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Chapter 1

Introduction

Understanding neuronal computational circuits and mimicking them has been a long-
standing endeavour in many fields, especially since the brain is capable of representing
information it receives from sensory inputs and acting on them with extraordinary effi-
ciency. However, predetermined algorithms are often not very suitable to represent and
act upon such data; sometimes the algorithms need to be developed from the very data
presented to them. This is the foundational idea behind the field of artificial intelligence
(Al).

A preliminary understanding of the structure of the nervous system was brought about by
scientists such as Camillo Golgi and Santiago Ramén y Cajal, who were awarded the No-
bel Prize in Physiology in 1906. Though they shared the Nobel prize, the two scientists
believed in different schools of thought about the nervous structure. Camillo Golgi be-
lieved in the reticular theory to describe the nervous system, postulating that the nervous
system is a single continuous network, whereas Santiago Ramén y Cajal believed in the
neuron theory, which postulated that the nervous system is made up of single discrete
units (neurons) connected through synapses. Inspired by the neuron theory in 1943, two
engineers Warren McCullogh and Walter Pitts proposed the first mathematical model for
the neuron. This initial model represented neurons as binary entities with inputs (excita-
tory and inhibitory) and a threshold for producing an output. Building on that, Rosenblatt
in 1958 proposed a computational model called the Perceptron [1], which arguably was

the world’s first artificial neural network. The Perceptron marked a significant improve-
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ment as it included learning rules and showed promising results on some tasks. It is
worth noting that the initially proposed Perceptron had one layer of neurons and could
only learn linearly separable patterns. This severe constraint was not commensurate
with the hype and led to a decline in interest surrounding Perceptrons. It was several
years before it was discovered that multilayer Perceptrons could learn nonlinear decision
boundaries and possessed much greater computational power. Scientific funding or lack
thereof is often a result of perception surrounding a subject; the bad reputation of single
layer Perceptrons probably was one of the reasons that caused a decline in funding for
Al research for several following years.

While several refinements were made to the Perceptron algorithm over the years, one of
the key contributions to the field was made in 1986, when researchers showed that an
algorithm called backpropagation could be used to teach representations to networks of
neuron like units [2]]

Although the work of Alan Hodgkin, and Andrew Huxley (awarded the Nobel Prize in
Physiology or Medicine in 1963) on ion channels and excitable neurons [3, 4] predated
the Perceptron model, these findings were not a subject of extensive study by the Al and
machine learning community for a long time. One can view this as a divergence in the
paths of the neuroscience and the Al communities.

From an engineering perspective, the Al community had learnt that coupling discrete
nonlinear units using weights could give rise to networks with an apparent semblance of
intelligence. Armed with an algorithm to train such networks, researchers began their
extensive quest on training models for increasingly complicated tasks. Some of the major
limitations before the turn of the 215¢ century were the lack of compute power and data
available to scale up such networks; these limitations were eventually removed with the
semiconductor and digital revolution. Subsequently, neural networks gained even more
traction. An alternative framework was introduced in 2002 [5] to model neural compu-
tations which relied on several coupled spiking neurons. Independently, an equivalent

model called echo state networks were introduced [6] which essentially had a similar

'It is important to note that this paper is often incorrectly credited with inventing the backpropagation
algorithm. This paper only claims to be a clear demonstration showing that the algorithm can be used to
teach representations. Several researchers independently invented similar algorithms.
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structure but the definition of a neuron was more abstract and essentially any nonlinear-
ity could be used to model a neuron. These two models can be broadly combined into
a single class called reservoir computing. The main power of this technique arises from

the complex dynamics of coupled nonlinear nodes.

At this point we would like to insist on the difference between neural networks and neu-
ronal networks. The former refers to the engineering abstraction comprising of nonlinear
coupled nodes and the latter refers to the study of biological networks of neurons. The
study of neuronal networks is an extremely complicated endeavour as one often does not
have access to a connectome but even in cases where a connectome is available (for
small organisms like C. Elegans [7]) the mechanisms for computing are not trivial. Over
the years, several neural network models have shown remarkable success at several
tasks. One such feat was when a convolutional neural network (ref. [8]) in 2012 won the
ImageNet Large Scale Visual Recognition Challenge. This feat was one of the reasons

for the renewed interest in the field of neural networks.
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While the notion of neural networks was inspired from experimental findings in neuro-
science, today, the two fields have diverged significantly. Neural networks in their most
general form are powerful optimization algorithms. Over the years, neural networks have
been trained for increasingly complicated tasks and this is reflected in their power require-
ment. Figure[1.1]plots the growth in the complexity of modern neural network algorithms
and the projected growth of compute power offered by electronics. The computing power
demanded by the algorithms is growing at a much faster rate and cannot be supported by
electronics. One of the most popular examples is the comparison of energy consumption
between Google’s AlphaGo program and the human brain playing a game of Go. It is
estimated that the human brain consumes approximately 10° times less energy as com-
pared to Google’s state of the art Al platform. This is a pertinent comparison as it is a
popular opinion within the community that reinforcement learning, the work horse behind

AlphaGo, is a plausible path for general intelligence.

o Pentium I
Pentium I

AMD K6

10

0.1

Power Density (W/ch)

10' 10° 10° 10* 10° 10° 10 10° 10°

Clock Frequency (Hz)

Figure 1.2: Power density and clock frequency of microprocessors and the brain
Source: IBM Research-Almaden Cognitive Systems Colloquium, 2014

This raises important and fundamental questions about the architecture of modern neural
networks and their implementation on conventional platforms. Figure [1.2 depicts a trend
(in power density and clock frequency) observed in microprocessors that is diametrically

opposite to that of the brain. This shows that while the architecture of neural networks is
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inspired from biology, its current physical implementation is on drastically different primi-
tives. Further, experimental findings show that the brain possesses an extensively parallel
network of neurons that is absent in traditional electronic implementations. At this point

we can raise two important questions:

« Can we ameliorate the hardware implementation of neural networks?

» Can we use architectures inspired from biology to achieve energy efficient comput-

ing?

There are several interesting electronic implementations that can answer both these
questions; some currently available commercial solutions include the development of
Graphics Processing Units and Tensor Processing Units. Other electronic technologies
such as memristors [10], Resistive RAM based binarized neural networks [11], and spin-
tronic oscillators [12] have also answered the above mentioned questions. A general
review on the physics of neuromorphic computing can be found in ref. [13].t

Despite the maturity of electronics and their relative flexibility to implement complex cir-
cuits, optical and optoelectronic technologies can offer significant advantages in terms of
parallelism [14], small device footprint, and energy efficiency over electronics in certain
implementations [15, [16]. In the following paragraphs, we will present a non-exhaustive
list of technologies with an emphasis on optical implementations.

At the heart of neural network training and inference are repeated matrix vector products
(or multiply and accumulate operations (MAC)). One of the solutions proposed to perform
arbitrary matrix vector products in the optical domain is shown in ref. [17]. While this
architecture provides a path for direct hardware implementation of neural networks, may
have limitations in scaling up as the number of components required scale quadratically
with the size of the matrix. In ref. [18] an integrated photonic accelerator was demon-
strated to have the capability of performing 102 MAC/s. This circuit was realized with the
help of microring resonators and phase change materials (PCMs). In ref. [19] presents
an analysis on the different methods to perform such MAC operations and their relative
efficiencies.

Another direction of research is to develop new computing primitives and architectures

11



that mimic the behaviour of neuronal systems. This category encompasses a large range

of architectures such as:

* In memory computing: In an oversimplified way, the memory and computational
units in the brain (synaptic weights and soma respectively) are located in close
proximity as opposed to von Neumann architectures where the two units are sep-
arate and a significant portion of the energy is spent on moving the data between
the two units. PCMs can be used to emulate this proximity and demonstrate optical

synapses [20] and spiking neural networks [21].

» Coupled nonlinear nodes: Evidence from neuroscience shows that the dynamics of
several coupled neurons give rise to intelligence. While the exact mechanisms are
not clear, having a coupled neurons seems to be essential. This was the founda-
tional idea behind neural networks and reservoir computing. Reservoir computing
provides additional flexibility as it is designed to operate with essentially random
weights between nodes as opposed to requiring precise trainable weights. Early
numerical illustrations in the optical domain used a semiconductor optical ampli-
fier as the nonlinear node [22] 23]. Following this, several architectures for reser-
voir computing have been proposed using all-optical systems [24], silicon photonic
chips [25], optoelectronic systems [26] 27], semiconductor lasers [28| 29], large
scale spatiotemporal systems [30, 131} 132], and random projections [33] to name a

few.

» Spiking neural networks: This direction of research can be seen as a specialized
case of coupled nonlinear nodes with a small modification; we use a specific non-
linearity vidilicet excitability that is found in neurons. It is regarded that the one of
the plausible causes for energy efficiency of the brain is the efficient neural coding,
which this direction of research seeks to leverage to build new computing primitives.
The essential element for spiking neural networks are excitable primitives. There
have been many optical primitives that demonstrate excitability and thus in principle
can be used to create spiking neural networks. Some experimental demonstrations

of spiking behaviour are shown in are shown in refs. [34, 35} 36/ (37, 138 139].
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A more complete list of bibliography on optical computing can be found in the following

comprehensive reviews [40, 41} 142].

1.1 Outline of the thesis

In this thesis, we will present advances made in the field of coupled nonlinear nodes and
more specifically, in spiking neural networks. The optical primitive we use is a micropillar
vertical cavity surface emitting laser with an integrated saturable absorber (VCSEL-SA);
this primitive will be henceforth referred to as a micropillar laser. The main results in-
clude the dynamics of micropillar laser(s) in the presence of delayed optical feedback

and spatial coupling.

In the next section of the introduction, we will demonstrate a few key neuromimetic prop-
erties of the micropillar laser previously reported by the group. This would serve as an

introduction for the rest of the manuscript.

In the second chapter, we will demonstrate the dynamics observed when a micropillar
laser is subjected to delayed optical feedback. We will also present therein experimen-
tal results and detailed numerical analyses to describe the regimes in a qualitative and

quantitative manner.

In the third chapter, we will illustrate numerically the possible integrated circuits that can
be built using evanescently coupled micropillars. The last section in this chapter will be
devoted to describing a computational framework using temporal coding implemented on

an ensemble of micropillar lasers.

The fourth chapter presents numerical techniques based on machine learning and in-
formation theory to perform cross-prediction of the occurrence of extreme events well in
advance. These techniques are applied to the case of extreme events occurring in a
line laser based on the same laser stack as the micropillar laser. The observed extreme

events following the onset of spatiotemporal chaos were previously reported by the group.
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Figure 1.3: Micropillar laser
(a) Shows a scanning electron microscope (SEM) image of the micropillar laser fabricated
with a SiN cladding. (b) Shows the laser stack with a few typical characteristics. (b)
Adapted from [35]

1.2 Micropillar laser

Excitable micropillar laser with a saturable absorber were first demonstrated in with
an original laser stack design demonstrated in [43]. The cavity is designed to have an
active zone comprising of two quantum wells and a passive zone comprising of one quan-
tum well respectively. The three quantum wells (InGaAs/AlGaAs) are identical with minor
differences in the barriers. The cavity is designed in such a way that the active zone is
physically located at the maxima of the optical field in the pump window (790 nm - 810
nm) and the passive zone is located at the electric field minima in the pump window.
However, all the three quantum wells are located at the electric field maxima at the cavity
resonance wavelength. This effectively enables selective pumping in the active zone and
the passive zone functions like a saturable absorber. Detailed notes on the fabrication of
these devices can be found in chapters 2 and 3 of ref. [44]. The end result is a micropillar
laser having a diameter of 5 um and height of approximately 7 um. The exact height
depends on the depth of etching of the micropillar. We stop the etching leaving a few
layers of the back mirror to avoid absorption of the pump into the GaAs substrate which
can cause parasitic heating. Figure [1.3]shows in (a) an SEM image after the fabrication

process and in (b) a schematic and typical characteristics of the micropillar laser.

