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Chapter 1

Introduction

Understanding neuronal computational circuits and mimicking them has been a long-

standing endeavour in many fields, especially since the brain is capable of representing

information it receives from sensory inputs and acting on them with extraordinary effi-

ciency. However, predetermined algorithms are often not very suitable to represent and

act upon such data; sometimes the algorithms need to be developed from the very data

presented to them. This is the foundational idea behind the field of artificial intelligence

(AI).

A preliminary understanding of the structure of the nervous system was brought about by

scientists such as Camillo Golgi and Santiago Ramón y Cajal, who were awarded the No-

bel Prize in Physiology in 1906. Though they shared the Nobel prize, the two scientists

believed in different schools of thought about the nervous structure. Camillo Golgi be-

lieved in the reticular theory to describe the nervous system, postulating that the nervous

system is a single continuous network, whereas Santiago Ramón y Cajal believed in the

neuron theory, which postulated that the nervous system is made up of single discrete

units (neurons) connected through synapses. Inspired by the neuron theory in 1943, two

engineers Warren McCullogh and Walter Pitts proposed the first mathematical model for

the neuron. This initial model represented neurons as binary entities with inputs (excita-

tory and inhibitory) and a threshold for producing an output. Building on that, Rosenblatt

in 1958 proposed a computational model called the Perceptron [1], which arguably was

the world’s first artificial neural network. The Perceptron marked a significant improve-
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ment as it included learning rules and showed promising results on some tasks. It is

worth noting that the initially proposed Perceptron had one layer of neurons and could

only learn linearly separable patterns. This severe constraint was not commensurate

with the hype and led to a decline in interest surrounding Perceptrons. It was several

years before it was discovered that multilayer Perceptrons could learn nonlinear decision

boundaries and possessed much greater computational power. Scientific funding or lack

thereof is often a result of perception surrounding a subject; the bad reputation of single

layer Perceptrons probably was one of the reasons that caused a decline in funding for

AI research for several following years.

While several refinements were made to the Perceptron algorithm over the years, one of

the key contributions to the field was made in 1986, when researchers showed that an

algorithm called backpropagation could be used to teach representations to networks of

neuron like units [2]1.

Although the work of Alan Hodgkin, and Andrew Huxley (awarded the Nobel Prize in

Physiology or Medicine in 1963) on ion channels and excitable neurons [3, 4] predated

the Perceptron model, these findings were not a subject of extensive study by the AI and

machine learning community for a long time. One can view this as a divergence in the

paths of the neuroscience and the AI communities.

From an engineering perspective, the AI community had learnt that coupling discrete

nonlinear units using weights could give rise to networks with an apparent semblance of

intelligence. Armed with an algorithm to train such networks, researchers began their

extensive quest on training models for increasingly complicated tasks. Some of the major

limitations before the turn of the 21st century were the lack of compute power and data

available to scale up such networks; these limitations were eventually removed with the

semiconductor and digital revolution. Subsequently, neural networks gained even more

traction. An alternative framework was introduced in 2002 [5] to model neural compu-

tations which relied on several coupled spiking neurons. Independently, an equivalent

model called echo state networks were introduced [6] which essentially had a similar

1It is important to note that this paper is often incorrectly credited with inventing the backpropagation
algorithm. This paper only claims to be a clear demonstration showing that the algorithm can be used to
teach representations. Several researchers independently invented similar algorithms.
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structure but the definition of a neuron was more abstract and essentially any nonlinear-

ity could be used to model a neuron. These two models can be broadly combined into

a single class called reservoir computing. The main power of this technique arises from

the complex dynamics of coupled nonlinear nodes.

At this point we would like to insist on the difference between neural networks and neu-

ronal networks. The former refers to the engineering abstraction comprising of nonlinear

coupled nodes and the latter refers to the study of biological networks of neurons. The

study of neuronal networks is an extremely complicated endeavour as one often does not

have access to a connectome but even in cases where a connectome is available (for

small organisms like C. Elegans [7]) the mechanisms for computing are not trivial. Over

the years, several neural network models have shown remarkable success at several

tasks. One such feat was when a convolutional neural network (ref. [8]) in 2012 won the

ImageNet Large Scale Visual Recognition Challenge. This feat was one of the reasons

for the renewed interest in the field of neural networks.

Figure 1.1: The disparity between the compute power required to train state-of-the-art
neural networks and that supplied by Moore’s law

The trend in orange shows the amount of compute power required to train the
state-of-the-art algorithms (normalized to petaflop/s-day). The trend in blue shows the

compute growth predicted by Moore’s law. A petaflop/s-day corresponds to 1015

operations per second for one day. This amounts to a total of 8.64⇥ 1019 operations
(1015 ⇤ 3600 ⇤ 24). Figure adapted from [9]
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While the notion of neural networks was inspired from experimental findings in neuro-

science, today, the two fields have diverged significantly. Neural networks in their most

general form are powerful optimization algorithms. Over the years, neural networks have

been trained for increasingly complicated tasks and this is reflected in their power require-

ment. Figure 1.1 plots the growth in the complexity of modern neural network algorithms

and the projected growth of compute power offered by electronics. The computing power

demanded by the algorithms is growing at a much faster rate and cannot be supported by

electronics. One of the most popular examples is the comparison of energy consumption

between Google’s AlphaGo program and the human brain playing a game of Go. It is

estimated that the human brain consumes approximately 106 times less energy as com-

pared to Google’s state of the art AI platform. This is a pertinent comparison as it is a

popular opinion within the community that reinforcement learning, the work horse behind

AlphaGo, is a plausible path for general intelligence.

Figure 1.2: Power density and clock frequency of microprocessors and the brain
Source: IBM Research-Almaden Cognitive Systems Colloquium, 2014

This raises important and fundamental questions about the architecture of modern neural

networks and their implementation on conventional platforms. Figure 1.2 depicts a trend

(in power density and clock frequency) observed in microprocessors that is diametrically

opposite to that of the brain. This shows that while the architecture of neural networks is
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inspired from biology, its current physical implementation is on drastically different primi-

tives. Further, experimental findings show that the brain possesses an extensively parallel

network of neurons that is absent in traditional electronic implementations. At this point

we can raise two important questions:

• Can we ameliorate the hardware implementation of neural networks?

• Can we use architectures inspired from biology to achieve energy efficient comput-

ing?

There are several interesting electronic implementations that can answer both these

questions; some currently available commercial solutions include the development of

Graphics Processing Units and Tensor Processing Units. Other electronic technologies

such as memristors [10], Resistive RAM based binarized neural networks [11], and spin-

tronic oscillators [12] have also answered the above mentioned questions. A general

review on the physics of neuromorphic computing can be found in ref. [13].t

Despite the maturity of electronics and their relative flexibility to implement complex cir-

cuits, optical and optoelectronic technologies can offer significant advantages in terms of

parallelism [14], small device footprint, and energy efficiency over electronics in certain

implementations [15, 16]. In the following paragraphs, we will present a non-exhaustive

list of technologies with an emphasis on optical implementations.

At the heart of neural network training and inference are repeated matrix vector products

(or multiply and accumulate operations (MAC)). One of the solutions proposed to perform

arbitrary matrix vector products in the optical domain is shown in ref. [17]. While this

architecture provides a path for direct hardware implementation of neural networks, may

have limitations in scaling up as the number of components required scale quadratically

with the size of the matrix. In ref. [18] an integrated photonic accelerator was demon-

strated to have the capability of performing 1012 MAC/s. This circuit was realized with the

help of microring resonators and phase change materials (PCMs). In ref. [19] presents

an analysis on the different methods to perform such MAC operations and their relative

efficiencies.

Another direction of research is to develop new computing primitives and architectures
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that mimic the behaviour of neuronal systems. This category encompasses a large range

of architectures such as:

• In memory computing: In an oversimplified way, the memory and computational

units in the brain (synaptic weights and soma respectively) are located in close

proximity as opposed to von Neumann architectures where the two units are sep-

arate and a significant portion of the energy is spent on moving the data between

the two units. PCMs can be used to emulate this proximity and demonstrate optical

synapses [20] and spiking neural networks [21].

• Coupled nonlinear nodes: Evidence from neuroscience shows that the dynamics of

several coupled neurons give rise to intelligence. While the exact mechanisms are

not clear, having a coupled neurons seems to be essential. This was the founda-

tional idea behind neural networks and reservoir computing. Reservoir computing

provides additional flexibility as it is designed to operate with essentially random

weights between nodes as opposed to requiring precise trainable weights. Early

numerical illustrations in the optical domain used a semiconductor optical ampli-

fier as the nonlinear node [22, 23]. Following this, several architectures for reser-

voir computing have been proposed using all-optical systems [24], silicon photonic

chips [25], optoelectronic systems [26, 27], semiconductor lasers [28, 29], large

scale spatiotemporal systems [30, 31, 32], and random projections [33] to name a

few.

• Spiking neural networks: This direction of research can be seen as a specialized

case of coupled nonlinear nodes with a small modification; we use a specific non-

linearity vidilicet excitability that is found in neurons. It is regarded that the one of

the plausible causes for energy efficiency of the brain is the efficient neural coding,

which this direction of research seeks to leverage to build new computing primitives.

The essential element for spiking neural networks are excitable primitives. There

have been many optical primitives that demonstrate excitability and thus in principle

can be used to create spiking neural networks. Some experimental demonstrations

of spiking behaviour are shown in are shown in refs. [34, 35, 36, 37, 38, 39].
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A more complete list of bibliography on optical computing can be found in the following

comprehensive reviews [40, 41, 42].

1.1 Outline of the thesis

In this thesis, we will present advances made in the field of coupled nonlinear nodes and

more specifically, in spiking neural networks. The optical primitive we use is a micropillar

vertical cavity surface emitting laser with an integrated saturable absorber (VCSEL-SA);

this primitive will be henceforth referred to as a micropillar laser. The main results in-

clude the dynamics of micropillar laser(s) in the presence of delayed optical feedback

and spatial coupling.

In the next section of the introduction, we will demonstrate a few key neuromimetic prop-

erties of the micropillar laser previously reported by the group. This would serve as an

introduction for the rest of the manuscript.

In the second chapter, we will demonstrate the dynamics observed when a micropillar

laser is subjected to delayed optical feedback. We will also present therein experimen-

tal results and detailed numerical analyses to describe the regimes in a qualitative and

quantitative manner.

In the third chapter, we will illustrate numerically the possible integrated circuits that can

be built using evanescently coupled micropillars. The last section in this chapter will be

devoted to describing a computational framework using temporal coding implemented on

an ensemble of micropillar lasers.

The fourth chapter presents numerical techniques based on machine learning and in-

formation theory to perform cross-prediction of the occurrence of extreme events well in

advance. These techniques are applied to the case of extreme events occurring in a

line laser based on the same laser stack as the micropillar laser. The observed extreme

events following the onset of spatiotemporal chaos were previously reported by the group.
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Figure 1.3: Micropillar laser
(a) Shows a scanning electron microscope (SEM) image of the micropillar laser fabricated

with a SiN cladding. (b) Shows the laser stack with a few typical characteristics. (b)
Adapted from [35]

1.2 Micropillar laser

Excitable micropillar laser with a saturable absorber were first demonstrated in [35] with

an original laser stack design demonstrated in [43]. The cavity is designed to have an

active zone comprising of two quantum wells and a passive zone comprising of one quan-

tum well respectively. The three quantum wells (InGaAs/AlGaAs) are identical with minor

differences in the barriers. The cavity is designed in such a way that the active zone is

physically located at the maxima of the optical field in the pump window (790 nm - 810

nm) and the passive zone is located at the electric field minima in the pump window.

However, all the three quantum wells are located at the electric field maxima at the cavity

resonance wavelength. This effectively enables selective pumping in the active zone and

the passive zone functions like a saturable absorber. Detailed notes on the fabrication of

these devices can be found in chapters 2 and 3 of ref. [44]. The end result is a micropillar

laser having a diameter of 5 µm and height of approximately 7 µm. The exact height

depends on the depth of etching of the micropillar. We stop the etching leaving a few

layers of the back mirror to avoid absorption of the pump into the GaAs substrate which

can cause parasitic heating. Figure 1.3 shows in (a) an SEM image after the fabrication

process and in (b) a schematic and typical characteristics of the micropillar laser.

Following that, several experiments supported by numerical simulations have revealed
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that the micropillar laser is capable of demonstrating a variety of neuromimetic properties

videlicet refractory period(s), temporal summation, and spike latency. The Yamada model

with spontaneous emission used to simulate this system was introduced in ref. [45] and

has been shown to be in excellent qualitative agreement with experimental findings. It

was further shown in ref. [46] that this model is an analog to the leaky integrate-and-fire

model. The model equations are as follows2:

Ġ = γG(A�G�GI)

Q̇ = γQ(B �Q� sQI)

İ = (G�Q� 1)I + βsp(G+ η1)
2

(1.1)

The model consists of three nonlinear coupled ordinary differential equation for the intra-

cavity intensity (I), and the scaled excess carrier densities with respect to transparency

in the gain (G) and the saturable absorber region (Q). A and B correspond to the pump

intensity and the nonsaturable losses. The saturation parameter is s =
aQγG
aGγQ

, where aG,Q

is the differential gain and differential absorption respectively. The spontaneous emission

factor and transparency offset of gain are βsp and η1 respectively. The scaled carrier

recombination in the gain and saturable absorber region are γG,Q respectively. In this

slow-fast system, since the carriers dynamics are slower than the intensity dynamics, we

have γG,Q ⌧ 1. All the timescales here are normalized to the cavity photon lifetime which

is approximately 1.3 ps by the cavity design. A necessary condition for excitability is that

s > 1 + 1/B [47]. This is satisfied as by construction as we have γG ⇡ γQ and aQ > aG.

In the absence of the spontaneous emission term (βsp = 0), the system admits I = 0

as an invariant manifold. Thus, any perturbation on G or Q does not increase the intra-

cavity intensity3. To account for experimental findings, the model incorporates a small

spontaneous emission term βsp which is typically 10�5. The addition of this term slightly

alters the steady state values of all the variables which at order 0 in βsp take the form

(A,B, 0) for (G,Q, I) respectively. These modifications are shown in ref. [45]. Based on

2We will reintroduce the model throughout the manuscript where ever it is used for the ease of the reader
3İ is trivially 0 if I = 0 which prohibits any change in the intensity
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this it was estimated in ref. [48] that the excitable regime (below laser threshold) corre-

sponds to A < 1 + B. The neuromimetic properties arising from the micropillar laser are

summarized in the subsequent subsections.

1.2.1 Excitability

Figure 1.4: Experimental and numerical study of excitable behaviour in micropillar laser
with incoherent excitation

Subplot (a) shows amplitude of the response R1 to a single pulse perturbation versus
perturbation energy E for varying bias pump P relative to the self-pulsing threshold
PSP = 694 mW. Subplot (b) shows theoretical response amplitude R1 to single input
δ-perturbation pulse µδ for different bias pumps µ1 ⌘ A ranging from 2.8 to – 42.2.
Subplot (c) shows the dependence of the excitable threshold Eth (red circles) with
reduced bias pump P/PSP and linear fit (blue line). Subplot (d) shows excitable

threshold µδ versus bias pump A. The blue line is the theoretical approximation given by
1 +B �A. The parameters used for the numerical simulation were: γG = 0.001,

γQ = 0.002, B = 2, s = 10, η1 = 1.6 and βsp = 10�5. Adapted from [48].

It was shown that the micropillar laser demonstrates a neuron like excitability with the

emission of a sub-nanosecond response [48, 49] when perturbed by a single optical per-

turbation on the gain or intensity variable. This excitable behaviour is characterized by

a typical all-or-none response when subjected to a perturbation. The perturbation on

the gain variable are carried out using a pulsed laser operating in the pump window and

is called an incoherent perturbation. A perturbation carried out at the cavity resonance
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is called a coherent perturbation and affects the intensity variable. The experimental

and numerical results for the former are presented in figure 1.4. Below a certain thresh-

old, called the excitable threshold, a perturbation results in no response. However, a

perturbation just above this threshold generates a response. This sharp threshold is a

characteristic of excitability.

Figure 1.5: Experimental study of excitable behaviour in micropillar laser with coherent
perturbation

Left panel: Response amplitude for a coherent perturbation at λ = 980.47 nm and
different bias pumping with respect to the self-pulsing threshold PSP pumping value.

The response and perturbation amplitudes are scaled to their maximum value for P/PSP

= 94.3. Upper left panel: Excitable threshold dependence for coherent perturbations
versus bias pump.. Adapted from [49].

For an incoherent perturbation, it has been demonstrated that following the sharp tran-

sition at the excitable threshold, the emission from the micropillar laser exhibits a linear

growth with perturbation strength. The excitable behaviour is observed over a range of

pump (A) value below the self-pulsing threshold. However, reduction of the pump value

beyond a certain value causes the excitable character to disappear and to lead to just

gain switching.

The response to a coherent perturbation, while having the same sharp transition, is sub-

tly different. The results for coherent perturbations are shown in figure 1.5. In this case,

following the excitable threshold, the output is clamped to a value and is no longer de-
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pendent in the input. It corresponds more closely to the standard expected excitable

behaviour. The two types of excitable response vs perturbation method were analyzed

in detail in Ref. [50]. The different curves correspond to different values of the pump. In

this case however, the excitable threshold seems to increase with the pump as opposed

to the trend displayed by the incoherent perturbations. This counter-intuitive trend is due

to an experimental technicality since the perturbation laser wavelength is fixed in this ex-

periment. The changing of the pump induces thermal detuning of the cavity resonance.

This in turn increases the excitable threshold. It was estimated experimentally that the

excitable threshold (excluding the pump) for coherent and incoherent perturbation was

approximately 4 fJ and 725 fJ respectively. Whereas was the excitable response was

on the order of 50 fJ. The typical FWHM pulse duration of the excitable response was

estimated to be . 200 ps.

1.2.2 Refractory periods

Figure 1.6: Absolute and relative refractory periods
Subplot (a) shows the recorded time traces for different delays and their Gaussian fits.

Upper traces are the input perturbations and the lower traces are the system’s response.
The bias pump is set to 71% of the self pulsing threshold. (b) Amplitude of the response

R to the first (black) and second (red or gray) perturbation pulses for a double-pulse
perturbation with variable delays. Rth is the response amplitude at the excitable

threshold. Lines are linear fits in selected ranges and are guides for the eye. Adapted
from [48].

The results reported in this subsection were published in ref. [48]. In the presence of two

or more perturbations, three regimes of responses were observed videlicet absolute re-
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fractory period, relative refractory period, and an independent response. The last regime

is a trivial observation of excitability when the time difference between perturbations is far

greater than any internal time scale of the system. These results can be seen in figure

1.6. For this experiment, the micropillar laser was perturbed twice incoherently; each per-

turbation was greater than the excitable threshold so as to elicit a response by itself. The

spacing between the two perturbation was between 194 ps and 508 ps. It was observed

that for very short delays (< 190 ps), only one response was recorded. This regime is

the absolute refractory period as the second perturbation fails to elicit a response. When

the time delay is between 200 ps and 350 ps, it is observed that both the perturbations

contribute to two responses but the second response is attenuated. This attenuation is

due to the time taken for the carriers to recover within the gain and saturable absorber

regions. Lastly, when the timing is greater than 500 ps, the two perturbations produce

almost identical responses.

1.2.3 Temporal summation

The results in this subsection were published in ref. [51]. Temporal summation is the

mechanism where sub-threshold perturbations arriving within a given time window can

add up to elicit an excitable response. A neuron capable of temporal summation is also

called a coincidence detector neuron. Coincidence detector neurons play an important

role in neuromorphic computing and are thought to enable azimuthal sound localization.

The experiments were carried out using coherent and incoherent perturbations. For the

incoherent perturbations, two perturbations with amplitudes below the excitable threshold

(74% and 80% of the excitable threshold) were sent to the micropillar laser. Individually,

both the perturbations would not elicit a response from the micropillar laser. These two

perturbations are sent to the micropillar with different delays and the response is recorded

from the micropillar laser. The results of this are shown in figure 1.7. Since noise in the

form of pump noise and spontaneous emission is present in the system, the experiment

was repeated 10,000 times for statistics. For delays shown in subplot (a) - (e), the mi-

cropillar performs temporal summation with different success rates (99.97% for subplot

(a) and 84.5% for subplot (e)). The temporal profile of the excitable response in each
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Figure 1.7: Temporal summation with incoherent perturbations
Experimental traces of the system’s response to two incoming, sub-threshold

perturbations for different perturbation delays δ: (a) 210, (b) 320, (c) 420, (d) 520, (e)
610, and (f) 700 ps. The plots show the statistical density of points (in log scale) for
10,000 different realizations. On the plots a typical response pulse is shown in green.
Inset: excitable response to a single perturbation. Red stars are the detected response
maxima. Orange is a plot of the median in a sliding window with 500 points. Adapted

from [51].

case is almost identical. However, in subplot (f) when the delay is 700 ps, the micropillar

laser fails to perform the temporal summation with a high success rate.

