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Abstract

The thesis is divided into two main parts: i) Nonparametric statistics on high-

dimensional and functional spaces, and ii) Nonparametric statistics on Riemannian

manifolds. In this part, we will summarize the major contributions of the thesis.

Nonparametric statistics on high-dimensional and functional spaces

In statistical learning, we introduce a new notion entitled: scalable Gaussian

process classi�er. The proposal is more general than the usual Gaussian process

classi�er for representing and classifying data lying on high-dimensional spaces. It

is more advantageous for learning the hyper-parameters of the mapping (embed-

ding) that maps initial data into a low-dimensional (feature) space and those of

the Gaussian process classi�er through its covariance function, jointly, with dif-

ferent optimization methods. The modi�ed covariance function, depending on the

embedding and operating on the feature space, is more expressive since the Eu-

clidean metric is more informative in low-dimensional spaces. To summarize, our

formulation takes care of non-linearity/high-correlation of data and increases the

separability between them thanks to the Representer Theorem. In order to esti-

mate the model's hyper-parameters we usually maximize the marginal likelihood.

Unlike regression, the computation of the exact marginal likelihood remains di�-

cult and even impossible in the classi�cation case due to the discrete likelihoods.

Thus, we introduce two methods to approximate the non-Gaussian posterior dis-

tribution by a Gaussian one in order to improve the e�ciency and the scalability



of the Gaussian process.

For functional and even high-dimensional data, we also introduce the notion

of Gaussian processes indexed by probability density functions. We will show how

Gaussian processes can be de�ned into functional spaces, in particular that of den-

sity functions endowed with the Fisher-Rao metric. More precisely, we will extend

the traditional methods of nonparametric statistics based on Gaussian processes

from �nite vectors in Euclidean spaces to constrained functions with Rieman-

nian metrics. Our motivation is that several categories of observations can be

represented by their density functions with more advantages than initial vector

or functional inputs. This choice is very crucial for many reasons. First of all,

density functions make the problem formulation more understood when identify-

ing the initial vector inputs or functional data, which are hard to interpret, by

their occurrences or their corresponding probabilities. Second, density functions

improve the visualization of local data distributions. Finally, when dealing with

high-dimensional datasets (set of repetitive features), we can visualize them using

density functions which would be very helpful to explore the skewness of initial

data.

Applications: Image classi�cation (breast cancer/metallic boxes/growth charts /maize

leaves/animal temperature) and video classi�cation (violence detection).

Nonparametric statistics on Riemannian manifolds

In statistical learning on Riemannian manifold of curves, one of major prob-

lems is that of registration. For curve registration, we have to �nd the optimal

deformation in terms of the best reparametrization function (or local distribution)

between two curves. The space of reparametrization functions is a group of dif-

feomorphisms for the composition operation, which makes the optimization task

quite complicated due to the structure of the group. In fact, there is no intuitive

direction nor an underlying metric (or structure) in this group.



To handle these issues, we propose a new version of reparametrization func-

tions. The main idea is based on the fact that any reparametrization can be viewed

as an element of the manifold of cumulative distribution functions endowed with

the Fisher-Rao metric, the only Riemannian metric invariant to reparametriza-

tions. Then we can make the link with the Hilbert sphere endowed with the

L2 metric for its simplicity and geometric advantages in statistics. Finally, we

model the square-root of the probability density function, as an element of the

Hilbert sphere, by a Gaussian process. Instead of estimating a reparametrization

function directly in the group, we consider its truncated parametric version with

coe�cients belonging to the �nite-dimensional unit sphere and resulting from the

Loève expansion of the Gaussian process.

Given a �nite set of observed curves, we are also interested in the curve

clustering process in a Bayesian framework. We are able to �nd the sub-population

means depending on their optimal local reparametrization functions. Compared

to the state-of-the-art methods, the proposal has the advantage of computing the

conditional probability that each curve belongs to a given sub-population.

A natural estimator of the unknown coe�cients resulting from the Loève ex-

pansion is that maximizing the posterior density under spherical constraints. To

�nd it we will consider the Hamiltonian Monte Carlo sampling. The samples are

obtained when solving a system of di�erential equations describing the paths of

Hamiltonian dynamics, controlling the position on the sphere and the velocity on

the corresponding tangent space locally at each position, iteratively, until conver-

gence.

Applications: Human cochlea clustering (male/female) and hominin cochlea clus-

tering (paranthropus/gorilla/chimpanzee/australopithecus) discovered in South Africa.

Keywords: Nonparametric statistics; Bayesian inference; Gaussian processes; high-

dimensional data; shape analysis of curves; Numerical optimization; MCMC sam-

pling; HMC sampling; regression; classi�cation; registration; Riemannian mani-



fold; Fisher-Rao metric, Hilbert sphere





Résumé

La thèse se décompose en deux parties principales: i) Statistiques non paramétriques

sur les espaces en grande dimension et fonctionnels, et ii) Statistiques non paramétriques

sur les variétés riemanniennes. Dans cette partie, nous allons résumer les contri-

butions majeures de la thèse.

Statistiques non paramétriques sur les espaces en grande dimension et fonctionnels

Dans le domaine d'apprentissage statistique, nous introduisons une nouvelle

notion intitulée: processus gaussien de classi�cation évolutif. Le modèle proposé

est plus général que le processus gaussien de classi�cation standard pour représen-

ter et classer des données appartenant à des espaces de grande dimension. Il a

l'avantage d'apprendre les hyper-paramètres de la fonction qui transforme les don-

nées initiales sur un espace de dimension faible et ceux du processus gaussien de

classi�cation à travers sa fonction de covariance à la fois, avec plusieurs méth-

odes d'optimisation. La fonction de covariance modi�ée, dé�nie sur le nouveau

espace des données transformées, est plus expressive car la métrique euclidienne

devient plus informative. Pour résumer, notre formulation prend en considération

la non-linéarité/forte corrélation des données et augmente la séparabilité entre

elles grâce au Théorème du représentant. A�n d'estimer les hyper-paramètres du

modèle proposé, nous maximisons la vraisemblance marginale. Contrairement à

la régression, le calcul de la vraisemblance marginale exacte reste di�cile et même

impossible dans le cas de classi�cation à cause des vraisemblances discrètes. Ainsi,



nous introduisons deux méthodes pour approximer une distribution a posteriori

non gaussienne par une gaussienne a�n d'améliorer l'e�cacité et l'évolutivité du

processus gaussien.

Pour les données fonctionnelles et même vectorielles en grande dimension,

nous introduisons également la notion de processus gaussiens indexé par les fonc-

tions de densité de probabilité. Nous montrerons comment les processus gaussiens

peuvent être également dé�nis sur des espaces fonctionnelles, en particulier celle

de densités de probabilité muni de la métrique de Fisher-Rao. Plus précisément,

nous étendrons les méthodes traditionnelles de statistiques non paramétriques par

processus gaussiens de vecteurs �nis dans les espaces euclidiens aux espaces des

fonctions sous des contraintes munies des métriques riemanniennes. Notre mo-

tivation est que plusieurs catégories d'observations peuvent être représentées par

des densités de probabilité avec plus d'avantages que des entrées vectorielles ou

fonctionnelles brutes. Ce choix est très important pour plusieurs raisons. D'abord,

les densités de probabilité permettent de simpli�er la formulation du problème en

identi�ant les données vectorielles ou fonctionnelles initiales, qui sont di�ciles à

interpréter, par leurs occurrences ou leurs probabilités. Ensuite, les densités de

probabilité améliorent la visualisation des distributions locales de données. En�n,

lorsqu'il s'agit des données fortement corrélées (caractéristiques répétitives) nous

pouvons plutôt visualiser leurs densités de probabilité pour ajuster l'asymétrie des

données initiales.

Applications: Classi�cation d'images (cancer du sein/boites métalliques/courbes

de croissance/feuilles de maïs/température des animaux) et des vidéos (détection

de violence).

Statistiques non paramétriques sur les variétés riemanniennes

Dans le domaine d'apprentissage de courbes dé�nies avec des structures rie-

manniennes, l'un des problèmes majeurs est celui de recalage. Pour recaler une



courbe par rapport à une autre, nous devrons trouver la déformation optimale en

terme de la meilleure fonction de reparamétrisation (ou distribution locale) entre

les deux courbes. L'espace des fonctions de reparamétrisations est un groupe de

di�éomorphismes pour la loi de composition, ce qui rend la tâche d'optimisation

assez compliquée à cause de la structure du groupe. En fait, il n'y a ni une direction

intuitive ni une métrique (ou structure) sous-jacente dans ce groupe.

Pour résoudre ce problème, nous proposons une nouvelle version des fonctions

de reparamétrisation. L'idée principale est basée sur le fait que toute fonction

de reparamétrisation peut être vue comme un élément de la variété des fonctions

de répartition munie de la métrique de Fisher-Rao, la seule métrique riemanni-

enne invariante au reparamétrisations. Ensuite, nous pouvons établir le lien avec

la sphère de Hilbert munie de la métrique L2 pour sa simplicité et ses avantages

géométriques en statistiques. En�n, nous modélisons la racine carrée de la fonc-

tion de densité de probabilité, comme un élément de la sphère de Hilbert, par un

processus gaussien. Au lieu d'estimer une fonction de reparamétrisation directe-

ment dans le groupe, nous considérons sa version paramétrique tronquée avec des

paramètres appartenant à la sphère unitaire de dimension �nie et résultants de la

décomposition de Loève du processus gaussien.

Étant donné un ensemble �ni de courbes observées, nous nous intéressons

également au regroupement non supervisé (clustering) de courbes dans un con-

texte bayésien. De plus, nous allons trouver les moyennes de toutes les sous-

populations en fonction de leurs reparamétrisations locales optimales. Par rapport

aux méthodes existantes, le modèle proposé a l'avantage de calculer la probabilité

conditionnelle que chaque courbe appartienne à une sous-population donnée.

Un estimateur naturel des paramètres inconnus résultants de la décomposi-

tion de Loève est celui qui maximise la densité a posteriori sous des contraintes

sphériques. Pour trouver cet estimateur nous considérerons l'échantillonnage par

Hamiltonian Monte Carlo. Les simulations sont obtenues en résolvant un système

d'équations di�érentielles décrivant les chemins de la dynamique hamiltonienne,

contrôlant la position sur la sphère et la vitesse sur l'espace tangent associé locale-



ment en chaque position, d'une façon itérative, jusqu'à la convergence.

Applications: Regroupement des cochlées des humains (homme/femme) et celles

des hominidés (paranthropus/gorille/chimpanzé/australopithèque) découvertes en

Afrique du Sud.

Mots clés: Statistiques non paramétriques; inférence bayésienne; processus gaussiens;

données en grande dimension; analyse de forme des courbes; optimisation numérique;

échantillonnage par MCMC; échantillonnage par HMC; régression; classi�cation;

recalage; variété riemannienne; métrique de Fisher-Rao; sphère de Hilbert
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Chapter 1: General introduction

This chapter summarizes the contents and describes the plan of the thesis. First,

we highlight the motivations of this work. Then, we state the addressed issues.

1.1 Context and motivations

In this thesis, there are two main problems that we try to resolve: 1) the regres-

sion and the classi�cation of high-dimensional and functional data, and 2) the

registration and the clustering of shape of curves.

1.1.1 High-dimensional data

When dealing with high-dimensional data, there is various methods for linear

dimensionality reduction. The two most widely used linear techniques for dimen-

sionality reduction are: Principal Components Analysis Journée et al. (2010) and

Multidimensional Scaling Kruskal (1964), both of which have solutions that are

based upon the top few eigenvalues and associated eigenvectors of certain matri-

ces. Other linear methods include projection pursuit which tries to explain the

correlation structure of a set of variables by modeling those variables as a linear

combination of a small number of unobserved latent variables or factors.

Many of the probability models used for machine learning have been interpreted

as latent variable models Ma and Fu (2012). However, the nonlinear factor analy-

sis has been informative in revealing inadequacies in linear relationships between

variables. In order to explore the underlying nonlinear structure for multivariate

data, we need to think about nonlinear manifold embedding. Manifold embed-

ding approaches Lee and Verleysen (2007) became a new topic of research over

two decades ago. It addressed the problem of how to recover a low-dimensional

data from data located on that manifold, which is embedded within a higher di-

mensional ambient space Gorban et al. (2008). These approaches were the �rst

attempts at nonlinear manifold learning, using spectral embedding methods.
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On the other hand, Gaussian processes become useful in statistical modeling, ben-

e�ting from properties inherited from the normal distribution. However, methods

based on Gaussian processes are successful with low dimensions, but are still lim-

ited in high-dimensions. While exact models often scale poorly as the amount

of data increases, multiple approximation methods have been developed which

often retain good accuracy while drastically reducing computation time. Among

them, Snelson and Ghahramani (2006) has proposed an unsupervised dimensional-

ity reduction by jointly learning a linear transformation of the input and a Gaussian

process regression. More recently, Calandra et al. (2016) has introduced the no-

tion of manifold Gaussian process for regression. The model pro�ts from Gaussian

processes properties and the advantages of the manifold embedding techniques for

dimensionality reduction, jointly.

1.1.2 Shape analysis of curves

The original works in statistical analysis and modeling of shapes of objects came

from Kendall (1984). The limitation of this work is the use of landmarks in de�ning

shapes. Recently, there has been many focus on shape analysis of curves, albeit in

the same spirit as Kendall's formulation. Consequently, there is some signi�cant

literatures on shapes of continuous curves as elements of Riemannian manifolds

called pre-shape spaces. For instance, Younes (2000) de�ned pre-shape spaces

of planar curves and imposed Riemannian metrics on them. In particular, he

computed geodesic paths between curves in order to obtain deformations between

them. Moreover, Klassen et al. (2004) restricted to arc-length parameterized planar

curves and derived numerical algorithms for computing geodesics between curves.

For shape analysis of curves, the elastic metric is widely accepted as the only metric

invariant to reparameterizations. This is related to the Fisher-Rao metric used in

information geometry. Curves can be represented in several ways where the form

of elastic metric depends on the representation. With the square-root velocity

function representation Srivastava et al. (2011) for curves, the pre-shape space is

actually a subset of a unit sphere inside a Hilbert space. The use of geometry of

2
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the sphere helps simplify computations to a large extent.

1.2 Contributions

Now, we will summarize the main contributions along this thesis for high-dimensional

data, functional data and curves.

1.2.1 High-dimensional and functional data

In this thesis, we introduce a new concept of scalable Gaussian process classi�er.

The proposed model is closely to that of Calandra et al. (2016), but more general

for representing and classifying high-dimensional data. It has the additional bene�t

to learn both the hyper-parameters of the adaptive embedding for dimensionality

reduction and those of the Gaussian process classi�er, jointly, with several opti-

mization methods. Our formulation make it more easy to deal with nonlinearity

of data and to create separability with mappings de�ned on a Reproducing Kernel

Hilbert Space. In contrast to regression, computing the exact marginal likelihood

remains di�cult, if not impossible, for discrete likelihoods and high-dimensional

inputs. So, we introduce two di�erent methods to approximate a non-Gaussian

posterior by a Gaussian one in order to improve the e�ciency and the scalability

of standard Gaussian process classi�er.

For high-dimensional and functional data, we also introduce the notion of Gaus-

sian processes indexed by probability density functions. We will particularly show

how a Bayesian inference with Gaussian processes can be put into action on prob-

ability density spaces equipped with the Fisher-Rao metric. For more details, we

will extend traditional machine learning methods from �nite vectors to constrained

functional instances. Our motivation is that many categories of observations can

be represented by probability density functions with more advantages than working

with vector/functional inputs directly.

3



Anis Fradi - Thesis

1.2.2 Shape analysis of curves

For shape registration and particularly curves, one usually need to �nd the best

reparametrization function, identi�ed with the local distribution, between two

shapes of curves. The set of reparametrization functions naturally forms a group

of di�eomorphisms with group operation given by composition, which makes the

optimization task very hard due to the group structure. In fact, there no underly-

ing direction or metric that naturally arises in this group.

We propose a new version of reparametrization functions for curves, represented

by their square-root velocity functions as elements on a Riemannian manifold. The

main idea is to deal with the space of cumulative distribution functions induced

with the Fisher-Rao metric as well as making the connection with the Hilbert

sphere for its nice proprieties and geometries for statistics. Therefore, we model

the square-root density function, as an element of the Hilbert sphere, with a Gaus-

sian process prior. Instead of estimating a reparametrization function as a non-

parametric element of the functional space directly, we will consider its truncated

parametric version with coe�cients belonging to the �nite-dimensional sphere and

resulting from the spherical Gaussian process decomposition.

We are also interested in the clustering process of observed curves in a unsuper-

vised learning model. We are able to �nd the Fréchet mean of shapes for each

sub-population depending on its local distribution. Compared to most of the pre-

vious methods, the proposed model gives us the conditional probability that each

observed shape belongs to any given cluster.

When dealing with spherical constrained posteriors in a Bayesian framework, we

will consider the spherical Hamiltonian Monte Carlo sampling Lan et al. (2014).

The new samples are obtained by approximately solving a system of di�erential

equations describing the paths of Hamiltonian dynamics controlling the position

on the sphere and the velocity on its corresponding tangent space, iteratively, until

convergence.

4
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1.3 Outline

The remainder of this document is organized as follows. Chapter 2 presents some

basic notions and related works that will be useful along this thesis. Chapter 3

provides a new Bayesian method for representing and classifying high-dimensional

data based on Gaussian processes. In Chapter 4, we present the Bayesian re-

gression and classi�cation methods for high-dimensional and functional data. In

the same context, we will introduce the notion of Gaussian processes indexed by

probability density functions. We develop a nonparametric registration framework

for univariate functions and multidimensional curves in Chapter 5. We also pro-

pose a Bayesian clustering model with local distributions modeled with spherical

Gaussian processes. Concluding points and a presentation of future work make

the body of Chapter 6.

5



Chapter 2: Background and basic notions

Before we give details of our frameworks and main contributions, we will recall

some background and basic notions needed throughout the thesis.

2.1 Gaussian processes

In Gaussian processes (GPs) Rasmussen and Williams (2006), we focus directly on

such distributions over functions. A GP de�nes a distribution over functions such

that, if we pick any two or more points in a function (i.e., di�erent input-output

pairs), observations of the outputs at these points follow a joint (multivariate)

Gaussian distribution. In GP regression, we assume the output y ∈ R of a function

f at input x ∈ Rd can be written as

y = f(x) + η (2.1)

where η ∼ N (0, σ2) refers to the noise term of variance σ2. Note that this is similar

to the assumption made in linear regression, in that we assume an observation

consists of an independent "signal" term f(x) and a "noise" term η. The function

f(x) is distributed as

f(x) ∼ GP(m(x), c(x, x′)) (2.2)

A GP is fully de�ned by a mean function and a covariance function. The mean

function m(x) re�ects the expected function value at input x

m(x) = E[f(x)] (2.3)

i.e., the average of all functions in the distribution evaluated at input x. The

prior mean function is often set to m(x) = 0 in order to avoid expensive poste-

rior computations and only do inference via the covariance function. Empirically,

setting the prior to 0 is often achieved by subtracting the (prior) mean from all

observations. The covariance function c(x, x′) models the dependence between the
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function values at di�erent input points x and x′ as follows

c(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.4)

If m(x) = 0 then the covariance function simply takes c(x, x′) = E[f(x)f(x′)].

The choice of an appropriate covariance function is based on assumptions such as

smoothness and likely patterns to be expected in the data. A sensible assump-

tion is usually that the correlation between two points decays with the distance

between the points. This means that closer points are expected to behave more

similarly than points which are further away from each other.

Sampling and prediciton. Having set out the conditions on the covariance func-

tion, we can observe all realizations from

yi = f(xi) + ηi, i = 1, . . . , N (2.5)

With above of notations used in the introduction the likelihood term at y =

(y1, . . . , yN)T given f = (f1, . . . , fN)T = (f(x1), . . . , f(xN))T is

P(y|f) =
N∏
i=1

P(yi|fi) (2.6)

=
N∏
i=1
N (fi, σ2)

= N (f , σ2I)

where I is the N ×N identity matrix. From (2.2), the prior on f is

P(f |X) = N (0,C) (2.7)

with C = c(X,X) and X = [x1, . . . , xN ]T is the N × d matrix of observed inputs.