Following that, several experiments supported by numerical simulations have revealed
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that the micropillar laser is capable of demonstrating a variety of neuromimetic properties
videlicet refractory period(s), temporal summation, and spike latency. The Yamada model
with spontaneous emission used to simulate this system was introduced in ref. [45] and
has been shown to be in excellent qualitative agreement with experimental findings. It
was further shown in ref. [46] that this model is an analog to the leaky integrate-and-fire

model. The model equations are as follows?}

G =¢(A—-G—-GI)
Q=(B—-Q—sQI) (1.1)

[=(G=Q—1I+By(G+m)?

The model consists of three nonlinear coupled ordinary differential equation for the intra-
cavity intensity (I), and the scaled excess carrier densities with respect to transparency
in the gain (G) and the saturable absorber region (Q). A and B correspond to the pump
intensity and the nonsaturable losses. The saturation parameter is s = 227 where ag,

GYQ
is the differential gain and differential absorption respectively. The spontaneous emission

factor and transparency offset of gain are g, and 7, respectively. The scaled carrier
recombination in the gain and saturable absorber region are v¢ o respectively. In this
slow-fast system, since the carriers dynamics are slower than the intensity dynamics, we
have ¢, < 1. All the timescales here are normalized to the cavity photon lifetime which
is approximately 1.3 ps by the cavity design. A necessary condition for excitability is that
s > 1+ 1/B [47]. This is satisfied as by construction as we have ¢ ~ vg and ag > ag.
In the absence of the spontaneous emission term (5,, = 0), the system admits 7 = 0
as an invariant manifold. Thus, any perturbation on G or Q does not increase the intra-
cavity intensit To account for experimental findings, the model incorporates a small
spontaneous emission term 35, which is typically 10~°. The addition of this term slightly
alters the steady state values of all the variables which at order 0 in 3, take the form

(A, B,0) for (G, Q, I) respectively. These modifications are shown in ref. [45]. Based on

2\(Ve will reintroduce the model throughout the manuscript where ever it is used for the ease of the reader
3] is trivially 0 if I = 0 which prohibits any change in the intensity
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this it was estimated in ref. [48] that the excitable regime (below laser threshold) corre-
sponds to A < 1 + B. The neuromimetic properties arising from the micropillar laser are

summarized in the subsequent subsections.

1.2.1 Excitability
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Figure 1.4: Experimental and numerical study of excitable behaviour in micropillar laser
with incoherent excitation
Subplot (a) shows amplitude of the response R; to a single pulse perturbation versus
perturbation energy E for varying bias pump P relative to the self-pulsing threshold
Psp = 694 mW. Subplot (b) shows theoretical response amplitude R; to single input
d-perturbation pulse pg for different bias pumps p; = A ranging from 2.8 to — 42.2.
Subplot (c) shows the dependence of the excitable threshold Ey, (red circles) with
reduced bias pump P/Psp and linear fit (blue line). Subplot (d) shows excitable
threshold us versus bias pump A. The blue line is the theoretical approximation given by
1+ B — A. The parameters used for the numerical simulation were: v = 0.001,
79 =0.002, B =2, s =10, 71 = 1.6 and S5, = 107°. Adapted from [48].

It was shown that the micropillar laser demonstrates a neuron like excitability with the
emission of a sub-nanosecond response [48, 49] when perturbed by a single optical per-
turbation on the gain or intensity variable. This excitable behaviour is characterized by
a typical all-or-none response when subjected to a perturbation. The perturbation on
the gain variable are carried out using a pulsed laser operating in the pump window and

is called an incoherent perturbation. A perturbation carried out at the cavity resonance
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is called a coherent perturbation and affects the intensity variable. The experimental
and numerical results for the former are presented in figure [1.4] Below a certain thresh-
old, called the excitable threshold, a perturbation results in no response. However, a
perturbation just above this threshold generates a response. This sharp threshold is a

characteristic of excitability.
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Figure 1.5: Experimental study of excitable behaviour in micropillar laser with coherent
perturbation
Left panel: Response amplitude for a coherent perturbation at A = 980.47 nm and
different bias pumping with respect to the self-pulsing threshold Pgp pumping value.
The response and perturbation amplitudes are scaled to their maximum value for P/Psp
= 94.3. Upper left panel: Excitable threshold dependence for coherent perturbations
versus bias pump.. Adapted from [49].

For an incoherent perturbation, it has been demonstrated that following the sharp tran-
sition at the excitable threshold, the emission from the micropillar laser exhibits a linear
growth with perturbation strength. The excitable behaviour is observed over a range of
pump (A) value below the self-pulsing threshold. However, reduction of the pump value
beyond a certain value causes the excitable character to disappear and to lead to just
gain switching.

The response to a coherent perturbation, while having the same sharp transition, is sub-
tly different. The results for coherent perturbations are shown in figure [1.5] In this case,

following the excitable threshold, the output is clamped to a value and is no longer de-
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pendent in the input. It corresponds more closely to the standard expected excitable
behaviour. The two types of excitable response vs perturbation method were analyzed
in detail in Ref. [50]. The different curves correspond to different values of the pump. In
this case however, the excitable threshold seems to increase with the pump as opposed
to the trend displayed by the incoherent perturbations. This counter-intuitive trend is due
to an experimental technicality since the perturbation laser wavelength is fixed in this ex-
periment. The changing of the pump induces thermal detuning of the cavity resonance.
This in turn increases the excitable threshold. It was estimated experimentally that the
excitable threshold (excluding the pump) for coherent and incoherent perturbation was
approximately 4 fJ and 725 fJ respectively. Whereas was the excitable response was
on the order of 50 fJ. The typical FWHM pulse duration of the excitable response was

estimated to be < 200 ps.

1.2.2 Refractory periods
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Figure 1.6: Absolute and relative refractory periods

Subplot (a) shows the recorded time traces for different delays and their Gaussian fits.
Upper traces are the input perturbations and the lower traces are the system’s response.
The bias pump is set to 71% of the self pulsing threshold. (b) Amplitude of the response

R to the first (black) and second (red or gray) perturbation pulses for a double-pulse

perturbation with variable delays. Ry is the response amplitude at the excitable
threshold. Lines are linear fits in selected ranges and are guides for the eye. Adapted
from [48].

The results reported in this subsection were published in ref. [48]. In the presence of two

or more perturbations, three regimes of responses were observed videlicet absolute re-
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fractory period, relative refractory period, and an independent response. The last regime
is a trivial observation of excitability when the time difference between perturbations is far
greater than any internal time scale of the system. These results can be seen in figure
[1.6] For this experiment, the micropillar laser was perturbed twice incoherently; each per-
turbation was greater than the excitable threshold so as to elicit a response by itself. The
spacing between the two perturbation was between 194 ps and 508 ps. It was observed
that for very short delays (< 190 ps), only one response was recorded. This regime is
the absolute refractory period as the second perturbation fails to elicit a response. When
the time delay is between 200 ps and 350 ps, it is observed that both the perturbations
contribute to two responses but the second response is attenuated. This attenuation is
due to the time taken for the carriers to recover within the gain and saturable absorber
regions. Lastly, when the timing is greater than 500 ps, the two perturbations produce

almost identical responses.

1.2.3 Temporal summation

The results in this subsection were published in ref. [51]. Temporal summation is the
mechanism where sub-threshold perturbations arriving within a given time window can
add up to elicit an excitable response. A neuron capable of temporal summation is also
called a coincidence detector neuron. Coincidence detector neurons play an important
role in neuromorphic computing and are thought to enable azimuthal sound localization.
The experiments were carried out using coherent and incoherent perturbations. For the
incoherent perturbations, two perturbations with amplitudes below the excitable threshold
(74% and 80% of the excitable threshold) were sent to the micropillar laser. Individually,
both the perturbations would not elicit a response from the micropillar laser. These two
perturbations are sent to the micropillar with different delays and the response is recorded
from the micropillar laser. The results of this are shown in figure Since noise in the
form of pump noise and spontaneous emission is present in the system, the experiment
was repeated 10,000 times for statistics. For delays shown in subplot (a) - (e), the mi-
cropillar performs temporal summation with different success rates (99.97% for subplot

(a) and 84.5% for subplot (e)). The temporal profile of the excitable response in each
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Figure 1.7: Temporal summation with incoherent perturbations
Experimental traces of the system’s response to two incoming, sub-threshold
perturbations for different perturbation delays d: (a) 210, (b) 320, (c) 420, (d) 520, (e)
610, and (f) 700 ps. The plots show the statistical density of points (in log scale) for
10,000 different realizations. On the plots a typical response pulse is shown in green.
Inset: excitable response to a single perturbation. Red stars are the detected response
maxima. Orange is a plot of the median in a sliding window with 500 points. Adapted

from [51].

case is almost identical. However, in subplot (f) when the delay is 700 ps, the micropillar

laser fails to perform the temporal summation with a high success rate.

For the coherent perturbation experiment, the two perturbation were fixed to be 44% and
66% of the excitable threshold. In this case the temporal summation happens for an
shorter temporal window. The results from this experiment are shown in figure In
subplot (a) and (b), where the delay was 220 ps and 350 ps respectively, the temporal
summation occurs; the success rate in (b) is lower. For other cases subplots (¢)-(e), the
temporal summation does not occur. The locations of both the perturbations are marked
by arrows in the figure.

In both the coherent and incoherent temporal summation, there is a delay which scales
nonlinearly with respect to the individual perturbations and the spacing between them.
This nonlinear delay could be an interesting mechanism for implementing temporal codes.

Similar mechanisms for temporal summation can be implemented using multiple evanes-
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Figure 1.8: Temporal summation with coherent perturbations
Experimental traces of the system’s response to two incoming, sub-threshold
perturbations for different perturbation delays d: (a) 220, (b) 350, (c) 450, (d) 540, and
(e) 630 ps. The plots show the statistical density of points (in log scale) for 10,000
different realizations. On the plots, a typical response pulse is shown in green. The
intensity perturbations are indicated by arrows. Inset: excitable response to a single
perturbation median-averaged over 500 points. Adapted from [51].

cently coupled micropillars. These will be presented in chapter 3.

1.2.4 Spike latency

Spike latency is the delay between the arrival of a perturbation and the emission of an
excitable response. In the micropillar laser, it is demonstrated in ref. [49] that there is a
sub-nanosecond nonlinear delay that depends on the pump as well as the perturbation
strength; an analytical expression was also derived. This experimentally measured non-
linear dependence for an incoherent perturbation is shown in figure In the figure,
the different curves correspond to the different values of the pump. For each value of
the pump, several perturbations of different strengths were sent to the micropillar laser.
For a pump value giving rise to a low excitable threshold, the measurable latency can
change over a large range (150 ps to 1 ns). This inverse relation between the pertur-
bation strength and response time can enable the use of micropillar lasers for temporal
coding which is the coding of information through the timings between spikes. More re-

sults will presented on this will be presented in chapter 3.
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Figure 1.9: Spike latency of a micropillar laser with incoherent perturbations
Median of the pulse response delay versus normalized perturbation energy P for different
bias pumps with respect to the self-pulsing pump threshold. The perturbation and the
response are normalized respectively to the excitable threshold (Ptghg%) and to the
response at excitable threshold R?,?% for a bias pump P equal to 99% of the pump at the

self-pulsing threshold. Adapted from [49].
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Chapter 2

Delay Coupling

Having described the context of our research and introducing the laser system under
investigation in chapter 1, this chapter is dedicated to delay-based architectures from a

fundamental as well as an applied point of view.