For the coherent perturbation experiment, the two perturbation were fixed to be 44% and

66% of the excitable threshold. In this case the temporal summation happens for an

shorter temporal window. The results from this experiment are shown in figure 1.8. In

subplot (a) and (b), where the delay was 220 ps and 350 ps respectively, the temporal

summation occurs; the success rate in (b) is lower. For other cases subplots (c)-(e), the

temporal summation does not occur. The locations of both the perturbations are marked

by arrows in the figure.

In both the coherent and incoherent temporal summation, there is a delay which scales

nonlinearly with respect to the individual perturbations and the spacing between them.

This nonlinear delay could be an interesting mechanism for implementing temporal codes.

Similar mechanisms for temporal summation can be implemented using multiple evanes-
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Figure 1.8: Temporal summation with coherent perturbations
Experimental traces of the system’s response to two incoming, sub-threshold

perturbations for different perturbation delays δ: (a) 220, (b) 350, (c) 450, (d) 540, and
(e) 630 ps. The plots show the statistical density of points (in log scale) for 10,000
different realizations. On the plots, a typical response pulse is shown in green. The
intensity perturbations are indicated by arrows. Inset: excitable response to a single

perturbation median-averaged over 500 points. Adapted from [51].

cently coupled micropillars. These will be presented in chapter 3.

1.2.4 Spike latency

Spike latency is the delay between the arrival of a perturbation and the emission of an

excitable response. In the micropillar laser, it is demonstrated in ref. [49] that there is a

sub-nanosecond nonlinear delay that depends on the pump as well as the perturbation

strength; an analytical expression was also derived. This experimentally measured non-

linear dependence for an incoherent perturbation is shown in figure 1.9. In the figure,

the different curves correspond to the different values of the pump. For each value of

the pump, several perturbations of different strengths were sent to the micropillar laser.

For a pump value giving rise to a low excitable threshold, the measurable latency can

change over a large range (150 ps to 1 ns). This inverse relation between the pertur-

bation strength and response time can enable the use of micropillar lasers for temporal

coding which is the coding of information through the timings between spikes. More re-

sults will presented on this will be presented in chapter 3.
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Figure 1.9: Spike latency of a micropillar laser with incoherent perturbations
Median of the pulse response delay versus normalized perturbation energy P for different
bias pumps with respect to the self-pulsing pump threshold. The perturbation and the

response are normalized respectively to the excitable threshold (P 99%
th ) and to the

response at excitable threshold R99%
th for a bias pump P equal to 99% of the pump at the

self-pulsing threshold. Adapted from [49].
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Chapter 2

Delay Coupling

Having described the context of our research and introducing the laser system under

investigation in chapter 1, this chapter is dedicated to delay-based architectures from a

fundamental as well as an applied point of view.

Delay coupling refers to a time delayed feedback to a single micropillar laser by the means

of an external cavity as shown in figure 2.1. We first present the experimental setup and

introduce the model equations used. Following this, we show the existence of regen-

erative pulse trains in the system and demonstrate how we can manipulate them with

single optical pulses. This demonstrates the capability of optical buffer in the short term.

We proceed to study the asymptotic dynamics of the system which consists of periodic

and symmetry-broken states. All the experimental results are supported by numerical

and theoretical analysis in collaboration with our partners. We finish by discussing the

implication of these results in the context of neuromimetic information processing.

2.1 Experimental Setup

The micropillar laser is optically pumped to be in the excitable regime with a continuous

wave laser (Coherent FAP system) in the pump window (between 790 nm and 810 nm)

and emits light at the cavity resonance wavelength (between 960 nm and 990 nm). The

CW pump is controlled by an DC voltage source. The pump profile on the sample plane
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Figure 2.1: Schematic of the experimental setup with time delayed feedback
Figure shows the optically pumped excitable micropillar laser with delayed optical

feedback from an external mirror. DM: Dichroic mirror, BS: Beam splitter with 70/30
power split between reflected and transmitted path, MO: Microscope objective, APD:

Avalanche photodiode, L: Lens with f = 5 cm, M: High reflectivity feedback mirror, BD:
Beam dump, µPillar: Micropillar laser, τ : External cavity round trip time.

is flat top and power density1 at threshold is on the order of 10 - 100 kW/cm2; the exact

value depends on individual sample properties (position of the cavity resonance with

respect to saturable absorber bandgap) and also varies in different fabrication runs. The

micropillar laser is cooled and stabilized to a temperature slightly below 0�C using a

Peltier element with a stability better than 0.1�C. The output light from the micropillar is

split using a R/T = 70/30 beam splitter (BS). The transmitted part is detected using a 5

GHz bandwidth avalanche photodiode (APD), amplified by a large bandwidth (18 GHz)

RF amplifier and analysed with a 13 GHz oscilloscope. The reflected part is directed

into an external cavity, closed by a high reflectivity mirror (M) after focusing with a 5 cm

focal length lens, which provides a tunable delay τ on the order of 10 ns. This delayed

optical feedback results in a 10% reduction of the laser threshold. The micropillar laser is

perturbed by short optical perturbations of 80 ps duration from a mode-locked Ti:Sa laser

(Spectra Physics Tsunami). The repetition rate of the Ti:Sa laser is fixed by the cavity

round trip time and is about 82 MHz (12.28 ns period). This is thus the minimum time

duration between two perturbations. At the laser output there is a pulse picker which can

select pulses such that the repetition rate can be lowered. The perturbations can either

1The typical diameter of the pump beam using an 80x microscope objective is 10 µm
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be coherent or incoherent with respect to the cavity resonance wavelength. Both classes

of perturbations result in similar responses with subtle differences.

2.2 Model Equations

We model our system using the Yamada model as shown in the previous chapter (Eq.

1.1) with βsp = 0 and adding time delayed feedback term. The equations are as follows:

Ġ = γG(A�G�GI)

Q̇ = γQ(B �Q� sQI)

İ = (G�Q� 1)I + κI(t� τ)

(2.1)

κ and τ are the feedback strength and delay, respectively. In a strict sense, this model

is incapable of responding to incoherent perturbations (perturbations on G) as at steady

state it admits I = 0 as an invariant manifold. A spontaneous emission term could be

added but we take βsp = 0 to ease the theoretical analysis. Thus for incoherent pertur-

bations to act effectively, we just have to take a small non-zero initial value for intensity

I.

This model considers the intracavity laser intensity I instead of the electric field E essen-

tially discarding phase effects for the following reasons:

• Our system is in the excitable regime with the stable state as the laser off state.

Therefore, in this off state, the only optical field present is due to spontaneous

emission which is not coherent and is of very low intensity.

• The delay time τ is typically one order of magnitude greater than the FWHM of the

emitted pulse (. 200 ps) which corresponds to the time duration of the excursion

in the phase space. This then ensures that the feedback always arrives when the

laser is in the off state.

• The model gives good qualitative agreement with the experimental observations. A

comparison of the Yamada model with a model including phase effects [52] yielded
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effectively similar results in the regime considered by us.

2.3 Manipulation of pulse trains in delay systems

We set the micropillar laser in the excitable regime: the steady state intensity I is zero,

but a single high-amplitude, short pulse of light can be emitted in response to an exter-

nal perturbation of sufficient amplitude [35, 53]. When subject to delayed feedback, an

excitable system can either

• Remain in its off state for external perturbations below the excitability threshold.

• Emit a single pulse if the perturbation exceeds the excitable threshold but the exter-

nal cavity losses are too high.

• Regenerate its own initial excitable response after the reinjection time τ giving rise

to periodic pulse train for a sufficiently high feedback strength. The repetition rate

of the regenerative pulse train is close to τ2.

A useful tool to analyse such pulse trains is a two dimensional pseudospace represen-

tation [55, 56]. We would like to note that the pseudo-space representation we use here

does not necessarily mean that the vertical (y) axis can be treated as an extra spatial

dimension. In fact, for this to be true we need very long delays compared to the corre-

lation time in the system. We just use it because it is convenient to follow the evolution

of pulses. This 2-D representation facilitates visualizing the information easily for several

pulses per round trip over many round trips. The generation of such two dimensional

representations from time series follows a simple folding operation: the time series data

(figure 2.2a) is divided into segments of τ and these individual segments form the rows

of a matrix as depicted in figure 2.2b. The x-axis of figure 2.2b is now continuous time

between 0 and τ and the y-axis is the number of round-trips or discrete time.

2It is close to but not equal to τ as the emission period is the sum of the delay and spike latency. In
the previous works from our group, we showed that such a system can sustain optical temporal dissipative
solitons for a finite duration. This finite duration results from a pump noise-induced escape from a stable
periodic solution to a stable equilibrium [54]
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(a) Time trace (b) 2D Pseudospace representation

Figure 2.2: Transformation from time traces to 2D pseudospace representation

This very general mechanism for self-pulsations3 has been implemented in different opti-

cal systems, including a coherently driven vertical-cavity surface-emitting laser (VCSEL)

[37], a VCSEL subject to optoelectronic feedback [57], two coupled semiconductor lasers

[58], a photonic resonator with optoelectronic self-feedback [59], and a micropillar laser

with integrated saturable absorber [54]. Since almost arbitrary pulse timing patterns can,

in principle, be excited and regenerated after each delay, regenerative dynamics can be of

particular interest for producing complex optically controllable temporal pulsing patterns

[60, 61, 62, 63, 64] or for spike-based optical memory applications [37, 59, 64, 65].

It has been shown that the pulsing dynamics is solely governed by the nonlinear spike

latency –time between reinjection and emission of a pulse-– which is a function of the net

gain eG = G � Q � 1 accounting for the gain and saturable loss at the reinjection time.

In the vicinity of the perturbations, we report similar behaviour as demonstrated by past

works [37, 59] in showing an all-optical information storage system which can perform

noise correction4 by the virtue of its excitable behaviour. We further present an all-optical

control over the information in the buffer either using the CW pump or a single optical

perturbation pulse.

The all-optical control can be presented as addition of a pulse, retiming of pulse train,

tweezing of a pulse train in figure 2.3. In all the subplots here, the red circle indicates

3This mention of self-pulsations is different from the self-pulsing threshold of a single micropillar laser.
The latter corresponds to the homoclinic bifurcation in a single micropillar laser without feedback and is a
result of the interplay between the variables in the Yamada model. 2.1

4Here noise correction refers to the fact that on every feedback instance, the output is a fixed response
as long as the input exceeds a threshold thus avoiding any accumulation of noise.
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Figure 2.3: Operations on the all optical buffer
In all the panels here, the red circle indicates a perturbation. In subplot (a) we see the

addition of a pulse train, in subplot (b) we see the effect of refractory period in
perturbation (1) and retiming of a pulse train due to perturbation (2), in subplot (c) we
see the retiming of a pulse train and in subplot (d) we see the tweezing of a pulse train.

See text for additional details.

a single optical perturbation. Further, we represent the 2-D space with the two coor-

dinates with the convention that the first coordinate corresponds to t
τ

and the second

coordinate corresponds to the roundtrip number. In order to manipulate the pulse train

we need to have a proper control over the perturbation times. This is achieved by the

use of an external trigger to the pulse picker of the Ti:Sa mode-locked laser. The external

trigger (generated using Agilent 8114A pulse generator) is a window of several tens of

nanoseconds which controls the acousto-optic modulator of the pulse picker. This way,

we can choose a given sequence of perturbation pulses from the train of pulses of the

Ti:Sa mode-locked laser. In order to achieve a proper timing of the perturbation pulse

with respect to the existing pulse train, we need to account for the two time scales: delay
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time τ and the repetition time of the Ti:Sa mode-locked laser (12.28 ns). On a technical

note, the pulse from the external trigger is larger than the mode-locked repetition period.

Thus, to select a single pulse, we need to properly adjust the time of external trigger

(accounting for the rise and fall time of the trigger pulse) with respect to the pulse train.

In subplot figure 2.3(a) a pulse train with one pulse per round trip is first excited. We

then send a second perturbation which is timed such that it is not in the vicinity of the

existing pulse train. We observe the addition of a pulse train when we perturb the sys-

tem at point (t2, t1) with an existing pulse train arriving at (t3, t1) such that t2 < t3 and

|t3 � t2| > trefractory
5.

In subplot (b) we discuss the effect of perturbation labeled as (1). The perturbation (2)

causes a retiming of a pulse train and this mechanism is discussed in the next figure.

Perturbation (1) is sent at point (t2, t1) with an existing pulse train at point (t3, t1) such

that t3 < t2 and |t3 � t2| < trefractory. Due to this, the perturbation fails to start a second

pulse train and has no effect on the system. In subplot (c) we follow a procedure similar

to (a) but in this case, the difference |t3 � t2| is less than trefractory resulting in the existing

pulse train having insufficient gain to regenerate effectively retiming the pulse train. The

slope of the mean trajectory observed in all the panels is a result of the imprecise estimate

of the folding time. The folding time is taken in this thesis, for practical reasons, as the

fundamental pulse repetition period which is estimated using the fundamental peak in

the Fourier spectrum of time traces. The folding time is set to be as close to this time

as possible. Since the resolution in the folding time is set by the sampling time of the

oscilloscope, we cannot have arbitrary precision. This lack of precision manifests as

slight drifts in the pseudo-space representation and gives rise to the slope.

In subplot 2.3(d) we perturb the system only once resulting in a pulse train, we then modu-

late the pump (CW) laser using a sinusoidal signal generated by Agilent 33220A arbitrary

waveform generator which in turn drives the current in the FAP pump laser system. The

sinusoidal signal has a mean of 530 mV and a modulation of 70 mV Vpp with a frequency

of 80 kHz. The resulting change in net gain is manifested in the form of changing spike

latency giving the effect of tweezing.

5trefractory is the refractory period.
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Figure 2.4: All optical control of a pulse train
In subplot (a) we see the perturbation sequence, in subplot (b) we see the response and

in subplot (c) we see the same experiment repeated thousand times.

Using similar mechanisms it was shown in [64] that it is also possible to switch on and

off pulse trains in the system with two single (incoherent) optical perturbations. In figure

2.4, subplot (a) shows the perturbation sequence and subplot (b) shows the response

recorded from the system. It was demonstrated in chapter 1 fig. 1.4 that in the case of

incoherent perturbations, we observe a sharp threshold in the response at the excitable

threshold and then a linear growth in response with respect to the perturbation strength.

The first large perturbation in (a) triggers the pulse train shown in (b) but the subsequent

perturbation generates an insufficient response in the system while arriving just before

the regeneration of the fourth pulse in the pulse train. This second perturbation uses up

the gain in the system and the existing pulse train falls in the refractory period, switching

it off. The response from the second pulse perturbation is not high enough to reach the

excitable threshold after suffering cavity roundtrip losses and thus it generates no pulse

train. This interaction makes the switch on and off of pulse trains using single optical

perturbations. Subplot (c) shows the results of this experiment carried out thousand

times with the τ ⇡ 4.2 ns; the case number is on the ordinate and time is represented on

the abscissa with t = 0 being the first perturbation. Based on this subplot we conclude

that the effect is very reproducible and not prone to experimental noise. Moreover, it can

be noted that the jitter in the regenerated pulses is low (shown by the vertical lines) as it

is fixed by the delay in the system.

Similar manipulation of optical pulses has been reported in ref. [62] in a passively mode-
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locked semiconductor laser using electrically addressed short perturbations on the pump.

They reported the switch on and off of single pulses with repeated (more than hundred)

and precisely timed perturbations. In our case, we achieve pulse manipulation using

single optical perturbation.

2.4 Asymptotic dynamics

Figure 2.5: Pulse - Pulse interaction over several thousand roundtrips
In subplot (a) the feedback time is τ = 8.2ns and in subplot (b) the feedback time is

τ = 6.33ns

While in the short term, we observe that the system behaves like an optical buffer, we

observe that the pulses do interact with time and this requires further analysis. In figure

2.5, subplot (a) two initially close pulses in the external cavity tend to separate over thou-

sands of round trips and experience a repulsive interaction. By contrast, in subplot (b),

two initially separated pulses seem to experience an attractive interaction until one pulse

train is turned off as it enters the absolute refractory period of the first pulse train. The two

plots were obtained using different micropillars operating in different experimental condi-

tions. To the best of our knowledge, pulse attraction in such systems was not reported

before. In the next section, we further our analysis by comparing the experimental results

to numerical simulations with appropriate parameters and distinguish the results based

on the carrier recombination rates in the gain and saturable absorber regions. The theo-

retical results presented in this chapter have been developed in collaboration with Soizic

Terrien, Neil G. R. Broderick and Bernd Krauskopf at the Dodd-Walls Center for Photonic

and Quantum Technologies, The University of Auckland, New Zealand.
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In the context of biological spiking neurons, delayed self-connections have also been rec-

ognized to play a central role in the persistent regeneration of input stimuli [66, 67, 68].

While in the short term, the regeneration occurs with minimal loss of timing information,

we show that in the long term this is not true anymore. The intuitive picture of regenerating

arbitrary pulse trains while accurate in predicting the short-term behaviour of the system

is overly simplified. A theoretical analysis predicts more complicated dynamics, including

the co-existence of several self-pulsing modes with the stable off-state [64, 69, 70]. It is

well known that delay differential equations (DDEs) have an infinite dimensional phase

space and can display rich dynamics with coexistence between different types of attrac-

tors [71, 72]. Thus, it is a fundamental question to understand the long-term dynamics of

such systems.

2.4.1 Time symmetric pulsing patterns - Faster saturable absorber

In order to study these long term dynamics, we revert to the simulations using the equa-

tions introduced in Eqs. 2.1. The first set of parameters we consider are A = 2.4, B = 2.2,

γG = 0.01, γQ = 0.02, s = 5, κ = 0.05, and τ = 1100. These are chosen to match the

known physical parameters and the experimental observations [73, 47]: recombination

timescales (γG, γQ) are on the order of few hundreds of picoseconds and the feedback

time (τ ) is between 5 and 10 ns. The saturable absorber recovers twice as fast as the

gain. The small value of γG and γQ represents the slow timescale of nonradiative re-

combination in the quantum wells as opposed to the fast timescale of the cavity photon

lifetime. After emitting a pulse, the net gain eG = G�Q� 1 recovers to 95% of its steady

state value in trec = 393; the feedback time is thus approximately 3 trec which is compara-

ble to the experiment. The model equations 2.1 do not account for pump or spontaneous

emission noise, thus the focus is solely on deterministic dynamics. As described in the

previous section, in the vicinity of the perturbation, the system acts like an optical buffer

and preserves information in the form of inter-spike distances, here in figure 2.6 we com-

pare two examples of experimental time traces with numerical simulations which appear

to be in good agreement. In panel (a1), two successive perturbations are sent with a

time difference of approximately 12.28 ns, which results in two pulse trains with an inter-
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spike distance of approximately 0.4 ⇥ τ . This distance is preserved over 250 roundtrips.

The evolution of three coexisting pulse trains can be seen in the next panel. Here the

non-equidistant pulsing pattern is shown to exist over a short duration of 30 roundtrips.

Figure 2.6: Pseudospace representation of pulse trains over short duration
Experimental (left) and simulation (right) results of pulse trains over short duration. (a)
and (b) Represent two and three pulses per round trip respectively. The feedback delay

was 4.77 ns in the experiment. Figure adapted from [64]

For the same parameters, figure 2.7 represents the phase portrait of system (2.1) in the

(G, I)-plane, calculated with the continuation toolbox DDE-Biftool [74, 75]. It shows the

coexistence of seven stable solutions: a non-lasing equilibrium and six periodic pulsing

solutions. The smallest orbit corresponds to the six pulse per roundtrip solution. These

coexist with several unstable periodic solutions and equilibria, which are not represented

here. The stable pulsing solutions have periods T close to submultiples of τ and, hence,
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correspond to different numbers of equidistant pulses in the external cavity [70]. Apart

from the one for which T is close to τ , they all are only weakly stable. Importantly, there

exists no stable periodic solutions with non-equidistant pulses in the external cavity, de-

spite the fact that such solutions are observed over long periods of time in experiments

and simulations. Thus the results presented in figure 2.6 only present a partial picture.

They represent a transient towards one of the (weakly) attracting periodic solutions of

figure 2.7. The results from the numerical integration of Eq. 2.1 with two coexisting

and non-equidistant pulses are shown in figure 2.8. The convergence to the attractor

only happens over several hundreds of roundtrips. The bifurcation analysis of the model

shows that the amplitudes of the periodic solutions with the largest periods are very close

to each other (see the two largest orbits in 2.7): as such, no significant difference is ob-

served in the amplitudes when one or several pulses exist in the external cavity. The slow

convergence towards the stable periodic solution is explained entirely by the dynamics of

the net gain, eG.

Figure 2.7: Phase portrait of Yamada model with a time delayed feedback in the (G,I)
plane

Illustration of one stable equilibrium (dot) and six stable periodic solutions (curves).
Figure adapted from [64]

Panels (d) and (e) in figure 2.8 plot the G and eG dynamics during 7 roundtrips (10-17)

indicated by the shaded area in panel (a), the absorption recovers faster than the gain,

thus immediately after a pulse, the low net gain eG increases back to its saturated value

as both G and Q recover to their respective steady state values. Since eG = G˘Q˘1 and

Q recovers faster, the value of eG approaches its steady state value from below. A second

perturbation is introduced in the system when the eG hasn’t sufficiently recovered but the

gain and perturbation strength make it possible to trigger a response. However, since

this perturbation experiences a slightly lower eG it has a higher pulse latency time [49]
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and hence, repetition period, for the second pulse train compared to the first pulse train.

