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Chapter 1

Introduction

Understanding neuronal computational circuits and mimicking them has been a longstanding endeavour in many fields, especially since the brain is capable of representing information it receives from sensory inputs and acting on them with extraordinary efficiency. However, predetermined algorithms are often not very suitable to represent and act upon such data; sometimes the algorithms need to be developed from the very data presented to them. This is the foundational idea behind the field of artificial intelligence (AI).

A preliminary understanding of the structure of the nervous system was brought about by scientists such as Camillo Golgi and Santiago Ramón y Cajal, who were awarded the Nobel Prize in Physiology in 1906. Though they shared the Nobel prize, the two scientists believed in different schools of thought about the nervous structure. Camillo Golgi believed in the reticular theory to describe the nervous system, postulating that the nervous system is a single continuous network, whereas Santiago Ramón y Cajal believed in the neuron theory, which postulated that the nervous system is made up of single discrete units (neurons) connected through synapses. Inspired by the neuron theory in 1943, two engineers Warren McCullogh and Walter Pitts proposed the first mathematical model for the neuron. This initial model represented neurons as binary entities with inputs (excitatory and inhibitory) and a threshold for producing an output. Building on that, Rosenblatt in 1958 proposed a computational model called the Perceptron [1], which arguably was the world's first artificial neural network. The Perceptron marked a significant improve-ment as it included learning rules and showed promising results on some tasks. It is worth noting that the initially proposed Perceptron had one layer of neurons and could only learn linearly separable patterns. This severe constraint was not commensurate with the hype and led to a decline in interest surrounding Perceptrons. It was several years before it was discovered that multilayer Perceptrons could learn nonlinear decision boundaries and possessed much greater computational power. Scientific funding or lack thereof is often a result of perception surrounding a subject; the bad reputation of single layer Perceptrons probably was one of the reasons that caused a decline in funding for AI research for several following years.

While several refinements were made to the Perceptron algorithm over the years, one of the key contributions to the field was made in 1986, when researchers showed that an algorithm called backpropagation could be used to teach representations to networks of neuron like units [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] 1 .

Although the work of Alan Hodgkin, and Andrew Huxley (awarded the Nobel Prize in Physiology or Medicine in 1963) on ion channels and excitable neurons [START_REF] Hodgkin | Action potentials recorded from inside a nerve fibre[END_REF]4] predated the Perceptron model, these findings were not a subject of extensive study by the AI and machine learning community for a long time. One can view this as a divergence in the paths of the neuroscience and the AI communities.

From an engineering perspective, the AI community had learnt that coupling discrete nonlinear units using weights could give rise to networks with an apparent semblance of intelligence. Armed with an algorithm to train such networks, researchers began their extensive quest on training models for increasingly complicated tasks. Some of the major limitations before the turn of the 21 st century were the lack of compute power and data available to scale up such networks; these limitations were eventually removed with the semiconductor and digital revolution. Subsequently, neural networks gained even more traction. An alternative framework was introduced in 2002 [5] to model neural computations which relied on several coupled spiking neurons. Independently, an equivalent model called echo state networks were introduced [START_REF] Jaeger | Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication[END_REF] which essentially had a similar structure but the definition of a neuron was more abstract and essentially any nonlinearity could be used to model a neuron. These two models can be broadly combined into a single class called reservoir computing. The main power of this technique arises from the complex dynamics of coupled nonlinear nodes.

At this point we would like to insist on the difference between neural networks and neuronal networks. The former refers to the engineering abstraction comprising of nonlinear coupled nodes and the latter refers to the study of biological networks of neurons. The study of neuronal networks is an extremely complicated endeavour as one often does not have access to a connectome but even in cases where a connectome is available (for small organisms like C. Elegans [START_REF] Cook | Whole-animal connectomes of both Caenorhabditis elegans sexes[END_REF]) the mechanisms for computing are not trivial. Over the years, several neural network models have shown remarkable success at several tasks. One such feat was when a convolutional neural network (ref. [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]) in 2012 won the ImageNet Large Scale Visual Recognition Challenge. This feat was one of the reasons for the renewed interest in the field of neural networks. The trend in orange shows the amount of compute power required to train the state-of-the-art algorithms (normalized to petaflop/s-day). The trend in blue shows the compute growth predicted by Moore's law. A petaflop/s-day corresponds to 10 15 operations per second for one day. This amounts to a total of 8.64 ⇥ 10 19 operations (10 15 ⇤ 3600 ⇤ 24). Figure adapted from [START_REF] De Lima | Machine Learning with Neuromorphic Photonics[END_REF] While the notion of neural networks was inspired from experimental findings in neuroscience, today, the two fields have diverged significantly. Neural networks in their most general form are powerful optimization algorithms. Over the years, neural networks have been trained for increasingly complicated tasks and this is reflected in their power requirement. Figure 1.1 plots the growth in the complexity of modern neural network algorithms and the projected growth of compute power offered by electronics. The computing power demanded by the algorithms is growing at a much faster rate and cannot be supported by electronics. One of the most popular examples is the comparison of energy consumption between Google's AlphaGo program and the human brain playing a game of Go. It is estimated that the human brain consumes approximately 10 6 times less energy as compared to Google's state of the art AI platform. This is a pertinent comparison as it is a popular opinion within the community that reinforcement learning, the work horse behind AlphaGo, is a plausible path for general intelligence. This raises important and fundamental questions about the architecture of modern neural networks and their implementation on conventional platforms. Figure 1.2 depicts a trend (in power density and clock frequency) observed in microprocessors that is diametrically opposite to that of the brain. This shows that while the architecture of neural networks is inspired from biology, its current physical implementation is on drastically different primitives. Further, experimental findings show that the brain possesses an extensively parallel network of neurons that is absent in traditional electronic implementations. At this point we can raise two important questions:

• Can we ameliorate the hardware implementation of neural networks?

• Can we use architectures inspired from biology to achieve energy efficient computing?

There are several interesting electronic implementations that can answer both these questions; some currently available commercial solutions include the development of Graphics Processing Units and Tensor Processing Units. Other electronic technologies such as memristors [START_REF] Boybat | Neuromorphic computing with multi-memristive synapses[END_REF], Resistive RAM based binarized neural networks [START_REF] Hirtzlin | Outstanding Bit Error Tolerance of Resistive RAM-Based Binarized Neural Networks[END_REF], and spintronic oscillators [START_REF] Torrejon | Neuromorphic computing with nanoscale spintronic oscillators[END_REF] have also answered the above mentioned questions. A general review on the physics of neuromorphic computing can be found in ref. [START_REF] Marković | Physics for neuromorphic computing[END_REF].t

Despite the maturity of electronics and their relative flexibility to implement complex circuits, optical and optoelectronic technologies can offer significant advantages in terms of parallelism [START_REF] Miller | Waves, modes, communications, and optics: a tutorial[END_REF], small device footprint, and energy efficiency over electronics in certain implementations [START_REF] Brunner | Parallel photonic information processing at gigabyte per second data rates using transient states[END_REF][START_REF] Zhou | Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit[END_REF]. In the following paragraphs, we will present a non-exhaustive list of technologies with an emphasis on optical implementations.

At the heart of neural network training and inference are repeated matrix vector products (or multiply and accumulate operations (MAC)). One of the solutions proposed to perform arbitrary matrix vector products in the optical domain is shown in ref. [START_REF] Shen | Deep learning with coherent nanophotonic circuits[END_REF]. While this architecture provides a path for direct hardware implementation of neural networks, may have limitations in scaling up as the number of components required scale quadratically with the size of the matrix. In ref. [START_REF] Feldmann | Parallel convolutional processing using an integrated photonic tensor core[END_REF] an integrated photonic accelerator was demonstrated to have the capability of performing 10 12 MAC/s. This circuit was realized with the help of microring resonators and phase change materials (PCMs). In ref. [START_REF] Nahmias | Photonic Multiply-Accumulate Operations for Neural Networks[END_REF] presents an analysis on the different methods to perform such MAC operations and their relative efficiencies.

Another direction of research is to develop new computing primitives and architectures that mimic the behaviour of neuronal systems. This category encompasses a large range of architectures such as:

• In memory computing: In an oversimplified way, the memory and computational units in the brain (synaptic weights and soma respectively) are located in close proximity as opposed to von Neumann architectures where the two units are separate and a significant portion of the energy is spent on moving the data between the two units. PCMs can be used to emulate this proximity and demonstrate optical synapses [START_REF] Cheng | On-chip photonic synapse[END_REF] and spiking neural networks [START_REF] Feldmann | Alloptical spiking neurosynaptic networks with self-learning capabilities[END_REF].

• Coupled nonlinear nodes: Evidence from neuroscience shows that the dynamics of several coupled neurons give rise to intelligence. While the exact mechanisms are not clear, having a coupled neurons seems to be essential. This was the foundational idea behind neural networks and reservoir computing. Reservoir computing provides additional flexibility as it is designed to operate with essentially random weights between nodes as opposed to requiring precise trainable weights. Early numerical illustrations in the optical domain used a semiconductor optical amplifier as the nonlinear node [START_REF] Vandoorne | Toward optical signal processing using Photonic Reservoir Computing[END_REF][START_REF] Vandoorne | Parallel reservoir computing using optical amplifiers[END_REF]. Following this, several architectures for reservoir computing have been proposed using all-optical systems [START_REF] Duport | All-optical reservoir computing[END_REF], silicon photonic chips [START_REF] Vandoorne | Experimental demonstration of reservoir computing on a silicon photonics chip[END_REF], optoelectronic systems [START_REF] Larger | Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing[END_REF][START_REF] Larger | High-speed photonic reservoir computing using a time-delay-based architecture: Million words per second classification[END_REF], semiconductor lasers [START_REF] Hicke | Information processing using transient dynamics of semiconductor lasers subject to delayed feedback[END_REF][START_REF] Vatin | Experimental reservoir computing using VCSEL polarization dynamics[END_REF], large scale spatiotemporal systems [START_REF] Brunner | Reconfigurable semiconductor laser networks based on diffractive coupling[END_REF][START_REF] Maktoobi | Diffractive coupling for photonic networks: How big can we go?[END_REF][START_REF] Bueno | Reinforcement learning in a large-scale photonic recurrent neural network[END_REF], and random projections [START_REF] Saade | Random projections through multiple optical scattering: Approximating Kernels at the speed of light[END_REF] to name a few.

• Spiking neural networks: This direction of research can be seen as a specialized case of coupled nonlinear nodes with a small modification; we use a specific nonlinearity vidilicet excitability that is found in neurons. It is regarded that the one of the plausible causes for energy efficiency of the brain is the efficient neural coding, which this direction of research seeks to leverage to build new computing primitives.

The essential element for spiking neural networks are excitable primitives. There have been many optical primitives that demonstrate excitability and thus in principle can be used to create spiking neural networks. Some experimental demonstrations of spiking behaviour are shown in are shown in refs. [START_REF] Giudici | Andronov bifurcation and excitability in semiconductor lasers with optical feedback[END_REF][START_REF] Barbay | Excitability in a semiconductor laser with saturable absorber[END_REF][START_REF] Van Vaerenbergh | Cascadable excitability in microrings[END_REF][START_REF] Garbin | Topological solitons as addressable phase bits in a driven laser[END_REF][START_REF] Hurtado | Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems[END_REF][START_REF] Nahmias | A Laser Spiking Neuron in a Photonic Integrated Circuit[END_REF].

A more complete list of bibliography on optical computing can be found in the following comprehensive reviews [START_REF]Photonic Reservoir Computing[END_REF][START_REF] Shastri | Photonics for artificial intelligence and neuromorphic computing[END_REF][START_REF] Wetzstein | Inference in artificial intelligence with deep optics and photonics[END_REF].

Outline of the thesis

In this thesis, we will present advances made in the field of coupled nonlinear nodes and more specifically, in spiking neural networks. The optical primitive we use is a micropillar vertical cavity surface emitting laser with an integrated saturable absorber (VCSEL-SA); this primitive will be henceforth referred to as a micropillar laser. The main results include the dynamics of micropillar laser(s) in the presence of delayed optical feedback and spatial coupling.

In the next section of the introduction, we will demonstrate a few key neuromimetic properties of the micropillar laser previously reported by the group. This would serve as an introduction for the rest of the manuscript.

In the second chapter, we will demonstrate the dynamics observed when a micropillar laser is subjected to delayed optical feedback. We will also present therein experimental results and detailed numerical analyses to describe the regimes in a qualitative and quantitative manner.

In the third chapter, we will illustrate numerically the possible integrated circuits that can be built using evanescently coupled micropillars. The last section in this chapter will be devoted to describing a computational framework using temporal coding implemented on an ensemble of micropillar lasers.

The fourth chapter presents numerical techniques based on machine learning and information theory to perform cross-prediction of the occurrence of extreme events well in advance. These techniques are applied to the case of extreme events occurring in a line laser based on the same laser stack as the micropillar laser. The observed extreme events following the onset of spatiotemporal chaos were previously reported by the group. 

Micropillar laser

Excitable micropillar laser with a saturable absorber were first demonstrated in [START_REF] Barbay | Excitability in a semiconductor laser with saturable absorber[END_REF] with an original laser stack design demonstrated in [START_REF] Elsass | Control of cavity solitons and dynamical states in a monolithic vertical cavity laser with saturable absorber[END_REF]. The cavity is designed to have an active zone comprising of two quantum wells and a passive zone comprising of one quantum well respectively. The three quantum wells (InGaAs/AlGaAs) are identical with minor differences in the barriers. The cavity is designed in such a way that the active zone is physically located at the maxima of the optical field in the pump window (790 nm -810 nm) and the passive zone is located at the electric field minima in the pump window.

However, all the three quantum wells are located at the electric field maxima at the cavity resonance wavelength. This effectively enables selective pumping in the active zone and the passive zone functions like a saturable absorber. Detailed notes on the fabrication of these devices can be found in chapters 2 and 3 of ref. [START_REF] Selmi | Réponse excitable et propriétés neuromimétiques de micropiliers lasers à absorbant saturable[END_REF]. The end result is a micropillar laser having a diameter of 5 µm and height of approximately 7 µm. The exact height depends on the depth of etching of the micropillar. We stop the etching leaving a few layers of the back mirror to avoid absorption of the pump into the GaAs substrate which can cause parasitic heating. Following that, several experiments supported by numerical simulations have revealed that the micropillar laser is capable of demonstrating a variety of neuromimetic properties videlicet refractory period(s), temporal summation, and spike latency. The Yamada model with spontaneous emission used to simulate this system was introduced in ref. [START_REF] Dubbeldam | Excitability and coherence resonance in lasers with saturable absorber[END_REF] and has been shown to be in excellent qualitative agreement with experimental findings. It was further shown in ref. [START_REF] Nahmias | A leaky integrate-andfire laser neuron for ultrafast cognitive computing[END_REF] that this model is an analog to the leaky integrate-and-fire model. The model equations are as follows 2 :

Ġ = γ G (A G GI) Q = γ Q (B Q sQI) İ =(G Q 1)I + β sp (G + η 1 ) 2 (1.1)
The model consists of three nonlinear coupled ordinary differential equation for the intracavity intensity (I), and the scaled excess carrier densities with respect to transparency in the gain (G) and the saturable absorber region (Q). A and B correspond to the pump intensity and the nonsaturable losses. The saturation parameter is s =

a Q γ G a G γ Q
, where a G,Q is the differential gain and differential absorption respectively. The spontaneous emission factor and transparency offset of gain are β sp and η 1 respectively. The scaled carrier recombination in the gain and saturable absorber region are γ G,Q respectively. In this slow-fast system, since the carriers dynamics are slower than the intensity dynamics, we have γ G,Q ⌧ 1. All the timescales here are normalized to the cavity photon lifetime which is approximately 1.3 ps by the cavity design. A necessary condition for excitability is that s>1+1/B [START_REF] Bache | Cavity soliton laser based on VCSEL with saturable absorber[END_REF]. This is satisfied as by construction as we have γ G ⇡ γ Q and a Q >a G .

In the absence of the spontaneous emission term (β sp =0 ), the system admits I =0 as an invariant manifold. Thus, any perturbation on G or Q does not increase the intracavity intensity 3 . To account for experimental findings, the model incorporates a small spontaneous emission term β sp which is typically 10 5 . The addition of this term slightly alters the steady state values of all the variables which at order 0 in β sp take the form (A, B, 0) for (G, Q, I) respectively. These modifications are shown in ref. [START_REF] Dubbeldam | Excitability and coherence resonance in lasers with saturable absorber[END_REF]. Based on this it was estimated in ref. [START_REF] Selmi | Relative refractory period in an excitable semiconductor laser[END_REF] that the excitable regime (below laser threshold) corresponds to A<1+B. The neuromimetic properties arising from the micropillar laser are summarized in the subsequent subsections. It was shown that the micropillar laser demonstrates a neuron like excitability with the emission of a sub-nanosecond response [START_REF] Selmi | Relative refractory period in an excitable semiconductor laser[END_REF][START_REF] Selmi | Spike latency and response properties of an excitable micropillar laser[END_REF] when perturbed by a single optical perturbation on the gain or intensity variable. This excitable behaviour is characterized by a typical all-or-none response when subjected to a perturbation. The perturbation on the gain variable are carried out using a pulsed laser operating in the pump window and is called an incoherent perturbation. A perturbation carried out at the cavity resonance is called a coherent perturbation and affects the intensity variable. The experimental and numerical results for the former are presented in figure 1.4. Below a certain threshold, called the excitable threshold, a perturbation results in no response. However, a perturbation just above this threshold generates a response. This sharp threshold is a characteristic of excitability. For an incoherent perturbation, it has been demonstrated that following the sharp transition at the excitable threshold, the emission from the micropillar laser exhibits a linear growth with perturbation strength. The excitable behaviour is observed over a range of pump (A) value below the self-pulsing threshold. However, reduction of the pump value beyond a certain value causes the excitable character to disappear and to lead to just gain switching.

Excitability

The response to a coherent perturbation, while having the same sharp transition, is subtly different. The results for coherent perturbations are shown in figure 1.5. In this case, following the excitable threshold, the output is clamped to a value and is no longer de-pendent in the input. It corresponds more closely to the standard expected excitable behaviour. The two types of excitable response vs perturbation method were analyzed in detail in Ref. [START_REF] Erneux | Two distinct excitable responses for a laser with a saturable absorber[END_REF]. The different curves correspond to different values of the pump. In this case however, the excitable threshold seems to increase with the pump as opposed to the trend displayed by the incoherent perturbations. This counter-intuitive trend is due to an experimental technicality since the perturbation laser wavelength is fixed in this experiment. The changing of the pump induces thermal detuning of the cavity resonance.

This in turn increases the excitable threshold. It was estimated experimentally that the excitable threshold (excluding the pump) for coherent and incoherent perturbation was approximately 4 fJ and 725 fJ respectively. Whereas was the excitable response was on the order of 50 fJ. The typical FWHM pulse duration of the excitable response was estimated to be . 200 ps. Upper traces are the input perturbations and the lower traces are the system's response. The bias pump is set to 71% of the self pulsing threshold. (b) Amplitude of the response R to the first (black) and second (red or gray) perturbation pulses for a double-pulse perturbation with variable delays. R th is the response amplitude at the excitable threshold. Lines are linear fits in selected ranges and are guides for the eye. Adapted from [START_REF] Selmi | Relative refractory period in an excitable semiconductor laser[END_REF].

Refractory periods

The results reported in this subsection were published in ref. [START_REF] Selmi | Relative refractory period in an excitable semiconductor laser[END_REF]. In the presence of two or more perturbations, three regimes of responses were observed videlicet absolute re-fractory period, relative refractory period, and an independent response. The last regime is a trivial observation of excitability when the time difference between perturbations is far greater than any internal time scale of the system. These results can be seen in figure 1.6. For this experiment, the micropillar laser was perturbed twice incoherently; each perturbation was greater than the excitable threshold so as to elicit a response by itself. The spacing between the two perturbation was between 194 ps and 508 ps. It was observed that for very short delays (< 190 ps), only one response was recorded. This regime is the absolute refractory period as the second perturbation fails to elicit a response. When the time delay is between 200 ps and 350 ps, it is observed that both the perturbations contribute to two responses but the second response is attenuated. This attenuation is due to the time taken for the carriers to recover within the gain and saturable absorber regions. Lastly, when the timing is greater than 500 ps, the two perturbations produce almost identical responses.

