
HAL Id: tel-03633848
https://theses.hal.science/tel-03633848

Submitted on 7 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fermiology, 3D to 2D dimensionality crossover and
electron-phonon coupling in the electronic structure of

transition metal dichalcogenides
Zakariae El Youbi

To cite this version:
Zakariae El Youbi. Fermiology, 3D to 2D dimensionality crossover and electron-phonon coupling in
the electronic structure of transition metal dichalcogenides. Material chemistry. CY Cergy Paris
Université, 2021. English. �NNT : 2021CYUN1015�. �tel-03633848�

https://theses.hal.science/tel-03633848
https://hal.archives-ouvertes.fr


CY CERGY-PARIS UNIVERSITY

DOCTORAL THESIS

Fermiology, 3D to 2D dimensionality
crossover and electron-phonon coupling
in the electronic structure of transition

metal dichalcogenides

Author:
Zakariae EL YOUBI

Referee: Dr. Pavel Dudin
Referee: Prof. Dr. Neil Wilson

Examiner: Dr. Christine Boeglin
Examiner: Dr. Véronique Brouet

Supervisor: Prof. Dr. Karol Hricovini
Supervisor: Prof. Dr. Christine Richter
Supervisor: Dr. Cephise Cacho
Co-Supervisor: Dr. Matthew D. Watson

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

May 6, 2021

https://www.u-cergy.fr




iii

“Felix, qui potuit rerum cognoscere causas.”
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Abstract

This PhD consists in the investigation of the electronic structure of transition metal
dichalcogenides (TMDs), namely 1T-HfTe2, 2H-NbS2 and 3R-NbS2 using angle-resolved
photoemission spectroscopy (ARPES). While the first part is dedicated to a method-
ical study of the electronic band structure of 1T-HfTe2 and its evolution with potas-
sium dosing, the second part presents a comparative study of the two phases of
NbS2 and the experimental evidence of the strong electron-phonon coupling in the
2H phase.

The dosing of layered materials with alkali metals has become a commonly used
strategy in ARPES experiments. However, precisely what occurs under such condi-
tions, both structurally and electronically, has remained a matter of debate.

In this thesis, we performe a systematic study of 1T-HfTe2, a prototypical semimetal
of the TMDs family. By utilizing photon energy-dependent ARPES, we have in-
vestigated the electronic structure of this material as a function of Potassium (K)
deposition. From the kz maps, we observe the appearance of 2D dispersive bands
after electron dosing, with an increasing sharpness of the bands, consistent with the
wavefunction confinement at the topmost layer.

In our highest-dosing cases, a monolayer-like electronic structure emerges, presum-
ably as a result of intercalation of the alkali metal. Here, by bringing the topmost
valence band below EF, we could directly measure a band overlap of∼ 0.2 eV. How-
ever, 3D bulk-like states still contribute to the spectra even after considerable dosing.
Our work on HfTe2 provides a reference point for the increasingly popular studies
of the alkali metal dosing of semimetals using ARPES.

In our second work, we investigated the electronic band structure of the two poly-
types of NbS2, namely 2H-NbS2 and 3R-Nb1+xS2 combining ARPES and density
functional theory (DFT) calculations. The measured Fermi surfaces show a remark-
able difference in size, reflecting a significantly increased band filling in 3R-Nb1+xS2
due to the presence of additional Nb interstitials. Thus we found that the stoichiom-
etry, rather than the stacking arrangement, is the most important factor in the differ-
ence in electronic and physical properties of the two phases.

Our high resolution data on the 2H phase shows strong kinks in the spectral function
that are fingerprints of the electron-phonon coupling. However, the strength of the
coupling is found to be much larger for the the sections of bands with Nb 4dx2−y2,xy
character than for the Nb 4d3z2−r2 . Our results provide an experimental framework
for interpreting the two-gap superconductivity and latent CDW in 2H-NbS2.
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Resumé

Cette thèse consiste à l’investigation de la structure électronique des métaux de tran-
sition dichalcogénides (TMDs), notamment 1T-HfTe2, 2H-NbS2 et 3R-NbS2 en util-
isant la spectroscopie de photoémission résolue en angle ARPES. La première partie
est dédiée à une étude méthodique de la structure de bande de HfTe2 et son évolu-
tion en fonction de dosage, alors que la deuxième présente une étude comparative
des deux polytypes de NbS2 et l’évidence expérimentale de fort couplage électron-
phonon dans la phase 2H.

Le dosage des matériaux en couches avec les métaux alcalins est devenu une stratégie
commune dans ARPES, mais ce qui se passe mais ce qui passe au niveau structurel
et électronique a toujours été sujet de débat. Dans cette thèse, on réalise une étude de
1T-HfTe2, un semimetal prototypique de la famille des TMDs. En utilisant ARPES
en dépendance de l’énergie de photons, nous avons examiné la structure électron-
ique de ce matériau en fonction du dosage avec le potassium K. D’après nos spectres
de kz, on a observé l’apparence de 2D états électroniques après le dosage, avec une
amélioration remarquable de la qualité des données mesurées, en accord avec le con-
finement de la fonction d’onde à la plus haute monocouche.

A notre niveau de dosage le plus élevé, la structure électronique mesurée est sim-
ilaire à celle d’une monocouche, attestant l’intercalation des atomes alcalines dans
le gap de van der Waals. En ramenant le top de la bande de valence en dessous
du niveau de Fermi, nous avons directement mesuré le gap négatif d’une valeur de
0.2 eV. Toutefois, des états électroniques de volumes contribuent toujours au spec-
tre même après une quantité considérable de dosage. Enfin, la bande de valence de
HfTe2 contient un point de Dirac et un gap inversé, en analogie avec tous les TMDs
du même groupe de symétrie. Notre étude de HfTe2 présente une référence pour la
croissante popularité de dosage de semimétaux dans l’ARPES.

Dans notre deuxième projet, nous avons étudié les deux polytypes de NbS2, notam-
ment 2H-NbS2 et 3R-Nb(1+x)S2 en utilisant ARPES et les calculs DFT (density func-
tional theory). Les deux surfaces de Fermi mesurées montrent une grande différence
en taille, indiquant un remplissage de bande plus important dans le 3R phase en rai-
son d’atomes interstitielles de Nb. Cela montre que la stoichiométrie est le facteur le
plus important dans la différence des propriétés électronique et physiques des deux
phases, et pas l’empilement de couche.

Nos données avec la meilleure résolution de 2H-NbS2 montrent de forts ‘kinks’ dans
la fonction spectrale, témoignant l’électron-phonon couplage dans ce système. Nous
avons trouvé que ce couplage est plus fort dans les sections de bandes dérivées de
Nb 4dx2−y2,xy orbitales que dans celles de Nb 4d3z2−r2 orbitales. Nos résultats présen-
tent un cadre expérimental pour l’interprétation des deux gaps supraconducteurs et
l’absence de l’onde de densité de charge dans 2H-NbS2.
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Introduction and Layout

Since the successful exfoliation of graphene, two-dimensional (2D) materials have
attracted extensive interest due to their excellent electrical, thermal, mechanical, and
optical properties. Although it has been the most explored in the 2D family, the zero
band gap in graphene has been a major limitation to revolutionise its applications in
electronic device [1]. Transition metal dichalcogenides (TMDs), another 2D family
which has attracted intensive research and development in recent years due to their
rich and fertile physical, chemical and electronic properties (Fig. 1). The possesion
of a non-zero band gap and the possibility of its tuning as a function of the material
thickness, as well as the opportunity to form heterojunctions with other materials
make this family a very suitable candidate for solar energy harvesting, conversion
and storage via photovoltaics and photocatalytic hydrogen evolution (PHE) reac-
tion [2, 3, 4, 5]. Furthermore, the possibility to lift the spin-degeneracy without
magnetism through inversion symmetry breaking in combination with spin-orbit
coupling was a magnificent achievement, alongside the possession of topological
features such as Dirac and Weyl points, nodal lines, Fermi arcs an other topological
features have offered new routes to use information carriers other than charge, such
as spin [6] and valley-pseudospin. These effects are now experiencing a resurgence
in condensed matter in pure academic research and technological applications such
as spintronics and valleytronics.

FIGURE 1: 2D materials. Number of published articles during a
decade [7].

In addition to the non-zero gap, their high electron mobility has offered them as
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a potential solution for switching device applications such as field effect transistor
(FET), for which the current design has come to a limit, notably physically, since the
increasing transistor density due to further miniaturisation (i. e. modern transistors
approach the quantum limit) has lead to crucial heat dissipation problems [8] and
tunneling effects, causing them to fail.

One approach to bypass these thermal losses is to implement materials with much
better electronic conductivity, shedding automatically light on superconductors, a
family of a large number of metallic elements and compounds, characterized by
zero resistivity below a transition temperature, making them excellent candidates.
Since their discovery in 1911 by Kamerlingh Onnes [9] and the Nobel prize awarded
in 1957 to Bardeen, Cooper and Schreiffer (BCS), who provided a theoretical descrip-
tion of the phenomenon, consisting of the pairing of electrons induced by a weakly
attractive interaction mediated by phonons, a great number of superconducting ma-
terials was found and characterized, however, the lack of a superconductor with a
transition temperature close to room temperature yield to their unlikely consider-
ation, so far, as a solution to prevent the stagnation of device development (e. g.
high-temperature copper-oxide superconductors hold a record of a transition tem-
perature of 113K at atmospheric pressure [10]).

In the following part a breakdown of how this thesis will unfold:

Chapter 1 starts with some of the important and relevant (for this thesis) con-
cepts in condensed matter physics, notably the behaviour of electrons in solids and
the theory of bulk and surface electronic structures, being the foundation for the ex-
perimental results in this work. Relativistic effects such as spin-orbit coupling and
Rashba effect are also emphasized, alongside the global lattice symmetries and their
importance in shaping the electronic band structure of a material. The Dirac cones
are introduced from a simplified tight-binding model of graphene, followed by the
perturbations arising from spin-orbit coupling and inversion symmetry breaking,
resulting in a finite band gap in the TMDs. A full description of the crystalline and
electronic structure of TMDs is given, highlighting most of the recent achievement
relevant for this thesis including the spin-texture, the topological features arising
from within a single manifold and the origin of the novel electronic states in this
family.

Chapter 2 is dedicated to angle-resolved photoemission spectroscopy (ARPES),
being the main experimental technique used during this thesis, giving insights on
the underpinning theoretical framework of the photoemission process as well as
some important practical considerations.

Chapter 3 begins with an overview of the crystalline structure of HfTe2 and un-
derlying symmetries, followed by a literature review of the most relevant findings to
this work, with a focus on the transport properties, being a part of the motivation to
study this system. Insights on the used density functional theory (DFT) calculations
approach and its merits will be explained, followed by the obtained results from the
experimental investigations on the electronic band structure of pristine HfTe2. The
possible scenarios of dosing a layered material with alkali metals are given in de-
tails, and the factors favouring each of them are thoroughly explained, followed by
the results obtained from our potassium K dosing sequences on the HfTe2 surface,
resulting in the emergence of a monolayer-like electronic structure, evidencing the
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intercalation of the K atoms within the van der Waals gaps and then isolating the
topmost layer. This chapter finishes by highlighting the topological features in the
valence band of HfTe2, analogous to other materials in the same space group.

Chapter 4 starts by recalling the peculiarity of 2H-Nb2 as an exception in the
metallic family of TMDs, since it is the only material which hosts a superconducting
phase without a charge density wave (CDW). Electron-phonon and electron-electron
interaction as the origin of the novel electronic states in TMDs will be introduced,
showing their effect on the spectral function. Previous works performed on the su-
perconducting nature as well as the surprising absence of a CDW phase in 2H-NbS2
are reported. Our obtained results on the electronic band structures of both the 2H
and 3R phases of NbS2 will be shown, which, although have different crystalline
structures, they are expected to have lots of similarities in the electronic structure as
the DFT calculations would suggest. Our measured data, however, reveal striking
differences between the two phases which we attribute to additional Nb interstitials
in 3R-NbS2, explaining the remarkable difference in the electronic structure of this
phase and putting it away from any instabilities. Furthermore, we revisit the origin
of the band splitting present in each phase, backed with our high resolution data.
The chapter finishes by the experimental evidence of the momentum-dependent
strong electron-phonon coupling and its direct link to the superconducting gaps dis-
tribution in 2H-NbS2.

The last part provides a summary of the performed work, drawing the most impor-
tant conclusions and giving perspectives to the findings in this work, opening routes
for the possible further investigations to gain more insights on some of the interest-
ing phenomena which could not have been accomplished within the framework of
this thesis.
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Chapter 1

Scientific Background and
Materials of Interest

This chapter begins with a brief discussion of the theory of electronic band struc-
ture, which will serve as the foundation for experimental results discussed in this
thesis, as well as an overview of the bulk and surface electronic structures of a solid.
Relativistic effects such as spin-orbit coupling and Rashba effect will be introduced,
alongside with the importance of global lattice symmetries.

Subsequently, a short introduction about the huge interest into 2D materials in the
last few years, following the successful exfoliation of graphene will be given. The
crystal and electronic structure of graphene will be shown, with the Hamiltonian
describing the near Fermi-level band dispersion around K point, resulting in a lin-
ear band dispersion which gives rise to Dirac cones at the Brillouin zone corners.
Furthermore, additional terms in the Hamiltonian near the K point, which refer to
the inversion symmetry breaking in monolayer 1H-TMDs and spin-orbit coupling
are introduced, opening thus the gap and resulting in the spin-valley locking in
these materials. Also, the physics underpinning the diversity accross the TMDs fam-
ily are highlighted, including the structural phase of the system and the schematic
overview of its electronic band structure.

Other polytypes of the TMDs are described, notably the 1T and 3R counterparts,
discussing some of their attractive electronic properties such as the topologically
non-trivial states and the valley dependent spin-polarized states, respectively. This
chapter completes with an introduction to the variety of instabilities in the TMDs,
including Mott-insulating phase, charge density wave an superconductivity, empha-
sizing the many-body interactions as the origin of these novel electronic states.

1.1 Scientific background

1.1.1 Electronic structure

The electronic structure is the anchor to understand the behaviour of electrons in
solids through a network of bands, the electronic band structure. The shape of the
electronic band structure reflects many of the physical properties of the system, from
superconductivity, charge density wave (CDW) to novel forms of topology, since it
covers information about charge, spin and quasiparticle correlations. Therefore, the
discovery and development of new materials with exotic properties requires a dis-
entangled understanding of their electronic structure.
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Electronic phenomena and band structure are one of the most important branches
in condensed matter physics. A keystone to get access to such information is the
many-particle Schrödinger equation:

H|Ψ〉 = E|Ψ〉 (1.1)

where Ψ is the wavefunction of the electrons in the solid with E their energy, while
H represents the Hamiltonian of the system, which describes the kinetic energy and
Coulomb interactions between the electrons and the lattice ions. However, to get a
good approximation of the electronic structure, it is not always necessary to consider
all interactions within the lattice. Some assumptions are thus often made to simplify
the solution.

The first assumption consists to combine the interaction of each electron with the
lattice into a single potential, V(r), since the electron dynamics are much faster than
lattice dynamics (the electrons are independent; the adiabatic approximation) [11,
12]. The second assumption is the so called "one electron approximation", which
dictates that all the electrons experience the same potential V(r) [11, 12].

The Hamiltonian becomes thus the time-independent Schrödinger equation and can
be written as:

Ĥ(r) = − h̄2

2m
∇2 + V(r) (1.2)

with

V(r) = V(r + R) (1.3)

where m is the electron mass, r is the position vector of the electron, h̄ is the reduced
Planck constant and R is the lattice vector.

The periodicity of the potential V(r) enforces that the solutions for the problem must
also satisfy the periodicity condition. The wavefunctions Ψ(r) can then be described
by Bloch functions (modified plane waves) and can be written as follow:

Ψ(r + R) = exp(ikR)Ψ(r) (1.4)

To find the corresponding eigenstates for Eq. 1.1, which will provide the electronic
band structure, two of the main used approaches are the nearly-free electron model
and the tight binding model (TBM). In the nearly-free electron model the crystal
potential V(r) is considered as a weak perturbation, while it is treated as a strong
perturbation in the TBM, where electronic states are assumed to be mostly localised
to individual atoms (i.e. electrons are tightly bound to the lattice).

The tightly bound core electrons are strongly localised to the constituent atoms and
thus have negligible dispersion. On one hand, the loosely bound valence electrons
lie in large orbitals which have a great overlap (hopping strength) with neighbour-
ing atoms within the unit cell. These orbital overlaps contribute directly to the bands
dispersion in a solid and hence to its electronic properties. For instance, solids are
formed by the bonding of these electrons across atomic sites, either covalently or
ionically, where electron pairs are shared or fully transferred between atomic sites,
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respectively. Consequently, the shape of the electronic structure is fundamentally
governed by the crystal structure, since it reflects its periodicity and the orbitals dis-
tribution and their relative overlaps within the unit cell.

As shown in Fig. 1.1, obtained from a simplistic tight-binding model of graphene,
the bandwidth of the pz-derived bands depends purely on the hopping strength of
the pz orbitals "tpz "; or in other words, the degree of overlap between neighbouring
pz orbitals. Analogously, in a three-dimensional material where the band structure
depends on both the in-plane kx,y and out-of-plane kz momentum, the band disper-
sion along each direction is defined by the hopping strength of the corresponding
orbitals. The manipulation of such hopping and its control with neighbouring unit
cells in layered materials leads to a rich display of coexisting topological states and
phases [13] as it will be explained in details later.

FIGURE 1.1: Bandwidth of the pz derived bands in graphene as a
function of hopping strength, where t = 0 corresponds to infinitely

separated atoms (a = ∞) [14].

Density functional theory (DFT), the exclusive theoretical approach used in this the-
sis, establishes the ground state electron density, ρ(r), of a many electron system as
the relevant physical quantity, from which all information about the system can be
obtained [15]. This is founded on the principle that the ground state electron density
uniquely identifies the potential experienced by the electrons, determining thus the
ground state wavefunction (first Hohenberg-Kohn theorem) [15]. This consequently
gives some evidence that by minimising the total energy of the system, the ground
state wavefunction can be acquired.

The second Hohenberg-Kohn theorem states that the total energy is a function of the
electron density, which itself is a function of r only [15]. This thereby significantly
simplifies the computational cost of DFT and offers the ability to handle large solids,
molecules and atoms.

DFT solutions are expressed as linear combinations of a complete set of basis func-
tions. In principle the set of basis functions is infinite, making the exact solution
analytically impossible, but an approximation can be made using a limited number
of wavefunctions corresponding to a subset of the atomic orbitals.
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Although predominantly used in ARPES community as it successfully reproduces
the electronic band structure of a system, standard DFT unrealistically understi-
mates the band gaps and bandwiths [16]. This is improved using functionals such
as the modified Becke-Johnson (mBJ), Heyd–Scuseria–Ernzerhof (HSE) exchange-
correlation functional and GW approximation [17, 18, 19]. The mBJ functional was
used in this work, and the details about its merit will be given in Chapter. 3.

Several commercial packages have been developed using DFT. Here, the WIEN2k
package [20] was used by Dr. Matthew D. Watson to reproduce the measured elec-
tronic band structures for 1T-HfTe2, 2H-NbS2 and 3R-Nb1+xS2.

1.1.2 Surface states

The above subsection gives a simple description of the bulk electronic structure of a
solid. However, since the investigated crystals have a surface, it is essential to study
the electronic states confined to these surfaces, because surface states SS can have
fundamentally different properties to their bulk counterparts.

As demonstrated above, the k-dependence of a given electronic band is defined by
the periodicity of the potential, V(r). However, this periodicity is lost at the sur-
face, and the potential inside the solid V(r)z<0 must match somehow the constant
vaccum potential V(r)z>0 = Vvac. Therefore, the Bloch plane wave solutions to the
Schrödinger equation in the bulk (z < 0) are not valid at the surface (z = 0) due to the
broken translational symmetry along the z direction.

For instance, since the Bloch plane wave solutions within the solid cannot exist out-
side, the resulting behaviour is an exponential decay upon reaching the potential
barrier into the vaccum at the surface (Fig. 1.2(a)). Nevertheless, bulk solutions
must obey the boundary conditions matching the wavefunctions inside the solid
(plane wave, z < 0) to the wavefunctions outside (exponential decay; z > 0) by as-
suming the plane wave to be a superposition of the incident and reflected Bloch
function [21, 22]. The wavefunctions inside and outside the solid will have, respec-
tively, the following form:

ψsolid ∼ A exp(ikzz) + B exp(−ikzz)(z < 0) (1.5)

and

ψvaccum ∼ C exp(−z)(z > 0) (1.6)

where A, B, and C are constants. The continuity conditions are satisfied as follow:

ψsolid(z = 0) = ψvaccum(z = 0) (1.7)

and

dψsolid

dz
(z = 0) =

dψvaccum

dz
(z = 0) (1.8)

Empirically, a plane wave with a complex wavevector could satisfy these continu-
ity conditions, such that the wavefunction inside the solid ∝ exp(ikzz) is also real.
This imaginary wavevector then produces an exponential decay into the bulk as well
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as into the vacuum, implying that the amplitude of the wavefunction goes to zero
away from the surface both into the solid and the vacuum. Solutions of this form are
surface states (Fig. 1.2(c)).

FIGURE 1.2: Electronic wavefunction at the sample surface for a bulk
band (a), a surface resonance (b) and a surface state (c). z < 0 cor-
responds to the solid and z > 0 is the vaccum [14]. (d) Schematics of
bulk-surface wavefunction overlap in a three dimensional band struc-
ture [21]. Solid lines correspond to bulk bands, shaded regions repre-
sent the projected bulk continuum states while white areas are band
gaps. Surface solutions which exist within the band gaps and do not
degenerate with the bulk continuum are true surface states, otherwise

they are described as surface resonances.

Given the bulk solutions have strictly real k-vectors, the complex wave vector of the
surface states does not allow their degeneracies with those of the bulk, and then sur-
face states can only exist within bulk band gaps. In other words, if surface states
existed at the same energies as bulk states (which have solutions with real momenta
only), these SS could not have imaginary momenta and would not yield an expo-
nential decay into bulk. Therefore, imaginary momemtum solutions can only exist
where there is not already a real momentum solution, hence surface states must live
in bulk band gaps.

Surface states do not disperse in kz and can only have in-plane momentum k|| due
to their localisation to the 2D surface plane. However, since surface states are im-
posed to be in bulk band gaps, they can exist exactly with bulk bands at some kz
and thus degenerate with the projected bulk continuum states (Fig. 1.2(b),(d)). The
result is a surface resonance (Fig. 1.2(b),(d)) which extend deeper into the bulk (i.e.
more spatially delocalised) than a ’true’ surface state [21]. The experimental creation
of surface states in a 3D electronic band structure will be shown in details in Chap.
3, where the intercalation of alkali metal atoms into the van der Waals gaps results in
a quasi-free standing monolayer, with the wavefunction confinement to the topmost
layer.
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1.1.3 Spin-orbit coupling

Spin-orbit coupling has become a key element in condensed matter physics. It enters
as a relativistic correction to the Schrödinger equation and can be considered as an
"internal Zeeman effect". For instance, depending on the electron spin, the energetic
splitting of an electron system in a magnetic field can be ±µ.B, where µ is the mag-
netic moment and B is the magnetic field.

Analogically, when considering the oversimplified picture of an electron with ve-
locity v = p/m orbiting a nucleus, the electron experiences an electric field , E(r),
from the positive Coulomb potential of the nucleus. The Lorentz transformation
of E(r) is the effective field experienced by the orbiting electron in the rest frame
and therefore, the electron experiences a magnetic field which can be expressed as
B = −v× E(r)

c2 . The resulting energy shift is:

− µ.B = − h̄e
(mc)2 σ.(E× p) (1.9)

with σ the Pauli matrices, m the electron mass and E the size of the electric field
within the solid. From Eq. 1.9, it is evident that spin-orbit coupling consequently
gives rise to a momentum-dependent spin mixed term when operating on a two
component plane wave wavefunction.

Nevertheless, for a complete picture of quantum mechanics, capturing spin-orbit
coupling and other relativistic effects, the Dirac Hamiltonian should be considered,
which can be written as follow:

ĤD = cα.p + βmc2 + V(r) (1.10)

where i ∈ {x, y, z} and

αi =

(
0 σi
σi 0

)
β =

(
I2 0
0 −I2

)
(1.11)

Following the Foldy-Wouthuysen transformation [23], and taking into account the
complete relativistic corrections, for a hydrogen-like atom with a spherical central
potential, the resulting Dirac Hamiltonian can be written [24]:

ĤD =
p2

2m
+ V(r)︸ ︷︷ ︸

non rel.

− p4

8m3c2︸ ︷︷ ︸
mass corr.

− h̄2

4m2c2
dV
∂r

∂

dr︸ ︷︷ ︸
Darwin term

+
1

2m2c2
1
r

dV
dr

L.S︸ ︷︷ ︸
spin-orbit coupling

(1.12)

where the first and second terms are the non relativistic part, representing the ki-
netic energy and potential term of the Schrödinger equation, respectively. The third
term accounts for a variable mass, while the fourth term is the Darwin correction,
which corresponds to changes in electron-nucleus interactions resulting from the
quantum oscillations of the electrons (i.e. the non-local influences of the Coulomb
interactions). The last term is the spin-orbit coupling, which can be written as:

ĤSOC =
µB

h̄mec2
1
r

∂V
∂r

L.S (1.13)

with µB = h̄e
2m being the Bohr magneton, S = 1

2 h̄σ and:
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L.S =
h̄2

2
(j(j + 1)− l(l + 1)− s(s + 1)) (1.14)

This equation empirically shows the coupling of spin and orbital angular momen-
tum quantum numbers. For instance, spin-orbit coupling mixes the orbital character,
and any additional intrinsic or extrinsic electric fields to the atomic spin-orbit cou-
pling will yield further spin-orbit corrections, such as the Rashba-type spin-splitting
[25], which results from the inversion symmetry breaking along the z-axis at the sur-
faces and interfaces, or the Dresselhaus-type spin-splitting [26], which arises in bulk
systems lacking an inversion centre.

