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Abstract

Nucleation is a key step in crystallization processes which is a crucial unit
operation in the manufacture and purification of products, occurring in almost all
sorts of industries including foods, pharmaceuticals, cosmetics, fine chemicals,
ceramics, metallurgy and electronics. Thus, fundamental understanding of its
nucleation kinetics is of immense importance yet it remains poorly understood
from both experimental and theoretical perspective. With these motivations, this
thesis seeks to develop innovative methods in quantifying nucleation kinetics both
in industrially-relevant agitated crystallizers and in fundamentally-oriented
microfluidic systems. Starting with agitated crystallizers, a protocol for estimating
primary nucleation was developed based on laser backscattering which involves
extrapolating the nucleation rates to zero agitation. To validate the approach, a
multiscale investigation of nucleation kinetic parameters was performed using
various techniques in L, mL, and pL scales. This sheds light into the transferability
of kinetic data for engineering purposes. To focus on the fundamental aspects of
nucleation, an approach to extract nucleation kinetic parameters from evaporative
microcrystallizers was developed, using microdroplets at pL scale. This involves
the measurement of induction time via deliquescence-efflorescence cycle, the
derivation of evaporation model to accurately determine the supersaturation at
nucleation, and the use of a modified Poisson distribution to model the stochastic
nature of nucleation and extract nucleation kinetic parameters. The combination
of these three developments have led to a successful quantification of nucleation
kinetic parameters in evaporating microdroplets (i.e; at variable supersaturation),
demonstrating a remarkable agreement between theory and experiment.

Keywords: nucleation, induction time, microfluidics, sessile microdroplets, stochastic
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Résumé

La nucléation est une étape essentielle dans le processus de cristallisation, qui est
notamment utilisé pour la fabrication et la purification de produits industriels
(pharmaceutiques, cosmétiques, de chimie fine, alimentaires, céramiques, de
métallurgie et d'électronique). Cependant, il reste encore des questions
fondamentales, notamment sur la cinétique de nucléation qui est cruciale dans ces
applications. Cette these cherche a mieux comprendre la nucléation des cristaux
par le développement de méthodes innovantes pour quantifier cette cinétique de
nucléation: dans des cristallisoirs agités a grande échelle (L, mL, pL) qui sont
industriellement pertinents, ainsi qu’a petite échelle (nL, pL) dans des systémes
microfluidiques a base de microgouttelettes qui présentent un intérét
fondamental. A 1'échelle du L, la mesure de la réflectance optique couplée a la
spectroscopie Raman in situ nous a permis de suivre 1'évolution du nombre de
particules et de la concentration de la solution. Et par I'extrapolation du décompte
des particules jusqu'a une vitesse d'agitation nulle, nous avons extrait la cinétique
de nucléation primaire. A I'échelle du mL et du pL en systemes agités, les
parameétres de la cinétique de nucléation obtenus par I'approche de distribution du
temps d'induction révelent des écarts de six a sept ordres de grandeur, par rapport
a ceux obtenus dans des volumes de 'ordre du L, ce qui les rend inexploitables a
I'échelle industrielle. Toutefois, les valeurs d'énergie interfaciale effective yefr sont
relativement cohérentes a toutes ces échelles. Tandis qu’a I'échelle du nL, en
microfluidique a base de microgouttelettes dans des capillaires, I'énergie
interfaciale effective yefr est élevée. Ceci est lié a la barriere thermodynamique
élevée pour atteindre la nucléation. Par conséquent, la sursaturation doity étre tres
élevée pour nucléer, faisant ainsi de la nucléation homogene le mécanisme
prédominant. A I'échelle du pL, la méthode microfluidique est basée sur la
génération de microgouttelettes sessiles sur une surface. Le temps de nucléation
est détecté par microscopie in situ et analyse d'images lors de cycles de
déliquescence-efflorescence, la sursaturation au moment de la nucléation est
déterminée avec précision a partir d'un modele d'évaporation que j'ai développé,
et la nature stochastique de la nucléation est analysée a l'aide d'une distribution de
Poisson modifiée. Ainsi la combinaison de ces trois développements nous a permis
de quantifier les parametres de la cinétique de nucléation dans les
microgouttelettes en évaporation, avec une cohérence entre la théorie et
'expérience.

Mot clé: nucléation, temps d’induction, microfluidique, microgouttelette sessile,
stochastique



Résumé étendu

La nucléation est une étape essentielle dans le processus de cristallisation qui est
notamment utilisé pour la fabrication et la purification de produits industriels,
comme les produits pharmaceutiques, les cosmétiques, la chimie fine,
I'alimentaire, la céramique, la métallurgie et I'électronique. Pour ces industries qui
produisent a grande échelle (plusieurs milliards d'euros), la nucléation joue un role
central. Cependant, il reste encore des questions fondamentales, notamment sur la
cinétique de nucléation, pour lesquelles nous n'avons pas encore de réponse claire.
Poussée par ces questionnements, cette these cherche a mieux comprendre la
nucléation des cristaux par le développement de méthodes innovantes pour
quantifier la cinétique de nucléation.

L'objectif de la mesure de la cinétique de nucléation est d’aider a concevoir,
optimiser et contréler les processus industriels de cristallisation. Dans ce but,
plusieurs approches sur les cristallisoirs agités ont été développées dont celles de
Nyvlt, Kubota et Sangwal. Plus tard, Nagy a combiné l'approche de Nyvlt avec
I'équation du bilan de population pour permettre la détermination simultanée des
cinétiques de nucléation et de croissance. Bien que les méthodes proposées par
Nyvlt, Kubota, Sangwal et Nagy offrent un moyen simple et rapide de caractériser
la nucléation, leurs équations sont empiriques et les parametres utilisés ne
correspondent pas a des grandeurs physiques réelles pouvant étre interprétées
théoriquement. Pour améliorer cela, Mersmann et al. ont développé un modele
assez complexe intégrant plusieurs mécanismes de nucléation. De méme,
Kashchiev, Borrisova, Hammond et Roberts ont développé leur modele KBHR, qui
présente des parametres de nucléation avec une signification physique réelle.
Cependant, ces deux modeles sont multivariables et donc complexes. De plus, ils
ont tendance a donner des valeurs physiquement impossibles, en particulier
lorsque certaines inégalités restrictives ne sont pas satisfaites. En effet, I'étude de
la cinétique de nucléation dans un cristallisoir industriel agité est difficile en raison
de l'hydrodynamique et de la présence de surfaces étrangeres (parois du
cristallisateur, agitateurs, chicanes, capteurs, sondes) dont l'influence sur la
nucléation n'est pas directement quantifiable. Ces résultats font intervenir de fagon
complexe les nucléations homogene, hétérogene et secondaire. Par conséquent, du
point de vue de l'ingénierie, I'un de mes objectifs est de développer une méthode
simple et fiable pour obtenir des parametres de nucléation clés en tenant compte
de l'influence de la nucléation primaire et de la nucléation secondaire.
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Récemment, la quantification de la cinétique de nucléation s'est orientée vers la
compréhension de ses mécanismes fondamentaux. Traditionnellement, les études
fondamentales sur la nucléation étaient principalement menées sur des
expériences vapeur-liquide. Depuis le développement des technologies
microfluidiques, la nucléation peut étre étudiée en solution dans des petits
volumes et en multipliant les expériences. Ainsi son caractere intrinsequement
stochastique a été confirmé: des échantillons identiques dans des conditions
identiques nucléent a des moments différents. Ce comportement est expliqué en
mécanique statistique par la formation du noyau qui est traitée comme un « succes
» a partir d'une série de fluctuations aléatoires, ce qui en fait un événement rare.
Par conséquent, une analyse statistique d’'un grand nombre d’expériences est
nécessaire pour élucider pleinement la cinétique de nucléation, ce qui peut étre
traitée a I'aide de technologies microfluidiques.

Avec les avancées récentes, la nucléation a également été étudiée au niveau
moléculaire via des simulations théoriques notamment par des approches de
dynamique moléculaire, métadynamique, mécanique moléculaire et Monte Carlo.
Cependant, les prédictions théoriques sont encore d'un ordre de grandeur différent
des données expérimentales. Outre les multiples idéalisations et approximations
utilisées dans les simulations, 1'écart pourrait étre en partie di au fait que les
simulations sont normalement effectuées a tres haute sursaturation. Ceci est
nécessaire pour observer un événement « rare » dans une échelle de temps de
calcul réaliste. En solution, cela est difficile a réaliser expérimentalement en grands
volumes dii a la précipitation engendrée a trés haute saturation. Heureusement, la
nucléation étant "ralentie" dans les tres petits volumes (nanolitre a femtolitre), de
tres fortes sursaturations peuvent y étre étudiées. A noter que ce «ralentissement»
ne signifie pas que la fréquence de nucléation / (nombre de germes par volume par
temps) soit réduite, mais le nombre de germes diminue avec la réduction de
volume tout en conservant J. Ainsi, en développant une approche expérimentale
fiable en microfluidique, on pourra extraire des parametres physiquement
significatifs. 1l s'agit d'une étape importante vers la réalisation d'un accord
raisonnable entre la théorie et I'expérience.

Cette thése vise donc a développer des approches innovantes pour quantifier la
cinétique de nucléation a la fois dans des cristallisoirs agités a grande échelle (L,
mlL, puL) ainsi que dans des systémes microfluidiques avec des volumes de la gamme
du pL. Les résultats obtenus a travers ces différentes méthodes sont alors
comparés afin d’atteindre une méthode de mesure du temps d'induction de la
nucléation.

vil



Le manuscrit de these comprend onze chapitres :

Le premier chapitre décrit les objectifs et le contenu de chaque chapitre. Le
deuxieme chapitre présente une étude bibliographique des concepts
fondamentaux et du contexte qui sont essentiels a la compréhension du travail
réalisé dans cette these. Cela comprend la présentation de la thermodynamique de
la nucléation et la description des techniques de mesure existantes et des modeles
mathématiques utilisés dans les études de nucléation. Le principe des systémes
microfluidiques et de 1'évaporation des microgouttes sont également expliqués.

Le troisieme chapitre présente les matériaux et les techniques utilisées dans ce
travail de thése. Comme matériaux modele, j'ai principalement utilisé 1'acide p-
amibenzoique (PABA) et le NaCl en milieu aqueux. A 1'échelle du litre, le mélange
est agité avec un agitateur magnetiqueet j'ai utilisé la mesure de la réflectance
optique couplée ala spectroscopie Raman in situ pour suivre I'évolution du nombre
de particules et de la concentration de la solution. Etant donné que le PABA s'ionise
partiellement en solution, j'ai également utilisé la mesure de la conductimétrie en
solution pour déterminer le début de la nucléation. Le temps d'induction est pris
de maniere déterministe comme l'inverse du produit du taux de nucléation par le
volume. Pour les expériences a l'échelle du mlL, j'ai utilisé une plate-forme de
cristallisation basée sur la turbidimétrie. Lorsque la formation de
cristaux/particules se produit, la transmission de la lumiere diminue ce qui
marque le début de la nucléation. Dans ces expériences, il existe un délai entre le
démarrage réel de la nucléation et le moment ou elle est détectée. Ceci est pris en
compte en ajustant un parametre dans le tracé de la distribution cumulée du temps
d'induction. Pour les expériences en microfluidique, j'ai utilisé deux
configurations : une premiere configuration qui consiste a générer des
microgouttelettes dans des capillaires transparents (échelle uL. a nL) et une
seconde configuration basée sur la génération de microgouttelettes sessiles plus
petites sur une surface de verre revétue de PMMA, immergée dans de 1'huile PDMS
(échelle nL a pL). Pour la détection de la nucléation, j'ai utilisé respectivement la
microscopie in situ et I'analyse d'images.

Les chapitres qui suivent décrivent tous les résultats obtenus au cours de la these.
Un lien entre chaque chapitre et le reste de la these est décrit brievement au début
de chaque chapitre car ces derniers sont écrits de facon a pouvoir étre
compréhensible indépendamment. Ainsi, chaque chapitre a sa propre introduction
avec étude bibliographie, sa méthodologie, sa discussion et sa conclusion.

Dans le quatrieme chapitre, je propose une méthode pour quantifier la cinétique
de nucléation primaire dans un cristallisoir agité de I'ordre du L, en utilisant une
approche de comptage de particules. Celle-ci est basée sur la technique de
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rétrodiffusion laser couplée a la spectroscopie Raman in situ. En supposant que la
vitesse de nucléation secondaire varie de maniére exponentielle avec la vitesse
d'agitation et que la nucléation primaire est peu dépendante de l'agitation, mon
approche utilise I'extrapolation du décompte des particules jusqu'a une vitesse
d'agitation nulle afin d'extraire la cinétique de nucléation primaire. L'amplitude
résultante des taux de nucléation est cohérente avec le modele KBHR développée
par Kashchiev, Borrisova, Hammond et Roberts.

Dans le chapitre 5, je compare les parametres cinétiques de nucléation obtenus
avec l'approche par comptage de particules a ceux donnés par l'approche de
distribution du temps d'induction dans des flacons agités de I'ordre du mL. Les
résultats révelent alors des écarts de six a sept ordres de grandeur. Bien que la
dynamique des fluides soient différentes dans les cristallisoirs de différentes
géométries et tailles, elle n’explique pas des écarts aussi importants. En effet, ces
écarts montrent plutoét que les taux de nucléation primaire obtenus avec ces
techniques ne peuvent pas étre utilisés pour l'interprétation des taux de nucléation

a l'échelle industrielle.

Dans le chapitre 6, je quantifie la cinétique de nucléation a travers d’autres
techniques : j'utilise la conductimétrie a 1'échelle du L et la microscopie optique a
I’échelle du pL, pour mesurer le temps d'induction. Les résultats montrent que les
méthodes basées sur le temps d'induction donnent systématiquement des valeurs
faibles de facteur cinétique pré-exponentiel (inférieures a 10° m-3s-1). Tandis que
les méthodes par comptage de particules et analyse KBHR donnent des valeurs
proches de 1011 m-3s-1, et ce quelle que soit I’échelle. Cela renforce les conclusions
du chapitre 5, sur I'inadéquation des temps d'induction mesurés dans les systéemes
agités, comme références a 1'échelle industrielle. D'autre part, toutes les méthodes
utilisées semblent donner des valeurs relativement cohérentes de 1'énergie
interfaciale effective yefr, a I'exception de 1'échelle uL. qui donne des valeurs élevées
de veft. Ainsi en dessous du pL, la barriere thermodynamique est élevée pour
atteindre la nucléation. Par conséquent, en microfluidique a base de
microgouttelettes (qui remplacent les cristallisoirs), la sursaturation doit étre tres
élevée pour nucléer, faisant ainsi de la nucléation homogene le mécanisme
prédominant. De plus, l'utilisation de ces microgouttelettes de I'ordre du nL qui
sont dispersées dans une phase continue, minimise la présence d'impuretés et de
surfaces étrangeres qui pourraient agir comme des sites de nucléation hétérogenes
(pouvant abaisser la barriere énergétique). Malheureusement, les impuretés et les
surfaces étrangeres sont inévitables dans les cristallisoirs industriels a grande
échelle. Ce chapitre souligne donc qu'une attention particuliere est nécessaire dans
I'interprétation des parametres cinétiques de nucléation acquis a partir de
différentes échelles et de différentes techniques de mesure.
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Au chapitre 7, je me concentre sur la compréhension fondamentale de la nucléation
primaire homogeéne en remplacant les cristallisoirs agités (a orientation
industrielle) par des microgouttelettes de volumes de l'ordre du pL, en
microfluidique « ouverte », J’étudie alors la cinétique de nucléation du NaCl en
solution, a l'aide d’un dispositif microfluidique développé au laboratoire. Sur ce
dispositif, la dynamique d’évaporation des microgouttelettes dans 1'huile PDMS
environnant est due a la diffusion de I'’eau. Cette dynamique d’évaporation a été
étudiée auparavant grace a une procédure d'analyse d'image basée sur1'écart type
des pixels de niveau de gris. Ainsi des oscillations de cet écart-type ont été montrés
dans le cas d’interactions entre les microgouttelettes. Pour ma part, je classifie les
microgouttelettes en fonction du nombre d'oscillations, ce qui me permet de
quantifier les interactions. Ensuite, je montre que le fait de ne pas tenir compte de
ces interactions dans l'analyse des données cinétiques peut conduire a de graves
inexactitudes dans I'estimation du parametre de nucléation. Je souligne le fait que
ces interactions ne seraient pas observables par des techniques de microscopie
traditionnelles. De plus, grace au contréle de I'humidité ambiante, je montre que
ces interactions disparaissent a faible taux d’humidité relative.

Au chapitre 8, je développe une méthode pour mesurer le temps d'induction, que
je définie de maniére appropriée dans le cas de I'évaporation des
microgouttelettes. En effet, je devrais fixer le temps zéro au moment ou la
sursaturation finale est atteinte. Cependant, la sursaturation finale évolue
continuellement avec le temps, dii a I’évaporation. Par conséquent, je fixe le temps
zéro doit au point ou la solution est saturée (et a donc la possibilité de nucléer).
Ainsi quelle que soit la concentration initiale de la solution des microgouttelettes,
le temps mis pour atteindre la nucléation a partir du temps zéro (i.e. le temps
d’induction) doit étre identique. Ainsi, dans un systéme d'évaporation, le temps
d'induction est donc la différence entre le temps mis par la microgouttelette pour
nucléer et le temps mis pour atteindre la saturation. Cependant, dans l'approche
d'analyse d'image présentée dans le chapitre précédent, le moment auquel la
microgouttelette atteint la saturation est expérimentalement inaccessible sans
supposer un modele de taux d'évaporation. Pour cela, je décris un nouveau
protocole que j'ai développé, via le cycle de déliquescence-efflorescence, pour
atteindre le temps d’induction.

Au chapitre 9, je complexifie le modele d’évaporation précédent afin d’évaluer la
sursaturation au moment de la nucléation dans la microgouttelette. Dans la
littérature, une évaporation constante est souvent supposée. Bien que cette
approximation soit raisonnable pour les gouttelettes diluées, la loi de Raoult
suggere que les gouttes concentrées devraient avoir une activité de 1'eau réduite.
De plus, les réseaux de microgouttelettes s'évaporent plus lentement que les
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microgouttelettes isolées en raison de la contribution des microgouttelettes
voisines au taux d’humidité local. Enfin, la présence d'huile de PDMS autour de la
microgouttelette et les changements de densité dus a la diffusion de I'eau dans
I’huile PDMS, devraient avoir un impact sur le taux d'évaporation. Je valide mon
nouveau modele d’évaporation avec des données expérimentales. Puis, je montre
que les différents comportements de la ligne de contact, c'est-a-dire avec un rayon
de contact constant (CCR), ou avec un angle de contact constant (CCA) ou les deux
(stick-slide (SS)), entrainent une évolution presque identique en termes de volume,
en particulier dans I'échelle de temps pertinente pour les études de nucléation. De
plus, je démontre pour la premiere fois que I'hypothese d'un taux d'évaporation
constant ainsi que la négligence des interactions diffusives entre les
microgouttelettes peuvent entrainer de graves écarts dans la mesure de la
concentration, en particulier pendant la nucléation. Avec mon modele, on peut
déterminer avec précision I'évolution temporelle de la concentration des
microgouttelettes, ce qui est important pour quantifier la cinétique de
cristallisation.

Le chapitre 10 est consacré a la détermination de la fonction de probabilité qui doit
étre utilisée pour modéliser la distribution expérimentale des temps d’induction.
Dans la littérature, cette distribution est généralement ajustée a la distribution de
Poisson, dans le cas d’expériences avec une sursaturation constante, car le taux de
nucléation effectif est invariable avec le temps. Cependant, pour la nucléation par
évaporation (qui est omniprésente dans la nature), la sursaturation évolue avec le
temps, rendant la fonction de Poisson inapplicable. Bien que d'autres distributions
empiriques telles que Weibull, Gompertz et Gumbell puissent décrire la
dépendance temporelle du taux de nucléation effectif, les parametres d'ajustement
ne contiennent pas d'informations physiques pouvant étre interprétées en théorie
classique de la nucléation (CNT). Pour résoudre ce probléme, j'explore I'utilisation
d'une distribution de Poisson modifiée compatible avec la CNT, qui consideére la
dépendance temporelle de la force motrice de nucléation. Ainsi, je démontre dans
ce chapitre, qu'en combinant la mesure du temps d'induction et le modele
d'évaporation développé dans les chapitres précédents, avec la distribution de
Poisson modifiée, on peut obtenir des parametres de cinétiques de nucléation
précis qui sont en excellent accord avec les prédictions théoriques. En utilisant le
systeme NaCl-eau, j'ai obtenu un facteur pré-exponentiel A de 9,30 x 1020 m-3s-1 et
une énergie interfaciale de 46,7 mJ/m?2 qui sont en accord de fagon remarquable
avec les valeurs expérimentales et théoriques existant dans la littérature. A notre
connaissance, il s'agit du premier travail expérimental qui a utilisé une approche
probabiliste pour mesurer 1'énergie interfaciale du NaCl dans 1'eau sans fixer la
valeur du facteur pré-exponentiel. Compte tenu des nombreuses études de
simulation sur la nucléation du NaCl, nos parametres cinétiques expérimentaux
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basés sur l'approche stochastique peuvent servir de référence supplémentaire
pour valider les prédictions théoriques. De plus, notre approche expérimentale et
notre protocole de traitement des données peuvent également étre étendus pour
étudier la nucléation d'autres sels, de cristaux biologiques et de principes actifs
pharmaceutiques d'intérét.

En résumé, dans la premiére partie de cette these j'ai développé des méthodes pour
quantifier la cinétique de nucléation dans des cristallisoirs agités qui sont
pertinents pour étre transposés industriellement. Ces résultats seront utiles aux
ingénieurs pour interpréter les données de cinétique de nucléation, pour les
processus de mise a I'échelle, de conception, de contréle et de cristallisation. La
deuxieme partie porte sur l'étude de la nucléation primaire homogene : j'ai tiré
parti des avantages de la microfluidique a base de microgouttelettes. Ces résultats
intéressent les théoriciens et les simulateurs car ils permettent de valider leurs
approches numériques. C'est une étape importante vers la compréhension
fondamentale de la nucléation et 'accord entre théorie et expérience.
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Chapter 1

Introduction

1.1 Motivation

Nucleation is one of the least-understood phenomena in material science.l-2
Despite the tremendous efforts devoted to this field, there are still several
important questions and research gaps that remain unclear. Meanwhile, nucleation
is a key step in crystallization processes which is ubiquitous in nature and is a
crucial unit operation in the manufacture and purification of products occurring in
almost all sorts of industries including foods, pharmaceuticals, cosmetics, fine
chemicals, ceramics, metallurgy and electronics.3# In these multi-billion euro
industries, nucleation plays a pivotal role.>-¢ Thus, further research on crystal
nucleation is of paramount importance. Driven by such motivations, this doctoral
thesis seeks to further understand the physics and chemistry of crystal nucleation
from both engineering and scientific perspective, with a particular focus on the
development of innovative methods in quantifying nucleation kinetics.

1.2 Background and Objective

Traditionally, the goal of measuring nucleation kinetics is to design, optimize, and
control industrial crystallization processes. With this aim, several approaches on
agitated crystallizers have been developed including those of Nyvlt?, Kubota8, and
Sangwal.? Later on, Nagy? combined Nyvlt's approach with the population balance
equation to allow simultaneous determination of nucleation and growth kinetics.
Although the methods proposed by Nyvlt, Kubota, Sangwal and Nagy offer fast and
simple ways of characterizing nucleation, their parameters are rather empirical
which does not correspond to an actual physical quantity that can be interpreted
theoretically. To improve on this, Mersmann et al.11 developed a rather complex
model describing various nucleation mechanisms. Similarly, Kashchiev, Borrisova,
Hammond and Roberts developed their KBHR12 model which attempts to predict
nucleation parameters with actual physical meanings. However, the complex
models require multiple parameters and have tendencies to give physically
impossible values especially when some restrictive inequalities are not satisfied.
Indeed, studying nucleation kinetics in agitated industrial crystallizer is
challenging due to the interplay of hydrodynamics and the presence of foreign
surfaces (crystallizer walls, impellers, baffles, sensors, probes) whose influence on
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nucleation is not directly quantifiable. This results in the complex coupling of
homogeneous primary, heterogeneous primary, and secondary nucleation.
Therefore, from an engineering perspective, one of my objectives is to develop a
simple and yet reliable method to obtain key nucleation parameters considering
the influence of both primary and secondary nucleation.

Recently, the quantification of nucleation kinetics has been geared towards
understanding its fundamental mechanisms. In the past, fundamental studies on
nucleation were primarily carried out mainly on vapor to liquid experiments?3.
Fortunately, the development of microfluidic technologies has enabled studies of
nucleation in solutions, which has been observed to be intrinsically stochastic. This
means that identical samples under identical conditions will nucleate at different
times. This behavior has its roots in statistical mechanics where the formation of
nucleus is treated as a “success” from a series of random fluctuations, thereby
making it a “rare” event.l* Consequently, statistical analysis of multiple
experiments is needed to fully elucidate the nucleation kinetics which can be
addressed using microfluidic technologies.

With the recent advances in computing power, nucleation has also been studied in
molecular level via theoretical simulations notably by molecular dynamics,!5
metadynamics,1®¢ and Monte Carlo approaches.1” However, theoretical predictions
are still order of magnitudes different from experimental data.! Apart from the
multiple idealizations and approximations used in simulations, the discrepancy
could be partly because simulations are normally carried out at very high
supersaturation. This is needed in order to observe a “rare” event within a realistic
computational time scale.l® In bulk solution, this is difficult to achieve
experimentally (with a risk of premature precipitation) but fortunately, very small
volumes (nanoliter to femtoliter) can withstand very high supersaturations. This is
because nucleation time is inversely proportional to the system volumel® and the
formation of clusters in such volume range has the possibility to deplete the
supersaturation level.20 Thus, another goal is to develop a reliable experimental
approach in microfluidics that allows extraction of physically meaningful
parameters. This is an important step towards achieving reasonable agreement
between theory and experiment.

In summary, this thesis aims to develop innovative approaches for quantifying
nucleation kinetics both in large-scale agitated crystallizers as well as in picoliter
range microfluidic systems.



1.3 Structure of the Thesis

Following this introductory chapter, Chapter 2 presents an extensive literature
review of fundamental concepts and background that are essential in
understanding the rest of the thesis. This includes the discussion of the
thermodynamics of nucleation and the description of existing measurement
techniques and mathematical models used in nucleation studies. I also include the
principles of microfluidic systems and microdroplet evaporation. Chapter 3
presents a general description of the materials and techniques used in this
research project.

The succeeding chapters are my original research outputs. Each chapter is written
in a way that it can stand independently; thus, each chapter has its own set of
introduction with literature review, methodology, discussion, and conclusion. For
a smooth transition between chapters, a brief description is written at the
beginning which explains how each chapter relates to the rest of the thesis.

In Chapter 4, [ propose a method to quantify primary nucleation kinetics in
agitated crystallizers using particle-count approach. This is based on a laser
backscattering technique coupled with in situ Raman spectroscopy. Under the
assumption that the secondary nucleation rate varies exponentially with agitation
rate and that primary nucleation is not severely affected by agitation, my approach
involves extrapolation of the particle counts down to zero agitation speed in order
to extract the primary nucleation kinetics. The resulting magnitude of nucleation
rates are consistent with the KBHR model.

In Chapter 5, [ compare the nucleation kinetic parameters obtained from the
induction time distribution approach of stirred mL-vials against that of the
particle-count approach. Results reveal discrepancies of six to seven orders of
magnitude. Although differences in fluid dynamics due to agitation and crystallizer
geometry may have an effect, this tremendous discrepancy provides strong
evidence that primary nucleation rates obtained from such technique may not be
used for interpretation of nucleation rates in industrial scale applications.