Delay coupling refers to a time delayed feedback to a single micropillar laser by the means
of an external cavity as shown in figure We first present the experimental setup and
introduce the model equations used. Following this, we show the existence of regen-
erative pulse trains in the system and demonstrate how we can manipulate them with
single optical pulses. This demonstrates the capability of optical buffer in the short term.
We proceed to study the asymptotic dynamics of the system which consists of periodic
and symmetry-broken states. All the experimental results are supported by numerical
and theoretical analysis in collaboration with our partners. We finish by discussing the

implication of these results in the context of neuromimetic information processing.

2.1 Experimental Setup

The micropillar laser is optically pumped to be in the excitable regime with a continuous
wave laser (Coherent FAP system) in the pump window (between 790 nm and 810 nm)
and emits light at the cavity resonance wavelength (between 960 nm and 990 nm). The

CW pump is controlled by an DC voltage source. The pump profile on the sample plane
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Figure 2.1: Schematic of the experimental setup with time delayed feedback
Figure shows the optically pumped excitable micropillar laser with delayed optical
feedback from an external mirror. DM: Dichroic mirror, BS: Beam splitter with 70/30
power split between reflected and transmitted path, MO: Microscope objective, APD:
Avalanche photodiode, L: Lens with f = 5 cm, M: High reflectivity feedback mirror, BD:
Beam dump, pPillar: Micropillar laser, 7 : External cavity round trip time.

is flat top and power densityﬂ at threshold is on the order of 10 - 100 kW /cm?; the exact
value depends on individual sample properties (position of the cavity resonance with
respect to saturable absorber bandgap) and also varies in different fabrication runs. The
micropillar laser is cooled and stabilized to a temperature slightly below 0°C using a
Peltier element with a stability better than 0.1°C. The output light from the micropillar is
split using a R/T = 70/30 beam splitter (BS). The transmitted part is detected using a 5
GHz bandwidth avalanche photodiode (APD), amplified by a large bandwidth (18 GHz)
RF amplifier and analysed with a 13 GHz oscilloscope. The reflected part is directed
into an external cavity, closed by a high reflectivity mirror (M) after focusing with a 5 cm
focal length lens, which provides a tunable delay 7 on the order of 10 ns. This delayed
optical feedback results in a 10% reduction of the laser threshold. The micropillar laser is
perturbed by short optical perturbations of 80 ps duration from a mode-locked Ti:Sa laser
(Spectra Physics Tsunami). The repetition rate of the Ti:Sa laser is fixed by the cavity
round trip time and is about 82 MHz (12.28 ns period). This is thus the minimum time
duration between two perturbations. At the laser output there is a pulse picker which can

select pulses such that the repetition rate can be lowered. The perturbations can either

'The typical diameter of the pump beam using an 80x microscope objective is 10 ym
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be coherent or incoherent with respect to the cavity resonance wavelength. Both classes

of perturbations result in similar responses with subtle differences.

2.2 Model Equations

We model our system using the Yamada model as shown in the previous chapter (Eq.

with 3,, = 0 and adding time delayed feedback term. The equations are as follows:

G =6(A—G~GI)
Q =(B—Q —sQI) (2.1)
I=(G-Q—-)I+kIt—T)

x and 7 are the feedback strength and delay, respectively. In a strict sense, this model
is incapable of responding to incoherent perturbations (perturbations on G) as at steady
state it admits 7 = 0 as an invariant manifold. A spontaneous emission term could be
added but we take 35, = 0 to ease the theoretical analysis. Thus for incoherent pertur-
bations to act effectively, we just have to take a small non-zero initial value for intensity
I

This model considers the intracavity laser intensity I instead of the electric field E essen-

tially discarding phase effects for the following reasons:

» Our system is in the excitable regime with the stable state as the laser off state.
Therefore, in this off state, the only optical field present is due to spontaneous

emission which is not coherent and is of very low intensity.

» The delay time T is typically one order of magnitude greater than the FWHM of the
emitted pulse (< 200 ps) which corresponds to the time duration of the excursion
in the phase space. This then ensures that the feedback always arrives when the

laser is in the off state.

» The model gives good qualitative agreement with the experimental observations. A

comparison of the Yamada model with a model including phase effects [52] yielded
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effectively similar results in the regime considered by us.

2.3 Manipulation of pulse trains in delay systems

We set the micropillar laser in the excitable regime: the steady state intensity I is zero,
but a single high-amplitude, short pulse of light can be emitted in response to an exter-
nal perturbation of sufficient amplitude [35, 53]. When subject to delayed feedback, an

excitable system can either

* Remain in its off state for external perturbations below the excitability threshold.

« Emit a single pulse if the perturbation exceeds the excitable threshold but the exter-

nal cavity losses are too high.

» Regenerate its own initial excitable response after the reinjection time 7 giving rise
to periodic pulse train for a sufficiently high feedback strength. The repetition rate

of the regenerative pulse train is close to 77}

A useful tool to analyse such pulse trains is a two dimensional pseudospace represen-
tation [55] [56]. We would like to note that the pseudo-space representation we use here
does not necessarily mean that the vertical (y) axis can be treated as an extra spatial
dimension. In fact, for this to be true we need very long delays compared to the corre-
lation time in the system. We just use it because it is convenient to follow the evolution
of pulses. This 2-D representation facilitates visualizing the information easily for several
pulses per round trip over many round trips. The generation of such two dimensional
representations from time series follows a simple folding operation: the time series data
(figure is divided into segments of 7 and these individual segments form the rows
of a matrix as depicted in figure The x-axis of figure [2.2b]is now continuous time

between 0 and = and the y-axis is the number of round-trips or discrete time.

2t is close to but not equal to = as the emission period is the sum of the delay and spike latency. In
the previous works from our group, we showed that such a system can sustain optical temporal dissipative
solitons for a finite duration. This finite duration results from a pump noise-induced escape from a stable
periodic solution to a stable equilibrium [54]
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Figure 2.2: Transformation from time traces to 2D pseudospace representation

This very general mechanism for self-pulsationdﬂ has been implemented in different opti-
cal systems, including a coherently driven vertical-cavity surface-emitting laser (VCSEL)
[37], a VCSEL subject to optoelectronic feedback [57], two coupled semiconductor lasers
[58], a photonic resonator with optoelectronic self-feedback [59], and a micropillar laser
with integrated saturable absorber [54]. Since almost arbitrary pulse timing patterns can,
in principle, be excited and regenerated after each delay, regenerative dynamics can be of
particular interest for producing complex optically controllable temporal pulsing patterns
(60, (61,162, 63, 64] or for spike-based optical memory applications [37, 59, 64, 65].

It has been shown that the pulsing dynamics is solely governed by the nonlinear spike
latency —time between reinjection and emission of a pulse-— which is a function of the net
gain G=G-Q-1 accounting for the gain and saturable loss at the reinjection time.
In the vicinity of the perturbations, we report similar behaviour as demonstrated by past
works [37, 59] in showing an all-optical information storage system which can perform
noise correctiorﬂ by the virtue of its excitable behaviour. We further present an all-optical
control over the information in the buffer either using the CW pump or a single optical
perturbation pulse.

The all-optical control can be presented as addition of a pulse, retiming of pulse train,

tweezing of a pulse train in figure In all the subplots here, the red circle indicates

3This mention of self-pulsations is different from the self-pulsing threshold of a single micropillar laser.
The latter corresponds to the homoclinic bifurcation in a single micropillar laser without feedback and is a
result of the interplay between the variables in the Yamada model.

“Here noise correction refers to the fact that on every feedback instance, the output is a fixed response
as long as the input exceeds a threshold thus avoiding any accumulation of noise.

27



o Number of Round Trips

i
o
o
o

Ul
o Number of Round Trips 8
o Number of Round Trips

0 t/T 1

Figure 2.3: Operations on the all optical buffer
In all the panels here, the red circle indicates a perturbation. In subplot (a) we see the
addition of a pulse train, in subplot (b) we see the effect of refractory period in
perturbation (1) and retiming of a pulse train due to perturbation (2), in subplot (c) we
see the retiming of a pulse train and in subplot (d) we see the tweezing of a pulse train.
See text for additional details.

a single optical perturbation. Further, we represent the 2-D space with the two coor-
dinates with the convention that the first coordinate corresponds to £ and the second
coordinate corresponds to the roundtrip number. In order to manipulate the pulse train
we need to have a proper control over the perturbation times. This is achieved by the
use of an external trigger to the pulse picker of the Ti:Sa mode-locked laser. The external
trigger (generated using Agilent 8114A pulse generator) is a window of several tens of
nanoseconds which controls the acousto-optic modulator of the pulse picker. This way,
we can choose a given sequence of perturbation pulses from the train of pulses of the
Ti:Sa mode-locked laser. In order to achieve a proper timing of the perturbation pulse

with respect to the existing pulse train, we need to account for the two time scales: delay

28



time 7 and the repetition time of the Ti:Sa mode-locked laser (12.28 ns). On a technical
note, the pulse from the external trigger is larger than the mode-locked repetition period.
Thus, to select a single pulse, we need to properly adjust the time of external trigger
(accounting for the rise and fall time of the trigger pulse) with respect to the pulse train.
In subplot figure [2.3(a) a pulse train with one pulse per round trip is first excited. We
then send a second perturbation which is timed such that it is not in the vicinity of the
existing pulse train. We observe the addition of a pulse train when we perturb the sys-
tem at point (to, t1) with an existing pulse train arriving at (t3,t;) such that t2 < t3 and
|t3 — t2| > trefractory ﬂ

In subplot (b) we discuss the effect of perturbation labeled as (1). The perturbation (2)
causes a retiming of a pulse train and this mechanism is discussed in the next figure.
Perturbation (1) is sent at point (to, t;) with an existing pulse train at point (ts,t;) such
that t3 < to and |t3 — ta] < treractory. DUE tO this, the perturbation fails to start a second
pulse train and has no effect on the system. In subplot (c) we follow a procedure similar
to (a) but in this case, the difference [t3 — t2| is less than ticgactory resulting in the existing
pulse train having insufficient gain to regenerate effectively retiming the pulse train. The
slope of the mean trajectory observed in all the panels is a result of the imprecise estimate
of the folding time. The folding time is taken in this thesis, for practical reasons, as the
fundamental pulse repetition period which is estimated using the fundamental peak in
the Fourier spectrum of time traces. The folding time is set to be as close to this time
as possible. Since the resolution in the folding time is set by the sampling time of the
oscilloscope, we cannot have arbitrary precision. This lack of precision manifests as
slight drifts in the pseudo-space representation and gives rise to the slope.

In subplot[2.3(d) we perturb the system only once resulting in a pulse train, we then modu-
late the pump (CW) laser using a sinusoidal signal generated by Agilent 33220A arbitrary
waveform generator which in turn drives the current in the FAP pump laser system. The
sinusoidal signal has a mean of 530 mV and a modulation of 70 mV V,,;, with a frequency
of 80 kHz. The resulting change in net gain is manifested in the form of changing spike

latency giving the effect of tweezing.

Streiractory 1S the refractory period.
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Figure 2.4: All optical control of a pulse train
In subplot (a) we see the perturbation sequence, in subplot (b) we see the response and
in subplot (c) we see the same experiment repeated thousand times.

