
of solutions of (1.4.1) for p = 2, the strong maximum principle holds if and
only if either β(S) = 0 for some S > 0 or β(S) > 0 for S > 0 and

(1.4.4)

∫ 1

0

1√
j(S)

dS =∞,

where j(S) =

∫ s

0
β(t) dt. We just notice that for every S > 0 since β is

monotone nondecreasing then also j it is and we have

S

2
β

(
S

2

)
≤ j

(
S

2

)
≤ j(S) ≤ β(S).

Hence condition (1.4.4) is equivalent to the following one

(1.4.5)

∫ 1

0

1√
β(S)

dS =∞.

Remark 1.4.1. We want just to observe that if β(s) = sq with q >
0 it follows that, by simple computations, condition (1.4.5) holds if and
only if q ≥ 1. When (1.4.5) does not hold, in particular for this kind of
nonlinearity when 0 < q < 1, it follows that there exist the so called dead
core solutions, for more details we refer to the seminal paper [127].

In the proof of Theorem 1.4.1 we need of the following technical lemma
that will be useful to build a radial solution of problem (1.4.1), in order to
compare it with other solutions of problem (1.4.1) with p = 2:

Lemma 1.4.2. For all k1, k2, r1, v1 > 0 and β : R → R continuous non-
decresing function with β(0) = 0, there exists a unique v = v(r, k1, k2, r1, v1)
defined in [0, r1] of class C2 that is a solution of the following nonlinear
two-point boundary value problem

(1.4.6)

{
v′′ = k1v

′ + k2β(v) 0 < r < r1

v(0) = 0 v(r1) = v1

and v, v′, v′′ ≥ 0. Moreover if β satisfies (1.4.5) then v′(0) = 0 and v1 >
v > 0 in (0, r1).

Proof. For the existence and the uniqueness of the solution v to prob-
lem we refer to the works [7, 78]. The fact that v(r) ≥ 0 for 0 ≤ r ≤ r1 fol-
lows from comparison arguments between sub and super-solutions of (1.4.6)
as exploited in [7, 78]. Now we observe that by multiplying both sides of
the ordinary differntial equation of (1.4.6) for e−k1r we obtain:(

e−k1rv′(r)
)′

= k2e
−k1rβ(v(r));
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from this it follows that e−k1rv′(r) is a nondecreasing function, hence by
simple computations v′(r) ≥ 0 for 0 ≤ r ≤ r1. Since v′′(r) = k1v

′(r) +
k2β(v(r)) for 0 ≤ r ≤ r1 then also v′′(r) ≥ 0 for 0 ≤ r ≤ r1.

Now let us consider r0 the largest r for which v(r) = 0. Necessarily
0 ≤ r0 < r1, v : [r0, r1]→ [0, v1] is bijective and

(1.4.7)

∫ r1

r0

v′(r)√
j(v(r))

dr =

∫ 1

0

1√
β(S)

dS =∞.

Now, if w = (v′)2 we have

k2j
′(v) = k2β(v)v′ = (v′′ − k1v

′)v′

and so

2k2e
−2k1rj′(v) =

(
e−2k1rw

)
.

Since v′(r0) = 0, by integrating the previous equation between r0 and r we
have

2k2e
−2k1r0j(v(r)) = 2k2e

−2k1r0

∫ r

r0

j′(v(r)) dr

≥
∫ r

r0

2k2e
−2k1rj′(v(r)) dr = e−2k1r1w(r)

and hence we have∫ r1

r0

v′(r)√
j(v(r))

dr ≤
√

2k2e
k1(r1−r0)(r1 − r0) < +∞,

but this gives a contradiction with our assumption (1.4.5). Hence v′(r0) > 0
and this implies r0 = 0. It follows that v′(0) > 0 and v′(r) > 0 for o < r < r1.

�

First Proof of Theorem 1.4.1. Let us prove the theorem in the
case u ∈ C1(Ω). Let us assume that u vanishes somewhere in Ω but it
is not identically zero. Hence we can choose a point x0 ∈ Ω and a ball
B = BR(x1) such that x0 ∈ ∂B and u(x0) = 0 and 0 < u(x) < a for each
x ∈ B. It is sufficient to take x1 ∈ Ω such that u(x1) > 0 and for ε > 0 suf-
ficiently small d(x1, N) < ε and d(x, ∂Ω) with N = {x ∈ Ω | u(x) = 0} and
R = supr>0{Br(x1) ⊂ Ω \ N}. Taking G =

{
x ∈ RN | R2 < |x− x1 < R

}
,

u > 0 in G, v1 = infu
{
|x− x1| = R

2

}
and using Lemma 1.4.2 we can con-

struct the function

(1.4.8) û(x) := v

(
R− |x− x1|, k1, 1,

R

2
, v1

)
in the annulus G defined above. Now by Lemma 1.4.2 we have that

∆û = k1|∇û|+ β(û).

Moreover, since û is radial, by taking k1 ≥ 2(N−1)
R û we have

∆û ≥ β(û).

Now by Kato inequality we have

∆(û− u)+ ≥ sign(û− u)∆(û− u) = sign(û− u)(β(u)− β(û)) ≥ 0.
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Then u ≥ û and since v′(0) > 0 it follows that

lim inf
h→0

u(x0 + h(x1 − x0))− u(x0)

h
> 0

against the assumption that u ∈ C1(Ω), which implies that ∇u(x0) = 0.
If u 6∈ C1(Ω), assume that u 6≡ 0. Then there must exists a nall BR(x̄) ⊂

Ω, R > 0 such that the trace g of û on the sphere SR(x̄) is not zero a.e. We
have to show that there exists a unique solution v ∈ C1(Ω) to the following
semilinear problem

(1.4.9)

{
−∆v + β(v) = 0 in BR(x̄)

v = min(g, a/2) on SR(x̄).

This is a well known result in the literature and we refer the reader to
the celebrated papers [81, 97]. After that, the proof follows by the one
developed in the case of C1 solutions.

�

Now we are ready to prove the following

Theorem 1.4.2 (Höpf boundary lemma). Let Ω, β, p and u as in Theo-
rem 1.4.1 and let x0 be a point on ∂Ω satisying the interior sphere condition.
Let B one such sphere and ν the corresponding interior normal at x0. Then
there exists γ > 0 such that

(1.4.10) ess lim inf
x→x0

u(x)

(x− x0, ν)
≥ γ x ∈ B.

In particular if u ∈ C1(Ω ∪ {x0}) and u(x0) = 0 we have

(1.4.11)
∂u

∂ν
(x0) ≥ γ.

Proof. Now we take the annulus G corresponding to the ball BR(x1)
that occurs in the definition of interior sphere condition at x0. Since G
touches ∂Ω we replace x1 by xε1 = x1 + εν for a small ε > 0 and keep R
fixed. If ε is sufficiently small the new annulus Gε is such that Gε ⊂ Ω.
Arguing as in Theorem 1.4.1 we have

u(x) ≥ û(x− ε)
a.e. in G. Passing to the limit for ε → 0 and remembering that v′(0) > 0
we obtain (1.4.10) with γ = v′(0).

�

Theorems 1.4.1 and 1.4.2 hold also in the quasilinear case, when the
classical Laplace operator is replaced by the p-Laplace operator ∆pu =
div(|∇u|p−2∇u) and conditions (1.4.4) and (1.4.5) are replaced respectively
by

(1.4.12)

∫ 1

0

1

(j(S))
1
p

dS =∞,

and

(1.4.13)

∫ 1

0

1

(β(S))
1
p

dS =∞.
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In the case of quasilinear elliptic equations it will be different the ODE
analysis and also comparison arguments. All this details are not contained
in the work by J. L. Vazquez and so we refer the reader to the book of P.
Pucci and J. Serrin [103] for completeness.

We want to conclude this section saying that it is always possible to prove
that the strong comparison principle follows by Höpf boundary lemma. This
fact is quite natural in the case of semilinear equation, but for quasilinear op-
erator could be very useful in the proof of qualitative properties of solutions,
since it is well known that maximum principles and comparison principles
are not equivalent. Here we state another proof of Theorem 1.4.1 having in
force the Höpf lemma:

Second Proof of Theorem 1.4.1. Let us assume that u ∈ C1(Ω) is
a solution to (1.4.1). Arguing by contradiction, let us assume that u vanishes
somewhere in Ω but it is not identically zero. Hence we can choose a point
x0 ∈ Ω and a ball B = BR(x1) ⊂ Ω such that x0 ∈ ∂B, u(x0) = 0 and
0 < u(x) < a for each x ∈ B. We observe that{

−∆u ≤ β(u) in B

u(x0) = 0 x0 ∈ ∂B.

Let us note that ∂B satisfies the interior sphere condition at x0, hence by
the Höpf boundary lemma, i.e. Theorem 1.4.2, we have that

∂u

∂ν
(x0) = (∇u(x0), ν) > 0

where ν is the interior normal at x0. But, since u(x0) = 0, u ≥ 0 in Ω and
u ∈ C1(Ω) it follows that x0 is a minimum point for u and this also implies
∇u(x0) = 0. This fact gives a contradiction with Höpf boundary lemma.

�

1.5. Strong comparison principles for p 6= 2

The aim of this section is just to recall two important result: the strong
comparison principle for quasilinear elliptic equations and the strong maxi-
mum principle for linearized equations. Both these principles are remarkable
consequences of Harnack type inequalities which give informations about the
critical set Zu of solutions to the following quasilinear elliptic problem

(1.5.1)


−∆pu = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where Ω is any domain of RN , N ≥ 1, 1 < p < +∞, f is positive and locally
Lipschitz continuous. As remarked above, the main tool in the proof of
strong comparison principles are results regarding Harnack type inequalities:

Theorem 1.5.1 (Harnack Comparison Inequality). Let p > (2N+2)/(N+
2) and let u, v ∈ C1

loc(Ω) with u or v weak solution to (1.5.1) in Ω. Suppose

that B(x, 6δ) ⊂ Ω′ ⊂ Ω for some δ > 0 and that

u ≤ v in B(x, 6δ).
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Then there exists C = C(p, q, δ, L, ‖v‖L∞(Ω′), ‖∇u‖L∞(Ω′), ‖∇v‖L∞(Ω′)) > 0
such that

(1.5.2) sup
B(x,δ)

(v − u) ≤ C inf
B(x,2δ)

(v − u).

The iterative technique that is used to prove Theorem 1.5.1 is due to
J. K. Moser [93] and was first used to prove Hölder continuity properties
of solutions of some strictly elliptic linear operators (this problem had been
previously studied by E. De Giorgi [43] and J. Nash [94] in their famous
papers).
In [124] and in [126] N. S. Trudinger considers the case of degenerate op-
erators which satisfy some a-priori assumptions on the matrix of the coeffi-
cients (see [124]). The works of N. S. Trudinger stemmed originally from the
paper of J. K. Moser, but it make no use of (a variant of) the famous John-
Nirenberg Lemma (see [93]), exploiting in the proof only weighted Sobolev
inequalities and a clever use of test-functions techniques. For the proof of
this result we refer the reader to the work of L. Damascelli and B. Sciunzi
[36].

Remark 1.5.2. As in Remark 1.2.3, note that a function f : I −→ R is
locally Lipschitz continuous in the interval I if and only if, for each compact
subinterval [a, b] ⊂ I, there exist two positive costants C1 and C2 such that

i) f1(s) = f(s)− C1s is nonincreasing in [a, b].
ii) f2(s) = f(s) + C2s is nondecreasing in [a, b].

Therefore we get that, if

(1.5.3) −∆pu− f(u) 6 −∆pv − f(v) u 6 v in B(x, 5δ)

then

(1.5.4) −∆pu+ Λu 6 −∆pv + Λv u 6 v in B(x, 5δ)

for Λ ∈ R sufficiently large, and the previous result works also in this case.

This implies in turn the following

Theorem 1.5.3 (Strong Comparison Principle). Let u, v ∈ C1(Ω) where
Ω is a bounded smooth connected domain of RN with 2N+2

N+2 < p < 2 or p > 2.

Suppose that either u or v is a weak solution of (1.5.1). Assume

(1.5.5) −∆pu+ Λu 6 −∆pv + Λv u 6 v in Ω

where Λ ∈ R. Then u ≡ v in Ω unless

(1.5.6) u < v in Ω

The same result holds (see Remark 1.5.2) if u and v are weak solutions of
(1.5.1) or more generally if

(1.5.7) −∆pu− f(u) 6 −∆pv − f(v) u 6 v in Ω

with u or v weakly solving (1.5.1).

Proof. Let us define

(1.5.8) Kuv = {x ∈ Ω |u(x) = v(x)}
By the continuity of u and v we have that Kuv is closed in Ω. Since, by
Theorem 1.5.1, for any x ∈ Kuv there exists a ball B(x) centered in x all
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contained in Kuv, then Kuv is also open in Ω and the thesis follows, since Ω
is connected.

�

Theorem 1.5.3 improves previous similar results. In particular we refer
to [70] for the case of strictly elliptic operators or for the case of degenerate
operators with f = 0 (see also [47]).

In a similar way to the case of solutions to problem (1.5.1), we want to
prove a Strong Maximum Principle for the linearized equation. We recall
that any derivative ui := uxi , 1 ≤ i ≤ N , satisfies the linearized equations
of (1.5.1), i.e.∫

Ω
|∇u|p−2(∇ui,∇ϕ) + (p− 2)

∫
Ω
|∇u|p−4(∇u,∇ui)(∇u,∇ϕ) dx

−
∫

Ω
f ′(u)uiϕ = 0, ∀ϕ ∈ C∞c (Ω).

(1.5.9)

Let us now state the result on the Harnack type inequality for (1.5.9):

Theorem 1.5.4 (Harnack Inequality for the Linearized Operator). Let

ui ∈ H1,2
% (Ω)∩L∞(Ω) be a nonnegative weak solution of (1.5.9) in a bounded

smooth domain Ω of RN , N > 2, with f positive and such that is a contin-
uous function which is locally Lipschitz continuous in (0,+∞) and p > 2.

Suppose that B(x, 5δ) ⊂ Ω. Let us put

1

2
∗ =

1

2
− 1

N
+

1

N

(
m− 2

m− 1

)
(consequently 2

∗
> 2 for m > 2) and let 2∗ be any real number such that

2 < 2∗ < 2
∗
. Then for every 0 < s < χ, χ ≡ 2∗

2 , there exists C > 0 such
that

(1.5.10) sup
B(x,δ)

ui ≤ C inf
B(x,2δ)

ui

where C is a constant depending on x, s,N, u,m, f .

If 2N+2
N+2 < p < 2 the same result holds with χ replaced by χ′ ≡ 2]

s]
where 2]

is the classical Sobolev exponent (2] = 2N
N−2), 2

s]
≡ 1− 1

s and s < p−1
p−m .

We prove now a remarkable consequence of weak Harnack inequality
which give information about the critical set Zu of solutions of (1.5.1). This
is particularly interesting since Zu is also the set of point where the operator
is degenerate elliptic.

Theorem 1.5.5 (Strong Maximum Principle for the Linearized Opera-

tor). Let ui ∈ H1,2
% (Ω) ∩ C0(Ω) be a weak solution of (1.5.9) in a bounded

smooth domain Ω of RN , N ≥ 2 with 2N+2
N+2 < p < 2 or p > 2 where f is pos-

itive and locally Lipschitz continuous in (0,+∞). Then, for any connected
domain Ω′ ⊂ Ω with ui ≥ 0 in Ω′, we have ui ≡ 0 in Ω′ or ui > 0 in Ω′.

Proof. Let us define Kui = {x ∈ Ω′ |ui(x) = 0}. By the continuity of
v, then Kui is closed in Ω′. Moreover by Theorem 1.5.4 Kui is also open in
Ω′ and the thesis follows.

�





2

The Höpf boundary lemma for singular semilinear
elliptic equations

In this chapter we deal with positive weak solutions to the singular
semilinear elliptic problem:

(2.0.1)


−∆u =

1

uγ
+ f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

where γ > 1, Ω is a C2,α bounded domain of RN with 0 < α < 1, N ≥ 1 and
f : Ω→ R locally Lipschitz continuous.

As remarked in the introduction, it is well known that generally solutions
to problem (2.0.1) are not smooth up to the boundary. It was in fact proved
in [82] that solutions are not in H1

0 (Ω) at least when γ > 3. Therefore,
having in mind the natural regularity behaviour of the solutions (see [31])
we let u ∈ C2(Ω)∩C(Ω). The equation is well defined in the interior of the
domain in the classical meaning and its weak distributional formulations is

(2.0.2)

∫
Ω

(∇u,∇ϕ) dx =

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω).

Now, let us define the concept of inward pointing normal

Definition 2.0.1. Let Ω ⊂ RN be a bounded C2,α domain. Let Iδ(∂Ω) be
a neighborhood of ∂Ω with the unique nearest point property (see e.g. [66]).
Hence for every x ∈ Iδ(∂Ω) there exists a unique point x̂ ∈ ∂Ω such that
|x− x̂| = dist(x, ∂Ω). We define the inward-pointing normal as

(2.0.3) η(x) :=
x− x̂
|x− x̂|

.

Having in mind these notations, we are now ready to state the main result
of this chapter:

Theorem 2.0.2 (Höpf type boundary lemma). Let u ∈ C2,α(Ω) ∩C(Ω)
be a positive solution of problem (2.0.1). Then there exists a neighborhood
Iδ(∂Ω) of ∂Ω such that

(2.0.4) ∂ν(x)u > 0 ∀x ∈ Iδ(∂Ω)

provided that (ν(x), η(x)) > 0 uniformly with respect to x ∈ Iδ(∂Ω), namely
provided that (ν(x), η(x)) ≥ β > 0 for some β > 0 for every x ∈ Iδ(∂Ω).

In cases when solutions are not smooth up to the boundary, the Höpf
lemma is generally replaced by comparison of the solutions with respect to
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the distance function. Exploiting also such a kind of arguments, our Theo-
rem 2.0.2 provides an information on the sign of the inward derivatives as
soon as we look at the solution in the interior of the domain.

Actually we exploit a scaling argument near the boundary which leads to
the study of a limiting problem in the half space:

(2.0.5)


−∆u =

1

uγ
in RN+

u > 0 in RN+
u = 0 on ∂RN+ ,

where γ > 1, N ≥ 1, RN+ := {x = (x1, ..., xN ) ∈ RN | xN > 0} and

u ∈ C2(RN+ ) ∩ C(RN+ ). As above problem (2.0.5) has to be understood in
the weak distributional meaning with test functions with compact support
in RN+ , that is

(2.0.6)

∫
RN+

(∇u,∇ϕ) dx =

∫
RN+

ϕ

uγ
dx ∀ϕ ∈ C∞c (RN+ ).

Our scaling argument leads to the study of a limiting profile which is a
solution to (2.0.5) and obeys to suitable a priori estimates. The following
classification result is therefore crucial for our technique, and may also have
an independent interest:

Theorem 2.0.3. Let γ > 1. Let u ∈ C2(RN+ ) ∩ C(RN+ ) be a solution to
problem (2.0.5) such that

(2.0.7) |u(x)| ≤ CxtN ∀x ∈ RN+

where t :=
2

1 + γ
. Then

(2.0.8) u(x) = u(xN ) = MxtN

where M :=

(
(γ + 1)2

2(γ − 1)

) t
2

.

We will prove Theorem 2.0.3 in Section 2.1 together with useful prelim-
inary results. Then in Section 2.2 we exploit Theorem 2.0.3 and a scaling
argument to prove Theorem 2.0.2.

2.1. Classification results for singular semilinear elliptic
problems in the half-space

Here we introduce some notations and preliminary results. We say that
u is a weak subsolution of problem (2.0.1) if
(2.1.1)∫

Ω
(∇u,∇ϕ) dx ≤

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω), ϕ ≥ 0.

Similarly, we say that u is a weak supersolution of problem (2.0.1) if
(2.1.2)∫

Ω
(∇u,∇ϕ) dx ≥

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω), ϕ ≥ 0.
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We shall prove a weak maximum principle in unbounded domain, bor-
rowing some ideas from [9] (see also [15]).

Theorem 2.1.1. Let γ > 1, u ∈ C2(RN+ )∩C(RN+ ) be a weak subsolution

of problem (2.0.5), as in (2.1.1), and v ∈ C2(RN+ )∩C(RN+ ) be a weak super-
solution of problem (2.0.5), as in (2.1.2). Let us assume that there exists a
constant K > 0 such that

(2.1.3) |u(x)|+ |v(x)| ≤ KxtN ∀x ∈ RN+

with t :=
2

1 + γ
and

(2.1.4) u ≤ v on ∂RN+ .

Then

(2.1.5) u ≤ v in RN+ .

Proof. We set

(2.1.6) w = u− v.
In the weak meaning, we have

(2.1.7) −∆w ≤ c(x)w in RN+ ,

where

c(x) =

[
1

uγ
− 1

vγ

]
1

u− v
≤ 0 and c(x) ∈ C(RN+ ).

Now passing to spherical coordinates x = %ξ, with % > 0 and ξ ∈ SN−1,
we obtain:

−∆w = −
N∑
i=1

wxixi = −w%% −
N − 1

%
w% −

1

%2
∆Sw ≤ c(·)w,

where ∆S is the Laplace-Beltrami operator on the sphere SN−1. Now we
take an infinite open connected cone C such that its closure is disjoint from

RN+ . Hence we consider the following eigenvalue problem

(2.1.8)

{
−∆Sψ = λψ in G

ψ = 0 on ∂G,

where G = SN−1 \ C and λ > 0.
It is well known (see for example [77, 114]) that the eigenvalues of

the Laplace-Beltrami operator −∆S on the (N-1)-sphere SN−1 are µk =
k(k+N−2) where k ∈ N. Now we fix α > 0 such that λ1 := α(α+N−2) is
the principal eigenvalue of the problem (2.1.8) and ψ1 is the corresponding
eigenfunction. Since G ⊂ SN−1 it follows that α(α + N − 2) = λ1 ≥ µ1 =
N − 1. As a consequence of this fact we have that α ≥ 1. Using, as before,
spherical coordinates x = %ξ, let us define the following

(2.1.9) g(x) = g(%, ξ) := %αψ1(ξ), ξ ∈ G.
Then g is an harmonic function, hence

∆g + c(x)g ≤ 0.
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Since RN+ lies outside the cone C, the function g is strictly positive on RN+ .
Hence we can consider the function

σ :=
w

g
.

By the definition of σ, we have

∇σ =
1

g
∇w − w

g2
∇g,

and

∆σ =
1

g
∆w − 2

g2
∇g · ∇w − w

g2
∆g + 2

w

g3
|∇g|2.

Finally it follows that

(2.1.10) Lσ := −
(

∆σ +
2

g
∇σ · ∇g +

∆g + c(x)g

g
σ

)
≤ 0 inRN+ .

Moreover σ ≤ 0 on ∂RN+ . Noticing that g ≤ β%α and by the growth hypoth-
esis (2.1.3) we have

|σ| = |w|
g
≤ |u|+ |v|

g
≤ K(xN )

2
γ+1

β%α
≤ K

β
%

2
γ+1
−α
.

Recalling that
2

γ + 1
< 1 and α ≥ 1, it follows that

2

γ + 1
− α < 0.

Hence we have

lim sup
|x|→+∞

σ(x) ≤ 0.

By the weak maximum principle (see e.g. [70] or Theorem 1.2.1) it follows
now that σ ≤ 0 in RN+ . Since g is strictly positive by construction, it follows
that

w ≤ 0 inRN+ .

�

Proof of Theorem 2.0.3. Let

M =

(
(γ + 1)2

2(γ − 1)

) 1
γ+1

and t =
2

γ + 1
.

Setting

u(x) = MxtN ,

a simple computation shows that:

(2.1.11) −∆u = − ∂
2u

∂x2
N

= −Mt(t− 1)xt−2
N =

1

(MxtN )γ
=

1

uγ
in RN+ .

The uniqueness of the solution follows by Theorem 2.1.1.
�
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2.2. Local estimates for the solutions and proof of the Höpf
boundary lemma

Relying on technique of [82] we prove the following local estimates for
the solution u of problem (2.0.1):

Theorem 2.2.1. Let u ∈ C2,α(Ω)∩C(Ω) be a positive solution to problem
(2.0.1) and let φ1 denote the first eigenfunction corresponding to the first
eigenvalue λ1 of the problem

(2.2.1)


−∆φ = λφ in Ω

φ > 0 in Ω

φ = 0 on ∂Ω .

Then there exist two positive constants m1, m2 and there exists δ > 0 suffi-
ciently small such that

(2.2.2) m1φ1(x)
2

1+γ ≤ u(x) ≤ m2φ1(x)
2

1+γ ∀ x ∈ Iδ(∂Ω).

Proof. We rewrite the equation of problem (2.0.1) as

(2.2.3) −∆u =
1

uγ
+ f(u) =

p(x)

uγ
in Ω

where p(x) := 1 + uγf(u(x)) and we fix δ0 > 0 sufficiently small so that, for
every 0 < δ < δ0 we have that

p(x) > 0 ∀x ∈ Iδ(∂Ω).

Arguing as in [82], we consider the principal eigenfunction φ1 of problem
(2.2.1). It is well known that φ1 ∈ C2(Ω) and, by Höpf boundary lemma

∇φ1(x) 6= 0 ∀x ∈ ∂Ω.

Let us consider t :=
2

1 + γ
and Ψ(x) := sφ1(x)t with s > 0 . The function

Ψ satisfies the following equation

−∆Ψ(x) =
g(x, s)

Ψ(x)γ
x ∈ Iδ(∂Ω)

where

(2.2.4) g(x, s) := s1+γ [t(1− t)|∇φ1(x)|2 + tλ1φ1(x)2].

Since 0 < t < 1, by the definition of g in (2.2.4) we can choose two positive
constants s1 and s2 such that 0 < s1 < s2 and

(2.2.5) g(x, s1) < p(x) < g(x, s2) ∀ x ∈ Iδ(∂Ω).

Hence, setting u1 := s1φ1(x)t and u2 := s2φ1(x)t, we have that

(2.2.6) −∆u1 <
p(x)

uγ1
in Iδ(∂Ω)

in the distributional meaning of (2.1.1), and

(2.2.7) −∆u2 >
p(x)

uγ2
in Iδ(∂Ω)

in the distributional meaning of (2.1.2).
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Now we consider uβ := βu and observe that uβ satisfies the following
equation

−∆uβ(x) = β(−∆u(x)) = β
p(x)

u(x)γ
= βγ+1 p(x)

uβ(x)γ
.

By taking β1 > 0 sufficiently large it follows that uβ1 and u1 satisfy the
following problem:

(2.2.8)


−∆uβ1 ≥

p(x)

uγβ1

in Iδ(∂Ω)

−∆u1 <
p(x)

uγ1
in Iδ(∂Ω)

uβ1 ≥ u1 on ∂Iδ(∂Ω).

Here we note that the boundary datum of problem (2.2.8) is fulfilled for β1

sufficiently large. Now, we claim that

(2.2.9) uβ1 = β1u(x) ≥ u1(x) > 0 in Iδ(∂Ω).

If this is not the case, then there would exists an x0 in Iδ(∂Ω) such that

0 < uβ1(x0) < u1(x0) and the minimum of uβ1 − u1 on Iδ(∂Ω) should be
assumed at x0. But according to the argument above, this would imply that

∆ (uβ1 − u1) (x0) < p(x0)

[
1

u1(x0)γ
− 1

uβ1(x0)γ

]
< 0,

which is impossible by the maximum principle (see e.g. [70]). This would
provide a contradiction showing that (2.2.9) holds.

Similarly, choosing β2 > 0 sufficiently small it follows that uβ2 and u2

satisfy the following problem:

(2.2.10)


−∆uβ2 ≤

p(x)

uγβ2

in Iδ(∂Ω)

−∆u2 >
p(x)

uγ2
in Iδ(∂Ω)

uβ2 ≤ u2 on ∂Iδ(∂Ω).

Repeating verbatim all the arguments above, it follows that

(2.2.11) uβ2 = β2u(x) ≤ u2(x) in Iδ(∂Ω).

Hence, taking m1 :=
s1

β1
and m2 :=

s2

β2
, we have (2.2.2) and the thesis is

proved.
�

Proof of Theorem 2.0.2. Since the domain is of class C2,α we may
and do reduce to work in a neighborhood of the boundary Iδ(∂Ω) where the
unique nearest point property holds (see e.g. [66]). Arguing by contradiction,
let us assume that there exists a sequence of points {xn} in Iδ(∂Ω), such
that xn −→ x0 ∈ ∂Ω, as n→ +∞, and

(2.2.12) ∂ν(xn)u(xn) ≤ 0, with (ν(xn), η(xn)) ≥ β > 0.

Without loss of generality, we can assume that x0 = 0 ∈ ∂Ω and η(xn) =
eN . This follows by the fact that the Laplace operator is invariant under
isometries. More precisely, for each n ∈ N, we can consider an isometry
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Tn : RN −→ RN with the above mentioned properties just composing a
translation and a rotation of the axes. This procedure generates a new
sequence of points {yn}, where yn := TnxN , such that every yn ∈ span〈eN 〉
and yn −→ 0 as n→ +∞. Setting un(y) := u(T−1

n (y)), it follows that

(2.2.13) −∆un =
1

uγn
+ f(un) in Ωn = Tn(Ω).

Now we set

(2.2.14) wn(y) :=
un(δny)

Mn

where δn := dist(xn, ∂Ω) = dist(Tnxn, 0) and Mn := un(δneN ) = u(xn). It
follows that δn → 0 as n→ +∞ and

- wn is defined in Ω∗n, where Ω∗n :=
Ωn

δn
.

- wn(eN ) = 1.

- Mn → 0, as n→ +∞.

Moreover wn satisfies

−∆wn =
1

Mn
[−∆(un(δny))]

=
δ2
n

Mn

(
1

un(δny)γ
+ f(un(δny))

)
=

δ2
n

Mγ+1
n

(
Mγ
n

un(δny)γ
+Mγ

nf(un(δny))

)
=

δ2
n

Mγ+1
n

(
1

wn(y)γ
+Mγ

nf(un(δny))

)
in Ω∗n.

(2.2.15)

Here it is important to observe that the term
δ2
n

Mγ+1
n

is bounded in a neigh-

borhood Iδ(∂Ω∗n); this is a consequence of the Theorem 2.2.1.
In the following we shall deduce a limiting problem with a limiting so-

lution that will be denoted by u∞. The reader should keep in mind that f
is bounded, the term Mγ

nf(un(δny)) vanishes and the limiting equation is
therefore:

(2.2.16) −∆w∞ =
C̃

wγ∞
in RN+ .

Let us provide the details needed to pass to the limit. We have that:

- wn
C2,α

−→ w∞, as n→ +∞, in any compact set K of RN+ .

- w∞ ∈ C2,α(RN+ ) ∩ C(RN+ ).

- Ω∗n :=
Ωn

δn

C2

−→ RN+ , as n→ +∞.

To prove this let us consider a compact setK in Iδn(∂Ω∗n) such that dist(K, ∂Ω∗n) ≥
C > 0 for every n ∈ N, for some tubular neighborhoods Iδn(∂Ω∗n) such that
Theorem 2.2.1 holds.
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Claim 1. We claim that wn(y) > 0 for all y ∈ K and for all n ∈ N.
Let y ∈ K. Hence, by Theorem 2.2.1

wn(y) :=
un(δny)

Mn
≥ L(dist(δny, ∂Ω∗n))

2
γ+1

Mn
.

In particular, by the fact that dist(δny, ∂Ω∗n) ≥ Cδn, it follows that

(2.2.17) wn(y) ≥ L(Cδn)
2

γ+1

Mn
≥ C(K, γ,m1,m2) > 0

for every n ∈ N.

Claim 2. We claim that wn
C2,α

−→ w∞, as n → +∞, in any compact set
K of RN+ .
Since dist(y, ∂Ω∗n) ≤ C for every y ∈ K, by Theorem 2.2.1 it follows that

wn(y) =
un(δn)

Mn
≤ m2

[dist(δny, ∂Ωn)]
2

γ+1

Mn

= Lm2
δ

2
γ+1
n [dist(y, ∂Ω∗n)]

2
γ+1

Mn

≤ Lm2C
2

γ+1
δ

2
γ+1
n

Mn

≤ Lm2C
2

γ+1C(K,m1).

(2.2.18)

Hence

‖wn‖L∞(K) ≤ C1

for any compact set K of RN+ . By applying regularity theory, see e.g.
[46], there exists a compact set K ′ ⊂ K such that

(2.2.19) ‖wn‖C1,α(K′) ≤ C2,

where C2 is a positive constant depending only upon N,M and dist(K, ∂Ωn).
By standard elliptic estimates (see e.g. [70], Theorem 6.6, pp 98.) it follows
that

(2.2.20) ‖wn‖C2,α(K′) ≤ C3,

where C3 is a positive constant depending only upon N , K ′, ‖u‖C1,α(K′)

and ‖hn‖C0,α(K′). Therefore, by Ascoli-Arzelà Theorem, the sequence {wn}
admits a subsequence that we call {wn} such that converges on the compact
set K ′ ⊂ RN+ .

Now we consider an increasing sequence of compact sets {Kn} of RN+ ,
i.e.

K1 ⊂ K2 ⊂ · · · ⊂ Km ⊂ · · · ⊂ RN+ .
Our aim is to use a diagonal procedure to construct the limit function. We

note that there exists a subsequence {w(1)
n } of {wn} such that

w(1)
n

C2

−→ w1 in K1.
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In the same way there exists a subsequence {w(2)
n } of {w(1)

n } such that

w(2)
n

C2

−→ w2 in K2

and

w2 = w1 in K1.

In general we consider the compact set Km, so that there exists a subse-

quence {w(m)
n } of {w(m−1)

n } such that

w(m)
n

C2

−→ wm in Km

and

wm = wm−1 in Km−1.

Finally we found the limit function and it is such that

(2.2.21) w∞ = wm in Km,

for every m ∈ N. Hence w∞ is a solution of the limit equation (2.2.16).

Claim 3. We claim that
Ωn

δn

C2

−→ RN+ , as n→ +∞.

Since the domain Ω is C2,α, then there exists g ∈ C2(RN−1) such that
Ω ∩ BR(0) := {x = (x′, xN ) ∈ Ω ∩ BR(0) | xN > g(x1, ..., xN−1) = g(x′)}
for some R > 0. Arguing as above, we have to consider for every n ∈ N the
function gn(y) := g(T−1

n (y)) and the domain Ωn := Tn(Ω). Without loss of
generality we can assume that gn(0) = 0 and ∇RN−1gn(0) = 0. Moreover,
by hypothesis ‖gn‖C2 = ‖g‖C2 ≤ C, where C is a positive constant. We

note that z ∈ Ωn

δn
if and only if δnz ∈ Ωn.

Now, noticing that
Ωn

δn
∩BR(0) :=

{
xN >

gn(δnx
′)

δn

}
, we want to show

that

(2.2.22)
gn(δnx

′)

δn

C0
loc−→ 0,

as n goes to +∞. Let us consider the second order Taylor approximation of
the function gn centered at the point x′ = 0 in a compact set K ⊂ RN−1,
with 0 ∈ K:

(2.2.23) gn(p) := gn(0) + 〈∇gn(0), p〉+
1

2
〈D2gn(ξp)p, p〉,

where ξ ∈ (0, 1) for every n ∈ N and for every p ∈ K.
Noticing that gn(0) = 0 and ∇gn(0) = 0 and recalling that gn is a C2

function, it follows that

(2.2.24)

∣∣∣∣gn(δnx)

δn

∣∣∣∣ =
1

2δn
|〈D2gn(ξδnx)δnx, δnx〉| ≤

C

2
δn‖x‖2 ≤ CKδn,

where CK is a positive constant depending only by the compact setK. Hence
by (2.2.24) it follows that (2.2.22) holds and so we have the convergence of
the domain.

It remains to verify the Dirichlet datum for the limiting profile u∞. More
precisely we have to show that w∞ = 0 on ∂RN+ . By Theorem 2.2.1 it follows
that
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wn(y) =
un(δn)

Mn
≤ m2

[(φ1)n(δny)]
2

γ+1

Mn

≤ Lm2
[dist(δny, ∂Ωn)]

2
γ+1

Mn

= Lm2
δ

2
γ+1
n [dist(y, ∂Ω∗n)]

2
γ+1

Mn

≤ C(K,L,m2,m1) [dist(y, ∂Ω∗n)]
2

γ+1 in Ω∗n.

(2.2.25)

Since Ω∗n → RN+ , as n goes to +∞, by (2.2.25) and (2.2.17), passing to
the limit we have that

(2.2.26) 0 ≤ w∞(y) ≤ C(K,L,m2,m1)
[
dist(y, ∂RN+ )

] 2
γ+1 .

Hence for any y ∈ ∂RN+ we have that w∞(y) = 0. Moreover, it is
important to observe that in (2.2.26), w∞ satisfies the growth hypothesis
(2.1.3) of Theorem 2.1.1.

So we can pass to the limit in (2.2.15) to obtain equation (2.2.16). But,
by Theorem 2.0.3, we have that w∞ is the unique solution of problem (2.0.5),
hence

(2.2.27) w∞(x) = w∞(xN ) =

(
C̃

2

(γ + 1)2

γ − 1

) 1
γ+1

(xN )
2

γ+1 .

Then, by (2.2.27), it follows that

∂ν(x)w∞(x) > 0 ∀x ∈ RN+
for every ν ∈ RN such that (ν, η) > 0 and this provides a contradiction with
(2.2.12). Hence we have the thesis (2.0.4) and the result is proved.

�



3

The Höpf boundary lemma for quasilinear elliptic
problems involving singular nonlinearities and

applications

In this chapter, we deal with positive weak solutions to the singular
quasilinear elliptic problem:

(3.0.1)


−∆pu =

1

uγ
+ f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω

where p > 1, γ > 1, Ω is a C2,α bounded domain of RN with N ≥ 1 and
f : Ω → R locally Lipschitz continuous. A key point to have in mind in
the study of semilinear or quasilinear problems involving singular nonlin-
earities is the fact that the source term loses regularity at zero, namely the
problem is singular near the boundary, as pointed out in the previous chap-
ter. As a first consequence, solutions are not smooth up to the boundary
(see [82]) and the gradient generally blows up near the boundary in such

a way that u /∈ W 1,p
0 (Ω). Therefore, here and in all the chapter, we mean

that u ∈ C1,α(Ω) is a solution to (3.0.1) in the weak distributional meaning
according to Definition 3.1.1. Existence and uniqueness results regarding
problem (3.0.1) can be found e.g. in [4, 16, 17, 25, 26, 28, 67, 95, 96].

In this setting we prove a general version of a Höpf type boundary lemma
regarding the sign of the derivatives of the solution near the boundary and
in the interior of the domain, as we have done in the previous chapter in
the semilinear context. To state our result we need some notation; thus we
shall denote with Iδ(∂Ω) a neighborhood of the boundary with the unique
nearest point property (see e.g. [66]). We have to recall Definition 2.0.1 of
inward pointing normal defined by:

(3.0.2) η(x) :=
x− x̂
|x− x̂|

.