In Chapter 6, I quantify the nucleation kinetics using additional experiments
namely, liter-scale conductometry and microliter-scale microscopy which both
measure induction time. The results show that the pre-exponential factor A4 is
highly dependent on the measurement technique and model assumptions while
the effective interfacial energy between crystal and solution yef is dependent on
the supersaturation level and system volume. This chapter highlights that careful
attention is needed in interpreting nucleation kinetic parameters acquired from
different scales and measurement techniques.
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In Chapter 7, | make a transition from the industrially oriented agitated
crystallizer to a more fundamental study of homogeneous primary nucleation in
small volumes. In this chapter, I study the nucleation kinetics of aqueous NaCl using
our in-house developed microfluidic setup. Previously, it has been shown that an
image analysis procedure based on standard deviation of the gray level pixels can
be used to track the microdroplet dynamics and detect diffusive interactions which
is marked by oscillations.?21 However, in the context of extracting nucleation
parameters from such experiment, there is a need to quantify the influence of such
interactions. To do this, I improved the numerical approach for automated
detection and characterization of the interactions which allowed the classification
of microdroplets as a function of the number of oscillations. Then, I show that
failure to account for these interactions in the analysis of kinetic data can lead to
severe inaccuracies in the estimated nucleation parameter. I highlight the fact that
these interactions would be otherwise unobservable using traditional microscopy
techniques. Moreover, with the help of our in-house developed humidity regulation
module, [ show that diffusion interactions disappear at low relative humidity.

In Chapter 8, I develop a novel approach to quantify nucleation kinetics in
evaporating arrays of sessile microdroplets using aqueous NaCl as a model system.
[ demonstrate that by using a deliquescence-efflorescence cycle coupled with the
analysis of the gray-level pixel standard deviation of the microdroplet image, one
can (1) ascertain the time at which the microdroplet is saturated (2) measure the
induction time without assuming a specific value of the evaporation rate.
Furthermore, I show that the measurements are reproducible by performing
statistical tests.

In Chapter 9, I derive an evaporation model for droplets with dissolved solute
submerged in a thin layer of oil. This model is needed in order to accurately
determine the droplet concentration at any given time. The model accounts for the
additional complexity due to the variable diffusion distance due to the presence of
oil, the diffusive interactions due to the presence of neighboring droplets, the
density change as concentration increases and the water activity change as a
function of concentration. By comparing the model predictions to experimental
data, I show that different contact-line behaviors, that is, constant contact radius
(CCR), constant contact angle, (CCA), or stick-slide (SS) result in almost identical
evolution of droplet volume especially within the time scale relevant to
crystallization studies. Moreover, I demonstrate for the first time that assuming a
constant evaporation rate as well as neglecting the diffusive interactions between
droplets can lead to severe discrepancies in the measurement of droplet
concentration particularly during nucleation. With my model, one can accurately
determine the time evolution of droplet concentration which is important in
quantifying crystallization kinetics.



In Chapter 10, [ show that by combining a modified Poisson distribution analysis
together with an accurate evaporation model, one can obtain reliable nucleation
kinetic parameters from experiments with increasing supersaturation with time.
Using the NaCl-water system, [ obtained a pre-exponential factor 4 of 9.30x1029m-
3s-1and interfacial energy between crystal and solution y of 46.7 mJ/m?2 which are
in remarkable agreement with existing experimental and theoretical values.
Interesting confinement effects on nucleation is also observed and analyzed. This
is in support of the previous findings20. 22-23 that at very small volume, the
formation of the pre-critical cluster depletes the effective supersaturation level of
its surrounding, thereby allowing the system to withstand much higher
supersaturation. Given the numerous simulation studies on NaCl nucleation, our
experimental kinetic parameters based on a stochastic approach can serve as an
additional benchmark in validating theoretical predictions. Moreover, this
experimental approach and data-treatment protocol can also be extended to study
the nucleation of other salts, biological, and pharmaceutical crystals of interest.

Finally in Chapter 11, [ summarize the key findings in this thesis. Building on these
results, I then discuss my perspectives and outlook for future research.



Chapter 2

Literature Review

2.1 Fundamentals of Crystallization

Solution crystallization is referred to as a phase transition in which a
crystalline product is obtained from a solution.?* Solution thermodynamics
dictates the maximum amount of solute that can be dissolved in a fixed amount of
solvent. Upon reaching this maximum value, the solution is said to be saturated and
the amount of solute required to create a saturated solution at a given condition is
called the solubility,2> which is formally defined as the concentration at which the
solid solute and liquid solution are at equilibrium.# The solubility of solute in
solvent can be modeled as a function of temperature by the van’t Hoff equation

In(x/y/") = ——L= (— — —) (2.1)

where xl-liq is the mole fraction solubility in the liquid phase, yl.liq is the activity
coefficient, AHfus is the latent heat of fusion, Tm is the melting point, T'is the absolute
temperature, and R is the universal gas constant.26

The different regions of crystallization phase diagram are depicted in Figure 2.1.
The area below the solubility curve is the undersaturated region where crystals
cannot exist in equilibrium,?7 while the area between the solubility curve and the
metastable limit curve is the metastable zone (MSZW).24 Although the metastable
region is above the solubility, the driving force is not sufficient to allow
spontaneous nucleation to occur although crystal growth may take place.* At a
supersaturation higher than the metastable zone limit is the region where primary
nucleation can occur spontaneously.?”

Before crystals can develop, stable nano-sized particles called nuclei must exist in
the solution that act as centers of the crystallization.# The birth of these nuclei from
solution is called nucleation which proceeds to relieve the supersaturation towards
equilibrium.24.27
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Figure 2.1 Typical phase diagram of crystallization process showing the solubility
curve (blue line) and metastable zone limit (green dotted line).

2.1.1 Mechanisms of Nucleation

Nucleation may occur in various mechanisms which can be divided into two main
categories - primary and secondary nucleation as illustrated in Figure 2.2. Primary
nucleation occurs in the system that does not contain any precursor crystal. This
can be further classified into (1) homogeneous nucleation in solutions if it is not
influenced by impurities (higher free energy barrier) and (2) heterogenous
nucleation onto a surface if it occurs due to presence of foreign impurities which
lowers the energy barrier.# 28 On the other hand, secondary nucleation occurs due
to the presence of pre-existing crystals of the same phase that proceeds in various
mechanisms such as breeding, fluid-shearing, breakage, and attrition.29-30
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Figure 2.2 Schematic illustration of the mechanisms of nucleation. The blue
spheres and prisms correspond to the monomer and crystal respectively. The
orange plate corresponds to any foreign surface that is not the nucleating crystal.

In nucleation, the fundamental driving force is the difference in chemical potential
of the liquid phase u. and of the bulk crystals pc. This chemical potential Ay is the
related to the supersaturation ratio S as 4

2.2
Ap =y, —puc =kTInS (2:2)

where S is the ratio of activities (actual vs equilibrium). The activity coefficient of
the solute in the supersaturated solution is very close to the activity coefficient of
the solute in the saturated solution, so the ratio of the activity coefficients is equal
to 1. As a result, the supersaturation ratio can be approximated as the solute
concentration c divided by the solubility cs.



2.1.2 Classical Nucleation Theory

Classical nucleation theory (CNT) is the most common theoretical model used to
describe nucleation,? developed by Volmer and Weber,31 Becker and Doring32, and
Frenkel.33 In this section, I will discuss how CNT applies to both homogeneous and
heterogeneous nucleation.

2.1.2.1 Homogeneous Nucleation

According to CNT, there are two competing energy terms in the formation of nuclei,
the volume free energy AGv and the surface free energy AGa. The volume free
energy AGy corresponds to the stability gained by the cluster as it aggregates while
the surface free energy AGa corresponds to the energy penalty for creating a new
surface. The typical free diagram of nucleation in the framework of CNT is
illustrated in Figure 2.3.

N

surface free energy, AG,

: N

* -

r cluster radius, r
AG(r)

volume free energy, AG,

AG

Figure 2.3 Free energy diagram of nucleation as a function of cluster radius r.

CNT postulates that the change in free energy for the formation of new phase is
the sum of AGvand AGa. Assuming a spherical cluster, this is mathematically written
as

4
AG = AGy + AG, = —§7Tr3psAu + 4nrly (2.3)

Where r is the cluster radius, 4u is the difference in chemical potential between
solid and liquid, ps is the number density of solid (# of molecules or formula units
per volume) and vy is the interfacial energy between crystal and solution.
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With these two energy terms having opposite signs, there comes a point where the
total free energy reaches a maximum, AG* and this corresponds to the energy
barrier for the formation of nuclei (analogous to activation energy). Therefore, the
nucleation rate (), defined as the number of critical nuclei formed per unit time
and volume of the bulk solution, can be expressed in terms of the kinetic pre-
exponential factor 4, the critical Gibb’s free energy AG* as,

J=Aexp (_ﬁTG ) (2.4)

with k being the Boltzmann constant, and T is absolute temperature.* To find the
critical radius r* we can take the derivative of equation 2.4 with respect to r and
then equate to zero.

dAG 2y
—— = —4n(r*)?p,Au+ 8nr*'y =0 = r* = —
Ps Apps

= (2.5)

From equation 2.3 and 2.5, the expression for critical Gibbs free energy for the
critical nucleus can be written as
4
AG* = ?)/(r*)2 (2.6)

Combining equations, (2.2), (2.4), (2.5), and (2.6), the nucleation rate can be
expressed in terms of supersaturation as

—16my3 l

2.7
3p2(kT)3In%S (2.7)

]=Aexpl

At constant temperature, the variables y, ps, and T remain constant, thus we can
combine them as a thermodynamic parameter B and the CNT equation can be
rewritten in a simple form as

B
In2 S

—16my3
3p3(kT)?

] where B = (2.8)

]=Aexp[—

An important implication of CNT is that the rate of nucleation is governed by three
primary variables24 namely temperature T, supersaturation S, and interfacial
surface tension y between the nuclei and the solution. The pre-exponential factor
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A is related to the Zeldovich factor (correction factor to account for the critical
clusters that do not grow to large crystals), attachment frequency f* (related to the
diffusivity of the monomers to the cluster), and the concentration of nucleation
sites Co (approximately equal to ps for homogeneous nucleation).34

The relationship between the pre-exponential factor A, Zeldovich factor z
attachment frequency f* and concentration of nucleation sites Co can be written as

A=zf*C, (2.9)

2.1.2.2 Heterogeneous Nucleation

In the presence of foreign substrate or impurities, the nucleating cluster can form
onto the surface through a process known as heterogeneous nucleation as
illustrated in Figure 2.4.

liquid (/)
7/01

cluster (c)

Vsl 0 Vs
< >

substrate (s)

Figure 2.4 Schematic ilustration of the static equilibrium of three interfacial
energies ysl (substrate-liquid), ysc(substrate-cluster), and y« (cluster-liquid) which
are balanced at a contact angle 8 between the nucleating phase and the substrate.34

This phenomenon can be incorporated to the classical nucleation theory equation
by multiplying the critical Gibb’s free energy AG* by a factor @ (varies between 0

to 1) to obtain the effective energy barrier AG ¢ as
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The factor @ is a function of the contact angle 6 of the nucleating cluster to the
foreign substrate (Figure 2.4) according to

1
o =Z(2+cost9)(1—c059)2 <1 (2.11)

The value of 6 is dependent on the interfacial energies between the substrate and
liquid ysl, the substrate and cluster ysc, and the cluster and liquid phase yaaccording
to Young’s equation34 which can be written as

Ys1 = Yes + Ve cosO (2.12)

In practice, heterogeneous nucleation is almost inevitable3> so what we generally
extract from nucleation rate measurements is the effective interfacial energy yesr
instead of the homogeneous interfacial energy y (between crystal and solution).
Since @ varies within 0 to 1, it follows that the effective interfacial yesf is bounded
as

0<Ver <Yy (2.13)

Due to the lowering of energy barrier, heterogeneous nucleation is generally
favored at lower supersaturation while homogeneous nucleation is favored at
higher supersaturation.3¢

2.1.3 Two-step Nucleation Theory (2-SNT)

As the name implies, the 2-SNT theory has two intermediate states (thus, two
energy barriers). The first step is the formation of a stable dense liquid and
metastable clusters followed by the second step which is the formation of the solid
structured cluster. With this different energetic pathway, the resulting
mathematical expression for the nucleation rate may differ and the equation can
be found elsewhere3’. In summary, it postulates an exponential dependence of
nucleation rate with respect to supersaturation until a certain critical
supersaturation, after which, the nucleation rate either decreases or stabilizes.
Although this theory can rationalize the behavior of proteins, the model has more
parameters. Consequently, CNT is still the model of choice for nucleation studies in
small organic molecules due to its simplicity.
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2.2 Nucleation Kinetics: Approaches on Data Acquisition
and Treatment

2.2.1 Deterministic Approach

These methods treat nucleation as a deterministic phenomenon, and thus do not
employ probability distribution functions to extract nucleation kinetic data.

2.2.1.1 Nyvlit's Model

Nyvlt's approach allows for estimation of primary nucleation rates by measuring
the metastable zone width (maximum undercooling) at different cooling rates.
Nyvlt model assumes a power-law relationship between the mass basis nucleation
rate and the maximum concentration difference (Acmax).

] =km(co— )™ = ki (ACia)™ (2.14)

The second assumption is that the mass nucleation rate is related to the variation
of solubility with temperature and the cooling rate.

- ()@

Then, assuming a linear relationship between solubility and temperature, the
following approximation can be made

AChax  dcg

AT =T (2.16)
Combining equations (2.14), (2.15), and (2.15), we get
de\1"  /dcs\ (AT
J = ko)™ =l 310 ()| = () (3) @17
Solving for the cooling rate AT/At
AT des\™
(3) =tn(Gr)  @Tme (2:19)
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Taking the logarithm of both sides, the plot of In(AT/At) against In(ATmax) would
be a straight line whose slope and intercept yields the nucleation order m and rate
constant km can be obtained. The values of km and m can then be used to calculate
the nucleation rate J at a given supersaturation.

dcg

In (%) =Ink,+(m—-1)In (ﬁ) + mIn(ATpqy) (2.19)

2.2.1.2 Kubota’s Model

Kubota’s approach is similar to that of Nyvilt except that Kubota relates the
nucleation rate to the change in number density (Nm/V) instead of using a mass-
based nucleation rate. Moreover, while Nyvit's model interprets MSZW
measurements, Kubota’s model also allows for interpretation of both MSZW and
induction time.

In this model, an empirical power-law relationship between nucleation rate and
undercooling is assumed

] = k,(4T)" (2.20)

Then, the number density Nm/V at time tm can be written as

N7m= fond(g) = Otm] dt (2.21)

where Nm is the accumulated number N of grown primary nuclei and V is the
working volume of the crystallizer. Assuming a constant cooling rate R = d(AT)/dt,
we can integrate equation (2.21) as

N Tmax dAT\  ky(ATpa)™ !
m f kn(AT)”( ): n(ATmax) (2.22)
0

R R(n+1)
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Rewriting equation (2.22) in terms of the cooling rate R and taking the logarithm
of both sides

In(R) =In + (n+ 1) In(4T,.y) (2.23)

[N (n+ 1)]

Thus, plotting In R against In (ATmax) yields the nucleation order n and rate
constant k» from the slope and intercept respectively.

Kubota defined the induction time tind as the time needed for the number density
(Nm/V)to reach a certain threshold for detection.

N tind tind

== Jdt = k, (AT)"dt (2.24)
4 0 0
Since the experiment is isothermal, AT is constant with respect to time, so

integrating equation (2.24) yields the relationship between induction time tind and
undercooling AT as

tind = (liv V) @n" (2.25)

Thus plotting In(tind) against In(AT) yields the nucleation order n and the rate
constant k» from the slope and intercept respectively. From the values of n and kn,
the nucleation rate J can then be calculated.

2.2.1.3 Kashchiev-Borissova—Hammond-Roberts (KBHR) Model

This model postulates two types of nucleation, instantaneous nucleation (IN, all
nuclei are generated at the same time) and progressive nucleation (PN, nuclei are
generated progressively over time). The model also accounts for the detection limit
of the instrument using the dimensionless parameter adet defined as the fraction of
the minimum volume of detectable crystals to the total volume. The complete
derivation is rather complex and has been detailed in the work of Camacho et al38.
Briefly, the expression for nucleation rate is

AT, 16my3

b
_ _ _ ol oMV 2.26
J = Aexp [ a2 ] where u T, b 3KT p2E? (2.26)

where A is the pre-exponential factor, b is the dimensionless thermodynamic
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parameter containing the molecular latent heat of crystallization term &, AT¢ is the
undercooling, Te is the equilibrium temperature, y is the interfacial energy between
crystal and solution, ps is the inverse of molecular volume (number density).

2.2.1.4 Double-Pulse Technique

This method enables direct measurement of the steady-state nucleation rate by
decoupling the nucleation and growth processes of crystallization. Its principle is
illustrated in Figure 2.5 for systems where solubility increases with temperature.
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Figure 2.5 Principle of double pulse technique (Adapted from Revalor et. al.3?)

Initially, a supersaturated solution is created by cooling the system to a
temperature below the metastable zone limit 77, then the temperature is kept
constant for a certain period At to allow nucleation to occur. Then, the system is
heated (or cooled in the case of systems with reverse solubility, i.e. exothermic
dissolution) to a temperature within the metastable zone where the nuclei
generated are grown to detectable size. Since no spontaneous nucleation can occur
in the metastable zone, the steady-state nucleation rate corresponds to the slope
of the number of crystals AN generated (counted via optical microscopy) with
respect to the time elapsed in the nucleation pulse At.

AN
/= a
However, this method has few limitations as it would tend to systematically

underestimate the nucleation rate4?. This is because the required critical size
16
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generally increases with temperature. Given that the critical size at T2 is greater
than that of 77, some of the nuclei that just reached critical size at T1 could dissolve
at Tz.

2.2.2 Stochastic Approach

These methods use probability distribution functions to treat nucleation data.
There are different methods used to acquire such data, either via constant
supersaturation or via varying supersaturation experiments. Constant
supersaturation experiments are usually performed either via crash-cooling*! or
rapid anti-solvent addition.#2-43 When the desired supersaturation is achieved, the
temperature and concentration is held constant and then the induction time is
measured. Induction time is generally the “waiting time” for a supersaturated
solution to nucleate. On the other hand, varying supersaturation experiments can
be done either via slow cooling (to measure metastable zone width at different
cooling rates)## or via isothermal evaporative crystallization (to measure induction
time).45

Since nucleation is stochastic, identical samples at identical conditions will have
different induction times or metastable zone widths. Thus, numerous independent
experiments are needed to obtain representative values of nucleation parameters.
In data analysis, the cumulative probability of nucleation P(t) is normally plotted
against time. P(t) is simply the fraction of the samples that have nucleated after
time t and then a probability distribution function (PDF) is used to fit the data.
However, one important question is what mathematical function we should use to
fit these data. In this section, I will discuss the different types of distribution
functions used in nucleation studies.

2.2.2.1 Poisson Distribution

Nucleation can be interpreted as a “rare success” from a series of random
fluctuations made by the system to overcome the energy barrier.

From the probability theory, if the probability of success p remains constant with
time and nq is the number of successive independent attempts to nucleate, then the
probability of forming k nucleus at a given time interval is given by the binomial
distribution written as
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n
Py = (L -k

k! (ng, — k) (2.28)
The property of binomial distribution also suggests that the mean number of
success N is the product of the number of attempts n, and the probability of
success p, written as

N =nep (2.29)

However, the system makes a lot of attempts, and each attempt has a low
probability of success. Thus, if we take the limit of n, = o and p — 0 while
keeping the product n,p constant, the binomial distribution reduces to a Poisson
distribution#6, that is,

_ . Ng k —k _ (nqp)"* exp(—nqp)
P,= lim ——pfA—-p)~ k= " (2.30)

ngoo, o0 k! (ng — k)! ¥

Combining equations (2.29) and (2.30), the probability of forming k nuclei in a time
interval is described by

N¥ exp(—N)
Pe=——0r— (2.31)

where N is the average number of nuclei. Consequently, the probability that the
onset of nucleation will be detected at a certain time interval corresponds to the
probability that at least one nucleus is formed which can be expressed as

N

Nk -N
Plz1)=) exzf!( ) (2.32)

i=1

However, notice that the probability of forming at least one nuclei is just the
complement of the probability that no nuclei will form. Applying this mathematical
concept, equation (2.32) can be simplified as

P(k21)=1-P(k=0)=P(k=21)=1—¢" (2.33)
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In turn, the average number of nuclei N can be determined as

N =Jvat (2.34)

where | is the nucleation rate, i.e. the number of nuclei that appears per unit
solution volume per unit time (#/m3s), V is the solution volume and At is the time
interval. This expression relates the probabilistic notion of nucleation to the
deterministic classical nucleation theory.

Meanwhile, the formed nuclei must grow to detectable sizes before they can be
observed experimentally by measuring equipment which causes a delay in
detection called growth time ¢t;. Incorporating this lag time, the probability of
detecting crystals at a time t can be expressed as

P(t) =1 —exp[—/(t —t,)] (2.35)

The cumulative probability distribution described by equation 2.31 can be
determined by measuring induction times under equal conditions for a sufficient
number of isolated experiments which can be written as

M*(t)
M (2.36)

P(t) =

where M*(t) is the number of isolated experiments that nucleated at a time less
than or equal to time t and M is the total number of experiments. Thus, the value of
the nucleation rate J by the curve fitting of P(t) against induction time.

2.2.2.2 Distributions for Non-Constant Nucleation Rates

For systems where the effective nucleation rate evolves with time, the Poisson
function would not be applicable since it assumes that the probability of nucleation
stays constant. For systems with non-steady nucleation rate, other probability
distribution are used. To understand these distributions, we will discuss the
concept of an effective nucleation rate h(t) which is related to the cumulative
probability function P(t) as

dP(t)
7 = hOP® 2.37)
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By analogy, h(t) is also known as the hazard function which corresponds to the
failure rate in the field of survival data analysis.#! If h(t) does not change with time,
it leads to a simple exponential cumulative probability function which is
mathematically equivalent to the Poisson distribution.

2.2.2.2.1 Gompertz Distribution

If the effective nucleation rate h(t) increases exponentially with time at rate of 4
from an initial rate of Ry, that is, h(t) = Ryexp (At), then it would result in a
Gompertz distribution written as

R
P(t) = exp 70(1 — exp(At)) (2.38)

If A > 0, the nucleation rate increases exponentially with time and if A < 0, the rate
exponentially decreases.

2.2.2.2.2 Weibull Distribution

The Weibull distribution containing two parameters can be written as
t\ P
P(t) = exp l— (;) l (2.39)

where T is a parameter related to the median nucleation time tmed as

T = tpeq(In2)1/P (2.40)

If B > 1, the effective nucleation rate increases monotonically with time. Likewise,
the rate decreases if f < 1.
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2.3 Droplet-based Microfluidics in Crystallization
Studies

Microfluidics is a system that allows precise manipulation of fluids that are
spatially confined in a channel with dimensions on the scale of micrometers. The
main advantages of droplet-based microfluidics in crystallization studies are as
follows:

1) Large numbers of simultaneous independent experiments under identical
conditions can be performed using very small quantities of material. This
allows for high-throughput screening and optimization of crystallization
conditions as well as investigating the stochastic nature of nucleation.

2) Itoffers excellent control of heat and mass transfer due to its high surface-
to-volume ratio and miniature scale, allowing rapid mixing and fast
temperature control.

3) Facile integration of different modules such as online microscopes,
spectrometers, diffractometers, and other sensors or external fields. As
the appearance of the first nucleus is quickly detectable in microscale, it
avoids the detection issues that are present in large-scale experiments
where the detection limits of the instrument is taken as an additional
parameter.

Given these benefits, microfluidic technology has become an attractive tool and has
been extensively used in numerous studies.4’-4° However, conventional setups
have some drawbacks.

1) Microfluidic chips generally require sophisticated and expensive
microfabrication technologies such as soft lithography, stereolithography,
or high-resolution 3D printing.50

2) Conventional chips are made of silicone, hydrogels, elastomers, or
polydimethylsiloxane (PDMS) which all have poor solvent compatibility.
PDMS devices also suffer from droplet evaporation due to its
permeability.51

3) The need for surfactants which facilitates the formation of an interface and
thus stabilizes the emulsion while minimizing the risks of coalescence of
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the drops. Unfortunately, surfactants themselves could influence the
crystallization behavior.>2

4) The risk of clogging due to precipitates adhering on the channel wall
which can obstruct the flow and increase the pressure drop.*”

2.3.1 Principle of Droplet Generation in Microfluidics

The generation of discrete droplets which could serve as independent crystallizers
is crucial in microfluidic experiments. Here, we will focus on droplet-based
microfluidics based on the generation of monodispersed drops by mixing two
immiscible liquids. These drops are isolated from each other by a continuous phase
and can thus be considered as a closed system without contact with the outside
and therefore can serve as real independent nanocrystallisers. A large number of
drops can then be generated to allow the repetition of the experiments and to carry
out statistical studies, which is particularly important in the study of nucleation as
it is inherently a stochastic process. Ideally, each droplet must be of the same
volume (monodispersed), does not coalesce (stable), and equally spaced between
each other. To achieve these, it is important to understand the physical principles
governing the droplet formation in microfluidics.

2.3.1.1 Relevant Dimensionless Numbers

Although the physical laws of fluid mechanics are the same on a microscopic scale
and on a large scale, some macroscopically negligible phenomena become
preponderant at the microscopic scale, such as the capillarity force, while others
like gravity become negligible. Dimensionless numbers are useful in analyzing the
dominating or negligible forces in the system such as viscous forces, inertial forces,
gravitational forces, and interfacial forces.

1. Bond Number This corresponds to the ratio of gravitational to interfacial
forces

ApgD?
0=

- (2.41)

where Ap is the density difference of the fluids, g is the acceleration due to
gravity, D is the hydrodynamic diameter, o is the surface tension. The Bond
number can be used to assess whether gravitational forces are insignificant
(Bo<<1).
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2. Capillary Number This describes the ratio of viscous forces to interfacial
surface tension forces

Ca=— (2.42)

where p is the dynamic viscosity of the continuous phase, o is the surface
tension, U is the average velocity of the two fluids, i.e. if qc and qp are the
volumetric of the two fluids flowing in a channel with a cross section 4, then
U = (qc+qp)/A. In terms of droplet velocity v and interfacial tension of the
fluid pair ycp, the expression for Ca becomes
Ca = HcVc
Ycp

(2.43)

3. Reynolds Number This describes the ratio of inertial forces to viscous
forces

ke =—-— (2.44)

Where p is the density, U is the average velocity of the two fluids, D is the
characteristic hydrodynamic diameter. Reynolds number characterizes the
flow pattern as laminar (Re < 1000) or turbulent (Re > 2100).

4. Weber Number This corresponds to the ratio of inertial forces to
interfacial forces and is defined as the product of Capillary number and
Reynolds number.

pU?D
We = Ca X Re =

(2.45)

The Weber number can be used to assess whether inertial forces are
insignificant (We << 1).
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5. Peclet Number This is the ratio of convective mass transfer to diffusive
mass transfer>3.53. If Pe << 1, the diffusion rate of the solute is fast enough
to avoid a considerable enrichment at the receding surface and thus the
system maintains a homogeneous composition. In evaporating
microdroplets, this can be expressed mathematically as

1dv

- 2.46
T A (2:46)
Pe — 2Rk 2 47

Where k is the evaporation flux (volume loss dV/dt per unit area A), R is the
droplet radius and Di is the diffusion coefficient of the solute in the droplet.

2.3.1.2 Droplet Generation Design in Microfluidics

There are three common methods of generating droplets namely: co-flow, flow-
focusing and cross-flow as illustrated in Figure 2.6.

e \\“_' S— L\‘ . -
j S "-' i 2
co-flow flow-focusing cross-flow

Figure 2.6 Different designs for droplet generation in microfluidics 54

1. Co-flow In this system, the dispersed phase channel is inserted co-axially
with the continuous phase channel, resulting in both dispersed phase and
continuous phase fluids flowing in parallel through the channels.

2. Flow-focusing Here the dispersed phase flow is pinched perpendicularly
by two continuous phase flows, which leads to the rupture of the dispersed

phase in drops parallel to its direction of injection
24



3. Cross-flow This system uses a T-junction wherein the continuous phase
crosses the dispersed phase flow perpendicularly, leading to the formation
of drops perpendicular to the dispersed phase entry.