Inference in the Bayesian model is based on the posterior distribution, computed

by Bayes' rule

posterior = likelihood× prior
marginal likeliohood

(2.8)

which is updated in our case as

P(f |y,X) = P(y|f)P(f |X)
P(y|X) (2.9)

Now, we can draw samples from the distribution of functions evaluated at any an

unobserved x∗. Then we generate a random Gaussian vector with this covariance

7
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matrix as

f ∗ = f(x∗) ∼ N (0,C∗∗) (2.10)

for C∗∗ = c(x∗, x∗). We can write the joint distribution of the observed target

values and the function values at the test locations under the prior as y

f ∗

 ∼ N(0,

C + σ2I C∗

CT
∗ C∗∗

) (2.11)

where C∗ = c(X, x∗). By deriving the conditional distribution, we arrive at the

key predictive equation

P(f ∗|X,y, x∗) = N (f ∗|µ(x∗), σ2(x∗)) (2.12)

with 
µ(x∗) = CT

∗ (C + σ2I)−1y

σ2(x∗) = C∗∗ −CT
∗ (C + σ2I)−1C∗

(2.13)

To predict f ∗, we can simply use the mean function µ(x∗) or sample functions

from the GP with this mean function and variance σ2(x∗).

Optimizing hyper− parameters. The covariance function c(., .) usually depends

on a vector of hyper-parameters θc, which is unknown and need to be inferred from

the data. A common practice is to obtain point estimates of the hyper-parameters

by maximizing the marginal (log) likelihood. This is similar to parameter estima-

tion by maximum likelihood and is also referred to as type-II maximum likelihood

estimate (MLE). The normalizing constant in (2.9), also known as the marginal

likelihood, is the integral of the likelihood times the prior depending on θc

P(y|X) =
∫
RN

P(y|f)P(f |X)df (2.14)

The term marginal likelihood refers to the marginalization over the function values

f . We use the product of likelihood and prior terms to perform the integration

yielding the log-marginal likelihood

l(θc) = −1
2yT (C + σ2I)−1y− 1

2 log |C + σ2I| − N

2 log 2π (2.15)

The marginal log likelihood can be viewed as a penalized �t measure, where the

term −1
2yT (C + σ2I)−1y measures the data �t that is how well the current co-

8
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Figure 2.1: Predicting the function f(x) = x sin(x) for unobserved inputs in [0, 10] from
the GP regression.

variance parametrization explains the dependent variable and −1
2 log |C + σ2I| is

a complexity penalization term. The �nal term −N
2 log 2π is a normalization con-

stant. The marginal likelihood is normally maximized through many optimization

tools that will be detailed in Section 2.3. These routines make use of the partial

derivatives of l(θc) with respect to θc. Let θc = {θjc}
p
j=1 ∈ Rp denote the set of

hyper-parameters of the covariance function c(., .). The partial derivative of l(θc)

with respect to θjc is

∂l(θc)
∂θjc

= 1
2yT (C + σ2I)−1 ∂C

∂θjc
(C + σ2I)−1y− 1

2tr
[
(C + σ2I)−1 ∂C

∂θjc

]
(2.16)

We give an example of predicting inputs in [0, 10] of an unknown function f(x) =

x sin(x) in Figure 2.1. This is achieved from the noisy observations while training

the GP model. We also compute the prediction intervals using the trained model.

2.2 Manifold Gaussian processes

First of all, what is a manifold ?

De�nition 2.1
A manifold is a topological space that locally resembles Euclidean space

near each point. More precisely, an d-dimensional manifold, or d-manifold

9
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Figure 2.2: The chart maps the part of the sphere with nonnegative z coordinate to a

disc.

♣

for short, is a topological space with the property that each point has a

neighborhood that is homeomorphic to the Euclidean space of dimension d.

The simplest way to construct a manifold is the sphere. A sphere is just the surface

(not the solid interior), which can be de�ned as a subset of Rd. For d = 3, the

sphere is two-dimensional satisfying

S2 =
{

(x, y, z) ∈ R3
∣∣∣ ||(x, y, z)||22 = x2 + y2 + z2 = 1

}
(2.17)

so each chart will map part of the sphere to an open subset of R2. Consider the

upper-hemisphere, which is the part with nonnegative z coordinate (colored red in

Figure 2.2). The function ξ (called chart) de�ned by ξ(x, y, z) = (x, y) maps the

upper-hemisphere to the open unit disc by projecting it on the (x, y) plane. This

can be easily generalized to higher-dimensional spheres.

Although GPs can be applied to a great range of problems, they are still lim-

ited in high-dimensions where the common smoothness assumptions are violated.

In fact, if the input's dimension increases the covariance function becomes less

informative. Two common ideas can overcome the limitations of the covariance

functions. The �rst approach combines multiple standard covariance functions to

form a new covariance function Wilson and Adams (2013). However, the resulting

10
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covariance function remains limited by the properties of the combined covariance

functions. The second approach is based on data transformation, after which the

data can be modeled with standard covariance functions. Transforming the in-

put space and subsequently applying GP with a standard covariance function is

equivalent to GP with a new covariance function depending on the data trans-

formation MacKay (1998). Common transformations of the inputs include data

dimensionality reduction. Multiple related approaches in the literature attempt

joint supervised learning of features and regression. Generally, these transformed

inputs are good heuristics or optimize an unsupervised objective. However, they

may be suboptimal for the overall regression task.

Recently, Snelson and Ghahramani (2006) has proposed an unsupervised dimen-

sionality reduction, e.g., Principal Component Analysis (PCA) Journée et al.

(2010) by jointly learning a linear transformation of the inputs and a GP. More

recently, Calandra et al. (2016) has proposed the manifold GP (MGP) with �exible

covariance functions for GPs. The GP model is equivalent to jointly learning a

data transformation into a feature space (manifold) followed by a GP regression

with o�-the-shelf covariance functions from feature space to observed space. The

model pro�ts from standard GP properties, such as a straightforward incorpora-

tion of a prior mean function and a faithful representation of model uncertainty.

In comparison with linear transformations, the purpose of a non-linear transfor-

mation (embedding) Ψ is to account for skewness in the data, while MGP allows

for a more general class of transformations. If r denotes the MGP, it satis�es

r(x) ∼ GP(m̃(x), c̃(x, x′)) (2.18)

where m̃(x) = m(Ψ(x)) is the transformed prior mean and c̃(x, x′) = c(Ψ(x),Ψ(x′))

refers to the modi�ed covariance function.

For selecting a non-linear embedding Ψ, there exists many manifold embedding ap-

proaches for non-linear dimensionality reduction. Algorithms adopted for this task

are based on the idea that the dimensionality of many data sets is only arti�cially

high. The underlying idea is based on the fact that high-dimensional datasets

can be very di�cult to visualize. While data in two or three dimensions can be

11
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plotted to show the inherent structure of the data, equivalent high-dimensional

plots are much less intuitive. To aid visualization of the structure of a dataset, the

dimension must be reduced in some way.

Manifold embedding approaches can be thought of as an attempt to generalize lin-

ear frameworks like PCA to be sensitive to non-linear structure in data. Though

supervised variants exist, the typical manifold embedding problem is unsuper-

vised: it learns the high-dimensional structure of the data from the data itself,

without the use of predetermined classi�cations. Among manifold embedding ap-

proaches, we can cite for example: Isomap Tenenbaum et al. (2000), Locally Linear

Embedding (LLE) Roweis and Saul (2000), Modi�ed Locally Linear Embedding

(MLLE) Zhang and Wang (2007), Spectral Embedding Belkin and Niyogi (2003),

Local Tangent Space Alignment (LTSA) Zhang and Zha (2005) and t-distributed

Stochastic Neighbor Embedding (t-SNE) Van Der Maaten (2014).

2.3 Numerical algorithms and MCMC sampling

In this section, we present two main categories of algorithms established in this

manuscript based on iterative optimization methods and Monte Carlo sampling

Van Ravenzwaaij et al. (2018).

2.3.1 Iterative optimization methods

Let f : Rp → R be a smooth function (cost function). Optimization algorithms

tend to be iterative procedures in order to �nd a local minimum of f(.). Starting

from a given point x0, they generate a sequence (xt)t of iterates (or trial solutions)

that converge to a solution or at least they are designed to be so.

Gradient− descent. is a �rst-order iterative optimization algorithm based on

the observation that f(x) decreases fastest if one goes from x in the direction of

the negative gradient of f at x: −∇f(x). It follows that if xt+1 = xt − ε∇f(xt),

for ε ∈ R+ then f(xt) ≥ f(xt+1). Therefore, we have a monotonic sequence

f(x0) ≥ f(x1) ≥ f(x2) ≥ ..., so hopefully the sequence (xt)t converges to the

12
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desired local minimum. The gradient-descent is summarized in Algorithm 1.

Algorithm 1: Gradient-descent.
Require: cost function f(.) and its gradient vector ∇f(.)
1: repeat
2: Evaluate ∇f(xt)
3: Find the step size ε (e.g., by backtracking line search)
4: Compute xt+1 := xt − ε∇f(xt)
5: Set t := t+ 1
6: until Convergence

Newton−Raphson. allows a numerical resolution of the score equation. We

start from an arbitrary initial value of x, denoted x0 and we designate by x1 = x0+h

as a candidate value to be a solution of ∇f(x) = 0, that is to say ∇f(x0 + h) = 0.

Applying a �rst order Taylor series to the function ∇f(.), we get

∇f(x0 + h) ≈ ∇f(x0) + h∇2f(x0) (2.19)

As ∇f(x0 + h) = 0 then h takes the following value

h = −[∇2f(x0)]−1∇f(x0) (2.20)

implying

x1 = x0 − [∇2f(x0)]−1∇f(x0) (2.21)

We update the last equation for any t and we express xt+1 in terms of xt, as illus-

trated in Algorithm 2.

Algorithm 2: Newton-Raphson.
Require: cost function f(.), its gradient vector ∇f(.) and its Hessian matrix
∇2f(.)

1: repeat
2: Evaluate ∇f(xt) and ∇2f(xt)
3: Find the step size ε (e.g., by backtracking line search)
4: Compute xt+1 := xt − ε[∇2f(xt)]−1∇f(xt)
5: Set t := t+ 1
6: until Convergence

Quasi−Newton. is an alternative to Newton's method used to either �nd ze-

ros or local minimum of functions. It can be used if the gradient or the Hessian

13
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is unavailable or is too expensive to be computed at every iteration. There is

many popular update formulas to approximate the Hessian matrix, for instance

the Broyden Fletcher Goldfarb Shanno (BFGS) method. Algorithm 3 summarizes

the quasi-Newton method with BFGS updates.

Algorithm 3: Quasi-Newton.
Require: cost function f(.) and its gradient vector ∇f(.)

1: repeat

2: Evaluate ρ := −H−1
t ∇f(xt)

3: Find the step size ε (e.g., by backtracking line search)

4: Evaluate xt+1 := xt + ερ

5: a := xt+1 − xt and b := ∇f(xt+1)−∇f(xt)

6: H−1
t+1 := Ht + bbT

bT a
− HtaaTHt

aTHta

7: Set t := t+ 1

8: until Convergence

2.3.2 MCMC sampling

When performing Bayesian inference, we aim to compute and use the full posterior

joint distribution over a set of random variables. Unfortunately, this often requires

calculating intractable integrals. In such cases, we may give up on solving the

analytical equations and proceed with sampling techniques based upon Markov

Chain Monte Carlo (MCMC) methods. When using MCMC methods, we estimate

the posterior distribution and the intractable integrals using simulated samples

from the posterior distribution. The underlying logic of MCMC sampling is that

we can estimate any desired expectation by ergodic averages. That is, we can

compute any statistic of a posterior distribution as long as we have T simulated

samples from that distribution

E[f(X)]π ≈
1
T

T∑
t=1

f(xt) (2.22)

where π is the posterior distribution of interest, f(X) is the desired expectation,

and f(xt) is the t-th simulated sample from π. For example, we can estimate the

mean by E[X]π ≈ 1
T

∑T
t=1(xt) as a particular case of (2.22) for the identity func-
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Figure 2.3: The trajectory of a Markov chain obtained from a MCMC sampling.

tion.

The theory of MCMC guarantees that the stationary distribution of the samples is

the target joint posterior. For this reason, MCMC algorithms are typically run for

a large number of iterations (in the hope that convergence to the target posterior

will be achieved). An example of Markov chain values sampled from the MCMC

algorithm is illustrated in Figure 2.3. Because samples from the early iterations

are not from the target posterior, it is common to discard these samples. The

discarded iterations are often referred to as the "Burn-in" period. To reduce au-

tocorrelation between samples we also need the "Thinning" period. The question

that arises now is: How do we obtain samples from the posterior distribution?

Ulam and Metropolis introduced the Metropolis algorithm and its impact was

enormous. Afterwards, MCMC was introduced to statistics and generalized with

the Metropolis-Hastings algorithm Hastings (1970) and the Gibbs sampling Ge-

man and Geman (1984).

Gibbs sampling. is one MCMC technique suitable for the task. The idea in Gibbs

sampling is to generate posterior samples by sweeping through each variable (or

block of variables) to sample from its conditional distribution with the remaining

variables �xed to their current values. For instance, we consider the random vari-

ables X1, X2, and X3 and we start by setting these variables to their initial values

x1
0, x

2
0 and x3

0. At iteration t, we sample x1
t ∼ π(X1 = x1|X2 = x2

t−1, X
3 = x3

t−1),

sample x2
t ∼ π(X2 = x2|X1 = x1

t , X
3 = x3

t−1), and sample x3
t ∼ π(X3 = x3|X1 =
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x1
t , X

2 = x2
t ). This process continues until convergence. Algorithm 4 details a

generic Gibbs sampling generated for p variables.

Algorithm 4: Gibbs sampling.
Require: posterior distribution π(.)
1: Initialize x0 = (x1

0, . . . , x
p
0)

2: for t = 1, 2, . . . , T do
3: x1

t ∼ π(X1 = x1|X2 = x2
t−1, X

3 = x3
t−1, . . . , X

p = xpt−1)
4: x2

t
...

∼ π(X2 = x2|X1 = x1
t , X

3 = x3
t−1, , . . . , X

p = xpt−1)

5: xpt ∼ π(Xp = xp|X1 = x1
t , X

2 = x2
t , . . . , X

p−1 = xp−1
t )

6: end for

Metropolis−Hastings (MH). simulates samples from a probability distribu-

tion by making use of the full joint density function and (independent) proposal

distributions for each of the variables of interest. The �rst step is to initialize

the sample value for each random variable. This value is often sampled from the

variable's prior distribution. The main loop of HM algorithm consists of three

steps:

1. Generate a proposal (or a candidate) sample xcand from the proposal distri-

bution q(xcand|xt−1).

2. Compute the acceptance probability via the acceptance function α(xcand|xt−1)

based upon the proposal distribution and the full joint density π(.).

3. Accept the candidate sample with probability α or reject it with probability

1− α.

Algorithm 5 provides the details of a generic MH algorithm.

2.4 Shape analysis of curves using landmarks

In shape analysis Dryden and Mardia (1998, 2016); Gower (1975), we usually need

a technique that involves transformations (i.e., translation, rotation and isotropic

scaling) of individual data matrices to provide optimal comparability. This notion

is widely applicable to many areas such as shape of curves. According to Kendall,

the shape of a curve can be represented with n landmarks in Rd, where n > d.

The n landmarks are points located in d dimensions which represent the important
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Algorithm 5: Metropolis-Hasting.
Require: posterior distribution π(.) and proposal distribution q(., .)
1: Initialize x0
2: for t = 1, 2, . . . , T do
3: Propose xcand ∼ q(xt|xt−1)
4: Acceptance probability

α(xcand|xt−1) := min
{

1, q(xt−1|xcand)π(xcand)
q(xcand|xt−1)π(xt−1)

}

5: Simulate u ∼ U([0, 1])
6: if u < α then
7: Accept the proposal xt := xcand
8: else
9: Reject the proposal xt := xt−1
10: end if
11: end for

Figure 2.4: Four copies of the same shape under di�erent Euclidean transformations.

features of the objects under study. What do we actually understand by the

concept of shape and landmark?

De�nition 2.2

♣

Shape is all the geometrical information that remains when location, scale

and rotational e�ects are �ltered out from an object.

In other words, shape is invariant to Euclidean similarity transformations. This

is re�ected in Figure 2.4. A second example of an original shape moved with the

action of several Euclidean transformations is given in Figure 2.5. One way to

describe a shape is by locating a �nite number of points on the outline.

De�nition 2.3

♣

A landmark is a point of correspondence on each object that matches between

and within populations.

A mathematical representation of a shape formed by n points in d dimensions could

17
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Figure 2.5: An original shape (blue) transformed (red) with the action of translation (a),

rotation (b) and scaling (c).

be to concatenate each dimension into a nd-vector. The vector representation for

planar shapes (d = 2) would then be

x = (x1, . . . , xn, y1, . . . , yn)T (2.23)

To obtain a true shape representation according to the de�nition location, scale and

rotational e�ects need to be �ltered out. This is usually carried out by establishing

a coordinate reference around position, scale and rotation. This is commonly

known as pose for which all shapes are aligned.

De�nition 2.4

♣

A Shape space is the set of all possible shapes of the object in question.

Formally, the shape space denoted by Σn
d is the orbit shape of the non-

coincident n point set con�gurations in Rd under the action of the Euclidean

similarity transformations.

The question that arises now is: What is the dimension spanned by the shape

space? If we have n point vectors in d Euclidean dimensions, the shape space's

dimension is nd. But the alignment procedure peels of dimensionality i.e., the data

now spans only a subspace of dimension less than nd. The translation removes d

dimensions, the uniform scaling 1 dimension and the rotation 1
2d(d−1) dimensions.

Thus, if k denotes the shape space dimensionality then it satis�es

k = nd− d− 1− 1
2d(d− 1) (2.24)

This can be achieved by the Generalized Procrustes Analysis (GPA) approach.
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Summary of GPA. Although an analytic solution exists to the alignment of a

set of two planar shapes, Algorithm 6 will su�ce for any dimension d and any set

of N shapes.

Algorithm 6: GPA.

Input: x1, . . . ,xN ∈ Rnd

Output: x̂1, . . . , x̂N ∈ Sk

1: Compute the centroids of all shapes: x̄i, i = 1, . . . , N
2: Align w.r.t. position all shapes at their centroids

x̃i = xi − x̄i, i = 1, . . . , N

3: Re-scale all shapes to have equal size

x̃∗i = x̃i
||x̃i||2

= xi − x̄i
||xi − x̄i||2

, i = 1, . . . , N

4: Compute the Fréchet mean of x̃∗1, . . . , x̃∗N on the �nite-dimensional unit
sphere Sk denoted xS since ||x̃∗i ||2 = 1

5: Find the optimal rotation for all shapes

Ri = argmin
R∈SO(d)

||x̃∗i − xSR||2, i = 1, . . . , N

where SO(d) is the special orthogonal group of d× d rotation matrices
through the Singular Value Decomposition (SVD) Berge (1977)

6: Set the i-th aligned shape to x̂i = x̃∗iRi

Tangent space projection. The notion of tangent space projection is based on

modifying the shape vectors form a hyper-sphere to a hyper-plane. Further, the

Euclidean distance in this plane can be employed as a shape metric. Suppose that

x̂i is the i-th aligned shape and xS is the Fréchet mean of all shapes belonging to

Sk, as illustrated in Figure 2.6 (left). The remaining two sketches in Figure 2.6

show two tangent space projections of which we will focus on the former. Let x̂ti be

the projection of x̂i into the tangent space of Sk at xS . From Figure 2.6 (middle),

we see that x̂ti's projection onto xS is xS , i.e.,

xS =

〈
xS , x̂ti

〉
2

||xS ||22
xS =

〈
xS , x̂ti

〉
2
xS = βxS (2.25)

Substituting x̂ti with αx̂i in the scaling factor β, we get

β = 1 =
〈
xS , x̂ti

〉
2

= α
〈
xS , x̂i

〉
2

(2.26)
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Figure 2.6: The i-th shape vector x̂i drawn from a population of mean xS (left), the

tangent space projection by scaling (middle), and the tangent space projection by scaling

and shape modi�cation (right).

Finally, we show that

x̂ti = αx̂i = 1〈
xS , x̂i

〉
2

x̂i (2.27)

Tangent Principal Component Analysis. Once all con�gurations have been

aligned (or registered) to a common coordinate frame �ltering out similarity trans-

formations, they represent the shape of each structure. For instance, we could use

PCA Journée et al. (2010) onto aligned data to �nd a (small) set of orthonormal

directions that explain most of the shape variability. We show how the PCA can be

derived by means of simple linear algebra and used for modeling shape variation.