With this notation we have the following:

Theorem 3.0.1 (Höpf type boundary lemma). Let u ∈ C1,α(Ω) ∩C(Ω)
be a positive solution to (3.0.1). Then, for any β > 0, there exists a neigh-
borhood Iδ(∂Ω) of ∂Ω, such that

(3.0.3) ∂ν(x)u > 0 ∀x ∈ Iδ(∂Ω)

whenever ν(x) ∈ RN with ‖ν(x)‖ = 1 and (ν(x), η(x)) ≥ β.
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We are mainly concerned with the study of the sign of the derivatives near
the boundary. Such a control is generally deduced a posteriori, by contra-
diction, assuming that the solution is C1 up to the boundary. In our setting
this is not a natural assumption and we develop a different technique that
in any case exploits very basic arguments of common use. In fact we carry
out a scaling argument near the boundary that leads to a limiting problem
in the half space.

(3.0.4)


−∆pu =

1

uγ
in RN+

u > 0 in RN+
u = 0 on ∂RN+

where p > 1, γ > 1, N ≥ 1, RN+ := {x = (x1, ..., xN ) ∈ RN | xN > 0} and

u ∈ C1,α(RN+ ) ∩ C(RN+ ).
Our scaling argument leads in fact to the study of a limiting profile

which is a solution to (3.0.4) and obeys to suitable decay assumptions. It
is therefore crucial for our technique, and may also have an independent
interest, the following classification result:

Theorem 3.0.2. Let γ > 1 and let u ∈ C1,α(RN+ )∩C(RN+ ) be a solution
to problem (3.0.4) such that

(3.0.5) cxβN ≤ u(x) ≤ CxβN with β :=
p

γ + p− 1

and c, C ∈ R+. Then
(3.0.6)

u(x) = u(xN ) = MxβN with M :=

[
(γ + p− 1)p

pp−1(p− 1)(γ − 1)

] 1
γ+p−1

.

The Höpf boundary lemma is a fundamental tool in many applications.
We exploit it here to develop the moving planes method (see [1, 12, 68,
111]) for problem (3.0.1) obtaining the following:

Theorem 3.0.3. Let Ω be a bounded smooth domain of RN which is
strictly convex in the x1-direction and symmetric with respect to the hyper-
plane {x1 = 0}. Let u ∈ C1,α(Ω) ∩ C(Ω) be a positive solution of problem
(3.0.1) with f(s) > 0 for s > 0 (f(0) ≥ 0). Then it follows that u is symmet-
ric with respect to the hyperplane {x1 = 0} and increasing in the x1-direction
in Ω ∩ {x1 < 0}.
In particular if the domain is a ball, then the solution is radial and radially
decreasing.

For the reader’s convenience we sketch the proofs here below.

- In Section 3.1 we prove 1D-symmetry result in half spaces for
problem (3.0.4), see Theorem 3.1.2. Mainly we develop a com-
parison principle to compare the solution u and it’s translation
uτ := u(x − τe1). Even if the source term is decreasing, a quite
technical approach is needed because the operator is nonlinear and
we are reduced to work in unbounded domains. The 1D-symmetry
result obtained leads us to the study of a one dimensional prob-
lem in R+. We carry out this analysis proving a uniqueness result
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(see Proposition 3.2.2) that provides, as a corollary, the proof of
Theorem 3.0.2.

- In Section 3.2 we prove Lemma 3.2.1, that is a very useful tool in the
ODE analysis. Moreover we run through again, in the quasilinear
setting, the technique of [82] to provide asymptotic estimates for
the solutions near the boundary in terms of the distance function,
see Theorem 3.3.2. Finally we prove Lemma 3.3.1 that is a weak
comparison principle in bounded domain that we used in the proof
of Theorem 3.3.2.

- Section 3.3 is the core of the chapter. We prove here Theorem
3.0.1 developing the scaling argument that leads to the problem
in the half-space. To this aim we strongly exploit the asymptotic
estimates deduced in Theorem 3.3.2. The proof follows by contra-
diction thanks to the classification result Theorem 3.0.2.

- Finally, in Section 3.4, we apply our Höpf type boundary lemma
to prove the symmetry and monotonicity result stated in Theorem
3.0.3. The proof is based on the joint use of the moving planes
method and the monotonicity information near the boundary pro-
vided by Theorem 3.0.1 that allow to avoid the region where the
problem is singular.

3.1. One dimensional symmetry in the half-space

The aim of this section is to show the first part of Theorem 3.0.2, in
particular we are going to prove that each solution u to problem (3.0.4)
satisfying (3.2.2) is one-dimensional. Solutions to p-Laplace equations are
generally of class C1,α, see [46, 122]. Therefore a solution to (3.0.1) has to
be understood in the weak distributional meaning taking into account the
singular nonlinearity. We state the following:

Definition 3.1.1. We say that u ∈ W 1,p
loc (Ω) ∩ C(Ω), u > 0 in Ω, is a

weak solution to problem (3.0.1) if
(3.1.1)∫

Ω
|∇u|p−2(∇u,∇ϕ) dx =

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω).

We say that u ∈ W 1,p
loc (Ω) ∩ C(Ω), u > 0 in Ω, is a weak subsolution of

problem (3.0.1) if
(3.1.2)∫

Ω
|∇u|p−2(∇u,∇ϕ) dx ≤

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω), ϕ ≥ 0.

Similarly, we say that u ∈ W 1,p
loc (Ω) ∩ C(Ω), u > 0 in Ω, is a weak superso-

lution of problem (3.0.1) if
(3.1.3)∫

Ω
|∇u|p−2(∇u,∇ϕ) dx ≥

∫
Ω

ϕ

uγ
dx +

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω), ϕ ≥ 0.

Theorem 3.1.2. Let γ > 1 and let u ∈ C1,α(RN+ )∩C(RN+ ) be a solution
to problem (3.0.4) such that

(3.1.4) cxβN ≤ u(x) ≤ CxβN ∀x ∈ RN+
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with β :=
p

γ + p− 1
. Then

(3.1.5) uxi ≡ 0

for every i = 1, . . . , N − 1. Namely, u(x) = u(xN ).

Proof of Theorem 3.1.2. We start with a gradient estimate showing
that

(3.1.6) |∇u(x)| ≤ Cb

x
γ−1
γ+p−1

N

.

To prove this fact we use the notation x = (x1, ..., xN ) = (x′, xN ) ∈ RN and,
with no loss of generality we consider a point Pc := (0′, xcN ). Setting

w(x) :=
u(xcN · x)

(xcN )β

it follows that

(3.1.7) −∆pw =
1

wγ
in RN+ .

We restrict our attention to the problem

(3.1.8)

−∆pw =
1

wγ
in B 1

2
(0′, 1)

w > 0 in B 1
2
(0′, 1)

so that, by (3.1.4), it follows that w is bounded and 1
wγ ∈ L

∞(B 1
2
(0′, 1)).

Therefore, by standard C1,α estimates [46, 122], we deduce that

‖w‖C1(B 1
4

(0′,1)) ≤ Cb.

Scaling back we get (3.1.6).
Arguing by contradiction, without loss of generality, we assume that

there exists P0 ∈ RN such that ux1(P0) > 0. Hence there exists δ > 0
sufficiently small such that ux1(x) > 0 for all x ∈ Bδ(P0). Now we define

(3.1.9) uτ (x) := u(x− τe1)

where 0 < τ < δ. Hence by the Mean Value Theorem it follows that

(3.1.10) u(P0)− uτ (P0) = ux1(ξ)τ > Ĉτ > 0

where ξ ∈ {tP0 + (1− t)(P0 − τe1), t ∈ [0, 1]}. Moreover, there exists k > 0
sufficiently large such that, by the Mean Value Theorem and (3.1.6), we
have

(3.1.11) |u− uτ | ≤
Čτ

x
γ−1
γ+p−1

N

in RN+ ∩ {xN ≥ k}.

Now we set

(3.1.12) S := sup
x∈RN+

(u− uτ ) > 0.

We also note that S < +∞ by (3.1.4) and (3.1.11). Let us consider

(3.1.13) wτ,ε(x) := [u− uτ − (S − ε)]+
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for every ε > 0 small enough. We notice that, by (3.1.4) and (3.1.11),

(3.1.14) supp(wτ,ε) ⊂⊂ {k̂ ≤ xN ≤ K̂}

for some k̂, K̂ > 0. We consider a standard cutoff function ϕR := ϕR(x′)
such that ϕR = 1 in B′R(0), ϕR = 0 in (B′2R(0))c and |∇ϕR| ≤ 2

R in B′2R(0)\
B′R(0), where B′R(0) denotes the (N − 1)-dimensional ball of center 0 and
radius R.

We distinguish two cases:

Case 1: 1 < p < 2. We set

(3.1.15) ψ := wατ,εϕ
2
R

where α > 0, wτ,ε is defined in (3.1.13) and ϕR is the cutoff function defined

here above. First of all we notice that ψ belongs to W 1,p
0 (RN+ ). By density

argument we can take ψ as test function in the weak formulation of problem
(3.0.4), see Definition 3.1.1, so that, subtracting the equation for u and uτ ,
we obtain

α

∫
RN+∩supp(ψ)

(|∇u|p−2∇u− |∇uτ |p−2∇uτ ,∇wτ,ε)wα−1
τ,ε ϕ2

R dx

=− 2

∫
RN+∩supp(ψ)

(|∇u|p−2∇u− |∇uτ |p−2∇uτ ,∇ϕR)wατ,εϕR dx

+

∫
RN+∩supp(ψ)

(
1

uγ
− 1

uγτ

)
wατ,εϕ

2
R dx .

(3.1.16)

From (3.1.16), using (1.0.2) and the Mean Value Theorem, we obtain

αC1

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2wα−1
τ,ε ϕ2

R dx

≤α
∫
RN+∩supp(ψ)

(|∇u|p−2∇u− |∇uτ |p−2∇uτ ,∇wτ,ε)wα−1
τ,ε ϕ2

R dx

=− 2

∫
RN+∩supp(ψ)

(|∇u|p−2∇u− |∇uτ |p−2∇uτ ,∇ϕR)wατ,εϕR dx

+

∫
RN+∩supp(ψ)

(
1

uγ
− 1

uγτ

)
wατ,εϕ

2
R dx

≤2C4

∫
RN+∩supp(ψ)

|∇(u− uτ )|p−1|∇ϕR|wατ,εϕR dx

− γ
∫
RN+∩supp(ψ)

1

ξγ+1
(u− uτ )wατ,εϕ

2
R dx

(3.1.17)
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where ξ belongs to
−−−−→
(u, uτ ). Hence, recalling also (3.1.6), we deduce that

αC1

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2wα−1
τ,ε ϕ2

R dx

≤ 2C4

∫
RN+∩supp(ψ)

|∇(u− uτ )|p−1|∇ϕR|wατ,εϕR dx

− γ
∫
RN+∩supp(ψ)

1

ξγ+1
wα+1
τ,ε ϕ2

R dx

≤ Č
∫
RN+∩supp(ψ)

|∇ϕR|wατ,ε dx

(3.1.18)

where Č := 2C4‖∇(u − uτ )ϕR‖p−1

L∞(RN+∩supp(ψ))
. Exploiting the weighted

Young’s inequality with exponents

(
α+ 1

α
, α+ 1

)
we obtain

αC1

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2wα−1
τ,ε ϕ2

R dx

≤ Č
∫
RN+∩supp(ψ)

|∇ϕR|wατ,ε dx

≤ Č

σα+1(α+ 1)

∫
RN+∩supp(ψ)

|∇ϕR|α+1 dx

+
Čα

α+ 1
σ

α
α+1

∫
RN+∩supp(ψ)

wα+1
τ,ε dx

≤ Ċ

Rα−(N−2)
+

Čα

α+ 1
σ

α
α+1

∫
RN+∩supp(ψ)

[
w
α+1

2
τ,ε

]2

dx.

(3.1.19)

From (3.1.19) and exploiting the Poincaré inequality in the xN -direction
it follows that

αC1

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2wα−1
τ,ε ϕ2

R dx

≤ Ċ

Rα−(N−2)
+

Čα

α+ 1
σ

α
α+1

∫
B′2R(0)

(∫
{y≤k}

[
w
α+1

2
τ,ε

]2

dy

)
dx′

≤ Ċ

Rα−(N−2)
+

Čα

α+ 1
σ

α
α+1C2

P (k)

(
α+ 1

2

)2 ∫
RN+∩supp(ψ)

|∇wτ,ε|2wα−1
τ,ε dx

≤ Čα

α+ 1
σ

α
α+1C2

P (k)

(
α+ 1

2

)2

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)(2−p)+(p−2) |∇wτ,ε|2wα−1
τ,ε dx

+
Ċ

Rα−(N−2)

(3.1.20)
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where CP is the Poincaré constant. Let us point out that, by (3.1.4), (3.1.14)
and standard regularity theory [46, 122], it follows that

(3.1.21) |∇u|+ |∇uτ | ≤ C in supp(wτ,ε) ⊂⊂ {k̂ ≤ xN ≤ K̂} .

Hence we have∫
C(R)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2wα−1
τ,ε dx

≤ ϑ
∫
C(2R)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2wα−1
τ,ε dx +

Ċ

Rα−(N+2)

(3.1.22)

where C(R) :=
(
RN+ ∩ (B′R(0)× R)

)
and ϑ := Čα

α+1σ
α
α+1C2

P (k)
(
α+1

2

)2 ‖(|∇u|+
|∇uτ |)2−p‖∞. We set

g(R) :=
Ċ

Rα−(N+2)

and

L(R) :=

∫
C(R)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2wα−1
τ,ε dx

so that

L(R) ≤ ϑL(2R) + g(R) .

Now we fix α sufficiently large so that g(R) → 0 as R → +∞ and, con-

sequently, we take σ small enough so that ϑ < 2(α−γ)β+1. This allows to
exploit Lemma 2.1 of [59]: it follows that

L(R) = 0

for any R > 0. This proves that actually wτ,ε is constant and therefore
wτ,ε = 0 since it vanishes near the boundary. This is a contradiction with
(3.1.10) thus proving the result in the case 1 < p < 2 .

Case 2: p ≥ 2. We set

(3.1.23) ψ := wτ,εϕ
2
R

with wτ,ε and ϕR defined as in the previous case 1 < p < 2 . Arguing exactly
as in the case 1 < p < 2 we arrive to∫

RN+∩supp(ψ)
(|∇u|p−2∇u− |∇uτ |p−2∇uτ ,∇wτ,ε)ϕ2

R dx

=− 2

∫
RN+∩supp(ψ)

(|∇u|p−2∇u− |∇uτ |p−2∇uτ ,∇ϕR)wτ,εϕR dx

+

∫
RN+∩supp(ψ)

(
1

uγ
− 1

uγτ

)
wτ,εϕ

2
R dx

(3.1.24)
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From (3.1.24), using (1.0.2) and the Mean Value Theorem, we deduce that

C1

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2ϕ2
R dx

≤
∫
RN+∩supp(ψ)

(|∇u|p−2∇u− |∇uτ |p−2∇uτ ,∇wτ,ε)ϕ2
R dx

=− 2

∫
RN+∩supp(ψ)

(|∇u|p−2∇u− |∇uτ |p−2∇uτ ,∇ϕR)wτ,εϕR dx

+

∫
RN+∩supp(ψ)

(
1

uγ
− 1

uγτ

)
wτ,εϕ

2
R dx

≤2C2

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|wτ,ε|∇ϕR|ϕR dx

− γ
∫
RN+∩supp(ψ)

1

ξγ+1
(u− uτ )wτ,εϕ

2
R dx

(3.1.25)

where ξ belongs to
−−−−→
(u, uτ ). Exploiting the Young’s inequality to the right

hand side we have

C1

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2ϕ2
R dx

≤2C2

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε| |∇ϕR|wτ,εϕR dx

−
∫
RN+∩supp(ψ)

1

ξγ+1
(u− uτ )wτ,εϕ

2
R dx

≤σC2

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2 dx

+
C2

σ

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇ϕR|2w2
τ,εϕ

2
R dx

− γ
∫
RN+∩supp(ψ)

1

ξγ+1
(u− uτ )wτ,εϕ

2
R dx

(3.1.26)

As above we shall exploit the fact that |∇u| and |∇uτ | are uniformly bounded
in RN+ ∩ supp(ψ), see (3.1.21). Therefore we get

C1

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2ϕ2
R dx

≤σC2

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2 dx

+

(
Č

σR2
− Ċ

)∫
RN+∩supp(ψ)

w2
τ,εϕ

2
R dx

(3.1.27)

where Č e Ċ are positive constants. By taking R0 > 0 sufficiently large it

follows that
Č

σR2
− Ċ < 0 for every R ≥ R0. Hence we have
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∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2ϕ2
R dx

≤ σC2

C1

∫
RN+∩supp(ψ)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2 dx.
(3.1.28)

As above, for C(R) :=
(
RN+ ∩ (B′R(0)× R)

)
, we set

L(R) :=

∫
C(R)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2 dx

so that

L(R) ≤ ϑL(2R) .

where ϑ := σC2
C1

> 0 is sufficiently small when σ > 0 is sufficiently small.

Applying again Lemma 2.1 of [59] it follows that∫
C(R)

(|∇u|+ |∇uτ |)p−2 |∇wτ,ε|2 dx = 0

for any R ≥ R0. This provides a contradiction exactly as in the case 1 <
p < 2 so that the thesis follows also in the case p ≥ 2.

�

3.2. ODE analysis and classification result

The aim of this section is to show the second part of Theorem 3.0.2,
in particular we are going to prove that each one dimensional solution u to
problem (3.0.4) satisfying (3.2.2) is given by (3.0.6). The one dimensional
symmetry result proved in Theorem 3.1.2 leads to the study of the one
dimensional problem:

(3.2.1)


−
(
|u′|p−2u′

)′
=

1

uγ
t ∈ R+

u > 0 t ∈ R+

u(0) = 0

where γ > 1 and u ∈ C1,α(R+)∩C(R+ ∪{0}). As a consequence, we expect
uniqueness for such a problem, since the source term is decreasing. By the
way the proof is not straightforward since the source term is decreasing but
singular at zero. Now we are ready to prove the following lemma:

Lemma 3.2.1. Let u ∈ C1,α(R+)∩C(R+ ∪ {0}) be a solution to (3.2.1).
Assume that there exists a positive constant Cu such that

(3.2.2)
tβ

Cu
≤ u(t) ≤ Cutβ

for t sufficiently large and β := p
γ+p−1 . Then there exists a positive constant

C ′u such that

(3.2.3)
tβ−1

C ′u
≤ u′(t) ≤ C ′utβ−1

for t large enough.
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Proof. We first claim that u′(t) ≥ 0 for every t > 0. To prove this
fact we argue by contradiction and assume that there exist t0 ≥ 0 such that
u′(t0) < 0. Setting

w(t) := |u′(t)|p−2u′(t)

it follows by the equation in (3.2.1) that w is a strictly decreasing function.
Therefore u′(t) ≤ −C := u′(t0) < 0 for every t ≥ t0 and

(3.2.4) u(t) = u(t0) +

∫ t

t0

u′(s) ds ≤ u(t0)−
∫ t

t0

C ds = −Ct+ Ct0 + u(t0).

This would force u to be negative for t large in contradiction with with the
fact that u is positive by assumption. Therefore we deduce that u′(t), w(t) ≥
0 for t sufficiently large. Recalling that w is a strictly decreasing function,
we deduce that actually u′(t), w(t) > 0. Furthermore w(t) → M ≥ 0 as t
goes to +∞. I is easy to show that M = 0. If M > 0 in fact, arguing as in
(3.2.4), we would have

u(t) ≥Mt+ c

for t sufficiently large. This gives a contradiction with our initial assumption
(3.2.2), hence M = 0.

Let us now set

h(t) :=
t−βγ+1

βγ − 1
.

By Cauchy’s Theorem we have that for t large enough and k > t fixed there
exists ξt ∈ (t, t+ k) such that

(3.2.5)
w(t)− w(t+ k)

h(t)− h(t+ k)
=
w′(ξt)

h′(ξt)
.

Letting k → +∞ in (3.2.5) we obtain

(3.2.6)
w(t)

h(t)
= −([u′]p−1)′(ξt)

(ξt)−βγ
=
tβγ

uγ
.

for t large enough. By (3.2.2) and (3.2.6) we deduce that w(t)
h(t) is bounded at

infinity, thus proving (3.2.3).
�

Now we are ready to prove our uniqueness result:

Proposition 3.2.2. Problem (3.2.1) admits a unique solution u ∈ C1,α(R+)∩
C(R+ ∪ {0}) satisfying (3.2.2) given by

(3.2.7) u(t) = Mtβ

where M :=

[
(γ + p− 1)p

pp−1(p− 1)(γ − 1)

] 1
γ+p−1

and β :=
p

γ + p− 1
.

Proof. Arguing by contradiction we assume that there exist two pos-
itive solution u, v ∈ C1,α(R+) ∩ C(R+ ∪ {0}) to problem (3.2.1) such that
u 6≡ v. Let us consider the cutoff function ϕR ∈ C∞c (R), R > 0, such that
ϕR(t) = 1 if t ∈ [−R,R], ϕR(t) = 0 if t ∈ (−∞,−2R) ∪ (2R,+∞) and
|ϕ′(t)| < 2

R for every t ∈ (−2R,−R) ∪ (R, 2R). For ε > 0 (small) we set

wε = (u− v − ε)+ and ψ := [(u− v − ε)+]αϕ2
R
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with α > 0 (large). Passing through the weak formulation of problem (3.2.1)
for u and v, subtracting and using standard elliptic estimates and (1.0.2) we
obtain

αC1

∫ 2R

0

(
|u′|+ |v′|

)p−2 |w′ε|2wα−1
ε ϕ2

R dt

≤ α
∫ 2R

0
(|u′|p−2u′ − |v′|p−2v′, w′ε)w

α−1
ε ϕ2

R dt

= −2

∫ 2R

R
(|u′|p−2u′ − |v′|p−2v′, ϕ′R)wαε ϕR dt+

∫ 2R

0

(
1

uγ
− 1

vγ

)
wαε ϕ

2
R dt

≤ 2C2

∫ 2R

R

(
|u′|+ |v′|

)p−2 |w′ε|wαε |ϕ′R|ϕR dt− γ
∫ 2R

R

1

ξγ+1
(u− v)wαε ϕ

2
R dt

(3.2.8)

with ξ ∈
−−−→
(u, v). Exploiting the weighted Young’s inequality in the right

hand side we have

αC1

∫ 2R

0

(
|u′|+ |v′|

)p−2 |w′ε|2wα−1
ε ϕ2

R dt

≤LC2

∫ 2R

R

(
|u′|+ |v′|

)p−2 |w′ε|2wα−1
ε dt

+
C2

LR2

∫ 2R

R

(
|u′|+ |v′|

)p−2
wα+1
ε ϕ2

R dt

− γ
∫ 2R

R

1

ξγ+1
wα+1
ε ϕ2

R dt

(3.2.9)

By Lemma 3.2.1 it follows that

αC1

∫ 2R

0

(
|u′|+ |v′|

)p−2 |w′ε|2wα−1
ε ϕ2

R dt

≤LC2

∫ 2R

R

(
|u′|+ |v′|

)p−2 |w′ε|2wα−1
ε dt

+
Č

L

∫ 2R

R
t(β−1)(p−2)−2wα+1

ε ϕ2
R dt

− Ċ
∫ 2R

R
t−β(γ+1)wα+1

ε ϕ2
R dt

≤LC2

∫ 2R

R

(
|u′|+ |v′|

)p−2 |w′ε|2wα−1
ε dt

+

(
Č

L
− Ĉ

)
1

Rβ(γ+1)

∫ 2R

R
wα+1
ε ϕ2

R dt

(3.2.10)

where we also used the fact that t/2 ≤ R ≤ t when t ∈ [R, 2R]. Now we fix

L sufficiently large such that Č
L − Ĉ ≤ 0 so that

∫ R

0

(
|u′|+ |v′|

)p−2 |w′ε|2wα−1
ε dt ≤ LC2

αC1

∫ 2R

0

(
|u′|+ |v′|

)p−2 |w′ε|2wα−1
ε dt.

(3.2.11)
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Hence we define

L(R) :=

∫ R

0

(
|u′|+ |v′|

)p−2 |w′ε|2wα−1
ε dt.

By Lemma 3.2.1 we deduce that L(·) has polynomial growth, namely

L(R) ≤ CR(β−1)(p−2)R2(β−1)Rβ(α−1)

∫ R

0
dt = CR(β−1)p+β(α−1)+1 = CRσ

with σ := (α− γ)β + 1. We take α > 0 sufficiently large so that σ > 0 and
ϑC2
αC1

< 2−σ so that Lemma 2.1 of [59] apply and shows that

L(R) = 0.

From this it follows that u ≤ v + ε for every ε > 0, hence u ≤ v. Arguing
in the same way it follows that u ≥ v and this proves the uniqueness result.
To conclude the proof it is now sufficient to check that the function defined
in (3.2.7) solves the problem.

�

Proof of Theorem 3.0.2. Once that Theorem 3.1.2 is in force, the
proof of Theorem 3.0.2 is a consequence of Proposition 3.2.2.

�

3.3. Asymptotic analysis near the boundary and proof of the
Höpf boundary lemma

We start this section considering the auxiliary problem:

(3.3.1)

−∆pu =
p(x)

uγ
in D

u > 0 in D

where D is a bounded smooth domain of RN , where p ∈ L∞(D) and p(x) ≥
c > 0 a.e. in D, γ > 1 and u ∈W 1,p

loc (D)∩C0(D). For this kind of problems,
generally, the weak comparison principle holds true. This is manly due to
the monotonicity properties of the source term. In spite of this remark,
the proof is not straightforward when considering sub/super solutions that
are not smooth up the boundary. Therefore we provide here below a self
contained proof of a comparison principle that we shall exploit later on.

Lemma 3.3.1. Let u ∈ W 1,p
loc (D) ∩ C0(D) be a subsolution of problem

(3.3.1) in the sense of (3.1.2) and let v ∈W 1,p
loc (D)∩C0(D) be a supersolution

of problem (3.3.1) in the sense of (3.1.3). Then, if u ≤ v on ∂D it follows
that u ≤ v in D.

Proof. Let us set:

(3.3.2) wε := (u− v − ε)+

where ε > 0. We notice that wε is suitable as test function since supp(wε) ⊂⊂
D and u, v ∈W 1,p

loc (D). Hence wε ∈W 1,p
0 (D) and, by density arguments, we
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can plug wε as test function in (3.1.2) and (3.1.3) and by subtracting we
obtain ∫

D∩supp(wε)

(
|∇u|p−2∇u− |∇v|p−2∇v,∇wε

)
dx

≤
∫
D∩supp(wε)

p(x)

(
1

uγ
− 1

vγ

)
wε dx.

(3.3.3)

Taking into account the fact that u − v ≥ u − v − ε, the fact that p(·) is
positive and u−γ is decreasing, it follows that

(3.3.4)

∫
D∩supp(wε)

(|∇u|+ |∇v|)p−2 |∇wε|2 dx ≤ 0.

By Fatou’s Lemma, as ε tends to zero, we deduce that∫
D

(|∇u|+ |∇v|)p−2 |∇(u− v)+|2 dx ≤ 0

showing that (u−v)+ is constant, and therefore zero by the boundary data.
Thus we deduce that u ≤ v in D proving the thesis.

�

We exploit now Lemma 3.3.1 to study the boundary behaviour of the so-
lutions to (3.0.1). The proof is actually the one in [82]. Since we could
not find an appropriate reference for the estimates that we need, we repeat
the argument. We denote with φ1 the first (positive) eigenfunction of the
p-laplacian in Ω. Namely

(3.3.5)

{
−∆pφ1 = λ1φ

p−1
1 in Ω

φ1 = 0 on ∂Ω.

Having in mind Lemma 3.3.1 we can prove a similar result to the one in
[82], but in the quasilinear setting.

Theorem 3.3.2. Let u ∈ C1,α
loc (Ω)∩C(Ω) be a positive solution to (3.0.1).

Then there exist two positive constants m1, m2 and there exists δ > 0 suffi-
ciently small such that

(3.3.6) m1φ1(x)
p

γ+p−1 ≤ u(x) ≤ m2φ1(x)
p

γ+p−1 ∀ x ∈ Iδ(∂Ω).

Proof. We rewrite the equation in (3.0.1) as

(3.3.7) −∆pu =
1

uγ
+ f(u) =

p(x)

uγ
in Ω

where p(x) := 1 + u(x)γf(u(x)). In the following we assume that δ is small
enough so that

p(x) > 0 ∀x ∈ Iδ(∂Ω).

Arguing as in [82], we exploit the principal eigenfunction φ1 of problem
(3.3.5) and the fact that φ1 ∈ C1,α(Ω) (see e.g. [3, 86, 80]) and

∇φ1(x) 6= 0 ∀x ∈ ∂Ω.

For t :=
p

γ + p− 1
we set Ψ := s φt1, s > 0. It is easy to see that

−∆pΨ =
g(x, s)

Ψγ
in Iδ(∂Ω)
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where

(3.3.8) g(x, s) := sγ+p−1tp−1

[
(γ − 1)(p− 1)

γ + p− 1
|∇φ1(x)|p + λ1φ1(x)p

]
.

Since 0 < t < 1, we can choose two positive constants s1 and s2 such that
0 < s1 < s2 and

(3.3.9) g(x, s1) < p(x) < g(x, s2) ∀ x ∈ Iδ(∂Ω).

Hence, setting u1 := s1φ
t
1 and u2 := s2φ

t
1, we have that

(3.3.10) −∆pu1 <
p(x)

uγ1
in Iδ(∂Ω)

and

(3.3.11) −∆pu2 >
p(x)

uγ2
in Iδ(∂Ω)

In order to control the datum on the boundary of Iδ(∂Ω) (in the interior of
the domain), we need to switch from u to uβ := βu observing that

−∆puβ = βγ+p−1 p(x)

uγβ
.

For β1 > 0 large it follows that uβ1 and u1 satisfy the following problem:

(3.3.12)


−∆puβ1 ≥

p(x)

uγβ1

in Iδ(∂Ω)

−∆pu1 <
p(x)

uγ1
in Iδ(∂Ω)

uβ1 ≥ u1 on ∂Iδ(∂Ω).

By Lemma 3.3.1 it follows now that

(3.3.13) uβ1 = β1u ≥ u1 in Iδ(∂Ω).

Similarly, for β2 > 0 small, it follows that uβ2 and u2 satisfy the problem:

(3.3.14)


−∆puβ2 ≤

p(x)

uγβ2

in Iδ(∂Ω)

−∆pu2 >
p(x)

uγ2
in Iδ(∂Ω)

uβ2 ≤ u2 on ∂Iδ(∂Ω).

By Lemma 3.3.1 it follows that

(3.3.15) uβ2 = β2u ≤ u2 in Iδ(∂Ω).

Hence the thesis is proved with m1 :=
s1

β1
and m2 :=

s2

β2
.

�

We are now ready to prove Theorem 3.0.1 exploiting the previous pre-
liminary results.
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Proof of Theorem 3.0.1. Since the domain is of class C2,α we may
and do reduce to work in a neighborhood of the boundary Iδ̄(∂Ω) where the
unique nearest point property holds (see e.g. [66]). Arguing by contradiction,
let us assume that there exists a sequence of points {xn} in Iδ̄(∂Ω), such
that xn −→ x0 ∈ ∂Ω, as n→ +∞, and

(3.3.16) ∂ν(xn)u(xn) ≤ 0, with (ν(xn), η(xn)) ≥ β > 0.

Without loss of generality, we can assume that x0 = 0 ∈ ∂Ω and η(xn) =
eN . This follows by the fact that the p-Laplace operator is invariant under
isometries. More precisely, for each n ∈ N, we can consider an isometry
Tn : RN −→ RN with the above mentioned properties just composing a
translation and a rotation of the axes. This procedure generates a new
sequence of points {yn}, where yn := Tnxn, such that every yn ∈ span〈eN 〉
and yn −→ 0 as n→ +∞. Setting un(y) := u(T−1

n (y)), it follows that

(3.3.17) −∆pun =
1

uγn
+ f(un) in Ωn = Tn(Ω).

Now we set

(3.3.18) wn(y) :=
un(δny)

Mn

where δn := dist(xN , ∂Ω) = dist(TnxN , 0) and Mn := un(δneN ) = u(xn). It
follows that δn → 0 as n→ +∞ and

- wn is defined in Ω∗n :=
Ωn

δn
.

- wn(eN ) = 1.

- Mn → 0, as n→ +∞.

It is easy to see that wn weakly satisfies

−∆pwn =
δpn

Mγ+p−1
n

(
1

wn(y)γ
+Mγ

nf(un(δny))

)
in Ω∗n.(3.3.19)

The key idea of the proof is to argue by contradiction exploiting a lim-
iting profile, that we shall denote by u∞, which is a solution to a limiting
problem in a half space. The contradiction will then follows applying the
classification result in Theorem 3.0.2. Here below we develop this argument
and we suggest to the reader to keep in mind that f is bounded, the term

Mγ
nf(un(δny)) will vanish since Mn goes to zero and

δpn

Mγ+p−1
n

is bounded as

a consequence of Theorem 3.3.2. Therefore the expected limiting equation
is:

(3.3.20) −∆pw∞ =
C̃

wγ∞
in RN+ .

Let us provide the details needed to pass to the limit. We claim that:

- wn
C1,α

−→ w∞, as n→ +∞, in any compact set K of RN+ .

- w∞ ∈ C1,α(RN+ ) ∩ C(RN+ ).



112 The Höpf boundary lemma

- w∞ = 0 on ∂RN+ .

To prove this let us consider a compact set K ⊂ RN+ . For n ∈ N large we
can assume that K ⊂ Iδ̄/δn(∂Ω∗n) so that Theorem 3.3.2 can be exploited.

Claim 1. We claim that wn(y) > 0 for all y ∈ K and for n ∈ N large.
Let y ∈ K. Hence, by Theorem 3.3.2

wn(y) :=
un(δny)

Mn
≥ L(dist(δny, ∂Ωn))

p
γ+p−1

Mn
.

In particular, by the fact that dist(δny, ∂Ωn) ≥ Cδn, it follows that

(3.3.21) wn(y) ≥ L(Cδn)
p

γ+p−1

Mn
≥ C(K, γ,m1) > 0 .

Claim 2. We claim that wn
C1,α

−→ w∞, as n → +∞, in any compact set
K of RN+ .
Since dist(y, ∂Ω∗n) ≤ C for every y ∈ K, by Theorem 3.3.2 it follows that

wn(y) =
un(δn y)

Mn
≤ Lm2

[dist(δny, ∂Ωn)]
p

γ+p−1

Mn

= Lm2
δ

p
γ+p−1
n [dist(y, ∂Ω∗n)]

p
γ+p−1

Mn

≤ Lm2C
p

γ+p−1
δ

p
γ+p−1
n

Mn

≤ LC
p

γ+p−1C(K,m2).

(3.3.22)

Hence

‖wn‖L∞(K) ≤ C(K)

for any compact set K of RN+ . By standard regularity theory (see e.g. [70])
it follows that wn is uniformly bounded in C1,α(K ′) for any compact set
K ′ ⊂ K. Therefore, by Ascoli’s Theorem, we can pass to the limit in any
compact set and with C1,α′ convergence. Exploiting a standard diagonal
process, in the same spirit of the previous chapter, we can therefore define
the limiting function w∞ that turns out to be a solution to (3.3.20) in the

half space. The fact that
Ωn

δn
leads to the limiting domain RN+ as n→ +∞

follows by standard arguments that we discussed in the previous chapter.
It remains to verify the Dirichlet datum for the limiting profile w∞.

More precisely we have to show that w∞ = 0 on ∂RN+ . By Theorem 3.3.2 it
follows that

wn(y) =
un(δn y)

Mn
≤ Lm2

[dist(δny, ∂Ωn)]
p

γ+p−1

Mn

= Lm2
δ

p
γ+p−1
n [dist(y, ∂Ω∗n)]

p
γ+p−1

Mn

≤ C(K,L,m2,m1) [dist(y, ∂Ω∗n)]
p

γ+p−1 in Ω∗n.

(3.3.23)
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Since Ω∗n → RN+ , as n goes to +∞, by (3.3.23) and (3.3.21), passing to
the limit we have that

(3.3.24) 0 ≤ w∞(y) ≤ C(K,L,m2,m1)
[
dist(y, ∂RN+ )

] p
γ+p−1 .

In a similar fashion, and exploiting again Theorem 3.3.2, we also deduce
that

(3.3.25) w∞(y) ≥ C(K,L,m2,m1)
[
dist(y, ∂RN+ )

] p
γ+p−1 .

By (3.3.24) it follows that w∞(y) = 0 as claimed. Furthermore, collecting
(3.3.24) and (3.3.25), we deduce that w∞ has the right asymptotic behaviour
needed to apply Theorem 3.0.2, see (3.0.5). This shows that that w∞ is the
unique solution to (3.3.20) given by

(3.3.26) w∞(x) = w∞(xN ) =

[
C̃

pp−1

(γ + p− 1)p

(p− 1)(γ − 1)

] 1
γ+p−1

(xN )
p

γ+p−1 .

On the other hand, passing to the limit in (3.3.16), it would follows that

∂ν̄w∞(eN ) ≤ 0

for some ν̄ ∈ RN with (ν̄, eN ) > 0. Clearly this is a contradiction with
(3.3.26) thus proving the result.

�

Now using the Theorem 3.0.1 we want to prove the symmetry result.

3.4. Symmetry and monotonicity result

In this section we prove our symmetry (and monotonicity) result. Actu-
ally we provide the details needed for the application of the moving planes
method. For the semilinear case see [24, 25, 26], in the quasilinear setting
we use the technique developed in [37].

We start with some notation: for a real number λ we set

(3.4.1) Ωλ = {x ∈ Ω : x1 < λ}

(3.4.2) xλ = Rλ(x) = (2λ− x1, x2, . . . , xN )

which is the reflection through the hyperplane Tλ := {x ∈ RN : x1 = λ}.
Also let

(3.4.3) a = inf
x∈Ω

x1.

Now we set

(3.4.4) uλ(x) = u(xλ) .

Finally we define

Λ0 = {a < λ < 0 : u ≤ ut in Ωt for all t ∈ (a, λ]} .

In the following the critical set of u

Zu := {∇u = 0}
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will play a crucial role. Let us first note that, as a consequence of Theorem
3.0.1, we know that

Zu ⊂⊂ Ω .

This fact allows to exploit the results of [37] since the solution is positive in
the interior of the domain (and the nonlinearity is no more singular there).
Therefore we conclude that

|Zu| = 0 and Ω \ Zu is connected.

Proof of Theorem 3.0.3. The proof follows via the moving planes
technique. We start showing that:

Λ0 6= ∅ .

To prove this, let us consider λ > a with λ− a small. By Theorem 3.0.1 it
follows that

∂u

∂x1
> 0 in Ωλ ∪Rλ(Ωλ),

and this immediately proves that u < uλ in Ωλ.
Now we define

λ0 := sup Λ0.

We shall show that u ≤ uλ in Ωλ for every λ ∈ (a, 0], namely that:

λ0 = 0 .

To prove this, we assume that λ0 < 0 and we reach a contradiction by
proving that u ≤ uλ0+τ in Ωλ0+τ for any 0 < τ < τ̄ for some τ̄ > 0 (small).
By continuity we know that u ≤ uλ0 in Ωλ0 . The strong comparison principle
(see e.g. [103, 127] or Chapter 1) holds true in Ωλ0 \ Zu, providing that

u < uλ0 in Ωλ0 \ Zu .

