
HAL Id: tel-03633538
https://theses.hal.science/tel-03633538v1

Submitted on 7 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing recurrent neural architectures for prediction,
inference and learning in a long-term memory of

sequences using predictive coding
Louis Annabi

To cite this version:
Louis Annabi. Designing recurrent neural architectures for prediction, inference and learning in a
long-term memory of sequences using predictive coding. Machine Learning [cs.LG]. CY Cergy Paris
Université, 2021. English. �NNT : 2021CYUN1037�. �tel-03633538�

https://theses.hal.science/tel-03633538v1
https://hal.archives-ouvertes.fr

Modèles neurocomputationnels pour la
prédiction, l’inférence et l’apprentissage au
sein d’un mémoire à long-terme de séquences

se basant sur le codage prédictif

Designing recurrent neural architectures
for prediction, inference and learning in a

long-term memory of sequences using
predictive coding

Thèse de doctorat pour l’obtention du titre de docteur délivré par CY Cergy Paris Université
Ecole doctorale n°405 Économie, Management, Mathématiques, Physique et Sciences

Informatiques (EM2PSI)

Thèse présentée et soutenue à Cergy, le mardi 7 décembre 2021, par
Louis Annabi

Devant le jury composé de :

Verena Hafner Humboldt-Universität zu Berlin Rapporteure

Jun Tani Okinawa Institute of Science and Technology Rapporteur

Emmanuel Daucé Institut de Neurosciences de la Timone Examinateur

Sao Mai Nguyen ENSTA Paris Examinatrice

Nicolas Rougier Université de Bordeaux Examinateur

Alexandre Pitti CY Cergy Paris Université Directeur de thèse

Mathias Quoy CY Cergy Paris Université Co-directeur de thèse

Remerciements

Le travail présenté ici n’aurait pas pu être possible sans l’aide de nombreuses personnes qui ont
permis à cette thèse de se réaliser, et m’ont soutenu pendant ces trois années.

Pour commencer, cette thèse a été rendue possible grâce à mes encadrants Alexandre et Mathias,
que je remercie pour leur aide, leur écoute et leurs conseils au long de ces trois années. Je remercie
aussi Nicolas Rougier pour ses conseils au début de cette thèse et lors de la soutenance de mi-
parcours.

Je voudrais également remercier mes collègues du laboratoire ETIS: Mehdi, Mingda, Clara,
Théo, Zido, Paul, Louis, Sylvain, Mathieu, Lise, Sébastien, Pauline, Aliaa, Julien, Uj, Victor,
Mourad et tous les autres, pour les pauses café, les parties de basket, et pour avoir rendu la vie au
laboratoire aussi agréable. Merci à Eva, Arnaud, Ghilès et Kévin pour leurs conseils et les longues
conversations dans le RER A.

Dans la continuité, je remercie également tous mes amis, de prépa, d’école, et autres, pour les
verres, les week-ends, ou les soirées en ligne pendant les confinements, qui m’ont aidé à décrocher
un peu du doctorat.

Je remercie Cécilia, et à nouveau Alexandre, Mathias, Sylvain, Eva, Clara, Théo, Mehdi et
Mingda pour leur aide sur l’écriture de ce manuscrit, par leurs conseils ou en donnant de leur
temps pour relire et m’aider à clarifier certains points.

Sur une note plus personnelle, je voudrais remercier Chloé, Alex, et mes parents Christine et
François pour leur soutien pendant ces trois années. Je suis très reconnaissant envers Diem Tu
pour avoir partagé avec moi les moments de joie et parfois de déception qui ont accompagnés cette
thèse. Enfin, j’aimerais adresser un remerciement spécial à mon grand-père Jean-Paul, qui est la
raison principale derrière mon intérêt pour la recherche scientifique.

i

Contents

List of Figures v

List of Tables viii

List of Abbreviations ix

List of Symbols and Notations x

Abstract 1

Résumé français 2

1 Introduction 3
1.1 Background . 3
1.2 Problem definition . 5
1.3 Contributions . 6

2 Context 8
2.1 Artificial neural networks . 8

2.1.1 Introduction and notations . 8
2.1.2 Recurrent neural networks . 9
2.1.3 Learning . 11

2.2 Predictive coding . 13
2.2.1 PC and the Bayesian brain . 13
2.2.2 Free-energy formulation of PC . 14
2.2.3 Learning . 19
2.2.4 PC as a model of brain function . 22
2.2.5 Variants of the PC architecture . 24

3 Sequence memory modeling 28
3.1 Introduction . 28
3.2 Related work . 28

3.2.1 Feedforward architectures . 28
3.2.1.1 Perceptron and tabular case . 28
3.2.1.2 Convolutional neural networks . 29
3.2.1.3 Attention mechanisms . 30

3.2.2 Advanced RNN models . 31
3.2.3 Reservoir computing . 33
3.2.4 Applying PC to RNN models . 34

3.3 Methods . 39
3.3.1 Simple recurrent model . 39
3.3.2 Using first-order generalized coordinates . 43
3.3.3 Simple recurrent model with hidden causes 47
3.3.4 Combining first-order generalized coordinates and hidden causes 52
3.3.5 Summary of the proposed models . 56
3.3.6 Possible extensions . 57

3.3.6.1 Estimation of generation density precision 57

ii

3.3.6.2 Stacking recurrent layers . 58
3.4 Results . 58

3.4.1 Data sets . 58
3.4.2 Learning, prediction and inference . 59

3.4.2.1 Prediction . 60
3.4.2.2 Inference . 61
3.4.2.3 Learning . 62

3.5 Conclusion . 63

4 Comparative studies 64
4.1 Introduction . 64
4.2 Model capacity . 64

4.2.1 Intuition . 64
4.2.2 Benchmark models . 67
4.2.3 Hyperparameter optimization . 67
4.2.4 Comparative analysis . 69

4.3 Continual learning and catastrophic forgetting . 72
4.3.1 Experimental set up . 72
4.3.2 Benchmark models . 73
4.3.3 Results . 74

4.4 Conclusion . 80

5 Memory retrieval 81
5.1 Introduction . 81
5.2 Related work . 81

5.2.1 Chaotic itinerancy . 81
5.2.2 Memory retrieval . 82

5.3 Methods . 84
5.3.1 Prior distribution on the hidden causes . 84
5.3.2 Mechanisms influencing the hidden causes dynamics. 86
5.3.3 Unstructured case . 87
5.3.4 Structured case . 90
5.3.5 Summary of the proposed methods . 92

5.4 Results . 92
5.4.1 Unstructured itinerancy . 93
5.4.2 Unstructured memory retrieval . 94

5.4.2.1 Memory retrieval dynamics . 95
5.4.2.2 Memory retrieval using approximate targets 98
5.4.2.3 Scaling memory retrieval . 99

5.5 Discussion . 100

6 Motor trajectories learning 102
6.1 Introduction . 102
6.2 Related work . 102

6.2.1 Initial formulation of AIF . 104
6.2.2 Expected free-energy . 104
6.2.3 Current discussions . 105
6.2.4 Direct minimization of prediction error . 106

6.3 Proposed framework . 107
6.4 Autonomous learning of motor trajectories with AIF 109

6.4.1 Methods . 109
6.4.2 Results . 111
6.4.3 Discussion . 112

6.5 Dynamic control using visual supervision . 113
6.5.1 Methods . 113

6.5.1.1 Architecture . 113
6.5.1.2 AIF using a forward model . 114

6.5.2 Results . 115

iii

6.5.2.1 Motor PC-RNN-HC-M learning 116
6.5.2.2 Model capacity comparative analysis 116
6.5.2.3 Intermittent control . 117
6.5.2.4 Robustness to external perturbations 119
6.5.2.5 Adaptation to transformed visual predictions 120
6.5.2.6 Motor control comparative analysis 122
6.5.2.7 Reciprocal influence . 124
6.5.2.8 Bidirectional influence . 124

6.5.3 Discussion . 127
6.6 Conclusion . 128

7 Conclusion 130
7.1 Summary of the contributions . 130
7.2 Discussion on the thesis choices . 130
7.3 Limitations . 131
7.4 Recommendations for future work . 132

Appendices 134
A Variational free-energy simplifications . 134
B Hyperparameters for the continual learning benchmark 137
C Continual learning figures . 138
D Distribution of the convergence times during memory retrieval 142
E Parameters used in the motor sequence memory experiments 145

Bibliography 146

iv

List of Figures

1.1 An illustration of the concept of surprise. 3
1.2 Example of a sequence memory of handwriting trajectories. 4

2.1 Layered representation of a neural network. 8
2.2 Feedforward and recurrent neural networks. 9
2.3 RNN and possible corresponding computational graphs. 9
2.4 Possible computational graph for a sequence memory. 10
2.5 ANN models for variational inference. 14
2.6 Illustration of surprise minimization through perceptual inference. 15
2.7 Illustration of the PC inference algorithm on a toy example. 19
2.8 Illustration of surprise minimization through learning. 20
2.9 Illustration of the parallelism between BP and the PC learning algorithm. 21
2.10 Graphical representations of different neural networks architectures and learning

methods related to PC. 25

3.1 2D convolution and 1D convolution. 29
3.2 Deconvolutional neural network. 30
3.3 Example of ANN model for sequence modeling using attention mechanisms. 31
3.4 Models integrating variational inference as performed in VAEs to the design of RNNs. 35
3.5 Venn diagram for the classification of RNN models performing variational inference. 37
3.6 Simple PC-RNN probabilistic model and neural network representation. 39
3.7 Simple PC-RNN computational graph. 41
3.8 Simple PC-RNN simplified computational graph. 42
3.9 Comparison between the PC-based learning algorithm and BPTT. 43
3.10 PC-RNN with generalized coordinates probabilistic model and neural network rep-

resentation. 44
3.11 PC-RNN with generalized coordinates computational graph. 46
3.12 PC-RNN with hidden causes probabilistic model and neural network representation. 47
3.13 PC-RNN with hidden causes computational graph. 49
3.14 PC-RNN with hidden causes simplified computational graph. 50
3.15 Different probabilistic models with generalized coordinates. 52
3.16 PC-RNN with hidden causes and generalized coordinates computational graph. . . 54
3.17 Data sets statistics. 58
3.18 Example trajectories from the three data sets. 59
3.19 Illustration of the PC-RNN-HC-A prediction on a toy example. 60
3.20 Illustration of the PC-RNN-HC-A inference algorithm on a toy example. 61

4.1 Example hidden states dynamics with three of the proposed models: PC-RNN-V,
PC-RNN-HC-A and PC-RNN-HC-M. 65

4.2 Example hidden states dynamics with three of the proposed models: PC-RNN-V,
PC-RNN-HC-A and PC-RNN-HC-M, using an antisymetric initialization. 66

4.3 Hyperparameter optimization and model training for the generative capacity com-
parative study. 69

4.4 Comparative analysis of the models’ generative capacity. 70
4.5 Hyperparameter optimization for the Conceptors model for the continual learning

comparative study. 74

v

4.6 Continual learning results with the ESN model. 75
4.7 Continual learning results with the Conceptors model. 75
4.8 Comparison between the two learning methods for the output weights. 76
4.9 Comparison between the three learning methods for the recurrent weights, and the

ESN model where no learning is performed on the recurrent weights. 77
4.10 Comparison between the three learning methods for the input weights, and the

PC-RNN-V model with only output and recurrent weights learning. 78
4.11 PC-RNN-HC-A model with Conceptors aided learning. 78
4.12 Continual learning results using the PC-RNN-HC-A model with Conceptors. . . . 79
4.13 Comparison between the Conceptors model, the PC-RNN-HC-A model, and the

variation of the PC-RNN-HC-A model using Conceptors to learn the output weights. 79

5.1 Variational Bayes models for memory retrieval. In all figures, the gray ellipses
represent the prior distribution on the latent representation. The red, green and
blue crosses represent the keys corresponding to the pattern vectors of the same
color represented on the bottom of the figures. They query and the retrieved values
are represented by orange vectors. The inferred key is represented as an orange dot
in the latent space. 83

5.2 Probabilistic model of the PC-RNN-HC models. 84
5.3 Gaussian mixture probability distributions with n = dh = 2. 87
5.4 Influence of the prior probability distribution on the dynamics of mc. 88
5.5 Influence of the bottom-up inference on the dynamics of mc. 89
5.6 Gaussian mixture prior after learning. 90
5.7 Influence of the inference mechanism onto the hidden causes dynamics, for the target

sequence patterns a and c. 91
5.8 Simulation of itinerant dynamics in the unstructured PC-RNN-HC-M model. . . . 93
5.9 Markov chain and associated transition matrix for the itinerant dynamics in the

unstructured PC-RNN-HC-M model. 94
5.10 Hidden causes trajectories during memory retrieval for different target patterns using

the structured PC-RNN-HC-A model. 96
5.11 Transition matrices for 1, 2 and 5 transitions for the target patterns m and p in the

structured case for 20 temporal patterns. 97
5.12 Illustration of the effects of additive noise or masking onto the target trajectories. . 98
5.13 Distribution of the memory retrieval time according to the noise standard deviation

σnoise. 98
5.14 Distribution of the memory retrieval time according to the mask probabilities pmask. 99
5.15 . 100
5.16 Distribution of the memory retrieval time according to the number of temporal

patterns p in the sequence memory. 100

6.1 Illustration of surprise minimization through learning. 103
6.2 Different conceptual architectures using BPTT to find motor commands associated

with minimal prediction error. 107
6.3 Proposed AIF architectures. 108
6.4 Architecture for the autonomous learning of motor trajectories. 109
6.6 Example learned motor primitives and corresponding Kohonen filters. 112
6.7 Our bidirectional architecture for motor sequence learning and control. 114
6.8 Generated motor trajectories and predicted visual sequences of 2D positions at the

end of training. 116
6.9 Comparison of the reconstruction error according to the number of trajectory classes.116
6.10 Trajectories generated by the motor RNN, with a state dimension of 50, displayed

into the visual space. 118
6.11 Perturbation robustness experiment. 119
6.12 Adaptation to scaling experiment. 120
6.13 Adaptation to rotation experiment. 121
6.14 Comparison of the inference methods. 123
6.15 Illustration of the visual to motor feedback pathway (left) and the motor to visual

feedback pathway (right). 124

vi

6.16 Impairments experiment. 125
6.17 Bidirectional influence between the motor and visual models. 126

1 Continual learning results with the PC-RNN-V model. 138
2 Continual learning results with the P-TNCN model. 138
3 Continual learning results with the PC-RNN-Hebb model. 139
4 Continual learning results with the PC-RNN-HC-A model. 139
5 Continual learning results with the PC-RNN-HC-M model. 140
6 Continual learning results with the PC-RNN-A-RS model. 140
7 Continual learning results with the PC-RNN-M-RS model. 141
8 Distribution of the memory retrieval time according to the noise amplitude. 142
9 Distribution of the memory retrieval time according to the ratio of masked information.143
10 Distribution of the memory retrieval time according to the sequence memory size. 144

vii

List of Tables

2.1 Variants of the PC architecture. 27

3.1 RNN models implementing a form of variational inference. 38
3.2 Summary of the proposed RNN models inspired by PC. 56
3.3 Prediction, inference and learning modes. 62

4.1 Optimized hyperparameters for each RNN model. 68

5.1 Summary of the proposed methods. 92

1 Hyperparameters for the continual learning benchmark. 137
2 Parameters used in the motor sequence memory experiments. 145

viii

List of Abbreviations

AIF Active Inference. 102

ANNs Artificial Neural Networks. 8

BP Backpropagation. 11

BPTT Backpropagation Through Time. 12

CI Chaotic Itinerancy. 81

CNNs Convolutional Neural Networks. 29

ELBO Evidence Lower Bound. 16

ERS Error Regression Scheme. 36

FEP Free Energy Principle. 14

PC Predictive Coding. 8

RC Reservoir Computing. 13

RL Reinforcement Learning. 102

RNN Recurrent Neural Network. 9

VAEs Variational Auto-Encoders. 13

VFE Variational Free-Energy. 14, 16

ix

List of Symbols and Notations

Symbol Name Description

General notations

s Scalars
v Vectors
M Matrices
Mᵀ Transpose of M
· Dot product
� Element-wise product
∇vs(v) Gradient Vector composed of the partial derivatives ∂s(v)

∂vi

N (·;µ,Σ) Normal distribution Multivariate normal distribution of mean µ and covariance
matrix Σ.

Ep[·] Expectation Expectation with regard to the distribution p.
DKL(p‖q) KL divergence Kullback-Leibler divergence between p and q.

Predictive Coding

X Observation The observable random variable that the agent tries to predict.
p(x) Prior density on X The agent’s probabilistic prior belief on the observation.

H Latent state The hidden random variable representing the state of the en-
vironment.

p(h) Prior density on H The agent’s probabilistic prior belief on the latent state.

p(x|h) Likelihood density The agent’s probabilistic model of how the latent state maps
to its observation.

q(h) Recognition density on H The agent’s probabilistic approximate posterior belief on the
latent state.

mh Recognition density mean Mean of the recognition density q(h), activation of the hidden
layer according to the predictive coding framework.

− log p(x) Surprise Surprise or negative log evidence of the observation x.

F (x,h) Variational free-energy Upper bound on surprise, this is the quantity minimized ac-
cording to the free-energy principle.

Active Inference

o Sensory observation Sensory observation, of dimension do.
m Motor command Motor command, performed by the agent, of dimension dm.

x

Abstract

In order to learn and recognize sequences, robotic agents should be equipped with a long-term
memory of temporal patterns. Recurrent neural networks are naturally fit for the generation of
temporal patterns, and thus can be used to model such a sequence memory using a connectionist
approach. Writing in the sequence memory would be tightly related to the question of synaptic
weights learning, and memory retrieval could be cast into a problem of inference of the latent
causes in the neural generative model. There are many underlying questions to the modeling of
this sequence memory. Could it be trained incrementally with minimal forgetting of previously
learned sequences? How many temporal patterns could be written in the memory? How to learn
motor sequence memories without direct supervision in the motor space? How to retrieve previously
learned temporal patterns?

We propose to approach these questions by devising sequence memory networks within the
frameworks of predictive coding (Rao and Ballard, 1999) and free-energy principle (Friston and
Kilner, 2006), equipped with learning and inference mechanisms for the writing and retrieval of
temporal patterns. Throughout this thesis, we apply our models to the learning of handwriting
trajectories for a simulated robotic agent. The main contributions brought by this thesis are
the following: first, we design recurrent neural networks based on the free-energy formulation
of predictive coding. Second, we propose memory retrieval algorithms for sequence memories.
Finally, we combine these models with active inference to build sequence memory models able to
learn motor trajectories in the absence of direct motor supervision. Part of this work has been
compiled in conference and journal publications (Annabi et al., 2020; Annabi et al., 2021b; Annabi
et al., 2021a).

1

Résumé français

Pour être capable d’apprendre et reconnaître des séquences, un agent robotique doit être équipé
d’une mémoire à long terme pouvant contenir ces motifs séquentiels. Les réseaux de neurones récur-
rents sont naturellement adaptés à la génération de signaux temporels, et peuvent donc être utilisés
afin de modéliser une telle mémoire de séquences avec une approche connexionniste. Le processus
d’écriture dans la mémoire de séquences serait alors lié à la question de l’apprentissage des poids
synaptiques, et le processus de remémoration pourrait être formulé comme un problème d’inférence
de causes latentes dans le modèle génératif neuronal. Il y a plusieurs questions sous-jacentes à la
modélisation de cette mémoire de séquences: Peut-elle être entraînée de manière continue avec
un oubli minimal des séquences précédemment apprises ? Combien de motifs séquentiels peuvent
être écrits en mémoire avant saturation ? Comment apprendre une mémoire de séquences motri-
ces en l’absence de supervision dans l’espace moteur ? Comment retrouver des motifs temporels
précédemment appris ?

Dans cette thèse, nous proposons d’approcher ces questions en concevant des modèles neuronaux
de mémoires de séquences s’inspirant de la théorie du codage prédictif (Rao and Ballard, 1999) et
du principe de l’énergie libre (Friston and Kilner, 2006), équipés de mécanismes d’apprentissage
et d’inférence pour l’écriture et la récupération de motifs séquentiels. Tout au long de cette thèse,
nous appliquons nos modèles à l’apprentissage de trajectoires d’écriture manuscrite pour un agent
robotique. Les principales contributions apportées par cette thèse sont les suivantes: premièrement,
nous concevons des modèles de réseaux récurrents à partir de la formulation du codage prédictif se
basant sur la théorie de l’énergie libre. Deuxièmement, nous proposons des algorithmes simulant
le processus de remémoration dans des mémoires de séquence. Enfin, nous combinons ces modèles
avec l’inférence active pour construire des modèles de mémoire de séquences capables d’apprendre
des trajectoires motrices sans supervision motrice directe. Une partie du travail présenté a été
compilée dans des publications en conférences (Annabi et al., 2020; Annabi et al., 2021a) ainsi que
dans un article de journal (Annabi et al., 2021b).

2

Chapter 1

Introduction

1.1 Background
In order to survive, living systems have to maintain their biological constants within certain ranges.
This property, called homeostasis, can be formulated as a natural resistance to change and is en-
sured by different biological mechanisms. Extending this idea to cognitive systems, the free-energy
principle (Friston and Kilner, 2006) posits that living agents try to maintain their sensory states
within certain bounds, determined by their model of the world. For instance, these models could
dictate some preferred interoceptive sensory states such as not feeling hungry or some preferred
exteroceptive sensory states such as tasting something good. The extent to which sensory states
differ from their predictions can be measured by an information-theoretic quantity called surprise.
In the previous examples, feeling hungry or eating something that tastes bad would result in sur-
prising sensory states, that the living organism should try to avoid. According to the free-energy
principle, several cognitive functions can be framed as homeostatic mechanisms minimizing this
surprise. As such, perception is explained as an inference process minimizing surprise by improv-
ing one’s internal representations of the world. Similarly, learning rules in the internal models can
be seen as implementing a process of minimization of surprise. Going further, motor control and
decision-making can also be included in this theory: in order to avoid surprise, organisms actively
seek out states of their environments that provide the predicted sensory states.

Figure 1.1: An illustration of the concept of surprise.

In particular, the predictive coding theory (Rao and Ballard, 1999) describes one possible
implementation of this principle for perceptual inference and learning. In this implementation,

3

internal neural models actively try to predict sensory states, and neural populations encoding
surprise (more precisely prediction error) are used to update the representations of the world
encoded in the internal models (inference), as well as the parameters of these models (learning).

Figure 1.1 illustrates the idea of surprise. A cognitive agent is faced with a visual observation
of the letter c, however, its initial internal belief is that it should see the letter a. The discrepancy
between its visual idea of an a (its prediction), and what it actually sees (its observation), gives rise
to a feeling of surprise, that the agent tries to minimize. The most natural way to minimize surprise,
in this case, would be to update its internal belief to acknowledge that it sees a c instead of an a.
This is the process of perceptual inference. Another less intuitive but still valid way of minimizing
surprise would be to update its internal model of what an a looks like. Updating this model so that
it predicts the image of a c with the internal belief of seeing the letter a would minimize surprise,
since the visual observation predicted by the agent when thinking of an a would no longer differ
from the current observation. Additionally, a more indirect way to minimize surprise would be to
actively fulfill the expectation of seeing an a, for instance by writing one on the white board. All
these processes of surprise minimization are at the center of the work presented in this document.

Specifically, in this thesis, we question whether long-term memories of temporal patterns could
be modeled using this theory. A long-term memory is a cognitive system storing learned (or writ-
ten) patterns indefinitely. These patterns can be retrieved by querying the long-term memory with
a certain input, that we can call key, or with an approximate version of a learned pattern. In
particular, we are interested in long-term memories of temporal patterns, that we call sequence
memories. For example, such systems can be used to store and retrieve temporal signals such as
pieces of music, sentences, or movements. The main goal of this thesis is to propose sequence mem-
ory models based on the free-energy formulation of predictive coding, and associated mechanisms
for prediction, inference, and learning.

Figure 1.2: Example of a sequence memory of handwriting trajectories.

An example of sequence memory is represented in figure 1.2. This sequence memory contains
sequences of 2D points corresponding to learned handwriting trajectories. To design a proper se-
quence memory model, we must build mechanisms for writing and reading in the memory. Writing
in the memory corresponds to the action of inserting a new sequential pattern in the memory,
while reading in the memory can be implemented in two ways:

• First, the memory can be queried using an input (or key) that the sequence memory can

4

directly use to generate the desired sequence pattern.

• Second, the memory can be queried using a possibly corrupted version of the desired sequence
pattern. For instance, in the example presented in figure 1.2, the query corresponds to a
trajectory depicting an h. This trajectory is similar to the trajectory corresponding to a b
that is written in the sequence memory. The sequence memory model should be equipped
with inference mechanisms allowing to retrieve the most likely input, here the input "b".
This input (or key) can then be used to generate the corresponding sequence pattern.

Predictive coding seems like a promising candidate framework for modeling such cognitive
systems, as the question of writing in the memory can be cast as a learning problem, and the
question of reading from the memory can be cast as an inference problem.

1.2 Problem definition
We start by providing a more detailed and formal definition of sequence memories. First of all,
as described previously, this type of memory falls in the class of long-term memories, as opposed
to short-term memories. To grasp a proper understanding of long-term memories, we also need
to briefly describe short-term memories. The task of a short-term memory is to store over time
information provided as input. We can note the difference between simple short-term memories,
and working memories, often considered as processing the incoming information on top of its
retention role. In the case of neural networks, this information is typically stored in the network
activations. This is consistent with neuroscientific studies showing groups of neurons firing for
some time after the presentation of a stimulus (Fuster, 1973).

In contrast, long-term memories do not encode information about past inputs but encode a
function associating an input (or stimulus, or key) with an output (or response, or value). Cognitive
psychology considers several types of long-term memories: episodic memory, semantic memory, and
procedural memory. Episodic memories encode episodes, that is, past events. Semantic memories
encode concepts, facts, or knowledge. Episodic and semantic memories are grouped under the
name of declarative or explicit memories. Finally, procedural memories encode motor sequences,
or gestures. In neuroscience, long-term memories are thought to be encoded in synapses (Dudai,
2004), which translates to weight parameters in artificial neural networks. The process in which an
item is encoded in a long-term memory is called synaptic consolidation. Once encoded in synapses,
the item is held indefinitely. Still, we can note two situations when forgetting can occur. First,
if the neural synapses are modified through other processes happening in the brain. In artificial
neural networks, this can happen when training a model on new patterns. Second, if the input
used to stimulate the long-term memory is itself the result of some neural processes that have been
modified, the (key, value) pair might still be properly encoded in the long-term memory but would
be impossible to retrieve because the key is lost.

More formally, we define a long-term memory as a function f : C → X associating the input
c ∈ C with the output x ∈ X . Stimulated with different inputs, the memory outputs different
responses. Adding on top of this definition the sequential nature of the output, we obtain the
following definition of a sequence memory, which we use throughout this thesis:

Definition A sequence memory is a function f : c ∈ C → (x1,x2, . . . ,xT) ∈ X T associating
a stimulus c ∈ C with a sequential response (x1,x2, . . . ,xT).

We can identify two key dimensions of a sequence: the dimension T that we call temporal
dimension, or simply length of the sequence, and the dimension of the vector space X , denoted |X |,
that we call feature dimension, or simply dimension of the sequence. We use in our experiments
sequences of dimension 2 and length 60. In this case, our sequence memory is a function f : C →
(R2)60.

Other definitions of long-term memories, such as the Hopfield network (Hopfield, 1982), or the
sparse distributed memory model (Kanerva, 1988), consider the second reading task of generating
a stored pattern when queried with a corrupted version of this stored pattern. This question of
memory retrieval is investigated in chapter 5, until then, we stick to the simpler definition provided
above.

5

There are many approaches to the question of sequence memory learning, dealing with different
issues. Here, we introduce and explain the issues faced by these systems.

• Capacity: capacity is a measure of the information quantity contained in the sequence
memory. This quantity is often more informative when compared with a measure of the
model complexity. For instance, we can measure the ratio of sequence patterns number
properly learned per model parameter. According to this definition, a sequence memory A
with 1000 parameters that can store 10 patterns is inferior in capacity to a sequence memory
B with 500 parameters that can store 9 patterns. This comparison is based on the assumption
that by multiplying by 2 the number of parameters in the sequence memory B we would be
able to store 2 times more patterns. More generally, this assumption states that the capacity
measure we defined is independent of the number of model parameters, and only depends on
the model itself. This assumption will be experimentally tested and we will use this measure
to confront different sequence memory models.

• Continual learning: during training, a model can forget a part of the previously learned
information, a phenomenon labeled catastrophic forgetting. An ideal model should ally
plasticity, to be able to incorporate new information, and stability, to avoid the forgetting of
already stored information. In consequence, we will question the possibility of an incremental
training of our models, and evaluate them according to their ability to learn new sequence
patterns without forgetting previously learned patterns.

• Inference: according to our definition, a sequence memory is a function associating a se-
quence with a given input. The problem of inference is the recovery of the input corresponding
to a given sequence. In other words, this problem is that of the inversion of the function f
modeled by our sequence memory. If we consider the case where c is an integer taking values
in a finite set, associating a category c with a given sequence is a well-studied question in
machine learning, that of sequence classification. In our case, we will try to evaluate to what
extent our sequence memory models can serve as models for sequence classification.

• Supervision: in the simpler setting that we explore during most of this thesis, we assume
that the sequential patterns to be memorized are directly available for the learning system.
However, when we consider the problem of motor trajectories learning, supervision in the
motor space might not be directly available to the agent. In order to learn a motor sequence
memory, additional mechanisms should be proposed in order to build the motor patterns
that should be stored in memory, according to indirect criteria. The criteria driving decision
could be the research of extrinsic rewards, as in the reinforcement learning literature, or
indirect supervision via desired sensory states, an approach more in line with the free-energy
principle.

• Biological inspiration: the goal of this thesis is not to build models of brain function, but to
propose models performing well on the criteria introduced before. However, a lot of progress
in artificial intelligence and in machine learning has been achieved by taking inspiration, to
some extent, from theories about brain function. The approach at the center of this work is
to build upon one of these theories: predictive coding. As such, we will sometimes inquire
about the likelihood of our models being actually implemented in the brain.

1.3 Contributions
The artificial neural networks literature overflows with models capable of generating sequences.
While feedforward architectures such as convolutional neural networks or attention-based models
can be used to generate temporal data, recurrent neural networks are often the models of choice
to deal with sequential tasks. In particular, there exist some predictive coding-based recurrent
neural network implementations in the literature, which show that it is possible to model sequence
memories by taking inspiration from the predictive coding theory. However, these models do not
fully address the different issues we have just listed, and additional work is needed to better assess
the viability of the predictive coding theory on all these questions.

Our methodology consists in systematically starting from the free-energy principle mathemat-
ical framework to address these questions. The proposed models are formally derived from this

6

framework and then compared to other models from the literature on the different criteria de-
scribed above. Another source of inspiration for the work presented here is the INFERNO model
formerly proposed by our team (Pitti et al., 2017). The general objective of this thesis is primarily
theoretical, and we do not aim at applying our models in any specific domain. As such, we have
identified a simple yet complex enough task on which we test our algorithms: we choose to build
sequence memories of simple 2D continuous trajectories. The simplicity of this task presents sev-
eral benefits, as it entails low computational costs, easy visualization of the sequence patterns, and
a straightforward extension to motor trajectories (for instance handwriting with a robotic arm).

The contributions of this thesis are:

• An overview of the literature on recurrent neural networks and predictive coding in chapter
2, as well as on the intersection of these two subjects in chapter 3. Additionally, we present
the current state of the art of the research on active inference in chapter 6.

• The design of several recurrent neural network models implementing predictive coding. Based
on the free-energy formulation of predictive coding, we derive in chapter 3 six recurrent neural
network models with associated algorithms for inference and learning.

• A comparative study of recurrent neural networks’ generative capacity for continuous se-
quences, as well as a comparative study of online learning algorithms for sequence generation
in a continual learning setting (in chapter 4).

• The design of retrieval methods for temporal patterns written in a sequence memory based
on predictive coding. We show in chapter 5 that the bottom-up inference mechanisms can
interplay with a top-down Gaussian mixture prior distribution to entail an iterative algo-
rithm for memory retrieval, and draw a connection with the phenomenon known as chaotic
itinerancy in dynamical systems.

• The design of sequence memories for motor patterns using the active inference framework to
construct the motor trajectories that should be written in the sequence memory. We propose
in chapter 6 a general architecture for integrating active inference in the previously derived
sequence memory models, as well as two attempts at implementing this architecture for the
learning of arm joint angle trajectories for drawing and handwriting.

Some of these contributions have been compiled in conference and journal publications:

• (Annabi et al., 2020) “Autonomous learning and chaining of motor primitives using the Free
Energy Principle”, Louis Annabi, Alexandre Pitti, and Mathias Quoy, 2020 International
Joint Conference on Neural Networks (IJCNN), 2020, Online.

• (Annabi et al., 2021a) "A Predictive Coding Account for Chaotic Itinerancy”, Louis Annabi,
Alexandre Pitti, and Mathias Quoy, Artificial Neural Networks and Machine Learning –
ICANN 2021, 2021, Online.

• (Annabi et al., 2021b) "Bidirectional interaction between visual and motor generative models
using Predictive Coding and Active Inference”, Louis Annabi, Alexandre Pitti, and Mathias
Quoy, Neural Networks, 2021.

The Ph.D. thesis is organized as follows. In chapter 2, we introduce preliminary concepts related
to our approach, such as the necessary artificial neural networks background, and an overview of
the predictive coding research field. In chapter 3, we derive recurrent neural network models
implementing predictive coding. In chapter 4, we study their generative capacity as well as their
ability to extend to a continual learning setting using only online learning mechanisms. In chapter
5, we show how the inference processes at the core of the predictive coding theory can provide
powerful memory retrieval mechanisms. In chapter 6, we propose to extend the derived models
using the active inference framework in order to build repertoires of motor trajectories. Finally,
chapter 7 concludes this document by discussing our findings, the shortcomings of our work, and
the open research directions for future work on this subject.

7

Chapter 2

Context

In this chapter, we introduce the necessary background in Artificial Neural Networks (ANNs), as
well as an overview of the Predictive Coding (PC) research area.

2.1 Artificial neural networks

2.1.1 Introduction and notations
ANNs form a category of models widely used in machine learning and originally inspired by bi-
ological neurons. A neural network can be represented as a directed graph, where the nodes are
neurons, and the edges correspond to synaptic connections. In all the works presented in this
thesis, a neuron is considered as a processing unit computing a real-valued output, its activation,
based on activations of its parent neurons in the graph.

Figure 2.1: Layered representation of a neural network.

The information processed by neural networks being multidimensional, we directly consider
layers of a neural network. A layer denotes a group of neurons sharing the same parent neurons.
We call activation of the layer the vector of activations of the layer’s neurons. In the models
presented in this thesis, we represent neural networks by boxes corresponding to the different
layers, connected by directed edges. The function performed by each layer shall be explained as
part of the model definition.

Figure 2.1 displays two graphical representations of the same network. The representation
on the right regroups the neurons into layers. As shown in this figure we sometimes explicitly
write the layer dimension in its representation. In some cases (for instance in convolutional net-
works), the encoded variable has two (matrix) or more (tensor) dimensions, and we shape the layer
box representation using a geometry corresponding to this structure (parallelogram, rectangular
parallelepiped).

A layer with no parent in the graph is called input layer. For each network, we can also define
a set of output variables. In the example figure 2.1, if we choose z to be the output variable, the
network can be seen as implementing a function f : x→ z.

8

There are several approaches for the learning of neural network parameters. This is addressed
in section 2.1.3, where we explain and compare different learning algorithms.

Figure 2.2: Feedforward and recurrent neural networks.

Figure 2.2 displays examples of neural network representations. The graph on the left figure
is acyclic, it thus represents a feedforward neural network. In opposition, the graph on the right
figure comprises cycles, it thus represents a Recurrent Neural Network (RNN).

2.1.2 Recurrent neural networks

Figure 2.3: RNN and possible corresponding computational graphs.

RNNs refer to the category of neural networks comprising cycles in their directed graph. These
models are particularly fit to process sequential data (Elman, 1990). The left graph in figure 2.3
represents a simple RNN, composed of an input layer c, a recurrent layer h, and an output layer x.
In the case of feedforward neural networks, the way to compute the output from the model inputs
is explicit. The activation of each layer is computed based on the activation of the parent layers.
In the case of the RNN represented figure 2.3 though, this is not explicit. The order in which we
should use the different synaptic connections to update the activations of the layers is not given.
To explain the computations performed by RNNs, we need to provide an associated computational
graph. For the network presented in figure 2.3, there are several possible computational graphs,
two of them being displayed on the right side of the figure.

In a computational graph, each vertex corresponds to the value of a variable, each variable
being computed based on its parents. To easily distinct neural network representations from
computational graphs, we use circles to represent vertices in the computational graphs.

The first computational graph supposes the existence of an input sequence of variables (c0, . . . , cT−1).
At every time step t, the activation of the recurrent layer ht is computed from the input ct and

9

the past activation of the recurrent layer ht−1. The activation of the output layer xt is computed
from the activation of the recurrent layer ht.

In the second computational graph, the input variable c0 is used to compute the first activation
of the recurrent layer h0. Then, during the remaining time steps, the activation of the recurrent
layer is computed from its past value. Finally, at the last time step, the activation of the output
layer xT−1 is computed from the recurrent layer activation hT−1.

Based on seemingly the same neural network, we have built in the first case a function associ-
ating an output sequence with an input sequence, and in the second case a function associating an
item with an item.

Figure 2.4: Possible computational graph for a sequence memory.

A sequence memory model needs to associate a sequence (x1, . . . ,xT) with an integer k < p,
where p is the number of sequence patterns to learn. We can use the input variable c of dimension
p corresponding to the one-hot encoding of k. Figure 2.4 displays two computational graphs
that could be used to model a sequence memory using the simple RNN representation we have
introduced. In the first computational graph, the input c is only used for the computation of the
first activation in the recurrent layer, whereas in the second graph, it is used at each time step.

Here is the set of equations corresponding to the first computational graph:

h0 =Wi · c (2.1)
ht+1 =Wr · tanh(ht) + br (2.2)
xt =Wo · tanh(ht) + bo (2.3)

In these equations,Wi is a matrix of dimension (dh, p) that we call input weights,Wr is a matrix
of dimension (dh, dh) that we call recurrent weights, andWo is a matrix of dimension (do, dh) that
we call output weights. We have also introduced biases br and bo of respective dimensions (dh)
and (do). For simplicity, we omit bias coefficients for the remainder of this thesis.

One interesting feature of this simple model is that it can be obtained from a differential
equation guiding the temporal dynamics of the variable ht:

dht
dt

=
1

τ
(Wr · tanh(ht)− ht) (2.4)

where τ is a time constant. If we use this derivative and estimate ht+1 using the first-order
Taylor expansion, we get:

ht+1 = ht +
1

τ
(Wr · tanh(ht)− ht)

= (1− 1

τ
)ht +

1

τ
(Wr · tanh(ht)

(2.5)

In the special case where τ = 1, this equation simplifies to the update rule given in equation
2.2. In fact, we keep this new equation as a generalized version of the simple RNN (sRNN) where

10

the temporal dynamics are parameterized by the coefficient τ . Basically, high values of τ cause the
dynamics of h to be very slow, while the extreme value of τ = 1 provide faster dynamics of h. We
call sRNN the simple model with τ = 1 and Time RNN (TRNN) the general version parameterized
by τ .

This link with differential equations can encourage us to study RNNs from a dynamical systems
point of view. In this approach, ht is seen as the state of the dynamical system, and its temporal
evolution is dictated by Wr, br, and the input c (more generally the input can be temporal as
well).

Dynamical systems can contain attractors such as point or limit cycle attractors. A point
attractor is a stable equilibrium value of the state, trajectories starting from neighboring states
converge towards this point. For example, in the presence of friction, a pendulum always converges
to a vertical position. A limit cycle attractor is a stable periodic orbit. For example, without
friction, the pendulum trajectory is cyclic. However, to be a limit cycle attractor, it would need
to attract neighboring orbits as well. These considerations can be of interest when studying the
learning of RNN parameters, as we see in section 2.1.3.

A useful tool for the analysis of dynamical systems is the concept of Lyapunov exponent. A
dynamical system characterized by a state ht can for instance exhibit dynamics converging to
attractors, or dynamics that are chaotic. We can measure the rate at which two infinitely close
states of the system move away from each other. For a multidimensional dynamical system such
as an RNN, the maximum Lyapunov exponent is defined as:

λ(h0) = lim
t→∞

lim
ε→0

log
|hat − hbt |

ε
(2.6)

where hat and hbt correspond to the states at time t ensuing an initialization of respectively h0

and h0 + ε. The dynamics of an RNN are determined by its Jacobian matrices Jt, defined by:

J ijt =
∂hjt
∂hit−1

(2.7)

Using the Jacobian matrices we can derive a matrix whose eigenvalues are the Lyapunov ex-
ponents of the dynamical system. The maximum of these eigenvalues is the maximum Lyapunov
exponent, that can provide an idea of the predictability of the system. If this exponent is pos-
itive, two neighboring trajectories of the dynamical system tend to move away from each other.
Inversely, if it is negative, neighboring trajectories tend to get closer.

These considerations turn out to be useful for the design and analysis of RNN models.

2.1.3 Learning
Deep learning has encountered a large success in the last decade, for example in playing video
games (Mnih et al., 2013) and board games (Silver et al., 2016; Silver et al., 2017), in computer
vision (Krizhevsky et al., 2012) and in natural language processing (Vaswani et al., 2017; Brown
et al., 2020). While all those successes rely on different ANN architectures and learning paradigms,
they all use the Backpropagation (BP) algorithm to learn model parameters.

BP (Werbos, 1982; Rumelhart et al., 1986) is an algorithm for training feedforward neural
networks. It computes the gradient of the model parameters with respect to a loss function, and
thus it can be used to perform gradient descent on the model parameters.

Here is the detailed algorithm applied to a multi-layer perceptron comprising L layers. We
denote by W (l), z(l) a(l) f (l) respectively the weights, weighted input (pre-activation potential),
activation, and activation function of the l-th layer. The weighted input z(l) is the quantity that,
given as input to the activation function f (l), provides the activation a(l). The loss function C
associates a real-valued scalar quantity with the activation of the last layer a(L−1).

The gradient with respect to the l-th layer can be computed based on the gradient with respect
to the next layer (l + 1), according to the following equation:

∂C

∂z(l)
=
((
W (l+1)

)ᵀ · ∂C

∂z(l+1)

)
� f ′(l)(z(l)) (2.8)

where � denotes the element-wise product. Starting from the gradient with respect to the
weighted input of the last layer ∂C

∂z(L−1) , we can propagate gradient information backward in the
computational graph to obtain all the gradients of this form. Then, we can use these quantities

11

to determine the gradients with regard to the model parameters at each layer according to the
following equation:

∂C

∂W
(l)
ij

= a
(l−1)
j

∂C

∂z
(l)
i

(2.9)

This algorithm can be extended to arbitrary computational graphs provided that all forward
computations are differentiable. It relies on automatic differentiation to evaluate the derivatives,
and applies the chain rule to compute the model parameters gradients.

Especially, it can be extended to computational graphs corresponding to the temporal unfolding
of RNNs. This extension, called Backpropagation Through Time (BPTT) (Werbos, 1988) is widely
used to train RNNs.

As an example, we can apply BPTT on the sRNN model introduced before. The following
paragraphs mostly rephrase the works of (Bengio et al., 1994; Pascanu et al., 2012; Pascanu et al.,
2013) to provide an understanding of the issues that can arise when using BPTT to train RNNs.
The recurrent weightsWr of the RNN intervene at each layer of the unrolled computational graph.
If we suppose that C can be written as a sum of functions Ct depending on each output xt, we
have:

∂C

∂Wr
=

T−1∑
t=0

∂Ct
∂Wr

=

T−1∑
t=0

t∑
k=0

(∂Ct
∂ht

∂ht
∂hk

∂+hk
∂Wr

) (2.10)

The gradient is developed into a double sum. The first sum over t allows covering the influence
of Wr onto all the components Ct of the total loss function. The second sum allows covering
the influence of Wr in the computations at each time step k preceding t. The notation ∂+hk

∂Wr

corresponds to the direct partial derivative of hk with regard to Wr without using the chain rule
to extend this derivative to past hidden states hj<k.

What is of interest to us in this equation is the term ∂ht
∂hk

that transports the gradient from
time step t where the error signal originates, towards the previous time step k where we compute
a component of the total gradient. This term can be further developed as:

∂ht
∂hk

=

t∏
j=k+1

∂hj
∂hj−1

=

t∏
j=k+1

Jj

(2.11)

where Jj is the Jacobian matrix of the RNN at time j. If the Jacobian matrices have large
spectral radii, the long term components (where k << t) of the gradient tend to explode. This
issue, called exploding gradient problem, can also arise for different reasons, that can be better
understood using a dynamical system perspective on RNNs.

As explained previously, dynamical systems can contain attractors. These attractors are each
associated with a part of the state space, called attractor basin, where a state converges to the
attractor given enough time. It has been observed that small changes in the model parameters can
lead to the appearance or disappearance of an attractor state in the dynamical system. For an
initial state in the basin of the new attractor, the trajectory of the RNN state is now dramatically
different than the trajectory using former model parameters. Another event of the same type is
when a boundary between attractor basins is moved due to a change in model parameters. Again,
an initial state that was in the first attractor basin now belongs to a new attractor basin, leading
to dramatically different trajectories.

These types of event, sometimes called bifurcations (Doya, 1993), also complicate the training
of RNNs compared to feedforward networks.

Finally, if we consider for instance the gradient ofWi with regard to a loss function depending
only on xT−1, and with an input only available at time t = 0, this gradient only involves one long
term component scaled by the product of all Jacobian matrices between t = 1 and t = T − 1. If
the spectral radii of the Jacobian matrices are smaller than 1, this product vanishes to 0. This,

12

issue, called vanishing gradient, can arise when the network has to learn long term dependencies
between inputs and outputs, as in our example.

A large variety of methods have been studied to mitigate those issues. Here we shortly review
some of the existing approaches. To fix the exploding gradient problem, a candidate solution is
to use a L1 or L2 penalty on the recurrent weights, as this tends to pull the spectral radius of
the Jacobians towards values lower than 1. Another simple yet effective solution is to use gradient
clipping, that is, renormalizing the gradient when it exceeds a chosen threshold.

To address the vanishing gradient problem, it has been suggested to augment RNN models
with gating mechanisms (Hochreiter and Schmidhuber, 1997; Cho et al., 2014). This approach, as
well as other methods engineering constraints on the RNN recurrent weights (Chang et al., 2019),
is developed in section 3.2.2.

As the issues introduced here come from the learning of model parameters using gradient
descent and BP, some approaches have tried to directly improve the learning algorithm, to use
other learning methods, or to drastically work around the difficulties of learning the input and
recurrent weights of RNNs.

A possible improvement to standard gradient descent is second order optimization. Hessian-free
optimization (Martens, 2010; Martens and Sutskever, 2011) is a quasi-Newton technique that allows
approaching second-order optimization without having to compute or approximate the Hessian
matrix, and thus at a reasonable computational cost. This approach seems very efficient at dealing
with the vanishing gradient problem.

Evolino (Schmidhuber et al., 2005; Schmidhuber et al., 2007) suggests to learn the recurrent
weights using evolution strategies instead of gradient descent. Learning the output weights is a
simpler optimization problem that can be solved without BP, for instance using linear regression.

Finally, the Reservoir Computing (RC) approach (Jaeger, 2001; Lukoševičius and Jaeger, 2009)
completely dismiss the difficult question of learning recurrent weights by instead researching suit-
able initialization strategies, and performing learning only on the output layer. A more detailed
description of this framework is provided in section 3.2.3.

2.2 Predictive coding

2.2.1 PC and the Bayesian brain
PC is a theory of brain function (Rao and Ballard, 1999; Clark, 2013) that has been very successful
at explaining neurophysiological data, especially on low-level perception. It extends the idea that
neural representations emerge as part of an inference process of the causes of sensory observations,
as already introduced by Helmholtz in 1867 (Von Helmholtz, 1867). This so-called Bayesian brain
hypothesis (Knill and Pouget, 2004) suggests that perception is a process of probabilistic inference,
based on a generative (or predictive) model pθ(x) of sensory observations x, parameterized by a
variable θ. As such, the mapping from low-level to high-level representations, pθ(h|x) results from
an inversion, in the Bayesian sense, of the mapping from high-level to low-level representations (i.e.
the generative model). An early implementation of these ideas is the Helmholtz machine (Dayan
et al., 1995; Dayan and Hinton, 1996), which introduces a recognition model qφ(h|θ) to perform
approximate Bayesian inference, as represented in figure 2.5. This model is an unsupervised learn-
ing algorithm and is trained using the wake-sleep algorithm, that alternates between bottom-up
update phases and top-down update phases. It can also be seen as a precursor of Variational
Auto-Encoders (VAEs) (Kingma and Welling, 2014; Rezende et al., 2014; Doersch, 2021), that
instead learn the parameters of the recognition and generative models using BP.

This combination of top-down generative, and bottom-up inference computations is at the
core of PC. Contrary to Helmholtz machines or VAEs, the bottom-up computations in PC rely
on a prediction error signal, denoted in this thesis by the greek letter ε. In Rao and Ballard’s
implementation of PC (Rao and Ballard, 1999), visual observations are predicted by a hierarchical
generative model. Each layer of the hierarchy tries to predict the activation of the layer below.
If the prediction is accurate, no inference of the above layer activation is needed. However, when
there is a discrepancy between the prediction and actual value, the prediction error ε, defined as
the difference between actual and predicted value, is processed by reciprocal connections in order
to update the above layer activation. On the bottom layer, the actual activations are provided
by external sensory inputs. The top-down prediction, and bottom-up inference computations all
occur concurrently until the network converges to a stationary configuration. Intuitively, this

13

(a) (b) (c)

Figure 2.5: Left: Representation of the probabilistic hierarchical generative model according to
the Bayesian brain hypothesis. In red is represented the recognition density that is used for
approximate inference of the hidden variables H1 and H2 based on the observable variable X.
Center: Neural network representation of a Helmholtz machine. The top-down computations
perform prediction while the bottom-up computations perform inference. Right: Neural network
representation of the PC approach. Neuron populations encoding prediction error at each layer
are added into the neural network. They are denoted by the variables εx and εh.

means that the information worth being transmitted up into the hierarchical representation is the
mismatch between predicted and observed values. If the generative model and the configuration
of layer activations provide a perfect prediction of sensory observations, then the inference process
no longer needs to update the latent representation. We can say that the inferred representation
explains away the incoming sensory observation.

The described approach is illustrated in figure 2.5c. At each layer, there is a population encoding
the agent’s representation about its sensory input, as well as a parallel population encoding the
error between the representation and the prediction coming from the upper layer.

Presented as such, the connection with the Bayesian brain hypothesis and variational inference
is far from obvious, since at first glance, only deterministic (in opposition to probabilistic) variables
are processed in this PC network. In the next section, we introduce the free-energy principle and
show how applying this principle to perception reconciles variational inference and PC. In section
2.2.3, we derive a learning algorithm based on PC and in 2.2.4 we review some neurophysiological
experiments and provide discussions about PC as a candidate model of the brain. Finally in 2.2.5
we review existing implementations more or less closely related to PC.