Temporal summation

The results in this subsection were published in ref. [START_REF] Selmi | Temporal summation in a neuromimetic micropillar laser[END_REF]. Temporal summation is the mechanism where sub-threshold perturbations arriving within a given time window can add up to elicit an excitable response. A neuron capable of temporal summation is also called a coincidence detector neuron. Coincidence detector neurons play an important role in neuromorphic computing and are thought to enable azimuthal sound localization.

The experiments were carried out using coherent and incoherent perturbations. For the incoherent perturbations, two perturbations with amplitudes below the excitable threshold (74% and 80% of the excitable threshold) were sent to the micropillar laser. Individually, both the perturbations would not elicit a response from the micropillar laser. These two perturbations are sent to the micropillar with different delays and the response is recorded from the micropillar laser. The results of this are shown in figure 1.7. Since noise in the form of pump noise and spontaneous emission is present in the system, the experiment was repeated 10,000 times for statistics. For delays shown in subplot (a) -(e), the micropillar performs temporal summation with different success rates (99.97% for subplot (a) and 84.5% for subplot (e)). The temporal profile of the excitable response in each Inset: excitable response to a single perturbation. Red stars are the detected response maxima. Orange is a plot of the median in a sliding window with 500 points. Adapted from [START_REF] Selmi | Temporal summation in a neuromimetic micropillar laser[END_REF].

case is almost identical. However, in subplot (f) when the delay is 700 ps, the micropillar laser fails to perform the temporal summation with a high success rate.

For the coherent perturbation experiment, the two perturbation were fixed to be 44% and 66% of the excitable threshold. In this case the temporal summation happens for an shorter temporal window. The results from this experiment are shown in figure 1 In both the coherent and incoherent temporal summation, there is a delay which scales nonlinearly with respect to the individual perturbations and the spacing between them.

This nonlinear delay could be an interesting mechanism for implementing temporal codes.

Similar mechanisms for temporal summation can be implemented using multiple evanes- cently coupled micropillars. These will be presented in chapter 3.

Spike latency

Spike latency is the delay between the arrival of a perturbation and the emission of an excitable response. In the micropillar laser, it is demonstrated in ref. [START_REF] Selmi | Spike latency and response properties of an excitable micropillar laser[END_REF] that there is a sub-nanosecond nonlinear delay that depends on the pump as well as the perturbation strength; an analytical expression was also derived. This experimentally measured nonlinear dependence for an incoherent perturbation is shown in figure 1.9. In the figure, the different curves correspond to the different values of the pump. For each value of the pump, several perturbations of different strengths were sent to the micropillar laser.

For a pump value giving rise to a low excitable threshold, the measurable latency can change over a large range (150 ps to 1 ns). This inverse relation between the perturbation strength and response time can enable the use of micropillar lasers for temporal coding which is the coding of information through the timings between spikes. More results will presented on this will be presented in chapter 3.

Figure 1.9: Spike latency of a micropillar laser with incoherent perturbations Median of the pulse response delay versus normalized perturbation energy P for different bias pumps with respect to the self-pulsing pump threshold. The perturbation and the response are normalized respectively to the excitable threshold (P 99% th )a n dt ot h e response at excitable threshold R 99% th for a bias pump P equal to 99% of the pump at the self-pulsing threshold. Adapted from [START_REF] Selmi | Spike latency and response properties of an excitable micropillar laser[END_REF].

Chapter 2

Delay Coupling

Having described the context of our research and introducing the laser system under investigation in chapter 1, this chapter is dedicated to delay-based architectures from a fundamental as well as an applied point of view. Delay coupling refers to a time delayed feedback to a single micropillar laser by the means of an external cavity as shown in figure 2.1. We first present the experimental setup and introduce the model equations used. Following this, we show the existence of regenerative pulse trains in the system and demonstrate how we can manipulate them with single optical pulses. This demonstrates the capability of optical buffer in the short term.

We proceed to study the asymptotic dynamics of the system which consists of periodic and symmetry-broken states. All the experimental results are supported by numerical and theoretical analysis in collaboration with our partners. We finish by discussing the implication of these results in the context of neuromimetic information processing.

Experimental Setup

The micropillar laser is optically pumped to be in the excitable regime with a continuous wave laser (Coherent FAP system) in the pump window (between 790 nm and 810 nm) and emits light at the cavity resonance wavelength (between 960 nm and 990 nm). The CW pump is controlled by an DC voltage source. The pump profile on the sample plane is flat top and power density1 at threshold is on the order of 10 -100 kW/cm 2 ; the exact value depends on individual sample properties (position of the cavity resonance with respect to saturable absorber bandgap) and also varies in different fabrication runs. The micropillar laser is cooled and stabilized to a temperature slightly below 0 C using a Peltier element with a stability better than 0.1 C. The output light from the micropillar is split using a R/T = 70/30 beam splitter (BS). The transmitted part is detected using a 5

GHz bandwidth avalanche photodiode (APD), amplified by a large bandwidth (18 GHz) RF amplifier and analysed with a 13 GHz oscilloscope. The reflected part is directed into an external cavity, closed by a high reflectivity mirror (M) after focusing with a 5 cm focal length lens, which provides a tunable delay τ on the order of 10 ns. This delayed optical feedback results in a 10% reduction of the laser threshold. The micropillar laser is perturbed by short optical perturbations of 80 ps duration from a mode-locked Ti:Sa laser (Spectra Physics Tsunami). The repetition rate of the Ti:Sa laser is fixed by the cavity round trip time and is about 82 MHz (12.28 ns period). This is thus the minimum time duration between two perturbations. At the laser output there is a pulse picker which can select pulses such that the repetition rate can be lowered. The perturbations can either be coherent or incoherent with respect to the cavity resonance wavelength. Both classes of perturbations result in similar responses with subtle differences.

Model Equations

We model our system using the Yamada model as shown in the previous chapter (Eq.

1.1) with β sp =0and adding time delayed feedback term. The equations are as follows:

Ġ = γ G (A G GI) Q = γ Q (B Q sQI) İ =(G Q 1)I + κI(t τ ) (2.1)
κ and τ are the feedback strength and delay, respectively. In a strict sense, this model is incapable of responding to incoherent perturbations (perturbations on G) as at steady state it admits I =0as an invariant manifold. A spontaneous emission term could be added but we take β sp =0to ease the theoretical analysis. Thus for incoherent perturbations to act effectively, we just have to take a small non-zero initial value for intensity

I.
This model considers the intracavity laser intensity I instead of the electric field E essentially discarding phase effects for the following reasons:

• Our system is in the excitable regime with the stable state as the laser off state.

Therefore, in this off state, the only optical field present is due to spontaneous emission which is not coherent and is of very low intensity.

• The delay time τ is typically one order of magnitude greater than the FWHM of the emitted pulse (. 200 ps) which corresponds to the time duration of the excursion in the phase space. This then ensures that the feedback always arrives when the laser is in the off state.

• The model gives good qualitative agreement with the experimental observations. A comparison of the Yamada model with a model including phase effects [START_REF] Terrien | Q-switched pulsing lasers subject to delayed feedback: A model comparison[END_REF] yielded effectively similar results in the regime considered by us.

Manipulation of pulse trains in delay systems

We set the micropillar laser in the excitable regime: the steady state intensity I is zero, but a single high-amplitude, short pulse of light can be emitted in response to an external perturbation of sufficient amplitude [START_REF] Barbay | Excitability in a semiconductor laser with saturable absorber[END_REF][START_REF] Izhikevich | Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting[END_REF]. When subject to delayed feedback, an excitable system can either

• Remain in its off state for external perturbations below the excitability threshold.

• Emit a single pulse if the perturbation exceeds the excitable threshold but the external cavity losses are too high.

• Regenerate its own initial excitable response after the reinjection time τ giving rise to periodic pulse train for a sufficiently high feedback strength. The repetition rate of the regenerative pulse train is close to τ2 .

A useful tool to analyse such pulse trains is a two dimensional pseudospace representation [START_REF] Arecchi | Two-dimensional representation of a delayed dynamical system[END_REF][START_REF] Giacomelli | Multiple scale analysis of delayed dynamical systems[END_REF]. We would like to note that the pseudo-space representation we use here does not necessarily mean that the vertical (y) axis can be treated as an extra spatial dimension. In fact, for this to be true we need very long delays compared to the correlation time in the system. We just use it because it is convenient to follow the evolution This very general mechanism for self-pulsations3 has been implemented in different optical systems, including a coherently driven vertical-cavity surface-emitting laser (VCSEL) [START_REF] Garbin | Topological solitons as addressable phase bits in a driven laser[END_REF], a VCSEL subject to optoelectronic feedback [START_REF] Marino | Pseudo-spatial coherence resonance in an excitable laser with long delayed feedback[END_REF], two coupled semiconductor lasers [START_REF] Kelleher | Excitation regeneration in delay-coupled oscillators[END_REF], a photonic resonator with optoelectronic self-feedback [START_REF] Romeira | Regenerative memory in time-delayed neuromorphic photonic resonators[END_REF], and a micropillar laser with integrated saturable absorber [START_REF] Terrien | Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback[END_REF]. Since almost arbitrary pulse timing patterns can, in principle, be excited and regenerated after each delay, regenerative dynamics can be of particular interest for producing complex optically controllable temporal pulsing patterns [START_REF] Marconi | How lasing localized structures evolve out of passive mode locking[END_REF][START_REF] Jang | Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons[END_REF][START_REF] Camelin | Electrical addressing and temporal tweezing of localized pulses in passively-mode-locked semiconductor lasers[END_REF][START_REF] Javaloyes | Dynamics of Localized Structures in Systems with Broken Parity Symmetry[END_REF][START_REF] Terrien | Pulse train interaction and control in a microcavity laser with delayed optical feedback[END_REF] or for spike-based optical memory applications [START_REF] Garbin | Topological solitons as addressable phase bits in a driven laser[END_REF][START_REF] Romeira | Regenerative memory in time-delayed neuromorphic photonic resonators[END_REF][START_REF] Terrien | Pulse train interaction and control in a microcavity laser with delayed optical feedback[END_REF][START_REF] Shastri | Spike processing with a graphene excitable laser[END_REF].

It has been shown that the pulsing dynamics is solely governed by the nonlinear spike latency -time between reinjection and emission of a pulse--which is a function of the net gain e G=G Q 1 accounting for the gain and saturable loss at the reinjection time.

In the vicinity of the perturbations, we report similar behaviour as demonstrated by past works [START_REF] Garbin | Topological solitons as addressable phase bits in a driven laser[END_REF][START_REF] Romeira | Regenerative memory in time-delayed neuromorphic photonic resonators[END_REF] in showing an all-optical information storage system which can perform noise correction4 by the virtue of its excitable behaviour. We further present an all-optical control over the information in the buffer either using the CW pump or a single optical perturbation pulse.

The all-optical control can be presented as addition of a pulse, retiming of pulse train, tweezing of a pulse train in figure 2.3. In all the subplots here, the red circle indicates See text for additional details.

a single optical perturbation. Further, we represent the 2-D space with the two coordinates with the convention that the first coordinate corresponds to t τ and the second coordinate corresponds to the roundtrip number. In order to manipulate the pulse train we need to have a proper control over the perturbation times. This is achieved by the use of an external trigger to the pulse picker of the Ti:Sa mode-locked laser. The external trigger (generated using Agilent 8114A pulse generator) is a window of several tens of nanoseconds which controls the acousto-optic modulator of the pulse picker. This way, we can choose a given sequence of perturbation pulses from the train of pulses of the Ti:Sa mode-locked laser. In order to achieve a proper timing of the perturbation pulse with respect to the existing pulse train, we need to account for the two time scales: delay time τ and the repetition time of the Ti:Sa mode-locked laser (12.28 ns). On a technical note, the pulse from the external trigger is larger than the mode-locked repetition period. Thus, to select a single pulse, we need to properly adjust the time of external trigger (accounting for the rise and fall time of the trigger pulse) with respect to the pulse train.

In subplot figure 2.3(a) a pulse train with one pulse per round trip is first excited. We then send a second perturbation which is timed such that it is not in the vicinity of the existing pulse train. We observe the addition of a pulse train when we perturb the system at point (t 2 , t 1 ) with an existing pulse train arriving at (t 3 , t 1 ) such that t 2 < t 3 and

|t 3 t 2 | > t refractory 5 .
In subplot (b) we discuss the effect of perturbation labeled as (1). The perturbation [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] causes a retiming of a pulse train and this mechanism is discussed in the next figure.

Perturbation ( 1) is sent at point (t 2 , t 1 ) with an existing pulse train at point (t 3 , t 1 ) such that t 3 < t 2 and |t 3 t 2 | < t refractory . Due to this, the perturbation fails to start a second pulse train and has no effect on the system. In subplot (c) we follow a procedure similar to (a) but in this case, the difference |t 3 t 2 | is less than t refractory resulting in the existing pulse train having insufficient gain to regenerate effectively retiming the pulse train. The slope of the mean trajectory observed in all the panels is a result of the imprecise estimate of the folding time. The folding time is taken in this thesis, for practical reasons, as the fundamental pulse repetition period which is estimated using the fundamental peak in the Fourier spectrum of time traces. The folding time is set to be as close to this time as possible. Since the resolution in the folding time is set by the sampling time of the oscilloscope, we cannot have arbitrary precision. This lack of precision manifests as slight drifts in the pseudo-space representation and gives rise to the slope.

In subplot 2.3(d) we perturb the system only once resulting in a pulse train, we then modulate the pump (CW) laser using a sinusoidal signal generated by Agilent 33220A arbitrary waveform generator which in turn drives the current in the FAP pump laser system. The sinusoidal signal has a mean of 530 mV and a modulation of 70 mV V pp with a frequency of 80 kHz. The resulting change in net gain is manifested in the form of changing spike latency giving the effect of tweezing. Using similar mechanisms it was shown in [START_REF] Terrien | Pulse train interaction and control in a microcavity laser with delayed optical feedback[END_REF] that it is also possible to switch on and off pulse trains in the system with two single (incoherent) optical perturbations. In figure 2.4, subplot (a) shows the perturbation sequence and subplot (b) shows the response recorded from the system. It was demonstrated in chapter 1 fig. 1.4 that in the case of incoherent perturbations, we observe a sharp threshold in the response at the excitable threshold and then a linear growth in response with respect to the perturbation strength.

The first large perturbation in (a) triggers the pulse train shown in (b) but the subsequent perturbation generates an insufficient response in the system while arriving just before the regeneration of the fourth pulse in the pulse train. This second perturbation uses up the gain in the system and the existing pulse train falls in the refractory period, switching it off. The response from the second pulse perturbation is not high enough to reach the excitable threshold after suffering cavity roundtrip losses and thus it generates no pulse train. This interaction makes the switch on and off of pulse trains using single optical perturbations. Subplot (c) shows the results of this experiment carried out thousand times with the τ ⇡ 4.2 ns; the case number is on the ordinate and time is represented on the abscissa with t =0being the first perturbation. Based on this subplot we conclude that the effect is very reproducible and not prone to experimental noise. Moreover, it can be noted that the jitter in the regenerated pulses is low (shown by the vertical lines) as it is fixed by the delay in the system.

Similar manipulation of optical pulses has been reported in ref. [START_REF] Camelin | Electrical addressing and temporal tweezing of localized pulses in passively-mode-locked semiconductor lasers[END_REF] in a passively mode-locked semiconductor laser using electrically addressed short perturbations on the pump.

They reported the switch on and off of single pulses with repeated (more than hundred) and precisely timed perturbations. In our case, we achieve pulse manipulation using single optical perturbation. While in the short term, we observe that the system behaves like an optical buffer, we observe that the pulses do interact with time and this requires further analysis. In figure 2.5, subplot (a) two initially close pulses in the external cavity tend to separate over thousands of round trips and experience a repulsive interaction. By contrast, in subplot (b), two initially separated pulses seem to experience an attractive interaction until one pulse train is turned off as it enters the absolute refractory period of the first pulse train. The two plots were obtained using different micropillars operating in different experimental conditions. To the best of our knowledge, pulse attraction in such systems was not reported before. In the next section, we further our analysis by comparing the experimental results to numerical simulations with appropriate parameters and distinguish the results based on the carrier recombination rates in the gain and saturable absorber regions. The theoretical results presented in this chapter have been developed in collaboration with Soizic

Asymptotic dynamics

Terrien, Neil G. R. Broderick and Bernd Krauskopf at the Dodd-Walls Center for Photonic and Quantum Technologies, The University of Auckland, New Zealand.

In the context of biological spiking neurons, delayed self-connections have also been recognized to play a central role in the persistent regeneration of input stimuli [START_REF] Foss | Multistability and Delayed Recurrent Loops[END_REF][START_REF] Connors | Neuroscience: Single-neuron mnemonics[END_REF][START_REF] Chaudhuri | Computational principles of memory[END_REF].

While in the short term, the regeneration occurs with minimal loss of timing information, we show that in the long term this is not true anymore. The intuitive picture of regenerating arbitrary pulse trains while accurate in predicting the short-term behaviour of the system is overly simplified. A theoretical analysis predicts more complicated dynamics, including the co-existence of several self-pulsing modes with the stable off-state [START_REF] Terrien | Pulse train interaction and control in a microcavity laser with delayed optical feedback[END_REF][START_REF] Krauskopf | Bifurcation Study of a Semiconductor Laser with Saturable Absorber and Delayed Optical Feedback[END_REF][START_REF] Terrien | Bifurcation analysis of the yamada model for a pulsing semiconductor laser with saturable absorber and delayed optical feedback[END_REF]. It is well known that delay differential equations (DDEs) have an infinite dimensional phase space and can display rich dynamics with coexistence between different types of attractors [START_REF] Ikeda | Instability Leading to Periodic and Chaotic Self-Pulsations in a Bistable Optical Cavity[END_REF][START_REF] Yanchuk | Delay and periodicity[END_REF]. Thus, it is a fundamental question to understand the long-term dynamics of such systems.

Time symmetric pulsing patterns -Faster saturable absorber

In order to study these long term dynamics, we revert to the simulations using the equations introduced in Eqs. Q recovers faster, the value of e G approaches its steady state value from below. A second perturbation is introduced in the system when the e G hasn't sufficiently recovered but the gain and perturbation strength make it possible to trigger a response. However, since this perturbation experiences a slightly lower e G it has a higher pulse latency time [START_REF] Selmi | Spike latency and response properties of an excitable micropillar laser[END_REF] and hence, repetition period, for the second pulse train compared to the first pulse train.

For every subsequent roundtrip this process repeats and the second pulse is reinjected further away from the first one, until both pulse trains experience an identical net gain and their repetition periods become equal. This effect of convergence due to the gain dependent latency gives rise to the apparent repulsion between the pulses. Pulse to pulse interaction is thus mediated by the carriers and is not an effect of the optical tails of the pulses. Since the system converges in the long term to a stable periodic orbit of the phase portrait the maximum number of pulse trains sustained by the system is related to the number of stable periodic solutions. Having described the process of convergence of arbitrary pulse trains to equidistant pulse trains, the natural continuation would be to understand the scenarios under which it is possible to switch between these (weakly) stable solutions. From a mathematical point of view, these scenarios can be described by the basins of attraction of the different stable periodic solutions. The time traces of the six periodic solutions are shown in figure 2.10a

and their periods are close to sub-multiples of the delay time, τ . For the sake of brevity, these solutions will be referred to as one-pulse solution, two-pulse solution and so on.

The final state of a multistable system depends on its initial conditions. For each of the This basin of attraction corresponds to the set of initial conditions for which the transient converges to the said attractor. Thus, the basins of attraction provides us the information of how to approach different stable solutions of the system and how to switch between solutions using external perturbations. The system described here is modeled by a delay differential equation which intrinsically has an infinite dimensional phase space [START_REF] Balachandran | Delay differential equations: Recent advances and new directions[END_REF] which makes numerical continuation very complex [START_REF] Krauskopf | Computing unstable manifolds of periodic orbits in delay differential equations[END_REF][START_REF] Keane | Chenciner bubbles and torus break-up in a periodically forced delay differential equation[END_REF]. Thus we choose to integrate6 Eq.

numerically to obtain the basins of attraction. Figures 2.10(b-g) summarize the effect

of perturbations on the long-term dynamics of the system; it assumes that the system is currently in one of the stable solutions and not in a transient. A perturbation on the gain variable of amplitude ∆G at time e t relative to the existing pulse train(s) which are marked by vertical gray lines in the figure ( e t = 0 is the reinjection time of a pre-existing pulse in the micropillar laser) will excite a transient but a change in the long-term dynamics is or even elicit a response from the system. However given a suitable perturbation strength the system responds depending on the timing of the perturbation; if the perturbation is in vicinity (immediately before or after) of an existing pulse train it can either cause the retiming of the pulse train or it can fall in the refractory period of the existing pulse train respectively. The effect of the relative refractory period is clearly visible in the initial negative slopes of the bottom left boundaries of the new stable pulsing regimes. Another observation from the figures is that ∆G min , the minimum perturbation strength required to trigger a response increases with the number n while the time window to switch to the n+1 pulse regime reduces.