The strength of the spin-orbit coupling is highly dependent on the chemical ele-
ment’s atomic number (SOC ∝ Z4 [27]), meaning that spin-orbit corrections are
larger for the valence electrons of heavier atoms. Furthermore, d-orbitals derived
electronic bands can experience larger spin-orbit corrections than p-orbitals derived
bands, as the spin-orbit coupling is larger for larger l. However, to lift the spin de-
generacy (electrons with ms = ± 1

2 ), a breaking of either inversion symmetry (IS) or
time-reversal symmetry (TRS) is required.

1.1.4 Time reversal and inversion symmetry

FIGURE 1.3: Effect of TRS and IS breaking on the band structure of
a free-electron gas. (a) A typical 2DEG dispersion following E ∝ k2,
preserving both TRS and IS. Spin-degeneracy is lifted by the violation
of TRS (b) or IS (c), resulting in a Rashba-type splitting in the latter

case [14].

The presence of both time reversal and inversion symmetry dictates the energy de-
generacy (i.e. Kramer’s degeneracy) of electronic states with the same orbital wave-
function but opposite spins.
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Time-reversal symmetry (TRS) holds for non-magnetic materials and forces spin-
degeneracy at the so called time-reversal invariant momentum (TRIM) of the Bril-
louin zone. For instance, Kramer’s theorem states that for every energy eigenstate
of a time-reversal symmetric system with half-integer total spin such as an electron,
there is at least one more eigenstate with the same energy. In other words, every
energy level is at least doubly degenerate if it has a half-integer spin.

E(k, ↑) = E(−k, ↓) (1.15)

Another fundamental symmetry is that of inversion symmetry (IS). IS means the ex-
istence of a center of inversion about which the unit cell of a system is invariant un-
der the transformation r → −r, such as the body-centred cubic structure of sodium
or the hexagonal structure of transition metal dichalcogenides (TMDs), where r is a
real space position in the crystal. In analogy to the r → −r transformation in real
space, the k → −k transformation in reciprocal space occurs and hence for every
state in the Brillouin zone the inversion symmetry dictates:

E(k, ↑) = E(−k, ↑) (1.16)

It is apparent that the presence of both TRS and IS (i.e, the combination of equa-
tions 1.15 and 1.16, E(k, ↑) = E(−k, ↑) = E(k, ↓) = E(−k, ↓)) enforces the spin-
degeneracy of all the states in the Brillouin zone. Therefore, spin-orbit coupling can-
not give rise to a spin splitting within systems that are simultaneously time-reversal
and inversion symmetric.

As has been demonstrated, the chemical composition and crystal structure represent
the key foundation to the electronic structure of materials. For instance, in a non-
magnetic system (i.e. TRS is upheld) where the lattice is constructed of light atoms
(i.e. negligible SOC) with cubic symmetry, the three p-orbital derived bands are de-
generate at the Brillouin zone center Γ, each of which is doubly spin-degenerate.
However, if the system is composed of heavy atoms such as those of the transi-
tion metals, SOC is significant and results in a splitting of p1/2 and p3/2 orbital
derived bands, with spin-degeneracy is still present for each band. Finally, if the
crystal lattice is changed in a way that the inversion symmetry is broken, the spin-
degeneracy will be lifted and thus each electronic band is spin-polarised, except at
time-reversal invariant momentums (TRIM points) such as Γ, where TRS enforces
E(k, ↑) = E(−k, ↓). The existence of TRS also dictates the total spin-polarisation
of the system to be zero, with no preferred direction as for every spin-up electronic
state, there is a spin-down state at opposite k in the Brillouin zone.

In the case of magnetic materials (Fe, Cr...), an asymmetry in the population of elec-
tronic spins (i.e. a shift in energy of the density of states of spin-up vs spin-down)
known as an exchange splitting develops (i.e. more up-spins than down-spins). This
spin-population imbalance breaks time-reversal symmetry and therefore, for a state
with spin-majority at k, there is no corresponding state with spin-minority at -k (Fig.
1.3(b)). Nevertheless, this thesis will focus entirely on non-magnetic materials (time-
reversal symmetric), hence only inversion symmetry breaking is responsible of any
spin-splitting shown here.
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1.1.5 Rashba Effect

The principle of Rashba-type spin-splitting [25] can be described by considering a
two-dimensional electron gas (2DEG) at a material surface or interface; free elec-
trons propagating in the x-y plane but confined in z, formed from a gradient in the
potential at the surface in the z direction. This effective electrostatic potential nor-
mal to the surface naturally provides the loss of inversion symmetry required by
Rashba-type spin-splitting (Fig. 1.3(c)), even when the underlying crystal structure is
inversion symmetric.

More precisely, the strong variation of the electrostatic potential near the surface re-
sults in the so called "near-surface band bending effects", a familiar scenario when
dosing semiconductors with alkali metals [28, 29, 30, 31]. This band bending caused
by the charge accumulation in the near-surface region yields the effective spatial
confinement and emergence of quantum-well-like states. The band structures of
these confined sub-bands therefore mimic the bulk, but without the constraints im-
posed by inversion symmetry. One of the most famous experimental realisations
of Rashba-type spin-split quantum-well-states derives from the near-surface layers of
Bi2Se3 [28, 29, 32], but sub-band states exist also in systems with residual surface
charge or at the interface between two materials. More recently, the quantum con-
finement has been shown to exist in the semimetallic TMDC PtSe2 as well, although
the existence of both holelike and electronlike free carriers makes the underlying
mechanism complex to predict [33].

Similarly, Rashba-type spin-splitting also exists in the surface electronic structure of
any compound which hosts surface-localised states, since the inversion symmetry is
naturally broken at the surface of a material. Rashba-type spin-splitting of the surface
states was demonstrated by angle-resolved photoemission spectroscpy (ARPES) for
Au(111), an inversion symmetric material and other noble metals such as Cu(111)
and Ag(111) [34, 35, 36, 37, 38, 39].

Nevertheless, and directly related to the work presented here, Rashba-type spin-
splitting can also exist in bulk systems lacking inversion symmetry, such as mono-
layer 1H-TMDs (1H-NbS2, 1H-NbSe2, 1H-WSe2 and 1H-MoS2) which exhibits an
out-of-plane spin splitting around the K valleys resulting from the in-plane dipole
within each single layer of their layered crystal structure [40, 41, 42, 43, 44, 45]. The
inversion symmetry breaking ISB in 1H-TMDs, however, is local since the unit cell,
formed by two monolayers rotated by 180◦ between each other (2H-TMDs) is in-
version symmetric, as it will be explicitly described later, rather than the global ISB
shown in the giant Rashba system BiTeI [46, 29, 47, 48].

1.2 Introduction to 2D materials

1.3 Graphene

The discovery of graphene has triggered an extensive rise in the study of two-dimensional
materials [49]. As shown in its crystal structure (Fig. 1.4), graphene is composed by
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a single sheet of carbon atoms on a two-site triangular lattice, resulting in a hon-
eycomb structure. Both inversion symmetry and time-reversal symmetry are pre-
served in graphene, as a consequence of its crystalline structure and non-magnetism,
respectively.

FIGURE 1.4: Real space and reciprocal space lattice of graphene [50]
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The in-plane 2px,y orbitals form the σ-type bonding in graphene, while the low-
energy band structure is π-type bonds, deriving from the out-of-plane orbitals 2pz.
Therefore, it is sufficient to consider only the pz orbitals in the Hamiltonian. There
is then a pz orbital from the A and the B sublattice (Fig. 1.4) forming a 2 x 2 Hamil-
tonian describing the bonding (π) and antibonding (π*) states. The diagonal terms
describe the on-site energies, while off-diagonal terms describe hopping between or-
bitals.

H =

(
εA −tf(k)
−tf*(k) εB

)
(1.19)

Where εA,B is the on-site energy for the A or B site, t is the hopping parameter, and
f (k) is the momentum dependence of the hopping.

The Hamiltonian can be diagonalised and solved as follows:

E± =
εA + εB

2
±
√
(εA − εB)2 + 4t2| f (k)|2

2
(1.20)

where E− and E+ are the bonding π and anti-bonding π* bands, respectively.
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Since both A and B sites contain a carbon atom, and the honeycomb lattice of graphene
possesses inversion symmetry, the on-site energies are equivalent to the on-site en-
ergy of the carbon 2pz orbital where εA = εB = εpz . Thus, the eigenvalues are:

E± = εpz ± t| f (k)| (1.21)

giving the dispersion of the π bands as illustrated in Fig. 1.5, where the degeneracy
is enforced at the points where f (k) = 0 (E± = εpz ).

The notoriety of the band structure of graphene is embodied in the Dirac cones at
the corners of the Brillouin zone [51, 52, 53, 54]. As shown in Fig. 1.5, Dirac fermions
are formed by the crossing of linearly dispersing bands at the K points, allowing
graphene to host unique properties, such as a very high mobility on the order of
105 cm2V−1s−1 [55], which corresponds to a low resistivity of ∼ 10−6 Ωcm. Another
consequence of these Dirac cones in graphene is its possession of an unconventional
integer quantum Hall effect [51, 56]. Adding to that a strikingly high thermal con-
ductivity [57] makes graphene a material which may potentially revolutionize the
next-generation electronic devices.

FIGURE 1.5: a). Electronic structure of the π-bands of graphene. b).
Low-energy band dispersion around the K point showing the linear

dispersion of the Dirac cone states [54].

The momentum dependence of the hopping is given by:

f (k) = ∑
i

ei(k.δi) = eikya/
√

3 + 2e−ikya/2
√

3cos(kxa/2) (1.22)

where the three hopping vectors from an A site to the nearest B site or vice versa are:

δ1 = (0,
a√
3
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2
√
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As seen in Fig. 1.5, the degeneracy of the π bands occurs at the Brillouin zone corners
(K points), this point can be obtained as follows:

(b1 + b2)/3 = ξ(
4π

3a
, 0) (1.24)

where the valley index ξ = ±1. In momentum space, this distinguishes between K
and K’(-K) Brillouin zone corners. Away from Kξ , the momentum is p = h̄k - h̄Kξ ,
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which gives the hopping function:

f (k) = eipya/
√

3h̄ + 2e−ipya/2
√

3h̄cos(
2πξ

3
+

pxa
2h̄

) (1.25)

by expanding and neglecting the higher orders in momentum, we get:

≈ −
√

3a
2h̄

(ξ px − ipy) (1.26)

The low-energy effective Hamiltonian for the states close to Kξ is thus:

HKξ
= v

(
0 ξ px − ipy

ξ px + ipy 0

)
(1.27)

where v =
√

3at/2h̄ is the particle velocity.

The effective Hamiltonian can be diagonalised to give two eigenvalues and eigen-
states:

E± = ±vp, ψ± =
1√
2

(
1

±ξeiξφ

)
eip.r/h̄ (1.28)

where φ is the in-plane velocity angle and p = (px, py) = p (cosφ, sinφ).

Then, a linear dispersion relation is obtained close to the K point, with the electronic
states described as Dirac fermions with a velocity v.

The fact that there is a pseudospin which relates to the electron or hole density being
localized to either the A or B sublattices, the effective Hamiltonian can be written as:

H = v(ξσx px + σy py) (1.29)

where σi refers to a Pauli matrix for the ith component of the pseudospin.

The observation of Dirac cones in graphene has triggered a surge of interest in Dirac
semimetals and topological insulators, since they are considered as the realisation of
massless Dirac fermions in condensed matter physics. However, despite the wide
range of novel physics in graphene [58, 59, 60], the gapless band structure limits its
suitability for transistor-based devices, or any other applications which require semi-
conducting materials. Furthermore, the fact that both inversion and time-reversal
symmetries are preserved in graphene makes this system less attractive for spin-
tronic applications, due to the complexity to control the charge carriers.

This was the original reason behind the avalanche of studies on a related class of
materials: Transition metal dichalcogenides TMDs. Unlike graphene, TMDs can
possess both a lack of inversion symmetry (i. e. 1H phase) and a strong SOC, due to
the large atomic size of the constituting elements. These, as explained earlier, con-
sequently lead to a lifting of the spin-degeneracy of the states and a finite gap in
the band structure, respectively. Since the research conducted within this thesis con-
sists entirely of materials which belong to the TMD family, an extensive discussion
is dedicated in the following section.
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1.4 Transition metal dichalcogenides

Transition metal dichalcogenides (TMDs) are a class of layered materials that has
been a cornerstone of condensed-matter physics research since the last century. Struc-
tures and properties have been reviewed by Wilson [61] as early as 1969, and elec-
tronic properties were reviewed by Yoffe [62]. Lieth, Balchin and Levy [63, 64] have
summarized the preparation and crystal growth procedures, while Hulliger [65] has
compiled extensive structural information. Phase transitions and charge-density
waves were considered by Gamble and Geballe [66], whereas Whittingham [67] has
reviewed the chemistry of intercalation [68].

TMDs form in the MX2 stochiometry, where M represents almost any transition
metal from group IV through X, and X stands for chalcogen elements from group
XVI of the Periodic Table {S, Se, Te} (Fig. 1.6).

FIGURE 1.6: Periodic table of elements presenting some possible com-
binations of elements forming layered TMDs MX2. Purple color indi-
cates the transition metals (M), while chalcogens (X) are indicated by

the pink color [69].

1.4.1 Atomic structure

A monolayer TMD is composed of a hexagonal layer of the transition metal atoms
and two hexagonal layers of dichalcogenide atoms positioned above and below the
the transition metal plane, resulting in the order X-M-X. Depending on their crys-
talline structure, TMDs can form either in the 2H, 1T, the ‘distorted’ 1T’ and 3R
phase, where the number denotes the number of layers within a unit cell, and T,
H and R indicate the trigonal, hexagonal and rhombohedral structures respectively
(Fig. 1.7).

Bulk TMDs consist of either covalently or ionically (i. e. depending on the transition
metal configuration, which will be explained later) bonded quasi-two dimensional
layers stacked along the c-axis in one of the orders described above, separated by the
van der Waals gaps. The layered crystal structure adopted by these materials makes
them exhibiting a highly anisotropic thermal, chemical and electronic properties [70,
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71].

FIGURE 1.7: Comparison of the crystal structure of graphene with
that of the TMD family. (a) top-view (c-axis projection) structures of
graphene, 2H-NbS2 and 1T-HfTe2 from left to right. (b) side-view (b-
axis projection) of the same three compounds. The number of layers

shown indicates one full repeating unit along the c-axis.

1.4.2 Diversity across TMDs

The extensive avalanche in studying bulk TMDs in the last decade is a natural con-
sequence of their rich and large electronic properties, range from insulating (HfS2
[72, 73]), semiconducting (MoS2 and WSe2 [43, 42, 45]), semimetallic (HfTe2, WTe2,
PtSe2 and PdTe2 [74, 61, 75]) to metallic (NbSe2, NbS2 and TaSe2 [76, 77, 78, 79, 80]).
These metals are well-known for hosting a variety of instabilities such as a charge
density wave and superconductivity, arising from the interplay between electron-
phonon and electron-electron coupling, making them a fertile playground of novel
electronic states.

As summarized in Fig. 1.8, this diversity is predominantly owed to both the band
filling of the transition metal and the point group symmetry, which dictates the ther-
modynamically favoured structural phase of the material [83, 70, 71]. In general,
the electronic structure of TMDs consists of a valence band formed by the bonding σ
and anti-bonding σ* chalogen p-orbital manifolds, and a conduction band formed by
the transition metal d-orbital manifold. Depending on the adopted structure phase
by the system, the effect of the crystal field on the d-orbital manifold can be different.

For TMDs with the 2H (3R) crystal structure (primarly group-V and group-VI),
which puts the transition metal ion in a trigonal prismatic coordination (D3h point
group symmetry), the d-orbital manifold is split into [{dz2}, {dx2−y2,xy} and {dxz,yz}]
sub-manifolds. Group-VI TMDs, which have the transition metal in the (d2) config-
uration, fully filling the lowest dz2 band are thus semiconducting, such as MoS2 and
WSe2. Whereas, group-V TMDs have the metal in the (d1) configuration, leaving the
dz2 band half-filled, making them metallic, such as NbSe2 and TaSe2 [76, 84, 80].

For 1T-TMDs, where the transition metal ion undergoes an octahedral coordination
(D3d point group symmetry), preferred by group-IV, group-IX and group-X, d-orbital
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FIGURE 1.8: Simplified electronic structures of transition-metal
dichalcogenides. Density of states diagrams with the relevant transi-
tion metal group and coordination indicated above. The filled bands
are highlighted in dark blue while the unoccupied are in light blue.

Adapted from [81, 69, 82, 14].

manifold is split into [t2g = {dyz,xz,xy} and eg = {dz2 , dx2−y2}] sub-manifolds. Follow-
ing the ionic distribution for TMDs where the transition metal belongs to group-IV
of the periodic table (d0 configuration), the oxidation states of the transition metal
atom and the chalcogen atom are +4 and −2, respectively. In this case, the valence
electrons (e.g. 2p6 for Se) fill the two bonding and antibonding chalcogen p-orbitals,
resulting in a semiconducting electronic band structure such as TiSe2 and H f Se2 [85,
86]. This ionic picture, however, starts to break down as the d orbital filling progres-
sively increases, leading to significant differences in the electronic band structure of
these materials.

While the diagram in Fig. 1.8 presents a good way to understand the trends in the
electronic structure within the TMDs class of materials, it is a simple interpretation
which does not take into account other details that make the outlook more compli-
cated, such as the orbitals hybridization, the band splitting and orbital mixing from
the significant spin-orbit coupling in these materials. Such overlap between the tran-
sition metal d-orbitals and the chalcogen p-orbital can lead, in the case of HfTe2 for
example, to a semimetallic ground state with an band overlap (inverted band gap)
of ∼ 0.2 to 0.3 eV, compared with the isostructural and isoelectronic HfS2 which is
an insulator.

1.4.3 Spin-texture in TMDs

Inversion symmetry breaking and spin-valley locking in 1H-TMDs

In graphene, the inversion symmetry is preserved, resulting in a spin-degenerate
band structure (i. e. Kramer’s degeneracy). In 1H-TMDs, however, the inversion
symmetry is broken as can be seen in Fig. 1.9. This gives rise to finite band gaps
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in the states analoguous to the Dirac points of graphene (K and K’ valleys), and the
effective Hamiltonian near the K points can be written as [87]:

H = at(ξσx px + σy py) +
∆
2

σz (1.30)

where a and t are the lattice and the hopping parameters, respectively, and ∆ is the
energy gap opened from the sublattice symmetry breaking (the difference in on-site
energies for the A and B sub-lattices).

This is, however, only a simplistic analogy drawn between graphene and TMDs to
give straightforward insights, since this is now a multiorbital system with a com-
pletely different lattice and electron count.

FIGURE 1.9: The stacking along the c-axis is shown for the a) 2H, b)
1H, c) 1T and d) 3R polymorphs. Green arrows represent the applica-

tion of the inversion operator [82].

Furthermore, the d orbitals originating from heavy transition metals experience a
much higher spin-orbit coupling than the electrons deriving from carbon 2p orbitals.
This can further split the bands when lifting the spin degeneracy of the valence band
maximum (VBM) at K and K′ valleys, as permitted by the inversion asymmetric
nature of the 1H-structure, and enhance the size of the band gaps. The effective
Hamiltonian close to the K points, including spin-orbit coupling for a monolayer
TMD, is therefore [87]:

H = at(ξσx px + σy py) +
∆
2

σz − λξ
σz − 1

2
sz (1.31)

where the last term couples to the sz component of the electron’s spin, with a spin-
orbit strength λ.

As indicated by the out-of-plane spin operator, the spin polarisation of the valence
bands in monolayer 1H-TMDs is entirely out-of-plane (sz), due to the effective in-
plane electrical dipole inherent to each X-M-X layer [40, 41]. It can be seen also from
eq. 1.31 that the sign of the energy is governed by the valley index ξ. This gives rise
to the so called "spin-valley locking", which exists only in monolayer TMDs where
inversion symmetry is broken (1H and 1R crystalline structures). Time-reversal sym-
metry relates the valence bands at the K(ξ = 1) and K′(ξ = −1) points, enforcing
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FIGURE 1.10: Spin-valley locking in TMDs. Low-energy electronic
structure of a monolayer 1H-TMD near the zone corners [87].

that the spin-splitting has opposite ordering within each valley [87]. For example, as
depicted in Fig. 1.10, the upper valence band at the K point (ξ=1) possesses a spin-
up sz while at the K′ point (ξ=-1), the upper valence band possesses a spin-down sz.

The surge of interest into monolayer transition metal dichalcogenides, especially 1H
semiconducting variants, focused mainly on exploiting this spin-valley locking for
manipulation of valley carriers and the study of the interplay between the pseu-
dospin and spin degrees of freedom [88].

The use of circularly polarised optical fields has been a successful tool to selectively
probe only electrons of a single spin type (either up or down). For an optical tran-
sition via the absorption of circularly polarised right (+) or left (-) light, the matrix
elements can be approximated as: |P±|2 ≈ A(1± ξ)2, where A is a constant [87]. In
this regard, several optical and photoluminescence experiments have been carried
out consisting of exciting excitonic transitions in these materials between the filled
valence bands and unfilled conduction bands, using circularly polarised light [89,
87, 90, 91, 92, 40].

As illustrated in Fig. 1.11(b), for circularly polarised photons with an appropriate
energy to the band gap between the upper valence band and the conduction band
(ω2), a choice of right σ+ or left σ− handed circular polarisation populates either the
conduction band at K with spin down electrons, or the conduction band at K′ with
spin up electrons, due to the valley selection rules. The opposite is true for a photon
energy corresponding to the energy separation between the lower valence band and
the conduction band (ω1).

The embodiment of this spin-valley locking plays a vital role in reducing the back-
scattering in these materials. In other words, the relaxation of an electron is most
likely to occur through the same channel as it was excited, since intervalley scat-
tering (from K to K′ valley) requires a spin flip and (potentially) a large in-plane
momentum, which are energetically less favourable, or even an unrealistically sig-
nificant change in energy associated with the splitting of the upper and lower va-
lence band, leading to robust valley coherence [93, 88]. Fig. 1.11(c) highlights the
allowed and forbidden intervalley scatterings.
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FIGURE 1.11: (a) Simplifield band structure of graphene, where
the band structure spin-degeneracy is preserved by the combination
of time-reversal and inversion symmetry (IS). Sub-lattice symmetry
and small spin-orbit coupling results in ungapped crossings at its K
points. (b) Simplified band structure for monolayer WSe2. A finite
band gap with a spin-split VBM arise du to the inversion and sub-
lattice symmetries breaking. The possible transitions at the K and K’
points are indicated. For example, exciting the sample with fixed en-
ergy hµ = ω1 circularly-right polarised light (σ+) will populate the
conduction bands at K’ with spin-down electrons, with no excita-
tions at K. For σ− with hµ = ω1 photons, the conduction bands at
K with spin-up electrons will be populated, with no excitations at
K’. The spin-picture is reversed for hµ = ω2. (c) Spin-valley coupling
reduces the propbability of backscattering events which require spin-

flips [93].

Hidden spin-texture in 2H-TMDs

Bulk TMDs, however, exhibit important changes in their electronic structure. The
VBM is shifted from the Brillouin zone corner at K(K′) to the zone center at Γ, while
the CBM shifts from K(K′) point to Σ valley, a position partway between Γ and K.
This results in a direct to indirect band gap transition when moving from monolayer
to bulk TMDs [94, 95, 89, 96, 97, 98, 99, 100, 101, 102].

Due to the strong hopping along the c-axis of the orbitals from which the top and
the shallow regions of the valence band at the Γ point are derived in the bulk elec-
tronic band structure, dz2 in WSe2 for example, the kz dispersion of these bands is
significant in the Brillouin zone center (along ΓA direction), as a consequence of the
dimensionality increase in real space [70, 71, 42, 13].

Furthermore, in bulk 2H-TMDs, the global inversion symmetry is restored. As
shown in Fig. 1.9(b), the unit cell is formed by two monolayers which are rotated
by 180◦ with respect to each other, establishing thus an inversion center between the
two layers. As a result of both inversion symmetry and time-reversal symmetry, a
total spin-degeneracy of the electronic states is expected.

Surprisingly, the spin-valley locking of the asymetric 1H monolayers still exists in
their centrosymmetric 2H bulk counterparts [42, 44, 45]. This is a consequence of
two major reasons. At the K points, the electronic wavefunctions have a strong 2D
nature, due to the in-plane orbital character from which the bands are derived [103,
44], dxy, dx2−y2 in WSe2, resulting in a great suppression of the interlayer hopping
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(negligible kz dispersion of these states). Due to the extreme surface sensitivity of an
experimental method such as spin-ARPES, the measured spin-polarisation is pre-
dominantly localised to a single monolayer (the top layer) of the bulk 2H-TMDs
(Fig. 1.12). In other words, only the local inversion asymmetry of a single X-M-
X unit along the c-axis is probed [41]. However, in the regions where the bands
are derived from orbitals with a strong interlayer hopping (pz, dz2), the 3D extended
nature of the electronic wavefunction experiences the global inversion symmetry
being upheld, which, in addition to the time-reversal symmetry provides a lack of
spin-polarisation of these electronic states (the Brillouin zone center).

FIGURE 1.12: Spin-valley-layer locking in inversion-symmetric
TMDs. (a). The sum over the unit cell dictates that all states are spin-
degenerate, but due to a local breaking of inversion symmetry by the
individual layers, out-of-plane spin-polarisations exists in each layer.
The 180◦ rotation between each monolayer reverses the direction of
the in-plane dipole and therefore the out-of-plane spin-polarisation.
The red and blue arrows indicate out-of-plane spin polarizations. (b).
Schematics for a low-energy pair of VB (red and blue) and CB (green)
around two different valleys (K and K’) and in two different layers
(L1 and L2). The open circle denotes the inversion center of bilayer
2H-TMDs. (c) Projection of bulk band structure onto individual lay-
ers of the unit cell reveals a strong out-of-plane spin-polarisation of
electronic states near Brillouin zone corners, which reverses between
layers. (d) Electronic wavefunctions at the zone corners are localised
to individual layers for a given spin, while an even distribution exists

at the zone centre. (a), (b) and (d) [42], and (b) [31].