We consider the case of having N shapes consisting of n points in d dimension

where i-th shape is represented as xi ∈ Rnd, aligned by x̂i ∈ Sk and projected into

the tangent linear space at x̂ti ∈ Rk+1. If we consider a set covering a certain class

of shapes then we will always observe some degrees of inter-point correlation. If

not, i) the set either contains no variation, or ii) the points are purely random,

which implies that the points are not landmarks. This argumentation leads to the

suspicion that there could exist a shape representation accounting for correlation

between points. If some point movements were to be totally correlated, this could

be exploited to reduce the dimensionality. The central idea of Tangent Principal

Component Analysis (TPCA) is to reduce the dimensionality of projected shape

vectors into the tangent space of Sk. This is achieved when transforming to a

new set of variables, known as principal components (PCs), so that the �rst few

retain most of the variation present in all of the original variables. The whole

process of obtaining principle components from a raw dataset of projected shape

20



Anis Fradi - Thesis

vectors in the tangent space can be simpli�ed in Algorithm 7. An example that

Algorithm 7: TPCA.

Input: x̂t1, . . . , x̂tN ∈ Rk+1

Output: ẑt1, . . . , ẑtN ∈ RM

1: Compute the Euclidean mean of x̂t1, . . . , x̂tN denoted x̂tmean

2: Compute the covariance matrix Cx̂t of the whole dataset of projected shape
vectors

3: Find the eigen-vectors v1, . . . , vk+1 of Cx̂t and the corresponding eigen-values
λ1, . . . , λk+1. The eigen-values of Cx̂t are roots of the characteristic equation

det(Cx̂t − λI) = 0

4: Sort the eigen-vectors by decreasing the eigen-values and choose M
eigen-vectors with the largest eigen-values

λk+1 < λk < · · · < λM+1 < λM < · · · < λ1︸ ︷︷ ︸
kept eigen-values

to form a (k + 1)×M dimensional matrix: W = [v1, v2, . . . , vM ]
5: Use W to transform the samples of projected shape vectors onto the new

sub-space

ẑti = W T x̂ti

illustrates this approach is given in Figure 2.7. Accordingly, we keep the two most

important directions for the TPCA approach when reducing the dimensionality of

the projected shape vectors into the tangent space.

2.5 Shape analysis of curves using a Riemannian structure

In order to develop a formal framework for analyzing shapes of curves, one needs

a mathematical representation of curves that is natural, general and e�cient. We

describe one such representation that allows a simple framework for shape analysis

with a Riemannian structure. Let β : I = [0, 1] → Rd, d ≥ 1. If d = 1 then β is

an univariate function, else β is a multidimensional curve.

Pre− shape space and metric. Assume that for all ξ ∈ I, β̇(ξ) 6= 0. We then

de�ne ϕ : I → R by ϕ(ξ) = ln(||β̇(ξ)||2), and θ : I → Sd−1 by θ(ξ) = β̇(ξ)
||β̇(ξ)||2

.

Clearly, ϕ and θ completely specify β̇ since β̇(ξ) = exp(ϕ(ξ))θ(ξ). Thus, we have
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Figure 2.7: An example of three shape vectors xi (a) and their projections ẑti in the

tangent space when applying the TPCA approach with two dimensions.

de�ned a map from the space of smooth curves in Rd to Φ × Θ where Φ =
{
ϕ :

I → R
}
and Θ =

{
θ : I → Sd−1

}
. This map is surjective and not injective, but

two curves are mapped to the same pair (ϕ, θ) if and only if they are translates of

each other, i.e., if they di�er by an additive constant. Intuitively, ϕ tells us the

speed of traversal of the curve, while θ tells us the direction of the curve at each

time ξ.

In order to quantify the magnitudes of perturbations of β, we wish to impose a

Riemannian metric on the space of curves that is invariant under translation by

putting a metric on Φ×Θ. First, we state that the tangent of space of Φ×Θ at

any point (ϕ, θ) is given by

T(ϕ,θ)(Φ×Θ) =
{

(u, v)
∣∣∣ u ∈ Φ, v : I → Rd, and v(ξ) ⊥ θ(ξ); ∀ ξ ∈ I

}
(2.28)

Suppose (u1, v1) and (u2, v2) are both elements of T(ϕ,θ)(Φ × Θ). Let de�ne an

inner product by〈
(u1, v1), (u2, v2)

〉
(ϕ,θ)

= 1
4

∫
I
u1(ξ)u2(ξ) exp(ϕ(ξ))dξ (2.29)

+
∫
I

〈
v1(ξ), v2(ξ)

〉
2

exp(ϕ(ξ))dξ

The �rst integral measures the amount of "stretching" since u1 and u2 are varia-

tions of the speed ϕ of the curve, while the second integral measures the amount

of "bending" since v1 and v2 are variations of the direction ϕ of the curve.

Square− root velocity function. We now de�ne the square-root velocity func-

tion (SRVF) representation Srivastava et al. (2011).
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De�nition 2.5

♣

The SRVF q : I → Rd of β is de�ned as

q(ξ) = β̇(ξ)√
||β̇(ξ)||2

(2.30)

Now, we will prove that the L2 metric in the SRVF representation is (2.29). Re-

lating this to the (ϕ, θ) representation of the curve, gives q(ξ) = exp(1
2ϕ(ξ))θ(ξ).

A couple of simple di�erentiations show that if (u, v) ∈ T(ϕ,θ)(Φ × Θ) then the

corresponding tangent vector to L2(I,Rd) at q is given by

δq(ξ) = 1
2 exp (1

2ϕ(ξ))
〈
u(ξ), θ(ξ)

〉
2

+ exp (1
2ϕ(ξ))v(ξ) (2.31)

Now, let (u1, v1) and (u2, v2) denote two elements of T(ϕ,θ)(Φ×Θ) and let δq1 and

δq2 denote the corresponding tangent vectors to L2(I,Rd) at q. Computing the L2

inner product of δq1 and δq2, yields〈
δq1, δq2

〉
=

∫
I

〈1
2 exp (1

2ϕ(ξ))
〈
u1(ξ), θ(ξ)

〉
2

+ exp (1
2ϕ(ξ))v1(ξ), (2.32)

1
2 exp (1

2ϕ(ξ))
〈
u2(ξ), θ(ξ)

〉
2

+ exp (1
2ϕ(ξ))v2(ξ)

〉
2
dξ

= 1
4

∫
I

exp(ϕ(ξ))u1(ξ)u2(ξ)dξ +
∫
I

exp(ϕ(ξ))
〈
v1(ξ), v2(ξ)

〉
2
dξ

In the above term, we have used the fact that
〈
θ(ξ), θ(ξ)

〉
2

= 1 since θ(ξ) is an

element of the unit sphere Sd−1 as well as
〈
θ(ξ), vj(ξ)

〉
2

= 0 since vj(ξ) is a tan-

gent vector to Sd−1 at θ(ξ). This clearly shows that the L2 metric on the space of

SRVFs corresponds precisely to the elastic metric (2.29) on Φ×Θ.

Geodesics. Conversely, for q ∈ L2(I,Rd) there exists a curve β (unique up to

a translation) such that q is the SRVF of β. In fact, β can be rewritten as

β(ξ) = β(0) +
∫ ξ

0 q(t)||q(t)||2dt. To remove scaling variability, we rescale all curves

to be of unit length. This restriction comes from the fact that
∫
I ||q(ξ)||22dξ =∫

I ||β̇(ξ)||2dξ = 1. Let M denote the space of all qs. The standard metric on

L2(I,Rd) restricts to Riemannian structure on M. This structure can then be

used to determine geodesic and geodesic length between elements of this space Lang

(1998).

Let α : I →M be a geodesic path such that α(0) = q1 and α(1) = q2. Then, the
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length of α is de�ned by

L[α] =
∫
I

〈
α̇(ξ), α̇(ξ)

〉1/2

2
dξ (2.33)

In addition, α is said to be a length-minimizing geodesic if L[α] achieves the

in�mum over all such paths. The length of the geodesic path becomes a distance

dM
(
q1, q2

)
= inf

α|α(0)=q1,α(1)=q2
L[α] (2.34)

SinceM is a linear subspace of L2(I,Rd), the geodesic between q1 and q2 becomes

straightforward.

Lemma 2.1

♥

Given q1 and q2 inM, a geodesic path between them is given by

α(ξ) = (1− ξ)q1 + ξq2 for all 0 ≤ ξ ≤ 1 (2.35)
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Chapter 3: Bayesian classi�cation using scalable

Gaussian process priors for high-dimensional data

In this chapter, we adopt a Bayesian point of view, based on Gaussian processes, for

classifying high-dimensional data. Since computing the exact marginal likelihood

remains di�cult, if not impossible, for discrete likelihoods and high-dimensional

inputs, we introduce two di�erent methods to improve the e�ciency and the scal-

ability of standard Gaussian processes for classi�cation: scalable Laplace approxi-

mation and scalable expectation propagation, together with a proposed non-linear

embedding for dimensionality reduction.

3.1 Introduction

In this chapter, we assume we are givenN observations (x1, y1), (x2, y2), . . . , (xN , yN),

in which xi ∈ X ⊆ Rd, i ∈ {1, . . . N}, are the high-dimensional inputs (predictors)

and yi, i ∈ {1, . . . N}, are the associated responses. Throughout this chapter,

we consider the binary classi�cation case where yi takes values in {−1,+1}. In

a Bayesian framework, we model f by a zero mean GP classi�er (GPc) with a

covariance function c(., .) controlling its underlying structure. This implies a mul-

tivariate Gaussian density function P(f |X) = N (f |0, c(X,X)) where X is the N×d

matrix [x1, . . . , xN ]T and f is the N × 1 Gaussian vector (f(x1), . . . , f(xN))T . The

conditional density of y = (y1, . . . , yN)T given f that we write P(y|f) refers to the

likelihood term. From the Bayes' rule, we write the posterior distribution, that is

the conditional density of f given y and X, as P(f |X,y) ∝ P(f |X)P(y|f).

In general, the covariance function c(., .) relies on a set of unknown hyper-

parameters θc = {θjc}
p
j=1 ∈ Rp. Thus, the hyper-parameters have to be es-

timated from observations in an optimal way in order to achieve best predic-

tions. It is, indeed, very common to maximize the marginal likelihood P(y|X)

depending on θc. It can be achieved when marginalizing the posterior on f , i.e.,
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P(y|X) =
∫
RN P(f |X)P(y|f)df . This task is not trivial when the likelihood term

P(y|f) deviates from standard forms, which is the case for the classi�cation frame-

work. Ideally, the non-Gaussian posteriors can be approximated by Gaussian

distributions Minka (2001); Williams and Barber (1998).

Methods based on GPcs are successful with low and medium dimensions,

but are limited in high-dimensions (N << d) Djolonga et al. (2013). The most

prominent weakness is usually the computational cost due to the inversion and the

determinant of the N × N covariance matrix needed for evaluating any marginal

likelihood. Furthermore, when d is large, the Euclidean distance between x and x′

in Rd: ||x− x′||2 becomes less informative. To overcome those issues, we suppose

that the inputs lie on an embedded submanifold M of low dimension Calandra

et al. (2016); Fradi et al. (2018). We then propose to perform inference on em-

bedded inputs Z = Ψ(X) where Ψ is a mapping (embedding) de�ned on a RKHS

(Reproducing Kernel Hilbert Space) HK . The family of kernels K(., .) is again

controlled by a vector of hyper-parameters θK = {θjK}kj=1 ∈ Rk. One of the main

advantages of this formulation is that the embedded submanifoldM (which is the

image of X by Ψ) has a lower dimension than X , i.e., M << d with an adap-

tive geometrical structure. As a consequence, we let the covariance function c(., .)

operate directly onM. To summarize, this formulation solves non-linearity from

initial inputs, creates separability in the embedded submanifold and reduces the

dimensionality.

The main goal in this chapter is to provide an e�cient scalable approximation

of the Bayesian inference related to the above dimension reduction framework. In

this context, we will estimate the hyper-parameters of the covariance function

c(., .) and the embedding with K(., .), jointly, by two di�erent techniques. We now

give more details about the proposed methods:

1. A novel set of equations and algorithms is developed in order to evaluate

marginalized log-likelihoods. All details of the gradient vectors and the

Hessian matrices are given. For selecting the hyper-parameters, we maxi-

mize the approximate marginal likelihoods using two iterative techniques:
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gradient-descend and Newton-Raphson. Nonetheless, these optimization

techniques usually have some limitations when dealing with non-convex cost

functions Carlin and Louis (1997), in particular, the approximate marginal

likelihood. We solve this problem and we show that our formulation requires

a small number of iterations for maximizing marginal likelihoods Karaboga

and Basturk (2008).

2. As an alternative to marginalization, we can simply maximize the posteri-

ors on these hyper-parameters when computational resources increase. A

common approach to tackle the non-convexity issue of the marginal likeli-

hood is to use multiple starting points randomly selected from speci�c prior

laws for the model hyper-parameters. Following this idea, we simulate from

the posterior distribution that we are able to factorize across two separate

posterior distributions for θc and θK . We proceed with sampling based on

MCMC Van Ravenzwaaij et al. (2018). Finally, it is important to men-

tion that the problem of high complexity and computational time, usually

needed for ensuring the stationarity of Markov chains, will be e�ciently

solved thanks to the proposed embedded submanifold.

3.2 Gaussian process classi�er

For GPc, we are interested in the target class "+1" probability satisfying π(x)

= P
(
y = +1|f(x)

)
= σ(f(x)) with an activation function σ : R → [0, 1] usually

refers to the sigmoid (σ(t) = 1
1+exp(−t)) or the probit (σ(t) = F (t)). Here F refers

to the standard Gaussian cumulative distribution function.

3.2.1 Problem formulation

The likelihood term is the product of individual likelihoods, i.e.,

P(y|f) =
N∏
i=1

P(yi|fi) (3.1)

=
N∏
i=1

σ(yifi)
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According to our case, the posterior distribution of f given X and y is proportional

(∝) to

P(f |X,y) = P(y|f)P(f |X)
P(y|X) (3.2)

∝ P(y|f)P(f |X)

where P(y|X) is the exact marginal likelihood. From (3.2), the posterior is an-

alytically intractable due to the likelihood term and need to be approximated,

for instance, by a Gaussian distribution. As a solution, we introduce the Laplace

approximation and the Expectation propagation methods. We also give the ap-

proximate marginal likelihood and the predictive distribution in both cases.

3.2.2 Laplace approximation

We �rstly discuss details of Laplace approximation method for GPc.

3.2.2.1 Sampling functions and predictions

From the GPc de�nition, the prior law on f satis�es

P(f |X) = N (f |0,C) (3.3)

where C = c(X,X). From (3.2), the log-posterior is simply proportional to

logP(f |X,y) ∝ logP(y|f)− 1
2fTC−1f (3.4)

For the Laplace approximation, we �rstly �nd the maximum a posteriori (MAP)

estimator denoted f̂ = (f̂1, . . . , f̂N)T from the Newton-Raphson method, with the

iteration

f t+1 = (C−1 + W)−1(Wf t +∇P(y|f t)) (3.5)

for t = 2, 3, . . . . W is the negative Hessian matrix of the likelihood term, i.e., W

is a N ×N diagonal matrix with entries Wii = − ∂2 log p(yi|fi)
∂2fi

∣∣∣
fi=f̂i

and P(yi|fi)

= σ(yifi) = 1
1+e−yifi . Once we have estimated the MAP f̂ , we can specify a Gaus-

sian approximation of the posterior, when doing a second order Taylor expansion

of logP(f |X,y) around f̂ , as

P̂(f |y,X) = N (f |f̂ , (C−1 + W)−1) (3.6)
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Given an unobserved input x∗, the predictive distribution at f ∗ = f(x∗) can be

approximated by

P̂(f ∗|X,y, x∗) = N (f ∗|µ(x∗), σ2(x∗)) (3.7)

with 
µ(x∗) = CT

∗C−1f̂

σ2(x∗) = C∗∗ −CT
∗ (C + W−1)−1C∗

(3.8)

Using the moments of prediction, we approximate the predictor for y∗ = +1 by

π̄(x∗) =
∫
R
σ(f ∗)P̂(f ∗|X,y, x∗)df ∗ (3.9)

3.2.2.2 Optimizing hyper-parameters

We evaluate the approximate marginal likelihood P̂(y|X) instead of the exact

marginal likelihood P(y|X) given in the denominator of (3.2). This term usually

depends on a vector of hyper-parameters θc = {θjc}
p
j=1 ∈ Rp associated to the

covariance function c(., .), unknown and to be inferred. A common practice is to

obtain point estimates of the hyper-parameters by maximizing the marginal (log)

likelihood. Integrating out f , the log-marginal likelihood is approximated by

l(θc) = −1
2 f̂TC−1f̂ + logP(y|f̂)− 1

2 log
∣∣∣I + W

1
2 CW

1
2
∣∣∣ (3.10)

Optimizing over θc requires the evaluation of �rst partial derivatives. The �rst

partial derivatives of l(θc) with respect to θjc satisfy

∂l(θc)
∂θjc

= ∂l(θc)
∂θjc

∣∣∣∣∣
|̂f

+
N∑
i=1

∂l(θc)
∂f̂i

∂f̂i

∂θjc
(3.11)

The �rst term (explicit), obtained when we assume that f̂ (as well as W) does not

depend on θc, satis�es

∂l(θc)
∂θjc

∣∣∣∣∣
|̂f

= 1
2 f̂TC−1 ∂C

∂θjc
C−1f̂ − 1

2tr
[
(C + W−1)−1 ∂C

∂θjc

]
(3.12)

The second term (implicit), obtained when we suppose that only f̂ (as well as W)

depends on θc, is fully determined by

∂l(θc)
∂f̂i

= −1
2
[
(C−1 + W)−1

]
ii

∂3 logP(y|f̂)
∂3f̂i

(3.13)
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and

∂ f̂
∂θjc

=
(
I + CW

)−1 ∂C
∂θjc
∇ logP(y|f̂) (3.14)

where ∇ is the gradient w.r.t. f .

3.2.3 Expectation propagation

In this section, we give details for another method based on the Expectation prop-

agation.

3.2.3.1 Sampling functions and predictions

The Expectation propagation is usually used to approximate marginal moments

of the posterior Minka (2001). The key idea is to replace individual likelihoods by

unnormalized Gaussian distributions. We then use the same notations and rewrite

the posterior distribution over f as the product of the prior and the likelihood

terms

P(f |y,X) = 1
L
P(f |X)

N∏
i=1

P(yi|fi) (3.15)

where the normalization term is

L = P(y|X) (3.16)

=
∫
RN

P(f |X)
N∏
i=1

P(yi|fi)df

We consider that P(yi|fi) = F (yifi). To build this framework, we can approximate

each individual likelihood by

P(yi|fi) ≈ ti(fi|Li, µ̃i, σ̃2
i ) (3.17)

= Li ×N (fi|µ̃i, σ̃2
i )

However, the likelihood approximation should not be normalized since the ex-

act likelihood do not have this property. The product of individual likelihood

approximations is then
∏N
i=1 Li × N (f |µ̃, Σ̃) where µ̃ = (µ̃1, . . . , µ̃N)T and Σ̃ =

diag(σ̃2
1, . . . , σ̃

2
N). Based on local approximations, the true posterior distribution
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is approximated by

P̂(f |y,X) = 1
L
P(f |X)

N∏
i=1

ti(fi|Li, µ̃i, σ̃2
i ) (3.18)

= N (f |µ,Σ)

with µ = ΣΣ̃−1µ̃ and Σ = (C−1 + Σ̃−1)−1.

To summarize, we give the main steps of the expectation propagation (EP) in

Algorithm 8. Once we have estimated µ̃ and Σ̃, the prediction moments are
µ(x∗) = CT

∗ C−1µ = CT
∗ (C + Σ̃)−1µ̃

σ2(x∗) = C∗∗ −CT
∗ (C + Σ̃)−1C∗

(3.19)

Therefore, the approximate predictor for y∗ = 1 is

π̄(x∗) = F
( CT

∗ (C + Σ̃)−1µ̃√
1 + C∗∗ −CT

∗ (C + Σ̃)−1C∗

)
(3.20)

3.2.3.2 Optimizing hyper-parameters

The marginal likelihood can be found from the normalization of (3.18) as

LEP = P̂(y|X) =
∫
RN
p(f |X)

N∏
i=1

(
Li ×N (fi|µ̃i, σ̃2

i )
)
df (3.21)

Consequently, its logarithm satis�es

l(θc) = log(LEP) = −1
2 log

∣∣∣C + Σ̃
∣∣∣− 1

2 µ̃
T (C + Σ̃)−1µ̃+B (3.22)

where B comes from the normalization constants Li, satisfying B = ∑N
i=1 logLi.