2.3.1.3 Droplet Formation in T-junction

While there are different design structures for droplet generation, we will focus our
attention on cross-flow system using T-junction. This is perhaps the most popular
method because T-junctions are commercially available and can easily be
integrated in plug-and-play setups. In T-junctions, two immiscible fluids meet at a
90° angle resulting in the formation of droplets. The stages of droplet formation
are illustrated in Figure 2.7.

<4—— Flow <4— Flow

(A)

Figure 2.7 Stages of droplet formation in a T-junction in squeezing regime. (A) At
t = 0 s, the droplet begins filling the channel. (B) Att= 0.2 s, the droplet blocks the
cross section. (C) At t = 0.3 s, the droplet "neck" gets squeezed. (D) Att= 0.5 s, the
interfacial tension could not support the thinning of the "neck” resulting in the
detachment of the droplet.55

Depending on the value of Capillary number Ca, different flow regimes can occur
as illustrated in Figure 2.8.

25



.,.i_
‘E ob
== o cc

Figure 2.8 Three regimes of droplet formation in T-junctions (a) squeezing (b)
dripping (c) jetting. Adapted from Zhu et. al.>¢

1. Squeezingregime corresponds to a drop that fills the outlet channel before
detaching due to the internal pressure drop (Ca << 0.1). The length of the
drop is greater than the diameter of the outlet channel which gives it the
name of "plug" (Figure 2.8a).

2. Dripping regime is characterized by a drop that does not fill the channel
exit before detaching due to the shear stress of the continuous phase. Its
size is therefore less than that of the channel width. This regime is observed
at Ca> 0.01 (Figure 2.8b).

3. Jetting regime corresponds to a flow of the phase dispersed under shape
of a wire or a jet. When the interfacial tension is low, the jet is destabilized
to form drops which are transported by the flow of the continuous phase.
This is observed at very high Ca values (Figure 2.8c).

4. Transitional regime is the intermediate regime between squeezing and
jetting. The detachment of the drops is controlled both by the pressure drop
and shear stress. Even though most of the authors do not describe this
transient regime, a critical value of Ca ~ 0.015 can be defined.

2.3.2 Recent Advances in Microfluidics Crystallization

There has been tremendous progress in the use of microfluidics in crystallization
as reviewed by Leng#7, Shi>0, and Candoni.>” Indeed, the choice of materials in the
fabrication of microfluidc platform is an important consideration. The advantages
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and disadvantages of different materials (silicon, glass, ceramics, elastomers,
hydrogels, thermoplastics, etc) in terms of mechanical properties, thermal
properties, solvent resistance, optical transmissivity, biocompatibility and material
cost have been reviewed by Tsao>8 and Niculescu et al.>? In this section, [ will focus
on the advances developed in our laboratory to study crystallization fundamentals
by taking advantage of cheap and commercially-available materials instead of
employing sophisticated fabrication technologies.

2.3.2.1 Microfluidic Experiments in Transparent Capillary

As solvent incompatibility limits the diversity of the compounds that can be studied
in microfluidics, Ildefonso et al.>! developed a microfluidic platform consisting of a
T-junction made of polyether ether ketone (PEEK) and a Teflon tubing which has
been found to be superior to both pure PDMS and mixed PDMS/Teflon device in
terms of stability in various solvents namely ethanol, acetone, ethyl acetate,
nitrobenzene and acetonitrile. Moreover, this platform enables droplet storage for
several weeks without significant evaporation.

To develop a cheaper alternative to the sophisticated microfabrication
technologies, Zhang et. al.>2 developed a home-made microfluidic platform built
entirely from commercially available modules as illustrated in Figure 2.9. This
platform has been shown to enable generation of stable monodisperse droplets
with uniform spacing and was successfully used to study the crystallization of
lysozyme, isonicotinamide, gliclazide and paracetamol.

Droplet
characterization

Droplet factory

Figure 2.9 Schematic of the in-house developed microfluidic platform. (a) The
droplet factory consists of syringe pumps and (b) multiport junction made of
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polyether ether ketone (PEEK) which is resistant to various types of solvent (c) the
droplet characterization zone features a UV-VIS-NIR spectrophotometer (190 to
2300 nm). (d,e) The incubation and observation zones are composed of a
thermostated bath and xyz-motorized camera with variable zoom capability.
Adapted from Candoni et al.5?

Recently, Peybernes®® developed a rapid method to measure the solubility and to
screen polymorphs directly from powder. The setup is shown in Figure 2.10. This
is done by passing the solvent through a bed of powder which then rapidly becomes
saturated. The solution can then be analyzed by in situ UV-VIS spectroscopy

30mg Crushed -1 T v 160 -

‘EI i |I|.*

Enlablll'y {mg/mL)

Thermostatted Incubatoer % @B 2 = ® »
- Tam paratura [*C)
(a)

EVL g Precolumn e Thermostatted
Powder IR ! Manual Vaive

pae——r=— |

Thermostatted incubator 1

Thermostatted incubator 2

(b)

Figure 2.10 Schematicillustration of the setup for (a) solubility measurement and
(b) polymorph screening directly from powder. Adapted from Peybernes et al.60-61

These systems are called "closed microfluidics" because the droplets are sealed in
the microchannel.? Thus, once generated, the droplets are not accessible to
external instruments. Moreover, their diameter depends on the size of the
capillaries used (commercially available). Hence the droplets are usually in the
nanoliter range.
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2.3.2.2 Evaporative Sessile Microdroplet Experiments

To study nucleation in picoliter to femtoliter volume ranges, Grossier et al®3
developed a simple yet efficient method to generate such microdroplets without
the need for surfactants (which can alter fluid-interface properties). This set-up is
shown in Figure 2.11. The motorized microinjector can move in three direction
by 16 nm increments while the glass microcapillary is connected to a pressure-
control system. In contrast to microfluidic systems using capillaries, this system is
called "open" as droplets are accessible. The size of the droplets (fL-pL) can be
adjusted depending on the pressure-drop and the translation speed of the
microcapillary across the surface.®3 The setup has been successfully used by
Hammadi et al1? to induce and localize primary nucleation events.

NA.055 —

W0 76 men

microscope

motorized
injector system

......................................

microcapillary PDMS oil

saline microdroplets

PMMA coating :
glass slide

(a) (b)
Figure 2.11. The image (a) and the schematic diagram (b) of the setup for
generating microdroplets on PMMA surface under oil.

motorized
injector system

oil bath

2.3.2.3 Image Analysis and Application to Crystallization Studies

An important advantage of the setup in Figure 2.11 is that it allows simultaneous
measurement of hundreds of droplets via image analysis. The basic concepts of
image analysis and how it can be applied on crystallization studies is thus
discussed in this section.

Digital images are made up of 2D array of pixels. For 8-bit gray-scale images, each
pixel can have values ranging from 0 (black) to 255 (white). The distribution of
pixel values can be analyzed using histograms. Dark images would have more pixels
close to zero whereas bright images would have most of them close to 255. The
general process of extracting the histogram from a gray-scale image is shown in
Figure 2.12.
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Figure 2.12 Schematic illustration for obtaining the histogram and extracting the
standard deviation of the gray-level pixels.

In a dynamic system (such as an evaporating and nucleating droplet), the
histogram of the gray-level pixel evolves with time. To characterize the shape of the
histogram, there are several parameters that can be used such as mean, standard
deviation, skewness, and kurtosis. In the context of nucleation studies, Grossier et
al?1 have shown that the standard deviation o is a useful parameter in probing
microdroplet dynamics as it is very sensitive to changes in refractive index.

To illustrate the usefulness of ¢ as a tracking parameter, the typical evolution of o
for an evaporating droplet is shown in Figure 2.13. Note that the refractive index
of the microdroplet is a function of its concentration. When the refractive index of
the microdroplet matches that of its environment (PDMS oil in this case), it
optically disappears. This corresponds to a minimum in standard deviation o
because the gray levels at this point are relatively uniform (with just few
background noise). As the microdroplet continues to evaporate, its refractive index
deviates from that of the oil thereby contributing changes to the gray-level
histogram. At the onset of nucleation, sudden appearance of black pixels occur
which results in a prominent jump in o-value. Following crystal growth, the solid
dries up and the o stabilizes. Therefore, o is a useful parameter for tracking the
dynamics of evaporation and detecting the onset of nucleation.
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Figure 2.13 Evolution of the gray-level standard deviation for an evaporating
saline microdroplet. The scale bar corresponds to 50 pm.
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2.4 Principle of Microdroplet Evaporation

In evaporative microdroplet experiments (as in Figure 2.13), the evolution of
volume with time is an important parameter in quantifying nucleation kinetics as
it determines the supersaturation ratio. However, this is not directly measurable
by simply tracking the microdroplet radius from the top-view images because
microdroplets can also evaporate at constant contact radius mode. Thus,
understanding the evaporation of microdroplet is important in such experiments
in order to accurately determine the evolution of supersaturation. In this section, |
review the basic concepts of microdroplet evaporation, the different contact line
behaviors and the existing mathematical models that describe the evaporation
rate.

For droplets in pm range, the gravitational effects are considered negligible (Bond
number << 1), resulting in a spherical cap with radius Rs and contact radius R, as
in Figure 2.14.

Y
7

Vapor

Figure 2.14 Schematic illustration of a sessile droplet with spherical cap radius Rs,
contact radius R, and contact angle 6.

The volume V'is given as®*

_ 7R3 (sin0)(2 + cos H)
B 3(1 + cos 9)? (2.48)
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By simple trigonometry, the height of the droplet can be expressed in terms of R

and @ as
h = R?(1 — cos6)
N 1+ cos@ (2.49)

2.4.1 Contact Line Behavior (CCA, CCR, SS mode)

Depending on the nature of the surface, the droplet residing on it shows different
behaviors of the contact line and the contact angle as shown in Figure 2.15.

25 10 25 10 25 10

constant contact radius constant contact angle stick-slide (SS)
20 (CCR) 8 20 (CCA} 8 ]
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@
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Figure 2.15 Schematic illustration of different contact line behavior.

Hence, the “footprint” on the surface and the volume of the droplet may vary :

1. Constant Contact Angle (CCA) In the extreme case of perfectly smooth
chemically homogeneous surface, the droplet maintains an equilibrium
contact angle, and this is referred to as constant contact angle (CCA) mode.
Consequently, the volume decreases due to the continuous decrease in
contact radius.4

2. Constant Contact Radius (CCR) In practice, the droplet will be pinned due
to surface roughness so the radius remains constant at some point. In the
extreme case where the droplet remains pinned throughout its lifetime, we
refer to this as the constant contact radius (CCR) mode. In this mode, the
volume decreases due to the continuous decrease in contact angle.

3. Stick-slide (SS) As experimental studies suggest,®> real droplets evaporate
in some mixture of CCR and CCA modes. One common observation is the
occurrence of CCR mode at the beginning and once the contact angle
decreases to a value less than the receding contact angle 6\, it switches to
CCA mode. This combination is known as the stick-slide (SS) mode.®>
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2.4.2 Evaporation Rate Models

In this section, | review the well-known models that describe the evaporation rate
of pure sessile droplets in air under the assumption a diffusion-limited quasi-
steady state evaporation in an infinite medium.

2.4.2.1 Picknett and Bexon’s Model

Picknett and Bexon® derived an evaporation model for a sessile droplet with
contact radius R and contact radius 6 as

d
= = —2mRDM,(c; — ¢)j(0) (2:50)

j(@) = { 8.957 x 107* + 0.63336 + 0.1160% — 0.088786° + 0.010330* for 6 > 10° 251
0.63666 + 0.095916% — 0.0614463 for 0 < 10° (2.51)

The factor j(6) serves as a shape factor for different values of contact angle. For a
hemispherical droplet, j(8) = 1. The expression is derived from a series expansion
which is then approximated using a truncated polynomial expansion.

2.4.2.2 Popov’'s Model

For the same scenario derived by Picknett and Bexon, (that is, diffusion-limited
quasi-steady state evaporation of pure liquid in an infinite medium), Popov®® used
an analogy to an equivalent electrostatic problem (in toroidal coordinates) without
using a series expansion approach. The analytical solution can be written as

C;_T;l = _T[RDMW(CS - Coo)f(g) (2'52)
sin 6 “1 + cosh(266)
f@e) = m JO Sin(270) tanh[(wr — 0)5] dS (2.53)

where m is the mass of the volatile species (in this case, water), D is the diffusivity
of water in the medium, Mw is the molar mass of water, cs and coo are the
concentration of water at saturation and at a point far away from the droplet
respectively (in mol/m3), f(0) is a shape factor, and § is an arbitrary variable of
integration. For hemispherical droplet (6 = 90°), f(6) = 2. This analytical
expression is widely used notably by Stauber et al®4 and Nguyen et al.¢”
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Chapter 3
Materials and Methods

In this chapter, [ present a general description of the pertinent chemical products
used in the experiments and an introduction to the basic principles of the
equipment and instrumentation used.

3.1 Model Compounds

The following were chosen as model compounds in the measurement of nucleation
kinetic parameters. This choice is mainly based on the availability of related kinetic
studies which allows for comparison.

3.1.1 Para-Aminobenzoic acid (PABA)

Para-aminobenzoic acid, a precusor in the synthesis of folate, crystallizes in two
enantiotropic polymorphic forms, the a-needles and the [(-prisms.68-69 The
structure of PABA is shown in Figure 3.1a.

3.1.2 Glutamic acid (GA)

Glutamic acid is a proteinogenic amino acid that is usually produced as
monosodium glutamate for food additive applications?0-71, It can either crystallize
as the prismatic a-form or the more stable multishaped B-form (can exist as needle,
rod, or plate)’2. The structure of glutamic acid is shown in Figure 3.1b.

O OH o)
HO

(a) p-aminobenzoic acid (PABA) (b) glutamic acid (GA)
Figure 3.1 Chemical structure of model compounds (a) PABA and (b) GA.
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3.1.3 Sodium chloride (NaCl)

Sodium chloride, also known as table salt, crystallizes in a face-centered cubic
crystal system (Figure 3.2a). It has a density of 2.17 g/mL and a melting point of
804°C. Being the most abundant salt on earth’3, I have chosen NaCl as a compound
of interest due to its influence on metal corrosion’4, building material
degradation’s, oil well productivity7¢, atmospheric science’” and so on. Moreover,
it is also a well-known model system for nucleation studies and it has a relatively
flat solubility line so the effects of temperature heterogeneities can be minimized

(Figure 3.2Db) .
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Figure 3.2 (a) Crystal structure of sodium chloride consisting of Na*(blue) and CI-
(green), (b) Solubility of NaCl in comparison with other salts (adapted from
Daniela Feingold et al’8).

3.2 Polymers used in the microfluidic set-up
3.2.1 Polyetheretherketone (PEEK)

In generating microdroplets in capillaries, a T-junction is needed where the
aqueous phase and continuous phase meet. PEEK (structure shown in Figure 3.3a)
has been found to be suitable material for the T-junctions as it is compatible with
many solvents.>!
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3.2.2 Fluorinated ethylene propylene (FEP)

To observe the microdroplets in a capillary, a material that is transparent, water
impermeable, and chemically stable to various solvents is needed. FEP (structure
shown in Figure 3.3b) well fit these criteria making it our standard material for
microfluidic capillaries.

I LT
oH ~-C—C-—-C—C—
’ [ ] [ ]
o o FOF] LF CR
(a) polyetheretherketone (b) Fluorinated ethylene propylene
(PEEK) (FEP)

Figure 3.3 Chemical structure of polymers used in generating microdroplets in
capillaries (a) PEEK (b) FEP.

3.2.3 Polydimethylsiloxane (PDMS)

To generate sessile microdroplets, PDMS (structure shown in Figure 3.4a) oil is
used as a medium where microdroplets are allowed to diffuse (i.e. evaporate). The
oil serves to slow down the evaporation rate and to act as a thermal buffer,
preventing temperature gradients that might occur due to the endothermic
evaporation process. The solubility and diffusivity of water in PDMS oil at ambient
conditions are 30 mol/m3 and 8.5x10-1° m2/s respectively.”9-80

3.2.4 Polymethylmethacrylate (PMMA)

PMMA (structure shown in Figure 3.4b) is used as a coating to glass slides where
sessile droplets are generated. PMMA serves to prevent microdroplet spreading
and coalescence. The aqueous droplets generated on the interface of PMMA and
PDMS have an initial contact angle of greater than 90°.
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(a) polydimethylsiloxane (PDMS) (b) polymethylmethacrylate (PMMA)

Figure 3.4 Chemical structure of polymers used in sessile microdroplet generation
(a) PDMS, (b) PMMA

3.3 Process Analytical Tools (PATs)

3.3.1 Optical Reflectance Measurement (ORM)

Optical Reflectance Measurement (ORM) is a widely used real time process
monitoring technique based on a laser backscattering®! where the sensor
measures chord length of the particles by moving a laser beam at high velocity
through the sample and recording the crossing time. The schematic illustration is
shown in Figure 3.5. The chord length of each particle traversed by the laser is
calculated from the crossing time of the particle.82-83
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Figure 3.5 Schematic Illustration of ORM Probe. (adapted from Adlington et al.84)
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The chord length distribution (CLD) is different from the particle size distribution
(PSD), but several methods have been developed to transform CLD to PSD
providing detailed information on real-time particle counts and size distribution.3%
81 Combination of ORM with other PAT tools is often used for obtaining variety of
information about the process.

3.3.2 In situ Raman spectroscopy

Raman spectroscopy is a light scattering technique in which samples are
illuminated by a monochromatic laser source and the scattered light is shifted to
various wavelengths due to the interaction of photons with the molecular
vibrations of the sample.85-86 The schematic illustration is shown in Figure 3.6. The
scattered light at various wavelengths is collected and can be used to provide
information on the composition of the sample.8”

Raman spectroscopy has also been used in crystallization for monitoring solute
and solid concentration of single and multiple component suspensions such as
polymorphic forms of crystals.88-90 In this work, Raman spectroscopy was used to
monitor real-time solution concentration.
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Figure 3.6 Schematic illustration of Raman spectroscopy (adapted from
www.princetoninstruments.com/)
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3.4 Experimental Setups

The experiments were done in multiple scales (from L scale down to pL scale). In
this section, I describe the experimental techniques used in each scale.
3.4.1 Setup for Liter Scale Experiments

The schematic illustration and image of the liter scale setup is shown in Figure 3.7
and its corresponding dimensions are detailed in Figure 3.8.
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Figure 3.7 (a,b) Schematic diagram and photo of the particle-count approach using
optical reflectance measurement and Raman spectroscopy, (c,d) schematic
diagram and photo of the conductometry approach for measuring induction time.
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Figure 3.8 Dimensions of the crystallizer and its agitation system used in (a)
particle-count approach (b) solution conductometry. The height of the liquid
displayed are prior to the introduction of probes.

For the particle-counting based approach, I used the optical reflectance
measurement (3D-ORM IPAS, Sequip S&E GmbH) coupled with in-situ Raman
spectroscopy (Kaiser Optical Systems Inc) to track the evolution of number of
particles and solution concentration (Figure 3.7a) with agitation speeds ranging
from 500 to 900 rpm. Although overhead stirrer could offer better mixing, we used
a magnetic bar agitation system due to the space limitation imposed by the bulky
ORM and Raman probes (Figure 3.7b).

Since PABA partially ionizes in solution, I also used another setup which relies on
solution conductimetry (Metrohm 712) to determine the onset of nucleation. The
system is agitated with an overhead stirrer (150 rpm). The induction time is taken
deterministically as the inverse of nucleation rate, that is, ti= 1/(JV).
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3.4.2 Setup for mL Scale Experiments

For the mL scale experiments, [ used a turbidimetry-based crystallizer platform
(Crystal16, Technobis). The setup is shown in Figure 3.9.

Crystallizer Platform
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Temperature
Control System —

Light Beam -

Figure 3.9 (a) Schematic diagram and (b) photo of a turbidimetric crystallizer
platform (Crystal16, Technobis).

The temperature is controlled with a heater and a Peltier element with an accuracy
of £0.1 °C. Each vial contains a magnetic stirrer, with the agitation speed set at 900
rpm. The PTFE-coated stirrer bar was cylindrical and had a length of 7 mm and a
diameter of 2 mm. A light beam is passed through the solution, and when the
formation of crystals/particles occurs, the transmission of light decreases which
marks the onset of nucleation. In these experiments, there is a lag time between
the actual start of nucleation and the time at which it is detected. This is taken into
account by fitting a parameter tg in the plot of cumulative distribution of induction
time.

3.4.3 Setup for pL Scale Experiments

For the microfluidic experiments, I used two setups: one that involves generating
droplets in transparent FEP tubes (uL to nL scale) and the one that generates
smaller sessile microdroplets on a PMMA-coated glass surface immersed in PDMS
oil (nL to pL scale).
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3.4.3.1 Microfluidic Experiment in Capillaries

The microfluidic setup in capillaries (closed microfluidic) is illustrated in Figure
3.10.
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Figure 3.10 (a) Schematic illustration of the microfluidic experiment in tubes (b)
photo of the experimental setup (c) closer look at the spirally-oriented microfluidic
tubes embedded on a 3D-printed polymeric resin template (developed in this
thesis).

The microfluidic experiments in tubes are designed such that droplets do not
evaporate, thereby maintaining a constant supersaturation when temperature is
held constant. This is based on the setup developed by Peybernes.®0. The idea is to

produce saturated solution on-line directly from powder instead of preparing stock
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solutions externally. This minimizes the risk of premature nucleation during
solution preparation and diminish the quantity to be held. In the droplet
generation bath, automated syringe pumps are used to push the solvent hrough a
powder bed which saturates the fluid. The saturated solution then goes to the PEEK
junction where it meets with the continuous phase (oil), thereby generating
droplets. The resulting droplets are then sent to the observation bath consisting of
a thermostated bath and a xyz-motorized camera (Opto GmbH) with zoom
capabilities.

3.4.3.2 Setup for Sessile Microdroplet Experiment

The setup for sessile microdroplet experiment (“open microfluidics”) is illustrated
in Figure 3.11. This setup is designed for evaporative crystallization experiments
where hundreds of droplets are monitored simultaneously using image analysis.

—
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generation chamber

Figure 3.11 Schematic illustration of the setup for sessile microdroplet
experiment.

The saline microdroplets were generated on the cover slip by a micropipette with
an internal diameter of 0.5 um (Femtotip Eppendorf). The micropipette is
mechanically controlled by a home-made motorized micromanipulator consisting
of 3 miniature translation stages (piezo electric, MS30 Mechonics) which allows
displacement of the micropipette holder in three dimensions by steps of 16 nm. To
avoid microdroplet spreading and coalescence, the glass cover slip is coated with a
hydrophobic PMMA resin. For this, glass coverslips (18-mm diameter, cleaned via
plasma treatment) were spincoated at 4000 rpm for 1 min (SPIN 150, SPS) with
PMMA which were then annealed for 10 min at 170°C. The coverslips were then
covered with a 0.8 mm thick layer of PDMS oil. A series of 16-bit images were
obtained using an optical microscope (Zeiss Axio Observer D1 equipped with an
ANDOR neo sCMOS camera). Images were processed using FIJI software (Image ],
NIH, USA).
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Chapter 4
Measuring Primary Nucleation Rates in Agitated Systems

using Particle Count Approach

In liter-scale agitated crystallizers, several techniques have been developed to
estimate nucleation parameters, notably those of Nyvlt, Kubota, Sangwal, etc.
However, these approaches rely heavily on empirical models (such as the power
law model) to correlate nucleation rate against quantities relating to the system
metastability such as induction time or metastable zone width (MSZW). Several
researchers have pointed out that the physical meaning of induction time and
metastable zone width is still questionable®! and not yet well-understood. These
pose doubt on the validity of the nucleation parameters obtained from such
methods. In this chapter, I developed a new approach for quantifying primary
nucleation rates using in situ optical reflectance measurement (ORM) coupled with
in situ Raman spectroscopy. Instead of measuring induction times or MSZW, we
monitor the particle counts in the system. Given that the total particle count is the
sum of nuclei generated from both primary and secondary nucleation, we assumed
that the rate of secondary nucleation varies exponentially with agitation rate. Thus,
upon extrapolation to zero agitation rate, the rate of primary nucleation rate can
be approximated. The full description of the calibration techniques, measurement
protocols, and model assumptions is discussed in this chapter.

Parts of this chapter were published in

Cedeno, R.; Maosoongnern, S.; Flood, A., Direct Measurements of Primary
Nucleation Rates of p-Aminobenzoic Acid and Glutamic Acid and Comparison with
Predictions from Induction Time Distributions. Industrial & Engineering
Chemistry Research 2018, 57 (51), 17504-17515.
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4.1 Introduction

Nucleation is particularly an important step in crystallization processes as it sets
the initial crystal size distribution particularly in the unseeded batch processes
often used in the production of high value-added chemicals. In the design of
industrial crystallizers, reliable measurement and modeling of process parameters
such as nucleation and growth kinetics is necessary for optimal control of final
product quality. Although classical theories in crystallization kinetics are well-
established, the ability to measure, describe and predict crystallization kinetics
remains a challenge due to the large deviations of real systems from ideal behaviors
prompting the need to develop alternative models and measurement techniques
for both nucleation and growth kinetics.®8 Existing approaches such as those
developed by Nyvl, Kubota, and Sangwal rely heavily on empirical models (such as
the power law model) to correlate nucleation rate against quantities relating to the
system metastability such as induction time or metastable zone width (MSZW).
Several researchers have pointed out that the physical meaning of induction time
and metastable zone width is still questionable®! which pose doubt on the validity
of the nucleation parameters obtained from such methods.

In this work, instead of measuring induction times or MSZW, I monitor the particle
counts in the system for direct quantification of nucleation kinetics. Since the total
particle count is the sum of nuclei generated from both primary and secondary
nucleation, I assume that the rate of secondary nucleation varies exponentially
with agitation rate and that the rate of primary nucleation is a weaker function of
hydrodynamics. This is consistent with that of Randolph and Cise®? who also
suggested the use of exponential function for correlating the influence of stirring
rate on the total nucleation rate. Although several researchers have recently shown
that primary nucleation is influenced by shear rate,?3-95 the order of magnitudes
appear to be mildly affected. For instance, Stroobants et al®4 and Forsyth et al®3
observed that increasing the shear rates 10 times would enhance the nucleation
rate by about one order of magnitude (108 m-3s-1 to 10° m-3s-1 for lysozyme and 101
to 102 m=3s! for glycine respectively). Moreover, Nappo et al®> have shown that the
dependence of primary nucleation rate on shear rate is non-monotonic. They
observed that at low shear rates, primary nucleation rate increases with increasing
shear rate but the opposite trend occurs at high shear rates. This suggests that
assuming that primary nucleation is a much weaker function of hydrodynamics
than secondary nucleation is reasonable. With this assumption, I develop a method
of quantifying nucleation rate by performing particle-count measurements across
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several agitation rates. This would allow estimation of primary nucleation by
extrapolating the measured rates down to zero agitation. I then compare the
extracted primary nucleation rate to that of Turner et al® who measured the
primary nucleation of the same model compound (p-aminobenzoic acid in
aqueous/ethanolic system) using the KBHR (Kaschiev-Borrisova-Hammond-
Roberts) model.38

4.2 Materials and Methods

4.2.1 Chemicals and Equipment

The compounds p-aminobenzoic acid, PABA (TCI, chemical purity > 99%), L-
glutamic acid, LGA (TCI, chemical purity > 99%), pure ethanol (TCI, AR grade), and
ultrapure water were used as received. The induction time and solubility were
measured using the multiple-crystallizer setup called Crystall6 (Technobis,
Amsterdam) which measures light transmissivity through standard HPLC vials.
Particle count measurements were carried out in a 250 mL jacketed glass
crystallizer connected to a water-cooled temperature control system (Julabo F32,
+0.01 °C) with an egg-shaped PTFE-coated magnetic stirrer (25x8 mm) magnetic
stirrer.  The crystallization process was monitored in real time via 3-Fold
Dynamical Optical Reflectance Measurement (3D-ORM IPAS, Sequip S&E GmbH)
which employs laser backscattering to measure chord-length distributions from
which particle size distributions (PSD) and particle counts per volume can be
obtained upon calibration. The concentration profile was monitored via time-
resolved in-situ Raman Spectroscopy (Kaiser Optical Systems Inc).

