The thesis is divided into two main parts: i) Nonparametric statistics on highdimensional and functional spaces, and ii) Nonparametric statistics on Riemannian manifolds. In this part, we will summarize the major contributions of the thesis.

Nonparametric statistics on high-dimensional and functional spaces

In statistical learning, we introduce a new notion entitled: scalable Gaussian process classier. The proposal is more general than the usual Gaussian process classier for representing and classifying data lying on high-dimensional spaces. It is more advantageous for learning the hyper-parameters of the mapping (embedding) that maps initial data into a low-dimensional (feature) space and those of the Gaussian process classier through its covariance function, jointly, with different optimization methods. The modied covariance function, depending on the embedding and operating on the feature space, is more expressive since the Euclidean metric is more informative in low-dimensional spaces. To summarize, our formulation takes care of non-linearity/high-correlation of data and increases the separability between them thanks to the Representer Theorem. In order to estimate the model's hyper-parameters we usually maximize the marginal likelihood.

Unlike regression, the computation of the exact marginal likelihood remains dicult and even impossible in the classication case due to the discrete likelihoods. Thus, we introduce two methods to approximate the non-Gaussian posterior distribution by a Gaussian one in order to improve the eciency and the scalability Publications
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of the Gaussian process.

For functional and even high-dimensional data, we also introduce the notion of Gaussian processes indexed by probability density functions. We will show how Gaussian processes can be dened into functional spaces, in particular that of density functions endowed with the Fisher-Rao metric. More precisely, we will extend the traditional methods of nonparametric statistics based on Gaussian processes from nite vectors in Euclidean spaces to constrained functions with Riemannian metrics. Our motivation is that several categories of observations can be represented by their density functions with more advantages than initial vector or functional inputs. This choice is very crucial for many reasons. First of all, density functions make the problem formulation more understood when identifying the initial vector inputs or functional data, which are hard to interpret, by their occurrences or their corresponding probabilities. Second, density functions improve the visualization of local data distributions. Finally, when dealing with high-dimensional datasets (set of repetitive features), we can visualize them using density functions which would be very helpful to explore the skewness of initial data.

Applications: Image classication (breast cancer/metallic boxes/growth charts /maize leaves/animal temperature) and video classication (violence detection).

Nonparametric statistics on Riemannian manifolds

In statistical learning on Riemannian manifold of curves, one of major problems is that of registration. For curve registration, we have to nd the optimal deformation in terms of the best reparametrization function (or local distribution) between two curves. The space of reparametrization functions is a group of diffeomorphisms for the composition operation, which makes the optimization task quite complicated due to the structure of the group. In fact, there is no intuitive direction nor an underlying metric (or structure) in this group.

To handle these issues, we propose a new version of reparametrization functions. The main idea is based on the fact that any reparametrization can be viewed as an element of the manifold of cumulative distribution functions endowed with the Fisher-Rao metric, the only Riemannian metric invariant to reparametrizations. Then we can make the link with the Hilbert sphere endowed with the L 2 metric for its simplicity and geometric advantages in statistics. Finally, we model the square-root of the probability density function, as an element of the Hilbert sphere, by a Gaussian process. Instead of estimating a reparametrization function directly in the group, we consider its truncated parametric version with coecients belonging to the nite-dimensional unit sphere and resulting from the Loève expansion of the Gaussian process.

Given a nite set of observed curves, we are also interested in the curve clustering process in a Bayesian framework. We are able to nd the sub-population means depending on their optimal local reparametrization functions. Compared to the state-of-the-art methods, the proposal has the advantage of computing the conditional probability that each curve belongs to a given sub-population.

A natural estimator of the unknown coecients resulting from the Loève expansion is that maximizing the posterior density under spherical constraints. To nd it we will consider the Hamiltonian Monte Carlo sampling. The samples are obtained when solving a system of dierential equations describing the paths of Hamiltonian dynamics, controlling the position on the sphere and the velocity on the corresponding tangent space locally at each position, iteratively, until convergence.

Applications: Human cochlea clustering (male/female) and hominin cochlea clustering (paranthropus/gorilla/chimpanzee/australopithecus) discovered in South Africa. Pour les données fonctionnelles et même vectorielles en grande dimension, nous introduisons également la notion de processus gaussiens indexé par les fonctions de densité de probabilité. Nous montrerons comment les processus gaussiens peuvent être également dénis sur des espaces fonctionnelles, en particulier celle de densités de probabilité muni de la métrique de Fisher- Rao. Plus précisément, nous étendrons les méthodes traditionnelles de statistiques non paramétriques par processus gaussiens de vecteurs nis dans les espaces euclidiens aux espaces des fonctions sous des contraintes munies des métriques riemanniennes. Notre motivation est que plusieurs catégories d'observations peuvent être représentées par des densités de probabilité avec plus d'avantages que des entrées vectorielles ou fonctionnelles brutes. Ce choix est très important pour plusieurs raisons. D'abord, les densités de probabilité permettent de simplier la formulation du problème en identiant les données vectorielles ou fonctionnelles initiales, qui sont diciles à interpréter, par leurs occurrences ou leurs probabilités. Ensuite, les densités de probabilité améliorent la visualisation des distributions locales de données. Enn, lorsqu'il s'agit des données fortement corrélées (caractéristiques répétitives) nous pouvons plutôt visualiser leurs densités de probabilité pour ajuster l'asymétrie des données initiales.

Applications: Classication d'images (cancer du sein/boites métalliques/courbes de croissance/feuilles de maïs/température des animaux) et des vidéos (détection de violence).

Statistiques non paramétriques sur les variétés riemanniennes

Dans le domaine d'apprentissage de courbes dénies avec des structures riemanniennes, l'un des problèmes majeurs est celui de recalage. Pour recaler une courbe par rapport à une autre, nous devrons trouver la déformation optimale en terme de la meilleure fonction de reparamétrisation (ou distribution locale) entre les deux courbes. L'espace des fonctions de reparamétrisations est un groupe de diéomorphismes pour la loi de composition, ce qui rend la tâche d'optimisation assez compliquée à cause de la structure du groupe. En fait, il n'y a ni une direction intuitive ni une métrique (ou structure) sous-jacente dans ce groupe.

Pour résoudre ce problème, nous proposons une nouvelle version des fonctions de reparamétrisation. L'idée principale est basée sur le fait que toute fonction de reparamétrisation peut être vue comme un élément de la variété des fonctions de répartition munie de la métrique de Fisher-Rao, la seule métrique riemannienne invariante au reparamétrisations. Ensuite, nous pouvons établir le lien avec la sphère de Hilbert munie de la métrique L 2 pour sa simplicité et ses avantages géométriques en statistiques. Enn, nous modélisons la racine carrée de la fonction de densité de probabilité, comme un élément de la sphère de Hilbert, par un processus gaussien. Au lieu d'estimer une fonction de reparamétrisation directement dans le groupe, nous considérons sa version paramétrique tronquée avec des paramètres appartenant à la sphère unitaire de dimension nie et résultants de la décomposition de Loève du processus gaussien.

Étant donné un ensemble ni de courbes observées, nous nous intéressons également au regroupement non supervisé (clustering) de courbes dans un contexte bayésien. De plus, nous allons trouver les moyennes de toutes les souspopulations en fonction de leurs reparamétrisations locales optimales. Par rapport aux méthodes existantes, le modèle proposé a l'avantage de calculer la probabilité conditionnelle que chaque courbe appartienne à une sous-population donnée.

Un estimateur naturel des paramètres inconnus résultants de la décomposition de Loève est celui qui maximise la densité a posteriori sous des contraintes sphériques. Pour trouver cet estimateur nous considérerons l'échantillonnage par Hamiltonian Monte Carlo. Les simulations sont obtenues en résolvant un système d'équations diérentielles décrivant les chemins de la dynamique hamiltonienne, contrôlant la position sur la sphère et la vitesse sur l'espace tangent associé locale-ment en chaque position, d'une façon itérative, jusqu'à la convergence.

Applications: Regroupement des cochlées des humains (homme/femme) et celles des hominidés (paranthropus/gorille/chimpanzé/australopithèque) découvertes en Afrique du Sud.
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Context and motivations

In this thesis, there are two main problems that we try to resolve: 1) the regression and the classication of high-dimensional and functional data, and 2) the registration and the clustering of shape of curves. Many of the probability models used for machine learning have been interpreted

as latent variable models [START_REF] Ma | Manifold learning theory and applications[END_REF]. However, the nonlinear factor analysis has been informative in revealing inadequacies in linear relationships between variables. In order to explore the underlying nonlinear structure for multivariate data, we need to think about nonlinear manifold embedding. Manifold embedding approaches [START_REF] Lee | Nonlinear dimensionality reduction[END_REF] became a new topic of research over two decades ago. It addressed the problem of how to recover a low-dimensional data from data located on that manifold, which is embedded within a higher dimensional ambient space [START_REF] Gorban | Principal manifolds for data visualization and dimension reduction[END_REF]. These approaches were the rst attempts at nonlinear manifold learning, using spectral embedding methods.

On the other hand, Gaussian processes become useful in statistical modeling, beneting from properties inherited from the normal distribution. However, methods based on Gaussian processes are successful with low dimensions, but are still limited in high-dimensions. While exact models often scale poorly as the amount of data increases, multiple approximation methods have been developed which often retain good accuracy while drastically reducing computation time. Among them, [START_REF] Snelson | Variable noise and dimensionality reduction for sparse Gaussian processes[END_REF] has proposed an unsupervised dimensionality reduction by jointly learning a linear transformation of the input and a Gaussian process regression. More recently, [START_REF] Calandra | Manifold Gaussian processes for regression[END_REF] has introduced the notion of manifold Gaussian process for regression. The model prots from Gaussian processes properties and the advantages of the manifold embedding techniques for dimensionality reduction, jointly.

Shape analysis of curves

The original works in statistical analysis and modeling of shapes of objects came from [START_REF] Kendall | Shape manifolds, procrustean metrics, and complex projective spaces[END_REF]. The limitation of this work is the use of landmarks in dening shapes. Recently, there has been many focus on shape analysis of curves, albeit in the same spirit as Kendall's formulation. Consequently, there is some signicant literatures on shapes of continuous curves as elements of Riemannian manifolds called pre-shape spaces. For instance, [START_REF] Younes | Computable elastic distances between shapes[END_REF] dened pre-shape spaces of planar curves and imposed Riemannian metrics on them. In particular, he computed geodesic paths between curves in order to obtain deformations between them. Moreover, [START_REF] Klassen | Analysis of planar shapes using geodesic paths on shape spaces[END_REF] restricted to arc-length parameterized planar curves and derived numerical algorithms for computing geodesics between curves.

For shape analysis of curves, the elastic metric is widely accepted as the only metric invariant to reparameterizations. This is related to the Fisher-Rao metric used in information geometry. Curves can be represented in several ways where the form of elastic metric depends on the representation. With the square-root velocity function representation [START_REF] Srivastava | Shape analysis of elastic curves in euclidean spaces[END_REF] for curves, the pre-shape space is actually a subset of a unit sphere inside a Hilbert space. The use of geometry of the sphere helps simplify computations to a large extent.

Contributions

Now, we will summarize the main contributions along this thesis for high-dimensional data, functional data and curves.

High-dimensional and functional data

In this thesis, we introduce a new concept of scalable Gaussian process classier.

The proposed model is closely to that of [START_REF] Calandra | Manifold Gaussian processes for regression[END_REF], but more general for representing and classifying high-dimensional data. It has the additional benet to learn both the hyper-parameters of the adaptive embedding for dimensionality reduction and those of the Gaussian process classier, jointly, with several optimization methods. Our formulation make it more easy to deal with nonlinearity of data and to create separability with mappings dened on a Reproducing Kernel Hilbert Space. In contrast to regression, computing the exact marginal likelihood remains dicult, if not impossible, for discrete likelihoods and high-dimensional inputs. So, we introduce two dierent methods to approximate a non-Gaussian posterior by a Gaussian one in order to improve the eciency and the scalability of standard Gaussian process classier.

For high-dimensional and functional data, we also introduce the notion of Gaussian processes indexed by probability density functions. We will particularly show how a Bayesian inference with Gaussian processes can be put into action on probability density spaces equipped with the Fisher-Rao metric. For more details, we will extend traditional machine learning methods from nite vectors to constrained functional instances. Our motivation is that many categories of observations can be represented by probability density functions with more advantages than working with vector/functional inputs directly.

Shape analysis of curves

For shape registration and particularly curves, one usually need to nd the best reparametrization function, identied with the local distribution, between two shapes of curves. The set of reparametrization functions naturally forms a group of dieomorphisms with group operation given by composition, which makes the optimization task very hard due to the group structure. In fact, there no underlying direction or metric that naturally arises in this group.

We propose a new version of reparametrization functions for curves, represented by their square-root velocity functions as elements on a Riemannian manifold. The main idea is to deal with the space of cumulative distribution functions induced with the Fisher-Rao metric as well as making the connection with the Hilbert sphere for its nice proprieties and geometries for statistics. Therefore, we model the square-root density function, as an element of the Hilbert sphere, with a Gaussian process prior. Instead of estimating a reparametrization function as a nonparametric element of the functional space directly, we will consider its truncated parametric version with coecients belonging to the nite-dimensional sphere and resulting from the spherical Gaussian process decomposition.

We are also interested in the clustering process of observed curves in a unsupervised learning model. We are able to nd the Fréchet mean of shapes for each sub-population depending on its local distribution. Compared to most of the previous methods, the proposed model gives us the conditional probability that each observed shape belongs to any given cluster.

When dealing with spherical constrained posteriors in a Bayesian framework, we will consider the spherical Hamiltonian Monte Carlo sampling [START_REF] Lan | Spherical Hamiltonian Monte Carlo for constrained target distributions[END_REF].

The new samples are obtained by approximately solving a system of dierential equations describing the paths of Hamiltonian dynamics controlling the position on the sphere and the velocity on its corresponding tangent space, iteratively, until convergence.

Outline

The remainder of this document is organized as follows. Chapter 2 presents some basic notions and related works that will be useful along this thesis. Chapter 2: Background and basic notions Before we give details of our frameworks and main contributions, we will recall some background and basic notions needed throughout the thesis.

Gaussian processes

In Gaussian processes (GPs) [START_REF] Rasmussen | Gaussian processes for machine learning[END_REF], we focus directly on such distributions over functions. A GP denes a distribution over functions such that, if we pick any two or more points in a function (i.e., dierent input-output pairs), observations of the outputs at these points follow a joint (multivariate)

Gaussian distribution. In GP regression, we assume the output y ∈ R of a function f at input x ∈ R d can be written as

y = f (x) + η (2.1)
where η ∼ N (0, σ 2 ) refers to the noise term of variance σ 2 . Note that this is similar to the assumption made in linear regression, in that we assume an observation consists of an independent "signal" term f (x) and a "noise" term η. The function

f (x) is distributed as f (x) ∼ GP(m(x), c(x, x )) (2.2) 
A GP is fully dened by a mean function and a covariance function. The mean function m(x) reects the expected function value at input

x m(x) = E[f (x)] (2.3) 
i.e., the average of all functions in the distribution evaluated at input x. The prior mean function is often set to m(x) = 0 in order to avoid expensive posterior computations and only do inference via the covariance function. Empirically, setting the prior to 0 is often achieved by subtracting the (prior) mean from all observations. The covariance function c(x, x ) models the dependence between the function values at dierent input points x and x as follows

c(x, x ) = E[(f (x) -m(x))(f (x ) -m(x ))] (2.4) If m(x) = 0 then the covariance function simply takes c(x, x ) = E[f (x)f (x )].
The choice of an appropriate covariance function is based on assumptions such as smoothness and likely patterns to be expected in the data. A sensible assumption is usually that the correlation between two points decays with the distance between the points. This means that closer points are expected to behave more similarly than points which are further away from each other.

Sampling and prediciton.

Having set out the conditions on the covariance function, we can observe all realizations from

y i = f (x i ) + η i , i = 1, . . . , N (2.5) 
With above of notations used in the introduction the likelihood term at y = (y 1 , . . . , y N )

T given f = (f 1 , . . . , f N ) T = (f (x 1 ), . . . , f (x N )) T is P(y|f ) = N i=1 P(y i |f i ) (2.6) 
= N i=1 N (f i , σ 2 ) = N (f , σ 2 I)
where I is the N × N identity matrix. From (2.2), the prior on f is

P(f |X) = N (0, C) (2.7) 
with C = c(X, X) and X = [x 1 , . . . , x N ] T is the N × d matrix of observed inputs.

Inference in the Bayesian model is based on the posterior distribution, computed by Bayes' rule posterior = likelihood × prior marginal likeliohood (2.8) which is updated in our case as

P(f |y, X) = P(y|f )P(f |X) P(y|X)
(2.9)

Now, we can draw samples from the distribution of functions evaluated at any an unobserved x * . Then we generate a random Gaussian vector with this covariance Anis Fradi -Thesis matrix as .10) for C * * = c(x * , x * ). We can write the joint distribution of the observed target values and the function values at the test locations under the prior as .11) where C * = c(X, x * ). By deriving the conditional distribution, we arrive at the key predictive equation

f * = f (x * ) ∼ N (0, C * * ) ( 2 
   y f *    ∼ N 0,    C + σ 2 I C * C T * C * *    ( 2 
P(f * |X, y, x * ) = N (f * |µ(x * ), σ 2 (x * ))
(2.12)

with        µ(x * ) = C T * (C + σ 2 I) -1 y σ 2 (x * ) = C * * -C T * (C + σ 2 I) -1 C * (2.13)
To predict f * , we can simply use the mean function µ(x * ) or sample functions from the GP with this mean function and variance σ 2 (x * ).