When the initial stable regime is the n-pulse regime with n>3, figures 2.10(e-g) show that any perturbation causes the system to either be in the same regime or switch to a n-1 pulse regime. As in the case of n  3 perturbations in the immediate vicinity of pre-existing pulses do not alter the long term dynamics of the system. Additional perturbations with appropriate timing and amplitude alter the long term dynamics of the system by removing pulses from the existing pulse train. The area of conducive parameters for removing pulses in the (∆G, e t) space increases with n. Despite these constraints, it is possible to access all the pulsing regimes in the system. The n>3 pulses solution can be accessed by perturbing the system while it is still in a transient as these basins of attraction hold true only when the system starts from a stable solution. Thus if the sys- The first trigger signal generates two perturbations (due to the relative timing between the trigger and the pulse train from the Ti:Sa mode-locked laser). These two perturbations are 12.28 ns apart which is approximately 1.5 ⇥ τ . These perturbations then generate The perturbation labelled as B is timed appropriately and triggers a pulse train whereas the perturbation labelled as C is sent very close to an existing pulse train and it only The same experiments can be carried out with coherent perturbations (at the cavity resonance wavelength) which corresponds to the perturbation on the intensity variable I instead of on the gain variable G in model 2.1. The basins were also mapped numerically with coherent perturbations ∆I. Apart from differences observed mainly in the finer details of the basins boundaries, the structure of the basins of attraction is qualitatively as those shown in Figures 2.10 (b-g). This strongly indicates that the strength and timing of the perturbation is more important as compared to the perturbation variable.

tem

Symmetry-broken pulsing patterns -Faster gain

Figure 2.13: Stable non-equidistant pulse trains Subplots (a) shows two coexisting pulse trains in the cavity. These two pulse trains appear to be equally spaced in the beginning but with the increasing number of round trips they seem to experience an attractive interaction and stabilize at non-equidistant values. Subplot (b) Plot the pulse-to-pulse timing ∆p versus the roundtrip number (denoted by the red arrow in subplot (a)). We observe that while the two pulses initially have a distance of ∆p=τ/2 in the beginning, the pulses undergo a gradual attractive interaction decreasing the value of ∆p with successive round trips while experiencing some fluctuations that can be attributed to pump noise. The feedback time τ =8.2 ns in the experiment.

In the previous section, we illustrated how the stable pulsing patterns are equidistant in the case of faster saturable absorber. However, experimentally we also observe the contrary (shown in figure 2.13). In this figure, we see how a non-equidistant pulse train is stable over several thousand round trips [START_REF] Terrien | Pulse-timing symmetry breaking in an excitable optical system with delay[END_REF]. Such results can be explained via the inversion of time scales between the two quantum wells. To further our analysis, we consider the following parameters otherwise stated:

A =2 , B =2 , γ G =0 .01, γ Q =0 .055, s = 10
and κ =0 .2. The feedback time τ is treated as a bifurcation parameter. In this parameter region we report pulse-timing symmetry-breaking phenomenon, where some of the n-pulse solutions described in the previous section destabilize resulting in a coexistence of equidistant and non-equidistant pulse trains in the feedback loop. Experimentally, the parameter regime of faster gain is selected by choosing a suitable micropillar laser on the chip. As described in the fabrication of the micropillars, the etch quality determines the non-radiative recombination rate; higher surface roughness leads to an increase in the number of defects which in turn increases the carrier recombination rate. The etch quality slightly differs throughout the sample resulting in different combinations of recombination rates and gives us access to a wide range of parameters on a single chip. The pump value can also change the effective recombination rate mainly in the gain section due to spontaneous emission. The effect is not accounted for in our model but can be easily introduced by an effective recombination rate combining all the effects. This way, either by tuning the pump and/or choosing a different micropillar we have have access to different parameters. A priori, both the sections have similar recombination rates thus these external parameters strongly influence the ratio of the recombination rates which is the important quantity for the symmetry breaking mechanism. Based on the subplots (b2) and (b3) we see that there is a small region of overlap in the value of τ that can support both equidistant and non-equidistant pulsing solution for n =2 . This can also be seem more evidently for n 3 in subplot (b1). This sort of coexistence gives rise to an increased level of multistability in the system. Experimental results shown in figure 2.17 (a and b) show the time traces recorded after two and three external perturbations respectively. In both the panels, the external perturbation are timed to generate responses close to the asymptotic 2 and 3 pulse equidistant solution. The panels (a1) and (b1) show the time trace recorded for two roundtrips soon after the initial perturbation, however in the long term, the timings between the consecutive pulses converge to unequal values (panels (a2) and (b2)) showing clearly that the equidistant solution is not stable.
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Figure 2.18 shows the same type of convergence over several thousands of roundtrips but for different initial conditions, the colour coding of the inter pulse distance is the same in Figure 2.17. In figure 2.18 (a) and (b), the system is initialized with two and three equidistant pulses per roundtrip respectively. This is done using suitable external perturbations. We observe that the pulse-timing information is preserved in the short term [START_REF] Terrien | Pulse train interaction and control in a microcavity laser with delayed optical feedback[END_REF][START_REF] Terrien | Equalization of pulse timings in an excitable microlaser system with delay[END_REF]. On the other hand, in the long term, the system slowly converges towards nonequidistant pulsing patterns with well-defined and different inter-pulse relative timings.
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These inter-pulse timings then stay very stable over a large number of roundtrips. It was not possible to monitor the amplitude difference in the final state due to the limited signal to noise ratio -the emitted pulse energy is on the order of ⇡ 100 fJ. Since it is observed in Figure 2.15, that a small difference in the amplitude is associated with a large inter-pulse interval, we conclude that the amplitude measurements are not relevant in the experimental recordings. Overall, the experimental observations show excellent agreement with the dynamics predicted by the bifurcation analysis of the model. They demonstrate multistability between the experimental regimes with two and three non-equidistant pulses.

Moreover, the quasiperodic regime corresponding to unlocked dynamics on an invariant torus are not observed, in good agreement with the theoretical predictions of very large locking regions in the parameter space as seen in Figure 2.16. In the previous sections we illustrated the intensity and temporal dynamics of the micropillar laser with feedback. Polarization dynamics in such a system can demonstrate a variety of effects. In ref. [START_REF] Marconi | Vectorial dissipative solitons in vertical-cavity surface-emitting lasers with delays[END_REF], it was shown that a VCSEL with co-and cross-polarized feedback while emitting a constant output intensity, displays vectorial dissipative solitons following a periodic rotations in the linear polarization state. These rotations manifest as short pulses when detected through a polarizer. Other works on commercial VCSEL systems were used to realize neuron like functionality based on polarization switching [START_REF] Hurtado | Optical neuron using polarisation switching in a 1550nm-VCSEL[END_REF][START_REF] Hurtado | Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems[END_REF]. For reservoir computing applications, polarization dynamics in VCSELs has been shown to improve the memory and computing capacity of reservoir computing applications [START_REF] Vatin | Enhanced performance of a reservoir computer using polarization dynamics in VCSELs[END_REF][START_REF] Vatin | Experimental reservoir computing using VCSEL polarization dynamics[END_REF][START_REF]Experimental realization of dual task processing with a photonic reservoir computer[END_REF]. Polarization dynamics in VCSEL with SA has been theoretically investigated in ref. [START_REF] Xiang | All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on a VCSEL-SA[END_REF] and inhibition dynamics have been demonstrated. In this section, we present some experimental results on the polarization dynamics of micropillar lasers with and without feedback. We first present the polarization dynamics of a single micropillar laser without feedback to characterize its response and then demonstrate dynamics of such a system with feedback. As a first order approximation, neglecting internal dichroism and birefrengence, one can assume that in a circular cavity every polarization mode in π radians is degenerate.

Polarization Dynamics

Thus if such a cavity is in the excitable regime and if an external incoherent perturbation produces a response, its polarization would be randomly drawn from an uniform proba- probabilistic description of the Stokes parameters of the laser. We are currently limited by the signal to noise ratio in the experiment to carry out this full characterization. The preliminary results from the elliptical micropillars seem to be encouraging to demonstrate inhibition dynamics which could be useful for certain computational schemes.

Having demonstrated that an incoherent perturbation leads to a probabilistic choice in the output polarization state, we proceeded to study the effect of coherent perturbation on such micropillars. Coherent perturbation scheme can be realized in two ways:

• Tuning the central wavelength of the mode locked laser to be in the cavity resonance of the micropillar. This can be very difficult to achieve since the cavity resonance is smaller than the free spectral range of the Ti:Sa laser (0.25 nm) which makes it compulsory to use thermal tuning of the laser cavity.

• Exciting the micropillar laser using an incoherent perturbation and then using the excitable response as a coherent perturbation.

The second method can be realized using an external cavity as demonstrated in this 

Discussion and Conclusions

The results presented in this chapter demonstrate the multistability of a micropillar laser with a time delayed feedback. The system, in the short term, demonstrates functionality as an optical buffer which can be addressed using single optical perturbations or by altering the bias pump. In the long-term the behaviour can be distinctly differentiated into two regimes. In the case of a faster gain region, it is shown that any initial pulsing pattern will converge to an equidistant pulsing pattern based on the initial conditions. It is also possible to perturb a system in its stable state and the long-term dynamics are then predicted by the basins of attraction. In the case of the a faster saturable absorber region, we observe a similar kind of convergence but to symmetry-broken pulse-timing shows that in a polarization insensitive intensity measurement the only observed peak in the Fourier spectrum corresponds to the feedback time.

occurrence of symmetry broken states. As the feedback time is increased, there is an increasing degree of multistability among symmetric and symmetry broken states.

The results presented here are quite generic in essence that they only require excitability and a time delayed feedback, thus their implications can exist beyond optics. Our results contribute towards the understanding different pulsing dynamics observed in other fields.

Some notable references on related subjects are [START_REF] Klinshov | Multistable Jittering in Oscillators with Pulsatile Delayed Feedback[END_REF][START_REF]Emergence and combinatorial accumulation of jittering regimes in spiking oscillators with delayed feedback[END_REF] which demonstrated the effect of time delayed feedback on single limit cycle oscillators and [START_REF] Vreeswijk | When inhibition not excitation synchronizes neural firing[END_REF][START_REF] Bressloff | A Dynamical Theory of Spike Train Transitions in Networks of Integrate-and-Fire Oscillators[END_REF] which discusses effects of two limit cycle oscillators coupled through time delayed feedback. Since the system presented in this chapter is not a limit cycle oscillator, the oscillations exist due to the feedback and the time period is intimately linked to it, thus making the results novel. Based on recent results demonstrating a connection between temporal dissipative solitons in spatially extended systems and pulsing regimes in delay systems [START_REF] Yanchuk | Temporal Dissipative Solitons in Time-Delay Feedback Systems[END_REF], possible connections might be made between non-equidistant pulsing regimes and soliton molecules as the former are bound states of pulses [START_REF] Grelu | Temporal soliton "molecules" in mode-locked lasers: Collisions, pulsations, and vibrations[END_REF][START_REF] Krupa | Real-Time Observation of Internal Motion within Ultrafast Dissipative Optical Soliton Molecules[END_REF].

Beyond their fundamental interest for study of nonlinear dynamics of delay systems, the results presented can contribute to the realization of optical computing schemes such as reservoir computing relying on the large phase space of delay systems [START_REF] Romeira | Delay dynamics of neuromorphic optoelectronic nanoscale resonators: Perspectives and applications[END_REF][START_REF] Peng | Autaptic Circuits of Integrated Laser Neurons[END_REF][START_REF] Der Sande | Advances in photonic reservoir computing[END_REF][START_REF] Brunner | Reconfigurable semiconductor laser networks based on diffractive coupling[END_REF][START_REF] Larger | Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing[END_REF], optical buffers [START_REF] Garbin | Topological solitons as addressable phase bits in a driven laser[END_REF][START_REF] Romeira | Regenerative memory in time-delayed neuromorphic photonic resonators[END_REF][START_REF] Robertson | Toward Neuromorphic Photonic Networks of Ultrafast Spiking Laser Neurons[END_REF] and content addressable memories [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF]. The physical meaning of a content addressable memory as described by Hopfield is an appropriate phase space flow of the state of a system. The interest of such systems is that it can retrieve a stored input based on a partial and/or error ridden input. In the context of the results presented in this chapter, the stored patterns correspond to the stored memories in the system and the input states correspond to partial matches to the stored memories.

Based on the initial excitation pattern, the system converges to one of the asymptotic pulsing patterns which can be also viewed as the minimization of a certain energy defined for the system. The energy landscape ideally contains a local minima for every stored pattern and based on the initial conditions, convergence to the nearest local minima.

Another direction of research would be to compute using attractors created by several coupled micropillars with delayed optical feedback. The hardware setup would be similar to the proposed arrays of coupled micropillars via a diffractive optical element as in [START_REF] Brunner | Reconfigurable semiconductor laser networks based on diffractive coupling[END_REF] but would have a fundamental difference in the sense, the information would be written into the system at time t =0and allowed to evolve within the system and might converge to a possible attractor. This would then be an interesting demonstration of having all optical computing without any optical to electronic conversion layers.

Finally, in the last section of the chapter, we demonstrate the polarization dynamics of a single micropillar (circular and elliptical) lasers with incoherent perturbation and single circular micropillar with coherent perturbations which are realized with the help of delayed optical feedback. We observe that the in the case of the incoherent perturbations, the circular micropillar produces a response with a varied orientation of the electric field. On the other hand, the geometrical modification in the elliptical micropillars enable the pinning of the polarization with in a small range. The results from the coherent excitation (via delayed optical feedback) reveal a modulation in the polarization which is absent in the intensity measurement. The reason behind this is currently not completely understood.

Chapter 3

Computing with integrated micropillar lasers

In this chapter we present mainly numerical results on computing using either spatially coupled micropillar lasers or using an ensemble of uncoupled micropillars. We first describe the method of spatial coupling and the model. We show the propagation of excitation and how they can be used to build information processing circuits: OR, AND gates and a temporal pattern recognition circuit. We discuss the implementation of such circuits experimentally. We also show a design for realizing an on-chip excitable oscillator. Finally, we present numerical results on computing using an ensemble of uncoupled micropillars using a particular example of temporal code called rank order coding

Spatially coupled micropillars

2-D lattices of nodes can be built and coupled via out-of-plane elements [START_REF] Brunner | Reconfigurable semiconductor laser networks based on diffractive coupling[END_REF][START_REF] Maktoobi | Diffractive coupling for photonic networks: How big can we go?[END_REF][START_REF] Heuser | Developing a photonic hardware platform for brain-inspired computing based on 5×5 VCSEL arrays[END_REF].

The resulting setups can be large and complex to build while giving impressive computational ability. An alternative way to scale up the number of coupled nodes is to design integrated circuits and introduce on chip coupling. In the following sections we present the various functioning blocks such as tunable coupling, delay lines, and threshold detectors essential for building circuits using micropillar lasers. Coupled excitable nodes have been theoretically and experimentally studied in the past. Experimental studies include semiconductor quantum-dot lasers using free-space coupling [START_REF] Kelleher | Excitation regeneration in delay-coupled oscillators[END_REF] and excitable microring lasers coupled through waveguides [START_REF] Van Vaerenbergh | Cascadable excitability in microrings[END_REF]. Theoretical studies have been carried out in coupled waveguides and optically injected microdisk lasers [START_REF] Van Vaerenbergh | Excitation transfer between optically injected microdisk lasers[END_REF]. We propose in the following a different approach and study spatially coupled micropillars in order to analyze some computing properties of such networks. First we introduce the notion of coupling and denote the diffractive coupling constant with the term κ. The system of ordinary differential equations then used to model such evanescently coupled micropillars will consist of 3 ⇥ n equations where n is the number of micropillars (Eqs. 3.1) [START_REF] Bache | Cavity soliton laser based on VCSEL with saturable absorber[END_REF][START_REF] Barbay | Localized states and excitability in a monolithic VCSEL with saturable absorber[END_REF][START_REF] Alfaro-Bittner | Pulse propagation in a 1D array of excitable semiconductor lasers[END_REF][START_REF] Pammi | Photonic Computing With Single and Coupled Spiking Micropillar Lasers[END_REF].

Ėj =((1 iα)G j (1 iβ)Q j 1)E j + iκ jm E m Ġj = γ G (A G j (1 + |E j | 2 )) Qj = γ Q (B Q j (1 + s|E j | 2 )) (3.1)
Where the dynamical variables E j , G j and Q j are the electric field, rescaled gain and absorption in the j th micropillar. The time in these equations is rescaled to the cavity photon lifetime τ p which is taken to be on the order of several picoseconds (⇡ 1-2 ps). The coupling term κ jm E m follows the Einstein summation notation where the contributions from all the nodes is summed up. The coupling constant κ is real to have a purely diffractive coupling. When the system under consideration is a chain of micropillars with uniform diffractive coupling, κ can be reduced to a real number and the diffractive coupling for the j th node can be written as iκ(E j 1 + E j+1 ). Non-radiative carrier recombination rates and linewidth enhancement factors for the gain and absorber are γ G , γ Q , α and β respectively. A denotes the pump and B is the non-saturable losses. The saturation parameter

is s = a Q γ G a G γ Q where a G,Q
is the differential gain and absorption respectively; it controls the characteristic response time of the system. The laser threshold for a single micropillar as introduced in the first chapter is A th =1+B. For a coupled system in the excitable regime, for A . A th , an initial perturbation above the excitable threshold can propagate to the neighbouring micropillars in the saltatory propagation regime provided κ ⌧ 1. In our analysis κ is normalized using the cavity photon lifetime and κ ⌧ 1 condition ensures the formation of the excitable response before coupling to the neighbouring micropillars. This model is also only valid for small coupling strengths when coupled mode theory is valid.

To quantify the coupling coefficient, we simulate two coupled micropillars. When two micropillars are placed in the vicinity of each other, the eigenmodes undergo mode splitting.

The fundamental mode split can be expressed as a symmetric and anti-symmetric mode.

Based on this splitting, one can estimate the coupling of energy from one micropillar to the other and assign a characteristic coupling time. This time when normalized with respect to the cavity photon life time is the value of κ considered here. The detailed calculations behind this are illustrated in the chapter 2 of ref. [START_REF] Selmi | Réponse excitable et propriétés neuromimétiques de micropiliers lasers à absorbant saturable[END_REF]. Figure 3.1 shows how κ is dependent on the distance between the center of two micropillars of radius r =2.5µm. 

Numerical Simulations

Having outlined the prerequisites, we consider the following parameters for simulating a chain of micropillars (each micropillar is coupled to its neighbours): γ G = γ Q =0 .001, B =2 , s = 10, α =2 , β =0 . The parameters A and κ are varied in a region to illustrate different behaviour. These parameters are compatible with the semiconductor parameters [START_REF] Chow | Semiconductor-Laser Physics[END_REF] and correspond to a non-radiative recombination time of 1-2 ns. The initial conditions are taken as G j (0) = A, Q j (0) = B, and E j (0) = δ i0 F 0 for all micropillars where δ i0 is the Kronecker delta symbol. While the simulations are done for the chosen parameters, the phenomenon is robust and is observable over a large range of parameters. We choose to number the micropillars as 0 ••• N from left to right, then the leftmost micropillar is perturbed at time t =0using the initial condition E 0 =5which is enough to overcome the excitable threshold (for the given value of A) and elicit a response from the micropillar. As a result of the coupling, the excitable response pulse is coupled to the neighboring micropillar and since the coupling strength is sufficient, the excitable threshold is crossed again leading to another pulse. The excitation transfer continues giving rise to a solitonic and ballistic response. Importantly, the response is unidirectional: the excitation can only transfer to the nearest neighbour on the right, or more precisely to the unperturbed micropillar. This happens due to the refractory period of the micropillars; the refractory period is longer than the coupling time between micropillars which results in symmetry breaking of the system and unidirectional propagation of the signal. 