4.2.2 Solubility Measurement

Both PABA and LGA exhibit polymorphism and are known to crystallize in either a
or 3 forms.?7-98 Since solubilities of different polymorphic forms vary, only the a-
form of both compounds was considered in this work since this was found to form
exclusively in the conditions employed in the nucleation measurements. The
solubility of a-PABA in 30 wt% ethanol-water mixture was measured as a function
of temperature using the Crystall6 by preparing 1 mL solutions with varying
concentrations in 16 vials with magnetic stirring (900 rpm) and heating rates set
at 0.2 °C/min; this was found to be a suitable heating rate for solubility experiments
since it gave equivalent solubilities to lower heating rates, for instance 0.1 °C/min.
As the temperature is increased, the transmissivity of light through each sample
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reaches a maximum at a certain temperature (the clear point) in which the sample
becomes a clear solution. The clear point is taken as the saturation temperature
and was measured for three trials for each concentration. The solubility of the
metastable a-LGA in water was taken from literature?°.

4.2.3 Calibration of in-situ Raman Spectroscopy

Raman spectra were collected in-situ via immersion fiber-optic probe (305 mm x
12.7 mm) connected to a 785-nm RamanRXN1 analyzer (Kaiser Optical Systems
Inc., MI, USA) with exposure time set at 10 seconds per scan. The Raman spectra
was calibrated starting from pure solvent followed by incremental addition of
known amounts of solute at constant temperature (30°C for PABA). Upon addition
of solute, new peaks were observed corresponding to the characteristic peaks of
the solutes. The ratio of the characteristic peak area of the solute to that of the
solvent was chosen as a reference for the calibration curve. In principle, the
presence of suspended particles during nucleation could interfere with the
reference peaks. To determine whether a multivariate calibration model (such as
principal component or partial least squares regression) is necessary, we
determined the influence of suspended solids on the reference relative peak area
by incremental addition of solids on a saturated solution.

4.2.4 Calibration of In-situ 3D ORM

3D ORM is based on diffuse reflection of an incident light beam at the surfaces and
edges of particles enabling measurement of the chord length distribution (CLD)
which is related to the particle size distribution (PSD). In contrast to the stationary
focal point of focused-beam reflectance measurement (FBRM), 3D ORM features a
dynamic focal point providing better quantitative capability100. The probe used in
this work has a laser beam intensity of 10 mW with a 4um single-mode fiber and
rotating optics with tangential velocity of 2Zm/s. A threshold value of 0.02 and size
window of 1-10um (fine mode) were set to maximize detection of early nuclei.

Note that the counts per seconds (CPS) measured by ORM represents the number
of detections within a small region of fluid surrounding the tip of the probe and not
the actual number density of crystals. Thus, there is a need to correlate the number
of particles detected by the probe to the actual number of particles per volume in
the system. To do this, a 100 mL saturated solution was prepared and then a known
amount of solute was incrementally added leading to an increase in the number of
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detected particles. Since the solution is at equilibrium, the added seed crystals are
not expected to dissolve nor grow. Assuming the system is well-mixed and with the
known mass of added crystals, the total number of crystal per unit volume Nrcan

be calculated by the following equation
My
Nr = m 4.1)
where Vs is the solution volume, Mr is the total mass of crystals, pc is the crystal
density, L3,0¢LP is the mean crystal volume based on the chord-length distribution
(CLD) and k’vis a modified shape factor relating the measured third moment, L3,0LD
to the actual average crystal volume.

Note that several mathematical frameworks have been developed for converting

CLD to PSD191 however for simplicity, we assume that the ratio of the third moment

of normalized PSD to that of CLD is constant which we define as the modified

volumetric shape factor k’v written as

L5Y

o )

k', = [CLD (4.2)
3,0

This is under the assumption that the shape of the distribution does not change

significantly with time, i.e. the standard deviation of the distribution is constant.

To evaluate k', optical micrographs (Xenon VR790) of over 500 randomly-selected
crystals were analyzed. We modeled the needle-shaped PABA as very long cylinder
and the characteristic length L. is taken as the length of a cube that has equivalent
volume as a needle with length L and width w, which can be calculated as:

1/3
L, = <7TW2L> 3)

4

On the other hand, the prismatic LGA was taken as regular prisms. A histogram
with respect to Lc was then normalized and fitted to a log-normal distribution

1 InL.—InL, \>
P(L.) = exp |—0.5 <#) l
(Le) ol pl -

(4.4)

where Lm and o are the parameters corresponding to the median and standard
deviation respectively. The Lm and o of CLD was also obtained in a similar manner.
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A calibration curve was then obtained by relating the calculated Nr to its
corresponding counts per second. Since the number of crystals detected per
second depends on agitation rate, calibration was performed for different stirring
speeds.

4.2.5 Crystallization Process Monitoring

Experiments were carried out in a 250 mL jacketed glass crystallizer with egg-
shaped PTFE-coated magnetic stirrer (25x8 mm,700rpm) placed in the bottom of
the vessel, with the vessel connected to a water-cooled thermostat. A known mass
of PABA was dissolved in 100 g of 30 wt% EtOH-water mixture at a temperature
10°C above saturation for 20 minutes to ensure complete dissolution. It was then
crash cooled to 30°C in such a way that the onset of nucleation occurs only after the
stable final temperature is established. The evolution of particle count and average
crystal volume L30 was monitored by 3D-ORM while the supersaturation ratio S is
monitored by in-situ Raman spectroscopy. A similar procedure was performed for
LGA, except that the final temperature is set to 25°C and the solvent used is pure
water.

4.3 Results and Discussion
4.3.1 Identification of Polymorphs

As mentioned earlier, both para-aminobenzoic acid (PABA) and L-glutamic acid
(LGA) and are known to crystallize in either a or 3 forms. The images and Raman
spectra of our crystallized PABA and LGA are shown in Figure 4.1 and Figure 4.2
respectively.

Since the nucleation rate of different polymorphs varies, measurements were done
in conditions where only one type of polymorph is nucleating, i.e. concomitant
nucleation was avoided. For PABA in H20/EtOH solution, only the stable needle-
shaped a-form was found to nucleate at 30°C for all supersaturations employed,
and no polymorphic transformation was observed (Figure 4.1a). In the case of LGA
in water, nucleation at 25°C results exclusively in the metastable prismatic a-form,
as shown by optical microscopy (Figure 4.1b). However, it is known to undergo a
gradual solvent-mediated transformation to the stable 3-form as observed in other
studies.’? 102 The nucleated crystal powder was further characterized by Raman
Spectroscopy (Figure 4.2) which confirms the absence of B-form for both PABA
and LGA.
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Figure 4.1 Optical micrographs of crystal samples of (a) PABA and (b) LGA used in
polymorph identification and determination of particle-size distribution.
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Figure 4.2 Raman Spectra of dried powder obtained after nucleation of (a) PABA
and (b) LGA. In (a), the absence of strong peak at 1700 cm-! (characteristic peak
of B-form) 193 confirms that it is a-form. In (b), the absence of peak at 1130 cm-1
(characteristic peak of 3-form)2%4 confirms that it is a-form.

4.3.2 Solubility Data

A plot of experimental solubility of both model compounds (a-PABA and a-LGA) in
their respective solvents from 20°C to 60°C is shown in Figure 4.3. It shows an
excellent fit to the van’'t Hoff equation which was used to calculate initial
supersaturation ratios at the chosen operating temperature. All nucleation
experiments for PABA were carried out at 30°C where the solubility is 4.060 g per
100 g solvent, while LGA was nucleated at 25°C where the solubility is 1.056 g per
100 g solvent.
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Figure 4.3 Temperature-dependent solubilities of a-PABA in 30 wt% aqueous
ethanol (=) and a-LGA in water (o). The solid lines are the fit of the van't Hoff
equation. Each point in PABA solubility line is an average of three measurements
while that of LGA is based on Scholl et al192,

4.3.3 Calibration Curves of ORM

The particle size distribution based on the microscope images are shown in Figure
4.4. The CLD from the 3D-ORM and the PSD from optical microscope (Figure 4.1)
are well-represented by a log-normal distribution (Figure 4.4) with R?>0.96 from
which the distribution parameters median Lm and standard deviation o was
estimated. Using equation S4, these parameters lead to modified volumetric shape
factor k’v = 0.0144 for the needle-shaped PABA and k' = 0.550 for prismatic LGA.
With a known k%, the count per second was correlated to the actual number density
using equation (4.1) which leads to a calibration curve of PABA in Figure 4.6. It is
important to note that changes in agitation speed have an effect on the fluid
dynamics near the tip of the ORM probe, and therefore differences in the number
of counts measured per second even for a constant crystal number density. For this
reason, the ORM was calibrated for agitator speeds between 500 and 900 rpm. A
similar procedure was done for LGA. With the calibration curve, the number of
crystals per volume (number density) can be monitored in real time. To check for
the influence of breakage and agglomeration during calibration, the plot the raw
particle counts against time. If breakage and agglomeration were dominant, the
raw counts should have a positive slope and negative slope respectively in each
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incremental addition of crystals. However, Figure 4.5 (raw counts vs time) shows a
stable particle count suggesting that breakage and agglomeration are negligible
during calibration.
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Figure 4.4 Particle Size Distribution (PSD) (©) and Chord Length distribution
(CLD) (») of (a) PABA and (b) LGA. The length is in logarithmic scale
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Figure 4.5 Raw counts per second during the calibration of PABA (red) and LGA
(blue) at 900 rpm. The steady counts across each incremental addition of seeds
suggests a negligible breakage/agglomeration during calibration.
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4.3.4 Validation of ORM Measurement by Raman Spectroscopy

In the Raman spectra of PABA (Figure 4.7a), the peak between 879 cm-! to 881
cm! are associated with the vibrations of intramolecular C-C bonds in ethanol
molecules!% while the strong peak between 1600 cm* and 1615 cm is due to C-C
stretching.10¢ Its intensity is positively correlated to an increase in solute
concentration. The ratio of baseline integrated peak area of PABA to that of ethanol
(using a two-point base line correction) was chosen as reference for the calibration
curve. From Figure 4.7b, it is evident that there is almost zero correlation
(R2=0.047) between the amount of suspended solids to the relative peak area,
however, the presence of solids shifts the relative peak area up by around 22 a.u.
above that of without solids regardless of the solid concentration.

With this information, the calibration curve for systems with and without
suspended solids was obtained (shown in Figure 4.7c) which allowed real-time
monitoring of solution concentration. Note that the concentration profile can also
be estimated from in-situ ORM data using the mass balance which can be written
as
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(4.5)

The close agreement between the supersaturation profile from Raman
spectroscopy with that calculated from in-situ ORM data (Figure 4.7d) confirms
the validity of our methods used in interpreting the chord-length distributions and
the successful calibration of particle counts with respect to actual number density.

4.3.5 Total Nucleation Rates from in-situ ORM

The evolution of number density (particle count per volume) with time of PABA
and LGA is shown in Figure 4.8a and Figure 4.8b respectively. As expected,
solutions at higher initial supersaturation ratios start to nucleate at an earlier time
and exhibit a faster increase in the number of particles due to the higher driving
force for nucleation. Their trajectories resemble an S-shape or sigmoidal curve.
This autocatalytic behavior suggests that secondary nucleation is occurring in our
system. To obtain the nucleation rate for each supersaturation, we took the
moving-average slope of the change in number density over time which were
plotted in Figure 4.8c and Figure 4.8d. The peaks were taken as the representative
nucleation rate which corresponds to the maximum slope of the number density.
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Figure 4.7 (a) Raman spectra of solvent (red) and PABA solution at S = 0.25
(orange), 0.5 (green), 0.75 (blue), 1.20 (black); (b) Effect of suspended solids on
the reference peak area. A negligible correlation (R2<0.05) can be observed,
however the presence of solids shifts the reference peak area of clear solution up
by around 22 a.u. (c) Correlation between supersaturation ratio and relative peak
area in clear solution (e¢) and with suspended solids (©). (d) Comparison of
supersaturation profile of PABA at So=1.20 obtained from in situ Raman
spectroscopy (dotted line) against that obtained from in situ ORM (solid line).
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4.3.6 Estimation of Primary Nucleation Rate

As mentioned above, the measured nucleation rates via ORM in stirred system
represents the total nucleation rate, i.e. the sum of both primary and secondary
nucleation. While both may occur simultaneously, it is well-known that secondary
nucleation is highly dependent on agitation rate. At higher speeds, crystal collisions
onto the crystallizer walls, baffles, impeller, and other crystals occur at a much
higher frequency resulting in more chances for breakage, breeding, and attrition
which consequently enhances secondary nucleation. Conversely, the effect of
secondary nucleation is expected to drop at lower agitation speeds leading to a
predominance of primary nucleation in near-stagnant suspensions.
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Figure 4.8 Evolution of number density of (a) PABA and (b) LGA. Evolution of
nucleation rate for (c) PABA and (d) LGA.

Thus, we can estimate the primary nucleation rate by performing experiments at
different agitation speeds and extrapolating nucleation rate data to zero agitation
rate, where the effect of secondary nucleation approaches zero. Note that at
agitator speeds lower than 500 rpm, particles tend to settle with a layer of clear

57



solution on top, indicating that the system is not well-mixed. Hence, we performed
the experiments only above 500 rpm, otherwise number counts from the ORM
measurements could not be relied upon. However, by measuring nucleation rates

for arange of agitator speeds, nucleation rates could be reliably extrapolated to low
shear rates.

The reproducibility of this approach was first evaluated for PABA (So=1.20) and
LGA (S0=2.50) in Figure 4.9 which showed a relative standard error of around 10%
for the extrapolated nucleation rate.

The effect of agitation rate on the measured nucleation rate for other
supersaturation ratios is shown in Figure 4.10 and upon exponential
extrapolation to zero rpm the estimated primary nucleation rate for PABA at S=1.2
and LGA at S = 2.50 were found to be 5.6x1019 # m-3s1 and 3.0x10° # m3s1
respectively.
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Nucleation Rate (10%#m™s™)
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Figure 4.9 Reproducibility of nucleation rates measured by ORM of (a) PABA at SO
= 1.20 and (b) LGA at SO = 2.50 across different agitation rates. The solid line is a
fit to an exponential function y = yoek*. For PABA, arelative standard error of 9.75%
was obtained for yo and 4.39% for k while for LGA, the relative standard error is
10.55% for y0 and 7.87% for k. Note that the nucleation rate here is in linear scale
while that in Figure 4.10 is in logarithmic scale which displays a straight line for an
exponential curve.
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Figure 4.10 Effect of agitation rate on the measured nucleation rate of PABA at So
=1.20 (e ), 1.25(©), 1.32 (V¥), 1.40 (A) and LGA at S = 2.50 (X), 2.67 (m ), 2.85 (V),

3.05 (O). Note that the nucleation rate is in logarithmic scale where an exponential
curve appears linear.

Notice from Figure 4.10 that on a logarithmic scale, nucleation rate varies linearly
with agitation rate implying an exponential relationship. In principle, agitation
increases the shear stress and frequency of collisions of crystals onto other
crystals, crystallizer, and impeller resulting in more pronounced breakage,
attrition, and other mechanisms of secondary nucleation. The theoretical
relationship between secondary nucleation rate and agitation rate is rather
complex and has mainly been described by empirical equations such as power law,
polynomial and exponential functions. For convenience, a two-parameter
estimator is generally preferable. While power-law and linear function could also
somehow fit the trend for the total nucleation rate, both would imply that in
stagnant solutions (zero rpm), nucleation rate would assume zero and negative
values respectively, which is obviously unphysical. Again, we only carried out the
experiments above 500 rpm since lower agitation rates resulted in settling of
particles implying a non-uniform spatial distribution of particles in the crystallizer
wherein laser-backscattering results can’t be relied upon. This prevented us from
confirming experimentally whether the exponential regime holds true in lower
agitation rates using the current technique.
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Nevertheless, notice that for both PABA and LGA, the total nucleation rate at 500
rpm and 600 rpm are close to each other as shown in Figure 4.9, indicating the
likely formation of an asymptote towards lower agitation rates. Having almost
equivalent nucleation rates for two different agitation rates imply that the
nucleation rate is no longer a strong function of agitation rate around this regime,
in other words, the increase in number of particles is becoming independent of the
main driving force for secondary nucleation. Although the experimental data
points below 500 rpm is inaccessible in the current technique, it is highly unlikely
that a sudden shift in trend would occur below 500 rpm because as shown in Figure
4.9, the nucleation rate appears to be on the process of converging to some finite
value. Moreover, Randolph and Cise*? also suggested the use of exponential
function for correlating the influence of stirring rate on the total nucleation rate.
Altogether, this experimental evidence and literature support justify our
assumption that the exponential fit is the most appropriate from 0 to 900 rpm and
that an exponential extrapolation to stagnant conditions is a reasonable
approximation of primary nucleation rate.

Considering that the main driving force for secondary nucleation is agitation, we
further assume that the rate of secondary nucleation approaches zero at near-
stagnant conditions. Thus, a simple empirical model accounting for the effect of
agitation on the total nucleation rate can be written as

Jeot = Jp exp(kyw) (4.6)

where Jwor is the total nucleation rate, Jp is the primary nucleation rate, w is the
agitation rate, kz is a parameter describing the dependence of total nucleation rate
on agitation rate. This means k2 should be higher for crystals that are more prone
to breakage and attrition (such as needle, brittle crystals). Hence, we postulate that
the extrapolated nucleation rate at zero rpm denoted as J, represents a reasonable
estimate of primary nucleation rate at that specific supersaturation. Note further
that this formulation assumes that primary nucleation rate does not change
significantly with agitation rate which is in accordance with the classical nucleation
theory.
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Table 4.1 Measured primary nucleation rates at different supersaturation ratios.

supersaturation ratio primary nucleation rate (+10%)

PABA 1.20 5.60 x1010
1.25 9.00x1010
1.32 1.30x1011
1.40 2.00x1011

LGA 2.50 3.00x109
2.67 3.50x10°
2.85 4.90x10°
3.05 8.00x10°

The measured nucleation rates are listed in Table 4.1 whose magnitudes are
between 10° to 1019. To compare with literature, Turner et al°® measured the
nucleation rates of PABA using the KBHR framework and found that the
concentration of instantaneously created nucleation sites Co is in the order of 1010
m-3. If we interpret this in terms of classical nucleation theory, Co is related to the
pre-exponential CNT parameter as A=zf*Co where z is the Zeldovich factor and f*is
the attachment frequency. If we conservatively assume z=1 and f*=1 s-1, this would
lead to a magnitude of 1010 for the pre-exponential factor A which is consistent
with our results. Note that the KBHR approach38 is based on a completely different
yet well-established theoretical view of primary nucleation. Thus, its agreement of
magnitude order with our particle-count approach provides an evidence
supporting the validity of our newly developed protocol.

61



4.4 Conclusion

In this chapter, I developed a protocol to measure primary nucleation rates by
monitoring particle counts (based on optical reflectance measurement coupled
with in-situ Raman spectroscopy), with the following assumptions: (1) the rate of
secondary nucleation approaches zero at zero agitation speed (2) the rate of
secondary nucleation increases exponentially with increasing agitation speed. I
applied these assumptions in the analysis of kinetic data obtained from various
agitation speeds using p-aminobenzoic acid in water-ethanol mixture as a model
system. Upon extrapolation to zero agitation, I obtained an order of magnitude of
1010 for the pre-exponential factor A which is in agreement with the KBHR
approach. Our particle-count based approach along with our empirical treatment
of secondary nucleation could be useful in quantifying nucleation kinetics in the
context of industrial applications where the interplay between hydrodynamics and
secondary nucleation is important.
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Chapter 5
Nucleation Kinetics in Agitated Systems:

Particle Counts vs Induction Time Approach

In Chapter 4, an approach for measuring primary nucleation rate in liter-scale
agitated crystallizer via particle-count approach was presented and the order of
magnitudes of nucleation rates were in good agreement with KBHR method.
However, there is also another approach for agitated systems based on induction
time distribution of temperature-cycled mL-scale vials. This has been used
extensively in the literature; however, there has been no experimental validation of
this approach with other techniques.

In this chapter, I compared the nucleation kinetic parameters obtained from
induction time distribution approach against that of particle-count approach.
Results reveal discrepancies of six to seven orders of magnitudes. Although
differences in fluid dynamics due to agitation and crystallizer geometry may have
an effect, this tremendous discrepancy provides strong evidence that primary
nucleation rates obtained from such technique may not be used for interpretation
of nucleation rates in industrial scale applications.

Parts of this chapter were published in:

Cedeno, R.; Maosoongnern, S.; Flood, A., Direct Measurements of Primary
Nucleation Rates of p-Aminobenzoic Acid and Glutamic Acid and Comparison with
Predictions from Induction Time Distributions. Industrial & Engineering
Chemistry Research 2018,57 (51), 17504-17515.
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5.1 Introduction

Convenient methods in quantifying nucleation kinetics especially in agitated
systems is important for industrial scale-up of crystallization processes. Recently,
a medium-throughput method to extract nucleation rates from the induction time
distribution in multiple stirred mL volumes was developed by Jiang et. al.107 based
on the mathematical approach of Toschev et. al.198 which assumes that the
formation of at least one nucleus is a rare-event described by a Poisson
distribution.3 109-110 This stochastic model has been used extensively in estimating
nucleation parameters as exemplified by numerous publications utilizing the
model.

Table 5.1 Selected publications utilizing the Poisson-model for extracting

nucleation rates from induction time distributions.

Year | Author Compound Technique Detection
Pino- vanillin in
2003 Garcialll water/2-propanol | Reactors Turbidity
solution
2010 | Gohs lysozyme and Microfluidic Microscopy
paracetamol system
L-histidine, Crystallizer
2011 | Jiang!12 m-aminobenzoic Y Turbidity
. Platform
acid
2012 | Teychene!!3 | Eflucimibe Microfluidic | v roscopy
system
2012 | Chenll4 pargcetamol and Microfluidic Microscopy
glycine system
2013 | Kulkarnil0? Isonicotinamide Crystallizer Turbidity
Platform
aspirin and microfluidic
2015 | Lul?s asp drop-based stereomicroscopy
ibuprofen
platform
2017 | Capellades!1® glyc_lr_le and - Crystallizer Turbidity
arginine Platform
2017 | Stojakovicll? | Paracetamol Crystallizer Turbidity
Platform
benzocaine Crystallizer
2017 | Patell18 & 1,1'-bi-2- y Turbidity
Platform
naphthol
2018 | Nappo?> g:iﬂémnobenzmc E:::}k:(l)zpulse Microscopy
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In response to the growing popularity of this approach, Xiao et. al.11% and Maggioni
et. al.1* quantified the inherent uncertainties associated in such method via
statistical analysis while Kubotal” investigated the influence of solution volume on
the stochasticity of nucleation via Monte Carlo simulations where it was shown
that the stochasticity apparently disappears at larger volumes. Moreover, Maggioni
and Mazzottil20 pointed out some issues regarding the assumptions made in the
stochastic model and subsequently developed two model modifications accounting
for the interplay between stochastic nucleation and deterministic crystal growth.
Surprisingly, the question as to whether the nucleation rates obtained via
stochastic model can be used in scale-up and design of industrial crystallizers has
not been fully investigated.

Table 5.2 Literature value of nucleation kinetic parameter A for various
compounds using the stochastic model.

Compound A (m3s1) Ref

m-ABA in 50% EtOH-water 8.70x105 (112)
L-histidine in water 3.63x10*

isonicotanamide in EtOH 6.60x104 (199)

diprophylline RII in IPA 5.76x102 (121)
diprophylline RI in DMF 4.99x102

p-aminobenzoic acid in acetonitrile 3.63x10¢4 (¢9)
p-aminobenzoic acid in 2-propanol 1.09x10¢4
p-aminobenzoic acid in ethyl acetate 2.05x10%
benzoic acid in toluene 6.18x104

p-aminobenzoic acid in water 2.06x105 (122)

paracetamol in water 2.00x103 (123)

1.3x102 (124)

adipic acid in water 2.80x10¢ (12%)

It is evident from literature that for organic compounds, the magnitude of
nucleation rates predicted by the stochastic model typically ranges from 102 to 106
m-3s-1 (Table 5.2) whereas conventional methods yield values around 108 to 1017
m-3s-1 (Table 5.3). The huge disparity has commonly been attributed to the
occurrence of predominant secondary nucleation, particularly breakage and
attrition. While it is true that secondary nucleation occurs in agitated systems,
other model-based approach such as those proposed by Nyvlt, Kubota, and
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Kashchiev also predict primary nucleation rates in the range of 108-1011 m-3s-1,
Note that all these model-based approaches postulate an assumed relationship
between the nucleation rate and induction time or metastable zone widths, which
we will refer to as indirect measurement. The disagreement between the indirect
approaches shows the need to quantify nucleation rate via direct measurement
which does not rely heavily on model assumptions. These direct methods
physically quantify the evolution of number of particles which include in-line video
microscopy (IVM) and laser-backscattering. However, the issue with direct
measurement lies on its inability to distinguish between primary and secondary
nuclei which prevents the straight-forward experimental validation of models for
primary nucleation in agitated systems.

To overcome this, Li et. al.3% simultaneously fitted the expressions for primary and
secondary nucleation to experimental data under the population balance
framework which resulted in five kinetic parameters describing the total
nucleation rate data. This however yielded primary nucleation rate with
confidence intervals within six orders of magnitude. We also believe that in this
approach, the ratio of primary to secondary nucleation strongly depends on the
functional form of expressions used for fitting experimental data (in their case, a
logarithmic function was used for primary and power-law function for secondary)
to the population balance equation.

Hence, this chapter aims to determine whether the magnitude of nucleation rates
obtained from the stochastic model is comparable with direct measurements via
direct particle-counting approach using p-aminobenzoic acid (PABA) and L-
glutamic acid (LGA) as model compounds.
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Table 5.3. Magnitude of nucleation rates in literature for various compounds and
determination methods.

Compound ] (m-3s-1) | nucleation | method Ref
benzoic acid in water-ethanol 107-10° | total direct, FBRM, 126
Population Balance
L-glutamic acid in water 108 primary | indirect, FBRM, 71
Kaschiev model
paracetamol 1010-1011 | primary | indirect, 127
in water-ethanol FBRM, MSZW,
Nyvlt & Kubota model
109-1011 | primary | indirect, 128
FBRM, induction time,
Nyvlt & Kubota model
1019 total direct 129
FBRM,
population balance
10-1-105 | primary* | direct 30
FBRM, population
balance
107-108 | secondar
y*
RDX in y-butyrolactone 108 total direct, 130
FBRM
L-asparagine monohydrate 1010 total direct, 131
in water-2-propanol Coulter Multisizer
y-DL-methionine in water 108-1011 | total direct, 132
droplet-based method
H4EDTA in water 1015 total direct, 133
stopped-flow
technique,
salicylic acid 109-1017 | total direct, microscopy, 134
population Balance
p-aminobenzoic acid in ethanol | 108-10°8 | primary | indirect, 96
p-aminobenzoic acid in 109-1010 | primary | Metastable zone
acetonitrile § width,
p-aminobenzoic acid in water 10208 | primary | KBHRmodel

*In Ref (39), the expressions for primary and secondary nucleation were added to fit experimental
data. Thus, the ratio of primary to secondary is not observed experimentally. $In Ref(°¢), the
concentration of instantaneously nucleated crystallites Co (m-3) is shown here instead of ]. Co is
related to the pre-exponential CNT parameter as A=zf*Co where z is the Zeldovich factor and f*is
the attachment frequency.

Direct methods are those that measure particle counts from instrumental data. Indirect methods
involves correlating nucleation rate with induction time or metastable zone widths as employed
in Kaschiev’s, Nyvlt's, Kubota’s, and KBHR’s approaches.
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5.2 Materials and Methods
5.2.1 Chemicals and Equipment

The compounds p-aminobenzoic acid, PABA (TCI, chemical purity > 99%), L-
glutamic acid, LGA (TCI, chemical purity > 99%), pure ethanol (TCI, AR grade), and
ultrapure water were used as received. The induction time and solubility were
measured using the multiple-crystallizer setup called Crystall6 (Technobis,
Amsterdam) which measures light transmissivity through standard HPLC vials.