Luckily, it turns out that implicit terms in the derivatives, being a function of θc,

is exactly zero. More details are given in Seeger (2005). Consequently, we only

have to take account of the explicit term

∂l(θc)
∂θjc

= 1
2 µ̃

T (C + Σ̃)−1 ∂C
∂θjc

(C + Σ̃)−1µ̃− 1
2tr

[
(C + Σ̃)−1 ∂C

∂θjc

]
(3.23)

3.3 The embedded submanifold

We partially introduce some technical results and we move to functions (mappings)

that can be expressed in terms of expansions. Let us consider a nonnegative real-

valued kernel K : X × X → R+ with its corresponding RKHS HK . We restrict

ourselves to a class of kernels satisfying K(x, x′) =
〈
Ψ(x),Ψ(x′)

〉
2
, depending on
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Algorithm 8: EP.
1: Choose one ti(fi|Li, µ̃i, σ̃2

i ) to update.
2: Compute the cavity distribution of fi

P̂−i(fi) ∝
P̂(fi|y,X)

ti(fi|Li, µ̃i, σ̃2
i )

= N (fi|µ−i, σ2
−i)

where
P̂(fi|y,X) = N (fi|µi, σ2

i = Σii)

σ2
−i = (σ−2

i − σ̃−2
i )−1

µ−i = σ2
−i(σ−2

i µi − σ̃−2
i µ̃i)

3: De�ne Pi(fi), the pseudo-exact posterior marginal distribution of fi, as

Pi(fi) = P(yi|fi)P̂−i(fi)

4: Compute P̂(fi) = L̂i ×N (fi|µ̂i, σ̂2
i ) by minimizing the Kullback-Leibler (K-L)

divergence

(L̂i, µ̂i, σ̂2
i ) = argmin

(L̂i,µ̂i,σ̂2
i )

K-L
(
Pi(fi)||P̂(fi)

)

giving the following marginal moments

L̂i = F (li)

σ̂2
i = σ2

−i −
σ4
−iN (li|0,1)

(1+σ2
−i)F (li)(li + N (li|0,1)

F (li) )

µ̂i = µ−i + yiσ
2
−iN (li|0,1)

F (li)
√

1+σ2
−i

li = yiµ−i√
1+σ2

−i

5: Update (Li, µ̃i, σ̃2
i ) with ti(fi|Li, µ̃i, σ̃2

i ) = P̂(fi)
P̂−i(fi)

so that

µ̃i = σ̃2
i (σ̂−2

i µ̂i − σ−2
−i µ−i)

σ̃2
i = (σ̂−2

i − σ−2
−i )−1

Li = L̂i
√

2π(σ2
−i + σ̃2

i ) exp(1
2

(µ−i−µ̃i)2

σ2
−i+σ̃

2
i

)
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local shape hyper-parameters θK = {θjK}kj=1 ∈ Rk where Ψ is an unknown non-

linear mapping de�ned from X to M. The "Representer Theorem" Schölkopf

et al. (2001) states that solutions of a large class of optimization problems can be

expressed as kernel expansions over the sample points. Since our observations are

high-correlated, that issue does not allow us to search a good con�guration from

the "Representer Theorem" directly. However, the proposed technique succeeds to

�nd the optimal partitions with their local structures. For this purpose, we adopt

the following result deduced from the "Representer Theorem".

Lemma 3.1

♥

We assume that there exists a partition of X with centers {ci}i and an

arbitrary empirical risk function E, de�ned on HK , controlled by data and

regularization terms. Then, any function satisfying Ψ̂ = argminΨ∈HK E(Ψ),

admits a representation of the form

Ψ̂(.) =
N∑
i=1

αiK(., ci) (3.24)

Note that the mapping Ψ̂ is a linear combination of some kernels K(., ci) centered

on {ci}i. A proposed approximation of Ψ̂(x) is then Ψ(x) = ∑M
j=1 αjK(x, cj) for

M < N . Now, considering the parametrized version φj : X → R+; x 7→ K(x, cj),

we rewrite

Ψ(x) =
M∑
j=1

αjφj(x) (3.25)

From the last expansion, we only need to �nd αj in order to determine an ap-

proximation of Ψ̂. If we note α = [α1, . . . , αM ] and φ(x) = (φ1(x), . . . , φM(x))T ,

we can reformulate the approximation as Ψ(x) = αφ(x), which implies that

αTΨ(x) = (αTα)φ(x). If α is orthonormal (i.e., αTα = I), we simply get

φ(x) = αTΨ(x). We suppose that the con�guration of centers {cj}Mj=1 can be

obtained by any unsupervised clustering method (e.g., k-means Hamerly and

Drake (2015)) applied to the inputs X. Given {cj}Mj=1, the orthonormality of

α
(
i.e.,

〈
αj, αh

〉
2

= δjh
)
heavily depends on the kernels basis φj (and their hyper-

parameters θK as well) since
〈
αj, αh

〉
2

=
〈
Ψ(cj),Ψ(ch)

〉
2

= K(cj, ch) = φh(cj). Fi-

nally, the function Ψ detailed in (3.25), maps the d-dimensional inputs x1, . . . , xN
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into the M -dimensional vectors denoted by z1, . . . , zN where M << d (since

N << d and M < N).

3.4 Scalable Gaussian process classi�er

We de�ne a scalable GPc (SGPc) r :M⊆ RM → R, as a classical GPc f = r ◦Ψ :

X ⊆ Rd → R. The covariance function of r denoted c̃(., .) is more expressive

than c(., .), satisfying c̃(x, x′) = c(Ψ(x),Ψ(x′)). Besides, it operates on M and

depends on θc and θK , jointly. For the reminder, we recover the N ×M matrix of

transformed inputs Z = [z1, . . . , zN ]T = Ψ(X) and the N×1 transformed Gaussian

vector r = (r1, . . . , rN)T = r(Ψ(X)). Accordingly, the posterior distribution of f ,

given in (3.2), becomes a posterior at r satisfying

P(r|Z,y) = P(r|Z)P(y|r)
P(y|Z) (3.26)

∝ P(r|Z)P(y|r)

where the term P(y|Z) is called again the true marginal likelihood.

3.4.1 Posterior distribution approximations and predictions

We give details on how to approximate the posterior distribution in connection

with the proposed mapping (embedding) Ψ.

3.4.1.1 Scalable Laplace approximation (SLA)

Let r̂ be the MAP of P(r|Z,y), i.e., r̂ = (r̂1, . . . , r̂N)T = arg maxr P(r|Z,y). As for

the Laplace approximation, we can �nd r̂, iteratively, according to

rt+1 = (C̃−1 + W̃)−1(W̃rt +∇ logP(y|rt)) (3.27)

Let C̃ = c̃(X,X) denote the N × N matrix with element i, j equal to c̃(xi, xj)

and W̃ is a N ×N diagonal matrix with entries W̃ii = exp(−r̂i)
(1+exp(−r̂i))2 . Therefore, a

Gaussian approximation of the posterior distribution in (3.26) is given by

P̂(r|Z,y) = N (r|r̂, (C̃−1 + W̃)−1) (3.28)

Given a test input z∗ = Ψ(x∗), the rules for conditioning of multivariate Gaussian

distributions allow us to derive the approximate predictive distribution of r∗ =

34



Anis Fradi - Thesis

r(z∗) given Z, y and z∗ as

P̂(r∗|Z,y, z∗) = N (r∗|µ(z∗), σ2(z∗)) (3.29)

with 
µ(z∗) = C̃T

∗ C̃−1r̂

σ2(z∗) = C̃∗∗ − C̃T
∗ (C̃ + W̃−1)−1C̃∗

(3.30)

where C̃∗∗ = c̃(x∗, x∗) and C̃∗ = c̃(X, x∗) is the N × 1 vector with i-th element

equal to c̃(xi, x∗). Then, we can approximate the predictor of �rst class P(y∗ =

+1|Z,y, z∗), that is the conditional probability that y∗ = +1, by

π̄(z∗) =
∫
R
σ(r∗)P̂(r∗|Z,y, z∗)dr∗ (3.31)

3.4.1.2 Scalable Expectation propagation (SEP)

As for Expectation propagation, SEP consists in using un-normalized Gaussian

approximations of individual likelihoods P(yi|ri) = F (yiri), i ∈ {1, . . . N}. The

i-th individual likelihood is approximated by un-normalized Gaussian distribution

L̃i × N (ri|ṽi, s̃i) where L̃i > 0. Using the principle of Expectation propagation,

the posterior distribution in (3.26) can be approximated by

P̂(r|Z,y) = N (r|(I + S̃C̃−1)−1ṽ, (C̃−1 + S̃−1)−1) (3.32)

where ṽ = (ṽ1, . . . , ṽN)T and S̃ = diag(s̃1, . . . , s̃N) are obtained from Algorithm 8.

From (3.32), the conditional mean and variance of predictive distribution r∗ given

Z, y and z∗ are 
µ(z∗) = C̃T

∗ (C̃ + S̃)−1ṽ

σ2(z∗) = C̃∗∗ − C̃T
∗ (C̃ + S̃)−1C̃∗

(3.33)

Then, the conditional probability P(y∗ = +1|y,Z, z∗) is approximated by

π̄(z∗) = F
( C̃T

∗ (C̃ + S̃)−1ṽ√
1 + C̃∗∗ − C̃T

∗ (C̃ + S̃)−1C̃∗

)
(3.34)

To summarize, we have de�ned a family of classi�ers using a latent SGPc and

approximations of the exact posterior distribution depending on a set of hyper-

parameters θc and θK typically unknown to be estimated. We state that some

properties such as the stationarity of the GPc and the correlation between trans-
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formed inputs in the feature spaceM are controlled by θc and θK , respectively.

3.4.2 Optimizing hyper-parameters

Let θ = (θc, θK) ∈ Rp+k denote the hyper-parameters of the covariance function

c(., .) and those of the kernel K(., .), jointly. We will provide useful formulas and

simpli�cations for evaluating the approximate marginal likelihoods P̂(y|Z) for both

SLA and SEP.

3.4.2.1 The �rst partial derivatives of log P̂(y|Z)

In this section, we focus on terms required for computing �rst partial derivatives.

First case : SLA :

Integrating out the latent values r in (3.28), yields an approximation of the log-

marginal likelihood logP(y|Z)

l(θ) = log P̂(y|Z) = −1
2 r̂T C̃−1r̂ + logP(y|̂r)− 1

2 log
∣∣∣I + W̃

1
2 C̃W̃

1
2
∣∣∣ (3.35)

The �rst partial derivative of l(θ) with respect to θjc satis�es

∂l(θ)
∂θjc

= ∂l(θ)
∂θjc

∣∣∣∣∣
|̂r

+
N∑
i=1

∂l(θ)
∂r̂i

∂r̂i

∂θjc
(3.36)

Here

∂l(θ)
∂θjc

∣∣∣∣∣
|̂r

= 1
2 r̂T C̃−1 ∂C̃

∂θjc
C̃−1r̂− 1

2tr
[
(C̃ + W̃−1)−1 ∂C̃

∂θjc

]
(3.37)

means that the partial derivatives of l(θ) are calculated as if r̂ (and thus W̃) does

not depend on θc. The second term in (3.36) is determined by

∂l(θ)
∂r̂i

= −1
2
[
(C̃−1 + W̃)−1

]
ii

∂3 logP(y|r̂)
∂3r̂i

(3.38)

and

∂r̂
∂θjc

=
(
I + C̃W̃

)−1 ∂C̃
∂θjc
∇ logP(y|r̂) (3.39)

We now provide the partial derivatives of l(θ) w.r.t. θK . The �rst partial derivative

of l(θ) with respect to θjK satis�es

∂l(θ)
∂θjK

= ∂l(θ)
∂θjK

∣∣∣∣∣
|̂r

+
N∑
i=1

∂l(θ)
∂r̂i

∂r̂i

∂θjK
(3.40)
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Here

∂l(θ)
∂θjK

∣∣∣∣∣
|̂r

= 1
2 r̂T C̃−1∂C̃

∂Z
∂Z
∂θjK

C̃−1r̂− 1
2tr

[
(C̃ + W̃−1)−1∂C̃

∂Z
∂Z
∂θjK

]
(3.41)

which means that the partial derivatives are calculated as if r̂ (and thus W̃) does

not depend on θK . The second term relies on

∂r̂
∂θjK

=
(
I + C̃W̃

)−1∂C̃
∂Z

∂Z
∂θjK
∇ logP(y|r̂) (3.42)

The quantity ∂C̃
∂Z is the gradient of the modi�ed covariance matrix with respect to

the M -dimensional inputs Z = Ψ(X).

Second case : SEP :

From (3.32), the approximate log-marginal likelihood for SEP approximation is

l(θ) = −1
2 log

∣∣∣C̃ + S̃
∣∣∣− 1

2 ṽT (C̃ + S̃)−1ṽ + B̃ (3.43)

where B̃ comes from the normalization constants L̃i, satisfying B̃ = ∑N
i=1 log L̃i.

Proposition 3.1

♠

For SEP, it holds that

∂l(θ)
∂θjc

= 1
2 ṽT (C̃ + S̃)−1 ∂C̃

∂θjc
(C̃ + S̃)−1ṽ− 1

2tr
[
(C̃ + S̃)−1 ∂C̃

∂θjc

]
(3.44)

and

∂l(θ)
∂θjK

= 1
2 ṽT (C̃ + S̃)−1∂C̃

∂Z
∂Z
∂θjK

(C̃ + S̃)−1ṽ− 1
2tr
[
(C̃ + S̃)−1∂C̃

∂Z
∂Z
∂θjK

]
(3.45)

Proof We use the fact that implicit terms vanish when di�erentiating l(θ) and

the chain rule ∂C̃
∂θjK

= ∂C̃
∂Z

∂Z
∂θjK

.

3.4.2.2 The second partial derivatives of log P̂(y|Z)

In this section, we focus on terms required for computing second partial derivatives.

First case : SLA :
Proposition 3.2

For SLA, the second partial derivatives of the approximate log-marginal like-

lihood with respect to {θhc , θjc} can be analytically composed as

∂2l(θ)
∂θhc ∂θ

j
c

= ∂2l(θ)
∂θhc ∂θ

j
c

∣∣∣∣∣
|̂r

+
N∑
i=1

∂2l(θ)
∂2r̂i

∂2r̂i

∂θhc ∂θ
j
c

(3.46)

37



Anis Fradi - Thesis

♠

The �rst term is

∂2l(θ)
∂θhc ∂θ

j
c

∣∣∣∣∣
|̂r

= −1
2 r̂T

(
C̃−1 ∂C̃

∂θhc
C̃−1 ∂C̃

∂θjc
C̃−1 − C̃−1 ∂2C̃

∂θhc ∂θ
j
c

C̃−1 (3.47)

+C̃−1 ∂C̃
∂θjc

C̃−1 ∂C̃
∂θhc

C̃−1
)
r̂

+1
2tr

[
(C̃ + W̃−1)−1 ∂C̃

∂θhc
(C̃ + W̃−1)−1 ∂C̃

∂θjc

−(C̃ + W̃−1)−1 ∂2C̃
∂θhc ∂θ

j
c

]
which means that the partial derivatives of l(θ) are calculated as if r̂ (and

thus W̃) did not depend on θc. The second term depends on

∂2l(θ)
∂2r̂i

= 1
2
[
(C̃−1 + W̃)−1∂W̃

∂r̂i
(C̃−1 + W̃)−1

]
ii

∂3 logP(y|r̂)
∂3r̂i

−1
2
[
(C̃−1 + W̃)−1

]
ii
× ∂4 logP(y|r̂)

∂4r̂i
(3.48)

and

∂2r̂
∂θhc ∂θ

j
c

=(I+C̃
∂W̃
∂r̂

)−1( ∂2C̃
∂θhc ∂θ

j
c

∇ logP(y|r̂)−∂C̃
∂θjc

W̃
∂r̂
∂θhc
− ∂C̃
∂θhc

W̃
∂r̂
∂θjc

)
(3.49)

Proof For ∂2l(θ)
∂θhc ∂θ

j
c

∣∣∣∣
|̂r
and ∂2l(θ)

∂2r̂i
, we di�erentiate the �rst partial derivatives given in

(3.37) and (3.38), respectively. For ∂2r̂
∂θhc ∂θ

j
c
, we di�erentiate r̂ = C̃∇ logP(y|r̂) two

times and we use the following chain rules:

∂
∂θhc

= ∂
∂r̂

∂r̂
∂θhc

, ∂

∂θjc
= ∂

∂r̂
∂r̂
∂θjc

, ∂2

∂θhc ∂θ
j
c

= ∂2

∂2r̂
∂2r̂

∂θhc ∂θ
j
c
, ∂∇ log P(y|r̂)

∂r̂ = −W̃ and ∂2∇ log P(y|r̂)
∂2r̂

= −∂W̃
∂r̂ .

We Keep the same steps for evaluating the second partial derivatives ∂2l(θ)
∂θhK∂θ

j
K

when

replacing ∂C̃
∂θjc

by ∂C̃
∂Z

∂Z
∂θjK

and ∂2C̃
∂θhc ∂θ

j
c
by ∂2C̃

∂2Z
∂2Z

∂θhK∂θ
j
K

in (3.47) and (3.49).

For mixed derivatives ∂2l(θ)
∂θhc ∂θ

j
K

(
likewise ∂2l(θ)

∂θhK∂θ
j
c

)
, we just replace ∂C̃

∂θjc
by ∂C̃

∂Z
∂Z
∂θjK

and

∂2C̃
∂θhc ∂θ

j
c
by ∂

∂θhc
(∂C̃
∂Z

∂Z
∂θjK

) in the same equations.

First case : SEP :
Proposition 3.3

For SEP, the second partial derivatives of the approximate log-marginal like-
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♠

lihood with respect to {θhc , θjc} satisfy
∂2l(θ)
∂θhc ∂θ

j
c

= −1
2 ṽT

(
(C̃ + S̃)−1 ∂C̃

∂θhc
(C̃ + S̃)−1 ∂C̃

∂θjc
(C̃ + S̃)−1 (3.50)

−(C̃ + S̃)−1 ∂2C̃
∂θhc ∂θ

j
c

(C̃ + S̃)−1

+(C̃ + S̃)−1 ∂C̃
∂θjc

(C̃ + S̃)−1 ∂C̃
∂θhc

(C̃ + S̃)−1
)
ṽ

+1
2tr

[
(C̃ + S̃)−1 ∂C̃

∂θhc
(C̃ + S̃)−1 ∂C̃

∂θjc
− (C̃ + S̃)−1 ∂2C̃

∂θhc ∂θ
j
c

]

We can also get ∂2l(θ)
∂θhK∂θ

j
K

and ∂2l(θ)
∂θhc ∂θ

j
K

(
likewise ∂2l(θ)

∂θhK∂θ
j
c

)
for SEP by using the same

chain rules as for SLA only for the �rst term since the second term vanished when

di�erentiating the approximate log-marginal likelihood.

3.4.2.3 Numerical methods and sampling

In the marginal likelihood estimation, point estimates of the hyper-parameters are

obtained by maximizing the log-marginal likelihood with respect to θ = (θc, θK),

i.e., �nding

θ̂ = argmax
θ

l(θ) (3.51)

We refer to the resulting hyper-parameters as type-II MLEs. Let ∇l(θ) =(
{∂l(θ)
∂θjc
}pj=1, {

∂l(θ)
∂θjK
}kj=1

)T
denote the gradient vector of l(θ). Since there is no ana-

lytic solution when solving ∇l(θ) = 0, we make use of two iterative methods. We

�rst consider the gradient-descent according to Algorithm 1 where the cost func-

tion to be minimized is the negative approximate log-marginal likelihoods −l(θ)

given in (3.35) and (3.43) for both SLA and SEP, respectively. The second proce-

dure consists in �nding an explicit expression of the Hessian matrix ∇2l(θ) formed

by second partial derivatives of the log-marginal likelihood, i.e.,

∇2l(θ) =

{
∂2l(θ)
∂θhc ∂θ

j
c
}pj,h=1 { ∂2l(θ)

∂θhc ∂θ
j
K

}p,kj,h=1

{ ∂2l(θ)
∂θhK∂θ

j
c
}k,pj,h=1 {

∂2l(θ)
∂θhK∂θ

j
K

}kj,h=1

 (3.52)

which allows the use of the Newton-Raphson given in Algorithm 2.

Note that conventional optimizations might not �nd the best local maximum, thus

failing to �nd the most appropriate value of θ. Moreover, by selecting only one
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candidate for θ robustness and uncertainty quanti�cation are lost in the process.