1). The speed varies

almost linearly with κ in a large window of laser parameters (only a small range of pump is shown here). The increase in κ directly translates to lower photon tunneling time be-tween the cavities which increases the propagation speed. There is a slight deviation from linearity at higher values of coupling (> 0.3). In this region of high coupling, we observe an apparent saturation in the propagation speed (not shown in the plot). This has been identified in [START_REF] Alfaro-Bittner | Pulse propagation in a 1D array of excitable semiconductor lasers[END_REF] as a bifurcation in the propagation mode of the excitation.

The saturation of propagation speed can however be intuitively understood as follows: the coupling strength controls the time it takes for the energy to be coupled to the adjacent micropillar, when the excitable pulse amplitude is large and if the coupling strength is sufficient, the excitable threshold is easily reached. Hence the latency time does not play a large role and we expect a saturation in the propagation speed. For a low value of κ (typically < 0.1), no pulse can propagate. The numerically computed speed is typically on the order of a few hundreds of picoseconds for traversing 20 micropillars. This indeed represents a challenge experimentally because one needs a high time resolution to resolve the propagation from individual cavities; additional limitations are caused by the low emission intensity. For a given coupling strength κ, there is a minimum value of the pump A below which the excitable propagation is inhibited. This is illustrated in figure 3.3. This critical value of pump decreases with increasing the coupling strength. The intuitive explanation of this is that small coupling strengths must be compensated by higher excitable pulse amplitude and this is possible by increasing the pump. This is consistent with the numerical and analytic findings of refs. [START_REF] Selmi | Spike latency and response properties of an excitable micropillar laser[END_REF][START_REF] Erneux | Two distinct excitable responses for a laser with a saturable absorber[END_REF], where it is shown that the maximum excitable pulse intensity scales as γ1 G ⇥ (A 1 ln(A)). Having introduced the parameters required for signal propagation, figure 3.4 shows the signal propagation or lack thereof in two chains of twenty micropillar lasers with different coupling strengths. Here the pump is A =2.8 and the other parameters are as mentioned before. A perturbation above excitable threshold is introduced in the leftmost cavity (0) in a chain of 20 coupled cavities. In subplot (a), the coupling constant κ =0.01 is too small to induce propagation: only the first cavity fires an excitable spike. In subplot (b), the coupling strength κ =0 .1 is sufficient to induce stable saltatory propagation in the chain. 

Information processing

In an effort to build information processing circuits based on the understanding established in the previous section, we first illustrate the implementation of temporal AND and OR logic circuits. These logic gates are analogous to their static counter parts in terms of their truth table but depend on the relative timing of the excitable response from the micropillars. Out of deference to spiking neural networks, these excitable responses can also be called spikes 1 . Another way to view logic circuits can be as a classification problem. A visual schematic of the truth table of the OR, AND, and XOR logic circuits is shown in figure 3.5. Evidently, there exist several linear decision boundaries in the case of the OR and AND logic gate but a nonlinear decision boundary is required for the XOR operation. Like the journey from single layer Perceptrons [1] to modern neural networks is one of linear to nonlinear decision boundaries, we show how coupled micropillars can learn2 linear decision boundaries and in principle be extended to nonlinear decision boundaries such as XOR logic [START_REF] Xiang | All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on a VCSEL-SA[END_REF][START_REF] Peng | Temporal information processing with an integrated laser neuron[END_REF] and ring neural networks [START_REF] Rodan | Minimum complexity echo state network[END_REF].

Figure 3.5: Truth table for OR, AND, and XOR logic

Linear decision boundary problems

Boolean logic operations with excitable systems have already been studied in models of dendritic spines [START_REF] Shepherd | Logic operations are properties of computersimulated interactions between excitable dendritic spines[END_REF], using chemical excitable waves and their collision properties in 2D media [START_REF] Tóth | Logic gates in excitable media[END_REF][START_REF] Toth | Simple Collision-Based Chemical Logic Gates with Adaptive Computing[END_REF] and in semiconductor media with excitable localized states [START_REF] Jacobo | Logical operations using excitable cavity solitons[END_REF][START_REF] Jacobo | Logical operations with localized structures[END_REF].

The first illustration is that of the OR logic operation. In these circuits, information is coded in the presence or absence of a spike and can be represented by two bits, 1 and 0. These circuits are also designed to be cascadable. We consider a chain with an odd number of micropillars (n = 13) for the main segment, to which is attached an additional segment in the center consisting of a single micropillar. The OR gate is illustrated in figure 3 The AND gate is less trivial and requires to modify either the coupling or the pumping of the micropillars. Since the latter is easier to implement experimentally, we choose this option for the numerics. As was noticed earlier, there is a critical pump for the spike to propagate. We use this property to build the AND logic gate. A temporal AND gate can also be viewed as a coincidence detector gate. We consider the same chain as before, except the micropillars immediately next to the central cavity are now pumped with a lower value (see Fig. The last example is that of a temporal pattern recognition circuit (a particular example using delay lines and three excitable nodes was shown in [START_REF] Nahmias | A leaky integrate-andfire laser neuron for ultrafast cognitive computing[END_REF]). This circuit is capable of recognizing when two consecutive spikes in an input sequence are separated by ∆t ( 

Non-linear decision boundary problems

Non-linear decision boundary problems can be approached in two ways, (a) Training a non-linear decision boundary using non-linear activation functions or (b) Adding features to increase the dimensionality such that the problem requires a linear decision boundary in higher dimensions. To illustrate the example of the latter, consider the XOR logic problem with the truth table as follows: This approach is essentially one of the motivations behind reservoir computing, a reservoir computer generates features and increases the dimensionality of the problem such that it can then become linearly separable in higher dimensions.

An optical XOR gate can be shown using the polarization degree of freedom [START_REF] Xiang | All-optical neuromorphic XOR operation with inhibitory dynamics of a single photonic spiking neuron based on a VCSEL-SA[END_REF] in a non integrated scheme. It has been shown recently in the group that it is also possible to obtain this logical operation in evanescently coupled micropillars.

Lastly, coupled micropillars can be used as generic nonlinear devices in schemes of reservoir computing by combining several on-chip oscillators and delay lines. Such circuits can then in principle be used to learn arbitrary decision boundaries. which when focused generates a desired point spread function (PSF). Such problems to obtain a desired PSF have been extensively studied and one of the popular algorithms for phase retrieval is the Gerchberg-Saxton algorithm [START_REF] Gerchberg | A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures[END_REF] which is an iterative procedure.

Towards experimental realization

This algorithm assumes a plane wave is incident on the SLM surface and only modifies the phase leaving the intensity constant. Several modification exist for tailoring to specific application of an experiment.

Brain inspired computing using an ensemble of micropillars

In this last section of the chapter, we will demonstrate a computing scheme based on rank-order coding implemented using micropillar lasers. While there are many paradigms of brain-inspired computing (some of which are introduced in the introduction), this section will focus on neural coding schemes. Neural coding schemes refer to plausible ways spikes or electrical impulses can contain information and perform computation. While this is still an active area of research and there is no definitive answer about the scheme used by biology, there are a few well known contenders. The first of which is rate coding, this is a relatively simple coding scheme and the information here is coded on the aver-age number of spikes per unit time. One can easily see how such a scheme while easy to implement can be very inefficient. There have been experimental results suggesting some primitive computations occur at much faster timescales than enabled by rate order coding thus, there must be more efficient schemes [START_REF] Thorpe | Speed of processing in the human visual system[END_REF]. Ref. [START_REF] Thorpe | Rank Order Coding[END_REF] illustrates some elementary computations to compare three schemes videlicet rank-order coding, time coding, binary coding, and rate coding. The setting is as follows: Let there be N neurons, the temporal resolution of the measurement apparatus be t and the total acquisition time be T . The amount of maximum information (in bits) in binary coding (1 when a neuron fires and 0 otherwise) is log 2 (2 N ). If we were to discard the information identifying which neuron fired and only consider the number of neurons that fired, we obtain the maximum information to be log 2 (N + 1) (the N is for the number of neurons and the additional 1 when no neuron fires) for rate coding. Time coding relies on precise timing of the spikes from each neuron, given the temporal resolution and the acquisition time, the spike from each neuron can be classified into T /t slots, generalizing this to N neurons results in the information capacity of log 2 ((T/t) N ). The last case does not account for the time of each neuron to spike, just their relative order. N neurons can be ranked in N ! ways and the resulting in the information capacity of log 2 (N!). Figure 3.12 shows how the maximum information scales in each of these cases. As we can see, time and rank order coding perform significantly better as the number of neurons increases. While these calculations describe the scaling of maximum possible information, specialized mechanisms (in biology) or hardware (in engineering) can be needed to extract pertinent information. A more practical calculation would be one that weights the maximum information against the degree of sophistication required to extract information. For several reasons, it turns out that rank-order coding is considerably simple to implement and thus we choose this scheme to implement computation using micropillars.

For demonstrating learning and computation, we choose the digits dataset from scikitlearn consisting of handwritten digits. Each digit is an 8 ⇥ 8 image with pixel intensities between 0 and 16. There are 1797 images with almost equal number of images in each class. The Yamada model with incoherent excitation is used in this illustration. We use the model equations introduced in chapter 1 (Eq. 1.1): Figure 3.12: Maximum possible information in different coding schemes

The information in time-coding is calculated using T /t = 20

Ġ = γ G (A G GI) Q = γ Q (B Q sQI) İ =(G Q 1)I + β sp (G + η 1 ) 2 (3.2)
The parameters used for the simulation are: γ G = γ Q =0.01, s = 10, B =2.2, β s p = 10 5 and η =1.6. The choice of the pump A is explained in the next section.

The training procedure for rank-order coding is very minimal. We determine a weight vector for each digit by choosing a few digits (⇡ 20) at random from each class and compute a pixel wise average. The result of this average is seen in figure 3.13.

The average values are then sorted in the descending order and each pixel is assigned a rank, rank px , where px is the pixel number. The weight then associated to each pixel (or rank) is W (px)=D rankpx , where D is a constant < 1. We choose D =0 .95. This introduces a decay in the weights. The resultant weights obtained are shown in figure 3.14.

For the testing or inference phase, each pixel is sent to an independent micropillar as a perturbation on the gain variable at time t =0 . As illustrated in the first chapter, the micropillar exhibits spike latency which is a function of the bias pump and the perturbation data is rescaled to be between the excitable threshold and 1.05 3 . Thus every pixel is converted into a latency time t resp . As a convention we take t resp !1if a particular micropillar does not generate a response. Thus for each digit, we obtain 64 pulses at different times. We then rank the order of these pulses such that the shortest time t resp is ranked 1 and t resp !1is ranked 1 in an order vector 4 . Once we have the weight vectors (from training) and an order vector for the test case, we compute the activations for every digit class as follows: M order(a j ) ⇥ w(i, j)

(3.3)
Here, the index i between 0 and 9 corresponds to the number of test classes, the summation over j calculates the contribution from each pixel factoring in its rank and the corresponding weight. M<1 is chosen by convention to introduce a decay in the contribution of micropillars with a high spike latency to the total activation. M =0.95 is chosen in our case. For each test case we compute the 10 corresponding activations and the class with the maximum activation is taken as the predicted class. In doing so, we obtain a test accuracy of ⇡ 74%. The breakdown with their respective classes are as follows: The confusion matrix is shown in figure 3. [START_REF] Zhou | Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit[END_REF]. The prediction results on some digits are better than others. One potential way to correct this is to identify a refined set of weights which better captures the digit. It is an open question and something the group will work on in the near future. The results presented do not compare to the near perfect accuracy obtained by the state of the art neural networks and machine learning techniques but present a novel form of computing using temporal information. We strongly believe that the accuracy obtained can be increased using optimal training routines. To the best of our knowledge, this is the first demonstration of computing using rank order coding on a photonic platform. Current research is underway in our group in the ANR Anaconda project to use more advanced neural coding schemes and build photonic hardware based on delay and spatially coupled nodes.

Chapter 4

Precursor aided prediction of extreme events in an extended microcavity laser

In this chapter we introduce extreme events formation in a quasi-1D semiconductor system and we demonstrate and discuss the prediction of such events. The prediction is carried out on experimental data displaying spatiotemporal chaos by using various machine learning techniques based on precursors identified using statistical analysis and information theory. Our analysis is based on a partial knowledge of the history of the spatiotemporal laser intensity. Thus, rather than attempting to predict the full spatiotemporal field, we attempt to predict the category of future events based on the knowledge of a finite history of the system, building on the identification of spatiotemporal regions carrying the most possible useful information. We show that we are able to obtain good results on the cross-prediction of extremes, based on the knowledge of the history at two spatially disconnected regions, on par with the best predictions using the most correlated regions of space.

Extreme Events: A historical perspective

Extreme events can be defined as follows [START_REF] Nicolis | Foundations of Complex Systems: Emergence, Information and Prediction[END_REF]: a time recording of the dynamics of a macroscopic system maintained out of equilibrium may consist of well-defined periods where a relevant variable undergoes small variations around a well-defined level defined by its long-time average, with the occasional occurrences of abrupt excursions to values that differ significantly from the average level; such events are called extreme events. In recent years, significant efforts have been made to understand extreme events. These events were first observed at sea and for centuries were merely considered a myth despite anecdotal evidence as linear models used by researchers to predict wave amplitudes ruled out existence of such large waves. With the dawn of the modern industrial era and steel-hulled ships the probability of surviving encounters with rogue waves increased and with it the eye-witness records. It was a Scottish oceanographer named Laurence Draper who worked on analysis of waveform data and wrote the first scientific article on the subject in 1964 [START_REF] Draper | Freak" Ocean Waves[END_REF]. It was several decades before an experimental conformation of this phenomenon. On January, 1, 1995, an oil drilling platform located off the coast of Norway measured a wave measuring 85 feet which was appreciably outside the predicted models; at the time it was estimated that a 64 foot wave would occur approximately once every 10,000 years. The scientists from the oil rig later published [START_REF] Haver | Evidences of the Existence of Freak Waves[END_REF] that such rogue waves were far from a rare phenomenon and occurred with a much higher probability. Rogue waves and their prediction is an active area of research and they can be observed in many systems with non-negligible probabilities [START_REF] Höhmann | Freak waves in the linear regime: A microwave study[END_REF][START_REF] Efimov | Rogue waves in superfluid helium[END_REF][START_REF] Dysthe | Freak" waves and large-scale simulations of surface gravity waves[END_REF][START_REF] Liu | Are there different kinds of rogue waves?[END_REF]. Scientists have also demonstrated how nonlinear interactions between waves can cause the existence of super rogue waves from calm and apparently safe sea states. These waves are caused by the nonlinear focusing of wave amplitudes of nearby waves into one large and short lived event [START_REF] Chabchoub | Super roguewaves: Observation of a higher-order breather inwaterwaves[END_REF]. Nonlinear systems are of particular interest as they can show the requisite extreme sensitivity to initial conditions.

Extreme events in optics

Extreme events in optics are characterized by a rare and intense pulse in the intensity domain. The study of these optical extreme events has been originally motivated by their analog in hydrodynamics because physically some conservative models of wave propagation in optics and deep water waves can share a common description by the the nonlinear Schrodinger equation [START_REF] Solli | Optical rogue waves[END_REF]. The interest of optics stems from the fast timescales enabling large statistics to be recorded in a short amount of time and with tunable nonlinearities. Thus, many different physical situations can be tested and we can expect to draw general conclusions from extreme events found in optics when identified with well defined physical mechanisms. Most of the studies in this context have taken place in optical fibers where the interplay of nonlinearity, dispersion, and noise can generate extreme events [START_REF] Dudley | Harnessing and control of optical rogue waves in supercontinuum generation[END_REF][START_REF] Mussot | Observation of extreme temporal events in CW-pumped supercontinuum[END_REF][START_REF] Arecchi | Granularity and inhomogeneity are the joint generators of optical rogue waves[END_REF][START_REF] Kibler | The Peregrine soliton in nonlinear fibre optics[END_REF]. Extreme events in conservative systems are often associated with the merging dynamics of coherent structures [START_REF] Antikainen | On the phase-dependent manifestation of optical rogue waves[END_REF][START_REF] Birkholz | Spatiotemporal rogue events in optical multiple filamentation[END_REF][START_REF] Pierangeli | Spatial Rogue Waves in Photorefractive Ferroelectrics[END_REF] and this mechanism has also been found in a dissipative fiber-laser system [START_REF] Mussot | Observation of extreme temporal events in CW-pumped supercontinuum[END_REF][START_REF] Lecaplain | Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser[END_REF]. Other mechanisms observed in dissipative systems involve stochastically induced transitions in multistable systems [START_REF] Pisarchik | Rogue waves in a multistable system[END_REF] or temporal chaotic dynamics in a non-spatially extended laser with optical injection [START_REF] Bonatto | Deterministic optical rogue waves[END_REF]. Extreme events have been found in a variety of optical cavity systems such as an injected nonlinear optical cavity [START_REF] Montina | Non-gaussian statistics and extreme waves in a nonlinear optical cavity[END_REF], fiber laser [START_REF] Lecaplain | Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser[END_REF][START_REF] Randoux | Experimental evidence of extreme value statistics in Raman fiber lasers[END_REF],

solid-state lasers [START_REF] Kovalsky | Extreme events in the Ti:sapphire laser[END_REF], optical liquid crystal light valve with optical feedback [START_REF] Clerc | Extreme events induced by spatiotemporal chaos in experimental optical patterns[END_REF], and semiconductor lasers [START_REF] Bonatto | Deterministic optical rogue waves[END_REF][START_REF] Karsaklian Dal | Extreme events in time-delayed nonlinear optics[END_REF][START_REF] Mercier | Numerical study of extreme events in a laser diode with phase-conjugate optical feedback[END_REF]. The role of spatial coupling has not been studied

until recently in a pattern-forming optical system composed of a photo-refractive crystal subjected to optical feedback [START_REF] Odent | Experimental spatial rogue patterns in an optical feedback system[END_REF][START_REF] Marsal | Spatial rogue waves in a photorefractive pattern-forming system[END_REF] or a low Fresnel number solid-state laser [START_REF] Bonazzola | Optical rogue waves in an all-solid-state laser with a saturable absorber: Importance of the spatial effects[END_REF].

Extreme events following polarization measurements (vectorial rogue waves) have also been demonstrated in optical fibers [START_REF] Baronio | Observation of a group of dark rogue waves in a telecommunication optical fiber[END_REF] and in VCSELs with feedback [START_REF] Uy | Vectorial extreme events in VCSEL polarization dynamics[END_REF]. Most of these extreme events were characterized from a statistical point of view without establishing their origin from dynamical system theory. Our group demonstrated numerical and experimental results on the formation of extreme events in a spatially extended nonlinear dissipative system and showed that the extreme events occur at the onset of spatiotemporal chaos, hence enabling a link between the statistical and the dynamical properties at a movable point is recorded with a fast avalanche photodiode having a bandwidth of 5 GHz. The temporal signal is then amplified using a low noise high bandwidth amplifier and acquired with a 6 GHz oscilloscope at 20 GS/s or 50 ps sampling time. The movable detector is sequentially displaced to span the entire 1-D structure. The experimental setup and the schematic of the experiment is shown in figure 4.1. In the absence of spatial coupling, this system does not display irregular dynamics and hence, extreme events. Spatial coupling arises from diffraction as a consequence of the large aspect ratio (and Fresnel number) which accommodates a large number of transverse spatialmodes.

The irregular dynamics motivates us to study if such a system is chaotic. The characterization of chaos and spatiotemporal chaos is carried out by studying the Lyapunov exponents or spectrum [START_REF] Manneville | Dissipative structures and weak turbulence[END_REF]. These exponents measure the exponential sensitivity to infinitesimally small perturbations to a given trajectory in the phase space. A strictly positive Lyapunov exponent denotes that nearby trajectories will diverge exponentially in time where as a negative exponent signifies that any small perturbation will converge onto a single (original) trajectory. The number of Lyapunov exponents equal the dimensionality of the system under study. A system is said to be chaotic even if a single exponent is strictly positive. Experimentally, we are often in the situation where the underlying dynamical system might be unknown with the desired level of accuracy or we only have access to a limited set of variables describing the dynamical system. It is well known that we can estimate the Lyapunov exponents by using delay coordinate embedding [START_REF] Kantz | Nonlinear Time Series Analysis[END_REF][START_REF] Parlitz | Prediction of Spatiotemporal Time Series Based on Reconstructed Local States[END_REF].