Note in fact that, in each connected component C of Ωλ0\Zu, the strong com-
parison principle implies that u < uλ0 in C unless u ≡ uλ0 in C. Actually the
latter case is not possible. In fact, if ∂C ∩∂Ω 6= ∅ this is not possible in view
of the zero Dirichlet baundary datum since u is positive in the interior of the
domain. If else ∂C ∩ ∂Ω = ∅ then we should have a local symmetry region
causing Ω\Zu to be not connected, against what we already remarked above.

Therefore, given a compact set K ⊂ Ωλ0 \ Zu, by uniform continuity we
can ensure that u < uλ0+τ in K for any 0 < τ < τ̄ for some small τ̄ >
0. Moreover, by Theorem 3.0.1 and taking into account the zero Dirichlet
boundary datum, it is easy to show that, for some δ > 0, we have that

(3.4.5) u < uλ0+τ in Iδ(∂Ω) ∩ Ωλ0+τ

for any 0 < τ < τ̄ . This is quite standard once that Theorem 3.0.1 is in
force. The hardest part is the study in the region near ∂Ω∩Tλ0+τ . Here we
exploit the monotonicity properties of the solutions proved in Theorem 3.0.1
that works once we note that (e1, η(x)) > 0 in a neighborhood of ∂Ω∩Tλ0+τ

since the domain is smooth and strictly convex.
Now we define

wλ0+τ := (u− uλ0+τ )+
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for any 0 < τ < τ̄ . We already showed in (3.4.5) that supp(wλ0+τ ) ⊂⊂
Ωλ0+τ . Moreover wλ0+τ = 0 in K by construction.

For any τ > 0 fixed, we can choose τ̄ small and K large so that

|Ωλ0+τ \K| < τ .

Here we are also exploiting the fact that the critical set Zu has zero Lebesgue
measure (see [37]).

In particular we take τ sufficiently small so that the weak comparison
principle in small domains (see [37]) works, showing that

wλ0+τ = 0 in Ωλ0+τ

for any 0 < τ < τ̄ for some small τ̄ > 0. But this is in contradiction with
the definition of λ0. Hence λ0 = 0.

The desired symmetry (and monotonicity) result follows now performing
the procedure in the same way but in the opposite direction.

�





4

Qualitative properties of singular solutions to
semilinear elliptic problems

The aim of this chapter is to investigate symmetry and monotonicity
properties of singular solutions to semilinear elliptic equations. We address
the issue of problems involving singular nonlinearity. More precisely let us
consider the problem

(4.0.1)


−∆u = f(x, u) in Ω \ Γ

u > 0 in Ω \ Γ

u = 0 on ∂Ω

where Ω is a bounded smooth domain of RN with N ≥ 2. Our results will
be obtained by means of the moving planes technique, see [1, 12, 68, 111].
Such a technique can be performed in general domains providing partial
monotonicity results near the boundary and symmetry when the domain is
convex and symmetric. For semplicity of exposition we assume directly in
all the chapter that Ω is a convex domain which is symmetric with respect
to the hyperplane {x1 = 0}. The solution has a possible singularity on the
critical set Γ ⊂ Ω. Furthermore in all the chapter the nonlinearity f will be
assumed to be uniformly locally Lipschitz continuous from above far from
the singular set. More precisely we recall the following:

Definition 4.0.1 (If ). We say that f fulfills the condition (If ) if f :

Ω \ Γ× (0,+∞)→ R is a continuous function such that for 0 < t ≤ s ≤M
and for any compact set K ⊂ Ω \ Γ, it holds

f(x, s)− f(x, t) ≤ C(K,M)(s− t) for any x ∈ K ,

where C(K,M) is a positive constant depending on K and M . Furthermore
f(·, s) is non-decreasing in the x1-direction in Ω ∩ {x1 < 0} and symmetric
with respect to the hyperplane {x1 = 0}.

A typical example is provided by positive solutions to

(4.0.2) −∆u =
1

uα
+ g(u) in Ω \ Γ

where α > 0 and g is locally Lipschitz continuous. Such a problem, in the
case Γ = ∅, as been widely investigated in the literature. We refer the readers
to the pioneering work [31] and to [17, 23, 25, 27, 28, 82, 95, 120]. In
particular, by [82], it is known that solutions generally have noH1-regularity
up to the boundary. Therefore, having this example in mind, the natural
assumption in this chapter is

u ∈ H1
loc(Ω \ Γ) ∩ C(Ω \ Γ)
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and thus the equation is understood in the following sense:

(4.0.3)

∫
Ω

(∇u,∇ϕ) dx =

∫
Ω
f(x, u)ϕdx ∀ϕ ∈ C1

c (Ω \ Γ) .

Remark 4.0.2. Note that, by the assumption (If ), the right hand side of
(4.0.1) is locally bounded. Therefore, by standard elliptic regularity theory,
it follows that

u ∈ C1,α
loc (Ω \ Γ),

where 0 < α < 1.

Let us now state our main result

Theorem 4.0.3. Let Ω be a convex domain which is symmetric with
respect to the hyperplane {x1 = 0} and let u ∈ H1

loc(Ω \ Γ) ∩ C(Ω \ Γ)
be a solution to (4.0.1). Assume that f fulfills (If ) (see Definition 4.0.1).
Assume also that Γ is a point if N = 2 while Γ is closed and such that

Cap2
RN

(Γ) = 0,

if N ≥ 3. Then, if Γ ⊂ {x1 = 0}, it follows that u is symmetric with
respect to the hyperplane {x1 = 0} and increasing in the x1-direction in
Ω ∩ {x1 < 0}. Furthermore

ux1 > 0 in Ω ∩ {x1 < 0} .

Remark 4.0.4. Theorem 4.0.3 is proved for convex domains. It will be
clear from the proofs that this is only used to prove that ∂Ω ∩ {x1 = λ} is
discrete in dimension two while ∂Ω∩{x1 = λ} has zero capacity for N ≥ 3.
Therefore the result holds true more generally once that such an information
is available. In all this cases we could assume that Ω is convex only in the
x1-direction.

The technique, as shown in [110] and as discussed in the Introduction,
can be applied to study singular solutions to the following Sobolev critical
equation in RN , N ≥ 3,

(4.0.4)

{
−∆u = u2∗−1 in RN \ Γ

u > 0 in RN \ Γ.

In [110] it was considered the case of a closed critical set Γ contained in a
compact smooth submanifold of dimension d ≤ N − 2 and a summability
property of the solution at infinity was imposed (see also [121] for the special
case in which the singular set Γ is reduced to a single point). Here we remove
both these restrictions and we prove the following:

Theorem 4.0.5. Let N ≥ 3 and let u ∈ H1
loc(RN \ Γ) be a solution to

(4.0.4). Assume that the solution u has a non-removable1 singularity in the
singular set Γ, where Γ is a closed and proper subset of {x1 = 0} such that

Cap2
RN

(Γ) = 0.

1Here we mean that the solution u does not admit a smooth extension all over the
whole space. Namely it is not possible to find ũ ∈ H1

loc(RN ) with u ≡ ũ in RN \ Γ.
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Then, u is symmetric with respect to the hyperplane {x1 = 0}.
The same conclusion is true if the hyperplane {x1 = 0} is replaced by any
affine hyperplane.

Some interesting consequences of the previous result are contained in
the following

Corollary 4.0.6. Let N ≥ 3 and let u ∈ H1
loc(RN \ Γ) be a solution to

(4.0.4) with a non-removable singularity in the singular set Γ.
(i) If Γ = {x0}, then u is radially symmetric with respect to x0.
(ii) If Γ = {x0, x1}, then u has cylindrical symmetry with respect to the axis
passing through x0 and x1.
More generally we have :
(iii) assume 1 ≤ k ≤ N − 2 and suppose that Γ is a closed subset of an
affine k−dimensional subspace of RN . Then, up to isometry, the solution u
has the form u(x) = u(x1, ..., xk, |x

′ |), where x
′

:= (xk+1, ...xN ) and |x′ | :=√
x2
k+1 + ...+ x2

n.

The following example shows that Theorem 4.0.5 and item (iii) of Corol-
lary 4.0.6 are sharp for N ≥ 5 and also that singular solutions exhibiting un
unbounded critical set Γ exist.

For N ≥ 5 and 1 ≤ k < N−2
2 , k integer, we set p = p(N) = N+2

N−2 > 1 and

A = A(N, k) = [(N2 −k−1)N2 ]
N−2

4 > 0. Then, the function v(r) = Ar
− 2
p(N)−1

is a singular positive radial solution of −∆v = vp(N) in RN−k \ {0′}, which

is smooth in RN−k \ {0′}. Hence u = u(x1, ..., xN ) := v(|x′ |) is a singular
solution to (4.0.4) in RN \ Γ, with Γ given by the k−dimensional subspace
{x1 = ... = xk = 0} ⊂ RN , moreover u ∈ C∞(RN \ Γ).

4.1. Notations and preliminary results

For a real number λ we set

(4.1.1) Ωλ = {x ∈ Ω : x1 < λ}

(4.1.2) xλ = Rλ(x) = (2λ− x1, x2, . . . , xN )

which is the reflection through the hyperplane Tλ := {x1 = λ}. Also let

(4.1.3) a = inf
x∈Ω

x1.

Since Γ is compact and of zero capacity, u is defined a.e. on Ω and
Lebesgue measurable on Ω. Therefore the function

(4.1.4) uλ := u ◦Rλ
is Lebesgue measurable on Rλ(Ω). Similarly, ∇u and ∇uλ are Lebesgue
measurable on Ω and Rλ(Ω) respectively.

It is easy to see that, if Cap2
RN

(Γ) = 0, then Cap2
RN

(Rλ(Γ)) = 0. Another

consequence of our assumptions is that Cap2
Bλε

(Rλ(Γ)) = 0 for any open neigh-

borhood Bλε of Rλ(Γ). Indeed, recalling that Γ is a point if N = 2 while Γ
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is closed with Cap2
RN

(Γ) = 0 if N ≥ 3 by assumption, it follows that

Cap2
Bλε

(Rλ(Γ)) := inf

{∫
Bλε
|∇ϕ|2dx < +∞ : ϕ ≥ 1 in Bλδ , ϕ ∈ C∞c (Bλε )

}
= 0,

for some neighborhood Bλδ ⊂ Bλε of Rλ(Γ). From this, it follows that there

exists ϕε ∈ C∞c (Bλε ) such that ϕε ≥ 1 in Bλδ and

∫
Bλε
|∇ϕε|2dx < ε.

Now we construct a function ψε ∈ C0,1(RN , [0, 1]) (see Figure 1) that
ψε = 1 outside Bλε , ψε = 0 in Bλδ and∫

RN
|∇ψε|2dx =

∫
Bλε
|∇ψε|2dx < 4ε.

To this end we consider the following Lipschitz continuous function

T1(s) =


1 if s ≤ 0

−2s+ 1 if 0 ≤ s ≤ 1
2

0 if s ≥ 1
2

and we set

(4.1.5) ψε := T1 ◦ ϕε
where we have extended ϕε by zero outside Bλε . Clearly ψε ∈ C0,1(RN ), 0 ≤
ψε ≤ 1 and ∫

Bλε
|∇ψε|2dx ≤ 4

∫
Bλε
|∇ϕε|2dx < 4ε.

Figure 1. The cutoff function ψε.

Now we set γλ := ∂Ω ∩ Tλ. Recalling that Ω is convex, it is easy to
deduce that γλ is made of two points in dimension two. If else N ≥ 3 then it
follows that γλ is a smooth manifold of dimension N − 2. Note in fact that
locally ∂Ω is the zero level set of a smooth function g(·) whose gradient is not
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parallel to the x1-direction since Ω is convex. Then it is sufficient to observe
that locally ∂Ω ∩ Tλ ≡ {g(λ, x′) = 0} and use the implicit function theorem
exploiting the fact that ∇x′g(λ, x′) 6= 0. This implies that Cap2

RN
(γλ) = 0,

see e.g. [53]. So, as before, Cap2
Iλτ

(γλ) = 0 for any open neighborhood of γλ

and then there exists ϕτ ∈ C∞c (Iλτ ) such that ϕτ ≥ 1 in a neighborhood Iλσ
with γλ ⊂ Iλσ ⊂ Iλτ . As above, we set

(4.1.6) φτ := T1 ◦ ϕτ

where we have extended ϕτ by zero outside Iλτ . Then, φτ ∈ C0,1(RN ), 0 ≤
φτ ≤ 1, φτ = 1 outside Iλτ , φτ = 0 in Iλσ (see Figure 2) and∫

RN
|∇φτ |2dx =

∫
Iλτ
|∇φτ |2dx ≤ 4

∫
Iλτ
|∇ϕτ |2dx < 4τ.

Figure 2. The cutoff function φτ .

4.2. Symmetry and monotonicity result in bounded domains

In the following we will exploit the fact that uλ is a solution to:

(4.2.1)∫
Rλ(Ω)

(∇uλ,∇ϕ) dx =

∫
Rλ(Ω)

f(xλ, uλ)ϕdx ∀ϕ ∈ C1
c (Rλ(Ω) \Rλ(Γ))

and we also observe that, for any a < λ < 0, the function wλ := u − uλ
satisfies 0 ≤ w+

λ ≤ u a.e. on Ωλ and so w+
λ ∈ L

2(Ωλ), since u ∈ C0(Ωλ). To
proceed further, we need the following two results

Lemma 4.2.1. Let λ ∈ (a, 0) be such that Rλ(Γ) ∩ Ω = ∅ and consider
the function

ϕ :=

{
w+
λ φ

2
τ in Ωλ,

0 in RN \ Ωλ,
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where φτ is as in (4.1.6). Then, ϕ ∈ C0,1
c (Ω) ∩C0,1

c (Rλ(Ω)), ϕ has compact
support contained in (Ω \ Γ) ∩ (Rλ(Ω) \Rλ(Γ)) ∩ {xN ≤ λ} and
(4.2.2)
∇ϕ = φ2

τ (∇wλχsupp(w+
λ )∩supp(ϕ))+2φτ (w+

λ χsupp(ϕ))∇φτ a.e. on Ω∪Rλ(Ω).

If λ ∈ (a, 0) is such that Rλ(Γ) ∩ Ω 6= ∅, the same conclusions hold true for
the function

ϕ :=

{
w+
λ ψ

2
εφ

2
τ in Ωλ,

0 in RN \ Ωλ,

where ψε is defined as in (4.1.5) and φτ as in (4.1.6). Furthermore, a.e. on
Ω ∪Rλ(Ω),
(4.2.3)
∇ϕ = ψ2

εφ
2
τ (∇wλχsupp(w+

λ )∩supp(ϕ)) + 2(w+
λ χsupp(ϕ))(ψ

2
εφτ∇φτ + ψεφ

2
τ∇ψε).

In particular, ϕ ∈ C0,1(Ωλ), ϕ|∂Ωλ
= 0 and so ϕ ∈ H1

0 (Ωλ).

Proof. Let us consider the case when λ ∈ (a, 0) is such that Rλ(Γ) ∩
Ω 6= ∅ (the other case being similar and easier). We first prove that for
every x ∈ Ω there is an open ball Bx centered at x, such that Bx ⊂ Ω
and ϕ ∈ C0,1(Bx), and then that there exists η > 0 such that supp(ϕ) is
contained in the compact set {x ∈ Ω : dist(x, ∂Ω) ≥ η} ∩ {xN ≤ λ} ∩ (RN \
V ) ⊂ (Ω \ Γ) ∩ (Rλ(Ω) \ Rλ(Γ)), where V is any open set contained in the
neighborhood Bλδ appearing in the construction of ψε.

If x ∈ Ω ∩ {xN > λ} then ϕ ≡ 0 in an open neighbourhood of x and so
ϕ ∈ C0,1(Bx) for a suitable ball Bx. If x ∈ Ω ∩ Tλ then we can find a small
open ball Bx ⊂ Ω such that Bx ∩ (∂Ω ∪Rλ(Γ)) = ∅. Therefore, both u and
uλ belong to C1(Bx∩{xN ≤ λ}) and so, ϕ ∈ C0,1(Bx∩{xN ≤ λ}), thanks to
the Lipschitz character of φτ and ψε. On the other hand we also have that
ϕ ≡ 0 on Bx ∩ Tλ, by definition of wλ. Thus ϕ ∈ C0,1(Bx) and we are done
also in this case. If x ∈ Rλ(Γ) ∩Ω then ϕ ≡ 0 in an open neighbourhood of
x by definition of ψε and so ϕ ∈ C0,1(Bx) for a suitable ball Bx. Finally, if
x ∈ Ωλ \Rλ(Γ) then, as before, we can find a small open ball Bx such that
Bx ⊂ Ωλ \Rλ(Γ). In this case, both u and uλ belong to C1(Bx). This yields
wλ ∈ C0,1(B) and so is ϕ, again thanks to the Lipschitz character of φτ and
ψε.

To prove the second part of the claim we observe that ϕ ≡ 0 on Ω \ Ωλ

and that, for any point x of the compact set (∂Ω)∩{xN ≤ λ} there is a small
open ball Bx, centered at x, such that ϕ = 0 on Bx ∩ Ω. The latter clearly
holds for any point of γλ, by definition of φτ , and for any point of ∂Ω∩Rλ(Γ),
by definition of ψε. It is also true for any x ∈ (∂Ω)∩{xN < λ}, since u−uλ is
well-defined, continuous and negative on the set [(∂Ω)∩ {xN < λ}] \Rλ(Γ).

The arguments above immediately yield that ϕ ∈ C0,1
c (Ω) and the formula

(4.2.3). A similar argument also shows that ϕ ∈ C0,1
c (Rλ(Ω)).

To compute ∇ϕ we also took into consideration the Remark 4.0.2.
�
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Lemma 4.2.2. Under the assumptions of Theorem 4.0.3, let a < λ < 0.
Then w+

λ ∈ H
1
0 (Ωλ) and∫

Ωλ

|∇w+
λ |

2 dx ≤ c(f, |Ω|, ‖u‖L∞(Ωλ)),

where |Ω| denotes the n−dimensional Lebesgue measure of Ω.

Proof. We first prove that ∇wλχsupp(w+
λ ) ∈ L

2(Ωλ) and then that the

distributional gradient of w+
λ is given by ∇wλχsupp(w+

λ ). We do this only for

the case in which λ is such that Rλ(Γ)∩Ω 6= ∅, the other case being similar
and easier. For ψε as in (4.1.5) and φτ as in (4.1.6), we consider the function
ϕ defined in Lemma 4.2.1. In view of the properties of ϕ, stated in Lemma
4.2.1, and a standard density argument, we can use ϕ as test function in
(4.0.3) and (4.2.1) so that, subtracting, we get

∫
Ωλ

|∇wλχsupp(w+
λ )|

2ψ2
εφ

2
τ dx =− 2

∫
Ωλ

∇wλ∇ψεw+
λ ψεφ

2
τ dx

− 2

∫
Ωλ

∇wλ∇φτw+
λ ψ

2
εφτ dx

+

∫
Ωλ

(f(x, u)− f(xλ, uλ))w+
λ ψ

2
εφ

2
τ dx

≤− 2

∫
Ωλ

∇wλ∇ψεw+
λ ψεφ

2
τ dx

− 2

∫
Ωλ

∇wλ∇φτw+
λ ψ

2
εφτ dx

+

∫
Ωλ

(f(x, u)− f(x, uλ))w+
λ ψ

2
εφ

2
τ dx.

Here we also used the monotonicity properties of f(·, s), see (If ). Exploiting
Young’s inequality we get that

∫
Ωλ

|∇wλχsupp(w+
λ )|

2ψ2
εφ

2
τ dx ≤

1

4

∫
Ωλ

|∇wλχsupp(w+
λ )|

2ψ2
εφ

2
τ dx

+ 4

∫
Ωλ

|∇ψε|2(w+
λ )2φ2

τ dx

+
1

4

∫
Ωλ

|∇wλχsupp(w+
λ )|

2ψ2
εφ

2
τ dx

+ 4

∫
Ωλ

|∇φτ |2(w+
λ )2ψ2

ε dx

+

∫
Ωλ

(f(x, u)− f(x, uλ))w+
λ ψ

2
εφ

2
τ dx.

(4.2.4)

Now we observe that the last integral is actually computed on the set {x ∈
Ωλ\Rλ(Γ) : u(x) > uλ(x) > 0} ⊂ Ωλ ⊂ Ω\Γ and so, we can apply condition
(If ) with the compact set K = Ωλ and M = ‖u‖L∞(Ωλ). We get therefore
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that

∫
Ωλ

(f(x, u)− f(x, uλ))w+
λ ψ

2
εφ

2
τ dx ≤ c(f, ‖u‖L∞(Ωλ))

∫
Ωλ

(w+
λ )2ψ2

εφ
2
τ dx

(4.2.5)

and so, from (4.2.4), we infer that

∫
Ωλ

|∇wλχsupp(w+
λ )|

2ψ2
εφ

2
τ dx ≤8

∫
Ωλ

|∇ψε|2(w+
λ )2φ2

τ dx

+ 8

∫
Ωλ

|∇φτ |2(w+
λ )2ψ2

ε dx

+ 2c(f, ‖u‖L∞(Ωλ))

∫
Ωλ

(w+
λ )2ψ2

εφ
2
τ dx.

(4.2.6)

Taking into account the properties of ψε and φτ , we see that

(4.2.7)

∫
Ωλ

|∇ψε|2 dx =

∫
Ωλ∩(Bλε \Bλδ )

|∇ψε|2 dx < 4ε,

(4.2.8)

∫
Ωλ

|∇φτ |2 dx =

∫
Ωλ∩(Iλτ \Iλσ )

|∇φτ |2 dx < 4τ,

which combined with 0 ≤ w+
λ ≤ u, immediately lead to∫

Ωλ

|∇wλχsupp(w+
λ )|

2ψ2
εφ

2
τ dx ≤32(ε+ τ)‖u‖2L∞(Ωλ)

+ 2c(f, ‖u‖L∞(Ωλ))‖u‖2L∞(Ωλ)|Ω| .

By Fatou’s Lemma, as ε and τ tend to zero, we deduce that ∇wλχsupp(w+
λ ) ∈

L2(Ωλ). To conclude we note that ϕ → w+
λ in  L2(Ω), as ε and τ tend to

zero, by definition of ϕ. Also, ∇ϕ → ∇wλχsupp(w+
λ ) in L2(Ωλ), by (4.2.3).

Therefore, ∇wλχsupp(w+
λ ) is the distributional gradient of ∇w+

λ and w+
λ in

H1
0 (Ωλ), since ϕ ∈ H1

0 (Ωλ) again by Lemma 4.2.1. Which concludes the
proof.

�

Proof of Theorem 4.0.3. We define

Λ0 = {a < λ < 0 : u ≤ ut in Ωt \Rt(Γ) for all t ∈ (a, λ]}

and to start with the moving planes procedure, we have to prove that
Step 1 : Λ0 6= ∅ (See Figure 3). Fix a λ0 ∈ (a, 0) such that Rλ0(Γ) ⊂ Ωc,

then for every a < λ < λ0, we also have that Rλ(Γ) ⊂ Ωc. For any λ in
this set we consider, on the domain Ω, the function ϕ := w+

λ φ
2
τχΩλ , where

φτ is as in (4.1.6) and we proceed as in the proof of Lemma 4.2.2. That is,
by Lemma 4.2.1 and a density argument, we can use ϕ as test function in
(4.0.3) and (4.2.1) so that, subtracting, we get
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Figure 3. Step 1 of the moving planes method: Λ0 6= ∅.

∫
Ωλ

|∇w+
λ |

2φ2
τ dx =− 2

∫
Ωλ

∇w+
λ∇φτw

+
λ φτ dx

+

∫
Ωλ

(f(x, u)− f(xλ, uλ))w+
λ φ

2
τ dx

≤− 2

∫
Ωλ

∇w+
λ∇φτw

+
λ φτ dx

+

∫
Ωλ

(f(x, u)− f(x, uλ))w+
λ φ

2
τ dx.

Exploiting Young’s inequality and the assumption (If ), with K = Ωλ0

and M = ‖u‖2L∞(Ωλ0
), we then get that∫

Ωλ

|∇w+
λ |

2φ2
τ dx ≤

1

2

∫
Ωλ

|∇w+
λ |

2φ2
τ dx+ 2

∫
Ωλ

|∇φτ |2(w+
λ )2dx

+ c(f, ‖u‖L∞(Ωλ0
))

∫
Ωλ

(w+
λ )2φ2

τ dx.

Taking into account the properties of φτ , we see that
(4.2.9)∫

Ωλ

|∇φτ |2(w+
λ )2dx ≤ ‖u‖2L∞(Ωλ)

∫
Ωλ∩(Iλτ \Iλσ )

|∇φτ |2 dx ≤ 4‖u‖2L∞(Ωλ) · τ.

We therefore deduce that∫
Ωλ

|∇w+
λ |

2φ2
τ dx ≤ 16‖u‖L∞(Ωλ) · τ + 2c(f, ‖u‖L∞(Ωλ0

))

∫
Ωλ

(w+
λ )2φ2

τ dx.

By Fatou’s Lemma, as τ tend to, zero we have∫
Ωλ

|∇w+
λ |

2 dx ≤ 2c(f, ‖u‖L∞(Ωλ0
))

∫
Ωλ

(w+
λ )2 dx

≤ 2c(f, ‖u‖L∞(Ωλ0
))c

2
p(Ωλ)

∫
Ωλ

|∇w+
λ |

2 dx,

(4.2.10)
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where cp(·) is the Poincaré constant (in the Poincaré inequality in H1
0 (Ωλ)).

Since c2
p(Ωλ)→ 0 as λ→ a, we can find λ1 ∈ (a, λ0), such that

∀λ ∈ (a, λ1) 2c(f, ‖u‖L∞(Ωλ0
))c

2
p(Ωλ) <

1

2
,

so that by (4.2.10), we deduce that

∀λ ∈ (a, λ1)

∫
Ωλ

|∇w+
λ |

2 dx ≤ 0,

proving that u ≤ uλ in Ωλ \Rλ(Γ) for λ close to a, which implies the desired
conclusion Λ0 6= ∅.
Now we can set

λ0 = sup Λ0.

Step 2: here we show that λ0 = 0 (see Figure 4). To this end we assume

Figure 4. Step 2 of the moving planes method: λ0 = 0.

that λ0 < 0 and we reach a contradiction by proving that u ≤ uλ0+ν in
Ωλ0+ν \Rλ0+ν(Γ) for any 0 < ν < ν̄ for some small ν̄ > 0. By continuity we
know that u ≤ uλ0 in Ωλ0 \ Rλ0(Γ). Since Ω is convex in the x1−direction
and the set Rλ0(Γ) lies in the hyperplane of equation {x1 = −2λ0 }, we see
that Ωλ0 \Rλ0(Γ) is open and connected. Therefore, by the strong maximum
principle we deduce that u < uλ0 in Ωλ0 \ Rλ0(Γ) (here we have also used
that u, uλ0 ∈ C1(Ωλ0 \ Rλ0(Γ)) by Remark 4.0.2, as well as the assumption
(If )).

Now, note that for K ⊂ Ωλ0 \ Rλ0(Γ), there is ν = ν(K,λ0) > 0,
sufficiently small, such that K ⊂ Ωλ \ Rλ(Γ) for every λ ∈ [λ0, λ0 + ν].
Consequently u and uλ are well defined onK for every λ ∈ [λ0, λ0+ν]. Hence,

by the uniform continuity of the function g(x, λ) := u(x)−u(2λ−x1, x
′
) on

the compact set K × [λ0, λ0 + ν] we can ensure that K ⊂ Ωλ0+ν \Rλ0+ν(Γ)
and u < uλ0+ν in K for any 0 ≤ ν < ν̄, for some ν̄ = ν̄(K,λ0) > 0 small.

Clearly we can also assume that ν̄ < |λ0|
4 .

Let us consider ψε constructed in such a way that it vanishes in a neigh-
borhood of Rλ0+ν(Γ) and φτ constructed in such a way it vanishes in a
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neighborhood of γλ0+ν = ∂Ω ∩ Tλ0+ν . As swown in the proof of lemma
4.2.2, the functions

ϕ :=

{
w+
λ0+νψ

2
εφ

2
τ in Ωλ0+ν

0 in RN \ Ωλ0+ν

are such that ϕ→ w+
λ0+ν in H1

0 (Ωλ0+ν), as ε and τ tend to zero. Moreover,

ϕ ∈ C0,1(Ωλ0+ν) and ϕ|∂Ωλ0+ν
= 0, by Lemma 4.2.1, and ϕ = 0 on an open

neighborhood of K, by the above argument. Therefore, ϕ ∈ H1
0 (Ωλ0+ν \K)

and thus, also w+
λ0+ν belongs to H1

0 (Ωλ0+ν\K). We also note that∇w+
λ0+ν =

0 on an open neighborhood of K.
Now we argue as in Lemma 4.2.2 and we plug ϕ as test function in (4.0.3)
and (4.2.1) so that, by subtracting, we get

∫
Ωλ0+ν

|∇w+
λ0+ν |

2ψ2
εφ

2
τ dx ≤− 2

∫
Ωλ0+ν

∇wλ0+ν∇ψεw+
λ0+νψεφ

2
τ dx

− 2

∫
Ωλ0+ν

∇wλ0+νφτw
+
λ0+νψ

2
εφτ dx

+

∫
Ωλ0+ν

(f(x, u)− f(x, uλ))w+
λ0+νψ

2
εφ

2
τ dx

where we also use the monotonicity of f(·, s) in the x1-direction. Therefore,
taking into account the properties of w+

λ0+ν and ∇w+
λ0+ν we also have

∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2ψ2
εφ

2
τ dx ≤ −2

∫
Ωλ0+ν\K

∇w+
λ0+ν∇ψεw

+
λ0+νψεφ

2
τ dx

− 2

∫
Ωλ0+ν\K

∇w+
λ0+ν∇φτw

+
λ0+νψ

2
εφτ dx

+

∫
Ωλ0+ν\K

(f(x, u)− f(x, uλ))w+
λ0+νψ

2
εφ

2
τ dx.

Furthermore, since f is locally uniformly Lipschitz continuous from above,
we deduce that

∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2ψ2
εφ

2
τ dx ≤ 2

∫
Ωλ0+ν\K

|∇w+
λ0+ν ||∇ψε|w

+
λ0+νψεφ

2
τ dx

+ 2

∫
Ωλ0+ν\K

|∇w+
λ0+ν ||∇φτ |w

+
λ0+νψ

2
εφτ dx

+ c(f, ‖u‖L∞(Ω
λ0+

|λ0|
4

))

∫
Ωλ0+ν\K

(w+
λ0+ν)2ψ2

εφ
2
τ dx.

(4.2.11)
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Now, as in the proof of Lemma 4.2.2, we use Young’s inequality to deduce
that

∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2ψ2
εφ

2
τ dx ≤ 8

∫
Ωλ0+ν\K

|∇ψε|2(w+
λ0+ν)2φ2

τ dx

+ 8

∫
Ωλ0+ν\K

|∇φτ |2(w+
λ0+ν)2ψ2

ε dx

+ 2c(f, ‖u‖L∞(Ω
λ0+

|λ0|
4

))

∫
Ωλ0+ν\K

(w+
λ )2ψ2

εφ
2
τ dx,

(4.2.12)

which in turns yields

∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2ψ2
εφ

2
τ dx ≤ 32‖u‖2L∞(Ωλ0+ν̄)(ε+ τ)

+ 2c(f, ‖u‖L∞(Ω
λ0+

|λ0|
4

))

∫
Ωλ0+ν\K

(w+
λ )2ψ2

εφ
2
τ dx.

(4.2.13)

Passing to the limit, as (ε, τ)→ (0, 0), in the latter we get

∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2 dx ≤ 2c(f, ‖u‖L∞(Ω
λ0+

|λ0|
4

))

∫
Ωλ0+ν\K

(w+
λ0+ν)2 dx

≤ 2c(f, ‖u‖L∞(Ω
λ0+

|λ0|
4

))c
2
p(Ωλ0+ν \K)

∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2 dx ,

(4.2.14)

where cp(·) is the Poincaré constant (in the Poincaré inequality inH1
0 (Ωλ0+ν\

K)). Now we recall that c2
p(Ωλ0+ν\K) ≤ Q(n)|Ωλ0+ν\K|

2
N , whereQ = Q(n)

is a positive constant depending only on the dimension n, and therefore, by
summarizing, we have proved that for every compact set K ⊂ Ωλ0 \Rλ0(Γ)

there is a small ν̄ = ν̄(K,λ0) ∈ (0, |λ0|
4 ) such that for every 0 ≤ ν < ν̄ we

have

∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2 dx ≤2c(f, ‖u‖L∞(Ω
λ0+

|λ0|
4

))

Q(n)|Ωλ0+ν \K|
2
N

∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2 dx.

(4.2.15)

Now we first fix a compact K ⊂ Ωλ0 \Rλ0(Γ) such that

|Ωλ0 \K|
2
N < [20c(f, ‖u‖L∞(Ω

λ0+
|λ0|

4

))Q(n)]−1,

this is possible since |Rλ0(Γ)| = 0 by the assumption on Γ, and then we

take ν̄0 < ν̄ such that for every 0 ≤ ν < ν̄0 we have |Ωλ0+ν \ Ωλ0 |
2
N <

[20c(f, ‖u‖L∞(Ω
λ0+

|λ0|
4

))Q(n)]−1. Inserting those informations into (4.2.15)
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we immediately get that∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2 dx <
1

2

∫
Ωλ0+ν\K

|∇w+
λ0+ν |

2 dx(4.2.16)

and so ∇w+
λ0+ν on Ωλ0+ν \K for every 0 ≤ ν < ν̄0. On the other hand, we

recall that∇w+
λ0+ν on an open neighbourhood of K for every 0 ≤ ν < ν̄, thus

∇w+
λ0+ν on Ωλ0+ν for every 0 ≤ ν < ν̄0. The latter proves that u ≤ uλ0+ν

in Ωλ0+ν \Rλ0+ν(Γ) for every 0 < ν < ν̄0. Such a contradiction shows that

λ0 = 0 .

Step 3: conclusion. Since the moving planes procedure can be performed
in the same way but in the opposite direction, then this proves the desired
symmetry result. The fact that the solution is increasing in the x1-direction
in {x1 < 0} is implicit in the moving planes procedure. Since u has C1

regularity, see Remark 4.0.2, the fact that ux1 is positive for x1 < 0 follows
by the maximum principle, the Höpf lemma and the assumption (If ).

�

4.3. Symmetry and monotonicity results in RN involving critical
nonlinearities

In this section we prove Theorem 4.0.5. We first note that, thanks to
a well-known result of Brezis and Kato [20] and standard elliptic estimates
(see also [119]), the solution u is smooth in RN \Γ. Furthermore we observe
that it is enough to prove the theorem for the special case in which the origin
does not belong to Γ. Indeed, if the result is true in this special case, then we
can apply it to the function uz(x) := u(x+ z), where z ∈ {x1 = 0} \ Γ 6= ∅,
which satisfies the equation (4.0.4) with Γ replaced by −z + Γ (note that
−z + Γ is a closed and proper subset of {x1 = 0} with Cap2

RN
(−z + Γ) = 0

and such that the origin does not belong to it).
Under this assumption, we consider the map K : RN \ {0} −→ RN \ {0} de-
fined by K = K(x) := x

|x|2 . Given u solution to (4.0.4), its Kelvin transform

is given by

(4.3.1) v(x) :=
1

|x|N−2
u

(
x

|x|2

)
, x ∈ RN \ {Γ∗ ∪ {0}},

where Γ∗ = K(Γ). It follows that v weakly satisfies (4.0.4) in RN \{Γ∗∪{0}}
and that Γ∗ ⊂ {x1 = 0} since, by assumption, Γ ⊂ {x1 = 0}. Furthermore,
we also have that Γ∗ is bounded (not necessarily closed) since we assumed
that 0 /∈ Γ.

To proceed further we need the following lemmata

Lemma 4.3.1. Let F : RN \ {0} −→ RN \ {0} be a C1−diffeomorphism
and let A be a bounded open set of RN \{0}. If C ⊂ A is a compact set such
that

(4.3.2) Cap2
A

(C) = 0,
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then

(4.3.3) Cap2
F (A)

(F (C)) = 0.

Proof. By hypothesis (4.3.2) and by definition of 2-capacity, for every
ε > 0 let ϕε ∈ C∞c (A) such that

(i)

∫
A
|∇ϕε|2 dx < ε

(ii) ϕε ≥ 1 in a neighborhood Bε of C.

Let ψε := ϕε ◦ G, where G := F−1. By definition of ψε, we immediately
have that ψε ≥ 1 in a neighborhood B′ε of the compact set F (C). Moreover∫

F (A)
|∇ψε(y)|2 dy

=

∫
F (A)
|JG(y1, ..., yn) · ∇ϕε(G1(y1), ..., GN (yn))|2 dy1 · · · dyn

≤
∫
F (A)
‖JG‖∞,F (A)

|∇ϕε(G1(y1), ..., GN (yn))|2 dy1 · · · dyn

≤ C(F,A)

∫
F (A)
|∇ϕε(G1(y1), ..., GN (yn))|2 dy1 · · · dyn

= C(F,A)

∫
A
|∇ϕε(x1, ..., xN )|2| det(JF (x1, ..., xN ))|dx1 · · · dxN

≤ C̃(F,A)

∫
A
|∇ϕε|2 dx < C̃(F,A)ε.

Since C̃(F,A) is independent of ε, the desired conclusion follows at once.
�

Lemma 4.3.2. Let Γ be a closed subset of RN , with N ≥ 3. Also suppose
that 0 6∈ Γ and

(4.3.4) Cap2
RN

(Γ) = 0.

Then

(4.3.5) Cap2
RN

(Γ∗) = 0.

Proof. Since 0 belongs to the open set RN \ Γ, there exists r0 ∈ (0, 1)

such that Br0(0) ∩ Γ = ∅. Therefore, Γ =

+∞⋃
m=1

[
Γ ∩ (Bm(0) \Br0(0))

]
and

so

Cap2
RN

[
Γ ∩ (Bm(0) \Br0(0))

]
= 0, ∀m ∈ N,

since (4.3.4) is in force. The latter and N ≥ 3 imply that

Cap2
Am

[
Γ ∩ (Bm(0) \Br0(0))

]
= 0, ∀m ∈ N,

where Am := Bm+1(0)\B r0
2

(0)) is an open and bounded set for every m ≥ 1.

An application of lemma 4.3.1 with F = K, the inversion x→ x
|x|2 , A = Am
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and C = Γ ∩ (Bm(0) \Br0(0)) yields

Cap2
K(Am)

K
(

Γ ∩ (Bm(0) \Br0(0))
)

= 0, ∀m ∈ N

and so

Cap2
RN

K
(

Γ ∩ (Bm(0) \Br0(0))
)

= 0, ∀m ∈ N.

But

Γ∗ = K(Γ) = K

(
+∞⋃
m=1

[
Γ ∩ (Bm(0) \Br0(0))

])

=

+∞⋃
m=1

K
(

Γ ∩ (Bm(0) \Br0(0))
)

and the 2-capacity is an exterior measure (see e.g. [53]), so the desired
conclusion (4.3.5) follows.

�

Let us now fix some notations. We set

(4.3.6) Σλ = {x ∈ RN : x1 < λ} .

