
626

N
N

T
:

2
0

2
2

IP
P

A
T

0
1

0

Graph-based contributions to machine

learning

Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : Informatique, Données et Intelligence Artificielle

Thèse présentée et soutenue à Paris, le 9 février 2022, par

QUENTIN LUTZ

Composition du Jury :

Jean-Loup Guillaume

Professeur, Université de la Rochelle Président

Matthieu Latapy

Directeur de recherche, CNRS et Sorbonne Université Rapporteur

Conrado Martı́nez

Professeur, Universitat Politècnica de Catalunya Rapporteur

Cécile Mailler

Maı̂tresse de conférence, University of Bath Examinatrice

Thomas Bonald

Professeur, Télécom Paris Directeur de thèse

Élie de Panafieu

Chercheur, Nokia Bell Labs Co-encadrant

Gérard Burnside

Chef de département, Nokia Bell Labs Invité

Abstract

Un graphe est un objet mathématique permettant de représenter des relations entre des
entités (appelées nœuds) sous forme d’arêtes. Les graphes sont depuis longtemps un objet
d’étude pour différents problèmes allant d’Euler au PageRank en passant par les prob-
lèmes de plus courts chemins. Les graphes ont plus récemment trouvé des usages pour
l’apprentissage automatique. Avec l’avènement des réseaux sociaux et du web, de plus
en plus de données sont représentées sous forme de graphes. Ces graphes sont toujours
plus gros, pouvant contenir des milliards de nœuds et arêtes. La conception d’algorithmes
efficaces s’avère nécessaire pour permettre l’analyse de ces données.

Cette thèse étudie l’état de l’art et propose de nouveaux algorithmes pour la recherche
de communautés et le plongement de nœuds dans des données massives. Par ailleurs,
pour faciliter la manipulation de grands graphes et leur appliquer les techniques étudiées,
nous proposons Scikit-network, une librairie libre développée en Python dans le cadre de la
thèse. Nous nous intéressons également au problème d’annotation de données. Les tech-
niques supervisées d’apprentissage automatique nécessitent des données annotées pour
leur entrainement. La qualité de ces données influence directement la qualité des prédic-
tions de ces techniques une fois entrainées. Cependant, obtenir ces données ne peut pas
se faire uniquement à l’aide de machines et requiert une intervention humaine que nous
cherchons à minimiser.

Les contributions décrites dans le manuscrit ont toutes recours à des graphes. Pour
la fouille de graphes et le développement de Scikit-network, les données étudiées sont
représentées sous forme de graphes. Pour le problème d’annotation des données, les graphes
servent d’outil formel à un raisonnement mathématique. Toutes ces contributions ont des
applications dans le domaine de l’apprentissage automatique.

Les contributions logicielles de la thèse sont rassemblées dans Scikit-network. Scikit-
network est inspirée de la librairie Scikit-learn, qui propose un large éventail d’algorithmes
pour l’ap- prentissage automatique sur des données vectorielles. Par analogie, nous rassem-
blons dans Scikit-network diverses méthodes pour la fouille de données et l’apprentissage
automatique sur des graphes. Cette librairie libre fait usage de nombreux outils présents
dans l’écosystème du langage Python pour permettre à ses utilisateurs d’analyser des jeux
de données massifs tout en offrant une bonne ergonomie. De nombreuses tâches, telles que
le calcul de centralités et la classification de nœuds, peuvent être accomplies à l’aide de
Scikit-network.

Le manuscrit fait l’état de l’art des techniques de recherche de communautés dans des
graphes. Nous distinguons les techniques selon qu’elles sont hiérarchiques ou non. Dans
le second cas, nous étudions tout particulièrement la méthode de Louvain et certaines de
ses variantes. Nous comparons qualitativement les performances de ces variantes. Nous
proposons également une nouvelle variante de la méthode de Louvain visant à en accélérer
l’exécution.

Nous nous appuyons sur les techniques de recherche de communautés ainsi décrites
pour proposer une nouvelle méthode pour le plongement des nœuds d’un graphe. Nous

mesurons la performance de cette méthode en la comparant à d’autres algorithmes issus
de l’état de l’art. Nous illustrons également certaines de ses propriétés, notamment en
expliquant comment les résultats peuvent être interprétés en fonction des communautés
trouvées par l’algorithme de Louvain.

Une autre contribution de la thèse consiste en l’étude d’un problème particulier d’annotation
de jeux de données motivé par un cas d’usage industriel. Après avoir introduit le prob-
lème en question, sous un formalisme utilisant des graphes, nous caractérisons simple-
ment les solutions optimales. Nous prouvons ensuite que cette famille de solutions opti-
males partage la même distribution de complexité dont nous étudions le comportement.
Nous décrivons également plusieurs variantes possibles du problème étudié et leurs appli-
cations.

2

Contents

1 Introduction 3

1.1 Motivation . 3
1.2 Graphs . 3
1.3 Graph analysis . 5

1.3.1 Graph theory . 5
1.3.2 Graph mining . 7

1.4 Outline . 9
1.5 Publications . 9

2 Scikit-network 11

2.1 Motivation . 11
2.2 Software Features . 12
2.3 Practical considerations . 13

2.3.1 Efficient graph representation . 13
2.3.2 Guidelines for the package . 17
2.3.3 Performance . 19

2.4 Conclusion . 20

3 Node clustering 21

3.1 Introduction . 21
3.1.1 Node sampling . 21

3.2 Flat clustering . 22
3.2.1 Similarity measures . 22
3.2.2 Modularity functions . 24
3.2.3 Louvain method . 28
3.2.4 Leiden refinements . 31

3.3 Hierarchical clustering . 35
3.3.1 Dendrograms . 35
3.3.2 Agglomerative approach . 36
3.3.3 Divisive approach . 37
3.3.4 Experiments . 37

3.4 Conclusion . 39

1

4 Node embedding 40

4.1 Introduction . 40
4.1.1 Motivation . 40
4.1.2 Related work . 41

4.2 Embedding method . 41
4.2.1 Algorithm . 41
4.2.2 Link with soft clustering . 43

4.3 Results . 43
4.3.1 Link prediction . 44
4.3.2 Node classification . 45
4.3.3 Time performance . 45

4.4 Properties . 46
4.4.1 Interpretability . 46
4.4.2 Sparsity of the embedding . 47

4.5 Conclusion . 48

5 Dataset labeling 49

5.1 Introduction . 49
5.1.1 Motivation and related work . 49
5.1.2 Setting . 51

5.2 Chordal algorithms . 52
5.2.1 Chordal graphs . 53
5.2.2 Optimality of chordal algorithms . 54
5.2.3 Cost equivalence of chordal algorithms 57
5.2.4 Complexity estimates . 61

5.3 Practical use . 72
5.3.1 Considerations for implementations . 73
5.3.2 Assistance by data-specific techniques 73
5.3.3 Imperfect oracle . 74

5.4 Conclusion . 78

6 Conclusion and perspectives 79

7 Bibliography 81

2

Chapter 1

Introduction

1.1 Motivation

Machine learning gathers algorithms that are designed to "learn" from data, i.e. algorithms
that can improve their performance for a given task by themselves. It may be seen as
a subfield of artificial intelligence in that it allows computers to emulate some form of
reasoning. Machine learning algorithms aim at predicting information about the data they
are fed. This data may come in a number of shapes and formats: it can be images of animals,
law bills gathered in text corpora or molecule interactions represented by a graph. The
applications for machine learning algorithms are equally varied and range from agriculture
and medicine to banking and linguistics.

In this thesis, we tackle selected problems in machine learning pertaining to graphs
(which are a mathematical representation of interactions between several entities). Graphs
have been used in many different ways in the field of machine learning. Among recent de-
velopments are graph kernels (Vishwanathan et al., 2010), which aim at measuring the sim-
ilarity between pairs of graphs, and graph neural networks (Scarselli et al., 2008) that make
it possible to use neural networks on data represented by graphs. Throughout this thesis,
we distinguish cases where graphs are used to model relational data (as seen in Chapters
2, 3 and 4) as opposed to settings where graphs are used as a formal tool regardless of the
actual data (as is the case in Chapter 5). In both cases, however, we seek to harness graphs
and their properties to improve the performance of machine learning algorithms.

1.2 Graphs

A graph is a mathematical object used to represent relations between entities called nodes
or vertices. The relations between nodes are represented by pairwise connections between
them called edges or links depending on the context. Two nodes linked by an edge are
neighbors of one another and referred to as adjacent. The degree of a node is its number of
neighbors. Let G = (V, E) denote a graph, where V is the node set and E ⊂ V × V is the

3

(a) Undirected (b) Directed (c) Bipartite

Figure 1.1: Various graphs

edge set.
Graphs can be found in a wide variety of fields ranging from bioinformatics to social

sciences. Depending on the domain under study, graphs may sometimes be called networks.
They can be used to represent many different datasets including web graphs where each
node is a website and links represent the hyperlinks between them.

There are a number of families of graphs. We describe some of those that are found in
this work and illustrate them in Figure 1.1:

• Undirected graphs describe symmetric relations between the nodes. That is ∀i, j ∈ V,
if (i, j) ∈ E then (j, i) ∈ E. This is the case of users on Facebook as the friendship link
is symmetric.

• Conversely, directed graphs describe relations where the previous implication does
not hold for all node pairs. This corresponds to the follower/followee relation on
Twitter or hyperlinks on the web. In directed graphs, edges are sometimes called arcs.
We distinguish the source node of an arc from its target node for clarity. Considering
an edge (i, j) ∈ E, we say that i is a predecessor of j and that j is a successor of i.

• Bipartite graphs are a subclass of undirected graphs where the node set V is the dis-
joint union of two sets V1 and V2 such that all edges in E have one end in one set and
the other end in the other set. Bipartite graphs are used to represent relations between
two distinct types of entities such as diseases and their corresponding symptoms or
Netflix users and the movies they rate.

In this work, we also consider one natural variant: weighted graphs. In a weighted
graph, each edge is assigned a non-negative real number called weight. This allows to
further characterize the relative strengths of the connections between the nodes.

We fix some notations that can be found throughout this thesis:

• Unless specified, we note n = |V|, the number of nodes and m = |E|, the number of
edges.

• If the graph is unweighted and undirected, di is the degree of node i ∈ V. If the graph
is directed, d+j (resp.d−i) is the out-degree (resp.in-degree), i.e. the number of edges

4

whose source (resp.target) is i. Then, d+j (resp.d−i) just corresponds to the number of

successors (resp.predecessors) of i. If the graph is weighted, d+j (resp.d−i) is the sum
of the weights of edges whose source (resp.target) is i.

• We note w, the total weight of the graph, that is the sum of the weights of all the
edges.

• For readability, we sometimes abbreviate the edge (i, j) into ij.

1.3 Graph analysis

In this section, we introduce two research fields centered around the analysis of graphs.
While graph theory seeks to describe the properties of graphs as a mathematical object,
graph mining is rather aimed at extracting information from datasets that can be repre-
sented as a graph. Both fields differ in the methods they use but they do overlap as il-
lustrated by the shortest-path problem which is an historically significant problem from a
theoretical standpoint (Ahuja et al., 1990) that has also seen some use in real-world appli-
cations (Zhang and Tu, 2009) such as social sciences.

1.3.1 Graph theory

Graph theory is concerned with the mathematical properties of graphs. Here, we give a list
of some common graph-theoretic problems:

• Graph classes There exist many families of graphs defined by some of their prop-
erties. For instance, among those families are planar graphs, which can be drawn
without any of their edges intersecting. We give an example of a graph having this
property in Figure 1.2. For many of those families, characterizing them (Lovász, 1972;
Farber, 1983) and being able to identify if a graph belongs to some family (Tarjan and
Yannakakis, 1984; Hopcroft and Tarjan, 1974) is of particular interest. One such class
is a focal point of Chapter 5.

Figure 1.2: A planar graph.

5

• Graph coloring One is interested in finding a coloring of the nodes (i.e. assigning a
color to each node of the graph) so that no adjacent nodes have the same color (Jensen
and Toft, 2011). While there exists a number of variations of this problem, one of the
most well-known results is the four-color theorem (Gonthier et al., 2008) which states
that on loopless planar graphs, no more than four colors are required to solve the
problem. One simple application of coloring problems occurs when determining if a
graph is bipartite or not: a graph is bipartite if, and only if, it has a 2-coloring, each
node being colored depending on the node subset it is in (as illustrated in Figure 1.3).

Figure 1.3: 2-coloring of a bipartite graph.

• Route problems Route problems are those that aim at finding a path (sometimes a
tree) within a graph that satisfies some conditions such as going through each node
exactly once or finding the shortest path between a pair of nodes as illustrated in Fig-
ure 1.4. They gather famous problems including that of the seven bridges of Königs-
berg (Euler, 1956) and the Hamiltonian path problem (Gurevich and Shelah, 1987).
Route problems have many applications in fields such as computer science (Li et al.,
2013) and transportation (Ford Jr, 1956; Zhan and Noon, 1998).

Figure 1.4: Shortest path (in red) between two nodes.

We now give some graph-theoretical definitions that we will use throughout this work

6

(Golumbic, 2004).

• A graph is connected if there is a path between every pair of nodes and disconnected
otherwise. A connected component of a graph is a connected subgraph, maximal for
the inclusion.

• A u, v-separator is a subset of the node set that, once removed, disconnects the graph
so that u and v are in distinct connected components.

• A cycle C is a path C = (u, v, w, . . . , u) from one node to itself of size at least three.
No node other than the first and last can be repeated. A chord of a cycle is an edge
connecting two non-consecutive nodes of a cycle. A cycle without a chord is induced
or chordless.

• A tree is a connected graph with no cycles.

• A clique of a graph is one of its complete subgraphs.

1.3.2 Graph mining

Graph mining is a collection of techniques designed to find the properties of real-world
graphs. It consists of data mining techniques used on graphs (Rehman et al., 2012). While
this definition hints at some overlap with graph theory, a number of techniques are en-
countered almost exclusively in a graph mining context. Here, we provide a list of some
common graph-mining tasks:

• Node ranking Ranking consists in assigning a score to each node of the graph de-
noting its importance or centrality. There are many ranking methods (Bloch et al.,
2019; Landherr et al., 2010) defining a wide range of measures, some based on ran-
dom walks in the graph, as illustrated by the PageRank ranking (Page et al., 1998)
originally designed for web pages; some using solutions to the shortest path prob-
lems (Okamoto et al., 2008). An example is given in Figure 1.5. We do not tackle this
task in the persent work.

Figure 1.5: Ranking of the nodes using PageRank.

7

• Node clustering Node clustering, also called community detection, gathers methods
that look for significant communities in a graph based on its structure. In particular,
a good clustering should group nodes so that they are more connected to their own
cluster than the others as seen in Figure 1.6. Node clustering has applications in the
Internet of Things (Mitra et al., 2012) and for recommendation systems (Fortunato,
2010). Chapter 3 reviews some clustering methods.

Figure 1.6: Clustering of the nodes using the Louvain method.

• Node embedding While the graph formalism is very well suited for representing
relational data, the need may arise to represent each node as a vector, this operation
is called embedding the nodes of the graph. For instance, the dimension of the em-
bedding space can be set to a low value compared to the number of nodes for dimen-
sionality reduction. It is also a way to apply machine learning techniques that take
vectors as input. We illustrate the embedding task in Figure 1.7. Chapter 4 describes
an embedding method.

8

Figure 1.7: 3-dimensional embedding of the nodes using the singular values decomposi-
tion.

1.4 Outline

This thesis is organized as follows:

• Chapter 2 introduces Scikit-network, a graph analysis library used in our experi-
ments. It was extensively developed in the framework of this thesis and offers a
simple API along with competitive performance at scale.

• Chapter 3 reviews some selected node clustering methods. We describe the flat clus-
tering Louvain method and some of its refinements and some hierarchical clustering
algorithms.

• Chapter 4 describes a novel node embedding method. It is based on the Louvain
clustering method of the previous chapter to tackle large-scale datasets and offer in-
terpretable results.

• Chapter 5 deals with the problem of dataset labeling. The particular setting under
study is derived from a real-world problem. We describe the optimal solution for this
setting.

• Chapter 6 concludes this thesis.

1.5 Publications

Two articles have been accepted during this thesis:

• Bonald, T., de Lara, N., Lutz, Q., & Charpentier, B. (2020). Scikit-network: Graph
Analysis in Python. J. Mach. Learn. Res., 21, 185-1. Related to Chapter 2

9

• Lutz, Q., De Panafieu, E., Stein, M., & Scott, A. (2021). Active clustering for label-
ing training data. Advances in Neural Information Processing Systems, 34. Related to
Chapter 5

10

Chapter 2

Scikit-network

The Scikit-network package was created in 2018 by Thomas Bonald and Bertrand Charp-
entier. The work described in this chapter has been carried out jointly with Nathan de Lara
and Thomas Bonald. We refer the reader to the package’s GitHub insights1 for a rough
overview of the respective contributions of the developers. It should be noted however,
that a significant portion of the package was developed by several contributors at once (in
pair programming fashion) while just one gets to commit to the Git repository. Further-
more, part of the work on the package is not accounted for when looking at the repository
only: trying out different features, libraries or continuous integration tools; designing ef-
ficient code through careful understanding of scientific articles and learning new skills in
software development are all demanding tasks. Overall, it is safe to assume that no one
contributor among the core developers had a disproportionate role over the others.

2.1 Motivation

Scikit-learn (Pedregosa et al., 2011) is a machine learning package based on the popular
Python language. This package is well-established in today’s machine learning commu-
nity thanks to its versatility, performance and ease of use, making it suitable for both re-
searchers, data scientists and data engineers. Its main assets are the variety of algorithms,
the performance of their implementation and their common API.

Scikit-network is a Python package inspired by scikit-learn for graph analysis. The
sparse nature of real graphs, with up to millions of nodes, prevents their representation
as dense matrices and rules out most algorithms of scikit-learn. Scikit-network takes as
input a sparse matrix in the CSR format of SciPy and provides state-of-the-art algorithms
for ranking, clustering, classifying, embedding and visualizing the nodes of a graph.

The design objectives of Scikit-network are the same as those having made scikit-learn a
success: versatility, performance and ease of use. The result is a Python-native package, like
NetworkX (Hagberg et al., 2008), that achieves the state-of-the-art performance of iGraph

1See https://github.com/sknetwork-team/scikit-network/graphs/contributors.

11

Figure 2.1: Scikit-network logo

(Csardi and Nepusz, 2006), graph-tool (Peixoto, 2014) and NetworKit (Staudt et al., 2016)
(see the benchmark in section 2.3.3). Scikit-network uses the same API as Scikit-learn, with
algorithms available as classes with the same methods (e.g., fit). It is distributed with the
BSD license, with dependencies limited to NumPy (Walt et al., 2011) and SciPy (Virtanen
et al., 2020).

2.2 Software Features

The package is organized in modules with consistent API, covering various tasks:

• Data. Module for loading graphs from distant repositories, including Konect (Kunegis,
2013), parsing tsv files into graphs, and generating graphs from standard models,
like the stochastic block model (Airoldi et al., 2008).

• Clustering. Module for clustering graphs, including a soft version that returns a
node-cluster membership matrix.

• Hierarchy. Module for the hierarchical clustering of graphs, returning dendrograms
in the standard format of SciPy. The module also provides various post-processing
algorithms for cutting and compressing dendrograms.

• Embedding. Module for embedding graphs in a space of low dimension. This in-
cludes spectral embedding and standard dimension reduction techniques like SVD
and GSVD, with key features like regularization.

• Ranking. Module for ranking the nodes of the graph by order of importance. This
includes PageRank (Page et al., 1998) and various centrality scores.

• Classification. Module for classifying the nodes of the graph based on the labels of a
few nodes (semi-supervised learning).

• Topology. Module for exploring the structure of the graph: graph traversals, k-core
decomposition, etc.

12

Modules NetworkX iGraph graph-tool NetworKit
Data ✓ ✗ ✓ ✓

Clustering ✓ ✓ ✗ ✓

Hierarchy ✗ ✓ ✓ ✗

Embedding ✓ ✗ ✓ ✗

Ranking ✓ ✓ ✓ ✓

Classification ✓ ✗ ✗ ✗

Topology ✓ ✓ ✓ ✓

Path ✓ ✓ ✓ ✓

Link prediction ✓ ✓ ✓ ✓

Visualization ✓ ✓ ✓ ✓

Table 2.1: Overview of graph software features. ✓: Available. ✓: Partially available or slow
implementation. ✗: Not available.

• Path. Module relying on SciPy for shortest-paths problems.

• Link prediction. Module for assigning a probability of existence of an edge to a node
pair based on a partial graph.

• Visualization. Module for visualizing graphs and dendrograms in SVG (Scalable
Vector Graphics) format. Examples are displayed in Figure 2.2.

These modules are only partially covered by existing graph softwares (see Table 2.1).
Another interesting feature of Scikit-network is its ability to work directly on bipartite
graphs, represented by their biadjacency matrix.

2.3 Practical considerations

2.3.1 Efficient graph representation

There exists multiple ways to represent a graph formally. We compare three of the most
common ones:

• Adjacency matrix, a square matrix Aij of size n where Aij is the weight of the edge
(i, j) (or 1 for unweighted graphs) if it exists and 0 otherwise.

• Adjacency list, a list of lists where the i-th list contains the neighbors of node i.

• Incidence matrix, a rectangular matrix Bik of shape n× m such that Bik = 1 if, and
only if, node i is incident to the k-th edge.