Hence, we adopt a Bayesian point of view on θ = (θc, θK) and assign priors de-

noted by P(θc) and P(θK) in order the �nd the type II-MAP that maximizes the

posterior distributions on θ
(
since the notation MAP was used for r̂

)
. We then

sample posterior values of θ with MCMC. We simulate from P(θc, θK |r,y) which

factorizes across θc and θK . From (3.26) we get two separate conditional posterior

distributions

P(θK |r,y) ∝ P(y|r)P(θK) (3.53)

and

P(θc|r) ∝ P(r|Z)P(θc) (3.54)

For SEP, we simply replace P(y|r) by its approximation
∏N
i=1 L̃i×N (r|ṽ, S̃) given

in (3.53). Sampling from any of these distributions is carried out by using some

proposal distribution, for instance a Gaussian in the Metropolis-Hastings (MH)

illustrated in Algorithm 5, which is updated during the early iterations of SLA and

SEP algorithms in order to tune the acceptance rate. Furthermore, the local shape

hyper-parameters {θjK}kj=1 exhibit additional conditional independencies so that we

can sample them independently in separate blocks Neal (1997). An accepted state

for SGPc hyper-parameters requires an update of the proposal distribution when

updating (r̂,W̃) for SLA and (ṽ, S̃) for SEP. This holds for algorithms described

in Section 3.4.1.1 and Section 3.4.1.2 in order to �nd the posterior approximation

P̂(r|Z,y). The prior laws of θc and θK will be carefully �xed for applications in

connection with the kernel K(., .) and the covariance function c(., .) choices.

3.5 Applications

The main goal of our experiments is to evaluate the proposed SGPc using both

synthetic and real data.

Covariance function and kernel. In our experiments, the covariance function

of GPc is the squared exponential: cδ2,γ(x, x′) = δ2 exp
(
− ||x−x′||22

2γ

)
where δ2
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controls the variance and γ is the length-scale, which determines the fall-o� in

correlation with distance ||x− x′||2. For the mapping Ψ, we use a set of Gaussian

kernels: φj(x) = K(x, cj) = exp
(
− βj||x − cj||22

)
with local shape constants βj,

j ∈ {1, . . .M}. Consequently, the number of hyper-parameters θK coincides with

the dimension of M, i.e., k = M . Then, our model hyper-parameters become

θc = {δ, γ} and θK = {β1, . . . , βM}. To apply the MCMC sampling, we need to

de�ne prior distributions over unknown hyper-parameters. The variance δ2 is �xed

to one, for simplicity, which avoid the identi�ability problem of the proposed SGPc

model. The length-scale γ and the shape constants βj, often take nonnegative

values and can be sampled in the log-space, are assigned to inverse-gamma and

gamma priors, respectively.

Baselines. We focus on several comparisons:

We compare the proposed approximation methods (SLA and SEP) among

themselves with hyper-parameters estimated by: gradient-descent (GD-SLA

and GD-SEP), Newton-Raphson (NR-SLA and NR-SEP) and MCMC (MCM

C-SLA and MCMC-SEP).

We also compare the proposed SLA and SEP against some state-of-the-art

methods before and after dimensionality reduction using a standard tech-

nique.

Performance criteria. As accuracy criteria, we consider the mean classi�cation

error (MCE) where the classi�cation error for any unobserved data (z∗, y∗) and

�xed threshold s is: CE = 1(
{y∗=+1,π̄(z∗)≥s}∪{y∗=−1,π̄(z∗)<s}

). Here π̄ is de�ned in

(3.31) and (3.34), whereas the optimal threshold is reached by the ROC curve. We

also consider the root mean square error (RMSE) as a precision criteria where the

square error is de�ned by: SE =
(
y∗ − π̄(z∗)

)2
for y∗ ∈ {0, 1}.

3.5.1 Synthetic datasets

To illustrate the practical use of the proposed SGPc with di�erent optimization

techniques, we conduct a set of controlled synthetic studies for avouching our
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Table 3.1: Simulated datasets: Mean classi�cation error.

Datasets Methods
GD-SLA GD-SEP NR-SLA NR-SEP MCMC-SLA MCMC-SEP

Step function 14.6% 9.8% 14.6% 8.4% 7.2% 0%
Weighted mixture 12% 10% 9% 8% 6% 5%

theoretical results. It is important to mention that the goal of the embedded

submanifold technique, here, is to search an adaptable representation for data

rather than dimensionality reduction.

Datasets. The �rst simulation is from the univariate step function de�ned by:

g(xi) =


−1 if xi ≤ 0

+1 if xi > 0
. The training set is composed of 200 inputs sampled

from N (0, 1) while 500 inputs are uniformly distributed between −2 and 2 for

test. An error will occur when g(x∗) 6= y∗ for an unobserved data (x∗, y∗). The

second simulation is determined by a mixture of two four-dimensional Gaussian

distributions i.e., xi = yi ∗ N (0, I) + (1 − yi) ∗ N (1, I) where yi are produced by

sampling directly from a Bernoulli law B(λ) of a �xed parameter λ ∈]0, 1[. For

this example, 200 samples were generated for training whereas 400 are for test.

Results. The results from Table 3.1 suggest that NR-SEP performs as well as GD-

SEP, but there is the same MCE for SLA with the step function. Moreover, MCMC

sampling gives improved performance when compared to iterative optimization

methods. Accordingly, one can observe that SEP achieves a better accuracy than

SLA with a signi�cant margin for both datasets. From various conducted tests,

we showed that the quality of the proposed SGPc strongly depends on the hyper-

parameters selection method.

3.5.2 Real data

In order to assess the computational complexity for our proposed procedures, a

real study was conducted for a range of datasets. Unlike the previous experiments,

the embedded submanifold technique has an important and crucial role to reduce

the dimensionality of data. We randomly choose 80% of the dataset to form the

training set whereas the rest is maintained for test.
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(a) (b) (c) (d)

Figure 3.1: An example of two original images: non-defective (a) and defective (c). The

associated extracted features: non-defective (b) and defective (d).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: An Example of two video scene sequences where (top) non-violent and (bot-

tom) violent. For each video: �rst frame (a,e), frame in the middle (b,f), last frame (c,g),

and ViF descriptor (d,h).

Table 3.2: Real data: Mean classi�cation error.

Datasets Methods
GD-SLA GD-SEP NR-SLA NR-SEP MCMC-SLA MCMC-SEP

BC 12.08% 11.67% 10% 9.58% 7.08% 7.08%
MD 13.07% 8.91% 12.39% 8.32% 11.31% 7.49%
SV 14.29% 12.24% 14.29% 10.2% 6.12% 4.08%

Table 3.3: Real data: Root mean square error.

Datasets Methods
GD-SLA GD-SEP NR-SLA NR-SEP MCMC-SLA MCMC-SEP

BC 0.213 0.202 0.188 0.154 0.175 0.120
MD 0.256 0.211 0.225 0.186 0.200 0.159
SV 0.213 0.197 0.194 0.163 0.175 0.137
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3.5.2.1 Datasets of real data

Breast cancer (BC) from 2D images. We �rst apply the proposed approaches

for classifying 1200 images representing tissues (normal or abnormal). We note

that breast cancer have speci�c tissues and we will use them to extract pertinent

features in order to test if a patient is infected or not. Motivated by this ap-

plication, we represent each image with a descriptor of length d = 6300, called

Pyramid of Histograms of Bag of Words (PHOW), based on the concatenation of

three regional histograms determined in subdivisions of the image. More details

about this dataset are given in Gao et al. (2015).

Manufacturing defect (MD). The second dataset contains 2042 images of man-

ufacturing defects (defectives or non-defectives) Fradi et al. (2018). Each original

image is represented with its extracted feature using the vertical gradient of length

d = 23205. The main goal is to learn the relationship between defect and direc-

tional change in the intensity of each image. We display some examples in Fig-

ure 3.1 for original images: non-defective (a) and defective (c) and their extracted

features: non-defective (b) and defective (d).

Learning and classifying motion information from scene videos (SV). The

third example comes from a dataset containing 246 videos of crowd violence (vio-

lent or non-violent scenes), also presented in Hassner et al. (2012). Given a video

sequence, we selected a Violence Flows (ViF) descriptor of length d = 756 based

on estimating the optical �ow between consecutive frames. Figure 3.2 illustrates

an example of two video scene sequences: non-violent (a,b,c) and violent (e,f,g)

with their corresponding ViF descriptor: (d) and (h).

3.5.2.2 Results on real data

The mean classi�cation and root square errors are summarized in Table 3.2 and

Table 3.3, respectively. Accordingly, one can observe that SEP achieves the lowest

MCE and RMSE values with a signi�cant margin. It is also notable that both SLA
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Figure 3.3: Representing test data with contour plot colored as function of the predic-

tive probability by region (a). The approximate predictor of class "+1" with optimal

threshold (green line) (b). In all sub�gures, normal tissues are red dotted and abnormal

tissues are blue dotted.
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Figure 3.4: Markov chain values of β1 (a) and β2 (c). Posterior distributions of β1 (b)

and β2 (d).
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Figure 3.5: Sigmoid function (red), SLA predictive distribution (green), and the product

of sigmoid and predictive distribution (blue) (a). Probit function (red), SEP predictive

distribution (green), and the product of probit and predictive distribution (blue) (b).
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and SEP with MCMC sampling improve those with iterative optimization methods

with better results for SEP. Furthermore, both SLA and SEP give a good precision

when focusing on the RMSE criteria with a better margin for SEP.

Results on breast cancer (BC). More details about MCMC-SLA are given in

Figure 3.3 (a). Accordingly, test data are represented in two-dimensional feature

spaceM⊆ R2 with contour plot colored as function of predictive probabilities of

class "+1" in regions. This plot still shows that predictive probabilities revert to

one half if we move away from the data. This can be also con�rmed in Figure 3.3

(b) where predictive probabilities are near/far to 0.5.

We give an illustration of MCMC-SEP. The evolution of the length-scale γ and the

local shape parameters θK = {β1, β2} were sampled using 104 simulations in each

update for the algorithms described in Section 3.4.1.1 and Section 3.4.1.2. Fortu-

nately, the experiments have shown that the problem of big iterations (practically

106) usually needed to simulate Markov chains for complex inputs is partially

solved by considering the submanifold structure. We show the chain values of θK

for the last update in Figure 3.4 (a,c). The sampled values are centered near the

sample means: 0.6 and 1 for β1 and β2, respectively, but also contain values that

are less common. To estimate the posterior distributions of θK , we simply take

the nonparametric kernel density of sampled values Botev et al. (2010) evaluated

at equally-spaced points that cover the range of the data in β1 and β2. Figure 3.4

(b,d) displays these absolutely smooth posteriors.

Results on manufacturing defect (MD). Figure 3.5 illustrates the key steps

needed to classify an unobserved input z∗ = Ψ(x∗) where the true output is

y∗ = −1. The area between the x-axis and the blue line is the approximate

predictor for y∗ = +1, π̄(z∗) with respective values: 0.42 and 0.33 for MCMC-SLA

and MCMC-SEP. This means that we reach more precision with SEP since 0.33

is further from 0.5 than 0.42.

Results on scene videos (SV). We consider a particular example of mapping a
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Figure 3.6: Representing and classifying data in two-dimensional feature space with SLA

(top) and SEP (bottom). Test data (a,d), the approximate predictor of class "+1" with

optimal threshold (green line) (b,e), and binary predicted outputs (c,f). In all sub�gures,

non-violent videos are red dotted and violent videos are blue dotted.

subset of test data from the input space X ⊆ R756 to the feature one M ⊆ R2.

In Figure 3.6 (a,d), we plot the transformed inputs with group labels "-1" as red

dots and those with group labels "+1" as blue dots. These results were obtained

when �nding the type-II MAP estimator of θK = {β1, β2} for both MCMC-SLA

and MCMC-SEP, respectively. A great separability between the two classes is

clearly visible when reducing the dimensionality and the complexity of initial in-

puts. Hence, the mapping from M to the output space {−1,+1} is smooth and

can be easily managed by the SGPc after estimating the length-scale γ. The solid

green line in Figure 3.6 (b,e) represents the optimal threshold obtained by the

ROC curve for SLA and SEP, respectively. From Figure 3.6 (c,f), it can be seen

that SEP has a better predictor than SLA where we have four misclassi�ed videos

for SLA and only two for SEP.

3.5.3 Comparative study

We �rst compare the proposed SLA and SEP with the type II-MAP estimator to

some baseline methods: linear SVM, RBF SVM, standard GPc with Laplace ap-

proximation, logistic regression and logistic ridge regression. Following the same
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Figure 3.7: Performance evaluation as a mean classi�cation error for di�erent methods

(a). Performance evaluation as a mean classi�cation error when applying PCA to the

baseline methods and the manifold embedding to the proposed SLA and SEP with several

values of M for real data: BC (b), MD (c), and SV (d).
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idea, we show results of the baseline methods in Figure 3.7 (a). According to

these results, we state that SLA and SEP are more e�cient than all baseline

methods when minimizing the MCE criteria. It is also important to compare the

proposed manifold embedding for dimensionality reduction to standard techniques

based on modifying the covariance function. For instance, Snelson and Ghahra-

mani (2006) have learned a linear projection P of the data points in a supervised

manner (e.g., principal component analysis (PCA) extraction) with a covariance

function: c(P(x),P(x′)), yielding the following modi�ed squared exponential co-

variance: ˜̃cδ,γ(x, x′) = δ2 exp
(
− ||P(x)−P(x′)||22

2γ

)
for any pair of inputs (x, x′). We also

give results after reducing the dimensionality with PCA as function of di�erent

projection dimensions (M = 2, 5, 10, 50, 100, 200) in Figure 3.7 (b,c,d). We use the

same values of M for our proposed manifold embedding technique when dealing

with SLA and SEP. Accordingly, we state that both SLA and SEP perform better

than the baseline methods with a signi�cant margin for all values of M .

3.6 Conclusion

Although Gaussian processes are very �exible, they are still limited in high-dimensions.

In this chapter, we have suggested to perform an embedded submanifold with a

mapping (embedding) de�ned on a Reproducing Kernel Hilbert Space for dimen-

sionality reduction. The hyper-parameters of the kernel and the covariance func-

tion were estimated jointly. A set of new identities were also derived in this purpose

yielding a reduced time complexity. To summarize, our proposed scalable Gaussian

process classi�er can be viewed as a valid Gaussian process classi�er for classifying

complex and high-dimensional data with a more expressive covariance function.

This provides new data representations in the feature space (manifold) allowing

more advantages than dealing with initial inputs. Finally, our proposed method

successfully modeled highly complex data (e.g., images and video sequences) where

other baseline methods have failed.
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Chapter 4: Bayesian regression and

classi�cation using Gaussian processes indexed by

probability density functions

In this chapter, we introduce the notion of GPs indexed by probability density

functions. We particularly show how a Bayesian inference with GPs can be put

into action on functional spaces. We discuss some improvements of covariance func-

tion selection and hyper-parameters estimation from Chapter 3. Our framework

has the capacity of inferring and classifying both high-dimensional and functional

inputs. Extensive experiments on multiple synthetic, semi-synthetic and real data

demonstrate the e�ectiveness and the e�ciency of the proposed method.

4.1 Introduction

In functional data analysis Srivastava and Klassen (2016) and medical imag-

ing Belle et al. (2015), it is very common to compare/classify functions. The

mathematical formulation leads to a wide range of applications, but it is crucial to

characterize a population or to build predictive models. For instance, probability

density functions (PDFs) are inherently in�nite-dimensional objects so that it is

not straightforward to extend traditional machine learning methods from �nite

vectors to functional instances Pistone and Sempi (1995). In particular, multi-

ple frameworks exist for comparing PDFs in di�erent representations by their co-

variance matrices including Frobenius, Fisher-Rao, log-Euclidean, Jensen-Shannon

and Wasserstein metrics Bachoc et al. (2018); Nguyen and Vreeken (2015); Srivas-

tava et al. (2007).

Many categories of observations can be represented by PDFs and then studied

as elements of a Riemannian manifold equipped with the Fisher-Rao metric Rao

(1945). This setting is important for many reasons: First, PDFs make the problem
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formulation simpler by identifying data originally lying on an vector space, that

are hard to interpret, by their categories and their corresponding probabilities.

Second, PDFs improve the visualization of local distributions of data. Finally,

when dealing with high-dimensional datasets (set of repetitive features), we can

visualize them using PDFs which would be very helpful to explore the skewness

of data. In particular, the consistency of regression and classi�cation with PDFs

as inputs was established in Oliva et al. (2014); Póczos et al. (2013); Sutherland

et al. (2016) with the help of the nonparametric kernel density estimation.

Throughout this chapter, our main aim is to learn GPs indexed by PDFs. For

instance, one can think of a GP as de�ning PDFs and inference is taking place

directly in the function-space. Moreover, the index space becomes that of PDFs

when choosing the underlying metric in order to evaluate the dissimilarity between

PDFs. The only drawback is usually that performing Kriging Vigsnes et al. (2017)

on the PDFs space P is not straightforward due to its geometry ichi Amari (1983);

Jost (2011). For this end, we will exploit an isometry from P to the tangent space

of the Hilbert upper-hemisphere Srivastava et al. (2007). This allows inference to

be made in a sub-linear space.

In order to capture all variations from PDFs and to perform optimal pre-

dictions, we thus de�ne a zero mean GP on P : Z ∼ GP(0, c(., .)) of a covari-

ance function c(., .). Let (p1, y1), (p2, y2), . . . , (pN , yN) be a �nite set of observa-

tions in which pi ∈ P are PDFs inputs and yi ∈ R are the associated responses,

i ∈ {1, . . . , N}. We de�ne an estimate of the conditional predictive expectation

by E
[
y∗|y1, . . . , yN , p1, . . . , pN , p

∗
]
for an unobserved PDF p∗. For the classi�cation

model, we assume that yi ∈ {−1,+1} and we are interested in the probability of

one of two given classes P(y∗ = ±1|y1, . . . , yN , p1, . . . , pN , p
∗).

For estimating the covariance function hyper-parameters, we focus on several

methods maximizing the marginal likelihood. Our goal is then to select those

optimizing di�erent performance criteria for both regression and classi�cation:

1. The �rst method is the quasi-Newton with BFGS updates, based on the

gradient vector and an approximation of the Hessian matrix, in order to �nd
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a local maximum of the marginal likelihood. This choice is very crucial and

is an improvement from Chapter 3. One of the chief advantages of quasi-

Newton method over Newton's method is that the Hessian matrix does not

need to be computed but only approximated. In addition, Newton's method

and its derivatives, such as interior point methods, require the Hessian to

be inverted which is typically implemented by solving a system of linear

equations and is often quite costly.

2. The second method is a special case of MCMC methods, called Hamilto-

nian Monte-Carlo (HMC) Duane et al. (1987). The objective is to perform

sampling from a probability distribution for which the marginal likelihood

and its gradient are known. The HMC has the advantage of simulating from

a physical system governed by Hamiltonian dynamics, which performs the

number of iterations usually needed for MCMC sampling.