5.2.2 Induction Time Measurement

Induction time (ti) is defined as the period between the point of constant
supersaturation and the instance of detection of crystals. The induction times were
obtained using the Crystall6 for four different initial supersaturation ratios
(So=co/c*) of PABA (S0=1.20, 1.26, 1.33, 1.40, T = 30°C) and LGA (So = 2.50, 2.67,
2.85, 3.05, T = 25°C). For each supersaturation ratio, a 50-mL solution (+0.0005
mL) was prepared in a stirred beaker by dissolving the corresponding amount of
PABA (£0.0005 g) in the solvent which was then heated to 10°C above the
saturation temperature for at least 20 minutes to ensure complete dissolution of
solute particles. A pipet (2.5 pL) was used to dispense 1 mL of clear solution into
1.8 mL HPLC vial which was then loaded into the Crystal16 setup and stirred for
20 minutes. The solution was then cooled down quickly (5°C/min) and maintained
at 30°C. The point at which the temperature inside the vessel reached 30° C was
taken as time zero. After some time, light transmission starts to decrease which
marks the onset of detectable nucleation. The difference between this time and
time zero was taken as the induction time. Then, samples were reheated at a rate
of 0.5 C/min up to 50°C to dissolve all crystals forming a clear solution. This heat-
cool-hold cycle was done 7 times per vial to obtain up to 112 induction time
measurements for each supersaturation ratio. All induction time measurements in
this work are based on a 900-rpm stirring speed to ensure complete mixing.

5.2.3 Extraction of Nucleation Rate from Induction Time

In the stochastic model, the probability of forming k nuclei in a time interval can
be described by the Poisson distribution which can be written as112

_ N¥exp(=N)
Pe=—0 (5.1)
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where N is the average number of nuclei and i is the random variable
corresponding to the number of nuclei formed. Consequently, the probability that
the onset of nucleation will be detected at a certain time interval corresponds to
the probability that at least one nucleus is formed which can be expressed as

N

k _
Ple=1) = Z : e)::!( 2 (5.2)

k=1

However, notice that the probability of forming at least one nuclei is just the
complement of the probability that no nuclei will form. Applying this mathematical
concept, equation (5.2) can be simplified as

Pk21)=1-Plk=0)=>Pk=1)=1-¢" (5.3)

In turn, the average number of nuclei N can be determined as

N =]JVAt

/ (5.4)
where ] is the nucleation rate, i.e. the number of nuclei that appears per unit
solution volume per unit time (#/m3s), V is the solution volume and At is the time
interval.

Meanwhile, the formed nuclei must grow to detectable sizes before they can be
observed experimentally by measuring equipment which causes a delay in
detection called growth time t4. Incorporating this lag time to equations (5.3) and
(5.4), the probability of detecting crystals at a time t can be expressed as

P(t)=1- exp[—](t — tg)] (5.5)

The cumulative probability distribution described by equation (5.5) can be
determined by measuring induction times under equal conditions for sufficient
number of isolated experiments which can be written as

M*(t)
M (5.6)

P(t) =

where M*(t) is the number of isolated experiments that nucleated at a time less
than or equal to time t and M is the total number of experiments. Thus, the value of
the nucleation rate J by the curve fitting of P(t) against induction time.
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5.3 Results and Discussion

5.3.1 Nucleation Rates from Induction Time

Probability Distribution

The induction time distributions of PABA and LGA for four different
supersaturations are shown in Figure 5.1a and Figure 5.1b respectively.
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Figure 5.1 Experimentally obtained cumulative probability distribution P(t) of
induction time for PABA (a) at supersaturation ratios S = 1.20 (blue A), 1.25 (green
o), 1.32 (orangee), 1.40(red =) and LGA (b) at supersaturation ratios S = 2.50
(blue A), 2.67 (green e ), 2.85 (orange #), 3.05 (red = ).

The results reveal large variations of induction times ranging from close to zero to
over 7 hours, even at identical conditions, which is indicative of the stochastic
nature of nucleation in small volumes. As expected, the variability of induction time
is higher in lower supersaturations since the probability of nuclei formation is
lower due to the lower driving force. To check whether thermal history due to
temperature cycling (Figure 5.2) has any influence on induction time, a plot of
induction times for different cycles is shown in Figure 5.3 for LGA at S=2.50.
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induction time induction time

Figure 5.2 Typical temperature profile used in induction time measurements via
Crystall6. The excellent agreement between set-point temperature (gray) and the
measured temperature inside the vial (orange) suggests an accurate temperature
control. A sample data for the evolution of transmissivity (green) for LGA is shown.

A mean R? value of 0.123 between induction time and cycle number was obtained
suggesting that the temperature cycle has essentially no influence on induction
time. Furthermore, it is evident that samples with relatively short or long induction
time in one cycle do not retain this behavior in the next cycles thereby providing
evidence that the temperature and time used for dissolution in each cycle are
sufficient to eliminate the “memory effect”. A similar behavior was observed for
both LGA and PABA at different supersaturations.
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Figure 5.3 Scatter plot of induction time against cycle number for LGA (So = 2.50).
The squared correlation coefficient R? of induction time with respect to cycle
number was calculated for each vial. The average R? for the 16 vials was found to
be 0.123 suggesting that induction time is not significantly influenced by cycle
number. Different symbols in each cycle represents different vials. The vials with
short induction time in one cycle do not necessarily have short induction time in
the next cycles. This supports that the “memory effect” does not have considerable
influence in the conditions employed. A similar behavior was observed for both
LGA and PABA at different supersaturations.
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Table 5.4 Nucleation rates (J]) and growth time (tg) obtained from the fit of
induction times to the stochastic model in equation (5.5).

So  J(m=3s1) Std.Error (m3s1) tg(s) Std.Error (s) R?

PABA 1.20 118.7 43 12735 14349  0.9727
(151.0) (5.40) (82.0) -
125 216.6 5.40 -464.5 54.26 0.9879
(224.0) (5.25) (63.0) -
132 506.7 18.3 -283.7 31.19 0.9596
(697.3) (26.4) (5.0) -
1.40 2733.0 67.1 9.9 4.03 0.9809
(2927) (50.8) (4.0) -
LGA 250 407.4 7.6 694.1 22.74 0.9808
(339.7) (7.0) (364.0)
2.67 5038 7.6 472.5 14.53 0.9883
(440.2) 6.7) (282.0)
286  777.2 7.7 139.5 5.91 0.9957
(751.2) (5.5) (112.0)
3.05 1293.0 14.3 84.5 3.96 0.9947
(1292.0) (9.7) (84.0)

Following the method proposed by the group of ter Horst#4, the nucleation rate J
and growth time t; can be extracted from the induction time distributions by non-
linear regression. The growth time is defined as the time required for the nuclei to
grow to detectable size. Note that for PABA, the growth time assumes a negative
value when treated as a parameter in non-linear regression (Table 5.4). This is
probably due to the fact that the experimental values do not conform well with the
Poisson distribution, as shown by its Kolmogorov-Smirnov (KS) number (Table
5.5) being greater than the critical value of 1.358 (a=0.05), particularly at lower
supersaturations. This suggests that the onset of nucleation cannot always be
modelled as a Poisson process. Unreasonable values of tg have also been observed
in other studies on isonicotinamide in ethanol44, PABA in water!22, benzoic acid in
toluene®®, and L-histidine in water19? which further suggest that the model
assumptions may be invalid for nucleation for some systems.
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The usual approach to circumvent this negative ¢y values is to set the growth time
as the minimum induction time (results shown as enclosed in parenthesis in Table
5.4). However, we believe that this is statistically inappropriate because the
smallest measurable induction time is a much stronger function of the number of
points measured than the physical description of growth time itself (i.e. small
numbers of measurements will give a high t; and infinitely large numbers of
measurements will give t5 values approaching zero).

In Table 5.4, observe that the relative standard error of the estimated parameters
is small (<5%) under the protocols of non-linear regression which suggests a good
fit of the data to the model. However, a more detailed description of the inherent
uncertainties associated with this nucleation rates has been subject to scrutiny in
recent papers119-120,135 and Kolmogorov-Smirnov (KS) analysis has been shown to

be appropriate for both hypothesis testing and quantifying confidence intervals.135-
136

5.3.2 Confidence Intervals of Estimated Parameters

Kolmogorov-Smirnov analysis allows for comparison of cumulative probability
distributions derived from experiment P(t) against that predicted by Poisson
distribution P*(t). If we denote D as the maximum absolute difference between the
corresponding P(t) and P*(t) and n as the number of independent experiments,
then the KS number can be defined as D+/n. If the KS number is greater than the
critical value C (1.358 for a = 0.05), then we can conclude that P(t) is likely not
following a Poisson distribution. As suggested by Maggioni and co-workers?, the
confidence interval of | can be written as

JA+n7)<J<JA+n*) suchthat —— = + -~ (5.7)

1+t

where ™ and ™ are the values of n by equating to negative and positive value of C
respectively. Note that this would result in asymmetric confidence intervals, i.e. the
distance from the estimated value to the upper bound is higher compared to its
lower bound counterpart.
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The result of this statistical analysis is tabulated in Table 5.5. Notice that the first
three supersaturations of PABA have KS numbers greater than the critical value
1.358, suggesting that the Poisson distribution does not well-represent the
experimental distribution.

Table 5.5 Confidence intervals of nucleation rates based on Kolmogorov-Smirnov
analysis.

95% Confidence Interval

S ] (m3s1) KS number

Lower Limit Upper Limit
PABA 1.20 151.0 2.09 105.1 215.8
1.25 224.0 1.41 157.8 318.1
1.32 697.3 1.46 491.1 990.1
1.40 2927.0 1.07 2003.5 4275.8
LGA 2.50 339.7 1.27 239.3 482.3
2.57 440.2 0.88 310.0 625.0
2.85 751.2 0.85 529.1 1066.6
3.05 1292.0 0.64 910.7 1835.9

Moreover, KS number is found to be relatively higher for lower supersaturation
than in higher supersaturation. Having an experimentally measured curve that
does not fit a Poisson distribution at 95% confidence may indicate that the
assumptions in the induction time model are not valid for some conditions
particularly at lower supersaturations. It is also worth noting that the confidence
intervals deviate by around 40% from the estimated value and are much higher
than the confidence intervals based on standard errors from non-linear regression.
Thus, the choice of statistical technique must be clearly indicated when reporting
confidence intervals. Overall, despite the wide confidence intervals obtained from
KS analysis, the upper and lower bounds are found to lie on similar order of
magnitude as the estimated value.

To determine whether these magnitude of nucleation rates can be used in the
actual design of industrial crystallization processes, the nucleation rates of PABA
and LGA were measured with a direct measurement of particle counts using in-situ
ORM.
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5.3.3 Comparing Nucleation Kinetic Parameters

The comparison of predicted primary nucleation rates obtained from the two
methods (particle count approach vs induction time distribution) are shown in
Table 5.6. Observe in that the magnitude of nucleation rate J from particle-count
approach is in the order of 10° while that of the induction time distribution
approach is in the order of 103. Indeed, the nucleation rates predicted by the
induction time distributions appear very low; if we take a solution of PABA at $=1.2
as an example, only 10 nuclei would form in a 1-mL solution after 24 hours if the
nucleation rate is taken as 119 # m-3s-1.

Furthermore, the differences become more evident when we analyze the
nucleation rates based on Classical Nucleation Theory (CNT)137 which states that
the primary nucleation rate ] can be expressed as a function of supersaturation as

J(S) = AS exp (— > (5.8)

In2 S

where A is a kinetic parameter which is a function of attachment frequency,
concentration of nucleation sites, and Zeldovich factor, while B is a thermodynamic
parameter which is related to the interfacial energy between crystal and solution
and molecular volume121, 138,
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Table 5.6 Comparison of predicted primary nucleation rates obtained from two
methods: via particle-count approach extrapolated back to stagnant solution and
via induction time distribution (Jina).

56 I (# m3s1) Rel. Std. JAT——— Rel. Std.
Error (%) Error (%)
PABA 1.20 56x10° 9.8 119 3.6
1.25 90x10°? 217 2.5
1.32 130x10° 507 3.6
1.40 200x10° 2733 2.5
LGA 2.50 3.0x10° 10.6 407 1.9
2.67 3.5x10° 504 1.5
2.85 4.9x10° 777 1.0
3.05 8.0x10° 1293 1.1

The parameters A and B can be estimated by non-linear regression in Figure 5.4
whose results are shown in Table 5.7. Notice that from both the stochastic model
and ORM measurement, the parameter B is of similar magnitude which agrees to
the formulation of B as a thermodynamic property.

1012 . . . : o

1011 ./-/’/. .

1010 -

Nucleation Rate (#m?s™)
33

1.0 1.5 25 3.0 3.5

Supersaturation Ratio

Figure 5.4 Estimation of CNT parameters of PABA from induction time
distributions (V¥) and from in situ ORM (e) and of LGA from induction time
distributions () and from in situ ORM (©) by fitting to equation (5.7) by non-linear
least square regression.
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Table 5.7 Estimated CNT Kinetic Parameter A and Thermodynamic Parameter B
obtained from stochastic model and ORM measurement via non-linear regression.

Method PABA Std. Error LGA Std. Error

Induction Time A(m=3s1) 5.46x10% 3.43x10* 4.70x103  2.24x103
B 0.0377 0.070 3.03 0.542
Particle Counts A (m3s1) 2.28x1011 3.10x101° 1.894x1010 9.94x10°

B 0.0579 0.010 2.51 0.589

These results suggest that the stochastic model can predict surface energies that
are reasonably consistent with other measurement technique. On the other hand,
the kinetic parameter A obtained from such model (103 to 10* #m-3s-1) is several
orders of magnitude lower than that obtained via ORM measurement (101° to 1011
#m-3s1),

In literature, the theoretical order of magnitude of the kinetic parameter A36 139
ranges from 10715 to 102> #m-3s-1 which is much closer to what we have obtained via
in-situ ORM measurements. In a review, the value of A is given as 103% #m-3s-1 ‘plus
or minus a few orders of magnitude’ for homogeneous primary nucleation, and
1010 to 1020 for heterogeneous primary nucleation!49, Furthermore, experimental
studies on a-L-glutamic acid!#!, y-DL-methioninel3?, benzoic acid4? and L-
asparagine monohydratel43 also revealed A values of around 107 to 1013 #m-3s-1.
The group of ter Horst'¥ made a review of previous studies involving
homogeneous and heterogeneous nucleation of both ionic and molecular
compounds, and found A values from experiments were of the order 1017 - 1038
#m-3s-1 for ionic compounds, and 1011 - 1028 #m-3s1 for molecular compounds.
Recent studies using microfluidics to measure nucleation have found similar values
for A; values in the range of 108 - 1016 were quoted for lysozyme.5! This data
suggests that although the stochastic model may be used to estimate surface
energies, we believe that it predicts values of the pre-exponential factor A that are
too small for industrial applications. What is not clear is whether the discrepancy
is due to the assumptions in the model being invalid, or whether it is due to the
conditions in which the nucleation occurs in small scale induction time
experiments being substantially different to the conditions experienced in larger
scale experiments. This may cause a distinct difference in the number of
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heterogeneous nucleation sites available, thus substantially changing the
preexponential factor and the kinetics of the nucleation.

Nevertheless, we believe that the difference in scale (1 mL vs 100 mL) alone does
not explain the six orders of discrepancies presented herein. The influence of scale-
up factors such as energy dissipation rate, turbulence, and mixing collisions are
mainly attributable to secondary nucleation rate rather than primary nucleation.
As justified earlier, our proposed method of extrapolating to zero agitation
essentially removes the effect of secondary nucleation allowing us to estimate the
primary nucleation rate. It is worth noting that primary nucleation, a first-order
phase transition, occurs at the molecular level and is generally assumed to be very
insensitive to macroscopic fluid dynamics (such as velocity and shear stress
distribution, formation of turbulent eddies, etc.), which is why classical theories for
both homogeneous and heterogeneous nucleation do not include terms related to
fluid dynamics. As mentioned, there is some recent evidence of the effect of shear
on primary nucleation?> but this effect has been shown to be positive for some
values of shear and negative for others, and thus, could not be responsible for ca 6
orders of magnitude differences in rates of primary nucleation.

The reason for this huge discrepancy could then be due to the intrinsic
assumptions of the stochastic model of nucleation. Note however that this
contribution does not intend to invalidate the assumptions of the stochastic model
entirely, nor propose a relevant model modification, but mainly show that its
predictions inconsistent with other techniques at larger scales even if the effect of
secondary nucleation is made to approach zero as shown in this work. Nonetheless,
we will mention some possibilities which could explain the observed discrepancy.
A detailed discussion of the assumptions used in the probabilistic approach and
their corresponding issues have been presented by Bhamidi and co-workers®é. The
group of Mazzotti has also shown that it is not possible to obtain independent
information about both nucleation and growth kinetics from induction time
measurement alone as this results in fitted parameters being correlated!4>.
Another possibility for the difference between predicted and experimental primary
nucleation rates is that the model assumes that there is effectively no relaxation
time for the molecules in the mixture to attain a state suitable for the nucleation
event to occur. Potentially there is a lag time before the first attempt at nucleation
can occur, thus increasing the value of the parameter tg. In fact, it was found in some
cases that this nucleation delay time is much longer than both nucleation time and
growth timel46, in contrary to the model assumptions.
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In addition, the Poisson model is mathematically applicable if and only if the
formation of each nuclei is completely independent of each other and all nuclei are
formed with equal probabilities across the time interval. However, several
experimental studies indicate that nucleation proceeds deterministically after the
formation of the first nucleus.120 The observed influence of the earlier nuclei to the
succeeding nuclei has led the group of ter Horst!47 to conclude the occurrence of
single nucleus mechanism (SNM) which postulates that the entire crystal
population subsequently originates from the first stochastically-formed single
crystal. Although this theory is well-supported by experiments whereby pure
polymorphic form appear under conditions of concomitant polymorphism,147 this
would imply that the conventional definition of primary nucleation i.e. the number
of stable nuclei formed from solution per volume per time, will not be a measurable
quantity from an industrial perspective if the second nuclei is assumed to originate
from the first nuclei.

5.4 Conclusion

In this chapter, I compared the nucleation kinetic parameters obtained from L-scale
particle-count approach against the mL-scale induction time approach using p-
aminobenzoic acid (PABA) and L-glutamic acid (LGA) as model compounds. The
results show that the induction time approach results in kinetic prefactors in the
order of 103-10% m3s-1 which is about 6 orders of magnitudes lower than that
obtained from particle-count approach. Although the stochastic model has been
used extensively in literature for quantifying crystallization kinetics, these results
provide strong evidence that nucleation rates obtained from such model may not
be used as reference for scale up and design of industrial crystallizers and we
suggest limiting its use to estimating interfacial surface energies rather than
extracting numerical values of nucleation rates. It is possible that the variation of
induction times may only describe the stochasticity of the onset of nucleation and
may not carry sufficient information to describe nucleation kinetics quantitatively,
particularly in the context of industrial applications.
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Chapter 6
Quantifying Nucleation Kinetics:

A Multi-scale Comparison

In the previous chapter, [ have shown that two different methods for the same
compound-solvent system can result in nucleation parameters that have
differences of 6-7 orders of magnitude. I have shown that methods based on
induction time give inherently low values of the pre-exponential factor A but
interestingly, both methods give relatively similar value of the thermodynamic
parameter B which is related to the effective interfacial energy yefrbetween crystal
and solution. To further shed light into this huge discrepancy in the kinetic factor
4, in this chapter; | quantified the nucleation kinetics using additional experiments
namely, liter-scale conductometry and microliter-scale microscopy which both
measure induction time. The results show that A is highly dependent on the
measurement technique and model assumptions while yetf is dependent on the
supersaturation level and system volume. This chapter highlights that careful
attention is needed in interpreting nucleation kinetic parameters acquired from
different scales and measurement techniques.
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6.1 Introduction

Reliable quantification of nucleation kinetics is key in the design and scale-up of
industrial crystallization processes. For this reason, several methods in quantifying
nucleation kinetics have been developed across different scales. For instance, in
large-volume agitated systems (~1L), the use of process-analytical technology such
as laser backscattering has been widely used in estimating nucleation parameters
based on particle counts, induction time or metastable widths. In 1-mL scale, a
turbidimetry-based crystallizer platform has been employed to extract nucleation
parameters from induction time distributions. In pL to nL scale, microfluidics
approaches have been successfully employed to obtain such parameters either by
induction time distributions or double-pulse techniques. Note that some of the
results in L (particle count approach) and mL scale crystallizer (induction time
approach) were already presented in chapter 4 and 5.

Given that each of these methods mentioned above are based on very different
volumes, fluid dynamics, instrumental techniques, and model assumptions, it
remains unclear whether the kinetic parameters obtained from each method have
comparable magnitudes. Consequently, whether we could reasonably use a kinetic
parameter obtained from one technique to describe the kinetics occurring in a
different scale is still an unresolved question. To address this, we present a
multiscale study where we quantify the nucleation kinetics of a pharmaceutical
compound across pL, mL, and L scales and across various data treatment
procedures. We then rationalize the observed discrepancies in terms of nucleation
principles, model assumptions, hydrodynamics, and instrumental limitations. Our
findings will not only shed valuable insights on the fundamentals of nucleation but
may also guide researchers and industries in deciding which experimental protocol
and data treatment are appropriate for their specific purpose.
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6.2 Material and Methods

With p-aminobenzoic acid (PABA) in 30% by weight ethanol-water mixture as
model system, we performed nucleation rate measurements using various
techniques at different scales. As an overview, a schematic illustration of each setup
is shown in Figure 6.1.
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Figure 6.1 Overview of the experimental setup across different scales (a) liter-
scale particle count approach (b) liter-scale deterministic induction time approach
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6.2.1 Liter Scale

(a) Particle Count Approach. I used optical reflectance measurement (ORM)
coupled with in-situ Raman spectroscopy to track the evolution of number of
particles and solution concentration. The setup is shown in Figure 6.2. In the
estimation of primary nucleation rate, we empirically assumed that the rate of
secondary nucleation varies exponentially with agitation speed. Thus, upon
extrapolating the nucleation rate to zero agitation, we extract the primary
nucleation rate. A detailed description of this process is presented in Chapter 4.
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Figure 6.2 (a) Schematic diagram of the experimental setups for liter-scale particle
count approach (b) Photograph of the induction time measurement setup (c)
Typical evolution of calibrated quantities: crystal size (L3,0), number density, and

supersaturation ratio.
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(b) Deterministic Induction Time Approach. Since PABA partially ionizes in
solution, we used a solution conductometer to determine the onset of nucleation
The setup is shown in Figure 6.3. The system is agitated with an overhead stirrer.
The induction time is taken deterministically as the inverse of nucleation rate, that

is, ti= 1/(JV).
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Figure 6.3 (a) Schematic illustration of the L-scale induction time measurement
setup via solution conductometry (b) Photograph of the setup (c) Typical evolution
of relative conductivity and temperature. The time elapsed between the
attainment of the final temperature and the onset of sustained decrease in
conductivity is taken as the induction time.
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6.2.2 Milliliter Scale

(a) Probabilistic Induction Time Approach. [ used a commercial crystallizer
platform Crystall6 that determines the onset of nucleation from the increase of
system turbidity. A total of 112 induction times were obtained which were then
fitted with Poisson distribution function as suggested by Jiang et al.112 A detailed
description of this process is presented in Chapter 5.

(b) KBHR approach. I compared our results to that of Turner et al°® who reported
the concentration of nucleation sites and interfacial energy between PABA crystal
and water.

Both approaches uses the setup in Figure 6.4a (based on transmissivity of light to
detect crystals) but they employ different mathematical treatment and
temperature profile as illustrated in Figure 6.5. In induction time approach, the
system is cooled quickly to a final temperature which is then kept constant while
waiting for the nucleation event (isothermal experiment). Then, the distribution
of induction time is fitted with a probability distribution (in this work, Poisson
distribution). On the other hand, KBHR approach is deterministic and employs a
polythermal experiment to measure the undercooling AT. across various cooling
rates. The full description of the model is given by Camacho et al.148
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Figure 6.4 (a) Schematic illustration of the setup, (b) typical temperature profile
and evolution of transmissivity in induction time approach and (c) KBHR
approach.
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6.2.3 Submicroliter Scale

The microfluidic setup is based on the work of Peybernes®! which is illustrated in
Figure 6.5. This allows the production of monodisperse supersaturated droplets
directly from powder in a thermostatic bath.
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Figure 6.5 (a) Schematic illustration of the microfluidic setup (b) Image of the
microfluidic setup (c) Image of the portable spiral template containing droplets
that facilitates the transfer from the generation bath to the observation bath.

Briefly, the solvent flows through the 30-mg powder bed (1-mm inner diameter,
10 cm long) which is connected to a 500-nm filter. Due to the miniature scale, the
solvent that passes through the powder bed rapidly reaches equilibrium and so the
liquid that comes out from the filter is always saturated.®? Saturated droplets are
then generated by cross-flowing in a T-junction with the continuous phase

(GPL106 oil, Kryptox®). Then, supersaturation is generated by quickly transfering
88



the spiral template (containing droplets) to the observation bath at a much lower
temperature (around 10°C). The droplets are then monitored using an xyz-
motorized microscope (Opto GmbH). The induction time of 80 droplets (570 nL)
were measured by analyzing the time-stamped image sequence.

6.3 Results and Discussion

Figure 6.6 shows the results of the nucleation rate measurement corresponding to
each experimental method (shown in Figure 6.1).
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Figure 6.6 Results of nucleation rate measurement corresponding to each
experimental method in Figure 6.1. (a) evolution of number density and
supersaturation in the liter scale particle count approach (b) nucleation rate as a
function of supersaturation based on induction time approach in the liter scale (c)
cumulative probability of nucleation as a function of induction time for mL scale
(d) cumulative probability of nucleation as a function of induction time in pL scale.
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In the liter scale particle-count approach (Figure 6.6a), we track the evolution of
the number density and supersaturation as a function time. The supersaturation
obtained from laser backscattering (via mass balance with particle size and
number density) agrees well with Raman spectroscopy measurements, validating
our calibration protocol. The experiments were performed at different
supersaturations and different agitation rates following the procedure in Chapter
4.1n liter scale deterministic induction time approach, we calculated the nucleation
rates using J = 1/Vti where V is the solution volume and ¢i is the induction time and
were plotted as a function supersaturation in Figure 6.6b. The data points are
qualitatively consistent with the fit of classical nucleation theory. Both mL scale
(Figure 6.6c) and pL scale (Figure 6.6d) use the same data treatment which is
fitting the induction time distribution with Poisson function from which nucleation
rate can be estimated. Notice that in pL scale, very high supersaturation is required
since the probability of nucleation is low in small volumes.

Now, we compare the nucleation kinetics obtained across different scales and
techniques. In Figure 6.7, we see that methods based on induction time results in
relatively low nucleation rates compared to KBHR approach and particle counts.
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Figure 6.7 Nucleation rates obtained across various scales and techniques. Data
points are fitted with classical nucleation theory.
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The estimated kinetic parameters together with additional literature values are
summarized in Table 6.1. Notice that methods based on induction time have
consistently low magnitudes of kinetic pre-exponential factor (less than 106 m-3s-
1) while other methods such as that of the particle-count approach and the KBHR
analysis are consistent at 101! m-3s1 regardless of the scale. This supports the
findings in Chapter 5 which implied that induction time approaches in agitated
systems may not be used as reference for industrial scale applications as they
inherently give low values of the kinetic prefactor.

Table 6.1 Fitted nucleation parameters obtained across various scales and
techniques. Data points are fitted with classical nucleation theory.