In a more practical sense, the choice of the representation alone is not enough to assess
the performance of some common operations such as finding the weight associated with a
particular edge or removing a vertex from the graph. The implementation of any of those
representations matters. In particular, the chosen data structure determines how well the

13

Pablo Picasso

Claude Monet

Michel Angelo

Edouard Manet

Peter Paul Rubens

Rembrandt

Gustav Klimt

Edgar Degas

Vincent van Gogh

Leonardo da Vinci

Henri Matisse

Paul Cezanne

Pierre-Auguste Renoir

Egon Schiele

Pablo Picasso

Claude Monet

Michel Angelo

Edouard Manet

Peter Paul Rubens

Rembrandt

Gustav Klimt

Edgar Degas

Vincent van Gogh

Leonardo da Vinci

Henri Matisse

Paul Cezanne

Pierre-Auguste Renoir

Egon Schiele

Figure 2.2: Visualization of a graph and a dendrogram as SVG images.

graph can be manipulated. For example, if one makes a naive implementation of the three
representations mentioned above using dense C-like (i.e. contiguous in memory so that
indexing is implicit) arrays of size n2 and nm for the adjacency and incidence matrices
respectively, and a list of lists for the adjacency list, their performances are as described in
Table 2.2.

Notice that the incidence matrix performs worse than both other representations in all
cases, it is thus seldom used in practice. However, there is no absolute winner between the
adjacency matrix and adjacency list.

To further explore the available data structures, we consider actual graph datasets. One
useful feature of the majority of real-world graphs is their sparsity. Indeed, the number of
edges m is usually very low compared to the number of possible connections n2. Given the
results displayed in table 2.2, this would favor adjacency lists as a preferred data structure
as they are naturally sparse. Nevertheless, there also exists several sparse matrix formats
that one can use to represent adjacency matrices. We compare formats that are available
in SciPy’s sparse module2 and compare them to an adjacency list implementation using
nested Python dictionaries:

2https://docs.scipy.org/doc/scipy/reference/sparse.html

14

Task Adjacency matrix Adjacency list Incidence matrix
Memory space O(n2) O(n + m) O(nm)
Check (u, v) ∈ E O(1) O(du) O(m)
Add node u O(n2) O(1) O(nm)
Delete node u O(n2) O(dudmax) O(nm)
Add edge (u, v) O(1) O(1) O(nm)
Delete edge (u, v) O(1) O(dmax) O(nm)
List neighbors of u O(n) O(1) O(m + ndu)

Table 2.2: Complexities of different representations of a graph. dmax is the maximum degree
in the graph.

• The coordinates (COO) format consists of three arrays row, col and data of size m
such that for any 1 ≤ i ≤ m, Arow(i),col(i) = data(i) and Ajk = 0 otherwise. As with
all array-based formats, the addition or deletion of edges is costly as it requires to
resize the arrays.

• The dictionary of keys (DOK) format uses a dictionary where the keys are the edges
given as tuples and the associated values are the corresponding weights. Unlike
array-based formats, it allows for dynamic changes of the matrix while offering con-
stant average access times to its values. Its downside is the memory space required
by its hash table.

• The compressed sparse row (CSR) (respectively compressed sparse column (CSC))
format implicitly indexes the source (resp. target) nodes of every edge but explicitly
indexes their target (resp. source) nodes. It consists of three arrays. In the case of the
CSR format, two arrays indices and data of size m contain the target nodes and the
weights of the edges respectively. The third array indptr has size n + 1 and delimits
the successors of each source node. For instance, the neighbors of node i are found
in the indices array at positions indptr(i) to indptr(i + 1) which can be computed
in constant time. Conversely, in the CSC format, indptr delimits the predecessors
of each target node. Additionally, algebraic operations such as matrix/vector dot
products are very efficient when using the CSR/CSC format.

• The dictionary of dictionaries (DOD) format is not found in SciPy. It is based on
nested Python dictionaries: a main dictionary has nodes as keys and dictionaries as
values. Additionally, an index is maintained to allow for the addition and deletion
of nodes. Each nested dictionary has the neighbors of the corresponding node as
keys and the weights of the associated edges as values. Unlike the DOK format,
this makes it possible to have constant-time access to the neighborhood of a node by
looking at the keys of the corresponding nested dictionary. This comes at the expense
of increased memory requirements due to the numerous hash tables of the nested
dictionaries. One notable downside is that this format is ill-suited for dot products.

Each format is illustrated on a toy graph depicted in Figure 2.3. In order to compare
all the formats described above, we use each format to store various graphs and gather

15

0 1

2 3

(a) Graph to represent
2

0 0 2 1 0
0 0 0 0
1 0 0 0
0 0 0 0

(b) Dense array

row col data

0 1 2
0 2 1
2 0 1

(c) COO matrix

(0, 1) 7→ 2
(0, 2) 7→ 1
(2, 0) 7→ 1

(d) DOK matrix

indptr indices data

0
1 2
2 1

2
2

0 1
3
3

(e) CSR matrix

0 7→ (1 7→ 2; 2 7→ 1)
1 7→ ∅

2 7→ (0 7→ 1)
3 7→ ∅

(f) DOD matrix

Figure 2.3: A graph and its different representations. 7→ denotes the association of a key to
a value via a hash function. Edge (0, 2) and its associated weight are also highlighted.

the amount of memory space they require in Table 2.3. We also report the execution times
for some common graph operations in Table 2.4 using the WikiVitals graph. In the latter
table, the COO format is absent as it does not allow most of the listed tasks to be performed
(including slicing). It should also be noted that the tasks under study are by no means
exhaustive. In particular, a common downside of all the formats at hand is that they are
not suited for extracting subgraphs like dense matrices are.

Graph n m CSR COO DOK DOD
WikiSchools 4.103 1.105 6.102 1.103 4.103 2.103

WikiVitals 1.104 8.105 4.103 7.103 3.104 1.104

WikiLinks 3.106 7.107 3.105 6.105 2.106 1.106

Table 2.3: Memory usage (in kB) of different formats for various graphs.

In Table 2.4, notice how the DOD format benefits from the efficiency of Python dic-
tionaries and is the overall fastest option for many tasks under study. The CSR format
has a similar albeit slightly worse performance, except for listing neighbors and matrix-

16

Task CSR DOK DOD
Check (u, v) ∈ E 3.10−5 2.10−5 6.10−6

Add node u 5.10−5 2.10−4 2.10−6

Delete node u 3.10−3 7.101 5.10−3

Add edge (u, v) 5.10−3 2.10−5 6.10−6

Delete edge (u, v) 1.10−3 3.10−5 1.10−5

List neighbors of u 2.10−6 4.10−3 1.10−4

Matrix-vector product 2.10−3 2.100 1.100

Table 2.4: Execution times (in seconds) of different formats on the WikiVitals graph.

vector products, while the DOK format performs significantly worse than either on some
tasks. The DOD format is especially well-suited for adding and deleting edges and nodes
alike. On these tasks it is about one order of magnitude faster than the CSR and DOK for-
mats except for the deletion of nodes. As found in Table 2.3, the CSR format is the most
memory-efficient format especially when compared to its dictionary-based counterparts.
In choosing a format for our experiments, the CSR format is our preferred option because
it offers the best memory footprint and is very well-suited for algebraic operations while
also having a good performance for selected graph primitives. The CSR format formally
represents the adjacency matrix of the graph, however, it also retains a number of char-
acteristics expected from adjacency list and incidence matrix representations. Indeed, like
adjacency lists, it makes it possible to access the neighborhood of a node in constant time.
On the other hand, like incidence matrices, it is easy to find if node i is adjacent to the j-th
edge provided that the ordering of the edges is that of the indices array.

2.3.2 Guidelines for the package

In designing Scikit-network, we set out a number of goals and features we seeked to
achieve. We mention them below and describe how they impact day-to-day work on the
package.

Open-source software. The package is hosted on GitHub3 and is part of SciPy kits aimed
at creating open-source scientific software. Its BSD license enables maximum interoperabil-
ity with other software. Contributions are encouraged and guidelines for contributing are
described in the documentation of the package4 and guidance is provided by the GitHub-
hosted Wiki.

Sustainable performance. Scikit-network relies on a very limited number of external de-
pendencies for ease of installation and maintenance. Only SciPy and NumPy are required
on the user side.

3See https://github.com/sknetwork-team/scikit-network.
4See https://scikit-network.readthedocs.io/en/latest/.

17

• Many elements from SciPy are used for both high performance and simple code.
The sparse matrix representations allow for efficient manipulation of large graphs
as discussed in Chapter 2 while linear algebra solvers are used in many algorithms.
Scikit-network also relies on the LinearOperator class for efficient implementation of
certain algorithms.

• NumPy arrays are used through SciPy’s sparse matrices for memory-efficient com-
putations. NumPy is used throughout the package for the manipulation of arrays.
Some inputs and most of the outputs are given in the NumPy array format.

• In order to speed up execution times, Cython (Behnel et al., 2011) generates C++
files automatically using a Python-like syntax. Thanks to the Python wheel system,
no compilation is required from the user on most platforms. Note that Cython has
a built-in module for parallel computing on which Scikit-network relies for some
algorithms. Otherwise, it uses Python’s native multiprocessing.

Note that all three packages are well-established within the Python ecosystem. Their mostly
stable APIs make it possible to avoid unnecessary changes to the code.

Code quality and availability. To ensure that the library is bug-free, a number of tests
are defined for each new algorithm and feature. Code quality is then assessed by standard
code coverage metrics (Bacchelli and Bird, 2013): the coverage is the proportion of code
lines that are executed when running the tests. Today’s coverage is at 99% for the whole
package. Note that this coverage metric is a rough one (in particular, it does not denote
how relevant tests are). In practice, special attention is given to identifying and testing
pathological cases when implementing new features.

As a general rule of thumb, the package should work with the latest versions of its
dependencies in order to avoid the use of obsolete features. Requirements are thus kept up
to date thanks to IDE assistance. Scikit-network relies on GitHub Actions for continuous
integration (i.e. testing and deploying code) and cibuildwheel for deploying on common
platforms (i.e. building wheels for each platform so that no compilation is required on the
user side). OSX, Windows and most Linux distributions (McGibbon and Smith, 2016) are
supported for Python versions 3.7 and newer.

The amount of work spent ensuring that coverage remains high and that the package is
available on all platforms cannot be understated.

Documentation. Scikit-network is provided with a complete documentation4. The API
reference presents the syntax while the tutorials present applications on real graphs. Al-
gorithms are documented with relevant formulas, specifications, examples and references,
when relevant. This documentation aims at enabling users to have a quick grasp of the
usage of each function. The quality of the documentation is easily as important as that of
the code itself as the former is the main enabler for a proper use of the latter.

The documentation is built from structured comments in the code itself and files de-
scribing how the documentation is organized. Tutorials are built from Jupyter notebooks
which are executed when the documentation is being built. All functions and classes of

18

Scikit-network are documented, most appear in the documentation and all methods have
a tutorial attached.

Code readability. The source code follows the stringent PEP8 guidelines. Explicit variable
naming and type hints make the code easy to read. The number of object types is kept to a
minimum. Those readability guidelines aim at facilitating the review and addition of code
to the package. Indeed, it makes it easier to fix faulty code or to repurpose it. In particular,
when new contributions are made, it provides a common set of conventions for newcomers
while allowing reviewers to provide feedback faster.

Data collection. The package offers multiple ways to fetch data. Some small graphs are
embedded in the package itself for testing or teaching purposes. Part of the API makes
it possible to fetch data from selected graph databases easily. Both of these options are
of particular interest when implementing or benchmarking new algorithms or showcasing
existing ones. Parsers are also present to enable users to import their own data and save it in
a convenient format for later reuse. Those parsers make it possible to apply the algorithms
of Scikit-network on proprietary data.

With this goal of broad data collection in mind, we also introduce the NetSet repository.
Although not part of the Scikit-network package, the NetSet5 repository is one of the two
databases with a dedicated import function available (the other one being Konect). It is also
maintained by the Scikit-network team. It gathers some common networks of the literature
such as 20NewsGroup but also some original datasets such as the US Senate, US House of
Representatives and French National Assembly graphs. Unlike imports from Konect that
require at least an initial parsing of TSV files, importing datasets from the NetSet repository
benefits from downloading files in the dedicated NumPy, SciPy and Pickle formats which
allows for gains in both memory (and thus download size) and overall runtimes for the
import command.

2.3.3 Performance

To show the performance of Scikit-network, we compare the implementation of some rep-
resentative algorithms with those of the graph softwares of Table 2.1:

• the Louvain clustering algorithm (Blondel et al., 2008), with the tolerance parameter
set at 10−3 when available

• PageRank (Page et al., 1998), the number of iterations is set to 100 when possible (that
is for all packages except iGraph)

• HITS (Kleinberg, 1999)

• the spectral embedding (Belkin and Niyogi, 2003) where dimension of the embedding
space is set to 16

5See https://netset.telecom-paris.fr/

19

scikit-network NetworkX iGraph graph-tool
Louvain 771 ✗ 1,978 ✗

PageRank 48 � 236 45
HITS 109 � 80 144
Spectral 534 � ✗ ✗

Table 2.5: Execution times (in seconds). ✗: Not available. �: Memory overflow.

scikit-network NetworkX iGraph graph-tool
RAM usage 1,222 � 17,765 10,366

Table 2.6: Memory usage (in MB). �: Memory overflow.

Table 2.5 gives the running times of these algorithms on the Orkut graph of Konect (Kunegis,
2013). The graph has 3, 072, 441 nodes and 117, 184, 899 edges. The computer has a Debian
10 OS and is equipped with an AMD Ryzen Threadripper 1950X 16-Core Processor and
32 GB of RAM. Note that NetworKit is absent as we could not get it to work on our test
machine. As we can see, Scikit-network is highly competitive.

We also give in Table 2.6 the memory usage of each package when loading the graph.
Thanks to the CSR format, Scikit-network has a minimal footprint.

2.4 Conclusion

We introduced Scikit-network, a Python library for graph analysis. We illustrated how
competitive it was compared to other libraries without sacrificing its ease-of-use and de-
scribed the main guidelines we set when developing it. It should be noted that the per-
formance of Scikit-network does come with one notable string attached: all operations are
done in RAM and it is expected that RAM is the limiting factor to what can be achieved
with the package. Nevertheless, thanks to the efficient CSR format, even a common laptop
can handle large graphs as seen in the experiments. Machines with hundreds of gigabytes
of RAM (like the one used in the experiments of Chapter 4), while uncommon, are not
unheard of and make it possible to tackle real-world graphs with billions of edges.

In the future, the library could benefit from a new graph format to either overcome
some of the downsides of the CSR format mentioned in Chapters 3 and 4 or tackle new
problems. For instance, the topic of dynamic graphs (i.e. graphs whose nodes and edges
may appear and disappear over time) is of particular interest. Results displayed in Section
2.3.1 then suggest that formats such as the DOD one may be better suited.

20

Chapter 3

Node clustering

3.1 Introduction

Node clustering is a common task in graph mining. It consists in partitioning the node set
V of a graph G = (V, E) in such a way that nodes in the same group are closer in some
sense than to those in other groups. Each such group is called a cluster or community and
clustering is also known as community detection. In this chapter we review different forms
of clustering, defined by their outputs:

• flat clustering, where each node is assigned exactly one cluster. In this case, we re-
view selected variations of the Louvain method (Blondel et al., 2008), a well-known
algorithm for flat node clustering. We compare those and introduce a novel variant.

• hierarchical clustering, where each node is a leaf in a tree designed so that close leaves
correspond to close nodes in the original graph.

3.1.1 Node sampling

A natural notion of proximity between nodes is through node sampling. Let A be the
adjacency matrix of an undirected graph. Consider the sampling of node pairs through the
edges. Each (ordered) node pair (i, j) is then sampled with probability:

s(i, j) =
Aij

2w

where w is the total weight of the graph. This is a symmetric joint distribution with
marginal distribution:

s(i) = ∑
j∈V

s(i, j) =
di

2w

21

Then, the probability of sampling j given that i is sampled is:

s(j|i) = s(i, j)

s(i)

We say that node j is close to node i if the probability of sampling node j given the sampling
of node i is much higher than the probability of sampling node j. This yields the following
similarity for nodes i and j:

σ(i, j) =
s(j|i)
s(j)

=
s(i, j)

s(i)s(j)

Note that σ is symmetric. This sampling distribution and the derived similarity are used in
the following sections.

3.2 Flat clustering

The flat clustering of a graph G is given as a partition of its node set V. Formally, the
clustering of G is (Ck)k∈C such that, ∀k 6= l, Ck ∩ Cl = ∅ and

⋃

k Ck = V. Conversely, we
define the cluster ci of any node i ∈ V as ci = k if i ∈ Ck.

In this section, we will focus on the Louvain method, the modularity functions it opti-
mizes and its variants.

3.2.1 Similarity measures

In order to assess the quality of a clustering, it is useful to compare it to the ground truth
of the dataset under study whenever available. This requires to be able to compare any
pair of clusterings. While it is trivial to check if two clusterings are equal, quantifying how
different they are is more difficult.

To that end, we will go over:

• the Rand index measure defined by Rand (1971)

• the homogeneity and completeness scores defined by Rosenberg and Hirschberg (2007)

Note that the choice of those two similarity measures is far from exhaustive (Vinh et al.,
2010; Yang et al., 2016).

We denote the ground truth by G and a clustering to which it should be compared by C.
We say that i is in class (resp. cluster) k if i ∈ Gk (resp. i ∈ Ck). Let n be the number of nodes,
we pick a random node X and consider the random variables gx and cX , the class and the
cluster of X.

Homogeneity and completeness One way to assess how close C is to G is to check that
any cluster corresponds to at most one class. Whenever this is the case, we say that C is
homogeneous with respect to G.

Definition 1. C is homogeneous with respect to G, if ∀l, ∃!k, Cl ⊂ Gk.

22

Conversely, another way to assess how close C is to G is to check that any class cor-
responds to at most one cluster. This property is called completeness and is immediately
linked with homogeneity by switching the roles of C and G.

Definition 2. C is complete with respect to G, if G is homogeneous with respect to C.

Note that if C is both complete and homogeneous with respect to G, then C and G are
identical (up to their numbering).

Rand index The Rand index is defined as the proportion of node pairs (i, j) whose classes
and clusters are either both equal, i.e. ci = cj and gi = gj or different, i.e. ci 6= cj and gi 6= gj.
By definition, the Rand index is thus bounded by 0 (when C and G do not agree on a single
node pair) and 1 (when the two clusterings are identical).

We give a closed formula for the Rand index RI:

Proposition 1.

(

n

2

)

RI =

(

n

2

)

+
|G|
∑
k=1

|C|
∑
l=1
|Gk ∩ Cl |2 −

1
2

(|G|
∑
k=1
|Gk|2 +

|C|
∑
l=1
|Cl |2

)

Proof. We use Kroenecker symbols to count pairs where C and G agree:
(

n

2

)

RI = ∑
1≤i<j≤n

(

δgi gj
δcicj

+ (1− δgi gj
)(1− δcicj

)
)

2
(

n

2

)

RI + n = ∑
1≤i,j≤n

(

1 + 2δgi gj
δcicj
− δgi gj

− δcicj

)

Note that ∑1≤i,j≤n δgi gj
= ∑1≤i,j≤n ∑

|G|
k=1 δgikδgjk = ∑

|G|
k=1 |Gk|2. Using similar reasoning for

the two other sums yields:

2
(

n

2

)

RI + n = n2 + 2
|G|
∑
k=1

|C|
∑
l=1
|Gk ∩ Cl |2 −

|G|
∑
k=1
|Gk|2 −

|C|
∑
l=1
|Cl |2

Hence the result.

The Rand index gives an easily interpretable result thanks to a very simple definition.
One noticeable downside of the Rand index is that two random clusterings may have a high
score. If their number of clusters is high for instance, all but the (n

2) term in Proposition 1
vanish. To correct this issue, one can account for chance by substracting the expected value
of the Rand index (Hubert and Arabie, 1985). This measure is called the adjusted Rand
index (ARI).

23

V-measure Homogeneity translates nicely in terms of entropy as G is then entirely deter-
mined by C. Let:

H(gX |cX) = −
|G|
∑
k=1

|C|
∑
l=1

|Gk ∩ Cl |
n

log
|Gk ∩ Cl |
|Cl |

When C is homogeneous with respect to G, H(gX |cX) = 0. This is normalized so that
we have a score between 0 and 1 with 1 being reached whenever there is homogeneity.
As H(gX |cX) is bounded by 0 and H(gX) (whenever gx and cX are independent), we de-

fine the homogeneity score of C with respect to G as hG(C) = 1− H(gX |cX)
H(gX)

. Note that the
trivial partition where each node is in its own cluster is homogeneous with respect to any
partition.

Conversely, we define the completeness score mG(C) of C with respect to G as mG(C) =
hC(G). Note that the trivial partition where all nodes are in the same cluster is complete
with respect to any partition.

The V-measure score is defined as the harmonic mean of the homogeneity and the com-
pleteness scores.

3.2.2 Modularity functions

In this section, we define the different modularity functions used for graph clustering and
present some of their properties.

Consider a graph G = (V, E), a probability distribution p over V × V and two proba-
bility distributions qr and qc over V (for the rows and columns). A modularity function,
given a resolution parameter γ, can be written in its general form as:

Q = ∑
i,j∈V

(

pij − γqr
i qc

j

)

δcicj
(3.1)

The modularity can then be interpreted as the difference between the probability of
sampling a node pair inside a cluster using an edge sampling distribution and the proba-
bility of sampling the same pair using two node samplings. Maximizing the first term has
a trivial solution in which all nodes are in one cluster. On the other hand, minimizing the
second term has a trivial solution in which there are as many clusters as there are nodes
(i.e. one node per cluster). The modularity is thus a balance between those two competing
terms. In the literature, the resolution parameter may be absent, this is equivalent to hav-
ing γ = 1. Equation (3.1) can be rewritten into an aggregated form by summing cluster by
cluster:

Q = ∑
k∈C

(Pk − γQk) (3.2)

where Pk = ∑i,j∈Ck
pij is the probability of sampling a pair of nodes in cluster k according

to distribution p. Likewise, we define Qk = ∑i,j∈Ck
qr

i qc
j .