4.2 Rimennian representation

Let p be a PDF of a real-valued random variable X de�ned on I = [0, 1]. The set

of all PDFs forms

P =
{
p : I → R

∣∣∣ p is nonnegative and
∫
I
p(t)dt = 1

}
(4.1)

The tangent space of P at p is

Tp(P) =
{
f : I → R

∣∣∣ ∫
I
f(t)dt = 0

}
(4.2)

Note that P is viewed as a Riemannian manifold equipped with the Fisher-Rao

metric de�ned as follows: for any p ∈ P and tangent vectors f1, f2 ∈ Tp(P), the

inner-product is given by 〈
f1, f2

〉
p

=
∫
I

f1(t)f2(t)
p(t) dt (4.3)

As a second choice of Riemannian representations is the space of square-root den-

sity functions, satisfying

H =
{
ψ : I → R

∣∣∣ ψ is nonnegative, and ||ψ||L2 =
( ∫

I
ψ(t)2dt

) 1
2

= 1
}

(4.4)
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The tangent space of H at ψ is

Tψ(H) =
{
g : I → R

∣∣∣ ∫
I
ψ(t)g(t)dt = 0

}
(4.5)

For any two tangent vectors g1, g2 ∈ Tψ(H), we state that the Fisher-Rao metric

is simply reduced to the L2 metric de�ned by〈
g1, g2

〉
L2

=
∫
I
g1(t)g2(t)dt (4.6)

Moreover, associated with each p ∈ P is a unique ψ ∈ H (isometrically) expressed

as

ψ(t) =
√
p(t), t ∈ I (4.7)

Note that H results to be the Hilbert upper-hemisphere (nonnegative-only) with

the L2 metric. The advantage of the representation ψ ∈ H is that it greatly

simpli�es the Fisher-Rao metric placed on P with some nice statistical tools on

the Hilbert sphere. We list some analytical expressions that are useful for statistical

analysis:

Geodesic path. Given ψ ∈ H and a vector g ∈ Tψ(H), the geodesic path with

initial condition ψ and velocity g at any time instant t can be parameterized in

terms of a direction in Tψ(H) as

ψ(t) = cos
(
t||g||L2

)
ψ + sin

(
t||g||L2

) g

||g||L2
(4.8)

Geodesic distance. The arc length of the geodesic path in H between two func-

tions ψ1 and ψ2, called geodesic distance, is given by

dH
(
ψ1, ψ2

)
= arccos

(〈
ψ1, ψ2

〉
L2

)
(4.9)

Exponential map. Let ψ be any element of H and g ∈ Tψ(H). We de�ne the

exponential map as the geodesic path at t = 1, which is an isometry from Tψ(H)

to H, satisfying

expψ(g) = cos
(
||g||L2

)
ψ + sin

(
||g||L2

) g

||g||L2
(4.10)

The exponential map is a bijection between the tangent space and the unit sphere

if we restrict g so that ||g||L2 ∈ [0, π[.
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Log map. For ψ1, ψ2 ∈ H, we de�ne g ∈ Tψ1(H) to be the inverse exponential

(log) map of ψ2 if expψ1(g) = ψ2. We then use the notation

g = logψ1(ψ2) (4.11)

where g = β
||β||L2

dH
(
ψ1, ψ2

)
and β = ψ2 −

〈
ψ2, ψ1

〉
L2
ψ1.

Fréchet mean. The Fréchet mean of ψ1, . . . , ψN ∈ H is the function ψH belonging

to H and minimizing the Fréchet variance Karcher (1977), i.e.,

ψH = argmin
ψ∈H

N∑
i=1

d2
H

(
ψ, ψi

)
(4.12)

For the search of ψH, we consider iterative algorithms on H. For simplicity, we

consider the gradient-descent on the sphere according to:

ρ← expρ
(
ετ
)
with a step size ε > 0.

τ ← 1
N

∑N
i=1 logρ

(
ψi
)
for direction update.

In addition, the curvature of the unit sphere is equal to one, the injectivity and

the convexity radius are π and π
2 , respectively. This means that the Fréchet mean

is unique particularly in the Hilbert upper-hemisphere H. More details were given

in Krakowski and Manton (2007).

4.3 Gaussian Processes on P

In this section, we focus on constructing GPs on P . A GP Z on P is a random

�eld indexed by P so that (Z(p1), . . . , Z(pN))T is a multivariate Gaussian vector

for p1, . . . , pN ∈ P . A zero mean GP is completely speci�ed by its covariance

function c : P × P → R of a real process Z de�ned as

c(pi, pj) =E[Z(pi)Z(pj)] (4.13)

The covariance function c(., .) on P must satisfy the following conditions: For

any N ≥ 1 and p1, . . . , pN ∈ P , the matrix C = c(p,p) is symmetric nonnegative

de�nite for p = (p1, . . . , pN)T . Furthermore, c(., .) is called non-degenerate when

the above matrix is invertible whenever p1, . . . , pN are two-by-two distinct.

For P and H detailed in (4.1) and (4.4), we state that there is an isometry between

P andH; p 7→ ψ ≡ √p from (4.7) and a second one betweenH and Tψ1(H) detailed
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Figure 4.1: An illustration for representing a PDF p as an element g of the tangent space
T1(H).

in (4.5); ψ 7→ g ≡ logψ1(ψ) for any ψ1 ∈ H from (4.11). Consequently, we get

an isometry between P and Tψ1(H); p 7→ logψ1(√p) by composition. As a special

case, we note E = T1(H) the tangent space of H at the unity pole (ψ1 ≡ 1),

as illustrated in Figure 4.1. The strategy that we adopt to construct covariance

functions is to exploit the isometric map log1 based on the linear tangent space E .

That is, we construct covariance functions with (i, j) component as

c(pi, pj) = K(‖ log1(√pi)− log1(√pj)‖2) (4.14)

Proposition 4.1

♠

Let K : R+ → R be a covariance function on E satisfying the stationarity

condition: K(ui, uj) = K(‖ui − uj‖2) and c(., .) be de�ned as in (4.14).

Then, c(., .) is a covariance function. Furthermore, if
{
K(‖ui − uj‖2

}N
i,j=1

is

invertible then c(., .) is non-degenerate.

More details are given in Bachoc et al. (2018); Fradi et al. (2020). From (4.14), the

covariance function with (i, j) component is expressed as c(pi, pj) = K(‖gi−gj)‖2)

for gi ≡ log1(√pi). In addition, the covariance function K(.) usually relies on a

set of hyper-parameters denoted θ = {θj}pj=1. For this reason, we use the notation

Kθ(.) to emphasize the dependence on θ.

4.4 Regression and classi�cation on P

In this section, we give details of both regression and classi�cation on P .
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4.4.1 Regression on P

Having set out the conditions on the covariance function, we can de�ne the regres-

sion model on P by

yi = Z(pi) + ηi, i = 1, . . . , N (4.15)

where Z is a zero mean GP indexed by P of a covariance function c(., .) and

ηi
iid∼ N (0, σ2). Here σ2 is the observation noise variance supposed to be known

for simplicity. Moreover, if we note y = (y1, . . . , yN)T , the likelihood term is then

P(y|Z(p)) = N (Z(p), σ2I), whereas the prior on Z(p) is P(Z(p)) = N (0,C) with

C = c(p,p) =
{
Kθ(‖gi − gj‖2)

}N
i,j=1

from the de�nition of Z.

For an unobserved PDF p∗ and by deriving the conditional distribution, we arrive

at the key predictive equation at Z∗ = Z(p∗) so that

P(Z∗|p,y, p∗) = N (Z∗|µ(p∗), σ2(p∗)) (4.16)

with 
µ(p∗) = CT

∗ (C + σ2I)−1y

σ2(p∗) = C∗∗ −CT
∗ (C + σ2I)−1C∗

(4.17)

where C∗ = c(p, p∗) =
{
Kθ(||gi − g∗||2)

}N
i=1

and C∗∗ = c(p∗, p∗) = Kθ(||g∗ − g∗||2)

for g∗ ≡ log1(
√
p∗).

We use the product of likelihood and prior terms to perform the integration over

Z(p) yielding the following log-marginal likelihood

l(θ) = logP(y|p, θ) = −yT (C + σ2I)−1y− log |C + σ2I| − N

2 log 2π (4.18)

The partial derivative of the log-marginal likelihood with respect to θj is then

∂l(θ)
∂θj

= 1
2yTC−1 ∂C

∂θj
C−1y− tr

[
C−1 ∂C

∂θj

]
(4.19)

4.4.2 Classi�cation on P

For classi�cation, we focus on the case of binary outputs, i.e., yi ∈ {−1,+1}

and the GP Z is now referred to as a GPc indexed by P . We simply update

the Laplace approximation detailed in Section 3.2.2 to GPc indexed by PDFs

p1, . . . , pN instead of vectors x1, . . . , xN . Let Ẑ(p) = (Ẑ(p1), . . . , Ẑ(pN)) be the
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MAP estimator resulting from the Laplace approximation and W the negative

Hessian matrix of the likelihood term, i.e., W is a N × N diagonal matrix with

entries Wii = exp(−Ẑ(pi))
(1+exp(−Ẑ(pi)))2 . The approximate log-marginal likelihood is

l(θ) = −1
2Ẑ(p)TC−1Ẑ(p) + logP(y|Ẑ(p))− 1

2 log
∣∣∣I + W

1
2 CW

1
2
∣∣∣ (4.20)

Following the same idea, the partial derivatives of the log-marginal likelihood with

respect to θj satisfy

∂l(θ)
∂θj

= ∂l(θ)
∂θj

∣∣∣∣∣
|Ẑ(p)

+
N∑
i=1

∂l(θ)
∂Ẑ(pi)

∂Ẑ(pi)
∂θj

(4.21)

The �rst term, obtained when we assume that Ẑ(p) (as well as W) does not

depend on θ, satis�es

∂l(θ)
∂θj

∣∣∣∣∣
|Ẑ(p)

= 1
2Ẑ(p)TC−1 ∂C

∂θj
C−1Ẑ(p)− 1

2tr
[
(C + W−1)−1 ∂C

∂θj

]
(4.22)

The second term, obtained when we suppose that only Ẑ(p) (as well as W) depends

on θ, is fully determined by

∂l(θ)
∂Ẑ(pi)

= −1
2
[
(C−1 + W)−1

]
ii

∂3 logP(y|Ẑ(p)
∂3Ẑ(pi)

(4.23)

and

∂Ẑ(p)
∂θj

=
(
I + CW

)−1 ∂C
∂θj
∇ logP(y|Ẑ(p)) (4.24)

4.5 Optimizing hyper-parameters

The resulting log-marginal likelihoods l(θ) given in (4.18) and (4.20) for both

regression and classi�cation depend on the covariance function hyper-parameters

controlling the stationarity of GPs on P . We can optimize all hyper-parameters

based on prior expert knowledge or directly from data, which depends on the data

type to be collected.

For maximizing the log-marginal likelihoods with respect to θ, we �rst make use of

an iterative optimization method: quasi-Newton, detailed in to Algorithm 3. This

task is equivalent to minimizing the cost function taking the negative log-marginal

likelihoods −l(θ).

In a Bayesian context, weak prior distributions are commonly used for θ = {θj}pj=1.
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Such weak prior has the form

P(θ) =
p∏
j=1

P(θj) (4.25)

where we assume that all θjs are independent. From Bayes' rule, the log-marginal

posterior of θ satis�es

lpost(θ) = logP(θ|y,p) (4.26)

∝ logP(y|p, θ) + logP(θ)

= l(θ) +
p∑
j=1

logP(θj)

When sampling from continuous variables, HMC can prove to be a more powerful

tool than the usual MCMC sampling. It avoids random walk behavior by simulat-

ing from a physical system governed by Hamiltonian dynamics. In HMC, particles

are characterized by a position vector or state θ = {θj}pj=1 and a velocity vector

s = {sj}pj=1. The Hamiltonian is the sum of potential energy and kinetic energy,

de�ned as follows

H(θ, s) = H1(θ) +H2(s) = −lpost(θ) + 1
2

p∑
j=1

sj
2

(4.27)

which means that s ∼ N (0, I). Instead of sampling from exp(lpost(θ)) directly,

HMC operates by sampling from the distribution exp(−H(θ, s)). State a position

θ and a velocity s are modi�ed such that H(θ, s) remains constant throughout the

simulation process. The di�erential equations are given by

dθj

dt
= ∂H

∂sj
= sj and

dsj

dt
= −∂H

∂θj
= −∂H

1

∂θj
, j = 1, . . . , p (4.28)

To maintain invariance of the Markov chain, however, care must be taken to pre-

serve the volume conservation and time reversibility. The leap-frog algorithm,

summarized in Algorithm 9, maintains these properties Neal (2010).
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Algorithm 9: Leap-frog.
1: for t = 1, 2, . . . do

2: Find the step size ε (e.g., by backtracking line search)

3: sjt+ ε
2

:= sjt − ε
2
∂
∂θj
H1(θt)

4: θjt+ε := θjt + εsjt+ ε
2

5: sjt+ε := sjt+ ε
2
− ε

2
∂
∂θj
H1(θt+ε)

6: end for

We thus perform a half-step update of the velocity at time t + ε
2 , which is then

used to compute θjt+ε and s
j
t+ε. HMC also needs an acceptance test to accept/reject

stage after T leap-frog steps. We summarize the HMC sampling in Algorithm 10.

Algorithm 10: HMC sampling.
Require: log-marginal posterior lpost and its gradient vector

∇lpost(θ) = ∇l(θ) +∇ logP(θ)

Ensure: θ̂

1: Initialize θ0

2: Sample a velocity s0 ∼ N (0, I)

3: Perform T Leap-frog steps to obtain the new state θT and velocity sT from

Algorithm 9

4: Acceptance probability

α := min
{

1, exp(−H(θT , sT ))
exp(−H(θ0, s0))

}
5: Simulate u ∼ U([0, 1])

6: if u < α then

7: Accept the proposal θ̂ := θT

8: else

9: Reject the proposal θ̂ := θ0

10: end if
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4.6 Applications

In this section, we test and illustrate the proposed methods using synthetic, semi-

synthetic and real data. For all experiments, we study the empirical results of GPs

indexed by PDFs for both regression and classi�cation.

Covariance function. In practice, we can select the covariance function Kθ(.)

from the Matérn family: Kθ(x) = δ2

Γ(ν)2ν−1

(
2
√
νx
γ

)ν
Kν

(
2
√
νx
γ

)
where δ2 is the vari-

ance parameter, γ is the length-scale parameter and ν is the smoothness parameter.

Here, Kν is the modi�ed Bessel function of the second kind and Γ refers to the

gamma function. From Proposition 4.1, the Matérn covariance function with (i, j)

component de�ned by c(pi, pj) = Kθ(‖gi − gj)‖2) is, indeed, non-degenerate. The

Matérn form has the desirable property that GPs have realizations (sample paths)

that are (ν − 1) times di�erentiable, which prove its smoothness as function of

ν. As ν → ∞, the Matérn covariance function approaches the squared exponen-

tial form, whose realizations are in�nitely di�erentiable Minasny and Mcbratney

(2005). So, the Matérn covariance function is more general than the squared ex-

ponential adopted in Chapter 3. To apply the HMC sampling, we need to de�ne

prior distributions over unknown hyper-parameters. Following Gelman (2006), δ2

will be assigned to a half-Cauchy (nonnegative-only) prior distribution and γ is

assumed to be an inverse-gamma distribution, whereas ν is simply estimated by

cross-validation Neal (1997).

Baselines. We compare results of GPs indexed by PDFs (GPP) where the hyper-

parameters are estimated by quasi-Newton (QN-GPP) and HMC (HMC-GPP)

to:

Functional linear model (FLM) for regression Ramsay and Dalzell (1991).

Nonparametric kernel Wasserstein (NKW) for regression Sriperumbudur

et al. (2010).

A GP based on the Wasserstein distance (W-GP) for classi�cation Mallasto

and Feragen (2017).
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Figure 4.2: PDFs of TBF inputs for regression. The output with continuous value in

[−3, 4] is illustrated by a colorbar.

AGP based on the Jensen-Shannon (JS-GP) divergence for classi�cation Nguyen

and Vreeken (2015).

Performance criteria. For regression, we illustrate the performance of proposed

framework in terms of root mean square error (RMSE) where the square error

at an unobserved data (p∗, y∗) is de�ned by: SE =
(
y∗ − µ(p∗)

)2
and the nega-

tive log-marginal likelihood (NLML). For classi�cation, we consider three criteria:

accuracy, area under curve (AUC) and NLML.

4.6.1 Regression

We �rst consider a synthetic dataset for regression.

Dataset. We observe a �nite set of functions simulated from (4.15) with

Z(pi) = 0.5 ∗
〈√

pi,
√
p̃
〉

2
+ 0.5

For this example, we consider a truncated Fourier basis (TFB) with random Gaus-

sian coe�cients to form the original functions satisfying vi(t) = δi,1
√

2 sin(2πt)

+ δi,2
√

2 cos(2πt) where δi,1, δi,2 ∼ N (0, 1). We also take ṽ(t) = −0.5
√

2 sin(2πt)

+ 0.5
√

2 cos(2πt) as a reference function. We suppose that p̃ and pis are referred

to the corresponding PDFs of ṽ and vis estimated using the nonparametric kernel

method (bandwidths were selected using the method given in Botev et al. (2010)).

An example of N = 100 estimates is displayed in Figure 4.2 with colors depending

on their output levels. Note that PDFs de�ned on I can also be treated as those
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on any interval in R via wrapping I for analysis.

Results. The experimental results of the TFB regression dataset, when focusing

on the RMSE values, are shown in Table 4.1. According to these results, we re-

mark that the proposed QN-GPP gives better precision than FLM. On the other

hand, HMC-GPP substantially outperforms NKW with a signi�cant margin. As

illustrated in Table 4.2, we state that the proposed methods are more e�cient than

the baseline FLM when maximizing the log-marginal likelihood. Again, this is an

explanation on how the quality of GPP strongly depends on hyper-parameters

estimation method. In addition, QN-GPP stated in Algorithm 3 is very e�ective

from a computational point of view.

Table 4.1: Regression: Root mean square error.

QN-GPP HMC-GPP FLM NKW
0.07 0.13 0.10 0.28

Table 4.2: Regression: Negative log-marginal likelihood.

QN-GPP HMC-GPP FLM
73.28 21.89 329.66

4.6.2 Classi�cation

Now, we perform some extensive experiments to evaluate the proposed methods

using a second category of datasets for classi�cation.

4.6.2.1 Datasets for classi�cation

Synthetic datasets.We consider two datasets of synthetic PDFs: beta and inverse-

gamma distributions. This choice is very crucial for many reasons since beta is

de�ned on I = [0, 1] by default, parametrized by two positive parameters, and has

been widely used to represent a large family of PDFs with �nite support in various

�elds. Increasingly, the inverse-gamma plays an important role to characterize

random �uctuations a�ecting wireless channels Atapattu et al. (2011). We refer

to these datasets as Beta and InvGamma, respectively. We performed this exper-

62



Anis Fradi - Thesis

(a) (b)

(c) (d) (e)

Figure 4.3: Synthetic PDFs for InvGamma (a) and Beta (b) with class 1 (red) and class

2 (blue). Semi-synthetic PDFs for Growth (c) with girls (red) and boys (blue). Real

PDFs for Temp (d) with uninfected (red) and infected (blue). Real PDFs for Plants (e)

with disease (red) and healthy (blue). In all sub�gures, the Fréchet mean for each class

is in black.

iment by simulating N = 200 PDFs uniformly divided and slightly di�erent for

both classes. Each observation is represented as a density when we add a random

white noise to initial parameters of Beta and InvGamma. We show some examples

of nonparametric PDFs with di�erent random parameters in Figure 4.3 (a,b). We

also illustrate the Fréchet mean for each class in black from (4.12) when dealing

with the Hilbert upper-hemisphere H.

Semi− synthetic dataset. Semi-synthetic data represent clinical growth charts

for children from 2 to 12 years. We refer to this dataset as Growth. We simulate

the charts from centers for disease control and prevention Kuczmarski et al. (2002)

through the available quantile values. The main goal is to classify observations by

gender. Each observation represents the size growth of a child as function of to his

age (120 months). We represent observations as nonparametric PDFs with some

examples displayed in Figure 4.3 (c). For each class, we plot girls in red and boys

in blue as well as we show the Fréchet mean in black.
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Real datasets.

A �rst public dataset with 1500 images represent maize leaves DeChant et al.

(2017). We note that maize leaves have speci�c textures used to extract pertinent

features in order to test if a plant has disease or not. We refer to this dataset

as Plants. Motivated by this application, we �rst represent each image, with its

wavelet-deconvolved version, by a vector of length 262144. Figure 4.4 illustrates

(a) (b) (c)

(d) (e) (f)
Figure 4.4: An example of two classes from maize plants dataset where healthy leaf (top)

and leaf with disease (bottom). For each class: an original image (a,d), the extracted

features (b,e), and the normalized histogram (c,f).

an example of two original images: healthy plant (a) and a plant with disease

(d), their wavelet-deconvolved versions (b,e) and the corresponding normalized

histograms (c,f). We also display PDFs from histograms in black.

We remind that high-dimensional inputs (here, 262144) make traditional machine

learning techniques fail to solve the problem at hand. However, the spectral his-

tograms as marginal distributions of the wavelet-deconvolved versions can be used

to represent/classify original images. In fact, instead of comparing the histograms,

a better way to compare two images (here, a set of repetitive features) would be

to compare their corresponding PDFs.

A second real dataset with 1717 observations gives the body temperature of dogs Ku-

mar and Kumar (2018), for which temporal measures of infected and uninfected
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(a)

(b)

(c)

Figure 4.5: Boxplots of the classi�cation accuracy (left) and AUC (right) on synthetic

datasets: InvGamma (a) and Beta (b), and semi-synthetic dataset: Growth (c). In all

sub�gures, the performance is given for di�erent methods: QN-GPP (red), HMC-GPP

(light blue), W-GP (violet), and JS-GP (dark blue).

dogs are stored during 24 hours. The infection by a parasite is suspected to cause

persistent fever. The main goal is to learn the relationship between the infection

and a dominant pattern from temporal temperatures. We refer to this dataset as

Temp.