Optimizing hyperparameters. The covariance function c (., .) usually depends on a vector of hyper-parameters θ c , which is unknown and need to be inferred from the data. A common practice is to obtain point estimates of the hyper-parameters by maximizing the marginal (log) likelihood. This is similar to parameter estimation by maximum likelihood and is also referred to as type-II maximum likelihood estimate (MLE). The normalizing constant in (2.9), also known as the marginal likelihood, is the integral of the likelihood times the prior depending on θ c

P(y|X) = R N P(y|f )P(f |X)df (2.14)
The term marginal likelihood refers to the marginalization over the function values f . We use the product of likelihood and prior terms to perform the integration yielding the log-marginal likelihood

l(θ c ) = - 1 2 y T (C + σ 2 I) -1 y - 1 2 log |C + σ 2 I| - N 2 log 2π
(2.15)

The marginal log likelihood can be viewed as a penalized t measure, where the term -1 2 y T (C + σ 2 I) -1 y measures the data t that is how well the current co- variance parametrization explains the dependent variable and -1 2 log |C + σ 2 I| is a complexity penalization term. The nal term -N 2 log 2π is a normalization constant. The marginal likelihood is normally maximized through many optimization tools that will be detailed in Section 2. 3. These routines make use of the partial derivatives of l(θ c ) with respect to θ c . Let θ c = {θ j c } p j=1 ∈ R p denote the set of hyper-parameters of the covariance function c (., .). The partial derivative of l(θ c ) with respect to θ j c is

∂l(θ c ) ∂θ j c = 1 2 y T (C + σ 2 I) -1 ∂C ∂θ j c (C + σ 2 I) -1 y - 1 2 tr (C + σ 2 I) -1 ∂C ∂θ j c (2.16)
We give an example of predicting inputs in [0,[START_REF]HMC sampling[END_REF] of an unknown function f (x) =

x sin(x) in Figure 2.1. This is achieved from the noisy observations while training the GP model. We also compute the prediction intervals using the trained model. ♣ for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to the Euclidean space of dimension d.

The simplest way to construct a manifold is the sphere. A sphere is just the surface (not the solid interior), which can be dened as a subset of R d . For d = 3, the sphere is two-dimensional satisfying

S 2 = (x, y, z) ∈ R 3 ||(x, y, z)|| 2 2 = x 2 + y 2 + z 2 = 1
(2.17) so each chart will map part of the sphere to an open subset of R In comparison with linear transformations, the purpose of a non-linear transformation (embedding) Ψ is to account for skewness in the data, while MGP allows for a more general class of transformations. If r denotes the MGP, it satises .18) where m(x) = m(Ψ(x)) is the transformed prior mean and c(x, x ) = c(Ψ(x), Ψ(x ))

r(x) ∼ GP( m(x), c(x, x )) ( 2 
refers to the modied covariance function.

For selecting a non-linear embedding Ψ, there exists many manifold embedding approaches for non-linear dimensionality reduction. Algorithms adopted for this task are based on the idea that the dimensionality of many data sets is only articially high. The underlying idea is based on the fact that high-dimensional datasets can be very dicult to visualize. While data in two or three dimensions can be plotted to show the inherent structure of the data, equivalent high-dimensional plots are much less intuitive. To aid visualization of the structure of a dataset, the dimension must be reduced in some way.

Manifold embedding approaches can be thought of as an attempt to generalize linear frameworks like PCA to be sensitive to non-linear structure in data. Though supervised variants exist, the typical manifold embedding problem is unsupervised: it learns the high-dimensional structure of the data from the data itself, without the use of predetermined classications. Among manifold embedding approaches, we can cite for example: Isomap [START_REF] Tenenbaum | A global geometric framework for nonlinear dimensionality reduction[END_REF], Locally Linear Embedding (LLE) [START_REF] Roweis | Nonlinear dimensionality reduction by locally linear embedding[END_REF], Modied Locally Linear Embedding (MLLE) [START_REF] Zhang | MLLE: modied locally linear embedding using multiple weights[END_REF], Spectral Embedding [START_REF] Belkin | Laplacian eigenmaps for dimensionality reduction and data representation[END_REF],

Local Tangent Space Alignment (LTSA) [START_REF] Zhang | Principal manifolds and nonlinear dimension reduction via local tangent space alignment[END_REF] and t-distributed Stochastic Neighbor Embedding (t-SNE) Van Der Maaten (2014).

Numerical algorithms and MCMC sampling

In this section, we present two main categories of algorithms established in this manuscript based on iterative optimization methods and Monte Carlo sampling

Van Ravenzwaaij et al. (2018).

Iterative optimization methods

Let f : R p → R be a smooth function (cost function). Optimization algorithms tend to be iterative procedures in order to nd a local minimum of f (.). Starting from a given point x 0 , they generate a sequence (x t ) t of iterates (or trial solutions) that converge to a solution or at least they are designed to be so.

Gradientdescent. is a rst-order iterative optimization algorithm based on the observation that f (x) decreases fastest if one goes from x in the direction of the negative gradient of f at x: -∇f (x). It follows that if

x t+1 = x t -∇f (x t ), for ∈ R + then f (x t ) ≥ f (x t+1 ).
Therefore, we have a monotonic sequence

f (x 0 ) ≥ f (x 1 ) ≥ f (x 2 ) ≥ ..
., so hopefully the sequence (x t ) t converges to the desired local minimum. The gradient-descent is summarized in Algorithm 1.

Algorithm 1: Gradient-descent.

Require: cost function f (.) and its gradient vector ∇f (.) 1: repeat 2:

Evaluate ∇f (x t )

3:

Find the step size (e.g., by backtracking line search)

4:

Compute

x t+1 := x t -∇f (x t ) 5:
Set t := t + 1 6: until Convergence Newton -Raphson. allows a numerical resolution of the score equation. We start from an arbitrary initial value of x, denoted x 0 and we designate by x 1 = x 0 +h as a candidate value to be a solution of ∇f (x) = 0, that is to say ∇f (x 0 + h) = 0.

Applying a rst order Taylor series to the function ∇f (.), we get

∇f (x 0 + h) ≈ ∇f (x 0 ) + h∇ 2 f (x 0 ) (2.19) As ∇f (x 0 + h) = 0 then h takes the following value h = -[∇ 2 f (x 0 )] -1 ∇f (x 0 ) (2.20) implying x 1 = x 0 -[∇ 2 f (x 0 )] -1 ∇f (x 0 ) (2.21)
We update the last equation for any t and we express x t+1 in terms of x t , as illustrated in Algorithm 2.

Algorithm 2: Newton-Raphson.

Require: cost function f (.), its gradient vector ∇f (.) and its Hessian matrix

∇ 2 f (.) 1: repeat 2:
Evaluate ∇f (x t ) and ∇ 2 f (x t )

3:

Find the step size (e.g., by backtracking line search) 4:

Compute

x t+1 := x t -[∇ 2 f (x t )] -1 ∇f (x t ) 5:
Set t := t + 1 6: until Convergence Quasi -Newton. is an alternative to Newton's method used to either nd zeros or local minimum of functions. It can be used if the gradient or the Hessian is unavailable or is too expensive to be computed at every iteration. There is many popular update formulas to approximate the Hessian matrix, for instance the Broyden Fletcher Goldfarb Shanno (BFGS) method. Algorithm 3 summarizes the quasi-Newton method with BFGS updates.

Algorithm 3: Quasi-Newton.

Require: cost function f (.) and its gradient vector ∇f (.)

1: repeat 2: Evaluate ρ := -H -1 t ∇f (x t ) 3:
Find the step size (e.g., by backtracking line search)

4:

Evaluate

x t+1 := x t + ρ 5: a := x t+1 -x t and b := ∇f (x t+1 ) -∇f (x t ) 6: H -1 t+1 := H t + bb T b T a -Htaa T Ht a T Hta 7:
Set t := t + 1 

E[f (X)] π ≈ 1 T T t=1 f (x t ) (2.22)
where π is the posterior distribution of interest, f (X) is the desired expectation, and f (x t ) is the t-th simulated sample from π. For example, we can estimate the

mean by E[X] π ≈ 1 T T t=1 (x t )
as a particular case of (2.22) for the identity func- The theory of MCMC guarantees that the stationary distribution of the samples is the target joint posterior. For this reason, MCMC algorithms are typically run for a large number of iterations (in the hope that convergence to the target posterior will be achieved). An example of Markov chain values sampled from the MCMC algorithm is illustrated in Figure 2. 3. Because samples from the early iterations are not from the target posterior, it is common to discard these samples. The discarded iterations are often referred to as the "Burn-in" period. To reduce autocorrelation between samples we also need the "Thinning" period. The question that arises now is: How do we obtain samples from the posterior distribution?

Ulam and Metropolis introduced the Metropolis algorithm and its impact was enormous. Afterwards, MCMC was introduced to statistics and generalized with the Metropolis-Hastings algorithm [START_REF] Hastings | Monte Carlo sampling methods using Markov chains and their applications[END_REF] and the Gibbs sampling Geman and [START_REF] Geman | Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[END_REF].

Gibbs sampling. is one MCMC technique suitable for the task. The idea in Gibbs sampling is to generate posterior samples by sweeping through each variable (or block of variables) to sample from its conditional distribution with the remaining variables xed to their current values. For instance, we consider the random variables X 1 , X 2 , and X 3 and we start by setting these variables to their initial values

x 1 0 , x 2 0 and x 3 0 . At iteration t, we sample x 1 t ∼ π(X 1 = x 1 |X 2 = x 2 t-1 , X 3 = x 3 t-1 ), sample x 2 t ∼ π(X 2 = x 2 |X 1 = x 1 t , X 3 = x 3 t-1
), and sample

x 3 t ∼ π(X 3 = x 3 |X 1 = x 1 t , X 2 = x 2 t ).
This process continues until convergence. Algorithm 4 details a generic Gibbs sampling generated for p variables.

Algorithm 4: Gibbs sampling.

Require: posterior distribution π(.)

1: Initialize x 0 = (x 1 0 , . . . , x p 0 )
2: for t = 1, 2, . . . , T do 3:

x 1 t ∼ π(X 1 = x 1 |X 2 = x 2 t-1 , X 3 = x 3 t-1 , . . . , X p = x p t-1 )
4:

x 2 t . . . ∼ π(X 2 = x 2 |X 1 = x 1 t , X 3 = x 3 t-1 , , . . . , X p = x p t-1 )
5:

x p t ∼ π(X p = x p |X 1 = x 1 t , X 2 = x 2 t , . . . , X p-1 = x p-1 t ) 6: end for Metropolis -Hastings (MH).
simulates samples from a probability distribution by making use of the full joint density function and (independent) proposal distributions for each of the variables of interest. The rst step is to initialize the sample value for each random variable. This value is often sampled from the variable's prior distribution. The main loop of HM algorithm consists of three steps:

1. Generate a proposal (or a candidate) sample x cand from the proposal distribution q(x cand |x t-1 ).

Compute the acceptance probability via the acceptance function

α(x cand |x t-1 )
based upon the proposal distribution and the full joint density π(.).

Accept the candidate sample with probability α or reject it with probability

1 -α.

Algorithm 5 provides the details of a generic MH algorithm.

Shape analysis of curves using landmarks

In shape analysis Dryden andMardia (1998, 2016); [START_REF] Gower | Generalized procrustes analysis[END_REF], we usually need a technique that involves transformations (i.e., translation, rotation and isotropic scaling) of individual data matrices to provide optimal comparability. This notion is widely applicable to many areas such as shape of curves. According to Kendall, the shape of a curve can be represented with n landmarks in R d , where n > d.

The n landmarks are points located in d dimensions which represent the important Algorithm 5: Metropolis-Hasting.

Require: posterior distribution π (.) and proposal distribution q(., .) 1: Initialize x 0 2: for t = 1, 2, . . . , T do 3:

Propose

x cand ∼ q(x t |x t-1 ) 4:
Acceptance probability

α(x cand |x t-1 ) := min 1, q(x t-1 |x cand )π(x cand ) q(x cand |x t-1 )π(x t-1 ) 5: Simulate u ∼ U([0, 1]) 6:
if u < α then 7:

Accept the proposal x t := x cand 8: else 9:

Reject the proposal x t := x t- 110:

end if 11: end for be to concatenate each dimension into a nd-vector. The vector representation for planar shapes (d = 2) would then be

x = (x 1 , . . . , x n , y 1 , . . . , y n ) T (2.23)
To obtain a true shape representation according to the denition location, scale and rotational eects need to be ltered out. This is usually carried out by establishing a coordinate reference around position, scale and rotation. This is commonly known as pose for which all shapes are aligned.

Denition 2.4

♣ A Shape space is the set of all possible shapes of the object in question.

Formally, the shape space denoted by Σ n d is the orbit shape of the noncoincident n point set congurations in R d under the action of the Euclidean similarity transformations.

The question that arises now is: What is the dimension spanned by the shape space? If we have n point vectors in d Euclidean dimensions, the shape space's dimension is nd. But the alignment procedure peels of dimensionality i.e., the data now spans only a subspace of dimension less than nd. The translation removes d dimensions, the uniform scaling 1 dimension and the rotation 1 2 d(d-1) dimensions. Thus, if k denotes the shape space dimensionality then it satises .24) This can be achieved by the Generalized Procrustes Analysis (GPA) approach. 

k = nd -d -1 - 1 2 d(d -1) (2 
xi = x i -xi , i = 1, . .

. , N

3: Re-scale all shapes to have equal size

x * i = xi ||x i || 2 = x i -xi ||x i -xi || 2 , i = 1, . . . , N 4: Compute the Fréchet mean of x * 1 , . . . , x * N on the nite-dimensional unit sphere S k denoted x S since ||x * i || 2 = 1
5: Find the optimal rotation for all shapes

R i = argmin R∈SO(d) ||x * i -x S R|| 2 , i = 1, . . . , N
where SO(d) is the special orthogonal group of d × d rotation matrices through the Singular Value Decomposition (SVD) Berge (1977) 6: Set the i-th aligned shape to xi = x * i R i Tangent space projection. The notion of tangent space projection is based on modifying the shape vectors form a hyper-sphere to a hyper-plane. Further, the Euclidean distance in this plane can be employed as a shape metric. Suppose that xi is the i-th aligned shape and x S is the Fréchet mean of all shapes belonging to S k , as illustrated in Figure 2.6 (left). The remaining two sketches in Figure 2.6 show two tangent space projections of which we will focus on the former. Let xt i be the projection of xi into the tangent space of S k at x S . From Figure 2.6 (middle), we see that xt i 's projection onto x S is x S , i.e.,

x S = x S , xt i 2 ||x S || 2 2 x S = x S , xt i 2 x S = βx S (2.25)
Substituting xt i with αx i in the scaling factor β, we get

β = 1 = x S , xt i 2 = α x S , xi 2
(2.26) Finally, we show that

xt i = αx i = 1 x S , xi 2 xi (2.

27)

Tangent Principal Component Analysis. Once all congurations have been aligned (or registered) to a common coordinate frame ltering out similarity transformations, they represent the shape of each structure. For instance, we could use PCA Journée et al. (2010) onto aligned data to nd a (small) set of orthonormal directions that explain most of the shape variability. We show how the PCA can be derived by means of simple linear algebra and used for modeling shape variation.

We consider the case of having N shapes consisting of n points in d dimension where i-th shape is represented as x i ∈ R nd , aligned by xi ∈ S k and projected into the tangent linear space at xt i ∈ R k+1 . If we consider a set covering a certain class of shapes then we will always observe some degrees of inter-point correlation. If not, i) the set either contains no variation, or ii) the points are purely random, which implies that the points are not landmarks. This argumentation leads to the suspicion that there could exist a shape representation accounting for correlation between points. If some point movements were to be totally correlated, this could be exploited to reduce the dimensionality. The central idea of Tangent Principal Component Analysis (TPCA) is to reduce the dimensionality of projected shape vectors into the tangent space of S k . This is achieved when transforming to a new set of variables, known as principal components (PCs), so that the rst few retain most of the variation present in all of the original variables. The whole process of obtaining principle components from a raw dataset of projected shape vectors in the tangent space can be simplied in Algorithm [START_REF] Tpca | [END_REF] 

λ k+1 < λ k < • • • < λ M +1 < λ M < • • • < λ 1 kept eigen-values to form a (k + 1) × M dimensional matrix: W = [v 1 , v 2 , . . . , v M ] 5:
Use W to transform the samples of projected shape vectors onto the new sub-space

ẑt i = W T xt i
illustrates this approach is given in Figure 2. [START_REF] Tpca | [END_REF]. Accordingly, we keep the two most important directions for the TPCA approach when reducing the dimensionality of the projected shape vectors into the tangent space.

Shape analysis of curves using a Riemannian structure

In order to develop a formal framework for analyzing shapes of curves, one needs a mathematical representation of curves that is natural, general and ecient. We describe one such representation that allows a simple framework for shape analysis with a Riemannian structure. Let

β : I = [0, 1] → R d , d ≥ 1. If d = 1 then β is
an univariate function, else β is a multidimensional curve.

Preshape space and metric. Assume that for all ξ ∈ I, β(ξ) = 0. We then

dene ϕ : I → R by ϕ(ξ) = ln(|| β(ξ)|| 2 )
, and θ :

I → S d-1 by θ(ξ) = β(ξ) || β(ξ)|| 2 .
Clearly, ϕ and θ completely specify β since β(ξ) = exp(ϕ(ξ))θ(ξ). Thus, we have Figure 2.7: An example of three shape vectors x i (a) and their projections ẑt i in the tangent space when applying the TPCA approach with two dimensions. dened a map from the space of smooth curves in R d to Φ × Θ where Φ = ϕ : 1 . This map is surjective and not injective, but two curves are mapped to the same pair (ϕ, θ) if and only if they are translates of each other, i.e., if they dier by an additive constant. Intuitively, ϕ tells us the speed of traversal of the curve, while θ tells us the direction of the curve at each time ξ.

I → R and Θ = θ : I → S d-
In order to quantify the magnitudes of perturbations of β, we wish to impose a Riemannian metric on the space of curves that is invariant under translation by putting a metric on Φ × Θ. First, we state that the tangent of space of Φ × Θ at any point (ϕ, θ) is given by

T (ϕ,θ) (Φ × Θ) = (u, v) u ∈ Φ, v : I → R d , and v(ξ) ⊥ θ(ξ); ∀ ξ ∈ I (2.28) Suppose (u 1 , v 1 ) and (u 2 , v 2 ) are both elements of T (ϕ,θ) (Φ × Θ).
Let dene an inner product by

(u 1 , v 1 ), (u 2 , v 2 ) (ϕ,θ) = 1 4 I u 1 (ξ)u 2 (ξ) exp(ϕ(ξ))dξ
(2.29)

+ I v 1 (ξ), v 2 (ξ) 2 exp(ϕ(ξ))dξ
The rst integral measures the amount of "stretching" since u 1 and u 2 are variations of the speed ϕ of the curve, while the second integral measures the amount of "bending" since v 1 and v 2 are variations of the direction ϕ of the curve.

Squareroot velocity function. We now dene the square-root velocity function (SRVF) representation [START_REF] Srivastava | Shape analysis of elastic curves in euclidean spaces[END_REF].