In addition to the spin-valley locking in TMDs, the probe of a spin-polarisation pre-
dominantly localised to the uppermost layer in bulk materials is a signature of a
spin-layer locking in these systems [42, 44, 104, 45]. As depicted in details in Fig.
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1.12, the fact that the two layers being rotated by 180◦ in the 2H structure which
restores the inversion symmetry, results in an opposite net dipole and thus oppo-
site spin texture of the two individual monolayers. Riley et al. [42] showed that by
tuning the photon energy, the measured spin polarisation in WSe2 can be reduced
to almost zero, resulting from photoelectron interlayer interference effects, where
the probe becoming sensitive to a coherent superposition of the top two mono-
layers equally, thus assigning the out-of-plane spin-polarisation as a direct result
of the locking of electronic spin to the layer-pseudospin. Also, selecting this hid-
den spin-polarised electronic states in these centrosymmetric 2H-TMDs using circu-
lary polarised light has shown exciting results [104, 45], supporting the spin-valley
and layer-pseudospins locking allowed by the local inversion symmetry breaking in
these systems.

Valley-dependent spin polarization in the non-centrosymmetric 3R-TMDs

As illustrated in Fig. 1.13(a), each layer is translated by (0, 0, a/3) with respect to
the layer below in the 3R phase, resulting in a conventional unit cell which contains
three formula units. The primitive unit cell, however, contains only one formula
unit, as indicated by the dashed lines. In this stacking structure, the inversion sym-
metry is broken (space group R3m), and the slanting of the primitive unit cell away
from the z axis in this phase results in a more complex Brillouin zone (Fig. 1.13(b)),
rather than the conventional hexagonal one for the 2H and 1T phases.

FIGURE 1.13: Crystal structure of 3R-MoS2 (a) and corresponding
Brillouin zone (b), with blue and red spheres indicate Mo and S
atoms, respectively, and dashed lines correspond to the primitive unit

cell [105].

The main difference between 2H, 1T and 3R-TMDs polytypes is that the crystalline
structure of the latter globally breaks inversion symmetry, unlike the earlier two
phase where the inversion symmetry exists within the unit cell. This ISB, in addition
to the SOC, results in a robust valley polarization in bulk 3R-TMDs, making them a
firm basis for the development of magnetic and electric manipulation of spin/valley
degrees of freedom [105].

As expected, the electronic structure of 3R-TMDs reveals spin-splittings around the
K valleys of the Brillouin zone, emerging from both the ISB and SOC of the material
(Fig. 1.14(a)). In addition, due to the net in-plane dipole, located at the transition
metal of the system, shown above in Fig. 1.12(a), the measured spin-polarisation is
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FIGURE 1.14: Spin-polarised electronic bulk bands at the K val-
leys. (a) Constant energy map. Red and blue contours around the
K points indicate spin-up and spin-down components, respectively.
Spin-resolved energy distribution curves (EDCs) (b) at the K point
and the corresponding spin polarization (c). (d) Spin-resolved EDCs
for the out-of-plane component of sin Sz at the K and K’ points. (e)
Spin-resolved EDCs at the K point from the centrosymmetric mate-
rials 2H-MoS2 and 2H-WSe2. (f) Spin-ARPES data at the K valley of
3R-MoS2 along ky. Calculated total spin polarizations Pz of the va-
lence bands along (0, ky, 0) for 3R-MoS2 (g) and the centrosymmetric

2H-MoS2 [105].

predominantly arising from the out-of-plane Sz component (Pz ≈ ±1), with negli-
gible contribution from the in-plane spin components Sx and Sy (Px ≈ Py ≈ 0), as
shown in Fig. 1.14(b, c).

In bulk centrosymmetric 2H-TMDs, all the electronic states are spin-degenerate (Fig.
1.14(e)), since the measured spin-polarisation around the K valleys arise from the ISB
within the monolayer solely (1H) [42]. In contrast, the lack of inversion symmetry in
the 3R stacking yield spin-valley coupled electronic states realized in the bulk ma-
terial itself (Fig. 1.14(d)). This establishes 3R-TMDs as a very solid playground for
spintronics and valleytronics physics, as the spin-polarisation they provide is robust
against interference of spin-up and spin-down photoelectrons emitted from different
layers of the material, as it is the case for 2H-TMDs, where the relative 180◦ rotation
of the two layers forming the unit cell gives rise to opposite spin polarisations, which
can lead to the suppression of the total polarisation at high photon energies, where
the photoelectrons would be probed from both layers of the unit cell and not only
the topmost one (Fig. 1.12(d)) [42].

Yet the origin of the band splitting is not exactly the same for the two polytypes.
While it is emerging from the ISB and SOC only in the 3R phase, interlayer inter-
action is present in the 2H-TMDs, arising from interactions between the two layers
forming the unit cell. This additional interlayer hopping term, in addition to SOC
explains the relatively larger band splitting at the top of the valence band at the K
point of the Brillouin zone for the 2H compared to the 3R phase. For instance, the
valence band splittings at the K (K’) point in 2H-MoS2 and 3R-MoS2 are ∼ 0.17 eV
and ∼ 0.14 eV, respectively (Fig. 1.14(g, h)) [105].
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1.4.4 Topological features in 1T-TMDs

Unlike 2H-TMDs, where the unit cell contains two monolayers rotated by 180◦within
each other, which creates an inversion symmetry center, the unit cell of 1T-TMDs
consists, as indicated by the number 1, of only one monolayer. This number, as ex-
plained above, denotes how many layers are required to form one repeating block
along the c-axis, or in other words, the number of layers for atoms to map back onto
each other (Fig. 1.9). Thus, as depicted in Fig. 1.15(a), the crystal structure of the 1T
transition-metal dichalcogenides consists of the transition metal (D3d coordination)
at the centre of a trigonally distorted octahedron of chalcogen atoms, each forming
triangular layers above and below the transition-metal plane, rotated by 180◦ with
respect to each other, such that every chalcogen atom from the top sub-layer maps
onto another in the bottom sub-layer by the translation−r −→ r. Therefore, 1T-TMDs
monolayers are centrosymmetric materials with the transition metal being the inver-
sion symmetry center of the unit cell (r = 0).

By possessing both global and local inversion symmetry, 1T-TMDs are therefore
overlooked for spin-polarisation in non-magnetic materials. The absence of spe-
cific atomic asymmetries in 1T-TMDs (D3d point group symmetry) means all bands
must be doubly degenerate, and hence a lack of spin polarisation [41]. Therefore,
properties such as spin-valley locking are restricted to TMDs with the 2H crystal
structure (D3h point group symmetry), since they arise from the local inversion sym-
metry breaking within each monolayer in 2H-TMDs.

While the overall structure and properties in TMDs are dictated predominantly by
the transition metal, the choice of chalcogen leads to a decrease of the band gap
when going from S, Se to Te, as a result of the increased degree of overlap of the
chalcogen p-orbitals in the larger atoms. However, this is not the only role of the
p-orbitals. Bahramy et al. [13] have shown a general mechanism for topological phe-
nomena arising solely from a single chalcogen p-orbital manifold, unlike in the "con-
ventional" topological insulator phases such as Bi2Se3, where the non-trivial phases
arise from inversions between Bi p and Se p orbitals [106].

As described in Fig. 1.15, the unit cell of 1T-TMDs is a two-site chalcogen system (X1
and X2), with 3p orbitals for each site. Therefore, a total of 6 orbitals are split into
two triply-degenerate {px, py, pz} manifolds due to bonding (lower branch) and
anti-bonding (upper branch). The trigonal crystal field further splits each of these
manifolds into doubly-degenerate in-plane orbitals {px, py} and an out-of-plane pz
orbital. The inclusion of spin-orbit coupling lifts the degeneracy of the {px, py}
orbitals and causes a slight alteration to the energy of the pz orbital derived state,
producing thus the bands R±5,6, R±4′ and R±4 , respectively. ± indicates the parity of
each level [13, 107, 108, 109].

The basic details of the dispersion of these bands in the electronic band structure can
be understood from the relative hopping strengths in the unit cell, as they are the
only responsible of how each band evolves 1.15(a). Intra-layer hopping t1,2, which
designs the hopping between the chalcogen atoms in the same atomic plane along
the a and b axes are stronger for the px and py orbitals than pz orbitals, due to the
extended in-plane nature of {px, py} orbitals, while inter-layer hopping, both within
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FIGURE 1.15: Hierarchy of band inversions arising from p orbitals
in a trigonal crystal field. (a). Crystal structure of the 1T transition-
metal dichalcogenides, with the transition metal at the centre of a trig-
onally distorted octahedron of chalcogen atoms (X1 and X2) which
each form triangular layers above and below the transition-metal
plane. (b). Octahedral unit cell of a 1T-TMD. Hopping paths t1 to
t4 are indicated. (c). Degeneracy lifting of six-fold degenerate p-
orbital levels from two isolated chalcogen atoms (X1 and X2). BA:
Bringing two chalcogen atoms (X1 and X2) together to form the unit
cell results in the formation of bonding and anti-bonding manifolds.
CFS: Trigonal crystal field, C3v separates px,y and pz derived bands.
SOC: Spin-orbit coupling lifts the remaining degeneracies (neglect-
ing spin degeneracy). (d,e). Evolution of these crystal-field-derived
levels (anti-bonding set) as a function of out-of-plane kz momentum
without (d) and with SOC (e), showing a crossing of the A1 and E-
derived levels that is naturally expected due to their disparate out-of-
plane dispersion, forming thus a protected crossing and the opening
of an inverted band gap at the crossing of the R−4 level with the R+

5,6
and R+

4′ levels, respectively [13].

’t3’ and between ’t4’ neighbouring unit cells along the c-axis is higher for the pz
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orbitals, due to the extended nature of the pz orbitals wavefunction along the out-of-
plane axis. Consequently, this leads to a significant dispersion of pz orbitals-derived
states and dispersionless {px, py} orbital-derived states along the out of plane mo-
mentum kz. Therefore, a set of kz-dependent band crossings are naturally expected,
arising solely within the p-orbital manifold derived states [13].

Focusing now on the out-of-plane dispersion of the anti-bonding manifold (upper
branch) along ΓA direction 1.15(e), the crossing of the pz orbital derived states R−4
with the upper band of the {px, py}-derived state R+

5,6 results in a bulk Dirac point
(BDP), due to their belonging to different irreducible representations, protecting thus
the crossing. The R−4 and the lower R+

4′ bands share the same symmetry character
and angular momentum mj but have opposite parity ±, their hybridization thus
leads to an inverted bandgap which is expected to host topological surface states
[13, 107, 108, 109]. An equivalent scenario occurs in the bonding manifold (lower
branch), with the crystal-field splitting dictates that the {px, py} and pz orbitals being
reversed. 1T-PdTe2, 1T-PtSe2, 1T-IrTe2 and 1T-NiTe2 have all been demonstrated to
host type-I and type-II bulk Dirac fermions as well as ladders of topological surface
states and surface resonances [13, 109]. Such topological features are present in 2H-
TMDs too, as they belong, similarly with their 1T counterparts, to C3v space group
(e.g. 2H-WSe2, 2H-NaSe2 and 2H-TaSe2) [13].

To fully understand when the crossings are protected and when they are not, a
closer look at the hybridisation matrix elements for the crossings of the chalcogen
p-derived bands along the kz direction should be taken. By applying the unitary
operator of the C3v rotational symmetry on the wavefunctions describing the bands
R5,6, R4′ and R4, the following equations can be obtained:

C3v|R±5,6〉 = e
2πi

3 mj |R±5,6〉 = −|R
±
5,6〉 (1.32)

C3v|R±4′ 〉 = e
2πi

3 mj |R±4′ 〉 = e
πi
3 |R±4′ 〉 (1.33)

C3v|R±4 〉 = e
2πi

3 mj |R±4 〉 = e
πi
3 |R±4 〉 (1.34)

Orthogonal wavefunctions will give different eigenvalues under the application of
C3v, and the hybridization matrix elements between them must be therefore zero.
This can be summarized as follows:

< | > R±4 R±4′ R±5,6
R±4 6= 0 6= 0 = 0
R±4′ 6= 0 6= 0 = 0
R±5,6 = 0 = 0 6= 0

TABLE 1.1

This demonstrates how the crossing is allowed between R4 and R5,6, producing a
bulk Dirac point (BDP) protected by C3v symmetry, while it leads to an inverted
bandgap between R4 and R4′ due to their opposite parity.
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1.4.5 Novel electronic states in TMDs

In addition the spin-polarised electronic states even in the presence of global inver-
sion symmetry (2H phase) and the richness in topological features, strong electron-
electron and electron-phonon interactions in TMDs are the origin of a wide variety
of instabilities, ranging from spin and charge density wave, superconductivity and
Mott-insulating phases, which makes TMDs a fertile playground for exploring the
interplay between these novel electronic phases [110, 111].

In general, the reduced electronic dimensionality of TMDs or any other layered ma-
terials such as Fe-base superconductors, Cu-based superconductors or heavy Fermions
is a key ingredient for these novel states to take place, as this makes them more
prone to electronic instabilities [112]. TMDs in particular, where charge density wave
(CDW) were observed for the first time [113], they appear even more adopting to
electronic instabilities in monolayer [114]. For instance, a very significant enhance-
ment of the CDW transition temperature Tc of NbSe2 from 33 K to 145 K when going
from bulk to single layer [115, 116].

On the other hand, one of the most remarkable features for superconducting TMDs
is that superconductivity coexists or occurs in proximity of a CDW phase [117, 112].
NbSe2 a prototypical metal, is the most eminent representative of this class of ma-
terials, as it hosts a CDW phase (Tc = 33 K) which coexists with superconductivity
(Tc = 7,1 K) [118, 119, 120, 121]. However, the isostructural and isovalent compound
NbS2 stands out as a striking exception in this family, which although has a super-
conductivity below Tc = 6.2 K but does not undergo a CDW phase [122, 123, 124, 110,
125, 126]. This raises questions on whether superconductivity and CDW compete or
cooperate in these systems [112, 126].

Many investigations have been devoted to disentangling the driving force of the
CDW and its relation to superconductivity. While the traditional understanding con-
sists of a Fermi surface nesting as the origin of these novel electronic states, leading
to instabilities in the electronic system and inducing a CDW transition in the Peierls-
like picture [127], it has been theoretically and experimentally demonstrated that
this scenario is inconsistent with the charge-ordering wave vector, qCDW in TMDs,
and thus a simple nesting model cannot account for the CDW in these materials
[128, 129]. Instead, the main driving force for both the CDW and superconductivity
transitions is attributed to the strong k-dependent electron-phonon coupling (EPC)
[128, 129, 115, 130, 110, 131, 126].
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Chapter 2

Experimental Techniques

Photoemission spectroscopy is a wide class of experimental techniques which can
be described as "photon-in, electron-out" experiments. These experiments consist
of the excitation of a sample of interest by a source of photons, and measuring the
intensity of the emitted photoelectrons. The measured intensity can be a function of
the ejected electron’s kinetic energy, its emission angle and spin-polarisation, as well
as the photon energy and light polarisation. As developed in the following, such
measurements are sensitive to the sample’s electronic structure [132, 133, 134, 135,
136, 22].

Depending on which of these parameters are resolved in the measurements, differ-
ent types of photoemission spectroscopy can be defined. In X-ray photoemission
spectroscopy (XPS), for example, the integrated intensity is measured as a function
of the emitted photoelectron kinetic energy only. However, angle-resolved photoe-
mission spectroscopy (ARPES) allows the measurements of the intensity as a func-
tion of the kinetic energy of the photoelectron and its emission angle, while spin-
and angle-resolved photoemission spectroscopy (spin-ARPES) and time and angle-
resolved photoemission spectroscopy (TR-ARPES) additionally measures the inten-
siy as a function of the photoelectron spin polarisation and time delay, respectively
[132, 133, 134, 135, 136, 22].

In this chapter, an overview of the experimental techniques used in this work will
be provided, with a closer focus on ARPES, the main employed technique through-
out this thesis. The key theory behind this technique, allowing the interpretation of
photoemission data will be highlighted, and the typical set-ups used for photoemis-
sion experiments will be introduced. The theoretical component draws mainly from
[136] and [22].

2.1 Angle-resolved photoemission spectroscopy

2.1.1 Principle of ARPES

ARPES is a tool which permits the direct imaging of a solid’s electronic band struc-
ture. Its origin lies in the photoelectric effect, discovered by Hertz in 1887 [137]
and described later by Einstein in 1905 [138], one of the ground-breaking works for
which he was awarded the Nobel prize in 1921. This technique can be defined as
follow: when a photon is incident on a material, an electron can absorb its energy
and, if this energy is large enough to overcome the electron’s binding energy EB and
the material’s work function φ, (on the order of 4.5 eV, presents the minimum energy
required for an electron within to overcome the energy barrier at the crystal surface
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FIGURE 2.1: Energetics of photoemission. (a) Schematic geometry of
an ARPES experiment, where an incident photon with energy hν on
a sample surface (x-y) plane causes the emission of a photoelectron at
a polar angle θ and an azimuthal angle α, with respect to the z and
x direction, respectively. (b) Photoelectron momentum inside k and
outside K the solid. (c) The density of states in an ARPES spectrum
(right) upon the excitation of the initial states within the sample (left)

by a photon with sufficienty high energy hν [14].

into the vacuum), the electron can escape from the surface of the material into the
vacuum and then be detected.

Satisfying both energy and momentum conservation laws between the impinging
photon and the N-particle system, the following equations can be obtained:

EN
f − EN

i = hν (2.1)

k f − ki = khν (2.2)

where EN
i and EN

f are the initial and final state energy of the N-particle system, re-
spectively. hν is the photon energy. ki, k f and khν are the momentum of the electron
in the initial sate, final state within the solid and the absorbed photon, respectively.

However, the momentum of the photon can be neglected at the low photon energies
most often used in ARPES experiments (hν < 100 eV), as it is much smaller than the
typical Brillouin-zone dimension 2π/a of a solid [136]. Therefore, eq. 2.2 can be
written as:

k f = ki + nG (2.3)

with nG are multiples of the reciprocal lattice vector G, mapping equivalent points
in k-space across Brillouin zones [136]. In other words, the required momentum for
the electron to reach the excited state is provided by the crystal potential, so that this
momentum comes in multiples of the reciprocals vectors G. Therefore, the optical
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FIGURE 2.2: Kinematics of photoemission. (a) Direct optical transi-
tion in the solid, with the required momentum provided by the lattice.
(b) Free-electron final state in vaccum. (c) Photoelectron spectrum,

with the scattered electrons giving rise to a background [136].

transition between the bulk initial and final state can be described by a vertical tran-
sition in the reduced-zone scheme (k f − ki = 0) or a transition in the extended-zone
scheme (k f − ki = G), as shown in Fig. 2.2. It is the latter scheme which should be
considered in the photoemission process, since in ARPES measurements neighbour-
ing Brillouin zones to the first one can be probed by increasing the emission angles.
.

2.1.2 The three-step model

A more accurate framework for describing ARPES is the one-step model, where the
photoexcitation and emission of an electron are treated as a single quantum mechan-
ical coherent process, in which the photoelectron is excited directly into a damped
inverse LEED (low-energy electron diffraction) state near the surface [139, 140]. This
final state is an excited state of the system that matches the boundary condition of
becoming a free-particle wavefunction outside the crystal. The one-step model is
considered as a cornerstone in cutting edge photoemission calculations. However,
a simpler description of ARPES is embodied in the so called "three-step model",
which provides reasonable results when invoked in the interpretation of photoemis-
sion experiments. Unlike the one-step model, the photoemission process is divided
into three independent steps in the three-step model:

1. Optical excitation of an electron from an initial into a final bulk state.

2. Propagation within the bulk to the surface.

3. Transmission through the surface potential barrier and escape into the vac-
uum.

In the first step of the photoemission process within this model, the transition prob-
ability w f i for an optical excitation from an initial state ΨN

i into a final state wave-
function ΨN

f can be described by Fermi’s golden rule [136]:
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FIGURE 2.3: Three-step and one-step model. The three-step model
embodies (1) optical excitation, (2) travel to the surface and (3) escape
to the vaccum. Wheras the one-step model consists of the direct exci-
tation from an initial state into a damped final state, matching a plane

wave in vacuum [22].

w f i =
2π

h̄
|〈ΨN

f |Hint|ΨN
i 〉|2δ(EN

f − EN
i − hν) (2.4)

Here, the delta function enforces energy conservation upon excitation with a pho-
ton of energy hν. The N-particle initial state system consists of a N-1-particle sys-
tem which does not undergo excitation and an electron with binding energy EB
(EN

i = EN−1
i − EB), which is excited to a final state energy E f . After overcoming the

workfunction Φ, this photoelectron is emitted into the vaccum with a kinetic energy
Ekin, with a N− 1 electron system left behind with energy EN−1

f (EN
f = EN−1

f + Ekin).
The interaction with the photon is given by the interaction Hamiltonian Hint, which
is treated as a perturbation of the following form:

Hint =
e

2mc
(A.p + p.A) =

e
mc

A.p, (2.5)

where p is the electron momentum and A is the electromagnetic vector potential
of the electromagnetic field from the photon. The commutation relation [ p, A] =
−ih̄∇.A and the dipole approximation ∇.A = 0 are invoked (i.e the wavelength of
the photon is much larger than the characteristic inter-atomic distances, so A is as-
sumed to be constant).

The initial state and final state wavefunctions of the N electron system can be di-
vided into the product of the photoelectron wavefunction φk

i and φk
f with a momen-

tum k, and the N-1 electron wavefunction ΨN−1
i and ΨN−1

f , respectively. ΨN−1
f is

taken to be an eigenfunction of the excited state, ΨN−1
m with energy EN−1

m . The N-
electron system can be written as:
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ΨN
i = Pφk

i ΨN−1
i (2.6)

and similarly:

ΨN
f = Pφk

f ΨN−1
m (2.7)

where P is an antisymmetric operator that antisymmetrises the N-electron wave-
function such that the Pauli exclusion principle is satisfied [136]. However, this fac-
torisation is only valid alongside the assumption that the photoelectron’s ejection is
fast enough so that it does not interact with the remaining N-1 system. This is known
as the "sudden approximation". This approximation is only applied in the first step
within the three-step model, while a loss function should be taken into account in
the second and third step due to possible scatterings. A scenario which does not fit
well with the one-step model, since the keystone of this model is to consider the full
quantum mechanical process, and thus it is somehow not fully precise to assume no
interaction of the ejected electron and the system left behind.

The integral from Fermi’s Golden Rule (Eq. 2.4) can then be reformulated as follows:

〈ΨN
f |Hint|ΨN

i 〉 = 〈φk
f |Hint|φk

i 〉〈ΨN−1
m |ΨN−1

i 〉 (2.8)

where 〈φk
f |Hint|φk

i 〉 ≡ Mk
f ,i is the one electron dipole matrix element, which will

be expanded upon bellow, while 〈ΨN−1
m |ΨN−1

i 〉 = cm,i is the probability that the
removal of an electron from the initial state leaves the N-1 system in the excited
state m. The total photoemission intensity at a momentum k and energy Ekin can be
written over the sum of all m as follows:

I(k, Ekin) = ∑
f ,i

w f ,i = ∑
f ,i
|Mk

f ,i|2 ∑
m
|cm,i|2δ(Ekin + EN−1

m − EN
i − hν) (2.9)

The term A(k, Ekin) = ∑m |cm,i|2δ(Ekin +EN−1
m −EN

i − hν) is called the spectral f unction,
which contains the information about the many-body interaction in the photoemis-
sion process. A detailed description about the spectral function will be provided
in the following section. Since the photoemission intensity observed in ARPES is
restricted to the occupied states only, the Fermi-Dirac distribution fFD(ω) is intro-
duced, and the total photoemission intensity is given by the expression:

I(k, ω) ∝ ∑
f ,i
|Mk

f ,i|2 fFD(ω)A(k, ω), (2.10)

while fFD is given by:

fFD(ω) =
1

exp ω
kBT + 1

, (2.11)

where ω is the electron energy, kB is the Boltzmann constant and T is the system
temperature.

In the second step of this model, consisting of the propagation of the excited pho-
toelectron to the surface of the crystal, the finite mean free path of an electron in
a solid, λ, must be considered. Since the electron energy can be decreased due to
inelastic scattering processes, a background can be observed in the spectrum. There-
fore, while escaping from the solid into the vaccum, the photoelectron intensity is
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reduced exponentially, which is well described by Beer-Lambert law for photoemis-
sion [141]:

Id = I0 exp− d
λ

, (2.12)

where Id and I0 are the photoelectrons intensity escaping from a depth d and the
sample surface, respectively. λ is the IMFP, which can be explained as the length
an electron can travel in a material without being inelastically scattered. λ does not
depend on the material, but rather on the kinetic energy of the electron, as shown in
the "universal curve" in Fig. 2.4.

FIGURE 2.4: Universal curve. The inelastic mean free path (IMFP) of
electrons in various materials as a function of the kinetic energy [141].

In ARPES, the typical incident photon energies range from 5 to 120 eV, where the
photoemission cross section in reasonably high, the inelastic mean free path is in the
order of only a few Ångstroms (5 to 30 Å). This results in the surface sensitivity of
this technique. From the universal curve, it is clear that tuning the photon energy
can enhance or reduce the surface to bulk contribution in the obtained spectra.

In X-ray photoemission spectroscopy (XPS) for example, where the photon ener-
gies range from 0.1 to 2 keV, the inelastic mean free path is longer, and thus there
is a greater probability of photoelectrons to reach the surface, and so the sampling
depth is greater, providing information on the chemical composition and atomic en-
vironments of the material of interest.

In the third step, where the photoelectron is refracted at the surface and transmit-
ted into the vaccum, the final state wavefunction (Bloch eigenstates inside the solid)
must match a free-electron plane wave in vaccum. As mentioned above, by mea-
suring the properties of the emitted/detected photoelectrons in vacuum, which are
described by their kinetic energies (Ekin) and momenta (K = p/h̄), the material’s
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electronic band structure can be directly accessed by relating Ekin to EB and the mo-
mentum of the electron in vacuum K to its momentum inside the crystal k.