Note that there exists other modularity functions than the ones we list in this section. In
particular, some may not be written in the form of Equation (3.1) (Campigotto et al., 2014).

24

Undirected graphs. One of the most simple choices of p, qr and qc for undirected graphs
is pij ∝ ✶{ij∈E} and qr

i , qc
i ∝ 1, which gives the following aggregated form:

QP = ∑
k∈C

(|Ek|
m
− γ
|Ck|2

n2

)

(3.3)

where Ek is the set of edges between nodes of Ck.
We call this function the Potts modularity because of its link to the constant Potts model.

Note that maximizing QP is equivalent to maximizing ∑k∈C

(

|Ek| − γ m
n2 |Ck|2

)

. Traag et al.

(2011) suggests using γ′ = γ m
n2 . They describe the following aggregated form:

QT = ∑
k∈C

(

|Ek| − γ′|Ck|2
)

(3.4)

This can be interpreted depending on γ′. |Ck|2 is the maximum number of edges that
can be found within cluster k, for 0 ≤ γ′ ≤ 1, γ′|Ck|2 is the expected number of edges
within that cluster and γ′ is the target density inside each cluster (whereas m

n2 is the mean
density for the whole graph). γ denotes how much bigger the intra-cluster density should
be compared to the mean density. We typically need γ > 1.

The most common choice of p,qr and qc for undirected graphs is found in Newman
(2006). They are set so that pij ∝ Aij and qr

i , qc
i ∝ di (recall that whenever the graph is

weighted, di denotes the sum of the weights of edges incident to node i rather than its
degree):

QN = ∑
i,j∈V

(

Aij

2w
− γ

didj

(2w)2

)

δcicj
(3.5)

Note that the latter modularity and that of Equation (3.3) coincide on unweighted reg-
ular graphs (i.e. unweighted graphs where all nodes have the same degree). In light of the
sampling distribution defined in Section 3.1.1, we rewrite QN as:

QN = ∑
i,j∈V

(s(i, j)− γs(i)s(j)) δcicj

Intuitively, the modularity is high whenever the probability of sampling an edge whose
ends are both within a cluster is higher than picking two nodes within that cluster inde-
pendently. In particular, this is expected when there are many edges within clusters com-
pared to the number of edges between distinct clusters. Alternatively, the aggregate form
of Equation (3.5) is:

QN = ∑
k∈C

(

wk

2w
− γ

(vk

2w

)2
)

with wk = ∑i,j∈Ck
Aij and vk = ∑i∈Ck

di, the volume of cluster k. Notice that the first
term ∑k∈C

wk
2w is exactly the proportion of the edge weights that is within the clusters. The

second term ∑k∈C

(vk
2w

)2 is minimal when all clusters have the same volume (it is then equal
to the inverse of the number of clusters) and maximal when there is only one cluster which

25

has volume vk = 2w (it is then equal to 1).

Directed graphs. The modularity defined in Equation (3.5) is naturally extended to di-
rected graphs. To do so, Dugué and Perez (2015) suggests pij ∝ Aij, qr

i ∝ d+i and qc
i ∝ d−i :

QD = ∑
i,j∈V

(

Aij

2w
− γ

d+i d−j
(2w)2

)

δcicj
(3.6)

Bipartite graphs. Likewise, in the case of bipartite graphs, Barber (2007) proposed to use
pij ∝ Bij, qr

i ∝ dr
i and qc

i ∝ dc
i where (i, j) ∈ V1 ×V2 and dr and dc are the degree vectors for

the rows and the columns of the biadjacency respectively. This leads to the bimodularity
function:

QB = ∑
i∈V1,j∈V2

(

Bij

2w
− γ

dr
i dc

j

(2w)2

)

δcicj
(3.7)

Let

A =

(

0 B
0 0

)

∈ Mn1+n2(R)

be the adjacency matrix of the graph, seen as a directed one. The bimodularity on B coin-
cides with the directed modularity defined in Equation (3.6) on A as the in- and out-degree

d− and d+ of A can be written respectively as
(

0
dc

)

and
(

dr

0

)

.

The Newman modularity of Equation 3.5 can also be used on bipartite graphs (without
taking the particular structure of the graph into account). The corresponding undirected
graph has the following adjacency matrix:

A =

(

0 B

BT 0

)

∈ Mn1+n2(R)

Aggregation properties. We now define the aggregation of a graph G = (V, E) along
a clustering C. This results in a graph Ĝ = (V̂, Ê) where V̂ = {1, . . . , |C|} (i.e., there is
one node in the aggregated graph for each cluster in C) and the weight of edge (i, j) is
Âkl = ∑i,j∈Ck×Cl

Aij. Modularity functions are all compatible with aggregation based on a
clustering of the graph. The corresponding conservation property is key to the efficiency
of the Louvain method described in Section 3.2.3 (general conditions for a good integration
with Louvain are discussed in Campigotto et al. (2014)). Here, we give a generalization of
that property. Recall the homogeneity property defined in Definition 1. Let C and C ′ be
two clusterings of a graph, if C ′ is homogeneous with respect to C, C can also be aggregated
along C ′. This results in a partition Ĉ of |C ′|-sets such that each element in Ĉk corresponds
to a cluster of C ′ that is included in Ck.

Proposition 2. Given a graph G = (V, E) and two clusterings C and C ′ of G such that C ′ is
homogeneous with respect to C, consider the graph G′ = (V′, E′) and the clustering Ĉ of G′ obtained

26

by aggregating G and C along C ′. The modularity of clustering C on G is equal to the modularity of
Ĉ on G′.

Proof. Let Y′ ∈ R
n×|C ′ | (resp.Ŷ ∈ R

|C ′ |×|Ĉ|) be the membership matrix for the clustering C ′
(resp.Ĉ), i.e. Yik = 1 if node i ∈ V is in cluster C ′k (resp.Ĉk) and 0 otherwise. Note that the
membership matrix Y of C satisfies Y = Y′Ŷ. Let A′ = Y′T AY′ be the adjacency matrix of
G′. To simplify notations, let d (resp. f) denote the out-weight (resp.in-weight) vector of A
and let w denote the total weight of the graph. We have:

d′ = A′~1 = Y′T AY′~1 = Y′Td

f ′ = A′T~1 = Y′T ATY′~1 = Y′T f

w′ =~1T A′~1 =~1TY′T AY′~1 =~1T A~1 = w

Hence, p′ij = (Y′T pY′)ij and qr ′
iq

c ′
j = (Y′TqrqcTY′)ij hold for all the probability distribu-

tions listed above:

Q(C) = ∑
i,j∈V

(

pij − γqr
i qc

j

)

δcicj

= ∑
i,j∈V

(

pij − γqr
i qc

j

)

YT
i Yj

= Tr
(

YT
(

p− γqrqcT
)

Y
)

= Tr
(

ŶTY′T
(

p− γqrqcT
)

Y′Ŷ
)

= Tr
(

ŶT
(

Y′T pY′ − γY′TqrqcTY′
)

Ŷ
)

= ∑
i,j∈V′

(

p′ij − γqr ′
iq

c ′
j

)

ŶT
i Ŷj

= ∑
i,j∈V′

(

p′ij − γqr ′
iq

c ′
j

)

δĉi ĉj

Property 2 is used in Section 3.2.4. In particular, Figure 3.1 illustrates two partitions of
the nodes such that one (in 3.1b) is homogeneous to the other (in 3.1a) and how the graph
and the initial partition are partially aggregated (in 3.1d) along a refined partition.

The following property is an immediate consequence of the former for C = C ′:

Proposition 3. Given a graph G = (V, E) and a clustering C of G, consider the graph Ĝ = (V̂, Ê)
obtained by aggregating along C. The modularity of clustering C on G is equal to the modularity of
the trivial partition where each node is in its own cluster on Ĝ.

Proposition 3 is the commonly given conservation property for the Louvain method.

27

3.2.3 Louvain method

We now describe the Louvain method (Blondel et al., 2008) and how the modularity func-
tions described above allow it to be a scalable approach to clustering. When it was first
introduced, only the modularity for undirected networks from Equation (3.5) was men-
tioned. However, the general idea can be applied to any type of objective function that
satisfies the aggregation property as described in Proposition 3 and that allows for the
variation of its value due to a cluster change to be computed easily.

The Louvain method consists of two phases: optimization and aggregation (described
respectively in Algorithms 1 and 2). In Algorithm 1, MOD denotes the modularity function
and MOVE(G, C, u, k) denotes the partition of G obtained from C by setting cu to k. In
Algorithm 2, MEMBERSHIP(C) is the membership matrix Y for some partition C, i.e. Yiu = 1
if node i is in cluster u under C and 0 otherwise.

The optimization phase consists in visiting all the nodes of the graph repeatedly and
moving them to a neighboring community whenever it induces an increase in modularity
greater than some tolerance ǫ. The tolerance parameter ǫ is the only one that needs to be set.
Empirically, we find that ǫ = 10−3 offers a reasonable trade-off between the quality of the
results and time performance. It is the value that is used in the experiments. It should be
noted that the optimization is deterministic up to the order in which the nodes are visited.

After optimization, a partition C which locally optimizes the modularity is obtained.
The next step is to aggregate G with respect to C. Once the graph is aggregated, another
optimization phase begins and the two phases are repeated until aggregation does not
change the graph.

The modularity increases with each local update performed in the optimization phase
and remains the same during the aggregation phase according to Proposition 3. As the
modularity is upper-bounded, the Louvain method converges towards a local maximum
of the modularity.

The efficiency of the Louvain method relies on easily finding the best local cluster for
each node (i.e. the cluster that induces the largest increase in modularity). This, in turn,
depends on having a simple local update formula for the modularity when node i is moved
from cluster ci to cj. The corresponding variation in modularity ∆Q satisfies:

∆Q = ∑
k

(∆Pk − γ∆Qk)

= (∆Pci
− γ∆Qci

) +
(

∆Pcj
− γ∆Qcj

)

Only clusters ci and cj are affected. Choosing the best target community thus depends on
(

∆Pcj
− γ∆Qcj

)

whenever at least one community yields an increase in modularity.

28

Algorithm 1: OPTIMIZATION

Input: A graph G = (V, E), a tolerance ǫ
Output: A partition of V
for u ∈ V do
Cu ← {u}

end
repeat
C ′ ← C
for u ∈ V do

Q = MOD (G, C)
l = argmax v∈N (u) MOD (G, MOVE (G, C, u, cv))

∆Q← MOD (G, MOVE (G, C, u, cl))−Q
if ∆Q > ǫ then C ← MOVE (G, C, u, cl)

end

until C = C ′
return C

Algorithm 2: AGGREGATION

Input: The adjacency A of a graph G, a partition C of G
Output: The adjacency A′ of the aggregated graph G′

Y ← MEMBERSHIP(C)
A′ ← YT AY
return A′

29

In the case of Equation (3.1):

∆Pci
= 2pii − ∑

j∈Cci
∩N (i)

(

pij + pji

)

∆Pcj
= ∑

j′∈Ccj
∩N (i)

(

pij′ + pj′i

)

where N (i) is the neighborhood of node i. Furthermore, we write Qk = Qr
kQc

k where
Qr

k = ∑i∈Ck
qr

i is the probability of sampling a node in cluster k under qr and similarly for
Qc. Then:

∆Qci
= qc

i (q
r
i −Qr

ci
) + qr

i (q
c
i −Qc

ci
)

∆Qcj
= qc

i Qr
cj
+ qr

i Qc
cj

To illustrate how the different modularity functions differ, we run the Louvain method
using the modularity functions described in Section 3.2.2 on the WikiVitals dataset. It is
built from an extraction of Wikipedia and comprises the adjacency matrix of the hyperlink
graph of the extracted articles and a bag-of-words biadjacency of the text in the articles (one
node set is the articles, the other is the words they contain). For the biadjacency, a source
article and a target word have an edge between them if the former contains the latter, then
the weight of the edge is the number of occurences of the word in the article.

We use the V-measure and adjusted Rand scores (Rosenberg and Hirschberg, 2007; Hu-
bert and Arabie, 1985) described in Section 3.2.1. We report the results for the hyperlinks
adjacency in Table 3.1 and those for the bag-of-words biadjacency in Table 3.2. We remove
the somewhat ambiguous "People" class of the dataset, leaving 10 classes in the ground
truth. We find that the Newman, Dugué and Barber modularities offer very similar per-
formance. The Potts modularity does not use the weights of the graph and is expectedly
the worst option. This is especially true in the case of the bag-of-words biadjacency where
both scores are low.

Newman Dugué Barber Potts
V-measure 0.49 0.47 0.44 0.41
ARI 0.45 0.44 0.45 0.23

Table 3.1: Clustering scores on the hyperlinks adjacency.

Newman Dugué/Barber Potts
V-measure 0.48 0.48 0.05
ARI 0.41 0.41 0.00

Table 3.2: Clustering scores on the bag-of-words biadjacency.

30

3.2.4 Leiden refinements

Many variants of the Louvain method have been proposed in recent years (De Meo et al.,
2011; Bhowmick and Srinivasan, 2013; Que et al., 2015). Among those, one notable variant
called the Leiden algorithm has been proposed (Traag et al., 2019). It consists in a collection
of three separate improvements of the original Louvain method:

• The smart local move (SLM) (Waltman and Van Eck, 2013) alters the aggregation
phase. After every optimization phase, the Louvain method is run recursively on
each subgraph corresponding to a cluster. This yields a new "refined" clustering for
each subgraph which is concatenated into a clustering for the whole graph. This clus-
tering is the one that is used to aggregate the graph whereas the original clustering
is used to initialize the value of the partition at the start of the next optimization
phase. We illustrate this process in Figure 3.1. Note that thanks to Proposition 2, the
monotony of the modularity is still guaranteed as the refined clustering is homoge-
neous with respect to the original clustering. It is clear however that using a singleton
partition (i.e. that of step 3.1c) with each node in its own cluster in the aggregated
graph would lower the modularity (compared to that of step 3.1d).

• The random local move (RLM) (Traag, 2015) reduces the number of computations for
modularity updates. To do so, for each node visited during the optimization phase,
it picks a random neighbor instead of looking at the whole neighborhood. If moving
the node under study to this neighbor’s community increases the modularity, then it
is done. Otherwise, another node is visited.

• The fast local move (FLM) or Louvain Prune (Ozaki et al., 2016) reduces the number
of nodes visited during the optimization phase. Instead of iteratively considering all
the nodes of the graph until the modularity does not increase any more, it maintains a
queue to which only the neighbors of moved nodes that are in a different community
are added.

It should be noted that the Leiden algorithm does not use those improvements in the
way they are described by their respective authors.

Additionally, we propose a novel refinement for the Louvain algorithm which we name
chained local move (CLM). It aims at speeding up the first optimization phases by reducing
the number of modularity increase computations. In order to do so, instead of finding
the best possible increase for each node, this is done for one initial node. If the initial
node is moved to another community, a neighbor whose community is different from this
new community is picked at random. If moving this neighbor to the initial node’s new
community increases the modularity, it is done and a neighbor of the node moved last is
picked. A chain of neighbors is then built from the initial node. This chain ends when
moving a node does not increase the modularity or no neighbor can be picked. We give the
pseudo-code for the optimization phase of the CLM in Algorithm 3 where RANDOMPOPS

picks a node uniformly at random from the set passed as its input and removes it from S.
We compare the benefits of each of the variants in terms of modularity (using the one

defined in Equation (3.6)) and time performance. We report the performance of the stan-
dard Louvain (as "Baseline") and the variants under study in Tables 3.4, 3.5, 3.6 and 3.7.

31

(a) Clustering after optimization
(b) Clustering after running Louvain on each
cluster

(c) Aggregation according to those new cluster-
ings

(d) New clustering based on that of the first step

Figure 3.1: Refinement process for the Smart Local Move.

32

Algorithm 3: Optimization phase for the Chained Local Move

Input: A graph G = (V, E), a tolerance ǫ
Output: A partition of V
for u ∈ V do
Cu ← {u}

end
repeat
C ′ ← C
S← {1, . . . , |V|}
while S 6= ∅ do

u← POP(S)
l = argmax v∈N (u) MOD (G, MOVE (G, C, u, cv))

∆Q← MOD (G, MOVE (G, C, u, cl))−MOD (G, C)
while ∆Q > ǫ do
C ← MOVE (G, C, u, cl)
u← RANDOMPOPS((N (u) ∩ S) \ Ccl

)
∆Q← MOD(G, MOVE(G, C, u, cl))−MOD (G, C)

end

end

until C = C ′
return C

In each table, we report the best absolute value in bold and otherwise display the relative
errors to that value. The experiments are run on a computer running Debian 10 OS and
equipped with an AMD Ryzen Threadripper 1950X 16-Core Processor and 128 GB of RAM.
We run the experiments on the graphs described in Table 3.3 where the number of classes
in the ground truth is given if available (in the results, the ’Wiki-’ prefix is dropped for
readibility).

Considering the SLM algorithm, we notice that it is consistently the slowest option,
sometimes up to three times as slow as the standard method. This poor time performance is
due to the costly extraction of many subgraphs for the partition refinement. This operation
is slow because of the CSR format described in Chapter 2. It should be noted however,
that the SLM algorithm makes up for its speed by returning partitions that have a higher
modularity on large datasets. It also offers a good performance in terms of V-measure on
smaller ones although not in terms of ARI score.

Looking at the RLM variant, note that it is almost always the fastest option at the cost of
decreased modularity values. The time gains are not consistent as illustrated by the Orkut
graph where it is noticeably slower than the baseline while giving the worst clustering
compared to the other options. Nevertheless, it sometimes offers interesting time gains
as seen on the UK Domain dataset where its modularity is close to the baseline. It also
performs fairly well in terms of V-measure on smaller datasets but this is not the case in
terms of ARI score.

The FLM variant offers more modest time gains as it is generally placed between the

33

n m # Labels
WikiSchools 4.103 1.105 16
WikiVitals 8.103 6.105 10
WikiVitals+ 3.104 2.106 10
WikiLinks 3.106 7.107 -
Orkut 3.106 2.108 -
UK Domain 2.107 5.108 -
Twitter 4.107 1.109 -

Table 3.3: Dataset statistics.

Schools Vitals Vitals+ Links Orkut UK Domain Twitter
Baseline 2 1.3 1.6 1.1 1.1 1.2 1.1
SLM 3.7 2.1 2.7 3.8 1.7 ➍ ➍
RLM 0.03 0.15 1.02 44.79 1.4 1.0 1860.45
FLM 1.3 1.2 1.6 1.0 1.1 1.1 1.1
CLM 1.7 1.7 1.4 1.3 122.06 72.15 1.1

Table 3.4: Execution times (in s). ➍: Timeout (> 7200s)

Schools Vitals Vitals+ Links Orkut UK Domain Twitter
Baseline 0.396 0.468 0.522 0.98 0.99 0.985 0.481

SLM 0.99 0.97 0.96 0.651 0.670 ➍ ➍
RLM 0.93 0.90 0.90 0.91 0.90 0.99 0.96
FLM 1.0 1.0 0.522 0.98 0.99 0.985 0.481
CLM 0.97 0.99 0.522 0.93 0.94 0.99 0.481

Table 3.5: Modularity of the result. ➍: Timeout (> 7200s)

Schools Vitals Vitals+
Baseline 0.91 0.98 0.90
SLM 0.32 0.94 0.42
RLM 0.32 0.88 0.98
FLM 0.91 0.98 0.90
CLM 0.94 0.52 0.90

Table 3.6: V-measure score of the result and the ground truth.

Schools Vitals Vitals+
Baseline 0.86 0.46 0.93
SLM 0.90 0.72 0.63
RLM 0.21 0.50 0.63
FLM 0.86 0.46 0.93
CLM 0.21 0.46 0.27

Table 3.7: Adjusted Rand score (ARI) of the result and the ground truth.

34

(a) Dendrogram with a straight cut
(b) Corresponding clustering

Figure 3.2: Hierarchical clustering of a graph

baseline and the RLM variant in terms of execution times. One exception in our benchmark
is the Orkut graph where the FLM variant is even faster than the RLM variant. Unlike
the RLM variant, the modularity, V-measure and ARI reached by the FLM algorithm is
consistently equal or almost equal to that of the baseline. It is thus a simple way to speed
up the Louvain method without noticeable downsides.

The CLM variant appears as an intermediate option between the baseline and the RLM
variant in terms of time/modularity trade-off. The modularity of the clusterings it returns
are consistently higher than that of the RLM while still lower than that of the baseline. As
regards execution times, depending on the dataset at hand, it can be either faster or slower
than both the RLM variant and the baseline. It is notably the fastest option on the Orkut
and UK Domain datasets and the slowest on the Twitter graph. On smaller datasets, it is
close to the baseline in terms of V-measure and the best performer in terms of adjusted
Rand score.

3.3 Hierarchical clustering

Many graph datasets have a multi-layered community structure. Hierarchical clustering is
a set of cluster analysis methods which seeks to build a hierarchy of clusters. Methods for
hierarchical clustering generally fall into two categories:

• agglomerative approaches, where each node starts in its own cluster and pairs of clus-
ters are successively merged to obtain just one cluster

• conversely, divisive approaches consist in successive splits of an initial cluster contain-
ing all nodes

3.3.1 Dendrograms

Hierarchical clusterings are presented in the form of a tree structure called a dendrogram.
In addition to the tree structure, nodes in the tree have a height attribute (with the leaves
being at height 0 and the root having the highest height).

35

To obtain a flat clustering from a dendrogram, we make a cut of it. For instance, a
straight cut with k clusters consists in looking at the graph after the n − k first merges
(starting from the leaves, in increasing order of height) have been made. An example is
given in Figure 3.2 where the cut of the dendrogram in Figure 3.2a corresponds to the flat
clustering seen in Figure 3.2b.