Denition 2.5

♣

The SRVF q : I → R d of β is dened as

q(ξ) = β(ξ) || β(ξ)|| 2 (2.30)
Now, we will prove that the L 2 metric in the SRVF representation is (2.29). Relating this to the (ϕ, θ) representation of the curve, gives q(ξ) = exp( 12 ϕ(ξ))θ(ξ).

A couple of simple dierentiations show that if (u, v) ∈ T (ϕ,θ) (Φ × Θ) then the corresponding tangent vector to L 2 (I, R d ) at q is given by

δq(ξ) = 1 2 exp ( 1 2 ϕ(ξ)) u(ξ), θ(ξ) 2 + exp ( 1 2 ϕ(ξ))v(ξ) (2.31) Now, let (u 1 , v 1 ) and (u 2 , v 2 ) denote two elements of T (ϕ,θ) (Φ × Θ)
and let δq 1 and δq 2 denote the corresponding tangent vectors to L 2 (I, R d ) at q. Computing the L 2 inner product of δq 1 and δq 2 , yields

δq 1 , δq 2 = I 1 2 exp ( 1 2 ϕ(ξ)) u 1 (ξ), θ(ξ) 2 + exp ( 1 2 ϕ(ξ))v 1 (ξ), (2.32 
)

1 2 exp ( 1 2 ϕ(ξ)) u 2 (ξ), θ(ξ) 2 + exp ( 1 2 ϕ(ξ))v 2 (ξ) 2 dξ = 1 4 I exp(ϕ(ξ))u 1 (ξ)u 2 (ξ)dξ + I exp(ϕ(ξ)) v 1 (ξ), v 2 (ξ) 2 dξ
In the above term, we have used the fact that θ(ξ), θ(ξ) 2 = 1 since θ(ξ) is an element of the unit sphere S d-1 as well as θ(ξ), v j (ξ)

2 = 0 since v j (ξ) is a tan- gent vector to S d-1 at θ(ξ).
This clearly shows that the L 2 metric on the space of SRVFs corresponds precisely to the elastic metric (2.29) on Φ × Θ.

Geodesics.

Conversely, for q ∈ L 2 (I, R d ) there exists a curve β (unique up to a translation) such that q is the SRVF of β. In fact, β can be rewritten as

β(ξ) = β(0) + ξ 0 q(t)||q(t)|| 2 dt.
To remove scaling variability, we rescale all curves to be of unit length. This restriction comes from the fact that

I ||q(ξ)|| 2 2 dξ = I || β(ξ)|| 2 dξ = 1.
Let M denote the space of all qs. The standard metric on L 2 (I, R d ) restricts to Riemannian structure on M. This structure can then be used to determine geodesic and geodesic length between elements of this space Lang (1998).

Let α : I → M be a geodesic path such that α(0) = q 1 and α(1) = q 2 . Then, the length of α is dened by

L[α] = I α(ξ), α(ξ) 1/2 2 dξ (2.33)
In addition, α is said to be a length-minimizing geodesic if L[α] achieves the inmum over all such paths. The length of the geodesic path becomes a distance

d M q 1 , q 2 = inf α|α(0)=q 1 ,α(1)=q 2 L[α]
(2.34)

Since M is a linear subspace of L 2 (I, R d ), the geodesic between q 1 and q 2 becomes straightforward.

Lemma 2.1

♥

Given q 1 and q 2 in M, a geodesic path between them is given by (., .) controlling its underlying structure. This implies a multivariate Gaussian density function

α(ξ) = (1 -ξ)q 1 + ξq 2 for all 0 ≤ ξ ≤ 1 (2.
P(f |X) = N (f |0, c(X, X)) where X is the N ×d matrix [x 1 , . . . , x N ] T and f is the N × 1 Gaussian vector (f (x 1 ), . . . , f (x N )) T .
The conditional density of y = (y 1 , . . . , y N ) T given f that we write P(y|f ) refers to the likelihood term. From the Bayes' rule, we write the posterior distribution, that is the conditional density of f given y and X, as P(f |X, y) ∝ P(f |X)P(y|f ).

In general, the covariance function c (., .) relies on a set of unknown hyper-

parameters θ c = {θ j c } p j=1 ∈ R p .
Thus, the hyper-parameters have to be estimated from observations in an optimal way in order to achieve best predictions. It is, indeed, very common to maximize the marginal likelihood P(y|X) depending on θ c . It can be achieved when marginalizing the posterior on f , i.e., P(y|X) = R N P(f |X)P(y|f )df . This task is not trivial when the likelihood term P(y|f ) deviates from standard forms, which is the case for the classication framework. Ideally, the non-Gaussian posteriors can be approximated by Gaussian distributions [START_REF] Minka | Expectation propagation for approximate Bayesian inference[END_REF]; [START_REF] Williams | Bayesian classication with Gaussian processes[END_REF].

Methods based on GPcs are successful with low and medium dimensions, but are limited in high-dimensions (N << d) [START_REF] Djolonga | High-dimensional Gaussian process bandits[END_REF]. The most prominent weakness is usually the computational cost due to the inversion and the determinant of the N × N covariance matrix needed for evaluating any marginal likelihood. Furthermore, when d is large, the Euclidean distance between x and x in R d : ||x -x || 2 becomes less informative. To overcome those issues, we suppose that the inputs lie on an embedded submanifold M of low dimension [START_REF] Calandra | Manifold Gaussian processes for regression[END_REF]; [START_REF] Fradi | Manifold-based inference for a supervised Gaussian process classier[END_REF]. We then propose to perform inference on embedded inputs Z = Ψ(X) where Ψ is a mapping (embedding) dened on a RKHS (Reproducing Kernel Hilbert Space) H K . The family of kernels K (., .) is again controlled by a vector of hyper-parameters

θ K = {θ j K } k j=1 ∈ R k .
One of the main advantages of this formulation is that the embedded submanifold M (which is the image of X by Ψ) has a lower dimension than X , i.e., M << d with an adaptive geometrical structure. As a consequence, we let the covariance function c (., .) operate directly on M. To summarize, this formulation solves non-linearity from initial inputs, creates separability in the embedded submanifold and reduces the dimensionality.

The main goal in this chapter is to provide an ecient scalable approximation of the Bayesian inference related to the above dimension reduction framework. In this context, we will estimate the hyper-parameters of the covariance function c (., .) and the embedding with K (., .), jointly, by two dierent techniques. We now give more details about the proposed methods: 1. A novel set of equations and algorithms is developed in order to evaluate marginalized log-likelihoods. All details of the gradient vectors and the Hessian matrices are given. For selecting the hyper-parameters, we maximize the approximate marginal likelihoods using two iterative techniques: gradient-descend and Newton-Raphson. Nonetheless, these optimization techniques usually have some limitations when dealing with non-convex cost functions [START_REF] Carlin | Bayesian and empirical Bayes methods for data analysis[END_REF], in particular, the approximate marginal likelihood. We solve this problem and we show that our formulation requires a small number of iterations for maximizing marginal likelihoods [START_REF] Karaboga | On the performance of articial bee colony (abc) algorithm[END_REF]. 2. As an alternative to marginalization, we can simply maximize the posteriors on these hyper-parameters when computational resources increase. A common approach to tackle the non-convexity issue of the marginal likelihood is to use multiple starting points randomly selected from specic prior laws for the model hyper-parameters. Following this idea, we simulate from the posterior distribution that we are able to factorize across two separate posterior distributions for θ c and θ K . We proceed with sampling based on MCMC [START_REF] Van Ravenzwaaij | A simple introduction to Markov Chain Monte Carlo sampling[END_REF]. Finally, it is important to mention that the problem of high complexity and computational time, usually needed for ensuring the stationarity of Markov chains, will be eciently solved thanks to the proposed embedded submanifold.

Gaussian process classier

For GPc, we are interested in the target class "+1" probability satisfying π(x)

= P y = +1|f (x) = σ(f (x)) with an activation function σ : R → [0, 1] usually refers to the sigmoid (σ(t) = 1 1+exp(-t) ) or the probit (σ(t) = F (t)).
Here F refers to the standard Gaussian cumulative distribution function.

Problem formulation

The likelihood term is the product of individual likelihoods, i.e.,

P(y|f ) = N i=1 P(y i |f i ) (3.1) = N i=1 σ(y i f i )
According to our case, the posterior distribution of f given X and y is proportional (∝) to

P(f |X, y) = P(y|f )P(f |X) P(y|X) (3.2) 
∝ P(y|f )P(f |X)

where P(y|X) is the exact marginal likelihood. From (3.2), the posterior is analytically intractable due to the likelihood term and need to be approximated, for instance, by a Gaussian distribution. As a solution, we introduce the Laplace approximation and the Expectation propagation methods. We also give the approximate marginal likelihood and the predictive distribution in both cases.

Laplace approximation

We rstly discuss details of Laplace approximation method for GPc.

Sampling functions and predictions

From the GPc denition, the prior law on f satises

P(f |X) = N (f |0, C) (3.3) 
where C = c(X, X). From (3.2), the log-posterior is simply proportional to

log P(f |X, y) ∝ log P(y|f ) - 1 2 f T C -1 f (3.4)
For the Laplace approximation, we rstly nd the maximum a posteriori (MAP)

estimator denoted f = ( f1 , . . . , fN ) T from the Newton-Raphson method, with the iteration

f t+1 = (C -1 + W) -1 (Wf t + ∇P(y|f t )) (3.5) 
for t = 2, 3, . . . . W is the negative Hessian matrix of the likelihood term, i.e., W is a N × N diagonal matrix with entries

W ii = -∂ 2 log p(y i |f i ) ∂ 2 f i f i = fi and P(y i |f i ) = σ(y i f i ) = 1 1+e -y i f i .
Once we have estimated the MAP f , we can specify a Gaussian approximation of the posterior, when doing a second order Taylor expansion of log P(f |X, y) around f , as

P(f |y, X) = N (f | f , (C -1 + W) -1 ) (3.6)
Given an unobserved input x * , the predictive distribution at f * = f (x * ) can be approximated by

P(f * |X, y, x * ) = N (f * |µ(x * ), σ 2 (x * )) (3.7) with        µ(x * ) = C T * C -1 f σ 2 (x * ) = C * * -C T * (C + W -1 ) -1 C * (3.8)
Using the moments of prediction, we approximate the predictor for y * = +1 by

π(x * ) = R σ(f * ) P(f * |X, y, x * )df * (3.9)

Optimizing hyper-parameters

We evaluate the approximate marginal likelihood P(y|X) instead of the exact marginal likelihood P(y|X) given in the denominator of (3.2). This term usually depends on a vector of hyper-parameters θ c = {θ j c } p j=1 ∈ R p associated to the covariance function c (., .), unknown and to be inferred. A common practice is to obtain point estimates of the hyper-parameters by maximizing the marginal (log) likelihood. Integrating out f , the log-marginal likelihood is approximated by

l(θ c ) = - 1 2 f T C -1 f + log P(y| f ) - 1 2 log I + W 1 2 CW 1 2
(3.10)

Optimizing over θ c requires the evaluation of rst partial derivatives. The rst partial derivatives of l(θ c ) with respect to θ j c satisfy .11) The rst term (explicit), obtained when we assume that f (as well as W) does not depend on θ c , satises

∂l(θ c ) ∂θ j c = ∂l(θ c ) ∂θ j c | f + N i=1 ∂l(θ c ) ∂ fi ∂ fi ∂θ j c ( 3 
∂l(θ c ) ∂θ j c | f = 1 2 f T C -1 ∂C ∂θ j c C -1 f - 1 2 tr (C + W -1 ) -1 ∂C ∂θ j c (3.12)
The second term (implicit), obtained when we suppose that only f (as well as W)

depends on θ c , is fully determined by

∂l(θ c ) ∂ fi = - 1 2 (C -1 + W) -1 ii ∂ 3 log P(y| f ) ∂ 3 fi (3.13) and ∂ f ∂θ j c = I + CW -1 ∂C ∂θ j c ∇ log P(y| f ) (3.14)
where ∇ is the gradient w.r.t. f .

Expectation propagation

In this section, we give details for another method based on the Expectation propagation.

Sampling functions and predictions

The Expectation propagation is usually used to approximate marginal moments of the posterior [START_REF] Minka | Expectation propagation for approximate Bayesian inference[END_REF]. The key idea is to replace individual likelihoods by unnormalized Gaussian distributions. We then use the same notations and rewrite the posterior distribution over f as the product of the prior and the likelihood terms

P(f |y, X) = 1 L P(f |X) N i=1 P(y i |f i ) (3.15) 
where the normalization term is

L = P(y|X) (3.16) = R N P(f |X) N i=1 P(y i |f i )df
We consider that P(y

i |f i ) = F (y i f i ).
To build this framework, we can approximate each individual likelihood by

P(y i |f i ) ≈ t i (f i |L i , μi , σ2 i ) (3.17) = L i × N (f i |μ i , σ2 i )
However, the likelihood approximation should not be normalized since the exact likelihood do not have this property. The product of individual likelihood

approximations is then N i=1 L i × N (f |μ, Σ) where μ = (μ 1 , . . . , μN ) T and Σ = diag(σ 2 1 , . . . , σ2 N ).
Based on local approximations, the true posterior distribution is approximated by

P(f |y, X) = 1 L P(f |X) N i=1 t i (f i |L i , μi , σ2 i ) (3.18) = N (f |µ, Σ)
with µ = Σ Σ-1 μ and Σ = (C -1 + Σ-1 ) -1 .

To summarize, we give the main steps of the expectation propagation (EP) in Algorithm 8. Once we have estimated μ and Σ, the prediction moments are

       µ(x * ) = C T * C -1 µ = C T * (C + Σ) -1 μ σ 2 (x * ) = C * * -C T * (C + Σ) -1 C * (3.19)
Therefore, the approximate predictor for y * = 1 is

π(x * ) = F C T * (C + Σ) -1 μ 1 + C * * -C T * (C + Σ) -1 C * (3.20)

Optimizing hyper-parameters

The marginal likelihood can be found from the normalization of (3.18) as

L EP = P(y|X) = R N p(f |X) N i=1 L i × N (f i |μ i , σ2 i ) df (3.21)
Consequently, its logarithm satises .22) where B comes from the normalization constants L i , satisfying B = N i=1 log L i . Luckily, it turns out that implicit terms in the derivatives, being a function of θ c , is exactly zero. More details are given in [START_REF] Seeger | Expectation propagation for exponential families[END_REF]. Consequently, we only have to take account of the explicit term

l(θ c ) = log(L EP ) = - 1 2 log C + Σ - 1 2 μT (C + Σ) -1 μ + B ( 3 
∂l(θ c ) ∂θ j c = 1 2 μT (C + Σ) -1 ∂C ∂θ j c (C + Σ) -1 μ - 1 2 tr (C + Σ) -1 ∂C ∂θ j c (3.23)

The embedded submanifold

We partially introduce some technical results and we move to functions (mappings)

that can be expressed in terms of expansions. Let us consider a nonnegative realvalued kernel K : X × X → R + with its corresponding RKHS H K . We restrict ourselves to a class of kernels satisfying K(x, x ) = Ψ(x), Ψ(x ) 

P-i (f i ) ∝ P(f i |y, X) t i (f i |L i , μi , σ2 i ) = N (f i |µ -i , σ 2 -i )
where

P(f i |y, X) = N (f i |µ i , σ 2 i = Σ ii ) σ 2 -i = (σ -2 i -σ-2 i ) -1 µ -i = σ 2 -i (σ -2 i µ i -σ-2 i μi )
3: Dene P i (f i ), the pseudo-exact posterior marginal distribution of f i , as

P i (f i ) = P(y i |f i ) P-i (f i ) 4: Compute P(f i ) = Li × N (f i |μ i , σ2 i ) by minimizing the Kullback-Leibler (K-L) divergence ( Li , μi , σ2 i ) = argmin ( Li ,μ i ,σ 2 i ) K-L P i (f i )|| P(f i )
giving the following marginal moments

Li = F (l i ) σ2 i = σ 2 -i - σ 4 -i N (l i |0,1) (1+σ 2 -i )F (l i ) (l i + N (l i |0,1) F (l i ) ) μi = µ -i + y i σ 2 -i N (l i |0,1) F (l i ) √ 1+σ 2 -i l i = y i µ -i √ 1+σ 2 -i 5: Update (L i , μi , σ2 i ) with t i (f i |L i , μi , σ2 i ) = P(f i ) P-i (f i ) so that μi = σ2 i (σ -2 i μi -σ -2 -i µ -i ) σ2 i = (σ -2 i -σ -2 -i ) -1 L i = Li 2π(σ 2 -i + σ2 i ) exp( 1 2 (µ -i -μ i ) 2 σ 2 -i +σ 2 i ) local shape hyper-parameters θ K = {θ j K } k j=1 ∈ R k
where Ψ is an unknown nonlinear mapping dened from X to M. The "Representer Theorem [START_REF] Schölkopf | A generalized representer theorem[END_REF] states that solutions of a large class of optimization problems can be expressed as kernel expansions over the sample points. Since our observations are high-correlated, that issue does not allow us to search a good conguration from the "Representer Theorem" directly. However, the proposed technique succeeds to nd the optimal partitions with their local structures. For this purpose, we adopt the following result deduced from the "Representer Theorem". Lemma 3.1

♥

We assume that there exists a partition of X with centers {c i } i and an arbitrary empirical risk function E, dened on H K , controlled by data and regularization terms. Then, any function satisfying Ψ = argmin Ψ∈H K E(Ψ), admits a representation of the form

Ψ(.) = N i=1 α i K(., c i ) (3.24)
Note that the mapping Ψ is a linear combination of some kernels K(., c i ) centered

on {c i } i . A proposed approximation of Ψ(x) is then Ψ(x) = M j=1 α j K(x, c j ) for M < N . Now, considering the parametrized version φ j : X → R + ; x → K(x, c j ),
we rewrite

Ψ(x) = M j=1 α j φ j (x) (3.25)
From the last expansion, we only need to nd α j in order to determine an ap-

proximation of Ψ. If we note α = [α 1 , . . . , α M ] and φ(x) = (φ 1 (x), . . . , φ M (x)) T ,
we can reformulate the approximation as Ψ(x) = αφ(x), which implies that

α T Ψ(x) = (α T α)φ(x). If α is orthonormal (i.e., α T α = I), we simply get φ(x) = α T Ψ(x).
We suppose that the conguration of centers {c j } M j=1 can be obtained by any unsupervised clustering method (e.g., k-means Hamerly and Drake (2015)) applied to the inputs X. Given {c j } M j=1 , the orthonormality of α i.e., α j , α h 2 = δ jh heavily depends on the kernels basis φ j (and their hyper- 

parameters θ K as well) since α j , α h 2 = Ψ(c j ), Ψ(c h ) 2 = K(c j , c h ) = φ h (c j ).