The energy conservation law can be written as follows:

Ekin = hν− φ− EB, (2.13)

while the momentum of the electron in the vacuum K can be decomposed into:

Kx =
1
h̄

√
2mEkin sin θ cos α (2.14)

Ky =
1
h̄

√
2mEkin sin θ sin α (2.15)

Kz =
1
h̄

√
2mEkin cos θ (2.16)

with m is the electron mass, θ is the polar angle and α the azimuthal angle, with the
sample surface in the x-y plane, as highlighted schematically in Fig. 2.1(a). Given
the fact that the translational symmetry of the emitted electrons is conserved along
the sample surface (in-plane direction: xy), the in-plane (parallel) component of the
photoelectron momentum is conserved inside and outside the solid:

K|| =
√

K2
x + K2

y = k|| =
√

k2
x + k2

y =
1
h̄

√
2mEkin sin θ (2.17)

where k|| is defined in the extended zone scheme. However, the translational sym-
metry perpendicular to the material surface (out-of-plane direction: z) is broken (due
to the presence of the surface), therefore, the perpendicular component of the mo-
mentum is not conserved inside kz and outside the solid Kz. To obtain kz information,
we must make an assumption on the dispersion relation of the final state. The nat-
ural assumption is a free-electron-like dispersion, which assumes the photoelectron
final state to be a neerly-free electron description, giving thus:

E f (k) =
h̄2k2

2m
− |E0| =

h̄2(k2
|| + k2

z)

2m
− |E0|, (2.18)

where once again the electron momenta kz is defined in the extended-zone scheme.
E0 corresponds to the bottom of the valence band and E f = Ekin + φ is the final state
energy inside the solid. As depicted in Fig. 2.1(c), both E f and E0 are referenced to
the Fermi energy EF, while Ekin is referenced to the vacuum level Ev. Taking into
account k|| obtained in Eq. 2.17, kz can be approximated as:

kz =
1
h̄

√
2m(Ekin cos2 θ + V0) (2.19)

with V0 = |E0|+φ is the inner potential. It can be obtained either by fitting the exper-
imentally observed periodicity of the kz dispersion to the known Brillouin zone size,
or by optimizing the agreement between the calculations and the experiments to get
the right V0 [136]. It is clear that by simply detecting the photoelectrons emitted
along the surface normal (k|| = 0), while varying the incident photon energy (and
thus Ekin of the photoelectrons), kz can be obtained. Note that the free-electron final
state approximation provides more reasonable results at higher kinetic energies of
the photoelectron, where the crystal potential is only a small perturbation, and thus
the final state bands become so closely spaced in energy to form a continuum, and
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the details of the final states become unimportant [136]. In fact, higher photon ener-
gies allow transitions into higher energy final states, so that any electrons occupying
them are assumed to be "free". However, the interpretation of photon-energy depen-
dent ARPES experiments (kz dispersion) may not be straightforward due to the kz
uncertainties, which will be discussed further below.

2.1.3 One particle spectral function

FIGURE 2.5: Schematics of a non-interacting and interacting system,
with a single energy band crossing Fermi level EF, accompanied with
the corresponding ground state distribution function n(k) at T = 0K.

The grey colour highlights the occupied states [136].

As introduced in Eq. 2.9, the spectral function A(k, ω) = ∑m |cm,i|2δ(ω − EN−1
m +

EN
i ) contains all the information of the many-body effects in the photoemission pro-

cess. In the non-interacting case, where the N electrons of the system are indepen-
dent, ΨN−1

i is in fact an eigenvalue of the N-1 excited state, therefore, cm,i = 1 for one
value of m (ΨN−1

i = ΨN−1
m ) and 0 for all others. Since Mk

f ,i 6= 0, the ARPES spectra

is a series of delta functions at Ek
B = −εk (the Hartree-Fock energies: εk = h̄2k2

2m ),
as shown in Fig. 2.5(a). However, in the case of many-body interactions, many cm,i
will have non-zero contributions, since the removal of the photoelectron results in a
strong change of the system effective potential and thus, ΨN−1

i will have an overlap
with several eigenstates ΨN−1

m . Consequently, the ARPES spectra consist of a main
line and a spread of many satellite peaks for these additional final states (Fig. 2.5(b))
[136]. In other words, when no interactions are present, the final N-1 particle system
is similar to what it was before the photoemission process occurs, and the photohole
lifetime is infinite. On the other hand, the stronger the interaction in the system,
the higher the probability to annihilate the photohole, and hence the higher excited
states.

It is convenient to apply a Green’s function approach G(k, ω) in order to obtain the
spectral function, since the one-electron propagation in the many-body system can
be described by the time-ordered Green’s function, G(t− t′) (the probability that an
electron added to a lattice at position r and time t will still be in the initial state after a
time t− t′). A(k, ω) can be defined as the imaginary part of the Fourier transformed
Green’s function:
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A(k, ω) = − 1
π

ImG(k, ω) (2.20)

For a non-interacting system, the Green’s function is written as:

G(k, ω) =
1

ω− εk − iη
(2.21)

where η → 0. The spectral function in Eq. 2.20 is given by:

A(k, ω) = − 1
π

δ(ω− εk) (2.22)

Therefore, the resulting ARPES spectra correspond to a delta function at an energy
defined by the Hartree-Fock orbital energy as depicted in the left side of Fig. 2.5(a).

For a strongly-correlated system, the interactions leading to changes in energy and
lifetime are formally included in the Green’s function as a complex electron self-
energy written as: Σ(k, ω) = Σ′(k, ω) + iΣ′′(k, ω), giving thus:

G(k, ω) =
1

ω− εk − Σ(k, ω)
(2.23)

As a result, the spectral function is written as:

A(k, ω) = − 1
π

Σ′′(k, ω)

[ω− εk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
(2.24)

In A(k, ω), the real part, Σ′, renormalises the band positions from the bare electron
energy, whereas the imaginary part of the self energy, Σ′′, increases the linewidths
of bands due to the different scattering processes, which in turn contributes to the fi-
nite quasiparticle lifetime (τ) due to the many body effects such as electron-impurity,
electron-electron and electron-phonon interactions. In conclusion, high resolution
ARPES does not only measure the electronic structure of independent particle sys-
tem (the "bare band" εk), but also allows direct measurement of many-body effects
present in strongly correlated systems [142]. However, the imaginary part of the self
energy is not the only reason of the increase in linewidths of the bands, notably in
systems with significant kz dispersion, where the effect of kz broadening can be im-
portant and hence should be considered.

2.1.4 Matrix element

As introduced in Eq. 2.8, the one electron dipole matrix element is given by:

Mk
f ,i ∝ 〈φk

f |A.p|φk
i 〉 (2.25)

an important contribution to the photoemission intensity (Eq. 2.10), since it can
lead, in certain circumstances, to strong selection rules. In other words, depending
the polarization and the energy of the incoming photons, the optical selection rules
between the initial and the final states of the single particle wavefunctions as well
as the experiment geometry, the matrix elements can cause the suppression of the
ARPES intensity [136, 22].



40 Chapter 2. Experimental Techniques

FIGURE 2.6: Idealised geometry of an ARPES experiment, highlight-
ing the matrix elements effects dependencies on the parity of the light
polarisation and initial state orbitals with respect to the mirror plane

[82].

As shown in Fig. 2.6, by considering photoemission from p-orbitals using linearly
polarised light, with the electron analyser located in the mirror plane (the scattering
plane formed by the incident light vector and outgoing photoelectron vector), the in-
tegrand in the overlap integral (Eq. 2.25) must be an even function under reflection
with respect to the mirror plane in order to have a non-vanishing photoemission
intensity. Since the final states which have an odd parity will have a node on the
mirror plane and so the amplitude of the wavefunction at the detector will be zero.
Therefore, the final state wavefunction φk

f must be even parity [136].

On the other hand, the dipole operator parity, which is governed by the light polar-
isation vector consists of an even parity (+) for p-polarised light with respect to the
mirror plane, since its polarisation vector is perpendicular to the sample surface, and
an odd parity (-) for s-polarised light, as a result of its parallel polarisation vector to
the sample surface (Fig. 2.6). Hence, the matrix element can be expressed as:

Mk
f ,i ∝ 〈φk

f |A.p|φk
i 〉 =

{
〈+|+ |+〉 6= 0, for p-pol
〈+| − |−〉 6= 0, for s-pol

Thus, p-polarised light will probe even parity (+) initial states orbitals, while s-
polarised light will excite odd parity (-) initial states orbitals, with all other combina-
tions intergrating exactly to zero, and so the one-electron transition matrix element
is vanished, resulting in a complete suppression of the ARPES intensity.

As depicted in Fig. 2.6, px,z orbitals have even parity eigenvalues with respect to the
mirror plane, therefore, they are excited solely by p-polarised light. On the contrary,
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py orbitals have an odd parity (opposite phase of the wavefunction on each side of
the mirror plane), and so they are probed using s-polarised light. This is, however,
an idealised picture to what really happens in an ARPES experiment. Practically,
both the propagation vector of the light and the electron analyser can be at an angle
to the mirror plane, meaning that the light polarisation vector might not be purely
p- or s-polarised, and the final state is not strictly required to be of even parity, re-
spectively. Furthermore, the bonding and hybridization of the orbitals make the
symmetry reasoning not fully valid. Accordingly, the photoemission intensity will
be predominantly from the symmetry expected from the initial states orbitals, but in-
stead of leading to a complete vanishing matrix element for the other orbitals, these
factors result in a rather quantifiable reduction in the one-electron transition matrix
element and therefore in the photoemission intensity.

Additionally, by considering both the vector potential A and the final state wave-
function φk

f to be plane waves, giving thus A = A0ε and φk
f = exp i(k.x), respec-

tively (ε is a unit vector along the direction of the light polarisation). The matrix
element from Eq. 2.25 can be written as:

Mk
f ,i ∝ 〈exp i(k.x)|A0ε.p|φk

i 〉

∝ (ε.k)〈exp i(k.x)|φk
i 〉

(2.26)

In addition to its dependency on the initial state wavefunction and the experiment
geometry, as discussed above, this equation illustrates the dependency of the ma-
trix element on the outgoing k-vector, which in turn can be affected by the photon
energy. For instance, upon changing the photon energy hν, both the photoelectron
kinetic energy Ekin and the magnitude of k will change. The matrix element Mk

f ,i
changes, however, are not necessarily monotonic upon the photon energy variation
[136]. To conclude, it is evident that matrix element effects can lead to a remarkable
enhancing/diminishing of the ARPES intensity with respect to their dependencies
on photon energy, photon polarisation, experiment geometry as well as the initial
states orbital character.

2.1.5 kz uncertainties

As briefly discussed above, despite its large validity at higher photon energies, the
free-electron final state approximation can be not fully compelling at lower photon
energies, due to the uncertainties arising from the out-of-plane kz dispersion.

Explicitly, the finite mean free path of the photoelectrons results in a damping of
the final state in the z direction (perpendicular to the sample surface) into the bulk
of the material over a distance λ (Fig. 2.7(a,b)) [143, 140]. Additionally, the broken
translational symmetry along the z direction implies a finite broadening to kz, which
can be expressed by: ∆kz = λ−1, evidencing a larger broadening for smaller probing
depths (shorter λ). To demonstrate this, the wavefunction of an ejected electron
within the material (z < 0) can be approximated as [144]:

ψ(z) =
1√
λ

exp (ikz0z) exp (
z

2λ
) (2.27)
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FIGURE 2.7: kz broadening. (a,b) Initial φi and final φ f state wave-
functions characteristic behavior as a function of the out-of-plane z
direction, respectively, highlighting a damping of the final state wave-
function into the solid (b) [143]. (c-d) Effect of the kz broadening for
2D and 3D states. (c) For a strongly kz dispersing band, the energy
broadening ∆E is predominantly due to the kz broadening. (d) For
a 2D state, however, where the kz dispersion is not significant, the

energy broadening is limited by the lifetime Γi [82].

with kz0 is the out-of-plane kz momentum of the photoelectron for a selected photon
energy. It is clear that the amplitude of the wavefunction decreases exponentially
into the bulk over a scale characerised by λ. The Fourier transform of ψ(z) can be
written as:

φ(kz) =
1

i(kz − kz0)− 1
2λ

(2.28)

Consequently, the envelope of kz integration, given by the squared modulus of the
Fourier transform is given by:

|φ(kz)|2 ∝ L(kz) =
1

2πλ

1
(kz − kz0)2 + ( 1

2λ )
2

(2.29)

Manifestly, the uncertainty in kz is well described by a Lorentz function centered
at kz0 with a full width at half maximum (FWHM) of λ−1. As highlighted in Fig.
2.7(c,d), the kz broadening however, is only a problem for three-dimensional sys-
tems, since for quasi-2D states, which are dispersionless in kz, the kz broadening is
less significant and thus the bands are much sharper in energy than three-dimensional
bands (Fig. 2.7(d)). This implies that the one-particle spectral function linewidths
are only limited by Σ′′ in 2D systems (i.e. the total energy broadening is predom-
inantly reflecting intrinsic photohole and photoelectron lifetimes). Conversely, in
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3D systems, where the electronic states disperse greatly in kz, a large kz broaden-
ing results in a large energy broadening ∆E (Fig. 2.7(c)). Therefore, rather than a
sharply-defined value, the ARPES spectrum probes a distribution in kz, which can
be described by the sum of one-particle spectral functions for all kz, with a maximum
contribution arising from kz = kz,0 and the width of integration set by the Lorentzian
function L(kz), giving thus:

A′(ω, kx, ky, kz,0) =
∫ +∞

−∞
L(kz)A(ω, kx, ky, kz)dkz (2.30)

Empirically, for the typical photon energy range used in ARPES (20-120 eV), the
corresponding mean free path is about 5Å, resulting in a significant kz integration,
which can reach 25% of the Brillouin zone size [145]. This broadening will be in-
cluded in the band structure calculations to simulate the ARPES measurements in
Chapter 3 and 4.

2.1.6 Core level photoemission spectroscopy

FIGURE 2.8: (a) A sketch showing the difference between ARPES and
XPS, where the used photon energies probe electrons from the va-
lence band and core levels, respectively. (b) XPS on core levels re-
veals a variety of chemical compositions within a silicon sample from

surface oxidation [146].

Unlike ARPES, where the photon energy range can go from 20 to 120 eV, X-rays pho-
tons, often generated using the atomic spectral K-α emission lines of magnesium
(1253.7 eV) or aluminium (1486.7 eV) in laboratory setups, are used in core level
measurements, referred to as x-ray photoemission spectroscopy (XPS). The merit of
this technique is the capability of determining the chemical composition and atomic
valence of a material, giving access to identify the oxidation states and changes in
the electronic structure due to the interaction with neighbouring atoms such as in-
tercalants, adsorbants and substrate. Furthermore, XPS is a momentum-integrated
technique, and hence the provided information is only energy related [147, 148, 149,
150].

As shown in the universal curve in Fig. 2.4, the increase in photon energy greatly in-
creases the electron escape depth, allowing the determination of the elemental com-
position of a sample, including a dopant concentration. However, the cross-section
for photoemission generally decreases, unless there is a resonance. More explicitly,
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when increasing the concentration of a substitutional dopant, the measured core lev-
els relative intensities of different elements permits the determination of the relative
composition, given that the corresponding binding energies of the dopant and host
material core levels are well-separated and their photoemission cross-sections are
sufficiently large.

In addition to the main peaks observed from the XPS spectral lines, Auger peaks
are also present in the spectrum. These Auger peaks arise as a result of the transi-
tion of electrons in the atom filling in inner-shell vacancies, causing the emission of
other electrons. In other words, following the removal of an electron from a core
level leaving a vacancy, an electron from a higher energy level may fall into the va-
cancy, and thus may lead to a release of energy. This energy can either be released as
an emitted photon, or transferred to another electron, resulting in its ejection from
the atom. The second ejected electron is called an Auger electron. However, the
observed kinetic energies of Auger electrons are independent of the photon energy,
making thus Auger peaks easy to identify [149].

2.2 ARPES experiments

So far the principles and theory behind ARPES have been presented, but the practi-
cal considerations of performing these measurements have not been discussed yet.
In this section, the different light sources used for ARPES experiments will be in-
troduced, with a particular focus on synchrotron radiation. Furthermore, the I05-
ARPES endstation, where all the data presented in this thesis was collected will be
described. On the other side, while this technique has revolutionised condensed
matter physics with its ability to directly measure the electronic structure, this chap-
ter will finish by giving insights on its difficulties and limitations, notably the surface
sensitivity and the need for ultra-high vacuum (UHV).

2.2.1 Light sources

To achieve the highest energy and momentum resolution, an ARPES experiment
requires a monochromatic light source. In laboratories, the most commonly used
light sources are gas discharge lamps and lasers. Gas discharge lamps, typically
He, are used as a light source which has characteristic atomic spectral lines (Xe and
Ne can be used as well), giving thus a well defined source of light at few discrete
photon energies (hν (HeI) = 21.2 eV and hν (HeII) = 40.8 eV). Due to their high in-
tensity and significantly small light spot size (tens µm vs. few mm for lamp sources),
laser-ARPES has become very eminent and significantly improved the data quality,
particularly for small non-uniform samples. The photon energy range provided by
lasers is generally between 5 and 11 eV, depending on the laser type.

These sources, however, only provide photons at few energies, and hence the elec-
tronic band structure along the out-of-plane kz momentum cannot be probed. This is
problematic and limits the full investigation of sample whose band structures have
significant out-of-plane dispersion (3D systems). Also, the lack of a wide photon
energy range in ARPES makes it challenging to disentangle 3D bulk bands from 2D
surface states.
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In addition, the low photon energies produced by either gas discharge lamps or
lasers only allow to cover a small area of the Brillouin zone (eq. 2.17). Therefore,
these light sources are only suitable for crystalline structures with large lattice spac-
ings and hence small Brillouin zones, or for systems where the electronic bands of
interest are in the vicinity of the normal emission angle k|| = 0. To fully map the
Brillouin zone under such conditions is very challenging as it requires a significant
alteration of the sample orientation, which in turn can be restricted by the manipu-
lator motions.

To overcome these issues, synchrotron radiation, which offers significant advantages
compared to gas discharge lamps or lasers can be used. The large photon energy
range (18 to 240 eV in the case of the I05 beamline of Diamond Light Source [151]),
and the significantly high photon flux compared to a gas discharge lamp, especially
in the core operating energy range (18 to 100 eV), allows the probing of the elec-
tronic band structure along the out-of-plane kz momentum, as well as increases the
data collection rate, respectively.

Briefly, the basic physics underpinning synchrotron operation consists of the acceler-
ation of electrons by bending magnets within the synchrotron ring forming a stored
beam (3 GeV storage ring for Diamond Light Source). This beam is passed through
an undulator, which produces the radiation used in experiments. The undulator,
formed by a periodic array of electromagnets (Fig. 2.9), allows both for the selection
of the beam energy by varying the gap size between these parallel magnetic arrays,
as well as its polarisation by creating a magnetic field, dictating for the electrons to
oscillate and produce a highly collimated synchrotron radiation of a particular light
polarisation; i.e. linear horizontal, linear vertical, circular right or circular left. The
latter two are effectively a combination of linear and vertical polarised light. Except
the part useful for the experiment, and thus allowed to carry on to the beamline axis,
the rest of electrons are retained in the synchrotron storage ring.

FIGURE 2.9: Schematic layout of the i05 beamline of Diamond Light
Source, showing each component with its name and distance from
the undulator up to the two branches HR-ARPES and nano-ARPES

[151].

Although the highly collimated light produced by the undulator is centered at the
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desired photon energy, the bandwidth has still a significant broadening. In order
to be practically useful in ARPES measurements, a monochromator, consisting of a
diffraction grating is required to diffract the incoming light and discard unwanted
wavelengths (collimated plane grating monochromator cPGM at the I05 beamline).
Through Bragg’s law, the diffraction grating is pitched, diffracting thus the desired
peak wavelength down the beamline. The incident light is further improved by re-
focusing mirrors, as well as variable slits to filter out the outermost part of the beam.
At a final stage, the photon beam is focused onto the sample with a spot size of
70×100 µm2 for the case of the I05 end station.

The photon flux (i.e. intensity) is usually desired to be maximised (up to 2.1013 ph/s
at the I05 beamline of Diamond Light Source). However, this can sometimes lead
to detector saturation and energy resolution broadening due to space charge effects
[151], where emitted electrons form a cloud outside the solid which repels and lim-
its the emission of further electrons from the surface. Therefore, the intensity can be
reduced for a better defined photon energy and thus a better resolution.

A schematic of the 50 m long beamline of the high-resolution ’HR’ branch of the i05
beamline at Diamond Light Source, where all the ARPES results in this work were
collected, is depicted in Fig. 2.9 [151]. A more detailed description of synchrotron
radiation and some applications can be found in [152], from where the main aspects
of this section were derived.

Not used for this work and thus not described in this section, the second branch of
the I05 beamline is dedicated for spatially resolved ARPES and its nano-ARPES end
station (Fig. 2.9).

2.2.2 I05 HR-ARPES endstation

The main element of every ARPES endstation is the electron analyser, which is made
of three key components: the electrostatic lenses, the hemispherical deflector with
entrance and exit slits, and the electron detector. After being emitted from the sam-
ple surface with an appropriate in-plane emission angle θ, photoelectrons enter the
transfer lens section, where they are accelerated or decelerated by the electrostatic
lenses to the pass energy, Epass, and focused into the entrance slit of the analyser.
Photoelectrons follow then curved trajectories around the hemisphere section, with
their kinetic energy after the transfer lens section dictating their curvature radius.
This means that only electrons within a narrow range in energy, centred at the pass
energy, Epass will pass all the way through the hemisphere section and make it to
the detector. However, if the kinetic energy region of interest is larger than is avail-
able for a given pass energy, then a swept mode is required to be set for a full dataset
visualisation. The pass energy can be written as follow:

Epass =
e∆V

R1
R2
− R2

R1

, (2.31)

given the fact that the analyser consists of two concentric hemispheres of radii R1
and R2 with a potential difference ∆V applied accross them.

The final step for the photoelectrons, now sorted by their kinetic energy, is their in-
cidence on a 2D electron detector, consisting of multichannel plates (MCP) and a
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phosphor screen, with a CCD camera providing a live image of the electronic struc-
ture.

The theoretical energy resolution of ARPES is set as [136, 153, 151]:

∆E =
√

∆2
hν + E2

analyser (2.32)

∆hν =
hν

Rm
(2.33)

Eanalyser = Epass(
ω

R0
+

α2

4
) (2.34)

with R0 = R1+R2
2 , ω is the width of the entrance slit of the analyser, and α is the

acceptance angle.

Empirically, the main contributions to the energy resolution in ARPES are from the
monochromator, ∆hν, and the analyser, Eanalyser, as shown in Eq. 2.32. The latter is
predominantly governed by the pass energy, Epass (Eq. 2.34), while the earlier is set
by the monochromator resolving power, Rm, which can surpass 20000 at low photon
energies in the case of the I05 beamline [151]. Generally, in the core operation energy
range (18 to 100 eV), the energy resolution is kept well below 10 meV but slightly
increases at higher photon energies due to the larger uncertainty in the kinetic en-
ergy. However, the total energy resolution may further be influenced by other effects
such as the sample grounding noise and the temperature [151]. For instance, Fermi-
Dirac distribution (Eq. 2.11) dictates that every electronic band is measured with
an energy broadening of a width of kBT, with kB representing Boltzmann constant
and T the temperature, as well as any intrinsic temperature dependent interactions
such as electron-phonon coupling. Nevertheless, modern ARPES endstations have
overcome most of the resolution limitations, allowing the reliable measurement of
sub-meV features, such as superconducting gaps [120, 121].

The monochromator resolving power, Rm, does not only contribute to the energy
resolution, but affects the momentum resolution as well, yet as a limiting factor. The
in-plane momentum k|| resolution is given as [153]:

∆k||
k||

=
√
(∆θcot(θ))2 + R−2

m (2.35)

From Eq. 2.35, it is evident that the higher θ, the better the momentum resolution,
providing insights to measure outside the first Brillouin zone. Whereas the angular
resolution, ∆θ, is typically set on the order of 0.1◦ [151].

The HR-ARPES endstation at Diamond Light Source, sketched in Fig. 2.10, is com-
posed from three ultrahigh vacuum (UHV) chambers, an entry load lock and a
docking port for a UHV suitcase [151]. These three chambers include an interface
chamber IC, consisting of a wheel used for sample storage, an upper chamber UC,
where cleaving single-crystal samples, low energy electron diffraction LEED and
alkali metal deposition are performed, and a lower chamber LC in which ARPES
measurements take place. Except the load lock, the vacuum levels are kept below
2.10−10 mbar in all chambers. Additionally, a molecular beam epitaxy (MBE) and a
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preparation chamber which contains the majority of in-situ characterisation equip-
ments as well as few-layer and sub-monolayer growth capabilities. These chambers
can operate on their own alongside ARPES experiments.

FIGURE 2.10: HR-ARPES end station of the i05 beamline depicting
the Lower Chamber (LC, grey), Upper Chamber (UC, red), Interface
Chamber (IC, white) and Load Lock (LL, grey again). (b) Cut through
the transfer level of the LL, IC, and UC showing the multi-position
load-lock recipient (green), the main transfer arm, the sample stor-
age wheel in the IC, wobble stick used for cleaving and the tray for
capturing broken off cleavage posts in the UC. Also, additional ports
on the IC for transfers in and out of the Preparation Chamber and a

vacuum suitcase are shown as well [151].

The hemispherical electron analyser is a Scienta R4000 model with a standard lens
operated in the angle-resolving mode with a ±15◦ window, and the possibility of
selecting either a straight or a curved entrance slit [151]. The manipulator consists
of a cryogenic sample goniometer with 6 degrees of freedom (x, y, z, polar angle θ,
azimuthal α and tilt φ), allowing thus the translation and rotation of the sample over
a large range of orientations and giving the ability for reliable sample measurement
and accurate repositioning using optical encoders. Cryogenic cooling is provided
using liquid helium, permitting temperatures as low as 5K to be easily stabilized.
Besides, as well as improving the base pressure, the additional closed-cycle helium
cyro-shield further allows the stabilization of lower temperatures, required for su-
perconducting gap measurements for example (3.7K during a FeSe measurement),
while sample temperatures up to 350 K can be obtained using a heater near the cold-
head of the cryostat [151]. All these assets provide excellent conditions for reliable
measurements and sample lifetimes.