2.2.2 Free-energy formulation of PC
The Free Energy Principle (FEP) (Friston, 2009; Friston, 2010b) is an ambitious framework aiming
at unifying cognition under the common principle of surprise minimization. The goal of this section
is to highlight the connection between the FEP and PC. Starting from the FEP hypotheses, and
relying on a few simplifications, we derive an algorithm that can be translated as neural network
dynamics aligning with the PC theory.

In this section, we adapt some derivations from the very useful mathematical reviews of the
FEP presented in (Bogacz, 2017) and (Buckley et al., 2017). These articles provide a technical
guide of the FEP mathematical framework by compiling a history of publications on the subject
(Friston, 2003; Friston, 2005; Friston and Kilner, 2006; Friston et al., 2007; Friston, 2008a; Friston
et al., 2008; Friston, 2009; Friston and Kiebel, 2009; Friston, 2010a). A part of these derivations are
available in appendix A. In the main text we only present the key equations and the assumptions
needed to simplify the expression of Variational Free-Energy (VFE). The sequence memory models

14

Figure 2.6: Illustration of surprise minimization through perceptual inference.

proposed in this thesis all build upon the derivations shown in this section.
Starting from the idea that biological organisms need to be in homeostasis with their environ-

ment, the FEP suggests minimization of surprise as a necessary mechanism for survival. Surprise,
in our information-theoretic definition, corresponds to the negative log probability of sensory ob-
servations x according to a predictive (or generative) model.

S(x) = − log p(x) (2.12)

According to the FEP, living agents are equipped with such generative models, and cognitive
functions such as perception, learning, and action, can be explained as processes of surprise mini-
mization. Figure 2.6 illustrates the idea of surprise minimization through perceptual inference. In
this example, the cognitive agent first has a prior belief of seeing the letter a. Its internal model
generates a sensory prediction. Since this sensory prediction does not match its observation, the
cognitive agent experiences surprise. To minimize this surprise, it can update its internal belief
so that its new prediction matches its sensory observation. In our example, the cognitive agent
updates its internal belief to that of seeing the letter c, thus resolving the prediction error and

15

minimizing surprise.
According to the FEP, surprise minimization is performed through the minimization of VFE.

VFE, denoted F in our equations, is a quantity equivalent to the negative Evidence Lower Bound
(ELBO) often used in variational Bayesian methods. It is defined as:

F (x) =

∫
h

log
(q(h)

p(x,h)

)
q(h)dh (2.13)

We can show that this quantity constitutes an upper bound on surprise, and thus can act as a
proxy for surprise minimization:

F (x) =

∫
h

log
(q(h)

p(x,h)

)
q(h)dh (2.14)

=

∫
h

log
(q(h)

p(h|x)

)
q(h)dh−

∫
h

log p(x)q(h)dh (2.15)

= DKL

(
q(h)‖p(h|x)

)
+ S(x) (2.16)

where h denotes the hidden latent variable of the generative model, and DKL denotes the
Kullback-Leibler divergence. Since the Kullback-Leibler divergence is non-negative, surprise is
upper bounded by the VFE. These quantities become equal if the divergence reaches 0, that is,
when the distribution q is equal to the posterior distribution p(h|x). For this reason, we might
sometimes call q the approximate posterior density instead of recognition density. Since VFE is
an upper bound on surprise, minimizing VFE also minimizes surprise.

This rewriting of VFE is useful to prove its connection to surprise, but it does not reflect the
major interest of variational inference compared to direct Bayesian inference. Indeed, Bayesian
inference suffers from computational intractability as we need to sum over all possible states h
to estimate the probability p(x) =

∫
p(x|h)p(h)dh. In contrast, if we constraint the distribution

q to be non-null on a small set of values (or tightly shaped around a small number of values),
integrating on q(h) becomes tractable (or approximable). Computing and optimizing VFE is thus
interesting when it does not rely on quantities such as p(x) or p(h|x). A first interesting rewriting
of VFE is:

F (x) = DKL

(
q(h)‖p(h)

)︸ ︷︷ ︸
Complexity

−Eq
[
p(x|h)

]︸ ︷︷ ︸
Accuracy

(2.17)

where Eq denotes the expectation with regard to the density q. The first quantity of this
equation is called complexity. Intuitively, it scores how complex the recognition density is compared
to the prior density. The second quantity is called accuracy, and measures how good the recognition
density q is at predicting the observed variable x. This expression of VFE corresponds (up to a
change of sign) to the usual expression of the ELBO loss function often used in variational Bayes
methods. As our goal here is to show how variational inference aligns with PC, we need to start
from another, equivalent way of writing down VFE:

F (x) =

∫
h

E(x,h)q(h)dh︸ ︷︷ ︸
Expected energy

+

∫
h

log
(
q(h)

)
q(h)dh︸ ︷︷ ︸

(Negative) entropy

(2.18)

where

E(x,h) = − log p(x,h) (2.19)
is called energy. The first term of this equation thus corresponds the expectation of energy

with regard to the recognition density q. The second term is the entropy of the recognition density
q.

In the FEP framework, perceptual inference is framed as a process of free-energy minimization
by optimizing the recognition density q. In practice, q is constrained to certain classes of probability
distributions to simplify the optimization problem. Here we assume that the recognition density
takes a Gaussian form, and VFE is minimized by varying the parameters of this distribution.

q(h) =
1√

(2π)dh |Σ|
exp

(
− 1

2
(h−mh)

ᵀ ·Σ−1 · (h−mh)
)

(2.20)

16

To connect this equation to neural dynamics aligning with the PC theory, more assumptions
are needed:

• First, we assume that the recognition distribution q(h) is tightly shaped around the mean
mh. This allows us to approximate the intractable integrals in equation 2.18.

• Second, we assume that the generative model p(x,h) is hierarchical and made of a cascade
of multivariate Gaussian distributions. The Gaussian distribution p(h(i)|h(i+1)) at layer
i ∈ [0, l−1] is characterized by its mean vector g(i+1)(h(i+1)) and covariance matrix Σi. The
functions g(i) depend on variables θ(i). The distribution on the top layer l is characterized
by its mean vector µ and covariance matrix Σl. The mean vector µ, the covariance matrices
Σi and the variables θi are the parameters of the generative model.

• Third, we assume that the covariance matrix at each layer of the hierarchical generative
model is proportional to the identity matrix:

Σi = σ2
i Idh(i)

We discuss a less constraining assumption in section 3.3.6.1.

• Finally, we define the prediction errors εi at each layer as the difference between the the
prediction coming from the upper layer and the current recognition density mean:

ε(0) = x− g(1)(m(1)
h)

ε(i) =m
(i)
h − g

(i+1)(m
(i+1)
h)

ε(l) =m
(l)
h − µ

(2.21)

The definition of prediction errors has the advantage of simplifying the expression of the VFE,
but also are meaningful when transcribing our inference algorithm into a neural network
architecture.

Using all these assumptions, we obtain the following expression for the VFE. The detailed
derivations of this equation are provided in appendix A.

F (x,m
(1)
h , . . . ,m

(l)
h) =

1

2

l∑
i=0

1

σ2
i

ε(i)
ᵀ

· ε(i) + C ′ (2.22)

where C ′ is a constant. Perceptual inference corresponds to the optimization of the recognition
density means m(i)

h in order to minimize the VFE as described above. The FEP suggests that
neural dynamics implement an iterative gradient descent minimization of this quantity, using two
neural populations at each layer. The first neural population encodes at each layer the recognition
density mean m(i)

h , and the second neural population encodes at each layer the prediction error
ε(i).

Applying gradient descent to the recognition density means with regard to the VFE entails the
following update rule:

m
(i)
h ←m

(i)
h − α∇m(i)

h

F (2.23)

←m
(i)
h +

α

σ2
i−1
g(i)

′
(m

(i)
h) · εi−1︸ ︷︷ ︸

Bottom-up

− α

σ2
i

εi︸ ︷︷ ︸
Top-down

(2.24)

where α is a coefficient that determines the rate of the iterative update process. If the generative
model is composed of a cascade of linear layers with some activation function f , parameterized by
weights Wi, we can write down the derivative of g(i) and get:

m
(i)
h ←m

(i)
h +

α

σ2
i−1
f ′(m

(i)
h)�

(
W ᵀ

i · εi−1
)
− α

σ2
i

εi (2.25)

17

We have an update rule for the recognition density mean m(i)
h that only depends on local

information, that is the prediction error of the very layer i, and the prediction error on the lower
layer i− 1. As we have seen before in equation 2.21, the prediction error at a layer i only depends
on the recognition density mean on this layer and the recognition density mean of the upper layer.
Intuitively, the first component pulls it into a direction that minimizes the prediction error on the
lower layer, while the second component pulls it into a direction that minimizes the prediction error
on the current layer. This cascade of local iterative optimizations transports information about
the prior µ in a top-down fashion, and information about the observed variable x in a bottom-up
fashion, until a stationary configuration is reached.

Based on this update rule, we can design an inference algorithm that iteratively updates recogni-
tion density means and prediction errors until convergence. We now use a subscript t to denote the
temporal dynamics of the variables m(i)

h and εi. The perceptual inference algorithm is presented
in algorithm 1.

Algorithm 1: A PC algorithm for perceptual inference
Parameters: µ, {σ2

0 , . . . , σ
2
l },
{
W1, . . . ,Wl

}
, α

Input: x
Initialize

{
m

(1)
h,0, . . . ,m

(l)
h,0

}
;

Initialize
{
ε0,0, . . . , εl,0

}
;

for 0 ≤ t < T do
ε0,t+1 ← x− f(W ᵀ

1 ·m
(1)
h,t) ;

for 1 ≤ i < l do
m

(i)
h,t+1 ←m

(i)
h,t +

α
σ2
i−1
f ′(m

(i)
h,t)�

(
W ᵀ

i · εi−1,t
)
− α

σ2
i
εi,t ;

εi,t+1 ←m
(i)
h,t − f(W

ᵀ
i+1 ·m

(i+1)
h,t) ;

end
m

(l)
h,t+1 ←m

(l)
h,t +

α
σ2
l−1
f ′(m

(l)
h,t)�

(
W ᵀ

l · εl−1,t
)
− α

σ2
l
εl,t ;

εl,t+1 ←m
(l)
h,t − µ ;

end

This algorithm iteratively updates the activation of neural populations encoding the current
beliefs about latent states, and the activation of neural populations encoding prediction errors. It
describes a computational graph that can also be obtained based on a hierarchical RNN similar to
the network represented in figure 2.5c. This neural network and the underlying computations align
precisely with the PC theory. We can thus conclude that PC can be seen as perceptual inference
performed using variational Bayesian methods, and additional assumptions on the generative and
recognition densities.

To illustrate this algorithm in action, we have implemented the PC-network displayed in figure
2.5c. This recurrent network is based on a two-layered perceptron to which we add two parallel
populations of neurons encoding prediction error: one for the output layer, and one for the hidden
layer. It is represented in figure 2.7. We use a toy data set of 4 visual patterns composed of 20
pixels, representing the letters A, B, C and D. We train the network to predict the k-th visual
pattern when setting the top layer to the one-hot vector activated on the k-th neuron. The learning
algorithm is described in the next section. After training, we provide the pattern C as observed
output x. The coefficients α

σ2
0
and α

σ2
1
are set to 0.2. We do not consider the influence of the prior

mean µ, which is equivalent to choosing a very high value for σ2 (the Gaussian prior becomes flat).
We display the evolution of m(1)

h , m(2)
h and the predicted observation during 15 inference steps.

We can see that the inference process quickly converges to a configuration of its latent states
that properly predicts the observed visual pattern C. Additionally, we can see that the top layer
has converged to a representation very close to the one-hot vector activated on the neuron cor-
responding to the pattern C. We can conclude that this perceptual inference process performs a
form of classification of the provided observation. These results were obtained with a hidden state
dimensions d(1)h = 10 and d(2)h = 4. The inference is parametered by the coefficients α, σ2

0 and σ2
1

that were set to α = 0.2, σ2
0 = 1 and σ2

1 = 1. The source code used for this experiment is available

18

Figure 2.7: Illustration of the PC inference algorithm on a toy example.

on GitHub1.
To conclude this section, we highlight that the algorithm we have derived from the FEP does

not generalize all models and algorithms that have been proposed in the PC literature. To be more
precise, we have shown how the FEP applied to a certain generative model, with some additional
assumptions on the recognition density, can describe an algorithm that implements PC. In the
remaining of this thesis, we design models that fall in the intersection of the PC and FEP theories,
building upon the former derivations.

2.2.3 Learning
We have seen how PC describes perception as an iterative inference process that can be performed
in an RNN, using only local update rules. Here we show how learning can be performed in such
a neural architecture reusing the FEP framework developed in the previous section. Furthermore,
we present some proof (Whittington and Bogacz, 2017; Millidge et al., 2020a) of how these learning
mechanisms approximate the BP algorithm introduced previously.

Similarly to perceptual inference, learning in the FEP is framed as a process of minimization
1https://github.com/sino7/example_pc_network

19

Figure 2.8: Illustration of surprise minimization through learning.

of VFE, typically operating at a slower pace. If inference corresponds to the process of updating
the recognition density parameters, learning refers to the process of optimizing the parameters of
the generative model, such as the collection of covariance matrices Σi, and the parameters of the
functions g(i) that we denote θi (for the general case). This idea is illustrated in figure 2.8. In this
picture, the cognitive agent updates its generative model instead of modifying its internal belief.
After learning, the generative model predicts that the internal belief a corresponds to the visual
input of a c. This learning process minimizes surprise, since after learning the agent’s prediction
matches its sensory observation.

If we consider the hierarchical neural network described in the previous section, where each layer
tries to predict the activation of the lower layer through a linear mapping, the parameters θi of the
functions g(i) correspond to synaptic weights. Learning as an optimization of the generative model
parameters thus aligns with the classical notion of learning synaptic weights in neural networks.
The adaptation of the covariance matrices, or of their inverses, precision matrices, is discussed in
section 3.3.6.1.

The model parameters θi are updated following a gradient descent on the VFE using a learning

20

Figure 2.9: Illustration of the parallelism between BP and the PC learning algorithm. Adapted
from (Millidge et al., 2020a).

rate λ:

θi ← θi − λ
∂F

∂θi
(2.26)

We start from the expression of the VFE provided in equation 2.22, and assume that covariance
matrices are proportional to the identity, and identical across layers. Additionally, we introduce
the notation µi = g(i+1)(m

(i+1)
h ;θi+1) to denote the prediction of the i-th layer latent variable

originating from layer (i+ 1).

∂F

∂θi
=

∂F

∂µi−1

∂µi−1
∂θi

= − 1

σ2
εᵀi−1 ·

∂µi−1
∂θi

(2.27)

which entails the following learning rule:

θi ← θi +
λ

σ2
εᵀi−1 ·

∂µi−1
∂θi

(2.28)

Interestingly, this learning rule only involves local information at each layer. The parameters θi
are pulled in a direction that minimizes the prediction error on the lower layer εi−1. If we consider
the case where predictions µi−1 are computed as a linear mapping of the inputm(i)

h , with a weight
matrix θi, then the learning rule becomes:

θi ← θi +
λ

σ2
εᵀi−1 ·m

(i)
h (2.29)

With this additional assumption, the update takes the form of a Hebbian learning rule, since
εi−1 and m(i)

h correspond to the activations of the presynaptic and postsynaptic layers.
Without relying on this assumption, a surprising property of the inference and learning rules of

the presented PC model is that if inference reaches a stationary configuration before applying the
learning rule, the learning rule exactly replicates the parameter updates of BP. We can verify this
by first looking at the relationship between prediction error at different layers when a stationary
configuration is reached:

dm
(i)
h

dt
= −α ∂F

∂m
(i)
h

= 0 (2.30)

21

And consequently:

∂µi−1

∂m
(i)
h

· ε∗i−1 − ε∗i = 0 (2.31)

ε∗i =
∂µi−1

∂m
(i)
h

· ε∗i−1 (2.32)

On the other hand, if we were to apply BP on the feedforward neural network embedding the
generative model represented in figure 2.9, we would obtain the following equation that transports
gradient information back into the hierarchy:

∂C

∂hi
=
∂hi−1
∂hi

· ∂C

∂hi−1
(2.33)

If we compare both models, we can notice that the quantities ∂µi−1

∂m
(i)
h

in the first model and
∂hi−1

∂hi
in the second model are equivalent. Consequently, the equations 2.32 and 2.33 yield exactly

the same recurrence relation between respectively prediction errors, and gradients, between layers
i and i− 1.

Moreover, at the bottom layer, if the cost function used is the classical L2 norm, we can see
that:

∂C

∂h0
=
∂C

∂x
=
∂‖x∗ − x‖2

∂x
= −2(x∗ − x) = −2ε∗0 (2.34)

On the bottom layer, the gradient ∂C
∂h0

and the prediction error ε∗0 are proportional. Addi-
tionally, both quantities are related to the upper gradients and prediction errors using the same
recurrence relation. Consequently, according to the principle of induction, we can conclude that
for all i:

ε∗i = −
1

2

∂C

∂hi
(2.35)

Finally, the learning rules prescribed by BP and by the gradient descent on the VFE both
exploit this quantity in the same fashion:

θi ← θi − λ
∂C

∂hi

ᵀ

· ∂hi
∂θi

(2.36)

θi ← θi +
λ

σ2
ε∗ᵀi ·

∂µi
∂θi

(2.37)

We can conclude that on the condition that we let the PC inference mechanism reach a station-
ary configuration, the PC learning rule is equivalent to the learning rule prescribed by BP using a
L2 objective function. These results have been experimentally verified and generalized to arbitrary
computational graphs in (Whittington and Bogacz, 2017; Millidge et al., 2020a).

We have seen that to reach the same learning algorithm, we have assumed that the generative
model variances σ2

i were equal at each layer. Interestingly, by relaxing this simplification, the
backward propagation algorithm would be weighted at each layer by the ratio between the variances
of layers i and i+1. This additional factor might help mitigate the vanishing or exploding gradient
issues observed with BP. It could be interesting to investigate the impact of precision (inverse
variance) coefficients learning onto the prediction error propagation mechanism.

In practice, it is not necessary to perform inference until convergence of the neural activations
before applying the learning rule. The time allocated for inference might depend on external
constraints or can be bounded to limit the computational cost.

2.2.4 PC as a model of brain function
The necessity of running the inference algorithm for a large number of iterations before performing
one learning update makes this learning algorithm way less efficient than BP. However, the inference
and learning algorithms based on PC might be more biologically plausible compared to BP and
BPTT. Here we shortly discuss some issues regarding the plausibility of an implementation of BP
in the brain, and how the proposed algorithm based on PC might solve them:

22

• The first issue with BP is that layers should in some way be able to communicate their
derivatives for gradient computations. Using the PC-based learning algorithm presented
before does not solve this issue, as the derivatives of activation functions are still needed for
bottom-up updates.

• The second issue we can raise is that the connections communicating gradient backwards
need to have the same weights as the forward connections. This weight transport (Crick,
1989) is not possible in the brain, as it would need a perfect copy of forward synapses for
backward computations. The PC based learning algorithm does not solve this issue as it
relies on transposed forward weights for bottom-up updates.

• Finally, BP supposes that there exists a signal propagated backward that only affects the
synaptic weights without impacting the neural activations, a mechanism with no biologi-
cal correlate. On the contrary, combining bottom-up inference with local synaptic weights
adaptation, as is done in the presented PC based learning algorithm, constitutes a more
biologically plausible mechanism.

Although the presented PC based learning algorithm does not solve the first and second issues
regarding biological plausibility, it can be modified to account for those. Both remaining issues
come from the fact that we have forced the bottom-up connections to perform a local gradient
descent on free-energy, thus requiring weight transport (copy of the top-down weights) and knowl-
edge of the derivatives of activation functions. Instead, we can consider a backward circuitry with
standard activation functions and synaptic weights that are either random (Lillicrap et al., 2016),
or learned according to different local update rules (Rao and Ballard, 1997; Ororbia et al., 2020;
Millidge et al., 2020b).

The PC architecture we presented also has some additional implausibilities due to its structure.
The one-to-one connection pattern between error neurons and prediction neurons is unlikely to
occur naturally in the brain. To solve this issue, (Millidge et al., 2020b) suggest learning these
connections as well, although this modification seems to affect the model’s overall performance.

In our derivations, we have seen how to apply the PC learning algorithm simple hierarchical
computational graph. In fact, this method can be applied to any computational graph, including
the computational graphs obtained by temporally unfolding RNNs. For RNNs, using the described
inference mechanism to adjust past layer activations is not biologically plausible as these quan-
tities have evolved in the meantime because of the recurrent connections. In chapter 3, we see
how the FEP extends to temporal signals and we derive RNN models implementing free-energy
minimization without the need of propagating prediction errors into the past.

Sticking to the static case, we have seen that PC can entail biologically plausible learning
mechanisms. This adds to the ability of the PC theory to explain a large panel of neurophysiological
and psychophysical results in visual and auditory systems, especially the learning of Gabor-like
receptive fields (Rao and Ballard, 1999; Hosoya et al., 2005), top-down modulation of perceptual
processing (Fenske et al., 2006; Summerfield and Koechlin, 2008; Summerfield et al., 2008), response
damping with stimulus predictability (Müller et al., 1999; Alink et al., 2010), biphasic responses
(Jehee and Ballard, 2009), mismatch negativity (Hughes et al., 2001; Rinne et al., 2005; Ouden
et al., 2008; Stefanics et al., 2014), and the joint effect of top-down predictions and attention
(Schröger et al., 2015; Smout et al., 2019).

Let us suppose for a moment that biological systems indeed implement the PC-based learning
mechanisms we have described. We can question why evolutionary mechanisms have converged
towards this solution. First, this solution may be far from optimal. After all, evolution implements
an optimization method that can easily be stuck in local optima. Second, this solution may be
indeed optimal considering the biological hardware at hand. BP might be a better learning algo-
rithm than PC-based methods, but it cannot be implemented using neurons. PC-based methods
could be the best approximation of BP that evolution has reached with these biological constraints.
Finally, it is also possible that PC-based learning brings a significant selective advantage compared
with BP that we have not yet discovered.

For instance, PC-based learning could have better energy efficiency than possible implementa-
tions of BP in the brain. This idea could encourage us to develop neuromorphic hardware especially
mimicking the PC organization of neural processing units to reduce the energy consumption of ANN
systems.

Even without dedicated hardware, the PC-based learning algorithm could scale better to very

23

deep networks than BP in terms of computation time. Indeed, if we look at the BP algorithm, we
can see that the update rule for a layer k needs to await for the layer k − 1 to finish its compu-
tations. This translates into a full forward propagation followed by a full backward propagation
of information. After having transmitted forward its activation to the layer k − 1, the layer k
remains idle until the BP reaches it. On the contrary, in the PC algorithm, all layers are active
at each point in time, always adjusting their activations and weight parameters in order to locally
minimize VFE. Still, the fact that PC-based update rules only properly approximate BP if enough
time is given for the inference process to stabilize could counter the relative interest of parallel
computing in PC-based models.

2.2.5 Variants of the PC architecture
In this section, we review models related to the PC theory. This listing does not aim at being
exhaustive, since this field of research has been very active for the last two decades. Instead, we
aim at displaying key mechanisms for inference and learning using error propagation, and their
variations along different models presented in the literature.

The PC model proposed in (Rao and Ballard, 1999) is at the basis of the PC theory. The
neural network architecture, represented in figure 2.10a, approximates Bayesian inference in a way
that is very close to the model we derived from the FEP. The hierarchical architecture comprises
a population of representation neurons and a population of prediction error neurons at each layer.
The representation neurons have top-down synaptic connections towards the lower layer prediction
error neurons. Symmetrically, the error neurons of the lower layer have bottom-up synaptic con-
nections towards the upper representation neurons, that correspond to a transposed copy of the
top-down weights. The connections between representation and prediction error neurons on the
same layer implement a one-to-one mapping. Learning occurs according to the same update rules
we have described. This model constitutes an entry point for the comparison with all the models
we present in this section.

In (Spratling, 2008; Spratling et al., 2009), the authors develop PC models using Divisive Input
Modulation (DIM). This technique formulates a divisive version of prediction error, as the element-
wise division of targets by predictions (a small positive term is added to the prediction to avoid
division by 0). Using this error signal, they build inference and weight update rules that relate the
method to non-negative matrix factorization. They show that their algorithm aligns with biased
competition models of the brain.

More recently, (Ororbia and Kifer, 2020) have proposed a PC model labeled Generative Neural
Coding Network (GNCN). This model comprises additional lateral inhibition mechanisms param-
eterized by matrices Vi to entail sparse activations inside the representation populations. Their
method reproduces the usual PC connection pattern between prediction error populations and rep-
resentation populations. To improve the biological plausibility of their model, they suggest learn-
ing the feedback weights of the model according to the same learning rule used for the top-down
weights, but transposed. This difference allows the feedback weights to be initialized randomly but
still converge through learning towards the transpose of the forward weights. We can also note that
they use a less constrained version of the PC algorithm we have derived from the FEP, in which
the covariance matrices Σi of the generative model are not assumed to be diagonal. This entails
a recurrent connection pattern in the prediction error neural populations, that we represented in
figure 2.10b.

The following models do not per se implement PC since the propagation of prediction error
is only used as a learning mechanism and no inference is performed. Still, we included them for
comparison, as the described mechanisms for learning align to some extent to the learning method
prescribed by PC.

(Lee et al., 2015) propose an alternative to the BP learning algorithm where intermediary
targets are defined at each layer. The model parameters at each layer are optimized following
a local update rule aiming at minimizing the discrepancy between the layer prediction and the
target defined for this layer. If relevant targets at each layer are provided to the model, this
learning scheme approximates gradient descent on the output prediction error while not relying
on the chain rule (i.e. BP). If the targets used at each layer were estimated using a PC inference
process, the method described in this paper would be very close to PC learning. Though, they
suggest estimating the targets at each layer using an auto-encoder architecture where the bottom-
up computations are learned approximations of the inverses of top-down computations at each

24

(a) PC network. (b) Generative Neural Coding Network.

(c) Difference Target Propagation. (d) Feedback Alignment.

Figure 2.10: Graphical representations of different neural networks architectures and learning meth-
ods related to PC. Black arrows designate synaptic connections, while red arrows denote learning
computations. The mark on some of the synaptic connections indicate that the corresponding
weights are learned. In all models, θi denotes top-down weights, θᵀi denotes the transpose of top-
down weights used in the feedback pathway, φi denotes learned feedback weights, and ωi denotes
random feedback weights.

25

layer. This hierarchical auto-encoder-like architecture is represented in figure 2.10c.
Investigating alternatives for BP, (Lillicrap et al., 2016) have shown that random feedback

weights could propagate error signals in neural networks. According to this method, labeled feed-
back alignment, populations of neurons encode errors signals at each layer, as in PC. However, they
show that the feedback connections do not have to be set according to the forward connections
(and thus avoid the weight transport problem), and do not have to be learned through other mech-
anisms. Geometrically, random feedback connections can transport error information if they are to
some extent aligned with the transposed forward weights. In their experiment, this soft alignment
is observed as a side effect of the learning of the forward connections. The proposed algorithm per-
forms similarly to BP in the presented experiments. We have represented the feedforward neural
network as well as the separate error pathway in figure 2.10d.

Extending this idea is the method presented in (Nøkland, 2016). In this work, on top of
providing explanations on the mechanisms at stake in feedback alignment, the authors generalize
it to different feedback connection schemes. Especially, the direct feedback alignment algorithm
suggests directly communicating the output error to any hidden layers through random feedback
connections, without circulating through all the intermediate layers.

The PC architecture typically extends a multi-layer perceptron with additional prediction error
neurons and modified connection patterns. This transformation can in fact be applied to other
types of feedforward architectures, as thoroughly performed in (Millidge et al., 2020a). One of the
early works implementing PC on typical deep learning architecture is the PredNet model presented
in (Lotter et al., 2016). This work proposes a deep learning architecture where representations are
built based on the propagation of prediction error. The described model does not strictly implement
PC, as they compute the prediction error using a variable that differs from the current layer latent
state variable. Both the top-down and bottom-up weights of the architecture are learned using
BPTT. The propagation of prediction error as part of the neural dynamics only serves as an
inference process, from which learning is decorrelated. The generative model is composed of CNNs
combined with LSTMs to account for the temporal dynamics of the observed signal to model.

In this chapter, we have shown how PC transforms a feedforward generative model into an RNN
that can perform inference and learning using online and local rules. It is important to note the
difference between the recurrence involved in PC networks and the recurrence involved in neural
network architectures dealing with temporal signals. The combination of the dynamic inference
process, and the temporal processing imposed by the sequential nature of the processed data, is at
the center of the next chapter.

We conclude this section about the algorithms related to PC by a table highlighting how those
models implement some of the properties attributed to PC (table 2.1).

26

Model Error
neurons

Feedback
weights

Precision
weighting Inference

PC
(Rao and Ballard, 1999) 3 Transposed 3 3

PC
(Friston and Kiebel, 2009) 3 Transposed 3 3

GNCN
(Ororbia and Kifer, 2020) 3 Learned 3 3

PC-DIM
(Spratling, 2008)

3
(divisive) Transposed 7 3

Target propagation
(Lee et al., 2015) 7 Learned 7 7

Feedback alignment
(Lillicrap et al., 2016) 3 Random 7 7

Direct feedback alignment
(Nøkland, 2016) 3 Random 7 7

Table 2.1: Variants of the PC architecture.

27

Chapter 3

Sequence memory modeling

3.1 Introduction
In this chapter, we use the concepts of RNNs and PC introduced previously in order to formulate
a candidate solution to the problem of sequence memory learning.

Here is an outline of this chapter:

• First, section 3.2 proposes an overview of the existing ANN based methods for sequence
memory modeling.

• Then, section 3.3 presents several implementations of RNNs that we derive from the FEP.

• In section 3.4 we experiment with these models.

• Finally, section 4.4 discusses the obtained results and concludes this chapter.

3.2 Related work
We have previously explained that sequential data have two characteristic dimensions: the sequence
length, and the dimension of each item in the sequence. Models that take into account this structure
in the data as an inductive bias, should perform better than those not using this information.

For this reason, even though theoretically, any function approximation method could be used
as a sequence memory model, we focus on approaches that take the temporal nature of sequential
data into account.

Additionally, this thesis takes inspiration from the PC theory and consequently focuses on neural
network models. In this section, we review existing approaches for sequence memory modeling that
are based on ANNs.

In section 3.2.1, we describe some feedforward neural networks architectures that can be used
for sequence memory modeling. Section 3.2.2 presents some advanced RNN models that have been
proposed in the literature to tackle the problems of exploding and vanishing gradients. In section
3.2.3, we introduce the RC approach that addresses these issues differently. Finally, in section
3.2.4, we review existing RNN models taking inspiration from the PC theory.

3.2.1 Feedforward architectures
This section presents different feedforward neural network architectures that can be used to learn
sequence memories. This part is intentionally brief, the thesis work focusing instead on recurrent
architectures, that we study in depth in sections 3.2.2 and 3.2.3.

3.2.1.1 Perceptron and tabular case

The simplest neural network model that we can discuss is the one-layer perceptron. In this model,
the output variable is a linear mapping of the input variable.

In the general case, our data set for sequence learning is composed of pairs
(
c, (x1, . . . ,xT)

)
where c is an identifier of the trajectory (x1, . . . ,xT). If no embedding for c is provided (this is the

28

case in most of the work we present), c is considered to be the one-hot embedding of dimension p
with index k, where p denotes the number of trajectories in the data set, and k denotes the index
of the trajectory in the data set. This means that c is a null vector of dimension p, except for the
coefficient k that takes the value 1.

We can use the perceptron as a model of our sequence memory. The input of the network is the
one-hot embedding of the index k of the trajectory to learn, and the desired output is the trajectory
flattened into a vector of dimension T × d. Consequently, the weight matrix of the perceptron is
of dimension (T × d, p). Given a one-hot encoded input c, the network outputs the k-th column
of the weight matrix. We can see that this model amounts to learning a tabular memory of the
sequences. The weight matrix is equivalent to a table containing in each column k the value of the
trajectory.

As we can see, this model is too simple to be of any use. Adding hidden layers should improve
its generalization capability, but this still would not be a very satisfactory solution, as it does not
exploit in any way the temporal structure of the data to generate.

3.2.1.2 Convolutional neural networks

As previously explained, a sequence memory model should have an output of dimension (T, d)
where T is the sequence length, and d is the dimension of each item in the sequence. Consequently,
we are looking for models that can exploit this known structure.

Figure 3.1: 2D convolution and 1D convolution.

Convolutional Neural Networks (CNNs) form a family of feedforward neural networks in which
the connection pattern between two layers exploits the structure of the encoded variables. They
have been used mostly in the case of image processing (Krizhevsky et al., 2012; He et al., 2016),
where variables have a 3D structure, with one horizontal dimension, one vertical dimension, and
one dimension for the color channels (or more generally a feature dimension).

The exploitation of this structure is represented in figure 3.1. The first figure represents a
convolutional layer performing a 2D convolution on an input of dimension (15, 15, 3). With each
neuron in the output layer is associated a volume of dimension (11, 11, 3) from the input layer,
that we can call receptive field. The neuron’s activation is computed as the dot product between
the flattened volume and a synaptic weight vector (the model parameters), on which we apply an
activation function. This weight vector is shared across all the neurons of the output layer, the
differences in the output activations thus only coming from the differences in their receptive fields.

This type of models is interesting for our problem since it exploits the known structure of the
available data. In the right figure, we have a convolutional layer performing a 1D convolution
on an input layer of dimension (15, 3). 1D convolutions of this type have been used for sequence
processing, for instance in natural language processing (Collobert and Weston, 2008; Kalchbrenner
et al., 2014). The dimension on which the receptive field (represented horizontally) is moving is the

29

temporal dimension, while the other dimension (represented vertically) is the feature dimension.
This convolutional layer transforms the input sequence into a sequence of dimension (5, 4).

Figure 3.2: Deconvolutional neural network.

By playing with parameters such as padding, stride, and the number of output features, it is
possible to design 1D convolutional layers where the output length is greater that the input length.
These types of layers have been labeled deconvolutional or transposed convolutional layers. By
stacking several deconvolutional layers, we can obtain a neural architecture associating a sequential
output of dimension (60, 2) with an input vector of dimension p. Such an architecture is represented
in figure 3.2. We could train a sequence memory model using this architecture.

3.2.1.3 Attention mechanisms

Attention mechanisms have gained a lot of interest in recent years, in particular for sequence-to-
sequence tasks. These mechanisms are used to model the dependency between input and output
items without regard to their position in the sequences. In (Bahdanau et al., 2015), the authors
propose an RNN using an attention mechanism to align the current output prediction with preferred
parts of the input sequence.

The Transformer architecture (Vaswani et al., 2017) was introduced as an improvement on RNN
based sequence-to-sequence tasks. This model has since been very successful at machine translation
and language modeling (Devlin et al., 2018; Brown et al., 2020). The Transformer architecture
takes into account the temporal structure of the data without caring about the chronology of the
inputs or the outputs. Both sequences are considered as sets of items that can be queried thanks to
the attention mechanisms, without regard to their position in the sequence. Since this information
can still be useful, it is suggested to augment the items representations using a technique called
positional encoding.

In the Transformer architecture, the decoder uses two attention mechanisms. First, it uses
self-attention to generate a representation based on the past values of the output sequence. The
second attention mechanism uses this representation as queries to attend the encoded inputs.

For the question of sequence generation, we cannot directly use these methods because the
input c of the model is not sequential. Still, we can modify the encoder in order for it to generate
a set of vectors that can be queried by the second attention mechanism of the decoder. A simple
implementation of a sequence memory model using attention mechanisms is represented in figure
3.3. Note that this model only serves as an example, and is not supposed to represent the state of
the art in using attention mechanisms for sequence modeling.

An important drawback of these models is that they do not scale very well with increased
trajectory lengths. In RNNs, the computation cost of predicting one value x̂t+1 is constant. Here,
since the model has to perform attention on the complete past trajectory, the computation cost
for the prediction of x̂t+1 is proportional to t.

Still, the field of machine learning and particularly natural language processing has seen im-
pressive advances thanks to these techniques. However, since this is not the focus of this thesis, we
now turn away from CNNs and attention mechanisms and instead present a more in depth review

30

Figure 3.3: Example of ANN model for sequence modeling using attention mechanisms.

of RNN architectures.

3.2.2 Advanced RNN models
As we have seen in chapter 2, an important drawback for the learning of RNN parameters is the
length of the unrolled computational graph. Propagating information from an input at time t to
an output at time t + T traverses a long path in the computational graph. Learning long-range
dependencies can thus be difficult, and some approaches for RNN modeling have tried to address
this issue by using gating mechanisms.

In this line of research, Long Short-Term Memories (LSTMs) (Hochreiter and Schmidhuber,
1997) propose to structure the RNN state into a hidden state ht and a cell state ct. The cell
state allows some information to flow in time unchanged, thanks to gating mechanisms. The
model is described by the following set of equations (we recall that bias parameters are omitted
for simplicity):

it = σ(Wih · ht−1 +Wiy · yt) (3.1)
ft = σ(Wfh · ht−1 +Wfy · yt) (3.2)
ot = σ(Woh · ht−1 +Woy · yt) (3.3)
ĉt = tanh(Wch · ht−1 +Wcy · yt) (3.4)
ct = ft � ct−1 + it � ĉt (3.5)
ht = ot � tanh(ct) (3.6)

The input and forget gates, controlled by the variables it and ft, supervise the update of ct.
The output gate, controlled by the variable ot, filters the information from ct that is available for
the next time step computations. Other works such as (Greff et al., 2015) have studied the relative
impact of the different gating mechanisms of the LSTM models. Some simpler RNN models with
gating mechanisms have been proposed in the literature, such as the Gated Recurrent Unit (GRU)
(Cho et al., 2014).

The GRU model uses two gating operations: one gate filters the information from the past
hidden that can be used to predict the future hidden state, while the other controls how much
the hidden state should be updated based on this prediction. The GRU model is described by the
following equations:

31

rt = σ(Wrh · ht−1 +Wry · yt) (3.7)
ut = σ(Wuh · ht−1 +Wuy · yt) (3.8)

ĥt = tanh
(
Whh · (rt � ht−1) +Why · yt

)
(3.9)

ht = ut � ht−1 + (1− ut)� ĥt (3.10)

Finally, considering that the update gate controlled by ut seems to be the most important
(Greff et al., 2015), the simplest RNN model with gating that we consider is the Update Gate RNN
(UGRNN) (Collins et al., 2017). The UGRNN model is described by the following equations:

ut = σ(Wuh · ht−1 +Wuy · yt) (3.11)

ĥt = tanh(Whh · ht−1 +Why · yt) (3.12)

ht = ut � ht−1 + (1− ut)� ĥt (3.13)

An orthogonal way of improving RNN performances is to stack several RNN layers. In this
method, the output of the layer l is used as input for the layer l−1 at each time step. This method
is widely used and allows different layers to capture different abstraction levels or time scales of
the target sequences.

An example of this method is the Multiple Timescales RNN (MTRNN) model (Yamashita
and Tani, 2008) that stacks several TRNN layers with different time constants τ (l). Layers that
are higher in the hierarchy are associated with higher time constants, and thus exhibit slower
dynamics. The idea behind this model is that more abstract or general features of the signal might
evolve at a slower pace. We can show that the direct dependency between h(l)

t+T and h(l)
t decreases

exponentially in (1− 1
τ(l))

T . Consequently, higher values of τ (l) in the upper layers mean a better
backpropagation through time of gradients in these layers. The following equations describe an
MTRNN model composed of two layers hf and hs (for fast and slow), associated respectively with
the time constants τf and τs:

hst = (1− 1

τs
)hst−1 +

1

τs

(
Wss · tanh(hst−1) +Wsf · tanh(hft−1)

)
(3.14)

hft = (1− 1

τf
)hft−1 +

1

τs

(
Wfs · tanh(hst−1) +Wff · tanh(hft−1) +Wfy · yt

)
(3.15)

(3.16)

Closely resembling the MTRNN is the Clockwork RNN (CWRNN) model introduced in (Kout-
nik et al., 2014). The authors suggest structuring the hidden state of the RNN into different
modules processing inputs at different time-scales. Thanks to this factorization, the model can
decompose the signal into components with different paces. The main difference with the MTRNN
model lies in the fact that this architecture is not hierarchical, all modules are connected with
the input and output layers. The Structurally Constrained RNN (SCRNN) model proposed in
(Mikolov et al., 2014) can be seen as a special case of CWRNN using two modules with one of the
recurrence matrices being equal to the identity.

Stacking a large number of layers increases the length of the path between variables in the
upper layers and variables in the lower layers in the computational graph. This can lead to
another instance of vanishing gradient, where gradient flows vanish while propagating through the
hierarchy instead of time. Based on the success of gated recurrent architectures, depth gating
(Srivastava et al., 2015) has been proposed to address this issue. In (Yao et al., 2015), the authors
implement a depth gate on a stack of LSTMs. In (Collins et al., 2017), one of the models put
forward by the authors combines the use of depth and update gates (as in the UGRNN and GRU
models), and is labeled Intersection RNN (+RNN).

We have seen how to improve RNNs by building a hierarchy or using gating mechanisms. Here
we discuss another promising research direction for RNN models. Studying RNNs from a dynamical
systems point of view led us to better understand the exploding and vanishing gradient problems,
but this can also help us designing models mitigating these. In this line of research, some approaches

32

have proposed to constrain the recurrent matrix of RNN models in order to limit the vanishing or
explosion of gradients during BP. Specifically, the evolution of the gradient amplitudes during BP
depends highly on the Jacobian J ij = ∂hit+1

∂hjt
. Constraining this matrix to have unitary eigenvalue

helps preventing vanishing or exploding gradients. In particular, it has been proposed to initialize
the recurrent weights using the identity matrix (Le et al., 2015) or orthogonal matrices (Mishkin
and Matas, 2016). (Vorontsov et al., 2017) have investigated models constraining or encouraging
recurrent weight matrices to remain orthogonal, and have shown that it can have detrimental
effects on trainability. Finally, (Chang et al., 2019) proposed the Antisymmetric RNN, combining
the idea of skip connections in RNNs (Yue et al., 2018) and antisymmetric weights, that has shown
competitive performances with gated models. The Antisymmetric RNN model can be described
by the following equation:

ht = ht−1 + ε tanh
(
(Whh −W ᵀ

hh − γI) · ht−1 +Why · yt
)

(3.17)

where Whh − W ᵀ
hh is antisymmetric by construction, and comprises only dh × (dh − 1)/2

parameters to be trained.
We can make several comments regarding all the RNN models that we have presented here.

First, the described models do not generate an output. To adapt these model for sequence gener-
ation, we need to add an output layer computing a prediction xt from the network hidden state
ht:

xt =Wo · ht (3.18)

Note that in some models ht corresponds to he pre-activation value of the hidden state and that
we instead use tanh(ht) in the last equation.

Second, the models’ computations are based on a temporal input yt. In our sequence memory
modeling task, no such input is provided. To use these models, we can either consider this input
to be null, or reinject the past prediction xt−1 as input for the next step:

yt = xt−1 (3.19)

This second method is often used for sequence generation tasks, and additionally allows using the
target values of xt as input during training, a method that has been labeled as teacher forcing.

3.2.3 Reservoir computing
We have described many RNN models that were designed in order to improve the difficult temporal
assignment problem. Being able to learn the delayed dependency between inputs and outputs to an
RNN is essential for a lot of tasks. However, for the question of sequence generation, it has been
argued that if the recurrent weights are initialized in a way that ensures complex hidden state
dynamics, then training the output layer might be enough to properly approximate the target
temporal patterns.

Completely avoiding the problem of learning recurrent weights, a family of approaches has
emerged in parallel from the field of computational neurosciences in the form of Liquid State
Machines (Maass et al., 2002), and from the field of machine learning in the form of Echo State
Networks (ESN) (Jaeger, 2001). These models, later brought together under the label of Reservoir
Computing (Verstraeten et al., 2007; Lukoševičius and Jaeger, 2009), discard the difficulties of
learning recurrent weights by instead developing techniques to find relevant initializations of these
parameters.

Typically, the recurrent connections are set in order for the RNN to exhibit rich non-linear (and
sometimes self-sustained) dynamics, that are decoded by a learned readout layer. If the dynamics
of the RNN activation are complex enough (e.g. they do not converge too rapidly towards a
point attractor or limit cycle attractor), various output sequences can be decoded from those.
Training RC models then comes down to learning the weights of the readout layer, which is an
easier optimization problem that can be tackled with several algorithms. This output layer can
for instance be trained using stochastic gradient descent, without the need for BP. The FORCE
algorithm (Sussillo and Abbott, 2009) improves this learning by running an iterative estimate of
the correlation matrix of the reservoir activations.

Another interesting learning mechanism is presented in (Jaeger, 2014a; Jaeger, 2014b) under
the name of Conceptors. This method exploits the fact that the reservoir state (or hidden state)

33

dynamics triggered by an input pattern is typically bounded to a certain subspace of lower di-
mension. By identifying the subspace for each possible input pattern, it is possible to decorrelate
the training of each target trajectory by focusing learning on the readout connections that come
from the corresponding reservoir state subspace (called Conceptor). This method allows training a
sequence memory where the learning of a new pattern has limited interference with already learned
ones.

Mathematically, this method can be implemented using only online computations. The Concep-
tor C associated with some input can be defined as the matrix corresponding to a soft projection
on the subspace where the reservoir dynamics lie when stimulated with this input. The softness
of this projection is controlled by a positive parameter α called aperture. Low values of α induce
hard projections onto the subspaces, while high values of α induce Conceptor matrices close to the
identity matrix, thus not performing any projection. This matrix C can be computed using the
reservoir state correlation matrix R estimated online based on the reservoir dynamics:

C = R · (R+ α−2I)−1 (3.20)

Rt+1 =
(
1− 1

t+ 1

)
Rt +

1

t+ 1

(
ht · hᵀ

t

)
(3.21)

In a continual learning setting, for each new task, we can compute the Conceptor corresponding
to the complement of the subspace in which lie the previously seen reservoir states, as I−C. This
Conceptor is used to project the new reservoir states into a subspace orthogonal to the subspace
in which lie the previously seen reservoir states. Learning is then performed only on the synaptic
weights involving the components of this subspace. We can finally also note that the use of
Conceptors is not limited to RC, as it has been for instance used jointly with BP in (He and
Jaeger, 2018).

Because RC methods do not rely on BP of the output error, there is no neural mechanism
transporting information from the target signal to the input weights of the RNNs. To perform
learning of the input weights of reservoirs, (Pitti et al., 2017) propose to use a secondary learning
system implementing random search on the reservoir inputs. Experimentally, this random search
can converge quickly towards a local optimum but can also interfere negatively with the learning
of the readout weights.

3.2.4 Applying PC to RNN models
In the previous chapter, we have introduced the PC theory and presented the associated neural
network architectures, inference mechanisms, and learning rules.

We have seen how PC casts a feedforward generative model into an RNN with temporal dy-
namics induced by the iterative inference process. Applying this transformation to temporal gen-
erative models such as the sRNN model presented above introduces a new complexity as there is
an interference between the dynamics of the generative model and the dynamics of the inference
mechanism.

The different methods reviewed in this section are summarized in table 3.1.
In (Millidge et al., 2020a), the authors apply the PC transformation on temporal generative

models such as LSTMs, without considering this issue. All the variables in the generative models
are associated with a prediction error variable and feedback connections are added in parallel to
the whole LSTM computational graph. However, if we consider the case of a simulated agent
perceiving sensory observations in real-time, inferring past latent variables Ht−k based on current
sensory observation xt would require storing the past hidden state of neural networks. On the other
end, the inference process is not a one-shot mechanism. The iterative update of latent variables
supposes consecutive replays of the whole sequence of sensory observations {x0, · · · ,xT } until
convergence. In other words, such an application of PC on temporal generative models considers a
feedforward version of the generative model obtained by unrolling the temporal computations, and
thus decorrelates the inference time with the temporal generative model time. In the case of an
embodied agent, such an assumption might not be justified, as we expect the inference process to
happen online, continuously, while new perceptual information is acquired by the agent sensors. In
this section, we review RNN models related to the PC theory and not relying on this assumption.

(Bayer and Osendorfer, 2015) propose to extend the variational Bayes auto-encoder model from
(Kingma and Welling, 2014; Rezende et al., 2014) to temporal generative models. The generative

34

(a) STORN model.

(b) VRNN model.

(c) PVRNN model.

Figure 3.4: Models integrating variational inference as performed in VAEs to the design of RNNs.
The inference model is represented in green, while the prediction model is represented in blue. In
the second model, prediction and inference are intertwined and the synaptic connections are thus
represented in black. Red dashed arrows represent the sampling of h according to the multivariate
Gaussian of parameters µh and σ2

h. BP through this sampling operation is possible thanks to the
reparameterization trick. Note that the notations we use here differ from the ones in the original
articles.

35

model p(x|h;θ), as well as the recognition density model q(h;φ) are each implemented by an sRNN.
The recognition model performs a one-shot inference of the temporal latent random variable Ht

based on a recognition RNN hidden state and the previously observed variable xt−1. On the other
hand, BPTT is used to perform learning. This model, labeled Stochastic RNN (STORN), is very
close to the Variational Recurrent Auto-Encoder model proposed in (Fabius and Amersfoort, 2015)
and the DRAWmodel proposed in (Gregor et al., 2015). The differences between these three models
only lie in the structure of the generative model p(xt|ht). The inference and learning methods
described are exactly the same. The neural architecture described in (Bayer and Osendorfer, 2015)
is represented in figure 3.4a.

Another related model is the Variational RNN (VRNN) model proposed in (Chung et al., 2015).
In this method, the prior p(ht) of the latent variable is made dependent on the hidden state of an
RNN. The model departs from the traditional VAE as usually the prior distribution on the latent
variance is only used for learning, not during the inference process. Additionally, contrary to the
STORN model, the VRNN does not rely on a secondary RNN. They propose several versions
of this model, using either a multivariate Gaussian or a Gaussian mixture model for p(xt|ht).
The described neural architecture is represented in figure 3.4b. Note that on this figure we do
not represent the approximate posterior distribution parameters that are computed based on the
hidden state rt and the observation x∗t . Both these models (STORN and VRNN) are learned using
the same loss function combining an output prediction error and Kullback-Leibler divergence as a
measure of the distance between the prior and approximate posterior on the latent variable H.

Another model drawing a connection between VAEs and RNNs is described in (Gemici et al.,
2017). In this work, the authors present different methods to integrate VAEs into RNNs. In one of
the possible models, at each time step, an RNN prescribes a prior distribution p(ht) for the latent
variable, that is used for prediction. After observation of xt, the latent distribution is updated
based on a recognition density. This approximate posterior latent distribution is then used as
input for the recurrence computation of the RNN. Additionally, they add an external addressable
memory to the whole architecture, that we do not describe here.

A drawback of these models that has been pointed out is that the recognition density (or
approximate posterior density) q(ht) only depends on past and current observed variables x≤t.
The inference mechanism cannot account for events that are observed later to adjust its belief of
the past latent variables. To deal with this issue, several models (Fraccaro et al., 2016; Shabanian
et al., 2017; Goyal et al., 2017) have proposed to use a bidirectional RNN architecture where
the recognition density parameters at each time step depend on the recurrent step of a backward
RNN. (Girin et al., 2020) provide a recent and more complete review of models applying the VAE
principle on sequential generative models. They label this class of models as Dynamical Variational
Auto-Encoders (DVAE).