For these two examples, the kernel choice for nonparametric PDFs is very cru-

cial Since non-Gaussian PDFs do not give good test performances when dealing

with Gaussian kernels, we consider the Epanechnikov kernel which has the lowest

RMSE for a compact support. The PDF estimates were obtained using an auto-

matic bandwidth selection method described in Botev et al. (2010). We illustrate

some examples of PDFs from real datasets in Figure 4.3 (d,e).
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(a)

(b)

Figure 4.6: Boxplots of the classi�cation accuracy (left) and AUC (right) on real data:

Temp (a) and Plants (b). In all sub�gures, the performance is given for di�erent methods:

QN-GPP (red), HMC-GPP (light blue), W-GP (violet), and JS-GP (dark blue).

4.6.2.2 Classi�cation results

We learn the model from 80% of the dataset whereas the rest is kept for test. This

subdivision has been performed randomly 100 times. The performance is given

as a mean and the corresponding standard deviation (std) in order to reduce the

bias (class imbalance and sample representativeness) introduced by the random

train/test split.

Results on synthetic datasets.We summarize all evaluation results on synthetic

datasets in Figure 4.5 (a,b). Accordingly, one can observe that both HMC-GPP,

W-GP and JS-GP reach the best accuracy values for InvGamma with a little mar-

gin for the proposed HMC-GPP. On the other hand, QN-GPP and HMC-GPP

heavily outperform W-GP and JS-GP for Beta. Again, this simply shows how the

hyper-parameters estimation method impacts the quality of the predictive distri-

butions.

Results on semi− synthetic datasets.We summarize all results on the Growth
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Table 4.3: Classi�cation: Negative log-marginal likelihood.

Methods Datasets
Synthetic Semi-synthetic Real data

InvGamma Beta Growth Temp Plants
mean std mean std mean std mean std mean std

QN-GPP 30.50 2.43 4.41 0.06 68.03 3.43 98.66 0.73 98.65 0.72
HMC-GPP 105.35 0.22 105.28 0.21 61.65 2.24 105.36 0.22 9.33 0.21
JS-GP 32.2 2.38 42.87 2.73 62.0 3.02 116.65 4.13 10.26 0.12

semi-synthetic dataset in Figure 4.5 (c) where we show accuracy and AUC values

as boxplots from 100 tests. One can observe that QN-GPP gives the best accu-

racy with a signi�cant margin. Note that we have used T = 104 HMC iterations

in Algorithm 10. Furthermore, we set the "Burn-in" and "Thinning" parameters

in order to ensure a fast convergence of the Markov chains and to reduce the cor-

relation between samples.

Results on real data. We further investigate whether our proposed methods can

be applied to real data. Figure 4.6 (a,b) shows the boxplots of accuracy and AUC

values for Temp and Plants, respectively. In short, we highlight that the proposed

methods successfully modeled real data with improved results in comparison to

the baseline W-GP.

Fortunately, the experiments have shown that the problem of big number of it-

erations, usually needed to simulate Markov chains for complex inputs, e.g., im-

ages, is partially solved by considering the proposed HMC sampling detailed in

Algorithm 10. In closing, we can state that the leap-frog algorithm, based on

Hamiltonian dynamics, lets to early search the best directions giving the best lo-

cal minimum of the Hamiltonian de�ned in (4.27).

We also con�rm all previous results from Table 4.3, which summarizes the mean

and the std of NLML values for classi�cation datasets. It clearly shows that at

least one of the proposed methods (QN-GPP or HMC-GPP) better minimizes the

NLML than the baseline method JS-GP. This brings more quite accurate estimates,

which prove the predictive power of our proposed approaches.
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4.7 Conclusion

In this chapter, we have extended the classical Bayesian models by introducing

the notion of Gaussian processes indexed by probability density functions. We

detailed and applied two di�erent numerical methods to learn both regression

and classi�cation models. Furthermore, we showed new theoretical results for

the covariance function de�ned on the space of density functions thanks to the

Riemannian geometry and the Fisher-Rao information. Extensive experiments

on multiple and varied datasets have demonstrated the e�ectiveness of proposed

methods against current state-of-the-art methods.
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Chapter 5: Bayesian registration and clustering

of univariate functions and multidimensional

curves

In this chapter, we develop a nonparametric registration framework for func-

tions and multidimensional curves. We also propose a Bayesian clustering model

based on Gaussian processes priors, which enable us to de�ne distributions (sub-

populations) over the sub-sets of observations that naturally arise in this problem.

In our framework, nonparametric inference includes the generation of posterior

samples on coe�cients resulting from the Karhunen-Loève expansion. It usually

requires integrating over in�nitely many parameters but we e�ciently solve such

issue with Hamiltonian dynamics.

5.1 Introduction

For shape analysis of functions and curves, one usually need to introduce the no-

tion of reparametrizations. A reparametrization is a di�erentiable di�eomorphism,

de�ned from I = [0, 1] into itself and preserving the boundary constraints. In prac-

tice, one of major problems is that of registration since when collecting data many

phenomena can explain the fact that there is a time di�erence. For functional

data and curve registration, data pre-processing is required before focusing on

amplitude variation. In the literature, there are many existing algorithms for reg-

istration. In this context, we can cite Kneip and Ramsay (2008); Liu and Muller

(2004); Ramsay and Li (1998). In order to �nd the optimal registration between

two curves, several variations have been proposed. Among them, we can cite the

dynamic programming Bernal et al. (2016); Cai and Judd (2010) and the quasi-

Newton Huang et al. (2016). Recently, shape registration of functions and curves

becomes very interesting in many �elds especially in medical applications Grogan
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and Dahyot (2017); Ying et al. (2016).
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Figure 5.1: An example of two di�erent reparametrizations of the same class of curves

with: �rst reparametrization (left) and second reparametrization (right).

We give an example of two di�erent reparametrizations of the same class of

curves in Figure 5.1. Accordingly, we can observe that the L2 distance between the

two shapes (left and right) is not zero although they belong to the same class of

curves. Consequently, the reparametrization invariance is a serious task in shape

analysis of curves. Compared to the state-of-the-art methods mentioned above, the

SRVF representation detailed in Section 2.5 is very e�cient for analyzing shapes

of curves in Euclidean spaces Srivastava et al. (2011). The SRVF representation

has several advantages: The well-known elastic metric of shapes simpli�es to the

L2 metric, the reparameterization function acts by isometries, and the space of

unit length curves results to be the familiar unit sphere.

In terms of statistical modeling and inference, the set of all reparametriza-

tions forms a group of di�eomorphisms and working with objects in the group is

more challenging due to its complicated geometry. Our work di�ers from previous

methods since we study a reparametrization as a cumulative distribution function

(CDF). In this chapter, our aim consists in reformulating the registration problem

of curves represented by their shapes as elements on a Riemannian manifold. Be-

sides, we are interested in the clustering process of a �nite set of observed curves.

By setting K sub-populations and given N curves, estimating the optimal local

distribution (identi�ed with CDF) for k-th cluster, k = 1, . . . , K, is necessary

before assigning each curve to its cluster Fradi and Samir (2020).

Our motivation is to establish the link between the space of CDFs and the
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Hilbert sphere due to its nice properties and explicit geometrical tools. In fact, one

of the advantages is that the Riemannian metric is the Fisher-Rao, the only met-

ric invariant to reparametrizations Brigant et al. (2015). To handle such task of

clustering, the inference on CDFs F 1, . . . , FK becomes more a�ordable on the co-

e�cients resulting from the Karhunen-Loève (K-L) expansion Ghanem and Spanos

(1991) A1, . . . , AK . This can be performed with the Hamiltonian dynamic on a

�nite-dimensional sphere using the spherical HMC sampling Lan et al. (2014).

5.2 Riemannian representation

We recall some tools about the geometry of Riemannian representations de�ned

on a compact interval I = [0, 1] with their corresponding Fisher-Rao metrics.

Let F be a CDF of a real-valued random variable X. The space of CDFs, de�ned

on I, is a Riemannian representation satisfying

F =
{
F : I → I

∣∣∣ Ḟ is nonnegative, F (0) = 0, and F (1) = 1
}

(5.1)

F forms a group with the group operation given by composition, i.e., for F1, F2 ∈

F , the group operation is given by F2(F1(ξ)). The identity element of F is the

function F (ξ) = ξ. The tangent space of F at F is

TF (F) =
{
f : I → R

∣∣∣ ∫
I
ḟ(ξ)dξ = 0

}
(5.2)

where the Fisher-Rao metric is stated as follow: for any two tangent vectors f1, f2 ∈

TF (F), the inner product is given by〈
f1, f2

〉
F

=
∫
I

ḟ1(ξ)ḟ2(ξ)
Ḟ (ξ)

dξ (5.3)

A second choice of Riemannian representations is the space of square-root density

functions, satisfying

H =
{
ψ : I → R

∣∣∣ ψ is nonnegative, and ||ψ||L2 =
( ∫

I
ψ(t)2dt

) 1
2

= 1
}

(5.4)

H results to be the Hilbert upper-hemisphere (nonnegative part) with the L2 met-

ric. Besides, associated with each ψ ∈ H is a unique CDF F ∈ F (isometrically)

satisfying

F (ξ) =
∫ ξ

0
ψ(t)2dt, ξ ∈ I (5.5)
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Figure 5.2: Some examples of CDFs

Note that the reparametrization functions in shape analysis of curves can be di-

rectly written as elements of F . Moreover, H is somewhat easier than F to analyze

in view of its group structure with some nice statistical tools already mentioned

in Section 4.2. We illustrate some examples of CDFs in Figure 5.2.

5.3 Spherical Gaussian process for curve registration

In this section, we shall describe some methods for computing distances and car-

rying out inference in quotient spaces for curves. We also propose to reformulate

the usual problem of curve registration.

5.3.1 Spherical Gaussian process decomposition

In order to simplify the estimation of CDFs, we propose to use the K-L expansion

of ψ as a linear sum of basis functions in L2(I) with random coe�cients. Un-

der this respect, we model ψ as a random function, itself drawn from a second

order GP Williams and Rasmussen (1996) with a continuous, square-integrable,

symmetric, and nonnegative de�nite covariance function c(., .) over I × I, i.e.,

ψ(t) ∼ GP
(
0, c(t, t′)

)
, where ψ ∈ H (5.6)

Let (φl)l denote a system of orthonormal eigen-functions in L2(I) and (λl)l the

associated nonnegative eigen-values of c(., .). We de�ne the Hilbert-Schmidt inte-

gral operator as a mapping from L2(I) into itself, expressed by L : φl 7→ Lφl and
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satisfying

(Lφl)(t′) =
∫
I
c(t, t′)φl(t)dt (5.7)

By Mercer's theorem, the covariance function can be expressed as

c(t, t′) =
∞∑
l=1

λlφl(t)φl(t′) (5.8)

and the Fredholm integral equation is

(Lφl)(t′) = λlφl(t′) (5.9)

To maintain the constraint that ψ ∈ H, we only focus on the restriction that

||ψ||L2 = 1 since ψ is nonnegative does not impose any additional constraint.

Therefore, the K-L expansion of ψ is

ψ(t) =
∞∑
l=1

alφl(t), with al
ind∼ N

(
0, λl

)
(5.10)

We take into account a truncated version at order m of the K-L expansion given

by

ψm(t) =
m∑
l=1

alφl(t) (5.11)

with the approximation error

em(t) =
∞∑

l=m+1
alφl(t) (5.12)

This choice results from the fact that among all versions expressed in (5.11), the

truncated K-L expansion is optimal in the sense of minimizing the mean integrated

squared error (MISE) given by
∫
I E
[
(em(t)2

]
dt. From (5.5), we get

Fm(ξ) =
∫ ξ

0
ψm(t)2dt, ∀ξ ∈ I (5.13)

=
m∑
l=1

a2
l

∫ ξ

0
φl(t)2dt+ 2

m∑
l=1

m∑
r=l+1

alar

∫ ξ

0
φl(t)φr(t)dt, ∀ξ ∈ I

Theorem 5.1

♥

The truncated version Fm is a CDF if and only if A = (a1, . . . , am) ∈ Sm−1

where

Sm−1 =
{
A =

(
a1, . . . , am

)
∈ Rm

∣∣∣ ||A||2 =
( m∑
l=1

a2
l

)1/2
= 1

}

Proof For the proof of this result, we are able to check:

ξ 7→ Fm(ξ) is a C1 mapping on I, since t 7→ ψm(t) is a continuous one for all
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t ∈ I.

Fm(0) =
∫ 0

0 ψm(t)2dt = 0, by de�nition.

Fm(1) =
∫ 1

0 ψm(t)2dt = 1, if and only if A ∈ Sm−1.

Ḟm(ξ) = ψm(ξ)2 is nonnegative for all ξ ∈ I.

Consequently, the resulting version makes it easier to check that Fm is a CDF

instead of F . It translates directly to a �nite-dimensional spherical constraint on

the random coe�cients al, l = 1, . . . ,m.

5.3.2 Group actions, shape invariances and distance

In order to develop a formal framework for analyzing shapes of curves, one needs

a mathematical representation of curves that is natural, general and e�cient. We

establish the SRVF representation detailed in Section 2.5 for its advantages in

shape analysis of curves. By representing a curve β : I → Rd by its SRVF q ∈M

satisfying q(ξ) = β̇(ξ)√
||β̇(ξ)||2

, we have taken care of the translation and the scaling

variability, but the rotation and the reparameterization variability still remain.

When d ≥ 2, a rotation is an element of SO(d) and a reparameterization is an

element of F for any d ≥ 1. The rotation and reparameterization of a curve β are

denoted by the actions of SO(d) and F on its SRVF. While the action of SO(d)

is the usual O 7→ Oq, the action of F is derived as F 7→ (q, F ) =
√
Ḟ q ◦ F ≡ q∗.

(a) (b) (c)

Figure 5.3: A SRVF representation q (a) that is deformed using a number of CDFs F
(b) giving the resulting q∗ (c).

Figure 5.3 shows an example of di�erent actions of CDFs on a SRVF representation

de�ned on I. In order for shape analysis to be invariant to these transformations,

it is important for these groups to act by isometries. We present the following

properties of these actions.
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Lemma 5.1

♥The actions of SO(d) and F commute on bothM and L2.

Proof This follows directly from the de�nitions of the two group actions. There-

fore, we can form a joint action of the product group G = SO(d)×F according to

((O, q), F ) = O
√
Ḟ q ◦ F .

Lemma 5.2

♥The action of the product group G onM is by isometries.

Proof Since
〈
Oq1, Oq2

〉
=
〈
q1, q2

〉
for all O ∈ SO(d), the proof for SO(d) follows.

Besides, we have〈
q∗1, q

∗
2

〉
=

∫
I

〈
q∗1(ξ), q∗2(ξ)

〉
2
dξ (5.14)

=
∫
I

〈√
Ḟ (ξ)q1 ◦ F (ξ),

√
Ḟ (ξ)q2 ◦ F (ξ)

〉
2
dξ

=
∫
I

〈
q1(ξ̃), q2(ξ̃)

〉
2
dξ̃; ξ̃ = F (ξ)

=
〈
q1, q2

〉
which completes the proof for F .

Therefore, we can de�ne a quotient space ofM modulo G. The orbit of a function

q ∈M is given by

[q] =
{
O
√
Ḟ q ◦ F

∣∣∣ (O,F ) ∈ G
}

(5.15)

Consequently, we have to de�ne a distance on Q =
{

[q]
∣∣∣ q ∈M}

by

dQ([q1], [q2]) = inf
(O,F )∈G

||q1 − ((O, q2), F )|| (5.16)

For the remainder, the rotation invariance will be performed using the SVD Berge

(1977) where we only focus on the reparametrization invariance. Thus, the distance

de�ned in (5.16) becomes dQ([q1], [q2]) = infF∈F ||q1 − (q2, F )|| = infF∈F ||q1 − q∗2||

where ||q1 − q∗2||2 =
∫
I ||q1(ξ)− q∗2(ξ)||22dξ.

5.3.3 Optimal registration between curves

The optimal registration between two curves q1 and q2 is given by the best reparametriza-

tion minimizing the deformation between them, i.e.,

F̂ = arginf
F∈F

||q1 − q∗2||2; q∗2 ≡
√
Ḟ q2 ◦ F (5.17)
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Given a random sample q1, . . . , qN , we obtain the sample Fréchet mean q̃ when

optimizing over Fi, i.e.,

q̃ = argmin
q∈Q

N∑
i=1

inf
Fi∈F
||q − q∗i ||2 (5.18)

Since the shape space of curves results to be a linear subspace of L2(I,Rd) with the

SRVF representation, the Fréchet mean becomes the arithmetic mean satisfying

q̃(ξ) = 1
N

N∑
i=1

q∗i (ξ) (5.19)

where each Fi is then updated in an iterative algorithm until convergence.

Now, we will identify F by Fm detailed in (5.13) under its corresponding assump-

tion. This simplify the initial registration problem on F given in (5.17) with an

equivalent problem on A, from the uniqueness of the K-L expansion, such that

Â = arginf
A∈Sm−1

||q1 − q∗,m2 ||2; q∗,m2 ≡
√
Ḟmq2 ◦ Fm (5.20)

Let l(A) = ||q1 − q∗,m2 ||2 denote the cost function de�ned in (5.20). Algorithm 11

summarizes the Newton-Raphson on the sphere established in order to minimize

the cost function. More details about this algorithm were given in Holbrook et al.

(2017). We give an example of �nding an optimal registration between two curves

in Figure 5.4. Likewise, the Fréchet mean in (5.18) becomes

q̃,m = argmin
q∈Q

N∑
i=1

inf
Ai∈Sm−1

||q − q∗,mi ||2 (5.21)

(a) (b) (c)

Figure 5.4: A �rst curve q1 (a), a second curve q∗2 (b) and the resulting curve q̂∗,m2 ≡√
˙̂
Fmq2 ◦ F̂m depending on Â with the best matching of features between q1 and q∗2 (c).
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Algorithm 11: Newton-Raphson on the sphere.
Require: cost function l(.), its gradient vector ∇l(.) and its Hessian matrix ∇2l(.)
1: repeat
2: Evaluate Hess l(At) := ∇2l(At)−∇l(At)TAtIm
3: Compute Wt := (Im − AtATt )[Hess l(At)]−1(Im − AtATt )
4: Compute vt := −Wt∇l(At)
5: Progress along geodesic given in (4.8) with velocity vt and position At to

recover At+1
6: Set t := t+ 1
7: until Convergence

5.4 Bayesian curve clustering

Now, we are ready to formulate the problem of curve clustering with the Gaussian

mixture model (GMM). We assume that we have a �nite set of N curves q1, . . . , qN

to be grouped into K populations with K < N . For each q∗i , we draw a cluster Ci

with values in {1, . . . , K} under the probability P(Ci = k) = πk where
∑K
k=1 πk = 1.

Consequently, the density of i-th curve that de�nes the components of k-th sub-

population is given by P(q∗i |Ci = k). We consider that a discretization q∗i (ξh) ∈ Rd,

h = 1, . . . , n is observed and we note ξ = (ξ1, . . . , ξn). We can model q∗i (ξ)|Ci = k

with a multivariate Gaussian since q∗i is a continuous function. For simplicity, we

assume that q∗i (ξ)|Ci = k ∼ N
(
q̃k(ξ), σ2I

)
where σ2 > 0 is the variance parameter

and I is the nd×nd identity matrix. This work deals with estimating the optimal

CDF for the k-th sub-population. Let F k denote this unknown function and F k
m

its truncated version. The density of qi with components of sub-population k is

P(qi|F k, q̃k(ξ), σ2) ∝ exp
(
− 1

2σ2 ||q
∗
i (ξ)− q̃k(ξ)||22

)
(5.22)

For reasons mentioned above, we use Fm as detailed in (5.13) instead of F so that

the prior on F k becomes a simple prior on Ak = (ak1, . . . , akm) ∈ Sm−1, satisfying

P(Ak) ∝ exp
(
−

m∑
l=1

akl
2

2λl

)
× δAk∈Sm−1 (5.23)

where δ refers to the Kronecker delta function. We have all the ingredients to

propose the following result.
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Theorem 5.2

♥

Given D = {qi}Ni=1, π1, . . . , πK , q̃
1,m(ξ), . . . q̃K,m(ξ) and σ2, the log-posterior

of A1, . . . , AK is

log p(A1, . . . , AK |D, π1, . . . , πK , q̃
1,m(ξ), . . . , q̃K,m(ξ), σ2) (5.24)

∝
N∑
i=1

log
( K∑
k=1

πk exp
(
− 1

2σ2 ||q
∗
i (ξ)− q̃k,m(ξ)||22

))
− 1

2

K∑
k=1

m∑
l=1

akl
2

λl

under the constraint that A1, . . . , AK belong to Sm−1.