A full description of the HR-branch of the I05 beamline can be found in [151].

2.2.3 Sample preparation

Besides the monochromatic light source and the electron analyser, the final element
of any ARPES end station is the sample. As discussed, ARPES technique is extremely
surface sensitive (the inelastic mean free path IMFP in the solid is on the order of 5 Å
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for the photon energy range using within this work), and hence it is indispensably
required to have atomically-flat surfaces that are free from any contaminants. For
instance, in addition to the intrinsic lifetime broadening, the Fermi function and any
interactions that contribute to the broadening of the electronic bands (the kz uncer-
tainties, as discussed above for example), any surface contamination will result in
extra incoherent elastic and inelastic scattering, which decreases the probability of a
collision-free journey of the photoelectron from the sample to the detector, and thus
penalise the energy and momentum resolution.

FIGURE 2.11: Cartoon demonstration of sample cleaving in UHV
environment. (a) Top post firmly bound to the sample surface us-
ing cured silver Epoxy. (b) Cleaved crystal at the Van der Waals gap

revealing a clean surface [14].

At a vacuum pressure of p = 10−6 mbar, the formation of a monolayer-worth of ad-
sorbates takes place within a few seconds only (1ML ∝ 6 × 1014 particles.cm−2 [22]).
De facto, the rate, R, of adsorption of a number of residual gas molecules ∆N onto
an area ∆A of the sample surface in an amount of time ∆t can be approximated by
[22]:

R =
∆N

∆A∆t
≈ 4× 1022 pSc√

MT
[cm−2s−1], (2.36)

with p is th pressure in mbar, M is the molecular mass of the gas and T is the temper-
ature in Kelvin while 0 ≤ Sc ≤ 1 is the ’sticking coefficient’. Therefore, the need for
ultra-high vacuum (UHV) is vital to drastically reduce the build up of contaminants
and achieve the cleanest sample surfaces. This will consequently improve the IMFP
of the electrons outside the solid and hence ameliorate the resolution.

An ultra-high vacuum environment is significantly important in ARPES measure-
ments but not enough, notably for samples that have been exposed to air and there-
fore have considerable contamination layers on their surfaces. To remove these lay-
ers, in-situ sample preparation methods are necessary to achieve and maintain clean
surfaces. The three procedures which are usually used for this purpose consist of
sputtering and annealing, which relies upon the bombardment of contamination
atoms on the surface using inert gases with large kinetic energies and the subse-
quent annealing of the sample to reconstruct a clean surface. In-situ deposition of
material or epitaxial growth techniques and in-situ sample cleaving. The latter is the
exclusive technique used in this work.

As illustrated in Fig. 2.11, in-situ cleaving consists of gluing a ceramic ’top post’ to
the sample surface using silver epoxy (Epotek H21D in our work), and covering the
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whole sample surface with epoxy (Fig. 2.11(a)) such that the sample will cleave at
the weakest point in the structure after knocking off the ceramic top post, intended
to be within the Van der Waals gaps (Fig. 2.11(b)). This method is thus highly de-
sirable for layered materials such as the transition metal dichalogenides, where the
weak interlayer bonding allows the breaking of part of the sample.
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Chapter 3

Bulk and surface electronic states
in the dosed semimetallic HfTe2

This chapter will begin with a description of the crystal structure of 1T-HfTe2 and
its underlying symmetries, followed by establishing the link between this material
and other TMDs with the transition metals from the group-IV of the periodic table of
elements, whose electronic band structures are very analogous to HfTe2, giving rise
to intriguing questions about this layered material and making the investigation of
its electronic band structure of interest. A review of the previous works devoted to
this material and its physical properties will be given, and transport measurements
will be extensively described, being a part of the motivation to study this system.
The first section will finish by reporting the recent works carried out to investigate
the electronic structure of this system, being directly relevant to the work performed
in this thesis.

In the following sections of this chapter, we will provide a detailed investigation of
the electronic band structure of the pristine HfTe2. A comprehensive description of
the obtained kz dispersion, Fermi surfaces and in-plane electronic band dispersion at
different photon energies will be presented, with considerable insights on the used
band structure calculations approach to quantitatively explain the particular fea-
tures in the measured ARPES spectra. Furthermore, the importance of dimension-
ality reduction in condensed matter physics as a key method in determining exotic
physical properties and quantum phenomena will be described, with a focus on al-
kali metal dosing as an effective way to achieve it. The dosed surface data obtained
from both in-plane and out-of-plane momentum dependence ARPES, accompanied
with our shallow core levels measurements will be reported, evidencing the effects
of alkali metal dosing on 1T-HfTe2, both structurally and electronically. Finally, the
topological features supported by the electronic band structure of these materials
will be theoretically and experimentally illustrated.

The results presented in this chapter are published in Physical Review B 101, 235431
(2020), DOI: 10.1103/PhysRevB.101.235431.

3.1 Background and motivation

Recently, there has been an increasing interest in semimetallic TMDs, whose proper-
ties are still relatively unexplored compared to the semiconducting materials, which
have been extensively investigated in the last decade. The crossing of both electron-
like and holelike bands of the Fermi level EF embodies the hallmark of the electronic
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band structure of semimetallic systems, and thus underpins their electronic proper-
ties.

3.1.1 Crystallography: atomic structure and symmetry

FIGURE 3.1: (a) Crystal structure of 1T-HfTe2 (space group: P3̄m1),
composed of hexagonal basal planes (ab-planes) of Hf-atom (red
sphere) sandwiched between triangular layers with inequivalent Te
atomic site (blue sphere) above (Te-1) and below (Te-2) the basal plane
along the c-axis. The hopping parameters between 2-site Te p orbitals
are categorised as intra-layer hopping (t1 = t2), interlayer hopping (t3)
within the unit cell and between two unit cells (t4) [154]. (b) Brillouin

zone.

1T-HfTe2 is a transition-metal dichalcogenides material (space group 164, P3̄m1)
which possesses a C3 rotational and three mirrors (σv) symmetries (C3v). As shown
in Fig. 3.1, HfTe2 consists of hexagonal-packed transition metal Hf layers (group
IV, Z = 72) in red (D3d coordination as indicated by the trigonal structure T), sand-
wiched between two chalcogen Te (Z = 52) layers in blue. In the unit cell, the Hf
atoms at the center are octahedrally coordinated to six Te atoms, with the lattice pa-
rameters are a = b = 3.911Å and c = 6.649Å [155]. The upper (Te1) and lower (Te2)
atomic layers are rotated by 180◦ between each other, preserving the inversion sym-
metry within each Te-Hf-Te trilayer. These trilayers are stacked on top of each other
(along the c axis) by van der Waals forces, making their exfoliation straightforward
and leading thus to few layer or even single layer samples [156].

In reciprocal space, HfTe2 has a hexagonal Brillouin zone, with Γ point being its
center. The high symmetry planes Γ-M-K and A-L-H correspond to an out-of-plane
momentum kz = 0 and kz = ±π

c , respectively. However, due to the 3̄ symmetry and
octahedrally distorted coordination (D3d), M and M’ points are not equivalent, as for
K and K’, L and L’ and H and H’ high symmetry points.
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3.1.2 Group IV 1T-TMDs

HfS2 and HfSe2 are well-established as layered semiconducting materials [72, 73]. In
the case of HfTe2, however, the more extensive Te 5p orbitals have a larger overlap
with the Hf 5d orbitals, and results in a semimetallic ground state. Thus, the elec-
tronic structure of 1T-HfTe2 has more in common with isostructural 1T-ZrTe2 and
1T-TiTe2, well-known semimetals [157, 158, 159]. The common point between HfTe2
and these layered TMDs or even the isovalent TiSe2 is that the transition metal (Ti, Zr
and Hf) belongs to the group IV of the periodic table, which dictates both the crystal
structure (1T coordination, D3d point group) and the orbital manifolds filling. This
results in an analogous electronic band structure for these materials, which consists
of a semimetallic (or small indirect band gap semiconducting) nature of the ground
state, due to the overlap between the chalcogen p orbital derived valence band and
the transition metal d orbital derived conduction band for ZrTe2, TiTe2 and HfTe2
(TiSe2), giving rise to hole pockets at the Brillouin zone center (Γ and A) and elec-
tron pockets at M (L) high symmetry points (Fig. 3.2).

FIGURE 3.2: Low-energy electronic band dispersion of (a). HfTe2,
(b). TiSe2, (c). TiTe2 and (d). ZrTe2 as performed with standard DFT
calculations using GGA functional, showing the Te (Se) p orbital de-
rived valence band at A (Γ) point and the Hf (Ti, Zr) d orbital derived

electron pockets at the conduction band at L (M) point.

In early reports, HfTe2 was assumed to be very similar to 1T-ZrTe2 [160], another
semimetal of the TMDs family, with the transition metal belonging to group IV,
and their electronic properties were found to be closely analagous, as they are both
semimetallic with a simple electronic structure and the absence of any phase transi-
tion [75]. ZrTe2, however, has received less attention compared to the other compo-
sitions and crystal structures such as ZrTe3 and ZrTe5, which possess exotic phys-
ical properties [161, 162, 163, 164, 165, 166]. In a very recent study on epitaxi-
ally grown thin films, where ARPES measurements and DFT calculations were per-
formed, ZrTe2 has been suggested to host massless Dirac fermions [167], as an-
other example of layered materials which support the existence of topologically non-
trivial phases, characteristic of TMDs which possess a C3 rotational symmetry [13].
However, due to the limited energy resolution of UV-HeI lamp (21.22 eV) ARPES
experiments [167], further investigations, especially photon-energy-dependent mea-
surements, are strongly required to confirm the observed bulk Dirac point (BDP) and
verify the existence of other topological features such as an inverted band gap.

1T-TiTe2 is another semimetallic TMDs material which has been extensively inves-
tigated, and whose band structure is very similar to HfTe2. The attraction to study
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TiTe2 was mainly due to its interesting structural and electronic properties [157, 168,
158, 169, 170, 171, 172, 173, 174, 175, 176]. First, TiTe2 has been considered as a
model material of Fermi liquid in ARPES [157, 168, 158, 169], more importantly,
phonon coupling has been suggested to induce superconductivity in this material
[172, 174, 175], while the appearance of nontrivial topological surface states under
pressure was predicted [170, 171]. In particular, single-layer TiTe2 has been claimed
to undergo a charge density wave phase transition at 92± 3 K [173]. The similar elec-
tronic band structure and the absence of phase transition in the bulk make a good
resemblance between 1T-TiTe2 and 1T-HfTe2. In this respect, the understanding of
quantum phenomena in both bulk and monolayer HfTe2 is of great importance to
disentangle the underlying mechanisms of any such exotic properties and explore
potential applications of this system.

The experimental determination of the electronic band structure of HfTe2 will be ex-
tensively explained below, where the results will be presented, obtained from both
high-resolution ARPES experiments and orbital-projected Density Functional The-
ory (DFT) calculations, including the in-plane band dispersion at different photon
energies, measured Fermi surfaces, and photon-energy-dependent ARPES, giving
detailed insights underlined within the electronic band structure of this prototypical
layered semimetal.

3.1.3 Literature review

Characterization of the physical properties

Early studies on the layered TMD HfTe2 consisted of X-ray diffraction experiments,
and focused on the crystalline structure and symmetry, lattice parameters and details
of the composition and phase density, demonstrating a non-stochiometric structure
of HfTe2 arising from random vacancies on the Te sublattice [177, 160]. Further char-
acterization of the synthesis and electrical properties showed HfTe2 to have a metal-
lic conductivity, as a consequence of the band overlap between Te p and Hf d orbitals
[178, 75]. Klipstein et al. [179] carried out more transport properties measurements,
and estimated the semimetallic band structure of HfTe2 with a band overlap of ∼0.3
eV, and although some anomalies in the low-temperature transport properties at
ambient pressure were observed, no structural instabilities such as a charge den-
sity wave were reported. Later investigations on the thermopower and electrical
resistivity demonstrated the absence of any phase transition in HfTe2, with the com-
plications in the transport data arising from the different temperature-dependence
mobility of the electrons and holes [180, 181]. A theoretical study of the electronic
and optical properties of HfTe2 using ab initio calculations confirmed the semimetal-
lic nature of its ground states, having a density of states of ∼0.9 states/eV.unit cell
at Fermi level [182].

Interpretation of the transport measurements

One of the most prominent reasons for the recent attraction to investigate semimet-
als is the exhibition of peculiar transport properties, manifested principally in their
large and non-saturating magnetoresistance (MR), as well as novel electronic states
and topological features [155]. This large MR in semimetals has been suggested
to be often attributed to the topological features within their nontrivial electronic
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structure, such as Dirac or Weyl fermions, as it is the case for WTe2 and MoTe2 [155].
However, even in the absence of Dirac or Weyl points, at the Fermi level vicinity at
least, HfTe2 still reveals a large non-saturating MR of 1350% at T = 2 K and µ0H =
9T, raising thus intriguing questions about the origin of the large MR in this material
[155].

FIGURE 3.3: Magnetotransport properties of HfTe2. (a) the tempera-
ture dependence of the in-plane electrical resistivity ρxx (H = 0,T) for
different samples; the inset shows the resistivity of B1 and B2 down to
0.1 K. (b) Field dependence of the transverse magnetoresistance (MR),
ρxx (H,T), for HfTe2 (crystal B3) for selected temperatures. Taken from

[155].

As mentioned above, the particularity of semimetallic materials consists of the ex-
istence of electrons and holes in their Fermi surface, leading to their contribution,
both, to the electrical conductivity of the system [155]. Within the framework of the
orbital magnetoresistance, as well as the carrier mobility, this compensated Fermi
surface is the keystone to explain the MR effect, and thus higher (perfect) carriers
compensation consequently yield larger MR [155, 183].

Although fundamentally governed by the carriers compensation at the Fermi level,
there are major limiting factors to MR value, notably the sample purity [183]. For in-
stance, a direct link of sample purity, illustrated in its residual resistivity ratio (RRR),
the carrier mobility and the MR value is well established [155, 183]. This makes the
sample synthesization approach of extreme interest, especially when the material
under consideration is particularly demanding, as it is the case for HfTe2, which
is very air-sensitive and reveals substantial intrinsic purity issues, arising mainly
due to the complex separation of Hf and Zr [183]. Indeed, different crystal growth
methods gave strikingly different results. Mangeslen et al. [183] performed mea-
surements of the physical properties of HfTe2 depending on the protocol of synthe-
sis. Whilst the best chemical vapor transport (CVT) grown crystal shows a RRR of
262 and a MR of 5950%, the crystals obtained with the Te self-flux procedure exhibit
RRR and MR values of 404 and 9480%, respectively, greatly exceeding the previous
reported values [155].

The empirically larger success of the self-flux protocol is attributed to the absence of
a transport agent as source of defects in this method, as well as its ability to signif-
icantly reduce the Zr impurities compared to the CVT. All these evidences confirm
the intimate interdependence between the carrier compensation, the carrier mobility,
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the purity, the RRR and the MR [183]. Finally, the detailed investigation of the elec-
tronic band structure of HfTe2, and notably its Fermiology, is of utmost importance,
as this can provide clear insights for the unusual properties of this compound, which
makes it of interest for both fundamental research and promising applications.

Electronic structure

Recently, more investigations, either on MBE grown HfTe2 thin films or single crys-
tals, including electron diffraction, STM and more relevant for this thesis, DFT calcu-
lations and ARPES measurements have been performed, giving more insights about
both the structural and electronic structure of this material [184, 155, 185, 186, 183].
Aminalragia-Giamini et al. claimed that 1T-HfTe2 might be classed as a topological
Dirac semimetal [184], while the transport measurements carried out by Mangelsen
et al. showed a notably large and non-saturating magnetoresistance, resulting from
the carrier compensation [155, 183]. Using first-principle calculations, Cheng et al.
uncovered a hidden spin polarisation in monolayer HfTe2 [185], following the mech-
anism suggested previously for centrosymmetric 1T-TMDs [187]. Much closer to the
first part of the data presented here, Nakata et al., using ARPES measurements and
DFT calculations, observed a dimensionality crossover in the electronic structure of
HfTe2 upon dosing with alkali metal [186].

3.2 DFT calculations: effects of the used functional

DFT calculations presented here were performed within the Wien2k package [188],
accounting for spin-orbit coupling. The modified Becke-Johnson (mBJ) functional
[17] was implemented. The used lattice parameters are a = b = 3.911Å, c = 6.649Å
and zTe = 0.266 [155], and the RMTKmax parameter was equal to 7.0.

The merit of the used functional in the DFT calculations is seen best in the sketched
3D Fermi surface in Fig. 3.4(a,d). Whether or not the Fermi surface is closed (i.e. a
3D pocket, as in TiSe2 and TiTe2 [189, 86]) or open along kz (i.e. forming a warped
2D cylinder) is a subtle question, but important for the understanding of transport
data [155, 183]. In DFT calculations using the Generalized Gradient Approximation
(GGA) functional the pockets are open along kz (Fig. 3.4(a)), but GGA calculations
also give an unrealistically large overlap of the Te 5p and Hf 5d states. Using the
mBJ functional, however, gives a much more accurate low-energy band structure,
and yields a closed electron pocket around the L points and a much smaller hole
pockets at the Brillouin zone center (Fig. 3.4(d)). Therefore, the mBJ functional re-
sults in a much reduced band overlap, as shown in the DFT calculations of the near
Fermi level along M’ΓM and L’AL directions; in other words, the lowest Hf 5d state
at the M point in Fig. 3.4(e) is slightly above EF, compared to the GGA-based DFT
calculations in Fig. 3.4(b), while at the L point, the conduction band minimum re-
duces from 500 meV in the standard DFT (GGA) in Fig. 3.4(c) to ∼ 200 meV in
the semi-empirical mBJ functional DFT calculations (Fig. 3.4(f)). However, the po-
sition of the electron pockets at the L point still appears to be slightly deeper with
respect to the experimental data, as will be shown in the following sections. This
small overestimation arises from the limitations of the accuracy of the functional. In
this regard, the Heyd–Scuseria–Ernzerhof (HSE) exchange–correlation functional or
GW approximation [18, 19] are expected to give an even better agreement between
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FIGURE 3.4: 3D Fermi surface of HfTe2 and near Fermi level elec-
tronic band structure along ΓM and AL direction, as calculated by a
standard DFT course using the GGA function (a-c) and the mBJ func-

tional (d-f).

the DFT and the ARPES measured data. However, the fact that they are "computa-
tionally very expensive" makes them less appealing from an experimentalist point
of view.

3.3 The 3D bulk character of the electronic band structure of
HfTe2.

Our DFT calculations with the orbital character projection (Fig. 3.5) gives an overview
of the electronic structure. We have a manifold of 6 bands deriving from Te 5p or-
bitals, which are mostly occupied but reach up to the Fermi level around the Bril-
louin zone center (Γ and A points), forming hole pockets. Conversely, the bands de-
riving from Hf 5d orbitals are mostly unoccupied, but dip below the Fermi level to
form electron pockets around the L points. Thus, HfTe2 is a compensated semimetal,
though the hole and electron pockets have very different orbital characters.

Although HfTe2 is a layered material, the out-of-plane dispersion is crucial to under-
stand the full three-dimensional electronic structure. In the calculation in Fig. 3.5 at
the A point, two hole-like bands are present near EF. These derive from Te 5px,y or-
bitals only, but the separation of the bands due to the spin-orbit coupling is so large
(∼ 0.65 eV) that the lower branch is shifted fully into the occupied states, leaving
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FIGURE 3.5: Electronic structure of 1T-HfTe2. DFT calculations along
M-Γ-A-L direction with orbital character projection of the valence and

conduction bands.

a single hole pocket here. At the Γ point, three bands are present as the 5pz orbital
is also relevant, but again there is a strong spin-orbit interaction which mixes the
orbital character and separates the bands; the result is a pair of hole bands crossing
EF and a lower hole band which remains fully occupied. Thus, as illustrated in the
3D Fermi surface in Fig. 3.4(d) and Fig. 3.8(a), only one hole band crosses EF at the A
point (green band), but two hole pockets exist around Γ (green and yellow bands).

FIGURE 3.6: Simulation based on DFT calculations using the mBJ
functional of the low-energy electronic band structure of HfTe2 along
Γ̄M̄ direction, using 25 kz slices between kz = 0 (M’ΓM direction, blue

spectra) and kz = π/c (L’AL direction, red specra).

The 3D character of the electronic band structure of HfTe2 is well highlighted in the
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simulation depicted in Fig. 3.6, where 25 kz slices are projected between kz = 0 (M’-
Γ-M direction) and kz = π/c (L’-A-L direction). At the L point, a clear electronlike
conduction band is observed (red), but the band disperses significantly along the
kz axis such that it is well above Fermi level at M point (blue curve). At the Bril-
louin zone center, however, the crossing of holelike electronic bands to the Fermi
level gives rise to two hole pockets at the Γ point and a third band at ∼ 0.7 eV (blue
bands). When moving along the kz axis from kz = 0 to kz = π/c, the top valence band
pair of Te 5px,y shift slightly downwards to higher binding energies, leaving only
one hole pocket at the A point, whereas the pz orbital character causes a strong out
of plane dispersion of the third band, resulting thus in a M-shaped band at ∼ 2.0
eV (red bands). Note that the spin-orbit coupling is very large in HfTe2 that it sig-
nificantly hybridizes the electronic valence bands and causes most of them to have
a mixed orbital character (Fig. 3.5). Therefore, as highlighted in Fig. 3.7, along Γ-M
direction (Fig. 3.7 (a)), two holelike electronic bands cross the Fermi level, with a
third one at ∼ 0.7 eV, although no electron pockets are present here. Whereas along
A-L, only one holelike band crosses the Fermi level with a Te 5pz orbital-derived
M-shaped band at ∼ 2.0 eV at the A point, with electron pockets centered at each L
point of the Brillouin zone (Fig. 3.7 (b)).

FIGURE 3.7: Low-energy electronic band structure of HfTe2 along (a)
ΓM and (b) AL direction of the Brillouin zone, as performed by DFT

calculations.

3.4 ARPES measurements

In the results presented in this chapter, the photon energy was varied between 80
and 120 eV, and the light was linearly polarized in the horizontal plane (LH, or p po-
larization). The samples were commercially obtained from HQ Graphene, cleaved
in situ and measured at a temperature of T = 10 K, and the energy resolution was
typically 10 meV.



62 Chapter 3. Bulk and surface electronic states in the dosed semimetallic HfTe2

3.4.1 Fermi surface

Fermi surface is fundamental to explain transport and other physical properties in
condensed matter physics [190]. As introduced in Chapter 2, Fermi-Dirac distribu-
tion dictates that electrons can only fill up energy states up to Fermi level EF at T =
0 K (Eq. 2.11), therefore, Fermi surface is the boundary between the occupied and
unoccupied electronic states, making it very crucial since the electrical and thermal
properties of a material arise solely from electrons near this region. This is charac-
teristic of a metal, for an insulator or a semiconductor, where Fermi level falls in
a gap between the valence and conduction band, there is no Fermi surface. Fermi
surface can be probed either by quantum oscillations measurements [191] or, in the
frame of this thesis, by ARPES. Its topology reflects the symmetry and structure of
the crystalline lattice, and the occupation of the electronic states. In the case of the
semimetallic 1T-HfTe2, for instance, both electron and hole pockets are present in the
Fermi surface, resulting from the multiple bands crossing of the Fermi level along
the out-of-plane kz momentum.

FIGURE 3.8: (a) 3D Fermi surface of HfTe2 calculated with a DFT code
using the mBJ functional. Hf 5d orbital-derived electron pockets are
sketched in red, whereas green and yellow colours represent Te 5px,y
and Te 5pz orbital-derived hole pockets, respectively. (b) Constant
energy map at EF (Fermi surface), measured at a photon energy hν =
100 eV to probe the A-H-L plane. The threefold in-plane intensity
distribution of the electron pockets located at the L points reflects the

trigonal symmetry of the crystal structure.

Fig. 3.8 (a) depicts the three-dimensional Fermi surface of HfTe2, as performed by
DFT code. A vase-shaped valence band hole pocket disperses along the rotation axis
(kx=0, ky=0, kz), confirming its 3D character, with a single Te 5px,y orbital-derived
hole pocket at kz = ±π/c, and an additional one at the Brillouin zone center (kz =
0), derived from Te 5pz orbitals. On the other hand, six Hf 5d orbital-derived elec-
tron pockets are centered at L points of the Brillouin zone. These conduction band
electron pockets are strongly three-dimensional, as obvious from their closing along
the kz axis, resulting in a clear electronlike conduction band at L points but not at
M points of the Brillouin zone, as shown in the in-plane electronic band dispersion
in Fig. 3.7, where the band form electron pockets at L but it is well above EF at M
point. As highlighted in the 3D Fermi surface in Fig. 3.8 (a) also, the electron pockets
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substantially tilts away from the kz axis. The threefold symmetry of the crystalline
structure (3̄), however, dictates that the the pockets centered at L and L’ point tilt in
opposite direction along the kz axis. Furthermore, the electron pockets have an el-
liptical cross section in the kx-ky plane, evident in a constant energy map at EF mea-
sured at a photon energy hν = 100 eV, chosen to probe the A-H-L plane (kz = π/c,
Fig. 3.8 (b)).

As exlained in Chapter 2, the damping of the final state in the z direction [143, 140],
normal to the sample surface dictates that the kz is not strictly conserved in the pho-
toemission process [136], which results in a significant kz broadening, especially in
3D systems. In general, the existence of multiple possible final states, and their non-
parabolic dispersions, makes the full treatment of photoemission a complex prob-
lem. The commonly used approximation is the so-called free-electron final state
model, which assumes a simplistic dispersion for the final state that allows a map-
ping between the photoelectron kinetic energy and the kz value of the initial state.