For every subsequent roundtrip this process repeats and the second pulse is reinjected

further away from the first one, until both pulse trains experience an identical net gain

and their repetition periods become equal. This effect of convergence due to the gain

dependent latency gives rise to the apparent repulsion between the pulses. Pulse to

pulse interaction is thus mediated by the carriers and is not an effect of the optical tails of

the pulses. Since the system converges in the long term to a stable periodic orbit of the

phase portrait the maximum number of pulse trains sustained by the system is related

to the number of stable periodic solutions. Figures 2.9 show experimental results on

the convergence of irregularly spaced pulse trains (two and three pulses per roundtrip)

to equidistant pulse trains over the course of several thousands of roundtrips. Figures

2.9 a1, a2, b1, and b2 show the evolution of two and three pulse trains respectively

using the pseudospace representation. The pseudospace plots are plotted over 200

roundtrips and at different stages in the convergence as shown in the figure 2.9 a3 and

b3 which highlights the slow convergence by plotting the ∆p or pulse-to-pulse timing over

consecutive roundtrips. The pulse-to-pulse timing ∆p slowly converges to a value close to

a half or a third of the delay time τ , respectively as equidistant pulsing is approached. This

slow convergence rate is on the order of a few picoseconds per roundtrip which is very

small when compared to the pulse duration of approximately 200 ps. It can be observed

in the experiment only over long time periods. The random-walk like fluctuations of the

pulse-to-pulse timing are explained by the presence of pump noise in the system, which

induces stochastic fluctuations of the micropillar net gain [54].

Having described the process of convergence of arbitrary pulse trains to equidistant pulse

trains, the natural continuation would be to understand the scenarios under which it is

possible to switch between these (weakly) stable solutions. From a mathematical point of

view, these scenarios can be described by the basins of attraction of the different stable

periodic solutions. The time traces of the six periodic solutions are shown in figure 2.10a

and their periods are close to sub-multiples of the delay time, τ . For the sake of brevity,

these solutions will be referred to as one-pulse solution, two-pulse solution and so on.

The final state of a multistable system depends on its initial conditions. For each of the
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Figure 2.8: Simulation of two coexisting pulse trains
(a) and (b) Show the pseudospace representation just after the perturbations and in the
long-term respectively. (c) shows the evolution of the elapsed time between successive

pulses; the shaded area is the segment represented in (a). (d-e) Show the temporal
evolution of G and eG respectively.

Figure adapted from [64]

stable solutions (attractors), displayed in figure 2.10a, there exists a basin of attraction.

This basin of attraction corresponds to the set of initial conditions for which the transient

converges to the said attractor. Thus, the basins of attraction provides us the information

of how to approach different stable solutions of the system and how to switch between

solutions using external perturbations. The system described here is modeled by a delay

differential equation which intrinsically has an infinite dimensional phase space [76] which

makes numerical continuation very complex [77, 78]. Thus we choose to integrate6 Eq.

2.1 numerically to obtain the basins of attraction. Figures 2.10(b-g) summarize the effect

of perturbations on the long-term dynamics of the system; it assumes that the system is

currently in one of the stable solutions and not in a transient. A perturbation on the gain

variable of amplitude ∆G at time et relative to the existing pulse train(s) which are marked

by vertical gray lines in the figure (et = 0 is the reinjection time of a pre-existing pulse

in the micropillar laser) will excite a transient but a change in the long-term dynamics is

6We use a custom routine based on MATLAB® DDE23 function
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Figure 2.9: Experimental results of two and three coexisting pulse trains over a long
duration

Subplots (a) and (b) Represent two and three coexisting pulse trains in the external
cavity. (a1), (b1) ,(a2), and (b2) correspond to the pseudospace representation of time
traces immediately after the perturbation and after several thousand roundtrips. (a3)
and (b3) Plot the pulse-to-pulse timing ∆p versus the roundtrip number. The shaded

regions in these sub-panels correspond to the roundtrip numbers visualized in the
pseudospace representations in the previous plots. The feedback delay was 8.2 ns.

conditional on perturbation being in a conducive region in the (∆G, et) space. The grey

rectangular blocks in the figures 2.10(b-g) correspond to the reinjection time of the pre-

existing pulse trains. When the system is in the n-pulse regime with n  3 figures 2.10(b-

d), a perturbation can either switch the system to the n+1 - pulse regime or can result in

no change. If the perturbation is too weak (low ∆G) it might fail to regenerate in the cavity

or even elicit a response from the system. However given a suitable perturbation strength

the system responds depending on the timing of the perturbation; if the perturbation is

in vicinity (immediately before or after) of an existing pulse train it can either cause the

retiming of the pulse train or it can fall in the refractory period of the existing pulse train

respectively. The effect of the relative refractory period is clearly visible in the initial

negative slopes of the bottom left boundaries of the new stable pulsing regimes. Another

observation from the figures is that ∆Gmin, the minimum perturbation strength required

to trigger a response increases with the number n while the time window to switch to the
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n+1 pulse regime reduces.

When the initial stable regime is the n-pulse regime with n > 3, figures 2.10(e-g) show

that any perturbation causes the system to either be in the same regime or switch to

a n-1 pulse regime. As in the case of n  3 perturbations in the immediate vicinity of

pre-existing pulses do not alter the long term dynamics of the system. Additional pertur-

bations with appropriate timing and amplitude alter the long term dynamics of the system

by removing pulses from the existing pulse train. The area of conducive parameters for

removing pulses in the (∆G, et) space increases with n. Despite these constraints, it is

possible to access all the pulsing regimes in the system. The n > 3 pulses solution can

be accessed by perturbing the system while it is still in a transient as these basins of

attraction hold true only when the system starts from a stable solution. Thus if the sys-

tem is perturbed n times (3 < n  6) before it reaches a steady state, it is possible to

access the n pulse solution. Numerical simulations of accessing five pulse solution are

presented in figure 2.11, the two scenarios in juxtaposition are: (a) perturbations sent to

a system in a four pulse solution and (b) perturbations sent to a system in a transient.

In panel (a) both the perturbations fail to effect any change in the long term dynamics

of the system, the first perturbation labelled A causes the retiming of a pulse train and

the second perturbation, labelled B fails to regenerate in the system. Whereas in panel

(b), when the system is perturbed (labelled C) during its transient phase, it is possible to

access the five pulse solution.

Figure 2.12 presents experimental results that highlight the importance of perturbation

timing on the long term dynamics of the system. Subplot (a) shows how a perturbation

with an appropriate timing and amplitude can trigger a second pulse train thus switching

from 1-pulse to 2-pulse regime. This is in excellent qualitative agreement with fig. 2.10

(b) in the basins of attraction. A more intricate case is shown in figure 2.12 (b). As

mentioned before, we time our perturbations using an external trigger. In this case, the

external trigger sends two trigger signals, each approximately 40 ns wide and 3 µs apart.

The first trigger signal generates two perturbations (due to the relative timing between the

trigger and the pulse train from the Ti:Sa mode-locked laser). These two perturbations

are 12.28 ns apart which is approximately 1.5 ⇥ τ . These perturbations then generate
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Figure 2.10: Multistability and basins of attraction
(a1-a6) Represent the intensity time series of the stable periodic pulsing regimes of Eq.

2.1 represented over n periods T , with n the number of pulses in the span of the delay τ .
(b–g) Depict the basins of attraction of 2.1 in the plane of timing et and amplitude ∆G of

a gain perturbation, when one (b) to six (g) equidistant pulses initially exist in the
external cavity. The color represents the number of pulses observed in the long-term in
the external cavity (panels (a1 - a6) indicate the color code), and the vertical gray lines

indicate the timing of the pre-existing pulses.

two pulse trains which by the virtue of periodicity in τ are almost equally spaced (τ /2

apart in pseudo-space). This corresponds to region 2 in the figure. The second trigger

signal, which is approximately 360 round trips later, generates two more pulse trains by

the same mechanism. The time between trigger pulses and τ are not commensurate

which manifests as the relative timing difference between the pulse trains starting from

B and C and the two preexisting pulse trains. Please note that the pulse trains starting

from B and C are also approximately τ/2 apart. In the short evolution after the second

perturbation sequence, there are four pulse trains in the cavity (denoted by the region 4).

The perturbation labelled as B is timed appropriately and triggers a pulse train whereas

the perturbation labelled as C is sent very close to an existing pulse train and it only
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Figure 2.11: Simulated time traces showing transients and multistability
(a) Shows the effect of two perturbations labeled as A and B starting from a four-pulse

solution.
(b) Shows a five-pulse solution reached by perturbing the system during a transient.

triggers a transient pulse train that is extinguished in a few hundred roundtrips. Thus the

system settles to a three pulse regime denoted by region 3. As predicted by the basins

of attraction analysis, these results indicate that accessing n + 1 pulse solutions from n

pulse solution becomes harder with increasing n.

Figure 2.12: Experimental time traces showing transients and multistability
The figure shows pseudospace representation of time-traces showing response to external
perturbations for one (panel (a)) and two pulse (panel (b)) regime. The feedback delay

was 8.2 ns.

The same experiments can be carried out with coherent perturbations (at the cavity res-

onance wavelength) which corresponds to the perturbation on the intensity variable I

instead of on the gain variable G in model 2.1. The basins were also mapped numerically

with coherent perturbations ∆I. Apart from differences observed mainly in the finer de-

tails of the basins boundaries, the structure of the basins of attraction is qualitatively as
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those shown in Figures 2.10 (b-g). This strongly indicates that the strength and timing of

the perturbation is more important as compared to the perturbation variable.

2.4.2 Symmetry-broken pulsing patterns - Faster gain

Figure 2.13: Stable non-equidistant pulse trains
Subplots (a) shows two coexisting pulse trains in the cavity. These two pulse trains

appear to be equally spaced in the beginning but with the increasing number of round
trips they seem to experience an attractive interaction and stabilize at non-equidistant

values. Subplot (b) Plot the pulse-to-pulse timing ∆p versus the roundtrip number
(denoted by the red arrow in subplot (a)). We observe that while the two pulses initially
have a distance of ∆p = τ/2 in the beginning, the pulses undergo a gradual attractive
interaction decreasing the value of ∆p with successive round trips while experiencing

some fluctuations that can be attributed to pump noise. The feedback time τ = 8.2 ns in
the experiment.

In the previous section, we illustrated how the stable pulsing patterns are equidistant in

the case of faster saturable absorber. However, experimentally we also observe the con-

trary (shown in figure 2.13). In this figure, we see how a non-equidistant pulse train is

stable over several thousand round trips [79]. Such results can be explained via the inver-

sion of time scales between the two quantum wells. To further our analysis, we consider

the following parameters otherwise stated: A = 2, B = 2, γG = 0.01, γQ = 0.055, s = 10

and κ = 0.2. The feedback time τ is treated as a bifurcation parameter. In this param-

eter region we report pulse-timing symmetry-breaking phenomenon, where some of the

n-pulse solutions described in the previous section destabilize resulting in a coexistence

of equidistant and non-equidistant pulse trains in the feedback loop. Experimentally, the

parameter regime of faster gain is selected by choosing a suitable micropillar laser on

the chip. As described in the fabrication of the micropillars, the etch quality determines

41



the non-radiative recombination rate; higher surface roughness leads to an increase in

the number of defects which in turn increases the carrier recombination rate. The etch

quality slightly differs throughout the sample resulting in different combinations of recom-

bination rates and gives us access to a wide range of parameters on a single chip. The

pump value can also change the effective recombination rate mainly in the gain section

due to spontaneous emission. The effect is not accounted for in our model but can be

easily introduced by an effective recombination rate combining all the effects. This way,

either by tuning the pump and/or choosing a different micropillar we have have access

to different parameters. A priori, both the sections have similar recombination rates thus

these external parameters strongly influence the ratio of the recombination rates which is

the important quantity for the symmetry breaking mechanism.

Figure 2.14(a) shows the one-parameter bifurcation diagram of the Yamada model with

delay (Eq. 2.1) in the delay time τ , where the solutions are represented by the maximum

intensity value attained (denoted by Ip). When τ is increased from 0, successive Hopf

bifurcations (H, marked by blue dots at the bottom of subplot (a)) are encountered which

leads to the coexistence of several periodic solutions. Each of the Hopf bifurcations cor-

respond to a different frequency. The curve labeled as 1, corresponds to the fundamental

solution with one pulse per feedback loop appears at τ = 51.7 and is stable for all values

of feedback delay. On the other hand, all the n-pulses solutions with n � 2 emerge unsta-

bly from a Hopf bifurcation, subsequently stabilize in a torus bifurcation when τ increases,

these solutions correspond to the periodic emissions of short pulses of light with periods

close to sub-multiples of τ . On increasing τ further, these solutions destabilize through a

second bifurcation. All these solutions coexist with the zero-intensity equilibrium solution

(not shown in the bifurcation diagram) id est the laser off solution, which is stable over

the entire range of τ .

Figure 2.14 subplot (b) presents the enlargement of the previous figure near the desta-

bilizing bifurcations of the equidistant pulsing regimes with two to five pulses (points P ,

T3, T4, and T5 respectively). The two pulse solution destabilizes at point P via a period

doubling bifurcation. Prior to this bifurcation, the two equidistant pulses can be seen

as a periodic solution with period τ/2, following this bifurcation, the two pulses become
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Figure 2.14: Bifurcation analysis for the Yamada model with faster gain
(a) Bifurcation diagram of 2.1, showing the pulse intensity Ip with respect to τ , with
the number of pulses per feedback loop along each stable periodic solution branch.
(b1) Enlargement of the framed area in (a), with further enlargments around point

(b2) T3 and (b3) S3. Stable equidistant (E) and non-equidistant (N) pulse solutions are
represented in dark and light blue, respectively, and unstable E and N solutions in dark
and light orange, respectively. The dots indicate Hopf (H), torus (T), period doubling

(P), saddle-node (S), and homoclinic (L) bifurcations.

non-equidistant in the feedback look and thus appear as a pulse-timing symmetry broken

state with a period of τ . This non-equidistant state has two pulses with different ampli-

tudes which is not represented in the Figure 2.14 (a) as it only plots the maximum value

of I for every solution. After the period-doubling bifurcation at τ = 472, one observes both

a splitting of pulse amplitudes and timing. This this represented in the Figure 2.15. Panel

(a1) shows the bifurcation point P and the subsequent peak values of both the pulses
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in the symmetry broken state with increasing τ . Panel (a2) depicts the change in inter-

pulse timing tp with increasing τ . This amplitude and symmetry breaking of the relative

pulse timings is due to the strong amplitude-time coupling of the system [80, 81]. The

numerical integration of the system gives additional insight into the convergence of the

symmetry broken state. Figure 2.15(b) shows the long term dynamics of the system with

τ = 1000 starting from an unstable equidistant two-pulse solution. A small perturbation

is applied on the gain variable G which causes the system to begin converging into one

of the two possible non-equidistant stable pulsing patterns: the first pulse timing interval

decreases (2.15 b2) and the second pulse (highlighted in gray) converges towards a low

amplitude state (Figure 2.15(b1)). When a different initial perturbation is applied by de-

pleting G slightly (not shown here), the phase-shifted, symmetric version of this solution is

obtained, with the first (green) and second (gray) pulses converging to the low-amplitude

and high-amplitude states, respectively. Although this leads seemingly to the same long

term dynamics, both of these different states occur, one being a phase-shifted version

of the other. We also point out that the convergence is very slow and occurs over sev-

eral thousand of delay times, showing that the stable non-equidistant solutions are only

weakly attracting.

The three to five pulse solution undergo a different mechanism of destabilization, these

points are marked as points T3, T4, and T5 respectively. Following these points, a pair of

stable and unstable solutions emerge from a saddle node bifurcation (these points are

labelled as Sn for n=3, 4, and 5). For example, S3 emerges at τ = 663 for n = 3. The

emerging periodic solutions following the saddle node bifurcation have a period close to τ

as opposed to τ/n of the n-pulse solution before undergoing the torus bifurcation. Here,

the solution following the saddle node bifurcation corresponds to the pulsing regime with

n non-equidistant pulses of different amplitude in the feedback loop. At any time, τ , a

vertical cut can give the number of coexisting pulsing solutions in the external cavity.

Based on the subplots (b2) and (b3) we see that there is a small region of overlap in

the value of τ that can support both equidistant and non-equidistant pulsing solution for

n = 2. This can also be seem more evidently for n � 3 in subplot (b1). This sort of

coexistence gives rise to an increased level of multistability in the system.
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Figure 2.15: Pulse-timing symmetry breaking with two pulses
(a1) Maximum Ip of pulse intensity and (a2) relative inter pulse timings tp along the
branches of two equidistant and two non-equidistant pulses, with respect to τ . Stable

and unstable solutions are represented in blue and red, respectively. (b) Simulation of 2.1
for τ = 1000 [gray lines in panel (a)] with initial condition very near the (unstable)

two-pulse solution, showing the long-term evolution of (b1) Ip and of (b2) tp. The insets
in (b1) show the intensity time series during the two first and two last roundtrips

through the feedback loop; the dots and arrows indicate the amplitudes and relative
timings as represented in (b1) and (b2), respectively

A different way of presenting this information is by expressing it in terms of the temporal

pulsing patterns, this is shown in figure 2.16. Subplot (a) shows the representative time

traces of one feedback delay τ for all the coexisting solutions for τ = 1000. We observe

the coexistence of 1-pulse solution, 2,3,4,5-pulse non-equidistant solution (panel a2-a5)

and 5,6,7-pulse equidistant solution (panel a5-a7). Increasing the feedback delay pro-

gressively destabilizes the equidistant solutions and stabilizes non-equidistant solutions.

Qualitatively, for a large value of τ , there is a coexistence of n-pulse solutions among

which smaller values of n correspond to non-equidistant solutions and the larger values

of n correspond to equidistant solutions. In Figure 2.16, all the periodic solutions with

1-7 pulses per feedback loop coexist but the ones with 2-5 pulses underwent the reso-

nance tongues transition and thus are non-equidistant solutions. The stability regions in

the (τ ,κ) plane of 1-8 pulse equidistant and non-equidistant solutions are presented in

Figure 2.16(b). Here the regions of stability of the non-equidistant pulsing solutions are

resonance tongues bounded by saddle-node bifurcations. The stability regions of both

types of solutions extend over large areas of the (τ ,κ) plane and show a high degree of
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multi-stability (panels b1-b8 for 1-8 pulse solutions). The long-term convergence to one

or other pulsing solution depends critically on the chosen initial conditions. For n � 2

we observe a finite overlap between the two categories of solutions signifying that both

these solutions are stable for the same parameters over some area on the parameter

plane. As shown in Figure 2.14(b1), this results from the fact that the saddle node bifur-

cation occurs (at points Sn) slightly before the n-pulse solutions destabilize at the torus

bifurcation points Tn. Hence, in these parameter regions of τ , one observes the n-pulse

equidistant or non-equidistant solution depending on the initial conditions. For the chosen

parameters in Figure 2.16, the 5-pulse solution displays this phenomenon (panels (a5)

and (b5)).
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Figure 2.16: Coexistence of solutions in Yamada model with faster gain
(a) Intensity profiles of coexisting periodic solutions of (1), for τ = 1000 and κ = 0.2. (b)

Regions of stability, in the (τ ,κ)-plane of feedback parameters, of the families of
equidistant (E) and non-equidistant (N) periodic solutions with one to eight pulses per
feedback loop. The number of pulses is indicated in the colored regions, and the star

indicates the parameter point (τ,κ) = (1000, 0.2) of the time series in panels (a).

Experimental results shown in figure 2.17 (a and b) show the time traces recorded after

two and three external perturbations respectively. In both the panels, the external pertur-

bation are timed to generate responses close to the asymptotic 2 and 3 pulse equidistant

solution. The panels (a1) and (b1) show the time trace recorded for two roundtrips soon

after the initial perturbation, however in the long term, the timings between the consec-

utive pulses converge to unequal values (panels (a2) and (b2)) showing clearly that the

equidistant solution is not stable.

Figure 2.18 shows the same type of convergence over several thousands of roundtrips

but for different initial conditions, the colour coding of the inter pulse distance is the same

in Figure 2.17. In figure 2.18 (a) and (b), the system is initialized with two and three
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Figure 2.17: Time trace showing convergence from a symmetrical state to a symmetry
broken state

(a1) and (b1) Show a representative time traces shortly two and three perturbations
respectively. (a2) and (b2) Show a representative time trace after a large number of

roundtrips in the cavity. The colour of the arrows corresponds to the inter-pulse interval
shown in 2.18. The feedback time in the experiment was 8.2 ns.
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Figure 2.18: Evolution of inter-spike interval during the convergence process from a sym-
metrical state to a symmetry broken state
Subplots (a) and (b) Show the convergence of a two-pulse and a three-pulse solution from
a symmetrical state to a symmetry broken state. The roundtrip number 0 corresponds to

the time trace just after the perturbation.
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equidistant pulses per roundtrip respectively. This is done using suitable external per-

turbations. We observe that the pulse-timing information is preserved in the short term

[64, 80]. On the other hand, in the long term, the system slowly converges towards non-

equidistant pulsing patterns with well-defined and different inter-pulse relative timings.