To optimize the parameters of the approximate posterior q(ht) according to future observations
x>t, (Ahmadi and Tani, 2019) propose to use the BPTT algorithm, which is more often used for
learning. The distribution q(ht) at each time step is made dependent on some parameter At that
can be optimized for each target sequence by backpropagating the gradient of the prediction error
through time. Contrary to the previously presented model that proposes to perform variational
inference through the use of a forward or backward RNN, here inference is not part of neural
dynamics but assimilated to the learning algorithm. In this article, the method is applied to an
MTRNN model, for simplicity, we represented in figure 3.4c only one layer of the architecture
described in (Ahmadi and Tani, 2019).

This inference method based on BPTT, also called Error Regression Scheme (ERS), had already
been used to infer hidden states of an MTRNN in (Ahmadi and Tani, 2017), or the parametric
bias variable of RNN models augmented with an additional inferable static variable (Ito and Tani,
2004). In ERS, we can define a time window W and a number of iterations I for the inference
process through BPTT at each time step. If we consider that the latent variable is the hidden state
of the RNN ht, then this method proposes to approximate the true posterior by regressing with
BPTT, limited to I iterations on a time window of length W , the value of ht. In the case where
W = 1, this algorithm can be performed using only information available at time step t, with no
need for future observations.

So far, we have presented models proposing different implementations of variational Bayes onto
temporal generative models, that take inspiration from the VAE architecture. All the models that
consider a temporal backward mechanism to infer past latent variables, whether it is with backward
RNNs, or with BPTT, can not perform inference online. To perform inference online, the inference

36

of the latent variable at time t has to only take into account currently available neural activations,
such as the current observation x∗t . Online inference thus supposes an alignment between the clock
of the temporal generative model and the clock of the inference process.

Some recurrent models inspired by PC actually implement online inference based on the output
prediction error. The Parallel Temporal Neural Coding Network (P-TNCN) described in (Ororbia
et al., 2020), implements PC in a fashion very similar to the GNCN model (Ororbia and Kifer,
2020) introduced in the previous chapter. The main difference is that the generative model is made
temporal by adding recurrent connections onto the latent variable layer. The minimization of VFE
also induces a learning rule for these additional recurrent weights, which are optimized in order to
decrease the error between the prior hidden state ht and its approximate posterior estimation h∗t .
In P-TNCN, it is also suggested to modify the learning rule for the feedback weights responsible for
the estimation of h∗t . The proposed rule optimizes these weights in order to minimize the increase
of the prediction error on the hidden layer, instead of using the transpose of the learning rule used
for the forward weights, as is suggested in (Rao and Ballard, 1999; Ororbia et al., 2020). In this
model, and its version using the more classical learning rule for feedback weights, the inference
and learning process can be performed online, using spatially and temporally local information.

Reinjecting the error feedback into the RNN hidden state, as is done in these models, has some
drawbacks. This can make the RNN learning difficult as small corrections can have a large impact
on the RNN dynamics if those are chaotic. Still, this error signal is necessary for learning the
recurrent weights. Learning output weights while having a large feedback is problematic because
the modification of the output weights causes delayed effects that are not taken into account
in the learning rule. This kind of observation motivated the removal of feedback connections
in the ESN model (Jaeger, 2001), and motivated the research for the FORCE algorithm that
maintains a low prediction error throughout learning (Sussillo and Abbott, 2009). We have also
verified experimentally that reducing the feedback amplitude improved learning in all RNN models
implementing this feedback mechanism. Since this feedback is still necessary in some models to
propagate the prediction error signal up into the hierarchy, we do not completely remove feedback
connections during learning.

In the deep learning literature, some recurrent architectures such as the PredNet proposed in
(Lotter et al., 2016) take inspiration from PC by building the bottom-up connection pathway upon
prediction error signals rather than observations. However, in these models, learning is always
performed using BPTT.

Figure 3.5: Venn diagram for the classification of RNN models performing variational inference.
Each ellipse represents a classification criterion. The bidirectional arrow means that the PC-RNN
models can belong to both categories depending on the learning algorithm.

37

Model Bottom-up
pathway

Online
inference

Based on
prediction error

Online
learning

PC applied to unfolded RNN
(Millidge et al., 2020a) Transposed 7 3 7

STORN
(Bayer and Osendorfer, 2015) Learned 3 7 7

VRNN
(Chung et al., 2015) Learned 3 7 7

SRNN
(Fraccaro et al., 2016) Learned 7 7 7

PVRNN
(Ahmadi and Tani, 2019) 7 7 3 7

ERS
(Ahmadi and Tani, 2017) 7 7 3 7

ERS W = 1
(Ahmadi and Tani, 2017) 7 3 3 7

P-TNCN
(Ororbia et al., 2020) Learned 3 3 3

PredNet
(Lotter et al., 2016) Learned 3 3 7

PC-RNN
with BPTT Transposed 3 3 7

PC-RNN
with PC-based learning Transposed 3 3 3

Table 3.1: RNN models implementing a form of variational inference.

Finally, the FEP literature proposes to model temporal dynamics of latent variables using the
principle of generalized coordinates. According to this idea, the latent variable H and the ob-
served variable X are augmented by variables representing their higher-order of motions H̃ =
{H,H ′,H ′′, · · · } and X̃ = {X,X ′,X ′′, · · · }. In the next section, we design several RNN models
derived from the free-energy formulation of PC, some of which implement this principle of gener-
alized coordinates. To conclude this section, we summarize the discussed approaches in the table
3.1, listing all the presented RNN models implementing a form of variational Bayes inference. We
classify the models according to four criteria. First, we note whether the models implement a
bottom-up pathway as part of the neural circuit and whether the bottom-up weights are learned or
transposed versions of the top-down weights. Second, we note whether they perform inference on-
line. Third, we note whether the inference process is based on the prediction error signal. Finally,
we note whether the learning method can also be performed online.

We can display this classification using a Venn diagram, as shown in figure 3.5. In this figure and
in table 3.1, we have also inserted models labeled PC-RNN. PC-RNN denotes the family of models
that are derived in the next section. As represented in this diagram, we position ourselves among
models able to perform online inference, using a bottom-up pathway that propagates prediction

38

errors. The PC-RNNs are voluntarily placed on the border of the "Online learning" ellipse. Indeed,
depending on the chosen learning algorithm, the models can either fall in one category or the other:
learning can be performed using BPTT, which does not validate the online learning criterion, or
using learning rules that we derive from the PC theory in the next section.

3.3 Methods
In order to build a sequence memory of temporal patterns, we want to design RNN models based
on the PC theory. In this section, we design several models labeled with the same PC-RNN
prefix, that are endowed with online inference and learning mechanisms directly minimizing VFE.
We discuss several implementation choices, such as the use of generalized coordinates, or hidden
causes layers, as well as some possible extensions of the proposed models in section 3.3.6.

We try to provide different representations of each derived model in order to have a clear
understanding of their different aspects: a graphical representation of the probabilistic generative
model, a neural network representation of the RNN, and the associated computational graph.

3.3.1 Simple recurrent model
In this section, we derive an RNN model from the equations of the FEP that we have previously in-
troduced. This model is based on a simple probabilistic generative model, and a set of assumptions
that we explain under way.

(a) (b)

Figure 3.6: Simple PC-RNN probabilistic model and neural network representation. Left: Graph-
ical representation of the generative model. Right: Neural network representation of the resulting
FE minimization process. The synaptic connections are numbered according to the order in which
we perform the corresponding computations during a single time step.

The generative model is composed of two multivariate random variables H, of dimension dh,
and X, of dimension dx. Typically, dh has an order of magnitude of 50 and in most of our
experiments, the output space is of dimension dx = 2. The generative model is represented in
figure 3.6a, and defined by the following equations:

p(h) = N (h;µh, σ
2
hIdh) (3.22)

p(x|h) = N (x; g(h), σ2
xIdx) (3.23)

The prior density p(h) and the likelihood density p(x|h) are both assumed to be multivariate
Gaussians. µh and σ2

hIdh denote the prior density mean and covariance matrix, and g(h) and
σ2
xIdx denote the likelihood density mean and covariance matrix. We assume that the covariance

matrices are proportional to the identity matrices of dimension dh and dx.

39

The function g performs a linear mapping from the variable H on which we first apply the
hyperbolic tangent function:

g(h) =Wo · tanh(h) (3.24)

where Wo is a matrix of dimension (dx, dh), corresponding to the output weights of our RNN
model. To perform variational inference, we introduce a recognition density function q(H):

q(h) = N (h;mh, vhIdh) (3.25)

This recognition density is also assumed to be Gaussian, with mean mh and variance vh. We
have already shown in section 2.2.2 that using these assumptions, we could write the VFE as:

F (x∗,mh) = E(x∗,mh) + C (3.26)

F (x∗,mh) =
1

2σ2
x

‖x∗ − g(mh)‖22 +
dx
2

log(σ2
x)

+
1

2σ2
h

‖mh − µh‖22 +
dh
2

log(σ2
h)

+ C

(3.27)

We can now derive from this expression the gradient of the VFE with regard to the recognition
density parametermh. We denote by ∂F (x∗,mh)

∂mh,i
the partial derivative with regard to the coefficient

i of mh.

∂F (x∗,mh)

∂mh,i
=− 1

σ2
x

dx∑
j=1

(
x∗j − gj(mh)

)∂gj(mh)

∂mh,i

+
1

σ2
h

(
mh,i − µh,i

) (3.28)

By injecting the definition of g into this equation, we obtain:

∂F (x∗,mh)

∂mh,i
=− 1

σ2
x

dx∑
j=1

(
x∗j − gj(mh)

)(
1− tanh2(mh,i)

)
W ij
o

+
1

σ2
h

(
mh,i − µh,i

) (3.29)

Which results in the following gradient descent update rule for mh :

mh ←mh+
α

σ2
x

(
1− tanh2(mh)

)
�
(
W ᵀ

o · εx
)

︸ ︷︷ ︸
Bottom-up

− α

σ2
h

εh︸ ︷︷ ︸
Top-down

(3.30)

In this equation, we have introduced the notations εx = x∗ − g(mh) and εh =mh − µh that
correspond to the prediction errors at different layers of the generative model. Finally, to make
this model able to generate temporal patterns, we make the prior density mean µh dependent on
the value of the recognition density mean mh:

µh = (1− 1

τ
)mh +

1

τ
Wr · tanh

(
mh

)
(3.31)

where τ andWr respectively correspond to the time constant and the recurrent weights of our
RNN. Using equations 3.30 and 3.31, we can construct a system of equations guiding the temporal
evolutions of the variables of our neural network:

40

µh,t = (1− 1

τ
)mpost

h,t−1 +
1

τ
Wr · tanh

(
mpost
h,t−1

)
(3.32)

εh,t =m
post
h,t−1 − µh,t (3.33)

mprior
h,t =mpost

h,t−1 −
α

σ2
h

εh,t (3.34)

x̂t =Wo · tanh
(
mprior
h,t

)
(3.35)

εx,t = x
∗
t − x̂t (3.36)

mpost
h,t =mprior

h,t +
α

σ2
x

(
1− tanh2(mprior

h,t)
)
�
(
W ᵀ

o · εx,t
)

(3.37)

Figure 3.7: Simple PC-RNN computational graph.

This neural network is represented in figure 3.6b. In this representation, the intermediate
variable x̂t is not represented to match the standard type of PC network, with error neurons and
representation neurons interacting at each layer.

Figure 3.7 provides a computational model for this recurrent network. We can see that the
same layer of neurons mh receives several updates during what we have defined as one time step.
This is made clearer in the computational model as we have defined two distinct variables mprior

h ,
computed based solely on top-down information from the prior density p(H), and mpost

h merging
in bottom-up information from the output layer.

By taking a closer look on the equations, we notice that this model can be simplified. Indeed,
equations 3.32, 3.33, 3.34 can be merged into:

mprior
h,t = (1− α

τσ2
h

)mpost
h,t−1 +

α

τσ2
h

Wr · tanh
(
mpost
h,t−1

)
(3.38)

This update rule is very similar to that of an sRNN. In fact, if we do not have any prediction
error on the output layer, i.e. if εx = 0, the model described by this set of equations is exactly the
TRNN model presented in section 2.1.2, with a time constant of τ ′ = τσ2

h

α .
Figure 3.8 provides a representation of the computational model with this shortcut, where the

direct connection from mpost
h,t−1 to mprior

h,t now implements equation 3.38.
The pseudo-code performing a forward pass in the simple PC-RNN model is given in algorithm

2. This algorithm has four hyperparameters: τ , σx, σh, and α. Though, we can see from the
equations that they only intervene through the two coefficients α

σ2
x
and α

τσ2
h
. Consequently, we only

consider those two coefficients when studying the influence of the model hyperparameters.
The proposed model can be separated into two distinct pathway. The generative, or top-down

pathway, is formed by equations 3.38 and 3.35. The inference, or bottom-up pathway, is formed
by equations 3.36 and 3.37.

41

Figure 3.8: Simple PC-RNN simplified computational graph.

Algorithm 2: Forward pass through the simple PC-RNN model.
Parameters: Wo,Wr, T, τ, σ

2
x, σ

2
h, α

Inputs: (x∗1, · · · ,x∗T), m
post
h,0

for 1 ≤ t ≤ T do
mprior
h,t ← (1− α

τσ2
h
)mpost

h,t−1 +
α
τσ2
h
Wr · tanh

(
mpost
h,t−1

)
;

x̂t ←Wo · tanh
(
mprior
h,t

)
;

εx,t ← x∗t − x̂t ;
mpost
h,t ←mprior

h,t + α
σ2
x

(
1− tanh2(mprior

h,t)
)
�
(
W ᵀ

o · εx,t
)
;

end

Learning in this model can be performed in two ways. First, we can simply train this model
using the BPTT algorithm. Second, as we have seen in section 2.2.3, the FEP also provides update
rules for model parameters. If we also minimize VFE by a gradient descent on the parametersWo

and Wr, we obtain the following learning rules:

Wo ←Wo +
λo
σ2
x

εx,t · tanh(mprior
h,t)ᵀ (3.39)

Wr ←Wr +
λr
τσ2

h

εh,t+1 · tanh(mpost
h,t)ᵀ (3.40)

However, we can already argue that PC-based learning is not able to achieve the same results
as BPTT. We have seen in section 2.2.3 that this learning method can only approximate the BP
algorithm if we let the inference process the time to converge. In our setting, inference is performed
on a hidden variable with temporal dynamics, and thus never converges. Additionally, to prove the
convergence, we have supposed that inference and learning were performed through the complete
computational model. Here we only consider inference and learning through the computational
model limited at one time-step, without any temporal unrolling.

After performing an hyperparameter search, we have experimentally compared the two learn-
ing methods. To perform this comparison, we have to take into account several factors. First, the
BPTT algorithm is computationally more expensive than the PC-based learning. In term of tem-
poral complexity, the BPTT needs to perform a backward run through the complete computational
model, while in PC-based learning, the updates can be computed under way when performing the
forward pass in the computational model. This suggests that a BPTT update is basically twice
as expensive as a PC-based update. Second, there are several optimization algorithm that we can
use with BPTT. To account for these two factors, we have compared the PC-based learning algo-
rithm with twice as many updates than BPTT, and only used vanilla stochastic gradient descent
for BPTT. The results, presented in figure 3.9, confirm our prediction that BPTT outperforms
PC-based learning. More details about the experimental set up for this type of comparative study
are provided in section 3.4. We present these results in advance as a reason for not providing the
derivations of the PC-based learning rules in each of the following models, although they could be
derived in a similar fashion.

In conclusion, we have seen how minimization of VFE on a simple model can lead, with some
assumptions, to a set of equations aligning with TRNNs, with additional bottom-up inference

42

Figure 3.9: Comparison between the PC-based learning algorithm and BPTT. These results were
obtained one a data set of 64 trajectories, with the following parameters: dh = 50, do = 2,
α
σ2
x
= 0.001, α

τσ2
h
= 0.1,λrσ2

x
= 3 and λo

τσ2
h
= 2. The represented learning curves correspond to an

average computed over 5 random seeds.

connections. We have also seen that although this method also dictates update rules for model
parameters, it is preferable to use the BPTT algorithm for learning.

This model is very similar to the model presented in (Ororbia et al., 2020). The main difference
lies in the fact that in our model, the weights of the feedback connections are not learned and
directly depend on the weights of the feedforward connections. These weights should be better
suited for inference, as this directly implements gradient descent on the prediction error.

To derive this model, we have used the "trick" of making µh dependent on the past value of
mh. Without this dependency, the resulting model would correspond to a one-layer feedforward
network augmented with feedback connections. This type of model would not be able to properly
predict a temporal signal x∗t . In the FEP literature however, dynamics are brought via the notion
of generalized coordinates, we try in the next section to derive an RNN model from this principle.

3.3.2 Using first-order generalized coordinates
Another way of implementing a dynamical generative model is to have a multivariate random
variable responsible for each order of motion (velocity, acceleration, jerk, etc). In our case, we
limit ourselves to using a random variable for the the first-order derivative of the hidden state,
that we call H ′. The corresponding probabilistic model is represented in figure 3.10a.

The generative model is given by the following set of equations:

p(h) = N (h;µh, σ
2
hIdh) (3.41)

p(h′|h) = N (h′;f(h), σ2
h′Idh) (3.42)

p(x|h) = N (x; g(h), σ2
xIdx) (3.43)

In comparison with the previous model, we have added the Gaussian density p(h′|h) of mean
f(h) and variance σ2

h′ . The functions f and g are defined as follows:

f(h) =
1

τ

(
Wr · tanh(h)− h

)
(3.44)

g(h) =Wo · tanh(h) (3.45)

To perform variational inference, we introduce the recognition density q(H,H ′):

43

(a) (b)

Figure 3.10: PC-RNN with generalized coordinates probabilistic model and neural network rep-
resentation. Left: Graphical representation of the generative model. Right: Neural network
representation of the resulting FE minimization process. The synaptic connections are numbered
according to the order in which we perform the corresponding computations during a single time
step.

q(h,h′) = q(h)q(h′) (3.46)
q(h) = N (h;mh, vhIdh) (3.47)
q(h′) = N (h′;mh′ , vh′Idh) (3.48)

H and H ′ are assumed to be independent according to this recognition density, which thus
factors into two marginal density functions q(H) and q(H ′). Both marginal distributions are
assumed to be Gaussian, respectively with means mh and mh′ , and variances vh and vh′ . We can
write the VFE as:

F (x∗,mh,mh′) = E(x∗,mh,mh′) + C (3.49)

F (x∗,mh,mh′) =
1

2σ2
x

‖x∗ − g(mh)‖22 +
dx
2

log(σ2
x)

+
1

2σ2
h

‖mh − µh‖22 +
dh
2

log(σ2
h)

+
1

2σ2
h′
‖mh′ − f(mh)‖22 +

dh
2

log(σ2
h′)

+ C

(3.50)

We can now derive from this expression the gradient of the VFE with regard to the recognition
density parameters mh and mh′ . We start with mh′ and denote by ∂F (x∗,mh,mh′)

∂mh′,i
the partial

derivative with regard to the coefficient i of mh′ .

∂F (x∗,mh,mh′)

∂mh′,i
=

1

σ2
h′

(
mh′,i − fi(mh)

)
(3.51)

where fi(mh) denotes the i-th component of f(mh).
This equation is quite simple, and basically states that minimization of the free-energy should

44

pull mh′ towards the prediction f(mh). This leads to the following update rule for mh′ :

mh′ ←mh′ −
α

σ2
h′

(
mh′ −

1

τ

(
Wr · tanh(mh)−mh

))
︸ ︷︷ ︸

Top-down

(3.52)

We follow-up by the gradient computation with regard to the i-th coefficient of mh:

∂F (x∗,mh,mh′)

∂mh,i
=− 1

σ2
x

dx∑
j=1

(
x∗j − gj(mh)

)∂gj(mh)

∂mh,i

+
1

σ2
h

(
mh,i − µh,i

)
+

1

σ2
h′

dh∑
j=1

(
mh′,j − fj(mh)

)∂fj(mh)

∂mh,i

(3.53)

By injecting the definitions of f and g into this equation, we obtain:

∂F (x∗,mh,mh′)

∂mh,i
=− 1

σ2
x

dx∑
j=1

(
x∗j − gj(mh)

)(
1− tanh2(mh,i)

)
W ij
o

+
1

σ2
h

(
mh,i − µh,i

)
+

1

τσ2
h′

dh∑
j=1

(
mh′,j − fj(mh)

)(
W ji
r

(
1− tanh2(mh,i)

)
− Iijdh

)
(3.54)

Which results in the following update rule for mh :

mh ←mh+
α

σ2
x

(
1− tanh2(mh)

)
�
(
W ᵀ

o · εx
)

︸ ︷︷ ︸
Bottom-up from X

− α

σ2
h

εh︸ ︷︷ ︸
Top-down

+
α

τσ2
h′

((
1− tanh2(mh)

)
�W ᵀ

r − Idh
)
· εh′︸ ︷︷ ︸

Bottom-up from H′

+mh′︸ ︷︷ ︸
Velocity

(3.55)

The first added term in this update rule comes from the output layer, similarly to the previous
model. This term pulls mh towards a value that decreases the prediction error εx.

The second added term corresponds to the minimization of the discrepancy between the prior
density mean µh and the recognition density mean mh. It pulls mh towards µh. In this model,
we find that this term is of little interest. To remove it, we can simply consider that σ2

h is large
enough for this term to become negligible. Intuitively, this corresponds to having a very flat prior
distribution on H, thus not impacting much when computing the VFE. In our implementation of
this model, we overlook this term.

The third added term is probably the least intuitive. This term comes from the h′ layer, and
pulls mh towards a value that decreases the prediction error εh′ .

Finally, the last term of this update rule,mh′ , comes from the definition ofH ′ as the first-order
derivative of H. The dynamics of mh are guided both by the gradient descent on VFE and this
first-order derivative.

From equations 3.52 and 3.55, we can construct a set of equations guiding the temporal evolution
of the variables of our neural network:

45

m̂h′,t =
1

τ

(
Wr · tanh(mpost

h,t−1)−m
post
h,t−1

)
(3.56)

εh′,t =mh′,t−1 − m̂h′,t (3.57)

mh′,t =mh′,t−1 −
α

σ2
h′
εh′,t (3.58)

mprior
h,t =mpost

h,t−1 +mh′,t +
α

τσ2
h′

((
1− tanh2(mpost

h,t−1)
)
�W ᵀ

r − Idh
)
· εh′,t (3.59)

x̂t =Wo · tanh(mprior
h,t) (3.60)

εx,t = x
∗
t − x̂t (3.61)

mpost
h,t =mprior

h,t +
α

σ2
x

(
1− tanh2(mprior

h,t)
)
�
(
W ᵀ

o · εx,t
)

(3.62)

This neural network is represented in figure 3.10b. In this representation, the intermediate
variables x̂t and m̂h,t are not represented to match the standard type of PC network, with error
neurons and representation neurons interacting at each layer.

Figure 3.11: PC-RNN with generalized coordinates computational graph. We represent in red the
variables added by the use of generalized coordinates.

Figure 3.11 provides a clearer computational model for this recurrent network. This network
is quite intricate and the influence of the additional layer maintaining through time an estimation
of the velocity of the hidden states, is not clear.

One observation we can make is that this model seems to relate to the former model under
some conditions. Indeed, if we remove the last term of equation 3.59, and assume that α

σ2
h′

= 1,
we can merge equations 3.56, 3.57, 3.58 and 3.59 into:

mprior
h,t = (1− 1

τ
)mpost

h,t−1 +
1

τ
Wr · tanh(mpost

h,t−1) (3.63)

Without these assumptions, the complete model performs some additional computations. We
could basically describe these computations as follows. First, the model maintains through time an
estimation of the velocity of the hidden layer. At each time step, this estimation is pulled towards
the prediction m̂h′,t. On the other hand, the discrepancy between this prediction and the current
value of the velocity acts as a prediction error that the hidden layer tries to minimize through
feedback connections. We studied the effect of this precise inference mechanism, and our results
indicate that removing it does not decrease the ability of the model to encode a large number of
patterns, while improving its computational speed.

The pseudo-code performing a forward pass in the PC-RNN model with generalized coordinates
is given in algorithm 3.

46

Algorithm 3: Forward pass through the PC-RNN model with generalized coordinates.
Parameters: Wo,Wr, T, τ, σ

2
x, σ

2
h′ , α

Inputs: (x∗1, · · · ,x∗T), m
post
h,0 , mh′,0

for 1 ≤ t ≤ T do
m̂h′,t ← 1

τ

(
Wr · tanh(mpost

h,t−1)−m
post
h,t−1

)
;

εh′,t ←mh′,t−1 − m̂h′,t ;
mh′,t ←mh′,t−1 − α

σ2
h′
εh′,t ;

mprior
h,t ←mpost

h,t−1 +mh′,t +
α

τσ2
h′

((
1− tanh2(mpost

h,t−1)
)
�W ᵀ

r − Idh
)
· εh′,t ;

x̂t ←Wo · tanh
(
mprior
h,t

)
;

εx,t ← x∗t − x̂t ;
mpost
h,t ←mprior

h,t + α
σ2
x

(
1− tanh2(mprior

h,t)
)
�
(
W ᵀ

o · εx,t
)
;

end

In these two sections, we have derived RNN models according to the FEP. Contrary to sRNNs,
these models are capable of performing online inference of their hidden state. However, they are
not able to infer their initial hidden state based on the complete trajectory. As explained in the
introduction of this chapter, being able to infer the cause of a trajectory would be an interesting
feature.

In the next section, we build a model that tries to include such considerations into its design.

3.3.3 Simple recurrent model with hidden causes
The problem with the previous models is that they only perform inference on a dynamic variable
H. This variational inference mechanism allows adapting the estimation of H at each time step,
based on the prediction error on the output level. But since H is subject to temporal dynamics
other than that caused by the variational inference mechanism, it is impossible to infer the initial
value of H. This initial value can be considered as the cause of the trajectory, as it can condition
the whole generative process.

(a) (b)

Figure 3.12: PC-RNN with hidden causes probabilistic model and neural network representation.
Left: Graphical representation of the generative model. Right: Neural network representation of
the resulting FE minimization process. The synaptic connections are numbered according to the
order in which we perform the corresponding computations during a single time step.

To design an RNN model with causes that can be inferred dynamically, we add a new multivari-
ate random variable influencing the temporal dynamics of H. To align with the FEP literature,

47

we name this variable hidden causes, and denote it as C. The corresponding probabilistic model
is represented in figure 3.12a. It is described by the following set of equations:

p(c) = N (c;µc, σ
2
c Idc) (3.64)

p(h|c) = N (h;f(c,hpast), σ
2
hIdh) (3.65)

p(x|h) = N (x; g(h), σ2
xIdx) (3.66)

Similarly to the first presented model, we use a "trick" to enforce temporal dynamics onto the
variable H. While in the first model, the future value of H only depended on its past value, here
it also depends on the hidden causes variable C. To perform variational inference, we introduce
the recognition density function q(H,C):

q(h, c) = q(h)q(c) (3.67)
q(h) = N (h;mh, vhIdh) (3.68)
q(c) = N (c;mc, vcIdc) (3.69)

H and C are assumed to be independent according to this recognition density, which thus factors
into two marginal density functions q(H) and q(C). Both marginal distributions are assumed to
be Gaussian, respectively with means mh and mc, and variances vh and vc. We can write the
VFE as:

F (x∗,mh,mc) = E(x∗,mh,mc) + C (3.70)

F (x∗,mh,mc) =
1

2σ2
x

‖x∗ − g(mh)‖22 +
dx
2

log(σ2
x)

+
1

2σ2
h

‖mh − f(mc,hpast)‖22 +
dh
2

log(σ2
h)

+
1

2σ2
c

‖mc − µc‖22 +
dc
2

log(σ2
c)

+ C

(3.71)

We can derive from this expression the gradient of the VFE with regard to the recognition
distribution parameters mh and mc:

∂F (x∗,mh,mc)

∂mh,i
=− 1

σ2
x

dx∑
j=1

(
x∗j − gj(mh)

)∂gj(mh)

∂mh,i

+
1

σ2
h

(
mh,i − fi(mc,hpast)

) (3.72)

∂F (x∗,mh,mc)

∂mc,i
=− 1

σ2
h

dh∑
j=1

(
mh,j − fj(mc,hpast)

)∂fj(mc,hpast)

∂mc,i

+
1

σ2
c

(mc,i − µc,i)

(3.73)

The second term of this last equation pulls mc towards the prior distribution mean µc. If we
consider this prior to be of very low precision, i.e. very high variance, this term becomes negligible
and does not affect the rest of the computations. In the model presented here, we consider that this
prior distribution on C is of little interest and thus we omit this term in the following derivations.
In chapter 5, we study ways to exploit this prior distribution for memory retrieval.

Removing this term, and using the same definition for g (equation 3.45), we can obtain the

48

following update rules for mh and mc:

mh ←mh+
α

σ2
x

(
1− tanh2(mh)

)
�
(
W ᵀ

o · εx
)

︸ ︷︷ ︸
Bottom-up

− α

σ2
h

(
mh − f(mc,mh)

)
︸ ︷︷ ︸

Top-down

(3.74)

mc ←mc+
α

σ2
h

(
mh − f(mc,mh)

)
· ∇mc

f(mc,mh)︸ ︷︷ ︸
Bottom-up

(3.75)

These two update rules depend on the function f that we still have not defined. We consider
two possible implementations. The first possibility is to use the additional variable C as an additive
influence on the temporal dynamics of H, as described by this equation:

fadd(mc,mh) = (1− 1

τ
)mh +

1

τ

(
Wr · tanh(mh) +Wc ·mc

)
(3.76)

In this implementation, the termWc ·mc can be seen as an additive bias in the recurrent update
of the RNN. The matrix Wc of dimension (dh, dc) can be seen as a basis of possible biases, and
the hidden causes mc as mixing coefficient to select a bias in this vector space. Reproducing this
idea on the recurrent weightsWr led us to the second implementation, described by the equation:

fmult(mc,mh) = (1− 1

τ
)mh +

1

τ

(
(WR ·mc) · tanh(mh)

)
(3.77)

where WR denotes a tensor of dimension (dh, dh, dc) that can be seen as a basis of size dc of
possible recurrent weights. Again, the hidden causes mc act as mixing coefficient to select the
recurrent weights of the model. The idea of conditioning the weight matrix with an external input
was first introduced with the Multiplicative RNN model (Sutskever et al., 2011), where it was
combined with hessian free optimization.

To avoid scaling issues when dealing with three-way tensors, it is proposed in (Taylor and Hin-
ton, 2009) to factor it into three matrices, such that for all i, j, k, W ijk

R =
∑
l<df

W il
p ·W

jl
f ·W kl

c .
The model can scale better to large hidden state and hidden causes dimensions with this factor-
ization, since the factor dimension df can be adjusted to control the number of model parameters.
In our experiments, we always use df = dh/2.

Figure 3.13: PC-RNN with hidden causes computational graph. We represent in blue the variables
added by the use of hidden causes.

Both implementations have the same neural network representation, displayed in figure 3.12b.
Note that in this figure the connection from mh to εh is annotated twice. This is because we

49

compute the variable εh twice, based on two different versions of the variable mh. This is made
clearer with the full computational model provided in figure 3.13. Intuitively, updating the value
of εh under way provides a better error signal for the inference of C (i.e. the update of mc), since
this new value incorporates information from the bottom-up signal originating from the output
layer.

Figure 3.14: PC-RNN with hidden causes simplified computational graph. We represent in blue
the variables added by the use of hidden causes.

We can also operate the same simplification on the computational graph that we have used
on the first model. By merging some computations into a single update, we obtain the simplified
computational graph represented in figure 3.14. On this figure, we have also rearranged the position
of some of the variables to highlight the parallelism of the inference processes. The prediction error
on the output layer εx is used to adjust the hidden states belief mh, in the same way that the
prediction error on the hidden states εh is used to adjust the hidden causes belief mc.

The additive hidden causes computational model can be described with the following set of
equations:

mprior
h,t = (1− α

τσ2
h

)mpost
h,t−1 +

α

τσ2
h

(
Wr · tanh(mpost

h,t−1) +Wc ·mc,t−1
)

(3.78)

x̂t =Wo · tanh(mprior
h,t) (3.79)

εx,t = x
∗
t − x̂t (3.80)

mpost
h,t =mprior

h,t +
α

σ2
x

(
1− tanh2(mprior

h,t)
)
�
(
W ᵀ

o · εx,t
)

(3.81)

εh,t =m
post
h,t −m

prior
h,t (3.82)

mc,t =mc,t−1 +
α

τσ2
h

W ᵀ
c · εh,t (3.83)

The multiplicative hidden causes model is described by the same equations, except for equations
3.78 and 3.83 that are respectively replaced by:

mprior
h,t = (1− α

τσ2
h

)mpost
h,t−1 +

α

τσ2
h

W ᵀ
f ·
((
Wp · tanh(mpost

h,t−1)
)
� (Wc ·mc,t−1)

)
(3.84)

mc,t =mc,t−1 +
α

τσ2
h

((
Wp · tanh(mpost

h,t−1)
)
�Wc

)ᵀ
·Wf · εh,t (3.85)

The pseudo-code performing a forward pass in the PC-RNN model with additive hidden causes
is given in algorithm 4. It can be easily adapted for the multiplicative case.

The main interest of these two models is that the random variable C, that causally affects the
complete trajectory, can be inferred dynamically. This feature can be exploited in several ways:

50

Algorithm 4: Forward pass through the PC-RNN model with additive hidden causes.
Parameters: Wo,Wr,Wc, T, τ, σ

2
x, σ

2
h, α

Inputs: (x∗1, · · · ,x∗T), m
post
h,0 , mc,0

for 1 ≤ t ≤ T do
mprior
h,t ← (1− α

τσ2
h
)mpost

h,t−1 +
α
τσ2
h

(
Wr · tanh(mpost

h,t−1) +Wc ·mc,t−1
)
;

x̂t ←Wo · tanh
(
mprior
h,t

)
;

εx,t ← x∗t − x̂t ;
mpost
h,t ←mprior

h,t + α
σ2
x

(
1− tanh2(mprior

h,t)
)
�
(
W ᵀ

o · εx,t
)
;

εh,t ←mpost
h,t −m

prior
h,t ;

mc,t ←mc,t−1 +
α
τσ2
h
W ᵀ

c · εh,t ;
end

• First, our RNN can act both as a generative model (decoder) and as a representation model
(encoder), starting from a random estimation of the hidden causes mc,0, and inferring a
value of C that better matches a target trajectory. The input becomes (x∗1, . . . ,x∗T), and the
output becomes mc,T , which amounts to an inversion of the sequence memory function f .

• Second, this reversibility can be interesting in the context of lifelong learning. When con-
fronted with new sequence patterns to learn, this system might be able to infer suitable
hidden causes to model those patterns, without requiring any modification to the model pa-
rameters. Therefore, this could help to avoid the problem of catastrophic forgetting. This
question is explored in the experimental section of this chapter.

• Finally, this reversibility can be interesting for the problem of memory retrieval, aiming to
retrieve a learned pattern from a noisy or incomplete version of this pattern. Based on a
distorted version of one of the learned trajectory patterns, the inference of C might provide
appropriate values for the generation of the real pattern. This question is developed in
chapter 5.

We can note that the latent variable that we call hidden causes is very similar to the notion of
parametric bias in RNNs as presented in (Tani and Ito, 2003).

In some of the future experiments use learning rules derived from PC for these two models.
The learning rule for the output weights Wo are the same as the ones for the first RNN model we
proposed:

Wo ←Wo +
λo
σ2
x

εx,t · tanh(mprior
h,t)ᵀ (3.86)

where λo is the learning rate associated with the weight matrixWo. This rule locally minimizes
VFE by updating the model parameters in a direction that minimize the local prediction error εx.
We can apply the same method to derive the learning rules on the weights Wr and Wc in the
additive model:

Wr ←Wr +
λr
τσ2

h

εh,t+1 · tanh(mpost
h,t)ᵀ (3.87)

Wc ←Wc +
λc
τσ2

h

εh,t+1 ·mᵀ
c,t (3.88)

where λr and λc are the learning rates associated with the weight matricesWr andWc. For the
multiplicative model, the local gradient descent derivations are a bit more complex, and provide
the following learning rules for the Wp, Wf and Wc:

51

Wp ←Wp +
λp
τσ2

h

tanh(mpost
h,t) ·

(
(Wc ·mc,t)� (Wf · εh,t+1)

)ᵀ (3.89)

Wf ←Wf +
λf
τσ2

h

εh,t+1 ·
((
Wc ·mc,t

)
�
(
Wp · tanh(mpost

h,t)
))ᵀ

(3.90)

Wc ←Wc +
λc
τσ2

h

mc,t ·
((
Wp · tanh(mpost

h,t)
)
�
(
Wf · εh,t+1

))ᵀ
(3.91)

where λp and λf are the learning rates associated with the weight matrices Wp and Wf . For
each of our experimental set up, we specify whether learning is performed using BPTT or using
these learning rules.

3.3.4 Combining first-order generalized coordinates and hidden causes
Motivated by the results we obtained with the first-order generalized coordinates model, and with
the hidden causes model, we try in this section to combine both ideas.

The model we are going to propose here is not strictly aligned with the FEP, it is an attempt
to merge in an efficient way the concepts of first-order generalized coordinates and hidden causes.

As we have seen in the three past models we have designed, integrating recurrent dynamics
into the FEP can be quite tricky. In the first proposed model, and in the hidden causes model,
we have hidden the recurrence in the dependency of the prior density mean µh with regard to the
past recognition mean mh. This dependency is not reflected in the probabilistic model, and thus
no inference of the past recognition mean with regard to the current output prediction error is
considered.

Resorting to generalized coordinates might seem like a proper solution, but in the inference
process we ignore the fact that H directly depends on H ′. We can infer H from H ′ but cannot
infer H ′ from H. Still, in a situation where the prediction x differs from the observation (or
target) x∗, we might want to adjust the velocity of the hidden state in the same direction than the
adjustment of the hidden state. On the other hand, the inference from H ′ to H, that we obtain
according to the FEP generative model, does not seem intuitive and experimentally does not really
impact the ability of the model to encode a large number of trajectories.

Figure 3.15: Different probabilistic models with generalized coordinates. The black arrows rep-
resent the probabilistic dependencies. The dashed arrows represent the dependencies that are
ignored for inference through free-energy minimization. The red arrows represent the inference
process based on the output prediction error.

For these reasons, in this section, we instead consider the probabilistic model represented on
the right side of figure 3.15. In this model, we have hidden the dependency from H to H ′, and
instead kept the dependency from H ′ to H. The graph represented on the left corresponds to the
probabilistic model typically prescribed by the FEP, see for instance (Buckley et al., 2017). With
this model, there is no inference from H to H ′, which makes it difficult to adapt H ′ and in turn
C based on a prediction error on the output layer.

52

Our probabilistic model is described by the following set of equations:

p(c) = N (c;µc, σ
2
c Idc) (3.92)

p(h′|c) = N (h′;f(c,hpast), σ
2
h′Idh) (3.93)

p(h|h′) = N (h;h′ + hpast, σ
2
hIdh) (3.94)

p(x|h) = N (x; g(h), σ2
xIdx) (3.95)

We introduce the recognition density q:

q(h,h′, c) = q(h)q(h′)q(c) (3.96)
q(h) = N (h;mh, vhIdh) (3.97)
q(h′) = N (h′;mh′ , vh′Idh) (3.98)
q(c) = N (c;mc, vcIdc) (3.99)

All variables are assumed to be independent according to the recognition density, which thus
factors into three marginal density functions q(H), q(H ′) and q(C). These marginal densities are
assumed to be Gaussian with respective means mh, mh′ and mc, and respective variances vh, vh′
and vc. We can write the VFE as:

F (x∗,mh,mh′ ,mc) = E(x∗,mh,mh′ ,mc) + C (3.100)

F (x∗,mh,mh′ ,mc) =
1

2σ2
x

‖x∗ − g(mh)‖22 +
dx
2

log(σ2
x)

+
1

2σ2
h

‖mh − (mh′ + hpast)‖22 +
dh
2

log(σ2
h)

+
1

2σ2
h′
‖mh′ − f(mc,hpast)‖22 +

dh
2

log(σ2
h′)

+
1

2σ2
c

‖mc − µc‖22 +
dc
2

log(σ2
c)

+ C

(3.101)

We can derive from this expression the gradient of the VFE with regard to the recognition
density parameters mh, m′h and mc:

∂F (x∗,mh,mh′ ,mc)

∂mh,i
=− 1

σ2
x

dx∑
j=1

(
x∗j − gj(mh)

)∂gj(mh)

∂mh,i

+
1

σ2
h

(
mh,i − (mh′,i + hpast,i)

) (3.102)

∂F (x∗,mh,mh′ ,mc)

∂mh′,i
=− 1

σ2
h

(
mh,i − (mh′,i + hpast,i)

)
+

1

σ2
h′

(
mh′,i − fi(mc,hpast)

) (3.103)

∂F (x∗,mh,mh′ ,mc)

∂mc,i
=− 1

σ2
h′

dh∑
j=1

(
mh′,j − fj(mc,hpast)

)∂fj(mc,hpast)

∂mc,i

+
1

σ2
c

(mc,i − µc,i)

(3.104)

Again, we do not consider any prior distribution on C, which amounts to having a very large
σc. We can thus remove the last term in the gradient computation with regard to mc. Reusing

53

the previous definition of g, we obtain the following update rules for mh, mh′ and mc:

mh ←mh+
α

σ2
x

(
1− tanh2(mh)

)
�
(
W ᵀ

o εx
)

︸ ︷︷ ︸
Bottom-up

+
α

σ2
h

mh′︸ ︷︷ ︸
Top-down

(3.105)

mh′ ←mh′ +
α

σ2
h

εh︸ ︷︷ ︸
Bottom-up

− α

σ2
h′

(
mh′ − f(mc,mh)

)
︸ ︷︷ ︸

Top-down

(3.106)

mc ←mc+
α

σ′2h
εh′ · ∇mcf(mc,mh)︸ ︷︷ ︸

Bottom-up

(3.107)

Similarly to the last proposed model, the function f can be implemented in an additive or in
a multiplicative fashion:

fadd(mc,mh) =
1

τ

(
Wr · tanh(mh) +Wc ·mc −mh

)
(3.108)

fmult(mc,mh) =
1

τ

(
(WR ·mc) · tanh(mh)−mh

)
(3.109)

Figure 3.16: PC-RNN with hidden causes and generalized coordinates computational graph. We
represent in red the variables added by the use of generalized coordinates, and in blue the variables
added by the use of hidden causes.

We apply to the tensor WR the same factorization that we have introduced previously. Both
models share similar computational graphs, that can be represented as the graph in figure 3.16.
The additive model is described by the following set of equations:

54

mprior
h′,t = (1− α

σ2
h′
)mpost

h′,t−1 +
α

τσ2
h′

(
Wr · tanh(mpost

h,t−1) +Wc ·mc,t−1 −mpost
h,t−1

)
(3.110)

mprior
h,t =mpost

h,t−1 +m
prior
h′,t (3.111)

x̂t =Wo · tanh(mprior
h,t) (3.112)

εx = x∗t − x̂t (3.113)

mpost
h,t =mprior

h,t +
α

σ2
x

(
1− tanh2(mprior

h,t)
)
�
(
W ᵀ

o · εx,t
)

(3.114)

εh,t =m
post
h,t −m

prior
h,t (3.115)

mpost
h′,t =mprior

h′,t +
α

σ2
h

εh,t (3.116)

εh′,t =m
post
h′,t −m

prior
h′,t (3.117)

mc,t =mc,t−1 +
α

τσ2
h′
W ᵀ

c · εh′,t (3.118)

The multiplicative hidden causes model is described by the same equations, except for equations
3.110 and 3.118 that are respectively replaced by:

mprior
h′,t = (1− α

σ2
h′
)mpost

h′,t−1 +
α

τσ2
h′
W ᵀ

f ·
((
Wp · tanh(mpost

h,t−1)
)
� (Wc ·mc,t−1)−mpost

h,t−1

)
(3.119)

mc,t =mc,t−1 +
α

τσ2
h′

((
Wp · tanh(mpost

h,t−1)
)
�Wc

)ᵀ
·Wf · εh′,t (3.120)

The pseudo-code performing a forward pass in the PC-RNN model with additive hidden causes
and generalized coordinates is given in algorithm 5. It can be easily adapted for the multiplicative
case.

Algorithm 5: Forward pass through the PC-RNN model with additive hidden causes and
generalized coordinates.
Parameters: Wo,Wr,Wc, T, τ, σ

2
x, σ

2
h, α

Inputs: (x∗1, · · · ,x∗T), m
post
h,0 , mc,0

for 1 ≤ t ≤ T do
mprior
h′,t ← (1− α

σ2
h′
)mpost

h′,t−1 +
α

τσ2
h′

(
Wr · tanh(mpost

h,t−1) +Wc ·mc,t−1 −mpost
h,t−1

)
;

mprior
h,t ←mpost

h,t−1 +m
prior
h′,t ;

x̂t ←Wo · tanh
(
mprior
h,t

)
;

εx,t ← x∗t − x̂t ;
mpost
h,t ←mprior

h,t + α
σ2
x

(
1− tanh2(mprior

h,t)
)
�
(
W ᵀ

o · εx,t
)
;

εh,t ←mpost
h,t −m

prior
h,t ;

mpost
h′,t ←mprior

h′,t + α
σ2
h
εh,t ;

εh′,t ←mpost
h′,t −m

prior
h′,t ;

mc,t ←mc,t−1 +
α

τσ2
h′
W ᵀ

c · εh′,t ;
end

To derive this model we have modified the usual generative model considered in the FEP litera-
ture where variables representing the higher-order of motions depend on the variables representing
the lower-order of motions. This change allows an inference process from the output layer towards
H ′ and C, which would not be possible otherwise. The computational model seems more intu-
itive, with the different layers interacting through top-down prediction, and bottom-up inference
connections. We can note that in the FEP literature, the model also predicts the velocity of the
observed variable, and the velocity prediction error can directly be used to inferH ′. Consequently,
the inference problem we have raised in this section is not per se an issue brought by the FEP. It

55

only appears here because we disregarded the possibility of predicting the velocity of the observed
variable in our probabilistic model.

Still, the modification we have brought consists in ignoring the dependency from H to H ′
and instead considering the dependency from H ′ to H in the probabilistic model. We could
also imagine a model where both dependencies are taken into account, and consequently, the two
inference mechanisms from H ′ to H, and from H to H ′ are implemented. However, since our
experiments suggest that the inference process from H ′ to H does not impact much the model,
we have not investigated further in this direction.

About the depth of the order of motions that we model, we also limited ourselves to exploring
only models with velocity H ′. The model we present here could be modified to account for
acceleration H ′′, jerk H(3), etc.

3.3.5 Summary of the proposed models
Here we present a short summary of the different models we have derived from the FEP.

The first proposed model only comprises a hidden state variable and an output variable, it is
capable of performing inference of the hidden state based on a prediction error on the output level.
We label this model PC-RNN-V for Vanilla Predictive Coding-based RNN.

The second model incorporates an additional variables which is the velocity of the hidden states.
It is still capable of performing inference of the hidden state based on the prediction error on the
output level, but cannot infer the velocity of the hidden state. We label this model PC-RNN-GC
for Predictive Coding-based RNN with Generalized Coordinates.

The third and fourth models incorporate hidden causes as a variable influencing the dynamics
of the hidden states. They are capable of propagating prediction error to infer both hidden states
and hidden causes. We label these two models PC-RNN-HC-A and PC-RNN-HC-M for Predictive
Coding-based RNN with Hidden Causes, Additive or Multiplicative.

Finally, the fifth and sixth models use both first-order generalized coordinates and hidden
causes. They are capable of propagating prediction error to infer hidden states, their velocity, as
well as hidden causes. We label these two models PC-RNN-GC-HC-A and PC-RNN-GC-HC-M
For Predictive Coding-based RNN with Generalized Coordinates and Hidden Causes, Additive or
Multiplicative.

We summarize some of the properties of these models in the following table:

Model Generalized
coordinates

Hidden
causes

Inferable
variables Hyperparameters

PC-RNN-V 7 7 H τh, αx

PC-RNN-GC 3 7 H τh′ , αx, αh′

PC-RNN-HC-A/M 7 3 H, C τh, αx, αh

PC-RNN-GC-HC-A/M 3 3 H,H ′,C τh′ , αx, αh, αh′

Table 3.2: Summary of the proposed RNN models inspired by PC.

The hyperparameters τh, τh′ , αx, αh, αh′ are all obtained from the variables τ, α, σx, σh, σh′ as:

τh =
τσ2

h

α
(3.121)

τh′ =
τσ2

h′

α
(3.122)

αx =
α

σ2
x

(3.123)

αh =
α

τσ2
h

(3.124)

αh′ =
α

τσ2
h′

(3.125)

These parameters are interdependent, but only because we have assumed that the rate α should

56

be the same for all the updates. If we relax this assumption, we obtain parameters that can be
optimized independently.

In the last section we classified RNN models for variational inference according to several cri-
teria. All the PC-RNN models derived in this section can perform online inference based on a
prediction error signal, using a bottom-up pathway that is part of the neural architecture. Addi-
tionally, they either can be trained with BPTT, or with an online learning algorithm that does not
require knowledge of future observations.

3.3.6 Possible extensions
3.3.6.1 Estimation of generation density precision

So far we have discussed the optimization of the VFE with regard to the recognition density
parameters (mh, etc), and with regard to the generative model parameters (Wo, etc). The first
minimization process we call inference, it corresponds to the estimation of the hidden variables
of the probabilistic model. The second minimization process we call learning, it corresponds to
the estimation of the generative model parameters, and is suggested to happen at a slower pace.
Another possibility is to optimize the generation density precision parameters:

px,i =
1

σ2
x,i

(3.126)

ph,i =
1

σ2
h,i

(3.127)

In these equations, we have relaxed the assumption that the covariance matrices of the gener-
ative model were proportional to the identity matrix. Instead, we assume that they are diagonal
matrices filled with the coefficients (σ2

x,1, . . . , σ
2
x,dx

) and (σ2
h,1, . . . , σ

2
h,dh

). Since the multiplication
operation is more likely to be implemented by brain structures using synaptic gain, it has been
porposed to use precisions instead of variances.

In (Friston and Stephan, 2007), it is suggested that learning of the model parameters and
precisions operate at a slower timescale. This results, according to (Buckley et al., 2017), in an
optimization of the time-integral of the free-energy by these parameters. This amounts to having
second-order dynamics of the model parameters and precisions align with the gradient of the free-
energy (instead of the first-order dynamics).