Some recent results also suggest that we can use reservoir computing [START_REF] Lukoševičius | Reservoir computing approaches to recurrent neural network training[END_REF] to reconstruct the complete dynamics [START_REF] Lu | Reservoir observers: Model-free inference of unmeasured variables in chaotic systems[END_REF]. This technique has also been used to reproduce the dynamics of low and high dimensional dynamical systems and these networks then can be used to infer the full set of Lyapunov exponents [START_REF] Pathak | Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data[END_REF].

Often, for systems with a known model, the most feasible technique is to model the system under study and numerically estimate the Lyapunov exponents. Let N be the number of discretization points in an extended system described with m degrees of freedom, then the system has m ⇥ N Lyapunov exponents λ i . If the Lyapunov exponents are sorted in decreasing order and in the thermodynamic limit (N !1), these exponents converge to a continuous spectrum as conjectured by Ruelle [START_REF] Ruelle | Large volume limit of the distribution of characteristic exponents in turbulence[END_REF]. Therefore, if the system displays spatiotemporal chaos in this limit, there exists an infinite number of positive Lyapunov exponents. The set of ordered (descending) Lyapunov exponents provides an upper limit for the strange attractor dimension through the Kaplan-Yorke dimension D KY (equation 4.1) [START_REF] Ott | Chaos in Dynamical Systems[END_REF], where j is the largest integer that satisfies P j i=1 λ i 0. In the thermodynamic limit, the Kaplan-Yorke dimension diverges with the size of the system as a consequence of the Lyapunov density [START_REF] Paul | Extensive chaos in Rayleigh-Bénard convection[END_REF].

D KY = j + j X i=1 λ i λ j+1 (4.1) 
Experimental results aided by numerical simulations demonstrate that the physical origin of extreme events in this system can be attributed to spatiotemporal chaos. The route to spatiotemporal chaos in the system was identified as quasi-periodicity. The fine structure of the largest Lyapunov exponent and of the Kaplan-Yorke dimension D KY helped to infer that intermittency plays an important role in the variation of the number of extreme events found that correlate to the bifurcation of spatiotemporal chaos. Beyond this conclusion, the reader is urged to read the articles from our group cited in the beginning of the section for a detailed discussion on the parameters, establishing spatiotemporal chaos and the numerical schemes used.

In order to proceed, we would first like to introduce the definition we consider for extreme events which is taken from hydrodynamics. In a time trace with many pulses, the height of an event is computed as the change of the relevant variable (intensity here) between two consecutive minima and maxima. For the case of a single pulse embedded in some background variation, one can find a minima (Mn1) before the pulse, the maxima (Mx1) of the pulse and a subsequent minima (Mn2) after the pulse. These three values correspond to one event, the height of the event is then selected using the definition

H = max(|Mn1 Mx1|, |Mx1 Mn2| 
). We define a significant height H s which is the mean of the highest tertile of the probability density function of the height H of the events recorded. Any event having the height greater than twice the significant height is labeled as an extreme event. Another way of expressing this is that any event with an abnormality index, AI = H/H s > 2 is called an extreme event. The results obtained experimentally for different values of pump are shown in figure 4.2.

The events labeled in red are the extreme events. The figure also shows the power spectral density and the temporal evolution of the laser intensity to characterize the complex behaviour of the system. For pump values close to the threshold, P/P th =1 .02 (subplot a) where P th is the laser threshold, the system exhibits quasiperiodic behaviour and its Fourier spectrum is a well defined peak with a harmonic. In this parameter region, the PDF of the event height decays rapidly and the probability of occurrence of extreme events is very low. With an increase of the pump P/P th =1 .17 (subplot b) we observe a large number of extreme events. This can be seen in the non-Gaussian tail of the PDF of the event height. The development of fat tails is also reflected in the Fourier spectrum which shows considerable mixing and broadening of its frequency components. Under It was shown in ref. [START_REF] Selmi | Spatiotemporal Chaos Induces Extreme Events in an Extended Microcavity Laser[END_REF] that there is a correlation region in space and time in the vicinity of an extreme event. The cross correlation was introduced as follows: Subplot (a) was computed for every event at point C. Each event at the central detector is at location (0,0) in this spatiotemporal plot where the y-axis is the span of the quasi-1D system and the x-axis is the time around the event. A high correlation region was identified in space at the time of the extreme event (region in green, centered at time = 0). This region extends to the region smaller than the span of the system and appears vertical with our experimental resolution. This indicates that large amplitude pulse occurs simultaneously in the entire spatially correlated region and disappears rapidly outside this region. In subplot (b), the cross-correlation was computed only only using extreme events at location C and it was observed that the resulting plot is similar to the previous plot.

X c,m (k)= 1 Nσ yc σ ym X i [y c (i) ȳc ][y m (i + k) ȳm ] (4.2) 
Based on this, it was concluded in ref. [START_REF] Selmi | Spatiotemporal Chaos Induces Extreme Events in an Extended Microcavity Laser[END_REF] that the extreme events are not a result of collision of coherent structures or solitons as this would have resulted in a bending of this correlation region (at least in subplot (b) 1 ). Further, it was observed that the correlation bands extend for about 2 ns in time. Subplot (c) plots the average of the responses at point M when an extreme events occurs at C. While this plot is similar in structure to the cross-correlation plot, it shows asymmetry around the correlated structure.

Prediction and precursors

The prediction of extreme events has wide importance and is prevalent in a variety of complex systems belonging to very diverse fields such as: neuroscience, financial markets, climate, oceanography and geoscience to name a few. Having established that extreme events are a consequence of spatiotemporal chaos in our system, it is thus an interesting endeavour to try and predict the occurrence of these events. The prediction of chaotic dynamics is inherently challenging due to the divergence of nearby trajectories which is captured by the Lyapunov exponents. Thus, in order to have an accurate evolution of the system one would need a very high resolution of measurements2 which is frequently not the case in experimental data.

In a general case when the system is large, it is not possible to access the observable(s) with arbitrary precision in space and time. It is thus useful to have an estimate about the subspace which contains maximum information about said observable(s). These subspaces or regions will be called precursors and are extremely useful to identify the occurrence of extreme events. Since we consider a 1D structure, the region under consideration is a 2D entity, one dimension for the space and one for time. As a first attempt, we choose to identify precursors using a cross correlation plot presented in the last section. Such a plot might indicate regions from where machine learning algorithms might extract some trends.

The cross-correlation and average plots, while giving us indications of possible precursors, do not identify the direction of flow of information. Moreover, there could exist regions which seem uncorrelated but which would exchange information. To account for such effects, we compute the transfer entropy in collaboration with Saliya Coulibaly at the Université de Lille. The notion of transfer entropy was introduced in ref. [START_REF] Schreiber | Measuring information transfer[END_REF] as an addition to the concept of mutual information. Mutual information between two systems I and J, M IJ as defined within the paper is the excess amount of code produced by erroneously assuming that two systems are independent. While it gives a measure of the information shared between the two systems, by construction the quantity is symmetrical (M IJ = M JI ) thus contains no directional information. In extended systems it is interesting to identify the rate at which different components exchange information. Transfer entropy answers this question by taking the dynamics of information transport into account thus making it an asymmetrical measure. The original definition can be adapted to our case and the resulting equation is as follows:

T M !C (x M ,τ)= X I C,n p(I C,n ,I C,n τ ,I M,n τ ) log 2 p(I C,n |I C,n τ ,I M,n τ ) p(I C,n |I C,n τ ) (4.3) 
Where T M !C (x M ,τ) is the transfer of information (in bits) from point M at a certain lag τ to point C. The variable I is the sampled value of the intensity, the first subscript is the location of measurement (id est point C for the center and point M for the movable detector) and the second subscript is the time at which the signal is sampled. Therefore, The two other regions observed are displaced from the center at about ± 10 µm from the center. The displaced regions demonstrate a high information transfer at lower lags (further away from the extreme event). This reveals that there is information exchange between regions outside the principle correlation region and the central point (location of the extreme event). While it was weakly visible in the correlation plot, this trend is highlighted clearly here. Additionally, we observe almost no information is transferred from points below -25 lags (or ⇡ 1.25 ns). This means that we will probably not be able to extract information about the extreme event occurrence in this region.

I C,
This information exchange can be used to identify the region(s) in the 2D space to predict occurrence of extreme events without requiring concurrent measurements throughout the structure. We would like to point out to the readers that the plots from transfer entropy were computed for single points in time, id est how intensity recorded at a single point in time at M affects the intensity at C. In principle, we could compute the same quantity for a history of more than one sample, this work is underway. for training different machine learning algorithms. We will limit our analysis for delay times less than 0 (as we want to predict the event before it occurs) and at three points along the structure. These points, P + , P 0 and P are at +12.86 µm from the center, at the center and at -14.55 µm from the center respectively. We choose these points as P + is in a region showing a non zero correlation and a high average while being outside the central correlated structure, P 0 is at the location of the extreme event and P is in a region showing almost zero correlation and average. These spatially separated points correspond to regions containing different amounts of information about the extreme event. Figure 4.6 shows the average of the normalized signal recorded at these three points before an event (marked as delay = 0) at the central detector. From the plots presented already, one can intuitively think that predicting using the first two points might result in a reasonable prediction accuracy but the last point should not have any information (or very minimal at best) about the extreme event. In the next section, we show this is indeed the case.

Prediction with experimental dataset 4.5.1 Dataset generation

In this work, we combine information theory with various machine learning techniques to aid in prediction of extreme events. The experimental dataset used is recorded as mentioned in section 4.2. The total duration of the recording is ⇡ 2.5 ms. The system is sampled simultaneously at two points, the central point and a moving point. The sampling of the system at 2 points is an experimental constraint as sampling several points simultaneously in the quasi-1D structure can be cumbersome. Ideally simultaneously sampling of the entire system would be desirable but is hardly feasible because it would require a Streak camera for instance which is not available in the lab (not mentioning the issue of resolution vs recording length and of necessity of single shot recording difficult with low intensities). This sampling is then used to study the information transfer between different locations (movable detector) and the central detector. A dataset is then built by identifying the time τ of all events in the central detector and saving the signal in the movable detector up to 100 samples before said τ . The Lyapunov time in the system is estimated to be on the order of few samples thus the saved history is estimated to be on the order of several tens of Lyapunov times of the system and thus it is a valid assumption that there is no discernible information loss by truncating the history at 100 samples. The events in the central detector are then classified in a binary fashion using the definition of extreme events introduced in the previous section. Since extreme events are rare by definition, we build a balanced dataset by retaining all the extreme events and choosing an equal number of non-extreme events at random. The dataset at the end of the process consists of 2 ⇤ N time-traces (101 samples each) from the movable detector and a binary label which identifies if the event that occurred at the central detector was an extreme event or not. N is the number of extreme events in the recorded time trace. This same process is repeated for every pair of recorded signals.

We then use various machine learning techniques such as logistic regression, k-nearest neighbours, deep neural networks and reservoir computing to perform cross prediction on the occurrence of an extreme event. These techniques are representative of the different kinds of machine learning techniques used for chaotic time series prediction [START_REF] Jaeger | Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication[END_REF][START_REF] Amil | Machine learning algorithms for predicting the amplitude of chaotic laser pulses[END_REF][START_REF] Närhi | Machine learning analysis of extreme events in optical fibre modulation instability[END_REF][START_REF] Salmela | Machine learning analysis of rogue solitons in supercontinuum generation[END_REF].

The dataset is split in a standard way such that 70% of the data is used as training data and 30% is used as testing data. We can further restrict the information input to the prediction system by implementing a lower and upper bound in time axis id est using I(t)

for τ low  t  τ up . Defining the time running from τ to 0 (and τ<0) where 0 is the time-stamp of the event in the central detector, lower bound is defined a τ low such that -τ<τ low and τ up such that τ low <τ up < 0. Thus, the time duration of input is m samples in the time between τ up and τ low . The ideal scenario would be when both τ up and m are as low as possible. We then do a sweep in τ up and τ low and present results in a 2-D plot 90 where every pixel corresponds to classification score3 .

Overview of machine learning techniques used

Logistic Regression

Logistic regression is a popular classification algorithm which uses a logistic function to model a binary dependent variable. Such a classifier can be easily adapted for a multiclass classification using a one v/s all scheme. In such a scheme N parallel classifiers will be trained for N class classification and each of the classifier will determine the probability that a certain example belongs to it's class or not. Thus, as an aggregate, we can achieve 

h θ (x)= 1 1+e θ•x Cost(h θ (x), y) = y log(h θ (x)) (1 y) log(1 h θ (x)) (4.4)
k-Nearest Neighbours k-Nearest Neighbours (k-NN) is a non parametric algorithm for regression and classification which can be used without making any assumptions about the distribution from which the data is drawn [START_REF] Altman | An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression[END_REF]. Previous works have also used this algorithm on vectors generated using delay-coordinate embedding to predict chaotic dynamics [START_REF] Amil | Machine learning algorithms for predicting the amplitude of chaotic laser pulses[END_REF][START_REF] Farmer | Predicting chaotic time series[END_REF]. For the binary classification task, the train dataset is first translated into a point cloud in m dimensions via delay embedding and stored in the memory. Every test case also corresponds to one such point in the high dimensional space. The algorithm then computes L 2 norm between every test case and the entire training point cloud and sorts them in ascending order. The top k entries are determined to be the closest neighbours of the test-case and a majority poll among these neighbours determined the class of the test case. This technique is very simple to implement and required no training time. However, the inference time is dependent on the training dataset as the algorithm needs to compute the distances between every test and the entire training dataset. In our use case, we find that k = 25 yields optimal results.

Deep Neural Networks

Deep neural networks have become a standard tool for analysis of sequential and static data over the last few years [START_REF] Hochreiter | Long Short-Term Memory[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Chung | Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[END_REF]. Out of the several known architectures for deep neural networks, convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are particularly interesting for modeling time series data. However, in some machine learning models when the length of time series is not significantly large, feed forward neural networks can also be used as done in ref. [START_REF] Amil | Machine learning algorithms for predicting the amplitude of chaotic laser pulses[END_REF]. When a feed forward neural network is used for a time series task, the optimizer looks for an optimal function combining inputs from all the time scales available; this doesn't pose a problem if the duration of the time trace is short. However for long time traces, finding relevant information can be very difficult if all the time scales are assumed to have relevant information. It is thus important to relax the constraints and impose fading memory which aids the optimizer to look for physically plausible solutions. Thus for the task at hand, we use a RNN comprising of gated recurrent units (GRUs) which factors in timescales when looking for relevant information. In principle CNNs 5 and feed forward neural networks can also be used for our prediction task as m is on the order of 100 but RNNs were selected as they are most associated with time series analysis.

The schematic of a gated recurrent unit is shown in figure 4.8. I will not introduce the equations behind the GRU but will rather describe the working to aid the reader in comprehending such networks. Each GRU has two gates, videlicet update gate z[t] and reset gate r[t]. Update gate decides on the relevance of information and helps to capture longterm dependencies in the sequence. The reset gate on the other hand, is used to forget past information. The interplay between the two gates helps capture relevant information at different timescales. At time t, a single GRU cell receives an input x[t] and an input of the hidden state from the previous time step h[t 1]. These two are combined and then used to compute the output of the reset gate and update gate via a sigmoid nonlinearity, σ. All these are then used to compute the intermediate hidden state ĥ[t]. Then via a last operation the final hidden state h[t] is determined to be passed on to the next to the next time step. An optional (final) output ŷ[t] is generated when t is less than (equal to) the length of the input. For a single hidden layer and an input dimension of p and output dimension of u, the total number of parameters in the GRU are 3 ⇥ (u 2 + up + u). The number of hidden units in an RNN refers to the dimensionality of the hidden state or the dimensionality of the output at any given time. Each hidden layer has hidden cells, as many as the number of time steps and further, each hidden cell is made up of multiple hidden units. For a detailed working of such models, the reader is urged to refer to the original paper introducing GRUs [START_REF] Chung | Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[END_REF].

For the classification task, the appropriate time series is chosen and used to train a 10 instances individual RNNs. Training and predicting with multiple networks with the same dataset minimizes the fluctuation in the prediction score due to random initialization of weights 6 . The architecture of the network is shown in fig 4.9. The default activations of the GRU are retained (sigmoid activation for the reset and update gates and hyperbolic tangent activation for the output of the hidden cell). We use 60 GRU units and the states of these units are read out only at the end of the time trace 7 . The final GRU state is then The weights are learnt through the backpropagation algorithm using the Adam optimizer and categorical cross entropy as the loss function. The network is trained for 80 epochs and once trained, each test case generates a certain probability for it being an extreme event or not, the class with the highest probability is picked as the final label. We also tried using Leaky-Rectified Linear Unit (LReLU) (Eq. 4.6) as the activation for the dense layer and obtained similar results.

if one wants to predict the changing probability of occurrence of extreme events 8 In the equation, i denotes the index and K is the number of classes. This output layer transforms real numbers to probability of belonging to a certain class. In our case, K =2. > > < > > :

x, if x 0 αx, if x < 0 (4.6)

Reservoir Computing

Reservoir computing has been gaining interest for data driven model discovery and as a consequence model free prediction on various low [START_REF] Jaeger | Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication[END_REF] and high dimensional dynamical systems [START_REF] Pathak | Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data[END_REF]. At this point, I would like to introduce a brief interlude on spectral radius and its influence on reservoir computers. As mentioned before, we choose a spectral radius ⇡ 0.9

for our binary prediction task. While this can seem arbitrary, there is some intuition behind it. The spectral radius is linked to a sort of memory in the system. Considering the reservoir to be a dynamical system, the spectral radius can be tuned to observe a dynamical system in different regimes. Ideally one would like their reservoir to be on the edge of chaos such that it can satisfy both the approximation and separation property of the system 10 . While this statement is generally true, the optimization of the reservoir like any machine learning algorithm is based on the use case. We further observe that even a chaotic reservoir is capable of reproducing dynamics from certain dynamical systems displaying Dragon-King like extreme events [START_REF] Hugo | Predictability and suppression of extreme events in a chaotic system[END_REF]. In the scope of this manuscript, I will limit my analysis to demonstrating the different dynamical regimes of the reservoir used and briefly characterize them. To demonstrate that the value of Res weight can act like a bifurcation parameter for the reservoir dynamical system, we choose a certain binary adjacency matrix for the reservoir (as described before) and replace all the nonzero values from a random uniform distribution between -1 and 1 (instead of between Res weight and Res weight ). This directed adjacency matrix (W Adj 0 ) is then fixed. We can then tune the spectral radius of this matrix by simply multiplying it with a scalar Res weight 11 . To illustrate the impact of spectral radius, we take two reservoirs with spectral radii ⇡ 0.9 and 1.8 and start them with an initial condition and observe their dynamics, this is shown in figure 4.11. The evolution equation is as follows (Eq. 4.7):

x(n)=F (W Adj ⇤ x(n 1) + W in ⇤ δ n 1,0 ) (4.7) 
Where x(n) is the state of the reservoir (a vector of length N) at the n th iteration and δ i,j is the Kronecker delta function. Subplot (a) shows how an initial condition decays to a fixed point which is 0 in this case when the spectral radius = 0.9 and subplot(b) shows chaotic dynamics when the spectral radius = 1.8.

Figure 4.12 plots the evolution of one of the reservoir nodes for a better representation of this phenomenon. To further characterize the exponential sensitivity to initial conditions, we perturb each of the reservoirs twice with nearby initial conditions and plot the evolution, this divergence in principle must be linked to the largest Lyapunov exponent of the 10 The approximation and separation property are qualitative metrics linked to a reservoir computer. The approximation property is to emphasize that two similar inputs should be mapped to the same output state, thus the reservoir must operate in presence of noise. The separation property suggests that two sufficiently different inputs should be mapped to different states. The exact interpretation of these properties is up to the user designing the reservoir computer 11 W Adj =Res weight * W Adj 0 system. Figure 4.13 illustrates the convergence of the dynamics in subplot (a) (spectral radius ⇡ 0.9) and exponential divergence in subplot (b) (spectral radius ⇡ 1.8). Here F n corresponds to the n th iteration of the reservoir map, x 0 is the initial condition and δ (not to be confused with the Kronecker delta, here δ refers to a small perturbation on the initial condition) is the perturbation to the initial condition. The only intention of these plots is to illustrate how one can obtain different regimes of the reservoir dynamical system using the spectral radius, a rigorous calculation of the Lyapunov exponents of this map are out of scope for this manuscript and would be an independent study in itself. Finally Figure 4.14 shows a 1-D bifurcation plot of one node in the reservoir using the spectral radius as the bifurcation parameter. We can see for a spectral radius less than 1 we observe a fixed point and for a greater spectral radius we observe chaotic dynamics 12 .