These inter-pulse timings then stay very stable over a large number of roundtrips. It was

not possible to monitor the amplitude difference in the final state due to the limited signal

to noise ratio –the emitted pulse energy is on the order of ⇡ 100 fJ. Since it is observed in

Figure 2.15, that a small difference in the amplitude is associated with a large inter-pulse

interval, we conclude that the amplitude measurements are not relevant in the experimen-

tal recordings. Overall, the experimental observations show excellent agreement with the

dynamics predicted by the bifurcation analysis of the model. They demonstrate multi-

stability between the experimental regimes with two and three non-equidistant pulses.

Moreover, the quasiperodic regime corresponding to unlocked dynamics on an invariant

torus are not observed, in good agreement with the theoretical predictions of very large

locking regions in the parameter space as seen in Figure 2.16.

2.5 Polarization Dynamics

Figure 2.19: Probability density function of choice of random angle and the resulting
intensity measurement

Subplot (a1) shows the realization of choosing 50000 random angles from a uniform
distribution between 0 and π and subplot (a2) shows the resulting intensity measurement

In the previous sections we illustrated the intensity and temporal dynamics of the mi-

cropillar laser with feedback. Polarization dynamics in such a system can demonstrate a
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variety of effects. In ref. [82], it was shown that a VCSEL with co- and cross-polarized

feedback while emitting a constant output intensity, displays vectorial dissipative solitons

following a periodic rotations in the linear polarization state. These rotations manifest

as short pulses when detected through a polarizer. Other works on commercial VCSEL

systems were used to realize neuron like functionality based on polarization switching

[83, 38]. For reservoir computing applications, polarization dynamics in VCSELs has

been shown to improve the memory and computing capacity of reservoir computing ap-

plications [84, 29, 85]. Polarization dynamics in VCSEL with SA has been theoretically

investigated in ref. [86] and inhibition dynamics have been demonstrated. In this section,

we present some experimental results on the polarization dynamics of micropillar lasers

with and without feedback.

Figure 2.20: Experimental setup for measuring linearly polarized component of the ex-
citable response oriented along a particular axis

DM: Dichroic mirror, BS: Beam splitter, MO: Microscope objective, APD: Avalanche
photodiode, µPillar: Micropillar laser, P1: Linear polarizer oriented along the laboratory

reference frame, OSA: Optical spectrum analyzer

We first present the polarization dynamics of a single micropillar laser without feedback

to characterize its response and then demonstrate dynamics of such a system with feed-

back. As a first order approximation, neglecting internal dichroism and birefrengence, one

can assume that in a circular cavity every polarization mode in π radians is degenerate.

Thus if such a cavity is in the excitable regime and if an external incoherent perturbation

produces a response, its polarization would be randomly drawn from an uniform proba-
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bility distribution. This random choice of electric field oriented at θ radians when filtered

through a linear polarizer and measured with a detector yields in the probability den-

sity function shown in figure 2.19. Subplot (a1) shows the probability density function of

choosing a random angle from a uniform distribution and subplot (a2) shows the proba-

bility density function of detecting a particular intensity value. The intensity PDF is due to

the cos2(θ) response, θ being the angle between the polarizer orientation and the electric

field orientation. When the cavity under consideration is a semiconductor laser cavity

the dichroism and birefringence play an important role and the degeneracy in modes is

removed: certain orientations are preferred over the others. To characterize the emission

properties further we use the experimental setup shown in figure 2.20. The CW laser is

used to maintain the micropillar laser in the excitable regime and the mode locked laser

is used to perturb the micropillar over the excitable threshold. Each perturbation from

the Ti:Sa laser can be seen as independent excitation as the repetition rate of the mode

locked laser (12.28 ns) is much greater than the internal time scale of the micropillar

laser. Statistics from the measured intensity can then be used to infer information about

the probability of emission along different orientations.

The results for such a measurement are shown in figures 2.21 and 2.22 for a circular

micropillar and an elliptical7 micropillar respectively. A sequence of above threshold per-

turbations result in a sequence of excitable responses, these responses are split using

a 50:50 (R:T) beam splitter and sent to two detectors. On one of the detector arms, we

insert a linear polarizer oriented along the laboratory frame of reference. In the figures,

the central plot shows the joint probability distribution of the polarization sensitive (p(Ip))

and polarization insensitive (p(I)) intensity measurement. The individual probability den-

sities of the polarization sensitive and insensitive intensity measurements are plotted on

the sides. It is evident from the figures that the polarization of the electric field is not

drawn from a uniform distribution. This effect is even more pronounced in the case of

elliptical micropillars which show that the polarization can be pinned to a particular orien-

tation. A complete characterization of the emission of the micropillar lasers would require

a simultaneous measurement using four detectors (as shown in figure 2.23) to obtain a

7Elliptical micropillars are fabricated by altering the shape of the mask to obtain elliptically shaped mi-
cropillars. The dimensions of the large and small axis are 5 µm and 4 µm respectively.
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Figure 2.21: Probability density function of polarization insensitive intensity measurement
and polarization sensitive intensity measurement in a circular micropillar
The central plot displays the joint distribution of the values of the polarization sensitive
and insensitive intensity measurement. The individual probability densities are plotted

on the sides. The polarizer was oriented along the laboratory reference frame.

probabilistic description of the Stokes parameters of the laser. We are currently limited

by the signal to noise ratio in the experiment to carry out this full characterization. The

preliminary results from the elliptical micropillars seem to be encouraging to demonstrate

inhibition dynamics which could be useful for certain computational schemes.

Having demonstrated that an incoherent perturbation leads to a probabilistic choice in

the output polarization state, we proceeded to study the effect of coherent perturbation

on such micropillars. Coherent perturbation scheme can be realized in two ways:

• Tuning the central wavelength of the mode locked laser to be in the cavity resonance

of the micropillar. This can be very difficult to achieve since the cavity resonance

is smaller than the free spectral range of the Ti:Sa laser (0.25 nm) which makes it

compulsory to use thermal tuning of the laser cavity.

• Exciting the micropillar laser using an incoherent perturbation and then using the

excitable response as a coherent perturbation.

The second method can be realized using an external cavity as demonstrated in this
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Figure 2.22: Probability density function of polarization insensitive intensity measurement
and polarization sensitive intensity measurement in a elliptical micropillar
The central plot displays the joint distribution of the values of the polarization sensitive
and insensitive intensity measurement. The individual probability densities are plotted

on the sides. The polarizer was oriented along the laboratory reference frame.

chapter. The single incoherent perturbation now triggers a train of responses, each of

which can be viewed as a coherent perturbation for the next response. We then perform

a polarization sensitive and insensitive measurement to resolve the dynamics of such a

pulse train. The experimental setup used is shown in figure 2.24. This experiment was

only performed with circular micropillars due to experimental constraints. The time traces

obtained from the two detectors reveal interesting polarization dynamics. The Fourier

spectrum of the polarization sensitive and insensitive intensity measurements are shown

in figure 2.25. The Fourier transform of the polarization insensitive measurement reveals

only a fundamental peak at f = 1/τ where τ is the feedback time which is approximately

8.8 ns. The polarization sensitive measurement reveals sidebands around the funda-

mental peak. The inset shows how the modulation sidebands change with respect to

the the bias pump. The modulation time is approximately 39.8 ns, 40.32 ns, and 41.15

ns for pump values of 590 mV, 597 mV, and 608 mV. The pump span was chosen such

that the micropillar was still in the excitable regime. The modulation time undergoes a

small change of approximately 1.4 ns for the large range of pump values. The pres-
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Figure 2.23: Experimental setup for complete characterization of polarization state of the
excitable response

DM: Dichroic mirror, BS: Beam splitter, MO: Microscope objective, APD: Avalanche
photodiode, µPillar: Micropillar laser, P1: Linear polarizer oriented along 0 radians, P2:
Linear polarizer oriented along 0 radians, P3: Linear polarizer oriented along π/4 radians,

R1: Quarter waveplate oriented along π/4 radians, OSA: Optical spectrum analyzer

ence of modulation sidebands in the polarization sensitive intensity measurement and

their absence in the total intensity measurement is a clear signature of modulation of

the orientation of the electric field of the excitable response rather than a modulation of

the intensity. We are currently collaborating with the group of Bernd Krauskopf from the

Dodd-Walls Center for Photonic and Quantum Technologies, The University of Auckland,

New Zealand on developing a model to explain the measurements. The time scale of

the modulation in polarization could stem from a temperature dependent phenomenon.

However, we have preliminary results showing that such dynamics could be explained

without the temperature being a required parameter. Additional studies would be needed

to explain the physical origin of this phenomenon. Another physical reason for ruling out

the temperature dependence would be due to the very small change in the modulation

time observed over a large range of pump values. Since the pump has a direct impact on

the temperature and there is no appreciable change in the modulation, we could indeed

assume that the modulation stems from a more fundamental reason.
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Figure 2.24: Experimental setup for measuring the linearly polarized component of the
excitable response oriented along a particular axis for a micropillar laser with delayed
optical feedback

DM: Dichroic mirror, BS: Beam splitter with 70/30 power split between reflected and
transmitted path, MO: Microscope objective, APD: Avalanche photodiode, L: Lens with f
= 5 cm, M: High reflectivity feedback mirror, BD: Beam dump, µPillar: Micropillar laser,

τ : External cavity round trip time.

2.6 Discussion and Conclusions

The results presented in this chapter demonstrate the multistability of a micropillar laser

with a time delayed feedback. The system, in the short term, demonstrates functionality

as an optical buffer which can be addressed using single optical perturbations or by

altering the bias pump. In the long-term the behaviour can be distinctly differentiated

into two regimes. In the case of a faster gain region, it is shown that any initial pulsing

pattern will converge to an equidistant pulsing pattern based on the initial conditions. It

is also possible to perturb a system in its stable state and the long-term dynamics are

then predicted by the basins of attraction. In the case of the a faster saturable absorber

region, we observe a similar kind of convergence but to symmetry-broken pulse-timing

states. Theoretically, our collaborators have shown that the stable n-pulse equidistant

solutions destabilize via torus bifurcations. In the vicinity of the torus bifurcation, a saddle

node bifurcation appears which stabilizes the symmetry broken states that are shown in

the bifurcation diagram (fig. 2.14). Experimentally, these states have been observed in

the case of 2 and 3 pulses in the external feedback loop. Physically, the strong amplitude-

time coupling is responsible for the strong amplitude time coupling is responsible for the
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Figure 2.25: Fourier spectrum of polarization sensitive and insensitive intensity measure-
ment in micropillar laser with feedback
Subplot (a) shows the fundamental peak corresponding to the feedback time and the side
bands signifying a modulation in the electric field orientation. Further, the inset shows a
slight change in the modulation frequency as a function of the bias pump. Subplot (b)

shows that in a polarization insensitive intensity measurement the only observed peak in
the Fourier spectrum corresponds to the feedback time.

occurrence of symmetry broken states. As the feedback time is increased, there is an

increasing degree of multistability among symmetric and symmetry broken states.

The results presented here are quite generic in essence that they only require excitability

and a time delayed feedback, thus their implications can exist beyond optics. Our results

contribute towards the understanding different pulsing dynamics observed in other fields.

Some notable references on related subjects are [87, 88] which demonstrated the effect

of time delayed feedback on single limit cycle oscillators and [89, 90] which discusses

effects of two limit cycle oscillators coupled through time delayed feedback. Since the

system presented in this chapter is not a limit cycle oscillator, the oscillations exist due

to the feedback and the time period is intimately linked to it, thus making the results

novel. Based on recent results demonstrating a connection between temporal dissipative

solitons in spatially extended systems and pulsing regimes in delay systems [81], pos-

sible connections might be made between non-equidistant pulsing regimes and soliton

molecules as the former are bound states of pulses [91, 92].

Beyond their fundamental interest for study of nonlinear dynamics of delay systems, the

results presented can contribute to the realization of optical computing schemes such as

reservoir computing relying on the large phase space of delay systems [93, 94, 95, 30,

26], optical buffers [37, 59, 96] and content addressable memories [97]. The physical
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meaning of a content addressable memory as described by Hopfield is an appropriate

phase space flow of the state of a system. The interest of such systems is that it can

retrieve a stored input based on a partial and/or error ridden input. In the context of the

results presented in this chapter, the stored patterns correspond to the stored memories

in the system and the input states correspond to partial matches to the stored memories.

Based on the initial excitation pattern, the system converges to one of the asymptotic

pulsing patterns which can be also viewed as the minimization of a certain energy defined

for the system. The energy landscape ideally contains a local minima for every stored

pattern and based on the initial conditions, convergence to the nearest local minima.

Another direction of research would be to compute using attractors created by several

coupled micropillars with delayed optical feedback. The hardware setup would be similar

to the proposed arrays of coupled micropillars via a diffractive optical element as in [30]

but would have a fundamental difference in the sense, the information would be written

into the system at time t = 0 and allowed to evolve within the system and might converge

to a possible attractor. This would then be an interesting demonstration of having all

optical computing without any optical to electronic conversion layers.

Finally, in the last section of the chapter, we demonstrate the polarization dynamics of

a single micropillar (circular and elliptical) lasers with incoherent perturbation and single

circular micropillar with coherent perturbations which are realized with the help of delayed

optical feedback. We observe that the in the case of the incoherent perturbations, the cir-

cular micropillar produces a response with a varied orientation of the electric field. On the

other hand, the geometrical modification in the elliptical micropillars enable the pinning

of the polarization with in a small range. The results from the coherent excitation (via

delayed optical feedback) reveal a modulation in the polarization which is absent in the

intensity measurement. The reason behind this is currently not completely understood.
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Chapter 3

Computing with integrated

micropillar lasers

In this chapter we present mainly numerical results on computing using either spatially

coupled micropillar lasers or using an ensemble of uncoupled micropillars. We first de-

scribe the method of spatial coupling and the model. We show the propagation of exci-

tation and how they can be used to build information processing circuits: OR, AND gates

and a temporal pattern recognition circuit. We discuss the implementation of such circuits

experimentally. We also show a design for realizing an on-chip excitable oscillator. Finally,

we present numerical results on computing using an ensemble of uncoupled micropillars

using a particular example of temporal code called rank order coding

3.1 Spatially coupled micropillars

2-D lattices of nodes can be built and coupled via out-of-plane elements [30, 31, 98].

The resulting setups can be large and complex to build while giving impressive compu-

tational ability. An alternative way to scale up the number of coupled nodes is to design

integrated circuits and introduce on chip coupling. In the following sections we present

the various functioning blocks such as tunable coupling, delay lines, and threshold detec-

tors essential for building circuits using micropillar lasers. Coupled excitable nodes have

been theoretically and experimentally studied in the past. Experimental studies include
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semiconductor quantum-dot lasers using free-space coupling [58] and excitable micror-

ing lasers coupled through waveguides [36]. Theoretical studies have been carried out

in coupled waveguides and optically injected microdisk lasers [99]. We propose in the

following a different approach and study spatially coupled micropillars in order to analyze

some computing properties of such networks. First we introduce the notion of coupling

and denote the diffractive coupling constant with the term κ. The system of ordinary dif-

ferential equations then used to model such evanescently coupled micropillars will consist

of 3⇥ n equations where n is the number of micropillars (Eqs. 3.1) [47, 100, 101, 102].

Ėj = ((1� iα)Gj � (1� iβ)Qj � 1)Ej + iκjmEm

Ġj = γG(A�Gj(1 + |Ej |
2))

Q̇j = γQ(B �Qj(1 + s|Ej |
2))

(3.1)

Where the dynamical variables Ej , Gj and Qj are the electric field, rescaled gain and ab-

sorption in the jth micropillar. The time in these equations is rescaled to the cavity photon

lifetime τp which is taken to be on the order of several picoseconds (⇡ 1-2 ps). The cou-

pling term κjmEm follows the Einstein summation notation where the contributions from

all the nodes is summed up. The coupling constant κ is real to have a purely diffractive

coupling. When the system under consideration is a chain of micropillars with uniform

diffractive coupling, κ can be reduced to a real number and the diffractive coupling for the

jth node can be written as iκ(Ej�1 + Ej+1). Non-radiative carrier recombination rates

and linewidth enhancement factors for the gain and absorber are γG, γQ, α and β respec-

tively. A denotes the pump and B is the non-saturable losses. The saturation parameter

is s =
aQγG
aGγQ

where aG,Q is the differential gain and absorption respectively; it controls the

characteristic response time of the system. The laser threshold for a single micropillar

as introduced in the first chapter is Ath = 1 + B. For a coupled system in the excitable

regime, for A . Ath, an initial perturbation above the excitable threshold can propagate

to the neighbouring micropillars in the saltatory propagation regime provided κ ⌧ 1. In

our analysis κ is normalized using the cavity photon lifetime and κ ⌧ 1 condition ensures

the formation of the excitable response before coupling to the neighbouring micropillars.
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This model is also only valid for small coupling strengths when coupled mode theory is

valid.

To quantify the coupling coefficient, we simulate two coupled micropillars. When two mi-

cropillars are placed in the vicinity of each other, the eigenmodes undergo mode splitting.

The fundamental mode split can be expressed as a symmetric and anti-symmetric mode.

Based on this splitting, one can estimate the coupling of energy from one micropillar

to the other and assign a characteristic coupling time. This time when normalized with

respect to the cavity photon life time is the value of κ considered here. The detailed cal-

culations behind this are illustrated in the chapter 2 of ref. [44]. Figure 3.1 shows how κ

is dependent on the distance between the center of two micropillars of radius r = 2.5µm.

Figure 3.1: Coupling constant κ as a function of distance between two micropillars of
radius r = 2.5µm

3.1.1 Numerical Simulations

Having outlined the prerequisites, we consider the following parameters for simulating a

chain of micropillars (each micropillar is coupled to its neighbours): γG = γQ = 0.001,

B = 2, s = 10, α = 2, β = 0. The parameters A and κ are varied in a region to il-

lustrate different behaviour. These parameters are compatible with the semiconductor

parameters [103] and correspond to a non-radiative recombination time of 1-2 ns. The

initial conditions are taken as Gj(0) = A, Qj(0) = B, and Ej(0) = δi0F0 for all micropillars

where δi0 is the Kronecker delta symbol. While the simulations are done for the chosen
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parameters, the phenomenon is robust and is observable over a large range of parame-

ters. We choose to number the micropillars as 0 · · · N from left to right, then the leftmost

micropillar is perturbed at time t = 0 using the initial condition E0 = 5 which is enough

to overcome the excitable threshold (for the given value of A) and elicit a response from

the micropillar. As a result of the coupling, the excitable response pulse is coupled to the

neighboring micropillar and since the coupling strength is sufficient, the excitable thresh-

old is crossed again leading to another pulse. The excitation transfer continues giving

rise to a solitonic and ballistic response. Importantly, the response is unidirectional: the

excitation can only transfer to the nearest neighbour on the right, or more precisely to the

unperturbed micropillar. This happens due to the refractory period of the micropillars; the

refractory period is longer than the coupling time between micropillars which results in

symmetry breaking of the system and unidirectional propagation of the signal.

Figure 3.2: Average adimensional propagation speed of a signal < v/vo > (units of speed
described in text) in a coupled micropillar chain for different values of pump A

The calculated mean speed of the pulse for A = 2.75, 2.8, and 2.85 are plotted in figure

3.2. The average propagation speed < v/vo > here is related to the time (scaled to

the cavity photon lifetime) taken for the excitable pulse to propagate one adimensional

unit of length with vo = 1/τp. It does not account for the physical distance between two

micropillars which varies with the coupling strength κ (see fig. 3.1). The speed varies

almost linearly with κ in a large window of laser parameters (only a small range of pump

is shown here). The increase in κ directly translates to lower photon tunneling time be-

60



tween the cavities which increases the propagation speed. There is a slight deviation

from linearity at higher values of coupling (> 0.3). In this region of high coupling, we

observe an apparent saturation in the propagation speed (not shown in the plot). This

has been identified in [101] as a bifurcation in the propagation mode of the excitation.

The saturation of propagation speed can however be intuitively understood as follows:

the coupling strength controls the time it takes for the energy to be coupled to the adja-

cent micropillar, when the excitable pulse amplitude is large and if the coupling strength

is sufficient, the excitable threshold is easily reached. Hence the latency time does not

play a large role and we expect a saturation in the propagation speed. For a low value of

κ (typically < 0.1), no pulse can propagate. The numerically computed speed is typically

on the order of a few hundreds of picoseconds for traversing 20 micropillars. This indeed

represents a challenge experimentally because one needs a high time resolution to re-

solve the propagation from individual cavities; additional limitations are caused by the low

emission intensity.

