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de l’Université de Technologie de Compiègne
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et à exprimer ma profonde gratitude à tous ceux qui, de près ou de loin, ont contribué à sa
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a su donner de son temps pour me fournir le cas d’étude aérodynamique et pour ses explica-
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de thèse. Je termine par une profonde pensée à mes parents, ma famille et mes amis pour leur
soutien sans faille durant ces trois ans.



Abstract

In the design optimization of complex systems, the surrogate model approach based on pro-
gressively enriched designs of experiments avoids the efficiency problems encountered when
integrating simulation codes into optimization loops. However, efficient a priori sampling of the
design space quickly becomes costly when using High-Fidelity (HF) simulators, especially in
high-dimension settings. On the other hand, in aeronautical design, several simulation tools are
frequently available for the same system, usually with a degree of accuracy inversely propor-
tional to the simulation cost. The concept of Multi-Fidelity (MF) proposes to merge different
levels of fidelity within a single model with a controlled variance. Based on recent reduced-
order modeling techniques, an alternative approach pursues the goal of simulation budget con-
trol by replacing expensive models with their approximate full-field equivalents, providing ad-
ditional insight into scalar surrogates constructed directly from the physical quantities of inter-
est. The two approaches, MF and Reduced-Order Model (ROM), may be combined, allowing
additional flexibility in choosing the degree of fidelity required in different areas of the design
space.

Reduced basis and MF surrogate-based optimization raise predictability issues when rely-
ing on offline sampling, resulting in costly optimization procedures. To address this problem,
offline-online strategies, also known as adaptive strategies, are employed to tune the metamodel
as the optimization search progresses. The enrichment criterion uses a merit function to pre-
dict both the accuracy improvement and the optimization goal. The next point to be evaluated
is selected to maximize this criterion iteratively until a suitable stopping condition is reached.
The objective is to select the most relevant points in order to reduce the number of calls to the
solvers, which would answer a given design problem. Adaptive selection has the advantage of
making better use of the available information in a time-efficient way.

This thesis introduces and validates optimization techniques assisted by MF substitution
models based on Non-Intrusive reduced basis models. A benchmark case is introduced to test
the full-field MF optimization methodologies on an example with characteristics representative
of turbomachinery problems. The predictability of the proposed MF Non-Intrusive Reduced-
Basis (MFNIRB) surrogate models is compared to classical surrogate models of the literature
on analytical and industrial applications.

v



Résumé

Dans l’optimisation de la conception de systèmes complexes, l’approche des modèles de substi-
tution basée sur des plans d’expériences progressivement enrichis permet d’éviter les problèmes
d’efficacité rencontrés lors de l’intégration de codes de simulation dans les boucles d’optimisat-
ion. Cependant, un échantillonnage a priori efficace de l’espace de conception devient rapide-
ment coûteux lors de l’utilisation de simulateurs Haute-Fidélité (HF), en particulier en haute
dimension. D’autre part, dans la conception aéronautique, plusieurs outils de simulation sont
fréquemment disponibles pour le même problème, généralement avec un degré de précision
inversement proportionnel au coût du processeur. Le concept de Multi-Fidélité (MF) pro-
pose de fusionner différents niveaux de fidélité au sein d’un modèle unique avec une variance
contrôlée. Basée sur les récentes techniques de modélisation d’ordre réduit, une autre approche
poursuit l’objectif de contrôle du budget de simulation en remplaçant les modèles coûteux par
leurs modèles réduits en champ complet, fournissant une vision supplémentaire des substituts
scalaires construits directement à partir des quantités d’intérêt. Les deux approches, MF et
modèles réduits, peuvent être combinées, ce qui permet une flexibilité supplémentaire dans le
choix du degré de fidélité requis dans différentes zones de l’espace de conception.

L’optimisation assistée par métamodèles et les modèles MF basés sur la réduction de modèle
posent des problèmes de prévisibilité lorsque les substituts reposent sur un échantillonnage
hors-ligne, impliquant des procédures d’optimisation coûteuses. Pour résoudre ce problème,
des stratégies hors-ligne / en ligne, également appelées stratégies adaptatives, sont utilisées
pour ajuster le métamodèle au fur et à mesure de la progression de la recherche d’optimisation.
Le critère d’enrichissement utilise une fonction de mérite pour prévoir à la fois l’amélioration
de la précision et la résolution du problème d’optimisation. Le point suivant à évaluer est
sélectionné pour maximiser ce critère de manière itérative jusqu’à ce qu’une condition d’arrêt
appropriée soit atteinte. L’objectif est de sélectionner les points les plus pertinents afin de
réduire le nombre d’appels aux solveurs, qui répondraient à un problème de conception donné.
La sélection adaptative présente l’avantage de mieux utiliser les informations disponibles de
manière efficace en termes de temps.

Cette thèse introduit et valide des techniques d’optimisation assistées par des approxima-
tions MF à base réduite non intrusive (MFNIRB). Un cas de référence est introduit pour tester
les méthodologies d’optimisation MF sur un exemple aux caractéristiques représentatives des
problèmes de turbomachines. La convergence des modèles de substitution MFNIRB proposés
est comparée à celle des modèles de substitution classiques de la littérature sur des applications
analytiques et industrielles.
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Chapter 1

Introduction

The research presented in this thesis, was carried out in the context of the growing interest of the
industry for automated optimization techniques. In that regards, the present work is partially
funded by the engine manufacturer Safran Aircraft Engines. This introduction is intended to
provide the context, the motivations of this work, as well as an overview of the thesis content.

1.1 Context : the need for innovation in jet engine design

Aeronautics Research in Europe (ACARE) defined guidelines for European research from
2002 to 2008, and with the International Civil Aviation Organization (ICAO), regulations for
medium-term aircraft performance to be achieved by 2020. In 2002, the targets for 2020 are
a reduction of 50 % in carbon dioxide emissions, 80 % cut in nitrous oxides emissions, and
50 % of effective perceived noise from their 2000 levels. These are completed by a more am-
bitious plan by International Coalition for Sustainable Aviation (ICSA) governments and the
aviation industry to reinforce the action with aspirations of achieving “zero climate impact” by
2050 [ICSA, 2019].

The reduction of pollutant emissions requires a consequent increase in engine efficiency.
This can be achieved by combining new, lighter and stronger materials, such as composites,
more efficient fuels, and a highly optimized aerodynamic design of the aircraft. This also
involves innovation in engine architecture, which can significantly reduce the amount of fuel
and thus pollutants released. Figure 1.1 shows the main innovations undertaken by Safran to
achieve these goals between 2000 and 2050 through an improvement in fuel consumption from
20% in 2000 to 60% in 2040. The Sustainable And Green Engines (SAGE) 2 consortium
was initiated by Safran as part of the European Clean Sky project [Brouckaert, 2015, source:
cleansky.eu] to produce an innovative non-inducted aircraft engine architecture. In this context,
the Open-Rotor project was launched in 2008 as part of the Clean Sky initiative, led by Safran.
Higher propulsive efficiencies are achieved for turbofans by increasing the Bypass Ratio (BPR)
through increasing the diameter of the fan, but the efficiency of this improvement decreases
as the nacelle diameter, and thus weight and drag, increases. This engine architecture has the
potential to deliver further improvements in specific fuel consumption compared with engines
such as the LEAP family entered service in 2017, and with advanced turbofans, such as Ultra-
High Bypass Ratio (UHBR) engines.

1
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Figure 1.1: The innovations planned within the framework of the ACARE roadmap for the
period 2000-2050 (source : [Safran, 2017]).

Open-rotor engines remove this limitation by operating the propeller blades without a sur-
rounding nacelle, allowing ultra-high BPRs to be achieved. The new Contra-Rotating Open-
Rotor (CROR) engine demonstrated the highest BPR, therefore fuel economy and emissions
[LAAME-CROW, 2016].

However, there is still room to improve the economic viability of the CROR engine com-
pared to the traditional turbofan. To reduce complexity, a single-rotor architecture has been
investigated by General Electrics (GE) Aviation and Safran Aicraft Engines, and is so far one
of the most promising answers to these environmental requirements. The main challenges are
the validation of the improved acoustic performance and the promise of economic viability
(but also the Safety of flights and passengers in case of loss of the engine blade or the adapta-
tion of the ground infrastructure). Indeed, the removal of a rotor is associated with less noise,
i. e. less interaction in the flows between the two rotors, mainly responsible for the noise
increase [Leborgne et al., 2015], less complex maintenance, but also a considerable gain in
weight, hence in overall costs and a better efficiency. The achievement of these objectives is
subject to a multidisciplinary optimization, from the dynamic strength of the materials to the
optimization of the noise reduction induced by this new architecture. Hence, the methodolgy
proposed in this thesis is demonstrated on such next generation configuration.

1.2 Design optimization to tackle the need for engine perfo-
mances improvement

Evolving the geometry can improve quantities of physical interest (such as efficiency, etc.).
Several geometries are tested using simulations, which allow to evaluate the physical quantities
to be improved (e.g. maximizing the efficiency, or minimizing the mass, etc.). The perfor-
mances or the quantities of interest are obtained by performing aerodynamic simulations of
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flows along the wing surface, in order to estimate these physical quantities. In general, the
geometries are modified in a way to maximize lift and minimize drag, leading to a better use of
the thrust supplied by the jet engine. Engine thrust is also improved by optimizing the control
of the flow to reduce the aerodynamic losses.

1.2.1 Overview on Design optimization
In aerodynamic optimization, a design is parametrized, in general, using certain geometric pa-
rameters that control the shape of a blade, such as thickness, chord (represented Figure 1.2)and
angles of attack α (represented Figure 1.3).

Chord length

Thickness

Chord

Camber line

Leading edge Trailing edge

Figure 1.2: Examples of Airfoil section parameters

Some of these parameters may be chosen as design variables. These design variables are
varying within a fixed range to form the design space and may be limited by constraints. The
blade design is based on section profiles to be studied with parameters whose value varies for
each blade section height.

Airfoil sections

Propeller hub

Tip

Propeller blade

root

Figure 1.3: Propeller geometry representing the different airfoil sections (Adapted from :
[Chopade et al., 2021])

In the context of shape optimization, the aerodynamic sections are approximated by con-
tinuous functions in order to allow their modification throughout this procedure. Several ap-
proaches have been used, in particular polynomial interpolation which is a relatively simple
method to implement. However, it has limitations in terms of robustness, where a local modi-
fication can very quickly lead to large global modifications of the geometry. This is where the
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Bezier curves [Farin, 2002] are useful, wherein the defined points are points orienting the curve,
and not an interpolation. As a result, the changes in the control points have less impact, as in-
terpolation is no longer a constraint. This method also has its limitations, this time due to the
large number of control points needed to approximate the profile. This limitation appears more
for complex shapes. For these cases, alternative to Bezier curves may be a Bspline [De Boor,
1978, Piegl, 1991]. This approach consists in assembling large portions of low order polyno-
mial curves to represent complex geometries. Such approach is faster, however, as it is only
composed of polynomials, the Bspline remains limited for the representation of certain shapes.
An extension of this approach, the Non Uniform Rational Basis Spline (NURBS), has been
proposed with the substitution of the polynomial model by rational fractions of polynomials.

Blades are designed using few key sections at various height of the blade. While a lot of
physical quantities can be derived from 2D profiles, if a global representation of the behavior
along the blade is required, some information can only be obtained from a 3D representation.
Usually, the various 2D sections studied at different heights are piled up (Figure 1.3) and linked
by continuous laws, corresponding to the evolution of parameters as one moves away from the
axis of rotation. The piling direction may be defined by a straight line perpendicular to the
axis of rotation, by a curve defined by the shape surrounding the blade, or by a curve with
parameters in space.

1.2.2 The multi-fidelity aerodynamic physical modelization

Once aircraft engine blades or wings profiles are defined, the geometry must be tested in a
virtual model intended to reproduce the engine’s physical behavior as accurately as possible.
There are several ways to simulate physical systems with different degrees of accuracy. Aero-
dynamic experiments, in particular, are very expensive and time-consuming procedures, but
accurate enough for certification.

To numerically reproduce the physical conditions of expensive experiments such as the
wind tunnel, assumptions about the physics are needed to provide models with different design
fidelities. The Euler equations neglect shear stresses, heat conduction terms and flows assumed
to be inviscid [Hirsch, 2007]. The viscosity and turbulence terms are not covered by the Eu-
ler equations, which is the case of the Navier-Stokes equations. The approaches using these
assumptions are characterized by different complex models of turbulence. Other methods pro-
vide a significantly more accurate description of the physical phenomena, but are also highly
expensive, like the Large Eddy Simulation (LES), which solves turbulence while modeling the
small scales, and the Direct Numerical Simulation (DNS), which solves all the scales of turbu-
lence. For transonic conditions, this method remains unaffordable even for high-performance
systems [Pope, 2000, Deck et al., 2014]. Due to its low computational cost compared to the
accuracy and costs of LES and DNS models, Reynolds-Averaged Navier-Stokes (RANS) sim-
ulations are now widely used in academia and industry. Figure 1.4 illustrates these models,
from the most simplified to the most accurate, along with the different assumptions that allow
simplifying the physical fidelity.
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POTENTIAL FLOW
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Figure 1.4: Hierarchy of Models for Industrial Applications [Jameson & Fatica, 2003]

As presented in the previous section, the full 3D geometric rendering takes into account all
the sections and approaches the whole with an interpolation model. The final modeling is more
realistic but involves considering not only one group of variables defining the shape of a single
section, but several, and thus multiplying the data processing and physical simulation time. In
such cases, other approximations and assumptions can also be useful to speed up the design and
pre-design phases, namely the mesh size or the use of lowering the convergence requirements of
the solver to leverage partially converged models as a first design trend. Throughout the design
process, these models are essential for industrial design. Budgetary constraints direct future
challenges towards a higher fidelity for lower cost, this is the main driver of the multi-fidelity
modeling strategy. This approach consists in using several levels of solver costs, ranging from
potential methods to Euler and RANS, to build a model with different levels of fidelity. The
main interest of this strategy is to use a less accurate model when the required accuracy is
sufficient and to correct with more limited accurate data, when it is not possible to have this
information with the low fidelity model. This concept has begun to gain a foothold in research,
industry and academia, and its efficiency has been demonstrated mainly in the Computational
Fluid Dynamic (CFD) field. It is also promising in researching an optimal where the use of the
solver is repetitive and sometimes only requires a trend or direction of search.

1.2.3 Algorithms to solve design optimization problems

In shape optimization, a first step is to define the geometry to be optimized and to use it in
an optimization loop that links these parameters to a physical model, allowing to evaluate the
physical quantities to be optimized (such as energy efficiency, weight, etc.). The optimization
problem can then be defined mathematically and solved in the optimization loop. There are
direct and inverse optimization solution methods [Li & Zheng, 2017a]. Inverse methods in-
volve identifying the shape of the profile from the distribution of a quantity of interest such as
the pressure coefficient, by iteratively changing the geometry. There are various optimization
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methods that use derivatives, called adjoint methods, only in the underlying situation where the
solver provides this information. The second category is direct methods, designed to maximize
or minimize quantities of interest while respecting one or more constraints. The codes gener-
ate directly these quantities according to the geometry parameters to evaluate the flow solution.
These values must meet the desired constraints and flow conditions, otherwise, the initial airfoil
geometry is modified. This process is repeated until the conditions are met. The entire process
is expensive, as it requires repeated calls to the solver until convergence is achieved. Direct
solution optimization often uses both gradient and stochastic methods. Gradient methods use
information about the derivative of the objective and constraint functions to identify the search
direction of the optimization. The search is based on a first point where the local gradient is
evaluated for a change in the design variables. The search direction can be obtained by the
steepest descent method, the conjugate gradient method, quasi-Newton techniques, or adjoint
formulations. The optimum is local, there is no guarantee that it is also global, and can be
obtained if the functions are differentiable and locally convex.

Information about the gradient is not always available. To remedy this, more global meta-
heuristics [Sahab et al., 2013] such as the optimization methods Surrogate Based-Optimization
(SBO) (which will be detailed in the next section). These are most often stochastic methods and
are more likely to identify the global optimum. This is the case for example with evolutionary
algorithms where the starting points of the optimization are a set of candidates that will undergo
transformations such as mutation and recombining in the genetic algorithm, allowing to rank
the individuals to select the best candidate for the optimization problem. These transformations
allow exploring the function in a more global way by avoiding that the function depends on the
starting point and remains stuck at a local optimum.

These approaches, also known as gradient-free or zero-order methods, require the evalua-
tion of the objective function, while gradient-based approaches additionally require the gradi-
ents of the objective function with respect to all design variables. The gradients can be com-
puted by repeated evaluation of the function in a finite difference scheme [Martins et al., 2003]
or by the adjoint, method [Jameson, 2000, Duta et al., 2007]. Many zero-order optimization
methods are inspired by nature and are based on meta-heuristics. Some of them exploit the
design space by a local search, like Tabu search [Glover, 1989] and simulated annealing [Kirk-
patrick et al., 1983]. Others reproduce population evolutions inspired by nature, such as particle
swarm optimization [Kennedy & Eberhart, 1995] and evolutionary algorithms [Galvan et al.,
2003]. They have been successfully applied to many turbomachinery applications, including
multi-objective and multidisciplinary optimization problems [Pierret, 2005, Leborgne et al.,
2015, Li & Zheng, 2017b]. One of the most notable limitations of gradient-free algorithms is
the high amount of function evaluation required to incrementally reach the optimum, typically
for certain aerodynamic problems that can reach hundreds of design parameters.

In the context of gradient-free optimization where the search for the optimum requires many
evaluations, simulations must be accelerated to maintain viable execution times. Considering
the state of the art, the convergence of gradient-free optimization methods are accelerated ei-
ther by reducing the complexity of the objective function evaluation by replacing it with a
simpler model within SBO (a so-called meta-model or surrogate model) that generates a faster
but less accurate evaluation of the design. In the same spirit, reduced-order methodologies
propose to directly replace the partial differential equation (PDE) by an approximate model,
these approaches require access to the solver and are called intrusive. The non-intrusive ap-
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proaches [Coelho et al., 2008, Coelho et al., 2010a] are able to approximate the full-field out-
puts and have demonstrated a better accuracy compared to the previous approach based on
an approximation of the objective function. Finally, a other way is to exploit the advances in
computer science by using high performance computing (HPC) to accelerate the execution of
numerical simulations [Arabnia, 2012] . The former methods accelerate the convergence of
the optimization to improved designs for a given computational budget, while the latter adapt
the optimization to higher computational power. In this thesis, work on HPC is out of scope,
and our interest is to improve the budget of the optimization loop by accelerating convergence
through the non-intrusive Multi-Fidelity (MF) SBO framework.

1.3 Motivation of the thesis
The focus of this thesis is to improve the computational cost by reducing the errors as much as
possible through multi-fidelity. The combination of High-Fidelity (HF) and Low-Fidelity (LF)
has the potential to improve the data of LF solvers while keeping a reasonable resolution time.
On the other hand, the knowledge of the physical model is extended by taking into account
more information, brought by the Reduced-Order Model (ROM) approaches, thus increasing
the representativeness and the physical accuracy.

• Multi-fidelity Aerodynamic modeling : An improved benefit from low-cost informa-
tion for more efficiency

HF simulation models such as 3D-RANS and LES have reached a level of maturity that
allows them to be sufficiently predictive to be used in aeronautical design optimization
loops. However, they imply an intensive use of computing resources ranging from a few
hours to entire days of computation on supercomputer architectures and the generation
of several gigabytes of data. To tackle this issues, we propose to take advantage of sev-
eral levels of fidelity. LF models such as simplified physics can be used to compute
approximations of fluid flow using limited resources. This is the so-called MF approach,
which combines the respective cost and accuracy advantages of LF and HF in a common
framework. The use of multiple fidelities has been introduced to temper the cost of high-
dimensional multi-disciplinary design breaking the ”curse of dimensionality” [Taylor &
Einbeck, 2013, Shan & Wang, 2010]. This concept allows to predict improved design
location by taking into account a large amount of LF cheap data and few expensive HF
available data and have proven their efficiency in many applications in aerodynamic op-
timization.

• Full-field surrogate model : Better benefit from the available information

While surrogate modeling techniques mine embedded quantities, reduced order model
captures spatial information in a model approximation by expressing the solution as a
linear combination of a limited number of modes. Thereby, assuming that few indepen-
dent modes govern the system dynamics, a significant reduction in the computational cost
of the solution can be achieved [Coelho et al., 2008]. This approach takes into account
the full field outputs of the quantities of interest. It consists in building a reduced order
model of the solver and expressing, the objective function and the constraints in terms
of approximate field. In addition to saving time, this approach has the potential to better
understand the detailed characteristics of the flow at each optimization iteration.
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• Adaptive surrogate based optimization : Off-line/on-line learning for a more efficient
optimization

ROM-based SBO and MFM raise predictability issues when ROM-based surrogates rely
on offline sampling, resulting in costly optimization procedures. To address this prob-
lem, offline-online strategies, also known as adaptive strategies, are employed to tune
the metamodel as the optimization search progresses. The enrichment criterion uses a
merit function to predict both the accuracy improvement and the optimization goal. The
next point to be evaluated is selected to maximize this criterion iteratively until a suitable
stopping condition is reached. The objective is to select the most relevant points in order
to reduce the number of calls to the solvers, which would answer a given design problem.
Adaptive selection has the advantage of making better use of the available information in
a time-efficient way.

1.4 Contributions of the thesis

The present research focuses on the development of efficient adaptive non-intrusive multi-
fidelity substitution models that provide a comprehensive approximation of complex turbo-
machinery simulations. In this PhD thesis, three main original contributions may be identified:

• Developpement of a stochastic Multi-fidelity modelization that take into account the
full-field simulation outputs: The proposed method is a metamodel that approaches the
quantities of interest from different levels of cost and accuracy of solver. It takes the so-
called multi-fidelity corrective approach from the literature with the difference that the
correction is not applied to the low-fidelity but rather to the multi-fidelity directly. The
multi-fidelity representation comes from a method used in the literature in the framework
of reduced models. It consists in an orthogonal projection of the low-fidelity snapshots on
the reduced basis built from the high-fidelity data. It is constructed from the full field data
relying on a Reduced Basis method from the literature. Thereby, the physical information
is better taken into account in order to improve the physical representativeness.

• Adaptation of intermediate approximation level under expensive low-fidelity opti-
mization : Each MFNIRB prediction involves a call to the LF solver. The problem is that
an SBO procedure requires several evaluations, like the GA which needs a high number
of evaluations quickly becoming intractable for complex optimization problems. There-
fore, a reduced order model for the LF function itself was introduced, thus introducing an
additional level of fidelity in the MFNIRB scheme. The idea of the proposed approach
is to learn the Non-Intrusive Proper Orthogonal Decomposition (NIPOD) basis in offline
phase, and use it to predict the LF vectors online.

• Enrichment criteria adapted to the proposed method : The additive corrections are
modeled by a stochastic metamodel based on the Gaussian process. The proposed idea
is to use this framework to enrich the multi-fidelity metamodel online. The method im-
proves the surrogate model by using statistical filling criteria adapted to account for the
violation of constraints such as the probability of improvement and the expected im-
provement criteria from the literature.
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• Integration in Minamo : The multi-fidelity methodology has been coupled to the
Global Optimization commercial software Minamo used on complex multi-modal opti-
mization at Safran Aircraft Engines.

1.5 Thesis outline

The thesis is divided into five chapters. The work is organized in terms of an introduction to the
objectives of the thesis, followed by a literature review, the concept development, and finally,
the proposed approaches are implemented and applied to analytical and industrial test cases.

Chapter 1 introduces the industrial context, the main motivations, and contributions of this
thesis in optimization of aeronautical design. First, the need for innovation in aircraft engine
design is presented and advances the need to optimize existing prototypes, particularly of the
currently studied innovative Open-Fan engine. Then, the components of the optimization loop
dedicated to the design are presented. On the one hand, the definition of the geometries by
adapted parametrization methods, then simulations at different cost levels, motivate the search
for multi-fidelity approaches to improve the physical representation progressively. On the other
hand, solving the optimization problem requires mathematical programming methods. Integrat-
ing both aspects within a surrogate-based framework guides the research work presented in the
present work.

Chapter 2 reviews the principal axes of the solutions for Central Processing Unit (CPU)-
intensive optimization problems proposed in the literature. On the one hand, scalar and full-
field optimization in the context of single-fidelity and multi-fidelity are presented. On the other
hand, full-field SBO methods relying on the Reduced-Order Models are detailed. For each ap-
proach, the corresponding adaptive sampling strategies are presented. The purpose is to review
methods integrating costly simulations within adaptive surrogate-based optimization. Adaptive
methods reduce the cost by taking into account the information acquired progressively during
the optimization iterations. In this spirit, the multi-fidelity concept exploits the range of avail-
able solvers, even of variable accuracy, to merge data from multiple fidelity levels. Finally,
model reduction methods can also achieve cost reduction, offering better insight into detailed
solution features brought by full-field consideration.

Chapter 3 details the adaptive Multi-Fidelity Non-Intrusive Reduced-order Based method,
involving two-fidelity levels of full-field simulation responses and a corresponding enrichment
strategy. Contrary to standard non-intrusive Proper Orthogonal Decomposition (POD) relying
on the regression of POD coefficients, the proposed contribution relies on the multi-fidelity
trend obtained by the projection of low-fidelity vector fields on the reduced basis obtained
from a limited number of high-fidelity runs. Then, the interpolation of quantities of interest
is enforced by Gaussian Process regression (kriging). The scheme is tested on an analytical
two-level fidelity case derived from quantities inspired by aerodynamic vector outputs. A com-
parative study is performed between constrained single- and bi-fidelity optimization using a
surrogate-based optimization loop. The multi-fidelity fusion appears to exhibit the potential for
low-fidelity to capture features requiring otherwise expensive high-fidelity data. Thus, improv-
ing low-fidelity requires a reduced cost compared to high-fidelity only.

Chapter 4 introduces an additional, intermediate level of low-fidelity non-intrusive POD
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vector approximation for the cases when even the low-fidelity requires non-negligible compu-
tational effort. The reduced multi-fidelity method is detailed and adapted to both the single and
multi-fidelity enrichment procedure, exploiting the statistical information given by the mean
and variance of the Gaussian Process Regression. The method requiring to call the low-fidelity
solver at each evaluation within the SBO, the approach is further improved by the additional
NIPOD level. Experiments are conducted to test the introduced enrichment criteria and meta-
modeling approaches on constrained single-objective optimization. In addition, tests are con-
ducted to improve the handling of multi-fidelity data, suggesting further work on the multi-level
fidelity enrichment strategy.

Chapter 5 deploys the multi-fidelity framework on an industrial case and investigates how
the abstract concepts presented in the previous chapters may be implemented within the simulation-
based design process. The choice of the industrial application case is the Open-Fan engine,
currently of interest to Safran Aircraft Engines designers. The LF consists of a Lifting Surface
model and the HF RANS aerodynamic model of the Open-Fan propellers. The two fidelity lev-
els of simulations allow stating the efficiency maximization problem constrained by mechanical
resistance constraint. The corresponding MFNIRB model is illustrated within the optimization
software Minamo edited by Cenaero.

Chapter 6 terminates the thesis with general Conclusions and perspectives on furture re-
search.

Chapter 3 is derived from a peer-reviewed research paper in Advanced Modeling and Sim-
ulation in Engineering Sciences titled ”Constrained multi-fidelity surrogate framework using
Bayesian optimization with non-intrusive reduced-order basis”. The bibliography research
proposed in Chapter 2 is issued from the paper, currently under review by Advanced Mod-
eling and Simulation in Engineering Sciences journal, titled ”Metamodeling techniques for
CPU-intensive simulation-based design optimization - a survey”.