Scalable Gaussian process classier

We dene a scalable GPc (SGPc) r :

M ⊆ R M → R, as a classical GPc f = r • Ψ : X ⊆ R d → R.
The covariance function of r denoted c (., .) is more expressive than c (., .) where the term P(y|Z) is called again the true marginal likelihood.

Posterior distribution approximations and predictions

We give details on how to approximate the posterior distribution in connection with the proposed mapping (embedding) Ψ.

Scalable Laplace approximation (SLA)

Let r be the MAP of P(r|Z, y), i.e., r = (r 1 , . . . , rN ) T = arg max r P(r|Z, y). As for the Laplace approximation, we can nd r, iteratively, according to

r t+1 = ( C-1 + W) -1 ( Wr t + ∇ log P(y|r t )) (3.27) Let C = c(X, X) denote the N × N matrix with element i, j equal to c(x i , x j )
and W is a N × N diagonal matrix with entries Wii = exp(-r i ) (1+exp(-r i )) 2 . Therefore, a Gaussian approximation of the posterior distribution in (3.26) is given by

P(r|Z, y) = N (r|r, ( C-1 + W) -1 ) (3.28)
Given a test input z * = Ψ(x * ), the rules for conditioning of multivariate Gaussian distributions allow us to derive the approximate predictive distribution of r * = r(z * ) given Z, y and z * as ( 3.32) where ṽ = (ṽ 1 , . . . , ṽN ) T and S = diag(s 1 , . . . , sN ) are obtained from Algorithm 8.

P(r * |Z, y, z * ) = N (r * |µ(z * ), σ 2 (z * )) (3.29) with        µ(z * ) = CT * C-1 r σ 2 (z * ) = C * * -CT * ( C + W-1 )
From (3.32), the conditional mean and variance of predictive distribution r * given Z, y and z * are

       µ(z * ) = CT * ( C + S) -1 ṽ σ 2 (z * ) = C * * -CT * ( C + S) -1 C * (3.33)
Then, the conditional probability P(y * = +1|y, Z, z * ) is approximated by

π(z * ) = F CT * ( C + S) -1 ṽ 1 + C * * -CT * ( C + S) -1 C * (3.34)
To summarize, we have dened a family of classiers using a latent SGPc and approximations of the exact posterior distribution depending on a set of hyperparameters θ c and θ K typically unknown to be estimated. We state that some properties such as the stationarity of the GPc and the correlation between trans-formed inputs in the feature space M are controlled by θ c and θ K , respectively.

Optimizing hyper-parameters

Let θ = (θ c , θ K ) ∈ R p+k denote the hyper-parameters of the covariance function c (., .) and those of the kernel K (., .), jointly. We will provide useful formulas and simplications for evaluating the approximate marginal likelihoods P(y|Z) for both SLA and SEP. 3.4.2.1 The rst partial derivatives of log P(y|Z)

In this section, we focus on terms required for computing rst partial derivatives.

First case : SLA :

Integrating out the latent values r in (3.28), yields an approximation of the logmarginal likelihood log P(y|Z)

l(θ) = log P(y|Z) = - 1 2 rT C-1 r + log P(y|r) - 1 2 log I + W 1 2 C W 1 2 (3.35)
The rst partial derivative of l(θ) with respect to ∂r i

∂θ j c (3.36) Here .37) means that the partial derivatives of l(θ) are calculated as if r (and thus W) does not depend on θ c . The second term in (3.36) is determined by We now provide the partial derivatives of l(θ) w.r. ∂r i

∂l(θ) ∂θ j c |r = 1 2 rT C-1 ∂ C ∂θ j c C-1 r - 1 2 tr ( C + W-1 ) -1 ∂ C ∂θ j c ( 3 
∂l(θ) ∂r i = - 1 2 ( C-1 + W) -1 ii ∂ 3 log P(y|r) ∂ 3 ri (3.
∂θ j K (3.40) Here

∂l(θ) ∂θ j K |r = 1 2 rT C-1 ∂ C ∂Z ∂Z ∂θ j K C-1 r - 1 2 tr ( C + W-1 ) -1 ∂ C ∂Z ∂Z ∂θ j K (3.41)
which means that the partial derivatives are calculated as if r (and thus W) does not depend on θ K . The second term relies on

∂r ∂θ j K = I + C W -1 ∂ C ∂Z ∂Z ∂θ j K ∇ log P(y|r) (3.42)
The quantity ∂ C ∂Z is the gradient of the modied covariance matrix with respect to the M -dimensional inputs Z = Ψ(X).

Second case : SEP :

From (3.32), the approximate log-marginal likelihood for SEP approximation is 

l(θ) = - 1 2 log C + S - 1 

The second partial derivatives of log P(y|Z)

In this section, we focus on terms required for computing second partial derivatives. For SLA, the second partial derivatives of the approximate log-marginal likelihood with respect to {θ h c , θ j c } can be analytically composed as

∂ 2 l(θ) ∂θ h c ∂θ j c = ∂ 2 l(θ) ∂θ h c ∂θ j c |r + N i=1 ∂ 2 l(θ) ∂ 2 ri ∂ 2 ri ∂θ h c ∂θ j c (3.46) ♠ The rst term is ∂ 2 l(θ) ∂θ h c ∂θ j c |r = - 1 2 rT C-1 ∂ C ∂θ h c C-1 ∂ C ∂θ j c C-1 -C-1 ∂ 2 C ∂θ h c ∂θ j c C-1 (3.47) + C-1 ∂ C ∂θ j c C-1 ∂ C ∂θ h c C-1 r + 1 2 tr ( C + W-1 ) -1 ∂ C ∂θ h c ( C + W-1 ) -1 ∂ C ∂θ j c -( C + W-1 ) -1 ∂ 2 C ∂θ h c ∂θ j c
which means that the partial derivatives of l(θ) are calculated as if r (and thus W) did not depend on θ c . The second term depends on

∂ 2 l(θ) ∂ 2 ri = 1 2 ( C-1 + W) -1 ∂ W ∂r i ( C-1 + W) -1 ii ∂ 3 log P(y|r) ∂ 3 ri - 1 2 ( C-1 + W) -1 ii × ∂ 4 log P(y|r) ∂ 4 ri (3.48)
and

∂ 2 r ∂θ h c ∂θ j c = I+ C∂ W ∂r -1 ∂ 2 C ∂θ h c ∂θ j c ∇ log P(y|r)- ∂ C ∂θ j c W ∂r ∂θ h c - ∂ C ∂θ h c W ∂r ∂θ j c (3.49) Proof For ∂ 2 l(θ) ∂θ h c ∂θ j c |r
and ∂ 2 l(θ) ∂ 2 ri , we dierentiate the rst partial derivatives given in (3.37) and (3.38), respectively. For ∂ 2 r ∂θ h c ∂θ j c , we dierentiate r = C∇ log P(y|r) two times and we use the following chain rules:

∂ ∂θ h c = ∂ ∂r ∂r ∂θ h c , ∂ ∂θ j c = ∂ ∂r ∂r ∂θ j c , ∂ 2 ∂θ h c ∂θ j c = ∂ 2 ∂ 2 r ∂ 2 r ∂θ h c ∂θ j c
, ∂∇ log P(y|r) ∂r = -W and ∂ 2 ∇ log P(y|r)

∂ 2 r = -∂ W ∂r .
We Keep the same steps for evaluating the second partial derivatives ∂ 2 l(θ) .47) and (3.49).

∂θ h K ∂θ j K when replacing ∂ C ∂θ j c by ∂ C ∂Z ∂Z ∂θ j K and ∂ 2 C ∂θ h c ∂θ j c by ∂ 2 C ∂ 2 Z ∂ 2 Z ∂θ h K ∂θ j K in (3
For mixed derivatives

∂ 2 l(θ) ∂θ h c ∂θ j K likewise ∂ 2 l(θ) ∂θ h K ∂θ j c , we just replace ∂ C ∂θ j c by ∂ C ∂Z ∂Z ∂θ j K and ∂ 2 C ∂θ h c ∂θ j c by ∂ ∂θ h c ( ∂ C ∂Z ∂Z ∂θ j K
) in the same equations. 

∂ 2 l(θ) ∂θ h c ∂θ j c = - 1 2 ṽT ( C + S) -1 ∂ C ∂θ h c ( C + S) -1 ∂ C ∂θ j c ( C + S) -1 (3.50) -( C + S) -1 ∂ 2 C ∂θ h c ∂θ j c ( C + S) -1 +( C + S) -1 ∂ C ∂θ j c ( C + S) -1 ∂ C ∂θ h c ( C + S) -1 ṽ + 1 2 tr ( C + S) -1 ∂ C ∂θ h c ( C + S) -1 ∂ C ∂θ j c -( C + S) -1 ∂ 2 C ∂θ h c ∂θ j c
We can also get

∂ 2 l(θ) ∂θ h K ∂θ j K and ∂ 2 l(θ) ∂θ h c ∂θ j K likewise ∂ 2 l(θ) ∂θ h K ∂θ j c
for SEP by using the same chain rules as for SLA only for the rst term since the second term vanished when dierentiating the approximate log-marginal likelihood.

Numerical methods and sampling

In the marginal likelihood estimation, point estimates of the hyper-parameters are obtained by maximizing the log-marginal likelihood with respect to θ = (θ c , θ K ),

i.e., nding θ = argmax θ l(θ) (3.51) We refer to the resulting hyper-parameters as type-II MLEs. Let ∇l(θ) =

{ ∂l(θ) ∂θ j c } p j=1 , { ∂l(θ) ∂θ j K } k j=1
T denote the gradient vector of l(θ). Since there is no analytic solution when solving ∇l(θ) = 0, we make use of two iterative methods. We rst consider the gradient-descent according to Algorithm 1 where the cost function to be minimized is the negative approximate log-marginal likelihoods -l(θ)

given in (3.35) and ( 3.43) for both SLA and SEP, respectively. The second procedure consists in nding an explicit expression of the Hessian matrix ∇ 2 l(θ) formed by second partial derivatives of the log-marginal likelihood, i.e.,

∇ 2 l(θ) =     { ∂ 2 l(θ) ∂θ h c ∂θ j c } p j,h=1 { ∂ 2 l(θ) ∂θ h c ∂θ j K } p,k j,h=1 { ∂ 2 l(θ) ∂θ h K ∂θ j c } k,p j,h=1 { ∂ 2 l(θ) ∂θ h K ∂θ j K } k j,h=1     (3.52)
which allows the use of the Newton-Raphson given in Algorithm 2.

Note that conventional optimizations might not nd the best local maximum, thus failing to nd the most appropriate value of θ. Moreover, by selecting only one candidate for θ robustness and uncertainty quantication are lost in the process.

Hence, we adopt a Bayesian point of view on θ = (θ c , θ K ) and assign priors denoted by P(θ c ) and P(θ K ) in order the nd the type II-MAP that maximizes the posterior distributions on θ since the notation MAP was used for r . We then sample posterior values of θ with MCMC. For SEP, we simply replace P(y|r) by its approximation N i=1 Li × N (r|ṽ, S) given in (3.53). Sampling from any of these distributions is carried out by using some proposal distribution, for instance a Gaussian in the Metropolis-Hastings (MH) illustrated in Algorithm 5, which is updated during the early iterations of SLA and SEP algorithms in order to tune the acceptance rate. Furthermore, the local shape hyper-parameters {θ j K } k j=1 exhibit additional conditional independencies so that we can sample them independently in separate blocks [START_REF] Neal | Monte Carlo implementation of Gaussian process models for Bayesian regression and classication[END_REF]. An accepted state for SGPc hyper-parameters requires an update of the proposal distribution when updating (r, W) for SLA and (ṽ, S) for SEP. This holds for algorithms described in Section 3. 4.1.1 and Section 3.4.1.2 in order to nd the posterior approximation P(r|Z, y). The prior laws of θ c and θ K will be carefully xed for applications in connection with the kernel K (., .) and the covariance function c(., .) choices.

Applications

The main goal of our experiments is to evaluate the proposed SGPc using both synthetic and real data.

Covariance function and kernel. In our experiments, the covariance function of GPc is the squared exponential:

c δ 2 ,γ (x, x ) = δ 2 exp -||x-x || 2 2 2γ
where δ 2 controls the variance and γ is the length-scale, which determines the fall-o in correlation with distance ||x -x || 2 . For the mapping Ψ, we use a set of Gaussian kernels: φ j (x) = K(x, c j ) = exp -β j ||x -c j || 2 2 with local shape constants β j , j ∈ {1, . . . M }. Consequently, the number of hyper-parameters θ K coincides with the dimension of M, i.e., k = M . Then, our model hyper-parameters become θ c = {δ, γ} and θ K = {β 1 , . . . , β M }. To apply the MCMC sampling, we need to dene prior distributions over unknown hyper-parameters. The variance δ 2 is xed to one, for simplicity, which avoid the identiability problem of the proposed SGPc model. The length-scale γ and the shape constants β j , often take nonnegative values and can be sampled in the log-space, are assigned to inverse-gamma and gamma priors, respectively.

Baselines. We focus on several comparisons:

We compare the proposed approximation methods (SLA and SEP) among themselves with hyper-parameters estimated by: gradient-descent (GD-SLA and GD-SEP), Newton-Raphson (NR-SLA and NR-SEP) and MCMC (MCM C-SLA and MCMC-SEP).

We also compare the proposed SLA and SEP against some state-of-the-art methods before and after dimensionality reduction using a standard technique.

Performance criteria. As accuracy criteria, we consider the mean classication error (MCE) where the classication error for any unobserved data (z * , y * ) and

xed threshold s is: CE = 1 {y * =+1,π(z * )≥s}∪{y * =-1,π(z * )<s}
. Here π is dened in (3.31) and (3.34), whereas the optimal threshold is reached by the ROC curve. We also consider the root mean square error (RMSE) as a precision criteria where the square error is dened by: SE = y * -π(z * )

2 for y * ∈ {0, 1}.

Synthetic datasets

To illustrate the practical use of the proposed SGPc with dierent optimization techniques, we conduct a set of controlled synthetic studies for avouching our theoretical results. It is important to mention that the goal of the embedded submanifold technique, here, is to search an adaptable representation for data rather than dimensionality reduction.

Datasets. The rst simulation is from the univariate step function dened by: Results. The results from Table 3.1 suggest that NR-SEP performs as well as GD-SEP, but there is the same MCE for SLA with the step function. Moreover, MCMC sampling gives improved performance when compared to iterative optimization methods. Accordingly, one can observe that SEP achieves a better accuracy than SLA with a signicant margin for both datasets. From various conducted tests, we showed that the quality of the proposed SGPc strongly depends on the hyperparameters selection method.

g(x i ) =      -1 if x i ≤ 0 +1 if x i > 0 . The

Real data

In order to assess the computational complexity for our proposed procedures, a real study was conducted for a range of datasets. Unlike the previous experiments, the embedded submanifold technique has an important and crucial role to reduce the dimensionality of data. We randomly choose 80% of the dataset to form the training set whereas the rest is maintained for test. (a with their corresponding ViF descriptor: (d) and (h).

) (b) (c) (d) (e) (f) (g) (h)

Results on real data

The mean classication and root square errors are summarized in Table 3. and SEP with MCMC sampling improve those with iterative optimization methods with better results for SEP. Furthermore, both SLA and SEP give a good precision when focusing on the RMSE criteria with a better margin for SEP.

Results on breast cancer (BC). More details about MCMC-SLA are given in Figure 3.3 (a). Accordingly, test data are represented in two-dimensional feature space M ⊆ R 2 with contour plot colored as function of predictive probabilities of class "+1" in regions. This plot still shows that predictive probabilities revert to one half if we move away from the data. This can be also conrmed in Figure 3.3 (b) where predictive probabilities are near/far to 0.5.

We give an illustration of MCMC-SEP. The evolution of the length-scale γ and the local shape parameters θ K = {β 1 , β 2 } were sampled using 10 4 simulations in each update for the algorithms described in Section 3. nately, the experiments have shown that the problem of big iterations (practically 10 6 ) usually needed to simulate Markov chains for complex inputs is partially solved by considering the submanifold structure. We show the chain values of θ K for the last update in Figure 3.4 (a,c). The sampled values are centered near the sample means: 0.6 and 1 for β 1 and β 2 , respectively, but also contain values that are less common. To estimate the posterior distributions of θ K , we simply take the nonparametric kernel density of sampled values [START_REF] Botev | Kernel density estimation via diusion[END_REF] evaluated at equally-spaced points that cover the range of the data in β 1 and β 2 . Figure 3.4 (b,d) displays these absolutely smooth posteriors. 

Results on manufacturing defect (MD)

y * = -1.
The area between the x-axis and the blue line is the approximate predictor for y * = +1, π(z * ) with respective values: 0.42 and 0.33 for MCMC-SLA and MCMC-SEP. This means that we reach more precision with SEP since 0.33 is further from 0.5 than 0.42.

Results on scene videos (SV)

. We consider a particular example of mapping a subset of test data from the input space X ⊆ R 756 to the feature one M ⊆ R 2 .

In Figure 3.6 (a,d), we plot the transformed inputs with group labels "-1" as red dots and those with group labels "+1" as blue dots. These results were obtained when nding the type-II MAP estimator of θ K = {β 1 , β 2 } for both MCMC-SLA and MCMC-SEP, respectively. A great separability between the two classes is clearly visible when reducing the dimensionality and the complexity of initial inputs. Hence, the mapping from M to the output space {-1, +1} is smooth and can be easily managed by the SGPc after estimating the length-scale γ. The solid green line in Figure 3.6 (b,e) represents the optimal threshold obtained by the ROC curve for SLA and SEP, respectively. From Figure 3.6 (c,f), it can be seen that SEP has a better predictor than SLA where we have four misclassied videos for SLA and only two for SEP. idea, we show results of the baseline methods in Figure 3.7 (a). According to these results, we state that SLA and SEP are more ecient than all baseline methods when minimizing the MCE criteria. It is also important to compare the proposed manifold embedding for dimensionality reduction to standard techniques based on modifying the covariance function. For instance, [START_REF] Snelson | Variable noise and dimensionality reduction for sparse Gaussian processes[END_REF] have learned a linear projection P of the data points in a supervised manner (e.g., principal component analysis (PCA) extraction) with a covariance function: c(P(x), P(x )), yielding the following modied squared exponential co-

variance: cδ,γ (x, x ) = δ 2 exp -||P(x)-P(x )|| 2 2 2γ
for any pair of inputs (x, x ). We also give results after reducing the dimensionality with PCA as function of dierent projection dimensions (M = 2, 5, 10, 50, 100, 200) in Figure 3.7 (b,c,d). We use the same values of M for our proposed manifold embedding technique when dealing with SLA and SEP. Accordingly, we state that both SLA and SEP perform better than the baseline methods with a signicant margin for all values of M .