The simpler strategy, which we have followed when deriving and experimenting with the learning
rules of the model parametersWr andWo in section 3.3.1, is to directly optimize these quantities
with regard to the VFE (and not its time-integral) using a smaller learning rate. Here, we derive
this gradient descent rule for the precision coefficients px, but it can be adapted to the other
precision coefficients. We start by rewriting the VFE corresponding to our first proposed model
with the precision coefficients:

F (x∗,mh) =
1

2

dx∑
i=1

(
px,i
(
x∗i − gi(mh)

)2 − log(px,i)
)

+
1

2

dh∑
i=1

(
ph,i
(
mh,i − µh,i

)2 − log(ph,i)
)

+ C

(3.128)

We can derive from this expression the gradient of the VFE with regard to the precision
coefficients px,i:

∂F (x∗,mh)

∂px,i
=

1

2

(
x∗i − gi(mh)

)2 − 1

2px,i
(3.129)

Which gives us the following update rule for px,i:

px,i ← px,i −
λ

2

(
x∗i − gi(mh)

)2
+

λ

2px,i
(3.130)

57

where λ is the learning rate. To ensure that this minimization process is slower than the
inference process, we typically have a value of λ that is several orders of magnitude smaller than
the update rate α.

The interpretation of this update rule is surprisingly intuitive. In the presence of prediction
error, the first term of this equation decreases the precision of the prediction. In the absence of
error, all that remains is the second term, that increases the precision at a logarithmic pace.

We have seen in this section that the bottom-up update rules are weighted by the precision
coefficients. If we were to rewrite this update rule using the vector p of precision coefficients, we
would obtain:

mpost
h,t =mprior

h,t + αW ᵀ
o · (p� εx) (3.131)

We can see from this equation that features of X associated with low precisions have a reduced
importance in the inference ofH. Consequently, modeling precisions is a very interesting prospect,
as it can act as an attention mechanism on the different input features. Unfortunately, we have
not experimented with this possibility during the thesis.

3.3.6.2 Stacking recurrent layers

Another natural extension to our models would be to stack several layers in order to have a
hierarchical generative model. This can be implemented with all the presented models, for instance
using the output of the layer l as the hidden causes of layer l−1 in the models incorporating hidden
causes.

Stacking recurrent layers might improve the generative capacity of the models, but we have not
experimented with this possibility during the thesis.

3.4 Results

3.4.1 Data sets
For the experiments performed in this thesis we have used three data sets of trajectories of length
60 and dimension 2. We built the two first data sets by recording the pen position on a tablet
while scribbling trajectories of variable complexity. Both data sets contain 250 trajectories. We
differentiate the two data sets by the complexity of the trajectories. To increase the variability of the
trajectories that were drawn, we applied random translations, rotations, shearing, and reflections
onto each trajectory. This results in two data sets of random scribbles, one comprising relatively
simple trajectories, while the other comprises more complex trajectories. Example trajectories
from these data sets are shown in figure 3.18. The sorting of the trajectories between the simple
and hard data sets was made subjectively. To validate that our sorting was efficient, we analyze
the distributions of velocity and acceleration within each data set.

(a) Distribution of the velocity norm. (b) Distribution of the acceleration norm.

Figure 3.17: Data sets statistics.

The last data set (Dua and Graff, 2019) is composed of trajectories corresponding to recorded
(x, y) positions of human letter handwriting. The data set comprises around 40 trajectories for

58

each letter of the latin alphabet not requiring to lift the pen. We also analyze its characteristics
to evaluate whether its trajectories are overall simpler or more complex than the ones in the two
other data sets.

Characteristics of the three data sets are represented in figure 3.17. The distribution of velocity
and acceleration confirm that overall the hard data set is composed of trajectories with more
variations of velocity and acceleration than the simple data set. The handwriting data set appears
to lay in between the two others in terms of complexity.

Some works in the literature aim at quantifying more precisely the complexity of trajectories.
For instance, (Hug et al., 2021) suggests aligning all trajectories before performing a clustering on
the data set. The data set complexity is evaluated as a combination of the number of clusters, the
intra-cluster variance, and the inter-cluster variance.

Some examples of trajectories of the three data sets are represented in figure 3.18.

(a) Example trajectories from the simple data set.

(b) Example trajectories from the hard data set.

(c) Example trajectories from the handwriting data set.

Figure 3.18: Example trajectories from the three data sets.

3.4.2 Learning, prediction and inference
To simplify discussions, we introduce three configurations for the presented models, that we call
prediction, inference and learning modes.

59

3.4.2.1 Prediction

Figure 3.19: Illustration of the PC-RNN-HC-A prediction on a toy example.

In prediction mode, only the generative model part of the RNN is active. This mode does not
require a target output sequence (x∗1, · · · ,x∗T), and simply computes the prediction based on the
provided input. This mode is relevant when evaluating our models as sequence memories, and when
comparing their prediction accuracy with other models not incorporating feedback connections. To
turn off all the bottom-up computations, we set to 0 the values of the update rates αx, αh, αh′ . No
learning is performed in prediction mode.

To illustrate this prediction process, we represent in figure 3.19 the evolution of the variables
encoded in the different neural network layers during prediction. We use a PC-RNN-HC-A model
trained to generate three sequence patterns corresponding to handwritten letters. We use a hidden
state dimension dh = 30 and hidden causes dimension dc = 3, the time constant of the RNN is set
to τh = 30. After training, we can see that using the three possible one-hot inputs for the hidden
causes yields predictions corresponding to the three patterns a, b and c. The figure displays the
evolution of the hidden state activation through this prediction process, as raster plots and as
trajectories in phase space (right). In phase space, we represent the hidden state trajectory using
the average layer activation as horizontal coordinate and the average layer activation velocity as

60

vertical coordinate. We observe that with three different hidden causes initializations, the hidden
state dynamics are different even in the absence of feedback. Finally, we display on the bottom
the three predicted output trajectories, as well as the observed trajectory in dashed black lines.

The source code used to train the PC-RNN-HC-A model and to generate the figures 3.19 and
3.20 is available on GitHub1.

3.4.2.2 Inference

Figure 3.20: Illustration of the PC-RNN-HC-A inference algorithm on a toy example.

In inference mode, we authorize the dynamic update of the latent variable of the models based
on a target output sequence (x∗1, · · · ,x∗T). Thus, the values of the update rates αx, αh, αh′ are
kept positive.

In models incorporating hidden causes, the inference process also updates the estimate of these
quantities. Crucially, the initial hidden causes are the input of those models, which makes it
possible to infer the input based on the desired output (the target sequences). This inference
mechanisms can thus approximate an inverse of the function c ∈ C → (x1,x2, · · · ,xT) ∈ X T
implemented by our sequence memory model. This feature is of particular interest when we

1https://github.com/sino7/example_pc_rnn

61

consider the questions of continual learning and memory retrieval. As in the prediction mode, no
learning is performed in inference mode, only the latent variables of the model are updated.

To illustrate this inference process, we display in figure 3.20 the evolution of the hidden causes,
the hidden states dynamics induced by these hidden causes, and the resulting predicted output
trajectories, through 100 inference steps using a pre-trained PC-RNN-HC-A model. As before,
the PC-RNN-HC-A model has been trained to generate three sequence patterns corresponding to
the handwritten letters a, b and c. We use a hidden state dimension dh = 30 and hidden causes
dimension dc = 3, the time constant of the RNN is set to τh = 30. In this experiment, we turn on
the feedback pathway with αx = 0.002 and αh = 1. The hidden causes are initialized in a neutral
configuration with no prior belief about the category of the observed trajectory. The initial hidden
causes are sampled from a normal distribution of mean (1/3, 1/3, 1/3) and standard deviation
0.1. We provide an observed output trajectory (x∗1, · · · ,x∗T) corresponding to the pattern b in the
data set. This trajectory is represented by black dashed lines in the bottom figure. We call an
inference step the complete prediction of the output trajectory (60 time steps), with the associated
bottom-up update of the hidden causes.

The top figure displays the evolution of the hidden causes through 100 inference steps. We
observe that after about 50 inference steps, the hidden causes representation has converged towards
a value very close to the one-hot vector activated on the second neuron, which corresponds to the
hidden causes value that was associated with the pattern b during training. As such, the inference
process has performed a classification of the observed sequence by updating the internal belief
encoded in the hidden causes layer. The middle figure represents several hidden state trajectories
in the phase space, through the inference process. We can see that after 32 inference steps, the
hidden state dynamics are almost stable. The bottom figure represents several predicted output
trajectories through the inference process. We can see that the predicted trajectories converge to
a limit trajectory closely approximating the observed trajectory.

3.4.2.3 Learning

Finally, we discuss shortly the different learning methods that we have used for the proposed
models. For each PC-RNN model, we can derive learning rules for synaptic weights that directly
minimize VFE. Such rules can be derived as well for bias parameters, something we have not
included in the equations for simplicity, and for all the models presented in the previous section.

When applying these learning rules, it is necessary to keep the coefficients αx, αh and αh′

non-null as they are necessary to propagate the prediction error signal in the upper layers.
The second possible learning method we consider is BPTT, that we have introduced previously

in chapter 2. (Millidge et al., 2020a) reported that training neural networks using PC approximated
the BP algorithm. However, learning with PC was computationally more expensive as many
iterations on each data sample were necessary for the inference process to converge before applying
the learning rules on the parameters.

In our case, the PC learning algorithm is slightly different from their proposition for two reasons.
First, we do not authorize the inference of variables of the computational graph that belong to the
past, such as the past hidden states. Second, we synchronized the inference and learning process
with the temporal dynamics of the generative model, only allowing one inference iteration of the
latent variables at each time step. These differences make one iteration of learning with PC faster
than the version proposed in (Millidge et al., 2020a), but should also lead to worse solutions.

Experimentally, we have obtained faster convergence and better learning using the BPTT
algorithm instead of these PC learning rules, without even resorting to gradient descent optimizers
for BPTT. In the experiments presented in this section, we have used the PC-based learning rules.

Mode Available target αx, αh, αh′

Prediction No 0

Inference Yes >0

Learning (PC) Yes >0

Learning (BPTT) Yes 0

Table 3.3: Prediction, inference and learning modes.

62

We refer to learning modes the configurations of hyperparameters αx, αh and αh′ used for
PC-based learning and BPTT. As already explained, during PC-based learning, these coefficients
are positive. However, for BPTT, we found better convergence when setting those parameters
to 0. This could come from the fact that the inference process slightly deviates the trajectory
of hidden states from its natural dynamic, something that interferes with the learning process.
When using the PC based learning rules, we also obtained better results with very low values of
αx, compensated by high values of λr and λc. In summary, it seems better to train the model
parameters according to the usual deep learning methodology, using BPTT, and without any
inference process interfering.

Table 3.3 provides the hyperparameters configurations for each of the modes we have discussed.

3.5 Conclusion
In this chapter, we have derived several RNN models from the free-energy formulation of PC.
Taking inspiration from the FEP literature, we have tried using generalized coordinated and hidden
causes in our RNN designs. The obtained models can be trained as sequence memories. Using
these models in prediction mode corresponds to the reading operation in the sequence memory.
Using these models in learning mode corresponds to the writing operation in the sequence memory.
Finally, the PC inspiration makes it possible to perform inference of the latent causes of a given
target pattern. As we will see in chapter 5, this inference mechanism can be used to perform
content-based addressing, i.e. retrieve learned patterns from their content.

In the next chapter, we will focus on evaluating the writing mechanisms (i.e. learning) in the
proposed sequence memory models.

63

Chapter 4

Comparative studies

4.1 Introduction
In this chapter, we present two comparative studies featuring the models derived in the previous
chapter. In the first study, we evaluate our models together with many RNN implementations from
the literature on the question of memory capacity. All models are trained as sequence memories
using the hard data set introduced previously, and we estimate their capacity as the ratio between
the number of learned sequential patterns and the number of model parameters. Our models are
trained using the BPTT algorithm.

In the second study, we compare the PC-based learning algorithm with other learning methods
that can be performed completely online, with update rules involving only local information. The
models are evaluated with regard to their ability to extend to a continual learning setting. For
each model we incrementally learn a repertoire of sequences from the simple data set, and measure
the obtained prediction error at the end of training.

This chapter is thus composed of two sections. In section 4.2, we present the first comparative
study, and in section 4.3 we present the second comparative study.

4.2 Model capacity
In this section, we evaluate the proposed models as well as benchmark models from the literature
on the question of sequence generation capacity. We define this capacity as the ratio between the
number of sequence patterns properly learned by the model, and the number of tunable model pa-
rameters during learning. The criterion we used to count the number of sequence patterns properly
learned is completely subjective, and other methods could be more relevant. We simply defined a
threshold value for the average prediction error during the trajectory. If the predicted trajectory
departs from the target trajectory by a thinner margin than this threshold, then the target tra-
jectory is considered properly learned by the model. During our experiments, this threshold value
was set to 0.1. We denote n the number of target trajectories properly learned by a model.

4.2.1 Intuition
In standard RNNs, the trajectories are all generated by the same dynamical system based on
different initial states. In contrast, in RNN models incorporating hidden causes, different hidden
causes values define different dynamical systems as a whole. In the additive hidden causes models,
different hidden causes correspond to different biasesWc ·mc. In the multiplicative model, different
hidden causes correspond to different recurrent weight matrices WR ·mc, where for simplicity we
ignore the factorization method we introduced and WR denotes the three-way tensor. This bias
and this recurrent matrix are both involved in the equation computing of the current hidden
state based on the past hidden state. Consequently, each hidden causes value defines a different
dynamical system characterized by this equation.

To illustrate this idea, we have analyzed the trajectories generated by three models in a sandbag
experiment where the hidden state dimension is dh = 2. With only two dimensions, it is easy to
visualize the temporal evolution of the hidden states. Although this evolution could be visualized

64

in other forms with a dimension greater than two, this also makes it possible to draw a vector field
representing the dynamics of the RNN at each point of the state space.

(a) Example dynamics of the hidden states with three different initializations h0, with the PC-RNN-V
model.

(b) Example dynamics of the hidden states with the same initialization h0 but three different hidden
causes c0, with the PC-RNN-HC-A model.

(c) Example dynamics of the hidden states with the same initialization h0 but three different hidden
causes c0, with the PC-RNN-HC-M model.

Figure 4.1: Example hidden states dynamics with three of the proposed models: PC-RNN-V,
PC-RNN-HC-A and PC-RNN-HC-M.

Figure 4.1 presents trajectories obtained with this idea, using three models: the PC-RNN-V,
the PC-RNN-HC-A and the PC-RNN-HC-M. In the top row, we have represented three trajec-
tories obtained with a randomly initialized PC-RNN-V model using random initial hidden states.
The variability of trajectories might be limited by the fact that they are all generated by the
same dynamical system. In this case, since the dynamical system comprises a point attractor, all
trajectories converge to the same point.

In the middle and bottom rows, we have represented trajectories obtained with the same initial
hidden state, but with different hidden causes values, for the PC-RNN-HC-A and PC-RNN-HC-M
models. The three hidden causes values define three different dynamical systems, as highlighted
by the different colors of the vector fields. We can also observe that the three dynamical systems
may differ more in the multiplicative case than in the additive case.

This visualization method is limited because our dynamical systems are very simple. To allow

65

(a) Example dynamics of the hidden states with three different initializations h0, with the PC-RNN-V
model.

(b) Example dynamics of the hidden states with the same initialization h0 but three different hidden
causes c0, with the PC-RNN-HC-A model.

(c) Example dynamics of the hidden states with the same initialization h0 but three different hidden
causes c0, with the PC-RNN-HC-M model.

Figure 4.2: Example hidden states dynamics with three of the proposed models: PC-RNN-V,
PC-RNN-HC-A and PC-RNN-HC-M, using an antisymetric initialization.

better visualization while remaining in dimension dh = 2, we have initialized recurrent weights to
be antisymmetric matrices. The obtained trajectories are represented in figure 4.2. Because of
this antisymmetric initialization, our RNNs yield dynamics that do not converge directly to point
attractors, as suggested in (Chang et al., 2019).

These new figures strengthen our intuition that multiplicative influence of the hidden causes
onto the hidden states dynamics might induce more variability in the obtained trajectories. In the
middle row, the three vector fields are very similar. In the bottom row, the first vector field shows
dynamics that rotate in the clockwise direction while the second vector field shows dynamics that
rotate in the counterclockwise direction. Moreover, the third vector field describes a dynamical
system comprising a point attractor, while the first two vector fields describe a cycle attractor.

With this examples, we have built an intuition that generative models comprising hidden causes
layers might be able to generate more variable trajectories in the hidden state space. This variability
could induce a better trainability or a better capacity of those models. As we will see, the results
presented in this section partially contradict this intuition.

66

4.2.2 Benchmark models
To evaluate our models, we perform a comparative analysis of their generative capacities with a
set of benchmark RNN models previously introduced in section 3.2.

The first benchmark model that we use is the TRNN, that uses the same generative structure
as the PC-RNN-V, with the difference that it does not allow inference of latent variables. To study
the effects of gating mechanisms onto generative capacity, we use the LSTM (three gates), GRU
(two gates) and UGRNN (one gate) models. To study the effects of hierarchical structure, we
use an MTRNN model with two layers (and thus two time constants). To also cover models that
incorporate constraints on the recurrent weights, we use the AntisymetricRNN. Finally, we also
compare performances with an ESN, to include the RC paradigm into this study.

4.2.3 Hyperparameter optimization
For all of the models that we derived in section 3.3, and all the benchmark models listed above,
we perform an optimization of hyperparameters using Gaussian processes. There are many hy-
perparameters in RNN models, which we could not all optimize because of time constraints, and
the number of models considered in our study. Hyperparameter optimization was performed us-
ing Bayesian optimization with Gaussian processes and Matern 5/2 Kernel, similarly to the RNN
encoding capacity comparative analysis performed in (Collins et al., 2017).

Basically, this method tries to approximate the function P → f(P) that associates a scoring
function defined by our hands with a certain hyperparameter configuration P . This approximation
is estimated based on points

(
(P0, f(P0)), (P1, f(P1)), · · ·

)
sampled sequentially by the optimizer.

We call acquisition function the function used by the optimizer to guide its sampling process.
Here, we used an expected improvement acquisition function, meaning that at each iteration, the
optimizer samples the point P that is most likely to improve the current estimated maximum of
the function f . Compared to exhaustive hyperparameter optimization methods such as random
search or grid search, this method is expected to converge faster and to better configurations.
To perform this hyperparameter optimization we used the gp_minimize function from the scikit-
optimize library in python.

Initialization of weight and bias parameters plays an important role in the trainability of RNNs.
During hyperparameter search however, we do not optimize the hyperparameters responsible for the
initial parameters of our models. Such hyperparameters include the variances of the independent
multivariate normal distribution from which we sample initial weights and biases, or the mean of
the initial biases of gated networks, that can be initialized according to the expected time constant
of the network (Tallec and Ollivier, 2018).

However, we make an exception with the ESN model. Indeed, ESNs naturally trade trainability
for hyperparameter optimization. Biological inspiration as well as theoretical foundations provide
us guidelines for weights initializations that yield complex non-linear self-sustained dynamics, par-
ticularly suited for our problem. This initialization makes the model easier to train.

The hyperparameters that were optimized are, depending on the models, the learning rate of
the gradient descent optimizer λ, the time constants of the RNN models, the initial connectivity
probability of the recurrent weights pinit (only for the ESN), the initial scale of the recurrent
weights σinit (only for the ESN), and finally, the number of target trajectories p considered for
training.

Optimizing the value of p might be a bit surprising since it is a parameter controlling the
difficulty of the task instead of the model or learning algorithm. However, this is a simple way to
find the maximum number of sequence patterns properly learned by the model, i.e. the maximum
value for n, without having to try all values of p by hand. Of course, searching the value of p
for instance using dichotomy would be faster than exhaustive search, but including this search in
the hyperparameter search highly decreases the time spent to find suitable hyperparameters and
number of target trajectories to train on.

We deliberately chose not to include the number of training iterations in this hyperparameter
optimization process, for several reasons. First, each hyperparameter to be optimized makes the
hyperparameter search longer. Second, it is very probable that the hyperparameter optimizer
would simply find that the best value is the upper bound of authorized values for the search.
Indeed, training longer should only lead to better prediction accuracy. To ensure a fair comparison
between all models trained with BPTT (i.e. all models except the ESN), we set the number of

67

training iterations to 3000. This limit seemed like a proper trade off between performance and
time consumption, but it is completely subjective.

The update rates in PC-RNN models were also not considered, except for αh′ in the PC-RNN-
GC model. As already reported when discussing learning algorithms, early results with these
models indicated that turning off the inference pathways (by setting αx to 0) improved prediction
accuracy after learning. The hyperparameter αh′ is slightly different, as it controls the inference
of H based on the prediction error on the layer H ′. This inference process was guided by the
free-energy formulation of the RNN models but did not seem very intuitive. Here we allow this
hyperparameter to be optimized and the optimizer found best results with minimal values of
αh′ . This validates our intuition, explained in section 3.3.4 that the inference of h′ based on the
prediction on h might be more interesting in our model derivations.

Let us now discuss the scoring function that we used. The most intuitive function would be to
return the number of target trajectories that were properly learned, n, according to the criterion
we explained previously. However, this scoring function might not be the best fit since it does
not account for the fact that higher values of p also mean a higher number of model parameters.
Indeed, all models suppose an input in the shape of a one-hot vector of dimension p. For models
incorporating hidden causes, this input is used as initial hidden causes. For other models, this
input is used to compute the initial hidden state h0. In both cases, the weight matrix processing
this input is of width p, and consequently the total number of model parameters increases linearly
with p.

The scoring function should thus include a penalty for hyperparameter configurations that
increase the number of model parameters without increasing n. For instance, if a model can
properly encode 10 trajectories when trained on 10 trajectories, and still 10 trajectories when
trained on 20, it would have a better capacity in the first configuration since this corresponds
to a smaller number of parameters. We experimented with different ways of implementing this
penalty, and found most success using a scoring function returning n − (p − n). Intuitively, this
scoring function counts the number of trajectories properly learned, with a penalty amounting to
the number of trajectories that were trained on but not properly learned.

For each model, we performed this hyperparameter optimization for 3 different values of the
hidden state dimension dh, except for the ESN model where we used 4 values of dh (simply
because training time and thus hyperparameter optimization was way faster with this model).
Each optimization was limited to 300 iterations.

Model Optimized hyperparameters

TRNN p, λ, τ

LSTM p, λ

GRU p, λ

UGRNN p, λ

AntisymmetricRNN p, λ

MTRNN p, λ, τf , τs

ESN p, τ, pinit, σinit

PC-RNN-V p, λ, τh

PC-RNN-GC p, λ, τh, αh′

PC-RNN-HC-A p, λ, τh

PC-RNN-HC-M p, λ, τh

PC-RNN-GC-HC-A p, λ, τh

PC-RNN-GC-HC-M p, λ, τh

Table 4.1: Optimized hyperparameters for each RNN model.

Table 4.1 provides a list of the hyperparameters optimized for each model, where τ denotes

68

the time constants of the ESN and TRNN, and τf and τs (for fast and slow) denote the two time
constants of the MTRNN.

4.2.4 Comparative analysis
The source code for the experiments presented in this section is available on GitHub1.

We perform the comparative analysis according to the presented experimental set up, using the
hard data set. We choose this data set, because the handwriting data set does not comprise a large
variety of sequential patterns, which we need to properly compare the models’ capacity. On the
other hand, the simple data set comprises trajectories that were very easy to learn by the models.
To properly study capacity, we would have had to use very small model hidden dimensions dh,
which can lead to undesirable limit case behaviors.

20 40 60 80 100
p

−50

−40

−30

−20

−10

0

10

Ex
pe

ct
ed

 sc
or
e

(a) Score estimation of the hyperparameter opti-
mizer with regard to p.

10−4 10−3 10−2 10−1 100

lr

−20

−15

−10

−5

0

5

Ex
pe

ct
ed

 sc
or
e

(b) Score estimation of the hyperparameter opti-
mizer with regard to the learning rate λ.

100 101 102
tau_h

−15

−10

−5

0

5

Ex
pe

ct
ed

 sc
or
e

(c) Score estimation of the hyperparameter opti-
mizer with regard to the time constant τh.

0 500 1000 1500 2000 2500 3000
Training iteration

10−1

100

Av
er
ag

e
pr
ed

ict
io
n
er
ro
r

(d) Average prediction error over 10 seeds for the
training of the model with the optimal hyperpa-
rameters.

Figure 4.3: Hyperparameter optimization and model training for the generative capacity compar-
ative study. These results were obtained for the PC-RNN-V model with dh = 60.

We first present one example of hyperparameter optimization results. Figure 4.3 displays
the approximation of the scoring function estimated by the hyperparameter optimizer after 300
iterations for the PC-RNN-V model, as well as the evolution of the average prediction error with
the PC-RNN-V model using the found optimal hyperparameters (figure 4.3d). After 300 iterations,
the hyperparameter optimizer has built an estimate of the score function with an easily identifiable
maximum. The standard deviation of this estimation is represented in the figures, and is lower near
the maximum point. This is because the optimizer has sampled more points near the optimum
and thus can more precisely estimate the expected scores for these points.

After identifying the optimal configuration of hyperparameters from this estimation, we use it
to perform 10 seeds of training and evaluation of the model. Figure 4.3d reports the evolution of
the prediction error, averaged over these 10 seeds.

1https://github.com/sino7/rnn_generative_capacity_benchmark

69

103 104
Number of parameters

101

102
Av

er
ag

e
nu

m
be

r o
f l
ea

rn
ed

 p
at
te
rn
s

log(y) = log(x) + b

TRNN

LSTM

GRUUGRNN

AntisymmetricRNN

MTRNN

ESN

PC-RNN-V

PC-RNN-GC

PC-RNN-HC-A

PC-RNN-GC-HC-A

PC-RNN-HC-M

PC-RNN-GC-HC-M

TRNN
LSTM
GRU
UGRNN
AntisymmetricRNN
MTRNN
ESN
PC-RNN-V
PC-RNN-GC
PC-RNN-HC-A
PC-RNN-GC-HC-A
PC-RNN-HC-M
PC-RNN-GC-HC-M

Figure 4.4: Comparative analysis of the models’ generative capacity.

Finally, for each model, we measure the average number of trajectories properly learned by the
model across these 10 seeds, as well as the number of trainable parameters of the models. The
results are reported in figure 4.4 where we represent the expected number of learned trajectories
according to the number of trainable parameters of each model.

From this figure emerges a clear relation between the number of learned trajectories and the
number of parameters. In logarithmic scale, these two quantities seem to be related according to
the equation log(y) = log(x) + b, with a different value of b for each model. If we remove the
logarithms, we obtain that for each model, the number of learned trajectories is proportional to
the number of trainable parameter.

This result confirms that we can define a notion of generative capacity as the ratio between
the number of learned trajectories and the number of trainable parameters, a quantity that seems
constant for different sizes of the same model. Note that if we were to compare the number of
learned trajectories with the dimension of the hidden state, or with the total number of synapses,
we would not obtain this clear relation for all models.

We now shortly develop the observable differences between the model capacities. In an effort
to bring some nuance to the following comments, we insist on the fact that they are limited to the
scope of the data set on which we performed the comparison. Additionally, the observed differences
might to some extent depend on our implementation choices, parameter initialization, choice of
hyperparameters to optimize, and other factors.

• TRNN and PC-RNN-V are equivalent: We have already established that the PC-
RNN-V model was equivalent to a standard TRNN if we remove the bottom-up connections.
We have also explained that we obtained better results on PC-RNN models when omitting
these connections during learning, so it is not surprising that the PC-RNN-V and TRNN

70

model show very similar curves. This result is still interesting, as it increases our confi-
dence in our experimental set up, since the hyperparameter optimizer found nearly the same
hyperparameters for both models.

• Gating reduces capacity: The results seem to demonstrate that gating reduces generation
capacity. This is also observed in (Collins et al., 2017) to a lesser extent, and on a different
task. Within our panel of models, models that do not incorporate gating mechanism perform
better than, in order, the UGRNN (one gate), the GRU (two gates), and the LSTM (three
gates) models. This result might only hold for generation tasks where the data set trajectories
are continuous and low-dimensional, as the gating mechanisms might be better suited to
processing complex data with delayed causal relations.

• Using multiple layers slightly decreases capacity: We observe a slightly reduced gen-
erative capacity for the MTRNN model compared to the TRNN model. However, this com-
parison might only hold on this specific data set, and the difference is not significant. At
first, it might seem that the TRNN model only constitutes a special case of MTRNN model
where all time constants are equal. However, there still remains a difference in connection
patterns as the layers of the MTRNN only interact with directly adjacent layers. We can
also relate that the hyperparameter optimizer always found optimal configurations where
τf < τs, confirming the intuition that MTRNN models should be initialized with longer time
constants in the upper layers.

• The antisymetric constraint on recurrent weights increases capacity: The Antisy-
metricRNN slightly outperforms the TRNN. This suggests that the antisymetric constraint,
allowing to decrease the number of model parameters, is an interesting feature that could be
exported to other models. Still, the difference is not significant and might be due to improved
trainability rather than the structural constraint on the model. Since we have limited the
number of training iterations for all models, models with faster and more stable training are
advantaged by our method.

• First-order generalized coordinates improve capacity: Within the PC-RNN models, it
appears that the generalized coordinates version of a model always significantly outperforms
the base model. This could come from the fact that the data set that was used to perform
this comparison is composed of trajectories drawn by hand. It is possible that it is easier
to generate the first-order derivatives of such trajectories. Using second-order generalized
coordinates might also have improved the generative capacity, but we have not experimented
with this idea.

• Multiplicative hidden causes reduce capacity: The models incorporating multiplicative
hidden causes (PC-RNN-HC-M and PC-RNN-GC-HC-M) have a lower generative capacity
than the base models (PC-RNN-V and PC-RNN-GC). This result comes as a surprise, as our
intuition was that this implementation choice could improve capacity, as explained in section
4.2.1, and based on the success of the Multiplicative RNN (Sutskever et al., 2011).

• Additive hidden causes slightly improve capacity: On the other hand, the models
incorporating additive hidden causes (PC-RNN-HC-A and PC-RNN-GC-HC-A) outperform
their base models (PC-RNN-V and PC-RNN-GC). Although not significant, this improve-
ment is interesting considering that hidden causes model also have the advantage of allowing
online inference of their input, something that is not possible with PC-RNN-V and PC-RNN-
GC models.

• RC outperforms other approaches: Finally, the ESN model outperforms all other mod-
els. This is interesting, since it adds to the advantage of a highly reduced training time. This
difference could come from the fact that the optimal weights for the ESN model are found
analytically whereas the weights of other models are local minima found using gradient de-
scent. We should still note that this increased capacity comes with the downside of having to
deal with very large neural networks compared to other models, with the associated memory
and computation costs during generation.

71

4.3 Continual learning and catastrophic forgetting
We have so far presented recurrent neural architectures inspired by PC that can be used for
sequence memory modeling. A key feature of these models is the corresponding computations
can potentially be performed in an online fashion, each neuron activation and synaptic connection
weight being updated using directly available information. However, although our models can be
trained properly using a continuous stream of target values, we have always assumed that the
target sequences for learning were independent and identically distributed. In this section, we
study the ability of our models, as well as other methods, to be trained in a continual learning
setting. This section is organized as follows. First, we expose the problem of continual learning.
Then, we present our experimental set up as well as the models we have selected for comparison.
Finally, we discuss our results and try to identify the online learning mechanisms that are relevant
for continual learning.

Continual learning is a branch of machine learning aiming at equipping learning agents with
the ability to learn incrementally without forgetting previously acquired knowledge.

Technically, all the learning methods we have presented (except for the analytical solution for
the readout weights of the ESN) are based on iterative updates of model parameters, that can be
done sequentially as new data becomes available. However, these methods might suffer from the
problem known as catastrophic forgetting if the statistics of the data stream they process evolve
over time (i.e. are not independent and identically distributed). The continual learning setting
typically involves a number of separate tasks where we assume data to be i.i.d.. The learning
agent is confronted with each source of data sequentially, with no access to past sources. Using the
learning methods we have described so far, based on stochastic gradient descent, a neural network
automatically adapts to the new task and overwrites the model parameters that were optimized
according to the previous task.

There exists a large spectrum of methods to deal with this issue. Regularization methods
typically aim at reducing the forgetting by constraining learning with, for instance, sparsity con-
straints, early stopping, or identified synaptic weights that should not be overwritten (Jaeger,
2014a; Kirkpatrick et al., 2017). Another approach is to rely on architecture modifications when
new tasks are presented, for instance by freezing some of the previously learned weights (Mallya
et al., 2018), or by adding new neurons and synaptic connections to the model (Li and Hoiem,
2017). Finally, rehearsal (Rebuffi et al., 2017) and generative replay (Shin et al., 2017) methods
rely on saving examples or modeling past tasks for future use. By inserting training examples from
the previous tasks, either saved or replayed, into the current task, these methods allow to retrain
on those data points and thus limit catastrophic forgetting. In this section, we disregard complex
approaches such as rehearsal and generative replay and only consider some simple regularization
or architectural techniques to improve the performance of sequence memory models in a continual
learning setting.

Additionally, continual learning assumes that the learning agent is trained online while task
examples are continuously brought to it by its environment. We push this online constraint further
by assuming that the agent can only learn at time step t based on the currently available quantities.
In our case, these quantities are the current latent variables of the models (hidden causes and
states), and the observed variable x∗t . Consequently, learning methods based on BPTT do not
qualify for this criterion, as they need to store in memory the past activations of the RNN hidden
states to compute gradients.

To avoid confusion about the use of the word "online", we rather talk about continual learning
to refer to the task temporality, and talk about online learning to refer to the target sequence (the
task example) temporality. The models studied in this section are thus trained both in a continual
learning setting, since the different target trajectories are provided sequentially to the agent, and
using online learning mechanisms since the algorithms for learning do not rely on a memory of
past neuron activations.

4.3.1 Experimental set up
Each of the model is instantiated with a hidden size dh = 300, and trained sequentially on 20
sequence modeling tasks. The 20 sequences are sampled randomly from the simple data set de-
scribed in section 3.4.1. We simplify the procedure by assuming that the model knows when a
transition between two tasks occurs, and provide to the RNN the current task index k as a one-hot

72

vector input of dimension p. Otherwise, this distributional shift could for instance be automatically
detected through a significant increase of the prediction error in our sequence memory modeling
tasks, leading to the creation of a new neuron in the hidden causes or input layer.

The end goal of this experiment is to identify online learning mechanisms for RNNs that extend
properly to the continual learning case. The RNN architectures typically comprise three types of
weight parameters to be learned: the output weights, the recurrent weights and the input weights.
As such, we split our analysis into three comparisons focusing on the learning methods for each
type of parameters.

For each learning mechanism, we perform an hyperparameter optimization according to the
method introduced in the previous section. The hyperparameters of the models are optimized in
order to minimize the final average prediction error on the 20 target sequences. For each model, the
hyperparameters to optimize are the learning rates associated with the input, recurrent and output
weights. The score function associates each hyperparameter configuration with a real-valued score
computed as the negative logarithm of the average prediction error at the end of training.

With the hyperparameter configurations we obtain, we perform for each model 10 seeds of train-
ing in the continual learning setting to measure their performances. The final average prediction
error on the 20 sequences can be used to evaluate and compare the different learning mechanisms.

4.3.2 Benchmark models
The models for this benchmark were chosen in order to identify the relevant mechanisms for training
RNNs in a continual learning setting. As already said, we also limited this analysis to learning
algorithms that can be performed online, i.e. without resorting to BPTT.

For the learning of the output weights of RNNs, we identified two learning rules. First, output
weights can be learned using standard stochastic gradient descent. In the RNN models we consider,
the prediction xt is not re-injected into the recurrent computations. As such, the output weights
gradients can be computed using only the target signal x∗t , the prediction xt, and the hidden state
ht. These computations do not involve backpropagation of a gradient through time, and thus
qualify as an online learning method. This first learning rule is expressed as:

Wo ←Wo + λεx,t · tanh(hpriort)ᵀ (4.1)

The second learning mechanism that we study is stochastic gradient descent aided by Concep-
tors (Jaeger, 2014a). As presented in section 3.2.3, this method allows identifying a region of the
hidden state space associated with each task and restricts learning on this region with minimal
modifications of output weights attending to other regions. Since this method only requires to
compute an estimate of the correlation matrix of reservoir states ht during the trajectories, that
can be computed iteratively, it also qualifies as an online learning method.

For the learning of the recurrent weights, we compare three learning methods inspired by PC:
the PC-RNN-V, P-TNCN (Ororbia et al., 2020), and a PC-RNN-V variant that we call PC-RNN-
Hebb. All three models propose the same update rule for the recurrent weights, based on the
hidden state at time t and the prediction error on the hidden state layer at time t+ 1, according
to the following equation:

Wr ←Wr + λrεh,t+1 · tanh(hpostt)ᵀ (4.2)

The difference between the three models lies in the computation of hpostt+1 . In the PC-RNN-V
model, we have seen that this bottom-up computation is done using the transposed of the top-down
weights used for prediction. This results in a direct minimization of VFE. In the two other models,
these feedback, bottom-up weights are instead learned. In the original PC model described in (Rao
and Ballard, 1997), it was proposed to learn these feedback weights using the same rule as equation
4.1 (up to a transpose to match the feedback weights shape). This learning rule ensures that with
random initializations, but enough training time, the feedback weights converge to the transposed
forward weights. Since this learning rule is a copy of the hebbian rule used in equation 4.1, we
call PC-RNN-Hebb the RNN model using this method. The last model, P-TNCN, implements a
different learning rule for the feedback weights, described by the following equation:

Wb ←Wb − λb
(
εh,t − εh,t−1

)
· εᵀx,t (4.3)

73

The model presented in (Ororbia et al., 2020) actually implements an additional term in the
learning rule for the recurrent and output weights, on top of the rules explained here. This
additional term led in our experiments to worse results. For this reason, we do not provide more
details about this rule and turn it off during the experiments shown below.

Finally, we compare four methods to learn RNN input weights. The first two models are the
PC-RNN-HC-A and PC-RNN-HC-M where we implement PC learning rules for the Wc weights,
as described in section 3.3.

The third and fourth methods are respectively based on the PC-RNN-HC-A and PC-RNN-
HC-M, but instead use random search to optimize the Wc weights. Our implementation of this
random search is inspired by the learning algorithm proposed in (Pitti et al., 2017):

δi ∼ N (0, σ2Idh) (4.4)
‖εx,i‖2 ← simulate(h0 + δi) (4.5)

h0 ← h0 + δisign(‖εx,i−1‖2 − ‖εx,i‖2) (4.6)

where the function sign associates -1 to negative values, and 1 to positive values. At each
training iteration i, the algorithm samples a noise vector δi that is added to the initial hidden
state of the RNN. After generation, the difference between the old and new average norm of the
prediction error ‖εx,i−1‖2 − ‖εx,i‖2 is used as a measure of success of the addition of δi, and
weights the update of the initial hidden state. Since this algorithm only relies on an average of the
prediction error over the predicted sequences, that can be computed iteratively, it qualifies as an
online learning algorithm.

In summary, we have identified two learning algorithm for output weights, three learning al-
gorithms for recurrent weights, and four learning algorithms for input weights. To connect the
proposed methods to the classification of continual learning methods presented above, we could
categorize the Conceptors method as a regularization method, and the fact that new tasks are as-
sociated to new inputs to the RNN in the shape of hidden causes, as an architecture modification
method.

4.3.3 Results
The source code for the experiments presented in this section is available on GitHub2. It contains
our implementation of the different models as well as the hyperparameter optimization method.
In appendix B, we provide the optimal hyperparameters found for each model.

10−6 10−5 10−4 10−3
λ

−4

−3

−2

−1

0

1

Ex
pe

ct
ed

 sc
or
e

(a) Score estimation of the hyperparameter opti-
mizer with regard to the learning rate λ.

10−1 100 101

α

0.0

0.2

0.4

0.6

0.8

Ex
pe

ct
ed

 sc
or
e

(b) Score estimation of the hyperparameter opti-
mizer with regard to the aperture coefficient α.

Figure 4.5: Hyperparameter optimization for the Conceptors model for the continual learning
comparative study. These results were obtained with dh = 300.

We start by showing an example of hyperparameter optimization in figure 4.5, that was per-
formed on the Conceptors model with dh = 300. The optimized hyperparameters are the learning
rate of the output weights, λ, and the aperture coefficient α. After trying 200 hyperparameter

2https://github.com/sino7/continual_online_learning_rnn_benchmark

74

configurations, the optimizer can estimate the score for all the configurations within the given
range of values. These figures display the evolution of the score estimation according to λ using
the optimal value for α, and according to α using the optimal value for λ. We can see that the func-
tion according to α has an inverse bell shape, while the function according to λ increases steadily
before dropping once we attain values of the learning rate that no longer sustain convergence of
the gradient descent.

For all the results presented below, we perform an optimization of the hyperparameters following
the same protocol, and always observe score functions with similar shape and easily identifiable
optimal values.

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 4.6: Continual learning results with the ESN model. We represent the average prediction
error over 10 seeds, for the continual learning of 20 sequential patterns, using the ESN model.

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 4.7: Continual learning results with the Conceptors model. We represent the average
prediction error over 10 seeds, for the continual learning of 20 sequential patterns, using the
Conceptors model.

75

Figure 4.8: Comparison between the two learning methods for the output weights.

In figures 4.6 and 4.7, we represent the average prediction error over 10 seeds for the continual
learning of 20 sequential patterns, with the hyperparameters found using the protocol described
before. The vertical dashed lines in these figures delimit each of the training task. The colored lines
represent the individual prediction error for each of the 20 sequence patterns (still averaged over
the 10 seeds). Finally, the black line represents the average prediction error over all the sequence
patterns (still averaged over the 10 seeds).

During each task, we can observe that one of the individual prediction errors decreases rapidly,
while the other prediction errors only slightly change. Once the training task corresponding to a
certain sequence pattern k is over, the prediction error associated to this pattern tends to increase.
The better learning mechanism is the one that can limit this undesirable forgetting of previously
learned sequence patterns. We can observe in figure 4.7 that the Conceptors learning mechanism
limits forgetting compared to the standard stochastic gradient descent rule used in our ESN model.

At first, it can be surprising that on each individual task, the corresponding prediction error
reaches a lower value for the Conceptors model than for the ESN model. In terms of learning
rule, the ESN model could potentially learn each pattern with better accuracy by increasing the
learning rate. However, the hyperparameter optimizer has estimated that an increased learning
rate would be detrimental to the complete continual learning task. Indeed, increasing the learning
rate might improve the learning on every individual task, but it would also lead to more forgetting
throughout the complete task. It is only because the Conceptors learning mechanisms naturally
limits forgetting that the hyperparameter optimized "allows" a higher learning rate and thus a
better learning on each individual task.

We can also observe that the prediction error level that is reached during each individual task
using the Conceptors model seems to increase throughout the complete task. We suppose that
this is a consequence of further learning being prevented on synaptic connections associated with
previous tasks’ associated Conceptors. When a large number of individual tasks are over, learning
is limited to synapses corresponding to a subspace of the hidden state space not belonging to any
of the previous Conceptors. Increasing the aperture α would allow a better learning of the late
tasks, but at the detriment of an increased forgetting of the early tasks.

Figure 4.8 compiles these previous figures to compare the average prediction error using both
learning mechanism. At the end of training, we can see that the Conceptors model achieve a
significantly lower prediction error than the ESN using the standard stochastic gradient descent
rule for the learning of the output weights. Based on this first experiment, we can conclude that the
Conceptors learning method is more suited to train the output weights of an RNN than standard
stochastic gradient descent.

In this second experiment, we compare the PC-RNN-V with two variants using learning rules

76

Figure 4.9: Comparison between the three learning methods for the recurrent weights, and the
ESN model where no learning is performed on the recurrent weights.

for the feedback weights instead of using the transposed feedforward weights. These three learning
methods in the end provide different update rules for the recurrent weights of the RNN. The
results of this second comparative analysis are provided in figure 4.9. We have added to the
comparison the evolution of the average prediction error with no recurrent weights learning (in
black). We can observe that the P-TNCN and the PC-RNN-Hebb models perform exactly the
same as the model with no recurrent weights learning. In fact, this can easily be explained when
looking at the hyperparameters that were found by the optimizer for these models. In both cases,
the hyperparameter optimization suggested using the lowest possible (within the available range)
value for the learning rate of the recurrent weights. Empirically, the optimizer has found that in
these models it was better to cancel the recurrent weights learning, since it led to a catastrophic
forgetting that was not compensated by the improvement on each individual task. Consequently,
with very low values for the recurrent weights learning rate, the models are roughly equivalent to
the ESN model.

The PC-RNN-V however shows a slight improvement in average prediction error compared to
the model with no recurrent learning. Learning recurrent weights using the PC-RNN-V learning
rule is still beneficial, but does not significantly improve the model’s performances. Later, we will
try to combine this learning rule for the recurrent weights with the Conceptors learning rule for
the output weights. We can still conclude based on these results that recurrent weights learning
in a continual learning setting is difficult and might often lead to more catastrophic forgetting.

Figure 4.10 displays the results obtained with the four learning mechanisms for input weights,
and the PC-RNN-V as a baseline. If we consider the case where the learning of the weights Wc is
turned off in the PC-RNN-HC-A/M models, we obtain a model that is equivalent to the PC-RNN-
V. For this reason, we can use the PC-RNN-V model as a baseline to measure the improvement
brought by the learning in the input layer.

These results suggest that the learning methods using random search (RS suffix) perform poorly
corresponding to the learning rules relying on propagation of error using PC. The two models using
random search perform similarly to the baseline PC-RNN-V model. This observation is surprising,
since the Wc weights in PC-RNN-HC-A/M architectures are directly factored according to each
individual task. Indeed, during the task k, we can limit learning on the k-th column of the Wc

weights, since these are the only weights that influence the RNN trajectory. Consequently, training
this layer should not cause any additional forgetting, and thus should only bring improvements
over the baseline PC-RNN-V model. Since the two models using random search did not bring
any improvement, we suppose that this is due to the limited number of iterations allowed for the
training on each individual task. We observed that in general training with random search as in the

77

Figure 4.10: Comparison between the three learning methods for the input weights, and the PC-
RNN-V model with only output and recurrent weights learning.

INFERNO model (Pitti et al., 2017) needed many more iterations than gradient-based methods.
The PC-RNN-HC-A/M models trained using the PC-based learning rules still showed some

significant improvement compared with the PC-RNN-V baseline, with the PC-RNN-HC-A model
performing slightly better than the PC-RNN-HC-M model. This experiment allow us to conclude
that learning rule for input weights proposed by the PC-RNN-HC-A model is the most suited to
a continual learning setting.

Figure 4.11: PC-RNN-HC-A model with Conceptors aided learning.

Finally, we can inquire whether these different learning mechanisms combine well with each
other. We implement the Conceptors learning rule on the output weights of a PC-RNN-HC-A
model, as represented in figure 4.11. Figure 4.12 displays the prediction error on each individual
task as well as the average prediction error throughout learning, using this model. Interestingly,
virtually no forgetting seems to happen during learning, as the individual prediction errors plateau
after decreasing during the corresponding individual tasks.

Additionally, the hyperparameter optimizer in this case recommended using the lowest possible
value for the recurrent weights learning rate. This suggests that the recurrent weights learning
negatively interferes with the Conceptors model. The Conceptors model might be sensible to

78

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 4.12: Continual learning results using the PC-RNN-HC-A model with Conceptors. We
represent the average prediction error over 10 seeds, for the continual learning of 20 sequential
patterns, using the PC-RNN-HC-A model with Conceptors.

Figure 4.13: Comparison between the Conceptors model, the PC-RNN-HC-A model, and the
variation of the PC-RNN-HC-A model using Conceptors to learn the output weights.

recurrent weights learning, since this could turn the previously learned Conceptors into obsolete
descriptors of the corresponding hidden state trajectories.

We compare these results with both the Conceptors and the PC-RNN-HC-A model in figure
4.13, which confirms that this combination of online learning methods seems to provide the se-
quence memory model the best suited for continual learning. Overall, this study suggests that
regularization methods such as Conceptors, and architectural methods as proposed in the PC-
RNN-HC architectures, can help designing RNN models with online learning rules suitable for
continual learning.

79

4.4 Conclusion
In this chapter, we have conducted two comparative studies to evaluate the sequence memory
models, according to their generative capacity, and their possible use in a continual learning setting.

We have seen in chapter 2 that there were some connections between the BP learning algorithm
and the PC-based learning algorithm. Both BP and PC also provide inference mechanisms allowing
to update the agent’s internal belief based on the prediction error. Using the PC learning rules has
several advantages. First, it does not require storing past activations in order to compute gradients,
which decreases its computational cost and allow this method to be performed online. Second, as
a variational Bayes method, it takes into account a prior distribution over latent variables. This is
one of the reasons why VAEs, even though they are trained with BP, have had so much success at
representation learning. The effect of the prior distribution is considered during learning as part of
the loss function, and consequently, the recognition density in VAEs is constrained to look like the
prior distribution. This plays an important role in obtaining disentangled representations. Still,
these advantages might not compensate for the large performance gap observed using BP-based
and PC-based learning rules.

For PC-based learning to contend with BP, we would need to either improve the convergence
speed of the PC-based learning or decrease the computational cost of this method. A direction
to improve the learning algorithm might be to study the effect of the precision coefficients. These
coefficients directly scale the error signal being propagated bottom-up, and could play a role in
improving the convergence speed of PC-based learning. To decrease the computational cost of
PC, it could be interesting to implement these algorithms on dedicated hardware reproducing the
connection patterns involved in the PC theory.

80

Chapter 5

Memory retrieval

5.1 Introduction
In this chapter, we address the question of memory retrieval within the sequence memory models
derived previously. Sequence memories implement a function f : c→ (x1, · · ·xT). Based on p (key,
sequence) pairs, these models can be trained in a supervised manner to associate each key ck to
the corresponding sequence (x∗1, · · ·x∗T)k. In the models derived in the last chapter, training over
the p trajectories ensures the correspondence between the k sequential patterns and the k hidden
causes values. We have used a one-hot embedding for the hidden causes such that the k-th hidden
causes value is the one-hot vector of dimension p activated on the k-th dimension. In this chapter,
we also study the possibility of relaxing this assumption and authorizing the hidden causes values
to be inferred during training.

During memory retrieval, the task is to retrieve the sequence pattern written in memory that
best fits a provided target pattern, that we can also call query. Based on the models we have
previously derived, we suggest splitting this retrieval process into an inference step and a generation
step. The inference step attempts to retrieve the key associated with the target sequence, and the
generation step regenerates the learned sequence based on this retrieved key. The success of this
memory retrieval process depends on the quality of the mechanism allowing to retrieve keys from
target patterns.

This chapter is organized as follows. In section 5.2, we review different ways to approach this
problem that have been proposed in the literature. In section 5.3, we derive memory retrieval
mechanisms based on the PC-RNN-HC models presented in the last chapter. In section 5.4, we
present some experiments performed using these mechanisms, and finally we discuss our results in
section 5.5.

5.2 Related work

5.2.1 Chaotic itinerancy
One field of research that can be related to the question of memory retrieval is the phenomenon
known as Chaotic Itinerancy (CI) in the dynamical systems literature.

CI describes the behavior of large non-linear dynamical systems consisting of chaotic transitions
between quasi-attractors (Tsuda, 1991; Kaneko and Tsuda, 2003). It was first observed in a model
of optical turbulence (Ikeda et al., 1989), using globally coupled maps in a chaotic system (Kaneko,
1990) and in high dimensional neural networks (Tsuda, 1991). From a neuroscientific point of view,
this phenomenon is interesting as such systems exhibit complex behaviors that usually require
a hierarchical structure in neural networks. Studying CI could help better understanding the
mechanisms responsible for the emergence of structure in large populations of neurons.