Scale A (m3s1) vyerf (m]/m?2) Measured Quantity Model

Particle Counts Exponential
L 2.3 x1011 2.04 : 2° Nucleation
(laser backscattering) .
vs Agitation

Induction Time

L 44 1.70 ti=1/JV
(conductometry) /)

mL 55x10* 1.76 Induc-tlf)n time Poisson
(turbidimetry)

mL Induction time

~104 1.33-2.24 Poi
(Sullivan et al.)s? (turbidimetry) osson
L MSZW

gl ~1011  1.13-2.71 s KBHR

(Turner et al.)? (turbidimetry)
Induction ti

uL 9.4 x106 13.7 netetion ime Poisson
(microscopy)

uL 105 I Ind-uction time Poisson

(Nappo et al)?> (microscopy)

On the other hand, all the methods investigated seem to give relatively consistent
values of the effective interfacial energy yefrbetween crystal and solution except for
the pL scale which is done at a much higher supersaturation ratio (Figure 6.7). The
high value of yefr is indicative of a high thermodynamic barrier for nucleation. This
could be explained by the fact that nucleation in microfluidics require very high
supersaturation, thus making homogeneous nucleation the predominant
mechanism. This is also because the use of miniature volumes minimizes the
presence of impurities and foreign surfaces which can act as heterogeneous
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nucleation sites (which can lower the energy barrier). In contrast, if we compare
the methods based on induction time, notice that as the volume decreases, the pre-
exponential factor A increases. This is can be rationalized from the increase in
surface to volume ratio which can favor the heterogeneous mechanism leading to
higher pre-exponential factor. As aresult, there is a complex interplay between the
supersaturation level, the influence of purities, and the surface-to-volume ratio
which all impact the measured kinetic parameter.

Overall, as demonstrated by our experimental results in conjunction with literature
values, the values of nucleation parameters can be highly sensitive to the measured
quantity and the volume scale. The discrepancy could be due to the limitation of
the models used in correlating induction time with nucleation rate. Another
possibility is the interplay of hydrodynamics (agitation efficiency, presence of
turbulence, spatial homogeneity, etc) and heterogeneous nucleation (at the surface
of impellers, stirrer bars, baffles, crystallizer walls, etc). The influence of these
interfering factors is not well understood nor directly quantifiable. Thus, careful
attention must be done in using them as reference in the scale up and design of
industrial crystallizers.
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6.4 Conclusion

In this chapter, | have performed multiple comparison of nucleation kinetics across
different scales (L, mL, pL) and measurement techniques (particle counts,
deterministic induction time, probabilistic induction time) using p-aminobenzoic
acid in water/ethanol as a model system. Upon comparing my results together
with literature data, | have shown that measurements across different scales and
techniques can lead to significantly different values of nucleation kinetic
parameters. The pre-exponential factor A4 is highly dependent on the measurement
technique and model assumptions while the effective interfacial energy yes
between crystal and solution is dependent on the supersaturation level and system
volume. This suggests that in the design of industrial crystallizers, careful attention
must be done in terms of the transferability and scalability of kinetic data. Aside
from the differences in the model assumptions, I hypothesize that the observed
discrepancies could be due to two practical reasons: (1) limitations of existing
models in correlating induction time and nucleation rate (2) differences in foreign
surfaces and fluid dynamics. In agitated systems, the influence of the foreign
surfaces (impellers, crystallizer walls, baffles, analytical probes, impurities) which
could act as heterogeneous nucleation sites are not well-characterized. Moreover,
the impact of fluid dynamics on nucleation mechanisms is currently not well-
understood quantitively. This highlights that more research is needed to fully
understand the influence of interfering variables (fluid dynamics, surfaces, etc) in
order to compare nucleation kinetic measurements obtained across different
scales and techniques. Consequently, if we intend to study the fundamentals of
nucleation, an experiment that minimizes the interference of hydrodynamics,
impurities, and uncharacterized surfaces would be needed. This can be achieved
using stagnant microfluidics, which will be the subject of the next three chapters.

93



Chapter 7
Probing Nucleation in Microdroplets via

Image Analysis: Effect of Diffusive Interactions

In the previous chapters, [ have focused on the quantification of nucleation kinetics
in the context of industrial crystallizers where agitation is required. I have shown
that careful attention must be made in the interpretation of scalability and
transferability of kinetic data. This is partly due to the influence of fluid dynamics
(agitation speed, turbulence) and foreign surfaces (crystallizer walls, impellers,
baffles) which results in a complex interplay of homogeneous nucleation,
heterogeneous nucleation, and secondary nucleation. Thus, if we intend to study
homogeneous primary nucleation at a more fundamental level, there is a need to
minimize the effect of other interfering mechanisms. This can be achieved using
stagnant microfluidic systems. Studies have shown that in microdroplets
surrounded by hydrophobic surfaces, nucleation tends to occur at the center and
not on the droplet-oil interface, thereby promoting the homogeneous nucleation
mechanism. In this chapter, [ studied the nucleation kinetics of aqueous NaCl using
our in-house developed microfluidic setup. To investigate the effect of diffusive
interactions between microdroplets, I improved the existing numerical approach
for automated detection and characterization of the interactions via image analysis.
This allowed the classification of each microdroplets in terms of number of
interactions. I also highlight that this method can detect minuscule diffusion-
mediated interactions, which would be otherwise unobservable using traditional
microscopy techniques. Furthermore, I show that failure to account for these
interactions in the analysis of kinetic data can lead to severe inaccuracies in the
estimated nucleation parameter. Moreover, with the help of our in-house
developed humidity regulation module, I show that diffusion interactions
disappear at low relative humidity.

Parts of this chapter are in preparation for submission to Crystal Growth & Design
as:

Cedeno, R.; Grossier, R.; Lagaize, M.; Candoni, N.; Flood, A. Veesler, S.,
Nucleation in Sessile Microdroplets: New Approach for Measuring Induction
Time.
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7.1 Introduction

The complex interplay of homogeneous, heterogeneous, and secondary nucleation
makes it difficult to study the fundamental aspects of primary nucleation in
agitated systems where the effect of hydrodynamics and foreign surfaces are not
directly quantifiable. Moreover, nucleation is inherently stochastic, that is, a
statistical analysis of numerous independent experiments is needed in quantifying
nucleation Kinetics. To study primary nucleation at a more fundamental level, we
address the aforementioned issues by developing a microfluidic setup allowing
facile generation of monodisperse arrays of sessile microdroplets, immersed in an
oil film, which can serve as evaporative microcrystallizers.®3 Our previous work
has shown that the standard deviation of the grey-level pixels o is a useful
parameter in probing the microdroplet dynamics, particularly the onset of
nucleation.?! It has also been illustrated that although spatial heterogeneity in
evaporation rates exists among droplets, a reproducible statistical distribution of
nucleation times can be obtained upon appropriate normalization.

While the experimental protocol described is a promising approach for nucleation
studies, it has been observed that droplets can interact with other droplets. This is
because when one droplet crystallizes, water diffuses to the neighboring droplet
due to differences in chemical potentials. This leads to nucleation events that are
not completely independent from each other. In this work, we show that by
analyzing the oscillations in the o-curves, we can account for these diffusion-driven
interactions leading to reliable measurement of induction time distributions. Here,
we also demonstrate that failure to account for these diffusive interactions can lead
to large errors in the estimated nucleation kinetic parameters. However, given that
the droplets that are affected by such interfering interaction must be excluded, the
statistical quality of the measured independent nucleation events is reduced. To
address this, we incorporated a humidity regulation module to our setup. We show
that by lowering the relative humidity, the diffusive interactions disappear
allowing the use of all the droplet population for analysis.

7.2 Materials and Methods
7.2.1 Details of Instrumentation

The setup used in the microdroplet generation together with its humidity control
module is illustrated in Figure 7.1.
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Figure 7.1 Schematic diagram of the microdroplet generation system with
humidity control module.

To avoid microdroplet spreading and coalescence, we coated the glass cover slip
with a hydrophobic PMMA resin. For this, glass coverslips (18-mm diameter,
cleaned via plasma treatment) were spincoated at 4000 rpm for 1 min (SPIN 150,
SPS) with PMMA which were then annealed for 10 min at 170°C. The coverslips
were then covered with a 0.8 mm thick layer of PDMS oil. The saline microdroplets
were generated on the cover slip by a micropipette with an internal diameter of 0.5
pum (Femtotip Eppendorf). The micropipette is mechanically controlled by a home-
made motorized micromanipulator consisting of 3 miniature translation stages
(piezo electric, MS30 Mechonics) which allows displacement of the micropipette
holder in three dimensions by steps of 16 nm. A series of 16-bit images were
obtained using an optical microscope (Zeiss Axio Observer D1 equipped with an
ANDOR neo sCMOS camera). Images were processed using FIJI software (Image ],
NIH, USA) which calculates o for each region containing microdroplets. A detailed
description of this procedure has been presented previously®3 while the details of
the chemical products are shown in Table 7.1
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Table 7.1 Details of chemical products

Product Vendor Properties

Sodium chloride, NaCl R.P Normapur ® | Purity =99.5%

Refractive index = 1.5442
Polymethylmethacrylate, | ALLRESIST GmbH | Molecular weight= 950,000

PMMA g/mol

Refractive index = 1.395
Polydimethylsiloxane, Alfa Aesar Molecular weight = 1250 g/mol
PDMS oil Viscosity = 10 cSt

Refractive index = 1.3990
Ultrapure water via Milli-Q Purifier | resistivity = 18.2 MQ'cm

TOC value < 5 ppb

7.2.2 Microdroplet Generation

We generated arrays of 20 pL microdroplets on a polymethylmethacrylate (PMMA)
surface, with droplets submerged in 0.8 mm thick polydimethylsiloxane (PDMS) oil
(10 cSt) using the method described in Ref ¢3. The saline droplets (initially at 4.9 M
NaCl) were allowed to evaporate at a relative humidity (RH) of 63%. Sessile
microdroplets were then observed under a transmission optical microscope.
Snapshots were taken every 4 s for 80 minutes and images were analyzed using the
procedure of Grossier et al?1. Briefly, the standard deviation of the gray-level pixels
o of the microdroplet image is probed. This parameter is related to the absolute
difference in refractive index between the droplet and the oil |An| which in turn is
a function of droplet’s solute concentration. When |An| = 0 (oil and droplet
refractive index match, which occurs when the supersaturation ratio S = 1.395 for
aqueous NaCl solutions as shown in Figure 7.2), the droplet optically disappears
and this corresponds to a minimum o. Concentrations lower or higher than S =
1.395 would therefore lead to an increase in o. At nucleation, a sudden change in
refractive index occurs leading to a highly observable “jump” in the o-curve. Thus,
it can be efficiently used to measure induction time.
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Figure 7.2 Refractive index as a function of supersaturation ratio. The refractive
index of the droplet matches that of the PDMS oil at S = 1.395.

7.2.3 Humidity Regulation

Air is pumped and passes through a series of water bath (80°C and 25°C) and then
the excess vapor is collected in a vessel (Figure 7.1). To assess the speed at which
the humidity can be changed in our humidification system, we measured the RH in
the microdroplet generation chamber with “dry” air (directly obtained from
compressed air pipelines) and our humid air as shown in Figure 7.3. This suggests
that our humidity control system can almost instantaneously change the RH of our
microdroplet generation chamber (negligible lag period). We also show we can
maintain a reasonably stable RH as needed.
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Figure 7.3 Assessment of the humidity regulation module showing a minimum
and maximum RH of 10% and 95% respectively.
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7.2.4 Numerical Detection of Oscillations

In the time interval between matching time tm and nucleation time t,, we applied a
Savitzky-Golay smoothing filter to remove tiny oscillations due to random noise.
To obtain the number of oscillations, we used the signal-processing algorithm of
Du et al14.

7.3 Results and Discussion

The typical microdroplet images for specific times are shown in Table 7.2 and the
plot of o with time of four representative microdroplets is shown in Figure 7.4. As
the monodisperse microdroplets evaporate, their concentration increases until the
supersaturation ratio reaches 1.395 where the refractive index of the droplet
matches that of the oil making it optically disappear. This point (at 25 min)
corresponds to the minimum in the o-curve (Figure 7.4). As it continues to
evaporate, its concentration departs from S = 1.395 so o starts to increase until a
sudden “jump” occurs indicating the occurrence of nucleation.

Table 7.2 Typical microdroplet images at t = 0, 25, 80 min.

time (min) S Microdroplet Image
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Figure 7.4 Evolution of o of 4 neighbouring microdroplets denoted as droplet h,i,j,k

7.3.1 Effect of Diffusive Interactions

Due to the stochasticity of nucleation, droplets are not expected to nucleate at the
same time. However, we have observed that induction time tends to systematically
increase due to the presence of oscillations (waves) in the o curve prior to
nucleation. This oscillations are in fact due to the oscillations in droplet
concentration because of the diffusion of water from already nucleated droplets
nearby?l. For instance, in the four consecutive droplets in Figure 7.4, droplet k has
3 oscillations prior to nucleation, and it is the slowest while droplet h with no
oscillation is the fastest.

To verify this trend, we plot the cumulative probability distribution of 370
microdroplets as a function of induction time in Figure 7.5
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Figure 7.5 Cumulative probability of nucleation as a function of induction time,
classified according to number of sigma-oscillations, for the all arrays (370

microdroplets).

We clearly see that more oscillations lead to longer induction time. For nucleation
kinetic studies, only droplets with no oscillations must be considered for analysis
to obtain a meaningful distribution of independent nucleation events. This
suggests that when one fails to account for these interactions, one would end up
with a completely different curve (the purple curve in Figure 7.5) which would
result in inaccurate estimation of kinetic parameters. For example, the mean
induction time for independent droplets (75 out of 370) is 44 min while that of the

entire sample is around 59 min.

To exemplify the importance of accounting the diffusive interactions, let's assume
a constant evaporation rate.’> Under this assumption, we calculated the mean
supersaturation at nucleation S» and the nucleation rate / and the results are shown
in Table 7.3. The calculated supersaturation ratio at nucleation would then be 2.35
for independent droplets (no oscillations), and would be 5.07 if we analyze the
entire sample; this is an unphysically large value of S. In reality however, the
evaporation rate is not constant due to the reduction of water activity at high

concentrations.
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Table 7.3 Comparison of mean supersaturation at nucleation, nucleation rate, and
interfacial energy between crystal and solution with no o-oscillations (¢ = 0)
against that of all data set

€ =0 (unperturbed) all data set

Mean S at nucleation, S» 2.35 5.07

Nucleation Rate, J 6x1010 m-3s-1 8x1010 m-3s-1

Nevertheless, the large discrepancy in the measured mean induction time and the
predicted supersaturation ratio illustrates the significance of accounting the
diffusive interactions in the data treatment. Since the change in volume due to
water diffusion is too small compared to the optical resolution, these interactions
are unobservable in traditional microscopy techniques however as we show here,
it can be easily detected as oscillations in our o-curve analysis. With our image
analysis protocol, this is clearly visible leading to a reliable induction time
distribution measurement.

7.3.2 Eliminating Diffusive Interactions

As mentioned earlier, due to diffusive interactions, some of data points must be
eliminated in the analysis which consequently reduces the statistical quality of the
estimated nucleation parameter. For instance, in the example shown, only 11% of
the microdroplets are usable for the subsequent analysis. Therefore, there is a need
to eliminate the interfering diffusion-mediated interactions. In principle, this can
be addressed by maximizing the separation distance between droplets. However,
with our current setup, although the droplet size can be controlled by adjusting the
injection pressure and the translation speed of the micropipette, there is no direct
option to control the separation distance of each droplet. One plausible option
would be to generate large droplets with very low concentrations so it would have
to considerably decrease in size before nucleation (thereby increasing separation
distance at nucleation). However, as more water needs to diffuse from the droplet
to the oil medium, this could introduce a considerable change in local humidity
whose impact on evaporation rate is not easily quantifiable.

Our solution is to lower the relative humidity RH which increases the driving force
for evaporation. The idea is that when water diffuses out of the nucleated
microdroplet, the low RH at the oil-air interface would enhance the diffusion
upward (into the air) thereby preventing the accumulation of water in the oil
phase. In other words, the driving force for evaporation would be high enough to
prevent water vapor from diffusing to neighboring droplets. To verify this, we
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performed a similar with experiment but at different RH. If the diffusive
interactions were absent, there should be no observable oscillations in the o-curve
prior to nucleation. Thus, we compared the o-curves for experiments at 55% RH
and at 10% RH in Figure 7.6. Indeed, the result confirms the successful
elimination of the diffusion-mediated interactions.
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Figure 7.6 Evolution of o for 25 randomly selected microdroplets that corresponds
to different relative humidity RH (a) RH = 55% and (b) RH = 10%. The o oscillations
prior to nucleation disappear at low relative humidity.

Note that this has an important implication. By eliminating the interfering
interactions, there will be no need to discard data points so all the experimental
points can be used for subsequent analysis.

7.4 Conclusion

In this chapter, I investigated the diffusive interactions of saline microdroplets
under PDMS oil. I have shown that diffusion-mediated interactions between
evaporating microdroplets must be accounted for in estimating nucleation kinetic
parameters, that is, only the population of droplets that are not affected by such
interaction must be used in the analysis. Failure to account for diffusive
interactions can result in severe inaccuracies in the measured nucleation kinetic
parameters. However, this procedure consequently reduces the number of usable
droplets because majority of the microdroplets would have to be excluded (90%).
To address this, | have shown that the interfering interactions can be achieved by
lowering the relative humidity to 10%. As a result, 100% of the microdroplet
population can be used for the quantification of nucleation kinetics.
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Chapter 8
Nucleation in Sessile Microdroplets: Measuring

Induction Time via Deliquescence-Efflorescence Cycle

In the previous chapter, [ have demonstrated that failure to account for diffusive
interactions can lead to huge errors in nucleation parameter estimation;
fortunately, its interference can be eliminated by lowering the relative humidity. In
order to quantify nucleation kinetics in these systems, induction time must be
defined properly. For crash cooling experiments, induction time is measured by
setting the time zero as the point in which the final temperature is achieved.
Similarly, for antisolvent experiments, the time zero is set at the time at which the
final supersaturation is reached. However, for evaporative crystallization, the final
supersaturation is not fixed since it evolves continuously with time. Thus, to
measure induction time, the time zero must be defined at the point in which the
solution is saturated and thus has the possibility to nucleate. Otherwise, the
measured induction time would be highly sensitive to the arbitrarily chosen initial
concentration, i.e. more dilute starting solution would systematically take more
time to reach the nucleation zone. Indeed, in evaporating system, induction time
must be taken as the difference between the time to reach the nucleation point ta
and the time to reach the saturated solution tsat. However, in the image analysis
approach presented in the previous chapter, the time at which the microdroplet
reaches saturation is experimentally inaccessible (without assuming a model of
evaporation rate). In this chapter, [ address this by developing a new protocol for
measuring induction time via deliquescence-efflorescence cycle.

Parts of this chapter are in preparation for submission to Crystal Growth & Design as:

Cedeno, R.; Grossier, R;; Nerini, D.; Lagaize, M.; Candoni, N.; Flood, A.; Veesler, S.,
Nucleation in Sessile Microdroplets: New Approach for Measuring Induction Time.
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8.1 Introduction

Nucleation is the step that determines how long we must wait before the
appearance of a stable crystal cluster in a supersaturated solution.#! This “waiting
time” is referred to as induction time which is a function of the nucleation rate and
the system volume. Most induction time measurements are carried out at constant
supersaturation for the sake of simplicity of data interpretation and modeling.#1
However, in reality, most nucleation processes occur at varying supersaturation,
either by cooling, antisolvent, or evaporative crystallization.*> Thus, a thorough
understanding of the nucleation kinetics of such systems is important.

Due to the stochastic nature of nucleation, a statistical analysis of numerous
independent induction times is needed to quantify nucleation kinetics. This can be
addressed by using droplet microfluidics which allows multiple simultaneous
independent experiments with a very small amount of material.57 In the context of
experiments with time-varying supersaturation, induction time can be defined as
the “waiting time” starting from the moment the solution exceeds the saturated
state*> since nucleation cannot occur in undersaturated systems. For this reason,
the time evolution of system concentration is required in the data treatment. In
large volumes, this is done conveniently by measuring the temperature or
concentration profile using standard probes and process-analytical tools.
Unfortunately, in evaporative microdroplet experiments the determination of
concentration and the time at which the system is saturated often requires
assuming a specific value of evaporation rate which depends on the complex
interplay of several factors such as humidity, droplet size, contact angle, etc.67 151

Previously, we have shown that a simple and efficient digital-image processing
method based on the standard deviation of the grey-level pixels of a single
microdroplet and its immediate vicinity (denoted as o) is useful in probing the
microdroplet dynamics, particularly the onset of nucleation?! 152, [n order to
conveniently quantify nucleation kinetics in these systems, other issues must be
addressed. First, each droplet is generated sequentially so the initial time for each
dropletis different leading to additional complications in the data analysis. Second,
considering that induction time tind is the “waiting time” for nucleation in a
supersaturated solution, it can be defined as the difference between the time to
reach the nucleation point tn and the time to reach the saturated solution tsat.

tind = tn - tsat (81)
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However, in the previous protocol, the time at which the microdroplet becomes
saturated tsat is experimentally inaccessible, yet it is needed in defining induction
time.

In this chapter, [ develop a new approach to measure induction time by performing
a deliquescence-efflorescence cycle. Then using our measured induction times, we
show that our estimated interfacial energy y (between crystal and solution) for
NaCl-brine system is consistent with literature values.

8.2 Materials and Methods

As described in our previous work,?l we used the gray-level pixel standard
deviation o of the microdroplet image to track the microdroplet dynamics.
Following this approach, we employed a mechanically controlled micropipette to
generate arrays of monodisperse aqueous NaCl microdroplets (1.7 M) on the
surface of a PMMA-coated glass slide immersed in a 0.4mm-thick layer of PDMS oil
(10 cSt).

As mentioned, the time at which nucleation occurs can be easily measured but the
time at which the solution is saturated could not be accessed experimentally. To
address this, our approach here takes advantage of the deliquescent nature of NaCl.
In principle, when the prevailing relative humidity RH is less than the
deliquescence point RHo (75% for NaCl at 25°C), water evaporates from the
droplet. Conversely, when RH > RHo, NaCl crystals would absorb water until
complete dissolution (saturated solution) which is observable in the o, t-curve.

To measure the induction time, we performed three steps. In the preliminary step,
we generated monodisperse arrays of undersaturated NaCl microdroplets which
were done allowed to evaporate at 10% RH until crystallization. Then in Step 1, we
raised RH to 95% so crystals could absorb moisture until complete dissolution. We
then let the microdroplets absorb more water to make it undersaturated. Finally,
in Step 2, we decreased RH to 10% to allow microdroplets to evaporate and
eventually crystallize.

Although it is possible to directly generate undersaturated microdroplets to begin
the nucleation experiment!®3, we decided to employ crystallization-dissolution
steps for two reasons. First, with direct generation, droplets are formed
sequentially so each droplet would have had different initial time that needs to be
accounted for. Second, crystallization-dissolution steps allow us to measure the
exact time at which the droplet is saturated, information which is essential to
calculate the induction time.
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8.3 Results and Discussion
8.3.1 Analysis of 6-curves

The typical time evolution of the grey-level pixel standard deviation o of
microdroplets starting from Step 1 is shown in Figure 8.1.
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Figure 8.1 Typical time evolution of the o-curve (in blue) during an experiment
where the RH (in orange) is stepped to create a cycle of deliquescence and
efflorescence. The corresponding images in each specific time points are shown
(scale bar = 20 um).

From the perspective of image analysis, o is a sophisticated function of multiple
parameters. Since we are dealing with simple circular microdroplets, we interpret
o as a function of two main factors: refractive index difference |An| between the
microdroplet and oil (a function of microdroplet concentration) and microdroplet
size. When |An| = 0, (i.e. oil and microdroplet refractive index match), the droplet
optically disappears and this corresponds to a minimum o: this is the standard
deviation of the optical noise of the system (matching time in Figure 2a). For the
NaCl-water system at ambient conditions, this occurs at a supersaturation ratio S
of 1.395. Concentrations lower or higher than S = 1.395 would therefore lead to an
increase in 0. When microdroplets increase in size, more pixels could “contribute”
to the histogram which also leads to an increase in o.
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Since solid crystals generally have higher refractive index (appear darker) than
liquids, the conversion of NaCl crystal to saturated solution leads to a decrease in
|An| and thus a decrease in o until complete dissolution. Note that within the time
interval before complete dissolution, the liquid is in equilibrium with the solid
phase so the bulk solution concentration remains saturated.154 This suggests that
the refractive index matching (|An| = 0) cannot occur before complete dissolution.

When all solids have dissolved, the microdroplet concentration decreases (causing
an increase in the |An|) and its size increases as it continues to absorb more
moisture: both of these lead to a rise in 0. As a result, the point of complete
dissolution corresponds to the first cusp in the o-plot (marked by a red vertical line
in Figure 8.1). From this point, the resulting saturated microdroplet continues to
absorb water and undergoes dilution thus becoming undersaturated. Note that for
this experiment, it is important to choose an oil that has a refractive index higher
than that of the saturated solution to ensure the formation of cusp at complete
dissolution.

In Step 2, the undersaturated microdroplet started to evaporate until it reforms a
saturated solution. At first glance, the determination of tsat is not straightforward
since it does not correspond to any peak, maxima, or minima in o-curves during
the evaporation step. To circumvent this, we take advantage of the presence of a
cusp in o-plot occurring at complete dissolution (step 1) in which the solution is at
equilibrium. We, thus, use this value of o as an indicator of droplet’s concentration
to approximate tsat during step 2 (marked by a dashed green line in Figure 8.1).
This is because the two parameters that determine the o-value (droplet size and
|An|) must be equivalent since the concentration and the geometry of the droplet
are essentially the same. After which, evaporation continued until the refractive
index of the drop matched that of the oil (the minima in the o-curve marked by a
purple dashed line in Figure 8.1). Eventually, it nucleated which led to a sudden
change in refractive index. This corresponds to a jump in the o-curve which then
reaches a plateau.

Since nucleation is stochastic, we performed a similar procedure to 175
independent microdroplets and the resulting histogram of saturation time,
matching time, and nucleation time is shown in Figure 8.2.
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Figure 8.2 Histograms of saturation time tsar, matching time tm, and nucleation
time tn fitted with Gaussian curves.

In evaporative crystallization where supersaturation varies with time, it is more
convenient to analyze the distribution of supersaturation ratios during the onset
of nucleation® as it has more tangible physical meaning than the induction time
itself. To do this, a commonly used assumption is that the evaporation rate remains
constant so that the volume decreases linearly with time#. Since volume is
inversely proportional to supersaturation, we can calculate the supersaturation
ratio at nucleation S, using the values of saturation time tsar, matching time tm, and
nucleation time tn, by simple linear extrapolation with equilibrium supersaturation
(Ssat = 1) and matching time supersaturation (Sm=1.395). Note that this is just an
approximation since in principle, water activity decreases as the salt concentration
increases.

(% a ﬁ) (% B ﬁ) (8.2)

tn - tsat tm - tsat

8.3.2 Assessment of Reproducibility

To verify the reproducibility of our method, we repeated the same procedure for a
second cycle i.e, after the induction time measurement in the first cycle, the
crystals were redissolved by deliquescence and then recrystallized. The humidity
profile and the evolution of o for a typical microdroplet is shown in Figure 8.3
which confirms the reproducibility of using o as an indicator of droplet
concentration.

109



With this two-cycle experiment, we plot the cumulative distribution of
supersaturation ratio of three different arrays of microdroplets in Figure 8.4.
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Figure 8.3 Evolution of o-curve in a two-cycle experiment. Observe that the o-
value for complete dissolution and matching time for both cycles are the same
which confirms the validity of using o as a “calibration reference” for measuring
the saturation time.
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8.3.3 Statistical Analysis

To determine whether each curve in Figure 8.4 can be aggregated to form a larger
distribution, statistical analysis must be performed. In general, we can aggregate
multiple data sets if they exhibit relatively identical distribution. To establish this,
first, we will use graphical approaches followed by a more formal statistical testing.
We show the notched box plot in Figure 8.5a and the kernel density plot in Figure
8.5b.
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Figure 8.5 Cumulative probability distribution as a function of the dimensionless
induction time. Each array contains around 56 microdroplets.
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The notched box plot (Figure 8.5a) shows that the 95% confidence interval for the
median saturation at nucleation is consistent at around 1.8 to 1.9 range. Moreover,
the kernel density plot (Figure 8.5b) shows a unimodal gaussian-like distribution.
This is also supported by the Q-Q plot shown in Figure 8.6. Apart from the
presence of few outliers and slight deviation from normality (notably in array?2
cycle 2), most of the data points lie close to the 45° line which is a characteristic of
a normal distribution.
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Figure 8.6 QQ-plot of the supersaturation at nucleation. If most of the data points
lie close to the 45° line, the distribution tends to follow a normal distribution.