Since the kz dispersion of the initial state in HfTe2 is clearly as significant as the kx, ky
directions, the "uncertainty" in kz will have an important impact on the measured
spectra. Thus despite the large success of the free-electron final state approximation
for HfTe2, our measurements at a given photon energy appear to probe a distribu-
tion in kz, rather than a sharply-defined value. Such kz broadening is evident from
the constant energy map in Fig. 3.8 (b). Here, the electron pockets are "filled-in", with
intensity localised within the bounds of the electron pocket, but we do not observe
sharp ellipsoidal countours that might be expected from slicing the 3D Fermi surface
in the kz = π/c plane (Fig. 3.8 (a)). The effect of kz uncertainty is more pronounced
for the electron pockets as they have a slanted 3D shape. Whereas the hole pocket is
centered on an axis of rotation (3̄) which forbids any such slanting, and thus appears
relatively sharp at the A point.

FIGURE 3.9: Constant energy map at EF, measured at a photon energy
hν = 80 eV to probe the Γ-K-M plane. The observed electron pockets
result from the kz broadening in the photoemission process, and not

quasiparticle bands existing at M points.

The threefold symmetry of the system is more pronounced in the constant energy
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map in Fig. 3.9, measured at a photon energy hν = 80 eV to probe the Γ-K-M plane.
As expected from the 3D Fermi surface in Fig. 3.8 (a), two hole pockets are present
at the Brillouin zone center. However, the existence of electron pockets can be mis-
leading, since no such pockets would be expected from slicing the 3D Fermi surface
in the kz = 0 plane. This is another picture reflecting the significant kz uncertainty in
the photoemission process. The observed features here arise solely from signals col-
lected from inital states at kz 6= 0 at the bottom and top of the electron pockets above
and below the kz = 0 plane, respectively, as might be understood from their weak
spectral weight compared to cuts at other photon energies (hν = 100 eV, Fig. 3.8
(b)). Therefore, only the two hole pockets are expected at the Γ-K-M plane, but the
kz uncertainty leads to additional intensity at M points which are in reality absent at
the specific value of kz = 0. Such effects are more prominent in the dosed surface, as
will be shown in the photon-energy-dependent ARPES in Fig. 3.16.

3.4.2 Valence band dispersion: assymetries and uncertainty in the spec-
tral function of HfTe2

FIGURE 3.10: (a,c) Valence band dispersion along Γ-M (hν = 80 eV)
(a) and A-L direction (hν = 100 eV) (c). (b,d) Simulations based on
DFT calculations, averaging over a substantial fraction of the Bril-
louin zone width in the kz direction. Panels (b),(d) correspond to an

average kz value of kz= 0.0π/c and kz= π/c respectively.

The measured high-symmetry dispersions are also influenced by the uncertainty in
kz. Therefore, we do not simply compare the measurements with the calculated dis-
persions from DFT, which assume a particular kz value. Rather, we simulate the
effect of kz broadening by averaging over a substantial fraction of the Brillouin zone.
We first construct a spectral function for each calculated kz by adding a finite scatter-
ing rate of 50 meV to the calculated in-plane band dispersions, and then perform a
summation over kz in which the weight of each kz slice is modelled by a Lorentzian
distribution with FWHM of 0.2× ( 2π

c ).

Since the 80 eV data in Fig. 3.10 (a) corresponds to a Γ point, according to the free-
electron final state approximation, the simulation in Fig. 3.10 (b) is centered around
kz = 0. Matrix elements are not included in the simulation, and the variation of kz
with in-plane momentum is not accounted for. Moreover, the calculated band en-
ergies are typically ∼100 meV offset compared to the experiments, and correspond-
ingly both the hole and electron pockets are larger in the calculation than in the



3.4. ARPES measurements 65

experiment. However, there is excellent correspondence in understanding where
features are sharp in the data (e.g. the inner hole pocket) or rather broader, due
to the kz averaging effect [192]. Some weak spectral weight of the electron pock-
ets appear at the M points, however, this should be understood strictly as a result
of smearing of spectral weight along kz, and not as quasiparticle bands existing at
M. At the L points, in Fig. 3.10 (c), the electron pockets are brighter and better de-
fined, though somewhat smaller than in the simulation based on DFT projection in
Fig. 3.10 (d), due to the limitations of the accuracy of the functional.

FIGURE 3.11: (a) Valence band dispersion at an arbitrary kz between Γ
and A point (hν = 87 eV). (b) Simulations based on DFT calculations

averaging over a kz value of kz= 0.4π/c,

The merit of this approach is seen best for data measured away from any high-
symmetry kz value, such as in Fig. 3.11 (a). Here, the data show a substantial asym-
metry, as well as a large degree of broadening. However, these complexities are
well-captured by the simulation in Fig. 3.11 (b), where the kz distribution is centered
at 0.4π/c. The asymmetry in the spectrum arises because of the 3̄ symmetry; away
from the high-symmetry kz=(0, ±π/c) planes, band dispersions towards the M̄ and
M̄′ directions are not equivalent. The simulation also shows that the spectral weight
of the electron pocket is centered away from the M̄ point, which is due to the slant-
ing of the electron pockets. The spectral weight is shifted inside the Brillouin zone
near the M̄ point and outside of the first Brillouin zone at the M̄′ point. Therefore, in
the general case we expect threefold and not sixfold symmetry in measured "Fermi
maps", which is already present to some degree in Fig. 3.8 (b) but is pronounced in
measurements at other photon energies (Fig. 3.9) [176]. Overall, then, the agreement
with our simulation based on DFT calculations confirms that the observed features
are projected bulk bands resulting from the kz uncertainties during the photoemis-
sion process.
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3.5 Dimensionality reduction by potassium K dosing on the
surafce

Dimensionality reduction plays a crucial role in the emergence of novel physical
properties in condensed matter physics [51, 89, 193, 90, 91, 91, 116, 194, 195]. A 3D
to 2D crossover can lead to exotic physical properties and quantum phenomena ab-
sent in the bulk counterparts, ranging from massless Dirac fermions in Graphene
[51], valley-selective circular dichroism [193, 90, 91, 45] to the enhancement of CDW
temperature in TMDs [116]. The emergence of these physical properties goes hand-
in-hand with significant changes of the electronic band structure, such as an indirect
to direct bandgap transition [89, 196, 197] or a Rashba-like spin-splitting due to the
inversion symmetry breaking (ISB) [198, 33].

Widely used approaches to control the dimensionality reduction would be the chem-
ical or mechanical exfoliation (top-down approach) [199], or MBE or CVD, which
consist of the deposition of atoms or molecules on a substrate (bottom-up approach)
[200, 201, 202, 102]. A more effective way for a systematic control of the dimension-
ality of a material, notably a TMD, alongside with the evolution of the electronic
band structure can be achieved by alkali metal evaporation on the surface.

Alkali metal deposition on layered materials has turned into a commonly used ap-
proach in angle-resolved photoemission spectroscopy (ARPES) experiments, due to
the possibility to stabilise and tune novel electronic states with properties that can
significantly differ from those of the pristine material. It has been shown that dosing
can suppress the charge density wave (CDW) phase in TiSe2, and induce a metal-to-
insulator transition alongside with a novel CDW phase in TaS2 [203]. In the semi-
conducting Black Phosphorus, the bandgap was tuned via K dosing, prompting the
emergence of Dirac fermions due to the surface Stark effect [204, 205, 206, 207]. This
effect has been announced as a universal mechanism of band-gap engineering in 2D
semiconductors [31]. Besides, dimensionality reduction, whether upon alkali metal
evaporation, hydrogenation or water vapor exposure has been widely reported [208,
30, 33, 186, 209, 28].

It has been suggested that dosing semimetals could be qualitatively different to dos-
ing semiconductors [33]. In semiconductors, the most familiar scenario is "band-
bending", where a strong variation of the electrostatic potential near the surface re-
sults in the effective spatial confinement and emergence of quantum-well-like states
[28, 29, 30, 31]. Whereas in semimetals, the existence of both hole-like and electron-
like free carriers makes the underlying mechanism complex to predict [33]. On the
other hand, in some cases the alkali metals are known to migrate into the van der
Waals gaps of the sample, decoupling a top layer with a monolayer-like electronic
structure [208, 186].

There are several factors which play a crucial role in making one scenario more
favourable to occur compared to the other. First, it is believed that at low dosing
amounts and low temperatures, the alkali metal atoms are more likely to stay at
the surface (Fig. 3.12(b)), whereas higher dosing amounts and higher temperatures
favour the intercalation scenario (Fig. 3.12(a)). The third factor is the time, and it
has been experimentally proven using XPS that immediately after the evaporation,
the alkali metal atoms are still on the surface, while few minutes afterwards (10 min)
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FIGURE 3.12: Scenarios of the alkali metal dosing of TMDs. (a) Ad-
sorption of the alkali metal atoms on the surface, resulting in a band-
bending model, consisting of the effective spatial confinement of the
charge carriers at the surface along the out-of-plane axis and emer-
gence of quantum-well-like states. (b) Intercalation of potassium K
atoms within the first vdW gaps, decoupling the topmost layer both
structurally and electronically and resulting in a quasi-free standing

monolayer [208].

they have already migrated to the vdW gaps [208]. Lastly, the alkali metal atoms
size is as well considered to affect the resulting scenario. Rb is often used to avoid
intercalation due to its large atomic size [31], while in the case of Na or K, interca-
lation is expected to take place, resulting thus in quasi-free standing monolayer, as
sketched in Fig. 3.12(a).

3.6 Tuning the electron density by K dosing

We now turn to the question of how a 2D electronic structure can emerge upon K
dosing of the surface of HfTe2. Before the presentation of the obtained results and
their interpretation, we start this section by the introduction of Luttinger’s theorem,
which was used to estimate the electron carrier density ne from the area of Fermi
surface at each level of alkali metal dosing.

To estimate the size of the Fermi surface after every dosing sequence, the Fermi
wave vectors along the shorter ks and longer kl axes of the ellipsoidal electron pock-
ets are extracted from the Momentum Distribution Curves (MDCs) and fitted with
Lorentzian functions. Luttinger’s theorem can therefore be written as follows:

ne = gs × gv ×
ks × kl × π

BZarea
(3.1)

with gs = 2 is the spin degeneracy factor, gv = 3 is the number of electron pockets
within the Brillouin zone (valley degeneracy) and ks × kl × π represents the surface
of the ellipse. Whilst the area of the hexagonal Brillouin zone is given by:

BZarea =
3
√

3
2
× 4

3
[
π

a
]2 (3.2)
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FIGURE 3.13: Cartoons of Fermi surface of 1T-HfTe2 highlighting the
semi-major kl and semi-minor ks axis of the elliptic electron pockets,
estimated as a function of potassium K dosing by fitting the extracted

MDCs with a Lorentzian function.

with a = 3.911Å is the in-plane lattice parameter of HfTe2.

3.6.1 Emergence of monolayer-like electronic structure by K dosing

At first glance, the ARPES data in Fig. 3.14(a-c) might seem like a simple rigid shift
of the band structure, where the electron pockets start to become substantially oc-
cupied and the hole pockets eventually shift fully into the occupied states, reaching
an effective carrier density of ne=0.32 el/u.c in Fig. 3.14(c). However, there are a
number of important effects beyond the rigid shift model. First, the bands in the
heavily-dosed spectra (Fig. 3.14(c)) appear sharper than in the pristine bulk case
(Fig. 3.14(a)). The increased sharpness is somewhat counter-intuitive, since in many
cases surface dosing (and doping more generally) goes hand-in-hand with increased
disorder, thereby leading to broader, not sharper, linewidths [31]. We must con-
sider, however, that for the pristine surface, the kz-broadening effect is the dominant
source of linewidth broadening for most of the bands. The increasing sharpness
is therefore the first experimental signature that the states that emerge after dos-
ing have 2D character, with wavefunctions confined to the topmost layer of HfTe2,
thus suppressing the kz-broadening. Similar phenomenenology has been observed
in other TMDCs with more 3D characteristics in their bulk electronic structure [33].
The sharpness also confirms that the K coverage must be homogeneous, at least on
the scale of the beam spot size.

A recurrent question in the study of alkali-metal dosed surfaces of 2D materials is
whether the dosed atoms remain on the surface and set up a vertical electric field,
or intercalate into the sample [203, 204, 205, 206, 31, 208, 30, 33, 186, 209, 28, 29, 210,
211, 85, 212, 213]. A number of recent studies on TMDCs and similar materials have
claimed that the alkali metal atoms remain on the surface [30, 204, 205, 206, 31, 213,
33, 207], in the case that the sample remains at low temperatures throughout. In this
scenario, the alkali metal ions create a charge accumulation at the surface, causing a
band-bending potential that affects primarily the top-most layer of the TMDC. The
new bands that emerge thus appear electron-doped compared with the bulk, and
their wavefunctions are localised close to the surface [29, 33]. Without detailed cal-
culations, we cannot specifically predict what band dispersions would be expected
in our case, however it would be reasonable to imagine that, broadly speaking, the
conduction band will become increasingly filled, while the observed valence bands
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FIGURE 3.14: Dosing sequence of HfTe2 at T = 10 K, measured at
a photon energy of hν = 100 eV. (a) Valence band dispersion along
A-L direction of the pristine surface, (b) at a carrier density of ne=0.11
and (c) at ne=0.32 el/u.c., together with HfTe2 monolayer DFT calcu-
lations (white solid lines), shifted downwards by 650 meV. Due to the
overestimated band overlap in DFT, the energy of the electron pocket
is lower in the calculation than the data, however the agreement on
the valence band structure is more important here. (d) Energy Dis-
tribution Curves (EDCs) showing the evolution as a function of the
charge carrier density. The labelled features correspond to the elec-
tron pockets at the L point (p1), and the remnant bulk-like bands (p3).
(e) Equivalent EDCs at A, highlighting a peak from the inner valence

band (p2).

would develop more 2D character.

The alternative scenario is intercalation, in which the K atoms migrate into the van
der Waals gap between layers, leading to an increased van der Waals gap that causes
decoupling of the topmost layer both structurally and electronically. This scenario is
known to occur almost immediately at room temperature [203] but is also often ap-
plied to dosing studies of TMDCs even when the sample is held at low temperatures
[208, 85, 186]. This topmost layer also becomes doped due to the donated electrons
from the K+ ions.

The two scenarios lead to somewhat similar effects electronically, since in both cases
electron-doped 2D surface-confined states emerge (i.e. wavefunctions localised in
the topmost layer of HfTe2). The vertical field scenario is a plausible scenario for
our low-dosing data in Fig. 3.14(b). Indeed, the data in Fig. 3.14(b) largely resembles
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the bulk band structure, but with an overall energy shift, which could be accounted
for by a band-bending potential at the surface. Whereas after further dosing the ap-
pearance of the data changes qualitatively (the first point beyond ne=0.11 el/u.c in
our dosing series), especially in the structure and intensity distribution of the bands
around -2.5 eV. Moreover, we find very good agreement overall between the shape of
the valence bands in Fig. 3.14(c) and the DFT calculations for an isolated monolayer
(for the monolayer calculation, we fix the c parameter of the mBJ functional using
the bulk value, rather than calculating it during the self-consistent cycle.). This is
evidence in favour of the intercalation scenario, as it implies that the topmost layer
is structurally decoupled, suppresses out-of-plane hopping, which particularly af-
fects the pz orbital, leading to the emergence of monolayer-like dispersions of the
valence bands. Thus at least for our highest-dosing samples, we are in agreement
with Ref. [186] that the intercalation scenario is most likely.

For a more detailed analysis we extract energy distribution curves (EDCs) from the
L and A points and track their evolution with K dosing. The feature p1 in Fig. 3.14(d)
shows a shift of ∼ 0.22 eV to lower energy, reflecting the filling of the Hf 5d-derived
conduction band at L. The inner Te 5p-derived hole pocket in Fig. 3.14(e), p2, shows
qualitatively a similar shift but with a slightly larger magnitude of ∼ 0.37 eV. The
different behavior of these bands as a function of K deposition at the surface may
be related to their different orbital character. Assuming that the shift of p2 is rep-
resentative for the hole bands overall, the different magnitude of the shift implies
that the band overlap decreases somewhat with dosing. This indicates that a rigid
shift model is not applicable in this material. The lineshape of p2 in Fig. 3.14(e) also
becomes noticeably sharper, as the surface confinement takes effect and the state
loses any kz-dependence. However, other features such as p3 simply lose intensity
(though still weakly contributing even at high dosing) and show low or negligible
energy shifts with increasing dosing in (Fig. 3.14(d)). These correspond to remnant
intensity from bulk states, which we will focus on later.

3.6.2 Tracking the electronic changes by core levels spectroscopy

In addition to the shifts of the Te 5p-derived valence bands, the Te 4d shallow core
levels also show a significant change with K dosing (Fig. 3.15(a-e)). Consistent with
a single environment for the Te atoms, these appear as a sharp doublet in the pris-
tine case. As we dose the surface with K, however, fitting the data using two Voigt
function pairs becomes necessary, reflecting the separate chemical shifts in the sur-
face layer and the bulk. The intensity of the surface contribution (red) relative to
the bulk-like (blue) signal increases with increasing dosing, concomitant with their
energetic separation increasing also. Fig. 3.15(b) shows that the energetic shift of the
Te 4d state has approximately the same tendency with the shifts of the valence bands.

Thus overall, as has been pointed out by [186], this electronic structure may be un-
derstood as being close to a doped monolayer of 1T-HfTe2, with the Te 4d levels
experiencing a similar shift of the chemical potential to the valence bands, but the
Hf states showing a smaller shift.
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FIGURE 3.15: (a) Core level spectroscopy of Te 4d as a function of
charge carrier density. The spectra were fitted using two pairs of
Voigt functions, depicted as blue (bulk) and red (surface) shaded ar-
eas. The SOC peak separation and areal ratio of Te 4d3/2 to Te 4d5/2,
were fixed to the values obtained from the pristine surface (ne=0.03).
(b) Comparison of the energy shift of shallow core levels of Te 4d (blue
and red circles), the inner Te 5p-derived state of the valence band (p2,
filled red triangles) and the Hf 5d-derived electron pockets (p1, empty
red triangles). The data reveals a similar trend of the p2 valence band

state (Te 5p) and Te 4d shallow core levels.

3.6.3 Photon-energy-dependent ARPES: kz maps

Figure 3.16(a,b) shows photon-energy-dependent ARPES measurements before and
after K deposition on HfTe2, mapped into kz by employing the standard free-electron
final state approximation: kz =

1
h̄

√
2me(V0 + Ek cos2 θ), where θ is the in-plane emis-

sion angle, Ek is the photo-electron kinetic energy and V0 is the inner potential. We
use an inner potential of 11 eV. The kz map of the pristine surface shows a pair of
Te 5pxy with the contribution 5pz-orbital derived state at the Γ point, and electron
pockets centered at each L point (Fig. 3.16(a)). The asymmetry of these pockets re-
flects the trigonal symmetry of the crystal and the matrix element effects during the
photoemission process. Nevertheless, all the states forming the band structure of the
pristine surface have a 3D character, as discussed in details above.

Upon alkali metal deposition, we observe the emergence of states without kz varia-
tion, which confirms that the electron pockets in the surface-dosed system are strictly
2D surface-confined states. In addition to these 2D states, there exists a noticeable
contribution of 3D bulk states as shown in Fig. 3.16(b). These resemble the 3D elec-
tronic structure of the pristine surface, though with some subtle shifts. We interpret
these weaker features as photoelectrons being excited deeper in the material and
have a non-negligible chance to escape, analogous to the remnant bulk-like contri-
bution to the core level spectra in Fig. 3.15(a). Interestingly, the spectral weight of
these remnant 3D states appears to be shifted along the kz axis (using the same value
of the inner potential for the kz-mapping). In other words, a modified inner potential
may be applicable for these photoelectrons. Within the three-step model, the inner
potential includes a term from the material work function [135, 136, 22], and this
is known to be strongly dependent on K dosing [214]. We speculate therefore that
even though the initial states of this bulk-like contribution are essentially unaffected
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FIGURE 3.16: Photon energy-dependent ARPES. (a)-(b) kz maps, pro-
cessed from photon-energy dependent data at EF before and after
Potassium dosing on HfTe2 surface along M-Γ-M’ [L-A-L’] direction,
providing clear evidence of the emergence of surface-confined states
and the remnant bulk-like contribution due to the non-negligible

chance of the deep photoelectrons to escape.

FIGURE 3.17: (a)-(b) Valence band dispersion at a photon energy
hν = 87 eV of the pristine and dosed surface, showing unambigu-
ously the asymmetry disappearance and sharpness of the bands due
the monolayer-like electronic structure after dosing. The observed
features inside the electron pockets and the center are a clear evidence
of the remnant bulk states of deeper photoelectrons in the material.

by the dosing, the photoelectrons experience a different surface potential, and thus
come out with a different effective kz.

In addition to the increased sharpness of the electronic structure, due to their 2D
character after dosing, the asymmetry present in bulk spectra disappears in the
surface-confined states (Fig. 3.17(a,b)). This occurs because in the 2D limit, the band
structure is expected to be sixfold symmetric. However, the weaker, asymmetric,
and broader, spectral features come from a remnant contribution of the bulk states.
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In particular, our understanding of the spectral weight inside the electron pockets in
Fig. 3.17(b) comes from such bulk-like states, as evidenced from their 3D character
in the kz map after dosing (Fig. 3.16(b)). Similar bulk-like features are often observed
even after a substantial dosing is applied [215].

3.7 Topological features in the valence band structure of HfTe2

FIGURE 3.18: (a)-(b) Band dispersion along the out-of-plane kz direc-
tion at the Brillouin zone centre [Γ-A direction] of the pristine surface,
highlighting the expected crossings of the Te pz orbital and Te pxy
orbital-derived states, giving rise to a bulk Dirac point (BDP) (upper
crossing) and an inverted bandgap (IBG) (lower crossing), as labeled

in our DFT calculations.

One of the interesting features of the 3D electronic structure is that it supports the ex-
istence of the bulk Dirac fermions as well as an inverted bandgap. These topologically-
protected features arise from within the manifold of Te p-orbitals [13]. In this layered
material, with a trigonal crystal field, p-orbital states form dispersive bands due to
bonding, crystal-field splitting and spin-orbit coupling. In the out-of-plane kz di-
rection, a band with Te pz orbital character behaves very differently to the in-plane
pxy-derived states. This gives a general expectation of a strongly kz dispersion of
the out-of-plane Te pz orbital and a dispersionless pair of in-plane pxy-derived states,
thus naturally causing a set of kz-dependent crossings [13, 107, 108, 216, 217].

Indeed, our valence band dispersion between Γ (k = (0,0,0)) and A (k = (0,0,π/c))
high-symmetry points of the Brillouin zone shows the p-orbital-derived manifold
of states along the out-of-plane kz direction (fig. 3.18(a,b)). The crossing of the pz
orbital-derived state with the upper pxy derived state forms a symmetry-protected
3D Dirac point, due to their belonging to different irreducible representations. How-
ever, pz and the lower pxy derived state share the same symmetry character and an-
gular momentum but opposite parity, their hybridization thus opens an inverted
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bandgap which is expected to host topological surface states [13]. The location of
these crossings at deeper binding energies E-EF ∼ 3 eV, and the small size of the in-
verted bandgap makes the resolution of such features challenging due to the broad-
ening of the bands.

3.8 Conclusions

In conclusion, our findings show how the electronic structure of the HfTe2 has un-
dergone significant changes upon alkali metal deposition at the surface. The mea-
sured ARPES spectra revealed a 3D semimetallic ground state in the pristine sam-
ple. The broadening of the bands and asymmetries in the spectral weight were as-
cribed to the kz uncertainties in the photoemission process and the crystal structure,
respectively. This then evolves into 2D surface-confined states, with correspond-
ingly sharper linewidths and more symmetric intensity. After substantial doping, a
monolayer-like electronic structure was revealed, indicating intercalation of the al-
kali metal and decoupling of the topmost layer of HfTe2. However, we also found ev-
idence of bulk-like features, arising from photoelectrons from deeper in the material,
even after substantial K dosing. Furthermore, we show that HfTe2 hosts topologi-
cal features such as a BDP and an IBG, a further example of the generic mechanism
described for other TMDCs in the same space group [13]. Our methodical study of
this prototypical layered semimetal gives evidence of the complexity that can occur
upon alkali-metal dosing, showing qualitatively different behaviour to recent stud-
ies in another semimetal, PtSe2 [33]. Finally, we suggest that tuning the electronic
structure of the narrow-band-overlap material HfTe2 could lead to the discovery of
novel electronic ground states.
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Chapter 4

Fermiology and Electron-Phonon
Coupling in the 2H and 3R
polytypes of NbS2

This chapter starts with a brief recall of the instabilities in 2H-NbS2, raising the ques-
tion about the peculiarity of this materials among the metallic TMDs family of group
V, since it stands out as the only system which hosts superconductivity without a
CDW phase. A brief introduction of many-body interactions, and more specifically
electron-phonon coupling as the origin of the novel electronic states in TMDs will be
given, followed by its important role in driving the superconductivity in 2H-NbS2.
Previous results showing the two gap nature of this compound both theoretically
and experimentally will be presented and rigorously described. This literature re-
view will finish by bringing back the phonon dispersion in 2H-NbS2, evidencing
anharmonicity as the key factor in the absence of a CDW phase in this material.

The second part of this chapter consists of the results achieved within this work,
where ARPES and DFT calculations were combined to examine the low-energy elec-
tronic structure of 2H-NbS2 and 3R-Nb1+xS2, giving unambiguous insights on the
momentum and orbital character dependence of the electron-phonon coupling strength
in the 2H phase in one hand, and evidencing the absence of superconductivity in the
3R in the other.

The results presented here have been accepted for publication in Physical Review B
(a pre-print of the paper can be found on arXiv, DOI: https://arxiv.org/abs/2012.12595).