As above xλ = (2λ − x1, x2, . . . , xN ) is the reflection of x through the hy-
perplane Tλ = {x = (x1, ..., xN ) ∈ RN | x1 = λ}. Finally we consider the
Kelvin transform v of u defined in (4.3.1) and we set

(4.3.7) wλ(x) = v(x)− vλ(x) = v(x)− v(xλ).

Note that v weakly solves

(4.3.8)

∫
RN

(∇v,∇ϕ) dx =

∫
RN

v2∗−1ϕdx ∀ϕ ∈ C1
c (RN \ Γ∗ ∪ {0}) .

and vλ weakly solves
(4.3.9)∫

RN
(∇vλ,∇ϕ) dx =

∫
RN

v2∗−1
λ ϕdx ∀ϕ ∈ C1

c (RN \Rλ(Γ∗ ∪ {0})) .

The properties of the Kelvin transform, the fact that 0 /∈ Γ and the
regularity of u imply that |v(x)| ≤ C|x|2−N for every x ∈ RN such that |x| ≥
R, where C and R are positive constants (depending on u). In particular,
for every λ < 0, we have

(4.3.10) v ∈ L2∗(Σλ) ∩ L∞(Σλ) ∩ C0(Σλ) .

Lemma 4.3.3. Under the assumption of Theorem 4.0.5, for every λ < 0,
we have that w+

λ ∈ L
2∗(Σλ),∇w+

λ ∈ L
2(Σλ) and

(4.3.11) ‖w+
λ ‖

2
L2∗ (Σλ)

≤ C2
S

∫
Σλ

|∇w+
λ |

2 dx ≤ 2C2
S

N + 2

N − 2
‖v‖2∗

L2∗ (Σλ)
,

where CS denotes the best constant in Sobolev embedding.



132 Qualitative properties of singular solutions

Proof. We immediately see that w+
λ ∈ L

2∗(Σλ), since 0 ≤ w+
λ ≤ v ∈

L2∗(Σλ) . The rest of the proof follows the lines of the one of lemma 4.2.2.
Arguing as in section 2, for every ε > 0, we can find a function ψε ∈
C0,1(RN , [0, 1]) (see Figure 1) such that∫

Σλ

|∇ψε|2 < 4ε

and ψε = 0 in an open neighborhood Bε of Rλ({Γ∗ ∪ {0}}), with Bε ⊂ Σλ.
Fix R0 > 0 such that Rλ({Γ∗ ∪ {0}) ⊂ BR0 and, for every R > R0, let

ϕR be a standard cut off function such that 0 ≤ ϕR ≤ 1 on RN , ϕR = 1 in
BR, ϕR = 0 outside B2R with |∇ϕR| ≤ 2/R (see Figure 5) and consider

ϕ :=

{
w+
λ ψ

2
εϕ

2
R in Σλ,

0 in RN \ Σλ.

Now, as in Lemma 4.2.1 we see that ϕ ∈ C0,1
c (RN ) with supp(ϕ) contained

Figure 5. The cutoff function ϕR.

in Σλ ∩B2R \Rλ({Γ∗ ∪ {0}}) and
(4.3.12)
∇ϕ = ψ2

εϕ
2
R(∇wλχsupp(w+

λ )∩supp(ϕ))+2(w+
λ χsupp(ϕ))(ψ

2
εϕR∇ϕR+ψεϕ

2
R∇ψε).

Therefore, by a standard density argument, we can use ϕ as test function
in (4.3.8) and in (4.3.9) so that, subtracting we get∫

Σλ

|∇wλχsupp(w+
λ )|

2ψ2
εϕ

2
R dx =− 2

∫
Σλ

∇wλ∇ψεw+
λ ψεϕ

2
R dx

− 2

∫
Σλ

∇wλ∇ϕRw+
λ ϕRψ

2
ε dx

+

∫
Σλ

(v2∗−1 − v2∗−1
λ )w+

λ ψ
2
εϕ

2
R dx

= : I1 + I2 + I3 .

(4.3.13)
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Exploiting also Young’s inequality and recalling that 0 ≤ w+
λ ≤ v, we get

that

|I1| ≤
1

4

∫
Σλ

|∇wλχsupp(w+
λ )|

2ψ2
εϕ

2
R dx+ 4

∫
Σλ

|∇ψε|2(w+
λ )2ϕ2

R dx

≤ 1

4

∫
Σλ

|∇wλχsupp(w+
λ )|

2ψ2
εϕ

2
R dx+ 16ε‖v‖2L∞(Σλ).

(4.3.14)

Furthermore we have that

|I2| ≤
1

4

∫
Σλ

|∇wλχsupp(w+
λ )|

2ψ2
εϕ

2
R dx

+ 4

∫
Σλ∩(B2R\BR)

|∇ϕR|2(w+
λ )2ψ2

ε dx

≤1

4

∫
Σλ

|∇wλχsupp(w+
λ )|

2ψ2
εϕ

2
R dx

+ 4

(∫
Σλ∩(B2R\BR)

|∇ϕR|n dx

) 2
N
(∫

Σλ∩(B2R\BR)
v2∗ dx

)N−2
N

≤1

4

∫
Σλ

|∇wλχsupp(w+
λ )|

2ψ2
εϕ

2
R dx + C(N)

(∫
Σλ∩(B2R\BR)

v2∗ dx

)N−2
N

(4.3.15)

where C(N) is a positive constant depending only on the dimension N .
Let us now estimate I3. Since v(x), vλ(x) > 0, by the convexity of

t→ t2
∗−1, for t > 0, we obtain

v2∗−1(x)− v2∗−1
λ (x) ≤ N + 2

N − 2
v2∗−2
λ (x)(v(x)− vλ(x)),

for every x ∈ Σλ. Thus, by making use of the monotonicity of t → t2
∗−2,

for t > 0 and the definition of w+
λ we get

(v2∗−1 − v2∗−1
λ )w+

λ ≤
N + 2

N − 2
v2∗−2
λ (v − vλ)w+

λ ≤
N + 2

N − 2
v2∗−2(w+

λ )2.

Therefore

I3 ≤
N + 2

N − 2

∫
Σλ

v2∗−2(w+
λ )2ψ2

εϕ
2
R dx

≤ N + 2

N − 2

∫
Σλ

v2∗−2v2dx =
N + 2

N − 2

∫
Σλ

v2∗ dx =
N + 2

N − 2
‖v‖2∗

L2∗ (Σλ)

(4.3.16)

where we also used that 0 ≤ w+
λ ≤ v. Taking into account the estimates on

I1, I2 and I3, by (4.3.13) we deduce that
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∫
Σλ

|∇wλχsupp(w+
λ )|

2ϕ2
εϕ

2
R dx ≤32ε‖v‖2L∞(Σλ)

+ 2C(N)

(∫
Σλ∩(B2R\BR)

v2∗ dx

)N−2
N

+ 2
N + 2

N − 2
‖v‖2∗

L2∗ (Σλ)
.

(4.3.17)

By Fatou’s Lemma, as ε tends to zero and R tends to infinity, we deduce
that ∇wλχsupp(w+

λ ) ∈ L
2(Σλ). We also note that ϕ → w+

λ in L2∗(Σλ), by

definition of ϕ, and that ∇ϕ → ∇wλχsupp(w+
λ ) in L2(Σλ), by (4.3.12) and

the fact that w+
λ ∈ L

2∗(Σλ). Therefore, ∇wλχsupp(w+
λ ) is the distributional

gradient of ∇w+
λ and so ∇w+

λ in L2(Σλ) with (taking limit in (4.3.17))∫
Σλ

|∇wλ|2 dx ≤ 2
N + 2

N − 2
‖v‖2∗

L2∗ (Σλ)
.(4.3.18)

Since ϕ ∈ C0,1
c (RN ) we also have

(∫
Σλ

ϕ2∗ dx
) 2

2∗ ≤ C2
S

∫
Σλ

|∇ϕ|2 dx(4.3.19)

where CS denotes de best constant in Sobolev embedding. Thus, passing
to the limit in (4.3.19) and using the above convergence results, we get the
desired conclusion (4.3.11).

�

Proof of Theorem 4.0.5. We can now complete the proof of Theo-
rem 4.0.5. As for the proof of Theorem 4.0.3, we split the proof into three
steps and we start with
Step 1: there exists M > 1 such that v ≤ vλ in Σλ \ Rλ(Γ∗ ∪ {0}), for all
λ < −M .

Arguing as in the proof of Lemma 4.3.3 and using the same notations
and the same construction for ψε, ϕR and ϕ, we get

∫
Σλ

|∇w+
λ |

2ϕ2
εϕ

2
R dx =− 2

∫
Σλ

∇w+
λ∇ϕεw

+
λ ϕεϕ

2
R dx

− 2

∫
Σλ

∇w+
λ∇ϕRw

+
λ ϕRϕ

2
ε dx

+

∫
Σλ

(v2∗−1 − v2∗−1
λ )w+

λ ϕ
2
εϕ

2
R dx

=: I1 + I2 + I3 ,

(4.3.20)
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where I1, I2 and I3 can be estimated exactly as in (4.3.14), (4.3.15) and
(4.3.16). The latter yield∫

Σλ

|∇w+
λ |

2ϕ2
εϕ

2
R dx ≤32ε‖v‖2L∞(Σλ)

+ 2C(N)

(∫
Σλ∩(B2R\BR)

v2∗ dx

)N−2
N

+ 2
N + 2

N − 2

∫
Σλ

v2∗−2(w+
λ )2ψ2

εϕ
2
R dx.

(4.3.21)

Taking the limit in the latter, as ε tends to zero and R tends to infinity,
leads to ∫

Σλ

|∇w+
λ |

2 dx ≤ 2
N + 2

N − 2

∫
Σλ

v2∗−2(w+
λ )2 dx < +∞(4.3.22)

which combined with Lemma 4.3.3 gives∫
Σλ

|∇w+
λ |

2 dx ≤ 2
N + 2

N − 2

∫
Σλ

v2∗−2(w+
λ )2dx

≤ 2
N + 2

N − 2

(∫
Σλ

v2∗ dx

) 2
N
(∫

Σλ

(w+
λ )2∗ dx

) 2
2∗

≤ 2
N + 2

N − 2
C2
S

(∫
Σλ

v2∗ dx

) 2
N
(∫

Σλ

|∇w+
λ |

2 dx

)
.

(4.3.23)

Recalling that v ∈ L2∗(Σλ), we deduce the existence of M > 1 such that

2
N + 2

N − 2
C2
S

(∫
Σλ

v2∗ dx

) 2
N

< 1

for every λ < −M . The latter and (4.3.23) lead to∫
Σλ

|∇w+
λ |

2 dx = 0 .

This implies that w+
λ = 0 by Lemma 4.3.3 and the claim is proved.

To proceed further we define

Λ0 = {λ < 0 : v ≤ vt in Σt \Rt(Γ∗ ∪ {0}) for all t ∈ (−∞, λ]}

and

λ0 = sup Λ0.

Step 2: we have that λ0 = 0. We argue by contradiction and suppose that
λ0 < 0. By continuity we know that v ≤ vλ0 in Σλ0 \Rλ0(Γ∗ ∪ {0}). By the
strong maximum principle we deduce that v < vλ0 in Σλ0 \ Rλ0(Γ∗ ∪ {0}).
Indeed, v = vλ0 in Σλ0 \Rλ0(Γ∗∪{0}) ) is not possible if λ0 < 0, since in this
case v would be singular somewhere on Rλ0(Γ∗∪{0}). Now, for some τ̄ > 0,
that will be fixed later on, and for any 0 < τ < τ̄ we show that v ≤ vλ0+τ

in Σλ0+τ \Rλ0+τ (Γ∗ ∪ {0}) obtaining a contradiction with the definition of
λ0 and proving thus the claim. To this end we are going to show that, for



136 Qualitative properties of singular solutions

every δ > 0 there are τ̄(δ, λ0) > 0 and a compact set K (depending on δ
and λ0) such that

K ⊂ Σλ \Rλ(Γ∗ ∪ {0}),
∫

Σλ\K
v2∗ dx < δ, ∀λ ∈ [λ0, λ0 + τ̄ ].

To see this, we note that for every every δ > 0 there are τ1(δ, λ0) > 0 and a

compact set K (depending on δ and λ0) such that

∫
Σλ0
\K

v2∗ dx <
δ

2
and

K ⊂ Σλ \ Rλ(Γ∗ ∪ {0}) for every λ ∈ [λ0, λ0 + τ1]. Consequently u and uλ
are well defined on K for every λ ∈ [λ0, λ0 + τ1]. Hence, by the uniform

continuity of the function g(x, λ) := u(x) − u(2λ − x1, x
′
) on the compact

set K × [λ0, λ0 + τ1] we can ensure that K ⊂ Σλ0+τ \ Rλ0+τ (Γ∗ ∪ {0}) and
u < uλ0+τ in K for any 0 ≤ τ < τ2, for some τ2 = τ(δ, λ0) ∈ (0, τ1).

Clearly we can also assume that τ2 <
|λ0|

4 . Finally, since v2∗ ∈ L1(Σ
λ0+

|λ0|
4

)

and

∫
Σλ0
\K

v2∗ dx <
δ

2
, we obtain the existence of τ̄ ∈ (0, τ2) such that∫

Σλ\K
v2∗ dx < δ for all λ ∈ [λ0, λ0 + τ̄ ].

Now we repeat verbatim the arguments used in the proof of Lemma 4.3.3
but using the test function

ϕ :=

{
w+
λ0+τψ

2
εϕ

2
R in Σλ0+τ

0 in RN \ Σλ0+τ .

Thus we recover the first inequality in (4.3.23), which immediately gives,
for any 0 ≤ τ < τ̄

∫
Σλ0+τ\K

|∇w+
λ0+τ |

2 dx ≤ 2
N + 2

N − 2

∫
Σλ0+τ\K

v2∗−2(w+
λ0+τ )2 dx

≤ 2
N + 2

N − 2

(∫
Σλ0+τ\K

v2∗ dx

) 2
N
(∫

Σλ0+τ\K
(w+

λ0+τ )2∗ dx

) 2
2∗

≤ 2
N + 2

N − 2
C2
S

(∫
Σλ0+τ\K

v2∗ dx

) 2
N
(∫

Σλ0+τ\K
|∇w+

λ0+τ |
2 dx

)

(4.3.24)

since w+
λ0+τ and ∇w+

λ0+τ are zero in a neighbourhood of K, by the above

construction. Now we fix δ < 1
2

[
2N+2
N−2C

2
S

]−N
2

and we observe that with this

choice we have

2
N + 2

N − 2
C2
S

(∫
Σλ0+τ\K

v2∗ dx

) 2
N

<
1

2
, ∀ 0 ≤ τ < τ̄

which plugged into (4.3.24) implies that

∫
Σλ0+τ\K

|∇w+
λ0+τ |

2 dx = 0 for every

0 ≤ τ < τ̄ . Hence

∫
Σλ0+τ

|∇w+
λ0+τ |

2 dx = 0 for every 0 ≤ τ < τ̄ , since
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∇w+
λ0+τ is zero in a neighborhood of K. The latter and Lemma 4.3.3 imply

that w+
λ0+τ = 0 on Σλ0+τ for every 0 ≤ τ < τ̄ and thus v ≤ vλ0+τ in

Σλ0+τ \ Rλ0+τ (Γ∗ ∪ {0}) for every 0 ≤ τ < τ̄ . Which proves the claim of
Step 2.
Step 3: conclusion. The symmetry of the Kelvin transform v follows now
performing the moving planes method in the opposite direction. The fact
that that v is symmetric w.r.t. the hyperplane {x1 = 0} implies the sym-
metry of the solution u w.r.t. the hyperplane {x1 = 0}. The last claim
then follows by the invariance of the considered problem with respect to
isometries (translations and rotations).

�

Proof of Corollary 4.0.6. The function v(x) = u(x + x0) satisfies
the assumptions of Theorem 4.0.5 with Γ = {0}. An application of Theorem
4.0.5 yields that v is symmetric with respect to every hyperplane through
the origin and so the original solution u must be radially symmetric with
respect to x0. This proves item (i). Since item (ii) is a special case of item
(iii) with k = 1, we need only to prove item (iii). To this end we observe that,
up to an isometry, we can suppose that the affine k−dimensional subspace
is {xk+1 = ... = xN = 0}. Therefore, we can apply Theorem 4.0.5 to
get that u is symmetric with respect to each hyperplane of RN containing
{xk+1 = ... = xN = 0}; i.e., u is invariant with respect to every rotation of
RN which leaves invariant the set {xk+1 = ... = xN = 0}. Note that we can
apply Theorem 4.0.3 since any affine k−dimensional subspace of RN , with
1 ≤ k ≤ N − 2, has zero 2-capacity in RN (and so Cap2

RN
(Γ) = 0).

�





5

Monotonicity and symmetry of singular solutions
to quasilinear problems

In this chapter we consider the problem

(5.0.1)


−∆pu = f(u) in Ω \ Γ

u > 0 in Ω \ Γ

u = 0 on ∂Ω,

in a bounded smooth domain Ω ⊂ RN and p > 1. The solution u has a
possible singularity on the critical set Γ and in fact we shall only assume
that u is of class C1 far from the critical set. Therefore the equation is
understood as in the following

Definition 5.0.1. We say that u ∈ C1(Ω \ Γ) is a solution to (5.0.1) if
u = 0 on ∂Ω and

(5.0.2)

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx =

∫
Ω
f(u)ϕdx ∀ϕ ∈ C1

c (Ω \ Γ) .

The purpose of this chapter is to investigate symmetry and monotonicity
properties of the solutions when the domain is assumed to have symmetry
properties. This issue is well understood in the semilinear case p = 2 when
Γ = ∅. The symmetry of the solutions in this case can be deduced by the
celebrated moving planes method, see [1, 12, 68, 111]. In [50, 110] and in
Chapter 4 the moving planes procedure has been adapted to the case when
the singular set has zero capacity, in the semilinear setting p = 2.

As remarked in the introduction, here we extend the result obtained in
Chapter 4 in bounded domains to singular solutions of problem (5.0.1). We
prefer to start the presentation of our results with the case p > 2. We have
the following:

Theorem 5.0.2. Let p > 2 and let u ∈ C1(Ω\Γ) be a solution to (5.0.1)
and assume that f is locally Lipschitz continuous with f(s) > 0 for s > 0,
namely assume (A2

f ). If Ω is convex and symmetric with respect to the

x1-direction, Γ is closed with Capp(Γ) = 0, namely let us assume (A2
Γ), and

Γ ⊂ {x ∈ Ω : x1 = 0},

then it follows that u is symmetric with respect to the hyperplane {x1 = 0}
and increasing in the x1-direction in Ω ∩ {x1 < 0}.

Although the technique that we will develop to prove Theorem 5.0.2
works for any p > 2, the result is stated for 2 < p ≤ N since there are no
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sets of zero p-capacity when p > N .

Surprisingly, as we explained in the introduction, the case 1 < p < 2 presents
more difficulties related to the fact that the operator may degenerate near
the critical set even if p < 2. We will therefore need an accurate analysis
on the behaviour of the gradient of the solution near Γ. We carry out such
analysis exploiting the results of [100] (therefore we shall require a growth
assumption on the nonlinearity) and a blow up argument. The result is the
following:

Theorem 5.0.3. Let 1 < p < 2 and let u ∈ C1(Ω \ Γ) be a solution to
(5.0.1) and assume that f is locally Lipschitz continuous with f(s) > 0 for
s > 0 and has subcritical growth, namely let us assume (A1

f ). Assume that

Γ is closed and that Γ = {0} for N = 2, while Γ ⊆M for some compact C2

submanifold M of dimension m ≤ N − k, with k ≥ n
2 for N > 2, see (A1

Γ).
Then, if Ω is convex and symmetric with respect to the x1-direction and

Γ ⊂ {x ∈ Ω : x1 = 0},

it follows that u is symmetric with respect to the hyperplane {x1 = 0} and
increasing in the x1-direction in Ω ∩ {x1 < 0}.

5.1. Notations and technical results

Notation. Generic fixed and numerical constants will be denoted by C
(with subscript in some case) and they will be allowed to vary within a
single line or formula. By |A| we will denote the Lebesgue measure of a
measurable set A.

As we did in the previous chapter, we fix some standard notations in the
moving planes method. For a real number λ we set

(5.1.1) Ωλ = {x ∈ Ω : x1 < λ}

(5.1.2) xλ = Rλ(x) = (2λ− x1, x2, . . . , xN )

which is the reflection through the hyperplane Tλ := {x ∈ RN : x1 = λ}.
Also let

(5.1.3) a = inf
x∈Ω

x1.

Finally we set

(5.1.4) uλ(x) = u(xλ) .

We recall also the definition of p-capacity of a compact set A ⊂ RN . For
1 ≤ p ≤ N we define Capp(A) as
(5.1.5)

Capp(A) := inf

{∫
RN
|∇ϕ|pdx < +∞ : ϕ ∈ C∞c (RN ) and ϕ ≥ χA

}
,

where χS denotes the characteristic function of a set S. By the invariance
under reflections of (5.1.5), it follows that

(5.1.6) Capp(Γ) = Capp(Rλ(Γ)).
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Moreover it can be shown that, if Capp(Rλ(Γ)) = 0, then we have that

(5.1.7) CapDp (Rλ(Γ)) = 0,

where D ⊂ RN denotes a bounded subset and with CapDp (A) (A ⊂ D a

compact set of RN ) we mean

CapDp (A) := inf

{∫
D
|∇ϕ|pdx < +∞ : ϕ ∈ C∞c (D) and ϕ ≥ χA

}
.

Let ε > 0 small and let Bλε be a ε-neighborhood of Rλ(Γ) . From (5.1.6)
and (5.1.7) it follows that there exists ϕε ∈ C∞c (Bλε ) such that ϕε ≥ 1 on
χRλ(Γ) and ∫

Bλε
|∇ϕε|pdx < ε.

To carry on our analysis we need to construct a function ψε ∈ W 1,p(Ω) (see
Figure 1) such that ψε = 1 in Ω \ Bλε , ψε = 0 in a δε-neighborhood Bλδε of
Rλ(Γ) (with δε < ε) and such that

(5.1.8)

∫
Bλε
|∇ψε|pdx ≤ Cε,

for some positive constant C that does not depend on ε. To construct such
a test function we consider the real functions T : R→ R+

0 and g : R+
0 → R+

0
defined by
(5.1.9)
T (s) := max{0; min{s; 1}}, s ∈ R and g(s) := max{0;−2s+ 1}, s ∈ R+

0 .

Finally we set

(5.1.10) ψε(x) := g(T (ϕε(x))).

By the definitions (5.1.9), it follows that ψε satisfies (5.1.8).

Figure 1. The cutoff function ψε.

To simplify the presentation we summarize the assumptions of the main
results as follows:
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(A1
f). For 1 < p < 2 we assume that f is locally Lipschitz continuous so

that, for any 0 ≤ t, s ≤ M , there exists a positive constant Kf = Kf (M)
such that

|f(s)− f(t)| ≤ Kf |s− t|.
Moreover f(s) > 0 for s > 0 and

lim
t→+∞

f(t)

tq
= l ∈ (0,+∞).

for some q ∈ R such that p− 1 < q < p∗ − 1, where p∗ = Np/(N − p).

(A2
f). For p ≥ 2 we only assume that f is locally Lipscitz continuous so

that, for 0 ≤ t, s ≤ M there exists a positive constant Kf = Kf (M) such
that

|f(s)− f(t)| ≤ Kf |s− t|.
Furthermore f(s) > 0 for s > 0.

(A1
Γ). For 1 < p < 2 and N = 2 we assume that Γ = {0}, while for 1 < p < 2

and N > 2 we assume that Γ ⊆M for some compact C2 submanifold M of
dimension m ≤ N − k, with k ≥ N

2 .

(A2
Γ). For 2 < p < N and N ≥ 2, we assume that Γ closed and such that

Capp(Γ) = 0.

Remark 5.1.1. We want just to remark that in the case 1 < p < 2 and
N > 2 if Γ ⊆ M for some compact C2 submanifold M of dimension m ≤
N −k then Capp(Γ) = 0. In this case we consider Bε a tubular neighborhood
of radius ε of M, i.e.

Bε := {x ∈ Ω : dist(x,M) < ε},

with ε > 0 sufficiently small so that M has the unique nearest point prop-
erty in the neighborhood of M of radius ε. We may and do also assume
that Fermi coordinates are well defined in such neighborhood, see e.g. [98].
Therefore, using the defintion (5.1.5) above, it can be shown that Capp(Γ) =
0.

In the following we will exploit the fact that uλ (in the sense of Definition
5.0.1) is a solution to
(5.1.11)∫
Rλ(Ω)

|∇uλ|p−2(∇uλ,∇ϕ) dx =

∫
Rλ(Ω)

f(uλ)ϕdx ∀ϕ ∈ C1
c (Rλ(Ω)\Rλ(Γ)) .

We set

(5.1.12) wλ(x) := (u− uλ)(x), x ∈ Ωλ \Rλ(Γ).

Lemma 5.1.2. Let p > 1 and let u and uλ be solutions to (5.0.2) and
(5.1.11) respectively and let f : R → R be a locally Lipschitz continuous
function. Let us assume Γ ⊂ Ω closed and such that

Capp(Γ) = 0.
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Let a be defined as in (5.1.3) and a < λ < 0. Then∫
Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2 dx ≤ C(p, λ, ‖u‖L∞(Ωλ)) .

Proof. In all the proof, according to our assumptions, we assume that
0 ≤ t, s ≤M , there exists a positive constant Kf = Kf (M) such that

|f(s)− f(t)| ≤ Kf |s− t|.

For ψε defined as in (5.1.10), we consider

ϕε := w+
λ ψ

p
εχΩλ .

By standard arguments, since w+
λ ≤ ‖u‖L∞(Ωλ) (recall that in particular

u ∈ C(Ω\Γ)) and by construction 0 ≤ ψε ≤ 1, we have that ϕε ∈W 1,p
0 (Ωλ).

By a density argument we use ϕε as test function in (5.0.2) and (5.1.11).
Subtracting we get∫

Ωλ

(|∇u|p−2∇u− |∇uλ|p−2∇uλ,∇w+
λ )ψpε dx

+ p

∫
Ωλ

(|∇u|p−2∇u− |∇uλ|p−2∇uλ,∇ψε)ψp−1
ε w+

λ dx

=

∫
Ωλ

(f(u)− f(uλ))w+
λ ψ

p
ε dx

(5.1.13)

Now it is useful to split the set Ωλ as the union of two disjoint subsets Aλ
and Bλ such that Ωλ = Aλ ∪Bλ. In particular, for Ċ > 1 that will be fixed
large, we set

Aλ = {x ∈ Ωλ : |∇uλ(x)| < Ċ|∇u(x)|}

and

Bλ = {x ∈ Ωλ : |∇uλ(x)| ≥ Ċ|∇u(x)|}.

Then it follows that

- By the definition of Aλ it follows that there exists Ĉ such that

(5.1.14) |∇u|+ |∇uλ| < Ĉ|∇u|.

- By the definition of the set Bλ and standard triangular inequalities,
we can deduce the existence of a positive constant Č such that

(5.1.15)
1

Č
|∇uλ| ≤ |∇uλ| − |∇u| ≤ |∇wλ| ≤ |∇uλ|+ |∇u| ≤ Č|∇uλ|.

We distinguish two cases:
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Case 1: 1 < p < 2. From (5.1.13), using (1.0.2) and (A1
f) we have

C1

∫
Ωλ

(|∇u|+|∇uλ|)p−2|∇w+
λ |

2ψpε dx

≤
∫

Ωλ

(|∇u|p−2∇u− |∇uλ|p−2∇uλ,∇w+
λ )ψpε dx

≤ p
∫

Ωλ

∥∥∇u|p−2∇u− |∇uλ|p−2∇uλ
∣∣ |∇ψε|ψp−1

ε w+
λ dx

+

∫
Ωλ

f(u)− f(uλ)

u− uλ
(w+

λ )2ψpε dx

≤ pC4

∫
Ωλ

|∇w+
λ |
p−1 |∇ψε|ψp−1

ε w+
λ dx+Kf

∫
Ωλ

(w+
λ )2ψpε dx

≤ C
(
I1 + I2

)
+ C

∫
Ωλ

ψpε dx,

(5.1.16)

where

I1 :=

∫
Aλ

|∇w+
λ |
p−1 |∇ψε|ψp−1

ε w+
λ dx

and

I2 :=

∫
Bλ

|∇w+
λ |
p−1 |∇ψε|ψp−1

ε w+
λ dx,

and C = C(p, λ, ‖u‖L∞(Ωλ)) is a positive constant.
Step 1: Evaluation of I1. Using Young’s inequality and (5.1.14), we have

I1 =

∫
Aλ

|∇w+
λ |
p−1|∇ψε|ψp−1

ε w+
λ dx

≤
(∫

Aλ

|∇w+
λ |
pψpε dx

) p−1
p
(∫

Aλ

|∇ψε|p(w+
λ )p dx

) 1
p

≤
(∫

Aλ

(|∇u|+ |∇uλ|)pψpε dx
) p−1

p
(∫

Aλ

|∇ψε|p(w+
λ )p dx

) 1
p

≤
(
Ĉ

∫
Aλ

|∇u|pψpε dx
) p−1

p
(∫

Aλ

|∇ψε|p(w+
λ )p dx

) 1
p

≤ C
(∫

Ωλ

|∇u|p dx
) p−1

p
(∫

Ωλ

|∇ψε|p dx
) 1
p

,

(5.1.17)

where C = C(p, λ, ‖u‖L∞(Ωλ)) is a positive constant.
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Step 2: Evaluation of I2. Using the weighted Young’s inequality and
(5.1.15) we get

I2 =

∫
Bλ

|∇w+
λ |
p−1|∇ψε|ψp−1

ε w+
λ dx

≤δ
∫
Bλ

|∇w+
λ |
pψpε dx

+
1

δ

∫
Bλ

|∇ψε|p(w+
λ )p dx

≤δ
∫
Bλ

(|∇u|+ |∇uλ|)p−2 (|∇u|+ |∇uλ|)2 ψpε dx

+
1

δ

∫
Bλ

|∇ψε|p(w+
λ )p dx

≤δČ2

∫
Bλ

(|∇u|+ |∇uλ|)p−2|∇uλ|2ψpε dx

+
1

δ

∫
Bλ

|∇ψε|p(w+
λ )p dx

≤δČ4

∫
Bλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

+
1

δ

∫
Bλ

|∇ψε|p(w+
λ )p dx

≤δC
∫

Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

+
C

δ

∫
Ωλ

|∇ψε|p dx,

(5.1.18)

where C = C(p, λ, ‖u‖L∞(Ωλ)) is a positive constant. Finally, using (5.1.16),
(5.1.17) and (5.1.18), we obtain

∫
Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

≤ δC
∫

Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

+ C

(∫
Ωλ

|∇u|p dx
) p−1

p
(∫

Ωλ

|∇ψε|p dx
) 1
p

+
C

δ

∫
Ωλ

|∇ψε|p dx+ C

∫
Ωλ

ψpε dx,

(5.1.19)

for some positive constant C = C(p, λ, ‖u‖L∞(Ωλ)).
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Case 2: p ≥ 2. From (5.1.13), using (1.0.2) and (A2
f) we have

C1

∫
Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

≤
∫

Ωλ

(|∇u|p−2∇u− |∇uλ|p−2∇uλ,∇w+
λ )ψpε dx

= −p
∫

Ωλ

(|∇u|p−2∇u− |∇uλ|p−2∇uλ,∇ψε)ψp−1
ε w+

λ dx

+

∫
Ωλ

(f(u)− f(uλ))w+
λ ψ

p
ε dx

≤ p
∫

Ωλ

∣∣|∇u|p−2∇u− |∇uλ|p−2∇uλ
∣∣ |∇ψε|ψp−1

ε w+
λ dx

+

∫
Ωλ

f(u)− f(uλ)

u− uλ
(w+

λ )2ψpε dx

≤ pC2

∫
Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ | |∇ψε|ψ

p−1
ε w+

λ dx

+Kf

∫
Ωλ

(w+
λ )2ψpε dx

= pC2

∫
Aλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ | |∇ψε|ψ

p−1
ε w+

λ dx

+ pC2

∫
Bλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ | |∇ψε|ψ

p−1
ε w+

λ dx

+Kf

∫
Ωλ

(w+
λ )2ψpε dx

≤ C
(
I1 + I2

)
+ C

∫
Ωλ

ψpε dx,

(5.1.20)

where

I1 :=

∫
Aλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ | |∇ψε|ψ

p−1
ε w+

λ dx

and

I2 :=

∫
Bλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ | |∇ψε|ψ

p−1
ε w+

λ dx,

and C = C(p, λ, ‖u‖L∞(Ωλ)) is a positive constant.
Step 1: Evaluation of I1. Using the weighted Young’s inequality we have

I1 =

∫
Aλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ | |∇ψε|ψ

p−1
ε w+

λ dx

≤ δ
∫
Aλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

+
1

δ

∫
Aλ

(|∇u|+ |∇uλ|)p−2|∇ψε|2ψp−2
ε (w+

λ )2 dx.
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Using (5.1.14) and Hölder inequality, we obtain

I1 ≤ δ
∫
Aλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

+
Ĉp−2

δ

∫
Aλ

|∇u|p−2|∇ψε|2ψp−2
ε (w+

λ )2 dx

≤ δ
∫
Aλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

+
C

δ

(∫
Aλ

|∇u|pψpε dx
) p−2

p
(∫

Aλ

|∇ψε|p(w+
λ )p dx

) 2
p

≤ δ
∫

Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

+
C

δ

(∫
Ωλ

|∇u|p dx
) p−2

p
(∫

Ωλ

|∇ψε|p dx
) 2
p

,

(5.1.21)

with C = C(p, λ, ‖u‖L∞(Ωλ)) is a positive constant.
Step 2: Evaluation of I2. By the weighted Young’s inequality

I2 :=

∫
Bλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ | |∇ψε|ψ

p−1
ε w+

λ dx

≤ δ
∫
Bλ

(|∇u|+ |∇uλ|)
p(p−2)
p−1 |∇w+

λ |
p
p−1ψpε dx+

1

δ

∫
Bλ

|∇ψε|p(w+
λ )p dx

= δ

∫
Bλ

(|∇u|+ |∇uλ|)
p(p−2)
p−1 |∇w+

λ |
2|∇w+

λ |
p
p−1
−2
ψpε dx

+
1

δ

∫
Bλ

|∇ψε|p(w+
λ )p dx.

Using (5.1.15) and noticing that

p

(p− 1)
− 2 < 0,

we obtain the following estimate

I2 ≤ δČ
(p−2)(p+1)

p−1

∫
Bλ

|∇uλ|p−2|∇w+
λ |

2ψpε dx+
1

δ

∫
Bλ

|∇ψε|p(w+
λ )p dx

≤ δC
∫
Bλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx+
C

δ

∫
Bλ

|∇ψε|p dx

≤ δC
∫

Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx+
C

δ

∫
Ωλ

|∇ψε|p dx,

(5.1.22)

with C = C(p, ‖u‖L∞(Ωλ)). In the second line of (5.1.22) we exploited the
fact that, since p ≥ 2 then

|∇uλ|p−2 ≤ (|∇u|+ |∇uλ|)p−2.
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Collecting (5.1.20), (5.1.21) and (5.1.22) we deduce that∫
Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

≤ δC
∫

Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2ψpε dx

+
C

δ

(∫
Ωλ

|∇u|p dx
) p−2

p
(∫

Ωλ

|∇ψε|p dx
) 2
p

+
C

δ

∫
Ωλ

|∇ψε|p dx+ C

∫
Ωλ

ψpε dx,

(5.1.23)

for some positive constant C = C(p, λ, ‖u‖L∞(Ωλ)).

For δ small, from (5.1.19) and (5.1.23), using (5.1.8) and the fact that
for λ < 0 the solution u ∈ W 1,p(Ωλ), letting ε → 0 by Fatou’s Lemma we
obtain ∫

Ωλ

(|∇u|+ |∇uλ|)p−2|∇w+
λ |

2 dx ≤ C(p, λ, ‖u‖L∞(Ωλ)),

concluding the proof.
�

5.2. Symmetry and monotonicity results in the singular and in
the degenerate case

We recall the fact that uλ (in the sense of Definition 5.0.1) is a solution to
(5.2.1)∫
Rλ(Ω)

|∇uλ|p−2(∇uλ,∇ϕ) dx =

∫
Rλ(Ω)

f(uλ)ϕdx ∀ϕ ∈ C1
c (Rλ(Ω)\Rλ(Γ)) .

We set

wλ(x) := (u− uλ)(x), x ∈ Ω \ (Γ ∪Rλ(Γ)).

Since in the following we will exploit weighted Sobolev inequalities, it is
convenient to set weight

(5.2.2) %̂ := |∇u|p−2 1

%̂
:= |∇u|2−p .

We have the following

Lemma 5.2.1. Let 1 < p < 2. Under the same assumption of Theorem
5.0.3, define

Ω+
λ := Ωλ ∩ supp (w+

λ ).

Then

(5.2.3) |∇u|2−p ∈ Lt(Rλ(Ω+
λ )),

for some t > N
2 .

Proof. By definition of Ω+
λ we have

‖u‖L∞(Rλ(Ω+
λ )) = ‖uλ‖L∞(Ω+

λ ) ≤ ‖u‖L∞(Ω+
λ ) ≤ C(λ, ‖u‖L∞(Ωλ)).
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Taking x0 ∈ Rλ(Ω+
λ ) \ Γ, we set:

(5.2.4) g(x) := u(dx+ x0) in B 1
2
(0),

where d := dist(x0,Γ). Since u is a solution (in the sense of Definition 5.0.1)
to (5.0.1), we deduce that for any ϕ ∈ C1

c (B1/2(0))

(5.2.5) ∫
B 1

2
(0)
|∇g|p−2(∇g,∇ϕ) dx

= dp−1

∫
B 1

2
(0)
|∇u(dx+ x0)|p−2(∇u(dx+ x0),∇ϕ) dx

= dp−n
∫
B d

2
(x0)
|∇u(x)|p−2

(
∇u(x),∇

(
ϕ

(
x− x0

d

)))
dx

= dp−n
∫
B d

2
(x0)

f(u(x))ϕ

(
x− x0

d

)
dx

= dp
∫
B 1

2
(0)
f(u(dx+ x0))ϕ(x) dx

=

∫
B 1

2
(0)
c(x)(g(x))p−1ϕ(x) dx,

with

(5.2.6) c(x) := dp
f(u(dx+ x0))

up−1(dx+ x0)
.

From (5.2.5) we deduce that in distributional sense

−∆pg = c(x)gp−1 in B 1
2
(0).

On the other hand u as well (in distributional sense) is a positive solution
to −∆pu = f(u) in Bd(x0). Therefore using [100, Theorem 3.1] we have

(5.2.7) 0 < u(x) ≤ C(1 + d
− p
q+1−p ),

where C = C(f, n, p) > 0. By (5.2.6), using (A1
f) we have

(5.2.8) c(x) = Cdp(1 + uq+1−p),

with C = C(l, p,Kf ) is a positive constant. Finally, collecting (5.2.7) and
(5.2.8) we deduce

c(x) ≤ Cdp(1 + d−p) ≤ C,

with C = C(f, l, N, p, q,Kf ,Ω). Hence c(x) ∈ L∞(B1/2(0)). By [103, The-
orem 7.2.1], recalling (5.2.4), for every x ∈ B1/8(0) it follows

g(x) ≤ sup
x∈B 1

4
(0)
g(x)(5.2.9)

≤ CH inf
x∈B 1

4
(0)
g(x) ≤ CHg(0) ≤ C
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where C = C(f, l, N, p, q,Kf ,Ω) is a positive constant. Hence g is bounded
in B1/8(0) and as consequence, see e.g. [46, 122]

g ∈ C1,α(B 1
16

(0)).