Figure 3.3: Critical pump Ac required for signal propagation for different coupling
strengths κ

For a given coupling strength κ, there is a minimum value of the pump A below which

the excitable propagation is inhibited. This is illustrated in figure 3.3. This critical value of

pump decreases with increasing the coupling strength. The intuitive explanation of this is

that small coupling strengths must be compensated by higher excitable pulse amplitude

and this is possible by increasing the pump. This is consistent with the numerical and
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analytic findings of refs. [49, 50], where it is shown that the maximum excitable pulse

intensity scales as γ�1
G ⇥ (A� 1� ln(A)). Having introduced the parameters required for

signal propagation, figure 3.4 shows the signal propagation or lack thereof in two chains of

twenty micropillar lasers with different coupling strengths. Here the pump is A = 2.8 and

the other parameters are as mentioned before. A perturbation above excitable threshold

is introduced in the leftmost cavity (0) in a chain of 20 coupled cavities. In subplot (a), the

coupling constant κ = 0.01 is too small to induce propagation: only the first cavity fires an

excitable spike. In subplot (b), the coupling strength κ = 0.1 is sufficient to induce stable

saltatory propagation in the chain.

Figure 3.4: Saltatory propagation for different coupling strengths
In (a) and (b), the temporal response (normalized to cavity photon lifetime) of each

cavity is plotted with an offset for clarity. The coupling constant in (a) is κ = 0.01 and in
(b) is κ = 0.1. Adapted from [102]

3.1.2 Information processing

In an effort to build information processing circuits based on the understanding estab-

lished in the previous section, we first illustrate the implementation of temporal AND and

OR logic circuits. These logic gates are analogous to their static counter parts in terms

of their truth table but depend on the relative timing of the excitable response from the

micropillars. Out of deference to spiking neural networks, these excitable responses can

also be called spikes1. Another way to view logic circuits can be as a classification prob-

lem. A visual schematic of the truth table of the OR, AND, and XOR logic circuits is shown

1The words spikes and excitable response are used interchangeably in the thesis, I have tried to add
footnotes in a few places in order to avoid any confusion to the reader
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in figure 3.5. Evidently, there exist several linear decision boundaries in the case of the

OR and AND logic gate but a nonlinear decision boundary is required for the XOR opera-

tion. Like the journey from single layer Perceptrons [1] to modern neural networks is one

of linear to nonlinear decision boundaries, we show how coupled micropillars can learn2

linear decision boundaries and in principle be extended to nonlinear decision boundaries

such as XOR logic [86, 104] and ring neural networks [105].

Figure 3.5: Truth table for OR, AND, and XOR logic

Linear decision boundary problems

Boolean logic operations with excitable systems have already been studied in models of

dendritic spines [106], using chemical excitable waves and their collision properties in 2D

media [107, 108] and in semiconductor media with excitable localized states [109, 110].

The first illustration is that of the OR logic operation. In these circuits, information is coded

in the presence or absence of a spike and can be represented by two bits, 1 and 0. These

circuits are also designed to be cascadable. We consider a chain with an odd number of

micropillars (n = 13) for the main segment, to which is attached an additional segment in

the center consisting of a single micropillar. The OR gate is illustrated in figure 3.6. The

two input micropillars are A and B and the output micropillar is C. The above threshold

perturbations are marked by arrows. Except in the case where no input is present, the

output of the gate in C is always 1. With only one input, the response is trivially 1 as the

single excitation (input at either at A or B) propagates throughout the structure like in the

chain of micropillars. If both the inputs are 1, the pulses collide in the central micropillar

2The word ’learn’ is used liberally and refers to the fact that the parameters are decided before hand and
fixed for particular applications.
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and excite the output micropillar C. Therefore, a spike emerges and can propagate to

possibly another gate. This forms an OR gate. Note that where the two incoming pulses

meet, the response latency time is smaller.

Figure 3.6: Numerical simulation of a spike-based OR gate circuit
Temporal responses for each cavity (offset for clarity) in the case of two perturbations in
nodes A and B. The response in node C is plotted in dashed and blue. Inset: overlayed
responses for inputs in nodes A, B, and both A and B. The cavities are pumped with

A = 2.74. The coupling strength is κ = 0.15. Adapted from [102]

The AND gate is less trivial and requires to modify either the coupling or the pumping of

the micropillars. Since the latter is easier to implement experimentally, we choose this

option for the numerics. As was noticed earlier, there is a critical pump for the spike to

propagate. We use this property to build the AND logic gate. A temporal AND gate can

also be viewed as a coincidence detector gate. We consider the same chain as before,

except the micropillars immediately next to the central cavity are now pumped with a

lower value (see Fig. 3.7). The value is chosen to prevent the propagation of a single

pulse. However, when the two inputs are present, the coupling of the two lower intensity

pulses in the central micropillar is sufficient to cross the excitable threshold and a pulse

is created in C. The lower pump is immediately translated into a larger spike latency time

and a smaller response pulse. When these smaller pulses are coupled into the central

micropillar, they can produce a response pulse in C which can be cascaded eventually to
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other gates. The same phenomenon arises for a constant pump value of A = 2.74 and

a change of the coupling constant of the nodes next to the vertex node, for values in the

range 0.05 / κ
0

/ 0.1. If κ
0

/ 0.05, the pulse cannot propagate anymore and is stopped

completely. If κ
0

' 0.1, the gate transforms into an OR gate since a single pulse can

propagate through the vertex.

Figure 3.7: Numerical simulation of a spike-based AND gate circuit
Temporal responses for each cavity (offset for clarity) in the case of two perturbations in
nodes A and B. The response in node C is plotted in dashed and blue. Inset: overlayed
responses for inputs in nodes A, B, and both A and B. The cavities are pumped with A
= 2.74 except the one marked by dashed circles with A = 2.45. The coupling strength is

κ = 0.15. Adapted from [102]

The last example is that of a temporal pattern recognition circuit (a particular example

using delay lines and three excitable nodes was shown in [46]). This circuit is capable

of recognizing when two consecutive spikes in an input sequence are separated by ∆t (

= 515.5 shown in figure 3.8). The input signal is sent to micropillar A and the output is

recorded from micropillar D, the response is recorded at several micropillars in the circuit

to demonstrate the operation of the temporal recognition. The input spike propagates

through the upper arm (see inset in Fig. 7). At the first crossing, the signal is split in

two parts. The lower arm implements a delay line whose delay is equal to ∆t. Both

arms meet in a node structure similar to the previously shown AND gate. Every time the
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temporal pattern in input is recognized, a spike is emitted at the output. To speed-up the

computation time and reduce the size of the delay line we have accelerated the carrier

dynamics in the simulation by taking γG = γQ = 0.01 in Eqs. 3.1. The input pattern

recognized corresponds essentially to the propagation delay of the pulse in the lower

arm. Generalization of the circuit to the recognition of more complex temporal patterns

can be done via integrating several delay lines. However, the refractory time of the nodes

sets the lower limit of the detectable separation between two input spikes.

Figure 3.8: Spike based temporal pattern recognition
A signal is sent to node A and recorded in nodes A, B, C, and D. In node D, the output

pulse signals the presence of specific temporal pattern: two spikes separated by
∆t = 515.5. In (a) the input signal consists of three spikes separated by ∆t. In (b) the
input signal consists of two first spikes separated by ∆t and a third spike separated by
∆t0 = 575.5. In inset is shown the micropillar circuit considered. The micropillar are

uniformly pumped except the two pillars with dashed circles (same parameters as in Fig.
3.7 except γG = γQ = 0.01). Inset: schematic of the circuit used (the lower arm length
has been reduced for clarity). The total number of nodes is 105. Adapted from [102]

While the topology of the spike pattern decoder is fixed by fabrication, the ∆t value can be

adjusted by modulating the pump intensity thus making it possible to recognize various

temporal patterns using a single fabricated structure. The functionality illustrated here

can also be used to build on chip oscillators which generate a spike train akin to the

external cavity systems illustrated in chapter 2. Note that this functionality is not trivial, if

one considers e.g. a ring topology for the coupled pillars, one cannot have self sustained

oscillations: any perturbation introduced in the ring gives rise to two counter propagation
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excitations which would eventually collide and suppress the propagation. A schematic

structure is illustrated in figure 3.9. The circuit in terms of pumping or coupling is identical

to the temporal AND logic. The micropillars marked in solid line are pumped higher (or

have a higher coupling) as compared to the micropillars in dashed lines. An initial spike

/ perturbation is sent to node A, this spike is then split into three possible paths labelled

as Paths 1, 2, 3, and 4. The three paths can be alternatively expressed in the order of

the nodes traversed. The nodes traversed in paths 1 and 2 are A-C-B-A and A-D-B-A

respectively. The nodes traversed in path 3 and 4 are A-B-C-A and A-B-D-A respectively.

The time taken for traversing the paths A-B-C and A-B-D is shorter than time taken by

paths A-C-B and A-D-B due to the design. As illustrated in the temporal AND logic, the

signal cannot conduct via path 3 and 4 due to lower pumping (or coupling). The paths 1

and 2 are symmetric and thus due to this reason, the initial perturbation at node A results

in a spike at nodes C and D at the same time. This makes the conduction in the full

path possible. The same phenomenon reoccurs every time node A spikes resulting in a

on chip oscillator with the period fixed by the length of paths 1 and 2, the global pump,

and coupling constant. In the absence of the modified pump or coupling on paths A-B-C

and A-B-D, the first perturbation at node A would split into all the four paths and conduct

successfully along each of them. This would then lead to two collisions along paths 1,3

and paths 2,4 stopping the signal propagation. This circuit would thus no longer serve as

an on-chip oscillator.

Non-linear decision boundary problems

Non-linear decision boundary problems can be approached in two ways, (a) Training a

non-linear decision boundary using non-linear activation functions or (b) Adding features

to increase the dimensionality such that the problem requires a linear decision boundary

in higher dimensions. To illustrate the example of the latter, consider the XOR logic

problem with the truth table as follows:
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Figure 3.9: On chip oscillator
A signal is sent to node A which then splits into three paths, Path 1, 2 and 3 as marked
in the figure. Paths 1 and 2 (of nodes A-C-B and A-D-B respectively) are viable paths
for signal conduction whereas Path 3 (of nodes A-B-C or A-B-D) is not. This results in

the performance if this as an on chip oscillator. See text for additional details.

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0

One can add an extra dimension using a logic operation such as Input1 == Input2

and the problem with the following truth table them becomes linearly separable in three

dimensions:

Input 1 == Input 2 Input 1 Input 2 Output

1 0 0 0

0 0 1 1

0 1 0 1

1 1 1 0

This approach is essentially one of the motivations behind reservoir computing, a
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reservoir computer generates features and increases the dimensionality of the problem

such that it can then become linearly separable in higher dimensions.

An optical XOR gate can be shown using the polarization degree of freedom [86] in a

non integrated scheme. It has been shown recently in the group that it is also possible to

obtain this logical operation in evanescently coupled micropillars.

Lastly, coupled micropillars can be used as generic nonlinear devices in schemes of

reservoir computing by combining several on-chip oscillators and delay lines. Such cir-

cuits can then in principle be used to learn arbitrary decision boundaries.

3.1.3 Towards experimental realization

Figure 3.10: SEM image of 1-D chain of micropillar lasers

Having illustrated the results from numerics on coupled micropillar, it is essential to

demonstrate that they can be implemented in actual devices. In figure 3.10, we see

how we can fabricate coupled micropillars based on the same fabrication recipe for the

micropillars. The distance between the center of micropillars is tuned to achieve a range

of coupling constants.

In figure 3.11, we demonstrate the fabrication of a structure which can act as an AND

logical gate. As indicated on the image, the input node is labeled with a blue circle and

the output node is in black. To ensure that both arms are in phase, the path following the

input node is split in two arms of equal lengths, realizing a type of interferometer. The

circles labeled in red are the ones which are either less pumped (shown here ) or less

coupled to the output gate. The modulation in pump can be achieved by the means of a

spatial light modulator (SLM) in the pump beam path. This modulation changes the arrival

time of the spikes at the summation region. The output node only spikes if the change

in time is within the duration supporting temporal summation (⇡ 600 ps) illustrated in the

first chapter. The SLM can be used to imprint a phase profile on the input pump beam
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Figure 3.11: SEM image of coincidence detector / AND logic gate
In the figure here, the micropillar labeled with the blue circle is used as the input and the

micropillar labeled with the black circle is used as the output. The two micropillars
labeled with the red circles is where either the pump (shown here) or coupling can be

altered to achieve the coincidence detector / AND logic gate.

which when focused generates a desired point spread function (PSF). Such problems to

obtain a desired PSF have been extensively studied and one of the popular algorithms for

phase retrieval is the Gerchberg-Saxton algorithm [111] which is an iterative procedure.

This algorithm assumes a plane wave is incident on the SLM surface and only modifies

the phase leaving the intensity constant. Several modification exist for tailoring to specific

application of an experiment.

3.2 Brain inspired computing using an ensemble of micropil-

lars

In this last section of the chapter, we will demonstrate a computing scheme based on

rank-order coding implemented using micropillar lasers. While there are many paradigms

of brain-inspired computing (some of which are introduced in the introduction), this sec-

tion will focus on neural coding schemes. Neural coding schemes refer to plausible ways

spikes or electrical impulses can contain information and perform computation. While

this is still an active area of research and there is no definitive answer about the scheme

used by biology, there are a few well known contenders. The first of which is rate coding,

this is a relatively simple coding scheme and the information here is coded on the aver-
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age number of spikes per unit time. One can easily see how such a scheme while easy

to implement can be very inefficient. There have been experimental results suggesting

some primitive computations occur at much faster timescales than enabled by rate order

coding thus, there must be more efficient schemes [112]. Ref. [113] illustrates some

elementary computations to compare three schemes videlicet rank-order coding, time

coding, binary coding, and rate coding. The setting is as follows: Let there be N neurons,

the temporal resolution of the measurement apparatus be t and the total acquisition time

be T . The amount of maximum information (in bits) in binary coding (1 when a neuron

fires and 0 otherwise) is log2(2
N). If we were to discard the information identifying which

neuron fired and only consider the number of neurons that fired, we obtain the maximum

information to be log2(N + 1) (the N is for the number of neurons and the additional 1

when no neuron fires) for rate coding. Time coding relies on precise timing of the spikes

from each neuron, given the temporal resolution and the acquisition time, the spike from

each neuron can be classified into T/t slots, generalizing this to N neurons results in the

information capacity of log2((T/t)N). The last case does not account for the time of each

neuron to spike, just their relative order. N neurons can be ranked in N ! ways and the

resulting in the information capacity of log2(N!). Figure 3.12 shows how the maximum

information scales in each of these cases. As we can see, time and rank order coding

perform significantly better as the number of neurons increases. While these calcula-

tions describe the scaling of maximum possible information, specialized mechanisms (in

biology) or hardware (in engineering) can be needed to extract pertinent information. A

more practical calculation would be one that weights the maximum information against

the degree of sophistication required to extract information. For several reasons, it turns

out that rank-order coding is considerably simple to implement and thus we choose this

scheme to implement computation using micropillars.

For demonstrating learning and computation, we choose the digits dataset from scikit-

learn consisting of handwritten digits. Each digit is an 8 ⇥ 8 image with pixel intensities

between 0 and 16. There are 1797 images with almost equal number of images in each

class. The Yamada model with incoherent excitation is used in this illustration. We use

the model equations introduced in chapter 1 (Eq. 1.1):
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Figure 3.12: Maximum possible information in different coding schemes
The information in time-coding is calculated using T/t = 20

Ġ = γG(A�G�GI)

Q̇ = γQ(B �Q� sQI)

İ = (G�Q� 1)I + βsp(G+ η1)
2

(3.2)

The parameters used for the simulation are: γG = γQ = 0.01, s = 10, B = 2.2, βsp = 10�5

and η = 1.6. The choice of the pump A is explained in the next section.

The training procedure for rank-order coding is very minimal. We determine a weight

vector for each digit by choosing a few digits (⇡ 20) at random from each class and

compute a pixel wise average. The result of this average is seen in figure 3.13.

The average values are then sorted in the descending order and each pixel is assigned

a rank, rankpx, where px is the pixel number. The weight then associated to each pixel

(or rank) is W (px) = Drankpx , where D is a constant < 1. We choose D = 0.95. This

introduces a decay in the weights. The resultant weights obtained are shown in figure

3.14.

For the testing or inference phase, each pixel is sent to an independent micropillar as

a perturbation on the gain variable at time t = 0. As illustrated in the first chapter, the

micropillar exhibits spike latency which is a function of the bias pump and the perturbation
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Figure 3.13: Pixel wise average computer for digits of each class (brighter is higher)

strength. This relationship for various values of pump is shown in figure 3.15. This plot

helps us select a good operating point which demonstrates a large range of nonlinear

spike latency for the micropillar. Once the bias pump is chosen, the handwritten digit

data is rescaled to be between the excitable threshold and 1.053. Thus every pixel is

converted into a latency time tresp. As a convention we take tresp ! 1 if a particular

micropillar does not generate a response. Thus for each digit, we obtain 64 pulses at

different times. We then rank the order of these pulses such that the shortest time tresp

is ranked 1 and tresp ! 1 is ranked 1 in an order vector 4. Once we have the weight

vectors (from training) and an order vector for the test case, we compute the activations

for every digit class as follows:

3This value chosen here is just to avoid being in the saturated region of the curve. It doesn’t play a very
critical role in the simulations as we use float64 numbers but this would be very critical in presence of noise
or in experiments.

4Please note that if a micropillar does not spike, it is assigned tresp → ∞ and ranked ∞ and not 64, this
is chosen as a convention
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Figure 3.14: Weights for rank-order coding (brighter is higher)

Figure 3.15: Spike time latency in micropillar laser

Activation(i) =

64X

j=1

Morder(aj) ⇥ w(i, j) (3.3)
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Here, the index i between 0 and 9 corresponds to the number of test classes, the sum-

mation over j calculates the contribution from each pixel factoring in its rank and the

corresponding weight. M < 1 is chosen by convention to introduce a decay in the contri-

bution of micropillars with a high spike latency to the total activation. M = 0.95 is chosen

in our case. For each test case we compute the 10 corresponding activations and the

class with the maximum activation is taken as the predicted class. In doing so, we obtain

a test accuracy of ⇡ 74%. The breakdown with their respective classes are as follows:

Figure 3.16: Confusion matrix for prediction using rank order coding

Class Accuracy

0 0.987

1 0.402

2 0.490

3 0.650

4 0.835

5 0.759

6 0.975

7 0.876

8 0.653

9 0.764

75



The confusion matrix is shown in figure 3.16. The prediction results on some digits are

better than others. One potential way to correct this is to identify a refined set of weights

which better captures the digit. It is an open question and something the group will work

on in the near future. The results presented do not compare to the near perfect accuracy

obtained by the state of the art neural networks and machine learning techniques but

present a novel form of computing using temporal information. We strongly believe that

the accuracy obtained can be increased using optimal training routines. To the best of

our knowledge, this is the first demonstration of computing using rank order coding on

a photonic platform. Current research is underway in our group in the ANR Anaconda

project to use more advanced neural coding schemes and build photonic hardware based

on delay and spatially coupled nodes.
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Chapter 4

Precursor aided prediction of

extreme events in an extended

microcavity laser

In this chapter we introduce extreme events formation in a quasi-1D semiconductor sys-

tem and we demonstrate and discuss the prediction of such events. The prediction is

carried out on experimental data displaying spatiotemporal chaos by using various ma-

chine learning techniques based on precursors identified using statistical analysis and

information theory. Our analysis is based on a partial knowledge of the history of the

spatiotemporal laser intensity. Thus, rather than attempting to predict the full spatiotem-

poral field, we attempt to predict the category of future events based on the knowledge

of a finite history of the system, building on the identification of spatiotemporal regions

carrying the most possible useful information. We show that we are able to obtain good

results on the cross-prediction of extremes, based on the knowledge of the history at two

spatially disconnected regions, on par with the best predictions using the most correlated

regions of space.
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4.1 Extreme Events: A historical perspective

Extreme events can be defined as follows [114]: a time recording of the dynamics of a

macroscopic system maintained out of equilibrium may consist of well-defined periods

where a relevant variable undergoes small variations around a well-defined level defined

by its long-time average, with the occasional occurrences of abrupt excursions to values

that differ significantly from the average level; such events are called extreme events. In

recent years, significant efforts have been made to understand extreme events. These

events were first observed at sea and for centuries were merely considered a myth de-

spite anecdotal evidence as linear models used by researchers to predict wave ampli-

tudes ruled out existence of such large waves. With the dawn of the modern industrial

era and steel-hulled ships the probability of surviving encounters with rogue waves in-

creased and with it the eye-witness records. It was a Scottish oceanographer named

Laurence Draper who worked on analysis of waveform data and wrote the first scientific

article on the subject in 1964 [115]. It was several decades before an experimental con-

formation of this phenomenon. On January, 1, 1995, an oil drilling platform located off the

coast of Norway measured a wave measuring 85 feet which was appreciably outside the

predicted models; at the time it was estimated that a 64 foot wave would occur approxi-

mately once every 10,000 years. The scientists from the oil rig later published [116] that

such rogue waves were far from a rare phenomenon and occurred with a much higher

probability. Rogue waves and their prediction is an active area of research and they can

be observed in many systems with non-negligible probabilities [117, 118, 119, 120]. Sci-

entists have also demonstrated how nonlinear interactions between waves can cause the

existence of super rogue waves from calm and apparently safe sea states. These waves

are caused by the nonlinear focusing of wave amplitudes of nearby waves into one large

and short lived event [121]. Nonlinear systems are of particular interest as they can show

the requisite extreme sensitivity to initial conditions.
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4.2 Extreme events in optics

Extreme events in optics are characterized by a rare and intense pulse in the intensity

domain. The study of these optical extreme events has been originally motivated by their

analog in hydrodynamics because physically some conservative models of wave propa-

gation in optics and deep water waves can share a common description by the the non-

linear Schrodinger equation [122]. The interest of optics stems from the fast timescales

enabling large statistics to be recorded in a short amount of time and with tunable non-

linearities. Thus, many different physical situations can be tested and we can expect to

draw general conclusions from extreme events found in optics when identified with well

defined physical mechanisms. Most of the studies in this context have taken place in

optical fibers where the interplay of nonlinearity, dispersion, and noise can generate ex-

treme events [123, 124, 125, 126]. Extreme events in conservative systems are often

associated with the merging dynamics of coherent structures [127, 128, 129] and this

mechanism has also been found in a dissipative fiber-laser system [124, 130]. Other

mechanisms observed in dissipative systems involve stochastically induced transitions

in multistable systems [131] or temporal chaotic dynamics in a non-spatially extended

laser with optical injection [132]. Extreme events have been found in a variety of optical

cavity systems such as an injected nonlinear optical cavity [133], fiber laser [130, 134],

solid-state lasers [135], optical liquid crystal light valve with optical feedback [136], and

semiconductor lasers [132, 137, 138]. The role of spatial coupling has not been studied

until recently in a pattern-forming optical system composed of a photo-refractive crystal

subjected to optical feedback [139, 140] or a low Fresnel number solid-state laser [141].