Using similar mechanisms it was shown in that it is also possible to switch on and
off pulse trains in the system with two single (incoherent) optical perturbations. In figure
subplot (a) shows the perturbation sequence and subplot (b) shows the response
recorded from the system. It was demonstrated in chapter 1 fig. [1.4] that in the case of
incoherent perturbations, we observe a sharp threshold in the response at the excitable
threshold and then a linear growth in response with respect to the perturbation strength.
The first large perturbation in (a) triggers the pulse train shown in (b) but the subsequent
perturbation generates an insufficient response in the system while arriving just before
the regeneration of the fourth pulse in the pulse train. This second perturbation uses up
the gain in the system and the existing pulse train falls in the refractory period, switching
it off. The response from the second pulse perturbation is not high enough to reach the
excitable threshold after suffering cavity roundtrip losses and thus it generates no pulse
train. This interaction makes the switch on and off of pulse trains using single optical
perturbations. Subplot (c) shows the results of this experiment carried out thousand
times with the 7 = 4.2 ns; the case number is on the ordinate and time is represented on
the abscissa with t = 0 being the first perturbation. Based on this subplot we conclude
that the effect is very reproducible and not prone to experimental noise. Moreover, it can
be noted that the jitter in the regenerated pulses is low (shown by the vertical lines) as it
is fixed by the delay in the system.

Similar manipulation of optical pulses has been reported in ref. [62] in a passively mode-
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locked semiconductor laser using electrically addressed short perturbations on the pump.
They reported the switch on and off of single pulses with repeated (more than hundred)
and precisely timed perturbations. In our case, we achieve pulse manipulation using

single optical perturbation.

2.4 Asymptotic dynamics
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Figure 2.5: Pulse - Pulse interaction over several thousand roundtrips
In subplot (a) the feedback time is 7 = 8.2ns and in subplot (b) the feedback time is
7T = 6.33ns

While in the short term, we observe that the system behaves like an optical buffer, we
observe that the pulses do interact with time and this requires further analysis. In figure
subplot (a) two initially close pulses in the external cavity tend to separate over thou-
sands of round trips and experience a repulsive interaction. By contrast, in subplot (b),
two initially separated pulses seem to experience an attractive interaction until one pulse
train is turned off as it enters the absolute refractory period of the first pulse train. The two
plots were obtained using different micropillars operating in different experimental condi-
tions. To the best of our knowledge, pulse attraction in such systems was not reported
before. In the next section, we further our analysis by comparing the experimental results
to numerical simulations with appropriate parameters and distinguish the results based
on the carrier recombination rates in the gain and saturable absorber regions. The theo-
retical results presented in this chapter have been developed in collaboration with Soizic
Terrien, Neil G. R. Broderick and Bernd Krauskopf at the Dodd-Walls Center for Photonic

and Quantum Technologies, The University of Auckland, New Zealand.
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In the context of biological spiking neurons, delayed self-connections have also been rec-
ognized to play a central role in the persistent regeneration of input stimuli [66, 67, [68].
While in the short term, the regeneration occurs with minimal loss of timing information,
we show that in the long term this is not true anymore. The intuitive picture of regenerating
arbitrary pulse trains while accurate in predicting the short-term behaviour of the system
is overly simplified. A theoretical analysis predicts more complicated dynamics, including
the co-existence of several self-pulsing modes with the stable off-state [64, 169, [70]. It is
well known that delay differential equations (DDEs) have an infinite dimensional phase
space and can display rich dynamics with coexistence between different types of attrac-
tors [71,172]. Thus, it is a fundamental question to understand the long-term dynamics of

such systems.

2.4.1 Time symmetric pulsing patterns - Faster saturable absorber

In order to study these long term dynamics, we revert to the simulations using the equa-
tions introduced in Egs. [2.7] The first set of parameters we consider are A = 2.4, B = 2.2,
va¢ = 0.01, v = 0.02, s = 5, kK = 0.05, and 7 = 1100. These are chosen to match the
known physical parameters and the experimental observations [73, 47]: recombination
timescales (v, v¢) are on the order of few hundreds of picoseconds and the feedback
time (7) is between 5 and 10 ns. The saturable absorber recovers twice as fast as the
gain. The small value of v and g represents the slow timescale of nonradiative re-
combination in the quantum wells as opposed to the fast timescale of the cavity photon
lifetime. After emitting a pulse, the net gain G = G — Q — 1 recovers to 95% of its steady
state value in t... = 393; the feedback time is thus approximately 3 t... which is compara-
ble to the experiment. The model equations[2.1]do not account for pump or spontaneous
emission noise, thus the focus is solely on deterministic dynamics. As described in the
previous section, in the vicinity of the perturbation, the system acts like an optical buffer
and preserves information in the form of inter-spike distances, here in figure 2.6 we com-
pare two examples of experimental time traces with numerical simulations which appear
to be in good agreement. In panel (a1), two successive perturbations are sent with a

time difference of approximately 12.28 ns, which results in two pulse trains with an inter-
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spike distance of approximately 0.4 x 7. This distance is preserved over 250 roundtrips.
The evolution of three coexisting pulse trains can be seen in the next panel. Here the

non-equidistant pulsing pattern is shown to exist over a short duration of 30 roundtrips.

.
0
0 t/T 1

Figure 2.6: Pseudospace representation of pulse trains over short duration
Experimental (left) and simulation (right) results of pulse trains over short duration. (a)
and (b) Represent two and three pulses per round trip respectively. The feedback delay

was 4.77 ns in the experiment. Figure adapted from [64]
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For the same parameters, figure [2.7] represents the phase portrait of system (2.1) in the
(G, I)-plane, calculated with the continuation toolbox DDE-Biftool |74, [75]. It shows the
coexistence of seven stable solutions: a non-lasing equilibrium and six periodic pulsing
solutions. The smallest orbit corresponds to the six pulse per roundtrip solution. These
coexist with several unstable periodic solutions and equilibria, which are not represented

here. The stable pulsing solutions have periods T close to submultiples of = and, hence,
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correspond to different numbers of equidistant pulses in the external cavity [/0]. Apart
from the one for which T is close to 7, they all are only weakly stable. Importantly, there
exists no stable periodic solutions with non-equidistant pulses in the external cavity, de-
spite the fact that such solutions are observed over long periods of time in experiments
and simulations. Thus the results presented in figure only present a partial picture.
They represent a transient towards one of the (weakly) attracting periodic solutions of
figure The results from the numerical integration of Eq. with two coexisting
and non-equidistant pulses are shown in figure The convergence to the attractor
only happens over several hundreds of roundtrips. The bifurcation analysis of the model
shows that the amplitudes of the periodic solutions with the largest periods are very close
to each other (see the two largest orbits in[2.7): as such, no significant difference is ob-
served in the amplitudes when one or several pulses exist in the external cavity. The slow
convergence towards the stable periodic solution is explained entirely by the dynamics of

the net gain, G.

45
1
0
0 G 2.5
Figure 2.7: Phase portrait of Yamada model with a time delayed feedback in the (G,l)

plane
[lustration of one stable equilibrium (dot) and six stable periodic solutions (curves).
Figure adapted from [64]

Panels (d) and (e) in figure plot the G and G dynamics during 7 roundtrips (10-17)
indicated by the shaded area in panel (a), the absorption recovers faster than the gain,
thus immediately after a pulse, the low net gain G increases back to its saturated value
as both G and Q recover to their respective steady state values. Since G=G"Q"1and
Q recovers faster, the value of G approaches its steady state value from below. A second
perturbation is introduced in the system when the G hasn't sufficiently recovered but the
gain and perturbation strength make it possible to trigger a response. However, since

this perturbation experiences a slightly lower G it has a higher pulse latency time [49]
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and hence, repetition period, for the second pulse train compared to the first pulse train.
For every subsequent roundtrip this process repeats and the second pulse is reinjected
further away from the first one, until both pulse trains experience an identical net gain
and their repetition periods become equal. This effect of convergence due to the gain
dependent latency gives rise to the apparent repulsion between the pulses. Pulse to
pulse interaction is thus mediated by the carriers and is not an effect of the optical tails of
the pulses. Since the system converges in the long term to a stable periodic orbit of the
phase portrait the maximum number of pulse trains sustained by the system is related
to the number of stable periodic solutions. Figures show experimental results on
the convergence of irregularly spaced pulse trains (two and three pulses per roundtrip)
to equidistant pulse trains over the course of several thousands of roundtrips. Figures
al, a2, b1, and b2 show the evolution of two and three pulse trains respectively
using the pseudospace representation. The pseudospace plots are plotted over 200
roundtrips and at different stages in the convergence as shown in the figure a3 and
b3 which highlights the slow convergence by plotting the Ap or pulse-to-pulse timing over
consecutive roundtrips. The pulse-to-pulse timing Ap slowly converges to a value close to
a half or a third of the delay time 7, respectively as equidistant pulsing is approached. This
slow convergence rate is on the order of a few picoseconds per roundtrip which is very
small when compared to the pulse duration of approximately 200 ps. It can be observed
in the experiment only over long time periods. The random-walk like fluctuations of the
pulse-to-pulse timing are explained by the presence of pump noise in the system, which

induces stochastic fluctuations of the micropillar net gain [54].

Having described the process of convergence of arbitrary pulse trains to equidistant pulse
trains, the natural continuation would be to understand the scenarios under which it is
possible to switch between these (weakly) stable solutions. From a mathematical point of
view, these scenarios can be described by the basins of attraction of the different stable
periodic solutions. The time traces of the six periodic solutions are shown in figure
and their periods are close to sub-multiples of the delay time, 7. For the sake of brevity,
these solutions will be referred to as one-pulse solution, two-pulse solution and so on.

The final state of a multistable system depends on its initial conditions. For each of the
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Figure 2.8: Simulation of two coexisting pulse trains
(a) and (b) Show the pseudospace representation just after the perturbations and in the
long-term respectively. (c) shows the evolution of the elapsed time between successive
pulses; the shaded area is the segment represented in (a). (d-e) Show the temporal
evolution of G and G respectively.
Figure adapted from [64]

stable solutions (attractors), displayed in figure [2.10a, there exists a basin of attraction.
This basin of attraction corresponds to the set of initial conditions for which the transient
converges to the said attractor. Thus, the basins of attraction provides us the information
of how to approach different stable solutions of the system and how to switch between
solutions using external perturbations. The system described here is modeled by a delay
differential equation which intrinsically has an infinite dimensional phase space [76] which
makes numerical continuation very complex [77, [78]. Thus we choose to integrateﬁ Eq.
[2.7]numerically to obtain the basins of attraction. Figures [2.10(b-g) summarize the effect
of perturbations on the long-term dynamics of the system; it assumes that the system is
currently in one of the stable solutions and not in a transient. A perturbation on the gain
variable of amplitude AG at time t relative to the existing pulse train(s) which are marked

by vertical gray lines in the figure (t = 0 is the reinjection time of a pre-existing pulse

in the micropillar laser) will excite a transient but a change in the long-term dynamics is

5We use a custom routine based on MATLAB® DDE23 function
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Figure 2.9: Experimental results of two and three coexisting pulse trains over a long
duration
Subplots (a) and (b) Represent two and three coexisting pulse trains in the external
cavity. (al), (bl) ,(a2), and (b2) correspond to the pseudospace representation of time
traces immediately after the perturbation and after several thousand roundtrips. (a3)
and (b3) Plot the pulse-to-pulse timing Ap versus the roundtrip number. The shaded
regions in these sub-panels correspond to the roundtrip numbers visualized in the
pseudospace representations in the previous plots. The feedback delay was 8.2 ns.

conditional on perturbation being in a conducive region in the (AG, t) space. The grey
rectangular blocks in the figures [2.10[b-g) correspond to the reinjection time of the pre-
existing pulse trains. When the system is in the n-pulse regime with n < 3 figures [2.10(b-
d), a perturbation can either switch the system to the n+1 - pulse regime or can result in
no change. If the perturbation is too weak (low AG) it might fail to regenerate in the cavity
or even elicit a response from the system. However given a suitable perturbation strength
the system responds depending on the timing of the perturbation; if the perturbation is
in vicinity (immediately before or after) of an existing pulse train it can either cause the
retiming of the pulse train or it can fall in the refractory period of the existing pulse train
respectively. The effect of the relative refractory period is clearly visible in the initial
negative slopes of the bottom left boundaries of the new stable pulsing regimes. Another
observation from the figures is that AG,,.i», the minimum perturbation strength required

to trigger a response increases with the number n while the time window to switch to the
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n+1 pulse regime reduces.