Conclusion

Although Gaussian processes are very exible, they are still limited in high-dimensions.

In this chapter, we have suggested to perform an embedded submanifold with a mapping (embedding) dened on a Reproducing Kernel Hilbert Space for dimensionality reduction. The hyper-parameters of the kernel and the covariance function were estimated jointly. A set of new identities were also derived in this purpose yielding a reduced time complexity. To summarize, our proposed scalable Gaussian process classier can be viewed as a valid Gaussian process classier for classifying complex and high-dimensional data with a more expressive covariance function.

This provides new data representations in the feature space (manifold) allowing more advantages than dealing with initial inputs. Finally, our proposed method successfully modeled highly complex data (e.g., images and video sequences) where other baseline methods have failed.

Chapter 4: Bayesian regression and classication using Gaussian processes indexed by probability density functions

In this chapter, we introduce the notion of GPs indexed by probability density functions. We particularly show how a Bayesian inference with GPs can be put into action on functional spaces. We discuss some improvements of covariance function selection and hyper-parameters estimation from Chapter 3. Our framework has the capacity of inferring and classifying both high-dimensional and functional inputs. Extensive experiments on multiple synthetic, semi-synthetic and real data demonstrate the eectiveness and the eciency of the proposed method.

Introduction

In functional data analysis [START_REF] Srivastava | Functional and shape data analysis[END_REF] and medical imaging [START_REF] Belle | Big data analytics in healthcare[END_REF], it is very common to compare/classify functions. The mathematical formulation leads to a wide range of applications, but it is crucial to characterize a population or to build predictive models. For instance, probability density functions (PDFs) are inherently innite-dimensional objects so that it is not straightforward to extend traditional machine learning methods from nite vectors to functional instances [START_REF] Pistone | An innite-dimensional geometric structure on the space of all the probability measures equivalent to a given one[END_REF]. In particular, multiple frameworks exist for comparing PDFs in dierent representations by their covariance matrices including Frobenius, Fisher-Rao, log-Euclidean, Jensen-Shannon and Wasserstein metrics [START_REF] Bachoc | A Gaussian process regression model for distribution inputs[END_REF]; [START_REF] Nguyen | Non-parametric Jensen-Shannon divergence[END_REF]; [START_REF] Srivastava | Riemannian analysis of probability density functions with applications in vision[END_REF].

Many categories of observations can be represented by PDFs and then studied as elements of a Riemannian manifold equipped with the Fisher- Rao metric Rao (1945). This setting is important for many reasons: First, PDFs make the problem formulation simpler by identifying data originally lying on an vector space, that are hard to interpret, by their categories and their corresponding probabilities.

Second, PDFs improve the visualization of local distributions of data. Finally, when dealing with high-dimensional datasets (set of repetitive features), we can visualize them using PDFs which would be very helpful to explore the skewness of data. In particular, the consistency of regression and classication with PDFs as inputs was established in [START_REF] Oliva | Fast distribution to real regression[END_REF]; [START_REF] Póczos | Distribution-free distribution regression[END_REF][START_REF] Sutherland | Linear-time learning on distributions with approximate kernel embeddings[END_REF] with the help of the nonparametric kernel density estimation.

Throughout this chapter, our main aim is to learn GPs indexed by PDFs. For instance, one can think of a GP as dening PDFs and inference is taking place directly in the function-space. Moreover, the index space becomes that of PDFs when choosing the underlying metric in order to evaluate the dissimilarity between PDFs. The only drawback is usually that performing Kriging [START_REF] Vigsnes | Fast and accurate approximation to kriging using common data neighborhoods[END_REF] on the PDFs space P is not straightforward due to its geometry ichi Amari (1983); [START_REF] Jost | Riemannian geometry and geometric analysis[END_REF]. For this end, we will exploit an isometry from P to the tangent space of the Hilbert upper-hemisphere [START_REF] Srivastava | Riemannian analysis of probability density functions with applications in vision[END_REF]. This allows inference to be made in a sub-linear space.

In order to capture all variations from PDFs and to perform optimal predictions, we thus dene a zero mean GP on P: Z ∼ GP(0, c (., .)) of a covariance function c (., .). Let (p 1 , y 1 ), (p 2 , y 2 ), . . . , (p N , y N ) be a nite set of observations in which p i ∈ P are PDFs inputs and y i ∈ R are the associated responses, i ∈ {1, . . . , N }. We dene an estimate of the conditional predictive expectation by E y * |y 1 , . . . , y N , p 1 , . . . , p N , p * for an unobserved PDF p * . For the classication model, we assume that y i ∈ {-1, +1} and we are interested in the probability of one of two given classes P(y * = ±1|y 1 , . . . , y N , p 1 , . . . , p N , p * ).

For estimating the covariance function hyper-parameters, we focus on several methods maximizing the marginal likelihood. Our goal is then to select those optimizing dierent performance criteria for both regression and classication:

1. The rst method is the quasi-Newton with BFGS updates, based on the gradient vector and an approximation of the Hessian matrix, in order to nd a local maximum of the marginal likelihood. This choice is very crucial and is an improvement from Chapter 3. One of the chief advantages of quasi-Newton method over Newton's method is that the Hessian matrix does not need to be computed but only approximated. In addition, Newton's method and its derivatives, such as interior point methods, require the Hessian to be inverted which is typically implemented by solving a system of linear equations and is often quite costly.

2. The second method is a special case of MCMC methods, called Hamiltonian Monte-Carlo (HMC) [START_REF] Duane | Hybrid Monte Carlo[END_REF]. The objective is to perform sampling from a probability distribution for which the marginal likelihood and its gradient are known. The HMC has the advantage of simulating from a physical system governed by Hamiltonian dynamics, which performs the number of iterations usually needed for MCMC sampling. The tangent space of P at p is

T p (P) = f : I → R I f (t)dt = 0 (4.2)
Note that P is viewed as a Riemannian manifold equipped with the Fisher-Rao metric dened as follows: for any p ∈ P and tangent vectors f 1 , f 2 ∈ T p (P), the inner-product is given by

f 1 , f 2 p = I f 1 (t)f 2 (t) p(t) dt (4.3)
As a second choice of Riemannian representations is the space of square-root density functions, satisfying

H = ψ : I → R ψ is nonnegative, and ||ψ|| L 2 = I ψ(t) 2 dt 1 2 = 1 (4.4)
The tangent space of H at ψ is

T ψ (H) = g : I → R I ψ(t)g(t)dt = 0 (4.5) 
For any two tangent vectors g 1 , g 2 ∈ T ψ (H), we state that the Fisher-Rao metric is simply reduced to the L 2 metric dened by

g 1 , g 2 L 2 = I g 1 (t)g 2 (t)dt (4.6) 
Moreover, associated with each p ∈ P is a unique ψ ∈ H (isometrically) expressed as

ψ(t) = p(t), t ∈ I (4.7)
Note that H results to be the Hilbert upper-hemisphere (nonnegative-only) with the L 2 metric. The advantage of the representation ψ ∈ H is that it greatly simplies the Fisher-Rao metric placed on P with some nice statistical tools on the Hilbert sphere. We list some analytical expressions that are useful for statistical analysis:

Geodesic path. Given ψ ∈ H and a vector g ∈ T ψ (H), the geodesic path with initial condition ψ and velocity g at any time instant t can be parameterized in terms of a direction in T ψ (H) as

ψ(t) = cos t||g|| L 2 ψ + sin t||g|| L 2 g ||g|| L 2 (4.8)
Geodesic distance. The arc length of the geodesic path in H between two functions ψ 1 and ψ 2 , called geodesic distance, is given by

d H ψ 1 , ψ 2 = arccos ψ 1 , ψ 2 L 2 (4.9)
Exponential map. Let ψ be any element of H and g ∈ T ψ (H). We dene the exponential map as the geodesic path at t = 1, which is an isometry from T ψ (H) to H, satisfying

exp ψ (g) = cos ||g|| L 2 ψ + sin ||g|| L 2 g ||g|| L 2 (4.10)
The exponential map is a bijection between the tangent space and the unit sphere if we restrict g so that ||g|| L 2 ∈ [0, π[.

Log map.

For ψ 1 , ψ 2 ∈ H, we dene g ∈ T ψ 1 (H) to be the inverse exponential (log) map of ψ 2 if exp ψ 1 (g) = ψ 2 . We then use the notation

g = log ψ 1 (ψ 2 ) (4.11) where g = β ||β|| L 2 d H ψ 1 , ψ 2 and β = ψ 2 -ψ 2 , ψ 1 L 2 ψ 1 .
Fréchet mean. The Fréchet mean of ψ 1 , . . . , ψ N ∈ H is the function ψ H belonging to H and minimizing the Fréchet variance [START_REF] Karcher | Riemannian center of mass and mollier smoothing[END_REF], i.e.,

ψ H = argmin ψ∈H N i=1 d 2 H ψ, ψ i (4.12)
For the search of ψ H , we consider iterative algorithms on H. For simplicity, we consider the gradient-descent on the sphere according to:

ρ ← exp ρ τ with a step size > 0.

τ ← 1 N N i=1 log ρ ψ i for direction update. In addition, the curvature of the unit sphere is equal to one, the injectivity and the convexity radius are π and π 2 , respectively. This means that the Fréchet mean is unique particularly in the Hilbert upper-hemisphere H. More details were given in [START_REF] Krakowski | On the computation of the Karcher mean on spheres and special orthogonal groups[END_REF].

Gaussian Processes on P

In this section, we focus on constructing GPs on P. A GP Z on P is a random eld indexed by P so that (Z(p 1 ), . . . , Z(p N )) T is a multivariate Gaussian vector for p 1 , . . . , p N ∈ P. A zero mean GP is completely specied by its covariance function c : P × P → R of a real process Z dened as

c(p i , p j ) =E[Z(p i )Z(p j )] (4.13)
The covariance function c (., .) on P must satisfy the following conditions: For any N ≥ 1 and p 1 , . . . , p N ∈ P, the matrix C = c(p, p) is symmetric nonnegative denite for p = (p 1 , . . . , p N ) T . Furthermore, c (., .) is called non-degenerate when the above matrix is invertible whenever p 1 , . . . , p N are two-by-two distinct.

For P and H detailed in (4.1) and ( 4.4), we state that there is an isometry between P and H; p → ψ ≡ √ p from (4.7) and a second one between H and T ψ 1 (H) detailed as illustrated in Figure 4. 1. The strategy that we adopt to construct covariance functions is to exploit the isometric map log 1 based on the linear tangent space E.

That is, we construct covariance functions with (i, j) component as

c(p i , p j ) = K( log 1 ( √ p i ) -log 1 ( √ p j ) 2 ) (4.14) Proposition 4.1 

♠

Let K : R + → R be a covariance function on E satisfying the stationarity condition: K(u i , u j ) = K( u i -u j 2 ) and c (., .) be dened as in (4.14).

Then, c (., .) is a covariance function. Furthermore, if K( u i -u j 2 N i,j=1 is invertible then c (., .) is non-degenerate.

More details are given in [START_REF] Bachoc | A Gaussian process regression model for distribution inputs[END_REF]; Fradi et al. (2020). From (4.14), the covariance function with

(i, j) component is expressed as c(p i , p j ) = K( g i -g j ) 2 ) for g i ≡ log 1 ( √ p i ).
In addition, the covariance function K (.) usually relies on a set of hyper-parameters denoted θ = {θ j } p j=1 . For this reason, we use the notation K θ (.) to emphasize the dependence on θ.

Regression and classication on P

In this section, we give details of both regression and classication on P.

Regression on P

Having set out the conditions on the covariance function, we can dene the regression model on P by

y i = Z(p i ) + η i , i = 1, . . . , N (4.15)
where Z is a zero mean GP indexed by P of a covariance function c (., .) and

η i iid ∼ N (0, σ 2 ).
Here σ 2 is the observation noise variance supposed to be known for simplicity. Moreover, if we note y = (y 1 , . . . , y N ) T , the likelihood term is then

P(y|Z(p)) = N (Z(p), σ 2 I), whereas the prior on Z(p) is P(Z(p)) = N (0, C) with C = c(p, p) = K θ ( g i -g j 2 ) N i,j=1 from the denition of Z.
For an unobserved PDF p * and by deriving the conditional distribution, we arrive at the key predictive equation at Z * = Z(p * ) so that

P(Z * |p, y, p * ) = N (Z * |µ(p * ), σ 2 (p * )) (4.16) with        µ(p * ) = C T * (C + σ 2 I) -1 y σ 2 (p * ) = C * * -C T * (C + σ 2 I) -1 C * (4.17) 
where

C * = c(p, p * ) = K θ (||g i -g * || 2 ) N i=1 and C * * = c(p * , p * ) = K θ (||g * -g * || 2 ) for g * ≡ log 1 ( √ p * ).
We use the product of likelihood and prior terms to perform the integration over Z(p) yielding the following log-marginal likelihood

l(θ) = log P(y|p, θ) = -y T (C + σ 2 I) -1 y -log |C + σ 2 I| - N 2 log 2π (4.18)
The partial derivative of the log-marginal likelihood with respect to θ j is then

∂l(θ) ∂θ j = 1 2 y T C -1 ∂C ∂θ j C -1 y -tr C -1 ∂C ∂θ j (4.19)

Classication on P

For classication, we focus on the case of binary outputs, i.e.,

y i ∈ {-1, +1}
and the GP Z is now referred to as a GPc indexed by P. We simply update the Laplace approximation detailed in Section 3. 2.2 to GPc indexed by PDFs 

p 1 , .
W ii = exp(-Ẑ(p i )) (1+exp(-Ẑ(p i ))) 2 .
The approximate log-marginal likelihood is

l(θ) = - 1 2 Ẑ(p) T C -1 Ẑ(p) + log P(y| Ẑ(p)) - 1 2 log I + W 1 2 CW 1 2 (4.20) 
Following the same idea, the partial derivatives of the log-marginal likelihood with respect to θ j satisfy

∂l(θ) ∂θ j = ∂l(θ) ∂θ j | Ẑ(p) + N i=1 ∂l(θ) ∂ Ẑ(p i ) ∂ Ẑ(p i ) ∂θ j (4.21)
The rst term, obtained when we assume that Ẑ(p) (as well as W) does not depend on θ, satises

∂l(θ) ∂θ j | Ẑ(p) = 1 2 Ẑ(p) T C -1 ∂C ∂θ j C -1 Ẑ(p) - 1 2 tr (C + W -1 ) -1 ∂C ∂θ j (4.22)
The second term, obtained when we suppose that only Ẑ(p) (as well as W) depends on θ, is fully determined by

∂l(θ) ∂ Ẑ(p i ) = - 1 2 (C -1 + W) -1 ii ∂ 3 log P(y| Ẑ(p) ∂ 3 Ẑ(p i ) (4.23) 
and

∂ Ẑ(p) ∂θ j = I + CW -1 ∂C ∂θ j ∇ log P(y| Ẑ(p)) (4.24) 

Optimizing hyper-parameters

The resulting log-marginal likelihoods l(θ) given in (4.18) and ( 4.20) for both regression and classication depend on the covariance function hyper-parameters controlling the stationarity of GPs on P. We can optimize all hyper-parameters based on prior expert knowledge or directly from data, which depends on the data type to be collected.

For maximizing the log-marginal likelihoods with respect to θ, we rst make use of an iterative optimization method: quasi-Newton, detailed in to Algorithm 3. This task is equivalent to minimizing the cost function taking the negative log-marginal likelihoods -l(θ).

In a Bayesian context, weak prior distributions are commonly used for θ = {θ j } p j=1 .

Such weak prior has the form

P(θ) = p j=1 P(θ j ) (4.25)
where we assume that all θ j s are independent. From Bayes' rule, the log-marginal posterior of θ satises l post (θ) = log P(θ|y, p) (4.26)

∝ log P(y|p, θ) + log P(θ) = l(θ) + p j=1 log P(θ j )
When sampling from continuous variables, HMC can prove to be a more powerful tool than the usual MCMC sampling. It avoids random walk behavior by simulating from a physical system governed by Hamiltonian dynamics. In HMC, particles are characterized by a position vector or state θ = {θ j } p j=1 and a velocity vector

s = {s j } p j=1 .
The Hamiltonian is the sum of potential energy and kinetic energy, dened as follows

H(θ, s) = H 1 (θ) + H 2 (s) = -l post (θ) + 1 2 p j=1 s j 2 (4.27) 
which means that s ∼ N (0, I). Instead of sampling from exp(l post (θ)) directly, HMC operates by sampling from the distribution exp(-H(θ, s)). State a position θ and a velocity s are modied such that H(θ, s) remains constant throughout the simulation process. The dierential equations are given by dθ j dt = ∂H ∂s j = s j and

ds j dt = - ∂H ∂θ j = - ∂H 1 ∂θ j , j = 1, . . . , p (4.28) 
To maintain invariance of the Markov chain, however, care must be taken to preserve the volume conservation and time reversibility. The leap-frog algorithm, summarized in Algorithm 9, maintains these properties Neal (2010).

Algorithm 9: Leap-frog. Find the step size (e.g., by backtracking line search)

3:

s j t+ 2 := s j t -2 ∂ ∂θ j H 1 (θ t ) 4:
θ j t+ := θ j t + s j t+ 2 5:

s j t+ := s j t+ 2 -2 ∂ ∂θ j H 1 (θ t+ ) 6: end for
We thus perform a half-step update of the velocity at time t + 2 , which is then used to compute θ j t+ and s j t+ . HMC also needs an acceptance test to accept/reject stage after T leap-frog steps. We summarize the HMC sampling in Algorithm 10.

Algorithm 10: HMC sampling.

Require: log-marginal posterior l post and its gradient vector

∇l post (θ) = ∇l(θ) + ∇ log P(θ)
Ensure:

θ 1: Initialize θ 0
2: Sample a velocity s 0 ∼ N (0, I)

3: Perform T Leap-frog steps to obtain the new state θ T and velocity s T from Algorithm 9

4: Acceptance probability

α := min 1, exp(-H(θ T , s T )) exp(-H(θ 0 , s 0 )) 5: Simulate u ∼ U([0, 1]) 6: if u < α then 7:
Accept the proposal θ := θ T 8: else 9:

Reject the proposal θ := θ 0 10: end if A GP based on the Jensen-Shannon (JS-GP) divergence for classication [START_REF] Nguyen | Non-parametric Jensen-Shannon divergence[END_REF].