Extreme events following polarization measurements (vectorial rogue waves) have also

been demonstrated in optical fibers [142] and in VCSELs with feedback [143]. Most of

these extreme events were characterized from a statistical point of view without estab-

lishing their origin from dynamical system theory. Our group demonstrated numerical and

experimental results on the formation of extreme events in a spatially extended nonlinear

dissipative system and showed that the extreme events occur at the onset of spatiotem-

poral chaos, hence enabling a link between the statistical and the dynamical properties
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of the system.

4.3 Extreme events in a line semiconductor laser

Figure 4.1: Schematic setup and images from experiment to generate and measure ex-
treme events in quasi 1-D system
Panel (a) shows the schematic representation of the experimental setup. Panel (b) shows

the top view of the quasi 1-D system below (left) and above (right) threshold. False
colour (yellow for the golden mask) has been added to the image below threshold to

enhance the contrast of the image. Figure adapted from [144].

Our group (in collaboration with Saliya Coulibaly at the Université de Lille and Marcel

G. Clerc at Universidad de Chile) in the past has shown and explained the mechanisms

and formation of extreme events in a quasi-1D semiconductor laser [145, 144]. This

section of the chapter is inspired by these papers to introduce the readers to the optical

system under consideration and characterize the extreme events. The system studied

by our group is a planar microcavity laser with an integrated saturable absorber. The

device structure is similar to the micropillar lasers outlined earlier on in this thesis but the

diameter of the devices under study here is much larger on the order of ⇡ 100 µm. The

planar microcavity is covered with a gold mask and an opening of 80 µm in length and

10µm in width is made to realize the quasi-1D structure. The microcavity is then pumped

along this rectangular aperture above threshold and the intensity close to the center and
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at a movable point is recorded with a fast avalanche photodiode having a bandwidth of

5 GHz. The temporal signal is then amplified using a low noise high bandwidth amplifier

and acquired with a 6 GHz oscilloscope at 20 GS/s or 50 ps sampling time. The movable

detector is sequentially displaced to span the entire 1-D structure. The experimental

setup and the schematic of the experiment is shown in figure 4.1. In the absence of

spatial coupling, this system does not display irregular dynamics and hence, extreme

events. Spatial coupling arises from diffraction as a consequence of the large aspect

ratio (and Fresnel number) which accommodates a large number of transverse spatial-

modes.

The irregular dynamics motivates us to study if such a system is chaotic. The charac-

terization of chaos and spatiotemporal chaos is carried out by studying the Lyapunov

exponents or spectrum [146]. These exponents measure the exponential sensitivity to

infinitesimally small perturbations to a given trajectory in the phase space. A strictly posi-

tive Lyapunov exponent denotes that nearby trajectories will diverge exponentially in time

where as a negative exponent signifies that any small perturbation will converge onto a

single (original) trajectory. The number of Lyapunov exponents equal the dimensionality

of the system under study. A system is said to be chaotic even if a single exponent is

strictly positive. Experimentally, we are often in the situation where the underlying dynam-

ical system might be unknown with the desired level of accuracy or we only have access

to a limited set of variables describing the dynamical system. It is well known that we

can estimate the Lyapunov exponents by using delay coordinate embedding [147, 148].

Some recent results also suggest that we can use reservoir computing [149] to recon-

struct the complete dynamics [150]. This technique has also been used to reproduce the

dynamics of low and high dimensional dynamical systems and these networks then can

be used to infer the full set of Lyapunov exponents [151].

Often, for systems with a known model, the most feasible technique is to model the sys-

tem under study and numerically estimate the Lyapunov exponents. Let N be the number

of discretization points in an extended system described with m degrees of freedom, then

the system has m⇥N Lyapunov exponents λi. If the Lyapunov exponents are sorted in

decreasing order and in the thermodynamic limit (N ! 1), these exponents converge to
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a continuous spectrum as conjectured by Ruelle [152]. Therefore, if the system displays

spatiotemporal chaos in this limit, there exists an infinite number of positive Lyapunov

exponents. The set of ordered (descending) Lyapunov exponents provides an upper limit

for the strange attractor dimension through the Kaplan-Yorke dimension DKY (equation

4.1) [153], where j is the largest integer that satisfies
Pj

i=1 λi � 0. In the thermodynamic

limit, the Kaplan-Yorke dimension diverges with the size of the system as a consequence

of the Lyapunov density [154].

DKY = j +

jX

i=1

λi

λj+1
(4.1)

Experimental results aided by numerical simulations demonstrate that the physical origin

of extreme events in this system can be attributed to spatiotemporal chaos. The route to

spatiotemporal chaos in the system was identified as quasi-periodicity. The fine structure

of the largest Lyapunov exponent and of the Kaplan-Yorke dimension DKY helped to infer

that intermittency plays an important role in the variation of the number of extreme events

found that correlate to the bifurcation of spatiotemporal chaos. Beyond this conclusion,

the reader is urged to read the articles from our group cited in the beginning of the section

for a detailed discussion on the parameters, establishing spatiotemporal chaos and the

numerical schemes used.

In order to proceed, we would first like to introduce the definition we consider for ex-

treme events which is taken from hydrodynamics. In a time trace with many pulses, the

height of an event is computed as the change of the relevant variable (intensity here) be-

tween two consecutive minima and maxima. For the case of a single pulse embedded in

some background variation, one can find a minima (Mn1) before the pulse, the maxima

(Mx1) of the pulse and a subsequent minima (Mn2) after the pulse. These three val-

ues correspond to one event, the height of the event is then selected using the definition

H = max(|Mn1 �Mx1|, |Mx1 �Mn2|). We define a significant height Hs which is the

mean of the highest tertile of the probability density function of the height H of the events

recorded. Any event having the height greater than twice the significant height is labeled

as an extreme event. Another way of expressing this is that any event with an abnormality
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index, AI = H/Hs > 2 is called an extreme event.

a )

b)

c )

d)

H (arb. u.)

H (arb. u.)

H (arb. u.)

H (arb. u.)

Figure 4.2: Dynamics observed in the quasi-1D system for different values of pump
Experimental observation of extreme events, their corresponding logarithm of the PDF of
the intensity height H and power spectral density (PSD) for different normalized pump
values P/Pth (a) 1.02, (b) 1.17, (c) 1.20, and (d) 1.25 are plotted. Panel (b) also shows

an excerpt of the temporal evolution of intensity at the central detector C. Extreme
events (AI > 2) are marked in red. Figure adapted from [144]

The results obtained experimentally for different values of pump are shown in figure 4.2.

The events labeled in red are the extreme events. The figure also shows the power spec-

tral density and the temporal evolution of the laser intensity to characterize the complex

behaviour of the system. For pump values close to the threshold, P/Pth = 1.02 (sub-

plot a) where Pth is the laser threshold, the system exhibits quasiperiodic behaviour and

its Fourier spectrum is a well defined peak with a harmonic. In this parameter region,

the PDF of the event height decays rapidly and the probability of occurrence of extreme

events is very low. With an increase of the pump P/Pth = 1.17 (subplot b) we observe a

large number of extreme events. This can be seen in the non-Gaussian tail of the PDF

of the event height. The development of fat tails is also reflected in the Fourier spectrum

which shows considerable mixing and broadening of its frequency components. Under
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Figure 4.3: Histogram of spacing between two extreme events for P/Pth = 1.2

further increase of the pump power, P/Pth = 1.2 (subplot c), intermittent dynamic be-

haviour in the temporal evolution of the total intensity is replaced by irregular oscillations

of the total intensity. The probability of observing an extreme event is reduced and the

Fourier spectrum reveals a quasiperiodic behaviour with noise like fluctuations. For fur-

ther higher values of the pump, P/Pth = 1.25 (subplot d), the temporal evolution of the

intensity shows aperiodic behaviour with the probability of large amplitude events reduc-

ing drastically.

The interarrival time for the extreme events is shown in figure 4.3. This figure shows

the histogram of time between two consecutive extreme events. It displays Poisson-like

statistics characterized by an exponential decrease with mean interspike time σ ⇡ 21.7ns

or approximately 435 samples. Hence we can conclude that in the first approximation

extreme events are a memoryless Poisson process. The normalized value of pump P/Pth

in this figure was 1.20. The work on prediction in this chapter will be carried out using the

data recorded with the normalize pump of 1.20.

It was shown in ref. [145] that there is a correlation region in space and time in the vicinity

of an extreme event. The cross correlation was introduced as follows:

Xc,m(k) =
1

Nσycσym

X

i

[yc(i)� ȳc][ym(i+ k)� ȳm] (4.2)
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Figure 4.4: Cross-correlation and average plots to identify precursors
(a) Temporal cross-correlation Xc,m(k) (defined in text) between detector responses in

points C (central detector) and point M at delay k ns. (b) Same as (a) restricted to only
extreme events at point C. (c) Average of responses at point M and around the time

when an extreme event occurred at C. Adapted from [145]

Where, Xc,m is the cross-correlation between the signals recorded by the central detector

yc at point C and the movable detector ym at point M (in our experiment, 1  m 

20). k is the temporal delay (ns in the plot). The bar symbol and σ indicate the mean

value and standard deviation respectively. The results of this are shown in figure 4.4.

Subplot (a) was computed for every event at point C. Each event at the central detector

is at location (0,0) in this spatiotemporal plot where the y-axis is the span of the quasi-

1D system and the x-axis is the time around the event. A high correlation region was

identified in space at the time of the extreme event (region in green, centered at time =

0). This region extends to the region smaller than the span of the system and appears

vertical with our experimental resolution. This indicates that large amplitude pulse occurs

simultaneously in the entire spatially correlated region and disappears rapidly outside this

region. In subplot (b), the cross-correlation was computed only only using extreme events

at location C and it was observed that the resulting plot is similar to the previous plot.

Based on this, it was concluded in ref. [145] that the extreme events are not a result of

collision of coherent structures or solitons as this would have resulted in a bending of this

correlation region (at least in subplot (b)1). Further, it was observed that the correlation

bands extend for about 2 ns in time. Subplot (c) plots the average of the responses at

point M when an extreme events occurs at C. While this plot is similar in structure to the

1This was substantiated through a second plot only limited to extreme events as one could argue that any
structure of collision might be washed out in subplot (a) as a result of the disproportionate number of non
extreme events. This not the case here.
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cross-correlation plot, it shows asymmetry around the correlated structure.

4.4 Prediction and precursors

The prediction of extreme events has wide importance and is prevalent in a variety of

complex systems belonging to very diverse fields such as: neuroscience, financial mar-

kets, climate, oceanography and geoscience to name a few. Having established that

extreme events are a consequence of spatiotemporal chaos in our system, it is thus an

interesting endeavour to try and predict the occurrence of these events. The prediction

of chaotic dynamics is inherently challenging due to the divergence of nearby trajectories

which is captured by the Lyapunov exponents. Thus, in order to have an accurate evo-

lution of the system one would need a very high resolution of measurements2 which is

frequently not the case in experimental data.

In a general case when the system is large, it is not possible to access the observable(s)

with arbitrary precision in space and time. It is thus useful to have an estimate about

the subspace which contains maximum information about said observable(s). These

subspaces or regions will be called precursors and are extremely useful to identify the

occurrence of extreme events. Since we consider a 1D structure, the region under con-

sideration is a 2D entity, one dimension for the space and one for time. As a first attempt,

we choose to identify precursors using a cross correlation plot presented in the last sec-

tion. Such a plot might indicate regions from where machine learning algorithms might

extract some trends.

The cross-correlation and average plots, while giving us indications of possible precur-

sors, do not identify the direction of flow of information. Moreover, there could exist

regions which seem uncorrelated but which would exchange information. To account for

such effects, we compute the transfer entropy in collaboration with Saliya Coulibaly at

the Université de Lille. The notion of transfer entropy was introduced in ref. [156] as an

addition to the concept of mutual information. Mutual information between two systems

I and J , MIJ as defined within the paper is the excess amount of code produced by

2As an interesting example, one can consider the simulation of the Lorenz system [155] with slightly
different numerical precision and the solution will diverge!
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erroneously assuming that two systems are independent. While it gives a measure of the

information shared between the two systems, by construction the quantity is symmetrical

(MIJ = MJI ) thus contains no directional information. In extended systems it is inter-

esting to identify the rate at which different components exchange information. Transfer

entropy answers this question by taking the dynamics of information transport into ac-

count thus making it an asymmetrical measure. The original definition can be adapted to

our case and the resulting equation is as follows:

TM!C(xM , τ) =
X

IC,n

p(IC,n, IC,n�τ , IM,n�τ ) log2
p(IC,n|IC,n�τ , IM,n�τ )

p(IC,n|IC,n�τ )
(4.3)

Where TM!C(xM , τ) is the transfer of information (in bits) from point M at a certain lag

τ to point C. The variable I is the sampled value of the intensity, the first subscript is

the location of measurement (id est point C for the center and point M for the movable

detector) and the second subscript is the time at which the signal is sampled. Therefore,

IC,n refers to the intensity sampled at point C at a time tn. Transfer entropy is plotted in

fig. 4.5 and is a function of two coordinates, space (displacement from the center) and

time (lags). It indicates the amount of information transfer from that point to the center

(which has coordinates (0,0)). In the figure, the x-axis is in micrometers and the y-axis

is in sampling time (50 ps or 20 GS/s). Higher values on the logarithmic color bar signify

higher information transfer. We observe three main regions of high information transfer.

The first region is centered around the center (xc�xm = 0): this region marks the principle

correlated structure around the extreme event. It corresponds to the correlated region

(vertical line around t = 0) already shown in the correlation plots presented in figure 4.4.

The two other regions observed are displaced from the center at about ± 10 µm from

the center. The displaced regions demonstrate a high information transfer at lower lags

(further away from the extreme event). This reveals that there is information exchange

between regions outside the principle correlation region and the central point (location

of the extreme event). While it was weakly visible in the correlation plot, this trend is

highlighted clearly here. Additionally, we observe almost no information is transferred

from points below -25 lags (or ⇡ 1.25 ns). This means that we will probably not be able
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to extract information about the extreme event occurrence in this region.

This information exchange can be used to identify the region(s) in the 2D space to predict

occurrence of extreme events without requiring concurrent measurements throughout the

structure. We would like to point out to the readers that the plots from transfer entropy

were computed for single points in time, id est how intensity recorded at a single point in

time at M affects the intensity at C. In principle, we could compute the same quantity for

a history of more than one sample, this work is underway.

Figure 4.5: Transfer entropy TM!C

Transfer entropy is computed between every point and the center. The x-axis is in
micrometers and the y-axis is in samples

Having introduced the different ways of identifying the pertinent information and the direc-

tion of flow of information. The next section presents the generation of the dataset used

for training different machine learning algorithms. We will limit our analysis for delay times

less than 0 (as we want to predict the event before it occurs) and at three points along the

structure. These points, P+, P0 and P� are at +12.86 µm from the center, at the center
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and at -14.55 µm from the center respectively. We choose these points as P+ is in a

region showing a non zero correlation and a high average while being outside the central

correlated structure, P0 is at the location of the extreme event and P� is in a region show-

ing almost zero correlation and average. These spatially separated points correspond

to regions containing different amounts of information about the extreme event. Figure

4.6 shows the average of the normalized signal recorded at these three points before an

event (marked as delay = 0) at the central detector.

Figure 4.6: Average of signal recorded at three points (a) +12.86 µm from the center, (b)
at the center and (c) -14.55 µm from the center.

From the plots presented already, one can intuitively think that predicting using the first

two points might result in a reasonable prediction accuracy but the last point should not

have any information (or very minimal at best) about the extreme event. In the next

section, we show this is indeed the case.

4.5 Prediction with experimental dataset

4.5.1 Dataset generation

In this work, we combine information theory with various machine learning techniques

to aid in prediction of extreme events. The experimental dataset used is recorded as

mentioned in section 4.2. The total duration of the recording is ⇡ 2.5 ms. The system is

sampled simultaneously at two points, the central point and a moving point. The sampling

of the system at 2 points is an experimental constraint as sampling several points simulta-

neously in the quasi-1D structure can be cumbersome. Ideally simultaneously sampling

of the entire system would be desirable but is hardly feasible because it would require a
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Streak camera for instance which is not available in the lab (not mentioning the issue of

resolution vs recording length and of necessity of single shot recording difficult with low

intensities). This sampling is then used to study the information transfer between different

locations (movable detector) and the central detector. A dataset is then built by identify-

ing the time τ of all events in the central detector and saving the signal in the movable

detector up to 100 samples before said τ . The Lyapunov time in the system is estimated

to be on the order of few samples thus the saved history is estimated to be on the order of

several tens of Lyapunov times of the system and thus it is a valid assumption that there

is no discernible information loss by truncating the history at 100 samples. The events in

the central detector are then classified in a binary fashion using the definition of extreme

events introduced in the previous section. Since extreme events are rare by definition,

we build a balanced dataset by retaining all the extreme events and choosing an equal

number of non-extreme events at random. The dataset at the end of the process consists

of 2 ⇤ N time-traces (101 samples each) from the movable detector and a binary label

which identifies if the event that occurred at the central detector was an extreme event or

not. N is the number of extreme events in the recorded time trace. This same process is

repeated for every pair of recorded signals.

We then use various machine learning techniques such as logistic regression, k-nearest

neighbours, deep neural networks and reservoir computing to perform cross prediction on

the occurrence of an extreme event. These techniques are representative of the different

kinds of machine learning techniques used for chaotic time series prediction [6, 157, 158,

159].

The dataset is split in a standard way such that 70% of the data is used as training data

and 30% is used as testing data. We can further restrict the information input to the

prediction system by implementing a lower and upper bound in time axis id est using I(t)

for τ low  t  τup. Defining the time running from τ to 0 (and τ < 0) where 0 is the

time-stamp of the event in the central detector, lower bound is defined a τ low such that -

τ < τ low and τup such that τ low < τup < 0. Thus, the time duration of input is m samples

in the time between τup and τlow. The ideal scenario would be when both τup and m are

as low as possible. We then do a sweep in τup and τlow and present results in a 2-D plot
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where every pixel corresponds to classification score3.

4.5.2 Overview of machine learning techniques used

Logistic Regression

Logistic regression is a popular classification algorithm which uses a logistic function to

model a binary dependent variable. Such a classifier can be easily adapted for a multi-

class classification using a one v/s all scheme. In such a scheme N parallel classifiers will

be trained for N class classification and each of the classifier will determine the probability

that a certain example belongs to it’s class or not. Thus, as an aggregate, we can achieve

a multi-class classification. Since our use case only has two classes, a simple logistic

classifier is used. The time series with m samples is fed to the classifier and the predicted

output is trained using Eq. 4.4. Where hθ(x) is the hypothesis given an input x 2 R
N

(column vector) and weights θ 2 R
N (row vector), y is the label used for training and

Cost(hθ(x), y) is the cost function for a given training example. This particular choice of

cost function yields a convex optimization problem which minimizes the cost averaged

over all the training examples but its derivation is out of scope for the manuscript. The

cost function has two contributing parts: when y = 0, the cost is � log(1 � hθ(x)) and

for y = 1 the cost is � log(hθ(x)). Since hθ(x) takes values between 0 and 1, a simple

illustration shown in figure 4.7 shows how the cost changes according to the hypothesis

hθ(x). In panels (a) and (b) the cost is plotted respectively versus hypothesis when y = 1

and y = 0 and as expected the cost is minimum as the hypothesis approaches the true

label. The weights are trained via an iterative procedure using gradient descent. Once

the weights are trained, the classifier generates a linear decision boundary such that the

output class is 1 if the hypothesis hθ(x) for a given x is greater or equal to 1/2. This

corresponds to θ · x � 0. The output class is determined to be 0 otherwise. The number

of trainable parameter are m+ 14.