3.3.2 Agglomerative approach

We describe the hierarchical clustering method proposed in Bonald et al. (2018a). Consider
the similarity defined in Section 3.1.1 on an undirected graph G, a simple agglomerative
approach is to find the pair of nodes with the highest similarity and merge them. Iterating
this process suffices to build a hierarchical clustering of a graph. We note i ∪ j the result
of merging nodes i and j. In order to iterate the merges, we look at how the sampling
distribution s and the similarity σ are affected. Let i, j, k ∈ V be distinct:

s(i ∪ j, k) =
Aik + Ajk

2w
= s(i, k) + s(j, k)

and v remains unchanged, so that:

s(i ∪ j) = s(i) + s(j)

Then:

σ(i ∪ j, k) =
s(i, k) + s(j, k)

(s(i) + s(j))s(k)
=

s(i)

s(i) + s(j)
σ(i, k) +

s(j)

s(i) + s(j)
σ(j, k) (3.8)

This equation makes it possible to update the values of σ each time two nodes are merged.
In order to have a complete clustering of the graph, n− 1 merge have to be performed.

For each merge, the node pair with the highest similarity has to be found, this requires
O(m) operations if done naively. However using a walk on the graph to find reciprocating
nearest-neighbors suffices to merge two nodes even if this pair does not reach the global
maximum in similarity (Murtagh and Contreras, 2012). This is due to one property of the
similarity σ whose inverse defines a reducible distance on the node set:

Proposition 4.

∀k 6= i, j, σ(i ∪ j, k)−1 ≥ min
(

σ(i, k)−1, σ(j, k)−1
)

The walk (starting from a random node) then consists in successively visiting the neigh-
bor of the current node that is nearest in terms of similarity. Two nodes can be merged
whenever the successor of a node in the walk is also its predecessor. After each merge, the
similarity is updated using Equation (3.8). When the whole graph has been merged, the
obtained dendrogram is binary and the heights of the merges are defined by the distance
σ(i, j)−1.

In the case of directed graph, the sampling distribution s(i, j) is no longer symmetric.
We thus define s+(i) = ∑j∈V s(i, j) and s−(i) = ∑j∈V s(j, i), two marginal distributions

36

corresponding to the normalized in and out degrees the nodes. This enables us to define a
new symmetric distribution:

t(i, j) = s+(i)s−(j) + s−(i)s+(j)

and a new similarity:

τ(i, j) =
s(i, j) + s(j, i)

t(i, j)

An equivalent of Equation (3.8) is:

τ(i ∪ j, k) =
t(i, k)

t(i, k) + t(j, k)
τ(i, k) +

t(j, k)

t(i, k) + t(j, k)
τ(j, k)

The distance defined by the inverse of τ(i, j) is also reducible.

3.3.3 Divisive approach

A simple divisive approach for hierarchical clustering consists in recursively applying a flat
clustering method. After each time such a method is applied, one can extract subgraphs
corresponding to each cluster and start again until each node is in its own cluster. Here,
we will consider the Louvain method described in Section 3.2.3. This recursive method is
the one described by Bhowmick et al. (2020) where the same hierarchy to build an embed-
ding (see Chapter 4). The dendrogram is not a binary tree in that case. Merge heights are
determined by the depth in the recursion (i.e. the first clustering pass is at the root of the
dendrogram).

3.3.4 Experiments

We run the agglomerative and divisive approaches on the Karate Club graph as illustrated
in Figures 3.3 and 3.4. We make a cut of each dendrogram with 4 clusters.

37

(a) Dendrogram (b) Flat clustering

Figure 3.3: Agglomerative approach

(a) Dendrogram (b) Flat clustering

Figure 3.4: Divisive approach

The dendrogram of the agglomerative approach is densely packed at the leaves as the
last few merges have a low similarity (i.e. a high distance). On the other hand, the divi-
sive approach has a more spread out shape as the height information is built (somewhat
arbitrarily) based on the recursion depth of the flat clustering method.

Notice how, despite having very different dendrograms (as seen in Figures 3.3a and
3.4a), the resulting flat clustering when cutting for 4 clusters is vastly similar (Figures 3.3b
and 3.4b).

There are some cases where the data at hand is inherently hierarchical in that its labeling
has a tree structure. Hierarchical clustering makes it possible to refine the existing hierarchy
in such a situation.

38

3.4 Conclusion

In this chapter, we described some well-established methods for both flat and hierarchical
node clustering. In particular, we considered variants of the Louvain algorithm (Blondel
et al., 2008) and compared their performances. We also introduced a novel variant, the
Chained Local Move (CLM) which aims at speeding up the initial optimization phases of
the algorithm. We notice that the variants under study cover a fairly wide spectrum in
terms of time performance and modularity. This could prove useful as one can choose a
variant depending on the desired time/modularity trade-off.

Further work could focus on further speeding up the costly initial optimization phase of
the Louvain algorithm. Indeed, this initial phase is the heaviest in terms of computations
as many communities have to be considered for most of the nodes in the standard Lou-
vain. We feel there is still room for improvement in terms of alleviating the cost of those
computations.

39

Chapter 4

Node embedding

4.1 Introduction

In the context of network mining, a number of tasks can be performed by exploiting the
graph structure of the data under study. Such tasks include the clustering, as illustrated
by the Louvain method (Blondel et al., 2008), or ranking, as illustrated by PageRank (Page
et al., 1998) and other centrality measures (Kleinberg, 1999; Brandes, 2001), of the nodes of
the graph.

However, it is also possible to apply other methods that perform the same tasks but
operate on vector data by embedding each node of the graph into a vector of R

d in a way
that preserves some of the properties of the graph. For instance, a "good" embedding of the
nodes should make neighbors in the graph closer in terms of distance in R

d.

4.1.1 Motivation

There exists many methods for the embedding task (Hamilton et al., 2017), using a variety
of techniques ranging from random projections (Zhang et al., 2018) to skip-gram models
(Grover and Leskovec, 2016). Some techniques are unsupervised (Bhowmick et al., 2020)
while others are supervised or semi-supervised (Kipf and Welling, 2017). While most meth-
ods put an emphasis on the relevance of the embedding, some also focus on the scalability
of the process on large graphs (Zhang et al., 2019).

In this chapter, we introduce a method that builds upon the qualities of the Louvain
method for clustering the nodes of a graph (Blondel et al., 2008). This method is:

• scalable, as it adds little to no overhead to the execution of the Louvain clustering
method

• mostly parameter-free, as the Louvain method only has one tolerance parameter and
we fix the resolution parameter to γ = 1. In particular, there is no need to set the
embedding dimension d.

• unsupervised, as the Louvain method is also unsupervised

40

• interpretable, the underlying clustering makes it possible to describe each axis of the
embedding space (see section 4.4.1).

To demonstrate the scalability and the effectiveness of this method, we run experiments
against five competing algorithms on large and very large graphs.

4.1.2 Related work

Network embedding methods make use of a large variety of techniques (Chen et al., 2020).
In the recent years, many embedding methods (Grover and Leskovec, 2016; Dong et al.,
2017; Keikha et al., 2018) have been derived from techniques taken from the word repre-
sentation literature like word2vec (Mikolov et al., 2013). These methods usually require a
large number of random walks to train the model. As a result, these methods are often too
slow to run on large graphs.

Earlier approaches rely on the factorization of the adjacency matrix using matrix fac-
torization results (Ou et al., 2016; Abdi, 2007; Huang et al., 2012). While these methods
are grouped together, their performances vary widely. For instance, Laplacian eigenmaps
(Belkin and Niyogi, 2003) are unsuitable for large graphs while factorizations such as the
non-negative matrix factorization can tackle large datasets (Huang et al., 2012). The inter-
pretability of the resulting embedding also varies. For example, another family of factoriza-
tion approaches are spectral techniques which rely on the eigendecomposition of matrices
to learn embeddings (Luo et al., 2003). Some of those embeddings can be interpreted using
equivalent physical systems (Bonald et al., 2018b).

Unlike spectral approaches that use the global information available in a graph, some
learn embeddings by using local information (e.g. by looking at the neighborhood of the
nodes)(Tang et al., 2015). This is the case of ClusterNE. Using local information often makes
it possible to lower the overall complexity for training embeddings, for instance by using
negative sampling.

One approach relies on a hierarchical clustering of the nodes (Bhowmick et al., 2020),
they use the same hard node clustering algorithm as ClusterNE but use it iteratively to
generate a hierarchy of the nodes. At each level of this hierarchy, a random vector is drawn
for every cluster. Those level representations are then summed to obtain the embedding of
each node. In terms of using the Louvain clustering method, their approach and ClusterNE
both begin by applying Louvain on the whole graph. However, building the hierarchy
calls for numerous other executions of the algorithm while ClusterNE directly builds the
embedding from the first execution.

4.2 Embedding method

4.2.1 Algorithm

Let G = (V1, V2, E) be a bipartite graph. Consider the Louvain clustering method with no
resolution parameter (i.e. γ = 1) and using the Barber modularity. Assume this method
yields k distinct clusters in V1 and V2. Let B ∈ R

n×m be the biadjacency of G and Y ∈ R
m×k

41

be the column membership matrix for the obtained clustering, i.e. Yiu = 1 if node i ∈ V2
is in cluster u and 0 otherwise. The embedding matrix for the nodes of V1 is diag(d)−1BY
where diag(x) is the diagonal matrix whose coefficients are the (xi)i and d is the degree
vector of the nodes of V1. Conversely, if X ∈ R

n×k is the row membership matrix, then
the embedding matrix for the nodes of V2 is diag(f)−1BTX with f , the degree vector of the
nodes of V2.

For graphs that are not bipartite, one can use the previous method by cloning all the
nodes of the graph and connecting each node to the clones of its original neighbors. It is
equivalent to looking at the adjacency matrix of the graph as a biadjacency matrix of some
bipartite graph.

This method can thus be applied on directed or undirected and weighted or unweighted
graphs. It can also be applied on unconnected graphs although it should be noted that one
inherent downside of this method is that Louvain yields at least as many clusters as con-
nected components. This means that a graph with many connected components will have
a high-dimensional embedding. It is thus more efficient to use this method on connected
graphs. In particular, singleton clusters (i.e. clusters made up of one node only) are ir-
relevant as they contribute little information to the embedding. Those clusters are thus
removed to keep the embeddings short. However, this truncation implies that isolated
nodes have a zero embedding.

Algorithm 4: CLUSTERNE

Input: The adjacency matrix A of a graph G = (V, E), a tolerance ǫ
Output: An embedding of the nodes of V
C ←GENERALIZEDLOUVAIN (G, ǫ)
s1, . . . , sl ←SINGLETONCLUSTERS (C)
Y ←MEMBERSHIP (C)
d← A~1
Y ← Y(s1, . . . , sl)

E←diag(d)−1 AY
return E

We describe the pseudo code in Algorithm 4 where GENERALIZEDLOUVAIN is the algo-
rithm described in section 3.2.3 with the Barber modularity function from Equation (3.7),
SINGLETONCLUSTERS returns the singleton clusters of some partition C (this function is
Θ(n) with n the number of nodes of the graph G), MEMBERSHIP returns the membership
matrix of a partition and, if M ∈ R

n×m and ∀i, ai ∈ {1, . . . , m}, M(a1, . . . , ar) denotes the
extracted matrix of R

n×r whose columns are the a1-th up to ar-th columns of M. This em-
bedding method inherits some properties from the Louvain clustering method:

• Because the number of clusters is not known in advance, the embedding dimension
is not known either and needs not be set in advance.

• The algorithm scales as well as the Louvain clustering method on large data as most
of the complexity comes from the clustering itself.

42

(a) Hard clustering (b) Soft clustering (c) Embedding

Figure 4.1: Clusterings and embedding of a graph.

Just as the clustering of the generalized Louvain is a co-clustering of both node sets, all
the embeddings of the nodes from either node set share the same vector space (if one also
computes the column embedding of the graph).

4.2.2 Link with soft clustering

The described embedding method can be described not only in terms of the Louvain hard
node clustering method described in Chapter 3, but also in terms of a soft clustering derived
from the same method. Hard clustering denotes the case where each node is assigned ex-
actly one cluster while soft clustering assigns a vector of probabilities denoting how likely
a node is to belong to each cluster (Yu et al., 2005). Those vectors can be seen as the embed-
dings of the nodes.

We illustrate this on a simple graph in Figure 4.1. Starting from the hard node clustering
of the graph obtained with the Louvain method in Figure 4.1a, we build a probability vector
for each node by counting the number of neighbors in each community and normalizing
those counts. This gives a soft clustering as seen in Figure 4.1b where each pie chart stands
for the probability vector. This soft clustering is directly interpreted as an embedding in R

2

as depicted in Figure 4.1c.

4.3 Results

In order to evaluate the performance of the method described in section 4.2, which we will
refer to as ClusterNE, we compare it against other embedding methods on two tasks and
also compare the time performance of those algorithms. Let d be the embedding dimension,
these methods are:

• non-negative matrix factorization (NMF) (Huang et al., 2012): an approximate ma-
trix factorization method which yields matrices with positive elements from a matrix
with positive elements. It is commonly used for dimensionality reduction. To com-
pute this factorization, we set the number of iteration to 200 and the tolerance to 10−4.

• singular value decomposition (SVD) (Abdi, 2007): a matrix factorization technique
based on a generalization of the eigendecomposition of matrices. We return the d first

43

n m # Labels
PolBlogs 1.103 2.104 2
WikiVitals 1.104 8.105 11
WikiVitals+ 4.104 3.106 11

Table 4.1: Dataset statistics.

left singular vectors of the adjacency matrix weighted by the corresponding singular
values (in descending order).

• RandNE (Zhang et al., 2018): a network embedding approach using successive ran-
dom projections. We set q = 3 and the weights to (0.5, 0.52, 0.53).

• ProNE (Zhang et al., 2019): a network embedding method using spectral propagation
to improve the learned embeddings. We set the parameters to k = 10, µ = 0.1, θ = 0.5.

• LouvainNE (Bhowmick et al., 2020): a network embedding algorithm which also re-
lies on the clustering obtained with the Louvain method. This method recursively
applies Louvain on the obtained clusters and derives an embedding by picking ran-
dom vectors. We use their stochastic variant with α = 0.1.

As all these methods require to set d beforehand, we set this dimension to the one ob-
tained after running ClusterNE. We rely on three open-source packages: the non-negative
matrix factorization is found in scikit-learn1; ProNE is found in nodevectors2; RandNE, Lou-
vainNE and the singular value decomposition are found in scikit-network of Chapter 2. Al-
though all those implementations offer an API in Python, they rely on compiled backends
but to different degrees. One should thus be careful when comparing their performance as
results may differ (especially in terms of time performance) when using other implemen-
tations of the same algorithms.

In the experiments, we use publicly-available real-world web graphs. For link predic-
tion and node classification, we use web graphs and graphs extracted from the Wikipedia
hyperlink graph detailed in Table 4.1. For time performance, we use extractions of the Web
Data Commons hyperlink graph. In each table, we report the best absolute value in bold
and otherwise display the relative errors to that value.

4.3.1 Link prediction

The embeddings are expected to make it possible to reconstruct the graph. In order to as-
sess this property, we run a network reconstruction task: we sample some pairs of nodes
in the graph (we sample as much edges as non-edges) and compute the cosine similarities
of the corresponding embedding vectors to estimate the probability that the nodes are con-
nected in the original graph. We compare these similarities to the actual linked nodes of the
graph using the area under the curve (AUC) score (Huang and Ling, 2005) as reported in

1https://scikit-learn.org
2https://github.com/VHRanger/nodevectors

44

Table 4.2. We observe that ClusterNE is the second-best performing algorithm with results
close to the better-performing ProNE.

PolBlogs (d = 8) WikiVitals (d = 11) WikiVitals+ (d = 16)
ClusterNE 0.70 0.98 0.98
NMF 0.71 0.92 0.97
SVD 0.74 0.94 0.95
LouvainNE 0.89 0.80 0.85
ProNE 0.83 0.93 0.87
RandNE 0.65 0.89 0.97

Table 4.2: AUC on the pairwise cosine similarities of the embedding of sampled nodes.

4.3.2 Node classification

Similarly, the embeddings are expected to capture the structure of the graph: we run a
node classification task: using a dataset with a known ground truth, we use a supervised
learning framework (Platt, 1999) to classify the embedding vectors. We supply 100 nodes
per class for the training set and use the remaining nodes for validation. We report the
accuracy of each algorithm with respect to the ground truth in terms of precision in table
4.3. We observe that ProNE performs best once again with a significant edge over RandNE,
ClusterNE and the SVD.

PolBlogs (d = 8) WikiVitals (d = 11) WikiVitals+ (d = 16)
ClusterNE 0.96 0.86 0.67
NMF 0.92 0.78 0.56
SVD 0.92 0.83 0.70
LouvainNE 0.89 0.68 0.65
ProNE 0.97 0.63 0.54
RandNE 0.91 0.81 0.80

Table 4.3: Precision of an SVC for the classification of embedding vectors.

4.3.3 Time performance

We also report the execution times of each algorithm on graphs with a number of edges m
ranging from 3.107 to 8.108. For reference, we use an AMD EPYC 7542 32-Core CPU with
250 gigabytes of RAM. All algorithms are run in a single thread. We set a timeout of 2
hours. The results are reported in table 4.4.

The time performance of LouvainNE and the difference to the results displayed in the
corresponding publication (Bhowmick et al., 2020) can be explained by the choice of the
data structure used to represent the graphs: we use a sparse matrix format with a compres-
sion along the rows (Buluç et al., 2009) as described in Chapter 2 (see Section 2.3.1) which
makes extracting subgraphs very costly. However, as our method requires only one exe-
cution of the Louvain clustering method whereas LouvainNE iteratively applies the same

45

algorithm, it can be expected that our method will always be faster when using the same
tolerance parameter as the first clustering run is common to both methods.

We note that the SVD and ProNE do not scale as well as the NMF and ClusterNE.

m = 3.107 (d = 347) m = 2.108 (d = 518) m = 8.108 (d = 1215)
ClusterNE 1.5 1.6 277
NMF 8 39 1.8
SVD 33 51 �

LouvainNE ➍ ➍ ➍
ProNE 47 69 �
RandNE 5.1 7.6 �

Table 4.4: Execution times (in seconds). m is the number of edges. ➍: Timeout (> 7200s).
�: Memory overflow.

4.4 Properties

We now go over some relevant properties of the ClusterNE method.

4.4.1 Interpretability

Thanks to the underlying clustering, the embedding of the nodes of a graph obtained with
the method described in section 4.2 can be interpreted as the weighted membership matrix
of the nodes of the graph for the clustering obtained by Louvain. Intuitively, the embedding
of a node denotes how close it is to each cluster.

For example, we embed the nodes of the WikiVitals dataset. We obtain 11 clusters,
which we label manually from their closest articles in terms of PageRank (Page et al., 1998)
as given in Table 4.5.

Clusters Closest articles
Biology Taxonomy (biology), Animal, Protein

World
Bibliothèque nationale de France, United States,
Geographic coordinate system

Europe Latin, Roman Empire, Greek language
Society Marriage, Incest, Adoption
Media The New York Times, Encyclopædia Britannica, Time (magazine)
Asia India, Buddhism, Chinese language

Mathematics Mathematics, Real number, Function (mathematics)
Physics Hydrogen, Oxygen, Kelvin

Geography Earth, Atlantic Ocean, Pacific Ocean
Philosophy Aristotle, Plato, Age of Enlightenment

Craftsmanship Jewellery, Weaving, Shoe

Table 4.5: Clusters and their closest articles in terms of PageRank

46

Biology

Physics

Mathematics

(a) Science articles

World

Asia

Geography

(b) Humanities articles

Figure 4.2: Visualization of 3-dimensional embeddings of topical Wikipedia articles and of
the underlying clustering.

To illustrate the interpretability of the results, we choose two triplets of classes: Biology,
Mathematics and Physics on one hand and World, Geography and Asia on the other hand.
For each triplet we extract the articles (i.e. nodes) closest to each class in terms of PageRank
(personalized by setting the nodes of the corresponding clusters as seeds). We plot the
embedding of those articles projected on the 2-dimensional simplex. The color of each
point denotes its cluster. Each vertex of the simplex is associated with a class of the chosen
triplet as seen in Figure 4.2. We ignore the components of the embedding not associated
with a class of the triplet under study.

In the case of Figure 4.2a, we observe that science articles are heavily polarized depend-
ing on the field they are related to. This is unlike what can be observed in Figure 4.2b
where the clusters appear to be mixed together. In particular, some nodes belonging to the
Asia class are very close to the World class. This denotes nodes whose embeddings have
a higher component in clusters other than their own. In the clustering, this translates as
nodes highly connected to other communities i.e. nodes at the border between communi-
ties.

It should also be noted that, as a byproduct of the Louvain clustering, two nodes belong-
ing to two distinct connected components have orthogonal embeddings under ClusterNE.
This is due to Louvain yielding at least as many clusters as there are connected components
in the graph.

4.4.2 Sparsity of the embedding

Another interesting feature of the ClusterNE method is that it yields sparse embeddings.
This is illustrated by Table 4.6 where we report the fraction of entries of each embedding
that are equal to zero for all the datasets and embedding methods under study. Methods
such as LouvainNE and RandNE which are based on random projections and randomly
picked vectors are expectedly dense. Likewise, the SVD and ProNE yield dense embed-
dings.

47

PolBlogs (d = 8) WikiVitals (d = 11) WikiVitals+ (d = 16)
ClusterNE 83 45 63
NMF 69 51 57
SVD 28 0 0
LouvainNE 0 0 0
ProNE 28 0 0
RandNE 0 0 0

Table 4.6: Fraction of zero entries (in %).