Performance criteria. For regression, we illustrate the performance of proposed framework in terms of root mean square error (RMSE) where the square error at an unobserved data (p * , y * ) is dened by: SE = y * -µ(p * ) 2 and the negative log-marginal likelihood (NLML). For classication, we consider three criteria: accuracy, area under curve (AUC) and NLML.

Regression

We rst consider a synthetic dataset for regression.

Dataset. We observe a nite set of functions simulated from (4.15) with

Z(p i ) = 0.5 * √ p i , √ p 2 + 0.5
For this example, we consider a truncated Fourier basis (TFB) with random Gaussian coecients to form the original functions satisfying

v i (t) = δ i,1 √ 2 sin(2πt) + δ i,2 √
2 cos(2πt) where δ i,1 , δ i,2 ∼ N (0, 1). We also take ṽ(t) = -0.5 √ 2 sin(2πt) + 0.5 √ 2 cos(2πt) as a reference function. We suppose that p and p i s are referred to the corresponding PDFs of ṽ and v i s estimated using the nonparametric kernel method (bandwidths were selected using the method given in [START_REF] Botev | Kernel density estimation via diusion[END_REF]).

An example of N = 100 estimates is displayed in Figure 4.2 with colors depending on their output levels. Note that PDFs dened on I can also be treated as those on any interval in R via wrapping I for analysis.

Results. The experimental results of the TFB regression dataset, when focusing on the RMSE values, are shown in Table 4. 1. According to these results, we remark that the proposed QN-GPP gives better precision than FLM. On the other hand, HMC-GPP substantially outperforms NKW with a signicant margin. As illustrated in Table 4.2, we state that the proposed methods are more ecient than the baseline FLM when maximizing the log-marginal likelihood. Again, this is an explanation on how the quality of GPP strongly depends on hyper-parameters estimation method. In addition, QN-GPP stated in Algorithm 3 is very eective from a computational point of view. Now, we perform some extensive experiments to evaluate the proposed methods using a second category of datasets for classication.

Datasets for classication

Synthetic datasets. We consider two datasets of synthetic PDFs: beta and inversegamma distributions. This choice is very crucial for many reasons since beta is dened on I = [0, 1] by default, parametrized by two positive parameters, and has been widely used to represent a large family of PDFs with nite support in various elds. Increasingly, the inverse-gamma plays an important role to characterize random uctuations aecting wireless channels [START_REF] Atapattu | A mixture Gamma distribution to model the snr of wireless channels[END_REF]. We refer to these datasets as Beta and InvGamma, respectively. We performed this exper- iment by simulating N = 200 PDFs uniformly divided and slightly dierent for both classes. Each observation is represented as a density when we add a random white noise to initial parameters of Beta and InvGamma. We show some examples of nonparametric PDFs with dierent random parameters in Figure 4.3 (a,b). We also illustrate the Fréchet mean for each class in black from (4.12) when dealing with the Hilbert upper-hemisphere H.

Semisynthetic dataset. Semi-synthetic data represent clinical growth charts for children from 2 to 12 years. We refer to this dataset as Growth. We simulate the charts from centers for disease control and prevention [START_REF] Kuczmarski | CDC growth charts for the united states: methods and development[END_REF] through the available quantile values. The main goal is to classify observations by gender. Each observation represents the size growth of a child as function of to his age (120 months). We represent observations as nonparametric PDFs with some examples displayed in Figure 4.3 (c). For each class, we plot girls in red and boys in blue as well as we show the Fréchet mean in black.

Real datasets.

A rst public dataset with 1500 images represent maize leaves DeChant et al.

(2017). We note that maize leaves have specic textures used to extract pertinent features in order to test if a plant has disease or not. We refer to this dataset as Plants. Motivated by this application, we rst represent each image, with its wavelet-deconvolved version, by a vector of length 262144. an example of two original images: healthy plant (a) and a plant with disease (d), their wavelet-deconvolved versions (b,e) and the corresponding normalized histograms (c,f). We also display PDFs from histograms in black.

We remind that high-dimensional inputs (here, 262144) make traditional machine learning techniques fail to solve the problem at hand. However, the spectral histograms as marginal distributions of the wavelet-deconvolved versions can be used to represent/classify original images. In fact, instead of comparing the histograms, a better way to compare two images (here, a set of repetitive features) would be to compare their corresponding PDFs.

A second real dataset with 1717 observations gives the body temperature of dogs Kumar and [START_REF] Kumar | Haemato-biochemical changes in dogs infected with babesiosis[END_REF], for which temporal measures of infected and uninfected dogs are stored during 24 hours. The infection by a parasite is suspected to cause persistent fever. The main goal is to learn the relationship between the infection and a dominant pattern from temporal temperatures. We refer to this dataset as Temp.

For these two examples, the kernel choice for nonparametric PDFs is very crucial Since non-Gaussian PDFs do not give good test performances when dealing with Gaussian kernels, we consider the Epanechnikov kernel which has the lowest RMSE for a compact support. The PDF estimates were obtained using an automatic bandwidth selection method described in [START_REF] Botev | Kernel density estimation via diusion[END_REF]. We illustrate some examples of PDFs from real datasets in Figure 4.3 (d,e). 

Classication results

We learn the model from 80% of the dataset whereas the rest is kept for test. This subdivision has been performed randomly 100 times. The performance is given as a mean and the corresponding standard deviation (std) in order to reduce the bias (class imbalance and sample representativeness) introduced by the random train/test split.

Results on synthetic datasets. We summarize all evaluation results on synthetic datasets in Figure 4.5 (a,b). Accordingly, one can observe that both HMC-GPP, W-GP and JS-GP reach the best accuracy values for InvGamma with a little margin for the proposed HMC-GPP. On the other hand, QN-GPP and HMC-GPP heavily outperform W-GP and JS-GP for Beta. Again, this simply shows how the hyper-parameters estimation method impacts the quality of the predictive distributions.

Results on semisynthetic datasets. We summarize all results on the Growth Results on real data. We further investigate whether our proposed methods can be applied to real data. We also conrm all previous results from Table 4.3, which summarizes the mean and the std of NLML values for classication datasets. It clearly shows that at least one of the proposed methods (QN-GPP or HMC-GPP) better minimizes the NLML than the baseline method JS-GP. This brings more quite accurate estimates, which prove the predictive power of our proposed approaches.

Conclusion

In this chapter, we have extended the classical Bayesian models by introducing the notion of Gaussian processes indexed by probability density functions. We detailed and applied two dierent numerical methods to learn both regression and classication models. In our framework, nonparametric inference includes the generation of posterior samples on coecients resulting from the Karhunen-Loève expansion. It usually requires integrating over innitely many parameters but we eciently solve such issue with Hamiltonian dynamics.

Introduction

For shape analysis of functions and curves, one usually need to introduce the notion of reparametrizations. A reparametrization is a dierentiable dieomorphism, dened from I = [0, 1] into itself and preserving the boundary constraints. In practice, one of major problems is that of registration since when collecting data many phenomena can explain the fact that there is a time dierence. For functional data and curve registration, data pre-processing is required before focusing on amplitude variation. In the literature, there are many existing algorithms for registration. In this context, we can cite [START_REF] Kneip | Combining registration and tting for functional models[END_REF]; [START_REF] Liu | Functional convex averaging and synchronization for timewarped random curves[END_REF]; [START_REF] Ramsay | Curve registration[END_REF]. In order to nd the optimal registration between two curves, several variations have been proposed. Among them, we can cite the dynamic programming [START_REF] Bernal | Fast dynamic programming for elastic registration of curves[END_REF]; [START_REF] Cai | Stable and ecient computational methods for dynamic programming[END_REF] and the quasi-Newton [START_REF] Huang | Riemannian optimization for registration of curves in elastic shape analysis[END_REF]. Recently, shape registration of functions and curves becomes very interesting in many elds especially in medical applications Grogan Anis Fradi -Thesis and Dahyot (2017); [START_REF] Ying | Nonlinear 2d shape registration via thin-plate spline and lie group representation[END_REF]. We give an example of two dierent reparametrizations of the same class of curves in Figure 5.1. Accordingly, we can observe that the L 2 distance between the two shapes (left and right) is not zero although they belong to the same class of curves. Consequently, the reparametrization invariance is a serious task in shape analysis of curves. Compared to the state-of-the-art methods mentioned above, the SRVF representation detailed in Section 2.5 is very ecient for analyzing shapes of curves in Euclidean spaces [START_REF] Srivastava | Shape analysis of elastic curves in euclidean spaces[END_REF]. The SRVF representation has several advantages: The well-known elastic metric of shapes simplies to the L 2 metric, the reparameterization function acts by isometries, and the space of unit length curves results to be the familiar unit sphere.

In terms of statistical modeling and inference, the set of all reparametrizations forms a group of dieomorphisms and working with objects in the group is more challenging due to its complicated geometry. Our work diers from previous methods since we study a reparametrization as a cumulative distribution function (CDF). In this chapter, our aim consists in reformulating the registration problem of curves represented by their shapes as elements on a Riemannian manifold. Besides, we are interested in the clustering process of a nite set of observed curves.

By setting K sub-populations and given N curves, estimating the optimal local distribution (identied with CDF) for k-th cluster, k = 1, . . . , K, is necessary before assigning each curve to its cluster Fradi and Samir (2020).

Our motivation is to establish the link between the space of CDFs and the Hilbert sphere due to its nice properties and explicit geometrical tools. In fact, one of the advantages is that the Riemannian metric is the Fisher-Rao, the only metric invariant to reparametrizations [START_REF] Brigant | Reparameterization invariant metric on the space of curves[END_REF]. To handle such task of clustering, the inference on CDFs F 1 , . . . , F K becomes more aordable on the coecients resulting from the Karhunen-Loève (K-L) expansion Ghanem and Spanos (1991) A 1 , . . . , A K . This can be performed with the Hamiltonian dynamic on a nite-dimensional sphere using the spherical HMC sampling [START_REF] Lan | Spherical Hamiltonian Monte Carlo for constrained target distributions[END_REF].

Riemannian representation

We recall some tools about the geometry of Riemannian representations dened on a compact interval I = [0, 1] with their corresponding Fisher-Rao metrics.

Let F be a CDF of a real-valued random variable X. The space of CDFs, dened on I, is a Riemannian representation satisfying

F = F : I → I Ḟ is nonnegative, F (0) = 0, and F (1) = 1 (5.1) 
F forms a group with the group operation given by composition, i.e., for F 1 , F 2 ∈ F, the group operation is given by F 2 (F 1 (ξ)). The identity element of F is the function F (ξ) = ξ. The tangent space of F at F is

T F (F) = f : I → R I ḟ (ξ)dξ = 0 (5.2)
where the Fisher-Rao metric is stated as follow: for any two tangent vectors f 1 , f 2 ∈ T F (F), the inner product is given by

f 1 , f 2 F = I ḟ1 (ξ) ḟ2 (ξ) Ḟ (ξ) dξ (5 .3) 
A second choice of Riemannian representations is the space of square-root density functions, satisfying 

H = ψ : I → R ψ is nonnegative, and ||ψ|| L 2 = I ψ(t) 2 dt 1 2 = 1 (5.

Spherical Gaussian process for curve registration

In this section, we shall describe some methods for computing distances and carrying out inference in quotient spaces for curves. We also propose to reformulate the usual problem of curve registration.

Spherical Gaussian process decomposition

In order to simplify the estimation of CDFs, we propose to use the K-L expansion of ψ as a linear sum of basis functions in L 2 (I) with random coecients. Under this respect, we model ψ as a random function, itself drawn from a second order GP [START_REF] Williams | Gaussian processes for regression[END_REF] with a continuous, square-integrable, symmetric, and nonnegative denite covariance function c (., .) over I × I, i.e., ψ(t) ∼ GP 0, c(t, t ) , where ψ ∈ H (5.6) Let (φ l ) l denote a system of orthonormal eigen-functions in L 2 (I) and (λ l ) l the associated nonnegative eigen-values of c (., .). We dene the Hilbert-Schmidt integral operator as a mapping from L 2 (I) into itself, expressed by L : φ l → Lφ l and satisfying

(Lφ l )(t ) = I c(t, t )φ l (t)dt
(5.7) By Mercer's theorem, the covariance function can be expressed as .8) and the Fredholm integral equation is

c(t, t ) = ∞ l=1 λ l φ l (t)φ l (t ) ( 5 
(Lφ l )(t ) = λ l φ l (t )
(5.9)

To maintain the constraint that ψ ∈ H, we only focus on the restriction that ||ψ|| L 2 = 1 since ψ is nonnegative does not impose any additional constraint.

Therefore, the K-L expansion of ψ is

ψ(t) = ∞ l=1 a l φ l (t), with a l ind ∼ N 0, λ l (5.10)
We take into account a truncated version at order m of the K-L expansion given by .11) with the approximation error

ψ m (t) = m l=1 a l φ l (t) (5 
e m (t) = ∞ l=m+1
a l φ l (t) (5.12) This choice results from the fact that among all versions expressed in (5.11), the truncated K-L expansion is optimal in the sense of minimizing the mean integrated squared error (MISE) given by I E (e m (t) 2 dt. From (5.5), we get

F m (ξ) = ξ 0 ψ m (t) 2 dt, ∀ξ ∈ I (5.13) = m l=1 a 2 l ξ 0 φ l (t) 2 dt + 2 m l=1 m r=l+1 a l a r ξ 0 φ l (t)φ r (t)dt, ∀ξ ∈ I Theorem 5.1 ♥ The truncated version F m is a CDF if and only if A = (a 1 , . . . , a m ) ∈ S m-1
where

S m-1 = A = a 1 , . . . , a m ∈ R m ||A|| 2 = m l=1 a 2 l 1/2 = 1
Proof For the proof of this result, we are able to check:

ξ → F m (ξ) is a C 1 mapping on I, since t → ψ m (t)
is a continuous one for all Lemma 5.1

♥

The actions of SO(d) and F commute on both M and L 2 .

Proof This follows directly from the denitions of the two group actions. Therefore, we can form a joint action of the product group G = SO(d) × F according to

((O, q), F ) = O √ Ḟ q • F .
Lemma 5.2

♥

The action of the product group G on M is by isometries.

Proof Since Oq 1 , Oq 2 = q 1 , q 2 for all O ∈ SO(d), the proof for SO(d) follows.

Besides, we have

q * 1 , q * 2 = I q * 1 (ξ), q * 2 (ξ) 2 dξ (5.14) = I Ḟ (ξ)q 1 • F (ξ), Ḟ (ξ)q 2 • F (ξ) 2 dξ = I q 1 ( ξ), q 2 ( ξ) 2 d ξ; ξ = F (ξ) = q 1 , q 2
which completes the proof for F.

Therefore, we can dene a quotient space of M modulo G. The orbit of a function q ∈ M is given by 5.15)

[q] = O Ḟ q • F (O, F ) ∈ G ( 
Consequently, we have to dene a distance on 5.16) For the remainder, the rotation invariance will be performed using the SVD Berge (1977) where we only focus on the reparametrization invariance. Thus, the distance dened in (5.16) becomes d

Q = [q] q ∈ M by d Q ([q 1 ], [q 2 ]) = inf (O,F )∈G ||q 1 -((O, q 2 ), F )|| ( 
Q ([q 1 ], [q 2 ]) = inf F ∈F ||q 1 -(q 2 , F )|| = inf F ∈F ||q 1 -q * 2 || where ||q 1 -q * 2 || 2 = I ||q 1 (ξ) -q * 2 (ξ)|| 2 2 dξ.

Optimal registration between curves

The optimal registration between two curves q 1 and q 2 is given by the best reparametrization minimizing the deformation between them, i.e.,

F = arginf F ∈F ||q 1 -q * 2 || 2 ; q * 2 ≡ Ḟ q 2 • F (5.17)
Given a random sample q 1 , . . . , q N , we obtain the sample Fréchet mean q when optimizing over F i , i.e.,

q = argmin q∈Q N i=1 inf F i ∈F ||q -q * i || 2
(5.18)

Since the shape space of curves results to be a linear subspace of L 2 (I, R d ) with the SRVF representation, the Fréchet mean becomes the arithmetic mean satisfying .19) where each F i is then updated in an iterative algorithm until convergence.

q(ξ) = 1 N N i=1 q * i (ξ) (5 
Now, we will identify F by F m detailed in (5.13) under its corresponding assumption. This simplify the initial registration problem on F given in ( 5.17) with an equivalent problem on A, from the uniqueness of the K-L expansion, such that Ḟm q 2 • Fm depending on  with the best matching of features between q 1 and q * 2 (c).

 = arginf A∈S m-1 ||q 1 -q * ,m 2 || 2 ; q * ,m 2 ≡ Ḟm q 2 • F m (5.20) Let l(A) = ||q 1 -q * ,m 2 
Algorithm 11: Newton-Raphson on the sphere. Require: cost function l (.), its gradient vector ∇l (.) and its Hessian matrix ∇ 2 l(.) 1: repeat 2:

Evaluate Hess

l(A t ) := ∇ 2 l(A t ) -∇l(A t ) T A t I m 3: Compute W t := (I m -A t A T t )[Hess l(A t )] -1 (I m -A t A T t ) 4: Compute v t := -W t ∇l(A t ) 5:
Progress along geodesic given in (4.8) with velocity v t and position A t to recover A t+1 6:

Set t := t + 1 7: until Convergence

Bayesian curve clustering

Now, we are ready to formulate the problem of curve clustering with the Gaussian mixture model (GMM). We assume that we have a nite set of N curves q 1 , . . . , q N to be grouped into K populations with K < N . For each q * i , we draw a cluster C i with values in {1, . . . , K} under the probability

P(C i = k) = π k where K k=1 π k = 1.
Consequently, the density of i-th curve that denes the components of k-th subpopulation is given by P(q * i |C i = k). We consider that a discretization q * i (ξ h ) ∈ R d , h = 1, . . . , n is observed and we note ξ = (ξ 1 , . . . , ξ n ). We can model q * i (ξ)|C i = k with a multivariate Gaussian since q * i is a continuous function. For simplicity, we assume that q * i (ξ)|C i = k ∼ N qk (ξ), σ 2 I where σ 2 > 0 is the variance parameter and I is the nd × nd identity matrix. This work deals with estimating the optimal CDF for the k-th sub-population. Let F k denote this unknown function and F k m its truncated version. The density of q i with components of sub-population k is

P(q i |F k , qk (ξ), σ 2 ) ∝ exp - 1 2σ 2 ||q * i (ξ) -qk (ξ)|| 2 2 (5.22)
For reasons mentioned above, we use F m as detailed in (5.13) instead of F so that the prior on F k becomes a simple prior on .23) where δ refers to the Kronecker delta function. We have all the ingredients to propose the following result.