Based on the discussion, we choose the spectral radius ⇡ 0.9 such that the reservoir has a fixed point following a transient. We could also choose a spectral radius greater than 1 but then the performance of the reservoir will strongly depend on the length of the input sequence m. This can be intuitively understood from the figure 4.13 (b), the rate of divergence of trajectories is dependent on the spectral radius and thus the approximation property or lack thereof is dependent on the number of iterations of the reservoir update before prediction, since the reservoir is updated for m number of times. Following this For generating this plot, the reservoir was initialized at a random state and evolved for 1000 iterations. After this initial transient, the reservoir is assumed to have reached the attractor and them sampled for 200 more iterations to compute the probability of observing it on a particular node state. Computing a similar plot over the entire reservoir yields a similar result but the structure of growth of the attractor size is averaged out. The colourbar represents the probability of observing the node at a given node state.

brief foray into the dynamics of the reservoir and the choice of the spectral radius, the update equation of the reservoir for the binary classification task is as follows (Eq. 4.8): Where the functions Cost(...) and h(...) have been defined earlier (Eq. 4.4) and y i corresponds to the binary labels associated for each training task.

x l (n)=F (W Adj ⇤ x l (n 1) + W in ⇤ u l (n 1)) (4.8)

Prediction results

Having introduced the different prediction techniques in the previous section, we compare and contrast in this section the results obtained by using them for local and cross predic- The maximum achievable accuracy is over 75 % for all the machine learning techniques used. This result is typically obtained for high values of m and τ up as it corresponds to the maximal duration of input trace for prediction in the vicinity of the extreme event. The impact of m and τ up can be individually understood intuitively. Increasing τ up translates to making a prediction closer in time to the extreme event and increasing m increases the input information available to the algorithms to learn and predict extreme events. Consequently, we observe as we increase the time horizon of prediction (decreasing τ up ) the prediction accuracy drops and for τ up < -30 we obtain classification accuracy of ⇡ 50 %.

On the other hand for a fixed τ up , increasing m generally increases the prediction accuracy. A stark example can be seen for lower values of τ up . All the algorithms experience a decrease in prediction accuracy as τ up decreases below -26 and this can be seen as a possible limitation of the temporal horizon for prediction. This value of τ up corresponds to a prediction 1.3 ns before the extreme event.

Prediction at point P while having a similar structure as in the previous case (where increasing m and τ up increases accuracy) achieves much lower prediction accuracy. The highest achievable accuracy is in the low 60 percentage points and this quickly drops to approximately 50 % as τ up approaches -11. The poor quality of prediction here is attributed to the fact that this point is calculated to have very little correlation and transfer entropy with the coordinate where the extreme event occurs.

Finally in the case of prediction at point P 0 is shown in figure 4.20. Unlike the previous cases, the maximum possible accuracy achievable is approximately 100 % that is observed for τ up = 1 due to its extreme proximity to the extreme event. As we decrease τ up this accuracy rapidly falls and the local prediction displays comparable performance to the cross prediction at point P + with some differences. This figure also displays a structure similar to the previous figures but all the algorithms achieve a much higher prediction accuracy until lower values of τ up . All the algorithms achieve an approximate accuracy of 60% until τ up = 31. Figure 4.22 plots the difference in prediction at point P + and P 0 . In the region of τ up between -11 and -20 cross prediction outperforms local prediction by about 10 points achieving a maximum accuracy of ⇡ 65% for low m and achieves similar performance (⇡ 70% ) for large m14 For higher and lower values of τ up , the local prediction outperforms cross prediction due to its proximity to extreme events. The better performance of cross prediction can be seen as an interesting case of inferring the evolution of a coupled system with partial measurement: given a limited sampling in space and time, we are able to make useful prediction of the occurrence of extreme events from a location far (⇡ 12.86 µm) from it. and subplot (b) plots the difference between the best algorithm and the others 15 .W e would like to point out that while RNNs generally perform slightly better (with the exception of fig. 4.18 where the maximum accuracy is low anyway) they come at the cost of very high number of trainable parameters. The accuracy advantages seem to be in the margin or slightly above the fluctuations in accuracy by altering the datasets, hyperparameters and initial conditions. We further note that the hyperparameters (for reservoir computing and RNNs) were not repeatedly optimized for every parameter combination of m and τ up .

Manual hyperparameter tuning can be an extremely time consuming study and was not done extensively during this thesis. Whereas, automatic techniques are very involved and still under development.

Chapter 5

Conclusions

This thesis presented the various research facets surrounding the nonlinear dynamics and computing in the laser stack with saturable absorber first proposed in [START_REF] Barbay | Excitability in a semiconductor laser with saturable absorber[END_REF]. The same laser stack can be used to study different dynamical properties based on the coupling type (discrete or continuous) or coupling topology (evanescent or delayed feedback). In this thesis, we demonstrate a variety of experimental and numerical results mainly relating to the computing properties that can be realized using the laser stack. The next section of the chapter will present a chapter wise summary of the key results followed by a section of the possible directions of future work.

Summary and conclusions

The first chapter presented the motivation for the development of alternative computing primitives and showed how a VCSEL with saturable absorber can be considered to function as an optical neuron due to its neuromorphic properties.

In the second chapter, the effect of coupling via delayed optical feedback was studied.

Through experimental and numerical analysis we showed that delayed optical feedback gives rise to attractors in the system and these attractors correspond to different pulsing patterns in the long term depending on the carrier recombination time scales in the gain and saturable absorber regions. These results are in contradiction to the previous work which postulated that such systems with feedback could be used as optical buffers to store information indefinitely [START_REF] Garbin | Topological solitons as addressable phase bits in a driven laser[END_REF][START_REF] Romeira | Regenerative memory in time-delayed neuromorphic photonic resonators[END_REF]. These attractors can be seen as local minima in a high dimensional space and the system can be seen as performing an energy minimization problem. More specifically, in devices with faster saturable absorber section the final pulsing patterns will be equidistant. Whereas in devices with a faster gain section, the final pulsing patterns can be both equidistant and non-equidistant depending on the feedback time τ of the system. The latter can be seen as an interesting case of occurrence of symmetry broken states in the pulse timings. From an applied point of view, this delay system can be seen as an attractor based computer such as a fully-connected Hopfield network. The initial perturbations that generate the input pulsing pattern play the role of an initial condition and the asymptotic pulsing pattern recorded after several roundtrips in the system indicate which attractor the system has converged to and this convergence is a consequence of similarity between the initial condition and the said asymptotic pulsing pattern. Towards the end of the chapter, we present some results on the polarization dynamics in a single micropillar with and without delayed optical feedback. We showed how a single circular micropillar when subjected to incoherent perturbations can emit pulses with several different polarization states. Further, elliptical micropillars when subjected to similar perturbations emit light along a specific polarization. We then showed the polarization dynamics in a circular micropillar subjected to delayed optical feedback. The delayed optical feedback can be seen as a special case of coherent perturbation. In the presence of delayed optical feedback, a single perturbation from an external source generates a pulse train. We report that in this pulse train the total intensity is constant with noise like fluctuations whereas the linearly polarized intensity of the laser oscillates. The oscillation period appears to be weakly dependent on the bias pump and thus is likely to be of purely dynamical origin.

In the third chapter, we present results on spatial coupling of micropillar lasers. These results are predominantly numerical. We show how altering the pump and/or coupling in 2-D lattices of micropillar lasers can result in interesting circuits such as coincidence detection circuits, temporal pattern recognition circuits, and on chip oscillators. Towards the end, we make a brief foray into computing with neural codes and show how a particular example of neural code called rank order coding can be implemented on using micropillar lasers. We demonstrate a computing accuracy of ⇡ 74 % on the MNIST handwritten digit database. While this accuracy is not comparable to state of the art neural networks and other machine learning techniques which report near perfect accuracy, it is noteworthy that the training procedure for rank order coding requires very few samples (20 / class) and is very simple. We strongly believe the accuracy reported here is not a fundamental limit and can be refined with optimal training routines.

The final chapter is devoted to the use of machine learning techniques for extreme event prediction in a system based on the same laser stack. The experimental data is taken from a broad area VCSEL with a gold mask over it realizing a quasi 1-D system. This system, when pumped over threshold, gives rise to extreme events in certain regimes.

We developed a method using transfer entropy to identify optimal precursors of extreme events and then trained various machine learning algorithms on it to predict the occurrence of such events ahead in time. An interesting aspect of this is that we could predict the occurrence of extreme events at the center of the quasi 1-D structure using a time trace outside the principle correlated structure of the extreme event. This cross prediction can be seen as a special case of prediction with partial information. We introduced and used several machine learning techniques videlicet k-Nearest Neighbours, Logistic Regression, Reservoir Computing, and Recurrent Neural Networks. The maximum prediction accuracy was ⇡ 75 % for the cross prediction. Our task, since it required the prediction of a binary descriptor (extreme event or non extreme event) using a displaced time series is novel and fundamentally different from other previously reported tasks such as in ref. [START_REF] Närhi | Machine learning analysis of extreme events in optical fibre modulation instability[END_REF][START_REF] Salmela | Machine learning analysis of rogue solitons in supercontinuum generation[END_REF] which predict the amplitude of an extreme event given a certain finely resolved spectral signature.

Possible directions for future research

From an hardware perspective, there are two main directions for future research. The first to ameliorate the device level performance of the micropillar lasers and the second to scale up computational capacity of micropillar based systems. For the former objective, it would be desirable to develop electrically pumped micropillar lasers as that would enable easy control of pump over large lattices of micropillars. In order to better harness and master the physical response of the micropillar, it is important to be able to tune the recombination timescales of the carriers in the gain and SA sections. Up to now the parameters were a result of the etching conditions of the micropillars, which result in similar recombination timescales with some fluctuations. Having a much faster SA section would result in larger amplitude excitable pulses without noise-like satellite pulses. Doping of the SA section is a possible way forward to modify the time scale while keeping the other optical properties intact. From a systems perspective, it is imperative to increase the number of coupled micropillar lasers to increase the computational capacity. One of the ways of moving forward would be to couple 2-D lattices using out of plane diffractive optical elements and this would be explored under the framework of the ANR Anaconda project. An alternative way would be 

Abstract:

The work presented in this thesis can be divided into two parts: photonic neuromorphic computing and machine learning applied to photonics. In the first part of the thesis, we present experimental and numerical results developed using coupled excitable (spiking) micropillar lasers. Spiking lasers exhibit several similarities to biological neurons but operate at much faster timescales. This similarity enables us to directly map some biologically plausible computing frameworks onto micropillar lasers thus paving the way for new neuromorphic substrates in the optical domain. The micropillar lasers can be coupled either using delayed optical feedback or spatial coupling. We first consider a single micropillar laser with delayed optical feedback. In this case, we show that the system is capable of supporting regenerative spike trains which can be manipulated (written, erased, and displaced) with single optical perturbations. In the short term, the system behaves like an optical buffer preserving the timing information about the initial perturbation sequence. However, we demonstrate that in the long term any arbitrary perturbation pattern eventually converges to one of the possible multistable spiking patterns. This finite degree of multistability consists of periodic and symmetry-broken states depending on the physical parameters of the micropillar laser. Symmetry-broken states appear as pulsing patterns with non-regular timings which can be controlled with experimental parameters. The process of convergence together with the multistability demonstrated here can be used to build content-addressable memories such as the ones based on Hopfield networks. We also present experimental results on the polarization dynamics of the response from micropillar lasers with and without feedback opening the way to using the polarization degree of freedom for neuromorphic processing. Using spatially coupled micropillars, we demonstrate numerically various circuits integrable on-chip capable of performing spike-based logic operations, spiking pattern recognition, and generating periodic spike trains. Lastly, we present results on handwritten digit recognition using a spike coding scheme called rank order coding implemented on an ensemble of micropillar lasers. The second part of the thesis is devoted to the numerical prediction of the occurrence of extreme events by using experimentally recorded data from a quasi 1-D semiconductor laser displaying spatio-temporal chaos. Our prediction is based on partial information of the spatiotemporal field in the laser system and on the identification of precursors. The precursors were identified using correlation plots and transfer entropy. Using machine learning techniques, we demonstrate extreme events forecasting with high accuracy using precursor data from a region spatially disconnected from the location of the extreme event. The prediction horizon thus obtained goes beyond the spatial and temporal correlation scales present in the initial data.
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Figure 1 . 1 :

 11 Figure 1.1: The disparity between the compute power required to train state-of-the-art neural networks and that supplied by Moore's lawThe trend in orange shows the amount of compute power required to train the state-of-the-art algorithms (normalized to petaflop/s-day). The trend in blue shows the compute growth predicted by Moore's law. A petaflop/s-day corresponds to 10 15 operations per second for one day. This amounts to a total of 8.64 ⇥ 10 19 operations (10 15 ⇤ 3600 ⇤ 24). Figure adapted from[START_REF] De Lima | Machine Learning with Neuromorphic Photonics[END_REF] 

Figure 1 . 2 :

 12 Figure 1.2: Power density and clock frequency of microprocessors and the brain Source: IBM Research-Almaden Cognitive Systems Colloquium, 2014

Figure 1 . 3 :

 13 Figure 1.3: Micropillar laser (a) Shows a scanning electron microscope (SEM) image of the micropillar laser fabricated with a SiN cladding. (b) Shows the laser stack with a few typical characteristics. (b)Adapted from[START_REF] Barbay | Excitability in a semiconductor laser with saturable absorber[END_REF] 

Figure 1 .

 1 [START_REF] Hodgkin | Action potentials recorded from inside a nerve fibre[END_REF] shows in (a) an SEM image after the fabrication process and in (b) a schematic and typical characteristics of the micropillar laser.

Figure 1 . 4 :

 14 Figure 1.4: Experimental and numerical study of excitable behaviour in micropillar laser with incoherent excitation Subplot (a) shows amplitude of the response R 1 to a single pulse perturbation versus perturbation energy E for varying bias pump P relative to the self-pulsing threshold P SP = 694 mW. Subplot (b) shows theoretical response amplitude R 1 to single input δ-perturbation pulse µ δ for different bias pumps µ 1 ⌘ A ranging from 2.8 to -42.2. Subplot (c) shows the dependence of the excitable threshold E th (red circles) with reduced bias pump P/P SP and linear fit (blue line). Subplot (d) shows excitable threshold µ δ versus bias pump A. The blue line is the theoretical approximation given by 1+B A. The parameters used for the numerical simulation were: γ G =0.001, γ Q =0.002, B =2, s = 10, η 1 =1.6 and β sp = 10 5 . Adapted from [48].
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 15 Figure 1.5: Experimental study of excitable behaviour in micropillar laser with coherent perturbation Left panel: Response amplitude for a coherent perturbation at λ = 980.47 nm and different bias pumping with respect to the self-pulsing threshold P SP pumping value. The response and perturbation amplitudes are scaled to their maximum value for P/P SP = 94.3. Upper left panel: Excitable threshold dependence for coherent perturbations versus bias pump.. Adapted from [49].

Figure 1 . 6 :

 16 Figure 1.6: Absolute and relative refractory periods Subplot (a) shows the recorded time traces for different delays and their Gaussian fits.Upper traces are the input perturbations and the lower traces are the system's response. The bias pump is set to 71% of the self pulsing threshold. (b) Amplitude of the response R to the first (black) and second (red or gray) perturbation pulses for a double-pulse perturbation with variable delays. R th is the response amplitude at the excitable threshold. Lines are linear fits in selected ranges and are guides for the eye. Adapted from[START_REF] Selmi | Relative refractory period in an excitable semiconductor laser[END_REF].

Figure 1 . 7 :

 17 Figure 1.7: Temporal summation with incoherent perturbations Experimental traces of the system's response to two incoming, sub-threshold perturbations for different perturbation delays δ: (a) 210, (b) 320, (c) 420, (d) 520, (e) 610, and (f) 700 ps. The plots show the statistical density of points (in log scale) for 10,000 different realizations. On the plots a typical response pulse is shown in green. Inset: excitable response to a single perturbation. Red stars are the detected response maxima. Orange is a plot of the median in a sliding window with 500 points. Adapted from [51].

  .8. In subplot (a) and (b), where the delay was 220 ps and 350 ps respectively, the temporal summation occurs; the success rate in (b) is lower. For other cases subplots (c)-(e), the temporal summation does not occur. The locations of both the perturbations are marked by arrows in the figure.

Figure 1 . 8 :

 18 Figure 1.8: Temporal summation with coherent perturbations Experimental traces of the system's response to two incoming, sub-threshold perturbations for different perturbation delays δ:( a )2 2 0 ,( b )3 5 0 ,( c )4 5 0 ,( d )5 4 0 ,a n d (e) 630 ps. The plots show the statistical density of points (in log scale) for 10,000 different realizations. On the plots, a typical response pulse is shown in green. The intensity perturbations are indicated by arrows. Inset: excitable response to a single perturbation median-averaged over 500 points. Adapted from [51].

Figure 2 . 1 :

 21 Figure 2.1: Schematic of the experimental setup with time delayed feedback Figure shows the optically pumped excitable micropillar laser with delayed optical feedback from an external mirror. DM: Dichroic mirror, BS: Beam splitter with 70/30 power split between reflected and transmitted path, MO: Microscope objective, APD: Avalanche photodiode, L: Lens with f = 5 cm, M: High reflectivity feedback mirror, BD: Beam dump, µPillar: Micropillar laser, τ : External cavity round trip time.

  of pulses. This 2-D representation facilitates visualizing the information easily for several pulses per round trip over many round trips. The generation of such two dimensional representations from time series follows a simple folding operation: the time series data (figure 2.2a) is divided into segments of τ and these individual segments form the rows of a matrix as depicted in figure 2.2b. The x-axis of figure 2.2b is now continuous time between 0 and τ and the y-axis is the number of round-trips or discrete time.

Figure 2 . 2 :

 22 Figure 2.2: Transformation from time traces to 2D pseudospace representation

Figure 2 . 3 :

 23 Figure 2.3: Operations on the all optical buffer In all the panels here, the red circle indicates a perturbation. In subplot (a) we see the addition of a pulse train, in subplot (b) we see the effect of refractory period in perturbation (1) and retiming of a pulse train due to perturbation (2), in subplot (c) we see the retiming of a pulse train and in subplot (d) we see the tweezing of a pulse train.See text for additional details.
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 24 Figure 2.4: All optical control of a pulse train In subplot (a) we see the perturbation sequence, in subplot (b) we see the response and in subplot (c) we see the same experiment repeated thousand times.

Figure 2 . 5 :

 25 Figure 2.5: Pulse -Pulse interaction over several thousand roundtrips In subplot (a) the feedback time is τ =8.2ns and in subplot (b) the feedback time is τ =6.33ns

2 . 1 .

 21 The first set of parameters we consider are A =2.4, B =2.2, γ G =0 .01, γ Q =0 .02, s =5 , κ =0 .05, and τ = 1100. These are chosen to match the known physical parameters and the experimental observations[START_REF] Dubbeldam | Self-pulsations of lasers with saturable absorber : dynamics and bifurcations[END_REF][START_REF] Bache | Cavity soliton laser based on VCSEL with saturable absorber[END_REF]: recombination timescales (γ G , γ Q ) are on the order of few hundreds of picoseconds and the feedback time (τ ) is between 5 and 10 ns. The saturable absorber recovers twice as fast as the gain. The small value of γ G and γ Q represents the slow timescale of nonradiative recombination in the quantum wells as opposed to the fast timescale of the cavity photon lifetime. After emitting a pulse, the net gain e G=G Q 1 recovers to 95% of its steady state value in t rec = 393; the feedback time is thus approximately 3 t rec which is comparable to the experiment. The model equations 2.1 do not account for pump or spontaneous emission noise, thus the focus is solely on deterministic dynamics. As described in the previous section, in the vicinity of the perturbation, the system acts like an optical buffer and preserves information in the form of inter-spike distances, here in figure2.6 we compare two examples of experimental time traces with numerical simulations which appear to be in good agreement. In panel (a1), two successive perturbations are sent with a time difference of approximately 12.28 ns, which results in two pulse trains with an inter-spike distance of approximately 0.4 ⇥ τ . This distance is preserved over 250 roundtrips.The evolution of three coexisting pulse trains can be seen in the next panel. Here the non-equidistant pulsing pattern is shown to exist over a short duration of 30 roundtrips.
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 26 Figure 2.6: Pseudospace representation of pulse trains over short duration Experimental (left) and simulation (right) results of pulse trains over short duration. (a) and (b) Represent two and three pulses per round trip respectively. The feedback delay was 4.77 ns in the experiment. Figure adapted from [64]
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 27 Figure 2.7: Phase portrait of Yamada model with a time delayed feedback in the (G,I) planeIllustration of one stable equilibrium (dot) and six stable periodic solutions (curves). Figure adapted from[START_REF] Terrien | Pulse train interaction and control in a microcavity laser with delayed optical feedback[END_REF] 

Figures 2 .