Then there exists a positive constant C = C(N, p, λ, ‖u‖L∞(Ωλ)) such that

|∇g(x)| ≤ C ∀x ∈ B 1
16

(0).

By (5.2.4) it follows

d|∇u(dx+ x0)| ≤ C ∀x ∈ B 1
16

(0),

namely

(5.2.10) |∇u| ≤ C

d
in B d

16
(x0).

Using (A1
Γ), we can consider Bε a tubular neighborhood of radius ε of M,

i.e.

Bε := {x ∈ Ω : dist(x,M) < ε}.
We now exploit an integration in Fermi coordinates,see e.g. [98]. We indi-
cate a point of Bε via the coordinate (σ, x)′ where σ is the variable describing
the manifold M and x′ ∈ Rk is the Euclidean variable on the normal sec-
tion. For σ fixed, Dσ will stand for the normal section at σ. By (5.2.10),
and passing to polar coordinates we obtain

∫
Rλ(Ω+

λ )

(
|∇u|2−p

)t
dx =

∫
Rλ(Ω+

λ )\Bε

(
|∇u|2−p

)t
dx+

∫
Bε

(
|∇u|2−p

)t
dx

≤ C + C

∫
M
dσ

∫
Dσ

(
|∇u|2−p

)t
dx′

≤ C + C

∫
M
dσ

∫ ε

0

1

r(2−p)t−(k−1)
dr

= C(N, p, λ, ‖u‖L∞(Ωλ)) + CE1,

(5.2.11)

with

(5.2.12) E1 :=

∫
M
dσ

∫ ε

0

1

r(2−p)t−(k−1)
dr < +∞,

if t < k/(2− p), recalling that 1 < p < 2. Hence, since k ≥ N/2, inequality
(5.2.12) holds for some

t ∈
(
N

2
,

k

2− p

)
,

being 2k > N(2− p) under our assumption. �

Let us now set

Zλ := {x ∈ Ωλ \Rλ(Γ) | ∇u(x) = ∇uλ(x) = 0}.

We have the following
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Lemma 5.2.2. Let u be a solution to (5.0.2) with f : R→ R be a locally
Lipschitz function such that f(s) > 0 for s > 0. Let a < λ < 0. If
Cλ ⊂ Ωλ \ (Rλ(Γ) ∪ Zλ) is a connected component of Ωλ \ (Rλ(Γ) ∪ Zλ)
and u = uλ in Cλ, then

Cλ = ∅.

Proof. Let

C := Cλ ∪Rλ(Cλ).

Arguing by contradiction we assume C 6= ∅. Now for ε > 0, we define
hε(t) : R+

0 → R as

hε(t) =

{
Gε(t)
t if t > 0

0 if t = 0,

where Gε(t) = (2t − 2ε)χ[ε , 2ε](t) + tχ[2ε ,∞)(t) for t > 0. Moreover we
consider the cut-off function ψε on the set Γ ∪ Rλ(Γ) defined in a similar
way as in (5.1.10). Hence we define the test function

ϕε := hε(|∇u|)ψ2
εχC .

We point out that the suppϕε ⊂ C and therefore we can use it as test
function in (5.0.2). We obtain

0 <

∫
C
f(u)hε(|∇u|)ψ2

ε dx =

∫
C
|∇u|p−2(∇u,∇|∇u|)h′ε(|∇u|)ψ2

ε dx

+ 2

∫
C
|∇u|p−2(∇u,∇ψε)hε(|∇u|)ψε dx.

Using Schwarz inequality, observing that

hε(t) ≤ 1 and h′ε(t) ≤ 2/ε,

we obtain

0 <

∫
C
f(u)

Gε(|∇u|)
|∇u|

ψ2
ε dx

≤ 2

∫
C∩{ε<|∇u|<2ε}

|∇u|p−2‖D2u‖ψ2
ε

|∇u|
ε

dx+ 2

∫
C
|∇u|p−1|∇ψε|ψε dx

≤ 4

∫
C∩{ε<|∇u|<2ε}

|∇u|p−2‖D2u‖ψ2
ε dx+ 2

∫
C
|∇u|p−1|∇ψε|ψε dx

≤ 4

∫
C
|∇u|p−2‖D2u‖ψ2

εχAε dx+ 2

(∫
C
|∇u|p dx

) p−1
p
(∫

C
|∇ψε|p dx

) 1
p

,

(5.2.13)

where Aε := C ∩ {ε < |∇u| < 2ε}. Now we note that by the definition of
the region C and because u = uλ in Cλ, then the solution u is bounded and
C1,α by classical regularity results. Moreover

|∇u|p−2‖D2u‖ψ2
εχAε ≤ |∇u|p−2‖D2u‖

and |∇u|p−2‖D2u‖ ∈ L1(C) by [37] (see also [88, Lemma 5] for details). It is
important to note that the regularity of the solution in Rλ(Cλ) is induced by
symmetry by the regularity in Cλ. Noticing that |∇u|p−2‖D2u‖ψ2

εχAε → 0
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as ε goes to 0, then letting ε → 0 in (5.2.13), by Dominated Convergence
Theorem and (5.1.8) it follows

0 <

∫
C
f(u) dx ≤ 0,

and this gives a contradiction. Hence C = ∅.
�

Proof of Theorem 5.0.3. Since the singular set Γ is contained in the
hyperplane {x1 = 0}, then the moving planes procedure can be started in
the standard way (see e.g [35, 36, 37]) and, for a < λ < a+ σ with σ > 0
small, we have that wλ ≤ 0 in Ωλ (see (5.1.12)) by the weak comparison
principle in small domains. Note that the crucial point here is that wλ has
a singularity at Γ and at Rλ(Γ). For λ close to a the singularity does not
play a role. To proceed further we define

Λ0 = {a < λ < 0 : u ≤ ut in Ωt \Rt(Γ) for all t ∈ (a, λ]}

and λ0 = sup Λ0, since we proved above that Λ0 is not empty. To prove our
result we have to show that λ0 = 0. To do this we assume that λ0 < 0 and
we reach a contradiction by proving that u ≤ uλ0+τ in Ωλ0+τ \Rλ0+τ (Γ) for
any 0 < τ < τ̄ for some small τ̄ > 0. We remark that |Zλ0 | = 0, see [37].
Let us take Aλ0 ⊂ Ωλ0 be an open set such that Zλ0 ∩ Ωλ0 ⊂ Aλ0 ⊂⊂ Ω.
Such set exists by Höpf lemma (see Chapter 1). Moreover note that, since
|Zλ0 | = 0, we can take Aλ0 of arbitrarily small measure. By continuity we
know that u ≤ uλ0 in Ωλ0 \ Rλ0(Γ). We can exploit the strong comparison
principle, see e.g. [103, Theorem 2.5.2] or Chapter 1, to get that, in any
connected component of Ωλ0 \ Zλ0 , we have

u < uλ0 or u ≡ uλ0 .

The case u ≡ uλ0 in some connected component Cλ0 of Ωλ0 \ Zλ0 is not
possible, since by symmetry, it would imply the existence of a local symmetry
phenomenon and consequently that Ω \ Zλ0 would be not connected, in
spite of what we proved in Lemma 5.2.2. Hence we deduce that u < uλ0 in
Ωλ0 \Rλ0(Γ). Therefore, given a compact set K ⊂ Ωλ0 \ (Rλ0(Γ)∪Aλ0), by
uniform continuity we can ensure that u < uλ0+τ in K for any 0 < τ < τ̄
for some small τ̄ > 0. Note that to do this we implicitly assume, with no
loss of generality, that Rλ0(Γ) remains bounded away from K. Arguing in a
similar way as in Lemma 5.1.2, we consider

(5.2.14) ϕε := w+
λ0+τψ

p
εχΩλ0+τ

.

By density arguments as above, we plug ϕε as test function in (5.0.2) and
(5.2.1) so that, subtracting, we get
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∫
Ωλ0+τ\K

(|∇u|p−2∇u− |∇uλ0+τ |p−2∇uλ0+τ ,∇w+
λ0+τ )ψpε dx

+ p

∫
Ωλ0+τ\K

(|∇u|p−2∇u− |∇uλ0+τ |p−2∇uλ0+τ ,∇ψε)ψp−1
ε w+

λ0+τ dx

=

∫
Ωλ0+τ\K

(f(u)− f(uλ))w+
λ0+τψ

p
ε dx.

(5.2.15)

Now we split the set Ωλ0+τ \K as the union of two disjoint subsets Aλ0+τ

and Bλ0+τ such that Ωλ0+τ \K = Aλ0+τ ∪Bλ0+τ . In particular, for Ċ > 1,
we set

Aλ0+τ = {x ∈ Ωλ0+τ \K : |∇uλ0+τ (x)| < Ċ|∇u(x)|}

and

Bλ0+τ = {x ∈ Ωλ0+τ \K : |∇uλ0+τ (x)| ≥ Ċ|∇u(x)|}.

From (5.2.15), using (1.0.2) and (A1
f), repeating verbatim arguments in

(5.1.16), (5.1.17) and in (5.1.18) we have

∫
Ωλ0+τ\K

(|∇u|+ |∇uλ0+τ |)p−2|∇w+
λ0+τ |

2ψpε dx

≤ δC
∫

Ωλ0+τ\K
(|∇u|+ |∇uλ0+τ |)p−2|∇w+

λ0+τ |
2ψpε dx

+ C

(∫
Ωλ

|∇u|p dx
) p−1

p
(∫

Ωλ

|∇ψε|p dx
) 1
p

+
C

δ

∫
Ωλ0+τ\K

|∇ψε|p dx+Kf

∫
Ωλ0+τ\K

(w+
λ0+τ )2ψpε dx,

for some positive constant C = C(p, λ, ‖u‖L∞(Ωλ+τ̄ )). Taking δ > 0 suffi-

ciently small and using (A1
Γ), as we did above passing to the limit for ε→ 0

we obtain
(5.2.16)∫

Ωλ0+τ\K
(|∇u|+ |∇uλ0+τ |)p−2|∇w+

λ0+τ |
2 dx ≤ CKf

∫
Ωλ0+τ\K

(w+
λ0+τ )2 dx.

Now we set

% :=
(
1 + |∇u|2 + |∇uλ|2

) p−2
2

in order to exploit the weighted Sobolev inequality from [124] (see also
Chapter 1). The results of [124] apply if % ∈ L1(Ωλ) and

1

%
∈ Lt(Ωλ),
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for some t > n/2. In particular, H1
0,%(Ω

′) (see [37, 124]) coincides with the

closure of C∞c (Ω′) with respect to the norm

‖w‖% := ‖∇w‖L2(Ω′,%) :=

(∫
Ω′
%|∇w|2 dx

) 1
2

and it holds that

‖w‖
L2∗% (Ω′)

≤ CS |∇w|‖L2(Ω′,%) for any w ∈ H1
0,%(Ω

′) ,

where
1

2∗%
:=

1

2

(
1 +

1

t

)
− 1

n
.

Note that

(5.2.17)
(
1 + |∇u|2 + |∇uλ0+τ |2

) 2−p
2 ≤ K1 +K2|∇uλ0+τ |2−p,

in Ω+
λ0+τ := Ωλ0+τ ∩ supp (w+

λ0+τ ), where K1 and K2 are positive constants

depending only on p and on ‖u‖C1(Ω̄λ0+τ̄ ). By Lemma 5.2.1 and (5.2.17), we

deduce that

1

%
:=
(
1 + |∇u|2 + |∇uλ0+τ |2

) 2−p
2 ∈ Lt(Ωλ0+τ ),

for some t > n/2 and this allows us to use the above mentioned results of
[124]. We shall use the fact that

(|∇u|+ |∇uλ0+τ |)2−p ≤ 2
2−p

2
(
|∇u|2 + |∇uλ0+τ |2

) 2−p
2

≤ 2
2−p

2
(
1 + |∇u|2 + |∇uλ0+τ |2

) 2−p
2 .

(5.2.18)

In particular, by (5.2.18), Hölder inequality and weighted Sobolev inequality,
in (5.2.16), we obtain

∫
Ωλ0+τ\K

%|∇w+
λ0+τ |

2 dx ≤ 2
2−p

2

∫
Ωλ0+τ\K

(|∇u|+ |∇uλ0+τ |)p−2|∇w+
λ0+τ |

2 dx

≤ 2
2−p

2 CKf

∫
Ωλ0+τ\K

(w+
λ0+τ )2 dx

≤ 2
2−p

2 CKf |Ωλ0+τ \K|
1

( 2
2∗%

)′
(∫

Ωλ0+τ\K
(w+

λ0+τ )2∗% dx

) 2
2∗%

≤ 2
2−p

2 CKfCp(|Ωλ0+τ \K|)
∫

Ωλ0+τ\K
%|∇w+

λ0+τ |
2dx,

(5.2.19)

where Cp(·) tends to zero if the measure of the domain tends to zero. For τ̄
small and K large, we may assume that

2
2−p

2 CKfCp(|Ωλ0+τ \K|) <
1

2

so that by (5.2.19), we deduce that∫
Ωλ0+τ

%|∇w+
λ0+τ |

2 dx =

∫
Ωλ0+τ\K

%|∇w+
λ0+τ |

2 dx ≤ 0,
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proving that u ≤ uλ0+τ in Ωλ0+τ \ Rλ0+τ (Γ) for any 0 < τ < τ̄ for some
small τ̄ > 0. Such a contradiction shows that

λ0 = 0.

Since the moving planes procedure can be performed in the same way but
in the opposite direction, then this proves the desired symmetry result. The
fact that the solution is increasing in the x1-direction in {x1 < 0} is implicit
in the moving planes procedure.

�

Proof of Theorem 5.0.2. Arguing verbatim as in the previous case
up to (5.2.14), we consider

ϕε := w+
λ0+τψ

p
εχΩλ0+τ

and by a density arguments, we plug it as test function in (5.0.2) and
(5.1.11). Subtracting, we get

∫
Ωλ0+τ\K

(|∇u|p−2∇u− |∇uλ0+τ |p−2∇uλ0+τ ,∇w+
λ0+τ )ψpε dx

+ p

∫
Ωλ0+τ\K

(|∇u|p−2∇u− |∇uλ0+τ |p−2∇uλ0+τ ,∇ψε)ψp−1
ε w+

λ0+τ dx

=

∫
Ωλ0+τ\K

(f(u)− f(uλ))w+
λ0+τψ

p
ε dx.

(5.2.20)

Using the split

Aλ0+τ = {x ∈ Ωλ0+τ \K : |∇uλ0+τ (x)| < Ċ|∇u(x)|},

Bλ0+τ = {x ∈ Ωλ0+τ \K : |∇uλ0+τ (x)| ≥ Ċ|∇u(x)|},

from (5.2.20), using (1.0.2),(A2
f) and arguing as in Lemma 5.1.2, we obtain∫

Ωλ0+τ\K
(|∇u|+ |∇uλ0+τ |)p−2|∇w+

λ0+τ |
2ψpε dx

≤ δC
∫

Ωλ0+τ\K
(|∇u|+ |∇uλ0+τ |)p−2|∇w+

λ0+τ |
2ψpε dx

+
C

δ

(∫
Ωλ0+τ\K

|∇u|p dx

) p−2
p
(∫

Ωλ0+τ\K
|∇ψε|p dx

) 2
p

+Kf

∫
Ωλ0+τ\K

(w+
λ0+τ )2ψpε dx,

for some positive constant C = C(p, λ, ‖u‖L∞(Ωλ+τ̄)). As we did above
passing to the limit for ε→ 0, by Fatou’s Lemma we obtain
(5.2.21)∫

Ωλ0+τ\K
(|∇u|+ |∇uλ0+τ |)p−2|∇w+

λ0+τ |
2 dx ≤ CKf

∫
Ωλ0+τ\K

(w+
λ0+τ )2 dx.

In this case we have |∇u|p−2 ≤ (|∇u|+|∇uλ0+τ |)p−2 since p > 2. Then we set
% := |∇u|p−2 and we see that % is bounded in Ωλ0+τ , hence % ∈ L1(Ωλ0+τ ).
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By applying the weighted Poincaré inequality to (5.2.21), see [37, Theorem
1.2], we deduce that

∫
Ωλ0+τ\K

%|∇w+
λ0+τ |

2 dx ≤
∫

Ωλ0+τ\K
(|∇u|+ |∇uλ0+τ |)p−2|∇w+

λ0+τ |
2 dx

≤ CKf

∫
Ωλ0+τ\K

(w+
λ0+τ )2 dx

≤ CKfCp(|Ωλ0+τ \K|)
∫

Ωλ0+τ\K
%|∇w+

λ0+τ |
2 dx

(5.2.22)

where Cp(·) tends to zero if the measure of the domain tends to zero. For τ̄
small and K large, we may assume that

CKfCp(|Ωλ0+τ \K|) <
1

2

so that by (5.2.22), we deduce that∫
Ωλ0+τ

%|∇w+
λ0+τ |

2 dx =

∫
Ωλ0+τ\K

%|∇w+
λ0+τ |

2 dx ≤ 0,

proving that u ≤ uλ0+τ in Ωλ0+τ \ Rλ0+τ (Γ) for any 0 < τ < τ̄ for some
small τ̄ > 0. Such a contradiction shows that

λ0 = 0.

Since the moving planes procedure can be performed in the same way but
in the opposite direction, then this proves the desired symmetry result. The
fact that the solution is increasing in the x1-direction in {x1 < 0} is implicit
in the moving planes procedure.

�



6

Symmetry and monotonicity properties of singular
solutions to some cooperative semilinear elliptic

systems involving critical nonlinearities

The aim of this chapter is to investigate symmetry and monotonicity
properties of singular solutions to some semilinear elliptic systems in such
a way to find a generalization of the results presented in Chapter 4. In the
first part we consider the following semilinear elliptic system

(6.0.1)


−∆ui = fi(u1, . . . , um) in Ω \ Γ

ui > 0 in Ω \ Γ

ui = 0 on ∂Ω

where Ω is a bounded smooth domain of RN with N ≥ 2 and i = 1, ...,m
(m ≥ 2).

Motivated by [83], through all the chapter, we assume that the following
hypotheses (denoted by (Sfi) in the sequel) hold:

(Sfi) (i) fi : Rm+ → R are assumed to be C1 functions for every i =
1, ...,m.

(ii) The functions fi (1 ≤ i ≤ m) are assumed to satisfy the mono-
tonicity (also known as cooperative) conditions

∂fi
∂tj

(t1, ..., tj , ..., tm) ≥ 0 for i 6= j, 1 ≤ i, j ≤ m.

In this chapter the case of singular nonlinearities for systems is not
included, while it was considered in the case of scalar equations, see [50] or
chapter 4; about these problems we have also to mention the pioneering work
of Crandall, Rabinowitz and Tartar [31] and also [17, 24, 52, 82, 120] for
the scalar case. It would be interesting to consider in future projects a more
general class of nonlinearities. Since we want to consider singular solutions,
the natural assumption is

ui ∈ H1
loc(Ω \ Γ) ∩ C(Ω \ Γ) ∀i = 1, ...,m

and thus the system is understood in the following sense:

(6.0.2)

∫
Ω

(∇ui,∇ϕi) dx =

∫
Ω
fi(u1, u2, ..., um)ϕi dx ∀ϕi ∈ C1

c (Ω \ Γ)

for every i = 1, ...,m.

Remark 6.0.1. Note that, by the assumption (Sfi), the right hand side
in the system (6.0.2) is locally bounded. Therefore, by standard elliptic reg-
ularity theory, it follows that

ui ∈ C1,α
loc (Ω \ Γ),
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where 0 < α < 1. We just remark that, in 1968, E. De Giorgi provided
a counterexample showing that the scalar case is special and the regularity
theory does not work in general for elliptic systems, see [44], but in the case
of equations involving Laplace operator, Schauder theory is still applicable.

Under the previous assumptions we can prove the following result:

Theorem 6.0.2. Let Ω be a convex domain which is symmetric with re-
spect to the hyperplane {x1 = 0} and let (u1, ..., um) be a solution to (6.0.1),
where ui ∈ H1

loc(Ω \ Γ) ∩ C(Ω \ Γ) for every i = 1, ...,m. Assume that each
fi fulfills (Sfi). Assume also that Γ is a point if N = 2 while Γ is closed and
such that

Cap2
RN

(Γ) = 0,

if N ≥ 3. Then, if Γ ⊂ {x1 = 0}, it follows that ui is symmetric with
respect to the hyperplane {x1 = 0} and increasing in the x1-direction in
Ω ∩ {x1 < 0}, for every i = 1, ...,m. Furthermore

∂x1ui > 0 in Ω ∩ {x1 < 0} ,

for every i = 1, ...,m.

The technique developed in the case of bounded domains, see [50, 51,
110] (see also [91] for the nonlocal setting) is very powerful and can be
adapted to some cooperative systems in RN involving critical nonlinearity.
Our aim is to study qualitative properties of singular solutions to the fol-
lowing m×m system of equations

(6.0.3)

−∆ui =
m∑
j=1

aiju
2∗−1
j in RN \ Γ,

ui > 0 in RN \ Γ,

where i = 1, ...,m, m ≥ 2, N ≥ 3 and the matrix A := (aij)i,j=1,...,m is
symmetric and such that

(6.0.4)
m∑
j=1

aij = 1 for every i = 1, ...,m.

This kind of system, with Γ = ∅, was studied by Mitidieri in [89, 90]

considering the case m = 2, A =

(
0 1
1 0

)
and it is known in the literature

as nonlinearity belonging to the critical hyperbola.
As remarked above the natural assumption is

ui ∈ H1
loc(RN \ Γ) ∀i = 1, ...,m

and thus the system is understood in the following sense:

(6.0.5)

∫
RN

(∇ui,∇ϕi) dx =

m∑
j=1

aij

∫
RN

u2∗−1
j ϕi dx ∀ϕi ∈ C1

c (RN \ Γ)

for every i = 1, ...,m.
What we are going to show is the following result:
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Theorem 6.0.3. Let N ≥ 3 and let (u1, ..., um) be a solution to (6.0.3),
where ui ∈ H1

loc(RN \Γ) for every i = 1, ...,m. Assume that the matrix A =
(aij)i,j=1,...,m, defined above, is symmetric, aij ≥ 0 for every i, j = 1, ...,m
and it satisfies (6.0.4). Moreover at least one of ui has a non-removable1

singularity in the singular set Γ, where Γ is a closed and proper subset of
{x1 = 0} such that

Cap2
RN

(Γ) = 0.

Then, all ui are symmetric with respect to the hyperplane {x1 = 0}. The
same conclusion is true if {x1 = 0} is replaced by any affine hyperplane.
If at least one of ui has only a non-removable singularity at the origin for
every i = 1, ...,m, then each ui is radially symmetric about the origin and
radially decreasing.

Another interesting elliptic system involving Sobolev critical exponents
is the following one:

(6.0.6)


−∆u = u2∗−1 +

α

2∗
uα−1vβ in RN \ Γ

−∆v = v2∗−1 +
β

2∗
uαvβ−1 in RN \ Γ

u, v > 0 in RN \ Γ,

where α, β > 1, α+ β = 2∗ := 2N
N−2 (N ≥ 3)

The solutions to (6.0.6) are solitary waves for a system of coupled Gross–
Pitaevskii equations.

We prove the following:

Theorem 6.0.4. Let N = 3 or N = 4 and let (u, v) ∈ H1
loc(RN \ Γ) ×

H1
loc(RN \ Γ) be a solution to (6.0.6). Assume that the solution (u, v) has

a non-removable2 singularity in the singular set Γ, where Γ is a closed and
proper subset of {x1 = 0} such that

Cap2
RN

(Γ) = 0.

Moreover let us assume that α, β ≥ 2 and that holds α + β = 2∗. Then,
u and v are symmetric with respect to the hyperplane {x1 = 0}. The same
conclusion is true if {x1 = 0} is replaced by any affine hyperplane. If at least
one between u and v have only a non-removable singularity at the origin,
then (u, v) is radially symmetric about the origin and radially decreasing.

6.1. Notations

We need to fix some notations and since they are similar to the ones
introduced in the previous chapters, we just recall someone of them for the

1Here we mean that the solution (u1, ..., um) does not admit a smooth extension all
over the whole space. Namely it is not possible to find ũi ∈ H1

loc(RN ) with ui ≡ ũi in
RN \ Γ, for some i = 1, ...,m.

2As above, we mean that the solution (u, v) does not admit a smooth extension all
over the whole space. Namely it is not possible to find (ũ, ṽ) ∈ H1

loc(RN )×H1
loc(RN ) with

u ≡ ũ or v ≡ ṽ in RN \ Γ.



160 Elliptic systems involving critical nonlinearities

reader’s convenience. For a real number λ we set

(6.1.1) Ωλ = {x ∈ Ω : x1 < λ}

(6.1.2) xλ = Rλ(x) = (2λ− x1, x2, . . . , xN )

which is the reflection through the hyperplane Tλ := {x1 = λ}. Also let

(6.1.3) a = inf
x∈Ω

x1.

We define the functions

(6.1.4) ui,λ := ui ◦Rλ
and we recall that they are Lebesgue measurable on Rλ(Ω). Similarly, ∇ui
and ∇ui,λ are Lebesgue measurable on Ω and Rλ(Ω) respectively.

Recalling that Γ is a point if N = 2 while Γ is closed with Cap2
RN

(Γ) = 0

if N ≥ 3 by assumption, it follows that

Cap2
Bλε

(Rλ(Γ)) := inf

{∫
Bλε
|∇ϕ|2dx < +∞ : ϕ ≥ 1 in Bλδ , ϕ ∈ C∞c (Bλε )

}
= 0,

for some neighborhood Bλδ ⊂ Bλε of Rλ(Γ). From this, it follows that there

exists ϕε ∈ C∞c (Bλε ) such that ϕε ≥ 1 in Bλδ and

∫
Bλε
|∇ϕε|2dx < ε.

Now we construct a function ψε ∈ C0,1(RN , [0, 1]) such that ψε = 1
outside Bλε , ψε = 0 in Bλδ and∫

RN
|∇ψε|2dx =

∫
Bλε
|∇ψε|2dx < 4ε.

To this end we consider the following Lipschitz continuous function

T1(s) =


1 if s ≤ 0

−2s+ 1 if 0 ≤ s ≤ 1
2

0 if s ≥ 1
2

and we set

(6.1.5) ψε := T1 ◦ ϕε
where we have extended ϕε by zero outside Bλε (see Figure 1). Clearly
ψε ∈ C0,1(RN ), 0 ≤ ψε ≤ 1 and∫

Bλε
|∇ψε|2dx ≤ 4

∫
Bλε
|∇ϕε|2dx < 4ε.

Now we set γλ := ∂Ω ∩ Tλ. Hence Cap2
RN

(γλ) = 0, see e.g. [53] and

Chapter 4. So, as in Chapter 4, Cap2
Iλτ

(γλ) = 0 for any open neighborhood of

γλ and then there exists ϕτ ∈ C∞c (Iλτ ) such that ϕτ ≥ 1 in a neighborhood
Iλσ with γλ ⊂ Iλσ ⊂ Iλτ . As above, we set

(6.1.6) φτ := T1 ◦ ϕτ
where we have extended ϕτ by zero outside Iλτ (see Figure 2). Then, φτ ∈
C0,1(RN ), 0 ≤ φτ ≤ 1, φτ = 1 outside Iλτ , φτ = 0 in Iλσ and
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Figure 1. The cutoff function ψε.

∫
RN
|∇φτ |2dx =

∫
Iλτ
|∇φτ |2dx ≤ 4

∫
Iλτ
|∇ϕτ |2dx < 4τ.

Figure 2. The cutoff function φτ .

6.2. Symmetry and monotonicity results in bounded domains

Let us set
w+
i,λ = (ui − ui,λ)+

where i = 1, ...,m. We will prove the result by showing that, actually, it
holds w+

i,λ ≡ 0 for i = 1, ...,m. To prove this, we have to perform the moving

planes method.
In the following we will exploit the fact that (u1,λ, ..., u1,λ) is a solution

to
(6.2.1)∫

Ωλ

(∇ui,λ,∇ϕi) dx =

∫
Ωλ

fi(u1,λ, u2,λ, ..., um,λ)ϕi dx ∀ϕi ∈ C1
c (Ωλ\Rλ(Γ))
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for every i = 1, ...,m, where Ωλ := Rλ(Ω).
Now we are ready to prove an essential tool that we will use to start the

moving planes procedure.

Lemma 6.2.1. Under the assumptions of Theorem 6.0.2, let a < λ < 0.
Then w+

i,λ ∈ H
1
0 (Ωλ) for every i = 1, ...,m and

(6.2.2)

m∑
i=1

∫
Ωλ

|∇w+
i,λ|

2 dx ≤ m

2

m∑
i=1

(1 + C2
i )‖ui‖2L∞(Ωλ)|Ω| .

where |Ω| denotes the N−dimensional Lebesgue measure of Ω and Ci is a
positive constant only depending on fi.

Proof. For ψε as in (6.1.5) and φτ as in (6.1.6), we consider the func-
tions

ϕi :=

{
w+
i,λψ

2
εφ

2
τ in Ωλ,

0 in RN \ Ωλ,

In view of the properties of ϕi, stated in Lemma 4.2.1, and a standard
density argument, we can use ϕi as test function in (6.0.2) and (6.2.1) so
that, subtracting, we get

∫
Ωλ

|∇w+
i,λ|

2ψ2
εφ

2
τ dx = −2

∫
Ωλ

(∇w+
i,λ,∇ψε)w

+
i,λψεφ

2
τ dx

− 2

∫
Ωλ

(∇w+
i,λ,∇φτw

+
i,λ)ψ2

εφτ dx

+

∫
Ωλ

[fi(u1, u2, ..., um)− fi(u1,λ, u2,λ, ..., um,λ)]w+
i,λψ

2
εφ

2
τ dx.

(6.2.3)

Exploiting Young’s inequality in the right hand side of (6.2.3), we get that

∫
Ωλ

|∇w+
i,λ|

2ψ2
εφ

2
τ dx ≤

1

4

∫
Ωλ

|∇w+
i,λ|

2ψ2
εφ

2
τ dx+ 4

∫
Ωλ

|∇ψε|2(w+
i,λ)2φ2

τ dx

+
1

4

∫
Ωλ

|∇w+
i,λ|

2ψ2
εφ

2
τ dx+ 4

∫
Ωλ

|∇φτ |2(w+
i,λ)2ψ2

ε dx

+

∫
Ωλ

[fi(u1, u2, ..., um)− fi(u1,λ, u2,λ, ..., um,λ)]w+
i,λψ

2
εφ

2
τ dx.

(6.2.4)
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The last term of the right hand side of (6.2.4) can be rewritten as follows

∫
Ωλ

[fi(u1, u2, ..., um)− fi(u1,λ, u2,λ, ..., um,λ)]w+
i,λψ

2
εφ

2
τ dx

=

∫
Ωλ

[fi(u1, u2, ..., um)− fi(u1,λ, u2, ..., um)

+ fi(u1,λ, u2, ..., um)− fi(u1,λ, u2,λ, ..., um,λ)]w+
i,λψ

2
εφ

2
τ dx

=

∫
Ωλ

[fi(u1, u2, ..., um)− fi(u1,λ, u2, ..., um)

+ fi(u1,λ, u2, ..., um)− fi(u1,λ, u2,λ, u3, ..., um)

+ fi(u1,λ, u2,λ, u3, ..., um)− · · · − fi(u1,λ, u2,λ, ..., um,λ)]w+
i,λψ

2
εφ

2
τ dx.

(6.2.5)

Using the fact that fi are C1 functions (Sfi)−(i) and they satisfy (Sfi)−(ii),
by (6.2.5) we have∫

Ωλ

[fi(u1, u2, ..., um)− fi(u1,λ,u2,λ, ..., um,λ)]w+
i,λψ

2
εφ

2
τ dx

≤
m∑
j=1

Cj(fj)

∫
Ωλ

w+
j,λw

+
i,λψ

2
εφ

2
τ dx.

(6.2.6)

Now compiling all the previous estimates and exploiting Young’s inequality
in the right hand side of 6.2.6 we obtain

∫
Ωλ

|∇w+
i,λ|

2ψ2
εφ

2
τ dx ≤ 8

∫
Ωλ

|∇ψε|2(w+
i,λ)2φ2

τ dx+ 8

∫
Ωλ

|∇φτ |2(w+
i,λ)2ψ2

ε dx

+m

∫
Ωλ

(w+
i,λ)2ψ2

εφ
2
τ dx+

m∑
j=1

C2
j

∫
Ωλ

(w+
j,λ)2ψ2

εφ
2
τ dx.

(6.2.7)

Adding all the equations of (6.0.3) we get

m∑
i=1

∫
Ωλ

|∇w+
i,λ|

2ψ2
εφ

2
τ dx ≤ 8

m∑
i=1

(∫
Ωλ

|∇ψε|2(w+
i,λ)2φ2

τ dx

+

∫
Ωλ

|∇φτ |2(w+
i,λ)2ψ2

ε dx

)
+
m

2

m∑
i=1

(1 + C2
i )

∫
Ωλ

(w+
i,λ)2ψ2

εφ
2
τ dx.

(6.2.8)

Taking into account the properties of ψε and φτ , we see that

(6.2.9)

∫
Ωλ

|∇ψε|2 dx =

∫
Ωλ∩(Bλε \Bλδ )

|∇ψε|2 dx < 4ε,

(6.2.10)

∫
Ωλ

|∇φτ |2 dx =

∫
Ωλ∩(Iλτ \Iλσ )

|∇φτ |2 dx < 4τ,
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which combined with 0 ≤ w+
i,λ ≤ ui, for every i = 1, ...,m, immediately lead

to
m∑
i=1

∫
Ωλ

|∇w+
i,λ|

2ψ2
εφ

2
τ dx ≤32(ε+ τ)

m∑
i=1

‖ui‖2L∞(Ωλ)

+
m

2

m∑
i=1

(1 + C2
i )‖ui‖2L∞(Ωλ)|Ω| .

By Fatou’s Lemma, as ε and τ tend to zero, we have (6.2.2). To conclude we
note that ϕi → w+

i,λ in L2(Ω), as ε and τ tend to zero, by definition of ϕi for

every i = 1, ...,m. Also, ∇ϕ→ ∇w+
i,λ in L2(Ωλ), by (4.2.3). Therefore, w+

i,λ

in H1
0 (Ωλ), since ϕi ∈ H1

0 (Ωλ) again by Lemma 4.2.1, for every i = 1, ...,m,
which concludes the proof.

�

Proof of Theorem 6.0.2. We define

Λ0 = {a < λ < 0 : ui ≤ ui,t in Ωt \Rt(Γ) for all t ∈ (a, λ] and i=1,...,m}

and to start with the moving planes procedure, we have to prove that
Step 1 : Λ0 6= ∅. Fix λ0 ∈ (a, 0) such that Rλ0(Γ) ⊂ Ωc, then for every

a < λ < λ0, we also have that Rλ(Γ) ⊂ Ωc. For any λ in this set we consider,
on the domain Ω, the function ϕi := w+

i,λφ
2
τχΩλ , where φτ is as in (6.1.6)

and we proceed as in the proof of Lemma 6.2.1. That is, by Lemma 4.2.1
and a density argument, we can use ϕi as test function in (6.0.2) and (6.2.1)
so that, subtracting, we get

∫
Ωλ

|∇w+
i,λ|

2φ2
τ dx = −2

∫
Ωλ

∇w+
i,λ∇φτw

+
i,λφτ dx

+

∫
Ωλ

[fi(u1, u2, ..., um)− fi(u1,λ, u2,λ, ..., um,λ)]w+
i,λφ

2
τ dx.

(6.2.11)

Exploiting Young’s inequality and the assumption (Sfi), then we get that∫
Ωλ

|∇w+
i,λ|

2φ2
τ dx ≤

1

2

∫
Ωλ

|∇w+
i,λ|

2φ2
τ dx+ 2

∫
Ωλ

|∇φτ |2(w+
i,λ)2dx

+

m∑
i=1

Cj

∫
Ωλ

w+
j,λw

+
i,λφ

2
τ dx.

Taking into account the properties of φτ , we see that
(6.2.12)∫

Ωλ

|∇φτ |2(w+
i,λ)2dx ≤ ‖u‖2L∞(Ωλ)

∫
Ωλ∩(Iλτ \Iλσ )

|∇φτ |2 dx ≤ 4‖u‖2L∞(Ωλ) · τ.

We therefore deduce that
m∑
i=1

∫
Ωλ

|∇w+
i,λ|

2φ2
τ dx ≤16τ

m∑
i=1

‖ui‖L∞(Ωλ)

+
m

2

m∑
i=1

(1 + C2
i )

∫
Ωλ

(w+
i,λ)2φ2

τ dx.
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By Fatou’s Lemma, as τ tends to zero, we have

m∑
i=1

∫
Ωλ

|∇w+
i,λ|

2 dx ≤ m

2

m∑
i=1

(1 + C2
i )

∫
Ωλ

(w+
i,λ)2 dx

≤ m

2

m∑
i=1

(1 + C2
i )C2

i,p(Ωλ)

∫
Ωλ

|∇w+
i,λ|

2 dx,

(6.2.13)

where Ci,p(·) is the Poincaré constant (in the Poincaré inequality in H1
0 (Ωλ)).

Since Ci,p(Ωλ)→ 0 as λ→ a, we can find λ1 ∈ (a, λ0), such that

Ci,p(Ωλ) <
1√

m(1 + C2
i )

∀λ ∈ (a, λ1) and for every i = 1, ...,m,

so that by (6.2.13), we deduce that∫
Ωλ

|∇w+
i,λ|

2 dx ≤ 0 ∀λ ∈ (a, λ1) and for every i = 1, ...,m,

proving that ui ≤ ui,λ in Ωλ \ Rλ(Γ) for λ close to a, which implies the
desired conclusion Λ0 6= ∅.

Now we can set

λ0 = sup Λ0.

Step 2: here we show that λ0 = 0. To this end we assume that λ0 < 0 and
we reach a contradiction by proving that ui ≤ ui,λ0+ν in Ωλ0+ν\Rλ0+ν(Γ) for
any 0 < ν < ν̄ for some small ν̄ > 0 and for every i = 1, ...,m. By continuity
we know that ui ≤ ui,λ0 in Ωλ0 \ Rλ0(Γ) for every i = 1, ...,m. Since Ω is
convex in the x1−direction and the set Rλ0(Γ) lies in the hyperplane of
equation {x1 = −2λ0 }, we see that Ωλ0 \ Rλ0(Γ) is open and connected.
Moreover, using (Sfi)− (ii) we have that

−∆(ui − ui,λ0) = f(u1, ..., um)− f(u1,λ0 , ..., um,λ0)

= [f(u1, ..., um)− f(u1,λ0 , ..., um)] + · · ·
· · ·+ [f(u1,λ0 , ..., um)− f(u1,λ0 , ..., um,λ0)] ≤ 0.