Chapter 2

Litterature review

2.1 Introduction

Several computation methods with varying fidelity1 have been developed over the past decades
to simulate fluid dynamics [Jameson et al., 2002]. High-Fidelity (HF) simulation models such
as 3D-Reynolds-Averaged Navier-Stokes (RANS), and Large Eddy Simulation (LES) have
reached a maturity level that allows them to be predictive enough to be used within aeronautical
parts design optimization loops [Pinto et al., 2017]. However, these imply extensive computer
resource utilization ranging from hours to full days of computation on supercomputer archi-
tectures and the generation of several gigabytes of data. On the other hand, Low-Fidelity (LF)
models such as simplified physics, categorization [Fernández-Godino et al., 2016, Peherstorfer
et al., 2018], mesh coarsening [Benamara, 2017, Le Gratiet, 2013] or relaxed convergence cri-
teria [Courrier et al., 2016], can be used to compute fluid flow approximations using limited
resources. The Multi-Fidelity (MF) optimization approach combines the LF’s and HF’s respec-
tive advantages regarding cost and precision within a common framework. The first category
of Multi-Fidelity Model (MFM) consists of exploring the LF values to determine the most
interesting zones in the design space (for example the region of interest for an optimization
problem) to reduce the calls to the expensive HF solver. This type of methods is not properly
referred to as MFMs, since the HF and LF levels are not merged into a single model. The MF
combination techniques use most of the time a surrogate model to integrate multiple fidelity
levels.

Surrogate modeling consists in building a regression model from a set of available samples
obtained from a Design of Experiment (DoE) allowing to predict the values of the function at
interesting points. It avoids repeated calls to the simulation software in the design loops. Ap-
plications are uncertainty analysis, statistical inference (data-driven) [Wang et al., 2019,Cozad
et al., 2015] or multi-disciplinary [Sobieszczanski-Sobieski & Haftka, 1996, Coelho et al.,
2010b, Martins & Lambe, 2013, Colomer et al., 2021], shape [Xiao et al., 2010, Skinner &
Zare-Behtash, 2017, Han et al., 2020] or topology optimization [Mukherjee et al., 2021]. Re-
views on Surrogate Based-Optimization (SBO) are provided by [Simpson et al., 2001, Queipo
et al., 2005, Forrester & Keane, 2009, Shan & Wang, 2010] where references on DoE tech-
niques, surrogate modeling, and SBO applications are detailed. Later, SBO techniques applied
to the aerodynamic field were reviewed by [Yondo et al., 2018], and a more general review
was published by [Ye & Pan, 2019] on surrogates, DoE, and adaptive strategies in engineering

1The term fidelity refers here to both the time of a calculation and its accuracy [Fernández-Godino et al., 2016].
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applications. In the present review, we focus on the construction of surrogate models when
multiple levels of fidelity are available, in the SBO context.

Alternatively to the SBO frameworks, the evaluation costs may be also reduced by two fam-
ilies of Reduced-Order Model (ROM)s: the intrusive projection-based models [Amsallem et al.,
2012, Ştefănescu et al., 2015, Baur et al., 2011] and Non-Intrusive ROMs [Xiao, 2016, Dupuis
et al., 2018]. These methods have provided important cutoffs in the computational cost of Com-
putational Fluid Dynamic (CFD) models, but also in Numerical Structural Mechanics (CSM)
especially in optimization [Xiao et al., 2017], Uncertainty Quantification (UQ) [Chocat et al.,
2015,Lataniotis et al., 2018] or inverse resolution [Du et al., 2019]. Other approaches combine
the MFM and ROM within a surrogate to solve costly optimization [De Lozzo, 2013,Benamara,
2017,Kast et al., 2019]. The use of multiple fidelities has been introduced to temper the cost of
high-dimensional multi-disciplinary design breaking the ”curse of dimensionality” [Taylor &
Einbeck, 2013, Shan & Wang, 2010]. This concept allows to predict improved design location
by taking into account a large amount of LF cheap data and few expensive HF available data.

However, both ROM and MFM based SBO raise predictability issues when ROM-based
surrogates rely on offline sampling, leading to costly optimization procedures [Guénot et al.,
2013, Choi et al., 2020, Song et al., 2018]. To address this issue, offline-online strategies, also
called adaptive strategies, are employed to adapt the ROM as the optimization search pro-
gresses. These approaches have recently been highlighted by [Ye & Pan, 2019] in its state-of-
the-art paper on SBOs as one of the current solutions to the challenges of large-scale modeling.
The enrichment criterion uses a merit function to predict both the improvement in accuracy
and the optimization objective. The next point to be evaluated is selected to maximize this
criterion iteratively until an adequate stopping condition is reached. The goal is to choose the
most relevant points in order to reduce the number of calls to solvers, that would answer a
given design problem. The strategies for selecting sampling points can be classified as infill
sampling [Sóbester et al., 2005, Guénot et al., 2013] adaptive [Guénot et al., 2013, Liu et al.,
2018, Wackers et al., 2020], response-based [Boopathy & Rumpfkeil, 2013], a posteriori, se-
quential and online approaches. Contrary to the domain-based and space-filling approaches
where the training database is selected according to its point-to-point distance distribution, the
adaptive selection is based on the surrogate model’s information.

The solutions to the Central Processing Unit (CPU) challenge of repetitive costly simula-
tions reviewed in this Chapter aim at reducing the training and evaluation costs of metamodels.
On the one hand, the MFMs combine variable simulation costs and, on the other hand, the
ROMs allow to handle high-dimensional outputs while taking into account the vector represen-
tation of the simulation data (typically the discretized solutions of fluid state variables in CFD).
Compared to scalar approximation models of Quantities of Interest (QoI), they are supposed to
provide better insight into the physical model [Coelho et al., 2008]. Also, sampling methods
can be used to minimize the number of calls to expensive solvers while maintaining sufficient
representativeness of the simulated physical model.

This Chapter reviews scalar and full-field SBO single- and MF frameworks. Section 2.2
presents the SBO methods. Scalar MFMs are presented in Section 2.3, ROMs in Section 2.4,
and finally, vectorial MFMs based on ROMs in Section 2.5. For each surrogate, the correspond-
ing adaptive sampling strategies are overviewed.
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2.2 Surrogate-based optimization

This section presents SBO. The surrogate models are presented on Section 2.2.1, Section 2.2.2
introduces general and non-adaptive sampling methods and Section 2.2.3 the adaptive sampling
approaches.

In the context of industrial design, the QoI are used to determine whether the chosen techno-
logical solution meets the functional requirements. A performance criterion generally referred
to as an objective function J (χ) can be evaluated at the design point χT = (χ1 ... χd), where
d is the design space dimension. This function is minimized under one or more constraints to
meet the design specification. The scalar QoIs (lift, drag, ...) are post-processed from the simu-
lator output f(χ) (velocity, pressure field, ...). The classical optimization problem is defined in
a design space D by the objective J , equality and inequality constraints h and g respectively

χ∗ = arg min
χ∈D

J (f(χ))

s.t. gi(f(χ)) ≤ 0, i = 1, ..., p
hj(f(χ)) = 0, j = 1, ..., q

(2.1)

whereχ is the design variable,D ⊂ Rd, χ∗ is the optimum of the objective function J ∈ R
subjected to the constraints g, h.

In simulation-based optimizations, the QoI are evaluated by post-processing simulation
results, requiring repetitive calls to time-consuming software within the optimization loops.
Therefore, the SBO consists in solving the approximate problem defined by the approximate
quantities noted as J̃ , g̃, and h̃, respectively

χ̃∗ = arg min
χ∈D

J̃ (χ)

s.t. g̃i(χ) ≤ 0, i = 1, ..., p

h̃j(χ) = 0, j = 1, ..., q
(2.2)

The SBO steps are illustrated in Figure 2.1. First, is the off-line phase, samples are evalu-
ated X = {χ(0) , ... ,χ(M)} using DoE methods as reviewed by [Giunta et al., 2003, Simpson
et al., 2001] or, in the specific field of aerodynamic applications, by [Yondo et al., 2018]. Once
the simulation has evaluated the samples f(χ(i)) with i = {1, ... ,M}, the surrogate model is
built for the QoI Q = {J̃ , g̃, h̃} and the optimization is performed in the online phase.

DoE Simulation QoI
Surrogate

model
Optimization STOPSTART

Figure 2.1: The offline SBO strategy
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2.2.1 Surrogate modeling

Common metamodels include

• polynomial regression [Shoesmith et al., 1987, Simpson et al., 1998],

• Gaussian Process Regression (GPR) including Kriging [Cressie, 1990, Matheron, 1963,
Kleijnen, 2009], developed in the geostatistical domain by [Krige, 1951],

• Radial Basis Function (RBF) [Dyn et al., 1986, Powell, 2001, Gutmann, 2001],

• Moving Least Squares (MLS) [Lancaster & Salkauskas, 1981, Coelho et al., 2010b],

• Support Vector Regression (SVR) [Smola & Schölkopf, 2004],

• Artificial Neural Networks (ANN) [Cheng & Titterington, 1994].

Although polynomials are extensively cited in the literature, their use is mainly limited to
low-dimensional, linear or quadratic cases [Shan & Wang, 2010]. RBF and Kriging metamod-
els can handle non-linear engineering approaches. While RBF imply isotropic kernels, Kriging
models are based on the optimization of anisotropic ones requiring more hyper-parameters to
tune and becoming untractable for high-dimensionality [Regis & Shoemaker, 2013].

Excellent reviews are available for response surface modeling, however, the validation of
response surfaces is necessary. In simulation based applications, the number of data is generally
insufficient to create distinct training validation sets. Specific approaches to model validation
have therefore been proposed, some of them being independent of the surrogate method at
hand. In the learning phase, an error estimator is needed to optimize the hyper-parameters of
the approximate model. Gaussian-processes are commonly tuned by the likelihood maximiza-
tion, employing evolutionary or gradient-based algorithms [Rasmussen & Williams, 2006,Toal
et al., 2008]. Methods estimating the predictor error without generating an additional set of
observations, include CV [Currin et al., 1991] and the bootstrap [Efron, 1979]. [Kohavi, 2001]
compares bootstrap to CV and concludes to better performance for ten-fold CV, on the specific
case considered. The overall surrogate error is usually validated by Cross-Validation (CV) or
sensitivity estimation [Forrester & Keane, 2009]. K-fold-CV consists in removing k samples
from the training set and estimating the model accuracy on these experiments. Setting k=1
yields the Leave-One-Out (LOO) procedure. Such methods build the validation test where er-
ror metrics can be evaluated to quantify the overall error typically with the Mean Square Error
(MSE), the Root MSE (RMSE) and the Integrated MSE (IMSE) [Le Gratiet, 2013]. A more
local approach provides a partition of the design space using the Variable Error Value with
Sampling Points (VESP) [Chowdhury et al., 2013] assigned to different partitioned regions.
Thereafter, surrogate models are built iteratively using different subsets of samples and tested
on the remaining points. Local accuracy can also be quantified by the Maximum Absolute Er-
ror (MAE). The correlation between two function responses can be measured by the coefficient
R [Goel et al., 2007] when the relationship between the predicted response and the actual re-
sponse is linear, one can also find r, the Pearson correlation coefficient [Song et al., 2019b] or
its alternatives for non-linear models [Smarandache, 2008].
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2.2.2 Off-line design of Experiment

Sampling techniques for numerical experiments can be grouped into two main categories,
namely Classical DoE and Modern DoE or Design and Analysis of Computer Experiments
(DACE) [Simpson et al., 2008,Manlig & Koblasa, 2014]. [Giunta et al., 2003] presents general
summaries of Classical DoE and Modern DoE methods used in aeronautics.

To obtain a good quality approximation on the whole domain, the points must be distributed
as evenly as possible in space. Classical DoE methods for physical (in vitro / in vivo) experi-
ments tend to allocate the sample points in the way to minimize the effect of the random error
term. They include the full factorial and the fractional factorial design [Mason et al., 2003], tak-
ing samples from regularly spaced sites. Its main limitation is that the total number of design
points increases exponentially with the problem dimension [Ben Salem, 2018]. The central
composite [Myers et al., 1989] and the Behnken Box design [Box & Behnken, 1960] follow
a similar principle but replicate samples are taken making these methods less interesting for
computer (in silico) experiments considered as deterministic.

A widely used, albeit costly, random sampling methods are defined as the Monte Carlo and
the Markov Chain Monte Carlo (MCMC) algorithms [March & Willcox, 2012b], however the
number of simulations involved becomes rapidly prohibitive. Quasi-random methods gener-
ate well-distributed sets of points with a controlled size. Various criteria are used to fill the
DoE, such as Minimax and Maximin models, Kullback-Leibler, Audze-Eglais and Maximum
Entropy Sampling (MES) [Shewry & Wynn, 1987]. Another approach maximizes Euclidean
distance between all points in the DoE [Morris & Mitchell, 1995]. Among the modern DoE
methods, [Giunta et al., 2003], one of the most commonly used is the Latin Hypercube Sam-
pling (LHS) [McKay et al., 1979], distributing a fixed number of samples independently of the
DoE dimensions. The Voronoi Latinized Centroid Tesselation is an extended version of the
LHS technique [Saka et al., 2007], improving its coverage. Sampling can also be constructed
using Analysis Of VAriance (ANOVA), Sobol [Sobol, 1967] and Halton [Halton, 1960] sensi-
tivity analysis, often used to identify the parameters that most influence the output values.

Above space-filling techniques attempt to distribute the sampling points evenly in the design
space. However, there is no general definition of an a priori number of samples in aerodynamic
problems resulting in the desired precision [Yondo et al., 2018], as QoI are often non-linear
or discontinuous. Therefore, adaptive sampling approaches are developped to progressively
improve the quality of the surrogates.

2.2.3 Adaptive sampling

[Sacks et al., 1989] introduced sequential sampling using the model information to improve
the sampling’s quality with posterior data. In the literature, a sequential strategy is said to be
adaptive if it improves the DoE without considering the experiment outputs. Sample location
has been found to have a significant impact on the estimated error [Cai et al., 2017, Guo et al.,
2021] and is improved when adaptive sampling methods are used to select new samples in
areas of the design space where the error estimate is higher. [Liu et al., 2018] present a compre-
hensive review of global surrogate sampling, classifying the methods into one-shot, sequential,
sequential adaptive, and multiple sampling categories. Another review presents methods tack-
ling high-dimensional black-box problems by [Shan & Wang, 2010]. This section presents
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some of the existing enrichment criteria applied to the SBO framework.

The objective of adaptive procedures is to find a sufficiently representative model allowing
for an efficient convergence of the optimization problem.They are generally based on an infill
criterion (Figure 2.2), selecting new sample χ to be added to the current training setX ⊂ D.

DoE Simulation QoI
Surrogate

model
Optimization

STOP

START

Enrichment
criterion

Figure 2.2: The adaptive SBO strategy

The most common infill sampling criteria are built from stochastic metamodels in a Bayesian
scheme. [Žilinskas, 1992, Brochu et al., 2010] select the evaluation points sequentially taking
into account a compromise between exploration of high uncertainty areas and intensification
to improve over the current best observation. Regarding single-objective bound-constrained
optimization, the Expected Improvement (EI) was popularised by [Jones & Schonlau, 1998]
in the Efficient Global Optimization (EGO) framework. Later, the EI criterion has been ex-
tended to handle constraints [Parr et al., 2010, Parr et al., 2012] and to address multi-objective
problems2. In the general EGO framework, [Picheny et al., 2013] compared EI, Augmented
EI [Huang et al., 2006b] and the Weighted MSE Criterion for a noisy optimization benchmark.
The weighted EI extension is proposed by [Sóbester et al., 2005] in order to control the balance
between exploitation and exploration in a constrained optimization framework. [Scott et al.,
2011] generalized the EGO for multidimensional variables in the noisy Gaussian process and
gradient-knowledge framework. These strategies are also categorized by the survey [Liu et al.,
2018] as variance-based adaptive sampling approaches including :

• Minimization and maximization of the predicted variance or Mean Square Error [Liu,
2012],

• Lower Confidence Bounds (LCB) [Brochu et al., 2010],

• Upper Confidence Bounds (UCB) [Auer, 2002]

• Gaussian Process-UCB [Srinivas et al., 2010],

• EI [Jones & Schonlau, 1998],

• Probability of Improvement (PI) [Brochu et al., 2010],

• Entropy search [Villemonteix, 2009, Hennig & Schuler, 2011].
2See, e.g., Section 2 of [Feliot et al., 2017].
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[Currin et al., 1988] applied a two-stage optimal design based on the maximum entropy
criterion to gain insight into a circuit-simulator example. [Sacks et al., 1989] used two-stages
optimal design based on Integrated Mean Squared Error (IMSE) criterion for the same exam-
ple. [Mackman & Allen, 2010] compared sequential sampling methods for the generation of
surrogate aerodynamic models. [Regis, 2015] coupled the Trust Region method (TR) to the
EGO and compared to the standard EI and an adaptive criterion based on the RBF [Regis &
Shoemaker, 2013] on several test problems including the groundwater application based on a
36-dimensional simulation concluding that the proposed strategy is most efficient in the high-
dimensional configuration. [Li et al., 2010] developed an adaptive DoE method based on accu-
mulative error inspired by the greedy algorithm’s principles [Veroy et al., 2003, Nguyen et al.,
2010], and favoring regions of space where the outputs are non-linear. CAMM (Continuous
And Multi-Modal) regions of the design space corresponding to multi-modal, noisy responses
with a tendency to abrupt variation are identified and sampled until all suspected CAMMs are
explored. This method was compared to the maximum entropy design and the maximum dis-
tance metric. It was concluded that it outperforms the other methods in terms of RMSE in the
majority of the engineering examples presented.

2.3 Multi-Fidelity management
The MF approach consists in merging LF with HF data to produce surrogate models at af-
fordable costs. A study of MF methods has been published by [Peherstorfer et al., 2018] in
the context of uncertainty propagation, inference, and optimization. It was followed by an
overview [Giselle Fernández-Godino et al., 2019], which questions the added value of MF ap-
proaches and how they can be used most effectively. MFM have been grouped by [Fernández-
Godino et al., 2016] into three categories, the first where only HF quantities are estimated
by a surrogate model, secondly, approaches where both levels are combined within the same
metamodel, and finally, the category in which LF is only an enabler of HF modeling. This
last category is related to the filtering approaches as it consists in interrogating LF to decide
when to use HF models. A more general review is completed by [Yondo et al., 2018] on design
space sampling, model selection, ROM, and assisted surrogate models in aeronautics. MF is
presented as one of the recent solutions to improve simulation efficiency. This section gives an
overview of the main MF approximation methods in order to determine each method’s appli-
cability according to our knowledge of the problem at hand.

2.3.1 Correlation analysis
The efficiency of MFMs is conditioned by the correlation between levels of fidelity and their
evaluation cost. This section presents the MFM surrogates and introduces examples of quality
metrics to improve their efficiency.

A comparison of surrogate quality criteria [Hu et al., 2018] concludes MSE to be the most
efficient in the MFM framework, followed by LOO and Predictive Estimation of Model Fidelity
(PEMF) error. a MFM metamodel quality metric involving PEMF proposed by [Mehmani et al.,
2015] chooses between multiple fidelity levels. [Song et al., 2019b] compared the commonly
used R2 metric (or performance criterion) to the Pearson Correlation Coefficient (PCC) in a
context of multiple levels of fidelity in order to introduce the correlation impact on MFMs. The
PCC measure between two random variables describing the correlation between HF and LF
functions is defined by [Toal, 2015] for MFMs :
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r2 =

 ∑M
i=1(QHF (χ(i))− Q̄HF (χ(i)))(QLF (χ(i))− Q̄LF (χ(i)))√∑M

i=1(QHF (χ(i))− Q̄HF (χ(i)))2

√∑M
i=1(QLF (χ(i))− Q̄LF (χ(i)))2


2

(2.3)

where M is the number of observations of the LF and HF solvers QLF and QHF , respec-
tively and Q̄LF and Q̄HF the corresponding means. [Toal, 2015] compares the impact of RMSE
and the correlation metrics of the LF and HF functions. It has been observed that the r2 metric
is better suited than RMSE to identify the LF-HF correlation. Using the correlation measures,
it was shown that the amount of LF data must be greater than that of HF and the LF simulation
budget must be no greater than 80% of the total simulation budget but at least higher than 10%
to be worthwhile to use a MF representation. Thus, merging existing LF data with expensive
HF data is not always cheaper than a single-fidelity method [Giselle Fernández-Godino et al.,
2019]. Correlation, cost ratio and other error metrics are crucial to measure the benefit of MF
models, which depends on the context (optimization, UQ, etc.). Many data fusion methods are
detailed in the next section, but also dedicated criteria to maximize the benefit of these methods
in the context of optimization.

2.3.2 Data fusion

2.3.2.1 Corrective approaches

The concept of MF was originally introduced in linear additive [Knill et al., 1999] and mul-
tiplicative [Haftka, 1991, Chang et al., 1993] approaches used in gradient-based optimization
and was applied to a high speed civil transport aircraft wing. [Hutchison et al., 1994] applied a
polynomial correction term on aerodynamic drag approximation. The main idea is to consider
the LF model as a general trend to exploit by adding approximation of the difference (or ratio)
between the LF and HF quantities. The corrective methods relie on the supposition of a re-
lationship between different levels of fidelity, allowing to better approximate a fine HF model
with its associated coarse LF using additive [Tang et al., 2005,Robinson et al., 2006,Choi et al.,
2009a], multiplicative [Balabanov et al., 1998, Alexandrov et al., 2001] or hybrid (also called
comprehensive) corrections [Zheng et al., 2013, Zhou et al., 2017].
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Figure 2.3: Illustration of Multi-Fidelity scaling (or corrective) approaches by [Giselle
Fernández-Godino et al., 2019]

Figure 2.3 illustrates a non-linear function form in the review of MFMs methods [Giselle
Fernández-Godino et al., 2019]. The comprehensive approximation is closer to the HF targeted
function and appears to be the most accurate.

2.3.2.2 Space-Mapping

(SM) methods, developed by Bandler et al. in 1994 in cartography reviewed by [Bandler et al.,
2004] and applied to the microwave circuit design make corrections at the input of a model,
rather than at its output. They are based on the assumption that the set of entry points of a HF
model is a geometric transformation of the HF models [Bakr et al., 2000, Leifsson & Koziel,
2015]. The main idea is to optimize the link or mapping between the spatial parameters LF
and the HF model’s spatial parameters to meet optimization specifications. The parameters
are obtained by minimizing the difference between the available HF values and those of the
metamodel. HF points generally update this approximation. This method was coupled with
the Trust Region Model Management (TRMM) by [Robinson et al., 2008]. The parameters,
defined on different design spaces, are linked by a corrected SM. It is used with a TRM of
sequential-quadratic programming for two design optimization problems related to aerospace.
These approaches allow different input dimensions [March & Willcox, 2012a] in the LF and
HF models.

2.3.2.3 MF Kriging

are known as co-Kriging [Myers, 1984, Kennedy, 2000, Forrester et al., 2007, Perdikaris et al.,
2015, Kontogiannis et al., 2020, Ruan et al., 2020] and Hierarchical Kriging (HK) [Han &
Zhang, 2012, Zhang et al., 2018, He et al., 2021]. The HK model developed by [Han & Görtz,
2012] redefines co-Kriging considering the LF function’s Kriging as the trend of the Kriging
model for the expensive HF function avoiding the difficulty associated with building cross-
covariance.
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2.3.2.4 MF RBF

As noticed in the single-fidelity context (section 2.2), the RBF approximation is more suit-
able for high dimensional problems. Therefore, this motivated the adaptation of RBF to MF
by [Reisenthel et al., 2006] for experimental and computational integrated data for a missile
configuration, and was later applied by [Rendall & Allen, 2007] for the surface pressure of air-
craft wings. [Durantin et al., 2017] developed a co-RBF extension yelding an accuracy of the
same order as that of co-Kriging, while reducing its training cost, especially in high dimension.

2.3.2.5 MF polynomial chaos

[Ng & Eldred, 2012] originally proposed the MF Polynomial Chaos Expansion (PCE) in the
UQ field using an additive correction between fidelity levels. An improvement of the HK has
been proposed by [Palar & Shimoyama, 2017] through the use of PCE and Kriging as a HF
surrogate model, then extended by additional polynomial terms to improve the accuracy within
an inviscid RAE 2822 CFD application. The addition of a first order polynomial to the HK
model has been shown to improve predictive performance. [Lickenbrock et al., 2020,Rumpfkeil
et al., 2021] proposed a MF model based on a scattered PCE in the context of a CFD case
illustrated in Figure 2.4. This bi-fidelity CFD case demonstrated that the MF PCE was able to
capture the lift coefficient trends.

(a) Panel model of ESAV corresponding to the
half-span Low-Fidelity model.

(b) Outer mold line (OML) of ESAV geom-
etry representing the High-Fidelity mold line
model used in wind tunnel testing.

Figure 2.4: Baseline of an efficient supersonic air vehicle (ESAV) model [Lickenbrock et al.,
2020].

2.3.2.6 Filtering approaches

:
To manage MF models in the optimization context, hierarchical methods use the LF model

to filter out unpromising points before evaluating the remaining points with the HF model [Choi
et al., 2009a, Dalle & Fidkowski, 2014]. This group of methods that may be considered as
filtering techniques [Peherstorfer et al., 2018] consisting in using the LF to explore the design
space may also be coupled to the trust-region framework [Conn et al., 2009]. [Alexandrov
et al., 2001] has associated a tuned LF with a numerical optimizer subject to a confidence
region constraint, where the LF model is tuned using the HF model and applied to a wing design
optimization problem. [Giunta et al., 2007] applied the MFM technique to the multidisciplinary
design of high-speed civil transport where the LF is used to define a sub-region of the most
likely optimal location. The HF is then applied to improve the fidelity level.
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2.3.2.7 Dedicated infill

The efficiency of MFMs depends on the trade-off between cost and accuracy [Giselle Fernández-
Godino et al., 2019]. One concept of MF infill strategies is to establish a criteria for the LF
models enrichment to predict the most promising locations for new HF samples. Other crite-
rion use multiple fidelity levels to estimate the most promising fidelity level and location within
the design space. Some of these methods take into account the HF/LF cost ratio to control the
overall budget. In the following paragraphs, we provide an overview of the main adaptive ap-
proaches in these two categories.

2.3.2.8 Trust-Region MF management

Trust-Region Methods (TRMs) have been used to locate promising points in the MFM frame-
work [Alexandrov et al., 2000], with derivative-based infill criteria [Alexandrov & Lewis,
2001] and extended to be used without gradients by [March & Willcox, 2012b, March & Will-
cox, 2012a] and in a multi-objective framework [Demange et al., 2016, Kontogiannis et al.,
2020]. [Rodriguez et al., 2000] coupled a corrected LF model with a TR constrained numerical
optimizer. They proposed a MF optimization framework based on a TR algorithm, the gradient
of the objective function computed using the LF model allows the solution to converge to the
HF model’s optimum. The TR MFM uses a ratio between LF and HF, indicating the region
of confidence [Peherstorfer et al., 2018]. The MFMs used by [Peherstorfer et al., 2018] are
inspired by the approximation model management for the optimization in [Alexandrov et al.,
1998] which considers the approximation model as a level of fidelity in its own right. Correc-
tive methods are used to evaluate the sub-models within the confidence interval at each iteration
k and to improve LF QoIs

QMF (χ) = QLF (χ) + e(χk) +∇e(χk)T (χ− χk) (2.4)

where e(χk) is the MFM correction model at iteration k, QLF and QMF , respectively the
LF and MFM QoI.

2.3.2.9 MF data fusion infill

2.3.2.9.1 Kriging based methods The other way to efficiently manage the optimization in
a MFM framework is the EGO (see Section 2.2.3). The MF co-Kriging provides the variance
that can be directly exploited to enrich the model. [Le Gratiet, 2013,Le Gratiet & Garnier, 2014]
proposed a sequential version of recursive co-Kriging that uses IMSE and takes into account
both the computational cost ratios between code fidelity levels and their respective contribu-
tions to the total variance. This method is used to predict a turbulence model of a particular gas
composition where different refinements mesh define two levels of fidelity. The strategy, called
sequential Kriging is used in an optimization framework to select new points of interest. It has
been extended to parallel computing and adapted to the vectorial MF optimization application
of a reservoir by [Thenon, 2017] (see Section 2.4.2).