When the initial stable regime is the n-pulse regime with n > 3, figures [2.10(e-g) show
that any perturbation causes the system to either be in the same regime or switch to
a n-1 pulse regime. As in the case of n < 3 perturbations in the immediate vicinity of
pre-existing pulses do not alter the long term dynamics of the system. Additional pertur-
bations with appropriate timing and amplitude alter the long term dynamics of the system
by removing pulses from the existing pulse train. The area of conducive parameters for
removing pulses in the (AG, t) space increases with n. Despite these constraints, it is
possible to access all the pulsing regimes in the system. The n > 3 pulses solution can
be accessed by perturbing the system while it is still in a transient as these basins of
attraction hold true only when the system starts from a stable solution. Thus if the sys-
tem is perturbed n times (3 < n < 6) before it reaches a steady state, it is possible to
access the n pulse solution. Numerical simulations of accessing five pulse solution are
presented in figure the two scenarios in juxtaposition are: (a) perturbations sent to
a system in a four pulse solution and (b) perturbations sent to a system in a transient.
In panel (a) both the perturbations fail to effect any change in the long term dynamics
of the system, the first perturbation labelled A causes the retiming of a pulse train and
the second perturbation, labelled B fails to regenerate in the system. Whereas in panel
(b), when the system is perturbed (labelled C) during its transient phase, it is possible to

access the five pulse solution.

Figure presents experimental results that highlight the importance of perturbation
timing on the long term dynamics of the system. Subplot (a) shows how a perturbation
with an appropriate timing and amplitude can trigger a second pulse train thus switching
from 1-pulse to 2-pulse regime. This is in excellent qualitative agreement with fig.
(b) in the basins of attraction. A more intricate case is shown in figure 2.12] (b). As
mentioned before, we time our perturbations using an external trigger. In this case, the
external trigger sends two trigger signals, each approximately 40 ns wide and 3 us apart.
The first trigger signal generates two perturbations (due to the relative timing between the
trigger and the pulse train from the Ti:Sa mode-locked laser). These two perturbations

are 12.28 ns apart which is approximately 1.5 x 7. These perturbations then generate

38



0 t nT, 0 t iy,

Figure 2.10: Multistability and basins of attraction

(al-a6) Represent the intensity time series of the stable periodic pulsing regimes of Eq.
represented over n periods T , with n the number of pulses in the span of the delay 7.
(b-g) Depict the basins of attraction of [2.1/in the plane of timing t and amplitude AG of

a gain perturbation, when one (b) to six (g) equidistant pulses initially exist in the
external cavity. The color represents the number of pulses observed in the long-term in
the external cavity (panels (al - a6) indicate the color code), and the vertical gray lines
indicate the timing of the pre-existing pulses.

two pulse trains which by the virtue of periodicity in = are almost equally spaced (/2
apart in pseudo-space). This corresponds to region 2 in the figure. The second trigger
signal, which is approximately 360 round trips later, generates two more pulse trains by
the same mechanism. The time between trigger pulses and 7 are not commensurate
which manifests as the relative timing difference between the pulse trains starting from
B and C and the two preexisting pulse trains. Please note that the pulse trains starting
from B and C are also approximately 7/2 apart. In the short evolution after the second
perturbation sequence, there are four pulse trains in the cavity (denoted by the region 4).
The perturbation labelled as B is timed appropriately and triggers a pulse train whereas

the perturbation labelled as C is sent very close to an existing pulse train and it only
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Figure 2.11: Simulated time traces showing transients and multistability
(a) Shows the effect of two perturbations labeled as A and B starting from a four-pulse
solution.
(b) Shows a five-pulse solution reached by perturbing the system during a transient.

triggers a transient pulse train that is extinguished in a few hundred roundtrips. Thus the
system settles to a three pulse regime denoted by region 3. As predicted by the basins
of attraction analysis, these results indicate that accessing n + 1 pulse solutions from n

pulse solution becomes harder with increasing n.

intensity (arb. units)

Figure 2.12: Experimental time traces showing transients and multistability
The figure shows pseudospace representation of time-traces showing response to external
perturbations for one (panel (a)) and two pulse (panel (b)) regime. The feedback delay
was 8.2 ns.

The same experiments can be carried out with coherent perturbations (at the cavity res-
onance wavelength) which corresponds to the perturbation on the intensity variable I
instead of on the gain variable G in model[2.1] The basins were also mapped numerically
with coherent perturbations AI. Apart from differences observed mainly in the finer de-

tails of the basins boundaries, the structure of the basins of attraction is qualitatively as
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those shown in Figures (b-g). This strongly indicates that the strength and timing of

the perturbation is more important as compared to the perturbation variable.

2.4.2 Symmetry-broken pulsing patterns - Faster gain
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Figure 2.13: Stable non-equidistant pulse trains
Subplots (a) shows two coexisting pulse trains in the cavity. These two pulse trains
appear to be equally spaced in the beginning but with the increasing number of round
trips they seem to experience an attractive interaction and stabilize at non-equidistant
values. Subplot (b) Plot the pulse-to-pulse timing Ap versus the roundtrip number
(denoted by the red arrow in subplot (a)). We observe that while the two pulses initially
have a distance of Ap = 7/2 in the beginning, the pulses undergo a gradual attractive
interaction decreasing the value of Ap with successive round trips while experiencing
some fluctuations that can be attributed to pump noise. The feedback time 7 = 8.2 ns in
the experiment.

In the previous section, we illustrated how the stable pulsing patterns are equidistant in
the case of faster saturable absorber. However, experimentally we also observe the con-
trary (shown in figure [2.13). In this figure, we see how a non-equidistant pulse train is
stable over several thousand round trips [79]. Such results can be explained via the inver-
sion of time scales between the two quantum wells. To further our analysis, we consider
the following parameters otherwise stated: A = 2, B = 2, y¢ = 0.01, 7o = 0.055, s = 10
and x = 0.2. The feedback time T is treated as a bifurcation parameter. In this param-
eter region we report pulse-timing symmetry-breaking phenomenon, where some of the
n-pulse solutions described in the previous section destabilize resulting in a coexistence
of equidistant and non-equidistant pulse trains in the feedback loop. Experimentally, the
parameter regime of faster gain is selected by choosing a suitable micropillar laser on

the chip. As described in the fabrication of the micropillars, the etch quality determines
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the non-radiative recombination rate; higher surface roughness leads to an increase in
the number of defects which in turn increases the carrier recombination rate. The etch
quality slightly differs throughout the sample resulting in different combinations of recom-
bination rates and gives us access to a wide range of parameters on a single chip. The
pump value can also change the effective recombination rate mainly in the gain section
due to spontaneous emission. The effect is not accounted for in our model but can be
easily introduced by an effective recombination rate combining all the effects. This way,
either by tuning the pump and/or choosing a different micropillar we have have access
to different parameters. A priori, both the sections have similar recombination rates thus
these external parameters strongly influence the ratio of the recombination rates which is

the important quantity for the symmetry breaking mechanism.

Figure [2.14{a) shows the one-parameter bifurcation diagram of the Yamada model with
delay (Eq. in the delay time 7, where the solutions are represented by the maximum
intensity value attained (denoted by I,). When 7 is increased from 0, successive Hopf
bifurcations (H, marked by blue dots at the bottom of subplot (a)) are encountered which
leads to the coexistence of several periodic solutions. Each of the Hopf bifurcations cor-
respond to a different frequency. The curve labeled as 1, corresponds to the fundamental
solution with one pulse per feedback loop appears at = = 51.7 and is stable for all values
of feedback delay. On the other hand, all the n-pulses solutions with n > 2 emerge unsta-
bly from a Hopf bifurcation, subsequently stabilize in a torus bifurcation when 7 increases,
these solutions correspond to the periodic emissions of short pulses of light with periods
close to sub-multiples of . On increasing 7 further, these solutions destabilize through a
second bifurcation. All these solutions coexist with the zero-intensity equilibrium solution
(not shown in the bifurcation diagram) id est the laser off solution, which is stable over

the entire range of 7.

Figure subplot (b) presents the enlargement of the previous figure near the desta-
bilizing bifurcations of the equidistant pulsing regimes with two to five pulses (points P,
T3, T4, and T5 respectively). The two pulse solution destabilizes at point P via a period
doubling bifurcation. Prior to this bifurcation, the two equidistant pulses can be seen

as a periodic solution with period 7/2, following this bifurcation, the two pulses become
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Figure 2.14: Bifurcation analysis for the Yamada model with faster gain
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(a) Bifurcation diagram of showing the pulse intensity I, with respect to 7 , with
the number of pulses per feedback loop along each stable periodic solution branch.
(b1) Enlargement of the framed area in (a), with further enlargments around point

(b2) T3 and (b3) Ss. Stable equidistant (E) and non-equidistant (N) pulse solutions are
represented in dark and light blue, respectively, and unstable E and N solutions in dark
and light orange, respectively. The dots indicate Hopf (H), torus (T), period doubling

(P), saddle-node (S), and homoclinic (L) bifurcations.

non-equidistant in the feedback look and thus appear as a pulse-timing symmetry broken
state with a period of 7. This non-equidistant state has two pulses with different ampli-
tudes which is not represented in the Figure [2.14] (a) as it only plots the maximum value
of | for every solution. After the period-doubling bifurcation at = = 472, one observes both
a splitting of pulse amplitudes and timing. This this represented in the Figure[2.75] Panel

(a1) shows the bifurcation point P and the subsequent peak values of both the pulses



in the symmetry broken state with increasing 7. Panel (a2) depicts the change in inter-
pulse timing t, with increasing 7. This amplitude and symmetry breaking of the relative
pulse timings is due to the strong amplitude-time coupling of the system [80, 81]. The
numerical integration of the system gives additional insight into the convergence of the
symmetry broken state. Figure[2.15|b) shows the long term dynamics of the system with
7 = 1000 starting from an unstable equidistant two-pulse solution. A small perturbation
is applied on the gain variable G which causes the system to begin converging into one
of the two possible non-equidistant stable pulsing patterns: the first pulse timing interval
decreases (2.15/b2) and the second pulse (highlighted in gray) converges towards a low
amplitude state (Figure [2.15(b1)). When a different initial perturbation is applied by de-
pleting G slightly (not shown here), the phase-shifted, symmetric version of this solution is
obtained, with the first (green) and second (gray) pulses converging to the low-amplitude
and high-amplitude states, respectively. Although this leads seemingly to the same long
term dynamics, both of these different states occur, one being a phase-shifted version
of the other. We also point out that the convergence is very slow and occurs over sev-
eral thousand of delay times, showing that the stable non-equidistant solutions are only

weakly attracting.