4.1 Literature review of superconductivity and "latent" CDW
in 2H-NbS2

2H-NbS2 is a prototypical system of the TMDs family, which unlike other TMDs
in the same group of the periodic table, TaS2, TaSe2 and notably the isostructural
and isovalent NbSe2 [218], does not undergo a charge-density-wave (CDW) phase.
However, its ground states still host some novel electronic states, as this system has
been evidenced, both theoretically and experimentally (i. e. spectroscopy [122] and
thermodynamics [123]) to exhibit two well-defined superconducting gaps below Tc
= 6.2 K. The absence of a CDW phase in 2H-NbS2 is attributed to the anharmonic ef-
fects [110, 126, 219]. The low-energy phonons, which put this material on the brink
of a CDW phase [110], however, exhibit a strong electron-phonon coupling which is
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in turn considered to be the driving factor to the superconductivity in 2H-NbS2 [126].

4.1.1 Electon-phonon coupling effects in ARPES

Many-body effects play a crucial role in modern condensed matter physics, as they
are at the core of several fascinating phenomena. One of the most interesting effect
among this family is the electron-phonon interaction (EPI), which as demonstrated
in Fig. 4.1, takes place as a result of electron scattering from an initial electron state
with momentum k to a final electron state by a phonon with momentum q through
phonon emission and phonon absorbtion [220].

FIGURE 4.1: Phonon-mediated interband scattering from an initial
electron state (i) (blue filled circle) with momentum k to a final elec-
tron state (f) (red empty circle) by phonon emission and phonon ab-

sorption [220].

By standing out as a major factor in several properties that are found in complex
materials such as electrical resistivity, heat capacity and BCS-type superconductiv-
ity, the electron-phonon coupling is a fundamental many-body interaction that de-
creases the lifetime of excited electrons or holes, and information about its strength
can be thoroughly investigated by both theoretical and experimental approaches.
Tunneling spectroscopy and heat capacity measurements have always been unitized
to gain insights about the electron-phonon coupling in materials. However, modern
ARPES has allowed the investigation of many-body effects and el-ph interaction in
particular in unprecedented details, since it unambiguously gives the energy and
momentum k dependence of the interaction, thus providing a detailed study rather
than averaging the e-ph strength over the whole Fermi surface of metals, as it is the
case for the previous techniques [220].

As depicted in Fig. 4.2, within a typical phonon energy range 2h̄ωD at the vicinity of
the Fermi level, the electron-phonon coupling renormalises the band dispersion in a
way that it is flatter at EF, resulting in an significant increase of the density of states
(DOS) and effective mass of the electrons at EF. This increase can be expressed as
follow:
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m∗ = m0(1 + λ), (4.1)

where λ is the electron-phonon strength parameter, whereas m∗ and m are the effec-
tive masses with and without e–ph interaction, respectively [220].

FIGURE 4.2: (a) Renormalization of the electronic dispersion at the
Fermi vicinity. The dashed line is the bare dispersion ε(k), while the
solid line is the renormalized dispersion E(k) for a low temperature
(blue) and a higher temperature (red). Inset: real and imaginary parts
of the complex self-energy for the e–ph coupling, Σ’ and Σ” for a low
temperature (blue) and a higher temperature(red). (b) Spectral func-
tion A(k, ω, T) at a low temperature showing the sharpening of the
quasi-particle peak near EF. The arrows indicate how Σ’ and Σ” cor-
respond to the renormalization of the dispersion and the finite width

of the peak, respectively. The inset bar gives the color scale [220].

In ARPES, information about the electron-phonon coupling can be directly obtained
from the spectral function A(k, ω, T) through the complex self-energy Σ, where its
real Σ’ and imaginary Σ” part indicate the effect of the e–ph coupling on the dis-
persion (i. e. band renormalization) and quasiparticle lifetime τ respectively. This
lifetime τ, the inverse lifetime Γ or the imaginary part of the self energy itself Σ”,
which are in fact the same quantity simply describe the decay of the excited elec-
trons or holes.

Both the real and imaginary part of the self-energy, Σ’ and Σ” respectively, are re-
lated by a Kramers-Kronig transformation, implying that the determination of either
of them is sufficient. The inset of Fig. 4.2(a) shows the typical results for Σ’ and Σ” at
a low (blue) and a higher temperature (red). Σ’ is very small except at the vicinity of
the Fermi level, but vanishes exactly at EF. Σ” in contrast, is constant at high binding
energies but promptly decreases close to the Fermi level and only vanishes at EF for
T = 0 [220].
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4.1.2 Electron-phonon coupling and other contributions to the linewidth
broadening in ARPES

Although we are merely considering the electron-phonon coupling here, the simul-
taneous presence of other many-body effects such as electron-electron (e-e) and de-
fects (df) interactions in the material, which leads to other scattering events and
contribute to the total function of the inverse lifetime as follows [220]:

Γ = h̄/τ = Γd f + Γe−e + Γe−ph (4.2)

Γd f represents the elastic scattering events that are caused by defects in the sample
and that limit the mean-free path of a carrier. This component enters as a pure offset
to the total inverse lifetime Γ since it is generally not strongly energy or temperature
dependent. The number of defects, on the contrary, is temperature dependent as
these can be thermally excited at higher temperatures resulting in the increase of Γd f
[220].

On the other hand, Γe−e reflects the inelastic electron-electron scattering, which is
energy-dependent, as it increases for higher binding energies because the phase
space for inelastic e–e scattering is extended. The temperature dependence of Γe−e,
however, is very weak [220].

At very low temperatures, high excitation energies and in the absence of defects, the
most relevant limiting factor to the excitation lifetime is the e-e scattering. How-
ever, at high temperatures and close to the Fermi level, Γe−ph becomes the dominant
parameter as it increases because of the increased phonon excitations probability.
Therefore, Γe−ph is the only contribution to the total total inverse lifetime Γ which
has a significant temperature dependence in Eq. 4.2, allowing thus the isolation of
the electron-phonon coupling from the other contributions experimentally [220].

4.1.3 Superconductivity driven by k-dependent strong electron-phonon
coupling in 2H-NbS2

Although isostructural and isoelectronic to the well-known 2H-NbSe2, which ex-
hibits a ∼ 3× 3 CDW and also superconducts at 7.2 K [121], 2H-NbS2 sticks out as
an exception in the metallic (V,Nb,Ta)(S,Se,Te)2 family of TMDs. It is the only system
which doesn’t undergo a CDW phase. However, Scanning tunneling spectroscopy
(STS) [122], specific heat measurements [123], in-plane magnetic penetration depth
[124] and pressure dependence measurements [125] have all evidenced the presence
of two superconducting gaps below Tc = 5.7 K in this component, similar to the iso-
valent 2H-NbSe2.

Multi-gap superconductivity is a very fascinating phenomenon in condensed mat-
ter physics, and one of the rare examples of a multi-gap superconductor is MgB2,
a material in which the superconducting properties were discovered in 2001 with
a relatively high Tc of 39K [221], and subsequently established as a conventional
superconductor, where the pairing mechanism is mediated by the electron-phonon
interaction [222]. However, early experiments indicated that MgB2 might have two
distinct superconducting energy gaps [223, 224, 225, 226, 227, 228], whereby the
Fermi surfaces of different orbital character couple to different phonon modes with
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different strengths.

Yet the two-gap scenario is not quite the full story, tunnelling spectroscopy mea-
surements of the superconducting gap showed that not only are there two distinct
gaps in MgB2, but that there is a distribution of gaps on each Fermi surface [229],
confirming the theoretical predictions [230, 231, 232, 233, 234]. This distribution of
gaps is directly explained by the anisotropy of the electron-phonon coupling around
the Fermi surface [235]. Similar phenomenology can be expected in other systems
where there are multiple Fermi surface sheets of different origins, and NbS2 is such
a case, albeit with a much lower Tc of ∼6.2 K [122].

FIGURE 4.3: Characteristic tunneling conductance curve measured at
T = 0.1 K (conductance: σ = 1.6 µS at 4 mV). The derivative of the
associated local superconducting density of states (LDOS), shown in
the inset presents two peaks, at 0.97 and 0.53 meV, marked by black
and gray arrows, respectively, which correspond to two peaks in a

gap distribution [122].

Fig. 4.3 shows the tunneling conductance measurements as a fucntion of the bias
voltage at T = 0.1 K of 2H-NbS2, performed by Guillamon et al., highlighting the
distribution of the superconducting gap, which reveals two principal values ∆1 =
1kBTc = 0.53 meV (grey arrow) and ∆2 = 1.8kBTc = 0.98 meV (black arrow), as ob-
tained from the peaks in the derivative of the local superconducting density of states
(d(LDOS)/dE) in the inset.

While the features observed in the tunneling conductance disappear, the ones in the
LDOS are scaled to lower energies close to Tc, as can be seen in Fig. 4.4(a), which
shows a smooth temperature dependence of both σ and LDOS. Furthermore, in
Fig. 4.4(b), the temperature dependence of the two peaks in d(LDOS)/dE is shown,
where the two peaks are located above (0.97 meV) and below (0.53 meV) the value
for the superconducting gap expected within the single band s-wave BCS model
(∆BCS = 1.76kBTc = 0.87 meV, solid black line), respectively, and both disappear at Tc
= 5.7 K, in a very close similarity to the two-gap nature in 2H-NbSe2 [122]. Support-
ing evidence for two-gap superconductivity in 2H-NbS2 from Andreev reflections
[236] and heat capacity measurements [123] have been as well reported.
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FIGURE 4.4: (a) Temperature dependence of tunneling conductance
spectra (σ = 0.65 µS at 4 mV) and superconducting LDOS (right). The
data are, from bottom to top, taken at 0.1, 0.9, 1.5, 2, 2.5, 3, 3.5, 4,
4.25, 4.5, 4.75, 5, 5.2, 5.4, and 5.6 K, respectively. (b) Temperature
dependence of the two peaks in d(LDOS)/dE (gray and black points,
corresponding to the features marked by gray and black arrows in
Fig. 4.3; The solid line is the BCS expression taking ∆ = 1.76kBTc =

0.87 meV, with Tc = 5.7 K [122].

In metallic systems where superconductivity usually coexists with a charge density
wave (CDW), CDW occurs at a certain TCDW and reduces a considerable part of the
density of states but it is the superconductivity, occurring at a lower Tc which fully
gaps the Fermi surface, as it is the case in NbSe2 [121]. However, the presence of
superconductivity and peculiar absence of CDW in 2H-NbS2 raises intriguing ques-
tions whether these two novel states cooperate or compete in these compounds [126].

Heil et al. used the fully anisotropic ab initio Migdal-Eliashberg theory including
electron-phonon and electron-electron interactions to elucidate the origin of the su-
perconductivity and latent CDW in 2H-NbS2, and demonstrated that the supercon-
ducting pairing is associated with regions in the Fermi surface exhibiting a strong
electron-phonon coupling. This interaction is predominately driven by low-energy
anharmonic phonons, which in turn place the system on the brink of a charge den-
sity wave instability [126], as will be explained later. These phonon anharmonicity
is responsible for lowering the TCDW in other TMDs.

FIGURE 4.5: Momentum-resolved superconducting gap ∆k (a) and
electron-phonon interaction (EPI) strength λel

k (b) on the Fermi sur-
face, calculated within the ab initio Migdal-Eliashberg theory for T =

1.7 K. [126].

Fig. 4.5 depicts the calculated momentum-resolved superconducting gap ∆k (Fig.
4.5(a)) and electron-phonon interaction (EPI) strength λel

k (Fig. 4.5(b)) on the Fermi
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surface of 2H-NbS2 calculated at T = 1.7 K. The first glance shows that the Fermi sur-
face is fully gapped below Tc (Fig. 4.5(a)), with the Brillouin zone center exhibiting
substantially lower gap value (∼ 0.57 meV) compared to the straight sections of the
triangle-shaped pockets around the K point (∼ 1 meV). These regions of the Fermi
surface with the largest superconducting gap ∆k coincide with the "hot spots" of
the electronic electron-phonon coupling parameter λel

k , as highlighted in Fig. 4.5(b).
In analogy to the superconducting gaps values, the electron-phonon interaction is
much stronger in the straight sections of the K barrel (∼ λel

k = 2.5) compared to the Γ
pockets (∼ λel

k = 0.8) [126].

Taken together, this shows that the full consideration of electron-phonon coupling,
rather than a simplistic picture based on nesting is necessary to understand the su-
perconductivity and proximity of a CDW phase in 2H-NbS2. Furthermore, by re-
calling the orbital character of the bands forming the Fermi surface (Fig. 4.9(a)), it
is apparent that low values of the superconducting gaps/EPI are found on those re-
gions of the Fermi surface with out-of-plane orbital character (S 3pz and Nb 4d3z2−r2),
while large values correspond to regions with in-plane character (Nb 4dx2−y2,xy), pre-
dicting that the electron-phonon coupling, and consequently the superconductivity
is strongly dependent of the orbital character of the bands in 2H-NbS2 [126].

4.1.4 Supression of the charge density wave in 2H-NbS2 by anharmonic
effects

FIGURE 4.6: Harmonic (black dashed lines) and anharmonic phonon
dispersion, performed from the stochastic self-consistent harmonic
approximation (SSCHA) at 300 K (red solid lines) and 0 K (blue solid
lines) using the experimental lattice parameters. The results are com-
pared with the inelastic X-ray scattering (IXS) measurements of Ref.
[110] performed at 300 K (red dots) and 2 K (blue dots). The SSCHA
dispersion corrects the errors of the pure harmonic result near M: the
instability of the two longitudinal acoustic and optical modes is re-
moved and the softening on lowering temperature is well reproduced

[219].
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From the analysis performed by Heil et al., it was clear that the two low-energy an-
harmonic phonon contribute significantly to creating a k-dependent electron-phonon
hot spots, which in succession leads to the larest superconducting gaps on the straight
sections of the triangular pockets of the Fermi surface around the K points [126].
These anharmonic modes, however, are the ones which place this system on the
verge of a charge density wave instability [110, 219].

In Fig. 4.6, harmonic (black dashed lines) and anharmonic phonon dispersion for
bulk 2H-NbS2 is shown, performed by Bianco et al. within the frame of first prin-
ciples calculations at 300 K (red solid lines) and 0 K (blue solid lines) using the
experimental lattice parameters. As seen, The phonon dispersion is almost every-
where well reproduced with the harmonic calculation, except close to the M point,
where it predicts that two longitudinal acoustic and optical modes become imag-
inary, whereas the experimental phonon energies show a sizeable temperature de-
pendence in this region of the Brillouin zone (BZ) but stay real all the time. However,
quantum anharmonic effects remove the instability found in the harmonic disper-
sion approach and give a very good agreement to the experimental results at both
temperatures, measured by Leroux et al. [110] using IXS. From pressure-dependence
calculations, these quantum anharmonic effects were found to persist even at high
pressures [219].

Therefore, as temperature decreases, electron-phonon coupling causes the softening
of two acoustic and optical longitudinal modes close to both M and L points, but
no lattice instability takes place due to anharmonic effects. Thus, the anharmonic
effects strongly affect the quantum fluctuations in stabilizing 2H-NbS2, confirming
their major importance to describe experimental data and the absence of a CDW in-
stability in this system [110, 219].

4.1.5 Fragile CDW in the monolayer limit of NbS2

In the monolayer limit, contradictory results about the CDW ordering have been re-
ported. While no CDW phase was observed on a Au(111) supported single layer
[237], 1H-NbS2 samples grown on top of 6H-SiC(0001) has been evidenced to un-
dergo a 3 × 3 CDW instability [238]. To gain clear insights about the dimensionality
and environmental conditions effects (substrate, doping) on the CDW on monolayer
NbS2, Bianco et al. used a similar calculation approach and performed the harmonic
and anharmonic phonon dispersion for 1H-NbS2.

In Fig. 4.7(a), the temperature dependence of the harmonic and anharmonic phonon
dispersions of free-standing 1H-NbS2 is shown, calculated using the experimental
lattice parameters of the bulk counterpart a2H

exp. Although the resulting dispersions
are closely similar to the bulk, since at the harmonic level the system hosts a CDW
phase, which is eventually suppressed by anharmonic potential down to T = 0 K, the
frequency of the phonon softening is 20% harder in the bulk than in the single layer,
demonstrating the substantial enhancement of the tendency toward a CDW phase
in the 2D limit [219].

When using the theoretical lattice parameters of the monolayer a1H
th (Fig. 4.7(b)), the

phonon dispersion at T = 0 K now reveals an instability at qCDW = 0.72 ΓM, even
when the quantum anharmonic effects are included. At hamonic level, however,
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FIGURE 4.7: Suspended 1H-NbS2 harmonic phonon dispersion (black
dashed lines) and SSCHA anharmonic phonon dispersion at several
temperatures (colored solid lines), at zero pressure. (a) results ob-
tained with the experimental in-plane bulk lattice parameter a2H

exp. The
softening of the acoustic mode, localized at qCDW = 0.72 ¯ΓM, is more
pronounced than in the 2H bulk case. However, the frequencies re-
main real even at 0 K. (b) results obtained with the theoretical lattice
parameter a1H

th , obtained by fully relaxing the structure taking into ac-
count quantum anharmonic effecta. At 0 K, the frequency at qCDW =

0.72 ¯ΓM becomes imaginary [219].

the phonon dispersion is resembling the one calculated with the experimental lat-
tice parameters a2H

exp. The emergence of a 3 × 3 CDW phase in single layer NbS2 is
in agreement with the CDW observed for 1H-NbS2 on the 6H-SiC(0001) substrate,
measured by Lin et al. [238]. The resulting lattice instability however, is very fragile
as the obtained imaginary phonon frequency is very small, and strains as slight as
0.5% are sufficient to put the system away of a CDW.

All together, the achieved findings establish quantum anharmonicity as a key inter-
action in stabilizing the crystal lattice in bulk 2H-NbS2, by preventing the complete
softening of the phonons, and thus removing the charge density wave found at the
harmonic approach [110]. In the 2D limit, however, 1H-NbS2 hosts a CDW even in
the presence of anharmonic modes, but this lattice instability is very weak, suggest-
ing a strong dependence of the CDW on the environmental conditions (substrate,
charge transfer, etc), and thus giving an explanation that charge doping from the
substrate could be at the origin of the CDW suppression for supported Au(111) sam-
ples [219].

4.1.6 Existing ARPES reports on NbS2

Although of utmost importance, the electronic structure of 2H-NbS2 has not been
fully investigated yet, since most studies were either limited by the data quality
[239], performed on Cr, Mn, Ni or Cu doped 2H-NbS2 [240, 120, 241, 239] or con-
sisted of epitaxially grown single layers [242, 243, 238, 244, 237, 219]. Hence, a sys-
tematic study of the electronic structure of 2H-NbS2 is extremely required, as it can
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give significant insights on the mechanisms leading to the peculiar absence and pres-
ence of CDW and SC, respectively.

On the other hand, 3R-NbS2 has received less attention compared to its 2H coun-
terpart. This is mainly due to its relatively deficient electronic properties, embodied
in absence of any novel electronic states in this phase. However, unlike 2H and
1T TMDs which both possesses inversion symmetry within their unit cell, the non-
symmetric crystal line structure of the 3R leads to a valley-dependent spin polarised
states within their bulk electronic structure, making them a firm basis for spintronics
and valleytronics applications [43, 245].

4.2 ARPES results

In this work, the photon energy was varied between 30 and 240 eV, and linear hor-
izontal (LH, or p polarization) and circular polarised lights were used. 2H-NbS2
and 3R-NbS2 single crystals were obtained commercially from HQ graphene. The
growth method was chemical vapour transport (CVT), and the growth temperatures
were above 1000 and 1080 C, respectively. Samples were cleaved in situ and mea-
sured at a temperature of T = 6 K. The energy resolution was typically 10 meV. DFT
calculations were performed within the Wien2k package [20], accounting for spin-
orbit coupling and using the modified Becke-Johnson (mBJ) functional [17].

4.2.1 Crystalline and electronic structure of 2H and 3R-NbS2

FIGURE 4.8: (a,b) Crystal structures viewed from the side, showing
the different stacking modes, with Nb and S atoms are shown in green
and yellow, respectively. While the unit cell of the 2H phase contains
two monolayers, rotated by 180◦ between each other to ensure the
inversion symmetry in this polytype (a), the primitive unit cell in the
3R contains only one monolayer, resulting in an inversion symmetry

breaking in 3R-NbS2 (b).
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In the 2H phase, each layer is rotated by 180◦ with respect to the layer below it (Fig.
4.8(a)), resulting in a primitive unit cell that contains two formula units. While a
single layer of the 2H structure would not possess inversion symmetry due to the
trigonal prismatic coordination of the Nb, the stacking creates a centre of inversion
symmetry centered between layers (space group 194, P63/mmc) [40, 41]. Whereas in
the 3R phase, there is no rotation between layers but rather each layer is translated
by (0,0,a/3) with respect to the layer below. In this case, the conventional unit cell
contains three formula units, but the primitive unit cell contains only one formula
unit. This stacking structure does not contain any points of inversion (space group
160, R3m).

The different stacking arrangements lead to important differences in the electronic
structures of the two phases, which we explore with DFT calculations in Fig. 4.9(a,
b). On a global scale, there are similarities between the electronic structure of NbS2
and the well-known MoS2 and WSe2 [94, 100, 211, 42, 43, 246, 45], at least as far as the
chalcogen orbitals are concerned, which form a manifold of occupied valence bands
through bonding and antibonding. However, since Nb has 1 less electrons (d1 con-
figuration), the states with Nb 4d3z2−r2 and Nb 4dx2−y2,xy character which would be
fully occupied in MoS2 are only half-filled in NbS2, ensuring a metallic band struc-
ture (Fig. 1.8).

FIGURE 4.9: (a,b) DFT calculations with orbital character projection
of the valence and conduction bands for 2H-NbS2 (a) and 3R-NbS2

(b).

The first striking difference is that there are twice as many bands in the 2H phase
compared to the 3R phase, since there are 2 formula units in the 2H unit cell, giv-
ing rise to inequivalent interlayer hopping, whereas in the 3R phase the primitive
unit cell contains only one formula unit. This interlayer hopping in the 2H phase
depends strongly on the orbital character of the bands; for the in-plane S 3px,y it is
a small effect, but notably affects the Nb 4d3z2−r2 orbital-derived bands (Fig. 4.9(a))
much more than other components of the Nb 4d (e. g. Nb 4dx2−y2,xy). This has a
significant effect for the half-filled manifold of Nb 4d states around the Fermi level,
as the degree of bilayer splitting varies with the orbital character of the bands, and
is thus momentum-dependent, being much larger at Γ than at the K point.
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The c* axis in the 2H phase is also half the length of the 3R phase as can be in the
Brilloin zones of both phases (Fig. 4.10), leading to an effective backfolding of bands
in the out-of-plane direction (S 3pz orbital derived bands along ΓA direction). More-
over, the different stacking between the two phases does not only affect the electronic
structure through the out-of-plane hopping but also the shape of the Brillouin zone.
While this has a standard hexagonal shape in the 2H phase, the stacking of the layers
in the 3R phase results in a more complex Brillouin zone. For convenience of com-
parison, however, we use the notation of “K” and “M” also in the 3R phase, even
though these are not formal high-symmetry points in this case.

FIGURE 4.10: Brillouin zone of the two phases. While this has a con-
ventional hexagonal shape for 2H-NbS2 (a), the stacking arrangement

results in a warped-like shape in the case of 3R-NbS2 (b).

FIGURE 4.11: (a,b) kz projection of the DFT band structure along the
experimentally-relevant M-K-Γ-K-M (L-H-A-H-L) direction for 2H-
NbS2 (a) and 3R-NbS2 (b), highlighting the 3D and quasi-2D character

of the electronic states.

For a more explicit comparison with our ARPES data, in Fig. 4.11(a, b) we show the
kz projection of the DFT band structure along the experimentally-relevant M-K-Γ-K-
M (L-H-A-H-L) direction. At a first glance, the kz projection highlights a dichotomy
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in the occupied S valence bands; there are some states which are extremely 3D, de-
rived from the S 3pz orbitals, while others are almost 2D, derived from S 3px,y orbital
character. For the Nb 4d-derived states, there is some kz dispersion in both the unoc-
cupied states and occupied ones around Γ and M point, respectively. This is because
these bands derive from Nb 4d3z2−r2 orbital character. However, around the K point,
the electronic states are derived from Nb 4dx2−y2,xy, making them kz-independent.

This dimensionality difference is clearly seen in our measured ARPES spectra, espe-
cially for the 2H phase in Fig. 4.12(a) and Fig. 4.13(a), measured along Γ-K direction
at a photon energy hν = 79 eV and hν = 118 eV, respectively, where the valence
bands closely resemble the kz-projected calculations, with a superposition of sharp
features from quasi-2D states, and broad features from 3D bands that arise due to kz
uncertainties in the photoemission process [143, 140, 145].

FIGURE 4.12: (a,b) Overview ARPES spectra showing valence band
dispersions. Data measured along Γ-K direction at hν = 79 eV and
hν = 68 eV for 2H-NbS2 (a) and 3R-NbS2 (b), respectively, using LH

polarised light (p).

However, in the case of the 3R phase, the agreement is not as good. As can be
seen in Fig. 4.12(b) and Fig. 4.13(b), measured along Γ-K direction at a photon en-
ergy hν = 68 eV and hν = 120 eV, respectively, the data quality is lower compared
to the 2H phase, where none of the features appear as sharp as in the latter, with
a significantly higher background. Secondly, indication of some form of localised
impurity-like state in this system as there is evidence for a flat state at EB = -1.2 eV,
not present in the calculations (Fig. 4.12(b)). Additional flat features are clearly seen
at higher photon energy data (Fig. 4.13(b)) around EB = -0.8 eV, as indicated by the
black arrow. Finally, the bands at the Fermi level appear to be substantially more
occupied than in the calculation, suggesting some form of intrinsic doping in the 3R
phase. Therefore, the experimental electronic structure of the two phases are much
more different than the DFT calculations would predict, giving strong hints about
further important factors rather than the stacking arrangements as the only differ-
ence between the two phases.
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FIGURE 4.13: (a,b) Overview ARPES spectra showing valence band
dispersions. Data measured along Γ-K direction at hν = 118 eV and
hν = 120 eV for 2H-NbS2 (a) and 3R-NbS2 (b), respectively, using LH

polarised light (p).