In the same framework, [Lam et al., 2015] present a two-step space-filling strategy consid-
ering the information gain in the variance and the cost of each level of output fidelity. This
strategy was tested with analytical MF extension of the 2D Rosenbrock function, a constrained
optimization problem, and an aerodynamic optimization test case. The MFM was demonstrated
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more efficient than the single-fidelity EGO. The approach adopted is the merging of L fidelity
levels for which the level ln+1 of the next simulation at design point χn+1

ln+1 = argminl∈1,...,L
Cl(χn+1)

σ̄2
l (χn+1)− σ̃2

l (χn+1)
, (2.5)

where Cl(χn+1) is the evaluation of the (n+ 1)th predicted point cost with the simulator of
level l, σ̄2

l (χn+1) and σ̃l are respectively the mean and the variance of the MF surrogate model
at lth fidelity level. The objective is to find the lowest output cost with the highest information
gain.

An adaptation of EI to MF is applied to HK by [Zhang et al., 2018]. The HK scheme
of [Han & Zhang, 2012] is used to choose the fidelity level at each iteration. The adapted EI
expression includes the fidelity level l

EIvf (χ, l) =

{
0 if σl(χ) = 0,

(Qbest − Q̃(χ))Φ
(

Qbest−Q̃(χ)
σl(χ)

)
+ σl(χ)φ

(
Qbest−Q̃(χ)

σl(χ)

)
if σl(χ) > 0,

(2.6)
where φ(.) and Φ(.) denote respectively the standard normal probability density and distri-

bution functions, Q̃(χ) the posterior mean of Q and σl,l∈[1,2] is the variance of the LF and HF
models respectively.

[Guo et al., 2021] applied EIvf and observed that compared to a single-fidelity EI, the
search for the optimum was made efficient by LF exploration, were fewer HF calls were needed
to solve the optimization problem. [Hao et al., 2020] developed an extension of this EIvf crite-
rion to Gradient-Enhanced Kriging (GEK). LF sample points are first used to represent the HF
function trend close to the optimal solution, then HF samples are added. It is demonstrated on
analytical test functions that EIvf adaptively determines both the location and the fidelity level
of a new design point.

Other variance-based criteria have been adapted to the variable fidelity framework. A com-
parative study was carried out on the LCB [Jiang et al., 2019] criterion between single-fidelity,
MF EI, and other EGO criteria [Zhang et al., 2018]. Eight numerical examples, along with one
physics-based aircraft fuselage design, resulted in 25% and 45% savings thanks to the VF-LCB
criterion which showed an improved exploration/exploitation trade-off. Also, the Probability
of Improvement (PI) criterion has been adapted to MFMs as an extended PI

EPI(χ, l) = PIvf (χ)× Corr(χ, l)× CR(l)× η(χ, l), (2.7)

Where PIvf is the PI built from the MFM co-Kriging of [Ruan et al., 2019], l = 1, ..., L,
is the fidelity level, Corr(χ, l) denotes the posterior correlation coefficient between the HF and
fidelity level l at input χ. CR(l) is the cost ratio between HF and lth fidelity model, η(χ, l) is
the sample density function adopted by [Liu et al., 2018] to avoid clustering of training data.
This criterion was compared to the Augmented Expected Improvement (AEI) of [Huang et al.,
2006b], EIvf of [Zhang et al., 2018], another MF PI variant, and a standard single-fidelity PI.
An application to structural design optimization of the micro-aerial vehicle fuselage and stiff-
ened cylindrical shell was carried out and led to the conclusion that the proposed VF-PI method
is most efficient when the correlation between the HF and LF models is high. In contrast, the
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VF-EI method is even more efficient when the correlations remain low.

In the same group of sampling methods using GPs, the GP-UCB, also known as UCB in the
Bayesian framework [Brochu et al., 2010] was adapted to MFM by [Kandasamy et al., 2016].
The MF adaptation uses the largest LF uncertainty to add the next sample. This criterion was
compared to the single-fidelity GP-EI, GP-UCB criteria, and the algorithm MF Mutual Infor-
mation Greedy (MF-MI-Greedy) proposed by [Sen et al., 2018] where fidelities are assumed
independent. This algorithm maximizes the amount of mutual information in order to take
advantage of LF. MFM is modeled using additive Gaussian processes based on shared relation-
ships with the target HF function, and the variable costs of different fidelities are taken into
account. The MF-MI-Greedy was demonstrated to effectively reduce the uncertainty.

2.3.2.9.2 Adaptive RBF models Another extension of the EI was proposed by [Pellegrini
et al., 2018] for MF UQ and adapted to RBF surrogate modelling. The enrichment aims to min-
imize both the uncertainty and the objective function. Several criteria are compared, including
the Maximum Uncertainty Adaptive Sampling (MUAS), evaluated from the MF metamodel
and minimized, the MFEI, and Aggregate Criteria Adaptive Sampling (ACAS) consisting in
minimizing the difference between the MF prediction and the associated uncertainty. Finally,
Multi-Criteria Adaptive Sampling (MCAS) allows identifying new training points by mini-
mizing the objective function constrained by a maximal prediction uncertainty. This adaptive
sampling strategy was tested on a dynamic Stochastic Radial Basis Functions (SRBF) [Volpi
et al., 2015]. It has been observed that MUAS and MCAS were more exploratory than MFEI
and ACAS, and HF evaluations were well distributed within the design space. MFEI and ACAS
concentrate HF evaluations in the optimum region. The overall results lead to the conclusion
that MFEI are the most efficient adaptive sampling techniques for the proposed CFD shape
optimization test case of a NACA hydrofoil.

The EGO approach adapted to RBF by [Bjorkman, 2001], allowed [Durantin et al., 2017]
to obtain time savings for comparable optimization results. The same conclusion was drawn by
[van Rijn et al., 2018], following the co-RBF comparison with a Random Forest co-surrogate.
[Gutmann, 2001] developed an adaptive sampling method for optimization using RBF models
with similar principle as the Efficient Global Optimization (EGO) [Jones & Schonlau, 1998].
Gutmann-RBF is constructed using the power function to remedy the lack of MSE in RBF
construction compared to a kriging-based model. This criterion was modified by [Regis &
Shoemaker, 2006] to improve its local search property. The adaptive MF Sequential Radial Ba-
sis Optimization (MFSRBO) method was developed by [Reisenthel & Allen, 2014] and tested
on an aerodynamic application. The compromise criterion between fidelity levels [Kennedy,
2000] of additive MF surrogate is adapted to an RBF metamodel. This scheme uses the differ-
ence between HF and l fidelity levels. The AEI criterion proposed by [Huang et al., 2006b] for
co-Kriging is adapted to the MF RBF at the lth fidelity levels as

EI(χ, l) = EI ∗ α1(χ, l) ∗ α2(χ, l) ∗ α3(χ, l), (2.8)

with α1(χ, l) a discontinuous function of the local prediction error, α2(χ, l) the relative reduc-
tion in the posterior standard deviation and α3(χ, l) is the ratio of the l fidelity to the highest
HF costs Cl

CHF .
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[Cai et al., 2017] adapted the CV metric associated with the Voronoi tesselation [Xu et al.,
2014] to partition the design space for RBF-based MF metamodeling. Recently, [Wackers et al.,
2020] proposed a MF metamodel based on the stochastic RBF (SRBF) with a MF adaptive
sampling based on CV error and the Voronoi partition, sampling both LF and HF.

2.4 Surrogate modeling for full-field computations

The optimization problem formulation (2.2) and consequently the surrogate approaches pre-
sented in previous sections consider QoI functionals obtained by postprocessing simulation
results corresponding in aerospace applications to detailed velocity, pressure, stress, or thermal
fields defined on a finite element/finite volume mesh. The full-field approach consists in build-
ing a ROM f̃(x,χ) of the solver and to express, objective function and constraints in terms of
the approximate field. This approach yields a better insight into detailed characteristics of the
flow at every optimization iteration. The corresponding optimization problem is stated as

χ∗ = arg min
x∈Ω,χ∈D

J (f̃(x,χ))

s.t. gi(f̃(x,χ)) ≤ 0, i = 1, ..., p

hj(f̃(x,χ)) = 0, j = 1, ..., q
(2.9)

where x is the set of points defining the space discretization Ω ⊂ Rn with n the number of
nodes, χ the design variable, ∈ D ⊂ Rd, and χ∗ is the optimum configuration of the objective
function J ∈ R respecting constraints g, h.

The different steps of the full-field SBO are illustrated in Figure 2.5. First, the DoE
X = {χ(0) , ... ,χ(M)} is generated in D with one of the a priori sampling methods cited
in Section 2.2.2. Once the fields f(x,χ(i)), i = {1, ... ,M} have been computed, the ROM
f̃(x,χ) is built and the optimization is performed with the functionals
Q(f̃(x, χ)) = {J (f̃(x, χ)), g(f̃(x, χ)),h(f̃(x, χ))}.

ROM Optimization STOPSimulation QoIDoESTART

Figure 2.5: The full-field SBO strategy

Section 2.4.1 reviews the ROM techniques; associated adaptive strategies are presented in
Section 2.4.2

2.4.1 Reduced-Order Modeling
While the surrogate modeling techniques cited in the previous Sections can exploit integrated
quantities, ROM can capture spatial information in a model approximation by expressing the
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solution as a linear combination of a limited number of modes. Thus assuming that few inde-
pendent modes govern the system dynamics, a significant reduction in the solution’s computa-
tional cost can be achieved [Coelho et al., 2008]. Applications to the description of turbulent
flow have demonstrated the capture of non-linear features. [Aubry et al., 1988] constructed a
5-mode system that qualitatively reproduces the turbulent boundary layer discontinuity. This
approach was extended to diverse types of flows [Rajaee et al., 1994, Gunes et al., 1997, Ukei-
ley et al., 2001]. The ROM can be intrusive or non-intrusive (direct or indirect) depending
on whether the physical model is considered as a black box or the reduced Partial Differential
Equation (PDE) is solved online.

2.4.1.1 Intrusive ROMs

The intrusive ROMs require code modifications, for example, by Galerkin projection onto a
subspace spanned by a set of modes [Amabili & Touzé, 2007,Amsallem et al., 2013,Xiao et al.,
2020]. [Benner et al., 2015] reviewed the projection-based ROMs for dynamical systems. In a
non-exhaustive way, one can also find

• Reduced-Basis Method (RBM) [Rozza et al., 2008],

• Empirical Interpolation Method (EIM) and Discrete EIM (DEIM) [Ştefănescu et al.,
2015]

• Proper Generalized Decomposition (PGD) [Chinesta et al., 2011].

The modes may be obtained by Proper Orthogonal Decomposition (POD) also known as
Karhunen-Loève Expansion (KLE) [Lumley et al., 1967] in the field of turbulence or Principal
Component Analysis (PCA) [Jolliffe & Cadima, 2016] in machine learning applications. The
Proper Orthogonal Decomposition (POD) relies on the extraction of the reduced basis by trun-
cated Singular Value Decomposition (SVD) of the snapshots matrix. This technique produces
a low rank global basis of the most impacting modes [Sirovich, 1987] and has been shown to
be appropriate for coherent flow structures that can be sorted by their energy content [Berkooz
et al., 2003]. Intrusive POD has been applied by [Li et al., 2018] to estimate state variables and
associated variables in transonic flows in gradient-based aerodynamic shape optimization. A
review of POD applications in mechanical systems is provided by [Lu et al., 2019]. Other ap-
proaches are Krylov subspace [Bai, 2002] used on turbulence, Fourier well suited for periodic
signals series as in Harmonic Balance Method (HBM) [Hall et al., 2002,Yao & Jaiman, 2016],
or Voltera Series [Cheng et al., 2016].

These direct approaches are closer to the simulated system behaviour being directly ap-
plied on the physical equations, but are challenging to implement, as they require source code
modification.

2.4.1.2 Non-Intrusive ROMs

To avoid this problem, non-intrusive approaches have been introduced, such as Non-Intrusive
POD (NIPOD), also known as Galerkin-free [Shinde et al., 2019] or POD with Interpolation
(PODI) [Bui-Thanh et al., 2004]. Unlike direct ROM approaches, indirect ROMs do not re-
quire calls to the differential equation solver to perform the interpolation. As in the intrusive
ROM, the POD snapshot method, developed by [Sirovich, 1987], allows to empirically build
the basis vectors keeping the modes whose sum of energies represents at least 90% of the total
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energy, while the neglected modes represent less than 1% of the main mode’s energy. This
POD technique was applied by [Bui-Thanh et al., 2004] as an interpolation of known designs
for inverse design purposes. [Coelho et al., 2008] successfully applied a two-step Non-Intrusive
Proper Orthogonal Decomposition (NIPOD) on a 3D flexible wing shape optimization, involv-
ing weak code coupling between the solid and fluid models. On the one hand, the coupling
variables were reduced by the POD, expressing the interface pressure as a linear combination
of a few modes. On the other hand, the scalar coefficients obtained by the linear expansion of
the POD modes were approximated by polynomial response surfaces and moving least squares
surrogates.

Gappy-POD was introduced in the context of human face image reconstruction from in-
complete data [Everson & Sirovich, 1995]. Such an approach has been applied by [Bui-Thanh
et al., 2004], to fill in incomplete data fields from known snapshots. Gappy-POD has been
used to reconstruct fields in fluid and structural applications where distributed sensors provide
limited field measurements [Cohen et al., 2006].

Finally, a local POD approach, the Local Decomposition Method (LDM) was recently de-
veloped by [Dupuis et al., 2018] as an extension of the NIPOD, inspired by the mixture of
experts and local reduced-order dynamic modeling. It consists in using multiple POD bases
adapted to delimited regions of the design space, distinguished by the sampled snapshots fea-
tures. This separation allowed to adapt the POD approximations to each physical regime, to
capture local non-linearities.

2.4.1.3 Shape manifold for ROMs

Another approach uses the concept of shape manifold for a reduced order representation. [Meng
et al., 2018] reviews the shape manifold designed for ROM representation of complex shapes
encountered in mechanical problems. The general idea is to define the shape space, known
as POD-morphing [Raghavan et al., 2012b], in which the structure boundary evolves. The
reduced representation [Raghavan et al., 2013] is obtained by determining the intrinsic dimen-
sionality of the problem, independent of the original design parameters, and by approximating
a hyper surface, i.e., a shape manifold, connecting all the known admissible shapes using level
set functions. Moreover, an optimal parameterization can be obtained for arbitrary shapes,
where the parameters must be defined a posteriori. The family of manifold step algorithms for
predictor-corrector optimizatin in a reduced shape space guarantees the admissibility of the so-
lution without additional constraints. Applications include structural optimization [Raghavan
et al., 2012a, Raghavan et al., 2012b], springback minimization in metal forming [Le Quilliec
et al., 2014], microstructural design of materials [Xia et al., 2013], and inverse problems [Meng
et al., 2015].

2.4.2 Adaptive Reduced-Order Models

The ROM models presented in the former section are often improved during the optimization
process in an attempt to target the regions of interest more efficiently. In the ROM context,
adaptive approaches can refer to the procedure of orthogonal basis adaptation with each new
vector, adding as few samples as possible to build the whole basis. As for the scalar SBO, there
are also approaches aiming at choosing samples to reduce the calls to expensive solvers. A
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range of these approaches is presented in the following paragraphs.

2.4.2.1 Trust-Region Methods

The Sequential sampling schemes TR used on the scalar SBO (see Section 2.3.2.7) were cou-
pled to ROM to solve constrained and unconstrained optimization [Regis & Wild, 2017].
Among intrusive ROMs, [Bergmann & Cordier, 2007] applied POD Reduced-Order Models
and TR method to minimize the mean drag under rotary control of a cylinder wake in the
laminar regime reducing its relative mean drag by 30% .

2.4.2.2 Error-based infill methods

Among error-based infill methods, a LOO (see Section 2.2) approach for POD-based models
was proposed by [Braconnier et al., 2011] along with an error estimate of the POD model to
select new sample locations. This strategy was compared to classical a priori uniform sampling
and tested on an analytical test case and the 2D turbulent flow around a RAE2822 airfoil. It was
concluded that the convergence of the LOO-CV adaptive-based procedure was faster. This infill
criterion was applied to the NIPOD approach by [Guénot et al., 2013] where an improvement
of the modal coefficients was obtained by taking into account each snapshot’s influence to
represent the full-field model. Two cases based on the RAE2822 airfoil demonstrated the error
control over the whole parametric space even in the non-linear transonic region.

2.4.2.3 Greedy approaches

The principle of a greedy algorithm is to choose the most promising elements (or to suppress the
least promising ones) iteratively to obtain the best prediction. Once the models are built in the
off-line phase, the most (or least) predictive features may be selected during the online phase
based on error criteria. The ROM database model’s accuracy can be adjusted in the offline
phase, where a local ROM database is built by a greedy procedure. The greedy algorithm is
used for the selection of snapshots for the approximation of the parameterized PDE solution
[Veroy et al., 2003, Nguyen et al., 2010] and in a non-intrusive framework [Dutta et al., 2021].
Such approach was applied by [Audouze et al., 2013] to time-dependent non linear problems
using RBF-based Non-Intrusive ROM. This model adaptively generates snapshots based on a
greedy approach to minimize the overall computational cost.

2.4.2.4 Adaptive Gappy POD

[Bui-Thanh et al., 2008] use an adaptive Gappy POD (GPOD) (see Section 2.4.1) for two-
dimensional airfoil inverse design. This approach aims at finding the optimal sensor locations
and adaptively improve the POD basis. At each iteration, the criterion used to achieve the
selection is based on the Gappy POD maximum error. The complete model information is
then generated by solving the system between known, and unknown data at this position, the
database is enriched using the resulting snapshot, and the reduced basis is updated. These steps
are then repeated, using the updated model to calculate the reduced states at each locations
around the airfoil.
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2.4.2.5 Active-learning approaches

The NIPOD was adapted to an active-learning3 framework using the partitioning approach in
the LDM method [Dupuis et al., 2018]. The experimental design is divided into several parts
corresponding to values associated with a shock sensor allowing to identify the areas where
discontinuous structures will likely appear. Once targeted, these regions are clustered and en-
riched using error, sensitivity, and global entropy metrics. The procedure’s application reveals
a capacity to better take into account the regions of high gradient and discontinuity, in the case
of a shock problem in a turbulent flow around the RAE2822 wing in transonic regime.

2.4.2.6 PCA-based infill

Within the UQ framework, the implementation of [Hampton & Doostan, 2018] is a non-
intrusive method where corrective sampling is used to improve stability and precision. PCA
allows building a new basis that describes the shapes globally. The Bayesian optimization is
performed in the space of reduced dimension of the active components, complemented by a
random embedding in the space of the remaining components, to approach the optimization
problem in reduced dimension.

2.5 Multi-fidelity reduced-order methods

The ROM methods of the last reviewed section outperform scalar approaches in complex non-
linear optimizations. The MFM extension of these methods has been performed mainly in the
CFD domain, and promising references are presented in the present section.

Section 2.5.1 reviews the MF ROM extensions; associated adaptive strategies are presented
in Section 2.5.1.3 .

2.5.1 Multi-fidelity vectorial modeling

2.5.1.1 MF extensions of the POD

2.5.1.1.1 MF Gappy-POD [Toal, 2014] adapted the Gappy POD (see Section 2.4.1) to
a MF surrogate-based optimization. A bi-variate optimization of a NACA 0012 airfoil is per-
formed by predicting the two-dimensional HF pressure distribution from its computed LF coun-
terpart.

2.5.1.1.2 MF Optimal basis POD extensions [Mifsud et al., 2016] developed a bi-fidelity
POD extension using two discretization levels of numerical experiments. It consists on building
an optimal set of orthogonal basis vectors from the two fidelity snapshots subsets. The set of
basis are used to construct the overall response, then predict snapshots in unknown locations.
This approach is tested for flow prediction using RANS at two fidelity levels of mesh refine-
ment. The numerical examples led to the conclusion that the efficiency depends heavily on the

3

Active learning consists in adding as little information as possible by selecting a group of features through
unidentified observations that will be labeled by an oracle (e.g., a human annotator) [Settles, 2010].
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correlation between the two fidelity levels.

Inspired by the CPOD of [Xiao et al., 2010], [Benamara et al., 2017] developed the MFNIPODextension
based on QR decomposition allowing to build a bi-fidelity orthogonal basis. Unlike the MF
POD extension of [Mifsud et al., 2016], the MFNIPODenriches the reduced space obtained
from scarce HF information with LF related orthogonal modes, giving a hierarchical ROM. The
method was compared to a model based on a single-fidelity RBF Neural Network (RBFNN) and
co-Kriging on a constrained 2D analytical optimization and the 19-D optimization of an indus-
trial compressor blade and its non-axisymmetric hub. The results show that MFNIPODoutperforms
models based on co-Kriging and RBFNN in terms of costs and accuracy. Combining different
data simulations from multiple fidelity snapshots presents difficulties because the two sets of
fields lie most likely in different spaces. When fidelity levels are based on different mesh re-
finement, this problem may be tackled by projecting the LF outputs onto the finer HF grid [Be-
namara, 2017]. Problems of inconsistency were also addressed by [Perron et al., 2020] who
applied a MF ROM using a common subspace, to a transonic wing problem. A reduction in
computational training cost between 10% and 73% was observed compared to a single-fidelity
approach of comparable accuracy.

In a different approach, the MFROM and MFNIPODextentions inspired the development of
a model based on MF PCA by [Bunnell et al., 2021]. The Shared Principal Component (SPC)
MF surrogate model consists in building the POD-based model separately with the sampled
HF and then LF vectors and linking them assuming that the HF variations comply with those
observed on the LF functions. Consequently, LF sampled vectors are similar to the principal
components of the HF samples. The separation allows having two different mesh configura-
tions with different fidelity levels. This method allows the fusion of LF and HF samples within
a common metamodel and is applied to the design of turbomachinery blades. The SPC reduced
the error to about 78% with respect to single-fidelity surrogates. The Space-Mapping surrogate
presented the lowest error ratio among other tested methods. SPC appeared more efficient than
space mapping, co-Kriging, and MFNIPOD [Benamara et al., 2017].

2.5.1.1.3 MF POD with interpolation [Yondo et al., 2019] introduced MF ROM exten-
sions based on the PODI [Bui-Thanh et al., 2004] and compared it to non-linear least squares
ROM [Zimmermann & Görtz, 2010,Görtz et al., 2013] to capture non-linearities of the physical
system.

2.5.1.2 Kriging Based MF POD

2.5.1.2.1 MF Kriging non-intrusive POD [Wang et al., 2020] proposed a multi-fidelity
ROM for the reconstruction of a steady flow field. It performs a HF-LF corrective mapping of
the bi-level ROM modal coefficients separately, and is applied to predict the flow with shock
waves of a NACA0012 airfoil achieving better accuracy than the traditional Kriging ROM .

2.5.1.2.2 Co-Kriging POD [Poethke et al., 2019] presented a method combining MF and
POD and compared it to the scalar co-Kriging and single-fidelity Kriging. Two level fidelity
simulations of 2D and 3D turbine blades are tested and used in an optimization loop. The
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POD-based method directly decomposes LF flow fields into main components covering a re-
duced solution subspace, where HF values are interpolated. Compared to a Kriging model
based on design space variables, this model is smaller in size. The POD-based method showed
a faster convergence than scalar and single-fidelity optimization while reaching the same pro-
file efficiency and similar design. Using the co-Kriging MFM, [Thenon, 2017] proposed a MF
extension to Principal Component Analysis (PCA), building a basis from the HF vectors and
secondly projecting the LF vectors on this reduced-basis. Finally, the co-Kriging approxima-
tion is performed on the two levels coefficient projection. The method is applied to pressure
maps outputs of a two-level oil tank model. It is observed that the MF vectorial metamodel
is effective only if there is a minimal correlation between the fidelity levels of the simulation
outputs. However, MF coKriging does not provide sufficient improvements than single fidelity
Kriging for the presented cases. An alternative and more efficient approach consists in build-
ing these estimates with the dynamic outputs. [Xiao et al., 2018] proposed a co-Kriging model
based on a Galerkin projection based POD in which a weight is assigned to two and three levels
of MF data constructed by varying the number of basis vectors in the POD ROM. Numerical
tests show better results for three-level MF Kriging than single and two-level Kriging models.
Following an online POD based topological optimization, [Xiao et al., 2020] presented a MF
approach to build a POD based ROM incrementally from successive variable-fidelity approxi-
mations of the global physical equations.

2.5.1.2.3 MF Kriging and non-intrusive Polynomial Chaos Expansion (PCE) [Cheng
et al., 2019] propose a sparse non-intrusive PCE adapted to MFM. Kriging and orthogonal
polynomial covariance function are used to build the full-field model and an iterative scheme
detects the optimal PCE basis in each fidelity level. The Kriging POD was also adapted by
[Mohammadi & Raisee, 2019] to two fidelity levels. In the same spirit as PCE-Kriging, the
basis functions are evaluated from a stochastic field where it is not necessary to calculate the
Kriging trend functions separately.

2.5.1.3 Adaptive multi-fidelity vector models

The adaptive ROMS and MFMs have been demonstrated to be a promising perspective to
MFM ROM models [Benamara et al., 2017,Yondo et al., 2019]. This section explores adaptive
schemes involving MFM vector models.

2.5.1.4 MF POD Error-based approach

An extension of the DoE Voronoi cells is performed in the framework of sequential sampling
by [Thenon, 2017] selecting the points in multiple Voronoi cells associated with the highest
CV errors. Then, for each level of fidelity, a point is selected iteratively from the highest to the
lowest corresponding error in each cell, until the calculation’s budget is reached. The fidelity
level is chosen according to the IMSE weighted by the evaluation costs. In this paper, it has
been observed that the two levels of fidelity should be sufficiently correlated. Besides, the LF
computational cost should be limited to increase the method’s efficiency. The method has been
applied to a POD co-Kriging and is compared to a MF scalar approach. It was shown that
the POD vectorial approach improved the prediction performance of scalar models even with a
poor HF-LF correlation.
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2.5.1.5 MF Gappy-POD infill

The corrective MF approach have been coupled to Gappy POD by [Robinson et al., 2006]
allowing to reconstruct the HF discrete gappy dataset with LF data. [Benamara et al., 2016]
presents a MF adaptive approach based on the Gappy POD identifying a HF subspace to be
covered by the LF vectors.

2.5.1.6 MF adaptive Kriging

The MFNIRB proposed by [Khatouri et al., 2020] as an extension to the Non-Intrusive Reduced-
Basis (NIRB) method of [Chakir & Maday, 2009] takes into account constraints and shows
promising results on a 2D analytical test case [Benamara et al., 2017]. The method was com-
pared to a scalar single-fidelity Kriging and used the constrained EI [Bagheri et al., 2017]
criterion to sample iteratively the design space. However, this attempt is based on HF sampling
on low-dimensional parameter space. The EI criterion was also applied by [Nachar et al., 2020]
in a MF reduced-order context. The expression of the EI criterion is evaluated using the LF data
variance and mean. This modified EI is used to add LF and HF data, generated from LATIN
Proper Generalized Decomposition (PGD) model reduction framework [Chinesta et al., 2011],
assisting a mechanical part optimization problem.

2.6 Conclusion
This Chapter presents a non-exhaustive review of surrogate methods that address simulation
cost issues in optimizing physical systems modeled with computer codes focusing on fluid/solid
mechanics in potentially multidisciplinary settings. The reviewed methods’ common feature is
the construction of surrogate models based on sequentially updated Design Of Experiments.
The techniques reviewed include scalar, vector, and multi-fidelity surrogates, along with their
associated infill strategies. Surrogate vectorial multi-fidelity models based on reduced-order
approaches appear to outperform response surface approximations and control the overall sim-
ulation budget. However, the multi-fidelity approach’s feasibility depends on the quality and
cost of physical models available for a given application. The trade-off between cost and accu-
racy in the multi-fidelity model is conditioned by the correlation between LF (supposed cheap)
and HF (supposed expensive) simulators and their CPU ratio. The development of dedicated
infill techniques requires criteria allowing both for the site’s choice and the new simulation’s
fidelity level under the overall simulation budget constraint.