In cognitive neuroscience, it is believed that attractors or quasi-attractors could represent per-
ceptual concepts or memories, and that cognitive processes such as memory retrieval or thinking
would require neural trajectories transitioning between such attractors. CI is also gaining interest
in neurorobotics, as it allows designing agents with the ability to autonomously switch between
different behavioral patterns without any external commands. Several studies have tried to model

81

CI with learned attractor patterns. (Yamashita and Tani, 2008; Namikawa et al., 2011) propose a
method where this functional structure emerges from an MTRNN. Sequential patterns are encoded
in a rapidly varying recurrent population while another population with a longer time constant
controls transitions between these patterns. (Inoue et al., 2020) models CI, using RC techniques,
with the interplay between an input RNN and a chaotic RNN where desired patterns have been
learned with innate trajectory training (Laje and Buonomano, 2013).

A naive memory retrieval technique could thus consist in implementing CI in our RNN models.
The hidden causes could randomly alternate between the different keys that have been learned.
This itinerancy would randomly try out different hidden causes values (i.e. keys) until finding the
one that correctly generates the provided target sequence (i.e. the query).

5.2.2 Memory retrieval
Several approaches have been proposed in the literature to design memory models equipped with
retrieval mechanisms.

The Hopfield network is an associative memory model that was introduced in (Hopfield, 1982).
This model is composed of binary neurons (i.e. neurons that can either be idle or activated) with
recurrent connections. At each time step, the activations of the neurons are calculated based
on these recurrent connections and a threshold value. The connection weights can be trained so
that the network dynamics always converge to desired patterns. The memory retrieval consists
in initializing the network with a query pattern, and iteratively running the update rule until the
network converges to one of the trained patterns.

These models have been extended to work on continuous signals as well (Demircigil et al., 2017).
The network can be trained so that certain continuous multidimensional patterns correspond to
attractors of the dynamical system. A recent work (Ramsauer et al., 2020) draws a connection
between these modern Hopfield networks and the attention mechanisms of Transformers (Vaswani
et al., 2017). They propose an update rule for continuous Hopfield networks and show how this
rule relates to the attention mechanism. The recurrent network can be seen as computing attention
weights with regard to a collection of keys at each time step. The network activation can reach sev-
eral equilibrium configurations when initialized with a query pattern. One of the types of possible
equilibrium configurations is when the network activation has reached one of the patterns written
in the network (as in standard Hopfield networks). However, the dynamics in these networks can
also converge to metastable states corresponding to averages of subsets of the learned patterns.

Other approaches such as Neural Turing Machines (NTMs) (Graves et al., 2014) and Differ-
entiable Neural Computers (DNCs) (Graves et al., 2016) also use attention mechanisms to read
inside a memory store. However, contrary to the Hopfield network, the reading process is instan-
taneous and does not need the convergence of a dynamical system. Additionally, we can note that
in Hopfield networks there is no distinction between the key (i.e. the address of the stored pattern)
and the value (i.e. the stored pattern). The key is the value, meaning that addressing in this
memory can only be done based on its content. As such, it can be classified as a content-based
addressing memory. In contrast, in NTMs, patterns (values) are stored with associated keys. A
query is compared to the different keys to retrieve the correct patterns in memory. For comparison,
the approach proposed in this chapter combines both ideas, since the retrieval of the correct key is
an iterative process as in Hopfield networks, and the key is then used to regenerate the sequence
pattern (the value), as in NTMs.

These models do not really fit into the PC framework. Closer to our approach are the models
based on variational Bayes methods, such as VAEs (Kingma and Welling, 2014; Rezende et al.,
2014), already presented in the previous chapter. Using VAEs, the problem of memory retrieval
can be seen as that of encoding the provided pattern (the query) into a latent representation (the
key), and using this latent representation to regenerate the correct pattern (the value). However, it
is not possible to embed preferences for certain keys in the encoding process. The representation is
continuous and there is no mechanism pulling its value towards certain keys written in the memory.
Figure 5.1a illustrates the use of a VAE for memory retrieval. A query pattern is provided to the
encoder, that infers a corresponding key in the latent space. This key is given to the decoder that
generates the retrieved pattern.

Some models augment regular VAEs with external memory stores conditioning the latent vari-
able in the generative models. In (Wu et al., 2018; Wu et al., 2018) the authors suggest computing
the latent variable (the key) as a linear combination of vectors recorded in a memory matrix. The

82

(a) VAE (b) GMVAE (c) Our method

Figure 5.1: Variational Bayes models for memory retrieval. In all figures, the gray ellipses represent
the prior distribution on the latent representation. The red, green and blue crosses represent the
keys corresponding to the pattern vectors of the same color represented on the bottom of the
figures. They query and the retrieved values are represented by orange vectors. The inferred key
is represented as an orange dot in the latent space.

weights of this linear combination are adapted iteratively until convergence. (Bornschein et al.,
2017) propose a similar scheme where the weights of the linear interpolation are computed based
on a similarity measure between the provided query and the available keys.

All these VAE models consider a continuous representation space, while we are interested in
inferring a discrete value, more precisely, the index of the key in the sequence memory. In regular
VAEs, the prior distribution over the latent variable is a Gaussian. This assumption causes the
representation manifold to be composed of one cluster. (Dilokthanakul et al., 2016) propose an
extension of VAEs, names Gaussian Mixture VAE (GMVAE), using a Gaussian mixture prior dis-
tribution onto the latent variable. The model can be trained by combining the reparameterization
trick (used in regular VAEs) with Monte Carlo sampling (to account for the possible values of the
discrete random variable). This method allows having a representation manifold composed of many
clusters. The trained encoder can then be used to infer the category (the key) of a given target
pattern (the query). The method proposed in this chapter also attempts at performing variational
inference using a Gaussian mixture prior on the keys, but using the PC framework. Figure 5.1b
illustrates the use of the GMVAE for memory retrieval. The Gaussian mixture prior should enable
the autoencoder to generate patterns closer to the ones written in memory (represented in red,
green, and blue).

Finally, all the methods we have reviewed here do not consider the possibility of storing and
retrieving sequential patterns. Still, the VAE models could extend to this case by using two
RNN instances for the encoder and the decoder. The encoder RNN would compute the key
associated with a given sequential query, and the decoder RNN would generate the sequence
pattern corresponding to the retrieved key.

Since this thesis focuses on PC-based models, we attempt in the next section to derive a
memory retrieval mechanism relying on the bottom-up inference mechanism of PC. We combine
this inference mechanism with a Gaussian mixture prior distribution onto the hidden causes (which
fill the role of the keys in the PC-RNN-HC models). Our proposed model can be illustrated by
the figure 5.1c. Based on the initial query, the iterative message-passing scheme induced by PC
combined with the Gaussian mixture prior enables retrieval of the correct pattern from the memory.
For simplicity, we have represented 2D patterns in these figures. For a sequence memory, these
patterns would be sequences of possibly high-dimensional vectors.

83

5.3 Methods
In this section, we derive a memory retrieval algorithm inspired by the free-energy formulation
of PC. This algorithm exploits a prior probability distribution on the hidden causes in order to
obtain hidden causes dynamics that converge to one of the learned keys in the sequence memory.
We present two variations of this algorithm, unstructured and structured, that differ in whether
they authorize the keys of the sequence memory to be optimized during learning.

5.3.1 Prior distribution on the hidden causes
All the PC-RNN variants with hidden causes that we derived in chapter 3 do not take into account
any prior distribution upon the hidden causes C. However, as a model implementing a form
of variational Bayes inference upon latent variables H and C, the model’s approximate posterior
belief upon latent variables should depend on its prior belief. In the derivations of these models, we
proposed to use the recurrent computations as a mechanism to compute the prior distribution over
H at time t. The iterative algorithm resulting from this choice of prior distribution aligns nicely
with standard implementations of RNNs. However, we have disregarded the prior distribution on
C using the assumption that this prior distribution was a very flat Gaussian with no impact on
the inference computations. In this section, we go back on this assumption and instead suggest
using this prior distribution over hidden causes in order to guide the retrieval of learned sequential
patterns. The probabilistic model of the PC-RNN-HC models is represented in figure 5.2.

Figure 5.2: Probabilistic model of the PC-RNN-HC models.

We start from the expression of the VFE corresponding to this generative model. Since for
now we have not made any assumption about the form of the prior distribution p(C), we simply
express the VFE as:

F (x∗,mh,mc) = − log p(x∗|mh)

− log p(mh|mc)

− log p(mc)

+ C ′

(5.1)

where C ′ is a constant (not to be confused with the random variable C) and the conditional
distribution p(h|c) is made dependent on the past hidden state hpast through recurrent connections.
As usual, the conditional distributions p(h|c) and p(x|h) are assumed to take a Gaussian form:

p(h|c) = N (h;f(c,hpast), σ
2
hIdh) (5.2)

p(x|h) = N (x; g(h), σ2
xIdx) (5.3)

We have already seen that using the Gaussian assumption for p(h|c) and p(x|h), the VFE
could be expressed as:

84

F (x∗,mh,mc) =
1

2σ2
x

‖x∗ − g(mh)‖22 +
dx
2

log(σ2
x) (5.4)

+
1

2σ2
h

‖mh − f(mc,hpast)‖22 +
dh
2

log(σ2
h) (5.5)

− log p(mc) (5.6)
+ C ′ (5.7)

Finally, contrary to the PC-RNN-HC models derived previously where we ignored the prior
distribution on C, here we propose to use a mixture of Gaussians distribution. We can use a
mixture of Gaussians to embed the preference of certain values for C in the model. Indeed, we
will see that this prior distribution pulls the inference process towards the means of the Gaussian
mixture.

p(mc) =

n∑
k=1

πkN (mc;µk, σ
2
c Idc) (5.8)

This mixture model is composed of n multivariate Gaussians of means µk and covariance
matrices σ2

c Idc , weighted by mixing coefficients πk. This distribution can be seen as the composition
of a discrete probability distribution p(Z = zk) = πk on a latent discrete variable Z, and the
Gaussian probability distributions p(mc|Z = zk) = N (mc;µk, σ

2
c Idc).

Interestingly, the direct computation of log p(mc) is tractable, since it only requires summing
over n Gaussian probabilities. In chapter 6, we study another case of mixture probabilistic model
where this time we also perform variational inference on the discrete latent variable Z. The
variational inference computations depend on the constraint we impose on the recognition density
q(Z). In chapter 6, we choose an extreme recognition density such that q(Z) is equal to 1 for one
of the possible values of Z, and 0 otherwise. For the question of memory retrieval, this assumption
is too constraining and would hinder the retrieval process. Another option for recognition density
would be to consider a categorical distribution parameterized by coefficients qk = q(Z = zk). Since
this distribution is as expressive as the true posterior distribution, the resulting computations would
be equivalent in terms of complexity, and only approximations of the more accurate algorithm we
present here.

The iterative algorithm for inference can be obtained by computing the derivatives of the VFE
with regard to the recognition density means mh and mc. Since nothing has changed for the
recognition density means mh, we only focus here on mc:

∂F (x∗,mh,mc)

∂mc
=− 1

σ2
h

(
mh − f(mc,hpast)

)
· ∂f(mc,hpast)

∂mc

− d log p(mc)

dmc

(5.9)

The first term of this gradient corresponds to the bottom-up signal coming from the layer below,
as already shown in the previous chapter. The derivations of this term depend on the definition of
the function f , that can model either an additive or multiplicative influence of the hidden causes
onto the hidden state dynamics. The second term of this gradient corresponds to the influence of

85

the prior distribution on C. We can develop this derivative as:

d log p(mc)

dmc
=

dp(mc)
dmc

p(mc)

=
1

p(mc)

n∑
k=1

πk
1

(2πσ2
c)

dc
2

d exp
{
− ‖mc−µk‖22

2σ2
c

}
dmc

= − 1

p(mc)

n∑
k=1

πk
1

(2πσ2
c)

dc
2

mc − µk
σ2
c

exp
{
− ‖mc − µk‖22

2σ2
c

}
= −

n∑
k=1

πk
N (mc;µk, σ

2
k)

p(mc)

(mc − µk)
σ2
c

= −
n∑
k=1

p(Z = zk|mc)
mc − µk

σ2
c

(5.10)

where p(Z = zk|mc) is the true posterior probability distribution on Z knowing mc. We can
indeed verify that:

πkN (mc;µk, σ
2
k)

p(mc)
=
p(Z = zk)p(mc|Z = zk)

p(mc)
= p(Z = zk|mc) (5.11)

We can now derive the iterative update rule on mc as:

mc ←mc+
α

σ2
h

(
mh − f(mc,hpast)

)
· ∂f(mc,hpast)

∂mc︸ ︷︷ ︸
Bottom-up

− α

σ2
c

(
mc −

n∑
k=1

p(zk|mc)µk
)

︸ ︷︷ ︸
Top-down

(5.12)

where α is the update rate. The first term of this update rule pulls mc towards values that
minimize the prediction error on the hidden state layer. The second term of this update pulls
mc towards the weighted average of the Gaussian mixture means µk, the weights corresponding
to the true posterior distribution on Z knowing mc. This update rule can be included in the
PC-RNN-HC-A and PC-RNN-HC-M models. This mechanism should guide the inference of mc

towards the values that are probable under the prior distribution.
Compared to the PC-RNN-HC models, we have only added a term influencing the temporal

evolution of mc.

5.3.2 Mechanisms influencing the hidden causes dynamics.
The hidden causes dynamics are influenced by the bottom-up prediction error signal, and the top-
down prior distribution. On top of these two mechanisms, we propose to add some noise in the
hidden causes update rule. At each time step, we sample an additive noise from a multivariate
Gaussian distribution centered on 0 and of variance σ2

r . If we were to only consider this mechanism,
the hidden causes would exhibit a random walk trajectory parameterized by σr. We speculate that
applying this noise onto the hidden causes dynamics might help avoiding local minima of VFE in
which the gradient descent process might get stuck. In conclusion, we consider three mechanisms
influencing the dynamics of the hidden causes:

• Inference: The bottom-up influence of the prediction error signal, parameterized by the
coefficients αh = α

σ2
h
and αx = α

σ2
x
.

• Prior distribution: The top-down influence of the prior distribution, parameterized by the
coefficients α and σc.

• Random walk: The additive noise, parameterized by the standard deviation σr.

86

5.3.3 Unstructured case
In this section, we describe the effect of the mechanisms introduced above onto the dynamics of
the hidden causes.

We first assume that the hidden causes mc lie in a dh = n dimensional space where n is
the number of modes of the Gaussian mixture model, and also equal to the number of sequence
patterns p the model has learned. The means of the Gaussian mixture model µk correspond to the
previously learned hidden causes vectors, i.e. the keys of the sequence memory. For each sequence
pattern k, the associated hidden causes representation is assumed to be the one-hot vector activated
on the k-th dimension. During training on each sequence pattern k, this one-hot vector value was
forced onto mc during the complete trajectory, and the inference of the hidden states and causes
was turned off by setting αx and αh to 0. At the end of training, using the values µk as initial
hidden causes in generation mode yields trajectories very close the data set target patterns.

Because of the choice of using one-hot representations, the p vectors µk are all orthogonal and
constitute an orthonormal basis of the hidden causes space. If dc = 3, the three means µ1, µ2 and
µ3 form an equilateral triangle in a 3D space. If dc = 4, the four means µ1, µ2, µ3 and µ4 form
an equilateral tetrahedron in the 4D space. We can see this configuration of the mixture density
means as unstructured since the relative similarity of the data set sequence patterns corresponding
to each µk is not reflected in the values of µk.

In opposition, a structured configurations would use values for µk that reflect the relative
similarities between the corresponding target patterns (x∗1, · · · ,x∗T)k. For instance, if we learn
trajectory patterns corresponding to the letters a, b and d, we would expect the density means
corresponding to a and d to be closer because of the similarity between the two sequential patterns.

(a) σc = 0.4 (b) σc = 0.6 (c) σc = 0.8

Figure 5.3: Gaussian mixture probability distributions with n = dh = 2. The Gaussians centers
µ0 = (1, 0) and µ1 = (0, 1) are represented in black. The red points represent the minima of
the distributions. The prior means µk correspond to the one-hot vectors activated on the k-th
dimension, and the mixture coefficients πk are set uniformly : πk = 1/n.

As represented in figure 5.3, the parameter σc determines the shape of the prior distribution on
hidden causes. With low values of σc, the second term in equation (5.12) pulls the hidden causes
variable towards one of the prior means µk. These values formc correspond to temporal dynamics
that have previously been trained to match each of the desired sequence pattern. With high values
of σc, the Gaussians merge into a concave function with a global maximum corresponding to the
average of all the prior means µk. In this situation, the second term in equation (5.12) pulls the
hidden causes recognition density mean mc towards this average value, for which no training was
performed.

In this chapter, we assume that the memory model has already been trained. In our experi-
ments, the neural network is initialized with hidden causes values mc,0 that can be random, and
is provided a target trajectory (x∗1, · · · ,x∗T). The prior distribution p(mc), parameterized by σc,
the bottom-up inference signal originating from the prediction error between the prediction xt and
target x∗t , as well as an additive noise, all have an influence on the dynamics of mc.

Figure 5.4 represents as vector fields the influence of the Gaussian mixture prior probability,
in a simplified set up where n = p = dc = 2. Since the hidden causes space is of dimension 2, we
can display the dynamics of mc induced by the different mechanisms we have described, for four

87

(a) Dynamics ofmc dictated by the prior prob-
ability with σc = 0.4.

(b) Dynamics ofmc dictated by the prior prob-
ability with σc = 0.8.

Figure 5.4: Influence of the prior probability distribution on the dynamics of mc.

different initializations mc,0 (represented in blue, orange, green and red).
These simulations were obtained using a PC-RNN-HC-A model trained with two sequence

patterns corresponding to the letters a and b from the handwriting data set. The prior probability
was computed with σc = 0.4 in figure 5.4a and σc = 0.8 in figure 5.4b. These figures display a vector
field showing the direction and amplitude of the gradient in all the positions of the hidden causes
space (here of dimension 2). Additionally, we represented four possible hidden causes trajectories
starting from different initial points mc,0. The blue and orange initial hidden causes are close to
the boundary between the two attractors induced by the prior probability with σc = 0.4. On the
opposite, the red and green initial hidden causes are chosen close respectively to the first mixture
density mean µ1 and second mixture density mean µ2.

If we only consider the influence of the prior distribution, the dynamics of mc are directly
attracted either by the nearest mixture density mean when σc = 0.4 (figure 5.4a), or by the
average of the mixture density mean when σc = 0.8 (figure 5.4b). We consider two possible tasks
using this unstructured configuration:

Itinerancy: We suppose that by alternating between phases where σc is low and phases where
σc is high, the dynamics of mc would periodically return to the global attractor when σc is high,
and randomly be directed towards the attractors µ1 and µ2 when σc is low. Interestingly, the
learned hidden causes configurations mc = µ1 and mc = µ2 can correspond to certain cycle
attractors for the dynamics of mh. In this case, mh could exhibit random attractor switching
dynamics similar to CI. In this set up, we do not assume that a target trajectory (x∗1, · · · ,x∗T) is
provided, and the bottom-up prediction error signal influencing the dynamics of mc is removed.

Memory retrieval: We have seen how the prior distribution p(mc) could influence the dy-
namics of mc. For memory retrieval though, the dynamics of the hidden causes mc should also
be influenced by the bottom-up inference signal originating from the output prediction error. This
influence is represented in figure 5.5, using the same PC-RNN-HC-A as before. By setting the
parameters αx and αh to non-zero values, we activate the inference process for the hidden causes
mc. At each time step, the error between the prediction xt and the target x∗t induces an update of
mc in a direction that decreases this error. The vector fields represented in figures 5.5a and 5.5b
correspond to the average of the vector fields induced by the 60 data points forming the trajectories
for the a and b sequence patterns.

Using only the inference signal and ignoring the influence of the prior distribution on mc, the
dynamics ofmc are drawn towards the mixture density mean corresponding to the provided target
pattern. We can observe that the vector field contains some areas with low gradients, with the
dynamics of mc converging very slowly to the attracting values, especially in figure 5.5a.

In figures 5.5c and 5.5d, we represent the dynamics induced by the combined influence of the
prior probability distribution and the bottom-up inference mechanism. We obtain dynamics that
converge faster to the correct prior density mean. Interestingly, we can see that the addition of the
bottom-up prediction error signal is enough to deviate the blue (respectively the orange) trajectory

88

(a) Dynamics of mc dictated by the bottom-
up inference using a target corresponding to the
first trained pattern.

(b) Dynamics of mc dictated by the bottom-
up inference using a target corresponding to the
second trained pattern.

(c) Dynamics of mc using both mechanisms us-
ing a target corresponding to the first trained
pattern, with σc = 0.4.

(d) Dynamics ofmc using both mechanisms us-
ing a target corresponding to the second trained
pattern, with σc = 0.4.

Figure 5.5: Influence of the bottom-up inference on the dynamics of mc.

towards the prior mixture density mean µ1 (respectively µ2) even though the initial hidden causes
were closer to µ2 (respectively µ1). However, we can see that the green trajectory in figure 5.5c
and the red trajectory in figure 5.5d are stuck in local minima.

We propose to cast memory retrieval as a process of inference of the category zk and the asso-
ciated hidden causes vector µk that can be used to regenerate a trajectory pattern (x∗1, · · · ,x∗T).
In this view, memory retrieval is a dynamical process during which the hidden causes vector mc

evolves until it reaches the value µk that properly regenerates the desired sequence. An issue with
the described mechanism is that it may easily be stuck in a local minimum of the VFE, as both the
inference mechanism, and the influence of the prior distribution, can induce local attractor basins.

Indeed, in sequence memories where a large number of patterns have been written, the dynamics
ofmc dictated by the bottom-up inference mechanism alone are not as effective as the ones shown
in figures 5.5a and 5.5b (which are obtain in a sandbag experimental set up with n = p = dc = 2).
On the other hand, if we consider the additional influence of the prior p(mc) we can see that local
minima can emerge in the optimization landscape as in figures 5.5c and 5.5d. We speculate that
the additive noise influence can help mitigating this issue.

89

(a) Representation of the mixture density means
µk in the hidden causes space and their associ-
ated output sequence patterns.

(b) Dynamics of mc dictated by the Gaussian
mixture prior without any influence of the infer-
ence mechanism, with σc = 0.1.

Figure 5.6: Gaussian mixture prior after learning.

5.3.4 Structured case
In the previously presented method, we have assumed that the mixture density means µk formed
an orthonormal basis of the hidden causes space of dimension dc = n. Consequently, the prior
distribution p(mc) induces dynamics where all the attraction basins are separated by the same
distance. For memory retrieval, it might be more efficient to have prior density means corresponding
to similar sequence patterns to be closer in the hidden causes space.

In this section, we propose to relax the constraint of freezing the values of mc during training
of the PC-RNN-HC-A model. Instead, we turn on the hidden state and hidden causes inference
process during learning. After each training iteration on one sequence pattern k, we use the inferred
value of mc after presentation of the T = 60 targets x∗t as the initial hidden causes value for the
next iteration.

At the end of training, each Gaussian mixture mean µk is initialized as the inferred hidden
causes value for the sequence pattern k. Therefore, the Gaussian mixture means still correspond to
the keys associated with the learned patterns in our sequence memory. If we use the RNN model
strictly in prediction mode (by turning off the feedback pathway) using µk as initial hidden causes,
the RNN properly regenerates the k-th sequence pattern.

As a toy example, we propose to use a hidden causes dimension of dc = 2. We train the model
on 5 possible sequence patterns of the handwriting data set (the letters a, b, c, d, and e). The figure
5.6a displays the five trajectory patterns as well as the corresponding mixture density means µk in
the 2D hidden causes space. We represented in figure 5.6b the hidden causes dynamics induced by
the Gaussian mixture prior on mc, with σc = 0.1. As in the last sections, we also display example
trajectories starting from four initial hidden causes values.

Again, we consider two tasks using this structured configuration:
Itinerancy: As in the previous section, we hypothesize that by alternating between phases

characterized by low values of σc (for instance 0.1) and phases characterized by very high values of
σc (such that the prior influence is neglected),mc could exhibit itinerant dynamics that randomly
transition between basins of attraction.

Memory retrieval: To be able to retrieve the hidden causes value µk corresponding to
a given pattern, we additionally consider the influence of the inference process on the hidden
causes dynamics. In figures 5.7a and 5.7b, we display the hidden causes dynamics induced by the
bottom-up inference process, using respectively the first sequence pattern a and the third sequence
pattern c. Of the four displayed dynamics for mc, only two converge to the right mixture mean
(respectively µ1 and µ3). In figures 5.7c and 5.7d, we display the hidden causes dynamics resulting
by the combined influence the bottom-up inference process and the Gaussian mixture prior, using
respectively the first sequence pattern a and the third sequence pattern c. We can see that adding

90

(a) Dynamics of mc dictated by the bottom-
up inference using a target corresponding to the
first trained pattern (a).

(b) Dynamics of mc dictated by the bottom-
up inference using a target corresponding to the
third trained pattern (c).

(c) Dynamics of mc using both mechanisms us-
ing a target corresponding to the first trained
pattern (a), with σc = 0.1.

(d) Dynamics ofmc using both mechanisms us-
ing a target corresponding to the second trained
pattern (c), with σc = 0.1.

Figure 5.7: Influence of the inference mechanism onto the hidden causes dynamics, for the target
sequence patterns a and c.

91

the prior influence does not prevent the dynamics of mc to be stuck in local minima.
Again, we speculate that injecting additive noise in the hidden causes dynamics would help

mitigating this issue. However, this noise might also have a negative impact on the memory
retrieval process, by preventing the hidden causes dynamics to converge. Indeed, if the hidden
causes vectormc reached the correct key µ∗k, the retrieval process should stop and not escape this
basin of attraction because of the additive noise. To account for this problem, we suggest that at
each time step t, the noise amplitude σr,t is directly proportional to the prediction error on the
hidden state layer. When the memory retrieval process is stuck in the wrong value, we expect this
error to be significantly greater than when the memory retrieval process has reached the correct
key µ∗k. We propose to define the coefficient αr such that:

σr,t = αr‖εh,t‖1 (5.13)
where ‖ · ‖1 denotes the L1 norm. As such, αr becomes the new hyperparameter controlling

the general amplitude of the additive noise.

5.3.5 Summary of the proposed methods

Gaussian mixture
prior means µk

Stages Mechanisms Parameters

Unstructured

Learning No inference

Itinerancy
Random walk σr

Prior influence α, σc

Memory retrieval

Random walk αr

Inference αx, αh

Prior influence α, σc

Structured

Learning Inference αx > 0, αh > 0

Itinerancy
Random walk σr

Prior influence α, σc

Memory retrieval

Random walk αr

Inference αx, αh

Prior influence α, σc

Table 5.1: Summary of the proposed methods.

Table 5.1 provides a summary of the proposed methods. The only difference between the
structured and unstructured cases is that in the structured case we turn on the inference of the
hidden causes during learning.

The dynamics of mc can be influenced by three mechanisms. Whether we consider itinerant
dynamics, or memory retrieval dynamics, we assume that the hidden causesmc undergo a Gaussian
random walk of variance σ2

r , and that the hidden causes are influenced at each time step by the
prior p(mc) which shape is parameterized by σc. The difference between what we call itinerancy
and memory retrieval is whether we consider the influence of the bottom-up prediction error signal
for the inference ofmc. In itinerancy, we do not assume that a target is provided and the network
dynamics randomly transition between several hidden causes configurations. In memory retrieval,
a target x∗t is provided and the hidden causes dynamics are pulled in directions that minimize the
prediction error at each time step.

5.4 Results
In this section, we present the results obtained using the itinerancy and memory retrieval methods
we have presented. We conducted two experiments:

92

• Itinerancy using unstructured hidden causes values, using the PC-RNN-HC-M model.

• Memory retrieval using structured hidden causes values, using the PC-RNN-HC-A model.

5.4.1 Unstructured itinerancy

Figure 5.8: Simulation of itinerant dynamics in the unstructured PC-RNN-HC-M model. Left:
Output trajectory generated by the model in mode A. The line colors in RGB values correspond to
the activations of the three neurons of c throughout the trajectory. Top-right: Average velocity
of the hidden state according to its average value throughout the trajectory. Middle-right:
Evolution of the three hidden causes neuron activations over time. Bottom-right: Evolution of
the σc coefficient over time.

We start by experimenting with itinerancy in the unstructured case. We first train the PC-RNN-
HC-M model to generate three cyclic patterns for the three hidden causes values µ1 = (1, 0, 0),
µ2 = (0, 1, 0) and µ3 = (0, 0, 1). The PC-RNN-HC-M model is dimensioned with dc = 3, dh = 100
and dx = 2. The target cyclic patterns correspond respectively to a circle, a square and a triangle
in 2D. The network is trained with BPTT using a learning rate λ = 0.001. After training, the
PC-RNN-HC-M model has learned a different cycle attractor for the hidden state dynamics, for
each value of mc, and learned the output weights transforming each attractor into the desired
output pattern.

We implement the itinerancy method described previously, with σc varying according to the
function σc(t) = 0.2·exp{2 sin(t/100)}. This function periodically alternates between phases where
σc is low, and phases where σc is high. The results are recorded in figure 5.8, and can be better
visualized in this video. They were obtain using σr = 0.01 and α = 0.1 as parameters. The source
code for this experiment is available on GitHub1.

We can observe that the RNN switches between the three attractors. When σc is high, the
hidden causes converge towards the center value (13 ,

1
3 ,

1
3). This center value corresponds to the

hidden state dynamics and output dynamics depicted in gray. This value of the hidden causes
seems to correspond to a point attractor for the dynamics ofmh, which was not something directly
enforced by the training procedure. Starting from this configuration, when σc decreases, the hidden
causes fall into one of the three attracting configurations that were trained to correspond to the
three limit cycle attractors.

We want to verify whether the attractor switching behavior follows a uniform probability dis-
tribution or if some transitions are more likely to occur than others. We view the RNN as a

1https://github.com/sino7/random_itinerant_dynamics_in_pc_based_rnn

93

https://youtu.be/1slld0YA_i0

Figure 5.9: Markov chain and associated transition matrix for the itinerant dynamics in the un-
structured PC-RNN-HC-M model. Lines in the matrix correspond to previous states and columns
to next states. For instance, the estimated probability of switching from circle to square attractors
is 0.40.

Markov chain with three configurations. We record 2000 attractor transitions that we use to build
an estimation of the transition matrix of that Markov chain. The results are displayed in figure
5.9.

We can see that the probability of switching to a certain state seems independent from the
previous state. This result can be explained by the fact that the intermediary, neutral configuration
that the networks reaches before switching to a new configuration corresponds to a fixed point.
If we let enough time for the hidden state to reach this fixed point, it would no longer hold any
memory of the previous configuration.

We have shown how an RNN model implementing PC could exhibit attractor switching behav-
iors using an input noise signal. Here, we compare our results with other works aiming at modeling
this behavior.

The approach described in (Yamashita and Tani, 2008) and (Namikawa et al., 2011) requires
to train a separate RNN for each target sequence. In opposition, we have shown that our model
can embed different dynamics within one RNN, and as such should scale better to an increased
number of trajectories. On the other hand, one limitation of the model presented by (Inoue et al.,
2020) is that quasi-attractors have a set duration, and the dynamics they yield cannot last longer
than this trained duration before falling into a chaotic regime. In contrast, since our model relies
on real trained limit-cycle attractors, any periodical trajectory can be maintained for as long as
desired.

In order to draw a connection with CI, we have trained our PC-RNN-HC-M network to generate
cyclic patterns. This possibility was not discussed previously, but those results also show that cyclic
sequence patterns can be written in our sequence memory model.

5.4.2 Unstructured memory retrieval
Now, we depart from the itinerancy simulations and focus on the memory retrieval process. As
explained in the methods section, for memory retrieval the dynamics of mc are also influenced by
the bottom-up inference process.

For the following experiment, we train a sequence memory of p = 20 2-dimensional sequential
patterns of length 60 using the PC-RNN-HC-A model. The memorized trajectories are taken
from our handwriting data set, and thus correspond to sequences of (x, y) pen positions recorded
during the handwriting of Latin alphabet letters. During the training of each trajectory pattern
k (1 ≤ k ≤ p), the RNN hidden state is initialized using the same random-valued vector. The
hidden causes are initialized randomly during the first presentation of the sequence pattern to
learn. We turn on the inference of mc during training, and use the value of mc at the end of
the trajectory as initial value for the next presentation of the sequence pattern. Basically, mc is

94

seen as a model parameter trained during this learning process. For each trajectory (x∗1, · · · , x∗T)k,
we learn corresponding hidden causes mc,k. During memory retrieval, these k values are used
as Gaussian mixture means: µk = mc,k. This additional learning allows embedding the hidden
causes in a space of arbitrary dimension, and to capture regularities among the trajectories to
learn. We expect similar trajectories to have similar corresponding hidden causes after learning.
Hidden causes can be seen as learned representations of the trajectories.

During memory retrieval, we initialize the hidden causes without any prior knowledge of the
target pattern. The goal of the process in precisely to retrieve the hidden causes corresponding
best to the target trajectory. The joint influence of the bottom-up prediction error signal and
top-down prior distribution, together with additive noise, yield memory retrieval trajectories than
can be recorded as sequences of values ofmc. After each trial (i.e. a presentation of the full target
sequence), we record the inferred hidden causes value. The memory retrieval process stops when
the hidden causes reach a value associated with a low VFE evaluation. To achieve a low VFE,
the hidden causes value must be probable under the prior distribution, and must properly predict
the target sequence. We define a VFE threshold and record the number of trials necessary before
reaching a configuration that falls under this threshold. We call this number of trials the retrieval
time.

We conduct an hyperparameter search on the hidden causes dimension dc, the prior distribution
standard deviation σc, the update rates α and αh, as well as on the coefficient αr responsible for the
amplitude of the additive noise. We use the hyperparameter search method that we described in
the previous chapter. The scoring function for this hyperparameter search is the average retrieval
time as defined in the previous paragraph. For each possible hyperparameter configuration, we
train our PC-RNN-HC model for 1000 iterations using BPTT with a learning rate of 0.03, on the
20 trajectories of the handwriting data set. After training, we run a memory retrieval process
starting from mc = 0 for each of the p = 20 target trajectories. The average retrieval time on
these 20 retrievals is used to assess the quality of the hyperparameter configuration. If the memory
retrieval has not converged within the 1000 trials, we set the retrieval time to 2000 (as a way to
penalize these situations). The hyperparameter search finds the following optimal values for the
hyperparameter being optimized:

• dc = 2

• σc = 9.6× 10−2

• α = 8.5× 10−3

• αh = 1.9× 10−2

• αr = 2.6

Additional parameters of the PC-RNN-HC-A are set manually, using the following values:

• dh = 50

• τh = 50

• αx = 0.1

The source code containing the implementation of the memory retrieval algorithm is available
on GitHub2.

5.4.2.1 Memory retrieval dynamics

Since the optimal hidden causes dimension is dc = 2, after training, we can represent in a 2D space
the learned hidden causes representation for each of the target trajectory in the handwriting data
set.

Figure 5.10 displays these representations, as well as four memory retrieval trajectories for both
target patterns r and n. Each colored dot represents the value of the hidden causes at the end of
one complete trial of 60 time steps. To obtain trajectories that were easier to visually interpret, we
have slowed down by a factor of 2 the dynamics of the hidden causes variable, only for this figure.

2https://github.com/sino7/predictive_coding_for_memory_retrieval

95

(a) Memory retrieval with the target pattern r. (b) Memory retrieval with the target pattern n.

Figure 5.10: Hidden causes trajectories during memory retrieval for different target patterns using
the structured PC-RNN-HC-A model. The Gaussian mixture mean corresponding to the target
pattern is circled in black. In each figures, four trajectories starting from random initial hidden
causes are shown. Each trajectory is shown in a different color (blue, orange, green, red).

This was done by dividing by 2 the coefficients αh and α, and αr. Consequently, if a memory
retrieval trajectory seems to last for 20 trials in this figure, in practice it could last for 10 trials.

First, we can see that the learned representations carry some meaningful structure. Letter
sequential patterns with similar motion seem to have similar hidden causes representation. This
can be seen for instance with the representations of the letters b and h being very close. Both
these letters are written by first moving the pen down, and then drawing a loop on the right, this
loop being incomplete for the h. Over many different trained models, we always observe this pair
of letters in the hidden causes space.

Using the target trajectories corresponding to the letters r and n, we have obtained memory
retrieval trajectories that always converge to the correct Gaussian mixture mean. Figure 5.10a
shows memory retrieval trajectories that converged in less than 50 trials, except for the one rep-
resented in green, that started near the attracting mixture mean µz, and difficultly managed to
escape this basin. Figure 5.10b shows particularly bad memory retrieval trajectories. We can see
that the red and orange trajectories are oscillating between the mixture means µr, µm and µu for
a long time before reaching µn. Still, in most cases, the memory retrieval converges to the correct
mixture mean in less than 13 trials (the median retrieval time is 12).

We can estimate transition matrices for the memory retrieval iterative process. In this case,
the memory retrieval iterative process can transition between attractor basins at each new trial.
For this reason, we can identify at each new trial which transition was performed by comparing
the current closest mixture mean with the closest mixture mean at the last trial. We count such
transitions on 1000 trials for 100 different trained models, and accordingly estimate the transition
matrices for each target pattern.

Figure 5.11 displays some of the obtained transition matrices. For the target patterns m and
p, we have estimated the transition matrices Mm and Mp. We also display these matrices at the
power of 2 and 5, to show an approximation of the transition probabilities after respectively 2 and
5 trials. On the left, we can see that for the target pattern m, the retrieval mechanism is attracted
towards the means µn, µm and µw almost indistinctively. After 5 transitions, we can see that
the trajectory should have converged to one of these three attractors. On the right, we can see a
better situation with the target pattern p, where only the correct mixture mean µp seems to be
attracting the memory retrieval trajectories.

We can conclude from these results that the iterative process we have proposed can be used to
properly retrieve patterns written inside our sequence memory.

96

(a) M1
m (b) M1

p

(c) M2
m (d) M2

p

(e) M5
m (f) M5

p

Figure 5.11: Transition matrices for 1, 2 and 5 transitions for the target patterns m and p in
the structured case for 20 temporal patterns, obtained by simulating 20 memory retrievals on
500 different trained models. The list of temporal patterns has been permuted to highlight the
formation of some clusters. For instance, the patterns corresponding to the letters v, r, n, m, w,
u share some similarities that are reflected in the transition matrices.

97

5.4.2.2 Memory retrieval using approximate targets

In the previous experiment, the target pattern provided for memory retrieval always exactly
matched one of the learned patterns in the sequence memory. It would also be interesting to
assess the performance of this retrieval method when the target sequence comprises errors, or is
incomplete. The goal of this memory retrieval process is indeed to be able to recover a memory
item starting from an approximate version of this item. In this subsection, we conduct two addi-
tional experiments using this model. In the first experiment, we apply an additive noise on the
target trajectory. In the second experiment, we mask a part of the trajectory.

(a) (b) (c)

Figure 5.12: Illustration of the effects of additive noise or masking onto the target trajectories.
Each dot represents one point of the sequence. The three sequences correspond to the patter a.
On the second trajectory we have applied an additive noise of standard deviation σnoise = 0.1. On
the third trajectory we have masked 80% of the points.

Figure 5.12 shows the effect of these two modifications onto the information available for mem-
ory retrieval. The correct trajectory for the sequence pattern a is shown on the left. In the middle
is shown the same trajectory with an additive noise of standard deviation σnoise = 0.1 on each
point. On the right is shown the same trajectory with only 12 points over the 60 points initially
composing the trajectory.

First, we study the effect of an additive noise applied to the target trajectory. For each point of
the target trajectory, we add a random 2D value sampled from a bivariate Gaussian of mean 0 and
covariance σ2

noiseI2. We vary the parameter σnoise and measure how this influences the retrieval
time using our method.

0.0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
Noise standard deviation σnoise

20

50

100

200

500

1000

Re
tri
ev
al
 ti
m
e

Unfinished retrievalsMedian with 1st and 3rd quartiles

Figure 5.13: Distribution of the memory retrieval time according to the noise standard deviation
σnoise.

98

Figure 5.13 displays the distribution of the retrieval time according to the noise standard
deviation σnoise. Since we limit the duration of the retrieval process to 200 trials, there are
some memory retrieval attempts that never converge. As such, evaluating the model performance
according to the average retrieval time is impossible. For this reason, we instead measure the
median retrieval time, as well as the first and third quartiles of the retrieval time distributions.
This figure represents the evolution of these quantities according to σnoise. The medians, first
quartiles and third quartiles are displayed on a logarithmic scale. We can see that the retrieval
mechanism is not significantly impaired by the noise for values σnoise ≤ 0.1. However, when
further increasing the noise amplitude, we can see that the proportion of unfinished retrieval rapidly
increases. We believe that this is due to the VFE threshold that we have defined. Reaching this
threshold indicates that the agent has recognized the provided target pattern. Applying too much
noise onto the target prevents this method from converging. We could artificially increase the VFE
threshold, but in this case the memory retrieval might accept hidden causes configurations that
do not actually correspond to a prior mixture mean µk, which we want to avoid. Still, we can
conclude that the memory retrieval process that we have proposed can retrieve the correct pattern
even with approximate versions of the actual memory item.

We now turn to the second experiment. This time, the points composing the target sequence
pattern are not modified, but only a proportion of those are provided to the agent for memory
retrieval. To implement this, we simply set to 0 the prediction error obtained with data points
that we want to be hidden. This way, the PC-RNN-HC-A model cannot use this information to
update the hidden causesmc. We note the proportion of hidden data points pmask, and study the
influence of this value onto the retrieval time.

2/60 3/60 6/60 12/60 60/60
Ratio of available information (1-pmask)

101

102

Re
tri
ev

al
 ti
m
e

Median with 1st and 3rd quartiles

Figure 5.14: Distribution of the memory retrieval time according to the mask probabilities pmask.

Figure 5.14 displays the distribution of the retrieval time several values of pmask. We can see
that masking 90% of the information does not seem to significantly impact the retrieval time. To
better understand how much information is available to the agent, we can count the number of
data points actually used for memory retrieval. We can see in this figure that the memory retrieval
process can still converge most of the time using only two points among the 60 points composing
the trajectories.

5.4.2.3 Scaling memory retrieval

Finally, we can question whether this memory retrieval method can scale to larger sequence mem-
ories. Using p = 20 sequence patterns of the handwriting data set, we obtained a median retrieval
time of Tr = 12. Using a more simple program iterating over all possible keys, the memory re-
trieval would need between 1 (in the best scenario) and p (in the worst scenario) trials. Even
though the method we have presented can benefit from a learned structure of the hidden causes
representations of the memory items, it does not outperform this simple search algorithm.

99

Still, it is possible that the proposed method scales better to large sequence memories. Con-
sequently, we perform an additional experiment where we learn larger sequence memories on the
simple data set presented in the previous chapter. We train sequence memories of size 15, 30,
60, 120 and 240. For each sequence memory, we ensure that the number of model parameters
(using the PC-RNN-HC-A) is proportional to p, and run an hyperparameter search to find the
best hyperparameters for memory retrieval. We also authorize larger sequence memories to train
for a longer time.

15 30 60 120 240
Sequence memory size p

2

5

10

20

50

100

200

500

Re
tri
ev

al
 ti
m
e

y= x/2
Median with 1st and 3rd quartiles

Figure 5.15

Figure 5.16: Distribution of the memory retrieval time according to the number of temporal
patterns p in the sequence memory.

Figure 5.16 displays the distribution of the retrieval time for several sequence memory sizes.
We also display in black the median retrieval time that we would obtain with a simple search
algorithm that scales linearly with p.

We can see that our memory retrieval method seems to scale linearly with the size of the
sequence memory. This suggests that the learned structure does not properly guide the retrieval
mechanism in the same way that sorting a list makes it possible to have search algorithms that
scale logarithmically with the list length. The failure of our memory retrieval algorithm to scale
sublinearly could be the result of several things. For instance, the large number of patterns
in memory could negatively affect the gradient descent on the prediction error. By increasing
the number of patterns, the dynamics induced by the bottom-up inference might become more
imprecise at guiding mc towards the correct value. This would make the influence of the bottom-
up prediction error signal almost useless at retrieving the correct key, transforming our memory
retrieval algorithm as a naive random walk with no preferred direction.

5.5 Discussion
Compared to the models we have derived in the last chapter, this model involves more complex
computations. In particular, the hidden causes update involves the computation of the true poste-
rior probability p(Z|mc,t) at each time step t. Our model might scale better to very large sequence
memories if we approximate this mechanism. The role of this mechanism being to pullmc towards
preferred values µk, it could for instance be replaced with a Hopfield network with states of low
energy corresponding to the values µk.

A weakness of the method we have presented is that the retrieval time seems to scale linearly
with the number of patterns written in the sequence memory. We speculate that this issue comes
from the inefficiency of the gradient descent on VFE that takes place in our models. These
difficulties could be due to natural limitations of PC. The derivations of the PC models assume

100

that the recognition densities q(H) and q(C) are unimodal and can be parameterized using mh

andmc. For our memory retrieval task, it could be more efficient to have a multimodal recognition
density q(C) that jointly considers several possible values for C.

The inefficiency of the inference mechanism in PC could also more simply come from the
fact that both inference and generation are supported by the same RNN model. In comparison,
direct classification of sequences (or sequence representation) can be performed using another RNN
instance. We have imposed ourselves with the constraint that the encoding (inference) and decoding
(generation) should be performed on a unique model. Relaxing this constraint, we could use one
RNN for the encoding (x∗1, · · · ,x∗T)→ c, and another one for the decoding c→ (x1, · · · ,xT). This
type of architectures has been widely used for sequence-to-sequence (seq2seq) tasks (Sutskever et
al., 2014), and also includes autoencoders.

Finally, the encountered difficulties might come from the dynamic nature of the RNN models.
If we were to consider feedforward neural architectures able to generate temporal patterns, such as
the CNN model presented in chapter 3, the inference mechanisms provided by PC might be more
efficient than with RNN-based generative models.

In summary, we believe that these limitations come from the inefficiency of the PC-based
inference method in RNNs. Directions of improvement could be to use feedforward models together
with PC, or to use another variational inference method, for instance relying on autoencoders.

Although our performances are not impressive, we have still shown that it is theoretically
possible to design robust reading mechanism for a long-term memory of temporal patterns using
PC-based RNN models. This reading mechanism is able to retrieve the correct memory item even
in the presence of noise or with a large proportion of missing information in the provided sequence.

101

Chapter 6

Motor trajectories learning

6.1 Introduction
In the previous chapters, we have studied most of the questions that we have raised about sequence
memories. We have proposed several RNN architectures based on the PC theory and investigated
their memory capacity, as well as the behaviors of our learning algorithms in a continual learning
setting. In the last chapter, we have developed iterative methods for memory retrieval by iterating
on these RNN models.

The question that we have left untouched until now is the problem of indirect supervision
for sequence memory learning. Indeed, in all our previous experiments, we have considered that
the temporal patterns (x∗1, · · · ,x∗T) to write into the sequence memory (through learning) were
directly available as target observations that the generative memory tries to predict. If we could
additionally endow our models with the ability to construct adequate temporal patterns without
relying on this direct supervision, the resulting sequence memory models could for instance be
used to store motor trajectories with no direct supervision in the motor space. In this chapter, we
approach this question from the perspective of Active Inference (AIF), a mathematical framework
embedded in the FEP theory that frames action (or motor control) as another process driven by
the minimization of VFE (or related quantities, as we will see). Since this framework is based
on the same theoretical ground, it aligns nicely with the models we have derived so far. Building
upon our previous work, we design several models for motor sequence memory learning applied to
a handwriting task for a robotic arm. We show that learning methods based on AIF and PC can
be used to build a robust motor sequence memory of handwritten patterns (for instance, letters)
using a visual teaching signal.

The chapter is organized as follows. In section 6.2, we provide a literature review of the AIF
theoretical framework. In section 6.3, we build upon previously existing methods to design a prin-
cipled framework for motor sequence memory learning using AIF. Sections 6.4 and 6.5 report two
published works attempting to implement this proposed framework respectively in an unsuper-
vised learning setting and an imitation learning setting. Finally, we conclude this chapter in 6.6
by discussing our findings, the possible improvements of our models, and open questions.

6.2 Related work
Artificial and biological agents have to learn how to choose among different possible courses of
action in an adaptive manner. Decisions can be driven by different factors, that are usually
classified into two categories: extrinsic (or pragmatic, instrumental) and intrinsic (information-
seeking, epistemic) rewards. These different drives for decision-making can be composed in many
ways, and actions can be motivated by different drives at the same.

The question of decision-making has been studied in depth in the field of Reinforcement Learn-
ing (RL) with great successes in the last decades, for instance in playing video games (Mnih et al.,
2013; Berner et al., 2019) and board games (Silver et al., 2016; Silver et al., 2017; Schrittwieser
et al., 2020), robot control (Nagabandi et al., 2020), visual navigation (Zhu et al., 2017; Mirowski
et al., 2016). In this framework, an agent is driven by the maximization of its expected return,
which is defined as the expected sum of (possibly discounted) rewards over time. Many different

102

Figure 6.1: Illustration of surprise minimization through action.

methods have been proposed in RL to address this question, that we could classify according to
several criteria: whether the agent learns an estimation of the expected return at each state (i.e. a
value function), whether the agent exploits a learned model of the environment, whether policies
are trained while being used by the learning agent, whether they assume that the environment is
fully observable, etc.

In contrast, the Active Inference Framework (AIF) has been introduced in the FEP literature
as a different approach to the question of learning adaptive behavior. This framework suggests
that an agent acts in order to maximize evidence for a generative model naturally biased towards
its preferences. To draw a parallel with RL, sensory observations that are likely under the agent’s
model can be considered more rewarding, and inversely, sensory observations that are surprising
for the agent are seen as less rewarding. Figure 6.1 illustrates how an agent could minimize
this surprise through action. The agent acts in order to fulfill its initially erroneous prediction.
Because the agent’s sensory prediction depicts an a, it actively tries to make this prediction come
true, here by transforming the c into an a. This process minimizes surprise, since after acting on
its environment the agent’s prediction matches its observation.

103

6.2.1 Initial formulation of AIF
In early formulations of AIF (Friston and Kilner, 2006; Friston et al., 2009; Friston et al., 2011), ac-
tions are directly inferred through immediate minimization of VFE. The agent’s generative model
predicts proprioceptive sensory observations. VFE in this case can be minimized through percep-
tual inference, for instance using the PC mechanisms we have introduced earlier, but can also be
minimized through action. Indeed, another way to minimize VFE is for the agent to act on its body
in order to fulfill its proprioceptive prediction. This type of inference of motor commands has been
related to classical reflex arcs, where reflexes are the immediate reactive actions to unpredicted
proprioceptive states.