A k = (a k 1 , . . . , a k m ) ∈ S m-1 , satisfying P(A k ) ∝ exp - m l=1 a k l 2 2λ l × δ A k ∈S m-1 ( 5 
Theorem 5.2

♥

Given D = {q i } N i=1 , π 1 , . . . , π K , q1,m (ξ), . . . qK,m (ξ) and σ 2 , the log-posterior of

A 1 , . . . , A K is log p(A 1 , . . . , A K |D, π 1 , . . . , π K , q1,m (ξ), . . . , qK,m (ξ), σ 2 ) (5.24) ∝ N i=1 log K k=1 π k exp - 1 2σ 2 ||q * i (ξ) -qk,m (ξ)|| 2 2 - 1 2 K k=1 m l=1 a k l 2 λ l under the constraint that A 1 , . . . , A K belong to S m-1 .
Proof The complete likelihood term is

P(D|A 1 , . . . , A K , π 1 , . . . , π K , q1,m (ξ), . . . , qK,m (ξ), σ 2 ) (5.25) = N i=1 K k=1 π k P(q i |A k , qk,m (ξ), σ 2 ) ∝ N i=1 K k=1 π k exp - 1 2σ 2 ||q * i (ξ) -qk,m (ξ)|| 2 2
and its logarithm satises

log P(D|A 1 , . . . , A K , π 1 , . . . , π K , q1,m (ξ), . . . , qK,m (ξ), σ 2 ) (5.26) ∝ N i=1 log K k=1 π k exp - 1 2σ 2 ||q * i (ξ) -qk,m (ξ)|| 2 2
We also write the constrained prior as

P(A 1 , . . . , A K ) = K k=1 P(A k ) ∝ exp - K k=1 m l=1 a k l 2 2λ l × δ A 1 ,...,A K ∈S m-1
(5.27)

where we assume that A k s are independent and resulting from the same integral operator dened in (5.7). Besides, its logarithm satises .28) under the constraint that A 1 , . . . , A K belong to S m-1 . The desired result follows by plugging (5.26) and ( 5.28) into the log-posterior probability term.

log P(A 1 , . . . , A K ) ∝ - 1 2 K k=1 m l=1 a k l 2 λ l ( 5 
We use the spherical HMC on S m-1 for simulating from the posterior of A = (A 1 , . . . , A K ). We add an extra Gibbs sampling to update π 1 , . . . , π K , σ 2 and the Fréchet means q1,m (ξ), . . . , qK,m (ξ) when minimizing the Fréchet variance of observations in each cluster from (5.21), iteratively, until convergence. The HMC sampling augments the state space with an auxiliary velocity variable (5.29) and a kinetic energy, satisfying .30) where G refers to the canonical spherical metric. According to [START_REF] Lan | Spherical Hamiltonian Monte Carlo for constrained target distributions[END_REF], the spherical HMC establishes the link between the unit sphere in R m denoted

v = (v 1 , . . . , v K ) satisfying v k A k = 0, k = 1, .
H 2 (v) = 1 2 K k=1 v k T Gv k ( 5 
S m-1 and the unit ball in R m-1 denoted B m-1 0 . If Āk = (a k 1 , . . . , a k m-1 ) takes the (m -1) rst components of A k then Āk ∈ B m-1 0 . Therefore, we can rewrite A k as A k = ( Āk , 1 -|| Āk || 2 
2 ). The spherical HMC is then detailed in Algorithm 12 in terms of A = (A 1 , . . . , A K ), Ā = ( Ā1 , . . . , ĀK ) and the block diagonal matrix

M =                   I m-1 0    0 0 . . . 0    I m-1 0    0 . . . 0 . . . 0    I m-1 0    (m-1)K                                             mK
Once we have estimated all model's parameters, we can evaluate the conditional probability that the i-th curve belongs to k-th sub-population by Reject the proposal  := A 0 18: end if 5.5 Applications In this section, we demonstrate the eectiveness of our method to a clustering task of curves in order to assign each observed curve to its sub-population. All results are drawn from T = 10 4 iterations when using the spherical HMC sampling and we set the truncation order of K-L expansion to m = 30. Baselines. We compare results of our method with coecients estimated by spherical HMC sampling in a Bayesian framework against:

P(C i = k|q i ) = P(C i = k, q i ) P(q i ) (5.31) = P(C i = k)P(q i |C i = k) P(q i ) = π k P(q i |C i = k) K k=1 π k P(q i |C i = k) = π k exp -1 2σ 2 ||q * i (ξ) -qk,m (ξ)|| 2 2 K k=1 π k exp -1 2σ 2 ||q * i (ξ) -qk,m (ξ)||
0 := v 0 -A 0 A T 0 v 0 4: Calculate H(A 0 , v 0 ) := H 1 ( Ā0 ) + H 2 (v 0 ) 5: for t = 1, 2, . . . , T do 6: v t-1 2 := v t-1 -2 M -A t-1 ĀT t-1 ∇H 1 ( Āt-1 ) 7: A t := A t-1 cos(||v t-1 2 || 2 ) + v t-
The GPA-kmeans and GPA-kmedoids when applying the GPA method detailed in Algorithm 6. We update the classical kmeans and kmedoids clustering with the geodesic distance computed on the embedded sphere S (n-1)d-1-1 2 d(d-1) . This results in a representation which is invariant under the eects of translation, scaling and rotation.

The TPCA-kmeans and the TPCA-GMM when applying the TPCA method detailed in Algorithm 7. We update the classical kmeans and GMM clustering with the Euclidean distance computed on the tangent space of the embedded sphere.

Datasets.

The proposed methods will be evaluated on two dierent datasets:

Two simulations with 2D and 3D parametric curves that have been used for simulating human cochlear implants [START_REF] Dang | In situ validation of a parametric model of electrical eld distribution in an implanted cochlea[END_REF]; [START_REF] Mcdonnell | A channel model for inferring the optimal number of electrodes for future cochlear implants[END_REF].

Two real data of 3D cochlear curves extracted from computed-tomographie (CT) images for human and hominin evolution [START_REF] Braga | Cochlear shape reveals that the human organ of hearing is sex-typed from birth[END_REF].

Synthetic datasets

We rst validate the performance of the proposed framework in term of accuracy using two simulated datasets. We perform experiments on two examples of parameterized curves in R 2 and R 3 . Each curve is most likely in cluster k which maximizes the conditional probability given in (5.31), i.e., k = argmax k P(C i = k|q i ) for each

i. An error occurs if the observed cluster and the true cluster are dierent.

Parameterized curves in R 2 . To simulate data in R 2 , we rst generate two para- The two clusters of curves are displayed (β 1 in blue and β 2 in red) in Figure 5.5 (a). We simulate N = 100 curves per cluster using a Gaussian perturbation model where the i-th conguration is obtained as follows For our proposed approach, we need to use the transformed curves q * i (ξ) in order to search the optimal CDF per cluster. For comparison methods, we apply the GPA and the TPCA approaches to the observed curves β i (ξ) directly. From Table 5.1 and focusing on the mean clustering error criteria, our approach performs better than TPCA-GMM, TPCA-kmeans, GPA-kmeans and GPA-kmedoids with a signicant margin.

Parameterized curves in R 3 . In this part, we illustrate our method using three dimensions (3D) curves. We consider two clusters of curves expressed as The two curves are displayed (β 1 in blue and β 2 in red) in Figure 5.6 (a). We simulate N = 100 curves per cluster using the same model as for parameterized curves in R 2 where the discretization of I is n = 100 and I is the 300 × 300 identity matrix. An example of simulated data forming the observed curves is given in Figure 5.6 (b,c) with two variance levels σ 2 = 0.01 and σ 2 = 0.1, respectively. Table 5.2 summarizes the mean clustering errors at each level where it is shown that our method is very accurate and has a better predictor. This result clearly shows the utility of estimating the optimal CDF when maximizing the log-posterior distribution on their associated coecients on S m-1 (m = 30) to reach good results. Figure 5.9: The conditional probability that i-th cochlea belongs to the rst subpopulation of female: P(C i = 1|q i ) (a) and the resulting cluster (b). Cluster of female: k = 1 (blue) and cluster of male: k = 2 (red).

β 1 (ξ) =                   

Real data

This section shows the importance of cluster analysis in 3D real cochlea, the main organ of hearing.

Human cochlea. For the rst real data, we use a total of 94 X-ray medical CT images representing adult individuals (see Figure 5.7 for an example) [START_REF] Braga | Disproportionate cochlear length in genus homo shows a high phylogenetic signal during apes' hearing evolution[END_REF]. In order to, rst, detect the presence of dierences in 3D cochlear shape and, second, assess the reliability of our method to form homogeneous subgroups, we overcame the drawbacks of all previously proposed approaches that ignored the intrinsic nonlinearity of the cochlear geometry.

We validate the proposed method to cluster humans (male or female) from their cochlea. The search of the optimal threshold minimizing the clustering error is based on the ROC curve where we consider the False Negatives (FN: female but classied as male) and the False Positives (FP: male but classied as female). The Mean clustering error (MCE) as well as the sensibility (SE) and the specicity (SP) are reported in Table 5. 3. We point out that our Bayesian method performs much better than the four baseline methods mentioned above. We can also observe that the GPA-kmedoids achieves a better accuracy than GPA-kmeans and both TPCA methods with a great margin. Accordingly, we prove the utility of nding the optimal CDF for each cluster when selecting the MAP estimate  = ( Â1 , Â2 ).

Figure 5.8 (a) illustrates the CDF estimate F k,30 for k-th cluster as function of the corresponding coecients Âk , k = 1, 2. In Figure 5.8 (b,c), we plot the Fréchet mean qk,30 for both clusters from two dierent views.

For more details, we plot the conditional probability that each cochlea belongs to the rst sub-population, assumed to be of female, as red dotted and those of male as blue dotted in Figure 5.9 (a). A good separability between the two clusters is clearly visible when estimating the optimal CDF for each sub-population. Hence, the mapping from the probability interval [0, 1] to the output space, taking values in {1, 2}, is smooth and can be easily managed. We give an illustration of the spherical HMC sampling particularly for the two rst components of A 1 : a 1 1 , a 1 2 and both jointly. We show the trajectory of Markov chains in Figure 5.10 (a,b,c) where sampled values are centered near the means: 0.02 and 10 -3 , respectively. Figure 5.10 (d,e,f) displays their posterior distribu- The mean clustering errors are reported in Table 5.4 where optimal values are reached by our proposal with a signicant margin. Moreover, Figure 5.12 illustrates the Fréchet mean of each sub-population resulting from the Gibbs sampling algorithm. When comparing existing methods, TPCA-kmeans is less accurate than GPA when projecting shape vectors into the tangent space of the unit sphere. We give an illustration of projecting cochlea into a two-dimensional linear sub-space in Figure 5.13 (a). We add the normalized distance graph between projected Fréchet means in Figure 5.13 (b). For this experiment, we only keep the most important directions for TPCA (PC1 and PC2) having the biggest variance values: 82.5%

and 10.2%, respectively. This conrms results obtained in Table 5.4 due to the overlap between projected observations especially between GOR and HSS. This make the Euclidean distance, operating on the tangent space of the sphere, enable to give a good clustering performance.

Conclusion

We have introduced a new population background with registration and Bayesian clustering frameworks for curves. We have considered that each sub-population depends on its optimal local distribution and we have formulated the problem to estimate all of them jointly. Thanks to the Riemannian geometry and the Fisher-Rao metric, the proposed method solves the optimization task, originally dened on the innite-dimensional and complex group of reparametrizations, with the use of a more practical optimization. We have tested our model on multiple simulated and real datasets. Compared to some existing methods, we showed several benets and better accuracy when estimating the optimal local distribution of each subpopulation.
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 11 High-dimensional data When dealing with high-dimensional data, there is various methods for linear dimensionality reduction. The two most widely used linear techniques for dimensionality reduction are: Principal Components Analysis Journée et al. (2010) and Multidimensional Scaling Kruskal (1964), both of which have solutions that are based upon the top few eigenvalues and associated eigenvectors of certain matrices. Other linear methods include projection pursuit which tries to explain the correlation structure of a set of variables by modeling those variables as a linear combination of a small number of unobserved latent variables or factors.
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 21 Figure 2.1: Predicting the function f (x) = x sin(x) for unobserved inputs in [0, 10] from the GP regression.
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 22 Figure 2.2: The chart maps the part of the sphere with nonnegative z coordinate to a disc.
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 23 Figure 2.3: The trajectory of a Markov chain obtained from a MCMC sampling.
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 242325 Figure 2.4: Four copies of the same shape under dierent Euclidean transformations.
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 26 Figure2.6: The i-th shape vector xi drawn from a population of mean x S (left), the tangent space projection by scaling (middle), and the tangent space projection by scaling and shape modication (right).
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 2 Compute the covariance matrix C xt of the whole dataset of projected shape vectors 3: Find the eigen-vectors v 1 , . . . , v k+1 of C xt and the corresponding eigen-values λ 1 , . . . , λ k+1 . The eigen-values of C xt are roots of the characteristic equation det(C xt -λI) = 0 4: Sort the eigen-vectors by decreasing the eigen-values and choose M eigen-vectors with the largest eigen-values

  Finally, the function Ψ detailed in (3.25), maps the d-dimensional inputs x 1 , . . . , x N into the M -dimensional vectors denoted by z 1 , . . . , z N where M << d (since N << d and M < N ).

  , satisfying c(x, x ) = c(Ψ(x), Ψ(x )). Besides, it operates on M and depends on θ c and θ K , jointly. For the reminder, we recover the N × M matrix of transformed inputs Z = [z 1 , . . . , z N ] T = Ψ(X) and the N ×1 transformed Gaussian vector r = (r 1 , . . . , r N ) T = r(Ψ(X)). Accordingly, the posterior distribution of f , given in (3.2), becomes a posterior at r satisfying P(r|Z, y) = P(r|Z)P(y|r) P(y|Z) (3.26) ∝ P(r|Z)P(y|r)

  * = c(x * , x * ) and C * = c(X, x * ) is the N × 1 vector with i-th element equal to c(x i , x * ). Then, we can approximate the predictor of rst class P(y * = +1|Z, y, z * ), that is the conditional probability that y * = +1, byπ(z * ) = R σ(r * ) P(r * |Z, y, z * )dr * (3.31) 3.4.1.2 Scalable Expectation propagation (SEP)As for Expectation propagation, SEP consists in using un-normalized Gaussian approximations of individual likelihoods P(y i |r i ) = F (y i r i ), i ∈ {1, . . . N }. The i-th individual likelihood is approximated by un-normalized Gaussian distribution Li × N (r i |ṽ i , si ) where Li > 0. Using the principle of Expectation propagation, the posterior distribution in(3.26) can be approximated by P(r|Z, y) = N (r|(I + S C-1 ) -1 ṽ, ( C-1 + S-1 ) -1 )

  the fact that implicit terms vanish when dierentiating l(θ) and the chain rule ∂

First

  

First

  the second partial derivatives of the approximate log-marginal like-♠ lihood with respect to {θ h c , θ j c } satisfy

Figure 3 . 1 :

 31 Figure 3.1: An example of two original images: non-defective (a) and defective (c). The associated extracted features: non-defective (b) and defective (d).

Figure 3 . 2 :

 32 Figure 3.2: An Example of two video scene sequences where (top) non-violent and (bottom) violent. For each video: rst frame (a,e), frame in the middle (b,f), last frame (c,g), and ViF descriptor (d,h).

  Manufacturing defect (MD).The second dataset contains 2042 images of manufacturing defects (defectives or non-defectives)[START_REF] Fradi | Manifold-based inference for a supervised Gaussian process classier[END_REF]. Each original image is represented with its extracted feature using the vertical gradient of length d = 23205. The main goal is to learn the relationship between defect and directional change in the intensity of each image. We display some examples in Figure 3.1 for original images: non-defective (a) and defective (c) and their extracted features: non-defective (b) and defective (d).

  Learning and classifying motion information from scene videos (SV). The third example comes from a dataset containing 246 videos of crowd violence (violent or non-violent scenes), also presented in[START_REF] Hassner | Violent ows: Real-time detection of violent crowd behavior[END_REF]. Given a video sequence, we selected a Violence Flows (ViF) descriptor of length d = 756 based on estimating the optical ow between consecutive frames. Figure 3.2 illustrates an example of two video scene sequences: non-violent (a,b,c) and violent (e,f,g)
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 3334 Figure 3.3: Representing test data with contour plot colored as function of the predictive probability by region (a). The approximate predictor of class "+1" with optimal threshold (green line) (b). In all subgures, normal tissues are red dotted and abnormal tissues are blue dotted.

Figure 3 . 5 :

 35 Figure 3.5: Sigmoid function (red), SLA predictive distribution (green), and the product of sigmoid and predictive distribution (blue) (a). Probit function (red), SEP predictive distribution (green), and the product of probit and predictive distribution (blue) (b).

Figure 3 . 5

 35 illustrates the key steps needed to classify an unobserved input z * = Ψ(x * ) where the true output is

Figure 3 . 6 :

 36 Figure3.6: Representing and classifying data in two-dimensional feature space with SLA (top) and SEP (bottom). Test data (a,d), the approximate predictor of class "+1" with optimal threshold (green line) (b,e), and binary predicted outputs (c,f). In all subgures, non-violent videos are red dotted and violent videos are blue dotted.
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 5337 Figure 3.7: Performance evaluation as a mean classication error for dierent methods (a). Performance evaluation as a mean classication error when applying PCA to the baseline methods and the manifold embedding to the proposed SLA and SEP with several values of M for real data: BC (b), MD (c), and SV (d).
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 21 Rimennian representation Let p be a PDF of a real-valued random variable X dened on I = [0, 1]. The set of all PDFs forms P = p : I → R p is nonnegative and I p(t)dt =

Figure 4 . 1 :

 41 Figure 4.1: An illustration for representing a PDF p as an element g of the tangent space T 1 (H).

Figure 4 . 2 :

 42 Figure 4.2: PDFs of TBF inputs for regression. The output with continuous value in [-3, 4] is illustrated by a colorbar.
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 43 Figure 4.3: Synthetic PDFs for InvGamma (a) and Beta (b) with class 1 (red) and class 2 (blue). Semi-synthetic PDFs for Growth (c) with girls (red) and boys (blue). Real PDFs for Temp (d) with uninfected (red) and infected (blue). Real PDFs for Plants (e) with disease (red) and healthy (blue). In all subgures, the Fréchet mean for each class is in black.