Therefore, by the strong maximum principle we deduce that ui < ui,λ0 in
Ωλ0 \Rλ0(Γ) and for every i = 1, ...,m.

Now, note that for K ⊂ Ωλ0 \ Rλ0(Γ), there is ν = ν(K,λ0) > 0,
sufficiently small, such that K ⊂ Ωλ \ Rλ(Γ) for every λ ∈ [λ0, λ0 + ν].
Consequently ui and ui,λ are well defined on K for every λ ∈ [λ0, λ0 + ν]
and for every i = 1, ...,m. Hence, by the uniform continuity of the functions
gi(x, λ) := ui(x)−ui(2λ−x1, x

′
) on the compact set K× [λ0, λ0 +ν] we can

ensure that K ⊂ Ωλ0+ν \Rλ0+ν(Γ) and ui < ui,λ0+ν in K for any 0 ≤ ν < ν̄,

for some ν̄ = ν̄(K,λ0) > 0 small. Clearly we can also assume that ν̄ < |λ0|
4 .

Let us consider ψε constructed in such a way that it vanishes in a neigh-
borhood of Rλ0+ν(Γ) and φτ constructed in such a way it vanishes in a
neighborhood of γλ0+ν = ∂Ω ∩ Tλ0+ν . As shown in the proof of Lemma
6.2.1, the functions

ϕi :=

{
w+
i,λ0+νψ

2
εφ

2
τ in Ωλ0+ν

0 in RN \ Ωλ0+ν
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are such that ϕi → w+
i,λ0+ν in H1

0 (Ωλ0+ν), as ε and τ tend to zero. Moreover,

ϕi ∈ C0,1(Ωλ0+ν) and ϕi|∂Ωλ0+ν
= 0, by Lemma 4.2.1, and ϕi = 0 on an open

neighborhood of K, by the above argument. Therefore, ϕi ∈ H1
0 (Ωλ0+ν \

K) and thus, also w+
i,λ0+ν belongs to H1

0 (Ωλ0+ν \ K). We also note that

∇w+
i,λ0+ν = 0 on an open neighborhood of K.

Now we argue as in Lemma 6.2.1 and we plug ϕi as test function in (6.0.2)
and (6.2.1) so that, by subtracting, we get

∫
Ωλ0+ν

|∇w+
i,λ0+ν |

2ψ2
εφ

2
τ dx = −2

∫
Ωλ0+ν

(∇w+
i,λ0+ν ,∇ψε)w

+
i,λ0+νψεφ

2
τ dx

− 2

∫
Ωλ0+ν

(∇w+
i,λ0+ν ,∇φτ )w+

i,λ0+νψ
2
εφτ dx

+

∫
Ωλ0+ν

[fi(u1, u2, ..., um)

−fi(u1,λ0+ν , u2,λ0+ν , ..., um,λ0+ν)]w+
i,λ0+νψ

2
εφ

2
τ dx.

(6.2.14)

Therefore, taking into account the properties of w+
λ0+ν and ∇w+

λ0+ν we also
have

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν |

2ψ2
εφ

2
τ dx ≤ −2

∫
Ωλ0+ν\K

(∇w+
i,λ0+ν ,∇ψε)w

+
i,λ0+νψεφ

2
τ dx

− 2

∫
Ωλ0+ν\K

(∇w+
i,λ0+ν ,∇φτ )w+

i,λ0+νψ
2
εφτ dx

+

∫
Ωλ0+ν\K

[fi(u1, u2, ..., um)−

− fi(u1,λ0+ν , u2,λ0+ν , ..., um,λ0+ν)]w+
i,λ0+νψ

2
εφ

2
τ dx.

Furthermore, since fi are C1 functions, we deduce that

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν |

2ψ2
εφ

2
τ dx ≤ 2

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν ||∇ψε|w

+
i,λ0+νψεφ

2
τ dx

+ 2

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν ||∇φτ |w

+
i,λ0+νψ

2
εφτ dx

+
m∑
j=1

Cj(fi)

∫
Ωλ0+ν\K

w+
j,λ0+νw

+
i,λ0+νψ

2
εφ

2
τ dx.

(6.2.15)
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Now, as in the proof of Lemma 6.2.1, we use Young’s inequality to deduce
that

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν |

2ψ2
εφ

2
τ dx ≤ 8

∫
Ωλ0+ν\K

|∇ψε|2(w+
i,λ0+ν)2φ2

τ dx

+ 8

∫
Ωλ0+ν\K

|∇φτ |2(w+
i,λ0+ν)2ψ2

ε dx

+
m∑
j=1

Cj

∫
Ωλ0+ν\K

w+
j,λ0+νw

+
i,λ0+νψ

2
εφ

2
τ dx,

(6.2.16)

which in turns yields

m∑
i=1

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν |

2ψ2
εφ

2
τ dx ≤ 32(ε+ τ)

m∑
i=1

‖u‖2L∞(Ωλ0+ν̄)

+
m

2

m∑
i=1

(1 + C2
i )

∫
Ωλ0+ν\K

(w+
i,λ0+ν)2ψ2

εφ
2
τ dx.

(6.2.17)

Passing to the limit, as (ε, τ)→ (0, 0), in the latter we get

m∑
i=1

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν |

2 dx ≤ m

2

m∑
i=1

(1 + C2
i )

∫
Ωλ0+ν\K

(w+
i,λ0+ν)2 dx.

≤ m

2

m∑
i=1

(1 + C2
i )C2

i,p(Ωλ0+ν \K)

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν |

2 dx ,

(6.2.18)

where Ci,p(·) are the Poincaré constants (in the Poincaré inequalities in

H1
0 (Ωλ0+ν \K)). Now we recall that C2

i,p(Ωλ0+ν \K) ≤ Q(n)|Ωλ0+ν \K|
2
N

for every i = 1, ...,m, where Q = Q(n) is a positive constant depending only
on the dimension N , and therefore, by summarizing, we have proved that for

every compact set K ⊂ Ωλ0 \Rλ0(Γ) there is a small ν̄ = ν̄(K,λ0) ∈ (0, |λ0|
4 )

such that for every 0 ≤ ν < ν̄ we have

m∑
i=1

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν |

2 dx ≤ m

2

m∑
i=1

(1 + C2
i )Q(n)|Ωλ0+ν \K|

2
N∫

Ωλ0+ν\K
|∇w+

λ0+ν |
2 dx.

(6.2.19)

Now we first fix a compact K ⊂ Ωλ0 \Rλ0(Γ) such that

|Ωλ0 \K|
2
N < [m(1 + C2

i )Q(n)]−1 for every i = 1, ...,m,

this is possible since |Rλ0(Γ)| = 0 by the assumption on Γ, and then we take

ν̄0 < ν̄ such that for every 0 ≤ ν < ν̄0 we have |Ωλ0+ν \ Ωλ0 |
2
N < [4m(1 +

C2
i )Q(n)]−1. Inserting those informations into (6.2.19) we immediately get
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that

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν |

2 dx <
1

2

∫
Ωλ0+ν\K

|∇w+
i,λ0+ν |

2 dx for every i = 1, ...,m

(6.2.20)

and so ∇w+
i,λ0+ν = 0 on Ωλ0+ν \ K for every 0 ≤ ν < ν̄0 and i = 1, ...,m.

On the other hand, we recall that ∇w+
i,λ0+ν = 0 on an open neighborhood

of K for every 0 ≤ ν < ν̄ and i = 1, ...,m, thus ∇w+
i,λ0+ν = 0 on Ωλ0+ν for

every 0 ≤ ν < ν̄0 and i = 1, ...,m. The latter proves that ui ≤ ui,λ0+ν in
Ωλ0+ν \Rλ0+ν(Γ) for every 0 < ν < ν̄0 and i = 1, ...,m. Such a contradiction
shows that

λ0 = 0 .

Step 3: conclusion. Since the moving planes procedure can be performed
in the same way but in the opposite direction, then this proves the desired
symmetry result. The fact that the solution is increasing in the x1-direction
in {x1 < 0} is implicit in the moving planes procedure. Since u has C1

regularity, the fact that ∂x1ui is positive for x1 < 0 follows by the maximum
principle, the Höpf lemma and the assumption (Sfi).

�

6.3. Moving plane method for systems involving the critical
hyperbola in the whole space

Proof of Theorem 6.0.3. We first note that, thanks to a well-known
result of Brezis and Kato [20] and standard elliptic estimates (see also [119]),
the solution (u1, ..., um) to (6.0.3) is smooth in RN \ Γ. Furthermore we
observe that it is enough to prove the theorem for the special case in which
the origin does not belong to Γ. Indeed, if the result is true in this special

case, then we can apply it to the functions u
(i)
z (x) := ui(x + z) for every

i = 1, ...,m, where z ∈ {x1 = 0} \ Γ 6= ∅, which satisfies the system (6.0.3)
with Γ replaced by −z+Γ (note that −z+Γ is a closed and proper subset of
{x1 = 0} with Cap2

RN
(−z + Γ) = 0 and such that the origin does not belong

to it).
Under this assumption, we consider the map K : RN \ {0} −→ RN \ {0}
defined by K(x) := x

|x|2 . Given (u1, ..., um) solution to (6.0.3), the Kelvin

transform of ui is given by

(6.3.1) ûi(x) :=
1

|x|N−2
ui

(
x

|x|2

)
x ∈ RN \ {Γ∗ ∪ {0}},

where Γ∗ = K(Γ) and i = 1, ...,m. It follows that (û1, ..., ûm) weakly satisfies
(6.0.3) in RN \ {Γ∗ ∪ {0}} and that Γ∗ ⊂ {x1 = 0} since, by assumption,
Γ ⊂ {x1 = 0}. Furthermore, we also have that Γ∗ is bounded (not necessarily
closed) since we assumed that 0 /∈ Γ.

Let us now fix some notations. We set

(6.3.2) Σλ = {x ∈ RN : x1 < λ} .



6.3 Moving plane method for the critical hyperbola 169

As above xλ = (2λ − x1, x2, . . . , xN ) is the reflection of x through the hy-
perplane Tλ = {x = (x1, ..., xN ) ∈ RN | x1 = λ}. Finally we consider the
Kelvin transform (û1, ..., ûm) of (u1, ..., um) defined in (6.3.1) and we set

(6.3.3) w+
i,λ = (ûi − ûi,λ)+

where i = 1, ...,m. Note that (û1, ..., ûm) weakly solves
(6.3.4)∫

RN
(∇ûi,∇ϕi) dx =

m∑
j=1

aij

∫
RN

û2∗−1
j ϕi dx ∀ϕi ∈ C1

c (RN \ Γ∗ ∪ {0}) .

and (û1,λ, ..., ûm,λ) weakly solves
(6.3.5)∫
RN

(∇ûi,λ,∇ϕi) dx =
m∑
j=1

aij

∫
RN

û2∗−1
j,λ ϕi dx ∀ϕi ∈ C1

c (RN\Rλ(Γ∗∪{0})) .

where i = 1, ...,m. The properties of the Kelvin transform, the fact that
0 /∈ Γ and the regularity of ui imply that |ûi(x)| ≤ C|x|2−N for every x ∈ RN
and i = 1, ...,m such that |x| ≥ R, where C and R are positive constants
(depending on ui). In particular, for every λ < 0, we have

(6.3.6) ûi ∈ L2∗(Σλ) ∩ L∞(Σλ) ∩ C0(Σλ)

for every i = 1, ...,m. We will prove the result by showing that, actually, it
holds ŵ+

i,λ ≡ 0 for every i = 1, ...,m. To prove this, we have to perform the

moving planes method.

Lemma 6.3.1. Under the assumption of Theorem 6.0.3, for every λ < 0,
we have that ŵ+

i,λ ∈ L
2∗(Σλ),∇ŵ+

i,λ ∈ L
2(Σλ) and

m∑
i=1

‖w+
i,λ‖

2
L2∗ (Σλ)

≤
m∑
i=1

C2
i,S

∫
Σλ

|∇ŵ+
i,λ|

2 dx

≤ 2
N + 2

N − 2

m∑
i,j=1

aijC
2
i,S‖ûj‖2

∗−1
L2∗ (Σλ)

‖ûi‖L2∗ (Σλ).

(6.3.7)

where Ci,S are the best constants in Sobolev embeddings.

Proof. We immediately see that w+
i,λ ∈ L

2∗(Σλ), since 0 ≤ w+
i,λ ≤ ûi ∈

L2∗(Σλ) for every i = 1, ...,m. The rest of the proof follows the lines of the
one of Lemma 6.2.1. Arguing as in section 2, for every ε > 0, we can find a
function ψε ∈ C0,1(RN , [0, 1]) such that∫

Σλ

|∇ψε|2 < 4ε

and ψε = 0 in an open neighborhood Bε of Rλ({Γ∗ ∪ {0}}), with Bε ⊂ Σλ.
Fix R0 > 0 such that Rλ({Γ∗ ∪ {0}) ⊂ BR0 and, for every R > R0, let

ϕR be a standard cut off function such that 0 ≤ ϕR ≤ 1 on RN , ϕR = 1 in
BR, ϕR = 0 outside B2R with |∇ϕR| ≤ 2/R, and consider

ϕi :=

{
w+
i,λψ

2
εϕ

2
R in Σλ,

0 in RN \ Σλ
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Figure 3. The cutoff function ϕR.

for every i = 1, ...,m.
Now, as in Lemma 4.2.1 we see that ϕi ∈ C0,1

c (RN ) with supp(ϕi) con-
tained in Σλ ∩B2R \Rλ({Γ∗ ∪ {0}}) and

(6.3.8) ∇ϕi = ψ2
εϕ

2
R∇w+

i,λ + 2w+
i,λ(ψ2

εϕR∇ϕR + ψεϕ
2
R∇ψε).

Therefore, by a standard density argument, we can use ϕi as test functions
respectively in (6.3.4) and in (6.3.5) so that, subtracting we get

∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx = −2

∫
Σλ

(∇w+
i,λ,∇ψε)w

+
i,λψεϕ

2
R dx

− 2

∫
Σλ

(∇w+
i,λ,∇ϕR)w+

i,λϕRψ
2
ε dx

+

m∑
i=1

aij

∫
Σλ

(û2∗−1
j − û2∗−1

j,λ )w+
i,λψ

2
εϕ

2
R dx

=: I1 + I2 + I3 .

(6.3.9)

Exploiting also Young’s inequality and recalling that 0 ≤ w+
i,λ ≤ ûi, we

get that

|I1| ≤
1

4

∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx+ 4

∫
Σλ

|∇ψε|2(w+
i,λ)2ϕ2

R dx

≤ 1

4

∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx+ 16ε‖ûi‖2L∞(Σλ).

(6.3.10)
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Furthermore we have that

|I2| ≤
1

4

∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx+ 4

∫
Σλ∩(B2R\BR)

|∇ϕR|2(w+
i,λ)2ψ2

ε dx

≤ 1

4

∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx

+ 4

(∫
Σλ∩(B2R\BR)

|∇ϕR|n dx

) 2
N
(∫

Σλ∩(B2R\BR)
û2∗
i dx

)N−2
N

≤ 1

4

∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx + C(N)

(∫
Σλ∩(B2R\BR)

û2∗
i dx

)N−2
N

(6.3.11)

where C(N) is a positive constant depending only on the dimension N . Let
us now estimate I3. Since ûi(x), ûi,λ(x) > 0, by the convexity of t→ t2

∗−1,
for t > 0, we obtain

û2∗−1
i (x)− û2∗−1

i,λ (x) ≤ N + 2

N − 2
û2∗−2
i,λ (x)(ûi(x)− ûi,λ(x)),

for every x ∈ Σλ and i = 1, ...,m. Thus, by making use of the monotonicity
of t→ t2

∗−2, for t > 0 and the definition of w+
i,λ we get

(û2∗−1
i − û2∗−1

i,λ )w+
i,λ ≤

N + 2

N − 2
û2∗−2
i,λ (ûi − ûi,λ)w+

i,λ ≤
N + 2

N − 2
û2∗−2
i (w+

i,λ)2

for every i = 1, ...,m. Therefore

|I3| ≤
N + 2

N − 2

m∑
j=1

aij

∫
Σλ

û2∗−2
j w+

j,λw
+
i,λψ

2
εϕ

2
R dx

≤ N + 2

N − 2

m∑
j=1

aij

∫
Σλ

û2∗−2
j ûj ûidx =

N + 2

N − 2

m∑
j=1

aij

∫
Σλ

û2∗−1
j ui dx

=
N + 2

N − 2

aii‖ûi‖2∗L2∗ (Σλ)
+

m∑
j=1
j 6=i

aij

∫
Σλ

û2∗−1
j ui dx



≤ N + 2

N − 2

aii‖ûi‖2∗L2∗ (Σλ)
+

m∑
j=1
j 6=i

aij

(∫
Σλ

û2∗
j

)N+2
2N
(∫

Σλ

u2∗
i

) 1
2∗

dx


=
N + 2

N − 2

m∑
j=1

aij‖ûj‖2
∗−1
L2∗ (Σλ)

‖ûi‖L2∗ (Σλ)

(6.3.12)

where we also used that 0 ≤ w+
i,λ ≤ ûi for every i = 1, ...,m and Hölder

inequality.
Taking into account the estimates on I1, I2 and I3, by (6.3.9) we deduce

that
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∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx ≤ 32ε‖ûi‖2L∞(Σλ) + 2C(N)

(∫
Σλ∩(B2R\BR)

û2∗
i dx

)N−2
N

+ 2
N + 2

N − 2

m∑
j=1

aij‖ûj‖2
∗−1
L2∗ (Σλ)

‖ûi‖L2∗ (Σλ)

(6.3.13)

which in turns yields

m∑
i=1

∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx ≤ 32ε

m∑
i=1

‖ûi‖2L∞(Σλ) + 2C(N)

m∑
i=1

‖ûi‖2Σλ∩(B2R\BR)

+ 2
N + 2

N − 2

m∑
i=1

m∑
j=1

aij‖ûj‖2
∗−1
L2∗ (Σλ)

‖ûi‖L2∗ (Σλ).

(6.3.14)

By Fatou’s Lemma, as ε tends to zero and R tends to infinity, we deduce
that ∇w+

i,λ ∈ L
2(Σλ) for every i = 1, ...,m. We also note that ϕi → w+

i,λ in

L2∗(Σλ), by definition of ϕi, and that ∇ϕi → ∇wi,λ in L2(Σλ), by (6.3.8)

and the fact that w+
i,λ ∈ L

2∗(Σλ) for every i = 1, ...,m. Therefore by (6.3.14)

we have

(6.3.15)

m∑
i=1

∫
Σλ

|∇w+
i,λ|

2 dx ≤ 2
N + 2

N − 2

m∑
i,j=1

aij‖ûj‖2
∗−1
L2∗ (Σλ)

‖ûi‖L2∗ (Σλ).

Since ϕi ∈ C0,1
c (RN ) we also have

(∫
Σλ

ϕ2∗
i dx

) 2
2∗ ≤ C2

i,S

∫
Σλ

|∇ϕi|2 dx(6.3.16)

where Ci,S are the best constants in Sobolev embeddings. Thus, passing
to the limit in (6.3.16) and using the above convergence results, we get the
desired conclusion (6.3.7).

�

We can now complete the proof of Theorem 6.0.3. As for the proof of
Theorem 6.0.2, we split the proof into three steps and we start with
Step 1: there exists M > 1 such that ûi ≤ ûi,λ in Σλ \Rλ(Γ∗ ∪ {0}), for all
λ < −M and i = 1, ...,m.

Arguing as in the proof of Lemma 6.3.1 and using the same notations
and the same construction for ψε, ϕR and ϕi, we get
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∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx = −2

∫
Σλ

∇w+
i,λ∇ψεw

+
i,λψεϕ

2
R dx

− 2

∫
Σλ

∇w+
i,λ∇ϕRw

+
i,λϕRψ

2
ε dx

+

m∑
i=1

aij

∫
Σλ

(û2∗−1
j − û2∗−1

j,λ )w+
i,λψ

2
εϕ

2
R dx

=: I1 + I2 + I3 .

(6.3.17)

where I1, I2 and I3 can be estimated exactly as in (6.3.10), (6.3.11) and
(6.3.12). The latter yield

m∑
i=1

∫
Σλ

|∇w+
i,λ|

2ψ2
εϕ

2
R dx ≤ 32ε

m∑
i=1

‖ûi‖2L∞(Σλ) + 2C(N)

m∑
i=1

‖ûi‖2Σλ∩(B2R\BR)

+ 2
N + 2

N − 2

m∑
i,j=1

aij

∫
Σλ

û2∗−2
j w+

j,λw
+
i,λψ

2
εϕ

2
R dx.

(6.3.18)

Taking the limit in the latter, as ε tends to zero and R tends to infinity,
leads to

m∑
i=1

∫
Σλ

|∇w+
i,λ|

2 dx ≤ 2
N + 2

N − 2

m∑
i,j=1

aij

∫
Σλ

û2∗−2
j w+

j,λw
+
i,λ dx < +∞(6.3.19)

which combined with Lemma 6.3.1 gives

m∑
i=1

∫
Σλ

|∇w+
i,λ|

2 ≤ 2
N + 2

N − 2

m∑
i,j=1

aij

∫
Σλ

û2∗−2
j w+

j,λw
+
i,λ dx

≤ N + 2

N − 2

m∑
i,j=1

aij

(∫
Σλ

û2∗−2
j (w+

j,λ)2 dx +

∫
Σλ

û2∗−2
j (w+

i,λ)2 dx

)

≤ N + 2

N − 2

m∑
i,j=1

aij

[(∫
Σλ

û2∗
j dx

) 2
N
(∫

Σλ

(w+
j,λ)2∗ dx

) 2
2∗

+

(∫
Σλ

û2∗
j dx

) 2
N
(∫

Σλ

(w+
i,λ)2∗ dx

) 2
2∗
]

≤ N + 2

N − 2

m∑
i=1

m∑
j=1

aij‖ûj‖2
∗−2
L2∗ (Σλ)

(
C2
j,S

∫
Σλ

|∇w+
j,λ|

2 dx+ C2
i,S

∫
Σλ

|∇w+
i,λ|

2 dx

)

=
N + 2

N − 2

m∑
i,j=1

aij

(
2δijC

2
i,S‖ûi‖2

∗−2
L2∗ (Σλ)

+(1− δij)C2
j,S‖ûj‖2

∗−2
L2∗ (Σλ)

)∫
Σλ

|∇w+
i,λ|

2 dx

(6.3.20)
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Recalling that ûi, ûj ∈ L2∗(Σλ) for every i, j = 1, ...,m, we deduce the
existence of M > 1 such that

N + 2

N − 2

m∑
j=1

aij

(
2δijC

2
i,S‖ûi‖2

∗−2
L2∗ (Σλ)

+ (1− δij)C2
j,S‖ûj‖2

∗−2
L2∗ (Σλ)

)
< 1

for every λ < −M and i = 1, ....,m. The latter and (6.4.27) lead to∫
Σλ

|∇w+
i,λ|

2 dx = 0 .

This implies that for every i = 1, ...,m we have w+
i,λ = 0 by Lemma 6.3.1

and the claim is proved.

To proceed further we define

Λ0 := {λ < 0 : ûi ≤ ûi,t in Σt \Rt(Γ∗∪{0}) for all t ∈ (a, λ] and i=1,...,m}

and

λ0 := sup Λ0.

Step 2: we have that λ0 = 0. We argue by contradiction and suppose that
λ0 < 0. By continuity we know that ûi ≤ ûi,λ0 in Σλ0 \ Rλ0(Γ∗ ∪ {0})
for every i = 1, ...,m. By the strong maximum principle we deduce that
ûi < ûi,λ0 in Σλ0 \ Rλ0(Γ∗ ∪ {0}) for every i = 1, ...,m. Indeed, ûi = ûi,λ0

in Σλ0 \ Rλ0(Γ∗ ∪ {0})) is not possible if λ0 < 0, since in this case each ûi
would be singular somewhere on Rλ0(Γ∗ ∪ {0}). Now, for some τ̄ > 0, that
will be fixed later on, and for any 0 < τ < τ̄ we show that ûi ≤ ûi,λ0+τ in
Σλ0+τ \Rλ0+τ (Γ∗ ∪ {0}) obtaining a contradiction with the definition of λ0

and proving thus the claim. To this end we are going to show that, for every
δ > 0 there are τ̄(δ, λ0) > 0 and a compact set K (depending on δ and λ0)
such that

K ⊂ Σλ\Rλ(Γ∗∪{0}),
∫

Σλ\K
û2∗
i dx < δ, ∀λ ∈ [λ0, λ0+τ̄ ] and i = 1, ...,m.

To see this, we note that for every every δ > 0 there are τ1(δ, λ0) > 0 and

a compact set K (depending on δ and λ0) such that

∫
Σλ0
\K

û2∗
i dx <

δ

2
for

every i = 1, ...,m and K ⊂ Σλ \ Rλ(Γ∗ ∪ {0}) for every λ ∈ [λ0, λ0 + τ1].
Consequently ûi and ûi,λ are well defined on K for every λ ∈ [λ0, λ0 + τ1].
Hence, by the uniform continuity of the functions gi(x, λ) := ûi(x)− ûi(2λ−
x1, x

′
) on the compact set K× [λ0, λ0 + τ1] we can ensure that K ⊂ Σλ0+τ \

Rλ0+τ (Γ∗ ∪ {0}) and ûi < ûi,λ0+τ in K for any 0 ≤ τ < τ2, for some τ2 =

τ(δ, λ0) ∈ (0, τ1). Clearly we can also assume that τ2 <
|λ0|

4 . Finally, since

û2∗
i ∈ L1(Σ

λ0+
|λ0|

4

) and

∫
Σλ0
\K

û2∗
i dx <

δ

2
for each i = 1, ...,m, we obtain

the existence of τ̄ ∈ (0, τ2) such that

∫
Σλ\K

û2∗
i dx < δ for all λ ∈ [λ0, λ0 + τ̄ ]

and i = 1, ...,m.
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Now we repeat verbatim the arguments used in the proof of Lemma 6.3.1
but using the test functions

ϕi :=

{
w+
i,λ0+τψ

2
εϕ

2
R in Σλ0+τ

0 in RN \ Σλ0+τ .

Thus we recover the last inequality in (6.3.20), which immediately gives,
for any 0 ≤ τ < τ̄

m∑
i=1

∫
Σλ0+τ\K

|∇w+
i,λ0+ν |

2

≤ N + 2

N − 2

m∑
i,j=1

aij

[
2δijC

2
i,S‖ûi‖2

∗−2
L2∗ (Σλ0+τ\K)

+(1− δij)C2
j,S‖ûj‖2

∗−2
L2∗ (Σλ0+τ\K)

] ∫
Σλ0+τ\K

|∇w+
i,λ|

2 dx

(6.3.21)

since w+
i,λ0+τ and ∇w+

i,λ0+τ are zero in a neighborhood of K, by the above

construction for every i = 1, ...,m. Now we fix δ > 0 such that for every
i = 1, ...,m we have

N + 2

N − 2

m∑
j=1

aij

[
2δijC

2
i,S‖ûi‖2

∗−2
L2∗ (Σλ0+τ\K)

+ (1− δij)C2
j,S‖ûj‖2

∗−2
L2∗ (Σλ0+τ\K)

]
<

1

2
,

for all 0 ≤ τ < τ̄ , which plugged into (6.3.21) implies that∫
Σλ0+τ\K

|∇w+
i,λ0+τ |

2 dx = 0

for every 0 ≤ τ < τ̄ and i = 1, ...,m. Hence

∫
Σλ0+τ

|∇w+
i,λ0+τ |

2 dx = 0 for

every 0 ≤ τ < τ̄ , since ∇w+
i,λ0+τ are zero in a neighborhood of K. The latter

and Lemma 6.3.1 imply that w+
i,λ0+τ = 0 on Σλ0+τ for every 0 ≤ τ < τ̄ and

i = 1, ...,m, thus ûi ≤ ûi,λ0+τ in Σλ0+τ \Rλ0+τ (Γ∗∪{0}) for every 0 ≤ τ < τ̄
and i = 1, ...,m. Which proves the claim of Step 2.
Step 3: conclusion. The symmetry of the Kelvin transform (û1, ..., ûm)
follows now performing the moving planes method in the opposite direction.
The fact that every ûi is symmetric w.r.t. the hyperplane {x1 = 0} implies
the symmetry of the solution (u1, ..., um) w.r.t. the hyperplane {x1 = 0}.
The last claim then follows by the invariance of the considered problem with
respect to isometries (translations and rotations).

�

6.4. Moving plane method for a cooperative Gross-Pitaevskii
type system in low dimension

Proof of Theorem 6.0.4. As we observed in the proof of Theorem
6.0.3, thanks to a well-known result of Brezis and Kato [20] and standard
elliptic estimates (see also [119]), the solution (u, v) is smooth in RN \ Γ.
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Furthermore we recall that it is enough to prove the theorem for the special
case in which the origin does not belong to Γ.
Under this assumption, we consider the map K : RN \ {0} −→ RN \ {0}
defined by K = K(x) := x

|x|2 . Given (u, v) solution to (6.0.6), its Kelvin

transform is given by
(6.4.1)

(û(x), v̂(x)) :=

(
1

|x|N−2
u

(
x

|x|2

)
,

1

|x|N−2
v

(
x

|x|2

))
x ∈ RN \{Γ∗∪{0}},

where Γ∗ = K(Γ). It follows that (û, v̂) weakly satisfies (6.0.6) in RN \
{Γ∗ ∪ {0}} and that Γ∗ ⊂ {x1 = 0} since, by assumption, Γ ⊂ {x1 = 0}.
Furthermore, we also have that Γ∗ is bounded (not necessarily closed) since
we assumed that 0 /∈ Γ.
Let us now fix some notations. We set

(6.4.2) Σλ = {x ∈ RN : x1 < λ} .

As above xλ = (2λ − x1, x2, . . . , xN ) is the reflection of x through the hy-
perplane Tλ = {x = (x1, ..., xN ) ∈ RN | x1 = λ}. Finally we consider the
Kelvin transform (û, v̂) of (u, v) defined in (6.4.1) and we set

ξλ(x) = û(x)− ûλ(x) = û(x)− û(xλ),

ζλ(x) = v̂(x)− v̂λ(x) = v̂(x)− v̂(xλ).
(6.4.3)

Note that (û, v̂) weakly solves∫
RN

(∇û,∇ϕ) dx =

∫
RN

û2∗−1ϕdx+
α

2∗

∫
RN

ûα−1v̂βϕdx ,∫
RN

(∇v̂,∇ψ) dx =

∫
RN

v̂2∗−1ψ dx+
β

2∗

∫
RN

ûαv̂β−1ψ dx ,

(6.4.4)

for all ϕ ∈ C1
c (RN \ Γ∗ ∪ {0}) and (ûλ, v̂λ) weakly solves∫
RN

(∇ûλ,∇ϕ) dx =

∫
RN

û2∗−1
λ ϕdx +

α

2∗

∫
RN

ûα−1
λ v̂βλϕdx ,∫

RN
(∇v̂λ,∇ψ) dx =

∫
RN

v̂2∗−1
λ ψ dx+

β

2∗

∫
RN

ûαλ v̂
β−1
λ ψ dx ,

(6.4.5)

for all ϕ ∈ C1
c (RN \ Γ∗ ∪ {0}). The properties of the Kelvin transform, the

fact that 0 /∈ Γ and the regularity of u, v imply that |û(x)| ≤ Cu|x|2−N and
|v̂(x)| ≤ Cv|x|2−N and for every x ∈ RN such that |x| ≥ R, where Cu, Cv
and R are positive constants (depending on u and v). In particular, for
every λ < 0, we have

(6.4.6) û, v̂ ∈ L2∗(Σλ) ∩ L∞(Σλ) ∩ C0(Σλ) .

Lemma 6.4.1. Under the assumption of Theorem 6.0.3, for every λ < 0,
we have that ξ+

λ , ζ
+
λ ∈ L

2∗(Σλ),∇ξ+
λ ,∇ζ

+
λ ∈ L

2(Σλ) and∫
Σλ

|∇ξ+
λ |

2 dx+

∫
Σλ

|∇ζ+
λ |

2 dx

≤ 2
N + 2

N − 2

[
(1 + α)‖û‖2∗

L2∗ (Σλ)
+ (1 + β)‖v̂‖2∗

L2∗ (Σλ)

]
.

(6.4.7)
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Proof. We immediately see that ξ+
λ , ζ

+
λ ∈ L

2∗(Σλ), since 0 ≤ ξ+
λ ≤ û ∈

L2∗(Σλ) and 0 ≤ ζ+
λ ≤ v̂ ∈ L2∗(Σλ). The rest of the proof follows the lines

of the one of Lemma 6.2.1. Arguing as in section 2, for every ε > 0, we can
find a function ψε ∈ C0,1(RN , [0, 1]) such that

∫
Σλ

|∇ψε|2 < 4ε

and ψε = 0 in an open neighborhood Bε of Rλ({Γ∗ ∪ {0}}), with Bε ⊂ Σλ.
Fix R0 > 0 such that Rλ({Γ∗ ∪ {0}) ⊂ BR0 and, for every R > R0, let

ϕR (see Figure 4) be a standard cut off function such that 0 ≤ ϕR ≤ 1 on
RN , ϕR = 1 in BR, ϕR = 0 outside B2R with |∇ϕR| ≤ 2/R, and consider

ϕ :=

{
ξ+
λ ψ

2
εϕ

2
R in Σλ,

0 in RN \ Σλ
and ψ :=

{
ζ+
λ ψ

2
εϕ

2
R in Σλ,

0 in RN \ Σλ.

Figure 4. The cutoff function ϕR.

Now, as in Lemma 4.2.1 we see that ϕ,ψ ∈ C0,1
c (RN ) with supp(ϕ) and

supp(ψ) contained in Σλ ∩B2R \Rλ({Γ∗ ∪ {0}}) and

(6.4.8) ∇ϕ = ψ2
εϕ

2
R∇ξ+

λ + 2ξ+
λ (ψ2

εϕR∇ϕR + ψεϕ
2
R∇ψε).

(6.4.9) ∇ψ = ψ2
εϕ

2
R∇ζ+

λ + 2ζ+
λ (ψ2

εϕR∇ϕR + ψεϕ
2
R∇ψε).
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Therefore, by a standard density argument, we can use ϕ and ψ as test
functions respectively in (6.4.4) and in (6.4.5) so that, subtracting we get∫

Σλ

|∇ξ+
λ |

2ψ2
εϕ

2
R dx = −2

∫
Σλ

(∇ξ+
λ ,∇ψε)ξ

+
λ ψεϕ

2
R dx

− 2

∫
Σλ

(∇ξ+
λ ,∇ϕR)ξ+

λ ϕRψ
2
ε dx

+

∫
Σλ

(û2∗−1 − û2∗−1
λ )ξ+

λ ψ
2
εϕ

2
R dx

+
α

2∗

∫
Σλ

(ûα−1v̂β − ûα−1
λ v̂βλ)ξ+

λ ψ
2
εϕ

2
R dx

=: I1 + I2 + I3 + I4 .

(6.4.10)

∫
Σλ

|∇ζ+
λ |

2ψ2
εϕ

2
R dx = −2

∫
Σλ

(∇ζ+
λ ,∇ψε)ζ

+
λ ψεϕ

2
R dx

− 2

∫
Σλ

(∇ζ+
λ ,∇ϕR)ζ+

λ ϕRψ
2
ε dx

+

∫
Σλ

(v̂2∗−1 − v̂2∗−1
λ )ζ+

λ ψ
2
εϕ

2
R dx

+
β

2∗

∫
Σλ

(ûαv̂β−1 − ûαλ v̂
β−1
λ )ζ+

λ ψ
2
εϕ

2
R dx

=: E1 + E2 + E3 + E4 .

(6.4.11)

Exploiting also Young’s inequality and recalling that 0 ≤ ξ+
λ ≤ û and 0 ≤

ζ+
λ ≤ v̂, we get that

|I1| ≤
1

4

∫
Σλ

|∇ξ+
λ |

2ψ2
εϕ

2
R dx+ 4

∫
Σλ

|∇ψε|2(ξ+
λ )2ϕ2

R dx

≤ 1

4

∫
Σλ

|∇ξ+
λ |

2ψ2
εϕ

2
R dx+ 16ε‖û‖2L∞(Σλ).

(6.4.12)

|E1| ≤
1

4

∫
Σλ

|∇ζ+
λ |

2ψ2
εϕ

2
R dx+ 4

∫
Σλ

|∇ψε|2(ζ+
λ )2ϕ2

R dx

≤ 1

4

∫
Σλ

|∇ζ+
λ |

2ψ2
εϕ

2
R dx+ 16ε‖v̂‖2L∞(Σλ).

(6.4.13)

Furthermore we have that

|I2| ≤
1

4

∫
Σλ

|∇ξ+
λ |

2ψ2
εϕ

2
R dx+ 4

∫
Σλ∩(B2R\BR)

|∇ϕR|2(ξ+
λ )2ψ2

ε dx

≤ 1

4

∫
Σλ

|∇ξ+
λ |

2ψ2
εϕ

2
R dx

+ 4

(∫
Σλ∩(B2R\BR)

|∇ϕR|n dx

) 2
N
(∫

Σλ∩(B2R\BR)
û2∗ dx

)N−2
N

≤ 1

4

∫
Σλ

|∇ξ+
λ |

2ψ2
εϕ

2
R dx + c(N)

(∫
Σλ∩(B2R\BR)

û2∗ dx

)N−2
N

.

(6.4.14)
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|E2| ≤
1

4

∫
Σλ

|∇ζ+
λ |

2ψ2
εϕ

2
R dx+ 4

∫
Σλ∩(B2R\BR)

|∇ϕR|2(ζ+
λ )2ψ2

ε dx

≤ 1

4

∫
Σλ

|∇ζ+
λ |

2ψ2
εϕ

2
R dx

+ 4

(∫
Σλ∩(B2R\BR)

|∇ϕR|N dx

) 2
N
(∫

Σλ∩(B2R\BR)
v̂2∗ dx

)N−2
N

≤ 1

4

∫
Σλ

|∇ζ+
λ |

2ψ2
εϕ

2
R dx + c(N)

(∫
Σλ∩(B2R\BR)

v̂2∗ dx

)N−2
N

(6.4.15)

where c(N) is a positive constant depending only on the dimension N .
Let us now estimate I3 and E3. Since û(x), ûλ(x), v̂(x), v̂λ(x) > 0, by

the convexity of t→ t2
∗−1, for t > 0, we obtain

û2∗−1(x)− û2∗−1
λ (x) ≤ N + 2

N − 2
û2∗−2
λ (x)(û(x)− ûλ(x))

and

v̂2∗−1(x)− v̂2∗−1
λ (x) ≤ N + 2

N − 2
v̂2∗−2
λ (x)(v̂(x)− v̂λ(x)),

for every x ∈ Σλ. Thus, by making use of the monotonicity of t → t2
∗−2,

for t > 0 and the definition of ξ+
λ and ζ+

λ we get

(û2∗−1 − û2∗−1
λ )ξ+

λ ≤
N + 2

N − 2
û2∗−2
λ (û− ûλ)ξ+

λ ≤
N + 2

N − 2
û2∗−2(ξ+

λ )2

and

(v̂2∗−1 − v̂2∗−1
λ )ζ+

λ ≤
N + 2

N − 2
v̂2∗−2
λ (v̂ − v̂λ)ζ+

λ ≤
N + 2

N − 2
v̂2∗−2(ζ+

λ )2.