This formulation of AIF has been applied in several works. Recent implementations of this
principle are presented in (Oliver et al., 2019; Lanillos, Cheng, et al., 2020). They use VFE as an
objective function for the control of a humanoid robot for reaching and visual tracking. Dynamics
on the internal state h are enforced by defining attractors o∗ in the sensory space that should be
reached. This is done using joint positions as internal states, and an inverse model to determine
the internal states corresponding to desired target positions. By trying to fulfill the predictions of
this biased generative model, the robot achieves the desired motor trajectories, with more accuracy
than using inverse kinematics models. A similar scheme is proposed in (Pezzato et al., 2020) on a
7-DOF robot arm. The joint angle positions of the arm are again used as internal states, however,
the dynamics of the internal states are enforced to reach target configuration h∗ directly in the
internal state space,and thus, in turn, in the joint angle position space. They show that using AIF
with an approximate forward model and second-order generalized coordinates provides superior
performances and lower computational cost than a state-of-the-art controller used for reference.
Enforcing the internal state’s trajectory to converge towards desired configurations h∗ can actually
be framed as having hidden causes corresponding to this target configuration h∗ directly influencing
the dynamics of the internal state. This formulation was for instance used in one of the first
implementations of AIF for robot control (Pio-Lopez et al., 2016). In contrast, (Meo and Lanillos,
2021) do not use proprioceptive information as latent states, but instead, learn a multimodal
VAE to model the relation between latent state and visual and proprioceptive information. Still,
behavior is driven by desired proprioceptive states and not goals defined in another modality (here,
visual), which facilitates the control process. For a recent and more complete review of existing
implementations, we refer to (Ciria et al., 2021).

These approaches are limited by the fact that the agent behavior is primarily dictated by a
biased generative model directly predicting what joint angle positions should be. The AIF frame-
work provides reactive mechanisms to achieve this prediction, but cannot be used without having
goals directly provided as desired joint angle positions. For agents evolving in complex realistic
environments, it seems unlikely that behavior is entirely prescribed through generative models pre-
dicting proprioceptive observations, innately biased towards successful behavior. Instead, goals are
more likely to be defined using a biased generative model on other modalities such as exteroceptive
(e.g. low probability of smelling or tasting something that smells or tastes bad) or interoceptive
(e.g. low probability of feeling hunger) observations. In such a situation, since the supervision
provided by the biased generative model does not directly involve proprioceptive observations, the
agent would need to understand how its actions affect exteroceptive or interoceptive observations
to properly minimize VFE. To achieve this, internal models relating actions to their sensory conse-
quences would need to be learned. An instance of the described approach is presented (Sancaktar
et al., 2020). In this work, the authors control a robotic arm using VFE minimization based on
visually defined goals. They use CNNs in order to predict the visual consequences of actions, and
actions are inferred through BP of the prediction error through the CNN. In fact, as we will see
shortly, BP based approaches extend very naturally to the more complex situation dealing with
temporal actions and goals.

6.2.2 Expected free-energy
Other, more recent formulations of AIF (Friston et al., 2015; Friston et al., 2016) account for
temporally extended actions, i.e. action sequences, sometimes also called policies (although not
exactly equivalent to policies in RL). Since the VFE expression depends on the current observation,
choosing a course of action that minimizes future VFE would require knowledge of future obser-
vations. Consequently, instead of minimizing the VFE objective function, these methods estimate

104

a quantity called Expected free-energy (EFE), corresponding to a cumulative sum of future VFE
estimations. The sequence of actions is then optimized in order to minimize this quantity. If we
denote by π = (m1, . . . ,mT) the sequence of actions (or motor commands), ot the observation at
time t, and ht the hidden state of the generative model at time t, we can express the EFE at time
step t = τ as:

EFEτ (π) = −Eq(oτ ,hτ |π)[log p(oτ)]︸ ︷︷ ︸
Instrumental value

−Eq(oτ)
[
DKL[q(hτ |oτ , π)||q(hτ |π)]

]︸ ︷︷ ︸
Epistemic value

(6.1)

where p(oτ) denotes the prior probability distribution on observations directly encoding the
agent’s preferences, and q(oτ ,hτ |π) denotes the recognition probability distribution on future ob-
servations and states, that implement the agent’s predictions knowing the policy π. This expression
is composed of two negative terms, and as such minimizing EFE corresponds to maximizing both
terms. The first term, the instrumental value, measures how likely the expected observation oτ
under q is according to the prior preferences p. This value is maximized when the policy π is
associated with expected observations that are preferred according to the biased generative model
p. This instrumental value can be directly related to the external reward used in RL.

The epistemic value measures the expectation of information gain according to the observation
oτ . Maximizing this term would encourage the agent to perform actions that lead to observations
bringing new information to the agent about its latent state hτ . Many different formulations of in-
trinsic motivation have been proposed (Oudeyer and Kaplan, 2009; Barto et al., 2013), suggesting
to drive actions for instance by the research of surprise (Sun et al., 2011), novelty (Houthooft et al.,
2016), empowerment (Klyubin et al., 2005), diversity of effects (Daucé, 2020), reducible prediction
errors (Schillaci et al., 2020), or competitive self-play (Baker et al., 2019). An advantage of EFE
is that it naturally combines an intrinsic (epistemic) value and an extrinsic (instrumental) value,
which has the benefit of evaluating reward-seeking (exploitation) and epistemic foraging (explo-
ration) behaviors using the same information-theoretic currency. Although it makes it possible
to evaluate intrinsic and extrinsic rewards using the same measurement unit, it does not provide
guidelines on how to balance these two drives.

While there are some works in the literature implementing planning with AIF, it has mostly
been applied to toy examples in discrete state spaces (Friston et al., 2015; Friston et al., 2021;
Tschantz et al., 2020b). Recently, some approaches have tried using deep neural networks as
function approximators for the generative and recognition models in order to scale AIF to more
complex problems (Millidge, 2020; Tschantz et al., 2020a; Çatal et al., 2020; Çatal et al., 2021).
In this line of research, the work presented in (Çatal et al., 2021) is the first (to our knowledge) to
apply AIF on a complex robotic task requiring perceptual inference (using VFE) for mapping and
localization, as well as action planning (using EFE) for navigation.

6.2.3 Current discussions
Since AIF is a recent field of research, the theory and its implications are still being debated in
the literature. Here we shortly present two points of discussion regarding the EFE formulation of
AIF, and the relevance of AIF as a theory of adaptive behavior.

Coming back to the EFE formulation expressed in equation 6.1, it could come as a surprise
that minimizing an estimation of future VFE would result in an objective function that directly
preconizes the research of information gain. Initially, the VFE was derived as an upper bound
on surprise, and only used as a proxy measure that could be minimized more efficiently. If AIF
frames action as minimization of future surprise, then we would expect this scheme to encourage
surprise avoidance over novelty search. Motivated by this apparent contradiction, some authors
argue that the EFE might not be the natural extension of the VFE, and instead propose other
objective functions more closely related to the minimization of surprise. For instance, (Millidge
et al., 2021) formulate a novel objective function labeled Free-Energy of the Future (FEF) that
can be derived more naturally starting from the expression of VFE.

FEFτ (π) = −Eq(oτ ,hτ |π)[log p(oτ |hτ)]︸ ︷︷ ︸
Accuracy

+Eq(oτ)
[
DKL[q(hτ |oτ , π)||q(hτ |π)]

]︸ ︷︷ ︸
Complexity

(6.2)

Contrary to the EFE objective function, minimizing FEF encourages behaviors towards obser-
vations that keep q(hτ |oτ , π) close to q(hτ |π), and therefore penalizes novelty. This decomposition

105

of FEF into two terms called accuracy and complexity is directly analogous to the decomposition of
VFE, and it can be proved that this quantity actually provides an upper bound on expected future
surprise. Even though this objective function might at first look like it would never encourage
exploration, it might still be the case. Indeed, minimizing surprise should induce an agent to seek
out states likely under its generative model, as well as states that would make the generative model
(through perceptual inference and learning) able to predict the future states more properly. Since
an agent minimizes an expected (possibly discounted) sum of future values, policies with a ten-
dency to explore could be chosen if this translates in better exploitation (accuracy or instrumental
value) in the long term.

There has been some criticism in psychology about casting surprise as a fundamental drive for
action. One famous argument against AIF is known as the dark room problem (Friston et al., 2012;
Sun and Firestone, 2020). Basically, it states that if the end goal pursued by biological agents
was to minimize surprise, animals and humans would seek out regions of their state space (or
environment) where there is no variation in sensory observations, such as a dark room. As this is
far from properly describing the behaviors observed in animals and humans, this argument rejects
the possibility of AIF as a candidate theory of everything in psychology. Several counterarguments
have been advanced in response. First, it is argued that the prior preferences distribution p(o) of
biological agents is naturally biased and cannot be overwritten through learning. These biological
prior preferences could for instance encode the desire to eat, by assigning low probabilities to
the interoceptive observation caused by hunger. Second, the expression of the EFE contains an
epistemic value term that encourages exploration and would drive the agent to avoid staying in the
dark room. Though, as we have said, this epistemic value term might not be in direct connection
with the original VFE objective function, which would in turn make this argument inadmissible.
Third, real-world environments are actually dynamic and there might not be any real dark room.
Staying in a region with totally predictable observations might be impossible, due to dynamic
interoceptive inputs (if I do not eat, I will feel hungry), or simply external dynamics caused by the
environment and other agents. Interestingly, (Berseth et al., 2021) have shown that an RL agent
with an intrinsic drive to minimize surprise, and no other form of reward, could learn complex
behaviors in environments that are naturally unstable.

6.2.4 Direct minimization of prediction error
Other related approaches have suggested directly minimizing surprise or prediction error using
BPTT, without relying on a free-energy-based objective function. Based on target sensory obser-
vations and a generative model trained to perform sensory prediction, it is possible to infer latent
states of the generative model using prediction error regression (Ahmadi and Tani, 2017). Action
can be added to this scheme in different ways, which are represented in figure 6.2. In (Ahmadi
and Tani, 2017), the target observations are directly provided in the proprioceptive space, and
thus actions simply correspond to proprioceptive predictions. This could be implemented using
any RNN architecture predicting motor commands (or actions), as represented in figure 6.2a. In
(Otte et al., 2017; Butz et al., 2019; Jung et al., 2019), action is considered as a latent variable of
generative models predicting sensory (exteroceptive) observations, as represented in 6.2b. Using
target sensory states and BPTT, it is possible to infer actions that minimize future prediction
error. Finally, (Mochizuki et al., 2013; Hwang et al., 2020; Matsumoto and Tani, 2020; Ohata and
Tani, 2020) consider generative models of the form represented in figure 6.2c. These models can be
trained to jointly predict motor commands and associated sensory observations by interacting with
the environment, either using enforced motor trajectories (kinesthetic teaching) or motor babbling.
For planning, the model can backpropagate prediction error information coming from the sensory
level to infer the hidden state of the generative model. Motor commands corresponding to the
desired sensory outcomes are then predicted using this inferred hidden state. All three of these
conceptual architectures can be used to find motor commands associated with desired sensory out-
comes, but only the last two can support indirect supervision not relying on target proprioceptive
states.

The drawback of these models is that actions are driven by target sensory observations that are
not a by-product of the agent’s biased generative model, as suggested by AIF. To better anchor
these approaches in the AIF framework, we suggest in section 6.5 including a separate generative
model for desired sensory states that can act as a rail guiding learning and inference of motor
commands.

106

(a) (b) (c)

Figure 6.2: Different conceptual architectures using BPTT to find motor commands associated
with minimal prediction error. Bold squares denote the modality (visual or motor) on which
supervision is available in the form of target values. The red-dashed arrows represent the BP of
prediction error for inference of the latent variables.

6.3 Proposed framework
Our objective in this chapter is to extend AIF in order to learn a long-term memory of motor
temporal patterns. So far, we have seen how AIF could cast surprise minimization as a drive for
action, making it possible to retrieve motor commands corresponding to desired sensory obser-
vations predicted by a biased generative model. To build a sequence memory of motor patterns,
our architecture needs to include a generative model of motor patterns. The models following the
general structure described in figure 6.2c already include such a generative model. However, our
intuition is that the forward model formulation of AIF (represented in figure 6.2b) is more natural
and might be more powerful.

As such, we build upon this general structure and add another RNN generating sequences of
motor commandsmt. Additionally, we have expressed that to better align with the AIF framework,
the agent should be equipped with a biased generative model for sensory observations. Adding
these two components, we propose the general architecture represented in figure 6.3a.

In the next sections, we present our attempts at implementing this framework for the learning
of motor sequence memories, as well as for the dynamic control of motor trajectories. The two
models we build can be seen as simplified versions of this general framework, as represented in
figures 6.3b and 6.3c. The first attempt proposes a learning algorithm able to build a repertoire
of motor trajectories using random exploration through goal-babbling. In the second attempt, the
visual (biased) model is first trained to generate a repertoire of target trajectories, that we suppose
are provided in the visual space by a teaching agent. Then, using only internal simulations (plan-
ning), the described architecture is able to learn a repertoire of corresponding motor trajectories.
Additionally, this model is equipped with control mechanisms allowing to dynamically correct the
motor trajectories in the presence of external perturbations. The next two sections provide the
detailed methods and experiments for these two architectures.

107

(a) General framework.

(b) Proposed architecture for the learning of a
motor sequence memory (Annabi et al., 2020).

(c) Proposed architecture for the learning and
dynamic control of a motor sequence memory
(Annabi et al., 2021b).

Figure 6.3: Proposed AIF architectures.

108

6.4 Autonomous learning of motor trajectories with AIF
The first work we present in this chapter does not implement planning for action selection. In-
stead, actions or action sequences, are corrected a posteriori after observations of their sensory
consequences. This work thus puts a stronger focus on learning, and aims at training a long-term
memory of motor sequential patterns, with no consideration about the adaptation properties that
could be brought by dynamic inference of actions.

We consider an autonomous learning setting where no external supervision, in the form of
reward or demonstration, is available to the agent. We explore the problem of building a repertoire
of motor trajectories in a task-agnostic fashion, using an intrinsic drive for the agent to learn
a repertoire that bests cover its state space. We suppose that a suitable repertoire of motor
trajectories is one that can enable the agent to reach a diverse set of states.

To build this repertoire, the agent must at the same time learn a discrete set of states that
properly cover its state space, and the motor trajectories to reach these states. We experiment
with this idea using a simple handwriting environment, where a 2-DOF robotic arm draws simple
trajectories. The agent controls the joint angle positions of the robotic arm, and perceives its
environment through visual observations corresponding the the resulting drawing. We thus assume
that the agent’s environment is fully observable, and propose to perform direct perceptual inference
using a Kohonen self-organizing map (Kohonen, 1982). We show how the representation provided
by a Kohonen map can be seen as a categorical recognition probability distribution that minimizes
the accuracy term in the expression of VFE. Additionally, the Kohonen map builds a repertoire of
states that properly covers the state space of the agent, making this model particularly fit for our
problematic of motor repertoire learning.

The agent learns motor trajectories reaching these states by optimizing the initial state of an
RNN generating a sequence of motor commands, taking inspiration from the learning algorithm
presented in the INFERNO model (Pitti et al., 2017). The choice of state to reach is random and
renewed at each trial, the agent thus implements a form of goal babbling (Jacquey et al., 2019)
to guide the exploration of its state space and the development of its motor skills. Contrary to
models using the EFE as an objective function, we do not perform planning and only optimize the
action plan a posteriori, through a learning method that minimizes the VFE objective function.

6.4.1 Methods

Figure 6.4: Architecture for the autonomous learning of motor trajectories.

Figure 6.4 represents the proposed architecture. The dashed lines represent implicit probability
distributions between the variables that are not directly related to neural computations. The agent
first samples an index k uniformly from its repertoire of motor trajectories. The RNN takes as
input at time t = 1 the one-hot vector activated on the k-th dimension. In other words, the initial
hidden state of the RNN h1 corresponds to the k-th column of the RNN input weights. The RNN
generates and executes a sequence of motor commands (m1, · · · ,mT). The resulting observation
o, at the end of the motor sequence, is provided as input to the Kohonen network, that finally

109

classifies this observation into a categorical representation zi.
We consider two mechanisms that implement free-energy minimization: perceptual inference in

the Kohonen network, and learning of the motor RNN input weights.
Kohonen network: Kohonen maps are a type of neural networks parameterized by a set of n

input prototypes. When presented with an observation o, such networks compare the distances of
all the prototypes with regard to o and activate the neuron in the output layer z whose index is
the index of the prototype closest to o, denoted i∗ . Learning in such networks consists in updating
the set of prototypes into a direction that better describes the current observation o. The Kohonen
map used in our architecture is described by the following equations:

i∗ = argmin
i<n

(‖Wi − o‖22) (6.3)

W ← (1− λ) ·W + λ ·N(i∗)� o (6.4)

whereW is a matrix of dimension (n, do) and n is the both the size of the repertoire of Kohonen
prototypes and the size of the motor trajectories repertoire. The learning rule is weighted by a
learning rate parameters λ. The neighborhood function N : [0, n − 1] → [0, 1]n also ponders this
update rule for each index i, depending on i∗. This function can be used to endow the Kohonen
map with a certain topology. In our case, we consider a 1-d cyclic topology. The neighborhood
function N(i∗) is maximum on the dimension i = i∗ and decreases exponentially according to the
distance with regard to the winner neuron index i∗. This exponential decay is parameterised by a
neighborhood width σ2

k.
Free-energy derivations:
We use free-energy minimization as the strategy to train the input weights. What follows is a

formalization of our model using a variational approach:

• p(z) is the prior probability over states. Here we propose using a softmax, parameterised by
β > 0, around the sampled index k.

p(Z = zi) =
exp(−β|k − i|)∑
j exp(−β|k − j|)

(6.5)

• p(o|z) is the state observation mapping. We suppose that the observation is an image com-
posed of do pixels. For simplicity, we make the approximation of considering all pixel values
as independent. We choose to use Bernoulli distributions for all pixel values ol<do ∈ {0, 1}.
Since all pixel values are considered independent, the probability distribution over the whole
observation can be factored as:

p(o|Z = zi) =
∏
l<do

W ol
i,l(1−Wi,l)

1−ol (6.6)

where Wi,l is the value of pixel l of the filter i of the Kohonen map.

• q(z) is the recognition probability distribution over states, and depends on the observation
o. Here we define q(z) to be the one-hot distribution over states such that q(Z = zi) = δi∗,i,
where i∗ is the index of the Kohonen neuron with the highest activation (i.e. whose filter is
the closest to the observation).

We can now derive the free-energy computations using this model:

F (o) = DKL(q(z)||p(z))−
∑
i<n

q(zi) log(p(o|zi)) (6.7)

=
∑
i<n

q(zi) log
q(zi)

p(zi)
−
∑
i<n

q(zi) log(p(o|zi)) (6.8)

= − log(p(zi∗))− log(p(o|zi∗)) (6.9)

= β|k − i∗| −
∑
l<do

{
ol log(Wi∗,l) + (1− ol) log(1−Wi∗,l)

}
+ C (6.10)

110

where C is constant independent from the observation o and the recognition distribution cate-
gory i∗.

The first term of the VFE in equation 6.7 is a quantity called complexity. It scores how complex
the approximate posterior is compared to the prior. It decreases when q(z) and p(z) are close. In
our case, it is minimal when i∗ = k, meaning that the category chosen by the Kohonen map is
the one with the highest prior probability. Minimizing complexity thus induces the motor RNN to
generate trajectories that activate the right Kohonen category.

The second term is the (negative) accuracy. Accuracy measures how good the approximate
posterior probability q(z) is at predicting the observation o. Here, it increases when the Kohonen
filter of the winner neuron i∗ is close to the observation. Maximizing accuracy induces the network
to generate trajectories that are as close as possible to one of the Kohonen filter.

Summing those two quantities, minimizing VFE would result in observations that are close to
one of the Kohonen filter, and in this Kohonen filter being the one with the highest prior probability.
Using a variational formulation here allowed us to indirectly minimize surp without having to sum
over all possible states i < n, although this could be tractable for small repertoires.

We can note that the Kohonen map performs a one-shot perceptual inference of the observation.
Inferring the latent state corresponding to the filter closest to the input directly optimizes the
accuracy term of the VFE, although it does not take into consideration the complexity term. As
such, this perceptual inference process does not directly optimize VFE.

At each iteration, the agent samples an index k and performs the k-th motor trajectory of its
repertoire. The input weightsWi are optimized following a random search attempting to minimize
the VFE expression we have derived.

6.4.2 Results
The source code containing the implementation and training of this model is available on GitHub1.

We trained our model for E = 20000 iterations on n = 50 primitives. At each iteration, we
uniformly sample k from [0, n−1]. We train on the k-th primitive by adjusting the prior probability
as in (6) and optimizing xk. On average, each activation signal xk is trained on 400 iterations.
During this training, we gradually decrease the Kohonen width σk and the random search variance
σ2.

0 50 100 150 200 250 300 350
Training iteration

0

25

50

75

100

125

150

175

In
ac

cu
ra

cy
/C

om
pl

ex
ity

 (n
at

s)

Inaccuracy
Complexity

(a) Inaccuracy and complexity averaged on the
number of primitives n = 50, with β = 8. Each
primitive has been sampled on at least 360 iter-
ations, and on average on 400 iterations.

10 1 100

Beta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

di
st

an
ce

 a
t e

nd
 o

f t
ra

in
in

g

(b) Average distance |i∗ − k| between the acti-
vated neuron in the Kohonen iw and the primi-
tive index k, according to β.

Figure 6.5a displays the evolution of inaccuracy (negative accuracy) and complexity during
training.

During the first phase, when e < 12500, the random search has a very high variance. Conse-
quently, the trajectories generated and fed to the Kohonen map are very diverse and this allows
the Kohonen map to self-organize. Inaccuracy does not seem to decrease in this early phase. This
is because the Kohonen filters, initially very broad, are becoming more precise. The high variance
in the random search allows a decrease of complexity but still generates trajectories that are too
noisy to accurately fit the more precise Kohonen filters.

1https://github.com/sino7/motor_sequence_learning_som_aif

111

During the second phase, we decrease the variance of the random search. The system can now
converge more precisely and this causes a faster decrease of both inaccuracy and complexity.

We notice that the inaccuracy cannot decrease below a certain value. At first, we could think
that this is because the optimization strategy is stuck in a local optimum. However, we obtained the
same lower bound on inaccuracy over different training sessions. Since the optimization strategy
relies on random sampling, there is no evident reason to encounter the same local minimum. Our
explanation is that this lower bound is imposed by the Kohonen network neighborhood function.
Because the Kohonen width does not reach 0, the Kohonen prototypes are still attracting each
other and this prevents them from completely fitting the presented observations. In consequence,
the filters are always partly mixed with their neighbors and this causes the inaccuracy to plateau
at a value that depends on σ2

k.
Figure 6.5b shows the impact of the parameter β over the convergence. Looking at the derived

expression for the VFE, we can see that this parameter directly scales the overall complexity. For
low values of β, the random search is more likely to be stuck in local minima of free-energy, when
activating a Kohonen neuron closer to k corresponds to an increase in inaccuracy that exceeds
the decrease in complexity. We measured the average distance between the activated neuron in
the Kohonen and the primitive index k at the end of training for β ∈ {2−5, 2−4, 2−3, 2−2, 2−1, 20}.
The results, presented in figure 6.5b, confirm that the final states obtained with higher values of β
correspond to a more precise mapping between i∗ (winner index of the Kohonen map) and k (state
index enforced by the prior probability).

Figure 6.6: 9 of the 50 learned motor primitives and corresponding Kohonen filters: k ∈
{0, 5, 10, 15, 20, 25, 35, 40, 45}. The blue component of the image corresponds to the trajectory
that is actually being generated by the network for the activation signal xk. The red component
of the image corresponds to the Kohonen filter of index k.

Figure 6.6 displays some of the learned motor primitives. The blue component of the image
corresponds to the trajectory that is actually being generated by the reservoir network for the
activation signal xk. The red component of the image corresponds to the Kohonen filter of index
k. This figures allows visual confirmation of several points. First, the inaccuracy at the end of
training seems to indeed come from the blurriness of the Kohonen filters. Second, the filters and
motor primitive trajectories seem to follow a topology: the index of the primitive seems highly
correlated to the orientation of the route taken by the arm end effector. Finally, every trajectory
seems to be in the center of the corresponding Kohonen filter, which suggests that the minimization
of complexity successfully enforced the mapping between i∗ and k.

6.4.3 Discussion
This learning method is interesting from a developmental point of view since it implements goal-
babbling. Developmental psychology tells us that learning sensorimotor contingencies (O’Regan

112

and Noë, 2001) plays a key role in the development of young infants. In (Jacquey et al., 2019), the
authors present a review about sensorimotor contingencies in the fields of developmental psychology
and developmental robotics, in which they propose a very general model on how a learning agent
should organize its exploration of the environment to develop its sensorimotor skills. They suggest
that the agent should continuously sample goals from its state space and practice achieving these
goals. The work we present in this section aligns nicely with their suggestion, as our agent randomly
samples goals from a discrete state space, and optimizes the motor sequences leading to these
discrete states.

This first method addressing the question of motor trajectories learning does not implement
variational inference using the PC method. It was formulated in the beginning of this thesis in
an effort to conciliate previously studied learning algorithms (Pitti et al., 2017) with AIF. The
major drawback of this method is that the architecture does not infer the motor commands, only
learning is performed on the motor generative model. As we will see in the second proposed
method, online inference of the motor commands can translate into motor control and dynamic
adaptation properties for the motor model.

6.5 Dynamic control using visual supervision
Indeed, it would be interesting to build a long-term memory of motor commands that additionally
provides control mechanisms allowing the motor trajectories to be adapted dynamically. The pre-
viously presented model did not propose any control mechanism of this sort, because the objective
function was only defined at the end of the trajectory. Indeed, the VFE was only evaluated at the
end of each trial, using the observation caused by the complete motor trajectory.

Another drawback of the previous method is the number of training iterations that are needed
during training. Each training iteration requires interaction with the environment, which can be
limited in realistic settings. Consequently, we would like to endow our architecture with the ability
to perform internal simulations using a forward model. Such an architecture would be capable of
planning a course of action considering its future consequences, using only internal models. This
opens the possibility of constructing the motor temporal patterns to be stored in the sequence
memory, using minimal interaction with the environment.

Contrary to the previous work, we assume here that the agent receives supervision from a
teaching agent in the form of target trajectories in the sensory space (o∗1, · · · ,o∗T). Building a
repertoire of motor sequences is thus framed as an imitation learning problem, decomposed into
several learning tasks. First, we have seen in the previous chapters how to learn a sequence memory
for temporal patterns with direct supervision. This can be used to build a long-term memory of the
visual trajectories provided by the teaching agent. Then, using internal simulations with a learned
forward model, we show that we can build a sequence memory of motor patterns reproducing the
target visual trajectories. Interestingly, we report that our architecture can model a bidirectional
influence between the visual and motor models: motor commands can be dynamically inferred
from the visual prediction, and reversely, visual prediction can be dynamically adapted from the
predicted motor commands.

6.5.1 Methods
6.5.1.1 Architecture

Casting these ideas into the AIF framework, we propose to have two separate generative models
predicting sensory observations, as represented in figure 6.7. Our embodied agent perceives infor-
mation from its environment via visual observations that we denote ot, and can influence the state
of the environment ht via motor commands, denotedmt. We separate motor and visual pathways
into two distinct systems interacting with each other only via a control mechanism minimizing
prediction error on the visual level. Figure 6.7 displays an overview of our computational model
for motor sequence learning.

In early stage of its development, we assume that our agent acquires a suitable forward model
of its environment, denoted f , predicting its visual observation based on its motor command and
the previous state of the environment: ot ∼ N

(
f(ht−1,mt), σ

2
o

)
. Since our work does not focus on

the learning of such a model, we omitted the dependency according to ht−1 to simplify the graph
in figure 6.7a (for comparison, this dependency is represented in the general framework proposed

113

(a) (b)

Figure 6.7: Our bidirectional architecture for motor sequence learning and control.

in figure 6.3a).
Our agent’s training is composed of the following stages :

• Learning of the visual generative model, predicting trajectories in the visual space and en-
coding the agent’s preferences.

• Learning of a motor generative model according to the visual generative model and forward
model.

The complete architecture features two parallel instances of the PC-RNN-HC-M model that
we have derived in chapter 3. We have seen that this model can be trained to generate target
temporal patterns. For the visual instance of this model, training can thus be performed using
target trajectories provided in the visual space of the agent, for instance by a teaching agent.
However, there is no direct supervision in the motor space for the learning of the motor model.

6.5.1.2 AIF using a forward model

The first generative model pv(ot) encodes the agent’s biased beliefs about the environment. In our
case, this generative model is trained in a preliminary step to reproduce a set of visual trajectories,
supposedly provided by a teaching agent. The second generative model pm(ot) on the other hand,
predicts sensory observations by the intermediary of motor commands mt:

pm(ot,mt,h
m
t) = pm(ot|mt)pm(mt|hmt)pm(hmt) (6.11)

Following the PC theory, our PC-RNN-HC-M instances encode at each layer the means of each
recognition density. In other words, the activation of each layer represents the current best estimate
of the latent variable using the recognition density. As such, the outputs of both the motor and
visual pathways correspond to recognition density distributions qv(ot) and qm(ot). Thanks to the
visual prediction, we can define the expected VFE for the motor model as:

EV FEm(t) = Eqv(ot)
[
Eqm(mt,hmt)

[
− log pm(ot|mt,h

m
t)
]
+DKL

(
qm(mt,h

m
t |ot)||pm(mt,h

m
t)
)]

(6.12)
Reciprocally, the motor model also predicts future sensory observations, which makes it possible

to define the expected VFE for the visual model as:

EV FEv(t) = Eqm(ot)

[
Eqv(hvt)

[
− log pv(ot|hvt)

]
+DKL

(
qv(h

v
t |ot)||pv(hvt)

)]
(6.13)

For simplicity, we assume that qv(ot) and qm(ot) are Dirac delta distributions characterized
by the parameters ovt and omt , corresponding respectively to the observations predicted at time t

114

by the visual system and motor system. This greatly simplifies the computations of the outside
expectations in equations 6.12 and 6.13. We obtain the following expressions:

EV FEm(t) = Eqm(mt,hmt)

[
− log pm(ovt |mt,h

m
t)
]
+DKL

(
qm(mt,h

m
t |ovt)||pm(mt,h

m
t)
)

(6.14)

EV FEv(t) = Eqv(hvt)
[
− log pv(o

m
t |hvt)

]
+DKL

(
qv(h

v
t |omt)||pv(hvt)

)
(6.15)

These equations directly correspond to the expression of the VFE when the observation o∗t is
provided (observed). Basically, the proposed AIF implementation suggests using the observation
predicted from the visual pathway as target for the motor pathway, and vice versa.

Since the visual pathway is only composed of a PC-RNN-HC-M model, minimization of EVFEv
is naturally ensured by the dynamics of the network, provided that we use the observations pre-
dicted by the motor pathway as targets.

For the motor pathway, it is slightly more complex since prediction error information has to
flow bottom-up through the forward model. Since in this work we do not focus on the learning of
the forward model, we also disregard the associated local PC update rules. Instead, we directly
use the (supposedly known) gradient of the forward model to correct the motor command based
on the prediction error. The corrected motor commandm∗t is thus computed as a gradient descent
update on mt:

m∗t =mt − αm∇mt
‖omt − ovt ‖22 (6.16)

=mt − αm∇mt‖f(mt)− ovt ‖22 (6.17)

In opposition to optimal control theory, the corrected motor command m∗t is not obtained
through the use of an inverse model taking as input the target observation ovt . Instead, this value
is inferred through a one-step gradient descent update using the forward model.

It is also worth noting than in analogy with the different implementations of feedback con-
nections in the PC literature, we could also consider here random or learned feedback synaptic
weights. Additionally, the forward model can very well comprise several layers, or other input vari-
ables (such as a representation of the state of the environment). The PC scheme can be applied
to arbitrarily deep networks and the prediction error information transported bottom-up into the
hierarchy.

As a proof of concept, we assume here that the forward model learned by the agent perfectly
simulates the environment, and that the associated feedback connections perfectly compute the
gradient of the forward model.

6.5.2 Results
In this subsection, we experiment with the complete architecture presented in figure 6.7. Figure
6.7b represents our experimental set up for this experiment. The agent evolves in an environment
with which it can interact through sensors and actuators. Since we focus here on motor skill
learning, we simplified the visual space of our agent by already decoding the position of the agent’s
end-effector from its visual input. In other words, the agent directly receives as visual input the
position of its end-effector in Cartesian coordinates. The agent acts on the 2D environment by
moving the 3-DOF simulated arm. The extremity of the first joint (the shoulder) is fixed on the
position (-6, 6). The three joints are of respective lengths 6, 4 and 2. We do not cover here the
learning of the forward model, and suppose that the agent has learned through motor babbling
how its actions influence its observations. In our experiments, the forward model is replaced by the
real physical model outputting end-effector positions in Cartesian coordinates according to joint
orientations. Our architecture’s training is thus composed of two stages:

1. Supervised learning of visual handwritten trajectories : The RNN predicting trajectories in
the visual space (2D) is trained using the online learning rules described in chapter 3.

2. Training of the motor RNN : The RNN generating trajectories in the motor space (3 di-
mensions) is trained using the method described in section 6.5.1.2, using the trajectories
predicted by the visual RNN as indirect supervision to perform AIF.

115

The parameters used to obtain the results presented in this section are provided in appendix
E. The source code is available on GitHub2.

6.5.2.1 Motor PC-RNN-HC-M learning

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0
Visual prediction
Motor trajectory

(a)

−3 −2 −1 0 1

−4

−3

−2

−1

0 Visual prediction
Motor trajectory

(b)

−3 −2 −1 0 1

−3

−2

−1

0

1 Visual prediction
Motor trajectory

(c)

Figure 6.8: Generated motor trajectories and predicted visual sequences of 2D positions at the
end of training for the three given classes a (left), b (middle) and c (right). Results obtained with
n = 50 and p = 3.

The visual prediction RNN generates a trajectory of observations that the motor RNN tries to
replicate. We train the motor RNN according to the method detailed in section 6.5.1.2. The motor
RNN hidden states are initialized randomly and shared across the different classes of trajectories.
The initial hidden causes are one-hot vectors of dimension p (where p is the number of motor
trajectories to write in the memory) encoding the trajectory label. Figure 6.8 displays learned
motor trajectories along with the corresponding predicted visual trajectories. These results were
obtained with a hidden state dimension of n = 50 for both RNNs and with p = 3 classes, after
40000 iterations. Training is arguably long with regard to the difficulty of the proposed task. We
suppose that this is due to the PC learning mechanism, that can only approximate BP properly if
we let enough time for the inference of each variable in the computational graph to converge.

6.5.2.2 Model capacity comparative analysis

1 2 4 8 16
Number of trajectory cla e

10−1

100

Av
er
ag

e
m
ot
or
 p
re
di
ct
io
n
er
ro
r

Our model n=50
MTRNN n=50
MTRNN n=100
RNN+FM n=50

Figure 6.9: Comparison of the reconstruction error according to the number of trajectory classes for
four models : our model with n = 50, two instances of the MTRNN model proposed in (Mochizuki
et al., 2013) with n = 50 and n = 100, and the RNN+FM model with n = 50. The columns display
the average motor prediction error on the testing data set. Intervals in black indicate confidence
intervals.

2https://github.com/sino7/bidirectional-interaction-between-visual-and-motor-generative-models

116

Before analyzing other behaviors of the proposed model, we validate it by comparing its per-
formance with two benchmark models.

First, we compare our performance with the method presented in (Mochizuki et al., 2013),
proposed on a similar task. This method uses a Multiple Timescales RNN (MTRNN) (Yamashita
and Tani, 2008) model for the joint generation of visual and motor trajectories as represented
in figure 6.2c. The model is first trained using visuomotor trajectories obtained through motor
babbling. Then, optimization of the initial MTRNN hidden state is performed for each target visual
trajectory using BPTT. Finally, the MTRNN weights are tuned to ensure coherence between the
visual and motor outputs.

Second, we compare our model with a simple architecture composed of an RNN generating
motor trajectories and a forward model (equivalent to the one present in our model) translating
this motor output into visual trajectories, as represented in figure 6.2b. Indeed, we could argue
that using the forward model we introduced, one could simply backpropagate gradients originating
from an error signal in the visual space to learn motor trajectories. We train such a model, that
we label RNN+FM, using BPTT, and compare its performance with our model.

Performances of the three models are evaluated according to their precision on the motor
trajectory, and their capacity to encode a large number of trajectories. Precision is measured
with the average error on the testing data set, that is, the error between the position of the tip
of the pen when performing the motor trajectory, and the target trajectory. Note that since the
forward model f is perfect, the actual position when performing the motor trajectory is equal to
the predicted outcome om = f(m). We call this quantity motor prediction error, and it can be
expressed as:

Em =
1

T

∑
t≤T

‖f(mt)− o∗t ‖22

In the following sections, we will sometimes measure the error between the visual prediction
and the target trajectory, we will call this quantity visual prediction error. It can be expressed as:

Ev =
1

T

∑
t≤T

‖ovt − o∗t ‖22

Figure 6.9 displays the evolution of the motor prediction error for our model, two instances of
the MTRNN model, and the RNN+FM model.

If we extract the motor RNN model from our complete architecture, and compare it with an
MTRNN model with the same hidden state dimension, both models have a comparable number
of parameters. However, we could argue that the same MTRNN can generate trajectories in both
visual and motor space, while our motor RNN only generates trajectories in the motor space. For
fair comparison, we might want to include into the parameter count the parameters of the visual
RNN in our architecture. For this reason, we extend the comparison with an MTRNN model with
a state dimension of n = 100, with twice as many parameters as our two RNNs combined. Finally,
note that our approach, contrary to the MTRNN model, assumes that a perfect forward model is
available to perform AIF.

Still, the results displayed in figure 6.9 tend to show that our architecture can compete with
other algorithms for motor trajectory learning with indirect supervision.

6.5.2.3 Intermittent control

One of our model’s feature not discussed previously is the possibility to switch off the feedback
pathway when prediction error is under a certain threshold. We experimented with this idea by
varying such a threshold and observing when the feedback pathway would switch on and off. Figure
6.10 displays results that were obtained with a hidden state dimension of n = 50 with p = 3 classes,
after training of the motor RNN.

For the lowest threshold value, the feedback pathway is almost always active and the motor
trajectories are controlled to accurately match the predicted visual trajectories. For the highest
threshold value, the feedback pathway never activates and the trajectory performed corresponds
to the natural trajectory of the motor RNN. This mechanism is interesting as it could be used to
control the trade-off between precision and smoothness of the generated trajectories in situations
where the visual target trajectory is not smooth.

117

3.10
-4 1.10

-3
3.10

-3
1.10

-2
3.10

-2

threshold

Figure 6.10: Trajectories generated by the motor RNN, with a state dimension of 50, displayed
into the visual space. The black dashed line represents the visual trajectory predicted by the
visual RNN. The trajectories generated by the motor RNN are represented as successions of
trajectory segments, differentiated by their color. Each new trajectory segment corresponds to
an activation of the AIF controller, and is represented by a plus shaped marker. The different
figures correspond to different activation threshold values for the controller, from left to right:
3.10−4, 1.10−3, 3.10−3, 1.10−2, 3.10−2.

118

6.5.2.4 Robustness to external perturbations

(a) Examples of trajectories obtained in the perturbation experiment, for different perturbation amplitudes
σ2
p ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Blue lines represent the uncontrolled motor trajectories displayed in the

visual space. Green lines represent the predicted visual trajectories. Gray lines represent the corrected
motor trajectories displayed in the visual space. These trajectories were obtained with an RNN hidden
state dimension of 50 after training.

0.0 0.2 0.4 0.6 0.8 1.0
Perturbation amplitude

100

2×10 1

3×10 1

4×10 1

6×10 1

Av
er
ag
e
pr
ed
ict
io
n
er
ro
r

Visual prediction error
Corrected motor prediction error
Motor prediction error

(b) Average prediction error according to the perturbation am-
plitude σ2

p. Prediction errors are measured as average distances
with regard to corresponding test trajectories of the same label.

Figure 6.11: Perturbation robustness experiment. At the 10th time step, we apply a random
perturbation, represented in red, on the motor output. Our model uses the visual prediction as a
guide to correct the perturbed motor trajectory.

In this experiment, we consider applying external perturbations of variable amplitude onto the
motor output of our model. For each trajectory, we sample a perturbation from a multivariate
normal distribution of variance σ2

pI3. This perturbation is added to the motor output of the
generative model for all timesteps t > 10. Figure 6.11 displays examples of obtained trajectories

119

with or without control, and the evolution of the average motor prediction error with regard to
the perturbation amplitude σ2

p.
The visual prediction, represented in green, acts as a guide to dynamically control the motor

trajectory, represented in blue. If we compare the average motor prediction error with and without
control (respectively in grey and blue in figure 6.11b), we can observe that the control highly reduces
the error brought by the perturbation. These results demonstrate that our model generates motor
trajectories robust to external motor perturbations.

6.5.2.5 Adaptation to transformed visual predictions

(a) Examples of trajectories obtained in the scaling experiment, for different scales s ∈
{0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. Blue lines represent the uncontrolled motor trajectories dis-
played in the visual space. Green lines represent the rescaled visual trajectories. Gray lines represent the
corrected motor trajectories displayed in the visual space. These trajectories were obtained with an RNN
hidden state dimension of 50 after training.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Scaling factor

10−1

100

101

Av
er
ag

e
m
ot
or
 p
re
di
ct
io
n
er
ro
r

Corrected motor prediction error
Motor prediction error

(b) Average prediction error according to the scaling factor ap-
plied to the visual prediction. Prediction errors are measured
as average distances with regard to corresponding rescaled test
trajectories of the same label.

Figure 6.12: Adaptation to scaling experiment. We apply a change of scale on the visual prediction.
Our model dynamically adapts the motor trajectory to fulfill best the visual prediction.

In this experiment, we consider the situation where a transformation is applied to the predicted
visual trajectory. Changes of scales and rotations are transformations that can be applied easily on
the visual output. However, generating the motor commands performing these transformed visual

120

(a) Examples of trajectories obtained in the rotation experiment, for different rotation angles θ ∈
{−π/4,−π/6,−π/12, 0, π/12, π/6, π/4}. Blue lines represent the uncontrolled motor trajectories displayed
in the visual space. Green lines represent the rotated visual trajectories. Gray lines represent the corrected
motor trajectories displayed in the visual space. These trajectories were obtained with an RNN hidden
state dimension of 50 after training.

−π/4 −π/6 −π/12 0 π/12 π/6 π/4
Rotation angle

10−1

100

Av
er
ag

e
m
ot
or
 p
re
di
ct
io
n
er
ro
r

Corrected motor prediction error
Motor prediction error

(b) Average prediction error according to the angle of the ro-
tation applied to the visual prediction. Prediction errors are
measured as average distances with regard to corresponding ro-
tated test trajectories of the same label.

Figure 6.13: Adaptation to rotation experiment. We apply a rotation on the visual prediction.
Our model dynamically adapts the motor trajectory to fulfill best the visual prediction.

121

trajectories is less trivial. We experiment here with applying changes of scales and orientations
to the visual prediction while controlling the motor trajectory using the prediction error feedback.
Results of those experiments for different scales and orientations are displayed respectively in
figures 6.12 and 6.13.

Figure 6.12b displays the evolution of the error between the motor trajectories and the rescaled
test trajectories, with and without control. We first notice that overall, reducing the scale seems
to induce lesser prediction errors than increasing the scale. This is because the prediction error is
computed as a path integral of point to point distances, thus sensible to the scale of the trajecto-
ries. Second, we notice that the improvement brought by the online control is less effective when
increasing the scale. This is due to the fact that the motor RNN was trained to exhibit trajectories
of limited amplitudes. Inference of the hidden state of the RNN is not sufficient to properly control
the trajectory.

Figure 6.13b displays the evolution of the error between the motor trajectories and the rotated
test trajectories, with and without control. We notice that the architecture manages to adapt better
to rotations in the counterclockwise direction. This could be due to the fact that performing these
trajectories requires smaller modifications on the natural motor trajectory because of the arm
configuration.

6.5.2.6 Motor control comparative analysis

The previous experiments have shown that our model can perform online inference of hidden states
in the motor RNN to dynamically adapt to motor perturbations and transformations of the visual
target trajectory.

In this section, we provide a comparison with an other inference method, applied to our model
and on the generative model described in figure 6.2c and previously used as baseline in section
6.5.2.2.

ERS (Ahmadi and Tani, 2017) has been proposed as a method to perform inference of hidden
states in RNNs. Let us consider an RNN with hidden state ht and output ot. According to the
ERS, at each time step t the model predicts the next W time steps and computes the prediction
error on the W predictions (ot, . . . ,ot+W−1) with regard to targets (o∗t , . . . ,o

∗
t+W−1). This error

signal is then backpropagated to infer the value of ht. Finally, this regression of ht can be iterated
I times at each time step.

Comparing this inference method with the inference performed in our RNN implementing PC,
the ERS will have a time complexity equivalent to W × I times the time complexity of our model,
and a space complexity ofW times the space complexity of our model. If I = 1 andW = 1, the ERS
method is comparable with our inference method in terms of complexity. In fact, we can argue that
our inference method closely relates to ERS as it also implements a gradient descent optimization.
Still, they differ in several aspects. Our method minimizes VFE while ERS minimizes prediction
error. Even though these two quantities are closely related, as shown in chapter 2, this still brings
some differences in the two approaches. Additionally, our method does not rely on BPTT, and
inference is part of the dynamics of the neural network.

In (Hwang et al., 2020), the authors use an RNN model for joint generation of visual ob-
servations and motor commands, and perform inference with the ERS based on visual targets.
Iteratively using the ERS to infer the hidden state, and generating a motor command from this
hidden state makes it possible to perform motor control on the full trajectory. We take inspiration
from this work and implement ERS on the joint visuomotor MTRNN architecture introduced in
section 6.5.2.2.

We consequently have two models that we can use for comparison: ERS applied to our motor
RNN, and ERS applied to the joint visuomotor MTRNN.

We reuse one of the previous experimental set ups to perform this comparative analysis. The
task is for both models to generate the motor trajectories corresponding to rotated visual targets
(o∗0, . . . ,o

∗
T−1). As in section 6.5.2.5, our model is trained to generate the corresponding motor

trajectories with standard orientation (angle = 0). It has to dynamically adapt the motor trajec-
tory with regard to the rotated visual target trajectory. We reuse the MTRNN implementation
introduced in section 6.5.2.2. Similarly to our model, it is trained to generate the motor trajectories
corresponding to the visual targets with standard orientation.

Figure 6.14 displays the motor prediction errors obtained with all three models, with different
values for W and I for the ERS based control.

122

−π/4 −π/6 −π/12 0 π/12 π/6 π/4
Rotation angle

10−1

100

Av
er
ag

e
pr
ed

ict
i
n
er
r
r

MTRNN, n inference
MTRNN + ERS, W=1, I=1
MTRNN + ERS, W=2, I=5
MTRNN + ERS, W=5, I=20
Our RNN + PC inference

(a) Comparison between our inference method applied to our
RNN (blue), and the ERS applied to the MTRNN model (grey,
yellow, orange and red).

−π/4 −π/6 −π/12 0 π/12 π/6 π/4
Rotation angle

10−1

100

Av
er
ag
e
 r
ed
ict
io
n
er
ro
r

Our RNN, no inference
Our RNN + ERS: W=1, I=1
Our RNN + ERS: W=2, I=5
Our RNN + ERS: W=5, I=20
Our RNN + PC inference

(b) Comparison between our inference method (blue) and the
ERS (grey, yellow, orange and red), both applied to our RNN.

Figure 6.14: Comparison of the inference methods. The presented results aggregate the motor
prediction errors over the p categories, T = 60 timesteps, for 5 instances of each model.

We first focus on the comparison between our approach and the ERS applied to the MTRNN
model (figure 6.14a). According to these results, our approach outperforms the ERS applied to the
MTRNN model, even when allowing a factor 10 increased time complexity (W = 2 and I = 5),
and a factor 100 increased time complexity (W = 5 and I = 20). However, we cannot conclude
whether this difference in performance is due to the RNN model or the inference method.

The second comparison can help answering this question by comparing the two inference meth-
ods on our RNN model. The results displayed in figure 6.14b show that our inference method
performs very similarly to the ERS with parameters W = 1 and I = 1. This result is not very
surprising, since we have explained that both approaches are closely related. However, when used
with more iterations I and a longer time window W , the ERS outperforms our approach.

Overall, we can conclude that performing inference by propagating gradients backward through
a forward model seems to be a better approach than performing inference on a single model for
the joint generation of visual and motor trajectories. Still, this conclusion relies on the assumption
that the forward model used in our experiments is perfect, the observed performance gap might
not be as significant if we used a learned approximate forward model.

123

6.5.2.7 Reciprocal influence

(a) (b)

Figure 6.15: Illustration of the visual to motor feedback pathway (left) and the motor to visual
feedback pathway (right).

In all the previous experiments of this section, we have considered only one feedback pathway
between the two possible feedback loops in our architecture, represented in figure 6.15. Whether
it was to learn motor trajectories, for intermittent control, to adapt to perturbations on the motor
output, or to adapt to transformations on the visual prediction, we only used the visual to motor
feedback pathway (figure 6.15a). Since the motor RNN was trained using the visual prediction
RNN, using the motor predictions om to control for the visual predictions ov would only result in
less precise visual predictions.

However, the symmetry of the interaction between the two modalities can still be exploited in
situations where the visual prediction RNN performs worse than the motor RNN. To create such
situations, we impaired the visual prediction RNN by applying a multiplicative noise N (1, σ2

i) to
the model’s parameters Wout, Wp, Wf , Wc. We argue that this situation can arise naturally if
we consider the lifelong learning of an agent. The impairment we simulated here could correspond
to the forgetting of the visual prediction RNN due to training on a different task.

Similarly to the previous experiments, we display in figure 6.16 examples of predicted visual
trajectories with or without correction from the motor RNN, and the evolution of the average
visual prediction error with regard to the impairment amplitude σ2

i .
We observe that visual predictions benefit from the correction brought by the motor predictions.

In all the tested situations where the impairment amplitude is greater or equal than 0.02, the
uncorrected visual prediction error (green) is higher that the corrected visual prediction error
(grey). These results demonstrate that knowledge in our architecture can be transferred in both
directions.

6.5.2.8 Bidirectional influence

We have so far considered situations where only one of the two feedback pathways is activated
at a time. However, our model should in principle always allow propagation of the error in both
directions. According to the FEP, the visual prediction ov, and the predicted visual outcome of
actions om, should both be associated with a standard deviation. If one prediction is more accurate
than the other, the agent should put more trust in this prediction and direct the influence so that
the less accurate model can adapt to the more accurate one. The interaction shall still remain
bidirectional, but the influence in one direction will be stronger than in the other.

In practice in the previous experiments, we have assumed that the agent should trust one
model more than the other, to the extent where we have turned off the reciprocal influence.
During learning of the motor model, and for online adaptation to perturbations and changes of
scales and orientations, the bidirectional interaction was approximated as a unidirectional influence
from the visual model to the motor model. On the contrary, in the last experiment where we
have intentionally impaired the visual model, the bidirectional interaction was approximated as a
unidirectional influence from the motor model to the visual model.

124

(a) Examples of trajectories obtained in the visual impairment experiment, for different impairment am-
plitudes σ2

i ∈ {0.0, 0.02, 0.04, 0.06, 0.08, 0.1}. Blue lines represent the uncontrolled motor trajectories
displayed in the visual space. Green lines represent the visual trajectories predicted by the impaired visual
RNN. Gray lines represent the corrected visual trajectories. These trajectories were obtained with an RNN
hidden state dimension of 50 after training.