4.2.2 Fermiology of 2H and 3R-NbS2

In order to understand the difference between the two phases and disentangle its
driving factors, we perform a detailed investigation of the Fermi surfaces of the two
materials. In Fig. 4.14(a,b) we show the calculated 3D Fermi surfaces of both phases,
which look broadly similar (except the presence of an additional S 3pz orbital-derived
pocket at the Brillouin zone center in the 3R phase), as in both cases cylinders and
quasi-2D triangular shaped pockets appear around the Γ and K points, respectively,
with the kz warping of the latter being somehow weaker for the 3R phase, except for
the highly 3D S 3pz band that crosses at Γ.

FIGURE 4.14: (a,b) 3D Fermi surface of (a) 2H-NbS2 and (b) 3R-NbS2,
as calculated by DFT calculations, showing circular and quasi-2D tri-
angular shaped pockets around Γ and K point, respectively for both
phases, with an additional S 3pz orbital-derived pocket at the Bril-

louin zone center in the 3R phase, absent in the 2H counterpart.

Although present in both Fermi surfaces, the band splitting emerges from different
origins. While this is due to the interlayer interaction in the 2H phase, which plays
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an important role in creating a splitting of inner and outer pockets, the splitting in
the 3R phase is a spin-splitting, allowed due to the absence of inversion symmetry
in the crystal structure and spin-orbit coupling. A more extended discussion about
the basis of the band splitting in each phase, alongside high-resolution ARPES data
will be presented later.

In a similar way to the approach considered in the previous chapter to reproduce the
asymmetries and kz broadening in the measured ARPES spectra, the calculation pre-
sented in Fig. 4.15(a) shows a simulation of the Fermi surface, obtained by averaging
the electronic structure over the entire kz axis. For instance, while the kz integration
for the typical photon energy range used in ARPES (20-120 eV) can reach 25 or 30%
of the Brillouin zone for 1T-TMDs as it is the case in HfTe2 (λ = 5Å) [145], the c*
axis in the 2H phase, however, is only half the length of the 1T phase, leading to a
significantly greater kz integration in the photoemission process, which can reach 80
or 90% of the Brillouin zone size.

FIGURE 4.15: 2H-NbS2. (a) Simulated Fermi surface obtained by av-
eraging over the whole Brillouin zone width in the kz direction for
a more straighforward comparison with the data. (b) Fermi surface
measured at a photon energy hν = 79 eV (inset, 42 eV) using LH po-

larised light.

As depicted in Fig. 4.15, the measured Fermi surface in the 2H phase is quite com-
parable with the calculation. For the inner pocket, the band splitting is well repro-
duced, with a mix of sharp and broad states, and a prominent hexagonal warping
reflecting the symmetry of the system (space group 194, P63/mmc). Although the
band splitting around the K barrels is well reproduced, there is a notable difference
between the data and calculation. Experimentally, the triangular barrels around K
form closed pockets (similar to 2H-NbSe2 [247, 248]), however, in our calculation
the outer K barrels connect near the M points. We attribute this to a limit to the ac-
curacy of the functional, rather than any off-stoichiometry of the 2H sample. More
advanced calculations, e.g. the GW calculations of Ref. [249] find that the K barrels
are somewhat reduced in size and no longer touch, while the Γ barrel expands to
compensate, giving a better overall match to our data.

In general, there is a very good agreement between the data and calculation, even
though the observed electronic structure is highly two-dimensional, somewhat more
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so than the calculation (notably the inner triangle around the K barrel), with very lit-
tle variation observed in the photon energy dependence (Fig. 4.16).

FIGURE 4.16: Photon energy-dependent ARPES of 2H-NbS2 from 50
to 130 eV, plotting MDCs at EF along K-Γ-K (H-A-H) direction as a
function of photon energy, showing the quasi-2D nature of electronic

states with a consistently-resolved splitting of the K barrel bands.

As expected, photon-energy-dependent ARPES of 2H-NbS2 (Fig. 4.16) shows strictly
2D electronic states spanning along the whole photon energy range, with the larger
band-splitting pair derived from Nb 4dx2−y2,xy orbital only whilst more Nb 4d3z2−r2

orbital weight exists in the inner pair, embodied in their slight broadening.

4.2.3 Evidence of additional Nb interstitials in the 3R phase of NbS2

Conversely, a stark difference is observed between our measured Fermi surface of
3R-NbS2 (Fig. 4.18(a)) and the calculated one (Fig. 4.17(a)). The Γ and K barrels of
the Fermi surface are found to be both significantly smaller compared to the calcu-
lations at the "natural" Fermi level EF. This is consistent with the increased filling of
the valence band in Fig. 4.12(b) and Fig. 4.13(b), and is indicative of a large shift in
the chemical potential.

The data more closely resembles the simulation in Fig. 4.17(b) and Fig. 4.18(b), where
the Fermi level is set 250 meV above the natural Fermi level of the calculation. This
implies a significant amount of extra charge in the system. Fig. 4.19 represents the
number of total electrons n in the integrated density of states (DOS) as a function of
the energy shift (i.e. rigid shift of EF). Empirically, it is 12.99 (i.e. 13) for zero shift (at
E = EF) but rises for a positive shift of the Fermi level as this results in a more filling
of the Nb 4d orbitals. A shift of 250 meV corresponds to 0.4828 extra electrons per
unit cell.
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FIGURE 4.17: 3R-NbS2. (a,b) Simulated Fermi surface obtained by
averaging over the whole Brillouin zone width in the kz direction at
EF (a) and 250 meV above the natural Fermi level (b) to match the

data.

FIGURE 4.18: 3R-NbS2. (a) Fermi surface measured at a photon en-
ergy hν = 120 eV using LH + CR + CL polarised light. (b) calculated

3D Fermi surface at 250 meV above the Fermi level.

To fully understand this, we take a closer look at the stoichiometry of the two phases,
as the experimental data point toward an important role for this, rather than the
stacking sequence, in determining the electronic structure differences between the
two polytypes. While the 2H phase is reported to exist only as stoichiometric NbS2,
the 3R phase is known to host additional Nb interstitials, resulting in a stoichiometry
of the form 3R-Nb(1+x)S2, as depicted in the crystal structure in Fig. 4.20. According
to Ref. [68], the range of stability of the 3R phase is within 0.07 < x < 0.18; consis-
tent with this, Energy-dispersive X-ray spectroscopy (EDX) measurements on our
3R samples indicate x ≈ 0.13 (EDX measurements provided by HQ graphene).

In reality, as stated in Ref. [250], interstitial atoms are more favoured to be included
in the 3R phase due to the relatively longer distance between these extra Nb atoms
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FIGURE 4.19: 3R-Nb1+xS2. Integrated density of states (DOS) giving
the number of total electrons n as a function of the energy shift E-EF.

and the in-plane Nb sites (the existence of such Nb interstitials in the 2H phase
would lead to a strong repulsion between the extra Nb atoms and the in-plane Nb
sites, due to the shorter distance between them). Thus, the fact that there exist two
polytypes at all is intimately related to the stoichiometry.

FIGURE 4.20: Crystalline structure of Nb1+xS2, showing the possible
additional Nb interstitial atoms in blue, located in the van der Waals

gaps of this layered material [250].

These Nb interstitials act as electron donors, giving an increased overall filling of the
d shell of the Nb in the main layers. Taking the ratio of the apparent extra electrons
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in the Fermi surface to the measured x value, we can estimate that each interstitial
Nb donates ∼ 3.5 electrons on average. The interstitial sites also act as local impu-
rity potentials, explaining the broadening and extra background in the ARPES data,
and consistent with the high density of atomic-scale imperfections observed in STM
measurements on 3R-Nb(1+x)S2 [251], compared to measurements on other TMDs.

FIGURE 4.21: S 2p core levels of 2H-NbS2 (red) and 3R-NbS2 (blue)
using a photon energy hν = 240 eV, showing clearly additional satel-

lites in the 3R phase.

The presence of interstitial Nb can also be inferred from the S 2p core level spectra
in Fig 4.21. In the case of the 2H phase, a sharp doublet is observed, consistent with
spin-orbit split 2p1/2 and 2p3/2 states from a single chemical site. However, in the
3R phase, there are additional minority peaks, arising from S atoms in a chemical
environment with more than the normal 3 nearest-neighbour Nb atoms, due to the
interstitial Nb occupancy. The main doublet is also broadened, reflecting electronic
inhomegeneity caused by the partial filling of the insterstitial sites. Moreover, the
main doublet is shifted by ∼ 180 meV, a chemical shift related to the overall chemi-
cal potential and average orbital fillings.

FIGURE 4.22: Microscope images of the single crystals used in this
work. While the 2H phase forms thin, flaky samples without clear
facets, the 3R samples are beautiful plate-like single crystals with

clear crystal facets.
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It is worth remarking that the two polytypes also have different physical appear-
ances (Fig. 4.22(a,b)); although both black and metallic-looking, the off-stoichiometric
3R phase forms as beautiful plate-like single crystals with clear crystal facets, while
the 2H phase forms thin, flaky samples usually without clear facets. Thus, NbS2 ex-
emplifies the mantra of not judging by appearances.

4.2.4 Origin of the band splitting in 2H and 3R-NbS2

The band splitting, although present in both electronic band structures, do not arise
from exactly the same origins [40, 41]. While this is due to the inversion symme-
try breaking and spin-orbit coupling in the 3R phase, interlayer hopping, emerging
from interactions between the layers along the c axis in 2H-NbS2, results in a larger
splitting of the bands in this phase compared to the 3R [43], as illustrated in our DFT
calculation of electronic dispersion along ΓK direction of 2H (Fig. 4.23(a)) and 3R-
NbS2 (Fig. 4.24(a)).

FIGURE 4.23: 2H-NbS2. Electronic dispersion along Γ-K direction
showing the band splitting around K point, as calculated with DFT

(a) and measured at a photon energy hν = 30 eV (b).

As introduced in Chapter. 1, the well-known splitting of the valence band along the
ΓK high symmetry direction of monolayer 1H-TMDCs, as discussed in numerous
studies of 2H-MoS2 and WSe2 [43, 211, 45, 42, 196, 252], is due to strong spin-orbit
coupling (because of the high mass of the elements) and lack of inversion symmetry.
For the bulk, this splitting is caused by the combination of interlayer interaction and
spin-orbit coupling. In this case, there is no spin splitting between these two bands
and they are indeed spin-degenerate (Kramers’ degeneracy) because of the presence
of inversion symmetry along with time reversal symmetry. But the strong spin-orbit
coupling in TMDCs results in enhanced splitting of these spin-degenerate bands at
the K point of the Brillouin zone [211]. As the interlayer interaction term is a con-
sequence of the layers stacking along the c axis in 2H-NbS2 and other 2H-TMDs in
general, the effect in significantly larger for Nb 4d3z2−r2 compared to Nb 4dx2−y2,xy
orbital derived electronic states, as can be seen in the electronic band structure in
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FIGURE 4.24: 3R-NbS2. Electronic dispersion along Γ-K direction
showing the spin-splitting of the bands around K point, as calculated

with DFT (a) and measured at a photon energy hν = 68 eV (b).

Fig. 4.9(a).

FIGURE 4.25: 2H-NbS2. Electronic dispersion along K-M-K direction
showing the band splitting, as calculated with DFT (a) and measured
at a photon energy hν = 79 eV (b). While the upper band, derived
from Nb 4d3z2−r2 orbitals crosses the Fermi level in our data, the DFT
suggests that this disperses slightly above EF, which we attribute to a

limitation of the accuracy in the used functional.

The split bands of the 3R polytype however, notably those derived from Nb 4dx2−y2,xy
orbitals, are expected to be spin-polarised states, due to the lack of the inversion
symmetry within its crystal structure, with a predominance of the out-of-plane spin
component Sz, as a result of the net in-plane dipole at the Nb4+ ions due to the
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D3h symmetry of the primitive unit cell [40]. The ISB gives rise to a Rashba-type
spin-splitting in this phase, as can be seen in the electronic dispersion along KMK
direction in Fig. 4.26, with the spin-splitting quenched at the M point as a result of
the time-reversal symmetry of the system.

FIGURE 4.26: 3R-NbS2. DFT calculation of the electronic dispersion
along K-M-K direction showing the Rashba-type spin-splitting, al-

lowed by the absence of inversion symmetry in this phase.

Generally, the band-splitting is lower in S compounds compared to their Se or Te
counterparts. This is due to both the larger interlayer hopping and notably larger
SOC constant in the latter cases as a result of their larger orbital overlap and heavier
elements, respectively. For instance, the top-valence band splittings at the K point
for MoS2 and MoSe2 are 0.18 and 0.2 eV respectively, while for WS2 and WSe2 they
are 0.47 and 0.50 eV, respectively [196].

While the band splitting are nicely resolved in our 2H-NbS2 data ((Fig. 4.23(b) and
Fig. 4.25(b)), the broadening of the bands arising from the interstitial Nb atoms in
the 3R phase makes the resolution of such features challenging (Fig. 4.24(b) and Fig.
4.24(b)). These additional Nb atoms are as well responsible for the extra filling of the
bands compared to the DFT calculations, resulting in a significantly electron doped
electronic band structure, as well described above.

4.2.5 Topology in the band structure of NbS2

In analogy to all the transition metal dichalcogenides with a trigonal crystal field
and spin-orbit coupling like PdTe2, PtSe2, NiTe2, WSe2, HfTe2, etc [13, 107, 109, 154,
145], the electronic structure of NbS2 is expected to support the existence topologi-
cal features such as bulk Dirac fermions as well as inverted bandgaps, arising from
within the manifold of S 3p orbitals. For instance, S 3px,y orbitals derived bands
are dispersionless along the out of plane kz momentum, while S 3pz derived bands
are strongly dispersive along ΓA as a consequence to the out-of-plane hopping of
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their orbital character. This naturally causes a set of kz-dependent crossings along
the ΓA direction of the Brillouin zone, giving rise to bulk Dirac points and inverted
bandgaps expected to host a ladder of topological surface states.

FIGURE 4.27: Electronic band dispersion along Γ-A direction of (a)
3R-NbS2 and (b,c) 2H-NbS2, showing the set of bulk dirac points
(BDP) and topological surface states (TSS) in the valence band of the-

ses compounds.

As already introduced, the unit cell contains two MX2 (M=transition metal, X=chalcogen)
layers in the 2H structure, as compared to a single such layer in the 3R and 1T struc-
ture. This results in an effective backfolding of the bands about the Brillouin zone
boundary along kz, doubling each of the topological features as seen in our DFT cal-
culations along ΓA direction in Fig. 4.27. Yet these topological features are not well
separated in energy, which makes their experimental resolution very challenging.

4.2.6 Electron-phonon interaction in 2H-NbS2

Although neither phase undergoes any structural phase transition, 2H-NbS2 is con-
sidered to be on the brink of a CDW-like transition [122, 123, 124, 110, 125, 126, 219],
while the closely related 2H-NbSe2, does stabilise a CDW at 33.5 K. It is generally
acknowledged that the charge density waves in this family of materials cannot be ex-
plained by electronic “nesting" alone, and it is important to consider the momentum-
dependence of the electron-phonon interaction, which itself is related to the orbital
character of the bands [253, 128, 129, 247, 121, 254, 255].

For the calculated bands along ΓK in 4.29(a), there is a crossover in orbital charac-
ter between the doublets corresponding to the Γ barrels (mainly 4d3z2−r2) and the K
barrels (mainly 4dx2−y2,xy). The experimental spectral function in Fig. 4.29(b) shows
significantly different impact of electron-phonon coupling at the two pairs of Fermi
crossings, with the second pair of crossings (corresponding to the K barrels) ex-
hibiting a clear kink structure, characteristic of a strong electron-phonon interaction,
whereas for the first pair (Γ barrels) the effect is much less prominent.

For a more quantitative analysis, we performed a fitting analysis to extract the band
positions in Fig. 4.30(c). We extract the position and width of peaks in Fig. 4.30(a) by
using a Lorentzian function. Because the intensity of the two branches at higher kF
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FIGURE 4.28: 2H-NbS2. 2D Fermi surface with orbital character pro-
jection, as performed with DFT calculations using the mBJ functional.
While the Γ barrel and the bands near the M point, derived from Nb
4d3z2−r2 reveal only a weak electron-phonon coupling, the K barrels,
however, derived from Nb 4dx2−y2,xy orbitals correspond to "hot re-
gions", showing significantly larger interaction strength, and conse-

quently larger superconducting gap.

FIGURE 4.29: Electron-phonon coupling in 2H-NbS2. (a) Calculated
band dispersion along ΓK direction with orbital character projection.
(b) ARPES data of the valence band dispersion along ΓK, measured
at a photon energy hν = 30 eV, overlaid with DFT calculations for

comparison.

are significantly decreasing below BE ∼ 20 meV, it is hard to extract the dispersion
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by using curvature method in Fig. 4.30(b). For proper fitting, we start the MDC fit-
ting from the Fermi level and use the extracted parameters for the subsequent MDC
as the initial condition for the four Lorentzian functions. From this, we identify a
“kink" energy of -15 meV for the K barrels; the deviation of the bands around this
energy can also be visualised in the “curvature" plot in Fig. 4.30(b). Meanwhile the
inner bands have a change of slope around -20 meV, but this is a more subtle effect.

FIGURE 4.30: (a) Closer look at the data near EF and (b) the ‘cur-
vature’ plot of the data, highlighting kinks in the spectral function.
(c) Momentum distribution curve (MDC) fitting of the data using a

multi-lorenztian peak function.

A quantitative measure of electron-phonon coupling is the renormalisation of the
Fermi velocity, λ = (vF(bare)/vF(exp))− 1 [220]. There is some uncertainty here in
the choice of bare band, since the kF values in experiments do not match the DFT
bands, there is a procedural subtlety in the determination of the renormalization
of the Fermi velocities. In other contexts, it might be appropriate to shift the DFT
bands in energy so that the kF value matches before comparing vF, but here we sim-
ply compare with the DFT vF values without any shifting. We find a clear dichotomy
between the innermost band 1, with λ ≈ 0.51, and the outer crossings of the K barrel
with λ ≈ 2.32 for band 3 and λ ≈ 2.59 for band 4.

FIGURE 4.31: Peak widths of the four bands, showing the fast in-
crease of the bands corresponding K barrels compared to the Γ bar-
rels. A clear kink around -15 meV can be identified in the outermost

band (band 4).

Additionally, in Fig. 4.31 we show a dichotomy in the energy-dependent linewidths,
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as the broadening of the K barrels increase much faster with binding energy than
the Γ barrels. The outermost band shows the fastest rise, consistent with having the
strongest coupling, and also shows a saturation of the linewidth coinciding with the
kink energy.

Taken together, this evidence strongly suggests that in 2H-NbS2, the electron-phonon
coupling depends crucially on the orbital character of the bands, and for the ΓK dis-
persion here the λ value is up to ∼ 4-5 times larger for the section with Nb 4dx2−y2,xy
character than for the Nb 4d3z2−r2 . Our experiments are highly consistent with the
calculations of Heil et al [126], who took the electron-phonon interaction into con-
sideration and also found a significantly larger interaction strength on the sections
of the K barrel closest to the K points, correlating closely with the 4dx2−y2,xy orbital
character.

This has important implications for the superconductivity, as it gives a natural expla-
nation for the gap structure with two characteristic energy scales [122]. Presumably,
the inner Γ sheets with weaker el-ph coupling would be "cold" areas corresponding
to the smaller gap, while the straight sections of the K barrels ("hot" regions) would
develop a larger gap.

4.3 Conclusions

We investigated the electronic band structure of 2H-NbS2 and 3R-Nb(1+x)S2. In
the 2H phase, we find sharp features and a Fermi surface broadly consistent with
calculations, but our measured Fermi surface of 3R-Nb(1+x)S2 appears significantly
smaller compared to the calculation, and also compared to the 2H phase. We assign
this to a significant amount of extra charge in the 3R system due to interstitial Nb. It
is the stoichiometry, rather than the stacking sequence, that principally determines
the differences in electronic structure and physical properties between the two poly-
types. Our high resolution data on 2H-NbS2 revealed kinks in the spectral function,
but the strength of the coupling was found to be much larger for the the sections
of bands with Nb 4dx2−y2,xy character than for the Nb 4d3z2−r2 . Our measurements
provide an experimental framework for interpreting the two-gap superconductivity
and latent CDW in 2H-NbS2, while also giving insight into the absence of these in
the 3R-Nb(1+x)S2.

Recapping the results on 3R-Nb(1+x)S2, we showed that the prevalence of donor-
type interstitials leads to a shifted chemical potential, smaller Fermi surfaces and a
reduced DOS, moving the doped system away from any structural instabilities [256].
It is this difference, rather than the difference in stacking arrangement, that princi-
pally distinguishes the electronic and physical properties of the two phases.

If a stoichiometric 3R-NbS2 existed, our DFT calculations suggest it would have a
similar Fermi surface to the 2H phase, and therefore could similarly have interest-
ing properties including potential non-centrosymmetric superconductivity. Unfor-
tunately, stoichiometric 3R-NbS2 is entirely hypothetical, and the only thermody-
namic bulk phases are 3R-Nb(1+x)S2 and 2H-NbS2. However, the monolayer limit
provides a third structural form (“1H") of NbS2, and has been predicted [219] and
observed [238] to enter a CDW phase, although this may be substrate dependent
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[237], and offers an interesting playground to tune the structural and superconduct-
ing instabilities [257].
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Conclusions and Outlook

To summarize, we have demonstrated the tuning of the electronic structure of HfTe2
by potassium K dosing, through an experimental realisation of a dimensionality
crossover of the electronic band structure from a 3D bulk character of the pristine
to a 2D character of the dosed surface. The measured electronic structure after high
amount of dosing is very similar to a monolayer HfTe2, unambiguously evidencing
the intercalation of the alkali metal atoms within the van der Waals gaps. We also
showed that the valence band of HfTe2 along the out-of-plane kz momentum sup-
ports the existence of a set of topological features such as a bulk Dirac point (BDP)
and topological surface states (TSS), similar to other materials in the same space
group.

One of the advantages of dosing this semimetallic system is that, by bringing the
uppermost hole band below EF, the band overlap can be directly measured. From
Fig. 3.14(c), we estimate this to be ∼ 0.2 eV. We caution that this is a value for the
surface-dosed system, and thus the bulk value may vary slightly, but we estimate it
to be in the range 0.2-0.3 eV. A small band overlap is an interesting playground for
novel electronic states. For instance, one could imagine substituting Se onto the Te
site in order to continuously tune the band gap/overlap through zero, and it would
be interesting to see if any electronic instabilities occur, such as in the well-known
isovalent compound TiSe2 [189, 86].

In addition to the published paper on HfTe2, we have done several linear and cir-
cular dichroism measurements on HfTe2 as well, disentangling the selection rules in
this material and providing evidence that the observed CD signal is a pure conse-
quence of the final states and geometrical effects, since the orbital angular momen-
tum is quenched due to the inversion symmetry of the system. For this project, one-
step photoemission calculations are expected to be combined with our measured
data for a future publication.

Besides, we have investigated the electronic structure of the 2H and 3R polytypes
of NbS2 and evidenced that the main difference between them in term of the phys-
ical and electronic properties is intimately linked to the stoichiometry, rather than
the stacking structure. While 2H-NbS2 is stoichiometric, the 3R phase can only be
stabilised with additional Nb interstitials, resulting in an off-stoichiometry of the
form 3R-Nb1+xS2. These Nb interstitial act as electron donors, resulting in a shifted
electronic band structure into higher binding energies compared to 2H-NbS2, and
putting away the 3R phase from any instabilities. The band splitting, present in the
two phases have been measured, and its origin in each one of them has been revised
in details.

Finally, our high resolution data revealed strong kinks in the spectral function of 2H-
NbS2, evidencing the electron-phonon coupling in this system. We demonstrated
that this coupling varies strongly with the orbital character of the sheets forming the
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Fermi surface and perfectly correlates the superconducting gap values. Our findings
thus present an experimental explanation to the multi-gap nature of the supercon-
ductivity in 2H-NbS2, in a similar way to the well-known materials MgB2 and the
isostructural and isovalent NbSe2.

During our last beamtime on 2H-NbS2, we have attempted to measure the supercon-
ducting gap in the straight section of the K barrel, where the gap exhibits its largest
value in this material (0.97 meV). However, technical issues arising from the diffi-
culty to stabilize the temperature below 2 or 3K during the whole experiment and
the significantly flaky nature of the crystals make the resolution of such supercon-
ducting features very challenging. A possible solution we have been thinking of to
overcome the flaky crystal facets would be to consider nano-ARPES, which could
potentially be very helpful to resolve the superconducting gap in this case, however,
micro-focused laser ARPES would be more reasonable approach for measuring gaps.

Although absent in the bulk compound due to anharmonic effects, charge density
wave (CDW) has been lately reported in monolayer NbS2 [238]. These studies have
been performed on epitaxially grown single layers of NbS2 on graphene/6H-SiC,
where atomically resolved STM images revealed a 3 × 3 CDW, similar to the super-
structure commonly observed in bulk 2H-TMDs, except 2H-NbS2 itself [238]. There-
fore, an ARPES investigation to confirm these findings is urgently required, how-
ever, the choice of the substrate is very crucial, since in this case the weak coupling
between the graphene substrate and the sulfide film helps to preserve the intrinsic
properties of the film, while in an epitaxially grown NbS2 single-layer on Au(111)
no CDW was observed [237]. It is most likely that the interactions with the substrate
killed the CDW in the latter case, since recent first principle calculations have pre-
dicted the CDW in monolayer in NbS2 to be very fragile, and strain as weak as 5% is
sufficient to destroy it [219]. Although technically challenging to measure, it is now
within the capability of nano-ARPES to measure gaps and backfolding as signatures
of CDWs from monolayer samples, and I look forward to following progress on this.

Either for the bulk or monolayer NbS2, the evolution of these novel electronic states
as a function of strain and dosing would be very interesting to examine, as well as
3R-TMDs in general, which are still unexplored compared to other phases of this
materials family.
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