 2 [START_REF] De Lima | Machine Learning with Neuromorphic Photonics[END_REF] show experimental results on the convergence of irregularly spaced pulse trains (two and three pulses per roundtrip) to equidistant pulse trains over the course of several thousands of roundtrips. Figures 2.9 a1, a2, b1, and b2 show the evolution of two and three pulse trains respectively using the pseudospace representation. The pseudospace plots are plotted over 200 roundtrips and at different stages in the convergence as shown in the figure 2.9 a3 and b3 which highlights the slow convergence by plotting the ∆p or pulse-to-pulse timing over consecutive roundtrips. The pulse-to-pulse timing ∆p slowly converges to a value close to a half or a third of the delay time τ , respectively as equidistant pulsing is approached. This slow convergence rate is on the order of a few picoseconds per roundtrip which is very small when compared to the pulse duration of approximately 200 ps. It can be observed in the experiment only over long time periods. The random-walk like fluctuations of the pulse-to-pulse timing are explained by the presence of pump noise in the system, which induces stochastic fluctuations of the micropillar net gain[START_REF] Terrien | Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback[END_REF].

Figure 2 . 8 :

 28 Figure 2.8: Simulation of two coexisting pulse trains (a) and (b) Show the pseudospace representation just after the perturbations and in the long-term respectively. (c) shows the evolution of the elapsed time between successive pulses; the shaded area is the segment represented in (a). (d-e) Show the temporal evolution of G and e G respectively. Figure adapted from[START_REF] Terrien | Pulse train interaction and control in a microcavity laser with delayed optical feedback[END_REF] 
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 29 Figure 2.9: Experimental results of two and three coexisting pulse trains over a long duration Subplots (a) and (b) Represent two and three coexisting pulse trains in the external cavity. (a1), (b1) ,(a2), and (b2) correspond to the pseudospace representation of time traces immediately after the perturbation and after several thousand roundtrips. (a3) and (b3) Plot the pulse-to-pulse timing ∆p versus the roundtrip number. The shaded regions in these sub-panels correspond to the roundtrip numbers visualized in the pseudospace representations in the previous plots. The feedback delay was 8.2 ns.

  is perturbed n times (3 <n 6) before it reaches a steady state, it is possible to access the n pulse solution. Numerical simulations of accessing five pulse solution are presented in figure2.11, the two scenarios in juxtaposition are: (a) perturbations sent to a system in a four pulse solution and (b) perturbations sent to a system in a transient.In panel (a) both the perturbations fail to effect any change in the long term dynamics of the system, the first perturbation labelled A causes the retiming of a pulse train and the second perturbation, labelled B fails to regenerate in the system. Whereas in panel (b), when the system is perturbed (labelled C) during its transient phase, it is possible to access the five pulse solution.

Figure 2 .

 2 Figure 2.12 presents experimental results that highlight the importance of perturbation timing on the long term dynamics of the system. Subplot (a) shows how a perturbation with an appropriate timing and amplitude can trigger a second pulse train thus switching from 1-pulse to 2-pulse regime. This is in excellent qualitative agreement with fig. 2.10 (b) in the basins of attraction. A more intricate case is shown in figure 2.12 (b). As mentioned before, we time our perturbations using an external trigger. In this case, the external trigger sends two trigger signals, each approximately 40 ns wide and 3 µs apart.

Figure 2 . 10 :

 210 Figure 2.10: Multistability and basins of attraction (a1-a6) Represent the intensity time series of the stable periodic pulsing regimes of Eq. 2.1 represented over n periods T , with n the number of pulses in the span of the delay τ . (b-g) Depict the basins of attraction of 2.1 in the plane of timing e t and amplitude ∆Go f a gain perturbation, when one (b) to six (g) equidistant pulses initially exist in the external cavity. The color represents the number of pulses observed in the long-term in the external cavity (panels (a1 -a6) indicate the color code), and the vertical gray lines indicate the timing of the pre-existing pulses.
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 211 Figure 2.11: Simulated time traces showing transients and multistability (a) Shows the effect of two perturbations labeled as A and B starting from a four-pulse solution. (b) Shows a five-pulse solution reached by perturbing the system during a transient.
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 212 Figure 2.12: Experimental time traces showing transients and multistability The figure shows pseudospace representation of time-traces showing response to external perturbations for one (panel (a)) and two pulse (panel (b)) regime. The feedback delay was 8.2 ns.

Figure 2 .

 2 Figure 2.14(a) shows the one-parameter bifurcation diagram of the Yamada model with delay (Eq. 2.1) in the delay time τ , where the solutions are represented by the maximum intensity value attained (denoted by I p ). When τ is increased from 0, successive Hopf bifurcations (H, marked by blue dots at the bottom of subplot (a)) are encountered which leads to the coexistence of several periodic solutions. Each of the Hopf bifurcations correspond to a different frequency. The curve labeled as 1, corresponds to the fundamental solution with one pulse per feedback loop appears at τ = 51.7 and is stable for all valuesof feedback delay. On the other hand, all the n-pulses solutions with n 2 emerge unstably from a Hopf bifurcation, subsequently stabilize in a torus bifurcation when τ increases, these solutions correspond to the periodic emissions of short pulses of light with periods close to sub-multiples of τ . On increasing τ further, these solutions destabilize through a second bifurcation. All these solutions coexist with the zero-intensity equilibrium solution (not shown in the bifurcation diagram) id est the laser off solution, which is stable over the entire range of τ .

Figure 2 .

 2 Figure 2.14 subplot (b) presents the enlargement of the previous figure near the destabilizing bifurcations of the equidistant pulsing regimes with two to five pulses (points P , T 3 , T 4 , and T 5 respectively). The two pulse solution destabilizes at point P via a period doubling bifurcation. Prior to this bifurcation, the two equidistant pulses can be seen as a periodic solution with period τ/2, following this bifurcation, the two pulses become

Figure 2 . 14 :

 214 Figure 2.14: Bifurcation analysis for the Yamada model with faster gain (a) Bifurcation diagram of 2.1, showing the pulse intensity I p with respect to τ , with the number of pulses per feedback loop along each stable periodic solution branch. (b1) Enlargement of the framed area in (a), with further enlargments around point (b2) T 3 and (b3) S 3 . Stable equidistant (E) and non-equidistant (N) pulse solutions are represented in dark and light blue, respectively, and unstable E and N solutions in dark and light orange, respectively. The dots indicate Hopf (H), torus (T), period doubling (P), saddle-node (S), and homoclinic (L) bifurcations.

Figure 2 .

 2 15(b) shows the long term dynamics of the system with τ = 1000 starting from an unstable equidistant two-pulse solution. A small perturbation is applied on the gain variable G which causes the system to begin converging into one of the two possible non-equidistant stable pulsing patterns: the first pulse timing interval decreases (2.15 b2) and the second pulse (highlighted in gray) converges towards a low amplitude state (Figure2.15(b1)). When a different initial perturbation is applied by depleting G slightly (not shown here), the phase-shifted, symmetric version of this solution is obtained, with the first (green) and second (gray) pulses converging to the low-amplitude and high-amplitude states, respectively. Although this leads seemingly to the same long term dynamics, both of these different states occur, one being a phase-shifted version of the other. We also point out that the convergence is very slow and occurs over several thousand of delay times, showing that the stable non-equidistant solutions are only weakly attracting.The three to five pulse solution undergo a different mechanism of destabilization, these points are marked as points T 3 , T 4 , and T 5 respectively. Following these points, a pair of stable and unstable solutions emerge from a saddle node bifurcation (these points are labelled as S n for n=3, 4, and 5). For example, S 3 emerges at τ = 663 for n =3 . The emerging periodic solutions following the saddle node bifurcation have a period close to τ as opposed to τ /n of the n-pulse solution before undergoing the torus bifurcation. Here, the solution following the saddle node bifurcation corresponds to the pulsing regime with n non-equidistant pulses of different amplitude in the feedback loop. At any time, τ ,a vertical cut can give the number of coexisting pulsing solutions in the external cavity.
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 215 Figure 2.15: Pulse-timing symmetry breaking with two pulses (a1) Maximum I p of pulse intensity and (a2) relative inter pulse timings t p along the branches of two equidistant and two non-equidistant pulses, with respect to τ .S t a b l e and unstable solutions are represented in blue and red, respectively. (b) Simulation of 2.1 for τ = 1000 [gray lines in panel (a)] with initial condition very near the (unstable) two-pulse solution, showing the long-term evolution of (b1) I p and of (b2) t p . The insets in (b1) show the intensity time series during the two first and two last roundtrips through the feedback loop; the dots and arrows indicate the amplitudes and relative timings as represented in (b1) and (b2), respectively

Figure 2 .

 2 Figure 2.16(b). Here the regions of stability of the non-equidistant pulsing solutions are resonance tongues bounded by saddle-node bifurcations. The stability regions of both types of solutions extend over large areas of the (τ ,κ) plane and show a high degree of

Figure 2 . 16 :

 216 Figure 2.16: Coexistence of solutions in Yamada model with faster gain (a) Intensity profiles of coexisting periodic solutions of (1), for τ = 1000 and κ =0.2.( b ) Regions of stability, in the (τ ,κ)-plane of feedback parameters, of the families of equidistant (E) and non-equidistant (N) periodic solutions with one to eight pulses per feedback loop. The number of pulses is indicated in the colored regions, and the star indicates the parameter point (τ, κ) = (1000, 0.2) of the time series in panels (a).
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 218 Figure 2.18: Evolution of inter-spike interval during the convergence process from a symmetrical state to a symmetry broken state Subplots (a) and (b) Show the convergence of a two-pulse and a three-pulse solution from a symmetrical state to a symmetry broken state. The roundtrip number 0 corresponds to the time trace just after the perturbation.

Figure 2 . 19 :

 219 Figure 2.19: Probability density function of choice of random angle and the resulting intensity measurement Subplot (a1) shows the realization of choosing 50000 random angles from a uniform distribution between 0 and π and subplot (a2) shows the resulting intensity measurement
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 220 Figure 2.20: Experimental setup for measuring linearly polarized component of the excitable response oriented along a particular axis DM: Dichroic mirror, BS: Beam splitter, MO: Microscope objective, APD: Avalanche photodiode, µPillar: Micropillar laser, P1: Linear polarizer oriented along the laboratory reference frame, OSA: Optical spectrum analyzer

Figure 2 . 21 :

 221 Figure 2.21: Probability density function of polarization insensitive intensity measurement and polarization sensitive intensity measurement in a circular micropillar The central plot displays the joint distribution of the values of the polarization sensitive and insensitive intensity measurement. The individual probability densities are plotted on the sides. The polarizer was oriented along the laboratory reference frame.

Figure 2 . 22 :Figure 2 . 23 :

 222223 Figure 2.22: Probability density function of polarization insensitive intensity measurement and polarization sensitive intensity measurement in a elliptical micropillar The central plot displays the joint distribution of the values of the polarization sensitive and insensitive intensity measurement. The individual probability densities are plotted on the sides. The polarizer was oriented along the laboratory reference frame.

Figure 2 . 24 :

 224 Figure 2.24: Experimental setup for measuring the linearly polarized component of the excitable response oriented along a particular axis for a micropillar laser with delayed optical feedback DM: Dichroic mirror, BS: Beam splitter with 70/30 power split between reflected and transmitted path, MO: Microscope objective, APD: Avalanche photodiode, L: Lens with f = 5 cm, M: High reflectivity feedback mirror, BD: Beam dump, µPillar: Micropillar laser, τ : External cavity round trip time.

  states. Theoretically, our collaborators have shown that the stable n-pulse equidistant solutions destabilize via torus bifurcations. In the vicinity of the torus bifurcation, a saddle node bifurcation appears which stabilizes the symmetry broken states that are shown in the bifurcation diagram (fig.2.14). Experimentally, these states have been observed in the case of 2 and 3 pulses in the external feedback loop. Physically, the strong amplitudetime coupling is responsible for the strong amplitude time coupling is responsible for the

Figure 2 . 25 :

 225 Figure 2.25: Fourier spectrum of polarization sensitive and insensitive intensity measurement in micropillar laser with feedback Subplot (a) shows the fundamental peak corresponding to the feedback time and the side bands signifying a modulation in the electric field orientation. Further, the inset shows a slight change in the modulation frequency as a function of the bias pump. Subplot (b)shows that in a polarization insensitive intensity measurement the only observed peak in the Fourier spectrum corresponds to the feedback time.

Figure 3 . 1 :

 31 Figure 3.1: Coupling constant κ as a function of distance between two micropillars of radius r =2.5µm
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 32 Figure 3.2: Average adimensional propagation speed of a signal < v/v o > (units of speed described in text) in a coupled micropillar chain for different values of pump A

Figure 3 . 3 :

 33 Figure 3.3: Critical pump A c required for signal propagation for different coupling strengths κ
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 34 Figure 3.4: Saltatory propagation for different coupling strengths In (a) and (b), the temporal response (normalized to cavity photon lifetime) of each cavity is plotted with an offset for clarity. The coupling constant in (a) is κ =0.01 and in (b) is κ =0.1. Adapted from [102]

. 6 .

 6 The two input micropillars are A and B and the output micropillar is C. The above threshold perturbations are marked by arrows. Except in the case where no input is present, the output of the gate in C is always 1. With only one input, the response is trivially 1 as the single excitation (input at either at A or B) propagates throughout the structure like in the chain of micropillars. If both the inputs are 1, the pulses collide in the central micropillar and excite the output micropillar C. Therefore, a spike emerges and can propagate to possibly another gate. This forms an OR gate. Note that where the two incoming pulses meet, the response latency time is smaller.

Figure 3 . 6 :

 36 Figure 3.6: Numerical simulation of a spike-based OR gate circuit Temporal responses for each cavity (offset for clarity) in the case of two perturbations in nodes A and B. The response in node C is plotted in dashed and blue. Inset: overlayed responses for inputs in nodes A, B, and both A and B. The cavities are pumped with A =2.74. The coupling strength is κ =0.15. Adapted from [102]

3 . 7 )

 37 . The value is chosen to prevent the propagation of a single pulse. However, when the two inputs are present, the coupling of the two lower intensity pulses in the central micropillar is sufficient to cross the excitable threshold and a pulse is created in C. The lower pump is immediately translated into a larger spike latency time and a smaller response pulse. When these smaller pulses are coupled into the central micropillar, they can produce a response pulse in C which can be cascaded eventually to other gates. The same phenomenon arises for a constant pump value of A =2 .74 and a change of the coupling constant of the nodes next to the vertex node, for values in the range 0.05 / κ 0 / 0.1. If κ 0 / 0.05, the pulse cannot propagate anymore and is stopped completely. If κ 0 ' 0.1, the gate transforms into an OR gate since a single pulse can propagate through the vertex.
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 37 Figure 3.7: Numerical simulation of a spike-based AND gate circuit Temporal responses for each cavity (offset for clarity) in the case of two perturbations in nodes A and B. The response in node C is plotted in dashed and blue. Inset: overlayed responses for inputs in nodes A, B, and both A and B. The cavities are pumped with A = 2.74 except the one marked by dashed circles with A =2.45. The coupling strength is κ =0.15. Adapted from [102]

= 515. 5

 5 shown in figure3.8). The input signal is sent to micropillar A and the output is recorded from micropillar D, the response is recorded at several micropillars in the circuit to demonstrate the operation of the temporal recognition. The input spike propagates through the upper arm (see inset in Fig.7). At the first crossing, the signal is split in two parts. The lower arm implements a delay line whose delay is equal to ∆t. Both arms meet in a node structure similar to the previously shown AND gate. Every time the temporal pattern in input is recognized, a spike is emitted at the output. To speed-up the computation time and reduce the size of the delay line we have accelerated the carrier dynamics in the simulation by taking γ G = γ Q =0 .01 in Eqs. 3.1. The input pattern recognized corresponds essentially to the propagation delay of the pulse in the lower arm. Generalization of the circuit to the recognition of more complex temporal patterns can be done via integrating several delay lines. However, the refractory time of the nodes sets the lower limit of the detectable separation between two input spikes.
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 38 Figure 3.8: Spike based temporal pattern recognition A signal is sent to node A and recorded in nodes A, B, C, and D. In node D, the output pulse signals the presence of specific temporal pattern: two spikes separated by ∆t = 515.5. In (a) the input signal consists of three spikes separated by ∆t.I n( b )t h e input signal consists of two first spikes separated by ∆t and a third spike separated by ∆t 0 = 575.5. In inset is shown the micropillar circuit considered. The micropillar are uniformly pumped except the two pillars with dashed circles (same parameters as in Fig. 3.7 except γ G = γ Q =0.01). Inset: schematic of the circuit used (the lower arm length has been reduced for clarity). The total number of nodes is 105. Adapted from [102]

Figure 3 . 9 :

 39 Figure 3.9: On chip oscillator A signal is sent to node A which then splits into three paths, Path 1, 2 and 3 as marked in the figure. Paths 1 and 2 (of nodes A-C-B and A-D-B respectively) are viable paths for signal conduction whereas Path 3 (of nodes A-B-C or A-B-D) is not. This results in the performance if this as an on chip oscillator. See text for additional details.

Figure 3 . 10 :

 310 Figure 3.10: SEM image of 1-D chain of micropillar lasers

Figure 3 . 11 :

 311 Figure 3.11: SEM image of coincidence detector / AND logic gate In the figure here, the micropillar labeled with the blue circle is used as the input and the micropillar labeled with the black circle is used as the output. The two micropillars labeled with the red circles is where either the pump (shown here) or coupling can be altered to achieve the coincidence detector / AND logic gate.

Figure 3 . 13 :

 313 Figure 3.13: Pixel wise average computer for digits of each class (brighter is higher)

Figure 3 . 14 :Figure 3 . 15 :

 314315 Figure 3.14: Weights for rank-order coding (brighter is higher)

Figure 3 . 16 :

 316 Figure 3.16: Confusion matrix for prediction using rank order coding

Figure 4 . 2 :

 42 Figure 4.2: Dynamics observed in the quasi-1D system for different values of pump Experimental observation of extreme events, their corresponding logarithm of the PDF of the intensity height H and power spectral density (PSD) for different normalized pump values P/P th (a) 1.02, (b) 1.17, (c) 1.20, and (d) 1.25 are plotted. Panel (b) also shows an excerpt of the temporal evolution of intensity at the central detector C. Extreme events (AI > 2) are marked in red. Figure adapted from [144]

Figure 4 . 3 :

 43 Figure 4.3: Histogram of spacing between two extreme events for P/P th =1.2

Figure 4 . 4 :

 44 Figure 4.4: Cross-correlation and average plots to identify precursors (a) Temporal cross-correlation X c,m (k) (defined in text) between detector responses in points C (central detector) and point M at delay k ns. (b) Same as (a) restricted to only extreme events at point C. (c) Average of responses at point M and around the time when an extreme event occurred at C. Adapted from [145]

  fig.4.5 and is a function of two coordinates, space (displacement from the center) and time (lags). It indicates the amount of information transfer from that point to the center (which has coordinates (0,0)). In the figure, the x-axis is in micrometers and the y-axis is in sampling time (50 ps or 20 GS/s). Higher values on the logarithmic color bar signify higher information transfer. We observe three main regions of high information transfer.The first region is centered around the center (x c x m =0): this region marks the principle correlated structure around the extreme event. It corresponds to the correlated region (vertical line around t =0) already shown in the correlation plots presented in figure 4.4.