3The term score is a generic one, there can be many ways to define this quantity. The specific definition
used will be introduced in the results section of this chapter

4m weights + 1 bias. Here m+ 1 = N , the original time trace of m points is transformed into m+1 points
by appending a 1 in front of it, this acts like the bias. An alternative way explicitly mentioning the bias would
be to write hθ(x) =

1

1+e(θ·x)+b
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Figure 4.7: Cost per training example
Panels (a) and (b) plot the training cost per example when the y = 1 and 0 respectively

hθ(x) =
1

1 + eθ·x

Cost(hθ(x), y) = �y log(hθ(x))� (1� y) log(1� hθ(x))

(4.4)

k-Nearest Neighbours

k-Nearest Neighbours (k-NN) is a non parametric algorithm for regression and classifi-

cation which can be used without making any assumptions about the distribution from

which the data is drawn [160]. Previous works have also used this algorithm on vectors

generated using delay-coordinate embedding to predict chaotic dynamics [157, 161]. For

the binary classification task, the train dataset is first translated into a point cloud in m

dimensions via delay embedding and stored in the memory. Every test case also corre-

sponds to one such point in the high dimensional space. The algorithm then computes

L2 norm between every test case and the entire training point cloud and sorts them in

ascending order. The top k entries are determined to be the closest neighbours of the

test-case and a majority poll among these neighbours determined the class of the test

case. This technique is very simple to implement and required no training time. However,

the inference time is dependent on the training dataset as the algorithm needs to com-

pute the distances between every test and the entire training dataset. In our use case,

we find that k = 25 yields optimal results.
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Deep Neural Networks

Deep neural networks have become a standard tool for analysis of sequential and static

data over the last few years [162, 8, 163]. Out of the several known architectures for

deep neural networks, convolutional neural networks (CNNs) and recurrent neural net-

works (RNNs) are particularly interesting for modeling time series data. However, in

some machine learning models when the length of time series is not significantly large,

feed forward neural networks can also be used as done in ref. [157]. When a feed forward

neural network is used for a time series task, the optimizer looks for an optimal function

combining inputs from all the time scales available; this doesn’t pose a problem if the du-

ration of the time trace is short. However for long time traces, finding relevant information

can be very difficult if all the time scales are assumed to have relevant information. It is

thus important to relax the constraints and impose fading memory which aids the opti-

mizer to look for physically plausible solutions. Thus for the task at hand, we use a RNN

comprising of gated recurrent units (GRUs) which factors in timescales when looking for

relevant information. In principle CNNs5 and feed forward neural networks can also be

used for our prediction task as m is on the order of 100 but RNNs were selected as they

are most associated with time series analysis.

The schematic of a gated recurrent unit is shown in figure 4.8. I will not introduce the

equations behind the GRU but will rather describe the working to aid the reader in com-

prehending such networks. Each GRU has two gates, videlicet update gate z[t] and reset

gate r[t]. Update gate decides on the relevance of information and helps to capture long-

term dependencies in the sequence. The reset gate on the other hand, is used to forget

past information. The interplay between the two gates helps capture relevant information

at different timescales. At time t, a single GRU cell receives an input x[t] and an input of

the hidden state from the previous time step h[t � 1]. These two are combined and then

used to compute the output of the reset gate and update gate via a sigmoid nonlinearity,

σ. All these are then used to compute the intermediate hidden state ĥ[t]. Then via a

last operation the final hidden state h[t] is determined to be passed on to the next to the

5CNNs have been shown to work well in time series tasks when the time scale of relevant information in
known and mentioned in the kernel size.
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Figure 4.8: Schematic GRU cell
ĥ[t], x[t], r[t], z[t] and h[t] are respectively: the intermediate hidden state, input, output
from the reset gate, output from the update gate and the hidden state at time t. σ and

tanh correspond to the application of the sigmoid and hyperbolic tangent function.
Adapted from Wikipedia.

next time step. An optional (final) output ŷ[t] is generated when t is less than (equal to)

the length of the input. For a single hidden layer and an input dimension of p and output

dimension of u, the total number of parameters in the GRU are 3 ⇥ (u2 + up + u). The

number of hidden units in an RNN refers to the dimensionality of the hidden state or the

dimensionality of the output at any given time. Each hidden layer has hidden cells, as

many as the number of time steps and further, each hidden cell is made up of multiple

hidden units. For a detailed working of such models, the reader is urged to refer to the

original paper introducing GRUs [163].

For the classification task, the appropriate time series is chosen and used to train a 10

instances individual RNNs. Training and predicting with multiple networks with the same

dataset minimizes the fluctuation in the prediction score due to random initialization of

weights6. The architecture of the network is shown in fig 4.9. The default activations of

the GRU are retained (sigmoid activation for the reset and update gates and hyperbolic

tangent activation for the output of the hidden cell). We use 60 GRU units and the states

of these units are read out only at the end of the time trace7. The final GRU state is then

6The final score on the task is an average of the scores obtained from individual networks. The network
parameters are not averaged

7Another way of doing it would be to save the states of the GRU at every input time step and this would
be the equivalent of recording the transient of the RNN system as we input information. This could be used
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Figure 4.9: Neural network architecture

connected to a dense layer with a hyperbolic tangent activation with 20 neurons. The

dense layer is then connected to an output layer with softmax activation, s(z)8 (Eq. 4.5)

with two neurons which represent the probability of the input belonging to either of the

classes.

s(z)i =
ezi

KP
j=1

ezj
(4.5)

The weights are learnt through the backpropagation algorithm using the Adam optimizer

and categorical cross entropy as the loss function. The network is trained for 80 epochs

and once trained, each test case generates a certain probability for it being an extreme

event or not, the class with the highest probability is picked as the final label. We also

tried using Leaky-Rectified Linear Unit (LReLU) (Eq. 4.6) as the activation for the dense

layer and obtained similar results.

if one wants to predict the changing probability of occurrence of extreme events
8In the equation, i denotes the index and K is the number of classes. This output layer transforms real

numbers to probability of belonging to a certain class. In our case, K = 2.
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f(x) =

8
>><
>>:

x, if x � 0

αx, if x < 0

(4.6)

Reservoir Computing

Reservoir computing has been gaining interest for data driven model discovery and as a

consequence model free prediction on various low [6] and high dimensional dynamical

systems [151]. They are particularly interesting as reservoirs are themselves dynami-

cal systems with recurrent connections thus making them ideal candidates to map other

dynamical systems. A schematic of a reservoir computer is shown in figure 4.10. Ad-

ditionally the training procedure for a reservoir computer is minimal as compared to its

counter parts.

Figure 4.10: Schematic of a reservoir computer
The red and black arrows denote the input weights and the internal reservoir connections
respectively. These weights are chosen at random and fixed. The blue arrows correspond

to the trainable output weights.

A reservoir consists of three main matrices that control its dynamics. For N nodes in the

reservoir, p dimensions of the input vector and mop dimensions of the output, we have

input matrix Win 2 R
N⇥p, the adjacency matrix of the weighted graph, WAdj 2 R

N⇥N and

the output matrix, Wout 2 R
N⇥mop . Out of these three, only the output matrix is trainable

and the rest are chosen at the beginning at random and frozen. Thus the number of

trainable parameters are (N ⇥ mop) + 19. The reservoir adjacency matrix (binary) is

91 for bias
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generated using a random directed binomial graph for the random connections between

the nodes, with an average of 15 connections per node. The weight of each existing edge

in the graph is then assigned from a random uniform distribution with the lower and upper

bound of �Resweight and Resweight (weighted adjacency matrix). The value of Resweight is

determined such that the spectral radius of the adjacency matrix (WAdj 2 RN⇥N ) of the

reservoir ⇡ 0.9. The reservoir comprises of 300 nodes each with a hyperbolic tangent

activation function. The input weights are drawn from a normal distribution, N (0, 0.25).

For our classification task, we have l training examples each of length m. We input each

training example sequentially (1 sample at a time) into the reservoir using an input matrix

Win, the input dimension p is 1 in our case. This results in certain temporal dynamics

in the nodes of the reservoir. The states of these nodes are stored at the end of input

(after m samples), which in principle should contain information about the temporal order

of input samples. Thus, an input time-trace of m samples is converted into a vector of N

values. We then train a logistic classifier on the N dimensional vector to learn the weights

(Wout, mop is also 1 in our case since we predict a binary label) and then the weights are

used for inference on the test set.

Figure 4.11: Evolution of initial conditions in reservoirs with different spectral radii
The spectral radius in (a) and (b) is approximately 0.9 and 1.8 respectively.

At this point, I would like to introduce a brief interlude on spectral radius and its influ-

ence on reservoir computers. As mentioned before, we choose a spectral radius ⇡ 0.9

for our binary prediction task. While this can seem arbitrary, there is some intuition be-

hind it. The spectral radius is linked to a sort of memory in the system. Considering

the reservoir to be a dynamical system, the spectral radius can be tuned to observe a
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dynamical system in different regimes. Ideally one would like their reservoir to be on the

edge of chaos such that it can satisfy both the approximation and separation property of

the system10. While this statement is generally true, the optimization of the reservoir like

any machine learning algorithm is based on the use case. We further observe that even

a chaotic reservoir is capable of reproducing dynamics from certain dynamical systems

displaying Dragon-King like extreme events [164]. In the scope of this manuscript, I will

limit my analysis to demonstrating the different dynamical regimes of the reservoir used

and briefly characterize them. To demonstrate that the value of Resweight can act like a

bifurcation parameter for the reservoir dynamical system, we choose a certain binary ad-

jacency matrix for the reservoir (as described before) and replace all the nonzero values

from a random uniform distribution between -1 and 1 (instead of between �Resweight and

Resweight). This directed adjacency matrix (WAdj0) is then fixed. We can then tune the

spectral radius of this matrix by simply multiplying it with a scalar Resweight11. To illustrate

the impact of spectral radius, we take two reservoirs with spectral radii ⇡ 0.9 and 1.8 and

start them with an initial condition and observe their dynamics, this is shown in figure

4.11. The evolution equation is as follows (Eq. 4.7):

x(n) = F (WAdj ⇤ x(n� 1) +Win ⇤ δn�1,0) (4.7)

Where x(n) is the state of the reservoir (a vector of length N) at the nth iteration and δi,j is

the Kronecker delta function. Subplot (a) shows how an initial condition decays to a fixed

point which is 0 in this case when the spectral radius = 0.9 and subplot(b) shows chaotic

dynamics when the spectral radius = 1.8.

Figure 4.12 plots the evolution of one of the reservoir nodes for a better representation of

this phenomenon. To further characterize the exponential sensitivity to initial conditions,

we perturb each of the reservoirs twice with nearby initial conditions and plot the evolu-

tion, this divergence in principle must be linked to the largest Lyapunov exponent of the

10The approximation and separation property are qualitative metrics linked to a reservoir computer. The
approximation property is to emphasize that two similar inputs should be mapped to the same output state,
thus the reservoir must operate in presence of noise. The separation property suggests that two sufficiently

different inputs should be mapped to different states. The exact interpretation of these properties is up to
the user designing the reservoir computer

11WAdj = Resweight ∗WAdj0
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Figure 4.12: Evolution of initial conditions in a single node in reservoirs with different
spectral radii

The spectral radius in (a) and (b) is approximately 0.9 and 1.8 respectively.

system. Figure 4.13 illustrates the convergence of the dynamics in subplot (a) (spectral

radius ⇡ 0.9) and exponential divergence in subplot (b) (spectral radius ⇡ 1.8). Here Fn

corresponds to the nth iteration of the reservoir map, x0 is the initial condition and δ (not

to be confused with the Kronecker delta, here δ refers to a small perturbation on the initial

condition) is the perturbation to the initial condition. The only intention of these plots is to

illustrate how one can obtain different regimes of the reservoir dynamical system using

the spectral radius, a rigorous calculation of the Lyapunov exponents of this map are out

of scope for this manuscript and would be an independent study in itself. Finally Figure

4.14 shows a 1-D bifurcation plot of one node in the reservoir using the spectral radius

as the bifurcation parameter. We can see for a spectral radius less than 1 we observe a

fixed point and for a greater spectral radius we observe chaotic dynamics12.

Based on the discussion, we choose the spectral radius ⇡ 0.9 such that the reservoir

has a fixed point following a transient. We could also choose a spectral radius greater

than 1 but then the performance of the reservoir will strongly depend on the length of the

input sequence m. This can be intuitively understood from the figure 4.13 (b), the rate of

divergence of trajectories is dependent on the spectral radius and thus the approximation

property or lack thereof is dependent on the number of iterations of the reservoir update

before prediction, since the reservoir is updated for m number of times. Following this

12I use the term chaos liberally here. To rigorously prove the observed phenomenon to be spatiotemporal
chaos is not the intention
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Figure 4.13: Sensitivity to initial conditions in reservoirs with different spectral radii
The spectral radius in (a) and (b) is approximately 0.9 and 1.8 respectively. The

difference in trajectories here is averaged over all nodes in the reservoir.

Figure 4.14: 1-D bifurcation diagram of one node in the reservoir using spectral radius as
the bifurcation parameter
For generating this plot, the reservoir was initialized at a random state and evolved for
1000 iterations. After this initial transient, the reservoir is assumed to have reached the

attractor and them sampled for 200 more iterations to compute the probability of
observing it on a particular node state. Computing a similar plot over the entire reservoir
yields a similar result but the structure of growth of the attractor size is averaged out.
The colourbar represents the probability of observing the node at a given node state.

brief foray into the dynamics of the reservoir and the choice of the spectral radius, the

update equation of the reservoir for the binary classification task is as follows (Eq. 4.8):

xl(n) = F (WAdj ⇤ xl(n� 1) +Win ⇤ ul(n� 1)) (4.8)
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Figure 4.15: Confusion matrix

Where xl(u) and ul(n) are the reservoir state vector and input sequence vector at the

nth iteration for the lth training example respectively. The initial condition of reservoir

dynamical system at the beginning of each new training example, x(0) is a zero valued

vector of length N . The training task, once xl(m) is determined for all training examples,

is a logistic regression classification problem as follows:

Minimize
Wout

i=lX

i=1

Cost(hWout(xi(m), yi) (4.9)

Where the functions Cost(...) and h(...) have been defined earlier (Eq. 4.4) and yi corre-

sponds to the binary labels associated for each training task.

4.5.3 Prediction results

Having introduced the different prediction techniques in the previous section, we compare

and contrast in this section the results obtained by using them for local and cross predic-

tion tasks. The results of a binary classification task can be expressed in the form of a

confusion matrix as shown in figure 4.15. Where TP, TN, FP and FN stand for true pos-

itive (extreme event classified as extreme event), true negative (normal event classified

as normal event), false positive (normal event classified as extreme event) and false neg-

ative (extreme event classified as normal event) respectively. The metric used to judge

the classifier is the accuracy defined as A = TP+TN
TP+TN+FP+FN

. This particular score is
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suitable only when the dataset is balanced and a different score needs to be taken for an

unbalanced dataset. Considering only a balanced dataset, an ideal classifier will achieve

an accuracy of 1 as TP = TN = 1 and FP = FN = 0. A random classifier generates an

accuracy of 50 % as all the labels are assigned randomly and TP = TN = FP = FN =

1/2. A biased classifier assigning every event a positive label will achieve an accuracy

of 50 % because TP = FP = 1/2 and TN = FN = 0. Similarly for a biased classifier

assigning negative labels the accuracy will also be 50 % but with TN = FN =1/2 and TP

= FP = 0. The accuracy for the different classification techniques for cross prediction at

points P+, and P�
13 are shown in figures 4.16 and 4.18 respectively. Prediction at point

P+ in general yields higher accuracy as it is identified to be in the vicinity of the precursor.

The maximum achievable accuracy is over 75 % for all the machine learning techniques

used. This result is typically obtained for high values of m and τup as it corresponds to

the maximal duration of input trace for prediction in the vicinity of the extreme event. The

impact of m and τup can be individually understood intuitively. Increasing τup translates to

making a prediction closer in time to the extreme event and increasing m increases the

input information available to the algorithms to learn and predict extreme events. Conse-

quently, we observe as we increase the time horizon of prediction (decreasing τup) the

prediction accuracy drops and for τup < -30 we obtain classification accuracy of ⇡ 50 %.

On the other hand for a fixed τup, increasing m generally increases the prediction accu-

racy. A stark example can be seen for lower values of τup. All the algorithms experience

a decrease in prediction accuracy as τup decreases below -26 and this can be seen as a

possible limitation of the temporal horizon for prediction. This value of τup corresponds to

a prediction 1.3 ns before the extreme event.

Prediction at point P� while having a similar structure as in the previous case (where

increasing m and τup increases accuracy) achieves much lower prediction accuracy. The

highest achievable accuracy is in the low 60 percentage points and this quickly drops

to approximately 50 % as τup approaches -11. The poor quality of prediction here is

attributed to the fact that this point is calculated to have very little correlation and transfer

entropy with the coordinate where the extreme event occurs.

13As a recall, points P+, P0, and P=− are at +12.86 µm from the center, at the center and at -14.55 µm
from the center respectively
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Finally in the case of prediction at point P0 is shown in figure 4.20. Unlike the previous

cases, the maximum possible accuracy achievable is approximately 100 % that is ob-

served for τup = �1 due to its extreme proximity to the extreme event. As we decrease

τup this accuracy rapidly falls and the local prediction displays comparable performance to

the cross prediction at point P+ with some differences. This figure also displays a struc-

ture similar to the previous figures but all the algorithms achieve a much higher prediction

accuracy until lower values of τup. All the algorithms achieve an approximate accuracy

of 60% until τup = �31. Figure 4.22 plots the difference in prediction at point P+ and

P0. In the region of τup between -11 and -20 cross prediction outperforms local prediction

by about 10 points achieving a maximum accuracy of ⇡ 65% for low m and achieves

similar performance (⇡ 70% ) for large m 14 For higher and lower values of τup, the local

prediction outperforms cross prediction due to its proximity to extreme events. The better

performance of cross prediction can be seen as an interesting case of inferring the evo-

lution of a coupled system with partial measurement: given a limited sampling in space

and time, we are able to make useful prediction of the occurrence of extreme events from

a location far (⇡ 12.86 µm) from it.

14Except in the case of Logistic regression. There is no physical explanation behind this difference.
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Figure 4.16: Cross prediction accuracy at point P+ (+12.86 µm from the center)

Figure 4.17: Comparing algorithms for cross prediction accuracy at point P+. Subplots
(a) and (b) Indicates which algorithm performs and by how much respectively.
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Figure 4.18: Cross prediction accuracy at point P� (-14.55 µm from the center)

Figure 4.19: Comparing algorithms for cross prediction accuracy at point P�. Subplots
(a) and (b) Indicates which algorithm performs and by how much respectively.
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Figure 4.20: Local prediction accuracy

Figure 4.21: Comparing algorithms for local prediction accuracy. Subplots (a) and (b)
Indicates which algorithm performs and by how much respectively.

As predicted from the correlation plots and transfer entropy, we observe different locations

in space (points P+, P0, and P�) and time (variables m and τup in each of the accuracy

plots) contain different information about the extreme event and this is ultimately reflected

in the maximum prediction accuracy achievable. There is a general global structure in m

106



and τup that one can observe. While in general increasing m increases information and

this intuitively results in higher prediction accuracies, practically the algorithms experience

a saturation. This, from a dynamical systems perspective, can be linked to the Lyapunov

time and spatiotemporal chaos in the system. A time trace after several Lyapunov times

contains no discernible information and can be seen as noise for a prediction algorithm

resulting in a saturation in performance, this is what we observe for values of m beyond

40 and hence we stop it there. For much larger values of m, one can expect to see minor

decrease in performance efficiency.

Figure 4.22: ACross - ALocal

Accuracy at point P+ - Accuracy at point P0; positive values signify better cross
prediction

Further, in order to compare the performance of the different algorithms we generate

figures 4.17, 4.19, 4.21 for cross prediction and local prediction respectively. In these

figures subplot (a) tracks which algorithm performs best for every parameter combination

and subplot (b) plots the difference between the best algorithm and the others15. We

15This quantity is equal to Abest - Ā0 where Abest is the accuracy of the best algorithm and Ā0 is the mean
of the accuracies obtained by the other algorithms
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would like to point out that while RNNs generally perform slightly better (with the exception

of fig. 4.18 where the maximum accuracy is low anyway) they come at the cost of very

high number of trainable parameters. The accuracy advantages seem to be in the margin

or slightly above the fluctuations in accuracy by altering the datasets, hyperparameters

and initial conditions. We further note that the hyperparameters (for reservoir computing

and RNNs) were not repeatedly optimized for every parameter combination of m and τup.