To test the hypothesis of whether the six different curves in Figure 8.4 have
identical distribution, we can either use a parameteric test such as one-way ANOVA
(assumes normal distribution) or non-parametric test such as Anderson-
Darling?55-156 and Kruskal-Wallis!>7-158 (no distributional assumptions). Although
the distributions appear normally distributed graphically (Figure 8.5b and Figure
8.6), some of the datasets do not pass the standard Shapiro-Wilk normality test15°
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due to the presence of some outliers. However, with about 60 data points per set,
we can also take advantage of the central limit theorem. This postulates that at
large sample sizes (more than 30), the standard parametric tests (generally more
powerful than nonparametric tests) are robust to departures from normality.160
Therefore, I decided to use both parameteric and non-parametric statistical tests
to compare the 6 data sets.

As a pre-requisite for ANOVA, the equality of variance has been tested via Levene
test (p-value = 0.153) which satisfies the homoscedasticity assumption. The results
are then tabulated in Table 8.1 which all showed a p-value greater than 0.05,
suggesting that the distributions are statistically identical. Note that technically,
failure to reject the null hypothesis does not exactly mean that the null hypothesis
is true. It just implies that there is no sufficient evidence to conclude that a
significant difference exists. However, for practical purposes, a simplified
interpretation is given in Table 8.1.

Table 8.1 Statistical tests to simultaneously compare the distribution of 6 data sets
(3 arrays, 2 cycles each)

Test Statistic | p-value Interpretation
Levene 1.625 0.153 data sets have equal variances
one-way ANOVA 0.7986 0.551 data sets have equal means

Anderson-Darling 1.371 0.093 data sets have the same distribution

Kruskal-Wallis 7.412 0.192 data sets have the same distribution

In summary, the consistent results across multiple statistical tests provide strong
evidence that the experimental data across different arrays and cycles are
reproducible, and thus can be aggregated together.

8.3.4 Checking for Possible Influence of Impurities

In primary nucleation studies, possible sources of artifacts include the presence of
impurities (in the droplet or on the substrate) which can act as heterogeneous
nucleation sites. With such impurities, nucleation tends to occur at a lower
supersaturation than usual. To check whether such phenomenon occur in our
system, we compared the results of the first and second cycle. If impurities are
present, microdroplets that nucleated at a low supersaturation ratio in the first
cycle would retain this behavior in the second cycle. Otherwise, there would be no
correlation between the behavior of each droplet in the first and second cycles.
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To facilitate visualization, we plot the rank of the microdroplet’s Sa
(supersaturation at nucleation) in cycle 1 against cycle 2 in Figure 8.7. If
impurities played a huge impact, the data points must lie close to the diagonal line.
However, we see a random behavior and a negligible correlation (Spearman R =
0.121, p-value = 0.115) between two cycles. This confirms that nucleation events
are truly independent and are not influenced by impurities. Moreover, this
suggests that the “memory effect” due to solution history1¢! does not occur in our
experiments.
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Figure 8.7 Correlation between rank of microdroplets in terms of supersaturation
at nucleation. The microdroplet that nucleated at the lowest supersaturation is
ranked 1 and the one that nucleated at the highest supersaturation is ranked 175.
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8.3.5 Nucleation Kinetic Parameter Estimation

To extract useful information regarding nucleation kinetics, we plot the combined
cumulative probability distribution (350 data points) of supersaturation ratio
during nucleation in Figure 8.8. We then fitted our data with the various
probability functions that are commonly used in constant supersaturation
experiments*l. We see that nucleation occurs at a supersaturation ratio ranging
from 1.65 to 2.10. This is in agreement with that of the microcapillary experiment
of Desarnaud et al.”3 who reported a metastability limit of S =1.6 for aqueous NaCl
under confinement.

Although our experiments are performed with increasing supersaturation with
time, we see in Figure 8.8 that functions such as Weibull, Gompertz, and Gaussian
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fit well with our sigmoidal experimental data. The fitted parameters are listed in
Table 8.2. From these fits, we can qualitatively infer some physical mechanisms
involved in the nucleation process. From the Weibull fit, the fact that § >1 shows
that the effective nucleation rate monotonically increases with increasing
supersaturation. Moreover, the excellent fit of the Gompertz and Gaussian
functions suggests that the nucleation rate increases exponentially with
supersaturation and the induction times are normally distributed. On the other
hand, the Poisson distribution fails to describe the data set because it assumes a
time-invariant nucleation rate which is physically not the case in our experiments.
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Figure 8.8 Distribution of dimensionless induction time for unperturbed droplets
fitted with Weibull, Gompertz, Gaussian, and Poisson distribution functions
(Weibull and Gompertz coincide).

Table 8.2 Empirical nucleation parameters estimated from various distribution

functions#
Function CDF Fitted parameter R?
Sp\P 7=1.89 (+0.03%)
Weibull —1—exp|— _") 0.9863
eibu P(t) =1 exp[ (T l B =23.7 (x1.13%)

Ro= 3.28x10-11
Gompertz P(t) =1 — exp[ ( )(elsn _ 1)] (£29%) 0.9839
1 =12.8(+1.24%)

(Sp— W) 1 =1.85 (£0.01%)
i P(t) =0.5]1 .
Gaussian © l +e ( o2 0:=0.0891(20.52%) 0208
= 4.39 (£3.029
Poisson P(t) =1 —exp[—k(S,, — Sy)] K ( %) 0.7840

So=1.69(+0.24%)
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To interpret our measured induction time distribution deterministically in terms
of classical nucleation theory,1¢2 we can use the mean supersaturation ratio at
nucleation of 1.85 obtained from the Gaussian fit. In the literaturel, the commonly
quoted value of the pre-exponential factor A for NaCl in brine is 1039 m-3s-1. Using
this value along with classical nucleation theory, we obtained y = 75.5 mJ/m?2.

For literature comparison, the electrodynamic levitator experiment of Na et all63
resulted in y = 87 mJ/m? which is 15% higher than our obtained value. However,
note that in their experiment, the induction times measured are very short (in the
order of 1 s) which could be sensitive to the temporal resolution of the detection
technique. Ours are in the span of 120 s which was made possible by immersing
the droplet in an oil bath. On the other hand, the theoretical calculations of
Zimmerman et. al.1®* showed y of NaCl-water system ranging from 41 to 63 mJ/m?.
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8.4 Conclusion

In this work, we developed a novel approach to quantify nucleation kinetics in
evaporating arrays of sessile microdroplets using aqueous NaCl as a model system.
We showed that by using a deliquescence-efflorescence cycle coupled with the
analysis of the gray-level pixel standard deviation of the microdroplet image, one
can (1) ascertain the time at which the microdroplet is saturated (2) measure the
induction time of unperturbed droplets without assuming a specific value of the
evaporation rate. Multiple statistical tests suggest that the measurements from
different arrays and cycles have the same distribution and thus can be aggregated
together. Fittings of various distributions suggests that while nucleation rate in
evaporating microdroplets increases exponentially with time, the induction times
follow a normal distribution.

Although the induction times were obtained without assuming a value of
evaporation rate, the nucleation at supersaturation cannot be obtained without an
evaporation model. To obtain the interfacial energy between crystal and solution
from classical nucleation theory, we thus approximated the system by assuming a
linear decrease in volume with time. This led to a mean supersaturation ratio at
nucleation of 1.85 with a nucleation rate of /] = 4.1x1012 m-3s-1 and an interfacial
energy of y = 75.5 mJ/m? which is consistent with literature values. Note that the
value of y reported here is just an approximation, since in reality the evaporation
rate is not constant due to changes in water activity. Moreover, we used a
deterministic view as opposed to the stochastic view of nucleation in the
calculation. Thus, in the next chapters, the modeling of evaporation and the use of
stochastic approach to obtain a more accurate y will be my focus. Overall, the new
experimental method and data-treatment procedure presented herein is a
promising approach that can be adapted to study the crystallization behavior of
other salts, pharmaceuticals, or biological crystals of interest.
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Chapter 9
Modeling the Evaporation Dynamics of

Sessile Saline Microdroplets

In the previous chapter, [ have shown that a deliquescence-efflorescence cycle is a
viable approach to measure the induction time in evaporating microdroplets.
However, in the estimation of supersaturation ratio at nucleation, it was assumed
that the volume decreases linearly with time, i.e. the evaporation rate is constant.
Although this assumption is reasonable for dilute droplets, the evaporation rate
should decrease with time since the water activity decreases as the salt
concentration increases (Raoult’s law). Moreover, it has been shown that the
droplet arrays evaporate slower than an isolated droplet because of the
contribution of the neighboring droplets to the local relative humidity. Additionally,
the height of the oil medium as well as the effect of evolving solution density must
be taken into account. Thus, to accurately obtain the supersaturation at nucleation,
areliable mathematical treatment that accounts for these additional complications
is much needed, yet it is currently lacking. In this chapter, I addressed this by
deriving phenomenological models to describe the evaporation of microdroplets
considering the interplay of the additional complexities mentioned.

Parts of this chapter are in preparation for submission to Langmuir as:

Cedeno, R.; Grossier, R.; Candoni, N.; Flood, A.; Veesler, S., Evaporation Dynamics of

Sessile Saline Droplets in Oil.
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9.1 Introduction

Droplet evaporation on surfaces is ubiquitous in nature and plays a key role in a
wide range of industrial and scientific applications6> such as inkjet printing?6e,
nanostructure fabrication167, DNA chip manufacturing!68, crystallization studies??,
biomedical diagnostics1®?, as well as virus spreading!’? and testing!’l. However,
this seemingly “simple” process is governed by the complex interplay of many
physical phenomena such as evaporative mass transfer172, heat conduction and
convection, thermal-hydrodynamic instabilities, viscous and inertial flows,
surface-tension-driven flows, contact-line pinning and depinning and buoyancy
effects.173

Given its complexity and practical significance, numerous experimental and
theoretical investigations have been devoted to better understand the underlying
physics of sessile droplet evaporation as described by Larson in his review
paperl73. Many of these studies dealt with the evaporation of either pure liquid
droplets®> 174 or those with suspended colloidal particles which can lead to the so-
called “coffee-ring effect”.175-176 However, the evaporation of droplets containing
dissolved salts has been rarely investigated. For instance, Takistov et al.177, Shin et.
al.178, Zhang et. al.179, and Zhong et. al.180 showed that the resulting patterns and
morphologies of the dried salt droplets depend on the wettability of the surface,
i.e. crystal rings would form on hydrophilic surfaces while single crystals at the
center of the droplet are likely to form on hydrophobic surfaces. This suggests that
surrounding salt droplets with hydrophobic surfaces is a promising approach for
studying homogeneous primary nucleation.

In the context of crystallization studies, we need to ensure spatial homogeneity of
droplet temperature and composition. However, in microliter droplets, it has been
shown that various internal and Marangoni flows can lead to temperature and
concentration gradients181-182, To address this, we reduce the droplet size down to
picoliter range®3 and we reduce the evaporation rate by immersing the droplet in
oil under regulated humidity. The oil bath also serves as a thermal buffer which
minimizes temperature gradients due to evaporation. To extract nucleation
parameters from such experiments?l, it is crucial to determine how the volume,
and so supersaturation of microdroplets, evolve with time. In modeling the
evaporation rate, Soulié et. al.150 reported that the droplet volume varies linearly
with time within the early stages of evaporation. Given that the later stages of
evaporation are crucial for the analysis of nucleation, we need a model that works
even for the later stages. Since we are dealing with arrays of concentrated salt
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droplets immersed in a bath of oil, there are additional phenomena that need to be
accounted for: First, the varying diffusion distance due to the presence of oil
surrounding the droplet must be taken as an additional parameter. Second, the
separation distance of neighboring droplets must be accounted for.183 Third, the
density of the droplet changes as water evaporates. Fourth, the equilibrium
concentration at the interface varies with time because water activity decreases as
solute concentration increases (Raoult’s law).6¢ In this work, we derive expressions
describing the evaporation dynamics that account for these four additional
phenomena based on well-established mass transfer equations. We then validate
our model with experimental data obtained in a previous work!52. Moreover, we
highlight that (1), surprisingly, different contact-line behavior such as constant
contact angle (CCA), constant contact radius (CCR), and stick-slide (SS) leads to
comparable evolution of droplet volume within the time of nucleation (2) failure to
account for diffusive interactions between droplets nor the changes in colligative
properties can lead to significant overestimation of droplet concentration.
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9.2 Modeling

When a droplet is deposited onto a surface, it rapidly conforms to a quasi-
equilibrium geometry with contact radius R, and contact angle 8, which determine
the droplet volume V4. The shape of the droplet is either spherical or flattened,
depending on the value of R compared to the capillary length L. which
characterizes the ratio of the interfacial energy between the droplet and the
medium y(droplet/medium) to gravitational effects. Lc can be calculated as

(9.1)

Y(droplet/medium)
L. = A
pxXg

where Ap is the density difference between the solution and the surrounding
medium and g is the gravitational acceleration. In our case, the droplet is either
pure water or saline solution and the medium is PDMS oil. If the droplet size is
much less than L then the droplet assumes a spherical cap geometry. For the
PDMS-water system184, the capillary length is in the millimeter range. Since R is in
the micrometer range, (much smaller than Lc), the gravity is negligible compared
to the interfacial energy between droplet and oil and so the droplets can be
assumed to be a spherical cap. Thus, the droplet volume Vi can be calculated as®*
(see section 2.4 of Chapter 2)

V; = tR3g(0) with g(8) = —Sgl(ficczzee;z) 92)
In the following section, we derive expressions for the diffusion-controlled
evaporation of saline microdroplet with contact radius R and constant contact
angle 8 immersed in a PDMS oil bath with thickness h. The different cases (6>90¢,
0=90°, <90°) are shown in Figure 9.1. Recall that we define r as the radial distance
from the center of the equivalent spherical cap at an angle of ¢ with the equatorial
line.
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Figure 9.1. lllustration of microdroplet showing the equivalent spherical cap at
different values of contact angle 6.

For simplicity, we will first consider the case where 8=90° (hemispherical droplet)
which exhibits uniform evaporation flux over the surface area. Later on, we will
incorporate a widely-used shape factorl7+4 185 denoted as f{0) to obtain a general
expression for any value of 6.

9.2.1 Influence of oil thickness on the evaporation rate

Since the droplet is submerged in an oil bath (R<<h), we assume an isothermal
system so that temperature-dependent quantities such as solubility and diffusivity
remain constant. With the continuity equation in spherical coordinates, the molar
flux of water vapor N(r) as a function of radial distance r is

1d C;

2 — —
r_ZE(T N)=0= N(r) = = (9:3)
where C1 is a constant of integration that will be evaluated later. Assuming
negligible convective transport, Fick’s equation can be simplified as

d
N=-D= (94)
dr

where D is the diffusivity of water in oil and c is the molar concentration of water.
Combining equations (9.3) and (9.4),

dc C;r1
=== 5:5)
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Since the diffusion distance varies at any angle (with respect to the horizontal), the

radial distance from the droplet center to the oil-air interface is r = o To facilitate

. . L .. h

integration, we express the boundary conditions in terms of R. We can write v

h—Rsin¢ . . . h h
g Given that h > Rsin¢, we can approximate o preprs

R ~
+ ¢
Integrating equation (9.5) with boundary conditions ¢(R) = ¢s and ¢ (R + #) =

Cs, We obtain

-1
h
Coo C, (T=R*si 1 1 1
dc=—— e (—) dr=>C, =D(cp —C5)| =——— (9.6)
c D Jr_g r? R h
s = R+——
sin ¢

Combining equations (9.3), and (9.6), we can write the molar flux as
-1

1 1 1
NoL) =D(w—c) | - —— | () (9.7)
R+ sin ¢

Now, we can express the rate of change in droplet volume as the mass flux of water
vapor integrated over the droplet surface area A.

A
‘Z_’:: f M,,N(r,¢)dA (9.8)

The differential surface area dA can be written as a function of the differential angle
d¢ as

dA = (2nr cos ¢p)(rd¢) (9.9)

Combining equations (9.7), (9.8) and (9.9) and integrating ¢ from 0 to m/2
(because we consider the case of hemispherical droplet where 8 = t/2), we get

-1

dm 7 1 1 1
- = fo M,,D(ce — Cg) R R-I——h (r_2> (27r cos ) (rd¢) (9.10)
sin ¢
dm R
—r = ~(2nR)DM,(¢; ~ c.,) (1 + ﬁ) (9.11)
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Note that this is similar to that of Popov®® for pure droplets directly evaporating in
air. By comparison, if we substitute 8 = /2 in the shape factor expression (equation
4 in the main text), we obtain f{8) = 2 (via numerical integration), i.e.

(E) B sin (%) L4 f°° 1 + cosh(2(0.5m)¢) .
=—2" i an

T
27" 1+ cos (%) sin(2me) h [(T[ B E) g] de =2 (9.12)

Furthermore, note that (1 + %) ~ 1 since R<<h. Thus, we incorporate t

he shape factor f{0) for any contact angle 8 as

dm

L= —ARDM, (¢, — c.,) (1 + ) £(0) (9.13)

The relative humidity RH is defined as water vapor concentration divided by the
concentration at saturation c, (in this case, the solubility of water in oil). Thus, we
can write

(¢s — ) = ¢s(RHy — RH,,) (9.14)

where RH; and RH, are the relative humidity at the droplet-oil interface
(saturated) and oil-air interface, respectively. For pure water droplets, RH; is
always equal to 1. As a result, equation (9.13) can be written as

dm

= —TRDM,,c,(RH, - RH,,) (1 + ) £(6) (9.15)

Note that m is the mass of the volatile component (in this case, water). Using the
definition of density, we can write m = p,,V where p,, and V are the density and

: . : d av
volume of pure water respectively. Since p,, is constant, —m = Pw; We can then

combine the constant terms as K = IZW 2. Thus, equation (9 15) can be re-written
as

dv

YT —nRK(RH; — RH,, )(1 + )f(e) (9.16)

Note that this is valid for isolated droplets (i.e., no neighbors).

9.2.2 Considering the presence of neighboring droplet

Several studies,186-187 have shown that the presence of neighboring droplets slow
down the evaporation process relative to isolated sessile droplets due to the
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contribution of the neighboring droplets to the local relative humidity. To account
for this behavior, we adapt the theoretical model of Hatte et al.183 In simple terms,
the effective relative humidity RH, s is approximated from the prevailing relative

humidity at the oil-air interface RH,, using a correction factor € defined as

1— RH,yy A,
€ = = —
1—RHy,  27mR,f(6,)AL, + A,

(9.17)

where A, is the surface area of the vapor field, R, and f(6,) are the initial contact
radius and shape factor respectively, and L, is the average vapor accumulation
length (Refer to equation 8.8 of Hatte et al.183). Accordingly, A, is the cross-
sectional area of the half-cylindrical region surrounding the microdroplets with
enhanced local vapor concentration. This is a function of the distance between the
centers of the droplets L, the initial contact radius R, the instantaneous contact
radius R, the initial contact angle 8, and the instantaneous contact angle 6 as

R 1
A. = 4R (L—_—) (1 - ) 9.18
¢ 0 sin @ \/n +sm60 (9-18)
_— aR, 9.19
¢ sin@, (9.19)

where «a is a constant. Note that in the original derivation of Hatte et al.183, we
substituted A = 2L — D, (see their Figure 6a) and D, = 2R/sin 6 (spherical cap
geometry). We also let a = 2Kf8 where K and 8 are empirical parameters which
have been shown to follow Kf = 0.5. For simplicity, we combined this giving a
single parameter (a = 1).

Thus, for droplets with neighbors, we replace RH,, by RH.sf in equation (9.16)
which leads to

av

R
ar = “RK(RH; — RHepy) (1 + ﬁ)f(e) (9.20)

9.2.3 Considering the evolution of droplet density as water
evaporates

Note that we defined V' as the volume of pure water (the volatile component) and
R as the radius of the entire droplet. However, the total volume of the droplet Vi is
a function of the volume occupied by both water and salt ions. To relate the volume
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of pure water V to the droplet volume V4, we employ experimental data on the
solution density change as a function of NaCl supersaturation ratio (S = ¢/c*) as
shown in Figure 9.2. We then use a simple linear function with b: (slope) as the
dimensionless coefficient of density increase relating the density of pure water pw
and the density p at any S.

p = pw(1+b,S) (9.21)

Given that the droplet mass is the sum of water mass and NaCl mass (md = mw +
mnacl ), We can write

m, +m m 1+( Nac}) 1+ b,S
w NaCl _ MMy my, / 1 (9.22)
Vv, y (L+DiS) v, v
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Figure 9.2. Variation of aqueous NaCl density as a function of supersaturation
ratio.’88 The regression line is y = 998(1+0.205x) with R? = 0.9984.

We can express my,c/m,,in terms of S using the solubility of NaCl in water ceq (in
mol/kg water) and NaCl molar mass Mnaci (kg/mol)

Mnacl

m, = CeqMNaCIS (9.23)

Thus, the droplet volume V4 is related to the volume of pure water V as

_ (1 + CeqMNaCIS>
= |l—

1+ b,S (9-24)
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Observe that for pure droplet (5=0), Va = V. We can now express the droplet radius
R in terms of V using the equation for the volume of spherical cap along with the
density changes.

1 1
_ ( V; )§ _ V(1 + coqMyaaiS)|? with g(6) = sinf (cosf +2) (g 75
g (6) 1+ b S)m-g(6) 3(1 + cos 0)?

This expression for R will be used in equation (9.20).

9.2.4 Dependence of water activity on solute concentration

To account for the change in water activity due to the presence of salt, we express
the decrease in water activity as a linear function with slope b: fitted from
experimental data of An et al, as shown in Figure 9.3.189
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Figure 9.3. Variation of water activity (numerically equal to the equilibrium
relative humidity, RHs) as a function of supersaturation ratio. The data were taken
from Table 6 of An et al.18?

Thus, in equation (9.20), the saturation relative humidity RHs is expressed as
RH; =1 —b,S (9.26)
where b2 is the coefficient of vapor pressure lowering fitted from experimental data

of An et al.189 Since the total mass of the salt is constant, we can write SyV,, = SV so
all equations containing S can be expressed in terms of V.
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9.2.5 Models for Contact Line Behavior

The contact line behavior (how the contact radius and contact angle evolve with
time) generally depends on the nature of the surface where the sessile
microdroplet is situated. In the extreme case of perfectly smooth chemically
homogeneous surface, the droplet maintains an equilibrium contact angle, and this
is referred to as constant contact angle (CCA) mode. Consequently, the volume
decreases due to the continuous decrease in contact radius.®* In practice, the
droplet will be pinned due to surface roughness so the radius remains constant at
some point. In the extreme case where the droplet remains pinned throughout its
lifetime, we refer to this as the constant contact radius (CCR) mode. In this mode,
the volume decreases due to the continuous decrease in contact angle. As
experimental studies suggest,®5 real droplets evaporate in some mixture of CCR
and CCA modes. One common observation is the occurrence of CCR mode at the
beginning and once the contact angle decreases to a value less than the receding
contact angle 6, it switches to CCA mode. This combination is known as the stick-
slide (SS) mode.®> In this work, we consider all three cases (CCA, CCR, and SS
models) in analyzing the experimental data.

Mathematically, we can then incorporate the contact-line behavior by modeling the
behavior of the contact angle 6.
For constant contact angle (CCA), the change in contact angle with time is simply,

do
dt
For constant contact radius (CCR) mode, the change in contact angle with time can

be obtained by taking the derivative of V = f{6,R) where R is constant (see Figure
9.1)

0 (9.27)

dv d sin@ (cos 6 + 2)
— 3 —_ = 3_ i = 9.28
V=nR>g(0) = ——=nR"—[g(6)] with g(6) 301 + 05 6)2 (9.28)
d d (sin@ (cosO + 2) 1 do
dt lg(0)] = E( 3(1 + cos 8)? > ~ (14 cos H)ZE (9-29)

Combining equations (9.28) and (9.29), we can obtain the change in contact angle
as

do 1dVv
== VE(l + cos 0)?g(0) (9.30)

Therefore, the time evolution of ¥V and 8 can be obtained from the numerical
solution of equation (9.20) through (9.26) solved simultaneously with either
equation (9.27) for CCA and equation (9.30) for CCR. For stick-slide mode (SS), the
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evaporation follows CCR mode, that is, the initial contact angle 6, decreases until
itreaches the receding contact angle 6, where it suddenly shifts to the CCA model®4.
The full SS model can be written as

1dV
do ——(1+cos)?g(0) forh, <6 <86,

=3 Vdt (9.31)
0 for0 <0<86,

= =

For the numerical solution of the SS model, the final condition of the CCR part is
used as the initial condition of the CCA part.
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9.3 Materials and Methods

To determine the applicability of our models, we compared the experimental
results of our previous works to the numerical solution of the derived equations
for CCA, CCR, and SS respectively. This gives the time evolution of droplet volume
and contact angle which can then be used to calculate the contact radius R and
droplet height H. For pure water droplets we used the data of Rodriguez-Ruiz et.
al’®2 who tracked the evolution of contact radius and droplet height from a series
of lateral images of droplets acquired using a side-view microscope. With simple
trigonometry, R and H allow calculation of contact angle 8 and droplet volume Va.
Although the use of side-view microscope gives direct access to geometric
parameters of the microdroplets, it only permits measurement of 3-4 droplets at a
time.

For saline droplets, we used another approach based on the analysis of gray-level
pixel standard deviation?! of 170 bottom-view droplet images as discussed in
Chapter 8. This gives three characteristic times namely the saturation time (droplet
is saturated), matching time (refractive index of droplet equals that of the oil), and
nucleation time. Although the use of the bottom-view microscope only gives the
droplet volume and concentration at some specific times, it allows simultaneous
measurement of hundreds of droplets, which is useful for studying the stochastic
nature of nucleation.

9.4 Results and Discussion

Herein, the performance of the newly derived models (Section 9.2) is tested against
the existing experimental datal52 (for pure microdroplets) and my own
experiments (for saline microdroplets).

9.4.1 Model Predictions for Pure Microdroplets

For water droplets with no dissolved solutes, the numerical values used as input in
the evaporation model are taken from Rodriguez-Ruiz et al.152 The experimental
parameters, symbol, values, and units are tabulated in Table 9.1.
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Table 9.1 Numerical values used as input in the evaporation model of pure water
droplets taken from Rodriguez-Ruiz et al.152

Experimental Parameter Symbol Value

initial radius Ro 25.7 um
initial contact angle 6o 110 degrees
initial volume Vo 64.6 pL
receding angle (for SS) 6: 86 degrees
oil height h 0.40 mm
ambient temperature T 298 K

rel. humidity at evaporation step RH, 60 %
distance between droplet centers L 65 um
Literature Data

solubility of water in paraffin oil'>? Cs 2.95 mol/m?
diffusivity of water in paraffin oil'*° D 8.5x101° m?s

density of pure water!® Dw 997 kg/m?

In Figure 9.4, we compared the experimental geometric parameters obtained for
pure water droplets by Rodriguez-Ruiz et. al.152, with the predictions of three
contact line behavior models (CCR, CCA, and SS).

Figure 9.4a suggests that the normalized contact radius R/Ro is constant until a
certain time of pinning tp, then R/Ro decreases. Meanwhile, Figure 9.4b shows that
6 decreases until this threshold at tp, after which, 6 becomes constant. This
indicates that the system undergoes a stick-slide (SS) mode, i.e. CCR followed by
CCA. In our system, we found that the time of pinning ¢, corresponds to a contact
angle of around 86° (Figure 9.4b). Thus we assume a receding contact angle of 86°
for our system and we use this value for the stick-slide (SS) model in equation
(9.31). Upon comparing the experimental points with the model predictions, it is
clear that our stick-slide (SS) model well captures the evolution of the
microdroplet’s geometric parameters (i.e. contact angle, contact radius, height, and
volume).
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Figure 9.4. Model predictions of three contact line behavior models (CCR, CCA, SS)
in comparison with experimental data obtained for pure water droplets by
Rodriguez-Ruiz et. al.Z%2 Time evolution of (a) normalized contact radius, (b)
Contact angle of the microdroplets with the substrate (c) normalized microdroplet
height, and (d) Volume contraction. Error bars represent standard errors based on

3 replicates.