Figure 4 . 5 :

 45 Figure 4.5: Transfer entropy T M !C Transfer entropy is computed between every point and the center. The x-axis is in micrometers and the y-axis is in samples

Figure 4 . 6 :

 46 Figure 4.6: Average of signal recorded at three points (a) +12.86 µm from the center, (b) at the center and (c) -14.55 µm from the center.

  a multi-class classification. Since our use case only has two classes, a simple logistic classifier is used. The time series with m samples is fed to the classifier and the predicted output is trained using Eq. 4.4. Where h θ (x) is the hypothesis given an input x 2 R N (column vector) and weights θ 2 R N (row vector), y is the label used for training and Cost(h θ (x), y) is the cost function for a given training example. This particular choice of cost function yields a convex optimization problem which minimizes the cost averaged over all the training examples but its derivation is out of scope for the manuscript. The cost function has two contributing parts: when y =0 , the cost is log(1 h θ (x)) and for y =1the cost is log(h θ (x)). Since h θ (x) takes values between 0 and 1, a simple illustration shown in figure4.7 shows how the cost changes according to the hypothesis h θ (x). In panels (a) and (b) the cost is plotted respectively versus hypothesis when y =1 and y =0and as expected the cost is minimum as the hypothesis approaches the true label. The weights are trained via an iterative procedure using gradient descent. Once the weights are trained, the classifier generates a linear decision boundary such that the output class is 1 if the hypothesis h θ (x) for a given x is greater or equal to 1/2. This corresponds to θ • x 0. The output class is determined to be 0 otherwise. The number of trainable parameter are m +1 4 .

Figure 4 . 7 :

 47 Figure 4.7: Cost per training example Panels (a) and (b) plot the training cost per example when the y = 1 and 0 respectively

Figure 4 . 8 :

 48 Figure 4.8: Schematic GRU cell ĥ[t],x[t],r[t],z[t] and h[t] are respectively: the intermediate hidden state, input, output from the reset gate, output from the update gate and the hidden state at time t. σ and tanh correspond to the application of the sigmoid and hyperbolic tangent function. Adapted from Wikipedia.

Figure 4 . 9 :

 49 Figure 4.9: Neural network architecture

  They are particularly interesting as reservoirs are themselves dynamical systems with recurrent connections thus making them ideal candidates to map other dynamical systems. A schematic of a reservoir computer is shown in figure 4.10. Additionally the training procedure for a reservoir computer is minimal as compared to its counter parts.

Figure 4 . 10 :

 410 Figure 4.10: Schematic of a reservoir computer The red and black arrows denote the input weights and the internal reservoir connections respectively. These weights are chosen at random and fixed. The blue arrows correspond to the trainable output weights.

Figure 4 . 11 :

 411 Figure 4.11: Evolution of initial conditions in reservoirs with different spectral radiiThe spectral radius in (a) and (b) is approximately 0.9 and 1.8 respectively.

Figure 4 . 12 :

 412 Figure 4.12: Evolution of initial conditions in a single node in reservoirs with different spectral radiiThe spectral radius in (a) and (b) is approximately 0.9 and 1.8 respectively.

Figure 4 . 13 :

 413 Figure 4.13: Sensitivity to initial conditions in reservoirs with different spectral radii The spectral radius in (a) and (b) is approximately 0.9 and 1.8 respectively. The difference in trajectories here is averaged over all nodes in the reservoir.

Figure 4 .

 4 Figure 4.14: 1-D bifurcation diagram of one node in the reservoir using spectral radius as the bifurcation parameterFor generating this plot, the reservoir was initialized at a random state and evolved for 1000 iterations. After this initial transient, the reservoir is assumed to have reached the attractor and them sampled for 200 more iterations to compute the probability of observing it on a particular node state. Computing a similar plot over the entire reservoir yields a similar result but the structure of growth of the attractor size is averaged out. The colourbar represents the probability of observing the node at a given node state.

Figure 4 .

 4 Figure 4.15: Confusion matrix

  tion tasks. The results of a binary classification task can be expressed in the form of a confusion matrix as shown in figure4.15. Where TP, TN, FP and FN stand for true positive (extreme event classified as extreme event), true negative (normal event classified as normal event), false positive (normal event classified as extreme event) and false negative (extreme event classified as normal event) respectively. The metric used to judge the classifier is the accuracy defined as A = TP+TN TP+TN+FP+FN . This particular score is suitable only when the dataset is balanced and a different score needs to be taken for an unbalanced dataset. Considering only a balanced dataset, an ideal classifier will achieve an accuracy of 1 as TP = TN = 1 and FP = FN = 0. A random classifier generates an accuracy of 50 % as all the labels are assigned randomly and TP = TN = FP = FN = 1/2. A biased classifier assigning every event a positive label will achieve an accuracy of 50 % because TP = FP = 1/2 and TN = FN = 0. Similarly for a biased classifier assigning negative labels the accuracy will also be 50 % but with TN = FN =1/2 and TP = FP = 0. The accuracy for the different classification techniques for cross prediction at points P + , and P 13 are shown in figures 4.16 and 4.18 respectively. Prediction at point P + in general yields higher accuracy as it is identified to be in the vicinity of the precursor.
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 416417 Figure 4.16: Cross prediction accuracy at point P + (+12.86 µm from the center)

Figure 4 . 18 :Figure 4 . 19 :

 418419 Figure 4.18: Cross prediction accuracy at point P (-14.55 µm from the center)

Figure 4 . 20 :

 420 Figure 4.20: Local prediction accuracy

Figure 4 . 21 :

 421 Figure 4.21: Comparing algorithms for local prediction accuracy. Subplots (a) and (b) Indicates which algorithm performs and by how much respectively.

Figure 4 . 22 :

 422 Figure 4.22: A Cross -A Local Accuracy at point P + -Accuracy at point P 0 ; positive values signify better cross prediction

Figure 5 . 1 :

 51 Figure 5.1: Fiber coupled single micropillar laser and preliminary measurement Subplot (a) shows the optical setup used to characterize the fiber coupled micropillars. OSA: Optical spectrum analyser, WDM: Bidirectional wavelength multiplexer. The bidirectional WDM provides the functionality of merging two fibers carrying different wavelengths of light into one fiber and vice-versa. Subplot (b) plots the laser L-I characteristic on a log log plot. Subplot (c) shows the spectrum of the micropillar laser acquired using an OSA with 20 pm resolution. The 3 dB bandwidth is approximately 0.7 nm.

113 Chapter 6

 1136 to couple individual micropillar lasers to single mode fibers and use the fiber based sys-tems for increasing the feedback time or coupling several micropillars. We collaborated with an internal startup to develop fiber coupled micropillars and the results are presented in figure5.1. In subplot (a) we show the schematic of the fiber based setup and in subplot (b) we show the L-I curve. The complete characterization is underway.On a more fundamental note, we are working towards developing a mathematical model which could explain the modulation observed in the polarization sensitive detection in the delayed optical feedback measurements. The account of the polarization dynamics of the micropillars could be very beneficial since it adds an additional degree of freedom to the system. It allows for properties like neuronal inhibitory dynamics to be optically implemented. The same inhibition dynamics are interesting for computing in networks for spiking neurons but are also necessary for implementing nonlinear decision boundaries such as the XOR logic.Development in all of the above mentioned aspects would help in making the neuromorphic technology based on micropillar lasers feasible and scalable.Synthèse en françaisLes travaux présentés dans cette thèse se divisent en deux parties : une première concernant le calcul neuromorphique photonique et une seconde utilisant l'apprentissage automatique appliqué à la prédicition de la dynamique en photonique.Dans la première partie, nous présentons des résultats obtenus en utilisant des lasers à micropiliers excitables («spiking» ou impulsionnels). Les micropiliers laser excitables ont été démontrés précédemment dans le groupe, grâce à une conception originale de l'empilement des couches du microlaser. La cavité possède une zone active avec deux puits quantiques pour la zone de gain et un puits quantique pour la zone à absorption saturable, et est insérée entre deux miroirs de Bragg. Les trois puits quantiques de la zone active sont en InGaAs/AlGaAs et sont conçus pour une émission et une absorption autour de la résonance de cavité visée à 980nm. Les lasers sont pompés optiquement autour de 800nm, et la zone de gain est pompée sélectivement grâce à une ingénierie spécifique de la structure de l'empilement des miroirs. La compétition entre le gain et les pertes dans le microlaser donne lieu au régime excitable. Les microlasers excitables à absorbant saturable intégré ont des propriétés similaires à celles des neurones biologiques, avec un période réfractaire absolue et relative, un temps de latence à la réponse et la propriété de sommation temporelle, mais fonctionnent à des échelles de temps de l'ordre d'un million de fois plus courtes. Cette similarité nous permet d'appliquer directement certains concepts de calcul biologiquement plausible dans des micropiliers lasers, ouvrant ainsi la voie à de nouveaux substrats pour le calcul neuromorphique ultrarapide dans le domaine optique. Nous présentons des résultats expérimentaux et numériques sur ces micropiliers, indépendants ou couplés, soit par rétroaction optique retardée, soit par couplage spatial. Dans le cas d'un laser à micropilier avec une rétroaction optique retardée, nous montrons que le système supporte des trains d'impulsions régénératifs qui peuvent être manipulés avec des impulsions optiques uniques. Au temps court, les trains d'impulsions régénératifs sont identiques à la séquence de perturbation initiale et se répètent à la période du retard optique, se comportant ainsi comme un buffer optique. Cependant, dans le long terme, le système présente un degré fini de multistabilité. Toute séquence arbitraire d'impulsions initiales inscrite dans la cavité externe finit par converger vers l'un des régimes stables possibles qui sont constitués d'états périodiques et d'états à symétrie brisée. Les états à symétrie brisée apparaissent comme des régimes périodiques avec des impulsions non équidistantes, brisant ainsi la symétrie de décalage temporel des trains d'impulsions équidistants. Le processus de convergence démontré ici peut être utilisé pour construire des mémoires adressables par leur contenu, comme celles basées sur les réseaux de Hopfield. Nous présentons des résultats expérimentaux sur la dynamique de polarisation de la réponse des lasers micropiliers avec et sans rétroaction. Sans rétroaction optique, le laser à micropiliers peut émettre différents états de polarisation en fonction de sa géométrie. Cependant, avec une rétroaction optique retardée, le micropilier laser émet un train d'impulsions avec une amplitude constante mais un angle de polarisation oscillant, probablement dû à un phénomène d'origine dynamique. Ces résultats ouvrent la voie à l'utilisation du degré de liberté de la polarisation pour le traitement neuromorphique de l'information dans les lasers à micropiliers. En utilisant des micropiliers couplés spatialement, nous démontrons numériquement divers circuits intégrables sur puce capables d'effectuer des opérations logiques basées sur des impulsions, de reconnaître des séquences temporelles d'impulsions et de générer des trains périodiques. Ces fonctionnalités s'observent soit en modifiant à l'étape de fabrication le couplage spatial entre les micropiliers, soit pendant l'expérience en agissant sur le pompage des micropiliers. Enfin, nous présentons des résultats sur la reconnaissance de chiffres manuscrits en utilisant un codage temporel appelé codage par ordre de rang implémenté sur un ensemble de lasers micropiliers. Dans la deuxième partie, nous présentons des résultats numériques sur la prédiction de l'occurrence d'événements extrêmes en utilisant des données expérimentales issues d'une microcavité laser de grande extension spatiale. La microcavité utilisée est de conception analogue à celle utilisée dans la première partie de la thèse mais se distingue par le fait que qu'elle est étendue dans une direction, donnant lieu à une structure transverse quasi-1D. Le laser est pompé au dessus de son seuil, et dans certains régimes de paramètres permet l'observation de chaos spatio-temporel et d'événements extrêmes. Notre prédiction est basée sur une connaissance partielle du champ spatio-temporel dans le laser et sur l'identification de précurseurs. Ces derniers ont été identifiés en calculant la corrélation et l'entropie de transfert. Nous avons analysé les performances de plusieurs techniques d'apprentissage automatique telles que la régression logistique, les k-voisins les plus proches, le calcul à réservoir et les réseaux neuronaux récurrents sur la tâche de prédiction. Nous démontrons une bonne capacité de prévision (jusqu'à une précision d'environ 75%) en utilisant les données d'une région spatialement déconnectée de l'emplacement de l'événement extrême. Titre : Calcul photonique avec des micropiliers excitables couplés et prédiction d'événements extrêmes dans des microcavités lasers Mots clés : Calcul neuromorphique, Laser excitable, Micropilier laser, Cavités couplées, Dynamique à retard, Prédiction dévénements extrêmes Résumé : Dans la première partie de la thèse, nous présentons des résultats expérimentaux et numériques sur le calcul neuromorphique photonique obtenus avec des micropiliers lasers excitables (impulsionnels ou "spiking") couplés. La dynamique des lasers excitables présente plusieurs similitudes avec celle des neurones biologiques, tout en possédant des échelles de temps beaucoup plus rapides. Cela nous permet d'appliquer certains concepts de calcul inspirés des neurosciences directement aux micropiliers lasers, ouvrant ainsi la voie à de nouveaux substrats neuromorphiques en photonique. Les micropiliers lasers peuvent être couplés soit par rétroaction optique retardée, soit spatialement. Dans le cas d'une rétroaction optique retardée, nous montrons que le système supporte des trains régénératifs d'impulsions qui peuvent être manipulés (inscrits, effacés, déplacés) avec des perturbations optiques uniques. Au temps court, le système se comporte comme une mémoire tampon optique préservant l'information temporelle sur la séquence de perturbations initiales. Cependant, nous démontrons que dans le long terme, toute séquence d'impulsions arbitraires inscrite doit converger vers l'un des états multistables accessibles au système. Les états multistables sont des trains d'impulsions réguliers et périodiques ou à symétrie temporelle brisée, en fonction des paramètres physiques du micropilier laser. Les états à symétrie temporelle brisée apparaissent comme des séquences d'impulsions non régulières qui peuvent être contrôlées expérimentalement. Le comportement asymptotique des états multistables peut être utilisé pour construire des mémoires adressables par leur con-tenu, comme celles basées sur les réseaux de Hopfield. Nous présentons également des résultats expérimentaux sur la dynamique de polarisation des impulsions excitables émises par les micropiliers lasers avec et sans rétroaction, ouvrant la voie à l'utilisation du degré de liberté de polarisation pour le traitement neuromorphique. Dans le cas des micropiliers couplés spatialement, nous introduisons et étudions numériquement des circuits intégrables sur puce capables d'effectuer des opérations en logique excitable, de reconnaître des séquences temporelles d'impulsions et de générer des trains d'impulsions périodiques.Enfin, nous présentons un algorithme de reconnaissance de caractères utilisant un codage basé sur l'ordre temporel d'émission des impulsions dans un ensemble de micropiliers lasers. La deuxième partie de la thèse est consacrée à la prédiction numérique de l'occurrence d'événements extrêmes à l'aide de techniques d'apprentissage automatique et utilisant des données expérimentales obtenues dans un laser à semiconducteurs en régime de chaos spatiotemporel. La prédiction se base sur une connaissance partielle du champ spatiotemporel dans le laser et sur l'identification de précurseurs. Les précurseurs ont été identifiés grâce à l'entropie de transfert. En utilisant des techniques d'apprentissage automatique, nous avons pu prévoir les événements extrêmes avec une grande précision en utilisant des données de précurseurs provenant d'une région spatialement déconnectée du lieu de l'événement extrême.L'horizon de prédiction ainsi obtenu va au-delà des échelles de corrélations spatiale et temporelle présentes dans les données initiales. Title: Photonic computing with coupled spiking micropillars and extreme event prediction in microcavity lasers Keywords: Neuromorphic computing, Spiking lasers, Micropillar lasers, Coupled cavities, Delay dynamics, Extreme events forecasting

  

  

  

  

  

  

  Show a representative time trace after a large number of roundtrips in the cavity. The colour of the arrows corresponds to the inter-pulse interval shown in 2.18. The feedback time in the experiment was 8.2 ns.
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It is important to note that this paper is often incorrectly credited with inventing the backpropagation algorithm. This paper only claims to be a clear demonstration showing that the algorithm can be used to teach representations. Several researchers independently invented similar algorithms.

We will reintroduce the model throughout the manuscript where ever it is used for the ease of the reader

İ is trivially 0 if I =0which prohibits any change in the intensity

The typical diameter of the pump beam using an 80x microscope objective is 10 µm

It is close to but not equal to τ as the emission period is the sum of the delay and spike latency. In the previous works from our group, we showed that such a system can sustain optical temporal dissipative solitons for a finite duration. This finite duration results from a pump noise-induced escape from a stable periodic solution to a stable equilibrium[START_REF] Terrien | Asymmetric noise sensitivity of pulse trains in an excitable microlaser with delayed optical feedback[END_REF] 

This mention of self-pulsations is different from the self-pulsing threshold of a single micropillar laser. The latter corresponds to the homoclinic bifurcation in a single micropillar laser without feedback and is a result of the interplay between the variables in the Yamada model. 2.1

Here noise correction refers to the fact that on every feedback instance, the output is a fixed response as long as the input exceeds a threshold thus avoiding any accumulation of noise.

t refractory is the refractory period.

We use a custom routine based on MATLAB® DDE23 function

Elliptical micropillars are fabricated by altering the shape of the mask to obtain elliptically shaped micropillars. The dimensions of the large and small axis are 5 µm and 4 µm respectively.

The words spikes and excitable response are used interchangeably in the thesis, I have tried to add footnotes in a few places in order to avoid any confusion to the reader

The word 'learn' is used liberally and refers to the fact that the parameters are decided before hand and fixed for particular applications.

This value chosen here is just to avoid being in the saturated region of the curve. It doesn't play a very critical role in the simulations as we use float64 numbers but this would be very critical in presence of noise or in experiments.

Please note that if a micropillar does not spike, it is assigned tresp →∞and ranked ∞ and not 64, this is chosen as a convention

This was substantiated through a second plot only limited to extreme events as one could argue that any structure of collision might be washed out in subplot (a) as a result of the disproportionate number of non extreme events. This not the case here.

As an interesting example, one can consider the simulation of the Lorenz system[START_REF] Lorenz | Deterministic Nonperiodic Flow[END_REF] with slightly different numerical precision and the solution will diverge!

The term score is a generic one, there can be many ways to define this quantity. The specific definition used will be introduced in the results section of this chapter

m weights + 1 bias. Here m +1=N , the original time trace of m points is transformed into m+1 points by appending a 1 in front of it, this acts like the bias. An alternative way explicitly mentioning the bias would be to write h θ (x)= 1 1+e (θ•x)+b

CNNs have been shown to work well in time series tasks when the time scale of relevant information in known and mentioned in the kernel size.

The final score on the task is an average of the scores obtained from individual networks. The network parameters are not averaged

Another way of doing it would be to save the states of the GRU at every input time step and this would be the equivalent of recording the transient of the RNN system as we input information. This could be used

I use the term chaos liberally here. To rigorously prove the observed phenomenon to be spatiotemporal chaos is not the intention

As a recall, points P+, P0, and P=-are at +12.86 µm from the center, at the center and at -14.55 µm from the center respectively

Except in the case of Logistic regression. There is no physical explanation behind this difference.

This quantity is equal to A best -Ā0 where A best is the accuracy of the best algorithm and Ā0 is the mean of the accuracies obtained by the other algorithms
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of the system. Our group (in collaboration with Saliya Coulibaly at the Université de Lille and Marcel G. Clerc at Universidad de Chile) in the past has shown and explained the mechanisms and formation of extreme events in a quasi-1D semiconductor laser [START_REF] Selmi | Spatiotemporal Chaos Induces Extreme Events in an Extended Microcavity Laser[END_REF][START_REF] Coulibaly | Extreme events following bifurcation to spatiotemporal chaos in a spatially extended microcavity laser[END_REF]. This section of the chapter is inspired by these papers to introduce the readers to the optical system under consideration and characterize the extreme events. The system studied by our group is a planar microcavity laser with an integrated saturable absorber. The device structure is similar to the micropillar lasers outlined earlier on in this thesis but the diameter of the devices under study here is much larger on the order of ⇡ 100 µm. The planar microcavity is covered with a gold mask and an opening of 80 µm in length and 10µm in width is made to realize the quasi-1D structure. The microcavity is then pumped along this rectangular aperture above threshold and the intensity close to the center and Appendix A

Extreme events in a line semiconductor laser
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