The three to five pulse solution undergo a different mechanism of destabilization, these
points are marked as points T3, Ty, and T5 respectively. Following these points, a pair of
stable and unstable solutions emerge from a saddle node bifurcation (these points are
labelled as S, for n=3, 4, and 5). For example, S3 emerges at 7 = 663 for n = 3. The
emerging periodic solutions following the saddle node bifurcation have a period close to 7
as opposed to 7/n of the n-pulse solution before undergoing the torus bifurcation. Here,
the solution following the saddle node bifurcation corresponds to the pulsing regime with
n non-equidistant pulses of different amplitude in the feedback loop. At any time, 7, a
vertical cut can give the number of coexisting pulsing solutions in the external cavity.
Based on the subplots (b2) and (b3) we see that there is a small region of overlap in
the value of 7 that can support both equidistant and non-equidistant pulsing solution for
n = 2. This can also be seem more evidently for n > 3 in subplot (b1). This sort of

coexistence gives rise to an increased level of multistability in the system.
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Figure 2.15: Pulse-timing symmetry breaking with two pulses
(al) Maximum I, of pulse intensity and (a2) relative inter pulse timings ¢, along the
branches of two equidistant and two non-equidistant pulses, with respect to 7 . Stable
and unstable solutions are represented in blue and red, respectively. (b) Simulation of
for 7 = 1000 |gray lines in panel (a)| with initial condition very near the (unstable)
two-pulse solution, showing the long-term evolution of (bl) I, and of (b2) ¢,. The insets
in (bl) show the intensity time series during the two first and two last roundtrips
through the feedback loop; the dots and arrows indicate the amplitudes and relative
timings as represented in (b1l) and (b2), respectively

A different way of presenting this information is by expressing it in terms of the temporal
pulsing patterns, this is shown in figure [2.176] Subplot (a) shows the representative time
traces of one feedback delay 7 for all the coexisting solutions for = = 1000. We observe
the coexistence of 1-pulse solution, 2,3,4,5-pulse non-equidistant solution (panel a2-a5)
and 5,6,7-pulse equidistant solution (panel a5-a7). Increasing the feedback delay pro-
gressively destabilizes the equidistant solutions and stabilizes non-equidistant solutions.
Qualitatively, for a large value of 7, there is a coexistence of n-pulse solutions among
which smaller values of n correspond to non-equidistant solutions and the larger values
of n correspond to equidistant solutions. In Figure all the periodic solutions with
1-7 pulses per feedback loop coexist but the ones with 2-5 pulses underwent the reso-
nance tongues transition and thus are non-equidistant solutions. The stability regions in
the (7,x) plane of 1-8 pulse equidistant and non-equidistant solutions are presented in
Figure [2.16[b). Here the regions of stability of the non-equidistant pulsing solutions are
resonance tongues bounded by saddle-node bifurcations. The stability regions of both

types of solutions extend over large areas of the (7,x) plane and show a high degree of

45



multi-stability (panels b1-b8 for 1-8 pulse solutions). The long-term convergence to one
or other pulsing solution depends critically on the chosen initial conditions. For n > 2
we observe a finite overlap between the two categories of solutions signifying that both
these solutions are stable for the same parameters over some area on the parameter
plane. As shown in Figure [2.74{b1), this results from the fact that the saddle node bifur-
cation occurs (at points S,,) slightly before the n-pulse solutions destabilize at the torus
bifurcation points 7,,. Hence, in these parameter regions of 7, one observes the n-pulse
equidistant or non-equidistant solution depending on the initial conditions. For the chosen
parameters in Figure [2.16] the 5-pulse solution displays this phenomenon (panels (a5)

and (b5)).
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Figure 2.16: Coexistence of solutions in Yamada model with faster gain
(a) Intensity profiles of coexisting periodic solutions of (1), for 7 = 1000 and x = 0.2. (b)
Regions of stability, in the (7,x)-plane of feedback parameters, of the families of
equidistant (E) and non-equidistant (N) periodic solutions with one to eight pulses per
feedback loop. The number of pulses is indicated in the colored regions, and the star
indicates the parameter point (7, %) = (1000,0.2) of the time series in panels (a).

Experimental results shown in figure [2.17] (a and b) show the time traces recorded after
two and three external perturbations respectively. In both the panels, the external pertur-
bation are timed to generate responses close to the asymptotic 2 and 3 pulse equidistant
solution. The panels (a1) and (b1) show the time trace recorded for two roundtrips soon
after the initial perturbation, however in the long term, the timings between the consec-
utive pulses converge to unequal values (panels (a2) and (b2)) showing clearly that the
equidistant solution is not stable.

Figure shows the same type of convergence over several thousands of roundtrips
but for different initial conditions, the colour coding of the inter pulse distance is the same

in Figure In figure (a) and (b), the system is initialized with two and three
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Figure 2.17: Time trace showing convergence from a symmetrical state to a symmetry
broken state
(al) and (bl) Show a representative time traces shortly two and three perturbations
respectively. (a2) and (b2) Show a representative time trace after a large number of
roundtrips in the cavity. The colour of the arrows corresponds to the inter-pulse interval
shown in 2.I8] The feedback time in the experiment was 8.2 ns.
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Figure 2.18: Evolution of inter-spike interval during the convergence process from a sym-

metrical state to a symmetry broken state

Subplots (a) and (b) Show the convergence of a two-pulse and a three-pulse solution from

a symmetrical state to a symmetry broken state. The roundtrip number 0 corresponds to
the time trace just after the perturbation.
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equidistant pulses per roundtrip respectively. This is done using suitable external per-
turbations. We observe that the pulse-timing information is preserved in the short term
[64] [80]. On the other hand, in the long term, the system slowly converges towards non-
equidistant pulsing patterns with well-defined and different inter-pulse relative timings.
These inter-pulse timings then stay very stable over a large number of roundtrips. It was
not possible to monitor the amplitude difference in the final state due to the limited signal
to noise ratio —the emitted pulse energy is on the order of =~ 100 fJ. Since it is observed in
Figure[2.15 that a small difference in the amplitude is associated with a large inter-pulse
interval, we conclude that the amplitude measurements are not relevant in the experimen-
tal recordings. Overall, the experimental observations show excellent agreement with the
dynamics predicted by the bifurcation analysis of the model. They demonstrate multi-
stability between the experimental regimes with two and three non-equidistant pulses.
Moreover, the quasiperodic regime corresponding to unlocked dynamics on an invariant
torus are not observed, in good agreement with the theoretical predictions of very large

locking regions in the parameter space as seen in Figure 2.16]

2.5 Polarization Dynamics
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Figure 2.19: Probability density function of choice of random angle and the resulting
intensity measurement

Subplot (al) shows the realization of choosing 50000 random angles from a uniform
distribution between 0 and 7 and subplot (a2) shows the resulting intensity measurement

In the previous sections we illustrated the intensity and temporal dynamics of the mi-

cropillar laser with feedback. Polarization dynamics in such a system can demonstrate a
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variety of effects. In ref. [82], it was shown that a VCSEL with co- and cross-polarized
feedback while emitting a constant output intensity, displays vectorial dissipative solitons
following a periodic rotations in the linear polarization state. These rotations manifest
as short pulses when detected through a polarizer. Other works on commercial VCSEL
systems were used to realize neuron like functionality based on polarization switching
[83, [38]. For reservoir computing applications, polarization dynamics in VCSELs has
been shown to improve the memory and computing capacity of reservoir computing ap-
plications [84] 29| [85]. Polarization dynamics in VCSEL with SA has been theoretically
investigated in ref. [86] and inhibition dynamics have been demonstrated. In this section,

we present some experimental results on the polarization dynamics of micropillar lasers

CW/Pulsed
laser

P1 p
d “ ' B i .. DM 800 nm
APD ‘ 980 nm

.

APD  OSA

with and without feedback.

. MO

ﬂpPillar

Figure 2.20: Experimental setup for measuring linearly polarized component of the ex-
citable response oriented along a particular axis
DM: Dichroic mirror, BS: Beam splitter, MO: Microscope objective, APD: Avalanche
photodiode, pPillar: Micropillar laser, P1: Linear polarizer oriented along the laboratory
reference frame, OSA: Optical spectrum analyzer

We first present the polarization dynamics of a single micropillar laser without feedback
to characterize its response and then demonstrate dynamics of such a system with feed-
back. As a first order approximation, neglecting internal dichroism and birefrengence, one
can assume that in a circular cavity every polarization mode in 7 radians is degenerate.
Thus if such a cavity is in the excitable regime and if an external incoherent perturbation

produces a response, its polarization would be randomly drawn from an uniform proba-
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bility distribution. This random choice of electric field oriented at 6 radians when filtered
through a linear polarizer and measured with a detector yields in the probability den-
sity function shown in figure Subplot (a1) shows the probability density function of
choosing a random angle from a uniform distribution and subplot (a2) shows the proba-
bility density function of detecting a particular intensity value. The intensity PDF is due to
the cos?(6) response, 0 being the angle between the polarizer orientation and the electric
field orientation. When the cavity under consideration is a semiconductor laser cavity
the dichroism and birefringence play an important role and the degeneracy in modes is
removed: certain orientations are preferred over the others. To characterize the emission
properties further we use the experimental setup shown in figure The CW laser is
used to maintain the micropillar laser in the excitable regime and the mode locked laser
is used to perturb the micropillar over the excitable threshold. Each perturbation from
the Ti:Sa laser can be seen as independent excitation as the repetition rate of the mode
locked laser (12.28 ns) is much greater than the internal time scale of the micropillar
laser. Statistics from the measured intensity can then be used to infer information about
the probability of emission along different orientations.

The results for such a measurement are shown in figures and for a circular
micropillar and an eIIipticalZ] micropillar respectively. A sequence of above threshold per-
turbations result in a sequence of excitable responses, these responses are split using
a 50:50 (R:T) beam splitter and sent to two detectors. On one of the detector arms, we
insert a linear polarizer oriented along the laboratory frame of reference. In the figures,
the central plot shows the joint probability distribution of the polarization sensitive (p(1),))
and polarization insensitive (p(I)) intensity measurement. The individual probability den-
sities of the polarization sensitive and insensitive intensity measurements are plotted on
the sides. It is evident from the figures that the polarization of the electric field is not
drawn from a uniform distribution. This effect is even more pronounced in the case of
elliptical micropillars which show that the polarization can be pinned to a particular orien-
tation. A complete characterization of the emission of the micropillar lasers would require

a simultaneous measurement using four detectors (as shown in figure [2.23) to obtain a

"Elliptical micropillars are fabricated by altering the shape of the mask to obtain elliptically shaped mi-
cropillars. The dimensions of the large and small axis are 5 um and 4 um respectively.
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Figure 2.21: Probability density function of polarization insensitive intensity measurement
and polarization sensitive intensity measurement in a circular micropillar
The central plot displays the joint distribution of the values of the polarization sensitive
and insensitive intensity measurement. The individual probability densities are plotted
on the sides. The polarizer was oriented along the laboratory reference frame.

probabilistic description of the Stokes parameters of the laser. We are currently limited
by the signal to noise ratio in the experiment to carry out this full characterization. The
preliminary results from the elliptical micropillars seem to be encouraging to demonstrate
inhibition dynamics which could be useful for certain computational schemes.

Having demonstrated that an incoherent perturbation leads to a probabilistic choice in
the output polarization state, we proceeded to study the effect of coherent perturbation

on such micropillars. Coherent perturbation scheme can be realized in two ways:

+ Tuning the central wavelength of the mode locked laser to be in the cavity resonance
of the micropillar. This can be very difficult to achieve since the cavity resonance
is smaller than the free spectral range of the Ti:Sa laser (0.25 nm) which makes it

compulsory to use thermal tuning of the laser cavity.