To visualize the evolution of droplet shape, we used the numerical solution of
Figure 9.4a-c to simulate the geometry of the droplet at discrete time points as
shown in Figure 9.5. We see that the final droplet shape is highly dependent on the
contact-line behavior.
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Figure 9.5. Predicted evolution of microdroplet shape (pure water) for CCR, CCA,
and SS models at discrete time points (every 1 hour). XY axis (lengths) are in terms
of R/Ro.

However, in the context of crystallization studies, the most important parameter to
obtain from the evaporation modeling is the evolution of droplet volume in which
the solution concentration depends on. Thus, regardless of the droplet shape, the
excellent agreement of the CCR, CCA, and SS in terms of droplet volume (Figure
9.4d) indicates that we can just choose one of these three contact-line behavior
models to calculate the droplet concentration. Thus, we have chosen CCA to
describe the evaporation rate in saline droplets as this is the simplest case
mathematically. Note that, even though the SS model works better in predicting
geometric parameters, we currently do not have an experimental value of the
receding angle 6 for saline droplets needed in SS model.

9.4.2 Model Predictions for Saline Microdroplets

Using the CCA model, we thus extend our analysis to microdroplets containing
dissolved salt (NaCl). As mentioned, this is based on bottom-view images from an
inverted optical microscope which allow us to measure experimental points
corresponding to the time at which the solution is saturated ($=1) and the time at
which the refractive index of the droplet matches that of the oil ($=1.395) (shown
in Figure 9.6).
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Figure 9.6. Variation of the refractive index188 with supersaturation ratio.

Numerical values used as input in the CCA evaporation model of saline droplets are
presented in Table 9.2.

Table 9.2 Numerical values used as input in the CCA evaporation model of saline
droplets

Experimental Parameter Symbol  Value

initial radius Ro 26.1 um
contact angle 0 110 degrees
initial volume Vo 66.93 pL
radius at saturation Rs 25 um

oil height h 0.40 mm
ambient temperature T 298 K

rel. humidity at evaporation step RHoo 10 %
distance between droplet centers L 100 um
Literature Data

solubility of water in PDMS 0il7? Cs 30 mol/m3
diffusivity of water in PDMS 0il80 D 8.5x10-10  m?2/s
coefficient of density change188 b1 0.205 -
coefficient of water activity lowering18° b2 0.225 -
solubility of NaCl in water191 Ceq 6.14 mol/kg
molar mass of NaCl Mnaci 0.0584 kg/mol
diffusivity of NaCl in water192 Di 1.47x10° m?/s
density of pure water188 pw 997 kg/m3
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Figure 9.7 compares the prediction of the droplet volume and the supersaturation
ratio in the CCA model for saline microdroplets (Vo= 67 pL and Sy = 0.88) with
experimental data, in particular by issuing various hypotheses of simplification.
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Figure 9.7. Model predictions (CCA) for saline microdroplets (Vo= 67 pL and So =
0.88) in terms of (a) droplet volume and (b) supersaturation ratio in comparison
with experimental data. The error bars at saturation time (S=1) and matching time
(S=1.395) represent the standard deviation of the distribution of data points (190
droplets). The grey area corresponds to the time range where nucleation occurs.
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In Figure 9.7a, we see that neglecting the oil height correction can slightly
overestimate the predicted volume. This is because without the oil height
parameter, the droplet is considered to evaporate in an infinite medium of oil
thereby hindering evaporation. Without density correction, the evaporation rate is
significantly misestimated because the volume occupied by the NaCl in the droplet
is not accounted which then affects the surface area to volume ratio. Remarkably,
failure to correct for the relative humidity (due to the presence of neighboring
droplet) and the changes in water activity (Raoult's law) led to a drastic
overestimation of evaporation rate. This is because both cases directly affect the
driving force for evaporation. The relationship between the effective relative
humidity RHeff and the prevailing humidity above the oil RHw is shown in Figure
9.8 where RHefr decreases and then reaches equilibrium as the droplets become
very small.
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Figure 9.8. Evolution of the effective relative humidity RHefr for CCA and CCR
against the humidity above the 0il RHc.

Therefore, we incorporated the four corrections concerning the oil height, the
density, the relative humidity and the changes in water activity to the well-
established mass transfer equations and we obtain a “complete CCA model”
(Figure 9.7), which is able to predict the two experimental points with excellent
accuracy.

Finally, to verify whether the saline droplets have a homogeneous composition

throughout the evaporation process, we use the Peclet number (Pe) which is the
ratio of convective mass transfer to diffusive mass transfer33. If Pe < 1, the diffusion
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rate of the solute is fast enough to avoid a considerable enrichment at the receding
surface and thus the system maintains a homogeneous composition. In
microdroplets, Pe can be expressed mathematically as

2Rk . 1a4dv
Pe = >, with k = yom (9.32)

Where k is the evaporation flux (volume loss dV/dt per unit area A), R is the droplet
radius and Di is the diffusion coefficient of the solute in the droplet. Peclet number
is plotted as a function of time in Figure 9.9. We found that the maximum Pe is in
the order of 10-# suggesting a uniform droplet concentration.
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Figure 9.9. Evolution of Peclet number for CCA and CCR models. (If Peclet number
<< 1, the microdroplet is considered to have homogeneous composition)

9.4.3 Implications on Crystallization Studies

In the context of crystallization studies, droplets are not expected to nucleate at the
same time even though they have identical concentration due to the stochastic
nature of nucleation. Our experimental results demonstrate this with nucleation
events spanning from 800s to 1050s (grey area in Figure 9.7b). In principle, these
nucleation times can be used to estimate the interfacial energy between crystal and
solution for NaCl-water system if we know the supersaturation ratio at nucleation
Sn. To do this, several reports assumed a linear evaporation rate (neglecting
changes in water activity) to calculate the droplet concentration as a function of
time151, 193-194. Here we highlight that this approximation can lead to inaccurate
values of droplet concentration particularly in later stages where nucleation
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occurs. For instance, using our “complete CCA model”, the supersaturation at
nucleation S» ranges from S = 1.50 to 1.75 (Figure 9.7b). This is consistent with the
results of Desarnaud et. al.73 who showed a metastability limit of S = 1.60 for
NaCl-water system using microcapillary experiments. However, if we assume a
constant evaporation rate by extrapolating ¢t = 0 and t = saturation time (dashed
red curve in Figure 9.7b), the predicted range of S» would be up to 40% higher
(ranges from 1.75 to 2.50). This discrepancy would have a huge consequence
particularly in crystallization studies. To illustrate this, we plot the cumulative
probability distribution as a function of supersaturation at nucleation S»in Figure
9.10. The constant evaporation rate assumption clearly overestimates S, resulting
in unreasonably large values of supersaturation. Furthermore, if diffusive
interactions and changes in water activity were not accounted for, much larger
deviations could be obtained. All of these can lead to inaccurate values of
nucleation kinetic parameters. Thus, we highlight the need for accurate modeling
of evaporation rate of sessile droplets in the context of nucleation studies.
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Figure 9.10. Cumulative probability distribution of supersaturation ratio at
nucleation S» based on two evaporation models.
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9.5 Conclusion

In this chapter, [ studied the evaporation dynamics of sessile picoliter droplets in
oil until crystallization using NaCl-water as a model system. Although there are
existing evaporation models for the evaporation of pure sessile droplets in air, they
are not directly applicable in our system due to the additional phenomena that
require further consideration. Thus, starting from well-established mass transfer
equations, I derived new expressions applicable for droplets with dissolved solute
submerged in a thin layer of oil. The model accounts for the additional complexity
due to (i) variable diffusion distance due to the presence of oil (ii) diffusive
interactions due to the presence of neighboring droplets (iii) density change as
concentration increases (iv) water activity change as a function of concentration.
By comparing our model predictions to experimental data, we showed that
different contact-line behavior (CCR, CCA, or SS) results in almost identical
evolution of droplet volume especially within the time scale relevant to
crystallization studies. With this information, I analyzed the evaporation rate of
saline droplets using the CCA model and using NaCl-water as a model system, I
demonstrated for the first time that assuming a constant evaporation rate as well
as neglecting the diffusive interactions between droplets can lead to severe
discrepancies in the measurement of droplet concentration particularly during
nucleation. This indicates that crystallization studies in literature that had used
this assumption may be subject to large errors (in the example presented here,
40%). With our “complete CCA model”, one can accurately determine the time
evolution of droplet concentration which is important in quantifying
crystallization kinetics. Moreover, given the importance of evaporation dynamics
in a wide array of scientific and practical applications, the models and new insights
presented herein would be of great value to many fields of interest.
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Chapter 10
Modeling the Nucleation Kinetics of Aqueous NaCl

with Modified Poisson Distribution

Nucleation kinetic studies based on induction time are usually carried out at
constant supersaturation to facilitate data treatment. In literature, induction time
distribution are usually fitted with Poisson distribution since the driving force for
nucleation is constant and so the effective nucleation rate is invariable with time.
However, for evaporative crystallization (which is ubiquitous in nature),
supersaturation evolves with time, rendering the Poisson function unapplicable.
Although other empirical distributions such as Weibull, Gompertz, and Gumbell
can describe the time-dependence of effective nucleation rate*l, the fitting
parameters do not carry physical information that can be interpreted in terms of
classical nucleation theory (CNT). To address this, I explore the use of a modified
Poisson distribution compatible with CNT which considers the time-dependence
of the nucleation driving force.

In this chapter, | demonstrate that by combining the induction time measurement
approach and the evaporation model developed in the previous chapters, together
with the modified Poisson distribution, one can obtain accurate nucleation kinetic
parameters that are of excellent agreement with theoretical predictions.

Parts of this chapter are in preparation for submission as

Cedeno, R;; Grossier, R.; Candoni, N.; Flood, A.; Veesler, S.,

Nucleation Kinetics of Aqueous NaCl via Stochastic Approach
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10.1 Introduction

Nucleation in solutions has been a subject of numerous investigations due to its
significance in material synthesis, pharmaceutical purification, biomineralization,
and climate modeling180. Sodium chloride, being the most abundant salt on earth?3,
is of particular interest due to its influence on metal corrosion’4, building material
degradation?”s, oil well productivity’6, atmospheric science’? and so on. Thus,
fundamental understanding of its nucleation kinetics is of paramount importance
yet it remains poorly understood from both experimental and theoretical
perspective.!l  Up to date, there are only few experimental studies that
quantitatively measure the nucleation kinetic parameters of NaCl in brine. These
include experiments which employ an efflorescence chamber??5, electrodynamic
levitatori®3, and microcapillaries”3; all of which treated nucleation
deterministically. However, nucleation is inherently stochastic rather than
deterministic. In fact, with in situ electron microscopy, Nakamuro et al.1%¢ have
captured atomically-resolved images of NaCl nucleation. They observed that a
critical cluster must have at least 48 NaCl units and that the nucleation periods
follow a normal distribution spanning from 2 to 10 s (but the statistical relevance
is not well-established). This is a strong evidence for the stochasticity of NaCl
nucleation yet surprisingly, there are no existing experimental studies that
measure its kinetic parameters using the stochastic view of nucleation.

In this work, we address this by measuring the primary nucleation kinetic
parameters of aqueous NaCl in confined microdroplets with a stochastic model.21
152 We demonstrate that by combining the deliquescence-efflorescence cycle for
measuring induction time in Chapter 8, the evaporation model derived in Chapter
9, and together with inhomogeneous Poisson probability distribution4> and
classical nucleation theory, one can obtain a reliable estimate of nucleation kinetic
parameters which are consistent with theoretical and literature values. To the best
of our knowledge, this is the first work to utilize a probabilistic approach in the
simultaneous estimation of pre-exponential factor and interfacial energy between
crystal and solution in NaCl-water system.
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10.2 Theory and Modeling

10.2.1 Classical Nucleation Theory for Ionic Systems

Classical Nucleation theory expresses the primary nucleation rate J as the product
of the pre-exponential factor A and an exponential factor containing the free energy
cost of forming a critical nucleus AG* and thermal energy kT.

*

J=Aexp (— L;cT ) (10.1)

An important difference between the treatment of ionic systems and molecular
systems is in the expression of chemical potential difference between solid and
liquid.”3 For ionic systems, it is a function of the number of ions forming one
formula unit v ( 2 for NaCl), and the mean ionic activity coefficient of the solute y:=.
These leads to the following expression for AG*

2y

kT, ln< yam ) (10.2)
yiOmO

4
AG *= §ny(RC) 2 with R, =

with interfacial energy y between crystal and solution, critical radius R, number
density of formula units in the solid ps(2.27 x 1028 m-3 for NaCl), and m and mo are
the molalities at nucleation and saturation respectively’3. The ionic activity
coefficient is often modeled as a function of molality using the modified Debye-
Huckel equation?.

avm
log 0y =———=+cm
£ T bym (10.3)

with empirical fitting parameters a, b, and c.

10.2.2 Modified Poisson Distribution Function

In the stochastic view of nucleation, the probability distribution of the nucleation
times must be analyzed. In the context of microdroplets, it is normally assumed
that the time it takes for a nucleus to grow to detectable size is negligible*>.
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Thus, for constant supersaturation experiments, the cumulative probability of
obtaining a droplet with at least one nucleus after time ¢ is a function of nucleation
rate / and droplet volume V given as

P(t) =1 —exp(—JVt) (10.4)

In the case of evaporating droplet, both the supersaturation and the volume vary
with time. As suggested by Goh et. al.,*> the cumulative probability distribution
function becomes

tnuc
P(t) =1—exp l—j ](t)V(t)dtl (10.5)

sat

In equation (10.5), J(t) can be expressed as a function of supersaturation S(t) by
combining with equations (10.1) through (10.3). To determine supersaturation
S(t) and volume V(t), we can use the evaporation model developed in Chapter 9
which describe the volume and concentration variation with time.

To account for the variation of the ionic activity coefficient with concentration, we
referred to the experimental results of Na et al.163 The ratio of activity coefficients
y:/Yy=ois calculated from the ratio of activities a/a, as follows

a _ ysm
Qo Y+,M0 (10.6)

where a is the solution activity at a molality m, a, is the solution activity at
saturation, and m, is the molality at saturation. The plot of y:/y:0 against the
supersaturation ratio (m/mo) is shown in Figure 10.1.
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Figure 10.1. Ratio of ionic activity coefficients y:/y+o0 based on the experimental
data of Na et al.163

By minimizing the squared residuals between the observed and predicted
cumulative probabilities in equation (10.5), one can extract the important
nucleation parameters A (pre-exponential factor) and yerr (effective interfacial
energy between crystal and solution). Note that prior to curve fitting, we non-
dimensionalize the induction times following the procedure of Grossier et al21.

10.3 Results and Discussion

10.3.1 Kinetic Parameter Estimation

To check the applicability of the modified Poisson distribution in describing our
experimental data, we fitted it with the distribution of supersaturation ratio at
nucleation for two different microdroplet sizes of 60 and 4pL as shown in Figure
10.2. Indeed, the model well captures the sigmoidal nature of the distribution
which supports the validity of our approach. Unlike the use of empirical
distributions such as Weibull, Gompertz, Gumbell etc (whose parameters cannot
be interpreted in terms of classical nucleation theory), this method allows the
extraction of physical quantities describing the nucleation kinetic as listed in Table
10.1.
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For the 60 pL experiment, we obtained an interfacial energy between crystal and
solution of y = 46.7 m]/m? (¥0.54%). Interestingly, an atomistic simulations
performed by the group of Peters1¢4 yielded an interfacial energy of y = 47 mJ/m?,
aremarkable agreement between theory and experiment.
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Figure 10.2 Fitting of the modified Poisson distribution (eq. 10.5) with the
experimental distribution of supersaturation ratio at nucleation for microdroplets
with volumes ~60 pL and ~4 pL (measured at saturation).

Table 10.1 Nucleation kinetic parameters obtained from the fit in Figure 10.2.

60 pL 4pL
Average S at nucleation, Sn 1.56 1.72
Pre-exponential Factor (m-3s1) 9.30x1020(+1.47%) 1.12x1017(+0.39%)
Interfacial energy (m]/m?2) 46.7(+0.48%) 39.6(x0.27%)
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10.3.2 Comparison with Literature

For further comparison with other literature data, we use the results for the 60 pL
as it is not significantly impacted by the confinement effect which requires a
particular mathematical treatment.20 We then plotted our experimental results
together with literature values in Figure 10.3.
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Figure 10.3 Comparison of our experimental results (dashed green line is via
extrapolation of CNT from the 60-pL experiment) to relevant experimental
literature data (exp) and theoretical simulations (sim). Experiments were based
on efflorescence chamber (Gao et. al.)195, spherical void electrodynamic levitator
trap (Na. et. al.)163, and microcapillaries (Desarnaud et. al.)73 while the simulations
were based on forward flux sampling (Jiang et. al.)1°7 and seeded atomistic
simulations (Zimmerman et. al.)1 164

In Figure 10.3, one can see that the magnitude of our measured nucleation rate is
very close to that of Gao et. al?> (efflorescence chamber experiment) and Na. et.
al163 who used an electrodynamic levitator trap, a setup that aimed to minimize all
possible heterogeneous nucleation sites. Although they reported an interfacial
energy between crystal and solution y = 87 m]J/m?, they calculated it from the
average induction time while taking A = 103 m3s1 as a fixed value (taking
induction time as deterministic rather than stochastic). Interestingly, when similar
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calculation procedure is used (average induction time and A = 103 m-3s-1) , we
obtained a value of effective interfacial energy between crystal and solution yeff of
64 mJ/m? and 76 mJ/m? for the 60 pL and 4 pL microdroplet respectively.

Thus, the discrepancy in the measured interfacial energy is likely due to two main
reasons. First, their approach assumes nucleation as a deterministic process
(based on average induction time) while our treatment considers its inherent
probabilistic nature which is eminent in small volumes. Second, we did not assume
any pre-defined value of the pre-exponential factor in the parameter estimation. In
the experimental work of Gao et. al1%5 where they measured mean efflorescence
time, they also fixed the prefactor at a value of 2.8 x 1038 m-3s-1.

Furthermore, in the microcapillary experiments of Desarnaud et. al.’3, they
reported /] = 0.004 m-3s-1 at S = 1.6 but they fixed the value of y at 80 m]/m?2. Thus,
to the best of our knowledge, our work is the first experimental work that
employed a probabilistic approach to measure the interfacial energy between
crystal and solution for NaCl-water system without assuming a fixed value of pre-
exponential factor. This suggests that the commonly accepted experimental value
of A and y for NaCl crystallization may need to be re-examined. Given that the
current theoretical simulations generally overestimate the experimental
nucleation rates, our findings can serve as an additional benchmark leading to new
insights which could bridge the gap between theory and experiments.

10.3.3 Observing Confinement Effects

Comparing the results for two microdroplet sizes, it is evident that the confinement
effect plays a role. This is consistent with the fact that smaller volume can
withstand higher degree of metastability and requires a higher supersaturation to
nucleate20. In such confined environment, the formation of the pre-critical cluster
depletes the effective supersaturation level of its surrounding.20 This is reflected
in the lower pre-exponential factor A for the 4 pL microdroplet by 3 orders of
magnitude. Recall that the kinetic prefactor is related to the attachment frequency
which depends on the diffusivity of the monomers to the cluster surface. Thus, as
the effective monomer concentration is reduced, the attachment frequency also
decreases. Surprisingly, the effective interfacial energy between crystal and
solution yerf is lower for the smaller volume. As it is more difficult to form the
critical nuclei in smaller volumes, one would intuitively expect a higher energy
barrier. However, this could be rationalized in terms of heterogeneous nucleation
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mechanism. This is supported by the plot of nucleation rate and critical size (from
the fit presented in Table 10.1) as a function of supersaturation ratio in Figure
10.4. Higher supersaturation S generally favors homogeneous nucleation while
lower S tends to favor heterogeneous mechanism. Thus, at lower S, the 4 pL
microdroplet nucleates faster due to the lower energy barrier and high surface
area to volume ratio (Figure 10.4a). However, at higher supersaturation, the
homogeneous mechanism dominates while the energy barrier converges (Figure
10.4b), so the 4 pL microdroplet nucleates slower due to lower monomer
attachment rates. Overall, we highlight that these interesting finite-size effects are
clearly observable in our experimental approach and data treatment which would
not be observed in bulk solution experiments. Overall, the data treatment of our
experiments with CNT model allows us to have a better understanding of
nucleation, providing kinetic and thermodynamic information on the NaCl/water
system.
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Figure 10.4 Comparison of 60-pL and 4-pL microdroplet in terms of (a) nucleation
rate (J in m3s-1) and (b) critical size (# of ions) as a function of supersaturation
ratio. Curves come from the fit presented in Table 10.1
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10.4 Conclusion

In this chapter, [ proposed an approach to extract the nucleation kinetic parameters
from the induction time distribution of evaporating sessile microdroplets, using
NaCl-water as a model system. I showed that by combining a modified Poisson
distribution analysis together with an accurate evaporation model, one can obtain
reliable nucleation kinetic parameters (both kinetic and thermodynamic). For the
experimental condition where I expect to have predominant homogeneous
nucleation, I obtained a pre-exponential factor A of 9.30x102° m-3s-1 and an
interfacial energy between crystal and solution y of 46.7 m]/m2. This is in
remarkable agreement with existing experimental and theoretical values for NaCl-
water system. Moreover, we are able to unravel experimentally the confinement
effect when decreasing experimental volume from 60 to 4pL as well as a
modification of nucleation mechanism from homogeneous to heterogeneous.

Given the numerous simulation studies on NaCl nucleation, our experimental
kinetic parameters based on stochastic approach can serve as an additional
benchmark in validating theoretical predictions. Moreover, our experimental
approach and data-treatment protocol can also be extended to study the nucleation
of other salts, biological, and pharmaceutical crystals of interest.
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Chapter 11

Concluding Remarks and Perspective

Given the profound importance of nucleation in both industrial and scientific
perspective, this thesis has shed light into the measurement and modeling of
nucleation kinetics across different scales, techniques, and viewpoints.

11.1 Notable Findings

The key findings and advancements that [ have achieved in this thesis can be
summarized as follows.

11.1.1. In Agitated crytallizers

In the context of industrial agitated crystallizers, a new method for treating
primary and secondary nucleation was developed using in situ laser-
backscattering (to monitor particle count) and Raman spectroscopy (to monitor
solution concentration). Assuming that primary nucleation is a much weaker
function of hydrodynamics, and that secondary nucleation varies exponentially
with agitation rate, I proposed an extrapolation method for estimating primary
nucleation kinetic parameters. The approach was tested on model systems p-
aminobenzoic acid (in water/ethanol) and glutamic acid (in water). Indeed, an
exponential dependence of the total nucleation rate with the agitation rate was
experimentally observed. The order of magnitudes of extrapolated primary
nucleation rates obtained were in agreement with the KBHR method which
supports the validity of our approach.

To shed light into the interpretation of kinetic data, a multi-scale comparison of
nucleation kinetics was performed across various techniques using p-
aminobenzoic acid in water/ethanol as a model system. The results from the L-
scale (particle-count and solution conductometry), the mL-scale (turbidimetry),
and the plL-scale (in situ microscopy) revealed that the kinetic parameters are
highly sensitive to the choice of technique and model assumptions. This suggests
that in the interpretation of nucleation data in published literature, careful
attention must be paid to the transferability of kinetic data especially in the scale-
up and design of industrial crystallizers. This highlights that more research is
needed to fully understand the influence of interfering variables (fluid dynamics,
foreign surfaces, etc) in order to compare nucleation kinetic measurements
obtained across different scales and techniques.
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11.1.2. In microfluidics with evaporative pL-sized droplets

To study homogeneous primary nucleation at a more fundamental level, I
employed microfluidic techniques which aims to minimize the interference of
heterogeneous and secondary nucleation. We used our in-house developed
microfluidic setup to generate picoliter-sized sessile droplets, which can serve as
microcrystallyzers, and we performed induction time measurements using NaCl-
water system. The droplets have been found to interact with each other via water
diffusion dynamics. I have shown that failure to account for diffusion-mediated
interactions can lead to severe errors in the measured nucleation parameters.
Fortunately, these interactions can be eliminated by lowering the relative
humidity, which provokes droplets evaporation.

To properly define induction time in our evaporative microcrystallizers, I
developed an approach utilizing deliquescence-efflorescence cycles which allows
the experimental determination of saturation time. The proposed method resulted
in statistically reproducible induction time distribution. Possible effects of system
impurities have been shown to be negligible.

To accurately measure the supersaturation ratio during nucleation, I developed an
evaporation model that mathematically accounts for the additional complexities in
our setup: (1) effect of oil thickness (2) influence of neighboring microdroplets (3)
reduction of in water activity (4) evolution of microdroplet density. The model
shows excellent agreement with the experimental data for both pure and saline
microdroplets. Moreover, [ show that simply assuming a constant evaporation can
lead to large discrepancies in nucleation parameters.

To extract accurate nucleation Kkinetic parameters from our microdroplet
experiment, [ combined the deliquescence-efflorescence approach and the derived
evaporation model together with a modified Poisson distribution which accounts
for the time-dependence of the driving force. The resulting kinetic parameters,
notably the interfacial energy between crystal and solution, are in excellent
agreement with existing theoretical simulations. This is also the first report of
nucleation kinetic parameters for NaCl-water system that considers the stochastic
nature of nucleation, thereby serving as an additional benchmark in validating
theoretical predictions. Additionally, the protocol allows the investigation of
interesting finite-size effects on nucleation which is not possible in bulk solution
studies. Moreover, it allows the experimental analysis of the interplay between
heterogeneous and homogeneous mechanisms in confined environments.
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11.2 Perspective

In the scope of my thesis, | mainly focused on the quantification of nucleation
kinetic parameters both from both industrial and fundamental point of view.
Despite the considerable advances in the field, the full understanding of nucleation
is far from complete. For further studies, here are my recommendations.

11.2.1 Influence of interfering variables in Agitated Crystallizers

To further understand the effect of hydrodynamics on nucleation in the case of
agitated crystallizers, computational fluid dynamics can be employed to
understand the spatio-temporal aspects of nucleation with respect to shear rate
and turbulence which may cause localized fluctuations of concentration and
temperature. The effect of various agitation systems (overhead stirrer, magnetic
stirrer, etc) as well as the turbulence induced by the probes/baffles must also be
examined in detail to further understand the impact of hydrodynamics on
nucleation kinetic measurements.

The surface area of the crystallizer, baffles, and impellers that are in contact with
the solution can be investigated to determine how it influences the nucleation
mechanism. A model that contains a scaling factor which accounts for the contact
area of foreign surfaces can be developed. Other approaches to decouple primary
and secondary nucleation can be useful.

11.2.1 Evaporative microdroplet experiments

The evaporation model can be further tested for other solutes and medium. It can
also be extended for multicomponent systems which contain a mixture of volatile
and non-volatile species. For droplets directly evaporating in air, the enthalpy of
vaporization and the change of temperature-dependent properties such as
diffusivity and solubility must be taken as an additional parameter.

The influence of evaporate rate on the measured kinetic parameters, can be
investigated by controlling the relative humidity. Some researchers argue that
kinetic pre-exponential factors cannot be reliably obtained from experiments with
time-varying supersaturation®. This can be refuted if the measured Kkinetic
parameter would be shown to be independent with the rate of change of
supersaturation.
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Using the set-up developed, we can confirm the existing models of the confinement
effect. Moreover, a threshold criterion which tells whether the confinement effect
is significant or not for a given droplet size and nucleating compound must be
developed.

For non-deliquescent compounds, a side-way in situ camera which allows real-time

acquisition of droplet volume would be useful to measure the time at which the
microdroplet is saturated.
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