Therefore

|I3| ≤
N + 2

N − 2

∫
Σλ

û2∗−2(ξ+
λ )2ψ2

εϕ
2
R dx

≤ N + 2

N − 2

∫
Σλ

û2∗−2û2dx =
N + 2

N − 2

∫
Σλ

û2∗ dx =
N + 2

N − 2
‖û‖2∗

L2∗ (Σλ)

(6.4.16)

|E3| ≤
N + 2

N − 2

∫
Σλ

v̂2∗−2(ζ+
λ )2ψ2

εϕ
2
R dx

≤ N + 2

N − 2

∫
Σλ

v̂2∗−2v̂2dx =
N + 2

N − 2

∫
Σλ

v̂2∗ dx =
N + 2

N − 2
‖v̂‖2∗

L2∗ (Σλ)

(6.4.17)

where we also used that 0 ≤ ξ+
λ ≤ û and 0 ≤ ζ+

λ ≤ v̂.
Finally we have to estimate I4 and E4. Since û(x), ûλ(x), v̂(x), v̂λ(x) > 0,

by the convexity of the functions t→ tα, t→ tα−1, t→ tβ, t→ tβ−1 for t > 0,
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we obtain

ûα(x)− ûαλ(x) ≤ αûα−1
λ (x)(û(x)− ûλ(x)),

ûα−1(x)− ûα−1
λ (x) ≤ (α− 1)ûα−2

λ (x)(û(x)− ûλ(x)),

v̂β(x)− v̂βλ(x) ≤ βv̂β−1
λ (x)(v̂(x)− v̂λ(x)),

v̂β−1(x)− v̂β−1
λ (x) ≤ (β − 1)v̂β−2

λ (x)(v̂(x)− v̂λ(x)),

for every x ∈ Σλ. By the monotonicity of t→ tα, t→ tα−1, t→ tβ, t→ tβ−1

for t > 0 and the definition of ξ+
λ and ζ+

λ we get

(ûα(x)− ûαλ(x))ξ+
λ ≤ αû

α−2
λ (û− ûλ)ξ+

λ ≤ αû
α−2(ξ+

λ )2,

(ûα−1(x)− ûα−1
λ (x))ξ+

λ ≤ (α− 1)ûα−2
λ (û− ûλ)ξ+

λ ≤ (α− 1)ûα−2(ξ+
λ )2,

(v̂β − v̂βλ)ζ+
λ ≤ βv̂

β−2
λ (v̂ − v̂λ)ζ+

λ ≤ βv̂
β−2(ζ+

λ )2,

(v̂β−1 − v̂β−1
λ )ζ+

λ ≤ (β − 1)v̂β−2
λ (v̂ − v̂λ)ζ+

λ ≤ (β − 1)v̂β−2(ζ+
λ )2.

Now, having in mind all these estimates, we need a fine analysis in view of
the cooperativity of the system. Since α + β = 2∗ = 2N

N−2 and α, β ≥ 2 we
have to split

|I4| ≤
α

2∗

∫
Σλ

|ûα−1v̂β − ûα−1v̂βλ |ξ
+
λ ψ

2
εϕ

2
R dx

+
α

2∗

∫
Σλ

|ûα−1v̂βλ − û
α−1
λ v̂βλ |ξ

+
λ ψ

2
εϕ

2
R dx

≤ αβ

2∗

∫
Σλ

ûα−1v̂β−1
λ ξ+

λ ζ
+
λ ψ

2
εϕ

2
R dx +

α(α− 1)

2∗

∫
Σλ

ûα−2
λ v̂βλ(ξ+

λ )2ψ2
εϕ

2
R dx

≤ αβ

2∗

∫
Σλ

ûα−1v̂β−1ûv̂ψ2
εϕ

2
R dx +

α(α− 1)

2∗

∫
Σλ

ûα−2v̂βû2ψ2
εϕ

2
R dx

≤ αβ

2∗

∫
Σλ

ûαv̂β dx +
α(α− 1)

2∗

∫
Σλ

ûαv̂β dx

=
α(2∗ − 1)

2∗

∫
Σλ

ûαv̂β dx

(6.4.18)
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|E4| ≤
β

2∗

∫
Σλ

|ûαv̂β−1 − ûαv̂β−1
λ |ζ+

λ ψ
2
εϕ

2
R dx

+
β

2∗

∫
Σλ

|ûαv̂β−1
λ − ûαλ v̂

β−1
λ |ζ+

λ ψ
2
εϕ

2
R dx

≤ αβ

2∗

∫
Σλ

ûα−1
λ v̂β−1ξ+

λ ζ
+
λ ψ

2
εϕ

2
R dx +

β(β − 1)

2∗

∫
Σλ

ûαλ v̂
β−2
λ (ζ+

λ )2ψ2
εϕ

2
R dx

≤ αβ

2∗

∫
Σλ

ûα−1v̂β−1ûv̂ψ2
εϕ

2
R dx +

β(β − 1)

2∗

∫
Σλ

ûαv̂β−2v̂2ψ2
εϕ

2
R dx

≤ αβ

2∗

∫
Σλ

ûαv̂β dx +
α(α− 1)

2∗

∫
Σλ

ûαv̂β dx

=
β(2∗ − 1)

2∗

∫
Σλ

ûαv̂β dx

(6.4.19)

Hence, by applying Hölder inequality with exponents

(
α

2∗
,
β

2∗

)
it follows

that

(6.4.20) |I4|+ |E4| ≤ (2∗ − 1)

∫
Σλ

ûαv̂β dx ≤ (2∗ − 1)‖û‖α
L2∗ (Σλ)

‖v̂‖β
L2∗ (Σλ)

Taking into account the estimates on I1, I2, I3, I4, E1, E2, E3 and E4,
by adding (6.4.10) and (6.4.11), we deduce that

∫
Σλ

|∇ξ+
λ |

2ψ2
εϕ

2
R dx+

∫
Σλ

|∇ζ+
λ |

2ψ2
εϕ

2
R dx ≤ 32ε

(
‖û‖2L∞(Σλ) + ‖v̂‖2L∞(Σλ)

)

+ 2C(N)

(∫
Σλ∩(B2R\BR)

û2∗ dx

)N−2
N

+ 2C(N)

(∫
Σλ∩(B2R\BR)

v̂2∗ dx

)N−2
N

+ 2
N + 2

N − 2

(
‖û‖2∗

L2∗ (Σλ)
+ ‖v̂‖2∗

L2∗ (Σλ)

)
+ 2(2∗ − 1)‖û‖α

L2∗ (Σλ)
‖v̂‖β

L2∗ (Σλ)

(6.4.21)

By Fatou’s Lemma, as ε tends to zero and R tends to infinity, we deduce that
∇ξ+

λ ,∇ζ
+
λ ∈ L

2(Σλ). We also note that ϕ → ξ+
λ and ψ → ζ+

λ in L2∗(Σλ),

by definition of ϕ and ψ, and that ∇ϕ → ∇ξ+
λ and ∇ψ → ∇ζ+

λ in L2(Σλ),

by (6.4.8), (6.4.9) and the fact that ξ+
λ , ζ

+
λ ∈ L

2∗(Σλ). Therefore

∫
Σλ

|∇ξ+
λ |

2 dx+

∫
Σλ

|∇ζ+
λ |

2 dx ≤2
N + 2

N − 2

(
‖û‖2∗

L2∗ (Σλ)
+ ‖v̂‖2∗

L2∗ (Σλ)

)
+ 2(2∗ − 1)‖û‖α

L2∗ (Σλ)
‖v̂‖β

L2∗ (Σλ)

(6.4.22)
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Exploiting Young’s inequality in the right hand side of (6.4.22), with con-

jugate exponents

(
α

2∗
,
β

2∗

)
, we obtain (6.4.7).

�

We can now complete the proof of Theorem 6.0.4. As for the proof of
Theorem 6.0.2 and Theorem 6.0.3, we split the proof into three steps and
we start with
Step 1: there exists M > 1 such that û ≤ ûλ and v̂ ≤ v̂λ in Σλ\Rλ(Γ∗∪{0}),
for all λ < −M .

Arguing as in the proof of Lemma 6.4.1 and using the same notations
and the same construction for ψε, ϕR, ϕ and ψ, we get

∫
Σλ

|∇ξ+
λ |

2ψ2
εϕ

2
R dx =− 2

∫
Σλ

(∇ξ+
λ ,∇ψε)ξ

+
λ ψεϕ

2
R dx

− 2

∫
Σλ

(∇ξ+
λ ,∇ϕR)ξ+

λ ϕRψ
2
ε dx

+

∫
Σλ

(û2∗−1 − û2∗−1
λ )ξ+

λ ψ
2
εϕ

2
R dx

+
α

2∗

∫
Σλ

(ûα−1v̂β − ûα−1
λ v̂βλ)ξ+

λ ψ
2
εϕ

2
R dx

= : I1 + I2 + I3 + I4 .

(6.4.23)

∫
Σλ

|∇ζ+
λ |

2ψ2
εϕ

2
R dx =− 2

∫
Σλ

(∇ζ+
λ ,∇ψε)ζ

+
λ ψεϕ

2
R dx

− 2

∫
Σλ

(∇ζ+
λ ,∇ϕR)ζ+

λ ϕRψ
2
ε dx

+

∫
Σλ

(v̂2∗−1 − v̂2∗−1
λ )ζ+

λ ψ
2
εϕ

2
R dx

+
β

2∗

∫
Σλ

(ûαv̂β−1 − ûαλ v̂
β−1
λ )ζ+

λ ψ
2
εϕ

2
R dx

= : E1 + E2 + E3 + E4 .

(6.4.24)

where I1, E1, I2, E2, I3, E3, I4 and E4 can be estimated exactly as in
(6.4.12), (6.4.13), (6.4.14), (6.4.15), (6.4.16), (6.4.17), (6.4.18) and (6.4.19).
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The latter yield

∫
Σλ

(
|∇ξ+

λ |
2 + |∇ζ+

λ |
2
)
ψ2
εϕ

2
R dx ≤32ε

(
‖û‖2L∞(Σλ) + ‖v̂‖2L∞(Σλ)

)
+ 2C(N)

(∫
Σλ∩(B2R\BR)

û2∗ dx

) 2
2∗

+ 2C(N)

(∫
Σλ∩(B2R\BR)

v̂2∗ dx

) 2
2∗

+ 2
N + 2

N − 2

∫
Σλ

û2∗−2(ξ+
λ )2ψ2

εϕ
2
R dx

+ 2
N + 2

N − 2

∫
Σλ

v̂2∗−2(ζ+
λ )2ψ2

εϕ
2
R dx

+ 4
αβ

2∗

∫
Σλ

ûα−1v̂β−1ξ+
λ ζ

+
λ ψ

2
εϕ

2
R dx

+
α(α− 1)

2∗

∫
Σλ

ûα−2v̂β(ξ+
λ )2ψ2

εϕ
2
R dx

+
β(β − 1)

2∗

∫
Σλ

ûαv̂β−2(ζ+
λ )2ψ2

εϕ
2
R dx .

(6.4.25)

Passing to the limit in the latter, as ε tends to zero and R tends to infinity,
we obtain∫

Σλ

|∇ξ+
λ |

2 dx+

∫
Σλ

|∇ζ+
λ |

2 dx

≤2
N + 2

N − 2

(∫
Σλ

û2∗−2(ξ+
λ )2 dx +

∫
Σλ

v̂2∗−2(ζ+
λ )2 dx

)
+ 4

αβ

2∗

∫
Σλ

ûα−1v̂β−1ξ+
λ ζ

+
λ dx

+
α(α− 1)

2∗

∫
Σλ

ûα−2v̂β(ξ+
λ )2 dx

+
β(β − 1)

2∗

∫
Σλ

ûαv̂β−2(ζ+
λ )2 dx < +∞

(6.4.26)

which combined with Young’s inequality gives∫
Σλ

|∇ξ+
λ |

2 dx+

∫
Σλ

|∇ζ+
λ |

2 dx

≤2
N + 2

N − 2

(∫
Σλ

û2∗−2(ξ+
λ )2 dx +

∫
Σλ

v̂2∗−2(ζ+
λ )2 dx

)
+
α(2∗ + β − 1)

2∗

∫
Σλ

ûα−2v̂β(ξ+
λ )2 dx

+
β(2∗ + β − 1)

2∗

∫
Σλ

ûαv̂β−2(ζ+
λ )2 dx

= : A1 +A2 +A3.

(6.4.27)
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Exploiting Hölder inequality with conjugate exponents

(
2∗

2∗ − 2
,
2∗

2

)
we ob-

tain

|A1| ≤ 2
N + 2

N − 2

[(∫
Σλ

û2∗ dx

) 2
N
(∫

Σλ

(ξ+
λ )2∗ dx

) 2
2∗

+

(∫
Σλ

v̂2∗ dx

) 2
N
(∫

Σλ

(ζ+
λ )2∗ dx

) 2
2∗
]
.

(6.4.28)

Exploiting Hölder inequality with conjugate exponents

(
2∗

α− 2
,
2∗

β
,
2∗

2

) (
we

note that if α = 2 we have β = 2 and the conjugate exponents would be(
2∗

2 ,
2∗

2

))
we obtain

|A2| ≤
α(2∗ + β − 1)

2∗

(∫
Σλ

û2∗ dx

)α−2
2∗
(∫

Σλ

v̂2∗ dx

) β
2∗
(∫

Σλ

(ξ+
λ )2∗ dx

) 2
2∗

.

(6.4.29)

Exploiting Hölder inequality with conjugate exponents

(
2∗

α
,

2∗

β − 2
,
2∗

2

)
(
we note that if β = 2 we have α = 2 and the conjugate exponents would

be
(

2∗

2 ,
2∗

2

))
we obtain

|A3| ≤
β(2∗ + α− 1)

2∗

(∫
Σλ

û2∗ dx

) α
2∗
(∫

Σλ

v̂2∗ dx

)β−2
2∗
(∫

Σλ

(ζ+
λ )2∗ dx

) 2
2∗

.

(6.4.30)

Combining (6.4.28), (6.4.29) and (6.4.30) and applying Sobolev inequal-
ity

∫
Σλ

|∇ξ+
λ |

2 dx+

∫
Σλ

|∇ζ+
λ |

2 dx ≤ C1

∫
Σλ

|∇ξ+
λ |

2 dx+ C2

∫
Σλ

|∇ζ+
λ |

2 dx,

(6.4.31)

where C1 :=
[
2N+2
N−2‖û‖

β

L2∗ (Σλ)
+ α(2∗+β−1)

2∗ ‖v̂‖β
L2∗ (Σλ)

]
C2
u,S‖û‖

α−2
L2∗ (Σλ)

,

C2 :=
[
2N+2
N−2‖v̂‖

α
L2∗ (Σλ)

+ β(2∗+β−1)
2∗ ‖û‖α

L2∗ (Σλ)

]
C2
v,S‖v̂‖

β−2

L2∗ (Σλ)
, Cu,S and Cv,S

are the Sobolev constants. Recalling that û, v̂ ∈ L2∗(Σλ), we deduce the ex-
istence of M > 1 such that

C1 :=

[
2
N + 2

N − 2
‖û‖β

L2∗ (Σλ)
+
α(2∗ + β − 1)

2∗
‖v̂‖β

L2∗ (Σλ)

]
C2
u,S‖û‖α−2

L2∗ (Σλ)
< 1

and

C2 :=

[
2
N + 2

N − 2
‖v̂‖α

L2∗ (Σλ)
+
β(2∗ + β − 1)

2∗
‖û‖α

L2∗ (Σλ)

]
C2
v,S‖v̂‖

β−2

L2∗ (Σλ)
< 1

for every λ < −M . The latter and (6.4.27) lead to∫
Σλ

|∇ξ+
λ |

2 dx = 0 and

∫
Σλ

|∇ζ+
λ |

2 dx = 0.
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This implies that ξ+
λ = ζ+

λ = 0 by Lemma 6.4.1 and the claim is proved.

To proceed further we define

Λ0 = {λ < 0 : û ≤ ût and v̂ ≤ v̂t in Σt \Rt(Γ∗ ∪ {0}) for all t ∈ (−∞, λ]}

and

λ0 = sup Λ0.

Step 2: we have that λ0 = 0. We argue by contradiction and suppose that
λ0 < 0. By continuity we know that û ≤ ûλ0 and v̂ ≤ v̂λ0 in Σλ0 \Rλ0(Γ∗ ∪
{0}). By the strong maximum principle we deduce that û < ûλ0 and v̂ < v̂λ0

in Σλ0 \Rλ0(Γ∗ ∪{0}). Indeed, û = ûλ0 and v̂ = v̂λ0 in Σλ0 \Rλ0(Γ∗ ∪{0}))
is not possible if λ0 < 0, since in this case û and v̂ would be singular
somewhere on Rλ0(Γ∗ ∪ {0}). Now, for some τ̄ > 0, that will be fixed later
on, and for any 0 < τ < τ̄ we show that û ≤ ûλ0+τ and v̂ ≤ v̂λ0+τ in
Σλ0+τ \Rλ0+τ (Γ∗ ∪ {0}) obtaining a contradiction with the definition of λ0

and proving thus the claim. To this end we recall that, repeating verbatim
the argument used in the roof of Theorem 6.0.3, it is possible to prove that
for every δ > 0 there are τ̄(δ, λ0) > 0 and a compact set K (depending on δ
and λ0) such that

K ⊂ Σλ\Rλ(Γ∗∪{0}),
∫

Σλ\K
û2∗ < δ and

∫
Σλ\K

v̂2∗ < δ, ∀λ ∈ [λ0, λ0+τ̄ ].

Now we repeat verbatim the arguments used in the proof of Lemma 6.4.1
but using the test function

ϕ :=

{
ξ+
λ0+τψ

2
εϕ

2
R in Σλ0+τ

0 in RN \ Σλ0+τ .

and

ψ :=

{
ζ+
λ0+τψ

2
εϕ

2
R in Σλ0+τ

0 in RN \ Σλ0+τ .

Thus we recover the first inequality in (6.4.27), and repeating verbatim the
arguments used in (6.4.28), (6.4.29) and (6.4.30) which immediately gives,
for any 0 ≤ τ < τ̄∫

Σλ0+τ\K
|∇ξ+

λ0+τ |
2 dx+

∫
Σλ0+τ\K

|∇ζ+
λ0+τ |

2 dx

≤ C1C
2
u,S‖û‖α−2

L2∗ (Σλ0+τ\K)

∫
Σλ0+τ\K

|∇ξ+
λ0+τ |

2 dx

+ C2C
2
v,S‖v̂‖

β−2

L2∗ (Σλ0+τ\K)

∫
Σλ0+τ\K

|∇ζ+
λ0+τ |

2 dx,

(6.4.32)

where

C1 := 2
N + 2

N − 2
‖û‖β

L2∗ (Σλ0+τ\K)
+
α(2∗ + β − 1)

2∗
‖v̂‖β

L2∗ (Σλ0+τ\K)
,

C2 := 2
N + 2

N − 2
‖v̂‖α

L2∗ (Σλ0+τ\K)
+
β(2∗ + β − 1)

2∗
‖û‖α

L2∗ (Σλ0+τ\K)
,
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Cu,S and Cv,S are the Sobolev constants. Now we fix

δ < min
{
C1C

2
u,S‖û‖α−2

L2∗ (Σλ0+τ\K)
, C2C

2
v,S‖v̂‖

β−2

L2∗ (Σλ0+τ\K)

}
and we observe that with this choice we have

C1C
2
u,S‖û‖α−2

L2∗ (Σλ0+τ\K)
< 1 and C2C

2
v,S‖v̂‖

β−2

L2∗ (Σλ0+τ\K)
< 1,

for all 0 ≤ τ < τ̄ , which plugged into (6.4.32) implies that∫
Σλ0+τ\K

|∇ξ+
λ0+τ |

2 dx =

∫
Σλ0+τ\K

|∇ζ+
λ0+τ |

2 dx = 0

for every 0 ≤ τ < τ̄ . Hence∫
Σλ0+τ

|∇ξ+
λ0+τ |

2 dx =

∫
Σλ0+τ

|∇ζ+
λ0+τ |

2 dx = 0

for every 0 ≤ τ < τ̄ , since ∇ξ+
λ0+τ and ∇ζ+

λ0+τ are zero in a neighbourhood

of K. The latter and Lemma 6.4.1 imply that ξ+
λ0+τ = 0 and ζ+

λ0+τ = 0
on Σλ0+τ for every 0 ≤ τ < τ̄ and thus û ≤ ûλ0+τ and v̂ ≤ v̂λ0+τ in
Σλ0+τ \ Rλ0+τ (Γ∗ ∪ {0}) for every 0 ≤ τ < τ̄ . Which proves the claim of
Step 2.
Step 3: conclusion. The symmetry of the Kelvin transform v follows now
performing the moving planes method in the opposite direction. The fact
that û and v̂ are symmetric w.r.t. the hyperplane {x1 = 0} implies the
symmetry of the solution (u, v) w.r.t. the hyperplane {x1 = 0}. The last
claim then follows by the invariance of the considered problem with respect
to isometries (translations and rotations).

�



7

Gibbons’ Conjecture for equations involving the
p-Laplacian

This Chapter concerns the study of the qualitative properties of the
following quasilinear elliptic equation

(7.0.1) −∆pu = f(u) in RN ,

where we denote a generic point belonging to RN by (x′, y) with x′ =
(x1, x2, . . . , xN−1) and y = xN , p > 1 and N > 1. Morever, for suitable
functions, the p-Laplace operator is defined by −∆pu := −div(|∇u|p−2∇u).
As well known, see [46, 122], the solutions of equations involving the p-
Laplace operator are generally of class C1,α. Therefore the equation (7.0.1)
has to be understood in the weak sense, see Definition 7.1.6 below. We
summarize the assumptions on the nonlinearity f (denoted by (Gf) in the
following) as follows:

(Gf): The nonlinearity f(·) belongs to C1([−1, 1]), f(−1) = 0, f(1) = 0,
f ′+(−1) < 0, f ′−(1) < 0 and the set

Nf := {t ∈ [−1, 1] | f(t) = 0}
is finite.

As remarked in the Introduction, the setting of our assumptions allows us
to include Allen-Cahn type nonlinearities and in fact the paper is motivated
by some questions arising from the following problem

(7.0.2) −∆u = u(1− u2) in RN ,
see [65]. G.W. Gibbons [29] formulated the following

Gibbons’ conjecture [29]. – Assume N > 1 and consider a bounded
solution u of (7.0.2) in C2(RN ), such that

lim
xN→±∞

u(x′, xN ) = ±1,

uniformly with respect to x′. Then, is it true that

u(x) = tanh

(
xN − α√

2

)
,

for some α ∈ R?

This conjecture is also known as the weaker version of the famous De Giorgi’s
conjecture [45]. We refer to [55] for a complete history on the argument.
Our main result is the following
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Theorem 7.0.1. Let N > 1, (2N + 2)/(N + 2) < p < 2 and u ∈
C1,α
loc (RN ) be a solution of (7.0.1), such that

|u| ≤ 1

and

(7.0.3) lim
y→+∞

u(x′, y) = 1 and lim
y→−∞

u(x′, y) = −1,

uniformly with respect to x′ ∈ RN−1. If f fulfills (Gf), then u depends only
on y and

(7.0.4) ∂yu > 0 in RN .

Remark 7.0.2. We want to point out that, by the strong maximum prin-
ciple [127], see also Theorem 7.1.1, applied to (7.0.1), we deduce that a so-
lution to (7.0.1) under the assumptions of Theorem 7.0.1, actually satisfies
|u| < 1 otherwise u ≡ ±1 in all RN . We will use this information several
times throughout the paper. Moreover by classical regularity results [46],
since ‖f(u)‖L∞(RN ) ≤ C, with C a positive constant that does not depend
on u, we also deduce that

‖∇u‖L∞(RN ) ≤ C.

To get our main result, we first recover a weak comparison principle
in a suitable half-space and then we exploit it to start the moving planes
procedure. The application of the moving planes method is not standard
since we have to recover compactness using some translation arguments,
(since we work on RN ) and, not least, we have to take into account the
fact that the nonlinearity f change sign which produces peculiar difficulties
in the case p 6= 2, already in the case of bounded domain. Finally we get
the monotonicity in all the directions of the the upper hemi-sphere SN−1

+ :=

{ν ∈ SN−1
+ | (ν, eN )} that will give us the desired 1-dimensional symmetry.

This chapter is organized as follows: In Section 7.1 we recall some results
about strong maximum and comparison principles just for the reader’s con-
venience, already presented in Chapter 1. In Section 7.2 we prove the mono-
tonicity of the solution in the xN -direction, exploiting the moving planes
procedure. In Section 7.3 we prove the 1-dimensional symmetry and finally
we prove our main result.

7.1. Preliminary results

The aim of this section is to recall, just for the reader’s convenience, some
well known results about strong comparison principles and strong maximum
principles for quasilinear elliptic equations that will be used several times in
the proof of our main theorem. Lots of this results are proved in Chapter 1.
Let us consider the following quasilinear elliptic equation

(7.1.1) −∆pw = f(w) in Ω

where Ω is any domain of RN and f is a locally Lipschitz continuous function.
Any solution w to (7.1.1) has to be understood in the weak distributional
sense (see Definition 7.1.6) and generally is of class C1,α.
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The first result that we recall the classical strong maximum principle
due to J. L. Vazquez [127] (see also P. Pucci and J. Serrin book [103] and
Theorem 1.4.1):

Theorem 7.1.1 (Strong Maximum Principle and Höpf’s Lemma, [103,
127]). Let u ∈ C1(Ω) be a non-negative weak solution to

−∆pu+ cuq = g ≥ 0 in Ω

with 1 < p < +∞, q ≥ p− 1, c ≥ 0 and g ∈ L∞loc(Ω). If u 6= 0, then u > 0 in
Ω. Moreover for any point x0 ∈ ∂Ω where the interior sphere condition is
satisfied, and such that u ∈ C1(Ω)∪{x0} and u(x0) = 0 we have that ∂νu > 0
for any inward directional derivative (this means that if y approaches x0 in

a ball B ⊆ Ω that has x0 on its boundary, then limy→x0

u(y)−u(x0)
|y−x0| > 0).

It is very simple to guess that in the quasilinear case, maximum and
comparison principles are not equivalent; for this reason we need also to
recall the classical version of the strong comparison principle for quasilinear
elliptic equations:

Theorem 7.1.2 (Classical Strong Comparison Principle, [33, 103]). Let
u, v ∈ C1(Ω) be two solutions to (7.1.1) such that u ≤ v in Ω, with 1 < p <
+∞ and let Z = {x ∈ Ω | |∇u(x)| + |∇v(x)| 6= 0}. If x0 ∈ Ω \ Z and
u(x0) = v(x0), then u = v in the connected component of Ω \ Z containing
x0.

For the proof of this result we suggest [33, 103]. The main feature of
Theorem 7.1.2 is that holds far from the critical set. Now we present a
result which holds, under stronger assumptions, all over the critical set and
generalizes Theorem 1.5.3:

Theorem 7.1.3 (Strong Comparison Principle, [36]). Let u, v ∈ C1(Ω)
be two solutions to (7.1.1), where Ω is a bounded smooth connected domain
of RN and 2N+2

N+2 < p < +∞. Assume that at least one of the following two

conditions (fu),(fv) holds:

(fu): either

(7.1.2) f(u(x)) > 0 in Ω

or

(7.1.3) f(u(x)) < 0 in Ω;

(fv): either

(7.1.4) f(v(x)) > 0 in Ω

or

(7.1.5) f(v(x)) < 0 in Ω.

Moreover, if

(7.1.6) u ≤ v in Ω.

Then u ≡ v in Ω unless

(7.1.7) u < v in Ω.
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Proof. The proof of this result follows by the same arguments in [36,
61, 108, 109]. Note in fact that under the assumption (fu) or (fv), it
follows that |∇u|−1 or |∇v|−1 has the summability properties exposed by
Theorem 3.1 in [109] (see also Theorem 1.1.2). Then the weighted Sobolev
inequality is in force, see e.g. Theorem 8 in [61] (see also Theorem 1.1.3).

Now, it is sufficient to note that the Harnack comparison inequality given
by Corollary 3.2 in [36] holds true (see also Theorem 1.5.2), since the proof
it is only based on the weighted Sobolev inequality.

Finally it is standard to see that the Strong Comparison Principle follows
by the weak comparison Harnack inequality, see Theorem 1.4 in [36] (see
also Theorem 1.5.3).

�

Let us now recall that the linearized operator at a fixed solution w of
(7.1.1) (see also equation (1.1.4)), Lw(v, ϕ), is well defined, for every v and

ϕ in the weighted Sobolev space H1,2
% (Ω) with % = |∇w|p−2, by

Lw(v, ϕ) ≡
∫

Ω
|∇w|p−2(∇v,∇ϕ) + (p− 2)

∫
Ω
|∇w|p−4(∇w,∇v)(∇w,∇ϕ) dx

−
∫

Ω
f ′(w)vϕ dx, ∀ϕ ∈ C∞c (Ω).

(7.1.8)

Moreover v ∈ H1,2
% (Ω) is a weak solution of the linearized operator if

(7.1.9) Lw(v, ϕ) = 0.

As in the case of equation (7.1.1), also for the linearized equation (7.1.9) a
classical version of the strong maximum principle holds:

Theorem 7.1.4 (Classical Strong Maximum Principle for the Linearized
Operator, [103]). Let u ∈ C1(Ω) be a solution to problem (7.1.1), with
1 < p < +∞. Let η ∈ SN−1 and let us assume that for any connected
domain Ω′ ⊂ Ω \ Z

(7.1.10) ∂ηu ≥ 0 in Ω′.

Then ∂ηu ≡ 0 in Ω′ unless

(7.1.11) ∂ηu > 0 in Ω′.

Let us recall now a more general result which holds all over the critical
set Z and that generalizes Theorem 1.5.5 of Chapter 1:

Theorem 7.1.5 (Strong Maximum Principle for the Linearized Opera-
tor, [36]). Let u ∈ C1(Ω) be a solution to problem (7.1.1), with 2N+2

N+2 < p <
+∞. Assume that either

(7.1.12) f(u(x)) > 0 in Ω

or

(7.1.13) f(u(x)) < 0 in Ω.

If ∂η ≥ 0 in Ω, for some η ∈ SN−1, then either ∂ηu ≡ 0 in Ω or ∂ηu > 0 in
Ω.
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A solution to (7.0.1) has to be understood in the weak distributional sense.
We start giving the following

Definition 7.1.6. Let Ω ⊆ RN an open set. We say that u ∈ C1,α
loc (Ω)

is a weak subsolution to

(7.1.14) −∆pu = f(u) in Ω,

if

(7.1.15)

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx ≤

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω), ϕ ≥ 0.

Similarly, we say that u ∈ C1,α
loc (Ω) is a weak supersolution to (7.0.1) if

(7.1.16)

∫
Ω
|∇u|p−2(∇u,∇ϕ) dx ≥

∫
Ω
f(u)ϕdx ∀ϕ ∈ C∞c (Ω), ϕ ≥ 0.

Finally, we say that u ∈ C1,α
loc (Ω) is a weak solution of equation (7.1.14), if

(7.1.15) and (7.1.16) hold.

Moreover we need to recall the weak comparison principle (see Theorem
1.3.7) between a subsolution and a supersolution to (7.0.1) ordered on the
boundary of some open half-space Σ of RN , whose proof is included in
Chapter 1.

Theorem 7.1.7. Let u, v ∈ C1,α
loc (Σ), N > 1, p > 1, a ∈ R such that

(7.1.17)


−∆pu ≤ f(u) in Σ

−∆pv ≥ f(v) in Σ

u ≤ v on ∂Σ,

where Σ is some open half-space of RN and f ∈ C1(R). Moreover, let us
assume that

|∇u|, |∇v| ∈ L∞(Σ),

for some δ sufficiently small

−1 ≤ u ≤ −1 + δ in Σ := (−∞, a)

and for some L > 0

(7.1.18) f ′(t) < −L in [−1,−1 + δ].

Then

(7.1.19) u ≤ v in Σ.

The same result is true if

1− δ ≤ v ≤ 1 in Σ := (a,+∞) and f ′(t) < −L in [1− δ, 1].

Let us recall another weak comparison principle in narrow domains that
will be an essential tool in the proof of Theorem 7.0.1, whose proof is also
included in Chapter 1 (see Theorem 1.3.3).
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Theorem 7.1.8 ([58]). Let 1 < p < 2 and N > 1. Fix λ0 > 0 and
L0 > 0. Consider a, b ∈ R, with a < b, τ, ε > 0 and set

Σ(a,b) :=
{
RN−1 × (a, b)

}
.

Let u, v ∈ C1,α
loc (Σ(a,b)) such that ‖u‖∞+‖∇u‖∞ ≤ L0, ‖v‖∞+‖∇v‖∞ ≤ L0,

f fulfills (hf ) and

(7.1.20)


−∆pu ≤ f(u) in Σ(a,b)

−∆pv ≥ f(v) in Σ(a,b)

u ≤ v on ∂S(τ,ε),

where the open set S(τ,ε) ⊆ Σ(a,b) is such that

S(τ,ε) =
⋃

x′∈RN−1

Iτ,εx′ ,

and the open set Iτ,εx′ ⊆ {x
′} × (a, b) has the form

Iτ,εx′ = Aτx′ ∪Bε
x′ , with |Aτx′ ∩Bε

x′ | = ∅

and, for x′ fixed, Aτx′ , B
ε
x′ ⊂ (a, b) are measurable sets such that

|Aτx′ | ≤ τ and Bε
x′ ⊆ {xN ∈ R | |∇u(x′, xN )| < ε, |∇v(x′, xN )| < ε}.

Then there exist

τ0 = τ0(N, p, a, b, L0) > 0

and

ε0 = ε0(N, p, a, b, L0) > 0

such that, if 0 < τ < τ0 and 0 < ε < ε0, it follows that

u ≤ v in S(τ,ε).

7.2. Monotonicity with respect to xN

The purpose of this section consists in showing that all the non-trivial
solutions u to (7.0.1) that satisfies (7.0.3) are increasing in the xN direction.
Since in our problem the right hand side depends only on u, it is possible to
define the following set

Zf(u) := {x ∈ RN | u(x) ∈ Nf}.

Without any apriori assumption on the behaviour of ∇u, the set Zf(u) may
be very wild, see Figure 1.

We start proving a lemma that we will use repeatedly in the sequel of
the work.

Let us define the upper hemisphere

(7.2.1) SN−1
+ := {ν ∈ SN−1 | (ν, eN ) > 0}.

Lemma 7.2.1. Let U a connected component of RN \ Zf(u), η ∈ SN−1
+

and let us assume that ∂ηu ≥ 0 in U . Then

∂ηu > 0 in U .
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Figure 1. The set Zf(u)

Proof. Using Theorem 7.1.5 we deduce that either ∂ηu > 0 in U or
∂ηu ≡ 0 in U . Let us suppose that ∂ηu ≡ 0 in U . Let P0 ∈ U and let us
define

r(t) = P0 + tη t ∈ R.
Let us set

(7.2.2) t0 = inf
{
t ∈ R : r(ϑ) ∈ U , ∀ϑ ∈ (t, 0]

}
.

We note that the infimum in (7.2.2) is well defined, since by definition the
connected component U is an open set. We deduce that either

t0 = −∞ or t0 > −∞.
In the case t0 = −∞, we deduce that u(P0) = −1. Indeed u should be

constant (recall that ∂ηu ≡ 0 in U) on r(t) for t ∈ (−∞, 0] and (7.0.3) holds.
This would be a contradiction, see Remark 7.0.2.

In the case t0 > −∞, we deduce that r(t0) ∈ Zf(u) and therefore
f(u(r(t0))) = f(u(P0 + t0η)) = 0. But u should be constant on r(t) for
t0 ≤ t ≤ 0, implying f(u(P0)) = f(u(P0 + t0η)) = 0, namely P0 ∈ Zf(u)

against the assumption.
�

Proposition 7.2.2. Under the assumptions of Theorem 7.0.1, we have
that

(7.2.3) ∂xNu > 0 in RN \ Zf(u).

The proof is based on a nontrivial modification of the moving planes
method. Let us recall some notations. We define the half-space Σλ and the
hyperplane Tλ by

Σλ := {x ∈ RN | xN < λ}, Tλ := ∂Σλ = {x ∈ RN | xN = λ}(7.2.4)

and the reflected function uλ(x) by

uλ(x) = uλ(x′, xN ) := u(x′, 2λ− xN ) in RN .
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We also define the critical set Z∇u by

(7.2.5) Z∇u := {x ∈ RN | ∇u(x) = 0}.
The first step in the proof of the monotonicity is to get a property concerning
the local symmetry regions of the solution, namely any C ⊆ Σλ such that
u ≡ uλ in C.

Having in mind these notations we are able to prove the following:

Proposition 7.2.3. Under the assumption of Theorem 7.0.1, let us as-
sume that u is a solution to (7.0.1) satisfying (7.0.3), such that

(i) u is monotone non-decreasing in Σλ

and

(ii) u ≤ uλ in Σλ.

Then u < uλ in Σλ \ Zf(u).

Proof. By (7.0.3), given 0 < δ0 < 1 there exists M0 = M0(δ0) > 0,
with λ > −M0, such that u(x) = u(x′, xN ) < −1 + δ0 in {xN < −M0} and
uλ(x) = u(x′, 2λ − xN ) > 1 − δ0 in {xN < −M0}. We fix δ0 sufficiently
small such that f ′(u) < −L in {xN < −M0}, for some L > 0. Arguing by
contradiction, let us assume that there exists P0 = (x′0, xN,0) ∈ Σλ \ Zf(u)

such that u(P0) = uλ(P0). Let U0 the connected component of Σλ \ Zf(u)

containing P0. By Theorem 7.1.3, since u(P0) = uλ(P0), we deduce that U0

is a local symmetry region, i.e. u ≡ uλ in U0.
We notice that, by construction, u < uλ in Σ−M0 , since u(x) < −1 + δ0

and uλ(x) = u(x′, 2λ − xN ) > 1 − δ0 in Σ−M0 . Since U0 is an open set of
Σλ \ Zf(u) (and also of RN ) there exists %0 = %0(P0) > 0 such that

(7.2.6) B%0(P0) ⊂ U0.

Figure 2. The slided ball B%0(P0)
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We can slide B%0 in U0, towards to −∞ in the y-direction and keeping
its centre on the line {x′ = x′0} (see Figure 2), until it touches for the first
time ∂U0 at some point z0 ∈ Zf(u). In Figure 3, we show some possible
examples of first contact point with the set Zf(u).