Figure 4 Figure 4 . 4 :

 444 Figure 4.4: An example of two classes from maize plants dataset where healthy leaf (top) and leaf with disease (bottom). For each class: an original image (a,d), the extracted features (b,e), and the normalized histogram (c,f).

Figure 4 . 5 :

 45 Figure 4.5: Boxplots of the classication accuracy (left) and AUC (right) on synthetic datasets: InvGamma (a) and Beta (b), and semi-synthetic dataset: Growth (c). In all subgures, the performance is given for dierent methods: QN-GPP (red), HMC-GPP (light blue), W-GP (violet), and JS-GP (dark blue).
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 46 Figure 4.6: Boxplots of the classication accuracy (left) and AUC (right) on real data: Temp (a) and Plants (b). In all subgures, the performance is given for dierent methods: QN-GPP (red), HMC-GPP (light blue), W-GP (violet), and JS-GP (dark blue).

Figure 4 . 5

 45 (c) where we show accuracy and AUC values as boxplots from 100 tests. One can observe that QN-GPP gives the best accuracy with a signicant margin. Note that we have used T = 10 4 HMC iterations in Algorithm 10. Furthermore, we set the "Burn-in" and "Thinning" parameters in order to ensure a fast convergence of the Markov chains and to reduce the correlation between samples.

Figure 4 . 6

 46 (a,b) shows the boxplots of accuracy and AUC values for Temp and Plants, respectively. In short, we highlight that the proposed methods successfully modeled real data with improved results in comparison to the baseline W-GP.Fortunately, the experiments have shown that the problem of big number of iterations, usually needed to simulate Markov chains for complex inputs, e.g., images, is partially solved by considering the proposed HMC sampling detailed in Algorithm 10. In closing, we can state that the leap-frog algorithm, based on Hamiltonian dynamics, lets to early search the best directions giving the best local minimum of the Hamiltonian dened in (4.27).

Chapter 5 :

 5 Furthermore, we showed new theoretical results for the covariance function dened on the space of density functions thanks to the Riemannian geometry and the Fisher-Rao information. Extensive experiments on multiple and varied datasets have demonstrated the eectiveness of proposed methods against current state-of-the-art methods. Bayesian registration and clustering of univariate functions and multidimensional curves In this chapter, we develop a nonparametric registration framework for functions and multidimensional curves. We also propose a Bayesian clustering model based on Gaussian processes priors, which enable us to dene distributions (subpopulations) over the sub-sets of observations that naturally arise in this problem.
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 51 Figure 5.1: An example of two dierent reparametrizations of the same class of curves with: rst reparametrization (left) and second reparametrization (right).

4 )HFigure 5 . 2 :

 452 Figure 5.2: Some examples of CDFs

2 (Figure 5 . 4 :

 254 Figure 5.4: A rst curve q 1 (a), a second curve q * 2 (b) and the resulting curve q * ,m2

Covariance function .

 . For the covariance function, we model ψ by a GP with a Hilbert-Schmidt operator satisfying L = δ 2 γ -∂ 2 x -ν of variance parameter δ 2 , length-scale γ and smoothness parameter ν. By solving (5.9), one can check that the corresponding eigen-values and eigen-functions are λ l = δ 2 γ + l 2 π 2 -ν and φ l (t) = √ 2 cos(lπt). The hyper-parameter setting of the Hilbert-Schmidt operator is xed to (δ 2 , γ, ν) = (1, 0.5, 1).
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 55 Figure5.5: The true parameterized curves in R 2 (a), the observed curves with σ 2 = 0.01 (b), and σ 2 = 0.1 (c). In all subgures, the two clusters are illustrated with dierent colors: cluster 1 (blue) and cluster 2 (red).

Methods σ 2 =Figure 5 . 6 :

 256 Figure5.6: The true parameterized curves in R 3 (a), the observed curves with σ 2 = 0.01 (b), and σ 2 = 0.1 (c). In all subgures, the two clusters are illustrated with dierent colors: cluster 1 (blue) and cluster 2 (red).

  ξ + 0.1)) cos(ϕ(5πξ)) -3 10 (7(ξ + 0.1)) cos(ϕ(5πξ))

  β i (ξ)|C i = k ∼ N (β k • F (ξ), σ 2 I), i = 1, . . . , 100, k = 1, 2where the discretization of the unit interval I is n = 50, i.e., ξ = (ξ 1 , . . . , ξ 50 ). The true CDF is the identity function, i.e., F (ξ) = ξ for all ξ ∈ I and I is the 100 × 100 identity matrix. The plots in Figure5.5 (b,c) illustrate the noisy data forming the simulated curves with two variance levels σ 2 = 0.01 and σ 2 = 0.1, respectively.
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 57 Figure 5.7: A medical CT image (a) and the extracted boundary surface with white cochlear curve (b).

  ξ + 0.1)) cos(ϕ(5πξ)) -ξ(ξ + 1)
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 58 Figure5.8: The optimal CDF estimates F k,30 (a) and the Fréchet means of curves qk,30 for above view (b) and front view (c). Cluster of female: k = 1 (blue) and cluster of male: k = 2 (red).
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 510 Figure 5.10: Markov chain values of a 1 1 (a), a 1 2 (b), and (a 11 , a12 ) (c). Posterior distributions of a 1 1 (d), a 1 2 (e), and (a 1 1 , a12 ) (f).
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 59 (b) represents the resulting clusters when xing the optimal threshold from the ROC curve.

Figure 5 . 11 :

 511 Figure5.11: Some PAR cochlear hominin recovered from Kromdraai (South Africa) with blue cochlear curve.

  Hominin cochlea.A second real data is formed by 80 X-ray medical CT images representing newly discovered fossil hominin specimens. For this dataset, the hominin set will be grouped into K = 5 clusters: Humans (HSS), Paranthropus (PAR), Gorillas (GOR), Chimpanzees (PAN) and Australopithecus (AUS). Some examples of PAR cochlear hominin are given in Figure5.11. 
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 512 Figure 5.12: The Fréchet mean of HSS (a), PAR (b), GOR (c), PAN (d) and AUS (e).

Figure 5 .

 5 Figure 5.13: PC1 versus PC2 scatter plot obtained from TPCA (PC1 and PC2 represent 82.5% and 10.2% of variance, respectively) (a). The distance graph (normalized) with directional edges connecting the nodes of Fréchet means projected into the tangent space of the sphere formed by normalized curves (b).
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  Summary of GPA.Although an analytic solution exists to the alignment of a set of two planar shapes, Algorithm 6 will suce for any dimension d and any set of N shapes.

	Algorithm 6: GPA.

Input: x 1 , . . . , x N ∈ R nd Output: x1 , . . . , xN ∈ S k 1: Compute the centroids of all shapes: xi , i = 1, . . . , N 2: Align w.r.t. position all shapes at their centroids

  : Choose one t i (f i |L i , μi , σ2 i ) to update. 2: Compute the cavity distribution of f i

2 , depending on Algorithm 8: EP. 1

  t. θ K . The rst partial derivative

	of l(θ) with respect to θ j K satises			
	∂l(θ) ∂θ j K	=	∂l(θ) ∂θ j K |r	+	N i=1	∂l(θ) ∂r i

  We simulate from P(θ c , θ K |r, y) which factorizes across θ c and θ K . From (3.26) we get two separate conditional posterior

	distributions	
	P(θ K |r, y) ∝ P(y|r)P(θ K )	(3.53)
	and	
	P(θ c |r) ∝ P(r|Z)P(θ c )	(3.54)

Table 3 .

 3 1: Simulated datasets: Mean classication error.

	Datasets				Methods		
		GD-SLA GD-SEP NR-SLA NR-SEP MCMC-SLA MCMC-SEP
	Step function	14.6%	9.8%	14.6%	8.4%	7.2%	0%
	Weighted mixture	12%	10%	9%	8%	6%	5%

  training set is composed of 200 inputs sampled from N (0, 1) while 500 inputs are uniformly distributed between -2 and 2 for test. An error will occur when g(x

* ) = y * for an unobserved data (x * , y * ). The second simulation is determined by a mixture of two four-dimensional Gaussian distributions i.e., x i = y i * N (0, I) + (1 -y i ) * N (1, I) where y i are produced by sampling directly from a Bernoulli law B(λ) of a xed parameter λ ∈]0, 1[. For this example, 200 samples were generated for training whereas 400 are for test.

Table 3 .

 3 

			2: Real data: Mean classication error.	
	Datasets				Methods		
		GD-SLA GD-SEP NR-SLA NR-SEP MCMC-SLA MCMC-SEP
	BC	12.08%	11.67%	10%	9.58%	7.08%	7.08%
	MD	13.07%	8.91%	12.39%	8.32%	11.31%	7.49%
	SV	14.29%	12.24%	14.29%	10.2%	6.12%	4.08%

Table 3 .

 3 3: Real data: Root mean square error. We rst apply the proposed approaches for classifying 1200 images representing tissues (normal or abnormal). We note that breast cancer have specic tissues and we will use them to extract pertinent features in order to test if a patient is infected or not. Motivated by this application, we represent each image with a descriptor of length d = 6300, called Pyramid of Histograms of Bag of Words (PHOW), based on the concatenation of three regional histograms determined in subdivisions of the image. More details about this dataset are given in[START_REF] Gao | Image classication based on support vector machine and the fusion of complementary features[END_REF].

	Datasets				Methods		
		GD-SLA GD-SEP NR-SLA NR-SEP MCMC-SLA MCMC-SEP
	BC	0.213	0.202	0.188	0.154	0.175	0.120
	MD	0.256	0.211	0.225	0.186	0.200	0.159
	SV	0.213	0.197	0.194	0.163	0.175	0.137

Breast cancer (BC) from 2D images.

Table 3 .

 3 2 and 

3, respectively. Accordingly, one can observe that SEP achieves the lowest MCE and RMSE values with a signicant margin. It is also notable that both SLA

  N )) be the MAP estimator resulting from the Laplace approximation and W the negative Hessian matrix of the likelihood term, i.e., W is a N × N diagonal matrix with entries

. , p N instead of vectors x 1 , . . . , x N . Let Ẑ(p) = ( Ẑ(p 1 ), . . . , Ẑ(p

  1: for t = 1, 2, . . . do

2:

Table 4 .

 4 1: Regression: Root mean square error.

	QN-GPP HMC-GPP FLM NKW
	0.07	0.13	0.10 0.28
	Table 4.2: Regression: Negative log-marginal likelihood.
	QN-GPP HMC-GPP FLM
	73.28	21.89	329.66
	4.6.2 Classication		

Table 4 .

 4 3: Classication: Negative log-marginal likelihood.

	Methods				Datasets
			Synthetic		Semi-synthetic	Real data
		InvGamma	Beta	Growth	Temp	Plants
		mean std mean std mean	std	mean std mean std
	QN-GPP 30.50 2.43 4.41 0.06 68.03 3.43 98.66 0.73 98.65 0.72
	HMC-GPP 105.35 0.22 105.28 0.21 61.65 2.24 105.36 0.22 9.33 0.21
	JS-GP	32.2	2.38 42.87 2.73 62.0	3.02 116.65 4.13 10.26 0.12
	semi-synthetic dataset in		

  1 (A) = -log P(A|D, π 1 , . . . , π K , q1,m (ξ), .. . , qK,m (ξ), σ 2 )

. . , K. 

It also simulates from a Hamiltonian dynamic (H) splitted into two terms (H = H 1 + H 2 ) with a potential energy dened as the negative log-posterior H

2 2

 2 Algorithm 12: Spherical HMC sampling.Require: Negative log-posterior H 1 (.) and its gradient ∇H 1 (.) Sample a new momentum value v 0 ∼ N (0, I) where I is the mK × mK identity matrix

	Ensure:	Â
	1: Initialize A 0
	2:	

3: v

Table 5 .

 5 1: Parameterized curves in R 2 : Mean clustering error.

Table 5 .

 5 2: Parameterized curves in R 3 : Mean clustering error. Methods σ 2 = 0.01 σ 2 = 0.1

		TPCA-GMM	27%	36%
		TPCA-kmeans	29%	40%
		GPA-kmeans	16%	25%
		GPA-kmedoids	16%	24%
		Proposed	12%	19%
	metric curves: For all ξ ∈ I,	
			
	β 1 (ξ) =	 	
		 	

Table 5 .

 5 3: Human cochlea: Mean clustering error (MCE), specicity (SP) and sensibility (SE). GMM 41.75% 58.07% 58.5% TPCA-kmeans 41.54% 58.44% 58.5% GPA-kmeans 25.11% 74.4% 75.45% GPA-kmedoids 10.85% 89.8% 88.41% Proposed

	Methods	MCE	SP	SE
	TPCA-4.26%	94%	97.73%

Table 5 .

 5 4: Hominin cochlea: Mean clustering error (MCE).

	Methods	MCE
	TPCA-GMM	15%
	TPCA-kmeans 20%
	GPA-kmeans 12.5%
	GPA-kmedoids 10%
	Proposed	0%
	tions.	
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Area under curve (AUC) 4.6 Applications In this section, we test and illustrate the proposed methods using synthetic, semisynthetic and real data. For all experiments, we study the empirical results of GPs indexed by PDFs for both regression and classication.

Covariance function. In practice, we can select the covariance function K θ (.) from the Matérn family:

where δ 2 is the variance parameter, γ is the length-scale parameter and ν is the smoothness parameter.

Here, K ν is the modied Bessel function of the second kind and Γ refers to the gamma function. From Proposition 4.1, the Matérn covariance function with (i, j)

Matérn form has the desirable property that GPs have realizations (sample paths) that are (ν -1) times dierentiable, which prove its smoothness as function of

As ν → ∞, the Matérn covariance function approaches the squared exponential form, whose realizations are innitely dierentiable [START_REF] Minasny | The Matérn function as a general model for soil variograms[END_REF]. So, the Matérn covariance function is more general than the squared exponential adopted in Chapter 3. To apply the HMC sampling, we need to dene prior distributions over unknown hyper-parameters. Following [START_REF] Gelman | Prior distributions for variance parameters in hierarchical models[END_REF], δ 2

will be assigned to a half-Cauchy (nonnegative-only) prior distribution and γ is assumed to be an inverse-gamma distribution, whereas ν is simply estimated by cross-validation [START_REF] Neal | Monte Carlo implementation of Gaussian process models for Bayesian regression and classication[END_REF].

Baselines. We compare results of GPs indexed by PDFs (GPP) where the hyperparameters are estimated by quasi-Newton (QN-GPP) and HMC (HMC-GPP)

to:

Functional linear model (FLM) for regression [START_REF] Ramsay | Some tools for functional data analysis[END_REF].

Nonparametric kernel Wasserstein (NKW) for regression [START_REF] Sriperumbudur | Non-parametric estimation of integral probability metrics[END_REF].

A GP based on the Wasserstein distance (W-GP) for classication [START_REF] Mallasto | Learning from uncertain curves: the 2-Wasserstein metric for Gaussian processes[END_REF].

Consequently, the resulting version makes it easier to check that F m is a CDF instead of F . It translates directly to a nite-dimensional spherical constraint on the random coecients a l , l = 1, . . . , m.

Group actions, shape invariances and distance

In order to develop a formal framework for analyzing shapes of curves, one needs a mathematical representation of curves that is natural, general and ecient. We establish the SRVF representation detailed in Section 2.5 for its advantages in shape analysis of curves. By representing a curve β :

, we have taken care of the translation and the scaling variability, but the rotation and the reparameterization variability still remain. is the usual O → Oq, the action of F is derived as In order for shape analysis to be invariant to these transformations, it is important for these groups to act by isometries. We present the following properties of these actions.

Chapter 6: Conclusion and prospects

In this chapter, we conclude the thesis by summarizing our main contributions and results. We also highlight the ongoing works we are conducting as an extension.

Summary of the contributions

Throughout this thesis, we have shown that the quality of a Gaussian process model strongly depends on an appropriate covariance function and its hyper-parameters selection. We can summarize our work in the following items:

To model such complex and high-dimensional inputs, we introduced the scalable Gaussian process classier. The key idea is to decompose the overall classication into learning a feature space mapping (embedding) and a Gaussian process classier that maps from this feature space to the observed space.

We have introduced a new technique of manifold embedding for dimensionality reduction with a mapping dened on a Reproducing Kernel Hilbert Space. Both the input transformations and the Gaussian process classier are learned jointly by maximizing the approximate log-marginal likelihood.

We have extended the classical notion of Gaussian process from vector inputs to constrained functional inputs when introducing the Gaussian process indexed by probability density functions. We showed a theoretical result that the covariance function is well dened thanks to the underlying Riemannian geometry. This framework has the capacity of inferring and classifying both high-dimensional and univariate functional inputs.

We have proposed a framework for registration and Bayesian clustering of shapes of curves as elements of a Riemannian manifold. We took advantages of a representation due to its invariance proprieties to Euclidean transformations in shape analysis. Thanks to the Fisher-Rao metric and the Gaussian process benets, we reduced the complexity of estimating reparametrization functions, identied with local distributions of shapes, directly in an Anis Fradi -Thesis innite-dimensional group of dieomorphisms. Using our proposed version, the inference become more aordable on the resulting coecients belonging to the nite-dimensional sphere. Our problem was performed with the Hamiltonian dynamic on the sphere using the spherical HMC sampling.

Future work and prospects

In this thesis, we always make the link between Riemannian representations and the Hilbert sphere due to its nice statistical and geometric tools. In fact, it simplies many basic notions where we have all analytic expressions of geodesics, exponential maps, log maps, Fréchet means, ect. However, it would be interesting to generalize the proposed models for more complex Riemannian manifolds with their corresponding metrics. Especially, we can extend our idea to 2D reparametrization functions, identied with local distributions for shapes dened on bivariate domains, e.g., shape analysis of surfaces.

Throughout this thesis, the metric was xed to be the Fisher-Rao, the only metric invariant to reparametrizations. What happens if we change this metric ? If we take a less advantageous metric, can we revise it to check several proprieties usually needed in shape analysis ?