Proof The complete likelihood term is

P(D|A1, . . . , AK , π1, . . . , πK , q̃
1,m(ξ), . . . , q̃K,m(ξ), σ2) (5.25)

=
N∏
i=1

( K∑
k=1

πkP(qi|Ak, q̃k,m(ξ), σ2)
)

∝
N∏
i=1

( K∑
k=1

πk exp
(
− 1

2σ2 ||q
∗
i (ξ)− q̃k,m(ξ)||22

))
and its logarithm satis�es

logP(D|A1, . . . , AK , π1, . . . , πK , q̃
1,m(ξ), . . . , q̃K,m(ξ), σ2) (5.26)

∝
N∑
i=1

log
( K∑
k=1

πk exp
(
− 1

2σ2 ||q
∗
i (ξ)− q̃k,m(ξ)||22

))
We also write the constrained prior as

P(A1, . . . , AK) =
K∏
k=1

P(Ak) ∝ exp
(
−

K∑
k=1

m∑
l=1

akl
2

2λl

)
× δA1,...,AK∈Sm−1 (5.27)

where we assume that Aks are independent and resulting from the same integral

operator de�ned in (5.7). Besides, its logarithm satis�es

logP(A1, . . . , AK) ∝ −1
2

K∑
k=1

m∑
l=1

akl
2

λl
(5.28)

under the constraint that A1, . . . , AK belong to Sm−1. The desired result follows

by plugging (5.26) and (5.28) into the log-posterior probability term.

We use the spherical HMC on Sm−1 for simulating from the posterior of A =

(A1, . . . , AK). We add an extra Gibbs sampling to update π1, . . . , πK , σ2 and the

Fréchet means q̃1,m(ξ), . . . , q̃K,m(ξ) when minimizing the Fréchet variance of obser-

vations in each cluster from (5.21), iteratively, until convergence. The HMC sam-

pling augments the state space with an auxiliary velocity variable v = (v1, . . . , vK)

satisfying vkAk = 0, k = 1, . . . , K. It also simulates from a Hamiltonian dynamic

(H) splitted into two terms (H = H1 +H2) with a potential energy de�ned as the
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negative log-posterior

H1(A) = − logP(A|D, π1, . . . , πK , q̃
1,m(ξ), . . . , q̃K,m(ξ), σ2) (5.29)

and a kinetic energy, satisfying

H2(v) = 1
2

K∑
k=1

vk
T
Gvk (5.30)

where G refers to the canonical spherical metric. According to Lan et al. (2014),

the spherical HMC establishes the link between the unit sphere in Rm denoted

Sm−1 and the unit ball in Rm−1 denoted Bm−1
0 . If Āk = (ak1, . . . , akm−1) takes the

(m− 1) �rst components of Ak then Āk ∈ Bm−1
0 . Therefore, we can rewrite Ak as

Ak = (Āk,
√

1− ||Āk||22). The spherical HMC is then detailed in Algorithm 12 in

terms of A = (A1, . . . , AK), Ā = (Ā1, . . . , ĀK) and the block diagonal matrix

M =



Im−1

0

 0 0 . . .

0

Im−1

0

 0 . . .

0 . . . 0

Im−1

0


︸ ︷︷ ︸

(m−1)K




mK

Once we have estimated all model's parameters, we can evaluate the conditional

probability that the i-th curve belongs to k-th sub-population by

P(Ci = k|qi) = P(Ci = k, qi)
P(qi)

(5.31)

= P(Ci = k)P(qi|Ci = k)
P(qi)

= πkP(qi|Ci = k)∑K
k=1 πkP(qi|Ci = k)

=
πk exp

(
− 1

2σ2 ||q∗i (ξ)− q̃k,m(ξ)||22
)

∑K
k=1 πk exp

(
− 1

2σ2 ||q∗i (ξ)− q̃k,m(ξ)||22
)
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Algorithm 12: Spherical HMC sampling.
Require: Negative log-posterior H1(.) and its gradient ∇H1(.)
Ensure: Â
1: Initialize A0
2: Sample a new momentum value v0 ∼ N (0, I) where I is the mK ×mK

identity matrix
3: v0 := v0 −A0AT

0 v0
4: Calculate H(A0,v0) := H1(Ā0) +H2(v0)
5: for t = 1, 2, . . . , T do

6: vt− 1
2

:= vt−1 − ε
2

(
M−At−1ĀT

t−1

)
∇H1(Āt−1)

7: At := At−1 cos(||vt− 1
2
||2ε) +

v
t− 1

2
||v

t− 1
2
||2 sin(||vt− 1

2
||2ε)

8: vt− 1
2

:= −At−1||vt− 1
2
||2 sin(||vt− 1

2
||2ε) + vt− 1

2
cos(||vt− 1

2
||2ε)

9: vt := vt− 1
2
− ε

2

(
M−AtĀT

t

)
∇H1(Āt)

10: end for
11: Calculate H(AT ,vT ) := H1(ĀT ) +H2(vT )
12: Acceptance probability

α := min
{

1, exp(−H(AT ,vT ))
exp(−H(A0,v0))

}

13: Simulate u ∼ U([0, 1])
14: if u < α then
15: Accept the proposal Â := AT

16: else
17: Reject the proposal Â := A0
18: end if
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5.5 Applications

In this section, we demonstrate the e�ectiveness of our method to a clustering task

of curves in order to assign each observed curve to its sub-population. All results

are drawn from T = 104 iterations when using the spherical HMC sampling and

we set the truncation order of K-L expansion to m = 30.

Covariance function. For the covariance function, we model ψ by a GP with a

Hilbert-Schmidt operator satisfying L = δ2
(
γ − ∂2

x

)−ν
of variance parameter δ2,

length-scale γ and smoothness parameter ν. By solving (5.9), one can check that

the corresponding eigen-values and eigen-functions are λl = δ2
(
γ + l2π2

)−ν
and

φl(t) =
√

2 cos(lπt). The hyper-parameter setting of the Hilbert-Schmidt operator

is �xed to (δ2, γ, ν) = (1, 0.5, 1).

Baselines.We compare results of our method with coe�cients estimated by spher-

ical HMC sampling in a Bayesian framework against:

The GPA-kmeans and GPA-kmedoids when applying the GPA method de-

tailed in Algorithm 6. We update the classical kmeans and kmedoids cluster-

ing with the geodesic distance computed on the embedded sphere S(n−1)d−1− 1
2d(d−1).

This results in a representation which is invariant under the e�ects of trans-

lation, scaling and rotation.

The TPCA-kmeans and the TPCA-GMM when applying the TPCA method

detailed in Algorithm 7. We update the classical kmeans and GMM clus-

tering with the Euclidean distance computed on the tangent space of the

−2 −1 0 1 2 3
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2

3

−2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
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(a) (b) (c)

Figure 5.5: The true parameterized curves in R2 (a), the observed curves with σ2 = 0.01
(b), and σ2 = 0.1 (c). In all sub�gures, the two clusters are illustrated with di�erent

colors: cluster 1 (blue) and cluster 2 (red).
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Table 5.1: Parameterized curves in R2: Mean clustering error.

Methods σ2 = 0.01 σ2 = 0.1
TPCA-GMM 27% 30%
TPCA-kmeans 26% 28%
GPA-kmeans 18% 23%
GPA-kmedoids 16% 22%

Proposed 9% 17%
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Figure 5.6: The true parameterized curves in R3 (a), the observed curves with σ2 = 0.01
(b), and σ2 = 0.1 (c). In all sub�gures, the two clusters are illustrated with di�erent

colors: cluster 1 (blue) and cluster 2 (red).

embedded sphere.

Datasets. The proposed methods will be evaluated on two di�erent datasets:

Two simulations with 2D and 3D parametric curves that have been used for

simulating human cochlear implants Dang et al. (2015); McDonnell et al.

(2010).

Two real data of 3D cochlear curves extracted from computed-tomographie

(CT) images for human and hominin evolution Braga et al. (2019).

5.5.1 Synthetic datasets

We �rst validate the performance of the proposed framework in term of accuracy

using two simulated datasets. We perform experiments on two examples of parame-

terized curves in R2 and R3. Each curve is most likely in cluster k̂ which maximizes

the conditional probability given in (5.31), i.e., k̂ = argmaxk P(Ci = k|qi) for each

i. An error occurs if the observed cluster and the true cluster are di�erent.

Parameterized curves in R2. To simulate data in R2, we �rst generate two para-
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Table 5.2: Parameterized curves in R3: Mean clustering error.

Methods σ2 = 0.01 σ2 = 0.1
TPCA-GMM 27% 36%
TPCA-kmeans 29% 40%
GPA-kmeans 16% 25%
GPA-kmedoids 16% 24%

Proposed 12% 19%

metric curves: For all ξ ∈ I,

β1(ξ) =


1
3(7(ξ + 0.1)) cos(ϕ(5πξ))

−1
3(7(ξ + 0.1)) cos(ϕ(5πξ))

and β2(ξ) =


3
10(7(ξ + 0.1)) cos(ϕ(5πξ))

− 3
10(7(ξ + 0.1)) cos(ϕ(5πξ))

The two clusters of curves are displayed (β1 in blue and β2 in red) in Figure 5.5

(a). We simulate N = 100 curves per cluster using a Gaussian perturbation model

where the i-th con�guration is obtained as follows

βi(ξ)|Ci = k ∼ N (βk ◦ F (ξ), σ2I), i = 1, . . . , 100, k = 1, 2

where the discretization of the unit interval I is n = 50, i.e., ξ = (ξ1, . . . , ξ50). The

true CDF is the identity function, i.e., F (ξ) = ξ for all ξ ∈ I and I is the 100×100

identity matrix. The plots in Figure 5.5 (b,c) illustrate the noisy data forming the

simulated curves with two variance levels σ2 = 0.01 and σ2 = 0.1, respectively.

For our proposed approach, we need to use the transformed curves q∗i (ξ) in order

to search the optimal CDF per cluster. For comparison methods, we apply the

GPA and the TPCA approaches to the observed curves βi(ξ) directly. From Ta-

ble 5.1 and focusing on the mean clustering error criteria, our approach performs

better than TPCA-GMM, TPCA-kmeans, GPA-kmeans and GPA-kmedoids with

a signi�cant margin.

Parameterized curves in R3. In this part, we illustrate our method using three

dimensions (3D) curves. We consider two clusters of curves expressed as
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(a) (b)

Figure 5.7: A medical CT image (a) and the extracted boundary surface with white

cochlear curve (b).

β1(ξ) =



1
3(7(ξ + 0.1)) cos(ϕ(5πξ))

−1
3(7(ξ + 0.1)) cos(ϕ(5πξ))

−ξ(ξ + 1)

and β2(ξ) =



1
4(7(ξ + 0.1)) cos(ϕ(5πξ))

−1
4(7(ξ + 0.1)) cos(ϕ(5πξ))

−ξ(ξ + 1)

The two curves are displayed (β1 in blue and β2 in red) in Figure 5.6 (a). We

simulate N = 100 curves per cluster using the same model as for parameterized

curves in R2 where the discretization of I is n = 100 and I is the 300× 300 iden-

tity matrix. An example of simulated data forming the observed curves is given in

Figure 5.6 (b,c) with two variance levels σ2 = 0.01 and σ2 = 0.1, respectively. Ta-

ble 5.2 summarizes the mean clustering errors at each level where it is shown that

our method is very accurate and has a better predictor. This result clearly shows

the utility of estimating the optimal CDF when maximizing the log-posterior dis-

tribution on their associated coe�cients on Sm−1 (m = 30) to reach good results.

Table 5.3: Human cochlea: Mean clustering error (MCE), speci�city (SP) and sensibility

(SE).

Methods MCE SP SE
TPCA-GMM 41.75% 58.07% 58.5%
TPCA-kmeans 41.54% 58.44% 58.5%
GPA-kmeans 25.11% 74.4% 75.45%
GPA-kmedoids 10.85% 89.8% 88.41%

Proposed 4.26% 94% 97.73%
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Figure 5.8: The optimal CDF estimates F̂ k,30 (a) and the Fréchet means of curves q̃k,30

for above view (b) and front view (c). Cluster of female: k = 1 (blue) and cluster of

male: k = 2 (red).
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Figure 5.9: The conditional probability that i-th cochlea belongs to the �rst sub-

population of female: P(Ci = 1|qi) (a) and the resulting cluster (b). Cluster of female:

k = 1 (blue) and cluster of male: k = 2 (red).

5.5.2 Real data

This section shows the importance of cluster analysis in 3D real cochlea, the main

organ of hearing.

Human cochlea. For the �rst real data, we use a total of 94 X-ray medical CT

images representing adult individuals (see Figure 5.7 for an example) Braga et al.

(2015). In order to, �rst, detect the presence of di�erences in 3D cochlear shape

and, second, assess the reliability of our method to form homogeneous subgroups,

we overcame the drawbacks of all previously proposed approaches that ignored the

intrinsic nonlinearity of the cochlear geometry.

We validate the proposed method to cluster humans (male or female) from their

cochlea. The search of the optimal threshold minimizing the clustering error is

based on the ROC curve where we consider the False Negatives (FN: female but

classi�ed as male) and the False Positives (FP: male but classi�ed as female). The

Mean clustering error (MCE) as well as the sensibility (SE) and the speci�city
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Figure 5.10: Markov chain values of a1
1 (a), a

1
2 (b), and (a1

1, a
1
2) (c). Posterior distributions

of a1
1 (d), a1

2 (e), and (a1
1, a

1
2) (f).

(SP) are reported in Table 5.3. We point out that our Bayesian method performs

much better than the four baseline methods mentioned above. We can also observe

that the GPA-kmedoids achieves a better accuracy than GPA-kmeans and both

TPCA methods with a great margin. Accordingly, we prove the utility of �nding

the optimal CDF for each cluster when selecting the MAP estimate Â = (Â1, Â2).

Figure 5.8 (a) illustrates the CDF estimate F̂ k,30 for k-th cluster as function of the

corresponding coe�cients Âk, k = 1, 2. In Figure 5.8 (b,c), we plot the Fréchet

mean q̃k,30 for both clusters from two di�erent views.

For more details, we plot the conditional probability that each cochlea belongs to

the �rst sub-population, assumed to be of female, as red dotted and those of male

as blue dotted in Figure 5.9 (a). A good separability between the two clusters is

clearly visible when estimating the optimal CDF for each sub-population. Hence,

the mapping from the probability interval [0, 1] to the output space, taking values

in {1, 2}, is smooth and can be easily managed. Figure 5.9 (b) represents the

resulting clusters when �xing the optimal threshold from the ROC curve.

We give an illustration of the spherical HMC sampling particularly for the two

�rst components of A1: a1
1, a

1
2 and both jointly. We show the trajectory of Markov

chains in Figure 5.10 (a,b,c) where sampled values are centered near the means:

0.02 and 10−3, respectively. Figure 5.10 (d,e,f) displays their posterior distribu-
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Figure 5.11: Some PAR cochlear hominin recovered from Kromdraai (South Africa) with

blue cochlear curve.

Table 5.4: Hominin cochlea: Mean clustering error (MCE).

Methods MCE
TPCA-GMM 15%
TPCA-kmeans 20%
GPA-kmeans 12.5%
GPA-kmedoids 10%

Proposed 0%

tions.

Hominin cochlea. A second real data is formed by 80 X-ray medical CT im-

ages representing newly discovered fossil hominin specimens. For this dataset, the

hominin set will be grouped into K = 5 clusters: Humans (HSS), Paranthropus

(PAR), Gorillas (GOR), Chimpanzees (PAN) and Australopithecus (AUS). Some

examples of PAR cochlear hominin are given in Figure 5.11.

The mean clustering errors are reported in Table 5.4 where optimal values are

reached by our proposal with a signi�cant margin. Moreover, Figure 5.12 illus-

trates the Fréchet mean of each sub-population resulting from the Gibbs sampling

algorithm. When comparing existing methods, TPCA-kmeans is less accurate than

GPA when projecting shape vectors into the tangent space of the unit sphere. We

(a) (b) (c) (d) (e)

Figure 5.12: The Fréchet mean of HSS (a), PAR (b), GOR (c), PAN (d) and AUS (e).
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Figure 5.13: PC1 versus PC2 scatter plot obtained from TPCA (PC1 and PC2 represent

82.5% and 10.2% of variance, respectively) (a). The distance graph (normalized) with

directional edges connecting the nodes of Fréchet means projected into the tangent space

of the sphere formed by normalized curves (b).

give an illustration of projecting cochlea into a two-dimensional linear sub-space in

Figure 5.13 (a). We add the normalized distance graph between projected Fréchet

means in Figure 5.13 (b). For this experiment, we only keep the most important

directions for TPCA (PC1 and PC2) having the biggest variance values: 82.5%

and 10.2%, respectively. This con�rms results obtained in Table 5.4 due to the

overlap between projected observations especially between GOR and HSS. This

make the Euclidean distance, operating on the tangent space of the sphere, enable

to give a good clustering performance.

5.6 Conclusion

We have introduced a new population background with registration and Bayesian

clustering frameworks for curves. We have considered that each sub-population

depends on its optimal local distribution and we have formulated the problem to

estimate all of them jointly. Thanks to the Riemannian geometry and the Fisher-

Rao metric, the proposed method solves the optimization task, originally de�ned

on the in�nite-dimensional and complex group of reparametrizations, with the use

of a more practical optimization. We have tested our model on multiple simulated

and real datasets. Compared to some existing methods, we showed several bene�ts

and better accuracy when estimating the optimal local distribution of each sub-

population.
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Chapter 6: Conclusion and prospects

In this chapter, we conclude the thesis by summarizing our main contributions and

results. We also highlight the ongoing works we are conducting as an extension.

6.1 Summary of the contributions

Throughout this thesis, we have shown that the quality of a Gaussian process model

strongly depends on an appropriate covariance function and its hyper-parameters

selection. We can summarize our work in the following items:

To model such complex and high-dimensional inputs, we introduced the scal-

able Gaussian process classi�er. The key idea is to decompose the overall

classi�cation into learning a feature space mapping (embedding) and a Gaus-

sian process classi�er that maps from this feature space to the observed space.

We have introduced a new technique of manifold embedding for dimension-

ality reduction with a mapping de�ned on a Reproducing Kernel Hilbert

Space. Both the input transformations and the Gaussian process classi�er

are learned jointly by maximizing the approximate log-marginal likelihood.

We have extended the classical notion of Gaussian process from vector inputs

to constrained functional inputs when introducing the Gaussian process in-

dexed by probability density functions. We showed a theoretical result that

the covariance function is well de�ned thanks to the underlying Riemannian

geometry. This framework has the capacity of inferring and classifying both

high-dimensional and univariate functional inputs.

We have proposed a framework for registration and Bayesian clustering of

shapes of curves as elements of a Riemannian manifold. We took advantages

of a representation due to its invariance proprieties to Euclidean transforma-

tions in shape analysis. Thanks to the Fisher-Rao metric and the Gaussian

process bene�ts, we reduced the complexity of estimating reparametriza-

tion functions, identi�ed with local distributions of shapes, directly in an
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in�nite-dimensional group of di�eomorphisms. Using our proposed version,

the inference become more a�ordable on the resulting coe�cients belong-

ing to the �nite-dimensional sphere. Our problem was performed with the

Hamiltonian dynamic on the sphere using the spherical HMC sampling.

6.2 Future work and prospects

In this thesis, we always make the link between Riemannian representations and

the Hilbert sphere due to its nice statistical and geometric tools. In fact, it sim-

pli�es many basic notions where we have all analytic expressions of geodesics, ex-

ponential maps, log maps, Fréchet means, ect. However, it would be interesting to

generalize the proposed models for more complex Riemannian manifolds with their

corresponding metrics. Especially, we can extend our idea to 2D reparametriza-

tion functions, identi�ed with local distributions for shapes de�ned on bivariate

domains, e.g., shape analysis of surfaces.

Throughout this thesis, the metric was �xed to be the Fisher-Rao, the only met-

ric invariant to reparametrizations. What happens if we change this metric ? If

we take a less advantageous metric, can we revise it to check several proprieties

usually needed in shape analysis ?
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