Chapter 3

Constrained multi-fidelity surrogate frame-
work using with non-intrusive reduced-order
basis

3.1 Introduction

In the single-fidelity Surrogate Based-Optimization (SBO) framework, cheap to evaluate ap-
proximation models of the objective and constraints are used alongside an infill criterion to
build a sequential Design of Experiment (DoE) optimization strategy. Multi-Fidelity (MF) ap-
proaches extend this framework by leveraging both low and high-fidelity simulators. Some
approaches enhance Low-Fidelity (LF) simulations using additive [Robinson et al., 2006],
multiplicative [Alexandrov et al., 2001] or hybrid [Zhou et al., 2017] corrections or space
mapping [Leifsson & Koziel, 2015], learned from High-Fidelity (HF) simulations. Other ap-
proaches, such as co-kriging [Forrester et al., 2007,Le Riche et al., 2020] or co-RBF [Durantin
et al., 2016], exploit the correlation between the different fidelity levels to produce a MF sur-
rogate model. Another approach is to use hierarchical Kriging [Zhang et al., 2018] to build
surrogate models recursively at each fidelity level. This Chapter addresses the problem of con-
strained derivative-free optimization with multiple fidelity sources.

The efficiency of MF models depends on the compromise between the cost and accuracy
of the responses. The general concept of MF infill strategies consists in establishing low-cost
enrichment criteria of LF models to predict new HF sample’s most promising locations [Stroh,
2018, Liu et al., 2018]. Hierarchical methods identify promising points before evaluating them
with the HF model [Choi et al., 2009b, Dalle & Fidkowski, 2014] within an optimization.
Those methods can also be used with a Genetic Algorithm [Sefrioui et al., 2000]. Other ar-
ticles proposed to use trust-region methods to manage the infill criteria, both in the gradient-
based [Alexandrov & Lewis, 2001] and the derivative-free frameworks [March & Willcox,
2012b, March & Willcox, 2012a]. Albeit promising, those methods are likely to remain local.
Recently, attention has been turned toward the Surrogate-Based-Optimization framework: ap-
proaches in the literature [Liu et al., 2018] are based either on the prediction error [Le Gratiet,
2013] or statistical criteria [Jones & Schonlau, 1998, Liu, 2012].

Picheny et al. [Picheny et al., 2013] compared existing infill criteria such as EI, Augmented
Expected Improvement (EI) used by Huang et al. [Huang et al., 2006a], and the Weighted

32
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Integrated Mean Square Error (Weighted IMSE) criterion for noisy optimization benchmark.
The weighted EI extension is proposed by Sobester et al. [Sóbester et al., 2005] in order to
control the balance between exploitation and exploration in a constrained optimization frame-
work. In [Scott et al., 2011] the EGO was generalized for multidimensional variables in the
noisy Gaussian process and gradient-knowledge framework. With similar noise assumptions,
Kandasamy et al. [Kandasamy et al., 2017] used the Thompson sampling criterion to consider
the variability of the evaluation time when maximizing an unknown function from noisy eval-
uation in a parallel computing framework. A multi-fidelity extension of the EI criterion to the
sequential kriging was proposed by Huang et al. [Huang et al., 2006b,Huang et al., 2015]. This
criterion allows for adding the cheapest best current LF sample. In our case, the sampling is fo-
cusing on the HF level. For the additional references, see [Song et al., 2019a], where Bayesian
techniques are reviewed for applications such as constraint, single-fidelity, and multiple fidelity
optimization.

Section 3.2.1 is an overview of the surrogate model used in the proposed enrichment strat-
egy. The reduced basis methodology needed to represent the bi-level fidelity vector responses
is also introduced. Then, the proposed infill strategy is detailed on Section 3.2.2. Finally,
a bi-fidelity level benchmark derived from aerodynamic simulation [Benamara et al., 2017]
illustrates the proposed approach Section 3.3.

3.2 Method

3.2.1 Multi-fidelity model

Given a design space D of dimension d and a physical domain Ω ⊂ R{2, 3}, the optimization
problem considered in this work is to find values ϑ? ∈ D of the design variables ϑ that min-
imize some scalar objective function J (f(x,ϑ)) while respecting nc real-valued constraint
functions (ch)1≤h≤nc .

minimize
ϑ∈D⊂Rd

J (f(x,ϑ)),

s.t. ch(f(x,ϑ)) ≤ 0, h = {1, ..., nc},
(3.1)

where the objective function J and the constraint functions (ch)1≤h≤nc are evaluated by run-
ning computer simulations yielding a vector f(x,ϑ) of values at a fixed set x = (xi)1≤i≤n of n
discrete positions in the physical domain Ω.

Given a design of M experiments {ϑ(1), . . . ,ϑ(M)} ∈ DM , according to the Model Order
Reduction paradigm [Amsallem et al., 2012, Carlberg & Farhat, 2008], a separated representa-
tion of f(x,ϑ) can be formulated as

f(x,ϑ) ≈
m∑
k=1

ϕk(x)αk(ϑ), x ∈ Ω, ϑ ∈ D, (3.2)

where the basis vectors ϕk are the left singular vectors, corresponding to m ≤ M << n
non-zero singular values of the so-called snapshot matrix

S = [f(x,ϑ(1)) ... f(x,ϑ(M))]. (3.3)
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The basis vectors ϕk depend on the discretization of the physical domain and only the co-
efficients αk depend on the design variables ϑ. Note that since only a low number of HF snap-
shots is assumed available, we are skipping the usual truncation phase. However, the number
m of basis vectors is not strictly equal toM due to the possible presence of null singular values.

Rather than expressing αk(ϑ) explicitly using surrogate modeling techniques [Coelho &
Pierret, 2017] or by solving a Galerkin-projected problem [Choi et al., 2020], the proposed
multi-fidelity approach relies on the assumption that a LF solution fLF (x,ϑ) is available at
a significantly lower computational effort than the HF solution f(x,ϑ). The multi-fidelity
approximations αMF

k of the coefficients αk can then be obtained by projecting fLF (x,ϑ)
on ϕk [Chakir & Maday, 2009]:

αMF
k (ϑ) = ϕTk (x)fLF (x,ϑ), x ∈ Ω. (3.4)

A multi-fidelity approximation model fMF (x,ϑ) of f(x,ϑ) can thus be formulated as

fMF (x,ϑ) =
m∑
k=1

ϕk(x)αMF
k (ϑ),ϑ ∈ D. (3.5)

Note, that this formulation does not necessarily interpolate the data, namely

fMF (x,ϑ(i)) 6= f(x,ϑ(i)), 1 ≤ i ≤M, x ∈ Ω, (3.6)

and, as a consequence, the interpolation errors,{
∆J

(
ϑ(i)
)

= J
(
f(x,ϑ(i))

)
− J

(
fMF (x,ϑ(i))

)
,

∆ch

(
ϑ(i)
)

= ch
(
f(x,ϑ(i))

)
− ch

(
fMF (x,ϑ(i))

)
, 1 ≤ h ≤ nc

(3.7)

are non-null.

The objective and constraints trends are expressed respectively by JMF (ϑ) and cMF
h (ϑ)

instead of J (fMF (x,ϑ)) and ch(fMF (x,ϑ)) to simplify the notations. In this work, it is as-
sumed that the approximation fMF is unbiaised and the correction terms ∆J (ϑ) and ∆ch(ϑ)
are modeled using Gaussian processes with zero mean and parametrized covariance kernels kθ

∆(ϑ) ∼ GP(0, kθ(ϑ,ϑ)), ϑ ∈ D.

Conditional on the observations, the GP posterior distribution [Rasmussen & Williams,
2006] at a new sampling point ϑ is a random variable with a normal distribution characterized
by its mean

∆(ϑ) = kTθ (ϑ) ·K−1
θ ·

[
∆(ϑ(1)), . . . , ∆(ϑ(M))

]T
,

and its variance
σ2(ϑ) = kθ(ϑ,ϑ)− kTθ ·K−1

θ · kθ,
withKθ the M ×M covariance matrix between the M sample points

Kθ,ij = kθ(ϑ
(i),ϑ(j)), 1 ≤ i, j ≤M,

and kθ the vector of covariates between the M sample points and ϑ, defined by

kθ(ϑ) =
[
kθ(ϑ,ϑ

(1)), . . . , kθ(ϑ,ϑ
(M))

]T
.
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The approximation of the cost functional for an arbitrary parameter set ϑ is thus defined as

J̃ (ϑ) = JMF (ϑ) + ∆J (ϑ). (3.8)

In analogous manner, the constraint functions are modeled as :

c̃h(ϑ) = cMF
h (ϑ) + ∆ch(ϑ), h = {1, . . . , nc}. (3.9)

In the following sections, the MF model refers to the MFNIRB model (the corrected MF
prediction).

3.2.2 Improvement-based infill criteria

Assuming that a feasible solution exists in the DoE1, the current best point can be defined as

Jbest = min {J (x,ϑ); ϑ ∈ C} , (3.10)

where C = {ϑ ∈ D; ch(ϑ) ≤ 0, 1 ≤ h ≤ nc} denotes the feasible solution set. The improve-
ment yielded by the observation of a new point ϑ can then be defined as

I(ϑ) = max(Jbest − J̃ (ϑ), 0) · 1ϑ∈C. (3.11)

Assuming that the constraints involved in the optimization problem are independent, the
probability that a given ϑ ∈ D belongs to the feasible set C can be computed using the closed-
form formula

PF (χ) =
nc∏
h=1

P (c̃h(χ) ≤ 0) =
nc∏
h=1

Φ

(−c̃h
Σch

)
, (3.12)

where σ2
ch

is the posterior variance associated to constraint ch, 1 ≤ h ≤ nc. If it is further
assumed that the objective and constraints are independent, the probability of improvement can
be expressed as

PIc(ϑ) = Φ

(
Jbest − J̃ (ϑ)

σ(ϑ)

)
· PF (ϑ) . (3.13)

EIc(ϑ) = EI(ϑ)× PF (ϑ), (3.14)

with

EI(ϑ) =

 max
(
Jbest − J̃ (ϑ), 0

)
if σ(ϑ) = 0,

(Jbest − J̃ (ϑ))Φ
(
Jbest−J̃ (ϑ)

σ(ϑ)

)
+ σ(ϑ)φ

(
Jbest−J̃ (ϑ)

σ(ϑ)

)
if σ(ϑ) > 0,

(3.15)

where φ(.) and Φ(.) denote respectively the standard normal probability density function and
the normal cumulative distribution functions, J̃ (ϑ) being the posterior mean of J .

Either EIc and PIc can be used as an Infill Criterion (IC) within the optimization loop to
select the most promising infill point. Whereas the PI favors the regions of likely improvement,
the EI corresponds to the posterior expectation of the improvement function and hence achieves

1See, e.g., Section 2.3 of [Feliot et al., 2017] and references therein for a discussion of possible alternatives in
the case where no feasible solution is known.
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a natural trade-off between regions of high improvement and regions of high variance. The
maximum value of IC determines the new points to be added to the training set, such as

ϑ∗new = arg max
ϑ

IC(J̃ (ϑ)), (3.16)

where IC is an infill criterion using values of the approximate cost function J̃ .

The algorithm 1 summarizes the proposed optimization procedure. After sampling M snap-
shots from the HF black-box solver, the orthogonal basis Φ = (ϕk)1≤k≤m can be obtained
with the Singular Value Decomposition (SVD). Thereby, the multi-fidelity projection coeffi-
cients (see Eq. (3.4)) are evaluated using Φ and M snapshots sampling of the LF simulation.
The multi-fidelity quantities of interest are formulated, then corrected as in equations (3.8)
and (3.9) to evaluate the quantities J̃ and c̃h, h = {1, ... , nc}. The IC uses these quantities to
find the next candidate. Since the IC is likely to be multi-modal, a global optimization algo-
rithm should be used to solve the auxiliary optimization problem (3.16).

Algorithm 1 DoE enrichment

Require: M, x, fLF , fHF , J , c,
Ensure: ϑ∗

1: Training DoE of M points ϑ = {ϑ(1), . . . , ϑ(M)} (Latin Hypercube Sampling)
2: Compute High-Fidelity snapshots S = [fHF (x,ϑ(1)), . . . , fHF (x,ϑ(M))]
3: Compute the basis Φ associated with S,
4: Evaluate J HF (ϑ), cHF (ϑ),
5: i← 0
6: while i < maximum iterations do
7: Update High-Fidelity snapshot matrix with fHF (x,ϑ)
8: Update the basis Φ, DoE, J HF (ϑ), cHF (ϑ),
9: Compute LF snapshots SLF = [fLF (x,ϑ(1)), . . . , fLF (x,ϑ(M))]

10: Evaluate Multi-Fidelity JMF (ϑ), cMF (ϑ)

11: Evaluate J̃ (ϑ), c̃(ϑ) using Equations (3.9) and (3.8)
12: Compute IC(ϑ) using Equation (4.35) or (4.37)
13: Get next candidate ϑ∗new = arg maxϑ IC(J̃ (ϑ))
14: i← i+ 1
15: M ←M + 1
16: end while

3.3 Numerical results

3.3.1 Problem definition

The optimization benchmark problem [Benamara et al., 2017] is used for the following numer-
ical experiments

minimize J (ϑ)
s.t. ϑ ∈ D, c1(ϑ) ≤ 0, c2(ϑ) ≤ 0,

(3.17)
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where D = [4, 6] × [10, 14] is a bi-dimensional design space and the objective and constraints
functions are defined by

J : ϑ ∈ D 7→ min
xi∈[0, 1]

f(x, ϑ)

c1 : ϑ ∈ D 7→ arg min
xi∈[0, 1]

f(x, ϑ)− 0.75

c2 : ϑ ∈ D 7→ 7.5− max
xi∈[0, 1]

f(x, ϑ),

(3.18)

using either the HF model fHF or the LF model fLF defined as

fHF : Rn ×D → R
(x, ϑ) 7→ 1

2
(6x− 2)2 sin(ϑ2x− 4) + sin(10 cos(ϑ1x))

fLF : Rn ×D → R
(x, ϑ) 7→ 1

2
(6x− 2)2 sin(ϑ2x− 4) + 10(x− 1

2
).

(3.19)

These benchmark functions feature two fidelity levels of the full-field model. It has been
generalized to enable a variable Low- to High-fidelity distance

fLF (x,ϑ, α) = αfLF (x,ϑ) + (1− α)fHF (x,ϑ), (3.20)

by introducing the parameter α ∈ [0, 1]. We first consider the numerical experiment with
α = 1, then variable values of α are taken into account.

This test problem is illustrated in figure 3.1. The non-feasible regions are delimited by
continuous and discontinuous lines corresponding to the c1 and c2 constraints. The red and
blue lines represent the targeted HF and the LF values. As can be observed on subfigures 3.1c
and 3.1d, the constraint c1 features diagonal discontinuities and a sharp cliff in the region of
high ϑ2 values (Figure 3.1c) but none of them are present in the LF model (Figure 3.1d). Sim-
ilarly, the region of feasibility for the constraint c2 is poorly represented by the LF model (see
subfigures 3.1e and 3.1f). Besides, it features three disconnected feasible regions which make
finding the global optimum a difficult optimization problem. Considering the objective func-
tion J , it can be observed on subfigures 3.1a and 3.1b that the LF model fails to represent the
influence of the ϑ2 variable, which makes it rather deceptive.

3.3.2 Convergence of the multi-fidelity model
In this section 3.3.2, the optimization problem (4.55) is used, with α = 1, to illustrate the con-
vergence of the MF model proposed in Section 3.2.1 towards the HF model with an increasing
number of available HF simulations. The Ordinary Kriging (OK) is compared to this model
to illustrate the impact and the potential benefit of the MF trend compared to a constant trend
based kriging (trend of the OK). The OK model is generated using the pykriging library [Paul-
son & Ragkousis, 2015] adapted to each experiment in sections 3.3.2, 3.3.3 and 3.3.4.

The constraints ch(ϑ), c̃MF
h (ϑ) (see Eq. (3.9)) and c̃OKh (ϑ) obtained for Latin Hypercube

designs respectively made of 4, 40 and 400 points are illustrated in Figures 3.3 and 3.4 for
h = 1 and h = 2 respectively, the red and black lines represent respectively the constraints
limits of the HF and the approximates values (obtained with the MF and the OK models). The
relative errors between the HF real values and MF models for the objective J and for the con-
straints c1 and c2 are given in Table 3.1 and the snapshots obtained using either the MF, LF and
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HF function values are represented on Figure 3.2 for the 4 points DoE. For each curve, the up
and down triangles represent respectively the maximum and the minimum values of the f(x).
The vertical line represents the upper-bound of 0.75 on c1 and the horizontal line represents the
lower-bound of 7.5 on c2 (see eq. (4.55)).

The LF snapshots minimum values illustrated in Figure 3.2 are located in the lower part
of the vertical upper-bound line. The c1 constraint is confirmed to be constant as observed on
Figure 3.1d and there are no non-feasible areas for this constraint (see Figure 3.1b). The LF
test function is not able to capture c1 features. The multi-fidelity function values are approach-
ing better the variation of minimum values locations (Figure 3.2). Table 3.1 compares HF to
multi-fidelity and corrected multi-fidelity quantities of interest.

M ||J−JMF ||
||J ||

||c1−cMF
1 ||

||c1||
||c2−cMF

2 ||
||c2||

||J−J̃ ||
||J ||

||c1−c̃1||
||c1||

||c2−c̃2||
||c2||

4 6.97% 0.80% 8.10% 8.16% 0.83% 6.59%
40 4.77% 0.59% 7.87 % 4.10% 0.60% 2.34%
400 4.30% 0.61% 4.56 % 0.04% 0.35% 0.11%

Table 3.1: Mean over the design variables ϑ of the ”HF-to-MF” models relative error for the
objective and constraints when the number of available HF simulations successively equals
to 4, 40 and 400 points. The first three columns show the error between the HF model and
the MF model without the additive correction. The last three columns show this error after the
additive correction of MF model using Gaussian processes.

For both the objective and the constraints, the prediction errors of the MF models decrease
as the size of the DoE increases. The features of the HF models are well captured, especially
when the additive correction is applied (see Eq. (3.8)), with an average relative prediction error
ranging from 0.04% to 0.35% which represents a reduction of 0.48% to 8.12% of the relative
error (see Table 3.1 and Figures 3.3 and 3.4). The corrected model is performing better than
the LF and the uncorrected multi-fidelity models. The corrected MF model errors for a training
set of 400 points are lower than the uncorrected one. Moreover, the increase of the training set
sizes from 40 up to 400 generates a small reduction in the MF trend model error, which seems
to reach an asymptote (0.47% drop of the objective and 0.02% increase in c1).

In Figures 3.3 and 3.4, the MF model and the MF trend values are compared to an OK
model and values of HF and LF constraints (evaluated by the functions defined by (4.56)). The
OK model cannot capture discontinuities for a low-size training set (4 training points), whereas,
the corrected model is better capturing the discontinuities even for scarce DoE size. The MF
uncorrected model on Figures 3.3 and 3.4 converges to the LF values, whereas, as for kriging,
the corrected MF is converging to the HF targeted values.

Regarding the constraint c1, for which the LF model is unable to capture the features of the
HF model, Figure 3.3 shows that the corrected MF model can capture both the high values of
the constraint and the diagonal discontinuities. The LF model for constraint c2 is more infor-
mative than the one for constraint c1. Nevertheless, it fails to represent the three disconnected
basins featured by the HF model, whereas Figure 3.4 shows that these basins are recovered by
the correction term using only 40 points.
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3.3.3 Multi-fidelity convergence for variable Low- to High- fidelity dis-
tance

Section 3.3.2 illustrates the behavior of the MF model and trend in comparison to an OK model
for a single run at each DoE level. As the Latin Hypercube Sampling used to generate the
DoE exhibits non-deterministic behavior in successive runs, the present section is devoted to
the statistical behavior over repeated runs.

This study focuses on the local results at the optimal targeted value. The criterion evaluated
is defined at the theoretical optimal point ϑ∗ by

δJ =
||JHF (ϑ∗)− J (ϑ∗)||
||JHF (ϑ∗)|| (3.21)

where J can be equal to J̃OK or J̃MF .

The objective is to evaluate the capacity of MF models with different HF-LF distances (vari-
able α, see eq. (3.20)) to respond accurately to the optimization problem.

It is advised to use a size of 10 times the number of variables as the initial set of experi-
ments [Jones & Schonlau, 1998], leading to a minimum of 20 points initial set of experiments
to obtain sufficient coverage. The MF model is then evaluated with a 20 initial training set. Re-
sults obtained for two different DoEs of 20 simulations (M=20) are presented in Figures 3.5a
and 3.5b for varying α values.

At the examples shown in Figure 3.5, the MF trend intersects the OK model relative error
between α = 0.2 and α = 0.3, its performances decreasing for higher α values, α ≥ 0.3 (Fig-
ure 3.5a). MF model outperforms OK model for all α values in Figure 3.5b while it remains
less interesting for α ≥ 0.4 in the experiment in the Figure 3.5a. Figure 3.5 presents some
variability in the MF performance, therefore, Figure 3.6 gives the mean and standard deviation
for a series of 40 runs of the three models. In each run, a new LHS DoE is generated, and the
results are computed for increasing values of α.

The average behaviour of the MF trend outperforms the OK model up to α ≤ 0.2, while
the average behaviour of the corrected MF model is systematically better for all values of α,
up to the maximum distance α = 1. Given the standard deviation, Figure 3.6 shows that the
MF trend is very stable, unlike the OK and MF models. Given this variability, MF seems to
outperform the OK model up to α = 0.7, and we can consider that the proposed MF model is
more accurate up to α ≈ 0.7.

This study illustrates the impact of the trend on a kriging model. When the α decreases,
the trend error MF is reduced, and consequently, the MF model (the corrected trend MF) is
improved. The proposed MF model can be an alternative to classical kriging (here OK model)
when the available LF data are sufficiently close to the HF data, however, obtained at a cost
comparable to the kriging model evaluation.

3.3.4 Comparison of infill criteria
The last sections illustrate the behavior of MF in comparison to an OK for different DoE sizes
and multiple MF configurations by using the parameter α. In the present section, the value of α
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is fixed to 1, the highest HF-LF distance case, denoting the original benchmark problem [Bena-
mara et al., 2016]. Optimization strategies using either the EIc and PIc infill criteria defined in
Section 3.2.2 are applied on the test problem of Section 3.3.1. The convergence was tested with
high DoE coverage (up to 400 points). The objective of this section is to improve the model
convergence with a smaller DoE.

Starting from a Latin Hypercube design of 20 experiments (which corresponds to M = 10d
as recommended by [Jones & Schonlau, 1998]), either EIc and PIc are performed for the OK
and corrected MF models. The results obtained after 5 iterations using EIc criterion that take
into account the probability of feasibility of the constraints c1 and c2 are reported in Figure 3.7.
The cartographies showing the values of each criterion in the last iteration for MF and OK
models are shown in Figures 3.7e and 3.7f.

The first experiment (Figures 3.7), indicates that OK and MF optimums are in the targeted
location for less than 5 infill iterations after a similar initial DoE of 20 training points. The
model OK best point was obtained after only 3 iterations. The infill points are mainly covering
the region of the theoretical exact best point, particulary for the model OK. The MF infill points
are more distanced for iterations 1, 3, and 4 and can be considered more as an exploratory en-
richment. The last maximal value of the MF EIc is located at the theoretical optimal point.
The MF model is better representing the c1 constraint at the initial iteration and remains very
similar to an OK after few iterations. The global searching phase is brief and converge to the
right area for this initial DoE size for both models. However, in this case, the optimal point was
determined for less infill points for OK than for MF model. In this case, OK outperforms the
MF model.

In the section 3.3.2, it was observed that the MF model was better representing the con-
traints than the OK model in a small DoE size of M=4. The DoE size for both models is then
decreased to 4 points in the following experiment to test the IC capabilities of MF in compari-
son to OK models for a lowest evaluation costs (Figure 3.8).

In Figure 3.8, initial models are expected to be less accurate, being insufficiently explored.
The objective is to test the ICs capacity to reach the optimal point or the right region of interest.
In Figure 3.8c, the MF model best point was obtained after only 3 iterations in the case of EIc
infill comparing to 15 iterations for the OK model (Figure 3.8d). Concerning the PIc infill,
the best point is obtained after 20 iterations for MF model and 18 for OK model (Figures 3.8e
and 3.8f). For both models, the points added are clustering in the right region of interest (close
to the location of the best point). On the other hand, the EIc criterion on Figures 3.8c and
3.8d appears more spread than PIc on Figures 3.8f and 3.8e. The convergence of all cases is
acheieved after a lower number of iterations for the EIc than PIc. An explanation can be that
the PIc infill criterion’s exploration capacity remains poor for both models. In conclusion, the
EIc overperforms the PIc and compared to the OK model, this study shows that the enriched
MF model results are better when the initial DoE remains relatively small thanks to a more
efficient exploration of the design space.
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3.3.5 Comparison of multi-fidelity and ordinary kriging enriched surro-
gate models

In the last section, two enrichment criteria are explored in the MF and single-fidelity (OK)
frameworks. In the presented cases, the enrichment was able to find the regions of the optimal
values. These observations imply that the MF can be used as a surrogate model in the con-
strained optimization problem to reduce its cost. The present section aims at quantifying the
gain induced by the enrichment strategy. The reference solution for a random design space is
compared to a sequentially enriched space. Experiments are performed for multiple runs with
random LHS DoEs, for varying values of α using the EIc criterion.

Figure 3.9 describes the evolution of the local relative error (defined by (3.21)) of the objec-
tive function at the optimum location with and without the enrichment. The same LHS training
sets are used for the MF and the OK model to compare both procedures. The dotted lines rep-
resent values obtained after insertion of 4 infill points to a 20 points LHS DoE.

The OK values obtained from the random and the enriched DoE have the same values, the
local error is not improved by the enrichment. Even for the MF model, the enrichment does
not significantly reduce the error. The gap remains very low until α = 0.5, where the impact
of the enrichment in the error reduction appears higher, particularly for MF distances starting
from α > 0.5. Moreover, the standard deviation is strongly correlated to α as it tends toward
0, allowing a very low uncertainty about the MF results for small α. As a result of this study,
when the LF function is close enough to the HF function, the approximation’s confidence is
higher than for a single-fidelity surrogate model. In this boundary case, the MF is shown to be
better for a well-chosen LF-HF combination.

3.4 Conclusions
The proposed methodology uses a multi-fidelity model approximation to accelerate the opti-
mization process by applying additive corrections based on the Gaussian process. The method
improves the surrogate model by using statistical infill criteria adapted to account for the vi-
olation of constraints such as the probability of improvement and the expected improvement
criteria.

In the presented cases, the enrichment strategy allows finding the region of interest when
the distance between the low- and the high-fidelity models is the highest. The optimization
cost was lower for the multi-fidelity model with a small initial design of experiments than for
the ordinary kriging when using the expected improvement infill criterion. This can be further
improved with a lower distance between the high and the low-fidelity response values used in
the optimization framework. On the other hand, it has to be observed that the model’s quality is
less improved than these models’ capacity to solve an optimization problem. A global quality
criterion would have to be considered to qualify the multi-fidelity enrichment’s overall gain as
a follow-up to this study.