ClusterNE gives sparse embeddings as the membership matrix Y and the adjacency
matrix A are sparse. We thus also expect their dot product to be sparse. The NMF also
gives a sparse embedding by construction. Having a sparse embedding makes it possible
to use less memory for storing the embedding. It also makes it possible to combine the
resulting embedding with other techniques that preserve the sparsity of their inputs.

4.5 Conclusion

In this chapter, we introduced ClusterNE, a node embedding method based on the Louvain
clustering method discussed in Chapter 3. We illustrate how it compares to other embed-
ding methods and show that it makes it possible to embed even very large graphs while
being interpretable in terms of the underlying clustering.

Future work may use variants of the Louvain algorithm, especially parallelized ones
(Bhowmick and Srinivasan, 2013) to make it possible to tackle even larger graphs. Creating
embedding methods based on other clustering algorithms is also of particular interest. For
instance, it may prove useful to design one around a clustering method that allows a num-
ber of clusters to be set as one may need to be able to set the dimension of the embedding.

48

Chapter 5

Dataset labeling

The use-case presented in this chapter was initially proposed to us by Maria-Laura Maag at
Nokia. Initial work, made with Élie de Panafieu, consisted in defining the setting described
in Section 5.1.2 and establishing the chordal conjecture. Further work, made with Élie de
Panafieu, Alex Scott and Maya Stein within the context of the RandNet project 1, focused
on proving the results of Section 5.2. Those results have been published at NeurIPS 2021.

5.1 Introduction

5.1.1 Motivation and related work

Machine learning algorithms are split into two categories: unsupervised methods and su-
pervised ones. The latter require labelled sets of elements for training from which they
learn distinctive features, making it possible to process new items and predict some results
for one or several tasks.

However the quality of those results depends heavily on that of the training dataset
as well as its quantity (Brodley and Friedl, 1999). Acquiring a suitable corpus of items is
not a trivial task (Nghiem and Ananiadou, 2018). In a general setting, as the purpose of a
training set is to obtain a classifier, no classifier is available beforehand to build a training
dataset. Thus, the creation of this dataset cannot be carried out automatically. This often
means that humans must be involved which may prove time consuming. The need for an
efficient human-based scheme for the creation of training data thus naturally arises.

A naive approach to this problem could consist in choosing an unlabelled set of data
and having humans look at each item of this set and classify it. This requires:

• that an unlabelled set of data can be selected. As a thorough exploration of such a set
is expensive for the reasons described above, it is expected that some elements may
be ambiguous.

1See https://cordis.europa.eu/project/id/101007705

49

• that a set of labels has been determined. This is difficult in some cases as this set can
be large.

• that the humans know the whole label set. This can also be difficult when this set is
large.

To avoid some of the problems that would be induced by this solution, another possi-
bility consists in presenting the experts with pairs of items of the set and asking if the two
items should be put in the same category. This addresses the last two issues mentioned
above but does not help with poor choices of the initial set of data to be labelled. This
setting of pairwise comparisons is explored in this chapter.

This setting closely resembles what can be found in the active clustering literature
(Xiong et al., 2017; Kim and Ghosh, 2017). One slight difference is that we seek to find
the exact partition of the whole graph while minimizing the number of queries made to the
oracle. Most approaches tackling related problems do not aim at finding the exact partition
as labeling data is costly.

Recent papers (Chien et al., 2019; Mazumdar and Saha, 2017) acknowledge that humans
prefer pairwise queries over pointwise queries as they are better suited for comparisons.
Pairwise queries have been considered in semi-supervised clustering (Basu et al., 2004b;
Wagstaff et al., 2001; Gribel et al., 2021) where they are called must-link and cannot-link
constraints. The pairs of vertices linked by those constraints are random in general, but
chosen adaptively in active semi-supervised clustering (Basu et al., 2004a). In both cases,
the existence of a similarity measure between items is assumed. This is not the case in
Eriksson et al. (2011); Krishnamurthy et al. (2012), where a hierarchical clustering is built
by successively choosing pairs of items and measuring their similarity. There, the trade-off
between the number of measurements and the accuracy of the hierarchical clustering is in-
vestigated. The difference with the current chapter is that the similarity measure takes real
values, while we consider boolean queries, and that their output is a hierarchical clustering,
while our clustering is flat.

The approach described in Section 5.2 does not involve supervised techniques. Rather,
we investigate a data-agnostic generalization of this pairwise clustering setting. We con-
sider a graph where each node is an item to be labelled in the original dataset. Rather than
classifying each node, we seek to unveil the corresponding clustering of the graph (that is,
we ignore the label names for the moment). This clustering (or partition) is what we try to
find efficiently in this chapter.

In order to unveil the clustering, we suppose we have at our disposal an oracle that,
when given a pair of nodes, is able to determine whether those two nodes belong to the
same cluster or not. In reality, such queries correspond to questions asked to human experts
about pairs of items. We make the strong assumption that the relation unveiled by the
oracle is transitive, that is, if the oracle determines that items x and y on one hand, and y
and z on the other hand, belong to the same cluster, then, we expect x and z to belong to
the same cluster.

We consider the case where the oracle is perfect: it makes no mistakes. We want to
characterize the algorithms whose average number of queries to the oracle is minimal.

50

5.1.2 Setting

The answers of the oracle can be organized in a graph where each element from the item
set S is represented by a vertex, and each edge has one of two possible types. Two vertices
are linked by a positive edge (resp. negative edge) if the oracle determined the corresponding
elements belong (resp. do not belong) to the same part of the set partition. Thus, each past
query to the oracle corresponds to an edge.

The positive (resp. negative) graph is the subgraph obtained by keeping only the positive
(resp. negative) edges. A positive component is a connected component of the positive graph.
The contracted graph is obtained by contracting each positive component to a vertex. The
negative edges are then simply referred to as edges.

A set partition discovery algorithm (which we will now refer to as just "an algorithm")
inputs a number of elements n and queries the oracle until the secret set partition on n
elements is perfectly reconstructed. This final state is easily interpreted in terms of the
graph:

Theorem 1. A set partition discovery algorithm can stop if and only if the contracted graph is
complete.

Alternatively, this setting can be interpreted in terms of the equivalence relation R on
the item set S elements that we seek to unravel. For x, y ∈ S, xRy if, and only if, x and
y are in the same class. R is the (uniquely defined) equivalence relation such that the set
partition we seek is exactly the quotient set S/R. A set partition discovery algorithm then
consists in growing two symmetric binary relations over S2,R+ (for positive answers) and
its "complement"R− (for negative answers). The transitive closure ofR+ has a quotient set
Q. R− induces another binary relation R−Q on Q2 by: aR−Qb ⇔ ∃(x, y) ∈ a× b, xR−y. The
algorithm stops when R−Q spans all pairs of distinct elements of Q and the sought relation
R is then the transitive closure ofR+.

Let us recall that the average complexity is the average number of queries asked before re-
constructing the correct set partition, when this set partition is chosen uniformly at random
among all set partitions on n elements.

The complexity will depend on the distribution of the underlying partition. In this
chapter, we will deal with the case where the partition is taken uniformly at random among
all partitions on a given set. In particular, in this setting, the number of clusters is unknown
a priori. In the situations we encountered at Nokia, we found that it may be very hard to get
even an estimate of the number of clusters in practice. While it is likely that some partitions
can be discarded by having some knowledge about the data at hand, we seek to solve this
problem in a general case.

In Figure 5.1, we give an example of how two distinct algorithms unfold starting from
the same graph represented as a binary tree. Each node of the tree at depth k is a possible
realization of the contracted graph Gk after k queries. Starting from the graph G0 on the
left (which is the root of the tree), the dotted line indicates what the next query is. The
upper successor is obtained by adding the queried edge, which corresponds to a negative
answer. The lower successor is obtained by merging both ends of the queried edge, which

51

(a) Chordal algorithm (b) Non-chordal algorithm

Figure 5.1: Unfolding of two different algorithms

corresponds to a positive answer. Notice that all leaves are complete graphs and that both
trees have the same leaves.

Each leaf and the path that leads to it correspond to a different partition of the nodes of
the graph. Conversely, each partition that is compatible with the starting graph has a cor-
responding leaf. The complexity associated with one particular partition for the algorithm
under study is the depth of the associated leaf. Then, the average complexity of the algo-
rithm under study is the average depth of the leaves (as we assume that the partitions are
picked uniformly at random). Notice how, for Figure 5.1a, that complexity is 3.2+2.3

5 = 12
5

queries on average, while for Figure 5.1b, it amounts to 1.1+3.4
5 = 13

5 . This demonstrates
that all algorithms do not have the same average complexity.

In fact, by running numerical simulations, we conjectured that the algorithms that have
the best (i.e. lowest) average complexity are those that yield a chordal graph after each
query. We define a chordal algorithm as an algorithm where, at each step, the contracted
graph is chordal. We prove this conjecture in Section 5.2.

5.2 Chordal algorithms

In this section, we characterize optimal algorithms under the assumption that the partition
of the set is chosen uniformly at random among all possible partitions.

In the rest of this section, we show that all partition discovery algorithms where the
contracted graph is chordal after each step (denoted as chordal partition discovery algo-
rithms or chordal algorithms) incur the same cost as stated in Corollary 1 and that they are
the only optimal algorithms in our setting. We drew these properties from observations on
small datasets and simulations on random data.

We introduce the following notations: for a graph G = (V, E) let G(uv) = (V, E∪{uv}),
let Guv be the graph obtained from G by contracting nodes u and v into just one node and
let G[A] = (A, {uv|u, v ∈ A}) for A ⊂ V be the subgraph of G induced by A.

52

5.2.1 Chordal graphs

A graph is chordal if any of its cycles of four or more vertices has a chord. This means
that all its induced cycles (i.e. chordless cycles) have length 3, hence chordal graphs are
sometimes called triangulated graphs. An example of a chordal graph is given in Figure 5.2.
We briefly go over some properties and characterizations of chordal graphs (see Golumbic
(2004)).

Figure 5.2: A chordal graph

Recall the definition of a uv-separator for two
vertices u, v ∈ V as a subset S of the node set
such that removing S leaves u and v in two dis-
tinct connected components. A graph is chordal
if, and only if, all vertex separators which are
minimal (for the inclusion) are cliques (i.e. com-
plete subgraphs of the graph). This means that
chordal graphs can be decomposed: the node
set V is the union of a clique (a minimal vertex
separator) and two subsets A and B such that
there are no edges between A and B.

Another characterization of chordal graphs relies on the notion of perfect elimination
schemes. We say that a vertex is simplicial if its neighborhood is a clique. Any chordal graph
has a simplicial vertex. Note that all the subgraphs of a chordal graph are also chordal.
Thus, if one removes a simplicial vertex from a chordal graph, the resulting subgraph will
also have a simplicial vertex. By iteratively removing those simplicial vertices, one creates
a perfect elimination scheme of the graph which ends when there are no more vertices.
Conversely, a graph with a perfect elimination scheme is chordal. This characterization can
be used to check if a graph is chordal.

One should note that identifying two adjacent vertices in a chordal graph leaves the
graph chordal. This notably simplifies how queries can be chosen in an efficient way (this
is further discussed in Section 5.3.1).

Lemma 1. Let G be a chordal graph, for any adjacent vertices u and v, Guv is chordal.

Proof. Assume Guv is not chordal, there is a minimal induced cycle C = (u, p1, . . . , pk, u) in
Guv, with k ≥ 3. Then consider C′ = (u, v, p1, . . . , pk, u) in G. If C′ has a chord, it is either
(u, p1) or (v, pk) and (u, p1, . . . , pk, u) or (v, p1, . . . , pk, v) is an induced cycle of length four
or more. Otherwise, C′ is. In either case, a contradiction.

The following lemma is key for our subsequent work as it states that it is possible to
"grow" a chordal graph into a larger chordal graph, i.e., any incomplete chordal graph has
at least one non-edge that leaves the graph chordal once added to the edge set.

Lemma 2. Let G be a chordal graph that is not complete. Then G has a non-edge e such that G(e)
is chordal.

Proof. Let u be a non-universal vertex of G. Among all non-neighbors of u, choose p1 such
that |N(u) ∩ N(p1)| is maximized.

53

Core

Excessive

Productive

Figure 5.3: Different categories of queries (the colors of the vertices denote their label in the
partition).

If G(up1) is not chordal, there is an induced cycle C = (u, p1, . . . , pk, u), with k ≥
3. As pk ∈ N(u) ∩ N(pk−1) \ N(p1), our choice of p1 guarantees that there is a ver-
tex w ∈ N(u) ∩ N(p1) \ N(pk−1). Let j be the largest index in {1, . . . , k − 2} such that
wpj ∈ E. Then, depending on whether the edge wpk is present, either (w, pj, . . . , pk, u, w)
or (w, pj, . . . , pk, w) is an induced cycle of length at least 4 in G, a contradiction.

5.2.2 Optimality of chordal algorithms

In this section, we prove that the optimal algorithms are exactly the chordal algorithms.
We define three categories of queries as depicted in Figure 5.3:

• Queries that receive a positive answer are called core queries

• Queries at time t are excessive if they compare vertices x and y that are joined by
an induced path in Gt on an even number of vertices that alternates between two
partition classes

• Queries that are neither core nor excessive are productive

The first two categories are mutually exclusive as excessive queries always receive a neg-
ative answer. Thus, each query belongs to exactly one category. We now characterize the
overall average complexity by looking at each category.

Lemma 3. For any algorithm and any partition of a set of size n containing k classes, the number
of core queries is exactly n− k.

Proof. If a query is core, the number of nodes of the contracted graph decreases by exactly
one and it is the only case where this number changes. Since the algorithm starts from a
graph with n nodes and ends with a graph of k nodes, there has to be n− k core queries.

We then look at excessive queries.

54

Lemma 4. For each non-chordal algorithm, there is an input partition and a time t such that Gt

has an induced C4 one of whose edges comes from a negative query in step t− 1.

Proof. Since the algorithm is not chordal, for some input partition one of the aggregated
graphs Gt of the algorithm has an induced cycle C of length at least 4. Consider a realization
of Gt where the vertices of C are all in distinct partition classes. Then there is a time t′ when
four of the vertices of C form an induced C4 in Gt′ .

Then, we can prove:

Lemma 5. An algorithm makes no excessive queries if and only if it is chordal.

Proof. By definition, a chordal algorithm has no aggregated graphs with induced cycles of
length at least 4. So, since an excessive query, if answered negatively, creates an induced
cycle of even length at least 4, chordal algorithms make no excessive queries.

Conversely, Lemma 4 ensures that for any non-chordal algorithm, there exists a parti-
tion and a contracted graph Gt such that Gt has an induced C4 = (t, u, v, w) such that the
last asked query was (w, t). There exists a partition for which t and v are in one cluster
and u and w are in another one, meaning that (w, t) was an excessive query. Thus for all
non-chordal algorithms, there exists a partition for which an excessive query is made.

We now consider productive queries. To that end, we first consider the set P2(n) of
partitions with at most two blocks and P∗2 (n) = P2(n) \ P1(n), the set of partitions with
exactly two blocks. In this particular subcase, an additional property can be used: if one
considers three nodes u, v and w where (u, v) and (v, w) are both negative edges, then,
assuming the underlying partition is in P2(n), it is known that u and w are in the same
block and that v is in the only other block. Intuitively, this corresponds to the fact that "the
enemy of my enemy is my friend" applies only when there are two blocks.

Lemma 6. The expected number of productive queries made by any algorithm on a random partition
from P2(n) is exactly n−1

2 .

Proof. We run some algorithm on a partition from P2(n) and color each node depending
on its cluster. At each t, the connected components of Gt are all bipartite graphs (where
each of the two node sets corresponds to a cluster in the partition). Every such component
can be colored in two ways; thus the number of possible colorings of Gt is 2ncom(Gt) where
ncom denotes the number of connected components of Gt.

Let us prove by induction that:

• The 2ncom(Gt) colorings of Gt are equally likely.

• If the t-th query joins two components of Gt−1 then it is productive with probability
half.

The initialization is clear as in G0, each node is in its own connected component. Let
(u, v) be the query made at the t-th step. If u and v are in the same connected component,
the query is excessive and the first induction hypothesis holds.

55

Let us then consider the case where u and v lie in distinct connected components Hu and
Hv. The four colorings of Hu ∪ Hv are equally likely and independent from the coloring of
the other components of the graph. Then, u and v have the same color with probability 1

2
and the probability that (u, v) is productive is also 1

2 . Depending on the colors of u and v,
there are only two possible colorings for Hu ∪Hv and they are equally likely. This concludes
the induction.

As each query joining two components decreases the number of connected components
by exactly one, there are exactly n− 1 such queries and by linearity of the expected number
of productive queries at each step, the total expected number of productive queries is (n−
1)/2.

Lemma 7. The expected number of productive queries made by any algorithm on a random partition
from P∗2 (n) is exactly

2n

2n − 2
n− 1

2
.

Proof. Let us consider an algorithm and denote its expected number of productive queries
by α(n). We pick a partition P uniformly at random from P2(n). If P is constant, then the
algorithm only makes core queries, in particular, it makes no productive queries. This hap-
pens with probability 2

2n . Conditioning on P being nonconstant is equivalent to picking it
uniformly from P∗2 (n). By Lemma 6, we conclude that the expected number of productive
queries satisfies:

n− 1
2

= α(n).P(P nonconstant) + 0.P(P constant) =
2n − 2

2n
α(n).

Hence:

α(n) =
2n

2n − 2
n− 1

2
.

We now use the previous result to prove that all algorithms have the same expected
number of productive queries on any random partition picked uniformly from Pk(n) (the
set of partitions of n-sets into exactly k sets)

Lemma 8. All algorithms have the same expected number of productive queries on a random parti-
tion from Pk(n).

Proof. Fix k and consider a partition of [n] into exactly k sets C1, C2, . . . , Ck. Let αij denote
the expected number of productive queries that compare a vertex from Ci with a vertex
from Cj. For i = j, αij = 0. We thus assume i 6= j.

Let qij be the number of productive queries comparing a vertex from Ci with a vertex
from Cj. (so αij = E(qij)) Then, considering the set S = Ci ∪Cj, and applying Lemma 7, we

56

obtain

αij = ∑
S⊂[n],|S|≥2

E(qij|Ci ∪ Cj = S)P(Ci ∪ Cj = S)

= ∑
S⊂[n],|S|≥2

|S| − 1
2

2|S|

2|S| − 2
P(Ci ∪ Cj = S)

Because clusters cannot be distinguished a priori, all αij are equal, and by linearity of ex-
pectation the expected number of productive queries is

(

k

2

)

∑
S⊂[n],|S|≥2

|S| − 1
2

2|S|

2|S| − 2
P(Ci ∪ Cj = S)

which is independent from the choice of the algorithm.

Theorem 2. On partitions of size n chosen uniformly at random, an algorithm has minimal average
complexity if and only if it is chordal.

Proof. By Lemmas 3 and 8, all algorithms have the same expected number of core queries
and productive queries. So the optimal algorithms are the ones with the minimum expected
number of excessive queries. By Lemma 5, these are the chordal algorithms.

5.2.3 Cost equivalence of chordal algorithms

Theorem 2 states that optimal algorithms are all the chordal algorithms. A simple corollary
of this statement is that all chordal algorithms have the same (minimal) average complexity.
This section is devoted to the proof of Corollary 1 which states that the complexity of all
chordal algorithms have the same distribution.

The general idea for this theorem is to proceed by induction on the number of non-
edges. The base case is trivial as a complete graph allows just one possible partition dis-
covery algorithm which is chordal and necessarily optimal. The inductive step consists in
showing that two consecutive queries can be interchanged without impacting the complex-
ity. This is tricky as one has to deal with disjoint cases depending on whether the asked
queries leave the graph chordal or not. When the resulting graph is not chordal, we derive
some properties on the structure of the graph (depending on whether the queries asked are
incident or not). Those structures are described in Lemmas 12 and 13.

Lemma 9. Let G be a chordal graph, let u, v ∈ V be distinct and non-adjacent, and assume G(uv)
is chordal. Then N(u) ∩ N(v) is complete and separates u and v (in G).

Proof. Note that N(u) ∩ N(v) is complete, as otherwise there are two non-adjacent vertices
x, y ∈ N(u) ∩ N(v), and (u, x, v, y) is an induced cycle in G,resulting in a contradiction.
It remains to show that N(u) ∩ N(v) separates u from v. Assume this is not the case,
then there is an induced path P = (u, p1, ..., pk, v) (with k ≥ 2) that does not intersect

57

K

A B

u0 v0

u1 v1

(a) Base case

K

A

B

u0

v

u1

(b) Triangle case

Figure 5.4: Structure of the graph when adding two edges prevents chordality.

N(u) ∩ N(v). Adding the edge uv to P, we obtain an induced cycle of length at least 4, a
contradiction to G(uv) being chordal.

We now give a characterization of graphs that remain chordal when we add either one
of two edges, but not if we add both. We give an illustration in Figure 5.4.

Lemma 10. Let G be a chordal graph and let u0, u1, v0, v1 ∈ V such that for i = 0, 1, vertices
u0, u1, vi are all distinct, uivi /∈ E, and G(uivi) is chordal. If G(u0v0)(u1v1) is not chordal, then
K := N(u0) ∩ N(u1) ∩ N(v0) ∩ N(v1) is complete, and G − K has two distinct components A
and B, such that either u0, u1 ∈ A and v0, v1 ∈ B, or u0, v1 ∈ A and u1, v0 ∈ B.

Proof. As G(u0v0)(u1v1) is not chordal, we know that G(u0v0)(u1v1) has an induced cycle
C = (u1, v1, ..., vℓ−1, vℓ, ..., vk, u1), with k ≥ ℓ ≥ 2, where either vℓ−1 = v0 and vℓ = u0,
or vℓ−1 = u0 and vℓ = v0. According to Lemma 9, since G(uivi) is chordal, the set Ki :=
N(ui) ∩ N(vi) is complete and separates ui and vi in G, for each i ∈ {0, 1}. Since C has at
least four vertices, and Ki has neighbors ui, vi, we know that V(C) ∩ Ki = ∅, for i = 0, 1.