Figure 3. The first contact point z0

Now we consider the function

w0(x) := u(x)− u(z0)

and we observe that w0(x) 6= 0 for every x ∈ B%0(P̂0), where P̂0 is the new
centre of the slided ball. In fact, if this is not the case there would exist a
point z̄ ∈ B%0(P̂0) such that w0(z̄) = 0, but this is in contradiction with the
fact that U0 ∩Zf(u) = ∅. We have to distinguish two cases. Since p < 2 and
f is locally Lipschitz, we have that

Case 1: If w0(x) > 0 in B%0(P̂0), then
∆pw0 ≤ Cwp−1

0 in B%0(P̂0)

w0 > 0 in B%0(P̂0)

w(z0) = 0 z0 ∈ ∂B%0(P̂0),

where C is a positive constant.
Case 2: If w0(x) < 0 in B%0(P̂0), setting v0 = −w0 we have

∆pv0 ≤ Cvp−1
0 in B%0(P̂0)

v0 > 0 in B%0(P̂0)

v0(z0) = 0 z0 ∈ ∂B%0(P̂0),

where C is a positive constant.
In both cases, by the Höpf boundary lemma (see e.g. [103, 127]), it

follows that |∇w(z0)| = |∇u(z0)| 6= 0.

Using the Implicit Function Theorem we deduce that the set {u = u(z0)}
is a smooth manifold near z0. Now we want to prove that

uxN (z0) > 0
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and actually that the set {u = u(z0)} is a graph in the y-direction near
the point z0. By our assumption we know that uxN (z0) := uy(z0) ≥ 0.
According to [36, 37] and (7.1.8), the linearized operator of (7.0.1) is well
defined

Lu(uy, ϕ) ≡∫
Σλ

[|∇u|p−2(∇uy,∇ϕ) + (p− 2)|∇u|p−4(∇u,∇uy)(∇u,∇ϕ)] dx+

−
∫

Σλ

f ′(u)uyϕdx

(7.2.7)

for every ϕ ∈ C1
c (Σλ). Moreover uy satisfies the linearized equation (7.1.9),

i.e.

(7.2.8) Lu(uy, ϕ) = 0 ∀ϕ ∈ C1
c (Σλ).

Let us set z0 = (z′0, y0). We have two possibilities: uy(z0) = 0 or uy(z0) > 0.

Claim: We show that the case uy(z0) = 0 is not possible.
If uy(z0) = 0, then uy(x) ≡ 0 in all B%̂(z0) for some positive %̂; to prove

this we use the fact that |∇u(z0)| 6= 0, u ∈ C1,α and that Theorem 7.1.4
holds.

By construction of z0 there exists ε1 > 0 such that every point z ∈ S1 :=
{(z′0, t) ∈ U0 : y0 < t < y0 + ε1} has the following properties:

(1) z ∈ U0, since the ball is sliding along the segment S1;
(2) z 6∈ ∂U0, since z0 is the first contact point with ∂U0.

In particular, for every z ∈ S1 we have

(7.2.9) z ∈ U0 \ ∂U0 = U0.

Since |∇u(z0)| 6= 0 and u ∈ C1,α, by Theorem 7.1.4 it follows that there
exists 0 < ε2 < ε1 such that

uy(x) = 0 ∀x ∈ Bε2(z0).

Let us consider S2 := {(z′0, t) ∈ U0 : y0 < t < y0 + ε2}; by definition S2 ⊂ S1

and every point of S2 belongs also to Zf(u), since u(z) = u(z0) for every
z ∈ S2 and z0 ∈ Zf(u) by our assumptions. But this gives a contradiction
with (7.2.9).

From what we have seen above, we have |∇u(z0)| 6= 0 and hence there
exists a ball Br(z0) where |∇u(x)| 6= 0 for every x ∈ Br(z0). By Theorem
7.1.2 it follows that u ≡ uλ in Br(z0) namely u ≡ uλ in a neighborhood of
the point z0 ∈ ∂U0. Since uy(z0) > 0 and Nf is finite

Br(z0) ∩
(

(Σλ \ Zf(u)) \ U0

)
6= ∅

and uy(x) > 0 in Br(z0), as consequence, the set {u = u(z0)} is a graph in
the y-direction in a neighborhood of the point z0. Now we have to distinguish
two cases:

Case 1: u(z0) = min
[
Nf \ {−1}

]
.
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Define the sets

C1 :=
{
x ∈ RN : x′ ∈ (Br(z0) ∩ {y := y0}) and u(x) < u(z0)

}
C2 := Br(z0) ∪

(
(Br(z0) ∩ {y := y0})× (−∞, y0)

)
and

C = C1 ∩ C2.

We observe that C is an open unbounded path-connected set (ac-
tually a deformed cylinder), see Figure 4. Since f(u(z0)) has the
right sign, by Theorem 7.1.3 it follows that u ≡ uλ in C and this in
contradiction with the uniform limit conditions (7.0.3).

Figure 4. Case 1: u(z0) = min
[
Nf \ {−1}

]

Case 2: u(z0) > min
[
Nf \ {−1}

]
.

In this case the open ball Br(z0) must intersect another connected
component (i.e. 6≡ U0) of Σλ \ Zf(u), such that u ≡ uλ in a such
component, see Figure 5. Here we used the fact that near the (new)
first contact point, the corresponding level set is a graph in the y-
direction. Now, it is clear that repeating a finite number of times
the argument leading to the existence of the touching point z0, we
can find a touching point zm such that

u(zm) = min
[
Nf \ {−1}

]
.

The contradiction then follows exactly as in Case 1.
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Figure 5. Case 2: u(z0) > min
[
Nf \ {−1}

]
Hence u < uλ in Σλ \ Zf(u).

�

To prove Proposition 7.2.2 we need of the following result:

Lemma 7.2.4. Under the assumption of Theorem 7.0.1, let u be a so-
lution to (7.0.1). Then there exist M0 = M0(p, f,N, ‖∇u‖L∞(RN)) > 0 suf-
ficiently large such that for every M ≥ M0 there exits a constant C∗ =
C∗(M) > 0 such that

(7.2.10) |∇u| ≥ ∂xNu ≥ C
∗ > 0 in {−M − 1 < xN < −M + 1}.

Proof. Performing the moving planes procedure, using (7.0.3) and (Gf),
by the Proposition 7.1.7 with v = uλ and Σ = Σλ, we infer that there ex-
ists a constant M0 = M0(p, f,N, ‖∇u‖L∞(RN)) > 0 such that ∂xNu ≥ 0 in

{xN < −M0 + 1}. Now we can assume

Zf(u) ∩ {xN < −M0 + 1} = ∅,

then by Theorem 7.1.5 it follows that ∂xNu > 0 in {xN < −M0 + 1},
since the case ∂xNu = 0 would imply a contradiction, i.e. u(x) = −1 in
{xN < −M0 + 1} . We observe that in particular it holds |∇u| ≥ ∂xNu > 0
in {−M0 − 1 < xN < −M0 + 1}. We want to prove that for all M ≥ M0,
there exists C∗ = C∗(M) > 0 such that ∂xNu ≥ C∗ > 0 in {−M−1 < xN <
−M + 1}.

Arguing by contradiction let us assume that there exists a sequence of
point Pn = (x′n, xN,n), with −M − 1 < xN,n < −M + 1 for every n ∈ N,
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such that ∂xNu(Pn)→ 0 as n→ +∞ in {−M − 1 < xN < −M + 1}. Up to
subsequences, let us assume that

xN,n → x̄N with −M − 1 ≤ x̄N ≤ −M + 1.

Let us now define
ũn(x′, xN ) := u(x′ + x′n, xN )

so that ‖ũn‖∞ = ‖u‖∞ ≤ 1. By standard regularity theory, see [46, 122],
we have that

‖ũn‖C1,α
loc (RN )

≤ C
for some 0 < α < 1. By Ascoli’s Theorem we have

ũn
C1,α′
loc (RN )
−→ ũ

up to subsequences, for α′ < α. By construction ∂xN ũ ≥ 0 and ∂xN ũ(0, x̄N ) =
0, hence by Theorem 7.1.4 it follows that ∂xN ũ = 0 in {−M − 1 < xN <
−M + 1} and therefore ∂xN ũ = 0 in all {(x′, xn) : xN < −M + 1} by The-
orem 7.1.5, since Zf(u) ∩ {xN < −M0 + 1} = ∅. This gives a contradiction

(by Theorem 7.1.4) with the fact that lim
xN→−∞

u(x′, xN ) = −1 (this implies

that lim
xN→−∞

ũ(x′, xN ) = −1 ), see Remark 7.0.2. �

With the notation introduced above, we set

(7.2.11) Λ := {λ ∈ R | u ≤ ut in Σt ∀t < λ}.
Note that, by Proposition 7.1.7 (with v = ut), it follows that Λ 6= ∅,

hence we can define

(7.2.12) λ̄ := sup Λ.

Moreover it is important to say that by the continuity of u and uλ, it follows
that

u ≤ uλ̄ in Σλ̄.

The proof of the fact that u(x′, xN ) is monotone increasing in the xN -
direction in the entire space RN is done once show that λ̄ = +∞. To
do this we assume by contradiction that λ̄ < +∞, and we prove a crucial
result, which allows us to localize the support of (u−uλ̄)+. This localization,
that we are going to obtain, will be useful to apply the weak comparison
principle given by Proposition 7.1.7 and Theorem 7.1.8.

Proposition 7.2.5. Under the assumption of Theorem 7.0.1, let u be a
solution to (7.0.1). Assume that λ̄ < +∞ (see (7.2.12)) and set

Wε := (u− uλ̄+ε)χ{xN≤λ̄+ε}.

Let M,κ > 0 be such that M > 2|λ̄|. Then for all µ ∈ (0, (λ̄+M)/2) there
exists ε̄ > 0 such that for every 0 < ε < ε̄

(7.2.13) suppW+
ε ⊂ {xN ≤ −M} ∪ {λ̄− µ ≤ xN ≤ λ̄+ ε} ∪ {|∇u| ≤ κ}.

Proof. Assume by contradiction that (7.2.13) is false, so that there
exists µ > 0 in such a way that, given any ε̄ > 0, we find 0 < ε ≤ ε̄ so that
there exists a corresponding xε = (x′ε, xN,ε) such that

u(x′ε, xN,ε) ≥ uλ̄+ε(x
′
ε, xN,ε),
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with xε = (x′ε, xN,ε) belonging to the set

{(x′, xN ) ∈ RN : M < xN,ε < λ̄− µ}
and such that |∇u(xε)| ≥ κ.

Taking ε̄ = 1/n, then there exists εn ≤ 1/n going to zero, and a corre-
sponding sequence

xn = (x′n, xN,n) = (x′εn , xN,εn)

such that

u(x′n, xN,n) ≥ uλ̄+εn(x′n, xN,n)

with −M < xN,n < λ̄− µ. Up to subsequences, let us assume that

xN,n → x̄N with −M ≤ x̄N ≤ λ̄− µ.
Let us define

ũn(x′, xN ) := u(x′ + x′n, xN )

so that ‖ũn‖∞ = ‖u‖∞ ≤ 1. By standard regularity theory, see [46, 122],
we have that

‖ũn‖C1,α
loc (RN )

≤ C
for some 0 < α < 1. By Ascoli’s Theorem we have

ũn
C1,α′
loc (RN )
−→ ũ

up to subsequences, for α′ < α. By construction it follows that

• ũ ≤ ũλ̄ in Σλ̄;
• ũ(0, x̄N ) = ũλ̄(0, x̄N );
• |∇ũ(0, x̄N )| ≥ κ.

Since |∇ũ(0, x̄N )| ≥ κ there exists % > 0 and a ball B%(0, x̄N ) ⊂ Σλ̄

such that |∇u(x)| 6= 0 for every x ∈ B%(0, x̄N ). Now, if ũ(0, x̄N ) ∈ Zf(u),
since ũ is non constant in B%(0, x̄N ), there exists P0 ∈ B%(0, x̄N ) such that
u(P0) 6∈ Zf(u). By Theorem 7.1.2 it follows that

(7.2.14) ũ ≡ ũλ̄ in B%(0, x̄N ).

On the other hand, by Proposition 7.2.3 it follows that

ũ < ũλ̄ in Σλ̄ \ Zf(u).

This gives a contradiction with (7.2.14). Hence we have (7.2.13).
�

Proof of Proposition 7.2.2. Let us assume by contradiction that
λ̄ < +∞, see (7.2.12). Let M̂ > 0 be such that Proposition 7.1.7 and

Lemma 7.2.4 apply. Let C∗ = C∗(M̂) be the constant given in Lemma

7.2.4. By Proposition 7.2.5 (choose M = 4M̂ + 1 there, redefining M̂ if
necessary) we have that

(7.2.15) supp W+
ε ⊂ {xN ≤ −4M̂ − 1} ∪ {−4M̂ + 1 ≤ xN ≤ λ̄+ ε},

where Wε := (u− uλ̄+ε)χ{xN≤λ̄+ε}. In particular, to get (7.2.15), we choose
κ in Proposition 7.2.5 such that 2κ = C∗. Then we deduce that

(7.2.16) u ≤ uλ̄+ε in {(x, xN ) ∈ RN : −4M̂ − 1 < xN < −4M̂ + 1}.
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Using (7.2.16), we can apply Proposition 7.1.7 in {xN < −4M̂ − 1} and
therefore, together Lemma 7.2.4 and Proposition 7.2.5, we actually deduce

supp W+
ε ⊂ {−4M̂ + 1 ≤ xN ≤ λ̄+ ε}.

In particular, if we look to (7.2.13), we deduce that supp W+
ε must belong

to the set

A :=
{
{λ̄− µ ≤ xN ≤ λ̄+ ε} ∪ {|∇u| ≤ κ}

}
∩
{
xN ≥ −4M̂ + 1

}
.

We now apply Theorem 7.1.8 in the set A. Let us choose (in Theorem 7.1.8)

L0 = 1 + ‖∇u‖L∞(RN )

and take τ0 = τ0(p, λ̄, M̂ ,N, L0) > 0 and ε0 = ε0(p, λ̄, M̂ ,N, L0) > 0 as in
Theorem 7.1.8. Let µ, ε in Proposition 7.2.5 such that 2(µ + ε) < τ0 and
let us redefine κ eventually such that κ := min{C∗/2, ε0}. We finally apply
Theorem 7.1.8 concluding that actually W+

ε = 0 in the set A. This gives
a contradiction, in view of the definition (7.2.12) of λ̄. Consequently we
deduce that λ̄ = +∞. This implies the monotonicity of u, that is ∂xNu ≥ 0
in RN . By Theorem 7.1.5, it follows that

∂xNu > 0 inRN \ Zf(u),

since by Lemma 7.2.1, the case ∂xNu ≡ 0 in some connected component, say
U , of RN \ Zf(u) can not hold.

�

7.3. 1-Dimensional Symmetry

In this section we pass from the monotonicity in xN to the monotonicity
in all the directions of the upper hemisphere SN−1

+ defined in (7.2.1). We
refer to [55] for the case of the Laplacian operator, where in the proof the
linearity of the operator was crucial. Here we have to take into account the
singular nature and the nonlinearity of the operator p-Laplacian.

Lemma 7.3.1. Under the same assumption of Theorem 7.0.1, given % > 0
and k > 0, we define

Σ%
k := {x ∈ RN | − k < xN < k} ∩ {|∇u| > %}.

Assume η ∈ SN−1
+ and suppose that

(7.3.1) ∂ηu ≥ 0 in RN and ∂ηu > 0 in RN \ Zf(u).

Then, there exists an open neighbourhood Oη of η in SN−1
+ , such that

(7.3.2) ∂νu = (∇u, ν) > 0 in Σ%
k,

for every ν ∈ Oη.

Proof. Arguing by contradiction let us assume that there exist two
sequences {Pm} ∈ RN and {νm} ∈ SN−1

+ such that, for every m ∈ N we
have that Pm = (x′m, xN,m) ∈ Σ%

k, |(νm, η) − 1| < 1/m and ∂νmu(Pm) ≤ 0.
Since −k < xN,m < k for every m ∈ N, then up to subsequences xN,m → x̄N .
Now, let us define

ũm(x′, xN ) := u(x′ + x′m, xN )
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so that ‖ũm‖∞ = ‖u‖∞ ≤ 1. By standard regularity theory, see [46, 122],
we have that

‖ũm‖C1,α
loc (RN )

≤ C.

By Ascoli’s Theorem, via a standard diagonal process, we have, up to sub-
sequences

ũm
C1,α′
loc (RN )
−→ ũ,

for some 0 < α′ < α.
By uniform convergence and (7.3.1) it follows that

∂ηũ(0, x̄N ) = 0 and |∇ũ(0, x̄N )| ≥ %.

• If P0 := (0, x̄N ) ∈ Zf(ũ), since |∇ũ(0, x̄N )| ≥ %, then there exists
a ball Br(P0) such that |∇ũ(x)| 6= 0 for every x ∈ Br(P0). By
Theorem 7.1.4, applied having in mind that |∇ũ(x)| 6= 0 in Br(P0),
it follows that ∂ηũ(x) = 0 for every x ∈ Br(P0). In particular
∂ηũ(x) = 0 for every x ∈ Br(P0)∩

(
Σ%
k \ Zf(ũ)

)
, hence by Theorem

7.1.5 we deduce that ∂ηũ ≡ 0 in the connected component U of
Σ%
k \ Zf(ũ) containing Br(P0) (possibly redefining r), but this is in

contradiction with Lemma 7.2.1.
• If P0 ∈ Σ%

k \ Zf(ũ) by Theorem 7.1.5 it follows that ∂ηũ > 0 in

the connected component of RN \ Zf(ũ) containing the point P0.

Indeed the case ∂ηũ ≡ 0 in the connected component of RN \Zf(ũ)

containing P0 can not hold since Lemma 7.2.1.

Hence we deduce (7.3.2). �

Having in mind the previous lemma, now we are able to prove the mono-
tonicity in a small cone of direction around η in the entire space.

Proposition 7.3.2. Under the assumption of Theorem 7.0.1, assume
η ∈ SN−1

+ such that ∂ηu > 0 in RN \ Zf(u). Then, there exists an open

neighbourhood Oη of η in SN−1
+ , such that

(7.3.3) ∂νu = uν ≥ 0 in RN and ∂νu = uν > 0 in RN \ Zf(u),

for every ν ∈ Oη.

Proof. We fix δ̃ > 0 and let k = k(δ̃) > 0 be such that u < −1 + δ̃ in

{xN < −k}, u > 1 − δ̃ in {xN > k} and (7.1.18) holds in {|xN | > k}. By
Lemma 7.3.1 it follows that for all % > 0 one has

supp (u−ν ) ⊆
(
{|xN | ≥ k} ∪ ({−k < xN < k} ∩ {|∇u| ≤ %})

)
.

For simplicity of exposition we set

A := {|xN | ≥ k} and D :=
(
{−k < xN < k} ∩ {|∇u| ≤ %}

)
.

Our claim is to show that u−ν = 0 in A∪D. In order to do this we split the
proof in two part.

Step 1. We show that u−ν = 0 in A.
We set

(7.3.4) ϕ := (u−ν )αϕ2
RχA(2R)
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where α > 1, R > 0 large, A(2R) := A ∩ B2R and ϕR is a standard cutoff
function such that 0 ≤ ϕR ≤ 1 on RN , ϕR = 1 in BR, ϕR = 0 outside B2R,
with |∇ϕR| ≤ 2/R in B2R \ BR. First of all we notice that ϕ belongs to

W 1,p
0 (A(2R)). To see this, use the definition of ϕR and note that by Lemma

7.2.4 and Lemma 7.3.1, it follows that u−ν = 0 on the hyperplanes |xN | = k,
namely on ∂A.

According to [36, 37], the linearized operator is well defined

Lu(uν , ϕ) ≡∫
RN

[|∇u|p−2(∇uν ,∇ϕ) + (p− 2)|∇u|p−4(∇u,∇uν)(∇u,∇ϕ)] dx+

−
∫
RN

f ′(u)uνϕdx

(7.3.5)

for every ϕ ∈ C1
c (RN ). Moreover it satisfies the following equation

(7.3.6) Lu(uν , ϕ) = 0 ∀ϕ ∈ C1
c (RN ).

Taking ϕ defined in (7.3.4) in the previous equation, we obtain

α

∫
A(2R)

|∇u|p−2(∇uν ,∇u−ν )(u−ν )α−1ϕ2
R

+ 2

∫
A(2R)

|∇u|p−2(∇uν ,∇ϕR)(u−ν )αϕR

+ α(p− 2)

∫
A(2R)

|∇u|p−4(∇u,∇uν)(∇u,∇u−ν )(u−ν )α−1ϕ2
R dx

+ 2(p− 2)

∫
A(2R)

|∇u|p−4(∇u,∇uν)(∇u,∇ϕR)(u−ν )αϕR dx

=

∫
A(2R)

f ′(u)(u−ν )α+1ϕ2
R dx

(7.3.7)
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Making some computations we obtain

α

∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1ϕ2
R dx

= −2

∫
A(2R)

|∇u|p−2(∇u−ν ,∇ϕR)(u−ν )αϕR dx

+ α(2− p)
∫
A(2R)

|∇u|p−4(∇u,∇u−ν )2(u−ν )α−1ϕ2
R dx

+ 2(2− p)
∫
A(2R)

|∇u|p−4(∇u,∇u−ν )(∇u,∇ϕR)(u−ν )αϕR dx

+

∫
A(2R)

f ′(u)(u−ν )α+1ϕ2
R dx

≤ α(2− p)
∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1ϕ2
R dx

+ 2(3− p)
∫
A(2R)

|∇u|p−2|∇u−ν | |∇ϕR|(u−ν )αϕR dx

+

∫
A(2R)

f ′(u)(u−ν )α+1ϕ2
R dx.

(7.3.8)

Now it is possible to rewrite (7.3.8) as follows

α(p− 1)

∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1ϕ2
R dx

≤ 2(3− p)
∫
A(2R)

|∇u|p−2|∇u−ν | |∇ϕR|(u−ν )αϕR dx

+

∫
A(2R)

f ′(u)(u−ν )α+1ϕ2
R dx.

(7.3.9)

Exploiting the weighted Young inequality we obtain

α(p− 1)

∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1ϕ2
R dx

≤ 2(3− p)
∫
A(2R)

|∇u|
p−2

2 |∇u−ν | (u−ν )
α−1

2 |∇u|
p−2

2 |∇ϕR|(u−ν )
α+1

2 ϕR dx

+

∫
A(2R)

f ′(u)(u−ν )α+1ϕ2
R dx

≤ σ(3− p)
∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1 dx

+
3− p
σ

∫
A(2R)

|∇u|p−2|∇ϕR|2(u−ν )α+1ϕ2
R dx

+

∫
A(2R)

f ′(u)(u−ν )α+1ϕ2
R dx.

(7.3.10)
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Since uν = (∇u, ν), where ‖ν‖ = 1, we have

α(p− 1)

∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1ϕ2
R dx

≤ σ(3− p)
∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1 dx

+
3− p
σ

∫
A(2R)

|∇u|p−1|∇ϕR|2(u−ν )αϕ2
R dx

+

∫
A(2R)

f ′(u)(u−ν )α+1ϕ2
R dx

≤ σ(3− p)
∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1 dx

+ Ĉ

∫
A(2R)

|∇ϕR|(u−ν )αϕ2
R|∇ϕR| dx

− L
∫
A(2R)

(u−ν )α+1ϕ2
R dx,

(7.3.11)

where we used (7.1.18) and where Ĉ := 3− p/σ‖∇u‖p−1
∞ . Exploiting the

Young inequality with exponents (α+ 1)/α and α+ 1 we obtain

α(p− 1)

∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1ϕ2
R dx

≤ σ(3− p)
∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1 dx

+
Ĉ

α+ 1

∫
A(2R)

|∇ϕR|α+1 dx

+
Ĉ(α+ 1)

α

∫
A(2R)

|∇ϕR|
α+1
α (u−ν )α+1ϕ

2α+1
α

R dx

− L
∫
A(2R)

(u−ν )α+1ϕ2
R dx,

(7.3.12)

Since |∇ϕR| ≤ 2/R in B2R \ BR, 0 ≤ ϕR ≤ 1 in RN and ϕR = 1 in BR, we
obtain ∫

A(R)
|∇u|p−2|∇u−ν |2(u−ν )α−1 dx

≤ ϑ
∫
A(2R)

|∇u|p−2|∇u−ν |2(u−ν )α−1 dx

+
1

α(p− 1)

(
Ĉ(α+ 1)

αR
α+1
α

− L

)∫
A(2R)

(u−ν )α+1ϕ2
R dx,

+
C̄

Rα−(N−1)
,

(7.3.13)

where ϑ := σ(3− p)/α(p− 1) and C̄ := 2Ĉ/α(α+ 1)(p− 1). Now we fix
α > 0 such that α > N − 1, σ > 0 sufficiently small such that ϑ < 2−N and
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finally R0 > 0 such that Ĉ(α+ 1)/αR
α+1
α −L < 0. Having in mind all these

fixed parameters let us define

L(R) :=

∫
A(R)

|∇u|p−2|∇u−ν |2(u−ν )α−1 dx.

It is easy to see that L(R) ≤ CRN . By (7.3.13) we deduce that holds

L(R) ≤ ϑL(2R) +
C̄

Rα−(N−1)

for every R ≥ R0. By applying Lemma 2.1 in [59] it follows that L(R) = 0
for all R ≥ R0. Hence passing to the limit we obtain that u−ν = 0 in A.

Step 2. u−ν = 0 in D.
Let us denote by B′ the (N −1) dimensional ball in RN−1 and ψR(x′, xN ) =
ψR(x′) ∈ C∞c (RN−1) is a standard cutoff function such that

(7.3.14)


ψR ≡ 1, in B

′
(0, R) ⊂ RN−1,

ψR ≡ 0, in RN−1 \B′(0, 2R),

|∇ψR| ≤ 2
R , in B

′
(0, 2R) \B′(0, R) ⊂ RN−1.

Let us define the cylinder

C(R) :=
{

(x′, xN ) ∈ RN : {x ∈ RN | − k < xN < k} ∩ {B′(0, R)× R}
}
.

We set

(7.3.15) ψ := (u−ν )βψ2
RχC(2R)

where β > 1. First of all we notice that ψ belongs to W 1,p
0 (C(2R)) by

(7.3.14) and since u−ν = 0 on ∂A (as above, see Lemma 7.2.4 and Lemma
7.3.1). Recalling (7.3.5) we have also in this case that

(7.3.16) Lu(uν , ψ) = 0 ∀ψ ∈ C1
c (RN ).

Taking ψ defined in (7.3.15) in the previous equation, we obtain

β

∫
C(2R)

|∇u|p−2(∇uν ,∇u−ν )(u−ν )β−1ψ2
R dx

+ 2

∫
C(2R)

|∇u|p−2(∇uν ,∇ψR)(u−ν )βψR dx

+ β(p− 2)

∫
C(2R)

|∇u|p−4(∇u,∇uν)(∇u,∇u−ν )(u−ν )β−1ψ2
R dx

+ 2(p− 2)

∫
C(2R)

|∇u|p−4(∇u,∇uν)(∇u,∇ϕR)(u−ν )βψR dx

=

∫
C(2R)

f ′(u)(u−ν )β+1ψ2
R dx.

(7.3.17)
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Repeating verbatim the same argument of (7.3.8), (7.3.9) and (7.3.10), start-
ing by (7.3.17) we obtain

β(p− 1)

∫
C(2R)

|∇u|p−2|∇u−ν |2(u−ν )β−1ψ2
R dx

≤ σ(3− p)
∫
C(2R)

|∇u|p−2|∇u−ν |2 (u−ν )β−1 dx

+
(3− p)
σ

∫
C(2R)

|∇u|p−2|∇ψR|2(u−ν )β+1ψ2
R dx

+

∫
C(2R)

f ′(u)(u−ν )β+1ψ2
R dx.

(7.3.18)

Since uν = (∇u, ν) and |∇u| ≤ % in C(2R) we have

∫
C(2R)

|∇u|p−2|∇u−ν |2(u−ν )β−1ψ2
R dx

≤ ϑ
∫
C(2R)

|∇u|p−2|∇u−ν |2 (u−ν )β−1 dx

+ Ĉ%p−1

∫
C(2R)

|∇ψR|2(u−ν )βψ2
R dx

+ Ck

∫
C(2R)

(u−ν )β+1ψ2
R dx.

(7.3.19)

where ϑ := σ(3− p)/β(p− 1), Ĉ := (3− p)/σβ(p− 1) and

C̃ := ‖f ′‖L∞((−1,1))β(p− 1).

Exploiting the Young inequality with exponents (β + 1)/β and β + 1 we
obtain

∫
C(2R)

|∇u|p−2|∇u−ν |2(u−ν )β−1ψ2
R dx

≤ ϑ
∫
C(2R)

|∇u|p−2|∇u−ν |2 (u−ν )β−1 dx

+
Ĉ%p−1

β + 1

∫
C(2R)

|∇ψR|β+1 dx

+
Ĉ%p−1(β + 1)

β

∫
C(2R)

|∇ψR|
β+1
β (u−ν )β+1ψ

2β+1
β

R dx

+ C̃

∫
C(2R)

(u−ν )β+1ψ2
R dx.

(7.3.20)
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Since |∇ψR| ≤ 2/R in B′2R \ B′R, 0 ≤ ψR ≤ 1 in RN and ψR = 1 in B′R, we
obtain

∫
C(2R)

|∇u|p−2|∇u−ν |2(u−ν )β−1ψ2
R dx

≤ϑ
∫
C(2R)

|∇u|p−2|∇u−ν |2 (u−ν )β−1 dx+ C̄R

∫
C(2R)

(u−ν )β+1ψ2
R dx

+
2β+1Ĉ%p−1

(β + 1)Rβ−(N−2)

≤ϑ
∫
C(2R)

|∇u|p−2|∇u−ν |2 (u−ν )β−1 dx

+ C̄R

∫
B′(0,2R)

(∫ k

−k

[
(u−ν )

β+1
2

]2
dxN

)
ψ2
R(x′) dx′

+
2β+1Ĉ%p−1

(β + 1)Rβ−(N−2)

≤ϑ
∫
C(2R)

|∇u|p−2|∇u−ν |2 (u−ν )β−1 dx

+ C̄RCp(k)2 (β + 1)2

4

∫
C(2R)

|∂xNu
−
ν |2(u−ν )β−1ψ2

R dx

+
2β+1Ĉ%p−1

(β + 1)Rβ−(N−2)
,

(7.3.21)

with C̄R := Ĉ%p−1(β + 1)/βR
β+1
β +C̃. We point out that in (7.3.21) we used

a Poincaré inequality in the set [−k, k] (denoting with Cp the associated
constant) together with the fact that ψR = ψR(x′). By (7.3.21) we obtain

∫
C(2R)

|∇u|p−2|∇u−ν |2(u−ν )β−1ψ2
R dx

≤ϑ
∫
C(2R)

|∇u|p−2|∇u−ν |2 (u−ν )β−1 dx

+ C̄RCp(k)2 (β + 1)2

4
%2−p

∫
C(2R)

|∇u|p−2|∇u−ν |2(u−ν )β−1ψ2
R dx

+
2β+1Ĉ%p−1

(β + 1)Rβ−(N−2)
.

(7.3.22)

Finally we choose β > 0 such that β > N − 2, ϑ > 0 sufficiently small
such that ϑ < 2−N+1 and % > 0 sufficently small such that

C̄RCp(k)2 (β + 1)2

2
%2−p < 1.

Having in mind all these fixed parameters let us define

L(R) :=

∫
C(R)
|∇u|p−2|∇u−ν |2(u−ν )β−1 dx.
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It is easy to see that L(R) ≤ CRN−1. By (7.3.22) (up to a redefining of the
constant involved) we deduce that

(7.3.23) L(R) ≤ ϑL(2R) +
C

Rβ−(N−2)

holds for every R > 0. By applying Lemma 2.1 in [59] it follows that
L(R) = 0 for all R > 0. Since p < 2, passing to the limit in (7.3.23), we
deduce that for a.e. x ∈ D
(7.3.24) either u−ν (x) = 0, or |∇u−ν (x)| = 0.

This actually implies that u−ν (x) = 0 in D. Indeed let us suppose that would
exist a point P ∈ D such that u−ν (P ) 6= 0. Let us consider the connected
component U of D \ {x ∈ D : u−ν (x) = 0} containing P . By the continuity
of u−ν , it follows that u−ν = 0 on the boundary ∂U . On the other hand
u−ν must be constant in U (since by (7.3.24) |∇u−ν | = 0 there) .This is a
contradiction.

By this two step we deduce that uν ≥ 0 in RN . Finally by Lemma 7.2.1
we get (7.3.3).

�

Proof of Theorem 7.0.1. Using Proposition 7.2.2 we get that the
solution is monotone increasing in the y-direction and this implies that ∂yu ≥
0 in RN . In particular we have ∂yu > 0 in RN \ Zf(u) by (7.2.3). By
Proposition 7.3.2, actually we obtain that the solution is increasing in a
cone of directions close to the y-direction. This allows us to show that in
fact, for i = 1, 2, · · · , N−1, ∂xiu = 0 in RN , just exploiting the arguments in
[55, 63, 64]. We provide the details for the sake completeness. Let Ω be the

set of the directions η ∈ SN−1
+ for which there exists an open neighborhood

Oη ⊂ SN−1
+ such that

∂νu = uν ≥ 0 in RN and ∂νu = uν > 0 in RN \ Zf(u),

for every ν ∈ Oη. The set Ω is non-empty, since eN ∈ Ω, and it is also
open by Proposition 7.3.2. Now we want to show that it is also closed. Let
η̄ ∈ SN−1

+ and let us consider the sequence {ηn} in Ω such that ηn → η̄ as

n → +∞ in the topology of SN−1
+ . Since by our assumptions ∂ηnu ≥ 0 in

RN , passing to the limit we obtain that ∂η̄u ≥ 0 in RN . By Lemma 7.2.1
it follows that ∂η̄u > 0 in RN \ Zf(u). By Proposition 7.3.2 there exists
an open neighborhood Oη̄ such that (7.3.3) is true for every ν ∈ Oη̄; hence

η̄ ∈ Ω and this implies that Ω is also closed. Now, since SN−1
+ is a path-

connected set, we have that Ω = SN−1
+ . Then there exists v ∈ C1,α

loc (R) such
that u(x′, y) = v(y). Now, let us assume that there exists b ∈ Zf(u) such
that u′(b) = 0. Then the level set {u = u(b)} is a closed interval, i.e. there
exist α, β ∈ R with α ≤ β such that

{u = u(b)} = [α, β].

By Höpf’s Lemma we have u′(β) > 0, but this implies that {u = u(b)} = {b}
and so u′(b) > 0, that is in contradiction with our initial assumption. Hence
we deduce that ∂yu > 0 in RN , concluding the proof.

�
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[52] F. Esposito and B. Sciunzi On the Höpf boundary lemma for quasilinear problems
involving singular nonlinearities and applications. To appear in J. Funct. Anal. DOI
number: 10.1016/j.jfa.2019.108346.

[53] L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions.
Studies in Advanced Mathematics. CRC Press, 1992.

[54] A. Farina. Finite-energy solutions, quantization effects and Liouville-type results
for a variant of the Ginzburg-Landau systems in Rk. Differential Integral Equations,
11(6), 1998, pp. 875–893.

[55] A. Farina. Symmetry for solutions of semilinear elliptic equations in RN and related
conjectures. Ricerche Mat., 48, 1999, pp. 129–154. Papers in memory of Ennio De
Giorgi.

[56] A. Farina. Rigidity and one-dimensional symmetry for semilinear elliptic equations
in the whole of RN and in half spaces. Adv. Math. Sci. Appl., 13(1), 2003, pp. 65–82.

[57] A. Farina. On the classification of solutions of the Lane-Emden equation on un-
bounded domains of RN . Journal de Mathématiques Pures et Appliquées. Neuvième
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Resumé. La thèse est consacrée à l’étude des propriétés qualitatives
des solutions d’équations aux dérivées partielles (EDP) semi- linéaires
et quasilinéaires de type elliptique. La méthode des hyperplans mo-
biles de A.D. Alexandrov et J.B. Serrin est le plus important des out-
ils utilisés pour étudier les propriétés qualitatives des solutions d’EDP
non-linéaires comme la symétrie et la monotonie. Le chapitre 1 porte
sur les principes du maximum, les principes de comparaison et le lemme
de Hopf qui jouent un rôle crucial dans la méthode des hyperplans mo-
biles. L’état de l’art dans le cadre semilinéaire et quasilinéaire y est
présenté. Dans le chapitre 2 on considère les solutions positives d’EDP el-
liptiques semilinéaires faisant intervenir une nonlinéarité singulière. Dans
ce contexte, à l’aide d’un argument de “scaling”, on démontre un nou-
veau lemme de Hopf qui permet de contourner la perte de régularité des
solutions près du bord. Le chapitre 3 concerne la version quasilinéaire du
problème étudié dans le chapitre 2. Après avoir obtenu un lemme de Hopf
pour ce type d’équations, nous démontrons la symétrie et la monotonie
des solutions positives dans le demi-espace et dans les domaines bornés et
convexe. Dans le chapitre 4, à l’aide des la méthode des hyperplans mo-
biles, nous démontrons la symétrie et la monotonie des solutions positives
et singulières d’EDP semilinéaires (éventuellement singulières) dans des
domaines bornés et non-bornés. Le cas quasilinéaire, qui est beaucoup
plus délicat et technique, est traité dans le chapitre 5. Le chapitre 6 est
consacré aux propriétés qualitatives des solutions positives singulières de
systèmes elliptiques. On montre que les résultats obtenus au chapitre 4
sont encore vrais dans ce contexte. Dans le dernier chapitre (chapitre 7)
nous démontrons la conjecture de Gibbons pour les solutions entières des
EDP quasilinéaires singulières.

Abstract. In this manuscript we study qualitative properties of solu-
tions of some semilinear and quasilinear elliptic equations. Symmetry
and monotonicity remain an important topic in modern theory of non-
linear partial differential equations. The moving planes method is the
most important technique that have been used in recent years to estab-
lish some qualitative properties of positive solutions of nonlinear elliptic
equations as symmetry and monotonicity; in particular, it goes back to
the seminal papers of A. D. Alexandrov [1] and J. Serrin [111]. In this
technique maximum and comparison principles play a crucial role. Lots
of well-known results about classical and more recent version of maximum
and comparison principles and of the Höpf’s Lemma will be presented in
Chapter 1.

In Chapter 2 (see also [24]), we consider positive solutions to semi-
linear elliptic problems with singular nonlinearity and we provide a Höpf
type boundary lemma via a suitable scaling argument that allows to deal
with the lack of regularity of the solutions up to the boundary.

In Chapter 3 (see also [52]), we consider the quasilinear version of
the problem studied in Chapter 2, that is more involved and technical.

In Chapter 4 (see also [50]), we consider positive singular solutions
to semilinear elliptic problems with possibly singular nonlinearity and we
deduce symmetry and monotonicity properties of the solutions via the
moving planes procedure in bounded or unbounded domains.

In Chapter 5 (see also [51]), we consider singular solutions to quasi-
linear elliptic equations under zero Dirichlet boundary condition. Under



suitable assumptions on the nonlinearity we deduce symmetry and mono-
tonicity properties of positive solutions via an improved moving planes
procedure, only in bounded domains.

In Chapter 6 (see also [48]), we investigate qualitative properties
of positive singular solutions of some elliptic systems in bounded and
unbounded domains, i.e. we prove a generalization of the results obtained
in Chapter 4.

In Chapter 7 (see also [49]), we prove the validity of Gibbons’ con-
jecture for a quasilinear elliptic equation. The result holds for every
(2N + 2)/(N + 2) < p < 2 and for a very general class of nonlinearity f .
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