0.00 0.02 0.04 0.06 0.08 0.10
Impairment amplitude

10−1

100

Av
er
ag

e
pr
ed

ict
io
n
er
ro
r

Motor prediction error
Corrected visual prediction error
Visual prediction error

(b) Average prediction error according to the impairment am-
plitude σ2

i . Prediction errors are measured as average distances
with regard to corresponding test trajectories of the same label.

Figure 6.16: Impairments experiment. The visual RNN is impaired by applying a multiplicative
noise of varying amplitude onto its parameters. Our model uses the motor prediction as a guide
to correct the visual trajectory.

125

0

1

Prediction error

Pred. error w/o control
Pred. error w/ control
Perturbation time step

−2

0

2
Prediction X

Visual pred. w/o control
Visual pred. w/ control

0 10 20 30 40 50
time step

−2

0
Prediction Y

Motor pred. w/o control
Motor pred. w/ control

(a) Bidirectional influence favoring the visual to motor direction.

0.0

0.5

1.0
Prediction error

Pred. error w/o control
Pred. error w/ control
Perturbation time step

−2

0

Prediction X

Visual pred. w/o control
Visual pred. w/ control

0 10 20 30 40 50
time step

−1

0

Prediction Y

Motor pred. w/o control
Motor pred. w/ control

(b) Bidirectional influence favoring the motor to visual direction.

Figure 6.17: Bidirectional influence between the motor and visual models, with both feedback
pathways activated at the same time. The top figures display the evolution of the prediction error
‖ov−om‖22, while the middle and bottom figures display the evolution of the X and Y components
of ov and om. Visual predictions ov are represented in green, and motor predictions om are
represented in blue. Dashed lines represent the trajectories generated by both models without
control, i.e. when the interaction is turned off. Full lines represent the trajectories generated by
both models with control.

126

In this section, we display results where we keep both error feedback pathways activated. We
reuse the experimental set up from section 6.5.2.4, where we apply at time step t = 10 a random
perturbation on the motor output of the model. These results are displayed in figure 6.17. The
perturbation time step is marked by a red dashed line. We can see that the motor output is
perturbed, which results in a mismatch between the motor (blue) and the visual (green) outputs.

Figure 6.17a displays a scenario where the bidirectional interaction favors influence from the
visual model to the motor model. After the perturbation, the prediction error is promptly min-
imized due mostly to the correction of the motor model. The visual prediction slightly deviates
from the trajectory it would exhibit in the absence of control (green dashed line).

On the contrary, 6.17b displays a scenario where the bidirectional interaction favors influence
from the motor model to the visual model. After the perturbation, the prediction error is minimized
mostly by the correction of the visual model. The motor prediction slightly deviates from the
trajectory it would exhibit without control (blue dashed line).

These additional results prove that the model can implement a bidirectional influence where
both feedback pathways are simultaneously activated.

6.5.3 Discussion
Here, we shortly discuss the biological plausibility of the proposed framework, as well as the possible
directions of improvements.

From a neurocomputational point of view, several works advocate for the relevance of randomly
connected RNNs as a computational model for cortical networks (Wang et al., 2010; Hoerzer et al.,
2012; Mannella and Baldassarre, 2015). In particular, (Mannella and Baldassarre, 2015) suggest
RC as a candidate approach to generate movements as neural trajectories in the motor cortex.
However, the authors train these cortical networks through a supervised learning scheme, which
would need target values in the motor space. A candidate learning mechanism working with
indirect supervision is the Reward-Modulated Hebbian Learning proposed in (Hoerzer et al., 2012)
and combined with supervised learning in the SUPERTREX architecture (Pyle and Rosenbaum,
2019). This mechanism uses a measure of success (similar to the reward) to weight the gradient
updates of the reservoir readout weights. Instead, our approach relates to the internal model
theory, suggesting that efferent copies of motor commands in the brain are provided as inputs to
an internal forward model predicting the sensory outcomes of performed actions (Shadmehr et al.,
2010). The interesting feature brought by AIF is that, in contrast with control theory where the
heavy lifting is done by the inverse models, the reciprocal top-down and bottom-up information
passing scheme allows inferring proper actions using an error signal between sensory predictions
and predicted outcomes of actions. These types of internal models are thought to be encoded
in the intraparietal sulcus and superior parietal lobule regions of the posterior parietal cortex,
for reaching and grasping movements (Creem-Regehr, 2009), as well as drawing and handwriting
(Planton et al., 2017).

On a higher level of abstraction, motor cognition (planning, decision-making) involves other
brain structures such as the cerebellum and the prefrontal cortex, for the prediction of outcomes
(Pezzulo and Cisek, 2016; Mushiake et al., 2006; Botvinick and An, 2009), and the basal ganglia,
for the selection of action policies (Botvinick and An, 2009; Mannella and Baldassarre, 2015). In
(Friston et al., 2016), AIF is proposed as a candidate model for goal-directed behavior relating to
the brain structures listed above.

With this work, we have shown that it is possible to learn a sequence memory of motor trajec-
tories without relying on direct supervision in the motor space. However, our results rely heavily
on the fact that our architecture was endowed with a perfect forward model, and perfect gradient
backpropagation through this forward model. The learning of such a forward model might in prac-
tice be very complicated, even more so in more complex environments. Our environment is very
advantageous in the fact that sensory observations only depend on current actions, without any
delayed influence. In a realistic environment, a proper model of how actions influence observations
should take into account an inferred representation of the state of the environment. Adding to this
complexity, in partially observable environments, the state representation must be inferred based
on a history of observations each giving incomplete information about the true environmental state.
A shortcoming of this work lies in these major simplifications.

127

6.6 Conclusion
In this chapter, we have seen that it is possible to plug in our sequence memory models onto
architectures implementing AIF. The complete model is thus capable of jointly inferring which
motor trajectories are best fit for a certain goal, and writing these trajectories in a sequence
memory model. Contrary to the first proposed model, the second model we have presented is able to
dynamically adjust the motor trajectories being read from the sequence memory. Additionally, we
have shown that the obtained architecture presented a symmetry allowing information to propagate
in both directions between the motor sequence memory and the visual sequence memory. While
the first model needed extensive interaction with the environment to learn the adequate motor
repertoire, the second model can learn a motor sequence memory using only internal simulations.
Interaction with the environment is only needed to train the forward model predicting the sensory
outcomes of actions.

While our results show that it is possible to learn motor sequence memories without any direct
supervision in the motor space, the quality of the inferred motor sequences relies heavily on the
used AIF method. In particular, the precision of the forward model and of the inverse propagation
in the forward model plays an essential role in building the adequate motor trajectories in the
second model we have proposed. Additionally, AIF methods still need to prove that they can
learn complex behaviors using sparse supervision. For instance, the agent’s preferences encoded
in the biased generative model could only involve a modality that is constant most of the time.
Observations rewarded under this biased generative model would be very sparse, since only a
handful of observations would be considered as more probable than the others. Consequently, the
agent would need to plan for a large number of steps to choose its action course. In contrast, our
model had direct supervision at each time step, greatly simplifying the problem.

We can also discuss the choice of using an architecture using a forward model, instead of
an architecture that jointly generates sensory observations and motor commands. Our intuition
regarding this question is that generative models reproducing the causal structure of the world
should perform better. Actions have an effect on the environment, which in turn provides obser-
vations. The causal structure of this interaction would thus place actions as parent causes directly
influencing a random variable representing the state of the environment. Research in the fields
of causality and machine learning seems to indicate that internal models reproducing the causal
structure of the environment are more robust to changes in the environment or task definition
(Ke et al., 2019; Bengio et al., 2019). More experiments comparing both approaches should be
conducted to conclude on this topic.

In our AIF formulation, we did not discuss the possibility of modeling the distribution onto
model parameters. This distribution can be taken into account in the VFE computation. We
have seen that surprise directly depends on the precision of the recognition density onto the latent
state variable. If the agent is certain of the latent state, it will be certain of the observation,
and if the prediction is correct the resulting surprise would be lower than if it had done the same
prediction with lower confidence. The degree of confidence in a prediction is thus weighted by
the precision of the recognition distribution onto the latent state variable. Similarly, if we include
model parameters in the Bayesian scheme, the precision of the recognition distribution onto the
model parameters would influence the precision of the prediction. As such, minimizing surprise in
the long-term could induce behaviors that favor learning.

We can go even further and try to include the graphical structure of the model as part of the
inferable quantities. If the graphical structure of the model that is best suited for prediction and
adaptability is indeed the one that reproduces the causal structure of the environment, then finding
this structure could help to decrease future surprise. Crucially, it is known that to identify the
true causal structure behind data, we have to rely on what is called interventions. Interventions
are modifications of some variables in the true generative process (here, the environment), that
cause changes in the observable variables. Without intervention, it is not possible to discriminate
the true causal direction between two correlated variables (or if they have a mutual confounder).
For instance, let us consider a data set containing data points indicating the recorded tempera-
ture inside a room, and whether the heating is turned on. We would observe in the data set a
high correlation between the heating being turned on and the temperature. However, this is not
enough to conclude about the causal relationship between the two variables. To this end, we could
use interventions. For instance, we could try to increase the temperature of the room by other
means (for instance by lighting a fire), and check whether this activates the heating or not. In

128

a hypothetical implementation of AIF capable of including these considerations, the agent could
try to perform experiments in the form of interventions onto the environment in order to properly
identify its true causal structure. Recent works in RL try to implement artificial curiosity-driven
agents according to this principle (Perez et al., 2020; Sontakke et al., 2021).

At this point, we would start to have many layers of different drives influencing action selec-
tion: the extrinsic reward i.e. the desire to abide by the biased generative model, the motivation
to seek out observations informative about the latent state, the motivation to seek out observa-
tions informative about the model parameters, and finally the motivation to perform interventions
informative about the causal structure of the environment.

Finally, we can discuss the possibility of including several sensory modalities into our architec-
ture. This would require learning forward models that associate motor commands with resulting
observations in each modality. Based on such forward models, it would be possible to infer actions
based on combined goals defined in these different modalities. Interestingly, some motor com-
mands could be associated with high precision to resulting observations in one modality, but with
low precision to observations in another modality. In this case, the precision coefficients would
naturally weight the different modalities in order to infer actions based primarily on the modalities
associated with higher precisions.

129

Chapter 7

Conclusion

7.1 Summary of the contributions
In this thesis, we have studied the question of sequence memory modeling using RNN architectures
inspired by the PC theory. In chapter 3, we have designed several PC-based RNN models that can
be trained as sequence memories. The proposed models differ in whether they make use of a hidden
causes layer and first-order generalized coordinates. We have presented two comparative studies
for sequence memory RNN models in different settings. The first study aimed at comparing the
capacity of different sequence memory models using a data set of continuous 2D trajectories. In the
second study, we have compared different learning algorithms for sequence memories in a continual
learning setting, limiting ourselves to learning methods involving only temporally and spatially local
information. These two comparative studies have highlighted some interests of the PC approach
for sequence memory modeling: using hidden causes and first-order generalized coordinates seems
to improve the memory capacity, and hidden causes also improve the performances of sequence
memories in a continual learning setting.

An important question for sequence memory modeling is the design of memory retrieval meth-
ods. In chapter 5, we have proposed several iterative algorithms for memory retrieval. These
algorithms make use of a top-down Gaussian mixture prior to attract the recall mechanism into
desired values for the hidden causes variable. We have seen that the method exploiting a learned
structure of the sequences written in the memory allowed us to properly retrieve the correct item
even in the presence of noise or with only a fraction of the sequence available.

Finally, the sequence memory models presented in chapter 3, and the memory retrieval mech-
anisms presented in chapter 5, relied on the assumption that the sequences that should be learned
(written) or retrieved (read) were directly available to the agent. We have shown in chapter 6 that
we could relax this assumption and jointly construct and learn motor trajectories without direct
supervision in the motor space, by building upon the AIF framework.

7.2 Discussion on the thesis choices
We can discuss some of the choices made to design our models.

• Focusing on RNNs: First, one of the first choices made during this thesis was to focus
on recurrent neural architectures. While RNNs are naturally fit for sequential tasks, feedfor-
ward architectures such as CNNs or Transformers have also shown great results. Although
we have presented these networks in our overview of sequence memory ANN models, we have
not tried using them with PC-based inference and learning rules. Interestingly, since no re-
current dynamics are present in these models, we would avoid the problems we encountered
by merging the RNN dynamics with the dynamics induced by PC. As such, inference in feed-
forward networks could be easier than in recurrent models. Still, feedforward architectures
come with the disadvantage of scaling poorly to very long sequences and are not natural for
modeling sequences of different lengths.

• Number of inference steps: Second, we can question whether the PC-RNN models should
only perform one inference step for each new data point x∗t . It might be interesting to study

130

the possibilities offered by multiple inference steps for each observation, as it is done for
instance with ERS-based inference (Ahmadi and Tani, 2017). For robotic implementations,
this number of inference steps in peristimulus time could depend on the speed of the inference
process and the frequency of the sensory sampling. Note that there should not be any
interest in slowing down the sensory sampling in order to perform several inference steps per
sample, since this would resume to performing one inference per sample but with outdated
information. We have ignored this question in our implementations, but this could be a
straightforward way of improving our models.

• Learning method: Finally, in many experiments we chose to use the BPTT learning rules
on our models, instead of the PC-based learning rules that we have derived. Our experiments
with both methods show that BPTT largely outperforms PC-based learning rules. The
main interest of PC-based learning rules lies in that they can be performed online, using
only information locally available. We have tried to highlight this interest in our second
comparative study, but we believe that more work should be done in order to assess the
advantages of PC-based learning rules. In particular, these learning rules could be naturally
implemented on dedicated neuromorphic hardware reproducing the connectivity patterns
proposed by PC.

7.3 Limitations
In this section, we discuss some limitations of the works presented in this thesis.

• Lack of complexity in our experiments: An important and valid criticism about our
work is the simplicity of the task on which we have applied our models. Throughout this
thesis, we have experimented with sequence memories of 2D continuous trajectories. However,
sequence memory models could in principle be used to store highly discontinuous data in a
very large space. We do not know if the proposed models would scale properly to more
complex tasks like storing sequences of images or words. Still, the goal of this thesis was to
conduct a horizontal research on the topic of sequence memories with PC, rather than an
in-depth experimentation with sequence memory models on different applications. Choosing
a simple applicative setting allowed us to explore more questions such as memory retrieval
and motor sequence memory learning.

• Supervision: We have always considered sequence memory training as a supervised learning
problem, where both the key and the associated sequence are available. In this regard, we
have made the assumption that the agent always knew the index (or label, or category) of the
trajectory it was being shown. In real-world settings, this information might not be available
to the agent. We can consider two situations. In the first situation, the agent is being shown
a trajectory that it has already seen. In this case, we can suppose that the memory retrieval
process would be able to recognize the sequential pattern and pursue learning with the newly
available information. In the second situation, the agent is being shown a trajectory that it
has never seen. The detection of this distributional shift might be trickier using our models,
but for instance, could be based on a threshold recognition time. If after this set amount of
time, the new trajectory is not recognized, the agent could create a new mode in its generative
model in order to account for this new sequential pattern. Still, we have not experimented
with this situation and always assumed that this information was available to the learning
system.

• Limitations of PC for the inference of discrete variables: An important limitation
of the PC approach was observed on the question of memory retrieval. As we have seen,
the PC theory can be derived from the FEP, as a variational Bayes method resting on some
additional approximations. Especially, we have assumed that the recognition density is a
unimodal distribution. Minimizing VFE through gradient descent might work properly in
the case of unimodal distributions, but it also limits the inference process as it is not capable
of considering several possible values at the same time. Consequently, the inference process
is not enough to infer discrete latent variables as in the memory retrieval problem and get
stuck in local basins of VFE. To work around this issue, we had to inject some noise into the
inference process. Still, we believe that this issue constitutes an important limitation of PC

131

and that other variational inference methods not relying on this unimodal assumption might
be of interest (for instance using statistical ensembles/particle filters (Friston, 2008b)).

• Simplifications in the AIF experiments: Finally, we shortly summarize the limitations
of the motor sequence memory models that we have highlighted in chapter 6. Our results
relied heavily on the simplicity of the task at hand, and on the assumption that a perfect
forward model was available for the agent. Experiments in more complex environments, with
an agent that jointly learns an internal model of the environment and a repertoire of motor
trajectories, are needed to better evaluate the general architecture we have proposed.

7.4 Recommendations for future work
To conclude, we describe future research directions that we deem of interest regarding sequence
memory modeling.

• We believe that an important benefit of the proposed models comes from their biological in-
spiration. Since the PC-based inference and learning algorithms only involve temporally and
spatially local information, they could very well be implemented on dedicated neuromorphic
hardware reproducing the connection patterns involved in PC. This might potentially allow
to train very large PC-based models at a low energy cost. Dedicated hardware for other
alternatives to BP such as Direct Feedback Alignment (Nøkland, 2016) are already being
investigated (Launay et al., 2020).

• The concept of precision weighting brought by PC has been used in our models, but the
precision coefficients were always uniform inside a same layer, and manually set by the
experimenter. We have seen that these coefficients play an immense role in the behavior of
our models:

– They weight the bottom-up and top-down signals in our networks’ update rules. As such,
the latent representations reached by in the intermediate layers can be seen as weighted
agreements between bottom-up and top-down forces. Especially, the bottom-up update
of the hidden layer is weighted by the precision of the observation. Using adequate
precision coefficients can thus help our models properly handle noisy observations by
not overshooting during inference.

– Since they weight the bottom-up transport of prediction error information, they directly
influence the learning rate applied at each layer during the Hebbian update of the
synaptic weights. It could be very interesting to study the effect of different precision
coefficients choices onto the evolution of the synaptic weights on the different layers.

– We have seen that these coefficients can direct the influence between the motor and
perceptual models in our bidirectional architecture. Information is primarily transported
from the model with the highest precision towards the model with the lowest precision.

– Using distinct precision coefficients for each dimension of the same variable can endow
the model with attention mechanisms (Feldman and Friston, 2010), the precision coef-
ficients weighting how much a certain dimension of the prediction error signal should
be propagated to higher levels. This improved mechanism would allow to disregard the
prediction error coming from very noisy variables for which the precision would be low.
Additionally, if the precision coefficients were to be actively estimated by the agent,
they could be used to ignore observed information deemed irrelevant by the agent.

Future research on this subject could study the effect of different precision coefficients esti-
mation methods onto the different mechanisms listed above.

• Another natural research direction would be to study hierarchical architectures using our
models. The question of hierarchy has been left out even though it is an important property
necessary to develop complex perceptual capabilities and complex decision-making skills. In
particular, increasing the depth in our models can give rise to vanishing gradient phenomena.
Whether the PC-based inference and learning mechanisms can work around this issue is still
an open question. Another open question would be about the interest of using a hidden
causes layer at each level of the hierarchy.

132

• Finally, we believe that it could be interesting to study the formation of the structure of the
hidden causes variables in the sequence memory. We have seen in chapter 5 that a structured
hidden causes space yielded faster retrieval processes. For instance, could these mechanisms
benefit from a more tree-like structure to perform an organized research into the repertoire
of known trajectories?

133

Appendices

A Variational free-energy simplifications
In this appendix, we provide more detailed derivations of the VFE expression given in chapter 2.
We start from the definition of VFE, denoted F :

F (x) =

∫
h

log
(q(h)

p(x,h)

)
q(h)dh (1)

where X is an observed random variable and H is a latent random variable. The probability
model p corresponds to the agent’s generative model of its observations, while the distribution q
is the recognition density, representing the agent’s current belief about the latent variable. As our
goal here is to show how variational inference aligns with PC, we start from another way of writing
down VFE.

F (x) =

∫
h

E(x,h)q(h)dh︸ ︷︷ ︸
Expected energy

+

∫
h

log
(
q(h)

)
q(h)dh︸ ︷︷ ︸

(Negative) entropy

(2)

where

E(x,h) = − log p(x,h) (3)
is called energy. The first term of this equation thus corresponds the expectation of energy

with regard to the density q. The second term is the entropy of the recognition density q.
In this framework, perceptual inference is framed as a process of free-energy minimization by

optimizing the recognition density q. In practice, q is constrained to certain classes of probability
distributions to simplify the optimization problem. Here we assume that the recognition density
takes a Gaussian form, and VFE is minimized by varying the parameters of this distribution.

q(h) =
1√

(2π)dh |Σ|
exp

(
− 1

2
(h−mh)

ᵀ ·Σ−1 · (h−mh)
)

(4)

where dh is the dimension of H, and mh and Σ are the mean vector and covariance matrix of
the multivariate Gaussian distribution on H. | · | denotes the determinant of a matrix. Integrating
this definition into equation 2 gives us:

F (x) = −1

2
log
(
(2π)dh |Σ|

)
−
∫
h

(1
2
(h−mh)

ᵀ ·Σ−1 · (h−mh)
)
q(h)dh+

∫
h

E(x,h)q(h)dh

= −1

2
log
(
(2π)dh |Σ|

)
− dh

2
+

∫
h

E(x,h)q(h)dh

(5)
The first two terms of this equation do not depend on the recognition density mean mh. The

last term however, needs some approximation to be computed. As explained before, variational
inference draws its interest from the fact that expectations with regard to q(h) are easier to compute
than expectations with regard to p(h). With our Gaussian assumption, this is only the case if we
suppose that q(h) is tightly peaked around its meanmh. With this additional assumption, we can
use the Taylor expansion of E(x,h) around the value h =mh:

E(x,h) ≈ E(x,mh) +
(
∇mh

E(x,mh)
)
· (h−mh) +

1

2
(h−mh)

ᵀ ·HE(x,mh) · (h−mh) (6)

134

where HE(x,mh) is the Hessian matrix containing in cell (i, j) the derivative ∂2E(x,mh)
∂mh,i∂mh,j

. When
computing the expectation of E(x,h) with regard to q(h), the first-order term of the expansion
is canceled out (the expectation of (h−mh) is 0), and in the second-order term of the expansion
appears the covariance matrix Σ:∫

h

E(x,h)q(h)dh ≈ E(x,mh) +
1

2
Tr
(
HE(x,mh) ·Σ

)
(7)

where Tr denotes the trace of a matrix. Using all these assumptions, we can rewrite the VFE
as:

F (x) ≈ E(x,mh) +
1

2

(
Tr
(
HE(x,mh) ·Σ

)
− log

(
(2π)dh |Σ|

)
− dh

)
(8)

To obtain the final approximation of the VFE, we now assume that the recognition density
covariance matrix is proportional to the identity matrix Idh :

Σ = ζIdh (9)

This assumption greatly simplifies the second term of the VFE. Intuitively, this simply means
that the recognition density assumes that all components of the latent state H are independent and
estimates them with the same degree of confidence. Finally, we obtain the following expression:

F (x) ≈ E(x,mh) +
1

2

(
ζTr
(
HE(x,mh)

)
− dh log(2πζ)− dh

)
(10)

We can notice that only the second term of this equation depends on ζ. Since our goal is to
find the optimal values for mh and ζ, we can already find a closed-form solution for ζ.

∂F

∂ζ
=

1

2

(
Tr
(
HE(x,mh)

)
− dh

ζ

)
(11)

This derivative falls to 0 when:

ζ = ζ∗ =
dh

Tr
(
HE(x,mh)

) (12)

If we inject this solution ζ into the expression of the VFE, we obtain:

F (x) ≈ E(x,mh)−
dh
2

log(2πζ∗) (13)

We have reached the end of the derivations of the VFE using our set of assumptions. This
process has cast an expression involving integrals into a function depending only on the observed
variable x and the recognition density mean mh (note that ζ∗ is completely characterized by
these two variables). Perceptual inference using these hypotheses results in a process of iterative
optimization of mh in order to decrease the quantity E(x,mh). Therefore, in the upcoming
derivations, we simply consider the optimization of E(x,mh) as a proxy for F (x).

To obtain an algorithm that relates to the PC theory, we further need to make assumptions on
the generative model p(x,h). First, we assume that the generative model is hierarchical and can
be factored as:

p(x,h) = p(x|h(1))p(h(1)|h(2)) . . . p(h(l−1)|h(l))p(h(l)) (14)

with h composed of l random variables (h(1) · · ·h(l)). The probabilistic model does not neces-
sarily need to be a chain. We could make each variable depend on its parents in any hierarchical
probabilistic model. For simplicity, we keep the chain hypothesis in the factorization of this prob-
abilistic model.

Second, we suppose that each conditional probability is a multivariate Gaussian:

135

p(x|h(1)) =
1√

(2π)dx |Σ0|
exp

(
− 1

2

(
x− g(1)(h(1))

)ᵀ ·Σ−10 ·
(
x− g(1)(h(1))

))
(15)

p(h(i)|h(i+1)) =
1√

(2π)dh(i) |Σi|
exp

(
− 1

2

(
h(i) − g(i+1)(h(i+1))

)ᵀ ·Σ−1i · (h(i) − g(i+1)(h(i+1))
))
(16)

p(h(l)) =
1√

(2π)dh(l) |Σl|
exp

(
− 1

2

(
h(l) − µ

)ᵀ ·Σ−1l · (h(l) − µ
))

(17)

The parameters of the generative model are the collections of covariance matrices Σi, for
0 ≤ i ≤ l, and the prior mean µ. The generative model is hierarchical in that the mean of the
Gaussian density at layer (i) depends on the state h(i+1) of the upper layer, through a function
g(i+1). Using the PC vocabulary, these means are called the predictions of the generative model,
and µ, Σi as well as the parameters θ(i) of the functions g(i), are called the parameters of the
generative model.

Based on this definition of the generative model, we can derive an expression of the variational-
free-energy for equation 13:

F (x,m
(1)
h , . . . ,m

(l)
h) =E(x,m

(1)
h , . . . ,m

(l)
h) + C

=− log p(x|m(1)
h)

−
l−1∑
i=1

log p(m
(i)
h |m

(i+1)
h)

− log p(m
(l)
h)

+ C

(18)

where C corresponds to the second term of F in equation 13, that does not depend on the
observation x nor on the recognition density means. This gives us:

F (x,m
(1)
h , . . . ,m

(l)
h) =

1

2

(
x− g(1)(m(1)

h)
)ᵀ ·Σ−10 ·

(
x− g(1)(m(1)

h)
)

+
1

2

l−1∑
i=1

(
m

(i)
h − g

(i+1)(m
(i+1)
h)

)ᵀ ·Σ−1i · (m(i)
h − g

(i+1)(m
(i+1)
h)

)
+

1

2

(
m

(l)
h − µ

)ᵀ ·Σ−1l · (m(l)
h − µ

)
+ C ′

(19)

where we have included in C ′ the previous constant C, as well as new terms only depending
on the covariance matrices Σi. We have kept in this expression only the terms that depend on the
recognition density means m(i)

h . We can define prediction error ε(i) at each layer, that measures
the shift from the prediction coming from the upper layer, and the current recognition density
mean:

ε(0) = x− g(1)(m(1)
h)

ε(i) =m
(i)
h − g

(i+1)(m
(i+1)
h)

ε(l) =m
(l)
h − µ

(20)

The definition of prediction errors has the advantage of simplifying the expression of the VFE,
but also are meaningful when transcribing our inference algorithm into a neural network architec-
ture. We obtain the final expression of VFE based on all the previous assumptions:

F (x,m
(1)
h , . . . ,m

(l)
h) =

1

2

l∑
i=0

ε(i)
ᵀ

·Σ−1i · ε
(i) + C ′ (21)

136

B Hyperparameters for the continual learning benchmark

Model Parameters

Parameters common to all models
that are not optimized

dh = 300
dx = 2

dc = 20 (when relevant)
αx = 10−5 (when relevant)
αh = 0 (when relevant)
τ = 50 (when relevant)

ESN λ = 3, 3.10−6

Conceptors λ = 8, 9.10−5

α = 1, 2

PC-RNN-V λ = 1, 9.10−6

λr = 53, 4

P-TNCN
λ = 3, 7.10−6

λb = 3, 7.10−6

λr = 0, 01

PC-RNN-Hebb
λ = 3, 4.10−6

λb = 3, 4.10−6

λr = 0, 04

PC-RNN-HC-A
λ = 8, 3.10−6

λr = 0, 1
λc = 2.105

PC-RNN-HC-M
λ = 6, 3.10−5

λr = 3, 1
λc = 1, 1.105

PC-RNN-HC-A-RS
λ = 6, 8.10−6

λr = 4, 4
σ = 6, 0.10−5

PC-RNN-HC-M-RS
λ = 6.10−6

λr = 1, 1
σ = 1, 0.10−5

PC-RNN-HC-A + Conceptors

λ = 8, 9.10−5

λr = 0, 1
λc = 1, 2.105

α = 6, 2

Table 1: Hyperparameters for the continual learning benchmark.

137

C Continual learning figures

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 1: Continual learning results with the PC-RNN-V model. We represent the average predic-
tion error over 10 seeds, for the continual learning of 20 sequential patterns, using the PC-RNN-V
model.

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 2: Continual learning results with the P-TNCN model. We represent the average prediction
error over 10 seeds, for the continual learning of 20 sequential patterns, using the P-TNCN model.

138

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 3: Continual learning results with the PC-RNN-Hebb model. We represent the average
prediction error over 10 seeds, for the continual learning of 20 sequential patterns, using the
Hebbian learning variant of the PC-RNN-V model.

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 4: Continual learning results with the PC-RNN-HC-A model. We represent the average
prediction error over 10 seeds, for the continual learning of 20 sequential patterns, using the PC-
RNN-HC-A model.

139

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 5: Continual learning results with the PC-RNN-HC-M model. We represent the average
prediction error over 10 seeds, for the continual learning of 20 sequential patterns, using the PC-
RNN-HC-M model.

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 6: Continual learning results with the PC-RNN-A-RS model. We represent the average
prediction error over 10 seeds, for the continual learning of 20 sequential patterns, using the PC-
RNN-A model trained with random search.

140

0 1000 2000 3000 4000 5000 6000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Pr
ed

ict
io
n
er
ro
r

Average

Figure 7: Continual learning results with the PC-RNN-M-RS model. We represent the average
prediction error over 10 seeds, for the continual learning of 20 sequential patterns, using the PC-
RNN-M model trained with random search.

141

D Distribution of the convergence times during memory re-
trieval

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0
500

1000
1500

Co
un

t median

unfinished retrievals

σnoise=0.0

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0
500

1000
1500

Co
un

t median

unfinished retrievals

σnoise=0.03

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0
500

1000
1500

Co
un

t median

unfinished retrievals

σnoise=0.06

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0
500

1000
1500

Co
un

t median

unfinished retrievals

σnoise=0.09

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0
500

1000
1500

Co
un

t median

unfinished retrievals

σnoise=0.12

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0
500

1000
1500

Co
un

t median

unfinished retrievals

σnoise=0.15
2532

Figure 8: Distribution of the memory retrieval time according to the noise amplitude. The median
values are represented by vertical green lines. The memory retrieval attempts that did not converge
in the allowed time are shown in red.

142

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0

500

1000

1500

Co
un

t

median

unfinished retrievals

pmask=0.0

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0

500

1000

1500

Co
un

t

median

unfinished retrievals

pmask=0.8

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0

500

1000

1500

Co
un

t

median

unfinished retrievals

pmask=0.9

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0

500

1000

1500

Co
un

t

median

unfinished retrievals

pmask=0.95

0 20 40 60 80 100 120 140 160 180 200
Retrieval time

0

500

1000

1500

Co
un

t

median

unfinished retrievals

pmask=0.9667
2174

Figure 9: Distribution of the memory retrieval time according to the ratio of masked information.
The median values are represented by vertical green lines. The memory retrieval attempts that
did not converge in the allowed time are shown in red.

143

0 100 200 300 400 500 600 700 800 900 1000
Retrieval time

0

500

Co
un

t

median unfinished retrievalsp=15

0 100 200 300 400 500 600 700 800 900 1000
Retrieval time

0

500

1000

Co
un

t

median unfinished retrievalsp=30

0 100 200 300 400 500 600 700 800 900 1000
Retrieval time

0

500

1000

Co
un

t

median unfinished retrievalsp=60

0 100 200 300 400 500 600 700 800 900 1000
Retrieval time

0

500

1000

Co
un

t

median unfinished retrievalsp=120

0 100 200 300 400 500 600 700 800 900 1000
Retrieval time

0

500

1000

Co
un

t

median unfinished retrievalsp=240

Figure 10: Distribution of the memory retrieval time according to the sequence memory size. The
median values are represented by vertical green lines. The memory retrieval attempts that did not
converge in the allowed time are shown in red.

144

E Parameters used in the motor sequence memory experi-
ments

We provide the parameter values used for each experiment:

Name Sections Figures Parameters

Parameters common to all experiments
unless stated otherwise - -

dim(hv)=dim(hm)=n=50
dim(cv)=dim(cm)=p=3

dim(o)=2
dim(m)=3
τ = 7

Visual RNN training 6.5.2.1 -

αvh = 0.001
αvc = 0

λvout = 0.1× 2−i/1000

λvf = 3

λvp = 3
λvc = 3

Motor RNN training 6.5.2.1 -

αm = 5
αmh = 0.0001
αmc = 0
λmout = 0.3
λmf = 100

λmp = 100
λmv = 100

Motor RNN prediction 6.5.2.1
6.5.2.2

Figure 6.8
Figure 6.9

αm = 0
αmh = 0
αmc = 0

Intermittent motor control 6.5.2.3 Figure 6.10
αm = 0.1
αmh = 0.1
αmc = 0

Motor adaptation to perturbations 6.5.2.4 Figure 6.11
αm = 0.15
αmh = 0.1
αmc = 0

Motor adaptation
to transformed visual targets

6.5.2.5
6.5.2.6

Figure 6.12
Figure 6.13
Figure 6.14

αm = 4
αmh = 0.15
αmc = 0

Visual adaptation with impairments 6.5.2.7 Figure 6.16 αvh = 0.05
αvc = 0

Bidirectional interaction visual to motor 6.5.2.8 Figure 6.17a

αm = 0.1
αmh = 0.05
αmc = 0.1
αvh = 0.01
αvc = 0.1

Bidirectional interaction motor to visual 6.5.2.8 Figure 6.17b

αm = 0.03
αmh = 0.01
αmc = 0.1
αvh = 0.1
αvc = 0.3

Table 2: Parameters used in the motor sequence memory experiments.

145

Bibliography

Ahmadi, Ahmadreza and Jun Tani (2017). “How can a recurrent neurodynamic predictive coding
model cope with fluctuation in temporal patterns? Robotic experiments on imitative inter-
action”. In: Neural Networks 92. Advances in Cognitive Engineering Using Neural Networks,
pp. 3–16. issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.2017.02.015.

— (Nov. 2019). “A Novel Predictive-Coding-Inspired Variational RNNModel for Online Prediction
and Recognition”. In: Neural Computation 31.11, pp. 2025–2074. issn: 0899-7667. doi: 10.1162/
neco_a_01228. eprint: https://direct.mit.edu/neco/article-pdf/31/11/2025/1864800/neco_a\
_01228.pdf. url: https://doi.org/10.1162/neco%5C_a%5C_01228.

Alink, Arjen, Caspar M. Schwiedrzik, Axel Kohler, Wolf Singer, and Lars Muckli (2010). “Stimulus
Predictability Reduces Responses in Primary Visual Cortex”. In: Journal of Neuroscience 30.8,
pp. 2960–2966. issn: 0270-6474. doi: 10.1523/JNEUROSCI.3730-10.2010. eprint: https://www.
jneurosci.org/content/30/8/2960.full.pdf. url: https://www.jneurosci.org/content/30/8/2960.

Annabi, Louis, Alexandre Pitti, and Mathias Quoy (2020). “Autonomous learning and chaining of
motor primitives using the Free Energy Principle”. In: 2020 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8. doi: 10.1109/IJCNN48605.2020.9206699.

— (2021a). “A Predictive Coding Account for Chaotic Itinerancy”. In: Artificial Neural Networks
and Machine Learning – ICANN 2021. Ed. by Igor Farkaš, Paolo Masulli, Sebastian Otte, and
Stefan Wermter. Cham: Springer International Publishing, pp. 581–592. isbn: 978-3-030-86362-
3.

— (2021b). “Bidirectional interaction between visual and motor generative models using Predictive
Coding and Active Inference”. In: Neural Networks. issn: 0893-6080. doi: https ://doi .org/
10 . 1016 / j . neunet . 2021 . 07 . 016. url: https : / /www . sciencedirect . com/ science / article / pii /
S0893608021002793.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine Translation by
Jointly Learning to Align and Translate”. In: CoRR abs/1409.0473.

Baker, Bowen, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and
Igor Mordatch (2019). “Emergent tool use from multi-agent autocurricula”. In: arXiv preprint
arXiv:1909.07528.

Barto, Andrew, Marco Mirolli, and Gianluca Baldassarre (2013). “Novelty or Surprise?” In: Fron-
tiers in Psychology 4, p. 907. issn: 1664-1078. doi: 10.3389/fpsyg.2013.00907.

Bayer, Justin and Christian Osendorfer (2015). Learning Stochastic Recurrent Networks. arXiv:
1411.7610 [stat.ML].

Bengio, Y., P. Simard, and P. Frasconi (Mar. 1994). “Learning Long-Term Dependencies with
Gradient Descent is Difficult”. In: Trans. Neur. Netw. 5.2, pp. 157–166. issn: 1045-9227. doi:
10.1109/72.279181. url: https://doi.org/10.1109/72.279181.

Bengio, Yoshua, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bi-
laniuk, Anirudh Goyal, and Christopher Pal (2019). “A meta-transfer objective for learning to
disentangle causal mechanisms”. In: arXiv preprint arXiv:1901.10912.

Berner, Christopher, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. (2019). “Dota 2 with
large scale deep reinforcement learning”. In: arXiv preprint arXiv:1912.06680.

Berseth, Glen, Daniel Geng, Coline Manon Devin, Nicholas Rhinehart, Chelsea Finn, Dinesh Ja-
yaraman, and Sergey Levine (2021). “SMiRL: Surprise Minimizing Reinforcement Learning
in Unstable Environments”. In: International Conference on Learning Representations. url:
https://openreview.net/forum?id=cPZOyoDloxl.

Bogacz, Rafal (2017). “A tutorial on the free-energy framework for modelling perception and
learning”. In: Journal of Mathematical Psychology 76. Model-based Cognitive Neuroscience,

146

https://doi.org/https://doi.org/10.1016/j.neunet.2017.02.015
https://doi.org/10.1162/neco_a_01228
https://doi.org/10.1162/neco_a_01228
https://direct.mit.edu/neco/article-pdf/31/11/2025/1864800/neco_a_01228.pdf
https://direct.mit.edu/neco/article-pdf/31/11/2025/1864800/neco_a_01228.pdf
https://doi.org/10.1162/neco%5C_a%5C_01228
https://doi.org/10.1523/JNEUROSCI.3730-10.2010
https://www.jneurosci.org/content/30/8/2960.full.pdf
https://www.jneurosci.org/content/30/8/2960.full.pdf
https://www.jneurosci.org/content/30/8/2960
https://doi.org/10.1109/IJCNN48605.2020.9206699
https://doi.org/https://doi.org/10.1016/j.neunet.2021.07.016
https://doi.org/https://doi.org/10.1016/j.neunet.2021.07.016
https://www.sciencedirect.com/science/article/pii/S0893608021002793
https://www.sciencedirect.com/science/article/pii/S0893608021002793
https://doi.org/10.3389/fpsyg.2013.00907
https://arxiv.org/abs/1411.7610
https://doi.org/10.1109/72.279181
https://doi.org/10.1109/72.279181
https://openreview.net/forum?id=cPZOyoDloxl

pp. 198–211. issn: 0022-2496. doi: https://doi.org/10.1016/j.jmp.2015.11.003. url: https:
//www.sciencedirect.com/science/article/pii/S0022249615000759.

Bornschein, Jörg, Andriy Mnih, Daniel Zoran, and Danilo J Rezende (2017). “Variational memory
addressing in generative models”. In: arXiv preprint arXiv:1709.07116.

Botvinick, Matthew and James An (2009). “Goal-directed decision making in prefrontal cortex: A
computational framework”. In: Advances in neural information processing systems 21, pp. 169–
176. issn: 1049-5258.

Brown, Tom et al. (2020). “Language Models are Few-Shot Learners”. In: Advances in Neural
Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin. Vol. 33. Curran Associates, Inc., pp. 1877–1901. url: https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Buckley, Christopher L., Chang Sub Kim, Simon McGregor, and Anil K. Seth (2017). “The free
energy principle for action and perception: A mathematical review”. In: Journal of Mathematical
Psychology 81, pp. 55–79. issn: 0022-2496. doi: https://doi.org/10.1016/j.jmp.2017.09.004.
url: http://www.sciencedirect.com/science/article/pii/S0022249617300962.

Butz, Martin V, David Bilkey, Dania Humaidan, Alistair Knott, and Sebastian Otte (2019). “Learn-
ing, planning, and control in a monolithic neural event inference architecture”. In: Neural Net-
works 117, pp. 135–144.

Çatal, Ozan, Tim Verbelen, Johannes Nauta, Cedric De Boom, and Bart Dhoedt (2020). “Learning
perception and planning with deep active inference”. In: ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 3952–3956.

Çatal, Ozan, Tim Verbelen, Toon Van de Maele, Bart Dhoedt, and Adam Safron (2021). “Robot
navigation as hierarchical active inference”. In: Neural Networks 142, pp. 192–204. issn: 0893-
6080. doi: https://doi.org/10.1016/j.neunet.2021.05.010. url: https://www.sciencedirect.com/
science/article/pii/S0893608021002021.

Chang, Bo, Minmin Chen, Eldad Haber, and Ed H. Chi (2019). AntisymmetricRNN: A Dynamical
System View on Recurrent Neural Networks. arXiv: 1902.09689 [stat.ML].

Cho, Kyunghyun, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio (2014). “Learning Phrase Representations using RNN Encoder-Decoder for Sta-
tistical Machine Translation”. In: CoRR abs/1406.1078. arXiv: 1406.1078. url: http://arxiv.
org/abs/1406.1078.

Chung, Junyoung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and Yoshua
Bengio (2015). “A Recurrent Latent Variable Model for Sequential Data”. In: Advances in
Neural Information Processing Systems. Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett. Vol. 28. Curran Associates, Inc. url: https://proceedings.neurips.cc/paper/
2015/file/b618c3210e934362ac261db280128c22-Paper.pdf.

Ciria, Alejandra, G. Schillaci, G. Pezzulo, V. Hafner, and B. Lara (2021). “Predictive Processing
in Cognitive Robotics: a Review”. In: Neural Comput. 33, pp. 1402–1432.

Clark, Andy (2013). “Whatever next? Predictive brains, situated agents, and the future of cognitive
science”. In: Behavioral and Brain Sciences 36.3, pp. 181–204. doi: 10.1017/S0140525X12000477.

Collins, Jasmine, Jascha Sohl-Dickstein, and David Sussillo (2017). Capacity and Trainability in
Recurrent Neural Networks. arXiv: 1611.09913 [stat.ML].

Collobert, Ronan and Jason Weston (2008). “A unified architecture for natural language process-
ing: Deep neural networks with multitask learning”. In: Proceedings of the 25th international
conference on Machine learning, pp. 160–167.

Creem-Regehr, Sarah H. (2009). “Sensory-motor and cognitive functions of the human posterior
parietal cortex involved in manual actions”. In: Neurobiology of Learning and Memory 91.2.
Special Issue: Parietal Cortex, pp. 166–171. issn: 1074-7427. doi: https://doi.org/10.1016/j.
nlm.2008.10.004. url: http://www.sciencedirect.com/science/article/pii/S1074742708001883.

Crick, Francis (Jan. 1989). “The recent excitement about neural networks”. In: Nature 337.6203,
pp. 129–132. issn: 1476-4687. doi: 10.1038/337129a0. url: https://doi.org/10.1038/337129a0.

Daucé, Emmanuel (2020). “End-Effect Exploration Drive for Effective Motor Learning”. In: Inter-
national Workshop on Active Inference. Springer, pp. 114–124.

Dayan, Peter and Geoffrey E. Hinton (1996). “Varieties of Helmholtz Machine”. In: Neural Networks
9.8. Four Major Hypotheses in Neuroscience, pp. 1385–1403. issn: 0893-6080. doi: https://doi.
org/10.1016/S0893-6080(96)00009-3. url: https://www.sciencedirect.com/science/article/pii/
S0893608096000093.

147

https://doi.org/https://doi.org/10.1016/j.jmp.2015.11.003
https://www.sciencedirect.com/science/article/pii/S0022249615000759
https://www.sciencedirect.com/science/article/pii/S0022249615000759
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.jmp.2017.09.004
http://www.sciencedirect.com/science/article/pii/S0022249617300962
https://doi.org/https://doi.org/10.1016/j.neunet.2021.05.010
https://www.sciencedirect.com/science/article/pii/S0893608021002021
https://www.sciencedirect.com/science/article/pii/S0893608021002021
https://arxiv.org/abs/1902.09689
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
https://proceedings.neurips.cc/paper/2015/file/b618c3210e934362ac261db280128c22-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/b618c3210e934362ac261db280128c22-Paper.pdf
https://doi.org/10.1017/S0140525X12000477
https://arxiv.org/abs/1611.09913
https://doi.org/https://doi.org/10.1016/j.nlm.2008.10.004
https://doi.org/https://doi.org/10.1016/j.nlm.2008.10.004
http://www.sciencedirect.com/science/article/pii/S1074742708001883
https://doi.org/10.1038/337129a0
https://doi.org/10.1038/337129a0
https://doi.org/https://doi.org/10.1016/S0893-6080(96)00009-3
https://doi.org/https://doi.org/10.1016/S0893-6080(96)00009-3
https://www.sciencedirect.com/science/article/pii/S0893608096000093
https://www.sciencedirect.com/science/article/pii/S0893608096000093

Dayan, Peter, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel (Sept. 1995). “The
Helmholtz Machine”. In: Neural Computation 7.5, pp. 889–904. issn: 0899-7667. doi: 10.1162/
neco.1995.7.5.889. eprint: https://direct.mit.edu/neco/article-pdf/7/5/889/813131/neco.1995.7.
5.889.pdf. url: https://doi.org/10.1162/neco.1995.7.5.889.

Demircigil, Mete, Judith Heusel, Matthias Löwe, Sven Upgang, and Franck Vermet (2017). “On
a model of associative memory with huge storage capacity”. In: Journal of Statistical Physics
168.2, pp. 288–299.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: CoRR abs/1810.04805.
arXiv: 1810.04805. url: http://arxiv.org/abs/1810.04805.

Dilokthanakul, Nat, Pedro AM Mediano, Marta Garnelo, Matthew CH Lee, Hugh Salimbeni, Kai
Arulkumaran, and Murray Shanahan (2016). “Deep unsupervised clustering with gaussian mix-
ture variational autoencoders”. In: arXiv preprint arXiv:1611.02648.

Doersch, Carl (2021). Tutorial on Variational Autoencoders. arXiv: 1606.05908 [stat.ML].
Doya, K. (1993). “Bifurcations of Recurrent Neural Networks in Gradient Descent Learning”. In:

IEEE Transactions on Neural Networks.
Dua, D. and C. Graff (2019). “UCI Machine Learning Repository”. In: [http://archive.ics.uci.edu/ml].

Irvine, CA: University of California, School of Information and Computer Science.
Dudai, Y. (2004). “The neurobiology of consolidations, or, how stable is the engram?” In: Annual

review of psychology 55, pp. 51–86.
Elman, Jeffrey L. (1990). “Finding structure in time”. In: Cognitive Science 14.2, pp. 179–211.

issn: 0364-0213. doi: https://doi .org/10.1016/0364- 0213(90)90002-E. url: https://www.
sciencedirect.com/science/article/pii/036402139090002E.

Fabius, Otto and Joost R. van Amersfoort (2015). Variational Recurrent Auto-Encoders. arXiv:
1412.6581 [stat.ML].

Feldman, Harriet and Karl Friston (2010). “Attention, uncertainty, and free-energy”. In: Frontiers
in human neuroscience 4, p. 215.

Fenske, Mark J., Elissa Aminoff, Nurit Gronau, and Moshe Bar (2006). “Chapter 1 Top-down
facilitation of visual object recognition: object-based and context-based contributions”. In: Vi-
sual Perception. Ed. by S. Martinez-Conde, S.L. Macknik, L.M. Martinez, J.-M. Alonso, and
P.U. Tse. Vol. 155. Progress in Brain Research. Elsevier, pp. 3–21. doi: https : / / doi . org /
10.1016/S0079- 6123(06)55001- 0. url: https ://www.sciencedirect .com/science/article/pii/
S0079612306550010.

Fraccaro, Marco, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther (2016). “Sequential Neural
Models with Stochastic Layers”. In: Advances in Neural Information Processing Systems. Ed.
by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates,
Inc. url: https://proceedings.neurips.cc/paper/2016/file/208e43f0e45c4c78cafadb83d2888cb6-
Paper.pdf.

Friston, K.J., J. Daunizeau, and S.J. Kiebel (2009). “Reinforcement Learning or Active Inference?”
In: PLoS ONE 4.7, e6421.

Friston, K.J., T. FitzGerald, F. Rigoli, P. Schwartenbeck, J. O’Doherty, and G. Pezzulo (2016).
“Active inference and learning”. In: Neuroscience & Biobehavioral Reviews 68, pp. 862–879.

Friston, K.J. and S. Kiebel (2009). “Predictive coding under the free-energy principle”. In: Philo-
sophical Transactions of the Royal Society of London. Series B, Biological Sciences 364, pp. 1211–
21.

Friston, K.J. and J. Kilner (2006). “A free energy principle for the brain”. In: J. Physiol. Paris
100, pp. 70–87.

Friston, K.J., N. Trujillo-Barreto, and J. Daunizeau (2008). “DEM: A variational treatment of
dynamic systems”. In: NeuroImage 41.3, pp. 849–885. issn: 1053-8119. doi: https://doi.org/
10.1016/j.neuroimage.2008.02.054. url: https://www.sciencedirect.com/science/article/pii/
S1053811908001894.

Friston, Karl (2003). “Learning and inference in the brain”. In: Neural Networks 16.9. Neuroinfor-
matics, pp. 1325–1352. issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.2003.06.005.
url: https://www.sciencedirect.com/science/article/pii/S0893608003002454.

— (2005). “A theory of cortical responses”. In: Philosophical Transactions of the Royal Society
B: Biological Sciences 360.1456, pp. 815–836. doi: 10 . 1098 / rstb . 2005 . 1622. eprint: https :
//royalsocietypublishing.org/doi/pdf/10.1098/rstb.2005.1622. url: https://royalsocietypublishing.
org/doi/abs/10.1098/rstb.2005.1622.

148

https://doi.org/10.1162/neco.1995.7.5.889
https://doi.org/10.1162/neco.1995.7.5.889
https://direct.mit.edu/neco/article-pdf/7/5/889/813131/neco.1995.7.5.889.pdf
https://direct.mit.edu/neco/article-pdf/7/5/889/813131/neco.1995.7.5.889.pdf
https://doi.org/10.1162/neco.1995.7.5.889
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1606.05908
https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://www.sciencedirect.com/science/article/pii/036402139090002E
https://arxiv.org/abs/1412.6581
https://doi.org/https://doi.org/10.1016/S0079-6123(06)55001-0
https://doi.org/https://doi.org/10.1016/S0079-6123(06)55001-0
https://www.sciencedirect.com/science/article/pii/S0079612306550010
https://www.sciencedirect.com/science/article/pii/S0079612306550010
https://proceedings.neurips.cc/paper/2016/file/208e43f0e45c4c78cafadb83d2888cb6-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/208e43f0e45c4c78cafadb83d2888cb6-Paper.pdf
https://doi.org/https://doi.org/10.1016/j.neuroimage.2008.02.054
https://doi.org/https://doi.org/10.1016/j.neuroimage.2008.02.054
https://www.sciencedirect.com/science/article/pii/S1053811908001894
https://www.sciencedirect.com/science/article/pii/S1053811908001894
https://doi.org/https://doi.org/10.1016/j.neunet.2003.06.005
https://www.sciencedirect.com/science/article/pii/S0893608003002454
https://doi.org/10.1098/rstb.2005.1622
https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2005.1622
https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2005.1622
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2005.1622
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2005.1622

Friston, Karl (Nov. 2008a). “Hierarchical Models in the Brain”. In: PLOS Computational Biology
4.11, pp. 1–24.