Corrected multi-fidelity is a promising approach for capturing various delicate high-fidelity
features. Based on this paper’s results, the reduced-order model of full-field multi-fidelity
can provide additional information on complex systems’ behavior compared to usual scalar
substitutes. Further work is needed to combine the infill criteria into an optimized strategy
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adapted to more sophisticated feature sets required to treat real engineering optimization test
cases.
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(a) JHF (ϑ)
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(b) J LF (ϑ)
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(c) cHF1 (ϑ)
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(d) cLF1 (ϑ)
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(e) cHF2 (ϑ)
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(f) cLF2 (ϑ)

Figure 3.1: Values of the objective function (first row) and of the constraints functions c1 (sec-
ond row) and c2 (third row) of HF (left column) and LF (right column).
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Figure 3.2: Snapshots obtained for the 4 points DoE
when the HF (continuous red curves), LF (dashed blue curves), and MF (dotted purple curves)

models are used with α = 1.
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(a) Values of cLF1
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(b) Values of cHF1
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(c) Values of cMF
1 using 400

points
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(d) Posterior mean of c̃MF
1 us-

ing 400 points
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(e) Posterior mean of c̃OK1 us-
ing 400 points
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(f) Values of cMF
1 using 40

points
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(g) Posterior mean of c̃MF
1 us-

ing 40 points
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(h) Posterior mean of c̃OK1 us-
ing 40 points
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(i) Values of cMF
1 using 4

points

4.0 4.5 5.0 5.5 6.0
1

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

2

-0.56

-0.42

-0.28

-0.15

-0.01

0.13

0.27

0.41

0.55

0.69

(j) Posterior mean of c̃MF
1 us-

ing 4 points
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(k) Posterior mean of c̃OK1 us-
ing 4 points

Figure 3.3: The convergence of the MF trend, MF and OK models of the c1

In the subfigures (c) to (h), the left, the middle and the right columns show the values of cMF
1 ,

c̃MF
1 (see Eq. (3.9)) and c̃OK1 . The points in the DoE are represented as white dots.
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(a) Values of cLF2
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(b) Values of cHF2
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(c) Values of cMF
2 using 400

points
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(d) Posterior mean of c̃MF
2 us-

ing 400 points
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(e) Posterior mean of c̃OK2 us-
ing 400 points
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(f) Values of cMF
2 using 40

points
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(g) Posterior mean of c̃MF
2 us-

ing 40 points
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(h) Posterior mean of c̃OK2 us-
ing 40 points
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(i) Values of cMF
2 using 4

points
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(j) Posterior mean of c̃MF
2 us-

ing 4 points
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(k) Posterior mean of c̃OK2 us-
ing 4 points

Figure 3.4: The convergence of the MF trend, MF and OK models of c2

In the subfigures (c) to (h), the left, the middle and the right columns show the values of cMF
2 ,

c̃MF
2 (see Eq. (3.9)) and c̃OK2 . The points in the DoE are represented as white dots.
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Figure 3.5: Evolution of the relative error for a sample experiment
The black dots are the DoE points and the red star is the location of the theoretical optimum of

the HF model.
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Figure 3.6: Evolution of the relative error at the theoretical optimal point for multiple runs.
The mean error values are represented by purple continuous and dotted lines for the MF model
and its trend, the OK by a red line, with their corresponding standard deviation (shaded areas)
obtained from 40 independant LHS experiments for each α value. Same LHS DoE is used for

model comparison.
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(a) J̃MF (ϑ) Initial values
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(b) J̃ OK(ϑ) Initial values
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(c) J̃MF (ϑ) after 5 iterations
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(d) J̃ OK(ϑ) after 5 iterations
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(e) EIc(ϑ) values after 5 iterations (MF)
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(f) EIc(ϑ) values after 5 iterations (OK)
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Figure 3.7: Optimization results obtained using the EIc criterion.

Starting from 20 points (first row), the algorithm is iterated for 5 iterations (the other
subfigures).
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(a) Initial MF values
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(b) Initial OK values
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(c) Final EIc infill (MF)
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(d) Final EIc infill (OK)
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(e) Final PIc infill (MF)
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(f) Final PIc infill (OK)
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Figure 3.8: Optimization results obtained using the EIc and PIc

Starting from 4 points (first row), the algorithm is iterated for 21 iterations. The first column
corresponds to results using the MF model, and the second column results using the OK

model.
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Figure 3.9: Evolution of the relative error for enriched and random DoE for multiple runs



Chapter 4

Methodology improvements and investiga-
tions for complex expensive models

4.1 Introduction

Chapter 3 introduced the MFNIRB methodology in the context of constrained optimization.
It was shown that employing the Low-Fidelity (LF) information as in MFNIRB yielded bet-
ter accuracies for small Design of Experiment (DoE)s when compared to the single-fidelity
Ordinary Kriging (OK) model based solely on High-Fidelity (HF) data. LF was exploited to
better capture features that are difficult to represent for a single-fidelity metamodels such as OK
(plateau-like variations in the design space). Another advantage is the higher LF data availabil-
ity compared to HF, due to the difference in cost and complexity. The limited budget does
not allow intensive calls to the HF solver while LF data can be obtained at a very low cost,
MFNIRB is cheaper than OK.

However, the success of the multi-fidelity approach depends on the correlation between
the different model levels. Another limitation is the assumption that the LF cost is negligeable.
This assumption was made in Chapter 3 to allow the exploration of the MFNIRB method. How-
ever, a few seconds, minutes, or even hours may be required to obtain a single LF response.
While the optimization procedure involves a genetic algorithm to maximize the enrichment cri-
terion, it requires multiple iterations with extensive evaluations of the evolving population, and
consequently might exceed the allowed budget.

Therefore, in the present chapter, we introduce an additional level of Non-Intrusive Proper
Orthogonal Decomposition (NIPOD) approximation of the LF model. The experiments are
conducted to compare MFNIRB to the OK Surrogate Based-Optimization (SBO) convergence
(OK is the single-fidelity Kriging metamodel tested in Chapter 3) in different configurations,
considering :

• The availability of LF and HF data : LF is less expensive (or less complex to com-
pute), meaning that LF responses are available in a more abundant amount. LF can be
called in parallel to HF, so the aim is to determine the best LF-HF ratio to support the
optimization.

• The enrichment criteria : the purpose of enrichment is to reduce the number of eval-
uations needed to find the optimization solution. The multi-fidelity approach offers the

52
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possibility to add LF values as well as HF values to the optimization. The enrichment
criterion must take into account the LF-HF cost ratio in order to perform either the HF or
LF evaluation when relevant and better control the overall cost.

• The ability to represent complex constraints : MFNIRB requires less HF training to
represent complex features. Thus, the influence of MFNIRB accuracy on the efficiency
of SBO needs to be explored.

Section 4.2 presents the multi-fidelity reduced-basis, enrichment and NIPOD methodolo-
gies. The section 4.3 provides the experiments conducted to test the enrichment and metamod-
eling approaches introduced.

4.2 Methodology adopted for multi-fidelity model validation

The use of ϑ as design parameters will be replaced by χ to distinguish the new notations of the
present and following chapters.

This section defines the methodology proposed to solve efficiently a constrained single
objective optimization problem defined as follows

χ∗ = arg min
χ

J (f(x,χ))

s.t. gi(f(x,χ)) ≤ 0, i = 1, ..., p
hj(f(x,χ)) = 0, j = 1, ..., q

x ∈ Ω ⊂ Rdim

χ ∈ D ⊂ Rd

(4.1)

where x is a point in the physical space of dimension dim, χ the vector of the design vari-
ables, D ⊂ Rd is the design domain of dimension d corresponding to the number of design
variables which can be varied indepently, and χ∗ is the optimum value of design variables min-
imizing the objective functional J ∈ R respecting inequality and equality constraints g, and
h respectively. In the discrete f(x,χ) is evaluated on a finite set of n points (nodes of the
finite element mesh) x ∈ Rdim×n yielding function snapshots f(x,χ) ∈ Rn. The functional J
is then obtained by operations of integration/maximization/minimization of the spatially dis-
cretized snapshot. The formulation 4.1 becomes

χ∗ = arg min
χ

J (f(x,χ))

s.t. gi(f(x,χ)) ≤ 0, i = 1, ..., p
hj(f(x,χ)) = 0, j = 1, ..., q

x ∈ Ω ⊂ Rdim×n

χ ∈ D ⊂ Rd

(4.2)

The computer simulation of f(x,χ) is considered expensive, and will be approximated
using MFNIRB method introduced in the previous Chapter by f̃(x,χ), yielding the following
formulation of the full-field optimization problem
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χ∗ = arg min
χ

J (f̃(x,χ))

s.t. gi(f̃(x,χ)) ≤ 0, i = 1, ..., p

hj(f̃(x,χ)) = 0, j = 1, ..., q

x ∈ Ω ⊂ Rdim×n

χ ∈ D ⊂ Rd

(4.3)

Note that the proposed approach approximates the full-field simulation output rather than the
functional itself, and, in general, aiming at a better capture of detailed features of the flow when
Computational Fluid Dynamic (CFD) simuations are considered

J̃ (χ) 6= J (f̃(x,χ)). (4.4)

The following sections aim to explore the MFNIRB model, introduced in Chapter 3, as
a substitute to the vectors f(x,χ) used in the optimization procedure. Such model used the
low-fidelity at each call during the SBO solving, considering these simulations negligeable.
However, in the context of optimization, its Central Processing Unit (CPU) budget becomes
non-negligible when multiple calls are made through a computational chain, including mesh-
ing, solving and post-processing. The fundamental hypothesis behind the family of NIPOD
methods is that the full-field model provides a better insight into a physical system behavior
when compared to scalar surrogate models. LF simulations are considered cheap and valuable
for designers willing to meet design budgets or get insight into design direction. Compared to
the previous chapter, the NIPOD will be introduced for the call to the LF to avoid accessing
the code in the online phase for the call to the LF to avoid repetitive calls to the LF code in the
online phase and consequently reduce its cummulative costs.

This section presents the implementation of the suggested methodologies to solve the costly
full-field SBO problems. Section 4.2.1 presents the construction of the output LF vectors.
Section 4.2.2 details the structure of the MFNIRB model. Section 4.2.3 introduces the study of
the proposed infill criteria. Finally, Section 4.2.4 details the different steps of the optimization
conducted using MFNIRB.

4.2.1 Construction of reduced-order model of the low-fidelity solution
field

Let us remind that MFNIRB model relies on an orthogonal projection of the LF snapshots onto
the HF Proper Orthogonal Decomposition (POD) basis. Each MFNIRB prediction involves a
call to the LF solver. The issue is that the SBO procedure requires multiple evaluations, as the
Genetic Algorithm (GA) needs a high number of evaluations rapidly becoming intractable for
complex optimization problems. If a LF evaluation requires, for example, five minutes, and the
genetic algorithm is performed for 30 iterations and 300 evaluations, at each iteration, about 1
month is needed to solve the SBO problem (300 × 30 × 5 = 45000 minutes ≈ one month).
It appears, therefore, interesting to rely on a reduced order model for the LF function itself,
introducing de facto an additional level of fidelity in the MFNIRB scheme. In the online phase,
the LF solution vectors are then approached with the linear combination of the LF basis vectors.
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The idea of the proposed approach is to learn the NIPOD basis in the offline phase, and
use it to predict the LF vectors online. Algorithms 2 and 3 describe the different steps of the
offline and online phases, from the training to the evaluation of the f̃LF (x,χ) approximation of
fLF (x,χ). The first step is to store Ml sampled vectors in the snapshot matrix SLF . Consider-
ing the ratio of the runtime cost of High- and Low-Fidelity simulations,Ml >> Mh is assumed,
Ml and Mh respectively LF and HF sample DoE sizes. The LF DoE XLF = {χ(1), . . . ,χ(Ml)}
is generated using an ad hoc sampling method, in the present case LHS. Other choices for
initial sampling are obviously possible (LCVT, hypercube,etc.). The snapshot matrix SLF is
constructed with the fLF function evaluating the DoE X LF

SLF =
[
fLF (x,χ(1)) . . . fLF (x,χ(Ml))

]
(4.5)

where x is the discretised space vector of the size dim× n. Without loss of generality n ≥Ml

is considered in the following. The snapshots matrix is also defined as the sum of the mean s̄LF
of all the snapshots

s̄LF =
1

Ml

Ml∑
i=1

fLF (x,χ(i)) (4.6)

and the matrix of fluctuations SLF

SLF = s̄LF ·

1
...
1


T

Mh×1

+ SLF . (4.7)

Note the difference between SLF and SLF symbols, denoting snapshot and fluctuation ma-
trices, respectively.

To eigen decompose the covariance matrix C = SLFS
T
LF , the Singular Value Decomposi-

tion (SVD) of a rectangular matrix SLF of the size n×Ml may be considered.

SLF = ΦLFΣLFΨT
LF (4.8)

where ΦLF and ΨT
LF matrices are respectively composed of the left and right singular vec-

tors, of size n ×Ml and Ml × n, ΣLF is a diagonal matrix containing the singular values of
SLF and equivalent when squared to eigen values of the ”big” (n×n)C = SLFSTLF or ”small”
Ml ×Ml correlation matrix c = STLFSLF .

Note that the decomposition may be performed by different approaches, the most common
being ”economical” SVD. In the offline phase, this method is used to obtain the decomposition
for the initial dataset, and once in the online phase, its incremental version [Phalippou et al.,
2020] uses only the newly added points instead of the overall DoE at each iteration.

Considering n the size of each snapshot vector andMl DoE samples, the size of the snapshot
matrix is n×Ml. The left matrix ΦLF is chosen for the NIPOD approximation. In the context of
multi-fidelity, truncation is performed on the most abundant data, which are usually generated
by low-fidelity simulations. This results in a truncated basis ΦLF,ml

when ml < Ml << n
such that
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S̃ml,LF = s̄LF ·

1
...
1


T

Mh×1

+ ΦLF,ml
ΦT

LF,ml
SLF (4.9)

The idea behind the truncation is to consider the most relevant modes only. The latter
are determined by minimizing the relative Frobenius error norm of the difference between the
original SLF and its reconstruction Sml,LF with ml < Ml basis vectors

εLF (ml) =
||SLF − S̃ml,LF ||F

||SLF ||F
. (4.10)

The ml optimal value m∗l is evaluated from the minimization of εLF (ml)

m∗l = arg min
ml∈{1 , ... ,Ml}

εLF (ml). (4.11)

Once the NIPOD basis ΦLF is obtained, the snapshots matrix SLF is projected into this
basis to determine the scalar coefficients αLF (χ(i)) for the DoE points belonging to XLF

αiLF (χ) = ΦLF (x)T (fLF (x,χi)− s̄LF ), χi ∈ XLF , i = 1, ... , Ml (4.12)

The f̃LF (x,χ) can then be approximated for an arbitrary point χ by

f̃LF (χ, x) = s̄LF + ΦLF (x)α̃LF (χ,θLF ), ∀χ ∈ D (4.13)

with α̃LF (χ) the surrogate model of the projection coefficients αLF (χ) that requires model
paramaters (hyperparameters) θLF , to be identified in the offline phase.

The construction of the NIPOD approximation of the LF function is then composed of a
training and an evaluation phases detailed respectively in Algorithm 2 and 3. First, a sampling
of Ml points in the domain D is performed, then the LF vector values are evaluated at these
points and stored in the LF snapshot matrixSLF . This offline phase ends with the assessment of
the LF NIPOD basis ΦLF of the discrete LF coefficients projection αLF . Next, the prediction
model for α̃LF (χ) is trained yielding the hyperparameters θLF .

The LF evaluation for a new parameter χnew is achieved in the online phase presented by
the Algorithm 3, using the approximate model α̃LF (χ) for the coefficients αLF (χ). That allows
the prediction of new parameters values χ ∈ D, not belonging to the training DoE set XLF .
New snapshots are evaluated by f̃LF (x,χ) instead of the actual LF function fLF (x,χ) during
the optimization. The choice of using the full or the approximate version depends on the CPU
cost of the LF solver and on simulation software accessibility.

The online phase consists merely of evaluating the LF at a desired point χ using NIPOD
modeling. It is considered that the offline algorithm has provided the average snapshots S̄LF ,
the LF POD basis ΦLF and the discrete coefficients PODLF. The POD basis and its discrete
coefficients αLF (χ,θLF ). Thus, from the approximate LF coefficients, the new vectors may be
predicted without using LF solver.

In a similar spirit, the following paragraph details the construction of the orthogonal basis
HF, from the HF snapshots. This time, this step is followed by the projection of the snapshots
on the latter basis. LF may be evaluated with LF or with simulation outputs. The projection
gives the deterministic part of the MFNIRB.
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Algorithm 2 LF NIPOD offline phase

Require: Ml : LF DoE size, x : Discretization, fLF (x,χ) : LF function
Ensure: ΦLF (x), θLF

1: Training DoE of Ml points XLF = {χ(1), . . . , χ(Ml)} (Latin Hypercube Sampling)
2: Compute Low-Fidelity snapshots SLF = [fLF (x,χ(1)), . . . , fLF (x,χ(Ml))]
3: Compute the mean snapshot s̄LF using Equation (4.6)

4: SLF = SLF − s̄LF ·

1
...
1


T

Mh×1

5: Compute the basis ΦLF associated with SLF using SVD Compute SLF = ΦLFΣLFΨT
LF

using SVD
6: Find the truncation best rank m∗l using Equation (4.11).
7: Compute αLF,m∗

l
using Equation (4.13) and the truncated orthogonal basis ΦLF,m∗

l

8: ΦLF ←ΦLF,m∗
l

9: αLF ← αLF,m∗
l

10: Train the metamodel hyperparameters θLF for α̃LF (χ,θLF ), using metamodeling method
(e.g. Polynomial, RBF, Diffuse Approximations)

Algorithm 3 LF NIPOD online phase
Require: s̄LF : mean of LF snapshots, χnew ∈ D : the input to evaluate (outside the training

LF DoE), ΦLF (x) : LF POD basis, θLF : hyperparameters
Ensure: f̃LF (x,χnew)

1: Compute α̃LF (χnew,θLF )

2: Compute approximated Low-Fidelity output f̃LF (x,χnew) using Equation 4.13.

4.2.2 Construction of the Multi-Fidelity Reduced-Order Model

This section covers the steps of the MFNIRB metamodel construction, divided into two main
phases, online and offline.

Initially and once the the LF and HF simulation outputs are available, the offline phase
is performed. In the context of MFNIRB, it consists in building the HF POD basis from the
HF outputs in a first step. The LF output vectors are projected onto the reduced space, built
yielding HF vectors in a second step. Then, the Kriging of the difference between Multi-
Fidelity (MF) and HF Quantities of Interest (QoI)s is trained. Once the Kriging interpolation
is optimized yielding the multi-fidelity trend, the online phase may be performed directly to
predict objective and constraints at new points outside the training DoE set. Algorithm 4 details
the offline training phase that builds the NIPOD HF basis and MFNIRB Kriging interpolation.
The training is performed on a limited number of samples Mh within the design space D The
training is performed on a limited sample XHF = {χ(1), ...χ(Mh)} within the design space D,
of size Mh using a sampling method that allows a wide coverage of D such as LHS, LCVT,
etc. These are evaluated by the given HF function fHF (x,χ), representing the HF simulator
black box. The Mh output vectors obtained from XHF are stored in the snapshot matrix SHF
of size n×Mh

SHF =
[
fHF (x,χ(1)) · · · fHF (x,χ(Mh))

]
(4.14)
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where x is the discretized space vector of the size n.

The snapshots matrix is also defined as the sum of the mean snapshot

s̄HF =
1

Mh

Mh∑
i=1

fHF (x,χ(i)) (4.15)

and the matrix of fluctuations SHF

SHF = s̄HF ·

1
...
1


T

Mh×1

+ SHF . (4.16)

In a similar manner to NIPOD eigen decomposition presented Section 4.2.1, the left orthog-
onal basis ΦHF

1 is obtained using SVD

SHF = ΦHFΣHFΨT
HF (4.17)

where ΦHF and ΨT
HF are respectively composed of the left and right orthogonal basis of

the size n×Mh and Mh × n, ΣHF is a diagonal matrix containing the singular values of STHF .

Once ΦHF is obtained, the LF snapshot is projected onto this basis to determine the scalar
coefficients αMF (χ) for the design point χ

αMF (χ) = ΦHF (x)T (fLF (x,χ)− s̄HF ), χ ∈ D (4.18)

The approximation of HF may then be performed

f̃MF (χ, x) = s̄HF + ΦHF (x)αMF (χ), ∀χ ∈ D (4.19)

Note that considering the high cost of HF and therefore a low Mh, preferably no truncation is
performed on ΦHF (except for null singular values). Also, LF may also become unaffordable
when called repeatedly during the online phase, it is recommended to substitute this level by
the LF NIPOD approximation as introduced in Section 4.2.1. For this reason, an additional
centering of the LF training vectors using the mean snapshot s̄LF is required, as defined in
Equation (4.6) :

fLF (x,χ) ≈ s̄LF + ΦLF α̃LF (4.20)

therefore the multi-fidelity coefficients are

αMF (χ) = ΦHF (x)T ((s̄LF + ΦLF α̃LF )− s̄HF ) , χ ∈ XLF . (4.21)

The idea behind the MFNIRB representation is to consider the QoIs obtained from MF
approximation as the Kriging trend corrected by a stochastic model to enforce the interpolation
property. As defined in Chapter 3, the models of objective J and constraints c are then defined

1Considering n the size of each snapshot vector and that there are Mh samples among DoE, the size of the
snapshot matrix is n ×Mh, where n is considered much higher than Mh. In such case, the left matrix ΦHF is
chosen for the POD approximation.
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as a Kriging representation with a MF trend added to a stochastic model of the difference ∆J
between MF and HF objective JMF and JHF

J̃MF (χ) = JMF (f̃MF (x,χ)) + ∆̃J (χ) (4.22)

and ∆c between constraints cMF and cHF

c̃MF (χ) = cMF (f̃MF (x,χ)) + ∆̃c(χ) (4.23)

where ∆̃c(χ) ∼ GP(0, kθ(χ,χ)) and ∆̃JMF
(χ) ∼ GP(0, kθ(χ,χ)), kθ(χ,χ) is the QoIs

Gaussian kernel and σ2 the variances on the difference between MF and HF

kθ(χ,χ
′) = σ2

d∑
k=1

exp
(
−θk|χk − χ′k|2

)
(4.24)

defining the covariance matrix Kθ for the Mh points of the training set XHF as

Kθ(χ
(i),χ(j)) = σ2

d∑
k=1

exp
(
−θk|χ(i)

k − χ
(j)
k |2

)
, i, j = {1, ... ,Mh} (4.25)

where θ are d hyperparamaters and d is the design space dimension.

The hyperparameters are optimized using the Maximum Likelihood Estimation (MLE) as in
[Rasmussen & Williams, 2006], allowing to chooses the best θ values. The difference between
HF objective and MFNIRB prediction can be then expressed by

∆̃J (χ) = kTθ (χ)K−1
θ

[
∆J (χ(1)) · · · ∆J (χ(Mh))

]T
(4.26)

and similary for the constraints

∆̃c(χ) = kTθ (χ)K−1
θ

[
∆c(χ

(1)) · · · ∆c(χ
(Mh))

]T
. (4.27)

The online phase of MFNIRB is presented by Algorithm 5. It details the prediction of the
difference between the training values MF and ∆̃ of the objective J and the constraints c,
respectively, the predictions ∆̃J and ∆̃c of ∆J and ∆c. The Kriging interpolation model is
defined by a multi-fidelity trend that plays the role of centering the Kriging predictions. Since
HF QoI is assumed accurate and expensive compared to LF QoI, the idea of the model MFNIRB
is to interpolate HF QoI in priority. As the multi-fidelity full-field approximation is defined,
there is no guarantee that the HF QoI are interpolated. It consists on adding a correction,
assumed to be unknown among the set of DoE LF XLF . Therefore, given the approximated
MFNIRB, the solver LF is called at each evaluation (or NIPOD approximation), the correction
model is added to the final functional values of the vector LF obtained at a new given point
XLF .

The use of Kriging allows us therefore to inperpret J̃ and c̃ as the trend and mean of the
QoI along with corresponding variances that are used in the following section to construct the
infill criterion for DoE enrichment.



60CHAPTER 4. METHODOLOGY IMPROVEMENTS FOR COMPLEX EXPENSIVE MODELS

Algorithm 4 MFNIRB offline phase
Require: D : Design domain ; Mh: HF initial DoE size ; Ml: LF initial DoE size, where

Ml >> Mh ; x: discretization ; fHF (x,χ): HF function ; fLF (x,χ): LF function
Ensure: ΦHF , ∆̃J (χ), ∆̃c(χ)

1: Create DoE points XHF = {χ(1), . . . , χ(Mh)}
2: Compute HF snapshots SHF = [fHF (x,χ(1)) . . . fHF (x,χ(Mh))]
3: Compute HF mean snapshot s̄HF using equation (4.15)

4: Compute ΦHF using SVD SHF − s̄HF ·

1
...
1


T

Mh×1

= ΦHFΣHFΨT
HF

5: fMF (x,χ(j))← s̄HF + ΦHFΦ
t
HF (fLF (x,χ(j))− s̄HF ), j = {1, ... ,Mh}

6: Evaluate MF trend QoIs JMF (χ(j)) = J (fMF (x,χ(j))), cMF (χ(j)) = c(fMF (x,χ(j))),
j = {1, ... ,Mh}

7: Compute HF QoIs J HF (χ(j)) = J (fHF (x,χ(j))), cHF (χ(j)) = c(fHF (x,χ(j))), j =
{1, ... ,Mh}

8: Compute ∆J (χ)← J HF (χ)− JMF (χ) ∼ GP(0, kθ(χ,χ))
9: Compute covariance matrix Kθ and covariate vector at χ ∈ χHF , kθ(χ)

10: ∆̄J (χ)← kTθ (χ)K−1
θ

[
∆J (χ(1)) · · · ∆J (χ(Mh))

]T
11: Compute ∆c(χ)← cHF (χ)− cMF (χ) ∼ GP(0, kθ(χ,χ))
12: Compute covariance matrix Kθ and covariate vector at χ ∈ χHF , kθ(χ)

13: ∆̄c(χ)← kTθ (χ)K−1
θ

[
∆c(χ

(1)) · · · ∆c(χ
(Mh))

]T
14: Establish MFNIRB models ∆̃J (χ), ∆̃c(χ) using Equations (3.9) and (3.8) and optimize

Kriging hyperparameters θ ∈ R2 using MLE global optimization

Algorithm 5 MFNIRB online phase

Require: ΦHF : MFNIRB orthogonal basis; ∆̃J (χ): MFNIRB model of ∆J (χ); ∆̃c(χ)
MFNIRB model of ∆c(χ); χnew: point to evaluate in the design space D; x: discretiza-
tion; f̃LF (x,χ): exact LF or approximate NIPOD LF function; J (f(x,χ)) : objective
functional; c(f(x,χ)) : constraints functional

Ensure: J̃MF (χnew), c̃MF (χnew)

1: Compute f̃LF (x,χ) using exact LF function fLF (or solver) or using LF NIPOD approxi-
mation Equation (4.13)

2: fMF (x,χ)←ΦHFΦ
t
HF f̃LF (x,χ)

3: Evaluate MF trend QoIs JMF (χ) = J (fMF (x,χ)), cMF (χ) = c(fMF (x,χ))

4: J̃MF (χ)← JMF (χ) + ∆̃J (χ)

5: c̃MF (χ)← cMF (χ) + ∆̃c(χ)

4.2.3 Infill criterion used for the enrichment strategy during the multi-
fidelity optimization procedure

This section defines an adapted version of the Expected Improvement and a multi-fidelity
Bayesian criterion. First, we provide an overview of the criteria and their notations compared
to the adapted proposed criteria. Then a MF best suitable optimization strategy is identified.

Assuming that a feasible solution exists in the DoE, and considering the design space D,
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the current best point can be defined as

χ∗it = arg min
{
J̃ (x,χ); χ ∈ C

}
, (4.28)

where C = {χ ∈ X ; ch(χ) ≤ 0, 1 ≤ h ≤ nc} denotes the feasible subset of the DoE solution
set at iteration it. The objective functional is evaluated at χ∗it as the current best minimized
value under the nc constraints c such as

J̃ ∗it = J (χ∗it) . (4.29)

Note that to alleviate notations, we skip equality constraints as they may always be repre-
sented by two inequalitues.

4.2.3.1 Reminder of some infill criteria used in the context of single-fidelity constrained
optimization

The improvement yielded by the observation of a new point χ can then be defined as

I(χ) = max(J ∗it − J̃ (χ), 0),χ ∈ C. (4.30)

with J̃ (χ) defined by Equation (4.22).