+ Exciting the micropillar laser using an incoherent perturbation and then using the

excitable response as a coherent perturbation.
The second method can be realized using an external cavity as demonstrated in this
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Figure 2.22: Probability density function of polarization insensitive intensity measurement
and polarization sensitive intensity measurement in a elliptical micropillar
The central plot displays the joint distribution of the values of the polarization sensitive
and insensitive intensity measurement. The individual probability densities are plotted
on the sides. The polarizer was oriented along the laboratory reference frame.

chapter. The single incoherent perturbation now triggers a train of responses, each of
which can be viewed as a coherent perturbation for the next response. We then perform
a polarization sensitive and insensitive measurement to resolve the dynamics of such a
pulse train. The experimental setup used is shown in figure This experiment was
only performed with circular micropillars due to experimental constraints. The time traces
obtained from the two detectors reveal interesting polarization dynamics. The Fourier
spectrum of the polarization sensitive and insensitive intensity measurements are shown
in figure [2.25] The Fourier transform of the polarization insensitive measurement reveals
only a fundamental peak at f = 1/7 where 7 is the feedback time which is approximately
8.8 ns. The polarization sensitive measurement reveals sidebands around the funda-
mental peak. The inset shows how the modulation sidebands change with respect to
the the bias pump. The modulation time is approximately 39.8 ns, 40.32 ns, and 41.15
ns for pump values of 590 mV, 597 mV, and 608 mV. The pump span was chosen such
that the micropillar was still in the excitable regime. The modulation time undergoes a

small change of approximately 1.4 ns for the large range of pump values. The pres-
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Figure 2.23: Experimental setup for complete characterization of polarization state of the
excitable response
DM: Dichroic mirror, BS: Beam splitter, MO: Microscope objective, APD: Avalanche
photodiode, pPillar: Micropillar laser, P1: Linear polarizer oriented along 0 radians, P2:
Linear polarizer oriented along 0 radians, P3: Linear polarizer oriented along /4 radians,
R1: Quarter waveplate oriented along 7/4 radians, OSA: Optical spectrum analyzer

ence of modulation sidebands in the polarization sensitive intensity measurement and
their absence in the total intensity measurement is a clear signature of modulation of
the orientation of the electric field of the excitable response rather than a modulation of
the intensity. We are currently collaborating with the group of Bernd Krauskopf from the
Dodd-Walls Center for Photonic and Quantum Technologies, The University of Auckland,
New Zealand on developing a model to explain the measurements. The time scale of
the modulation in polarization could stem from a temperature dependent phenomenon.
However, we have preliminary results showing that such dynamics could be explained
without the temperature being a required parameter. Additional studies would be needed
to explain the physical origin of this phenomenon. Another physical reason for ruling out
the temperature dependence would be due to the very small change in the modulation
time observed over a large range of pump values. Since the pump has a direct impact on
the temperature and there is no appreciable change in the modulation, we could indeed

assume that the modulation stems from a more fundamental reason.
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Figure 2.24: Experimental setup for measuring the linearly polarized component of the
excitable response oriented along a particular axis for a micropillar laser with delayed
optical feedback
DM: Dichroic mirror, BS: Beam splitter with 70/30 power split between reflected and
transmitted path, MO: Microscope objective, APD: Avalanche photodiode, L: Lens with f
= 5 cm, M: High reflectivity feedback mirror, BD: Beam dump, gPillar: Micropillar laser,
7 : External cavity round trip time.

2.6 Discussion and Conclusions

The results presented in this chapter demonstrate the multistability of a micropillar laser
with a time delayed feedback. The system, in the short term, demonstrates functionality
as an optical buffer which can be addressed using single optical perturbations or by
altering the bias pump. In the long-term the behaviour can be distinctly differentiated
into two regimes. In the case of a faster gain region, it is shown that any initial pulsing
pattern will converge to an equidistant pulsing pattern based on the initial conditions. It
is also possible to perturb a system in its stable state and the long-term dynamics are
then predicted by the basins of attraction. In the case of the a faster saturable absorber
region, we observe a similar kind of convergence but to symmetry-broken pulse-timing
states. Theoretically, our collaborators have shown that the stable n-pulse equidistant
solutions destabilize via torus bifurcations. In the vicinity of the torus bifurcation, a saddle
node bifurcation appears which stabilizes the symmetry broken states that are shown in
the bifurcation diagram (fig. [2.14). Experimentally, these states have been observed in
the case of 2 and 3 pulses in the external feedback loop. Physically, the strong amplitude-

time coupling is responsible for the strong amplitude time coupling is responsible for the
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Figure 2.25: Fourier spectrum of polarization sensitive and insensitive intensity measure-
ment in micropillar laser with feedback
Subplot (a) shows the fundamental peak corresponding to the feedback time and the side
bands signifying a modulation in the electric field orientation. Further, the inset shows a
slight change in the modulation frequency as a function of the bias pump. Subplot (b)
shows that in a polarization insensitive intensity measurement the only observed peak in
the Fourier spectrum corresponds to the feedback time.

occurrence of symmetry broken states. As the feedback time is increased, there is an

increasing degree of multistability among symmetric and symmetry broken states.

The results presented here are quite generic in essence that they only require excitability
and a time delayed feedback, thus their implications can exist beyond optics. Our results
contribute towards the understanding different pulsing dynamics observed in other fields.
Some notable references on related subjects are [87, 88] which demonstrated the effect
of time delayed feedback on single limit cycle oscillators and [89) I90] which discusses
effects of two limit cycle oscillators coupled through time delayed feedback. Since the
system presented in this chapter is not a limit cycle oscillator, the oscillations exist due
to the feedback and the time period is intimately linked to it, thus making the results
novel. Based on recent results demonstrating a connection between temporal dissipative
solitons in spatially extended systems and pulsing regimes in delay systems [81], pos-
sible connections might be made between non-equidistant pulsing regimes and soliton
molecules as the former are bound states of pulses [91} 192].

Beyond their fundamental interest for study of nonlinear dynamics of delay systems, the
results presented can contribute to the realization of optical computing schemes such as
reservoir computing relying on the large phase space of delay systems [93, 94/ |95, 30,

26|, optical buffers [37, 159, 196] and content addressable memories [97]. The physical
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meaning of a content addressable memory as described by Hopfield is an appropriate
phase space flow of the state of a system. The interest of such systems is that it can
retrieve a stored input based on a partial and/or error ridden input. In the context of the
results presented in this chapter, the stored patterns correspond to the stored memories
in the system and the input states correspond to partial matches to the stored memories.
Based on the initial excitation pattern, the system converges to one of the asymptotic
pulsing patterns which can be also viewed as the minimization of a certain energy defined
for the system. The energy landscape ideally contains a local minima for every stored
pattern and based on the initial conditions, convergence to the nearest local minima.
Another direction of research would be to compute using attractors created by several
coupled micropillars with delayed optical feedback. The hardware setup would be similar
to the proposed arrays of coupled micropillars via a diffractive optical element as in [30]
but would have a fundamental difference in the sense, the information would be written
into the system at time ¢ = 0 and allowed to evolve within the system and might converge
to a possible attractor. This would then be an interesting demonstration of having all
optical computing without any optical to electronic conversion layers.

Finally, in the last section of the chapter, we demonstrate the polarization dynamics of
a single micropillar (circular and elliptical) lasers with incoherent perturbation and single
circular micropillar with coherent perturbations which are realized with the help of delayed
optical feedback. We observe that the in the case of the incoherent perturbations, the cir-
cular micropillar produces a response with a varied orientation of the electric field. On the
other hand, the geometrical modification in the elliptical micropillars enable the pinning
of the polarization with in a small range. The results from the coherent excitation (via
delayed optical feedback) reveal a modulation in the polarization which is absent in the

intensity measurement. The reason behind this is currently not completely understood.
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Chapter 3

Computing with integrated

micropillar lasers

In this chapter we present mainly numerical results on computing using either spatially
coupled micropillar lasers or using an ensemble of uncoupled micropillars. We first de-
scribe the method of spatial coupling and the model. We show the propagation of exci-
tation and how they can be used to build information processing circuits: OR, AND gates
and a temporal pattern recognition circuit. We discuss the implementation of such circuits
experimentally. We also show a design for realizing an on-chip excitable oscillator. Finally,
we present numerical results on computing using an ensemble of uncoupled micropillars

using a particular example of temporal code called rank order coding

3.1 Spatially coupled micropillars

2-D lattices of nodes can be built and coupled via out-of-plane elements [30, 31} 98].
The resulting setups can be large and complex to build while giving impressive compu-
tational ability. An alternative way to scale up the number of coupled nodes is to design
integrated circuits and introduce on chip coupling. In the following sections we present
the various functioning blocks such as tunable coupling, delay lines, and threshold detec-
tors essential for building circuits using micropillar lasers. Coupled excitable nodes have

been theoretically and experimentally studied in the past. Experimental studies include
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semiconductor quantum-dot lasers using free-space coupling [58]] and excitable micror-
ing lasers coupled through waveguides [36]. Theoretical studies have been carried out
in coupled waveguides and optically injected microdisk lasers [99]. We propose in the
following a different approach and study spatially coupled micropillars in order to analyze
some computing properties of such networks. First we introduce the notion of coupling
and denote the diffractive coupling constant with the term . The system of ordinary dif-
ferential equations then used to model such evanescently coupled micropillars will consist

of 3 x n equations where n is the number of micropillars (Egs. (47,100, 101],[102].

Ej = ((1-ia)Gj — (1 —iB)Qj — VE; + irjm E™
Gj =c(A—Gi(L+|E;*) (3.1)

Qj =B — Qj(1+ s|E)[*))

Where the dynamical variables E;, G and @); are the electric field, rescaled gain and ab-
sorption in the j** micropillar. The time in these equations is rescaled to the cavity photon
lifetime 7, which is taken to be on the order of several picoseconds (= 1-2 ps). The cou-
pling term x;,, E™ follows the Einstein summation notation where the contributions from
all the nodes is summed up. The coupling constant « is real to have a purely diffractive
coupling. When the system under consideration is a chain of micropillars with uniform
diffractive coupling, x can be reduced to a real number and the diffractive coupling for the
7" node can be written as ix(E;_; + E;11). Non-radiative carrier recombination rates
and linewidth enhancement factors for the gain and absorber are ¢, 7¢, a and /3 respec-

tively. A denotes the pump and B is the non-saturable losses. The saturation parameter

is s = Zgzg where ag ¢ is the differential gain and absorption respectively; it controls the
characteristic response time of the system. The laser threshold for a single micropillar
as introduced in the first chapter is Ay, = 1 + B. For a coupled system in the excitable
regime, for A < Ay, an initial perturbation above the excitable threshold can propagate
to the neighbouring micropillars in the saltatory propagation regime provided x < 1. In
our analysis « is normalized using the cavity photon lifetime and x < 1 condition ensures

the formation of the excitable response before coupling to the neighbouring micropillars.
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This model is also only valid for small coupling strengths when coupled mode theory is
valid.

To quantify the coupling coefficient, we simulate two coupled micropillars. When two mi-
cropillars are placed in the vicinity of each other, the eigenmodes undergo mode splitting.
The fundamental mode split can be expressed as a symmetric and anti-symmetric mode.
Based on this splitting, one can estimate the coupling of energy from one micropillar
to the other and assign a characteristic coupling time. This time when normalized with
respect to the cavity photon life time is the value of x considered here. The detailed cal-
culations behind this are illustrated in the chapter 2 of ref. [44]. Figure shows how &

is dependent on the distance between the center of two micropillars of radius r = 2.5um.