Assume there is a vertex x ∈ K0 \ K1. Then (v1, ..., vℓ−1, x, vℓ, ..., vk, u1) is a path in
G− K1, in contradiction to the fact that K1 separates u1 from v1. So K0 ⊆ K1, and with the
help of a symmetric argument we see that K0 = K1. In order to finish the proof it suffices
to note that the paths (v1, ..., vℓ−1) and (vℓ, ..., vk) ensure that there are components A and
B as desired.

We now see that a graph that is obtained by assembling two graphs along a complete
subgraph is chordal if and only if the two smaller graphs are. This is a partial converse of
the fact that all subgraphs of a chordal graph are chordal.

Lemma 11. Let G be a graph, let A, B, K be a partition of V such that G[K] is complete and there
are no edges between A and B. Then G is chordal if, and only if G[A ∪ K] and G[K ∪ B] are both
chordal.

Proof. As induced subgraphs of chordal graphs are chordal, we only need to show that if
both G[A ∪ K] and G[K ∪ B] are both chordal, then so is G. For this, it suffices to observe

58

that any cycle of G that contains vertices from both A and B has to pass twice through
K.

The next two lemmas give a structural characterization of aggregated graphs where
consecutive queries cannot easily be interchanged. In order to make their statement easier,
let us say that a graph G has a complete separation (A, K, B) if V is the disjoint union of
A, B, K so that A 6= ∅ 6= B, each of A ∪ K and B ∪ K is complete, and there are no edges
from A to B (observe that we allow K to be empty).

The next lemma asserts that, in case the two non-edges to be added prevent chordality
when they are both added, there exists a third non-edge which makes can be added to
either of the two previous non-edges and leave the graph chordal.

Lemma 12. Let G be a chordal graph that does not have a complete separation. For i = 0, 1 let uivi

be a non-edge of G such that G(uivi) is chordal, and G(u0v0)(u1v1) is non-chordal. Then there is
a non-edge uv of G such that G(uv) is chordal, and G(uivi)(uv) is chordal for i = 0, 1.

Proof. Use Lemma 10 to see that the intersection K of the neighborhoods of u0, v0, u1, v1
is either a clique or empty, and G − K has two connected components A and B such that
u0, u1 ∈ A and v0, v1 ∈ B (after possibly changing the roles of u0 and v0).

As G has no complete separation, and as there are no edges between A and B, one of
A ∪ K, B ∪ K has to have a non-edge; because of symmetry we can assume this is A ∪ K.
According to Lemma 11, the subgraph of G induced by A ∪ K is chordal. Then, according
to Lemma 2, there is also a non-edge uv with u, v ∈ A ∪ K having the additional property
that G(uv) is chordal. As K is complete, we can assume that u ∈ A.

If there is no non-edge uv as desired, we have that G(uivi)(uv) is non-chordal for some
i ∈ {0, 1}; by symmetry, let us assume G(u1v1)(uv) is non-chordal. So, we may apply
Lemma 10 to see that the intersection K′ of the neighborhoods of u, v, u1, v1 is either a
clique or empty, and G− K′ has two connected components A′, B′ such that u, u1 ∈ A′ and
v, v1 ∈ B′ (after possibly changing the roles of u and v). Note that K′ ⊆ N(u1)∩N(v1) ⊆ K.
Furthermore, K ⊆ K′, since K′ separates u1 from v1 and K ⊆ N(u1) ∩ N(v1). So K = K′.

In particular, v /∈ K, that is, v ∈ A. So, as v1 ∈ B, we know that v, v1 lie in distinct
components of G − K. However, we also have that v, v1 belong to the same component
(namely, A) of G− K′ = G− K, a contradiction. So the desired non-edge uv exists.

Lemma 13. Let G be a chordal graph that does not have a complete separation. Let u0, u1, v ∈ V
such that for i = 0, 1, we have uiv /∈ E and G(uiv) is chordal, G(u0v)(u1v) is non-chordal,
and moreover, u0u1 ∈ E. Then there is a non-edge uw of G such that G(uw) is chordal, and
G(uiv)(uw) is chordal for i = 0, 1.

Proof. We start by proving that N(u0) ∩ N(v) = N(u1) ∩ N(v). For this assume there is
an i ∈ {0, 1} and a vertex x ∈ (N(u1−i) ∩ N(v)) \ N(ui). Then (u1−i, x, v, ui, u1−i) is an
induced cycle of length 4 in G(uiv), a contradiction since this graph is chordal. This proves
the equality, and we set K := N(u0) ∩ N(v) = N(u1) ∩ N(v).

Because of Lemma 9, G[K] is complete and separates u0, u1 from v. Since G does not
have a complete separation, at least one of G[A ∪ K], G[B ∪ K] is not complete, but by
Lemma 11 both are chordal. So by Lemma 2 and, again, Lemma 11, there is a non-edge

59

uw such that G(uw) is chordal. Now, if uw is not as desired, say because G(u0v)(uw) is
non-chordal, then there is an induced cycle C of length at least 4 going through both uw
and u0v. However, C has to meet K, which implies C is a triangle, a contradiction.

We will prove a more general result than needed which allows for the algorithm to start
with any aggregated graph instead of starting with the empty graph. More precisely, if G
is an aggregated graph at time t for some algorithm for an n-set, then we call the restriction
of the algorithm to all queries after time t that eventually lead to a realization of G an
algorithm starting at G. We define the complexity distribution of this algorithm analogously
to our earlier definition. In particular, if G is complete, then the complexity distribution is
trivial as no questions are asked with probability 1.

Theorem 3. For any chordal G, all chordal algorithms starting at G have the same complexity
distribution.

Proof. We proceed by induction on the number of non-edges of G. Proving the base case is
trivial as, starting from a complete graph, the only algorithm has a trivial distribution for
its complexity where the only possibility is to ask no questions.

For the induction step assume that for any chordal graph with k or less missing edges,
all chordal algorithms have the same complexity distribution, and consider a graph G with
k + 1 missing edges. Let A0, A1 be two distinct chordal algorithms for G. If their first
queries are the same, say they query the edge e, then by induction we know that for both
Ge and G(e), the two algorithms have the same distribution if we let them start there. As
the distribution for an algorithm starting at G is uniquely obtained from the complexity
distributions of the same algorithm starting at Ge and at G(e), we see that A0 and A1 have
the same complexity distribution.

So we can assume that A0 and A1 differ in their first queries. Say the first query of Ai

is ui, vi, for i = 0, 1. Then G(uivi) is chordal for i = 0, 1. Note that we can assume that
u0 6= u1. We will distinguish two cases.

First, let us assume that G(u0v0)(u1v1) is chordal and moreover, if v0 = v1 then u0u1 /∈
E. Then, for i = 0, 1, the edge uivi can be chosen as the first edge of a chordal algorithm
for G(u1−iv1−i) or for Gu1−iv1−i

. As the induction hypothesis applies to G(u1−iv1−i) and to
Gu1−iv1−i

, we can assume that uivi is the second edge in A1−i. Observe that for each i = 0, 1
after the second query of Ai, we arrive at one of the four graphs (Gu0v0)u1v1 , G(u0v0)u1v1 ,
G(u1v1)u0v0 , G(u0v0)(u1v1). Thus the complexity distribution of A0 and A1 is identical (as
is can be computed from the complexity distribution for the algorithms starting at these
four graphs).

Now, let us assume that either G(u0v0)(u1v1) is chordal, v0 = v1 and u0u1 ∈ E, or
G(u0v0)(u1v1) is not chordal. Then, by Lemmas 12 and 13, we know that either there is an
edge uv ∈ E such that G(uv), G(uv)(u0v0) and G(uv)(u1v1) are chordal, or V can be parti-
tioned into three sets, A, B and K, such that A∪K and B∪K are complete and K separates A
from B. If the former is the case, we can proceed as in the previous paragraph to see that ev-
ery chordal algorithm starting with u0v0 has the same complexity distribution as any of the
chordal algorithms starting with uv (note that such algorithms exist by Lemma 2), which,
in turn, has the same complexity distribution as any of the chordal algorithms starting with
u1v1, leading to the desired conclusion.

60

So assume there are sets A, B and K as above. By symmetry, we can assume that u0, u1 ∈
A and v0, v1 ∈ B. Consider the automorphism σ of G that maps u0 to u1 and v0 to v1 while
keeping all other vertices fixed. We can now view A0 as an algorithm in σ(G) that starts
with the edge u1v1. By the induction hypothesis, we conclude that A1 (for G) has the same
distribution as A0 (for σ(G), and thus also for G).

Corollary 1. On partitions of size n chosen uniformly at random, all chordal algorithms have the
same complexity distribution.

5.2.4 Complexity estimates

In this section, we look for the asymptotic mean and standard deviation of chordal algo-
rithms when the item set is large. Let Xn denote the number of pairwise queries needed
to partition the n-set using any chordal algorithm. We seek to characterize the limit law of
Xn when n → ∞. In doing so, we obtain exact formulae for the complexity distribution of
chordal algorithms for any n. They are found in Corollary 2 and Theorem 6.

q-integers We will encounter q-integers (Ernst, 2000). A q-analog is a generalization of a
known result where one introduces an additional parameter q such that the original result
can be found when q→ 1.

q-integers stem from the sum of a geometric sequence, for any non-negative integer n:

n = lim
q→1

(1 + q + qc + · · ·+ qn−1) = lim
q→1

1− qn

1− q

This enables us to define a natural q-analog of any integer n as:

[n]q = 1 + q + · · ·+ qn−1 =
1− qn

1− q
.

The q-factorial of the integer n is:

[n]q! =
n

∏
j=1

[j]q.

The q-exponential is defined as:

eq(z) = ∑
n≥0

zn

[n]q!
.

The q-Pochhammer symbol is defined as:

(a; q)n =
n−1

∏
k=0

(1− aqk)

Observe that all q-analogs reduce to their classic counterparts for q = 1.
We will need some alternative formulas which we gather in the following proposition

for future reference:

61

Proposition 5.

1. (x; q)n =
(x; q)∞

(xqn; q)∞

2. [n]q! =
(q; q)n

(1− q)n

3.
1

(x; q)∞
= ∑

n≥0

xn

(q; q)n

4. eq(x) = ((1− q)x; q)−1
∞

Proof.

1. The result stems from the simplification of the products in the right hand member.

2. [n]q! =
Πn

j=1(1− qj)

Πn
j=1(1− q)

=
Πn−1

j=0 (1− q.qj)

Πn
j=1(1− q)

=
(q; q)n

(1− q)n

3. The q-binomial theorem states (see, e.g., Andrews (1986)):

(x; q)−1
∞ =

∞

∑
n=0

xn

[n]q!(1− q)n
=

∞

∑
n=0

xn

(q; q)n

4. Using the two previous properties: ((1− q)x; q)−1
∞ = ∑

n≥0

(1− q)nxn

(q; q)n
= ∑

n≥0

xn

[n]q!

Universal algorithm We consider the universal algorithm, described (in a recursive fash-
ion) in Algorithm 5 which consists in asking all possible questions related to one element
before selecting the next element. QUERY(u, v) returns True if u and v are in the same class
and False otherwise. Note that exactly one block of the partition is unveiled at each call of
the UNIALG function.

Proposition 6. The universal algorithm is a chordal algorithm.

Proof. Using the notation of Algorithm 5, let us denote node u as the central node of its step.
Let C = (u, a0, a1, . . . , ap, v) be a cycle of length n ≥ 4, a0 and ap are distinct.Then:

• either a0 or ap have already been central and a0ap is a chord

• otherwise, if say a0 has not been central, then u and a1 have been and ua1 is a chord

Thanks to Corollary 1, we can assert that all chordal algorithms will share the asymp-
totics of the universal one.

Denote the universal algorithm by A, the set of all partitions by P . Let:

P(z, q) = ∑
p∈P

q#queriesA(p) z|p|

|p|!

62

Algorithm 5: The universal algorithm UNIALG

Result: The underlying partition
Input: A set S
if S 6= ∅ then

u← POP(S)
B← {u}
for v ∈ S do

q← QUERY(u, v)
if q = True then

B← B ∪ {v}
end
P ← UNIALG(S \ B)
return P ∪ {B}

end

else
return ∅

end

with #queriesA(p), the number of queries required by the universal algorithm to unveil
partition p starting from the graph with |p| nodes and no edges.

Theorem 4. P(z, q) satisfies P(0, q) = 1 and the following differential equation:

∂zP(z, q) = P(qz, q)eqz (5.1)

Proof. Let an,k be the number of partitions over n-sets that require A to ask k queries to be
found. Then P can be written:

P(z, q) = ∑
n,k≥0

an,kqk zn

n!
(5.2)

We seek an inductive relation for an,k. To get all partitions on (n + 1)-sets requiringA to
make k queries, consider the number m of elements in the same cluster as the first element.

In the first round of queries, where all elements are compared to the first one, n queries
are asked and m of them yield a positive result. Then, A behaves exactly as if on a n− m
set over the remaining elements and all (n−m) sets can be reached that way.

From this, we derive:

an+1,k =
n

∑
m=0

(

n

m

)

an−m,k−n (5.3)

as we are only interested in cases that result in a total number of queries equal to k.
Summing Equation (5.3) over n and k so as to find P(z, q) as defined in 5.2, we get:

∑
n,k≥0

an+1,kqk zn

n!
= ∑

n,k≥0

n

∑
m=0

(

n

m

)

an−m,k−nqk zn

n!

63

Setting, n′ = n−m and k′ = k− n so that n = n′ + m and k = k′ + n′ + m:

∑
n,k≥0

an+1,kqk zn

n!
= ∑

n′ ,k′ ,m≥0
an′ ,k′q

k′+n′+m zn′+m

n′!m!

= eqz ∑
n′ ,k′≥0

an′ ,k′q
k′ (qz)n′

n′!

∂zP(z, q) = P(qz, q)eqz

If the set under study is empty, only the empty partition can be found and thus P(0, q) =
1

We now seek to solve Equation (5.1). In particular, we would like to have an explicit

expression of an,k. Let f (z, q) = e
q

1−q z be a solution of a similar equation as ∂z f (z, q) =
q

1−q f (z, q) and f (qz, q)eqz = e
1−q+q

1−q qz
= f (z, q) so ∂z f (z, q) = q

1−q f (qz, q)eqz.

Theorem 5. Let Poch(z, a, q) denote the exponential generating function associated to the q-
Pochhammer symbol

Poch(z, a, q) = ∑
k≥0

(a; q)k
zk

k!
,

then the generating function of the universal algorithm complexity is

P(z, q) = Poch
(

− q

1− q
z,

1− q

q
, q

)

e
q

1−q z

The following corollary derives the complexity distribution of chordal algorithms for
any finite number of elements n.

Corollary 2. The generating function for the number of queries of the universal algorithm on n-sets
is:

Pn(q) =

(

q

1− q

)n n

∑
m=0

(

n

m

)

(−1)m

(

1− q

q
; q

)

m

Proof of Theorem 5 and Corollary 2. We investigate solutions of the differential equation 5.1 of

the form P(z, q) = A(z, q)e
q

1−q z. The differential equation on P(z, q) implies the following
differential equation for A(z, q)

∂z A(z, q) +
q

1− q
A(z, q) = A(qz, q).

64

with initial condition A(0, q) = 1. Decomposing A(z, q) as a series in z

A(z, q) = ∑
k≥0

ak(q)
zk

k!
,

we obtain a recurrence on ak(q):

ak+1(q) = −
q

1− q
ak(q) + qkak(q) = −

q

1− q

(

1− (1− q)qk−1
)

ak(q),

with a0(q) = 1. We deduce

ak(q) =

(

− q

1− q

)k k−1

∏
j=0

(

1− 1− q

q
qj

)

=

(

− q

1− q

)k (1− q

q
; q

)

k

To conclude the proof of the theorem, we observe that Poch
(

− q
1−q z, 1−q

q , q
)

e
q

1−q z is indeed

solution of the differential equation characterizing P(z, q).
To prove the corollary, notice how Pn(q) is obtained by computing the Cauchy product

of the series A(z, q) and f (z, q) and extracting the coefficient of zn:

Pn(q) = n!
n

∑
m=0

am(q)

m!
1

(n−m)!

(

q

1− q

)n−m

=

(

q

1− q

)n n

∑
m=0

(

n

m

)

(−1)m

(

1− q

q
; q

)

m

We provide a second expression for the complexity generating function better suited for
an asymptotic analysis as it deals with positive terms only. It is a q-analog of the following
classic Dobinski formula for the Bell numbers (Flajolet and Sedgewick, 2009), which counts
the number of partitions of size n:

Bn =
1
e ∑

m≥0

mn

m!

Theorem 6. The generating function of the number of queries used by the universal algorithm on
partitions of size n is

Pn(q) =
1

eq(1/q) ∑
k≥0

[k]nq
[k]q!

qn−k

The sum converges for q > 1/2.

65

Proof. Starting from the expression of Corollary 2 and using Proposition 5:

Pn(q) =

(

q

1− q

)n n

∑
m=0

(

n

m

)

(−1)m

(

1− q

q
; q

)

m

=

(

q

1− q

)n (1− q

q
; q

)

∞

n

∑
m=0

(

n

m

)

(−1)m 1
(qm−1(1− q); q)∞

=

(

q

1− q

)n (1− q

q
; q

)

∞

n

∑
m=0

(

n

m

)

(−1)m ∑
k≥0

(

qm−1(1− q)
)k

(q; q)k

=

(

q

1− q

)n (1− q

q
; q

)

∞
∑
k≥0

(1− q)k

(q; q)k
q−k(−1)n

n

∑
m=0

(

n

m

)

(−1)n−mqmk

=

(

1− q

q
; q

)

∞
∑
k≥0

(1− q)k

(q; q)k
.
(1− qk)n

(1− q)n
.qn−k

=
1

eq(1/q) ∑
k≥0

[k]nq
[k]q!

qn−k.

We apply d’Alembert’s criteria to find the values of q for which this formal sum converges:

lim
k→∞

[k+1]nq
[k+1]q ! q

n−k−1

[k]nq
[k]q ! q

n−k
=

1− q

q

is smaller than 1 when q > 1/2.

Asymptotics Using the expression obtained in Theorem 6, we now seek to find the asymp-
totic mean and standard deviation of Xn for large n. Lemma 14 gathers some expressions
of common q-integer derivatives for large n and m0. Theorem 7 gives the asymptotic mean
and standard deviation for the universal algorithm. To do so, we prove that the Laplace
transform of the random variable Xn counting the number of queries converges to that
of the desired result. This leads us to using the Laplace method in order to estimate the
asymptotics of a sum derived from the previous lemmas.

Lemma 14. As n and m tend to infinity, q = es, ms and ns tend to 0, we have

[m]nq = mn exp
(

1
2

nms +
1

12
nm2 s2

2

)

(

1 + O(nm3s3 + ns)
)

[m]q! = mme−m
√

2π[m]q exp
(

1
4

m2s +
1
36

m3 s2

2

)

(

1 + O(m4s3 + ms) + o(1)
)

.

Proof. Let us first introduce the function S(x) = ex−1
x − 1. Note that 1 + x(1 + S(x)) = ex.

66

Also, log(1 + S(x)) = log
(

∑k≥0
xk

(k+1)!

)

so that:

log(1 + S(x)) = log
(

1 +
x

2
+

x2

6
+ O(x3)

)

=
x

2
+

x2

24
+ O(x3)

Then,

[m]nq =

(

1− esm

1− es

)n

= mn

(

1 + S(sm)

1 + S(s)

)n

= mnen log(1+S(sm))−n log(1+S(s)).

and

[m]nq = mn exp
(

1
2

nms +
1

12
nm2 s2

2
+ O(nm3s3 + ns)

)

According to Moak (1984), we have the following q-analog of Stirling’s formula when x →
∞ while x log(q)→ 0

log(Γq(x)) = (x− 1/2) log([x]q) +
Li2(1− qx)

log(q)
+

1
2

log(2π) + o(1)

where Li2(z) denotes the Dilogarithm function

Li2(z) = ∑
k≥1

zk

k2

We deduce

[m]q! = [m]qΓq(m) = [m]q exp
(

(m− 1/2) log([m]q) +
Li2(1− qm)

log(q)
+

1
2

log(2π) + o(1)
)

= [m]mq exp
(

Li2(1− qm)

log(q)

)

√

2π[m]q(1 + o(1))

The first part of the lemma provides

[m]mq = mm exp
(

1
2

m2s +
1

12
m3 s2

2

)

(

1 + O(m4s3 + ms)
)

.

The Dilogarithm is expanded as

Li2(1− qm)

log(q)
=

1
s ∑

k≥1

1
k2 (−m s (1 + S(m s)))k = −m

(

1 +
1
4

ms +
1

18
m2 s2

2
+ O(m s)3

)

.

Injecting those past two expansions in the previous one concludes the proof.

Theorem 7. The asymptotic mean En and standard deviation σn of the number Xn of queries used

67

by the universal algorithm on a partition of size n chosen uniformly at random are

En =
1
4
(2ζ − 1)e2ζ and σn =

1
3

√

3ζ2 − 4ζ + 2
ζ + 1

e3ζ ,

where ζ is the unique positive solution of

ζeζ = n.

The normalized random variable

X⋆
n =

Xn − En

σn

follows in the limit a normalized Gaussian law.

Proof. To prove the limit law, we show that the Laplace transform E(esX⋆
n) converges point-

wise to the Laplace transform of the normalized Gaussian es2/2 (see e.g., Billingsley (2008)).
We have

E(esX⋆
n) = e−sEn/σn E(esXn/σn) =

e−sEn/σn

Bn
Pn(e

s/σn)

For any fixed real value s, we compute the asymptotics of Pn(es/σn). Let q := es/σn , so q
tends to 1, then

Pn(e
s/σn) =

1
eq(e−s/σn)

∑
m≥0

[m]nq
[m]q!

e(n−m)s/σn .