Assuming that the constraints involved in the optimization problem are independent, the
probability that a given χ ∈ D belongs to the feasible set C can be computed using the closed-
form formula

PF (χ) =
nc∏
h=1

P (c̃h(χ) ≤ 0) =
nc∏
h=1

Φ

(−c̃h
Σch

)
, (4.31)

where Σ2
ch

is the posterior variance [Rasmussen & Williams, 2006]associated to constraints ch
1 ≤ h ≤ nc. The posterior variance is defined by

Σ2
ch

= kθ(χ,χ)− kθ(χ)TK−1
θ kθ(χ), (4.32)

Φ(.) is the normal cumulative distribution functions, and the covariate

kθ(χ) =
[
kθ(χ,χ)(1), · · · , kθ(χ,χ(Mh))

]
. (4.33)

σ2 denotes the variance of J̃ (χ) defined by

σ2(χ) = σ2 (1− kθ(χ))T K−1
θ kθ(χ) . (4.34)

If it is further assumed that the objective and constraints are independent, the probability of
improvement may be expressed as

PIc(χ) = Φ

(
J ∗it − J̃ (χ)

σ(χ)

)
· PF (χ) . (4.35)

where σ(χ) is the standard deviation of J̃ (χ) at an arbitrary sampleχ . The Expected Improve-
ment (EI) in the presence of constraints is defined as the expected value of I(χ) conditional on
the observations (see, e.g., [Bagheri et al., 2017])

EIc(χ) = EI(χ)× PF (χ), (4.36)
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with

EI(χ) =

 max
(
J ∗it − J̃ (f(x,χ)), 0

)
if σ(χ) = 0,

(J ∗it − J̃ (f(x,χ)))Φ
(
J ∗
it−J̃ (f(x,χ))

σ(χ)

)
+ σ(χ)φ

(
J ∗
it−J̃ (f(x,χ))

σ(χ)

)
if σ(χ) > 0,

(4.37)
where φ(.) and Φ(.) denote respectively the standard normal probability density function and
the normal cumulative distribution functions, J̃ (f(x,χ)) being the posterior mean ofJ (f(x,χ)).

4.2.3.2 Adaptive compromise between exploitation and exploration within expected Im-
provement criterion

A weight can be added to the infill to favor the exploration in the begining of the optimization
procedure, and to intensify the exploitation at the last iterations. The weighted expected im-
provement is inspired from [Cinquegrana & Iuliano, 2015].The EIc,w or EIw are defined by
the original infill criterion EI or EIc multiplied by the weight w, giving a weighted EI, EIw
defined by

EIw(χ, it) = (1− w(it))×
(
J ∗it − J̃ (f(x,χ))

)
Φ

(
J ∗it − J̃ (f(x,χ))

σ(χ)

)
︸ ︷︷ ︸

Exploitation

+w(it)× σ(χ)φ

(
J ∗it − J̃ (f(x,χ))

σ(χ)

)
︸ ︷︷ ︸

Exploration

(4.38)

with the following strategy to update w(it)

w(it) =
1

it+ 1
(4.39)

where it is the number of the infill iterations.

4.2.3.3 Automatic selection of the fidelity level

The modeling method chosen in this thesis is based on integrating two different levels of infor-
mation fidelity through the non-intrusive Reduced-Basis (RB) projection. Consider a particular
case, the basis HF, an accurate, comprehensive basis containing LF basis vectors. The funda-
mental assumption of this method is that LF is sufficiently correlated to HF to be represented
by the HF basis. Once the projection of LF onto the HF basis is performed, the resulting modal
coefficients retain only the similarities between the two fidelity levels. It was shown in Chapter
3 that the correlation is increasingly important with the convergence of the optimization. Given
this statement, the idea is to integrate the best correlated LF of the experimental design into the
enrichment. [Toal, 2015] has previously proposed to consider correlation and demonstrates the
importance of LF-HF correlation over cost on expensive numerical problem solving efficiency.
Basic correlation criteria are integrated into the IC to identify the location of the most inter-
esting LF for the multi-fidelity projection on the one hand and on the other hand to drive the
fidelity level selection strategy.

In the literature, correlation coefficients are generally used to evaluate the relationship be-
tween different types of data. The Pearson coefficient is one of the usual ones, it consists in
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evaluating the linear correlation between two variables. In our context, we assume that the
continuous random variables are defined by

X
(i)
HF = fHF (x,χ(i)), i = {1 , ... , nv} (4.40)

for HF and

X
(i)
LF = fLF (x,χ(i)), i = {1 , ... , nv} (4.41)

for LF outputs follow a normal distribution. In the present context, these are obtained by an
approximation, constructed from the available simulation outputs that are trained with a chosen
approximation model (e.g. the non-intrusive POD). Such coefficient is defined by

rp =
Cov(XLF , XHF )

σXLF
σXHF

(4.42)

where

Cov(XLF , XHF ) =
1

nv

nv∑
i=1

(X
(i)
LF − X̄LF )(X

(i)
HF − X̄HF ), (4.43)

σXLF
=

√√√√ 1

nv

nv∑
i=1

(X
(i)
LF − X̄LF )2, (4.44)

and

σXHF
=

√√√√ 1

nv

nv∑
i=1

(X
(i)
HF − X̄HF )2. (4.45)

nv is the number of validation points to predict outside the DoE, X̄HF and X̄HF are respectively
the mean of fLF (x,χ(j)) and fHF (x,χ(j)), j = {1, ..., nv} for nv validation points.

The higher the correlation between fLF et fHF , the closer to 1 is the Pearson coefficient r.
The other coefficient of Spearmann [Kokoska & Zwillinger, 1999] is defined as

rs = 1−
∑nv

i=1(X
(i)
HF −X

(i)
LF )2

nv(n2
v − 1)

. (4.46)

takes into account continuous monotonic relations. This coefficient varies between -1 and +1,
0 when there is no correlation. Correlations of -1 or +1 imply an exact monotonic relationship.
Positive correlations imply that when fLF increases, fHF also increases. Negative correlations
imply that when fLF increases, fHF decreases. These criteria do not capture the differences in
magnitude of one response compared to another. It is assumed in the multi-fidelity context that
the HF and LF data are correlated.

Since the a priori relation between the two fidelity levels of the solvers is not necessarily
known, two coefficients are added to take into account two possibilities of correlations, linear
and nonlinear. Then, the value is higher when there are two types of correlations, and lower
when there is neither linear nor nonlinear correlation. The proposed criterion is dedicated to
guide the choice of the LF enrichment, as an extension of the weighted Expected Improvement
EIw (defined Section 4.2.3.1)
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EIwl
(χ, it) = (1− wl(it))×

(
J ∗it − J̃ (f(x,χ))

)
Φ

(
J ∗it − J̃ (f(x,χ))

σ(χ)

)
︸ ︷︷ ︸

Exploitation

+ (4.47)

wl(it)× σ(χ)φ

(
J ∗it − J̃ (f(x,χ))

σ(χ)

)
︸ ︷︷ ︸

Exploration

, (4.48)

where
wl(it) =

1− Costratio
(1+ < rs(χ) > + < rp(χ) >)(1 + it)

(4.49)

where < rs(χ) > and < rp(χ) > are respectively the non-negative part of Spearmann and
Pearson correlation between XLF (x,χ) and XHF (x,χ) equal to 0 when the correlation values
are negative, it is the number of iterations, φ(.) and Φ(.) denote the standard normal probability
density and the normal cumulative distribution functions, respectively, with J̃ (f(x,χ)) being
the posterior mean of J (f(x,χ)) and

Costratio =
Cost(fLF (x,χ))

Cost(fHF (x,χ))
(4.50)

is the LF-HF computational cost ratio comprises between 0 and 1.

At the first iterations, it→ 0, wl(it) tends to

wl(it) =
1− Cost(fLF (x,χ))

1+ < rs(χ) > + < rp(χ) >
(4.51)

For low it numbers, the criterion tends to exploitation when the cost ratio Costratio is high
(Costratio → 1), so wl → 0. It is decreasing when the linear and/or non-linear LF-HF correla-
tions are high, so the criterion tends to exploit. During the infill procedure, when it increases,
wl(it)→ 0, the exploitation part of the criterion is increasing with optimum enrichment at the
end of the optimization. In the multi-fidelity context, the proposed criterion is dedicated to LF
infill, and when the LF-HF correlation is high, wl(it) decreases, and exploitation increases.

The proposed infill strategy relies on exploring LF DoE when the solver call is cheap,
thereafter interesting in terms of time saving. It favors low over higher cost solver calls when
adding low accurate data, and more exploitation when the accuracy of the outputs is better. In
parallel with each iteration, HF infill is achieved as long as the maximum optimization budget
is not reached.

4.2.4 Implementation of the Multi-Fidelity Reduced-Order model in op-
timization context

While MFNIRB is a full-field method, it requires approximation techniques. In the following
we choose Kriging, in order to benefit from the available statistical information to guide the
SBO search toward the area of interest. Other possible choices include Radial Basis Functions,
Polynomial Response Surfaces or Diffuse Approximation. Since the LF simulation is expected



4.2. METHODOLOGY ADOPTED FOR MULTI-FIDELITY MODEL VALIDATION 65

to be significantly cheaper than the HF simulation, the goal is to combine a low number of
HF data with a high number of LF responses. The fundamental hypothesis of the multi-fidelity
approach is that despite a lower quality of information, LF is representative enough to allow the
optimization progress. In this section two infill approaches are presented. The first one consists
on the enrichment of only the highest fidelity level, and the second consists on considering
two levels of fidelity using one infill criterion IC to add HF vector, and another ICLF to add
LF vector. Algorithm 6 presents the different optimization steps assisted by MFNIRB with
single-fidelity DoE enrichment.

Algorithm 6 MFNIRB assisted with single-fidelity DoE enrichment

Require: D : Design domain, M : initial DoE size; x: discretisation; fLF (x,χ): LF function;
fHF (x,χ): HF function; J (f(x,χ)): objective; c(f(x,χ)): constraints

Ensure: χ∗
1: Create DoE points X = {χ(1), . . . , χ(M)} (Latin Hypercube Sampling)
2: Compute HF snapshots SHF = [fHF (x,χ(1)) . . . fHF (x,χ(M))]
3: Compute LF snapshots SLF = [fLF (x,χ(1)) . . . fLF (x,χ(M))]
4: it← 0
5: while stoping condition is not met do
6: find χ∗ using HF QoIs J HF (χ), cHF (χ), χ ∈ X with Equation (4.52)
7: Compute SHF = ΦΣΨT using Incremental SVD
8: Compute MF projections fMF (x,χ(j)) = ΦΦtfLF (x,χ(j)), j = {1, ... ,M}
9: Evaluate MF trend QoIs JMF (χ(j)) = J (fMF (x,χ(j))), cMF (χ(j)) =

c(fMF (x,χ(j))), j = {1, ... ,M}
10: Establish MFNIRB QoI J̃MF (χ), c̃MF (χ) using Equations (3.9) and (3.8) and optimize

Kriging hyperparameters
11: Get next candidate χ∗it = arg maxχ IC(χ∗, c̃MF (χ),ΣJ̃MF (χ)) using GA with IC

input Equations (4.37) or (4.35)
12: Compute LF and HF snapshots fLF (x,χ∗it) and fHF (x,χ∗it) at χ∗it
13: SHF ← [SHF ,fHF (x,χ∗it)]
14: SLF ← [SLF ,fLF (x,χ∗it)]
15: χ∗ ← arg minχ∈X Jfitness(χ)
16: M ←M + 1
17: it← it+ 1
18: end while

In the first step, a sampling ofM Design of Experiments (DoE) pointsX = {χ(1), ..., χ(M)}
is performed on the design domainD. The solvers of the different fidelity levels are represented
by the HF level fHF and LF level fLF functions. These functions depend on the design pa-
rameters χ and the physical space discretization x2. The output vectors of the fHF and fLF

functions of these parameter samples are evaluated to build two matrices of size n ×M . The
quantities evaluated from this set of outputs are used to train the Gaussian processes meta-
model, yielding the variance and the mean. On the next step, the criterion IC (IC = EIc, PIc,
σc) is estimated from the variance and the optimal point3 at each iteration χ∗. This criterion is
maximized by a genetic algorithm from the inspyred python library4. The enrichment point χ∗it

2Represents the finite element nodes among discretized space.
3The point minimizing the objective function that best satisfies the optimization constraints.
4Garrett, A. (2012). inspyred (Version 1.0.1) [software]. Inspired Intelligence. Retrieved from https:

//github.com/aarongarrett/inspyred

https://github.com/aarongarrett/inspyred
https://github.com/aarongarrett/inspyred
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is located at the maximum of the criterion IC. Once the new point is added to the DoE, the
dataset is updated and the procedure stops when a stopping condition is reached, and the best
point χ∗ determined.

At each iteration of infill, a point is added to the DoE may be an exploration point, therefore,
is not necessarily at the optimal point (typically the case of theEI ). Thus, at the itth iteration,
an optimal point χ∗it is determined using the penalization of constraints violation [Deb, 2000].
This consists in building a merit (or fitness) function Jfitness from the objective function values
J and constraints c for each point of the training DoE

Jfitness(χ(j)) = J (χ(j)) +
nc∑
h=1

Ph〈ch(χ(j))〉, j = {1, ... ,M} (4.52)

Again, we drop the equality constraints as each equality constraint may be represented by two
non-strict inequalities. M is the current DoE size, 〈〉 measures the constraints violation and
is defined as the absolute value when ch ≥ 0, and 0 when ch is negative, meaning that the
constraint is satisfied. In the case where the constraints are not satisfied, J (χ(j)) takes its
worst penalisation value Jmax, the maximum value among the current DoE, in the case of a
minimization problem. Ph is a parameter defined in two steps, first scaling the constraints to be
in the same order of magnitude, then multiplied by a penalty parameter βh individually set for
every constraint and updated according to the chosen penalty strategy (interior/exterior/interior-
exterior)

Ph =
βh

||cmaxh − cminh ||
, (4.53)

where cmaxh and cminh are respectively the maximum and the minimum value of each con-
straint ch among the M values of the current DoE. These are adapted following the search
window, which is panned and zoomed with the optimization advancement.

The MFNIRB model relies on two fidelity levels of training data, and the enrichment usually
performed consists in adding only the most accurate data. The goal is to reduce the number
of HF values by using the enrichment criteria. In the context where a LF solver is available,
another method may support the optimization with less accurate but cheap data. The criterion
EIwl

defined in Section 4.2.3.1 may be used when the cost of LF is lower than that of HF. The
different steps of the multi-level of fidelity enrichment are detailed by Algorithm 7. Similar
steps to the single-fidelity MFNIRB enrichment of the Algorithm 6 are reproduced only when
using IC criterion. in the case where LF and HF can be parallelized, we can add LF several
times during the evaluation of HF, whose duration is longer than LF. Thus, it is the second
criterion, ICLF , that we propose to use to add a second vector LF. ICLF requires the LF and
HF snapshots to evaluate their correlation and the cost of the LF solver Cost(fLF (x,χ)).

4.3 Numerical experiments

This Section presents the evaluation of the MFNIRB capabilities in the context of constrained
single-objective optimization. The main concern is the value added in terms of time saving and
accuracy.
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Algorithm 7 MFNIRB assisted with multi-fidelity DoE enrichment

Require: D : Design domain, M : initial DoE size; x: discretisation; fLF (x,χ): LF function;
fHF (x,χ): HF function; J (f(x,χ)): objective; c(f(x,χ)): constraints

Ensure: χ∗
1: Create DoE points X = {χ(1), . . . , χ(M)} (Latin Hypercube Sampling)
2: Compute HF snapshots SHF = [fHF (x,χ(1)) . . . fHF (x,χ(M))]
3: Compute LF snapshots SLF = [fLF (x,χ(1)) . . . fLF (x,χ(M))]
4: it← 0
5: while stoping condition is not met do
6: find χ∗ using HF QoIs J HF (χ), cHF (χ), χ ∈ X with Equation (4.52)
7: Compute SHF = ΦΣΨT using Incremental SVD
8: Compute MF projections fMF (x,χ(j)) = ΦΦtfLF (x,χ(j)), j = {1, ... ,M}
9: Evaluate MF trend QoIs JMF (χ(j)) = J (fMF (x,χ(j))), cMF (χ(j)) =

c(fMF (x,χ(j))), j = {1, ... ,M}
10: Establish MFNIRB QoI J̃MF (χ), c̃MF (χ) using Equations (3.9) and (3.8) and optimize

Kriging hyperparameters
11: Get next candidate χ∗it = arg maxχ IC(χ∗, c̃MF (χ),ΣJ̃MF (χ)) using GA with IC

input Equations (4.37) or (4.35)
12: Compute HF snapshots fHF (x,χ∗it) at χ∗it
13: SHF ← [SHF ,fHF (x,χ∗it)]
14: Get next candidateχ∗it = arg maxχ ICLF (χ∗, c̃MF (χ),ΣJ̃MF (χ), Cost(fLF (x,χ)),SLF ,SHF )

using GA with ICLF input Equation (4.47) to evaluate EIwl
then take into account

optimization constraints using (4.37)
15: Compute LF snapshots fLF (x,χ∗it)
16: SLF ← [SLF ,fLF (x,χ∗it)]
17: χ∗ ← arg minχ∈X Jfitness(χ)
18: M ←M + 1
19: it← it+ 1
20: end while

4.3.1 Problem definition
The bi-fidelity benchmark test case of [Benamara et al., 2017] demonstrates the perfomances
through a single-objective constrained optimization problem. For the sake of independance of
the chapter, we remind5 the problem settings of the objective function J minimization sub-
jected to two constraints c1 and c2 within the design space D

minimize J (χ)
s.t. χ ∈ D, c1(χ) ≤ 0, c2(χ) ≤ 0,

(4.54)

where D = [4, 6] × [10, 14] is a bi-dimensional design space and the objective and constraints
functions are given by 

J : χ ∈ D 7→ min
x∈[0, 1]

f(x, χ)

c1 : χ ∈ D 7→ arg min
x∈[0, 1]

f(x, χ)− 0.75

c2 : χ ∈ D 7→ 7.5− max
x∈[0, 1]

f(x, χ),

(4.55)

5From the test case Chaper 3, Section 3.3.1.
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using either the HF model fHF or the LF model fLF defined as

fHF : Rn ×D → R
(x, χ) 7→ 1

2
(6x− 2)2 sin(χ2x− 4) + sin(10 cos(χ1x))

fLF : Rn ×D → R
(x, χ) 7→ 1

2
(6x− 2)2 sin(χ2x− 4) + 10(x− 1

2
).

(4.56)

This benchmark involves the features encountered in optimization of aeronautical problems
: minimizing/maximizing QoI, discontinious feasible domain, functions computed from a full-
field response (velocities, shockwave, pressure maps, etc.).

4.3.2 Experimental setup
In the previous Chapter, the MFNIRB contribution to continuous functions approximations was
investigated, more particularly, the approximation performances of challenging functions such
as the c1 constraint flat areas and the separate feasible areas. It has been observed that for the c1

function, the multi-fidelity presents an interest compared to the single-fidelity approximation,
given that the combination of LF and HF allows capturing the plateau area. However, the MF
trend would tend towards the LF function as the training size of the HF basis increases. In a
first step, one will seek to identify the limitations of MF representation for well-selected points,
hence using an enrichment criterion and investigate the relevance of such a metamodel in find-
ing regions of interest. Then following the same models, multi- and single-fidelity models to
investigate further and compare both MFNIRB and OK methods are being studied respectively.
Experiments are performed on the bi-fidelity benchmark test case to respond to these issues.

In the first experiment, several infill criteria are studied to assess the different optimization
behaviors of MFNIRB introduced in Section 4.3.3.1. A second experiment is performed using a
well-chosen infill criterion to compare MFNIRB to a single-fidelity model from Section 4.3.3.2.
The optimization assisted by MFNIRB and OK is compared for different DoE sizes. The objec-
tive is to determine the potential benefit, in terms of optimization performance, of each model
for reducing the size of the DoE, therefore the overall cost. In the Section 4.3.3.3, the enrich-
ment criterion is decomposed into EI , the unconstrained part, and PF , the constrained part.
The objective is to test the performance of the constrained EI SBO defined by the multipli-
cation PF (c1) × PF (c2) × EI , based on a strong assumption of independence of constraints
and objective. Section 4.3.3.4 presents an adaptation of MFNIRB that increases the sizes of LF
DoE Ml compared to HF Mh. The objective of the experiment is to identify the parameters that
influence the convergence of this model with respect to the original MFNIRB in its Full-Order
Model (FOM) version (where LF function was not approximated). Finally, MF projections are
compared for different ratios k in Section 4.3.3.5, then single-fidelity infill and multi-fidelity
infill based enrichment are compared for different initial DoEs. The objective is to analyse the
impact of the k LF-HF ratio, MF and HF enrichment onf the optimization results. Table 4.1
summarizes the experimental setup of the OK and MFNIRB metamodel-assisted enrichment,
which are detailed in the following sections.

The results obtained from each experiment are compared using an error metric that mea-
sures the mean precision of the obtained optimal point for nrep independent DoEs of the same
size X = {X (i), ... , X (nrep)}. Each of these DoEs gives different snapshots therefore dis-
tinct sets of modes.To validate the method it is necessary to measure the performance on a



4.3. NUMERICAL EXPERIMENTS 69

Section Low-fidelity model Experiments settings

4.3.3.1
FOM

Comparison between different criteria.

4.3.3.2 Comparison with single-fidelity Ordinay Kriging.
4.3.3.3 Investigation of different exact/approximate constraints.

4.3.3.4 NIPOD

Ml = kMh

Variable sizes of LF training sets.
4.3.3.5 MF trend with variable k ratios.
4.3.3.5 Bi-fidelity infill with variable k ratios and LF training sets sizes .

Table 4.1: Numerical experiments performed in the present chapter.

case where the exact solution is known. Assuming that a feasible solution exists in the DoE6,
considering the design space D the optimal value is assumed known as

χ∗it = arg min {JHF (x,χ); χ ∈ C} , (4.57)

where C = {χ ∈ X ; ch(χ) ≤ 0, h = {1, 2}, ∀X ∈ D} denotes the feasible subset of the DoE
solution set.

The ith independent DoE X (i) defines the initial training set, an enrichment point is added
at each iteration it, is detailed in algorithm 6. At each iteration it, the current optimum is
evaluated as χ∗it ∈ X (i). The relative mean error is defined by

ē(it)
rr =

1

nrep

nrep∑
i=1

JHF (fHF (x,χ∗it))− J ∗HF
J ∗HF

, χ∗it ∈ X (i) ⊂ X (4.58)

where it is the infill iteration, JHF the objective function.

4.3.3 Results
This Section presents the results obtained from the experiments, where the benchmark case
optimization problem is solved using different enrichment strategies. Repeated runs are per-
formed to quantify the overall performance regardless of the DoE distribution. Such a study
is unaffordable with a real physical simulation case, so the benchmark test case appears as an
appropriate alternative to validate the proposed methodology.

4.3.3.1 Comparison between different infill criteria

Comparisons between different infill criteria are performed in this part. The objective is to
demonstrate the convergence of the EI-based infill procedure and to compare the role of each
criterion. Multiple runs are required due to the random nature of the Latin Hypercube Sam-
pling (LHS) sampling. This allows us to identify the criterion best suited to the constrained
optimization test case. Different EI alternatives are compared:

• Expected Improvement (EI) is a compromise between exploitation and exploration. This
is the original version [Jones & Schonlau, 1998] that does not take into account con-
straints.

6See, e.g., Section 2.3 of [Feliot et al., 2017] and references therein for a discussion of possible alternatives in
the case where no feasible solution is known.
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• Constrained EI (EIc) : This version takes into account the GP variance and mean of the
Kriging approximation constraints through the Probability of Feasibility (PF ) (studied
in the Chapter 3, Section 3.2.2).

• Constrained and weighted EI (EIc,w) : The EIc is improved to intensify the exploration
at the beginning of the optimization procedure and the exploitation at the end, leading to
a better convergence only if the exploration is sufficiently achieved.

• The weighted EI (EIw) : The weighted EI does not take into account constraints, how-
ever, it provides a useful comparison to the EI and the EIc,w, allowing to highlight the
weighting part added value.

The objective is to highlight the impact of the constrained part added to the EI . Figure 4.1
illustrates the evolution of the log relative error ērr along the infill iterations using the different
EI formulations, in the case where the initial DoE size is M = 4.
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Figure 4.1: Comparison between different EI based enrichment results of MFNIRB assisted
optimization begining from DoE of the size M = 4.

The unconstrained optimization results represented by the diamond and cross markers ob-
tained with EI and EIw respectively, does not take into account constraints PF , show a diver-
gence. This illustrates the impact of the PF method, presented in the former chapter. It allows
to conduct the optimization toward the optimum value. On the other hand, the constrained op-
timization results are marked by the star and plus scatters are obtained with the EIc and EIc,w
respectively. Concerning, the weighted version of EIc, the EIc,w criterion, the corresponding
curve shows the highest error reduction. The EIc,w presents promising results on the M = 4
case, M being the initial DoE size. This criterion is then compared to other classical ICs on
different M sizes.

The second experiment consists in comparing the performances of the best EI criterion
identified previously to other criteria:
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• The Probability of Improvement (PI) is guided by the constrained best objective value,
therefore, it directs the optimization search toward the optimal value, favoring the ex-
ploitation.

• The variance is guided by the uncertainty of the database available and does not take
into account the best optimization candidate. It is a more exploratory search within the
DoE.

This test aims to highlight the compromise between exploration and exploitation made by
EIc,w comparing to the exploitation driven criterion PIc and exploration driven variancec .
The Figures 4.2a and 4.2a show respectively the optimization ērr(J ) error results from M = 4
and M = 10 initial DoE sizes for each infill iteration.
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(a) Case M = 4.

5 10 15 20
iteration

10 1

lo
g(

e(it
er

at
io

n)
rr

)

EIc, w

PIc
variancec

(b) Case M = 20.

Figure 4.2: Comparison between PIc, EIc,w and variancec infill based optimization.

Table 4.2 details the error results, begining from the same independent initial DoE training
sets of the size of M = 4 and M = 20. Multiple independent enrichment procedures are con-
ducted. Error mean ērr and variance σ of errors results in each infill iteration in percentage unit
% are given

δērr = |ērr − ē(it=0)
rr | (4.59)

where ē(it=0)
rr and ērr = ē

(it=20)
rr is the mean relative error at the first and the last iteration, in

this case it = 20.
The error values on both Figures are on a close magnitude order of 10−1. The smallest error

is obtained at the last iteration for 20, with the EIc,w and with PIc respectively in the M = 4
and the M = 20 DoE size cases. Thus, with EIc,w, 24 HF calls where needed to reduce the
mean error from 25.4% to 8.7% and with PIc 40 HF calls to reduce the error from 19.9% to
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M=4 M=20

ērr[%] σ δērr

ē
(it=0)
rr

ērr[%] σ δērr

ē
(it=0)
rr

First iteration 25.4 0.022 - 19.9 0.003 -
PIc 20.8 0.022 18.1 2.6 0.0004 86.9
EIc,w 8.7 0.004 65.8 5.7 0.004 71.3
variancec 16.4 0.013 35.4 10.7 0.001 54.8

Table 4.2: PIc, EIc,w and variancec cases results

2.6% with the lowest results variance.

Figure 4.3 plots the relative log error ērr at each iteration, usingEIc,w versus the constrained
variance variancec . Each figure 4.3a, 4.3a and 4.3a represents the enrichment procedures
performed for an increasing initial size of the DoE respectively from M = 4, M = 10 to
M = 20. This comparison allows us to highlight the impact of the exploration behavior on
the variancec and to compare it to that performed by EIc,w. Variance will tend to explore,
while EIc,w, explores at the beginning and then exploits at the end. This means that when the
initial DoE is not explored extensively, the use of EIc,w is potentially as interesting as using the
variance only. However, the interest of the EIc,w exploitation/Exploration compromise on the
whole optimization should appear differently in each case.
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Figure 4.3: Comparison between EIc,w and variancec error evolution

For both criteria, the higher initial DoE size provides better convergence, however in all
DoE cases, the EIc,w search outperforms the SBO variancec search. For a low DoE size, the
variancec based SBO has a very poor reduction in the mean error, therefore we can conclude
that there is no convergence in the M = 4 and M = 10 cases. The Table 4.3 details these
results for each case obtained in the first iteration in comparison with the last iteration results.

The error variations of the case using the variancec criterion remain low compared to
the initial results of the random DoE . When the DoE is sufficiently explored, the search for
the optimum ought to proceed towards the optimum and intensify the exploitation, which is
underlined by the convergence of the SBO based on EIc,w.
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M=4 M=10 M=20

ērr[%] σ ērr[%] σ ērr[%] σ
First iteration 25.4 0.022 26.9 0.020 19.9 0.003
EIc,w 8.7 0.004 7.0 0.007 5.7 0.004
variancec 16.4 0.013 19.3 0.019 10.7 0.001

Table 4.3: EIc,w and variancec based optimization comparison results.

4.3.3.2 Comparison with single-fidelity Ordinary Kriging

This section compares the multi-fidelity methodology to the single-fidelity approach in the op-
timization framework.
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Figure 4.4: Comparison between single and multi-fidelity error resulting from enrichment, for
repeated experiments.