Manual hyperparameter tuning can be an extremely time consuming study and was not

done extensively during this thesis. Whereas, automatic techniques are very involved

and still under development.
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Chapter 5

Conclusions

This thesis presented the various research facets surrounding the nonlinear dynamics

and computing in the laser stack with saturable absorber first proposed in [35]. The same

laser stack can be used to study different dynamical properties based on the coupling type

(discrete or continuous) or coupling topology (evanescent or delayed feedback). In this

thesis, we demonstrate a variety of experimental and numerical results mainly relating to

the computing properties that can be realized using the laser stack. The next section of

the chapter will present a chapter wise summary of the key results followed by a section

of the possible directions of future work.

5.1 Summary and conclusions

The first chapter presented the motivation for the development of alternative computing

primitives and showed how a VCSEL with saturable absorber can be considered to func-

tion as an optical neuron due to its neuromorphic properties.

In the second chapter, the effect of coupling via delayed optical feedback was studied.

Through experimental and numerical analysis we showed that delayed optical feedback

gives rise to attractors in the system and these attractors correspond to different pulsing

patterns in the long term depending on the carrier recombination time scales in the gain

and saturable absorber regions. These results are in contradiction to the previous work

which postulated that such systems with feedback could be used as optical buffers to
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store information indefinitely [37, 165]. These attractors can be seen as local minima in a

high dimensional space and the system can be seen as performing an energy minimiza-

tion problem. More specifically, in devices with faster saturable absorber section the final

pulsing patterns will be equidistant. Whereas in devices with a faster gain section, the

final pulsing patterns can be both equidistant and non-equidistant depending on the feed-

back time τ of the system. The latter can be seen as an interesting case of occurrence

of symmetry broken states in the pulse timings. From an applied point of view, this delay

system can be seen as an attractor based computer such as a fully-connected Hopfield

network. The initial perturbations that generate the input pulsing pattern play the role of

an initial condition and the asymptotic pulsing pattern recorded after several roundtrips in

the system indicate which attractor the system has converged to and this convergence is

a consequence of similarity between the initial condition and the said asymptotic pulsing

pattern. Towards the end of the chapter, we present some results on the polarization dy-

namics in a single micropillar with and without delayed optical feedback. We showed how

a single circular micropillar when subjected to incoherent perturbations can emit pulses

with several different polarization states. Further, elliptical micropillars when subjected

to similar perturbations emit light along a specific polarization. We then showed the po-

larization dynamics in a circular micropillar subjected to delayed optical feedback. The

delayed optical feedback can be seen as a special case of coherent perturbation. In the

presence of delayed optical feedback, a single perturbation from an external source gen-

erates a pulse train. We report that in this pulse train the total intensity is constant with

noise like fluctuations whereas the linearly polarized intensity of the laser oscillates. The

oscillation period appears to be weakly dependent on the bias pump and thus is likely to

be of purely dynamical origin.

In the third chapter, we present results on spatial coupling of micropillar lasers. These

results are predominantly numerical. We show how altering the pump and/or coupling in

2-D lattices of micropillar lasers can result in interesting circuits such as coincidence de-

tection circuits, temporal pattern recognition circuits, and on chip oscillators. Towards the

end, we make a brief foray into computing with neural codes and show how a particular

example of neural code called rank order coding can be implemented on using micropillar
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lasers. We demonstrate a computing accuracy of ⇡ 74 % on the MNIST handwritten digit

database. While this accuracy is not comparable to state of the art neural networks and

other machine learning techniques which report near perfect accuracy, it is noteworthy

that the training procedure for rank order coding requires very few samples (20 / class)

and is very simple. We strongly believe the accuracy reported here is not a fundamental

limit and can be refined with optimal training routines.

The final chapter is devoted to the use of machine learning techniques for extreme event

prediction in a system based on the same laser stack. The experimental data is taken

from a broad area VCSEL with a gold mask over it realizing a quasi 1-D system. This

system, when pumped over threshold, gives rise to extreme events in certain regimes.

We developed a method using transfer entropy to identify optimal precursors of extreme

events and then trained various machine learning algorithms on it to predict the occur-

rence of such events ahead in time. An interesting aspect of this is that we could predict

the occurrence of extreme events at the center of the quasi 1-D structure using a time

trace outside the principle correlated structure of the extreme event. This cross predic-

tion can be seen as a special case of prediction with partial information. We introduced

and used several machine learning techniques videlicet k-Nearest Neighbours, Logistic

Regression, Reservoir Computing, and Recurrent Neural Networks. The maximum pre-

diction accuracy was ⇡ 75 % for the cross prediction. Our task, since it required the

prediction of a binary descriptor (extreme event or non extreme event) using a displaced

time series is novel and fundamentally different from other previously reported tasks such

as in ref. [158, 159] which predict the amplitude of an extreme event given a certain finely

resolved spectral signature.

5.2 Possible directions for future research

From an hardware perspective, there are two main directions for future research. The

first to ameliorate the device level performance of the micropillar lasers and the second

to scale up computational capacity of micropillar based systems. For the former objec-

tive, it would be desirable to develop electrically pumped micropillar lasers as that would
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enable easy control of pump over large lattices of micropillars. In order to better harness

and master the physical response of the micropillar, it is important to be able to tune the

recombination timescales of the carriers in the gain and SA sections. Up to now the pa-

rameters were a result of the etching conditions of the micropillars, which result in similar

recombination timescales with some fluctuations. Having a much faster SA section would

result in larger amplitude excitable pulses without noise-like satellite pulses. Doping of

the SA section is a possible way forward to modify the time scale while keeping the other

optical properties intact.

Figure 5.1: Fiber coupled single micropillar laser and preliminary measurement
Subplot (a) shows the optical setup used to characterize the fiber coupled micropillars.

OSA: Optical spectrum analyser, WDM: Bidirectional wavelength multiplexer. The
bidirectional WDM provides the functionality of merging two fibers carrying different

wavelengths of light into one fiber and vice-versa. Subplot (b) plots the laser L-I
characteristic on a log log plot. Subplot (c) shows the spectrum of the micropillar laser

acquired using an OSA with 20 pm resolution. The 3 dB bandwidth is approximately 0.7
nm.

From a systems perspective, it is imperative to increase the number of coupled micropillar

lasers to increase the computational capacity. One of the ways of moving forward would

be to couple 2-D lattices using out of plane diffractive optical elements and this would be

explored under the framework of the ANR Anaconda project. An alternative way would be

to couple individual micropillar lasers to single mode fibers and use the fiber based sys-
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tems for increasing the feedback time or coupling several micropillars. We collaborated

with an internal startup to develop fiber coupled micropillars and the results are presented

in figure 5.1. In subplot (a) we show the schematic of the fiber based setup and in subplot

(b) we show the L-I curve. The complete characterization is underway.

On a more fundamental note, we are working towards developing a mathematical model

which could explain the modulation observed in the polarization sensitive detection in the

delayed optical feedback measurements. The account of the polarization dynamics of

the micropillars could be very beneficial since it adds an additional degree of freedom

to the system. It allows for properties like neuronal inhibitory dynamics to be optically

implemented. The same inhibition dynamics are interesting for computing in networks for

spiking neurons but are also necessary for implementing nonlinear decision boundaries

such as the XOR logic.

Development in all of the above mentioned aspects would help in making the neuromor-

phic technology based on micropillar lasers feasible and scalable.
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Chapter 6

Synthèse en français

Les travaux présentés dans cette thèse se divisent en deux parties : une première con-

cernant le calcul neuromorphique photonique et une seconde utilisant l’apprentissage

automatique appliqué à la prédicition de la dynamique en photonique.

Dans la première partie, nous présentons des résultats obtenus en utilisant des lasers

à micropiliers excitables («spiking» ou impulsionnels). Les micropiliers laser excitables

ont été démontrés précédemment dans le groupe, grâce à une conception originale de

l’empilement des couches du microlaser. La cavité possède une zone active avec deux

puits quantiques pour la zone de gain et un puits quantique pour la zone à absorption sat-

urable, et est insérée entre deux miroirs de Bragg. Les trois puits quantiques de la zone

active sont en InGaAs/AlGaAs et sont conçus pour une émission et une absorption autour

de la résonance de cavité visée à 980nm. Les lasers sont pompés optiquement autour de

800nm, et la zone de gain est pompée sélectivement grâce à une ingénierie spécifique de

la structure de l’empilement des miroirs. La compétition entre le gain et les pertes dans

le microlaser donne lieu au régime excitable. Les microlasers excitables à absorbant

saturable intégré ont des propriétés similaires à celles des neurones biologiques, avec

un période réfractaire absolue et relative, un temps de latence à la réponse et la pro-

priété de sommation temporelle, mais fonctionnent à des échelles de temps de l’ordre

d’un million de fois plus courtes. Cette similarité nous permet d’appliquer directement

certains concepts de calcul biologiquement plausible dans des micropiliers lasers, ou-

vrant ainsi la voie à de nouveaux substrats pour le calcul neuromorphique ultrarapide
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dans le domaine optique. Nous présentons des résultats expérimentaux et numériques

sur ces micropiliers, indépendants ou couplés, soit par rétroaction optique retardée, soit

par couplage spatial. Dans le cas d’un laser à micropilier avec une rétroaction optique

retardée, nous montrons que le système supporte des trains d’impulsions régénératifs

qui peuvent être manipulés avec des impulsions optiques uniques. Au temps court, les

trains d’impulsions régénératifs sont identiques à la séquence de perturbation initiale et

se répètent à la période du retard optique, se comportant ainsi comme un buffer optique.

Cependant, dans le long terme, le système présente un degré fini de multistabilité. Toute

séquence arbitraire d’impulsions initiales inscrite dans la cavité externe finit par converger

vers l’un des régimes stables possibles qui sont constitués d’états périodiques et d’états

à symétrie brisée. Les états à symétrie brisée apparaissent comme des régimes péri-

odiques avec des impulsions non équidistantes, brisant ainsi la symétrie de décalage

temporel des trains d’impulsions équidistants. Le processus de convergence démontré

ici peut être utilisé pour construire des mémoires adressables par leur contenu, comme

celles basées sur les réseaux de Hopfield. Nous présentons des résultats expérimen-

taux sur la dynamique de polarisation de la réponse des lasers micropiliers avec et sans

rétroaction. Sans rétroaction optique, le laser à micropiliers peut émettre différents états

de polarisation en fonction de sa géométrie. Cependant, avec une rétroaction optique

retardée, le micropilier laser émet un train d’impulsions avec une amplitude constante

mais un angle de polarisation oscillant, probablement dû à un phénomène d’origine dy-

namique. Ces résultats ouvrent la voie à l’utilisation du degré de liberté de la polarisation

pour le traitement neuromorphique de l’information dans les lasers à micropiliers.

En utilisant des micropiliers couplés spatialement, nous démontrons numériquement

divers circuits intégrables sur puce capables d’effectuer des opérations logiques basées

sur des impulsions, de reconnaître des séquences temporelles d’impulsions et de générer

des trains périodiques. Ces fonctionnalités s’observent soit en modifiant à l’étape de fab-

rication le couplage spatial entre les micropiliers, soit pendant l’expérience en agissant

sur le pompage des micropiliers. Enfin, nous présentons des résultats sur la reconnais-

sance de chiffres manuscrits en utilisant un codage temporel appelé codage par ordre

de rang implémenté sur un ensemble de lasers micropiliers.
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Dans la deuxième partie, nous présentons des résultats numériques sur la prédiction

de l’occurrence d’événements extrêmes en utilisant des données expérimentales issues

d’une microcavité laser de grande extension spatiale. La microcavité utilisée est de con-

ception analogue à celle utilisée dans la première partie de la thèse mais se distingue

par le fait que qu’elle est étendue dans une direction, donnant lieu à une structure trans-

verse quasi-1D. Le laser est pompé au dessus de son seuil, et dans certains régimes de

paramètres permet l’observation de chaos spatio-temporel et d’événements extrêmes.

Notre prédiction est basée sur une connaissance partielle du champ spatio-temporel

dans le laser et sur l’identification de précurseurs. Ces derniers ont été identifiés en cal-

culant la corrélation et l’entropie de transfert. Nous avons analysé les performances de

plusieurs techniques d’apprentissage automatique telles que la régression logistique, les

k-voisins les plus proches, le calcul à réservoir et les réseaux neuronaux récurrents sur

la tâche de prédiction. Nous démontrons une bonne capacité de prévision (jusqu’à une

précision d’environ 75%) en utilisant les données d’une région spatialement déconnectée

de l’emplacement de l’événement extrême.
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Appendix A

Publication and conferences

Publication record as of July, 2021.

A.1 Journal articles

• V. A. Pammi, K. Alfaro-Bittner, M. G. Clerc, and S. Barbay, “Photonic Computing

With Single and Coupled Spiking Micropillar Lasers” IEEE J. Sel. Topics Quantum

Electron., 26, 1, (2019). DOI: 10.1109/JSTQE.2019.2929187

• S. Terrien⇤, V. A. Pammi⇤, N. G. R. Broderick, R. Braive, G. Beaudoin, I. Sagnes, B.

Krauskopf, and S. Barbay, “Equalization of pulse timings in an excitable microlaser

system with delay” Phys. Rev. Research, 2, 023012, (2020). DOI: 10.1103/Phys-

RevResearch.2.023012. ⇤: Authors contributed equally

• S. Terrien, V. A. Pammi, B. Krauskopf, N. G. Broderick, and S. Barbay, “Pulse-timing

symmetry breaking in an excitable optical system with delay” Phys. Rev. E, 103,

012210, (2021) DOI:10.1103/PhysRevE.103.012210

• V. A. Pammi, A. H. Masominia, S. Coulibaly, M. G. Clerc, and S. Barbay, "Precursor-

aided prediction of extreme events in a spatio-temporally chaotic system" In prep.

(2021)
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A.2 Conference submissions

• V. A. Pammi, S. Terrien, N. G. R. Broderick, B. Krauskopf and S. Barbay, "Short

and Long Term Memory in Regenerative Spiking Micropillar Lasers" Conference

on Lasers and Electro-Optics Europe European Quantum Electronics Conference

(CLEO/Europe-EQEC), (2019). DOI:10.1109/CLEOE-EQEC.2019.8873079. (Oral

presenter)

• V. A. Pammi, S. Terrien, N. G. R. Broderick, B. Krauskopf, and S. Barbay "Pulse

train dynamics in an excitable microcavity laser with delayed optical feedback", The

International Symposium on Physics and Applications of Laser Dynamics, (2019).

(Oral presenter)

• V. A. Pammi, S. Terrien, N. G. R. Broderick, R. Braive, G. Beaudoin, I. Sagnes, B.

Krauskopf, and S. Barbay "Associative memory in regenerative spiking micropil-

lar lasers", Proc. SPIE 11356, Semiconductor Lasers and Laser Dynamics IX,

113560V, (2020). DOI:10.1117/12.2555025. (Oral presenter)

• V. A. Pammi, R. Braive, G. Beaudoin, I. Sagnes, and S. Barbay "Regenerative spike

train dynamics in neuromimetic micropillar lasers", Cognitive computing: Merging

concepts with hardware, (2018). (Poster presentation)

A.3 Periodicals

• V. A. Pammi and S. Barbay, "Micro-lasers for neuromorphic computing" Photoniques,

104, 26, (2020). DOI:10.1051/photon/202010426
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Résumé : Dans la première partie de la
thèse, nous présentons des résultats ex-
périmentaux et numériques sur le calcul
neuromorphique photonique obtenus avec
des micropiliers lasers excitables (impul-
sionnels ou "spiking") couplés. La dy-
namique des lasers excitables présente
plusieurs similitudes avec celle des neu-
rones biologiques, tout en possédant des
échelles de temps beaucoup plus rapi-
des. Cela nous permet d’appliquer cer-
tains concepts de calcul inspirés des neu-
rosciences directement aux micropiliers
lasers, ouvrant ainsi la voie à de nou-
veaux substrats neuromorphiques en pho-
tonique. Les micropiliers lasers peuvent
être couplés soit par rétroaction optique
retardée, soit spatialement. Dans le cas
d’une rétroaction optique retardée, nous
montrons que le système supporte des
trains régénératifs d’impulsions qui peu-
vent être manipulés (inscrits, effacés, dé-
placés) avec des perturbations optiques
uniques. Au temps court, le système se
comporte comme une mémoire tampon
optique préservant l’information temporelle
sur la séquence de perturbations initiales.
Cependant, nous démontrons que dans le
long terme, toute séquence d’impulsions
arbitraires inscrite doit converger vers l’un
des états multistables accessibles au sys-
tème. Les états multistables sont des trains
d’impulsions réguliers et périodiques ou
à symétrie temporelle brisée, en fonction
des paramètres physiques du micropilier
laser. Les états à symétrie temporelle
brisée apparaissent comme des séquences
d’impulsions non régulières qui peuvent
être contrôlées expérimentalement. Le
comportement asymptotique des états mul-
tistables peut être utilisé pour construire
des mémoires adressables par leur con-

tenu, comme celles basées sur les réseaux
de Hopfield. Nous présentons également
des résultats expérimentaux sur la dy-
namique de polarisation des impulsions ex-
citables émises par les micropiliers lasers
avec et sans rétroaction, ouvrant la voie à
l’utilisation du degré de liberté de polari-
sation pour le traitement neuromorphique.
Dans le cas des micropiliers couplés spa-
tialement, nous introduisons et étudions
numériquement des circuits intégrables
sur puce capables d’effectuer des opéra-
tions en logique excitable, de reconnaître
des séquences temporelles d’impulsions et
de générer des trains d’impulsions péri-
odiques. Enfin, nous présentons un
algorithme de reconnaissance de car-
actères utilisant un codage basé sur
l’ordre temporel d’émission des impul-
sions dans un ensemble de micropiliers
lasers. La deuxième partie de la thèse
est consacrée à la prédiction numérique
de l’occurrence d’événements extrêmes à
l’aide de techniques d’apprentissage au-
tomatique et utilisant des données expéri-
mentales obtenues dans un laser à semi-
conducteurs en régime de chaos spatio-
temporel. La prédiction se base sur une
connaissance partielle du champ spatio-
temporel dans le laser et sur l’identification
de précurseurs. Les précurseurs ont été
identifiés grâce à l’entropie de transfert.
En utilisant des techniques d’apprentissage
automatique, nous avons pu prévoir les
événements extrêmes avec une grande
précision en utilisant des données de pré-
curseurs provenant d’une région spatiale-
ment déconnectée du lieu de l’événement
extrême. L’horizon de prédiction ainsi
obtenu va au-delà des échelles de corréla-
tions spatiale et temporelle présentes dans
les données initiales.



Title: Photonic computing with coupled spiking micropillars and extreme event prediction
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Abstract: The work presented in this thesis
can be divided into two parts: photonic neu-
romorphic computing and machine learn-
ing applied to photonics. In the first part
of the thesis, we present experimental and
numerical results developed using coupled
excitable (spiking) micropillar lasers. Spik-
ing lasers exhibit several similarities to bio-
logical neurons but operate at much faster
timescales. This similarity enables us to di-
rectly map some biologically plausible com-
puting frameworks onto micropillar lasers
thus paving the way for new neuromorphic
substrates in the optical domain. The mi-
cropillar lasers can be coupled either us-
ing delayed optical feedback or spatial cou-
pling. We first consider a single micropil-
lar laser with delayed optical feedback. In
this case, we show that the system is capa-
ble of supporting regenerative spike trains
which can be manipulated (written, erased,
and displaced) with single optical perturba-
tions. In the short term, the system be-
haves like an optical buffer preserving the
timing information about the initial perturba-
tion sequence. However, we demonstrate
that in the long term any arbitrary pertur-
bation pattern eventually converges to one
of the possible multistable spiking patterns.
This finite degree of multistability consists
of periodic and symmetry-broken states de-
pending on the physical parameters of the
micropillar laser. Symmetry-broken states
appear as pulsing patterns with non-regular
timings which can be controlled with ex-
perimental parameters. The process of

convergence together with the multistabil-
ity demonstrated here can be used to build
content-addressable memories such as the
ones based on Hopfield networks. We also
present experimental results on the polar-
ization dynamics of the response from mi-
cropillar lasers with and without feedback
opening the way to using the polarization
degree of freedom for neuromorphic pro-
cessing. Using spatially coupled micropil-
lars, we demonstrate numerically various
circuits integrable on-chip capable of per-
forming spike-based logic operations, spik-
ing pattern recognition, and generating pe-
riodic spike trains. Lastly, we present re-
sults on handwritten digit recognition us-
ing a spike coding scheme called rank or-
der coding implemented on an ensemble of
micropillar lasers. The second part of the
thesis is devoted to the numerical predic-
tion of the occurrence of extreme events by
using experimentally recorded data from a
quasi 1-D semiconductor laser displaying
spatio-temporal chaos. Our prediction is
based on partial information of the spatio-
temporal field in the laser system and on
the identification of precursors. The precur-
sors were identified using correlation plots
and transfer entropy. Using machine learn-
ing techniques, we demonstrate extreme
events forecasting with high accuracy using
precursor data from a region spatially dis-
connected from the location of the extreme
event. The prediction horizon thus obtained
goes beyond the spatial and temporal cor-
relation scales present in the initial data.
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