Motivated by the asymptotics from Lemma 14, we rewrite this expression as

Pn(e
s/σn) =

1
eq(e−s/σn)

∑
m≥0

An,s(m)e−φn,s(m) (5.4)

where

An,s(m) =
[m]nq

mn exp
(

1
2 nm s

σn
+ 1

12 nm2 (s/σn)2

2

)

mme−m exp
(

1
4 m2 s

σn
+ 1

36 m3 (s/σn)2

2

)

[m]q!
e(n−m)s/σn ,

φn,s(m) = −n log(m) + m log(m)−m− 1
4
(2n−m)m

s

σn
− 1

36
(3n−m)m2 (s/σn)2

2
.

The dominant contribution to the sum comes from integers m close to the minimum of

68

φn,s(m), so we study this function. The successive derivatives of φn,s(m) are

φ′n,s(m) = − n

m
+ log(m)− 1

2
(n−m)

s

σn
− 1

12
(2n−m)m

(s/σn)2

2
,

φ′′n,s(m) =
n

m2 +
1
m

+
s

2σn
− 1

6
(n−m)

(s/σn)2

2

φ′′′n,s(m) = − 2n

m3 −
1

m2 +
(s/σn)2

12

When n is large enough, the second derivative of φn,s(m) is strictly positive for all m > 0,
so the function is convex. It reaches its unique minimum at a value denoted by m(s) and
characterized by φ′n,s(m(s)) = 0. Injecting the Taylor expansion

m(s) = m0 + m1
s

σn
+ m2

(s/σn)2

2
+ O

(

(s/σn)
3
)

in this equation, extracting the coefficients of the powers of s, we obtain:

m0 log(m0)− n = 0

2m1 (log(m0) + 1)− nm0 + m2
0 = 0

m4
0 + 24m2

0m1 + 12m0m2 (log(m0) + 1)− 2
(

m3
0 + 6m0m1

)

n + 12m2
1 = 0

Hence, by replacing n with ζeζ :

m0 = eζ

m1 = 1
2

ζ−1
ζ+1 e2ζ

m2 = 1
3

2ζ3−3ζ2+2
(ζ+1)3 e3ζ

The dominant contribution to the sum defining Pn(es/σn) comes from values of m close to
m(s). The central part Cn is defined as the integers m such that |m−m(s)| < cn. A heuristic
proposed by Flajolet and Sedgewick (2009) is to find cn such that

|φ′′n,s(m(s))|c2
n → +∞ and |φ′′′n,s(m(s))|c3

n → 0.

As n, and thus ζ, tend to infinity, we have:

m(s) ∼ eζ ∼ n

log(n)
, |φ′′n,s(m(s))| ∼ ζe−ζ ∼ log(n)2

n
, |φ′′′n,s(m(s))| ∼ ζe−2ζ ∼ log(n)3

n2 ,

so we choose cn = e3ζ/5.
We define p(s) = m0 + m1

s
σn

+ m2
(s/σn)2

2 and r(s) = Ce−ζ/2 for some constant C. Note
that φ′n,s (p(s) + r(s)) > 0. Since φ′n,s is an increasing function, 0 ≤ m(s)− p(s) ≤ r(s) and

69

m(s) = p(s) + O(r(s)). Then for m in Cn:

m(s) = eζ +
1
2

ζ − 1
ζ + 1

e2ζ s

σn
+

1
3

2ζ3 − 3ζ2 + 2
(ζ + 1)3 e3ζ (s/σn)2

2
+ O(e−ζ/2),

φn,s(m) = −(ζ2 − ζ + 1)eζ − En
s

σn
− s2

2
+ (ζ + 1)e−ζ (m−m(s))2

2
+ O(e−ζ/4),

An,s(m) =
1√

2πeζ
(1 + o(1)) .

We chose the values of En and σn so that the coefficients in s and s2 are the ones presented
in the above equation. The error term is then obtained using the Lagrange form of the
remainder in Taylor’s Theorem. We deduce the following asymptotics for the central part
of the sum:

∑
m∈Cn

An,s(m)e−φn,s(m) ∼ 1√
2πeζ

e(ζ
2−ζ+1)eζ+En

s
σn

+ s2
2 ∑

m∈Cn

e−(ζ+1)e−ζ (m−m(s))2
2 .

Applying the Euler-Maclaurin formula to turn the sum into an integral, we obtain:

∑
m∈Cn

An,s(m)e−φn,s(m) ∼ 1√
2πeζ

e(ζ
2−ζ+1)eζ+Ens/σn+s2/2

∫ cn

−cn

e−(ζ+1)e−ζ x2
2 dx.

After the variable change y =
√

(ζ + 1)e−ζ x, observing that
√

(ζ + 1)e−ζ cn tends to infin-
ity, the integral is approximated as a Gaussian integral and we conclude:

∑
m∈Cn

An,s(m)e−φn,s(m) ∼ 1√
ζ + 1

e(ζ
2−ζ+1)eζ+Ens/σn+s2/2.

When we compare the asymptotics of the central part to the asymptotics of the Bell num-
bers (see, e.g. Flajolet and Sedgewick (2009))

Bn ∼
e(ζ

2−ζ+1)eζ−1
√

ζ + 1
,

we see from Equation (5.4) that, as expected,

e−sEn/σn

Bn

1
eq(e−s/σn)

∑
m∈Cn

An,s(m)e−φn,s(m) ∼ es2/2.

Let us now prove that the part of the sum corresponding to m ≤ m(s) − cn is negligible
compared to the central part. According to Lemma 14, we have:

An,s(m) =
(

1 + O(nm3/σ3
n)
) (

1 + O(m4/σ3
n)
) 1
√

2π[m]q
= O(m8).

70

Since φn,s(m) is convex (for large enough n), we have φn,s(m) ≥ φn,s(m(s) − cn) for all
m < m(s)− cn. Since

φn,s(m(s)− cn) = −(ζ2 − ζ + 1)eζ − En
s

σn
− s2

2
+ (ζ + 1)e−ζ c2

n

2
+ O(e−ζ/4)

and e−ζ c2
n tends to infinity as eζ/5, we obtain for all m < m(s)− cn:

φn,s(m) ≥ −(ζ2 − ζ + 1)eζ − En
s

σn
− s2

2
+ Θ(eζ/5).

We conclude:

∑
m<m(s)−cn

An,s(m)e−φn,s(m) ≤ ∑
m<m(s)−cn

O(m8)e(ζ
2−ζ+1)eζ+Ens/σn+s2/2−Θ(exp(ζ/5))

≤ e(ζ
2−ζ+1)eζ+Ens/σn+s2/2m(s)9e−Θ(exp(ζ/5)).

Since m(s) ∼ eζ , this result is exponentially small, with respect to n, compared to the central
part. Let us now prove that the part of the sum beyond the central part is negligible as well.
There is a constant C such that for n large enough and any m ≥ Ce3ζ/2, we have

−1
4
(2n−m)m

s

σn
− 1

36
(3n−m)m2 (s/σn)2

2
≥ 0.

In that case, we obtain the simple bound

φn,s(m) ≥ −n log(m) + m log(m)−m ≥ m− n log(m).

Injecting this bound and An,s(m) = O(m8) in the sum, we obtain:

∑
m≥Ce3ζ/2

An,s(m)e−φn,s(m) ≤ O(1) ∑
m≥Ce3ζ/2

mn+8e−m.

The sum is bounded by an integral and n + 8 integrations by part are applied

∑
m≥Ce3ζ/2

An,s(m)e−φn,s(m) ≤ O(1)(n + 8)!(Ce3ζ/2)n+8e−C exp(3ζ/2)

≤ O(1)nn(Ce3ζ/2)n+8e−C exp(3ζ/2)

Since n = ζeζ , we have nn = eO(ζ2) exp(ζ), so

∑
m≥Ce3ζ/2

An,s(m)e−φn,s(m) ≤ O(1)e−Θ(exp(3ζ/2))

which is negligible compared to the central part of the sum. The last part we consider is

71

m(s) + cn ≤ m ≤ Ce3ζ/2. Since φn,s(m) is decreasing there and An,s(m) = O(m8), we have

Ce3ζ/2

∑
m=m(s)+cn

An,s(m)e−φn,s(m) = O(e27ζ/2)e−φn,s(m(s)+cn)

As for the case m = m(s)− cn, we find

φn,s(m(s) + cn) = −(ζ2 − ζ + 1)eζ − En
s

σn
− s2

2
+ Θ(eζ/5)

and conclude

Ce3ζ/2

∑
m=m(s)+cn

An,s(m)e−φn,s(m) = e(ζ
2−ζ+1)eζ+En

s
σn

+ s2
2 O(e27ζ/2)e−Θ(eζ/5),

which is negligible compared to the central part. In conclusion, we have

E(esX⋆
n) =

e−sEn/σn

Bn
Pn(e

s/σn) ∼ ∑
m∈Cn

An,s(m)e−φn,s(m) ∼ es2/2.

Since the Laplace transform of X⋆
n converges pointwise to the Laplace transform of the

normalized Gaussian law, X⋆
n converges in distribution to this Gaussian.

We can derive a simpler equivalent of En for large n:

Corollary 3. The asymptotic mean En of the number Xn of queries used by the universal algorithm

on a partition of size n chosen uniformly at random satisfies En ∼ n2

2 log n

Proof. ζeζ = n means that ζ = W(n) where W is the principal branch of the Lambert W
function. This in turn means that ζ = log n− log log n + o(log log n) (see e.g. Corless et al.
(1996)). Thus 2ζ − 1 ∼ 2 log n and e2ζ ∼ n2

log2 n
hence the result.

By comparison with the expression of Corollary 3, an exhaustive algorithm (i.e. one
that queries all distinct pairs of elements) has the worst possible performance at (n

2) ∼ n2

2
queries. This slim 1

log n -margin can be explained by the underlying partition distribution. A
partition picked uniformly at random has n

log n blocks on average (Flajolet and Sedgewick,
2009) and the number of negative queries is at least that number squared meaning that

n2

log2 n
is a lower bound for En (as additional negative queries and positive queries remain).

5.3 Practical use

We set the theoretical foundations for chordal algorithms optimality in the setting of ran-
dom partitions. While the results of Theorems 1 and 2 give some strong theoretical guar-
antees for chordal algorithms, we seek to know how those hold against a more practical

72

setting. Indeed, a number of assumptions made in the setting described in this chapter can
be challenged. Additionally, parts of the work done in the previous section can be used to
implement a chordal algorithm efficiently.

5.3.1 Considerations for implementations

When implementing any chordal algorithm, one needs to find which queries make it pos-
sible to keep the graph chordal at each step. Note that any query that keeps the graph
chordal in the event of it being answered negatively also keeps the graph chordal when
it is answered positively (see Lemma 1). Indeed, identifying two neighbors in a chordal
graph results in a chordal graph. Suitable queries thus consist of non-edges that preserve
chordality when added. A naive approach could consist in trial and error, i.e. adding any
non-edge and checking that the resulting graph is chordal. Each such test can be performed
in linear time in the size of the graph (Tarjan and Yannakakis, 1984). Alternatively, Lemma
9 makes it possible to rely on the chordality of graph to find a suitable query by checking
that the intersection of the neighborhood of two nodes u and v separates them. In the worst
case that is also done in linear time.

In a practical situation, it is preferable that several humans can work in parallel on the
same item set. In particular, this requires that one can find a suitable query for an available
human while some served queries are still pending. This is achievable thanks to the remark
made earlier: it suffices to assume that any pending query will receive a negative answer.
Thus, by choosing the next suitable query by considering the graph where all pending
queries have received a negative answer, one can keep the graph chordal while allowing
multiple humans to answer queries simultaneously.

5.3.2 Assistance by data-specific techniques

All the work done in the previous sections of this chapter make no assumption on the
nature of the data to be labeled. This enables us to use the very general setting introduced
earlier but, in practice, we expect to be able to use ad hoc techniques depending on the data.
For instance, if all data items are texts, one could use text classifiers, after a few queries are
asked, in order to reduce the number of queries (e.g. by finding positive queries and having
the oracle answer them). Indeed, such classifiers and other ad hoc methods make use of
additional information that was left aside: that of the data itself. If the data is labeled so
that it can be subsequently used to train a supervised classifier, said classifier can be trained
and used to predict the class of items as the data is labeled. This falls under the context of
active learning which we do not explore here. We evaluate the importance of two distinct
features for any algorithm:

• the chordality of the algorithm

• the use of supervised techniques

As classifiers proceed in a pointwise fashion, we proceed as follows: we pick the first edges
to query at random until a negative answer is obtained and then train the classifier on the

73

items of the largest connected component of the contracted graph and their corresponding
clustering (which is not yet final as some clusters may still be merged); the classifier is
then used to predict the cluster of one node outside the largest component and the non-
edge between that node and the corresponding node in the contracted graph is queried.
When the largest component comprises all the graph, the classifier is not used anymore
and queries are picked either at random or according to some chordal strategy. To illustrate
this, we run experiments on the well-known 20 News Group dataset. We use two well-
known text classifiers: a linear classifier with stochastic gradient descent (SGD) for training
(Zadrozny and Elkan, 2002) and a multinomial naive Bayes (MNB) classifier (Christopher
et al., 2008). We extract an increasing number of elements in the dataset at random. For
each such set size, we perform 100 random extractions and average the results of each
algorithm. We report the results in Figure 5.5.

In Figures 5.5a and 5.5b, we notice that supervised techniques give a consistent edge
over unsupervised approaches be it in the random or chordal context. This is due to the
fact that classifiers use the data to find positive edges with a higher probability than unsu-
pervised algorithms. Those positive edges reduce the number of nodes in the contracted
graph early on and thus make it possible to reduce the overall number of queries. In Figures
5.5c and 5.5d, one can notice that chordal algorithms have a slight edge over random ones
both when combined with classifiers or not. While this was expected for the unsupervised
case given the results of Section 5.2, it should be noted that keeping the contracted graph
chordal also reduces the number of queries in the supervised case. This is partly explained
by the fact that when the whole contracted graph consists of its largest connected compo-
nent, classifiers no longer play any role so that random and chordal algorithms behave as
if they were unsupervised.

The use of supervised techniques yields noticeable but not necessarily significant de-
creases in the number of queries. While they make it harder to implement a labeling algo-
rithm, it should be noted that they do not incur significant costs in terms of added compu-
tation times. Indeed, we expect the number of items to cluster to be small (in the thousands
at most) as it would otherwise be impracticable for humans. The classifiers we mention
have minimal execution times at that scale and those execution times should thus remain
negligible compared to the time spent answering queries by humans. It is also possible
to use classifiers in a parallelized fashion, as long as there are items left out of the largest
connected component (the reasoning described in Section 5.3.1 still applies).

5.3.3 Imperfect oracle

In Section 5.2, we made the assumption that the oracle did not make any mistake. In a more
practical context where the oracle is human, we expect that some mistakes will be made.
We discuss how these errors could be handled.

False negatives (when the oracle wrongly answered negatively) are corrected more eas-
ily than false positives. For instance, the former can be corrected a posteriori by asking
additional questions between positive components which seem close (making it possible
to correct a false negative in a few queries). On the other hand, false positives require more
redundancy as finding the mislabeled edge in a positive component is cumbersome. To

74

100 101 102

100

101

102

103

Set size

N
u

m
be

r
of

qu
er

ie
s

(a) Chordal algorithms

100 101 102

100

101

102

103

Set size

N
u

m
be

r
of

qu
er

ie
s

(b) Random algorithms

100 101 102

100

101

102

103

Set size

N
u

m
be

r
of

qu
er

ie
s

(c) Unsupervised algorithms

100 101 102

100

101

102

103

Set size

N
u

m
be

r
of

qu
er

ie
s

(d) Supervised algorithms

Figure 5.5: Average number of queries needed over 100 runs as a function of the number of
elements. ×: Chordal algorithm, +: Random algorithm; •: Unsupervised; •: SGD; •: MNB

75

(a) G when h = 2

(b) The connected graph H (c) The graph K under study

Figure 5.6: Different steps in the construction of a robust graph

address this imbalance, it is preferable to work on the expanded graph of queries (as op-
posed to the contracted graph under study in Section 5.2) where positive components are
not merged.

Furthermore, there are many ways to model errors. For instance, one can assume that
the overall number of errors will be bounded. Here we investigate, another error model
which assumes mistakes are made with a (small) probability p at each query. To help detect
inconsistencies in the oracle’s answers, we create cycles in the expanded graph. To assess
how robust to errors the graphs we create this way are, we rely on the notion of reliability
polynomials (Page and Perry, 1994).

The coefficient ci of pi in the reliability polynomial RG(p) of a graph G is the number
of ways of disconnecting G by removing i edges. If, for all the edges of G, each is removed
with probability p, then RG(p) is the probability the graph is disconnected after the edges
are deleted. We want to minimize RG(p). Using the added cycles in the graph, one can
detect errors by checking that no cycle contains exactly one negative edge. Finding the
smallest such contradictory cycle makes it possible to identify an ambiguous element by
recursively splitting the cycle into two. To create such cycles, we build a graph whose
reliability polynomial can be estimated.

Let us consider the tree graph G of depth h depicted in Figure 5.6a. We highlight the
internal nodes in red and the leaves in blue. We seek to turn the previously described tree
into a 2-connected graph. To achieve this, we allow ourselves to add 2h−1 edges binding
the 2h leaves of the tree. This yields the graph H depicted in Figure 5.6b.

Numbering the leaves in the most simple fashion (from left to right using the represen-
tation depicted in Figure 5.6a), we link each leaf with an even index to the next leaf (with
the last leaf being connected to the first one). We now consider a graph K built from the

76

previously constructed graph by adding l ∈ 2N nodes of degree 2 on each edge between
the internal nodes and l−2

2 nodes on the edges between the internal nodes and the leaves
(as depicted in Figure 5.6c). We would like to show that K is optimally robust whenever
H is. To prove that, we would like to express RK(p),the reliability polynomial of K, using
RH(p).

We need to express the number of ways c̃i of disconnecting K by removing i edges in
terms of ci. Since removing more than one edge between a pair of given nodes of degree 3
always disconnects the graph, we distinguish the cases where more than one edge between
any pair of nodes of degree 3 has been removed from the other cases.

Removing at most one edge per segment There are lici ways to choose the edges to re-
move in order to yield no such pair of nodes (from any configuration that disconnects G,
many configurations can be derived to disconnect K).

Removing at least two edges on at least one segment On the other hand, the number
of ways to remove at least two edges between at least one pair of nodes of degree 3 is
(ml

i)− (m
i)l

i because (ml
i) is the number of ways of removing i edges in K (with or without

disconnecting it) and (m
i)l

i is the number of ways to remove i edges without removing more
than one edge between a pair of given nodes of degree 3 (still with no regard as to whether
or not the yielded graph is connected).

In the end, both cases make up all the configurations which disconnect K:

c̃i = cil
i +

(

ml

i

)

−
(

m

i

)

li

Thus:

RK(p) =
ml

∑
i=0

c̃i p
i

=
ml

∑
i=0

[

cil
i pi +

(

ml

i

)

pi −
(

m

i

)

li pi

]

RK(p) = RH(lp) + (1 + p)ml − (1 + lp)m

Notice how RK(p) = RH(lp) + o(p) for small p.
We are thus able to correlate the reliability of the graphs H and K. In particular, the

parameter l allows one to choose the maximum size of the cycles in the graph thus enabling
a trade-off between additional queries and error detection. Also, note that the graph K
minus the edges between its leaves (i.e. the blue nodes in Figure 5.6c) can be obtained via
a chordal algorithm. Aiming at graphs of the same form thus makes it possible to correct
errors while maintaining control over the number of queries.

77

5.4 Conclusion

In this chapter, we introduced a particular case of dataset labeling and characterized its
optimal solutions. We first introduced a formal setting based on a graph representation
of the labeling. We then proved optimal solutions (on average) consisted of a particular
family of algorithms. We proved that the complexity distribution of any two algorithms of
this family is the same on any given graph and then gave an approximation of the mean
and variance of those distributions when the number of elements to be labeled is large. We
also discussed the potential improvements or changes that can be made to both the setting
and the algorithms for use in real use-cases.

We previously assumed that the distribution of the underlying partition of the graph is
the uniform one. As discussed at the end of Section 5.2.4, optimal solutions offer just a slim

1
log n -gain over the worst case. This is due in part to the fact that, under the uniform model,
there are many blocks on average which makes for a high lower bound on the number of
queries whatever the algorithm that is used. Indeed, in the experiments of Section 5.3.1, we
find that chordal and random algorithms produce close results.

However, it is possible to have at least some information about that partition which
biases the distribution. One information that may be found in some particular cases is
the number of clusters. Though it is difficult to evaluate in general, when it is possible,
the partition is picked from a limited set. Limiting the number of clusters alleviates the
lower bound discussed earlier and enables greater improvements when comparing chordal
algorithms to random ones. When running experiments with that fixed-size distribution,
we find that all chordal algorithms are no longer equivalent and that the clique algorithm
seems to reach a minimal number of queries (with the precision that the clique algorithm
compares the selected vertex with the largest positive components first). Future work could
focus on proving or disproving this conjecture.

78

Chapter 6

Conclusion and perspectives

In this work, we have tackled a number of problems in graph mining and machine learning.

First, we formally introduced graphs and depicted basic examples for the related yet
distinct fields of graph mining and graph theory. We gave an outline of the thesis.