The single-fidelity method considered is the Ordinary Kriging and the multi-fidelity method
is MFNIRB. The difference between these models lies in the Kriging trend which depends on
the LF evaluations projected on the HF basis while the OK trend is constant and depends only
on the HF samples. The Figures 4.4 show the evolution of the log of ērr with infill points
added using the EIc,w criterion. The evolution of the error is obtained from the solution of the
constrained optimization benchmark problem with the use of the adaptive infill criterion EIw,c
presented in the Section 4.2.3.1. Three different DoE sizes are compared, namely M = 4, 10,
and 20, and their results are shown respectively in Figures 4.4a, 4.4b and 4.4c.

In the case of M = 4, the MFNIRB outperforms the single-fidelity model. In the first case
presented in Figure 4.4a, where the initial DoE size is the lowest, the mean error ērr is reduced
by 40% (≈ 0.25−0.15

0.25
) under performing the MFNIRB error reduction of 80% (≈ 0.25−0.05

0.25
).

However, the OK performances are better when increasising the initial DoE size. For both
cases M=10 and M=20, the mean error evolves toward the same value at the end of the enrich-
ment procedure iteration = 30, the error is reduced by 85% to 4 · 10−2 from its initial value
2, 7 · 10−1 in the case M = 10 and 92%(2 · 10−2) in the case M = 20. The optimization based
on the infill search shows better convergence when the initial training set is larger, especially
when using the single-fidelity model.

Figure 4.5 shows the evolution of the relative mean error for the different DoE sizes M=4,
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M=10 and M=20, in logarithmic scale to illustrate more precisely the difference between each
case.
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Figure 4.5: ērr and its variance for multiple runs at each infill iteration for M = 4, M = 10
and M = 20 initial DoE cases.

The errors reach a lower value when the number of initial training points is increased, as
expected. Although the initial error is not much different between the M=4 and M=10 cases,
we can see that prior knowledge of the experimental design leads to a better benefit from the
enrichment criterion. Note that this criterion is the weightedEI , and thereby consists in inten-
sifying exploitation and exploration respectively at the end and the beginning of enrichment.
A better knowledge of the model at the beginning of enrichment allows for a better location of
the region of interest.

The importance of the initial size M of the DoE is further displayed by the OK wherein
for M = 4, one observes that the optimum is the furthest of the best point χ∗it and the curve
does not converge (although the error is reduced). For a higher M = 10 and M = 20, the
OK performs better where the MFNIRB reaches the final error value and exceeds it. For the
M = 10 case and M = 20 MFNIRB exceeds the OK in both cases for the last few iterations
respectively begining from iteration 27 and 29. The OK performs poorly when the DoE is not
explored well enough initially, but it converges faster for a minimum amount of initial data of
M=10 in this case. However, the MFNIRB model has a better convergence for all DoE sizes.
Its convergence is slower than OK’s for M≥10 but the error reached by the MF model is lower
at the end of the procedure.
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4.3.3.3 Investigation of analytical and approximate constraints

In the former Section, the contrained infill criterion is analysed. In the present sections, ex-
periments are conducted to identify the limits of the constrained infill criterion. The two first
experiments test each constraints approximation impact on the optimization convergence. The
last experiment demonstrates the EI convergence for the objective approximation only.

Infill criteria performance analysis
Figure4.6 plots the relative error values ē(iteration)

rr corresponding to enrichment points added
by the EIc,w criterion in the following cases:

• both constraints c1 and c2 are analytical, only the objective function J is approximated
by the OK and by the MFNIRB,

• only the constraint c2 is approximated,

• only the constraint c1 is approximated.

The objective is to separate different constrained criterion components’ impact on the optimiza-
tion efficiency of the OK compared to the MFNIRB. Figures 4.6a, 4.6b and 4.6c present the
results obtained for an initial DoE size of M=4,10 and 20, respectively.

Under cases of analytical c1 and c2, the curve associated with the MF model outperforms
all OK cases, and converges respectively at iteration 12 for M = 4, requiring 16 points in total
to find the optimum, at iteration 7 for M = 10 (17 points in total), and at the subsequent infill
iteration 18 for M = 20. In all cases, the OK needs more points to converge.

When only one of the constraints is approximated, we observe that the lowest performances
are obtained for approximated c1 and exact c2. For M = 20, OK and MFNIRB are even less
efficient in the exact c2 case. Hence, approximating c2 would give better results than having its
exact values. The approximation quality of c1 appears to have a negative impact on all the OK
cases, especially when comparing to the results obtained with the meta-model MFNIRB. As a
matter of fact, the latter converges to the minimal value of 10−3 between iteration 15 and 20,
the same value as the case where all constraints are exact. In the case of initial DoEs of sizes
M = 4 and M = 10, thereby, the smallest ones, MFNIRB outperforms the OK for its best
configuration (all constraints are exact).

The MFNIRB meta-model outperforms the OK in its ability to use the c1 constraint approx-
imation. The c1 function features difficulties of plateaus-like variations, whereas continuous
functions without sharp variations appear to be more suitable for Kriging. In the Chapter 3, the
correlation between the MF trend with the HF results was illustrated for both fidelity levels. It
was observed that the MF trend provides information that LF or HF had not captured within
the single-fidelity configuration 7. One can conclude that there is a real benefit of a MF in the
representation of non-continuous functions.

Comparison to a prescribed trajectory
This Section presents the comparison between a ”well chosen” enrichment path to the one

obtained using EIc,w. Such an ”optimal” path is based on intuitive heuristics. In a first step,

7For the OK, a Kriging with a constant mean trend based only on HF training points.
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this approach is tested on the cases where all constraints are exact. Then, the two cases where
one of each contraints are given analytically or approximated, are treated to illustrate the con-
tribution of the Probability of Feasibility (PF).

The Figures 4.7 illustrate the infill criterion EIc,w evaluated on a 50 × 50 grid along with
correponding ērr curves obtained for 30 infill points. Columns contain results obtained begin-
ing from a DoE size of M = 4 and M = 20.White dots represented on Figures 4.7c, and 4.7d
correspond to iterations from 1 to 30, respectively on Figures 4.7a, and 4.7b red and green bold
lines localise the contraints feasibility limits using respectively the HF and MFNIRB values.
the yellow and red stars correspond to the best current points at each iteration and the theo-
retical optimal point.The feasible regions are located at three separated areas. In Figures 4.7,
the red and green lines are merged together because the first case assumes the both analytical
constraints, therefore MFNIRB and HF constraints limits are equal.
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The convergence of the MFNIRB-assisted optimization appears better than that obtained
along prescribed trajectory. In the MFNIRB case, only the objective function is used for en-
richment which is therefore only done at the feasible regions. The enrichment criterion allows
to place points which improve the model accuracy but also allows to move from one feasible
region to another, as a result of the exploration provided by the EI . The proposed trajectory
has been chosen to go towards the optimum in a linear way. The curves in the first row of the
Figures converge at the very first iterations, hence faster than the trajectory. This highlights the
interest of the exploration, however, the behavior is not representative for constrained problems
as both c1 and c2 are analytical in this first case.

In a second experiment, only the c1 constraint is analytical and c2 is approximated. As
the previous experiments, the results are illustrated on maps Figures 4.8c and 4.8d and their
corresponding ērr(iteration) curves Figures 4.8a and 4.8b for similar initial DoEs.

The curves present also better convergence that the heuristic trajectory. The approximation
of c2 seems to have a low impact on the convergence, there are 6 and 5 (respectively for M = 4
and 20) additional iterations comparing to the experiment where c2 is exact. The three oval
areas wrapped with the red and green lines corresponding to the feasible domain are accurately
approached particulary in the finest initial DoE size case Figure 4.8d.

The last experiment considers approximation of c1, therefore EIc,w takes into account
PF (c̃1) and EI(J̃ ). The Figures 4.9a, and 4.9b illustrate the error ērr(J ) evolution along
with the infill procedure and the corresponding illustration of the DoE, infill points, constraints
limits and the EIc,w(χ) values.

Only the criterion EIc,w only converges for the case under consideration. This allows us
to conclude that the quality of the constraints approximation impacts the convergence curves.
These observations confirm, as expected, the importance of adapting the criteria of the con-
strained probabilities according to their difficulty of representation.

4.3.3.4 Variable sizes of LF training sets

This Section presents the results of the Experiment 3, which consists in a comparisons between
different Ml

Mh
ratio = {1,2,3}

Figure 4.10 presents the evolution of the relative mean and variance of the error ērr at each
infill iteration, from an initial HF DoE size ofMh = 4 compared to differentMl values. First, an
initial set of training points is used to build the MFNIRB model. Different MFNIRB models are
compared based on different assumptions of the cost of the LF model. The best configuration is
the one considering the LF infinitely available Ml =∞, the other cases use limited number of
LF evaluations through LF NIPOD models with different LF-HF ratio. Figure 4.10 shows more
than 60% error reduction from 20 to 25 iterations in the case of Ml = ∞ and Ml = 3 ×Mh

using all POD modes. The other cases are weakly convergent, therefore, in these cases a
higher LF DoE size improves the optimization performances. However, there is no significant
performance difference between the cases where ratios are 1, 2 and the truncated NIPOD cases.

Figure 4.11 presents the evolution of the relative mean and variance of the error ērr from an
initial HF DoE size of Mh = 10 with different Ml values. Table 4.4 summarizes the initial and
final mean relative error and variance results illustrated Figure 4.10 and 4.11.

Figure 4.11 shows that the convergence is better with a higher HF and LF initial DoE size.
The case where the ratio is 2 without POD basis truncation, outperforms the infinite LF case
for all the iterations. The lowest error reductions may be observed for the cases of the lowest
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Mh = 4 Mh = 10

ērr[%] σ δērr

ē
(it=0)
rr

ērr[%] σ δērr

ē
(it=0)
rr

First iteration 25.4 0.022 26.9 0.020
Without LF NIPOD 6.8 0.006 73.2 3.4 0.002 87.3
ratio = 1, all modes 18.9 0.016 25.6 6.9 0.004 74.3
ratio = 2, all modes 15.4 0.014 39.4 2.7 0.001 90
ratio = 3, all modes 9.4 0.005 63 3.2 0.001 88.1
ratio = 1, 1 mode 16.9 0.026 33.5 4.4 0.020 83.6
ratio = 2, 1 mode 14.4 0.014 43.3 2.7 0.001 90

Table 4.4: Results of MFNIRB model based on and without LF NIPOD.

Ml (ratio 1). However, the gap between these error values stays low for a maximum difference
of 15% of the initial value. The reduction is 74.3% for the worst and 90% for the best conver-
gence, obtained for Mh = 10 with the ratio 2 LF NIPOD cases (see Table 4.4).

This comparison allows to test the MFNIRB in presence of different types of LF approxi-
mations showing that the LF NIPOD based MFNIRB presents comparable performances with
the direct LF based MFNIRB. However, the LF NIPOD needs a sufficient number of training
values to converge. A criterion may identify the best LF-HF ratio needed to train the LF NIPOD
to solve general SBO problems.

4.3.3.5 Management of the low and high-fidelity ratio and its impact on the optimization
time savings and the accuracy of the multi-fidelity model

The above experiments show that the size LF DoE can be managed independently to improve
the accuracy of the multi-fidelity approximation. Increasing the number of training samples
improves the prediction accuracy of the LF. We can legitimately assume that the quality of
the multi-fidelity approximation will also be improved when the knowledge of LF is larger.
On the other hand, it has been observed that the correlation between the vectors LF and HF
improves the tendency to multi-fidelity, and consequently increases the prediction quality of
the MFNIRB. In this section, a new adaptive strategy is proposed to address the following
questions:

• Is there a method that provides low-fidelity snapshot in a way to find balance between a
higher accuracy and a lower cost in a similar mindset as the expected improvement?

• Does the correlation provide an optimal LF-HF combination for the best SBO perfor-
mance ?

First, the LF-HF ratio of 1 and above is tested and the corresponding snapshots compared.
Based on these observations, further tests are performed with the optimization from a ratio of
1 to a higher initial ratio LF-HF DoE. The main objective is to analyze the potential impact of
the ratio on the multi-fidelity snapshots and, consequently, on the performance in the context
of the optimization.

Construction of the multi-fidelity vectors starting from different DoE with LF-HF ratio
The HF DoE is nested in LF DoE, χHF ⊂ χLF . DoE of 100 LF samples is considered with
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two ratios, Ml/Mh = 1 and Ml/Mh = 20. The Figures represent the snapshots evaluated for
(Ml,Mh) = (100, 100), Figures 4.12, then (Ml,Mh) = (100, 5), Figures 4.13. The small red
and blue dots respectively, in left figures column represent the HF and LF DoEs. The small red
samples generate the HF snapshots, from which a reduced base is evaluated. The blue samples
generate the snapshots which are projected onto the evaluated reduced basis, obtaining the MF
snapshots. An example of the training snapshots MF, HF and LF at χtest is represented in the
right figures by magenta, red and blue curves respectively. The snapshots are reconstructed by
LF NIPOD defined in section 4.2.1 as f̃LF (χ), as in this figure, or, are directly the generated
snapshots if the budget allows it.

First, it can be observed that at high training point ratios for both fidelity levels, the MF
approximation is close to the LF curve. Whereas when the ratio is higher, and the basis HF is
constructed from far fewer vectors than the number of LF vectors, the MF approximation better
follows the HF curve. However, it should be noted that the MF curves present a lot of noise.
This may come from the small eigenvalues of the projection, meaning that it would be better to
truncate the basis HF to the set of modes corresponding to a threshold on the singular values.
This is a shortcoming, as it is the most accurate and expensive basis. In the following, we study
the influence of the truncation of the HF basis.

Figures 4.14 and 4.15, present the application of the truncation of the HF basis, according
to the evolution of the residual εmodes as a function of different truncation levels using criterion
of Equation (4.11).

The vector MF shows oscillations and no longer represents the trend of the curves as in the
case where the ratio LF-HF is larger. The orthogonal basis is not optimal when Mh becomes as
high as Ml. The basis seems too complex for a simple Ml representation, then less compatible
with a Ml vector, reminding a phenomenon of over-fitting. Truncation for Mh = 100 results
in a prediction of MF closer to HF, Figure 4.14 compared to Figure 4.12 but a significant error
is still present. The situation is improved by considering truncation and a higher LF-HF ratio,
which gives a better approximation Figure 4.15. Quantifying the limit of the ability of the basis
HF to represent the vectors LF is thereafter worthwhile to refine the MF trend of MFNIRB.

LF-HF ratio management in the context of optimization
Tests are first performed to compare the paths of the single- and multi-fidelity enrichment,

using the enrichment criterion EIc,wl
to add LF samples (presented in the section 4.2.3.3). The

idea is to call a solver LF in regions where it is most likely to be close to the model HF, when
the LF-HF cost ratio is advantageous. The goal is to find ways to better control optimization
costs in the presence of different levels of solver fidelity.

From the observation of the previous sections, it appeared that a ratio greater than 1 and au-
tomatic truncation of the HF basis is more suitable. Figures 4.18a, 4.18b, 4.16a, 4.16b, 4.17a,
and 4.17b represent the objective function J (χ) on a validation grid with hatched non-feasible
areas, evaluated from MFNIRB model (green lines) and from exact HF constraints (red lines).
Non-feasible areas are defined by constraint values below 0.75 for c1 and higher than 7.5 for
c2.

The first test Figure 2 starts with an LF DoE twice as dense as that of HF, then 9 points
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are added based only on the single-fidelity criterion EIc,w (adding only HF vectors). Starting
from the same DoE, 9HF vectors are added, together LF vectors, the results are shown in figure
4.16a.

On the one hand, we can observe that the LF points are added close to the locations of the
HF infill points. This reflects the very limited variability of the test case LF-HF correlation
across the DoE. The difference between the two levels is linear in this benchmark. As a result,
the correlation has low impact on the multi-fidelity criterion EIc,wl

.

The model accuracy varies with the ratio variation. This can be observed not only from
the differences in the amplitude of the objective map, but also from the different distribution
of infeasible areas. It is therefore possible to state that the addition of values of a second level
of fidelity has an impact on the accuracy of the model. However, at this stage, it remains to
be seen whether this impact is positive or not, due to the stochastic aspect of the model. From
the perspective of this work, it would be interesting to see how the model has evolved since the
first iteration.

Now, the optimization results are compared to the values obtained in the first iteration on
Figure 4.17b and to values obtained if there are equal LF-HF training points on Figure 4.17a.

In both Figures 4.17a and 4.17b, we can observe that initially, the model MFNIRB with a
higher ratio of 2, is slightly more accurate, as it allows to capture both the top and bottom parts
of the c2 constraint. This can be seen at the green 7.5 limits of the model MFNIRB which are
represented only by the part below the level below χ2 < 12.0. In the case of the c1 constraint,
we can see that the limits at 0.75 of the model with a ratio of 2 are closer to the exact HF values
corresponding to the limits of this constraint.

The final test compares the optimization performance. For ratio 1 and 2, Figures 4.18a and
4.18b, represent similar scenario as in the previous optimization case, but begin with a DoE of
equal LF and HF training points number.

In this case, in the single-fidelity infill results shown in Figure 4.18b, the accuracy of the
constraints is not improved, when comparing the red and green lines. Regarding the multi-
fidelity infill (Figure 4.18a), there is a more accurate separation of the two non-feasible regions
of the c2 constraints. However, the distribution of c1 limits is closer to the exact c1 red lines for
the single-fidelity infill than for the multi-fidelity infill. Thus, the ratio 2 appears to give better
overall accuracy for the multi-fidelity infill.

To conclude, there are no significant differences confirmed when using the multiple-fidelity
or single-fidelity enrichment level, however, some improvement trends of MFNIRB were made
visible by these preliminary results. Indeed, it was observed that the MF vectors construction
has limitations to its evolution during the enrichment, due to the truncation of the HF basis,
noted very low even for a high training size. To improve the efficiency of the optimization, the
multi-fidelity infill needs to take better advantage of the contribution of HF.

4.4 Recommendations on multi-fidelity management toward
an optimal control of cost during the optimization

The computational environmment allowing to use multiple fidelity of simulations may be pro-
vided by parallel computing. LF is assumed cheaper than HF solver calls, therefore multiple LF
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may be performed for only a single HF evaluation. The first parameter to consider is the DoE
initial sampling. Therewith, the first step should consider the LF versus HF’s cost parameter.

In a second step, there are different possible scenarios:

• Adding HF infill point and consequently equivalent LF values considering the cost LF-
HF ratio (used in the initial DoE sampling : cost(1fh) = kcost(fl)),

• Adding only LF infill point: in this case the LF-HF correlation may be added to infill
criteria, therefore the infill is likely to be done in the areas where the LF-HF correlation
is the highest.

The main condition of an accurate MFNIRB is the LF correlation to HF vectors. To repre-
sent the MFNIRB model, the HF training set needs to be similar to the LF one. Such model is
build from two levels of fidelity, where the LF function can be called more often than HF. Thus,
the HF DoE is embedded in the LF DoE. Thereafter, during the infill procedure the number of
LF samples stays constant, whereas the HF is added at each infill iteration, allowing to search
for the regions of interest. As introduced in this Section, the LF simulation is k times cheaper
HF. It can then be interesting to include the LF into the enrichment procedure, during the HF
assesment. This strategy depends highly on the k number, representing the relative CPU cost
LF-HF ratio. Thus, the MF infill strategies steps are

1. k = 1 : first LF are added on the same locations as HF.

2. k ≥ 2 : LF are added indepently using a multi-fidelity criterion, such as EIc,wl
, and HF

using a chosen single fidelity level infill criterion, only if the budget allows to call this
solver.

Additionally, this strategy needs to benefit from the best LF NIPOD representation, then
the choice of the NIPOD modes number is determined from the NIPOD basis energy metric
(see Section 4.2.1), that may be further integrated to the infill to improve the HF basis during
the optimization procedure.
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4.5 Conclusion
In this chapter, a multi-level, multi-fidelity model has been introduced and tested for a single
and multi-fidelity optimization. The model starts from the idea that different levels of fidelity
of output vectors may be represented by an orthogonal basis. Previous research has led to a
model based on the construction of a multi-fidelity orthogonal basis and the projection of low
and high-fidelity vectors.

In the present work, a similar spirit founded the model MFNIRB. This time, the orthogo-
nal basis is a single-fidelity one constructed from the higher-fidelity dataset, and by projecting
onto this basis, a set of LF vector outputs. Different experiments were presented for a bet-
ter understanding of optimization in the context of multi-fidelity. First, a comparison between
the infill criteria showed in section 4.3.3.1, a different convergence according to exploration,
exploitation, and a better balance between exploration and exploitation with EIw. This crite-
rion was chosen to conduct the experiment in section 4.3.3.2, which compares the convergence
of single and multi-fidelity models, and showed better convergence potential for MFNIRB on
poorly explored DoE and comparable performance for an initially sufficiently explored DoE.
Finally, the chosen criterion is studied to understand the impact of its component for solving
a constrained problem in such a context and studying if the approximation is a driver of an
optimal infill procedure, and what are the origins for the limitations of Kriging-based optimiza-
tion. These limitations can further be addressed by improving the modeling and multi-fidelity
optimization. Consequently, an analysis is conducted in section 4.3.3.4 to compare different
LF-HF ratios using the multi-level extension of MFNIRB that used the NIPOD approximation
of the LF data. It was concluded that the ratio and the HF basis truncation might impact the
optimization performances. The higher ratio is not always the one that performed the best. At
least, the results between different ratios also depend on the truncation level of the HF basis.
Therefore, in the next Section, the truncation is evaluated from the minimization of the residual
error. It was observed that using the HF presents limitations when using it to represent LF vec-
tors. Only, few modes are useful to the final MF vector. Thereby, improving such a basis is not
always possible if the only data used are HF outputs. Future work may integrate LF to improve
the orthogonal reduced-basis. Finally, analyses of the impact of the LF-HF ratio are presented,
along with preliminary results of the multi-level of fidelity compared to single-fidelity enrich-
ment.

Observations and preliminary results have shown the potential of using a multi-fidelity en-
richment procedure during optimization. However, the multi-fidelity vectors improvement dur-
ing the enrichment is limited to the potential of the HF basis to evolve, which is not always
the case when only few modes are able to represent the LF model. These limitations are partly
tackled by the stochastic correction of the MFNIRB model, which is able to evolve the correc-
tion by adding LF and/or HF infill points. Further work should be performed on the reduced HF
basis to complete the missing modes of the multi-fidelity representation. That may better take
advantage of the similarities between the two levels if the time savings are interesting enough.
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Figure 4.7: MFNIRB optimization using EIc,w infill criterion considering c̃1 = cHF1 and c̃2 =
cHF2 .
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Figure 4.8: MFNIRB optimization using EIc,w infill criterion considering c̃1 = cHF1 .
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Figure 4.9: MFNIRB optimization using EIc,w infill criterion considering c̃2 = cHF2
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Figure 4.12: MF f̃MF prediction, versus LF and HF snapsots, evaluated at χtest =
(4.12, 11.43). Case where Ratio = 1 Mh = 100 HF.
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Figure 4.13: MF f̃MF prediction, versus LF and HF snapsots, evaluated at χtest =
(4.12, 11.43). Case where Ratio = 20, Mh = 5.
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Figure 4.14: MF f̃MF prediction with HF basis truncation, versus LF and HF snapsots, evalu-
ated at χtest = (4.12, 11.43) (Ratio = 1, Mh = 100). The truncation choice is illustrated on the
right figure.
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Figure 4.15: MF f̃MF prediction with HF basis truncation, versus LF and HF snapsots, evalu-
ated at χtest = (4.12, 11.43) (Ratio = 20, Mh = 5 HF). The truncation choice is illustrated on
the right figure.

(a) Multi-fidelity infill (b) Single-fidelity infill

Figure 4.16: Comparison between the obtained J̃MF (χ) map with its constrained c̃1MF (χ)
and c̃2MF (χ) areas (hatched) preliminary optimization. The tests are evaluated on validation
grid, and conducted using single-fidelity and multi-fidelity infill begining from the same HF
(red dots) and LF (blue dots) DoE sizes of Mh = 5 and Ml = 10 (ratio = 2).
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(a) Multi-fidelity initial model with ratio = 1 (b) Multi-fidelity initial model with ratio = 2

Figure 4.17: Comparison between the ratio 1 and 2 based maps of J̃MF (χ) with constrained
c̃1MF (χ) and c̃2MF (χ) areas (hatched) in the begining of preliminary optimization. The tests
are evaluated on validation grid, and conducted using single-fidelity and multi-fidelity infill
begining from two different ratios, resulting to HF (red dots) and LF (blue dots) DoE sizes of
Mh = 5 and Ml = 5 (First column), then, Mh = 5 and Ml = 10 (second column).

(a) Multi-fidelity infill (b) Single-fidelity infill

Figure 4.18: Comparison between the obtained J̃MF (χ) map with its constrained c̃1MF (χ)
and c̃2MF (χ) areas (hatched) preliminary optimization. The tests are evaluated on validation
grid, and conducted using single-fidelity and multi-fidelity infill begining from the same HF
(red dots) and LF (blue dots) DoE sizes of Mh = 5 and Ml = 5 (ratio = 1).



Chapter 5

Industrial application : Optimization of an
Open-Fan aircraft engine

5.1 Introduction
The proposed multi-fidelity method is designed to address optimization problems that need
several calls to expensive High-Fidelity (HF) simulations. This approach is proposed together
with an infill strategy to reduce the number of less relevant expensive evaluations to solve the
design problem, and to use the available solvers only when relevant. Some simulations are
much faster to use but generally less accurate. The idea is to take advantage of their low cost
to use them extensively to reduce the need for expensive solvers. In this Chapter, the objective
is to demonstrate how a multi-fidelity model is expressed from a physical point of view com-
pared to a single-fidelity one and then evaluate the performance of the enrichment method for
an industrial problem. The chosen industrial application is an Open-Fan engine and the sug-
gested problem is a single-objective optimization of its multi-regime weighted efficiency with
a constrained thrust.

The Open-Fan engine is an unducted ultra high-Bypass Ratio (BPR) fan engine composed
of a turbine driving two composite propellers and a gas generator, that may be integrated in the
tail of the fuselage. The Sustainable And Green Engines (SAGE) 2 project originally proven
the potential of Contra-Rotating Open-Rotor (CROR) where the two propellers rotate on op-
posite directions.The idea is to add a second propeller that rotates in the opposite direction to
increase the axial velocity of the air while also converting the first propellers tangential veloc-
ity increments into axial increases. The first propeller drives the air-inducing vortices that the
second one recovers making the speed increase. The propulsive efficiency is then improved
compared to a single-propeller configuration. Such prototype was not enough to achieve the in-
dustrial and economic requirement as, the complexity required to produce the counter-rotation
of the two rotors make its maintenance harder and costly [Li, 2019]. In this regard, a promising
single-rotor solution, the Open-Fan, is on the table to scale back operating costs. This Open-
Fan motor can be seen as a puller with a fixed rear rotor, behaving like a stator. Figure 5.1
presents a picture of this new generation of unducted engine, where the first row of blades is
rotating while the second is fixed.

In this chapter, bi-fidelity Computational Fluid Dynamic (CFD) modeling of the Open-Fan
engine prototype is adapted to the MFNIRB framework. The objective is to illustrate the multi-
fidelity along with the full-field paradigms onto physically meaningfull quantities in an indus-
trial scale (high DoE dimensions, etc.). The HF and Low-Fidelity (LF) models are respectively

91
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Figure 5.1: The Open-Fan Engine
[Guy Norris, 2021, source : www.aviationweek.com]

a 3D and 2D representation where a Reynolds-Averaged Navier-Stokes (RANS) solver and a
Lifting Surface solver are used to generate Quantities of Interest (QoI)s. In order to represent a
typical industrial case, several operating points are treated in the definition of the optimization
problem. The optimization problem sought to maximize the efficiency subjected to a constant
thrust. The optimization problem is formulated and adapted to the Multiple-Fidelity Non-
Intrusive Reduced-Basis metamodels. Outputs used to train the MFNIRB are taken directly
among the spatial discretization locations.