— (2009). “The free-energy principle: a rough guide to the brain?” In: Trends in Cognitive Sciences
13.7, pp. 293–301. issn: 1364-6613. doi: https://doi.org/10.1016/j.tics.2009.04.005. url: https:
//www.sciencedirect.com/science/article/pii/S136466130900117X.

— (Aug. 2010a). “Is the free-energy principle neurocentric?” In: Nature Reviews Neuroscience 11.8,
pp. 605–605. issn: 1471-0048. doi: 10.1038/nrn2787-c2. url: https://doi.org/10.1038/nrn2787-
c2.

— (Feb. 2010b). “The free-energy principle: a unified brain theory?” In: Nature Reviews Neuro-
science 11.2, pp. 127–138. issn: 1471-0048. doi: 10.1038/nrn2787. url: https://doi.org/10.
1038/nrn2787.

Friston, Karl, Lancelot Da Costa, Danijar Hafner, Casper Hesp, and Thomas Parr (2021). “Sophis-
ticated inference”. In: Neural Computation 33.3, pp. 713–763.

Friston, Karl, Jérémie Mattout, and James Kilner (2011). “Action understanding and active infer-
ence”. In: Biological cybernetics 104.1, pp. 137–160.

Friston, Karl, Jérémie Mattout, Nelson Trujillo-Barreto, John Ashburner, and Will Penny (2007).
“Variational free energy and the Laplace approximation”. In: NeuroImage 34.1, pp. 220–234.
issn: 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2006.08.035. url: https://www.
sciencedirect.com/science/article/pii/S1053811906008822.

Friston, Karl, Francesco Rigoli, Dimitri Ognibene, Christoph Mathys, Thomas Fitzgerald, and
Giovanni Pezzulo (2015). “Active inference and epistemic value”. In: Cognitive neuroscience
6.4, pp. 187–214.

Friston, Karl, Christopher Thornton, and Andy Clark (2012). “Free-energy minimization and the
dark-room problem”. In: Frontiers in psychology 3, p. 130.

Friston, Karl J (2008b). “Variational filtering”. In: NeuroImage 41.3, pp. 747–766.
Friston, Karl J. and K. Stephan (2007). “Free-energy and the brain”. In: Synthese 159, pp. 417–458.
Fuster, J M (1973). “Unit activity in prefrontal cortex during delayed-response performance: neu-

ronal correlates of transient memory.” In: Journal of Neurophysiology 36.1. PMID: 4196203,
pp. 61–78. doi: 10.1152/jn.1973.36.1.61. eprint: https://doi.org/10.1152/jn.1973.36.1.61. url:
https://doi.org/10.1152/jn.1973.36.1.61.

Gemici, Mevlana, Chia-Chun Hung, Adam Santoro, Greg Wayne, Shakir Mohamed, Danilo J
Rezende, David Amos, and Timothy Lillicrap (2017). “Generative temporal models with mem-
ory”. In: arXiv preprint arXiv:1702.04649.

Girin, Laurent, Simon Leglaive, Xiaoyu Bie, Julien Diard, Thomas Hueber, and Xavier Alameda-
Pineda (2020). “Dynamical variational autoencoders: A comprehensive review”. In: arXiv preprint
arXiv:2008.12595.

Goyal, Anirudh, Alessandro Sordoni, Marc-Alexandre Côté, Nan Rosemary Ke, and Yoshua Bengio
(2017). “Z-Forcing: Training Stochastic Recurrent Networks”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett. Vol. 30. Curran Associates, Inc. url: https://proceedings.
neurips.cc/paper/2017/file/900c563bfd2c48c16701acca83ad858a-Paper.pdf.

Graves, Alex, Greg Wayne, and Ivo Danihelka (2014). “Neural turing machines”. In: arXiv preprint
arXiv:1410.5401.

Graves, Alex, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. (2016). “Hybrid computing using a neural network with dynamic external memory”. In:
Nature 538.7626, pp. 471–476.

Greff, Klaus, Rupesh Kumar Srivastava, Jan Koutnik, Bas R. Steunebrink, and Jürgen Schmidhu-
ber (2015). “LSTM: A Search Space Odyssey”. In: CoRR abs/1503.04069. arXiv: 1503.04069.
url: http://arxiv.org/abs/1503.04069.

Gregor, Karol, Ivo Danihelka, Alex Graves, and Daan Wierstra (2015). “DRAW: A Recurrent
Neural Network For Image Generation”. In: CoRR abs/1502.04623. arXiv: 1502.04623. url:
http://arxiv.org/abs/1502.04623.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2016). “Deep residual learning for
image recognition”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778.

149

https://doi.org/https://doi.org/10.1016/j.tics.2009.04.005
https://www.sciencedirect.com/science/article/pii/S136466130900117X
https://www.sciencedirect.com/science/article/pii/S136466130900117X
https://doi.org/10.1038/nrn2787-c2
https://doi.org/10.1038/nrn2787-c2
https://doi.org/10.1038/nrn2787-c2
https://doi.org/10.1038/nrn2787
https://doi.org/10.1038/nrn2787
https://doi.org/10.1038/nrn2787
https://doi.org/https://doi.org/10.1016/j.neuroimage.2006.08.035
https://www.sciencedirect.com/science/article/pii/S1053811906008822
https://www.sciencedirect.com/science/article/pii/S1053811906008822
https://doi.org/10.1152/jn.1973.36.1.61
https://doi.org/10.1152/jn.1973.36.1.61
https://doi.org/10.1152/jn.1973.36.1.61
https://proceedings.neurips.cc/paper/2017/file/900c563bfd2c48c16701acca83ad858a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/900c563bfd2c48c16701acca83ad858a-Paper.pdf
https://arxiv.org/abs/1503.04069
http://arxiv.org/abs/1503.04069
https://arxiv.org/abs/1502.04623
http://arxiv.org/abs/1502.04623

He, Xu and Herbert Jaeger (2018). “Overcoming Catastrophic Interference using Conceptor-Aided
Backpropagation”. In: International Conference on Learning Representations. url: https ://
openreview.net/forum?id=B1al7jg0b.

Hochreiter, Sepp and Jürgen Schmidhuber (Nov. 1997). “Long Short-Term Memory”. In: Neural
Comput. 9.8, pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735. url: https:
//doi.org/10.1162/neco.1997.9.8.1735.

Hoerzer, Gregor M., Robert Legenstein, and Wolfgang Maass (Nov. 2012). “Emergence of Complex
Computational Structures From Chaotic Neural Networks Through Reward-Modulated Heb-
bian Learning”. In: Cerebral Cortex 24.3, pp. 677–690. issn: 1047-3211. doi: 10.1093/cercor/
bhs348. eprint: https://academic.oup.com/cercor/article-pdf/24/3/677/14099466/bhs348.pdf.
url: https://doi.org/10.1093/cercor/bhs348.

Hopfield, J J (1982). “Neural networks and physical systems with emergent collective computational
abilities”. In: Proceedings of the National Academy of Sciences 79.8, pp. 2554–2558. issn: 0027-
8424. doi: 10.1073/pnas.79.8.2554. eprint: https://www.pnas.org/content/79/8/2554.full.pdf.
url: https://www.pnas.org/content/79/8/2554.

Hosoya, Toshihiko, Stephen A. Baccus, and Markus Meister (July 2005). “Dynamic predictive
coding by the retina”. In: Nature 436.7047, pp. 71–77. doi: 10.1038/nature03689.

Houthooft, Rein, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel (2016).
“Vime: Variational information maximizing exploration”. In: arXiv preprint arXiv:1605.09674.

Hug, Ronny, Stefan Becker, Wolfgang Hübner, and Michael Arens (2021). Quantifying the Com-
plexity of Standard Benchmarking Datasets for Long-Term Human Trajectory Prediction. arXiv:
2005.13934 [cs.CV].

Hughes, H.C., T.M. Darcey, H.I. Barkan, P.D. Williamson, D.W. Roberts, and C.H. Aslin (2001).
“Responses of Human Auditory Association Cortex to the Omission of an Expected Acoustic
Event”. In: NeuroImage 13.6, pp. 1073–1089. issn: 1053-8119. doi: https://doi.org/10.1006/
nimg.2001.0766. url: https://www.sciencedirect.com/science/article/pii/S1053811901907669.

Hwang, Jungsik, Jinhyung Kim, Ahmadreza Ahmadi, Minkyu Choi, and Jun Tani (2020). “Dealing
With Large-Scale Spatio-Temporal Patterns in Imitative Interaction Between a Robot and a
Human by Using the Predictive Coding Framework”. In: IEEE Transactions on Systems, Man,
and Cybernetics: Systems 50.5, pp. 1918–1931. doi: 10.1109/TSMC.2018.2791984.

Ikeda, Kensuke, Kenju Otsuka, and Kenji Matsumoto (June 1989). “Maxwell-Bloch Turbulence”.
In: Progress of Theoretical Physics Supplement 99, pp. 295–324. issn: 0375-9687. doi: 10.1143/
PTPS.99.295.

Inoue, Katsuma, Kohei Nakajima, and Yasuo Kuniyoshi (2020). “Designing spontaneous behavioral
switching via chaotic itinerancy”. In: Science Advances 6.46. doi: 10 .1126/sciadv . abb3989.
eprint: https://advances.sciencemag.org/content/6/46/eabb3989.full.pdf. url: https://advances.
sciencemag.org/content/6/46/eabb3989.

Ito, Masato and Jun Tani (2004). “On-line Imitative Interaction with a Humanoid Robot Using a
Dynamic Neural Network Model of a Mirror System”. In: Adaptive Behavior 12.2, pp. 93–115.
doi: 10.1177/105971230401200202. eprint: https://doi.org/10.1177/105971230401200202. url:
https://doi.org/10.1177/105971230401200202.

Jacquey, L., G. Baldassare, V.G. Santucci, and O’Reagan J.K. (2019). “Sensorimotor Contingencies
as a Key Drive of Development: From Babies to Robots”. In: Frontiers in NeuroRobotics 13.98.
doi: 10.3389/fnbot.2019.00098.

Jaeger, Herbert (Jan. 2001). “The “Echo State” Approach to Analysing and Training Recurrent
Neural Networks”. In: GMD-Report 148, German National Research Institute for Computer
Science.

— (2014a). “Conceptors: an easy introduction”. In: CoRR abs/1406.2671. arXiv: 1406.2671. url:
http://arxiv.org/abs/1406.2671.

— (2014b). “Controlling Recurrent Neural Networks by Conceptors”. In: CoRR abs/1403.3369.
arXiv: 1403.3369. url: http://arxiv.org/abs/1403.3369.

Jehee, Janneke F M and Dana H Ballard (May 2009). “Predictive feedback can account for biphasic
responses in the lateral geniculate nucleus”. In: PLoS computational biology 5.5, e1000373.
issn: 1553-734X. doi: 10.1371/ journal .pcbi .1000373. url: https ://europepmc.org/articles/
PMC2670540.

Jung, Minju, Takazumi Matsumoto, and Jun Tani (2019). “Goal-Directed Behavior under Varia-
tional Predictive Coding: Dynamic Organization of Visual Attention and Working Memory”.
In: CoRR abs/1903.04932.

150

https://openreview.net/forum?id=B1al7jg0b
https://openreview.net/forum?id=B1al7jg0b
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1093/cercor/bhs348
https://doi.org/10.1093/cercor/bhs348
https://academic.oup.com/cercor/article-pdf/24/3/677/14099466/bhs348.pdf
https://doi.org/10.1093/cercor/bhs348
https://doi.org/10.1073/pnas.79.8.2554
https://www.pnas.org/content/79/8/2554.full.pdf
https://www.pnas.org/content/79/8/2554
https://doi.org/10.1038/nature03689
https://arxiv.org/abs/2005.13934
https://doi.org/https://doi.org/10.1006/nimg.2001.0766
https://doi.org/https://doi.org/10.1006/nimg.2001.0766
https://www.sciencedirect.com/science/article/pii/S1053811901907669
https://doi.org/10.1109/TSMC.2018.2791984
https://doi.org/10.1143/PTPS.99.295
https://doi.org/10.1143/PTPS.99.295
https://doi.org/10.1126/sciadv.abb3989
https://advances.sciencemag.org/content/6/46/eabb3989.full.pdf
https://advances.sciencemag.org/content/6/46/eabb3989
https://advances.sciencemag.org/content/6/46/eabb3989
https://doi.org/10.1177/105971230401200202
https://doi.org/10.1177/105971230401200202
https://doi.org/10.1177/105971230401200202
https://doi.org/10.3389/fnbot.2019.00098
https://arxiv.org/abs/1406.2671
http://arxiv.org/abs/1406.2671
https://arxiv.org/abs/1403.3369
http://arxiv.org/abs/1403.3369
https://doi.org/10.1371/journal.pcbi.1000373
https://europepmc.org/articles/PMC2670540
https://europepmc.org/articles/PMC2670540

Kalchbrenner, Nal, Edward Grefenstette, and Phil Blunsom (2014). “A convolutional neural net-
work for modelling sentences”. In: arXiv preprint arXiv:1404.2188.

Kaneko, Kunihiko (1990). “Clustering, coding, switching, hierarchical ordering, and control in a
network of chaotic elements”. In: Physica D: Nonlinear Phenomena 41.2, pp. 137–172. issn:
0167-2789. doi: 10.1016/0167-2789(90)90119-A.

Kaneko, Kunihiko and Ichiro Tsuda (2003). “Chaotic itinerancy”. In: Chaos: An Interdisciplinary
Journal of Nonlinear Science 13.3, pp. 926–936. doi: 10.1063/1.1607783.

Kanerva, Pentti (1988). Sparse distributed memory. MIT press.
Ke, Nan Rosemary, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Bernhard

Schölkopf, Michael C Mozer, Chris Pal, and Yoshua Bengio (2019). “Learning neural causal
models from unknown interventions”. In: arXiv preprint arXiv:1910.01075.

Kingma, Diederik P. and M.Welling (2014). “Auto-Encoding Variational Bayes”. In: CoRR abs/1312.6114.
Kirkpatrick, James et al. (2017). “Overcoming catastrophic forgetting in neural networks”. In:

Proceedings of the National Academy of Sciences 114.13, pp. 3521–3526. issn: 0027-8424. doi:
10.1073/pnas.1611835114. eprint: https://www.pnas.org/content/114/13/3521.full.pdf. url:
https://www.pnas.org/content/114/13/3521.

Klyubin, Alexander S, Daniel Polani, and Chrystopher L Nehaniv (2005). “All else being equal be
empowered”. In: European Conference on Artificial Life. Springer, pp. 744–753.

Knill, David C. and Alexandre Pouget (2004). “The Bayesian brain: the role of uncertainty in
neural coding and computation”. In: Trends in Neurosciences 27.12, pp. 712–719. issn: 0166-
2236. doi: https://doi.org/10.1016/j.tins.2004.10.007. url: http://www.sciencedirect.com/
science/article/pii/S0166223604003352.

Kohonen, T. (1982). “Self-organized formation of topologically correct feature maps”. In: Biological
Cybernetics 43, pp. 59–69.

Koutnik, Jan, Klaus Greff, Faustino J. Gomez, and Jurgen Schmidhuber (2014). “A Clockwork
RNN”. In: CoRR abs/1402.3511. arXiv: 1402.3511. url: http://arxiv.org/abs/1402.3511.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet Classification with
Deep Convolutional Neural Networks”. In: Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1. NIPS’12. Lake Tahoe, Nevada: Curran
Associates Inc., pp. 1097–1105.

Laje, R. and D.V. Buonomano (2013). “Robust timing and motor patterns by taming chaos in
recurrent neural networks”. In: Nature Neuroscience 16.7, pp. 925–935.

Lanillos, Pablo, Gordon Cheng, et al. (2020). “Robot self/other distinction: active inference meets
neural networks learning in a mirror”. In: arXiv preprint arXiv:2004.05473.

Launay, Julien, Iacopo Poli, Kilian Müller, Gustave Pariente, Igor Carron, Laurent Daudet, Flo-
rent Krzakala, and Sylvain Gigan (2020). “Hardware Beyond Backpropagation: a Photonic
Co-Processor for Direct Feedback Alignment”. In: arXiv preprint arXiv:2012.06373.

Le, Quoc V., Navdeep Jaitly, and Geoffrey E. Hinton (2015). “A Simple Way to Initialize Recurrent
Networks of Rectified Linear Units”. In: CoRR abs/1504.00941. arXiv: 1504.00941. url: http:
//arxiv.org/abs/1504.00941.

Lee, Dong-Hyun, Saizheng Zhang, Asja Fischer, and Yoshua Bengio (2015). “Difference Target
Propagation”. In: Machine Learning and Knowledge Discovery in Databases. Ed. by Annalisa
Appice, Pedro Pereira Rodrigues, Vítor Santos Costa, Carlos Soares, João Gama, and Alípio
Jorge. Cham: Springer International Publishing, pp. 498–515. isbn: 978-3-319-23528-8.

Li, Zhizhong and Derek Hoiem (2017). “Learning without forgetting”. In: IEEE transactions on
pattern analysis and machine intelligence 40.12, pp. 2935–2947.

Lillicrap, Timothy P, Daniel Cownden, Douglas B Tweed, and Colin J Akerman (Nov. 2016).
“Random synaptic feedback weights support error backpropagation for deep learning”. In: Na-
ture communications 7, p. 13276. issn: 2041-1723. doi: 10.1038/ncomms13276. url: https :
//europepmc.org/articles/PMC5105169.

Lotter, William, Gabriel Kreiman, and David D. Cox (2016). “Deep Predictive Coding Networks for
Video Prediction and Unsupervised Learning”. In: CoRR abs/1605.08104. arXiv: 1605.08104.
url: http://arxiv.org/abs/1605.08104.

Lukoševičius, Mantas and Herbert Jaeger (2009). “Reservoir computing approaches to recurrent
neural network training”. In: Computer Science Review 3.3, pp. 127–149. issn: 1574-0137. doi:
https://doi.org/10.1016/j.cosrev.2009.03.005.

151

https://doi.org/10.1016/0167-2789(90)90119-A
https://doi.org/10.1063/1.1607783
https://doi.org/10.1073/pnas.1611835114
https://www.pnas.org/content/114/13/3521.full.pdf
https://www.pnas.org/content/114/13/3521
https://doi.org/https://doi.org/10.1016/j.tins.2004.10.007
http://www.sciencedirect.com/science/article/pii/S0166223604003352
http://www.sciencedirect.com/science/article/pii/S0166223604003352
https://arxiv.org/abs/1402.3511
http://arxiv.org/abs/1402.3511
https://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1504.00941
https://doi.org/10.1038/ncomms13276
https://europepmc.org/articles/PMC5105169
https://europepmc.org/articles/PMC5105169
https://arxiv.org/abs/1605.08104
http://arxiv.org/abs/1605.08104
https://doi.org/https://doi.org/10.1016/j.cosrev.2009.03.005

Maass, W., T. Natschläger, and H. Markram (2002). “Real-Time Computing Without Stable States:
A New Framework for Neural Computation Based on Perturbations”. In: Neural Computation
14.11, pp. 2531–2560. doi: 10.1162/089976602760407955.

Mallya, Arun, Dillon Davis, and Svetlana Lazebnik (2018). “Piggyback: Adapting a single network
to multiple tasks by learning to mask weights”. In: Proceedings of the European Conference on
Computer Vision (ECCV), pp. 67–82.

Mannella, Francesco and Gianluca Baldassarre (Dec. 2015). “Selection of Cortical Dynamics for
Motor Behaviour by the Basal Ganglia”. In: Biol. Cybern. 109.6, pp. 575–595. issn: 0340-1200.
doi: 10.1007/s00422-015-0662-6. url: https://doi.org/10.1007/s00422-015-0662-6.

Martens, J. (2010). “Deep learning via Hessian-free optimization”. In: ICML.
Martens, James and Ilya Sutskever (2011). “Learning recurrent neural networks with hessian-free

optimization”. In: Proceedings of the 28th international conference on machine learning (ICML-
11), pp. 1033–1040.

Matsumoto, Takazumi and Jun Tani (2020). “Goal-directed planning for habituated agents by
active inference using a variational recurrent neural network”. In: Entropy 22.5, p. 564.

Meo, Cristian and Pablo Lanillos (2021). “Multimodal VAE Active Inference Controller”. In: arXiv
preprint arXiv:2103.04412.

Mikolov, Tomas, Armand Joulin, Sumit Chopra, Michael Mathieu, and Marc’Aurelio Ranzato
(Dec. 2014). “Learning Longer Memory in Recurrent Neural Networks”. In: arXiv e-prints,
arXiv:1412.7753, arXiv:1412.7753. arXiv: 1412.7753 [cs.NE].

Millidge, Beren (2020). “Deep active inference as variational policy gradients”. In: Journal of Math-
ematical Psychology 96, p. 102348.

Millidge, Beren, Alexander Tschantz, and Christopher L Buckley (2021). “Whence the expected
free energy?” In: Neural Computation 33.2, pp. 447–482.

— (2020a). “Predictive Coding Approximates Backprop along Arbitrary Computation Graphs”.
In: CoRR abs/2006.04182. arXiv: 2006.04182. url: https://arxiv.org/abs/2006.04182.

Millidge, Beren, Alexander Tschantz, Anil Seth, and Christopher L Buckley (2020b). Relaxing the
Constraints on Predictive Coding Models. arXiv: 2010.01047 [q-bio.NC].

Mirowski, Piotr, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. (2016). “Learning to
navigate in complex environments”. In: arXiv preprint arXiv:1611.03673.

Mishkin, Dmytro and Jiri Matas (2016). All you need is a good init. arXiv: 1511.06422 [cs.LG].
Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-

stra, and Martin A. Riedmiller (2013). “Playing Atari with Deep Reinforcement Learning”. In:
CoRR abs/1312.5602. arXiv: 1312.5602. url: http://arxiv.org/abs/1312.5602.

Mochizuki, K., S. Nishide, H. G. Okuno, and T. Ogata (2013). “Developmental Human-Robot
Imitation Learning of Drawing with a Neuro Dynamical System”. In: 2013 IEEE International
Conference on Systems, Man, and Cybernetics, pp. 2336–2341. doi: 10.1109/SMC.2013.399.

Müller, James R., Andrew B. Metha, John Krauskopf, and Peter Lennie (1999). “Rapid Adaptation
in Visual Cortex to the Structure of Images”. In: Science 285.5432, pp. 1405–1408. issn: 0036-
8075. doi: 10.1126/science.285.5432.1405. eprint: https://science.sciencemag.org/content/285/
5432/1405.full.pdf. url: https://science.sciencemag.org/content/285/5432/1405.

Mushiake, Hajime, Naohiro Saito, Kazuhiro Sakamoto, Yasuto Itoyama, and Jun Tanji (2006).
“Activity in the Lateral Prefrontal Cortex Reflects Multiple Steps of Future Events in Action
Plans”. In: Neuron 50.4, pp. 631–641. issn: 0896-6273. doi: https://doi.org/10.1016/j.neuron.
2006.03.045. url: http://www.sciencedirect.com/science/article/pii/S0896627306002728.

Nagabandi, Anusha, Kurt Konolige, Sergey Levine, and Vikash Kumar (2020). “Deep dynam-
ics models for learning dexterous manipulation”. In: Conference on Robot Learning. PMLR,
pp. 1101–1112.

Namikawa, Jun, Ryunosuke Nishimoto, and Jun Tani (Oct. 2011). “A Neurodynamic Account of
Spontaneous Behaviour”. In: PLOS Computational Biology 7.10, pp. 1–13. doi: 10.1371/journal.
pcbi.1002221.

Nøkland, Arild (2016). “Direct Feedback Alignment Provides Learning in Deep Neural Networks”.
In: Advances in Neural Information Processing Systems. Ed. by D. Lee, M. Sugiyama, U.
Luxburg, I. Guyon, and R. Garnett. Vol. 29. Curran Associates, Inc., pp. 1037–1045. url:
https://proceedings.neurips.cc/paper/2016/file/d490d7b4576290fa60eb31b5fc917ad1-Paper.pdf.

O’Regan, J. Kevin and Alva Noë (2001). “A sensorimotor account of vision and visual conscious-
ness”. In: Behavioral and Brain Sciences 24.5, pp. 939–973. doi: 10.1017/S0140525X01000115.

152

https://doi.org/10.1162/089976602760407955
https://doi.org/10.1007/s00422-015-0662-6
https://doi.org/10.1007/s00422-015-0662-6
https://arxiv.org/abs/1412.7753
https://arxiv.org/abs/2006.04182
https://arxiv.org/abs/2006.04182
https://arxiv.org/abs/2010.01047
https://arxiv.org/abs/1511.06422
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/SMC.2013.399
https://doi.org/10.1126/science.285.5432.1405
https://science.sciencemag.org/content/285/5432/1405.full.pdf
https://science.sciencemag.org/content/285/5432/1405.full.pdf
https://science.sciencemag.org/content/285/5432/1405
https://doi.org/https://doi.org/10.1016/j.neuron.2006.03.045
https://doi.org/https://doi.org/10.1016/j.neuron.2006.03.045
http://www.sciencedirect.com/science/article/pii/S0896627306002728
https://doi.org/10.1371/journal.pcbi.1002221
https://doi.org/10.1371/journal.pcbi.1002221
https://proceedings.neurips.cc/paper/2016/file/d490d7b4576290fa60eb31b5fc917ad1-Paper.pdf
https://doi.org/10.1017/S0140525X01000115

Ohata, Wataru and Jun Tani (2020). “Investigation of multimodal and agential interactions in
human-robot imitation, based on frameworks of predictive coding and active inference”. In:
arXiv preprint arXiv:2002.01632 2.

Oliver, Guillermo, Pablo Lanillos, and Gordon Cheng (2019). “Active inference body perception
and action for humanoid robots”. In: CoRR abs/1906.03022.

Ororbia, A., A. Mali, C. L. Giles, and D. Kifer (2020). “Continual Learning of Recurrent Neural
Networks by Locally Aligning Distributed Representations”. In: IEEE Transactions on Neural
Networks and Learning Systems 31.10, pp. 4267–4278.

Ororbia, Alexander and Daniel Kifer (2020). “The Neural Coding Framework for Learning Gener-
ative Models”. In: CoRR abs/2012.03405. arXiv: 2012.03405. url: https://arxiv.org/abs/2012.
03405.

Otte, Sebastian, Theresa Schmitt, Karl Friston, and Martin V Butz (2017). “Inferring adaptive goal-
directed behavior within recurrent neural networks”. In: International Conference on Artificial
Neural Networks. Springer, pp. 227–235.

Ouden, Hanneke E.M. den, Karl J. Friston, Nathaniel D. Daw, Anthony R. McIntosh, and Klaas E.
Stephan (Sept. 2008). “A Dual Role for Prediction Error in Associative Learning”. In: Cerebral
Cortex 19.5, pp. 1175–1185. issn: 1047-3211. doi: 10.1093/cercor/bhn161. eprint: https ://
academic.oup.com/cercor/article-pdf/19/5/1175/17301930/bhn161.pdf. url: https://doi.org/10.
1093/cercor/bhn161.

Oudeyer, Pierre-Yves and Frederic Kaplan (2009). “What is intrinsic motivation? A typology of
computational approaches”. In: Frontiers in neurorobotics 1, p. 6.

Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio (2012). “Understanding the exploding gra-
dient problem”. In: CoRR abs/1211.5063.

— (2013). “On the Difficulty of Training Recurrent Neural Networks”. In: Proceedings of the
30th International Conference on International Conference on Machine Learning - Volume
28. ICML’13. Atlanta, GA, USA: JMLR.org, III–1310–III–1318.

Perez, Christian, Felipe Petroski Such, and Theofanis Karaletsos (2020). “Generalized hidden pa-
rameter mdps: Transferable model-based rl in a handful of trials”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 34. 04, pp. 5403–5411.

Pezzato, Corrado, Riccardo Ferrari, and Carlos Hernández Corbato (2020). “A novel adaptive
controller for robot manipulators based on active inference”. In: IEEE Robotics and Automation
Letters 5.2, pp. 2973–2980.

Pezzulo, Giovanni and Paul Cisek (2016). “Navigating the Affordance Landscape: Feedback Control
as a Process Model of Behavior and Cognition”. In: Trends in Cognitive Sciences 20.6, pp. 414–
424. issn: 1364-6613. doi: https ://doi .org/10.1016/j . tics .2016.03.013. url: http://www.
sciencedirect.com/science/article/pii/S1364661316300067.

Pio-Lopez, Léo, Ange Nizard, Karl Friston, and Giovanni Pezzulo (2016). “Active inference and
robot control: a case study”. In: Journal of The Royal Society Interface 13.122, p. 20160616. doi:
10.1098/rsif.2016.0616. eprint: https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2016.0616.
url: https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2016.0616.

Pitti, Alexandre, Philippe Gaussier, and Mathias Quoy (Mar. 2017). “Iterative free-energy op-
timization for recurrent neural networks (INFERNO)”. In: PLOS ONE 12.3, pp. 1–33. doi:
10.1371/journal.pone.0173684. url: https://doi.org/10.1371/journal.pone.0173684.

Planton, Samuel, Marieke Longcamp, Patrice Péran, Jean-François Démonet, and Mélanie Jucla
(2017). “How specialized are writing-specific brain regions? An fMRI study of writing, drawing
and oral spelling”. In: Cortex 88, pp. 66–80. issn: 0010-9452. doi: https://doi.org/10.1016/j.
cortex.2016.11.018. url: http://www.sciencedirect.com/science/article/pii/S0010945216303458.

Pyle, Ryan and Robert Rosenbaum (2019). “A reservoir computing model of reward-modulated
motor learning and automaticity”. In: Neural computation 31.7, pp. 1430–1461.

Ramsauer, Hubert, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas
Adler, Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. (2020).
“Hopfield networks is all you need”. In: arXiv preprint arXiv:2008.02217.

Rao, R.P and D. Ballard (1999). “Predictive coding in the visual cortex a functional interpretation
of some extra-classical receptive-field effects”. In: Nat Neurosci 2, pp. 79–87.

Rao, Rajesh P. N. and Dana H. Ballard (May 1997). “Dynamic Model of Visual Recognition Pre-
dicts Neural Response Properties in the Visual Cortex”. In: Neural Computation 9.4, pp. 721–
763. issn: 0899-7667. doi: 10.1162/neco.1997.9.4.721. eprint: https://direct.mit.edu/neco/article-
pdf/9/4/721/1062248/neco.1997.9.4.721.pdf. url: https://doi.org/10.1162/neco.1997.9.4.721.

153

https://arxiv.org/abs/2012.03405
https://arxiv.org/abs/2012.03405
https://arxiv.org/abs/2012.03405
https://doi.org/10.1093/cercor/bhn161
https://academic.oup.com/cercor/article-pdf/19/5/1175/17301930/bhn161.pdf
https://academic.oup.com/cercor/article-pdf/19/5/1175/17301930/bhn161.pdf
https://doi.org/10.1093/cercor/bhn161
https://doi.org/10.1093/cercor/bhn161
https://doi.org/https://doi.org/10.1016/j.tics.2016.03.013
http://www.sciencedirect.com/science/article/pii/S1364661316300067
http://www.sciencedirect.com/science/article/pii/S1364661316300067
https://doi.org/10.1098/rsif.2016.0616
https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2016.0616
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2016.0616
https://doi.org/10.1371/journal.pone.0173684
https://doi.org/10.1371/journal.pone.0173684
https://doi.org/https://doi.org/10.1016/j.cortex.2016.11.018
https://doi.org/https://doi.org/10.1016/j.cortex.2016.11.018
http://www.sciencedirect.com/science/article/pii/S0010945216303458
https://doi.org/10.1162/neco.1997.9.4.721
https://direct.mit.edu/neco/article-pdf/9/4/721/1062248/neco.1997.9.4.721.pdf
https://direct.mit.edu/neco/article-pdf/9/4/721/1062248/neco.1997.9.4.721.pdf
https://doi.org/10.1162/neco.1997.9.4.721

Rebuffi, Sylvestre-Alvise, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert (2017).
“icarl: Incremental classifier and representation learning”. In: Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pp. 2001–2010.

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). Stochastic Backpropagation
and Approximate Inference in Deep Generative Models. arXiv: 1401.4082 [stat.ML].

Rinne, Teemu, Alexander Degerman, and Kimmo Alho (2005). “Superior temporal and inferior
frontal cortices are activated by infrequent sound duration decrements: an fMRI study”. In:
NeuroImage 26.1, pp. 66–72. issn: 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2005.
01.017. url: https://www.sciencedirect.com/science/article/pii/S1053811905000479.

Rumelhart, D.E., G.E. Hinton, and R.J. Williams (1986). “Learning representations by back-
propagating errors”. In: Nature 323.6088, pp. 533–536.

Sancaktar, Cansu, Marcel AJ van Gerven, and Pablo Lanillos (2020). “End-to-end pixel-based deep
active inference for body perception and action”. In: 2020 Joint IEEE 10th International Con-
ference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). IEEE, pp. 1–
8.

Schillaci, Guido, Alejandra Ciria, and Bruno Lara (2020). “Tracking emotions: intrinsic moti-
vation grounded on multi-level prediction error dynamics”. In: 2020 Joint IEEE 10th Inter-
national Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob).
IEEE, pp. 1–8.

Schmidhuber, Jürgen, Daan Wierstra, Matteo Gagliolo, and Faustino Gomez (2007). “Training
Recurrent Networks by Evolino”. In: Neural Computation 19.3, pp. 757–779. doi: 10.1162/
neco.2007.19.3.757.

Schmidhuber, Jürgen, Daan Wierstra, and Faustino Gomez (2005). “Evolino: Hybrid Neuroevolu-
tion / Optimal Linear Search for Sequence Learning”. In: Proceedings of the 19th International
Joint Conference on Artificial Intelligence. IJCAI’05. Edinburgh, Scotland: Morgan Kaufmann
Publishers Inc., pp. 853–858.

Schrittwieser, Julian, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. (2020).
“Mastering atari, go, chess and shogi by planning with a learned model”. In: Nature 588.7839,
pp. 604–609.

Schröger, Erich, Anna Marzecová, and Iria SanMiguel (2015). “Attention and prediction in human
audition: a lesson from cognitive psychophysiology”. In: European Journal of Neuroscience 41.5,
pp. 641–664. doi: https://doi.org/10.1111/ejn.12816. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1111/ejn.12816. url: https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.12816.

Shabanian, Samira, Devansh Arpit, Adam Trischler, and Yoshua Bengio (2017). Variational Bi-
LSTMs. arXiv: 1711.05717 [stat.ML].

Shadmehr, Reza, Maurice A. Smith, and John W. Krakauer (2010). “Error Correction, Sensory
Prediction, and Adaptation in Motor Control”. In: Annual Review of Neuroscience 33.1. PMID:
20367317, pp. 89–108. doi: 10.1146/annurev-neuro-060909-153135. eprint: https://doi.org/10.
1146/annurev- neuro- 060909- 153135. url: https://doi .org/10.1146/annurev- neuro- 060909-
153135.

Shin, Hanul, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim (2017). “Continual learning with deep
generative replay”. In: arXiv preprint arXiv:1705.08690.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks and tree search”.
In: Nature 529, pp. 484–503. url: http://www.nature.com/nature/journal/v529/n7587/full/
nature16961.html.

Silver, David et al. (2017). “Mastering Chess and Shogi by Self-Play with a General Reinforcement
Learning Algorithm”. In: CoRR abs/1712.01815. arXiv: 1712.01815. url: http://arxiv.org/abs/
1712.01815.

Smout, Cooper A., Matthew F. Tang, Marta I. Garrido, and Jason B. Mattingley (Feb. 2019).
“Attention promotes the neural encoding of prediction errors”. In: PLOS Biology 17.2, pp. 1–
22. doi: 10.1371/journal.pbio.2006812. url: https://doi.org/10.1371/journal.pbio.2006812.

Sontakke, Sumedh A, Arash Mehrjou, Laurent Itti, and Bernhard Schölkopf (July 2021). “Causal
Curiosity: RL Agents Discovering Self-supervised Experiments for Causal Representation Learn-
ing”. In: Proceedings of the 38th International Conference on Machine Learning. Ed. by Marina
Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning Research. PMLR, pp. 9848–
9858. url: https://proceedings.mlr.press/v139/sontakke21a.html.

154

https://arxiv.org/abs/1401.4082
https://doi.org/https://doi.org/10.1016/j.neuroimage.2005.01.017
https://doi.org/https://doi.org/10.1016/j.neuroimage.2005.01.017
https://www.sciencedirect.com/science/article/pii/S1053811905000479
https://doi.org/10.1162/neco.2007.19.3.757
https://doi.org/10.1162/neco.2007.19.3.757
https://doi.org/https://doi.org/10.1111/ejn.12816
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejn.12816
https://onlinelibrary.wiley.com/doi/pdf/10.1111/ejn.12816
https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.12816
https://arxiv.org/abs/1711.05717
https://doi.org/10.1146/annurev-neuro-060909-153135
https://doi.org/10.1146/annurev-neuro-060909-153135
https://doi.org/10.1146/annurev-neuro-060909-153135
https://doi.org/10.1146/annurev-neuro-060909-153135
https://doi.org/10.1146/annurev-neuro-060909-153135
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://doi.org/10.1371/journal.pbio.2006812
https://doi.org/10.1371/journal.pbio.2006812
https://proceedings.mlr.press/v139/sontakke21a.html

Spratling, M. W., K. De Meyer, and R. Kompass (Jan. 2009). “Unsupervised Learning of Overlap-
ping Image Components Using Divisive Input Modulation”. In: Intell. Neuroscience 2009. issn:
1687-5265. doi: 10.1155/2009/381457. url: https://doi.org/10.1155/2009/381457.

Spratling, Michael (2008). “Reconciling predictive coding and biased competition models of cortical
function”. In: Frontiers in Computational Neuroscience 2, p. 4. issn: 1662-5188. doi: 10.3389/
neuro.10.004.2008. url: https://www.frontiersin.org/article/10.3389/neuro.10.004.2008.

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber (2015). “Highway Networks”. In:
CoRR abs/1505.00387. arXiv: 1505.00387. url: http://arxiv.org/abs/1505.00387.

Stefanics, Gábor, Jan Kremláček, and István Czigler (2014). “Visual mismatch negativity: a pre-
dictive coding view”. In: Frontiers in Human Neuroscience 8, p. 666. issn: 1662-5161. doi:
10.3389/fnhum.2014.00666. url: https://www.frontiersin.org/article/10.3389/fnhum.2014.00666.

Summerfield, Christopher and Etienne Koechlin (2008). “A Neural Representation of Prior In-
formation during Perceptual Inference”. In: Neuron 59.2, pp. 336–347. issn: 0896-6273. doi:
https://doi.org/10.1016/j.neuron.2008.05.021. url: https://www.sciencedirect.com/science/
article/pii/S089662730800456X.

Summerfield, Christopher, Emily H. Trittschuh, Jim M. Monti, M-Marsel Mesulam, and Tobias
Egner (July 2008). “Neural repetition suppression reflects fulfilled perceptual expectations”.
In: Nature Neuroscience 11.9, pp. 1004–1006. issn: 1546-1726. doi: 10.1038/nn.2163. url:
https://doi.org/10.1038/nn.2163.

Sun, Yi, Faustino Gomez, and Jürgen Schmidhuber (2011). “Planning to be surprised: Optimal
bayesian exploration in dynamic environments”. In: International Conference on Artificial Gen-
eral Intelligence. Springer, pp. 41–51.

Sun, Zekun and Chaz Firestone (2020). “The Dark Room Problem”. In: Trends in Cognitive Sci-
ences 24.5, pp. 346–348. issn: 1364-6613. doi: https://doi.org/10.1016/j.tics.2020.02.006. url:
https://www.sciencedirect.com/science/article/pii/S1364661320300589.

Sussillo, David and L.F. Abbott (2009). “Generating Coherent Patterns of Activity from Chaotic
Neural Networks”. In: Neuron 63.4, pp. 544–557. issn: 0896-6273. doi: https : / / doi . org /
10 . 1016/ j . neuron . 2009 . 07 . 018. url: https : / /www . sciencedirect . com/ science / article / pii /
S0896627309005479.

Sutskever, Ilya, James Martens, and Geoffrey Hinton (2011). “Generating Text with Recurrent
Neural Networks”. In: Proceedings of the 28th International Conference on International Con-
ference on Machine Learning. ICML’11. Bellevue, Washington, USA: Omnipress, pp. 1017–
1024. isbn: 9781450306195.

Sutskever, Ilya, Oriol Vinyals, and Quoc V Le (2014). “Sequence to sequence learning with neural
networks”. In: Advances in neural information processing systems, pp. 3104–3112.

Tallec, Corentin and Yann Ollivier (2018). “Can recurrent neural networks warp time?” In: CoRR
abs/1804.11188. arXiv: 1804.11188. url: http://arxiv.org/abs/1804.11188.

Tani, J. and M. Ito (2003). “Self-organization of behavioral primitives as multiple attractor dy-
namics: A robot experiment”. In: IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans 33.4, pp. 481–488. doi: 10.1109/TSMCA.2003.809171.

Taylor, Graham W. and Geoffrey E. Hinton (2009). “Factored Conditional Restricted Boltzmann
Machines for Modeling Motion Style”. In: Proceedings of the 26th Annual International Confer-
ence on Machine Learning. ICML ’09. Montreal, Quebec, Canada: Association for Computing
Machinery, pp. 1025–1032. isbn: 9781605585161.

Tschantz, Alexander, Manuel Baltieri, Anil K Seth, and Christopher L Buckley (2020a). “Scaling
active inference”. In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE,
pp. 1–8.

Tschantz, Alexander, Anil K Seth, and Christopher L Buckley (2020b). “Learning action-oriented
models through active inference”. In: PLoS computational biology 16.4, e1007805.

Tsuda, Ichiro (1991). “Chaotic itinerancy as a dynamical basis of hermeneutics in brain and mind”.
In: World Futures 32.2-3, pp. 167–184. doi: 10.1080/02604027.1991.9972257.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin (2017). “Attention is All You Need”. In: url: https://arxiv.
org/pdf/1706.03762.pdf.

Verstraeten, D., B. Schrauwen, M. D’Haene, and D. Stroobandt (2007). “An experimental unifica-
tion of reservoir computing methods”. In: Neural Network 20, pp. 391–403.

Von Helmholtz, Hermann (1867). Handbuch der physiologischen Optik: mit 213 in den Text einge-
druckten Holzschnitten und 11 Tafeln. Vol. 9. Voss.

155

https://doi.org/10.1155/2009/381457
https://doi.org/10.1155/2009/381457
https://doi.org/10.3389/neuro.10.004.2008
https://doi.org/10.3389/neuro.10.004.2008
https://www.frontiersin.org/article/10.3389/neuro.10.004.2008
https://arxiv.org/abs/1505.00387
http://arxiv.org/abs/1505.00387
https://doi.org/10.3389/fnhum.2014.00666
https://www.frontiersin.org/article/10.3389/fnhum.2014.00666
https://doi.org/https://doi.org/10.1016/j.neuron.2008.05.021
https://www.sciencedirect.com/science/article/pii/S089662730800456X
https://www.sciencedirect.com/science/article/pii/S089662730800456X
https://doi.org/10.1038/nn.2163
https://doi.org/10.1038/nn.2163
https://doi.org/https://doi.org/10.1016/j.tics.2020.02.006
https://www.sciencedirect.com/science/article/pii/S1364661320300589
https://doi.org/https://doi.org/10.1016/j.neuron.2009.07.018
https://doi.org/https://doi.org/10.1016/j.neuron.2009.07.018
https://www.sciencedirect.com/science/article/pii/S0896627309005479
https://www.sciencedirect.com/science/article/pii/S0896627309005479
https://arxiv.org/abs/1804.11188
http://arxiv.org/abs/1804.11188
https://doi.org/10.1109/TSMCA.2003.809171
https://doi.org/10.1080/02604027.1991.9972257
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf

Vorontsov, Eugene, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal (2017). “On orthogonality and
learning recurrent networks with long term dependencies”. In: CoRR abs/1702.00071. arXiv:
1702.00071. url: http://arxiv.org/abs/1702.00071.

Wang, Wei, Sherwin S. Chan, Dustin A. Heldman, and Daniel W. Moran (2010). “Motor Cortical
Representation of Hand Translation and Rotation during Reaching”. In: Journal of Neuroscience
30.3, pp. 958–962. issn: 0270-6474. doi: 10.1523/JNEUROSCI.3742-09.2010. eprint: https://
www.jneurosci.org/content/30/3/958.full.pdf. url: https://www.jneurosci.org/content/30/3/958.

Werbos, Paul J. (1982). “Applications of advances in nonlinear sensitivity analysis”. In: System
Modeling and Optimization. Ed. by R. F. Drenick and F. Kozin. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 762–770. isbn: 978-3-540-39459-4.

— (1988). “Generalization of backpropagation with application to a recurrent gas market model”.
In: Neural Networks 1.4, pp. 339–356. issn: 0893-6080. doi: https://doi.org/10.1016/0893-
6080(88)90007-X. url: https://www.sciencedirect.com/science/article/pii/089360808890007X.

Whittington, James C. R. and Rafal Bogacz (May 2017). “An Approximation of the Error Back-
propagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plastic-
ity”. In: Neural Computation 29.5, pp. 1229–1262. issn: 0899-7667. doi: 10.1162/NECO_a_
00949. eprint: https://direct.mit.edu/neco/article-pdf/29/5/1229/996846/neco_a_00949.pdf.
url: https://doi.org/10.1162/NECO%5C_a%5C_00949.

Wu, Yan, Greg Wayne, Alex Graves, and Timothy Lillicrap (2018). “The kanerva machine: A
generative distributed memory”. In: arXiv preprint arXiv:1804.01756.

Yamashita, Yuichi and Jun Tani (Nov. 2008). “Emergence of Functional Hierarchy in a Multiple
Timescale Neural Network Model: A Humanoid Robot Experiment”. In: PLOS Computational
Biology 4.11, pp. 1–18. doi: 10.1371/journal.pcbi.1000220. url: https://doi.org/10.1371/journal.
pcbi.1000220.

Yao, Kaisheng, Trevor Cohn, Katerina Vylomova, Kevin Duh, and Chris Dyer (2015). “Depth-
Gated LSTM”. In: CoRR abs/1508.03790. arXiv: 1508.03790. url: http://arxiv.org/abs/1508.
03790.

Yue, Boxuan, Junwei Fu, and Jun Liang (2018). “Residual Recurrent Neural Networks for Learning
Sequential Representations”. In: Information 9.3. issn: 2078-2489. doi: 10.3390/info9030056.
url: https://www.mdpi.com/2078-2489/9/3/56.

Zhu, Yuke, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and Ali
Farhadi (2017). “Target-driven visual navigation in indoor scenes using deep reinforcement
learning”. In: 2017 IEEE international conference on robotics and automation (ICRA). IEEE,
pp. 3357–3364.

156

https://arxiv.org/abs/1702.00071
http://arxiv.org/abs/1702.00071
https://doi.org/10.1523/JNEUROSCI.3742-09.2010
https://www.jneurosci.org/content/30/3/958.full.pdf
https://www.jneurosci.org/content/30/3/958.full.pdf
https://www.jneurosci.org/content/30/3/958
https://doi.org/https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/https://doi.org/10.1016/0893-6080(88)90007-X
https://www.sciencedirect.com/science/article/pii/089360808890007X
https://doi.org/10.1162/NECO_a_00949
https://doi.org/10.1162/NECO_a_00949
https://direct.mit.edu/neco/article-pdf/29/5/1229/996846/neco_a_00949.pdf
https://doi.org/10.1162/NECO%5C_a%5C_00949
https://doi.org/10.1371/journal.pcbi.1000220
https://doi.org/10.1371/journal.pcbi.1000220
https://doi.org/10.1371/journal.pcbi.1000220
https://arxiv.org/abs/1508.03790
http://arxiv.org/abs/1508.03790
http://arxiv.org/abs/1508.03790
https://doi.org/10.3390/info9030056
https://www.mdpi.com/2078-2489/9/3/56

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols and Notations
	Abstract
	Résumé français
	Introduction
	Background
	Problem definition
	Contributions

	Context
	Artificial neural networks
	Introduction and notations
	Recurrent neural networks
	Learning

	Predictive coding
	PC and the Bayesian brain
	Free-energy formulation of PC
	Learning
	PC as a model of brain function
	Variants of the PC architecture

	Sequence memory modeling
	Introduction
	Related work
	Feedforward architectures
	Perceptron and tabular case
	Convolutional neural networks
	Attention mechanisms

	Advanced RNN models
	Reservoir computing
	Applying PC to RNN models

	Methods
	Simple recurrent model
	Using first-order generalized coordinates
	Simple recurrent model with hidden causes
	Combining first-order generalized coordinates and hidden causes
	Summary of the proposed models
	Possible extensions
	Estimation of generation density precision
	Stacking recurrent layers

	Results
	Data sets
	Learning, prediction and inference
	Prediction
	Inference
	Learning

	Conclusion

	Comparative studies
	Introduction
	Model capacity
	Intuition
	Benchmark models
	Hyperparameter optimization
	Comparative analysis

	Continual learning and catastrophic forgetting
	Experimental set up
	Benchmark models
	Results

	Conclusion

	Memory retrieval
	Introduction
	Related work
	Chaotic itinerancy
	Memory retrieval

	Methods
	Prior distribution on the hidden causes
	Mechanisms influencing the hidden causes dynamics.
	Unstructured case
	Structured case
	Summary of the proposed methods

	Results
	Unstructured itinerancy
	Unstructured memory retrieval
	Memory retrieval dynamics
	Memory retrieval using approximate targets
	Scaling memory retrieval

	Discussion

	Motor trajectories learning
	Introduction
	Related work
	Initial formulation of AIF
	Expected free-energy
	Current discussions
	Direct minimization of prediction error

	Proposed framework
	Autonomous learning of motor trajectories with AIF
	Methods
	Results
	Discussion

	Dynamic control using visual supervision
	Methods
	Architecture
	AIF using a forward model

	Results
	Motor PC-RNN-HC-M learning
	Model capacity comparative analysis
	Intermittent control
	Robustness to external perturbations
	Adaptation to transformed visual predictions
	Motor control comparative analysis
	Reciprocal influence
	Bidirectional influence

	Discussion

	Conclusion

	Conclusion
	Summary of the contributions
	Discussion on the thesis choices
	Limitations
	Recommendations for future work

	Appendices
	Variational free-energy simplifications
	Hyperparameters for the continual learning benchmark
	Continual learning figures
	Distribution of the convergence times during memory retrieval
	Parameters used in the motor sequence memory experiments

	Bibliography