Then, we introduced Scikit-network, an open-source graph analysis library aimed at
providing both an API that is consistent with the current Python ecosystem in machine
learning packages and a state-of-the-art performance typically only found in C/C++ pack-
ages. We gave a sketch of practical considerations for representing graphs. We would like
to emphasize that, in addition to the experiments of Chapter 2, results given in Chapters 3
and 4 illustrate the influence of the representation of graphs depending on the operations
that have to be performed. In the future, the library could benefit from broader adoption
of multi-threaded implementations of some algorithms along with the permanent mainte-
nance efforts required to keep the package up to date. There are also a number of potential
additions that could be made to the package such as anomaly detection algorithms.

In Chapter 3, we considered two clustering algorithms, one for flat clustering and one
for hierarchical clustering. In the former case, we looked at the Louvain algorithm and
its numerous variants. We first considered the various modularity functions present in
the literature under a unified setting. We also described some improvements of the Lou-
vain method and illustrated how the implementation of those algorithms (in particular the
graph representation they use) has a considerable influence on their time performance. As
regards hierarchical clustering, we considered the Paris algorithm and gave some examples
of how it can be used with inherently hierarchical data. Future work could be focused on
further improvements of the Louvain method, especially of the costly initial optimization
phase.

We introduced a simple novel method for embedding the nodes of a graph, be it undi-
rected, directed or bipartite. It is strongly linked to soft clustering as it is based on the
formerly introduced Louvain clustering algorithm which enables easy interpretability and
scalability. It has the particularity of not allowing the user to set an embedding dimen-

79

sion. Future improvements of this method could make use of the improvements of the
Louvain method described in Chapter 3. In particular, those improvements can be aimed
at speeding up the algorithm to tackle even larger graphs.

In Chapters 2, 3 and 4, we tackled situations where graphs could be used to model data.
In this case, the accuracy of any method is usually measured against some ground truth of
the data at hand and its time performance is expectedly dependent on the implementation
of the method. Those empiric criteria are thus subjected to a careful understanding of
those external factors (i.e. the data at hand and the implementation in use). To that end,
making data and information readily available in the form of repositories enables increased
reproducibility (Baker, 2016; Pineau et al., 2021). Even then, implementations may differ
due to choices made when designing them such as the programming language that was
used or the data structures. When proposing a new method, depicting those parameters
may seem cumbersome. It is however often necessary as it affects what can be inferred
from the experiments.

In Chapter 5 we studied a setting motivated by the construction of labeled datasets for
supervised learning. While close to the problems depicted in the active learning literature,
we make some strong assumptions that radically alter the approach to that setting. We
describe and prove the optimality of a class of algorithms for this setting. In addition
to these theoretical results, we provide some numerical experiments closer to real-world
considerations. In the future, more of the strong assumptions made to solve the problem at
hand could be challenged.

80

Chapter 7

Bibliography

Abdi, H. (2007). Singular value decomposition (svd) and generalized singular value de-
composition. Encyclopedia of measurement and statistics, pages 907–912.

Ahuja, R., Mehlhorn, K., Orlin, J., and Tarjan, R. (1990). Faster algorithms for the shortest
path problem. J. ACM, 37:213–223.

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P. (2008). Mixed membership
stochastic blockmodels. Journal of Machine Learning Research, 9(Sep):1981–2014.

Andrews, G. E. (1986). q-Series: Their Development and Application in Analysis, Number Theory,
Combinatorics, Physics and Computer Algebra: Their Development and Application in Analy-
sis, Number Theory, Combinatorics, Physics, and Computer Algebra. Number 66. American
Mathematical Soc.

Bacchelli, A. and Bird, C. (2013). Expectations, outcomes, and challenges of modern code
review. In 2013 35th International Conference on Software Engineering (ICSE), pages 712–721.
IEEE.

Baker, M. (2016). Reproducibility crisis. Nature, 533(26):353–66.

Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical
Review E, 76(6):066102.

Basu, S., Banerjee, A., and Mooney, R. J. (2004a). Active semi-supervision for pairwise
constrained clustering. In Proceedings of the 2004 SIAM international conference on data
mining, pages 333–344. SIAM.

Basu, S., Bilenko, M., and Mooney, R. J. (2004b). A probabilistic framework for semi-
supervised clustering. In Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 59–68.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith, K. (2011). Cython:
The best of both worlds. Computing in Science & Engineering, 13(2):31–39.

81

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15(6):1373–1396.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Computation, 15:1373–1396.

Bhowmick, A. K., Meneni, K., Danisch, M., Guillaume, J.-L., and Mitra, B. (2020). Lou-
vainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embed-
ding *. In the 13th ACM International WSDM Conference, Houston, United States.

Bhowmick, S. and Srinivasan, S. (2013). A template for parallelizing the louvain method
for modularity maximization. In Dynamics On and Of Complex Networks, Volume 2, pages
111–124. Springer.

Billingsley, P. (2008). Probability and measure. John Wiley & Sons.

Bloch, F., Jackson, M. O., and Tebaldi, P. (2019). Centrality measures in networks. Available
at SSRN 2749124.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008.

Bonald, T., Charpentier, B., Galland, A., and Hollocou, A. (2018a). Hierarchical graph clus-
tering based on node pair sampling. In Proceedings of the 14th International Workshop on
Mining and Learning with Graphs (MLG).

Bonald, T., Hollocou, A., and Lelarge, M. (2018b). Weighted spectral embedding of graphs.
In 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), pages 494–501. IEEE.

Brandes, U. (2001). A Faster Algorithm for Betweenness Centrality. In Journal of Mathemat-
ical Sociology, volume 25, pages 163–177.

Brodley, C. E. and Friedl, M. A. (1999). Identifying mislabeled training data. Journal of
artificial intelligence research, 11:131–167.

Buluç, A., Fineman, J. T., Frigo, M., Gilbert, J. R., and Leiserson, C. E. (2009). Paral-
lel sparse matrix-vector and matrix-transpose-vector multiplication using compressed
sparse blocks. In auf der Heide, F. M. and Bender, M. A., editors, SPAA, pages 233–244.
ACM.

Campigotto, R., Céspedes, P. C., and Guillaume, J.-L. (2014). A generalized and adaptive
method for community detection.

Chen, F., Wang, Y.-C., Wang, B., and Kuo, C.-C. J. (2020). Graph representation learning: a
survey. APSIPA Transactions on Signal and Information Processing, 9:e15.

82

Chien, I. E., Zhou, H., and Li, P. (2019). Hs2: Active learning over hypergraphs with point-
wise and pairwise queries. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 2466–2475. PMLR.

Christopher, D. M., Prabhakar, R., Hinrich, S., et al. (2008). Introduction to information
retrieval. An Introduction To Information Retrieval, 151(177):5.

Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., and Knuth, D. E. (1996). On the
lambertw function. Advances in Computational mathematics, 5(1):329–359.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network re-
search. InterJournal, Complex Systems:1695.

De Meo, P., Ferrara, E., Fiumara, G., and Provetti, A. (2011). Generalized louvain method
for community detection in large networks. In 2011 11th international conference on intelli-
gent systems design and applications, pages 88–93. IEEE.

Dong, Y., Chawla, N. V., and Swami, A. (2017). Metapath2vec: Scalable representation
learning for heterogeneous networks. In Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’17, page 135–144, New
York, NY, USA. Association for Computing Machinery.

Dugué, N. and Perez, A. (2015). Directed Louvain: maximizing modularity in directed networks.
PhD thesis, Université d’Orléans.

Eriksson, B., Dasarathy, G., Singh, A., and Nowak, R. (2011). Active clustering: Robust and
efficient hierarchical clustering using adaptively selected similarities. In Proceedings of
the Fourteenth International Conference on Artificial Intelligence and Statistics, pages 260–268.
JMLR Workshop and Conference Proceedings.

Ernst, T. (2000). The history of q-calculus and a new method. Citeseer.

Euler, L. (1956). The seven bridges of königsberg. The world of mathematics, 1:573–580.

Farber, M. (1983). Characterizations of strongly chordal graphs. Discrete Mathematics, 43(2-
3):173–189.

Flajolet, P. and Sedgewick, R. (2009). Analytic combinatorics. cambridge University press.

Ford Jr, L. R. (1956). Network flow theory. Technical report, Rand Corp Santa Monica Ca.

Fortunato, S. (2010). Community detection in graphs. Physics reports, 486(3-5):75–174.

Golumbic, M. C. (2004). Algorithmic graph theory and perfect graphs. Elsevier.

Gonthier, G. et al. (2008). Formal proof–the four-color theorem. Notices of the AMS,
55(11):1382–1393.

Gribel, D., Gendreau, M., and Vidal, T. (2021). Semi-supervised clustering with inaccurate
pairwise annotations. arXiv preprint arXiv:2104.02146.

83

Grover, A. and Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 855–864.

Gurevich, Y. and Shelah, S. (1987). Expected computation time for hamiltonian path prob-
lem. SIAM Journal on Computing, 16(3):486–502.

Hagberg, A., Swart, P., and S Chult, D. (2008). Exploring network structure, dynamics,
and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States).

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Representation learning on graphs:
Methods and applications. cite arxiv:1709.05584Comment: Published in the IEEE Data
Engineering Bulletin, September 2017; version with minor corrections.

Hopcroft, J. and Tarjan, R. (1974). Efficient planarity testing. Journal of the ACM (JACM),
21(4):549–568.

Huang, J. and Ling, C. X. (2005). Using auc and accuracy in evaluating learning algorithms.
IEEE Transactions on knowledge and Data Engineering, 17(3):299–310.

Huang, Z., Zhou, A., and Zhang, G. (2012). Non-negative matrix factorization: A short sur-
vey on methods and applications. In International Symposium on Intelligence Computation
and Applications, pages 331–340. Springer.

Hubert, L. and Arabie, P. (1985). Comparing partitions. Journal of classification, 2(1):193–218.

Jensen, T. R. and Toft, B. (2011). Graph coloring problems, volume 39. John Wiley & Sons.

Keikha, M. M., Rahgozar, M., and Asadpour, M. (2018). Community aware random walk
for network embedding. Knowledge-Based Systems, 148:47–54.

Kim, T. and Ghosh, J. (2017). Semi-Supervised Active Clustering with Weak Oracles.
arXiv:1709.03202 [cs, stat]. arXiv: 1709.03202.

Kipf, T. N. and Welling, M. (2017). Semi-Supervised Classification with Graph Convolu-
tional Networks. In Proceedings of the 5th International Conference on Learning Representa-
tions, ICLR ’17.

Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604–632.

Krishnamurthy, A., Balakrishnan, S., Xu, M., and Singh, A. (2012). Efficient active algo-
rithms for hierarchical clustering. arXiv preprint arXiv:1206.4672.

Kunegis, J. (2013). KONECT: The Koblenz Network Collection. In Proceedings of the 22Nd
International Conference on World Wide Web, WWW ’13 Companion, pages 1343–1350, New
York, NY, USA. ACM. event-place: Rio de Janeiro, Brazil.

84

Landherr, A., Friedl, B., and Heidemann, J. (2010). A critical review of centrality measures
in social networks. Business & Information Systems Engineering, 2(6):371–385.

Li, B., Springer, J., Bebis, G., and Gunes, M. H. (2013). A survey of network flow applica-
tions. Journal of Network and Computer Applications, 36(2):567–581.

Lovász, L. (1972). A characterization of perfect graphs. Journal of Combinatorial Theory, Series
B, 13(2):95–98.

Luo, B., Wilson, R. C., and Hancock, E. R. (2003). Spectral embedding of graphs. Pattern
recognition, 36(10):2213–2230.

Mazumdar, A. and Saha, B. (2017). Clustering with noisy queries.

McGibbon, R. T. and Smith, N. J. (2016). A platform tag for portable linux built distribu-
tions. PEP 513, -.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed repre-
sentations of words and phrases and their compositionality. In NIPS, pages 3111–3119.
Curran Associates, Inc.

Mitra, R., Nandy, D., et al. (2012). A survey on clustering techniques for wireless sensor
network. International Journal of Research in Computer Science, 2(4):51–57.

Moak, D. S. (1984). The q-analogue of stirling’s formula. The Rocky Mountain Journal of
Mathematics, pages 403–413.

Murtagh, F. and Contreras, P. (2012). Algorithms for hierarchical clustering: an overview.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97.

Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of
the national academy of sciences, 103(23):8577–8582.

Nghiem, M.-Q. and Ananiadou, S. (2018). Aplenty: annotation tool for creating high-
quality datasets using active and proactive learning. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing: System Demonstrations, pages
108–113.

Okamoto, K., Chen, W., and Li, X.-Y. (2008). Ranking of closeness centrality for large-
scale social networks. In International workshop on frontiers in algorithmics, pages 186–195.
Springer.

Ou, M., Cui, P., Pei, J., Zhang, Z., and Zhu, W. (2016). Asymmetric Transitivity Preserving
Graph Embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’16, pages 1105–1114, San Francisco, Califor-
nia, USA. ACM Press.

Ozaki, N., Tezuka, H., and Inaba, M. (2016). A simple acceleration method for the louvain
algorithm. International Journal of Computer and Electrical Engineering, 8(3):207.

85

Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank citation ranking:
Bringing order to the web. In Proceedings of the 7th International World Wide Web Conference,
pages 161–172, Brisbane, Australia.

Page, L. B. and Perry, J. E. (1994). Reliability polynomials and link importance in networks.
IEEE Transactions on Reliability, 43(1):51–58.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in
python. Journal of Machine Learning Research, 12(Oct):2825–2830.

Peixoto, T. P. (2014). The graph-tool python library. figshare.

Pineau, J., Vincent-Lamarre, P., Sinha, K., Larivière, V., Beygelzimer, A., d’Alché Buc, F.,
Fox, E., and Larochelle, H. (2021). Improving reproducibility in machine learning re-
search: a report from the neurips 2019 reproducibility program. Journal of Machine Learn-
ing Research, 22.

Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. In Advances in Large Margin Classifiers, pages 61–74. MIT
Press.

Que, X., Checconi, F., Petrini, F., and Gunnels, J. A. (2015). Scalable community detection
with the louvain algorithm. In 2015 IEEE International Parallel and Distributed Processing
Symposium, pages 28–37. IEEE.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical association, 66(336):846–850.

Rehman, S. U., Khan, A. U., and Fong, S. (2012). Graph mining: A survey of graph mining
techniques. In Seventh International Conference on Digital Information Management (ICDIM
2012), pages 88–92. IEEE.

Rosenberg, A. and Hirschberg, J. (2007). V-measure: A conditional entropy-based external
cluster evaluation measure. In Proceedings of the 2007 joint conference on empirical methods
in natural language processing and computational natural language learning (EMNLP-CoNLL),
pages 410–420.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. (2008). The graph
neural network model. IEEE transactions on neural networks, 20(1):61–80.

Staudt, C. L., Sazonovs, A., and Meyerhenke, H. (2016). Networkit: A tool suite for large-
scale complex network analysis. Network Science, 4(4):508–530.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., and Mei, Q. (2015). LINE: Large-scale
Information Network Embedding. Proceedings of the 24th International Conference on World
Wide Web - WWW ’15, pages 1067–1077. arXiv: 1503.03578.

86

Tarjan, R. E. and Yannakakis, M. (1984). Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM
Journal on computing, 13(3):566–579.

Traag, V. A. (2015). Faster unfolding of communities: Speeding up the louvain algorithm.
Physical Review E, 92(3):032801.

Traag, V. A., Van Dooren, P., and Nesterov, Y. (2011). Narrow scope for resolution-limit-free
community detection. Physical Review E, 84(1):016114.

Traag, V. A., Waltman, L., and Van Eck, N. J. (2019). From louvain to leiden: guaranteeing
well-connected communities. Scientific reports, 9(1):1–12.

Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures for clusterings
comparison: Variants, properties, normalization and correction for chance. The Journal of
Machine Learning Research, 11:2837–2854.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
C., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and Contributors, S. . . (2020). SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, 17:261–272.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R., and Borgwardt, K. M. (2010).
Graph kernels. Journal of Machine Learning Research, 11:1201–1242.

Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S., et al. (2001). Constrained k-means cluster-
ing with background knowledge. In Icml, volume 1, pages 577–584.

Walt, S. J. v. d., Colbert, S. C., and Varoquaux, G. (2011). The numpy array: a structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22–30.

Waltman, L. and Van Eck, N. J. (2013). A smart local moving algorithm for large-scale
modularity-based community detection. The European physical journal B, 86(11):1–14.

Xiong, C., Johnson, D. M., and Corso, J. J. (2017). Active Clustering with Model-Based
Uncertainty Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence,
39(1):5–17.

Yang, Z., Algesheimer, R., and Tessone, C. J. (2016). A comparative analysis of community
detection algorithms on artificial networks. Scientific reports, 6(1):1–18.

Yu, K., Yu, S., and Tresp, V. (2005). Soft clustering on graphs. Advances in neural information
processing systems, 18:1553–1560.

Zadrozny, B. and Elkan, C. (2002). Transforming classifier scores into accurate multiclass
probability estimates. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 694–699.

87

Zhan, F. B. and Noon, C. E. (1998). Shortest path algorithms: an evaluation using real road
networks. Transportation science, 32(1):65–73.

Zhang, J., Dong, Y., Wang, Y., Tang, J., and Ding, M. (2019). Prone: Fast and scalable
network representation learning. In IJCAI, volume 19, pages 4278–4284.

Zhang, L. and Tu, W. (2009). Six degrees of separation in online society.

Zhang, Z., Cui, P., Li, H., Wang, X., and Zhu, W. (2018). Billion-scale network embedding
with iterative random projection.

88

Titre : Contributions à base de graphes à l’apprentissage automatique

Mots clés : graphes, apprentissage automatique, annotation de données

Résumé : Un graphe est un objet mathématique

permettant de représenter des relations entre des

entités (appelées nœuds) sous forme d’arêtes. Les

graphes sont depuis longtemps un objet d’étude pour

différents problèmes allant d’Euler au PageRank en

passant par les problèmes de plus courts chemins.

Les graphes ont plus récemment trouvé des usages

pour l’apprentissage automatique.

Avec l’avènement des réseaux sociaux et du web,

de plus en plus de données sont représentées sous

forme de graphes. Ces graphes sont toujours plus

gros, pouvant contenir des milliards de nœuds et

arêtes. La conception d’algorithmes efficaces s’avère

nécessaire pour permettre l’analyse de ces données.

Cette thèse étudie l’état de l’art et propose de nou-

veaux algorithmes pour la recherche de commu-

nautés et le plongement de nœuds dans des données

massives. Par ailleurs, pour faciliter la manipulation

de grands graphes et leur appliquer les techniques

étudiées, nous proposons Scikit-network, une librai-

rie libre développée en Python dans le cadre de la

thèse. De nombreuses tâches, telles que le calcul de

centralités et la classification de nœuds, peuvent être

accomplies à l’aide de Scikit-network.

Nous nous intéressons également au problème

d’annotation de données. Les techniques super-

visées d’apprentissage automatique nécessitent des

données annotées pour leur entrainement. La qua-

lité de ces données influence directement la qualité

des prédictions de ces techniques une fois entrainées.

Cependant, obtenir ces données ne peut pas se faire

uniquement à l’aide de machines et requiert une inter-

vention humaine. Nous étudions le problème d’anno-

tation, sous un formalisme utilisant des graphes, avec

pour but de décrire les solutions qui limitent cette in-

tervention de façon optimale. Nous caractérisons ces

solutions et illustrons comment elles peuvent être ap-

pliquées.

Title : Graph-based contributions to machine learning

Keywords : graphs, machine learning, data labeling

Abstract : A graph is a mathematical object that

makes it possible to represent relationships (called

edges) between entities (called nodes). Graphs have

long been a focal point in a number of problems ran-

ging from work by Euler to PageRank and shortest-

path problems. In more recent times, graphs have

been used for machine learning.

With the advent of social networks and the world-wide

web, more and more datasets can be represented

using graphs. Those graphs are ever bigger, some-

times with billions of edges and billions of nodes. De-

signing efficient algorithms for analyzing those data-

sets has thus proven necessary. This thesis reviews

the state of the art and introduces new algorithms

for the clustering and the embedding of the nodes of

massive graphs. Furthermore, in order to facilitate the

handling of large graphs and to apply the techniques

under study, we introduce Scikit-network, a free and

open-source Python library which was developed du-

ring the thesis. Many tasks, such as the classification

or the ranking of the nodes using centrality measures,

can be carried out thanks to Scikit-network.

We also tackle the problem of labeling data. Supervi-

sed machine learning techniques require labeled data

to be trained. The quality of this labeled data has a

heavy influence on the quality of the predictions of

those techniques once trained. However, building this

data cannot be achieved through the sole use of ma-

chines and requires human intervention. We study the

data labeling problem in a graph-based setting, and

we aim at describing the solutions that require as lit-

tle human intervention as possible. We characterize

those solutions and illustrate how they can be applied

in real use-cases.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Motivation
	Graphs
	Graph analysis
	Graph theory
	Graph mining

	Outline
	Publications

	Scikit-network
	Motivation
	Software Features
	Practical considerations
	Efficient graph representation
	Guidelines for the package
	Performance

	Conclusion

	Node clustering
	Introduction
	Node sampling

	Flat clustering
	Similarity measures
	Modularity functions
	Louvain method
	Leiden refinements

	Hierarchical clustering
	Dendrograms
	Agglomerative approach
	Divisive approach
	Experiments

	Conclusion

	Node embedding
	Introduction
	Motivation
	Related work

	Embedding method
	Algorithm
	Link with soft clustering

	Results
	Link prediction
	Node classification
	Time performance

	Properties
	Interpretability
	Sparsity of the embedding

	Conclusion

	Dataset labeling
	Introduction
	Motivation and related work
	Setting

	Chordal algorithms
	Chordal graphs
	Optimality of chordal algorithms
	Cost equivalence of chordal algorithms
	Complexity estimates

	Practical use
	Considerations for implementations
	Assistance by data-specific techniques
	Imperfect oracle

	Conclusion

	Conclusion and perspectives
	Bibliography