Section 5.2 presents the physical and numerical problem related to the Open-Fan design
optimization. Section 5.2.1 defines the physical quantities to optimize. The main parameters
that describes the propeller blade of the Open-Fan are presented in Section 5.2.2. Section 5.2.3
presents the optimization problem formulation as a physical quantity to optimize by varying
these shape parameters. To solve this problem, two fidelity levels of existing solvers are intro-
duced on Section 5.2.4 and Section 5.2.5. Section 5.3 describes the methodology used to adapt
the two-fidelity levels of the simulations outputs to the MFNIRB model.

5.2 Design optimization problem
This section describes the various elements needed to define and solve the open fan design opti-
mization problem. Note that the problem is to maximize the efficiency of the propulsion under
thrust constraints. For this purpose, the concepts of efficiency and thrust are defined in their
physical context. Then, the geometrical input parameters of the problem are described. Finally,
the specificities of the two levels of simulations, which will generate the physical quantities,
are presented.

5.2.1 Physical quantities to optimize
The Open-Fan is a prototype with a single propeller consisting of a row of rotating blades
connected to the aircraft engine shaft. The purpose of a propeller is to generate thrust in the
direction of flight. The ultimate goal is to allow lift and thrust to maintain the elevation and
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motion of flight, thereby counterbalancing the opposing effect of its own weight and the drag
produced by air flow forces on the surfaces of the jet. Figure 5.2 is a schematic representation
of theses forces applied to the aircraft during flight.

Figure 5.2: Forces applied on the aircraft [Gallard, 2014].

The overall aerodynamic force produced by a single blade of the propeller can be divided
into two components: the thrust T and a propeller torque force Q. These are illustrated in
Figure 5.3a.

(a) Forces applied to a typical engine blade pro-
file.

(b) Elementary forces applied on each fan A-A
section

Figure 5.3: Aerodynamic forces applied on a blade at its center of pressure and elementary
forces at the section A-A (adapted from [Marinius, 2011]).

The propeller blade is designed by assembling radial sections. The forces applied to the
blade are decomposed into elementary forces applied to each section. The corresponding aero-
dynamic profile shape depends on the radial position of A - A section (illustrated Figure 5.3b).
The aerodynamic force is decomposed into lift Le and drag De elements or thrust Te and Qe. In
Figure 5.3b, V∞ is the free flow velocity, ω the induced velocity, ωr the local tangential velocity
resulting from the rotation. The angle β is the local blade angle and α is the angle of attack for
that particular section. In typical cases, the outer sections of the blade are mainly contributing
to thrust generation. As with airfoils and wings, propeller performance may be described by
non-dimensional coefficients. These are usually computed from simulation outputs at the post-
processing phase. The pressure and shear force distributions around the blade are integrated to
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compute the thrust T and propulsive power P required to drive the blade.

Propeller Efficiency ηp defines the performances of the propeller propulsion. It is expressed
in Equation 5.3 as the ratio of the Power output

Pout of the propeller [Béchet et al., 2011] over P , given V∞, the free stream velocity, with

P = TV∞ (5.1)

and
Pout = 2πωQ , (5.2)

ηp =
Pout
P

=
TV∞
2πωQ

. (5.3)

The efficiency is an essential quantity that characterizes the performance of the engine. It
is part of the presented problem formulation and solving, depending on the blade geometry
parameters, further described in the next section.

5.2.2 The optimization design definition of Open-Fan propeller
The Open-Fan is an unducted aircraft engine prototype with a single propeller consisting of a
row of rotating blades connected to the engine axis. The Open-Fan blades lower section, called
hub is mounted on the engine shaft through pivot connections allowing their orientation to vary.
A basic propeller is defined in three dimensions [Philippe, 1999, Techniques de l’ingénieur],
the x being the engine axis, the y axis is colinear with the blade span, and z defined to complete
the direct system. Its geometry is defined with the following parameters :

• Span : radial position along the blade with respect to the axis y

• Pitch : is the angle between the chord and the z axis

• Twist: angle variation between the chords of the different profiles of the blade and the
reference profile and the reference profile according to the height.

A series of sections are used to decompose the aerodynamic forces as they vary with the
blade span. In the defined coordinates, an airfoil may be any section obtained by cutting the
blade with a plan orthogonal to the y-axis. As illustrated on Figure 5.4, a propeller profile is
defined by the following parameters

• Chord c : the distance between the leading edge and the trailing edge.

• the wedge angles β1 and β2 : angles between the tangent to the frame respectively at
the leading edge and the trailing edge. These two parameters are relevant to define the
camber of the profile, reflecting the work that the propellers can handle.

• Thickness is generally defined by the distance between the extrados and the intrados1.

Each section is generated according to the parametrization defined in Section 1.2.3. The
geometry parameters above varies over a given variation interval. The parameter sets are in-
tegrated into an automated optimization that takes into account the overall blade. The opti-
mization chain involves the geometry, mesh generation, simulation and post-processing. The
objective is to generate the most suitable blade geometry according to the defined objective and
constraints.

1Corresponding to upper and lower surface of the blade, respectively
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Figure 5.4: Airfoil shape parameters.

5.2.3 Problem formulation
The proposed optimization problem is aiming to find the four optimal parameters of c, β1,
β2 and β within four sections. Hence, a total of 16 design variables are defined with their
corresponding variation range in 5.1.

Variable Number Variation range

Chord length c(r)
D

4 [−20%, 20%]

Wedge angles
β1(r)
β2(r)

8 [−5, 5]

Rotor pitch β(r) 4 [−10, 20]

Table 5.1: Open-fan blade geometry parameters

Any civil flight is described by its mission profile defining the different flight conditions and
engine regimes from Take-off to landing. Fans are optimised to provide the necessary traction
at take-off and max-climb (where thrust must be higher) and a suitable efficiency during cruise,
the longest phase. Furthermore, the mechanical constraints ensure the viability of the fan at
those various conditions. Figure 5.5 illustrates these different phases that depend on the variable
height levels of the aircraft from the take-off, initial Climb, Climb to Cruise, the longuest phase
where the level is mostly stable. The last phases are divided onto the descent and the landing.

The forces applied to the aircraft engine fluctuate with the flight regimes. It is therefore
necessary to take into account the multiple flight condition specifications. The objective is then
defined by the weighted efficiency of the propeller subjected to the constant thrust and defined
as the maximization of the efficiency among the three chosen operating points: Cruise, Climb
and Take-off (see table 5.2).

The design variables, objective and constraint are defined inD = [−20%, 20%]4×[−5, 5]8×
[−10, 20]4 ∈ R16. The optimization problem is defined by

χ∗ = arg max
χ∈D

ηp(χ)

s.t. CT (χ) = constant
(5.4)
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Figure 5.5: Typical civil transport aircraft mission profile [Gallard, 2014].

Flight conditions Units Cruise Max climb Take-off

Altitude ft 37 000 33 000 0
Mach Number - 0.75 0.74 0.25
Delta Temperature K 0 10 15
Ambient Pressure Pa 21 662 26 200 101325
Ambient Temperature K 216.65 232.77 303.15
Propeller air density kg/m3 0.35 0.39 1.16
Propeller Rotational Speed rpm n.c. n.c. n.c.
Propeller Thrust N n.c. n.c. n.c.

Table 5.2: Open-Fan physical conditions

where

ηp(χ) = w(cr)η(cr)
p (χ) + w(to)η(to)

p (χ) + w(cl)η(cl)
p (χ) (5.5)

and constraint

CT (χ) = w(cr)C
(cr)
T (χ) + w(to)C

(to)
T (χ) + w(cl)C

(cl)
T (χ) (5.6)

where ηp and CT are the Open-Fan propulsion efficiency and thrust respectively, w(cr), w(to)

and w(cl) are fixed weight coefficients depending on the desired impact on the optimization
directions given to each operating points.

Efficiency and thrust are scalar coefficients evaluated from physical simulation outputs. In
this study, they refer to three different flight phases and are obtained from two fidelity levels
of open-fan aerodynamic simulations. Our goal is to adapt the proposed multi-fidelity method-
ology MFNIRB to the solving of such Surrogate Based-Optimization (SBO). There is an ad-
ditional step to be performed to adapt the different fidelities of the available simulations, and
to calculate the performances to be optimized. The two following sections, therefore, give the
required details on the available simulations, then the proposed implementation is presented in
Section 5.3.1.
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5.2.4 Low-Fidelity model implementation
The performance of propellers can be characterized by different physical models. Simplified
models have been developped to reduce the computation cost of more demanding though more
accurate models such as the RANS or Large Eddy Simulation (LES). They can be quoted in a
non exhaustive way as follows

• The element theory [Froude, 1878,Gur & Rosen, 2008] consists in dividing the propeller
blade into sections, and then studying each force acting on these sections. It requires
knowledge of the characteristics of the section, such as the local lift and drag coefficients
(Cl and Cd), but does not take into account the velocity induced by the thrust production.

• The moment theory [Rankine, 1865, Kuik, 2018] of the combined blade elements gives
the propeller performance by obtaining the blade load which includes the induced veloc-
ity.

• For a given velocity profile, a lifting-line approach is used to predict the blade loading.
The lifting-line approach is applied for low-aspect ratio & swept wing : it is an extension
of the Prandtl’s lifting-line theory [Glauert, 1983] developed for slender lifting geometry
(based on Guermond’s theory [Guermond, 1990]). The propeller is assumed to behave
like 2D airfoils connected to each others with vortex lines. The vortex lines are connected
to a common wake shed sought to respect the continuity of the vortex lines (Helmholtz
theorem). The airfoil behaviour is characterized by CL and Cd coefficients as a function
of angle of attack, Mach number and Reynolds number. Those coefficients are computed
using a 2D RANS solver.

• The Lifting Surface [Gruber et al., 2015] is another simplified vortex based method, can
be seen as an a lifting line approach that takes into account the 2D effects and does not
need RANS solver to generate coefficient polars.

In our case, the chosen LF methodology is the lifting surface. The blade is represented by
a distribution of vortices to model the thickness effect and by doublets for the camber effects,
while the wake is represented by doublets. This allows to describe the flow along the profiles
with respect to the refinement of the mesh, and partially remedies the limitations imposed by
the lifting line. However, the drag losses of the profile are not taken into account in the calcula-
tions. The rotor blade is replaced by a surface along which the flow varies. It is subdivided into
a set of elementary panels identified by helical vortices. The induced velocities produced by the
set of trailing vortices at the control point of each panel are calculated by the Biot-Savart law.
Then, using the Kutta-Jukowski theorem and the 2D lift and drag coefficients as a function of
angle of attack, the aerodynamic forces acting on the blade are calculated. The compressibility
effect is addressed by using a Prandtl-Glauert correction on the lift, and the airflow is modeled
as an inviscid-incompressible flow.

This model is used in the simulation chain, that takes the optimization parameters as in-
put and generates physical quantities for the corresponding mesh of the open-fan blade. The
resulting scheme is illustrated in Figure 5.6 and corresponds to each call to the solver to evalu-
ate the corresponding lifting surface simulation outputs fLF (x,χ) for a given set of parameters
χ ∈ X LF of the LF Design of Experiment (DoE), within the SBO loop. Each LF DoE sampling
of the parameter χ requires the generation of a new blade geometry using in-house geometry
modeler CARMA with the appropriate parametrization approach.
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Mesh Lifting SurfaceGeometry

Low-Fidelity simulation

Figure 5.6: LF simulation

The Open-Fan is modeled as 12 rotor blades (Figure 5.7a) and stator (Figure 5.7b) attached
to the hub (Figure 5.7c), covering the intern part of the Open-Fan engine. It is represented
by a curved lower line delimiting the mesh regions. The rotor and stator blade surfaces are
discretized with a structured mesh. The wake and physical quantities fLF (x,χ) of each blade
are computed with the in-house solver Sandra.

(a) Rotor (b) Stator

(c) Hub

Figure 5.7: Open-Fan sytem components

The discretization is performed at the surface of the mean camber with quadrilateral vor-
tices. Figure 5.8 represents the discretization of the lifting surface model. The jth height of the
blade corresponds to the discretizations xj,1 to xj,M+1, in this Figure there are N + 1 section
heights.

Following the discretization of the lifiting surface method, the output defined by fLF (x,χ)
is constructed from a 2D discretisation such as xi,j , ∀i ∈ [1, N ] and j ∈ [1,M ]. The M and N
values are taken into account to compare the LF and HF outputs. This step is further detailed
in the following sections.
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Figure 5.8: LF simulation discretization [Leborgne et al., 2015]

5.2.5 High-Fidelity model implementation
The available higher fidelity level of simulation is a steady state 3D RANS model applied to
evaluate the open-fan aerodynamic QoIs. The so-called RANS consists in numerically solving
the continuous conservation equations of the mass, momentum and energy. This approach is
able to compute non-linear phenomena, such as shocks occurring in the passage of the blades,
in a relatively accurate way, but conceding a significant an increase in computational cost com-
pared to the traditional methods such as the lifting surface model previously introduced. In the
present study case, the 3D steady RANS system of equations is solved by the ONERA code
elsA [Cambier & Gazaix, 2012]. Figure 5.9 illustrates the main steps of the solver call that eval-
uates the corresponding simulation outputs fHF (x,χ) for the modified parameter χ ∈ XHF

of the HF DoE, within a SBO loop. The fluid areas arround the rotor and stator are meshed
using Autogrid (NUMECA). Finally, the RANS solver is called to evaluate the physical field
quantities fHF (x,χ).

Mesh RANSGeometry

High-Fidelity simulation

Figure 5.9: HF simulation

Figure 5.10a is a meridional view of the global mesh divided into two parts composed of
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the farfield on the top region and the propeller region. Both parts are divided into Rotor and
Stator corresponding regions as illustrated in Figure 5.10b. The blades are fixed to the hub,
separating the flowpath from the internal part of the Open-Fan engine. The final grid contained
4.7 million points, consisting of 1.3 million for each blade region and 0.23 million for each
farfield region. The modeler generates the geometry on which an adapted mesh will be applied.
The mesh is of O4H topology, composed by an O-type block surrounded by 4 H-type blocks
(see Figure 5.10c).

(a) Mesh domains. (b) Mesh domain partition [Li et al., 2015].

(c) O4H mesh arround rotor and stator

Figure 5.10: Definition of the Open-Fan aerodynamic mesh.

The discretization of this HF model is more complex than the LF discretization described
above. First of all, one is in a 3D space, the other in 2D. The LF model can be defined at each
blade height by panels, while the HF model refined along the span direction. In the following
sections, a methodology is proposed to address the compatibility between the outputs of these
two solvers, with the aim of using it on the Multi-Fidelity (MF) framework.

5.3 Methodology
The optimization method developed requires the use of two simulation chains (high- and low-
fidelity) modeling the same physical quantities but with different levels of fidelity. In this
section, the methodology used to construct the multi-fidelity model from the different available
outputs of the lifting surface model (low-fidelity) and the steady RANS model (high-fidelity) is
presented. The proposed meta-model MFNIRB is built from the full-field bi-fidelity simulation
outputs, which allows to take into account the full-field representation instead of the scalar
performance outputs.



5.3. METHODOLOGY 101

5.3.1 Multi-fidelity surogate-based optimization implementation
The objective is to perform the presented geometrical optimization using the two fidelity levels
of the vector outputs fHF (xHF ,χ) and fLF (xLF ,χ). It is necessary on the one hand to adapt
the two outputs HF and LF, because they do not have the same shape (the discretization of the
HF model xLF is different from that of the LF model xHF ).

The optimization follows a similar SBO method used in Chapters 3 and 4, except that the
definition of the parameters corresponds to the shape of propeller blades (e.g., chord, torsion
angles, thickness, etc.). Moreover, an additional step is needed to adapt the different fidelity
levels of the vector outputs. Concerning the analytical bi-fidelity benchmark (Numerical ap-
plication of Chapters 3 and 4), the functions of both levels depend on the same discretization
variable. A sampling method (LHS, LCVT, etc.) is used to select the geometries within inter-
vals defined by the designer. Once the parameter set is drawn, the two levels of simulations
are run in parallel to recover the physical quantities. The adaptation of the HF to the LF dis-
cretization allows to have a common mesh variable. In the present case, this similarity is found
between each blade height r (detailed in Section 5.3.2). The different steps of the MFNIRB
model-assisted optimization are summarized in Figure 5.11.

c
Pitch
angle

RANS

Lifting
Surface

Parametrization DoE

Condensation

SVD

MF projection

HF to LF
Adaptation

MFNIRB

Stoping criterion

Simulations

Figure 5.11: Main steps of the multi-fidelity implementation from the model construction to
infill

In the present case, we are looking to optimize the efficiency subjected to thrust constraint,
both are scalar quantities. Therefore, we need to perform the transition from vector to scalar
quantities. The two elements mentioned above correspond to the adaptation of HF to LF and
to condensation. They are represented in the diagram by two white boxes framed by a black
solid line. These steps are not generalizable, there are as many possible approaches as existing
simulation methods. A method is proposed in the following sections for HF to LF adaptation
Section 5.3.2, and for condensation Section 5.3.3.
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The whole scheme of the method MFNIRB is reproduced (see method MFNIRB). Thus,
the constructed snapshot matrix allows recovering the orthogonal basis ΦHF , which will be
used as the projection basis for the set of LF vectors (The LF Non-Intrusive Proper Orthogonal
Decomposition (NIPOD) method is used to estimate the LF snapshots). Therefore the func-
tion MF, fMF is assessed, then subjected to post-processing condensation (may be integration
for example) that evaluates the trend of the model MFNIRB. The non-deterministic part (that
follows a Gaussian Process) of this model will then be used to evaluate the new infill point χ∗it
at each iteration until convergence of the optimization. All these steps will then be applied to
solve the physical optimization problem on the Open-Fan.

5.3.2 High-Fidelity adaptation to Low-Fidelity full-field outputs
The main difficulty lies in the fact that the design optimization is mainly determined by the
integrated quantities. In the proposed approach, these quantities are directly estimated by the
meta-model. Contrary to previous experiments on the MFNIRB Chapter 4 notations and ap-
proach, it consists in predefining the components of the optimization J , ch, h = number of
constraints, according to the output fields depending on the mesh x or the height, f(x,χ).
In the present case, the low- and high-fidelity representations have similar outputs for the 2D
quantities in the radial and azimuthal sections. Therefore, the quantities needed to evaluate the
efficiency and thrust will be evaluated within the optimization loop as a function of the radial
height r and the design variablesχ to estimate the global flow behavior among the entire blade.
The outputs of each simulation are defined as the HF outputs

SHF =
[
fHF (r,χ(1)) . . .fHF (r,χ(Mh))

]
(5.7)

and LF outputs

SLF =
[
fLF (r,χ(1)) . . .fLF (r,χ(Ml))

]
(5.8)

where Mh and Ml are the total number of snapshots for the HF and LF DoEs respectively.
χ is the vector of the design variables (for example the propeller blade angles β1, β2, and chord
c), the function f represents HF or LF simulation depending on design variables χ and each
radial height r =

[
r(1) . . . r(nr)

]
illustrated in Figure 5.12.

5.3.3 Condensation : from full-field simualtions to quantities of interest
This section presents the post-processing to be performed under the MFNIRBSBO (illustrated
in Figure 5.11). To integrate the full-field physical outputs f(r,χ) (obtained after the mesh
adaptation detailed in the previous section) into the scalars ηp and CT . As defined in the
problem formulation section 5.2.3, the conditions of the flight phases Cruise (cr), Takeoff (to)
and Climb (cl) are applied to the LF and HF simulations yielding with the respective out-
puts f (cr)(r,χ), f (to)(r,χ) and f (cl)(r,χ). Therefore, there are as many scalar quantities as
there are operation point outputs η(cr)

p , η(to)
p and η(cl)

p , for each level of simulation fidelity. The
condensation operation used to integrate the full-field outputs are the functionals J (.) for the
objective, and c(.) for the constraint, as illustrated Figure 5.13.

The final scalar efficiency is evaluated for the three flight phases, climb, cruise and take-off
as

ηp(χ) = w(cl)J (f (cl)(r,χ)) + w(cr)J (f (cr)(r,χ)) + w(to)J (f (to)(r,χ)) , (5.9)
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Hub

Tip

Figure 5.12: Illustration of the blade sections reconstruction from nr sections (nr = 5 in this
example)

Condensation

Figure 5.13: The condensation step : from input f(r,χ) to the scalars quantities of interest
ηp(χ) and cT (χ).

where the corresponding condensation of a given vector output f(r,χ) is defined by

J (f(r,χ)) = J (η(r,χ)) =
nr∑
j=1

η(rj,χ) , (5.10)

and constraint

CT (χ) = w(cl)c(f (cl)(r,χ)) + w(cr)c(f (cr)(r,χ)) + w(to)c(f (to)(r,χ)) , (5.11)

where the condensation functional is

c(f(r,χ)) = c(T (r,χ)) =
nr∑
j=1

T (rj,χ) , (5.12)

where J and c are the condensation operations to compute a given f(r,χ) representing
the climb, cruise and take-off outputs, f (cr)(r,χ), f (cl)(r,χ) and f (to)(r,χ), respectively, r is
the set of points defining the discretization along the radial direction of the blade, χ the design
variable, χ ∈ D ⊂ Rd, the design variables, with d = 16 and χ∗ is the optimum configuration
of the objective function ηp(χ) ∈ R with respect to the constraint CT (χ).

The MFNIRB SBO can then be implemented and the main objective is to provide addi-
tional elements to understand the physical meaning of a MF projection. For example, that can
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be difficult features there are not captured only by the LF representation. The analytical re-
sults of Chapter 3 and 4 may be linked to the different physical QoI and features that the MF
representation bring to the LF compared to the HF RANS QoI.

5.4 Conclusion
This chapter presented a way to adapt the available LF and HF simulations to achieve a MF rep-
resentation dedicated to solve an industrial-scale shape optimization problem. The MFNIRB
described in chapter 3 and 4 was applied on the specific configuration of the Open Fan shape
optimization. To this end, the method was adapted by yielding HF and LF configurations with
similar spatial position output to perform the MF projection. Other ways of using the differ-
ent mesh outputs can be explored and compared in future work. In addition, a condensation
method to evaluate the performances quantities to optimize was required to apply the MFNIRB.
Future applications of this approach can be generalized to similar turbomachinery applications.
However, in general, CFD applications, the condensation needs the available post-processing
implementation to obtain the scalars quantities from the simulation outputs. Such operation
will at least require access to the post-processing part of the simulation codes.



Chapter 6

Conclusion

This thesis develops and applies Multi-Fidelity (MF) optimization techniques that are poten-
tially applicable to the design of engineering systems as long as their physical behavior can
be evaluated at different fidelity levels. The methods focus on Surrogate Based-Optimization
(SBO) in multi-fidelity setting with online enrichment. The work presented in this thesis ad-
dresses problems where knowledge of the full field can bring additional accuracy to the solu-
tion, illustrated by a representative bi-fidelity analytical problem and industrialized SBO imple
Qmentation from models of interest to aerodynamic engineers.

6.1 Outcomes

A literature review was conducted to address simulation cost issues in optimizing physical sys-
tems modeled with computer codes. It allows identifying the existing construction methods of
surrogate models based on sequentially updated Design of Experiment (DoE). Scalar, vector,
and multi-fidelity surrogates, along with their associated infill strategies, are included. Sur-
rogate vectorial multi-fidelity models based on reduced-order approaches appeared promising
for the control of the overall simulation budget. The survey also highlighted the impact of the
correlation between the Low-Fidelity (LF) (supposed cheap) and High-Fidelity (HF) (supposed
expensive) simulators, and their Central Processing Unit (CPU) cost ratio on the accuracy of
the resulting multi-fidelity model. The development of dedicated infill techniques requires cri-
teria for both the new site’s choice and the corresponding simulation’s fidelity level.

These ideas guided the present work to develop the multi-fidelity model and a correspond-
ing enrichment strategy. The proposed methodology extends the non-intrusive Proper Orthog-
onal Decomposition (POD) on two levels. On the level the field approximation, the regression
of POD coefficients is replaced by a projection of LF solutions on the HF basis. On the level of
quantities of interest, the interpolation property is enforced by Gaussian Process (Kriging). The
statistical enrichment criteria were adapted to account for the violation of constraints such as
the Probability of Improvement (PI) and the Expected Improvement (EI) criteria. The scheme
was tested on a bi-fidelity benchmark case derived representative of aeronautical problems. The
convergence study showed comparable performances for both multi- and single-fidelity mod-
els and was followed up with additional tests on an adapted test function with a parameterized
correlation between low and high-fidelity outputs. As expected, the correlation showed a non-
negligible impact on optimization performance.

105
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Different experiments were presented for a better understanding of optimization of the pro-
posed MFNIRB multi-fidelity model. First, a comparison between the infill criteria showed
in section 4.3.3.1, a different convergence according to exploration, exploitation, and a better
balance between exploration and exploitation with EIw. This criterion was chosen to conduct
the experiment in section 4.3.3.2, which compares the convergence of single and multi-fidelity
models, and showed better convergence for MFNIRB on poorly explored DoE and comparable
performance for an initially highly explored DoE. Finally, the chosen criterion is studied to
understand the relative impact of Probability of Feasibility (PF) of the constraints, and EI. This
allows investigation if the approximation is a driver of an optimal infill procedure, and what
are the origins for the limitations of multi-fidelity Kriging-based optimization. An analysis
was conducted in section 4.3.3.4 to compare different LF-HF ratios introducing the multi-level
extension of MFNIRB employing Non-Intrusive Proper Orthogonal Decomposition (NIPOD)
approximation of the LF data. It was concluded that the ratio and the HF basis truncation have
an impact on the optimization performances. The results between different ratios also depend
on the truncation level of the HF basis. Therefore, in the next section, truncation was evaluated
at each iteration by minimizing the residual error. It was observed that there are limitations
to the use of the LF when representing the HF vectors. A limited number of HF modes is
sufficient to construct a MF vector close to the HF. Improving the reduced basis is not always
possible if only HF outputs are used. Future work could incorporate LF to improve the orthog-
onal reduced basis. Finally, analyses of the impact of the LF-HF ratio are presented, as well
as preliminary results of multi-level fidelity enrichment versus single-level fidelity enrichment.
The final study showed the potential convergence of multi-level enrichment. However, the ap-
plication on such an benchmark test case, does not show a significant difference between the
multi-level and single level enriched model.

The chapter 5 deployed the proposed methodology on an industrial scale problem. The two
available fidelity models have different field output sizes. The MFNIRB application imposed an
adaptation of the different discretizations. Moreover, a condensation was proposed to evaluate
the scalar quantities to be optimized from the full-field outputs. In such industrial context, this
step is not usually provided to the user, however, is required to build the MFNIRB metamodel.

6.2 Perspectives

The perspectives for developing multi-fidelity approaches are threefold: improvement of algo-
rithms, validation procedures, and industrial implementation.

The present work is based on the POD modes issued from HF simulations only. However,
additional information from the LF simulations might be aggregated to the POD basis, in the
spirit of different formulations proposed in [Benamara et al., 2016]’s work. An important re-
search topic concerns the enrichment criteria that should be further developed to better account
for the probability of feasibility of optimization constraints. Also, the non-intrusive character
of the present work, dictated by the industrial context, is a limitation. Further research can be
extended to the intrusive cases when the simulator source code is available.

The enhancement of the validation phase requires a set of multi-fidelity benchmarks. Un-
fortunately, to our best knowledge, the full-field benchmarks are rare in the literature. These
benchmarks should ideally involve such features as variable numbers of design parameters, an
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adjustable correlation between HF and LF, and, potentially, multiple (more than two) levels of
fidelity. The availability of such a widely accepted benchmark database is a necessity for the
multi-fidelity optimization community. Developing a standardized set of test cases, represen-
tative of problems encountered in full-scale models, is also pre-eminent to compare different
methods.

The deployment of a multi-fidelity approach in the industrial setting is not straightforward
due to organizational concerns. Softwares implementing different fidelity levels might be avail-
able in independent company departments. LF and HF models are also potentially performed
at non-overlapping design stages. Each optimization case implies the intervention of different
numerical tools using different solvers, meshes, and post-processing, even for different levels
of fidelity of the same model. These issues are, to a certain degree, similar to those encoun-
tered when implementing multidisciplinary optimization frameworks. Efficient deployment of
a multi-fidelity strategy requires thus further research to rethink the flow of the design process.
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