0.05

0.00

3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0
Distance in um

Figure 3.1: Coupling constant « as a function of distance between two micropillars of
radius r = 2.5um

3.1.1 Numerical Simulations

Having outlined the prerequisites, we consider the following parameters for simulating a
chain of micropillars (each micropillar is coupled to its neighbours): v¢ = v = 0.001,
B =2 s=10, a =2, 8 = 0. The parameters A and « are varied in a region to il-
lustrate different behaviour. These parameters are compatible with the semiconductor
parameters [103]] and correspond to a non-radiative recombination time of 1-2 ns. The
initial conditions are taken as G;(0) = A, Q;(0) = B, and E;(0) = é;0Fp for all micropillars

where ¢, is the Kronecker delta symbol. While the simulations are done for the chosen
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parameters, the phenomenon is robust and is observable over a large range of parame-
ters. We choose to number the micropillars as 0 - -- N from left to right, then the leftmost
micropillar is perturbed at time ¢ = 0 using the initial condition Ey = 5 which is enough
to overcome the excitable threshold (for the given value of A) and elicit a response from
the micropillar. As a result of the coupling, the excitable response pulse is coupled to the
neighboring micropillar and since the coupling strength is sufficient, the excitable thresh-
old is crossed again leading to another pulse. The excitation transfer continues giving
rise to a solitonic and ballistic response. Importantly, the response is unidirectional: the
excitation can only transfer to the nearest neighbour on the right, or more precisely to the
unperturbed micropillar. This happens due to the refractory period of the micropillars; the
refractory period is longer than the coupling time between micropillars which results in

symmetry breaking of the system and unidirectional propagation of the signal.
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Figure 3.2: Average adimensional propagation speed of a signal < v/v, > (units of speed
described in text) in a coupled micropillar chain for different values of pump A

The calculated mean speed of the pulse for A = 2.75, 2.8, and 2.85 are plotted in figure
The average propagation speed < v/v, > here is related to the time (scaled to
the cavity photon lifetime) taken for the excitable pulse to propagate one adimensional
unit of length with v, = 1/7,. It does not account for the physical distance between two
micropillars which varies with the coupling strength « (see fig. [3.1). The speed varies
almost linearly with  in a large window of laser parameters (only a small range of pump

is shown here). The increase in « directly translates to lower photon tunneling time be-
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tween the cavities which increases the propagation speed. There is a slight deviation
from linearity at higher values of coupling (> 0.3). In this region of high coupling, we
observe an apparent saturation in the propagation speed (not shown in the plot). This
has been identified in [101] as a bifurcation in the propagation mode of the excitation.
The saturation of propagation speed can however be intuitively understood as follows:
the coupling strength controls the time it takes for the energy to be coupled to the adja-
cent micropillar, when the excitable pulse amplitude is large and if the coupling strength
is sufficient, the excitable threshold is easily reached. Hence the latency time does not
play a large role and we expect a saturation in the propagation speed. For a low value of
k (typically < 0.1), no pulse can propagate. The numerically computed speed is typically
on the order of a few hundreds of picoseconds for traversing 20 micropillars. This indeed
represents a challenge experimentally because one needs a high time resolution to re-
solve the propagation from individual cavities; additional limitations are caused by the low

emission intensity.
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Figure 3.3: Critical pump A. required for signal propagation for different coupling
strengths

For a given coupling strength «, there is a minimum value of the pump A below which
the excitable propagation is inhibited. This is illustrated in figure This critical value of
pump decreases with increasing the coupling strength. The intuitive explanation of this is
that small coupling strengths must be compensated by higher excitable pulse amplitude

and this is possible by increasing the pump. This is consistent with the numerical and
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analytic findings of refs. [49] 50], where it is shown that the maximum excitable pulse
intensity scales as fyc‘;l x (A—1—1In(A)). Having introduced the parameters required for
signal propagation, figure[3.4]shows the signal propagation or lack thereof in two chains of
twenty micropillar lasers with different coupling strengths. Here the pump is A = 2.8 and
the other parameters are as mentioned before. A perturbation above excitable threshold
is introduced in the leftmost cavity (0) in a chain of 20 coupled cavities. In subplot (a), the
coupling constant x = 0.01 is too small to induce propagation: only the first cavity fires an
excitable spike. In subplot (b), the coupling strength x = 0.1 is sufficient to induce stable

saltatory propagation in the chain.

(a) (b)

Intensity
Intensity
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Time Time

Figure 3.4: Saltatory propagation for different coupling strengths
In (a) and (b), the temporal response (normalized to cavity photon lifetime) of each
cavity is plotted with an offset for clarity. The coupling constant in (a) is k = 0.01 and in
(b) is k = 0.1. Adapted from [102]

3.1.2 Information processing

In an effort to build information processing circuits based on the understanding estab-
lished in the previous section, we first illustrate the implementation of temporal AND and
OR logic circuits. These logic gates are analogous to their static counter parts in terms
of their truth table but depend on the relative timing of the excitable response from the
micropillars. Out of deference to spiking neural networks, these excitable responses can
also be called spikeﬂ Another way to view logic circuits can be as a classification prob-

lem. A visual schematic of the truth table of the OR, AND, and XOR logic circuits is shown

"The words spikes and excitable response are used interchangeably in the thesis, | have tried to add
footnotes in a few places in order to avoid any confusion to the reader
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in figure Evidently, there exist several linear decision boundaries in the case of the
OR and AND logic gate but a nonlinear decision boundary is required for the XOR opera-
tion. Like the journey from single layer Perceptrons [1] to modern neural networks is one
of linear to nonlinear decision boundaries, we show how coupled micropillars can lear
linear decision boundaries and in principle be extended to nonlinear decision boundaries

such as XOR logic [86, [104] and ring neural networks [105].

OR gate AND gate XOR gate

e Output: 0
Output: 1

e Output: 0
Output: 1

e Output: 0
Output: 1

Input 2
Input 2
Input 2

Input 1 Input 1 Input 1

Figure 3.5: Truth table for OR, AND, and XOR logic

Linear decision boundary problems

Boolean logic operations with excitable systems have already been studied in models of
dendritic spines [106], using chemical excitable waves and their collision properties in 2D
media [107, 108] and in semiconductor media with excitable localized states [109, 1110].
The first illustration is that of the OR logic operation. In these circuits, information is coded
in the presence or absence of a spike and can be represented by two bits, 1 and 0. These
circuits are also designed to be cascadable. We consider a chain with an odd number of
micropillars (n = 13) for the main segment, to which is attached an additional segment in
the center consisting of a single micropillar. The OR gate is illustrated in figure [3.6] The
two input micropillars are A and B and the output micropillar is C. The above threshold
perturbations are marked by arrows. Except in the case where no input is present, the
output of the gate in C is always 1. With only one input, the response is trivially 1 as the
single excitation (input at either at A or B) propagates throughout the structure like in the

chain of micropillars. If both the inputs are 1, the pulses collide in the central micropillar

2The word ’learn’ is used liberally and refers to the fact that the parameters are decided before hand and
fixed for particular applications.
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and excite the output micropillar C. Therefore, a spike emerges and can propagate to
possibly another gate. This forms an OR gate. Note that where the two incoming pulses

meet, the response latency time is smaller.
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Figure 3.6: Numerical simulation of a spike-based OR gate circuit
Temporal responses for each cavity (offset for clarity) in the case of two perturbations in
nodes A and B. The response in node C is plotted in dashed and blue. Inset: overlayed
responses for inputs in nodes A, B, and both A and B. The cavities are pumped with
A = 2.74. The coupling strength is k = 0.15. Adapted from [102]

The AND gate is less trivial and requires to modify either the coupling or the pumping of
the micropillars. Since the latter is easier to implement experimentally, we choose this
option for the numerics. As was noticed earlier, there is a critical pump for the spike to
propagate. We use this property to build the AND logic gate. A temporal AND gate can
also be viewed as a coincidence detector gate. We consider the same chain as before,
except the micropillars immediately next to the central cavity are now pumped with a
lower value (see Fig. [3.7). The value is chosen to prevent the propagation of a single
pulse. However, when the two inputs are present, the coupling of the two lower intensity
pulses in the central micropillar is sufficient to cross the excitable threshold and a pulse
is created in C. The lower pump is immediately translated into a larger spike latency time
and a smaller response pulse. When these smaller pulses are coupled into the central

micropillar, they can produce a response pulse in C which can be cascaded eventually to
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other gates. The same phenomenon arises for a constant pump value of A = 2.74 and
a change of the coupling constant of the nodes next to the vertex node, for values in the
range 0.05 <« < 0.1. If & 5 0.05, the pulse cannot propagate anymore and is stopped
completely. If " Z 0.1, the gate transforms into an OR gate since a single pulse can

propagate through the vertex.
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Figure 3.7: Numerical simulation of a spike-based AND gate circuit
Temporal responses for each cavity (offset for clarity) in the case of two perturbations in
nodes A and B. The response in node C is plotted in dashed and blue. Inset: overlayed
responses for inputs in nodes A, B, and both A and B. The cavities are pumped with A
= 2.74 except the one marked by dashed circles with A = 2.45. The coupling strength is
k = 0.15. Adapted from [102]

The last example is that of a temporal pattern recognition circuit (a particular example
using delay lines and three excitable nodes was shown in [46]). This circuit is capable
of recognizing when two consecutive spikes in an input sequence are separated by At (
= 515.5 shown in figure [3.8). The input signal is sent to micropillar A and the output is
recorded from micropillar D, the response is recorded at several micropillars in the circuit
to demonstrate the operation of the temporal recognition. The input spike propagates
through the upper arm (see inset in Fig. 7). At the first crossing, the signal is split in
two parts. The lower arm implements a delay line whose delay is equal to At. Both

arms meet in a node structure similar to the previously shown AND gate. Every time the
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temporal pattern in input is recognized, a spike is emitted at the output. To speed-up the
computation time and reduce the size of the delay line we have accelerated the carrier
dynamics in the simulation by taking v¢ = 7o = 0.01 in Egs. @ The input pattern
recognized corresponds essentially to the propagation delay of the pulse in the lower
arm. Generalization of the circuit to the recognition of more complex temporal patterns
can be done via integrating several delay lines. However, the refractory time of the nodes

sets the lower limit of the detectable separation between two input spikes.
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Figure 3.8: Spike based temporal pattern recognition
A signal is sent to node A and recorded in nodes A, B, C, and D. In node D, the output
pulse signals the presence of specific temporal pattern: two spikes separated by
At = 515.5. In (a) the input signal consists of three spikes separated by At. In (b) the
input signal consists of two first spikes separated by At and a third spike separated by
At = 575.5. In inset is shown the micropillar circuit considered. The micropillar are
uniformly pumped except the two pillars with dashed circles (same parameters as in Fig.
except vg = 79 = 0.01). Inset: schematic of the circuit used (the lower arm length
has been reduced for clarity). The total number of nodes is 105. Adapted from [102]

While the topology of the spike pattern decoder is fixed by fabrication, the At value can be
adjusted by modulating the pump intensity thus making it possible to recognize various
temporal patterns using a single fabricated structure. The functionality illustrated here
can also be used to build on chip oscillators which generate a spike train akin to the
external cavity systems illustrated in chapter 2. Note that this functionality is not trivial, if
one considers e.g. a ring topology for the coupled pillars, one cannot have self sustained

oscillations: any perturbation introduced in the ring gives rise to two counter propagation
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excitations which would eventually collide and suppress the propagation. A schematic
structure is illustrated in figure[3.9} The circuit in terms of pumping or coupling is identical
to the temporal AND logic. The micropillars marked in solid line are pumped higher (or
have a higher coupling) as compared to the micropillars in dashed lines. An initial spike
/ perturbation is sent to node A, this spike is then split into three possible paths labelled
as Paths 1, 2, 3, and 4. The three paths can be alternatively expressed in the order of
the nodes traversed. The nodes trave<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>